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Summary 

The exponential growth of computational resources over the past decades, combined with the 

advent of models and advanced computational tools, have assisted significantly in guiding the 

design of improved polymer materials of high technological importance in a broad range of 

industrially relevant applications. Atomistic simulations have assisted a great deal in 

understanding elusive microscopic phenomena manifesting themselves at polymer interfaces and 

of their mechanisms and in establishing structure-property relations; they have a drawback, 

however, namely their high computational cost. Mesoscopic simulations, on the other hand, 

employ a higher level of description and are quite useful in studying a variety of important 

systems and phenomena at mesoscopic time- and length-scales, albeit the task of parameterizing 

the effective interactions between coarse-grained segments is rather complicated.  

There is an alternative strategy, however, which is the primary focus of the present 

thesis: field-theoretic methods. To carry out a field-theoretic computer calculation, we require a 

statistical field theory model of a fluid. A statistical field theory is a description of a system in 

which the fundamental degrees of freedom are not particle coordinates, but rather one or more 

continuous fields that vary with position. More specifically, we focus on one of the most 

successful theoretical frameworks for inhomogeneous polymeric systems, the so-called self-

consistent field theory (SCFT). Our primary goal is to formulate, validate and develop SCFT 

approaches, and then apply them in the description of interfacial systems involving high molar 

mass polymer melts under equilibrium conditions. 

The SCFT models of this research will comprise three main stages: 

1. Validation. The aim of this procedure is to allow for a comparison of the field 

theoretic model with previous atomistic simulations and experimental works in a 

rigorous and predictable manner. This is a key step to ensure that the theoretical 

models can successfully describe realistic systems. 
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2. Structural properties. This will be the phase where the SCFT will be used to compute 

structural properties of bulk and inhomogeneous melts under equilibrium conditions. 

3. Thermodynamic calculations. This is the highest goal of the theoretical strategy 

presented in this thesis. Through these calculations we will be able to determine  

measurable thermodynamic properties and behavior of high molar mass polymer/gas 

and polymer/solid interfaces. 

A self-consistent field (SCF) theoretic approach, using a general excess Helmholtz energy 

density functional that includes a square gradient term, is derived for polymer melt surfaces and 

implemented for linear polyethylene films over a variety of temperatures and chain lengths. The 

formulation of the SCF plus square gradient approximation (SGA) developed is generic and can 

be applied with any equation of state (EoS) suitable for the estimation of the excess Helmholtz 

energy. As a case study, the approach is combined with the Sanchez-Lacombe (SL) EoS to 

predict reduced density profiles, chain conformational properties, and interfacial free energies, 

yielding very favorable agreement with atomistic simulation results and noticeable improvement 

relative to simpler SCF and SGA approaches. The new SCF_SL+SGA approach is used to 

quantify the dominance of chain end segments compared to middle segments at free 

polyethylene surfaces. Schemes are developed to distinguish surface-adsorbed from free chains 

and to decompose the surface density profiles into contributions from trains, loops, and tails; the 

results for molten polyethylene are compared with the observables of atomistic simulations. 

Reduced chain shape profiles indicate flattening of the chains in the surface region as compared 

to the bulk chains. The range of this transitional region is approximately 1.6 times the radius of 

gyration (Rg). The inclusion of chain conformational entropy effects, as described by the 

modified Edwards diffusion equation of the SCF, in addition to the square gradient term in 

density, provides more accurate predictions of the surface tension, in good match with 

experimental measurements on a variety of polymer melts and with atomistic simulation 

findings. 

A model for the prediction of key structural and thermodynamic properties of Polymer 

matrix nanocomposites (PNC) is described. Our approach is applied to single spherical silica 

(SiO2) nanoparticles or planar surfaces grafted with polystyrene chains and embedded at low 

concentration in a matrix phase of the same chemical constitution. Our model is based on self-

consistent field theory, formulated in terms of the Edwards diffusion equation. The properties of 

the PNC are explored across a broad parameter space, spanning the mushroom regime (low 
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xv 

grafting densities, small NPs and chain lengths), the dense brush regime, and the crowding 

regime (large grafting densities, NP diameters, and chain lengths). We extract several key 

quantities regarding the distributions and the configurations of the polymer chains, such as the 

radial density profiles and their decomposition onto contributions of adsorbed and free chains, 

the chains/area profiles, and the tendency of end segments to segregate at the interfaces. Based 

on our predictions concerning the brush thickness, we revisit the scaling behaviors proposed in 

the literature and we compare our findings with experiment, relevant simulations, and analytic 

models, such as Alexander‘s model for incompressible brushes. 

Finally, a method is formulated, based on combining self-consistent field theory with the 

finite element method (SCFFEM), for studying structural and thermodynamic features of three- 

dimensional polymeric systems. Initially, this approach is tested on a planar 

polyethylene/vacuum and a polyethylene/graphite system, hand in hand with atomistically 

detailed molecular simulations as well as with one dimensional SCF approaches. This new 

approach is employed to predict reduced density profiles and interfacial free energies, yielding 

very favorable agreement with previous SCF studies, thus validating the SCFFEM methodology. 

An h-, r-, p- refinement process is developed to optimize the finite element mesh. Furthermore, 

two new criteria and an innovative successive substitution scheme are introduced for accurate 

convergence. The methodology is employed on a more complicated system consisting of 

polystyrene brushes grafted on silica walls immersed in polystyrene melt. In most 

implementations, the grafted chains are dealt with by smearing them across shells parallel to the 

surface of the modeled nanoparticle. The SCFFEM approach allows to distinguish the positions 

where the grafted chains are tethered, since it does not employ any smearing. The reduced 

density profiles are compared against the end-segment distributions along specific lines in the 

system. The structural properties and grand potential contributions are obtained for a broad 

range of grafting densities, molar masses and swelling ratios (i.e., ratio of the matrix to the 

grafted chains), and are compared to experimental data, theoretical models, and earlier 

simulation studies. 
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Πεπίληψη 

Η εθζεηηθή αύμεζε ησλ ππνινγηζηηθώλ πόξσλ ηηο ηειεπηαίεο δεθαεηίεο, ζε ζπλδπαζκό κε ηελ 

αλάπηπμε κνληέισλ θαη πξνεγκέλσλ ππνινγηζηηθώλ εξγαιείσλ, έρνπλ απνβεί πνιύ ρξήζηκεο 

ζην ζρεδηαζκό πνιπκεξώλ πιηθώλ κε βειηησκέλεο ηδηνηεηεο, ηα νπνία παξνπζηάδνπλ κηα 

πιεζώξα εθαξκνγώλ θνξπθαίαο ηερλνινγηθήο ζεκαζίαο γηα ηελ βηνκεραλία. Οη αηνκηθέο 

πξνζνκνηώζεηο έρνπλ βνεζήζεη ζε κεγάιν βαζκό ζηελ θαηαλόεζε ησλ πνηθίισλ 

κηθξνζθνπηθώλ θαηλνκέλσλ πνπ απαληώληαη ζηηο δηεπηθάλεηεο πνιπκεξώλ, θαζώο θαη ζηελ 

εδξαίσζε ζρέζεσλ κεηαμύ κηθξνζθνπηθήο δνκήο θαη ηδηνηήησλ. Έρνπλ όκσο έλα κεηνλέθηεκα, 

θαη απηό είλαη ην πςειό ππνινγηζηηθό θόζηνο. Οη κεζνζθνπηθέο πξνζνκνηώζεηο, από ηελ άιιε 

κεξηά, ιακβάλνπλ ρώξα ζε έλα πςειόηεξν (αδξνπνηεκέλν) επίπεδν πεξηγξαθήο θαη εηλαη 

αξθεηά ρξήζηκεο ζηε κειέηε πνηθίισλ ζεκαληηθώλ δηεπηθαλεηαθώλ ζπζηεκάησλ θαη 

θαηλνκέλσλ, ζηε κεζνθιίκαθα. Ψζηόζν ε παξακεηξνπνίεζε ησλ αιιειεπηδξάζεσλ κεηαμύ ησλ 

ηκεκάησλ αδξνπνηεκέλσλ κνληέισλ απνηειεί κηα ηδηαηηέξσο πεξίπινθε δηαδηθαζία. 

Μηα ελαιιαθηηθή ζηξαηεγηθή, ε νπνία απνηειεί θαη ην επίθεληξν ηεο παξνύζαο 

δηαηξηβήο, είλαη νη ππνινγηζηηθέο κέζνδνη βαζηζκέλεο ζηε ζεσξία πεδίνπ. Γηα λα εδξαηώζνπκε 

έλα ηέηνην ππνινγηζηηθό κνληέιν, εηλαη άθξσο απαξαίηεηε ε ρξήζε κηαο ζηαηηζηηθήο ζεσξίαο 

πεδίνπ ελόο ξεπζηνύ. Η ζηαηηζηηθή ζεσξία πεδίνπ απνηειεί κηα πεξηγξαθή ελόο ζπζηήκαηνο ζην 

νπνίν νη ζεκειηώδεηο βαζκνί ειεπζεξίαο δελ είλαη νη ζπληεηαγκέλεο ζσκαηηδίσλ, αιιά κάιινλ 

έλα ή πεξηζζόηεξα ζπλερή πεδία θαη ε αιιειεπίδξαζε εμαξηάηαη απν ηε ζέζε κέζα ζηα πεδία 

απηά. Πην ζπγθεθξηκέλα, εζηηάδνπκε ζε έλα από ηα πην επηηπρεκέλα ζεσξεηηθά πιαίζηα γηα 

αλνκνηνγελή πνιπκεξή ζπζηήκαηα, ηε ζεσξία ηνπ απην-ζπλεπνύο πεδίνπ (SCFT). Απνδίδνπκε 

ηδηαίηεξε πξνζνρή θπξίσο ζηε δηακόξθσζε, ηελ επηθύξσζε θαη ηελ αλάπηπμε δηαθνξεηηθώλ 

πξνζεγγίζεσλ ηεο ζεσξίαο ηνπ απηνζπλεπνύο πεδίνπ, θαη ζηε ζπλέρεηα ηελ εθαξκόδνπκε ζηελ 

πεξηγξαθή δηεπηθαλεηαθώλ ζπζηεκάησλ πνπ πεξηιακβάλνπλ ηήγκαηα πνιπκεξώλ πςειήο 

κνξηαθήο κάδαο ζε ζπλζήθεο ηζνξξνπίαο. 
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Τα κνληέια ζεσξίαο ηνπ απηνζπλεπνύο πεδίνπ απηήο ηεο κειέηεο πεξηιακβάλνπλ ηξία 

θύξηα ζηάδηα: 

1. Δπηθύξσζε. Ο ζηόρνο απηήο ηεο δηαδηθαζίαο είλαη λα επηηξέςεη ηε ζύγθξηζε ηνπ 

ζεσξεηηθνύ κνληέινπ κε πξνεγνύκελεο αηνκηθέο πξνζνκνηώζεηο θαη πεηξακαηηθά δεδνκέλα κε 

ζρνιαζηηθή θαη κεζνδηθή πξνζέγγηζε. Απηό είλαη έλα βαζηθό βήκα γηα λα δηαζθαιηζηεί όηη ηα 

ζεσξεηηθά κνληέια κπνξνύλ λα πεξηγξάςνπλ κε επηηπρία ξεαιηζηηθά ζπζηήκαηα. 

2. Δμέηαζε δνκηθώλ ηδηόηήησλ. Η ζεσξία ηνπ απηνζπλεπνύο πεδίνπ ρξεζηκνπνηείηαη γηα 

ηελ πεξηγξαθή ησλ δνκηθώλ ηδηνηήησλ νκνηνγελώλ θαη αλνκνηνγελώλ θάζεσλ πνιπκεξηθώλ 

ηεγκάησλ ππό ζπλζήθεο ηζνξξνπίαο. 

3. Θεξκνδπλακηθνί ππνινγηζκνί. Απηόο είλαη ν βαζηθόηεξνο ζθνπόο ηεο ζεσξεηηθήο 

ζηξαηεγηθήο πνπ παξνπζηάδεηαη ζε απηή ηε Γηαηξηβή. Μέζσ ησλ ππνινγηζκώλ κεηξήζηκσλ 

ζεξκνδπλακηθώλ ηδηνηήησλ είλαη εθηθηόο ν πξνζδηνξηζκόο θαη ε πξόβιεςε ηεο ζπκπεξηθνξάο 

ζπζηεκάησλ πνπ απνηεινύληαη από ειεύζεξεο επηθάλεηεο πνιπκεξώλ ή/θαη δηεπηθάλεηεο κεηαμύ 

πνιπκεξώλ θαη ζηεξεώλ κε ηε ρξήζε ή όρη εκθπηεπκέλσλ πνιπκεξηθώλ αιπζίδσλ . 

H ζεσξία ηνπ απηνζπλεπνύο πεδίνπ, κε κηα γεληθεπκέλε έθθξαζε ελεξγεηαθήο 

ππθλόηεηαο Helmholtz, πνπ πεξηιακβάλεη έλαλ όξν ηεηξαγσληθήο βαζκίδαο (SGA), 

ρξεζηκνπνηεηηαη γηα επηθάλεηεο ηήγκαηνο πνιπκεξνύο θαη εθαξκόδεηαη ζε πκέληα γξακκηθνύ 

πνιπαηζπιελίνπ γηα ελα πιήζνο ζεξκνθξαζηώλ θαη κνξηαθώλ βάξώλ. Η αλαπηπμε ηεο 

ζεσξεηηθήο κεζνδνινγίαο ηνπ SCF ζε ζπλδηαζκό κε ηελ ζεσξία SGA είλαη γεληθεπκέλε θαη 

κπνξεί λα εθαξκνζηεί κε νπνηαδήπνηε θαηαζηαηηθή εμίζσζε (EoS). Φξεζηκνπνηείηαη ε 

Sanchez-Lacombe (SL)  EoS (SCF_SL+SGA) γηα εθαξκνγή ηεο ζεσξεηηθήο κεζνδνινγίαο κε 

ζθνπό  ηελ πξόβιεςε ησλ πξνθίι αλεγκέλεο ππθλόηεηαο (ζε ζρέζε κε ηελ ππθλόηεηα ζηνλ 

θπξίσο όγθν ηνπ πιηθνύ) θαη δνκηθώλ ηδηνηήησλ ησλ αιπζίδσλ ησλ ειεύζεξσλ επηθαλεηώλ. Τα 

απνηειέζκαηα βξίζθνληαη ζε ζπκθσλία κε εθείλα ησλ αηνκηθώλ πξνζνκνηώζεσλ θαη 

επηδεηθλύνπλ αμηνζεκείσηε βειηίσζε ζε ζρέζε κε ηηο απινύζηεξεο επί κέξνπο ζεσξεηηθέο 

πξνζεγγίζεηο SCF θαη SGA. Η SCF_SL+SGA ρξεζηκνπνηήζεθε επίζεο θαη γηα ηνλ πνζνηηθό 

πξνζδηνξηζκό ησλ θαηαλνκώλ ησλ αθξαίσλ ηκεκάησλ ησλ αιπζίδσλ ζε αληηδηαζηνιή κε ηα 

κεζαία ηκήκαηα ζε ειεύζεξεο επηθάλεηεο πνιπαηζπιελίνπ. Αλαπηύρζεθαλ δηαδηθαζίεο δηαθξηζεο 

ησλ πξνζξνθεκέλσλ ζηελ επηθάλεηα αιπζίδσλ θαη ησλ ειεύζεξσλ αιπζίδσλ. Τα πξνθίι 

αλεγκέλνπ ζρήκαηνο αιπζίδσλ δείρλνπλ κηα πην επίπεδε θαηαλνκή ησλ λεθώλ κνλνκεξηθώλ 

ηκεκάησλ ησλ αιπζίδσλ ζηελ πεξηνρή ηεο επηθάλεηαο ζε ζύγθξηζε κε ηηο αιπζίδεο ζηνλ θύξην 

όγθν ηνπ πιηθνύ. Τν εύξνο απηήο ηεο κεηαβαηηθήο πεξηνρήο είλαη πεξίπνπ 1,6 γπξνζθνπηθέο 
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αθηίλεο  (Rg). Η επηθαλεηαθή ηάζε πνπ ππνινγίδεηαη κε ηε ζεσξεηηθή κεζνδνινγία SCF_SL + 

SGA γηα ελα πιήζνο πνιπκεξώλ ηεγκάησλ βξίζθεηαη ζε πιήξε αληηζηνηρία κε πεηξακαηηθέο 

κεηξήζεηο θαη κε επξήκαηα αηνκηθώλ πξνζνκνηώζεσλ.  

Σηελ ζπλέρεηα αλαπηύζεηαη έλα κνληέιν γηα ηελ πξόβιεςε ησλ βαζηθώλ δνκηθώλ θαη 

ζεξκνδπλακηθώλ ηδηνηήησλ ησλ πνιπκεξηθώλ λαλνζύλζεησλ (PNC). Η πξνζέγγηζή καο 

εθαξκόζηεθε ζε ζθαηξηθά λαλνζσκαηηδία ή επίπεδεο επηθάλεηεο ππξηηίαο (SiO2) νη νπνίεο 

θέξνπλ εκθπηεπκέλεο αιπζίδεο πνιπζηπξελίνπ (PS) θαη είλαη δηεζπαξκέλεο ζε κήηξα 

πνιπζηπξελίνπ.Τν κνληέιν καο βαζίδεηαη ζεσξία ηνπ απηνζπλεπνύο πεδίνπ, πνπ δηαηππώλεηαη 

κε βάζε ηελ εμίζσζε δηάρπζεο Edwards. Οη ηδηόηεηεο ησλ PNC εμεηάηαδνληαη ζε έλα θαζκα 

παξακέηξσλ, πνπ εθηείλεηαη απν ρακειέο ππθλόηεηεο εκθύηεπζεο, κηθξά NP θαη κήθε 

αιπζίδαο, πξνο πην ππθλέο (ζρεκαηηζκνο  πνιπκεξηθεο ςήθηξαο) έσο θαη πνιύ πςειέο 

ππθλόηεηεο εκθύηεπζεο. Μειεηώληαη βαζηθά ραξαθηεξηζηηθα ζρεηηθά κε ηηο θαηαλνκέο θαη ηηο 

δηακνξθώζεηο ησλ πνιπκεξώλ αιπζίδσλ, όπσο ηα πξνθίι αθηηληθήο ππθλόηεηαο, ε δηάθξηζε 

κεηαμύ πξνζξνθεκέλσλ θαη  ειεύζεξσλ αιπζίδσλ θαη ε ηάζε ησλ ηειηθώλ ηκεκάησλ λα 

ζπγθεληξώλνληαη ζηηο δηεπηθάλεηεο. Πξαγκαηνπνηείηαη εθηίκεζε ηνπ πάρνπο ηεο πνιπκεξηθήο 

ςήθηξαο ησλ εκθπηεπκέλσλ αιπζίδσλ ε νπνία πεξηβάιιεη ην λαλνζσκαηίδην θαη 

επαλεμεηάδνληαη νη πξνβιέςεηο θιηκάθσζεο πνπ πξνηείλνληαη απν ηελ βηβιηνγξαθία. Τα 

απνηειέζκαηά καο ζπγθξίλνληαη κε επξήκαηα  από δηαζέζηκεο πεηξακαηηθέο κεηξήζεηο, ζρεηηθέο 

πξνζνκνηώζεηο θαη αλαιπηηθά κνληέια, όπσο ην κνληέιν Alexander γηα αζπκπίεζηα ξεπζηά.  

Ψο ηειεπηαίν κνληέιν πξνηππνπνίεζεο δηακνξθώλεηαη κηα κέζνδνο πνπ βαζίδεηαη ζην 

ζπλδπαζκό ηεο SCFT κε ηε κέζνδν πεπεξαζκέλσλ ζηνηρείσλ (FEM), γηα ηε κειέηε δνκηθώλ θαη 

ζεξκνδπλακηθώλ ραξαθηεξηζηηθώλ ηξηδηάζηαησλ πνιπκεξώλ ζπζηεκάησλ. Η πξνζέγγηζε απηή 

(SCFFEM)  δνθηκάζηεθε αξρηθά ζε δηεπηθάλεηεο πνιπαηζπιελίνπ κε θελό θαη πνιπαηζπιελίνπ 

κε γξαθίηε, όπνπ ε κεζνδνινγία παξακεηξνπνίεζεο ζηεξίδεηαη ζε κνξηαθέο πξνζνκνηώζεηο θαη 

κειεηήζεθε πξνεγνπκέλσο κε κνλνδηάζηαηεο κεζόδνπο SCF. Απηή ε λέα πξνζέγγηζε 

ρξεζηκνπνηείηαη  γηα ηελ πξόβιεςε πξνθίι αλεγκέλεο ππθλόηεηαο θαη ηνλ ππνινγηζκό ηεο 

ειεύζεξεο ελέξγεηαο δηεπηθαλεηώλ, κε ηα απνηειέζκαηα λα βξίζθνληαη ζε θαιή ζπκθσλία κε 

πξνεγνύκελα απνηειέζκαηα SCF, επηθπξώλνληαο ηε κεζνδνινγία SCFFEM.  Σηόρνο απηήο ηεο 

εξγαζίαο είλαη θαη ε δηεξεύλεζε ηεο ζπκπεξηθνξά ηνπ ζπζηήκαηνο ησλ εμηζώζεσλ όηαλ 

εθαξκόδεηαη ε κέζνδν πεπεξαζκέλσλ ζηνηρείσλ. Σηελ ζπλέρεηα αλαπηύρζεθε κηα ηερληθή h-, r-, 

p- βειηηζηνπνίεζεο, κέζσ ηεο νπνίαο είλαη δπλαηόλ λα βειηζηνπνηεζνύλ νη παξάκεηξνη ηνπ 

πιέγκαηνο πεπεξαζκέλσλ ζηνηρείσλ. Δπηπιένλ, εηζάρζεθαλ δύν λέα θξηηήξηα γηα ηελ αθξίβεηα 
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ηεο ζύγθιηζεο θαη έλα θαηλνηόκν ζρήκα δηαδνρηθώλ επαλαιήςεσλ. Τα επξήκαηά καο 

ρξεζηκνπνηήζεθαλ ζε έλα πην πεξίπινθν ζύζηεκα απνηεινύκελν άπν επηθάλεηεο ππξηηίαο νη 

νπνίέο θέξνπλ εκθπηεπκέλεο αιπζίδεο πνιπζηπξελίνπ (PS) θαη είλαη δηεζπαξκέλεο ζε κήηξα 

πνιπζηπξελίνπ. Μερξη ηώξα, ε αθξηβήο αλαπαξάζηαζε ησλ ζεκείσλ πξόζδεζεο ησλ 

εκθπηεπκέλσλ αιπζίδσλ ήηαλ αλέθηθηε. Με ηελ κέζνδν SCFFEM εηλαη δπλαηό λα δηαθξηζνύλ 

ζηνλ ηξηδηάζηαην ρώξν νη ζέζεηο όπνπ νη εκθπηεπκέλεο αιπζίδεο είλαη ζπλδεδεκέλεο κε ηελ 

επηθάλεηα ηεο ππξηηίαο, από ηηο ζέζεηο πνπ δελ θέξνπλ εκθπηεπκέλεο αιπζίδεο. Σπγθξίλνπκε ηα 

πξνθίι αλεγκέλεο ππθλόηεηαο θαη ηηο θαηαλνκέο αθξαίσλ ηκεκάησλ ησλ αιπζίδσλ θαηά κήθνο 

ζπγθεθξηκέλσλ γξακκώλ κέζα ζην ζύζηεκα. Τέινο πξνζδηνξίδνλαηη νη δνκηθέο ηδηόηεηεο θαη νη 

ζπλεηζθνξέο ζην δπλακηθό ηνπ κεγάινπ θαλνληθνύ ζηαηηζηηθνύ ζπλόινπ γηα έλα επξύ θάζκα 

ππθλνηήησλ εκθύηεπζεο, κνξηαθώλ καδώλ θαη ιόγσλ δηόγθσζεο θαη ζπγθξίλνληαη κε 

πεηξακαηηθά δεδνκέλα, ζεσξεηηθά κνληέια θαη πξνεγνύκελεο κειέηεο πξνζνκνίσζεο.  
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Symbols and Notation 

Latin symbols 

A Helmholtz free energy 

IGA  Helmholtz free energy of an ideal gas  

SLA   Helmholtz free energy calculated by Sanchez Lacombe equation of State  

A0 Helmholtz free energy of a chain with constrained end-to-end Re vector of 

ideal chain 

APS,
2SiOA  Hamaker constant for PS and SiO2 

Achain  Helmholtz energy contribution, of a Gaussian chain grafted at 
gi

r  

g

confA  Free energy associated with the conformations of the grafted chains 

g

stretchA  Stretching free energy obtained by the density profiles of the grafted chain 

ends 

ach Average surface area occupied in plane by a chain passing through that plane 

amix 
Relaxation parameter 

b Effective bond length 

bi  Βond vector 

bK Kuhn  length 

CN Flory‘s characteristic ratio  
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C∞ Flory‘s characteristic ratio at infinite chain length 

c c=m matrix and c=g for grafted chains 

d  Thickness of the adsorption regions 

thd  Hyperbolic tangent 

E  Enthalpy   

F Helmholtz free energy is approximated by a functional  

 f Excess Helmholtz energy density relative to an ideal gas of chains 

HFD

EoSf   Excess Helmholtz energy density relative to an ideal gas of chains based 

Helfand approximation 

SL

EoSf  Excess Helmholtz energy density relative to an ideal gas of chains based on 

Sanchez-Lacombe EoS 

 fstar  Number of branches 

G  Gibbs free energy 

0( , ; )G sr r   Green function for the Gaussian thread in the presence of the field 

0 0( , ; )G sr r   Green function for the Gaussian thread without the presence of the field 

IGG  Gibbs free energy of an ideal gas 

H Hamiltonian of the system 

CH  Hamiltonian of the canonical ensemble 

GH   Hamiltonian of the grand canonical ensemble 

h Film thickness in planar geometry/ segment-surface distance in spherical 

geometry 

h spring potential 

h Planck constant  
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h99% Distance between the center of the nanoparticle and a surface, and encloses 

99% of grafted chain segments 

havg average element size  

hedge Edge of the brush length 

hHS Segment-surface distance 

hg Grafting point-surface distance 

1/2
2

gh  Mean brush thickness 

e
J  Jacobian matrix of the transformation from natural to real coordinates of an 

element  

, 1e 
J  Inverse Jacobian matrix 

k  Diffusion coefficient 

e

IJK  Stiffness matrix of FEM 

kB Boltzmann‘s constant, kB=1.3806488 x 10
-23

 m
2
kgs

-2
K

-1
 

lC-C Length of the carbon-carbon bond  

Lx ,Ly ,Lz Domain dimensions 

lg  Quantity with dimensions   2 1kg/mol nm
n m  of  scaling law for polymer 

brushes 

M  Molar mass 

e

IJM  Mass matrix of FEM 

Mg molar mass of the grafted chains 

m Mass 

N Number of segments 

N  Normalizing prefactor which includes the contribution from integration over 

momentum space  

Nel Number of elements 
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Ni Shape functions 

KN  Number of Kuhn steps 

Nm Length of the matrix chains 

Nnod Number of nodal points of the whole domain 

Nnod,e Number of nodal points of an element 

Ng Length of and grafted chains 

Ngp Number of integration points in Gauss Quadrature 

Nstar   Number of segments constituting a branch of star polymer
 

n  Total number of atoms/particles/chains of the system 

n  The mean number of chains in the system 

ng  Number of grafted chains of the system 

nm  Number of matrix chains of the system 

nch Number of chains that intersect a plane   

sn  Chain shape (Intersections per chain going through a plane) 

s,bulkn  Chain shape in the bulk 

P Pressure 

P
*
 characteristic Sanchez-Lacombe pressure 

eP( ; )NR   Probability density function for end-to-end vector eR
 

    rP  Α statistical weight for path ( )sr  of chain α in the absence of any field in 

the Gaussian string model
 

P  reduced pressure  

sP  Phase coexistence pressure 

IGP  Pressure of an ideal gas 
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n
p   Generalized momenta  1,  ..., np p

 

pint Probability of a chain, that started anywhere in the system, to intersect a 

plane 

*

SLp  Sanchez-Lacombe pressure parameter 

Q
 

Single chain partition function  

nVTQ  Canonical partition function 

q Restricted partition function for the Gaussian thread model /chain propagator 

q  Propagator derivative 

qads Propagator of segments belonging to adsorbed chains 

qc Propagator of segments c = m matrix, and c = g grafted chains 

qfree Propagator of segments belonging to free chains 

0shape,zq   Propagator for chains that do not intersect a plane z0 

eR   The end to end vector  

R  Τhree-dimensional region   

Rg  Radius of gyration 

RNP Radius of nanopatricle 

Rstar  Radius of a star polymer  

r Contour position r  

e
r  Global coordinates of element 

 n
r  Generalized coordinates  1,  ..., n

r r  

1N
r   1N   particle positions 

rα Contour position r of a chain α 

cmr   Center of mass position 
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rads Distance from NP center to the region where the segments of matrix chains 

are considered to be ―adsorbed‖ 

rg Grafting points 

ggir   Grafting point of the ig
th

 grafted chain 

SLr
 

Νumber of Sanchez-Lacombe segments constituting a molecule 

S
 Entropy 

ghS   Surface area over which grafting points are smeared
 

S,Ssolid  Total interfacial area 

s Contour length along a chain 

T Temperature 

T
*
 Characteristic Sanchez-Lacombe temperature 

T  Reduced temperature 

titeration Time of a single iteration 

U  Potential energy of the system  

U0  Potential energy associated with a particular conformation of the polymer of 

ideal chain model 

sU  Interaction energy between the polymer chain segments and the solid 

surfaces 

*   Hard core volume of a Sanchez-Lacombe segment 

u  Reduced volume 

u  Pair potential function 

V Volume of the system 

V
*
 Close packed volume of the n r-mers 

Vel  Volume of an element 
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W  Weight Function 

e

IJW  Field matrix of FEM 

w  Purely imaginary position-dependent field 

jw   Independent weight functions 

w   Chemical potential field after imposing saddle point approximation 

w  Real position-dependent field 

w  Field evaluated after substituting the calculated reduced densities in iteration 

scheme 

neww   New field for next iteration 

bulkw  Chemical potential field of the bulk 

ifcw  Chemical potential field of the interface 

mw
 

Weight factor of the integration point 

thw  the measure of the thickness of the sigmoidal curve 

Z Configurational partition function 

Z0 Configurational partition function of ideal chain model 

freeZ  Configurational partition function of a free chain 

intraZ  The configurational integral of a single, atomistically represented, molecule 

over all but three translational degrees of freedom 

nVTZ   Configurational partition function of canonical ensemble 

z   Activity of grand canonical ensemble 

 

Greek Symbols 

β Inverse of the thermal energy (kBT)
-1

 

γ Surface tension  
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γ   Geometric factor depending on bond-angles along the chain backbone 

γsp Interfacial tension of a solid/polymer  interface 

γs Surface tension of a solid  

γcalc Surface tension calculated by SCFFEM method with mesh with low accuracy 

γconv Surface tension calculated by SCFFD or by SCFFEM method with mesh with 

high accuracy 

gA  Conformational entropy of ng grafted chains subject to the field w  

g

fieldA  Contribution to the Free Energy of the field experienced by the grafted chains  

max

ifcw  Maximum difference between the fields of two iterations 

tol

ifcw
 

A tolerance value of
max

ifcw  

coh  Cohesive interaction component (relative to the bulk melt chains) arising due 

to segment-segment interactions in the polymer 

field  Interaction energy between the density field and the chemical potential field 

m  Translational and conformational entropy (relative to the bulk melt entropy) 

of noninteracting matrix chains subject to a chemical potential, Nmμm, 

solid  Contribution of the potential energy exerted from the solid 

δ(…) Dirac delta-function. 

ε
*
 Attractive energy between Sanchez-Lacombe segments in adjacent sites  

  Heaviside step function 

  Influence parameter  

 Dimensionless influence parameter  

SL  Influence parameter from Sanchez-Lacombe EOS 

T  Isothermal compressibility 


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Λi Thermal wavelength of atom i of a molecule 

  Symmetry measure of hyperbolic tangent curve 

m  location of the integration point m in Gauss Quadrature 

  Chemical potential 

0   Chemical potential of bulk phase 

IG  Chemical potential of an ideal gas 

, ( , , )VT V T Ξ  Grand canonical partition function 
 

ρ Segment density 

ρ
*
 Characteristic Sanchez-Lacombe density 

  Reduced density  

̂   Microscopic particle density 

bulk  Reduced bulk density 

end  Density of the end segments of a chain 

ρg Gas density 

ρl Liquid density 

ρm 
Μolecular density 

ρmass  Mass density 

seg,bulk  Bulk segment density  

*

SL  SL density parameter 

ζg Grafting density 

2PS SiO,   Hamaker effective radii for PS and SiO2 

φ Reduced segment density 

φads Reduced volume fraction of segments belonging to adsorbed molecules 
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φc Reduced segment density of c = m matrix, and c = g grafted chains 

φend 
End segment reduced density 

φfree Reduced volume fraction of segments belonging to free molecules  

φi Trial function 

φloop Reduced volume fraction of adsorbed loop segments  

φmiddle Middle segment reduced density 

φtails Reduced volume fraction of adsorbed tail segments  

s  Segment reduced density of chain segments lying at reduced contour length s 

χ  Flory-Huggins parameter 

Ψ Probability density function  

ψ
 

Probability density function probability distribution  

Ω  Number of configurations available to a system of n molecules 

Ω  Finite element domain 

bulk  Grand potential of bulk phase 

eΩ  Domain occupied by a single element 

hΩ  Finite element domain approximation 

, ( , , ) VT V T     Grand potential 

  Absorption coefficient of diffusion equation 

 

 

 

 

 



Nomenclature 

xxxv 

 

Abbreviations 

DFT  Density functional theory 

DPD  Dissipative particle dynamics 

EoS  Equation of state 

FOMC  Fast Off-lattice Monte Carlo 

FEM  Finite element method 

FF  Free film 

kMC  Kinetic Monte Carlo 

LAMMPS Large-scale Atomic/ Molecular 

Massively Parallel Simulator 

MC  Monte Carlo 

MD  Molecular Dynamics 

MUMPS  MUltifrontal Massively Parallel 

Solver 

NC  Nanocomposites 

NP  Nanoparticle 

μVΤ  Grand canonical ensemble 

NVT  Canonical ensemble 

PDE  Partial differential equation 

PDMS  Poly(dimethylsiloxane) 

PE  Polyethylene 

PEO  poly(ethylene oxide) 

PGNP  Polymer grafted nanoparticles 

PIB  Polyisobutylene 

 

 

 

PMMA  Poly(methyl methacrylate) 

PMF Potential of mean force  

PNC  Polymeric nanocomposites 

PnBMA  Poly (n-butyl methacrylate ) 

PS  Polystyrene 

PVAc  Poly(vinyl acetate) 

SANS  Small angle neutron scattering 

SCFFEM  Self-consistent field combined with 

finite element method 

SCFFD  Self-consistent field combined with 

finite differences method 

SCFT  Self-consistent field theory 

SCF_Helfand  Self-consistent field Helfand 

model 

SCF_SL+SGA  SCFT with SGA model, based 

on the Sanchez- Lacombe EoS 

SGA-PS  SGA model developed by Poser and 

Sanchez 

SL  Sanchez-Lacombe Δquation of state 

SGA  Square gradient approximation 

SGT  Square Gradient Theory 

TraPPE  Transferable Potentials for Phase 

Equilibria Force Field 

WRM  Method of Weighted Residuals 
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 Introduction 1

In this short introductory chapter, the framework of the thesis is established. We will try to 

introduce the reader to the world of nanoscale macromolecules by presenting and discussing the 

main definitions utilized later in this thesis. Moreover, we will explain the important role of 

polymers in our life, why interfaces are of major technological importance, how polymer matrix 

nanocomposites have been established as a state-of-the-art field in research and industry, and the 

value of Self Consistent Field Theory in describing the complex structure of these polymeric 

materials. 

 Polymers  1.1

In the literature, polymers refer to materials whose shared structural feature is the presence of 

long covalently bonded chains of atoms.
1 

According to the International Union of Pure and 

Applied Chemistry (IUPAC) definition of a polymer:
2
 ―a polymer is a substance composed of 

molecules characterized by the multiple repetition of one or more species of atoms or groups of 

atoms (constitutional repeating units) linked to each other in amounts sufficient to provide a set 

of properties that do not vary markedly with the addition of one or a few of the constitutional 

repeating units‖. A monomer is the substance that the polymer is made of (usually coinciding 

with the structural unit), and the process that converts a monomer to a polymer is called 

polymerization. When a structural unit is connected to precisely two other structural units, the 

resulting chain structure is called a linear macromolecule, whilst when existing structural units 

are connected to three or more units in the same chain we talk of branched macromolecules. If 

there is only one type of chemical unit the corresponding polymer is referred to as a 

homopolymer;
3
 if there are more than one types, it is referred to as a copolymer. Special units 

called end groups are found where the polymeric chains terminate. 
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Polymers are chain-like macromolecules, which are composed of sequences of various 

types of repeating units. Therefore, there can be infinitely many types of polymers depending on 

the combinations and sequences of these units along the chain. The term configuration refers to 

the ―permanent‖ stereo-structure of a polymer. The configuration is defined by the 

polymerization method, and a polymeric chain preserves its configuration until it reacts 

chemically. Due to its flexibility, a polymer chain with a certain configuration can exhibit a very 

large number of possible 3-dimensional folding shapes. This degree of freedom is called the 

conformation. 

Most commercial synthetic polymers are considered to be flexible, because the natural 

conformation of such a polymer, either in the molten state or dissolved in a solvent, is not a rigid 

rod but rather a random coil. The flexibility necessary for polymer coiling is derived in many 

polymers from relatively unhindered rotations around carbon–carbon single bonds along the 

polymer backbone.
4
 The ―random‖ character of a coiled polymer reflects the fact that an 

extremely large number of conformational states of the backbone bonds are available. A direct 

result of this character is that the equilibrium behavior of polymers resists situations, such as 

strong extension or compression, where the number of conformational states is reduced relative 

to that in the random coil.
5
 Such a reduction in available states is described macroscopically as a 

decrease in ―conformational entropy.‖  

Even though many people probably do not realize it, everyone is familiar with polymers. 

They are one of the most popular category of materials encountered in everyday use, since they 

are the main components of plastics, rubber, resins, biomaterials, foods and adhesives. Polymers 

are remarkably involved in comfort and facilitation of human life and it is difficult to imagine 

modern human society without polymers. Over the last decades, an explosive scientific and 

technological revolution is underway and polymers play an essential role in it.. This is because 

polymers constitute an amazingly versatile class of materials, with properties of a given type 

(e.g., thermodynamic, rheological, mechanical) often having enormously different values, 

sometimes even for the same polymer in different physical states.
1,3

 Although a large number of 

material scientists, chemists and chemical engineers, physicists, textile technologists, 

mechanical engineers, pharmacists and other scientific groups are involved in the development 

of projects related to polymers,
6
 there is still immerse room for development and improvement. 
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Since most chemists and chemical engineers are now involved in certain aspects of 

polymer science or technology, some have called this the polymer age.
7
 Actually, humans have 

used naturally occurring polymers for centuries without realizing that they were dealing with 

macromolecules. Synthetic polymers appeared in the middle of the nineteenth century when 

chemists started using polymerization reactions without realizing that they were creating very 

large molecules.
8
 The realization that polymers are molecules made of covalently bonded 

elementary units, called monomers (macromolecular hypothesis) was proposed by Staudinger in 

1920.
9
 From 1930 to 1960 polymers entered a golden age, during which new types were 

discovered and quickly emerged in commercial applications replacing naturally-sourced 

materials. At the same time, polymer synthesis tools were developed and refined. These include 

seminal works such as that of Flory on the swelling of a single chain in a good solvent,
4
 that of 

Kuhn on macromolecular sizes,
10

 that of Huggins and Flory on thermodynamics of polymer 

solutions,
11,12

 that of Flory and Stockmayer on gelation
13,14

 and that of Kuhn, James, and Guth 

on rubber elasticity.
15

 The single-molecule models of polymer dynamics were also developed 

during this period by Rouse
16

 and Zimm.
17

 In the subsequent 20 years, the main principles of 

modern polymer physics were developed. These include the Edwards model of the polymer 

chain and its confining tube,
18

 the modern view of semidilute solutions established by des 

Cloizeaux and de Gennes,
19

 and the reptation theory for chain diffusion developed by de 

Gennes,
20

 which led to the Doi-Edwards theory for the flow properties of polymer melts.
21

 

During the following years, the attention of many scientists focused on the development 

of exotic plastic materials with advanced properties based on novel monomer units. This 

tendency in polymer development has been overcome by the realization that polymers built from 

readily available, low-priced, environmentally friendly monomers
22–31

 will continue to lead the 

science innovation.
32

 The combination of modern polymer synthesis strategies with theoretical 

and empirical designing tools results in polymers with new or better-defined molecular 

architectures.
33–36

 Current research activity is largely focused on the class of self-assembled
37–40

 

and nanostructured composites
41–45

 created by simultaneous control over macrophase and 

microphase separation.
40,46–51

 In this effort, the use of theoretical and computational tools is 

imperative. Investigation and optimization of  appropriate numerical simulations will allow the 

exploration of the self-assembly behavior and physical properties of new materials by reducing 

the cost and the time of experimental processes. 
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 Polymers at Surfaces and Interfaces 1.2

The generally accepted use of term interface refers to an intermediate three dimensional 

boundary region separating two phases of matter with different physicochemical properties, in 

thermodynamic equilibrium.
52

 The phases separated by the interface can be of the same (e.g., 

solid/liquid, liquid/gas and gas/solid interfaces for a pure substance) or of different (e.g., 

immiscible fluids) chemical constitution. For many scientists, the word surface implies the 

boundary separating a solid or a liquid in contact with air or vapor phase, whereas the word 

interface conjures up the notion of a solid/solid, liquid/liquid, or liquid/solid contact. The use of 

words surfaces and interfaces is probably redundant according to the above definitions. 

Although the word interface would suffice, we use the words surface and interface because they 

correspond to different images in peoples‘ minds. 
53

 

It is worthwhile to look at a few examples, so as to get a feeling of the technological 

importance of understanding the behavior of polymers at interfaces. The quality of products 

obtained through polymer-processing operations, such as extrusion and film blowing, is 

profoundly affected by surface-related dynamic phenomena.
54

 Colloidal suspensions encompass 

commercial products such as paints and inks.
55

 Adhesives constitute a category of materials 

where molecular-level design involving polymers at interfaces is of crucial importance. The 

design of polymeric resins, encapsulants, and dielectrics used in the microelectronics industry 

requires understanding of the behavior of polymers at interfaces. The thermodynamics at 

interfaces is governed by delicate microscopic phenomena; understanding these phenomena and 

the microscopic mechanisms that are associated with them is of major technological importance 

in a broad range of industrially relevant applications. 

Each of the theoretical methods that are used to study polymer interfaces can be 

categorized as being either an analytical or a simulation technique. Simulation methods for 

studying polymer interfaces are nearly always based on microscopic models, which can vary 

extensively in the level of detail of the simulated particles and the accuracy of the intra- and 

inter-molecular potentials that describe the interactions among them. The techniques most 

frequently used for polymer simulations are Monte Carlo,
25,45,56–59

 Molecular 

Dynamics,
30,56,58,60,61

 and Brownian dynamics.
62–64

 The analytical techniques can be further 

classified into microscopic or phenomenological. A phenomenological theory is one whose 

starting point is a statistical mechanics description with the fundamental variables being 
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collective variables (i.e., many-molecule), such as concentration fields. These theories generally 

involve one or more phenomenological coefficients, such as interaction energy parameters, 

viscosities, and elastic constants, whose microscopic origins are not addressed by the theory. 

Landau
65,66

 theories of phase transitions and Cahn-Hilliard theory
67

 are familiar examples of 

such an approach. In contrast, a microscopic theory is defined as one whose starting point is a 

statistical mechanics description using the generalized monomer coordinates and conjugate 

momenta as the fundamental variables. Such microscopic approaches include lattice mean-field 

theories
68

, self-consistent field theories,
3,32,69,70

 and certain scaling and renormalization group 

theories.
71

  

 Polymer Nanocomposites 1.3

Nanocomposites (NC) are multiphase solid materials where one of the phases has one, two or 

three dimensions of less than 100 nanometers (nm) or structures having nano-scaled repeated 

distances between the different phases that make up the material. The composite consists of two 

main parts: the matrix and the reinforcing phase (filler). The main classification in NCs is based 

on the different types of matrix phases: ceramic-matrix NCs, metal-matrix NCs and  polymer-

matrix NCs. Depending on the reinforcing phase, nanoparticle (NP) additives are divided into 

classes such as glass, carbon, and aramid. The present thesis investigates polymer-matrix NCs 

consisting of polymer-grafted nanoparticle additives (―fillers‖) embedded in a polymer matrix. 

Polymer-grafted nanoparticles comprise two primary components: the nanoparticle core and the 

polymer brush. The core can be either organic or inorganic and in many cases has a unique 

functionality itself. While many different core geometries have been successfully synthesized, 

such as nanocubes, nanorods, or nanoplatelets, spherical cores are perhaps the simplest to 

understand from a theoretical standpoint. In addition to the core geometry, there are numerous 

varieties of materials that constitute the core of Polymer grafted nanoparticles PGNP ranging 

from the simple (silica), to functional (magnetite),  optically active (gold), or even more 

complex materials such as viruses and protein capsids.
72

 The matrix chain-brush interfacial 

interactions may be "tuned‖ by controlling the grafting density (polymer chains per area tethered 

to NP surface), the degree of polymerization of the grafted chains (usually measured in number 

of monomer units) and of the polymer host, the nanoparticle size (core size and polymer brush 

height), and its shape.  
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Polymeric nanocomposites (PNCs) have been an area of intense industrial and academic 

research for the past thirty years. No matter the measure - articles, patents, or research and 

development funding - efforts in PNCs have been exponentially growing worldwide over the last 

twenty years. PNCs represent a radical alternative to conventional filled polymers or polymer 

blends - a staple of the modern plastics industry. In contrast to conventional composites, where 

the reinforcement is on the order of microns, PNCs are exemplified by discrete constituents on 

the order of a few nanometers.
73

 In light of the diversity of PNCs, their potential  is nearly 

immeasurable. Among PNCs, PGNPs is a topic of broad research interest. It has been 

demonstrated that dispersed spherical nanoparticles can yield a range of multifunctional 

behavior, including a viscosity decrease, reduction of thermal degradation, increased mechanical 

damping, enriched electrical and/or magnetic performance, and control of thermo-mechanical 

properties 
51,74–83

 

The practice of adding nanoscale particles to reinforce polymeric materials can be traced 

back to the early years of the composite industry in the second half of the 19th century. In 1856, 

Charles Goodyear attempted to formulate nanoparticle-toughened automobile tires by blending 

carbon black, zinc oxide, and magnesium sulfate particles with vulcanized rubber.
84

 In 1909, 

another example was the clay-reinforced resin known as Bakelite, which was introduced as one 

of the first mass-produced polymer-nanoparticle composites and fundamentally transformed the 

nature of practical household materials.
72

 Then, a long period of time passed till PNCs 

development was stimulated by research at Toyota where polyamide-6 nanocomposites with 

improved toughness, stiffness and heat distortion temperature balance became available in 

1993.
8586

 During the next decades, an explosion of experimental research occurred in the areas 

of nanocomposites based on inorganic materials, polymer based nanoparticle filled composites 

and  naturally occurring systems of nanocomposites.
87,88

As part of this renewed interest in NPs, 

theoretical researchers also started seeking designing rules that would help them engineer 

materials with tailor-mode properties. For ceramic NPs, one can argue that the interface width is 

still small relative to the filler size or the filler-to-filler distance; thus, extension or modification 

of standard composite theory or modeling approaches may be sufficient. For polymer NPs, the 

modification of the matrix may extend over several radii of gyration from the particle surface. In 

turn, this situation results in novel macroscopic properties, which are dictated qualitatively and 

quantitatively, by the behavior of the confined polymer that forms the modified matrix. The 

development of rigorous models that describe these new materials, and particularly an in-depth 
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understanding of their properties, are still in their infancy. The greatest stumbling block to the 

large-scale production and commercialization of NPs is the dearth of cost-effective methods for 

controlling the dispersion of the nanoparticles in their polymeric hosts. The nanoscale particles 

typically aggregate, and this usually negates any benefits associated with their nanoscale 

dimension. The second challenge is associated with understanding and predicting the properties 

of these upgraded materials, which are intimately connected to their internal structure and 

morphology. 

 Self-Consistent Field Theory of Inhomogeneous Polymeric Systems 1.4

Understanding the formation and structure of these rich morphologies demands predictive 

theoretical frameworks that can be used to describe phase behavior and structural properties of 

polymeric systems. Ideally, the theory should take the molecular properties of the polymers as 

input and be able to predict the thermodynamically stable phases, the phase transition 

boundaries among them, as well as the physical properties of the phases, with low computational 

cost. Towards this goal, a variety of theoretical methods have been developed to study the 

phases and phase behavior of inhomogeneous polymeric systems. 

One of the most successful theoretical frameworks for inhomogeneous polymeric 

systems, including polymer blends, polymer solutions and block copolymers, is the self-

consistent field theory (SCFT). The polymeric SCFT has its origin in the work by Edwards in 

the 1960.
89

 This theoretical framework was explicitly adapted to treat block copolymers by 

Helfand in 1975
90

 and later important contributions to the theory were made by Hong and 

Noolandi among others.
91

 The most fruitful application of SCFT to polymeric systems is the 

study of phases and phase transitions of block copolymers. In particular, powerful methods have 

been developed over the last decades to obtain highly accurate solutions of the SCFT equations 

using numerical techniques. The earliest attempts to obtain numerical solutions of SCFT for 

block copolymers were made by Helfand and coworkers.
90

 Later, Shull
92

 and Whitmore and 

coworkers
93

 have computed phase diagrams of block copolymer melts and solutions using 

approximate numerical techniques. SCFT has been employed to investigate numerous polymeric 

systems with advanced properties in recent years. The first three-dimensional numerical 

solutions of block copolymer phases were obtained by Matsen and Schick
94

 who utilized the 

crystalline symmetry of the ordered phases and provided exact numerical solutions to the SCFT 

equations. This technique has been applied to a variety of block copolymer systems. Further 
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development of the SCFT included the theory for Gaussian fluctuations in ordered phases,
95

 

numerical techniques for solving the mean field theory in real space
96

 and fully fluctuating field-

theoretical simulations.
97

 There is a large body of literature on the SCFT of polymeric systems, 

including a number of valuable review articles,
34,98,99

 book chapters and books.
3,32,69,70

 Based on 

these numerous studies, it can be stated that SCFT forms a powerful basis for the study of 

inhomogeneous polymeric systems. 

The self-consistent field theory can be outlined in terms of three fundamental steps. 

Firstly, the shape of the polymeric fluid can be designated by an ideal chain model describing 

the statistical mechanics associated with the conformational states of a single polymer chain. 

Secondly, a particle-based statistical-mechanical system is mathematically transformed into a 

field-based description. Within this field-based description, the many-body interactions are 

replaced by the interaction of each particle with certain fluctuating fields and the Hamiltonian of 

the system has a functional dependence on these fields. Lastly, further appoximations can be 

implemented based on the previous steps. In particular, a saddle-point approximation of the 

functional integral leads to the mean-field approximation of the system. The resulting mean-field 

equations, or SCFT equations, can then be solved analytically or numerically, providing 

information about the structure and property of the inhomogeneous polymeric phases. This 

theoretical framework is flexible in that it applies to any statistical-mechanical system. 

 Motivation  1.5

1.5.1 Molten Polymer Free Surfaces at Equilibrium 

The thermodynamics of simple fluids and polymer melts in contact with a gas phase have been 

explored in great detail  in previous works via theoretical approaches and atomistic 

simulations.
92,94,100–112

 Thin liquid films exposed to gas phases on both sides, the so-called freely 

standing liquid films (FF), have attracted considerable research interest and  

attention.
92,94,100–102,107,109–113

 It has been shown that film thickness has a considerable effect on 

thermodynamics: thick polymer films exhibit bulk properties in their central region,
107

 whilst 

thin films display altered thermodynamics affecting their stability (emergence of disjoining 

pressure).
102,110,112

 Moreover, the properties of thin films and the phase behavior of block 

copolymers have been studied extensively by means of self-consistent field theory 

(SCFT).
92,94,100,101,111

 The importance of including nonlocal terms in polymer density and the 
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Helmholtz free-energy functional to deal with the inhomogeneous environment of surfaces and 

interfaces has generally been recognized by numerous authors.
5,67,114–130

 Besides surface tension, 

the knowledge of the macroscopic properties of polymer interfaces is quite important, since they 

dictate the stable configurations of the system (contact angles, film wettability, phase separation, 

etc.). Even though SCFT has been used extensively to predict and explain the structure and 

phase diagrams of block copolymers and polymer blend systems, few authors have applied it to 

investigate the properties of homopolymeric interfaces.
24,131–133

 To be more specific, several of 

the following issues have not yet been addressed in literature: 

i) Investigation of the structure and thermodynamics of linear polyethylene films over a 

variety of temperatures and chain lengths, using the SCFT in conjunction with the Square 

Gradient approximation. 

ii) Bottom-up comparative studies regarding the structural features (reduced density profiles, 

chain conformational properties) and thermodynamics (e.g., interfacial free energies) of 

thin films among SCFT combined with Square Gradient Approximation approaches with 

particle-based methods such as molecular dynamics. 

iii) Hardly any studies report schemes to distinguish surface-adsorbed from free chains and to 

decompose the surface density profiles into contributions from trains, loops, and tails. 

Side-by-side comparisons with atomistic particle-based simulations are rarely addressed 

in the literature. 

iv) There are also limited studies that provide accurate predictions of the surface tension, in 

good match with experimental measurements and atomistic simulation findings over a 

broad variety of polymer melts. 

1.5.2 Nanoparticles in Polymer Matrix 

Polymer chains anchored on the surface of solid particles are widely used to stabilize inorganic 

nanoparticles (NPs) inside a host polymer matrix.
134,135

 
136

 In most cases, the embedded NPs 

tend to stick to each other due to attractive forces between them.
137

 Under certain conditions, the 

entropic cost related to the configurational restriction of grafted chains when the particles get 

closer to each other is able to keep the particles separated. The key factors influencing NP 

separation are their size, the molecular weight of grafted and matrix chains, and the surface 

grafting density. 

When the matrix chains wet the grafted polymer brush, they are able to interpenetrate 

with grafted chains and therefore diffuse inside the space occupied by the polymer brush, 

leading to the eventual dispersion of NPs across the polymer matrix. It has been shown that in 
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most cases, when matrix chains are longer than the grafted chains, it is harder for them to 

penetrate into the interfacial region due to the higher entropy loss they experience.
136

 This 

phenomenon is known as ―autophobic dewetting‖; in practice one aims to suppress such 

phenomena in order to enhance the dispersion of NPs across the polymer matrix.
42

 When 

grafting density is lower than a threshold value, the particle cores are no longer screened by the 

grafted chains surrounding them, so they attract each other, leading to aggregation. This is 

known as ―allophobic dewetting‖. Sunday et al.
136

 derived experimentally a phase diagram 

demonstrating the regions where autophobic, allophobic dewetting, and complete wetting 

occurs. 

Major experimental work has been conducted to understand the behavior of polymer 

grafted NPs and their influence on the properties of the composite material.
51,74–83

 Atomistic 

molecular dynamics simulations have been performed by Ndoro et al.
138

, while Meng et al.
139

 

and Kalb et al.
140

 have performed coarse-grained molecular dynamics simulations representing 

the polymer chains by the Kremer-Grest bead-spring model. Dissipative particle dynamics 

(DPD)
141

 and density functional theory (DFT)
142

 simulations addressing systems of polymer 

brushes are also reported. Vogiatzis et al.
143

 devised a hybrid particle-field approach called 

FOMC (Fast Off-lattice Monte Carlo) which is a coarse-grained class of Monte-Carlo 

simulations, where the nonbonded interactions are described by a mean-field inspired 

Hamiltonian. A useful approach for investigating the structure and thermodynamics of polymer 

grafted NPs and brushes is SCFT.
43,144–153

 However, the literature lacks results from SCFT 

simulating realistic NP-polymer systems such as silica in contact with polysrtyrene (PS), with 

industrial relevance over a broad parameter space: 

v) Even though radial segment density profile distributions of matrix and grafted chains have 

been studied excessively, there are hardly studies focused on comparison of SCFT results 

with other experimental and simulation works. 

vi) Reports extracting the density profiles of the grafted and matrix chains, which provide a 

direct picture of their conformations across the parameter space and the density profiles of 

the matrix chains decomposed into contributions from “adsorbed” and “free” chains, are 

scarce. 

vii) A considerable number of the aforementioned studies do not take into account the 

contributions to the grand potential or contributions of the chain stretching energy . 

viii) There is a limited number of SCFT works in the literature reporting the profiles of 

chains/area, the chain end segregation at the interface and the brush thickness over an 
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extensive parameter space involving the molecular weight of the chains, grafting density 

and the size of the nanoparticles.  

1.5.3 Self Consistent Field Finite Element Method 

Spectral and quasi-spectral methods are predominant tools for solving three dimensional SCFT 

problems, but they are inflexible in handling geometrically complex domains, since they can be 

applied on problems exhibiting some kind of symmetry. Their main limitation in the frequency-

domain approaches encourages consideration of alternate real space approaches, such as the 

finite element method (FEM).  

FEM is a widely used analysis and design technique and enjoys plenty of advantages and 

privileges. First among these advantages is the ease of handing complex geometries. Compared 

to purely spectral methods, the FEM does not require masking techniques in order to address 

complex geometries. Another benefit when using the FEM is that is not limited to periodic 

systems and naturally allows the use of heterogeneous and mixed boundary conditions. 

Additionally, real space methods allow local mesh adaptation to selectively increase the 

resolution in a targeted region without requiring increased computational effort over the entire 

geometry of the investigated system. The FEM, in particular, can incorporate rigorous a 

posteriori error estimates (due to its inherent variational character) for mesh adaptivity, which 

enable substantial computational profits. Furthermore, there is a push to design solvers and 

frameworks (like MUMPS
154

) for real space approaches that are suitable for deployment on next 

generation computational clusters. Motivated by these factors, some researchers developed real 

space formulations of the SCFT problem using the finite element method.
155–157

 Even so, there 

are several aspects in which state-of-the-art SCFT combined with FEM (SCFFEM) literature is 

lacking: 

ix) The majority of the aforementioned studies are applied to ideal model systems, offering 

good qualitative information regarding the structural properties of copolymers. There is a 

scarcity of studies where SCFT approaches are applied to realistic model systems, 

comparing the observables of mesoscopic simulations to detailed atomistic simulations 

and experiments. 

x) There are no SCFFEM works in the literature reporting structural properties of polymeric 

melts at interfaces. 

xi) There are no SCFT studies applied in grafted polymeric interfaces with explicit 

representation of long polymer chains grafted on solid surfaces. 
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xii) There are no SCFFEM studies assessing the interfacial free energy of polymer/solid 

interfaces with attractive segment/wall interactions.  

 Aim of the Thesis 1.6

Based on the aforementioned realizations, the aim of the present PhD thesis is to formulate, 

validate and develop a SCFT approach, and then apply it in the description of homogeneous and 

inhomogeneous systems involving high molar mass polymer melts in equilibrium conditions. 

 

 

 

 

Figure 1.1. Graphical Abstracts. 
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The SCFT models of this research will comprise three main stages: 

1. Validation. The aim of this procedure is to allow for a comparison of the theoretical 

model with previous atomistic simulations and experimental works in a rigorous and 

predictable manner. This is a key step to ensure that the theoretical models can 

successfully describe realistic systems. 

2. Structural properties. This will be the phase where the SCFT will be used to compute 

structural properties of bulk and inhomogeneous melts under equilibrium conditions. 

3. Thermodynamic calculations. This is the highest goal of the theoretical strategy 

presented in this thesis. Through these calculations we will be able to determine the 

thermodynamic properties and behavior of high molar mass polymer/gas and 

polymer/solid interfaces. 

 Outline of the Thesis 1.7

In the following Chapter, a brief self-contained summary of a generic SCFT formulation 

compared to other molecular simulation concepts is provided. We limit ourselves to the absolute 

minimum of definitions and methods to be presented, trying not to sacrifice consistency and 

rigor.  Chapter 3 of the thesis deals with the development of a formulation of SCFT coupled 

with square gradient theory for predicting properties of free surfaces of molten polymers indirect 

comparison with atomistic simulations and experimental data. The scope of this chapter is to 

compare the local density profiles and several structural properties of theoretic models, with 

those obtained from atomistic simulations, as well as the prediction of the surface tension of 

various polymers in a broad range of temperatures. Chapter 4 of the thesis implements  the 

strategy developed in Chapter 3 to address systems of grafted polymeric NPs. This  allows for 

the description of structural properties of polymer grafted NPs with various size, grafting density 

and chain length related to previous simulations and the contribution of entropic and cohesive 

energy terms. In Chapter 5, the Edwards diffusion equation is solved with the finite element 

method. Each Chapter is self-contained, incorporating its own introduction (summarizing 

previous work and experimental findings) and the main conclusions reached. However, a 

separate list of the innovations at three levels (methodology, physical insight and computational 

tools) is provided in Chapter 6. Finally, in Chapter 7 an outlook of the closely related future 

work is presented.  
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 Theoretical Background 2

In this chapter, we present definitions and background knowledge that will outline the 

framework of the new concepts and methods to be developed in the subsequent chapters. As a 

starting point of our discussion, we outline the perspectives that are adopted in building a 

physical model and how that model can be translated into mathematics. Then, the statistical 

properties of coarse-grained particle-based models of single polymers are described, and these 

models of single-chain statistical mechanics are extended to include the presence of an external 

field. The description of this external field completes the particle-to-field transformation.  We 

describe how field theoretic models can be constructed for a variety of many chain 

inhomogeneous polymer systems. The important case of self-consistent field theory (SCFT) is 

illustrated, which is obtained by imposing a mean-field approximation. As a final point, square 

gradient theory and the Sanchez Lacombe Equation of State (EoS) are briefly described.  

 Modeling Perspective and Scales 2.1

An important challenge faced by researchers of complex materials is that the structure and 

dynamics of these materials are characterized by extremely broad spectra of length and time 

scales. One of the first decisions to be made is the approach to be adopted in modeling. 

Approaches for modeling materials consist of many levels, each level addressing phenomena 

over a specific window of length and time scales. The approach of primary interest here starts 

with ab-initio and atomistic methods, continues with mesoscopic methods, and extends to field 

theoretic methods.  
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2.1.1 Atomistic Μethods 

2.1.1/a First Principles (ab-initio) Simulation Methods 

At a reasonably fundamental level, one could describe a polymeric fluid using ab-initio quantum 

mechanics and retain the nuclear coordinates and electronic degrees of freedom of the atoms 

composing the polymer and solvent molecules
158

. In quantum mechanics, a complete description 

of the microscopic state or ―microstate‖ of the system is provided by the wave function Χ, 

which is a function of the position coordinates of all nuclei and electrons. 
159–162

 Electronic 

structure calculations in the Born-Oppenheimer approximation attempt to solve the electronic 

Schrödinger quantum mechanical equation given the positions of the nuclei and the number of 

electrons in order to yield useful information such as electron densities, energies and other 

properties of the system. The solution of these equations comes with high computational cost.  

First principles approaches require essentially no empirical or experimental knowledge 

to characterize the interactions among the fundamental particles composing a fluid. Their 

application to real materials, though, is still limited. Even if we employ the fastest 

supercomputer with the largest memory, we can treat at most a few thousand atoms, so pure ab 

initio simulation is inappropriate for modeling polymeric fluids, where each polymer molecule 

typically contains more than this number of atoms.  

2.1.1/b Atomistic Simulation Methods 

The next higher level of description, which we shall refer to as the atomistic level, is based on 

eliminating the electronic degrees of freedom and treating the nuclear coordinates classically or 

quantum mechanically. 
163–167

The elimination of the electronic degrees of freedom leads to 

classical potentials expressing the potential energy as a function of the nuclear coordinates
168

 

These can in principle be obtained by carrying out ab initio quantum chemical calculations on 

small sets of atoms, or more typically by applying empirical potentials that contain parameters 

characterizing the range and strength of the inter-nuclear interactions. In this classical 

perspective, each nucleus becomes an ―atom‖ and carries an effective mass that is approximately 

the nuclear mass. The Hamiltonian of the system, H , is equal to the sum of the kinetic and 

potential energies of the atoms, 

  
2

1

, ( )
2

n
n n ni

i i

U
m

 
p

r p rH   (2.1) 
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where n is the total number of atoms in the system, mi is the effective mass of the ith atom, and 

 1 ,  ...,n nr r r  and  1 ,  ...,n np p p  denote the Cartesian coordinates and momenta, 

respectively. The 3n-dimensional space from which the coordinates of the system 

 1 ,  ...,n nr r r  take on values is referred to as configuration space. The 3n-dimensional space 

from which the momenta  1 ,  ...,n np p p take on values is referred to as momentum space.  In 

many applications it is convenient to use generalized, rather than Cartesian coordinates.  The 

two sets of coordinates are related through a well-defined transformation. 

When referring to polymer simulations, each molecule contains thousands of atoms. A 

strategy for handling the apparent difficulties associated with fully atomistic simulations of 

inhomogeneous polymers is to ―coarse-grain‖ the fluid model. In this case, groups of atoms are 

lumped into larger entities referred to as ―particles.‖ These particles interact by new effective 

interaction potentials that must be re-parameterized. The coarse-graining procedure requires a 

re-parameterization of the system which can be regarded as being more of an art than a science. 

At the lowest level, one can group adjacent atoms to form a particle, for example lumping each 

CH2 unit into a particle along a polyethylene chain, and then using empirical knowledge or 

quantum chemical calculations to fit parameters in potential functions describing bonded and 

nonbonded interactions among particles. Such a ―united atom‖ approach has been used quite 

successfully to simulate oligomeric fluids and single-phase polymeric fluids of low molecular 

weight, but does not go very far in alleviating the serious spatial and temporal limitations of 

fully atomistic simulations of inhomogeneous polymers.  

2.1.1/c The Monte Carlo (MC) Method 

Monte Carlo methods achieved a considerable improvement in the field of materials simulations 

in terms of simulation time. Monte Carlo is a numerical method of solving stochastic models 

without determination of the analytical representations of the system.
45,56,58,169,170

 The Monte 

Carlo (MC) method is more of a statistical technique, which involves discrete random walks for 

sampling the phase space according to a certain probability distribution (e.g., Boltzmann) to 

solve problems involving materials or other systems. The Monte Carlo technique can be applied 

in the ab initio representation, too. 

 In their simplest version, MC simulations of simple fluids are carried out by attempting 

trial moves for the molecules from a uniform distribution and subsequently accepting or 
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rejecting these moves, such that the long sequence (Markov chain) of configurations generated 

asymptotically samples the probability distribution of interest (typically dictated by an 

equilibrium ensemble). MC algorithms can also involve sampling from other distributions, 

which do not have to be analytical. Metropolis MC normally simulates an equilibrium ensemble 

of statistical mechanics and is used for calculation of  structural and thermodynamic properties 

of the system as ensemble averages.  The Kinetic Monte Carlo (KMC) method, on the other 

hand, tracks the temporal evolution of a system as a sequence of thermally activated infrequent 

transitions.   Atomic migration, occurring as a sequence of atomic jumps, is an example of such 

an evolutionary process.  Rate constants for the individual transitions can be computed from the 

atomistic potential energy hypersurface and the atomic masses through the theory of infrequent 

(rare) events. MC techniques have the advantage of being able to explore probable (i.e., 

relevant) regions of configuration space rapidly, by permitting substantial configurational 

rearrangements. They can equilibrate some complex systems, such as polymer melts, orders of 

magnitude more rapidly than molecular dynamics techniques, by devising and implementing 

moves that do not mimic the actual physical dynamics, but ensure rigorous and vigorous 

sampling of the equilibrium probability distribution among microstates.  

2.1.2 Mesoscopic Methods 

Higher levels of coarse-graining than the ―united atom‖ approach are more sophisticated.  

Sgouros et al.
22

 lumped 52 monomers within a polymer backbone into a single bead. In linear 

polymers, two main approaches have been developed for the mapping of atomistic polymer 

segments into beads. A bead can be assigned either at the center of mass of a segment or at the 

coordinates of the central atom(s) of a segment. The task of parameterizing the effective 

interactions between those beads is rather complicated. Harmonic or anharmonic spring models 

can be employed to describe the connectivity, space-filling characteristics and architecture of 

beads belonging to the same chain and/or adjacent chains (slip springs). Potentials describing 

interactions between non-bonded beads on the same or different polymer chains are determined 

by empirical forms. A common choice is the Lennard-Jones potential
171

, or excess free energy 

potentials (relative to an ideal gas of chains), calculated from an equation of state (EoS).
172

 A 

disadvantage of this approach is that experimental input is needed, so simulation results are 

predictive only to the extent that a model system has already been parameterized. Another 

drawback of a coarse-grained description is that phenomena which depend on atomic-scale 
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packing effects in the fluid cannot be captured with this approach. Nevertheless, computer 

simulations of mesoscopic particle-based models of polymeric fluids have been quite useful in 

studying a variety of important systems and phenomena such as polymer brushes, block 

copolymers, and cohesive failure of polymer adhesives and glasses.
173–175

  

2.1.3 Field-Theoretic Methods 

In the mesoscopic approach of modeling polymer fluids described above, the fundamental 

degrees of freedom are particle positions and momenta. It is the phase space spanned by these 

coordinates that is explored in a particle-based computer simulation. There is an alternative 

strategy, however, which is the primary focus of the present thesis: field-theoretic methods. To 

carry out a field-theoretic computer simulation, we require a statistical field theory model of a 

fluid. A statistical field theory is a description of a system in which the fundamental degrees of 

freedom are not particle coordinates, but rather one or more continuous fields w(r) that vary 

with position r.
176

 We can associate the relevant w fields of a polymeric fluid with spatially 

varying chemical potentials. From the perspective of a particle-based model, the fundamental 

problem of equilibrium statistical mechanics
168

 is to evaluate a configurational partition function 

(configurational integral) of the form 

 n= d exp ( )nU   r rZ   (2.2) 

where β ≡ 1/(kBT) is the inverse of the thermal energy and U(r
n
) is the potential energy of an n-

particle system. The corresponding equilibrium problem for a field theory model is to evaluate 

an analogous expression, involving a functional integral over the field(s): 

  = expw U w  Z D   (2.3) 

The advantages of field-theoretic methods for studying inhomogeneous polymers can be 

easily understood. First of all, there is the flexibility of working with a field theory that 

originated from either an atomistic or a mesoscopic perspective. In addition, the spatial 

resolution of the field theory can be adjusted by giving the relevant fields a finer or coarser 

representation. There is also flexibility in the way the fields are represented and discretized (e.g. 

finite differences, finite elements, or spectral representations), which leverages the large body of 

knowledge surrounding the numerical solution of partial differential equations. With such an 

approach, it is possible to model, for example, polymer alloys exhibiting both macrophase and 



Chapter 2. Theoretical Background 

 

20 

microphase separation.
177

 Such morphologies would be more difficult to be obtained with an 

atomistic, or even a coarse-grained, particle-based simulation. Another important advantage of 

using field-theoretic models is that they serve as a basis for most analytical theories of 

inhomogeneous polymers.
178,179

A large body of experimental data has been interpreted using 

this theoretical framework, and a common language involving parameters in mesoscopic field 

theories, such as Flory ―chi‖ parameters and statistical segment lengths, has emerged. By 

providing access to the behavior of these same field theory models across a broader range of 

parameter space, field-theoretic models can couple very effectively with existing theory and 

experiment.  

 Single Chain Models 2.2

In order to investigate the theoretical description of a polymeric fluid, we have to introduce the 

notion of the ideal chain models. An ideal chain model describes the statistical mechanics 

associated with the conformational states of a single unperturbed polymer chain. We will try to 

analyze the differences of most prominent ideal chains models. The present discussion of the 

topic will be brief, with references to the literature that is relevant to this subject.
4,32,180

 

2.2.1 From Flexible Polymers to Ideal Chains Models 

The chains of common synthetic polymers exhibit elasticity, as a result of relatively unrestricted 

rotations about carbon–carbon single bonds along their backbones, and are considered to be 

flexible. Nevertheless, a large number of synthetic polymers and biopolymers are rigid and bend 

over large distances as a result of accumulated bond strains. These are termed semi-flexible or 

rigid-rod polymers, depending on their length and degree of flexibility. In the present work we 

address flexible macromolecules.  

The effective interactions between segments along a flexible polymer chain are 

manifested with two types of contributions as shown in Figure 2.1: local, (short-ranged 

interferences) which are exerted between neighboring segments along the backbone and are 

strongly dependent on the bond geometry and energetics of the chain; and nonlocal, (long-

ranged interferences) which are exerted between topologically distant segments, when the 

conformation of the chain brings them spatially close. ―Excluded volume‖ interactions, 

preventing two segments from occupying the same position in space, belong to the nonlocal 

category. 
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Figure 2.1. Local and non-local interactions along a polymer chain 

In principle, long-ranged interferences are never completely absent. However, two 

situations are commonly encountered in which long-ranged interferences are essentially 

negligible.
4,32,180

The first one is observed in a dilute solution of a homopolymer of high 

molecular weight at the θ- temperature, while the second one concerns a homopolymer chain 

embedded in a melt of chemically identical homopolymers. The latter was described 

theoretically by P.J. Flory with the famous ―random coil hypothesis‖ and has been confirmed by 

experimental and simulation evidence. 

When the above solvent and/or temperature conditions occur, a single chain may behave 

as if it does not ―feel‖ nonlocal interactions and is called unperturbed. The models that take into 

account only short-ranged interferences in the statistical mechanics of a polymer chain are 

referred in literature as ideal chain models. Ideal chain models are important in the theoretical 

description of polymeric chains, since they render feasible the theoretical calculation of the 

statistical probability distribution of the equilibrium chain conformations, one of the most 

fundamental problems in the statistical mechanics of polymers.  

2.2.2 Freely Jointed Chain Model 

A usually applied model with very similar behavior to a polymeric chain is the freely jointed 

chain model. In the freely jointed chain model, all interactions, except for the connectivity 

between structural units, are neglected. The chain conformations adopted by a linear flexible 

polymer chain can be described with the path of a random flight of constant step b. The terms 

random flight model and three-dimensional random walk are used interchangeably in the 

literature.  
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In the freely jointed model, the chain is represented as a sequence of ―segments‖, which 

lie at positions r0, r1 ..., rN, and are connected by bond vectors b1, b2, ..., bN , where bi= ri- ri-1, as 

depicted in Figure 2.2. This sequence consists of N+1segments, and N bonds. All bonds are of 

the same length b  and the direction of each bond is random. In a coarse-grained representation 

each ―segment‖ stands for a larger section of the chain and each ―bond‖ is a virtual bond 

between such sections.  

 

Figure 2.2. A freely jointed chain model with N+1 particles (indicated by the spheres) and N equally sized steps 

(indicated by the arrows connecting the spheres). The particle positions with respect to a Cartesian coordinate 

system are denoted by  r0, r1 ..., rN, bond vectors by b1, b2, ..., bN, and the chain end-to-end vector by Re.  

The configurational partition function of a single chain can be expressed by an equation 

similar to eq 2.2: 

 1 1

0 0 0= d exp ( ) d exp ( )N N N NU V U           r r b bZ  (2.4) 

where 
1N

r stands for the set of 1N   particle positions and 0U  is the potential energy associated 

with a particular conformation of the polymer. The notation 1d N

 r  , d N

 b is shorthand for a 

3( 1)N  and 3N-dimensional integral over the 1N   particle positions and N bond vectors, 

respectively, within a three-dimensional domain of volume V. For an ideal chain model, 0U  

contains only interaction potential terms reflecting short-ranged interactions. The subscript 0 is 

used to indicate that we are discussing the properties of a single, ideal chain. 
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A full description of the conformational statistics of the simple model of Figure 2.2 is 

provided by the probability density function    1 2, ..., N

N b b b bΨ Ψ . This is defined so that

   3 3 3

1 2 1 2, ..., d d ...d dN N

N Nb b b b b b b bΨ Ψ  equals the probability of finding the chain in a 

conformation where the bond vector for bond 1 is between b1 and db1, the bond 2 is between b2 

and db2, • • •, and the bond N is between bN and dbN. In the ideal chain case, there are no 

constraints on the arrangements of the segments due to excluded volume effects, therefore the 

orientations of adjacent bond vectors are statistically independent. The probability density 

function for the partition function of chain conformations is of the form 

    
1

N
N

N

n

b bΨ ψ  (2.5) 

Where  

    n 2

1

4
b

b



 b bψ  (2.6) 

with δ(r) being the Dirac delta-function.  

To continue the mathematical treatment of conformation, it is necessary to introduce 

measures for the size of a polymer chain. One such measure is the distance between the two end 

segments of the chain. As shown in Figure 2.2 and in Figure 2.3, the end-to-end vector is 

defined as Re=rN-r0 and the length Re=|Re| as the end- to-end distance. The end-to-end vector can 

be conveniently expressed as
e 1

N

ii
R b . The isotropic distribution of the bi implies that  

⟨bi⟩0 = 0 and, hence, a vanishing first moment for Re.     

 

Figure 2.3. Definition of the end-to-end vector Re and of the radius of gyration Rg. 
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A measure of the polymer coil of high importance is the mean-square end-to-end distance, 

defined as either an ensemble or a time average of the squared norm of the end-to-end vector. 

The second moment of the end to end vector can be written as: 
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e 1 1
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R b b

b b b b b

  (2.7) 

The absence of directional correlation between different bonds makes the second term of the 

above equation equal to zero, leading to the characteristic of random flight model result: 

 2 2

e NbR   (2.8) 

and the root-mean-squared end-to-end vector of the freely jointed chain model 

 2 1/2

e N bR   (2.9) 

 

The important point in eq 2.9 is that the end-to-end distance is multiplied by a factor of λ when 

the chain length is multiplied by a factor of λ
ν
. Such a property is called a scaling property. The 

exponent ν=1/2 appearing in eq 2.9 is called the scaling exponent of an ideal chain and the 

scaling property is related to the fractal nature of the chain conformation. 

The mean-squared end-to-end distance of a linear polymer chain is not an experimentally 

observable quantity. Of higher experimental relevance is the so-called radius of gyration of the 

chain around its center of mass. We define the center of mass by 
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and the radius of gyration Rg is defined by  

 2 2

g cm

0

1
( )

1

N

i

iN 

 

R r r   (2.11) 

According to the Lagrange Theorem, 
181

 for any collection of particles, the squared radius of 

gyration can be alternatively expressed in terms of the interparticle distances as 
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 
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1
( )

1
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i j

i j iN   

 


R r r   (2.12) 

Using this theorem, Debye proved
181

 that  in the context of the freely jointed model and in the 

limit of 1N , the following equation connects the radius of gyration  of the chain with its end-

to-end distance:  

 2 2

g e

1

6
R R   (2.13) 

Eqs 2.8,2.9 and 2.13 reveal some remarkable features of the freely jointed chain model .Of 

interest, though, are not only the moments of the above measures, but also the entire distribution 

of the end-to-end vector Re. In general, the probability density function e( ; )P NR of the end-to-

end vector eR is defined as 

    e e

1

( ; ) d
N

N N

n

n

P N b


 
  

 
R b R bΨ       (2.14) 

Although it is not easy to treat the Dirac delta-function appearing in eq 2.14, it can be rewritten 

in a convenient form using the Fourier transform of the delta function, defined by

3

1
( ) d e

(2 )

i


 
k r

r k .Using this form we can rewrite eq 2.14 as: 

  e e3
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  
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  
 R k b b k RΨ   (2.15) 

P(Re; N) is thus expressed as the inverse Fourier transform of a product of N identical integrals: 

  e e 1 1 13
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The integral over b1 can be evaluated using spherical coordinates, with k as the reference axis: 
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  (2.17) 

And therefore 
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The latter equation was first derived by Lord Rayleigh for random flight of N steps, who also 

evaluated analytically the integral for values of N  up to 6N  . By far the most interesting case 

is for 1N , where the quantity 
 sin

N

kb

kb

 
 
 

 becomes very small, unless kb  is close to zero. 

Under these conditions: 
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Then  
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Thus, the end-to-end vector of a freely jointed chain follows a Gaussian distribution in three 

dimensions, with zero mean and variance 2

eR . This is a general result for long unperturbed 

chains. It provides a good approximation of the exact distribution of long enough (N > 40) freely 

jointed chains at not too high extensions. 

The important notion of conformational entropy is manifested in eq 2.20. In making the 

transition from the full phase space distribution function of the freely jointed chain  N
bΨ to the 

reduced probability distribution function of the end-to-end vector, e( ; )P NR , we have integrated 

over all sets of fixed-length bond vectors b consistent with the constraint of a fixed end-to-end 

vector Re. This integration amounts to an enumeration of the available conformational states. 

Because all states occur with uniform probability in the freely jointed model, the result is a 

purely entropic contribution to the free energy of a chain with constrained end-to-end vector eR : 
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0 B e e2

3
ln ( ; )

2

k T
A k T P N

Nb
  R R   (2.21) 

The quadratic dependence on chain extension
eR in this expression can be viewed as an 

―entropic spring‖ potential. Fewer conformational states are available for chains with large 
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extensions, so the free energy increases with 
eR . Moreover, the ―spring constant‖ B

2

3k T

Nb
 

softens in inverse proportion to the square of the polymer coil size. 

2.2.3 Bead Spring Model 

Another important category of ideal chain models is designated as bead-spring models. These 

models are easier to handle mathematically than the freely jointed models. The bead-spring 

model can be represented as a collection of beads connected by elastic springs. The bonds are 

now of variable length and each bond vector ib is distributed independently with a statistical 

weight proportional to  exp h  b  with
n b 0 and the probability density function is given 

by  

             1 2 1 2, ,...., ,N N b b b b b b bΨ Ψ ψ ψ ....ψ   (2.22) 

Where  ibψ  is the probability distribution that individual bond vectors follow and  h x  is the 

spring potential between adjacent particles along the polymer backbone. If all of the N bonds of 

such a chain are equivalent, the potential energy can be expressed as 
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1

( ) ( )
N

N

i

i

U h


b b  (2.23) 

The configurational partition function then becomes 

  0 0exp ( ) exp ( )
N

N NV d U V d h         b b b bZ  (2.24) 

As we can see from the above equations, a central role is played by the bond potential of 

these elastic springs. In order to associate the freely jointed with the bead spring model, we have 

to specify a functional form for the spring potential  h x . The harmonic bond potential given by  

  
B 2

2

3

2

k T
h x x

b
   (2.25) 

is the most popular and convenient choice, making the bead spring to follow the same reduced 

probability distribution function of the end-to-end vector with the freely jointed model for long 

chains. This choice defines the so-called discrete Gaussian chain model. The remarkable point 

about the bond potential given in 2.25 is the fact that the spring constant depends on the 
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temperature. This is because the spring of the bead- spring model originates from the change in 

the conformation entropy. Using such a spring potential, it is easy to show that the average of 

the square of the bond length is given by 2b . The parameter b in this potential (often called the 

effective bond length) can be interpreted as the root-mean-squared length of a bond, since for 

any bond i 
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  (2.26) 

The mean-squared end-to-end vector of the discrete Gaussian chain can be calculated. In 

particular, 
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i j i j
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N Nb
 

     R R b b b b   (2.27) 

The terms with i j   in this expression vanish because of the independent distribution of the 

bond vectors, which implies that 
00 0

0i j i j   b b b b  for i j . Thus, the ideal chain 

scaling of eq 2.8 is recovered, 2 2

e NbR . Apart from the interpretation of b as the fixed bond 

length in the freely jointed model versus the root-mean-squared bond length in the discrete 

Gaussian model, we see that the expressions for the mean-squared end-to-end vector in the two 

ideal chain models are identical. It is easy to show that the same equivalence holds for the radius 

of gyration Rg, so that eq 2.13 also applies to the discrete Gaussian chain. 

In order explore the relationship between the freely jointed and discrete Gaussian chain 

model in more detail, it is again useful to exploit the connection with stochastic processes. Since 

any pair of non-overlapping sub-chains of an ideal chain is statistically independent, the end-to-

end vector of any sub-chain of an ideal chain obeys the Gaussian distribution. Assuming that 

any individual bond follows a Gaussian distribution: 
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which is equivalent to  
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Figure 2.4. Schematic representation of the discrete Gaussian chain model.Each spring connecting successive beads 

has spring constant equal to
2

B3k T b
 

The distribution of the vector l mr r , of a sub-chain connecting any two beads m and n 

along the Gaussian chain is given by 
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With  
2 2

0
l m l m b  r r . As a special case, one recovers the Gaussian distribution for the 

end –to- end vector with 2 2

e NbR . The probability density can be written as a function of 

the bead positions, 
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It leads to a free energy of the form 
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m
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It is of interest to compare these results for the free energy of the discrete Gaussian chain 

with those obtained previously for the freely jointed chain model. At first glance, the 
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Hamiltonians for the freely jointed and the bead spring model appear to be very different, since 

on the one hand in the bead spring model, the bond which connects the segments is the harmonic 

one given by 2.25, while on the other hand in the freely jointed model, there is no apparent 

spring potential between the segments. Instead, there is a constraint on the arrangements of the 

segments, i.e., a pair of segments which are connected by a chemical bond should be located at a 

fixed distance. The chemical bonds are therefore introduced into the bead spring model as a 

spring potential (enthalpic contribution), in contrast to the freely jointed model where they are 

treated as an entropic term associated with the constraint on the arrangement of the segments 

(entropic contribution).
3,32

 Because the final equilibrium is dictated by the free energy of the 

system, composed by the enthalpic contribution E and the entropic contribution S according to  

 A E TS    (2.33) 

we can understand that the two apparently different treatments of the chemical bonds will play 

essentially the same role in the canonical ensemble governed by the free energy A.  

Consequently, the free energy for these models given by 2.32 and 2.21 is thermodynamically 

equivalent in the case of very long chains. 

2.2.4 Continuous Gaussian Chain Model 

We can go one step further towards the model that we implemented in this thesis. Is is an elegant 

and particularly convenient ideal chain model for both analytical and numerical calculations, 

known as the continuous Gaussian chain model.
182

 This model can be described as the 

continuous curve limit of the discrete Gaussian chain model, often called the ―Gaussian thread‖ 

model. As shown in Fig. 2.5, in this model the polymer is viewed as a continuous, linearly 

elastic filament, whereas the segment index s becomes a continuous variable spanning the 

contour of the chain  0 s N  .The set of segment positions along the backbone of the chain, 

which describes the chain conformations, becomes a space curve r(s), where the contour 

position r is a vector function of the continuous variable s, and the end-to-end vector Re can be 

expressed as ( ) (0)N eR r r .The probability density can be written as: 
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corresponding to a ―potential‖ energy (more correctly, free energy or potential of mean force) of 

the Gaussian chain 

  
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3 d
( ) d

2 d

N
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U s s
b s
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r
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where the square bracket notation in  0 ( )U sr and  ( )srΨ is used to indicate that 0U and Ψ  are 

functionals of the space curve ( )sr  (Ψ  is sometimes called a Wiener distribution
183

) defining 

the conformation of the polymer. A functional is a mapping between a continuous function and a 

number;
184

 in this case the mapping is between ( )sr  and the value of 0U and Ψ .The form of the 

potential energy is closely related to eq 2.32 for the discrete Gaussian chain. If we view d dsr as 

the local ―stretch‖ in a segment of length ds located at contour position s, then eq 2.35 sums a 

harmonic potential contribution from each such differential segment over the entire contour of 

the chain. It is important to note that s does not indicate arc length in the continuous Gaussian 

chain model, but it is simply a parameter indexing the segments along the chain. Thus, the 

stretch d dsr  is not constrained to be a unit vector, but is free to fluctuate in magnitude. Eq 2.35 

for the potential energy is commonly referred to as the ―Edwards Hamiltonian‖. 

The configurational partition function of the continuous Gaussian chain can be written as 

 
 

 
   

0
0 0

0
( ) exp ( )

N

s U s



  

r r

r r
r rZ = D  (2.36) 

where the notation 
 
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 

00
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s



r r

r r
rD  indicates a functional integral over all possible space curves 

( )sr  describing the conformation of the polymer. Such functional integrals, also termed path 

integrals, are familiar from the fields of quantum mechanics and probability theory, where ( )sr  

corresponds to the position of a quantum particle or Brownian particle at time s .  

Integrating over all possible spatial curves of length N with given starting and ending 

positions, we form a configurational partition function for the Gaussian thread, tethered at its 

two ends, given by: 
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where  B1/ k T  . The partition function is a path integral. From the above discussion of 

Gaussian chains, it is clear that the value of this partition function depends only on 
0 r r , N , 

and b. 

 

Figure 2.5. Schematic representation of the continuous Gaussian chain model (Gaussian Thread). The continuous 

Gaussian chain model describes the conformation of a polymer as a space curve r(s), where s ∈ [0,N] is a variable 

spanning the contour of the chain. The chain end positions correspond to r(0) and r(N). 

The inconvenience arising from the necessity to evaluate path integrals turns out to have 

no consequence in equilibrium statistical mechanics, because we are generally interested in 

ensemble averaged quantities, which can be expressed as ratios of two path integrals. For 

example, the mean-squared end-to-end vector of the continuous Gaussian chain can be 

expressed as: 

 
 

 
   

 

 
   

0

0

2

0
02

e e e

0
0

( ) ( ) (0) exp ( )
R

( ) exp ( )

N

N

s N U s

s U s













   
  

  





r r

r r

r r

r r

r r r r
R R

r r

D

D
 (2.38) 

where the denominator is simply the configurational partition function. It is easy to prove that 

the continuous Gaussian chain shares the property of the discrete Gaussian chain in that its root-

mean-squared end-to-end vector is given by 
1/2

2 1/2

eR bN and the radius of gyration is given 

by the expected formula (eq 2.13). 



2.2. Single Chain Models  

 

33 

A useful feature of path integrals in continuous chain models is that they can be viewed 

as Chapman-Kolmogorov integral equations, which in turn can be reduced to partial differential 

equations. These equations are referred to in probability theory as Fokker-Planck equations 
185

 

and in quantum theory as Feynman-Kac formulas, 
186

 introduced into the polymer science by 

Doi and Edwards.
187

 The advantage of working with partial differential equations will become 

more apparent in the next subsection, where we consider chains in external fields.  

2.2.5 The Presence of External Field 

In the current section we designate how the statistical mechanics of ideal chain models can be 

generalized to include one or more ―external‖ potential fields that act on individual segments of 

a polymer chain. These potential fields are of primary importance and they are generated self-

consistently by the force fields of the interacting polymer segments. Accurate evaluation of the 

statistical mechanics of a single polymer in a prescribed potential field proves to be the most 

computationally demanding component of a field-theoretic method.  

The external field of primary interest is a spatially varying chemical potential field w(r) 

that acts indiscriminately on contour length s of a continuous Gaussian chain. The conformation 

of a Gaussian thread will be now dictated by the following ―energy‖ function: 
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Consequently, the configurational partition function of the continuous Gaussian chain becomes  
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We define the Green function for the Gaussian thread as:   
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Physically, 0( , ; )G sr r is an un-normalized probability density that, in the presence of the 

field  w r , a chain which started at position 0r will be at position r , at contour length s. It has 

dimensions of inverse volume, i.e., spatial density. Note that the denominator in the definition of
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0( , ; )G sr r  is the partition function of an unrestricted, field-free Gaussian thread of length s; it is 

independent of r  and 0r  and depends only on s and b. Though the Green function has a physical 

meaning only for s>0, we extend the definition of 0( , ; )G sr r to negative s, by requiring that 

0( , ; )G sr r = 0 for s < 0. The probability density of the 0r r vector becomes 
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with ( ) 1s   for 0s   and ( ) 0s  for 0s   (Heaviside step function). If we set s N  and 

( )Nr R in eq 2.42, the familiar Gaussian distribution function is recovered for the end-to-end 

vector of eq 2.29. On scales larger than a single bond, the discrete Gaussian chain and the 

continuous Gaussian chain evidently share the same chain end distribution function.  

Recasting the latter expression as a Fourier transform of the Green function, the 

―diffusion‖ equation is derived: 
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A detailed derivation of the above equation can be found in ref 187.The product of the 

Delta functions    0 s r r  on the right hand site takes into account the boundary conditions  

  0 0 0( , ; ) 0, for 0 and ( , ; )G s s G s    r r r r r r  (2.44) 
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By definition ( , )q sr  represents the statistical weight of a chain, which may have started 

anywhere in the system and finds itself at position r at contour length s  (Figure 2.6). This object 

is commonly referred to as the chain propagator and is a functional of the external potential 

field. Again, note that the denominator in eq 2.45 is independent of r  and 0r . For 

0s  , integrating the diffusion eq 2.43 followed by the Green function 0( , ; )G sr r  with respect to 

0r  leads to 
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It is evident from eq. 2.45 that by construction, ( , )q sr is a dimensionless quantity and for 

0s  , the effect of the field disappears and the numerator and denominator become identical. 

The propagator ( , )q sr  obeys the ―initial‖ condition 

 ( ,0) 1q r  (2.47) 

 

Figure 2.6. (a) Definition of the restricted partition function q(r,s). (b) Definition of the partition function Q[w]. 

Of particular interest is the partition function  Q w for a chain subjected to an external 

potential  w r defined by the equation presented below:
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Clearly,  Q w is a partition function for an N-long chain in a region of space of volume V 

subject to the field  w r  reduced by the corresponding partition function of a field-free chain 

(Figure 2.6). As defined,  Q w  is a dimensionless quantity. It is related to the restricted partition 

function ( , )q sr , defined in eq. 2.45, as follows: 

  
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(a) (b) 
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We now consider the problem of calculating the ensemble averaged segment number 

density for a single flexible polymer subjected to a chemical potential ( )w r .This quantity is 

defined by 

    ˆ r r  (2.50) 

The microscopic segment density generated by the chain is given by 

    
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The equation connecting the microscopic segment density and the restricted partition function is:  
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Figure 2.7. Illustration of a microscopic description of the density distribution ρ(r) and its coarse-grained 

description  ̂ r
 

which is known as convolution integral equation central to the theory of inhomogeneous 

polymers. 
18,123,188

 Eq 2.52 is an important formula in the theory of inhomogeneous polymers 

because it provides a recipe for calculating the average segment density of a continuous 

Gaussian chain experiencing an arbitrary potential  w r . A proof of equation 2.52 is provided 

in Appendix B. The density operator   r describes the average density of segments, regardless 

of their location along the polymer chain. Another useful density operator for the continuous 

Gaussian chain is the quantity 
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    ˆ, ,s s r r  (2.53) 

which represents the average density of segments located at contour position s. The microscopic 

density of segments at location s is derived from      ˆ ,s s  r r r as  

  
 

   
1

, , ,s q N s q s
VQ w

  r r r  (2.54) 

 

Figure 2.8. Illustration of the composition formula for the average density of segments (eq 2.54)located at position 

s along a continuous Gaussian chain. The statistical weight q(r, s) of a chain section of contour length s is joined at 

point r = r(s) with the statistical weight q(r, N - s) of the ―complementary‖ chain section having contour length N - 

s. 

The physical content of eq 2.54 is explained in Figure 2.8. By comparing this expression with eq 

2.53, we see that the average total segment density  , s r  is simply the integral of the average 

segment s density ρ(r, s) at all contour locations 0 s N  : 

    
0

d ,

N

s s  r r  (2.55) 

This formula is clearly consistent with the relationship between the corresponding microscopic 

densities  ̂ r and  ˆ , s r . 

A special case of eq 2.54 is of particular interest. By setting 0s   or s N , one obtains 

the average density of a chain end segment. In the present case of a homopolymer obeying the 
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aforementioned continuous Gaussian chain model, the two chain ends are indistinguishable, so a 

total chain end density can be defined by 

      
 

 end

2
,0 , ,N q N

VQ w
    r r r r  (2.56) 

where in the second line of this expression we have used  ,0 1q r . Thus, after applying the 

normalization   2 VQ w , the propagator   , ;q N wr
 
can be interpreted as the average density 

of chain ends at position r.  

 From Particles to Fields 2.3

An additional, essential element for the construction of the field-theoretic method is the 

conversion of a particle-based model to a statistical field theory. The previous section dealt 

exclusively with the statistical properties of a single ideal polymer chain both in isolation and in 

the presence of an external potential field. Here, we shall focus on how the external potential 

field(s) can be determined. The intramolecular long-ranged interferences, also mentioned in the 

literature as the nonbonded interactions between the polymer segments, that have been neglected 

up to this point, will now be included in the formalism. An important objective of the present 

section is to illustrate how this particle-to-field transformation takes place for pure fluids. We set 

up the basic technique, since more rigorous and exact formulations for more complex polymer 

chain models and fluid systems will be fully explored next.  

2.3.1 Canonical (nVT) Ensemble 

In statistical mechanics, an ensemble (also statistical ensemble) is an idealization consisting of a 

large number of virtual copies (sometimes infinitely many) of a system, considered all at once, 

each of which represents a possible state that the real system might be in. In other words, a 

statistical ensemble is a probability distribution for the state of the system. The concept of an 

ensemble was introduced by J. Willard Gibbs in 1902.
189

 

The canonical ensemble provides a powerful framework for deriving the thermodynamic 

properties of liquids and gases from molecular-level information. In the canonical ensemble, a 

system is considered to be closed to mass transfer, but it is open to energy transfer through the 

exchange of heat with a reservoir held at a fixed temperature T. Under these conditions, the 

partition function can be derived from the Hamiltonian (eq 2.1). The kinetic energy term in eq 
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2.1 depends exclusively on the center-of-mass momenta. The potential energy term depends 

exclusively on the center-of-mass positions (configurational degrees of freedom). The canonical 

partition function nVTQ  of a pure fluid with n indistinguishable particles confined in a volume V 

can be expressed as two separable contributions: 

  2

3
1

1
d exp d exp

!

n
n n n

nVT in
i

Q U
n

 


 
     

 
 p p r r

h
 (2.57) 

Both integrals appearing in eq 2.57 are definite. The first integral is taken over the whole 

momentum space and the second integral is taken over the whole configuration space. The 

integral over momentum space is really a product of 3N independent Gaussian integrals which 

can be easily evaluated and then we obtain the so-called ―semiclassical‖ partition function: 

  3

1
d exp

!

n n

nVT n
Q U

n
 
   r r  (2.58) 

or 

 
3!

nVT
nVT n

Q
n




Z
 (2.59) 

where 2 Bmk T  h is the thermal wavelength, m is the mass of an atom, and h is the Planck 

constant. nVTZ  is the configurational integral of the canonical ensemble. The potential energy 

 nU r  depends on the relative positions of the n particles, and by specifying its mathematical 

form, one defines a particular atomistic model of a fluid. It is often the case that the pair 

approximation described by eq 2.1 is sufficient for the description of the potential energy. For 

the purpose of illustration, we shall adopt this perspective and write 

    
1 1( )

1

2

n n
n

j k

j k j

U u
  

  r r r  (2.60) 

where u(r) is the familiar pair potential function (Hansen and McDonald, 1986). The factor of 

(1/2) in this expression corrects for the counting of each pair of particles twice in the double 

sum. The external field is assumed to couple to the microscopic particle density  ̂ r defined as 

a sum of  functions in the form already introduced implicitly in 2.51  
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    
1

ˆ
n

j

j

 


 r r r  (2.61) 

It follows that 

          1 1 1
ˆ ˆd d 0

2 2

nU u nu       r r r r r r r  (2.62) 

where the last term subtracts the self-interactions of the n particles that are included in the first 

term. Eq 2.58 can thus be written 

      0 ˆ ˆd exp d d
! 2

n
n

nVT

z
Q u

n


 

 
     

 
  r r r r r r r  (2.63) 

where   3

0 exp( 0 2)z u  . It can be seen from this result that the value of the potential at 

contact,  0u , only affects the reference chemical potential of the fluid and has no 

thermodynamic consequences. The next step in the particle-to-field transformation is to invoke 

the definition of a delta functional, i.e. 

      ˆ ˆF F     D  (2.64) 

for any functional  F  . The delta functional  ˆ   can be viewed as an infinite-

dimensional version of the Dirac delta function that vanishes unless the fields   r and  ̂ r  

are equal at all points r in the domain of interest. The delta functional can also be viewed as a 

formal definition of the functional integral wD over the auxiliary field  w r according to the 

following inverse Fourier transform 

  
     ˆd

ˆ
i w

we
 

  
    

r r r r

D  (2.65) 

It is important to note that  w r is a real scalar field and that the functional integral in eq 

2.65 is taken along the whole real axis at each r .The next step in transforming the canonical 

partition function into a statistical field theory is to insert eq 2.64 with   1F   into the 

integrand of eq 2.63. This leads to 

        0 ˆ ˆ ˆd exp d d
! 2

n
n

nVT

z
Q u

n


     

 
      

 
   r r r r r r rD  (2.66) 
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Next, combining eqs 2.65 and 2.66, the following expression occurs for the canonical 

partition function of the system: 

 
           ˆd 2 d d

0 d
!

n
i w un

nVT

z
Q we

n

    


           
r r r r r r r r r r

rD D  (2.67) 

It is important to note that as a result of these transformations, the only factor in the integrand 

that depends on the atomic coordinates 0 1 n, ...,n r r r r  is    ˆexp di w  
  r r r . The integrals 

over the n particle positions thus factor out according to 

       ˆexp d
n

i w VQ iw  
  r r r  (2.68) 

The functional  Q iw can be interpreted as a single-particle partition function, i.e., the 

contribution to the partition function from an atom which does not interact with the other atoms, 

but rather with the purely imaginary field  iw r
.
 

Upon combining eqs 2.68 and 2.67, the particle-to-field transformation is completed. The 

partition function can be expressed as the following statistical field theory: 

 
 

  cexp ,
!

n

o

nVT

V
Q w w

n
   

z
D D -H  (2.69) 

where the functional 

              c , d 2 d d lnw i w u n Q iw           r r r r r r r r rH  (2.70) 

is referred to as an ―effective Hamiltonian‖ or ―action‖.
176

 . The prefactor in eq 2.69,   / !
n

oV nz , 

is proportional to the partition function of an ideal gas. 

The evaluation of the Helmholtz free energy requires the use of the familiar 

thermodynamic formula 

   B, , ln nVTA n V T k T Q   (2.71) 

where nVTQ  is obtained by performing functional integrals over the ρ and w fields according to 

eq 2.69. 
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2.3.2 Grand Canonical (μV T) Ensemble 

The grand canonical ensemble provides a statistical microscopic description of an open 

equilibrium system of given volume or spatial extent, capable of exchanging energy and 

particles with its surroundings. This ensemble is particularly useful in the study of sorption 

equilibria and surface thermodynamic properties of fluids.
168

 

In statistical mechanics, a grand canonical ensemble (also known as the macrocanonical 

ensemble) is the statistical ensemble that is used to represent the possible states of a mechanical 

system of particles that are in thermodynamic equilibrium (thermal and chemical) with a 

reservoir. The system can exchange energy and particles with a reservoir, so that various 

possible states of the system can differ in both their total energy and total number of particles. 

The system's volume, shape, and other external coordinates are kept the same in all possible 

states of the system. The relevant grand canonical partition function is given by  

 
0

exp( )VT nVT

n

n Q 




Ξ  (2.72) 

where μ is the chemical potential and the sum is over all possible numbers of atoms. Insertion of 

eq 2.67 into the right-hand side of this expression leads immediately to 

 
            d d d

2

!

n

i w u

VT

n

VQ iw
we

n


  

 
     

  
r r r r r r r r r z

Ξ D D  (2.73) 

where exp( )0z = z is the activity. Evaluation of the sum over the number of particles results 

in the desired field theory for the grand canonical ensemble: 

   Gexp ,VT w w    Ξ D D H  (2.74) 

with  

              G , d d d
2

w i w u VQ iw


          r r r r r r r r rH z  (2.75) 

Comparing eqs 2.70 and 2.75 and therefore the effective Hamiltonians of the canonical 

and grand canonical ensembles respectively, we see that they differ only in the form of the last 

translational entropy term. Thus, it is fairly straightforward to switch ensembles in the field-

theoretic framework. 
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Equation 2.75 shows that the effective Hamiltonian has three principal contributions. The 

first term,    di w  r r r , can be interpreted as the energy of interaction between the density 

field   r and the purely imaginary ―chemical potential‖ field  iw r . The second term is 

proportional to      d d u    r r r r r r
 

and represents the energy associated with the 

nonbonded particle-particle interactions. This term can be replaced by the Helmholtz energy 

density (Helmholtz energy per unit volume), obtainable from an equation of state. In this thesis, 

we replace this term by identifying the Helmholtz energy with an excess Helmholtz energy, i.e., 

with the Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a 

given volume minus the Helmholtz energy density of an equal number of noninteracting (ideal 

gas) unperturbed chains in the same volume. Finally, the term  VQ iwz  describes the 

translational entropy (relative to the ideal gas entropy) of a fluid of n noninteracting atoms 

experiencing the potential  iw r .
32

 

The grand canonical ensemble allows us to calculate thermodynamics potentials. At the 

outset, the quantity VT  is called grand potential. In a homogeneous system, the connection 

between the grand potential and macroscopic thermodynamics is 

 B lnVT VTk T PV     Ξ  (2.76) 

where P is the pressure, and the ensemble averaged number of particles in the system is 

controlled by adjusting the chemical potential μ or activity z according to 

 
,
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V T

n
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z
 (2.77) 

The Gibbs Energy is found as 
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 (2.78) 

And the Helmholtz energy as 
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For interfacial systems, the Grand canonical ensemble is the most suitable choice in 

calculating the interfacial tension, since it allows the mass transfer between phases. For the 

special case of a liquid bounded by an undeformable solid surface,  

  bulk solid sp s( , , ) ( , , )V T V T S        (2.80) 

where Ssolid is the total interfacial area of contact, sp  is the solid-polymer interfacial tension, s  

is the solid surface tension, and s sp   is the adhesion tension between the polymer and the 

solid.   

 Self-Consistent Field Theory 2.4

The previous section demonstrated how statistical field theories can be constructed from 

particle-based models of simple fluids. It is now appropriate to discuss how to analyze such field 

theories and extract useful information about the structure and thermodynamic properties of 

polymeric fluids at equilibrium. 

The field-theoretic models of section 2.3 generically express the relevant partition 

function as a functional integral over one or more chemical potential fields w(r), i.e., 

   exp ,w w   Z D D H  (2.81) 

where  ,w H is an effective Hamiltonian which is a non-local functional of the field variables 

and is generally complex (not strictly real). The form of  ,w H depends on the particular 

interaction and chain model used to construct the field theory and is thus sensitive to polymer 

architecture, molecular weight, polydispersity, composition, etc. To compute the ensemble 

average of some observable G, one applies the equation 

       1,  , exp ,G w w G w w     Z D D H  (2.82) 

The evaluation of free energies and derivative quantities through a thermodynamic 

formula connecting it to Z  involves the computation of the functional integral given by eq 2.81. 

Similarly, by application of eq 2.82, with  ,G w  corresponding to an appropriate density 

operator, the fluid structure is computed as a ratio of two functional integrals. 

This expression of the partition function is exact. However, the evaluation of this partition 

function is in general a formidable task. A variety of approximate methods have been developed  
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 Figure 2.9. An illustrative explanation of the mean field approximation.An interacting many-chain system is 

approximated by a single ideal chain in an averaged potential field ( )w r . 

 

to evaluate this partition function. The most fruitful method is the mean-field approximation, 

which amounts to evaluating the functional integral using a saddle-point technique. Technically 

the saddle-point approximation is obtained by demanding that the functional derivative of the 

integrand is zero. This is the most important analytical approximation technique, which is 

widely known in the polymer physics literature as self-consistent field theory (SCFT). 
89,190

 This 

technique is widely used in many physical contexts, perhaps most notably in the theory of phase 

transformations. 
176

 In the present case, the mean-field approximation amounts to the assumption 

that a single field and density configuration ( )w r  and ( ) r dominate the functional integrals in 

eqs 2.83 and 2.84. This field configuration is obtained by demanding that  G ,w H be 

stationary with respect to variations in ( )w r and ( ) r , i.e., 

 
   G G, ,

0, 0

w w

w w

w
 

   

 
 

 
H H

 (2.83) 

Having obtained the ―mean-field‖ potential and segment density fields ( )w r and ( ) r  from this 

equation, one completes the approximation by imposing the following: 

      , ln , , ,w G w G w    H Z  (2.84) 

If Z  represents either a canonical partition function or the grand canonical partition function, 

then the Helmholtz free energy and the grand canonical potential are derived immediately as 

 ln ,A w   Z = H
 
or

 
 Gln ,w   Z = H , respectively. 
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In the mean-field approximation, all configurations of the spatially varying fields are 

neglected, except for the most probable configurations ( )w r and ( ) r . For atomic or small 

molecule fluids, this approximation of neglecting all ―field fluctuations‖ is usually quite poor. 

This is because the typical coordination number of an atom or small molecule at liquid densities 

is quite low, so large fluctuations occur in the potential experienced by a particle as neighboring 

particles change positions. Indeed, these strong local field fluctuations are responsible for 

producing the density correlations that characterize the atomic-scale structure of liquids.
32

 The 

mean-field approximation is also inaccurate in polymer solutions or melts at the atomic scale 

because the coordination number remains small. However, at mesoscopic scales, the situation 

changes qualitatively due to the ability of polymer coils to interpenetrate one another. For 

mesoscopic scales, the fluctuations in the environment of each polymer diminish with increasing 

molecular weight, since the potential field variations are averaged out by contact with 

increasingly large numbers of surrounding chains. This constitutes the standard argument that 

the mean-field approximation is accurate for concentrated solutions or melts of high-molecular-

weight polymers. 
191

 

 Real Polymer Chain Conformation 2.5

A major weakness of previous works employing SCFT is that they are primarily aimed at 

producing qualitative and not quantitative results. Another weakness of the SCFT formulation is 

that single chain models (especially the discrete and the continuous Gaussian chain model)  refer 

to Kuhn segments, while statistical ensembles used to describe a fluid system mostly refer to 

particle or monomer segments. Some researchers interchangeably treat the Kuhn length, the 

statistical segment length, and the monomer length as being the same. Their claims seem to be 

somewhat inaccurate. The purpose of this section is to make clear to the reader the difference 

between a Kuhn segment and a monomer segment. 

In a typical polymer chain, there are correlations between bond vectors (especially 

between neighboring ones). The physical origins of these local correlations between bond 

vectors are restricted bond angles, torsional potentials, and steric hindrance. If we assume that 

the length of every skeletal bond of the real chain is lC-C, we can ask this chain to follow the 

scaling law of a freely jointed chain, NblC-C
 2

, with Nb being the count of skeletal bonds along the 

chain. In order to achieve quantitative agreement, we should introduce a coefficient, CN, in order 

to account for the stiffness of the chain: 
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 2 2

e b N c-cR N C l  (2.85) 

with NC  being Flory‘s characteristic ratio. The characteristic ratio is larger than unity for all 

polymers. All models of ideal polymers ignore nonlocal interactions between monomers 

separated by many bonds and result in characteristic ratios saturating at a finite value C  for 

large number of backbone bonds ( bN  ). Thus, the mean-squared end-to-end distance can be 

approximated for long chains as: 

 2 2

e b c-cR N C l  (2.86) 

The numerical value of Flory‘s characteristic ratio depends on the local stiffness of the polymer 

chain. The contour length L of the chain at full extension, on the other hand, is given by  

 b c-cL N lγ  (2.87) 

 where γ  is a geometric factor that depends on the bonding along the real chain. For a 

symmetric homopolymer chain such as polyethylene, where the equilibrium bending angle θ is 

the same between all pairs of successive skeletal  bonds, sin
2


γ . 

Flexible polymers exhibit universal properties that are independent of the local chemical 

structure. A simple unified description of all ideal polymers was needed. The first attempts to 

use random flight concepts to describe the linear polymers in solution are usually attributed to 

Kuhn, who argued that the Rayleigh random flight model might be used. It soon became evident 

that such a model was not appropriate to address very short chains (less than a few hundred 

chemical bonds), or relatively stiff chains which cannot adopt tortuous configurations. 

Moreover, it is not appropriate to use as ―steps‖ in the random flight the individual bond lengths, 

or even the monomeric units the chain consists of. Thus, the length of an individual step, Kb , 

became an adjustable parameter of the model, namely the Kuhn length. The equivalent freely 

jointed chain should have the same mean-squared end-to-end distance 2

eR  and the same end-

to-end distance at full extension L as the actual polymer, but KN  freely-jointed effective bonds 

of length Kb .The end to end distance 2

eR  of this equivalent freely jointed chain is: 

 2 2 2

e K K b c-c b c-c K K,R N b N C l L N l N b   γ  (2.88) 
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From the above equations we can easily extract the equation  which connects the Kuhn length 

with the monomer length: 

 Kb C

l


γ

 (2.89) 

A typical value for  γ  = sin(ζ/2) ~ 0.83, with ζ ~ 112° being the bond angle between successive 

skeletal carbon-carbon bonds. The numerical value of Flory‘s characteristic ratio depends on the 

local stiffness of the polymer chain with typical values ranging from 7 to 9 for many flexible 

polymers. From eq 2.89 we can easily came to the conclusion that usually the Kuhn length is 

approximately 10 times larger than a typical bond length. 

 Phenomenological Theoretical Methods 2.6

As mentioned in the previous chapter, the theoretical methods that are used to study polymer 

interfaces can be categorized as being either an analytical or a simulation technique, while the 

analytical techniques can be further classified into microscopic or phenomenological. One of the 

most dominant phenomenological techniques is related to Cahn-Hilliard theory
67

, widely known 

as Square Gradient Theory (SGT). 

For systems with a nearly uniform one-body density profile, the Helmholtz energy may 

be approximated by a functional Taylor expansion with reference to the Helmholtz energy of a 

uniform system with an average density 0 : 

            0 1 2 1 2 1 2

1
d d d ,

2
F F K               r r r r r r r r r  (2.90) 

where     0    r r . In the density expansion above, the reference system has the 

same temperature and particle chemical potential as the real system.  1 2,K r r  has units of 

energy and is referred to as the vertex function.  

For systems with a slow varying one-particle density   r ,   r  is small and the 

functional Taylor expansion for the intrinsic Helmholtz energy may be truncated after the 

quadratic term. Similarly, the local density may be expressed as a truncated Taylor series 

          3

0 0 0 0
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( ) ( )( ) :

2
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where   r  denotes the density gradient and the symbol ―:‖ denotes the scalar product of two 

tensors. The gradient expansions lead to a simple expression for the Helmholtz energy of 

inhomogeneous systems:  

      
2

0d
2

F f


  
 

         
 

r r r r  (2.92) 

where 0f  represents the Helmholtz energy density of the uniform system at system temperature 

T and local density   r , and κ is called the influence parameter.  

2.6.1 Interfacial Tension 

The most important application of the eq 2.92 is the calculation of interfacial tension. The 

interfacial tension between two coexisting fluid phases, say α and β, is defined as the change in 

free energy in response to variation of the interfacial area. For two bulk phases at equilibrium, 

the interfacial area refers to an imaginary surface S dividing the total mass of a particular 

component in the system into those corresponding to two bulk phases. The imaginary surface is 

called the Gibbs dividing surface. 

For an inhomogeneous system containing two coexisting bulk phases coming together at 

a planar interface, SGΤ predicts that the grand potential per unit area is given by 
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For bulk systems, the grand potential reduces to Ψ = pV where pressure p is the same 

for the coexisting phases. The interfacial tension is defined as the grand potential per unit area 

relative to those corresponding to the bulk phases 
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Figure 2.10. The Gibbs dividing surface between two bulk phases  (a and β) and a schematic representation of the 

density profile in the interfacial region. 

To use eq 2.94, we need an equation of state for the bulk phase and the density profile. By 

minimization of the grand potential with respect to ρ(r) (Euler-Lagrange condition on the 

functional on the right-hand side of eq 2.94 under constant μ and p) we obtain: 
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If we consider a vapor- liquid phase separation and combine eqs 2.94 and 2.95, we reach a 

simple expression for the surface tension: 
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 More specifically, to obtain eq 2.96 from eqs 2.94 and 2.95 it is helpful to remember 

that, for the two coexisting bulk fluid phases α  and β (say, liquid and gas) at equilibrium, the 

chemical potential is the same, equal to μ: 
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and also the pressure is the same, equal to the saturation pressure p:  
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Eq 2.95 can be written as 
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Multiplying both sides of the equation by dρ/dz and integrating from z= , where bulk phase α 

conditions prevail, up to an arbitrary point z, where the local density is  z , we obtain 
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  or 
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On the other hand, substituting p in terms of 0( )f  , μ, and  as shown above and invoking the 

differential equation we just derived, we can rewrite the right-hand side of eq 2.94 as 
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which is eq 2.96.  The penultimate equation in this development is an ordinary differential 

equation that can readily be integrated to find z(ρ) given an equation of state for the fluid, which 

dictates the Helmholtz energy density function  0 ( )f z  and the chemical potential at 

coexistence, μ.  Thus, in the framework of SGT, the density profile and the interfacial tension 

can be calculated from the equation of state of the bulk fluid and the influence parameter κ.  The 
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main advantage of SGT is simplicity, while a quantitative representation of the surface tension 

can be accomplished by using an accurate equation of state that can describe the bulk phases α 

and β and an optimized influence parameter.  

2.6.2 Equation of State 

An equation of state (EoS) is a thermodynamic relation between the state variables, which 

describe the state of matter under a given set of physical conditions of a homogeneous system. It 

takes the form of an equation relating the density to temperature, pressure, and composition, the 

latter playing a role in multicomponent systems. In statistical mechanics and the context of the 

isothermal-isobaric ensemble (nPT), the Gibbs free energy, G, is related to the configurational 

integral nPTZ
 
by the following equation: 

 
1

ln nPTG


  Z  (2.104) 

where the configurational integral nPTZ is: 
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with  , ,E V nΩ being the number of configurations available to a system of n molecules whose 

potential (configurational) energy and volume are E and V, respectively. The reader should take 

care not to confuse  , ,E V nΩ  with the grand potential, for which the symbol Ψ is also used.  

The summations in eq 2.98 extend over all feasible values of E and V. The isothermal-isobaric 

ensemble and the associated Gibbs potential are the most convenient of the potential ensembles 

to invoke in the study of fluid phase equilibria. 

 The fundamental problem in deriving the equation of state for a system is to determine 

Ψ. One of the most widely used equations of state for polymer fluids is the one derived by 

Sanchez and Lacombe.
192

 Inspired by Flory‘s model for binary mixtures, these authors have 

employed an Ising or lattice formulation, wherein the polymer segments are occupying discrete 

lattice sites, while there also exist empty lattice sites (holes). The Gibbs free energy, G, based on 

the Sanchez-Lacombe equation of state, can be expressed in terms of dimensionless variables as: 
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Table 2.1. Sanchez-Lacombe notation 

Symbol Explanation 

*  
hard core volume of a Sanchez-Lacombe segment 

SLr  number of Sanchez-Lacombe segments constituting a molecule  

SL mr   segmental density (Sanchez-Lacombe segments per unit volume) 

*  
attractive energy between Sanchez-Lacombe segments in adjacent 

sites 

* *

B/T k  characteristic Sanchez-Lacombe temperature 

* * */P    characteristic Sanchez-Lacombe pressure 

 * *

SLV n r   
close packed volume of the n rSL-mers 

 * * *

m SL mass SL /r r RT MP      reduced segmental density 

mass  mass density (kg m
-3

) 

M  molar mass of a chain (kg mol
-1

) 

*
T T T  reduced temperature 

*P P P  reduced pressure 

*1/ /u V V 
 

reduced volume 

 

where , ,T u and p are the reduced temperature, density, volume and pressure respectively. The 

parameter ω is connected to the number of different configurations available to a system of n 

rSL-mers. The Sanchez-Lacombe parameters are presented in Table 2.1. The corresponding 

equation of state can be extracted by minimizing G with respect to   , yielding 
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According to the discussion in the above subsection in SGT, we are interested in the 

Helmholtz energy density of a homogeneous phase. The Helmholtz energy under the Sanchez 

Lacombe formalism can be obtained from eq 2.106: 
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In order to avoid double counting in SCFT (taking into account eq 2.69), we have to subtract the 

Helmholtz energy of an ideal gas of chains. This quantity is given by: 
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 SCFT Combined with SGA of Free 3

Polymer Surfaces /Films 

The current chapter presents a self-consistent field (SCF) theoretic approach, using a general 

excess Helmholtz energy density functional that includes a square gradient term, for polymer 

melt surfaces.
26

 The approach is implemented for linear polyethylene films over a variety of 

temperatures and chain lengths. The formulation of the SCF plus square gradient approximation 

(SGA) developed is generic and can be applied with any equation of state (EoS) suitable for the 

estimation of the excess Helmholtz energy. As a case study, the approach is combined with the 

Sanchez-Lacombe (SL) EoS to predict reduced density profiles, chain conformational 

properties, and interfacial free energies, yielding very favorable agreement with atomistic 

simulation results and noticeable improvement relative to simpler SCF and SGA approaches. 

The reduced influence parameter invoked in the SGA to achieve accurate density profiles and 

interfacial free energies is consistent with the definition of Poser and Sanchez.
121

 The new 

SCF_SL+SGA approach is used to quantify the dominance of chain end segments compared to 

middle segments at free polyethylene surfaces. Schemes are developed to distinguish surface-

adsorbed from free chains and to decompose the surface density profiles into contributions from 

trains, loops, and tails; the results for molten polyethylene are compared with the observables of 

atomistic simulations. Reduced chain shape profiles indicate flattening of the chains in the 

surface region as compared to the bulk chains. The range of this transitional region is 

approximately 1.6 radii of gyration (Rg). The inclusion of chain conformational entropy effects, 

as described by the modified Edwards diffusion equation of the SCF, in addition to the square 

gradient term in density, provides more accurate predictions of the surface tension, in good 

match with experimental measurements on a variety of polymer melts and with atomistic 

simulation findings. 
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 Background 3.1

Many significant properties of soft condensed matter are determined by the structure, 

thermodynamics, and dynamics of surfaces and interfaces. Such properties play a dominant role 

in the manufacturing of materials by controlling adhesion, capillary and wetting phenomena, 

which influence, for example, the characteristics of protective films and membranes, bioactivity 

and biocompatibility of biomaterials, formation of microemulsions, and rheological behavior of 

lubricants.
32,193

 It is fascinating and tempting to fully explore the complex mechanisms of these 

phenomena and establish relations between macroscopically observable surface properties and 

molecular-level chemical constitution and structure. Toward this goal, various theoretical 

methods have been developed to elucidate inhomogeneous polymeric systems. 

3.1.1 Freely Standing Liquid Polymer Films 

The topological characteristics, structure, and thermodynamics of phases of simple fluids and 

polymer melts coexisting with gas have been explored to great length in previous works via 

theoretical approaches and atomistic simulations.
92,94,100–112

 Thin liquid films exposed to gas 

phases on both sides, the so-called freely standing liquid films (FF), attract great interest and 

attention among liquid/gas systems.
92,94,100–103,107,109–112

 The thickness of these films is a 

significant characteristic with deep implications concerning their stability. On one side, films of 

thickness on the order of 10 nm have been shown to display an apparent bulk behavior in their 

central region.
107

 On the other side, ultrathin films of molten polymers, with a thickness of a few 

radii of gyration of the constituent polymer chains, exhibit reduced densities and an altered 

structure in their central region
194,195

 as compared to their equivalent bulk sample. Moreover, 

with decreasing film thickness the two interfacial regions begin to overlap and as a result 

disjoining pressure effects emerge, affecting the stability of the films, as has been showed in 

Lennard-Jones fluids.
102,110,112

 In case the film thickness is reduced further, below the range of 

van der Waals forces, the disjoining pressure exceeds a critical absolute value, rupture occurs, 

and the film collapses into energetically more favorable structures.
109,196

 

Thin films and the phase behavior of block copolymers have been studied extensively 

with self-consistent field theory (SCFT).
92,94,100,101,111

 SCFT has its origin in the work by 

Edwards.
89

 Helfand and Tagami in 1972 adapted the theoretical framework to predict properties 

at the interface between immiscible polymers.
197

 Subsequently, Hong and Noolandi, among 
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others, made important contributions to the theory.
198

 Since then, SCFT has supported a huge 

number of applications in the literature and has been applied to a large count of polymeric 

systems with outstanding results, which have been summarized in  review articles,
34,98,199

 book 

chapters, and books.
3,32,69

 Even though SCFT has been used extensively to predict and explain 

the structure and phase diagrams of block copolymers and polymer blend systems, few authors 

have applied it to homopolymeric systems.
24,131–133

 

3.1.2 Previous Works  

As outlined in Chapter 2, in polymer field theory, the configurational partition function of a 

system of chains interacting with each other, as well as with solvent, ions, and solid surfaces that 

may be present, is reexpressed in terms of the configurational partition function of a set of 

noninteracting chains subject to a fluctuating field. The way the conformations of each chain 

species develop in the field is described by an Edwards diffusion equation. Based on a saddle 

point approximation, SCFT replaces the field by an optimal function of space which depends on 

the mean segment densities, and therefore on the conformations. The resulting system of 

equations, expressing self-consistency of the field that shapes chain conformations but is in turn 

shaped by them, is solved to convergence. The model that defines the statistical mechanics of a 

noninteracting polymer chain can be more or less detailed. Two models that have been invoked 

are the semi-flexible worm-like model and the fully flexible Gaussian model. The semi-flexible 

wormlike chain model is unnecessarily complicated
199

 when applied to high molecular weight 

polymers, but has the advantage of being more realistic in the case of short chains, because it 

can deal better with orientational tendencies associated with conformational stiffness.
98

 Even in 

the case of the simple Gaussian model, the statistical mechanical formulation of SCFT is not 

trivial. A particle-to-field transformation has to be carried out in the canonical or in the grand 

canonical ensemble. The effective Hamiltonian is required to be stationary with respect to the  

field and/or density variations and the equations must be solved in a self-consistent way. 

SCFT, as originally formulated for polymeric systems, requires the system to be 

incompressible. Incompressibility, however, is but a poor approximation when dealing with the 

free surfaces of polymer systems. Hong and Noolandi overcame this inconsistency by 

introducing vacancies and treating them as small molecules.
91

 This formulation increases the 

number of equations to be solved and is only compatible with Flory- Huggins type equations of 

state (EoS). Thompson
200

 used the vacancy treatment to distinguish the two regimes of molar 
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mass dependence of surface tension, at lower and higher molar masses. A compressible model 

with no explicit consideration of voids was initially introduced by Helfand and Tagami for 

binary polymer mixture interfaces by assuming that the excess chemical potential is known for 

one polymer; in their calculations the total density was found to decrease at the interface.
197

 

Schmid in 1996 first attempted to investigate compressible polymer blends at surfaces by using 

SCFT.
132

 Daoulas et al. in 2005 used the compressible model with a semi-flexible –flexible 

continuum description to address conformational properties of a polyethylene melt under 

confinement and compared the results with atomistic simulations.
24

  In 2013 by using a three-

dimensional compressible SCFT scheme, Daoulas and Müller explored the thermodynamic 

stability of the stalk fusion-intermediate in amphiphilic membranes.
201

 

The importance of including nonlocal terms in density in the Helmholtz free-energy 

functional to deal with the inhomogeneous environment of surfaces and interfaces has generally 

been recognized by numerous authors.
5,67,114–130

 The nonlocal gradient density expansion term 

was initially introduced by van der Waals for the vapor liquid interface for a one component 

system. Nowadays, it is widely known as the square gradient approximation (SGA). SGA is 

known alternatively as Ginzburg-Landau theory or Landau expansion.
69

 Cahn and Hilliard 

theory, developed in 1958, included gradient terms in the mole fraction, in the same spirit as 

SGA, to describe binary mixtures.
67

 SCFT incorporated the square gradient approximations from 

early on. Helfand et al. first conceived the importance of nonlocal terms in calculating the 

chemical potential of copolymer and polymer blend systems in a SCF.
123,197

 de Gennes 

combined the Flory-Huggins theory with the square gradient contribution.
5
 A number of  

works 
91,124,202,203

 since then have used the gradient expansion in the free-energy functional with 

several variations in the coefficient of the gradient term; much of this work has focused on the 

difference between the weak and strong segregation limits of polymer blends and copolymers. 

The coefficient(s) of the gradient term(s) is (are) mostly referred to as the influence 

parameter(s).  

In the most general case, square gradient theory requires the contribution of a local 

Helmholtz energy density that can be retrieved from an EoS and the contribution of the square 

gradient density multiplied by the influence parameter. Theoretically, the influence parameter is 

related to a two body direct correlation function and can be computed either from integral 

equation theories or from analytical functions and mean field approximations.
204–207

The 

theoretical results, however, rely on approximations and rough estimations, resulting in 
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relatively poor performance when compared against experimental or atomistic simulations 

results. Semi-empirical approaches
130,208–211

 have thus been used to correlate influence 

parameters to EoS parameters. 

3.1.3 Current Research Approach 

The present work aims at combining two of the most widely used theoretical frameworks for the 

estimation of the interfacial properties of freestanding polymer surfaces, namely SCFT and 

square gradient theory, in a manner that enables prediction with a minimum of adjustable 

parameters. As a case study, the theoretical framework is applied to free polymer films 

comprising polymer chains modeled as Gaussian threads, whilst the thermodynamics of the 

polymer in the bulk is described by the Sanchez-Lacombe EoS.
192

 The influence parameter of 

the SGA term is calculated through correlations arising from the atomistic density profiles of 

polyethylene melts. Furthermore, there is a direct connection between the reduced influence 

parameter estimated by Poser and Sanchez
121

 and our estimation; hence, allowing us to extend 

the model to a variety of polymers for the purpose of calculating surface tension. It should be 

noted, however, that the developed framework is generic, because the excess Helmholtz energy 

density functional can be derived from any EoS. The SL EoS was chosen in this study because it 

has been shown to provide accurate results for such systems and it allows for comparisons with 

past works.
91,121

 Our primary aim is to calculate various thermodynamic and structural 

characteristics of thin films such as the surface tension, the reduced density profile and its 

decomposition into contributions from ―adsorbed‖ and ―free‖ segments, the long-range 

conformational properties of the chains quantified by the chain shape, and the segregation of 

chain ends at the free surface. The SCF calculations are vigorously compared against atomistic 

simulation results and experimental data.  

 Model System and Theoretical Formulation 3.2

3.2.1 SCF Formulation of Grand Partition Function 

The SCF approach has been employed to describe polymer melt interfaces in several earlier 

works. 
24,31,131,132,212,213

 Here we keep the presentation of our theoretical formulation as brief as 

possible, focusing mainly on novel points introduced in the present work. We consider a 

polymer melt whose surfaces are allowed free contact with a vapor phase. In our treatment, each 

one of the polymer chains is envisioned as a Gaussian thread consisting of N chemical 
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segments.
31

 We focus on a region of total volume V occupied by polymer at temperature T, 

which is delimited by the free surface(s). The polymer near the surfaces is at equilibrium with a 

bulk polymer phase, with which it can exchange chains without restrictions. Because of this 

phase equilibrium, it is more convenient to work in the grand canonical ensemble. The polymer 

thermodynamic properties in the interfacial region of volume V at temperature T and chemical 

potential μN, can be fully described by the grand canonical partition function. We define μ as a 

chemical potential per segment, therefore the chemical potential of a chain everywhere is μN. 

We follow the statistical mechanical formulation developed by Daoulas et al.
24

 and generalize it, 

following Schmid et al.
98

 The interaction between polymers, which was described by a Helfand-

type effective Hamiltonian,
197

 is now replaced by a coarse-grained excess Helmholtz energy 

functional. The grand partition function described by eq 2 of Daoulas et al.
24

 is rewritten as 

         
0 1

1
ˆexp  exp ( )

!

n
n

n

Nn N F
n

 



  


 

        r r rD P  (2.1) 

where B1/ k T  , Bk  is the Boltzmann constant, and n is the number of chains in the system. 

N  is a normalizing prefactor which includes the contribution from integration over momentum 

space, and         r rD P  represents the weighted sum over all chain conformations, which 

is a path integral in the case of continuous curves. For a given configuration, one can define the 

local monomer density operator 

  
1

1 0

ˆ( ) ( ) d
n

N s s


 


 r r r   (2.2) 

where ( )sr  is the continuous curve representing the reduced contour of a chain, from s  = 0 

(chain start) to s  = 1 (chain end). The functional     rP  is a statistical weight for path ( )sr  

of chain α in the absence of any field. In the Gaussian string model employed here it takes the 

form (compare eq 2.34): 

  
21

2

g 0

1 d
exp d

4 d
s

R s




  
       

   


r
rP   (2.3) 

where Rg
2
 symbolizes the mean squared radius of gyration of a polymer chain in the bulk and 

can be calculated from the following equation: 
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 2 2 2

c-c K K( 1) 6 / 6g C NR l N b   . (2.4) 

C is the characteristic ratio for N >> 1, a chemical constitution-dependent coefficient 

depending on local interactions along the chain, and c-cl  is the length of chemical bond. Another 

way to calculate the radius of gyration is the Kuhn procedure, where the chain is mapped onto a 

random flight of KN
 
Kuhn steps, each of length Kb (compare eqs 2.86-2.89). An observant 

reader can easily note that, in the Gaussian model, the mean squared radius of gyration is the 

only characteristic conformational parameter of the polymer chain which is essential for the 

coarse-grained description. 

We re-express the Boltzmann factor on the right-hand side of eq 2.1 in terms of a real 

monomer density field ( ) r  and an energy field ( )w r  by use of the inverse Fourier transform 

expression for a Dirac delta functional. With the field theoretic approach it is possible to replace 

the system of interacting chains with a system of noninteracting chains subject to a fluctuating 

field dictated by a generic free-energy functional representing the environment of a chain. This 

procedure is described in Appendix A. We define  Q iw  as the configurational partition 

function of a single-chain subject to a field iw  acting on its segments, divided by the partition 

function of an ideal chain. The grand partition function can then be written as 

    ( ) ( )  exp [ ( ), ( )]  C w H w      r r r rD D   (2.5) 

with  

    3

free

1
[ ( ), ( )] ( ) d ( ) ( ) exp [ ]w F r iw N NZ Q iw   


  r r r r rH   (2.6) 

where    freeZ       r rD P  is the configurational partition function of a free chain.   

The typical procedure of the SCF approach consists in invoking a saddle point integration 

with respect to w . The path integral is replaced by the value of the integrand at the 

corresponding saddle function in the complex plane. Frequently SCF treatments proceed further 

by performing a second saddle point approximation with respect to the monomer number density

 . In Appendix A the whole procedure is described in detail. In the saddle point approximation, 

the effective Hamiltonian, eq 2.6, becomes 
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 


r
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From this we obtain the grand potential of our interfacial polymer 

 
1 1

( , , ) ln ln exp( )V T 
 

         H H   (2.8) 

The extremization with respect to field w  yields the condition (see Appendix A, eq A.38): 

   free

[ ]
ˆ( ) exp ( )

Q iw
N NZ

n
  r r   (2.9) 

where n  is the mean number of chains in the system. The brackets ...  stand for statistical 

averages taken in a grand canonical ensemble of non-interacting chains subject to the external 

field iw . The approximation thus amounts to replacing the exact constraint ˆ( ) r  in the 

fluctuating field by the more relaxed requirement ˆ( ) ( ) r r  for the mean field resulting 

from the saddle point approximation. 

The saddle point approximation with respect to density   yields the field equation (see 

Appendix A, eq A.40): 

 
 ( )

( )
( )

F
w i

 


 

r
r

r
  (2.10) 

In place of the purely imaginary position-dependent field w(r) we can use the real field        

( ) ( )w iw r r . The effective field w (r) and the density (r) are associated with each other. The 

field ( )w r  or, equivalently, ( )Nw r , determines the density and all mean field profiles.
98

 

In the derivation of SCF theory a central role is played by the restricted partition function 

(propagator) ( , )q sr . The restricted partition function for a chain in the field ( )w r  is 

proportional to the probability that the segment at contour length s of the chain subject to the 

field finds itself at position r, regardless of where in the system the chain may have started. It is 

reduced by the corresponding probability density in the bulk melt and obeys the initial condition 

( ,0) 1q r  .The restricted partition function follows the Edwards diffusion equation for Gaussian 

chains (compare eq 2.46): 
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  


r

r
r r r   (2.11) 

The relation between ( , )q sr  and the single chain partition function in the presence of the field, 

 Q w is 

   31
d  ( ,1)Q w r q

V
   r    (2.12) 

The restricted partition function ( , )q sr  is related to the monomer density:  

 
 

1

0

d  ( , ) ( ,1 ) ( )
nN

s q s q s
VQ w

 
 

r r r   (2.13) 

where 
31

d ( )n r
N

  r  is the total number of chains in the considered interfacial region. To  

uncover the structure and thermodynamic details of the inhomogeneous polymer problem, an 

integrodifferential system of equations needs to be solved. The integrodifferential system 

consists of the following equations: the partial differential equation, eq 2.11, the definition of the 

SCF, eq 2.10, and the segment balance equation, eqs 2.12 and 2.13. These must be solved 

numerically in the unknown propagator ( , )q sr , SCF ( )w r , and monomer density profile ( ) r . 

The boundary conditions are controlled by the geometry of the problem and, as already pointed 

out, an initial condition ( ,0) 1q r  is applied.
24,31,214,215

  

3.2.2 Density Gradients Incorporated in the Free Energy Density  

In the previous section we allowed for a generic excess Helmholtz energy functional depending 

on the monomer density profile ( ) r for the description of interchain interactions. In the current 

section we incorporate in this free-energy functional a square gradient term. The square gradient 

theory, or SGA, is a popular choice and proved to be a reliable method for predicting the 

microscopic and thermodynamic properties of inhomogeneous systems. SGA is based on a very 

simple basic conception. The interfacial monomer density profile of a pure fluid in gas-liquid 

equilibrium, ( ) r , varies continuously from the bulk density of a vapor g  to the bulk density 

of a liquid 1 . The Helmholtz energy is approximated by a functional Taylor expansion with 
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respect to the density profile, while the Taylor expansion is truncated after the quadratic term. 

The gradient expansion leads to a simple expression for the Helmholtz free energy of 

inhomogeneous systems  

      
2 31

( ) ( ) ( ) d
2

F f r   
 

   
 
r r r   (2.14) 

where [ ( )]F  r  represents the free energy (here excess Helmholtz energy relative to an ideal gas 

of chains) of the inhomogeneous system at temperature T and local monomer number density 

profile ( ) r , the integration takes place over the entire volume V occupied by the system, and κ 

is the influence parameter. The first term on the right hand side within the integral corresponds 

to the local excess Helmholtz energy density of a homogeneous system of density equal to ( ) r  

at temperature T and the second (gradient) term incorporates a non-local correction to the excess 

Helmholtz energy because of the local density inhomogeneity. For all the apparent simplicity of 

the theory, the main difficulty lies in the definition and calculation of the influence parameter κ. 

It can be proven that this is related to the vertex function
216

 and can be expressed in terms of the 

density-density correlation function. Theoretically it can be computed by its molecular 

definition, but the available theories for estimating its value perform poorly compared to 

experimental and simulation data. To circumvent this problem, one can reverse it and correlate 

experimental interfacial tension data with EoS parameters to figure out the value of the influence 

parameter. Here we wish to keep the model as rigorous as possible, while preserving its utility in 

predicting thermodynamic and structural observables. This led us to use the semi-empirical 

approach, based on a Sutherland potential, that was invoked by Poser and Sanchez with 

excellent results.
121

 The main difference between our strategy for estimating the influence 

parameter and that of Poser and Sanchez
121

 is that, in our case, the influence parameter is 

determined from the density profile derived from an atomistic molecular dynamics (MD) 

simulation of the free surface of molten polyethylene. 

Past successes of SGA,
121,128,194,209,217

 in conjunction with various EoSs, in describing 

surface thermodynamic properties motivated us to insert it in SCFT. Combining eq 2.14 and eq 

2.10, the maximum term approximation with respect to the density field ( ) r , based on the 

functional derivative of the excess Helmholtz energy F with respect to ( ) r  leads to the 

following equation for the SCF: 
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The expression for the grand potential by applying equation 2.14 in eq 2.7 becomes: 
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3.2.3 Implementation of the Sanchez-Lacombe EoS to Calculate the Free-Energy 

For a simple fluid, the homogeneous term of the excess Helmholtz energy in eq 2.14 can be 

derived from an EoS. In the literature different types of EoSs have been combined with SGA to 

investigate structural properties, thermodynamic stability and calculate interfacial 

tensions.
67,122,128,194,208,217–221

 The SL, a lattice-based EoS with good performance in describing 

thermodynamic properties of polymer solutions and melts, involves three parameters. Generally, 

an EoS for a pure fluid relates pressure P , molecular density m , and temperature T . If the 

EoS is of the pressure-explicit form m( , )P P T  (as is the SL), the following expression gives 

the Helmholtz energy density A/V as a function of molecular density in the homogeneous fluid: 
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   (2.17) 

In eq 2.17 intraZ  is the configurational integral of a single molecule over all but three 

translational degrees of freedom, whereas i  is the thermal wavelength of atom i of the 

molecule; the product in the logarithmic term is taken over all such atoms. Clearly, the 

Helmholtz energy density for an ideal gas of molecules of the same temperature T and molecular 

density m  is given by the first term on the right hand side of eq 2.17. As a result, the excess 

Helmholtz energy density relative to an ideal gas of molecules is given by:  
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  
 
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The Sanchez-Lacombe EoS is (compare eq 2.100): 
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where T , P  and   are the reduced temperature, pressure, and density: 

 * * *

B,T T T T k    (2.20) 

 
* * * *, /P P P P      (2.21) 
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   
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Here 
*  is the hard core volume of a Sanchez-Lacombe segment, *  is the attractive energy 

between Sanchez-Lacombe segments in adjacent sites of the lattice, while *T , *P  and
*

mass  are 

the characteristic Sanchez-Lacombe temperature, pressure, and mass density, respectively. 

SL *

mass A *

M
r

N 
  is the number of Sanchez-Lacombe segments constituting a molecule, SL mr   is 

the segmental density (Sanchez-Lacombe segments per unit volume) with mass  and M being the 

mass density and molar mass, respectively. As in Sections 3.2.1 and 3.2.2,   denotes the 

number density of chemical segments (monomers) and N denotes the number of chemical 

segments per molecule (chain length, e.g., number of methylenes and methyls, or of carbon 

atoms for linear polyethylene) and should be distinguished from the density in Kuhn segments 

or in SL segments. The quantities SLr
 
and N should be proportional to each other in a meaningful 

model. Equation  2.22 expresses the reduced density in terms of the segment density. 

Combining eqs 2.18-2.22 leads to the excess Helmholtz energy density for a SL fluid in 

terms of its molecular density: 

    
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  (2.23) 

Considering eq 2.15, the excess Helmholtz energy density from eq 2.23 and bulk polymer 

expressions the final expressions for the SCF becomes  
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In eq 2.21 we have used that the SCF is zero in a bulk liquid phase of equal chemical 

potential as our interfacial system. In that bulk liquid phase (homogeneous melt) the segment 

density is l  and the reduced mass density is l . 

From eq 2.16, the grand potential of the interfacial system relative to a bulk phase of the 

same chemical potential, temperature, and spatial extent is 
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where sP  is the phase coexistence pressure at temperature T and 
*

s s /P P P  and we have 

introduced a dimensionless influence parameter  . Finally, the relation connecting the influence 

parameter κ in our derivation and   as described in Poser and Sanchez
121

 is the following: 

  
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  (2.26) 

It should be noted that the influence parameter in eq 2.26 is in practice chain-length 

independent, because SLr   is proportional to chain length in the high molar mass regime, as can 

be seen from eq 2.22. 

 Models Examined  3.3

In eq 2.16 we intentionally left the field and grand potential depending on the functional of the 

excess Helmholtz energy density. In this chapter we examine a number of SCF models by 

varying the expression from which this excess Helmholtz energy density is obtained.  

The first two models are based on the Helfand compressible model without (SCF_Helfand 

model) and with a square gradient correction term (SCF_Helfand+SGA model). The first model 

does not use any square gradient correction ( =0), whereas in the second the gradient 

correction is inserted. The SCF_Helfand approximation has been used in the past at melt/solid 
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interfaces with remarkable success.
24,31,132

 The Helfand excess free-energy density is given by 

the following equation 
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where T  is the isothermal compressibility and l  is the monomer density, both characterizing 

the bulk liquid polymer. The isothermal compressibility can  be obtained from experimental 

data, but in this work it is calculated from the Sanchez-Lacombe EoS. It is worth mentioning 

that the compressibilities calculated from the Sanchez-Lacombe EoS are in excellent agreement 

with experiment. The compressibility for use in the Helfand model is here obtained from the 

following equation: 
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l l SL l
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The third SCF model we consider uses the excess Helmholtz energy density calculated by 

the Sanchez-Lacombe EoS (SCF_SL model). Equation 2.23 relates the molecular density with 

the excess  Helmholtz energy density and is embedded in the SCF theory by eqs 2.24 and 2.25 

without the taking into account the nonlocal gradient density term ( = 0).   

The fourth model we examine is the square gradient theory model of inhomogeneous 

systems developed by Poser and Sanchez (SGA-PS model), which is straightforwardly 

connected to our formulation. Poser and Sanchez used Square Gradient Theory in connection 

with the EOS of Sanchez and Lacombe, without an SCF treatment, i.e., without consideration of 

changes in chain conformation induced by the surface. We use an integrated form (eq 22 in ref 

121) to calculate the density profiles for the SGA-PS model. We stress that the conformational 

effects introduced by the SCF treatment of the ideal Gaussian chain model are absent from the 

SGA-PS model.   

Finally, the fifth model we consider combines SCFT with SGA, with the local excess 

Helmholtz energy term based on the Sanchez- Lacombe EoS (SCF_SL+SGA model). This is the 

most advanced model we examine, introduced for the first time in this work. The SCF felt by the 

chains, represented as Gaussian threads, is described by eq 2.24. The SCF_SL+SGA model 

encompasses entropic contributions created both by the density inhomogeneity and by the 

change in conformational distribution of polymer chains in the interfacial region.  
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Our intention in the calculations we present is to identify differences in performance 

between the new SCF_SL+SGA formulation and previous work, assess the importance of 

including surface-induced changes in the conformational distribution in the calculation, and 

compare model predictions with both experimental measurements and atomistic (MD) 

simulation results.  

 Calculation Details 3.4

3.4.1 Solution Method for the SCF Model 

Given that a free polymer film such as the one shown in Figure 3.1 is homogenous along the xy 

plane and inhomogeneous along the z direction, being surrounded by gas phase in equilibrium 

with the polymer film on both sides, the problem can be reduced from three dimensions to one. 

 

Figure 3.1. Schematic representation of the freely standing polyethylene film. The tagged chain consists of 260 

CH2 and CH3 units extracted from a MD simulation frame. The thin orange lines outline the remaining chains in the 

simulation frame, to convey the picture of a field exerted on the tagged chain invoked in the SCF approach. The 

chain is depicted as a thread of spheres which represent segments belonging to trains (red), loops (blue) and tails 

(green). The simulation domain is of thickness 2Lz and the thickness of the film is 2h, where h is the distance 

between the center of the film and the profile point where the local density reduced by the bulk liquid density 

becomes 0.5. The adsorption regions, of thickness d, are defined at the edges of the domain of analysis, where the 

liquid is in contact with gas phase. The visualization was made using VMD software.
222

  

Consequently, the system domain 2 Lz encompassing the film is defined in the direction z that is 

perpendicular to the film (Lz is the distance between the film midplane and the edge of the 

domain under examination).  
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The SCF equations, as presented in Section 3.2.3, are formulated for three-dimensional 

domains. For the purpose of modeling the planar film they are reduced to one spatial dimension, 

z. To be more definite, we collect below the SCF equations to be solved:  
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under the initial condition ( ,0) 1q z  . We are investigating cases where the film thickness varies 

between 2 and 5 Rg so as to make comparisons with the results of atomistic simulations for films 

of similar thickness.
104

 The molecular number bulk melt density, bulk vapor density and vapor 

pressure are calculated from the EOS (eq 2.19) by a Newton-Raphson scheme that equates the 

pressures and chemical potentials between the two phases. For high molar mass polymers the 

vapor pressure vanishes and the Dirichlet absorbing boundary conditions  ( , ) 0zq L s  , 

( , ) 0zq L s   for both sides of the film are appropriate.  

The SCF eqs 2.29-2.33 are solved following a simple relaxation technique. An initial 

guess for the field ( )w z  is made (usually zero everywhere), which is then substituted into the 

Edwards diffusion equation. The equation is solved numerically to calculate the restricted 

partition function, ( , )q z s . Then the corresponding volume distribution of polymer, given by the 

monomer number density ( )z , is calculated from eq 2.30 and the resulting field ( )w z  is 

calculated through eq 2.31. Subsequently, new values for the field are estimated by mixing the 

old and the calculated field  new

mix mix( ) 1 ( ) ( )w z a w z a w z     , where mixa  is the relaxation 

parameter (the fraction that we use from the calculated field in the new iteration). The 
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magnitude of mixa  is inversely related to the polymer chain length and determined empirically so 

that stability of the solution scheme is preserved. The field calculated by the relaxation 

technique serves as the field input for the next iteration. The whole procedure described above is 

repeated until convergence is achieved. The convergence criteria are based on monitoring the 

behavior of the surface tension. The iterative scheme was considered converged when the 

difference in surface tension between two sequential iterations was below 10
-8 

mN/m. 

A central role in the above iteration scheme is played by the solution of the Edwards 

diffusion equation. The Edwards diffusion eq 2.29 is the most time demanding among all of the 

above equations to be solved. We used a Crank-Nicholson time implicit finite difference scheme 

to solve it with stability, which was introduced in ref 31. We take advantage of the symmetric 

tridiagonal matrices generated by this method to implement the tridiagonal matrix algorithm 

(TDMA), also known as the Thomas algorithm.
223

 The solution can be obtained in O(n) 

operations instead of O(n
3
) required by Gauss Elimination. 

3.4.2 System Parameters -Surface Tension 

The Sanchez-Lacombe parameters P
*
, T

*
and  

*

mass  as listed in refs  224 and  225 have been used 

as input for all calculations reported here. The mass density values for the liquid l  and gas 

phase g  and for the equilibrium pressure Ps have been obtained from the equality of pressures 

and chemical potentials between gas and liquid phase based on the Sanchez-Lacombe EoS. A 

Newton-Raphson iteration scheme for calculating , ,g l sP   is outlined in the Supporting 

Information of ref 26. For high molar mass polymers, as already mentioned, the solution gives 

as s 0P   and g 0  . The isothermal compressibility T  needed for the Helfand model is 

calculated from eq 2.28. The Sanchez-Lacombe parameters used in this work are given in Table 

3.1. 

The influence parameter, κ, has a molecular theoretic definition related to the direct 

correlation function, which does not offer itself for practical calculations. We use eq 2.26, which 

was initially employed by Poser and Sanchez, translated to our model, to calculate the influence 

parameter. Use of a single reduced influence parameter   across all polymers and temperatures 

studied with the SCF_SL+SGA model allows us to obtain the influence parameter for each 

polymer based only on the parameters of the Sanchez-Lacombe EoS. Poser and Sanchez derived 
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the relation between the   value and the exponent n  of a Sutherland-type potential, which, for 

the case of 6n  , leads to 0.5  .  Poser and Sanchez obtained 0.55   by fitting the surface 

tension of various polymers.  Approximately the same value can be derived from eq 16 in the 

limit r → ∞ in the work of Sgouros et al.
194

 regarding a mesoscopic hybrid particle-field 

simulation approach to molten polyethylene surfaces. 

The modified Edwards diffusion equation requires an additional quantity, namely the 

mean squared radius of gyration 2

gR . For long randomly coiled unperturbed chains, this can be 

calculated by eq 2.4. The characteristic ratio C  depends on the nature of local interactions, 

dictated by the chemical details of the macromolecular chain. The temperature dependence of 

characteristic ratios is weak over the temperature range considered and was neglected in this 

work. In the literature one can find experimental and calculated values for C . In this work we 

used experimental values, which are listed in Table 3.1. 

Table 3.1. EoS Parameters and Characteristic Ratios* 

polymer T
*
(K)     P

*
(MPa) ρ

*
(kg/m

3
) C∞ 

poly(dimethylsiloxane)(PDMS) 476 302 1104 5.8
226

 

poly(vinyl acetate)(PVAc) 590 509 1283 8.6
227

 

poly (n - butyl methacrylate ) (PnBMA) 627 431 1125 7.9
227

 

polyisobutylene (PIB) 643 354 974 6.7
228

 

polyethylene (linear)(PE) 649 425 904 7.3
226

 

poly( methyl methacrylate)(PMMA) 696 503 1269 8.2
226

 

polystyrene (atatic) (PS) 735 357 1105 8.5
226

 

poly(ethylene oxide)(PEO) 656 492 1180 5.5
226

 

*Sanchez-Lacombe equation of state parameters taken from ref 224 except for PEO, where they 

are taken  from ref 225. 

The thermodynamic relation between the grand potential and surface tension for the case 

of a film of polymer melt bounded by gas is  

 bulk( , , ) ( , , )V T V T S       (2.34) 

where S is the total interfacial area of contact and γ is the polymer surface tension. The left hand 

side is calculated from the solution to the SCF model by eq 2.25, which in our one-dimensional 

problem reduces to  
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Results for the surface density profile and surface tension are invariant to the precise value of  Lz 

used (thick films) in all cases studied here. 

3.4.3 MD Simulations 

Our SCF findings are compared to density and conformational measures, some of which were 

retrieved from atomistic simulation trajectories of freely standing polyethylene films generated 

as in ref 104. The atomistic simulations were conducted using the Large-Scale Atomic-

Molecular Massively Parallel Simulator (LAMMPS) package
229

 with PE melts being described 

with the TraPPE united atom force field.
230,231

 These simulations, in which long-range 

contributions to nonbonded interactions in the anisotropic environment of the film are handled 

with great care, have yielded predictions for the surface tension which are in excellent 

agreement with experiment over a variety of temperatures and chain lengths. The atomistic 

configurations represent thin films composed of C100H202 (C100) and C260H522 (C260) chains with 

lateral (normal) dimensions commensurate to ~2 Rg (~4 Rg). Additionally, an atomistic 

simulation was conducted on a C520H1042 (C520) film with a thickness of ~2 Rg. In-depth details 

regarding the MD simulations and simulated system characteristics can be found elsewhere.
104

 

 Results and discussion 3.5

3.5.1 Reduced Local Density Profiles 

The current section deals with density profiles of polyethylene derived from field theoretic 

approaches and atomistic simulations. At the outset, the reduced local density profile, 

  l( )z z  
 
between liquid and gas phases of polyethylene at equilibrium is calculated by 

different methods. The SCF_Helfand and SCF_Helfand+SGA models, the SCF combined with 

the Sanchez-Lacombe equation of state without (SCF_SL) and with gradient correction 

(SCF_SL+SGA), and the Poser-Sanchez (SGA-PS) model are all compared to atomistic 

simulations (MD). The density profiles are shifted, so as to have the 0.5 point of the reduced 
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density profile for every model at the same position (10 Å). The reader can observe the 

difference among the sigmoidal curves that different models generate for the free surface of a 

C260 polyethylene melt at 450 K in Figure 3.2. Although plotting out the profiles reveals the 

structure and the exact shape of the curve produced by every model, it is more convenient to 

work with the surface thickness. The thickness of the profile can be quantified by two 

techniques. The first one is based on fitting the curve to a hyperbolic tangent sigmoid profile, 

given by: 

 
th

1
( ) 1 tanh 2

2

z h
z

w


   
    

  
  (2.36) 

where thw  is the measure of the thickness of the sigmoidal curve and h  is the value of z  where 

the reduced density   reaches 0.5 . The second strategy for quantifying the surface thickness is 

based on drawing the tangent to the reduced density profile curve at z = h  and measuring the 

distance along the z direction between the intersections of this tangent with the lines 0   and 

1  . The estimate of the thickness is given by the following equation: 
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It is worth mentioning that when the profile follows the hyperbolic tangent, eq 2.36, 

exactly, then th thd w . Division of these two estimates of the width by each other produces a 

factor th thw d  which is a measure of how well the reduced density profile can be fitted to a 

symmetric hyperbolic tangent curve described by eq 2.36. The   value for symmetric curve is 

equal to 1. The values of  , thw  and thd  are shown in Table 3.2. 

The Gaussian chain model with the free-energy density given by the Helfand harmonic 

potential and no square gradient correction (SCF_Helfand) yields a very steep (thickness ~2 Å) 

and asymmetric (λ=0.936) profile. The SCF model with the field given by the more 

sophisticated Sanchez-Lacombe EoS (SCF_SL) gives a smoother profile than the Helfand 

model, with the low density tail more extended. The SCF_SL model is very symmetric  

(λ = 0.983), nonetheless the thickness of the profile is very small, below ~4 Å. Both of these 

profiles are unrealistic in comparison to the atomistic simulation profile, characterized by a 
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width of ~8 Å. This implies the necessity of the square gradient correction term. The gradient 

correction makes the profile wider and the profile gradient smoother.  

Table 3.2. Thickness of the Reduced Density Profile Calculated by Two Different Methods for the Free 

Surface of a C260 Polyethylene Melt at 450 K According to Different Models and According to Molecular 

Simulation
a
 

  

 thickness measure 

model dth(Å) wth(Å) λ 

SGA-PS 7.65 7.09 0.927 

SCF_SL 3.69 3.63 0.983 

SCF_SL+SGA 8.47 8.00 0.944 

SCF_Helfand 1.99 1.86 0.936 

SCF_Helfand+SGA 4.54 4.73 1.042 

MD 8.13 7.90 0.971 

a
The factor λ is a measure of deviation of the profile shape from a hyperbolic tangent curve. 

The reduced influence parameter   for the SCF_SL+SGA, SCF_Helfand+SGA and 

SGA-PS model was kept the same, equal to 0.55. This choice of the reduced influence parameter 

was made so that SCF_SL+SGA closely matches the atomistic density profile. Beginning with 

the SCF_Helfand+SGA model, although the interfacial width changes noticeably relative to the 

SCF_Helfand model, attaining a value of ~4.5 Å, it is still too small compared with atomistic 

simulation. The profile shape is quite different from that of MD, as evidenced from its λ value. 

The Poser-Sanchez model (SGA-PS) produces a profile of acceptable width of ~7 Å, but its 

asymmetry (λ = 0.927) is the highest among those of all models examined and clearly too high 

in comparison with the MD profile. The SGA-PS model yields a somewhat narrower profile 

than the ones obtained from SCF_SL+SGA or from atomistic simulation. The SCF_SL+SGA 

model is in very good quantitative agreement with the one obtained from the atomistic 

simulations, exhibiting an interface width ~8 Å and reasonable asymmetry. The Poser and 

Sanchez density profile departs from simulation results in the low-density region at the 

extremities of the film. It does not account for the restrictions that polymer chain conformations 

experience near surfaces, while the SCF_SL+SGA approach incorporates entropic changes 

associated with these restrictions. It would be worth noting that, even though all models are 

tested with the same value for the influence parameter   = 0.55, optimized   values cannot 

reproduce precisely the full MD profiles, nor give fully satisfactory estimates of the surface 
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tension. The ―best‖   values for the SCF_Helfand+SGA and SGA_PS models in terms of 

reproducing the density profiles are 0.6 and 1.3, respectively. 

 

Figure 3.2. Local reduced density profiles obtained from theoretical models (lines) compared to that obtained from 

MD simulations (dashed line) for the free surface of a C260 polyethylene melt at 450 K. The reduced density profile 

of the SGA proposed by Poser and Sanchez (green), of the Helfand SCF compressible model without (magenta) and 

with (navy blue) square gradient approximation and the SCF with the free energy dictated by the Sanchez-Lacombe 

EoS with (red) and without (blue) gradient correction is discussed in the text. The profile coordinate where the 

reduced density becomes equal to 0.5 coincides for all models.  

In Figure 3.3a we show the reduced density profile obtained from the SCF_SL+SGA 

calculations, for the C100 PE  free film (FF) system at various temperatures. The Gaussian chain 

profiles and MD profiles are referred to the same thickness of the free film, with 0z   located 

in the middle of the film. The vertical dashed line indicates the center of the free film, where the 

polymer reaches the bulk liquid density l , while the right and left boundaries of the film show 

the contact with the gas phase, where the bulk density reaches practically zero. The horizontal 

dashed line designates the points where the reduced density equals 0.5. The film thickness is 

defined as the distance between these points, and ranges from 4 Rg (400 K) to 4.5 Rg (500 K). In 

the MD simulation the system mass is kept constant; therefore, the film thickness increases with 

increasing temperature because of  thermal expansion. To relate the conformational properties of 

the SCF method and MD, the film center will be held constant. It is apparent from Figure 3.3(a) 

that SCF with the gradient correction term follows quite faithfully the density profile produced 

by the atomistic simulations. With decreasing temperature, the profile becomes steeper. The 
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SCF reproduces the decrease in slopes of the profiles obtained by atomistic simulation in detail, 

across the entire temperature range studied. 

 

Figure 3.3. Reduced density profiles of freestanding polyethylene films at various temperatures for various chain 

lengths.  (a) Results obtained for C100 from 400 K up to 550 K with a step of 50 K. The SCF approach combined 

with Sanchez-Lacombe and the SGA (lines) is compared with atomistic simulations (dashed lines). Each color 

refers to a different temperature. (b) Results for C100 (red), C260 (blue) and C520 (green) at 450 K from SCF (lines) 

and atomistic simulations (dashed lines). The vertical dotted lines indicate the center of the film and the line 

segments defined by the intersection of the horizontal dotted lines with the reduced density profiles are 

commensurate to the thickness of the films. 

Another interesting comparison between the SCF_SL+SGA approach and detailed 

atomistic simulation concerns the change in reduced density profiles with chain length. In Figure 

3.3b the reduced density profile obtained from the SCF_SL+SGA calculations is shown for the 

C100, C260 and C520 PE free film (FF) system at the same temperature (450 K).  The width of the 

interfacial region decreases very slightly with increasing chain length. Figure 3.3 undoubtedly 

(a) 

(b) 



Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films 

 

78 

shows that there is an expansion of the interface region with increasing temperature, while an 

increase in chain length practically has no effect over the range of chain lengths examined here. 

Again we observe that the profile created from SCF_SL+SGA model matches the MD model 

very well. 

3.5.2 End and Middle Segment Distributions  

This section deals with the structure of segment profiles in more detail. The chain end segment 

distribution plays a major role for conformational, dynamic and thermodynamic properties, as  

Chevalier et al. have revealed.
232

 Segregation of different segments along the chain has been 

shown by Jang et al.
195

 to influence the configurational properties of freely standing films. It has 

been found that repulsive ( end middle  ) or neutral ( end middle  ) chain end groups tend to 

accumulate near the fluid−vacuum interface, while strongly attractive ones tend to reside in the 

bulk region and induce faster dynamics in the central region of the films. It is of interest, 

therefore, to examine if SCF_SL+SGA predictions for the end and middle segment populations 

at gas−liquid interfaces are consistent with atomistic simulations and how these populations 

depend on temperature and molar mass. 

Generally the average density s (r) at position r of chain segments lying at reduced 

contour length s  (the chain start being s  = 0 and the end s  = 1) along a continuous Gaussian 

thread is obtained as follows. Segment s  is envisioned as the junction of a chain section of 

reduced contour length s  = 0 with the complementary chain section having contour length 1 s . 

The reduced density of these segments is therefore proportional to the product of the propagators 

of the two chain sections: 

 
 ,bulk ,bulk
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The middle segment reduced density middle 1/2   is calculated by setting 1/ 2s   and

1/2,bulk l / N  . The reduced density of a chain end segment is a case of particular interest.
131

 In 

the homopolymer case the ends are indistinguishable and therefore the total chain end segment 

density can be calculated as a sum of the first and last segment density end 0 1     (see also 

eq 2.56). The reduced end segment density end  can be obtained by dividing at every point the 



3.5. Results and discussion  

 

79 

end segment density by end,bulk 0,bulk 1,bulk l2 / N      . The bulk reduced density for both end 

and middle segments equals unity.  

 

Figure 3.4. Profile of the reduced end segment and middle segment distributions (a) Profiles of the reduced end 

segment density and the reduced middle segment density in free films of molten polyethylene composed of chains 

of 100 (ends: red, middle: blue) and 260 (ends: green, middle: black) skeletal carbon atoms at 450 K.  Solid lines 

show results from the SCF_SL+SGA approach, while dashed lines show the corresponding results from atomistic 

MD simulation. (b) Profile of the reduced end segment and middle segment distributions, for free films of molten 

polyethylene composed of chains of 100 skeletal carbon atoms at various temperatures (400-550 K). Solid lines: 

SCF_SL+SGA results, dotted lines: MD simulation results. 

Figure 3.4a shows the comparison between the reduced density profiles of the end 

segments and the middle segments for freely standing PE films consisting of C100 and C260 

chains at T = 450 K. Figure 3.4b shows the reduced density profiles of films composed of C100 

chains over a temperature range, from T = 400 K to T = 550 K.  Results from the SCF_SL+SGA 

approach are compared with the corresponding results from atomistic simulations. In the 

atomistic simulations the chain ends and middle segments were represented with the same 

Lennard-Jones parameters and the thickness of the films was set to 4 Rg. Even though we treated 

both end and middle monomers as not differing chemically, nonetheless we found, as 

expected,
104,131,195

 near the surfaces of the film the population of end groups to be significantly 

enhanced with an effective selective attraction of end groups to the surface due solely to chain 

connectivity. The SCF_SL+SGA model end segment profiles generally agree well with those 

from detailed atomistic simulation qualitatively and quantitatively. The weak depletion of chain 

ends observed in the atomistic simulations deeper in the film is not well reproduced by the SCF 

(a) (b) 
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calculation, probably because the local conformational stiffness of chains is not captured by the 

Gaussian thread model invoked by SCF. In general, the SCF model‘s end segment density 

profile seems to rise more steeply than the MD model profile at the extreme edges of the film. 

The performance of the SCF model improves with increasing molar mass of the melt, as one 

would expect, because the Gaussian thread model is primarily a model for high molar mass 

chains. 

The reduced density of the middle segments is lower than that of end segments at the 

edges of the film by about 2 orders of magnitude. The SCF model yields broader and steeper 

reduced middle segment density profiles compared to MD. This overestimation is seen in both 

the temperature and chain length dependence. This difference is clearer in the small molar mass 

polymer system and appears to be less pronounced for the higher molar mass system. Again, it 

seems to be associated with local stiffness effects which are not fully represented by the 

Gaussian thread model and are most pronounced for low molar masses. The expectation is that 

in higher molar mass systems the SCF model will be more accurate in predicting the middle 

segment profile. Even though the SCF model is not appropriate for low molar mass systems, it 

seems to capture the tendencies for segregation of end segments and middle segments in good 

agreement with atomistic simulation. In both approaches as applied to polyethylene, there is no 

enthalpic profit to be gained by end segments when they are exposed to the surfaces instead of a 

bulk region of the same density.
107,195

 

3.5.3 Structure of Adsorbed Polymer Layer  

Entire polymer chains in the free film can be distinguished into ―adsorbed‖ and ―free,‖ 

depending on whether they have segments in the low-density surface regions. It is useful to 

check whether the SCF_SL+SGA model can capture this distinction as observed in atomistic 

simulations. Comparisons between SCFT and atomistic simulation regarding the segment 

density profiles of free and adsorbed chains and of the various parts (trains, loops, and tails) in 

which adsorbed chains can be partitioned according to their configuration relative to the surfaces 

have been conducted by Daoulas et al.
24

 at polymer melt/solid interfaces. Sgouros et al.
104

 

conducted MD simulations of freely standing films and distinguished the adsorbed chains into 4 

categories depending on the positions of their ends relative to the free surfaces. They treated as 

―adsorbed‖ a segment at the liquid-vacuum interface if it lay in a certain region. The definition 

of this region where a segment and, more generally, a molecule is considered as ―absorbed‖ 
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plays a fundamental role in the calculation. At solid-liquid interfaces the region of adsorbed 

segments is defined so as to contain only the first peak of the density profile next to the solid 

(see ref 24). At the gas-liquid interface, following ref 24, we will consider as ―adsorbed‖ all 

segments lying at a distance larger than h from the center of the film along the z direction (see 

Figure 3.1, domains of thickness d). Both in SCF and molecular dynamic calculations, a 

monomer-segment is defined as adsorbed when it finds itself within this low-density region of 

the gas/ polymer interphase.  In this way it is ensured that both field theoretic and atomistic 

representations employ the same characteristic length for identifying adsorbed segments. As in 

sections 3.5.1 and 3.5.2, the film midplane will be placed at z = 0 and comparisons will be made 

between films of the same thickness for freely standing films composed of C100 and C260 

polyethylene chains. 

 The reduced volume fraction profile of segments belonging to adsorbed molecules,

ads ( )z , is obtained after decomposing the Gaussian chain propagator,  ,  q z s  in two parts, adsq  

and freeq , representing the two states of the polymer chain, adsorbed and free, respectively.
233

 

The freeq  propagator is calculated from the Edwards diffusion equation using the self-consistent 

field of the converged solution with initial conditions free( ,0) 1q z   for z h  and free( ,0) 0q z   

for 
zh z L   and boundary condition free( , ) 0q h s  . The adsq  part is easily obtained after 

subtracting from the total propagator ( , )q z s  the term corresponding to the free state of chains, 

ads freeq q q  . The reduced segment density profile of the free, free(z) , and the adsorbed 

polymer can be obtained from: 
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 ads free( ) ( ) ( )z z z      (2.40) 

We can now separate the adsorbed segments into loops, trains and tails, following their 

traditional definitions.
24,233,234

 A train is a chain section consisting exclusively of adsorbed 

segments and bounded by free segments, whereas a tail is a terminal section consisting 

exclusively of free segments and terminating in an adsorbed segment. A loop, on the other hand, 

is an internal chain section consisting of free segments and terminating in adsorbed segments. In  
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Figure 3.5. Volume fraction profiles of segments belonging to adsorbed and free chains (presented with red and 

blue color respectiverly) as derived by SCF theory implementing the Sanchez-Lacombe excess free-energy density 

combined with the square gradient approximation for freely standing films of (a) C100 and (b) C260 melts. The 

dashed lines display the corresponding atomistic simulation results. 

the SCF formulation, a segment belonging to a loop is viewed as the junction point of two 

adsorbed subchains. 
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A segment belonging to a tail, on the other hand, is viewed as a junction point between a 

free and an adsorbed subchain:   
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where the factor of 2 takes care of the presence of two ends.
233

 In polymer films it is possible to 

encounter segments belonging to ―bridges‖, i.e., chains adsorbed on both surface regions, which 

span the film. Here the thickness of the film is large enough for the presence of bridges to be 

insignificant. 

Figure 3.6 illustrates the φtails(z) ( and φloops(z)) profiles as obtained from atomistic 

simulations and calculated from eqs 2.41 and 2.42 for the SCF_SL+SGA model for the C100 and 

C260 melts. By definition the adsorbed chain profile contains tail, loop, and train distributions; 

for this reason the adsorbed profile of SCF seems to contain cumulatively more loops and tails  

(a) (b) 
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Figure 3.6. Volume fraction profiles of segments belonging to tails φtails(z), and loops, φloops(z),as derived by the 

SCF_SL+SGA approach (solid line) implementing the Gaussian thread connectivity model for (a) C100 and (b) C260 

melts. The dashed lines show the corresponding atomistic simulation results for the tails and loops, respectively. 

The vertical, thin dashed line marks the boundary of the region where the polymer is considered as adsorbed for 

both SCF and atomistic model simulations. 

than atomistic simulations, because they add up to a greater amount of adsorbed chains 

according to Figure 3.5.  In the C100 system the loop reduced density profile reaches 0.49 (0.14), 

while the tail reduced profile for the same chain length exhibits a maximum at 0.53 (0.34) 

according to the SCF calculation (atomistic simulation, respectively). In the C260 system the 

loop-reduced density profile reaches 0.56 (0.27), whereas the tail-reduced profile has a 

maximum at 0.54 (0.50) according to the SCF (atomistic simulation) and the minimum in the 

middle of film differs between the two calculations 0.23 (0.19). The atomistic simulation yields 

a loop profile which increases significantly from C100 to C260, indicating an expected tendency 

for longer chains to form more loops. In the SCF model the maximum in the loop profile does 

not increase at the same rate from C100 to C260, implying a convergence between the SCF model 

and atomistic simulations for very long chain PE. It is apparent that, with increasing chain 

length, the correspondence of loop and tail profiles between the SCF approach and atomistic 

MD becomes more reliable. This trend is expected to improve further as the molecular weight 

increases further and the chain can be represented better by a Gaussian connectivity model. The 

tail-reduced segment profiles obtained from the SCF calculation and MD simulation in the case 

of the C260 system are quite close, whereas  for the C100 system there is considerable disparity. 

The degree of agreement gives the impression that it does not depend on the film thickness. We 

(a) (b) 



Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films 

 

84 

remind the reader that for both C100 and C260 the film thickness is ~ g4R (~75 and ~114 Å, 

respectively). 

3.5.4 Chain Shape Profiles 

The presence of the gas/liquid interface affects the global chain conformational characteristics in 

the liquid state. The orientation and intrinsic shape of chain segment clouds in the various parts 

of the interphase depart from those in the bulk melt. The motivation for exploring these chain 

conformational properties as a function of the molecular structure is that they are intimately 

connected to macroscopic thermodynamics and dynamics. Theodorou introduced a method to 

calculate the number of chains passing through a surface drawn parallel to the interface 

anywhere within the film.
235

 The methodology, originally developed for a lattice fluid SCF 

model, was extended by Daoulas et al. and implemented in the continuous Gaussian thread 

model to calculate the number of chains per unit surface passing through a plane at 0z  parallel to 

the interface.
24

 Based on these two approaches, we calculate the probability that a chain starting 

anywhere in the system will intersect a given plane at 0z . From this we obtain the average 

number per unit surface of chains passing through that plane.  

The probability intp  of a chain that started anywhere in the system to intersect a given 

plane at z0 is equal to the complement of the probability that the chain does not intersect the 

given plane. Calculation of the latter can be translated into imposing the Dirichlet boundary 

condition 0q   at the dividing plane at 0z , splitting the domain into two regions; solving the 

Edwards diffusion equation in the two separate subdomains 0z z  and 0z z  using the 

converged ( )w z , and thus obtaining the 
0shape,zq  propagator for chains that do not intersect the 

plane. The probability intp  can be evaluated by the following equation: 
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  (2.43) 

  The numerator on the right hand side is written in this way to emphasize that the plane 

perpendicular to 0z  is not contained in the integral. After evaluating the probability intp
 
we can 



3.5. Results and discussion  

 

85 

obtain the number of chains chn (z0) that intersect the plane at 0z  per unit surface by multiplying 

intp  by the total number of chains in the system: 
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Working with a variety of z0 values we derive, through eq 2.44, chn (z), a conformation-

dependent quantity readily obtainable from the SCF_SL+SGA model, which allows us to make 

direct comparisons with atomistic simulations. Figure 3.7 displays the profile of ch ( )n z  from the 

SCF_SL+SGA model and MD simulations. For comparing the two models, the profile for each  

 

Figure 3.7. Profile of the average number of chains per unit surface that intersect a plane at z, nch(z), from 

SCF_SL+SGA model (solid lines) and MD (lines with points) for C100 (red) C260 (green) and C520 (blue). The MD 

and SCF profiles have been shifted so that their reduced density profiles align at ϕ=0.5. 

chain length is shifted so that the reduced density profiles are aligned at 0.5  . Overall, ch ( )n z  

from SCF_SL+SGA is in good qualitative agreement with MD, both of them exhibiting a 

reduced number of chain intercepts in the vicinity of the free surface and saturating to a bulk 

value in the bulk regions of the films. The saturated bulk value obtained for C100  from 

SCF_SL+SGA is considerably higher than the one computed from MD;  similar behavior has 

been reported by Daoulas et al.
24

 Nevertheless, with increasing chain length the correspondence 
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between SCF and MD improves. Moreover, there is a significant deviation between MD and 

SCF_SL+SGA at the extremities of the interface, because the latter overestimates chn . 

An additional quantity for assessing the orientation and intrinsic shape of chains is the 

chain shape profile, sn (z), which measures how many times, on average, a chain passing through 

a plane parallel to the interface at z intersects that plane. This quantity was introduced by 

Theodorou for a lattice model.
54

  In this work we derive this quantity for the continuum model 

as follows. By inverting chn  we obtain the average surface area occupied in plane z0 by a chain 

passing through that plane, ch 0 ch 0( ) 1/ ( )a z n z , which assumes an asymptotic value in the bulk 

melt. Multiplying cha  by the density of segments and by a height per segment, we have an 

estimate of the mean number of segments that a chain passing through a plane at z occupies on 

that plane; in other words, the mean number of intersections of the chain contours with a 

considered z-plane. We form the quantity s ( )n z , which gives us an idea of the average chain 

shape profile along the z axis: 

 l
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In eq 2.45 Γl is the average projection on the z-axis of the distance connecting two 

segments, taken here as Γl = l / 2, with l being the chemical bond length, because   counts 

chemical segments per volume. The factor (N1)/N is the ratio of the number of bonds to the 

number of segments in the system. We apply it because we wish s ( )n z  to count intersections per 

chain going through the z-plane, rather than segments per chain going through the z-plane. We 

will call ns(z) the average ―width‖ of chains going through the z-plane. A high value of ns(z) 

signifies a tendency for chains at z to extend flat in directions parallel to the surface, while a low 

value of it indicates that chains are oriented normal to the surface. The chains per area passing 

through a surface ch ( )n z  and the reduced density ( )z  can be calculated easily by eqs 2.44 and 

2.30, respectively. Regarding the factor l ( 1) /l N N   , Γl is not readily accessible from the 

SCF approach. However the need for the quantity Γl can be circumvented by considering the 

reduced chain shape with respect of the chain shape in the bulk s,bulkn .  
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Figure 3.8. Reduced chain shape profiles ns (z)/ ns,bulk  as derived by the SCF_SL+SGA model (blue lines) for 

polyethylene free films consisting of (a) 100 and (b) 260 carbon atoms. The temperature is 450 K. The red open 

circles symbols show the corresponding MD results. The dashed lines indicate the position where the polymer 

density equals half of its bulk density. 

Figure 3.8 illustrates the reduced chain shape profiles, s s,bulk( ) /n z n , for free molten 

polymer films of C100 and C260, compared directly with the corresponding results from atomistic 

simulation. Taking into consideration the above analysis, the low values of s ( )n z  observed in 

the graphs of Figure 3.8 in the vicinity of the free surface betray a tendency for chain ends to 

protrude from the melt into the gas region, terminal segments adopting a predominantly normal 

orientation to the interface. As we move towards the center of the film, the chain width s ( )n z  

increases, with chain segment clouds tending to orient flat on the surface. The chain width goes 

through a maximum and then decays to its asymptotic bulk melt value. 

Generally, agreement between SCF theory and simulation as regards the chain width is 

very satisfactory. SCF tends to produce narrower chain width profiles than the simulation, which 

fully includes local chain stiffness and fluctuations. An evident discrepancy between 

SCF_SL+SGA and MD is that the first predicts a lower number of z-plane chain intersections in 

the low-density region of the interface. This behavior is strongly correlated to the profiles chn  in 

Figure 3.7, where the chains per area—which are inversely proportional to sn —according to by 

SCF_SL+SGA are much more than that according to MD at the interfaces. Over the remaining 

domain SCF_SL+SGA predicts higher chain widths. This shortcoming is intrinsic to the 

(a) (b) 
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Gaussian string model, the chains being fully flexible and thus allowing for a larger number of 

chain intersections along z-planes. Although the locations of maxima of the reduced chain shape 

profiles compare well between SCF_SL+SGA and MD, the ones from MD are closer to the 

gas/liquid interfaces. It is clear in Figure 3.8 that the agreement between SCF_SL+SGA and 

atomistic simulations again improves with increasing chain length.  

 

Figure 3.9. Reduced chain shape profiles from SCF_SL+SGA for various chain lengths  varying from 100 to 10000 

monomers per chain. Each chain length is represented by a different color. The MD and SCF profiles have been 

shifted so that their reduced density profiles align with ϕ=0.5 at z = 0. The inset displays the  dependence of nch,bulk 

on the inverse square root of the chain length  according to the SCF_SL+SGA model (circles) and according to 

atomistic MD (diamonds). 

 Figure 3.9  depicts the profile of the reduced chain width over a broad range of chain 

lengths, with the distance z reduced by the bulk radius of gyration for each chain length. As 

already seen in Figure 8, the chain width features a pronounced peak near the interface, 

indicating high chain flattening in this region. The position of the peak is chain length 

independent and is located at ~15 Å from the extremities of the films. Upon moving towards the 

bulk region of the film the pronounced peak decays and the reduced chain shape saturates to its 

bulk value corresponding to chains of unperturbed shape and random orientation. Clearly, the 

characteristic length for the decay is influenced by the degree of polymerization, being 

proportional to the radius of gyration gR  (note that the abscissa is in gR  units). More 

specifically, in all cases examined here the distance between the position where ϕ=0.5 and the 

point where the profile saturates to unity equals g~ 1.6R . In the inset of Figure 3.9 is displayed 
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the average number of chains passing through a plane positioned in the bulk liquid region of the 

film (e.g., the film midplane) against the inverse square root of the chain length, N
-1/2

.  A perfect 

linear correlation is seen in the SCF_SL+SGA results, characteristic of unperturbed, randomly 

oriented conformations.  The MD deviates from the linearity for small chain lengths but comes 

very close to the SCF_SL+SGA estimates, both in slope and in actual values, for high molecular 

weights, underlining the increasing validity of the Gaussian approximation with increasing chain 

length. 

3.5.5 Surface Tension of Various Polymers 

As pointed out above, the reduced influence parameter   for use with the SCF_SL+SGA 

approach was obtained by fitting the atomistic simulation density profile of polyethylene films 

composed of C100, C260 and C520 chains.  At these chain lengths, altering the chain length has 

small impact on the density profile. We use the same reduced influence parameter ( 0.55  ) to 

perform calculations for higher molecular weight polyethylenes and for polymers of different 

chemical constitution for any chain length and temperature.  In this section we utilize the 

SCF_SL+SGA approach to calculate the surface tension of various polymer melts. Poser and 

Sanchez fitted their theory (SGA_PS) to experimental surface tension data, obtaining the same 

reduced influence parameter as we use. The role of the reduced influence parameter is central, as 

it treated as a universal parameter for all chemical constitutions and is the sole interface-related 

parameter in the SCF_SL+SGA approach. (The remaining, chemical constitution-dependent 

parameters are T
*
, P

*
, *

 of the SL EoS and the characteristic ratio is C, all are listed in Table 

3.1). 

In Table 3.3 is shown the surface tension for polymer melts as predicted by the 

SCF_SL+SGA with reduced influence parameter 0.55  , using the Sanchez-Lacombe EoS 

parameters and the characteristic ratios listed in Table 3.1.  Calculated values are compared 

against experimental values for the same temperatures.  

Agreement between SCF_SL+SGA and experiment is generally very good.  As 

expected,
236

 with the SCF approach inserted in the theoretical model, the conformational entropy 

effects in the vicinity of the free surface are taken into account. A direct consequence is a 

general increase of the surface tension relative to what would be predicted by SGA alone. 

Indeed, in comparing our model against the Poser and Sanchez model (SGA-PS) we find that 

there is a small increase of 5-15% in surface tension using the same parameters. The 



Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films 

 

90 

incompressible model used by Hong and Noolandi results in a similar increase in surface tension 

relative to the Poser and Sanchez model, although they used a different continuum approach and 

a different method to calculate the influence parameter.
91

 

Table 3.3. Surface Tension of Polymers at Various Temperatures in mN/m 

polymer 
SCF_SL+SGA experimental* 

413K 423K 453K 413K 423K 453K 

poly(dimethyl siloxane)(PDMS) 13.8 13.2 11.5 14.1 13.6 12.2 

poly(vinyl acetate)(PVAc) 28.8 27.8 26.2 28.6 27.9 25.9 

poly (n - butyl methacrylate ) (PnBMA) 28.5 27.7 25.4 24.1 23.5 21.7 

poly isobutylene (PIB) 26.7 26.2 23.9 25.8 25.1 23.1 

polyethylene (linear)(PE) 31.7 31.0 28.9 28.8-30.0 28.1 
26.5-

27.7 

poly( methyl methacrylate)(PMMA) 37.0 36.2 33.6 32.0 31.2 29.9 

polystyrene (atatic) (PS) 31.8 31.0 29.0 32.1 30.8 29.2 

poly(ethylene oxide)(PEO) 34.3 33.4 30.9 33.8 33.0 30.7 

*Experimental values obtained from ref 91.  Experimental and calculated values refer to the same molar mass. 

In Figure 3.10 the surface tension is plotted against temperature for all polymers except 

for poly(methyl methacrylate) (PMMA) and poly(n- butyl methacrylate)(PnBMA). The 

maximum error between experimental values and those calculated through the SCF_SL+SGA 

approach is nearly the same as the uncertainty in the measurements, approximately 2% on 

average. Predictions for PMMA and PnBMA are not so successful, differing by 15% from 

experimental values. One would tend to associate this limited success of the model in the case of 

methacrylates with the polarity of these polymers. Nevertheless, the calculation for PVA, which 

exhibits a polarity close to that of PMMA, performs very well in comparison to the experimental 

data. In our opinion, further investigation is needed into the manner in which methacrylates 

contribute to enthalpic or entropic components of surface tension. SGA alone also does not work 

very well for these two polymers, as evidenced by the predictions of the Poser-Sanchez 

model.
121

  The nice overall agreement of SGA-SL+SGA predictions for the surface tension with 

experiment is mainly due to the high quality of the Sanchez-Lacombe equation of state. 

Contributions to γ from the density profile are dominant, while those due to perturbation of the 

chain conformational distribution, as treated with SCF theory, amount to 8-19%.  

Surface tensions for a variety of polymer melts over a broad temperature range can be 

captured by the SCF_SL+SGA model. An interesting aspect of these calculations is that PE and 

PS exhibit similar behavior, although their SL parameters and radii of gyration are quite 
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dissimilar. Generally, an increase in 
* * *, ,T P   and C  brings about an increase in surface 

tension. The PE *P  is high enough to counterbalance the higher values in other parameters of 

PS. 

 

 

Figure 3.10. Surface tensions of various polymers  with symbols depicting the experimental values and with lines 

corresponding to calculations from the SGA-SL+SGA model. 

 

The surface entropy, d dT , of the polymer melts is shown in Table 3.4. The 

corresponding temperature derivative, as calculated from the Poser and Sanchez theory which 

includes the square gradient correction but no conformational entropy effects, is illustrated along 

with our results. Generally there is significant improvement in the calculation of the surface 

entropy relative to experimental measurements in relation to SGA alone. SGA ignores the effect 

of restrictions posed by the interface on the orientations and conformations of polymer 

molecules, which result in lowering the surface entropy. Although the SCF_SL+SGA approach 

increases the complexity of calculations in comparison to the pure SGA approach, it is 

physically more complete and brings considerable improvement. 

The performance of SCF_SL+SGA is demonstrated by the lower deviations between 

model and experiment in the calculation of both   and d / dT  . 
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Table 3.4. Surface Entropy  Calculated Values from SCF_SL+SGA and Estimates from Previous Works 

 
SGA-PS SCF_SL+SGA Expt. Deviation from expt. 

Polymer (mN m
-1

 K
-1

) (mN m
-1

 K
-1

) (mN m
-1

 K
-1

) SGA-PS SCF_SL+SGA 

PE (linear) 0.0820 0.0692 0.057 44% 21% 

PIB 0.0725 0.0700 0.066 10% 6% 

PS 0.0722 0.0693 0.072 0% 4% 

PVA 0.0920 0.0621 0.066 39% 6% 

PMMA 0.0914 0.0865 0.076 20% 14% 

PnBMA 0.0826 0.0787 0.059 40% 33% 

PEO 0.0975 0.0849 0.076 28% 12% 

PDMS 0.0609 0.0570 0.048 27% 19% 

Experimental and Poser-Sanchez (SGA-PS) values retrieved from ref 121. 

 Concluding Remarks 3.6

In this chapter, we have coupled two theoretical methodologies to determine equilibrium 

properties of free surfaces of polymer melts: SCFT based on a Gaussian thread representation of 

chains, and square gradient theory based on the Sanchez-Lacombe EoS. We are motivated by 

the idea that including both cohesive interactions and chain conformational distributions in the 

model can account for energetic as well as local and nonlocal entropic effects on the structure 

and thermodynamics of the liquid-gas interface, allowing us to describe it in a quantitative way. 

To validate our results we have used surface tension measurements for a variety of polymers 

over a range of temperatures, as well as atomistic simulation results for linear polyethylene. 

The free energy functional used to describe intermolecular interactions exhibits a 

dependence on both local density and its spatial gradient. The grand canonical ensemble, which 

is more appropriate for describing vapor-liquid equilibrium in an open system capable of 

exchanging molecules with the bulk liquid and vapor phases, is used to derive the 

thermodynamic field exerted on a chain and the grand partition function.  From the latter the 

surface tension is readily obtained. We exploit the generalized excess free-energy functional 

description to implement the realistic EoS introduced by Sanchez and Lacombe. Density 

gradients are incorporated in the formulation through the SGA. In SGA a central role is played 

by the influence parameter, i.e. by the coefficient that multiplies the square gradient density 

term. We have followed the reduced influence parameter procedure suggested by Poser and 

Sanchez and used the same value of reduced influence parameter for all polymers we studied. 
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This value was extracted by matching the atomistically calculated surface density profile of 

polyethylene at one temperature. 

The conformational component of the free energy, which takes into account the chain 

connectivity, was described by the fully flexible Gaussian thread model which is the basis of 

most continuous-space formulations of SCFT, employing the modified Edwards diffusion 

equation. Even though SCF treatments have been used in several works to describe interfacial 

polymeric systems, to the best of our knowledge it is the first time that SCF is employed in the 

framework of a continuum approach for a free polymer surface problem. The continuous 

Gaussian thread model is elegant and convenient for describing the conformational properties of 

high molar mass polymer chains, introducing a single, readily measurable or predictable 

additional parameter (Rg) into the picture. The need to compare the theoretically calculated 

results against the outcomes of atomistic simulations, which become very demanding 

computationally at large length scales, forced us to implement the Gaussian thread model even 

for smaller length chains. 

We have tested various SGA and SCF models and the reduced density profiles at vapor-

gas interfaces that arose from them, and found that the model employing an excess Helmholtz 

energy density based on the Sanchez-Lacombe EoS coupled with a square density gradient term 

(SCF_SL+SGA) achieves best agreement with atomistic simulation results. On one hand, SCFT 

models which consider only the local density to describe chain interactions produce steeper 

profiles, which demonstrates the necessity for using a gradient expansion. On the other hand, 

SGA-based models, although capable of generating smoother and more realistic profiles, do not 

incorporate entropic effects associated with the change of chain conformational/orientational 

distributions in response to the constraints present at the surfaces, thus overestimating the 

surface entropy.  Density (total, end segment and  middle segment) and conformational profiles 

(adsorbed and free chains, loops and tails, chain shapes) as calculated by the SCF_SL+SGA 

were found to agree very well with the corresponding profiles from detailed molecular 

simulation, the agreement improving with increasing chain length. Differences between 

SCF_SL+SGA and MD reflect the fact that the former does not incorporate conformational 

stiffness at a local level. The free film density profiles obtained from the SCF_SL+SGA model 

and MD simulations were investigated over a range of temperatures and chain lengths, with the 

theoretical predictions exhibiting excellent agreement with simulation. 
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The converged solution of the SCF_SL+SGA theory was used to determine end and 

middle segment density profiles, based on the treatment introduced by Wu et al
131

. As is well 

known for homopolymers where the ends are of the same chemical constitution as the middle 

segments, chain ends were found to dominate the surface profile. The magnitude of this effect 

and the extent of the interfacial region dominated by the end segments can be estimated with 

accuracy by our SCF approach, as comparison with atomistic simulations shows. In addition, the 

temperature dependence of this effect is correctly captured by the theory. 

Following previous works of Semenov
233

 and Daoulas et al.,
24

 we have applied our SCF 

model to characterize the structure of polyethylene chains adsorbed to the free surface. The 

volume region used to characterize a chain segment as free or adsorbed is defined using the 

plane where the reduced segment density equals 0.5 as a boundary. Some discrepancy appears 

between SCF_SL+SGA and MD in the profiles of segments belonging to adsorbed and free 

chains, which is less significant for C260 chains than it is for C100 chains. SCF qualitatively 

follows the atomistic results. The same behavior is seen in the loop and tail distributions of 

adsorbed chains. 

An important structural feature of polymer melts at surfaces is the flattening of chains 

due to their preferential orientation parallel to the surface. Inspired by past works
24,235

 we have 

extended the continuum model to evaluate the reduced chain shape profile, which provides a 

direct quantitative measure of chain flattening. Both atomistic and field theoretic results show a 

relationship between the chain length and extent of the chain flattening region. In free 

polyethylene films of chains as short as C260 the shape profile from SCF_SL+SGA almost 

coincides with that from MD. The range of the flattening effect is in good agreement between 

theory and simulation, being on the order of 1.6 gR . 

A challenge for our formulation was its application to calculate the surface tension of 

various polymers. The reduced influence parameter used to reproduce the atomistically 

calculated reduced density profile for the polyethylene surface was used for all polymers 

examined. The SCF conformational entropy contribution added by the SCF treatment in the 

Gaussian thread approximation increases the surface tension by 5-10%. A nice feature of our 

SCF model is that it accounts for two distinct length scales simultaneously: i) a monomeric one, 

set by the range of monomer interactions, governing properties of the liquid-vapor interface; ii) a 

polymeric one, set by the radius of gyration, governing structural properties at the chain level. 
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For most polymers this approach yields results for both surface tension and surface entropy that 

are in excellent agreement with experiments. 
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 Structure and Thermodynamics of 4

Grafted Silica/PNCs  

Polymer/matrix nanocomposites (PNCs) are materials with exceptional properties.
237

 They offer 

a plethora of promising applications in key industrial sectors. In most cases, it is preferable to 

disperse the nanoparticles (NPs) homogeneously across the matrix phase. However, under 

certain conditions NPs might lump together and lead to a composite material with undesirable 

properties. A common strategy to stabilize the NPs is to graft on their surface polymer chains of 

the same chemical constitution as the matrix chains. There are several unresolved issues 

concerning the optimal molar mass and areal density of grafted chains that would ensure best 

dispersion, given the nanoparticles and the polymer matrix. We propose a model for the 

prediction of key structural and thermodynamic properties of PNC and apply it to a single 

spherical silica (SiO2) nanoparticle or planar surface grafted with polystyrene chains and 

embedded at low concentration in a matrix phase of the same chemical constitution. Our model 

is based on self-consistent field theory, formulated in terms of the Edwards diffusion equation. 

The properties of the PNC are explored across a broad parameter space, spanning the mushroom 

regime (low grafting densities, small NPs and chain lengths), the dense brush regime, and the 

crowding regime (large grafting densities, NP diameters, and chain lengths). We extract several 

key quantities regarding the distributions and the configurations of the polymer chains, such as 

the radial density profiles and their decomposition onto contributions of adsorbed and free 

chains, the chains/area profiles, and the tendency of end segments to segregate at the interfaces. 

Based on our predictions concerning the brush thickness, we revisit the scaling behaviors 

proposed in the literature and we compare our findings with experiment, relevant simulations, 

and analytic models, such as Alexander‘s model for incompressible brushes. 
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 Background 4.1

Solid particles with polymer chains anchored on their surface hold a central place in 

nanocomposite materials research,
134,135

 since they are widely used in a variety of scientific and 

industrial applications such as sensing and therapy in biotechnology and biomedicine, 

wettability of membranes, surface activation, and interfacial electronic modulation.
136

 Usually, 

grafted polymer chains are used to stabilize inorganic nanoparticles (NPs) inside a host polymer 

matrix. When NPs are properly dispersed inside the polymeric material, they lead to mechanical 

reinforcement and improvement of viscoelastic properties in comparison to the pure material. 

 

4.1.1 Dispersion of NPs 

The state of dispersion of NPs inside a polymer matrix depends on solid-solid and solid-polymer 

interactions as well as on entropic effects. In most cases, the embedded NPs tend to stick to each 

other due to attractive forces between them.
137

 Addressing this behavior, a widely used 

methodology is to graft homopolymer chains on the NP surface. Under certain conditions, the 

entropic cost related to the configurational restriction of grafted chains when the particles get 

closer to each other is able to keep the particles separated. 

The key factors influencing NP separation are their size, the molecular weight of grafted 

chains, and the surface grafting density. Trombly et al.
238

 studied the effect of curvature of the 

solid surface on polymer mediated interactions among grafted NPs and demonstrated that the 

dependence of their separation on the grafting density becomes weaker with increasing particle 

curvature. 

We say that matrix chains wet the grafted polymer brush when they are able to 

interpenetrate with grafted chains and therefore diffuse inside the space occupied by the polymer 

brush. Such a situation leads to a well-dispersed set of NPs. It has been seen that, in most cases, 

matrix chains are able to wet the polymer brush when their molecular weight is less than that of 

the grafted chains.
136

 Depending on the grafting density, when matrix chains are longer than the 

grafted chains, it is harder for them to penetrate into the interfacial region due to the higher 

entropy loss they experience. This is known as ―autophobic dewetting‖. One way to reduce the 

possibility for autophobic dewetting is to disperse smaller NPs.
42

 When grafted chains are 
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attached to smaller particles, they have more available space, thus the penetration of matrix 

chains is facilitated and the corresponding conformational entropy cost becomes smaller. 

As mentioned before, another important parameter for nanoparticle dispersion is the 

solid surface grafting density. When grafting density is lower than a threshold value, the particle 

cores are no longer screened by the grafted chains surrounding them, so they attract each other, 

leading to aggregation. This is known as ―allophobic dewetting‖. Sunday et al.
136

 derived 

experimentally a phase diagram demonstrating the regions where autophobic, allophobic 

dewetting, and complete wetting occurs. 

4.1.2 Previous Works 

Major experimental work has been conducted to understand the behavior of polymer grafted 

NPs and their influence on the properties of the composite material.
75–78,80,81,83,239–242

 

Experimentalists are also interested in studying the interactions among grafted inorganic NPs in 

the absence of a host polymer matrix (particle-solids).
243–245

 Most of the experimental work up 

to now has been concentrated on medium grafting densities (< 0.2 nm
-2

).
83

 However, silica 

particles with higher grafting densities (around 1.0nm
-2

) coated with asymmetric block 

copolymers have also been synthesized.
240

 

Atomistic molecular dynamics simulations have been performed by Ndoro et al.
138

, while 

Meng et al.
139

 and Kalb et al.
246

 have performed coarse-grained molecular dynamics simulations 

representing the polymer chains by the Kremer-Grest bead-spring model. Using the same 

coarse-grained model, Ethier and Hall
247

 studied the structure and entanglements of grafted 

chains on an isolated polymer-grafted NP. Various additional studies employing particle-based 

simulation methods exist in the literature addressing nanoparticles in a polymer melt or 

solution,
248–250

 as well as isolated nanoparticles.
251–254

 Dissipative particle dynamics (DPD)
141

 

and density functional theory (DFT)
142

 simulations addressing systems of polymer brushes are 

also reported. Vogiatzis et al.
255

 devised a hybrid particle-field approach called FOMC (Fast 

Off-lattice Monte Carlo) which is a coarse-grained class of Monte Carlo simulations, where the 

nonbonded interactions are described by a mean-field inspired Hamiltonian. 

Another popular approach for investigating the structure and thermodynamics  

of polymer grafted NPs and brushes is self-consistent field theory  

(SCFT).
43,144,145,147–150,152,153,256,257

 It invokes a mathematical transformation from a system of 
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interacting chains to an equivalent system of independent chains, where each chain interacts 

with a chemical potential field, w, created by the rest of the chains.
258

 SCFT is a strong modeling 

tool for describing equilibrium properties of interfacial systems involving polymer melts or 

solutions. Besides the fact that it is accurate in high density and large molar mass systems, it is 

able to derive directly the free energy of the investigated system. For a detailed explanation of 

SCFT and the transition from particle-based to field-theoretic formulations, the reader is referred 

to the relevant monograph by Fredrickson.
259

 

4.1.3 Current Research Approach 

In the present chapter we employ SCFT to investigate the structure and thermodynamics of 

systems comprising atactic polystyrene (PS) chains grafted on a single spherical nanoparticle or 

planar surface made of silica (SiO2), immersed in a PS melt. The chemical constitution of the 

system under study is identical to the one investigated with FOMC by Vogiatzis et al.
255

 The 

range of molecular parameters (nanoparticle size, surface grafting density, molar masses of 

grafted and matrix chains) has been chosen so as to encompass that of experimental 

investigations of SiO2/PS nanocomposite systems.
260

 It is mentioned here that no adjustment of 

parameters has been undertaken to fit with experiment or FOMC; rather, the actual physical 

parameters of silica and polystyrene have been used. The main virtue of FOMC is that it can 

directly sample chain conformations. On the other hand, the main advantage of SCFT in relation 

to FOMC is that it can directly calculate the free energy, enthalpy and entropy of mixing 

between the NP and the polymer matrix and the potential of mean force between two 

nanoparticles immersed in a host polymer matrix.
150,261,262

 

The calculations were performed by employing the SCFT in one dimension (radial 

distance or normal distance coordinates) by taking advantage of the symmetry of the 

nanoparticle/planar surface.  This one-dimensional treatment is expected to perform fairly well 

at moderate to large grafting densities and molecular weights of grafted chains. As in previous 

work,
24

 our SCFT model has finite compressibility.  We apply the Gaussian string model to 

describe chain conformations, which punishes stretching of chain contours, since stretched 

contours have fewer available conformations, thus reducing the entropy. Nonbonded interactions 

in the polymer are calculated from an expression giving the free energy density as a function of 

the polymer local segment density. Polymer/solid interactions are accounted for by Hamaker 

integration. 
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That SCFT calculations are computationally inexpensive in one dimension allowed us to 

perform an extensive and dense grid search over a broad parameter space spanning: i) the radii 

of the NP, RNP = 2
0 

nm to 2
14 

nm, as well as NPR   (planar surfaces); ii) the molar mass of 

the grafted chains, Mg = 1.25 kg/mol to 100 kg/mol; iii) the grafting densities ζg = 0.1 nm
-2

 to  

1.6 nm
-2

. These calculations provide useful quantitative understanding of the limiting cases of 

sparse/dense grafting of short/long chains, on surfaces with low/high curvature, as well as of the 

intermediate transition regimes. 

In particular, throughout our calculations, we extracted the density profiles of the grafted 

and matrix chains, which provide a direct picture of their conformations across the parameter 

space. The density profiles of the matrix chains are decomposed into contributions from 

―adsorbed‖ and ―free‖ chains, the categorization of which is based on distance-based criteria; 

these results unveil the tendency of the matrix chains to penetrate the brush emanating from the 

nanoparticle/flat surface. The shape of polymer chains is investigated in terms of the number of 

chains passing through a unit surface
24,235,263

 and provides a measure of ―crowding‖ phenomena 

and of the tendency of the chain ends to segregate at the matrix-grafted interface. Subsequently, 

the distributions of the grafted chains are analyzed in terms of their corresponding brush 

thickness, wherein we compare our findings to correlations that are reported in the 

literature.
255,264

 The brush thickness exhibits a rather complicated behavior across the transition 

regime from spherical nanoparticle to flat surface, which we try to describe through a scaling 

equation. Finally, the thermodynamics of these systems is examined in terms of the grand 

potential across the parameter space and a direct comparison with the Alexander model at fixed 

density
265,266

 (which is similar to the dry part of the two-layer model)
267,268

 is performed 

regarding the stretching free energy of grafted chains. 

Before presenting the main results, we first validate our model and implementation by 

comparing our density profiles against FOMC
255

 across the same regime of grafting densities 

and chain molar masses that was investigated by Vogiatzis et al.
255

 This comparison is made for 

profiles obtained via both the Sanchez-Lacombe (SL) equation of state coupled with square-

gradient theory (SGT) for nonbonded interactions, that we have adopted herein, and the Helfand 

(HLF) free energy density using the same compressibility employed by Vogiatzis et. al.
255

; the 

latter model is typically used in most field theory-inspired simulations. 
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 Model and Theoretical Formulation 4.2

 

Figure 4.1. (a) A particle-based representation of a nanoparticle with grafted chains at rg (orange) embedded in a 

polymer matrix (green chains). (b) In unidimensional SCFT, the chains are replaced by a density field  and the 

grafting points are smeared normal to the radial direction. rads depicts a critical distance based on which the matrix 

chains are categorized as adsorbed (e.g., see red circles in (a)) or free. 

In Figure 4.1(a), we depict the geometry of the three-dimensional region R  of the system that 

we wish to model. Grafted polymer chains (circles with orange fill) are chemically anchored at 

the grafting points, rg (orange arrow), which are located at a small distance (circle of small 

orange dots) from the surface of the NP (black) of radius RNP (white arrow). On the surface of 

the NP, solidR , Dirichlet boundary conditions are imposed. The red dotted circle of radius rads 

(red arrow) defines the region where the segments of matrix chains (green circles connected by 

black line) are considered to be ―adsorbed‖ (red circles with a green fill). These can be 

additionally subdivided into tails, loops and trains.
26,104

 Those matrix chains whose segments lie 

exclusively at a distance larger than rads from the NP center are called ―free‖ (black circles with a 

green fill). Across the edges of the simulation box, boxR  (dashed blue lines), Neumann 

boundary conditions with zero flux are applied. 

In SCFT, the degrees of freedom associated with the positions of chain segments are 

replaced by a spatially varying chemical potential field, as illustrated in Figure 4.1(b).This field 

governs the chain conformations and thus the segment density. At the same time, the field is 
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dictated by the polymer segment density, so the field must be self-consistent and correctly 

describe the thermodynamic properties of the polymer. Furthermore, Figure 4.1(b) depicts the 

smearing of grafting points normal to the radial direction. 

4.2.1 Iterative Procedure for Obtaining the Self-Consistent Field 

4.2.1/a General Algorithm 

When the Gaussian chain model is applied to describe bonded interactions along the polymer 

chain, the propagation of matrix and grafted chains in three-dimensional space is described by 

the Edwards diffusion equation in the presence of a chemical potential field, ifcw ; note that ―ifc‖ 

stands for ―interface‖:
182

 

  
2

G, 2

ifc( , ) ( , ) ( ) ( , ) m, g
c

c c c

c

R
q s q s w q s c

s N



   


rr r r r  (4.1) 

where 2 2

G, C-C / 6c cR C l N  is the ensemble averaged squared radius of gyration of a chain
193

 in 

its unperturbed state (bulk melt) with K c-c/C b l γ  being Flory‘s characteristic ratio, bK the 

Κuhn length,  lC-C the length of the skeletal C-C bond and γ  is a geometric factor depending on 

bond-angles along the chain backbone.
193

 qc is the restricted partition function, s is the variable 

spanning the contour of the chains, measured in skeletal bonds, and c denotes the kind of the 

chains; i.e., c = m for matrix, and c = g for grafted chains. Based on the resulting qc, one can 

compute the spatial density distributions of the chain segments, which in turn dictate an updated 

chemical potential field. This procedure is repeated until the input field in eq 4.1 becomes equal 

to the resulting field; thus the field becomes self-consistent. A detailed derivation of the 

equations is presented in the appendix B.1. 

The iterative convergence procedure can be summarized as follows: 

1. Equation 4.1 is solved for the matrix chains  r R  for  m g0 max ,s N N   with Nm 

and Ng being the length of the matrix and grafted chains, respectively. The initial 

condition is set to m ( ,0) 1q r  across the polymer domain, whilst Dirichlet, m( , ) 0q s r  

and Neumann ( m( , ) 0q s r r ) boundary conditions are imposed at the solid surface and 

system box boundaries, respectively (see Figure 4.1). 
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2. Subsequently, eq 4.1 is solved for the grafted chains for g0 N N  , r R and 
ggir r  

where 
ggir  is the grafting point of the ig

th
 grafted chain, g g0 i n  . The boundary 

conditions are the same as those for the matrix chains. In contrast, the initial condition is 

given by the following equation
257

: 
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g
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g

g
g
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g g
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r r
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r
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with seg,bulk being the segment density in the bulk region of the polymer melt and ( ) r  

being the Dirac delta function. 

3. With qc(r,N) known, the reduced densities, c c seg,bulk/   , can be calculated by the 

following convolution integral: 

  m

0

1
( ) d  ( , ) ( , ) m, g

cN

c c c

c

s q s q N s c
N

   r r r  (4.3) 

Note that in both m and g chains the second term of the convolution integral is qm (for 

details appendix B.1.3). 

4. Having calculated the density profiles of matrix and grafted chains, an EoS must be used 

to determine the free energy density functional and the corresponding chemical potential 

field: 

 

seg,bulk

ifc bulk s
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[ , ] [ , ] [ , ]
( ) ( ) ( )

f f f
w w w U

   
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  
 

     
       

  
r

r r r  (4.4) 

with  ,f    being the excess (relative to an ideal gas of chains) Helmholtz energy 

density of intermolecular interactions as a function of the local segment density and its 

gradient, Us being the field exerted on a segment by the solid surface, and ρ = ρm + ρg 

being the total segment density. Note that subtracting bulkw  from w guarantees that the 

chemical potential field is zero in the bulk phase. 

5. To inspect the convergence, the maximum difference between the fields of the previous 

and the current iteration,  max new

ifc ifc ifcmax { ( ) ( ) , }w w w      r r r R , is estimated, 

therefore: 
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a. If 
max

ifcw  is smaller than a tolerance value, 
tol

ifcw , the simulations are considered 

converged and the procedure halts. 

b. If not, the algorithm cycles back to step (1) wherein the Edwards equation is 

reevaluated in the presence of the mixed field for numerical stability purposes: 

   new

ifc mix ifc mix ifc( ) 1 ( ) ( )w a w a w    r r r  (4.5) 

with  mix 0,1a   being a relaxation parameter. 

The above algorithm is generic and applicable to arbitrary system geometries. 

4.2.1/b Solving SCFT in one Dimension 

By taking advantage of the spherical symmetry of the NP or the translational symmetry in the 

case of planar surfaces, one can evaluate the SCFT equations in an one-dimensional domain. In 

1D, the grafting points become delocalized throughout the surface near the solid substrate, 

suggesting a smeared distribution of grafting points, which practically ignores the presence of a 

grafting point at a specific surface point; e.g., in Figure 4.1b the grafting points have been 

smeared across a spherical cell highlighted by an orange dotted circle. In doing so, eq 4.2 for the 

initial condition of the grafted chains can be written as follows: 

 
 
 

g

gg gsolid
g g

seg,bulk m g g

( ,0)
,h

h hN
q h

q h N








S

S
 (4.6) 

where g g solidn  / S  is the grafting density, solidS  is the surface area of the solid, and 
ghS  is the 

surface area over which grafting points are smeared. To make eq 4.6 applicable for both 

spherical and planar geometries, it has been written in terms of h and hg, which denote the 

segment-surface and the grafting point-surface distance, respectively. Consequently, in spherical 

geometries, NP –h r R ; this relation is ill-defined in planar geometries, since r, NP  R   .  The 

three-dimensional delta function  
gg,i r r  is approximated as  

gg / hh h  S  for all ig. 

For planar surfaces with area solidS , the Edwards diffusion equation is evaluated across 

the normal direction with respect to the surface, and the differential dr of the spatial integration 

equals the volume of the layer, dr → solidS dh. The delta function in eq 4.6 is set to the inverse 
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discretization step in the h direction; i.e.,  g 1/ Δh h h  , with Γh being the width of the 

intervals in which h is subdivided in the numerical solution. 

For spherical nanoparticles, with area equal to 
2

solid NP4 RS , the Edwards equation can 

be evaluated across a radial direction (normal to the surface). The differential dr for spatial 

integration is equal to the volume of the spherical cell, dr → 4π(RNP+h)
2
dh. The delta function 

in eq 4.6 is again set to the inverse width of the intervals in which length is subdivided in the 

radial direction; i.e.,  g 1 Δh h h  . 

Throughout this chapter, we present the overall mathematical formulation in three 

dimensions; one can derive the corresponding expression in spherical and planar geometries by 

employing the aforementioned relations. 

4.2.2 Grand Potential 

The thermodynamics of the polymer-grafted NP and planar surfaces immersed in the matrix are 

described by a grand potential, defined relative to a bulk melt phase of matrix chains, each of 

length Nm, occupying a volume equal to the polymer-accessible volume of the system, and a set 

of ng  isolated end-pinned unperturbed chains, each of length Ng.  The temperature T is the same 

between the system under study and the reference system: 

 bulk bulk coh field m g sA A U           (4.7) 

where coh  is the cohesive interaction component (relative to the bulk melt chains) arising due 

to segment-segment interactions in the polymer, 

   coh seg,bulkd ( ), ( ) ,f f         r r r 0
R

 (4.8) 

field  is the interaction energy between the density field and the chemical potential field, 

  field seg,bulk bulkd ( ) ( ) ( )w w      r r r r
R

 (4.9) 

sU  is the contribution of the potential energy exerted from the solid, 

  s s( ) ( )d uU   r rr
R

 (4.10) 



4.2. Model and Theoretical Formulation  

 

107 

m  describes the translational and conformational entropy (relative to the bulk melt entropy) 

of noninteracting matrix chains subject to a chemical potential, Nmμm, 

   seg,bulk

m m bulk

m

1
V

Q w w
N




       (4.11) 

and gA is associated with the conformational entropy of ng grafted chains subject to the field 

bulkw w  , 
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The partition function, 
g gg g, bulk m g, g bulk; , ;i iQ w w q N w w        

   
r r , appearing in the first term of 

eq 4.12 depends on the position of the grafting point, and therefore on the discretization of 

space. In order to overcome this technical issue and normalize ΓAg with respect to the distance 

of the grafting point from the surface where Dirichlet boundary conditions, qc(r,N) = 0, are 

imposed, we have introduced the second term in eq 4.12. Based on the observation that the chain 

propagator, qm, decreases linearly close the Dirichlet boundary, adding the second term ensures 

that ΓAg is discretization independent; i.e., for a set 
ref, 0qr 

, ΓAg is independent of the position of 

the grafting point, while, if 
gg, , 0 ref, 0i q qr r  , the contribution of this term vanishes. This allows for 

comparisons for different spatial discretization and slightly altered grafting positions. 

Our formalism is based on the works by Daoulas et al.
24

 and Schmidt et al.
269

, which 

have been extended to systems of arbitrary geometry comprising polymer chains grafted on solid 

surfaces. Furthermore, it was generalized so that any suitable equation of state can be applied to 

describe the non-bonded interactions among chain polymer segments. In depth information 

regarding our mathematical formulation can be found in the appendix sections B.1.1-B.1.3. 

4.2.3 Free Energy Densities 

In this work we employed two models for the investigation of the polymer-matrix 

nanocomposites/brushes: i) the Helfand free energy density, and ii) the Sanchez-Lacombe free 

energy density in conjunction with density gradient theory. 
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4.2.3/a Helfand’s Free Energy Density 

The Helfand free energy density and its first derivative with respect to the density are the 

following: 

   
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with κT being the isothermal compressibility of the polymer at temperature T.  

4.2.3/b Sanchez-Lacombe Free Energy Density 

The SL-EoS is the following: 
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*

mass /   , */T T T  and */P P P  are the reduced density, temperature and pressure; ρ
*
, 

T
*
 and P

*
 are the corresponding characteristic SL parameters; rSL is the number of SL segments 

constituting a molecule. The mass density ρmass for each chain length is derived from the vapor-

liquid equilibrium of a Sanchez-Lacombe fluid (see Supplemental material section S1 in ref 26). 

The compressibility of the SL-EoS as a function of chain length and temperature is given by the 

following equation: 
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with *

bulk mass,bulk /   . 

 The corresponding free energy density and its first derivative with respect to the density 

are the following: 

   SL * 2
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The reader is reminded that the Sanchez-Lacombe model has a firm theoretical basis in a mean 

field statistical mechanical analysis of a lattice fluid composed of chains and voids, reminiscent 

of Flory-Huggins theory with voids playing the role of solvent molecules. 
192,270

 

4.2.4 Square Gradient Term 

A more realistic treatment of inhomogeneous systems is achieved by including nonlocal 

contributions to the Helmholtz energy density. A common form assumed for  ( ), ( )f  r r  is 

the one presented in eq 4.19:
26,67,194,217,271

 

      
2

EoS

1
( ), ( ) ( ) ( )

2
f f       r r r r  (4.19) 

with κ being the influence parameter. In other words, the excess Helmholtz energy density in an 

inhomogeneous polymer phase is equal to that of a homogeneous polymer phase with the same 

local density plus a square gradient term arising from density inhomogeneities at the considered 

location.  For this special form, eq 4.4 for the self-consistent field becomes: 
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 Calculation Details 4.3

The system considered in the present study consists of polystyrene (PS) chains grafted on a 

silica (SiO2) NP or planar surfaces, in contact with a polymer melt of the same chemical 

constitution as the grafted chains. All calculations were carried out in the grand canonical 

ensemble at a temperature equal to T = 500 K. 

The PS-SiO2 interactions are described with the Hamaker potential
272

 using the interaction 

parameters, APS and 
2SiOA , and the effective radii, ζPS and 

2SiO , presented in Table 4.1 Given 

that the repulsive term of the Hamaker potential increases steeply at short distances, we opted to 

replace the Hamaker potential below a segment-surface distance, hHS ~ 0.4 nm, where  

Us(hHS) = 5 kBT, with a hard sphere wall. To impose the hard sphere wall, the coordinate of the 

first node of the simulation domain was set at a distance hHS from the surface. As a result, the 

region below hHS becomes inaccessible to the polymer chains. 
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As Chantawansri et al.
144

 observed, in the context of SCFT there is a special difficulty in 

the case of polymer chains whose one end is grafted to the solid surface. The grafted chains 

propagator is subject to a Dirac delta function initial condition as shown in eq 4.6. In addition to 

that, the denominator on the right-hand side of eq 4.6 is problematic, since the chain propagator 

of matrix chains goes to zero close to the solid surface. A usual approach to bypass these issues 

is to reposition the grafting points to a surface close to the solid instead of right on top of  

it.
273–275

 Regarding the numerical implementation of the delta function, smearing of the grafting 

points in the direction normal to the surface takes place by treating the grafting point density as a 

Gaussian distribution
144

 or as a rectangular function. In the three-dimensional analog of our in-

house code named RuSseL, where we employ a Finite Element Method numerical scheme, the 

initial condition of the grafting points is evaluated exactly upon the desired points of the domain 

and the delta function is again evaluated as the inverse volume assigned to the node.
275

 Guided 

by these studies, in the present work we set the location of the grafting points at the 

discretization nodal point which is nearest to the hard-sphere wall. Furthermore, a smearing of 

the grafting points was introduced, so that they degenerate into a grafting ―spherical shell‖ with 

radius slightly larger than that of the NP itself (Figure 4.1, orange arrow) and thickness Γh. 

Unless otherwise stated, the nonbonded interactions are described by the SL EoS in 

conjunction with square gradient theory (eqs 4.17 and 4.19). We employed the characteristic SL 

parameters for PS
270

 and the influence parameter from the relation:  
8/32

SL2( / ) * *r N P   , 

with the reduced influence parameter being set to 0.55  , same as in Chapter 3 and ref 26. 

The Edwards diffusion equation was solved with a finite difference scheme with spatial 

discretization Γh = 0.05 nm, and contour length discretization Γs = 0.25 segments. The rectangle 

integration method has been employed to evaluate the convolution integrals, since other higher-

order methods such as Simpson integration can produce artifacts in the presence of grafting 

points.The field mixing fraction, amix,  for the iterative convergence of the field in eq 4.5 was 

optimized for each chain length so as to enhance the efficiency of our evaluations. The tolerance 

value for the convergence was set to 
tol 5

ifc B10w k T  . In all cases, the system dimensions were 

at least 10 nm larger than the edge of the brush of the grafted chains in order to avoid finite size 

effects. 

The simulations were realized with RuSseL; an in-house developed code which is designed 

to run calculations based on SCFT in both one and three dimensional systems, using the finite 
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differences and finite element method, respectively.
275

 The evaluations were performed across a 

broad parameter space concerning  RNP, ζg and Mg: RNP ={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 

1024, 2080, 4096, 8192, 16384} nm, ζg = {0.1, 0.4, 0.8, 1.2, 1.6} nm
–2

 and, Mg ={1.25, 2.5, 5, 

10, 20, 40, 80} kg/mol. According to ref 255, as long as the matrix chains are longer than the 

grafted ones, the latter are not perturbed considerably; thus, unless otherwise stated, Mg = Mm. 

The diagrams were designed using relevant software.
276

 

Table 4.1. Parameters of the calculations 

 
parameter value reference 

system 

T 500 K 255 

P 0 atm - 

ref, 0qr 
 0.05 - 

gg, , 0i qr   0.05 - 

chain 

stiffness 

bk 1.83 255 

lc-c 0.154 nm - 

γ 0.829 193 

mmonomer 52.08 g/mol - 

Hamaker 

hHS ~0.4 nm - 

ζPS 0.37 nm 255 

ζSiO2 0.30 nm 255 

APS 5.84·10
-20

 J 255 

2SiOA  6.43·10
-20

 J 255 

SL 

T
* 

735 K 270 

P
* 

357 MPa 270 

ρ
* 

1105 kg/m
3
 270 

  0.55 26 

Helfand κT=500K 1.07 (GPa)
-1

 255 

Edwards 

diffusion 

Γh 0.05 nm 
 

Γs 0.25 segs 
 

tol

ifcw  10
-5

 kBT - 

 



Chapter 4. Structure and Thermodynamics of Grafted Silica/PNCs 

 

112 

 Results 4.4

4.4.1 Radial Density Profiles 

The radial segment density profile distributions of matrix and grafted chains can be employed as 

a measure of the particle-polymer interactions and reveal how these interactions are affected by 

the grafting density and the molecular weight of matrix and grafted chains. 

4.4.1/a Comparisons with FOMC 

Figure 4.2 depicts the reduced radial segment density profiles of matrix and grafted chains from 

FOMC, SCF_Helfand and SCF_SL+SGA. Beyond a certain distance from the solid surface, our 

model results in practically identical radial density profiles to those obtained by FOMC. This 

holds for both the Helfand and the SL+SGA Hamiltonian. The agreement becomes better as the 

grafting density or the molecular weight of chains increases. This is reasonable, since SCFT is 

more accurate in systems of longer chains and higher density.  

Nevertheless, there is a discrepancy near the surface of the NP, which could be related to 

the fact that SCFT cannot describe in detail the packing of chain segments or the anchoring of 

grafted segments at discrete points close to the surface, while FOMC invokes not an atomistic, 

but rather a coarse-grained model. Another observation is that the SCF_SL+SGA model 

provides smoother radial density profiles for grafted chain segments in comparison to FOMC or 

SCF_Helfand. This mainly has to do with the incorporation of the square gradient term in the 

description of nonbonded interactions, which does not affect the long-ranged segment 

interactions, but rather the smoothness of the density profiles in the region near the solid surface. 

In addition, SCFT features a depletion region ranging from the solid surface up to a distance 

equal to hHS = 4 Å (the position of the aforementioned hard-sphere wall), wherein the repulsive 

interactions from the Hamaker potential are very strong. 

It is stressed at this point that the density profiles obtained from our SCF_SL+SGA 

model are closer to the corresponding ones obtained from atomistic molecular dynamics 

simulations
138,277–279

 than FOMC. If one averages out the oscillations of the atomistic density 

profiles, then their smeared analogues come out very close to the density profiles of 

SCF_SL+SGA (and especially close to Helfand) in terms of the position of the peak and the 

width of the depletion zone near the solid surface. 
138,277–279

 Interestingly, the peak of the density 

profiles appears to become less pronounced in atomistic simulations with increasing grafting 
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density, presumably due to excluded volume effects.
138,279

 Hereafter, all presented results are 

obtained with the SCF_SL+SGA model, since it is more realistic and reproduces the 

experimentally measured surface tension of PS.
26

 It is also mentioned that no fitting of 

parameters with respect to experiment or FOMC has been performed to describe this silica-

polystyrene interfacial system, but the actual physical parameters of silica and polystyrene have 

been used. 

 

Figure 4.2. Radial density distribution for matrix (m) and grafted (g) chains on a NP with RNP = 8 nm, from 

FOMC
255

 (top), SCFT with Helfand (middle), and SCFT with SL+SGT (bottom). In (a, b, c) Mg = 20 kg/mol, Mm = 

100 kg/mol, and ζg varies from 0.2 to 1.1 nm
-2

. In (d, e, f) ζg = 0.5 nm
-2

, Mm = 100 kg/mol and Mg varies from 10 to 

70 kg/mol. 

4.4.1/b Radial Density Profiles from the Sanchez-Lacombe EoS: Exploration of the RNP, σg, 

Mg Parameter Space 

Figure 4.3 presents the reduced radial density profiles of grafted (φg) and matrix (φm) chains 

across the (RNP, ζg, Mg) parameter space. In all cases grafted and matrix chains have the same 

molar mass, Mm=Mg.  Overall, the radial density profiles of grafted chains expand with 

increasing ζg, Mg, and RNP. Concerning the latter, with increasing particle radius (i.e., decreasing 
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curvature), the grafted chain segments have less available space to explore near the surface, so 

they experience crowding and extend further towards the bulk phase. 

The radial density profiles exhibit a rather rich behavior which could be classified into 

three distinct regimes: 

(i) Mushroom regime. In the region of low ζg, Mg and RNP, the radial density profiles of 

the grafted chains become very suppressed and their density peaks are much lower than the bulk 

density. That the grafted chains are short and the distance between them is relatively large 

implies that they cannot experience the presence of each other. In other words, the density 

distributions of individual chains do not overlap and therefore chains tend to form mushroom-

like structures
280

; this effect is expected to be more pronounced at small RNP, since the chains 

would have more available space thanks to the increased curvature. Matrix chains, on the other 

hand, can penetrate the polymer brush readily and reach the surface of the NP. However, in the 

one-dimensional model employed herein, the inevitable smearing of grafting points may prevent 

us from accurately predicting the density profiles of grafted chain segments in this regime. Our 

subsequent work with the three-dimensional analog of RuSseL will investigate the mushroom 

regime more realistically, transcending the limitations of the one-dimensional approximation.
275

 

(ii) Dense brush regime. With increasing ζg, Mg and RNP the radial density profiles 

become more pronounced and feature extended regions with bulk densities; e.g., see Figure 4.3 

for ζg ≥ 0.8 nm
–2

 and RNP ≥ 64 nm. Towards the matrix phase, the radial density profiles feature 

a characteristic sigmoid shape
26

 suggesting stretched brushes. The profiles of grafted and matrix 

chains intercept at reduced densities m g 0.5  . The presence of chemically grafted chains 

on the particle surface inhibits the penetration of matrix chains into the solid-polymer interfacial 

region and the strength of this exclusion of matrix chains increases with increasing ζg, RNP, and 

Mg. 

(iii) Crowding regime. In the extreme case of high grafting densities (ζg ≥ 1.6 nm
-2

) and 

low curvatures (e.g., RNP ≥ 64 nm), the crowding experienced by the grafted chain segments 

reaches a level where their densities exceed the bulk densities somewhat (see dashed grey line in 

the plots of  Figure 4.3). In other words, the compressing forces imposed by the stretching of 

grafted chains overcome the tendency of the equation of state to maintain bulk reduced densities 

at unity; hence, the densities exceed this level. In this regime matrix chains are unable to reach 

the surface of the NP, even for the shortest grafted chains (Mg = 1.25 kg/mol) studied herein. 



4.4. Results  

 

115 

 

Figure 4.3. φ profiles of g (solid lines) and m (dashed lines) chainswith molar mass  equal to 1.25 (red), 2.5 (blue), 

5 (green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. In all cases, Mm=Mg.  Legend in rectangles: 

RNP(nm), ζg(nm
-2

). 

In Figure 4.3, for given ζg and RNP, the radial density profiles are shifted by about a 

constant amount along the abscissa whenever the Mg is doubled; this effect becomes more 

pronounced with increasing RNP. Given that the radial density profiles are presented in semi-log 

plots, this observation leads to the conclusion that the edges of the profiles follow a 
g~ nM  

power-law for constant ζg and RNP. This scaling exponent exhibits a complicated dependence on 

ζg and RNP, which is explored below (see section 4.4.5). 

Regarding the total reduced density profiles, even though they are practically insensitive 

to Mg (except under very crowded conditions), they are somewhat enhanced near the surface 

with increasing ζg and deviate from unity across the brush region under conditions of intense 

chain crowding. 

4.4.2 Structure of Adsorbed Polymer Layer 

The chains cannot propagate against the solid surface; as a consequence, their conformation is 

dictated by configurational entropy effects different from those prevailing in the bulk melt. 

Furthermore, the presence of the NP or the planar surface brings about an attraction of the 

polymer segments—which belong either to grafted or matrix chains—towards the solid surface. 

The strength of this attraction, in relation to the cohesive interactions of the polymer, determines 
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the wetting behavior of the melt on the solid surface. Low, moderate, and high energy surfaces 

lead to low, high (e.g., treated silica
281

) and perfect (e.g., untreated silica
281

) wetting conditions 

which may alter the local configurations of the grafted and matrix chains relative to what is 

dictated by entropic phenomena. 

 

Figure 4.4. 
ads

m  (solid lines) and 
free

m (dashed lines) profiles of  adsorbed and free matrix chains  with molar mass 

equal to 1.25 (red), 2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. In all cases, 

Mg=Mm.  Legend in rectangles: RNP(nm), ζg(nm
-2

). 

In order to investigate these effects, a distinction is made between ―adsorbed‖ and ―free‖ 

chains. By definition, grafted chains are adsorbed, therefore the aforementioned distinction 

concerns primarily the matrix chains. The value of the characteristic distance of closest approach 

to the NP surface, below which a matrix chain is characterized as adsorbed, is set at hads = 1.28 

nm.  This is where the tail of the Hamaker potential emanating from the solid starts, i.e., where 

the Hamaker potential assumes a value equal to ~ –0.005 kBT. It should be emphasized at this 

point that the distinction between ―adsorbed‖ and ―free‖ chains is not based on chain dynamics, 

but rather on a geometric criterion revealing the tendency/ability of matrix chains to penetrate 

the brush and experience the potential exerted by the solid surface. 

 The reduced density of free matrix chains can be derived from the convolution integral 

of eq 4.21. 

 
m

free free free

m m m m

m 0

1
( ) d  ( , ) ( , )

N

s q s q N s
N

  r r r  (4.21) 
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where 
free

mq  is the propagator of the free matrix chains that can be obtained by solving the 

Edwards diffusion equation (eq 4.1) with an additional constraint that the matrix chains are not 

allowed to access segment-surface distances smaller than hads. In practical terms, an additional 

boundary condition is applied:  free

m 1 1 solid ads( , ) 0,  : min ,q N h    r r r r r R , whilst the 

other boundary conditions remain the same. Subsequently, the reduced density of the segments 

of adsorbed matrix chains is obtained as 
ads free

m m m( ) ( ) ( )   r r r . 

Figure 4.4 presents the reduced radial density profiles of free (
free

m ) and adsorbed (
ads

m ) 

matrix chains across the (RNP, ζg, Mg) parameter space. The reduced radial density profiles of 

segments belonging to free chains assume a value equal to unity in the bulk, while going by 

definition to zero when approaching hads. According to Figure 4.4, the matrix chains can easily 

penetrate the brush of grafted chains in the mushroom regime. With increasing ζg and RNP, the 

matrix chains experience noticeable resistance in penetrating the brush, while 
ads

m 0   upon 

transitioning to the crowding regime. 

4.4.3 Chains/Area Profiles 

In three dimensions, the chains/area can be defined as the number of chain segments which cross 

at least once a surface 
0hR . A meaningful choice for 

0hR  would be a surface which is parallel 

to the surface of the solid ( solidR ) at distance h0;  
01 2 1 2 solid 0min , ,h h   r r r rR R . Refs 

24,26,282
 include a detailed explanation of the chains/area calculation in one dimension; in this 

work we present a more general formalism in three dimensions which is compatible with smooth 

surfaces of arbitrary shape. To compute the chains/area we use the following eq 4.22. 

 
0

shape

,

int, 0

( , )d

( ) 1

( , )d

c h c

c

c c

q N

p h

q N

 





r r

r r

R

R

 (4.22) 

Initially, we estimate the probability pint,c using eq 4.22, with 
0

shape

,c hq  being the propagator 

of a type ―c‖ chain arising from solving Edward‘s diffusion equation (eq 4.1) with an additional 

constraint that the chains cannot propagate past the surface, 
0hR . To impose this constraint, we 

apply the Dirichlet boundary condition to all of the nodes that belong to this surface; 
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 
0

,   0,  c hq N   r r R . Subsequently, the number of chains (nch,c) of type c that pass at least 

once through 
0hR  per unit area of the surface is calculated as follows: 

 

0

ch, 0 int, 0

1 1
( ) ( ) ( )dc c c

h c

n h p h
N

  r r
R

S
 (4.23) 

where 
0hS is the surface area of 

0hR , and 
1

( )dc

cN
 r r

R

 is the total number of type-c chains. 

At this point, we define a reference chain which obeys the Gaussian model and has 

infinite length. Given this definition, the reference chain will cross any shell-surface at least one 

time. Therefore, since the number of grafted chains equals ng = ζg 4πRNP
2
, the number of these 

reference chains passing through a surface separated by h from the surface of the solid per unit 

area of that surface is given by the following  eq 4.24. 

 
 

2

gref NP
ch,g g2

NPNP4

n R
n

R hR h




 
   

  
 (4.24) 

 In Figure 4.5(a), we present nch for the matrix and the grafted chains, while Figure 4.5(b) 

illustrates nch,g / ζg for the grafted chains across the considered parameter space (RNP, ζg, Mg). In 

both panels, the corresponding ref

ch,gn  are represented by dotted lines.. In the flat geometry ref

ch,gn  = 

ζg throughout the domain, while for finite curvatures, ref

ch,gn  decreases with distance from the 

surface according to eq 4.24, since the polymer chains have more available space to perform 

their walk. 

The behavior of the chains per area profiles with increasing grafting density or molar 

mass is consistent with the reduced radial density profiles of Figure 4.4. For low nanoparticle 

radius, the chains per area profiles seem to be insensitive to the grafting density, a picture that is 

consistent with the mushroom regime. Higher grafting density or molar mass leads to a gradual 

extension of grafted chains towards the bulk region and a simultaneous exclusion of matrix 

chains from the solid-melt interface. For larger NPs and grafting densities, the crowding 

phenomena inside the interfacial region intensify and push the grafted chain segments further 

towards the bulk region. 
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Figure 4.5. Profiles of (a) nch of m (dashed lines) and g (solid lines) chains, (b) nch/ζg of g chains. Mg equals to 1.25 

(red), 2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol.  In all cases, Mg=Mm.  Legend 

in rectangles: RNP(nm), ζg(nm
-2

). The dotted lines depict 
ref

ch,g g
/n  for the reference chain from eq 4.24. 

 As expected, in the planar geometry case the number of grafted chains per area on the 

surface of the solid equals the grafting density throughout a broad region of the profile and starts 

to deviate upon approaching the region where ends terminate, where the number of grafted 

chains per area decreases. It is also noted that, since the hard sphere wall is located at ~0.4 nm 

from the solid surface, the maximum nch,g assumed by the chains is  
22

ch g NP NP HS/n R R h  , 

albeit nch = ζg upon extrapolation towards h → 0. 
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4.4.4 Chain End Segregation at the Interface 

The reduced density of the s
th

 segment, φc,N, of a chain of kind c located at r can be retrieved by 

the following expression: 

 
, m

1
( ) ( , ) ( , )c s c c

c

q s q N s
N

  r r r  (4.25) 

Normalizing this quantity with the corresponding density in the bulk phase ( bulk

, 1/c N cN  ; since 

q = 1 in the bulk), we obtain a quantity of particular interest, which denotes the tendency of a 

region to attract or repel these segments. 

Figure 4.6 depicts the reduced radial density profiles of the end segments of grafted and 

matrix chains across the investigated parameter space. As expected, the density of free ends of 

grafted chains increases with increasing ζg as well as with increasing RNP, since there is less 

space for the grafted chains to develop their conformations. With increasing grafting density the 

radial density profiles of the chain ends are shifted towards the bulk region. In the crowding 

regime where ζg and RNP are high, the chain ends are segregated far from the surface, suggesting 

that the grafted chains are stretched. These profiles resemble those obtained for incompressible 

brushes, such as those in ref 283, and with the more extreme case of Alexander‘s model,
265,266

 in 

which all chain ends are by definition concentrated at the edge of the brush, hedge, the position of 

which is denoted by the vertical dotted lines in Figure 4.6 (for more details see appendixB.3). In 

the mushroom regime, the chain ends from Alexander‘s model are segregated much closer to the 

solid wall as compared to our model and this is attributed to the following factors: i) 

Alexander‘s model requires constant segment density of the grafted polymer, equal to that of the 

bulk melt; therefore, in the mushroom regime—where  interpenetration between the matrix and 

grafted chains becomes significant—it needs to squeeze the profiles of grafted chain segments in 

order to maintain this bulk density and conserve the amount of material at the same time, ii) the 

segments in our model experience an additional  repulsive interaction which is modeled by a 

hard sphere wall located at hHS ~ 0.4 nm. Clearly, Alexander‘s model with fixed density is not 

appropriate for the mushroom regime and generally in regimes where the matrix chains can 

penetrate the brush. Nevertheless, Alexander‘s model is expected to perform very well under 

bad solvent conditions (e.g., polymer/vacuum interphases) which lead to collapsed brushes 

across the solid surface. 

 



4.4. Results  

 

121 

 

Figure 4.6. φend profiles of g (solid lines) and m (dashed lines) chains with molecular weight  equal to 1.25 (red), 

2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. The vertical dotted lines illustrate 

predictions for the position of chain ends from Alexander‘s model for the corresponding Mg, ζg and RNP. In all 

cases, Mg=Mm. Legend in rectangles: RNP(nm), ζg(nm
-2

). 

4.4.5 Scaling of Grafted Polymer Layers 

As was mentioned in section 4.4.1/b, the expansion of the grafted polymer brushes features a 

complicated dependence on ζg, RNP and Mg. In the present section, an attempt will be made to 

analyze this dependence in terms of the mean brush thickness, 
1/2

2

gh , which is directly related 

to the radial density profiles.
284

 In particular, the mean brush thickness is a functional of the 

density profile illustrating the mean distance of the segments of grafted chains from the solid 

surface. It can be estimated from the following expression: 

 
 

1/2
2

g1/2
2

g

g

d  ( )

d ( )

h
h





    
 
  





r r r

r r

R

R

 (4.26) 

with h(r) being the radial distance between a segment located at r and the solid surface. Another 

measure for quantifying brush thickness is the characteristic distance h99% which is the distance 

between the center of the nanoparticle and a surface, 
99%hR , which is parallel to the surface of 

the nanoparticle and encloses 99% of grafted chain segments: 
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99%

g gd ( ) 0.99 gN n  r r
R

 (4.27) 

with 99%R  being the three-dimensional domain between solidR  and 
99%hR . 

The scaling behavior of the polymer brushes shows quite a similar behavior to star 

polymers. According to Daoud and Cotton,
264

 the radius of a star polymer (Rstar) in a solvent 

exhibits a power-law dependence of the form: star star star~ n m kR N f  , where Nstar is the number of 

segments constituting a branch, fstar is the number of branches, υ = 0.5 – χ is the monomer 

excluded volume parameter, χ is the Flory-Huggins parameter and n, m and k are the 

corresponding scaling exponents.
4,191,285

 They
264

 classified the behavior of the stars into three 

distinct regimes:  

1. 
1/2 2

star starN f  
, 

3/5 1/5 1/5

star star star k~R N f b ;  

2. 
1/2 2 1/2

star starf N f 
, 

1/2 1/4

star star star k~R N f b ;  

3. 
1/2

star starf N , 
1/3 1/3

star star star k~R N f b ,  

with bk being the Kuhn length. By substituting star gf   and star gN M , and by ignoring the 

contribution of the core of the NP to the brush, the model by Daoud and Cotton
264

 could be 

applied to describe the scaling of the polymer brushes via the following eq 4.28, 

 

1/2
2

g g g g

n mh M l  (4.28) 

where lg is a quantity with dimensions   2 1kg/mol nm
n m  . 

Figure 4.7 illustrates evaluations for NPs with RNP = 8 nm, from RuSseL, from FOMC
255

 

(blue ―+‖) and from small angle neutron scattering (SANS)
260

 measurements (red ―×‖). Overall, 

eq 4.28 can describe accurately the scaling of the PS brushes on SiO2 nanoparticles with RNP = 8 

nm, since both 
1/2

2

gh  and 
99%h  appear to be proportional to ~Mg

0.5
ζg

0.25
. Note that the 

evaluations from RuSseL appear shifted with respect to FOMC. This is attributed to the fact that, 

in FOMC, the increased density near the solid increases the weight of smaller hg in the 

integration of eq 4.26; thus, it leads to decreased overall 
1/2

2

gh . In addition, 
g

1/2
2

g
0

lim ~ 0
M

h


 in 

RuSseL, since the length of grafted chains goes to zero. For the same reasons, the h99% points  
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Figure 4.7. Evaluations of (a) h99% and (b) <hg
2
>

1/2 as a function of  Mg
0.5

ζg
0.25

 for RNP = 8 nm, from FOMC (+),
255

 

SANS measurements (×),
260

 and RuSseL; in the latter, colors denote chains with Mg = 1.25 (red), 2.5 (blue), 5 

(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol, and shapes denote grafting densities, ζg = 0.1 

(), 0.4 (O), 0.8 (◇), 1.2 (△) and 1.6 (☆) nm
–2

. The dashed lines are guides to the eye. 

obtained with RuSseL lie slightly higher than FOMC and SANS values, while the minimum 

value of h99% is equal to the radius of the nanoparticle. In the mushroom regime (square points in 

Figure 4.7), the evaluations from RuSseL deviate from the linear behavior and this could be a 

consequence of the fact that the one-dimensional model employed herein cannot capture 

accurately the behavior of chain segments for low grafting densities, i.e., the smearing of 

grafting points might be a poor approximation in this region. In our subsequent work, the 

mushroom regime will be thoroughly examined with the three-dimensional version of RuSseL. 

In the following we test these scaling laws across the full parameter space explored 

herein. Figure 4.8(a-e) displays evaluations of 
1/2

2

gh  plotted versus Mg
0.5

ζg
0.25

 for NP with 

radius 1, 4, 16 and 64 nm as well as for flat surfaces, for various Mg and ζg. An interesting 

behavior is manifested in these plots, which reveals three distinct regimes: i) for NP with small 

RNP (e.g., Figure 4.8 (a)) the curves for specific Mg (same colors) are disconnected and feature a 

very weak slope; ii) for NP with intermediate sizes RNP = 4-8 nm (e.g., Figure 4.8(b)) 
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Figure 4.8. Evaluations of the mean brush thickness 
1/2

2

gh   as a function of (a-e) Mg
0.5

ζg
0.25

 and (f-j) Mg
n
ζg

m
, 

where n, m are the optimized exponents from Figure 4.10a. Colors denote chains with Mg = 1.25 (red), 2.5 (blue), 5 

(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. Shapes denote grafting densities, ζg = 0.1 (), 

0.4 (O), 0.8 (◇), 1.2 (△) and 1.6 (☆) nm
–2

.  In all cases, Mg=Mm. 

the curves for specific Mg connect with each other, suggesting that the ~Mg
0.5

ζg
0.25

 correlation is 

fairly accurate in the description of this regime;
255

 iii) for NP with larger sizes RNP > 8 nm (e.g., 

Figure 4.8(c-e)) the curves appear disconnected as in the case of small NPs, the difference now 

being that the slope for each individual Mg curve appears to be stronger. The aforementioned 

analysis suggests that even though the ~Mg
0.5

ζg
0.25

 correlation appears to describe the brush 

scaling with reasonable accuracy for RNP ~4-8 nm, it becomes inaccurate for NP with relatively 

large or small radius. 

 In view of these observations, one can optimize the n and m exponents for each RNP to 

retrieve the power-law in eq 4.28. According to Figure 4.3, for constant RNP and ζg, the radial 

density profiles expand by a roughly constant factor when doubling Mg; thus, it is reasonable to 

assume that 
1/2

2

g g~ nh M  with n being a function of (RNP, ζg). Figure 4.9 presents the 

optimized  
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Figure 4.9. Optimized n exponents of the power-law  in eq 4.28 for set ζg and RNP. The rightmost column depicts 

the fit with eq 4.29. 

n exponent from fitting RuSseL results to a power law 
1/2

2

g g~ nh M  over all RNP and ζg. The 

reader is reminded that the 1D model employed here might not be able to describe accurately the 

chain configuration at low grafting densities or molecular weights of grafted chains due to the 

inevitable smearing of grafting points. For this reason we decided to not take into account the 

cases corresponding to values of 2

g g 3R  , and ζg = 0.1 nm
–2

 (which excluded the larger part of 

cases corresponding to the mushroom regime) when fitting the scaling exponents for the master 

equation, eq 4.28. 

For large ζg, the exponent n presents a stronger dependence on RNP than ζg; thus, for 

simplicity, one could treat n as being independent of ζg and instead being function of only RNP. 

Consequently, the data for ζg > 0.1 nm
–2

 were fitted to a sigmoid function of the form: 

   min s NP d max

1 3
tanh ln /

2 2
n n n R R n

 
  

 
 (4.29) 

with nmin = 0.5 and nmax = 1 being the minimum and maximum values of n, Rd = 126.5 nm and 

 ns = 0.4. Subsequently, with n set, one can optimize the exponent of ζg with respect to RNP 

aiming at aligning the data points for a given RNP. Figure 4.8(f-j), displays evaluations of 

1/2
2

gh  using the optimized n and m exponents in Figure 4.10(a). Using the optimized n and m 

exponents, 
1/2

2

gh  increases linearly with 
g g

n mM   over the full range of RNP (from 1 nm to ∞). 
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Figure 4.10. (a) The optimized n (circles) and m (squares) exponents of eq 4.28 and lg (diamonds) as functions of 

RNP. The rightmost data points correspond to flat surfaces. (b) Evaluations of eq 4.28 using the n, m and lg 

parameters  in (a). Colors denote chains with Mg = 1.25 (red), 2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40 

(brown) and 80 (pink) kg/mol. Shapes denote grafting densities, ζg = 0.1 (), 0.4 (O), 0.8 (◇), 1.2 (△) and 1.6(☆) 

nm
–2

. The size of the symbols increases slightly with RNP. The inset in (b) depicts a zoomed region of the master 

curve. In all cases, Mg=Mm. 

In addition, the curves in Figure 4.8 can be collapsed onto the master curve shown in Figure 

4.10(b), where 
1/2

2

gh  is plotted against eq 4.28 with lg being the slope of the individual curves 

in  Figure 4.8(f-j) (see green diamonds in Figure 4.10(a)). Overall, the data points in Figure 

4.10(b) are in good quantitative agreement with eq 4.28, with the exception of the low Mg, ζg 

regime where 
1/2

2

gh  plateaus; see zoomed region in the inset of Figure 4.10(b). The plateaus of 

1/2
2

gh in the limit of small ζg and Mg could be artifacts of SCFT; our subsequent investigations 

with RuSseL in 3D will clarify the phenomena that manifest themselves in this regime. 

Several key points can be retrieved by analyzing the scaling behavior of the brushes. 

Across the mushroom regime (small RNP or small ζg), 
1/2

2

gh  is independent of ζg and RNP and 

scales as Mg
0.5

. This is a characteristic property of the mushroom regime in which the grafted 

chains do not interact with each other and behave as (reflected) ideal/unperturbed chains. With 

increasing RNP and increasing ζg the n and m exponents increase, while in the limit of large RNP 

and ζg  (crowding regime) the exponents reach unity indicating linear scaling, 
1/2

2

gh ~Mg
1
ζg

1
; 

this kind of scaling is characteristic of the incompressible Alexander brushes;
265,266

 for more 

details see appendixB.3. 
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Figure 4.11. Ratio  
1/2

2

99% NP g/h R h  vs 
1/2

2

gh .Colors denote chains with Mg = 1.25 (red), 2.5 (blue), 5 

(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. Shapes denote grafting densities, ζg = 0.1 (O), 

0.8 (◇), and 1.6 (☆) nm
–2

. Increasing marker sizes correspond to larger RNP. 

In Figure 4.11, we demonstrate the (h99% – RNP) to mean brush thickness ratio against the 

mean brush thickness. In the Alexander model, this ratio is constant and equal to 3
1/2

 and 

corresponds to the horizontal dashed line. Regarding our SCFT results, for small grafted chain 

lengths, the ratio is higher than the one of Alexander for all grafting densities and nanoparticle 

radii. For higher chain lengths, a minimum is manifested, while in the dense brush regime the 

ratio reaches the Alexander value as a limiting case. Overall, for small grafting density  

(0.1 nm
-2

) the dependence on the nanoparticle radius (ratio increasing with increasing RNP) 

features opposite trends as compared the one for larger grafting densities (ratio decreasing with 

increasing RNP). 

4.4.6 Thermodynamics 

4.4.6/a Contributions to the Grand Potential 

In Figure 4.12, the plots (a-e) depict the individual grand potential terms (eqs 4.8-4.12) over the 

parameter space (RNP, ζg, Mg). Regarding the cohesive interaction term per unit solid surface  

( coh solid/ S  in Figure 4.12(a)), it decreases steeply in the vicinity of small RNP and this is 

attributed to the fact that when high curvatures are involved (small RNP), the surface of the 

spherical cells where we integrate coh  is larger than the surface Ssolid of the NP by which we 
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normalize all energy quantities, by a factor,
 
 

2 2

NP NP/R h R . At low grafting densities 

(mushroom regime, circles in Figure 4.12(a)), coh solid/ S  appears to be insensitive to Mg for 

Mg up to 80 kg/mol; i.e., all different colored lines with circular markers collapse onto the same 

curve in Figure 4.12(a). With increasing grafting density (squares and stars in Figure 4.12(a)), 

coh solid/ S  deviates notably with increasing Mg and increasing RNP. This is attributed to ρg 

exceeding ρseg/bulk due to chain crowding and this enhances the cohesion of the brush when the 

SL-EoS is used. In detail, the minimum of  f(ρ)f(ρbulk) for SL is about –0.5 mJ/m
3
 for reduced 

densities slightly larger than one; thus, the accumulation of these negative values over the 

integration of larger and larger brushes due to crowding leads to the eventual decrease of 

coh solid/ S . 

Similarly, the field term ( field solid/ S  in Figure 4.12(b)) presents the same qualitative 

behavior as coh solid/ S  for the exact same reasons: i) steep initial decline due to high curvature; 

ii) accumulation of negative values by integrating over gradually larger brushes. 

Considering the solid-polymer interaction term (Us /Ssolid), it is practically insensitive to 

chain molar mass; i.e., in Figure 4.12c the energies for different chain molar masses do not 

exhibit noticeable variations with each other, irrespectively of NP size. With increasing grafting 

density it is clear that the cohesion between the solid and the polymer is enhanced because of the 

increased density of polymer segments close to the surface. 

In all cases, the entropy term associated with the partition function of matrix chains  

( m solid/ S  in Figure 4.12(d)) appears to be rather weak. It shifts upwards by a constant 

amount with increasing grafting density, because grafted chains claim more space in the 

interfacial region, leaving the matrix chains with fewer available conformations. 

Concerning the entropy term associated with the grafted chains ( g solid/A S in Figure 

4.12(e)), it exhibits a rather interesting behavior: in the mushroom regime (ζg = 0.1 nm
–2

), 

g solid/A S  appears to be flat and roughly equal to zero, indicating that for low grafting densities 

there is no entropic penalty with increasing RNP associated with chain conformations. On the 

contrary, for larger ζg (squares and stars), g solid/A S  increases with RNP for RNP up to ~100 nm 

and plateaus to finite values in the limit of flat surfaces. This response is attributed to the 
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stretching of the grafted chains due to crowding phenomena. A direct manifestation of this effect 

is presented in Figure 4.12 that depicts the segregation of the grafted chain ends towards the 

matrix phase in crowded conditions. 

 

Figure 4.12. Partial contributions to the grand potential per unit area (a-e)  from eqs 4.8-4.12. Total grand potential 

per unit area. (f)   Colors denote chains with Mg = 5 (red), 20 (blue) and 80 (green) kg/mol. Shapes denote grafting 

densities, ζg = 0.1 (O), 0.8 () and 1.6 (☆) nm
–2

. In all cases, Mg = Mm.  The rightmost data points correspond to 

flat surfaces.  Bands denote scale changes along the axes. 

The total grand potential from eq 4.7 is illustrated in Figure 4.12(f). Across the 

mushroom regime (ζg = 0.1 nm
–2

, circles) ΓΨ / Ssolid  exhibits a monotonic decrease and plateaus 

to a value commensurate to the surface tension of PS for RNM ≥ 100 nm which is about  

γPS ~ 25.9 mN/m at T = 500 K;
26

 note that, in the limiting case ζg → 0 and RNP → ∞, and in the 

absence of the Hamaker potential, PS solid/   S . With increasing ζg, the grand potential 
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features a minimum at RNP ~10 nm, after which it increases in a way suggesting the domination 

of the stretching term in Figure 4.12(e). 

4.4.6/b Contributions to Chain Stretching 

The entropy term associated with the grafted chains in Fig. 4e does not reflect the total 

conformational contribution to the grand potential, since the partition function in eq 4.12 is 

evaluated in the presence of the field. Therefore, in terms of SCFT, the free energy associated 

with the conformations of the grafted chains can be estimated by the following eqs 4.30 and 4.31 

 g g

conf g fieldA A A    (4.30) 

with 
g

fieldA  being the field experienced by the grafted chains: 

 
g

g

g

field g, ifc

1

d ( ) ( )
g

n

i

i

A w


  
    

  
 r r r

R

 (4.31) 

with 
g, gi

  being the segment density associated with the ig
th

  grafted chain. 

At this point, it is worth analyzing and comparing the conformational free energy of 

grafted chains with the stretching free energy obtained by the density profiles of the grafted 

chain ends. In the one-dimensional model employed herein, the grafted chain conformations are 

reflected random walks starting at gh . Assuming that the system finds itself in the dense brush, 

rather than in the mushroom regime, the number of conformations of a chain such that the end-

to-end vector projection normal to the solid surface is between h and h+Γh, is the same as in the 

unperturbed melt. It will be proportional to fend(h)dh, where the probability density fend(h) is 

given by eq 4.32 in the context of the Gaussian chain model. 

 

1/2
2

end 2 2

end,g end,g

3 3 
( ) exp ,   0

2 2

h
f h h

R R

   
     
   
   

 (4.32) 

Note that this is based on the approximation that a grafted chain will access all conformations 

accessible to it at given value of the end-to-end distance. In reality, as is obvious from the 

profiles in Figure 4.5 and Figure 4.6, grafted chains are more stretched near their grafted end and 

less stretched near their free end.  Based on eq 4.32, the  Helmholtz energy contribution, Achain, 

of a Gaussian chain grafted at 
gi

r  whose end lies at point r, is given by eq 4.33 within an additive 
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constant. In eqs 4.32 and 4.33 2

end,gR  is the mean square end-to-end distance of an unperturbed 

chain of length Ng. 

 
 

g

2

B
chain 2

end,g

 3
( )

2

ik T
A

R




r r
r  (4.33) 

Let g,end g,end seg,bulk    be the local number density (segments per unit volume) of free 

ends of grafted chains; note that each grafted chain contributes one free end. Consecutively, 

integrating g,end  across the domain results to the total number of chains; g,end ( )d gn  r r
R

. The 

total stretching free energy of grafted chains in our system within an additive constant equals 

g

stretch g,end chain( ) ( ) dA A  r r r
R

, and it can be approximated across the dense brush regime as 

  
2g

stretch g,end chain NP~ ( ) ( ) 4 dA h A h R h h  R  (4.34) 

in spherical and  

 g

stretch g,end chain solid~ ( ) ( ) dA h A h hR S  (4.35) 

in planar geometries. 

In the special case of Alexander‘s model in which all chain ends are segregated at the 

edge of the film, g,end g edge( )h h    , thus eq 4.34 becomes: 

 g

stretch solid g chain edge~ ( )A A hS  (4.36) 

with hedge given by eq B.56 in the appendix B.3. In Figure 4.13, we demonstrate a comparison 

between the stretching energy term obtained by the Alexander model (lines) and our SCFT 

model (markers); the latter is calculated either from: (a) 
g

confA  given by eq 4.30, or (b) 
g

stretchA

given by eqs 4.34 and 4.35. We mention at this point that the Alexander model, which we 

develop in our SI, is similar to the hdry region that Mydia et al.
267

 report in the context of their 

two-layer theoretical model for the description of nanoparticle brushes. In that work,
267

 the 

authors state that in curved surfaces and for constant grafting density, the free energy associated 

with the stretching of grafted chains does not increase indefinitely with increasing length of 

grafted chains, but it rather saturates at a maximum value. This is well expected, since at some 
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point the grafted chains cannot experience the presence of each other due to the curvature of the 

solid surface and therefore they become unperturbed. It must be pointed out, however, that in the 

case of planar surfaces, the grafted chains experience the presence of each other indefinitely due 

to confinement and thus 
g

stretchA  increases monotonically with Ng in this regime. Our model is 

consistent with this behavior: 
g

stretchA  and 
g

confA  are about to form a plateau with increasing Ng 

across the small RNP regime, whereas in the limit of flat surfaces they appear to increase 

indefinitely with Ng. 

 

Figure 4.13. Evaluations of (a) 
g

confA  and (b) 
g

stretchA .  Markers correspond to evaluations from our model, 

whereas lines correspond to 
g

stretchA  from the model of Alexander. Colors denote chains with Mg = 5 (red), 20 (blue) 

and 80 (green) kg/mol. Shapes/lines denote grafting densities, ζg = 0.1 (O / dashes), 0.8 ( / dots) and 1.6 (☆/ 

Solid lines) nm
–2

. In all cases, Mg = Mm. The rightmost data points correspond to flat surfaces. 

We can see that for larger grafting densities, our SCFT results and Alexander‘s model 

are in good agreement for all chain lengths in describing the conformational entropy of grafted 

chains as a function of the nanoparticle radius. A large discrepancy between the two models 

occurs for low grafting density; there, the totally stretched chains assumption of the Alexander 

model and the requirement to maintain bulk density everywhere result in suppressed grafted 
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chains and thus lower 
g

stretchA (compare the evaluations of Alexander‘s model  at low grafting 

densities in Figure 4.6). On the contrary, in the mushroom regime the profiles of grafted chains 

obtained with our model appear broader and this is reflected in the increased contribution to the 

conformational component of the free energy. 
g

stretchA  is consistently lower than 
g

confA —

especially at low ζg—and this is attributed to approximations in eqs 4.34 and 4.35 not sufficing 

in the regime; this effect will be investigated in detail in our subsequent work with RuSseL in 

three dimensions. 

 Concluding Remarks 4.5

The conformation and shape of chains grafted on a solid surface immersed in a homopolymer 

melt of the same chemical constitution as the grafted chains are complex and depend on a 

number of molecular parameters. In this work, we have explored a broad parameter space for a 

system of a single grafted nanoparticle immersed in a homopolymer matrix. Adopting a self-

consistent field theory modeling approach, the Edwards diffusion equation is solved by means of 

an implicit finite-difference algorithm in one dimension, introducing a smearing approximation 

for grafting points and taking advantage of the spherical symmetry of the problem. The 

parameterization is chosen so as to correspond to a particular chemical constitution 

(silica/polystyrene), which is readily accessible experimentally.
260

 

 The spatial distributions and the conformations of grafted and matrix chain segments 

have been derived for different surface grafting densities, nanoparticle radii and chain lengths of 

grafted chains, taken equal to those of matrix chains. In order to better describe the results of our 

work, we define three different regimes: the mushroom regime, the dense brush regime, and the 

crowding regime. The behavior of the system in each of these regimes is well described and 

quantified in multiple ways, namely through the chains/area profiles, the distribution of matrix 

and grafted chain ends, as well as the segment density profiles of adsorbed and free matrix 

chains. It is clear that with increasing grafting density and chain molar mass, the grafted chains 

need to stretch towards the bulk in order to adjust to their conformational restriction
255,260,264

. As 

a result, it is more difficult for the matrix chains to penetrate into the interfacial region. 

 The dependence of the brush thickness is examined with respect to all the 

aforementioned parameters in order to thoroughly investigate and clarify the behavior reported 
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in the literature. The scaling law, 
1/2 1/4

star star~ N f , proposed by Daoud and Cotton for star 

polymers in the intermediate regime, 
1/2 2 1/2

star starf N f 
, is accurate over a specific range 

of nanoparticle radii, specifically from 4 nm to 8 nm. For larger nanoparticles, the scaling 

exponents exhibit a complicated behavior and thus a more general equation must be 

implemented, which treats the exponents of the molecular weight and grafting density as 

functions of nanoparticle radius. Adjusting also the pre-exponential factor of the scaling law, a 

master curve can be obtained, which provides a faithful description of SCFT predictions for the 

brush height given the molecular weight of grafted chains, the grafting density and the radius of 

the nanoparticle. This master curve seems to be quite accurate, especially in the region of high 

molecular weight and grafting density. In the mushroom regime, the brush height exhibits a 

weak dependence on the grafting density and nanoparticle radius and is proportional to the 

square root of the molecular weight. In the crowding regime the brush scales linearly with 

grafting density and molecular weight, while the density profiles of grafted chains, and in 

general the overall behavior of the brushes, compares well with Alexander‘s model for 

incompressible brushes. 

 In calculating the free energy of the system, the term associated with the conformational 

entropy of grafted chains does not depend on nanoparticle radius for low grafting densities and 

molar masses (Figure 4.4(e)). The same plot reflects that with increasing grafting density or 

molar mass the chains need to stretch and therefore entropy increases. This entropy contribution 

of the grafted chains becomes dominant for high grafting densities and molar masses. The 

stretching free energy of grafted chains has been estimated with two different ways (1: from the 

configurational partition function of grafted chains and 2: from the density profiles of the grafted 

chain ends) and a good agreement with the Alexander model was observed in the limit of large 

grafting densities. The corresponding entropic term of matrix chains has a minor contribution to 

the total free energy. 

 Future prospects of this study include the investigation of the structure and 

thermodynamics of isolated NP and comparison against those of a NP embedded in polymer 

matrices; such comparisons allow for the prediction of meaningful thermodynamic quantities 

such as the solvation free energy of the nanoparticle. A more detailed investigation can be 

performed across the mushroom regime for low ζg and RNP via the three-dimensional finite 

element version of RuSseL developed in ref 275, which treats the grafted chains as single 
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entities, each one emanating from a single grafting point, avoiding the smearing approximation.  

Through the same three-dimensional finite element scheme, the potential of mean force between 

grafted NPs immersed in the melt can be predicted as a function of their center-to-center 

distance. 
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 A Self-Consistent Field Finite Element 5

Method  

A method is formulated, based on combining self-consistent field theory with the finite element 

method (SCFFEM), for studying structural and thermodynamic features of three dimensional 

inhomogeneous polymeric systems. Initially, this approach is tested on a planar polyethylene/ 

vacuum and a polyethylene/ graphite system, where the whole methodology is parameterized by 

atomistically detailed molecular simulations.  These systems have been studied previously with 

one dimensional SCF methods. The new, three-dimensional SCFFEM approach is used to 

predict reduced density profiles and interfacial free energies, yielding very favorable agreement 

with previous SCF results, thus validating the SCFFEM methodology. The primary objective of 

this work is to investigate the system behavior by implementing the finite element method. We 

apply an h-, r-, p- refinement technique to optimize the finite element mesh. Furthermore, we 

introduce two new criteria for accurate convergence and an innovative successive substitution 

scheme. The resulting scheme is employed to analyze a more complicated system consisting of 

polystyrene brushes grafted on silica walls immersed in polystyrene. Up to now, the grafted 

chains in such systems have always been subjected to a smearing technique. With the three-

dimensional SCFFEM approach we can distinguish the positions where individual grafted chains 

are tethered from positions on the surface which do not bear grafted chains. We compare the 

reduced density profiles and end segment distributions along various lines connecting two 

parallel planar silica surfaces capping a polystyrene melt in a sandwich geometry and bearing 

surface-grafted polystyrene chains at prescribed areal density. The lines are drawn perpendicular 

to the silica surfaces at various positions relative to the grafting points. The structural properties 

and grand potential contributions of the system are obtained for a broad range of grafting 
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densities, molar masses and swelling ratios, and are compared to experimental data, theoretical 

models, and earlier one-dimensional (smeared) SCF studies. 

 Background 5.1

The fascinating and complex behavior of polymers near solid surfaces challenges the limitations 

of atomistic simulations, due to the broad spectra of time and length scales involved.
31

 On one 

hand, one of the most common approaches invoked for studying equilibrium properties of 

polymer/solid interfaces at the molecular level is the Self Consistent Field Theory 

(SCFT).
26,133,197,215,286

 On the other hand, the Finite Element Method (FEM) is an important and 

widespread technique in the field of integrodifferential equations which govern a lot of 

applications of physics and engineering.
287–289

 In this chapter, we aim to combine these tools in 

order to develop the ability to calculate the free energy and the structure of complex three-

dimensional (3D) multi-nanoparticle configurations of polymer nanocomposites. 

As we already proved in the previous chapters, SCFT constitutes a rather successful 

framework in the study of the structure and the thermodynamic description of an interfacial 

polymer system. Mathematically, the SCFT model is derived through a complicated variational 

problem, possessing many unsatisfactory features, such as the existence of saddle-points, 

nonlinearity, multi-solutions, and multi-parameters. Solving this problem analytically requires 

rough approximations, compelling analytic solutions to be quite limited in applicability, because 

they demand the system to have very particular properties.
155

 In most cases of interest,  

numerical methods are required to solve the set of integro-differential equations.  

The numerical methods for solving the SCFT model mainly consist of four components, 

namely: (a) screening initial values
290–292

, (b) solving time-dependent partial differential 

equations (PDEs), (c) evaluating (monomer) density operators, and (d) finding saddle-points via 

iterative methods.
293,294

 By far the second component i.e. solving the time-dependent PDE is the 

most CPU consuming process in applying the SCFT algorithm. The time-dependent PDEs can 

be solved with either frequency domain approaches (e.g. spectral, pseudo spectral 

methods)
144,290

 or real space approaches (e.g finite difference, finite volume, finite element 

methods).
275

 The simplicity of finite difference methods and the high spatial accuracy achieved 

by spectral methods made them an excellent choice for many applications till now. Nonetheless, 

the majority of the systems which have been addressed with these methods exhibit a simple or 
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symmetric geometry and limitations on the boundary conditions. These hindrances can be 

overcome with the FEM.  

5.1.1 Numerical Methods Comparison 

FEM is used to solve partial differential equations (PDEs) in a variety of scientific and 

engineering problems.
295,296

 Despite the fact that FEM belongs to real space approaches, it is 

quite similar in philosophy to spectral algorithms. The basic idea is to assume that the unknown 

variables can be approximated by a linear combination of trial functions (a.k.a. basis functions). 

The essential difference from spectral methods is that in FEM, the domain of interest is divided 

into a finite number of sub-intervals, while the basis functions are locally defined in each 

interval. Practically, the basis functions are usually chosen to be simple polynomials of fixed 

degree, which are non-zero only over a couple of neighboring sub-intervals. In contrast, spectral 

methods use global basis functions in which basis function is a polynomial (or trigonometric 

polynomial) of high degree which is non-zero, except at isolated points, over the entire 

computational domain.
297

 

The choice of the finite element method is beneficial for various reasons compared to 

spectral methods. FEM converts the strong form of the differential equation into a linear system 

of equations, which is usually sparse, since only a handful of basis functions are non-zero in a 

given sub-interval. It can also be implemented in irregularly shaped systems and multi-

dimensional domains; the sub-intervals become triangles or tetrahedra, which are easily fitted in 

complex geometries. The main weakness of FEM is low accuracy (for a given number of 

degrees of freedom) because each basis function is a polynomial of low degree.
297

 The accuracy 

weakness though can be surpassed either by improving the resolution of certain regions of the 

domain, or by increasing the degree of the interpolation polynomials.
298

 

5.1.2 FEM History 

The mathematical roots of the finite element method date back at least half a century. 

Approximate methods for solving differential equations using trial solutions are even older in 

origin. Lord Rayleigh and Ritz used trial functions to approximate solutions of differential 

equations.
289

 Galerkin used the same concept for the solution of PDEs.
297

 The drawback of the 

earlier approaches, compared to the modern finite element method, is that the trial functions 

must apply over the entire domain of the problem of concern. Only when Courant in the 



5.1. Background  

 

139 

1940s
299

 introduced the concept of piecewise-continuous functions in a subdomain did the finite 

element method have its real start. In the late 1940s, aircraft engineers were dealing with the 

invention of the jet engine and the needs for more sophisticated analysis of airframe structures to 

withstand larger loads associated with higher speeds. The term finite element was first used by 

Clough
300

 in 1960 in the context of plane stress analysis and has been in common usage since 

that time. 

The finite element method is computationally intensive, due to the large amount of 

required operations on large matrices. In the early years, applications were performed using 

mainframe computers, which, at the time, were considered to be powerful high-speed tools for 

use in engineering analysis. NASTRAN was the first structural analysis software tool, which 

implemented the available FEM technology. 
298

 It was originally developed for NASA in the late 

1960s under United States government funding for the aerospace industry. In the years since the 

development of NASTRAN, many commercial software packages have been introduced for 

finite element analysis. In today‘s computational environment, most of these packages can be 

used on desktop computers and engineering workstations to obtain solutions to large problems in 

static and dynamic structural analysis, heat transfer, fluid flow, electromagnetics, and seismic 

response. 
289

 

5.1.3 Previous Works 

Although FEM is a workhorse for solving computational problems in all branches of 

engineering, few studies have been published on applications to molecular problems, and 

especially in conjunction with SCF. Ackerman et al 
156

 used the FEM as an alternative to the 

standard spectral and pseudo-spectral methods for SCF calculations. They investigated the 

details of the implementation on block copolymer systems of self-assembled structures in 

complex geometries. Huayi Wei et al
155

 proposed a linear surface FEM to solve the SCFT model 

and studied the self-assembly behaviors of block copolymers on general curved surfaces. An 

essential point missing from both works is that they mainly illustrate confinement effects for 

specific geometries, without being concerned about how representative of the real world the 

system is. The extension of SCF computational framework to more realistic polymeric systems 

remains a problem to be explored.  

Another limitation of previous works is that they are mainly focused on block copolymer 

systems. Even though SCF approaches to polymer melts at interfaces have been validated 
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against detailed atomistic simulations, few researchers have addressed structural and 

thermodynamic properties through SCFT for realistic polymeric systems and interfaces. Daoulas 

et al.
24

 determined the equilibrium properties, calculated polymer volume fraction profiles for a 

polymer melt (polyethylene) adsorbed on a solid substrate (graphite) and compared it with 

atomistic simulations. Theodorou et al.
31

 calculated the adhesion tension of the above system 

through SCFT, which is in good agreement with the adhesion tension estimated by atomistic 

MD simulations. More recently, we
26

 implemented SCFT for free surfaces of molten polymers 

(linear polyethylene films) and compared the results against atomistic simulations and 

experiment over a variety of temperatures and chain lengths. All the above works were based on 

the one-dimensional representation of the interfacial systems, but they form a basis for 

validating the new three-dimensional FEM approach. 

Our goal is the implementation of the SCFFEM to more complex systems containing 

grafted polymer chains. Polymer brushes, i.e., chains grafted either on spherical nanoparticles or 

on planar surfaces, have gained attention because of their uses in a variety of applications such 

as flocculation control, wetting control, biocompatible surfaces, tunable and switchable surfaces, 

lubrication, and templates for microelectronic devices.
301–304

 Various methods for the 

experimental synthesis of such systems are reported in the literature.
305,306

 The system of a 

polymer brush grafted to a planar surface in contact with a melt of chemically identical chains is 

useful for understanding polymer brushes grafted on spherical nanoparticles immersed in 

polymer melts. Although numerous experimental results and  several theoretical works
307

 on 

polymer grafting on solid substrates have been published, the lack of well-developed 

characterization methods for thin polymer films do not allow an accurate study and 

identification of the grafted layers as polymer brushes.
301–304

  

Important molecular parameters for this system are the Kuhn segment length of the chains, 

bK, the lengths (in Kuhn segments) of the grafted, Ng, and matrix, Nm, chains, and the surface 

grafting density (chains per unit area), ζg. The case of planar polymer brushes exposed to low 

molecular weight solvent was studied theoretically by de Gennes
5
 and Alexander.

6
 They used a 

scaling approach where a constant density was assumed throughout the brush: all the brush 

chains were assumed to be equally stretched to a distance from the substrate equal to the 

thickness of the brush. Aubouy et al. 
308

 extracted the phase diagram of a planar brush exposed 

to a high molecular weight chemically identical matrix. Their scaling analysis is based on the 

assumption of a steplike concentration profile and on imposing the condition that all chain ends 
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lie at the same distance from the planar surface. Five regions with different scaling laws for the 

height, h, of the brush were identified.  

A numerical self-consistent field (SCF) calculation has also been reported,
8
 where the 

density profile is no longer assumed to be a step profile and the end points of the chains are 

distributed throughout the brush. Analytical equations based on a similar model were developed 

by Milner et al.
309

 and by Zhulina et al.
310

 In the wetting state, the grafted and matrix chains are 

intermixed along the full extent of the brush. If the matrix chains are not able to penetrate the 

region occupied by the grafted chains, then the corona collapses and the brush is dewetted. A 

detailed study of moderately stretched planar brushes exposed to moderately long melt chains 

was performed by Ferreira et al.
11

 who found that the domain where attraction exists between 

two grafted layers in a melt and therefore partial wetting is expected, scales as 

1/2

g g g m( ) ( / )N N N  . This scaling law indicates that flat surfaces grafted with sparse polymer 

brushes in a long chain polymer melt could exhibit entropic attraction, provided that the 

molecular weight of the matrix chains is large enough.  

5.1.4 Current Research Approach 

The present chapter aims to combine one of the most captivating theoretical frameworks for the 

estimation of the interfacial properties of solid polymer interfaces, self-consistent field theory, 

with one of the widely used numerical methods, namely the finite element method, in a manner 

that will enable the implementation of SCFT in complex three-dimensional geometries. The 

chapter can be divided in two parts. Firstly, in order to validate the SCFFEM method and assess 

its computational requirements, the works of Daoulas et al.
2
 ,Theodorou et al 

31
 and our work

26
 

are used as a reference point and the same problem is solved in three dimensions. The primary 

aim is to calculate various thermodynamic and structural characteristics of the free surface 

polyethylene melt system and the polyethylene melt/graphite interfacial system, such as the 

surface and adhesion tension and the reduced density profiles of polymer segments. Additionally 

the behavior of the aforementioned systems is examined with SCFFEM as well as how the mesh 

refinement affects the accuracy of the solution. In the second part, the structure of atactic 

polystyrene melt (matrix) is investigated, confined between two silica plates which bear grafted 

with polymer chains of the same chemical constitution (atactic polystyrene). Removing the 

incompressibility assumption and imposing Dirichlet boundary conditions at the solid surfaces 

allows to investigate systems with additional complexity. So far, the grafted chains have been 
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always subjected to a smearing technique. For the first time, to our knowledge, we can 

distinguish the positions where the grafted chains are tethered, from positions not attached to 

grafted chains and compare the reduced density profiles in the vicinity of these different 

positions. The intention is to compare our approach against previous works and calculate various 

thermodynamic and structural characteristics of grafted chain systems with variable grafting 

density, chain length and grafted/matrix chain length ratio. The SCF calculations are vigorously 

compared against atomistic simulation results and experimental data. 

 Model System and Theoretical Formulation  5.2

5.2.1 Finite Εlement Μethod 

5.2.1/a Weak Formulation 

The SCF approach has been employed to describe polymer melt interfaces in previous chapters. 

Here we will focus primarily on novel points introduced by the finite element analysis. The 

finite element method (FEM), sometimes referred to as finite element analysis (FEA), is a 

computational method for finding approximate solutions of boundary value problems in 

engineering. Two main approaches are used for the derivation of the finite element formulation: 

the Method of Weighted Residuals (MWR) and the variational approach. The latter, also called 

the ―Energy Approach‖, was popular in the past, but now is rather rarely used. The MWR is an 

approximate technique which utilizes trial functions satisfying the prescribed boundary 

conditions and an integral formulation to minimize error, in an average sense, over the problem 

domain.  

The Edwards diffusion equation can be seen as a time dependent differential equation 

whose independent variable is the propagator q and the contour length s plays the role of time. 

We will adopt the more familiar in Finite Element Analysis notation for eq 4.1: 

 
2 0q k q q   r  (5.37) 

where ( , )q q s
s





r , 

2

G,c

c

R
k

N
  and ifcw   . Eq 5.37 is called the strong form of the partial 

differential equation. We can proceed by multiplying and integrating both sides of eq 5.37 with 

an arbitrary function W(r), which is defined over the entire domain Ω .The symbol Ω  here 
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denotes the volume of the closed domain R . These calculations result in the following weighted 

residual form:  

  2( ) d 0W q k q q


    r
r Ω  (5.38) 

The three dimensional weak form of the WRM is obtained by applying the divergence 

theorem in the above weighted integral. In one dimension, the divergence theorem is equivalent 

to integration by parts, and in two dimensions it is equivalent to Green's theorem. The form 

obtained is called weak form due to its lower differentiability requirements compared to the 

original weighted residual form or the strong form:  

      ( , ) ( ) d d ( ) dG W q W q q k W q k W q
  

         r r r
r rΩ Ω  (5.39) 

The symbol Γ denotes the surface area that bounds the domain. A differential volume 

within the domain will be denoted as dΩ  and an elementary surface area as dΓ. The 

implementation of the weak formulation is beneficial for three reasons. The highest order of the 

Laplacian operator disappears, a symmetry is introduced in the second term of the residual, and 

gradient boundary conditions are inserted via the third term.  

The main concept of FEM is the transformation of the original partial differential 

equation (PDE) into a discrete set of linear equations. Solving these equations, an array qi is 

obtained, containing approximations of the continuous solution q of the differential equation at a 

finite number of points, referred to as interpolation points. An approximation field of the 

solution can be constructed by means of these interpolation points. The fundamental idea of this 

approximation field comprises the assumption that the unknown q can be approximated by a 

sum of n+1 ―trial functions‖ φi(r,s) and therefore be calculated by the following equation:· 

 
0

( , ) ( , )
n

i i

i

q s q s


r r  (5.40) 

The trial functions are continuous over the domain of interest, respect the specified 

boundary conditions, and are selected to satisfy the ―physics‖ of the problem in a general sense. 

The integral statements
287

 in eqs 5.38 and 5.39 allow an approximation to be made if, in place of 

any function ( )W r , we use a finite set of approximate functions jw : 



Chapter 5. A Self-Consistent Field Finite Element Method 

 

144 

 
0

n

j

j

W w


  (5.41) 

Inserting the above approximations into Eq. 5.39, demands the residual to be equal to zero, the 

residual form becomes a function of the unknown iq given by: 

   

   
0 0 0 0 0 0 0 0

d d d d
n n n n n n n n

j i i j i i j i i j i i

i j i j i j i j

G w q w q w q w q    
          

             Ω Ω Ω  (5.42

) 

Clearly, almost any set of independent functions jw  could be used for the purpose of 

weighting and, according to the choice of function, a different name can be attached to each 

method. Thus, the various common choices are: the pseudo-spectral or collocation method 

(method of selected points), the method of moments, the least square method and Galerkin‘s 

method.
288297

 Among them, the most popular choice is Galerkin‘s method (Bubnov- Galerkin) in 

which the original trial (or basis) functions are used as weighting functions (wi=φi).
287

 This 

method, as we shall see, frequently leads to symmetric matrices and is adopted in our finite 

element work exclusively.
297

 

5.2.1/b Domain Discretization 

A convenient technique to construct the approximate trial functions is obtained by dividing the 

domain to be analyzed into small regular shaped regions. The division into elements and nodes 

is a fundamental part of the finite element method. Domain discretization in elements describes 

what we will refer to as the finite element mesh or simply the mesh of the domain. Using the 

above subdivision, a simple set of local continuous polynomial functions may be defined for the 

approximation of the solution. Such functions are called shape functions  and they are usually of 

class C0, meaning that they are continuous themselves, but their first derivative is only piecewise 

continuous with the discontinuities located at the nodes.  

The domain Ω  can be decomposed into Nel finite element sub-domains, eΩ  , connected 

at appropriate nodes (Nnod). Let the e
th

 element have Nnod,e nodes with global coordinates r
k,e

 

(k=1,.. , Nel,e) and let the Lagrangian shape functions Ni (ξ) (i=1,.. , Nnod,e) be polynomials of ξ, 

chosen such that Ni (ξ) evaluates to one at the i
th

 node and to zero at all the other nodes of the 

element. At the juncture between two elements, the internal gradients are equal and opposite, 
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thus selfequilibrating, which means that the last term of eq 5.42 becomes zero. The total volume 

of the set of elements approximates the total volume of our domain: 

 
el

1

N

h e

e

 Ω Ω Ω  (5.43) 

where h  is the approximation of the domain created by the set of elements, eΩ  . Any integral 

over Ψ can therefore be approximated as a sum of integrals over the elements: 

      
el

1

d d d

h e

N

e

   
Ω Ω Ω

Ω Ω Ω  (5.44) 

By further proceeding in this analysis, we encounter one of the central issues in the 

three-dimensional FEM, which is the query for the optimum type of element to be used. Three 

types of elements are commonly used in modeling three-dimensional structures: tetrahedral, 

hexahedral (also known as bricks) and prism (also known as wedges or pentahedra) elements. 

Due to their flexibility in discretizing arbitrary complex geometries and the associated degree of 

automation in the mesh generation procedure, the use of tetrahedral elements becomes 

practically unavoidable in complex finite element analysis.  

 

Figure 5.1. Tetrahedral element (a) A four-node tetrahedral element, showing an arbitrary interest point P defining 

four sub-volumes. (b) The linear or first order tetrahedron element: also called the 4-node tetrahedron. (c) The 

quadratic or second order tetrahedral element: also called the 10-node tetrahedron. 

A tetrahedral element is depicted in Figure 5.1(a) in relation to a global Cartesian 

coordinate system. We introduce the concept of volume coordinates using Figure 5.1(a). Point P 

is an arbitrary point in the tetrahedron defined by the four nodes. As indicated by the dotted 

lines, point P and the four nodes define four other tetrahedra having volumes: 

 1 234 2 134 3 124 4 123, , ,P P P PV V V V V V V V     (5.45) 

(a) (c) (b) 
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Figure 5.1(b) shows a typical 4-node tetrahedron. Its geometry is fully defined by giving 

the location of the four corner nodes [ri=(xi, yi, zi), i=1,2,3,4] with respect to the Cartesian 

coordinate system. The natural volume coordinates of the element are then defined as: 

 / , 1,2,3,4a a elL V V a   (5.46) 

where Vel is the volume of the element. The nodal basis functions  e

iN L  for each element e are 

the following: 

(i) 4 shape functions for first order tetrahedral elements (Figure 5.1(b)) given by:  

 , 1,2,3,4a aN L a   (5.47) 

(ii) 10 shape functions for second order tetrahedral elements (Figure 5.1(c))  given 

by: 

 Vertex nodes 

        1 1 1 2 2 2 3 3 3 4 4 42 1 , 2 1 ,  2 1 ,  2 1N L L N L L N L L N L L         (5.48) 

 Mid-edge nodes 

 
5 2 1 6 3 1 7 4 1

8 2 3 9 3 4 10 4 2

4 , 4 , 4 ,

4 , 4 , 4

N L L N L L N L L

N L L N L L N L L

  

  
 5.49 

The relation between volume coordinates  1 2 3, 4, ,L L L LL  and ( , , )  ξ  can be 

easily derived and the transformation of nodal basis functions  e

iN L  to  e

iN ξ  for each 

element e is described further in appendix C.2.  

According to the eq 5.40 the relation between local and global coordinates within the e-

th element is given by: 

    
nod, nod,

1 1

, ( )
e eN N

e I e e e I

I I

I I

N q N q s
 

  r r ξ ξ  (5.50) 

where 
I

r and ( )Iq s  are the values of ( , , )x y zr , q  respectively, at node I of the particular 

element e examined. Note that the ―time dependence‖ of ( )Iq s , will be discussed later. 

Derivatives for isoparametric elements may be constructed using the following chain rule.  

 

i

j eI I I
ije e

i j j

rN N N
J

r r 

  
 

   
 (5.51) 
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Accordingly, the Jacobian matrix of the transformation from natural (reduced, element-based, 

e
ξ ) to real (spatial, r) coordinates e

J is the matrix with the following entries: 

 
 nod ,

1

e
eN

Ie Ii
ij ie e

Ij j

Nr
J r

 


 
 


ξ

 (5.52) 

In formulating element characteristic matrices, various derivatives of the shape functions with 

respect to the global coordinates are required. In isoparametric elements, both element geometry 

and variation of the shape functions are expressed in terms of the natural coordinates of the 

parent element, so some additional mathematical complication arises. By using eq 5.51 we can 

calculate derivatives of the shape functions with respect to the real coordinates by the following 

equation: 

 
nod ,

, 1

1

e

i

N

eI I
ij e

ij

N N
J

r 





 


 
  (5.53) 

The matrix , 1e 
J  is the inverse matrix of e

J . Hence, , 1e 
J  is the Jacobian matrix of 

transformation from real (spatial) to natural coordinates. We can express the integral form of the 

eq 5.44 in terms of  the local shape functions by using the eq 5.52: 

    
e

e

e

d d    J ξ
Ω

Ω  (5.54) 

5.2.1/c Matrix Representation 

Up to this point, we made a distinction between weight functions, trial functions and shape 

functions. As mentioned above, in Galerkin‘s Method, the first two are by definition the same. 

In finite element representation, the shape function plays the role of trial function within every 

element e. This choice allows us to re-express the residual function of eq 5.42 by using eq 5.44 

and 5.52 in matrix representation: 

  Mq Kq Wq = 0  (5.55) 

where  

    
nod, nod,el el

1 1 1 1

e eN NN N
e e e e

IJ IJ I J

e e I J e

M M N N d
   

     ξ ξ J ξ  (5.56) 
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   

   
nod, nod,el el

, 1 , 1

1 1 1 1

e e
e eN NN N

I Je e e e

IJ IJ e e ji li
e e I J i j l j le

N N
K K k J J d

 

 

   

  
  
  
 

   
ξ ξ

J ξ  (5.57) 

    
nod, nod,el el

1 1 1 1

e eN NN N
e J e e e

IJ IJ I J

e e I J e

W W N N d
   

     ξ ξ J ξ  (5.58) 

  

where J is the value of the field in the nodal point J and q  is a column vector with the values 

of the propagator q at every nodal point at the considered ―time‖ s. In order for the integral of 

eq.5.42 to be well defined, the fourth term of the equation associated with the surface integral 

between adjacent elements must vanish. This occurs under the condition that shape functions are 

continuous, while the first derivatives may be discontinuous in Ψ. The derivation of this matrix 

form is presented in appendix C.5. 

5.2.1/d Gauss Quadrature Integration  

The integration procedure is of high importance when we deal with the FEM. From the above 

discussion, it is clear that the weak form introduces integrals which are usually too complicated 

to be evaluated analytically, thus numerical integration is preferred. In this section we consider 

the effect of the numerical integration on the acquired FEM solution. 

The Gauss Quadrature method is the most commonly used numerical integration scheme 

in FEA, and exploits the isoparametric concept introduced in section 5.2.1/b. In numerical 

analysis, a quadrature rule approximates the definite integral of a function g, as a weighted sum 

of the values of the function at specified points within the domain of integration. Consequently, 

another source of error is introduced. The general formula of the numerical integration of an 

arbitrary function g(r) over a domain Ψe (according to eq 5.54) is expressed by: 

    
gp

1

( )

e

N

e e

m m m

me

I g d g d g w 


    r ξ J ξ J
Ω

Ω  (5.59) 

where gpN  denotes the number of integration points , m denotes the location of the integration 

point m, ( )mg   is the value  of the function g at the integration points, mw is the associated 

weight factor of the integration point and ε is the error associated with the quadrature used. The 

locations of the integration points are chosen in a way such that maximum accuracy is obtained. 

The order of the numerical integration must offer exact results when integrating polynomials 
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(i.e., solution equal to the one obtained from analytical integration) and ensure the non-

singularity of the resulting matrices.
287,288,298

 A thorough study of numerical integration in the 

context of the FEM can be found in ref 311. In Zienkiewicz‘s work, 
287

 an 1-points rule as well 

as a 4-points and 15-points rules are derived for a unity tetrahedron. The Gauss quadrature 

technique used to calculate the volume integral is presented in eqs 5.56, 5.57 and 5.58. 

5.2.1/e Transient Equation 

We now elaborate on the derivative q  and apply the overall procedure for transient 

implementation. We can deal with this derivative as a ―time derivative‖ of the nodal propagator 

matrix with the backward difference approximation presented below:  

 
1

( )s s s

s

 


q q q  (5.60) 

Where 
s s

q is the column vector containing the values of the propagator q at every nodal 

point at the next ―time step‖ s, whereas 
s

q  contains the values of the propagator at the current 

time-step. In this method, we evaluate the nodal propagators at ―time‖ +Δs s  based on the state 

of the system at ―time‖ s . It is clear that these two states of the system depend on how small the 

time-step Δs  is. Substituting and rearranging, eq 5.55 becomes: 

 
s s s s s s ss s    Mq Kq Wq Mq  (5.61) 

The initial condition is the given either by eq4.1 or by eq 4.2  

 Calculation Details 5.3

5.3.1 Model Geometry  

Figure 5.1 illustrates a rectangular parallelepiped domain R in which we solve our SCFT 

formulation. The parallelepiped domain has volume V and consists of points (x, y, z) with 

[ / 2, / 2]x xx L L  , [ / 2, / 2]y yy L L  , [ / 2, / 2]z zz L L  .  Although this is a three dimensional 

domain, under some conditions (imposition of periodic boundary conditions in the x- and  

y-directions, absence of grafted chains) the solution is expected to depend only on one direction (z) 

due to its symmetry.  The parallelepiped domain chosen offers itself for comparisons against one-

dimensional solutions based on smearing.  The primary goal is to investigate the consistency of 

results obtained by three-dimensional SCFFEM with previous works based on other methods and 
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understand physically the behavior of the considered systems. The formulation of the current 

section is generic and refers to a grafted/matrix polymer system, but it can also be implemented in 

ungrafted solid/polymer and vacuum/polymer systems. In a solid/polymer or vacuum/polymer 

system, the absence of grafted chains causes the propagator qg to vanish and thus only the three eqs 

4.1, 4.3 and 4.4 are required for the SCF solution. For additional simplicity, qm and φm can be 

replaced by q and φ, respectively. On the other hand, a system containing grafted chains, exposed 

to a melt of matrix chains, requires the solution of two different diffusion equations (one for the 

matrix and one for the grafted chains), which increases the complexity and computational  

 

Figure 5.2. The Edwards diffusion equation domain. (a) The matrix chain Edwards diffusion equation domain.  The 

parallelepiped domain of dimensions in 8×8×10 nm is shown, with the origin positioned at its center. On the solid 

surfaces (blue), Dirichlet boundary conditions are applied, while on the lateral surfaces (red), Neumann boundary 

conditions (x- and y- derivatives of the propagator equal to zero) hold. (b) The grafted chain Edwards diffusion 

domain. The parallelepiped simulation domain has the same dimensions as in (a) and contains 50 grafted chains; 25 

grafted to the top and 25 to the bottom. The grafting ends are represented as 3D delta functions. Again, Dirichlet 

boundary conditions are imposed on the solid surfaces and Neumann boundary conditions hold on the lateral 

surfaces. 

 

requirements of the problem. Furthermore, in such a system we have to calculate the reduced 

segment density for both matrix and grafted chains. It is worth mentioning that, despite the fact 

that both grafted and matrix chains share the same domain, the initial conditions for matrix and 

grafted chain propagators differ. The initial condition qm(r,0)=1, is assigned to the matrix chain 

propagator, while for the grafted chain propagator the initial value is equal to zero in the whole 

domain, except for the  positions of the grafting (eq 4.2). Dirichlet boundary conditions equal to 

zero are assigned to the top and bottom surfaces of the box/domain for both grafted and matrix 

chain propagators.  

(a) (b) 
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As Chantawansri et al.
144

 observed, in the context of SCFT there is a special difficulty in 

the case of polymer chains whose one end is grafted to the solid surface. As shown in eq 4.2, the 

grafted chain propagator is subject to a Dirac delta function initial condition. The complication 

increases when we have to deal with the limit near zero, caused by the Dirichlet boundary 

condition of the matrix chain propagator appearing in the denominator of the initial condition for 

grafted chains. A usual approach to bypass these issues is to reposition the grafting points to a 

surface close to the solid, instead of right on top of it.
273–275

 In 1D, the numerical implementation 

of the delta function resulted in a smearing of the grafting points. In our three-dimensional FEM 

implementation, the initial condition of the grafting points is evaluated exactly upon the desired 

points of the domain and the delta function is again evaluated as the inverse volume assigned to 

the node; thus, the smearing of the grafted point disappears. (Figure 5.2(b)) 

5.3.2 Mesh  

The main weakness of the FEM compared to spectral methods is the accuracy of the method. 

This drawback, though, can be surpassed by using three different strategies.
297

 The first is to 

subdivide each element to improve the spatial resolution uniformly over the whole domain. This 

strategy is usually called "h-refinement", because h is the common symbol for the size or 

average size of a subdomain. The second alternative is to subdivide only in regions of steep 

gradients where high resolution is needed, called "r-refinement‖. The third option is to keep the 

subdomains fixed while increasing p, the degree of the polynomials in each subdomain. This 

strategy of "p-refinement‖ is precisely the one employed by spectral methods.  

The mesh that was initially employed to discretize the domain contained equally sized 

elements and the mesh densities were coarse (Figure 5.3(a-c)). For such meshes, negligible time 

is consumed between iterations. The resolution of the mesh was low, given the steepness of the 

solution and therefore the accuracy of the acquired results was rather poor. The mesh gradually 

became finer (Figure 5.3(d-h)) in order to achieve convergence with acceptable accuracy  

(h-refinement). The final mesh was extremely fine at the top and bottom surfaces, compared to 

the mesh near the center (bulk polymer) (Figure 5.3(i)) (r-refinement). Finally, aiming to 

investigate the behavior of the system, we compared the use of both first and second order 

tetrahedral elements, corresponding to  linear and quadratic Lagrange shape functions (p-

refinement).
312
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Figure 5.3.The difference between mesh densities applied. (a-c) Meshes contain equally sized elements and coarse 

mesh densities (from 438 to 3,062 elements). (c-h) Meshes contain equally sized elements and finer mesh densities 

(from 10,327 to 1,387,473elements). (i) A more efficient mesh, which is finer at the boundaries and coarser in the 

middle. 

Nine types of meshes were used in order to benchmark the discretization of the system. 

The meshes were generated with the commercial software, COMSOL Multiphysics. The average 

element size, havg, which is defined as the average length of all the edges of tetrahedral elements 

contained in the domain, the average element volume, Vel, the number of nodes, Nnod, and the 

number of elements, Nel, of the meshes, for both quadratic and linear shape functions, are 

presented in Table 5.1. For comparison purposes, the average element size of quadratic elements 

has been considered to be equal to half the actual value (two nodal points are assigned to each 

edge). Considering that the volume of the domain is equal to 640 nm
3
 and knowing  the total 

number of elements, the average element volume can be easily calculated. The average element 

size and average element volume are perceptible parameters, because they can be associated 

with size parameters of other methods (e.g finite difference method). The number of mesh points 

(a) 

(e) (d) 

(c) (b) 

(f) 

(g) (h) (i) 
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which the domain is comprised of is directly correlated with the mesh resolution and is the most 

important aspect to consider when benchmarking a FEM model. As mentioned above, every 

quadratic tetrahedral element consists of ten nodal points, whereas a linear tetrahedral element 

consists of four nodal points; this is the reason why meshes with the same number of elements 

can consist of different numbers of mesh points. 

Table 5.1. Mesh parameters 

average 

element 

size(Å) 

average 

element   

volume(Å
3
) 

linear tetrahedral element quadratic tetrahedral element 

mesh points elements mesh points elements 

30 1461.19 131 438 793 438 

19 404.55 377 1,582 2,572 1,582 

15 209.01 676 3,062 4,720 3,062 

10 61.97 2,033 10,327 15,357 10,327 

8 31.14 3,901 20,552 28,644 20,552 

5.5 9.87 11,733 64,819 84,473 64,819 

3.5 2.52 44,425 253,950 339,085 253,950 

2 0.46 236,885 1,387,473 
  

 

The calculations have been initially performed with the COMSOL Multiphysics
313

 

commercial package, which was linked to a Matlab
314

 interface. To solve the Edwards diffusion 

equation, we used the coefficient form corresponding to a general and multipurpose PDE. The 

spatially dependent chemical potential field was inserted as an absorption coefficient through an 

external three dimensional interpolation function. Although this method worked properly for 

simple systems, as the complexity increased, the interpolation function did not exhibit the 

desired accuracy. The poor accuracy resulted in low flexibility, especially in grafted chain 

systems. We finally managed to develop an in-house finite element code, which we call RuSseL, 

and we use COMSOL Multiphysics exclusively as a mesher. 

5.3.3 Validation System 

The first system that we considered consists of polyethylene (PE) chains in the presence or 

absence of graphite. Polyethylene – graphite sandwiches and freely standing films of 

polyethylene are both appropriate systems for verifying our methodology. Theodorou et al.,
31

 

Lakkas et al.
26

 and Daoulas et al.
22 

worked on these systems comparing their results with 

atomistic simulations. Since all previous works were performed at T=450 K, the same 

temperature will be assumed during the SCF calculations of the present work. The bulk density 
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of the polymer is mass=766 kg/m
3
, from which 0  is readily obtained. The compressibility 

appearing in the SCF equations, T, will be considered equal to the isothermal compressibility 

of the atomistically studied bulk polymer. Taking into account our atomistic simulations and 

experimental data,
315

 we employ T = 1.43 GPa
-1

.  

 The mean squared radius of gyration of a chain can be calculated as 

 
1/2

g c-c ( 1) 6NR l C N  , where NC  is Flory‘s characteristic ratio, N the number of skeletal 

bonds and c-cl  their bond length. The bond length used in the atomistic simulations is c-cl  = 1.54 

Å and we set NC  for the molecular weight of interest, following the work of Karayiannis et al.
316

 

A crucial step in implementing the field-theoretic representation of the PE/graphite system is the 

definition of the polymer/substrate interaction potential, Us(r). In this direction, we follow the 

work of Daoulas et al.
24

, where a square-well potential was used. The depth of the square well 

potential was determined under the requirement that the field-theoretic model have the same 

adsorption energy per unit surface as the atomistic one. The potential energy field exerted by a 

semi-infinite graphite phase on a polyethylene segment can be approximated reasonably well by 

a square well potential whose width is equal to w=4.5 Å and depth is equal to u0= 1.65kBT  at 

T=450 K.
24

 

In the case of the capped polyethylene film, the grand potential is directly related to the 

adhesion tension: 

 bulk solid sp s( , , ) ( , , ) ( )V T V T S        (5.62) 

Where γsp is the interfacial tension between the graphite and the molten polymer, γsp 
is the 

surface free energy of a pure graphite surface, and solidS  is the total surface area of contact 

between polymer and graphite (both faces). 

5.3.4 Grafted Chain System 

In the present chapter, we will study a system of chains which are grafted on the surface of a 

solid of planar geometry. A polystyrene/silica interface with grafted polystyrene chains, for 

which density profiles have been computed by both coarse grain atomistic simulation
317

 and 

lattice-based self-consistent field theory,
318

 would constitute a convenient test system. The 

objective is to validate the SCF/FEM approach in presence of grafted chains in a planar 
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geometry. We employ the planar geometry in order to compare our system with atomistic 

simulations performed by several authors.
319,320

 

 

 

Figure 5.4. Representation of the system under various grafting densities. Each solid surface has an area of 64 nm
2
 

with dimensions of 88 nm. The two solid surfaces are mirror images of each other. Red colored points () and 

black colored points () denote the grafting positions of chains (g-points) and the centers of squares formed by the 

grafting positions (c-points), respectively. The surface grafting density increases implicitly in each panel from left 

to right, with values equal to; ζg = 0.06 nm
–2

 (a), 0.14 nm
–2

 (b), 0.25 nm
-2

 (c) , 0.39 nm
–2

 (d), 0.56 nm
–2

(e). Profiles 

are accumulated separately along the red and blue straight lines shown in the bottom part of the picture. 

The system consists of polystyrene (PS) chains grafted on a silica (SiO2) planar surface, 

in contact with a polymer melt of the same chemical constitution as the grafted chains. In this 

special case where the chemical composition of the grafted and matrix chains are identical, the 

entropic contributions to the free energy dominate the thermodynamics.
308

 Previous 

experimental
76

 and computational works
57,277,321

 have been performed considering polystyrene 

(PS) chains grafted on a silica (SiO2) plates, embedded in polystyrene melt. Herein, all 

calculations were carried out in the grand canonical ensemble at a temperature equal to 

T = 500 K. The PS-SiO2 interactions are described with the Hamaker potential
272

 using the 

interaction parameters, APS and 
2SiOA , and the effective radii, ζPS and 

2SiO , presented in  

Table 5.2. Note that, in the representation used, each PS repeat unit is mapped to two segments. 

The calculations were performed with RuSseL 3D; an in-house developed code which is 

designed to run calculations based on SCFT in three dimensional systems, using the finite 

element method.
275

 The initial condition of the grafting points is evaluated exactly on the desired 

points of the domain and the delta function is evaluated as the inverse volume assigned to the 

node.
275

 The main advantage of FEM is expected to be that each grafting point is explicitly 

(a) (e) (c) (b) (d) 
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attached on a single node of the spatial mesh. In the 3D calculation, we expect to obtain different 

structural results (e.g., density profiles) as we move across the z axis for different (x,y) values. 

To explore this, we define the g-points (black dots in Figure 5.4) on the surfaces, which 

correspond to the grafting points, and the c-points (red dots in Figure 5.4) as the centers of the 

squares defined on each silica surface by the g-points. By symmetry, the lines connecting pairs 

of corresponding g- or c- points on the two surfaces are normal to the surfaces, i.e., parallel to 

the z axis (Figure 5.4). The structural properties for both grafted and matrix chains are evaluated 

along these lines, which connect opposing g- and c-points. The evaluations along these different 

lines were performed across a broad parameter space spanned by surface grafting density ζg , 

grafted chain length Ng, and swelling ratio Nm/Ng.  Specifically, values of ζg = {0.06, 0.14, 0.25, 

0.40, 0.56} nm
–2

, Mg ={5, 10, 15, 20, 25} kg/mol (or Ng ={100, 200, 300, 400, 500} monomer 

segments) and  Nm/Ng ={0.25, 0.5, 1.0, 2.0, 3.0} were explored. According to ref 255, as long as 

the matrix chains are longer than the grafted ones, the latter are not perturbed considerably. The 

results were plotted using relevant software.
322

 

Table 5.2. Parameters of the calculations 

 
parameter value reference 

system T 500 K 255 

chain 

stiffness 

bK 1.83 nm 255 

lc-c 0.154 nm - 

γ 0.829 193 

mmonomer 52.08 g/mol - 

Hamaker 

hHS ~0.4 nm - 

ζPS 0.37 nm 255 

ζSiO2 0.30 nm 255 

APS 5.84·10
-20

 J 255 

ASiO2 6.43·10
-20

 J 255 

Helfand 
κT 3.97 (GPa)

-1
 

 
ρmass,bulk 953 kg/m

3
 255 

Edwards 

diffusion 

Γs 0.5 segs 
 

s
 

200 segs - 
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 Results 5.4

5.4.1 Capped/Free Interfaces 

The present section discusses the structure of vacuum/melt (VM) and solid/melt (SM) 

interphases and the surface and adhesion tension, respectively, calculated from both our one 

dimensional (SCFFD: RuSseL1D)
323

and three-dimensional code (SCFFEM: RuSseL3D). The 

results obtained from these systems will be used as a proof of the efficiency of the SCFFEM 

methodology. In order to achieve the same results with SCFFEM as those achieved via SCFFD, 

extremely high density meshes are required, making the calculations time consuming. For that 

reason, a study of the behavior of the system has been undertaken to accelerate the whole 

process without significant accuracy cost.  

5.4.1/a Validation of SCFFEM 

Figure 5.5 presents the reduced density profile φ(r) obtained with the three-dimensional 

SCFFEM
275

 method for a free-standing thin film of polyethylene melt at 450 K. The 

corresponding solution of the planar thin film problem with the one- dimensional finite 

differences method (SCFFD)
26

, using exactly the same parameters, is presented with red points. 

This is the converged solution using the actual value of the isothermal compressibility of molten 

polyethylene, following the statistical mechanical approach developed by Daoulas et al.
24

, based 

on a simplified, Helfand-type effective Hamiltonian for polymer-polymer interactions with no 

gradient correction. The finite element mesh of the converged solution consists of 418,064 

elements and 587,575 nodal points, while the Finite differences solution utilized 2,000 points. 

The results for all nodal points in the three-dimensional mesh collapse onto a single curve, and 

this is expected, since the problem is in fact one-dimensional.  

The density profile exhibits qualitatively the expected shape, also seen in atomistic 

simulations. It starts off at zero at the extreme edge of the film and rises in a sigmoidal fashion 

as one moves towards the bulk polymer region, assuming its bulk value at a position less than 

0.25 
1/2

2

gR  from the extreme edge. As we have shown in chapter 3, the square gradient theory 

combined with a free energy density given by a more sophisticated Sanchez-Lacombe EoS is 

needed to obtain quantitatively realistic density profiles. However, for validation purposes this 

model is sufficient.  



Chapter 5. A Self-Consistent Field Finite Element Method 

 

158 

 

Figure 5.5. Reduced segment density profile φ (r) in a planar thin film of molten polyethylene as a function of 

distance z normal to the film as obtained by our three-dimensional Finite Element Method (SCFFEM, RuSseL3D) 

and as obtained by a one-dimensional finite difference solution of the same problem (SCFFD, RuSseL1D). The film 

edge is on the left and the middle of the film, where bulk conditions prevail, is on the right. The case which refers to 

the real compressibility, T = 1.43 GPa
-1

, converged in real time with Russel3D. In the inset, we demonstrate the 

self-consistent field per segment, w (z)/ kBT in a planar thin film of molten polyethylene, plotted as a function of 

distance z normal to the film. 

Setting the value of γsp equal to zero in eq 5.62 we can calculate the surface tension of 

the polyethylene free film. The asymptotic value of the surface tension obtained from the 

solution of the SCFFD problem is 63.99 mJ/m
2
, while the corresponding surface tension 

obtained from the SCFFEM is 63.51 mN/m. This supports the equivalence of the two techniques 

and validates the methods we have developed. The experimentally
131,324

 measured surface 

tension of PE at 450 K is γs= 28.1 mJ/m
2
, which is in good agreement with the surface tension 

estimated by our atomistic MD simulations and results from the SCF_SL-SGA model, but not 

with the SCFFEM and SCFFD presented here. The reason for this discrepancy between SCF 

values and experimental ones is the use of the Helfand approximation
90

 in the effective 

Hamiltonian of the SCFFEM and SCFFD calculations. While this approximation is satisfactory 

for systems where the local density does not depart significantly from its bulk value, it is not 

appropriate for free surfaces, where the local density drops down to zero.   

The corresponding converged solution for the self-consistent field w'(r) in the case of the 

freely standing polyethylene film is shown in the inset of Figure 5.5. The finite element and 

finite difference solutions are practically coincident, confirming the correctness of the SCFFEM 

approach. Again, excellent agreement between the three-dimensional finite element and the one- 
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dimensional finite difference results is observed, confirming that both the formulation and the 

computational implementation of the new SCFFEM methodology are correct. 

 

Figure 5.6. Polymer volume fraction profile φ(z) in a planar thin film of molten polyethylene between graphite 

plates plotted as a function of distance z, measured in Rg units, normal to the film as obtained by our three-

dimensional Finite Element Method (SCFFEM, RuSseL3D) and as obtained by a one-dimensional finite difference 

solution of the same problem (SCFFD, RuSseL1D). The case which refers to the real compressibility T = 1.43 GPa
-

1
 converged in real time in Russel3D. The profile from our SCFFEM calculation coincides with that calculated by 

Daoulas et al.
24

 and Theodorou et al.
31

 from a SCFFD calculation. The black line displays the atomistic simulation 

data calculated by  Kritikos et al.
325

 In the inset, the self-consistent field per segment w (z)/ kBT is plotted as a 

function of distance z normal to the film. 

The next challenge was to validate the new method for the case of a planar thin film of 

molten polyethylene in contact with graphite plates (―capped‖ film).
2
 In order to solve this 

graphite/polymer system, we made an initial estimation of the field, based on the solution for the 

freely standing film of polyethylene (discussed above). The finite element and the finite 

differences system discretization parameters are the same with the corresponding ones of the 

free polymer standing film. The solutions we get from the 3D Finite Element method and the 1D 

Finite Difference method are identical, as presented in Figure 5.6. Furthermore, the solutions of 

both techniques are compared with molecular dynamics results obtained by Sgouros.
104

 As 

Daoulas et al. pointed out in their work,
24

 the SCF calculation cannot reproduce the oscillatory 

behavior of the segment density close to the solid surface, whose characteristic length is 

commensurate with the segment diameter and is readily observed in atomistic simulations. It 

does, however, reproduce the increased segment  density near the attractive solid surface. 
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Qualitatively, the SCF approach provides a smeared picture of the polymer density variations 

inside the area subjected to the effect of the potential Us(r). 

The interaction potential between the polymer and the substrate, Us(r), was tuned
24

 in 

order to reproduce the total energy of adsorption and the characteristic length scale of the 

density variations. The value of the adhesion tension obtained from the solution of the SCFFD 

problem was 71.86 mN/m, almost identical to the value of 71.84 mN/m obtained from 

SCFFEM. In addition, the adhesion tension is in good agreement with the adhesion tension 

estimated by atomistic MD simulations, 70 ± 10 mN/m. Following the work of Theodorou et 

al.
31

 and Girifalco and Good
52

 and considering that experimental data on interfacial 

thermodynamic properties of the polyethylene/ graphite system are not readily available,  the 

adhesion tension can be expressed in terms of the geometric mean of the surface tensions of the 

liquid and the solid as follows: 

 1/2

s sp s p2 ( ) p        (5.63) 

The experimentally measured surface tension of PE at 450 K is γp=28.1 mJ/m
2
, and that 

of graphite
326

 is γs = 115 mJ/m
2
. On the basis of these values, the experimental estimate of the 

adhesion tension, taking the interaction parameter Φ =1, is (γs − γsp) = 85.6 mJ/m
2
. 

5.4.2 Study of the Behavior of the Solution 

5.4.2/a  h-,r-and p- Refinement 

In Figure 5.7 the reduced density profile φ(z) is illustrated in a planar thin free standing 

polyethylene film a function of distance z in Å normal to the film as obtained by SCFFEM, in 

3D, with varying mesh density applied, compared with the solution obtained by SCFFD, in 1D. 

As shown in the previous section 5.4.1/a, the profiles become identical, proving the direct 

correspondence between two methods. Herein we use the SCFFD volume fraction profile 

solution as a reference to compare with the solution obtained by SCFFEM with various mesh 

densities. The system we use to explore this feature is the free standing polymer film described 

in section 5.3.3. The difference between the solutions illustrated in Figure 5.7 indicates the 

accuracy achieved in the SCFFEM solution. 

A discrepancy between density profiles is clear in Figure 5.7(a-c). The coarser meshes 

which correspond to these densities are illustrated in Figure 5.3. These mesh densities are 

definitely inappropriate for the considered system. The SCFFEM solution fails to even capture 
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Figure 5.7. Polymer volume fraction profile φ(z) in a planar thin free standing polyethylene film plotted as a 

function of distance z normal to the film, in Å, as obtained by the three-dimensional SCFFEM method (blue line) 

with varying mesh density, compared with the solution obtained by one-dimensional SCFFD (red line). The 

difference in volume fraction profile solutions illustrated indicates the accuracy achieved in SCFFEM The plots 

(a-h) corresponds to uniform meshes with parameters listed in Table 5.1.Moving from left to right and from top to 

bottom the mesh density increases. The plot (i) corresponds to a more efficient mesh, which is finer at the 

boundaries and coarser in the middle, and therefore provides better accuracy in solutions with steep gradients. The 

actual meshes used are depicted in Figure 5.3.  

the position where the density begins to fall from its bulk value as the vacuum is approached. 

Proceeding to the plots shown in Figure 5.7(d-f) we see that, as the mesh density increases 

(compare mesh depictions in Figure 5.3), the disparity between the 3-D SCFFEM and the 1-D 
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SCFFD solutions subsides. SCFFEM can now capture the position of the polymer vacuum 

interface with accuracy. Nonetheless, noise is encountered in the strongly curved area of the 

reduced density profile. The noise, which is experienced in the finite element solution, is due to 

the fact that all nodal points in the three-dimensional mesh are projected onto a single curve.  

For the solutions obtained from SCFFEM and presented in Figure 5.7(g-h) extremely 

fine meshes were used, which consumed a great deal of computational time compared to the 

finite difference scheme. On the other hand, the noise is drastically reduced and the profiles 

become nearly overlapping. An interesting observation which can be made in Figure 5.7(h) is 

that, despite the symmetry of the system, the profiles are not perfectly symmetric. This is a 

common issue encountered in the finite element method when the domain is unable to be 

discretized into elements with the same shape and volume. The finer the mesh becomes, the 

more time consuming is the solution of the Edwards‘s equation. To overcome this problem, a 

more sophisticated meshing scheme was applied. Concerning the profiles presented in Figure 

5.7(h) and Figure 5.7(i), although they seem identical, a much different mesh was applied to 

retrieve each one of them. The mesh applied in Figure 5.7(i) was coarser in the bulk region, but 

retained a much finer density near the vacuum edges where the gradients are steeper (see Figure 

5.3). Without losing the desired accuracy, we take advantage of the finite element method, 

which allows us to change the mesh resolution between domains without much effort.  

Having established that a mesh which is finer at the boundaries and coarser in the middle 

yields the same solution as a finer mesh in the whole domain, a question arises. How coarse 

should the inner mesh be? Herein we describe a method for choosing the optimal mesh density 

for the inner domain. For havg equal to 2 Å near the surfaces, higher accuracy is provided in 

solutions with steeper gradients. In the middle there is no need for the mesh to be so dense, since 

the gradients become zero. Keeping the havg constant near the surfaces and increasing in at the 

bulk region, the time needed for a single iteration decreases (for linear and quadratic 

interpolation functions). As illustrated in Figure 5.8, with increasing average element size of the 

inner mesh (mesh becoming coarser), the time decreases sharply and reaches a plateau. The 

point where the plateau begins corresponds to the optimum havg. Below this point, the gain in 

speed is negligible compared to the accuracy we lose.  

The above procedure is commonly referred to as h-r refinement. Increasing the degree of  

element method applied in this work, p-refinement can be implemented by changing from first 
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Figure 5.8. The method for the construction the mesh, which is finer at the boundaries and coarser in the middle. 

For havg equal to 2 Å, better accuracy is provided near the surfaces where the solution  has steeper gradient. In the 

middle there is no need for the mesh to be so dense. Keeping the havg constant equal to 2 Å near the surfaces and 

increasing it in the bulk region, the time needed for a single iteration decreases (for both linear and quadratic 

interpolation functions). 

to second or higher degree tetrahedral elements. In Figure 5.9(a), the time needed for a single 

iteration (titeration) is plotted versus the number of mesh nodal points for both linear and quadratic 

interpolation. For the same number of mesh nodes, the time consumed for a single iteration is 

roughly the same with quadratic as with linear elements, the latter exhibiting slightly higher 

speed. It is evident that the number of nodal points affects the time spent for an iteration, which 

is reasonable given the eqs 5.56-5.58, where we can see that the size of the matrices depends on 

the number of nodal points. Figure 5.9(b) depicts the effect of the number if mesh elements in 

the speed of iterations for first and second order tetrahedral elements. The meshes are presented 

in Table 5.1, where it is noticeable that a mesh comprising the same number of first order 

elements can have considerably smaller number of nodal points than another with second order 

elements. This difference increases when the mesh becomes denser. Figure 5.9(c) demonstrates 

how the average element size (havg) affects the time needed for a single iteration for both linear 

and quadratic tetrahedral elements. The time for a single iteration and havg exhibit an inverse 

dependence. As havg approaches zero, titeration goes to infinity. Note that havg can be directly 

compared to the spatial domain discretization of the 1D finite difference method. For a mesh 

with havg roughly equal to 0.2 nm (corresponding to approximately 235,000 nodal points), the 
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3D SCFFEM needed 120 to 130 seconds for one iteration, while for the same iteration, 1D 

SCFFD needs 0.002s.  

 

Figure 5.9. Time needed for a single iteration for linear and quadratic interpolation functions versus (a) number of 

nodal points, (b) number of elements and (c) average element size. The parameters of the meshes are presented in 

Table 3.1. 

5.4.2/b Mesh Convergence Criterion  

As mentioned in the above section, the calculations performed with SCFFEM used a 

high density mesh. The size of the matrices increased with the number of elements and so did 

the time needed for a single iteration. On the other hand, we use as convergence criterion the 

difference of the relative   change between two sequential iterations, which is required to be 

below a tolerance (in our case, 10
-5

kBT ). We can see that, despite the fact that the same 

convergence criterion is satisfied in all graphs presented in Figure 5.7, clearly not all curves 

exhibit the same accuracy. Considering the fact that the iterations needed for the solution to 

converge can vary and increase abruptly, especially when dealing with realistic 

compressibilities, a criterion for mesh quality is required.  

In Figure 5.10 we address the system presented in section 5.3.3, but the real 

compressibility demand is relaxed. The experimentally measured compressibility of PE at  

450 ℃ is 1.43 GPa
-1

. Herein, the compressibility was altered to a value 10 and 100 times higher 

than the real one. The system of equations was solved for all the mesh densities described in 

subsection 5.4.2/a. The increase in compressibility results in a decreased surface tension, which 

is calculated by eq 5.62, and in the number of iterations needed for the system to converge. In 

order to compare the results from different compressibility values, the variable γcalc/ γconv is 

introduced, where γcalc is the surface tension calculated by eq 5.62  and γconv is the surface 

tension calculated from both SCFFD and SCFFEM (when an extremely dense mesh is applied). 
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When the mesh density increases, γcalc/ γconv converges to 1. The field relaxation parameter mixa  

is constant and the same for all the systems.  

 

Figure 5.10. Iterations needed for the system to converge versus number of nodal points for 3 different 

compressibility values: κT=143. GPa
-1 

(red line-rectangle), 14.3 GPa
-1 

(red dash-circle) and 1.43 GPa
-1 

(red dots-

diamond). ―Reduced calculated surface tension‖ (γcalc/γconv) versus number of nodal points for the same 

compressibility values: κT=143. GPa
-1 

(black line-rectangle), 14.3 GPa
-1 

(black dash-circle) and 1.43 GPa
-1 

(black 

dots-diamond). 

The discrepancy between density profiles shown at Figure 5.7 gives rise to a difference 

in the ―reduced calculated surface tension‖ ( γcalc/ γconv), presented in Figure 5.10. The ratio 

γcalc/γconv varies from 0.2 to 1, 0.5 to 1, 0.8 to 1 for a value of 143.0 GPa
-1

, 14.3 GPa
-1

 and 1.43 

GPa
-1

, respectively. The more compressible the model is, the more sharply the surface tension 

converges to γconv. As the number of nodal points increases, the ratio γcalc/ γconv reaches a plateau, 

indicating a satisfying precision of the model. The higher the compressibility, the lower the 

number of nodes (implying a coarser mesh) required to converge to the solution. The quantity 

γcalc/γconv can be considered as a reliable accuracy convergence criterion for more complicated 

models. Another parameter depicted in Figure 5.10 is the number of iterations needed for the 

system to converge. It is clear that the number of iterations required increases with increasing 

mesh density. This feature becomes an additional burden for the SCFFEM to be taken into 

account. It is obvious that the number of required iterations also reaches a plateau, and this can 

be an indicator for the accuracy convergence criterion, since the plateau in number of iterations 

occurs a bit before that in the reduced calculated surface tension. 
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5.4.2/c Initial Field Value   

Understanding the behavior of the successive substitution scheme is important for developing a 

concrete converging technique for SCFFEM. A central role in the scheme is played by the initial 

value of the field inserted in the Edwards diffusion equation. For compressibility values closer to 

the real one, feeding the field generated by the convolution integration back into the Edwards 

diffusion equation causes divergence of the successive substitution scheme. Mixing the old field 

with a small fraction of the new one makes the system stable and leads to convergence. We take 

advantage of the relaxation technique and study two possible ways to reach the solution.  

 

Figure 5.11. First continuation scheme  Evolution of the field during the converge procedure with a value of 

compressibility: κT = 1.43×10
-9 

Pa
-1 

 and with constant field relaxation parameter, amix.=0.005. As can be seen in the 

graph, the initial field is zero everywhere and 700 iterations are needed for convergence. When second order 

tetrahedral elements are used (not shown), a continuation scheme with respect to the compressibility is required; 

approximately the same number of iterations is needed at each individual ―compressibility step‖. 

The first continuation scheme begins with zero or random initial value of the field. The 

mixing parameter is kept constant and depends on the chain length, the compressibility, the 

characteristic ratio and the bulk polymer segment density. Figure 5.11 depicts the fluctuations of 

the field projected to dimension z, for the experimentally measured compressibility of PE at 450 

℃. The initial field w΄(z)/ kBT is zero everywhere in the domain, and in approximately 100 

iterations it reaches the value of 1.5 near the surfaces. In order to reach the value of 3.41 on the 

surfaces (converged value), approximately 700 iterations are required. An interesting 

observation concerning this technique is that, if we use quadratic elements to discretize the 

domain, the system diverges. In order to achieve convergence with the second order tetrahedral 
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elements, the continuation scheme must begin with high melt compressibility and continue by 

gradually reducing the compressibility to its correct value. This approach demands convergence 

at every compressibility step and was proven to be too time consuming for realistic 

compressibilities, since, in every compressibility step, a large number of iterations is required to 

achieve convergence. 

 

Figure 5.12. Second continuation scheme   (a) Evolution of the field during the convergence procedure with a value 

of compressibility: κT = 1.43×10
-9

Pa
-1 

, using variable amix. Initial field calculated from the first iteration with zero 

field as  input and amix=1.   180 iterations are needed for amix to reach 0.005 and the field profile to stabilize. (b) 

After amix reaches the value of 0.005, nearly another 200 iterations are needed for the system to converge. 

A second, more direct approach was implemented in order to save computation time. In 

this technique, as initial guess for the field we used the field configuration calculated from the 

first iteration. The first iteration had zero field as input and amix=1. The initial field configuration 

is presented in Figure 5.12(a); it differs from zero. Near the surfaces it reaches from the 

beginning the converged value, but it exhibits smoother gradients than the converged field in the 

rest of the domain. In this direct approach, the relaxation parameter does not remain constant. 

Starting with extremely small mixing fractions for the new field, we attempt to converge to the 

solution. The initial mixing fraction was set equal to 0.5×10
-131

. In every iteration, the mixing 

fraction was multiplied by a factor of 10. When the mixing fraction reaches the same value as in 

the previous technique, it is kept constant. This procedure bypasses the intermediate 

compressibility steps and reaches the target compressibility with quite remarkable performance. 

The convergence following this strategy, which we call the ―straightforward approach,‖ is 
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shown in Figure 5.12(a). After amix reaches the value of 0.005, nearly another 200 iterations are 

needed for the system to converge. This process is depicted in Figure 5.12(b). 

5.4.3 Grafted Chain System 

The current section presents structural and thermodynamic properties of polymer grafted 

surfaces in contact with chemically identical matrix chains. The SCFFEM is a three-dimensional 

method, as it is shown in Figure 5.13. Although we use it in a planar geometry for demonstration 

purposes, the capabilities for implementation in more complicated geometries are indisputable. 

The grafted chain system is captured with small elements, demonstrating how adaptable and 

flexible the FEM method can be. As declared in section 2.2.1, the initial condition is adjusted for 

every grafted chain. The number of matrix chains can fluctuate, but the number of grafted chains 

in the system remains constant, since they are chemically grafted to the solid surface. 

 

Figure 5.13. The grafted chain ―diffusion‖ equation against matrix chain ―diffusion‖ equation at several reduced 

contour length steps. We illustrate the probability of finding a segment of a grafted(qg) (a-d) and a matrix(qm) (e-h) 

chain initially and after 5, 10, 100 contour length steps, respectively, throughout the volume of the domain.  

In Figure 5.13, we illustrate the probability of finding a segment of a grafted and of a 

free chain after various contour length steps in the volume of the domain. It is obvious that 16 

chains are grafted to each substrate surface, resulting in a grafting density of 0.25 nm
-2

. The 

probability of finding the grafted segment of a grafted chain (corresponding to contour length 

equal to zero) is zero everywhere inside the domain except for the positions of the grafted 

points. As the contour length steps increase, the probability diffuses from the surfaces to the 

(a) (c) (b) 

(h) 

(d) 

(g) (f) (e) 
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center. In contrast to the grafted chains, matrix chains begin with zero probability of finding a 

segment at the interface and equal to 1 everywhere else. The two systems of chains are 

connected to each other through the chemical potential field, which determines the way in which 

the propagator of both kinds of chains behaves. 

5.4.3/a Reduced Density Profiles  

Figure 5.14 depicts the reduced density profiles of PS grafted chains in the presence of a 

Hamaker potential exerted by the silica walls, as a function of ζg, Mg, and Nm/Ng.  The behavior 

of grafted chains can be classified into three distinct regimes depending on the combinations of 

ζg and Ng: The structural behavior of both grafted and matrix chains varies with position, as we 

move along directions perpendicular to the interface. In previous SCF works addressing grafted 

chain systems, the grafted chains were handled via a smearing technique, hence it was not 

possible to distinguish how these reduced density profiles vary as one moves laterally (along the 

x and/or y directions). The results obtained from the one dimensional model,where the grafting 

points are smeared, are demonstrated with dashed lines in Figure 5.4. As illustrated in Figure 

5.4, the grafting points (g-points) denote the positions where the grafted chains are tethered to 

the silica surface, while the central points (c-points) denote the centers of squares formed by 

adjacent grafted points. It is expected that the density profiles of grafted chains, along the  

z-direction, are maximal at the g-points and minimal at the c-points. In addition the profiles 

corresponding to the smeared grafting points assume values between the profiles at g-points and 

c-points. 

In the left column of Figure 5.14, a wide range of reduced segment densities is 

illustrated. As we move downwards along this column in the figure, the grafting density 

increases, while the molecular weight of grafted chains, Mg, and the swelling ratio, Nm/Ng, are 

kept constant. The mushroom regime is depicted in the first three graphs (Figure 5.14(a-c)), 

where the matrix chains are seen to reach the solid wall. In Figure 5.14(c), the regime between 

mushroom and dense brush is displayed. The number of matrix chains which reach the 

interfacial regions is small and localized in the vicinity of m-points. In Figure 5.14(d), a dense 

brush is formed on each surface, with small interpenetration of the matrix chains. In Figure 

5.14(e) grafted chains have completely expelled the matrix chains. At low grafting densities, the 

matrix chains of the melt penetrate the brush and there is a broad brush-matrix polymer 
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interface.  With increasing grafting density, a gradual growth of an almost pure layer of grafted 

chains on the substrate is observed.  

The most striking result emerging from the left-hand side column of Figure 5.14 is that 

the reduced density profiles of grafted chains connecting two opposing g-points exhibit a sharp 

peak near the interfaces. When the grafting density increases, the peak of the density profiles 

becomes less pronounced. It is important to note that the decrease in the peaks is reasonable, 

since at low grafting densities the chains behave like mushrooms and therefore they look like 

reflected random coils with strong presence near the solid surfaces, whereas at high grafting 

densities crowding forces them to extend further into the bulk. Our findings appear to be in good 

agreement with the reported literature. Ndoro et al.
138

 report a peak which exceeds the bulk 

density by at least a factor of 1.4. In addition, according to Ndoro et al.
138

 the total monomer 

number density profiles exhibit a peak equal to 1.9 times the bulk density, while this peak 

decreases with increasing grafting density. Vogiatzis et al.‘s 
143

 findings appear to support our 

conclusions; they observed a similar behavior in studying the structural features of polystyrene 

brushes grafted on spherical silica nanoparticles immersed in polystyrene. In that work, they 

used a Monte Carlo methodology based on a mean-field Hamiltonian.  

In the central column of  Figure 5.14, a wide range of chain lengths is illustrated. Moving 

downwards, the chain length increases, while ζg and Nm/Ng are kept constant. The peak 

exhibited by the reduced density of grafted chains starting from g-points is fixed at 1.6 for all 

chain lengths. The matrix chains reach the solid wall even for higher values of Ng. With 

increasing Ng,  the density of matrix chain segments decreases, whereas the one of grafted chain 

segments increases. Moreover, the reduced density of grafted chain segments at c-points and g- 

points near the surfaces is quite different for small Ng, while, with increasing Ng, this difference 

is reduced. If we now turn to the matrix chain segment profiles at c-points and g-points near the 

surfaces, they tend to translate downwards almost uniformly with increasing Ng; an almost 

constant difference is observed between c-profiles and g-profiles of matrix chains for all grafted 

chain lengths. 

 For further investigation, a comparison between graphs with the same ζg Ng product but 

different values of ζg and Ng is revealing. Plots of Figure 5.14(c) and Figure 5.14(j) display 

results for ζg=0.25nm
-2

, Mg=10.4kg/mol and ζg=0.06nm
-2

, Mg=41.7kg/mol, respectively.  Note 

that Nm=Ng in both cases.  Although they belong to the same region according to ref 237, the  
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Figure 5.14. Reduced density profiles of PS grafted and matrix chains as a function of ζg, Mg and Nm/Nn Profiles of 

matrix chains move across a direction perpendicular to the interface starting from c-points(red) and g-points 

(green). Profiles of grafted chains move across a direction perpendicular to the interface starting from c-points 

(black) and g-points (blue). With dashes the results for  reduced density profiles of PS grafted and matrix chains as 

obtained from the smeared 1-D model (SCFFD). 
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density profiles differ. The matrix chains penetrate the region occupied by the grafted chains 

more easily in the system with higher grafting density. The brush thickness of the system with 

lower molecular weight of grafted chains appears to be smaller. Moreover, in the higher Ng 

system the matrix chains seem to have the same density throughout the domain, while in the 

lower Ng system the matrix chains dominate the bulk region and are absent from the interfaces.  

In the right hand-side column of Figure 5.14, a wide range of swelling ratios Nm/Ng is 

illustrated. Moving downwards, the swelling ratio increases, while ζg and Ng are kept constant. 

In Figure 5.14(l), it is interesting to see that the reduced profiles starting from c-points are 

almost identical for the matrix and grafted chains. Smaller matrix chains can easily move and 

penetrate into the region occupied by the grafted chains. With increasing swelling ratio (Figure 

5.14(l-n)), this penetration ability of the matrix chains decreases. Experimental,
136

 SCF,
307

 and 

molecular dynamics (MD)
327

works on planar polymer brushes, in a chemically identical matrix, 

have shown that the matrix wets the polymer brush only when the melt chains are shorter than 

the chains of the brush. When the matrix chains become shorter than grafted chains (Figure 

5.14(o-p)), the density profiles remain unchanged. The increase in the swelling ratio seems to 

have no effect on the matrix segments penetrating the brush. It is experimentally observed
328

 that 

―autophobic dewetting" occurs when the brush and the matrix share the same length. Longer 

melt chains spontaneously dewet the brush, because the gain in mixing entropy cannot overcome 

the conformational entropy loss associated with the matrix chains penetrating the brush. 

5.4.3/b Reduced End – Middle Segment Distribution 

Figure 5.15 depicts the reduced density profiles of the end segments of grafted and 

matrix chains on lines connecting c-points and g-points across the investigated parameter space. 

Of particular interest is that, in all graphs, the end segments of both grafted and matrix chains 

appear to prefer to be near the c-points rather than the g-points. As expected, there is no 

difference in the bulk region between end segments starting from c-points or g-points.  

With increasing grafting density and keeping the remaining parameters constant  

(Figure 5.15(a- e)), there is a rise in the reduced density profiles of the grafted chain ends in the 

whole domain. At higher grafting densities the grafted chain end profiles are shifted towards the 

bulk region, confirming that the chain ends are segregated far from the surface, suggesting that 

the grafted chains are stretched. The matrix chain ends appear to dominate in the bulk region, 

even at higher grafting densities. As anticipated, near interfaces the matrix chain ends reach  
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Figure 5.15. End segment distributions of PS grafted chain systems as a function of ζg, Ng and Nm/Ng. Profiles of 

matrix chains are moving across a direction perpendicular to the interface starting from c-points (red) and g-points 

(green). Profiles of grafted chains are moving across a direction perpendicular to the interface starting from c-points 

(black) and g-points (blue). 
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more easily c-points than g-points. The presence of matrix chain ends at the interfaces decreases 

with increasing grafting density. 

As shown in Figure 5.15(g-k), with increasing molecular weight of grafted and matrix 

chains, and retaining the (low) grafting density and swelling ratio constant, the grafted chain 

ends increase near interfaces more sharply than in the bulk region. Interestingly, for high values 

of molecular weight, the grafted chain ends seem to prefer the interface rather than the bulk 

region. The reduced density of matrix chain ends assumes an approximately constant value in 

the whole domain. Again, a preference of matrix chain ends exists for c-points rather than g-

points.  

Plots of Figure 5.15(c) and Figure 5.15(j) display results with the same ζg Ng .  In both 

cases, Nm=Ng. The grafted chain ends vary throughout the whole domain in the system with 

lower grafting density, exhibiting a peak near 1.0, while in the system with higher grafting 

density the grafted end chain profile is smoother. The opposite behavior is revealed for the 

matrix chain ends. In the higher Ng system the matrix chain ends seem to have the same density 

throughout the domain, while  in the low Ng system, the matrix chain ends dominate in the bulk 

region and are absent near the interfaces. 

Figure 5.15(l-p) illustrate how the swelling ratio affects the chain end profiles. Our 

findings are consistent with previous results
136,307,327

 confirming that the smaller the matrix 

chains are, the more easy it is for them to penetrate into the region occupied by the grafted 

chains. The above statement is proved by the fact that, when the swelling ratio is lower than 0.5, 

the matrix chain ends extend in the whole domain, indicating a presence of matrix chains in the 

brush region. As the swelling ratio increases, the matrix chain ends are pushed towards the bulk 

region. Finally, with increasing swelling ratio, the grafted chain ends have an enhanced presence 

near the interfaces. 

5.4.3/c Contributions to the Grand Potential 

Figure 5.16(a) presents the individual grand potential terms against the grafting density, ζg. The 

cohesive interaction term per unit solid surface ( coh solid/ S ) is practically insensitive to 

grafting density. The solid-polymer interaction term (Us /Ssolid) remains constant for all grafting 

densities, while the entropy term associated with the partition function of matrix chains 

(ΓΨm/Ssolid) exhibits a minor increase, which becomes larger at larger grafting densities, because 
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grafted chains claim more space in the interfacial region, leaving the matrix chains with fewer 

available conformations. With increasing grafting density, the entropy term associated with the 

grafted chains ΓAg/Ssolid and the field term ΓΨfield/Ssolid vary notably, especially for larger 

grafting densities. This is attributed to ρg exceeding ρseg/bulk due to chain crowding and enhances 

the cohesion of the brush. ΓAg/Ssolid increases steeply in the vicinity of higher grafting densities. 

This response is attributed to the stretching of the grafted chains due to crowding phenomena. 

The total grand potential ΓΨ/Ssolid , being a sum of all the above terms,  increases with increasing 

grafting density. According to Figure 5.16(d) the SCFFEM and SCFFD exhibit similar 

quatitative behavior.  

 

Figure 5.16. Partial contributions to the grand potential per unit area over the parameter space (ζg, Ng, Nm/Ng). 

Grand potential terms against: (a) the grafting density , ζg, keeping constant Ng=100, Nm/Ng=1, (b) the grafted 

chainlength , Ng, keeping constant ζg=0.625nm
-2

, Nm/Ng=1, (c) the swelling ratio , Nm/Ng  keeping constant 

ζg=0.25nm
-2

, Ng=100,obtained from SCFFEM-3D. (d-f) The partial contributions to the grand potential per unit 

area over the same parameter space (ζg, Ng, Nm/Ng) as obtained from SCFFD-1D. 

Figure 5.16(b) illustrates the individual grand potential terms against the grafted 

chainlength , Ng. Again, the cohesive interaction term per unit solid surface ( coh solid/ S ) is 

practically insensitive to chain length. Similar behavior is exhibited by the field term, 

ΓΨfield/Ssolid, and the solid-polymer interaction term, Us /Ssolid. The grafting density is rather 
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small and therefore these terms are not affected by the change in chainlength. The entropy term 

associated with the partition function of matrix chains (ΓΨm/Ssolid) exhibits a monotonic 

decrease, which is evident from eq 4.11, since Nm appears in denominator and at the same time 

the partition function Qm is rather insensitive to Nm  . This can be also explained by the fact that 

with increasing Nm the number of matrix chains per unit surface decreases. These values 

correlate favorably with figure 5b of  Sgouros et al.,
321

in which the dependence of  ΓΨm  with  

Ng is illustrated for constant Nm/Ng=1. The entropy term associated with the grafted chains 

(ΓAg/Ssolid) increases, indicating that there is an entropic penalty with increasing grafted chain 

length associated with grafted chain conformations. The most remarkable result to emerge from 

this plot is the behavior of total grand potential ΓΨ/Ssolid, exhibiting an initial decline due to the 

ΓΨm/Ssolid term, a minimum at chainlength equal to 200 skeletal bonds, and finally an increase 

due to ΓAg/Ssolid.  The one dimensional model results in the same exact prediction wherein the 

minimum is located at  Ng =200 as illustrated in Figure 5.16(e). 

Figure 5.16(c) shows the individual grand potential terms against the swelling ratio 

Nm/Ng. As in the two previous plots, the cohesive interaction term per unit solid surface and the 

solid-polymer interaction term remain almost constant with increasing swelling ratio. 

Unexpectedly, with increasing swelling ratio, the entropy term associated with the grafted chains 

and the entropy term associated with the partition function of matrix chains present the same 

qualitative behavior; initial decrease and eventual relaxation to a plateau value. This behavior is 

attributed to the stretching of the grafted chains due to crowding phenomena, because matrix 

chains are shorter and thus exhibit a larger number of available conformations when in the lower 

swelling ratio regime. With increasing swelling ratio, the matrix chains cannot easily penetrate 

grafted chains and they exhibit fewer available conformations due to increase in their chain 

length. ΓΨfield/Ssolid increases with increasing swelling ratio and this is attributed to the increase 

of segment density near interfaces. ΓΨ/Ssolid exhibits a monotonic decrease and finally reaches a 

plateau, which is in agreement with previous findings in the literature
321

  as well as  with the 

SCFFD-1D model as shown in  Figure 5.16(f) 

 Concluding Remarks 5.5

In this chapter we have coupled one theoretical methodology with one of the most important and 

widespread numerical techniques, in order to determine the equilibrium properties of polymer 

melts at interfaces: self-consistent field theory (based on a Gaussian thread representation of 
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chains) and the finite element method. To validate the results of our SCFFEM approach, we 

have used the system of a free standing molten polyethylene film and the interface between 

molten polyethylene and graphite as reference systems, which we are also studying with 

atomistic and mesoscopic simulations and for which a solution using one- dimensional finite 

differences (SCFFD) is available. Moreover, we compared the results against previous authors‘ 

implementations.
24,31

 

The results and assessment of the computational requirements of our new SCFFEM 

approach, for a polymer free surface and for a planar solid/polymer interface, were validated 

through the calculation of the surface and the adhesion tension. We prove that SCFFEM gives 

identical solutions with SCFFD and MD. Although the problem we solve was in fact one-

dimensional, our RuSseL code solves it in all three dimensions, without any bias in any 

dimension.  

An objective of this chapter was to develop a finite element computational methodology 

to explore the most critical parameter for finite element method: the mesh density and 

composition. At first, we investigated how the mesh density affects our solution and what is the 

optimum mesh density to accomplish the desired accuracy. For our realistic PE system with real 

compressibility, a mesh with average element size equal to 2 Å is needed. This mesh proved to 

be time consuming and we took advantage of the flexibility of the finite element method by 

applying a coarser mesh to the domain where no steep solution gradients are exhibited. We 

developed a technique to decide what the ideal mesh for this domain is. Additionally, we 

compared the time for a single iteration needed for both linear and quadratic elements, with 

respect to the number of nodal points, the number of elements, and the average element size. 

These tests revealed that first order tetrahedral elements enable faster convergence than second 

order tetrahedral elements for the same number of nodal points. 

Furthermore, we analyzed the stability of the integrodifferential system of equations in 

order to find out its behavior and convergence requirements. As a first  attempt, we chose to 

adjust the compressibility of the system. Different meshes were applied  for various 

compressibilities. We introduced the ―reduced surface tension‖ as a reliable criterion for system 

convergence with the desired accuracy. The number of iterations required for the system to 

converge was used as a second criterion for the obtained accuracy. In order to comprehend the 

behavior of the successive substitution scheme, different initial field configurations were tried. 
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In the classical approach, the relaxation parameter remained constant, while in our new ―straight 

forward approach‖, the relaxation parameter changed at each iteration.  The latter calculation 

proved to be quite efficient, since it reduced the total computation time with negligible cost in 

accuracy. 

Next, we considered  a system of grafted chains in a planar geometry. A polystyrene/silica 

interface with grafted polystyrene chains constitutes a convenient system. Implementation of the 

SCF-FEM approach in systems containing grafted chains at specific points of the solid surfaces 

was far from a trivial undertaking. As pointed out in Section 5.3, in the presence of grafted 

chains, two Edwards diffusion equations have to be solved, one for the matrix melt chains and 

one for the grafted chains. In each iteration, the equation for the matrix chains has to be solved 

first, as it is necessary for the evaluation of the initial conditions of grafted chains.  

Until now, a smearing in grafted chains was applied. We distinguish the grafting positions 

on the surfaces from those without grafted chains. On the one hand, ―g-points‖ designate the 

positions where the grafted chains are tethered to the silica interface. On the other hand, ―c-

points‖ designate the centers of the squares formed by adjacent grafting points. Reduced density 

profiles along lines connecting opposing g- and c- points were derived,  considering a parameter 

space comprising Ng, ζg and Nm/Ng. 

The reduced density of grafted chains on lines connecting two opposing g-points exhibits 

a peak near the surfaces. When the grafting density increases, the peak of the density profiles 

becomes less pronounced. This is in good agreement with previous works.
138,143

 With increasing 

molecular weight, the peak value remains unchanged. The matrix chains reach the solid wall 

even for higher values of Ng  and their profiles at the c-points and g-points near the interfaces 

exhibit a constant difference for all values of Ng. Systems with the same ζg Ng product, although 

belonging to the same region according to ref 237, exhibit dissimilar density profiles. Finally, by 

varying the swelling ratio, we have shown that the matrix wets the polymer brush only when the 

melt chains are shorter than the chains of the brush. Our findings corroborate previous  

results. 
136,307,327

. 

 The end segment distributions of grafted and matrix chains along lines connecting c-points 

and g-points were also investigated across the same parameter space. Of fundamental interest is 

the fact that end segments of both grafted and matrix chains appear to prefer to be near the  

c-points, rather than g-points. With increasing grafting density, it was revealed that grafted chain 
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ends spread in the whole domain. As expected, for higher grafting densities, the grafted chain 

ends prefer the bulk region. As might have been expected, for small swelling ratio values, matrix 

chain ends extend in the whole domain, confirming that the smaller the matrix chains are, the 

easier it is for them to penetrate into the region occupied by the grafted chains. 

Regarding the contribution to the grand potential, the present chapter investigates the 

individual grand potential terms, defined in the previous chapter, against grafting density, chain 

length, and swelling ratio. With increasing grafting density, ΓAg/Ssolid and ΓΨfield/Ssolid deviate 

notably, especially at larger grafting densities. This is attributed to chain crowding and enhances 

the cohesion of the brush and the stretching of the grafted chains. The total ΓΨ/Ssolid increases 

with increasing grafting density. With increasing chain length, ΓΨm/Ssolid exhibits a monotonic 

decrease, which is justified from eq 4.11. This can be also associated with the fact that with 

increasing Nm the number of matrix chains per unit surface decreases.  The ΓAg/Ssolid increases, 

indicating that there is an entropic penalty associated with grafted chain conformations. The 

ΓΨ/Ssolid term exhibits a minimum at chainlength equal to 200 skeletal bonds. With increasing 

swelling ratio, ΓAg/Ssolid and ΓΨ/Ssolid decrease and reach a plateau value due to crowding 

phenomena. Matrix chains are shorter and thus exhibit a higher number of available 

conformations in the lower swelling ratio regime. ΓΨ/Ssolid exhibits a monotonic decrease and 

eventually reaches a plateau which is in agreement with previous findings reported in the 

literature.
321
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 Main Conclusions and Innovations  6

The present Thesis addresses three major theoretical challenges in the field of field-theoretic 

calculations, and especially in self-consistent field theory of polymers. First, by including 

nonlocal terms from square gradient theory into SCFT of a free film polymer system, we 

obtained critical insight into its local segment-level structure and increased accuracy in 

predictions of polymer surface tension. Then, having verified the novel SCFT with SGA 

methodology, we have used it as a stepping stone to access the structural and thermodynamic 

properties of PNC and at the same time we reexamined the scaling features of grafted polymer 

layers, against experimental measurements and relevant theoretical predictions. Last but not 

least, prompted by the need to develop a better quantitative understanding of structure and 

interactions in polymer-matrix NC, we developed a new computational approach, based on 

SCFT combined with FEM for dealing with inhomogeneous polymer systems containing 

interfaces in three dimensions. The main contribution of this thesis was to build up a field 

theoretic approach based on the SCFT capable of providing fundamental understanding and 

giving answers to specific nanocomposite design-related problems, to prove its thermodynamic 

consistency, and to validate it against available experimental measurements. In the following we 

briefly summarize the innovations introduced by the dissertation at three levels: methodology, 

physical insight, and computational tools. 
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 Methodological Advances 6.1

 Formulation of grand partition function which relies on a generic excess Helmholtz energy 

functional, in such a way that any suitable equation of state can be applied to describe the 

non-bonded interactions among chain polymer segments. In conjunction with the 

aforementioned free energy functional, a square gradient term was introduced based on 

Square Gradient Theory, which allows to describe non-local effects and leads to more 

accurate estimates of density profiles and surface tensions. The formulation can be 

implemented in systems of arbitrary geometry consisting of either only free polymer 

chains or both grafted and free (matrix) polymeric chains.  

 

 Derivation of a closed form expression for the free energy density by employing a lattice-

based EoS, proposed by Sanchez-Lacombe, to calculate the grand potential and density-

dependent field in SCFT. Moreover, we have reexpressed the dimensionless influence 

parameter to benefit from the advantages of the non-local term approximation and 

transformed the SCFT formulation, enabling estimation of the influence parameter for 

each polymer based only on the parameters of the Sanchez-Lacombe EoS  

 

 Quite a long time ago, Theodorou
235

 introduced a method to calculate the number of 

chains passing through a surface drawn parallel to the interface anywhere within the film. 

The methodology, originally developed for a lattice fluid SCF model, was extended by 

Daoulas et al.
24

 and implemented in the continuous Gaussian thread model. The 

contribution of this thesis consists in deriving the necessary expressions for calculating the 

reduced chain shape quantity, allowing direct comparison of SCFT results with atomistic 

simulations in terms of the conformational properties of chains. Additionally, we have 

reformulated this quantity in a way that is applicable to spherical geometries as well. 

 

 Derivation of a thermodynamic relation between the grand potential and surface tension 

for the case of a film of polymer melt bounded by gas capable of yielding the surface 

tension for various polymers. This relation proved to be very accurate for calculating the 

surface tension as obtained from SGT density profiles, giving a more generic character to 

the formulation. 
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 Development of two techniques for evaluating the thickness of the reduced free polymer 

density profile capable of quantifying the sigmoid profiles obtained by various models. 

These two distinct strategies allowed measuring how symmetric, smooth, and wide a 

density profile is. 

 

 Development of a numerical formulation for Vapor-Liquid Equilibrium of a Sanchez-

Lacombe Fluid based on the Newton-Raphson method capable of calculating the densities 

and (common) chemical potential of both phases, as well as the vapor pressure. That 

calculation was incorporated in all models, even if in the simple Helfand model by 

calculating the isothermal compressibility of the liquid. 

 

 Development of a separate technique capable of classifying chain segments in free 

standing polymer chains into adsorbed or free. We modified this technique to GNP 

immersed molten polymer matrices to describe how matrix chains can penetrate the 

grafted chains.  

 

 Derivation of the segment balance equations dealing with the grafted and the matrix 

chains in the presence of the external field of the solid(s). We related the reduced grafted 

chain density with grafted and matrix  chain propagators, allowing the calculation of 

grafted chain density profiles. 

 

 Transformation of SCF equations from Cartesian to spherical polar coordinates so that 

they can be utilized in the case of a spherical nanoparticle with uniformly smeared grafting 

points on its surface. 

 

 Quantification of exponents of the power-law applied to describe the scaling of the height 

of polymer brushes with surface grafting density, grafted and free chain lengths, allowing 

us to evaluate the mean brush thickness and obtain a unique perspective on various brush 

regimes. Moreover, we introduced the measure brush thickness ratio, enabling us to make 

additional comparisons between the SCFT model and Alexander‘s model for 

incompressible melts.  
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 Derivation of thermodynamic contributions to the grand potential for the case of chains 

grafted on NP or planar surfaces in contact with a polymer melt capable of clarification of 

the enthalpic and entropic parts of energy. Likewise, the stretching free energy of grafted 

chains has been estimated with two different ways: from the configurational partition 

function of grafted chains and from the density profiles of the grafted chain ends. 

 

 A rigorous and efficient three dimensional finite element method based on tetrahedral 

elements for solving Edwards‘s diffusion equation has been developed. Tetrahedral 

elements are appropriate for arbitrary complex geometries and compatible with fully 

automatic mesh generations. The results from the new, three-dimensional finite element 

method are in excellent agreement with previous results based on a one-dimensional 

method. Moreover, in the three-dimensional formulation we employ a rigorous initial 

condition on the grafting points, evaluating the required delta function as the inverse 

volume assigned to the node. Previous efforts resulted in smearing of the grafted points, an 

approximation that is lifted with our new, three-dimensional FEM technique. 

 

 Development of a h-,r-,p-refinement technique capable of obtaining the ideal mesh density 

for finite element solution. The contribution of this thesis consists in deriving two criteria 

for obtaining the desired mesh density (one based on system iterations and a second one 

based on the grand potential/surface tension obtained), in discovering the optimal element 

size for bulklike domains that are represented more coarsely, and in the comparison of 

time needed for a single iteration between linear and quadratic element meshes.  

 

 A precise and timesaving iteration method was established by implementing an improved 

procedure for guessing the initial field imported into the Edwards diffusion equation and 

by tuning the relaxation parameter between iterations. This ―straight forward approach‖ 

was successfully validated, with significant reduction in the time needed for the system to 

converge. 
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 Physical Insight Obtained 6.2

By using the methodologies described above we have extended our understanding of materials 

in the following ways: 

 

 The model employing an excess Helmholtz energy density based on the Sanchez-Lacombe 

equation of state coupled with a square density gradient term achieves best agreement with 

atomistic simulation results. 

 

 The SCF-SGA model combines SCF models, which consider only the local density in 

describing chain interactions and produce steeper profiles, and SGA-based models, which, 

although capable of generating smoother and more realistic density profiles, do not 

incorporate entropic effects associated with the change of chain 

conformational/orientational distributions in response to the constraints present at the 

surfaces, thus overestimating the surface entropy.   

 

 As is well known for homopolymers where the ends are of the same chemical constitution 

as the middle segments, chain ends were found to segregate to the interfaces. The 

magnitude of this effect and the extent of the interfacial region dominated by the end 

segments can be estimated with accuracy by our SCF approach, as comparison with 

atomistic simulations shows. In addition, the temperature dependence of this effect is 

correctly captured by the theory. 

 

 Some discrepancy appears between SCF_SL+SGA and MD in the profiles of segments 

belonging to adsorbed and free chains, which is less significant for C260 chains than it is 

for C100 chains.  The reason for this discrepancy is that the Gaussian thread model 

employed does not fully capture local stiffness effects.  SCF qualitatively follows the 

atomistic results. The same behavior is seen in the loop and tail distributions of adsorbed 

chains. 

 

 An important structural feature of polymer melts at surfaces is the flattening of chains due 

to their preferential orientation parallel to the surface. Both atomistic and field theoretic 
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results show a relationship between the chain length and extent of the chain flattening 

region. In free polyethylene films of chains as short as C260 the shape profile from 

SCF_SL+SGA almost coincides with that from MD. The range of the flattening effect is in 

good agreement between theory and simulation, being on the order of 1.6 gR  . 

 

 The reduced influence parameter found to reproduce the atomistically calculated reduced 

density profile for the polyethylene surface was used for all polymers examined. The SCF 

conformational entropy contribution added by the SCF treatment in the Gaussian thread 

approximation increases the surface tension by 5-10%. 

 

 A nice feature of SCF-SGA model is that it accounts for two distinct length scales 

simultaneously: i) a monomeric one, set by the range of monomer interactions, governing 

properties of the liquid-vapor interface; ii) a polymeric one, set by the radius of gyration, 

governing structural properties at the chain level. 

 

 For most polymers SCF_SL+SGA yields results for both surface tension and surface 

entropy that are in excellent agreement with experiments 

 

 It is clear that with increasing grafting density and chain molar mass, the grafted chains 

on a solid surface exposed to melt of the same chemical constitution as the grafted chains 

need to stretch towards the bulk in order to adjust to their conformational 

restriction.
255,260,264

 As a result, it is more difficult for the matrix chains to penetrate into 

the interfacial region. 

 

 The scaling law for the corona thickness, h
1/2 1/4

star star~ N f , proposed by Daoud and Cotton 

for star polymers in the intermediate regime, 
1/2 2 1/2

star starf N f 
, over a specific range 

of nanoparticle radii, specifically from 4 nm to 8 nm. For larger nanoparticles, the scaling 

exponents exhibit a complicated behavior, and thus a more general equation must be 

implemented, which treats the exponents of the molecular weight and grafting density as 

functions of nanoparticle radius. 
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 Adjusting also the pre-exponential factor of the scaling law, a master curve can be 

obtained, which provides a faithful description of SCFT predictions for the brush height in 

linear polymer melts of the same chemical constitution and length as the grafted chains, 

given the molecular weight of grafted chains, the grafting density, and the radius of the 

nanoparticle. 

 

 In calculating the free energy of the system, the term associated with the conformational 

entropy of grafted chains does not depend on nanoparticle radius for low grafting densities 

and molar masses (Figure 4.12). The same plot reflects that, with increasing grafting 

density or molar mass, the grafted chains need to stretch and therefore the free energy 

penalty associated with chain stretching increases. This entropy contribution of the grafted 

chains becomes dominant for high grafting densities and molar masses. 

 

 The stretching free energy of grafted chains has been estimated in two different ways (1: 

from the configurational partition function of grafted chains and 2: approximately from the 

density profiles of the grafted chain ends) and a good agreement with the Alexander model 

was observed in the limit of large grafting densities. The corresponding entropic term of 

matrix chains has a minor contribution to the total free energy. 

 

 The reduced density of grafted chains across a line connecting two opposite g-points 

exhibits a peak near the surfaces. When the grafting density increases, the peak of the 

density profiles becomes less pronounced. This is in good agreement with previous 

works.
138,143

 With increasing grafted chain molecular weight the peak value remains fixed. 

For low surface grafting densities (mushroom regime), the matrix chains reach the rigid 

wall even for higher values of Ng  and their profiles at c-points and g-points near the 

interfaces exhibit a constant difference for all values of Ng. 

 

 Systems with same ζg Ng , although belonging the same region according to ref 237, may 

exhibit dissimilar density profiles. 
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 By adjusting the swelling ratio Nm/Ng, the matrix is found to wet the polymer brush only 

when the melt chains are shorter than the chains of the brush. Our findings corroborate 

previous results. 
136,307,327

 

 

 Of fundamental interest is the fact that, at low grafting densities according to ref 237, end 

segments for both grafted and matrix chains appear to prefer to be near the c-points rather 

than g-points. With increasing grafting density that grafted chain ends spread across larger 

parts of the domain. As expected, for higher grafting densities the grafted chain ends 

prefer to segregate in the vicinity of the bulk region. As might have been expected, matrix 

chain ends at small swelling ratios extend throughout the whole domain, confirming that 

smaller the matrix chains are more easily capable of penetrating grafted chains. 

 

 With increasing grafting density, ΓAg/ Ssolid and ΓΨfield/ Ssolid deviate notably, especially 

for larger grafting densities. This is attributed to chain crowding and enhances the 

cohesion of the brush and the stretching of the grafted chains due to crowding phenomena. 

In addition, the grand potential per unit area, ΓΨ/ Ssolid increases with increasing grafting 

density. 

 

 With increasing grafted chain length, while keeping ζg and Nm/Ng constant, the entropy 

term associated with the partition function of matrix chains (ΓΨm/ Ssolid) exhibits a 

monotonic decrease, and this result correlates well with figure 5b of  Sgouros et al.,
321

 in 

which the dependence of  ΓΨm on Ng is illustrated, for constant Nm/Ng=1. 

 

 With increasing grafted chain length, while keeping ζg and Nm/Ng,Lz constant, the ΓAg/ 

Ssolid increases indicating that there is an entropic penalty associated with chain 

conformations. For the system with opposing grafted surfaces ζg=0.06nm
-2

, Nm/Ng =1 and 

Lz =10 nm, the ΓΨ/Ssolid exhibiting a minimum at value of 200 skeletal bonds chain length. 

 

 With increasing swelling ratio Nm/Ng , while keeping ζg and Ng constant, ΓAg/ Ssolid and 

ΓΨ/ Ssolid decrease and reach a plateau value due to crowding phenomena, because matrix 

chains are smaller and more broadly distributed in the lower swelling ratio regime. 
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ΓΨ/ Ssolid exhibits a monotonic decrease, reaching a plateau, which substantiates previous 

findings in the literature.
321

 

 Computational Tools 6.3

In the framework of the present thesis the following computer codes have been developed: 

 

 RuSseL-1D, the one-dimensional version of our in-house code, has been developed to 

address polymeric interfaces through Self-Consistent Field calculations. RuSseL can be 

used for a wide variety of systems in planar and spherical geometries, such as free films, 

cavities, adsorbed polymer films, polymer-grafted surfaces, and nanoparticles in melt and 

vacuum phases. The code includes a wide variety of functional potentials for the 

description of solid–polymer interactions, allowing the user to tune the density profiles 

and the degree of wetting by the polymer melt. Based on the solution of the Edwards 

diffusion equation, the equilibrium structural properties and thermodynamics of polymer 

melts in contact with solid or gas surfaces can be described. We have extended the 

formulation of Schmid to investigate systems comprising polymer chains, which are 

chemically grafted on the solid surfaces. A full ducementation can be foundin ref 323. 

 

 RuSseL-3D, the three-dimensional version of our in-house code, is capable of addressing  

a great variety of systems in complex geometries, such as nanoparticles in melt and 

vacuum phases, nanotubes, free, supported, or capped polymer films, polymer-grafted 

interfaces, and every nanostructure anyone can imagine. It is based on the finite element 

method for solving the Edwards diffusion equation. It is compatible with COMSOL 

Multiphyshics for mesh generation, features an input parser, uses a BDF solver, and is 

connected with MUltifrontal Massively Parallel sparse direct Solver (MUMPS) for large 

linear systems. It is capable of using first and second order tetrahedral elements, but fully 

versatile to use hexahedra or pyramids as elements, if desired.  It can compute initial 

values for grafted chains at specific points and it is capable of applying Neumann and 

Dirichlet boundary conditions. An extension for periodic boundary conditions is in the 

making. 



6.4. Side Projects  

 

189 

 Side Projects 6.4

In order to address the main challenges of this PhD thesis, several other sub-problems have been 

resolved: 

 A mesoscopic simulation approach has been developed for liquid−gas interfaces of 

weakly and strongly entangled polymer melts and implemented for linear polyethylene at 

450 K. A combined particle and field-theoretic treatment has been adopted based on 

aggressive coarse-graining, each polymer bead representing ∼50 carbon atoms, with 

effective bonded interactions extracted from atomistic simulations. Non bonded 

interactions in the mesoscopic model are dictated by an equation of state (here the 

Sanchez−Lacombe) in conjunction with a variant of gradient theory; the discrete square 

gradient theory. The dynamics of free films has been examined in the presence and in the 

absence of topological constraints (modeled by slip-springs) to unveil the impact of the 

latter on chain self-diffusion, to assess their contribution to the interfacial free energy, 

and to explore how this contribution can be removed by invoking a compensating 

potential. The molar mass dependence of surface tension; which arises from bonded 

contributions among beads in the mesoscopic chains, has been extracted over a broad 

range of molar masses (10
3
−10

6
 g/mol), in excellent agreement with experiment. Two 

approaches for computing the surface tension have been adopted, based on stress profiles 

and based on changes in free energy with interfacial area, leading to consistent results. 

The predicted density profiles, conformations, and orientational tendencies of the 

mesoscopic chains have been retrieved from the simulations and shown to reproduce 

very well the corresponding results from atomistic simulations. An annealing scheme has 

been developed with the purpose of accelerating transitions of metastable states into 

more stable biphasic states such as spherical and cylindrical droplets, free films, and 

spherical and cylindrical bubbles, which minimize the free energy of the periodic model 

system. Results for the phase diagram as a function of polymer volume fraction conform 

to the predictions of atomistic simulations of simpler systems. 

 

 The investigation of single and opposing silica plates, either bare of grafted, in contact 

with vacuum or melt phases, using self-consistent field theory. Solid–polymer and solid–

solid nonbonded interactions have been described by means of a Hamaker potential, in 
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conjunction with a ramp potential. The cohesive nonbonded interactions have been 

described by the Sanchez-Lacombe or the Helfand free energy densities. We first built 

our thermodynamic reference by examining single surfaces, either bare or grafted, under 

various wetting conditions in terms of the corresponding contact angles, the macroscopic 

wetting functions (i.e., the work of cohesion, adhesion, spreading and immersion), the 

interfacial free energies and brush thickness. Subsequently, we derived the potential of 

mean force (PMF) of two approaching bare plates with melt between them, each time 

varying the wetting conditions. We then determined the PMF between two grafted silica 

plates separated by a molten polystyrene film. Having allowed the grafting density and 

the molecular weight of grafted chains to vary between the two plates, we tested how 

asymmetries existing in a real system could affect steric stabilization induced by the 

grafted chains. Additionally, we derived the PMF between two grafted surfaces in 

vacuum and determine how the equilibrium distance between the two grafted plates is 

influenced by their grafting density and the molecular weight of grafted chains. Finally, 

we provided design rules for the steric stabilization of opposing grafted surfaces (or fine 

nanoparticles) by taking account of the grafting density, the chain length of the grafted 

and matrix chains, and the asymmetry among the opposing surfaces. 

 

<>
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 Research Outlook  7

The mathematical formulation and the computer codes developed in the present thesis have been 

designed in a rigorous and versatile way, ensuring their applicability to a wide class of problems. 

The following paragraphs discuss some interesting potential applications and future research 

directions. 

 SCFT Combined with SGA  7.1

Based on the SCF, and its combination with square gradient theory that was developed for free 

polymer surfaces and films several other problems can be addressed: 

 

 Disjoining pressure of thin liquid films on the order of a few nanometers in thickness and 

bounded on both the sides by air or vapor can immediately be calculated from the Self- 

consistent field with square gradient term formalism (e.g., SCF_SL+SGA). The first results 

on the estimation of the disjoining pressure are highly promising. 

 

 Binary blends of linear polymer with well-separated molecular weights. An accurate 

description of polymer interfaces is important because phase separation and immiscibility 

are the rule rather than the exception for polymer mixtures. In commercial phase-separated 

polymer blends the interfacial tension is a crucial factor in the adhesive bonding between 

phases. In addition, the interfacial tensions of polymer blends are of interest for such 

applications as enhanced oil recovery. The input parameters can be extracted from previous 

works and the computer code must be extended to include two different polymers. 
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 Structure and Thermodynamics of Grafted Silica/PNCs  7.2

Based on the spherical methodology for grafted nanoparticles, a broad range of materials (pure 

and composite) can be addressed, by simply providing as an input to the method the melt 

compressibility and the squared radius of gyration of the grafted or matrix chain polymer. 

Among the limitless possibilities, several other problems can be addressed: 

 

 Block copolymers for use in self-assembly nanoparticles structures. In comparison to the 

homopolymer case, block copolymers introduce additional complexities due to new 

interactions and confinement effects. Graft block copolymers (GBCPs) can be used to 

achieve nano-structured polymers with ultra-small nanodomains and diverse morphologies 

without sacrificing materials properties that are critical for processing and functions. The 

bulk properties of GBCPs can conversely be tuned either by selecting a variety of sidechains 

or through adjusting the backbone length with minimal interference with the nanostructures. 

However, major modifications in computer code must be extended to include these 

interactions. 

 

 Potential of mean force between two bare or surface-grafted nanoparticles in a polymer melt. 

By calculating the PMF, it is possible to identify the thermodynamically most stable 

configuration of multi-nanoparticle systems. The investigation of single and opposing silica 

plates, either bare or grafted, in contact with vacuum or melt phases, using self-consistent 

field theory addressed by Sgouros et al.,
321

 can be used as a guide in such an effort. The 1D 

computer code developed in Ref 323 could be extended in 2D as well, in order to provide 

additional validations and facilitate the calculations with the 3D version of the code. 

 SCFFEM Methodology 7.3

The methodology and tools developed based on the SCFFEM model introduced in Chapter 5 can 

be used for predicting the equilibrium of arbitrary polymer systems. Possible areas of 

application of SCFFEM computational methodology can include: 

 

 Systems comprising more than two nanoparticles bearing grafted chains and embedded 

inside a polymer matrix. In such systems, we can address the interactions among 
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nanoparticles as a function of their volume fractions and the grafting chain distributions 

(homogeneus, biased) across their surfaces. Various representative ordered and disordered 

configurations of the nanoparticle centers at a variety of nanoparticle volume fractions could 

be considered. For each configuration, one could estimate the free energy, as well as the 

density and conformational distributions of matrix and grafted chains. An interesting concept 

for examination is to determine how the lowest free energy configuration changes when a 

nonuniform distribution of grafting points on the surfaces of the spherical nanoparticles is 

adopted. 

 

 The study of materials made up of self-assembled SiO2 spheres bearing surface-grafted 

chains, in the absence of matrix homopolymer. These ―matrix-free hairy nanoparticle 

assemblies‖, also known as ―particle-solids‖, combine excellent optical and mechanical 

properties. The objective of such a computational investigation would be to predict the 

particle configuration which minimizes the free energy, including the pair distribution 

function of nanoparticle centers, the crystal structure adopted, if present, and even the effects 

of polydispersity in the particles. 

 

 

<>



 

 

195 



 

 

196 

Appendices 

 



 

 

197 



 

 

198 

 

A Grand Partition Function and Saddle Point Approximation  

A.1 Edwards diffusion equation  

Following Edwards
187

 we consider the continuous-space curve r(s) followed by a chain 

represented by  the Gaussian thread model with root mean square effective bond length b.  By 

definition of the propagator, eq. 2.41, if r′ is the position vector of the chain at contour length s1, 

0 < s1 < s, the following condition is satisfied: 

 3

0 1 0 1( ,  ;  )= d  ( ,  ;  ) ( ,  ;  )G s r G s s G s  r r r r r r  (A.1) 

For w(r) = 0, G(r, r0; s )becomes the probability density of the end-to-end vector of a field-free 

Gaussian chain: 
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with (n) being the Heaviside step function:  (s)=1 for s>0 and (s)=0 for s<0.  Expressing 

the exponential term in eq A.2 as a Fourier transform, we write: 
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Differentiating both sides with respect to s,  
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Thus, the Edwards diffusion equation, is satisfied for w(r) = 0. 

 Consider now the more general case w(r) = 0.  By virtue of the factorization eq A.1we 

can write: 

 3
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   A.1. Edwards diffusion equation 
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The first Green function refers to a very small piece of chain, of length s, which starts at r′ and 

ends at r.  The defining equation, eq 2.41, for  ( ,  ;  )G sr r  contains in its numerator the term  
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Then,  
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Substituting eq A.8 in eq A.7we obtain 
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 
r r r r r r r  (A.9) 

  

For small s, 0( ;  ) G sr r is sharply peaked at   0r r .  Expanding 0( ,  ;  )G sr r  with respect 

to r= r - r we obtain: 
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with indices {1 2 3}, , ,  being used to denote the components of a vector.   Now, 
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as , r r 
   are components of the end-to-end vector of a Gaussian chain.    Thus, we obtain 
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Combining Eqs. A.9 and A.12 we obtain: 
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Subtracting 0( ,  ;  )G sr r from both sides, we obtain 



Appendix A. Grand Partition Function and Saddle Point Approximation  

 

200 

 
2

2

0 0 0 0

B

1  
( ,  ;  )  ( ,  ;  )=exp  ( )  1+ ( ,  ;  )  ( ,  ;  )

6

s b
G s s G s w s G s G s

k T


 

   
      

  
rr r r r r r r r r   

or 

2
2

0 0

B B

1 1  
( ,  ;  ) =exp  ( ) 1 exp  ( ) + ( ,  ;  )

6

s b
G s s w s w s G s

s k T k T


  

    
            

rr r r r r r In the 

limit 0s   one obtains 
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To account for the singularity at s=0, we use Eq A.8 for small s: 
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upon differentiation of which, for a smoothly varying field 

B( | ( ) | /( ) 1)l w k T r r  one obtains  
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A.2 Grand partition Function of an Ensemble of Chains Subjected to a Field  

Following Schmid,
98

 we re-express the Boltzmann factor on the right-hand side of eq 2.1 in 

terms of a real density field ( ) r  and an energy field ( )w r  by use of the inverse Fourier 

transform expression for a Dirac delta functional:   

      ˆ ˆexp ( )  ( ) [ ( ) ( )] exp ( )F F          r r r r rD   (A.17) 

and 

    3ˆ ˆ[ ( ) ( )] ( ) exp d ( )[ ( ) ( )]C w i r w         r r r r r rD   (A.18) 

with C being a normalization constant.
198

 Combining eqs A.17 and A.18,  

         3ˆ ˆexp ( ) = ( ) ( ) exp ( )[ ( ) ( )] exp ( )F C w i d r w F            r r r r r r rD D   (A.19

) 
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Using eq A.19 within eq 2.1,     
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 (A.20) 

The last factor within the functional integral of eq A.20 incorporates the density operator ˆ( ) r .  

Introducing the definition for ˆ( ) r , eq 2.2, we obtain 
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Combining eqs A.20 and A.21, 
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or 
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Following Edwards
187

 we introduce the notation Q[iw] to indicate the partition function of 

a single chain subject to the field iw acting on its segments, relative to the partition function of a 

field-free chain.  Then, 
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where    freeZ       r rD P  is the configurational partition function of a free chain. With 

this notation,  
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or 
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Now, the summation over different n can be performed, yielding  
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The grand partition function of eq A.26 is written as 
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or equivalently: 
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It is remarkable that the effective ―Hamiltonian‖ [ ( ), ( )]H w r r  incorporates a term 

proportional to 
B

exp
N

k T

 
 
 

 and to Q[iw], rather than to μN and to lnQ[iw], because of the grand 

canonical formulation adopted. 

A.3 Saddle Point Approximation 

We now replace the functional integral appearing in eq A.29 for  with its dominant term, 

obtained by setting 
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From eq A.30 we obtain 
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Now, by definition
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which can be rewritten as 
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The functional integrals are taken over the path of one chain, labeled .  The latter form, eq 

A.34, has been used in eq  A.24.  

From eq A.34,  
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Recalling that  
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with denoting an average over the distribution defined by the single-chain partition function 

[ ]Q iw , eq A.34.  In averaging ˆ( ) r of eq 2.2, all n chains involved in the summation for =1 to 

n yield the same contribution.  

From eqs A.32, A.36 at the optimum: 

   free

1 [ ]
ˆ( ) exp ( ) 0

H Q iw
i N NZ i

w n


   

 

 
     

 
r r   (A.37) 

with n  being the mean number of chains in the interfacial region. One obtains   
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We also impose a maximum term approximation with respect to ( ) r . From eq A.30,  
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The self-consistent field turns out to be purely imaginary. With the maximum term 

approximation, eq A.30 gives:   
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By the saddle point approximation on eq A.29 we obtain eq 2.7 of the main text for the grand 

potential of our interfacial polymer, occupying volume V at temperature T and chain chemical 

potential μN. 
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B Derivation of Grafted/Matrix Polymer System Equations  

B.1 Grand Canonical Partition Function and Hamiltonian 

We consider a polymer melt within an arbitrarily shaped three-dimensional region R  
of volume 

V at temperature T.  The region R  is not necessarily convex. It is partly bounded by one or 

multiple solid surfaces, which exert an external potential us(r) per polymer segment at each 

position r  R.   The boundary of the domain R will be referred to as R.  Part of R may be 

defined by solid surfaces, while the rest of R will be characterized by zero-flux Neumann 

boundary conditions. 

The polymer consists of matrix chains of length Nm monomers/segments each.  In 

addition, there are chains terminally grafted on the solid surfaces, the length of each grafted 

chain being Ng segments.  Both matrix and grafted chains are assumed to be monodisperse, but 

matrix chains can have different chain length from grafted chains. In the context of the present 

work, matrix and grafted chains are of the same chemical composition, hence the potential 

energy field per segment, us(r), is applicable to both. 

We use the symbols nm and ng to denote the numbers of matrix and grafted chains, 

respectively. The number ng will be fixed. The number nm is free to fluctuate, subject to the 

condition that the matrix chains in the interfacial region are in equilibrium with a bulk polymer 

phase at temperature T, whose density, in segments per unit volume, is seg,bulk. Of course, 

seg,bulk can be determined from the temperature T and the pressure P of the bulk polymer phase 

through an appropriate equation of state. From the same equation of state one can determine the 

chemical potential m  per chain segment in the bulk polymer. 

In general, the mean segment density of polymer in the considered interfacial region, 

m m g g

seg

n N n N

V



 , will be different from seg,bulk. The interfacial region and the bulk one will 

be at equilibrium; the chemical potential m of matrix chain segments in R is the same as in a 

bulk phase of matrix chains. 

 The unperturbed mean square radii of gyration of matrix and grafted chains will be 

denoted as 2 2

G,g G,m and R R , respectively.  The grafting points (starts of the grafted chains) 
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will be denoted by 
gg,ir , ig=1,  2, …, ng.  They all lie on solid surfaces which belong to R . In 

practice, the grafting point is located at a finite distance from the solid surface. Technically 

speaking, it is not possible to attach the end of the chain exactly on the surface, because this 

would result in a conflict between the grafted chains initial condition and the Dirichlet boundary 

conditions imposed on the solid boundaries. 

The matrix chains in the interfacial region of volume V at temperature T and chemical 

potential μmNm follow the probability distribution of the grand canonical ensemble. Treating all 

chains as Gaussian strings and describing the nonbonded interactions by an equation of state in 

conjunction with a gradient term,  ˆ ˆ, ( )f    r r , we can write the grand partition function for 

the polymer contained in R as: 
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 (B.1) 

where β = 1/(kBT),  
mi

 RD  symbolizes a functional integral over all paths  
mi

sR , m0 s N 

, of a matrix chain im ( m m1 i n  ) and  g  RD  symbolizes a functional integral over all paths 

 
gi

sR , g0 s N  , of a grafted chain ig ( g g1 i n  ). m g,A A are normalizing factors per matrix 

and per grafted chain, respectively, appearing in the path integral formulation. They must be the 

same between the interfacial system and the bulk polymer and render the grand partition 

function, Ξ, dimensionless. 

The functional  ˆ ˆ( ), ( )f  r r is the Helmholtz energy density (Helmholtz energy per 

unit volume) describing the nonbonded interactions between polymer segments, obtainable from 

an appropriate equation of state. Herein we identify f with an excess Helmholtz energy, i.e., the 

Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a given 

volume minus the Helmholtz energy of an equal number of noninteracting (ideal gas) chains 

occupying the same volume. Us(r) is the total potential energy exerted by the solid on a polymer 

segment as a function of the position r of that segment. 
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In the absence of a field, the probability density distribution (statistical weight) of a 

matrix chain conformation/path,  
mi

sR , and the corresponding one of a grafted chain,  
gi

NR , 

are given by eqs B.2 and B.3, respectively, in the context of the Gaussian chain model. 
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 The reduced segment density operators m g
ˆ ˆ( ),  ( ) r r  are defined as shown in eqs B.4 

and B.5 respectively. 
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and we set the total reduced segment density operator as m g
ˆ ˆ ˆ( ) ( ) ( )   r r r . Next, we wish to 

re-express the Boltzmann factor on the right-hand side of eq B.1 in terms of a density field, ρ(r), 

and a chemical potential field, w(r). To begin with, this term can be written as presented in the 

following eq B.6.
269
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Next, we write the Dirac delta functional as the inverse Fourier transform of eq B.7, which 

involves the two aforementioned fields.  

    ˆ ˆ[ ( ) ( )] ( ) exp d ( )[ ( ) ( )]C w i w         r r r r r r rD  (B.7) 

with C being a normalization constant.
91

Combining eqs B.6 and B.7, the following expression is 

obtained for the Boltzmann factor of the grand partition function of the system. 
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 Within the functional integral of the right-hand side of eq B.8, there is a term 

incorporating the density operator, ˆ( ) r , which is the sum of m
ˆ ( ) r

 
and g

ˆ ( ) r . Introducing the 

definitions for these operators, eqs B.4 and B.5 respectively, that term can be written as in the 

following eq B.9. 
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Combining eqs B.1, B.8 and B.9 the following equation is obtained for the grand partition 

function.  
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 The next step is to define the single chain partition functions (or functionals to be 

technically accurate) of a matrix and a grafted chain, m[ ( )]Q iw r  and 
gg g,[ ; ( )]iQ iwr r  respectively, 

in the field iw(r) by the following eqs B.11 and  B.12. 
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where,    
m mm m,freei i Z V     R RD P  is the configurational integral of a field-free matrix chain 

and    
gg g gg,g g,free(0)
i ii i Z      

   R rR RD P  is the configuration integral of a field-free 

grafted chain. m[ ( )]Q iw r is the configurational integral or partition function of a single matrix 

chain of length Nm, whose segments are subject to the field iw(r), relative to the corresponding 

partition function of a field-free chain (i.e., Gaussian string performing a random-walk) and is 

dimensionless by definition.  In like manner, 
gg g,[ ; ( )]iQ iwr r  is the partition function of a grafted 

chain of length Ng, which starts at 
gg,ir and whose segments are subject to the field iw(r), relative 

to the partition function of a field-free chain of the same length starting at 
gg,ir . It is 

dimensionless as well. 

Combining eqs B.10, B.11 and B.12 the grand partition function becomes: 

 

      

   

gm

m

m m g

g

g

m m m m g

0 m

s

m,free m g,free g ,

1

1
exp

!

( ) ( ) exp d ( ) ( ) exp [ ( ), ( )] ( ) ( ) d

[ ( )] [ ; ( )]
g

nn

n

n
n n n

g i

i

C N n
n

w i w f u

Z V Q iw Z Q iw



       







 

   

 
  

 
 



   



r r r r r r r r r r

r r r

A A

D D

(B.13) 

Or 
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We set the grand partition function to be equal to: 

       ( ) ( ) exp ( ), ( ), ( )C w H w        r r r r rD D  (B.15) 

where the Hamiltonian of the system, H, is a functional of the segment density, ξ(r), of its spatial 

gradient, and of the chemical potential field, w(r).  Finally, using eqs B.14 and B.15, the general 

form of the Hamiltonian is given by eq B.16. 
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 Grand Canonical Ppartition Function after Implementing the Saddle-Point B.1.1

Approximation 

In the context of self-consistent field theory, we need to replace the functional integral of eq 

B.16 with its dominant term, i.e., the density and field configurations which have the highest 

probability and thus the maximum contribution to the Hamiltonian of the system. In order to 

determine those configurations, we need to perform a so-called saddle-point approximation, i.e., 

find the stationary point of the Hamiltonian functional with respect to ρ(r) and w(r). To this end, 

we first set the functional derivative of the Hamiltonian with respect to w(r) equal to zero, as 

shown in eq B.17. 
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Following eq B.11, we write: 
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Likewise, following equation B.12, we can write: 
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and thus 
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Combining eqs B.17, B.18 and B.20, the following eq B.21 is obtained for the density field, ρ(r). 
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 The saddle point approximation requires that the functional derivative of the Hamiltonian 

with respect to the density field, ρ(r), be also equal to zero: 
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After the saddle point approximation, the Hamiltonian of the system, from eq B.16, is given by 

eq B.23. 
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 Thermodynamic Properties B.1.2

According to the saddle point approximation considerations which were developed in the 

previous section,  the grand potential of our interfacial polymer system, occupying volume V at 

temperature T and chain chemical potential μmNm is given by eq B.24. 

 m g

1 1
( , , , ) ln ln exp( )n V T H H 

 
           (B.24) 

Any multiplicative factor arising in  upon introduction of the saddle point approximation 

contributes an additive constant to , which will cancel upon referring  to an equal amount of 

polymer in the bulk.       Ψ is an extensive—system size-dependent—thermodynamic property. It 

is convenient to express the system thermodynamics with reference to a bulk phase of matrix 

chains occupying volume V at temperature T and chemical potential μmNm, a set of  ng isolated 

end-pinned unperturbed chains of length Ng at temperature T, and an isolated bare nanoparticle, 

as described below. 



Appendix B. Derivation of Grafted/Matrix Polymer System Equations  

 

214 

The grand potential of an amount of bulk polymer occupying volume V at temperature T 

and chemical potential Nmm is: 

 bulk m bulk bulk

1
( , , ) lnV T H


      (B.25) 

with bulkH  being the effective Hamiltonian of eq B.22 applied to bulk polymer: 
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Note that, for all forms of the local free energy density f considered here, 
f







0  in the bulk 

polymer phase. 

Application of eq B.21 for the density to the bulk polymer gives 
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Combining eqs B.26 and B.27, 
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In the bulk melt, the self-consistent field from eq B.22 becomes 
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and thus the matrix chain partition function from eq B.11 takes the form 
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On the other hand, for a set of isolated end-pinned unperturbed chains of length Ng at 

temperature T, which are identical in length and chemical composition to our grafted chains, the 

total Helmholtz energy in the context of our model is given by eq B.31. 
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Subtracting eqs B.28 and B.31 from eq B.23: 
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In eq B.32 we have made the substitution 

 ( ) ( ),  a real field.iw wr r  (B.33) 

The second integral in eq B.32, referring to a homogeneous bulk phase of matrix chains, can be 

performed immediately, yielding a factor of V times the integrand. 

By expressing eq B.22 in terms of the real field from eq B.33, 

s( ) ( )f w f u      r r , and by substituting it to eq B.32, the latter can be expressed 

as follows: 

 

  

 

 

  

g

g

g

s

seg,bulk

seg,bulk bulk

seg,bulk

m bulk

m

g g, bulk

1

d ( ) ( )

d ( ), ( ) ,

d ( ) ( )

1 ( )

1
ln ; ( )

n

i

i

u

f f

w w

V
Q w w

N

Q w w



  

 





 

      

  



   

   
 









r r r

r r r 0

r r r

r

r r

 (B.34) 

wherein the first term is the contribution of the cohesive interactions, the second term is the 

interaction energy between the density field and the chemical potential field, the third term 

describes the polymer-solid interactions, the fourth term describes the translational and 
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conformational entropy (relative to the bulk melt) of the matrix chains, and the fifth term is 

associated with the conformational entropy of  the ng grafted chains subject to the field w . 

 Derivation of the Segment Balance Equations B.1.3

To deal with the grafted and the matrix chains in the presence of the field w, we introduce the 

propagator G(rstart, r, s) following Edwards
182

: 
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start( , , )G sr r  has dimensions of inverse volume. It is proportional to the conditional probability 

that a chain, which has started at startr and is subject to the field w(r) on its segments, finds itself 

at position r at contour length s, as depicted in Figure B.1. The denominator in eq B.35 is a 

partition function for a field-free chain, represented as a Gaussian string, which has started at 

startr  and may end anywhere in the system.  The denominator is  independent of startr  and r ; it 

depends only on s. 

                                             

Figure B.1. Schematic representation of a Gaussian string starting at 0s   and ending at s N  . 

 We also define the restricted partition function of a matrix chain in the presence of the 

field w(r) by the following eq B.36. 

 
m start start( , ) d ( , , )

V

q s G s r r r r  (B.36) 

This quantity is dimensionless and proportional to the probability that the segment at contour 

length N of a matrix chain subject to the field finds itself at position r, regardless of where in the 

rstart 

r 
s=N 

s 
s=0 R(s) 
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system the particular matrix chain may have started.  It is reduced by the corresponding 

probability of a field-free  chain.  Thus, it equals unity for a field-free chain. The partition 

function of a matrix chain, Qm, is related to the corresponding restricted one by the equation: 

 m m m

1
( ) d  ( , )

V

Q w q N
V

  r r r . It is also dimensionless and normalized such that it would be 

unity for a field-free chain in volume V. 

 The partition function, Qg, of a chain which is grafted at rg, relative to a field-free chain 

of equal length, is given by eq B.37. 
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But, by definition, g g g g( , , ) ( , , )G N G Nr r r r , so: 
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 Following eq B.35, the propagator of a grafted chain, whose grafted end lies at 

coordinates rg, can be written as: 
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 So far, we denote by  R  the curve in three-dimensional space, which is followed by a 

Gaussian thread of length N. At this point, we introduce the symbol  R , which represents the 

curve in three-dimensional space, which is followed by a Gaussian thread of length Ngs. Using 

these definitions and combining eqs B.35 and B.36, the restricted partition function of a matrix 

chain can be written as follows. 
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 Next, we consider the product g m g( , , ) ( , )G s q N sr r r .  By eqs B.39 and B.40, the 

numerator of this product will be equal to the following expression. 
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Changing the integration variable from N to gN N   in the second line, eq B.41 is modified to: 
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where now the functional integration is performed over all paths  R  of an Ng segment-long 

(grafted) chain.   

On the other hand, the denominator of the product g m g( , , ) ( , )G s q N sr r r  becomes: 
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Dividing eq B.42 with B.43, we obtain: 
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Combining eqs B.37 and B.39, we can write the following B.45eq for the partition function of a 

grafted chain. 
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Dividing eq B.44 with B.45, we obtain the following expression: 
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Using the definition eq B.5, we can write: 
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where g ( ) r  is the reduced density and g ( ) r  the segment density contributed by the considered 

grafted chain, at position r. 

 Taking into account eq B.38, which relates the partition function of a grafted chain to the 

restricted partition function of a matrix chain, we rewrite eq B.47 for a specific grafted chain, ig, 

as  
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The total reduced density due to all grafted chains will be: 
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Let us set  
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With this definition,  
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B.2 Hamaker Potential 

In this work, the solid-polymer interactions are described via the Hamaker potential.
272

 The 

essence of Hamaker theory is to treat the interacting bodies as collections of homogeneously 

distributed infinitesimal domains interacting via a nonbonded interaction potential (usually 

Lennard-Jones, 12-6). Then an integration along the volumes of the bodies takes place to 

account for interactions amongst all possible pairs of domains, resulting in the total potential 

energy. The Hamaker constant of the effective solid-polymer interaction can be estimated by the 

following geometric mean 
2 2PS-SiO PS SiOA A A . Vogiatzis and Theodorou

255
 employed an 

effective solid-polymer interaction, 
2 2

eff

PS-SiO PS SiO PSA A A A 
 
 instead of 

2PS-SiOA , in order to 

restore the proper effective cohesive interactions at the polymer/solid interface. In this study we 

opted to work with 
2PS-SiOA , since the energy of cohesion of the polymer is taken into account as 
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part of  ( ), ( )f  r r . Furthermore, the effective collision diameter can be calculated as 

2eff PS SiO ( ) / 2     with PS  and 
2SiO being the effective diameters of solid and polymeric 

segment interaction sites, respectively. In each of the following cases of interacting geometries a 

wall distance was used, so that the maximum value of the repulsive term felt by the polymer 

segments does not exceed 5 kBT (e.g., see Figure B.2). 

 

 

Figure B.2. Interaction energy us(h) between a PS monomer unit and a planar SiO2 substrate as calculated from the 

Hamaker potential at T = 500 K. The blue line, hHS = 0.4 nm, intersects the us (h) curve at us = 5 kBT and depicts the 

distance of the hard-sphere wall from the surface employed in the calculations. The orange dashed line depicts the 

distance of the grafting points from the surface (hg), and the red dashed line delimits the critical distance (hads), 

below which a matrix chain is considered adsorbed. 

 Sphere-Sphere B.2.1

For the purpose of calculating the potential energy of dispersive interactions between the 

polystyrene, either matrix or grafted, and a nanoparticle immersed in it, we consider the atactic 

polystyrene monomers as small spheres with an effective radius 31

seg

3

4
a


 , interacting with 

the spherical silica nanoparticle of radius 2 NPa R . The solid-polymer interaction potential per 

monomer, us, can be split into an attractive
272

 and a repulsive term.
137

 The two terms, uA and uR 
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respectively, are functions of the center-to-center distance, r12, between two interacting spherical 

bodies: 
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where A12 = 
2PS-SiOA is the Hamaker constant and ζeff is  the effective collision diameter. 

 Sphere-Flat Surface B.2.2

The attractive and the repulsive components from the interaction of a sphere with a semi-infinite 

solid terminating at a flat surface can be obtained in the context of Hamaker theory as follows: 

 12
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A r
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with 12 1/r d a   and d12 being the distance between the surface of the sphere and the solid 

surface.  We have us=uA+uR for this case which is shown in Figure B.2 as a function of h=d12+a1. 

B.3 Predictions From a Simple Model with Homogeneous Density 

It is instructive to compare the predictions of SCFT with the predictions of a simpler brush 

model such as that of incompressible Alexander brushes.
265,266

 Let hedge be the edge of a brush 

comprising ng grafted chains of length Ng, emanating from a nanoparticle with radius, RNP, such 
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as the one shown in Figure B.3(a). For simplicity, let us assume that the segment density is 

constant and equal to ρseg,bulk across the region occupied by the brush of grafted chains, 

NP NP edge,R R h    
which are terminated at hedge; Figure B.3(c) presents the corresponding density 

profile for this model. Consequently, the volume occupied by the brush can be calculated as the 

number of the brush segments in this region divided by its segment density. 

 

2

g g g NP g

seg,bulk seg,bulk

4n N R N
V

 

 
   (B.54) 

 

 

Figure B.3. (a) A nanoparticle with grafted chains that form a brush which ends at hedge. (b) In the limit RNP→∞, 

the surface of the nanoparticle becomes flat. (c) The segment density profile of a brush with constant segmental 

density, ρseg,bulk. 

where  2

g g NP/ 4N R   is the grafting density. Alternatively, the volume of a brush of 

constant density that terminates at hedge can be calculated as follows: 
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By combining eqs B.54 and B.55, and solving for hedge, we get for hedge: 
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With hedge known and given that the density profiles are uniform, hg,99%, can be calculated as 

follows: 

 g,99% edge NP0.99h h R    (B.57) 

Similarly, 
1/2

2

gh  can be obtained by eq B.58. 
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In the limit of very large nanoparticles (flat surfaces), 
1/2

2

gh  becomes, 

 
NP NP

1/2 g g2

g edge

seg,bulk

1
lim lim

3 3R R

N
h h


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   (B.59) 

Thus, for this model 
1/2

2

gh  appears to be proportional to ζg and Ng in the limit of large 

nanoparticles/flat surfaces (i.e., see Figure B.3(b)). The thermodynamics of these brushes can be 

described by a total free energy which has as follows: 

 total coh stretchA A A   (B.60) 

where Acoh is the contribution from the cohesive interactions described by the free energy 

density (i.e., Acoh ≡ Ψcoh from eq 9 in the main text), and Astretch is the entropic contribution from 

the stretched grafted chains. Given that the grafted chains are terminated at the edge of the 
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brush, and assuming they can be described by Gaussian strings, the contribution of the brushes 

to the free energy due to stretching could be approximated as follows: 

 2B
stretch solid g edge2

end,g

3

2

k T
A h

R
 S  (B.61) 

with 2 2

end,g g c-cR N C l  being the end-to-end distance of the grafted chain.Combining eqs B.61 

and B.56, the stretching free energy per unit area as a function of RNP is the following:  
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C Finite Element Shape Functions –Matrix Representation 

C.1 Coordinate Transformations by Using 'Shape Functions'  

The concept of using element shape functions for establishing curvilinear coordinates in the 

context of finite element analysis appears to have been first introduced by Taig.
329

 In his first 

application, basic linear quadrilateral relations were used. Irons
330

 generalized the idea for other 

elements. We search a relationship between a set of global Cartesian coordinates with a set of 

local coordinates. Once such coordinate relationships are known, shape functions can be 

specified in local coordinates and by suitable transformations the element properties established 

in the global coordinate system.  

A convenient method of establishing the coordinate transformations is to use the 

‗standard‘ type of C0 shape functions to represent the variation of the unknown function. Figure 

5.1 depicts a general, four-node tetrahedral element to which we attach an element coordinate 

system that is, for now, assumed to be the same as the global system. We express the location of 

the four corner nodes with respect to the global Cartesian coordinates system ( , , )x y z  are 

 , , with 1,2,3,4i i i ir x y z i   
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 (C.1) 

in which Νi are standard shape functions given in terms of the local coordinates, then a 

relationship of the required form is immediately available.  
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 (C.2) 

Here xi yi and zi, refer to the coordinates of the 4 vertices of the tetrahedron. To solve for the 

polynomial coefficients, the matrix of coefficients in Equation C.2 must be inverted. Inversion 

of the matrix is algebraically tedious but straightforward, and we find  
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where the coefficients of this matrix can be calculated by forming the adjoints of the matrix eq 

C.2. The values of ai, bi and ci, obtained by explicit inversion are 

 

1 2 43 3 42 4 32 1 2 43 3 42 4 32 1 2 43 3 42 4 32
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 (C.4) 

in which the abbreviations ij i jx x x  , ij i jy y y   and ij i jz z z   are used. The volume V is 

given explicitly represents the volume of the tetrahedron by 
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Which results in 

      21 31 41 41 31 21 41 31 41 31 21 31 41 41 316V x y z y z y x z x z z x y x y       (C.6) 

C.2 Construction of Shape Functions 

Considerable simplification of the interpolation functions as well as the subsequently required 

integration is obtained via the use of volume coordinates. We can introduce the concept of 

volume coordinates using Figure 5.1 showing a four-node tetrahedral element divided into four 

volumes defined by the nodes and an arbitrary interior point P(xP, yP, zP). As indicated by the 

dotted lines, point P and the four nodes define four other tetrahedra having volumes 

 1 P234 2 P134 3 P124 4 P123, V , ,V V V V V V V     (C.7) 

The volume or ―tetrahedral‖ coordinates 1 2 3, 4, ,L L L L  are defined as 

 / , 1,2,3,4a aL V V a   (C.8) 
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where V is the total volume of the element given by eq C.5. 1V  is given by replacing the 

coordinates of the P, P P P, ,x y z  with , ,x y z in eq  C.5 
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by same procedure we can calculate 2 3 4, ,V V V respectively. The value of L1 is one at corner 1, 

zero at the other 3 corners (i.e. on the opposite face) and varies linearly as one traverses the 

distance from the corner to the face. As the volume coordinates vary linearly with the Cartesian 

ones from unity at one node to zero at the opposite face, then shape functions for first order 

tetrahedral (linear) elements are simply 

 , 1,2,3,4a aN L a   (C.10) 

For constructing the second order quadratic shape functions we have 10 monomial terms. 

We can determine shape functions by placing nodes at the four vertices and at the midpoints of 

the six edges. The quadratic shape function 1N  associated with vertex node 1 of a tetrahedron 

(Figure 4.4b) is required to vanish at all nodes but node 1. The plane 1 0L   passes through face 

A234 and, hence, Nodes 2, 3, 4, 6, 9, 10. Likewise, the plane 1 1/ 2L   passes through Nodes 5, 

7 and 8. Thus, 1N must have the form 

  1 1 1 1/ 2N L L   (C.11) 

 Since 1aN  at Node 1 0aL  ,we find ζ = 2 and thus 

  1 1 12 1N L L   (C.12) 

Similarly, the shape function 5N  associated with edge Node 5 is required to vanish on the planes 

0aL   (Nodes 2, 3, 4, 6, 9, 10) and 0aL   (Nodes 1, 3, 4, 7, 8; 10) and have unit value at Node 

5 ( 1 2 1/ 2L L  ). Thus, it must be 

 5 2 14N L L  (C.13) 

According to the above discussion, the shape functions become  
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 For vertex nodes 

        1 1 1 2 2 2 3 3 3 4 4 42 1 ,  2 1 ,  2 1 ,  2 1N L L N L L N L L N L L         (C.14) 

 For mid-edge nodes 

 
5 2 1 6 3 1 7 4 1

8 2 3 9 3 4 10 4 2

4 , 4 , 4 ,

4 , 4 , 4

N L L N L L N L L

N L L N L L N L L

  

  
 (C.15) 

C.3 Unity Tetrahedron 

Figure A.3 shows the transformation of a curved tetrahedron in global coordinates to a unity 

tetrahedron in an isoparametric system. We can consider a set of local coordinates, ( , , )    

corresponding set of global coordinates ( , , )x y z . Although it is feasible to obtain a relation 

between the global coordinates and local coordinates, this is of no interest in what follows. We 

are primarily concerned with their derivatives relations and their shape functions. If we assume 

the shape functions Ni in terms of , ,    , then. by the chain rule of partial differentiation, we 

can write, for instance, the ξ derivative as 

 i i i iN N x N y N z

x y z   

      
  

      
 (C.16) 

 
Figure C.1. Mapping of curved element into a standard element in μ, ε and δ 

Performing the same differentiation with respect to the other two coordinates and writing in 

matrix form we have 
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i i i

i i i

i ii

N x y z N N

x x

N x y z N N

z z

N NN x y z

z z

   

   

   

           
                   
                        
       

           
                 

J  (C.17) 

In the above, the left-hand side can be evaluated as the functions Ni are specified in local| 

coordinates. Further, as x,y, z are explicitly given by the relation defining the curvilinear 

coordinates, the matrix J can be found explicitly in terms of the local coordinates. This matrix is 

known as the Jacobian matrix.

  

To transform the variables and the region with respect to which the integration is made, a 

standard process will be used which involves the determinant of J. Thus, for instance, a volume 

element becomes 

 detdxdydz d d d   J  (C.18) 

C.4 Relation Between (ξ,η,ζ) and (L1,L2,L3,L4) Coordinates 

The general relationship C.1 for coordinate mapping and indeed all the following theorems are 

equally valid for any set of local coordinates and could relate the local 1 2 3 4, , ,L L L L coordinates 

used for tetrahedra in section C.2, to the global Cartesian ones. Indeed most of the discussion of 

the previous chapter is valid if we simply rename the local coordinates suitably. However, two 

important differences arise. 

The first concerns the fact that the local coordinates are not independent, and in fact are 

by one more than those used in the Cartesian system. The matrix J would apparently therefore 

become rectangular and would not possess an inverse. The second is simply the difference of 

integration limits which have to correspond to a tetrahedral ‗parent'. 

The simplest, though perhaps not the most elegant, way out of the first difficulty is to 

consider the last variable as a dependent one. Thus, for example, we can introduce formally, in 

the case of the tetrahedra. 
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
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 (C.19) 

As the functions Ni are given in fact in terms of 1 2 3 4, , ,L L L L , we must observe that where 

derivatives i

k

N






 can be elaborated using 

 1 1 1 4

1 1 1 4

i i i i i

k k k k k

N N L N L N L N L

L L L L    

        
   

        
 (C.20) 

On using Eq C.19 this becomes simply 

 

1 4

1 4

2 4

2 4

3 4

3 4

i i i

i i i

i i i

N N L N L

L L

N N L N L
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N N L N L
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    
 

    

 (C.21) 

Derivatives i

k

r






 which can be encountered in the Jacobian matrix can be found by starting the 

equation given for global coordinates p p p

pr x y z     of any arbitrary point p which can be 

expressed as  

 
1

Nnod
p

p i i

i

N


 r r  (C.22) 

By using the eq C.22 
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





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

 (C.23) 
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Apart from the Jacobian, the derivatives iN

r
appearing in the integration points are 

needed to construct the FEM matrices. These derivatives can be expressed in terms of 

coordinates  , ,  
 
as: 

 with =1,2,3i i i i

j j j j

N N N N
j

r r r r

  

  

      
  

      
 (C.24) 

To find  the global derivatives we can use eq C.17 invert J and write
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i i

i i

NN
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z
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
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



  
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        
  

   
     

J  (C.25) 

The J-1
 can be calculated from eq C.23 by inverting the jacobian matrix. 

C.5 Matrix Representation 

By using the shape functions as weight functions (Galerkin method), eq 5.42 becomes: 
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 (C.26

) 

where J is the value of the external function at the nodal point J . In order for the above 

integral to be well defined, the fourth term of the above equation referred to surface integrals 

between adjacent elements must vanish. This occurs under the condition that shape functions are 

continuous and the first derivatives may be discontinuous in Ω .  
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We can express the integral form of the eq C.26 in terms of local shape functions by 

using the eq 5.52, 5.53, and 5.54. By these definitions the first term in eq C.26 becomes  
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The second term becomes 
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The third term by using eq 5.54 becomes  
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In eq C.29, the indices i, j, l  run over the values 1, 2, 3, corresponding to the three 

coordinate directions. 
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