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Abstract  

The aim of this doctoral dissertation is initially to develop an inclusive personalized driving 

recommendation framework which first identifies each individual’s driving style and then, 

proposes customized driving actions that mitigate aggressiveness and riskiness, and, 

thereafter, to assess the impact of applying such a personalized decision support system 

through microsimulation by properly adjusting traffic models. The methodological approach 

is based on a mixture of unsupervised learning and Deep Reinforcement Learning algorithms 

while exploiting an always increasing naturalistic driving dataset that emerged from crowd-

sensing. Using a variety of variables which describe driving behavior each individual’s driving 

behavior is identified both on a trip- and user-level. Findings revealed that there are 6 driving 

profiles that describe the overall behavior a driver has during their trip, which spans from safe 

to aggressiveness and distraction during driving. Subsequently, the average behavior of each 

driver was estimated and further exploited to separate drivers into groups. Then, two 

Reinforcement Learning agents were trained, each one corresponding to a specific group of 

drivers with common behavior, to determine the optimal behavior alteration for each driver 

given the way they have drove over their last trip. Specifically, the two agents correspond to 

cautious and more aggressive drivers respectively. The results of applying the controllers into 

real world data have shown that, although given the same driving characteristics of a trip, 

indicating the same driving behavior, the two controllers provide different driving suggestions, 

both of them lead to safer driving actions. Finally, a microsimulation scenario was set in order 

to assess traffic conditions, emissions and safety before and after applying the 

recommendation system. Findings have revealed that when each individual driver improves 

their behavior accordingly to the system’s recommendation, although traffic conditions are 

not improved, the calculation of key safety and environmental performance indicators unveiled 

a significant reduction of both conflicts and harmful emissions. Results could be exploited 

within the framework of an advanced active cruise control system, in the development of 

enhanced behavioral models or could even lead to the revision of policy measures that utilize 

driving behavior as a key controller of traffic management. 

Keywords: driving behavior, reinforcement learning, k-means clustering, driving 

recommendations, personalization, microsimulation, driving safety, big data  
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Σύνοψη 

Ο στόχος της παρούσας διδακτορικής διατριβής είναι, αρχικά, να αναπτύξει μια 

ολοκληρωμένη προσέγγιση για τη δημιουργία ενός εξατομικευμένου συστήματος παροχής 

συστάσεων οδήγησης το οποίο πρώτα θα ανιχνεύει τη συμπεριφορά οδήγησης και στη 

συνέχεια θα προτείνει εξατομικευμένες ενέργειες που μετριάζουν την επιθετικότητα και το 

ρίσκο κατά την οδήγηση, και έπειτα, να εκτιμήσει τις επιπτώσεις της εφαρμογής ενός 

τέτοιου συστήματος μέσω προσομοίωσης προσαρμόζοντας κατάλληλα τις παραμέτρους 

του κυκλοφοριακού μοντέλου. Η μεθοδολογική προσέγγιση βασίζεται σε ένα μείγμα 

αλγορίθμων μη επιβλεπόμενης και ενισχυτικής μάθησης, στα πλαίσια των οποίων 

αξιοποιείται μια βάση δεδομένων πραγματικής οδήγησης που συλλέγονται από το πλήθος. 

Χρησιμοποιώντας μια ποικιλία μεταβλητών που περιγράφουν τον τρόπο οδήγησης, 

προσδιορίζεται η συμπεριφορά οδήγησης τόσο σε επίπεδο διαδρομής όσο και σε επίπεδο 

χρήστη. Η ανάλυση ανέδειξε 6 προφίλ οδήγησης που περιγράφουν τη συνολική 

συμπεριφορά ενός οδηγού κατά τη διάρκεια της διαδρομής του, και εκτείνονται από την 

ασφαλή έως την επιθετική οδήγηση και την οδήγηση με απόσπαση προσοχής. Στη συνέχεια, 

η μέση συμπεριφορά κάθε οδηγού εκτιμήθηκε και αξιοποιήθηκε περαιτέρω για να 

διαχωριστούν οι οδηγοί σε ομάδες με κοινά χαρακτηριστικά. Δύο ξεχωριστοί πράκτορες 

Ενισχυτικής μάθησης εκπαιδεύτηκαν, ένας για κάθε ομάδα χρηστών, οι οποίοι είναι σε θέση 

να προσδιορίζουν τη βέλτιστη αλλαγή στη συμπεριφορά κάθε οδηγού δεδομένου του 

τρόπου που ο ίδιος οδήγησε στην προηγούμενη διαδρομή του. Πιο συγκεκριμένα, οι δύο 

πράκτορες αντιστοιχούν στους τυπικούς οδηγούς και στους πιο επιθετικούς/μη ασφαλείς 

οδηγούς, αντίστοιχα. Τα αποτελέσματα της αξιοποίησης των συστάσεων οδήγησης έδειξαν 

ότι, δεδομένων των ίδιων χαρακτηριστικών οδήγησης για μια διαδρομή, που υποδηλώνουν 

ίδια συμπεριφορά οδήγησης, οι δύο πράκτορες παράγουν διαφορετικές συστάσεις οι οποίες 

ταιριάζουν με τις προτιμήσεις της εκάστοτε ομάδας οδηγών, παρόλο που και οι δύο 

οδηγούν σε ασφαλέστερες ενέργειες οδήγησης. Τέλος, δύο κύκλοι προσομοίωσης 

πραγματοποιήθηκαν προκειμένου να αξιολογηθούν οι επιπτώσεις της εφαρμογής ενός 

τέτοιου συστήματος τόσο στην κυκλοφορία, όσο και στην οδική ασφάλεια και το 

περιβάλλον. Τα ευρήματα έδειξαν ότι εάν όλοι οι οδηγοί βελτιώσουν τη δική τους 

συμπεριφορά οδήγησης τότε, παρόλο που οι συνθήκες κυκλοφορίας δε βελτιώνονται, 

παρατηρούνται σημαντικές μειώσεις τόσο στις εκπομπές βλαβερών αερίων όσο και στις 

εμπλοκές ανάμεσα στα οχήματα. Τα αποτελέσματα αυτής της έρευνας μπορούν να 

αξιοποιηθούν στα πλαίσια ενός προηγμένου συστήματος υποβοήθησης του οδηγού, στην 

ανάπτυξη προχωρημένων προτύπων συμπεριφοράς ή ακόμη και να οδηγήσουν στην 

αναθεώρηση των πολιτικών που χρησιμοποιούν τη συμπεριφορά οδήγησης ως κινητήριο 

δύναμη για τη διαχείριση της κυκλοφορίας. 

Λέξεις – Κλειδιά: συμπεριφορά οδήγησης, ενισχυτική μάθηση, ομαδοποίηση k-means, 

συστάσεις οδήγησης, εξατομίκευση, προσομοίωση, οδηγική ασφάλεια, μεγάλα δεδομένα
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PT Public Transport 

RL Reinforcement Learning 

SSAM Surrogate Safety Assessment Model 

SUMO Simulation of Urban MObility 

SVM Support Vector Machines  

UBI Usage-based Insurance 

  



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 9 - 

 

Περίληψη Διδακτορικής Διατριβής  

Εισαγωγή 

Το αστικό δίκτυο μεταφορών έχει αλλάξει δραστικά τα τελευταία χρόνια λόγω των 

ποικίλων εναλλακτικών μετακίνησης που προσφέρονται στους μετακινούμενους, οι οποίες 

μαζί με τις καινοτομίες στον τομέα των Τεχνολογιών Πληροφορίας και Επικοινωνιών (ΤΠΕ) 

ανατρέπουν τις πολιτικές διαχείρισης της κυκλοφορίας και του δικτύου. Οι υπεύθυνοι 

χάραξης πολιτικής καλούνται να επανεξετάσουν τα ισχύοντα μέτρα και τις στρατηγικές 

διαχείρισης του δικτύου ώστε να λάβουν υπόψη τις απαιτήσεις για αυτοματοποίηση και 

συνεργατικότητα των σύγχρονων υπηρεσιών μετακίνησης, αλλά και τις συνεχώς 

αυξανόμενες ανάγκες για πράσινες και βιώσιμες λύσεις κινητικότητας. Ακόμα και σε αυτό 

το πολύπλοκο και διαρκώς μεταβαλλόμενο περιβάλλον, ο οδηγός βρίσκεται στο επίκεντρο 

του ενδιαφέροντος. Ως εκ τούτου, η κατανόηση της λήψης αποφάσεων κατά την οδήγηση, 

καθώς και η διερεύνηση των συνηθειών οδήγησης που υιοθετούν οι οδηγοί παραμένει 

ενεργό πεδίο έρευνας. 

Η επικίνδυνη οδήγηση έχει συνδεθεί με αυξημένο ρίσκο και γι’ αυτό η βελτίωση της 

συμπεριφοράς οδήγησης θεωρείται κρίσιμη για τη βελτίωση της οδικής ασφάλειας. 

Επιπλέον, προηγούμενες έρευνες έχουν υπονοήσει ότι η βελτίωση της ατομικής 

συμπεριφοράς οδήγησης μπορεί να επιφέρει και βελτίωση των συνθηκών κυκλοφορίας. 

Παρόλα αυτά όμως, δεν έχουν παρασχεθεί στοιχεία που να μπορούν να υποστηρίξουν αυτή 

την πεποίθηση και οι συνέπειες της προσαρμογής της ατομικής συμπεριφοράς οδήγησης 

σε επίπεδο δικτύου εξακολουθούν να παραμένουν ασαφείς.  

Σε αυτό το πλαίσιο, τα δύο βασικά κίνητρα για την εκπόνηση της διδακτορικής διατριβής 

υπήρξαν τα ακόλουθα: 1) η ανάγκη σχεδιασμού ενός συστήματος υποβοήθησης του οδηγού 

που θα αντιμετωπίζει τον ίδιο ως μονάδα και θα προσαρμόζεται στις προσωπικές ανάγκες 

και προτιμήσεις του και 2) η ανάγκη εκτίμησης του πραγματικού αντικτύπου της εφαρμογής 

ενός συστήματος παροχής εξατομικευμένων συστάσεων οδήγησης στις διάφορες πτυχές 

του οδικού δικτύου.  

Στόχοι της διατριβής και ερευνητικά ερωτήματα 

Ο κύριος στόχος της παρούσας διατριβής είναι να σχεδιάσει ένα εξατομικευμένο σύστημα 

συστάσεων οδήγησης το οποίο βασίζεται σε αλγόριθμους βαθιάς ενισχυτικής μάθησης και 

στοχεύει στη βελτίωση της συμπεριφοράς οδήγησης μέσω του μετριασμού της 

επιθετικότητας και άλλων μη ασφαλών συνηθειών οδήγησης. Στη συνέχεια, αξιολογούνται 

οι επιπτώσεις του ελέγχου της ατομικής συμπεριφοράς οδήγησης όσον αφορά την 

απόδοση του δικτύου και την οδική ασφάλεια, καθώς και τα επίπεδα επιβλαβών εκπομπών, 

προσαρμόζοντας κατάλληλα τις παραμέτρους των κυκλοφοριακών μοντέλων σε ένα ευρύ 

σενάριο προσομοίωσης της κυκλοφορίας. Αυτός ο στόχος της διδακτορικής διατριβής 

μπορεί να αποδομηθεί σε τρεις επιμέρους στόχους: 
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1. Αξιοποίηση δεδομένων πραγματικής οδήγησης που συλλέγονται από αισθητήρες 

κινητών τηλεφώνων για την κατανόηση της συμπεριφοράς οδήγησης 

2. Ανάπτυξη ενός πλαισίου παροχής συστάσεων για βελτιωμένη οδήγηση συμβατό με 

τις αρχές της θεωρίας της κυκλοφοριακής ροής 

3. Αξιολόγηση της επιρροής του συστήματος στην κυκλοφορία, την ασφάλεια και τις 

εκπομπές. 

Η έννοια της ανάλυσης της συμπεριφοράς οδήγησης δεν είναι καινούργια και για αυτό το 

λόγο διεξήχθη μια εκτενής ανασκόπηση της σχετικής βιβλιογραφίας με στόχο αφενός να 

εντοπιστούν τα κενά της έρευνας και αφετέρου να επισημανθούν οι προκλήσεις και οι 

περιορισμοί που προκύπτουν όταν αξιοποιούνται δεδομένα που προέρχονται από το 

πλήθος. Η ανασκόπηση της βιβλιογραφίας είχε ως αποτέλεσμα τη διαμόρφωση των 

ακόλουθων ερευνητικών ερωτημάτων: 

1. Ποια είναι τα κύρια προφίλ οδήγησης που καλύπτουν το ευρύ φάσμα της 

συμπεριφοράς οδήγησης και πώς μπορούν να εντοπιστούν μέσω της αξιοποίησης 

δεδομένων που συλλέγονται μέσω έξυπνων κινητών τηλεφώνων; 

2. Μπορεί η συνολική συμπεριφορά οδήγησης των οδηγών να κατηγοριοποιηθεί σε 

ομάδες που θα εμφανίζουν κοινά χαρακτηριστικά οδήγησης, και αν ναι, σε ποιο 

βαθμό μπορούν να κατηγοριοποιηθούν αυτές οι συμπεριφορές; 

3. Θα μπορούσαν οι τεχνικές Τεχνητής Νοημοσύνης (Artificial Intelligence) να 

αξιοποιηθούν στα πλαίσια ενός συστήματος παραγωγής συστάσεων στους οδηγούς 

και να εξασφαλίσουν τον απαιτούμενο βαθμό εξατομίκευσης των ενεργειών 

οδήγησης που προτείνονται σε κάθε χρήστη; 

4. Ποιος είναι ο πιο κατάλληλος αλγόριθμος Ενισχυτικής Μάθησης (Reinforcement 

Learning) που μπορεί να υποστηρίξει τη διαδικασία λήψης αποφάσεων του ατόμου; 

5. Υπάρχει σύνδεση μεταξύ της ενίσχυσης της ευαισθητοποίησης του ατόμου και της 

καθολικής βελτίωσης του δικτύου; Σε ποιο βαθμό μπορεί η βελτίωση της 

συμπεριφοράς οδήγησης να επηρεάσει τις συνθήκες του δικτύου; 

6. Τι είδους επιπτώσεις θα είχε η διαχείριση της ατομικής συμπεριφοράς στην οδήγηση 

και την ασφάλεια; 

7. Πώς επηρεάζονται οι εκπομπές από τον έλεγχο της ατομικής συμπεριφοράς 

οδήγησης; Υπάρχει σημαντική αλλαγή στις περιβαλλοντικές συνθήκες όταν οι οδηγοί 

βελτιώνουν τη συμπεριφορά τους; 

Μεθοδολογική προσέγγιση 

Το μεθοδολογικό πλαίσιο για την παροχή συστάσεων οδήγησης, που προτείνεται στο 

πλαίσιο αυτής της διατριβής, είναι βασικά ένα σύστημα υποστήριξης αποφάσεων για τους 

οδηγούς που στοχεύει στο μετριασμό της επιθετικότητας και της ανάληψης ρίσκου. Η 

οδήγηση είναι μια πολύπλοκη εργασία, δεδομένου ότι απαιτεί από τον οδηγό να λάβει τόσο 

στρατηγικές όσο και δυναμικές αποφάσεις καθώς και να προσαρμόσει τη συμπεριφορά του 

στις εκάστοτε συνθήκες του δικτύου. Σε αντίθεση με τα ήδη αναπτυγμένα συστήματα 

υποβοήθησης του οδηγού (Advanced Driving Assistance Systems – ADAS), το προτεινόμενο 

σύστημα έχει τα ακόλουθα τρία καινοτόμα χαρακτηριστικά: 
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• Είναι εξατομικευμένο, που σημαίνει ότι προτείνει τις καλύτερες ενέργειες οδήγησης 

σε κάθε άτομο λαμβάνοντας υπόψη τις προσωπικές απαιτήσεις και προτιμήσεις 

οδήγησης. 

• Έχει αυτο-γνωσία (self-awareness), που σημαίνει ότι το σύστημα λαμβάνει υπόψη 

την προηγούμενη συμπεριφορά κάθε μεμονωμένου οδηγού προκειμένου να 

προτείνει τις καταλληλότερες συστάσεις οδήγησης. 

• Είναι αυτόνομο, που σημαίνει ότι δεν απαιτεί καμία εξωγενή πληροφορία από το 

δίκτυο ή την κυκλοφορία. Οι συστάσεις οδήγησης στοχεύουν στη βελτίωση της 

ατομικής συμπεριφοράς οδήγησης στον πυρήνα της, δηλαδή στις αποφάσεις 

επιτάχυνσης και επιβράδυνσης. 

Η ανάπτυξη του συστήματος συστάσεων βασίζεται σε έναν αλγόριθμο Βαθιάς Ενισχυτικής 

Μάθησης ο οποίος είναι ικανός να παράγει τη βέλτιστη μεταβολή της συμπεριφοράς για 

κάθε οδηγό δεδομένου του τρόπου με τον οποίο οδήγησε στην τελευταία διαδρομή του. 

Προκειμένου να απαντηθούν τα ερευνητικά ερωτήματα που τέθηκαν και να επιτευχθεί ο 

πρωταρχικός στόχος της διατριβής, προτείνεται ένα περιεκτικό μεθοδολογικό πλαίσιο το 

οποίο βασίζεται σε ένα μείγμα αλγορίθμων μάθησης χωρίς επίβλεψη και βαθιάς ενισχυτικής 

μάθησης όπως απεικονίζεται στο Σχήμα Ι. 

 
Σχήμα Ι. Μεθοδολογικό πλαίσιο 

Ξεκινώντας από πρωτογενείς μετρήσεις θέσης, επιτάχυνσης και ταχύτητας, όπως αυτές 

συλλέχθηκαν μέσω των αισθητήρων των έξυπνων κινητών τηλεφώνων χρησιμοποιώντας 
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την εφαρμογή τηλεματικής της Oseven (www.oseven.io) προσδιορίστηκαν παράμετροι που 

περιγράφουν τη συμπεριφορά κατά την οδήγηση, τόσο βραχυπρόθεσμα, όσο και 

μακροπρόθεσμα. Στη συνέχεια, αυτές οι παράμετροι χρησιμοποιούνται σε ένα πλαίσιο 

μάθησης χωρίς επίβλεψη για τον εντοπισμό προφίλ οδήγησης που μπορούν να 

περιγράψουν τη συνολική συμπεριφορά οδήγησης κάθε οδηγού (Ε1, Ε2). Η συμπεριφορά 

οδήγησης ορίζεται σε δύο επίπεδα: 

• σε επίπεδο διαδρομής, το οποίο αντιστοιχεί στον τρόπο με τον οποίο ο οδηγός 

οδήγησε σε μια συγκεκριμένη διαδρομή, και 

• σε επίπεδο χρήστη, το οποίο αντιστοιχεί στη συνολική συμπεριφορά οδήγησης ενός 

συγκεκριμένου οδηγού σε όλα τα ταξίδια του (αποτύπωμα οδήγησης). 

Για τον προσδιορισμό των διάφορων προφίλ οδήγησης που διέπουν τη συμπεριφορά 

οδήγησης σε κάθε διαδρομή, εφαρμόζεται ένας αλγόριθμος ομαδοποίησης k-means σε δύο 

διακριτά επίπεδα. Στο πρώτο επίπεδο εντοπίζεται η επιθετικότητα κατά την οδήγηση, ενώ 

στο δεύτερο επίπεδο προσδιορίζονται επιπρόσθετα άλλες μη ασφαλείς συμπεριφορές 

οδήγησης, όπως η οδήγηση πάνω από το όριο ταχύτητας (ανάληψη ρίσκου) και η 

απόσπαση προσοχής. Αποτέλεσμα αυτής της διαδικασίας είναι η αντιστοίχιση κάθε 

εκτελεσθείσας διαδρομής με ένα συγκεκριμένο προφίλ οδήγησης (Ε1). Στη συνέχεια, 

υπολογίζοντας τα στατιστικά χαρακτηριστικά όλων των διαδρομών κάθε οδηγού, 

προσδιορίζεται η μέση συμπεριφορά του καθενός (Ε2). 

Από τη στιγμή που θα οριστεί η μέση συμπεριφορά των οδηγών, οι τελευταίοι χωρίζονται 

σε ομάδες με τέτοιο τρόπο, ώστε σε κάθε ομάδα να ανήκουν οδηγοί με κοινά 

χαρακτηριστικά οδήγησης. Έπειτα, σχεδιάζεται το σύστημα παροχής συστάσεων οδήγησης 

το οποίο ενσωματώνει έναν αλγόριθμο Ενισχυτικής Μάθησης που έχει ως στόχο να «μάθει» 

τη βέλτιστη πολιτική και να προτείνει την κατάλληλη δράση που οδηγεί στην καλύτερη 

δυνατή συμπεριφορά οδήγησης (Ε3). Στο συγκεκριμένο πρόβλημα, η δράση που προτείνεται 

αφορά στην προσαρμογή των κινηματικών χαρακτηριστικών του οχήματος δηλαδή της 

ταχύτητας και της επιτάχυνσης τα οποία εκτείνονται σε ένα συνεχές εύρος τιμών. Για αυτό 

το λόγο, η επιλογή του κατάλληλου αλγορίθμου ενισχυτικής μάθησης θα πρέπει να 

ικανοποιεί την ανάγκη διαχείρισης δράσεων που λαμβάνουν συνεχείς τιμές (Ε4). Έτσι, 

επιλέγεται η ανάπτυξη ενός μοντέλου που ακολουθεί την προσέγγιση “actor-critic” και 

συγκεκριμένα αναπτύσσεται ο αλγόριθμος Deep Deterministic Policy Gradient, ο οποίος 

ενσωματώνει δύο βαθιά νευρωνικά δίκτυα, οι υπερπαράμετροι και η δομή των οποίων 

προκύπτουν μετά από συγκριτική αξιολόγηση των πιθανών συνδυασμών. Ο αλγόριθμος 

εκπαιδεύεται χρησιμοποιώντας ακολουθίες διαδρομών οδήγησης του ίδιου οδηγού ως 

είσοδο, ενώ η έξοδος του αλγορίθμου, δηλαδή η προτεινόμενη ενέργεια, είναι η βέλτιστη 

αλλαγή στην επιτάχυνση κάθε οδηγού, δεδομένου του τρόπου με τον οποίο οδήγησε στην 

προηγούμενη διαδρομή του.  

Η δομή του συστήματος είναι τέτοια ώστε να υπάρχει πλήρης αντιστοίχιση με λογικές 

μικροσκοπικής προτυποποίησης και ελέγχου της κυκλοφοριακής ροής. Σε αντιστοίχιση με 
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τα ευρέως διαδεδομένα πρότυπα ακολουθούντος οχήματος (car following models), ο 

προτεινόμενος αλγόριθμος λειτουργεί ως μια συνάρτηση εκτίμησης και πρόβλεψης της 

επιτάχυνσης με την οποία το όχημα πρέπει να κινηθεί.   

Το τελευταίο στάδιο της μεθοδολογίας που ακολουθήθηκε περιλαμβάνει την αξιολόγηση 

της επιρροής που θα έχει η βελτίωση της ατομικής συμπεριφοράς τόσο στο σύνολο της 

κυκλοφορίας, όσο και στην οδική ασφάλεια και το περιβάλλον (Ε5, Ε6, Ε7). Για το σκοπό 

αυτό ορίστηκε ένα σενάριο προσομοίωσης που αφορά στην πρωινή ώρα αιχμής 

αξιοποιώντας το οδικό δίκτυο της Αθήνας. Για την εκτίμηση της επιρροής ακολουθήθηκε 

μια προσέγγιση «πριν και μετά», όπου στις αρχικές συνθήκες του δικτύου η κυκλοφορία 

απαρτίζεται από οχήματα που κινούνται με βάση τα χαρακτηριστικά των προφίλ οδήγησης 

που ορίστηκαν στο πρώτο βήμα της μεθοδολογίας ενώ στο δεύτερο γύρο προσομοίωσης 

τα οχήματα κινούνται με βάση τις συστάσεις που παρήγαγε το μοντέλο ενισχυτικής 

μάθησης για κάθε οδηγό.  

Δεδομένα οδήγησης  

Για τις ανάγκες της εν λόγω έρευνας αξιοποιήθηκαν δεδομένα πραγματικής οδήγησης που 

συλλέχθηκαν μέσω μιας εφαρμογής τηλεματικής που αναπτύσσεται από την Oseven 

telematics. Η βάση δεδομένων περιλάμβανε 153.953 διαδρομές που πραγματοποιήθηκαν 

από 696 μοναδικούς οδηγούς από το Δεκέμβριο 2017 έως τον Αύγουστο 2019. Οι διαδρομές 

πραγματοποιήθηκαν στο οδικό δίκτυο της Ελλάδας, όμως η πλειοψηφία αυτών αφορά σε 

διαδρομές εντός του νομού Αττικής. Για κάθε διαδρομή, ήταν διαθέσιμες μια πληθώρα 

παραμέτρων που περιλαμβάνουν στατιστικά της επιτάχυνσης και της επιβράδυνσης, 

μετρήσεις ταχύτητας και δείκτες απόσπασης της προσοχής όπως η διάρκεια χρήσης του 

κινητού τηλεφώνου κατά την οδήγηση. Οι παράμετροι που χρησιμοποιήθηκαν στη 

συγκεκριμένη διατριβή παρουσιάζονται στον Πίνακα Ι. 

Πίνακας Ι. Παράμετροι οδήγησης ανά διαδρομή 

Όνομα μεταβλητής Περιγραφή Μονάδα μέτρησης 

harsh_acc_per_min   Μέσος αριθμός απότομων επιταχύνσεων ανά λεπτό συμβάντα/λεπτό 

acc_avg Μέση επιτάχυνση m/s2 

acc_std   Τυπική απόκλιση επιτάχυνσης m/s2 

acc_q90 90% της επιτάχυνσης m/s2 

acc_max Μέγιστη επιτάχυνση m/s2 

harsh_brk_per_min Μέσος αριθμός απότομων επιβραδύνσεων ανά λεπτό συμβάντα/λεπτό 

dec_avg Μέση επιβράδυνση m/s2 

dec_std Τυπική απόκλιση επιβράδυνσης m/s2 

dec_q90 90% της επιβράδυνσης m/s2 

dec_max Μέγιστη επιβράδυνση m/s2 

speed_max Μέγιστη ταχύτητα km/h 

mbu Ποσοστό χρόνου οδήγησης με χρήση κινητού % 

speeding_percentage Ποσοστό χρόνου οδήγησης με ταχύτητα πάνω από το 

όριο 

% 
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Όλα τα δεδομένα που αξιοποιήθηκαν, δόθηκαν από την Οseven σε πλήρως ανώνυμη 

μορφή. Ο Πίνακας ΙΙ παρουσιάζει τα βασικά χαρακτηριστικά του δείγματος που 

χρησιμοποιήθηκε.  

Πίνακας ΙΙ. Βασικά χαρακτηριστικά του δείγματος της διατριβής 

 
Σύνολο 

Ασφαλείς 

διαδρομές 

Μη ασφαλείς 

διαδρομές 

Αριθμός διαδρομών 153.953 66.566 87.387 

Αριθμός οδηγών 696 197 499 

Μέσος αριθμός διαδρομών ανά οδηγό 221 

Ελάχιστος αριθμός διαδρομών ανά οδηγό 16 

Μέσος όρος χιλιομέτρων οδήγησης ανά οδηγό 2.510 km 

 

Ανάλυση συμπεριφοράς οδήγησης 

Για την επίτευξη του πρώτου στόχου της διδακτορικής διατριβής, ο οποίος είναι η 

αναγνώριση της συμπεριφοράς οδήγησης από δεδομένα που προέρχονται από τους 

αισθητήρες των έξυπνων κινητών τηλεφώνων και συλλέγονται απευθείας από το πλήθος, 

εφαρμόστηκε ο αλγόριθμος ομαδοποίησης k-means σε δύο διακριτά επίπεδα. 

Στο πρώτο επίπεδο της ομαδοποίησης, ο αριθμός των συστάδων ορίστηκε k=2 κι ο πίνακας 

αποστάσεων εκτιμήθηκε με βάση την Ευκλείδεια απόσταση. Οι παράμετροι που 

χρησιμοποιήθηκαν σε αυτό το επίπεδο της ομαδοποίησης περιγράφουν τον αριθμό των 

απότομων επιταχύνσεων και επιβραδύνσεων, καθώς και τα στατιστικά χαρακτηριστικά της 

επιτάχυνσης και της επιβράδυνσης. Τα σχετικά αποτελέσματα δίνονται στον Πίνακα ΙΙΙ. 

Πίνακας ΙΙΙ. Αποτελέσματα πρώτου επιπέδου ομαδοποίησης  
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Επιθετικές διαδρομές 0,150 0,2081 1,748 1,525 3,847 -1,968 1,843 -4,547 71.263 

Μη επιθετικές διαδρομές 0,028 0,051 1,137 1,052 2,503 -1,282 1,286 -2,926 82.690 

 

Σύμφωνα με τα κέντρα των ομάδων, οι διαδρομές μπορούν να διακριθούν σε επιθετικές 

και μη-επιθετικές, μιας και οι διαδρομές που ανήκουν στην πρώτη ομάδα χαρακτηρίζονται 

από επιθετικότητα κατά την οδήγηση όπως προκύπτει από τις μεγάλες επιταχύνσεις και 

επιβραδύνσεις, αλλά και το μεγαλύτερο αριθμό απότομων συμβάντων συγκριτικά με τις 

διαδρομές της δεύτερης ομάδας. 

Το δεύτερο επίπεδο ομαδοποίησης k-means εφαρμόστηκε ξεχωριστά στις δύο ομάδες που 

προέκυψαν από το πρώτο επίπεδο ομαδοποίησης χρησιμοποιώντας δύο παραμέτρους 

οδήγησης: το ποσοστό οδήγησης με χρήση κινητού και το ποσοστό οδήγησης με ταχύτητα 
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πάνω από το όριο ταχύτητας. Τα αποτελέσματα αυτού του δεύτερου επιπέδου 

ομαδοποίησης παρουσιάζονται στον Πίνακα ΙV. 

Πίνακας IV. Αποτελέσματα δεύτερου επιπέδου ομαδοποίησης 
 Ποσοστό οδήγησης με 

χρήση κινητού 

τηλεφώνου 

Ποσοστό οδήγησης με 

ταχύτητα πάνω από το 

όριο 

Αριθμός διαδρομών 

Επιθετικές διαδρομές 

Απόσπαση προσοχής 0,511 0,062 4.505 (2,9%) 

Επιθετικότητα 0,019 0,032 54.394 (35,3%) 

Ανάληψη ρίσκου 0,023 0,269 12.364 (8%) 

Μη-επιθετικές διαδρομές 

Ανάληψη ρίσκου 0,021 0,306 12.494 (8,1%) 

Τυπική οδήγηση 0,014 0,029 66.566 (43,2%) 

Απόσπαση προσοχής 0,514 0,057 3.630 (2,4%) 

 

Στο δεύτερο στάδιο της ομαδοποίησης προκύπτουν πιο εμπλουτισμένα προφίλ οδήγησης. 

Συγκεκριμένα, αναγνωρίζεται η απόσπαση προσοχής κατά την οδήγηση από τις αυξημένες 

τιμές του ποσοστού χρήσης του κινητού τηλεφώνου και η ανάληψη ρίσκου από το μεγάλο 

ποσοστό χρόνου οδήγησης με ταχύτητα πάνω από το επιτρεπόμενο όριο. Οι διαδρομές 

που δε χαρακτηρίζονται από καμία από αυτές τις μη ασφαλείς συμπεριφορές αναφέρονται 

ως «επιθετικές» στην περίπτωση που στο πρώτο στάδιο χαρακτηρίστηκαν από 

επιθετικότητα και «τυπικές» στην περίπτωση που είχαν αρχικώς χαρακτηριστεί ως μη-

επιθετικές διαδρομές. 

Έτσι προκύπτουν έξι προφίλ οδήγησης που διέπουν τον τρόπο που μπορεί να οδηγήσει 

ένας οδηγός σε κάποια συγκεκριμένη διαδρομή του. Προκειμένου να διερευνηθεί περαιτέρω 

η συνολική συμπεριφορά των οδηγών, υπολογίζεται η μέση συμπεριφορά κάθε χρήστη 

εφαρμόζοντας έναν απλό κανόνα. Για κάθε μεμονωμένο οδηγό υπολογίζεται ο μέσος όρος 

των διαδρομών του, εφόσον η κάθε διαδρομή έχει συνδεθεί με ένα από τα έξι προφίλ 

οδήγησης αφού πρώτα τα τελευταία ταξινομήθηκαν με βάση την ασφάλεια κατά την 

οδήγηση, όπως φαίνεται στο Σχήμα ΙΙ. 

 

Σχήμα ΙΙ. Κατηγοριοποίηση προφίλ οδήγησης για τον υπολογισμό της μέσης συμπεριφοράς οδήγησης 

Πιο συγκεκριμένα, τα τέσσερα προφίλ οδήγησης που χαρακτηρίζονται από μη ασφαλή 

συμπεριφορά οδήγησης τοποθετήθηκαν στην κατηγορία 3, ενώ διαδρομές με επιθετική 

συμπεριφορά οδήγησης τοποθετήθηκαν στην κατηγορία 2 και τέλος, όσες διαδρομές 
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ανήκουν στο τυπικό προφίλ οδήγησης αποτελούν την κατηγορία 1. Για κάθε μεμονωμένο 

οδηγό, υπολογίζεται ένας μέσος όρος των προφίλ όλων των διαδρομών του, και στην 

περίπτωση που ο μέσος όρος είναι μικρότερος από 1,5 συνεπάγεται μέτριο/τυπικό οδηγό 

όταν είναι μεγαλύτερος από 1,5 αναφέρεται σε απερίσκεπτους οδηγούς: 

• μέσοι/τυπικοί οδηγοί: μέσος όρος διαδρομών ≤ 1,5 

• απερίσκεπτοι οδηγοί: μέσος όρος διαδρομών > 1,5 

Εφαρμόζοντας αυτό τον κανόνα οι οδηγοί χωρίζονται σε δύο ομάδες, για κάθε μία από τις 

οποίες θα αναπτυχθεί διαφορετική έκδοση του αλγορίθμου παροχής συστάσεων οδήγησης 

με τρόπο ώστε ο αλγόριθμος να προσαρμόζεται στις προτιμήσεις οδήγησης του κάθε 

χρήστη. Με βάση τη στατιστική ανάλυση που πραγματοποιήθηκε, μέσος όρος ταξιδιών 

μικρότερος από 1,5 δείχνει ότι τουλάχιστον το 60% των ταξιδιών που εκτελεί ένας οδηγός 

χαρακτηρίζεται από "μέτρια" συμπεριφορά οδήγησης. Η προτεινόμενη μεθοδολογία 

προσδιορισμού του αποτυπώματος οδήγησης είναι ιδιαίτερα αυστηρή ως προς τον 

χαρακτηρισμό ενός οδηγού ως «τυπικού – ασφαλή» οδηγού προκειμένου να αποφευχθεί η 

πρόταση αλλαγών στη συμπεριφορά που ο ίδιος ο οδηγός είναι αδύνατο να ακολουθήσει 

καθώς θα είναι μακριά από τη δική του μέση συμπεριφορά.  

Ενισχυτική Μάθηση: έννοιες, βασικές αρχές και ανάπτυξη προτύπου 

Για την ανάπτυξη του Αυτογνωστικού Βοηθού Συστάσεων Οδήγησης (Self-Aware Driving 

Recommendation Assistant – SADRA) ακολουθήθηκε μία δομημένη διαδικασία. Αρχικά, η 

συνολική βάση δεδομένων χωρίστηκε στα δύο με βάση το μέσο προφίλ οδήγησης κάθε 

οδηγού. Συγκεκριμένα, η πρώτη βάση δεδομένων περιλαμβάνει τις διαδρομές όλων των 

οδηγών που ανήκουν στο «τυπικό/ασφαλές» προφίλ, ενώ η δεύτερη τις διαδρομές των 

οδηγών με μη ασφαλή μέση συμπεριφορά οδήγησης. Στο εξής, για συντομία, το μοντέλο 

Ενισχυτικής Μάθησης που αντιστοιχεί στους τυπικούς οδηγούς θα αναφέρεται ως SADRA 

– I, ενώ αυτό που αντιστοιχεί στους περισσότερο ριψοκίνδυνους οδηγούς ως SADRA – II. 

Κάθε δομή Ενισχυτικής Μάθησης αποτελείται από τρία βασικά συστατικά: τις καταστάσεις 

(s) του συστήματος, τις πιθανές δράσεις (a) και τις ανταμοιβές (r). Σε κάθε διακριτή χρονική 

στιγμή, ο κάθε πράκτορας παρατηρεί την τρέχουσα κατάσταση του περιβάλλοντός του και 

πραγματοποιεί την κατάλληλη ενέργεια από το σύνολο των πιθανών ενεργειών. Στη 

συνέχεια, ο πράκτορας λαμβάνει μια επιβράβευση, η οποία αντιστοιχεί στο κατά πόσο ήταν 

πετυχημένη ή αποτυχημένη η ενέργεια, σύμφωνα πάντα με τη συγκεκριμένη κατάσταση. 

Στην παρούσα διατριβή, η κατάσταση του περιβάλλοντος ορίζεται μέσω ενός διανύσματος 

πέντε μεταβλητών που περιγράφουν τη συμπεριφορά οδήγησης του οδηγού κατά τη 

διάρκεια ενός ταξιδιού και περιλαμβάνουν τη μέση επιτάχυνση του ταξιδιού (aavg), την 

επιτάχυνση που δεν ξεπέρασε ο οδηγός στο 90% του ταξιδιού (a90), τη μέση επιβράδυνση 

(davg), την επιβράδυνση που δεν ξεπέρασε ο οδηγός στο 90% του ταξιδιού (d90) και το 
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ποσοστό του ταξιδιού που ο οδηγός οδηγούσε με ταχύτητα πάνω από το επιτρεπόμενο 

όριο ταχύτητας (speeding): 

𝐬 = {𝑎𝑎𝑣𝑔, 𝑎90, 𝑑𝑎𝑣𝑔, 𝑑90, 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔} 

Το παρόν σύστημα παροχής συστάσεων στοχεύει στο να βελτιώσει τη συμπεριφορά 

οδήγησης του κάθε χρήστη, ανεξάρτητα από τις εκάστοτε επικρατούσες κυκλοφοριακές 

συνθήκες. Γενικά, η επιλογή ταχύτητας κίνησης δεν είναι ανεξάρτητη από τη γεωμετρία της 

οδού που κινείται το όχημα και τις κυκλοφοριακές συνθήκες, όπως και η απόφαση για 

επιβράδυνση, η οποία εξαρτάται συνήθως από τη συμπεριφορά του προπορευόμενου 

οχήματος και τη σηματοδότηση. Συνεπώς, η παράμετρος που περιγράφει τη συμπεριφορά 

οδήγησης ενός οδηγού είναι η επιτάχυνση και εξαρτάται αποκλειστικά από την αντίληψή 

του και την προτίμησή του ανάμεσα σε ομαλή και απότομη επιτάχυνση. Πράγματι, και στην 

πρόσφατη βιβλιογραφία, η συμπεριφορά οδήγησης ενός οδηγού περιγράφεται συνήθως 

από το προφίλ επιτάχυνσής του.  

Σε αυτή τη λογική, οι ενέργειες που προτείνονται από το σύστημα στον εκάστοτε οδηγό 

ανήκουν σε ένα συνεχές διάστημα τιμών και αφορούν στη μεταβολή (σε σχέση με την πιο 

πρόσφατη διαδρομή του) στη μέση επιτάχυνση και στην επιτάχυνση που δεν πρέπει ο 

οδηγός να ξεπερνά στο 90% των περιπτώσεων, π.χ. όταν πραγματοποιεί προσπέραση, 

εκτός και αν βρεθεί σε κατάσταση έκτακτης ανάγκης. 

𝒂 = {𝑑𝑎𝑎𝑣𝑔, 𝑑𝑎90} 

Στο εξής και για συντομία, η επιτάχυνση που δεν πρέπει ο οδηγός να ξεπεράσει στο 90% 

του ταξιδιού του θα αναφέρεται ως «μέγιστη επιτάχυνση». 

Ένα πολύ σημαντικό κομμάτι του πλαισίου Ενισχυτικής Μάθησης είναι η συνάρτηση 

ανταμοιβής. Ο στόχος της είναι διττός: να αξιολογεί τόσο την παρούσα κατάσταση, όσο και 

τη μετάβαση μεταξύ διαδοχικών καταστάσεων. Στην προκειμένη περίπτωση, αξιολογεί τη 

συμπεριφορά οδήγησης σε κάθε διαδρομή, αλλά και τη μεταβολή της ανάμεσα σε 

διαδοχικές διαδρομές του ίδιου οδηγού. Στα πλαίσια της παρούσας διατριβής, αναπτύχθηκε 

μια ειδική συνάρτηση αξιολόγησης της συμπεριφοράς οδήγησης. Για κάθε διαδρομή 

υπολογίζεται ένα σκορ με βάση την απόκλισή της από το κέντρο της συστάδας του τυπικού 

προφίλ οδήγησης. Για τον υπολογισμό της απόκλισης χρησιμοποιήθηκε η απόσταση 

Mahalanobis. Η αξιολόγηση κάθε ταξιδιού δίνεται από την παρακάτω εξίσωση: 

𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑒
−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 ∗ 

Ɱ(𝑖,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒)  

𝑄75(Ɱ)  

όπου με i συμβολίζεται μια συγκεκριμένη διαδρομή, Ɱ είναι η απόσταση Mahalanobis και 

𝑄75(Ɱ) είναι η τιμή που δεν ξεπερνά το 75% των αποστάσεων Mahalanobis. 
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Στη συνέχεια, υπολογίζεται η ανταμοιβή που αντιστοιχεί στη μετάβαση από τη μία 

διαδρομή στην άλλη, σύμφωνα με τον παρακάτω τύπο:  

𝒓 =  𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖+1 (1 +
𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒i+1 − 𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖

100
 ) 

Τελικά, αφού υπολογίστηκαν όλες οι απαραίτητες μεταβλητές για την ανάπτυξη του 

μοντέλου Ενισχυτικής Μάθησης (μοντέλο ή ελεγκτής ή πράκτορας RL), η βάση δεδομένων 

οργανώθηκε ως εξής: 

(κατάσταση, δράση, ανταμοιβή, επόμενη κατάσταση) 

Για κάθε μοναδικό οδηγό στο σύνολο δεδομένων, οι διαδρομές του ταξινομήθηκαν σε 

αύξουσα σειρά σύμφωνα με την ημερομηνία έναρξης κάθε διαδρομής. Τα δείγματα που 

χρησιμοποιήθηκαν για την εκπαίδευση του μοντέλου ήταν πλειάδες (tuples) διαδοχικών 

διαδρομών ενός συγκεκριμένου οδηγού μαζί με την αντίστοιχη ενέργεια και ανταμοιβή της 

μετάβασης από την πρώτη διαδρομή στην επόμενη. Πρέπει να σημειωθεί ότι για κάθε 

ξεχωριστό οδηγό στο σύνολο δεδομένων, η πρώτη διαδρομή του χρησιμοποιήθηκε μόνο 

ως "κατάσταση", ενώ η τελευταία διαδρομή του χρησιμοποιήθηκε μόνο ως "επόμενη 

κατάσταση". Μετά από αυτή τη διαδικασία προετοιμασίας δεδομένων, κατασκευάστηκαν 

33.440 μοναδικά δείγματα δεδομένων για την εκπαίδευση του SADRA I και 119.817 

μοναδικά δείγματα δεδομένων χρησιμοποιήθηκαν για τη διαδικασία εκπαίδευσης του 

SADRA II. 

Οι ελεγκτές RL αναπτύχθηκαν με βάση τον αλγόριθμο Deep Deterministic Policy Gradient 

algorithm (DDPG), ο οποίος εφαρμόζει μια προσέγγιση “actor-critic” δηλαδή «ενέργειας και 

αξιολόγησης» για την εκμάθηση μιας πολιτικής και την παραγωγή των βέλτιστων 

ενεργειών. Έτσι, για κάθε ελεγκτή αναπτύσσονται δύο νευρωνικά δίκτυα που 

αντιπροσωπεύουν τη δράση (actor - μ) και την αξιολόγηση (critic - Q) αντίστοιχα. Τα 

νευρωνικά δίκτυα τόσο για το υποσύνολο των ασφαλών όσο και για το υποσύνολο των μη 

ασφαλών οδηγών εκπαιδεύτηκαν σύμφωνα με τη διαδικασία του παρακάτω αλγορίθμου. 

DDPG Algorithm implementation 

Initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) networks using rewards as Q-values 

Set the above as initial target networks (𝑄′ and 𝜇′) 

Split the sample into Μ minibatches 

for minibatch=1, Μ do 

   Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′) 

   Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖  

   Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇
𝐽 ≈

1

𝑁
∑[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
]

𝑡

 

   Update the target networks: 

𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  

end for 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 19 - 

 

Η τελική δομή των δικτύων καθώς και οι τιμές των υπερπαραμέτρων προέκυψαν μετά από 

αξιολόγηση των πιθανών συνδυασμών. Συγκεκριμένα, εξετάστηκαν και συγκρίθηκαν όλοι 

οι πιθανοί συνδυασμοί δομών και παραμετροποίησης των δικτύων, σε ένα εύρος λογικών 

τιμών, προκειμένου να εντοπιστεί ο βέλτιστος. Οι παράμετροι που λήφθηκαν υπόψη είναι: 

αριθμός κρυφών στρωμάτων (Number of hidden layers), αριθμός νευρώνων (Number of neurons per 

layer) και ενεργοποίηση κάθε στρώματος (Activation), συνάρτηση βελτιστοποίησης (Optimizer) 

και ρυθμός μάθησης (Learning rate), μέγεθος δέσμης (Batch size) και αριθμός εποχών 

εκπαίδευσης (Epochs), όπως φαίνεται στον Πίνακα V. 

Πίνακας V. Υπερπαράμετροι των δικτύων “critic” και “actor” για τα μοντέλα SADRA I και II 
Hyperparameters Critic network Actor network 

 SADRA I – ασφαλείς οδηγοί 

Number of hidden layers 6 3 

Number of neurons per layer (64,32,16,16,32,64,1) (128,64,32,2) 

Epochs 200(initial network:110) 200(initial network:110) 

Batch size 150(initial network:150) 150(initial network:150) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0,001 0,0001 

 SADRA II – μη-ασφαλείς οδηγοί 

Number of hidden layers 6 3 

Number of neurons per layer (32,16,8,8,16,32,1) (128,64,32,2) 

Epochs 170(initial network:170) 210(initial network:210) 

Batch size 250(initial network:250) 250(initial network:100) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0,0001 0,0001 

 

Σενάριο προσομοίωσης 

Η ποσοτικοποίηση των επιπτώσεων της υιοθέτησης συστάσεων οδήγησης από όλους τους 

οδηγούς, στην κυκλοφορία, την οδική ασφάλεια και τις εκπομπές πραγματοποιήθηκε στο 

πλαίσιο ενός σεναρίου μικροσκοπικής προσομοίωσης (microscopic simulation) σε επίπεδο 

δικτύου. Για το σκοπό αυτό χρησιμοποιήθηκε το λογισμικό προσομοίωσης SUMO και το 

προεπιλεγμένο κυκλοφοριακό μοντέλο του Krauss, το οποίο είναι ένα μικροσκοπικό και 

συνεχές στο χώρο μοντέλο που βασίζεται στην ασφαλή ταχύτητα που σημαίνει ότι ο οδηγός 

του ακολουθούντος οχήματος υιοθετεί μια ασφαλή ταχύτητα που του επιτρέπει να 

προσαρμοστεί στην επιβράδυνση του προπορευόμενου οχήματος. 

Η μελέτη περίπτωσης για τα πειράματα προσομοίωσης είναι το οδικό δίκτυο του δακτυλίου 

της Αθήνας, το οποίο αποτελείται από 1.293 κόμβους και 2.572 συνδέσμους. Το συνολικό 

μήκος του δικτύου είναι 348 χιλιόμετρα. Βάσει της βαθμονόμησης η οποία 

πραγματοποιήθηκε, στο δίκτυο κινούνται κατά την ώρα αιχμής 86.054 οχήματα. Από τους 

μετρητές προκύπτουν 1.393.634 μετρήσεις (97,47% των συνολικών μετρήσεων που 

εξήχθησαν από το πρόγραμμα προσομοίωσης Aimsun) και τιμή GEH κάτω από 5 (GEH < 5) 

για το 95,26%. 
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Δύο διαφορετικά σενάρια προσομοίωσης σχεδιάστηκαν που αντιστοιχούν στη ζήτηση του 

οδικού δικτύου της Αθήνας κατά την πρωινή ώρα αιχμής (8:00 - 9:00 π.μ.). Αρχικά, 

προσομοιώνονται οι αρχικές συνθήκες του δικτύου προκειμένου να εκτιμηθεί η απόδοση 

της κυκλοφορίας όταν τα οχήματα κινούνται σύμφωνα με τα χαρακτηριστικά που διέπουν 

τα έξι προφίλ οδήγησης που προσδιορίστηκαν. Προκειμένου να διασφαλιστεί η αξιοπιστία 

των αποτελεσμάτων, η προσομοίωση πραγματοποιήθηκε σε 10 επαναλήψεις με δέκα 

διαφορετικούς αριθμούς εκκίνησης. Η στοχαστικότητα αποτελεί σημαντική πτυχή της 

αναπαραγωγής της πραγματικότητας σε ένα σενάριο προσομοίωσης, καθώς προσθέτει 

τυχαιότητα στις κατανομές των διαφορετικών πτυχών της προσομοίωσης (π.χ. κατανομές 

διαδρομών, κατανομές τύπων οχημάτων).  

Στη συνέχεια, δημιουργήθηκαν συστάσεις οδήγησης για κάθε εξυπηρετούμενο όχημα με 

βάση τον τρόπο με τον οποίο κάθε όχημα πραγματοποίησε τη διαδρομή του στο πρώτο 

σενάριο προσομοίωσης. Οι συστάσεις παρήχθησαν από τους αντίστοιχους ελεγκτές RL 

χρησιμοποιώντας ως είσοδο την κατάσταση της διαδρομής (μέση επιτάχυνση, 90% 

εκατοστημόριο επιτάχυνσης, μέση επιβράδυνση, 90% εκατοστημόριο επιβράδυνσης, 

ποσοστό επιτάχυνσης) και ως έξοδο τη βέλτιστη μεταβολή της μέγιστης επιτάχυνσης. Θα 

πρέπει να τονιστεί εδώ ότι παρόλο που οι ελεγκτές RL που αναπτύχθηκαν παράγουν ένα 

δισδιάστατο διάνυσμα που περιλαμβάνει μεταβολές τόσο στη μέση όσο και στη μέγιστη 

επιτάχυνση, στο πλαίσιο της προσομοίωσης αξιοποιήθηκε μόνο η μέγιστη επιτάχυνση, 

καθώς το μοντέλο Krauss λαμβάνει υπόψη μόνο τις μέγιστες τιμές της επιτάχυνσης και της 

επιβράδυνσης.  

Τέλος, ένα δεύτερο σενάριο προσομοίωσης εκτελέστηκε, όπου τα οχήματα που είχαν 

εξυπηρετηθεί προηγουμένως ακολουθούν τις προτεινόμενες συστάσεις, δηλαδή μια 

εναλλαγή της μέγιστης επιτάχυνσής τους, ενώ η υπόλοιπη κυκλοφορία ακολουθεί την 

κατανομή μεταξύ των έξι προφίλ οδήγησης.  

Η συμπεριφορά που συνεπάγεται κάθε προφίλ οδήγησης προσομοιώθηκε μέσω της 

προσαρμογής του αντίστοιχου κυκλοφοριακού μοντέλου. Σε αυτή την περίπτωση 

χρησιμοποιήθηκε το μοντέλο ακολουθούντος οχήματος Krauss το οποίο μπορεί να 

παραμετροποιηθεί από έναν αριθμό παραμέτρων: τη μέγιστη επιτάχυνση του οχήματος 

(accel), τη μέγιστη επιβράδυνση του οχήματος (decel), τη μέγιστη ταχύτητα του οχήματος 

(maxSpeed), τη μέγιστη φυσικά δυνατή επιβράδυνση του οχήματος (emergencyDecel) και 

τον αναμενόμενο πολλαπλασιαστή για τα όρια ταχύτητας της λωρίδας (speedFactor). 

Αρχικά, η τρέχουσα (αρχική) κατάσταση της οδικής κυκλοφορίας προσομοιώνεται στο 

SUMO χρησιμοποιώντας τα έξι καθορισμένα προφίλ οδήγησης, οι παράμετροι των οποίων 

εισήχθησαν στο μοντέλο Krauss για διαφορετικούς τύπους οχημάτων, όπως φαίνεται στον 

Πίνακα VI. 
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Πίνακας VI. Παραμετροποίηση του μοντέλου ακολουθούντος οχήματος για κάθε τύπο οχήματος 

Τύποι οχήματος  

(προφίλ οδήγησης) 

Παράμετροι μοντέλου ακολουθούντος οχήματος 

accel decel emergencyDecel maxSpeed speedFactor 

(m/s2) (m/s2) (m/s2) (km/h) (mean, min, max) 

Τυπική οδήγηση 2,519 -2,942 -5,909 64,51 (0,029, 0, 0,168) 

Επιθετική 3,817 -4,483 -18,083 66,93 (0,033, 0, 0,151) 

Ανάληψη ρίσκου 2,392 -2,824 -5,328 100,28 (0,306, 0,1627, 0,96) 

Απόσπαση προσοχής 2,601 -2,990 -5,112 67,38 (0,057, 0, 0,631) 

Επιθετική με ανάληψη ρίσκου 3,944 -4,825 -25,884 100,8 (0,269, 0,147, 0,907) 

Επιθετική με απόσπαση προσοχής 3,939 -4,553 -10,845 71,99 (0,062, 0, 0,744) 

Για την αρχική κατάσταση του δικτύου, οι έξι διαφορετικοί τύποι οχημάτων 

δημιουργήθηκαν σε ένα αρχείο διαδρομών (route file), με την αντίστοιχη παραμετροποίηση 

του μοντέλου ακολουθούντος οχήματος. Σε μία ώρα προσομοίωσης για την πρωινή αιχμή, 

περίπου το 58% της συνολικής ζήτησης εισήχθη στο δίκτυο και το 28% των οχημάτων 

ολοκλήρωσε τη διαδρομή του μέσα σε αυτό το χρονικό διάστημα. 

Στη συνέχεια, για κάθε όχημα που έφτασε στον προορισμό του εκτιμήθηκαν οι ακόλουθες 

παράμετροι για κάθε διαδρομή: 

• μέση επιτάχυνση 

• 90% εκατοστημόριο επιτάχυνσης 

• μέση επιβράδυνση 

• 90% εκατοστημόριο επιβράδυνσης 

• ποσοστό επιτάχυνσης 

Αυτά τα χαρακτηριστικά οδήγησης χρησιμοποιήθηκαν ως δεδομένα εισόδου στους 

ελεγκτές RL, οι οποίοι προτείνουν τη βέλτιστη ενέργεια για κάθε διαδρομή. Για την εκτέλεση 

του δεύτερου σεναρίου της προσομοίωσης χρησιμοποιήθηκαν τα ίδια ακριβώς οχήματα, 

τα οποία ακολουθούν τις ίδιες ακριβώς διαδρομές στο ίδιο οδικό δίκτυο, προκειμένου να 

εκτιμηθούν οι επιπτώσεις της παροχής προσωποποιημένων συστάσεων. Οι συστάσεις για 

αλλαγή της μέγιστης επιτάχυνσης εισήχθησαν ως τροποποίηση της αντίστοιχης 

παραμέτρου του μοντέλου ακολουθούντος οχήματος. Η υιοθέτηση αυτής της προσέγγισης 

επέτρεψε την πρακτική εφαρμογή της διαδικασίας εφαρμογής των συστάσεων με άμεσο 

έλεγχο των αποτελεσμάτων. 

Και σε αυτή την περίπτωση, του δεύτερου σεναρίου της προσομοίωσης, 

πραγματοποιήθηκαν 10 επαναλήψεις με τις ίδιες τιμές εκκίνησης όπως και προηγουμένως, 

ώστε να διασφαλιστεί η αξιοπιστία των αποτελεσμάτων. Τα ευρήματα έδειξαν ότι σε μία 

ώρα προσομοίωσης εξυπηρετήθηκε κατά μέσο όρο το 57% της ζήτησης, ενώ το αντίστοιχο 

ποσοστό των οχημάτων που ολοκλήρωσαν τη διαδρομή τους μειώθηκε κατά 1% σε σχέση 

με τις αρχικές συνθήκες. 

Αξιολόγηση επιπτώσεων  

Η αξιολόγηση των επιπτώσεων του προτεινόμενου συστήματος πραγματοποιείται μέσω 

μιας προσέγγισης "πριν και μετά" όπως περιεγράφηκε παραπάνω. Συγκεκριμένα, και για τα 
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δύο σενάρια προσομοίωσης εκτιμήθηκαν οι βασικοί δείκτες απόδοσης της κυκλοφορίας, 

της ασφάλειας και των περιβαλλοντικών συνθηκών και αξιολογήθηκαν συγκριτικά, ώστε 

να ποσοτικοποιηθούν οι συνολικές επιπτώσεις της υιοθέτησης εξατομικευμένων 

συστάσεων που βελτιώνουν τη συμπεριφορά οδήγησης κάθε ατόμου. Οι βασικοί δείκτες 

απόδοσης που χρησιμοποιήθηκαν στην ανάλυση για κάθε πτυχή του δικτύου 

παρουσιάζονται στον Πίνακα VII. 

Πίνακας VII. Βασικοί δείκτες απόδοσης για τις διάφορες πτυχές του δικτύου 

Κυκλοφορία Ασφάλεια Περιβάλλον 

Εξυπηρετούμενη ζήτηση Συνολικές πιθανές εμπλοκές 
Συνολικές εκπομπές ανά τύπο 

ρύπου (CO2, CO, PMx, NOx) 

Μακροσκοπικό 

θεμελιώδες διάγραμμα 

κυκλοφορίας 

Συνολικές μετόπισθεν εμπλοκές Εκπομπές ανά όχημα 

 Πιθανές εμπλοκές ανά όχημα  

 

Η εκτίμηση των βασικών δεικτών απόδοσης που αφορούν στην κυκλοφορία έγινε με βάση 

τα αποτελέσματα της προσομοίωσης, τα οποία περιλάμβαναν τον αριθμό των εισαγόμενων 

και εξυπηρετούμενων οχημάτων, καθώς και πληροφορίες για τα τρία θεμελιώδη στοιχεία 

της θεωρίας της κυκλοφοριακής ροής (ροή, ταχύτητα και πυκνότητα). Αντί να 

χρησιμοποιηθούν συγκεντρωτικές μετρήσεις των θεμελιωδών μεταβλητών, 

κατασκευάστηκαν τα μακροσκοπικά θεμελιώδη διαγράμματα (Macroscopic Fundamental 

Diagrams – MFDs) και εξήχθησαν σημαντικά αποτελέσματα σχετικά με τις διαφορές στις 

επιδόσεις του δικτύου πριν και μετά την εφαρμογή του συστήματος συστάσεων. Η εκτίμηση 

των επιβλαβών ατμοσφαιρικών ρύπων βασίζεται στο μοντέλο εκπομπών που είναι ήδη 

ενσωματωμένο στο SUMO, το μοντέλο PHEMlight. Το PHEMlight είναι μια απλουστευμένη 

έκδοση του PHEM (Passenger car and Heavy-duty Emission Model), ενός πλήρους μοντέλου 

εκπομπών οχημάτων που έχει αναπτυχθεί στην Ευρώπη από το 1999 και βασίζεται σε 

εκτεταμένες μετρήσεις εκπομπών σε οχήματα όπως επιβατικά αυτοκίνητα, ελαφρά 

οχήματα και αστικά λεωφορεία. Η εκτίμηση των εμπλοκών που αποτελούν δείκτη οδικής 

ασφάλειας βασίζεται στο εργαλείο SSAM, το οποίο υπολογίζει υποκατάστατα μέτρα 

ασφάλειας για κάθε εμπλοκή που εντοπίζεται στα δεδομένα τροχιάς, και στη συνέχεια 

υπολογίζει τα στατιστικά χαρακτηριστικά (μέση τιμή, μέγιστη τιμή κ.λπ.) κάθε 

υποκατάστατου μέτρου (surrogate measure). 

Αποτελέσματα: Συστάσεις οδήγησης 

Οι δύο εκδόσεις του εκπαιδευμένου αλγορίθμου DDPG χρησιμοποιήθηκαν για την 

παραγωγή συστάσεων οδήγησης για δύο κατηγορίες οδηγών: τυπικοί οδηγοί που 

παρουσιάζουν μέτρια-ασφαλή συμπεριφορά (SADRA I) και μη-ασφαλείς οδηγοί που 

εναλλάσσουν τη συμπεριφορά τους μεταξύ διαφόρων ανασφαλών συνηθειών οδήγησης 

(SADRA II). Οι συστάσεις έχουν τη μορφή αλλαγών στον τρόπο οδήγησης που αναφέρονται 
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στις βέλτιστες ενέργειες οδήγησης που μπορεί να υιοθετήσει ο συγκεκριμένος οδηγός 

προκειμένου να βελτιώσει την οδήγησή του με βάση την τρέχουσα συμπεριφορά του.  

Η σύγκριση των αποτελεσμάτων των δύο ελεγκτών αποκάλυψε ότι και οι δύο έχουν 

εκπαιδευτεί να παράγουν συστάσεις που φέρνουν τους οδηγούς πιο κοντά στη μέση 

ασφαλή συμπεριφορά ενός τυπικού οδηγού, ο οποίος έχει μέση επιτάχυνση ίση με 1,137 

m/s2 και μέγιστη επιτάχυνση ίση με 2,503 m/s2. Με βάση τα ενδεικτικά παραδείγματα του 

παρακάτω πίνακα (Πίνακας VIII), η μέση συνιστώμενη μέση επιτάχυνση εκτιμήθηκε σε 1,145 

m/s2, ενώ η μέση τιμή των προτεινόμενων μέγιστων επιταχύνσεων ήταν 2,507 m/s2 

αντίστοιχα. Επομένως, μπορεί κανείς να συμπεράνει ότι η καθολική εφαρμογή του 

προτεινόμενου συστήματος συστάσεων θα οδηγούσε στην εναρμόνιση των προφίλ 

επιτάχυνσης για ολόκληρο το στόλο οχημάτων.  
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Το Σχήμα III παρουσιάζει ενδεικτικά παραδείγματα των συστάσεων που παράγονται από 

τους δύο ελεγκτές με δεδομένη την ίδια είσοδο (πρώτη κατάσταση). Τα ευρήματα έδειξαν 

ότι, παρόλο που οι συστάσεις του ελεγκτή που αφορά στους μη ασφαλείς οδηγούς (SADRA 

II) οδηγούν σε σημαντικά χαμηλότερες μέσες επιταχύνσεις για την επόμενη διαδρομή 

(επόμενη κατάσταση) σε σύγκριση με την προηγούμενη διαδρομή (αρχική κατάσταση), 

διατηρούν σημαντική απόσταση προς τα πάνω σε σχέση με τις αντίστοιχες συστάσεις που 

παράγονται από τον ελεγκτή των τυπικών οδηγών (SADRA I). Παρ' όλα αυτά, πρέπει να 

σημειωθεί ότι και οι δύο ελεγκτές οδηγούν σε ομαλότερο προφίλ επιτάχυνσης για το σύνολο 

των οχημάτων που απαρτίζουν την κυκλοφορία. 

 
Σχήμα III. Σύγκριση της μέσης επιτάχυνσης για τη νέα κατάσταση όπως προέκυψε από το SADRA I 

(κόκκινο) και SADRA II (πράσινο) με βάση την αρχική κατάσταση (μπλε). 

Αποτελέσματα: Προσομοίωση και αξιολόγηση επιπτώσεων 

Η ποσοτικοποίηση των επιπτώσεων της εφαρμογής του προτεινόμενου συστήματος 

συστάσεων και, κατά συνέπεια, της υιοθέτησης μιας βελτιωμένης συμπεριφοράς οδήγησης 

από όλους τους οδηγούς έχει μεγάλη σημασία, τόσο για τους ερευνητές, όσο και για τους 

επαγγελματίες και μπορεί να οδηγήσει σε σημαντικά συμπεράσματα σχετικά με τη 

χρησιμότητα της βελτίωσης της ατομικής συμπεριφοράς οδήγησης. Η αξιολόγηση του 

συστήματος συστάσεων πραγματοποιείται με τη χρήση συγκεκριμένων βασικών δεικτών 

επιδόσεων που αντιστοιχούν σε τρεις τομείς ενδιαφέροντος: κυκλοφορία, ασφάλεια και 

εκπομπές. Κάθε ένα από τα σενάρια προσομοίωσης έγινε σε 10 επαναλήψεις για να 

εξασφαλιστεί η εγκυρότητα και η αξιοπιστία των αποτελεσμάτων. Συνολικά, ο ελεγκτής 

SADRA I χρησιμοποιήθηκε για την παραγωγή συστάσεων για το 43% των οχημάτων, ενώ 

τα υπόλοιπα οχήματα ακολούθησαν τις συστάσεις που παρήγαγε το SADRA II. 

Όλες οι επαναλήψεις του ίδιου σεναρίου προσομοίωσης παρουσιάζουν αντίστοιχα 

αποτελέσματα σχετικά με τα εξυπηρετούμενα οχήματα, τα οποία μειώνονται ελαφρώς μετά 

την εφαρμογή του συστήματος συστάσεων. Κατά μέσο όρο, εξυπηρετήθηκαν 2,9% λιγότερα 

οχήματα με βάση τα αποτελέσματα του δεύτερου σεναρίου της προσομοίωσης. Ωστόσο, τα 

αποτελέσματα του στατιστικού ελέγχου υποθέσεων t-test έδειξαν ότι δεν υπάρχουν 
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σημαντικές διαφορές μεταξύ των μέσων όρων των εξυπηρετούμενων οχημάτων πριν και 

μετά τις συστάσεις σε διάστημα εμπιστοσύνης 95%. Η εφαρμογή του συστήματος 

εξατομικευμένων συστάσεων είχε σημαντική επιρροή στη μέγιστη επιτάχυνση των 

οχημάτων, όπως φαίνεται στο Σχήμα IV. Όταν όλα τα οχήματα ακολούθησαν τις προτάσεις 

που παρήγαγαν οι δύο ελεγκτές RL, η μέση τιμή της μέγιστης επιτάχυνσης αυξήθηκε 

ελάχιστα από 2,83 m/s2 σε 2,96 m/s2, κυρίως επειδή η πλειονότητα των οχημάτων που 

αρχικώς είχαν μια πολύ μικρή μέγιστη επιτάχυνση, η οποία ήταν πολύ χαμηλότερη από την 

αντίστοιχη επιτάχυνση της "μέτριας/τυπικής" συμπεριφοράς, τους προτάθηκε να αυξήσουν 

ελαφρώς την επιτάχυνσή τους. Ωστόσο, η μείωση του εύρους των τιμών της επιτάχυνσης 

είναι εμφανής μετά τις συστάσεις, γεγονός που υποδηλώνει την εναρμόνιση των προφίλ 

επιτάχυνσης όλων των οχημάτων στην προσομοίωση. Τέλος, η μέγιστη τιμή των 

παρατηρούμενων μέγιστων επιταχύνσεων παρέμεινε στο ίδιο επίπεδο των 3,94 m/s2 μετά 

την εφαρμογή του προτεινόμενου συστήματος. 

 
Σχήμα IV. Boxplot των τιμών της μέγιστης επιτάχυνσης πριν και μετά τις συστάσεις 

Οι διαφορές που παρατηρούνται στο μέγεθος της μέσης ταχύτητας είναι ελάχιστες, καθώς 

και στις δύο περιπτώσεις τα οχήματα υιοθετούν μέση ταχύτητα περίπου 25 km/h, ενώ η 

μέγιστη μέση ταχύτητα που παρατηρείται είναι περίπου 55 km/h.  

Οι μεταβολές της ταχύτητας των οχημάτων είχαν ως αποτέλεσμα μεταβολές των ιδιοτήτων 

των υπόλοιπων κυκλοφοριακών μεγεθών, δηλαδή της ροής και της πυκνότητας. 

Προκειμένου να αποδοθεί μια λεπτομερής γραφική απεικόνιση των σχέσεων αυτών των 

μεγεθών για τις αρχικές συνθήκες καθώς και για τις συνθήκες που προέκυψαν μετά τις 

συστάσεις, υπολογίστηκαν τα μακροσκοπικά θεμελιώδη διαγράμματα. Και τα τρία 

θεμελιώδη διαγράμματα (Σχήματα V - VII) δείχνουν τις σχέσεις μεταξύ των της ροής 

κυκλοφορίας, δηλαδή της μέσης ροής οχημάτων, της μέσης πυκνότητας και της μέσης 

ταχύτητας, όπως προέκυψαν από την προσομοίωση με βάση τις συγκεντρωτικές μετρήσεις 

όλων των συνδέσμων και για τις 10 επαναλήψεις. Τα αποτελέσματα δείχνουν ότι η 

υιοθέτηση των προτάσεων οδήγησης, αν και οδηγεί σε ασφαλέστερη και λιγότερο επιθετική 
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συμπεριφορά οδήγησης για κάθε άτομο, δε βελτιώνει την απόδοση του οδικού δικτύου. Πιο 

συγκεκριμένα, η αυτό-βελτίωση είναι εμφανής από τις χαμηλότερες μέσες τιμές 

πυκνότητας, οι οποίες υποδηλώνουν ότι τα οχήματα διατηρούν μεγαλύτερες αποστάσεις 

από τα προπορευόμενα οχήματα. Επιπλέον, παρατηρούνται χαμηλότερες ταχύτητες μετά 

την προσαρμογή των επιταχύνσεων, με τη διαφορά από τις αρχικές συνθήκες να είναι πιο 

σημαντική στην περίπτωση κορεσμένης ροής του δικτύου (Σχήμα V). 

 
Σχήμα V. Θεμελιώδες διάγραμμα ταχύτητας-πυκνότητας πριν (κόκκινο) και μετά (μπλε) τις συστάσεις 

Η ασφάλεια οδήγησης σε ατομικό επίπεδο αυξάνεται, αλλά οι επιπτώσεις στις συνθήκες 

κυκλοφορίας δεν είναι εξίσου θετικές. Τα οχήματα που κινούνται με χαμηλότερες ταχύτητες 

και με μικρότερη πυκνότητα επιδεινώνουν τις συνθήκες κυκλοφοριακής ροής, καθώς 

εξυπηρετούνται λιγότερα οχήματα ανά μονάδα χρόνου σε σύγκριση με τις αρχικές 

συνθήκες. Ωστόσο, αυτή η μείωση της μέσης ροής μπορεί να θεωρηθεί αποδεκτή εάν 

αξιολογηθεί σε συνδυασμό με τις θετικές επιπτώσεις στην οδική ασφάλεια. Ωστόσο, με βάση 

τα ευρήματα της παρούσας έρευνας, δεν μπορεί σε καμία περίπτωση να εξαχθεί το 

συμπέρασμα ότι η βελτίωση της προσωπικής συμπεριφοράς οδήγησης συνδέεται με 

σημαντική βελτίωση των συνθηκών κυκλοφορίας και, ως εκ τούτου, η επιβολή μέτρων που 

βελτιώνουν τον τρόπο οδήγησης σε προσωπικό επίπεδο, όπως η αύξηση της αυτογνωσίας 

σε σχέση με την ατομική οδηγική ασφάλεια και τις συνέπειές της, δεν μπορεί να θεωρηθεί 

ως βασικό μέτρο για τη διαχείριση της κυκλοφορίας. 

Το θεμελιώδες διάγραμμα ροής-πυκνότητας απεικονίζει μια ομοιομορφία μεταξύ των 

αρχικών και των τελικών συνθηκών, αν και παρατηρούνται ορισμένες μικρές διαφορές 

όσον αφορά την απόλυτη τιμή της ροής κορεσμού (Σχήμα VI). Συγκεκριμένα, για την τιμή 

της κρίσιμης πυκνότητας, η οποία εκτιμήθηκε 33,1 veh/km, οι τιμές της κυκλοφοριακής ροής 

είναι 360 veh/h και 358 veh/h για τις αρχικές συνθήκες και μετά τις συστάσεις αντίστοιχα. 
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Σχήμα VI. Θεμελιώδες διάγραμμα ροής-πυκνότητας πριν (κόκκινο) και μετά (μπλε) τις συστάσεις 

Το θεμελιώδες διάγραμμα ταχύτητας-ροής χρησιμοποιείται για τον προσδιορισμό της 

ταχύτητας στην οποία εμφανίζεται η βέλτιστη ροή. Για τις αρχικές συνθήκες του οδικού 

δικτύου, η βέλτιστη ροή εμφανίζεται όταν τα οχήματα κινούνται με 26,1 km/h, ενώ η 

αντίστοιχη ταχύτητα μετά την εφαρμογή των συστάσεων μειώνεται κατά 3,4% με την 

απόλυτη τιμή της να εκτιμάται στα 25,2 km/h (Σχήμα VII). 

 
Σχήμα VII. Θεμελιώδες διάγραμμα ροής-ταχύτητας πριν (κόκκινο) και μετά (μπλε) τις συστάσεις 

Εκτός από την απόδοση του δικτύου, ένας άλλος βασικός δείκτης απόδοσης είναι η οδική 

ασφάλεια. Η αξιολόγηση των παραγόμενων συστάσεων όσον αφορά την ασφάλεια 

πραγματοποιήθηκε με τον υπολογισμό του αριθμού των εμπλοκών που σημειώθηκαν 

μεταξύ των οχημάτων κατά τη διάρκεια της προσομοίωσης. Στον Πίνακα ΙΧ παρουσιάζεται 
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ο αριθμός των εμπλοκών που παρατηρήθηκαν για το σύνολο της κυκλοφορίας πριν και 

μετά τις συστάσεις. Υπάρχουν τρεις τύποι εμπλοκών που μπορούν να εντοπιστούν από τις 

τροχιές των οχημάτων, οι οποίοι είναι οι διασταυρώσεις οχημάτων (crossings), οι 

μετόπισθεν εμπλοκές (rear-ends) και οι αλλαγές λωρίδας (lane changes). Εδώ, δίνεται 

ιδιαίτερη έμφαση στις μετόπισθεν εμπλοκές, δεδομένου ότι οι προτεινόμενες συστάσεις 

επηρεάζουν μόνο τη συμπεριφορά του κάθε οδηγού σε σχέση με τον τρόπου που 

προσαρμόζει την οδήγησή του με βάση το προπορευόμενο όχημα (car-following behavior). 

Πίνακας ΙΧ. Δείκτες απόδοσης ασφάλειας για το δίκτυο της Αθήνας πριν και μετά τις συστάσεις 
 Αρχικές συνθήκες Μετά τις συστάσεις [% μεταβολή] 

Οχήματα που εξυπηρετήθηκαν 

(σε μία ώρα προσομοίωσης) 

23.990  

(27,88% της ζήτησης) 

23.302  

(27,08% της ζήτησης) 

Συνολικός αριθμός εμπλοκών 2,86 εμπλοκές/όχημα 2,75 εμπλοκές/όχημα [-4,2%] 

Μετόπισθεν εμπλοκές 2,01 μετόπισθεν εμπλοκές/όχημα 1,90 μετόπισθεν εμπλοκές/όχημα [-5,5%] 

Παρατηρήθηκε μείωση κατά 4,2% του συνολικού αριθμού των εμπλοκών όταν τα οχήματα 

ακολουθούσαν τις αντίστοιχες συστάσεις οδήγησης, ενώ το αντίστοιχο ποσοστό μείωσης 

των μετόπισθεν εμπλοκών είναι 5,5%. Αν και τα ποσοστά αυτά μπορεί να μην φαίνονται 

πολύ υψηλά, ο απόλυτος αριθμός συγκρούσεων που υπολογίστηκε μετά την εφαρμογή των 

συστάσεων μειώνεται σημαντικά κατά περίπου 6.000 συγκρούσεις για τη μία ώρα 

προσομοίωσης. Οι μετόπισθεν εμπλοκές αποτελούν περίπου το 33% του συνολικού αριθμού 

εμπλοκών, γεγονός που υποδηλώνει ότι κάθε οδηγός εμπλέκεται σε όλα τα διαφορετικά 

είδη εμπλοκών κατά τη διάρκεια της οδήγησης. 

Τέλος, παρέχονται ορισμένα ενδεικτικά αποτελέσματα σχετικά με τις επιδράσεις του 

προτεινόμενου συστήματος συστάσεων στις εκπομπές ρύπων. Ο σχετικός δείκτης 

απόδοσης είναι το επίπεδο εκπομπών για όλα τα διαφορετικά είδη ατμοσφαιρικών ρύπων, 

δηλαδή διοξείδιο του άνθρακα (CO2), μονοξείδιο του άνθρακα (CO), σωματιδιακή ύλη (PMx) 

και οξείδια του αζώτου (NOx). Παρατηρείται σημαντική μείωση σε όλες τις κατηγορίες 

εκπομπών σε σύγκριση με τις αρχικές συνθήκες του δικτύου, όπως φαίνεται στον Πίνακα Χ. 

Τα αποτελέσματα έδειξαν ότι η εξομάλυνση του προφίλ επιτάχυνσης για το σύνολο της 

κυκλοφορίας οδήγησε σε ελαφρώς μειωμένες εκπομπές ανά όχημα. Συγκεκριμένα, η μείωση 

σε όλες τις κατηγορίες εκπομπών εκτιμάται ως εξής: 2,5% για το CO2, 0,3% για το CO, 1,3% 

για τα PMx και 3,3% για τα NOx. Πρέπει να σημειωθεί ότι αυτή η βελτίωση των 

περιβαλλοντικών συνθηκών είναι πολύ σημαντική, δεδομένου ότι το προτεινόμενο 

σύστημα συστάσεων είχε θετική επίδραση στις εκπομπές παρά το γεγονός ότι ο αλγόριθμος 

παραγωγής των συστάσεων δεν είχε εκπαιδευτεί προς αυτή την κατεύθυνση. 

Πίνακας Χ. Μεταβολές στις εκπομπές αερίων πριν και μετά τις συστάσεις 
Emissions Αρχικές συνθήκες Μετά τις συστάσεις [% μεταβολή] 

CO2 0,704 kg/όχημα 0,686 kg/ όχημα [-2.5%] 

CO 0,027 kg/ όχημα 0,026 kg/ όχημα [-0.3%] 

PMx 0,0133 g/ όχημα 0,0131 g/ όχημα [-1.3%] 

NOx 0,296 g/ όχημα 0,287 g/ όχημα [-3.3%] 
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Συμπεράσματα και συνεισφορά διατριβής 

Τα κύρια συμπεράσματα της διατριβής μπορούν να συνοψιστούν στα ακόλουθα σημεία: 

• Μια προσέγγιση ομαδοποίησης δύο επιπέδων μπορεί να προσφέρει σημαντική γνώση 

σχετικά με τα χαρακτηριστικά που διέπουν την επιθετικότητα κατά τη διάρκεια της 

οδήγησης και μπορεί να αξιοποιηθεί περαιτέρω για τη διάκριση ασφαλών και μη 

ασφαλών προτύπων οδήγησης.  

• Έξι διακριτά προφίλ οδήγησης είναι σε θέση να περιγράψουν τη συνολική συμπεριφορά 

οδήγησης που υιοθετεί κάποιος κατά τη διάρκεια του ταξιδιού του. 

• Υπάρχουν δύο κατηγορίες οδηγών σύμφωνα με τη μέση συμπεριφορά του κάθε 

οδηγού που προκύπτει από τον τρόπο με τον οποίο οδηγούσε σε όλες τις διαδρομές 

του. Στην πρώτη κατηγορία οι οδηγοί οδηγούν συνήθως με τυπικό τρόπο, ενώ στη 

δεύτερη κατηγορία οι οδηγοί εκτελούν έναν αριθμό μη ασφαλών ενεργειών οδήγησης 

ή οδηγούν με επιθετικό τρόπο στην πλειονότητα των ταξιδιών τους. 

• Η προσέγγιση Actor-critic από την οικογένεια των αλγορίθμων ενισχυτικής μάθησης 

μπορεί να αξιοποιηθεί για την εύρεση της καλύτερης δυνατής ενέργειας οδήγησης για 

κάθε οδηγό με δεδομένο τον τρόπο που οδήγησε στην προηγούμενη διαδρομή του. 

• Όταν ένας ελεγκτής παρέχει συστάσεις οδήγησης σε έναν στόλο οχημάτων, το προφίλ 

επιτάχυνσης ολόκληρου του στόλου εναρμονίζεται σε μια τιμή που είναι αρκετά κοντά 

στη συμπεριφορά, και συγκεκριμένα στην επιλογή επιτάχυνσης, ενός τυπικού - 

ασφαλούς οδηγού. 

• Η εφαρμογή ενός συστήματος εξατομικευμένων συστάσεων στο οδικό δίκτυο μιας 

πόλης δεν έχει σημαντικές επιπτώσεις στις συνθήκες κυκλοφορίας.  

• Όταν κάθε οδηγός βελτιώνει τη δική του συμπεριφορά, η οδική ασφάλεια στο δίκτυο 

ενισχύεται. Συγκεκριμένα, οι κρίσιμες εμπλοκές μεταξύ οχημάτων μειώνονται 

σημαντικά μετά την εφαρμογή του προτεινόμενου συστήματος. 

• Η στάθμη των εκπομπών για όλα τα διαφορετικά είδη ατμοσφαιρικών ρύπων 

μειώνεται, γεγονός που δείχνει ότι η εναρμόνιση των επιταχύνσεων για το σύνολο της 

κυκλοφορίας μπορεί να έχει σημαντική θετική επιρροή στις περιβαλλοντικές συνθήκες. 

Πρέπει να σημειωθεί ότι η επιδείνωση της κυκλοφορίας μπορεί να θεωρηθεί αποδεκτή εάν 

ληφθεί υπόψη η αντιστάθμιση μέσω των πλεονεκτημάτων από την υιοθέτηση ομαλότερης 

συμπεριφοράς οδήγησης στην οδική ασφάλεια και τις εκπομπές ρύπων. Για το σκοπό αυτό, 

οι υπεύθυνοι χάραξης πολιτικής και οι ερευνητές δεν θα πρέπει να παραμελούν τις 

πραγματικές επιπτώσεις σε όλες τις διαστάσεις του δικτύου όταν σχεδιάζουν στρατηγικές 

διαχείρισης της κυκλοφορίας και εφαρμόζουν ήπιες και σκληρές πολιτικές (soft and hard 

policy measures). 

Η παρούσα διδακτορική διατριβή συνεισφέρει σημαντικά σε πέντε τομείς:  

1. Κάνει χρήση ενός καινοτόμου συνόλου δεδομένων πραγματικής οδήγησης. Ένας 

σημαντικά μεγάλος όγκος δεδομένων με υψηλή χρονική ανάλυση από πραγματική 

οδήγηση ήταν διαθέσιμος, εμπλουτισμένος με ποικίλους παράγοντες που περιγράφουν 

τη συμπεριφορά οδήγησης, το περιβάλλον και άλλα εξωτερικά χαρακτηριστικά για 

κάθε διαδρομή. 

2. Προτείνει ένα μεθοδολογικό πλαίσιο για την εξαγωγή προφίλ οδήγησης απευθείας από 

τα δεδομένα, τα οποία περιγράφουν όλο το φάσμα της συμπεριφοράς οδήγησης. Για 
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το σκοπό αυτό, ακολουθείται μια προσέγγιση με βάση τα δεδομένα (data driven 

approach) για την ομαδοποίηση των κρίσιμων προφίλ οδήγησης που εμφανίζονται 

κατά τη διάρκεια ενός ταξιδιού, αξιοποιώντας την ομαδοποίηση k-means ως το 

καταλληλότερο εργαλείο. 

3. Αναπτύσσει έναν αλγόριθμο ενισχυτικής μάθησης για την επίλυση ενός πραγματικού 

προβλήματος, αυτού της υποβοήθησης της οδήγησης. Ένας αλγόριθμος Βαθιάς 

Ενισχυτικής Μάθησης επιλέχθηκε ως το καταλληλότερο εργαλείο για την εκμάθηση της 

βέλτιστης πολιτικής και την πρόταση της κατάλληλης ενέργειας που οδηγεί στην 

καλύτερη δυνατή συμπεριφορά οδήγησης για κάθε μεμονωμένο οδηγό. 

4. Προτείνεται μια μεθοδολογία η οποία είναι ικανή να αναγνωρίζει τις ατομικές 

προτιμήσεις οδήγησης και να παράγει εξατομικευμένες ενέργειες οδήγησης σε κάθε 

οδηγό. Συγκεκριμένα, υλοποιείται ένα περιεκτικό μεθοδολογικό πλαίσιο το οποίο 

ενσωματώνει εργαλεία και μεθόδους που πρώτα αναγνωρίζουν τη συμπεριφορά 

οδήγησης κάθε χρήστη, στη συνέχεια αντιστοιχίζουν κάθε χρήστη στην κατάλληλη 

έκδοση του μοντέλου RL με βάση τη συνολική συμπεριφορά του και τέλος παράγουν 

εξατομικευμένες ενέργειες οδήγησης που μετριάζουν την επιθετικότητα και την 

επικινδυνότητα της οδήγησης.  

5. Αξιολογεί τις επιπτώσεις μεγάλης κλίμακας από την εφαρμογή ενός εξατομικευμένου 

συστήματος συστάσεων οδήγησης σε τρεις τομείς ενδιαφέροντος του δικτύου με τη 

χρήση συγκεκριμένων δεικτών απόδοσης (KPIs), και συγκεκριμένα στην κυκλοφορία, 

την ασφάλεια και τις εκπομπές ρύπων. Η αξιολόγηση των επιπτώσεων του 

προτεινόμενου συστήματος συστάσεων πραγματοποιείται με τη χρήση ενός 

ρεαλιστικού σεναρίου προσομοίωσης που αφορά το οδικό δίκτυο της Αθήνας και με 

την εφαρμογή μιας μεθοδολογίας «πριν και μετά» για τη σύγκριση των τιμών των KPIs 

πριν και μετά την εφαρμογή των συστάσεων οδήγησης. 

Περιορισμοί έρευνας, επιπτώσεις και μελλοντική έρευνα 

Όπως κάθε άλλη προσέγγιση που βασίζεται σε δεδομένα, έτσι και αυτή η έρευνα στηρίχθηκε 

σε ορισμένους περιορισμούς όσον αφορά τη δημιουργία και την προσαρμογή του προς 

έρευνα προβλήματος. Πρώτον, ορισμένοι περιορισμοί προέκυψαν από την ανάγκη να 

ταιριάξουν τα αποτελέσματα του μοντέλου RL με τους περιορισμούς της προσομοίωσης. 

Πιο συγκεκριμένα, μία από τις δύο συνιστώσες της συνιστώμενης δράσης, η μέση 

επιτάχυνση κάθε οδηγού, δεν μπορούσε να εισαχθεί στο μοντέλο μικρο-προσομοίωσης, 

μιας και αυτό λαμβάνει ως παράμετρο μόνο την ικανότητα επιτάχυνσης των οχημάτων, 

και επομένως μόνο η μέγιστη επιτάχυνση υιοθετείται εντός της προσομοίωσης. Παρόλα 

αυτά, λόγω της φύσης του φαινομένου της οδήγησης, όλες οι παράμετροι που περιγράφουν 

τον τρόπο με τον οποίο ένας οδηγός επιλέγει να οδηγήσει κατά τη διάρκεια μιας διαδρομής 

είναι άρρηκτα συνδεδεμένες μεταξύ τους και, ως εκ τούτου, η παραμέληση της μέσης 

επιτάχυνσης δεν αναμενόταν να έχει σημαντική επίδραση στα αποτελέσματα της 

προσομοίωσης. Πέρα από τον τρόπο με τον οποίο οδηγός ακολουθεί το προπορευόμενο 

όχημα, ο ίδιος κατά τη διάρκεια των ταξιδιών του λαμβάνει ενέργειες σχετικά με την αλλαγή 

λωρίδας, την παραχώρηση προτεραιότητας και άλλες αποφάσεις που αφορούν στην 

αλληλεπίδραση με άλλους χρήστες της οδού. Ωστόσο, στην παρούσα έρευνα η έμφαση 

δόθηκε ρητά στη συμπεριφορά που σχετίζεται με το προπορευόμενο όχημα, καθώς ο 
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απώτερος στόχος ήταν η δημιουργία ενός συστήματος με επίκεντρο τον χρήστη, το οποίο 

εξετάζει μόνο τον οδηγό και δεν απαιτεί καμία εξωτερική πληροφορία από το οδικό δίκτυο 

προκειμένου να εκπαιδευτεί και να εφαρμοστεί. Έτσι, οι προτεινόμενες ενέργειες 

αναφέρονται στον τρόπο με τον οποίο ο οδηγός κινείται στο δρόμο, δηλαδή στον τρόπο 

που επιλέγει να πατήσει το πεντάλ επιτάχυνσης, ο οποίος εξαρτάται μόνο από τις 

προσωπικές προτιμήσεις και αντιλήψεις του οδηγού. Η αγνόηση των πληροφοριών σχετικά 

με το περιβάλλον μπορεί να θεωρηθεί ως περιορισμός του συστήματος που αναπτύχθηκε, 

δεδομένου ότι η μετατροπή του σε ένα σύστημα με επίγνωση του περιβάλλοντος θα έδινε 

άλλες προοπτικές, τόσο στο ίδιο το σύστημα, όσο και στις δυνατότητες χρήσης του ως 

εργαλείο διαχείρισης της κυκλοφορίας.  

Μια προέκταση του παραπάνω περιορισμού είναι το γεγονός ότι, εφόσον το σύστημα 

αγνοεί την κατάσταση του περιβάλλοντος, δεν μπορεί να λειτουργήσει σε πραγματικό 

χρόνο. Με άλλα λόγια, η προτεινόμενη μεθοδολογία δεν είναι σε θέση να παράγει συστάσεις 

σε πραγματικό χρόνο, δηλαδή κατά τη διάρκεια ενός ταξιδιού. Αντ' αυτού, αναπτύσσεται 

ένα σύστημα που δε λειτουργεί σε πραγματικό χρόνο το οποίο προτείνει αλλαγές στη 

συμπεριφορά οδήγησης σε μια ακολουθία ταξιδιών για κάθε οδηγό. Η ενσωμάτωση 

εξωτερικών πληροφοριών στο σύστημα θα επέτρεπε, τουλάχιστον εννοιολογικά, την 

παροχή συστάσεων οδήγησης σε πραγματικό χρόνο. 

Τέλος, ένας άλλος περιορισμός, ο οποίος ισχύει για όλες τις προσεγγίσεις που βασίζονται σε 

δεδομένα, είναι η γενίκευση και η δυνατότητα μεταφοράς του μοντέλου που αναπτύχθηκε 

και των αντίστοιχων αποτελεσμάτων. Στις περισσότερες περιπτώσεις δεν είναι σαφές εάν 

το δείγμα που χρησιμοποιήθηκε για την εκπαίδευση του μοντέλου είναι αντιπροσωπευτικό 

του συνολικού πληθυσμού και επιπλέον εάν τα χαρακτηριστικά του είναι παρόμοια με 

εκείνα ενός διαφορετικού πληθυσμού. Στην παρούσα εργασία, για την ανάπτυξη των 

μοντέλων RL χρησιμοποιείται ένα σύνολο δεδομένων οδήγησης μεγάλης κλίμακας, το οποίο 

περιλαμβάνει διαδρομές που πραγματοποιούνται από μεγάλο αριθμό οδηγών, ωστόσο δεν 

μπορεί να ειπωθεί ότι τα αποτελέσματα μπορούν να γενικευτούν και να μεταφερθούν 

χωρικά σε άλλο οδικό δίκτυο. 

Εκτός από τους περιορισμούς που περιγράφονται παραπάνω, τα αποτελέσματα που 

εξήχθησαν στο πλαίσιο της παρούσας διατριβής μπορούν να έχουν σημαντική επιρροή σε 

διάφορες πτυχές τόσο της έρευνας (R), της τεχνολογίας (T) όσο και της χάραξης πολιτικής 

(P). Η μελλοντική έρευνα μπορεί να ωφεληθεί και να εξελιχθεί σημαντικά εξετάζοντας 

περαιτέρω τα συμπεράσματα που εξάγονται σε σχέση με τα ακόλουθα σημεία: 

• (R) Η επιθετικότητα δεν αποτελεί απαραίτητα μια μη ασφαλή συνήθεια οδήγησης και 

μπορεί να ανιχνευθεί, είτε ως μεμονωμένη συμπεριφορά είτε σε συνδυασμό με άλλες 

μη ασφαλείς συμπεριφορές.  

• (R) Οι αλγόριθμοι ενισχυτικής μάθησης μπορούν να εφαρμοστούν σε προβλήματα του 

πραγματικού κόσμου και συγκεκριμένα, ο αλγόριθμος DDPG μπορεί να μάθει πώς να 
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λαμβάνει αποφάσεις όπως ο άνθρωπος σε πολύπλοκα και υψηλών διαστάσεων 

περιβάλλοντα. 

• (R & T) Τα αναγνωρισμένα προφίλ οδήγησης μπορούν να παρέχουν σημαντική γνώση 

για την ανάπτυξη μοντέλων αυτόνομης οδήγησης που θα προσομοιάζει την 

ανθρώπινη οδήγηση. 

Όσον αφορά στην τεχνολογία, το προτεινόμενο σύστημα συστάσεων μπορεί να 

ενσωματωθεί σε ήδη αναπτυγμένα λογισμικά, όπως εφαρμογές τηλεματικής και συστήματα 

ADAS μετατρέποντάς τα σε πιο φιλικά προς το χρήστη και να προσφέρει έναν πιο 

εξατομικευμένο τρόπο υποστήριξης της λήψης αποφάσεων κατά την οδήγηση. Επιπλέον, 

οι υπεύθυνοι χάραξης πολιτικής θα μπορούσαν να επωφεληθούν από τα αποτελέσματα της 

παρούσας διατριβής για τον επανασχεδιασμό των μέτρων ήπιας πολιτικής και τον 

επαναπροσδιορισμό του ρόλου των οδηγών στις τρέχουσες στρατηγικές διαχείρισης της 

κυκλοφορίας, δεδομένου ότι στην παρούσα εργασία αποδείχθηκε ότι η βελτίωση της 

συμπεριφοράς οδήγησης σε ατομικό επίπεδο μπορεί να έχει σημαντική επίδραση στην 

οδική ασφάλεια και τις εκπομπές ρύπων, αλλά όχι αξιοσημείωτες επιπτώσεις στις συνθήκες 

κυκλοφορίας.  

Τέλος, μπορεί να γίνει κατανοητό ότι τα ευρήματα αυτής της εργασίας προσφέρουν 

σημαντικές κατευθύνσεις για τη μελλοντική έρευνα. Παρόλο που η παρούσα έρευνα 

συνεισφέρει σημαντικά στην ανάλυση της συμπεριφοράς οδήγησης, υπάρχουν ακόμη 

περιθώρια στη διερεύνηση της δυναμικής της και, συνεπώς, θα πρέπει να διεξαχθεί 

περαιτέρω έρευνα που θα περιλαμβάνει εμπλουτισμένα σύνολα δεδομένων οδήγησης με 

πρόσθετες συμπεριφορές κατά την οδήγηση (π.χ. εργασίες που προκαλούν απόσπαση της 

προσοχής εκτός από τη χρήση κινητού). Επιπλέον, η εξειδικευμένη διερεύνηση της 

δυναμικής εξέλιξης της συμπεριφοράς οδήγησης είναι επίσης πολύ σημαντική για να 

δοθούν απαντήσεις στο ερώτημα αν και πόσο γρήγορα μεταβάλλονται τα προφίλ 

οδήγησης με την πάροδο του χρόνου για κάθε οδηγό. Μια άλλη κατεύθυνση μελλοντικής 

έρευνας αφορά στο σύστημα συστάσεων, και αφορά τον τρόπο με τον οποίο οι 

παραγόμενες συστάσεις θα πρέπει να μεταβιβάζονται στον οδηγό ώστε να γίνονται 

κατανοητές και στη συνέχεια να γίνονται αποδεκτές από αυτόν. Επιπλέον, ο προσδιορισμός 

των απαιτούμενων προδιαγραφών που θα επιτρέψουν τη λειτουργία του συστήματος σε 

πραγματικό χρόνο θα μπορούσε επίσης να αποτελέσει μέρος της μελλοντικής έρευνας. 

Προς αυτή την κατεύθυνση, ο σημαντικότερος μελλοντικός ερευνητικός στόχος θα ήταν η 

τροποποίηση του προτεινόμενου συστήματος κατά τρόπο ώστε να αποκτήσει επίγνωση 

του περιβάλλοντος, δηλαδή το σύστημα να μπορεί να αλληλεπιδρά με το περιβάλλον στο 

οποίο ο πράκτορας λαμβάνει αποφάσεις, και να έχει πλήρη εικόνα της δυναμικής και των 

μεταβολών του. Με αυτόν τον τρόπο, το προτεινόμενο σύστημα θα μπορούσε να 

εφαρμοστεί σε πραγματικό χρόνο και επιπλέον θα μπορούσε να λειτουργήσει ως εργαλείο 

διαχείρισης της κυκλοφορίας, το οποίο χρησιμοποιεί τη συμπεριφορά των οδηγών ως 

βασική δύναμη ενίσχυσης της αποδοτικότητας της κυκλοφορίας. 
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Extended Summary 

The urban transportation landscape is facing many challenges due to the introduction of a 

variety of mobility solutions for travelers which together with innovations of Information and 

communication Technologies (ICT) subvert traffic management policies. Policy makers have to 

reconsider the applied traffic management measures in a way that automation and 

cooperation requirements of today’s services are taken into account together with the always 

increasing needs for green and sustainable mobility solutions. Nevertheless, even in this ever-

changing transportation system, drivers remain the protagonists. Therefore, the understanding 

of decision-making while driving, as well as the investigation of driving habits adopted by 

drivers remains an active field of research for more than a decade.  

Abnormal driving has been linked with increased crash risk and, thus, the improvement of 

driving behavior is considered critical for improving road safety. In addition, previous research 

has implied that the improvement of individual driving behavior may also result in an 

improvement of traffic conditions. Nevertheless, no evidence has been provided to support 

this statement, and the consequences of adjusting individual driving behavior on a network-

level still remain unclear.  

Within this context, the work contained in this dissertation is motivated by two main driving 

forces: i) the need to develop a driving recommendation system that treats each driver as an 

individual and proposes actions that meet his/her own driving preferences and, ii) the need to 

explore the actual impact of applying a personalized recommendation system on the road 

network. 

Main objectives and research questions 

The main objective of this dissertation is to design a personalized driving recommendation 

system which is based on deep reinforcement learning algorithms and aims at enhancing 

driving safety through the mitigation of aggressiveness and other unsafe driving habits. 

Subsequently, the impact of controlling individual driving behavior is assessed with regards to 

network performance and road safety, as well as the levels of harmful emissions by properly 

adjusting parameters of traffic models in a city-wide scenario setting using microsimulation. 

The above-described overarching goal of this dissertation can be divided in three major 

objectives as described below: 

1. Exploit smartphone sensed data to understand driving behavior  

2. Develop a traffic theory compatible personalized recommendation framework for 

improving driving behavior 

3. Assess the impact of the recommendation system in traffic, safety and emissions 

The concept of driving behavior analysis is not new, and, thus, a thorough review of the 

literature was conducted, at first, with the aim to identify research gaps and highlight the 
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challenges and caveats that arise when smartphone crowd-sensed data are exploited for this 

purpose. The review of the literature resulted in the formation of the following 7 research 

questions. 

Question 1 (Q1): Which are the main driving profiles that cover the wide range of driving 

behavior and how can they be identified by exploiting smartphone data? 

Question 2 (Q2): Is it possible to classify the overall driving behavior of drivers into groups that 

share common driving characteristics, and, if so, to what extent could it be 

classified? 

Question 3 (Q3): Could Artificial Intelligence techniques be exploited within the framework of 

a driving recommendation system and ensure the requires degree of 

personalization of the produced recommended actions? 

Question 4 (Q4): Which is the most appropriate Reinforcement Learning algorithm for 

supporting human decision making? 

Question 5 (Q5): Is there a link between raising self-awareness and improving conditions of 

the entire network? To what extent could the improvement of individual 

behavior affect traffic conditions? 

Question 6 (Q6): What kind of impact does the controlling of individual driving behavior have 

on driving and road safety? 

Question 7 (Q7): How are emissions affected by the controlling of individual driving behavior? 

Is there a significant change on environmental conditions when drivers 

improve their behavior? 

Methodological approach 

The recommendation system proposed within this dissertation is basically a decision support 

system for drivers that aims at mitigating aggressiveness and riskiness. Driving is a complex 

task since it requires from the driver to take both strategic and dynamic decisions as well as 

adapt their behavior to emerging conditions of the network. Contrary to the already developed 

ADAS, the system here has the following three state-of-the-art characteristics: 

1. It is personalized, which means that it recommends the best driving actions to each 

individual taking into account their specific requirements and driving preferences. 

2. It is self-aware, which means that the system takes into account previous behavior of 

each individual driver in order to propose the most suitable driving recommendations.  

3. It is autonomous, meaning that it does not require any external input from the network 

or the traffic. Driving recommendations aim to improve individual driving behavior on its core, 

namely acceleration and deceleration decisions. 
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The development of the recommendation system is based on a Reinforcement Learning 

algorithm which is capable of producing the optimal behavior alteration for each driver given 

the way they have drove over their last trip. 

In order to answer the research questions and achieve the overarching goal of the dissertation, 

an inclusive methodological framework is proposed which is based on a mixture of 

unsupervised learning and Deep Reinforcement Learning algorithms as depicted in Figure I.  

 

 
Figure I. Overview of the methodological framework 

Starting from raw measurements of GPS location, acceleration and speed, as provided by a 

telematics application established on smartphone devices, driving features are defined that 

describe short-term and long-term driving behavior. Following, these features are utilized in 

an unsupervised learning framework to identify driving profiles that can be used to describe 

each driver’s overall driving behavior (Q1, Q2). Driving behavior is defined at:  

• a trip level, which corresponds to the way the driver performed a specific trip, and  

• a user level, which corresponds to the overall driving behavior of a specific driver in all 

of his trips (driving footprint).  
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A two-level k-means clustering algorithm is implemented, in a selection of driving features, in 

order to distinguish aggressive from non-aggressive trips within the first level, and then further 

distinguish between risky and distracted driving at the second level of clustering. After this 

procedure, each trip was assigned to a specific driving profile (Q1), and then, using statistical 

measurements, the overall driving behavior of each driver is identified (Q2).  

Once driving behavior per trip is identified, and all drivers were separated into groups based 

on their overall driving behavior, the driving recommendation framework is designed and the 

appropriate algorithms are developed, using state-of-the-art Reinforcement Learning models 

(Q3). The aim of the Reinforcement Learning algorithm is to learn the optimal policy and 

suggest the appropriate action that leads to the best possible behavior. Specifically, when 

dealing with driving behavior recommendations, every action refers to an adjustment of the 

vehicle’s kinematic characteristics including the adjustment of the vehicle’s speed and 

acceleration, which span within a continuous range of values. To this end, the RL algorithm 

developed in this work should retain one extra property, the ability to handle continuous state 

and action spaces (Q4). The RL agents follow an actor-critic approach based on the Deep 

Deterministic Policy Gradient algorithm and are both implemented as deep artificial neural 

networks, the hyperparameters and the structure of which emerge after an exhaustive grid 

search. The algorithms are trained using sequences of driving trips of the same driver as input, 

while the output of each RL controller is the optimal alteration in the acceleration of each 

driver, given the way they drove in their previous trip.  

The structure of the system is such that there is a full mapping to microscopic standardization 

and traffic flow control logic. In correspondence with widely used car following models, the 

proposed algorithm acts as an estimation and prediction function of the acceleration at which 

the vehicle should move.   

Finally, the impact of improving individual driving behavior is assessed through a comparative 

before-after microsimulation analysis, with respect to road safety, traffic and the environment 

(Q5, Q6, Q7). Using the road network of Athens, Greece, a microsimulation scenario for the 

morning rush hour demand, was set. For the initial conditions of the network the vehicles move 

according to the characteristics governing each of the driving behaviors detected in the first 

step of the methodological framework, while the traffic composition is based on the actual 

distribution of trips over the driving profiles. In this way, driving diversity is ensured between 

the vehicles and the traffic conditions in the network are simulated as realistically as possible. 

The data 

For the purpose of the specific research, data were collected through an innovative 

smartphone application developed by Oseven Telematics. The naturalistic driving database 

included 153,953 trips made from 696 unique drivers from December 2017 to August 2019. 

The trips were performed all around Greece, nevertheless the majority of them were conducted 

within the Region of Attica. For each trip, a variety of variables are available which include 
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statistical measurements of acceleration and deceleration during a trip, speeding 

measurements that describe smoothly and with speed excess driving, as well as mobile usage 

indicators that describe how cautious the driver is. Table I presents the driving parameters 

used in the specific research.  

Table I. Driving parameters per trip 

Variable Description Unit 

harsh_acc_per_min   Average number of harsh accelerations performed per minute events/min 

acc_avg Average acceleration m/s2 

acc_std   Standard deviation of acceleration m/s2 

acc_q90 90% percentile of acceleration m/s2 

acc_max Maximum acceleration m/s2 

harsh_brk_per_min Average number of harsh decelerations performed per minute events/min 

dec_avg Average deceleration m/s2 

dec_std Standard deviation of deceleration m/s2 

dec_q90 90% percentile of deceleration m/s2 

dec_max Maximum deceleration m/s2 

speed_max Maximum speed km/h 

mbu Percentage of driving with mobile usage % 

speeding_percentage Percentage of driving with speed over the speed limit % 

 

All data provided by Oseven are in a fully anonymized format. The main characteristics of the 

sample used in the specific research are presented in Table II. 

Table II. Main characteristics of the sample used in this research 

 Total Safe Unsafe 

Number of trips 153,953 66,566 87,387 

Number of drivers 696 197 499 

Average number of trips per driver 221 

Minimum number of trips per driver 16 

Average km travelled per driver 2,510 km 

Driving behavior analysis 

In order to achieve the first objective of this dissertation, which is to exploit smartphone sensed 

data to understand driving behavior, a k-means clustering algorithm is implemented in to 

distinct levels.  

For the first level of clustering, the number of clusters is set to k=2 and clustering is 

implemented on Euclidean distance matrix. Two of the variables that are used for the above 

procedure describe the number of harsh alterations of the longitudinal position of the vehicle 

(acceleration and deceleration), while the rest of them are essentially indices of the average 

acceleration and deceleration of the trip. The results of this first implementation of the k-

means clustering are presented in Table III. 
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Table III. 1st level clustering results 
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Aggressive trips 0.150 0.2081 1.748 1.525 3.847 -1.968 1.843 -4.547 71263 

Non-aggressive trips 0.028 0.051 1.137 1.052 2.503 -1.282 1.286 -2.926 82690 

 

Based on the clusters’ centers, the trips can be distinguished between aggressive and non–

aggressive driving, since trips belonging to the first cluster are featured by aggressive driving 

characteristics, such as great acceleration and deceleration metrics and significantly higher 

rates of harsh events per minute of driving. 

The second level of k-means clustering was applied separately to the two groups that emerged 

from the first level of clustering using two driving parameters: the percentage of driving with 

mobile usage and the percentage of driving with speed over the speed limit. Results of this 

second level of clustering are presented in the table below (Table IV). 

Table IV. 2nd level clustering results 
 Percentage of mobile 

usage 

Percentage of driving with 

speed over the speed limit 
Number of trips 

Aggressive trips 

Distracted 0.511 0.062 4505 (2.9%) 

Aggressive 0.019 0.032 54394 (35.3%) 

Risky 0.023 0.269 12364 (8%) 

Non-aggressive trips 

Risky 0.021 0.306 12494 (8.1%) 

Moderate 0.014 0.029 66566 (43.2%) 

Distracted 0.514 0.057 3630(2.4%) 

 

The resulting clusters seem to reveal richer driving profiles: distracted driving is recognized by 

higher values of the percentage of mobile usage while driving, while risky driving is identified 

through higher values of percentage of driving with speed over the speed limit. The two 

remaining clusters which have the lower values in both measures are annotated as “aggressive” 

and “moderate” for the aggressive and non-aggressive trips subsets respectively.  

In order to separate drivers into groups with the same driving preferences, an average driving 

profile of each individual was identified by applying a simple rule. All four driving profiles 

indicating an unsafe driving behavior (Risky, Distracted, Aggressive-risky, Aggressive-

distracted) were grouped as the worst class (3), aggressive trip profiles constitute the second 

class (2), while trips with typical characteristics belong to the first class (1), as shown in Figure 

II. For each individual driver, an average from all their trips is estimated and drivers are 

separated into two main groups based on their average behavior, as follows: 
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• Moderate/typical drivers: trip average ≤ 1.5 

• Reckless drivers: trip average > 1.5 

 

Figure II. Trip profile grouping for drivers’ average driving profile estimation 

For each individual driver, an average of the annotations from all their trips is estimated, where 

trip average less than 1.5 implies a moderate/typical driver and trip average greater than 1.5 

refers to reckless drivers. Based on some statistical analysis, trip average less than 1.5 indicates 

that at least 60% of the trips performed by a driver are characterized by “moderate” driving 

behavior. In order for the developed controller to be as adaptive as possible to each 

individual’s behavior, the proposed framework should be very strict when characterizing a 

driver as “typical/moderate” in order to avoid suggesting changes in behavior that the driver 

himself is impossible to follow as they will be far from his own average behavior. 

RL: concept, principles and model development 

In order to develop the Self-Aware Driving Recommendation Assistant (SADRA), a structured 

procedure is followed. First, the total trip database is divided into two, based on the average 

driving profile of each driver. In particular, the first database includes the trips of all drivers 

belonging to the "typical-safe" drivers, while the second includes all the trips of drivers with 

unsafe average driving behavior. For the sake of brevity, from this point on, the RL controller 

that corresponds to the “typical” drivers is referred to as SADRA – I, while the corresponding 

controller for the reckless drivers is referred to as SADRA – II respectively. 

Every RL agent consists of three main components: states (s), actions (a) and rewards (r). In 

each timestep the agent observes the current state of the environment and takes the 

appropriate action from the set of the possible actions. Then, the agent receives a reward 

which measures the success or failure of the agent’s actions for the given state.  

In this study, the environment states are defined through a five-dimensional vector that 

describes how a driver drove during their trip and includes trip’s average acceleration (aavg), 

90% percentile of acceleration (a90), average deceleration (davg), 90% percentile of deceleration 

(d90) and percentage of driving with speed over the speed limit (speeding): 

𝒔 = {𝑎𝑎𝑣𝑔, 𝑎90, 𝑑𝑎𝑣𝑔, 𝑑90, 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔} 
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Our recommendation system is not context-aware which means that its ultimate goal is to 

improve individual’s personal driving style independently from the road setting they are 

driving in (type of road, traffic conditions, etc.). The selection of the appropriate speed is not 

independent from the road geometry and road traffic, as well as deceleration decisions are 

not always independent from the leading vehicle’s behavior and traffic signals. Therefore, the 

only parameter that purely describes one’s driving style is the acceleration, as it is only 

dependent on the driver’s perception and preference between smoothly or harshly 

accelerating. Indeed, in recent literature, a driver’s driving style is usually defined by their 

acceleration profile. To this end, actions that the system produces and are proposed to the 

driver belong to a continuous action space which is defined by a two-dimensional vector 

including a change in average acceleration and in the 90% percentile of acceleration, which 

define the usual/preferred acceleration for the entire trip in regular situations and the value 

that should not be exceeded, e.g., when performing overtaking maneuvers, except from cases 

of emergency: 

𝒂 = {𝑑𝑎𝑎𝑣𝑔, 𝑑𝑎90} 

For the sake of simplicity from hereon, the 90% quartile of the acceleration may be equally 

referred to as “maximum acceleration”. 

A key component of the RL agent is the reward function. The aim of the reward function is 

twofold; to evaluate the current state and the transition between states. In other words, the 

driving behavior at each trip, as well as the change in driving behavior between successive 

trips of the same user are evaluated. For this purpose, a custom driving evaluation function 

had to be constructed first. The score of each trip was estimated by the distance of this specific 

trip from the center of the moderate profile (the center of the cluster), in order to quantify how 

far each individual’s behavior is from the typical (moderate) behavior. For the purpose of this 

analysis, the Mahalanobis distance is used to estimate the distance between each trip and the 

moderate profile.  

Trip evaluation is performed on the basis of the following formula: 

𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑒
−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 ∗ 

Ɱ(𝑖,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒)  

𝑄75(Ɱ)  

where i is an individual trip and Ɱ is the Mahalanobis distance. Here, the 3rd quartile of the 

Mahalanobis distance is used instead of the maximum value in order for the score function to 

be stricter with drivers whose behavior excludes more than 75% of the typical (moderate) 

behavior. 

The reward function for a driver moving from one trip to the next one was established based 

on the following formula: 
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𝒓 =  𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖+1 (1 +
𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒i+1 − 𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖

100
 ) 

 

Once the main components for the development of the RL controllers were estimated, the 

data were organized in the following format: 

(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒) 

For every unique driver in the dataset, their trips were sorted in an ascending order according 

to each trips starting date. The training samples were tuples of sequential trips of a specific 

driver along with the corresponding action and reward of the transition from the first trip to 

the succeeding one. It should be noted that for every distinct driver in the dataset, their first 

trip was used only as “state” while their last trip of was used only as “next state”. Following this 

data preparation procedure, 33,440 unique data samples were constructed for training SADRA 

I and 119,817 unique data samples were used for the training process of SADRA II. 

The RL controllers are developed based on the Deep Deterministic Policy Gradient (DDPG) 

algorithm which implements an actor-critic approach to learn a policy and produce the optimal 

actions. Thus, for each controller two neural networks are developed; representing the actor 

and the critic respectively. The actor (μ) and critic (Q) networks for both the safe and unsafe 

drivers’ subsets were trained following the procedure of Algorithm below. 

DDPG Algorithm implementation 

Initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) networks using rewards as Q-values 

Set the above as initial target networks (𝑄′ and 𝜇′) 

Split the sample into Μ minibatches 

for minibatch=1, Μ do 

   Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′) 

   Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))

2
𝑖  

   Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇
𝐽 ≈

1

𝑁
∑[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
]

𝑡

 

   Update the target networks: 

𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  

end for 

An exhaustive grid search was performed in order to conclude to the final architecture of the 

two networks. Specifically, all possible combinations of the networks’ structures and 

parameterization, within a range of reasonable values, have been examined and compared in 

order to detect the optimal one. The parameters that were taken into consideration are: 

number of hidden layers, number of neurons and activation of each layer, optimization 

algorithm and learning rate, batch size and number of training epochs, as shown in Table V. 
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Table V. Hyperparameters of the Critic and Actor networks for both SADRA I and II 
Hyperparameters Critic network Actor network 

 SADRA I – Safe drivers 

Number of hidden layers 6 3 

Number of neurons per layer (64,32,16,16,32,64,1) (128,64,32,2) 

Epochs 200(initial network:110) 200(initial network:110) 

Batch size 150(initial network:150) 150(initial network:150) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.001 0.0001 

 SADRA II – Unsafe drivers 

Number of hidden layers 6 3 

Number of neurons per layer (32,16,8,8,16,32,1) (128,64,32,2) 

Epochs 170(initial network:170) 210(initial network:210) 

Batch size 250(initial network:250) 250(initial network:100) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.0001 0.0001 

Simulation setting 

The quantification of the impact of adopting driving recommendations by all drivers on traffic, 

road safety and emissions was performed under a network-level microscopic simulation 

scenario. The SUMO simulation software is used and its default car-following model, Krauss 

model, which is a microscopic, space-continuous model based on the safe speed; the driver of 

the following car adopts a safe speed which allows them to adapt to the deceleration of the 

leading vehicle. 

The case study for the simulation experiments is the inner-ring network of Athens, Greece. The 

network consists of 1,293 nodes/intersections and 2,572 edges. The total length of the network 

is 348 kilometers. The calibration of the network led to the definition of 86,054 vehicles, 

achieving a total of 1,393,634 counts (97.47% of the total counts extracted from the Aimsun 

simulator) and a GEH value below 5 (GEH < 5) for 95.26%. 

Two distinct scenarios were designed both corresponding to the demand of the Athens’ Road 

network during the morning peak hour (8:00 – 9:00 AM). First, the initial conditions of the 

network are simulated in order to estimate the performance of traffic when vehicles move 

around, based on the characteristics that govern the six identified driving profiles. In order to 

ensure the robustness of the results, simulation was performed in 10 replications with ten 

different seed numbers. Stochasticity is an important aspect of reproducing reality in a 

simulation scenario, since it adds randomness over the distributions of difference aspects of 

the simulation (e.g., route distributions, vehicle type distributions). Subsequently, driving 

recommendations were produced offline for every served vehicle based on the way each 

vehicle performed their trip. The recommendations were produced from the corresponding RL 

controllers using as input the state of the trip (average acceleration, 90% percentile of 
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acceleration, average deceleration, 90% percentile of deceleration, speeding percentage) and 

as output the optimal alteration of the maximum acceleration. It should be highlighted here 

that although the developed RL controllers produce a two-dimensional vector that includes 

alterations on both the average and the maximum acceleration, only the maximum 

acceleration was exploited during the simulation runs, since the Krauss model takes into 

account only the maximum values of acceleration and deceleration.  

Finally, a second simulation run was performed, where previously served vehicles follow the 

proposed recommendations, namely an alternation of their maximum acceleration, while the 

rest of the traffic follows the distribution among the six driving profiles.  

The behavior that implies each driving profile was simulated through the adjustment of the 

car-following model. The car-following model can be parametrized by a number of 

parameters: the maximum acceleration of the vehicle (accel), the maximum deceleration of the 

vehicle (decel), the maximum velocity of the vehicle (maxSpeed), the maximal physically 

possible deceleration for the vehicle (emergencyDecel) and the vehicles’ expected multiplicator 

for lane speed limits (speedFactor). At first, the current (initial) state of the road traffic is 

simulated in SUMO using the six defined driving profiles, whose parameters were introduced 

to the Krauss model of different vehicle types, as shown in Table VI. 

Table VI. Car-following model parameters for each vehicle type 

Vehicle types  

(trip profiles) 

Car-Following Model Parameters 

accel decel emergencyDecel maxSpeed speedFactor 

(m/s2) (m/s2) (m/s2) (km/h) (mean, min, max) 

Moderate 2.519 -2.942 -5.909 64.51 (0.029, 0, 0.168) 

Aggressive 3.817 -4.483 -18.083 66.93 (0.033, 0, 0.151) 

Risky 2.392 -2.824 -5.328 100.28 (0.306, 0.1627, 0.96) 

Distracted 2.601 -2.990 -5.112 67.38 (0.057, 0, 0.631) 

Aggressive-risky 3.944 -4.825 -25.884 100.8 (0.269, 0.147, 0.907) 

Aggressive-distracted 3.939 -4.553 -10.845 71.99 (0.062, 0, 0.744) 

For the initial state of the network, the six distinct vehicle types were created in a route file, 

with the corresponding car-following model’s parametrization. The route of each vehicle was 

also identified in the route file, as it was estimated from the path assignment of Aimsun. In 

one hour of simulation for the morning peak, about 58% of the total demand was inserted in 

the network and 28% of the vehicles completed their journey within this time. 

Subsequently, for each vehicle that reached their destination the following parameters were 

estimated for each trip: 

• average acceleration 

• 90% percentile of acceleration 

• average deceleration 

• 90% percentile of deceleration 

• speeding percentage 
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These driving characteristics were used as input to the RL controllers which recommend the 

optimal action for each trip. For the second run of simulation, the exact same vehicles were 

used, which follow the exact same routes on the same road network, in order to estimate the 

impact of the recommendation. The proposed actions of each vehicle were introduced as a 

modification of the car-following model’s parameter in the route file. The adoption of this 

approach enabled hands-on implementation of the recommendation process with direct 

control over the outcomes. 

In this case as well, 10 replications with the same seed values as before, were performed to 

ensure the robustness of the results. Findings revealed that in one hour of simulation 57% of 

the demand was served on average, while the corresponding percentage of served vehicles 

was reduced by 1% compared to the initial conditions. 

Impact assessment  

Impact assessment of the proposed system is performed using microsimulation and by 

following a before-after approach. Specifically, for both simulation cycles the Key Performance 

Indicators of traffic, safety and environmental conditions were estimated, and comparatively 

assessed so that to quantify the overall impact of adopting personalized driving 

recommendations which improve each individual’s driving behavior. The KPIs used in the 

analysis for each network’s aspect are presented in Table VII. 

Table VII. Key Performance Indicators for each network’s aspect 

Traffic Safety Environment 

Served demand Total conflicts 
Cumulative amount of emissions 

(CO2, CO, PMx, NOx) 

MFDs Total rear-end conflicts Emissions per vehicle 

Travel times Conflicts per vehicle  

The estimation of traffic-related KPIs was dependent on the outputs of the simulation, which 

included the number of inserted and served vehicles, as well as edge-based information 

regarding the three fundamental elements of traffic flow theory (flow, speed and density). 

Instead of using aggregated measures of the fundamental variables, the Macroscopic 

Fundamental Diagrams (MFDs) were constructed and significant outcomes were drawn 

regarding the differences in the performance of the network before and after the application 

of the recommendation system. The estimation of the harmful air pollutants is based on the 

emissions’ model already integrated into SUMO, the PHEMlight model. PHEMlight is a 

simplified version of PHEM (Passenger car and Heavy-duty Emission Model), a complete 

vehicle emissions model developed in Europe since 1999. PHEM is based on extensive 

emission measurements on vehicles such as passenger cars, light duty vehicles and urban 

buses. The approximation of the conflicts that constitute an indicator for road safety is based 

on the SSAM tool, which computes a number of surrogate measures of safety for each conflict 

(crossings, rear-ends, lane changes) that is identified in the trajectory data and then computes 

summaries (mean, max, etc.) of each surrogate measure.  
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Results: Driving recommendations 

The two versions of the trained DDPG algorithm were used to produce driving 

recommendations with respect to two categories of drivers; typical drivers who exhibit a 

moderate average behavior (SADRA I) and unsafe drivers who interchange their behavior 

among various unsafe driving habits (SADRA II). The recommendations are in the form of 

driving alterations that refer to the optimal driving actions that the specific driver can adopt 

in order to improve their driving based on their current behavior.  

A comparison between the outputs of the two controllers revealed that both of them are 

trained to generate recommendations that move drivers closer to the average safe behavior 

of a typical driver, which has an average acceleration equal to 1.137 m/s2 and a maximum 

acceleration equal to 2.503 m/s2. Based on the indicative samples of the table below (Table 

VIII), the mean recommended average acceleration was estimated 1.145 m/s2, while the mean 

value of the proposed maximum accelerations was 2.507 m/s2 respectively. It can therefore be 

concluded that a universal application of the proposed recommendation system would lead 

to the harmonization of the acceleration profiles for the entire fleet of vehicles. 
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Figure III provides some indicative examples of the recommendations produced by the two 

controllers given the same input (first state). Findings revealed that although the 

recommendations of the controller concerning unsafe drivers (SADRA II) lead to significantly 

lower average accelerations for the next trip (next state) compared to the previous trip (initial 

state), they maintain a significant distance upwards for the respective recommendations 

produced from the typical drivers’ RL controller (SADRA I). Nevertheless, it should be noticed 

that both the controllers lead to a smoother acceleration profile for the entire traffic. 

 
Figure III. Comparison of the new state’s average acceleration as it emerged from the Typical and the 

Unsafe RL controllers. 

Results: Simulation and Impact 

The quantification of the impact of applying the proposed recommendation system and in 

consequence, of the adoption of an improved driving behavior by all drivers is of great 

importance both for researchers as well as practitioners and can lead to significant findings 

regarding the usefulness of improving individual driving behavior. The assessment of the 

recommendation system is performed by utilizing specific Key Performance Indicators that 

correspond to three areas of interest: traffic, safety and emissions. Each of the simulation 

rounds was done in 10 replications to enhance the validity and robustness of the results. In 

total, the trained SADRA I controller was used to produce recommendations for 43% of the 

vehicles, while the rest of the vehicles followed the recommendations produced by SADRA II. 

All replications of the same simulation round present mutual results which are slightly reduced 

after the application of the recommendation system. On average, 2.9% less vehicles were 

served based on the results of the second round of the simulation. However, results of the 

statistical hypothesis test t-test indicated that there are no significant differences between the 

means of the served vehicles before and after the recommendations in 95% confidence 

interval. Α greater investigation of the traffic flow properties together with aggregated metrics 

of driving behavior was conducted to further quantify the impact on the other dimensions of 

the road network as well. The application of the personalized recommendation system had a 

substantial impact on the maximum acceleration of the vehicles, as shown in Figure IV. When 
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all vehicles followed the suggestions generated by the two RL controllers, the mean value of 

the maximum acceleration was somewhat increased from 2.83 m/s2 to 2.96 m/s2, mostly 

because the majority of the vehicles who adopted a very small maximum acceleration, which 

was far lower from the corresponding acceleration of the “moderate/typical” behavior, they 

were suggested to slightly increase their acceleration. However, the condensation of the 

interquartile range is evident after the recommendations, which indicates the harmonization 

of the acceleration profiles of all vehicles in the simulation. Finally, the maximum value of the 

observed maximum accelerations remained at the same level of 3.94 m/s2 after the application 

of the proposed system.  

 
Figure IV. Boxplot of maximum acceleration before and after recommendation 

The differences observed in the magnitude of the average speed are minimal, since in both 

situations the vehicles adopt an average speed of around 25 km/h, while the maximum 

average speed that is observed is approximately 55 km/h.  

Alterations on the speed of vehicles resulted on changes of the rest traffic flows properties, 

namely flow and density. Microscopic fundamental diagrams were calculated to provide a 

thorough graphical representation of these variables’ relations for the initial conditions as well 

as the conditions emerged after the recommendations. All three fundamental diagrams 

(Figures V – VII) demonstrate the relationships between traffic flow properties, namely mean 

vehicle flow, mean density and mean speed, as they emerged from the simulation based on 

aggregated measurements of all edges for the 10 replications. Results indicate that the 

implementation of self-aware driving suggestions although it leads to safer and less aggressive 

driving behavior for each individual, it does not improve the performance of the road network. 

More specifically, self-improvement is evident from the lower mean density values which 

indicates that vehicles keep greater distances from the leading vehicles. Additionally, lower 

speeds are also observed after the adaptation of the recommended accelerations with the 

difference from the initial conditions being more significant in the case of saturated network 

flow (Figure V).  
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Figure V. Fundamental diagram of speed-density before and after driving recommendations, based on 

simulation results 

Individual driving safety is augmented, yet the impact on traffic conditions is not similarly 

positive. The vehicles that move at lower speeds and with a lower density worsen traffic flow 

conditions, since fewer vehicles are served per time unit compared to the initial conditions. 

Nonetheless, this decrement of mean flow may be considered acceptable if assessed in 

conjunction with the positive effects on driving safety. However, based on the findings of this 

research, it can no way be concluded that the improvement of personal driving behavior is 

associated with a significant improvement in traffic conditions and therefore, the imposition 

of soft policy measures, such raising self-awareness with respect to individual driving safety 

and performance, it cannot be considered as a key measure for traffic management. 

The fundamental diagram of flow-density seems to depict a uniformity between the initial and 

the final conditions, although some minor differences are observed with respect to the 

absolute value of capacity flow (Figure VI). Specifically, for the value of critical density, which 

was estimated 33.1 veh/km, the corresponding values of traffic flow are 360 veh/h and 358 

veh/h for the initial conditions and after the recommendations respectively. 
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Figure VI. Fundamental diagram of flow-density before and after driving recommendations, based on 

simulation results 

The flow-speed diagram is used to determine the speed at which the optimum flow occurs. 

For the initial conditions of the road network, the optimum flow occurs when vehicles move 

with 26.1 km/h, while the corresponding speed after the recommendation is reduced 3.4% 

with its absolute value estimated 25.2 km/h (Figure VII).  

 
Figure VII. Fundamental diagram of flow-speed before and after driving recommendations, based on 

simulation results 

Except for the performance of the network, another key performance indicator is safety. The 

assessment of the applied recommendations with respect to safety was performed by 

calculating the number of conflicts occurred between the vehicles during the simulation. Table 
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IX presents the number of conflicts that were observed for the entire traffic before and after 

the recommendation. There are three types of conflicts that can be identified from vehicles’ 

trajectories, which are crossings, rear-ends and lane changes. Here, a special focus on rear-

ends is given since the proposed recommendations only affect the car-following behavior of 

each driver.  

Table IX. Safety performance indicators in Athens Network before and after applying driving 
recommendations 

 Initial conditions After recommendation [% difference] 

Vehicles served 

(in one hour of simulation) 

23,990  

(27.88% of demand) 

23,302  

(27.08% of demand) 

Total number of conflicts 2.86 conflicts/vehicle 2.75 conflicts/vehicle [-4.2%] 

Rear - ends 2.01 rear-ends/vehicle 1.90 rear-ends/vehicle [-5.5%] 

A reduction of 4.2% of the total number of conflicts was observed when vehicles followed the 

corresponding driving recommendations, while the corresponding percentage of elimination 

for the rear-end conflicts is 5.5%. Although these percentages may not seem very high, the 

absolute number of conflicts that was calculated after the recommendation is significantly 

reduced by approximately 6,000 conflicts for the one hour of simulation. Rear-ends constitute 

about 33% of the total number of conflicts, which indicates that each driver gets involved in 

all different kind of conflicts during driving. 

Some indicative results on the impact of the proposed recommendation system on emissions 

is provided. The corresponding Key Performance Indicator is the level of emissions for all 

different kind of air pollutants, namely Carbon Dioxide (CO2), Carbon Monoxide (CO), 

Particulate Matter (PMx) and Oxides of Nitrogen (NOx). A significant reduction in all categories 

of emissions is observed compared to the initial conditions of the network, as shown in Table 

X. Findings revealed that the homogenization of acceleration profile for the entire traffic has 

led to a slightly reduced emissions per vehicle. Specifically, the reduction in all categories of 

emissions is estimated as follows: 2.5% in CO2, 0.3% in CO, 1.3% in PMx and 3.3% in NOx. It 

should be noted that this improvement in the environmental conditions is very important since 

the proposed recommendation system had a positive impact on emissions despite the fact 

that the controller was not trained towards this direction.  

Table X. Difference in vehicle emissions before and after applying driving recommendations 
Emissions Initial conditions After recommendation [% difference] 

CO2 0.704 kg/vehicle 0.686 kg/vehicle [-2.5%] 

CO 0.027 kg/vehicle 0.026 kg/vehicle [-0.3%] 

PMx 0.0133 g/vehicle 0.0131 g/vehicle [-1.3%] 

NOx 0.296 g/vehicle 0.287 g/vehicle [-3.3%] 

Conclusions and main contributions 

The main findings of the dissertation can be summarized in the following points: 
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• A two-level clustering approach can provide great insights on the characteristics that 

govern aggressiveness during driving and can be further exploited to distinguish safe 

from unsafe driving patterns.  

• Six distinct driving profiles are able to describe the overall driving behavior that 

someone performs during their trip. 

• Τhere are two categories of drivers according to the average behavior of each driver 

resulting from how they drove in all their trips. In the first category drivers usually drive 

in a typical manner while in the second category drivers perform a number of unsafe 

driving actions or drive in an aggressive manner in the majority of their trips. 

• The Actor-critic approach from the family of reinforcement learning algorithms can be 

exploited to find the best possible driving action for each dividual driver given the way 

they drove in their previous trip. 

• When a controller provides driving recommendations to a fleet of vehicles, the 

acceleration profile of the entire fleet is harmonized on a value which is close enough 

to the acceleration decisions of a typical – safe driver. 

• The application of a personalized recommendation system to a city’s road network 

does not have a significant impact on traffic conditions. 

• When each driver improves their own behavior, road safety is enhanced on the 

network. Specifically, critical conflicts between vehicles are significantly reduced after 

the application of the proposed system. 

• The level of emissions for all different kinds of air pollutants is reduced which indicates 

that harmonization of the accelerations for the entire traffic can have an important 

positive impact on the environmental conditions. 

Concluding, it should be noted that the deterioration of traffic may be considered acceptable 

if one takes into account the compensation through the benefits of adopting smoother driving 

behavior in road safety and emissions. To this end, policy makers and researchers should not 

neglect the real impact on all network’s dimensions when planning traffic management 

strategies and applying soft and hard policy measures. 

The present doctoral dissertation offers significant innovative contributions in five areas:  

1. It makes use of an innovative naturalistic driving dataset. A great volume of data was 

available with high temporal resolution from real driving, enriched with a variety of 

factors that describe driving behavior, environment and other external attributes for 

each trip. 

2. It proposes a methodological framework to extract driving profiles straight from the 

data, which describe the entire range of driving behavior. A data-driven approach is 

followed to classify critical driving patterns that appear during a trip by exploiting k-

means clustering as being the most appropriate tool for this purpose. 

3. It develops novel Reinforcement Learning algorithms to solve a real-world problem, 

this of assisting driving behavior. A deep Reinforcement Learning algorithm was 
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chosen as the most suitable tool to learn the optimal policy and suggest the 

appropriate action that leads to the best possible driving behavior for each individual 

driver. 

4. It proposes a methodology which is capable of recognizing individual driving 

preferences and produce personalized driving actions to each driver. Specifically, an 

inclusive methodological framework is implemented which incorporates tools and 

methods that first recognize driving behavior of every user, then assigns every user to 

the corresponding RL controller version based on their overall behavior and finally 

produces personalized driving actions that mitigate aggressiveness and riskiness of 

driving.  

5. It evaluates the large-scale network effects of implementing a personalized driving 

recommendation system on three areas of interest using specific KPIs, precisely on 

traffic, safety and emissions. Impact assessment of the proposed recommendation 

system is performed using a real-world scenario that of the Athens’ Road network 

through microsimulation and by applying a before-after methodology to compare the 

values of the KPIs before and after the application of the system. 

Limitations, impact and future research 

As any other data-driven approach, this research as well, relied on some limitations with 

regards to problem setup and adaptation. Firstly, some limitations emerged from the need to 

match the RL output with the simulation properties. More specifically, one of the two 

components of the recommended action, the average acceleration of each driver, could not 

be imported into the microsimulation car-following model, which is parametrized by the 

acceleration ability of vehicles and therefore only the maximum acceleration is adopted within 

the simulation. Nevertheless, due to the nature of the phenomenon of driving, all parameters 

describing how a driver chooses to drive over a trip are inextricably linked with each other and 

therefore, the neglection of the average acceleration was not expected to have a significant 

impact over the results of the simulation. Besides car-following behavior, a driver during their 

trips takes actions regarding lane change, priority concession and other decisions concerning 

interactions with other road users. However, in this research the focus was explicitly on the 

car-following behavior as the ultimate goal was to create a user-centric system that looks only 

at the driver and does not require any external information from the road network in order to 

be trained and implemented. Thus, the proposed actions refer on the way the driver drives 

along the road, namely the way they choose to hit the acceleration pedal, which depends only 

on the personal preferences and perceptions of the driver. The lack of information about the 

environment can be considered as a limitation of the developed system, since its 

transformation into a context-aware system would give other perspectives both to the system 

itself and to the possibilities of its use as a traffic management tool.  

An extension of the above limitation is the fact that since the system ignores the state of the 

environment it cannot operate real-time. In other words, the proposed methodology is not 
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able to produce recommendations real-time, namely during a trip. Instead, an offline system 

is developed which suggests alterations on driving behavior in a sequence of trips for each 

driver. The integration of external information into the system would allow, at least 

conceptually, the real-time provision of driving recommendations.  

Lastly, another limitation, which applies to all data driven approaches, is the generalization and 

transferability of the developed model and the corresponding outcomes. In most cases it is 

unclear whether the sample used to train the model is representative of the entire population 

and also whether its characteristics are similar to those of a different population. In this work, 

a big naturalistic driving dataset is used to develop the RL models which includes trips 

performed by a great number of drivers, nevertheless, it cannot be said that the results can be 

generalized and spatially transferred to another road network. 

Besides the limitations described above, the outputs produced within this dissertation may 

have a significant impact on several aspects of both research (R), technology (T) and policy-

making (P). Future research can benefit and significantly evolve by further examining the 

conclusions drawn with regards to the following points: 

o (R) Aggressiveness does not necessarily constitute an unsafe driving habit and can be 

detected either as an individual behavior or in combination with other unsafe 

behaviors.  

o (R) Reinforcement learning algorithms can be implemented in real-world problems and 

specifically, the DDPG algorithm can learn how to make human-like decisions on 

complex and high-dimensional environments. 

o (R & T) The identified human driving profiles can provide great insights for human-like 

autonomous driving. 

Technological advancements can be achieved in case the proposed recommendation system 

is incorporated in already developed software, such as insurance telematics apps and ADAS. 

Such system can be revolutionized, become more human friendly and adopt a more 

personalized way of supporting human decision making.  

Moreover, policy makers could take advantage of the results of this dissertation to redesign 

soft policy measures and redefine the role of drivers in the current traffic management 

strategies, since in this work it was shown that the improvement of driving behavior on an 

individual level can have significant impact on road safety and emissions, but not a noteworthy 

impact on traffic conditions.  

Finally, it can be understood that findings of this work can have far reaching implications for 

future research. Although this research provides significant contributions on driving behavior 

analysis, there is still much room in the exploration of driving behavior dynamics and thus, 

further research should be conducted in that direction involving enriched driving datasets and 

additional driving behaviors and parameters (e.g., cornering, tasks that cause distraction 
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except from mobile usage).  Moreover, the dedicated study of the dynamic evolution of driving 

behavior is also very important to provide answers to the question of how much and how 

rapidly driving profiles are altering over time. Another direction of future research concerns 

the recommendation system, which should investigate the way the produced recommendation 

should be passed to the driver in order for them to be understood by the user and then to be 

accepted by him. Furthermore, the identification of the required specifications that will enable 

the real-time operation of the system could also be a part of future research. Towards this 

direction, the most significant future research objective would be the modification of the 

proposed system in a way that it becomes context-aware, meaning that the system can interact 

with environment in which the agent takes decisions and have a full view of its dynamics and 

alterations. In this way, the proposed system could be implemented in real-time, and 

additionally it could also act as a traffic management tool which uses driving behavior as a key 

force of enhancing traffic efficiency. 
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1 INTRODUCTION 

1.1 Background and motivation 

The urban transportation system is changing because of the emerging innovations of 

Information and Communication Technologies (ICT), namely automation, connectivity and 

cooperation. In the near future, a variety of mobility solutions, spanning from traditional travel 

modes (private vehicles, public transport, etc.) to micro-mobility solutions (scooters, e-bikes, 

skateboards, etc.), sharing services (e.g., Mobility as a Service) and autonomous vehicles, 

should coexist on the road network while ensuring the effective mobility of road users and 

efficient use of road infrastructure. Furthermore, advances in information technology have 

facilitated the data exchange between road users and operators shaping the “informed-

traveler” paradigm, an individual with multiple requirements regarding safety, comfort and 

level of service of the system (Nuzzolo et al., 2014). In this complex environment, the role of 

traffic management becomes even more challenging since many transport operators with 

contradicting goals are involved and simultaneously there is a tendency towards a more 

human-centric approach of managing traffic.  

The necessity to meet the personal mobility needs of each individual user within the context 

of a multimodal transport environment, has led to a distributed management system of 

decentralized transport. The management of such a system should treat each mobility service 

as a separate entity whose operation has to be ensured complementary and simultaneously 

with the seamless operation of the other units. Figure 1-1 graphically depicts the concept of 

decentralized traffic management in the era of connectivity and automation in transport. 

 
Figure 1-1. Schematic representation of the Decentralized Traffic Management Concept 
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Even in this ever-changing environment of connected, cooperative and automated 

transportation solutions, drivers are still the protagonists to fuel a safe driving environment 

(Vaiana et al., 2014; Sagberg et al., 2015) and a sustainable transport (Huang et al., 2018). 

Beyond that, driving behavior affects traffic flow, fuel consumption, air pollution, public health 

as well as personal mental health and psychology. As a result, traffic management resolutions 

are mostly guided by understanding and improving driving behavior as well as mitigating 

vehicle use and ownership. Towards this direction, a variety of management measures have 

been applied over the years which can be separated in two main categories (Figure 1-2): (i) 

infrastructure interventions (hard measures) and (ii) modification of human behavior and 

actions (soft measures).  

 
Figure 1-2. Categorization of traffic management measures  

Hard transport management measures, such as congestion charging and other pricing policies 

that prevent car use, and efficient road space control, have been traditionally implemented as 

countermeasures of congestion and air pollution; yet, their results are not the ones expected 

due to public opposition and high financial costs (Gärling and Schuitema, 2007; Huang et al., 

2020). On the other hand, soft policy measures, also referred to as non-coercive measures, 

include psychological and behavioral strategies aiming at influencing the mindset of road 

users so that voluntarily change their travel behavior towards more sustainable mobility 

choices (Fujii and Taniguchi, 2006; Cairns et al., 2008; Semenescu et al., 2020). Soft policy 

measures are expected to reform the urban road landscape since their results have long-term 

effects not only on the instantaneous choices of drivers, but on the way they choose to drive 

in general (Möser and Bamberg, 2008; Bamberg et al., 2011).  

Nevertheless, humans in transport exhibit a typical selfish behavior, which means that in every 

situation they are expected to make those decisions that satisfy their needs, regardless of the 
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consequences to the others or the system performance (Fehr and Fischbacher, 2003). In 

everyday travel, and especially while driving, man exhibits this selfish behavior, as their ultimate 

goal is to move as quickly and as comfortably as possible towards their destination. Many 

researchers have tried to change this selfish behavior and motivate the driver to think and 

behave as a member of the group, in the context of soft policy measures. However, the goal 

of each individual driver remains one "how to move as fast as possible". For this reason, a 

crucial question arises as to how the needs of each driver will be met while at the same time the 

smooth and seamless operation of the road network will be ensured. Within this context, the 

notions of self-awareness and self-regulations have been introduced to the design of 

behavioral strategies as a soft policy measure (Möser and Bamberg, 2008; Bamberg et al., 

2011), in a sense that the driver will become aware of the impact of their driving behavior, and 

thus, they will try to improve their driving performance on the road. However, until now, the 

concept of self-awareness has not been integrated in any of the already developed decision 

support systems for drivers. 

Today’s already applied soft policy measures include detailed travel information provision, 

road awareness campaigns, and marketing techniques focusing on personal travel behavior 

(Cairns et al., 2008; Semenescu et al., 2020). In addition, several mature driver assistance 

systems like the Adaptive Cruise Control, Lane Keeping Assistance System, Autonomous 

Emergency Braking have been successfully developed in order to ensure safety and comfort 

while driving (Meiring and Myburgh, 2015). Nevertheless, the main drawback of these systems 

is that they lack the personalized character; they are usually designed based on the behavior 

of an average driver and, therefore, may be found too conservative for aggressive drivers and 

too aggressive for the more passive drivers (Butakov and Ioannou, 2015; Tselentis et al., 2016). 

Additionally, this lack of personalization restrains the potential of self-awareness in the 

sensitization of the individual regarding the impact that their decisions and behavior may have 

in others. As other human behaviors, driving behavior as well, is related with a variety of other 

issues such as congestion, road safety, interactions with other road users, air pollution and 

many more, which makes it a key component in the design and operation of the urban 

environment. 

As a result, optimizing driving performance by addressing personalized aspects of driving 

behavior is a focal research area, which may have far reaching implications to traffic safety and 

operations, environment, as well as significant benefits for users (Vlachogiannis et al., 2020). 

The first step towards this direction is the identification of driving behavior and the analysis of 

its dynamics. Driving behavior analysis is not a new concept. Over the years, a variety of 

methodological approaches have been applied in order to investigate the way drivers choose 

to drive (Chan et al., 2019; Abou Elassad et al., 2020; Mantouka et al., 2020) by exploiting data 

from different sources, such as travel surveys, driving simulators, questionnaire surveys, GPS 

devices and only recently smartphone crowd-sensed data (Ziakopoulos et al., 2020). Recent 

advances in cloud computing, Artificial Intelligence (AI) and Internet of Things (IoT) together 

with the high penetration rate of smartphones provide unprecedented capability to collect, 
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exchange and analyze large volumes of heterogeneous data that enable the monitoring and 

understanding of mobility behavior, with a special focus on driving behavior for each individual 

(Tselentis, 2018). Consequently, this rapid technological process together with the storing and 

processing capabilities of today’s smartphones, have paved the way for new research 

opportunities that include driving behavior monitoring, analysis and assistance. Several works 

have confirmed the efficiency and usefulness of crowd-sensed driving data collection schemes 

and their potential on driving behavior research (Araújo et al., 2012; Kanarachos et al., 2018). 

Once driving behavior is being analyzed, and unsafe driving patterns are detected, the next 

step is the development of driving assistance systems that aim at improving drivers’ 

performance, raising awareness on road safety and air pollution and improving driving 

experience. In addition to raising the awareness of drivers by providing feedback on the way 

they drive and the impact of their driving behavior, large scale studies with smartphones have 

shown that, when a driver is monitored, their behavior is relatively safer (Johnson and Trivedi, 

2011). Nonetheless, as long as the main issue of the lack of personalization of the already 

developed driving assistance and recommendation systems still remains, it impairs the 

potential that behavioral strategies may have as a soft policy measure.  

Within this context, the work contained in this dissertation is motivated by two main driving 

forces: i) the need to develop a driving recommendation system that treats each driver as an 

individual and proposes actions that meet his/her own driving preferences and, ii) the need to 

explore the actual impact of applying a personalized recommendation system on the road 

network. Following these research directions and taking advantage of the immense 

technological advancements, in this doctoral dissertation an inclusive driving recommendation 

framework is proposed which is able to recognize individual driving behavior and propose 

personalized optimal driving alterations towards safer driving.  

1.2 Objectives 

The main objective of this dissertation is to design a personalized driving recommendation 

system which is based on deep reinforcement learning algorithms and aims at enhancing 

driving safety through the mitigation of aggressiveness and other unsafe driving habits. 

Subsequently, the impact of controlling individual driving behavior is assessed with regards to 

network performance and road safety, as well as the levels of harmful emissions by properly 

adjusting parameters of traffic models in a city-wide scenario setting using microsimulation.  

The above-described overarching goal of this dissertation can be divided in three major 

objectives as described below. 

1. Exploit smartphone sensed data to understand driving behavior  

Data gathered from smartphone sensors are exploited through data mining techniques, to 

identify some of the basic maneuvers and driving events. More specifically, machine learning 
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approaches are used to detect aggressive behaviors such as harsh braking, accelerating and 

cornering events and identify driver’s distraction by recognizing mobile usage while driving. 

In this dissertation, a large-scale naturalistic driving dataset which includes such driving events 

and other specific features are exploited in order to capture all different types of driving 

behavior (aggressive driving, distraction from the driving task, risk taking while driving, safe 

driving). Each specific type of driving behavior described by a set of variables is referred to as 

driving profile. 

The driving profiles defined within this dissertation are universal, in terms that they cover the 

entire range of driving behavior from safe to aggressiveness and distraction during driving, 

and in addition they can be easily used to identify driving behavior of any single driver.  

The first objective of this work is to develop a methodological framework for the identification 

of a specific number of driving profiles, that govern driving behavior on different levels (trip 

level, overall behavior) which can be easily transferable and interpretable. 

2. Develop a traffic theory compatible personalized recommendation framework for improving 

driving behavior 

A recommendation system is a system able to provide the most appropriate suggestions to the 

user for a specific task. Specifically, a recommendation system sequentially makes decisions 

on what to perform at the next step, based on the current available information (Tang et al., 

2019). Here, the aim is to develop a recommendation system for drivers which is able to 

suggest driving actions that improve individual driving behavior in terms of driving safety and 

aggressiveness. The actions proposed by the system are not decided arbitrarily, but result from 

the already observed driving behavior. In addition, recommendations are personalized; 

according to the United States National Education Technology Plan, the process of providing 

“instructions in which the pace of learning and the instructional approach are optimized for the 

needs of each learner” is referred to as personalized learning and has far reaching implications 

in recommender systems (United States Department of Education, 2017).  

Therefore, the second objective is to design a recommendation framework using a deep 

reinforcement learning algorithm which is trained with naturalistic driving data so that to 

produce realistic driving actions that lead to improved driving behavior. The design of the RL 

algorithm enables the identification of the best driving policy for each individual which should 

be compatible with the traffic theory models that describe human driving.   

3. Assess the impact of the recommendation system in traffic, safety and emissions 

Several researchers have implied that the improvement of driving behavior would have 

significant positive impact on the performance of the road network. Nevertheless, no evidence 

has been provided towards this direction. To this end, the third objective of this dissertation is 

to investigate and quantify the actual impact of improving each driver’s behavior, on three 
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aspects: traffic, safety and emissions. For this purpose, the developed personalized 

recommendation system will be exploited in a simulation setting and several Key Performance 

Indicators (KPIs) will be estimated.  

1.3 Innovation aspects 

The concept of driving assistance systems is not new. Τechnological advances in this field are 

widely used in modern passenger cars, offering services such as adaptive cruise control, lane 

keeping assistance, driver drowsiness detection and many more. In this dissertation we are not 

concerned with developing systems that neglect the driver and apply predefined actions for 

safe driving. On the contrary, here, an innovative user-centric recommendation system is 

proposed which aims at improving driving behavior by proposing naturalistic driving actions 

that are already observed during real driving. To the best of author’s knowledge, this is the 

first time that a comprehensive driving recommendation framework is developed, which 

employs a structured methodology from driving behavior identification, to recommendation 

provision and impact evaluation. This dissertation offers significant innovative contributions 

on five basic pillars (Figure 1-3): 

1. Data: Makes use of an innovative naturalistic driving dataset 

2. Driving profiling: Proposes and implements a data-driven driving profiles 

identification framework based on advanced machine learning 

3. Methods: Implements state-of-the-art RL algorithms to solve a real-world problem, 

which is described be complex and continuous state and action spaces. Makes use of 

the DDPG algorithm for the first time in the context of driving recommendation 

provision system. 

4. Recommendation: The system produces rational and personalized driving 

recommendations, that correspond to actual, already observed driving behavior, and, 

therefore, they can be easily adopted. Recommendation provision promotes self-

awareness, contrary to ADAS which do not provide the opportunity to drivers to 

become aware of their erroneous driving habits. 

5. Impact assessment: Evaluates the large-scale effects of implementing a personalized 

driving recommendation system on three areas of interest using specific KPIs. 
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Figure 1-3. Innovation aspects of the doctoral dissertation 
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The data used here were collected using an innovative approach that is based on a smartphone 

application and thus, the dataset itself constitutes a novelty in the field of driving analytics. 

Contrary to previous research, real human driving patterns are identified by exploiting 

naturalistic driving data gathered from the crowd, and not through data emerging from driving 

simulators or controlled on-road experiments. Furthermore, the dataset includes driving 

behavior indices, such as harsh accelerations, decelerations and cornering events, metrics of 

mobile usage while driving and a plethora of statistical measurements of speed and 

acceleration in different road environments which contribute to the identification of a variety 

of driving behaviors. 

On top of these, this doctoral dissertation contributes towards the understanding of the 

characteristics that govern the entire range of unsafe and abnormal driving behaviors, by 

exploiting real driving data collected from the crowd. Unlike the methodologies already 

applied in the literature, we do not use any predefined thresholds to separate the various 

driving behaviors, but instead, a data driven unsupervised learning approach is followed to 

define different driving profiles. In terms of the methods used, although clustering is a 

widespread methodology for unsupervised learning, its application in driving analysis is very 

limited. In addition, the two-level clustering approach followed to identify specific driving 

profiles can be easily interpreted and transferred, which adds an extra added value to the 

proposed methodology. 

Recommendation provision is a wide field of research in a great number of thematic areas, 

from news recommendations, to online shopping, travelling and music. In the field of driving 

assistance systems only a few attempts have been made to develop a recommendation system 

for drivers, which are mostly based on universal driving actions applied to all users, as they 

emerged from rule-based and predefined threshold approaches with respect to safety and 

eco-driving. An innovation aspect of this dissertation is that it proposes and develops a 

personalized recommendation system, meaning that each individual driver’s characteristics are 

identified in first place, and therefore, the suggested driving actions properly match the driving 

style of each driver. The dimension of personalization of the proposed system is very important 

for two main reasons; first, it increases the probabilities of adopting the recommendations by 

the drivers and secondly, it promotes the notion of self-awareness in the sense that the user 

becomes aware of their own unsafe driving habits and their impact, and thus, all adopted 

changes in their driving behavior are expected to have long-term positive effects. Additionally, 

a novelty of this dissertation is that it trains the system which produces the recommendation 

by exploiting naturalistic driving data. In this way it is expected to achieve higher rates of 

acceptance and adoption of proper (safer) driving behavior since the proposed actions 

correspond to actual driving habits. 

Furthermore, another innovation aspect of this thesis is the application of state-of-the-art 

Reinforcement learning algorithms for assisting real driving behavior. Despite the fact that the 

unique ability of a reinforcement learning agent in learning from receiving a reward over 
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different states of the environment without any training data makes it a perfect match for 

numerous recommendation problems (Afsar et al., 2021), only a few applications have been 

made and even less in the transportation field. The development of a recommendation system 

for real driving by exploiting RL algorithms constitutes a novel methodological approach since 

driving is a complex, continuous task which can be described by a variety of parameters and 

the recommended driving actions belong to a large continuous space as well. In addition, the 

implementation of the DDPG algorithm is also considered as a novelty of this work, due to the 

fact that very limited applications of the specific algorithm exist in the literature and none of 

them in the field of conventional cars’ driving assistance systems (Haydari and Yılmaz, 2020). 

The original DDPG algorithm (Lillicrap et al., 2016) was adjusted accordingly, to learn the 

optimal driving policies for drivers with contrasting driving habits including the way they 

choose to accelerate and decelerate, the distance they keep from the leading vehicle and 

whether they drive above the speed limit (speeding).   

One final niche innovation of the present research is the quantification of the impact that the 

application of a personalized driving recommendation system would have. To the best of the 

author’s knowledge, this is the first time that the actual impact of such a system is quantified 

through a number of KPIs which can accurately describe the differences emerged after the 

recommendations in three basic pillars of urban networks: traffic, safety and the environment. 

On the top of this, the impact assessment methodology is implemented in a large-scale 

microsimulation scenario which corresponds to the Athens’ Road network.  

1.4 Structure of the dissertation 

The remainder of the dissertation is organized in 6 chapters which are briefly described in the 

following. 

Chapter 2 conducts an in-depth review of the literature in driving behavior analysis leaning on 

three basic pillars: the concept, data and the methods that were used in each study. 

Furthermore, it critically discusses the challenges that arise during data collection and 

storage, data preparation and data mining, modelling of driving behavior and decision-making 

and recommendation systems for drivers. Finally, it results in the identification of the existing 

knowledge gap in literature with respect to methodological and conceptual limitations of 

existing studies in driving behavior identification and driving assistance systems, and setting 

the key research questions for the present doctoral research. 

Chapter 3 presents the methodology implemented to achieve the objectives of this 

dissertation and is divided into three main sections: (i) the thorough description of the 

methodological steps followed, (ii) the presentation of the theoretical aspects of all the 

machine learning methods used, as well as the basics of traffic flow theory and macroscopic 

fundamental diagrams, and (iii) the presentation of the naturalistic driving dataset exploited 

in this research. 
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Chapter 4 discusses in detail the implementation of the methods. Specifically, the 

methodology for recognizing driving behavior is applied, and the different driving profiles that 

can describe each driving behavior at trip-level are derived. As a next step, the average driving 

behavior of each driver is estimated and drivers are grouped into groups with similar 

characteristics. In the second section of this chapter, the conceptual design of the 

recommendation system is described and details regarding how the problem is structured 

based on the idea of Reinforcement Learning are provided. Finally, in the last section of this 

chapter the simulation scenario setting is thoroughly presented together with the key 

performance indicators that will be used to assess the impact of the proposed system.  

Chapter 5 presents the results obtained by all the methods applied. First, driving 

recommendations emerged from the developed RL controllers are shown and critically 

discussed to provide insights regarding the differences between the outputs of these 

controllers. Then, findings obtained from the microsimulation are presented, with a special 

focus on the estimated impact of applying the driving recommendations in terms of traffic 

conditions, safety and harmful air pollutants.  

Chapter 6 provides the conclusion of this thesis, an overview on the most critical findings and 

summarizes the major contributions of this dissertation. In this chapter, the limitations of this 

research are also discussed together with the impact of this work Finally, this chapter suggests 

proposals for advancing the present work further, along with other interesting lines for future 

research.  
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2 LITERATURE REVIEW  

In this section, a review of state-of-the-art approaches that are proposed in the literature is 

provided, with respect to the three basic pillars of understanding driving behavior:  

1. The data that are exploited, and data collection limitations, with a special focus on 

smartphone crowd-sensing. 

2. The methods that are used, spanning from traditional statistical analysis to machine 

learning and more recently, reinforcement learning approaches. 

3. The application of the results of driving behavior analysis to a variety of driving 

assistance systems. 

The majority of works pertinent to the topic of this doctoral dissertation are reviewed, and 

their outcomes are critically discussed in order to outline current practices of driving behavior 

analysis and describe gap of knowledge that prescribe future research directions. 

2.1 The importance of understanding driving behavior 

Many definitions have been given for the notion of “driving behavior” or “driving style” which 

can be found in (Sagberg et al., 2015). Here we embrace the definition given in (Lajunen and 

Özkan, 2011): “Driving style concerns individual driving habits- that is, the way a driver chooses 

to drive”. Several driving profiles have been identified in the literature with regards to traffic 

and road safety since drivers differ in the way they choose to accelerate and decelerate, the 

distance they keep from the leading vehicle and whether they drive above the speed limit 

(speeding) (Miyajima et al., 2007; Mantouka et al., 2019). Among the most widespread driving 

profiles are: 

• Aggressive driving: tailgating, harsh accelerating, braking and cornering, improper 

lane changing and many more (Tasca, 2000; J. H. Hong et al., 2014; Smith et al., 

2016; Kockelman and Ma, 2018).  

• Distracted driving: texting, eating, drinking or talking on the phone, where driver 

loses the focus on the driving task (Chen et al., 2015). 

• Risk taking: driving with excessive speed, violating traffic rules or driving too close 

from the leading car (Simons-Morton et al., 2011). 

• Eco-driving: driving in a fuel-efficient way, thus, minimizing pollutants (Andrieu and 

Pierre, 2012; Mensing et al., 2014; Fafoutellis et al., 2021)  

• Safe driving: normal low risk driving behavior (Fazeen et al., 2012). 

The identification of these driving profiles relies on the detection of abnormal driving patterns, 

namely driving maneuvers that stray from the typical behavior and constitute a leading cause 

of serious traffic accidents. Based on the results of previous research, there are six types of 

abnormal driving behaviors as shown in Figure 2-1 (Yu et al., 2017): 
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• Weaving: driving alternately toward one side of the lane and then the other, i.e., 

serpentine driving or driving in S- shape  

• Swerving: making an abrupt redirection when driving along a generally straight 

course.  

• Sideslipping: driving in a generally straight line, but deviating from the normal 

driving direction.  

• Fast U-turn: a fast turning in U-shape, i.e., turning round (180 degrees) quickly and 

then driving along the opposite direction. 

• Sudden braking: when the driver slams on the brake and the vehicle’s speed falls 

down sharply in a very short period of time. 

• Turning with a wide radius: turning cross an intersection at such a high speed that 

the car would drive along a curve with a big radius, and the vehicle sometimes 

appears to drift outside of the lane. 

 

Figure 2-1. Six types of abnormal driving patterns (Yu et al., 2017) 

Another serious driving maneuver, which in most cases is neglected from relative research due 

to the inability of researchers to explicitly define it, is harsh acceleration. Harsh acceleration, 

as well as other harsh events such as braking and cornering, are significant indicators for 

driving risk assessment, and risk level correlation and classification (Bonsall et al., 2005; Gunduz 

et al., 2018). Fazeen et al. (2012) mentioned that the way a vehicle is maneuvered on the road 

can influence how other drivers react as they usually tend to follow previous movements to 

potentially avoid an unforeseen road hazard.  

Due to the stochastic nature of driving, understanding and modeling driving behavior 

constitute a challenging topic for today’s research. It is widely accepted that driving behavior 

vary between drivers according to a variety of characteristics that include sociodemographic 

(e.g., age, gender, ethnicity), driving experiences, emotions, and so on (Oltedal and Rundmo, 

2006; Lin et al., 2014). But besides that, even for the same driver, driving behavior may alter 

from trip to trip, or from situation to situation (Angkititrakul et al., 2009; Lin et al., 2014). 

Therefore, due to the complexity of driving behavior, the existence of the appropriate data 

that can capture all driving behavior dynamics under different conditions is vital. Towards this 

direction, the use of crowd-sourcing gained a lot of attention as the main source of data since 
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driving information emerge directly from the crowd and can reveal the real dynamics of the 

phenomenon of driving.  

The understanding of driving behavior is very important especially when it comes to the 

identification of the conditions under which a driver exhibits an unsafe driving behavior. 

Human factors, such as driving over the speed limit, distracted driving, driving under the 

influence of alcohol (Petridou and Moustaki, 2000; Sagberg et al., 2015), are considered to be 

one of the main causes of road traffic accidents and therefore it is worthy to quantify the 

influence of driving behavior on crash risk (Tselentis, 2018). Despite mitigating safety, the 

detection and elimination of abnormal driving may also have implications on fuel savings, and 

consequently, result in lower accidents, less emissions and reduced operational costs for the 

driver (Van Mierlo et al., 2004; Ferreira Júnior et al., 2017). Once driving behavior can be 

detected and especially, the identification of unsafe and abnormal driving characteristics, 

drivers can receive feedback on the way they drive and even become aware of the impact on 

their driving habits. Therefore, advances in driving behavior analysis led to the flourishing of a 

large number of applications that aim at improving driving behavior and help drivers adopt 

more efficient and safer driving habits.  

Finally, unsafe driving behavior detection systems are exploited in Insurance telematics market 

to sell usage-based insurance schemes (Tselentis et al., 2017; Wahlström et al., 2017; Geyer et 

al., 2019). The evolution of conventional to usage-based insurance (UBI) can have far reaching 

implications on driving performance and road safety. Usage-based insurance pricing schemes 

refer to the formulation of pricing policies in accordance with the way the drivers drive, 

contrary to traditional insurance schemes where users are charged a lump sum according to 

the current pricing policy. This has been considered for long unfair and inefficient and 

therefore Usage-based insurance flourished alongside driving behavior analytics and driving 

monitoring advances. There are two types of UBI schemes (Liu et al., 2017; Tselentis et al., 

2017): 

• Pay-As-You-Drive Systems (PAYD): charging premiums are based on total exposure 

characteristics such as mileage and road network used. 

• Pay-How-You-Drive (PHYD): charging premiums are based on individual driving 

behavior measuring parameters such as speed, aggressiveness, inattention etc.  

The understanding of driving behavior requires the availability of naturalistic driving data. In 

addition, the application of UBI schemes requires the continuous monitoring of users as well 

as the collection of data describing how they drive. The main data source of naturalistic driving 

data is mobile crowdsensing, namely the collection of raw data from the sensors embedded 

in smartphones straight from the crowd. The next section provides a thorough review on the 

process of collecting driving data through crowdsensing. 
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2.2 Driving data collection through crowd-sourcing 

 The concept of crowd-sourcing 

Collecting mobility data is essential to researchers and transportation planners in order to 

detect urban mobility and develop effective strategies to move towards more sustainable 

transportation modes like walking, biking and public transit (Jariyasunant et al., 2012). 

Furthermore, the collection of naturalistic driving data is also very important to disentangle 

the complicated process of decision-making while driving, which incorporates a variety of 

parameters such as vehicle dynamics, personal preferences, road traffic and geometry, etc. 

Until today, driving data were collected using GPS devices and on-board diagnostics systems 

which offer the opportunity to gather naturalistic driving data instead of using outdated travel 

data collection methods like travel diaries, questionnaires etc. (Bricka et al., 2009). A thorough 

review of recording methods and tools for driving behavior is given in (Ziakopoulos et al., 

2020). The rapid advances in mobile and communication technologies, more of the 

disadvantages of the previous data collection methods were eliminated. Nowadays, 

smartphones are carried by commuters all day long and in conjunction with the variety of 

sensors they are equipped with, they constitute a significant source of driving and mobility 

data. Smartphone sensors can be categorized into three groups according to their application 

in travel data collection as follows (Abdulazim et al., 2013; Castignani et al., 2015):  

• Motion sensors: 

o Accelerometer, measures the device linear acceleration 

o Gyroscope, measures the angular rate of change (i.e., rotation velocity) 

o Magnetometer (i.e., compass), measures magnetic field strength 

• Location sensors: 

o Global Positioning System (GPS) which is commonly used in outdoor settings  

o Network-based location services which use cellular network and Wi-Fi to 

determine the location (i.e., via triangulation) 

• Ambient sensors: 

o Light sensor 

o Microphone 

o Proximity sensor, which detects nearby objects and can indicate when the 

phone is near the user’s ear (e.g., during a call) 

Due to these components, smartphones have been adopted as useful tools to sense and 

compute data. Thus, the high penetration rate of smartphones has given another impetus to 

data collection, which is now done with high speed, frequency and accuracy. In this way, large-

scale naturalistic driving data can be collected. Over the last decade, researchers take 

advantage of the great amount of data emerging from smartphone sensors, to investigate 

driving behavior, detect unsafe driving habits and predict road network conditions. The 

collection of data straight from the crowd is usually referred to as “crowd-sourcing”. 
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The word “crowd-sourcing” was coined by Jeff Howe in 2006, and was defined as “…the act of 

taking a job traditionally performed by a designated agent and outsourcing it to an undefined, 

generally large group of people in the form of an open call” (Howe, 2006). The power of crowd-

sourcing is that it can bring massive intelligence to solve problems at an affordable price. Some 

tasks that are difficult for computers or individuals can be solved efficiently by crowd-sourcing 

to a massive group of people, including image tagging, audio translation, and so on (Yang et 

al., 2015). A survey of existing transportation systems which use crowd-sourcing reveals that 

the predominant purposes of using crowd-sourcing in these projects are either data or 

feedback collection from the users (Misra et al., 2014). Due to the wide penetration of 

smartphones at everyday life, mobile crowd-sourcing has gained the attention of many 

researchers. Figure 2-2 presents an overview of a crowd-sourcing system, where initially the 

required sensing task is introduced to the user, who provides the relevant data while his driving 

behavior is being monitored. Subsequently, data pre-processing techniques are applied and 

the user’s driving behavior is analyzed based on specific mobility patterns. Then, results are 

sent back to the user containing feedback and incentives for an improved driving behavior. 

 

Figure 2-2. The main components of a crowd-sourcing system 

The crowd of mobile users who accept and participate in crowd-sourced sensing tasks, is called 

the “sensing crowd” (Yang et al., 2015). Since most modern smartphones are equipped with 

various sensors, many applications and platforms are developed to collect sensor data, a 

method known as “mobile crowd-sensing” (Chang et al., 2016). A key characteristic of mobile 

crowd-sourcing is whether the crowd’s contribution is participatory or opportunistic. In the 

case of participatory crowd-sourcing, computations are performed and data are generated by 
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users, while in opportunistic crowd-sourcing data are generated from sensors and 

computations are performed automatically by the crowd’s devices (Chatzimilioudis et al., 

2012).  

Despite the wide range of advantages of mobile crowd-sourcing, on collecting driving and 

mobility data, there are some significant issues and concerns which should be adequately 

addressed in order for mobile crowd-sourcing systems to reach their full potentials. In the 

following sections, some of the key challenges are discussed when gathering such data from 

a smartphone.  

 Quality Issues 

There are two main factors affecting the quality of crowd-sourced data. The first factor refers 

to the reliability of the user. Participants may misunderstand the required task, make mistakes 

or even deliberately cheat the system, which can cause errors or bad results (Xintong et al., 

2014). This issue refers to the trustworthiness of the data. The second factor refers to the 

technical characteristics of the mobile device that is used and may also affect the quality of 

the data.  

2.2.2.1 Trustworthiness 

The success of this method on collecting data relies on high level of participation from 

voluntary users. Unfortunately, the openness which allows anyone to contribute data, also 

exposes the process to erroneous and malicious inputs (Kanhere, 2013). The initial concern 

about quality of crowd-sourced data is the capability of the users to understand the requested 

task and supply the crowd-sourced system with all the essential and relevant information. 

Participants may not have the ability to perform the requested task efficiently and consistently, 

either because they cannot understand the concept of it or do not have the qualifications to 

perform the task (Wang et al., 2017). Consequently, the captured data may be noisy by nature, 

and might require additional validation or scrutiny (Hsueh et al., 2009). Moreover, users may 

deliberately be malicious and provide erroneous data to the crowd-sourced system (Kanhere, 

2013). This kind of issue refers to the reliability of the sensed data. Finally, the challenge of 

data integrity is considered. The integrity of the data refers to the verification that the collected 

data is indeed from the users device and was collected at the claimed location (Mashhadi and 

Capra, 2011). In order to achieve integrity, sensing information must be representative of the 

user’s behavior and habits.  

2.2.2.2 Technical Characteristics  

Despite users’ intentions and abilities, the technical characteristics of the smartphones could 

also affect the quality of the data. The set of mobile devices, their sensing, computation, 

storage and communication capabilities may vary significantly (Louta et al., 2016). 

Smartphones run on several different operating systems, most notably Android and iOS, which 

are frequently being upgraded, improving their features and capabilities, which should be 

considered during the sensing process, as they are directly related to the quality of the data. 
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Some devices have limited battery energy, low computational capacity and limited 

transmission bandwidth (Cao and Lin, 2017). Moreover, same type of data may be gathered 

from different sensors, e.g., location data can be gathered from GPS or Wi-Fi, and therefore 

have differing qualities. Another aspect that should be considered is that different types of 

data can be used for the same purpose, but with different quality and resource consumption 

trade-offs (Ganti et al., 2011). Finally, even when same type of data is collected from the same 

sensor, different quality issues appear through the data due to the rapid change of the 

technical characteristics of the smartphones, concerning sensing accuracy, storage and 

computing resources and so on (Louta et al., 2016). 

An additional concern when dealing with crowd-sourced data is noisy data, which can be 

gathered concerning the way the user is using his/her smartphone. For example, ambient noise 

could be gathered if the smartphone is placed inside a pocket or in a bag (Xintong et al., 2014). 

Furthermore, the same sensor may sense the same type of data under different conditions, if 

for instance the device is placed freely in a vehicle or is hand-held.  

 Battery Consumption 

Even though most users charge their smartphones on a daily basis, significant increased 

battery consumption is an important issue when introducing crowd-sourcing applications. 

Energy is consumed in all aspects of crowd-sourcing platforms from sensing, processing and 

data transmission (Kanhere, 2013). The fact that battery life of smartphones is relatively short, 

limits the use of the devices for continuous sensing purposes (Birenboim and Shoval, 2015). 

Thus, it is hard to obtain accurate data in situations when continuous real-time data is needed. 

More specifically, different sensors deplete the smartphone battery in a different way while at 

the same time they are sensing the same type of data with differing accuracy. According to 

power measurements (Lin et al., 2010) one can rank the sensors from the best to worse as 

follows: 

• Battery consumption: (1) Wi-Fi (2) 3G (3) GPS 

• Accuracy: (1) GPS (2) Wi-Fi (3) 3G 

 Privacy and Security 

Westin (1967) gives the most relevant definition of information privacy: “Information privacy 

relates to the person’s right to determine when, how and to what extent information about him 

or her is communicated to others”. Privacy in mobile crowd-sourcing is the guarantee that 

participants maintain control over the release of their sensitive information. This includes the 

protection of information that can be inferred from both the sensor readings themselves as 

well as from the interaction of the users with the participatory sensing system (Christin et al., 

2011). The sensed data may contain sensitive information of participants, such as identities, 

home or workplace location, mobile number, gender and so on. Without any suitable 

protection mechanism, smartphones are transformed into spies, capable to reveal such 

sensitive information (Kanhere, 2013).  
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There is a lot of research towards addressing the problem of privacy especially in location-

based applications and in systems which detect mobility patterns. In those cases ensuring 

privacy is a challenge, either users explicitly provide information or information is implicitly 

captured (Nandan et al., 2014).  

Security issues can be divided into two categories: hardware risks and information security 

(Cilliers and Flowerday, 2015). The first category considers hardware risks, namely system 

viruses or malwares that may affect the hardware that is used to report information to the 

crowd-sourcing system. Furthermore, mobile devices can be stolen and are in general 

vulnerable to security breaches, both while sensing and transferring data. The second category 

has to do with the information that is reported to the crowd-sourcing system. It is stated that 

the participant has no control over the ownership of the information once it is reported to the 

crowd-sourcing system (Sarwar and Khan, 2013). This means that the collected data could be 

stolen, used for a different purpose than that originally agreed on, or made available to 

unauthorized parties. Another critical security issue is the lack of transparency concerning the 

physical location of storage, the security profiles of the system, ownership of the information 

and what can be done with it (Pearson, 2013). 

2.3 Modeling Driver’s Behavior 

Understanding driver’s behavior is key for improving road safety and optimizing the network’s 

level of service. From statistical methods to advanced machine learning and computational 

intelligence, researchers have used a variety of methods to model driving behavior efficiently 

and accurately. Table 2-1 contains a detailed summary of crowd sensed data, smartphone 

sensors, methods and outputs of the most significant literature in the field of driving behavior 

analysis. Driving behavior analysis may be performed in two distinct levels; at the microscopic 

level, where the driver's behavior is analyzed both during a trip and how the same driver 

changes his behavior on successive trips, and at a macroscopic level, where the analysis aims 

to identify universal characteristics of each driving style using aggregated driving data taking 

into account a set of drivers. From statistical methods to advanced machine learning and 

computational intelligence, researchers have used a variety of methods to model driving 

behavior efficiently and accurately in all levels.  

 Statistical methods 

Some researchers attempted to detect meaningful correlations among features that describe 

driving behavior. Paefgen et al. (2012) present a number of important statistical metrics and 

correlations between events recorded by a mobile and a reference IMU unit. In Chakravarty et 

al. (2013), the risk index of the individual driver is calculated at a specific time. The risk function 

in this case takes into account the number of risky and abnormal maneuvers such as sharp 

cornering, harsh brake and acceleration and hard bumps. Bejani and Ghatee (2018) applied 

statistical analysis on several driving features as an intermediate step between data 

preparation and more sophisticated driving behavior modeling. Another study has developed 

a mixed effects model to understand whether behavior indicators such as speeding, harsh 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 75 - 

 

maneuvering, harsh acceleration and harsh braking can stand as predictors of driver’s 

distraction and more specifically if the driver uses his mobile phone when driving 

(Papadimitriou et al., 2019). Findings revealed that exceeding speed and number of harsh 

driving events are negatively associated with mobile phone usage while driving, indicating that 

inattentive driving can be detected in the absence of other risky driving behavior. 

Several researchers have applied a simplified threshold methodology in order to detect several 

abnormal driving events. In some cases, such methodology is also used to identify road 

anomalies such as bumps and potholes (Fazeen et al., 2012; Bose et al., 2018). This detection 

approach mostly relies on fixed threshold values applied on accelerometer data. Experimental 

results have shown that the accuracy of accelerometer data highly depends on environment’s 

characteristics (mobile position in the car, vehicle’s conditions, road type etc.) which 

constitutes such detection methods non-flexible (Ouyang et al., 2018). Due to this fact, there 

is a difficulty to defining universal thresholds on the sensors’ data for the identification of risky 

driving events. In order to overpass such limitations, researchers turned their attention on the 

more promising machine learning techniques which are usually easy transferable and more 

robust to changes in the environment.  

Pattern recognition approaches, such as Dynamic Time Warping (DTW) to recognize driving 

behavior also appear frequently in literature. DTW allows to group similar mobility patterns 

even though the corresponding elements in the two series are not exactly aligned with each 

other. First, for two given time series a grid is constructed and then distance between all 

elements is calculated. DTW algorithm estimates the best path through the grid which 

minimizes the total distance. Johnson and Trivedi (2011) proposed a novel system that utilizes 

DTW to detect aggressive turns, accelerations, braking and lane change events. In Engelbrecht 

et al. (2016) authors used DTW to detect driving events and then utilized a heuristic classifier 

to categorize such events as safe or reckless. Results of this method were then compared with 

a maximum likelihood approach and findings revealed that the latter performed better in 

classifying a variety of driving maneuvers. More recent studies have used DTW to classify 

lateral maneuvers exploiting fusion of gyroscope and gravity sensor to acquire angular velocity 

(Singh et al., 2017). Although DTW is widely used due to its fast and easy implementation on 

comparing timeseries data, it is not easily transferable due to its high dependency on the 

predefined threshold values.  

 Machine Learning and Computational Intelligence 

Although a large body of literature uses statistical analysis methods to investigate several 

driving behaviors, over the last decades machine learning approaches have gained ground in 

this field. Recent studies have thoroughly examined the variety of machine learning techniques 

used to identify driving behavior (Chan et al., 2019; Elassad et al., 2020). Nevertheless, the main 

outcomes of each study are also discussed here with the aim to highlight the variety of 

machine learning methods used to identify driving behavior. 
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ML techniques have been used in Bhoraskar et al. (2012) to identify bump and braking events, 

and despite the optimistic results, authors state the importance of filtering and machine 

learning techniques (k-means clustering and Support Vector Machines - SVM) for better harsh 

events identification. In Hong et al. (2014) a Naïve Bayes classifier was implemented to identify 

aggressive driving styles with an accuracy of 90%. In addition, a pattern matching algorithm 

was used in another study (Saiprasert et al., 2013) that outperformed a rule-based algorithm 

both for longitudinal and lateral events, while in Saiprasert and Pattara-Atikom (2013) the 

same technique was used to identify abnormal speeding events. Fazeen et al. (2012) exploited 

the three-axis accelerometer to analyze driving behavior and detect road anomalies (potholes, 

bumps, uneven or rough road). Their classification system resulted in high accuracy especially 

for rough or uneven road recognition. In Saiprasert et al. (2017) fuzzy logic and a rule-based 

algorithm are adopted to detect driving behavior such as harsh acceleration and braking or 

aggressive steering) by exploiting accelerometer and gyroscope data. In Koh and Kang (2015) 

researchers used Gaussian Mixture Model (GMM) with periodogram method to classify driving 

behavior on a gradient from smooth to aggressive behavior with a special focus on the elderly 

drivers. Due to the sensitivity of their dataset (which refers to elderly drivers’ behavior) they 

have highlighted the limited performance of GMM in accurately classify driving style. What is 

described as the main issue in most of these studies is that the variety of hardware (sensors 

and smartphones), weather conditions during data collection, positions of the smartphone 

(even if it is not fixed) etc. make these techniques difficult to be transferable and proposed as 

a universal solution. 

Some other researchers aimed at recognizing driver’s state by implementing classification 

algorithms. Specifically, in Yi et al. (2019) several classification algorithms were compared 

regarding their performance on identifying three distinct driving states: normal, drowsy and 

aggressive. Results indicated that Random Forest had the greater overall accuracy when 

compared to the others classifiers (K-nearest Neighbors, Decision Tree, SVM). In Vlahogianni 

and Barmpounakis (2017a) the MODLEM algorithm achieved the maximum accuracy 

compared to other classification algorithms for detecting harsh events utilizing data from 

smartphones’ accelerometers. A two-step k-means clustering algorithm was developed in 

Mantouka et al. (2019) to initially distinct aggressive from non-aggressive trips and then, trips 

were further clustered with respect to driver’s distraction and risk taking. The main modeling 

challenge is to handle imbalanced datasets as abnormal driving behavior appears less 

frequently than normal driving behavior. Additionally, it has not yet been clarified how one 

can define the ground truth; therefore, the comparison between different approaches and 

datasets cannot be universal. 

Neural Networks were used in Meseguer et al. (2017) to identify the degree of driver’s 

aggressiveness using speed and acceleration measurements. Eftekhari and Ghatee (2019) 

evaluated the performance of two classification algorithms (Decision Tree and Naïve Bayes) 

compared to that of a neural network with 3 hidden layers. Their findings revealed that the 

neural network outperforms the other methods in detecting driving maneuvers. However, 
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since the computational power that is required for the training and the validation of the 

models is significantly increased, several tasks need to be performed offline. 

As has been seen in different transportation related research attempts, ML techniques have 

significant advantages over statistical methods (Karlaftis and Vlahogianni, 2011). With the 

availability of massive smartphone datasets, it was seen that while statistical methods could 

provide a first insight on the datasets, more advanced techniques were required in order to 

design accurate and efficient solution to the different challenges. Such an example can be 

found in Predic and Stojanovic (2015) who developed advanced ML classifiers to detect harsh 

driving patterns and reported improved results when compared to classical methods of activity 

analysis from accelerometer data based on statistical metrics of standard deviation, entropy, 

energy, mean value, etc. Furthermore, as shown in the literature, researchers usually utilize 

statistical methods when single events are being detected or abnormal driving behavior is 

separated from safe driving. On the contrary, ML methods are used when the whole range of 

driving behavior is investigated and a number of different driving profiles are detected. In 

Chan et al. (2019) different approaches are compared in terms of classification accuracy. Here 

special emphasis is given on the indicators used as inputs for driving behavior identification 

and in addition, further information regarding the data collection process are provided. It 

should be noted that the comparison of the different approaches in terms of absolute 

measures of accuracy is avoided since there are still several challenges that can lead to 

completely misleading results.  
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Table 2-1. Summary of data and methods used for driving behavior identification 
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Dai et al. 2010 
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gyroscope 
●   
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Johnson & 

Trivedi 
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√ 
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gyroscope 
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Araújo et al. 2012 
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√ √    ■ 

Accelerometer 

gyroscope 

magnetometer 

● ●  
DTW, Bayes 

classification 
Risky, safe 

Fazeen et al. 2012 

Maneuver detection 

(acceleration and 

lane changes) and 

road conditions 

√ √   ■  
Accelerometer 

GPS 
 ●  

Pattern 

recognition, 

Classification 

Risky, safe 

Paefgen et 

al. 
2012 

Accelerations, 

Braking, Turns 
√ √  √  ■ 

Accelerometer 

gyroscope and 

GPS sensors 

●   

ANOVA, 

Kruskal-Wallis 

tests 

Event detection 

Predic & 

Stojanovic 
2012 Acceleration, speed  √     

Accelerometer 

GPS 
   

DFT 

algorithm 

Unsafe events 

detection 

Castignani 

et al. 
2013 

Speeding, steering, 

acceleration 
√ √   ■  

Accelerometer 

GPS 
   

Fuzzy Logic 

scoring 

Calm/Moderat

e/Aggressive 

events 

Chakravarty 

et al. 
2013 

Acceleration, 

cornering 
√ √     

Accelerometer 

GPS 
●    Risk score 

Saiprasert et 

al. 
2013 Acceleration, speed √ √   ■  

Accelerometer 

GPS 
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Hong et al. 2014 
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deceleration, engine 
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√ √   ■  
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 ●  
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et al. 
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√ √   ■  
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 ●  
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Koh & Kang 2015 Acceleration √ √   ■  Gyroscope  ●  
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Engelbrecht 

et al. 
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● ●  
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sive maneuvers 
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Accelerometer 

gyroscope GPS 
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speed control 
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Accelerometer 

GPS 
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Kanarachos 

et al. 
2018 
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√ √ √ √   Accelerometer  ●  
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Eftekhari & 

Ghatee 
2019 
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changing, turning 
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√ √   ■  
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● ●  
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gyroscope, GPS 
● ●  
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● ●  
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Drowsy 
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2.4 Systems for assessing and assisting drivers 

The extended knowledge in the area of driving analytics has allowed researchers and other 

practitioners to develop advanced applications for the assessment of driving behavior as well 

as driving assistance systems that aim at improving drivers’ performance, raising awareness 

on road safety and air pollution and improving driving experience. A recent study that has 

gathered the most relevant driving assistance systems can be found in (Meiring and Myburgh, 

2015). Here, we focus on the exploitation of mobile crowd sensed data for the development 

of such systems and the usage of smartphones as the only communication platform between 

the system and the driver. 

 Drivers’ assistance and recommendation systems 

Advances in driving behavior analysis resulted in the development of Advanced Driving 

Assistance Systems (ADAS). ADAS are gaining widespread interest since they constitute an 

innovative and user-friendly technology which is able to meet safety and ecology standards 

by providing real-time driving tips (Kaur and Sobti, 2017). Some of the most widespread ADAS 

are adaptive cruise control, navigation assistance and rerouting systems, lane keeping 

assistance and driver drowsiness detection. Such systems have been developed mainly to 

enhance road safety and secondary, to improve travel comfort and driving experience. 

Advancements in driving analytics coupled with improved wireless capabilities of today’s 

devices have allowed the development of real-time ADAS. Specific research has focused on 

real-time driver distraction detection which is mostly identified on the basis of driving 

performance measurements, such as lane position and steering control (Liu et al., 2016) as well 

as speed control measurements (Tornros and Bolling, 2005).  

While most of ADAS focusing on ensuring road safety and reduce car accidents, in case where 

driving experience improvement or promotion of eco driving is out of question, researchers 

have developed driver recommendation systems. Contrary to the widespread adoption of 

ADAS, research on driving recommendation systems is still at a primary stage. In Magana and 

Organero (2011), researchers have developed an eco-driving recommendation system which 

first detects driving style from the point of efficient driving through OBD and smartphone 

sensors, then, uses Random Forest to classify driving behavior and provide useful eco-driving 

tips. Araújo et al. (2012) have developed an eco-driving coach to promote fuel consumption 

efficient driving. First, they identify driving behavior and vehicle’s conditions and then, they 

recommend one of the most popular eco-driving tips such as “switch off engine”, “shift gear 

earlier”, “your acceleration is too high”, “you are too aggressive on throttle”. 

They have also developed some fuzzy rules to determine driver’s intention to follow each of 

the provided tips. Another study has developed a context-aware driving assistant system 

aiming at promoting fuel-efficient driving (Gilman et al., 2014). Researchers identify aggressive 

driving behaviors and then layout them on a map together with traffic and weather conditions 

to investigate specific driving patterns. In this way they are able to make recommendations on 
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how it would be more efficient to have driven to the specific route and then give advice about 

how to improve their driving performance in the future. 

Such systems have been shown to improve driving behavior and lead in adopting smoother 

and safer driving habits. As discussed in Staubach et al. (2014) drivers receiving eco-driving 

recommendations have adopted driving behavior characterized by less harsh maneuvers and 

maintain constant speeds. Another study has highlighted the importance of introducing 

gamification aspects in the recommendation systems in order to gain the engagement of the 

driver with the system and improve even more their behavior (Magaña and Organero, 2014). 

The concept of gamification refers to the idea of including entertainment and game-oriented 

design approaches in originally non-game contexts, such as mobile crowd-sensing 

applications (Wells et al., 2014). An effective gamification framework is based on a series of 

metrics to quantify the success on a predetermined goal (improve driving behavior, adopt eco-

driving habits, reduce fuel consumption, etc.), which is achieved through a set of tasks.  

 Drivers’ scoring systems 

Over the last decades, in addition to monitoring and providing recommendations for the 

improvement of driving behavior, there is a trend towards developing scoring and behavior 

assessment systems. Researchers and app developers seek to create environments for healthy 

competition and comparison between people in order to increase their awareness regarding 

major issues with a view that the latter are going to improve their behavior. In this context, 

scoring and behavioral assessment methodologies as well as the creation of ranking and 

benchmarking techniques have been strengthened. As mentioned before, scoring points and 

gaining budges by completing specific tasks are the most common gamified aspects, in 

conjunction with leaderboards, achievements, gifts etc. In a gamification framework, users may 

also communicate with others, compare their performance and compete (Vlahogianni and 

Barmpounakis, 2017b). 

Smith et al. (2016) have developed a systematic framework for scoring driving behavior, which 

consists of three dimensions: risk score, operational score and economy score basically for 

fleet management applications. DriveSafe is an app that detects when the driver is distracted 

from the driving task and assigns a score based on driving behavior (Bergasa et al., 2014). 

Acceleration, braking and turning events as well as lane drifting and weaving are first 

recognized and then a score is assigned to each driver taking into account the number of the 

events performed and their intensity. Castignani et al. (2015) have used data fusion to detect 

risky and aggressive driving events based on a fuzzy inference system. Subsequently, the 

number of identified driving events per trip is coupled with weather conditions and time of 

day of the trip in order to provide a trip score which ranges from 0 to 100. In Araújo et al. 

(2012), they have developed a driver evaluation system for raising awareness of drivers towards 

fuel consumption and eco-driving. For this purpose, smartphone sensors are used to collect 

speed, fuel consumption and acceleration measurements which are then used to classify 
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driving conditions based on predefined thresholds. Then, a fuzzy logic approach was used to 

evaluate driving hints performance and choose the most appropriate to show to the drivers. 

Although scoring systems are considered as an efficient way to raise the awareness of the 

drivers, some researchers highlighted the importance of gaining real savings as an incentive 

to improve individual driving behavior. To this end, insurance charging systems are gaining a 

lot more attention over the last decade (Husnjak et al., 2015). 

One of the first sectors that used the advanced technologies of modern smartphones to 

monitor and evaluate driving behavior of their costumers was insurance companies. The latter 

have established several insurance policies in order to charge drivers based on vehicle use and 

driving behavior characteristics, which include Pay-As-You-Drive (PAYD) and Pay-How-You-

Drive (PHYD) systems (Wahlström et al., 2017). In Tselentis et al. (2017a) the most popular 

Usage-based insurance (UBI) schemes have been reported. As they highlighted, there is 

evidence that UBI implementation would provide motivation to drivers to improve their driving 

behavior and alternate their behavior by adopting safe and more efficient driving habits. 

Handel et al. (2014) have also extensively discussed opportunities emerging from structuring 

insurance schemes based on driving features gathered through smartphone sensors. The latter 

have highlighted the importance of consciously design Usage based Insurance since there is 

always the risk that the provided feedback or recommendation is perceived the wrong way. In 

Chiu et al. (2014) a methodological framework for the detection of driving exposure factors is 

presented in order for insurance companies to re-structure their pricing strategies based on 

the estimated crash risk.  

2.5 Main challenges  

Driving behavior analysis is a multidimensional problem which requires a step-based 

approach, from the collection of the essential data to the development of the appropriate 

models, to efficiently describe the dynamics that govern human behavior while driving. In this 

section, the most critical challenges involved in the process of understanding driving behavior 

through smartphone crowd-sensed data are underlined, while a special emphasis is also given 

on the caveats that should be considered, which most times are being disregarded. These 

relate to data availability and quality, representativeness, context-based knowledge extraction, 

pattern recognition and modeling, recommendations for behavioral change, as well as impact 

assessment and real time operation. 

Challenge 1: Enhancing data representativeness, availability and quality 

In mobile crowd-sensing systems, the user himself is one of the fundamental components and 

therefore, user’s engagement with the system is critical. Most studies aim at identifying 

universal driving behaviors and determine general rules controlling unsafe driving behavior. 

Since the identification of driving behavior relies on data-driven approaches, the variability of 

the data is of great importance. The proportion of the target – population which is actually 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 83 - 

 

engaged in the data collection process pointedly affects data representativeness and, 

inevitably, affects data quality. In addition, the long-term involvement of the users is also 

crucial when driving behavior is analyzed due to the complexity of human behavior in relation 

to time and how slowly or not it changes over time and various stimuli. In the literature, several 

techniques have been determined as successful interventions for ensuring long-term user 

engagement with the crowd-sensing system. Some researchers have highlighted the 

importance of providing incentives to users in order to get engaged with crowd-sensing 

systems in the long run Yang et al. (2016). In Musicant and Lotan (2016) researchers have 

highlighted the effectiveness of group incentives in motivating drivers especially the younger 

ones. Although several types of incentives have been recently deployed, the degree to which 

they can raise the awareness and drive behavioral changes is still heavily under researched.  

Further, behavioral variability in an available dataset is usually disregarded with significant 

implications in model generalization power. Researchers who tend to find large datasets as a 

testbed for exercising and evolving their machine learning skills, will realize that their models 

will soon become obsolete (rapidly decreasing accuracy metrics), as the dataset grows, mainly 

due to the fact that the initial sample is not representative of the users’ characteristics. But, 

even if we try to control the statistical characteristics of our sample, the reality tends again to 

surprise us: first, most of the times researchers cannot have access to sample characteristics 

(e.g., users, age, gender), due to privacy limitations. Second, it takes much time to collect and 

process a large dataset especially if one is to ensure specific users’ and behavioral 

representativeness. The above can be efficiently tackled by introducing processes of constant 

training and processes to address models’ resilience to changes. 

Data availability and quality are essential ingredients for every data driven approach met in 

transportation literature. Availability is not guaranteed for several reasons. First, data may be 

private or restricted to access. Ensuring users’ privacy and data protection is of vital 

significance. Techniques to secure the system from the infringement of unauthorized parties 

is a main requirement. Lately in the EU under the strict rules of General Data Protection 

Regulation (GDPR), sensing data from the crowd became even more challenging especially in 

terms of data privacy and security. So far, researchers seemed to disregard the importance and 

implications of developing strategies for ensuring data privacy which is expected to change in 

the near future. Further, data may not be available at the desired resolution. It is a fact that 

certain driving phenomena (e.g., distraction due to smartphone interaction, lane changing etc.) 

may require very detailed recordings (e.g., 100Hz), whereas others can be easily observed in 

coarser levels. Identifying the proper smartphone sensing data resolution, in relation to the 

application developed, is heavily overlooked in literature and significantly affects the detection 

capabilities and the understanding of the driving task and context. But, even if someone 

chooses to get the most of the sensors’ capabilities installed in smartphones (usually 100Hz 

resolution), this will probably lead to an unrealistic and non-sustainable data collection scheme 

due to battery drain. While increased sampling rate is desirable for improving the predictive 

power of the models, this can have negative effect on the user experience, since the rapid 
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consumption of device’s resources may discourage the users in contributing to the system as 

was identified in a previous challenge. 

Data quality may have far reaching implications to the understanding and modeling of 

smartphone data due to uncertainties introduced by the fact that smartphone devices: i. are 

of various technologies, ii. can be placed anywhere on the user or in the vehicle and iii. have 

sensors that may record in different frequencies and asynchronously. Data reorientation and 

synchronization strategies that are usually applied to correct data and place them in a form 

ready for modeling require significant effort, but also do not ensure against faults and noise. 

Quality assurance schemes in the smartphone crowd-sensing framework are necessary 

especially for driving analytics, due to the fact that phenomenon detection relies on the 

extreme values and usually include noise filtering, data reorientation and geotagging. 

Challenge 2: Identify the context from the data  

User behavior is significantly influenced by the mode of transport, the type of road network, 

traffic control, weather conditions etc. To detect critical patterns, as well as understand and 

model the behavioral characteristics, the context of the data should be extracted from the data 

themselves, by jointly considering other external information. Dealing with the problem of 

context extraction from data has a significant added value to model resilience, since the quality 

of the features which can be extracted from the raw data primarily reflects the overall accuracy 

of the system (Ignatov, 2018). But, how should we understand the context through user 

agnostic experiments and blind crowd-sensing systems? In user agnostic environments, the 

main tools for deriving context from multisensory data identified in literature are: i. Data fusion, 

ii. Feature engineering and iii. User/behavior profiling.  

Based on the well-known definition given by Hall and Llinas (1997) “data fusion techniques 

combine data from multiple sensors and related information from associated databases to 

achieve improved accuracy and more specific inferences than could be achieved by the use of a 

single sensor alone.” There are three nonexclusive categories of data fusion techniques: (i) data 

association, (ii) state estimation, and (iii) decision fusion (Castanedo, 2013). The data 

association is mainly referring to the process of correlating several multi-sensor measurements 

about the object of interest with each other or in other words, it is about letting the data fusion 

process know which particular measurements are supposed to be fused to provide the 

essential information (Schmitt and Zhu, 2016). In state estimation the goal is straightforward 

the aligned and correlated measurements from multiple sensor sources must be fused in a 

well-defined estimation framework to infer the desired information about the target in an 

optimal way (Yan et al., 2016). Finally, in decision fusion, the fusion task is not applied to the 

combination of data acquired by different sensors; instead, only a single input data set is used, 

and the fusion step is applied to several preliminary classification results obtained from this 

input (Fauvel et al., 2006; Schmitt and Zhu, 2016). Data fusion is important when it comes to 

ensure that all available information can be jointly considered; for example, weather data with 
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smartphone sensing and social media information can be fused to extract mobility patterns 

shifts due to weather changes or under differing travel purposes.  

Feature engineering is very important when dealing with machine learning since all ML 

algorithms use some input data to create outputs. This input data in most cases refers to 

features which are numeric representations of characteristics, properties and attributes of the 

raw data (Zheng and Casari, 2018). Feature engineering can enable the identification of those 

features that are critical to context awareness. Different datasets require different feature 

extraction approaches based on the nature of the dataset. Nevertheless, the most well-known 

techniques of feature engineering are the following: 

1. Imputation: it is used to handle missing values in a way that it preserves the data size, 

contrary to the easy task of dropping the entire rows or columns of the dataset that 

have missing values. Imputation can be either numerical or categorical based on the 

type of data. In the case of numerical imputation missing values are replaced either by 

0 or a statistical measurement (e.g., median), while in the categorical imputation the 

most frequent value may be used.  

2. Handling Outliers: Outlier detection is a very challenging task that should be performed 

before feature engineering using the most data-appropriate technique from great 

variety of techniques that are available (Wang et al., 2019). Once outliers are detected, 

researchers have to use their intuition, perform experiments and provide some 

thoughtful discussion before deciding whether to exclude outliers from the dataset or 

not. It is understood that in the outlier detection process, it is significant to consider 

the context and the purpose of detecting the outliers. 

3. Binning: The main motivation of binning is to enhance model’s robustness and prevent 

overfitting. Nevertheless, binning data results in the regularization of them, and thus 

valuable information may be lost and model efficiency impaired (Shi et al., 2020). 

4. Logarithm transformation: The so-called log transform helps to handle skewed data 

and after transformation, the distribution becomes more approximate to normal.  

5. One-Hot Encoding: The method of spreading the values in a column to multiple flag 

columns and assigns 0 or 1 to them. In other words, it transforms categorical data to a 

numerical format and enables the grouping of categorical data without losing any 

information (Seger, 2018). 

6. Grouping Operations: This method is applied to datasets that do not match the “tidy” 

format. Based on the definition given by (Wickham, 2014):“Tidy datasets are easy to 

manipulate, model and visualize, and have a specific structure: each variable is a column, 

each observation is a row, and each type of observational unit is a table.”. The key point 

of group by operations is to decide the aggregation functions of the features. For 

numerical features, average and sum functions are usually convenient options, whereas 

for categorical features the process is more complicated. 

7. Scaling: With only few exceptions, ML algorithms don’t perform well when the input 

numerical attributes have very different scales. When applying scaling techniques, the 
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continuous features become identical in terms of the range. There are two main types 

of scaling (Géron, 2017): 

• Normalization (or min-max normalization) scale all values in a fixed range 

between 0 and 1. 

• Standardization (or z-score normalization) scales the values while taking into 

account standard deviation. Although standardization does not bound values 

to a specific range, which may be a problem for some algorithms, is much less 

affected by outliers when compared to normalization. 

Some examples of feature extraction can be found in Mantouka et al. (2019) where 

accelerometer signals were processed to extract features such as harsh accelerations per km 

and harsh brakes per km which are then used for driving aggressiveness detection. Another 

feature which is usually detected at first place is travel mode (Nikolic and Bierlaire, 2017; 

Efthymiou et al., 2019). Mode detection techniques should be applied first and then data 

should be cleaned based on the detected mode, as the noise is not consistent between 

different modes due to different dynamics. For example, a smartphone on a motorcycle is 

affected significantly by the riders’ maneuvers, while in public transport there are usually 

micromovements due to the device’s position or its usage, as highlighted in the second 

challenge. 

User profiling or behavior profiling refers to the process of detecting patterns in the data that 

can be clustered into groups which share common characteristics. In addition, user profiling 

enables the identification of users’ preferences, choices and requirements based on the 

domain of interest, and therefore, user profiling helps personalization (Kanoje et al., 2014). 

When studying driving behavior, user profiling refers to the categorization of drivers into 

groups based on the way they behave during driving. In accordance to (Ferreira Júnior et al., 

2017), driver behavior profiling is the process of automatically collecting driving data and 

applying a computational model to generate a safety score for each driver. 

Challenge 3: Detect abnormal patterns and risky drivers  

A common research line followed by most studies refers to the threshold-based approaches 

for detection of deviations from normal driving. The oxymoron lies in the fact that many 

studies conclude that no universal thresholds can be applied, since the technical variability of 

smartphones’ sensors affects the extracted signals and of course the threshold of what is 

considered as abnormal. Indeed, threshold-based approaches are the first step to follow for 

detecting abnormal driving patterns especially in systems where no prior knowledge exists 

(e.g., annotated samples that can be used for supervised learning). However, a device-agnostic 

context agnostic approach to setting the thresholds is required to ensure that the latter are 

not affected by device micromovements, sensors’ characteristics and device orientation and 

positioning. Even the consideration of a non-threshold methodology would be beneficial for 

the establishment of a universal driving behavior profiling framework. 
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Another commonly disregarded aspect in extreme behavior detection is how to generalize 

from trip-based characteristics to user specific profiles, meaning how much time a driver 

should be monitored so that his behavior is understood. This becomes critical in a macroscopic 

analysis level, where the system should provide recommendations to the user on how to 

improve his driving style and become a safer and more efficient driver. The answer to the 

question of how much time someone should be monitored so that the convergence of his 

driving characteristics is observed, is not unilateral. It depends on the user’s perception and 

attitude on the road, but also on the roadway, traffic and control conditions. A recent study 

attempted to identify the essential amount of data when a single driving characteristic is 

examined (e.g., aggressiveness) (Stavrakaki et al., 2020). Nevertheless, a methodological 

framework for estimating the amount of driving data that should be collected for each driver 

in order to acquire a clear picture regarding his overall driving behavior is missing from 

literature. 

Challenge 4: Modeling efficiency, transfer learning and explainability  

An efficient model is the one that is not only accurate, but also does not produce systematic 

errors. In highly volatile problems treated with data-driven techniques, achieving accuracy, but 

also taking care of overtraining and the properties of the error are of outmost importance 

(Karlaftis and Vlahogianni, 2011). For the case of smartphone sensed datasets that are usually 

imbalanced (abnormal driving or even accidents may be very rare in datasets), achieving to 

build and operate efficient models is a tricky and tedious process. While researchers turn to 

resampling techniques or generating synthetic datasets, different challenges arise when it 

comes to which technique is suitable for each problem. For example, should the dataset be 

resampled so that both classes are equally represented, or should one class be 

overproportioned to the other and if yes, how much? Although these questions have been 

addressed partially by the literature, enriching the existing datasets with more features could 

also provide significant improvements to deal with this challenge.  

Given this lack of representativeness of extreme behaviors and accident conditions, the use of 

transfer learning seems also an appropriate pathway. Transfer learning and domain adaptation 

refer to the situation where what has been learned in one setting (e.g., the distributional 

characteristics of traffic volume in a single arterial) is exploited to improve generalization in 

another setting (e.g., arterial traffic volume in a different location) (Mairaj et al., 2019). In simple 

words, transfer learning leverages the knowledge and pattern recognition capabilities 

developed based on another problem to facilitate the learning process of the problem at hand. 

The main limitation of ML models, and specifically deep learning models, is the time-

consuming training process. Even when hardware with great computational capabilities is 

used, the training phase in the presence of big data cannot be neglected as a future challenge 

especially for real-time applications. Transfer learning may prove as a good solution for the 

time-consuming process of training an ML model for detection based on smartphone data. 
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ML models can easily tackle several data limitations such as noisy data, imbalanced datasets 

and the majority of them are transferable and resilient.  

Nevertheless, building accurate models should not be the sole concern. Most researchers 

frequently follow the path of least resistance by comparing approaches based solely on model 

accuracy; however, there is a “thin line” between modeling accuracy, model simplicity, 

suitability and usability. Researchers should keep in mind that the produced models should be 

actionable, meaning simple to operate and maintain, accurate enough to produce reliable 

results and easily integrated to complex systems. Moreover, in cases where emphasis is given 

to the explanatory power of the models, modeling should clearly address the issues of 

causality. It is well known that correlations do not imply causation. Addressing causalities 

through ML modeling – either being for function approximation, pattern recognition or time 

series analysis - is not a straightforward process and several statistical constructs can be used 

to tackle this issue (Hlaváčková-Schindler et al., 2007; Karlaftis and Vlahogianni, 2011; Lavrenz 

et al., 2018). 

Challenge 5: Raising awareness and changing attitudes 

Although road safety is an issue of concern to researchers, practitioners and even drivers 

themselves, not everyone realizes how driving behavior is correlated with the levels of safety 

on the road. What is important is to make drivers aware of their driving behavior’s impact. Risk 

taking, aggressiveness and distraction from the driving task constitute the main reasons why 

a driver gets involved in a car accident (J.-H. Hong et al., 2014; Dingus et al., 2016). ADAS aim 

at supporting drivers while driving and preventing such unsafe behaviors. Another growing 

trend is coupling safety and sustainability of transport. Therefore, as already said, the aim of 

today’s driving recommendation and assistance systems becomes twofold: promote eco-

driving while at the same time ensuring road safety. On the eco-driving side, changing driving 

attitudes seems to be easier since this driving style is correlated with monetary cost and fuel 

savings. On the other hand, regarding safe-driving, changing people’s unsafe driving habits 

seems more challenging especially because people tend to disregard the impact of their 

driving behavior. In this case as well, powerful incentives should be given since the ultimate 

goal is not only to motivate drivers to participate in a cause, but raising their awareness as 

well.   

An additional concern is that driving recommendations systems premise continuous 

cooperation between the driver and the system. In such systems, the driver is constantly 

receiving driving tips and suggestions for improving their driving efficiency or even their 

driving experience. If the driver does not intend to accept the recommendation provided from 

the system, then consequently, the system loses its potentials of improving road safety, traffic 

conditions and driving experience. To this end, it is crucial to raise the awareness of the drivers 

regarding the impact of their driving habits as well as ensuring their long-term involvement 

with the system. Most researchers focus on the importance of education and training as key 
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for changing drivers’ attitudes (Zhao et al., 2019). Nevertheless, recent trends require the 

continuous monitoring of driving behavior and the provision of recommendations and tips to 

be constant if not real-time. 

Challenge 6: Lack of personalization 

Personalization refers to the process of making something suitable for the needs and 

preferences of a particular individual (Hasenjager et al., 2020). Within a framework of a system, 

personalization can be achieved either explicitly or implicitly. In the first case, the users are left 

to specify and customize the service they receive by themselves (explicitly), while in the second 

case, the system should be able to automatically detect and infer each users’ specific needs 

and preferences (implicitly) (Hasenjager and Wersing, 2018; Ponomarev and Chernysheva, 

2019). In driver assistance systems, personalization is a very key feature that can largely 

determine the acceptance of the system by the driver himself. According to previous studies, 

if the advanced driver assistance system (ADAS) cannot fit drivers’ preferred driving behavior, 

the conflict between the driver and the vehicle will occur (Parasuraman and Riley, 1997). For 

this reason, the rationale for personalization in ADAS is to improve the driving experience by 

adapting the assistance system to the preferences and needs of the assisted drivers. 

Nevertheless, the concept of personalization has not yet been incorporated in already 

developed ADAS since the focus is mostly concentrated on safety and usability. The 

personalization of ADAS is not an easy task as great amount of driving data must be available, 

in order to capture different drivers’ preferences, driving styles, skills and driving patterns, and 

other driving behavior analysis caveats should be first overpassed to identify different types 

of driving behavior to properly adapt ADAS vehicle control with driver’s expectations  

(Hasenjager and Wersing, 2018). To this end, it is important that researchers and practitioners 

recognize the significance of the personalization aspect and put great efforts towards the 

development of personalized driving assistance systems. 

Challenge 7: Real-time operation 

Until recently, a very small body of the literature has developed driving behavior detection and 

recommendation algorithms that are able to operate in real-time. However, as the need for 

ensuring the resilience of nowadays transportation system through the management of traffic, 

road accidents and emissions has emerged, there is demand for ensuring real-time operation 

of driving recommendation systems. As mentioned before, driving behavior is a major 

contributor not only of road safety but road network conditions as well, and, thus, the chance 

to improve driving behavior can be feasible only by developing easy interpretable and 

responsive recommendation systems. Considering the complexity of human behavior as well 

as the previously described methodological challenges, future research should place a lot of 

effort in developing recommendation systems able to operate in real-time, especially if they 

provide personalized suggestions and tips. Advanced computational intelligence techniques 
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are expected to have promising results and efficiently correspond to the challenging task of 

user-tailored real time recommendation systems.  

Challenge 8: Moving from user-centric systems to network level management 

Even in the case where all the aforementioned challenges were being addressed, there would 

still be a major concern: how to move from the development of user-centric driving assistance 

systems to a system-centric approach in the sense that, the impact on the network is taken 

into account alongside with the goal of improving driving performance and safety? 

Traffic conditions can be studied in a microscopic level, where each vehicle is an entity that 

moves with each own characteristics and patterns, or in a macroscopic level, where aggregated 

measures of the characteristics of the entire traffic can be estimated. In traffic flow theory there 

are three macroscopic flow variables that reflect the average state of the traffic, namely flow, 

density, and speed. Relations between these traffic flow properties are usually graphically 

represented using fundamental diagrams of traffic flow, which can be used to predict the 

capability of a road network, or its behavior when applying inflow regulations and measures 

or speed limits. Macroscopic Fundamental Diagram (MFD) as a concept was first proposed in 

[15]. The theoretical form of these fundamental diagrams is illustrated in Figure 2-3. The MFD 

functions can aid agencies in improving network accessibility and help to reduce congestion 

by monitoring the number of vehicles in the network. 

 

Figure 2-3. Macroscopic fundamental diagrams of traffic flow according to Greenshield 

The speed – flow diagram is used to determine the speed at which the optimum flow occurs, 

and consists of two branches, the free flow and congested branches. In the first speed-flow 

diagram branch which corresponds to the uncongested flow, as the flow increases the speed 

decreases until the optimum flow 𝑞𝑚𝑎𝑥 is reached.  

The speed-density relationship is linear with a negative slope; therefore, as the density 

increases the speed of the roadway decreases. The diagram crosses the vertical axis at the free 

flow speed 𝑣𝑓, and the horizontal axis at the congestion (critical) density 𝑘𝑗𝑎𝑚. The speed 

approaches free flow speed as the density approaches zero, while the speed reaches 

approximately zero when the density equals the critical density. 
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The flow-density diagram is used to determine the traffic state of a road network and has a 

parabolic form. The intersection of free flow and congested branches of the diagram is the 

apex of the curve and is considered the capacity of the road network, which corresponds to 

the traffic condition at which the maximum number of vehicles can pass by a point in a given 

time period. The flow and density at which this point occurs is the optimum flow 𝑞𝑚𝑎𝑥 and 

optimum density 𝑘𝑚𝑎𝑥, respectively. 

Macroscopic fundamental diagram (MFD) of urban road networks emerged as the primary 

modeling tool enabling aggregated modeling and control approaches for traffic management. 

It is insensitive to small changes in demand which makes it a perfect tool for monitoring the 

effects of traffic control strategies (Amini et al., 2018). Based on the findings of previous 

research (Geroliminis and Daganzo, 2007) it was observed that an urban region with roughly 

homogeneous accumulation (e.g., small spatial edge density heterogeneity) can be modeled 

using the MFD, which provides a unimodal, low-scatter, and demand-insensitive relationship 

between density and trip completion flow. Recent research has proven that an MFD exists on 

neighborhood-sized sections of cities independently of the demand (Geroliminis and Carlos F. 

Daganzo, 2008).  

When building a user-centric driving assistance system the ultimate goal is to improve 

efficiency. The efficiency of urban traffic is vital for the optimization of traffic flow, and can be 

achieved through the management of traffic lights, detection and management of road 

accidents, minimization of traffic delays, or even through improving parking services. On the 

other hand, efficiency from the point of view of the driver itself focuses on improving driving 

behavior with the goal to minimize environmental impact and fuel consumption, although 

these behaviors also often lead to improvements in safety and comfort (Paúl et al., 2018). The 

great challenge here is to investigate the link between traffic and driving efficiency. In other 

words, is it possible to enhance traffic efficiency through the improvement of individual driving 

efficiency?  

In this dissertation, we aim at answering this question by estimating the actual impact of 

applying a personalized driving recommendation system, that improves individual driving 

performance in terms of safety, on the road network performance. In order to achieve this 

goal, we take advantage of the findings outlined by (Geroliminis and Carlos F Daganzo, 2008) 

to first estimate MFDs before and after the application of the proposed system and then, 

evaluate comparatively the differences that will arise. 

In order to give a direction towards addressing the aforementioned challenges, Table 2-2 

presents some indicative solutions based on some studies that have tried to efficiently 

overcome these prevailing challenges. 
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Table 2-2. Existing challenges in driving behavior analysis using smartphone crowd-sensing and 
indicatively proposed solutions 

Challenge Proposed Solution Selected Citations 

Enhancing data representativeness, 

availability and quality 

• Incentives  

• Gamification aspects 

• Convince the crowd for the usefulness and 

importance of driving behavior 

understanding in traffic and road safety 

• Utilize low-power wireless networks 

• Upload data when a Wi-Fi connection is 

available 

• Share sensing data among multiple 

systems 

• Change sampling rates 

• Anonymity, pseudonymity, spatial cloaking 

• Data perturbation and aggregation 

• Feature selection (Filter, wrapped methods) 

• Anomaly detection techniques 

(Hossain, 2012; 

Christin, 2016; Etemad 

et al., 2018; J. Wang et 

al., 2018; Yen et al., 

2019) 

Identify the context from the data 

• Data fusion 

• Filtering algorithms 

• Feature Engineering 

(Wahlström et al., 

2015) 

Detect abnormal patterns and risky 

drivers 

• Machine learning approaches 

• Determine universal thresholds for each 

feature 

(Bejani and Ghatee, 

2018) 

Modeling efficiency, transfer 

learning and explainability 

• Apply resampling techniques 

• Generate synthetic samples 

• Transfer learning 

• Additional features 

• Big data analysis instead of small 

experimental datasets 

• Outlier detection 

(Yuan and Raubal, 

2012; Hu et al., 2018; 

Maldonado and 

López, 2018; Roy et 

al., 2018) 

Raising awareness and changing 

attitudes 

• Incorporate UBI schemes 

• Gamification 

(Tselentis et al., 2017; 

Vlahogianni and 

Barmpounakis, 2017b) 

Lack of personalization 

• Build and validate driver models based on 

real data 

• Observe real driving behavior 

(Hasenjager and 

Wersing, 2018; 

Ponomarev and 

Chernysheva, 2019) 

Real-time operation 

• Artificial Intelligence 

• Prioritize tasks 

• Efficient memory management 

(Shukla et al., 2018) 

Moving from user-centric systems 

to network level management 

• Estimate impact of user-centric solutions 

• Context-aware RL solutions for user-centric 

systems 

(Geroliminis and 

Daganzo, 2008; Amini 

et al., 2018) 
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2.6 Research questions 

Based on the results of the literature review, the research questions of this doctoral dissertation 

are formulated as shown below together with the proposed approach for addressing them: 

Question 1 (Q1) 

Which are the main driving profiles that cover the wide range of driving behavior and how can 

they be identified by exploiting smartphone data? 

Question 2 (Q2) 

Is it possible to classify the overall driving behavior of drivers into groups that share common 

driving characteristics, and, if so, to what extent could it be classified? 

Question 3 (Q3) 

Could Artificial Intelligence techniques be exploited within the framework of a driving 

recommendation system and ensure the requires degree of personalization of the produced 

recommended actions? 

Question 4 (Q4) 

Which is the most appropriate Reinforcement Learning algorithm for supporting human 

decision making? 

Question 5 (Q5) 

Is there a link between raising self-awareness and improving conditions of the entire network? 

To what extent could the improvement of individual behavior affect traffic conditions? 

Question 6 (Q6) 

What kind of impact does the controlling of individual driving behavior have on driving and 

road safety? 

Question 7 (Q7) 

How are emissions affected by the controlling of individual driving behavior? Is there a 

significant change on environmental conditions when drivers improve their behavior?  
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3 METHODOLOGICAL APPROACH 

In this section, the problem overview is described with respect to the specific objectives set 

within this dissertation, together with the conceptual assumptions made. Subsequently, the 

main structure of the methodological approach followed is presented, together with a 

thorough description of each methodological step. Finally, the theoretical background of the 

methods used in this dissertation is given in details. 

3.1 Problem overview and assumptions 

Driving behavior analysis has occupied researchers for many decades due to the complexity 

of the process of decision-making during driving, but also due to the inability of researchers 

to delineate driving behavior by defining thresholds that enclose specific driving habits. In this 

dissertation it is attempted to overcome this limitation by exploiting a large-scale naturalistic 

driving dataset and try to identify the underlined driving behavior patterns straight from the 

data. For this purpose, an unsupervised learning approach will be followed so that observed 

driving behavior is clustered into appropriate groups which share common driving 

characteristics (driving profiles). In line with previous research, here as well, it is assumed that 

every single driver exhibits a specific type of behavior during a trip which may be characterized 

by either safe or unsafe driving maneuvers. More precisely, it is assumed that every driver 

chooses to driver in a specific manner throughout their entire trip. One may think that a driver 

may change their behavior even during the same trip, fact that is not far from reality, yet due 

to data availability limitations, computational and operational limits researchers have not 

investigated the dynamics of driving behavior on such microlevel. The in-depth analysis of 

driving behavior at a time-window level of a trip would have been of great importance within 

personalized ADAS systems that operate real-time. In this dissertation, in order to design a 

self-determining system of providing personalized recommendations based solely on the 

driver himself and their driving behavior, not taking any knowledge neither about the 

environment nor the rest of the traffic, the approach of analyzing behavior at a trip-level is 

followed.  

In addition, it has been previously shown that each individual’s driving behavior is described 

by great rates of volatility meaning that the driver alters the way they drive on every trip and 

therefore, do not have a stable driving profile (Mantouka et al., 2018; Tselentis, 2018). Findings 

in (Mantouka et al., 2019) revealed that drivers behave differently every time, performing trips 

that fall within each one of the recognized categories of safe and unsafe driving style (trip-

level driving profiles). For the purpose of this work, and taking into account the fact that 

specific driver profiles cannot be identified due to the high variability of behavior as described 

above, the estimation of the overall driving behavior of a specific driver is based on a simple 

statistical rule. The identified driving profiles are ranked based on a safety and cautiousness 

scale and then, the average behavior of each driver can be derived as the average of the 
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incidence of each driving profile. Ιn this way drivers can be divided into groups that indicate 

the rate of occurrence of safe and unsafe behaviors while driving accordingly. 

Finally, in this work it is assumed that the way a driver chooses to drive is not independent 

from the environment they drive in, the road geometry and the traffic conditions. Previous 

research has shown that speed selection is highly correlated with the speed limit, road 

illumination and visibility, road geometry and weather conditions besides drivers’ 

characteristics and perceptions (Sadia et al., 2018; Liu et al., 2020; Zolali et al., 2021). 

Furthermore, deceleration decisions are highly dependent on each driver’s risk perception as 

well as on other external parameters such as the existence of traffic signals and traffic lights, 

and the behavior of the leading car (Li et al., 2020). Therefore, in order to achieve the goal of 

developing an independent driving recommendation system that takes into account 

exclusively driving behavior, it was considered that the driving style that one chooses to adopt 

is determined solely by the choices of acceleration. In other words, it is assumed that the only 

parameter of driving behavior over which the driver has absolute control and its value is 

determined solely by the personal preferences of each driver is acceleration. For this reason, 

the proposed system is trained to suggest the most appropriate alterations in acceleration 

choices of each driver so that to improve driving safety in both a short- and long-term. The 

methodological approach followed to achieve this goal is thoroughly described in the next 

section. 

3.2 General methodological framework 

Developing a personalized driving recommendation system is not a trivial task, as state-of-

the-art methods are required to handle a number of challenging tasks from driving behavior 

identification through smartphone data to agents’ efficient training for learning driving 

behavior’s dynamics using deep learning. In order to develop the Self-Aware Driving 

Recommendation System, a structured procedure is followed, as shown in Figure 3-1. 
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Figure 3-1. Methodological approach for the development and assessment of the Recommendation 
Framework 

Starting from raw measurements of GPS location, acceleration and speed, as provided by a 

telematics application established on smartphone devices, driving features are defined that 

describe short-term and long-term driving behavior. Following, these features are utilized in 

an unsupervised learning framework to identify driving profiles that can be used to describe 

each driver’s overall driving behavior (Q1, Q2). Driving behavior is defined at:  

• a trip level, which corresponds to the way the driver performed a specific trip, and  

• a user level, which corresponds to the overall driving behavior of a specific driver in all 

of his trips (driving footprint).  

Unsupervised learning is used in exploratory analysis since it has the ability to automatically 

identify structure in non-annotated data, and therefore is the most appropriate technique to 

detect different driving behavior patterns which are obscured in the data. Unsupervised 

learning, namely clustering, can be either soft or hard: in hard clustering, each data point either 

belongs to a cluster completely or not, while in soft clustering, each data point is assigned a 

probability or likelihood to be in each of the clusters (Bora and Gupta, 2014). For the purpose 

of this research a hard clustering technique is implemented so that each driving trip is assigned 
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to a specific driving profile which indicates that the driver has chosen to exhibit a specific 

driving behavior during the trip. K-means clustering is the most well-known hard clustering 

technique characterized by small computational requirements, robustness and interpretability. 

Here, a two-level k-means clustering algorithm is implemented, in a selection of driving 

features, in order to distinguish aggressive from non-aggressive trips within the first level, and 

then further distinguish between risky and distracted driving with the second level of 

clustering. Several driving features’ combinations were tested in the context of clustering, the 

performance of which was evaluated through three distance-based metrics (silhouette index, 

dunn’s index, and the Calinski-Harabasz criterion). After this procedure, each trip was assigned 

to a specific driving profile (Q1), and then, using statistical measurements, the overall driving 

behavior of each driver is identified (Q2).  

Once driving behavior per trip is identified, and all drivers were separated into groups based 

on their overall driving behavior, the driving recommendation framework is designed and the 

appropriate algorithms are developed, using state-of-the-art Reinforcement Learning models 

(Q3). Reinforcement Learning is considered a powerful tool due to its ability to learn optimal 

policies of behavior, within large and complex environments, by a continuous process of 

rewarding or punishing agents correspondingly to their actions (Morales, 2020). 

Reinforcement Learning is a data-driven method: Drivers who are found to adopt a safe driving 

behavior possess the knowledge of how to avoid the performance of unsafe driving 

maneuvers. In order to exploit this knowledge straight from the observed behavior, a 

reinforcement learning model is developed to learn how actions are taken under different 

conditions and map actions to specific states of the environment, namely to learn the optimal 

policy, without any previous knowledge. Speed and acceleration choices on a trip level 

(average and maximum values and variation) can describe the current state of a driver’s 

behavior and their adjustment in future trips (either towards an improved or worsened 

behavior) can be thought of as an action; quite similarly to the definition of a reinforcement 

learning framework. The aim of the Reinforcement Learning algorithm is to learn the optimal 

policy and suggest the appropriate action that leads to the best possible behavior. Specifically, 

when dealing with driving behavior recommendations, every action refers to an adjustment of 

the vehicle’s kinematic characteristics including the adjustment of the vehicle’s speed and 

acceleration, which span within a continuous range of values. To this end, the RL algorithm 

developed in this work should retain one extra property, the ability to handle continuous state 

and action spaces (Q4). 

In order to create a system that recognizes driving style and suggests improvements that 

match the way everyone chooses to drive, we develop separate RL controllers one for each 

driver type. The RL agents follow an actor-critic approach based on the Deep Deterministic 

Policy Gradient algorithm (Q4). Both the actor and the critic are implemented as deep artificial 

neural networks, the hyperparameters and the structure of which emerge after an exhaustive 

grid search. The algorithms are trained using sequences of driving trips of the same driver as 
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input, while the output of each RL controller is the optimal alteration in the acceleration of 

each driver, given the way they drove in their previous trip.  

Finally, the impact of improving individual driving behavior is assessed through a comparative 

before-after microsimulation analysis, with respect to road safety, traffic and the environment 

(Q5, Q6, Q7). Using the road network of Athens, Greece, a microsimulation scenario for the 

morning rush hour demand, was set. For the initial conditions of the network the vehicles move 

according to the characteristics governing each of the driving behaviors detected in the first 

step of the methodological framework, while the traffic composition is based on the actual 

distribution of trips over the driving profiles. In this way, driving diversity is ensured between 

the vehicles and the traffic conditions in the network are simulated as realistically as possible. 

Thereupon, a step-wise procedure is followed in order to extract all the essential information 

from this first simulation scenario: 

1. 10 replications of the simulation scenario are performed, all corresponding to exactly 

3600 seconds of running time per replication, in order to ensure the robustness of the 

results and eliminate the randomness of the findings. 

2. The basic traffic flow parameters, namely flow, speed and density, are estimated for the 

entire network and their mean values are used for the construction of the Macroscopic 

Fundamental Diagrams, which are considered as the KPI of traffic conditions (Q5). 

3. Using the Surrogate Safety Assessment Model (FHA, 2008) critical conflicts are 

estimated by exploiting the information regarding the trajectories followed by each 

vehicle in the simulation. The number of critical conflicts is estimated in an aggregated-

level as well as per vehicle, and acts as a KPI for the safety of the network (Q6). 

4. The amount of harmful air pollutants is estimated by category of pollutant, in an 

aggregated level and per vehicle as well. The number of emissions is considered as the 

KPI of environmental conditions (Q7). 

5. Statistical characteristics (mean, max, min, quartiles) of all driving parameters are 

calculated, including acceleration, deceleration, speed, and speeding, for each vehicle. 

6. The driving state of each vehicle is used as input to the corresponding RL controller, 

which produces the optimal alteration of the acceleration. 

7. For each individual vehicle the optimal acceleration is calculated with correspondence 

to the action proposed by the recommendation system. A table containing the 

acceleration values per vehicle is used as input for the second run of simulation. 

In the second run of the simulation, all the conditions remain the same as before, namely the 

simulation time, the demand, and the routes followed by each vehicle, with only exception the 

acceleration values of the vehicles. In this case, the recommendation is followed, and after 10 

replications, the crucial KPIs of traffic, safety, and environmental conditions are estimated. To 

end, a critical discussion on the differences found in network’s performance is provided and 

the impact of applying the personalized recommendations is quantified. 
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3.3 Theoretical Background 

The problem of identifying driving profiles from real-world driving data is generally an 

unsupervised learning problem. In this dissertation, the most popular and at the same time 

the most robust method for grouping unlabeled data, k-means clustering is used. The basic 

principles of clustering along with its goodness-of-fit measures are presented in this section. 

As far as it concerns the recommendation system, its development is based on the idea of an 

agent that can learn how individuals choose to drive and how their behavior evolves between 

sequential trips. By learning this information, the agent should then be able to learn which is 

the most likely transition to safer behavior, given the current way of driving. This learning 

process is approached in the modern literature by reinforcement learning algorithms. Later in 

this section, the fundamentals of Reinforcement Learning and the most popular algorithms 

are presented with a special focus on the algorithm that matches the objectives of this 

dissertation, the Deep Deterministic Policy Gradient. 

Finally, for the sake of completeness of the theoretical background, reference is made to traffic 

flow theory fundamentals that describe traffic conditions on a road network, yet without 

further analysis since these are the most basic knowledge in the field of transport engineering.  

 Clustering 

Clustering is a well-known task of dividing a set of observations into a number of groups so 

that the observations within the same group are similar. The most widely used clustering 

technique is K-means clustering, where a cluster can be thought as a group of data points 

whose interpoint distances (intra-cluster similarity) are small compared with the distances of 

points outside of the cluster (inter-cluster similarity) (Kanungo et al., 2002). Specifically, the 

following definitions have been given for the distance between the objects of different clusters 

and the objects of the same clusters Figure 3-2: 

• Inter-cluster distance is the distance between two objects belonging to two different 

clusters 

• Intra-cluster distance is the distance between two objects belonging to the same 

cluster 
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Figure 3-2. Clustering results and similarity measures 

For each data point Xn, a corresponding set of binary indicator variables 𝑟𝑛𝑘 ∈ {0.1} are 

introduced, where 𝑘 = 1, … . . , 𝐾 describing which of K clusters the data point Xn is assigned to, 

so that if a data point is assigned to cluster k then 𝑟𝑛𝑘 = 1, and 𝑟𝑛𝑗 = 0 for 𝑗 ≠ 𝑘. Then, an 

objective function is defined, given by: 

𝐽 = ∑ ∑ 𝑟𝑛𝑘‖𝑥𝑛 − 𝜇𝑘‖

𝐾

𝑘=1

𝑁

𝑛=1

2

      (1) 

Which represents the sum of squares of the distances of each data point to its assigned vector 

μk, where μk represents the center of the kth cluster. The goal is to find values for {𝑟𝑛𝑘} and the 

{μk} so as to minimize J (Bishop, 2006). The Pseudo-code of the Lloyd’s K-Means algorithm is 

the following (Mohd et al., 2012): 

Algorithm 1: Lloyd’s K-Means Algorithm 

Input Replay memory size M, batch size d, number of episodes E, and number of time steps T 

Initialize Main network weights θ 

Initialize Target network weights θ− 

Initialize Replay memory 

for e = 1, ..., E do 

Initialize state s1, and action a1 

for t = 1, …, T do 

Take action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝜋(𝑠𝑡 , 𝑎; 𝜃) with probability 1−∈ or a random action with probability ∈ 

Get reward rt and observe next state st+1 

if Replay capacity M is full then 

Delete the oldest tuple in memory 

end if 

Store the tuple (st, at, rt, st+1) to replay memory 

Sample random d tuples from replay memory 

𝑦𝑡 = {
𝑟𝑡 , 𝑖𝑓 𝑡 = 𝑇 

𝑟𝑡 + 𝛾 max
𝑎

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1;  𝜃𝑡
−), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   Perform policy gradient using yt for updating θ    

   Update target network every N step, 𝜃− = 𝜃 

end for 

end for 
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Clustering validation measures evaluate the goodness of clustering results, and are considered 

as key for the success of clustering applications. There is a variety of validation measures, such 

as Silhouette index, Dunn’s index, Davies-Bouldin index, R-square, Hubert’s Γ statistic, Calinski-

Harabasz criterion and many more. For the purposes of this dissertation, the following three 

measures are used (Maulik and Bandyopadhyay, 2002; Kraft, 2012): 

Silhouette index 

For a given cluster, Xj (j=1,….,c), this method assigns to each sample of Xj a quality measure, 

s(i) (i=1, ….,m), known as the Silhouette width, which is defined as: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 (2) 

where a(i) is the average distance between the ith sample and all of the samples included in Xj; 

‘max’ is the maximum operator, and b(i) is the minimum average distance between the ith 

sample and all of the samples clustered in Xk (k =1,….,c; k ≠ j). From this formula, it follows that 

−1 ≤ 𝑠(𝑖) ≤ 1. When a s(i) is close to 1, one may infer that the ith sample has been assigned to 

an appropriate cluster. When a s(i) is close to 0, it suggests that the ith sample could also be 

assigned to the nearest neighboring cluster. If s(i) is close to −1, one may argue that such a 

sample has been assigned to a wrong cluster. Thus, for a given cluster it is possible to calculate 

a cluster Silhouette index Sj, which characterizes the heterogeneity and isolation properties of 

such a cluster: 

𝑆𝑗 =
1

𝑚
∑ 𝑠(𝑖)

𝑚

𝑖=1

 (3) 

where m is the number of samples in Sj.  

Dunn’s index 

For any partition 1: ... ...i cU X X X X    where Xi represents the ith cluster, the Dunn’s index 

is defined as follows: 

𝐷(𝑈) = 𝑚𝑖𝑛

1≤𝑖≤𝑐

{ 𝑚𝑖𝑛
1≤𝑗≤𝑐

𝑗≠𝑖

{
𝛿(𝑋𝑖 , 𝑋𝑗)

𝑚𝑎𝑥
1≤𝑘≤𝑐

{𝛥(𝑋𝑘)}
}} (4) 

 

where δ(Xi, Xj) defines the inter-cluster distance, the distance between clusters Xi and Xj, Δ(Xk) 

represents the intra-cluster distance of cluster Xk , and c is the number of clusters of partition 

U. This index is easy to implement and has a low computational complexity. It is obvious that 

large values of D(U) indicate better clustering. 
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Calinski-Harabasz criterion 

The cluster index of Calinski-Harabasz is calculated using the following equation: 

𝐶𝐻(𝐾) =
[𝑡𝑟𝑎𝑐𝑒𝐵/𝐾 − 1]

[𝑡𝑟𝑎𝑐𝑒𝑊/𝑁 − 𝐾]
𝑓𝑜𝑟 𝐾 ∈ ℕ (5) 

where B denotes the inter-cluster error, the error sum of squares between different clusters: 

𝑡𝑟𝑎𝑐𝑒𝐵 = ∑|𝐶𝑘|

𝐾

𝑘=1

‖𝐶𝑘 − 𝑥‖
2
 (6) 

and W the squared differences of all objects in a cluster from their respective cluster center 

(intra-cluster): 

𝑡𝑟𝑎𝑐𝑒𝑊 = ∑ ∑ 𝑤𝑘,𝑖‖𝑥𝑖 − 𝐶𝑘‖
2

𝑁

𝑖=1

𝐾

𝑘=1

 (7) 

The maximal achieved value of the Calinski-Harabasz criterion indicates the best clustering of 

the data.  

 Reinforcement Learning 

Reinforcement learning has potential in the area of intelligent transportation due to its 

generality and ability to achieve human level performance in many complex tasks. This 

approach to learning is inspired by behaviorist psychology, where human and animal behavior 

is studied from a reward and punishment perspective. In the structure of a RL system, an agent 

interacts with an environment. After every discrete time t, the agent implements an action a, 

the environment changes from the previous state st to st+1, and the agent gets a corresponding 

reward rt (Figure 3-3).  

 
Figure 3-3. Main Reinforcement Learning components representation 
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The environment is represented by a set of variables related to each problem. The combination 

of all the possible values this set of variables can take is referred to as the state space. A state 

is a specific set of values the variables take at any given time. Agents may or may not have 

access to the actual environment’s state; in any case, agents can observe something from the 

environment. The set of variables the agent perceives at any given time is called an observation. 

The combination of all possible values these variables can take is the observation space. (Nowé 

and Brys, 2016) 

In most of RL problems the agent has access to all the information that describe the 

environment and therefore state and observation terms are used interchangeably. At every 

state, the environment makes available a set of actions the agent can choose from. The set of 

all actions in all states is referred to as the action space. The environment changes states as a 

response to the agent’s action following the so-called transition function. After a transition, the 

environment emits a new state and also provide a reward signal as a response. The function 

responsible for this mapping is called the reward function (Morales, 2020): 

𝑟(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] (8) 

Usually, RL problems are modeled as a discrete-time Markov Decision Process (MDP) with a 

tuple of (𝑆, 𝐴, 𝑃𝑠𝑠′, 𝑅, 𝛾), which includes a state space S; an action space A of all possible actions; 

a transition function 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) which measures the probability of obtaining the next state 

𝑠𝑡+1given a current state-action pair (𝑠𝑡 , 𝑎𝑡); the immediate reward 𝑅(𝑠𝑡 , 𝑎𝑡) achieved at each 

state-action pair, and 𝛾 ∈ (0,1) that denotes a discount factor (Tuyen and Chung, 2017).  

 

Figure 3-4. Markov Decision Process 

It is called a Markov Decision Process, since the state signal is assumed to have the Markov 

property: 

A stochastic process has the Markov property if the conditional probability distribution of future 

states of the process (conditional on both past and present states) depends only upon the present 

state, not on the sequence of events that preceded it (Bhattacharya and Waymire, 2007).  
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A sequence of state-action pairs (𝑠𝑡 , 𝑎𝑡) creates a trajectory 𝜉𝑡, also referred to as episode, with 

discounted cumulative reward given by: 

𝑅(𝜉) =  ∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=0

 (9) 

The algorithm used by the agent to determine its actions, i.e., its behavior, is commonly 

referred to as a policy, denoted as π. A policy is a function that prescribes actions to take for a 

given state. In some cases, the policy may be a simple function or lookup table, whereas in 

others it may involve extensive computation such as a search process (Sutton and Barto, 2018). 

The policy is the core of a reinforcement learning agent in the sense that it alone is sufficient 

to determine behavior. In general, policies may be either deterministic or stochastic, specifying 

probabilities for each action.  

If the algorithm estimates the optimal policy without using or estimating the dynamics 

(transition and reward functions) of the environment, then it is called a model-free algorithm. 

Otherwise, if the algorithm uses the transition function (and the reward function) in order to 

estimate the optimal policy then it is referred to as model-based algorithm. 

3.3.2.1 Q-learning 

Q-learning is a model-free reinforcement learning algorithm, based on the well-known 

Bellman Equation. When the agent follows a certain policy (π), then the Value (𝑣𝜋) of a 

particular state is determined by the immediate reward plus the value of successor states 

emerged from the Bellman Expectation Equation (Van Otterlo and Wiering, 2012): 

𝑣𝜋(𝑠) =  𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠] (10) 

Where 𝔼 stands for expectation and γ is the discount factor. Re-writing the above equation in 

the form of the Q-value results in the following: 

𝑄𝜋(𝑠, 𝑎) =  𝔼[𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ |𝑠, 𝛼] = 𝔼𝑠′[𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′)|𝑠, 𝑎] (11) 

In other words, Q-value (Q) is similar to Value, except that it takes as an additional parameter, 

the current action (a). 𝑄𝜋(𝑠, 𝑎) refers to the long-term return of the current state s, taking 

action a under policy π (Van Otterlo and Wiering, 2012). The data structure used to match the 

best action at each state based on the Q-values, is refer to as Q-table. The algorithm of Q-

learning is schematically presented in Figure 3-5. 
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Figure 3-5. Schematic representation of Q-learning algorithm 

Despite the fact that Q-learning has revolutionized the capabilities of reinforcement learning, 

it fails to perform in big and complex environments with thousands of states and actions pairs. 

In order to overpass such limitations researchers approximated Q-values with machine 

learning models such as neural networks. 

3.3.2.2 Deep Q Network 

Advances in deep learning allowed significant progress in Reinforcement Learning with the 

introduction of Deep Q Network (DQN) algorithm which is capable of handling discrete but 

low-dimensional action spaces (Mnih et al., 2013; Lillicrap et al., 2016).  In a DQN the state is 

given as the input and the Q-value of all possible actions is generated as the output. The 

comparison between Q-learning and DQN is perfectly illustrated in Figure 3-6. 

 
Figure 3-6. Comparison between Q-learning & deep Q-learning 
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Two techniques are essential in order to train a DQN; Experience Replay and a Target Network.  

The basic idea behind experience replay is to storing past experiences of the agent and then, 

using a random subset of these experiences to update the Q-network, instead of using the 

most recent experience. This is done in order to prevent action values from oscillating or 

diverging tragically. The replay memory contains a collection of experience tuples in the form 

of (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1). The act of sampling a small batch of tuples from the replay memory is 

referred to as experience replay.  

The target network is basically a copy of the Q-network which allows more stable training. 

Specifically, when an update is performed to the Q-networks’ parameters in order to make Q(s, 

a) closer to the desired result, it consequently alters the value produced for Q(s’, a’) as well. 

This can make the training very unstable and thus, to overcome this issue, a target network 

with the same structure as the Q-network is used. It should be highlighted that the target 

network’s parameters are not trained, but they are periodically synchronized with the 

parameters of the main Q-network. 

The pseudocode of the DQN Algorithm is as shown below: 

Algorithm 2: DQN Algorithm 

Input Replay memory size M, batch size d, number of episodes E, and number 

of time steps T 

Initialize Main network weights θ 

Initialize Target network weights θ− 

Initialize Replay memory 

for e = 1, ..., E do 

Initialize state s1, and action a1 

for t = 1, …, T do 

Take action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝜋(𝑠𝑡 , 𝑎; 𝜃) with probability 1−∈ or a random 

action with probability ∈ 

Get reward rt and observe next state st+1 

if Replay capacity M is full then 

Delete the oldest tuple in memory 

end if 

Store the tuple (st, at, rt, st+1) to replay memory 

Sample random d tuples from replay memory 

𝑦𝑡 = {
𝑟𝑡 , 𝑖𝑓 𝑡 = 𝑇 

𝑟𝑡 + 𝛾 max
𝑎

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1;  𝜃𝑡
−), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   Perform policy gradient using yt for updating θ    

   Update target network every N step, 𝜃− = 𝜃 

end for 

end for 

 

3.3.2.3 Policy Gradient 

Despite the fact that DQN achieved huge success in higher dimensional problems, the action 

space remains discrete. However, in a great variety of tasks, especially physical control tasks, 
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the action space is continuous. In order to solve more complex problems, where both state 

and action spaces are continuous, Lillicrap et al. (2016) took advantage of the Deterministic 

Policy Gradient algorithm (Silver et al., 2014), and introduced the Deep Deterministic Policy 

Gradient algorithm (DDPG), which is a model-free, off-policy actor-critic algorithm which uses 

deep function approximators that can learn policies in high-dimensional, continuous action 

spaces. The basic idea behind the DDPG algorithm is that it follows a stochastic approach for 

exploring all possible actions but estimates a deterministic policy. 

A key feature of the DDPG algorithm is its simplicity since it requires only a straightforward 

actor-critic architecture and a learning algorithm, making it easy to implement and scale up to 

a series of difficult problems (Lillicrap et al., 2016). In the actor-critic algorithm, the actor, 

namely the policy function, generates an optimal action given the current state. In other words, 

an actor is used to tune the parameter 𝜽 for the policy function, i.e., decide the best action for 

a given state. A critic is used to evaluate the policy function estimated by the actor based on 

the temporal difference (TD) error. 

 
Figure 3-7. Schematic representation of the Actor-Critic algorithm 

More specifically, the actor holds the policy function 𝜇(𝑠|𝜃𝜇) which generates an action given 

the current state. The critic evaluates an action-value function 𝑄(𝑠, 𝑎|𝜃𝑄) based on the output 

from the actor, as well as the current state (P. Wang et al., 2019) to ensure that it is the optimal. 

The actor and critic are designed with neural networks. The deterministic policy gradient 

theorem (Silver et al., 2014) provides the update rule for the actor network. 

Policy Gradient Theorem: The derivative of the expected reward is the expectation of the 

product of the reward and gradient of the log of the policy 𝜋𝜃. 

The critic network is updated from the gradients obtained from temporal-difference errors, 

which can be formulated as follows (P. Wang et al., 2019): 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 108 - 

 

∇𝜃𝜇
𝜇 ≈ 𝛦𝜇[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
] (12) 

For a mini-batch, the critic network is updated by minimizing the loss in (4). The actor policy 

is updated with sampled policy gradients as shown in (5). 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃𝑄))

2
, 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′

𝑖

)|𝜃𝑄′ (13) 

The updates of the target critic and target actor networks are as follows: 

{
𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  (14) 

where τ is an update parameter and can be set as τ ≪ 1. 

The pseudocode for implementing the DDPG algorithm is as follows (Lillicrap et al., 2016). 

Algorithm 3: DDPG Algorithm  

Randomly initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) with weights 𝜃𝑄and 𝜃𝜇 

Initialize target network 𝑄′ and 𝜇′ with weights 𝜃𝑄′  ← 𝜃𝑄, 𝜃𝜇′  ← 𝜃𝜇 

Initialize replay buffer Ʀ 

for episode=1, Μ do 

   Initialize a random process 𝒩 for action exploration 

Receive initial observation state s1 

for t=1, T do 

Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) + 𝒩𝑡 according to the current policy and exploration noise 

Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) in Ʀ 

Sample a random minibatch of N transitions (𝑠𝑖 , 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from Ʀ 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′) 

Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))

2
𝑖  

Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇
𝐽 ≈

1

𝑁
∑[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
]

𝑡

 

Update the target networks: 

𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  

end for 

end for 

Contrary to the value-based methods, in policy-gradient methods the aim is to maximize a 

performance objective. In value-based methods, the main focus is to learn to evaluate policies. 

For this, the objective is to minimize a loss between predicted and target values. More 

specifically, the goal is to match the true action-value function of a given policy, and therefore, 

to parametrize a value function and minimize the mean squared error between predicted and 
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target values. When true target values are not available actual returns are used instead in 

Monte Carlo methods or predicted returns in bootstrapping methods (Morales, 2020). In 

policy-based methods, on the other hand, the objective is to maximize the performance of a 

parameterized policy, and therefore gradient ascent is used (or executing regular gradient 

descent on the negative performance). It’s rather evident that the performance of an agent is 

the expected total discounted reward from the initial state, which is the same thing as the 

expected state-value function from all initial states of a given policy. 

The main advantage of learning parameterized policies is that policies can be any learnable 

function. In value-based methods, one can work only with discrete action spaces, mostly 

because the maximum value should be calculated over all the actions. In high-dimensional 

action spaces, this max could be prohibitively expensive. Moreover, in the case of continuous 

action spaces, value-based methods are severely limited. Policy-based methods, on the other 

hand, can more easily learn stochastic policies, which in turn has multiple additional 

advantages. First, learning stochastic policies means better performance under partially 

observable environments. The intuition is that because arbitrary probabilities of actions can be 

learnt, the agent is less dependent on the Markov assumption (Morales, 2020). 

3.3.2.4 Some evidence from relevant work 

Over the last couple of years there has been a big increase in the application of Reinforcement 

Learning in a variety of problems that mostly include video games, robotics (Kober et al., 2013) 

and autonomous vehicles (Wang et al., 2018). The application of RL to solve control problems 

falls into two categories regarding the action space. One is discrete action space where a set 

of discretized actions are stored as control commands, as opposed to the continuous action 

space in which any real number can be sampled within the allowed threshold. In the case of 

discrete action spaces, the difficulty of finding an optimal action in a finite space is minimized, 

but the control accuracy is sacrificed.  

A Q-learning method is adopted in (You et al., 2018) where an autonomous vehicle learns to 

accelerate, brake, overtake and make turns under different highway driving scenarios taking 

onto account road geometry conditions. Mukadam et al. (2017) proposed a framework that 

uses deep reinforcement learning solely to obtain a high-level policy for tactical decision 

making for self-driving cars during lane change. In (Wang et al., 2019), the authors apply DDPG 

for learning driving behaviors of autonomous vehicles, and particularly in the challenging task 

of lane change. Importantly, they do not leverage any prior knowledge of the environment 

and vehicle kinematics but instead, they trained the RL agent through a well-designed reward 

function.  

There are some limited studies on the driving control field that treated the action space as 

discrete in order to simplify the problem or improve learning efficiency. Zhang et al. (2018) 

used Double Q-learning to learn vehicle speed control where the agent learns to either 

accelerate, decelerate, or maintain. An Asynchronous Actor Critic (A3C) method is applied in 
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(Jaritz et al., 2018) to learn car control in rally games in an end-to-end framework in which the 

control commands were broke into 32 distinct classes. The Deep Q-network (DQN) approach 

is proposed in (Hoel et al., 2018) to address both speed control and decision making for lane 

change situations.  

Some studies have attempted to treat the vehicle control problem in continuous spaces. For 

example, P. Wang et al. (2018) take advantage of prior knowledge of the vehicle control 

mechanism and proposed a quadratic Q-function approximator to find optimal actions. Sallab 

et al. (2017) have used a deep Q- network and Deep Deterministic Actor Critic (DDAC) model 

in order to compare the effect of using discrete action space and continuous action space 

respectively, for the lane keeping task. Their findings revealed that both methods could 

achieve successful lane keeping behavior, however, the DDAC model showed better 

performance with smoothed actions. Liang et al. (2018) followed a Controllable Imitative 

Reinforcement Learning (CIRL) approach to constrict the action exploration in a controllable 

action space and developed a DDPG model. Kaushik et al. (2018) also used DDPG to learn 

overtaking maneuvers in continuous action space. The agent at first learns simple tasks (e.g., 

lane keeping) and then, moved on to complex tasks namely overtaking. Another study 

proposed a deep reinforcement learning approach where an RL agent learns human-like 

driving behavior through trial and error interactions based on a reward function that signals 

how much the agent deviates from the empirical data (Zhang et al., 2018). Through these 

interactions, an optimal policy can be learned, namely the car-following model that maps in a 

human-like way from speed, relative speed between a lead and following vehicle, and inter-

vehicle spacing to acceleration of a following vehicle is finally obtained. 

In most of these studies the reward function is constructed in such a simplify way that it cannot 

reflect the goodness of a specific action and therefore, the agent cannot be trained towards 

the best possible policy.  To allow efficient and effective learning, a good reward function 

should provide informative signals for every state-action pair and reveal useful information in 

the learning procedure (P. Wang et al., 2019). Although it is not hard to design a reward 

function which gives evaluation values, it is very difficult to create an instructive reward 

function which can guide the RL agent to move toward the right policy.  

It is evident that little work has been done in the field of applying RL algorithms for human 

driving guidance and control and even more less in more complex continuous environments. 

Therefore, there is a huge active field of research that needs to be explored and it can 

revolutionize design driving control systems, ADAS, cooperative Intelligent Transportation 

Systems (c-ITS) or even autonomous driving.  
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4 IMPLEMENTATION 

In this section, analysis conducted in each methodological step is presented step by step, a 

complete view on the available data which describe naturalistic driving behavior dynamics and 

emerged from smartphone crowd-sensing are described and the main elements of the 

implementation of the methods used are discussed in details. The detailed workflow of the 

tasks from driving behavior identification using smartphone data to the development of the 

RL controllers and the impact assessment is shown in Figure 4-1. Initially, a two-level k-means 

clustering approach is followed to identify a variety of driving behavior patterns that emerge 

during a trip. The identified driving profiles include the entire range of driving preferences and 

habits that a driver exhibits, spanning from a cautious and safe behavior, to aggressiveness 

and unsafe driving habits such as distraction and risk taking. Once driving behavior on a trip 

level is detected, the overall driving profile of each user is estimated as the average behavior 

resulting from all their trips, which from this point onwards will be referred to as “user profile”. 

Taking into consideration statistical characteristics of the user profiles, drivers were separated 

into to two main groups, those who adopt a typical behavior, where most of their trips are 

characterized by safe driving, and the rest of the drivers belong to the unsafe drivers' group 

since their trips are characterized by aggressiveness, distraction, riskiness or even a 

combination of these driving habits. 

Subsequently, two driving controllers are developed based on a Reinforcement Learning 

algorithm; the first one produces driving recommendations for the typical drivers, while the 

other one produces recommendations for the unsafe drivers’ group. The aim of the 

recommendation is to propose the most appropriate alteration in the behavior of each driver 

so that they improve the way they drive in terms of safety and aggressiveness extenuation. In 

order for these recommendations to represent real driving behaviors and not an ideal but yet 

unrealistic behavior, the controllers are exploiting naturalistic driving data for their training. 

The design of the system is based on the idea that a driver is being monitored over an 

adequate number of trips so that their driving behavior can be identified both on a trip and a 

user level. Then, driving behavior alterations are suggested that correspond to the way that 

each driver should drive over his next trip based on the way he drove during his last trip. The 

proposed system is independent to the environment where the trip is performed while 

focusing only on the dynamics of driving behavior of a specific driver during their trip, and 

therefore, the RL approach is not context-aware. The Deep Deterministic Policy Gradient 

algorithm is implemented since both the state and the action space are continuous as will be 

explained later in this section. 
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Figure 4-1. Flowchart from driving behavior identification to driving controller development and impact 
assessment through simulation 

Once the two controllers are trained and ready to produce the most appropriate actions to 

each individual driver, a microsimulation scenario is set up to evaluate the impact that the 

application of a personalized driving recommendation system would have on traffic, safety 

and the environment. Two circles of simulation are performed corresponding to the initial state 

of the network and the performance of the network after the recommendations, respectively. 

The simulation scenario setting utilizes the Athens’ Road network and the already calibrated 

transportation demand. Finally, in order to quantify the impact of the proposed system several 

Key Performance Indicators (KPIs) are used. The Macroscopic Fundamental Diagrams of each 

cycle of simulation are estimated and present the differences that emerged between the main 

macroscopic flow variables, flow, speed and density. As far as it concerns road safety, the 

number of conflicts is estimated before and after the recommendation, with a special focus on 

rear-end conflicts which mostly represent the impact of car-following behavior. Finally, with 

respect to the environmental impact, the amount of harmful air pollutants per vehicle is 

estimated.  
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The application of the proposed methodology required the development of numerous 

targeted scripts in both Python and R programming language. The implementation of the 

driving behavior identification methodology was mostly performed utilizing R programming 

language, while the Reinforcement Learning algorithms were developed in Python 

programming language, using various widespread packages such as Tensorflow, Numpy and 

Pandas. Additional details for the algorithmic implementation are given in the corresponding 

sections that follow. Moreover, several open-source software and tools were used to 

accomplish the objectives of this dissertation, and specifically, QGIS was used for the intuition 

and visualization of the data, SUMO (Simulation of Urban MObility) simulator was used to 

perform the simulations, large-scale data handling and xml files’ modification was performed 

through the Atom software and the Surrogate Safety Assessment Model (SSAM) was utilized 

for the estimation of crucial conflicts between vehicles. A graphical demonstration of the 

programming language and the software exploited in each step of the methodological 

framework is nicely offered in Figure 4-2.  
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Figure 4-2. Software and tools used in each methodological step. 
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4.1 Naturalistic Driving Data 

One of the main innovation aspects of this dissertation is the use of a large-scale naturalistic 

driving dataset which comes in contrast to traditional data sources such as driving simulations 

and on-road guided experiments. The corresponding data were collected from the OSeven 

application through smartphone crowd-sensing.  

 The Oseven platform 

OSeven Telematics is a company that works in the fields of insurance telematics and driving 

behavior analysis. Since 2015, OSeven has been developing a complete system for the 

recording, evaluation, storage, and visualization of driving data, enabled by machine learning 

algorithms, driving scoring models and gamification schemes. The data recording is carried 

out through the OSeven smartphone application for both iOS and Android operational 

systems. The application exploits smartphone’s embedded sensors in order to collect valuable 

data concerning among others trip characteristics, driving behavior, eco behavior and 

searching for parking behavior.  

The application which is always running in the background of the smartphone’s operating 

system, starts data recording at the beginning of every trip without requiring any user action. 

According to the OSeven algorithms, a trip is defined as the time period from the beginning 

of the driving task until a stop of driving of at least five minutes is detected. Data recording is 

conducted with a frequency of at least 1 Hz. Data are stored locally in each user’s device, until 

it is wirelessly transmitted to the OSeven backend office through WiFi or mobile network data 

(3G/4G), based on user’s preferred settings. All data stored in the OSeven backend system use 

advanced encryption and data security techniques in compliance with the national laws and 

EU directives for the protection of personal data (e.g., GDPR). The API used supports user 

authentication and encryption to prevent unauthorized data access. All data provided by 

Oseven are in a fully anonymized format. The data flow system of the OSeven platform is 

illustrated in Figure 4-3. 

 

Figure 4-3. Data flow on the Oseven platform 

Using a variety of criteria, the application starts to collect raw data from smartphone using 

accelerometer, gyroscope and GPS sensors. The accelerometer can record a smartphone’s 

acceleration in m/s2 in respect to gravity acceleration while the gyroscope records 

smartphone’s angular velocity in rad/sec. Finally, GPS data are collected to record the speed 
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of the vehicle and the coordinates of the vehicle. Since the application is using cloud-based 

services, after the automatic detection of the end of the trip, data are uploaded to the server 

for storage in an anonymized way and are ready for further process. First, data noise is 

excluded from the database using sophisticated data cleaning procedures, so that to correct 

the raw accelerometer data and specifically, to reorient the smartphone-referenced coordinate 

system in relation to the vehicle coordinate system (Vlahogianni and Barmpounakis, 2017a).  

This problem of identifying and correcting the positioning of a smartphone is treated by 

applying a dynamically updated reorientation algorithm which corrects the sensors’ signals to 

address the uncertainties that stem from the arbitrary positioning of smartphones inside 

vehicles based on the Euler’s rotation theorem (Vlahogianni and Barmpounakis, 2017a). 

 
Figure 4-4. Illustration of smartphone and vehicle coordinate systems and smartphone angular rotations 

Subsequently, data is converted into meaningful behavior- and safety-related parameters. 

Driving data processing results in the estimation of more than 400 metadata which include 

trip characteristics, driving behavior characteristics, parking characteristics and some more. 

These parameters along with additional data from external sources (e.g., maps) are 

subsequently exploited to implement individual driver’s statistics, on all different road types 

(urban, highway, etc.) and under various driving conditions, enabling the creation of a large 

database of driving characteristics. 

4.1.1.1 Some remarks on harsh events detection 

One of the most critical behavior which can be detected from driving data is aggressiveness. 

Within this dissertation, as well as in previous research that exploits data collected through the 

Oseven application, harsh events stand as the main index of driving aggressiveness. In order 

to detect aggressive driving tasks such as harsh acceleration, deceleration and cornering, the 

Oseven platform has developed sophisticated machine learning algorithms and data fusion 

techniques. Using accelerometer, gyroscope, and GPS related values, as input parameters, 

OSeven algorithms can detect harsh driving maneuvers with enough precision. It should be 

noted that the determination process of whether a driving maneuver constitutes a harsh event 

or not, does not rely on any predefined threshold or arbitrary rule, but instead has come as a 

result of a series of analyzes based on data fusion and advanced data mining techniques. The 
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reliability of the identified harsh events has been repeatedly evaluated over the years both on 

scientific and commercial contexts. 

 The data sample 

For the purpose of the specific research, the naturalistic driving database included 153,953 

trips made from 696 unique drivers from December 2017 to August 2019. It should be 

highlighted that the dataset was provided in an anonymized format, since the only available 

information for each user was an identifier that it cannot be connected with any personal data. 

The trips were performed all around Greece, nevertheless the majority of them were conducted 

within the Region of Attica. For each trip, a variety of variables are available which include 

statistical measurements of acceleration and deceleration during a trip, speeding 

measurements that describe smoothly and with speed excess driving, as well as mobile usage 

indicators that describe how cautious the driver is. Table 4-1 presents the driving parameters 

used in the specific research.  

Table 4-1. Driving parameters per trip 

Variable Description Unit 

harsh_acc_per_min   Average number of harsh accelerations performed per minute events/min 

acc_avg Average acceleration m/s2 

acc_std   Standard deviation of acceleration m/s2 

acc_q90 90% percentile of acceleration m/s2 

acc_max Maximum acceleration m/s2 

harsh_brk_per_min Average number of harsh decelerations performed per minute events/min 

dec_avg Average deceleration m/s2 

dec_std Standard deviation of deceleration m/s2 

dec_q90 90% percentile of deceleration m/s2 

dec_max Maximum deceleration m/s2 

speed_max Maximum speed km/h 

mbu Percentage of driving with mobile usage % 

speeding_percentage Percentage of driving with speed over the speed limit % 

 

The main characteristics of the dataset as they emerged from the analysis performed herein, 

are given in Table 4-2. 

Table 4-2. Main characteristics of the sample used in this research 

 Total Safe Unsafe 

Number of trips 153,953 66,566 87,387 

Number of drivers 696 197 499 

Average number of trips per driver 221 

Minimum number of trips per driver 16 

Average km travelled per driver 2,510 km 

 

Previous research has shown that there is a minimum amount of driving data that should be 

collected for each driver in order to obtain a clear picture regarding their own driving behavior 

(Stavrakaki et al., 2020). This amount of necessary data depends on a number of parameters 
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that include road type, driving aggressiveness, driving behavior volatility etc. An order of 

magnitude for the required number of kilometers traveled by a driver explicitly in an urban 

environment, in order to be able to study their driving behavior, is approximately 500 

kilometers (Tselentis, 2018). The statistical characteristics of the total amount of distance 

traveled for the drivers in the sample are presented in Figure 4-5. The average total driving 

distance per driver in the sample is 2,510 km, corresponding to an average of 63 hours of 

driving, while the corresponding distance in urban environment is 917 kilometers. 

  

Figure 4-5. Boxplots of the distance travelled in kilometres in total (left) and explicitly in urban 
environment (right) per driver in the dataset 

 Sample representativeness 

Α significant innovation aspect of this dissertation is the development of a novel data-driven 

framework which aims to identify individual driving behavior and build a personalized driving 

decision support system. On the one hand, the data-driven approach allows to recognize real 

patterns straight from the data contrary to other approaches that use arbitrary assumptions. 

On the other hand, the results emerged from a data-driven analysis are inextricably linked with 

the specific sample, and only under specific conditions they can be generalized for the entire 

population. In most cases it is unclear whether the sample used to train the model is 

representative of the corresponding population and also whether its characteristics (driving 

behavior in the specific case) are similar to those of other samples of different population, e.g., 

drivers from other countries. Therefore, two main issues may arise when following a data-

driven approach which refer to the generalization and transferability of the developed model 

and their outputs; yet the proposed methodological approach can still be transferable and 

easily interpretable to other samples as well, probably leading to different results. 

When relevant data become available, indicatively including drivers' personal information such 

as gender, age and driving experience, it is vital to evaluate and tune the proposed 

recommendation system in order to ensure that unbiased outcomes are produced. 

Nevertheless, the dataset used in this work is user-agnostic and fully anonymized, and thus 

the representativeness of the sample could not be assessed. 
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4.2 Driving Profiles Identification 

The first objective of this dissertation is to establish a methodological framework which can 

easily extract driving behavior profiles from raw smartphone sensed data. For this purpose, a 

clustering approach is implemented, and critical driving patterns are identified. All the 

necessary data processing and data filtering procedures as well as the clustering algorithm is 

implemented in R programming language using the RStudio environment. 

 Driving behavior per trip 

The identification of driving behavior during a trip is based on a two-level clustering approach. 

Specifically, as also proposed in (Mantouka et al., 2019), a two-stage k-means clustering is 

implemented on a selection of driving features such as: harsh events (acceleration and 

braking), acceleration and deceleration statistics (average, maximum and standard deviation), 

driving with excessive speed and distraction (mobile usage). The first level of clustering aims 

at isolating aggressiveness from the rest of unsafe driving patterns, as previous research has 

shown that although aggression is related with various unsafe driving habits, it does not 

necessarily imply an unsafe driving each self (Kockelman and Ma, 2018; Zahid et al., 2020). 

For the first level of clustering, the number of clusters is set to k=2 and clustering is 

implemented on Euclidean distance matrix. Two of the variables that are used for the above 

procedure describe the number of harsh alterations of the longitudinal position of the vehicle 

(acceleration and deceleration), while the rest of them are essentially indices of the average 

acceleration and deceleration of the trip. The results of this first implementation of the k-

means clustering are presented in Table 4-3. 

Table 4-3. 1st level clustering results 
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Aggressive trips 0.150 0.2081 1.748 1.525 3.847 -1.968 1.843 -4.547 71263 

Non-aggressive trips 0.028 0.051 1.137 1.052 2.503 -1.282 1.286 -2.926 82690 

 

Based on the clusters’ centers, the trips can be distinguished between aggressive and non–

aggressive driving, since trips belonging to the first cluster are featured by aggressive driving 

characteristics, such as great acceleration and deceleration metrics and significantly higher 

rates of harsh events per minute of driving. The figure below (Figure 4-6) shows the relations 

between the variables used for clustering the data into two groups, as well as the way the 

observations are distributed between the two clusters. 
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Figure 4-6. First stage clustering results: Clusters based on pairs of all variables 
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The performance of the clustering algorithm was assessed using the silhouette index which in 

this case was estimated 0.46 while the dunn’s index was 4.18 ∙ 10−5, indicating that well-

separated clusters were achieved (Figure 4-7). 

 
Figure 4-7. Depiction of first stage clustering results. The two components explain 82.37% of the point 

variability. 

The second level of k-means clustering was applied separately to the two groups that emerged 

from the first level of clustering using two driving parameters: the percentage of driving with 

mobile usage and the percentage of driving with speed over the speed limit. Results of this 

second level of clustering are presented in the table below. 

Table 4-4. 2nd level clustering results 

 Percentage of 

mobile usage 

Percentage of driving with 

speed over the speed limit 
Number of trips 

Aggressive trips 

Distracted 0.511 0.062 4505 (2.9%) 

Aggressive 0.019 0.032 54394 (35.3%) 

Risky 0.023 0.269 12364 (8%) 

Non-aggressive trips 

Risky 0.021 0.306 12494 (8.1%) 

Moderate 0.014 0.029 66566 (43.2%) 

Distracted 0.514 0.057 3630(2.4%) 

 

The resulting clusters seem to reveal richer driving profiles: distracted driving is recognized by 

higher values of the percentage of mobile usage while driving, while risky driving is identified 

through higher values of percentage of driving with speed over the speed limit. The two 

remaining clusters which have the lower values in both measures are annotated as “aggressive” 

and “moderate” for the aggressive and non-aggressive trips subsets respectively.  

Regarding the performance of the second level of clustering, the silhouette index was 

estimated 0.52 in the case of the data subset that includes the aggressive trips and 0.55 for 

the non-aggressive trips, while the dunn’s index was 5.57 ∙ 10−5 and 2.44 ∙ 10−5 respectively. 
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Figure 4-8. Depiction of second stage clustering results 

 Some discussion on driving behavior 

The analysis performed on the real driving patterns highlighted the complexity of driving 

behavior and additionally, the variety of parameters that can define it. In this section, the most 

significant outcomes regarding the characteristics that govern driving behavior together with 

the differences that appeared between the identified driving profiles are discussed. 

Findings revealed that, as shown in Figure 4-9, and in line with previous research, speeding 

behavior is much more severe in the case of non-aggressive trips, which indicates that 

aggressiveness does not necessarily imply an unsafe behavior such as driving over the speed 

limit (Kockelman and Ma, 2018). For this reason, some studies have distinguished between 

aggressive driving and driving that may be dangerous but not necessarily aggressive with 

regards to the driver’s intentions (Richer and Bergeron, 2012; Zahid et al., 2020). 

 

Figure 4-9. Cluster centers of the second level of clustering for both aggressive and non-aggressive trips 

In order to give the complete picture of risk-taking while driving, the statistical characteristics 

of speeding percentage were calculated and they are presented for all trip profiles in Figure 
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4-10. Noteworthy differences can be observed between the profiles, where the greater values 

and amplitude of speeding percentage appears on the so-called “risky” profiles. Interestingly, 

risk taking is slightly impaired in the case where the drivers also exhibit aggressiveness 

(aggressive-risky profile) as well. 

 

Figure 4-10. Boxplot of speeding percentage for each driving profile 

Figure 4-11 shows the descriptive statistics of the average acceleration of the six identified 

profiles. Significant differences appear especially when comparing aggressive with non-

aggressive driving profiles. The three aggressive profiles have greater average acceleration 

metrics, while non-aggressive profiles present a more condensed boxplot. Such findings 

indicate that acceleration decisions can be considered as the most appropriate indicator of 

one’s personal driving style as they are only dependent on the driver’s perception and 

preference between smoothly or harshly accelerating. Indeed, in recent literature, a driver’s 

driving style is usually defined by their acceleration profile (Zhang et al., 2020; Fafoutellis et al., 

2021). Liu et al. (2019) claimed that studies on acceleration behavior could enhance human-

like driving ability of the driving automation systems and autonomous vehicles. 
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Figure 4-11. Boxplot of average acceleration for each driving profile 

On the contrary, the selection of the appropriate speed is highly correlated with the road 

geometry and road traffic. More specifically, the road speed limit value has a significant impact 

on driving speed, and thus, a driver will choose to increase or decrease speed based on this 

value (Hamzeie et al., 2017; Liu et al., 2020). Previous research has also shown that other critical 

determinants of drivers’ speeding behavior are the road illumination, the presence of 

horizontal curves and longitudinal slope changes (Sadia et al., 2018). Other researchers also 

have shown that speed choice is affected by route familiarity and more precisely, speed 

increases with the repetition of driving on the same route (Colonna et al., 2016). 

Finally, deceleration decisions are usually dependent on the leading vehicle’s behavior and 

traffic signals. A great body of literature has analyzed drivers’ deceleration behavior at 

signalized intersections, with a great focus on the onset of a yellow-phase transition (El-

Shawarby et al., 2007, 2011; Rittger et al., 2015). More recent literature has also developed 

emergency braking systems for electric and autonomous cars, which are able to detect the 

environment and perform emergency decelerations if necessary (Cicchino, 2017; Min et al., 

2019). This fact implies that in some cases deceleration decisions are highly correlated with 

exogenous parameters, such as the existence of other road users (pedestrians, cyclists, etc.), 

the behavior of the leading vehicle, unexpected events and many more (El-Shawarby et al., 

2007; Angkititrakul et al., 2009). 
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 Average driving behavior per driver 

In order to separate drivers into groups with the same driving preferences, an average driving 

profile of each individual was identified by applying a simple rule. All four driving profiles 

indicating an unsafe driving behavior (Risky, Distracted, Aggressive-risky, Aggressive-

distracted) were grouped as the worst class (3), aggressive trip profiles constitute the second 

class (2), while trips with typical characteristics belong to the first class (1), as shown in Figure 

4-12. For each individual driver, an average from all their trips is estimated and drivers are 

separated into two main groups based on their average behavior, as follows: 

• Moderate/typical drivers: trip average ≤ 1.5 

• Reckless drivers: trip average > 1.5 

 

Figure 4-12. Trip profile grouping for drivers’ average driving profile estimation 

For each individual driver, an average of the annotations from all their trips is estimated, where 

trip average less than 1.5 implies a moderate/typical driver and trip average greater than 1.5 

refers to reckless drivers. Based on the statistics presented in Figure 4-13, trip average less 

than 1.5 indicates that at least 60% of the trips performed by a driver are characterized by 

“moderate” driving behavior. In order for the developed controller to be as adaptive as 

possible to each individual’s behavior, the proposed framework should be very strict when 

characterizing a driver as “typical/moderate” in order to avoid suggesting changes in behavior 

that the driver himself is impossible to follow as they will be far from his own average behavior. 
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Figure 4-13. Average percentage of trips of each driving profile for different ranges of drivers’ trip 

average score 

4.3 Building the RL Controllers 

The recommendation system proposed within this dissertation is basically a decision support 

system for drivers that aims at mitigating aggressiveness and riskiness. Its development is 

based on a Reinforcement Learning algorithm which is capable of producing the optimal 

behavior alteration for each driver given the way they have drove over their last trip.  

 Conceptual design 

Driving is a complex task since it requires from the driver to take both strategic and dynamic 

decisions as well as adapt their behavior to emerging conditions of the network. Contrary to 

the already developed ADAS, the system here has the following three state-of-the-art 

characteristics: 

1. It is personalized, which means that it recommends the best driving actions to each 

individual taking into account their specific requirements and driving preferences. 

2. It is self-aware, which means that the system takes into account previous behavior of 

each individual driver in order to propose the most suitable driving recommendations.  

3. It is autonomous, meaning that it does not require any external input from the network 

or the traffic. Driving recommendations aim to improve individual driving behavior on 

its core, namely acceleration and deceleration decisions.  

In order to develop the Self-Aware Driving Recommendation Assistant (SADRA) which is 

proposed here, a structured procedure is followed. First, the total trip database is divided into 

two, based on the average driving profile of each driver. In particular, the first database 

includes the trips of all drivers belonging to the "typical-safe" drivers, while the second includes 

all the trips of drivers with unsafe average driving behavior. For the sake of brevity, from this 
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point on, the RL controller that corresponds to the “typical” drivers is referred to as SADRA – 

I, while the corresponding controller for the reckless drivers is referred to as SADRA – II 

respectively. 

 Problem setup 

Every RL agent consists of three main components: states, actions and rewards. In each 

timestep the agent observes the current state of the environment and takes the appropriate 

action from the set of the possible actions. Then, the agent receives a reward which measures 

the success or failure of the agent’s actions for the given state.  

In this study, the environment states are defined through a five-dimensional vector that 

describes how a driver drove during their trip and includes trip’s average acceleration (aavg), 

90% percentile of acceleration (a90), average deceleration (davg), 90% percentile of deceleration 

(d90) and percentage of driving with speed over the speed limit (speeding): 

𝑠 = {𝑎𝑎𝑣𝑔, 𝑎90, 𝑑𝑎𝑣𝑔, 𝑑90, 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔} (15) 

Our recommendation system is not context-aware which means that its ultimate goal is to 

improve individual’s personal driving style independently from the road setting they are 

driving in (type of road, traffic conditions, etc.). The selection of the appropriate speed is not 

independent from the road geometry and road traffic, as well as deceleration decisions are 

not always independent from the leading vehicle’s behavior and traffic signals. Therefore, the 

only parameter that purely describes one’s driving style is the acceleration, as it is only 

dependent on the driver’s perception and preference between smoothly or harshly 

accelerating. Indeed, in recent literature, a driver’s driving style is usually defined by their 

acceleration profile (Zhang et al., 2020; Fafoutellis et al., 2021). To this end, actions that the 

system produces and are proposed to the driver belong to a continuous action space which is 

defined by a two-dimensional vector including a change in average acceleration and in the 

90% percentile of acceleration, which define the usual/preferred acceleration for the entire trip 

in regular situations and the value that should not be exceeded, e.g., when performing 

overtaking maneuvers, except from cases of emergency: 

𝑎 = {𝑑𝑎𝑎𝑣𝑔, 𝑑𝑎90} (16) 

For the sake of simplicity from hereon, the 90% quartile of the acceleration may be equally 

referred to as “maximum acceleration”. 

A key component of the RL agent is the reward function. The aim of the reward function is 

twofold; to evaluate the current state and the transition between states. In other words, the 

driving behavior at each trip, as well as the change in driving behavior between successive 

trips of the same user are evaluated. For this purpose, a custom driving evaluation function 

had to be constructed first. The score of each trip was estimated by the distance of this specific 
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trip from the center of the moderate profile (the center of the cluster), in order to quantify how 

far each individual’s behavior is from the typical (moderate) behavior. The values of each 

driving behavior parameter that correspond to the “moderate” profile are shown in Figure 

4-14, together with the minimum and maximum values of each parameter as they were 

observed in the data. 

 
Figure 4-14. Typical driving profile center in relation to the minimum and maximum values of the driving 

parameters. 

For the purpose of this analysis, the Mahalanobis distance is used to estimate the distance 

between each trip and the moderate profile. The Mahalanobis distance between two objects 

is defined as follows (Varmuza and Filzmoser, 2016): 

Ɱ = √[(𝑥𝐵 − 𝑥𝐴)𝑇 ∗ 𝐶−1(𝑥𝐵 − 𝑥𝐴)] (17) 

where 𝑥𝐴and 𝑥𝐵 is a pair of objects, and C is the sample covariance matrix. In contrast to the 

Euclidean distance, the Mahalanobis distance takes into account the correlation structure of 

the data as well as the individual scales (Barnett and Lewis, 1994). 

The 75% of trips abstain up to 11.11 from this moderate profile, while there is a small number 

of trips that appear to have extreme distances from this average driving behavior. The statistics 

of the estimated Mahalanobis distance are presented in Table 4-5. 
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Table 4-5. Descriptive statistics of the mahalanobis distances 
Statistic measure Value 

Minimum 0.13 

1st quartile (25%) 2.96 

Median 5.57 

Mean 10.67 

3rd quartile (75%) 11.11 

Maximum 3677.81 

skewness 44.76   

kurtosis 3545.31 

se 0.08 

The estimated mahalanobis distances (Figure 4-15) are exploited in an exponential function, 

where the more negative the exponent, the steeper the graph and consequently the more 

unsafe behavior the more negative the trip score is. Consequently, using such a formula, the 

difference between the profiles is very well-defined. 

 
Figure 4-15. Mahalanobis distance distribution per trip profile 

Finally, trip evaluation is performed on the basis of the following formula: 

𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑒
−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 ∗ 

Ɱ(𝑖,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒)  

𝑄75(Ɱ)  (18) 
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where i is an individual trip and Ɱ is the Mahalanobis distance. Here, the 3rd quartile of the 

Mahalanobis distance is used instead of the maximum value in order for the score function to 

be stricter with drivers whose behavior excludes more than 75% of the typical (moderate) 

behavior. A graphical representation of the score function is given in Figure 4-16. 

 

 

Figure 4-16. 3D and 2D graphical representation of the score function 

The score is scaled from 1 – 100 so that it can be easily interpreted within the rest of the 

algorithms. The greater the trip score the better (less aggressive and risky) the driving behavior 

of the specific trip is. The distribution of the trip score per driving profile is illustrated in Figure 

4-17. 
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Figure 4-17. Total trip score distribution per trip profile 

Finally, the reward function for a driver moving from one trip to the next one was established 

based on the following formula: 

𝑟 =  𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖+1 (1 +
𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒i+1 − 𝑡𝑟𝑖𝑝 𝑠𝑐𝑜𝑟𝑒𝑖

100
 ) (19) 

Once the main components for the development of the RL controllers were estimated, the 

data were organized in the following format: 

(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒) (20) 

For every unique driver in the dataset, their trips were sorted in an ascending order according 

to each trips starting date. The training samples were tuples of sequential trips of a specific 

driver along with the corresponding action and reward of the transition from the first trip to 

the succeeding one. It should be noted that for every distinct driver in the dataset, their first 

trip was used only as “state” while their last trip of was used only as “next state”. Following this 

data preparation procedure, 33,440 unique data samples were constructed for training SADRA 

I and 119,817 unique data samples were used for the training process of SADRA II. 
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Data preparation and filtering are performed in Python programming language and several 

scripts are written in order to prepare the data in the appropriate format for training the RL 

agents. Reinforcement Learning algorithms are also developed in Python programming 

language. Coding is applied using Anaconda Environment (Spyder), for Python & scientific 

development. The computer used for the computation time estimation is an Intel® Core™ i7 

CPU K 875 @ 2.93GHz × 8 featuring a 32.0 GB Ram memory running on Windows 10Pro. 

 Model development 

In Deep Learning, searching for the optimal structure of a Neural Network model and tuning 

its hyperparameters is a very crucial task that may significantly improve the model’s 

performance. This section presents the results obtained after performing an exhaustive grid 

search to conclude to the final architecture of the two networks, namely actor and critic. 

Specifically, all possible combinations of the networks’ structures and parameterization, within 

a range of reasonable values, have been examined and compared in order to detect the 

optimal one. The parameters that were taken into consideration are: number of hidden layers, 

number of neurons and activation of each layer, optimization algorithm and learning rate, 

batch size and number of training epochs. 

 

4.3.3.1 Typical drivers’ controller – SADRA I 

The RL controllers are developed based on the DDPG algorithm which implements an actor-

critic approach to learn a policy and produce the optimal actions. Thus, for each controller two 

neural networks are developed; representing the actor and the critic respectively. In this 

section, the structure of the first version of the RL controller (SADRA I) that corresponds to 

drivers with a typical/safe average behavior is given.  

First, instead of starting with a random network, an initial training of the networks is performed 

using only the rewards. Then, both the critic and actor networks are trained using the 

hyperparameters presented in Table 4-6, emerged after an exhaustive grid search. The results 

of the grid search over the hyperparameters of the neural networks are presented in the figures 

below, both for the critic (Figure 4-18, Figure 4-19) and the actor network (Figure 4-20, Figure 

4-21).  

Critic network 

 

Figure 4-18. Validation loss versus max number 
of neurons for critic network – SADRA I 

 

Figure 4-19. Validation loss versus number of 
epochs for critic network – SADRA I 
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Actor network 

 

Figure 4-20. Validation loss versus max number 
of neurons for actor network – SADRA I 

 

Figure 4-21. Validation loss versus number of 
epochs for actor network – SADRA I 

The critic network, which estimates the Q-value for any given pair of (state, action), has an 

autoencoder-like architecture with six hidden layers, a 7-units input layer and 1-unit output 

layer, as depicted in Figure 4-22. The actor network, which estimates the best possible action 

for any given state, consists of three hidden layers, a 5-units input layer and a 2-units output 

layer. The rectifier linear unit activation function (ReLU) has been used for the neurons of all 

layers, for both networks. The model was fitted using the Adam optimizer with a learning rate 

equal to 0.001 for the critic network and 0.0001 for the actor network, for a training period of 

200 epochs and a batch size of 150. 

Table 4-6. Hyperparameters of Critic and Actor Networks (SADRA-I) 
Hyperparameters Critic network Actor network 

Number of hidden layers 6 3 

Number of neurons per layer (64,32,16,16,32,64,1) (128,64,32,2) 

Epochs 200(initial network:110) 200(initial network:110) 

Batch size 150(initial network:150) 150(initial network:150) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.001 0.0001 

 
Figure 4-22. Architecture of the Critic Network – SADRA I 
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Figure 4-23. Architecture of the Actor Network – SADRA I 

Once the hyperparameters for both the critic and the actor networks are defined and the 

structure of the two neural networks is formed, the DDPG model is trained using 33,440 data 

samples corresponding to arrays of successive trips performed by 197 unique drivers. 

The performance of the neural networks is evaluated using the Mean Squared Error as an 

evaluation metric. Results shown in Figure 4-24 reveal that the two networks converge after a 

number of epochs. 

 
Figure 4-24. Critic and Actor network performance corresponding to SADRA I  

The trained model of this first version of the RL controller (SADRA I) can be used to generate 

driving recommendation for drivers that exhibit a safe overall driving behavior. The results of 

the controller are discussed later on, in comparison with the outcomes of the unsafe drivers’ 

controller. 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 135 - 

 

4.3.3.2 Unsafe drivers’ controller – SADRA II 

In this section, the structure of the second RL controller is given, which corresponds to drivers 

that perform a variety of unsafe driving behaviors during their trips. 

Figure 4-25 and Figure 4-26 depict the loss curves of the critic network for SADRA II, that 

corresponds to the unsafe drivers’ RL controller, as they emerged after the grid search 

performed over the hyperparameters of the network. Based on the results presented in Figure 

4-25, the maximum number of neurons used on the first and last layer of the autoencoder 

structure of the critic network is 32 and as depicted in Figure 4-26, the appropriate number of 

epochs is 170. The rectifier linear unit activation function (ReLU) has been used for the neurons 

of all layers, for both networks. The model was fitted using the Adam optimizer with a learning 

rate equal to 0.0001. It should be noted that the hyperparameter tuning was performed for 

the initial network which was trained based solely on the rewards.  

Critic network 

 
Figure 4-25. Validation loss versus max number of 

neurons for critic network – SADRA IΙ 

 
Figure 4-26. Validation loss versus number of 

epochs for critic network – SADRA IΙ 

The corresponding loss curves for the actor network are depicted in Figure 4-27 and Figure 

4-28 for the maximum number of neurons in the input layer and the number of epochs 

respectively. The final architecture of the actor network is shown in Figure 4-30. 

Actor network 

 
Figure 4-27. Validation loss versus max number 

of neurons for actor network – SADRA IΙ 

 
Figure 4-28. Validation loss versus number of 

epochs for actor network – SADRA IΙ 
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According to the hyperparameter tuning conducted through the grid search, the appropriate 

hyperparameters for the actor network are as follows: maximum number of neurons for the 

input layer 128 and number of epochs 210. The neural network was fitted using the Adam 

optimizer with a learning rate equal to 0.0001 and a batch size of 250. Τhe corresponding 

hyperparameters of SADRA II are summarized in Table 4-7. 

Table 4-7. Hyperparameters of Critic and Actor Networks (SADRA II) 
Hyperparameters Critic network Actor network 

Number of hidden layers 6 3 

Number of neurons per layer (32,16,8,8,16,32,1) (128,64,32,2) 

Epochs 170(initial network:170) 210(initial network:210) 

Batch size 250(initial network:250) 250(initial network:100) 

Activation ReLU ReLU 

Optimizer Adam Adam 

Learning rate 0.0001 0.0001 

 
Figure 4-29. Architecture of the Critic Network – SADRA II 

 
Figure 4-30. Architecture of the Actor Network – SADRA II 

 

SADRA II was trained using 119,817 data samples corresponding to arrays of successive trips 

performed by 499 unique drivers. Using as loss function the Mean Squared Error it can be 

observed that both networks converge after a number of epochs (Figure 4-31). 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 137 - 

 

 
Figure 4-31. Critic and Actor network performance corresponding to SADRA IΙ 

The actor and critic networks for both the safe and unsafe drivers’ subsets were trained 

following the procedure of Algorithm 1.  

Algorithm 4: DDPG Algorithm implementation 

Initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) networks using rewards as Q-values 

Set the above as initial target networks (𝑄′ and 𝜇′) 

Split the sample into Μ minibatches 

for minibatch=1, Μ do 

   Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′) 

   Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))

2
𝑖  

   Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇
𝐽 ≈

1

𝑁
∑[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ∇𝜃𝜇

𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡
]

𝑡

 

   Update the target networks: 

𝜃𝑄′  ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′  ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′  

end for 

 

4.4 Simulation setting 

The quantification of the impact of adopting driving recommendations by all drivers on traffic, 

road safety and emissions was performed under a network-level microscopic simulation 

scenario. Simulation is a powerful tool for road traffic analysis and prediction. Microsimulation 

refers to the tracking of individual vehicle’s movements on a second or sub-second basis. Most 

of the traffic simulation tools are based on the idea that the speed of a vehicle depends on 
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the speed of the leading vehicle, which is the main idea of car-following models (Bieker-Walz 

et al., 2017).  

Here, the SUMO simulation software is used and its default car-following model, Krauss model. 

SUMO is an open-source microscopic road traffic simulation tool, which consists of several 

supportive applications (e.g., netconvert and netgenerate) designed to prepare the simulation 

scenario (Krajzewicz et al., 2012). It implements the car-following model of Krauss, a 

microscopic, space-continuous model based on the safe speed; the driver of the following car 

adopts a safe speed which allows them to adapt to the deceleration of the leading vehicle 

(Krajzewicz et al., 2005). 

 The case study of Athens 

The case study for the simulation experiments is the inner-ring network of Athens, Greece 

(Figure 4-32). The network was exported from the Aimsun simulation software and then 

imported on the SUMO microscopic simulator, with all the necessary changes. The network 

consists of 1,293 nodes/intersections and 2,572 edges. The total length of the network is 348 

kilometers. 

 
Figure 4-32. The Athens’ Road network  

Concerning the edges, 13 different edge types have been used, in order for the speed limits 

and the priority of the edges to be imported in SUMO. Regarding traffic lights, 440 traffic lights 

have been inserted manually on the Athens inner-ring network. The information about the 

traffic lights concerns the traffic light programs corresponding to the morning peak hour. In 

order for the network to be calibrated correctly, the following have been extracted from the 

Aimsun software: 

• Frank-Wolfe User Equilibrium path assignment results 
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• Counts for all the edges of the network in the peak hour 

• Total number of vehicles in the network during peak hour (approx. 86,000 vehicles) 

Said elements from the Aimsun simulator led the trip distribution procedure on the SUMO 

microscopic simulator. The calibration of the network led to the definition of 86,054 vehicles, 

achieving a total of 1,393,634 counts (97.47% of the total counts extracted from the Aimsun 

simulator) and a GEH value below 5 (GEH < 5) for 95.26%. 

 Scenarios setting 

Two distinct scenarios were designed both corresponding to the demand of the Athens’ Road 

network during the morning peak hour (8:00 – 9:00 AM). First, the initial conditions of the 

network are simulated in order to estimate the performance of traffic when vehicles move 

around, based on the characteristics that govern the six identified driving profiles. In order to 

ensure the robustness of the results, simulation was performed in 10 replications with ten 

different seed numbers. Stochasticity is an important aspect of reproducing reality in a 

simulation scenario, since it adds randomness over the distributions of difference aspects of 

the simulation (e.g., route distributions, vehicle type distributions).  

Subsequently, driving recommendations were produced offline for every served vehicle based 

on the way each vehicle performed their trip. The recommendations were produced from the 

corresponding RL controllers using as input the state of the trip (average acceleration, 90% 

percentile of acceleration, average deceleration, 90% percentile of deceleration, speeding 

percentage) and as output the optimal alteration of the maximum acceleration. It should be 

highlighted here that although the developed RL controllers produce a two-dimensional 

vector that includes alterations on both the average and the maximum acceleration, only the 

maximum acceleration was exploited during the simulation runs, since the Krauss model takes 

into account only the maximum values of acceleration and deceleration.  

Finally, a second simulation run was performed, where previously served vehicles follow the 

proposed recommendations, namely an alternation of their maximum acceleration, while the 

rest of the traffic follows the distribution among the six driving profiles.  

The behavior that implies each driving profile was simulated through the adjustment of the 

car-following model. The car-following model can be parametrized by a number of 

parameters: the maximum acceleration of the vehicle (accel), the maximum deceleration of the 

vehicle (decel), the maximum velocity of the vehicle (maxSpeed), the maximal physically 

possible deceleration for the vehicle (emergencyDecel) and the vehicles’ expected multiplicator 

for lane speed limits (speedFactor). At first, the current (initial) state of the road traffic is 

simulated in SUMO using the six defined driving profiles, whose parameters were introduced 

to the Krauss model of different vehicle types, as shown in Table 4-8.  
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Table 4-8. Car-following model parameters for each vehicle type 

Vehicle types  

(trip profiles) 

Car-Following Model Parameters 

accel decel emergencyDecel maxSpeed speedFactor 

(m/s2) (m/s2) (m/s2) (km/h) (mean, min, max) 

Moderate 2.519 -2.942 -5.909 64.51 (0.029, 0, 0.168) 

Aggressive 3.817 -4.483 -18.083 66.93 (0.033, 0, 0.151) 

Risky 2.392 -2.824 -5.328 100.28 (0.306, 0.1627, 0.96) 

Distracted 2.601 -2.990 -5.112 67.38 (0.057, 0, 0.631) 

Aggressive-risky 3.944 -4.825 -25.884 100.8 (0.269, 0.147, 0.907) 

Aggressive-distracted 3.939 -4.553 -10.845 71.99 (0.062, 0, 0.744) 

 

The speed factor follows a distribution based on the mean, min and max values, as they 

emerged from the clustering analysis. The length of a vehicle is set to 4.5 m and the minimum 

net gap between the leader and the follower is set to 2.5 m. Each vehicle type was also depicted 

with a different color, as shown in Figure 4-33. 

 

Figure 4-33. A screen capture of the simulation software depicting the different type of vehicles with 
different colors 

One of the main components of SUMO simulation tool is the route file, which holds a variety 

of information about the characteristics of the demand and specifically, the vehicle type which 

describes the vehicle's physical properties, the route each vehicle shall take, and the vehicle 

itself which gives information, among others, on the vehicle type, the departure time and the 

id of each vehicle. Both routes and vehicle types can be shared by several vehicles. For the 

initial state of the network, the six distinct vehicle types were created in a route file, with the 

corresponding car-following model’s parametrization. The route of each vehicle was also 

identified in the route file, as it was estimated from the path assignment of Aimsun.  

In one hour of simulation for the morning peak, about 58% of the total demand was inserted 

in the network and 28% of the vehicles completed their journey within this time. 
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Table 4-9. Number of vehicles over the 10 replications of the simulation – Before recommendation 

Replication Seed number Inserted vehicles Active vehicles Served vehicles 

1 1042 49480 25258 24222 

2 1043 49406 25706 23700 

3 1044 48998 25558 23440 

4 1045 50472 25791 24681 

5 1046 47532 24849 22683 

6 1047 50410 26041 24369 

7 1048 49822 25612 24210 

8 1049 50247 25717 24530 

9 1050 50166 25519 24647 

10 1051 48608 25191 23417 

Average 
49,514  

(58% of demand) 
25,524 

23,990  

(28% of demand) 

Subsequently, for each vehicle that reached their destination the following parameters were 

estimated for each trip: 

• average acceleration 

• 90% percentile of acceleration 

• average deceleration 

• 90% percentile of deceleration 

• speeding percentage 

These driving characteristics were used as input to the RL controllers which recommend the 

optimal action for each trip. For the second scenario of simulation, the exact same vehicles 

were used, which follow the exact same routes on the same road network, in order to estimate 

the impact of the recommendation. The proposed actions of each vehicle were introduced as 

a modification of the car-following model’s parameter in the route file. The adoption of this 

approach enabled hands-on implementation of the recommendation process with direct 

control over the outcomes. In this case as well, 10 replications with the same seed values as 

before, were performed to ensure the robustness of the results as presented in Table 4-10. 

Table 4-10. Number of vehicles over the 10 replications of the simulation – After recommendation 

Replication Seed number Inserted vehicles Active vehicles Served vehicles 

1 1042 49052 25642 23410 

2 1043 49449 25913 23536 

3 1044 48375 25508 22867 

4 1045 48092 25514 22578 

5 1046 48704 25517 23187 

6 1047 48153 25612 22541 

7 1048 49192 25687 23505 

8 1049 48421 25898 22523 

9 1050 49964 26201 23763 

10 1051 50470 25355 25115 

Average 
48,987  

(57% of demand) 
25,685 

23,302  

(27% of demand) 
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The detailed results of inserted, served and active vehicles revealed that in one hour of 

simulation 57% of the demand was served on average, while the corresponding percentage of 

served vehicles was reduced by 1% compared to the initial conditions. 

 Impact assessment through microsimulation 

Any novel policy, technology or service has to be assessed before its large-scale 

implementation on the road network. In the case of Intelligent Transportation Systems (ITS) 

and according to the nature of each proposed system, the effects of its application can be 

evaluated in respect to various network aspects, that include traffic efficiency, road safety, 

social inclusion and pollution (Kaparias et al., 2011). The literature demonstrates a detailed 

consideration of mobility and transport indicators which enables an efficient and 

straightforward monitoring of changes within a certain urban system.  

The driving decision-support system proposed within this dissertation can produce 

personalized recommendations for any driver on the network and therefore, the impact of its 

application will be estimated through aggregated measures of traffic and pollution conditions, 

as well as road safety. 

4.4.3.1 Overview and KPIs 

Impact assessment of the proposed system is performed using microsimulation and by 

following a before-after approach. Specifically, for both simulation cycles the Key Performance 

Indicators of traffic, safety and environmental conditions were estimated, and comparatively 

assessed so that to quantify the overall impact of adopting personalized driving 

recommendations which improve each individual’s driving behavior. The KPIs used in the 

analysis for each network’s aspect are presented in Table 4-11. 

Table 4-11. Key Performance Indicators for each network’s aspect 

Traffic Safety Environment 

Served demand Total conflicts 
Cumulative amount of emissions 

(CO2, CO, PMx, NOx) 

MFDs Total rear-end conflicts Emissions per vehicle 

 Conflicts per vehicle  

The estimation of traffic-related KPIs was dependent on the outputs of the simulation, which 

included the number of inserted and served vehicles, as well as edge-based information 

regarding the three fundamental elements of traffic flow theory (flow, speed and density). 

Instead of using aggregated measures of the fundamental variables, the Macroscopic 

Fundamental Diagrams were constructed and significant outcomes were drawn regarding the 

differences in the performance of the network before and after the application of the 

recommendation system. 

The estimation of the harmful air pollutants is based on the emissions’ model already 

integrated into SUMO, the PHEMlight model. PHEMlight is a simplified version of PHEM 

(Passenger car and Heavy-duty Emission Model), a complete vehicle emissions model 
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developed in Europe since 1999 (Krajzewicz et al., 2013, 2015). PHEM is based on extensive 

emission measurements on vehicles such as passenger cars, light duty vehicles and urban 

buses.  

The approximation of the conflicts that constitute an indicator for road safety is based on the 

SSAM tool, which is presented in details in the next chapter. 

4.4.3.2 Conflicts extraction with SSAM 

The Surrogate Safety Assessment Model (SSAM) is a software application designed to perform 

statistical analysis of vehicle trajectory data output from microscopic traffic simulation models. 

The software computes a number of surrogate measures of safety for each conflict that is 

identified in the trajectory data and then computes summaries (mean, max, etc.) of each 

surrogate measure. A great illustration of a conflict detected between two vehicles is depicted 

in Figure 4-34. 

 
Figure 4-34. An example conflict between two vehicles (Source: highways.dot.gov) 

The most important measures of safety of each conflict are the time to collision (TTC) and the 

post encroachment time (PET). TTC refers to the minimum time-to-collision value observed 

during a conflict. This estimate is based on the current location, speed, and trajectory of two 

vehicles at a given moment. PET is the minimum post encroachment time observed during a 

conflict. Post encroachment time is the time between when the first vehicle last occupied a 

position and the second vehicle subsequently arrived at the same position. A value of 0 

indicates an actual collision. Figure 4-35 presents the TTC and PET measures along with other 

safety performance measures of a conflict. 
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Figure 4-35. SSAM safety performance measures (Source: highways.dot.gov) 

There are three type of conflicts that can be identified using the SSAM: crossings, rear-ends 

and lane changes. Conflicts’ classification is mostly based on the conflict angle (θ), although 

link and lane information may be considered as well. A conflict angle is calculated for each pair 

of conflicting vehicles, based on the angle at which these vehicles converge to the potential 

collision point, as depicted in Figure 4-36.  

 
Figure 4-36. Conflict angle diagram 

In case where two vehicles have a conflict on the same link and lane, then the conflict is a rear-

end event regardless of the conflict angle. If both vehicles are on the same link and one of the 

vehicles changes lanes, then it is a lane-change event regardless of the conflict angle. However, 

link and lane information are not used if (a) it is not provided in the trajectory file, (b) the 
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vehicles are on differing links, or (c) either vehicle changed links over the course of the conflict 

event. In such cases, the conflict angle is used for classification as follows: 

• Rear end: ‖𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑎𝑛𝑔𝑙𝑒‖ < 30𝑜 

• Lane change: 30𝑜 ≤ ‖𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑎𝑛𝑔𝑙𝑒‖ ≤ 85𝑜 

• Crossing: ‖𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑎𝑛𝑔𝑙𝑒‖ > 85𝑜 

For the purposes of this research, the total number of conflicts are estimated as a Key 

Performance Indicator of road safety with the aim to evaluate the differences before and after 

the application of the recommendation system. A special focus is given on the rear-end 

conflicts, since the recommended driving actions refer to the car-following behavior of the 

driver, and no interventions are made into the lane changing model or the road infrastructure 

which are directly related with the lane changes and crossing conflicts respectively. 
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5 RESULTS AND DISCUSSION 

In this chapter, results emerged from the analysis are described and explained. Initially, a 

comparison between the results produced by the two RL agents is provided. Then, the impact 

of applying the recommendation system is assessed based on the findings revealed from the 

two cycles of microsimulation. Impact assessment is performed in the basis of several Key 

Performance Indicators with regards to traffic, safety and the environment. Finally, a critical 

discussion on the main results of this dissertation is provided. 

5.1 Driving recommendations 

The ultimate goal of this dissertation was to develop an inclusive methodological framework 

that incorporates two main functionalities: the identification of driving behavior and the 

provision of personalized driving recommendations. Advanced Deep Reinforcement Learning 

agents were trained for this purpose, enabling the generation of driving recommendations 

with respect to two categories of drivers; typical drivers who exhibit a moderate average 

behavior and unsafe drivers who interchange their behavior among various unsafe driving 

habits.  

The fitted models were used to produce recommendations for some indicative trips as shown 

in  Table 5-1. The RL controllers take as input the characteristics of a trip (average acceleration 

and deceleration, 90% quartile of acceleration and 10% of deceleration, percentage of trip with 

speed over the speed limit) and propose either an increase or a decrease in the maximum and 

the average acceleration. The produced alterations refer to the optimal driving actions that the 

specific driver can adopt based on their current behavior. In some cases, an increase in average 

or maximum acceleration or even both may be suggested, which may be due to a variety of 

facts: 

1. All the variables describing driving behavior are inextricably linked with each other and 

therefore, an increase in the acceleration value may involve the improvement of 

another critical driving parameter. In such a case, even the adoption of a higher 

acceleration may be a safer decision for the driver. 

2. According to the rationale of Reinforcement Learning algorithms, a proposed action 

corresponds to the best possible action that the specific driver could perform instantly, 

so that in the future they may progress into improved safer behaviors, given the way 

they are currently driving. 

Even from this small sample of trips, it is evident that both the RL controllers are trained to 

generate recommendations that move drivers closer to the average safe behavior of a typical 

driver, which has an average acceleration equal to 1.137 m/s2 and a maximum acceleration 

equal to 2.503 m/s2. For the indicative samples of  Table 5-1, the mean recommended average 

acceleration was estimated 1.145 m/s2, while the mean value of the proposed maximum 

accelerations was 2.507 m/s2 respectively. It can therefore be concluded that a universal 
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application of the proposed recommendation system would lead to the harmonization of the 

acceleration profiles for the entire fleet of vehicles. 

In the sections that follow, a discussion of the results of each version of the RL algorithm is 

provided based on targeted examples of trips and their corresponding recommendations.



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 148 - 

 

 Table 5-1. Example of RL input and output and the produced recommendations 
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 Typical drivers’ controller – SADRA I 

Personalization is an integral aspect of the proposed system as it is a key feature for all 

recommendation systems, since it can lead to higher acceptance rates and better user 

experience, and consequently to users’ long-term engagement with the system. For this 

reason, in this dissertation, special focus was given to the development of distinct controllers 

that produce personalized recommendations by matching users’ previous driving behavior to 

either of the two versions of the RL agent. Here, the outcomes of SADRA I are presented, which 

is the version of the RL agent that generates recommendations that correspond to a 

typical/moderate driving behavior. The RL controller can suggest either an increase or a 

decrease in the average and the maximum acceleration for the next trip of each driver. 

Indicative results for each of the dimension of the action vector are presented in Figure 5-1 

and Figure 5-2 which depict alterations in the average and maximum acceleration respectively, 

for a number of random trips. 

 
Figure 5-1. The difference between the first and the new state’s average acceleration after the 

recommendation produced from the RL typical controller. The increase of the average acceleration is 
depicted with red color, while the decrease is depicted with grey color. 

 
Figure 5-2. The difference between the first and the new state’s maximum acceleration after the 

recommendation produced from the RL typical controller. The increase of the maximum acceleration is 
depicted with red color, while the decrease is depicted with grey color. 
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It is evident that all drivers are guided towards the average safe behavior which emerged from 

the clustering procedure, but yet, every driver receives a different recommendation that 

perfectly matches their own driving behavior.  Therefore, a driver who had a very low value of 

maximum acceleration on their trip, they would be recommended to increase its value on their 

next trip. 

 Unsafe drivers’ controller – SADRA II  

The second version of the RL agent produces recommendations for drivers who exhibit an 

overall unsafe driving behavior during their trips. The application of the RL controller to a 

number of driving trips performed by drivers who drive in a more aggressive and unsafe 

manner, resulted in significantly safer accelerations. 

 
Figure 5-3. The difference between the first and the new state’s average acceleration after the 

recommendation produced from the RL unsafe controller. The increase of the average acceleration is 
depicted with red color, while the decrease is depicted with grey color. 

 
Figure 5-4. The difference between the first and the new state’s maximum acceleration after the 

recommendation produced from the RL unsafe controller. The increase of the maximum acceleration is 
depicted with red color, while the decrease is depicted with grey color. 
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 Output comparison of the controllers 

In this section the output of the two controllers is comparatively discussed. Through indicative 

examples of driving trips, the differences between the produced recommendations are 

presented, with the aim to highlight the importance of personalization as a core aspect of the 

proposed system. 

The interpretation of the results, as they are depicted in Figure 5-5 and Figure 5-6, indicates 

that the two controllers lead to different driving states. Although the recommendations of the 

controller concerning unsafe drivers (SADRA II) lead to significantly lower average 

accelerations for the next trip (next state) compared to the previous trip (initial state), they 

maintain a significant distance upwards for the respective recommendations produced from 

the typical drivers’ RL controller (SADRA I). Nevertheless, one should notice that both the 

controllers lead to a smoother acceleration profile for the entire traffic. 

 
Figure 5-5. Comparison of the new state’s average acceleration as it emerged from the Typical and the 

Unsafe RL controllers. 

The results concerning the maximum accelerations of the corresponding trips present a similar 

picture to that of the average accelerations. Αs before, recommendations produced from both 

controllers lead to a smoother profile though the SADRA II suggests greater maximum 

acceleration values than those produced from the controller of typical drivers (SADRA I). 
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Figure 5-6. Comparison of the new state’s maximum acceleration as it emerged from the Typical and the 

Unsafe RL controllers. 

These results are quite as expected, as each controller was trained using sequences of trips 

from drivers of the respective profiles (typical/unsafe) and, thus, it provides actions that are 

compatible with the corresponding driving styles. Furthermore, it is also what we aimed at, as 

a, for example, aggressive driver would not follow a recommendation for very smooth 

acceleration that would be very different from what they are used to.  

5.2 Application of the recommendation system 

The quantification of the impact of applying the proposed recommendation system and in 

consequence, of the adoption of an improved driving behavior by all drivers is of great 

importance both for researchers as well as practitioners and can lead to significant findings 

regarding the usefulness of improving individual driving behavior. The assessment of the 

recommendation system is performed by utilizing specific Key Performance Indicators that 

correspond to three areas of interest: traffic, safety and emissions.  

In this section, the results of applying the recommendation system will be presented and 

discussed, as emerged from a network-level traffic simulation using the calibrated Athens 

Road Network. Two rounds of the simulation scenario were performed corresponding to the 

initial state of the road network and the conditions after the application of the 

recommendations, respectively. Each of the simulation rounds was done in 10 replications to 

enhance the validity and robustness of the results. In total, the trained SADRA I controller was 

used to produce recommendations for 43% of the vehicles, while the rest of the vehicles 

followed the recommendations produced by SADRA II. Figure 5-7 graphically represents the 

number of inserted and served vehicles for both simulation rounds.  
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Figure 5-7. The number of served and active vehicles over one hour of simulation for the 10 replications 

All replications of the same simulation round present mutual results which are slightly reduced 

after the application of the recommendation system. A first glimpse on the results revealed 

that when vehicles follow the proposed recommendations the performance of the road 

network may be to some degree decreased, in the sense that less vehicles reach their 

destination within the one hour of simulation. On average, 2.9% less vehicles were served 

based on the results of the second round of the simulation. 

However, results of the statistical hypothesis test t-test indicated that there are no significant 

differences between the means of the served vehicles before and after the recommendations 

in 95% confidence interval. As shown in Table 5-2, the alternative hypothesis is rejected. 

Table 5-2 Paired t-test results for served vehicles 

 mean std t-value p-value 

Served vehicles – before 23989.9 655.7 
1.845 0.098 

Served vehicles – after  23302.5 783.1 

 

A greater investigation of the traffic flow properties together with aggregated metrics of 

driving behavior will be conducted to further quantify the potential impact on the other 

dimensions of the road network as well. The application of the personalized recommendation 

system had a substantial impact on the maximum acceleration of the vehicles, as shown in 

Figure 5-8. When all vehicles followed the suggestions generated by the two RL controllers, 

the mean value of the maximum acceleration was somewhat increased from 2.83 m/s2 to 2.96 

m/s2, mostly because the majority of the vehicles who adopted a very small maximum 
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acceleration, which was far lower from the corresponding acceleration of the 

“moderate/typical” behavior, they were suggested to slightly increase their acceleration. 

However, the condensation of the interquartile range is evident after the recommendations, 

which indicates the harmonization of the acceleration profiles of all vehicles in the simulation. 

Finally, the maximum value of the observed maximum accelerations remained at the same 

level of 3.94 m/s2 after the application of the proposed system.  

 
Figure 5-8. Boxplot of maximum acceleration before and after recommendation 

All the variables that describe driving behavior are inextricably linked with each other and 

therefore, the changes that were imposed on the acceleration of the vehicles after the 

recommendations, led to changes in the rest driving behavior parameters as well. As far as it 

concerns the average and the maximum speed performed by all vehicles in the simulation, 

several critical findings can be revealed when comparing the statistical characteristics of the 

two variables before and after applying the recommendations. Specifically, on the one hand, 

the differences observed in the magnitude of the average speed are minimal, since in both 

situations the vehicles adopt an average speed of around 25 km/h, while the maximum 

average speed that is observed is approximately 55 km/h. A summary of the statistic of the 

average speed is nicely depicted in Figure 5-9. 
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Figure 5-9. Boxplot of average speed before and after recommendation  

On the other hand, a noteworthy difference is evident mostly on the maximum values of speed 

where the majority of vehicles’ speed is concentrated around the mean value and the 

interquartile range is pointedly narrower than the corresponding values of the initial conditions 

of the network (Figure 5-10). Such findings can be thought as anticipated considering the fact 

that the proposed recommendation system eliminates the extreme accelerations and generally 

smooths out the accelerations for the entire traffic. It can be concluded that the harmonization 

of the maximum accelerations led to a corresponding normalization of the maximum speeds.  

 
Figure 5-10. Boxplot of maximum speed before and after recommendation 

Alterations on the speed of vehicles resulted on changes of the rest traffic flows properties, 

namely flow and density. Microscopic fundamental diagrams were calculated to provide a 

thorough graphical representation of these variables’ relations for the initial conditions as well 

as the conditions emerged after the recommendations. All three fundamental diagrams (Figure 

5-13, Figure 5-12, Figure 5-13) demonstrate the relationships between traffic flow properties, 

namely mean vehicle flow, mean density and mean speed, as they emerged from the 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 156 - 

 

simulation based on aggregated measurements of all edges for the 10 replications. Results 

indicate that the implementation of self-aware driving suggestions although it leads to safer 

and less aggressive driving behavior for each individual, it does not improve the performance 

of the road network. More specifically, self-improvement is evident from the lower mean 

density values which indicates that vehicles keep greater distances from the leading vehicles. 

Additionally, lower speeds are also observed after the adaptation of the recommended 

accelerations with the difference from the initial conditions being more significant in the case 

of saturated network flow (Figure 5-13).  

 
Figure 5-11. Fundamental diagram of speed-density before and after driving recommendations, based on 

simulation results 

Individual driving safety is augmented, yet the impact on traffic conditions is not similarly 

positive. The vehicles that move at lower speeds and with a lower density worsen traffic flow 

conditions, since fewer vehicles are served per time unit compared to the initial conditions. 

Nonetheless, this decrement of mean flow may be considered acceptable if assessed in 

conjunction with the positive effects on driving safety. However, based on the findings of this 

research, it can no way be concluded that the improvement of personal driving behavior is 

associated with a significant improvement in traffic conditions and therefore, the imposition 

of soft policy measures, such raising self-awareness with respect to individual driving safety 

and performance, it cannot be considered as a key measure for traffic management. 

The fundamental diagram of flow-density seems to depict a uniformity between the initial and 

the final conditions, although some minor differences are observed with respect to the 
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absolute value of capacity flow. Specifically, for the value of critical density, which was 

estimated 33.1 veh/km, the corresponding values of traffic flow are 360 veh/h and 358 veh/h 

for the initial conditions and after the recommendations respectively. 

 
Figure 5-12. Fundamental diagram of flow-density before and after driving recommendations, based on 

simulation results 

The flow-speed diagram is used to determine the speed at which the optimum flow occurs. 

For the initial conditions of the road network, the optimum flow occurs when vehicles move 

with 26.1 km/h, while the corresponding speed after the recommendation is reduced 3.4% 

with its absolute value estimated 25.2 km/h.  
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Figure 5-13. Fundamental diagram of flow-speed before and after driving recommendations, based on 

simulation results 

Except for the performance of the network, another key performance indicator is safety. 

Improved driving safety was evident from lower values of density which indicated that vehicles 

kept greater distances from the leading cars, and additionally, from the lower observed mean 

speed. The assessment of the applied recommendations with respect to safety was performed 

by calculating the number of conflicts occurred between the vehicles during the simulation. 

The detection of the critical conflicts was performed using the SSAM tool which was fed with 

the trajectories of the vehicles as they emerged from the two cycles of simulation. Table 5-3 

presents the number of conflicts that were observed for the entire traffic before and after the 

recommendation. There are three types of conflicts that can be identified from vehicles’ 

trajectories, which are crossings, rear-ends and lane changes. Here, a special focus on rear-

ends is given since the proposed recommendations only affect the car-following behavior of 

each driver. Results presented in Table 5-3 indicate that the application of a driving 

recommendation system significantly improves road safety. 

Table 5-3. Safety performance indicators in Athens Network before and after applying driving 
recommendations 

 Initial conditions After recommendation [% difference] 

Vehicles served 

(in one hour of simulation) 

23,990  

(27.88% of demand) 

23,302  

(27.08% of demand) 

Total number of 

conflicts 

2.86 conflicts/vehicle 2.75 conflicts/vehicle [-4.2%] 

Rear - ends 2.01 rear-ends/vehicle 1.90 rear-ends/vehicle [-5.5%] 
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A reduction of 4.2% of the total number of conflicts was observed when vehicles followed the 

corresponding driving recommendations, while the corresponding percentage of elimination 

for the rear-end conflicts is 5.5%. Although these percentages may not seem very high, the 

absolute number of conflicts that was calculated after the recommendation is significantly 

reduced by approximately 6,000 conflicts for the one hour of simulation. Rear-ends constitute 

about 33% of the total number of conflicts, which indicates that each driver gets involved in 

all different kind of conflicts during driving. The detailed table with the results for both before 

and after the implementation of the system of recommendations conditions is given in Table 

5-4. 

Table 5-4. Number of conflicts before and after the recommendations 

Rep. 

BEFORE AFTER 

Total number 

of conflicts 
Rear-ends Conflicts/vehicle 

Total number 

of conflicts 
Rear-ends Conflicts/vehicle 

1 130169 44111 2.63 129314 43168 2.64 

2 149844 48800 3.03 132268 43481 2.67 

3 142947 47774 2.92 130606 41701 2.70 

4 134756 46084 2.67 128406 44226 2.67 

5 156078 53508 3.28 147744 47135 3.03 

6 124487 42273 2.47 118456 41663 2.46 

7 146748 50553 2.95 144624 46605 2.94 

8 138355 47460 2.75 129545 42240 2.68 

9 144159 49698 2.87 135286 44931 2.71 

10 147855 51174 3.04 149530 47614 2.96 

In the case of conflicts, the statistical hypothesis test t-test indicated that there is a significant 

difference between the means of both the total conflicts and the rear-ends before and after 

the recommendations. As presented in Table 5-5, the alternative hypothesis is accepted in a 

99% confidence interval, especially for the rear-ends conflicts which is the main KPI for the 

specific research in terms of the impact on road safety. 

Table 5-5 Paired t-test results for conflicts 

 mean std t-value p-value 

Total conflicts – before 141539.8 9617.2 
3.898 0.004 

Total conflicts – after  134577.9 9834.7 

Rear ends – before  48143.5 3369.5 
5.860 <0.001 

Rear ends – after  44276.4 2227.0 

Some indicative results on the impact of the proposed recommendation system on emissions 

is provided. The corresponding Key Performance Indicator is the level of emissions for all 

different kind of air pollutants, namely Carbon Dioxide (CO2), Carbon Monoxide (CO), 

Particulate Matter (PMx) and Oxides of Nitrogen (NOx). A significant reduction in all categories 

of emissions is observed compared to the initial conditions of the network, as shown in Table 

5-6. Findings revealed that the homogenization of acceleration profile for the entire traffic has 
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led to a slightly reduced emissions per vehicle. Specifically, the reduction in all categories of 

emissions is estimated as follows: 2.5% in CO2, 0.3% in CO, 1.3% in PMx and 3.3% in NOx. It 

should be noted that this improvement in the environmental conditions is very important since 

the proposed recommendation system had a positive impact on emissions despite the fact 

that the controller was not trained towards this direction.  

Table 5-6. Difference in vehicle emissions before and after applying driving recommendations 
Emissions Initial conditions After recommendation [% difference] 

CO2 0.704 kg/vehicle 0.686 kg/vehicle [-2.5%] 

CO 0.027 kg/vehicle 0.026 kg/vehicle [-0.3%] 

PMx 0.0133 g/vehicle 0.0131 g/vehicle [-1.3%] 

NOx 0.296 g/vehicle 0.287 g/vehicle [-3.3%] 

To sum up, the application of a system that provides personalized recommendations for 

improved driving on a network-wide level leads to the harmonization of the acceleration 

profile for the entire traffic. The adoption of uniform accelerations from the vehicle fleet 

resulted in the occurrence of lower mean and maximum speeds in the network. It was also 

observed that when vehicles followed the proposed recommendations and they accordingly 

adapted their acceleration, greater distances were kept from the leading vehicles, which led to 

in lower mean density values. For these reasons, slightly less vehicles were served in the 

network for the same period of simulation time. Therefore, it can be concluded that the 

proposed system improves the performance of each driver individually without leading to 

improvements in the traffic flow conditions for the network. Instead, traffic conditions seem 

to get slightly worse after the system has been implemented. 

Contrary to the impact on traffic, the proposed recommendation system has a significant 

positive impact on driving and road safety. Driving safety is enhanced since each individual 

driver is being recommended the best action that they can perform based on their current 

driving state. Improvements in road safety are evident from the lower rate of conflicts that 

correspond to each vehicle when the initial conditions of the network are compared to those 

after the recommendation. Specifically, the harmonization of the acceleration profile of the 

fleet resulted in a reduction of 4.2% of the total number of conflicts, while the corresponding 

percentage for the rear-end conflicts was 5.5%. The significant reduction of the rear-ends is of 

great importance since such conflicts are the result of the driver's car-following behavior in 

which interventions are made through the implementation of the recommendation system. 

Finally, a noteworthy lessening in the level of emissions for all different kind of air pollutants 

is observed when vehicles follow the proposed recommendation. It should be highlighted 

once again that although results regarding the emissions are presented here for the sake of 

completeness, they are not further discussed in detail since no interventions was made by the 

proposed system in the emission model, on the contrary, their estimation was based solely on 

the default model available in SUMO simulation software. 
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5.3 Main results and discussion 

The summary of the results shaped by this research includes key points in the following axes: 

• Driving profiling 

• Model development 

• Driving recommendations 

• Impact assessment 

First, using a two-level clustering approach, it was feasible to identify and distinguish between 

aggressive and non-aggressive driving behavior, and subsequently, to detect six driving 

behaviors that a driver can exhibit during their trip. Spanning from the typical – safe behavior, 

to aggressive driving and unsafe – reckless driving, the entire range of driving behavior was 

detected and the six driving profiles were used to annotate the behavior of each driving trip. 

Further investigation of driving behavior on a user level has highlighted the existence of two 

main driver categories; the first one includes drivers that mostly perform a moderate driving 

behavior free from aggressiveness and reckless driving, while the other one refers to drivers 

who mostly exhibit several unsafe behaviors during driving. 

Then, it was shown how Deep Reinforcement Learning algorithms can be exploited in order to 

determine optimal policies for each individual driver so that to improve their driving behavior. 

It should be noted that this is the first time that naturalistic driving data are used within the 

framework of RL algorithms with the aim to produce actions for real driving. The models 

developed were based on the Actor-Critic RL approach, where two neural networks were 

trained; the first one estimates the Q-values for all possible actions and the other one matches 

the states with the corresponding best action. All neural networks converged after a number 

of epochs and were able to produce driving recommendations that improve driving behavior 

both in the short- and long- term. 

Two distinct RL controllers were trained, each corresponding to a specific group of drivers, so 

that to match suggested driving actions to individual driving preferences. Findings revealed 

that for the same driving state the two agents produce different recommendations. 

Specifically, both controllers lead to the harmonization of the acceleration profile of all drivers, 

yet the controller corresponding to unsafe drivers proposes slightly greater accelerations 

compared to the controller of the typical drivers. 

Impact assessment of the proposed system is performed through a microsimulation setting 

for the Athens’ Road Network using SUMO simulation software. Results indicate that the 

implementation of self-aware driving suggestions although it leads to safer and less aggressive 

driving behavior for each individual, it does not lead to improved traffic conditions. Specifically, 

after the recommendation, vehicles move at lower speeds and road segments are occupied 

with a lower density and therefore, slightly less vehicles were served over the one hour of 

simulation. However, one may claim that the deteriorating traffic conditions can be considered 
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acceptable if one takes into account the compensation through the benefits of adopting 

smoother driving behavior in road safety and driving comfort. Specifically, using the number 

of conflicts as a key performance indicator of road safety, it is observed that the adoption of 

the recommended actions leads to a significant improvement in the total number of conflicts 

as well as refining car-following behavior of each vehicle. In addition to enhancing road safety, 

the homogenization of the acceleration ability of the vehicles also leads to slightly reduced 

emissions of air pollutants. In line with numerous previous studies, the adoption of smoother 

acceleration profile from the entire traffic eliminates harmful emissions and improves 

environmental conditions.  

  



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 163 - 

 

6 CONCLUSIONS 

6.1 Overview 

Driving behavior has been in the spotlight of research for a variety of reasons ranging from 

understanding the dynamics of driving behavior through innovative concepts, such as crowd-

sensing, to developing self-improvement frameworks and building human-like behavioral 

models for autonomous vehicles. The ability of researchers to identify driving behavior and 

most importantly to detect unsafe driving habits has given an impetus to the development of 

driving assistance and scoring systems. Nevertheless, the already developed systems lack the 

wide acceptance and establishment since they cannot adapt to each drivers’ personal 

preferences and needs. Within this context, the ultimate goal of this dissertation was to 

develop a novel driving recommendation framework which aims at improving individual 

behavior in terms of driving aggressiveness and riskiness based on a data-driven 

methodological approach. This ultimate goal encloses specific objectives that should be 

achieved sequentially, which answer the research questions put forward after an exhaustive 

review of the literature.  

Initially, this research addressed key research questions concerning driving behavior dynamics 

and specifically, it identified the main driving profiles that describe decision making while 

driving. An inclusive methodological framework was implemented in order to extract driving 

profiles straight from the smartphone crowd-sensed data using unsupervised learning. 

Moreover, the level of aggregation of the overall driving behavior is investigated with the aim 

to understand the extent to which driving behavior can be categorized in groups that reflect 

different driving styles. This dissertation, also, provided answers to the critical questions of 

whether Artificial Intelligence can be exploited to resemble human decision making especially 

in the complex task of driving and further, to select the most appropriate Reinforcement 

Learning algorithm for supporting driving decisions. Furthermore, this research attempted to 

provide answers to the critical question of whether there is a link between raising self-

awareness and improving conditions of the entire network. Finally, answers are given with 

rewards to the impact of controlling individual driving behavior on driving and road safety, as 

well as to the environmental conditions. 

An inclusive methodological framework was proposed to achieve the objectives of this 

dissertation, which incorporates a mixture of statistical analysis, machine learning techniques 

and reinforcement learning algorithms. The plethora of tools and methods used, enabled the 

understanding of driving behavior dynamics through smartphone data, the development of 

the personalized recommendation system and the assessment of its impact through a large-

scale microsimulation scenario. Specifically, starting from smartphone crowd-sensed data 

interesting driving features were extracted and exploited in a two-level k-means clustering 

approach. The first level of clustering distinguishes aggressive from non-aggressive trips, while 

the second level of clustering resulted in the identification specific driving profiles. 
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Subsequently, the driving footprint of each driver was estimated as the average behavior of all 

their trips. Users included in the dataset were separated in groups based on their driving 

footprint so that drivers in the same groups share common driving characteristics.  

The development of the recommendation system was based on the training of RL agents each 

one corresponding to a specific group of drivers with common driving behavior. In this way, 

the agents were able to produce recommendations that explicitly match each drivers’ 

preferences and therefore, increase the possibilities of being adopted by them. In order to 

train the RL controllers, their main components had first to be defined, namely states, actions, 

and rewards. Based on the nature of the problem (studying of driving behavior), both states 

and actions are continuous and therefore, the actor-critic structure was chosen as the most 

appropriate RL algorithm. The reward function was also constructed from scratch with the aim 

to rewarding safe/typical driving behavior while penalizing unsafe driving habits (distraction, 

risk taking) and by exploiting a custom-made score function which assigns a score to each trip 

according to the level of driving safety. Model development was based on two neural networks 

whose hyperparameters emerged after an exhaustive grid search. 

Once the RL agents were trained, their performance was assessed through simulation, and 

more precisely, using the Athens’ Road Network, a large-scale simulation scenario was set 

aiming at quantifying the impact of applying the personalized recommendation system. 

Impact assessment was performed on the basis of traffic, safety and emissions, and thus, 

proper Key Performance Indicators were defined. A before-after approach was followed to 

calculate the impact on these three dimensions, where the initial conditions of the network 

(“before”) were simulated using the characteristics of the emerged driving profiles as distinct 

vehicle types. Then, the RL agents produced personalized recommendations for each 

individual vehicle, and a second run of simulation was performed where all vehicles followed 

the corresponding driving actions (‘after”). The performance of the network before and after 

the application of the system was assessed through Macroscopic Fundamental Diagrams. As 

far as it concerns driving and road safety, they were evaluated through measurements of 

speed, acceleration and distances from the leading cars, as well as critical conflicts between 

the vehicles. 

The proposed methodological framework led to the production of critical conclusions in all 

dimensions of the phenomenon under consideration. The main findings can be summarized 

in the following points: 

• A two-level clustering approach can provide great insights on the characteristics that 

govern aggressiveness during driving and can be further exploited to distinguish safe 

from unsafe driving patterns.  

• Six distinct driving profiles are able to describe the overall driving behavior that 

someone performs during their trip. 

• Τhere are two categories of drivers according to the average behavior of each driver 

resulting from how they drove in all their trips. In the first category drivers usually drive 
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in a typical manner while in the second category drivers perform a number of unsafe 

driving actions or drive in an aggressive manner in the majority of their trips. 

• The Actor-critic approach from the family of reinforcement learning algorithms can be 

exploited to find the best possible driving action for each dividual driver given the way 

they drove in their previous trip. 

• When a controller provides driving recommendations to a fleet of vehicles, the 

acceleration profile of the entire fleet is harmonized on a value which is close enough 

to the acceleration decisions of a typical – safe driver. 

• The application of a personalized recommendation system to a city’s road network 

does not have a significant impact on traffic conditions. In contrast, it is shown that 

slightly less vehicles can be served for the exact same simulation period. 

• When each driver improves their own behavior, road safety is enhanced on the 

network. Specifically, critical conflicts between vehicles are significantly reduced after 

the application of the proposed system. 

• The level of emissions for all different kinds of air pollutants is reduced which indicates 

that harmonization of the accelerations for the entire traffic can have an important 

positive impact on the environmental conditions. 

Concluding, it should be noted that the deterioration of traffic may be considered acceptable 

if one takes into account the compensation through the benefits of adopting smoother driving 

behavior in road safety and emissions. To this end, policy makers and researchers should not 

neglect the real impact on all network’s dimensions when planning traffic management 

strategies and applying soft and hard policy measures. In the following sections, the way each 

stakeholder could benefit from the findings of this work are discussed. 

6.2 Main contributions  

The present doctoral dissertation offers significant innovative contributions in five areas:  

It makes use of an innovative naturalistic driving dataset. A great volume of data was available 

with high temporal resolution from real driving, enriched with a variety of factors that describe 

driving behavior, environment and other external attributes for each trip. 

It proposes a methodological framework to extract driving profiles straight from the data, 

which describe the entire range of driving behavior. A data-driven approach is followed to 

classify critical driving patterns that appear during a trip by exploiting k-means clustering as 

being the most appropriate tool for this purpose. 

It develops novel Reinforcement Learning algorithms to solve a real-world problem, this of 

assisting driving behavior. A deep Reinforcement Learning algorithm was chosen as the most 

suitable tool to learn the optimal policy and suggest the appropriate action that leads to the 

best possible driving behavior for each individual driver. 

It proposes a methodology which is capable of recognizing individual driving preferences and 

produce personalized driving actions to each driver. Specifically, an inclusive methodological 
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framework is implemented which incorporates tools and methods that first recognize driving 

behavior of every user, then assigns every user to the corresponding RL controller version 

based on their overall behavior and finally produces personalized driving actions that mitigate 

aggressiveness and riskiness of driving.  

It evaluates the large-scale network effects of implementing a personalized driving 

recommendation system on three areas of interest using specific KPIs, precisely on traffic, 

safety and emissions. Impact assessment of the proposed recommendation system is 

performed using a real-world scenario that of the Athens’ Road network through 

microsimulation and by applying a before-after methodology to compare the values of the 

KPIs before and after the application of the system. 

This research contributes to the scientific field of driving behavior analytics through big data 

in both a conceptual, technical and a practical level. First of all, through an extensive review of 

the literature, it sheds light to all critical challenges and caveats that both research and 

practitioners may face when collecting and analyzing data collected through smartphone 

crowd-sensing. Despite the fact that crowd-sourcing has become very popular over the last 

decades as an effective and cost-efficient source of data, most researchers neglect the critical 

issues that arise when collecting data from the crowd. This dissertation not only records these 

challenges and discusses ways to address them, but through the methodological framework 

it applies it goes beyond most of them in the development of the proposed driving 

recommendation system.  

Equally important is the contribution of the dissertation to the conceptual design of a data-

driven methodology that is able to detect a variety of human behaviors and choices during 

driving. Specifically, in this research we have shown that the behavior a driver exhibits during 

a trip can be characterized by either safe or unsafe maneuvers. Findings revealed that the 

entire range of behaviors on a trip level can be described by six driving profiles spanning from 

safe driving to aggressiveness, risk taking and distraction during driving. In addition, it was 

shown that the above driving behaviors can be identified directly from data gathered through 

smartphone crowd-sensing by following an unsupervised learning approach. To the best of 

the authors’ knowledge, no effort has been made previously to identify normal and abnormal 

driving patterns without following a threshold-based methodology, but instead relying fully 

on a data-driven approach. This research succeeds in detecting driving behavior on a trip level 

using a two-level k-means clustering algorithm on a variety of driving parameters that 

explicitly describe how a driver behaved during a specific trip. Moreover, a significant 

contribution of this research is that it highlighted aggressiveness during driving as a distinct 

driving style that can be observed both as the unique driving behavior characteristic, but also 

it can be detected simultaneously with the occurrence of other unsafe driving behaviors such 

as speeding and distraction. The implementation of the k-means clustering algorithm at two 

distinct levels enabled the identification of aggressive driving as a unique driving characteristic 



E. G. Mantouka | Deep Reinforcement Learning Traffic Models for Personalized Driving Recommendations 

- 167 - 

 

that defines a driver’s choice of driving style independently to the rest driving actions (safe or 

unsafe) performed during a trip.  

Contrary to already developed ADAS and other recommendation systems that impose flat 

driving suggestions or follow rule-based approaches, the proposed framework automatically 

formulates personalized quantified driving actions, to be disseminated to drivers as 

recommendations for future behavior without posing unrealistic restrictions on personal 

driving style. Therefore, for the same driving behavior during an initial trip the implementation 

of the developed RL controllers based on the overall behavior of the specific driver would lead 

to different recommendations. This way, a more aggressive driver is more smoothly driven into 

the transition to calmer driving characteristics (driving with reduced maximum and average 

accelerations over their trip) compared to a typical driver. The personalization aspect of the 

proposed system is vital, since it is linked with users’ acceptance and engagement rates. 

However, relevant works have neglected the importance of self-awareness when developing 

driving assistance systems, in the sense that the system is aware of personal characteristics 

and preferences when producing the corresponding recommendations and the driver 

becomes aware of the impact that their driving choices have on individual driving performance 

and safety as well as the network and the environment. The developed self-aware driving 

recommendation system can be exploited to assist drivers and provide them with feedback on 

their total driving efficiency in a variety of concepts such as recommendation systems, ADAS, 

insurance telematics and many more. An additional value of the methodology proposed is that 

it can be hard implemented as is in most of the aforementioned platforms. Moreover, the 

flexible architecture of the algorithms used to design the proposed recommendation system 

enables its application even with a different overall scope only by applying some modification 

on the reward function. For example, although the ultimate goal of the system is the 

improvement of individual driving behavior, meaning that each driver receives the optimal 

recommendation that leads him to an improve driving state, a change on the reward function 

can cause the system to provide recommendations for eco-driving, meaning that each driver 

will receive the optimal recommendation that leads him to more efficient fuel consumption 

during their trip. 

Furthermore, this work contributes to the exploitation of advanced reinforcement learning 

algorithms for solving a real-world problem, that of developing a decision support system for 

drivers. Reinforcement Learning is not a new concept, but only recently it gained a lot of 

attention mostly due to the advent of big data. Nevertheless, most research focuses on 

exploiting RL algorithms on solving low-dimensional problems such as games and robots’ 

movements. In this work, we have used advanced RL algorithms to develop a recommendation 

system for drivers that is capable of producing continuous actions for real driving, and for this 

purpose we have adjusted accordingly the Deep Deterministic Policy Gradient algorithm in a 

way that it can proposes the best possible driving alterations in each given state. The proposed 

approach and implementation are on-of-a-kind both due to the large-scale naturalistic driving 

dataset that is exploited as well as due to the complexity of the phenomenon in terms of states 
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and actions. This is the first time that the DDPG algorithm is adjusted and implemented within 

a recommendation framework for real-driving while at the same time being trained using 

naturalistic driving data. This research contributes to the developing field of Reinforcement 

Learning and provides significant insights regarding the implementation of theoretical 

algorithms to real-world problems.  

On the top of these, this study makes use of innovative data that were collected using a 

smartphone application, which is based on state-of-the-art algorithms for the recording, 

collection and processing of crowd-sensed data. Smartphone crowd-sensing is an approach 

that is becoming popular nowadays and is considered as a cost-efficient and effective solution 

for collecting data in naturalistic driving experiments. The main contribution of this research 

with regards to big data handling relies mostly on the way that high-dimension data were 

exploited within the methodological framework without increasing computational complexity 

while at the same time ensuring data quality and analysis accuracy. More specifically, following 

a step-wise methodological approach it was possible to manage of large volumes of data in 

an efficient way since data dimensionality is reduced based on feature selection procedures 

and data are separated to different subsets with similar characteristics. 

Finally, another contribution of this work is the application of the proposed system to a real 

road network through microsimulation. Since scientific community has not determine the 

impact of personalized driving assistance systems, part of this dissertation was devoted to the 

analysis and quantification of this impact through targeted KPIs. Impact assessment is 

performed on the basis of three areas of interest, namely traffic, safety and emissions. Contrary 

to previous research which had assumed that when each individual improves their driving 

behavior and moves carefully and safely the entire network would benefit from improved 

traffic conditions, in this work we explicitly studied this impact using specific KPIs. Findings 

revealed that traffic flow conditions do not benefit from the large-scale implementation of 

such a system, despite the fact that road safety is significantly enhanced. These results give a 

great impetus to further research and the investigation of other theories such as the price of 

anarchy and information dissemination strategies, which are discussed later on. 

6.3 Research limitations 

Limitations of this study with regards to the data and each part of the methodology adopted, 

are briefly presented in this section. If these limitations are addressed, the proposed 

recommendation system can gain significant prospects as a tool for managing traffic and 

enhancing road safety. 

As any other data-driven approach, this research as well, relied on some limitations with 

regards to problem setup and adaptation. Firstly, some limitations emerged from the need to 

match the RL output with the simulation properties. More specifically, one of the two 

components of the recommended action, the average acceleration of each driver, could not 
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be imported into the microsimulation environment since only the maximum acceleration is 

taken into consideration and the instantaneous acceleration is defined by a variety of factors 

(such as leading vehicle’s speed etc.) and, thus, limits the ability of evaluating the entire 

potential of the proposed recommendation system. The car-following model adopted by the 

microsimulation platform used in this dissertation, is parametrized by a plethora of factors 

governing vehicle’s dynamics such as velocity, acceleration and deceleration. The Krauss model 

is parametrized by the maximum acceleration of the vehicle which corresponds to the 

acceleration ability of vehicles of a specific type, and therefore only the one component of the 

recommended action is adopted within the simulation (Figure 6-1). Nevertheless, due to the 

nature of the phenomenon of driving, all parameters describing how a driver chooses to drive 

over a trip are inextricably linked with each other and therefore, the neglection of the average 

acceleration was not expected to have a significant impact over the results of the simulation. 

 

Figure 6-1. Schematic representation of the criteria used for data selection 

Besides car-following behavior, a driver during their trips takes actions regarding lane change, 

priority concession and other decisions concerning interactions with other road users. 

However, in this research the focus was explicitly on the car-following behavior as the ultimate 

goal was to create a user-centric system that looks only at the driver and does not require any 

external information from the road network in order to be trained and implemented. Thus, the 

proposed actions refer on the way the driver drives along the road, namely the way they 

choose to hit the acceleration pedal, which depends only on the personal preferences and 

perceptions of the driver. The provision of recommendations regarding lane change behavior 

or any other behavior that the driver performs, e.g., the way they decelerate or the adaptation 

of vehicle speed, would have required the availability of exogenous data including, driving 

environment and surroundings, traffic, road geometry etc., and therefore the system would 

cease to be autonomous, but instead it should have been context-aware. However, the lack of 

information about the environment can be considered as a limitation of the developed system, 

since its transformation into a context-aware system would give other perspectives both to 

the system itself and to the possibilities of its use as a traffic management tool.  
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An extension of the above limitation is the fact that since the system ignores the state of the 

environment it cannot operate real-time. In other words, the proposed methodology is not 

able to produce recommendations real-time, namely during a trip. Instead, an offline system 

is developed which suggests alterations on driving behavior in a sequence of trips for each 

driver. The integration of external information into the system would allow, at least 

conceptually, the real-time provision of driving recommendations. However, even in this case, 

data availability remains a caveat for the development of such a system, since it would require 

the existence of high-resolution data that could be recorded, stored and analyzed on the fly 

within the framework of an online recommendation system. Moreover, the real time operation 

of the proposed system would have required modifications on the main components of the 

RL model. More specifically, in the case where the system becomes context-aware and 

operates in real-time, the state of the environment should include parameters that describe 

traffic and road conditions, the proposed actions should be adapted to the restrictions 

imposed by the road, traffic signaling and the rest of the traffic, and finally, the reward function 

should incorporate the trade-offs between the improvement of individual driving and the 

impact on traffic, safety and emissions. 

Lastly, another limitation, which applies to all data driven approaches, is the generalization and 

transferability of the developed model and the corresponding outcomes. In most cases it is 

unclear whether the sample used to train the model is representative of the entire population 

and also whether its characteristics are similar to those of a different population. In this work, 

a big naturalistic driving dataset is used to develop the RL models which includes trips 

performed by a great number of drivers, nevertheless, it cannot be said that the results can be 

generalized and spatially transferred to another road network. When human behavior is being 

examined, it should be borne in mind that in addition to environmental constraints, available 

options and prevailing conditions, model transferability may be hindered by other factors 

associated with cultural and ethical differences among individuals. From a more technical point 

of view, one particular limitation of this study is the tuning of the hyperparameters for the 

artificial neural networks as these were selected based on a specific dataset. As a result, if a 

new dataset is applied to the trained models, the hyperparameters may need to be 

recalibrated. Finally, another potential limitation of these techniques is that deep learning 

methods can be considered a ‘black box’ method and therefore might lack interpretability for 

different stakeholders and traffic managers. However, the deep RL models developed within 

this dissertation can be easily assessed and interpreted straight through the produced output 

which corresponds to recommendations for actual driving behavior.  

6.4 Research impact  

This doctoral dissertation develops a novel driving recommendation system using artificial 

intelligence to enhance driving safety of each individual driver by providing recommendations 

that improve driving performance without neglecting personal preferences of each driver. 

Large amounts of data were collected by an already developed application through 
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smartphone crowd-sensing and thus, a variety of driving parameters were collected and 

further exploited within this work.  

In order to fulfill its goal, which is to create a self-aware system of providing personalized 

driving recommendations, this thesis developed algorithms for detecting driving behavior and 

then developed, trained and applied advanced deep reinforcement learning algorithms to 

produce the appropriate recommendations for each driver according to their driving 

conditions. Currently, there are limited regulations on validating the impact of these systems 

even though evaluating the outputs from such systems are important. Therefore, this research 

contributes by implementing the developed novel recommendation system in a virtual 

network using an integrated simulation framework. The outputs produced within this 

dissertation may have a significant impact on several aspects of both research (R), technology 

(T) and policy-making (P): 

(R) Aggressiveness does not necessarily constitute an unsafe driving habit and can be 

detected either as an individual behavior or in combination with other unsafe behaviors.  

This research exploited a large-amount of naturalistic driving data, during the collection of 

which the drivers did not receive any information about the way they were driving nor any 

guidance or other information that might affect their behavior and decisions during driving. 

This fact gave to our research an extra perspective as it allowed the investigation of the whole 

range of driving behaviors that includes both extreme unsafe behaviors and more restrained, 

typical driving behaviors. Findings revealed that a driver can exhibit a certain driving behavior 

over their trips which is either an aggressive or a non-aggressive behavior. On the top of this 

decision, the driver may choose to either perform additional unsafe driving maneuvers namely 

distraction or speeding, or just choose to travel only in an aggressive manner or even perform 

none of these behaviors and thus drive safely. Such results can have a great impact on the 

field of driving analytics and pave the way for studying driving aggressiveness as an 

independent driving behavior which may provide answers to the existing question “Does 

aggressiveness constitute an unsafe driving habit?”  

(R) Reinforcement learning algorithms can be implemented in real-world problems and 

specifically, the DDPG algorithm can learn how to make human-like decisions on 

complex and high-dimensional environments. 

Until now, Reinforcement Learning algorithms have been widely used to learn games and in 

robotics, and, thus, in this dissertation we took on the challenge of applying a deep 

reinforcement learning algorithm to train an agent to make decisions just as the driver would. 

To the best of the author’s knowledge, this is the first time that the Deep Deterministic Policy 

Gradient algorithm is successfully implemented within the framework of a real-world problem 

that of improving driving behavior and relying explicitly on real data (not simulation or 

synthetic data). A great number of researchers can benefit from the conceptual design and 

custom setup of the DDPG algorithm performed within this work with the aim to produce 
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recommendations for human driving control. More specifically, the fact that the proposed 

methodology is fully transferable and interpretable enables the adoption of the proposed 

approach in a multitude of problems that require the modelling and controlling of human 

decision making (continuous actions) in complex multidimensional environments (continuous 

states). For example, the developed system can be implemented with the aim to promote eco-

driving or in other words, to recommend those actions that can improve fuel efficiency. In 

addition, it can be implemented in other transport-related domains, such as autonomous 

vehicle’s operation, traffic signalization and so on. 

(T) The proposed recommendation system can be incorporated in already developed 

software, such as insurance telematics apps and ADAS. 

Besides the innovation aspects of the proposed methodology and the novel algorithm 

developed, this dissertation contributes to technology as well, since it developed a read-to-

implement platform which incorporated two main functionalities; i) it can identify the driving 

profile of each driver per trip and estimate every driver’s overall driving footprint and ii) it can 

massively produce personalized driving recommendations that improve individual driving 

performance. The system can be useful as part of Usage-Based services, namely pricing 

schemes based on driving usage or characteristics i.e., Pay-How-You-Drive driving insurance 

schemes. 

Moreover, the developed recommendation system can be incorporated in an ADAS 

framework, which aims to support driving behavior in a more personalized way by adjusting 

actions to the preferred driving style of each driver, rather than implementing predefined 

generalized actions. The recommendation system developed within this dissertation can 

revolutionize the assistance provision system and pave the way for the new-generation ADAS.  

(R & T) The identified human driving profiles can provide great insights for human-like 

autonomous driving. 

Driving uniformity is an important factor in road safety, and therefore, a significant challenge 

of autonomous driving is to imitate, while remaining within safety bounds, human driving 

styles, or in other words to achieve human-like driving. The results outlined in this research 

both from the driving behavior analysis and the driving recommendation provision can have 

far reaching implications in the development of state-of-the-art behavioral models for 

autonomous cars. First of all, the six identified profiles together with their driving 

characteristics can provide great insights on the different types of drivers that coexist on the 

road, and therefore, facilitate the design of surroundings detection and comprehension 

systems of autonomous vehicles, as well as improve the interaction protocols under mixed 

traffic conditions. In addition, the understanding of differences on the driving dynamics 

between the different driving profiles can enable the development of more human-like 

behavioral models, in the sense that autonomous vehicle control can be performed either in a 

very conservative and cautious way or in a more bold and aggressive manner always 
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complying with safety requirements. A great body of literature deals with the development of 

human-like driving models for self-driving cars for two main reasons: 

a) Human-like driving will enhance the confidence of passengers while riding an 

autonomous car 

b) Human-like behaving cars will facilitate the understanding of surrounding drivers 

about the movements of the autonomous cars as well as the interaction with 

conventional cars and other road users. 

(P) The improvement of driving behavior on an individual level can have significant 

impact on road safety and emissions, but not a noteworthy impact on traffic conditions.  

It is a common assumption of researchers that the improvement of driving behavior in an 

individual level can result in an improvement of traffic. Nevertheless, none of the previous 

studies have examined the actual impact of improving each driver’s behavior on the entire 

traffic. Therefore, in this research special focusing was given to the quantification and 

assessment of individual driving recommendation provision on traffic, safety and emissions. 

Our findings revealed that although the improvement of driving behavior on an individual 

level can have significant impact on road safety and emissions, as expected, the corresponding 

impact on traffic conditions is not noteworthy. Such findings are of great importance both for 

researchers and policy-makers since current assumptions have to be reconsidered and traffic 

management strategies that highlight driving improvement as a key factor for traffic 

conditions enhancement have to be updated.  

6.5 Future research directions 

Within this dissertation we developed a self-aware driving recommendation system, using a 

mixture of unsupervised learning and reinforcement learning algorithms and by exploiting an 

innovative naturalistic driving dataset, with the aim to improve driving behavior through the 

mitigation of aggressiveness and riskiness. The impact of the provision of personalized driving 

recommendations is assessed through a city-wide microsimulation scenario by properly 

adjusting traffic models. Findings of this work can have far reaching implications for future 

research.  

The analysis of driving behavior occupied much of this dissertation and resulted in the 

definition of driving behavior on two levels: on a trip level where 6 distinct driving profiles 

were detected and, on a user-level, where the driving footprint of each driver is estimated 

based on their overall driving behavior. However, there is still much room in the exploration 

of driving behavior dynamics and thus, further research should be conducted in that direction 

involving enriched driving datasets and additional driving behaviors and parameters (e.g., 

cornering, tasks that cause distraction except from mobile usage). Moreover, the dedicated 

study of the dynamic evolution of driving behavior is also very important to provide answers 

to the question of how much and how rapidly driving profiles are altering over time. It is known 
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that individual driving behavior is characterized by large values of volatility, but under which 

conditions a driver adopts a different driving style and how differently can a driver drive from 

trip to trip? 

Another direction of future research concerns the recommendation system. Initially, the 

already developed recommendation system can be adjusted properly to produce driving 

recommendations with a different goal. For example, it would be of great interest to produce 

driving actions with the goal to achieve fuel efficiency during a trip and in addition, to compare 

these driving recommendations with the ones produced with the aim to improve driving 

safety. How different are the driving behavior that should be adopted from the assisted drivers 

in these two cases? 

Another important research question raised at this point refers to the communication between 

the user (driver) and the system. Future research should investigate the way the produced 

recommendation should be passed to the driver in order for them to be understood by the 

user and then to be accepted by him. Although this interaction between the user and the 

system is a key success factor of any service, it usually being neglected during the design 

process of the service. Especially in the case of human driving assistance, the produced 

recommendations have to be clear enough for the user to adopt them and therefore, future 

research should definitely study this aspect as well. 

A critical challenge of driving recommendation system is the real-time operation, which has 

not been addressed within the framework of this dissertation, due to the limitations discussed 

in the previous section. The identification of the required specifications that will enable the 

real-time operation of the system could also be a part of future research. Towards this 

direction, the most significant future research objective would be the modification of the 

proposed system in a way that it becomes context-aware, meaning that the system can interact 

with environment in which the agent takes decisions and have a full view of its dynamics and 

alterations. In this way, the proposed system could be implemented in real-time, and 

additionally it could also act as a traffic management tool which uses driving behavior as a key 

force of enhancing traffic efficiency. 

The proposed methodological approach based on a mixture of unsupervised learning and 

reinforcement learning strategies can be valuable for the development of easily adaptable 

behavioral models especially for partially automated vehicles. Such models’ prerequisites, 

except from driver personality and styles identification, also include situation awareness and 

behavioral adaptation. For this reason, future work can focus on building the context for the 

RL agents to be placed in, namely become context-aware, and, additionally, enrich the RL 

components with parameters describing traffic conditions and road geometry. 
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