Self-Consistent Field Theory for
Inhomogeneous Homopolymers and
Grafted Polymers

Apostolos T. Lakkas






EOGNIKO METZOBIO IIOAYTEXNEIO
2 XOAH XHMIKQN MHXANIKQN

H Ocompio Tov Avtocvvemovg Ilediov

og Avoporoyevi] Opomorivpepn kor Epgutevpéva Iolvpepn

Self-Consistent Field Theory for

Inhomogeneous Homopolymers and Grafted Polymers

AmooTtolog ©. AGKKOG
Apostolos T. Lakkas

Awdaxtopikr] Atatpifr] vroPinOeica otnv Zyoir Xnukdv Mnyovik®v tov
EBvicod MetpoPiov TToAvteyveiov yia tnv amdktnon tov Tithov tov Addktopog
tov EBvikod MetooBiov TToAvteyveiov

AOnva, Iovviog 2021



Thesis examination committee:

e Professor Doros Theodorou (supervisor)
School of Chemical Engineering
National Technical University of Athens

e Professor Andreas Boudouvis (member of the advisory committee)
School of Chemical Engineering
National Technical University of Athens

e Professor Vissarion Papadopoulos (member of the advisory committee)
School of Civil Engineering
National Technical University of Athens

e Professor Costas Charitidis
School of Chemical Engineering
National Technical University of Athens

e Professor Vlasis Mavrantzas
Department of Chemical Engineering
University of Patras

e Associate Professor Antonis Karantonis
School of Chemical Engineering
National Technical University of Athens

e Dr. Konstas Daoulas
Project Leader
Department of Polymer Theory

Max Planck Institute for Polymer Research

«H éyxpion g 6100KTOpIKNG StoTpPng amd v Avototn Zyoin Xnukov
Mnyavikov tov E. M. [ToAvteyveiov dev vmodnAmvel amodoyn

TOV YVOR®V ToL cvyypapéa. (N. 5343-1932. Apbpo 202)»



The Dissertation is dedicated to my beloved son,

Odysseus.



Vi



Contents

(O0] 01 1=] 1 £SO PP R PRSP vii
ACKNOWIBAGEIMENTS ...ttt e ste et esre e beeseesseesaeeeesreenneennens Xi
SUIMIMATY ..o b bbbt e bt et h e e bt s b e bt e e s e s be e et nbeenneenne s xiii
L B0 1T | RSOSSN XVii
LEST OF FIQUIES .ttt ettt bbbttt e e seenbesbesbenrenre s XXI
LIST OF TADIES. ... ettt re e XXl
I\ 0 0T g T F= L L= OSSPSR XXV
)Y Lo o] I aTo I N[0 - 14 T o S USSRSPRR XXV
Latin SYMDOIS ... bbb bbb bbb XXV

GIEEK SYMIDOIS. ..ot bbbttt XXXi

AN o] o] =1 T L4 T ] LSRR XXXV

R [ Yoo U 1 o o OSSR 1
11 POIYIMEES ..ttt bbb bbb b b E b e b b e Rt R bbb bbbt ben e 1
1.2 Polymers at Surfaces and INTEITACES ........ooviiiiiii s 4
13 POIYMEr NANOCOMPOSIIES ....evitiritirtesietesteseet sttt ettt eb ettt ettt e bt s b e b bt b e st st st es e b nnenes 5
14 Self-Consistent Field Theory of Inhomogeneous POlymMEric SYStemS.........cccuoeeerereneie s 7
15 VL0111V LA o] RSOOSR 8
1.5.1  Molten Polymer Free Surfaces at EQUIlIDIIUM ... 8

1.5.2  Nanoparticles in POIYMEr MAEFiX........ccoiiiiiiiiieiiseeiee et 9

153  Self Consistent Field Finite Element Method ...........ccooviiiiiiiiiinneseese e 11

1.6 N L) 1 T T 1SS 12
1.7 OULHNE OF the TRESIS.....veuveieisiese ettt ettt e e st et reereese e st e eesaestesreeraeseeneeneeneenes 13

2 Theoretical BaCKgrOUNG .........ccoiiiiiiie ettt re e 15
2.1 Modeling Perspective and SCAIES.........ccccviiiiieieercr et 15

vii



Contents

2.1.1  ALOMISEIC MENOUS. .. .c.eiviieiiiitiiieiceieee ettt 16

2.1.2  MeSOSCOPIC IMEENOAS ......ecvveeieie ettt se e testeere e e et e nnenrenns 18

2.1.3  Field-Theoretic MEthOOS ..........cociiiiiiiiiiiee st sttt 19

2.2 SiNGIE ChAIN IMOGBIS. ...ttt bbb bbb 20
2.2.1  From Flexible Polymers to Ideal Chains ModelS...........cocooiiriiiiniiire s 20

2.2.2  Freely Jointed Chain MOGEl..........cooviiiiiiii s 21

2.2.3  Bead SPring MOGEL .......c.ooueiee e sttt ns 27

2.2.4  Continuous Gaussian Chain MOEI ..........cooiiiiiiiiiieee s 30

2.2.5  The Presence of EXternal FIeld ..o s 33

2.3 From PartiCles 10 FIEIAS .........ooiiiee e et sne 38
2.3.1  Canonical (NVT) ENSEMBIE .......oiiiiiiieee s 38

2.3.2  Grand Canonical (uV T) ENSEMDBIE ....c.ociiiiiiiiicee s 42

2.4 Self-ConSiStENt FIEld THEOIY ....c..cuiiiiiiiiec bbb 44
25 Real Polymer Chain ConfOrMEatioN....... ..ot 46
2.6 Phenomenological Theoretical MEthOdS..........ccccviiiiiiiiicccee e 48
2.6.1  INerfacial TENSION ....ccuiiiiiiiiiie e bbbt sb bt bbb b e 49

2.6.2  EQUALION OF STALE .....eiieiie et 52

3  SCFT Combined with SGA of Free Polymer Surfaces /Films ..........cccccocevveiiiieieennnn, 55
3.1 [ oL o 0TV oo PSSR 56
3.1.1  Freely Standing Liquid Polymer FIIMS.........ccoiiiiiiii e 56

312 PrEVIOUS WOTKS. ....eitiititi ettt bbbt bbbt sb bbbt nbe e 57

3.1.3  Current ReSearch APProaCh .......coiiiiiiiiiie s 59

3.2 Model System and Theoretical FOrmUILION.............coociiiiiiie e 59
3.2.1  SCF Formulation of Grand Partition FUNCLION ..........ccooieieiiiinine e 59

3.2.2  Density Gradients Incorporated in the Free Energy Density .........ccccevvvevveieiieiiesiee e 63

3.2.3  Implementation of the Sanchez-Lacombe Eo0S to Calculate the Free-Energy ........c.cccceeuveuneene. 65

3.3 MOAEIS EXAMINEM ...ttt bbb et b bbb et b et s bt bt e b e e s e e e nn et e 67
34 CalCUIALION DELAIIS. ... ..ottt bbbt b e bbbt bt b na e 69
3.4.1  Solution Method for the SCF MOGEI ........ccocoviiiiieiieicee e 69

3.4.2  System Parameters -SUrface TENSION. ........coviiiiiiiirieieiree st 71

343 MD SIMUIBLIONS.....cctiiieieieieiese sttt e e se e te s reeseese e st e aesaesbesreesaeseeneeneeneenes 73

3.5 RESUILS AN AISCUSSION ....vevvieeereieeieie et sestesre et eteste st stestesre e s e ee st e stesressesseeseeseenseeessesseaneanaeseesenenssens 73
3.5.1 Reduced Local Density Profiles ..o e 73

3.5.2  End and Middle Segment DiStriDULIONS ..........cooiiiiiiiii s 78

3.5.3  Structure of AdSOrbed POIYMEr LAY ......c..oouiiiiiie e 80

3.5.4  Chain Shape ProfilES.......cciiiieieiiie e bbbt 84

3.5.5  Surface Tension of Various POIYMENS .......c.coviiiiiieiieieeiese s 89

3.6 (@0 g Tod [N 1o [T a0 T 04T U PSS 92

viii



Contents

4 Structure and Thermodynamics of Grafted Silica/PNCS............cccevevviveiiicsiieneciennn 97
4.1 2T T (o o1 o SRS N 98
St I 1= =T 3 o] o AN SR 98

4,12 PreVIOUS WOTKS ..ottt 99

4.1.3  Current Research APPrOaCh........ccccciiiiiiiieii ettt e e e e e e e aenne s 100

4.2 Model and Theoretical FOrMUIALION ..........cooiiiiiiiie e e 102
4.2.1 lterative Procedure for Obtaining the Self-Consistent Field............cccccviniininiiincice, 103

4.2.2  Grand POENTIAL......coeiiiieiiie ettt sttt sttt e et e nne s 106

4.2.3  Free ENergy DENSITIES......cciuiiieiiee ittt te e ste et e st et et e beeneeeeennees 107

O 1o [V T €] o [T=T L A T o USSR 109

4.3 CalCUIALION DELAIIS. .......cveieireiececrcrc ettt r e r e 109
4.4 RESUITS e 112
4.4.1  Radial Density ProfileS ..o s 112

4.4.2  Structure of AdSOrbed POIYMET LAYEN .....c.ciiiiiiiiiieiieeeirieeese s 115

4.4.3  ChaiNS/AIEa PrOFIlES .....ccui ittt sttt e nne s 117

4.4.4  Chain End Segregation at the INterface ..........cooviviiiiniiin s 120

4.45  Scaling of Grafted POIYMEr LAYEIS .....cccvviieiieiiecieecieee et ae et seesee e 121

O I I 1= 1 1oL |/ g 1 g [ OSSR 127

4.5 (@0 T 0 o] [0 0 [T g0 =T = U SRS TSUPR 133
5 A Self-Consistent Field Finite Element Method ..o 136
5.1 LT ot 0T oo SRR 137
5.1.1  Numerical Methods COMPAIISON .........ccueiieiieiieie e et e e sre e steebeenbe e e sreens 138

5.1.2  FEM HISIOIY ittt ettt et sttt b et et et st e enenne e 138

5,13 PrEVIOUS WOTKS. ... ceiuiiieitieiieiee sttt sttt e et st ste e s e e e e ntesaesteaneeneeneeeeneennens 139

5.1.4  Current ReSearch APProach .......cooi it 141

5.2 Model System and Theoretical FOrmMUIAtION............ccooiiiiiiniie e 142
5.2.1  Finite Element Method .........cccoiiiiiiiiiiiiiie ettt e 142

5.3 CalCUIALION DELAIIS. ... ..ttt bbbttt sa e bbbt e e b e 149
oI T8 R Y T To (<] W € T=To] 4411 { Y SO PP URRRUTPN 149

5.3.2  IMIBSH ottt bttt st e et st eete b e 151

5.3.3  Validation SYSIEM......ciiiiiiiiiieise ettt ettt st 153

5.3.4  Grafted ChaiN SYSIEM .. ..couiiiiiiiii ettt et st sbe e 154

54 RESUILS .ottt ettt et et e s e e s e et e Rt e Re e R e e Rt e e e e Rt ReeReeRe Rt e R e e e e R nReeEenReen e e eenre e e 157
5.4.1  Capped/Free INTEITACES ......cviiiiece ettt sttt st sae e 157

5.4.2  Study of the Behavior of the SOIULION..........cccoiiiiiiii e 160

5.4.3  Grafted Chain SYSIEM ... ..c.eiiii i ettt e bbbt e b b e 168

55 COoNCIUAING REMATIKS ...ttt ettt b e et b et b et e e et e sbe st e bt e st e e e benbe b 176



Contents

6  Main Conclusions and INNOVALIONS ..........ccccviiiiieiicie e 180
6.1 MethodologiCal AGVANCES ........ccveiieiiiiieie sttt e e tesaesbesreene e e et e seesrenrs 181
6.2 e )Y o LI F T o[ A o] v UL g T=T S 184
6.3 COMPULALIONEAL TOOIS ....veuviieieie ettt e et e st e s teene e s e et e tesaestesneeneeeenseneenrens 188
6.4 YT L= = (0] =Tt £ SRS 189

7 RESEAICH OULIOOK ..o 192
7.1 SCFT Combined With SGA ......cuoiieee ettt st se st e et ne s 192
7.2 Structure and Thermodynamics of Grafted SIICA/PNCS .........cccceveieiineie e 193
7.3 SCFFEM MEtNOUOIOQY .....eveeeiiitiiieiiite ettt ettt e b bbb bbb ebesne e 193

AAPPENAICES ...ttt bbb bbb bbbt 196
Appendix A Edwards Diffiusion, Partition Function and Saddle Point Approximation..............ccccceeeuenen. 198
Appendix B Derivation of Grafted/Matrix Polymer System EQUALtIONS...........cccooerciiineinineiseeeee 206
Appendix C Finite Element Shape Functions —Matrix Representation............ccccocovreinneinnneicnncinienes 226

S (] (=] (o0 OSSPSR 234

CUFTICUIUM VITAE ..ottt re et e et esreeste e teeneesneenteeneenneas 263



Acknowledgements

I would like to start by expressing my deep appreciation and gratitude to my advisor Prof. Doros
N. Theodorou for motivating, teaching and guiding me throughout this exciting trip in polymer
science. His aptitude for perfection and rigor coupled with his persistence in attacking serious
problems with no straightforward solutions pushed me to my limits and made me appreciate the
virtues of patience and determination. He has been a tremendous mentor and role model for me,

providing support at all levels, encouraging me into becoming an independent researcher.

Secondly, I would like to thank Prof. Andreas Boudouvis and Prof. Vissarion
Papadopoulos for being members of my thesis advisory committee and for their generous help
and support at all levels. | would like to specially acknowedge them for giving the opportunity to

visit their groups and develop an active collaboration with them.

I could not proceed without thanking the other members of my examination committee
Professor Costas Charitidis, Professor Vlasis Mavrantzas, Associate Professor Antonis
Karantonis and Dr. Kostas Daoulas for their thoughtful questions and remarks, generating a
very fruitful discussion around my thesis. | would like to thank Professor Dimitrios Karonis for
our continuous fruitful collaboration over the years, for the scientific support received as well as

for transferring to me crucial knowledge that guided my initial footsteps as a researcher.

Many past and present colleagues have been extremely helpful to me during my PhD and
| am thankful for that. First of all I would like to thank the senior members of the Computational
Materials Science and Engineering Group, Dr. George Vogiatzis and Dr. Stefanos Anogiannakis,
for their help during the first steps of my thesis and our active collaboration throughout its
course. Furthermore, | would like to offer my special thanks to Dr. Aristotelis Sgouros and Mr.
Constantinos Revelas for the very active and fruitful collaboration we had. Without their
contribution the completion of this thesis would be impossible. Since a long time | have

considered all of them not just as colleagues, but also as good friends.

Xi



Contents

I would like to thank my office-mates Dr. Orestis Ziogos, Dr. Panagiotis Tzounis, Dr.
Georgios Kritikos, Dr Christos Tzoumanekas and Dr. Spyros Kallivokas and Mr Vasilis
Georgilas with whom | shared my office for about four years. | really had a great time working
with them. At this point | should mention the interesting discussions | had with Dr. Eleni
Koronaki, Dr. George Paschos, and Dr Nikos Chamakos who kindly shared with me their

experience on the Finite Element Method .

Many thanks are due to Mr. George Kissas and Mr Konstantinos Zinelis. | had the
pleasure to work with them in the framework of their Diploma and Master’s theses and very

much enjoyed it.

Very special thanks to my parents, Thomas and Theodora for their love, support and
encouragement. They stood by me in difficult times and they always had a way of guiding me to
make the right decisions. | would like to extend my special thanks to my sister Eftychia, my
grandparents Lazaros and Paraskevi, my sister in law Stella, my brother in law Costas, my
cousin Lazos and my best friends Bill, Tasos, Leonidas, Stratos and Costas for their

unconditional love. | would never have finished this work without their love and support.

Last but not least, a special thanks to my beloved wife Myrto for being by my side and
supporting me at all levels all these years. Words cannot express how grateful 1 am towards
Myrto with whom we spent sleepless nights discussing when there was no one to answer my
queries. | would like to thank my wonderful kids Thomais, Odysseas and lasonas for all the
love, comfort, and strength they have given me during those years. Especially my son Odysseas

is an inspiration for me and | take courage from his strength.

Furthermore, | gratefully acknowledge financial support from the Limmat Foundation,
Zurich, Switzerland through the project: “Multiscale Simulations of Complex Polymer Systems”
(MuSiComPS).

Xii


http://www.chemeng.ntua.gr/main.php?people&people_id=702&lang_change=en
http://www.chemeng.ntua.gr/main.php?people&people_id=702&lang_change=en
mailto:gpashos@gmail.com

Summary

The exponential growth of computational resources over the past decades, combined with the
advent of models and advanced computational tools, have assisted significantly in guiding the
design of improved polymer materials of high technological importance in a broad range of
industrially relevant applications. Atomistic simulations have assisted a great deal in
understanding elusive microscopic phenomena manifesting themselves at polymer interfaces and
of their mechanisms and in establishing structure-property relations; they have a drawback,
however, namely their high computational cost. Mesoscopic simulations, on the other hand,
employ a higher level of description and are quite useful in studying a variety of important
systems and phenomena at mesoscopic time- and length-scales, albeit the task of parameterizing

the effective interactions between coarse-grained segments is rather complicated.

There is an alternative strategy, however, which is the primary focus of the present
thesis: field-theoretic methods. To carry out a field-theoretic computer calculation, we require a
statistical field theory model of a fluid. A statistical field theory is a description of a system in
which the fundamental degrees of freedom are not particle coordinates, but rather one or more
continuous fields that vary with position. More specifically, we focus on one of the most
successful theoretical frameworks for inhomogeneous polymeric systems, the so-called self-
consistent field theory (SCFT). Our primary goal is to formulate, validate and develop SCFT
approaches, and then apply them in the description of interfacial systems involving high molar

mass polymer melts under equilibrium conditions.

The SCFT models of this research will comprise three main stages:
1. Validation. The aim of this procedure is to allow for a comparison of the field
theoretic model with previous atomistic simulations and experimental works in a
rigorous and predictable manner. This is a key step to ensure that the theoretical

models can successfully describe realistic systems.
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Summary

2. Structural properties. This will be the phase where the SCFT will be used to compute
structural properties of bulk and inhomogeneous melts under equilibrium conditions.

3. Thermodynamic calculations. This is the highest goal of the theoretical strategy
presented in this thesis. Through these calculations we will be able to determine
measurable thermodynamic properties and behavior of high molar mass polymer/gas

and polymer/solid interfaces.

A self-consistent field (SCF) theoretic approach, using a general excess Helmholtz energy
density functional that includes a square gradient term, is derived for polymer melt surfaces and
implemented for linear polyethylene films over a variety of temperatures and chain lengths. The
formulation of the SCF plus square gradient approximation (SGA) developed is generic and can
be applied with any equation of state (EoS) suitable for the estimation of the excess Helmholtz
energy. As a case study, the approach is combined with the Sanchez-Lacombe (SL) EoS to
predict reduced density profiles, chain conformational properties, and interfacial free energies,
yielding very favorable agreement with atomistic simulation results and noticeable improvement
relative to simpler SCF and SGA approaches. The new SCF_SL+SGA approach is used to
quantify the dominance of chain end segments compared to middle segments at free
polyethylene surfaces. Schemes are developed to distinguish surface-adsorbed from free chains
and to decompose the surface density profiles into contributions from trains, loops, and tails; the
results for molten polyethylene are compared with the observables of atomistic simulations.
Reduced chain shape profiles indicate flattening of the chains in the surface region as compared
to the bulk chains. The range of this transitional region is approximately 1.6 times the radius of
gyration (Rg). The inclusion of chain conformational entropy effects, as described by the
modified Edwards diffusion equation of the SCF, in addition to the square gradient term in
density, provides more accurate predictions of the surface tension, in good match with
experimental measurements on a variety of polymer melts and with atomistic simulation

findings.

A model for the prediction of key structural and thermodynamic properties of Polymer
matrix nanocomposites (PNC) is described. Our approach is applied to single spherical silica
(Si0,) nanoparticles or planar surfaces grafted with polystyrene chains and embedded at low
concentration in a matrix phase of the same chemical constitution. Our model is based on self-
consistent field theory, formulated in terms of the Edwards diffusion equation. The properties of

the PNC are explored across a broad parameter space, spanning the mushroom regime (low

Xiv
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grafting densities, small NPs and chain lengths), the dense brush regime, and the crowding
regime (large grafting densities, NP diameters, and chain lengths). We extract several key
quantities regarding the distributions and the configurations of the polymer chains, such as the
radial density profiles and their decomposition onto contributions of adsorbed and free chains,
the chains/area profiles, and the tendency of end segments to segregate at the interfaces. Based
on our predictions concerning the brush thickness, we revisit the scaling behaviors proposed in
the literature and we compare our findings with experiment, relevant simulations, and analytic

models, such as Alexander’s model for incompressible brushes.

Finally, a method is formulated, based on combining self-consistent field theory with the
finite element method (SCFFEM), for studying structural and thermodynamic features of three-
dimensional polymeric systems. Initially, this approach is tested on a planar
polyethylene/vacuum and a polyethylene/graphite system, hand in hand with atomistically
detailed molecular simulations as well as with one dimensional SCF approaches. This new
approach is employed to predict reduced density profiles and interfacial free energies, yielding
very favorable agreement with previous SCF studies, thus validating the SCFFEM methodology.
An h-, r-, p- refinement process is developed to optimize the finite element mesh. Furthermore,
two new criteria and an innovative successive substitution scheme are introduced for accurate
convergence. The methodology is employed on a more complicated system consisting of
polystyrene brushes grafted on silica walls immersed in polystyrene melt. In most
implementations, the grafted chains are dealt with by smearing them across shells parallel to the
surface of the modeled nanoparticle. The SCFFEM approach allows to distinguish the positions
where the grafted chains are tethered, since it does not employ any smearing. The reduced
density profiles are compared against the end-segment distributions along specific lines in the
system. The structural properties and grand potential contributions are obtained for a broad
range of grafting densities, molar masses and swelling ratios (i.e., ratio of the matrix to the
grafted chains), and are compared to experimental data, theoretical models, and earlier

simulation studies.
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Iepiinyn

H exBetucny abénon tov vmoroyIoTIKdOV TOpOV TIG TEAELTAIEG OEKOETIES, GE GLVIVAGUD LE TNV
avATTUEN HOVTEA®V KOl TPONYUEVMOV VTOAOYICTIK®V £PYUAEiwV, €xovv amofel moAD YP1CULES
0TO GYEOGUO TOAVUEPDV VAKOV pe PEATIOUEVES 1010TNTEG, TA. Omoia TOPOoVoldlovy pua
TANOopa eQopUOYDOV KOopveaiog TEXVOAOYIKNG onuaciag yw v Bopnyavie. Ot aTopikés
Tpocopolmdoel;  Exovv  Ponbnoer oe peydho Pabud omv  Katavomon TV TOKiAwv
UIKPOCKOTIKAOV QOIVOUEVOV TTOV OITOVTAOVTOL OTIS OEMPAVEIES TOAVUEP®VY, KAODG KOl GTNV
e0paimon oxécewv PETOED UIKPOGKOTIKNG OOUNG Kal WO1oTTv. 'Exouv Opmc éva pelovéktnua,
Kot auTd ivar To VYNAS VITOAOYIGTIKO KOGTOG. Ol HEGOCKOTIKEG TPOGOUOLDGELS, OO TNV GAAN
peptd, Aappavovv yopo coe €va VYNAOTEPO (AdOPOTOMUEVO) EMIMESO TEPIYPOUPNS KOl EWVOL
OPKETA YPNOIUEG OTN HEAETN TOIKIA®V ONUOVTIKOV OEMPAVEINK®Y GLOTNUATOV KOl
QOVOUEV®V, TN LEGOKAILaKA. 26TOCO 1) TOPOUETPOTOINGT TOV OAANAETIOPAGE®Y LETAED TV

TUNUATOV 0OPOTONUEVOV HOVTEA®MV amOTELE] Lo Wtépms mepimlokn dtadikacio.

Mo eVOALOKTIKY] OTPOTNYIKY, T ONOoiol OMOTEAEl KOl TO EMIKEVIPO TNG TaPOVGOG
dwtpPng, etvor o1 vroroylotikég pébodot Paciopéves otn Bewpia mediov. o va edpardsovpe
éva TETO10 VTOAOYIOTIKO HOVTEAD, EVOL GKPWOG OmapoiTnTn 1 YPNON MU0 OTATIOTIKNG Oewpiog
nediov evog pevotov. H otatiotikn Bewpio mediov amotelel po meptypapr €vOG GLGTNLLOTOG GTO
omoio ot Bgpelmoelg Pabuoi erevbepiag dev elvar ol cuvtetaypéves coOUATIOIOV, 0AAL PLAALOV
éva M TeprocoTtepa cvveyn media kol 1 aAAnAenidpaon eaptdror amo ™ 6éon péoa ota media
avtd. ITo cvykekpéva, eotidlovpe oe éva omd ta mo emTvyNUEVO BempnTiKd TAaiclo Yo
OVOLLOLOYEVH TOAVUEPT] cLGTHHATO, TN Bempio TOV owTo-cLVETOVE Ttediov (SCFT). Amodidovpe
Wwitepn wpocoyn Kupiog ot SUOPE®CT, TNV EMKVPMOOT KOl TNV OVATTUEN SLOQOPETIKMY
npoceyyicewv ¢ Bewpiag ToL AVTOGLVETOVS eSOV, Kol GTN GLVEXEWDL TV £QUPUOOVUE GTNV
TEPLYPAPT, OETMLPOVEIOKADV CLOTNUATOV 7OV TEPIAAUPAVOLV THYUOTO TOAVUEP®V VYNANG

poplokng palag oe cLVONKES 1IG0pPOTING.
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Hepiinyn

Ta povtéda Bewplag TOL AVTOGVVETOVG TESTIOL AVTNG TNG HEAETNG TP auPdvouy Tpia

KOpLOL GTAOLNL:

1. Enucopwon. O otdyog avtig g dtodikaciog eival vo emTpéyel T GUYKPLIOT] TOV
Oe@PNTIKOV HOVIEAOVL UE TTPOTYOVUEVES OTOUIKES TPOCOUOIDGELS KO TEPOUOTIKG OEOOUEVOL [LE
oYoAooTIKN Kot pnefodikn mpocéyyion. Avtd givarl éva Bacikd Prina yio vo S1acQaAloTel OTL Ta

Oe@PNTIKA LOVTEAN LITOPOVV VO, TEPTYPAYOVV LE ETTVYI0 PEAAICTIKO GUGTNLLOTAL.

2. E&€taon dopkav didmtov. H Bempio Tov avtocuvenovg nediov ypnoylonoteitol yo
TNV TEPLYPAPT TOV SOMK®V 1310THTOV OUOLOYEVAV KOl OVOUOLOYEVAV (PAGEMV TOAVUEPIKMOV

TNYLATOV VIO GLVONKES 1GOPPOTIOG.

3. Ogpuodvvapkoi vroroyopol. Avtdc eivar 0 PactkdTepPOg GKOTOG NG BempnTikig
OTPOTNYIKNG TOL Topovctdletan o avtny T Awtpipn. Méow TV LTOAOYICUOV HETPNCLUOV
Oepproduvapuk®v WI0THTOV gival EPIKTOS 0 TPOGIOPIGHOG Kot 1| TPOPAEYT TG GUUTEPLPOPAC
GLGTNUATOV TOV ATOTEAOVVTOL OO EAEVOEPES EMPAVELIEG TOAVUEPDV 1)/KOL EMPAVELEG LETOED

TOAVUEPDV KOl GTEPEDV LE TN XPNOTM N OYL ELPVTEVUEVOV TOAVUEPIKDV OAVGIO®V .

H Bewpilo tov avtoovvemovg mediov, pe UL YEVIKELUEVY] £KQOPOAOT] EVEPYEWONKNG
nmokvotntog Helmholtz, mov mepilapPdver évav  opo  tetpayovikng Pabuidag (SGA),
YPNOULOTOIELTOL Y10 EMPAVELEG TNYUATOG TOAVUEPOVS KOl EQAPUOLETUL GE VUEVIO YPOUUIKOV
noAvatfvreviov yo eva mAnbog Oeppokpacidv Kot poploakadv PBapov. H ovamtvén g
Oewpntikng pebodoroyiog tov SCF oe ocvvdooud pe v Bewpia SGA esivar yevikevuévn kot
umopel va epappootel pe omoladnmote katoaotatikn eficoon (EoS). Xpnowomoeiton m
Sanchez-Lacombe (SL) EoS (SCF_SL+SGA) yia epappoyn g empnrikng pebodoroyiag pe
okomd v mPOPAeyn TtV TPoPil avnyuévng mukvotntag (o€ oxéomn HE TNV TLKVOTNTA GTOV
Kupimg GyKo TOV LAMKOV) Kol OOMK®V 1O10THTOV TV 0AVGIO®V TV eAedBepwv empaveidv. Ta
aroteAéopato Ppiokoviol € CLUEOVIOL HE EKEIVOL TOV OTOUIKOV TPOCOUOIDCEDV KOl
emdekvoovv alloonueio PBeltioon oe oyéon pe TG amiovotepeg €mi HEPOVG BewpmTiég
npooeyyicelg SCF kow SGA. H SCF_SL+SGA ypnowonomdnke eniong Kot yio TOV TOGOTIKO
TPOGOIOPICUO TOV KATOAVOLMY TOV 0KPOIOV TUNUATOV TOV 0AVGIO®MV GE OVTIOWIGTOAN HE TO
pecaio tunpato oe eEAeVBepeg empdveileg moAvaBvieviov. Avartoydnkay dradikacieg dlokplong
TOV TPOCPOPNUEVAOV OTNV €MPAvELD. 0AVGId®mV Kol TV ghevBepmv alvcidwv. Ta mpogik
AVIYLEVOL GYNUOTOS OAVGId®mV delyvouy o To EmMIMEdN KOTOVOUN TOV VEQOV LOVOUEPIKADV
TUNUATOV TOV 0AVGIO®MV GTNV TEPLOYT] TNG EMPAVELNG GE CUYKPION LE TIG OAVGIOEC GTOV KOPLo

O0yko tov VAkoV. To gbpog avthg ™¢ peTafatikng meployng eivarl mepimov 1,6 yupOGKOTIKES
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aktivegs (Ry). H empaveloxn tdon mov vroroyileton pe t Osopntiky pebodoroyio SCF_SL +
SGA yw eva mAi0og moAvpepdv typdtov Pploketal 6e TANPN OVTIOTOLYI0 LE TEWPOUATIKEG

LLETPNOELG KO [LE EVPTLOTO OTOUKDV TPOGOUOUDGEMV.

2V cuvéreld avamtOHGETOL £vo. LOVTELD Yo TV TPOPAEYN TV PACIKOV SOMK®V Kol
Oepuodvvapk®y WtV Tov Tolvpepikdv voavoovuvietwv (PNC). H mpocéyyion poag
EQAPUOCTNKE GE CPAIPIKA vavooouatidio M eninedeg empdaveieg mopitiag (SiOz) ol omoieg
QEpouV  epputeLUéVEG aAvoideg moAvotupeviov (PS) ko eivon Sieomapuéveg oe  pniTpa
noAvotupeviov.To poviéro pog Paciletor Bempio Tov aVTOGVVETOVE TEGIOV, TOV JATLITMVETOL
pe Baomn v e&icmon dbyvong Edwards. Ot wd0tteg tov PNC e€etdralovtan og éva pacpa
TOPOUETPOV, TOL EKTEIVETOL OMO YOUNAES TLKVOTNTES EUPLTELONG, HikpA NP kot pnkm
aAVGI00G, TPOC MO MUKVEG (OYNUOTIOUOG — TOAVUEPIKNG YNKTPOS) £MG KoL TOAD LYNAEG
TUKVOTNTEG ELPVTEVONG. MeAeT®VTOL PAGIKA YOPAKTNPIOTIKA GYETIKA UE TIC KOTAVOUES KOL TIG
SWHOPPDOCELS TOV TOAVUEPDV OAVGIO®V, OTWG TA TPOPIA OKTIVIKNG TLKVOTNTAG, 1 d1dKpion
petald mpoopopnuévav Kot eAeVBepV 0ALGIOMV Kol 1 TACT TGV TEAK®V TUNUATOV Vo
OLYKEVTPOVOVTAL OTIG Olempaveleg. [Ipaypatomoteital ekTiumon Tov TaYovs TG TOAVUEPIKNG
YNKTPOG TOV  EUPLTEVUEVOV  OALGIO®V 1 omoio TEPPAALEL TO  VOVOCOUOTIOW Kot
emavegetdlovror ot mpoPAdyels KAMpdkoong mov mpoteivovtor amo v Piproypoeia. Ta
OTOTEAEGULATA LLOG CLYKPIVOVTOL [LE EVPALOTO OO SLOOECILEG TEPAUATIKES LETPTOELS, OYETIKEG

TPOGOUOIDGELS KO AVOAVTIKA LOVTEAQ, OT®OG TO povtédo Alexander ylo acvumiesto pevoTA.

Q¢ 1eAevTOi0 HOVTEAD TPOTLTOTOIN GG dtapopeaveTon o pnEBodog mov Paciletal oto
ouvovaopo g SCFT pe ) pnébodo nenepacuévov otoyeiov (FEM), yia ) pehétn dopkadv Kot
OEpLOSVVALIKOV YOPUKTNPIOTIKAOV TPOACTOTOV ToAvpepdv cvotnudtov. H tpocéyyion avt
(SCFFEM) doxiudotnke apyikd og Slempaveleg moAvatBvuAieviov pe kevo kot moAvaibvieviov
pe ypagitn, omov 1 pebodoroyio mwapapetponoinong otnpileTon 6€ LOPLOKES TPOGOUOIDGELS KO
peAetnOnke mponyovpéveog pe povooldotateg peBddovg SCF. Avt) n véa mpocéyyion
xpnowonotleitor  yuo v pOPAEYN TPOPIA avNYUEVIG TUKVOTNTOG KOl TOV LTOAOYIGHO NG
elevlepng eVEPYELOG JIETMIPAVELDY, UE TO ATOTEAECUATO V. BPioKOovIol G€ KOAY GUUEOVIN e
wponyovueva amoteréspata SCF, emkvpdvovtag ) pebodoroyio SCFFEM. Ztdyoc avtig g
gpyaciag eivar Kor M depedivnon NG CLUTEPLPOPE TOL GLUOTHUATOS TOV EEICMOGEMV OTAV
epapuoletar n uEB0dO meEMEPUCUEVMV GTOXEI®V. TNV GuVEKELD ovamTOyOnKe o teyviky h-, r-,
p- PBertictomoinong, pnécw tng omoiog eivar dvvatdov vo BeAtotomoinfodv ol TapAUETPOL TOV

TAEYLOTOG TEMEPACUEVDV oTolyelwv. EmmAéov, eiodyOnkav 600 véa kpitmpla yio v axpipelo
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NG OVYKAIONG KOl Vo KOWOTOUO OYNUO Ol000 KOV ETavOANyew®V. To gupiuatd Hog
xpnopomomOnkay oe €va MO TEPITAOKO GUGTNUO OTOTEAOVUEVO OO EMPAVEIEG TLPLTIOG OL
omoiég Pépovv gpputevpéves olvoideg molvotupeviov (PS) kau elvan dieomapuéveg e untpa
ToAvGTLPEVIOL. Meypt TOpa, M akpPng avomapdoTtocn TV onpeimv Tpdcdeong TV
EUPLTELUEVOV OAVGTIO®V NTav avEPKTr. Me v uébodo SCFFEM gwvan dvvatd va dtakpifodv
OTOV TPIACTOTO YMPO Ol BEGES OOV Ol EUPLTEVUEVEG OAVGIOES lval GUVOEOEUEVES LE TNV
EMPAVELD TNG TTVPLTIOG, 0 TIC BEGEIS TOV JEV PEPOVY EUPVTEVUEVEG OAVGIOEG. ZVYKPIVOVLLLE TOL
TPOQIA AV YHEVNG TUKVOTNTOG KO TIG KATOVOUES AKPOI®OV TUNUATOV TOV 0AVGIO®V KOTA UNKOG
GUYKEKPIUEVOV YPOUUDV HEGH 6TO Vot TELOC mpocsdiopilovartt ot dopKéS 1010TNTEG Kot Ot
GUVEIGQOPES GTO SUVOUKO TOV HEYAAOV KOVOVIKOD GTATIGTIKOD GLVOAOL Yo £vo evplh PAGUA
TUKVOTNTOV EUPVTEVONG, HOPOKAOV Halodv Kot AOyov SOYKOoNG Kol cvykpivovior pe

TEPAPATIKA dedopEVA, BE@PNTIKA LOVTELD KO TPOTYOVUEVEG LEAETEG TPOGOUOIMOTG.
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Nomenclature

Symbols and Notation

Latin symbols

A Helmholtz free energy

A Helmholtz free energy of an ideal gas

A Helmholtz free energy calculated by Sanchez Lacombe equation of State

Ao Helmholtz free energy of a chain with constrained end-to-end R, vector of
ideal chain

Aps, Ao, Hamaker constant for PS and SiO;

Achain Helmholtz energy contribution, of a Gaussian chain grafted at r,

- Free energy associated with the conformations of the grafted chains

A Stretching free energy obtained by the density profiles of the grafted chain
ends

ach Average surface area occupied in plane by a chain passing through that plane

Amix Relaxation parameter

b Effective bond length

b Bond vector

bk Kuhn length

Cn Flory’s characteristic ratio
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Nomenclature

HFD
onS

SL
onS

fstar

G
G(r,ry;s)
Gy (r,ry;)

GlG

Flory’s characteristic ratio at infinite chain length
c=m matrix and c=g for grafted chains

Thickness of the adsorption regions

Hyperbolic tangent

Enthalpy

Helmholtz free energy is approximated by a functional

Excess Helmholtz energy density relative to an ideal gas of chains

Excess Helmholtz energy density relative to an ideal gas of chains based
Helfand approximation

Excess Helmholtz energy density relative to an ideal gas of chains based on
Sanchez-Lacombe Eo0S

Number of branches
Gibbs free energy

Green function for the Gaussian thread in the presence of the field
Green function for the Gaussian thread without the presence of the field

Gibbs free energy of an ideal gas

Hamiltonian of the system

Hamiltonian of the canonical ensemble
Hamiltonian of the grand canonical ensemble

Film thickness in planar geometry/ segment-surface distance in spherical
geometry

spring potential

Planck constant
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Nomenclature

hogos Distance between the center of the nanoparticle and a surface, and encloses
99% of grafted chain segments

Navg average element size

Nedge Edge of the brush length

hus Segment-surface distance

hg Grafting point-surface distance

<hgz>1/2 Mean brush thickness

J¢ Jacobian matrix of the transformation from natural to real coordinates of an
element

Jet Inverse Jacobian matrix

k Diffusion coefficient

Ky Stiffness matrix of FEM

ke Boltzmann’s constant, ks=1.3806488 x 10 m’kgs K™

lcc Length of the carbon-carbon bond

[ I Domain dimensions

lg Quantity with dimensions(kg/mol)_n nm*™of scaling law for polymer
brushes

M Molar mass

M} Mass matrix of FEM

Mg molar mass of the grafted chains

m Mass

N Number of segments

N Normalizing prefactor which includes the contribution from integration over

momentum space

Nel Number of elements
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N;

Shape functions

Number of Kuhn steps

Length of the matrix chains

Number of nodal points of the whole domain
Number of nodal points of an element

Length of and grafted chains

Number of integration points in Gauss Quadrature
Number of segments constituting a branch of star polymer
Total number of atoms/particles/chains of the system
The mean number of chains in the system

Number of grafted chains of the system

Number of matrix chains of the system

Number of chains that intersect a plane

Chain shape (Intersections per chain going through a plane)
Chain shape in the bulk

Pressure
characteristic Sanchez-Lacombe pressure

Probability density function for end-to-end vector R,

A statistical weight for path r_(s) of chain « in the absence of any field in

the Gaussian string model
reduced pressure

Phase coexistence pressure

Pressure of an ideal gas
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Nomenclature

Pint

pSL

QnVT

qads
Jc

Qfree

C‘shape,z0

Rnp

Rstar

Generalized momenta (p*, ...,p")

Probability of a chain, that started anywhere in the system, to intersect a
plane

Sanchez-Lacombe pressure parameter

Single chain partition function

Canonical partition function

Restricted partition function for the Gaussian thread model /chain propagator
Propagator derivative

Propagator of segments belonging to adsorbed chains
Propagator of segments ¢ = m matrix, and ¢ = g grafted chains

Propagator of segments belonging to free chains

Propagator for chains that do not intersect a plane z,

The end to end vector

Three-dimensional region
Radius of gyration
Radius of nanopatricle
Radius of a star polymer

Contour position r

Global coordinates of element
Generalized coordinates (rl, ...,r“)
N +1 particle positions

Contour position r of a chain a

Center of mass position

XXIX



Nomenclature

lads

—,

titeration

U

Uo

Distance from NP center to the region where the segments of matrix chains
are considered to be “adsorbed”

Grafting points

Grafting point of the iy" grafted chain

Number of Sanchez-Lacombe segments constituting a molecule

Entropy

Surface area over which grafting points are smeared

Total interfacial area

Contour length along a chain

Temperature

Characteristic Sanchez-Lacombe temperature
Reduced temperature

Time of a single iteration

Potential energy of the system

Potential energy associated with a particular conformation of the polymer of
ideal chain model

Interaction energy between the polymer chain segments and the solid
surfaces

Hard core volume of a Sanchez-Lacombe segment
Reduced volume

Pair potential function

Volume of the system

Close packed volume of the n r-mers

Volume of an element
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Nomenclature

W Weight Function

W3 Field matrix of FEM

w Purely imaginary position-dependent field

W, Independent weight functions

W Chemical potential field after imposing saddle point approximation

w Real position-dependent field

W Field evaluated after substituting the calculated reduced densities in iteration
scheme

w' New field for next iteration

Wi Chemical potential field of the bulk

W, Chemical potential field of the interface

W, Weight factor of the integration point

W, the measure of the thickness of the sigmoidal curve

Z Configurational partition function

20 Configurational partition function of ideal chain model

Ztree Configurational partition function of a free chain

Zia The configurational integral of a single, atomistically represented, molecule
over all but three translational degrees of freedom

Zar Configurational partition function of canonical ensemble

z Activity of grand canonical ensemble

Greek Symbols

S Inverse of the thermal energy (ksT)™

y Surface tension
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Nomenclature

Vsp
Ps
Yealc

Yconv

AA,

AAf(‘?eld
A
AW’ tol

ifc

AQ

coh

AS)field

AQ

AQ

solid

o(...)

Geometric factor depending on bond-angles along the chain backbone

Interfacial tension of a solid/polymer interface
Surface tension of a solid
Surface tension calculated by SCFFEM method with mesh with low accuracy

Surface tension calculated by SCFFD or by SCFFEM method with mesh with
high accuracy

Conformational entropy of nq grafted chains subject to the field W’
Contribution to the Free Energy of the field experienced by the grafted chains
Maximum difference between the fields of two iterations

A tolerance value of Aw/; ™

ifc

Cohesive interaction component (relative to the bulk melt chains) arising due
to segment-segment interactions in the polymer

Interaction energy between the density field and the chemical potential field

Translational and conformational entropy (relative to the bulk melt entropy)
of noninteracting matrix chains subject to a chemical potential, Ny,

Contribution of the potential energy exerted from the solid

Dirac delta-function.

Attractive energy between Sanchez-Lacombe segments in adjacent sites
Heaviside step function

Influence parameter

Dimensionless influence parameter

Influence parameter from Sanchez-Lacombe EOS

Isothermal compressibility
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Nomenclature

Aj

EWT’E(MV,T)

i)

oYl

Aol

Phulk

Pend
Py
i
Pm
Pmass

pseg,bulk

*

PsL

Thermal wavelength of atom i of a molecule
Symmetry measure of hyperbolic tangent curve

location of the integration point m in Gauss Quadrature
Chemical potential

Chemical potential of bulk phase

Chemical potential of an ideal gas
Grand canonical partition function

Segment density
Characteristic Sanchez-Lacombe density

Reduced density

Microscopic particle density

Reduced bulk density

Density of the end segments of a chain

Gas density
Liquid density
Molecular density

Mass density
Bulk segment density
SL density parameter

Grafting density

Hamaker effective radii for PS and SiO»

Reduced segment density

Reduced volume fraction of segments belonging to adsorbed molecules

XXXl



Nomenclature

Pend

Dfree

Qi

®Ploop

Pmiddle

Drails

&

Q/NT Q(u,V,T)

w

Reduced segment density of ¢ = m matrix, and ¢ = g grafted chains
End segment reduced density

Reduced volume fraction of segments belonging to free molecules
Trial function

Reduced volume fraction of adsorbed loop segments

Middle segment reduced density

Reduced volume fraction of adsorbed tail segments

Segment reduced density of chain segments lying at reduced contour length s

Flory-Huggins parameter

Probability density function

Probability density function probability distribution

Number of configurations available to a system of n molecules
Finite element domain

Grand potential of bulk phase
Domain occupied by a single element
Finite element domain approximation
Grand potential

Absorption coefficient of diffusion equation
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Abbreviations

DFT Density functional theory

DPD Dissipative particle dynamics
EoS Equation of state

FOMC Fast Off-lattice Monte Carlo
FEM Finite element method

FF Free film

kMC Kinetic Monte Carlo
LAMMPS Large-scale Atomic/ Molecular
Massively Parallel Simulator

MC Monte Carlo

MD Molecular Dynamics

MUMPS MuUItifrontal Massively Parallel
Solver

NC Nanocomposites

NP Nanoparticle

uVT Grand canonical ensemble

NVT Canonical ensemble

PDE Partial differential equation
PDMS Poly(dimethylsiloxane)

PE Polyethylene

PEO poly(ethylene oxide)

PGNP Polymer grafted nanoparticles

PIB Polyisobutylene

PMMA Poly(methyl methacrylate)

PMF Potential of mean force

PNC Polymeric nanocomposites

PnBMA Poly (n-butyl methacrylate )

PS Polystyrene

PVAc Poly(vinyl acetate)

SANS Small angle neutron scattering
SCFFEM Self-consistent field combined with
finite element method

SCFFD  Self-consistent field combined with
finite differences method

SCFT Self-consistent field theory
SCF_Helfand  Self-consistent field Helfand
model

SCF_SL+SGA SCFT with SGA model, based
on the Sanchez- Lacombe EoS

SGA-PS SGA model developed by Poser and
Sanchez

SL Sanchez-Lacombe Equation of state

SGA Square gradient approximation

SGT Square Gradient Theory

TraPPE  Transferable Potentials for Phase
Equilibria Force Field

WRM Method of Weighted Residuals
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1 Introduction

In this short introductory chapter, the framework of the thesis is established. We will try to
introduce the reader to the world of nanoscale macromolecules by presenting and discussing the
main definitions utilized later in this thesis. Moreover, we will explain the important role of
polymers in our life, why interfaces are of major technological importance, how polymer matrix
nanocomposites have been established as a state-of-the-art field in research and industry, and the
value of Self Consistent Field Theory in describing the complex structure of these polymeric

materials.
1.1  Polymers

In the literature, polymers refer to materials whose shared structural feature is the presence of
long covalently bonded chains of atoms.' According to the International Union of Pure and
Applied Chemistry (IUPAC) definition of a polymer:? “a polymer is a substance composed of
molecules characterized by the multiple repetition of one or more species of atoms or groups of
atoms (constitutional repeating units) linked to each other in amounts sufficient to provide a set
of properties that do not vary markedly with the addition of one or a few of the constitutional
repeating units”. A monomer is the substance that the polymer is made of (usually coinciding
with the structural unit), and the process that converts a monomer to a polymer is called
polymerization. When a structural unit is connected to precisely two other structural units, the
resulting chain structure is called a linear macromolecule, whilst when existing structural units
are connected to three or more units in the same chain we talk of branched macromolecules. If
there is only one type of chemical unit the corresponding polymer is referred to as a
homopolymer;? if there are more than one types, it is referred to as a copolymer. Special units

called end groups are found where the polymeric chains terminate.



Chapter 1. Introduction

Polymers are chain-like macromolecules, which are composed of sequences of various
types of repeating units. Therefore, there can be infinitely many types of polymers depending on
the combinations and sequences of these units along the chain. The term configuration refers to
the “permanent” sterco-structure of a polymer. The configuration is defined by the
polymerization method, and a polymeric chain preserves its configuration until it reacts
chemically. Due to its flexibility, a polymer chain with a certain configuration can exhibit a very
large number of possible 3-dimensional folding shapes. This degree of freedom is called the

conformation.

Most commercial synthetic polymers are considered to be flexible, because the natural
conformation of such a polymer, either in the molten state or dissolved in a solvent, is not a rigid
rod but rather a random coil. The flexibility necessary for polymer coiling is derived in many
polymers from relatively unhindered rotations around carbon—carbon single bonds along the
polymer backbone.* The “random” character of a coiled polymer reflects the fact that an
extremely large number of conformational states of the backbone bonds are available. A direct
result of this character is that the equilibrium behavior of polymers resists situations, such as
strong extension or compression, where the number of conformational states is reduced relative
to that in the random coil.> Such a reduction in available states is described macroscopically as a

decrease in “conformational entropy.”

Even though many people probably do not realize it, everyone is familiar with polymers.
They are one of the most popular category of materials encountered in everyday use, since they
are the main components of plastics, rubber, resins, biomaterials, foods and adhesives. Polymers
are remarkably involved in comfort and facilitation of human life and it is difficult to imagine
modern human society without polymers. Over the last decades, an explosive scientific and
technological revolution is underway and polymers play an essential role in it.. This is because
polymers constitute an amazingly versatile class of materials, with properties of a given type
(e.g., thermodynamic, rheological, mechanical) often having enormously different values,
sometimes even for the same polymer in different physical states.** Although a large number of
material scientists, chemists and chemical engineers, physicists, textile technologists,
mechanical engineers, pharmacists and other scientific groups are involved in the development

of projects related to polymers,® there is still immerse room for development and improvement.



1.1. Polymers

Since most chemists and chemical engineers are now involved in certain aspects of
polymer science or technology, some have called this the polymer age.” Actually, humans have
used naturally occurring polymers for centuries without realizing that they were dealing with
macromolecules. Synthetic polymers appeared in the middle of the nineteenth century when
chemists started using polymerization reactions without realizing that they were creating very
large molecules.® The realization that polymers are molecules made of covalently bonded
elementary units, called monomers (macromolecular hypothesis) was proposed by Staudinger in
1920.° From 1930 to 1960 polymers entered a golden age, during which new types were
discovered and quickly emerged in commercial applications replacing naturally-sourced
materials. At the same time, polymer synthesis tools were developed and refined. These include
seminal works such as that of Flory on the swelling of a single chain in a good solvent,* that of
Kuhn on macromolecular sizes,'® that of Huggins and Flory on thermodynamics of polymer

1112 that of Flory and Stockmayer on gelation'*** and that of Kuhn, James, and Guth

solutions,
on rubber elasticity.”> The single-molecule models of polymer dynamics were also developed
during this period by Rouse™ and Zimm.' In the subsequent 20 years, the main principles of
modern polymer physics were developed. These include the Edwards model of the polymer
chain and its confining tube,’® the modern view of semidilute solutions established by des

9

Cloizeaux and de Gennes,” and the reptation theory for chain diffusion developed by de

Gennes,”® which led to the Doi-Edwards theory for the flow properties of polymer melts.?

During the following years, the attention of many scientists focused on the development
of exotic plastic materials with advanced properties based on novel monomer units. This
tendency in polymer development has been overcome by the realization that polymers built from

22731 will continue to lead the

readily available, low-priced, environmentally friendly monomers
science innovation.** The combination of modern polymer synthesis strategies with theoretical
and empirical designing tools results in polymers with new or better-defined molecular

architectures.®*® Current research activity is largely focused on the class of self-assembled® *°

and nanostructured composites*

created by simultaneous control over macrophase and
microphase separation.’>*™! In this effort, the use of theoretical and computational tools is
imperative. Investigation and optimization of appropriate numerical simulations will allow the
exploration of the self-assembly behavior and physical properties of new materials by reducing

the cost and the time of experimental processes.
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1.2 Polymers at Surfaces and Interfaces

The generally accepted use of term interface refers to an intermediate three dimensional
boundary region separating two phases of matter with different physicochemical properties, in
thermodynamic equilibrium.>® The phases separated by the interface can be of the same (e.g.,
solid/liquid, liquid/gas and gas/solid interfaces for a pure substance) or of different (e.g.,
immiscible fluids) chemical constitution. For many scientists, the word surface implies the
boundary separating a solid or a liquid in contact with air or vapor phase, whereas the word
interface conjures up the notion of a solid/solid, liquid/liquid, or liquid/solid contact. The use of
words surfaces and interfaces is probably redundant according to the above definitions.
Although the word interface would suffice, we use the words surface and interface because they

correspond to different images in peoples’ minds. >

It is worthwhile to look at a few examples, so as to get a feeling of the technological
importance of understanding the behavior of polymers at interfaces. The quality of products
obtained through polymer-processing operations, such as extrusion and film blowing, is
profoundly affected by surface-related dynamic phenomena.>* Colloidal suspensions encompass
commercial products such as paints and inks.™ Adhesives constitute a category of materials
where molecular-level design involving polymers at interfaces is of crucial importance. The
design of polymeric resins, encapsulants, and dielectrics used in the microelectronics industry
requires understanding of the behavior of polymers at interfaces. The thermodynamics at
interfaces is governed by delicate microscopic phenomena; understanding these phenomena and
the microscopic mechanisms that are associated with them is of major technological importance

in a broad range of industrially relevant applications.

Each of the theoretical methods that are used to study polymer interfaces can be
categorized as being either an analytical or a simulation technique. Simulation methods for
studying polymer interfaces are nearly always based on microscopic models, which can vary
extensively in the level of detail of the simulated particles and the accuracy of the intra- and
inter-molecular potentials that describe the interactions among them. The techniques most

25,45,56-59

frequently used for polymer simulations are Monte Carlo, Molecular

3056586061 and Brownian dynamics.?2® The analytical techniques can be further

Dynamics,
classified into microscopic or phenomenological. A phenomenological theory is one whose

starting point is a statistical mechanics description with the fundamental variables being
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collective variables (i.e., many-molecule), such as concentration fields. These theories generally
involve one or more phenomenological coefficients, such as interaction energy parameters,
viscosities, and elastic constants, whose microscopic origins are not addressed by the theory.

%58 theories of phase transitions and Cahn-Hilliard theory®” are familiar examples of

Landau
such an approach. In contrast, a microscopic theory is defined as one whose starting point is a
statistical mechanics description using the generalized monomer coordinates and conjugate
momenta as the fundamental variables. Such microscopic approaches include lattice mean-field

3,32,69,70

theories®, self-consistent field theories, and certain scaling and renormalization group

theories.”
1.3 Polymer Nanocomposites

Nanocomposites (NC) are multiphase solid materials where one of the phases has one, two or
three dimensions of less than 100 nanometers (nm) or structures having nano-scaled repeated
distances between the different phases that make up the material. The composite consists of two
main parts: the matrix and the reinforcing phase (filler). The main classification in NCs is based
on the different types of matrix phases: ceramic-matrix NCs, metal-matrix NCs and polymer-
matrix NCs. Depending on the reinforcing phase, nanoparticle (NP) additives are divided into
classes such as glass, carbon, and aramid. The present thesis investigates polymer-matrix NCs
consisting of polymer-grafted nanoparticle additives (“fillers”) embedded in a polymer matrix.
Polymer-grafted nanoparticles comprise two primary components: the nanoparticle core and the
polymer brush. The core can be either organic or inorganic and in many cases has a unique
functionality itself. While many different core geometries have been successfully synthesized,
such as nanocubes, nanorods, or nanoplatelets, spherical cores are perhaps the simplest to
understand from a theoretical standpoint. In addition to the core geometry, there are numerous
varieties of materials that constitute the core of Polymer grafted nanoparticles PGNP ranging
from the simple (silica), to functional (magnetite), optically active (gold), or even more
complex materials such as viruses and protein capsids.’> The matrix chain-brush interfacial
interactions may be "tuned” by controlling the grafting density (polymer chains per area tethered
to NP surface), the degree of polymerization of the grafted chains (usually measured in number
of monomer units) and of the polymer host, the nanoparticle size (core size and polymer brush

height), and its shape.
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Polymeric nanocomposites (PNCs) have been an area of intense industrial and academic
research for the past thirty years. No matter the measure - articles, patents, or research and
development funding - efforts in PNCs have been exponentially growing worldwide over the last
twenty years. PNCs represent a radical alternative to conventional filled polymers or polymer
blends - a staple of the modern plastics industry. In contrast to conventional composites, where
the reinforcement is on the order of microns, PNCs are exemplified by discrete constituents on
the order of a few nanometers.” In light of the diversity of PNCs, their potential is nearly
immeasurable. Among PNCs, PGNPs is a topic of broad research interest. It has been
demonstrated that dispersed spherical nanoparticles can yield a range of multifunctional
behavior, including a viscosity decrease, reduction of thermal degradation, increased mechanical
damping, enriched electrical and/or magnetic performance, and control of thermo-mechanical

properties >7483

The practice of adding nanoscale particles to reinforce polymeric materials can be traced
back to the early years of the composite industry in the second half of the 19th century. In 1856,
Charles Goodyear attempted to formulate nanoparticle-toughened automobile tires by blending
carbon black, zinc oxide, and magnesium sulfate particles with vulcanized rubber.®* In 1909,
another example was the clay-reinforced resin known as Bakelite, which was introduced as one
of the first mass-produced polymer-nanoparticle composites and fundamentally transformed the
nature of practical household materials.”” Then, a long period of time passed till PNCs
development was stimulated by research at Toyota where polyamide-6 nanocomposites with
improved toughness, stiffness and heat distortion temperature balance became available in
1993.%8 During the next decades, an explosion of experimental research occurred in the areas
of nanocomposites based on inorganic materials, polymer based nanoparticle filled composites
and naturally occurring systems of nanocomposites.®”#8As part of this renewed interest in NPs,
theoretical researchers also started seeking designing rules that would help them engineer
materials with tailor-mode properties. For ceramic NPs, one can argue that the interface width is
still small relative to the filler size or the filler-to-filler distance; thus, extension or modification
of standard composite theory or modeling approaches may be sufficient. For polymer NPs, the
modification of the matrix may extend over several radii of gyration from the particle surface. In
turn, this situation results in novel macroscopic properties, which are dictated qualitatively and
quantitatively, by the behavior of the confined polymer that forms the modified matrix. The

development of rigorous models that describe these new materials, and particularly an in-depth
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understanding of their properties, are still in their infancy. The greatest stumbling block to the
large-scale production and commercialization of NPs is the dearth of cost-effective methods for
controlling the dispersion of the nanoparticles in their polymeric hosts. The nanoscale particles
typically aggregate, and this usually negates any benefits associated with their nanoscale
dimension. The second challenge is associated with understanding and predicting the properties
of these upgraded materials, which are intimately connected to their internal structure and

morphology.
1.4  Self-Consistent Field Theory of Inhomogeneous Polymeric Systems

Understanding the formation and structure of these rich morphologies demands predictive
theoretical frameworks that can be used to describe phase behavior and structural properties of
polymeric systems. Ideally, the theory should take the molecular properties of the polymers as
input and be able to predict the thermodynamically stable phases, the phase transition
boundaries among them, as well as the physical properties of the phases, with low computational
cost. Towards this goal, a variety of theoretical methods have been developed to study the
phases and phase behavior of inhomogeneous polymeric systems.

One of the most successful theoretical frameworks for inhomogeneous polymeric
systems, including polymer blends, polymer solutions and block copolymers, is the self-
consistent field theory (SCFT). The polymeric SCFT has its origin in the work by Edwards in
the 1960.% This theoretical framework was explicitly adapted to treat block copolymers by
Helfand in 1975 and later important contributions to the theory were made by Hong and
Noolandi among others.®* The most fruitful application of SCFT to polymeric systems is the
study of phases and phase transitions of block copolymers. In particular, powerful methods have
been developed over the last decades to obtain highly accurate solutions of the SCFT equations
using numerical techniques. The earliest attempts to obtain numerical solutions of SCFT for
block copolymers were made by Helfand and coworkers.®® Later, Shull®* and Whitmore and
coworkers®™ have computed phase diagrams of block copolymer melts and solutions using
approximate numerical techniques. SCFT has been employed to investigate numerous polymeric
systems with advanced properties in recent years. The first three-dimensional numerical
solutions of block copolymer phases were obtained by Matsen and Schick® who utilized the
crystalline symmetry of the ordered phases and provided exact numerical solutions to the SCFT

equations. This technique has been applied to a variety of block copolymer systems. Further
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development of the SCFT included the theory for Gaussian fluctuations in ordered phases,*
numerical techniques for solving the mean field theory in real space® and fully fluctuating field-
theoretical simulations.”” There is a large body of literature on the SCFT of polymeric systems,
including a number of valuable review articles,* % book chapters and books.***%*"® Based on
these numerous studies, it can be stated that SCFT forms a powerful basis for the study of

inhomogeneous polymeric systems.

The self-consistent field theory can be outlined in terms of three fundamental steps.
Firstly, the shape of the polymeric fluid can be designated by an ideal chain model describing
the statistical mechanics associated with the conformational states of a single polymer chain.
Secondly, a particle-based statistical-mechanical system is mathematically transformed into a
field-based description. Within this field-based description, the many-body interactions are
replaced by the interaction of each particle with certain fluctuating fields and the Hamiltonian of
the system has a functional dependence on these fields. Lastly, further appoximations can be
implemented based on the previous steps. In particular, a saddle-point approximation of the
functional integral leads to the mean-field approximation of the system. The resulting mean-field
equations, or SCFT equations, can then be solved analytically or numerically, providing
information about the structure and property of the inhomogeneous polymeric phases. This

theoretical framework is flexible in that it applies to any statistical-mechanical system.
1.5 Motivation

1.5.1 Molten Polymer Free Surfaces at Equilibrium

The thermodynamics of simple fluids and polymer melts in contact with a gas phase have been
explored in great detail in previous works via theoretical approaches and atomistic
simulations.*>*1%112 Thin liquid films exposed to gas phases on both sides, the so-called freely
standing liquid films (FF), have attracted considerable research interest and
attention,%%94100-102.107.109-113 1 has heen shown that film thickness has a considerable effect on
thermodynamics: thick polymer films exhibit bulk properties in their central region,®” whilst
thin films display altered thermodynamics affecting their stability (emergence of disjoining
pressure).®>11%112 Moreover, the properties of thin films and the phase behavior of block
copolymers have been studied extensively by means of self-consistent field theory

(SCFT).929410010L11L The importance of including nonlocal terms in polymer density and the
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Helmholtz free-energy functional to deal with the inhomogeneous environment of surfaces and
interfaces has generally been recognized by numerous authors.>®"*4*° Besides surface tension,
the knowledge of the macroscopic properties of polymer interfaces is quite important, since they
dictate the stable configurations of the system (contact angles, film wettability, phase separation,
etc.). Even though SCFT has been used extensively to predict and explain the structure and
phase diagrams of block copolymers and polymer blend systems, few authors have applied it to
investigate the properties of homopolymeric interfaces.”******* To be more specific, several of
the following issues have not yet been addressed in literature:

) Investigation of the structure and thermodynamics of linear polyethylene films over a

variety of temperatures and chain lengths, using the SCFT in conjunction with the Square
Gradient approximation.

i)  Bottom-up comparative studies regarding the structural features (reduced density profiles,
chain conformational properties) and thermodynamics (e.g., interfacial free energies) of
thin films among SCFT combined with Square Gradient Approximation approaches with
particle-based methods such as molecular dynamics.

iii) Hardly any studies report schemes to distinguish surface-adsorbed from free chains and to
decompose the surface density profiles into contributions from trains, loops, and tails.
Side-by-side comparisons with atomistic particle-based simulations are rarely addressed
in the literature.

iv)  There are also limited studies that provide accurate predictions of the surface tension, in
good match with experimental measurements and atomistic simulation findings over a
broad variety of polymer melts.

1.5.2 Nanoparticles in Polymer Matrix

Polymer chains anchored on the surface of solid particles are widely used to stabilize inorganic
nanoparticles (NPs) inside a host polymer matrix.****** *** In most cases, the embedded NPs
tend to stick to each other due to attractive forces between them.™’” Under certain conditions, the
entropic cost related to the configurational restriction of grafted chains when the particles get
closer to each other is able to keep the particles separated. The key factors influencing NP
separation are their size, the molecular weight of grafted and matrix chains, and the surface

grafting density.

When the matrix chains wet the grafted polymer brush, they are able to interpenetrate
with grafted chains and therefore diffuse inside the space occupied by the polymer brush,

leading to the eventual dispersion of NPs across the polymer matrix. It has been shown that in
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most cases, when matrix chains are longer than the grafted chains, it is harder for them to
penetrate into the interfacial region due to the higher entropy loss they experience.** This
phenomenon is known as “autophobic dewetting”; in practice one aims to sUppress such
phenomena in order to enhance the dispersion of NPs across the polymer matrix.*> When
grafting density is lower than a threshold value, the particle cores are no longer screened by the
grafted chains surrounding them, so they attract each other, leading to aggregation. This is
known as “allophobic dewetting”. Sunday et al.™*® derived experimentally a phase diagram
demonstrating the regions where autophobic, allophobic dewetting, and complete wetting

occurs.

Major experimental work has been conducted to understand the behavior of polymer
grafted NPs and their influence on the properties of the composite material.>>"*®® Atomistic
molecular dynamics simulations have been performed by Ndoro et al.**®, while Meng et al.**
and Kalb et al.** have performed coarse-grained molecular dynamics simulations representing
the polymer chains by the Kremer-Grest bead-spring model. Dissipative particle dynamics
(DPD)*! and density functional theory (DFT)** simulations addressing systems of polymer
brushes are also reported. Vogiatzis et al.'** devised a hybrid particle-field approach called
FOMC (Fast Off-lattice Monte Carlo) which is a coarse-grained class of Monte-Carlo
simulations, where the nonbonded interactions are described by a mean-field inspired
Hamiltonian. A useful approach for investigating the structure and thermodynamics of polymer
grafted NPs and brushes is SCFT.**'*%3 However, the literature lacks results from SCFT
simulating realistic NP-polymer systems such as silica in contact with polysrtyrene (PS), with
industrial relevance over a broad parameter space:

v)  Even though radial segment density profile distributions of matrix and grafted chains have

been studied excessively, there are hardly studies focused on comparison of SCFT results
with other experimental and simulation works.

vi) Reports extracting the density profiles of the grafted and matrix chains, which provide a
direct picture of their conformations across the parameter space and the density profiles of
the matrix chains decomposed into contributions from “adsorbed” and ‘‘free” chains, are
scarce.

vii) A considerable number of the aforementioned studies do not take into account the
contributions to the grand potential or contributions of the chain stretching energy .

viii) There is a limited number of SCFT works in the literature reporting the profiles of
chains/area, the chain end segregation at the interface and the brush thickness over an

10
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extensive parameter space involving the molecular weight of the chains, grafting density
and the size of the nanoparticles.

1.5.3 Self Consistent Field Finite Element Method

Spectral and quasi-spectral methods are predominant tools for solving three dimensional SCFT
problems, but they are inflexible in handling geometrically complex domains, since they can be
applied on problems exhibiting some kind of symmetry. Their main limitation in the frequency-
domain approaches encourages consideration of alternate real space approaches, such as the
finite element method (FEM).

FEM is a widely used analysis and design technique and enjoys plenty of advantages and
privileges. First among these advantages is the ease of handing complex geometries. Compared
to purely spectral methods, the FEM does not require masking techniques in order to address
complex geometries. Another benefit when using the FEM is that is not limited to periodic
systems and naturally allows the use of heterogeneous and mixed boundary conditions.
Additionally, real space methods allow local mesh adaptation to selectively increase the
resolution in a targeted region without requiring increased computational effort over the entire
geometry of the investigated system. The FEM, in particular, can incorporate rigorous a
posteriori error estimates (due to its inherent variational character) for mesh adaptivity, which
enable substantial computational profits. Furthermore, there is a push to design solvers and
frameworks (like MUMPS™*) for real space approaches that are suitable for deployment on next
generation computational clusters. Motivated by these factors, some researchers developed real
space formulations of the SCFT problem using the finite element method.*>**" Even so, there
are several aspects in which state-of-the-art SCFT combined with FEM (SCFFEM) literature is
lacking:

iX) The majority of the aforementioned studies are applied to ideal model systems, offering

good qualitative information regarding the structural properties of copolymers. There is a

scarcity of studies where SCFT approaches are applied to realistic model systems,

comparing the observables of mesoscopic simulations to detailed atomistic simulations
and experiments.

X)  There are no SCFFEM works in the literature reporting structural properties of polymeric
melts at interfaces.

xi) There are no SCFT studies applied in grafted polymeric interfaces with explicit
representation of long polymer chains grafted on solid surfaces.

11
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xii) There are no SCFFEM studies assessing the interfacial free energy of polymer/solid
interfaces with attractive segment/wall interactions.

1.6 Aim of the Thesis

Based on the aforementioned realizations, the aim of the present PhD thesis is to formulate,
validate and develop a SCFT approach, and then apply it in the description of homogeneous and

inhomogeneous systems involving high molar mass polymer melts in equilibrium conditions.
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The SCFT models of this research will comprise three main stages:

1. Validation. The aim of this procedure is to allow for a comparison of the theoretical
model with previous atomistic simulations and experimental works in a rigorous and
predictable manner. This is a key step to ensure that the theoretical models can
successfully describe realistic systems.

2. Structural properties. This will be the phase where the SCFT will be used to compute
structural properties of bulk and inhomogeneous melts under equilibrium conditions.

3. Thermodynamic calculations. This is the highest goal of the theoretical strategy
presented in this thesis. Through these calculations we will be able to determine the
thermodynamic properties and behavior of high molar mass polymer/gas and

polymer/solid interfaces.
1.7  Outline of the Thesis

In the following Chapter, a brief self-contained summary of a generic SCFT formulation
compared to other molecular simulation concepts is provided. We limit ourselves to the absolute
minimum of definitions and methods to be presented, trying not to sacrifice consistency and
rigor. Chapter 3 of the thesis deals with the development of a formulation of SCFT coupled
with square gradient theory for predicting properties of free surfaces of molten polymers indirect
comparison with atomistic simulations and experimental data. The scope of this chapter is to
compare the local density profiles and several structural properties of theoretic models, with
those obtained from atomistic simulations, as well as the prediction of the surface tension of
various polymers in a broad range of temperatures. Chapter 4 of the thesis implements the
strategy developed in Chapter 3 to address systems of grafted polymeric NPs. This allows for
the description of structural properties of polymer grafted NPs with various size, grafting density
and chain length related to previous simulations and the contribution of entropic and cohesive
energy terms. In Chapter 5, the Edwards diffusion equation is solved with the finite element
method. Each Chapter is self-contained, incorporating its own introduction (summarizing
previous work and experimental findings) and the main conclusions reached. However, a
separate list of the innovations at three levels (methodology, physical insight and computational
tools) is provided in Chapter 6. Finally, in Chapter 7 an outlook of the closely related future

work is presented.
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2 Theoretical Background

In this chapter, we present definitions and background knowledge that will outline the
framework of the new concepts and methods to be developed in the subsequent chapters. As a
starting point of our discussion, we outline the perspectives that are adopted in building a
physical model and how that model can be translated into mathematics. Then, the statistical
properties of coarse-grained particle-based models of single polymers are described, and these
models of single-chain statistical mechanics are extended to include the presence of an external
field. The description of this external field completes the particle-to-field transformation. We
describe how field theoretic models can be constructed for a variety of many chain
inhomogeneous polymer systems. The important case of self-consistent field theory (SCFT) is
illustrated, which is obtained by imposing a mean-field approximation. As a final point, square

gradient theory and the Sanchez Lacombe Equation of State (EoS) are briefly described.
2.1 Modeling Perspective and Scales

An important challenge faced by researchers of complex materials is that the structure and
dynamics of these materials are characterized by extremely broad spectra of length and time
scales. One of the first decisions to be made is the approach to be adopted in modeling.
Approaches for modeling materials consist of many levels, each level addressing phenomena
over a specific window of length and time scales. The approach of primary interest here starts
with ab-initio and atomistic methods, continues with mesoscopic methods, and extends to field

theoretic methods.

15



Chapter 2. Theoretical Background

2.1.1 Atomistic Methods

2.1.1/a First Principles (ab-initio) Simulation Methods

At a reasonably fundamental level, one could describe a polymeric fluid using ab-initio quantum
mechanics and retain the nuclear coordinates and electronic degrees of freedom of the atoms
composing the polymer and solvent molecules*®®. In quantum mechanics, a complete description
of the microscopic state or “microstate” of the system is provided by the wave function ¥,
which is a function of the position coordinates of all nuclei and electrons. %% Electronic
structure calculations in the Born-Oppenheimer approximation attempt to solve the electronic
Schrédinger quantum mechanical equation given the positions of the nuclei and the number of
electrons in order to yield useful information such as electron densities, energies and other

properties of the system. The solution of these equations comes with high computational cost.

First principles approaches require essentially no empirical or experimental knowledge
to characterize the interactions among the fundamental particles composing a fluid. Their
application to real materials, though, is still limited. Even if we employ the fastest
supercomputer with the largest memory, we can treat at most a few thousand atoms, so pure ab
initio simulation is inappropriate for modeling polymeric fluids, where each polymer molecule

typically contains more than this number of atoms.

2.1.1/b Atomistic Simulation Methods

The next higher level of description, which we shall refer to as the atomistic level, is based on
eliminating the electronic degrees of freedom and treating the nuclear coordinates classically or
guantum mechanically. *****"The elimination of the electronic degrees of freedom leads to
classical potentials expressing the potential energy as a function of the nuclear coordinates'®®
These can in principle be obtained by carrying out ab initio quantum chemical calculations on
small sets of atoms, or more typically by applying empirical potentials that contain parameters
characterizing the range and strength of the inter-nuclear interactions. In this classical
perspective, each nucleus becomes an “atom” and carries an effective mass that is approximately
the nuclear mass. The Hamiltonian of the system, 7/, is equal to the sum of the kinetic and

potential energies of the atoms,

ﬂ(r“,p”):é:%jm(r”) (2.1)
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where n is the total number of atoms in the system, m; is the effective mass of the ith atom, and

r"= (r', .,r") and p"= (p', ..p") denote the Cartesian coordinates and momenta,

respectively. The 3n-dimensional space from which the coordinates of the system

r'= (rl, r“) take on values is referred to as configuration space. The 3n-dimensional space

from which the momenta p" = (p', ...,p")take on values is referred to as momentum space. In

many applications it is convenient to use generalized, rather than Cartesian coordinates. The

two sets of coordinates are related through a well-defined transformation.

When referring to polymer simulations, each molecule contains thousands of atoms. A
strategy for handling the apparent difficulties associated with fully atomistic simulations of
inhomogeneous polymers is to “coarse-grain” the fluid model. In this case, groups of atoms are
lumped into larger entities referred to as “particles.” These particles interact by new effective
interaction potentials that must be re-parameterized. The coarse-graining procedure requires a
re-parameterization of the system which can be regarded as being more of an art than a science.
At the lowest level, one can group adjacent atoms to form a particle, for example lumping each
CH, unit into a particle along a polyethylene chain, and then using empirical knowledge or
guantum chemical calculations to fit parameters in potential functions describing bonded and
nonbonded interactions among particles. Such a “united atom” approach has been used quite
successfully to simulate oligomeric fluids and single-phase polymeric fluids of low molecular
weight, but does not go very far in alleviating the serious spatial and temporal limitations of

fully atomistic simulations of inhomogeneous polymers.

2.1.1/c The Monte Carlo (MC) Method

Monte Carlo methods achieved a considerable improvement in the field of materials simulations
in terms of simulation time. Monte Carlo is a numerical method of solving stochastic models
without determination of the analytical representations of the system.*®°6°816%170 The NMonte
Carlo (MC) method is more of a statistical technique, which involves discrete random walks for
sampling the phase space according to a certain probability distribution (e.g., Boltzmann) to
solve problems involving materials or other systems. The Monte Carlo technique can be applied

in the ab initio representation, too.

In their simplest version, MC simulations of simple fluids are carried out by attempting

trial moves for the molecules from a uniform distribution and subsequently accepting or
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rejecting these moves, such that the long sequence (Markov chain) of configurations generated
asymptotically samples the probability distribution of interest (typically dictated by an
equilibrium ensemble). MC algorithms can also involve sampling from other distributions,
which do not have to be analytical. Metropolis MC normally simulates an equilibrium ensemble
of statistical mechanics and is used for calculation of structural and thermodynamic properties
of the system as ensemble averages. The Kinetic Monte Carlo (KMC) method, on the other
hand, tracks the temporal evolution of a system as a sequence of thermally activated infrequent
transitions. Atomic migration, occurring as a sequence of atomic jumps, is an example of such
an evolutionary process. Rate constants for the individual transitions can be computed from the
atomistic potential energy hypersurface and the atomic masses through the theory of infrequent
(rare) events. MC techniques have the advantage of being able to explore probable (i.e.,
relevant) regions of configuration space rapidly, by permitting substantial configurational
rearrangements. They can equilibrate some complex systems, such as polymer melts, orders of
magnitude more rapidly than molecular dynamics techniques, by devising and implementing
moves that do not mimic the actual physical dynamics, but ensure rigorous and vigorous
sampling of the equilibrium probability distribution among microstates.

2.1.2 Mesoscopic Methods

Higher levels of coarse-graining than the “united atom” approach are more sophisticated.
Sgouros et al.?? lumped 52 monomers within a polymer backbone into a single bead. In linear
polymers, two main approaches have been developed for the mapping of atomistic polymer
segments into beads. A bead can be assigned either at the center of mass of a segment or at the
coordinates of the central atom(s) of a segment. The task of parameterizing the effective
interactions between those beads is rather complicated. Harmonic or anharmonic spring models
can be employed to describe the connectivity, space-filling characteristics and architecture of
beads belonging to the same chain and/or adjacent chains (slip springs). Potentials describing
interactions between non-bonded beads on the same or different polymer chains are determined
by empirical forms. A common choice is the Lennard-Jones potential'’*, or excess free energy
potentials (relative to an ideal gas of chains), calculated from an equation of state (EoS).'”> A
disadvantage of this approach is that experimental input is needed, so simulation results are
predictive only to the extent that a model system has already been parameterized. Another
drawback of a coarse-grained description is that phenomena which depend on atomic-scale
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packing effects in the fluid cannot be captured with this approach. Nevertheless, computer
simulations of mesoscopic particle-based models of polymeric fluids have been quite useful in
studying a variety of important systems and phenomena such as polymer brushes, block

copolymers, and cohesive failure of polymer adhesives and glasses.'”* "

2.1.3 Field-Theoretic Methods

In the mesoscopic approach of modeling polymer fluids described above, the fundamental
degrees of freedom are particle positions and momenta. It is the phase space spanned by these
coordinates that is explored in a particle-based computer simulation. There is an alternative
strategy, however, which is the primary focus of the present thesis: field-theoretic methods. To
carry out a field-theoretic computer simulation, we require a statistical field theory model of a
fluid. A statistical field theory is a description of a system in which the fundamental degrees of
freedom are not particle coordinates, but rather one or more continuous fields w(r) that vary

176 \We can associate the relevant w fields of a polymeric fluid with spatially

with position r.
varying chemical potentials. From the perspective of a particle-based model, the fundamental
problem of equilibrium statistical mechanics'® is to evaluate a configurational partition function

(configurational integral) of the form
z= j drexp[-AU(r") | (2.2)

where B = 1/(kgT) is the inverse of the thermal energy and U(r") is the potential energy of an n-
particle system. The corresponding equilibrium problem for a field theory model is to evaluate

an analogous expression, involving a functional integral over the field(s):
Z=I®Wexp[—ﬂ0[w]] (2.3)

The advantages of field-theoretic methods for studying inhomogeneous polymers can be
easily understood. First of all, there is the flexibility of working with a field theory that
originated from either an atomistic or a mesoscopic perspective. In addition, the spatial
resolution of the field theory can be adjusted by giving the relevant fields a finer or coarser
representation. There is also flexibility in the way the fields are represented and discretized (e.g.
finite differences, finite elements, or spectral representations), which leverages the large body of
knowledge surrounding the numerical solution of partial differential equations. With such an
approach, it is possible to model, for example, polymer alloys exhibiting both macrophase and
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Chapter 2. Theoretical Background

microphase separation.’”” Such morphologies would be more difficult to be obtained with an
atomistic, or even a coarse-grained, particle-based simulation. Another important advantage of
using field-theoretic models is that they serve as a basis for most analytical theories of
inhomogeneous polymers.t”®°A large body of experimental data has been interpreted using
this theoretical framework, and a common language involving parameters in mesoscopic field
theories, such as Flory “chi” parameters and statistical segment lengths, has emerged. By
providing access to the behavior of these same field theory models across a broader range of
parameter space, field-theoretic models can couple very effectively with existing theory and

experiment.
2.2 Single Chain Models

In order to investigate the theoretical description of a polymeric fluid, we have to introduce the
notion of the ideal chain models. An ideal chain model describes the statistical mechanics
associated with the conformational states of a single unperturbed polymer chain. We will try to
analyze the differences of most prominent ideal chains models. The present discussion of the

topic will be brief, with references to the literature that is relevant to this subject.*3%%

2.2.1 From Flexible Polymers to Ideal Chains Models

The chains of common synthetic polymers exhibit elasticity, as a result of relatively unrestricted
rotations about carbon—carbon single bonds along their backbones, and are considered to be
flexible. Nevertheless, a large number of synthetic polymers and biopolymers are rigid and bend
over large distances as a result of accumulated bond strains. These are termed semi-flexible or
rigid-rod polymers, depending on their length and degree of flexibility. In the present work we

address flexible macromolecules.

The effective interactions between segments along a flexible polymer chain are
manifested with two types of contributions as shown in Figure 2.1: local, (short-ranged
interferences) which are exerted between neighboring segments along the backbone and are
strongly dependent on the bond geometry and energetics of the chain; and nonlocal, (long-
ranged interferences) which are exerted between topologically distant segments, when the
conformation of the chain brings them spatially close. “Excluded volume” interactions,
preventing two segments from occupying the same position in space, belong to the nonlocal

category.
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2.2. Single Chain Models

Figure 2.1. Local and non-local interactions along a polymer chain

In principle, long-ranged interferences are never completely absent. However, two
situations are commonly encountered in which long-ranged interferences are essentially
negligible.****®The first one is observed in a dilute solution of a homopolymer of high
molecular weight at the 6- temperature, while the second one concerns a homopolymer chain
embedded in a melt of chemically identical homopolymers. The latter was described
theoretically by P.J. Flory with the famous “random coil hypothesis” and has been confirmed by

experimental and simulation evidence.

When the above solvent and/or temperature conditions occur, a single chain may behave
as if it does not “feel” nonlocal interactions and is called unperturbed. The models that take into
account only short-ranged interferences in the statistical mechanics of a polymer chain are
referred in literature as ideal chain models. Ideal chain models are important in the theoretical
description of polymeric chains, since they render feasible the theoretical calculation of the
statistical probability distribution of the equilibrium chain conformations, one of the most

fundamental problems in the statistical mechanics of polymers.

2.2.2 Freely Jointed Chain Model

A usually applied model with very similar behavior to a polymeric chain is the freely jointed
chain model. In the freely jointed chain model, all interactions, except for the connectivity
between structural units, are neglected. The chain conformations adopted by a linear flexible
polymer chain can be described with the path of a random flight of constant step b. The terms
random flight model and three-dimensional random walk are used interchangeably in the

literature.
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In the freely jointed model, the chain is represented as a sequence of “segments”, which
lie at positions r, Iy ..., ry, and are connected by bond vectors by, by, ..., by, where b= ri- i1 as
depicted in Figure 2.2. This sequence consists of N+1segments, and N bonds. All bonds are of
the same length b and the direction of each bond is random. In a coarse-grained representation
each “segment” stands for a larger section of the chain and each “bond” is a virtual bond

between such sections.

Figure 2.2. A freely jointed chain model with N+1 particles (indicated by the spheres) and N equally sized steps
(indicated by the arrows connecting the spheres). The particle positions with respect to a Cartesian coordinate
system are denoted by rq, r; ..., ry, bond vectors by by, b,, ..., by, and the chain end-to-end vector by R..

The configurational partition function of a single chain can be expressed by an equation

similar to eq 2.2:

Z(,:Idr'“l exp[ —AU, (r"") | :vjde exp| — AU, (b") ] (2.4)

N-+1

where r™ " stands for the set of N +1 particle positions and U, is the potential energy associated

with a particular conformation of the polymer. The notation [dr"* , [db"is shorthand for a

3(N +1)and 3N-dimensional integral over the N +1 particle positions and N bond vectors,
respectively, within a three-dimensional domain of volume V. For an ideal chain model, U,

contains only interaction potential terms reflecting short-ranged interactions. The subscript 0 is

used to indicate that we are discussing the properties of a single, ideal chain.
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A full description of the conformational statistics of the simple model of Figure 2.2 is

provided by the probability density functionw(b,,b,....b)=(b" ). This is defined so that
Y(b,,b,...,b, )d*d’h,..d%, =@ (b")db" equals the probability of finding the chain in a

conformation where the bond vector for bond 1 is between b; and db,, the bond 2 is between b,
and db,, ¢ ¢ ¢, and the bond N is between by and dby. In the ideal chain case, there are no
constraints on the arrangements of the segments due to excluded volume effects, therefore the
orientations of adjacent bond vectors are statistically independent. The probability density

function for the partition function of chain conformations is of the form

N

w(b")= 1 w(by) (2.5)

n

Where

y)(bn)zﬁéﬂbkb) (2.6)

with 6(r) being the Dirac delta-function.
To continue the mathematical treatment of conformation, it is necessary to introduce
measures for the size of a polymer chain. One such measure is the distance between the two end
segments of the chain. As shown in Figure 2.2 and in Figure 2.3, the end-to-end vector is

defined as Re.=ry-rpand the length Re=|R¢| as the end- to-end distance. The end-to-end vector can
be conveniently expressed asR, =Zilbi. The isotropic distribution of the b; implies that

(bi)o = 0 and, hence, a vanishing first moment for R.

Figure 2.3. Definition of the end-to-end vector R, and of the radius of gyration Ry,
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A measure of the polymer coil of high importance is the mean-square end-to-end distance,
defined as either an ensemble or a time average of the squared norm of the end-to-end vector.

The second moment of the end to end vector can be written as:

(Re)={(Z00n) (X)) -
SDIND ML B SRR Yl (A

The absence of directional correlation between different bonds makes the second term of the

@2.7)

above equation equal to zero, leading to the characteristic of random flight model result:
(R.?)=Nb? (2.8)
and the root-mean-squared end-to-end vector of the freely jointed chain model

(R;)=N"b (2.9)

The important point in eq 2.9 is that the end-to-end distance is multiplied by a factor of 4 when
the chain length is multiplied by a factor of A". Such a property is called a scaling property. The
exponent v=1/2 appearing in eq 2.9 is called the scaling exponent of an ideal chain and the

scaling property is related to the fractal nature of the chain conformation.

The mean-squared end-to-end distance of a linear polymer chain is not an experimentally
observable quantity. Of higher experimental relevance is the so-called radius of gyration of the

chain around its center of mass. We define the center of mass by

N
Zmiri L

r,=-"o—-= >, (2.10)
Zmi N +1 i=0
i=0
and the radius of gyration Ry is defined by
R 2=ii(r_—r )? (2.11)
g N +1 n i cm

According to the Lagrange Theorem, ** for any collection of particles, the squared radius of

gyration can be alternatively expressed in terms of the interparticle distances as
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1 N N
R’=—— —r.)° 2.12
9 (N +1)2 ;;l(n r]) ( )

d'® that in the context of the freely jointed model and in the

Using this theorem, Debye prove
limit of N >1, the following equation connects the radius of gyration of the chain with its end-

to-end distance:
<R92> = —<R62> (2.13)

Egs 2.8,2.9 and 2.13 reveal some remarkable features of the freely jointed chain model .Of

interest, though, are not only the moments of the above measures, but also the entire distribution

of the end-to-end vector Re. In general, the probability density function P(R,;N) of the end-to-

end vector R, is defined as

P(R.;N)=[db" 5(Re —zN:bn}su(bN) (2.14)

Although it is not easy to treat the Dirac delta-function appearing in eq 2.14, it can be rewritten
in a convenient form using the Fourier transform of the delta function, defined by

1
(2z)’

5(r) = _[dk ™" .Using this form we can rewrite eq 2.14 as:

. _ 1 N N : -
P(RE,N)_Wjdkjdb ?(b )exp{lk(Re—;bnﬂ (2.15)
P(Re; N) is thus expressed as the inverse Fourier transform of a product of N identical integrals:

P(R.;N) =

1 . ) N
oy | dkexp(-lkRe)[ [db, exp(-lkbl)q)(bl)} (2.16)
The integral over b; can be evaluated using spherical coordinates, with k as the reference axis:

[doexp(-ik-b, ) g (b,)
1
 Azb?

Tbldblego_Tsin @ d@exp(—ikb, cosd)S(b, —b) (2.17)

2

T _ci O=r .
anzjsin @dg cos(kbcos ) = %{ il (kbcos@)} _sin(kb)
0

4r kb kb

6=0

And therefore
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1 . in(kb) "
P(Re;N)::EE;;gjdkexp(lk-Re){iﬁgt—)} (2.18)

The latter equation was first derived by Lord Rayleigh for random flight of N steps, who also

evaluated analytically the integral for values of N up to N =6. By far the most interesting case

sin(kb) "

b } becomes very small, unless kb is close to zero.

sin(kb) T (k%) (kP
{ ‘b } _[1 5 j_exp[ N 5 J (2.19)

is for N >1, where the quantity [

Under these conditions:

Then

3 )" 3R2
PR,N)=| —— | exp| — 2.20
Thus, the end-to-end vector of a freely jointed chain follows a Gaussian distribution in three
dimensions, with zero mean and variance<Rez>. This is a general result for long unperturbed
chains. It provides a good approximation of the exact distribution of long enough (N > 40) freely
jointed chains at not too high extensions.

The important notion of conformational entropy is manifested in eq 2.20. In making the

transition from the full phase space distribution function of the freely jointed chain w(b“ ) to the

reduced probability distribution function of the end-to-end vector, P(R,;N), we have integrated

over all sets of fixed-length bond vectors b consistent with the constraint of a fixed end-to-end
vector Re. This integration amounts to an enumeration of the available conformational states.
Because all states occur with uniform probability in the freely jointed model, the result is a

purely entropic contribution to the free energy of a chain with constrained end-to-end vector R,:

3Kk, T

=—k;TINP(R,;N) =
A =k TINP(R,N) =

|2

R, (2.21)

The quadratic dependence on chain extension|Re|in this expression can be viewed as an

“entropic spring” potential. Fewer conformational states are available for chains with large
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2.2. Single Chain Models

: : . . 3k, T
extensions, so the free energy increases with |Re|. Moreover, the “spring constant” %

softens in inverse proportion to the square of the polymer coil size.

2.2.3 Bead Spring Model

Another important category of ideal chain models is designated as bead-spring models. These
models are easier to handle mathematically than the freely jointed models. The bead-spring

model can be represented as a collection of beads connected by elastic springs. The bonds are

now of variable length and each bond vector b, is distributed independently with a statistical
weight proportional to exp[—,b’h(|b|)} with(b, ) =0and the probability density function is given
by

ftp({bl,bz,....,bN,})sw({b}):fgu(bl)g)(bz)....zp(bN) (2.22)

Where g(b;,) is the probability distribution that individual bond vectors follow and h(x) is the

spring potential between adjacent particles along the polymer backbone. If all of the N bonds of

such a chain are equivalent, the potential energy can be expressed as
N N
Uy(b™) = h(lb) (2.23)
i=1
The configurational partition function then becomes

2, =V [db" exp[ AU, (0") | =V ([ dbexp[pn(b) ]) (2.24)

As we can see from the above equations, a central role is played by the bond potential of
these elastic springs. In order to associate the freely jointed with the bead spring model, we have

to specify a functional form for the spring potential h(x) . The harmonic bond potential given by

3keT
(X) - 2b2

X2 (2.25)

is the most popular and convenient choice, making the bead spring to follow the same reduced
probability distribution function of the end-to-end vector with the freely jointed model for long
chains. This choice defines the so-called discrete Gaussian chain model. The remarkable point

about the bond potential given in 2.25 is the fact that the spring constant depends on the
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temperature. This is because the spring of the bead- spring model originates from the change in

the conformation entropy. Using such a spring potential, it is easy to show that the average of
the square of the bond length is given byb?. The parameter b in this potential (often called the
effective bond length) can be interpreted as the root-mean-squared length of a bond, since for

any bond i

e Idbi(bi -by)exp| —Bh(|by]) | L
o= e (o]

(2.26)

The mean-squared end-to-end vector of the discrete Gaussian chain can be calculated. In

particular,

<Re~Re>o=ii<bi~bj>o=N<bi~bj>0=Nb2 (2.27)

i=l j=1
The terms with i j in this expression vanish because of the independent distribution of the

bond vectors, which implies that <bi-bj> <bi>0-<bj>0:0 for i= j. Thus, the ideal chain

0 =y
scaling of eq 2.8 is recovered, <R62> = Nb?. Apart from the interpretation of b as the fixed bond

length in the freely jointed model versus the root-mean-squared bond length in the discrete
Gaussian model, we see that the expressions for the mean-squared end-to-end vector in the two
ideal chain models are identical. It is easy to show that the same equivalence holds for the radius

of gyration Ry, so that eq 2.13 also applies to the discrete Gaussian chain.

In order explore the relationship between the freely jointed and discrete Gaussian chain
model in more detail, it is again useful to exploit the connection with stochastic processes. Since
any pair of non-overlapping sub-chains of an ideal chain is statistically independent, the end-to-
end vector of any sub-chain of an ideal chain obeys the Gaussian distribution. Assuming that

any individual bond follows a Gaussian distribution:

27b?

312 2
p(b,) :(i) exp[—’”)’zbbm2 j 1<m<N (2.28)

which is equivalent to

@(b“):(zjsz exp(—z:g(rmz_TZ’“)J (2.29)
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Figure 2.4. Schematic representation of the discrete Gaussian chain model.Each spring connecting successive beads
has spring constant equal to 3kBT/b2

The distribution of the vector r, —r,,, of a sub-chain connecting any two beads m and n

along the Gaussian chain is given by

3 3/2 3(r,—r )2
o({r-r;l-m})=| ——— 1 ml 2.30
({ri=rait=m}) (27z|l—m|b2J exp[ 2|I—m|b2J (239
With <(rI —rm)2> =|I-m|b*. As a special case, one recovers the Gaussian distribution for the
0

end —to- end vector with <Re2> = Nb?. The probability density can be written as a function of

the bead positions,

3N/2 N 3(r — 2
CD({rl,rz,....,rN;rO})=(273sz exp(—Z%} (2.31)

m=1

It leads to a free energy of the form

N
A({r 0y yi ) = 3:;2_ >(r,~r,,) +const. (2.32)
m=1

It is of interest to compare these results for the free energy of the discrete Gaussian chain

with those obtained previously for the freely jointed chain model. At first glance, the
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Hamiltonians for the freely jointed and the bead spring model appear to be very different, since
on the one hand in the bead spring model, the bond which connects the segments is the harmonic
one given by 2.25, while on the other hand in the freely jointed model, there is no apparent
spring potential between the segments. Instead, there is a constraint on the arrangements of the
segments, i.e., a pair of segments which are connected by a chemical bond should be located at a
fixed distance. The chemical bonds are therefore introduced into the bead spring model as a
spring potential (enthalpic contribution), in contrast to the freely jointed model where they are
treated as an entropic term associated with the constraint on the arrangement of the segments
(entropic contribution).>*? Because the final equilibrium is dictated by the free energy of the

system, composed by the enthalpic contribution E and the entropic contribution S according to
A=E-TS (2.33)

we can understand that the two apparently different treatments of the chemical bonds will play
essentially the same role in the canonical ensemble governed by the free energy A.
Consequently, the free energy for these models given by 2.32 and 2.21 is thermodynamically

equivalent in the case of very long chains.

2.2.4 Continuous Gaussian Chain Model

We can go one step further towards the model that we implemented in this thesis. Is is an elegant
and particularly convenient ideal chain model for both analytical and numerical calculations,
known as the continuous Gaussian chain model.® This model can be described as the
continuous curve limit of the discrete Gaussian chain model, often called the “Gaussian thread”
model. As shown in Fig. 2.5, in this model the polymer is viewed as a continuous, linearly

elastic filament, whereas the segment index s becomes a continuous variable spanning the

contour of the chain (0<s< N).The set of segment positions along the backbone of the chain,

which describes the chain conformations, becomes a space curve r(s), where the contour

position r is a vector function of the continuous variable s, and the end-to-end vector R, can be

expressed as R, =r(N)—r(0).The probability density can be written as:

P[r(s)] = const.exp {—%Tds(%j :l (2.34)
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corresponding to a “potential” energy (more correctly, free energy or potential of mean force) of

the Gaussian chain

U, [r(s)]= 3:;1 jds(%] (2.35)

where the square bracket notation in U,[r(s)]and ¥[r(s)]is used to indicate that U,and ¥ are

functionals of the space curve r(s) (¥ is sometimes called a Wiener distribution'®

) defining
the conformation of the polymer. A functional is a mapping between a continuous function and a
number;*®* in this case the mapping is between r(s) and the value of U,and @ .The form of the
potential energy is closely related to eq 2.32 for the discrete Gaussian chain. If we view dr/ds as

the local “stretch” in a segment of length ds located at contour position s, then eq 2.35 sums a
harmonic potential contribution from each such differential segment over the entire contour of
the chain. It is important to note that s does not indicate arc length in the continuous Gaussian
chain model, but it is simply a parameter indexing the segments along the chain. Thus, the

stretch dr/ds is not constrained to be a unit vector, but is free to fluctuate in magnitude. Eq 2.35

for the potential energy is commonly referred to as the “Edwards Hamiltonian”.

The configurational partition function of the continuous Gaussian chain can be written as
r(N)=r
Zo = Ir(o)zro D[r(s)]exp[ —AU,[r()] ] (2.36)

where the notation J‘r(i:'_)r@[r(s)] indicates a functional integral over all possible space curves

r(s) describing the conformation of the polymer. Such functional integrals, also termed path
integrals, are familiar from the fields of quantum mechanics and probability theory, where r(s)

corresponds to the position of a quantum particle or Brownian particle at time s.

Integrating over all possible spatial curves of length N with given starting and ending
positions, we form a configurational partition function for the Gaussian thread, tethered at its

two ends, given by:

Zy :J‘rf((o“)‘:@[r(s)]exp{—z—;!ds(%) } (2.37)

31



Chapter 2. Theoretical Background

where S =1/(kgT). The partition function is a path integral. From the above discussion of

Gaussian chains, it is clear that the value of this partition function depends only on |r0 —r|, N,

and b.

Figure 2.5. Schematic representation of the continuous Gaussian chain model (Gaussian Thread). The continuous
Gaussian chain model describes the conformation of a polymer as a space curve r(s), where s € [0,N] is a variable
spanning the contour of the chain. The chain end positions correspond to r(0) and r(N).

The inconvenience arising from the necessity to evaluate path integrals turns out to have
no consequence in equilibrium statistical mechanics, because we are generally interested in
ensemble averaged quantities, which can be expressed as ratios of two path integrals. For
example, the mean-squared end-to-end vector of the continuous Gaussian chain can be

expressed as:

J-rr((ol\)l_)ror@[r(S)“r(N )— r(0)|2 eXp[—,BU0 [r(s)]]

R 2:<Re'Re>= .
Jlor o[r()]exp[ AU, [r(9)]]

(2.38)

where the denominator is simply the configurational partition function. It is easy to prove that

the continuous Gaussian chain shares the property of the discrete Gaussian chain in that its root-
mean-squared end-to-end vector is given by <Rez>ﬂ2 =bN"2and the radius of gyration is given

by the expected formula (eq 2.13).
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A useful feature of path integrals in continuous chain models is that they can be viewed
as Chapman-Kolmogorov integral equations, which in turn can be reduced to partial differential
equations. These equations are referred to in probability theory as Fokker-Planck equations **°
and in quantum theory as Feynman-Kac formulas, **® introduced into the polymer science by
Doi and Edwards.’®” The advantage of working with partial differential equations will become

more apparent in the next subsection, where we consider chains in external fields.

2.2.5 The Presence of External Field

In the current section we designate how the statistical mechanics of ideal chain models can be
generalized to include one or more “external” potential fields that act on individual segments of
a polymer chain. These potential fields are of primary importance and they are generated self-
consistently by the force fields of the interacting polymer segments. Accurate evaluation of the
statistical mechanics of a single polymer in a prescribed potential field proves to be the most

computationally demanding component of a field-theoretic method.

The external field of primary interest is a spatially varying chemical potential field w(r)
that acts indiscriminately on contour length s of a continuous Gaussian chain. The conformation

of a Gaussian thread will be now dictated by the following “energy” function:

3kT

U[r(s)]=U,[r(s)] jdsw (r(s))=

(drj Tdsw(r(s)) (2.39)
ds 5
Consequently, the configurational partition function of the continuous Gaussian chain becomes
r(N)=r 3% (dry 1%
Z= o|r(s)|exp| ——|ds| — | ——— | dsw(r(s 2.40
footroles] e fe - L) o
We define the Green function for the Gaussian thread as:

J-rr((or\)nz)—r@[r(S)]eXp[—ﬁU [r(s)]- J.dSW r(s))}

G(r,r,;s) = (2.41)

J.drf o[r(s)]exp[ —BU,[r(s)]]

Physically, G(r,r,;s) is an un-normalized probability density that, in the presence of the
field w(r), a chain which started at position r, will be at position r, at contour length s. It has

dimensions of inverse volume, i.e., spatial density. Note that the denominator in the definition of
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G(r,r,;s) is the partition function of an unrestricted, field-free Gaussian thread of length s; it is
independent of r and r, and depends only on s and b. Though the Green function has a physical
meaning only for s>0, we extend the definition of G(r,r,;s)to negative s, by requiring that

G(r,ry;s) =0 for s < 0. The probability density of the r —r,vector becomes

G,y(r,ry;8) =G, (r—ry;s) = (ﬁj exp {— %} 0(s) (2.42)

with ®(s) =1 for s>0 and ©(s)=0for s<0 (Heaviside step function). If we set s=N and
r=R(N)in eq 2.42, the familiar Gaussian distribution function is recovered for the end-to-end
vector of eq 2.29. On scales larger than a single bond, the discrete Gaussian chain and the

continuous Gaussian chain evidently share the same chain end distribution function.

Recasting the latter expression as a Fourier transform of the Green function, the

“diffusion” equation is derived:

o b, Y
{E_EV +w(r)}G(r,r0,s)_5(r r,)o(s) (2.43)

A detailed derivation of the above equation can be found in ref 187.The product of the

Delta functions §(r —r,)&(s) on the right hand site takes into account the boundary conditions

G(r,r,;s) =0, for s<0and G(r,r,;s) =5(r—r,) (2.44)

fdroj‘:((oh)‘:@[r(s)]exp —ﬁUO[r(s)]—,b’Idsw(r(s))}

q(r,s) = [dr,G(r,r;s) = (2.45)

Idrj:((o':_); o[r(s)]exp[ AU, [r(s)]]

By definition q(r,s) represents the statistical weight of a chain, which may have started

anywhere in the system and finds itself at position r at contour length s (Figure 2.6). This object
is commonly referred to as the chain propagator and is a functional of the external potential

field. Again, note that the denominator in eq 2.45 is independent of r and r,. For
s> 0, integrating the diffusion eq 2.43 followed by the Green function G(r,r,;s) with respect to

I, leads to
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2.2. Single Chain Models

0 b _, B
gq(r,s)—gv q(r.s)+w(r)q(r,s)=0 (2.46)

It is evident from eq. 2.45 that by construction, q(r,s)is a dimensionless quantity and for
s =0, the effect of the field disappears and the numerator and denominator become identical.

The propagator q(r,s) obeys the “initial” condition

q(r,0)=1 (2.47)

@) (b)

(s
— C)
0 (J/\g QS—/V

Figure 2.6. (a) Definition of the restricted partition function q(r,s). (b) Definition of the partition function Q[w].

Of particular interest is the partition function Q[w] for a chain subjected to an external

potential W(r) defined by the equation presented below:

Idr J‘dr.[ o[r(s) exp{—ﬂu r(s)] ,BIdsW r(s))

(2.48)
Id J'dj o[r(s) exp[ AU, r(s)]]

Qfw]=

Clearly, Q[w]is a partition function for an N-long chain in a region of space of volume V
subject to the field w(r) reduced by the corresponding partition function of a field-free chain
(Figure 2.6). As defined, Q[W] is a dimensionless quantity. It is related to the restricted partition

function q(r,s), defined in eq. 2.45, as follows:

Q[W]=\%deQ(r,N) (2.49)
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We now consider the problem of calculating the ensemble averaged segment number

density for a single flexible polymer subjected to a chemical potential w(r).This quantity is

defined by

p(r)=(p(r)) (2.50)

The microscopic segment density generated by the chain is given by
R N
p(r):f0 S(r—r(s))ds (2.51)

The equation connecting the microscopic segment density and the restricted partition function is:

1

p(r):VQ[W]

'[ONq(r,N—s)q(r,s)ds (2.52)

Figure 2.7. lllustration of a microscopic description of the density distribution p(r) and its coarse-grained
description p(r)

which is known as convolution integral equation central to the theory of inhomogeneous
polymers. 812318 Eq 252 is an important formula in the theory of inhomogeneous polymers

because it provides a recipe for calculating the average segment density of a continuous

Gaussian chain experiencing an arbitrary potential w(r). A proof of equation 2.52 is provided

in Appendix B. The density operator p(r) describes the average density of segments, regardless

of their location along the polymer chain. Another useful density operator for the continuous

Gaussian chain is the quantity
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2.2. Single Chain Models

p(r.s)=(p(r,s)) (2.53)

which represents the average density of segments located at contour position s. The microscopic

density of segments at location s is derived from p(r,s)= 5(r - r(s))as

(2.54)

Figure 2.8. lllustration of the composition formula for the average density of segments (eq 2.54)located at position
s along a continuous Gaussian chain. The statistical weight q(r, s) of a chain section of contour length s is joined at
point r = r(s) with the statistical weight q(r, N - s) of the “complementary” chain section having contour length N -
s.

The physical content of eq 2.54 is explained in Figure 2.8. By comparing this expression with eq
2.53, we see that the average total segment density p(r,s) is simply the integral of the average

segment s density p(r, s) at all contour locations 0<s<N:
N
p(r)=[dsp(r.s) (2.55)
0

This formula is clearly consistent with the relationship between the corresponding microscopic

densities p(r)and p(r,s).

A special case of eq 2.54 is of particular interest. By setting s=0 or s= N, one obtains

the average density of a chain end segment. In the present case of a homopolymer obeying the
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Chapter 2. Theoretical Background

aforementioned continuous Gaussian chain model, the two chain ends are indistinguishable, so a

total chain end density can be defined by

2
- VQ[w]

where in the second line of this expression we have used q(r,O) =1. Thus, after applying the

Pena (F)=p(r,0)+p(r,N) q(r,N) (2.56)

normalization 2/{VQ[w]}, the propagator q(r,N;[w]) can be interpreted as the average density

of chain ends at position r.
2.3 From Particles to Fields

An additional, essential element for the construction of the field-theoretic method is the
conversion of a particle-based model to a statistical field theory. The previous section dealt
exclusively with the statistical properties of a single ideal polymer chain both in isolation and in
the presence of an external potential field. Here, we shall focus on how the external potential
field(s) can be determined. The intramolecular long-ranged interferences, also mentioned in the
literature as the nonbonded interactions between the polymer segments, that have been neglected
up to this point, will now be included in the formalism. An important objective of the present
section is to illustrate how this particle-to-field transformation takes place for pure fluids. We set
up the basic technique, since more rigorous and exact formulations for more complex polymer

chain models and fluid systems will be fully explored next.

2.3.1 Canonical (nVT) Ensemble

In statistical mechanics, an ensemble (also statistical ensemble) is an idealization consisting of a
large number of virtual copies (sometimes infinitely many) of a system, considered all at once,
each of which represents a possible state that the real system might be in. In other words, a
statistical ensemble is a probability distribution for the state of the system. The concept of an

ensemble was introduced by J. Willard Gibbs in 1902.%%

The canonical ensemble provides a powerful framework for deriving the thermodynamic
properties of liquids and gases from molecular-level information. In the canonical ensemble, a
system is considered to be closed to mass transfer, but it is open to energy transfer through the
exchange of heat with a reservoir held at a fixed temperature T. Under these conditions, the
partition function can be derived from the Hamiltonian (eq 2.1). The kinetic energy term in eq
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2.3. From Particles to Fields

2.1 depends exclusively on the center-of-mass momenta. The potential energy term depends

exclusively on the center-of-mass positions (configurational degrees of freedom). The canonical

partition function Q,,; of a pure fluid with n indistinguishable particles confined in a volume V

can be expressed as two separable contributions:

Qur = — [dpr exp{—ﬂzn:piz][dr” exp| AU (r") ] (2.57)

T

Both integrals appearing in eq 2.57 are definite. The first integral is taken over the whole
momentum space and the second integral is taken over the whole configuration space. The
integral over momentum space is really a product of 3N independent Gaussian integrals which

can be easily evaluated and then we obtain the so-called “semiclassical” partition function:

1 n .
Qur = [drexp| AU (r") (2.58)
or
ZnVT
QnVT = n!A3n (259)

where A = ﬁ/,/Z;zkaT iIs the thermal wavelength, m is the mass of an atom, and # is the Planck
constant. Z., is the configurational integral of the canonical ensemble. The potential energy
U (r") depends on the relative positions of the n particles, and by specifying its mathematical

form, one defines a particular atomistic model of a fluid. It is often the case that the pair
approximation described by eq 2.1 is sufficient for the description of the potential energy. For

the purpose of illustration, we shall adopt this perspective and write
n

U(”)Z%an > uf|r-x) (2.60)

EN )

where u(r) is the familiar pair potential function (Hansen and McDonald, 1986). The factor of

(1/2) in this expression corrects for the counting of each pair of particles twice in the double

sum. The external field is assumed to couple to the microscopic particle density [)(r) defined as

a sum of ¢ functions in the form already introduced implicitly in 2.51
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:Zn:(s(r_rj) (2.61)
j=1
It follows that

n+1

)A(r )—%nu(o) (2.62)

where the last term subtracts the self-interactions of the n particles that are included in the first

term. Eq 2.58 can thus be written

Qur = :]—S!J.dr" exp(—g.fdrjdr’,b(r);( ’

) ,[)(r’)j (2.63)

where z, =exp(Bu(0)/2)A°. It can be seen from this result that the value of the potential at

contact,u(o), only affects the reference chemical potential of the fluid and has no

thermodynamic consequences. The next step in the particle-to-field transformation is to invoke

the definition of a delta functional, i.e.
I@p5[p—,&]F[p]=F[ﬁ] (2.64)

for any functional F[p]. The delta functional S[p—p]can be viewed as an infinite-
dimensional version of the Dirac delta function that vanishes unless the fields p(r)and 5(r)

are equal at all points r in the domain of interest. The delta functional can also be viewed as a

formal definition of the functional integral J'@wover the auxiliary field w(r)according to the

following inverse Fourier transform
A1 i [arw(r)[o(r)-5(r)]
5[p-p]=[owe (2.65)

It is important to note that w(r) is a real scalar field and that the functional integral in eq

2.65 is taken along the whole real axis at each r.The next step in transforming the canonical
partition function into a statistical field theory is to insert eq 2.64 with F[p]:linto the

integrand of eq 2.63. This leads to

Qur I@p[dr”é‘ p—p exp( Idr_[drp ru(jr'=r|)p(r )j (2.66)
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Next, combining eqgs 2.65 and 2.66, the following expression occurs for the canonical

partition function of the system:
Zg n ijdm(r)[p(r)—ﬁ(r)]—ﬂ/z Idr_[dr’p(r)u(\r’—r\)p(r’)
Quvr :WJ'poJ.dr Iq)we (2.67)

It is important to note that as a result of these transformations, the only factor in the integrand

that depends on the atomic coordinates r" =r,,r,...,r, is exp[—ijdrw(r),a(r)]. The integrals

over the n particle positions thus factor out according to
exp[—ijdrw(r),b(r)} =(VQ[iw])’ (2.68)

The functional Q[iw] can be interpreted as a single-particle partition function, i.e., the

contribution to the partition function from an atom which does not interact with the other atoms,

but rather with the purely imaginary field iw(r)

Upon combining eqs 2.68 and 2.67, the particle-to-field transformation is completed. The

partition function can be expressed as the following statistical field theory:

Qur = %]@pj-@wexp(-ﬂfc [p.w]) (2.69)
where the functional
[ p,w]= iIdrw(r)p(r)—ﬂ/Z Idrjdr'p(r)u(|r'—r|)p(r’)—nInQ[iW] (2.70)

is referred to as an “effective Hamiltonian” or “action”.1® . The prefactor in eq 2.69, (ZOV )n /nl,
is proportional to the partition function of an ideal gas.

The evaluation of the Helmholtz free energy requires the use of the familiar

thermodynamic formula

A(NV,T)=—kTINQ,, (2.71)

where Q,,, is obtained by performing functional integrals over the p and w fields according to

eq 2.69.
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2.3.2 Grand Canonical (uV T) Ensemble

The grand canonical ensemble provides a statistical microscopic description of an open
equilibrium system of given volume or spatial extent, capable of exchanging energy and
particles with its surroundings. This ensemble is particularly useful in the study of sorption

equilibria and surface thermodynamic properties of fluids.'®®

In statistical mechanics, a grand canonical ensemble (also known as the macrocanonical
ensemble) is the statistical ensemble that is used to represent the possible states of a mechanical
system of particles that are in thermodynamic equilibrium (thermal and chemical) with a
reservoir. The system can exchange energy and particles with a reservoir, so that various
possible states of the system can differ in both their total energy and total number of particles.
The system's volume, shape, and other external coordinates are kept the same in all possible
states of the system. The relevant grand canonical partition function is given by

5 e = > eXP(BUN)Qr (2.72)

where x is the chemical potential and the sum is over all possible numbers of atoms. Insertion of

eq 2.67 into the right-hand side of this expression leads immediately to

iJdrw(r)p(r)—g_l.er.dr'p(r)u(\r'—r\)p(r') ZOO: (ZVQ [|W])n

(2.73)
- n!

Er = [Op| DWe
where z = z,exp(fu)is the activity. Evaluation of the sum over the number of particles results
in the desired field theory for the grand canonical ensemble:

A :J.Q),oj'@wexp(—}[G [w, p]) (2.74)
with
}[G[w,p]:ijdrw(r)p(r)-gjdrjdr'p(r)uqr'-r|)p(r')_qu[iw] (2.75)

Comparing egs 2.70 and 2.75 and therefore the effective Hamiltonians of the canonical
and grand canonical ensembles respectively, we see that they differ only in the form of the last
translational entropy term. Thus, it is fairly straightforward to switch ensembles in the field-

theoretic framework.
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2.3. From Particles to Fields

Equation 2.75 shows that the effective Hamiltonian has three principal contributions. The

first term, i I drw(r)p(r), can be interpreted as the energy of interaction between the density
field p(r)and the purely imaginary “chemical potential” field iw(r). The second term is

proportional to Idrjdr'p(r)u(|r'—r|)p(r') and represents the energy associated with the

nonbonded particle-particle interactions. This term can be replaced by the Helmholtz energy
density (Helmholtz energy per unit volume), obtainable from an equation of state. In this thesis,
we replace this term by identifying the Helmholtz energy with an excess Helmholtz energy, i.e.,
with the Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a

given volume minus the Helmholtz energy density of an equal number of noninteracting (ideal

gas) unperturbed chains in the same volume. Finally, the term —zVQ[iw]| describes the
translational entropy (relative to the ideal gas entropy) of a fluid of n noninteracting atoms
experiencing the potential iw(r).*

The grand canonical ensemble allows us to calculate thermodynamics potentials. At the
outset, the quantity Q . is called grand potential. In a homogeneous system, the connection

between the grand potential and macroscopic thermodynamics is

Q= kTN, =PV (2.76)

where P is the pressure, and the ensemble averaged number of particles in the system is

controlled by adjusting the chemical potential x or activity z according to

oinz
(n)=| —% (2.77)
olnz VT
The Gibbs Energy is found as
G=(N)u=(N)k,T Inz kT(alnSﬂﬂj (2.78)
= IL[: B = B .
olnu ),
And the Helmholtz energy as
onz,;
A:G—PV=<N>u—kBTIn3ﬂVT=kBT ——— | -Inz,,; (2.79)
olnu ),
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For interfacial systems, the Grand canonical ensemble is the most suitable choice in
calculating the interfacial tension, since it allows the mass transfer between phases. For the

special case of a liquid bounded by an undeformable solid surface,

Q(V!Tuu)_Qbulk(Vle:u):Ssolid(ysp_ys) (280)

where Sqig s the total interfacial area of contact, y, is the solid-polymer interfacial tension, y,

is the solid surface tension, and y, -y, is the adhesion tension between the polymer and the
solid.

2.4  Self-Consistent Field Theory

The previous section demonstrated how statistical field theories can be constructed from
particle-based models of simple fluids. It is now appropriate to discuss how to analyze such field
theories and extract useful information about the structure and thermodynamic properties of
polymeric fluids at equilibrium.

The field-theoretic models of section 2.3 generically express the relevant partition
function as a functional integral over one or more chemical potential fields w(r), i.e.,

Z= I@pj@wexp(—ﬂ[w,p]) (2.81)

where 7w, p]is an effective Hamiltonian which is a non-local functional of the field variables
and is generally complex (not strictly real). The form of 7—[[W,p] depends on the particular

interaction and chain model used to construct the field theory and is thus sensitive to polymer
architecture, molecular weight, polydispersity, composition, etc. To compute the ensemble

average of some observable G, one applies the equation
(G[w, p]) =z [Dp[ W G[w, plexp(-7[w, p]) (2.82)

The evaluation of free energies and derivative quantities through a thermodynamic

formula connecting it to =z involves the computation of the functional integral given by eq 2.81.

Similarly, by application of eq 2.82, with G[w,p] corresponding to an appropriate density

operator, the fluid structure is computed as a ratio of two functional integrals.

This expression of the partition function is exact. However, the evaluation of this partition
function is in general a formidable task. A variety of approximate methods have been developed
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w (1)

Figure 2.9. An illustrative explanation of the mean field approximation.An interacting many-chain system is
approximated by a single ideal chain in an averaged potential field w(r) .

to evaluate this partition function. The most fruitful method is the mean-field approximation,
which amounts to evaluating the functional integral using a saddle-point technique. Technically
the saddle-point approximation is obtained by demanding that the functional derivative of the
integrand is zero. This is the most important analytical approximation technique, which is
widely known in the polymer physics literature as self-consistent field theory (SCFT). 3*° This
technique is widely used in many physical contexts, perhaps most notably in the theory of phase
transformations. *’® In the present case, the mean-field approximation amounts to the assumption

that a single field and density configuration W(r) and p(r)dominate the functional integrals in
egs 2.83 and 2.84. This field configuration is obtained by demanding that g [W,p] be
stationary with respect to variations in w(r) and po(r), i.e.,

OH g [W,p] 0 OH [W,p]
ow ’ op _

wW=w

=0 (2.83)

Having obtained the “mean-field” potential and segment density fields w(r) and p(r) from this

equation, one completes the approximation by imposing the following:
H[W,p]=-Inz, (G[w,p])=G[W,p] (2.84)

If Z represents either a canonical partition function or the grand canonical partition function,

then the Helmholtz free energy and the grand canonical potential are derived immediately as

BA=—Inz=3{[W,p] or fQ=—Inz=3{;[W,p], respectively.
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In the mean-field approximation, all configurations of the spatially varying fields are

neglected, except for the most probable configurations W(r)and p(r). For atomic or small

molecule fluids, this approximation of neglecting all “field fluctuations™ is usually quite poor.
This is because the typical coordination number of an atom or small molecule at liquid densities
is quite low, so large fluctuations occur in the potential experienced by a particle as neighboring
particles change positions. Indeed, these strong local field fluctuations are responsible for
producing the density correlations that characterize the atomic-scale structure of liquids.®* The
mean-field approximation is also inaccurate in polymer solutions or melts at the atomic scale
because the coordination number remains small. However, at mesoscopic scales, the situation
changes qualitatively due to the ability of polymer coils to interpenetrate one another. For
mesoscopic scales, the fluctuations in the environment of each polymer diminish with increasing
molecular weight, since the potential field variations are averaged out by contact with
increasingly large numbers of surrounding chains. This constitutes the standard argument that
the mean-field approximation is accurate for concentrated solutions or melts of high-molecular-
weight polymers. **

2.5 Real Polymer Chain Conformation

A major weakness of previous works employing SCFT is that they are primarily aimed at
producing qualitative and not quantitative results. Another weakness of the SCFT formulation is
that single chain models (especially the discrete and the continuous Gaussian chain model) refer
to Kuhn segments, while statistical ensembles used to describe a fluid system mostly refer to
particle or monomer segments. Some researchers interchangeably treat the Kuhn length, the
statistical segment length, and the monomer length as being the same. Their claims seem to be
somewhat inaccurate. The purpose of this section is to make clear to the reader the difference

between a Kuhn segment and a monomer segment.

In a typical polymer chain, there are correlations between bond vectors (especially
between neighboring ones). The physical origins of these local correlations between bond
vectors are restricted bond angles, torsional potentials, and steric hindrance. If we assume that
the length of every skeletal bond of the real chain is Ic.c, we can ask this chain to follow the
scaling law of a freely jointed chain, Nplc.c %, with N, being the count of skeletal bonds along the
chain. In order to achieve quantitative agreement, we should introduce a coefficient, Cy, in order

to account for the stiffness of the chain:
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(R?)=N,Cyl. (2.85)

N c-c

with C being Flory’s characteristic ratio. The characteristic ratio is larger than unity for all
polymers. All models of ideal polymers ignore nonlocal interactions between monomers
separated by many bonds and result in characteristic ratios saturating at a finite value C_ for
large number of backbone bonds (N, — o). Thus, the mean-squared end-to-end distance can be

approximated for long chains as:

0" C-C

(R7)=N,C,I.’ (2.86)

The numerical value of Flory’s characteristic ratio depends on the local stiffness of the polymer

chain. The contour length L of the chain at full extension, on the other hand, is given by
L=yN,l_. (2.87)

where y is a geometric factor that depends on the bonding along the real chain. For a

symmetric homopolymer chain such as polyethylene, where the equilibrium bending angle 6 is

: . .0
the same between all pairs of successive skeletal bonds, y = sz :

Flexible polymers exhibit universal properties that are independent of the local chemical
structure. A simple unified description of all ideal polymers was needed. The first attempts to
use random flight concepts to describe the linear polymers in solution are usually attributed to
Kuhn, who argued that the Rayleigh random flight model might be used. It soon became evident
that such a model was not appropriate to address very short chains (less than a few hundred
chemical bonds), or relatively stiff chains which cannot adopt tortuous configurations.
Moreover, it is not appropriate to use as “steps” in the random flight the individual bond lengths,

or even the monomeric units the chain consists of. Thus, the length of an individual step, by,
became an adjustable parameter of the model, namely the Kuhn length. The equivalent freely

jointed chain should have the same mean-squared end-to-end distance < R92> and the same end-
to-end distance at full extension L as the actual polymer, but N, freely-jointed effective bonds

of length b, .The end to end distance <Rez> of this equivalent freely jointed chain is:

(R)=NbI=NC,I.2  L=yNy..=Nb (2.88)

ow'c-c !
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From the above equations we can easily extract the equation which connects the Kuhn length

with the monomer length:

b _C, (2.89)
Iy

A typical value for y =sin(6/2) ~ 0.83, with 6 ~ 112° being the bond angle between successive

skeletal carbon-carbon bonds. The numerical value of Flory’s characteristic ratio depends on the
local stiffness of the polymer chain with typical values ranging from 7 to 9 for many flexible
polymers. From eq 2.89 we can easily came to the conclusion that usually the Kuhn length is

approximately 10 times larger than a typical bond length.
2.6 Phenomenological Theoretical Methods

As mentioned in the previous chapter, the theoretical methods that are used to study polymer
interfaces can be categorized as being either an analytical or a simulation technique, while the
analytical techniques can be further classified into microscopic or phenomenological. One of the
most dominant phenomenological techniques is related to Cahn-Hilliard theory®”, widely known
as Square Gradient Theory (SGT).

For systems with a nearly uniform one-body density profile, the Helmholtz energy may

be approximated by a functional Taylor expansion with reference to the Helmholtz energy of a

uniform system with an average density p, :

1
Flp(r)]=F [po]+y_[Ap(r)dr+Ejdrljdr2Ap(r1)Ap(r2) K(r,r,) (2.90)
where Ap(r)=p(r)—p,. In the density expansion above, the reference system has the

same temperature and particle chemical potential as the real system. K(rl,rz) has units of

energy and is referred to as the vertex function.

For systems with a slow varying one-particle densityp(r), Ap(r) is small and the

functional Taylor expansion for the intrinsic Helmholtz energy may be truncated after the
quadratic term. Similarly, the local density may be expressed as a truncated Taylor series

p(r)=p(r)+ (r—ro)Vp(r)+%(r —r,)(r-r,) :VVp(r)+O(V3p) (2.91)
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where Vp(r) denotes the density gradient and the symbol “:” denotes the scalar product of two

tensors. The gradient expansions lead to a simple expression for the Helmholtz energy of

inhomogeneous systems:

(0] fer [ [o(r)]+ Sva(e) | 2

where f, represents the Helmholtz energy density of the uniform system at system temperature

T and local density p(r), and « is called the influence parameter.

2.6.1 Interfacial Tension

The most important application of the eq 2.92 is the calculation of interfacial tension. The
interfacial tension between two coexisting fluid phases, say o and g, is defined as the change in
free energy in response to variation of the interfacial area. For two bulk phases at equilibrium,
the interfacial area refers to an imaginary surface S dividing the total mass of a particular
component in the system into those corresponding to two bulk phases. The imaginary surface is
called the Gibbs dividing surface.

For an inhomogeneous system containing two coexisting bulk phases coming together at

a planar interface, SGT predicts that the grand potential per unit area is given by

Q/Szzdz{fo[p(z)]+§(dpd—(zz)j2,up(z)} (2.93)

For bulk systems, the grand potential reduces to Q = —pV where pressure p is the same
for the coexisting phases. The interfacial tension is defined as the grand potential per unit area

relative to those corresponding to the bulk phases

y= (Q- Qbulk sz{ Z)]Jrg(dp(z

)jz_lup(z)—i- p} (2.94)
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P

Figure 2.10. The Gibbs dividing surface between two bulk phases (a and ) and a schematic representation of the
density profile in the interfacial region.

To use eq 2.94, we need an equation of state for the bulk phase and the density profile. By
minimization of the grand potential with respect to p(r) (Euler-Lagrange condition on the

functional on the right-hand side of eq 2.94 under constant x« and p) we obtain:

(Mj _,{MJ_#:O (2.95)
ap p=p(2)

If we consider a vapor- liquid phase separation and combine eqs 2.94 and 2.95, we reach a

simple expression for the surface tension:
V= deZ (d_pjz = K‘TdZ
o \dz i

More specifically, to obtain eq 2.96 from eqgs 2.94 and 2.95 it is helpful to remember

p(z) (2.96)

that, for the two coexisting bulk fluid phases a and g (say, liquid and gas) at equilibrium, the

chemical potential is the same, equal to x:

(afo(P)] :[&co(p)j = u (2.97)
op =Py op P=Py
and also the pressure is the same, equal to the saturation pressure p:
of of
O P ) A CORY. 2.99)
P P=Pa P P=Pg
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Eq 2.95 can be written as
) d’p(z
2t = L2 (2.99)
5p p=p(2) dz

Multiplying both sides of the equation by dp/dz and integrating from z=—c , where bulk phase o

conditions prevail, up to an arbitrary point z, where the local density is p(z), we obtain

dp(2) . :Kj[dzp(zz)]dp(z)dz (2.100)
dz Jldz dz

Jl(%[fo(/o)—ﬂp]]

p=p(2)

or
/9 L tde@d(dp(z)), 1 td|(de(2)) | _
;[%[fo(p)—/,zp]dp—k:[) dz E( dz Z_EK_-Ld_z dz dz=
’ , i , (2.101)
_k|[de(2)] i (90(2)) | _x(de(2)
2 dz o=l dz 2\ dz
or
fol 2(2)] - p(2) - T4 (p,) + up, = g{dpd—(zz)] (2.102)

On the other hand, substituting p in terms of f,(p,), «, and p,as shown above and invoking the

differential equation we just derived, we can rewrite the right-hand side of eq 2.94 as

dz
afs (5 55 |-fal )

which is eq 2.96. The penultimate equation in this development is an ordinary differential

7—+j:dz{fo[p(z)]yp(z)+ypa - fo(pa)+§(dp(z)] }_

(2.103)

equation that can readily be integrated to find z(p) given an equation of state for the fluid, which

dictates the Helmholtz energy density function fo[p(Z)] and the chemical potential at

coexistence, u. Thus, in the framework of SGT, the density profile and the interfacial tension

can be calculated from the equation of state of the bulk fluid and the influence parameter x. The
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Chapter 2. Theoretical Background

main advantage of SGT is simplicity, while a quantitative representation of the surface tension
can be accomplished by using an accurate equation of state that can describe the bulk phases «

and g and an optimized influence parameter.

2.6.2 Equation of State

An equation of state (EoS) is a thermodynamic relation between the state variables, which
describe the state of matter under a given set of physical conditions of a homogeneous system. It
takes the form of an equation relating the density to temperature, pressure, and composition, the
latter playing a role in multicomponent systems. In statistical mechanics and the context of the

isothermal-isobaric ensemble (nPT), the Gibbs free energy, G, is related to the configurational

integral Z ., by the following equation:
1
G =—Eln Zor (2.104)

where the configurational integral Z ., is:

Zoor =2, 2 Q(EV,n)exp[-B(E+pV)] (2.105)

with ©2(E,V,n)being the number of configurations available to a system of n molecules whose

potential (configurational) energy and volume are E and V, respectively. The reader should take

care not to confuse Q(E,V,n) with the grand potential, for which the symbol Q is also used.

The summations in eq 2.98 extend over all feasible values of E and V. The isothermal-isobaric
ensemble and the associated Gibbs potential are the most convenient of the potential ensembles
to invoke in the study of fluid phase equilibria.

The fundamental problem in deriving the equation of state for a system is to determine
Q. One of the most widely used equations of state for polymer fluids is the one derived by

Sanchez and Lacombe.!®

Inspired by Flory’s model for binary mixtures, these authors have
employed an Ising or lattice formulation, wherein the polymer segments are occupying discrete
lattice sites, while there also exist empty lattice sites (holes). The Gibbs free energy, G, based on

the Sanchez-Lacombe equation of state, can be expressed in terms of dimensionless variables as:

G
nry €

SL

=G=—p+ |51]+'I{(U—1)In(1—[))+ilné} (2.106)
w
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Table 2.1. Sanchez-Lacombe notation

Symbol Explanation
v hard core volume of a Sanchez-Lacombe segment
(o number of Sanchez-Lacombe segments constituting a molecule
Is P segmental density (Sanchez-Lacombe segments per unit volume)
& attractive energy between Sanchez-Lacombe segments in adjacent
sites
T =&/ Ky characteristic Sanchez-Lacombe temperature
P =¢"/0u characteristic Sanchez-Lacombe pressure
V' =n (rSLU*) close packed volume of the n rg_ -mers
p= pmrSLU* =Pl RT" /(MP*) reduced segmental density
Pronss mass density (kg m™)
M molar mass of a chain (kg mol™)
T=T /T* reduced temperature
P=P / pP* reduced pressure
0=1/p=V IV’ reduced volume

where T, 5,0and P are the reduced temperature, density, volume and pressure respectively. The
parameter « is connected to the number of different configurations available to a system of n
rsi.-mers. The Sanchez-Lacombe parameters are presented in Table 2.1. The corresponding

equation of state can be extracted by minimizing G with respect to p p, yielding

,52+I5+'I{In(1—,5)+(1—ij,5}=0 (2.107)
SL

According to the discussion in the above subsection in SGT, we are interested in the
Helmholtz energy density of a homogeneous phase. The Helmholtz energy under the Sanchez

Lacombe formalism can be obtained from eq 2.106:
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nry &

A*(p,T)=G-PV=G-P
yoj

=—pnr, & +Panrg ¢ +Thry & {(G ~1)In(L- ) L B} ~psE (2.108)
P

L, o

=—pnry s +Tnrg & {(U ~1)In(1- p) + Lin B}
L,

In order to avoid double counting in SCFT (taking into account eq 2.69), we have to subtract the

Helmholtz energy of an ideal gas of chains. This quantity is given by:

Pl A
A (p,T)=G"(p,T)=P'V =—nu'®(p,T)=nk,T =nk,T | In| —— |-1| (2.109)

intra
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3 SCFT Combined with SGA of Free

Polymer Surfaces /Films

The current chapter presents a self-consistent field (SCF) theoretic approach, using a general
excess Helmholtz energy density functional that includes a square gradient term, for polymer
melt surfaces.”® The approach is implemented for linear polyethylene films over a variety of
temperatures and chain lengths. The formulation of the SCF plus square gradient approximation
(SGA) developed is generic and can be applied with any equation of state (EoS) suitable for the
estimation of the excess Helmholtz energy. As a case study, the approach is combined with the
Sanchez-Lacombe (SL) EoS to predict reduced density profiles, chain conformational
properties, and interfacial free energies, yielding very favorable agreement with atomistic
simulation results and noticeable improvement relative to simpler SCF and SGA approaches.
The reduced influence parameter invoked in the SGA to achieve accurate density profiles and
interfacial free energies is consistent with the definition of Poser and Sanchez.'* The new
SCF_SL+SGA approach is used to quantify the dominance of chain end segments compared to
middle segments at free polyethylene surfaces. Schemes are developed to distinguish surface-
adsorbed from free chains and to decompose the surface density profiles into contributions from
trains, loops, and tails; the results for molten polyethylene are compared with the observables of
atomistic simulations. Reduced chain shape profiles indicate flattening of the chains in the
surface region as compared to the bulk chains. The range of this transitional region is
approximately 1.6 radii of gyration (Rg). The inclusion of chain conformational entropy effects,
as described by the modified Edwards diffusion equation of the SCF, in addition to the square
gradient term in density, provides more accurate predictions of the surface tension, in good
match with experimental measurements on a variety of polymer melts and with atomistic

simulation findings.
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Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films

3.1 Background

Many significant properties of soft condensed matter are determined by the structure,
thermodynamics, and dynamics of surfaces and interfaces. Such properties play a dominant role
in the manufacturing of materials by controlling adhesion, capillary and wetting phenomena,
which influence, for example, the characteristics of protective films and membranes, bioactivity
and biocompatibility of biomaterials, formation of microemulsions, and rheological behavior of

lubricants.®®% It is

fascinating and tempting to fully explore the complex mechanisms of these
phenomena and establish relations between macroscopically observable surface properties and
molecular-level chemical constitution and structure. Toward this goal, various theoretical

methods have been developed to elucidate inhomogeneous polymeric systems.

3.1.1 Freely Standing Liquid Polymer Films

The topological characteristics, structure, and thermodynamics of phases of simple fluids and
polymer melts coexisting with gas have been explored to great length in previous works via
theoretical approaches and atomistic simulations.®***1%°12 Thin liquid films exposed to gas
phases on both sides, the so-called freely standing liquid films (FF), attract great interest and
attention among liquid/gas systems,?294100-103.107.108-112 Tha thickness of these films is a
significant characteristic with deep implications concerning their stability. On one side, films of
thickness on the order of 10 nm have been shown to display an apparent bulk behavior in their
central region.’®” On the other side, ultrathin films of molten polymers, with a thickness of a few
radii of gyration of the constituent polymer chains, exhibit reduced densities and an altered

structure in their central region***%°

as compared to their equivalent bulk sample. Moreover,
with decreasing film thickness the two interfacial regions begin to overlap and as a result
disjoining pressure effects emerge, affecting the stability of the films, as has been showed in
Lennard-Jones fluids.}9%1%12 |n case the film thickness is reduced further, below the range of
van der Waals forces, the disjoining pressure exceeds a critical absolute value, rupture occurs,

and the film collapses into energetically more favorable structures.***!%

Thin films and the phase behavior of block copolymers have been studied extensively
with self-consistent field theory (SCFT).%29410010L11L SEET hag jts origin in the work by
Edwards.®® Helfand and Tagami in 1972 adapted the theoretical framework to predict properties

at the interface between immiscible polymers.'*” Subsequently, Hong and Noolandi, among
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others, made important contributions to the theory.'*® Since then, SCFT has supported a huge
number of applications in the literature and has been applied to a large count of polymeric
systems with outstanding results, which have been summarized in review articles,** %% hook
chapters, and books.>**® Even though SCFT has been used extensively to predict and explain
the structure and phase diagrams of block copolymers and polymer blend systems, few authors

have applied it to homopolymeric systems, 3133

3.1.2 Previous Works

As outlined in Chapter 2, in polymer field theory, the configurational partition function of a
system of chains interacting with each other, as well as with solvent, ions, and solid surfaces that
may be present, is reexpressed in terms of the configurational partition function of a set of
noninteracting chains subject to a fluctuating field. The way the conformations of each chain
species develop in the field is described by an Edwards diffusion equation. Based on a saddle
point approximation, SCFT replaces the field by an optimal function of space which depends on
the mean segment densities, and therefore on the conformations. The resulting system of
equations, expressing self-consistency of the field that shapes chain conformations but is in turn
shaped by them, is solved to convergence. The model that defines the statistical mechanics of a
noninteracting polymer chain can be more or less detailed. Two models that have been invoked
are the semi-flexible worm-like model and the fully flexible Gaussian model. The semi-flexible

wormlike chain model is unnecessarily complicated™*

when applied to high molecular weight
polymers, but has the advantage of being more realistic in the case of short chains, because it
can deal better with orientational tendencies associated with conformational stiffness.®® Even in
the case of the simple Gaussian model, the statistical mechanical formulation of SCFT is not
trivial. A particle-to-field transformation has to be carried out in the canonical or in the grand
canonical ensemble. The effective Hamiltonian is required to be stationary with respect to the

field and/or density variations and the equations must be solved in a self-consistent way.

SCFT, as originally formulated for polymeric systems, requires the system to be
incompressible. Incompressibility, however, is but a poor approximation when dealing with the
free surfaces of polymer systems. Hong and Noolandi overcame this inconsistency by
introducing vacancies and treating them as small molecules.®® This formulation increases the
number of equations to be solved and is only compatible with Flory- Huggins type equations of
state (EoS). Thompson®® used the vacancy treatment to distinguish the two regimes of molar

57
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mass dependence of surface tension, at lower and higher molar masses. A compressible model
with no explicit consideration of voids was initially introduced by Helfand and Tagami for
binary polymer mixture interfaces by assuming that the excess chemical potential is known for
one polymer; in their calculations the total density was found to decrease at the interface.™’
Schmid in 1996 first attempted to investigate compressible polymer blends at surfaces by using
SCFT.* Daoulas et al. in 2005 used the compressible model with a semi-flexible —flexible
continuum description to address conformational properties of a polyethylene melt under
confinement and compared the results with atomistic simulations.?* In 2013 by using a three-
dimensional compressible SCFT scheme, Daoulas and Mauller explored the thermodynamic

stability of the stalk fusion-intermediate in amphiphilic membranes.?*

The importance of including nonlocal terms in density in the Helmholtz free-energy
functional to deal with the inhomogeneous environment of surfaces and interfaces has generally
been recognized by numerous authors.>®”**** The nonlocal gradient density expansion term
was initially introduced by van der Waals for the vapor liquid interface for a one component
system. Nowadays, it is widely known as the square gradient approximation (SGA). SGA is
known alternatively as Ginzburg-Landau theory or Landau expansion.”® Cahn and Hilliard
theory, developed in 1958, included gradient terms in the mole fraction, in the same spirit as
SGA, to describe binary mixtures.®” SCFT incorporated the square gradient approximations from
early on. Helfand et al. first conceived the importance of nonlocal terms in calculating the
chemical potential of copolymer and polymer blend systems in a SCF.}?'%" de Gennes
combined the Flory-Huggins theory with the square gradient contribution.® A number of

works 91,124,202,203

since then have used the gradient expansion in the free-energy functional with
several variations in the coefficient of the gradient term; much of this work has focused on the
difference between the weak and strong segregation limits of polymer blends and copolymers.
The coefficient(s) of the gradient term(s) is (are) mostly referred to as the influence

parameter(s).

In the most general case, square gradient theory requires the contribution of a local
Helmholtz energy density that can be retrieved from an EoS and the contribution of the square
gradient density multiplied by the influence parameter. Theoretically, the influence parameter is
related to a two body direct correlation function and can be computed either from integral
equation theories or from analytical functions and mean field approximations.®*%"The

theoretical results, however, rely on approximations and rough estimations, resulting in
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relatively poor performance when compared against experimental or atomistic simulations
results. Semi-empirical approaches™®?®®2?! have thus been used to correlate influence

parameters to EoS parameters.

3.1.3 Current Research Approach

The present work aims at combining two of the most widely used theoretical frameworks for the
estimation of the interfacial properties of freestanding polymer surfaces, namely SCFT and
square gradient theory, in a manner that enables prediction with a minimum of adjustable
parameters. As a case study, the theoretical framework is applied to free polymer films
comprising polymer chains modeled as Gaussian threads, whilst the thermodynamics of the
polymer in the bulk is described by the Sanchez-Lacombe E0S.*®* The influence parameter of
the SGA term is calculated through correlations arising from the atomistic density profiles of
polyethylene melts. Furthermore, there is a direct connection between the reduced influence
parameter estimated by Poser and Sanchez'* and our estimation; hence, allowing us to extend
the model to a variety of polymers for the purpose of calculating surface tension. It should be
noted, however, that the developed framework is generic, because the excess Helmholtz energy
density functional can be derived from any EoS. The SL EoS was chosen in this study because it
has been shown to provide accurate results for such systems and it allows for comparisons with
past works.®**?* Our primary aim is to calculate various thermodynamic and structural
characteristics of thin films such as the surface tension, the reduced density profile and its
decomposition into contributions from “adsorbed” and “free” segments, the long-range
conformational properties of the chains quantified by the chain shape, and the segregation of
chain ends at the free surface. The SCF calculations are vigorously compared against atomistic

simulation results and experimental data.
3.2 Model System and Theoretical Formulation

3.2.1 SCF Formulation of Grand Partition Function

The SCF approach has been employed to describe polymer melt interfaces in several earlier
works, 2431131.132212213 Here e keep the presentation of our theoretical formulation as brief as
possible, focusing mainly on novel points introduced in the present work. We consider a
polymer melt whose surfaces are allowed free contact with a vapor phase. In our treatment, each

one of the polymer chains is envisioned as a Gaussian thread consisting of N chemical
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Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films

segments.> We focus on a region of total volume V occupied by polymer at temperature T,
which is delimited by the free surface(s). The polymer near the surfaces is at equilibrium with a
bulk polymer phase, with which it can exchange chains without restrictions. Because of this
phase equilibrium, it is more convenient to work in the grand canonical ensemble. The polymer
thermodynamic properties in the interfacial region of volume V at temperature T and chemical
potential N, can be fully described by the grand canonical partition function. We define x as a
chemical potential per segment, therefore the chemical potential of a chain everywhere is uN.

24
l.

We follow the statistical mechanical formulation developed by Daoulas et al.“* and generalize it,

following Schmid et al.”® The interaction between polymers, which was described by a Helfand-

7

type effective Hamiltonian,"®" is now replaced by a coarse-grained excess Helmholtz energy

24
l.

functional. The grand partition function described by eq 2 of Daoulas et al.”" is rewritten as

o0

2= Z%exp(ﬂyNn) N ”“i@ra (e)2[r,(o)] exp(-BF[p(N)]) (2.1)

n=0

where S =1/k;T, kg is the Boltzmann constant, and n is the number of chains in the system.

N is a normalizing prefactor which includes the contribution from integration over momentum

space, and I(Dra (o)@[ra (o)] represents the weighted sum over all chain conformations, which

is a path integral in the case of continuous curves. For a given configuration, one can define the

local monomer density operator

H(r)= NZH: j §(r—r,(8))ds (2.2)

a=1Q

where r_(S) is the continuous curve representing the reduced contour of a chain, from § =0
(chain start) to § =1 (chain end). The functional @[r, ()] is a statistical weight for path r,(8)

of chain « in the absence of any field. In the Gaussian string model employed here it takes the

form (compare eq 2.34):

(P[ra(o)]zexp[— 4% j;(cii% jzdﬂ (2.3)

where Rg2 symbolizes the mean squared radius of gyration of a polymer chain in the bulk and

can be calculated from the following equation:
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RZ=C,(N-1)I 2/6=NnbZ/6. (2.4)

C,is the characteristic ratio for N >> 1, a chemical constitution-dependent coefficient
depending on local interactions along the chain, and | is the length of chemical bond. Another
way to calculate the radius of gyration is the Kuhn procedure, where the chain is mapped onto a
random flight of N, Kuhn steps, each of length b, (compare egs 2.86-2.89). An observant

reader can easily note that, in the Gaussian model, the mean squared radius of gyration is the
only characteristic conformational parameter of the polymer chain which is essential for the

coarse-grained description.

We re-express the Boltzmann factor on the right-hand side of eq 2.1 in terms of a real

monomer density field p(r) and an energy field w(r) by use of the inverse Fourier transform

expression for a Dirac delta functional. With the field theoretic approach it is possible to replace
the system of interacting chains with a system of noninteracting chains subject to a fluctuating

field dictated by a generic free-energy functional representing the environment of a chain. This

procedure is described in Appendix A. We define Q[iw] as the configurational partition

function of a single-chain subject to a field iw acting on its segments, divided by the partition

function of an ideal chain. The grand partition function can then be written as

E=C[op(r) [0 ()] exp(-BHIW(T), p(r)]) (25)

with
s w(r), p(r)] = F [ p(r)] - [ drp(r)iw(r) —%eXp(ﬂﬂN )NZ,, Qliw] (2.6)

where Z, . = jq)ra (e)®[r, ()] is the configurational partition function of a free chain.

The typical procedure of the SCF approach consists in invoking a saddle point integration
with respect tow. The path integral is replaced by the value of the integrand at the
corresponding saddle function in the complex plane. Frequently SCF treatments proceed further
by performing a second saddle point approximation with respect to the monomer number density

. In Appendix A the whole procedure is described in detail. In the saddle point approximation,

the effective Hamiltonian, eq 2.6, becomes
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F[p(n)]

F[p(n)]-[dr {p() 50

} %exp(ﬂﬂN ) N~ZfreeQ[iW] (27)

From this we obtain the grand potential of our interfacial polymer

OV, T)=—21n

B

[I]

:—%In[exp(—ﬂ}_{)]:}? (2.8)

The extremization with respect to field w yields the condition (see Appendix A, eq A.38):

P = exp( BN ) NZ, A (1) (2.9)

where n is the mean number of chains in the system. The brackets(...) stand for statistical
averages taken in a grand canonical ensemble of non-interacting chains subject to the external
field iw. The approximation thus amounts to replacing the exact constraint p(r) in the
fluctuating field by the more relaxed requirement p(r)=(p(r)) for the mean field resulting

from the saddle point approximation.
The saddle point approximation with respect to density p yields the field equation (see
Appendix A, eq A.40):

.OF [p(r)]

=— 2.10
w(r) =i 5o(0) (2.10)

In place of the purely imaginary position-dependent field w(r) we can use the real field

W (r) =iw(r). The effective field w'(r) and the density p (r) are associated with each other. The
field w/(r) or, equivalently, Nw/(r), determines the density and all mean field profiles.*®

In the derivation of SCF theory a central role is played by the restricted partition function
(propagator) q(r,s). The restricted partition function for a chain in the field w(r)
proportional to the probability that the segment at contour length s of the chain subject to the
field finds itself at position r, regardless of where in the system the chain may have started. It is
reduced by the corresponding probability density in the bulk melt and obeys the initial condition

q(r,0) =1 .The restricted partition function follows the Edwards diffusion equation for Gaussian

chains (compare eq 2.46):
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% = RIVZq(r,5)— BNW(r)q(r, 5) (2.11)

The relation between q(r,s) and the single chain partition function in the presence of the field,
Q[w]is

Q[w] :\% [ePr a(r.y 2.12)

The restricted partition function q(r,s) is related to the monomer density:

vgl[\lw] ! ds q(r.5) g(r.1—3) = p(r) (2.13)

where ﬁ:%Id3rp(r) is the total number of chains in the considered interfacial region. To

uncover the structure and thermodynamic details of the inhomogeneous polymer problem, an
integrodifferential system of equations needs to be solved. The integrodifferential system
consists of the following equations: the partial differential equation, eq 2.11, the definition of the
SCF, eq 2.10, and the segment balance equation, eqs 2.12 and 2.13. These must be solved
numerically in the unknown propagator q(r,s), SCF w(r), and monomer density profile p(r) .
The boundary conditions are controlled by the geometry of the problem and, as already pointed

out, an initial condition q(r,0) =1 is applied.?**"#121>

3.2.2 Density Gradients Incorporated in the Free Energy Density

In the previous section we allowed for a generic excess Helmholtz energy functional depending
on the monomer density profile p(r) for the description of interchain interactions. In the current
section we incorporate in this free-energy functional a square gradient term. The square gradient
theory, or SGA, is a popular choice and proved to be a reliable method for predicting the
microscopic and thermodynamic properties of inhomogeneous systems. SGA is based on a very
simple basic conception. The interfacial monomer density profile of a pure fluid in gas-liquid

equilibrium, po(r), varies continuously from the bulk density of a vapor p, to the bulk density

of a liquid p,. The Helmholtz energy is approximated by a functional Taylor expansion with
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respect to the density profile, while the Taylor expansion is truncated after the quadratic term.
The gradient expansion leads to a simple expression for the Helmholtz free energy of

inhomogeneous systems

F[o(r)]= j {f ( p(r))+%K(Vp(r))2}d3r (2.14)

where F[p(r)] represents the free energy (here excess Helmholtz energy relative to an ideal gas

of chains) of the inhomogeneous system at temperature T and local monomer number density

profile p(r), the integration takes place over the entire volume V occupied by the system, and «

is the influence parameter. The first term on the right hand side within the integral corresponds

to the local excess Helmholtz energy density of a homogeneous system of density equal to p(r)

at temperature T and the second (gradient) term incorporates a non-local correction to the excess
Helmholtz energy because of the local density inhomogeneity. For all the apparent simplicity of
the theory, the main difficulty lies in the definition and calculation of the influence parameter «.
It can be proven that this is related to the vertex function®® and can be expressed in terms of the
density-density correlation function. Theoretically it can be computed by its molecular
definition, but the available theories for estimating its value perform poorly compared to
experimental and simulation data. To circumvent this problem, one can reverse it and correlate
experimental interfacial tension data with EoS parameters to figure out the value of the influence
parameter. Here we wish to keep the model as rigorous as possible, while preserving its utility in
predicting thermodynamic and structural observables. This led us to use the semi-empirical
approach, based on a Sutherland potential, that was invoked by Poser and Sanchez with
excellent results.”® The main difference between our strategy for estimating the influence

parameter and that of Poser and Sanchez'*

is that, in our case, the influence parameter is
determined from the density profile derived from an atomistic molecular dynamics (MD)
simulation of the free surface of molten polyethylene.

121,128,194,209,217
A,

Past successes of SG in conjunction with various Eo0Ss, in describing

surface thermodynamic properties motivated us to insert it in SCFT. Combining eq 2.14 and eq

2.10, the maximum term approximation with respect to the density field po(r), based on the
functional derivative of the excess Helmholtz energy F with respect to p(r) leads to the

following equation for the SCF:
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w(r) _d(p) -xV?p (2.15)

p=p(r)

p=p(r)
The expression for the grand potential by applying equation 2.14 in eq 2.7 becomes:

QuV,T) =] dSr{f (mn)—mn%’)

K

2

p=p(r)

(Vo)) } - %exp (BuN)NZ, Qw1 (2.16)

3.2.3 Implementation of the Sanchez-Lacombe EoS to Calculate the Free-Energy

For a simple fluid, the homogeneous term of the excess Helmholtz energy in eq 2.14 can be
derived from an EoS. In the literature different types of EoSs have been combined with SGA to
investigate structural properties, thermodynamic stability and calculate interfacial
tensions.®/122128.194208217°221 Tha g) 3 |attice-based EoS with good performance in describing

thermodynamic properties of polymer solutions and melts, involves three parameters. Generally,

an EoS for a pure fluid relates pressure P, molecular density p, , and temperature T . If the
EoS is of the pressure-explicit form P =P(p,,,T) (as is the SL), the following expression gives

the Helmholtz energy density A/V as a function of molecular density in the homogeneous fluid:

= pokeT || ———— | =1 |+ p kT
V pm B pm B J. ’ pkBT

’
intra 0 m m

—1j dpl. (2.17)

In eq 217 Z is the configurational integral of a single molecule over all but three

intra

translational degrees of freedom, whereas A, is the thermal wavelength of atom i of the

molecule; the product in the logarithmic term is taken over all such atoms. Clearly, the

Helmholtz energy density for an ideal gas of molecules of the same temperature T and molecular

density p,, is given by the first term on the right hand side of eq 2.17. As a result, the excess

Helmholtz energy density relative to an ideal gas of molecules is given by:

] P ,
f(pm):pkaTJ‘_; "K.T -1 dpm (218)
0

m m B

The Sanchez-Lacombe E0S is (compare eq 2.100):
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ﬁ%ﬁﬁ{ln(l—ﬁ){l—rij,s}o (2.19)

SL

where T, P and p are the reduced temperature, pressure, and density:

T=T/T", T =&"/kg (2.20)
P=P/P", P =¢&"/0v (2.21)

~ pmass * pmass RT* rSL kBT*
=L — p pot =ty T o psL e 2.22
P PmlsL M P P N P ( )

mass

Here v" is the hard core volume of a Sanchez-Lacombe segment, & is the attractive energy
between Sanchez-Lacombe segments in adjacent sites of the lattice, while T~, P™ and o, are

the characteristic Sanchez-Lacombe temperature, pressure, and mass density, respectively.

M : _— :
I, =———— Iis the number of Sanchez-Lacombe segments constituting a molecule, 1y p,, is

pmassNAU*
the segmental density (Sanchez-Lacombe segments per unit volume) with p, ... and M being the
mass density and molar mass, respectively. As in Sections 3.2.1 and 3.2.2, p denotes the

number density of chemical segments (monomers) and N denotes the number of chemical
segments per molecule (chain length, e.g., number of methylenes and methyls, or of carbon

atoms for linear polyethylene) and should be distinguished from the density in Kuhn segments
or in SL segments. The quantities r;, and N should be proportional to each other in a meaningful
model. Equation 2.22 expresses the reduced density in terms of the segment density.

Combining eqgs 2.18-2.22 leads to the excess Helmholtz energy density for a SL fluid in

terms of its molecular density:

f(pm)=—kBU—-I,:(me’S,_U*)2+pmrSLkBTK L *—1J|n(1—pmr5,_u*)+l} (2.23)

pm rSLU

Considering eq 2.15, the excess Helmholtz energy density from eq 2.23 and bulk polymer

expressions the final expressions for the SCF becomes
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w(r)= kBT*{Z(r;I—Lj( pi—p(r)-T = |n(ﬂ]}-xv2p\ (2.24)
p r

In eq 2.21 we have used that the SCF is zero in a bulk liquid phase of equal chemical
potential as our interfacial system. In that bulk liquid phase (homogeneous melt) the segment

density is p, and the reduced mass density is p,.

From eq 2.16, the grand potential of the interfacial system relative to a bulk phase of the

same chemical potential, temperature, and spatial extent is
Q(/uvva)_Qbulk(:uiviT) =
=P [d'r{ pOT +[HO] +TIn(L-50))+ B~ £(") (V5’| (2.25)

PNV (ﬂN of (p) ]Q[Wr]

where P, is the phase coexistence pressure at temperature T and P =P /P" and we have

PN op

introduced a dimensionless influence parameter « . Finally, the relation connecting the influence

parameter x in our derivation and & as described in Poser and Sanchez'*! is the following:
I 2 8/3
k=2|=t| P () & 2.26
( N j ) &)

It should be noted that the influence parameter in eq 2.26 is in practice chain-length

independent, becauser, is proportional to chain length in the high molar mass regime, as can

be seen from eq 2.22.
3.3 Models Examined

In eq 2.16 we intentionally left the field and grand potential depending on the functional of the
excess Helmholtz energy density. In this chapter we examine a number of SCF models by

varying the expression from which this excess Helmholtz energy density is obtained.

The first two models are based on the Helfand compressible model without (SCF_Helfand
model) and with a square gradient correction term (SCF_Helfand+SGA model). The first model
does not use any square gradient correction (x=0), whereas in the second the gradient
correction is inserted. The SCF_Helfand approximation has been used in the past at melt/solid
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Chapter 3. SCFT Combined with SGA of Free Polymer Surfaces /Films

interfaces with remarkable success.?*****? The Helfand excess free-energy density is given by

the following equation

£(p(r) = %[%— J (2.27)

where x; is the isothermal compressibility and p, is the monomer density, both characterizing

the bulk liquid polymer. The isothermal compressibility can be obtained from experimental
data, but in this work it is calculated from the Sanchez-Lacombe E0S. It is worth mentioning
that the compressibilities calculated from the Sanchez-Lacombe EoS are in excellent agreement
with experiment. The compressibility for use in the Helfand model is here obtained from the

following equation:

1

= — — 2.28
" PT[p| IQ-p)+1/1y ]1-2p ( )

The third SCF model we consider uses the excess Helmholtz energy density calculated by
the Sanchez-Lacombe EoS (SCF_SL model). Equation 2.23 relates the molecular density with
the excess Helmholtz energy density and is embedded in the SCF theory by egs 2.24 and 2.25

without the taking into account the nonlocal gradient density term ( = 0).

The fourth model we examine is the square gradient theory model of inhomogeneous
systems developed by Poser and Sanchez (SGA-PS model), which is straightforwardly
connected to our formulation. Poser and Sanchez used Square Gradient Theory in connection
with the EOS of Sanchez and Lacombe, without an SCF treatment, i.e., without consideration of
changes in chain conformation induced by the surface. We use an integrated form (eq 22 in ref
121) to calculate the density profiles for the SGA-PS model. We stress that the conformational
effects introduced by the SCF treatment of the ideal Gaussian chain model are absent from the
SGA-PS model.

Finally, the fifth model we consider combines SCFT with SGA, with the local excess
Helmholtz energy term based on the Sanchez- Lacombe EoS (SCF_SL+SGA model). This is the
most advanced model we examine, introduced for the first time in this work. The SCF felt by the
chains, represented as Gaussian threads, is described by eq 2.24. The SCF_SL+SGA model
encompasses entropic contributions created both by the density inhomogeneity and by the

change in conformational distribution of polymer chains in the interfacial region.
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3.4. Calculation Details

Our intention in the calculations we present is to identify differences in performance
between the new SCF_SL+SGA formulation and previous work, assess the importance of
including surface-induced changes in the conformational distribution in the calculation, and
compare model predictions with both experimental measurements and atomistic (MD)

simulation results.

3.4 Calculation Detalils

3.4.1 Solution Method for the SCF Model

Given that a free polymer film such as the one shown in Figure 3.1 is homogenous along the xy
plane and inhomogeneous along the z direction, being surrounded by gas phase in equilibrium

with the polymer film on both sides, the problem can be reduced from three dimensions to one.
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Figure 3.1. Schematic representation of the freely standing polyethylene film. The tagged chain consists of 260
CH, and CH3; units extracted from a MD simulation frame. The thin orange lines outline the remaining chains in the
simulation frame, to convey the picture of a field exerted on the tagged chain invoked in the SCF approach. The
chain is depicted as a thread of spheres which represent segments belonging to trains (red), loops (blue) and tails
(green). The simulation domain is of thickness 2L, and the thickness of the film is 2h, where h is the distance
between the center of the film and the profile point where the local density reduced by the bulk liquid density
becomes 0.5. The adsorption regions, of thickness d, are defined at the edges of the domain of analysis, where the
liquid is in contact with gas phase. The visualization was made using VMD software.???

Consequently, the system domain 2 L, encompassing the film is defined in the direction z that is
perpendicular to the film (L, is the distance between the film midplane and the edge of the

domain under examination).
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The SCF equations, as presented in Section 3.2.3, are formulated for three-dimensional
domains. For the purpose of modeling the planar film they are reduced to one spatial dimension,

z. To be more definite, we collect below the SCF equations to be solved:

5‘“;; ) _ RVEg(2.8) - ANW(2)0(2,6) (2.29)
vgl[\lwli ds q(z2,8) 4(2.1-9) = () (2.30)
w(z) afa(/f) . ZZT‘;W(Z) (2.31)
Q)= 51 [ ate 2

g ) N(;LZ)_LI; dz p(2) (2:33)

under the initial condition q(z,0) =1. We are investigating cases where the film thickness varies

between 2 and 5 R so as to make comparisons with the results of atomistic simulations for films
of similar thickness.’®* The molecular number bulk melt density, bulk vapor density and vapor
pressure are calculated from the EOS (eq 2.19) by a Newton-Raphson scheme that equates the
pressures and chemical potentials between the two phases. For high molar mass polymers the

vapor pressure vanishes and the Dirichlet absorbing boundary conditions q(-L,,5) =0,

q(L,,S) =0 for both sides of the film are appropriate.

The SCF egs 2.29-2.33 are solved following a simple relaxation technique. An initial
guess for the field w’ (z) is made (usually zero everywhere), which is then substituted into the

Edwards diffusion equation. The equation is solved numerically to calculate the restricted

partition function, q(z,§). Then the corresponding volume distribution of polymer, given by the
monomer number density p(z), is calculated from eq 2.30 and the resulting field W' (z) is

calculated through eq 2.31. Subsequently, new values for the field are estimated by mixing the

old and the calculated field w ™"(z) = (1-a,,, )W (z)+a,,W (z), where a, is the relaxation

parameter (the fraction that we use from the calculated field in the new iteration). The
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magnitude of a ;, is inversely related to the polymer chain length and determined empirically so

x
that stability of the solution scheme is preserved. The field calculated by the relaxation
technique serves as the field input for the next iteration. The whole procedure described above is
repeated until convergence is achieved. The convergence criteria are based on monitoring the
behavior of the surface tension. The iterative scheme was considered converged when the

difference in surface tension between two sequential iterations was below 108 mN/m.

A central role in the above iteration scheme is played by the solution of the Edwards
diffusion equation. The Edwards diffusion eq 2.29 is the most time demanding among all of the
above equations to be solved. We used a Crank-Nicholson time implicit finite difference scheme
to solve it with stability, which was introduced in ref 31. We take advantage of the symmetric
tridiagonal matrices generated by this method to implement the tridiagonal matrix algorithm
(TDMA), also known as the Thomas algorithm.?”® The solution can be obtained in O(n)

operations instead of O(n®) required by Gauss Elimination.

3.4.2 System Parameters -Surface Tension

The Sanchez-Lacombe parameters P, T'and p/.... as listed in refs 224 and 225 have been used
as input for all calculations reported here. The mass density values for the liquid p, and gas
phase o, and for the equilibrium pressure Ps have been obtained from the equality of pressures

and chemical potentials between gas and liquid phase based on the Sanchez-Lacombe EoS. A

Newton-Raphson iteration scheme for calculating 5,,4,,F, is outlined in the Supporting

Information of ref 26. For high molar mass polymers, as already mentioned, the solution gives

as P=0 and p,=0. The isothermal compressibility «; needed for the Helfand model is

calculated from eq 2.28. The Sanchez-Lacombe parameters used in this work are given in Table
3.1.

The influence parameter, x, has a molecular theoretic definition related to the direct
correlation function, which does not offer itself for practical calculations. We use eq 2.26, which
was initially employed by Poser and Sanchez, translated to our model, to calculate the influence
parameter. Use of a single reduced influence parameter 5 across all polymers and temperatures
studied with the SCF_SL+SGA model allows us to obtain the influence parameter for each

polymer based only on the parameters of the Sanchez-Lacombe EoS. Poser and Sanchez derived
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the relation between the & value and the exponent n of a Sutherland-type potential, which, for
the case of n=6, leads to kx =0.5. Poser and Sanchez obtained x =0.55 by fitting the surface
tension of various polymers. Approximately the same value can be derived from eq 16 in the
limit r — oo in the work of Sgouros et al.'** regarding a mesoscopic hybrid particle-field
simulation approach to molten polyethylene surfaces.

The modified Edwards diffusion equation requires an additional quantity, namely the

mean squared radius of gyration <R§> For long randomly coiled unperturbed chains, this can be

calculated by eq 2.4. The characteristic ratio C_ depends on the nature of local interactions,

dictated by the chemical details of the macromolecular chain. The temperature dependence of

characteristic ratios is weak over the temperature range considered and was neglected in this

work. In the literature one can find experimental and calculated values for C_ . In this work we

used experimental values, which are listed in Table 3.1.

Table 3.1. EoS Parameters and Characteristic Ratios*

polymer T(K) P (MPa) p(kg/m® C,

poly(dimethylsiloxane)(PDMS) 476 302 1104 5.8
poly(vinyl acetate)(PVAC) 590 509 1283 8.6
poly (n - butyl methacrylate ) (PnBMA) 627 431 1125 7.9%
polyisobutylene (PIB) 643 354 974 6.7
polyethylene (linear)(PE) 649 425 9004 7.3
poly( methyl methacrylate)(PMMA) 696 503 1269  8.2%°
polystyrene (atatic) (PS) 735 357 1105  8.5%
poly(ethylene oxide)(PEO) 656 492 1180  5.5%°

*Sanchez-Lacombe equation of state parameters taken from ref 224 except for PEO, where they
are taken from ref 225.

The thermodynamic relation between the grand potential and surface tension for the case

of a film of polymer melt bounded by gas is
OV, T, 1)~ Quu V. T, 1) =78 (2.34)

where S is the total interfacial area of contact and y is the polymer surface tension. The left hand
side is calculated from the solution to the SCF model by eq 2.25, which in our one-dimensional

problem reduces to
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[Q(,LI,V,T) _Qbulk (N!V!T)]/S =

=p" j dz{i)(z)ﬂ[ﬁ(z)]z+f|n(1—/5(2))+ Z—E(u*)m(‘aa—":j } (2.35)
_AY of (p) :
AN exp(ﬂN 2 szJQ[W]

Results for the surface density profile and surface tension are invariant to the precise value of L,
used (thick films) in all cases studied here.

3.4.3 MD Simulations

Our SCF findings are compared to density and conformational measures, some of which were
retrieved from atomistic simulation trajectories of freely standing polyethylene films generated
as in ref 104. The atomistic simulations were conducted using the Large-Scale Atomic-
Molecular Massively Parallel Simulator (LAMMPS) package*® with PE melts being described
with the TraPPE united atom force field.?*?*! These simulations, in which long-range
contributions to nonbonded interactions in the anisotropic environment of the film are handled
with great care, have yielded predictions for the surface tension which are in excellent
agreement with experiment over a variety of temperatures and chain lengths. The atomistic
configurations represent thin films composed of CigoH202 (C100) and CagoHs22 (Cos0) chains with
lateral (normal) dimensions commensurate to ~2 Ry (~4 Rg). Additionally, an atomistic
simulation was conducted on a CszoHz042 (Cs20) film with a thickness of ~2 Ry. In-depth details
regarding the MD simulations and simulated system characteristics can be found elsewhere.'%*

3.5 Results and discussion

3.5.1 Reduced Local Density Profiles

The current section deals with density profiles of polyethylene derived from field theoretic

approaches and atomistic simulations. At the outset, the reduced local density profile,
¢(z)=p(z)/,oI between liquid and gas phases of polyethylene at equilibrium is calculated by
different methods. The SCF_Helfand and SCF_Helfand+SGA models, the SCF combined with
the Sanchez-Lacombe equation of state without (SCF_SL) and with gradient correction
(SCF_SL+SGA), and the Poser-Sanchez (SGA-PS) model are all compared to atomistic

simulations (MD). The density profiles are shifted, so as to have the 0.5 point of the reduced
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density profile for every model at the same position (10 A). The reader can observe the
difference among the sigmoidal curves that different models generate for the free surface of a
Cas0 polyethylene melt at 450 K in Figure 3.2. Although plotting out the profiles reveals the
structure and the exact shape of the curve produced by every model, it is more convenient to
work with the surface thickness. The thickness of the profile can be quantified by two
techniques. The first one is based on fitting the curve to a hyperbolic tangent sigmoid profile,

given by:

o(2) =%{1—tanh(2 : ‘hﬂ (2.36)

Wth

where w,, is the measure of the thickness of the sigmoidal curve and h is the value of z where
the reduced density ¢ reaches 0.5. The second strategy for quantifying the surface thickness is
based on drawing the tangent to the reduced density profile curve at z = h and measuring the
distance along the z direction between the intersections of this tangent with the lines ¢=0 and

¢=1. The estimate of the thickness is given by the following equation:

dz

dy =—
d ¢ ¢(2)=0.5

(2.37)

It is worth mentioning that when the profile follows the hyperbolic tangent, eq 2.36,

exactly, then d, =w,, . Division of these two estimates of the width by each other produces a

factor A =w,,/d, which is a measure of how well the reduced density profile can be fitted to a

symmetric hyperbolic tangent curve described by eq 2.36. The A4 value for symmetric curve is

equal to 1. The values of 4,w,, and d,, are shown in Table 3.2.

The Gaussian chain model with the free-energy density given by the Helfand harmonic
potential and no square gradient correction (SCF_Helfand) yields a very steep (thickness ~2 A)
and asymmetric (1=0.936) profile. The SCF model with the field given by the more
sophisticated Sanchez-Lacombe EoS (SCF_SL) gives a smoother profile than the Helfand
model, with the low density tail more extended. The SCF_SL model is very symmetric
(1 = 0.983), nonetheless the thickness of the profile is very small, below ~4 A. Both of these

profiles are unrealistic in comparison to the atomistic simulation profile, characterized by a
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width of ~8 A. This implies the necessity of the square gradient correction term. The gradient

correction makes the profile wider and the profile gradient smoother.

Table 3.2. Thickness of the Reduced Density Profile Calculated by Two Different Methods for the Free
Surface of a Coe0 Polyethylene Melt at 450 K According to Different Models and According to Molecular
Simulation®

thickness measure

model din(A)  win(A) yl
SGA-PS 7.65 7.09 0.927
SCF_SL 3.69 3.63 0.983
SCF_SL+SGA 8.47 8.00 0.944
SCF_Helfand 1.99 1.86 0.936
SCF_Helfand+SGA 454 473 1.042
MD 8.13 7.90 0.971

®The factor A is a measure of deviation of the profile shape from a hyperbolic tangent curve.

The reduced influence parameter k& for the SCF_SL+SGA, SCF_Helfand+SGA and
SGA-PS model was kept the same, equal to 0.55. This choice of the reduced influence parameter
was made so that SCF_SL+SGA closely matches the atomistic density profile. Beginning with
the SCF_Helfand+SGA model, although the interfacial width changes noticeably relative to the
SCF_Helfand model, attaining a value of ~4.5 A, it is still too small compared with atomistic
simulation. The profile shape is quite different from that of MD, as evidenced from its 4 value.
The Poser-Sanchez model (SGA-PS) produces a profile of acceptable width of ~7 A, but its
asymmetry (1 = 0.927) is the highest among those of all models examined and clearly too high
in comparison with the MD profile. The SGA-PS model yields a somewhat narrower profile
than the ones obtained from SCF_SL+SGA or from atomistic simulation. The SCF_SL+SGA
model is in very good quantitative agreement with the one obtained from the atomistic
simulations, exhibiting an interface width ~8 A and reasonable asymmetry. The Poser and
Sanchez density profile departs from simulation results in the low-density region at the
extremities of the film. It does not account for the restrictions that polymer chain conformations
experience near surfaces, while the SCF_SL+SGA approach incorporates entropic changes
associated with these restrictions. It would be worth noting that, even though all models are
tested with the same value for the influence parameter £ = 0.55, optimized x values cannot

reproduce precisely the full MD profiles, nor give fully satisfactory estimates of the surface
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tension. The “best” & values for the SCF_Helfand+SGA and SGA_PS models in terms of

reproducing the density profiles are 0.6 and 1.3, respectively.

1.0}
0.8}F
- 0.6 ZSGA_PS
= SCF SL
0.4 SCF SL+SGA
- ¢scr Helfand
0.2 ¢SCF_llc]fand ‘SGA
-~ T %
0.0 : '
5 10 15 20

Figure 3.2. Local reduced density profiles obtained from theoretical models (lines) compared to that obtained from
MD simulations (dashed line) for the free surface of a Cyg polyethylene melt at 450 K. The reduced density profile
of the SGA proposed by Poser and Sanchez (green), of the Helfand SCF compressible model without (magenta) and
with (navy blue) square gradient approximation and the SCF with the free energy dictated by the Sanchez-Lacombe
EoS with (red) and without (blue) gradient correction is discussed in the text. The profile coordinate where the
reduced density becomes equal to 0.5 coincides for all models.

In Figure 3.3a we show the reduced density profile obtained from the SCF_SL+SGA
calculations, for the Cy90 PE free film (FF) system at various temperatures. The Gaussian chain
profiles and MD profiles are referred to the same thickness of the free film, with z=0 located

in the middle of the film. The vertical dashed line indicates the center of the free film, where the

polymer reaches the bulk liquid density p,, while the right and left boundaries of the film show

the contact with the gas phase, where the bulk density reaches practically zero. The horizontal
dashed line designates the points where the reduced density equals 0.5. The film thickness is
defined as the distance between these points, and ranges from 4 Ry (400 K) to 4.5 Rq (500 K). In
the MD simulation the system mass is kept constant; therefore, the film thickness increases with
increasing temperature because of thermal expansion. To relate the conformational properties of
the SCF method and MD, the film center will be held constant. It is apparent from Figure 3.3(a)
that SCF with the gradient correction term follows quite faithfully the density profile produced
by the atomistic simulations. With decreasing temperature, the profile becomes steeper. The
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SCF reproduces the decrease in slopes of the profiles obtained by atomistic simulation in detail,

across the entire temperature range studied.

() .

FF-400K— SCF-SL+SGA - - MD

1.25F FF-450k—SCF-SL+SGA - MD 1
FF-500K=—— SCF-SL+SGA- - - MD
FF-550K=— SCF-SL+SGA - -MD
1.00F p :
N0.75
=
0.50
0.25
0.00
(b)1 o5 I':F-C10(;—SCI;-SL+SéA- - -M'D
““°|  FF-Co,qp—SCF-SL+SGA - MD |
FF-Cgyq— SCF-SL+SGA- - -MD
1.00 : B
N0.75 5
.
0.50 5
0.25 y
0.00

Figure 3.3. Reduced density profiles of freestanding polyethylene films at various temperatures for various chain
lengths. (a) Results obtained for C;40 from 400 K up to 550 K with a step of 50 K. The SCF approach combined
with Sanchez-Lacombe and the SGA (lines) is compared with atomistic simulations (dashed lines). Each color
refers to a different temperature. (b) Results for Cqg (red), Cogo (blue) and Csyg (green) at 450 K from SCF (lines)
and atomistic simulations (dashed lines). The vertical dotted lines indicate the center of the film and the line
segments defined by the intersection of the horizontal dotted lines with the reduced density profiles are
commensurate to the thickness of the films.

Another interesting comparison between the SCF_SL+SGA approach and detailed
atomistic simulation concerns the change in reduced density profiles with chain length. In Figure
3.3b the reduced density profile obtained from the SCF_SL+SGA calculations is shown for the
C100, C260 and Cspp PE free film (FF) system at the same temperature (450 K). The width of the
interfacial region decreases very slightly with increasing chain length. Figure 3.3 undoubtedly
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shows that there is an expansion of the interface region with increasing temperature, while an
increase in chain length practically has no effect over the range of chain lengths examined here.
Again we observe that the profile created from SCF_SL+SGA model matches the MD model

very well.

3.5.2 End and Middle Segment Distributions

This section deals with the structure of segment profiles in more detail. The chain end segment
distribution plays a major role for conformational, dynamic and thermodynamic properties, as
Chevalier et al. have revealed.?®” Segregation of different segments along the chain has been
shown by Jang et al.* to influence the configurational properties of freely standing films. It has

been found that repulsive (&4 < &nigge) OF Neutral (&,4 = &q9e) Chain end groups tend to

end
accumulate near the fluid—vacuum interface, while strongly attractive ones tend to reside in the
bulk region and induce faster dynamics in the central region of the films. It is of interest,
therefore, to examine if SCF_SL+SGA predictions for the end and middle segment populations
at gas—liquid interfaces are consistent with atomistic simulations and how these populations

depend on temperature and molar mass.

Generally the average density p,(r) at position r of chain segments lying at reduced

contour length § (the chain start being § = 0 and the end § = 1) along a continuous Gaussian
thread is obtained as follows. Segment § is envisioned as the junction of a chain section of
reduced contour length § = 0 with the complementary chain section having contour length 1-5 .
The reduced density of these segments is therefore proportional to the product of the propagators

of the two chain sections:

(r nN
p =20 _ T
Pspuc VQ [W ]p§,bulk

Q(r,g)Q(r,l—g) (238)

The middle segment reduced density ¢, =y, 1S calculated by setting §=1/2 and
Puarax = A1/ N . The reduced density of a chain end segment is a case of particular interest.™*" In

the homopolymer case the ends are indistinguishable and therefore the total chain end segment

density can be calculated as a sum of the first and last segment density p.., = p, + o, (See also

eq 2.56). The reduced end segment density ¢, can be obtained by dividing at every point the
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end segment density by p,.qpux = Popur + Prou = 20,/ N . The bulk reduced density for both end

and middle segments equals unity.
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Figure 3.4. Profile of the reduced end segment and middle segment distributions (a) Profiles of the reduced end
segment density and the reduced middle segment density in free films of molten polyethylene composed of chains
of 100 (ends: red, middle: blue) and 260 (ends: green, middle: black) skeletal carbon atoms at 450 K. Solid lines
show results from the SCF_SL+SGA approach, while dashed lines show the corresponding results from atomistic
MD simulation. (b) Profile of the reduced end segment and middle segment distributions, for free films of molten
polyethylene composed of chains of 100 skeletal carbon atoms at various temperatures (400-550 K). Solid lines:
SCF_SL+SGA results, dotted lines: MD simulation results.

Figure 3.4a shows the comparison between the reduced density profiles of the end
segments and the middle segments for freely standing PE films consisting of Cigo and Cago
chains at T = 450 K. Figure 3.4b shows the reduced density profiles of films composed of Cig
chains over a temperature range, from T = 400 K to T = 550 K. Results from the SCF_SL+SGA
approach are compared with the corresponding results from atomistic simulations. In the
atomistic simulations the chain ends and middle segments were represented with the same
Lennard-Jones parameters and the thickness of the films was set to 4 Ry. Even though we treated
both end and middle monomers as not differing chemically, nonetheless we found, as

eXpeCted,1°4’131'195

near the surfaces of the film the population of end groups to be significantly
enhanced with an effective selective attraction of end groups to the surface due solely to chain
connectivity. The SCF_SL+SGA model end segment profiles generally agree well with those
from detailed atomistic simulation qualitatively and quantitatively. The weak depletion of chain

ends observed in the atomistic simulations deeper in the film is not well reproduced by the SCF
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calculation, probably because the local conformational stiffness of chains is not captured by the
Gaussian thread model invoked by SCF. In general, the SCF model’s end segment density
profile seems to rise more steeply than the MD model profile at the extreme edges of the film.
The performance of the SCF model improves with increasing molar mass of the melt, as one
would expect, because the Gaussian thread model is primarily a model for high molar mass

chains.

The reduced density of the middle segments is lower than that of end segments at the
edges of the film by about 2 orders of magnitude. The SCF model yields broader and steeper
reduced middle segment density profiles compared to MD. This overestimation is seen in both
the temperature and chain length dependence. This difference is clearer in the small molar mass
polymer system and appears to be less pronounced for the higher molar mass system. Again, it
seems to be associated with local stiffness effects which are not fully represented by the
Gaussian thread model and are most pronounced for low molar masses. The expectation is that
in higher molar mass systems the SCF model will be more accurate in predicting the middle
segment profile. Even though the SCF model is not appropriate for low molar mass systems, it
seems to capture the tendencies for segregation of end segments and middle segments in good
agreement with atomistic simulation. In both approaches as applied to polyethylene, there is no
enthalpic profit to be gained by end segments when they are exposed to the surfaces instead of a

bulk region of the same density.**"'%

3.5.3 Structure of Adsorbed Polymer Layer

Entire polymer chains in the free film can be distinguished into “adsorbed” and “free,”
depending on whether they have segments in the low-density surface regions. It is useful to
check whether the SCF_SL+SGA model can capture this distinction as observed in atomistic
simulations. Comparisons between SCFT and atomistic simulation regarding the segment
density profiles of free and adsorbed chains and of the various parts (trains, loops, and tails) in
which adsorbed chains can be partitioned according to their configuration relative to the surfaces

have been conducted by Daoulas et al.** |04

at polymer melt/solid interfaces. Sgouros et a
conducted MD simulations of freely standing films and distinguished the adsorbed chains into 4
categories depending on the positions of their ends relative to the free surfaces. They treated as
“adsorbed” a segment at the liquid-vacuum interface if it lay in a certain region. The definition

of this region where a segment and, more generally, a molecule is considered as “absorbed”
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plays a fundamental role in the calculation. At solid-liquid interfaces the region of adsorbed
segments is defined so as to contain only the first peak of the density profile next to the solid
(see ref 24). At the gas-liquid interface, following ref 24, we will consider as “adsorbed” all
segments lying at a distance larger than h from the center of the film along the z direction (see
Figure 3.1, domains of thickness d). Both in SCF and molecular dynamic calculations, a
monomer-segment is defined as adsorbed when it finds itself within this low-density region of
the gas/ polymer interphase. In this way it is ensured that both field theoretic and atomistic
representations employ the same characteristic length for identifying adsorbed segments. As in
sections 3.5.1 and 3.5.2, the film midplane will be placed at z = 0 and comparisons will be made
between films of the same thickness for freely standing films composed of Ciop and Cyg

polyethylene chains.

The reduced volume fraction profile of segments belonging to adsorbed molecules,
@,4(2) , is obtained after decomposing the Gaussian chain propagator, q(z, §) in two parts, 0,
and ¢, , representing the two states of the polymer chain, adsorbed and free, respectively.?*®
The g, propagator is calculated from the Edwards diffusion equation using the self-consistent
field of the converged solution with initial conditions q,,(z,0)=1 for |z|<h and ¢, (2,0)=0
for h<|z|<L, and boundary condition g, (+h,8)=0. The q,, part is easily obtained after
subtracting from the total propagator q(z,s) the term corresponding to the free state of chains,

Qg =0 —0fe. - The reduced segment density profile of the free, ¢ (z), and the adsorbed

polymer can be obtained from:

Drree (Z) = \%\T/]pl _:[ Ofree (21 §)qfree (211_ §)ds (239)
P(2) = s (2) + Prree (2) (2.40)

We can now separate the adsorbed segments into loops, trains and tails, following their
traditional definitions.?*?33%** A train is a chain section consisting exclusively of adsorbed
segments and bounded by free segments, whereas a tail is a terminal section consisting
exclusively of free segments and terminating in an adsorbed segment. A loop, on the other hand,

is an internal chain section consisting of free segments and terminating in adsorbed segments. In
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Figure 3.5. Volume fraction profiles of segments belonging to adsorbed and free chains (presented with red and
blue color respectiverly) as derived by SCF theory implementing the Sanchez-Lacombe excess free-energy density
combined with the square gradient approximation for freely standing films of (a) Cyp and (b) C,s melts. The
dashed lines display the corresponding atomistic simulation results.

the SCF formulation, a segment belonging to a loop is viewed as the junction point of two
adsorbed subchains.

N 3 .
(ploop(z) = W!qads(zl S)qads(Z,l—S)dS (241)

A segment belonging to a tail, on the other hand, is viewed as a junction point between a
free and an adsorbed subchain:
2NN

wtails(z) =\ml‘qfree(z’§)qads(zll_§)d§ (242)

where the factor of 2 takes care of the presence of two ends.?®® In polymer films it is possible to
encounter segments belonging to “bridges”, i.e., chains adsorbed on both surface regions, which
span the film. Here the thickness of the film is large enough for the presence of bridges to be

insignificant.

Figure 3.6 illustrates the ¢uis(z) ( and @ioops(z)) profiles as obtained from atomistic
simulations and calculated from eqs 2.41 and 2.42 for the SCF_SL+SGA model for the C;o and
Cae0 melts. By definition the adsorbed chain profile contains tail, loop, and train distributions;

for this reason the adsorbed profile of SCF seems to contain cumulatively more loops and tails
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Figure 3.6. Volume fraction profiles of segments belonging to tails ¢uiis(z), and 100ps, gieps(2).as derived by the
SCF_SL+SGA approach (solid line) implementing the Gaussian thread connectivity model for (a) Ciqo and (b) Cago
melts. The dashed lines show the corresponding atomistic simulation results for the tails and loops, respectively.
The vertical, thin dashed line marks the boundary of the region where the polymer is considered as adsorbed for
both SCF and atomistic model simulations.

than atomistic simulations, because they add up to a greater amount of adsorbed chains
according to Figure 3.5. In the Cyqo system the loop reduced density profile reaches 0.49 (0.14),
while the tail reduced profile for the same chain length exhibits a maximum at 0.53 (0.34)
according to the SCF calculation (atomistic simulation, respectively). In the Cygo System the
loop-reduced density profile reaches 0.56 (0.27), whereas the tail-reduced profile has a
maximum at 0.54 (0.50) according to the SCF (atomistic simulation) and the minimum in the
middle of film differs between the two calculations 0.23 (0.19). The atomistic simulation yields
a loop profile which increases significantly from Cjop to Cus0, indicating an expected tendency
for longer chains to form more loops. In the SCF model the maximum in the loop profile does
not increase at the same rate from Cyo to Cogo, implying a convergence between the SCF model
and atomistic simulations for very long chain PE. It is apparent that, with increasing chain
length, the correspondence of loop and tail profiles between the SCF approach and atomistic
MD becomes more reliable. This trend is expected to improve further as the molecular weight
increases further and the chain can be represented better by a Gaussian connectivity model. The
tail-reduced segment profiles obtained from the SCF calculation and MD simulation in the case
of the C,s0 System are quite close, whereas for the Cqop System there is considerable disparity.
The degree of agreement gives the impression that it does not depend on the film thickness. We
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remind the reader that for both Cioo and Czgo the film thickness is ~4R (~75 and ~114 A,

respectively).

3.5.4 Chain Shape Profiles

The presence of the gas/liquid interface affects the global chain conformational characteristics in
the liquid state. The orientation and intrinsic shape of chain segment clouds in the various parts
of the interphase depart from those in the bulk melt. The motivation for exploring these chain
conformational properties as a function of the molecular structure is that they are intimately
connected to macroscopic thermodynamics and dynamics. Theodorou introduced a method to
calculate the number of chains passing through a surface drawn parallel to the interface
anywhere within the film.>*®> The methodology, originally developed for a lattice fluid SCF

model, was extended by Daoulas et al. and implemented in the continuous Gaussian thread

model to calculate the number of chains per unit surface passing through a plane at z, parallel to

the interface.?* Based on these two approaches, we calculate the probability that a chain starting

anywhere in the system will intersect a given plane at z,. From this we obtain the average

number per unit surface of chains passing through that plane.

The probability p,, of a chain that started anywhere in the system to intersect a given

plane at z, is equal to the complement of the probability that the chain does not intersect the
given plane. Calculation of the latter can be translated into imposing the Dirichlet boundary

condition =0 at the dividing plane at z,, splitting the domain into two regions; solving the
Edwards diffusion equation in the two separate subdomains z<z, and z>2z, using the
converged W(z), and thus obtaining the d,,., Propagator for chains that do not intersect the

plane. The probability p,, can be evaluated by the following equation:

) L,
J. qshape,zo (211) dz + I qshape,z0 (Z,l) dz
Pre(20) =1~ — (2.43)

7

Iq(z,l)dz

-L

7

The numerator on the right hand side is written in this way to emphasize that the plane

perpendicular to z, is not contained in the integral. After evaluating the probability p,, we can

84



3.5. Results and discussion

obtain the number of chains n, (zo) that intersect the plane at z, per unit surface by multiplying

P, by the total number of chains in the system:

LZ

a(2) = Pu@) - [ Pl2)d (2.44)

-L

Z

Working with a variety of zo values we derive, through eq 2.44, n, (z), a conformation-

dependent quantity readily obtainable from the SCF_SL+SGA model, which allows us to make

direct comparisons with atomistic simulations. Figure 3.7 displays the profile of n,(z) from the

SCF_SL+SGA model and MD simulations. For comparing the two models, the profile for each
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Figure 3.7. Profile of the average number of chains per unit surface that intersect a plane at z, ng(z), from
SCF_SL+SGA model (solid lines) and MD (lines with points) for Cyo (red) Cyg (green) and Csy (blue). The MD
and SCF profiles have been shifted so that their reduced density profiles align at 4=0.5.

chain length is shifted so that the reduced density profiles are aligned at ¢ =0.5. Overall, n, (z)

from SCF_SL+SGA is in good qualitative agreement with MD, both of them exhibiting a
reduced number of chain intercepts in the vicinity of the free surface and saturating to a bulk
value in the bulk regions of the films. The saturated bulk value obtained for Ciop from
SCF_SL+SGA is considerably higher than the one computed from MD; similar behavior has

been reported by Daoulas et al.** Nevertheless, with increasing chain length the correspondence
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between SCF and MD improves. Moreover, there is a significant deviation between MD and

SCF_SL+SGA at the extremities of the interface, because the latter overestimatesn,, .

An additional quantity for assessing the orientation and intrinsic shape of chains is the

chain shape profile, n, (z), which measures how many times, on average, a chain passing through

a plane parallel to the interface at z intersects that plane. This quantity was introduced by

Theodorou for a lattice model.>* In this work we derive this quantity for the continuum model
as follows. By inverting n, we obtain the average surface area occupied in plane zo by a chain
passing through that plane, a (z,)=1/n,(z,), which assumes an asymptotic value in the bulk

melt. Multiplying a,, by the density of segments and by a height per segment, we have an

estimate of the mean number of segments that a chain passing through a plane at z occupies on
that plane; in other words, the mean number of intersections of the chain contours with a

considered z-plane. We form the quantity n.(z) , which gives us an idea of the average chain

shape profile along the z axis:

~ N-1) 4(z)pAl(N-1
ns(z)—p(z)ach(zw[ N j‘ N (2) [ N J (2.45)

In eq 2.45 Al is the average projection on the z-axis of the distance connecting two
segments, taken here as Al = 1/ 2, with | being the chemical bond length, because o counts
chemical segments per volume. The factor (N-1)/N is the ratio of the number of bonds to the
number of segments in the system. We apply it because we wish n,(z) to count intersections per
chain going through the z-plane, rather than segments per chain going through the z-plane. We
will call ng(z) the average “width” of chains going through the z-plane. A high value of ny(z)

signifies a tendency for chains at z to extend flat in directions parallel to the surface, while a low
value of it indicates that chains are oriented normal to the surface. The chains per area passing

through a surface n,(z) and the reduced density ¢(z) can be calculated easily by egs 2.44 and

2.30, respectively. Regarding the factor pAI(N -1)/ N, Al is not readily accessible from the

SCF approach. However the need for the quantity Al can be circumvented by considering the

reduced chain shape with respect of the chain shape in the bulkn,,,, .
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Figure 3.8. Reduced chain shape profiles ns (z)/ ngpux as derived by the SCF_SL+SGA model (blue lines) for
polyethylene free films consisting of (a) 100 and (b) 260 carbon atoms. The temperature is 450 K. The red open
circles symbols show the corresponding MD results. The dashed lines indicate the position where the polymer
density equals half of its bulk density.

Figure 3.8 illustrates the reduced chain shape profiles, n.(z)/n,,, for free molten

polymer films of Cyg9 and Cyg0, compared directly with the corresponding results from atomistic
simulation. Taking into consideration the above analysis, the low values of n,(z) observed in
the graphs of Figure 3.8 in the vicinity of the free surface betray a tendency for chain ends to
protrude from the melt into the gas region, terminal segments adopting a predominantly normal
orientation to the interface. As we move towards the center of the film, the chain widthn(z)

increases, with chain segment clouds tending to orient flat on the surface. The chain width goes

through a maximum and then decays to its asymptotic bulk melt value.

Generally, agreement between SCF theory and simulation as regards the chain width is
very satisfactory. SCF tends to produce narrower chain width profiles than the simulation, which
fully includes local chain stiffness and fluctuations. An evident discrepancy between

SCF_SL+SGA and MD is that the first predicts a lower number of z-plane chain intersections in
the low-density region of the interface. This behavior is strongly correlated to the profiles ng, in
Figure 3.7, where the chains per area—which are inversely proportional to n,—according to by

SCF_SL+SGA are much more than that according to MD at the interfaces. Over the remaining
domain SCF_SL+SGA predicts higher chain widths. This shortcoming is intrinsic to the
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Gaussian string model, the chains being fully flexible and thus allowing for a larger number of
chain intersections along z-planes. Although the locations of maxima of the reduced chain shape
profiles compare well between SCF_SL+SGA and MD, the ones from MD are closer to the
gas/liquid interfaces. It is clear in Figure 3.8 that the agreement between SCF_SL+SGA and

atomistic simulations again improves with increasing chain length.
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Figure 3.9. Reduced chain shape profiles from SCF_SL+SGA for various chain lengths varying from 100 to 10000
monomers per chain. Each chain length is represented by a different color. The MD and SCF profiles have been
shifted so that their reduced density profiles align with ¢=0.5 at z = 0. The inset displays the dependence of np puik
on the inverse square root of the chain length according to the SCF_SL+SGA model (circles) and according to
atomistic MD (diamonds).

Figure 3.9 depicts the profile of the reduced chain width over a broad range of chain
lengths, with the distance z reduced by the bulk radius of gyration for each chain length. As
already seen in Figure 8, the chain width features a pronounced peak near the interface,
indicating high chain flattening in this region. The position of the peak is chain length
independent and is located at ~15 A from the extremities of the films. Upon moving towards the
bulk region of the film the pronounced peak decays and the reduced chain shape saturates to its
bulk value corresponding to chains of unperturbed shape and random orientation. Clearly, the
characteristic length for the decay is influenced by the degree of polymerization, being

proportional to the radius of gyration R, (note that the abscissa is in R; units). More

specifically, in all cases examined here the distance between the position where ¢=0.5 and the

point where the profile saturates to unity equals ~1.6R;. In the inset of Figure 3.9 is displayed
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the average number of chains passing through a plane positioned in the bulk liquid region of the
film (e.g., the film midplane) against the inverse square root of the chain length, N2, A perfect
linear correlation is seen in the SCF_SL+SGA results, characteristic of unperturbed, randomly
oriented conformations. The MD deviates from the linearity for small chain lengths but comes
very close to the SCF_SL+SGA estimates, both in slope and in actual values, for high molecular
weights, underlining the increasing validity of the Gaussian approximation with increasing chain

length.

3.5.5 Surface Tension of VVarious Polymers

As pointed out above, the reduced influence parameter x for use with the SCF_SL+SGA
approach was obtained by fitting the atomistic simulation density profile of polyethylene films
composed of Cig, Co60 and Csyo chains. At these chain lengths, altering the chain length has
small impact on the density profile. We use the same reduced influence parameter (x =0.55) to
perform calculations for higher molecular weight polyethylenes and for polymers of different
chemical constitution for any chain length and temperature. In this section we utilize the
SCF_SL+SGA approach to calculate the surface tension of various polymer melts. Poser and
Sanchez fitted their theory (SGA_PS) to experimental surface tension data, obtaining the same
reduced influence parameter as we use. The role of the reduced influence parameter is central, as
it treated as a universal parameter for all chemical constitutions and is the sole interface-related
parameter in the SCF_SL+SGA approach. (The remaining, chemical constitution-dependent
parameters are T, P, p of the SL EoS and the characteristic ratio is C.,, all are listed in Table
3.1).

In Table 3.3 is shown the surface tension for polymer melts as predicted by the
SCF_SL+SGA with reduced influence parameter x =0.55, using the Sanchez-Lacombe EoS
parameters and the characteristic ratios listed in Table 3.1. Calculated values are compared
against experimental values for the same temperatures.

Agreement between SCF_SL+SGA and experiment is generally very good. As

expected,

with the SCF approach inserted in the theoretical model, the conformational entropy
effects in the vicinity of the free surface are taken into account. A direct consequence is a
general increase of the surface tension relative to what would be predicted by SGA alone.
Indeed, in comparing our model against the Poser and Sanchez model (SGA-PS) we find that

there is a small increase of 5-15% in surface tension using the same parameters. The
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incompressible model used by Hong and Noolandi results in a similar increase in surface tension
relative to the Poser and Sanchez model, although they used a different continuum approach and

a different method to calculate the influence parameter.”

Table 3.3. Surface Tension of Polymers at VVarious Temperatures in mN/m

polymer SCF_SL+SGA experimental*
413K 423K 453K 413K 423K 453K
poly(dimethyl siloxane)(PDMS) 13.8 13.2 115 14.1 13.6 12.2
poly(vinyl acetate)(PVAC) 28.8 27.8 26.2 28.6 27.9 25.9
poly (n - butyl methacrylate ) (PNBMA) 285 27.7 254 241 23.5 21.7
poly isobutylene (PIB) 26.7 26.2 23.9 25.8 25.1 23.1
polyethylene (linear)(PE) 31.7 31.0 28.9  28.8-30.0 28.1 226757
poly( methyl methacrylate)(PMMA) 37.0 36.2 33.6 32.0 31.2 29.9
polystyrene (atatic) (PS) 31.8 31.0 29.0 32.1 30.8 29.2
poly(ethylene oxide)(PEO) 34.3 334 30.9 33.8 33.0 30.7

*Experimental values obtained from ref 91. Experimental and calculated values refer to the same molar mass.

In Figure 3.10 the surface tension is plotted against temperature for all polymers except
for poly(methyl methacrylate) (PMMA) and poly(n- butyl methacrylate)(PnBMA). The
maximum error between experimental values and those calculated through the SCF_SL+SGA
approach is nearly the same as the uncertainty in the measurements, approximately 2% on
average. Predictions for PMMA and PnBMA are not so successful, differing by 15% from
experimental values. One would tend to associate this limited success of the model in the case of
methacrylates with the polarity of these polymers. Nevertheless, the calculation for PVA, which
exhibits a polarity close to that of PMMA, performs very well in comparison to the experimental
data. In our opinion, further investigation is needed into the manner in which methacrylates
contribute to enthalpic or entropic components of surface tension. SGA alone also does not work
very well for these two polymers, as evidenced by the predictions of the Poser-Sanchez
model.*** The nice overall agreement of SGA-SL+SGA predictions for the surface tension with
experiment is mainly due to the high quality of the Sanchez-Lacombe equation of state.
Contributions to y from the density profile are dominant, while those due to perturbation of the
chain conformational distribution, as treated with SCF theory, amount to 8-19%.

Surface tensions for a variety of polymer melts over a broad temperature range can be
captured by the SCF_SL+SGA model. An interesting aspect of these calculations is that PE and

PS exhibit similar behavior, although their SL parameters and radii of gyration are quite
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dissimilar. Generally, an increase in T',P",p" and C_ brings about an increase in surface

tension. The PE P” is high enough to counterbalance the higher values in other parameters of
PS.

T T T T T T
¢ PS-exp —PS-calc * PVA-exp —PVA-calc
# PIB-exp —PIB-calc * PDMS-exp —PDMS-calc
" ® PEO-exp —PEO-calc # L-PE-exp L-PE-calc
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Figure 3.10. Surface tensions of various polymers with symbols depicting the experimental values and with lines
corresponding to calculations from the SGA-SL+SGA model.

The surface entropy, —dy/dT, of the polymer melts is shown in Table 3.4. The
corresponding temperature derivative, as calculated from the Poser and Sanchez theory which
includes the square gradient correction but no conformational entropy effects, is illustrated along
with our results. Generally there is significant improvement in the calculation of the surface
entropy relative to experimental measurements in relation to SGA alone. SGA ignores the effect
of restrictions posed by the interface on the orientations and conformations of polymer
molecules, which result in lowering the surface entropy. Although the SCF_SL+SGA approach
increases the complexity of calculations in comparison to the pure SGA approach, it is

physically more complete and brings considerable improvement.

The performance of SCF_SL+SGA is demonstrated by the lower deviations between

model and experiment in the calculation of both » and —dy /dT .
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Table 3.4. Surface Entropy Calculated Values from SCF_SL+SGA and Estimates from Previous Works

SGA-PS SCF_SL+SGA Expt. Deviation from expt.
Polymer (MNmM*K?Y)  MmMNm'KY)  (mMNm'K?Y  SGA-PS SCF_SL+SGA
PE (linear) 0.0820 0.0692 0.057 44% 21%
PIB 0.0725 0.0700 0.066 10% 6%
PS 0.0722 0.0693 0.072 0% 4%

PVA 0.0920 0.0621 0.066 39% 6%
PMMA 0.0914 0.0865 0.076 20% 14%
PnBMA 0.0826 0.0787 0.059 40% 33%

PEO 0.0975 0.0849 0.076 28% 12%
PDMS 0.0609 0.0570 0.048 27% 19%

Experimental and Poser-Sanchez (SGA-PS) values retrieved from ref 121.

3.6 Concluding Remarks

In this chapter, we have coupled two theoretical methodologies to determine equilibrium
properties of free surfaces of polymer melts: SCFT based on a Gaussian thread representation of
chains, and square gradient theory based on the Sanchez-Lacombe EoS. We are motivated by
the idea that including both cohesive interactions and chain conformational distributions in the
model can account for energetic as well as local and nonlocal entropic effects on the structure
and thermodynamics of the liquid-gas interface, allowing us to describe it in a quantitative way.
To validate our results we have used surface tension measurements for a variety of polymers

over a range of temperatures, as well as atomistic simulation results for linear polyethylene.

The free energy functional used to describe intermolecular interactions exhibits a
dependence on both local density and its spatial gradient. The grand canonical ensemble, which
is more appropriate for describing vapor-liquid equilibrium in an open system capable of
exchanging molecules with the bulk liquid and vapor phases, is used to derive the
thermodynamic field exerted on a chain and the grand partition function. From the latter the
surface tension is readily obtained. We exploit the generalized excess free-energy functional
description to implement the realistic EoS introduced by Sanchez and Lacombe. Density
gradients are incorporated in the formulation through the SGA. In SGA a central role is played
by the influence parameter, i.e. by the coefficient that multiplies the square gradient density
term. We have followed the reduced influence parameter procedure suggested by Poser and

Sanchez and used the same value of reduced influence parameter for all polymers we studied.
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This value was extracted by matching the atomistically calculated surface density profile of

polyethylene at one temperature.

The conformational component of the free energy, which takes into account the chain
connectivity, was described by the fully flexible Gaussian thread model which is the basis of
most continuous-space formulations of SCFT, employing the modified Edwards diffusion
equation. Even though SCF treatments have been used in several works to describe interfacial
polymeric systems, to the best of our knowledge it is the first time that SCF is employed in the
framework of a continuum approach for a free polymer surface problem. The continuous
Gaussian thread model is elegant and convenient for describing the conformational properties of
high molar mass polymer chains, introducing a single, readily measurable or predictable
additional parameter (Rq) into the picture. The need to compare the theoretically calculated
results against the outcomes of atomistic simulations, which become very demanding
computationally at large length scales, forced us to implement the Gaussian thread model even

for smaller length chains.

We have tested various SGA and SCF models and the reduced density profiles at vapor-
gas interfaces that arose from them, and found that the model employing an excess Helmholtz
energy density based on the Sanchez-Lacombe EoS coupled with a square density gradient term
(SCF_SL+SGA) achieves best agreement with atomistic simulation results. On one hand, SCFT
models which consider only the local density to describe chain interactions produce steeper
profiles, which demonstrates the necessity for using a gradient expansion. On the other hand,
SGA-based models, although capable of generating smoother and more realistic profiles, do not
incorporate entropic effects associated with the change of chain conformational/orientational
distributions in response to the constraints present at the surfaces, thus overestimating the
surface entropy. Density (total, end segment and middle segment) and conformational profiles
(adsorbed and free chains, loops and tails, chain shapes) as calculated by the SCF_SL+SGA
were found to agree very well with the corresponding profiles from detailed molecular
simulation, the agreement improving with increasing chain length. Differences between
SCF_SL+SGA and MD reflect the fact that the former does not incorporate conformational
stiffness at a local level. The free film density profiles obtained from the SCF_SL+SGA model
and MD simulations were investigated over a range of temperatures and chain lengths, with the

theoretical predictions exhibiting excellent agreement with simulation.
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The converged solution of the SCF_SL+SGA theory was used to determine end and
middle segment density profiles, based on the treatment introduced by Wu et al**!. As is well
known for homopolymers where the ends are of the same chemical constitution as the middle
segments, chain ends were found to dominate the surface profile. The magnitude of this effect
and the extent of the interfacial region dominated by the end segments can be estimated with
accuracy by our SCF approach, as comparison with atomistic simulations shows. In addition, the

temperature dependence of this effect is correctly captured by the theory.

Following previous works of Semenov®* and Daoulas et al.,>* we have applied our SCF
model to characterize the structure of polyethylene chains adsorbed to the free surface. The
volume region used to characterize a chain segment as free or adsorbed is defined using the
plane where the reduced segment density equals 0.5 as a boundary. Some discrepancy appears
between SCF_SL+SGA and MD in the profiles of segments belonging to adsorbed and free
chains, which is less significant for Cys chains than it is for Cioo chains. SCF qualitatively
follows the atomistic results. The same behavior is seen in the loop and tail distributions of
adsorbed chains.

An important structural feature of polymer melts at surfaces is the flattening of chains

24235 \ne have

due to their preferential orientation parallel to the surface. Inspired by past works
extended the continuum model to evaluate the reduced chain shape profile, which provides a
direct quantitative measure of chain flattening. Both atomistic and field theoretic results show a
relationship between the chain length and extent of the chain flattening region. In free
polyethylene films of chains as short as Cys the shape profile from SCF_SL+SGA almost
coincides with that from MD. The range of the flattening effect is in good agreement between

theory and simulation, being on the order of 1.6R, .

A challenge for our formulation was its application to calculate the surface tension of
various polymers. The reduced influence parameter used to reproduce the atomistically
calculated reduced density profile for the polyethylene surface was used for all polymers
examined. The SCF conformational entropy contribution added by the SCF treatment in the
Gaussian thread approximation increases the surface tension by 5-10%. A nice feature of our
SCF model is that it accounts for two distinct length scales simultaneously: i) a monomeric one,
set by the range of monomer interactions, governing properties of the liquid-vapor interface; ii) a

polymeric one, set by the radius of gyration, governing structural properties at the chain level.
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3.6. Concluding Remarks

For most polymers this approach yields results for both surface tension and surface entropy that

are in excellent agreement with experiments.
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4 Structure and Thermodynamics of

Grafted Silica/PNCs

Polymer/matrix nanocomposites (PNCs) are materials with exceptional properties.>>” They offer
a plethora of promising applications in key industrial sectors. In most cases, it is preferable to
disperse the nanoparticles (NPs) homogeneously across the matrix phase. However, under
certain conditions NPs might lump together and lead to a composite material with undesirable
properties. A common strategy to stabilize the NPs is to graft on their surface polymer chains of
the same chemical constitution as the matrix chains. There are several unresolved issues
concerning the optimal molar mass and areal density of grafted chains that would ensure best
dispersion, given the nanoparticles and the polymer matrix. We propose a model for the
prediction of key structural and thermodynamic properties of PNC and apply it to a single
spherical silica (SiO;) nanoparticle or planar surface grafted with polystyrene chains and
embedded at low concentration in a matrix phase of the same chemical constitution. Our model
is based on self-consistent field theory, formulated in terms of the Edwards diffusion equation.
The properties of the PNC are explored across a broad parameter space, spanning the mushroom
regime (low grafting densities, small NPs and chain lengths), the dense brush regime, and the
crowding regime (large grafting densities, NP diameters, and chain lengths). We extract several
key quantities regarding the distributions and the configurations of the polymer chains, such as
the radial density profiles and their decomposition onto contributions of adsorbed and free
chains, the chains/area profiles, and the tendency of end segments to segregate at the interfaces.
Based on our predictions concerning the brush thickness, we revisit the scaling behaviors
proposed in the literature and we compare our findings with experiment, relevant simulations,

and analytic models, such as Alexander’s model for incompressible brushes.
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4.1 Background

Solid particles with polymer chains anchored on their surface hold a central place in

nanocomposite materials research,'***®

since they are widely used in a variety of scientific and
industrial applications such as sensing and therapy in biotechnology and biomedicine,
wettability of membranes, surface activation, and interfacial electronic modulation.**® Usually,
grafted polymer chains are used to stabilize inorganic nanoparticles (NPs) inside a host polymer
matrix. When NPs are properly dispersed inside the polymeric material, they lead to mechanical

reinforcement and improvement of viscoelastic properties in comparison to the pure material.

4.1.1 Dispersion of NPs

The state of dispersion of NPs inside a polymer matrix depends on solid-solid and solid-polymer
interactions as well as on entropic effects. In most cases, the embedded NPs tend to stick to each
other due to attractive forces between them.™’ Addressing this behavior, a widely used
methodology is to graft homopolymer chains on the NP surface. Under certain conditions, the
entropic cost related to the configurational restriction of grafted chains when the particles get

closer to each other is able to keep the particles separated.

The key factors influencing NP separation are their size, the molecular weight of grafted
chains, and the surface grafting density. Trombly et al.?*® studied the effect of curvature of the
solid surface on polymer mediated interactions among grafted NPs and demonstrated that the
dependence of their separation on the grafting density becomes weaker with increasing particle

curvature.

We say that matrix chains wet the grafted polymer brush when they are able to
interpenetrate with grafted chains and therefore diffuse inside the space occupied by the polymer
brush. Such a situation leads to a well-dispersed set of NPs. It has been seen that, in most cases,
matrix chains are able to wet the polymer brush when their molecular weight is less than that of
the grafted chains."*® Depending on the grafting density, when matrix chains are longer than the
grafted chains, it is harder for them to penetrate into the interfacial region due to the higher
entropy loss they experience. This is known as “autophobic dewetting”. One way to reduce the
possibility for autophobic dewetting is to disperse smaller NPs.*> When grafted chains are
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attached to smaller particles, they have more available space, thus the penetration of matrix

chains is facilitated and the corresponding conformational entropy cost becomes smaller.

As mentioned before, another important parameter for nanoparticle dispersion is the
solid surface grafting density. When grafting density is lower than a threshold value, the particle
cores are no longer screened by the grafted chains surrounding them, so they attract each other,
leading to aggregation. This is known as “allophobic dewetting”. Sunday et al.*** derived
experimentally a phase diagram demonstrating the regions where autophobic, allophobic
dewetting, and complete wetting occurs.

4.1.2 Previous Works

Major experimental work has been conducted to understand the behavior of polymer grafted
NPs and their influence on the properties of the composite material.’> 3808183239242
Experimentalists are also interested in studying the interactions among grafted inorganic NPs in
the absence of a host polymer matrix (particle-solids).2**?*> Most of the experimental work up
to now has been concentrated on medium grafting densities (< 0.2 nm?).% However, silica
particles with higher grafting densities (around 1.0nm™) coated with asymmetric block
copolymers have also been synthesized.?*°

Atomistic molecular dynamics simulations have been performed by Ndoro et al.*®, while
Meng et al.*® and Kalb et al.>*® have performed coarse-grained molecular dynamics simulations
representing the polymer chains by the Kremer-Grest bead-spring model. Using the same
coarse-grained model, Ethier and Hall**’ studied the structure and entanglements of grafted
chains on an isolated polymer-grafted NP. Various additional studies employing particle-based
simulation methods exist in the literature addressing nanoparticles in a polymer melt or

248-250 141

solution, as well as isolated nanoparticles.®*%* Dissipative particle dynamics (DPD)

and density functional theory (DFT)'*

simulations addressing systems of polymer brushes are
also reported. Vogiatzis et al.>>® devised a hybrid particle-field approach called FOMC (Fast
Off-lattice Monte Carlo) which is a coarse-grained class of Monte Carlo simulations, where the

nonbonded interactions are described by a mean-field inspired Hamiltonian.

Another popular approach for investigating the structure and thermodynamics
of  polymer grafted NPs and  brushes is  self-consistent  field theory

(SCFT). 3144145147150, 152.153.256 257 1 jnyokes a mathematical transformation from a system of

99



Chapter 4. Structure and Thermodynamics of Grafted Silica/PNCs

interacting chains to an equivalent system of independent chains, where each chain interacts
with a chemical potential field, w, created by the rest of the chains.”*® SCFT is a strong modeling
tool for describing equilibrium properties of interfacial systems involving polymer melts or
solutions. Besides the fact that it is accurate in high density and large molar mass systems, it is
able to derive directly the free energy of the investigated system. For a detailed explanation of
SCFT and the transition from particle-based to field-theoretic formulations, the reader is referred

to the relevant monograph by Fredrickson.?*°
4.1.3 Current Research Approach

In the present chapter we employ SCFT to investigate the structure and thermodynamics of
systems comprising atactic polystyrene (PS) chains grafted on a single spherical nanoparticle or
planar surface made of silica (SiOz), immersed in a PS melt. The chemical constitution of the
system under study is identical to the one investigated with FOMC by Vogiatzis et al.*>® The
range of molecular parameters (nanoparticle size, surface grafting density, molar masses of
grafted and matrix chains) has been chosen so as to encompass that of experimental
investigations of SiO,/PS nanocomposite systems.?® It is mentioned here that no adjustment of
parameters has been undertaken to fit with experiment or FOMC; rather, the actual physical
parameters of silica and polystyrene have been used. The main virtue of FOMC is that it can
directly sample chain conformations. On the other hand, the main advantage of SCFT in relation
to FOMC is that it can directly calculate the free energy, enthalpy and entropy of mixing
between the NP and the polymer matrix and the potential of mean force between two

nanoparticles immersed in a host polymer matrix,t°%261:262

The calculations were performed by employing the SCFT in one dimension (radial
distance or normal distance coordinates) by taking advantage of the symmetry of the
nanoparticle/planar surface. This one-dimensional treatment is expected to perform fairly well
at moderate to large grafting densities and molecular weights of grafted chains. As in previous
work,?* our SCFT model has finite compressibility. We apply the Gaussian string model to
describe chain conformations, which punishes stretching of chain contours, since stretched
contours have fewer available conformations, thus reducing the entropy. Nonbonded interactions
in the polymer are calculated from an expression giving the free energy density as a function of
the polymer local segment density. Polymer/solid interactions are accounted for by Hamaker

integration.
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4.1. Background

That SCFT calculations are computationally inexpensive in one dimension allowed us to

perform an extensive and dense grid search over a broad parameter space spanning: i) the radii
of the NP, Ryp = 2° nm to 2" nm, as well as R, — o (planar surfaces); ii) the molar mass of

the grafted chains, My = 1.25 kg/mol to 100 kg/mol; iii) the grafting densities oy = 0.1 nm? to
1.6 nm™. These calculations provide useful quantitative understanding of the limiting cases of
sparse/dense grafting of short/long chains, on surfaces with low/high curvature, as well as of the

intermediate transition regimes.

In particular, throughout our calculations, we extracted the density profiles of the grafted
and matrix chains, which provide a direct picture of their conformations across the parameter
space. The density profiles of the matrix chains are decomposed into contributions from
“adsorbed” and “free” chains, the categorization of which is based on distance-based criteria;
these results unveil the tendency of the matrix chains to penetrate the brush emanating from the
nanoparticle/flat surface. The shape of polymer chains is investigated in terms of the number of

chains passing through a unit surface**#*>2

and provides a measure of “crowding” phenomena
and of the tendency of the chain ends to segregate at the matrix-grafted interface. Subsequently,
the distributions of the grafted chains are analyzed in terms of their corresponding brush
thickness, wherein we compare our findings to correlations that are reported in the
literature.?*>?** The brush thickness exhibits a rather complicated behavior across the transition
regime from spherical nanoparticle to flat surface, which we try to describe through a scaling
equation. Finally, the thermodynamics of these systems is examined in terms of the grand
potential across the parameter space and a direct comparison with the Alexander model at fixed

265,266 267,268

density (which is similar to the dry part of the two-layer model) is performed

regarding the stretching free energy of grafted chains.

Before presenting the main results, we first validate our model and implementation by
comparing our density profiles against FOMC?® across the same regime of grafting densities
and chain molar masses that was investigated by Vogiatzis et al.?®® This comparison is made for
profiles obtained via both the Sanchez-Lacombe (SL) equation of state coupled with square-
gradient theory (SGT) for nonbonded interactions, that we have adopted herein, and the Helfand
(HLF) free energy density using the same compressibility employed by Vogiatzis et. al.?*>; the

latter model is typically used in most field theory-inspired simulations.
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4.2 Model and Theoretical Formulation

grafting adsorbed Dirichlet BC Neumann BC 69(b0x
points points q(r,s)=0 V4(r,5)=0

Figure 4.1. (a) A particle-based representation of a nanoparticle with grafted chains at ry (orange) embedded in a
polymer matrix (green chains). (b) In unidimensional SCFT, the chains are replaced by a density field and the
grafting points are smeared normal to the radial direction. r,gs depicts a critical distance based on which the matrix
chains are categorized as adsorbed (e.g., see red circles in (a)) or free.

In Figure 4.1(a), we depict the geometry of the three-dimensional region ® of the system that
we wish to model. Grafted polymer chains (circles with orange fill) are chemically anchored at
the grafting points, ry (orange arrow), which are located at a small distance (circle of small
orange dots) from the surface of the NP (black) of radius Ryp (white arrow). On the surface of
the NP, 0®,,, , Dirichlet boundary conditions are imposed. The red dotted circle of radius rags
(red arrow) defines the region where the segments of matrix chains (green circles connected by
black line) are considered to be “adsorbed” (red circles with a green fill). These can be
additionally subdivided into tails, loops and trains.?*!* Those matrix chains whose segments lie

exclusively at a distance larger than rygs from the NP center are called “free” (black circles with a

green fill). Across the edges of the simulation box, 0®,, (dashed blue lines), Neumann

boundary conditions with zero flux are applied.

In SCFT, the degrees of freedom associated with the positions of chain segments are
replaced by a spatially varying chemical potential field, as illustrated in Figure 4.1(b).This field
governs the chain conformations and thus the segment density. At the same time, the field is
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dictated by the polymer segment density, so the field must be self-consistent and correctly
describe the thermodynamic properties of the polymer. Furthermore, Figure 4.1(b) depicts the

smearing of grafting points normal to the radial direction.
4.2.1 lterative Procedure for Obtaining the Self-Consistent Field

4.2.1/a General Algorithm

When the Gaussian chain model is applied to describe bonded interactions along the polymer
chain, the propagation of matrix and grafted chains in three-dimensional space is described by

the Edwards diffusion equation in the presence of a chemical potential field, W, ; note that “ifc”

. 182
stands for “interface”:

RG 2
N

C

0,19 =" E=Via (19 - M (Da.(rs)  (c=m.g) @)

where R;.>=C_l..’N, /6 is the ensemble averaged squared radius of gyration of a chain'® in

its unperturbed state (bulk melt) with C_=yb, /l.. being Flory’s characteristic ratio, bk the
Kuhn length, Ic.c the length of the skeletal C-C bond and y is a geometric factor depending on

bond-angles along the chain backbone.'® q is the restricted partition function, s is the variable
spanning the contour of the chains, measured in skeletal bonds, and ¢ denotes the kind of the
chains; i.e., ¢ = m for matrix, and ¢ = g for grafted chains. Based on the resulting g, one can
compute the spatial density distributions of the chain segments, which in turn dictate an updated
chemical potential field. This procedure is repeated until the input field in eq 4.1 becomes equal
to the resulting field; thus the field becomes self-consistent. A detailed derivation of the

equations is presented in the appendix B.1.
The iterative convergence procedure can be summarized as follows:
1. Equation 4.1 is solved for the matrix chains Vre® for 0<s< max(Nm, Ng) with Np,

and Ng being the length of the matrix and grafted chains, respectively. The initial

condition is set to q,,(r,0) =1 across the polymer domain, whilst Dirichlet, g ,(r,s)=0
and Neumann (V,q,,(r,s) =0) boundary conditions are imposed at the solid surface and

system box boundaries, respectively (see Figure 4.1).
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2. Subsequently, eq 4.1 is solved for the grafted chains for 0O<N <N_, re® and r = g,

g!
where Iy, is the grafting point of the igth grafted chain, 0<i, <n . The boundary

conditions are the same as those for the matrix chains. In contrast, the initial condition is

given by the following equation®’:
Ny 5(r — rgig )

ig10): Ng z

pseg,buu( i.=1 O, (I"gig , Ng)

qg(rg 4.2)

with o, .. beINg the segment density in the bulk region of the polymer melt and 5(r)

being the Dirac delta function.

3. With qc(r,N) known, the reduced densities, @, =0,/ Opypu, Can be calculated by the

following convolution integral:

1
2.0 = [ 45 6,(r,9) 0y (r.N.=5)  (c=m,g) (4.3)
c 0
Note that in both m and g chains the second term of the convolution integral is gn, (for
details appendix B.1.3).
4. Having calculated the density profiles of matrix and grafted chains, an E0S must be used
to determine the free energy density functional and the corresponding chemical potential
field:

W (1) = W(r) — W), = dp Vel _dp.Vpl
op

—V-—af[p’vP]+Us(r) (4.4)
- op
p=p(r)

oVp

P=Pseg,bulk

with f[p,Vp] being the excess (relative to an ideal gas of chains) Helmholtz energy

density of intermolecular interactions as a function of the local segment density and its
gradient, Us being the field exerted on a segment by the solid surface, and p = pm + pqg

being the total segment density. Note that subtracting w;,, from W’ guarantees that the

chemical potential field is zero in the bulk phase.

5. To inspect the convergence, the maximum difference between the fields of the previous

ifc ifc

and the current iteration, AV\/"‘aX:max({]W"eW(r)—V\/ifc(r)H,Vreqz}), is estimated,

therefore:
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a. If AW™ is smaller than a tolerance value, AW,”, the simulations are considered

ifc ifc 1
converged and the procedure halts.
b. If not, the algorithm cycles back to step (1) wherein the Edwards equation is

reevaluated in the presence of the mixed field for numerical stability purposes:

V\/ifc (r) - (1_ amix )V\/ifc (r) + a'mixV\/ifr(]:eW (r) (45)

with a,;, €[0,1] being a relaxation parameter.

The above algorithm is generic and applicable to arbitrary system geometries.

4.2.1/b Solving SCFT in one Dimension

By taking advantage of the spherical symmetry of the NP or the translational symmetry in the
case of planar surfaces, one can evaluate the SCFT equations in an one-dimensional domain. In
1D, the grafting points become delocalized throughout the surface near the solid substrate,
suggesting a smeared distribution of grafting points, which practically ignores the presence of a
grafting point at a specific surface point; e.g., in Figure 4.1b the grafting points have been
smeared across a spherical cell highlighted by an orange dotted circle. In doing so, eq 4.2 for the

initial condition of the grafted chains can be written as follows:

s . o,N 5(h_hg)
h 0)= solid _~"9 9
qg( 9 ) Shg Pseg pulk qm(hg’ Ng)

(4.6)

where o, =n, / Sy IS the grafting density, S, is the surface area of the solid, and Sh is the

surface area over which grafting points are smeared. To make eq 4.6 applicable for both
spherical and planar geometries, it has been written in terms of h and hg, which denote the
segment-surface and the grafting point-surface distance, respectively. Consequently, in spherical

geometries, h=r —R;; this relation is ill-defined in planar geometries, since r, R, = . The

three-dimensional delta function 5(r - rgvig) Is approximated as §(h —h, ) / Sh, for all iy,

For planar surfaces with area S

solid !

the Edwards diffusion equation is evaluated across

the normal direction with respect to the surface, and the differential dr of the spatial integration

equals the volume of the layer, dr — §

solid

dh. The delta function in eq 4.6 is set to the inverse
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discretization step in the h direction; i.e., §(h—h,)=1/Ah, with Ah being the width of the
intervals in which h is subdivided in the numerical solution.

For spherical nanoparticles, with area equal to S, = 47R,’, the Edwards equation can

be evaluated across a radial direction (normal to the surface). The differential dr for spatial
integration is equal to the volume of the spherical cell, dr — 4n(Rnp+h)?dh. The delta function

in eq 4.6 is again set to the inverse width of the intervals in which length is subdivided in the

radial direction; i.e., 5(h - hg):]/Ah .

Throughout this chapter, we present the overall mathematical formulation in three
dimensions; one can derive the corresponding expression in spherical and planar geometries by

employing the aforementioned relations.

4.2.2 Grand Potential

The thermodynamics of the polymer-grafted NP and planar surfaces immersed in the matrix are
described by a grand potential, defined relative to a bulk melt phase of matrix chains, each of
length N, occupying a volume equal to the polymer-accessible volume of the system, and a set
of ng isolated end-pinned unperturbed chains, each of length Ng. The temperature T is the same

between the system under study and the reference system:

AQ=Q-Qp = Ay = AQg, + AQp +AQ + AAJ +U, (4.7)

where AQ_, is the cohesive interaction component (relative to the bulk melt chains) arising due

to segment-segment interactions in the polymer,

AQ, = [dr{ T [p(r), Vo(r)] = T [ PO} (4.8)

AQ.,, 1s the interaction energy between the density field and the chemical potential field,

AQpy = _J dr {p(l’)\/\/(r) - pseg,bquV\/bulk (r)} (4.9)

U, is the contribution of the potential energy exerted from the solid,

U, = j dr { p(r)u,(r)} (4.10)
R.
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AQ),. describes the translational and conformational entropy (relative to the bulk melt entropy)

of noninteracting matrix chains subject to a chemical potential, Nym,

AQ, = Lo (Qu[W Wy ]-1) (4.11)

) AN,
and AA is associated with the conformational entropy of ny grafted chains subject to the field

! !
W — Wik s

AA, :—%iZZIan[rg’ig;w’}—%zgllnm (4.12)

ig=1 rgyig ,0=0

The partition function, Q, [r 'V\/—vv;ulk] =0, [rg,ig, Ng;vv’—V\/bu,k} , appearing in the first term of

g,
eq 4.12 depends on the position of the grafting point, and therefore on the discretization of
space. In order to overcome this technical issue and normalize AAy with respect to the distance
of the grafting point from the surface where Dirichlet boundary conditions, g.(r,N) = 0, are
imposed, we have introduced the second term in eq 4.12. Based on the observation that the chain

propagator, qm, decreases linearly close the Dirichlet boundary, adding the second term ensures

that AAg is discretization independent; i.e., for a set r, AAy is independent of the position of

ef,q=0 >

iyq-0 = Trer -0 » the contribution of this term vanishes. This allows for

the grafting point, while, if r
comparisons for different spatial discretization and slightly altered grafting positions.

Our formalism is based on the works by Daoulas et al.?* and Schmidt et al.?*®, which
have been extended to systems of arbitrary geometry comprising polymer chains grafted on solid
surfaces. Furthermore, it was generalized so that any suitable equation of state can be applied to

describe the non-bonded interactions among chain polymer segments. In depth information

regarding our mathematical formulation can be found in the appendix sections B.1.1-B.1.3.

4.2.3 Free Energy Densities

In this work we employed two models for the investigation of the polymer-matrix
nanocomposites/brushes: i) the Helfand free energy density, and ii) the Sanchez-Lacombe free

energy density in conjunction with density gradient theory.
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4.2.3/a Helfand’s Free Energy Density

The Helfand free energy density and its first derivative with respect to the density are the

following:
2
fHFD(p(r))_i[Lr)_]_] (4.13)
EoS = .
2K'T pseg,bulk
HFD
Hegs () _ 1 { p(r) _]} (4.14)
ap p=p(r) KTpseg,bqu pseg,bulk

with xr being the isothermal compressibility of the polymer at temperature T.

4.2.3/b Sanchez-Lacombe Free Energy Density

The SL-EO0S is the following:

SL

[)2+I5+f[ln(1—/’5)+(l—rij/5}:0 (4.15)

P=pPr! P, T=T/T and P=P/P" are the reduced density, temperature and pressure; o,

T and P" are the corresponding characteristic SL parameters; rs. is the number of SL segments
constituting a molecule. The mass density pmass for each chain length is derived from the vapor-
liquid equilibrium of a Sanchez-Lacombe fluid (see Supplemental material section S1 in ref 26).
The compressibility of the SL-EoS as a function of chain length and temperature is given by the

following equation:

., 1 1 2
Koo 1=TP ﬁbulkz( o+ — —Tj (4.16)
et 1_pbulk Phulk rSLNm T

with B, = Phrmass,bulk /P* .

The corresponding free energy density and its first derivative with respect to the density

are the following:

(o (n) =P [T5-5"+TA-p)ine-5) 417)
Tes(®)] oy (S V250r) —FIn(1- 5
TP:P(I’) _kBT (N ]{ 2p(r) Tln(l p(r))} (4.18)
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The reader is reminded that the Sanchez-Lacombe model has a firm theoretical basis in a mean
field statistical mechanical analysis of a lattice fluid composed of chains and voids, reminiscent

of Flory-Huggins theory with voids playing the role of solvent molecules. %#27

4.2.4 Square Gradient Term

A more realistic treatment of inhomogeneous systems is achieved by including nonlocal

contributions to the Helmholtz energy density. A common form assumed for f [po(r),V(r)] is

the one presented in eq 4.19;%:67194.217.271

f [2(r),Vo(r)]= fes(o(r)) +%f<(V/0(Ir))2 (4.19)

with x being the influence parameter. In other words, the excess Helmholtz energy density in an
inhomogeneous polymer phase is equal to that of a homogeneous polymer phase with the same
local density plus a square gradient term arising from density inhomogeneities at the considered

location. For this special form, eq 4.4 for the self-consistent field becomes:

_ Heos(P)

\Ni'fc(r) — aonS (/0) a
p=p(r) I

op - KVZp‘p

+U,(r) (4.20)

=p(r)

P=Pseg,bulk

4.3 Calculation Details

The system considered in the present study consists of polystyrene (PS) chains grafted on a
silica (SiO;) NP or planar surfaces, in contact with a polymer melt of the same chemical
constitution as the grafted chains. All calculations were carried out in the grand canonical
ensemble at a temperature equal to T = 500 K.

272
I

The PS-SiO; interactions are described with the Hamaker potential®’“ using the interaction

parameters, Aps and A, , and the effective radii, ops and oy, , presented in Table 4.1 Given

that the repulsive term of the Hamaker potential increases steeply at short distances, we opted to
replace the Hamaker potential below a segment-surface distance, hys ~ 0.4 nm, where
Us(hus) = 5 kgT, with a hard sphere wall. To impose the hard sphere wall, the coordinate of the
first node of the simulation domain was set at a distance hys from the surface. As a result, the

region below hys becomes inaccessible to the polymer chains.
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As Chantawansri et al.*** observed, in the context of SCFT there is a special difficulty in
the case of polymer chains whose one end is grafted to the solid surface. The grafted chains
propagator is subject to a Dirac delta function initial condition as shown in eq 4.6. In addition to
that, the denominator on the right-hand side of eq 4.6 is problematic, since the chain propagator
of matrix chains goes to zero close to the solid surface. A usual approach to bypass these issues
is to reposition the grafting points to a surface close to the solid instead of right on top of
it.2”*%"® Regarding the numerical implementation of the delta function, smearing of the grafting
points in the direction normal to the surface takes place by treating the grafting point density as a
Gaussian distribution*** or as a rectangular function. In the three-dimensional analog of our in-
house code named RuSseL, where we employ a Finite Element Method numerical scheme, the
initial condition of the grafting points is evaluated exactly upon the desired points of the domain
and the delta function is again evaluated as the inverse volume assigned to the node.’”® Guided
by these studies, in the present work we set the location of the grafting points at the
discretization nodal point which is nearest to the hard-sphere wall. Furthermore, a smearing of
the grafting points was introduced, so that they degenerate into a grafting “spherical shell” with

radius slightly larger than that of the NP itself (Figure 4.1, orange arrow) and thickness Ah.

Unless otherwise stated, the nonbonded interactions are described by the SL EoS in

conjunction with square gradient theory (eqs 4.17 and 4.19). We employed the characteristic SL
parameters for PS?® and the influence parameter from the relation: x =2(r, / N)*P*(v*)" %,
with the reduced influence parameter being set to K =0.55, same as in Chapter 3 and ref 26.

The Edwards diffusion equation was solved with a finite difference scheme with spatial
discretization Ah = 0.05 nm, and contour length discretization As = 0.25 segments. The rectangle
integration method has been employed to evaluate the convolution integrals, since other higher-
order methods such as Simpson integration can produce artifacts in the presence of grafting
points.The field mixing fraction, anix, for the iterative convergence of the field in eq 4.5 was

optimized for each chain length so as to enhance the efficiency of our evaluations. The tolerance
value for the convergence was set to AW, =10k, . In all cases, the system dimensions were
at least 10 nm larger than the edge of the brush of the grafted chains in order to avoid finite size
effects.

The simulations were realized with RuSseL; an in-house developed code which is designed

to run calculations based on SCFT in both one and three dimensional systems, using the finite
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differences and finite element method, respectively.?”® The evaluations were performed across a
broad parameter space concerning Rnp, og and Mg: Rne ={1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2080, 4096, 8192, 16384} nm, oy = {0.1, 0.4, 0.8, 1.2, 1.6} nm * and, My ={1.25, 2.5, 5,
10, 20, 40, 80} kg/mol. According to ref 255, as long as the matrix chains are longer than the
grafted ones, the latter are not perturbed considerably; thus, unless otherwise stated, Mg = Mp,.

The diagrams were designed using relevant software.?"

Table 4.1. Parameters of the calculations

parameter value reference
T 500 K 255
P 0 atm -
system Fretgo 0.05 3
[y, 00 0.05 -
by 1.83 255
chain lec 0.154 nm -
stiffness y 0.829 193
Mmonomer ~~ 52.08 g/mol -
hus ~0.4 nm -
Ops 0.37 nm 255
Hamaker Osio2 0.30 nm 255
Aps 5.84.10%°] 255
Aso, 6.43-10%°] 255
T 735 K 270
P 357 MPa 270
SL . 3
p 1105 kg/m 270
K 0.55 26
Helfand Kr-soox  1.07 (GPa)™ 255
Ah 0.05 nm
Edwards AS 0.25 segs
diffusion
AW 10° ksT -
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4.4 Results

4.4.1 Radial Density Profiles

The radial segment density profile distributions of matrix and grafted chains can be employed as
a measure of the particle-polymer interactions and reveal how these interactions are affected by

the grafting density and the molecular weight of matrix and grafted chains.

4.4.1/a Comparisons with FOMC

Figure 4.2 depicts the reduced radial segment density profiles of matrix and grafted chains from
FOMC, SCF_Helfand and SCF_SL+SGA. Beyond a certain distance from the solid surface, our
model results in practically identical radial density profiles to those obtained by FOMC. This
holds for both the Helfand and the SL+SGA Hamiltonian. The agreement becomes better as the
grafting density or the molecular weight of chains increases. This is reasonable, since SCFT is

more accurate in systems of longer chains and higher density.

Nevertheless, there is a discrepancy near the surface of the NP, which could be related to
the fact that SCFT cannot describe in detail the packing of chain segments or the anchoring of
grafted segments at discrete points close to the surface, while FOMC invokes not an atomistic,
but rather a coarse-grained model. Another observation is that the SCF_SL+SGA model
provides smoother radial density profiles for grafted chain segments in comparison to FOMC or
SCF_Helfand. This mainly has to do with the incorporation of the square gradient term in the
description of nonbonded interactions, which does not affect the long-ranged segment
interactions, but rather the smoothness of the density profiles in the region near the solid surface.
In addition, SCFT features a depletion region ranging from the solid surface up to a distance
equal to hys = 4 A (the position of the aforementioned hard-sphere wall), wherein the repulsive
interactions from the Hamaker potential are very strong.

It is stressed at this point that the density profiles obtained from our SCF_SL+SGA
model are closer to the corresponding ones obtained from atomistic molecular dynamics
simulations™®?'"2"® than FOMC. If one averages out the oscillations of the atomistic density
profiles, then their smeared analogues come out very close to the density profiles of
SCF_SL+SGA (and especially close to Helfand) in terms of the position of the peak and the
width of the depletion zone near the solid surface. *¥*2”7% |nterestingly, the peak of the density

profiles appears to become less pronounced in atomistic simulations with increasing grafting
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density, presumably due to excluded volume effects.*®"® Hereafter, all presented results are
obtained with the SCF_SL+SGA model, since it is more realistic and reproduces the
experimentally measured surface tension of PS.?° It is also mentioned that no fitting of
parameters with respect to experiment or FOMC has been performed to describe this silica-

polystyrene interfacial system, but the actual physical parameters of silica and polystyrene have

been used.
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Figure 4.2. Radial density distribution for matrix (m) and grafted (g) chains on a NP with Ryp = 8 nm, from
FOMC?® (top), SCFT with Helfand (middle), and SCFT with SL+SGT (bottom). In (a, b, ¢) My = 20 kg/mol, M,, =
100 kg/mol, and o4 varies from 0.2 to 1.1 nm?. In(d, e, f) 04=0.5 nm?, M, = 100 kg/mol and Mg varies from 10 to
70 kg/mol.

4.4.1/b Radial Density Profiles from the Sanchez-Lacombe EoS: Exploration of the Ryp, oy,

My Parameter Space

Figure 4.3 presents the reduced radial density profiles of grafted (¢4) and matrix (¢m) chains
across the (Rnp, g, Mg) parameter space. In all cases grafted and matrix chains have the same
molar mass, Mn=Mg. Overall, the radial density profiles of grafted chains expand with
increasing aq, Mg, and Ryp. Concerning the latter, with increasing particle radius (i.e., decreasing
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curvature), the grafted chain segments have less available space to explore near the surface, so

they experience crowding and extend further towards the bulk phase.

The radial density profiles exhibit a rather rich behavior which could be classified into
three distinct regimes:

(i) Mushroom regime. In the region of low oy, My and Ryp, the radial density profiles of
the grafted chains become very suppressed and their density peaks are much lower than the bulk
density. That the grafted chains are short and the distance between them is relatively large
implies that they cannot experience the presence of each other. In other words, the density
distributions of individual chains do not overlap and therefore chains tend to form mushroom-
like structures®; this effect is expected to be more pronounced at small Ryp, since the chains
would have more available space thanks to the increased curvature. Matrix chains, on the other
hand, can penetrate the polymer brush readily and reach the surface of the NP. However, in the
one-dimensional model employed herein, the inevitable smearing of grafting points may prevent
us from accurately predicting the density profiles of grafted chain segments in this regime. Our
subsequent work with the three-dimensional analog of RuSseL will investigate the mushroom

regime more realistically, transcending the limitations of the one-dimensional approximation.?”

(if) Dense brush regime. With increasing o4, My and Ryp the radial density profiles
become more pronounced and feature extended regions with bulk densities; e.g., see Figure 4.3
for o3> 0.8 nm ? and Ryp > 64 nm. Towards the matrix phase, the radial density profiles feature

a characteristic sigmoid shape?® suggesting stretched brushes. The profiles of grafted and matrix

chains intercept at reduced densities ¢, =, =0.5. The presence of chemically grafted chains

on the particle surface inhibits the penetration of matrix chains into the solid-polymer interfacial
region and the strength of this exclusion of matrix chains increases with increasing a4, Rnp, and
M.

(i) Crowding regime. In the extreme case of high grafting densities (o4 > 1.6 nm?) and
low curvatures (e.g., Rnp > 64 nm), the crowding experienced by the grafted chain segments
reaches a level where their densities exceed the bulk densities somewhat (see dashed grey line in
the plots of Figure 4.3). In other words, the compressing forces imposed by the stretching of
grafted chains overcome the tendency of the equation of state to maintain bulk reduced densities
at unity; hence, the densities exceed this level. In this regime matrix chains are unable to reach

the surface of the NP, even for the shortest grafted chains (Mg = 1.25 kg/mol) studied herein.
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In Figure 4.3, for given gy and Ryp, the radial density profiles are shifted by about a
constant amount along the abscissa whenever the My is doubled; this effect becomes more

pronounced with increasing Ryp. Given that the radial density profiles are presented in semi-log

plots, this observation leads to the conclusion that the edges of the profiles follow a ~M "

power-law for constant oy and Rye. This scaling exponent exhibits a complicated dependence on

oy and Rnp, Which is explored below (see section 4.4.5).

Regarding the total reduced density profiles, even though they are practically insensitive
to My (except under very crowded conditions), they are somewhat enhanced near the surface
with increasing oy and deviate from unity across the brush region under conditions of intense

chain crowding.

4.4.2 Structure of Adsorbed Polymer Layer

The chains cannot propagate against the solid surface; as a consequence, their conformation is
dictated by configurational entropy effects different from those prevailing in the bulk melt.
Furthermore, the presence of the NP or the planar surface brings about an attraction of the
polymer segments—which belong either to grafted or matrix chains—towards the solid surface.

The strength of this attraction, in relation to the cohesive interactions of the polymer, determines
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the wetting behavior of the melt on the solid surface. Low, moderate, and high energy surfaces

lead to low, high (e.g., treated silica®®") and perfect (e.g., untreated silica®®") wetting conditions
which may alter the local configurations of the grafted and matrix chains relative to what is

dictated by entropic phenomena.
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Figure 4.4. @°® (solid lines) and ¢ (dashed lines) profiles of adsorbed and free matrix chains with molar mass

equal to 1.25 (red), 2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. In all cases,
Mg=Mn. Legend in rectangles: Ryp(nm), ag(nm‘z).

In order to investigate these effects, a distinction is made between “adsorbed” and “free”
chains. By definition, grafted chains are adsorbed, therefore the aforementioned distinction
concerns primarily the matrix chains. The value of the characteristic distance of closest approach
to the NP surface, below which a matrix chain is characterized as adsorbed, is set at hygs = 1.28
nm. This is where the tail of the Hamaker potential emanating from the solid starts, i.e., where
the Hamaker potential assumes a value equal to ~ —0.005 kgT. It should be emphasized at this
point that the distinction between “adsorbed” and “free” chains is not based on chain dynamics,
but rather on a geometric criterion revealing the tendency/ability of matrix chains to penetrate

the brush and experience the potential exerted by the solid surface.

The reduced density of free matrix chains can be derived from the convolution integral
of eq 4.21.

ree 1 T ree ree
PR (0 =1 [ ds aF(rs) 7 (riN,, =) (4.21)
0

m
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free
m

where q,~ is the propagator of the free matrix chains that can be obtained by solving the

Edwards diffusion equation (eq 4.1) with an additional constraint that the matrix chains are not

allowed to access segment-surface distances smaller than h,gs. In practical terms, an additional

boundary condition is applied: qf(r,N)=0, Vr:min(|r—r],r, € 0R ) < hy, whilst the

m ads !

other boundary conditions remain the same. Subsequently, the reduced density of the segments

ads

of adsorbed matrix chains is obtained as @’*(r) = ¢, (r) — o (r) .

free

Figure 4.4 presents the reduced radial density profiles of free (¢ ) and adsorbed (@>*)

matrix chains across the (Rnp, o4, Mg) parameter space. The reduced radial density profiles of
segments belonging to free chains assume a value equal to unity in the bulk, while going by
definition to zero when approaching h,gs. According to Figure 4.4, the matrix chains can easily

penetrate the brush of grafted chains in the mushroom regime. With increasing oy and Rye, the

ads

matrix chains experience noticeable resistance in penetrating the brush, while ¢~ — 0 upon

transitioning to the crowding regime.

4.4.3 Chains/Area Profiles

In three dimensions, the chains/area can be defined as the number of chain segments which cross

at least once a surface oR,, . A meaningful choice for o, would be a surface which is parallel

to the surface of the solid (R, ) at distance ho; min(||r1—r2||,r1 €OR, T, € 6&0"(,) =h,. Refs

2426282 include a detailed explanation of the chains/area calculation in one dimension; in this

work we present a more general formalism in three dimensions which is compatible with smooth

surfaces of arbitrary shape. To compute the chains/area we use the following eq 4.22.

[ age=(r,N)dr
pint,c(ho) =1- = (422)

[a.(r,N)dr

Initially, we estimate the probability pinc Using eq 4.22, with qiﬁ;j’e being the propagator
of a type “C” chain arising from solving Edward’s diffusion equation (eq 4.1) with an additional

constraint that the chains cannot propagate past the surface, o®,, . To impose this constraint, we

apply the Dirichlet boundary condition to all of the nodes that belong to this surface;
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q.(r, N) = 0, Vr € 0R,, . Subsequently, the number of chains (ncn,c) of type c that pass at least

once through o®,, per unit area of the surface is calculated as follows:

11
Nlre () = Puc () - [ 2o (1)dr (4.23)
h Tew

where S, is the surface area of og,, , and Ni-[ p.(r)dr is the total number of type-c chains.
cR
At this point, we define a reference chain which obeys the Gaussian model and has
infinite length. Given this definition, the reference chain will cross any shell-surface at least one
time. Therefore, since the number of grafted chains equals ng = o5 47Rnp°, the number of these
reference chains passing through a surface separated by h from the surface of the solid per unit

area of that surface is given by the following eq 4.24.

2

n

Npy =——— =0, R (4.24)
Y 47[(RNP+h) RNp+h

In Figure 4.5(a), we present ng, for the matrix and the grafted chains, while Figure 4.5(b)
illustrates neh g / oy for the grafted chains across the considered parameter space (Rnp, g, Mg). In

ref  _

both panels, the corresponding ngﬁfg are represented by dotted lines. In the flat geometry ng =

oy throughout the domain, while for finite curvatures, nj' decreases with distance from the

surface according to eq 4.24, since the polymer chains have more available space to perform

their walk.

The behavior of the chains per area profiles with increasing grafting density or molar
mass is consistent with the reduced radial density profiles of Figure 4.4. For low nanoparticle
radius, the chains per area profiles seem to be insensitive to the grafting density, a picture that is
consistent with the mushroom regime. Higher grafting density or molar mass leads to a gradual
extension of grafted chains towards the bulk region and a simultaneous exclusion of matrix
chains from the solid-melt interface. For larger NPs and grafting densities, the crowding
phenomena inside the interfacial region intensify and push the grafted chain segments further

towards the bulk region.
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g | O, for the reference chain from eq 4.24.

As expected, in the planar geometry case the number of grafted chains per area on the
surface of the solid equals the grafting density throughout a broad region of the profile and starts
to deviate upon approaching the region where ends terminate, where the number of grafted
chains per area decreases. It is also noted that, since the hard sphere wall is located at ~0.4 nm

from the solid surface, the maximum nen g assumed by the chains is ny, = o R” /(Ryp + hHS)Z,

albeit nch = o4 upon extrapolation towards h — 0.
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4.4.4 Chain End Segregation at the Interface

The reduced density of the s™ segment, ¢, of a chain of kind ¢ located at r can be retrieved by

the following expression:

9.o(1) =7 0.(1:8) G (N, =) (@.25)

c

Normalizing this quantity with the corresponding density in the bulk phase (g2 =1/N_; since

g = 1 in the bulk), we obtain a quantity of particular interest, which denotes the tendency of a

region to attract or repel these segments.

Figure 4.6 depicts the reduced radial density profiles of the end segments of grafted and
matrix chains across the investigated parameter space. As expected, the density of free ends of
grafted chains increases with increasing o4 as well as with increasing Rne, since there is less
space for the grafted chains to develop their conformations. With increasing grafting density the
radial density profiles of the chain ends are shifted towards the bulk region. In the crowding
regime where oy and Ryp are high, the chain ends are segregated far from the surface, suggesting
that the grafted chains are stretched. These profiles resemble those obtained for incompressible

1’265,266 in

brushes, such as those in ref 283, and with the more extreme case of Alexander’s mode
which all chain ends are by definition concentrated at the edge of the brush, heqge, the position of
which is denoted by the vertical dotted lines in Figure 4.6 (for more details see appendixB.3). In
the mushroom regime, the chain ends from Alexander’s model are segregated much closer to the
solid wall as compared to our model and this is attributed to the following factors: i)
Alexander’s model requires constant segment density of the grafted polymer, equal to that of the
bulk melt; therefore, in the mushroom regime—where interpenetration between the matrix and
grafted chains becomes significant—it needs to squeeze the profiles of grafted chain segments in
order to maintain this bulk density and conserve the amount of material at the same time, ii) the
segments in our model experience an additional repulsive interaction which is modeled by a
hard sphere wall located at hys ~ 0.4 nm. Clearly, Alexander’s model with fixed density is not
appropriate for the mushroom regime and generally in regimes where the matrix chains can
penetrate the brush. Nevertheless, Alexander’s model is expected to perform very well under

bad solvent conditions (e.g., polymer/vacuum interphases) which lead to collapsed brushes

across the solid surface.
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4.4.5 Scaling of Grafted Polymer Layers

As was mentioned in section 4.4.1/b, the expansion of the grafted polymer brushes features a

complicated dependence on gy, Rne and Mg. In the present section, an attempt will be made to
analyze this dependence in terms of the mean brush thickness, <h92>ﬂ2 , Which is directly related

to the radial density profiles.”® In particular, the mean brush thickness is a functional of the
density profile illustrating the mean distance of the segments of grafted chains from the solid

surface. It can be estimated from the following expression:

| ()T am ]
jﬁdrpg(r)

<hgz>112

(4.26)

with h(r) being the radial distance between a segment located at r and the solid surface. Another

measure for quantifying brush thickness is the characteristic distance hggy, Which is the distance

between the center of the nanoparticle and a surface, o®,, , which is parallel to the surface of

the nanoparticle and encloses 99% of grafted chain segments:
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J, dro,(n=099N,n, (4.27)

with R, being the three-dimensional domain between 0R,;4 and o®,, -

The scaling behavior of the polymer brushes shows quite a similar behavior to star

264

polymers. According to Daoud and Cotton,” the radius of a star polymer (Rsar) in a solvent

exhibits a power-law dependence of the form: R, ~ N,"f.. "0, where Ny is the number of
segments constituting a branch, fs,r is the number of branches, » = 0.5 — y is the monomer
excluded volume parameter, y is the Flory-Huggins parameter and n, m and k are the

corresponding scaling exponents.***%% They?®* classified the behavior of the stars into three

distinct regimes:

12, -2 3/5 U5, 1/5) .
1. Nstar > fstar v, Rstar Nstar fstar v bk'
2, -2 1/2 12 VR .
2' fstar v > Nstar > f ' Rstar Nstar fstar bk '
1/2 1/3 1/3
3' fstar > Nstar’ Rstar Nstar fstar bk '

with by being the Kuhn length. By substituting f,, — o, and N, — M, and by ignoring the

contribution of the core of the NP to the brush, the model by Daoud and Cotton®** could be
applied to describe the scaling of the polymer brushes via the following eq 4.28,

(n2)" =M "o, (4.28)
where lq is a quantity with dimensions (kg/mol) " nm*™*.

Figure 4.7 illustrates evaluations for NPs with Rxe = 8 nm, from RuSseL, from FOMC?*®

260

(blue “+”) and from small angle neutron scattering (SANS)”™ measurements (red “x”). Overall,

eq 4.28 can describe accurately the scaling of the PS brushes on SiO, nanoparticles with Ryp = 8
nm, since both <hgz>ﬂ2 and (hy,,) appear to be proportional to ~Mg>°s,>*. Note that the

evaluations from RuSseL appear shifted with respect to FOMC. This is attributed to the fact that,

in FOMC, the increased density near the solid increases the weight of smaller hq in the

. . . 2\ V2 " . 2\ 12 .
integration of eq 4.26; thus, it leads to decreased overall <hg > . In addition, “!|Im0<hg > ~0in
g—)

RuSseL, since the length of grafted chains goes to zero. For the same reasons, the hgge, points
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SANS measurements (), and RuSseL; in the latter, colors denote chains with My = 1.25 (red), 2.5 (blue), 5
(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol, and shapes denote grafting densities, o5 = 0.1
(0), 0.4 (0), 0.8 (<), 1.2 (A) and 1.6 (3%) nm 2. The dashed lines are guides to the eye.

obtained with RuSseL lie slightly higher than FOMC and SANS values, while the minimum
value of hggy, is equal to the radius of the nanoparticle. In the mushroom regime (square points in
Figure 4.7), the evaluations from RuSseL deviate from the linear behavior and this could be a
consequence of the fact that the one-dimensional model employed herein cannot capture
accurately the behavior of chain segments for low grafting densities, i.e., the smearing of
grafting points might be a poor approximation in this region. In our subsequent work, the

mushroom regime will be thoroughly examined with the three-dimensional version of RuSseL.
In the following we test these scaling laws across the full parameter space explored
herein. Figure 4.8(a-e) displays evaluations of <hgz>1/2 plotted versus My °a,>* for NP with

radius 1, 4, 16 and 64 nm as well as for flat surfaces, for various Mgy and o4. An interesting
behavior is manifested in these plots, which reveals three distinct regimes: i) for NP with small
Rne (e.9., Figure 4.8 (a)) the curves for specific My (same colors) are disconnected and feature a

very weak slope; ii) for NP with intermediate sizes Ryp = 4-8 nm (e.g., Figure 4.8(b))
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Figure 4.8. Evaluations of the mean brush thickness <hgz> as a function of (a-e) My"°¢,”* and (f-j) My"a,",

where n, m are the optimized exponents from Figure 4.10a. Colors denote chains with My = 1.25 (red), 2.5 (blue), 5
(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. Shapes denote grafting densities, o4 = 0.1 (1),
0.4 (0), 0.8 (¢), 1.2 (A) and 1.6 (3¢) nm 2. In all cases, Mg=My,

0°64>% correlation is

the curves for specific My connect with each other, suggesting that the ~Mg o,
fairly accurate in the description of this regime;**” iii) for NP with larger sizes RNp >8nm (e.g.,
Figure 4.8(c-e)) the curves appear disconnected as in the case of small NPs, the difference now
being that the slope for each individual My curve appears to be stronger. The aforementioned

analysis suggests that even though the ~My*°c,>*

correlation appears to describe the brush
scaling with reasonable accuracy for Ryp ~4-8 nm, it becomes inaccurate for NP with relatively
large or small radius.

In view of these observations, one can optimize the n and m exponents for each Ryp to
retrieve the power-law in eq 4.28. According to Figure 4.3, for constant Ryp and oy, the radial

density profiles expand by a roughly constant factor when doubling Mg; thus, it is reasonable to
assume that <hgz>ﬂ2 ~M," with n being a function of (Rwp, og). Figure 4.9 presents the

optimized
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R NP (nm)

Figure 4.9. Optimized n exponents of the power-law in eq 4.28 for set oy and Rye. The rightmost column depicts
the fit with eq 4.29.

n exponent from fitting RuSseL results to a power law <h92>ﬂ2 ~M," over all Ry and ag. The

reader is reminded that the 1D model employed here might not be able to describe accurately the
chain configuration at low grafting densities or molecular weights of grafted chains due to the

inevitable smearing of grafting points. For this reason we decided to not take into account the

cases corresponding to values of o Rg2 <3,and oy =0.1 nm 2 (which excluded the larger part of

cases corresponding to the mushroom regime) when fitting the scaling exponents for the master

equation, eq 4.28.

For large oy, the exponent n presents a stronger dependence on Ryp than ay; thus, for
simplicity, one could treat n as being independent of 4 and instead being function of only Rye.

Consequently, the data for gy > 0.1 nm 2 were fitted to a sigmoid function of the form:

1 3
n=n,_, [Etanh(nsln(RNP / Rd))+§nmax} (4.29)

with Nmin = 0.5 and Npax = 1 being the minimum and maximum values of n, Ry = 126.5 nm and
ns = 0.4. Subsequently, with n set, one can optimize the exponent of g4 with respect to Ryp

aiming at aligning the data points for a given Ryp. Figure 4.8(f-j), displays evaluations of

(hngj2 using the optimized n and m exponents in Figure 4.10(a). Using the optimized n and m

exponents, (hngj2 increases linearly with M_"o,™ over the full range of Ryp (from 1 nm to ).
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Figure 4.10. (a) The optimized n (circles) and m (squares) exponents of eq 4.28 and |, (diamonds) as functions of
Rne. The rightmost data points correspond to flat surfaces. (b) Evaluations of eq 4.28 using the n, m and I
parameters in (a). Colors denote chains with My = 1.25 (red), 2.5 (blue), 5 (green), 10 (violet), 20 (orange), 40
(brown) and 80 (pink) kg/mol. Shapes denote grafting densities, o, = 0.1 (CJ), 0.4 (O), 0.8 (), 1.2 (A) and 1.6(3)
nm 2. The size of the symbols increases slightly with Rye. The inset in (b) depicts a zoomed region of the master
curve. In all cases, Mg=My,

In addition, the curves in Figure 4.8 can be collapsed onto the master curve shown in Figure

v2 . . . . . ..

4.10(b), where <h92> is plotted against eq 4.28 with |y being the slope of the individual curves

in Figure 4.8(f-)) (see green diamonds in Figure 4.10(a)). Overall, the data points in Figure

4.10(b) are in good quantitative agreement with eq 4.28, with the exception of the low Mg, oy

regime where <hgz>1/2 plateaus; see zoomed region in the inset of Figure 4.10(b). The plateaus of

<hg2>ﬂ2 in the limit of small o4 and My could be artifacts of SCFT; our subsequent investigations

with RuSseL in 3D will clarify the phenomena that manifest themselves in this regime.
Several key points can be retrieved by analyzing the scaling behavior of the brushes.
Across the mushroom regime (small Ryp or small ay), <h92>ﬂ2 is independent of g4 and Rnp and

scales as Mg°'5. This is a characteristic property of the mushroom regime in which the grafted
chains do not interact with each other and behave as (reflected) ideal/unperturbed chains. With

increasing Ryp and increasing oy the n and m exponents increase, while in the limit of large Rnp
and o, (crowding regime) the exponents reach unity indicating linear scaling, <h92>ﬂ2~Mglagl;

this kind of scaling is characteristic of the incompressible Alexander brushes;***?*® for more

details see appendixB.3.
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(green), 10 (violet), 20 (orange), 40 (brown) and 80 (pink) kg/mol. Shapes denote grafting densities, o, = 0.1 (O),
0.8 (<), and 1.6 (3%) nm2 Increasing marker sizes correspond to larger Ryp.

In Figure 4.11, we demonstrate the (hgges — Rnp) to mean brush thickness ratio against the
mean brush thickness. In the Alexander model, this ratio is constant and equal to 3*? and
corresponds to the horizontal dashed line. Regarding our SCFT results, for small grafted chain
lengths, the ratio is higher than the one of Alexander for all grafting densities and nanoparticle
radii. For higher chain lengths, a minimum is manifested, while in the dense brush regime the
ratio reaches the Alexander value as a limiting case. Overall, for small grafting density
(0.1 nm™) the dependence on the nanoparticle radius (ratio increasing with increasing Ryp)
features opposite trends as compared the one for larger grafting densities (ratio decreasing with

increasing Ryp).
4.4.6 Thermodynamics

4.4.6/a Contributions to the Grand Potential

In Figure 4.12, the plots (a-e) depict the individual grand potential terms (eqs 4.8-4.12) over the
parameter space (Rnp, og, Mg). Regarding the cohesive interaction term per unit solid surface
(AQ, [ S.iq In Figure 4.12(a)), it decreases steeply in the vicinity of small Ryp and this is
attributed to the fact that when high curvatures are involved (small Ryp), the surface of the

spherical cells where we integrate AQ_, is larger than the surface Ssiiq Of the NP by which we
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normalize all energy quantities, by a factor, (RNP+h)2/RNP2. At low grafting densities

(mushroom regime, circles in Figure 4.12(a)), AQ

coh

I S.iq @ppears to be insensitive to My for

Mgy up to 80 kg/mol; i.e., all different colored lines with circular markers collapse onto the same
curve in Figure 4.12(a). With increasing grafting density (squares and stars in Figure 4.12(a)),
AQ . | S deviates notably with increasing My and increasing Rye. This is attributed to pq
exceeding psegnuik due to chain crowding and this enhances the cohesion of the brush when the
SL-E0S is used. In detail, the minimum of f(p)—f(ppui) for SL is about —0.5 mJ/m? for reduced
densities slightly larger than one; thus, the accumulation of these negative values over the
integration of larger and larger brushes due to crowding leads to the eventual decrease of
AQ T Seia -

Similarly, the field term (AQq,, / S.iq IN Figure 4.12(b)) presents the same qualitative
behavior as AQ_, / S, for the exact same reasons: i) steep initial decline due to high curvature;
i) accumulation of negative values by integrating over gradually larger brushes.

Considering the solid-polymer interaction term (Us /Ssiig), it is practically insensitive to
chain molar mass; i.e., in Figure 4.12c the energies for different chain molar masses do not
exhibit noticeable variations with each other, irrespectively of NP size. With increasing grafting

density it is clear that the cohesion between the solid and the polymer is enhanced because of the

increased density of polymer segments close to the surface.

In all cases, the entropy term associated with the partition function of matrix chains
(AQ,, /S, In Figure 4.12(d)) appears to be rather weak. It shifts upwards by a constant
amount with increasing grafting density, because grafted chains claim more space in the
interfacial region, leaving the matrix chains with fewer available conformations.

Concerning the entropy term associated with the grafted chains (AA, /S, in Figure

4.12(e)), it exhibits a rather interesting behavior: in the mushroom regime (oy = 0.1 nm?),

AA, 1 8. appears to be flat and roughly equal to zero, indicating that for low grafting densities

there is no entropic penalty with increasing Ryp associated with chain conformations. On the

contrary, for larger oy (squares and stars), AA, /S, increases with Ryp for Rye up to ~100 nm

and plateaus to finite values in the limit of flat surfaces. This response is attributed to the
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stretching of the grafted chains due to crowding phenomena. A direct manifestation of this effect
is presented in Figure 4.12 that depicts the segregation of the grafted chain ends towards the

matrix phase in crowded conditions.
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Figure 4.12. Partial contributions to the grand potential per unit area (a-e) from eqs 4.8-4.12. Total grand potential
per unit area. (f) Colors denote chains with My = 5 (red), 20 (blue) and 80 (green) kg/mol. Shapes denote grafting
densities, oy = 0.1 (O), 0.8 () and 1.6 (5%) nm2. In all cases, Mg = M. The rightmost data points correspond to
flat surfaces. Bands denote scale changes along the axes.

The total grand potential from eq 4.7 is illustrated in Figure 4.12(f). Across the
mushroom regime (og = 0.1 nm 2, circles) AQ / Swiig exhibits a monotonic decrease and plateaus

to a value commensurate to the surface tension of PS for Ryy = 100 nm which is about

yps ~ 25.9 mN/m at T = 500 K;?® note that, in the limiting case oy — 0 and Ryp — 0, and in the

absence of the Hamaker potential, y,s=AQ/S,,,. With increasing o4, the grand potential
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features a minimum at Ryp ~10 nm, after which it increases in a way suggesting the domination

of the stretching term in Figure 4.12(e).

4.4.6/b Contributions to Chain Stretching

The entropy term associated with the grafted chains in Fig. 4e does not reflect the total
conformational contribution to the grand potential, since the partition function in eq 4.12 is
evaluated in the presence of the field. Therefore, in terms of SCFT, the free energy associated

with the conformations of the grafted chains can be estimated by the following egs 4.30 and 4.31
gonf = A'Ab +AA‘?eld (430)

with AA{, being the field experienced by the grafted chains:

AAL = _Idr{ipg,ig (r)w, (I‘)} (4.31)

with Py, being the segment density associated with the ig,th grafted chain.

At this point, it is worth analyzing and comparing the conformational free energy of
grafted chains with the stretching free energy obtained by the density profiles of the grafted
chain ends. In the one-dimensional model employed herein, the grafted chain conformations are

reflected random walks starting at h,. Assuming that the system finds itself in the dense brush,

rather than in the mushroom regime, the number of conformations of a chain such that the end-
to-end vector projection normal to the solid surface is between h and h+Ah, is the same as in the
unperturbed melt. It will be proportional to fe,q(h)dh, where the probability density fena(h) is
given by eq 4.32 in the context of the Gaussian chain model.

1/2
3 3 h?
fw(h)(m] p[m] "0 432

Note that this is based on the approximation that a grafted chain will access all conformations
accessible to it at given value of the end-to-end distance. In reality, as is obvious from the
profiles in Figure 4.5 and Figure 4.6, grafted chains are more stretched near their grafted end and
less stretched near their free end. Based on eq 4.32, the Helmholtz energy contribution, Achain,

of a Gaussian chain grafted at r, whose end lies at point r, is given by eq 4.33 within an additive
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constant. In eqs 4.32 and 4.33 <Rend,g2> Is the mean square end-to-end distance of an unperturbed

chain of length Ng.

w7 (r-r)
2 (Ryug’)

Aain (1) = (4.33)

Let Oy = PyenaPsegou 0€ the local number density (segments per unit volume) of free

ends of grafted chains; note that each grafted chain contributes one free end. Consecutively,
integrating o, .,4 across the domain results to the total number of chains; I@ Pyena(F)dr=n,. The
total stretching free energy of grafted chains in our system within an additive constant equals

S ech = I«, Pyend (1) Ayain (1) dr, and it can be approximated across the dense brush regime as

tretch

Agretch - J“R pg,end (h) A&hain (h) 47[( I:QNP + h)2 dh (434)

in spherical and

A%%retch - L{pg,end (h) A\:hain (h) Ssoliddh (435)

in planar geometries.

In the special case of Alexander’s model in which all chain ends are segregated at the

edge of the film, p, .., = o,6(h—h,,.), thus eq 4.34 becomes:

edge

A&%retch - Ssolido-g A:hain (hedge) (436)

with hegge given by eq B.56 in the appendix B.3. In Figure 4.13, we demonstrate a comparison

between the stretching energy term obtained by the Alexander model (lines) and our SCFT
model (markers); the latter is calculated either from: (a) AJ.; given by eq 4.30, or (b) Al...

given by egs 4.34 and 4.35. We mention at this point that the Alexander model, which we
develop in our SI, is similar to the hgy region that Mydia et al.®" report in the context of their
two-layer theoretical model for the description of nanoparticle brushes. In that work,?’ the
authors state that in curved surfaces and for constant grafting density, the free energy associated
with the stretching of grafted chains does not increase indefinitely with increasing length of

grafted chains, but it rather saturates at a maximum value. This is well expected, since at some
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point the grafted chains cannot experience the presence of each other due to the curvature of the
solid surface and therefore they become unperturbed. It must be pointed out, however, that in the

case of planar surfaces, the grafted chains experience the presence of each other indefinitely due

to confinement and thus Aj.., increases monotonically with Ng in this regime. Our model is

consistent with this behavior: Aj.., and A}, are about to form a plateau with increasing Ny

across the small Ryp regime, whereas in the limit of flat surfaces they appear to increase

indefinitely with Ng.
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Figure 4.13. Evaluations of (a) Afonf and (b) A§gtretch' Markers correspond to evaluations from our model,

whereas lines correspond to A, from the model of Alexander. Colors denote chains with M, = 5 (red), 20 (blue)
and 80 (green) kg/mol. Shapes/lines denote grafting densities, 4 = 0.1 (O / dashes), 0.8 (I / dots) and 1.6 (¥/

Solid lines) nm™ In all cases, Mg = Mp. The rightmost data points correspond to flat surfaces.

We can see that for larger grafting densities, our SCFT results and Alexander’s model
are in good agreement for all chain lengths in describing the conformational entropy of grafted
chains as a function of the nanoparticle radius. A large discrepancy between the two models
occurs for low grafting density; there, the totally stretched chains assumption of the Alexander

model and the requirement to maintain bulk density everywhere result in suppressed grafted
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chains and thus lower A} .. (compare the evaluations of Alexander’s model at low grafting

densities in Figure 4.6). On the contrary, in the mushroom regime the profiles of grafted chains

obtained with our model appear broader and this is reflected in the increased contribution to the

conformational component of the free energy. Aj.. is consistently lower than A’

onf —
especially at low og;—and this is attributed to approximations in eqs 4.34 and 4.35 not sufficing
in the regime; this effect will be investigated in detail in our subsequent work with RuSseL in

three dimensions.
4.5 Concluding Remarks

The conformation and shape of chains grafted on a solid surface immersed in a homopolymer
melt of the same chemical constitution as the grafted chains are complex and depend on a
number of molecular parameters. In this work, we have explored a broad parameter space for a
system of a single grafted nanoparticle immersed in a homopolymer matrix. Adopting a self-
consistent field theory modeling approach, the Edwards diffusion equation is solved by means of
an implicit finite-difference algorithm in one dimension, introducing a smearing approximation
for grafting points and taking advantage of the spherical symmetry of the problem. The
parameterization is chosen so as to correspond to a particular chemical constitution

(silica/polystyrene), which is readily accessible experimentally.?®°

The spatial distributions and the conformations of grafted and matrix chain segments
have been derived for different surface grafting densities, nanoparticle radii and chain lengths of
grafted chains, taken equal to those of matrix chains. In order to better describe the results of our
work, we define three different regimes: the mushroom regime, the dense brush regime, and the
crowding regime. The behavior of the system in each of these regimes is well described and
quantified in multiple ways, namely through the chains/area profiles, the distribution of matrix
and grafted chain ends, as well as the segment density profiles of adsorbed and free matrix
chains. It is clear that with increasing grafting density and chain molar mass, the grafted chains
255,260,264. As

need to stretch towards the bulk in order to adjust to their conformational restriction

a result, it is more difficult for the matrix chains to penetrate into the interfacial region.

The dependence of the brush thickness is examined with respect to all the

aforementioned parameters in order to thoroughly investigate and clarify the behavior reported
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in the literature. The scaling law, ~ N “*f_"*, proposed by Daoud and Cotton for star

star star

polymers in the intermediate regime, f“’v>> N_ > f"* is accurate over a specific range

star
of nanoparticle radii, specifically from 4 nm to 8 nm. For larger nanoparticles, the scaling
exponents exhibit a complicated behavior and thus a more general equation must be
implemented, which treats the exponents of the molecular weight and grafting density as
functions of nanoparticle radius. Adjusting also the pre-exponential factor of the scaling law, a
master curve can be obtained, which provides a faithful description of SCFT predictions for the
brush height given the molecular weight of grafted chains, the grafting density and the radius of
the nanoparticle. This master curve seems to be quite accurate, especially in the region of high
molecular weight and grafting density. In the mushroom regime, the brush height exhibits a
weak dependence on the grafting density and nanoparticle radius and is proportional to the
square root of the molecular weight. In the crowding regime the brush scales linearly with
grafting density and molecular weight, while the density profiles of grafted chains, and in
general the overall behavior of the brushes, compares well with Alexander’s model for

incompressible brushes.

In calculating the free energy of the system, the term associated with the conformational
entropy of grafted chains does not depend on nanoparticle radius for low grafting densities and
molar masses (Figure 4.4(e)). The same plot reflects that with increasing grafting density or
molar mass the chains need to stretch and therefore entropy increases. This entropy contribution
of the grafted chains becomes dominant for high grafting densities and molar masses. The
stretching free energy of grafted chains has been estimated with two different ways (1: from the
configurational partition function of grafted chains and 2: from the density profiles of the grafted
chain ends) and a good agreement with the Alexander model was observed in the limit of large
grafting densities. The corresponding entropic term of matrix chains has a minor contribution to

the total free energy.

Future prospects of this study include the investigation of the structure and
thermodynamics of isolated NP and comparison against those of a NP embedded in polymer
matrices; such comparisons allow for the prediction of meaningful thermodynamic quantities
such as the solvation free energy of the nanoparticle. A more detailed investigation can be
performed across the mushroom regime for low g4 and Rnp Via the three-dimensional finite

element version of RuSseL developed in ref 275, which treats the grafted chains as single
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entities, each one emanating from a single grafting point, avoiding the smearing approximation.
Through the same three-dimensional finite element scheme, the potential of mean force between
grafted NPs immersed in the melt can be predicted as a function of their center-to-center
distance.
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5 A Self-Consistent Field Finite Element
Method

A method is formulated, based on combining self-consistent field theory with the finite element
method (SCFFEM), for studying structural and thermodynamic features of three dimensional
inhomogeneous polymeric systems. Initially, this approach is tested on a planar polyethylene/
vacuum and a polyethylene/ graphite system, where the whole methodology is parameterized by
atomistically detailed molecular simulations. These systems have been studied previously with
one dimensional SCF methods. The new, three-dimensional SCFFEM approach is used to
predict reduced density profiles and interfacial free energies, yielding very favorable agreement
with previous SCF results, thus validating the SCFFEM methodology. The primary objective of
this work is to investigate the system behavior by implementing the finite element method. We
apply an h-, r-, p- refinement technique to optimize the finite element mesh. Furthermore, we
introduce two new criteria for accurate convergence and an innovative successive substitution
scheme. The resulting scheme is employed to analyze a more complicated system consisting of
polystyrene brushes grafted on silica walls immersed in polystyrene. Up to now, the grafted
chains in such systems have always been subjected to a smearing technique. With the three-
dimensional SCFFEM approach we can distinguish the positions where individual grafted chains
are tethered from positions on the surface which do not bear grafted chains. We compare the
reduced density profiles and end segment distributions along various lines connecting two
parallel planar silica surfaces capping a polystyrene melt in a sandwich geometry and bearing
surface-grafted polystyrene chains at prescribed areal density. The lines are drawn perpendicular
to the silica surfaces at various positions relative to the grafting points. The structural properties

and grand potential contributions of the system are obtained for a broad range of grafting
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densities, molar masses and swelling ratios, and are compared to experimental data, theoretical

models, and earlier one-dimensional (smeared) SCF studies.
5.1 Background

The fascinating and complex behavior of polymers near solid surfaces challenges the limitations
of atomistic simulations, due to the broad spectra of time and length scales involved.** On one
hand, one of the most common approaches invoked for studying equilibrium properties of
polymer/solid interfaces at the molecular level is the Self Consistent Field Theory
(SCFT).26133197.21528 oy the other hand, the Finite Element Method (FEM) is an important and
widespread technique in the field of integrodifferential equations which govern a lot of
applications of physics and engineering.”®"?*° In this chapter, we aim to combine these tools in
order to develop the ability to calculate the free energy and the structure of complex three-

dimensional (3D) multi-nanoparticle configurations of polymer nanocomposites.

As we already proved in the previous chapters, SCFT constitutes a rather successful
framework in the study of the structure and the thermodynamic description of an interfacial
polymer system. Mathematically, the SCFT model is derived through a complicated variational
problem, possessing many unsatisfactory features, such as the existence of saddle-points,
nonlinearity, multi-solutions, and multi-parameters. Solving this problem analytically requires
rough approximations, compelling analytic solutions to be quite limited in applicability, because
they demand the system to have very particular properties.® In most cases of interest,
numerical methods are required to solve the set of integro-differential equations.

The numerical methods for solving the SCFT model mainly consist of four components,

namely: (a) screening initial values?*®?%

, (b) solving time-dependent partial differential
equations (PDEs), (c) evaluating (monomer) density operators, and (d) finding saddle-points via
iterative methods.?**?% By far the second component i.e. solving the time-dependent PDE is the
most CPU consuming process in applying the SCFT algorithm. The time-dependent PDEs can
be solved with either frequency domain approaches (e.g. spectral, pseudo spectral
methods)***?*® or real space approaches (e.g finite difference, finite volume, finite element
methods).?”® The simplicity of finite difference methods and the high spatial accuracy achieved
by spectral methods made them an excellent choice for many applications till now. Nonetheless,

the majority of the systems which have been addressed with these methods exhibit a simple or
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symmetric geometry and limitations on the boundary conditions. These hindrances can be

overcome with the FEM.

5.1.1 Numerical Methods Comparison

FEM is used to solve partial differential equations (PDEs) in a variety of scientific and
engineering problems.?**?* Despite the fact that FEM belongs to real space approaches, it is
quite similar in philosophy to spectral algorithms. The basic idea is to assume that the unknown
variables can be approximated by a linear combination of trial functions (a.k.a. basis functions).
The essential difference from spectral methods is that in FEM, the domain of interest is divided
into a finite number of sub-intervals, while the basis functions are locally defined in each
interval. Practically, the basis functions are usually chosen to be simple polynomials of fixed
degree, which are non-zero only over a couple of neighboring sub-intervals. In contrast, spectral
methods use global basis functions in which basis function is a polynomial (or trigonometric
polynomial) of high degree which is non-zero, except at isolated points, over the entire

computational domain.*®’

The choice of the finite element method is beneficial for various reasons compared to
spectral methods. FEM converts the strong form of the differential equation into a linear system
of equations, which is usually sparse, since only a handful of basis functions are non-zero in a
given sub-interval. It can also be implemented in irregularly shaped systems and multi-
dimensional domains; the sub-intervals become triangles or tetrahedra, which are easily fitted in
complex geometries. The main weakness of FEM is low accuracy (for a given number of
degrees of freedom) because each basis function is a polynomial of low degree.?®” The accuracy
weakness though can be surpassed either by improving the resolution of certain regions of the

domain, or by increasing the degree of the interpolation polynomials.?%®

5.1.2 FEM History

The mathematical roots of the finite element method date back at least half a century.
Approximate methods for solving differential equations using trial solutions are even older in
origin. Lord Rayleigh and Ritz used trial functions to approximate solutions of differential

289 Galerkin used the same concept for the solution of PDEs.”*” The drawback of the

equations.
earlier approaches, compared to the modern finite element method, is that the trial functions

must apply over the entire domain of the problem of concern. Only when Courant in the
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1940s** introduced the concept of piecewise-continuous functions in a subdomain did the finite
element method have its real start. In the late 1940s, aircraft engineers were dealing with the
invention of the jet engine and the needs for more sophisticated analysis of airframe structures to
withstand larger loads associated with higher speeds. The term finite element was first used by
Clough®® in 1960 in the context of plane stress analysis and has been in common usage since

that time.

The finite element method is computationally intensive, due to the large amount of
required operations on large matrices. In the early years, applications were performed using
mainframe computers, which, at the time, were considered to be powerful high-speed tools for
use in engineering analysis. NASTRAN was the first structural analysis software tool, which
implemented the available FEM technology. **® It was originally developed for NASA in the late
1960s under United States government funding for the aerospace industry. In the years since the
development of NASTRAN, many commercial software packages have been introduced for
finite element analysis. In today’s computational environment, most of these packages can be
used on desktop computers and engineering workstations to obtain solutions to large problems in
static and dynamic structural analysis, heat transfer, fluid flow, electromagnetics, and seismic

response. 2

5.1.3 Previous Works

Although FEM is a workhorse for solving computational problems in all branches of
engineering, few studies have been published on applications to molecular problems, and

| 18 used the FEM as an alternative to the

especially in conjunction with SCF. Ackerman et a
standard spectral and pseudo-spectral methods for SCF calculations. They investigated the
details of the implementation on block copolymer systems of self-assembled structures in

complex geometries. Huayi Wei et al'>

proposed a linear surface FEM to solve the SCFT model
and studied the self-assembly behaviors of block copolymers on general curved surfaces. An
essential point missing from both works is that they mainly illustrate confinement effects for
specific geometries, without being concerned about how representative of the real world the
system is. The extension of SCF computational framework to more realistic polymeric systems

remains a problem to be explored.

Another limitation of previous works is that they are mainly focused on block copolymer
systems. Even though SCF approaches to polymer melts at interfaces have been validated
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against detailed atomistic simulations, few researchers have addressed structural and
thermodynamic properties through SCFT for realistic polymeric systems and interfaces. Daoulas
et al.** determined the equilibrium properties, calculated polymer volume fraction profiles for a
polymer melt (polyethylene) adsorbed on a solid substrate (graphite) and compared it with
atomistic simulations. Theodorou et al.*! calculated the adhesion tension of the above system
through SCFT, which is in good agreement with the adhesion tension estimated by atomistic
MD simulations. More recently, we?® implemented SCFT for free surfaces of molten polymers
(linear polyethylene films) and compared the results against atomistic simulations and
experiment over a variety of temperatures and chain lengths. All the above works were based on
the one-dimensional representation of the interfacial systems, but they form a basis for

validating the new three-dimensional FEM approach.

Our goal is the implementation of the SCFFEM to more complex systems containing
grafted polymer chains. Polymer brushes, i.e., chains grafted either on spherical nanoparticles or
on planar surfaces, have gained attention because of their uses in a variety of applications such
as flocculation control, wetting control, biocompatible surfaces, tunable and switchable surfaces,
lubrication, and templates for microelectronic devices.***** Various methods for the
experimental synthesis of such systems are reported in the literature.*®3% The system of a
polymer brush grafted to a planar surface in contact with a melt of chemically identical chains is
useful for understanding polymer brushes grafted on spherical nanoparticles immersed in
polymer melts. Although numerous experimental results and several theoretical works*’ on
polymer grafting on solid substrates have been published, the lack of well-developed
characterization methods for thin polymer films do not allow an accurate study and

identification of the grafted layers as polymer brushes. %

Important molecular parameters for this system are the Kuhn segment length of the chains,
bk, the lengths (in Kuhn segments) of the grafted, Ng, and matrix, Nm, chains, and the surface
grafting density (chains per unit area), o4. The case of planar polymer brushes exposed to low
molecular weight solvent was studied theoretically by de Gennes® and Alexander.® They used a
scaling approach where a constant density was assumed throughout the brush: all the brush
chains were assumed to be equally stretched to a distance from the substrate equal to the

thickness of the brush. Aubouy et al. 3%

extracted the phase diagram of a planar brush exposed
to a high molecular weight chemically identical matrix. Their scaling analysis is based on the

assumption of a steplike concentration profile and on imposing the condition that all chain ends

140



5.1. Background

lie at the same distance from the planar surface. Five regions with different scaling laws for the
height, h, of the brush were identified.

A numerical self-consistent field (SCF) calculation has also been reported,® where the
density profile is no longer assumed to be a step profile and the end points of the chains are
distributed throughout the brush. Analytical equations based on a similar model were developed
by Milner et al.**® and by Zhulina et al.*!° In the wetting state, the grafted and matrix chains are
intermixed along the full extent of the brush. If the matrix chains are not able to penetrate the
region occupied by the grafted chains, then the corona collapses and the brush is dewetted. A
detailed study of moderately stretched planar brushes exposed to moderately long melt chains
was performed by Ferreira et al.* who found that the domain where attraction exists between

two grafted layers in a melt and therefore partial wetting is expected, scales as

ag(Ng)l’2 >(N,/N,). This scaling law indicates that flat surfaces grafted with sparse polymer

brushes in a long chain polymer melt could exhibit entropic attraction, provided that the
molecular weight of the matrix chains is large enough.

5.1.4 Current Research Approach

The present chapter aims to combine one of the most captivating theoretical frameworks for the
estimation of the interfacial properties of solid polymer interfaces, self-consistent field theory,
with one of the widely used numerical methods, namely the finite element method, in a manner
that will enable the implementation of SCFT in complex three-dimensional geometries. The
chapter can be divided in two parts. Firstly, in order to validate the SCFFEM method and assess
its computational requirements, the works of Daoulas et al.? , Theodorou et al * and our work®
are used as a reference point and the same problem is solved in three dimensions. The primary
aim is to calculate various thermodynamic and structural characteristics of the free surface
polyethylene melt system and the polyethylene melt/graphite interfacial system, such as the
surface and adhesion tension and the reduced density profiles of polymer segments. Additionally
the behavior of the aforementioned systems is examined with SCFFEM as well as how the mesh
refinement affects the accuracy of the solution. In the second part, the structure of atactic
polystyrene melt (matrix) is investigated, confined between two silica plates which bear grafted
with polymer chains of the same chemical constitution (atactic polystyrene). Removing the
incompressibility assumption and imposing Dirichlet boundary conditions at the solid surfaces

allows to investigate systems with additional complexity. So far, the grafted chains have been
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always subjected to a smearing technique. For the first time, to our knowledge, we can
distinguish the positions where the grafted chains are tethered, from positions not attached to
grafted chains and compare the reduced density profiles in the vicinity of these different
positions. The intention is to compare our approach against previous works and calculate various
thermodynamic and structural characteristics of grafted chain systems with variable grafting
density, chain length and grafted/matrix chain length ratio. The SCF calculations are vigorously

compared against atomistic simulation results and experimental data.
5.2 Model System and Theoretical Formulation

5.2.1 Finite Element Method

5.2.1/a Weak Formulation

The SCF approach has been employed to describe polymer melt interfaces in previous chapters.
Here we will focus primarily on novel points introduced by the finite element analysis. The
finite element method (FEM), sometimes referred to as finite element analysis (FEA), is a
computational method for finding approximate solutions of boundary value problems in
engineering. Two main approaches are used for the derivation of the finite element formulation:
the Method of Weighted Residuals (MWR) and the variational approach. The latter, also called
the “Energy Approach”, was popular in the past, but now is rather rarely used. The MWR is an
approximate technique which utilizes trial functions satisfying the prescribed boundary
conditions and an integral formulation to minimize error, in an average sense, over the problem

domain.

The Edwards diffusion equation can be seen as a time dependent differential equation
whose independent variable is the propagator g and the contour length s plays the role of time.
We will adopt the more familiar in Finite Element Analysis notation for eq 4.1:

4-kVq+wq=0 (5.37)

2
G,c

R
where g :%q(r,s), k= Y

and @ = pwW,,.. Eq 5.37 is called the strong form of the partial

differential equation. We can proceed by multiplying and integrating both sides of eq 5.37 with

an arbitrary function W(r), which is defined over the entire domain Q The symbol Q here
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denotes the volume of the closed domain ® . These calculations result in the following weighted

residual form:

IW(r)(q—kaq+wq)dQ:0 (5.38)

The three dimensional weak form of the WRM is obtained by applying the divergence
theorem in the above weighted integral. In one dimension, the divergence theorem is equivalent
to integration by parts, and in two dimensions it is equivalent to Green's theorem. The form
obtained is called weak form due to its lower differentiability requirements compared to the

original weighted residual form or the strong form:

GW,q) = IW(r)(q +0q)dQ +k j (VW)(V,q)da—k j W (r)V,qdl’ (5.39)

The symbol I' denotes the surface area that bounds the domain. A differential volume
within the domain will be denoted as d and an elementary surface area as dI’. The
implementation of the weak formulation is beneficial for three reasons. The highest order of the
Laplacian operator disappears, a symmetry is introduced in the second term of the residual, and
gradient boundary conditions are inserted via the third term.

The main concept of FEM is the transformation of the original partial differential
equation (PDE) into a discrete set of linear equations. Solving these equations, an array ¢ is
obtained, containing approximations of the continuous solution q of the differential equation at a
finite number of points, referred to as interpolation points. An approximation field of the
solution can be constructed by means of these interpolation points. The fundamental idea of this
approximation field comprises the assumption that the unknown q can be approximated by a

sum of n+1 “trial functions” ¢ji(r,s) and therefore be calculated by the following equation:-
q(r,s) = ZQi(oi(r' ) (5.40)
i=0

The trial functions are continuous over the domain of interest, respect the specified
boundary conditions, and are selected to satisfy the “physics” of the problem in a general sense.

287

The integral statements™’ in eqs 5.38 and 5.39 allow an approximation to be made if, in place of

any function W (r), we use a finite set of approximate functions w;:
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W=>w, (5.41)

Inserting the above approximations into Eq. 5.39, demands the residual to be equal to zero, the

residual form becomes a function of the unknown ¢, given by:

n

GZJiinqidQ Jiiwwfﬂ.qd9+fi2 (Vw; (Vo M- Iiiijqidr (5.42

i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0

Clearly, almost any set of independent functions w; could be used for the purpose of

weighting and, according to the choice of function, a different name can be attached to each
method. Thus, the various common choices are: the pseudo-spectral or collocation method
(method of selected points), the method of moments, the least square method and Galerkin’s
method.”®" Among them, the most popular choice is Galerkin’s method (Bubnov- Galerkin) in
which the original trial (or basis) functions are used as weighting functions (wi=¢;).?®” This
method, as we shall see, frequently leads to symmetric matrices and is adopted in our finite

element work exclusively.?’

5.2.1/b Domain Discretization

A convenient technigque to construct the approximate trial functions is obtained by dividing the
domain to be analyzed into small regular shaped regions. The division into elements and nodes
is a fundamental part of the finite element method. Domain discretization in elements describes
what we will refer to as the finite element mesh or simply the mesh of the domain. Using the
above subdivision, a simple set of local continuous polynomial functions may be defined for the
approximation of the solution. Such functions are called shape functions and they are usually of
class Cy, meaning that they are continuous themselves, but their first derivative is only piecewise

continuous with the discontinuities located at the nodes.

The domain Q can be decomposed into N finite element sub-domains, Q. , connected

at appropriate nodes (Nnoq). Let the e™ element have Nnoqe nodes with global coordinates r*®
(k=1,.. , Nee) and let the Lagrangian shape functions N; (§) (i=1,.. , Nyoge) be polynomials of &,
chosen such that N; (§) evaluates to one at the i" node and to zero at all the other nodes of the
element. At the juncture between two elements, the internal gradients are equal and opposite,
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thus selfequilibrating, which means that the last term of eq 5.42 becomes zero. The total volume

of the set of elements approximates the total volume of our domain:

0=0,=30 (5.43)

where Q, is the approximation of the domain created by the set of elements, Q, . Any integral
over Q can therefore be approximated as a sum of integrals over the elements:

Ne|
j(-)dsz ~ j (Je=> j (+)dQ (5.44)
Q Q, e=l o,

By further proceeding in this analysis, we encounter one of the central issues in the
three-dimensional FEM, which is the query for the optimum type of element to be used. Three
types of elements are commonly used in modeling three-dimensional structures: tetrahedral,
hexahedral (also known as bricks) and prism (also known as wedges or pentahedra) elements.
Due to their flexibility in discretizing arbitrary complex geometries and the associated degree of

automation in the mesh generation procedure, the use of tetrahedral elements becomes
practically unavoidable in complex finite element analysis.

@ ! O @
v
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4 4
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Figure 5.1. Tetrahedral element (a) A four-node tetrahedral element, showing an arbitrary interest point P defining
four sub-volumes. (b) The linear or first order tetrahedron element: also called the 4-node tetrahedron. (c) The
quadratic or second order tetrahedral element: also called the 10-node tetrahedron.

A tetrahedral element is depicted in Figure 5.1(a) in relation to a global Cartesian
coordinate system. We introduce the concept of volume coordinates using Figure 5.1(a). Point P
IS an arbitrary point in the tetrahedron defined by the four nodes. As indicated by the dotted
lines, point P and the four nodes define four other tetrahedra having volumes:

Vi =Vossr Vo =Voias Vs =V Vi =Vois (5.49)
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Figure 5.1(b) shows a typical 4-node tetrahedron. Its geometry is fully defined by giving
the location of the four corner nodes [ri=(xi, Vi, zi), i=1,2,3,4] with respect to the Cartesian

coordinate system. The natural volume coordinates of the element are then defined as:

L, =V,/V,, a=1234 (5.46)

where Vg is the volume of the element. The nodal basis functions N, (Le) for each element e are
the following:
(1) 4 shape functions for first order tetrahedral elements (Figure 5.1(b)) given by:
N,=L, a=1234 (5.47)
(i) 10 shape functions for second order tetrahedral elements (Figure 5.1(c)) given
by:
e Vertex nodes
N,=L (2L -1), N,=L,(2L,-1), N,=L,(2L,-1), N,=L,(2L,-1)  (5.48)
e Mid-edge nodes

Ny=4L,L,, Ng=4LL, N, =4L,L,,
N8:4L2L3' N9:4L3L4’ N10:4L4L2

5.49

The relation between volume coordinates L=(L1,L2,L3‘L4) and &=(<,n,&) can be

easily derived and the transformation of nodal basis functionsN;(L°) to N;(&°) for each
element e is described further in appendix C.2.

According to the eq 5.40 the relation between local and global coordinates within the e-
th element is given by:

Nnod‘e

P2 () o= S ) 5

1=1 1=1

where r'and q'(s) are the values of r=(x,y,z), q respectively, at node | of the particular
element e examined. Note that the “time dependence” of '(s), will be discussed later.
Derivatives for isoparametric elements may be constructed using the following chain rule.

ON, _ 0N, o _ 0N, e
o&  or; o0& or,

]

(5.51)
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Accordingly, the Jacobian matrix of the transformation from natural (reduced, element-based,

€°) to real (spatial, r) coordinates J°is the matrix with the following entries:

o),

i e —erl (552)
T oe T & o

In formulating element characteristic matrices, various derivatives of the shape functions with
respect to the global coordinates are required. In isoparametric elements, both element geometry
and variation of the shape functions are expressed in terms of the natural coordinates of the
parent element, so some additional mathematical complication arises. By using eq 5.51 we can
calculate derivatives of the shape functions with respect to the real coordinates by the following

equation:

oN, & .. 40N
Rl B N | B 5.53
or Z ! o&* (.53)
The matrix J**' is the inverse matrix of J°. Hence, J*' is the Jacobian matrix of
transformation from real (spatial) to natural coordinates. We can express the integral form of the
eq 5.44 in terms of the local shape functions by using the eq 5.52:

I(.)dQ:!(o)J de

Q

(5.54)

e

5.2.1/c Matrix Representation

Up to this point, we made a distinction between weight functions, trial functions and shape
functions. As mentioned above, in Galerkin’s Method, the first two are by definition the same.
In finite element representation, the shape function plays the role of trial function within every
element e. This choice allows us to re-express the residual function of eq 5.42 by using eq 5.44

and 5.52 in matrix representation:

Mg+Kg—-Wqg=0 (5.55)

where

dg (5.56)

M, ZM =3 NN ()
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Nei Nei Nnod,e Nnod e aNI e aNJ e . o .
KIJ :ez=1:K el I=1 J=l ZZJ:ZI af(f )k aéi; )(Je’ )Ji (J | )Ii J|dg (5'57)
W, = ZW dee j N, IENEE (5.58)

e—1 I—l J—l

where @’ is the value of the field in the nodal point J and q is a column vector with the values

of the propagator g at every nodal point at the considered “time” s. In order for the integral of
eq.5.42 to be well defined, the fourth term of the equation associated with the surface integral
between adjacent elements must vanish. This occurs under the condition that shape functions are
continuous, while the first derivatives may be discontinuous in Q. The derivation of this matrix

form is presented in appendix C.5.

5.2.1/d Gauss Quadrature Integration

The integration procedure is of high importance when we deal with the FEM. From the above
discussion, it is clear that the weak form introduces integrals which are usually too complicated
to be evaluated analytically, thus numerical integration is preferred. In this section we consider

the effect of the numerical integration on the acquired FEM solution.

The Gauss Quadrature method is the most commonly used numerical integration scheme
in FEA, and exploits the isoparametric concept introduced in section 5.2.1/b. In numerical
analysis, a quadrature rule approximates the definite integral of a function g, as a weighted sum
of the values of the function at specified points within the domain of integration. Consequently,
another source of error is introduced. The general formula of the numerical integration of an

arbitrary function g(r) over a domain Q. (according to eq 5.54) is expressed by:

)l

I :Jg(r)dﬂzjg(g d&zzgp:g()tm)wm‘Jme +e (5.59)

Qe

where N, denotes the number of integration points , 4, denotes the location of the integration

point m, g(4,) is the value of the function g at the integration points, w, is the associated

weight factor of the integration point and ¢ is the error associated with the quadrature used. The
locations of the integration points are chosen in a way such that maximum accuracy is obtained.

The order of the numerical integration must offer exact results when integrating polynomials
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(i.e., solution equal to the one obtained from analytical integration) and ensure the non-
singularity of the resulting matrices.?®"?%%® A thorough study of numerical integration in the
context of the FEM can be found in ref 311. In Zienkiewicz’s work, 2*” an 1-points rule as well
as a 4-points and 15-points rules are derived for a unity tetrahedron. The Gauss quadrature

technique used to calculate the volume integral is presented in eqs 5.56, 5.57 and 5.58.

5.2.1/e Transient Equation

We now elaborate on the derivative ¢ and apply the overall procedure for transient

implementation. We can deal with this derivative as a “time derivative” of the nodal propagator

matrix with the backward difference approximation presented below:

1 S+AS S
E(q *—q) (5.60)

1

q
Where g**is the column vector containing the values of the propagator q at every nodal

point at the next “time step” s, whereas g° contains the values of the propagator at the current

time-step. In this method, we evaluate the nodal propagators at “time” S+AS based on the state
of the system at “time” s. It is clear that these two states of the system depend on how small the

time-step As is. Substituting and rearranging, eq 5.55 becomes:

MqS+AS +ASKqS+AS _ASWqS+AS — MqS (561)
The initial condition is the given either by eq4.1 or by eq 4.2

5.3 Calculation Details

5.3.1 Model Geometry

Figure 5.1 illustrates a rectangular parallelepiped domain ® in which we solve our SCFT
formulation. The parallelepiped domain has volume V and consists of points (x, y, z) with
xe[-L /2L /2],yel-L,/2L,/2], ze[-L,/2L,/2]. Although this is a three dimensional
domain, under some conditions (imposition of periodic boundary conditions in the x- and
y-directions, absence of grafted chains) the solution is expected to depend only on one direction (z)
due to its symmetry. The parallelepiped domain chosen offers itself for comparisons against one-
dimensional solutions based on smearing. The primary goal is to investigate the consistency of

results obtained by three-dimensional SCFFEM with previous works based on other methods and
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understand physically the behavior of the considered systems. The formulation of the current
section is generic and refers to a grafted/matrix polymer system, but it can also be implemented in
ungrafted solid/polymer and vacuum/polymer systems. In a solid/polymer or vacuum/polymer
system, the absence of grafted chains causes the propagator gqto vanish and thus only the three eqgs
4.1, 4.3 and 4.4 are required for the SCF solution. For additional simplicity, gm and ¢n can be
replaced by qand ¢, respectively. On the other hand, a system containing grafted chains, exposed
to a melt of matrix chains, requires the solution of two different diffusion equations (one for the
matrix and one for the grafted chains), which increases the complexity and computational

(@)

Figure 5.2. The Edwards diffusion equation domain. (a) The matrix chain Edwards diffusion equation domain. The
parallelepiped domain of dimensions in 8x8x10 nm is shown, with the origin positioned at its center. On the solid
surfaces (blue), Dirichlet boundary conditions are applied, while on the lateral surfaces (red), Neumann boundary
conditions (x- and y- derivatives of the propagator equal to zero) hold. (b) The grafted chain Edwards diffusion
domain. The parallelepiped simulation domain has the same dimensions as in (a) and contains 50 grafted chains; 25
grafted to the top and 25 to the bottom. The grafting ends are represented as 3D delta functions. Again, Dirichlet
boundary conditions are imposed on the solid surfaces and Neumann boundary conditions hold on the lateral
surfaces.

requirements of the problem. Furthermore, in such a system we have to calculate the reduced
segment density for both matrix and grafted chains. It is worth mentioning that, despite the fact
that both grafted and matrix chains share the same domain, the initial conditions for matrix and
grafted chain propagators differ. The initial condition gn(r,0)=1, is assigned to the matrix chain
propagator, while for the grafted chain propagator the initial value is equal to zero in the whole
domain, except for the positions of the grafting (eq 4.2). Dirichlet boundary conditions equal to
zero are assigned to the top and bottom surfaces of the box/domain for both grafted and matrix

chain propagators.
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As Chantawansri et al.*** observed, in the context of SCFT there is a special difficulty in
the case of polymer chains whose one end is grafted to the solid surface. As shown in eq 4.2, the
grafted chain propagator is subject to a Dirac delta function initial condition. The complication
increases when we have to deal with the limit near zero, caused by the Dirichlet boundary
condition of the matrix chain propagator appearing in the denominator of the initial condition for
grafted chains. A usual approach to bypass these issues is to reposition the grafting points to a
surface close to the solid, instead of right on top of it.?”**" In 1D, the numerical implementation
of the delta function resulted in a smearing of the grafting points. In our three-dimensional FEM
implementation, the initial condition of the grafting points is evaluated exactly upon the desired
points of the domain and the delta function is again evaluated as the inverse volume assigned to

the node; thus, the smearing of the grafted point disappears. (Figure 5.2(b))
5.3.2 Mesh

The main weakness of the FEM compared to spectral methods is the accuracy of the method.
This drawback, though, can be surpassed by using three different strategies.”®” The first is to
subdivide each element to improve the spatial resolution uniformly over the whole domain. This
strategy is usually called "h-refinement”, because h is the common symbol for the size or
average size of a subdomain. The second alternative is to subdivide only in regions of steep
gradients where high resolution is needed, called "r-refinement”. The third option is to keep the
subdomains fixed while increasing p, the degree of the polynomials in each subdomain. This
strategy of "p-refinement” is precisely the one employed by spectral methods.

The mesh that was initially employed to discretize the domain contained equally sized
elements and the mesh densities were coarse (Figure 5.3(a-c)). For such meshes, negligible time
Is consumed between iterations. The resolution of the mesh was low, given the steepness of the
solution and therefore the accuracy of the acquired results was rather poor. The mesh gradually
became finer (Figure 5.3(d-h)) in order to achieve convergence with acceptable accuracy
(h-refinement). The final mesh was extremely fine at the top and bottom surfaces, compared to
the mesh near the center (bulk polymer) (Figure 5.3(i)) (r-refinement). Finally, aiming to
investigate the behavior of the system, we compared the use of both first and second order
tetrahedral elements, corresponding to linear and quadratic Lagrange shape functions (p-

refinement).**?
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(€)

(@) (h)

Figure 5.3.The difference between mesh densities applied. (a-c) Meshes contain equally sized elements and coarse
mesh densities (from 438 to 3,062 elements). (c-h) Meshes contain equally sized elements and finer mesh densities
(from 10,327 to 1,387,473elements). (i) A more efficient mesh, which is finer at the boundaries and coarser in the
middle.

Nine types of meshes were used in order to benchmark the discretization of the system.
The meshes were generated with the commercial software, COMSOL Multiphysics. The average
element size, hayg, which is defined as the average length of all the edges of tetrahedral elements
contained in the domain, the average element volume, Ve, the number of nodes, Nnoq, and the
number of elements, N, of the meshes, for both quadratic and linear shape functions, are
presented in Table 5.1. For comparison purposes, the average element size of quadratic elements
has been considered to be equal to half the actual value (two nodal points are assigned to each
edge). Considering that the volume of the domain is equal to 640 nm® and knowing the total
number of elements, the average element volume can be easily calculated. The average element
size and average element volume are perceptible parameters, because they can be associated
with size parameters of other methods (e.g finite difference method). The number of mesh points
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which the domain is comprised of is directly correlated with the mesh resolution and is the most
important aspect to consider when benchmarking a FEM model. As mentioned above, every
quadratic tetrahedral element consists of ten nodal points, whereas a linear tetrahedral element
consists of four nodal points; this is the reason why meshes with the same number of elements

can consist of different numbers of mesh points.

Table 5.1. Mesh parameters

average average linear tetrahedral element  quadratic tetrahedral element
element element ; ;
size(A) volume(A?) mesh points elements mesh points elements
30 1461.19 131 438 793 438
19 404.55 377 1,582 2,572 1,582
15 209.01 676 3,062 4,720 3,062
10 61.97 2,033 10,327 15,357 10,327
8 31.14 3,901 20,552 28,644 20,552
5.5 9.87 11,733 64,819 84,473 64,819
35 2.52 44,425 253,950 339,085 253,950
2 0.46 236,885 1,387,473

The calculations have been initially performed with the COMSOL Multiphysics®®

b3 interface. To solve the Edwards diffusion

commercial package, which was linked to a Matla
equation, we used the coefficient form corresponding to a general and multipurpose PDE. The
spatially dependent chemical potential field was inserted as an absorption coefficient through an
external three dimensional interpolation function. Although this method worked properly for
simple systems, as the complexity increased, the interpolation function did not exhibit the
desired accuracy. The poor accuracy resulted in low flexibility, especially in grafted chain
systems. We finally managed to develop an in-house finite element code, which we call RuSseL,

and we use COMSOL Multiphysics exclusively as a mesher.

5.3.3 Validation System

The first system that we considered consists of polyethylene (PE) chains in the presence or

absence of graphite. Polyethylene — graphite sandwiches and freely standing films of

polyethylene are both appropriate systems for verifying our methodology. Theodorou et al.,*

1.2 worked on these systems comparing their results with

Lakkas et al.?® and Daoulas et a
atomistic simulations. Since all previous works were performed at T=450 K, the same

temperature will be assumed during the SCF calculations of the present work. The bulk density
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of the polymer is pmass=766 kg/m®, from which P, is readily obtained. The compressibility

appearing in the SCF equations, xr, will be considered equal to the isothermal compressibility
of the atomistically studied bulk polymer. Taking into account our atomistic simulations and

315

experimental data,®*> we employ &7 = 1.43 GPa™.

The mean squared radius of gyration of a chain can be calculated as

R, =l..[Cy(N —1)/6]1'2, where C, is Flory’s characteristic ratio, N the number of skeletal

bonds and | their bond length. The bond length used in the atomistic simulations is |, = 1.54

A and we set C,, for the molecular weight of interest, following the work of Karayiannis et al.31°

A crucial step in implementing the field-theoretic representation of the PE/graphite system is the
definition of the polymer/substrate interaction potential, Us(r). In this direction, we follow the

work of Daoulas et al.?*

, Where a square-well potential was used. The depth of the square well
potential was determined under the requirement that the field-theoretic model have the same
adsorption energy per unit surface as the atomistic one. The potential energy field exerted by a
semi-infinite graphite phase on a polyethylene segment can be approximated reasonably well by
a square well potential whose width is equal to w=4.5 A and depth is equal to up= —1.65kgT at
T=450 K.**

In the case of the capped polyethylene film, the grand potential is directly related to the

adhesion tension:

Q(V!Tuu)_Qbulk(V1Tuu)=Ssolid(7sp_7/s) (562)

Where yg, is the interfacial tension between the graphite and the molten polymer, ys, is the

surface free energy of a pure graphite surface, and S, is the total surface area of contact

soli

between polymer and graphite (both faces).

5.3.4 Grafted Chain System

In the present chapter, we will study a system of chains which are grafted on the surface of a
solid of planar geometry. A polystyrene/silica interface with grafted polystyrene chains, for
which density profiles have been computed by both coarse grain atomistic simulation®” and

8

lattice-based self-consistent field theory,*® would constitute a convenient test system. The

objective is to validate the SCF/FEM approach in presence of grafted chains in a planar
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geometry. We employ the planar geometry in order to compare our system with atomistic

simulations performed by several authors. 332
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Figure 5.4. Representation of the system under various grafting densities. Each solid surface has an area of 64 nm?
with dimensions of 8x8 nm. The two solid surfaces are mirror images of each other. Red colored points (e) and
black colored points () denote the grafting positions of chains (g-points) and the centers of squares formed by the
grafting positions (c-points), respectively. The surface grafting density increases implicitly in each panel from left
to right, with values equal to; o, = 0.06 nm? (a), 0.14 nm? (b), 0.25 nm™ (c) , 0.39 nm™? (d), 0.56 nm 2(e). Profiles
are accumulated separately along the red and blue straight lines shown in the bottom part of the picture.

The system consists of polystyrene (PS) chains grafted on a silica (SiO;) planar surface,
in contact with a polymer melt of the same chemical constitution as the grafted chains. In this
special case where the chemical composition of the grafted and matrix chains are identical, the

& Previous

entropic contributions to the free energy dominate the thermodynamics.*
experimental”® and computational works>"*'"**! have been performed considering polystyrene
(PS) chains grafted on a silica (SiO,) plates, embedded in polystyrene melt. Herein, all
calculations were carried out in the grand canonical ensemble at a temperature equal to

T = 500 K. The PS-SiO, interactions are described with the Hamaker potential®’® using the

interaction parameters, Aps and Ay, , and the effective radii, ops and oy, , presented in

Table 5.2. Note that, in the representation used, each PS repeat unit is mapped to two segments.

The calculations were performed with RuSseL 3D; an in-house developed code which is
designed to run calculations based on SCFT in three dimensional systems, using the finite
element method.?” The initial condition of the grafting points is evaluated exactly on the desired
points of the domain and the delta function is evaluated as the inverse volume assigned to the
node.?”” The main advantage of FEM is expected to be that each grafting point is explicitly
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attached on a single node of the spatial mesh. In the 3D calculation, we expect to obtain different
structural results (e.g., density profiles) as we move across the z axis for different (x,y) values.
To explore this, we define the g-points (black dots in Figure 5.4) on the surfaces, which
correspond to the grafting points, and the c-points (red dots in Figure 5.4) as the centers of the
squares defined on each silica surface by the g-points. By symmetry, the lines connecting pairs
of corresponding g- or c- points on the two surfaces are normal to the surfaces, i.e., parallel to
the z axis (Figure 5.4). The structural properties for both grafted and matrix chains are evaluated
along these lines, which connect opposing g- and c-points. The evaluations along these different
lines were performed across a broad parameter space spanned by surface grafting density oy ,
grafted chain length Ng, and swelling ratio Nm/Ng.  Specifically, values of oy = {0.06, 0.14, 0.25,
0.40, 0.56} nm 2, Mg ={5, 10, 15, 20, 25} kg/mol (or Ny ={100, 200, 300, 400, 500} monomer
segments) and Nm/Ng ={0.25, 0.5, 1.0, 2.0, 3.0} were explored. According to ref 255, as long as
the matrix chains are longer than the grafted ones, the latter are not perturbed considerably. The

results were plotted using relevant software.??

Table 5.2. Parameters of the calculations

parameter value reference
system T 500 K 255
bk 1.83 nm 255
chain lec 0.154 nm -
stiffness y 0.829 193
Mmonomer 52.08 g/mol -
hys ~0.4 nm -
Ops 0.37 nm 255
Hamaker Osio2 0.30 nm 255
Aps 5.84-10%°] 255
Asioz 6.43-10%°J 255
-1
Helfand KT 3.97 (GPa)3
Pmass,bulk 953 kg/m 255
Edwards As 0.5 segs
diffusion S 200 segs -
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5.4 Results

5.4.1 Capped/Free Interfaces

The present section discusses the structure of vacuum/melt (VM) and solid/melt (SM)
interphases and the surface and adhesion tension, respectively, calculated from both our one
dimensional (SCFFD: RuSseL1D)***and three-dimensional code (SCFFEM: RuSseL3D). The
results obtained from these systems will be used as a proof of the efficiency of the SCFFEM
methodology. In order to achieve the same results with SCFFEM as those achieved via SCFFD,
extremely high density meshes are required, making the calculations time consuming. For that
reason, a study of the behavior of the system has been undertaken to accelerate the whole

process without significant accuracy cost.

5.4.1/a Validation of SCFFEM

Figure 5.5 presents the reduced density profile ¢(r) obtained with the three-dimensional
SCFFEM?®”® method for a free-standing thin film of polyethylene melt at 450 K. The
corresponding solution of the planar thin film problem with the one- dimensional finite
differences method (SCFFD)?, using exactly the same parameters, is presented with red points.
This is the converged solution using the actual value of the isothermal compressibility of molten
polyethylene, following the statistical mechanical approach developed by Daoulas et al.?*, based
on a simplified, Helfand-type effective Hamiltonian for polymer-polymer interactions with no
gradient correction. The finite element mesh of the converged solution consists of 418,064
elements and 587,575 nodal points, while the Finite differences solution utilized 2,000 points.
The results for all nodal points in the three-dimensional mesh collapse onto a single curve, and
this is expected, since the problem is in fact one-dimensional.

The density profile exhibits qualitatively the expected shape, also seen in atomistic
simulations. It starts off at zero at the extreme edge of the film and rises in a sigmoidal fashion

as one moves towards the bulk polymer region, assuming its bulk value at a position less than
0.25 <R92>1/2 from the extreme edge. As we have shown in chapter 3, the square gradient theory

combined with a free energy density given by a more sophisticated Sanchez-Lacombe EoS is
needed to obtain quantitatively realistic density profiles. However, for validation purposes this

model is sufficient.
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Figure 5.5. Reduced segment density profile ¢ (r) in a planar thin film of molten polyethylene as a function of
distance z normal to the film as obtained by our three-dimensional Finite Element Method (SCFFEM, RuSseL3D)
and as obtained by a one-dimensional finite difference solution of the same problem (SCFFD, RuSseL1D). The film
edge is on the left and the middle of the film, where bulk conditions prevail, is on the right. The case which refers to
the real compressibility, «r = 1.43 GPa™, converged in real time with Russel3D. In the inset, we demonstrate the
self-consistent field per segment, w” (z)/ ksT in a planar thin film of molten polyethylene, plotted as a function of
distance z normal to the film.

Setting the value of ys, equal to zero in eq 5.62 we can calculate the surface tension of
the polyethylene free film. The asymptotic value of the surface tension obtained from the
solution of the SCFFD problem is 63.99 mJ/m?, while the corresponding surface tension
obtained from the SCFFEM is 63.51 mN/m. This supports the equivalence of the two techniques

131,324 measured surface

and validates the methods we have developed. The experimentally
tension of PE at 450 K is ys= 28.1 mJ/m? which is in good agreement with the surface tension
estimated by our atomistic MD simulations and results from the SCF_SL-SGA model, but not
with the SCFFEM and SCFFD presented here. The reason for this discrepancy between SCF
values and experimental ones is the use of the Helfand approximation® in the effective
Hamiltonian of the SCFFEM and SCFFD calculations. While this approximation is satisfactory
for systems where the local density does not depart significantly from its bulk value, it is not
appropriate for free surfaces, where the local density drops down to zero.

The corresponding converged solution for the self-consistent field w'(r) in the case of the
freely standing polyethylene film is shown in the inset of Figure 5.5. The finite element and
finite difference solutions are practically coincident, confirming the correctness of the SCFFEM

approach. Again, excellent agreement between the three-dimensional finite element and the one-
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dimensional finite difference results is observed, confirming that both the formulation and the

computational implementation of the new SCFFEM methodology are correct.
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Figure 5.6. Polymer volume fraction profile ¢(z) in a planar thin film of molten polyethylene between graphite
plates plotted as a function of distance z, measured in Ry units, normal to the film as obtained by our three-
dimensional Finite Element Method (SCFFEM, RuSseL3D) and as obtained by a one-dimensional finite difference
solution of the same problem (SCFFD, RuSseL1D). The case which refers to the real compressibility & =1.43 GPa’
! converged in real time in Russel3D. The profile from our SCFFEM calculation coincides with that calculated by
Daoulas et al.** and Theodorou et al.** from a SCFFD calculation. The black line displays the atomistic simulation
data calculated by Kritikos et al.**® In the inset, the self-consistent field per segment w” (z)/ kgT is plotted as a
function of distance z normal to the film.

The next challenge was to validate the new method for the case of a planar thin film of
molten polyethylene in contact with graphite plates (“capped” film).? In order to solve this
graphite/polymer system, we made an initial estimation of the field, based on the solution for the
freely standing film of polyethylene (discussed above). The finite element and the finite
differences system discretization parameters are the same with the corresponding ones of the
free polymer standing film. The solutions we get from the 3D Finite Element method and the 1D
Finite Difference method are identical, as presented in Figure 5.6. Furthermore, the solutions of
both techniques are compared with molecular dynamics results obtained by Sgouros.!®* As
Daoulas et al. pointed out in their work,* the SCF calculation cannot reproduce the oscillatory
behavior of the segment density close to the solid surface, whose characteristic length is
commensurate with the segment diameter and is readily observed in atomistic simulations. It

does, however, reproduce the increased segment density near the attractive solid surface.
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Qualitatively, the SCF approach provides a smeared picture of the polymer density variations

inside the area subjected to the effect of the potential Ug(r).

The interaction potential between the polymer and the substrate, Us(r), was tuned®* in
order to reproduce the total energy of adsorption and the characteristic length scale of the
density variations. The value of the adhesion tension obtained from the solution of the SCFFD
problem was 71.86 mN/m, almost identical to the value of 71.84 mN/m obtained from
SCFFEM. In addition, the adhesion tension is in good agreement with the adhesion tension
estimated by atomistic MD simulations, 70 + 10 mN/m. Following the work of Theodorou et
al®' and Girifalco and Good® and considering that experimental data on interfacial
thermodynamic properties of the polyethylene/ graphite system are not readily available, the
adhesion tension can be expressed in terms of the geometric mean of the surface tensions of the
liquid and the solid as follows:

Ye—Ve =200 7,) " -7, (5.63)

The experimentally measured surface tension of PE at 450 K is y,=28.1 mJ/m?, and that

326

of graphite®® is y; = 115 mJ/m?. On the basis of these values, the experimental estimate of the

adhesion tension, taking the interaction parameter ® =1, is (s — ysp) = 85.6 mJ/ m?.
5.4.2 Study of the Behavior of the Solution

5.4.2/a h-r-and p- Refinement

In Figure 5.7 the reduced density profile ¢(z) is illustrated in a planar thin free standing
polyethylene film a function of distance z in A normal to the film as obtained by SCFFEM, in
3D, with varying mesh density applied, compared with the solution obtained by SCFFD, in 1D.
As shown in the previous section 5.4.1/a, the profiles become identical, proving the direct
correspondence between two methods. Herein we use the SCFFD volume fraction profile
solution as a reference to compare with the solution obtained by SCFFEM with various mesh
densities. The system we use to explore this feature is the free standing polymer film described
in section 5.3.3. The difference between the solutions illustrated in Figure 5.7 indicates the
accuracy achieved in the SCFFEM solution.

A discrepancy between density profiles is clear in Figure 5.7(a-c). The coarser meshes
which correspond to these densities are illustrated in Figure 5.3. These mesh densities are
definitely inappropriate for the considered system. The SCFFEM solution fails to even capture
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Figure 5.7. Polymer volume fraction profile ¢(z) in a planar thin free standing polyethylene film plotted as a
function of distance z normal to the film, in A, as obtained by the three-dimensional SCFFEM method (blue line)
with varying mesh density, compared with the solution obtained by one-dimensional SCFFD (red line). The
difference in volume fraction profile solutions illustrated indicates the accuracy achieved in SCFFEM The plots
(a-h) corresponds to uniform meshes with parameters listed in Table 5.1.Moving from left to right and from top to
bottom the mesh density increases. The plot (i) corresponds to a more efficient mesh, which is finer at the
boundaries and coarser in the middle, and therefore provides better accuracy in solutions with steep gradients. The
actual meshes used are depicted in Figure 5.3.

the position where the density begins to fall from its bulk value as the vacuum is approached.

Proceeding to the plots shown in Figure 5.7(d-f) we see that, as the mesh density increases

(compare mesh depictions in Figure 5.3), the disparity between the 3-D SCFFEM and the 1-D
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SCFFD solutions subsides. SCFFEM can now capture the position of the polymer vacuum
interface with accuracy. Nonetheless, noise is encountered in the strongly curved area of the
reduced density profile. The noise, which is experienced in the finite element solution, is due to
the fact that all nodal points in the three-dimensional mesh are projected onto a single curve.

For the solutions obtained from SCFFEM and presented in Figure 5.7(g-h) extremely
fine meshes were used, which consumed a great deal of computational time compared to the
finite difference scheme. On the other hand, the noise is drastically reduced and the profiles
become nearly overlapping. An interesting observation which can be made in Figure 5.7(h) is
that, despite the symmetry of the system, the profiles are not perfectly symmetric. This is a
common issue encountered in the finite element method when the domain is unable to be
discretized into elements with the same shape and volume. The finer the mesh becomes, the
more time consuming is the solution of the Edwards’s equation. To overcome this problem, a
more sophisticated meshing scheme was applied. Concerning the profiles presented in Figure
5.7(h) and Figure 5.7(i), although they seem identical, a much different mesh was applied to
retrieve each one of them. The mesh applied in Figure 5.7(i) was coarser in the bulk region, but
retained a much finer density near the vacuum edges where the gradients are steeper (see Figure
5.3). Without losing the desired accuracy, we take advantage of the finite element method,
which allows us to change the mesh resolution between domains without much effort.

Having established that a mesh which is finer at the boundaries and coarser in the middle
yields the same solution as a finer mesh in the whole domain, a question arises. How coarse
should the inner mesh be? Herein we describe a method for choosing the optimal mesh density
for the inner domain. For hayg equal to 2 A near the surfaces, higher accuracy is provided in
solutions with steeper gradients. In the middle there is no need for the mesh to be so dense, since
the gradients become zero. Keeping the hayg constant near the surfaces and increasing in at the
bulk region, the time needed for a single iteration decreases (for linear and quadratic
interpolation functions). As illustrated in Figure 5.8, with increasing average element size of the
inner mesh (mesh becoming coarser), the time decreases sharply and reaches a plateau. The
point where the plateau begins corresponds to the optimum hayg. Below this point, the gain in
speed is negligible compared to the accuracy we lose.

The above procedure is commonly referred to as h-r refinement. Increasing the degree of

element method applied in this work, p-refinement can be implemented by changing from first
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Figure 5.8. The method for the construction the mesh, which is finer at the boundaries and coarser in the middle.
For hay equal to 2 A, better accuracy is provided near the surfaces where the solution has steeper gradient. In the
middle there is no need for the mesh to be so dense. Keeping the h,y, constant equal to 2 A near the surfaces and
increasing it in the bulk region, the time needed for a single iteration decreases (for both linear and quadratic
interpolation functions).

to second or higher degree tetrahedral elements. In Figure 5.9(a), the time needed for a single
iteration (titeration) IS plotted versus the number of mesh nodal points for both linear and quadratic
interpolation. For the same number of mesh nodes, the time consumed for a single iteration is
roughly the same with quadratic as with linear elements, the latter exhibiting slightly higher
speed. It is evident that the number of nodal points affects the time spent for an iteration, which
Is reasonable given the egs 5.56-5.58, where we can see that the size of the matrices depends on
the number of nodal points. Figure 5.9(b) depicts the effect of the number if mesh elements in
the speed of iterations for first and second order tetrahedral elements. The meshes are presented
in Table 5.1, where it is noticeable that a mesh comprising the same number of first order
elements can have considerably smaller number of nodal points than another with second order
elements. This difference increases when the mesh becomes denser. Figure 5.9(c) demonstrates
how the average element size (hayg) affects the time needed for a single iteration for both linear
and quadratic tetrahedral elements. The time for a single iteration and h,q exhibit an inverse
dependence. As hag approaches zero, tieration goes to infinity. Note that ha.g can be directly
compared to the spatial domain discretization of the 1D finite difference method. For a mesh

with hayg roughly equal to 0.2 nm (corresponding to approximately 235,000 nodal points), the
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3D SCFFEM needed 120 to 130 seconds for one iteration, while for the same iteration, 1D
SCFFD needs 0.002s.
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Figure 5.9. Time needed for a single iteration for linear and quadratic interpolation functions versus (a) number of
nodal points, (b) number of elements and (c) average element size. The parameters of the meshes are presented in
Table 3.1.

5.4.2/b Mesh Convergence Criterion

As mentioned in the above section, the calculations performed with SCFFEM used a
high density mesh. The size of the matrices increased with the number of elements and so did
the time needed for a single iteration. On the other hand, we use as convergence criterion the
difference of the relative AQ change between two sequential iterations, which is required to be
below a tolerance (in our case, 10°kgT ). We can see that, despite the fact that the same
convergence criterion is satisfied in all graphs presented in Figure 5.7, clearly not all curves
exhibit the same accuracy. Considering the fact that the iterations needed for the solution to
converge can vary and increase abruptly, especially when dealing with realistic

compressibilities, a criterion for mesh quality is required.

In Figure 5.10 we address the system presented in section 5.3.3, but the real
compressibility demand is relaxed. The experimentally measured compressibility of PE at
450 °C is 1.43 GPa™. Herein, the compressibility was altered to a value 10 and 100 times higher
than the real one. The system of equations was solved for all the mesh densities described in
subsection 5.4.2/a. The increase in compressibility results in a decreased surface tension, which
is calculated by eq 5.62, and in the number of iterations needed for the system to converge. In
order to compare the results from different compressibility values, the variable ycac/ Yconv IS
introduced, where ycqc IS the surface tension calculated by eq 5.62 and ycny IS the surface
tension calculated from both SCFFD and SCFFEM (when an extremely dense mesh is applied).

164



5.4. Results

When the mesh density increases, ycaic/ yconv CONVerges to 1. The field relaxation parametera,;,

is constant and the same for all the systems.
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Figure 5.10. Iterations needed for the system to converge versus number of nodal points for 3 different
compressibility values: x;=143. GPa™ (red line-rectangle), 14.3 GPa™ (red dash-circle) and 1.43 GPa™ (red dots-
diamond). “Reduced calculated surface tension” (yeac/yconv) VErsus number of nodal points for the same

compressibility values: xr=143. GPa™ (black line-rectangle), 14.3 GPa™ (black dash-circle) and 1.43 GPa™ (black
dots-diamond).

The discrepancy between density profiles shown at Figure 5.7 gives rise to a difference
in the “reduced calculated surface tension” ( ycac/ yconv), presented in Figure 5.10. The ratio
Vealdl Yeony Varies from 0.2 to 1, 0.5 to 1, 0.8 to 1 for a value of 143.0 GPa*, 14.3 GPa™ and 1.43
GPa, respectively. The more compressible the model is, the more sharply the surface tension
converges to yconv- AS the number of nodal points increases, the ratio ycac/ yconv reaches a plateau,
indicating a satisfying precision of the model. The higher the compressibility, the lower the
number of nodes (implying a coarser mesh) required to converge to the solution. The quantity
veale/ conv CAN be considered as a reliable accuracy convergence criterion for more complicated
models. Another parameter depicted in Figure 5.10 is the number of iterations needed for the
system to converge. It is clear that the number of iterations required increases with increasing
mesh density. This feature becomes an additional burden for the SCFFEM to be taken into
account. It is obvious that the number of required iterations also reaches a plateau, and this can
be an indicator for the accuracy convergence criterion, since the plateau in number of iterations

occurs a bit before that in the reduced calculated surface tension.
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5.4.2/c Initial Field Value

Understanding the behavior of the successive substitution scheme is important for developing a
concrete converging technique for SCFFEM. A central role in the scheme is played by the initial
value of the field inserted in the Edwards diffusion equation. For compressibility values closer to
the real one, feeding the field generated by the convolution integration back into the Edwards
diffusion equation causes divergence of the successive substitution scheme. Mixing the old field
with a small fraction of the new one makes the system stable and leads to convergence. We take

advantage of the relaxation technique and study two possible ways to reach the solution.
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Figure 5.11. First continuation scheme Evolution of the field during the converge procedure with a value of
compressibility: 1 = 1.43x10° Pa™ and with constant field relaxation parameter, ami.=0.005. As can be seen in the
graph, the initial field is zero everywhere and 700 iterations are needed for convergence. When second order
tetrahedral elements are used (not shown), a continuation scheme with respect to the compressibility is required,;
approximately the same number of iterations is needed at each individual “compressibility step”.

The first continuation scheme begins with zero or random initial value of the field. The
mixing parameter is kept constant and depends on the chain length, the compressibility, the
characteristic ratio and the bulk polymer segment density. Figure 5.11 depicts the fluctuations of
the field projected to dimension z, for the experimentally measured compressibility of PE at 450
°C. The initial field w'(z)/ kgT is zero everywhere in the domain, and in approximately 100
iterations it reaches the value of 1.5 near the surfaces. In order to reach the value of 3.41 on the
surfaces (converged value), approximately 700 iterations are required. An interesting
observation concerning this technique is that, if we use quadratic elements to discretize the

domain, the system diverges. In order to achieve convergence with the second order tetrahedral
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elements, the continuation scheme must begin with high melt compressibility and continue by
gradually reducing the compressibility to its correct value. This approach demands convergence
at every compressibility step and was proven to be too time consuming for realistic
compressibilities, since, in every compressibility step, a large number of iterations is required to

achieve convergence.
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Figure 5.12. Second continuation scheme (@) Evolution of the field during the convergence procedure with a value
of compressibility: xt = 1.43x10°Pat , using variable any. Initial field calculated from the first iteration with zero
field as input and ami,=1. 180 iterations are needed for a. to reach 0.005 and the field profile to stabilize. (b)
After anix reaches the value of 0.005, nearly another 200 iterations are needed for the system to converge.

A second, more direct approach was implemented in order to save computation time. In
this technique, as initial guess for the field we used the field configuration calculated from the
first iteration. The first iteration had zero field as input and amix=1. The initial field configuration
is presented in Figure 5.12(a); it differs from zero. Near the surfaces it reaches from the
beginning the converged value, but it exhibits smoother gradients than the converged field in the
rest of the domain. In this direct approach, the relaxation parameter does not remain constant.
Starting with extremely small mixing fractions for the new field, we attempt to converge to the
solution. The initial mixing fraction was set equal to 0.5x10™*%!. In every iteration, the mixing
fraction was multiplied by a factor of 10. When the mixing fraction reaches the same value as in
the previous technique, it is kept constant. This procedure bypasses the intermediate
compressibility steps and reaches the target compressibility with quite remarkable performance.

The convergence following this strategy, which we call the “straightforward approach,” is
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shown in Figure 5.12(a). After amix reaches the value of 0.005, nearly another 200 iterations are

needed for the system to converge. This process is depicted in Figure 5.12(b).
5.4.3 Grafted Chain System

The current section presents structural and thermodynamic properties of polymer grafted
surfaces in contact with chemically identical matrix chains. The SCFFEM is a three-dimensional
method, as it is shown in Figure 5.13. Although we use it in a planar geometry for demonstration
purposes, the capabilities for implementation in more complicated geometries are indisputable.
The grafted chain system is captured with small elements, demonstrating how adaptable and
flexible the FEM method can be. As declared in section 2.2.1, the initial condition is adjusted for
every grafted chain. The number of matrix chains can fluctuate, but the number of grafted chains

in the system remains constant, since they are chemically grafted to the solid surface.

Figure 5.13. The grafted chain “diffusion” equation against matrix chain “diffusion” equation at several reduced
contour length steps. We illustrate the probability of finding a segment of a grafted(q) (a-d) and a matrix(qm) (e-h)
chain initially and after 5, 10, 100 contour length steps, respectively, throughout the volume of the domain.

In Figure 5.13, we illustrate the probability of finding a segment of a grafted and of a
free chain after various contour length steps in the volume of the domain. It is obvious that 16
chains are grafted to each substrate surface, resulting in a grafting density of 0.25 nm™. The
probability of finding the grafted segment of a grafted chain (corresponding to contour length
equal to zero) is zero everywhere inside the domain except for the positions of the grafted
points. As the contour length steps increase, the probability diffuses from the surfaces to the

168



5.4. Results

center. In contrast to the grafted chains, matrix chains begin with zero probability of finding a
segment at the interface and equal to 1 everywhere else. The two systems of chains are
connected to each other through the chemical potential field, which determines the way in which
the propagator of both kinds of chains behaves.

5.4.3/a Reduced Density Profiles

Figure 5.14 depicts the reduced density profiles of PS grafted chains in the presence of a
Hamaker potential exerted by the silica walls, as a function of o5, Mg, and Niw/Ng. The behavior
of grafted chains can be classified into three distinct regimes depending on the combinations of
oy and Ng: The structural behavior of both grafted and matrix chains varies with position, as we
move along directions perpendicular to the interface. In previous SCF works addressing grafted
chain systems, the grafted chains were handled via a smearing technique, hence it was not
possible to distinguish how these reduced density profiles vary as one moves laterally (along the
x and/or y directions). The results obtained from the one dimensional model,where the grafting
points are smeared, are demonstrated with dashed lines in Figure 5.4. As illustrated in Figure
5.4, the grafting points (g-points) denote the positions where the grafted chains are tethered to
the silica surface, while the central points (c-points) denote the centers of squares formed by
adjacent grafted points. It is expected that the density profiles of grafted chains, along the
z-direction, are maximal at the g-points and minimal at the c-points. In addition the profiles
corresponding to the smeared grafting points assume values between the profiles at g-points and
Cc-points.

In the left column of Figure 5.14, a wide range of reduced segment densities is
illustrated. As we move downwards along this column in the figure, the grafting density
increases, while the molecular weight of grafted chains, Mg, and the swelling ratio, Nm/Ng, are
kept constant. The mushroom regime is depicted in the first three graphs (Figure 5.14(a-c)),
where the matrix chains are seen to reach the solid wall. In Figure 5.14(c), the regime between
mushroom and dense brush is displayed. The number of matrix chains which reach the
interfacial regions is small and localized in the vicinity of m-points. In Figure 5.14(d), a dense
brush is formed on each surface, with small interpenetration of the matrix chains. In Figure
5.14(e) grafted chains have completely expelled the matrix chains. At low grafting densities, the

matrix chains of the melt penetrate the brush and there is a broad brush-matrix polymer
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interface. With increasing grafting density, a gradual growth of an almost pure layer of grafted

chains on the substrate is observed.

The most striking result emerging from the left-hand side column of Figure 5.14 is that
the reduced density profiles of grafted chains connecting two opposing g-points exhibit a sharp
peak near the interfaces. When the grafting density increases, the peak of the density profiles
becomes less pronounced. It is important to note that the decrease in the peaks is reasonable,
since at low grafting densities the chains behave like mushrooms and therefore they look like
reflected random coils with strong presence near the solid surfaces, whereas at high grafting
densities crowding forces them to extend further into the bulk. Our findings appear to be in good

|.138

agreement with the reported literature. Ndoro et a report a peak which exceeds the bulk

1.1% the total monomer

density by at least a factor of 1.4. In addition, according to Ndoro et a
number density profiles exhibit a peak equal to 1.9 times the bulk density, while this peak
decreases with increasing grafting density. \Vogiatzis et al.’s *** findings appear to support our
conclusions; they observed a similar behavior in studying the structural features of polystyrene
brushes grafted on spherical silica nanoparticles immersed in polystyrene. In that work, they

used a Monte Carlo methodology based on a mean-field Hamiltonian.

In the central column of Figure 5.14, a wide range of chain lengths is illustrated. Moving
downwards, the chain length increases, while o4 and Nn/Ng are kept constant. The peak
exhibited by the reduced density of grafted chains starting from g-points is fixed at 1.6 for all
chain lengths. The matrix chains reach the solid wall even for higher values of Ng. With
increasing Ny, the density of matrix chain segments decreases, whereas the one of grafted chain
segments increases. Moreover, the reduced density of grafted chain segments at c-points and g-
points near the surfaces is quite different for small Ny, while, with increasing Ng, this difference
is reduced. If we now turn to the matrix chain segment profiles at c-points and g-points near the
surfaces, they tend to translate downwards almost uniformly with increasing Ng; an almost
constant difference is observed between c-profiles and g-profiles of matrix chains for all grafted

chain lengths.

For further investigation, a comparison between graphs with the same oy Ng product but
different values of o4 and Ny is revealing. Plots of Figure 5.14(c) and Figure 5.14(j) display
results for ag:0.25nm'2, My=10.4kg/mol and ag:0.06nm'2, My=41.7kg/mol, respectively. Note
that Nin=Ng in both cases. Although they belong to the same region according to ref 237, the
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Figure 5.14. Reduced density profiles of PS grafted and matrix chains as a function of o4, Mg and Ny,/N, Profiles of
matrix chains move across a direction perpendicular to the interface starting from c-points(red) and g-points
(green). Profiles of grafted chains move across a direction perpendicular to the interface starting from c-points
(black) and g-points (blue). With dashes the results for reduced density profiles of PS grafted and matrix chains as
obtained from the smeared 1-D model (SCFFD).
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density profiles differ. The matrix chains penetrate the region occupied by the grafted chains
more easily in the system with higher grafting density. The brush thickness of the system with
lower molecular weight of grafted chains appears to be smaller. Moreover, in the higher Ny
system the matrix chains seem to have the same density throughout the domain, while in the

lower Ng system the matrix chains dominate the bulk region and are absent from the interfaces.

In the right hand-side column of Figure 5.14, a wide range of swelling ratios Nm/Ng is
illustrated. Moving downwards, the swelling ratio increases, while oy and Ny are kept constant.
In Figure 5.14(1), it is interesting to see that the reduced profiles starting from c-points are
almost identical for the matrix and grafted chains. Smaller matrix chains can easily move and
penetrate into the region occupied by the grafted chains. With increasing swelling ratio (Figure
5.14(I-n)), this penetration ability of the matrix chains decreases. Experimental,"** SCF,*" and

molecular dynamics (MD)*’

works on planar polymer brushes, in a chemically identical matrix,
have shown that the matrix wets the polymer brush only when the melt chains are shorter than
the chains of the brush. When the matrix chains become shorter than grafted chains (Figure
5.14(0-p)), the density profiles remain unchanged. The increase in the swelling ratio seems to
have no effect on the matrix segments penetrating the brush. It is experimentally observed®® that
“autophobic dewetting" occurs when the brush and the matrix share the same length. Longer
melt chains spontaneously dewet the brush, because the gain in mixing entropy cannot overcome

the conformational entropy loss associated with the matrix chains penetrating the brush.

5.4.3/b Reduced End — Middle Segment Distribution

Figure 5.15 depicts the reduced density profiles of the end segments of grafted and
matrix chains on lines connecting c-points and g-points across the investigated parameter space.
Of particular interest is that, in all graphs, the end segments of both grafted and matrix chains
appear to prefer to be near the c-points rather than the g-points. As expected, there is no
difference in the bulk region between end segments starting from c-points or g-points.

With increasing grafting density and keeping the remaining parameters constant
(Figure 5.15(a- €)), there is a rise in the reduced density profiles of the grafted chain ends in the
whole domain. At higher grafting densities the grafted chain end profiles are shifted towards the
bulk region, confirming that the chain ends are segregated far from the surface, suggesting that
the grafted chains are stretched. The matrix chain ends appear to dominate in the bulk region,
even at higher grafting densities. As anticipated, near interfaces the matrix chain ends reach
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Figure 5.15. End segment distributions of PS grafted chain systems as a function of o5, Ng and N /Ng. Profiles of
matrix chains are moving across a direction perpendicular to the interface starting from c-points (red) and g-points
(green). Profiles of grafted chains are moving across a direction perpendicular to the interface starting from c-points

(black) and g-points (blue).
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more easily c-points than g-points. The presence of matrix chain ends at the interfaces decreases

with increasing grafting density.

As shown in Figure 5.15(g-k), with increasing molecular weight of grafted and matrix
chains, and retaining the (low) grafting density and swelling ratio constant, the grafted chain
ends increase near interfaces more sharply than in the bulk region. Interestingly, for high values
of molecular weight, the grafted chain ends seem to prefer the interface rather than the bulk
region. The reduced density of matrix chain ends assumes an approximately constant value in
the whole domain. Again, a preference of matrix chain ends exists for c-points rather than g-

points.

Plots of Figure 5.15(c) and Figure 5.15(j) display results with the same oy Ng . In both
cases, Nm=Ng. The grafted chain ends vary throughout the whole domain in the system with
lower grafting density, exhibiting a peak near 1.0, while in the system with higher grafting
density the grafted end chain profile is smoother. The opposite behavior is revealed for the
matrix chain ends. In the higher Ng system the matrix chain ends seem to have the same density
throughout the domain, while in the low Ny system, the matrix chain ends dominate in the bulk
region and are absent near the interfaces.

Figure 5.15(1-p) illustrate how the swelling ratio affects the chain end profiles. Our

findings are consistent with previous results'*¢=0"3%/

confirming that the smaller the matrix
chains are, the more easy it is for them to penetrate into the region occupied by the grafted
chains. The above statement is proved by the fact that, when the swelling ratio is lower than 0.5,
the matrix chain ends extend in the whole domain, indicating a presence of matrix chains in the
brush region. As the swelling ratio increases, the matrix chain ends are pushed towards the bulk
region. Finally, with increasing swelling ratio, the grafted chain ends have an enhanced presence

near the interfaces.

5.4.3/c Contributions to the Grand Potential
Figure 5.16(a) presents the individual grand potential terms against the grafting density, 4. The
cohesive interaction term per unit solid surface (AQ., /S,,4) IS practically insensitive to

grafting density. The solid-polymer interaction term (Us /Ssiig) remains constant for all grafting
densities, while the entropy term associated with the partition function of matrix chains
(AQm/Ssoiig) €xhibits a minor increase, which becomes larger at larger grafting densities, because
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grafted chains claim more space in the interfacial region, leaving the matrix chains with fewer
available conformations. With increasing grafting density, the entropy term associated with the
grafted chains AAg/Ssiig and the field term AQfieia/Ssoia Vary notably, especially for larger
grafting densities. This is attributed to py exceeding psegmui due to chain crowding and enhances
the cohesion of the brush. AAy/Sseiig increases steeply in the vicinity of higher grafting densities.
This response is attributed to the stretching of the grafted chains due to crowding phenomena.
The total grand potential AQ/Sqiiq, being a sum of all the above terms, increases with increasing
grafting density. According to Figure 5.16(d) the SCFFEM and SCFFD exhibit similar

quatitative behavior.
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Figure 5.16. Partial contributions to the grand potential per unit area over the parameter space (gg, Ng, Nm/Ng).
Grand potential terms against: (a) the grafting density , g4, keeping constant Ng=100, N./Ng=1, (b) the grafted
chainlength , Ny keeping constant ag=0.625nm’2, Nm/Ng=1, (c) the swelling ratio , Nn/Ny keeping constant
04=0.25nm™, N4=100,0btained from SCFFEM-3D. (d-f) The partial contributions to the grand potential per unit
area over the same parameter space (og, Ng, Nm/Ny) as obtained from SCFFD-1D.

Figure 5.16(b) illustrates the individual grand potential terms against the grafted
chainlength , Ng. Again, the cohesive interaction term per unit solid surface (AQy, / Seiq) 1S

practically insensitive to chain length. Similar behavior is exhibited by the field term,

AQsie1d/Ssolig, and the solid-polymer interaction term, Us /Swiiq- The grafting density is rather
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small and therefore these terms are not affected by the change in chainlength. The entropy term
associated with the partition function of matrix chains (AQm/Ssig) exhibits a monotonic
decrease, which is evident from eq 4.11, since N, appears in denominator and at the same time
the partition function Qp, is rather insensitive to Ny, . This can be also explained by the fact that
with increasing Np, the number of matrix chains per unit surface decreases. These values
correlate favorably with figure 5b of Sgouros et al.,**!in which the dependence of AQ, with
Ng is illustrated for constant N,/Ng=1. The entropy term associated with the grafted chains
(AAy/Ssoiia) increases, indicating that there is an entropic penalty with increasing grafted chain
length associated with grafted chain conformations. The most remarkable result to emerge from
this plot is the behavior of total grand potential AQ/Sqi4, €Xhibiting an initial decline due to the
AQm/Ssoiig term, a minimum at chainlength equal to 200 skeletal bonds, and finally an increase
due to AAy/Ssoiig. The one dimensional model results in the same exact prediction wherein the

minimum is located at Ny =200 as illustrated in Figure 5.16(e).

Figure 5.16(c) shows the individual grand potential terms against the swelling ratio
Nm/Ng. As in the two previous plots, the cohesive interaction term per unit solid surface and the
solid-polymer interaction term remain almost constant with increasing swelling ratio.
Unexpectedly, with increasing swelling ratio, the entropy term associated with the grafted chains
and the entropy term associated with the partition function of matrix chains present the same
qualitative behavior; initial decrease and eventual relaxation to a plateau value. This behavior is
attributed to the stretching of the grafted chains due to crowding phenomena, because matrix
chains are shorter and thus exhibit a larger number of available conformations when in the lower
swelling ratio regime. With increasing swelling ratio, the matrix chains cannot easily penetrate
grafted chains and they exhibit fewer available conformations due to increase in their chain
length. AQsieid/Ssolig inCreases with increasing swelling ratio and this is attributed to the increase
of segment density near interfaces. AQ/Sqiq €xhibits a monotonic decrease and finally reaches a
plateau, which is in agreement with previous findings in the literature®* as well as with the
SCFFD-1D model as shown in Figure 5.16(f)

55 Concluding Remarks

In this chapter we have coupled one theoretical methodology with one of the most important and
widespread numerical techniques, in order to determine the equilibrium properties of polymer

melts at interfaces: self-consistent field theory (based on a Gaussian thread representation of
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chains) and the finite element method. To validate the results of our SCFFEM approach, we
have used the system of a free standing molten polyethylene film and the interface between
molten polyethylene and graphite as reference systems, which we are also studying with
atomistic and mesoscopic simulations and for which a solution using one- dimensional finite
differences (SCFFD) is available. Moreover, we compared the results against previous authors’

implementations.?**!

The results and assessment of the computational requirements of our new SCFFEM
approach, for a polymer free surface and for a planar solid/polymer interface, were validated
through the calculation of the surface and the adhesion tension. We prove that SCFFEM gives
identical solutions with SCFFD and MD. Although the problem we solve was in fact one-
dimensional, our RuSseL code solves it in all three dimensions, without any bias in any

dimension.

An objective of this chapter was to develop a finite element computational methodology
to explore the most critical parameter for finite element method: the mesh density and
composition. At first, we investigated how the mesh density affects our solution and what is the
optimum mesh density to accomplish the desired accuracy. For our realistic PE system with real
compressibility, a mesh with average element size equal to 2 A is needed. This mesh proved to
be time consuming and we took advantage of the flexibility of the finite element method by
applying a coarser mesh to the domain where no steep solution gradients are exhibited. We
developed a technique to decide what the ideal mesh for this domain is. Additionally, we
compared the time for a single iteration needed for both linear and quadratic elements, with
respect to the number of nodal points, the number of elements, and the average element size.
These tests revealed that first order tetrahedral elements enable faster convergence than second

order tetrahedral elements for the same number of nodal points.

Furthermore, we analyzed the stability of the integrodifferential system of equations in
order to find out its behavior and convergence requirements. As a first attempt, we chose to
adjust the compressibility of the system. Different meshes were applied for various
compressibilities. We introduced the “reduced surface tension” as a reliable criterion for system
convergence with the desired accuracy. The number of iterations required for the system to
converge was used as a second criterion for the obtained accuracy. In order to comprehend the
behavior of the successive substitution scheme, different initial field configurations were tried.
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In the classical approach, the relaxation parameter remained constant, while in our new “straight
forward approach”, the relaxation parameter changed at ecach iteration. The latter calculation
proved to be quite efficient, since it reduced the total computation time with negligible cost in

accuracy.

Next, we considered a system of grafted chains in a planar geometry. A polystyrene/silica
interface with grafted polystyrene chains constitutes a convenient system. Implementation of the
SCF-FEM approach in systems containing grafted chains at specific points of the solid surfaces
was far from a trivial undertaking. As pointed out in Section 5.3, in the presence of grafted
chains, two Edwards diffusion equations have to be solved, one for the matrix melt chains and
one for the grafted chains. In each iteration, the equation for the matrix chains has to be solved

first, as it is necessary for the evaluation of the initial conditions of grafted chains.

Until now, a smearing in grafted chains was applied. We distinguish the grafting positions
on the surfaces from those without grafted chains. On the one hand, “g-points” designate the
positions where the grafted chains are tethered to the silica interface. On the other hand, “c-
points” designate the centers of the squares formed by adjacent grafting points. Reduced density
profiles along lines connecting opposing g- and c- points were derived, considering a parameter

space comprising Ng, ag and Npm/Ng.

The reduced density of grafted chains on lines connecting two opposing g-points exhibits
a peak near the surfaces. When the grafting density increases, the peak of the density profiles
becomes less pronounced. This is in good agreement with previous works.****3 With increasing
molecular weight, the peak value remains unchanged. The matrix chains reach the solid wall
even for higher values of Ny and their profiles at the c-points and g-points near the interfaces
exhibit a constant difference for all values of Ng. Systems with the same oy Ny product, although
belonging to the same region according to ref 237, exhibit dissimilar density profiles. Finally, by
varying the swelling ratio, we have shown that the matrix wets the polymer brush only when the
melt chains are shorter than the chains of the brush. Our findings corroborate previous

results, 136307327,

The end segment distributions of grafted and matrix chains along lines connecting c-points
and g-points were also investigated across the same parameter space. Of fundamental interest is
the fact that end segments of both grafted and matrix chains appear to prefer to be near the

c-points, rather than g-points. With increasing grafting density, it was revealed that grafted chain
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ends spread in the whole domain. As expected, for higher grafting densities, the grafted chain
ends prefer the bulk region. As might have been expected, for small swelling ratio values, matrix
chain ends extend in the whole domain, confirming that the smaller the matrix chains are, the

easier it is for them to penetrate into the region occupied by the grafted chains.

Regarding the contribution to the grand potential, the present chapter investigates the
individual grand potential terms, defined in the previous chapter, against grafting density, chain
length, and swelling ratio. With increasing grafting density, AAy/Ssoiia and AQfieid/Ssolia deviate
notably, especially at larger grafting densities. This is attributed to chain crowding and enhances
the cohesion of the brush and the stretching of the grafted chains. The total AQ/Ssiq increases
with increasing grafting density. With increasing chain length, AQm/Ssiig €xhibits a monotonic
decrease, which is justified from eq 4.11. This can be also associated with the fact that with
increasing Np, the number of matrix chains per unit surface decreases. The AAy/Ssaiig Increases,
indicating that there is an entropic penalty associated with grafted chain conformations. The
AQISqq1ig term exhibits a minimum at chainlength equal to 200 skeletal bonds. With increasing
swelling ratio, AAg/Ssiia and AQ/Ssiq decrease and reach a plateau value due to crowding
phenomena. Matrix chains are shorter and thus exhibit a higher number of available
conformations in the lower swelling ratio regime. AQ/Sqiq exhibits a monotonic decrease and
eventually reaches a plateau which is in agreement with previous findings reported in the

literature. %
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6 Main Conclusions and Innovations

The present Thesis addresses three major theoretical challenges in the field of field-theoretic
calculations, and especially in self-consistent field theory of polymers. First, by including
nonlocal terms from square gradient theory into SCFT of a free film polymer system, we
obtained critical insight into its local segment-level structure and increased accuracy in
predictions of polymer surface tension. Then, having verified the novel SCFT with SGA
methodology, we have used it as a stepping stone to access the structural and thermodynamic
properties of PNC and at the same time we reexamined the scaling features of grafted polymer
layers, against experimental measurements and relevant theoretical predictions. Last but not
least, prompted by the need to develop a better quantitative understanding of structure and
interactions in polymer-matrix NC, we developed a new computational approach, based on
SCFT combined with FEM for dealing with inhomogeneous polymer systems containing
interfaces in three dimensions. The main contribution of this thesis was to build up a field
theoretic approach based on the SCFT capable of providing fundamental understanding and
giving answers to specific nanocomposite design-related problems, to prove its thermodynamic
consistency, and to validate it against available experimental measurements. In the following we
briefly summarize the innovations introduced by the dissertation at three levels: methodology,

physical insight, and computational tools.
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6.1

Methodological Advances

e Formulation of grand partition function which relies on a generic excess Helmholtz energy

functional, in such a way that any suitable equation of state can be applied to describe the
non-bonded interactions among chain polymer segments. In conjunction with the
aforementioned free energy functional, a square gradient term was introduced based on
Square Gradient Theory, which allows to describe non-local effects and leads to more
accurate estimates of density profiles and surface tensions. The formulation can be
implemented in systems of arbitrary geometry consisting of either only free polymer

chains or both grafted and free (matrix) polymeric chains.

Derivation of a closed form expression for the free energy density by employing a lattice-
based EoS, proposed by Sanchez-Lacombe, to calculate the grand potential and density-
dependent field in SCFT. Moreover, we have reexpressed the dimensionless influence
parameter to benefit from the advantages of the non-local term approximation and
transformed the SCFT formulation, enabling estimation of the influence parameter for
each polymer based only on the parameters of the Sanchez-Lacombe EoS

® introduced a method to calculate the number of

Quite a long time ago, Theodorou®
chains passing through a surface drawn parallel to the interface anywhere within the film.
The methodology, originally developed for a lattice fluid SCF model, was extended by
Daoulas et al.** and implemented in the continuous Gaussian thread model. The
contribution of this thesis consists in deriving the necessary expressions for calculating the
reduced chain shape quantity, allowing direct comparison of SCFT results with atomistic
simulations in terms of the conformational properties of chains. Additionally, we have

reformulated this quantity in a way that is applicable to spherical geometries as well.

Derivation of a thermodynamic relation between the grand potential and surface tension
for the case of a film of polymer melt bounded by gas capable of yielding the surface
tension for various polymers. This relation proved to be very accurate for calculating the
surface tension as obtained from SGT density profiles, giving a more generic character to

the formulation.
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e Development of two techniques for evaluating the thickness of the reduced free polymer
density profile capable of quantifying the sigmoid profiles obtained by various models.
These two distinct strategies allowed measuring how symmetric, smooth, and wide a

density profile is.

e Development of a numerical formulation for Vapor-Liquid Equilibrium of a Sanchez-
Lacombe Fluid based on the Newton-Raphson method capable of calculating the densities
and (common) chemical potential of both phases, as well as the vapor pressure. That
calculation was incorporated in all models, even if in the simple Helfand model by
calculating the isothermal compressibility of the liquid.

e Development of a separate technique capable of classifying chain segments in free
standing polymer chains into adsorbed or free. We modified this technique to GNP
immersed molten polymer matrices to describe how matrix chains can penetrate the

grafted chains.

e Derivation of the segment balance equations dealing with the grafted and the matrix
chains in the presence of the external field of the solid(s). We related the reduced grafted
chain density with grafted and matrix chain propagators, allowing the calculation of

grafted chain density profiles.

e Transformation of SCF equations from Cartesian to spherical polar coordinates so that
they can be utilized in the case of a spherical nanoparticle with uniformly smeared grafting

points on its surface.

e Quantification of exponents of the power-law applied to describe the scaling of the height
of polymer brushes with surface grafting density, grafted and free chain lengths, allowing
us to evaluate the mean brush thickness and obtain a unique perspective on various brush
regimes. Moreover, we introduced the measure brush thickness ratio, enabling us to make
additional comparisons between the SCFT model and Alexander’s model for

incompressible melts.
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e Derivation of thermodynamic contributions to the grand potential for the case of chains
grafted on NP or planar surfaces in contact with a polymer melt capable of clarification of
the enthalpic and entropic parts of energy. Likewise, the stretching free energy of grafted
chains has been estimated with two different ways: from the configurational partition
function of grafted chains and from the density profiles of the grafted chain ends.

e A rigorous and efficient three dimensional finite element method based on tetrahedral
elements for solving Edwards’s diffusion equation has been developed. Tetrahedral
elements are appropriate for arbitrary complex geometries and compatible with fully
automatic mesh generations. The results from the new, three-dimensional finite element
method are in excellent agreement with previous results based on a one-dimensional
method. Moreover, in the three-dimensional formulation we employ a rigorous initial
condition on the grafting points, evaluating the required delta function as the inverse
volume assigned to the node. Previous efforts resulted in smearing of the grafted points, an
approximation that is lifted with our new, three-dimensional FEM technique.

e Development of a h-,r-,p-refinement technique capable of obtaining the ideal mesh density
for finite element solution. The contribution of this thesis consists in deriving two criteria
for obtaining the desired mesh density (one based on system iterations and a second one
based on the grand potential/surface tension obtained), in discovering the optimal element
size for bulklike domains that are represented more coarsely, and in the comparison of

time needed for a single iteration between linear and quadratic element meshes.

e A precise and timesaving iteration method was established by implementing an improved
procedure for guessing the initial field imported into the Edwards diffusion equation and
by tuning the relaxation parameter between iterations. This “straight forward approach”
was successfully validated, with significant reduction in the time needed for the system to

converge.
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6.2 Physical Insight Obtained

By using the methodologies described above we have extended our understanding of materials

in the following ways:

e The model employing an excess Helmholtz energy density based on the Sanchez-Lacombe
equation of state coupled with a square density gradient term achieves best agreement with

atomistic simulation results.

e The SCF-SGA model combines SCF models, which consider only the local density in
describing chain interactions and produce steeper profiles, and SGA-based models, which,
although capable of generating smoother and more realistic density profiles, do not
incorporate  entropic  effects  associated  with the change of chain
conformational/orientational distributions in response to the constraints present at the
surfaces, thus overestimating the surface entropy.

e As is well known for homopolymers where the ends are of the same chemical constitution
as the middle segments, chain ends were found to segregate to the interfaces. The
magnitude of this effect and the extent of the interfacial region dominated by the end
segments can be estimated with accuracy by our SCF approach, as comparison with
atomistic simulations shows. In addition, the temperature dependence of this effect is

correctly captured by the theory.

e Some discrepancy appears between SCF_SL+SGA and MD in the profiles of segments
belonging to adsorbed and free chains, which is less significant for C260 chains than it is
for C100 chains. The reason for this discrepancy is that the Gaussian thread model
employed does not fully capture local stiffness effects. SCF qualitatively follows the
atomistic results. The same behavior is seen in the loop and tail distributions of adsorbed

chains.

e An important structural feature of polymer melts at surfaces is the flattening of chains due

to their preferential orientation parallel to the surface. Both atomistic and field theoretic
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results show a relationship between the chain length and extent of the chain flattening
region. In free polyethylene films of chains as short as C260 the shape profile from
SCF_SL+SGA almost coincides with that from MD. The range of the flattening effect is in

good agreement between theory and simulation, being on the order of 1.6R, .

The reduced influence parameter found to reproduce the atomistically calculated reduced
density profile for the polyethylene surface was used for all polymers examined. The SCF
conformational entropy contribution added by the SCF treatment in the Gaussian thread

approximation increases the surface tension by 5-10%.

A nice feature of SCF-SGA model is that it accounts for two distinct length scales
simultaneously: i) a monomeric one, set by the range of monomer interactions, governing
properties of the liquid-vapor interface; ii) a polymeric one, set by the radius of gyration,

governing structural properties at the chain level.

For most polymers SCF_SL+SGA vyields results for both surface tension and surface

entropy that are in excellent agreement with experiments

It is clear that with increasing grafting density and chain molar mass, the grafted chains
on a solid surface exposed to melt of the same chemical constitution as the grafted chains
need to stretch towards the bulk in order to adjust to their conformational
restriction.?*>?%02%* As a result, it is more difficult for the matrix chains to penetrate into

the interfacial region.

The scaling law for the corona thickness, h~ N, "*f.. ", proposed by Daoud and Cotton

star star

for star polymers in the intermediate regime, f "?072 > N, > f"%, over a specific range

star
of nanoparticle radii, specifically from 4 nm to 8 nm. For larger nanoparticles, the scaling
exponents exhibit a complicated behavior, and thus a more general equation must be
implemented, which treats the exponents of the molecular weight and grafting density as

functions of nanoparticle radius.
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e Adjusting also the pre-exponential factor of the scaling law, a master curve can be
obtained, which provides a faithful description of SCFT predictions for the brush height in
linear polymer melts of the same chemical constitution and length as the grafted chains,
given the molecular weight of grafted chains, the grafting density, and the radius of the

nanoparticle.

e In calculating the free energy of the system, the term associated with the conformational
entropy of grafted chains does not depend on nanoparticle radius for low grafting densities
and molar masses (Figure 4.12). The same plot reflects that, with increasing grafting
density or molar mass, the grafted chains need to stretch and therefore the free energy
penalty associated with chain stretching increases. This entropy contribution of the grafted
chains becomes dominant for high grafting densities and molar masses.

e The stretching free energy of grafted chains has been estimated in two different ways (1:
from the configurational partition function of grafted chains and 2: approximately from the
density profiles of the grafted chain ends) and a good agreement with the Alexander model
was observed in the limit of large grafting densities. The corresponding entropic term of

matrix chains has a minor contribution to the total free energy.

e The reduced density of grafted chains across a line connecting two opposite g-points
exhibits a peak near the surfaces. When the grafting density increases, the peak of the
density profiles becomes less pronounced. This is in good agreement with previous
works. "33 With increasing grafted chain molecular weight the peak value remains fixed.
For low surface grafting densities (mushroom regime), the matrix chains reach the rigid
wall even for higher values of Ny and their profiles at c-points and g-points near the

interfaces exhibit a constant difference for all values of Ng.

e Systems with same o4 Ny , although belonging the same region according to ref 237, may
exhibit dissimilar density profiles.
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By adjusting the swelling ratio N/Ng, the matrix is found to wet the polymer brush only
when the melt chains are shorter than the chains of the brush. Our findings corroborate

previous results. 136,307,327

Of fundamental interest is the fact that, at low grafting densities according to ref 237, end
segments for both grafted and matrix chains appear to prefer to be near the c-points rather
than g-points. With increasing grafting density that grafted chain ends spread across larger
parts of the domain. As expected, for higher grafting densities the grafted chain ends
prefer to segregate in the vicinity of the bulk region. As might have been expected, matrix
chain ends at small swelling ratios extend throughout the whole domain, confirming that
smaller the matrix chains are more easily capable of penetrating grafted chains.

With increasing grafting density, AAg/ Ssiia and AQsieid/ Ssoiia deviate notably, especially
for larger grafting densities. This is attributed to chain crowding and enhances the
cohesion of the brush and the stretching of the grafted chains due to crowding phenomena.
In addition, the grand potential per unit area, AQ/ Ssyig InCreases with increasing grafting

density.

With increasing grafted chain length, while keeping o4 and Nm/Ng constant, the entropy
term associated with the partition function of matrix chains (AQm/ Sslig) €Xhibits a

I.,321 i

monotonic decrease, and this result correlates well with figure 5b of Sgouros et a n

which the dependence of AQy on Ny is illustrated, for constant Ny/Ng=1.

With increasing grafted chain length, while keeping oy and Nm/NgL, constant, the AAy/
Seolig  INcreases indicating that there is an entropic penalty associated with chain
conformations. For the system with opposing grafted surfaces ag:0.06nm'2, Nm/Ng =1 and

L, =10 nm, the AQ/Syig exhibiting a minimum at value of 200 skeletal bonds chain length.
With increasing swelling ratio N,/Ng , while keeping o4 and Ny constant, AAg/ Ssoiig and

AQ/ Seoiig decrease and reach a plateau value due to crowding phenomena, because matrix

chains are smaller and more broadly distributed in the lower swelling ratio regime.
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6.3

AQ/ Ssoiig €xhibits a monotonic decrease, reaching a plateau, which substantiates previous

findings in the literature.?*

Computational Tools

In the framework of the present thesis the following computer codes have been developed:

e RuSselL-1D, the one-dimensional version of our in-house code, has been developed to

address polymeric interfaces through Self-Consistent Field calculations. RuSseL can be
used for a wide variety of systems in planar and spherical geometries, such as free films,
cavities, adsorbed polymer films, polymer-grafted surfaces, and nanoparticles in melt and
vacuum phases. The code includes a wide variety of functional potentials for the
description of solid—polymer interactions, allowing the user to tune the density profiles
and the degree of wetting by the polymer melt. Based on the solution of the Edwards
diffusion equation, the equilibrium structural properties and thermodynamics of polymer
melts in contact with solid or gas surfaces can be described. We have extended the
formulation of Schmid to investigate systems comprising polymer chains, which are
chemically grafted on the solid surfaces. A full ducementation can be foundin ref 323.

RuSseL-3D, the three-dimensional version of our in-house code, is capable of addressing
a great variety of systems in complex geometries, such as nanoparticles in melt and
vacuum phases, nanotubes, free, supported, or capped polymer films, polymer-grafted
interfaces, and every nanostructure anyone can imagine. It is based on the finite element
method for solving the Edwards diffusion equation. It is compatible with COMSOL
Multiphyshics for mesh generation, features an input parser, uses a BDF solver, and is
connected with MUItifrontal Massively Parallel sparse direct Solver (MUMPS) for large
linear systems. It is capable of using first and second order tetrahedral elements, but fully
versatile to use hexahedra or pyramids as elements, if desired. It can compute initial
values for grafted chains at specific points and it is capable of applying Neumann and
Dirichlet boundary conditions. An extension for periodic boundary conditions is in the

making.
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6.4

Side Projects

In order to address the main challenges of this PhD thesis, several other sub-problems have been

resolved:

A mesoscopic simulation approach has been developed for liquid—gas interfaces of
weakly and strongly entangled polymer melts and implemented for linear polyethylene at
450 K. A combined particle and field-theoretic treatment has been adopted based on
aggressive coarse-graining, each polymer bead representing ~50 carbon atoms, with
effective bonded interactions extracted from atomistic simulations. Non bonded
interactions in the mesoscopic model are dictated by an equation of state (here the
Sanchez—Lacombe) in conjunction with a variant of gradient theory; the discrete square
gradient theory. The dynamics of free films has been examined in the presence and in the
absence of topological constraints (modeled by slip-springs) to unveil the impact of the
latter on chain self-diffusion, to assess their contribution to the interfacial free energy,
and to explore how this contribution can be removed by invoking a compensating
potential. The molar mass dependence of surface tension; which arises from bonded
contributions among beads in the mesoscopic chains, has been extracted over a broad
range of molar masses (10°-10° g/mol), in excellent agreement with experiment. Two
approaches for computing the surface tension have been adopted, based on stress profiles
and based on changes in free energy with interfacial area, leading to consistent results.
The predicted density profiles, conformations, and orientational tendencies of the
mesoscopic chains have been retrieved from the simulations and shown to reproduce
very well the corresponding results from atomistic simulations. An annealing scheme has
been developed with the purpose of accelerating transitions of metastable states into
more stable biphasic states such as spherical and cylindrical droplets, free films, and
spherical and cylindrical bubbles, which minimize the free energy of the periodic model
system. Results for the phase diagram as a function of polymer volume fraction conform

to the predictions of atomistic simulations of simpler systems.
The investigation of single and opposing silica plates, either bare of grafted, in contact

with vacuum or melt phases, using self-consistent field theory. Solid—polymer and solid—

solid nonbonded interactions have been described by means of a Hamaker potential, in
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conjunction with a ramp potential. The cohesive nonbonded interactions have been
described by the Sanchez-Lacombe or the Helfand free energy densities. We first built
our thermodynamic reference by examining single surfaces, either bare or grafted, under
various wetting conditions in terms of the corresponding contact angles, the macroscopic
wetting functions (i.e., the work of cohesion, adhesion, spreading and immersion), the
interfacial free energies and brush thickness. Subsequently, we derived the potential of
mean force (PMF) of two approaching bare plates with melt between them, each time
varying the wetting conditions. We then determined the PMF between two grafted silica
plates separated by a molten polystyrene film. Having allowed the grafting density and
the molecular weight of grafted chains to vary between the two plates, we tested how
asymmetries existing in a real system could affect steric stabilization induced by the
grafted chains. Additionally, we derived the PMF between two grafted surfaces in
vacuum and determine how the equilibrium distance between the two grafted plates is
influenced by their grafting density and the molecular weight of grafted chains. Finally,
we provided design rules for the steric stabilization of opposing grafted surfaces (or fine
nanoparticles) by taking account of the grafting density, the chain length of the grafted

and matrix chains, and the asymmetry among the opposing surfaces.
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{/ Research Outlook

The mathematical formulation and the computer codes developed in the present thesis have been
designed in a rigorous and versatile way, ensuring their applicability to a wide class of problems.
The following paragraphs discuss some interesting potential applications and future research

directions.
7.1 SCFT Combined with SGA

Based on the SCF, and its combination with square gradient theory that was developed for free

polymer surfaces and films several other problems can be addressed:

e Disjoining pressure of thin liquid films on the order of a few nanometers in thickness and
bounded on both the sides by air or vapor can immediately be calculated from the Self-
consistent field with square gradient term formalism (e.g., SCF_SL+SGA). The first results

on the estimation of the disjoining pressure are highly promising.

e Binary blends of linear polymer with well-separated molecular weights. An accurate
description of polymer interfaces is important because phase separation and immiscibility
are the rule rather than the exception for polymer mixtures. In commercial phase-separated
polymer blends the interfacial tension is a crucial factor in the adhesive bonding between
phases. In addition, the interfacial tensions of polymer blends are of interest for such
applications as enhanced oil recovery. The input parameters can be extracted from previous

works and the computer code must be extended to include two different polymers.
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7.2 Structure and Thermodynamics of Grafted Silica/PNCs

Based on the spherical methodology for grafted nanoparticles, a broad range of materials (pure
and composite) can be addressed, by simply providing as an input to the method the melt
compressibility and the squared radius of gyration of the grafted or matrix chain polymer.

Among the limitless possibilities, several other problems can be addressed:

e Block copolymers for use in self-assembly nanoparticles structures. In comparison to the
homopolymer case, block copolymers introduce additional complexities due to new
interactions and confinement effects. Graft block copolymers (GBCPs) can be used to
achieve nano-structured polymers with ultra-small nanodomains and diverse morphologies
without sacrificing materials properties that are critical for processing and functions. The
bulk properties of GBCPs can conversely be tuned either by selecting a variety of sidechains
or through adjusting the backbone length with minimal interference with the nanostructures.
However, major modifications in computer code must be extended to include these

interactions.

e Potential of mean force between two bare or surface-grafted nanoparticles in a polymer melt.
By calculating the PMF, it is possible to identify the thermodynamically most stable
configuration of multi-nanoparticle systems. The investigation of single and opposing silica
plates, either bare or grafted, in contact with vacuum or melt phases, using self-consistent
field theory addressed by Sgouros et al.,*?! can be used as a guide in such an effort. The 1D
computer code developed in Ref 323 could be extended in 2D as well, in order to provide

additional validations and facilitate the calculations with the 3D version of the code.
7.3 SCFFEM Methodology

The methodology and tools developed based on the SCFFEM model introduced in Chapter 5 can
be used for predicting the equilibrium of arbitrary polymer systems. Possible areas of

application of SCFFEM computational methodology can include:

e Systems comprising more than two nanoparticles bearing grafted chains and embedded

inside a polymer matrix. In such systems, we can address the interactions among
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Chapter 7. Research Outlook

nanoparticles as a function of their volume fractions and the grafting chain distributions
(homogeneus, biased) across their surfaces. Various representative ordered and disordered
configurations of the nanoparticle centers at a variety of nanoparticle volume fractions could
be considered. For each configuration, one could estimate the free energy, as well as the
density and conformational distributions of matrix and grafted chains. An interesting concept
for examination is to determine how the lowest free energy configuration changes when a
nonuniform distribution of grafting points on the surfaces of the spherical nanoparticles is

adopted.

e The study of materials made up of self-assembled SiO, spheres bearing surface-grafted
chains, in the absence of matrix homopolymer. These “matrix-free hairy nanoparticle
assemblies”, also known as “particle-solids”, combine excellent optical and mechanical
properties. The objective of such a computational investigation would be to predict the
particle configuration which minimizes the free energy, including the pair distribution
function of nanoparticle centers, the crystal structure adopted, if present, and even the effects

of polydispersity in the particles.

194



195



Appendices

196



197



A Grand Partition Function and Saddle Point Approximation

A.1  Edwards diffusion equation

87 we consider the continuous-space curve r(s) followed by a chain

Following Edwards
represented by the Gaussian thread model with root mean square effective bond length b. By
definition of the propagator, eq. 2.41, if r’ is the position vector of the chain at contour length sj,

0 <s; <s, the following condition is satisfied:
G(r, ry; s):jd3r’ G(r, r'; s=s) G(r', r,; s)) (A1)

For w(r) = 0, G(r, ro; s )becomes the probability density of the end-to-end vector of a field-free

Gaussian chain:

2sb?

2J“exp{ 3(r—n)’ }@(s) (A.2)
7sh

G(r,ro;s)=Go(r—ro;s)=(2 3

with @&(n) being the Heaviside step function: @éXs)=1 for s>0 and &(s)=0 for s<0. Expressing

the exponential term in eq A.2 as a Fourier transform, we write:

2182

k6b ]@(s) (A3)

Gy (r —1o;
o(r —1538) = PBE

Differentiating both sides with respect to s,

jd k exp [ik- (r—r)]exp[

0 . o T e k[ kP
gGo(r—ro,s)_ k exp [ik-(r ro)]exp( n 5 J{ s @(s)+5(s)} (A4)

or

geo(r s)_ VG, (F—1,;8) + 5(r 1) 5(9) (A5)

Thus, the Edwards diffusion equation, is satisfied for w(r) = 0.
Consider now the more general case w(r) = 0. By virtue of the factorization eq A.1we

can write:

G(r, ry; s+As):_|'d3r' G(r, r'; 4s) G(r', ry; s) (A.6)
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A.1. Edwards diffusion equation

The first Green function refers to a very small piece of chain, of length 4s, which starts at r’ and

ends at r. The defining equation, eq 2.41, for G(r, r’; As) contains in its numerator the term
S+A4s

kT dsWR(s)] = ——— w (r) 4s (A7)

S

Then,

G(r,r'; As) =exp{—% w(r) As} G,(r—r'; 4s) (A.8)

B

Substituting eq A.8 in eq A.7we obtain

G(r, ry; s+As):exp{—% w(r) An} IdSr' G,(r—r’; 4s) G(r', r,; s) (A.9)

B

For small 4s, G,(r —r'; 4s) is sharply peaked at r—r'=0. Expanding G(r’, r,; S) with respect
to r"=r - r’ we obtain:

Idar’ G,(r—r'; 4s) G(r', ry; s)= Id3 "G, (r"; 4s) G(r—r", r,; s)=

_Id3r" G, (r"; As) [1 - Zr"—+ ZZ :’;’a ]G(r, ly; S) (A.10)

with indices «, 8 €{1,2,3}being used to denote the components of a vector. Now,

j d°r" G,(r"; As)r"=0 and j & Gy (r"; 4s) 1! 1) = %(As b?) 5, (A.11)

as ry, ry are components of the end-to-end vector of a Gaussian chain.  Thus, we obtain

3,7 r. i . AS b2 2 .
Id r'Gy(r—r'; 4s) G(r', r,; s)=| 1+ V; |G(r, 1, 9) (A.12)
Combining Egs. A.9 and A.12 we obtain:
_ B 1 As 1, _
G(r, ry; s+4s)=exp T w(r) 4s | | 1+ 5 Vi |G(r, 1, 9) (A.13)
B

Subtracting G(r, r,; s) from both sides, we obtain
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2
G(r, 1,; s+4s) — G(r, 1,; S)=exp{—% w(r) AS} [1+ ASGb VEJG(r, r; s)— G(r, Iy, s)

B

or

0 1 1 As b?
—G(r, r,; s) As=e ——— wW(r) Aas||1-e — w(r) 4s |+ V2 |G(r, r.; 8) 1 th
~ (r, 15 S) Xp[ kTW() M xp[kTW() } 6 rJ( o S)In e

B B

limit 4s — 0 one obtains

0 b* _, 1
— - —V — w(r) | G(r, r,; s)=0 A.14
(83 5 r+kBT ()j( 0 S) (A.14)

To account for the singularity at s=0, we use Eq A.8 for small s:

G(r,r';s) =exp{—ﬁ w(r) s} G,(r—r"s) (A.15)

B
upon differentiation of which, for a smoothly varying field

(I V,w(r) | /(ksT) <<1) one obtains

[g_b_zvf+iw(r)}6(r,ro;s):5(r—r0)8(s) (A.16)

A.2  Grand partition Function of an Ensemble of Chains Subjected to a Field

Following Schmid,” we re-express the Boltzmann factor on the right-hand side of eq 2.1 in

terms of a real density field p(r) and an energy field w(r) by use of the inverse Fourier

transform expression for a Dirac delta functional:

exp(~BF[A(N)])= [Dp(r) sLp(r) - p(r)] exp(-BF [p(r))]) (A17)
and

STp(r) - p(r)] =C[ [ pw(r)]exp i [ dr pwnp(r) - p()]} (A.18)
with C being a normalization constant.*®® Combining egs A.17 and A.18,

exp(—BF [p(N)])=C[Dp(r) [ D[ pw(r)]exp{i[d*r pu(r)p(r) - A(N)]1}exp(-AF [p(N)]) (A19
)
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Using eq A.19 within eq 2.1,
== g%exp[%} N”J’lj@ra (e)2[r,(¢)]
<C[Dp(r) [ pw(r)]exp {i[ &’ pw(r)o(r) —p(r)]} x
xexp(=4F [p()])
_CZ—exp{ﬂNn} m@r (o)[r, ()]

noo N!
x[Dp(r) [ pw(r)] exp(ljdgrﬂw(r)p(r))x
xexp(—ﬂF [p(r)])exp(—ij.d3r,8w(r)p6(r))

(A.20)

The last factor within the functional integral of eq A.20 incorporates the density operator p(r) .

Introducing the definition for o(r) , eq 2.2, we obtain

exp(—ijd3rﬂw(r)ﬁ(r)):exp —|J'd rﬂw(r)Nanj'é r-r,(3))d }

[y

= exp —Zi [drpnwn| 5(r—ra(§))d§} (A.21)

= ﬁexp {—ijd%ﬁNw(r)jﬁ(r -r, (§))d§}

Combining egs A.20 and A.21,

Ezci—e p[’uNn}N I@p(l’) I@ Bw(r)] exp( J'dSrﬂw(r)p(r))
x exp(=BF [ p(r)])x (A.22)
x| ﬁ@ra (e)elr, (o)]ﬁexp{—i [ds[d°rpNw(r)s(r -, (§))}

or
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“1, [aNn]e,
E=C) —ex p{kT }N

oo N!

xI@p(l’) .[@ ﬁw(r)]exp(—ﬂF [p(r)]+Id3rﬂ{iw(r)p(r)})x (A.23)
XH{ [or, (o), (o)]exp{—ild§ BNW(r, (§))}}

Following Edwards*®’

we introduce the notation Q[iw] to indicate the partition function of
a single chain subject to the field iw acting on its segments, relative to the partition function of a

field-free chain. Then,

e "

- {I@Va(°)@[ra(°)]} Q[iw] = Z,, Q[iw]

where Z,. ZI@Va(°)Q’["a(°)] is the configurational partition function of a free chain. With

this notation,

==C mi HND g "
= Zon {kBT }(szree)

(A.25)
[Dp(r) [D[pw(r)] (QLiw])" exp(~BF [p(N)]+i[ d*r pu(r)p(r))
or
==C[op(r) [D[pw(r)] exp(-BF [p(n)]+i[d’r pw(r) p(r) ) x
o q N (A.26)
{nz(;n_e p|:iBTn:|( free) (Q[IW]) }

Now, the summation over different n can be performed, yielding

ii,exp{‘k‘:}”}( Z,..)" (Qliw])’ —exp{exp{fﬁ

B

} NZfreeQ[iw]} (A.27)

The grand partition function of eq A.26 is written as
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A.3. Saddle Point Approximation

== Cj@p(r) '[(D[ﬁw(r)] exp(—,b’F [p(n)]+ ijd3rﬂw(r)p(r))x

xexp {expk‘ 'i } N~ZfreeQ[iw]}

B

(A.28)

or equivalently:
E=C[op(r) [ w(r)] exp(-BHIW(T), p(r)]) (A29)

with
HIW(r), p(r)] = F [p(r)] =i | d°rw(r) p(r) —%eXp(ﬂuN )NZ,, Qliw]  (A.30)

It is remarkable that the effective ‘“Hamiltonian” H[w(r), o(r)] incorporates a term

proportional to exp{f—?} and to Q[iw], rather than to uN and to InQ[iw], because of the grand

B

canonical formulation adopted.

A.3  Saddle Point Approximation

We now replace the functional integral appearing in eq A.29 for Z with its dominant term,

obtained by setting
To0 (A.31)

From eq A.30 we obtain

M im-t i, OQliw]
oW N |,0(|’) ﬂexp(ﬂﬂN)NZfree SW (A32)
Now, by definition®®’
I@ra (o)@[ra (o)] exp —I ds (BiNw(r, (§)))}
Qliw] = : (A.33)

RACIIAC)

which can be rewritten as
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I(Dra (o)(P[ra (o)] exp{—fdsrid§ S(r—r,(8))(SiNw(r))
[or, (e)e[r, ()]

The functional integrals are taken over the path of one chain, labeled «. The latter form, eq
A.34, has been used in eq A.24.

Q[iw] = (A.34)

Fromeq A.34,

oQ[iw]
oW

) Jor, (e)e[r, (’)](—ﬂiNidﬁ 5(r—ra(§))]exr{—jd3rid§ 5(r—ra(§))(,6in(r))}

I@r (e)e[r, (o

Jor,(o)2[r, (-)][ Jds 5(r—ra<§))]exp{—j d?’r}ds s(r-r, (5))(ﬂiNW(r))}

(A.35)

=— LINQ[iw]
j@r ]exp{ jd3rjds s(r-r (s))(ﬂle(r))}

n o1
Recalling that p(r) = NZI&(r— r,(5))ds, eq A.35 can be rewritten as:

a=1g

P pniQrwd - (5(r) =i 2L ) (A.36)

with < >denoting an average over the distribution defined by the single-chain partition function

Q[iw], eq A.34. In averaging p(r) of eq 2.2, all n chains involved in the summation for =1 to

n yield the same contribution.
From egs A.32, A.36 at the optimum:

oH

%=—ip<r)—%exp(ﬁyN)Nzﬂee( i ['W]< (r>>j=0 (A.37)

with n being the mean number of chains in the interfacial region. One obtains
iw
p(r) =exp(SuN)NZ,,, Q[_ ]< (r) (A.38)

We also impose a maximum term approximation with respect to o(r) . From eq A.30,
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A.3. Saddle Point Approximation

oH = —iW(r) + w =0 (A39)
op(r) op(r)
or
__9Flp] A40
w(r) =—i 500 (A.40)

The self-consistent field turns out to be purely imaginary. With the maximum term

approximation, eq A.30 gives:

A =F[o]-| d3r{p(r)%}—%ew(ﬂﬂmNZfreeQ[iW] (A4D)

By the saddle point approximation on eq A.29 we obtain eq 2.7 of the main text for the grand
potential of our interfacial polymer, occupying volume V at temperature T and chain chemical
potential uN.
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B Derivation of Grafted/Matrix Polymer System Equations

B.1 Grand Canonical Partition Function and Hamiltonian

We consider a polymer melt within an arbitrarily shaped three-dimensional region ® of volume
V at temperature T. The region ® is not necessarily convex. It is partly bounded by one or
multiple solid surfaces, which exert an external potential us(r) per polymer segment at each
position r € ® The boundary of the domain ® will be referred to as 0®, Part of O® may be
defined by solid surfaces, while the rest of o® will be characterized by zero-flux Neumann

boundary conditions.

The polymer consists of matrix chains of length N, monomers/segments each. In
addition, there are chains terminally grafted on the solid surfaces, the length of each grafted
chain being Nq segments. Both matrix and grafted chains are assumed to be monodisperse, but
matrix chains can have different chain length from grafted chains. In the context of the present
work, matrix and grafted chains are of the same chemical composition, hence the potential

energy field per segment, us(r), is applicable to both.

We use the symbols ny, and ng to denote the numbers of matrix and grafted chains,
respectively. The number ng will be fixed. The number ny, is free to fluctuate, subject to the
condition that the matrix chains in the interfacial region are in equilibrium with a bulk polymer
phase at temperature T, whose density, in segments per unit volume, is psegpux. OF course,
Psegbulk €an be determined from the temperature T and the pressure P of the bulk polymer phase
through an appropriate equation of state. From the same equation of state one can determine the
chemical potential um per chain segment in the bulk polymer.

In general, the mean segment density of polymer in the considered interfacial region,
_ n,N,+n,N, . ) ) ) ) )
Pseg :T’ will be different from psegpuik. The interfacial region and the bulk one will
be at equilibrium; the chemical potential 4, of matrix chain segments in ® is the same as in a

bulk phase of matrix chains.

The unperturbed mean square radii of gyration of matrix and grafted chains will be

denoted as (R;,”) and (R,,”), respectively. The grafting points (starts of the grafted chains)
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B.1. Grand Canonical Partition Function and Hamiltonian

will be denoted by Mg, » ig=1, 2, ..., ng. They all lie on solid surfaces which belong to o® . In

practice, the grafting point is located at a finite distance from the solid surface. Technically
speaking, it is not possible to attach the end of the chain exactly on the surface, because this
would result in a conflict between the grafted chains initial condition and the Dirichlet boundary

conditions imposed on the solid boundaries.

The matrix chains in the interfacial region of volume V at temperature T and chemical
potential «nNm follow the probability distribution of the grand canonical ensemble. Treating all
chains as Gaussian strings and describing the nonbonded interactions by an equation of state in

conjunction with a gradient term, f [/S(r),V,b(r)], we can write the grand partition function for
the polymer contained in R as:

0

E= Z %exp[ﬁﬂmNmnm]ﬂ:\mﬂ;gjﬂQRim (')@m [Rim ('):I

Np=0"'m*

(B.1)

Ny

[1oR, ()[R, () [exp{-A[(F15(r), VA(r)]+u,(n) p(r) r |

ig=1

where S = 1/(kgT), I@Rim (-) symbolizes a functional integral over all paths R, (s), 0<s<N,

m =

, of a matrix chain i (1<i, <n_ ) and I@Rg (+) symbolizes a functional integral over all paths

Rig (s) 0<s<N,, of agrafted chain iy (1<i, <n,). A, are normalizing factors per matrix

and per grafted chain, respectively, appearing in the path integral formulation. They must be the
same between the interfacial system and the bulk polymer and render the grand partition

function, =, dimensionless.

The functional f[A(r),V(r)]is the Helmholtz energy density (Helmholtz energy per

unit volume) describing the nonbonded interactions between polymer segments, obtainable from
an appropriate equation of state. Herein we identify f with an excess Helmholtz energy, i.e., the
Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a given
volume minus the Helmholtz energy of an equal number of noninteracting (ideal gas) chains
occupying the same volume. U(r) is the total potential energy exerted by the solid on a polymer

segment as a function of the position r of that segment.
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

In the absence of a field, the probability density distribution (statistical weight) of a

matrix chain conformation/path, R, (s). and the corresponding one of a grafted chain, Rig (N) :

are given by egs B.2 and B.3, respectively, in the context of the Gaussian chain model.

o I:Rim ('):I - eXp[_4Ri 2 f[d;\;‘m } dS] (B.2)

0

(Pg'[Rig ()] = ex{ 4R1 T(dzg ] ds}a[ng (0)- rgyig} =@ [Rig (.)]6[Rig (0)- rg,igJ (B.3)

G.9

The reduced segment density operators @, (r), ¢,(r) are defined as shown in eqs B.4
and B.5 respectively.

n, N

> [ 5(r-R, (5))ds

. 0., (1) iz

¢m(r)zp()=m1 (B.4)
loseg,bulk pseg,bulk

ng Ng
R o(r—R, (s))ds

A _ pg (r) ig—l.([ ( ’ )

@,(r) = = (B.5)
pseg,bulk pseg,bulk

and we set the total reduced segment density operator as ¢(r) = ¢, (r) +¢,(r) . Next, we wish to

re-express the Boltzmann factor on the right-hand side of eq B.1 in terms of a density field, p(r),

and a chemical potential field, w(r). To begin with, this term can be written as presented in the

following eq B.6.%%°

exp{=B[ (f1H(), VA(r)]+u,(r)(r) r} = 56
[Dp(r) 81p(1) - A exp{~A[(FLp(r), Vo(r)]+u,(n) p(r)ir | |

Next, we write the Dirac delta functional as the inverse Fourier transform of eq B.7, which

involves the two aforementioned fields.
SLp(r)— p(r)] =C [ D pw(r)]exp i [drpw(r)o(r) - ()]} (B.7)
with C being a normalization constant.**Combining egs B.6 and B.7, the following expression is

obtained for the Boltzmann factor of the grand partition function of the system.
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B.1. Grand Canonical Partition Function and Hamiltonian

exp{— [ (f[p(r), V()] +u,(r) p(r) Xr} = 69
=C[Dp(r) [0 pw(r)]exp i [drpwr)lo(r) - S exp -] (11p(r). Vo(rl +u,()p(0)r}

Within the functional integral of the right-hand side of eq B.8, there is a term

incorporating the density operator, p(r), which is the sum of g, (r) and p,(r). Introducing the

definitions for these operators, eqs B.4 and B.5 respectively, that term can be written as in the
following eq B.9.

n, N

exp(—ijdrﬂw(r),ﬁ(r)) = exp!ijdrﬂw(r)(iT&(r R, (s))ds +Zg: f&(r -R, (s))ds]]

in=1 0 ig=1

= exp{—i]ders&(r -R; (s))iﬂw(r)}-exp{— S Idrfds&(r - Rig (s))iﬂw(r)}

ly

N ©.9)
= _ln_m[eXp[—jdrfdsé(r— R, (5))iﬂW(r)J-ﬂexp{— [ar j ds(r R, (s))iﬂw(r)J

= ln_m[exp(—iﬂ']Ln dsw(R; (s))) . ln_g[exp[—iﬁ f dsw(Rig (s))]

Combining egs B.1, B.8 and B.9 the following equation is obtained for the grand partition
function.
o’Q

—c ¥ LelauNon L [T Tor, (R, (.)]if—l@reig (R, (]2

m

[1]

x[Dp(r) [o[Bw(r)]exp (i drpw(r)o(r) - A
xexp{ = ( f1p(r), Vp(r)]+u, () p(0) |

=cn2$exp[ﬂumNmnm]ﬂn”M§g
<[ Dp(r) [D[pw(r)]exp [if drpw(t)o()|exp B[ (fLo(). Vo(r)]+u,(DANNr} (g 1)
J1JoRr, ()[R, (.)]ﬁexp{—i B dsw(R, (s))j

T1foR, (1 [R, (o[, 0, ﬂn_lexp[—i e (s))j
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

The next step is to define the single chain partition functions (or functionals to be

technically accurate) of a matrix and a grafted chain, Q,[iw(r)] and Qg[rgvig;iw(r)] respectively,

in the field iw(r) by the following eqs B.11 and B.12.

[or, ()[R, (.)]exp{—iﬂijdsw(Rim (s))}

Qnliw(r)]= I(DR BSACKD]

(B.11)

I@Rig (+)2, [Rig (.)Jﬁ[Rig 0)-r,, ]exp{—iﬂ}g dsw(R,; (s))}
[oRr, ()2, [Rig (.)}5[&9 (0)- r%]

where, I@Rim ()2, [Rim ()] Z,.wV is the configurational integral of a field-free matrix chain

Q[ w(r)] =

(B.12)

and _[@Rig ()(Pg[ J [R 0)-r,, ] e 1S the configuration integral of a field-free

grafted chain. Q,[iw(r)]is the configurational integral or partition function of a single matrix

chain of length Nn,, whose segments are subject to the field iw(r), relative to the corresponding
partition function of a field-free chain (i.e., Gaussian string performing a random-walk) and is

dimensionless by definition. In like manner, Qg[rgvig;iw(r)] is the partition function of a grafted
chain of length Ng, which starts at Mo, and whose segments are subject to the field iw(r), relative
to the partition function of a field-free chain of the same length starting at r,; . It is

dimensionless as well.

Combining egs B.10, B.11 and B.12 the grand partition function becomes:

[1]

:Cnioﬁexp[ﬂymNmnm]ﬂ;mﬁgng (B.13)
<[Dp(r) [ pw(r)]exp{i[drpwr)o(r)|exp{=B[ (fLo(r),Vo(r)]+u,(r)p(r) Xr |

X(ZpeV )" (QuLiw(r)])™ gﬂe{HQ Ir,,; .W(r)]J

Or
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B.1. Grand Canonical Partition Function and Hamiltonian

==C[op(r) [o[pw(r)]exp{i[drpw(r)p(r)}exp{-A[(fLp(r), Vo(r)]+u,(r)p(r) Xir} (B.14)

Xnioﬁew[ﬂummnm](ﬂmzm,ﬂeev )" (QulW()])™ (A, Zg e ) (QuLiw(r)])

=C[op(r) [ pw(r)]exp([drp{iw(r) p(r) - f[p(r), Vo(N]-u,(r) p(n)})

X eXp {eXp [ﬂ/um N m ] ﬂm Zm,freeVQm [IW(r)]} l_g[ (ﬂgzg,freng [rg,ig ; IW(r)])

We set the grand partition function to be equal to:
== CI@[p(r)]I®[ﬂw(r)]exp(—,BH [p(r),Vp(r),w(r)]) (B.15)

where the Hamiltonian of the system, H, is a functional of the segment density, p(r), of its spatial
gradient, and of the chemical potential field, w(r). Finally, using eqs B.14 and B.15, the general

form of the Hamiltonian is given by eq B.16.

H[p(r), Vp(r), w(r)] = [dr {-iw(r) p(r) + f[(r), Vo(r)] +u,(r) o(r)}
1 ) 1 & _ (B.16)
—Eexp(ﬂumNm)ﬂmzm,ﬁeevqm[nw(r)]—EZIn(ﬂgzg,ﬂeng[rg,ig;nw(r)])

B.1.1 Grand Canonical Ppartition Function after Implementing the Saddle-Point

Approximation

In the context of self-consistent field theory, we need to replace the functional integral of eq
B.16 with its dominant term, i.e., the density and field configurations which have the highest
probability and thus the maximum contribution to the Hamiltonian of the system. In order to
determine those configurations, we need to perform a so-called saddle-point approximation, i.e.,
find the stationary point of the Hamiltonian functional with respect to p(r) and w(r). To this end,
we first set the functional derivative of the Hamiltonian with respect to w(r) equal to zero, as

shown ineq B.17.

0 (B.17)

SH o1 SQuliw(r)] 1 &I INQy[ry siw(r)]
§W - O D Ip(r) ﬂ eXp(ﬂ/um)/leZm,freeV 5W ﬁ Igz_l 5W -

Following eq B.11, we write:
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

50, lvir) [or, (2[R, (1] (—iﬁNf dss(r—R, (s))Jexp {—J‘drN{m dss(r—R,_ (s))iﬂw(r)}
Sw I@Rim (-)e, [le ()]
Nip Nip
[or, (2[R, (.)]( [ dss(r-Rr,_ (s))jexp[—jdr [ dss(r-R,_ (s))iﬂw(r)}

=—4iQ_[iw(r)] Np,
Jor, (2[R, (-)]exp{-f ar J ass-R, (S))iﬂw(r)} (B.18)

n. N

m

S Qu WO 2, | dsdr-R, (s)

m p seg,bulk

Np
= —,BiQm[iw(r)]< [ dss(r-R, (s))> =

~ Bip, R [IW(r)] ~ B, Qu [IW(r)] o

(@, (r)) = (1)

m m

Likewise, following equation B.12, we can write:

sInQ,Ir,, ;iw(r)] 1 5Q,Ir,, ;iw(r)]
Sw QI iw(n]  sw

[oR, (.)?g’[Rig (.)] [—iﬁfdsd(r— R, (s))jexp[—jdr f dss(r - R, (s))iﬂw(r)}
Qg[rglig w(r)] I@Rig (‘)q)g,[Rig ()]

Ny N B.19
[or, (2[R, (.)](j dss(r R, (s))jexp{—jdrj dso(r-R, (s))iﬂw(r)} (B.19)
— _ﬂi 0 Ng 0
[or ()[R, (.)}exp{—jdrj‘ dss(r-R, (s))iﬂw(r)}
= _pi < j dNS(r-R, (s))>
and thus
% Sln Qg[rgyig;iw(r)] ~
= ow -
j dsS(r—R, (5)) (B.20)
= _ﬂipseg,bulk =0 = _ﬂipseg,bulk <¢g (r)> = _ﬂipseg,bulkgog (r)

pseg,bulk
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B.1. Grand Canonical Partition Function and Hamiltonian

Combining egs B.17, B.18 and B.20, the following eq B.21 is obtained for the density field, p(r).

p(r) = eXp(ﬁ[Jm )/qmzm,freev

M pseg,bulk¢m (r) + pseg,bulk¢g (r) (821)

m

The saddle point approximation requires that the functional derivative of the Hamiltonian

with respect to the density field, p(r), be also equal to zero:

5—H=0® —iw(r)+u,(r)+ i—v-i
op(r) op oVp
of of

< w(r)=-i [{% -V. M} . +U, (r)}

After the saddle point approximation, the Hamiltonian of the system, from eq B.16, is given by

of }
C Plp=pr)

p=p(r)

(B.22)

+ p(r)V - —

A-| dr{f (o), ()] p(r) =

p=p(r)

(B.23)

i
g

—%expwymmmzm_f,eevczm[iw(r)]—lzgln(ﬂgzgm.Qg[rg o)

B.1.2 Thermodynamic Properties

According to the saddle point approximation considerations which were developed in the
previous section, the grand potential of our interfacial polymer system, occupying volume V at

temperature T and chain chemical potential unNn, is given by eq B.24.

[1]

Q(,um,ng,V,T):—%ln :—%In[exp(—ﬂl—_l)]: H (B.24)

Any multiplicative factor arising in = upon introduction of the saddle point approximation
contributes an additive constant to Q2, which will cancel upon referring Q to an equal amount of
polymer in the bulk. Q is an extensive—system size-dependent—thermodynamic property. It
IS convenient to express the system thermodynamics with reference to a bulk phase of matrix
chains occupying volume V at temperature T and chemical potential x#mNm, a set of ng isolated
end-pinned unperturbed chains of length Ng at temperature T, and an isolated bare nanoparticle,

as described below.
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

The grand potential of an amount of bulk polymer occupying volume V at temperature T

and chemical potential Nyzm is:

1, _ _
Qe (1, V, T) = _Eln Epuk = Houk (B.25)
with H,, being the effective Hamiltonian of eq B.22 applied to bulk polymer:

1 .
__exp(ﬂ/um)/qmzm,freeVQm [IWbulk] (826)

Hyu = Idl’{ f [P’O]_Psf—p}

P=Pseg,bulk

Note that, for all forms of the local free energy density f considered here, % =0 in the bulk
Yo

polymer phase.

Application of eq B.21 for the density to the bulk polymer gives

m iw, u . Pseqg bu V
pseg,bulk = exp(ﬂ:um)—/qmzm,freev Mpseg,bulk Nt exp(ﬂlum)-/Zlmzm,freeVQm[IWbulk] = 2ok (827)
m,bulk m
Combining egs B.26 and B.27,
I _ af pseg,bulkv
Hbulk—jdr{f[p,O]—p%} 7 _ﬂ—Nm (828)
P=Pseg,bulk
In the bulk melt, the self-consistent field from eq B.22 becomes
Wouk = —i ﬂ (B.29)
ap P=Pseg,bulk

and thus the matrix chain partition function from eq B.11 takes the form

. of
Qm [IWbqu] = eXp[_ﬁNm 6_ J (BSO)
p P=Pseg,bulk

On the other hand, for a set of isolated end-pinned unperturbed chains of length Ny at

temperature T, which are identical in length and chemical composition to our grafted chains, the

total Helmholtz energy in the context of our model is given by eq B.31.

214



B.1. Grand Canonical Partition Function and Hamiltonian

A (T,n,) —_—Zln( AZ 10y Ty i ) (B.31)
Subtracting eqs B.28 and B.31 from eq B.23:
AQ = Q(/u!v !T) _Qbulk (/J,V ’T) - '%SOI (T! ng)

+p(r)V.——

; }
an p=p(r)

- dr{ [o(r).Vp(0)]- p(1) 2

el

pseg qu ! !
ﬁlil (1 Qn [W(r)_wbulk])

_—Zan [ 0, 1W(r)_wt'3ulk]

p=p(r)

(B.32)

P=Pseg,bulk

In eq B.32 we have made the substitution
iw(r) =w(r), areal field. (B.33)

The second integral in eq B.32, referring to a homogeneous bulk phase of matrix chains, can be

performed immediately, yielding a factor of V times the integrand.

By expressing eq B.22 in terms of the real field from eq B.33,
of J[op=w(r)+V-of /oVp—u,(r), and by substituting it to eq B.32, the latter can be expressed

as follows:

AQ = [dr{f[p(r), V()] = T [ Pgnae:O ]}
_J. dr {p(r)w’(r) - pseg,bulkwt;ulk}
+[dr{p(r)u,(n)} (B.34)

pse bulk ' !
+ ,BgN (1 Q. [W(r)_wbulk])

——ZInQ [ " ,w(r)—w;,u,k}

wherein the first term is the contribution of the cohesive interactions, the second term is the
interaction energy between the density field and the chemical potential field, the third term

describes the polymer-solid interactions, the fourth term describes the translational and
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

conformational entropy (relative to the bulk melt) of the matrix chains, and the fifth term is

associated with the conformational entropy of the nq grafted chains subject to the field w'.

B.1.3 Derivation of the Segment Balance Equations

To deal with the grafted and the matrix chains in the presence of the field w’, we introduce the

propagator G(rsan, I, s) following Edwards*®:

R(]-)_r (D[R ()](P[R ()] exp {—ﬁjds’w’(R(s’))}

G(rstart aF S) = RO R(s)=r - (B.35)

far | o[R()]?[R(")]

R(0)=rgan

G(r,,. I,S) has dimensions of inverse volume. It is proportional to the conditional probability
that a chain, which has started at r,,,and is subject to the field w'(r) on its segments, finds itself

at position r at contour length s, as depicted in Figure B.1. The denominator in eq B.35 is a
partition function for a field-free chain, represented as a Gaussian string, which has started at

I.. and may end anywhere in the system. The denominator is independent of r,, and r; it

tart

depends only on s.

SI
s'=0 — R(s')

Fstart

Figure B.1. Schematic representation of a Gaussian string starting at $'=0 and ending at s'=N.

We also define the restricted partition function of a matrix chain in the presence of the

field w'(r) by the following eq B.36.

On (r,;s)= IdrstartG(rstan! r,s) (B.36)
Vv

This quantity is dimensionless and proportional to the probability that the segment at contour
length N of a matrix chain subject to the field finds itself at position r, regardless of where in the
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B.1. Grand Canonical Partition Function and Hamiltonian

system the particular matrix chain may have started. It is reduced by the corresponding
probability of a field-free chain. Thus, it equals unity for a field-free chain. The partition

function of a matrix chain, Qn, is related to the corresponding restricted one by the equation:

Qm[vv’(r)]:\%.[dr q,(r,N,). It is also dimensionless and normalized such that it would be
\

unity for a field-free chain in volume V.

The partition function, Qg, of a chain which is grafted at ry, relative to a field-free chain

of equal length, is given by eq B.37.

Q[ riw(r)]=[dr G(r,,r,N,) (B.37)
But, by definition, G(r,,r,N,) =G(r,r,,N,), so:
Qlr ;W(r)]zjdr G(r,r,,N,) =0, (r,,N,) (B.38)

Following eq B.35, the propagator of a grafted chain, whose grafted end lies at

coordinates ry, can be written as:

I@[R’(.)]@[R’(.)]é(R’(O) -, )5(R'(s) - r)exp{—ﬂids’w’(R'(s’))}
Jo[R (2[R ()]s(RO-r,)
I@[R’(.)]@[R'(.)]5(R'(O)—rg)cS(R'(s) —r)exp{—ﬂjds’w’(R'(s’))}
SJo[R ()[R ()]

G(r,,r,s)=

(B.39)

So far, we denote by R’(.) the curve in three-dimensional space, which is followed by a
Gaussian thread of length N. At this point, we introduce the symbol R”(.), which represents the

curve in three-dimensional space, which is followed by a Gaussian thread of length Ng—s. Using
these definitions and combining eqs B.35 and B.36, the restricted partition function of a matrix

chain can be written as follows.

[dr, [o[R"()]2[R"()]6(R'(O) -1, )5(R"(N, =5) - r)exp{—ﬁN]s ds'w’(R"(S'))}

q,(r. N, ~s)=" -
HEOEEIE)

(B.40)
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Appendix B. Derivation of Grafted/Matrix Polymer System Equations

Next, we consider the product G(r,,r,s) q,(r,N,—s). By egs B.39 and B.40, the

numerator of this product will be equal to the following expression.

numer = _[(D[R'(.)]@[R’(.)]é(R'(O) -, )5(R'(S) - r)exp{—ﬂids’w’(R’(s'))}
° (B.41)

xj smj@[R" )]2[R"(+)]6(R"(0)~ Ty ) S (R"(Ng—s)—r)exp{—ﬁgjds'w/(R”(s’))}

\

Changing the integration variable from N’ to N, — N in the second line, eq B.41 is modified to:
numer = [0 R'(+)J2[R'(-)]6(R'(0) -1, ) S(R'(s) - r)exp{-ﬂjds’w’[R’(s’)]}

x _V[ - j D[R"(+) ][ R"(+) |6(R"(Ny) ~ 1 )& (R"(s)—r)exp{—ﬂfds’w’[R"(s’)]} (B.42)
=\%j@[R(.)]@[R(.)]a(R(O)—rg)a(R(s)—r)exp{—ﬂNfds'w'[R(s')]}

where now the functional integration is performed over all paths R() of an Ng segment-long

(grafted) chain.

On the other hand, the denominator of the productG(r,r,s) q,,(r,N, —s) becomes:

denom_—.[@ [R'()]e[R'()][o[R"()]e[R(-)] =—I@ ?[R(-)] (B.43)

Dividing eq B.42 with B.43, we obtain:

G(r,,1,8) G, (r,N,—s) =
[o[R(-)]2[R()]6(RO)-1,)5(R(s) - rexp{ deW[R(S)]} @40
*I(D[R 12[R(+)]

Combining eqs B.37 and B.39, we can write the following B.45eq for the partition function of a

grafted chain.
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B.1. Grand Canonical Partition Function and Hamiltonian

Q,[rw(r)]=

[ [D[R()]2[R(-)]6(RO) -1,)5(R(N,) —rend)exp{—ﬂTdN’ w’(R(s’))}

_ (B.45)

L o[R()][R()]
I@[R(.)]@[R(.)]é(R(O)—rg)exp{—ﬁ'jf ds'w’(R(s’))}
_ L{o[R()]e[RE)]

Dividing eq B.44 with B.45, we obtain the following expression:

1
W{ds G(r,.1,8) 4, (r,N; —s)

Tds _[(D[R(.)](P[R(.)]&(R(O)—rg)6(R(s) —r)exp{—ﬁ?ds’w’(R(s'))}

J@[R(-)](P[R(-)]é(R(O)—rg)exp{—ﬂT ds’w’(R(s’))}
N, 0 N, (B.46)
j@[R(.)]@[R(.)ja(R(O)—rg)jdN'5(R(N')—r)exp{—ﬁjds'w'(R(s'))}

IG)[R(.)]@[R(.)]é(R(O) —rg)exp{—ﬂTds'w’(R(s’))}

N,
- <'[ ds'd(R(s) - r)>
0 Fe(O):rg
Field w'

Using the definition eq B.5, we can write:

N
l g
——— | dN'G(r,,r,s") q,,(r,N, —S") = Py b { @, (T . = Peaou @ (N) = p, (1)  (B.47
Qg[rg;W(r)H 07:8) 80Ny =) = P (D) = Pramn (D)= 21 (1) - (BT

where ¢, (r) is the reduced density and p,(r) the segment density contributed by the considered
grafted chain, at position r.

Taking into account eq B.38, which relates the partition function of a grafted chain to the
restricted partition function of a matrix chain, we rewrite eq B.47 for a specific grafted chain, ig,

as
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Ng
! IdN’G(rig,r,s’) 0, (r,N, —s") (B.48)

i’ "= Pseg putkdm (rig ) Ng) 0

The total reduced density due to all grafted chains will be:

pseg,bulk i;=1 (.,

20=30,0-——Y (rlN)de’G(ng,r,s')qm(r,Ng—s')z

(B.49)
N, ny 1
= Ids’ > G(r,,1,8) Gy (r, Ny =)
0 ig=1 pseg,bulkqm (rlg J g)
Let us set
ng N
g, (r,s)=> J G(r, .r.s) (B.50)
i1 Pseq butk dm (rig ' Ng)
With this definition,
1
?,(r) =2 [ ds 0, (r,) 4, (r,N, =) (B.51)
g o

B.2  Hamaker Potential

In this work, the solid-polymer interactions are described via the Hamaker potential.>’> The
essence of Hamaker theory is to treat the interacting bodies as collections of homogeneously
distributed infinitesimal domains interacting via a nonbonded interaction potential (usually
Lennard-Jones, 12-6). Then an integration along the volumes of the bodies takes place to
account for interactions amongst all possible pairs of domains, resulting in the total potential

energy. The Hamaker constant of the effective solid-polymer interaction can be estimated by the

following geometric mean A, g, = /AasAsmz- Vogiatzis and Theodorou®™ employed an

effective solid-polymer interaction, egf_SiOZ = ,/ADSASiO2 — Ay instead of Ay, , in order to

restore the proper effective cohesive interactions at the polymer/solid interface. In this study we

opted to work with A, ., , since the energy of cohesion of the polymer is taken into account as
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B.2. Hamaker Potential

part of f[p(r),Vp(r)]. Furthermore, the effective collision diameter can be calculated as

Ot = (Ops +050,)/ 2 With o5 and oy, being the effective diameters of solid and polymeric

segment interaction sites, respectively. In each of the following cases of interacting geometries a
wall distance was used, so that the maximum value of the repulsive term felt by the polymer

segments does not exceed 5 kgT (e.g., see Figure B.2).

A (nm)

Figure B.2. Interaction energy us(h) between a PS monomer unit and a planar SiO, substrate as calculated from the
Hamaker potential at T = 500 K. The blue line, hys = 0.4 nm, intersects the u, (h) curve at u; = 5 kgT and depicts the
distance of the hard-sphere wall from the surface employed in the calculations. The orange dashed line depicts the
distance of the grafting points from the surface (hg), and the red dashed line delimits the critical distance (hygs),
below which a matrix chain is considered adsorbed.

B.2.1 Sphere-Sphere

For the purpose of calculating the potential energy of dispersive interactions between the

polystyrene, either matrix or grafted, and a nanoparticle immersed in it, we consider the atactic

polystyrene monomers as small spheres with an effective radius a, = 3, 3 , interacting with

A7
the spherical silica nanoparticle of radius a, = R, . The solid-polymer interaction potential per

monomer, uscan be split into an attractive?’> and a repulsive term.**” The two terms, ua and ug
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respectively, are functions of the center-to-center distance, ri, between two interacting spherical

bodies:

2 2
uA:_& - 23,3, i 2a,a, 2+|n(r122_(a1+a2)2J (B.52a)
6| —(a+a,) r,°—(a-3a) n, —(a,-a,)

L' —7n,(a,+a,)+6(a +7aa, +a,’)
(r12_al_a2)7

' +7n,(a +a,)+6(a’ +7a3,+a,’)

A | (ro+a+a,)

" 37800 &, ' +7n,(a -a,)+6(af -7aa,+a,")
(ho+a-a,)
_rlzz—7r12(a1—a2)+6(a12—7a1a2+a22)
('12_31+a2)7

(B.52b)

where A1, = Ay g Is the Hamaker constant and oerr is the effective collision diameter.

B.2.2 Sphere-Flat Surface

The attractive and the repulsive components from the interaction of a sphere with a semi-infinite
solid terminating at a flat surface can be obtained in the context of Hamaker theory as follows:

uA:—i 1.2 +In( ' j (B.53a)
6 \r 2+4r 241’
6 ' !
U, = A, aeg 8+r 7+6 7r (B.53b)
7560 & (2+ r’) r'

with r'=d,,/a and di, being the distance between the surface of the sphere and the solid

surface. We have us=ua+ug for this case which is shown in Figure B.2 as a function of h=d,+a;.

B.3  Predictions From a Simple Model with Homogeneous Density

It is instructive to compare the predictions of SCFT with the predictions of a simpler brush
model such as that of incompressible Alexander brushes.?®>*®® Let hegge be the edge of a brush

comprising ng grafted chains of length Ng, emanating from a nanoparticle with radius, Ryp, such
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B.3. Predictions From a Simple Model with Homogeneous Density

as the one shown in Figure B.3(a). For simplicity, let us assume that the segment density is

constant and equal t0 psegpbuik across the region occupied by the brush of grafted chains,
[RNP, Ry + hedge] which are terminated at hegge; Figure B.3(c) presents the corresponding density

profile for this model. Consequently, the volume occupied by the brush can be calculated as the

number of the brush segments in this region divided by its segment density.

2
V= ngNg _ 0'947[RNP Ng (B.54)

pseg,bulk pseg,bulk

pscg

R R _+h

NP NP edge
Figure B.3. (a) A nanoparticle with grafted chains that form a brush which ends at hegge. (0) In the limit Ryp—co,
the surface of the nanoparticle becomes flat. (c) The segment density profile of a brush with constant segmental
density, Pseg,bulk-

where o, = Ng/(47zRNP2) is the grafting density. Alternatively, the volume of a brush of

constant density that terminates at heqge can be calculated as follows:
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4 3
V= gﬂ[( Rep + M) — RN;} (B.55)

By combining egs B.54 and B.55, and solving for hegge, We get for hegge:

3o,N s
Nesge = (# RNP2 T RNps} — Ry (B.56)

seg,bulk

With hegge known and given that the density profiles are uniform, hggg, can be calculated as

follows:

N, oo =0.99-h.,. + R, (B.57)

g,99% edge

Similarly, <hgz>ﬂ2 can be obtained by eq B.58.

2
hedge v

[ h*p(h)dh NN
<h92>ﬂ2: gedge :(ijhzdh] :%hedge

[ p(hydn wloe 0 (B.58)

0

1(30.N

1
= | =2 2R+R’ | ——=R
’\/g(pseg,bulk " NP] ’\/§ "

In the limit of very large nanoparticles (flat surfaces), <hgz>1/2 becomes,

lim <h2>U2:A:— lim h

Rnp—©

(B.59)

Thus, for this model <hgz>1/2 appears to be proportional to a4 and Ny in the limit of large

nanoparticles/flat surfaces (i.e., see Figure B.3(b)). The thermodynamics of these brushes can be

described by a total free energy which has as follows:

Atotal = A:oh + Atretch (BGO)

where Acon IS the contribution from the cohesive interactions described by the free energy
density (i.e., Acon = Qcon from eq 9 in the main text), and Asyetch 1S the entropic contribution from

the stretched grafted chains. Given that the grafted chains are terminated at the edge of the
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brush, and assuming they can be described by Gaussian strings, the contribution of the brushes

to the free energy due to stretching could be approximated as follows:

3k, T
A&tretch = Ssolidag —Bz hed992 (861)
2 < Rend,g >

g oo Cc-C

with <Rend,gz> =N_C_|_.2 being the end-to-end distance of the grafted chain.Combining eqs B.61

and B.56, the stretching free energy per unit area as a function of Ryp is the following:

2

3o,N 3
AStretch =0, 3kBT - %9 RNP2 + RNP3 — RNP (862)
Ssolid 2 < Rend,g > pseg,bulk
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C Finite Element Shape Functions —Matrix Representation

C.1  Coordinate Transformations by Using ‘Shape Functions’

The concept of using element shape functions for establishing curvilinear coordinates in the
context of finite element analysis appears to have been first introduced by Taig.*?° In his first
application, basic linear quadrilateral relations were used. Irons**° generalized the idea for other
elements. We search a relationship between a set of global Cartesian coordinates with a set of
local coordinates. Once such coordinate relationships are known, shape functions can be
specified in local coordinates and by suitable transformations the element properties established

in the global coordinate system.

A convenient method of establishing the coordinate transformations is to use the
‘standard’ type of Cy shape functions to represent the variation of the unknown function. Figure
5.1 depicts a general, four-node tetrahedral element to which we attach an element coordinate
system that is, for now, assumed to be the same as the global system. We express the location of

the four corner nodes with respect to the global Cartesian coordinates system (x,y,z) are

r=(%,Yy,z) with i=1234

X =N;X +N,X, + Nox; + N, X,
y= N1y1+/12y2 + N3y3+ N4y4
z=N;z, +N,z,+N,z, + N,z,
1=N,+N,+N,+N,

(C.1)

in which N; are standard shape functions given in terms of the local coordinates, then a

relationship of the required form is immediately available.

iy

(C.2)
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Here x; yi and z;, refer to the coordinates of the 4 vertices of the tetrahedron. To solve for the
polynomial coefficients, the matrix of coefficients in Equation C.2 must be inverted. Inversion

of the matrix is algebraically tedious but straightforward, and we find
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C.2. Construction of Shape Functions

N, 6v, a b c |1
N, _ 1 6v, a, b, c,| X (C3)
N,| 6V|6v, a, b, c ||y
N, 6v, a, b, ¢ |z

where the coefficients of this matrix can be calculated by forming the adjoints of the matrix eq

C.2. The values of a;, bj and c;, obtained by explicit inversion are

& =Yoli3 = Yalyy+ Valyy B =—XZp+ X520 =Xy Zgy C =X,Y43 = XsYar + XY
& =ViZyp+ Yol = YaZuy Dy =XZpp = XZy+ X251 Co ==X Yi3+ XY — XY
& = Y12y = Yol + Yaly Dy =—XZpp + %2 =X, Zy1 Co=XYe =X Ya1 + Xg Yo
A =—YiZyst Yoly + Ysln b4 = X2y = Xolyy T X432y Cp ==X Y3 T XoYa = XY

(C.4)

in which the abbreviations x; =X —X;, y; =Y;—Y; and z; =z, —Z; are used. The volume V is

given explicitly represents the volume of the tetrahedron by

1 1 1 1
X, X, X
V — l Xl 2 3 4 (C5)
6lY, Y. Y5 Y,
Zl 22 Z3 Z4
Which results in
6V = X5 ( Y3124 — Y41231) + Y ( Xyply — X41231) +Zy (X31Y41 - X41Y31) (C-6)

C.2  Construction of Shape Functions

Considerable simplification of the interpolation functions as well as the subsequently required
integration is obtained via the use of volume coordinates. We can introduce the concept of
volume coordinates using Figure 5.1 showing a four-node tetrahedral element divided into four
volumes defined by the nodes and an arbitrary interior point P(xp, Yp, Zp). As indicated by the

dotted lines, point P and the four nodes define four other tetrahedra having volumes

V1 :VP234’ Vz = VP134’ Vs :VP124’ V4 :VP123 (C.7)
The volume or “tetrahedral” coordinates L,,L,,L; L, are defined as

L, =V,/V, a=12,34 (C.8)
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where V is the total volume of the element given by eq C.5.V, is given by replacing the

coordinates of the P, X,,Y,,Zz, with x,y,zineq C.5

1 1 1 1
X X X X

V, = 1 P2 M3 N (C.9)
61Y» Y2 Ys Vi

, 1, 1, 1,

by same procedure we can calculate V,,V,,V, respectively. The value of L; is one at corner 1,

zero at the other 3 corners (i.e. on the opposite face) and varies linearly as one traverses the
distance from the corner to the face. As the volume coordinates vary linearly with the Cartesian
ones from unity at one node to zero at the opposite face, then shape functions for first order

tetrahedral (linear) elements are simply
N,=L, a=1234 (C.10)

For constructing the second order quadratic shape functions we have 10 monomial terms.

We can determine shape functions by placing nodes at the four vertices and at the midpoints of

the six edges. The quadratic shape function N, associated with vertex node 1 of a tetrahedron
(Figure 4.4b) is required to vanish at all nodes but node 1. The plane L, =0 passes through face
A234 and, hence, Nodes 2, 3, 4, 6, 9, 10. Likewise, the plane L =1/2 passes through Nodes 5,

7 and