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H Eraiideuon Ouhnt emtpénel TNy TauTtonomon (og oy VetlOUEVNS TAUTOTNTAS And
uetpnoelc oc éva puvnTixd ofua. To cuvaloUnua kwoT600, WS Evag PUOLXOS XL GUY VA o-
%000L0¢ xWAWMOTOINTAS TNS PeVAS, Blordétel unyaviopols utedduvoug Yo TN QwvNTXr dia-
uoppwon tne. Ilopd tnv mpocoyr mou €xel xepdicel To medlo OAo AUTE Tar YpoVLa, Bev ExEl
UTdpEEL HEYAAN TpooTdlEl TPOXEWEVOU VoL TEOGBLOELETOVY 0L OYETELS HETAED TwV BVO aUTOY
OVTIXEWEVOY. AV X0 QUVOUEVIX UaXELE, TO CUVOLCUNUATIXG TEPLEYOUEVO Yo UTOEOUCE Vol
EYEL €VOL TERUOTIEG EMUNTWOEL OTY) Bladacior BLAXELONG OULANTGY.

Ye auth T SIMAGUOTIXY, SLEEELVOUUE TN CUCYETION UeToy emahideuone ohnTn o o-
VoY vepelong cuvaicUnuotixod Aoyou. Ilpoto am ‘Oha, dnuiovpyolue Bidgopo 6T cuVALGUT-
potixic a€lohdynomg, Ue oTtoyo to xadéva va mopaxoloudel BlapopeTnd TNy enldpact Tou
ocuvac O uatog 6To avTxeipevo emahidcuong owhntr. Xe uia tpoondela Uelwong 1 axoun
xa €EGAeLPnE ToL ATOTEAEGUATOC TPOCTIOUUE VO UETAUPEPOUUE CUVOLGUNUATIXT YVOOCT, OTO
avTixetyevo. I'a 1o oxomd autd, egapudlovue TECTEPLS BLUPORETIXES UPYLITEXTOVIXES, OTIOU 1|
xardepio omd autée, yeplleton T cuvanoinuotixy Thnpogopla Ue SlapopeTind Tpomo. Katdmuy,
eZetdlouUe TNV am6d0CT TWV UOVTEAWY MO 0T GET CUVALCUNUATIXAC AgLOAOYNoTC.

Ta amoteAéopatd pog uTodNAGYoLY OTL 1 cuvalcUnuaTixy TANEogopla €xel xooploTi-
%6 poho oty emohdeuon owAnTy. Axdun xa oe yaunAin €vitaor, to cuvalolnua t6co
oTNV TEOTAON EYYRAUPNS 000 xou oTnyv TedTacT enahdcuone umopel va unoPodulosl onua-
VTG TNV amddoor evog cuoTiuatog. Emmiéoyv, ta cuvanoifuata €viovng éviaong, (polveTtal
VoL ETLBEWVMOVOLY TO AMOTEAECUA 0BNYWVTAG O TOAD @PTwyd anoteAéopota. MeTtall Twyv e-
T8 oLVACUNUETWY ToL eEETAOTNXAY, BLATOTOVOUNE OTL 0 Jupds xou o pdfogs etyav o mo
o LOOTUEIWTO AVTIXTUTO.

Ye por Tpoondlelal AVTIUETWTONS TWV TEoavaepIévTwy {ntnudtowy eEetdlouue Ty o-
TO00GT TWV UPYLTEXTOVIX®Y HAS PE YVWOT cuvaucUfuatog. To amoteAéopatd pag delyvouv
OTL UE TNV EQUOUOYT) XAACIXWY TEYVIXOV UETAPORAS UAINONS, UTOPOUUE Vo TOREYOUUE UO-
VTEADL OVUIEXTIXG OE GUVALGUTNUOTIXG POPTIOUEVO TEQLEYOUEVO XAl THUTOYEOVA VoL ATtOdIBOVUE
ToAD xohOTepar oty (Bl T dradixacior Tne emahdevone owinty. Telog, doxwudlovue TNV
UTOUEGT| HaG OYETXA UE TNV Tapoyh (Blouv cLYVACVAUATOS XUTA TNV TEOTACT) EYYRUPNS XAl
emolideuong xou mapoTnEolUE onuavTixs oyety| abénon nepitouv 20%, aveZdptnta and
CLYVACUNUOTIXNY TEO-EXTIOUOEVOT).

Y UVOANXE, UTOPOUUE VO ATOTUTIWOOUUE (Lol LoYVEY| OYECT UETOEY OLEXELOMG OMATTMV Ko
cuvaoUnuotixol tepleyopévou. Trootneiloupe 6Tt 0 EAEY) 0 TOU GUVALGUNUTIXO) TEPLEYO-
uévou ebvon amapalTnTOg Yol TNV XOAT) amd00GCT) EVOS LOVTEAOU, ELOLXA YLl TTROY UOLTIXG. GEVAQLAL,
6mou to cuvaicUnuo etvor evepyd mopdy. LUVETWS, UTOEOVUE EQUpUOLOVTIS TORUBOCLOXES

TEYVIXESC EXUAUNONC HETAPORAS AT TO AVTIXEIUEVO avary VaPIoNS GLVILGUNUAT®Y OpAlS GTO
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avTixelyevo e enaAAleucnc OUANTY, VoL UEWWCOUUE T1 CUVOLCUTUATIXY ETLEEON Xt Vo BEA-

TUOCOVUE TNV GUVORLXY| ATOTEAECUATIXOTNTO TV HOVIEAWY UUS .
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Abstract

Speaker Verification (SV) enables the authentication of a claimed identity from mea-
surements on a voice signal. Emotion as a natural and often involuntary encoder of voice,
has the mechanisms responsible for vocal modulation. Despite the attention that the field
has gained over the years, little effort has been made in order to identify the relations
between these two subjects. Although seemingly far, emotional content could have a huge
impact on speaker discrimination.

In this thesis, we investigate the correlation between speaker verification and speech
emotion recognition. First of all, we create various emotional evaluation sets, each one
aiming to track differently the effect of emotion on the speaker verification task. In an
attempt to decrease or even eliminate the effect we try to transfer emotional knowledge to
our task. For this purpose, we implement four different architectures, each one of them,
handling emotional information in a different manner. Then we examine our models’
performance on the emotional evaluation sets.

Our results suggest that emotional information has a crucial role on speaker verifica-
tion. Even on low intensity, emotion on both on enrollment and verification can significa-
ntly degrade a system’s performance. On addition, emotions on strong intensity, seem to
escalate the effect and ensue in poor results. Among the seven emotions examined, we find
that, anger and fear were these having the most remarkable impact.

In an endeavor to address the aforementioned issues we examine the performance of
our emotion-aware architectures. Our results indicate that by applying classic fine tuning
techniques, we are able provide emotion robust models and at the same time perform much
better on the speaker verification task. Last but not least, we test our hypothesis on provi-
ding same-emotion utterances on evaluation phase and we observe a relative improvement
around 20%, irrespective of emotional pre-training.

Overall, we can capture a strong relation between speaker discrimination and emo-
tional content. We contend that controlling emotional content is necessary for a model’s
robustness, especially for real life scenarios, where emotion is present. Ultimately, we can
reduce the effect and improve our models performance by applying traditional transfer

learning techniques from speech emotion recognition to speaker verification.

Keywords

Speaker Verification (SV), Text-Independent Speaker Verification (TISV), Speech E-

motion Recognition (SER) , Emotion Driven Speaker Verification
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Extetapevn Ilegiindn ota EAANvIxd

0.1 Ewaywyn

0.1.1 Kivnteo

Iapd tic npdogateg e€eMielc oTov Toéa NG EMOARUEUONC TWY OUANTY, N TUEUYWYT
EVIOWY, CUUTIAYMY AVATUEAUC TACEMY VLo TUNUUTA AOYOU OUANTGY TOU VoL UTOPOUY VoL YeNoL-
ponoindoly anoteAecuatixd oe YopuBmdn xou un mepleplouéves cuvinxeg e€oxoloudoly va
amoTehoUV onuavTixy TeoxAnot. Tétow cuothpata etvar mhavd va elvon EMPEETYH TNV TOL-
Ao TV ExQEAcE®Y TV ouANTOY ot xadnuepvy| Bdon. To cuvalolnua we guoixds xau
OLY VS 0x00CLOC HWBXOTONTAS PWVAC, SlodéTel HETOED GAAWY, TOUC UNyaviolole Tou elvou
urebuvol yior TN QYNTXY dladepuon tou Adyou. Iupd v mohumhoxdTntd Tou X TO
YeYOVOS OTL uptapyel oty xodnuepvr outhio, 1 enidpaot Tou cuvidwe Vewpelton oaueAnTén
xou Bev houfdveton evepd UTOY.

Aedouévou Tou OTL Ta TEPLOGOTERA GUC THUNTA ETahideuone oANTY Bev hoBdvouv urtddn,
TO CUVOLOUNUATIXG TEQLEYOUEVO, EYEIEOVTOL EPWTHUNTA OYETIXA PE TIC adUVOH{ES TETOLWY GU-
otnudTey. Ao Atay Tohd evdlapépoy va eufadivouue oTny enidEaoT TOU CUYAGUNUUTIXOU
TEEPLEYOUEVOL GTN) BIAXELOT, OUANTOV XAl OTO €6V OPIGUEVA CUVALGVHUUTA EYOUY (OC ATOTERE-
OUoL YELROTERT] ETUOOOT CUYXELTIXG UE SAAAL

H Avayvoeion Ounth ye Xehion Xuvaodiuatog (otnv ayyAxy opohoyie Emotion
Driven Speaker Verification) eivar oxpifcc n npoondleio yoptoypdgnong, yio Tedtn Qopd,
Tou cuvatoUNuaTIX0) TEPLEYOUEVOL o Eva UG TN enahdeuone opAnty. Ipaypatonoeiton
ulo Tpoondielor TPOXEWEVOL VoL BLEUXEIVIOTOUV OL OYETELC PETALY TWV OVTIXEWEVLY Tng Ena-
AMdeuone Opintn xan e Avayvoptong Xuvaoinudtwy Ouklac. To medBinua eivon oAl
ATUTNTIXO AOY® TV oxOhoLT®Y BV WoTHTWY. Ilp®Tov, 1ol YapaxTnelo Tixd Yior T OLdxpl-
o1 OUANTOV BeV Elvol HOVOCTUAYTO OPIoUEVA. AEUTEQOV, 1) OVAY VEPLCT) CUVALCUTUATODVY Elvol
éval 80o%0N0 €pY0 W¢ aWTO X ALTO, xAVNOS Tl GLYVULGUAUNTA OLaPEEOLY amd AVUpWTO GE

avipwro.

0.1.2 TIlpocéyyion xou Muvelcpopd

Ye authv TN SImAwpaTX] epyocio BIEPEUVOUUE TOC TA DLUPOPETIXG CUVILGUHUNTA ETNPE-
dlouv €va oo Tnua enaAleucnsc owinTn avelopThtwe xeyévou. Ilo cuyxexpyéva diegdyou-

ME TOANUTAG TELPAUATOL YLOL VAL XUTOUVONCOUUE TS TO CLVALCUNUOTIXG TEpIEYOUEVO eneedlel



Kegdhowo 0. Extetapévn Heplindn ota EXAnvixd

v enokfidevon outhnTy, TS enneedlel xde cuvaicnua YWELo T Ot AUTHY TN dladixaota, o
TS Yol UTOoPOVUCUUE VOl AVTIETWTICOUUE QUTY| TNV ETEEOT, YPNOYLOTOIWMVTAS T1 CLVALCVNUI-
T Yvoon unép pog. Hpota am ‘Oha, exmonde00VUE Vo LOVTEND AVarY VOPLOTC CUVULGUNUATLDY
ophiog (otnyv ayyhxt) opoloyia speech emotion recognition SER) oto ovoho Sedouévwy tou
IEMOCAP. 11 cuvéyeia, dnuoupyolue TECOEQLS DLUPORETIXESC APYLTEXTOVIXES VEURMVIXWY
otOwy. Kdie plo ano autés mpoonoel vo AOoeL SLapopeTind, T TEOBANUA TNG ATOTEAE-
OUOTIXNG METAPORAS CUVULCUNUATIXAC YVOONG ATO TO UOVTEAD oVOYVWELONS GUVALGUNUETLY
outhloc. OEWEOUYE TNV TEWT HAC OPYLITEXTOVIXY 0 TO Bacind HOVTEAD TO ontolo eV SlodETel
xalar ouvonoOnuaTX Yvoon xata Ty extaldeuct tou. H 6edtepn apyitextoviny| Yog oTo-
YEVEL OTO VoL AMOXTACEL CLVALCUNUATIXY YVOOT PHECE TNG TEOCEXTIXNG EMAVEXTUOEUCTC ATO
70 avTixeluevo g avaryvaopetong ouvaoinudteny. To telto poag yovtého mpooradel vo yeto-
PEPEL GUVALOUNUATIXT YVOOT| Y0ElC TATIEN ETAUVEXTIUOELOT), ARG XpaTtVTaS o Tadepd Tar onueio
OTOU TO HOVTENO VALY VOELONS CUVACUNUATWY ETXEVTPOVOTAY 0T opyx6 ofjua. H tétaptn
HOIC OPYLTEXTOVIXY| TTROXELTOL YioL €var wovTého olvining (otnv ayyhxy| opoloyio fusion) xou
xwetleton oe 6o yépn. To mpddTo amo autd elvar €vo TEOEXTAUBEUUEVO BIXTUO ovary VORLOTG
oLYAUCUNUETWY, TO OTOl0 GTOYO EYEL VO TEOGPEREL TIC CUVOLOUTUATIXES AVATORIC TUCELS TTOU
TpAYEL OTO OEUTEQO HOVTEAD, Tou exmoudeveTtan xodopd oto avTixelyevo tng emahdevong
OANTY. O TEENEL Vo ovapEEOUUE OTL GAaL Tl LOVTENDL UaC AElOTIOLOUY TO GUVORO BEBOUEVLY
tou VoxCeleb mpoxeyévou va €youv pLo amodotixy| exmaldeuot).

To endyevo pag Priua etvor 1) dnuovpyio evog cuvdlou ano cuvarcUNUaTiXd Tewpduota. To
TELPAUAT AUTE ATOTEAOUVTOL A0 Widt TOAD GUYXEXQHIEVT] X0 TTROCEXTIXY| OPYAVMOY), TROXEL-
HEVOL TRMTOL VOL TOLOTLXOTIOLCOUUE XAl GTY) GUVEYELXL VOl TOCOTIXOTIOLGOUNE TNV ETUORACT) TOU
CLYAUGUNUATIXOD TEQLEYOUEVOLU GTO AOYO.

Y1n ouvéyela e€eTdloupE TNV AmdBOCT) TWY UOVTEAWY UAC OTA TEoavapepUévTa cuvalcodn-
HoTixd oUVoAaL agloAOYNoNG XL EXTYWOVPE TNy avtoyn toug. Lo xdde melpoyua aflohoyolue
%(30e LOVTENOD YWELOTA XaL 6TO TENOG GUYXEIVOUUE xdUE EVaL UE TA AMOTEAEGUATA TOU UOVTEAOU
Ywplc ouvoncHnuaTn Yvoon.

Ta anoteréopota Yag LTOBEXVOOLY OTL To cuvalcUnua €xel éva coPBupdTato POAO TNV
enahieuon oAnTy ywelc Teoxadoptouéves TEOTAoELS. Apyixd, ATOTUTOVOLUE OTL TO EVIOVO
ouvaioUnuo Unopel va 0dnyNoEL O TEPAC TIES UEWWOELS TNE Amddoomg, aveEdoTnTa omo TO Gu-
valoUnua oty tpotact eyyeaprc. Hapatneolue Tt SlapopeTind cUVAUCUAUATE OTNY TEOTAOT
eYYeaprc xou ENoAUELOTS UmoEolY Vol PEYEVIUVOUY TNV ETORUCT) Xl VO PTAGOUY UEYEL Kol
30% oe EER. Metd ano mpooextind EAeY )0 Tng GUVELGPoRds Tou xdle cuvoncIiuatog ywet-
O T8 0T AMOTEAEGUAT, TORATNEOVKE OTL 0 9IS xat o Jupds telvouv v amodidouy yelpdtepa
amo oha tor unoroima. ITo cuyxexpéva, To Aog oto LovTéN Ywels cuvacInuaTXn YVKon,
mAnotdler exetvo tne tuyaiog tpdPredne pe EER xovtd oto 40%. Axolovdwe, e€etdooye €dv
1 Tapoucia (Blou GUVUGVAUATOC XUTA TNV TNV TEOTACT] EYYRUPHS X ENUAAUEUCTC UTOPOUY
vo. Bonifcouv Tpoxelévou Tor WOVTEAD Uog Vo efval o avd ot Sudxplon opdnteyv. To
ATOTEAEGUOTA OIS UTOBEXVIOLY OTL 1) SLUGPIAGCT] XOVOU GUVILGUAUATOC, UTopel Var BEATIWOEL
BpUC TIXE TNY AmdBOCT TOL CLUCTAUATOG aveEdETNTA Amto To av €yel TponyNiel xdnolou eidoug
ouvatoUnuotiny exmaldeuon. Télog, emdexviouue OTL AZlLOTOLOVTAS TUPUDOCLUXES TEYVIXES
ueTapopdc wdinong, etvar BuvaToy Vo BNULOUEYHOOUUE LOVTEAN UE ETYVOOT cUVALCORUATOC

TIOU UTEQTEPOUY TMOV XAACIUDV CUC TNUATOV.



0.2 Ozwpntind YTroPadeo

0.2 Oeswpntxd YTro6Badpo

YuvehuxTixd Nevpwvixd Aixtuo

. convolution pooling dense
convolution

dense
dense

pooling

1
i e —s

6@14x14

120 - F5 full
84 - F6 full

S2 feature map '_- 16@5x5
28x28 image 6@28x28 16@10x10 s4 featur: ma
C1 feature map C3 feature map P

YyAua 11 Eva Ywvehiktiké Nevpwrikd Afktvo [1]

To Yuvehtind Nevpwvixd Alxtua (otnv ayyAxy opohoyia convolutional neural net-
works 7 yio ouvtopio CNN) efvon o ouyxexpuévn xotnyopio Badiddy VEUpWVIXGY BixTimY,
mou elvon e€eldixeuuévn otny encgepyacio Sedouévmv Tou €youv Tomoloyio TAEYUTOS, OTWS
yioo mopdderypa oL euxoveg. To dixtua autd Yewpolvton uio amd T YeyohlTeRES PBLOAOYIXES
EUNVEUCELS OTNY TEYVYNTY) VONUOoUVY), xadad¢ oL facxég Evvoleg ayedlacuod Toug davellovTon
o TolyElol AmO TN VEVROETLO THUT %ol EWOLXA ATO TNV 0PYAVWOT] TOU avIp@Tivou OTTIX0U GAOLOU.
"Evo Té1010 6ixT00 €Yl oYedIo TEL TPOXEWEVOU VoL UELTOL TOV avIROTIVO OTTTIXO PAOLO, UECH
TNG EPUPUOYHC CUVEALXTIXOY AELTOURYLWY GTNY EXOVA ELGODO0U, UE YPHOT TOMATAOY QPIATEWY
YOUNATC BldoTaong.

Ta Xuvehxtixd Nevpwvixd Aixtua elvar ogolononuéves exdooels twv Nevpwvixdv Al-
xtowv Eunpbode Tpopoddtnone (otny ayyhur opohoyio feed forward neural networks 7
vt ouvtopio FENN. Ta FENN cuviiog onuaivouy éva mAfipmg cuVOEdEUEVo BixTuo, dnhad
%G VEUPOVAC OE €Val OTEOUN CUVOEETOL UE OAOUG TOUG VEURWVES OTO €MOUEVO oTpGpa. H
TAeNG CLVBEGHTNTA AUTMY TV SXTL®YV Tl xaho T emppeny| o€ LTEPBOAXY eQopuoYY| (oTNV
ayyAuxr; opoloyia overfitting) oe dedopéva. To "NN naipvouv pio diapopetind) Tpocéyyion
yioo TN opaAomoinoT Twv dedouévmy xaL T Uelwon g toAuthoxotntag. 1o cuyxexpuéva,
emwpelolVTAL TNG UToEENS LEPUEYIXMY TEOTUTWY oTa dedouéva xou oynuotiCouv potifo ou-
EoVOUEVNC TOAUTTAOXOTNTOC YPNOWOTOLWVTAS UixpdTepa Xat anAodaTepa potiBo ota piiTtea
Touc. Autd Toug TEOCPEREL ETiONG VIEXTIXOTNTA OTIC YWEXES UETATOTIGEWY oL GTNY Yolp-
ToYpEdpnon otdywy. Emouévwe, oe xiluaxa cuvdeowotTnTag o toAuthoxotnrtag, o CNN
amoTEAOLUY TNV XAAUTERT ADoT).

Ov Mo onuavTixée TTUYES TNS AEYITEXTOVIXNC TV 2UVEAXTIXWY Neupnvixodv Axtiwy

elvor ta oxdhoudor emtimeda

o To ouvehxtind eninedo (otny ayythixh opohoyio convolutional layers) oe évo "NN epap-
©6Zouy GUO TNUATIXS GIATEO TTOU €Y 0LY UAUEL OTIC EIXOVES ELOOBOU YLoL VoL BNULOVEYITOLY

YUPTES YAPUXTNELOTIXWY oL GLVOPILOLY TNV TUEOUGI AUTWV TWYV YOLUXTNELC TIXWDV.
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Avuto umopet va amodetydel moA) anotedeouatind, xooe 1 otolBact| Toug ot Bodhid po-
VTENO ETUTEETEL GTO XAEIOO TOV EMTEOWY 0TV €(0000 Yol Vo UEIOUY YopoXTNELo TiXd
Younhol emnédou (m.y. Yeuuués), eve eninedo Paditepa 6To Hovtého padaivouy udmiig

TOLOTNTAC 1) TLO OPNENUEVAL YORUXTNELO TIXAL, OTWE OYNUITAL 1) CUYXEXEPWIEVA AVTIXEIUEVAL.

Single depth slice
1 2 3

N == & O

4 6 8
3 1 0
1 2 4

Y

Yyfua 2: Hapdderyua evés Mazx Pooling Layer [2]

o To cuyxevipwtnd otpoduata (otny ayyixr opohoyio pooling layers oynuotiCouv éva
VEO OTpWUA Tou Tpootideton YeTd amd xdde cuvehixtixd. O pdhog Toug elvon 1) Yelwon
TOU Ywewo) PEYEVOUS TV YOQUXTNPIOTIXMY, EVE TAUTOYEOVA 1) HETATEOTY TOUG OF
ywetxd aveldptnta. Ta mo cuyvd yenowomowlueva elvar ta Aeydpeva max polling
xau average pooling , ta omola SlaPEEOUY WS TEOS TOV TEOTO EQUPUOYNS NS Helwong

OLaoTdoEWY.

Avayvopion XYuvaicOrpatog o Opiiio

To cuvonstiuota €youy e€atpeTixd onuavtxd poro otnyv Puyixr Lwh Tou GUYYEOVOU ov-
Yownou. Eivau éva yéoo éxgppaong tng mpoomtixic 1 Tng Puyixnig XaTdo TaoNS XAMOLoU, GTOUG
d\ouc. H Avoyvdpeion Xuvaotfuoatoc oe Owhio (otny ayyhixr) oporoyia Speech Emo-
tion Recognition 7 yio cuvtopio SER) unopei va opotel w¢ n e€aywyn e ouvoucOnuatixic
XATACTACNC TOU OUANTA amd To Ghua opAlag Tou. Yrdeyouv Alya xodohxd cuvancdruo-
T, omwe Oudétepo, Ouudg, Eutuyla, OAMr, 6mou omowodrnote é€unvo cloTnua Ue meme-
PUOUEVOUC UTIOAOYLOTIXOUC TOPOUEC UTOREL VO EXTIOUOEUTEL Ylot var avary veploel 1) var cuviEael

OTWC amoutelTot.

Avayvaeion Ouiinty

H avoyvopion ouhntd elvon 1 dtadixacior Tautomolinong evog atoUou omd yopoxTnelo Txd
e pwvAc Tou. To cuyxexpévo avtixeluevo, €yel loTopla Tou ypovoloyeltal tepinou Téooe-
oic Bexaetieg amd 1o 2021. Xenolonolel To axoUCTIXA YOEUXTNEIC TG TNG OMALAS ToU €YEL
otamiotwdel 6Tl Slapépouy YeTadh atoumy. Autd Tor axouoTixd wotifo aviixatonteilouv T6c0
NV avotoplor 660 XL Tl SLAPOE TEOTUTIO CUUTEQLPOLUS.

A&ilel va onpewwdel 611 undpyouv 800 Yeydheg uToxaTNYOPlEC GTO TEDLO CVOLY VPELOTC OUL-

Mt N eRAANTELOT Ko 7 AVAY VOELOTY]. LTNV TEQINTWOT OO 0 OUANTAS toyupileTon
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OTL EYEL Ulol CUYXEXPUIEVT] TAUTOTNTA XAl 1) PeVY| Tou yenoiponolelton yia tny emPBelaiwon 1
™V andpeudn autol Tou Loy uelopol, Tedxetta yio etollevon ouinth (ota oy yAixd speaker
verification ¥ SV). Avtideta, n avoyvodplon ophith (ota oryyAxd speaker identification # SI)
TEOXELTOL YOl TOV TEOGOLOPLOUO TNE TAUTOTNTIS EVOS &Y VWG TOU OUANTY OVIUESH O TOANOUC.
Kotd pio évvola, 1 emakfiievon owhnty etvan plar 1:1 avtiotolylor €V 1) avory vidplon ouihnTh
etvon plo avtiotolyon 1:N, xadodg 1 @V cuyxplvetal Je TEOTUTO TOAAATAWY ATOUWY.

‘Ocov agopd v enadfdeuon opdnty, to medio ywplletow o 800 unoxaTNYORlEC: TNV
eCOPTOUEVT) XAl TN U] EEARTOUEVT Ao TO XElUEVO. TNV TOTN XoTnyoplo To cUCTNUA XohelTon
vo. entaAnUedoel Tov oAnTn péow ulag YvwoTthc xat tpoxatoplopévne mpotaone. Avtideta,
oTn un eCopTOUEVN eTAAAUEUCT) 0 OUANTAC UTOREl Vo ELOTYdYEL OTOLOYTOTE TEOTACT, OTO
ocLOTNUAL.

Avagopd ye tn Asttoupylor evog cuoTHUATOG ENUAAUELONG OUANTY TEOXELITOL Yiol €val
oo TNnUa Tou 6éyeTon wg lcodo dVo mpotdoel. H mpdtn mpdTaoy medxeiton Yo TNV TEOTO-
on eyyeaphc (Yvwoth oty ayylxy opohoyio xou we enrollment utterance).H dedtepn
npbtoon anotelel TNy mpdTaoy enalfdeuvong (YvwoTh oty oyl opohoyio xou we
verification utterance). 'Evo cUotnuoa avayvoptong opints, aveZdetnto xeyévou, déyeto
TIc dUo aUTég TPoTdoELS Xt TpooTadel var amopaviel €dv oL 500 aUTEC TPOTAUCELC TEOERY OVTAL
amo Tov (610 opAnTy. To anotéheoua evog Tétolou Sixtiou cuVATKS TEdXELTAL Yo Evay apLiud

eumiotoolvng, oto evpog [0,1], 6mou 1 elvon 1 olyoupn amodoy, evd 0 1 olyoupn andperdn.

EZaywyrn XapaxtnploTixwy

‘Eva gacpatoypdgnua (otnv ayyhixry opohoyior Spectrogram) efvon pla omtixf avomo-
PUCTUCT, TOU PACUATOS TV GLUYVOTHTWY EVOS CHUATOS S oUVERTNOY Tou Yeovou. Ta ga-
OUOTOYROPTATO YENOWOTOLOUVTOL EXTEVS GTOUS TOUEIC TNG LOUCIXAC, TNG YAwaooloylag,
covap, pavtdp, enelepyacio ouhiog, cewoporoyio ahhd xon dhha. Pacuatoypaphuata Hyou
umopoLY va yenowonotntolv axdun oToV EVIOTIGUS TROPORIXWY AEEEWY QPOVNTIXG oL OTNV
avdAuan SLopdenmy oAy Lowy. Ta gacuatoypdupata umopoty va dnutovpyndody and éva
YEOVIXO O UE €vay omd Toug 800 TEOTOUS: TEOCEYYIO T we Tedmela QIATPWY ToU TPOo-
xOmTeL oand wa oetpd Lwvonepatdv @iltpny (autde ouyxexpéva ftav o pbvoc TpdTog Tty
and v €leuon e oLYYpovne enelepyaotiag Pnplaxol ohuaTos), 1 evolhaxTixd and to ofua
XPOVOU YENOWOTOWOVTOS Tov Yetaoynuotioud Fourier. Autég ol 600 pédodor oynuatiCouy
TEAYHATIXG U0 BLUPORETIXES YPOVIXES AVATUPAUCTACE 0TO TESIO TG oUYVOTNTAC, UAAS &-
tvou 100d0vopeS LG oplouéveg mpobmodéoeic. Metd tnv egapuoyy| woc xhipaxoac Mel oto

paocyatoypdpnua, utohoyileton To Aeyouevo Mel Spectrogram.

0.3 ExaAnYsvorn OuiAtty] pe Xenorn XuvaucIfuatog

0.3.1 Awic9non

To xbplo onuelo g dimAwuaTxhc, ivon vo evtonicoupe Tig e€apTHoES UETUED TV Slo-
AELTIUOV YARAXTNELO TIXWY TV OUANTOY ot cuvanc¥fuatog. Trodétoviag 6Tl 1 YWV Twv
OUATOV euneptéyel TAnpogoplee 0w N nhxio, To QOO %o To cuvaloUnua Tépa and To

YAOOOWXE YopoXTNELOTIXd, efvar eUXOAA AVTIANTTO OTL 1) YWVNTIXY TAVTOTNTA OEV UTopEl Vo
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oplovel povooriuavta. Autéd dnuUtovEYEl EVa EpWTNUN TYETIXG UE TO TG OAOL UTH TOL YUEAUXTT)-
ploTd emdpolY 6T @wvr. Mo Aoy utddeon Yo HToy OTL, €4V AUTE To YUEUXTNELC TIXA
TEOTOTIOOVY T1] PWVT| UE XATOLOV TOAUTAOXO TEOTO, Yol YToty TOAY BUGXOAO Yia vl UG TN
enaAAUELCNC OUANTY Vo TOEWVOUNOEL OWOTA EVay YEHOTN. E QUTYH TN OLTAWUATIXT, OLEPEU-
VOUUE TNV ETUBEACT TV CUVALCUNUATWY OE EVa TETOLO GEVIPLO.

[Mo var umop€coude var BIEREUVACOUNE TNV ETBEACT) TOU GUVAICUNUATIXO) TEQLEYOUEVOU
oTnV owthio, TEEMEL TEOTA Vo 0plcouNE Tar Paoixd HOVTEAN UAS, TOCO YL TNV oVOry VEELoN
oLYAUCVAUATOC GTNY odthlol 660 xou yia TNy enoirfidevon ouwhnt. Kotomy, Snuiovpyolue
Ulat OELRd TELPOUATWY, TROXEEVOL VoL EEEPEUVHCOUUE TAL OMOTEAEGHOTA TOU GUVALGUNUXTIXOV

AbYOUL.

0.3.2 Ilpoocéyyiom

Ye auth TN OmAWUATIXT, OLEEEUVOUUE TNV ETOEACT) TOU GUVULGUNUATIXO) TEQLEYOUEVOU
oTNV oUAla UE TETOLO TPOTO, OTE Vo AVTHIETOTIGTOUY TOG0 eVTEWE {nTAuaTa OeV €Youy
drevdetnlel oe mponyoUUEVES EpEUVES OGO Xl TNV EVIGYUOT) OE TUEABOCLOX LOVTENO UNY VL
¢ wdinone.

[Tpoomadolye opywd, vo anodeilouue TV UTOEEN TOU TEOBAAUATOS XAl OTr GUVEYELL
vo. To Tocotxonotjooupe. ‘Eneita npotelvoupe xdmoleg mapadoctoxés Yedo8ous unyovixhic
UEINoNS YLol HETAUPOEE YVOOTNC TEOXEWEVOU VO UEWWCOLUE 1) axoun xou var e€akelpouue tnv
enidpoom auth. AxpBéoTepa, YENOWOTOLOVUE €V TROEXTULOEUPEVO GUVALCUNUATIXG LOVTEND
xai TEooTAdOVUE Vo HETAPEPOLUE cuvataUNUaTIX TANPOQOpia e €va povtého emahdcuong
outhnt. Télog, dnuiovpyolyue €vo GOVORO TELPUUETWY TEOCTUIDVTOS VO DOCOVUE OTAVTHCELS

OTOL TIOPOXATE EPWTHUOTAL
e Mnogel 1 cuvaicOnuotiny Yvoorn va Behtinoel €vo wovtého emahideuons olAnTy ;
e Ilow etvan 1 enidpaot Tou GLVULGUNUATIXOD) TERLEYOUEVOU GTO OVTIXELUEVO TNG AVaY VORI
ONG OUANTH;
e Me nowdv tpoémo emnpedlel 1 éviacy Tou cuvalc¥riuatog Tn Sodixaoia ;
o Ilw¢ emdpd xdie cuvaicUnuo yweloTd oTo avTiXelpuevo TNe enaARUELCTC OULANTY;

e Ou unopolcE UL TEOTACY) UE CLVIGUNUN GTNY TEOTACT| EYYRAUPNS VO ETLPEREL XANDTERA
ATOTEAEOUATO OO Uiot CUVAICUNUATIXG OLBETEPA TEOTAOT), OEBOUEVOL OTL 1) TEOTAUOT

emBefalwong fray cuvacUNUUTIXG QPOPTICUEVY;

0.3.3 Apyitextovixég Movtélwy

[Tewtol tpé€ouye onolodhrote nelpapo xatooxevdlovpe dVo povtéha. To mpdhTo yoviélo
m1l mEOXELTAL VIOl TO HOVTEAO TO OTO(0 EXTUOEVETOL GTNY AVAYVOPLOT| CUVOLCUAUATOS GTNY
oMo, Avtipetonilouye T0 HOVTEAO QUTO GOV TOV CLUVOLCUNUATIXNG EYXEPANO GTO
oVotnua wog. To dedtepo wovtého m2 mpdxertan yio v cLoTnUa emakdevong owinth. O
OTOYOC MaC Efval Var HETAPEPOVUE YVWOT amo To ml 6To m2 xau vo eEeTCOUPE TNV anddooT

TOU OE BLdPopa GEVARLAL.
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[Tpoc auth v xatedYuvorn Aoimdy, xaTaoxeVALOVUE Xt AELOAOYOUUE SLPORETIXES dPYL-
TEXTOVIXES, OTIOU OAES €Y 0UV WS GTOYO TNV ATOTEAECUATIXOTERT| UETAPORE YVWOTG A0 TO €Vl
nedlo oto dhho. Xwpilouue Aomdv Topaxdtew TNV avdAucT Ko o€ Buo LToxaTyopieg, wla
Yot T0 cLVALCUNUOTIXG YOVTELO xat plot Yiot To povtého enahdeuone owhntn. Lo xdie éva

TpooTadolUE Vo BROUUE TNV dEyLTEXTOVIXT) TOU Vol BOCEL Tol XUAOTERA BUVATE ATOTEAECUITAL.

Movtého Avayvoplong JuvaicOfuatog

m1 (randomly initialized weights)
4 ™
train on
nv + BatchNorm Speech
5 co atehio z Linear 1024 Linear 286 | | E?noﬁon
2 + LearkyRelLU .
= (zto 1024) (1024 to 256) Recognition
(3x) task
“\‘k ) /"

Yyfua 3: To povrélo ml: Extaidevuévo otnv avayvawpion ovvaiodnuatos oto mpofAnua
teoodpwy ovvaioOnuatwy tov IEMOCAP.

To uovtého ToL YENOWOTOLOVUUE YIa TNV AVOLY VORLOT) CUVOLCUAUATOS TROXELTOL Yol £Val 2U-
vehxtixo Nevpwvixd Atxtuo. ITo cuyxexpuyuéva to 8ixTuo pag, anoteheiton ano 3 cuveyOUEVYL
CUVEALXTIXG GTEMUATO, 32 xavahledY xou Tueva Yeyédoug 5. MeTtall autev uecohaBoly xo-
vovixonoinom, ouvdptnon evepyornoinone LeakyReLU xo 800 diactdoswy max pooling, avd
batch Ta ctpduata autd axorovdolvton amo 800 TAHEKS GUVOEDEUEVA YROUUUIXE O TEWUITA
TpofdAlovtag Ty elcodo ce 1024 xan otn cuvéyelr oe 256. Emimhéov xdvouue yerion tou
Cross Entropy Loss xou yenoylomolotue yio ertiotonoinon to SGD. To povtého auto exmna-
deveTon yia mepinou 50 emoyéC GTNV avoyVWeLoT TEGodpwy cuvaicUnudtwy oto IEMOCAP.
To cuvonotiuota autd eivon: Oudétepo, Ouuds, Xapd kar Avmn.

To anoteAéopata Yo 0To cLYXEXEWEVO Telpoua atohoyolvton e Bdor 6V0 YETEXES, TNV

axpifela (otny ayyhxh opoloyla accuracy) xou to fl-macro score.

Movtéro | Axpifew % | fl-macro %
cuvacUNUATIXOG EYXEQaNOg ml ‘ 56.7 ‘ 55.94

[Tivoxac 1: Ta amoteAéopata tng eknaidevons tov povtédov ml.
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Movtého EnarfOcsvong Owiinty

X1V mpooTdielor oG Vo ATOXTHCOUVUE OGOV TO BUVITOY XUAUTERT| UETAPORE YVOONG Kot

Taoxeudlovue 4 dlapopeTinég apyrtextovés. Kdie pla amd autée aforoyRinxe oe xde

ouvatcUnuotixd melpapo. Emmiéov ot ypnowonoidnxay dapopetixol puduol exudinone,

dlaoparilovtoc dtL Yo Beedel to yoaunrdtepo onuelo EER. Ot apyitextovixée Ytav ol e€rg:

e Movtého t0: Auté to povtéro Va ypnotwonomiel wg povtéro yweic YvoHon cuvouoin-

HdTwy ot MEtpduaTa poc. Autod onuabvel 6Tt dev Yo Slordétel xoplor cuvanc YUt
eMedNYNON xoTA TNG OLdPXELL TN EXTaidEVOTC Tou. AToTeheltan HOVO amd TO YOVTENO
M2 YVOOVTOS EVIEAWS TNV ETEEOY| Tou cuvalc U uatog oTtny ouhlo. H apyitextoviny

auTo) ToL YovTélou amewxovileTon oTo Ly uas.3.

Movtého t1: Auté 10 povtého otoyelel oTn UETAPORd YVHong and to ml oto m2
epopuélovtac TAen enavexnoideuon (otny ayyhxr opoloyia finetuning). ITo cuyxe-
AEWEVA, YENOWOTOWVUE Tar exTtandeLUEVa Bdpn Tou ml wg agetnpla Yo To m2. X1
GUVEYELWL, TO M2 EXTUOEVETAL TANPWS OTNY eENUAUELUCT) OWANTA. e QUTAY T1) OLadL-
xoola, YENOWOTOVVTAL BIUPORETXE TOCOCTA eEXUdUNOTS, Tot xaADTERPR amd Tl omola
OLTNEOVVTAL WS TO TEAXO UOVTEAO WE Y VWO cuvatcUfuatog t1. H apyitextovinn

auTto) ToL YovTéhou amexovileton oTo Lyua 3.4.

Movtého t2: Autd To ovTého GToYEVEL OTN UETAPOPE YVOoNg and To ml 6To m2 Yéow
NG EMAVEXTOLOEUOTE TOL M2 UE Evay TOMD CUYXEXPLIEVO TEOTO. MTOYOC Uag elvon va
xpatricoude otalepd Tar onueia OTOU TO aEYIXO BIXTUO ETUIXEVIPWVOTAY OTO MNYNTXO
ofua. Xenowomololue To TpoexTandevueva Bden tou ml wg onuelo exxivnong yia To
m2. Eoavayxdlouye, otn cuvéyela, xdie Bdooc oTol CUVEALXTIXG CTEMUATA VO UNY
exmandeuTel mepantépw. AuTod onuadvel 6TL dev umopel va evnuepwiel xavéva Bdpog o
oTd Ta enineda, xaTd TN SLdexeLa TG Bladixaciog EXTAlOELONC TOL M2. MTN GUVEYELY, TO
m2 exmoudevET 0TO avTixeluevo g enadflevong owinty. Télog, yenowonoobvto
OLUPOPETIXG TOCOCTY eEXUAUNONE, TO XUADTEQN amd Tal Omola BLUTNEELTAUL WG TO TEMXO
HOVTENO KE YVWOT cuvalcUuatog 2. H apyttextovins) autod Tou YovTEAOUL

anewovileton oto Lyfua 3.5.

Movtého t3: Autd 10 Yovtého oToyelEL 0T UETAPOR YVWoEWY and ml oe m2 ypern-
OLHOTOLWVTOS Lol apyttextovixr) obvinéng. Ilio cuyxexpyéva, yenowonololue Tpoxo-
Yoplouéva Bden and to ml weg onuelo exxivnong yio éva utodixtuo oto m2. ‘Etol to
VELPWVIXO BIXTUO YwpeileTon o BVO UEpT. 2TOV «<CUVAUCUNUATIXG EYXEQPUAOY, XA DS TO
ml etvor TAEoV U€pOC TOU PEYAADTEROU BIXTUOU X0 GTO UTOBIXTUO BLAXELONG OUANTOV.
Kot tn dudpxelo Tng exmandeutinfc dtadxaotag, To cuVAGUNUATIXG UEQOG DEV EMAVEX-
roudedeton. H oupfolr) tou otn cuvolunr| Swodixacio elvon 1 Tapoyn oY Ve®Y cuval-
CONUATIXADY EVOWPATOOEWY (oTnv ayyhxr opohoyio embeddings) oto dixtuo. Autég
Ol EVOWUATHOOELS GLYOLALOVTOL UE TIC AVTICTOLYEC TOU CUC THUNTOS ERAANUIEUCTC OULAT
TH oTa TEAMXA O TpOUTa Tou Bixtiou cUVTNENe. Kadde exnoudedoue to cuyxexpiuévo
povtého otn Swdixacio emahfidevong ouhnToOY, Yenotlorotinxay SLoupopeTxd Toco-

o014 expdINoNg, EX TV OTOlwY Tot XAAOTERA, BIATNEOVVTL (KC TO HOVIEAO E YVWOT
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ouvvoucIfuatog t3. H apyitextoviny autod tou povtéhou aneixoviletar oTto Lyhua
3.6.

To povtého enarfleucnc opANTY €xel TOAD TUPOUOLA UEYLTEXTOVIXT UE TO HOVTEAD TNG
VoY VORLoTG cuVaLoNudTwY. AuTo YiVETOL GUVELDTTE, TEOXEWEVOU VoL SLEUXONDOVETAL 1)
dtaduxaotar yetapopds yvoone. Exnoudebouye xdde povtéro yia 1000 enoyéc pe evepyo-
Tomuévn Ty Tpdwen Swoxonh (otny ayyAxy| opoloyio early stopping). H exnawdeutid
dradixacion emiTuyydveton aglomolnvtag To obvoho dedouévev VoxCeleb 1. Tpogodoto-
Ope To Yovtého pog pe Lelyn TOAATAOY EXPOVNTGY xou uTtohoyilouue avtioTolyo To
GE2E Loss.

0.3.4 3XUvola AZlolbéymorg

Baowr) mpolndieorn yio va Umop€GOUUE VoL TEUYUNTOTOCOUNE ETUTUYMOS TA TELRSUATO
oto Kegpdhowo 4, fitav 0 oplogdc twv cUVOAY alloAoYNohc Yoc. AuTtd ftay Ue dhha Adyta To
OET BOXWOY, To ontola yenowlonotiooue. o xadéva amd tar mepduotd yag, dNULoUEYNoUUE
€VoL SLUPOPETIXG GUVOAD B0XIUMY ot 0T1 cLvéyela eAéy&aue TNV anddoor xdde Yoviéhou
EeYWELoTA.

‘Ola o obvoha Tpogpyovton and to chvoho dedouévwy RAVDESS. ‘Eva cbvolo anote-
Aelton ovolooTd and évay apliud TEOoEXTIXG EMASYUEVLY TAEWddWY. Kdde mheiddo nepiéyet
ULt TEOTACT EYYRAPTS, Ulat TpoTaoT) enaifidevong xou wa eTxéta. H etixéta umodeinviet edv
oL 800 TPOTAGELS AVAXOLY GTO (BLo dTouo 1| OYL.

Mo v oplooupue avotned TV TelpouaTiny hog pLIULoY, TEENEL TEAOTH Vo EENYHCOUPE TN
doun Tou cuvorou dedopévwy RAVDESS. Tlpdto am ‘Ohol yeNOHLOTOCOUE HOVO TOV YO Kol
enione anoppldaye dAeg Tic TpoTdoEC TOU TEPLEY ALY TEAYOVOL.

11N OUVEYELDL XATAOXEVAOCUUE TECCEPN OET TAELAOWY OTC TEPLYPAPETOL OVOAUTIXE OTO
3.2.4. Kdle mieddo amo autég yenoiwomoiiinxe oto aviictowyo melpopa. Xta melpduato
1, 2 xou 3 €ywve emmpooUeTog Sl WELOUOS TWV TAEIAOWY GE UxpOTEPA GOVORA OVIAOYA UE
v évtaon tou cuvaoruatog. H évtacei Atav: Wmie xow €vTovr. XTo melpayo 3
EQUPUOCTNXE EMTAEOV BLoY WELOUOS TEOXEWEVOU ToL GUVOAXL VAL SLoty WELOTOUY ovaL GLVAEGUTUL.
Télog oo melpopa 4, 0 SloyWELOUOS EYLVE avar GUVIEGUTUO X0 AVa TNV CUVALCUNUATIXT YV®OT
1 oyt oty medtaon eyyeoprc. H oxédmn nlow amo toug cuyxexpiuévoug Bloywpelopols Ty

TREOTUCEWY TWV OUANTOV ENEENyElTon ovoAUTIXY, TopoxdTte oo 0.4.

0.4 Ileipdpota

Ye autd to onuelo Vo TeplypdPouUe EV CUVTOULA TA TELEAUATE UOC, Kol XETOLL CUUTE-
edoyato mou e€dyoupe Bdomn auTdY, eved 0T cuvéyela Yo BoUUE XU TA AMOTEAEGUOTA TNG
TolTXNg UEAETNE Tou Biedriyoue. Ye xdde melpopar TopaxdTe) afLOAOYOVUE ToL LOVTEND UOG
t1,t2 xou t3 mou katéyovr ourvaioOnuatikny Yvwon, ue to poviého t0 6mou BV E€xEL YVWOT

ouvac U UoToC.
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model | EER (%) | s* | statistical significance

t0 19.7 0.74 0.04
t1 16.35 0.43 0.02
2 20.66 0.79 0.03
t3 18.28 0.51 0.04

[ivaxac 2: The results on the speaker verification task, on VoxCeleb’s evaluation set.

0.4.1 Boaowr AZwohoynon otnyv Enalfdcsvorn Ophnti

To apyind avTixelueVo TNG €PELVAC UAC, ATOTEAECE 1) HEAETT] TNE AMOBOCTC TWV UOVTEAWY
woc o éva xhaowod melpaya enaidevong owhnt. Exel a&iohoyhdnxay to yovtéia pag oto
oUVOhO TAELIOWY oL avTioTolyel otny alloAdynon mdve oto VoxCeleb, 6mou xou exmonde-
OTXaY.

Ye outd pog to melpapo mopatnehoaue ula oyetixy Bektinon e té@Ene tou 7% yio To
Hovtého pag t3 xou pio tou 17% yio 1o povtého tl oe oyéon ue to t0. Avtideta, to poviéro
12 qaiveTon vo ThYE yELdTERA.

[Topatnpolue howmdy 6Tl 1 PETAPORE CUVALCUNUATIXAC YVOONE OTO aVTIXELUEVO NG &-
nahfleuone owANTY) BEATIMVEL EUPAVEIS ToL ATOTEAEGUATO PG 0TO GUVORO 0&LOAGYNONE TOU

O(VTL}(ELHéVOU Jac.

0.4.2 H E=nidpaocr touv YuvaicOnpatixol Ilepieyouévou otnv Ena-
AMYevon OpAnty

Y%x0mo¢ aUTOU TOU TELRAUATOS UTAREE, O EVIOTUOUOS CUCYETAOEWY UETAC) cUVILGUNUOTL-
%00 TEPLEYOUEVOL OTIC TEOTAGELS XAl TNE AMOBOCNC TV UOVTEAWY Yac. Xwpilouue To Telpoya
oe 2 pépn. Hpdto e€etdlouye e uio poptiouévn medtacy enairdeuong unopel va ennpe-
doel Evar oot enahleuone olhnty dedougvou 6Tl 0 YeHoTng elye dnhwiel ye ovdéTepo
ouvaioUnuo. Kotémy, eiodyoupe xau otny mpodtaon eyypaphc ouvaloOnuatixn @opTion xou
€€eTACOVUE TN CUUTIERLPORE TWV UOVTEAWY UAS.

ITio ocuyxexpiuéva, yio TY aflOAOYNOT TOU TELRGUITOS, XATAOXEVdoauE TAelddes. Kde
Thelddo mepietye pio cuvonotnuotixd OvdETEEN TEOTUON WS EYYRAPH Xou piot cuVocOT-
RATIXE PORTLOWEVT w¢ TpdTaoT enaifleuone. Emnpdoieta, ol mpotdoeig dioywploTrxay

ue Bdomn TNV Voot TV cUVAGUNUETLY.

Exp ‘ model ‘ VoxCeleb eval. ‘ RAVDESS weak emotion ‘ RAVDESS strong emotion

1.1 t0 19.7 16.37 30.65
1.2 tl 16.35 16.74 27.23
1.3 2 20.66 17.51 30.51
14 t3 18.28 19.49 27.53

[Mivaxac 3: The effect of emotion on speaker verification task, in the case of a neutral
enrollment is followed by an emotional verification utterance.

‘Onwe mapatnpoiye otov Iivoxa 4.2 o0 HOVTENA YOG CUUTERLPEPOVTAL APXETA XS OTO
fmo cuvaioUnuo. Avtideta duwe, mopatnpolue uia tepdotia extéevorn tou EER to onolo

4 4 Z 7 7 4 Z 4
oyedoy dimhactdleton Yoo To évtovo ouvaicOnua. Ilpogavidg hoimév to €vtovo cuvaicunua
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emnpedlel dueca Ta cLOTNUATA Log xou Wiadtepa To t0.

Hopatne®dvTag TV CUUTERLPORE TV UTOAOTOY HOVTEA®Y, €0X0Aa avoryvwellouvue tny
UTEPOY Y| TOug 07O €viovo cuvaloUnua eviavtiov tou t0. ‘Ola tor povtéha pag ebvon xavd
VoL DLy ELPloTOUY XOADTER TG EVTOVEC CUVOLCUNUATIXG (POPTICUEVEC TPOTACELS GTO OTAOLO
e emahdevonc. AvTihauBoavoudoTe AOLTOV WS 1) ELCAYWYT) XATOLIS YVMOT) GLVALCONUITOC
XATO TNV EXTA(OEVCT] TOU YovTéAOL unopel va Bonifcel oty xoA)TERT AVTIIETOTLOT TOU GE
EVOL TEAYUATIXO GEVEQLO.

[Mpoxewévou va peyevidivoupe v enidpaon Tou cuvaulcNUaTOS, 6TO ENOUEVO TElpaol
elodyoryope ouvaloinua xou oTny TedTacT) ey Yedpric. Me autév Tov TpoT0 TopoualdlouuE Eva

o €VTOVO GEVIPLO OTIOL XAl Ol BUO TEOTACELC Vo EiVaL GUVOLCUNUATIXG POPTIOUEVES.

Exp ‘ model ‘ VoxCeleb eval. ‘ RAVDESS weak emotion ‘ RAVDESS strong emotion

21 t0 19.7 21.88 32.64
2.2 t1 16.35 21.38 31.37
2.3 2 20.66 20.78 31.13
24 t3 18.28 23.29 30.78

[Mivaxac 4: The effect of emotion on SV task, when different emotions occur both during
enrollment and verification phase.

‘Onwe mapatnpodue otny Iivaxa 4.3, to gouvouevo miéov emdevmveton. Edxoha avaryve-
ellel xavelg 6TL oe LT TNV TEPITTWOT) T LOVTERX YEROTEEEDOLY TNV ATOBOCT] TOUG UXOUT XKoL
o710 o ouvaioYnua. M adénon tou EER tne téne tou 25% oe oyéon pe to mponyoluevo
nelpoa, TEOXTIXG ONUOLVEL OTL ToL HOVTEAX Uoc OEV €YOUV TN BUVATOTNTO VoL ovary vewplcouy
0Lo Tpotdoelg oL onoleg eivan paxpld cuvanoUnuaTxd. Iapdhinia Brénovye por oTodepd xaxt
am6d001 670 €viovo cuvaloUnua. e auTO, To HOVTEAN UOC QOUIVETAL WS CUUTERLPELOVTOL
TUEOUOLOL UE TO TPOTYOUUEVO TElpoAL.

A&ilel va mopatnenoet xavelc Ty otadepn Bedtinon v cuvaloInuaTixGy woviédwy. 1o
CUYXEXPWEVA, YIVETOL TEOQAVES OTL ToL HOVTEAA Wog EEMEPVOLY To WovTélo ywelc yvaor t0
o€ anodoo, Wiltepa ot €vtova cuvaicOruata. To yovtélo t1, edwd, yio ulo axdurn opd
Eemepvd To t0 xou oToug dYo Baduolc cuvarchuatog.

[Tpogovng, T0 CUVICUNUATING TEPLEYOUEVO EUTAEXETAL UE TNV IXAVOTNTA EVOC CUCTAULITOC
va Btaxpivel owintéc.  Kdti tétolo eyelpel epmTAUOT OYETIXG PE TO YORUXTNEIGTIXA TOU
eAEYEL €val TETOLO VEUPWWIXO BiXTLO Xt TNV evatcUNcior Toug 6TIC AVIPOTIVES EXPEACELS KoL

oUVALGVAUOTAL.

0.4.3 H Enidpaon »xdde YuvvoucIfjuatog ctnv Enalficucy OuiAnti

Metd tn Bieloywyn) Tou TEONYOUUEVOU TEWRIUATOC, EYE(POVTUL EpOTAULAT OYETIXA UE TO
mold etvon exelva T cuvaLoVAUATA TOU TEOXAAOLY aUTH TNV PElWOT GTNY amdd00Y TWV HOo-
VIEAWY Uoc. Xto melpopa autd, Yo TeocTodHCOVUE VoL avary VWEIGOUPE €0V UTIEp)0uY TETOL
CUVALGVAUOTA KoL VO OXLAYPUPHICOVUE TNV ETUORACT] TOUC.

Hapatnemvtag tov Iivaxa 5, BAémouue 6Tt To cuvaicOnua tng Andiag etvan exelvo Tou cu-
UTEPLPERETAL YELROTERX Ao Ohat Tt ot suvancruata. Avtideta To cuvanciuata Tou PéBov
xat tou Exveypiopot gatvetan vo ebvan tor avtio tolya yewpdtepa yiar to évtova. [lopddinha, to

ouvaicUnuo Hpeuia gaiveton vor cuumeplpépetan XahOTERX OO OAAL.
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Exp | uvalodnua | RAVDESS Hrio | RAVDESS "Evtovo
3.1 Heeplo 9.38 15.62
3.2 Xoapd 15.1 32.29
3.3 | Ltevoywela 12.5 31.77
3.4 BOuuog 17.71 39.58
3.5 Pofog 18.23 38.54
3.6 Andia 24.48 20.31
3.7 | "Exminin 17.71 27.6

Iivoxag 5: H emidpaon twv dagpopetikdr ovvaionudtwv oto t0.

Ytoug mivoxeg 4.5, 4.6 o 4.7 epgavilovtor oL avtioTole CUUTERLPORES TWV UOVTEAWY
ue yvoon cuvouotfuatog. Almha and xdde othAn epgavileton xou 1 avtiotolyr Beitiwon,
CLUYXELTIXA PE TOo wovTého t0.

[Mopatnpolue 6Tt To cuvalcUnua e Hpeutag xan autd tne Andiag cuunepipépovion yeL-
potepa and Oha. ITo avohuTnd o auTd Tor BUO QaivETOL VoL EYOUUE TEPACTIO YELPOTEREUCT)
tou EER oe 6ha pag to povtéha xou o 6houg toug Baduoic cuvaicdruatoc. Autéd oyetileton
PUOLXE UE TNV AmouUciol GUVOLCUNUGTWY XaTa TNV eXTTUEBELCT) TV UOVTEAWY. Avoryvweilouue
€UXOAA, OTL OYEdOV Ohat To CLYVALCVNUOTA TOU ATAY TOEOVTOL AT T1) OLdEXELd TNG EXTOUOEU-
onc Tou Yovtéhou tl galvovton vo mhyay xohltepa o oyéon pe to 0. AvoTtuy®e To (B0
oev cuuPabver yio T wovtéda t2 xou t3. To mpoTo alveton vor mnyaivel Toh) yewpdTeEQ GTaL
Ama cuvancruaTa axdun xon oto tpoexTadevpéva. Avtideta To deltepo €yel TOAD €vToveg
amoxAloelc ano 1o povtéro t0 ye eite TOAD yeydieg BeATIOoEC O xdmota (T TOAD UEYIAES
emdevOoES, xohoTovTag To aoTadéc.

Yuvohxd Aowmov cuumepaivoupe 6Tl Ta cuvonoVuata Tou Péfou xan Tou Ekveypiopol
potveTal Vo BUGXOAEVOUY A ToL LOVTERA TERLGGOTERO Ao Tol dAha cuvoncUfporta. [opdAAnia
T0 ouvaicOnua tng Andiag gafveton va €yel ueydAn enidpaon Eeyweilovtog avdueca oTo Ao
ouvarcOuota. Téhog 1 Ehhew)n cuvancOnuatixic yvoone gaiveton va Bondd to yovtéro t0
oto ouvaicUnua tne Hpepiag.

0.4.4 H Ernidpaomn tou Kowol YuvawcOfjuatog oe npodtact Evyypa-
prc xou EnaAfdcsvong

Ye autod to melpaua, XUAOUPACTE VO SLEUXPWACOUUE TS €mdpd 1 emBOAY x0Wol cu-
VULOUAUATOS OTNV TROTAOT EYYRAPNE xou oTny Tpotaot enaidevonc. Ilio cuyxexpyéva
TEOOTAIOUUE VAL DLITIO TWOOLUE, €AV €Va TETOLO GEVAPLO EMdEA VETIXd TOCO GTN GUVORXT
AmOB00T TWV LOVTEAWY OGO XL TNV ava cuvaicUnua anddooT).

ITpoxewévou va die€dyouye To melpapa ywpeilouue to dlrdéoiyo chvoho oe 8Uo cUVORA XA
ava ouvaiodnua. To mpwto clvoho Yewpeitar auTd TTOL BeV Exel YVWOT CUVICVAUATOC Kot
TN SLIEXELL TNG AMOPACTC TWV LOVTEAWY eve To 0eUTERO €xel. H yvdon auth| dev oyetiCeton
o€ oo TEPIMTWON PE TNV EXTAUOEUCT| TWVY UOVTEAWY ToEEYOVTASC CUVAULCONUATIXY YVOOT).

‘Onwg napatneolue otov Ilivoxa 6 to yovtého t0, ywelc xoula yvoHorn cuvoodfuatog xotd
Vv exnaldevon tuyydvel piog Bedtinon tne tééne tou 21%. Xtny ava cuvaloUnua avdhuon
patvetar xodopd adEnon oe oha tar cuvac VAT, exTOC awtod Tng Aimne. Ilo cuyxexpéva

6hat o uTdhona cuvanoVata avTipeTtwilouy wo adZnon aro 12% éwe xou 38%. 'Eva tétoto
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Exp | Suvaodiuoata | EER (%) oe ‘Ayvow | EER (%) oe Ivdon | Lyetxh Bedtiwon (%)
4.1 calm 9.9 7.66 22.63

4.2 happy 23.44 17.41 25.73

4.3 sad 20.83 22.92 —10.03

4.4 angry 33.33 20.46 38.61

4.5 fearful 28.39 24.93 12.19

4.6 disgust 19.01 14.58 23.3

4.7 surprised 17.71 11.38 35.74

4.8 average 21.80 17.05 21.17

Iivaxoc 6: Ta amotedéopata tng Xuvvawinuatikns Ayvows kar tng XuvaioOnuatiknig
I'véong avd ovvaioOnua ya to povtédo t0

amotéheoya efvar TOAD onuovTind xadde @aiveton €viova 1 GUVOEST] CUVAGUNUATIXAS YVOONS
otn Behtlwon g cuvolhc anodoong. Autd mpaxTd onuolvel OTL, OE €V TEOYUOTIXG
oboTnua, €4V Ue xdmolo TeoTo avayvwellaue to cuvaloUnuo oty mpdtaoy emifeBainong,
Yo UnopoVoaUe Vo ETAEYOUE TNV XATIAANAT cuvanoUnuatxd tpdtacy emBefalwong. Kotd
ouvémela 1 Bertioon oTov Topéa TNE avaryvaptong cuvaicUuatog Ya uropoloe ansuieiog vo
ouuPdiet otn Bertiwon xou Tne emPBeBaiwone OANTH O TEAYUXTIXES EQPUPUOYEC.

Avtiotowya, otoug mivoxeg 4.9, 4.10 xan 4.11 mopatneolue axpBoe Ty Bl GUUTERLPOEAL.
Patveton xardopd 6TL pio TéTOL ETAOYY| BEATIOVEL TIC ATOXAIGELS TTOU UTHR YOV GTAL TEOT)Y OUUEVL
rewpdpata. 1o cuyxexpwéva 1o cuvaicUnua e Hpeuiag evey 610 mponyoluevo melpopa
pdvnxe vo ennpedlel évtova, €8¢ meTuyaivouue o Beltiwon tne téEne Tou 40 — 52% ota
povtéha t1, 12 xau t3. Iopdhinia To povtého t1 gaiveton va mnyaivel xaAUTEQO XU OTO
cuvaicUnuo Tng Aomng.

L UUTEQUCUATIXG AOLTOV, OE €Vol TEAYUOTIXO cLOTNUA ETaAIeuoNS OUANTY, 1) ElCaYWYT
YVOOoNg and 1o mEdlo TS avayvoplone ouvanciuatog Yo utopoloe Vo AmOTEAECEL UEYAAT
0PWYT OTNV GUVORLXY| ATOBOGT| TOU GUOTAUATOG.

Téhog otov Hivaxa 4.12 nopoucidlovton oL GYETIXEC ATOBOOELC TWV HOVTEAWY t1,12 xou 13
ouyxpertixd ye o t0. Iapatneolue 6TL yia oxxdun piot popd To poviého pog t1 cuunepipépeton

xaANOTERA OO AL

0.4.5 Xvuvewocgopd

Méow tng Simhwpatixnic autrhg cpyaolac XatoAREoUE O YEPXE TOND ONUOVTIXG ATOTE-

Aéopata. To anoteréopato autd cuvodilovton GUVOTTIXG TaEUXATE:

o Aciloe OTL alOTOLOVTC TNV UETUPORE YVWOTNS ATO EVH TPOEXTOUOEVUEVO UOVTEAD O-
VoY VORLOTG GLVAGUNUATWY 0TO avTixeiuevo tng emakfidevong outhnty unopel va Beh-
Tiwdel oNUaVTIXd 1 amddOCT), GE GYECT HE €VaL HOVTEAO exToudeLpévo ameulelag otny
enoldeuon owhnti. o cuyxexpwéva tetdyaue wa Bertiwon e téing Tou 7% Y

™V apyLtextonxt t3 xou 17% yio authy tou t1.

o Aciloue 6Tl T0 cUVLCUNUATIXG TEQIEYOUEVO GTO Tedlo TNg eMoARUEUOTC OUANTY) UTOREL
VoL ETMNEEdOEL 0 TEPAoTIO Padud TNy amdd00m ToU CUCTAUATOS, EEUPTOUEVO TANEWS

aro 1o Badud tng ouvaoinuatixnic @optione. Kdti tétolo €yel w¢ anotéheoya, yo-
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VTEAO EVGAWTO TN cuvanoUnuaTixy diddeon tou owAnty. Iopdhinia, To SiapopeTixd
cLYACVAUUTA OTNY TEOTACT] EYYREAPHE X ETUAUeVonS unopoly va Yeyeviivouy To
(QOYOUEVO, XATUAYOVTAS OE TOAD @pTwYd anotehéopato. Autd umodexviel OTL oL dp-
YLTEXTOVIXES exmandeuuéves amevleiag oTo medlo Tng enoARUeuonE OpANTY, BEV €)0UV

otadodnomn Yo To Toug TEOTOUC UE TOUS OToloug To cLVALCOTUA BLIUOPPAOVEL TO AOYO.

o Aciaye 611 0 Ouuds xou o PPog elvor oL GUVOLGTHUOTA TTOU ETNEEGLOUY TEPLOGOTERO TN
oadixaoior emahfdevone opintr. Metd ano mpooexTx| e€€Taom TV CUVULCUNUATODY
mou mapéyovtan ano to RAVDESS, ta nelpdyata pog unodewxxviouy 6Tt owtd ta 800
€youv To PeYaAUTERO aviixtumo TN Swdxacia. Téco o Ouuds dco xa o Pofog o-
vePdlouv dpactixd to EER ennpedlovtag évtova T Sodixacta Sy deiong oAnTeY.
LUYHEXQUEVA TA HOVTENA Y 0PI YVMOT GUVALGUHUATOC EYOLY Uiot TOAD YounAY| amddoo
xovtd oto 40% EER.

o Kdvopue enideiln Tou nwg unopolue HEow XAACIXOY UEVOBKY UETAPORUS UdINoNne ano To
Tedio TNE vy viplong cuvalcUNUdTwy o€ outhla 6To Tedio Tng enaAieuong olANTY va
EXTIUOEVCOUNE UMOTEAECUATIXG HOVTENX UE cuvancUnuatixy| entyvwor. ITlapatnerooue
OTL TOL JOVTEN QUTAL EVOL IXOVEL VoL UELOCOLY TNV ENBECT, TOU SLVALCOINUATIXOU AOYOU
%o VoL BEATIOC0UY ToL GUYOAX o anoteréopata. o cuyxexpluéva 1 apyitexToviny
pag t1, umeptepel evog xAacixol povtéhou ywelic enlyvwon cuvaoiuatog Onws elvon

10 10, T600 ot AT 6GO XU OE EVIOVA GUVOLCUNUOTIXG ETUTEDA.

o Acilaue 6Tl 1) YVWOT TOU CLUVAUGVAUATOS OTNY TEOTAOT ENAAIEUCNC, UTOREL Var BEATL-
hoeL Ty anédo0T evog cLOTAUNTOS X0V 6T0 17 — 24%, axdun xo oe povtéha yweic
xdmota entyveon cuvaicruatoc. Auto elvon TOAD onuavTind dedouévou Tou 6Tt Behtie-
o1 070 TEdlo TG avay vopeLoNe cuvatcUnudtwy uropel vor cuufBdiel oty Bedtiwon oto
nedio Tne enodievong opAnty. Mio tétola tapatripnomn Ya unopoloe va el EQapUoY
OE TEALYUATIXA GUC TAUATA XIS Vot UTOPOVCUUE TEUXTIXG. VO TTOURE Y OUUE CUYXEXPUUEVES
Tpotdoelg enahrdevong, avdhoyo ye TNy €000 £VOC GUCTAUATOSC XUTNYORLOTOINONE CU-

Voo UnUdToY.

0.5 Xvurnepdopata xow Merrloviixée Katevdivoeig

0.5.1 Xuvunepdopoto

Ye auTh TN SimhwpaTixn epyaoia, UEAETHOUUE TNV ENIBEUCT, TOU GUVULGUHUNTOS OTNV €-
nahfdeuon Twv owAntov. Tlelpouatio TAxaUE e BIUPOPETIXES TEYVIXES, TPOXEWEVOU VoL XO-
TAVOHOOUKE XAAVTERA TS TOL BLUPORETIXG cLuVaLCVNUoTa EUTAEXOVTAL PE Tar LoVTEAX Pordidic
unyovixhc wdinong.

[Tpwtor am ‘Ohat, eEETACUUE TS TO GUVALCYNUATIXG TEEQLEYOUEVO EMNEEGLEL TO AVTIXEIUEVO €-
nahfdeuong outhntr xou delloue 6Tt N cuvoncOnuaTn outhio unopel vo urtofoduicer onuavTxd
TNV am6d00T) EVOS TETOLOU GUC TAUATOS, OVIAOYA UE TN CLVALCUNUATIXY €VTaoT. Ao TOo-
UE OTL N loyupt| cuVACONUATIXY POETICT) GUVOAIXY UTOEEL VoL XdVEL TO YOVTENO emalriieuong
OUIANTH Vo €xel TOAD oY) anddoor. Efetdoaye mde 10 oudétepo cuvaicOnua emnpedlet

otaduaota xan T To EER petafdiietar €dv npocécouue cuvanonuatind TEQLEYOUEVO Kol
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oTn 0MAwon eYYpapnc, extoc and authyv g enaifleuonc. To anoteréopata delyvouy OTL
Olapopetixd Ledyrn ouVOICUNUATOY G aUTEC TIC 0V0 EXPOVACELS €YOUY WS OTOTENECHUA TN
YELROTERT dLVATH Am6000T), xaNoTOVTAC To Bactnd HOVTENN oG, TEAXTIXG oviXavaL VoL oval-
YVWRIooLY GWOTA OUATTES.

XN ouvéyela, diepeuvriooue Twg xdie cuvaiodnua emneedlel EeyweioTd TN dladixacion o
EVTOTIUOOUE AUTE TOU EUTAEXOVTOL TEPLOGOTEROD. ALmoTOoUUE OTL 0 Yuudc xan o poBog elvon
Tar ouvoLcVAUATH TOL €lvol O TIUVO VO XAVOLY T MOVTEAA O TO ETUEEETT| OE AovUUCUEVES
amoppeldelg yenotwy N Aaviaouéveg amodoyéc. Ilio cuyxexpléva, tapatneooue 6Tt 1) AmOAUTY
Twh tou EER égrace ta 40% dtov owtd tor ouvanodiuoto Aoy mopdvte. O Yupde etvon évar
ouvaicUnuo Tou EYEL Ylol ATPOCOOXN T CUUTEQLPORE GE TOMES TEQLTTWOELS.

Emnmiéov, eréyloue edv €va abotnua emahideuone opAnTy unopet vo BeATiwdel elodyovtag
wa tedTaoT Blou cuvalcIfuaTog Yo TEdTAoT EYYEUPNS 0T @dor alloddynong. H emioyy| pag
oY, €6eie peydhn Bedtiwon 6Ty andd0aT TOU GUGTAUNTOS, OXOUA XL OTAY ToL HOVTEAN OEV
elyov cuvoncUnuatin TAneoopia xatd TN didpxela Tng exntaldeuong Toug. Kataypdgouue pio
oyetw| avEnon tepinou 20% yio Ghot Tar OVTEND Hog Xatt Yiot oY eSOV OAa T ouvousYrporto. Ta
ATOTEAECUOTA Mo ETUONUAVOLY TNV avdyxr va Angiel unddrn 1 enidpoaot Tou cuvalcruaTog
070 Tedlo emahleuong ouAnTH XL TS OYEDBIAONG TO TERITAOXMY APYLITEXTOVIXWY, OOV EVAS
Tagvounthc ouvalonudtwy Yo utopoloe Vo dIANAETLOEACEL UE TN ONAWOT EYYEUPAS XoL
enaddeuonc. Me autév tov Tpomo, 1 Swdixacio Yo urtopoloe va yivel AydTepo eVdAwTr GTO
ouvacUNUTIXG AOYO.

Téhog, xaToAEope OE TEEIC OPYITEXTOVIXEC TIOU GTOYEVAY OTN MElWOT TNG cuvaLoYnuaTL-
x¢ eldpaong oty enaAievon owAnToy, xodeuio Ue SlopopeTind Tpémo. Acllaue 6Tl xde
o amé auTég UTEREYEL TOL LOVTEAOL Uog Ywpelg YVOGoT cUVACUNUAT®Y OF XATOIES GUVITXES.
To mo onuavtixd elvar 6TL 1) apyttextovxr pog tl, Eemépaoe onuavtxd to Bacxd uag po-
VTENO YwplC YVOHOT cuvaucUNudtwy o Oha o oeVdpLa Tou e€eTdoope. Enouévng, to netpduotd
uog detyvouv oTL eopuoloviog TapadocLaXES UEVOBOUS UETAPORAS YVOONC, UTOPOUUE Vo [E-
TAPEQOUNE ATMOTEAEOUATIXG TN cuvACONUATIXY YVOOoT 0To TEdlo Tng enakevong owAnT,
BEATUOVOVTOC TNV CUVONXT| ATOB0GT) TV UOVTEAWY, XU XAl OTAY UTEOYEL CUVILCUNUATIXT
outi{o.

‘Onwe xatahofotver xavelc edxola, 10 cuvaicUnuo €yel xalplo EOAO xou EUTAEXETOL OE
peydho Podud ye éva cOo TN EnoAUeuong OANTH. Ye auTH T SITAwUATIXN EpYyaoia, EVTO-
Tloope UEPIXEC amd AUTEC TIC OYECELS XoU TPOOTAINCUUE VoL TI EEMERACOUYE, EQUpUOLOVTAG

TEYVIXEC PETUPORAS CUVACUNUATIXAS YVWOTG.

0.5.2 Melrhoviixéc Kateudvoelg

Avut) 1 Simhwpatxd) epyocia o unopodoe va €xel TOAES eVOLUPEPOUCES UEANOVTIXES
EMEXTUCELS. D€ AUTAV TNV UTOEVOTNTA TROCTIOOUUE VO TUPOUGIACOUUE OPLOHEVES OO QUTEG.
[Mpwta an ‘Oha, yior xatebduvon Yo ATay Voo JEAETHOOUUE TNV ENIBRACT TNG YVOONS ENA-
Adevong TwY OUANTOV GTO TESIO TN AV VOPLOTE CUYALGUNUATLWY OUALIG X TOV TEOTO UE
TOV OTIOlO TOL YUEAXTNELO TG BIEXELONE TV OUANTOY OYETICOVTOL UE TIC CUVOLCUNUATIXES EX-
pedoelc Touc. 1o ouyxexpiuéva, xadoe autd o dvo nedia cuoyetilovto, Yo uropoloaue va

TEOOTA|COVUE VoL ELOAYOUUE CUYXEXPWIEVT] Y VOO TEOCUPUOCUEVY) VoL OULANTY, GTY) SLodixa-
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ola avaryvoplong cuvaonudtwy. Kodoe toa cuvoncifuota dev eivo LoVOsSHUAVTA OpLoUEVA,
Yo Ty EVOLUPEROV VoL UEAETACOUUE EQV TAL ELOIXE OUTE YOROXTNELC TIXEL AV OULAT T UToEOVY
VoL BEATIOGOUY TN GUYOALXY| AOBOGT] EVOS TETOLOL GUG THUATOG.

Mo dAAn evilopépovoa TTuYY) yiot UEAETY, Yo oty 1 Smutovpyia YlaC TEOGUPUOCUEVNC
ouvdptnone anwietac (ot oyyAd opohoyia loss function). I'vwpilouvye authv ) otyus,
oTL N exnaidevon evog poviéhou ue cuvniicuéveg loss function otny emakfievong outhnt,
onwe n GE2E vy mopddetyyo, dev haufBdvouy umddn Tic didpopoug midavole mopdyovieg
onwe o ouvaicUnuo. Autd arnotehel €vo UeYdAO EAATTOUA YTl OUCLAG T Oy VOOUUE EVTE-
AOC TN ouvonoUnuaTxr TAnpogopio. (2¢ anotéAeopa, €0TIACOUUE TUPAA OTN BLAXELOT TWV
OUANTOV Ywpic Vo Tpocdlopicouue TNV edpaon TG CLVALCUNUATIXAG POPTIONE XA TO TWS
exelvn Stopoppdver Ty opthio. ‘Onwg goivetar ot tpbogata épyo [15], [16], ta loss functions
EL0IXA TTPOCUPUOCUEVL OVOL AVTIXEUEVO, UTOPOVY VoI BEATIOCOUV ONUOVTIXG TN CUVONXT o-
n6doon. Eyouv yiver tpoondieies oxdun xow oto tedio tne avaryvaptone cuvaiodfpotoc [17],
TREOXEWEVOL Vo SlaryweloToLy oL Bactxol mapdyovteg Tou enneedlouy GTNY Tapousia Guvol-
oOnuatxol Adyou. O umopolooue Vo EEETACOUUE TS VO EVOWUATWOCOUPE CUVALCONUATIXY
TANEOYOpEla OE Uidl TPOCUPUOCUEVT) GUVERTNON AMWAELNS Xak VoL EAEYEOUUE EQY 1) amddoaoT BeA-
TIWVETHL TG0 6NV gpyaoia emahicuone owthnTody auth xad” auth, 660 xaL oTnyY enoAfieuon

oULANTOY 6Ty To cuvaloInua stvon évtova Tapdy.
P
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Introduction

1.1 Motivation

Despite recent advances in the field of speaker verification, producing single, compact
representations for speaker segments that can be used efficiently under noisy and uncon-
strained conditions is still a significant challenge. Such systems, in everyday usage, are
likely to be prone to the variety of speakers expressions. Emotion as a natural and often
involuntary encoder of voice, has the mechanisms responsible for vocal modulation. De-
spite its complexity and the fact that emotion is dominating common speech, its effect is
usually considered negligible.

Given the fact that most speaker verification systems do not take emotional content
into consideration, some questions arise about the vulnerability of such systems. It would
be interesting to enlighten the effect of emotion on speaker discrimination and whether
some emotions cause worse performance than other. If that is the case, then it would be
a logical continuation to try to eliminate the emotional effect. A system like that, would
be much more robust in real life scenarios.

Emotion Driven Speaker Verification is a attempt to exactly explore the emotional con-
tent on a speaker verification system. We make an effort to clarify the connections between
Speaker Verification (SV) and Speech Emotion Recognition (SER). The problem is highly
challenging due to two properties. Firstly, speaker characteristics are not unambiguous
settled. Secondly, emotion recognition is a difficult task itself, as emotions differs from

person to person and has no formal definition.

1.2 Approach and Contribution

In this Diploma Thesis we investigate how do different emotions affect a text-independent
speaker verification system. More specifically we conduct multiple experiments in order to
understand how does emotional content affect speaker verification, how does each emotion
contribute to this process, and how could we overcome this, utilizing emotional knowledge
in our favor.

First of all, we train a speech emotion recognition (SER) model on the IEMOCAP
dataset. After that, we create four different architectures. Each one tries to solve differ-

ently, the problem of efficiently transferring emotional knowledge from the SER model. We
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consider our first architecture as our baseline and which contains no emotional information
during training. Our second architecture aims at discovering emotional knowledge, after a
careful fine tuning from the SER task. Our third model tries to transfer knowledge without
fully fine tuning, in order to keep track of the points where the original SER model fo-
cused on the input signal. Our fourth architecture consists of a fusion model and is further
separated to two parts. Its first part, a pretrained emotion classifier aims at providing
emotional information to the second part, which is trained strictly on the speaker verifica-
tion task. We should note that all our models utilize the VoxCeleb dataset for efficiently
training on the speaker verification task.

The next step is to we construct a set of emotional experiments. These experiments
consist of a specific and careful setup as a mean to first qualify and then quantify the
emotional effect on speech. We utilize the RAVDESS dataset, due to the multiple speakers
and intensities that it provides. From that, we derive four different evaluation sets, each
one looking at emotional effect from different perspective.

Afterwards, we examine our models’ performance on these emotionally injected evalua-
tion sets and assess their robustness. For each experiment, we test each model individually
and compare each one with the emotion unaware model’s results.

Our findings suggest that emotion has a crucial role on text-independent speaker ver-
ification. First of all, we capture that strong emotion can lead to huge degrades in per-
formance, regardless of the emotion of the enrollment utterance. We notice that different
emotions at enrollment and verification phase can magnify the effect and reach as low as
30% on Equal Error Rate. After a specific check on each emotion’s individual contribution
to the overall drop of performance we observe that anger and fear tend to perform worse.
In more detail their error in an emotion-unaware model almost reaches that of a random
guess with close to 40% equal error rate. Last but not least, we examined whether same-
emotion pairs on enrollment and verification could help our model to better discriminate
speakers. Our results indicate that same-emotion pairs improve drastically the systems’
performance, regardless of emotional pretraining. Finally, we demonstrate that by apply-
ing traditional transfer learning techniques, it is possible to create an emotion-aware model

that outperforms a classical speaker verification system.

1.3 Thesis Structure

In Chapter 2 we provide the theoretical background of our work. Specifically, we first
introduce the basic concepts of machine learning and then focus on the deep learning
techniques, that are most relevant to our work. We also explain the basic concepts of
speech emotion recognition, speaker verification as well as the metrics used to evaluate our
results.

In Chapter 3, we formulate the problem that we try to solve. We explain our approach
and the questions that drove us to conduct the experiments. We first provide a section of
related work and then proceed to the problem definition. In the rest of the chapter, we
analyze our speech emotion recognition model, the different speaker verification models’

architectures and the evaluation sets used for our emotional experiments.



1.3 Thesis Structure

In Chapter 4 we present our experiments and compare the results with our baseline
methods.
In Chapter 5 we conclude our thesis, providing a summary of our work, and some future

research ideas.
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Theoretical Background

In this chapter, we provide the basic knowledge that is prerequisite for the reader to be
able to understand the contribution of this thesis. We start by presenting the fundamentals
of machine learning, the most famous deep learning architectures and some basic metrics
for evaluation. After we analyze how traditional methods were used for speaker verification
and speech emotion recognition and how these were replaced by deep learning techniques.

Last but not least, we include a detailed description of all datasets used for this work.

2.1 A brief history of Machine Learning

It was in 1940s when the first manually operated computer system, ENIAC, was in-
vented. At that time the word “computer” was being used as a name for a human with
intensive numerical computation capabilities, therefore, ENIAC was called a numerical
computing machine. From the beginning, the idea was to build a machine able to emulate
human thinking and learning. In the 1950s, there is the first computer game program
claiming to be able to beat the checkers world champion. This program helped checkers
players a lot in improving their skills! Around the same time, Frank Rosenblatt invented
the Perceptron, which at that time, it was a real breakthrough. Then we see several years
of stagnation of the neural network field due to its difficulties in solving certain problems.

Thanks to statistics, machine learning became very famous in 1990s. The intersection of
computer science and statistics gave birth to probabilistic approaches in Al. This shifted the
field further toward data-driven approaches. Having large-scale data available, scientists
started to build intelligent systems that were able to analyze and learn from large amounts
of data. As a highlight, IBM’s Deep Blue system beat the world champion of chess, the

grand master Garry Kasparov.

2.2 Introduction to Machine Learning

Machine Learning (ML) is a subfield of Al It enables computers to learn from data and
even improve themselves without being explicitly programmed. The basic premise of ML
is to build algorithms that can receive input data and use statistical analysis to improve
themselves on predicting an output. It differs in this regard from other computational

approaches within Computer Science, where algorithms are given explicit instructions on
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how to solve problems and everything has to be accounted for by the programmer. In ML,
learning from data results in the algorithms learning by themselves what to account for
and how to deal with every hurdle. In recent years, Al has experienced a resurgence due
to a subfield of ML, Deep Learning (DL). DL utilizes copious amounts of data and models
with the ability to memorize a plethora of rules and high-level concepts, all encoded in

their parameters.

Supervised Learning

Supervised learning (SL) is the machine learning task of learning a function that maps
an input to an output based on example input-output pairs. It infers a function from
labeled training data consisting of a set of training examples. In supervised learning, each
example is a pair consisting of an input object (typically a vector) and a desired output
value. A supervised learning algorithm analyzes the training data and produces an inferred
function, which can be used for mapping new examples.

So, for example, given a set of N training examples a supervised learning algorithm
would seek to learn the function that maps the features of the input data to the labels
corresponding to them. In math notation, we denote the input features as * and the labels
as y'. A data set D contains many data points, so D = {(z*,y');i = 1,...,n}, where n
stands for the number of training data. We denote X as the input space and Y as the
output space. Our goal is to learn a function f : X — Y utilizing the dataset D in order
f(x) to correctly determine the label y of x.

Supervised algorithms are split in two main categories, based on the desired output,

classification and regression.

e Classification problems have categorical output values. For instance classification

problems are email spam detection [18] and image classification [19] .

e Regression problems have output values that are real numbers, such as stock price

prediction [20].

Unsupervised Learning

The unsupervised learning problem involves learning input patterns without given out-
put values (labels). Also known as self-organization, unsupervised learning allows for

modeling of probability densities over inputs.

Reinforcement Learning

Reinforcement Learning is an approach to Machine Learning concerned with how sys-
tems have to take decisions in order to maximize a cumulative reward. Reinforcement
learning differs from supervised learning in not needing labelled input/output pairs to be
presented and any sub-optimal actions to be explicitly corrected. The problem setting is
typically stated in the form of a Markov decision process, as many reinforcement learning

algorithms utilize dynamic programming techniques. Reinforcement Learning algorithms
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differ from classical dynamic programming methods in that the first do not assume knowl-
edge of an exact mathematical model of the Markov decision process and they target such

processes where exact methods become impracticable.

2.3 The Deep Learning Era

Nowadays, deep learning has seen a huge progress and has achieved major break-
throughs in many fields, including computer vision, natural language processing and drug

discovery. These achievements became possible mainly due to the following reasons:
e High availability of massive data sets.
e Increased performance of computer processors, GPUs and TPUs.
e More complex neural network architectures.

However, before the deep learning breakthrough, it was common sense for scientists to
use handcrafted features. For example in speaker verification the state of the art (SOTA)
required manual extraction of voice frequencies, through a method called Mel-frequency
Cepstral Coefficients (MFCCs). On the contrary, deep learning neural networks have au-
tomated the feature extraction procedure. Their complexity allows them to learn complex
functions and achieve new possibilities. In this section we will describe common deep

learning architectures.
2.3.1 Feed Forward Neural Networks
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Yyfua 2.1: Feed Forward Neural Network with 1 hidden layer. Source [3]
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The most typical example of deep learning models is the Feed Forward Neural Network
(FFNN) or alternatively multilayer perceptron (MLP). This class of networks consists of

multiple layers of computational units, usually interconnected in a feed-forward way. Each



Kegdhouwo 2. Theoretical Background

neuron in one layer has directed connections to the neurons of the subsequent layer. The
information moves in only one direction —forward— from the input nodes, through the
hidden nodes (if any) and to the output nodes. This flow of information from the input
to the output is called forward propagation. More generally, any directed acyclic graph
may be used for a feed forward network, with some nodes (with no parents) designated as
inputs, and some nodes (with no children) designated as outputs.

FFNNs are applied with great success to many problem settings, either alone or as
part of a more complex network. Apart from their experimental success they have also
theoretical guarantees. The universal approximation theorem! states that every continuous
function that maps intervals of real numbers to some output interval of real numbers can
be approximated, arbitrarily closely, by a MLP with just one hidden layer and a sufficient
number of neurons. This result requires a suitable activation function, but it holds for
most that are used, one of the first proofs was for the sigmoid [21].

So the multiple neurons structure a "network", which can be represented as a collection
of different functions in the form of an directed acylic graph. A FFNN is essentially a
mapping y = f(x;0) that tries to learn the parameters ¥, that result in the best possible
approximation of the real function. That is to say, if a MLP represents a function f, an
alternative representation can be a chain of functions f(z) = f(f=D(..(fM(x)))) ,
where f) i € 1,....,n are generally different functions. f() is called the first or input
layer, f@ the second, ... , and f(" is the output layer. n is the depth of the network, and
the deep learning terminology arose from increasing the depth of such networks when data
and computational power became ample. When training the FFNN to learn to predict y;
based on the input example x;, the only value the network computes whose correctness
is dictated by the training set is the output y. Therefore, all layers but the output layer
(that outputs that y) are called hidden layers. Finally it becomes evident that parameters

¥ are split between layers.

2.3.2 Convolutional Neural Networks

. convolution pooling dense
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Yyfua 2.2: Illustration of CNN [1]

Another success story of neuroscientific influence on ML are Convolutional Neural Net-

1Universal Approximation Theorem Wikipedia


https://en.wikipedia.org/wiki/Universal_approximation_theorem

2.3 The Deep Learning Era

works (CNN). Convolutional neural networks (CNNs) are a specific class of deep neural
networks, that is specialized for processing data that have a grid topology, such as images.
These networks are considered as one of the greatest biological inspirations in artificial
intelligence, as their key design concepts are borrowed from neuroscience, and especially
from the organization of the human visual cortex. A convolution network layer is designed
to mimic the human cortex, by applying convolutional ? operations on the input image
with many low dimensional filters.

CNNs are regularized versions of FFNNs. FFNNs usually mean fully connected net-
works, that is, each neuron in one layer is connected to all neurons in the next layer. The
"full connectivity" of these networks make them prone to over-fitting data. CNNs take a
different approach in order to regularize data and reduce complexity. They take advantage
of the hierarchical pattern in data and assemble patterns of increasing complexity using
smaller and simpler patterns embossed in their filters. That also offers them ignorance
of posotional shifts and target translations. Therefore, on a scale of connectivity and

complexity, CNNs are on the lower extreme.

Single depth slice

1 0o 2 3
X
4 6 6 8 8
—
3 1 1 0
1 2 2 4
Y

Yyfuo 2.3: Max Pooling Layer [2]

The most important aspects of the CNN architecture are following layers:

e Convolutional layers in a CNN systematically apply learned filters to input images
in order to create feature maps that summarize the presence of those features in the
input. They prove very effective, as stacking them in deep models allows layers close
to the input to learn low-level features (e.g. lines) and layers deeper in the model to

learn high-order or more abstract features, like shapes or specific objects.

e Pooling layers form a new layer added after each convolutional layer. Their role is
to reduce the spatial size of the features while at the same time transforming them
to position invariant. The most frequently used are the max pooling or the average

pooling, which differ in the way the apply the dimensionality reduction.

2.3.3 Activation Functions

In order to classify non-linearly separable data points, it is essential for us to introduce

non-linearities. This introduction is achieved through activation functions and allow us to

2Mathematically, convolution is an operation on two functions, f and g that produces a third function
f #* g. In mathematical notation (f * g) := fj;o f(r)g(t —1)dr.
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approximate arbitrarily complex functions. Activation functions take as input the output
of one node, then apply a function f to produce the final output, making a non-linear
decision.

Some common activation functions are the following:

Sigmoid

The sigmoid function is defined as:

\
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Yyfuo 2.4: Sigmoid Curve

A sigmoid function is a mathematical function having the characteristic shape as shown
in 2.4. It is basically a "S"-shaped curve or sigmoid curve. In general, a sigmoid function
is monotonic and its first derivative is bell shaped. It takes a real-valued number and
maps them to the range [0,1]. Nowadays, the sigmoid is rarely used as it has two major
drawbacks. First of all, for values near 0 or 1 the gradient is close to 0 resulting in the so
called "vanishing gradient" effect 2. Secondly, the inputs of the next neurons are always

positive as the sigmoid is not zero-centered.

Hyperbolic Tangent (tanh)

The hyperbolic tangent or tanh function is defined as:

el —e™ %

et 4+ e %

tanh(z) =

Similarly to the sigmoid, the hyperbolic tangent is a real function taking every real number

as input and mapping them input to the range [—1, 1]. It is also bounded and differentiable.

Shttps://en.wikipedia.org/wiki/Vanishing_gradient_problem
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Its derivative is also non negative at each point. Unfortunately, it suffers from the vanishing

gradient effect exactly as the sigmoid function did, except this one is zero-centered.

tanh(x)

Yyhuo 2.5: Hyperbolic Tangent. Source [4]

Rectified Linear Unit (ReLU)

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5

Yyfua 2.6: ReLU for x in range [-10,10]. Source [5]

The ReLU activation function is defined as:
f(x) = maz(0,z)

The ReLU activation function is common practice nowadays. The ReLU (otherwise
known as ramp function) basically thesholds the input at zero, allowing only positive
inputs to pass through. Moreover it accelerates convergance while at the same time, it is

not computationally expensive as the aforementioned functions. Its main disadvantage is
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the "dying ReLLU" problem. This derives from the fact that ReLLU is not differentiable at
zero and it is also not zero centered and bounded. This results in some neurons becoming

inactive and only giving output 0 for any input.

Leaky ReLU
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Yyfuo 2.7: Leaky ReLU. Source [6]

The Leaky ReLLU’s activation function is defined in mathematical form as:

x if z >0,

0.01x otherwise.

This activation function is an attempt to fix the "dying ReLU" problem that was

referenced above. It only allows a small, positive gradient when the unit is not active.

Softmax

The softmax function is basically a generalization of the logistic function to multiple
dimensions. It is used in multinomial logistic regression and is often used as the last acti-
vation function of a neural network. This is usually done in order to normalize the output
of a network to a probability distribution over the predicted output classes. Generally, it
takes a vector z of K real numbers as input , and normalizes it into a probability distribu-
tion consisting of K probabilities proportional to the input exponentials. Therefore, given

an input vector x and a weighting vector w, we have:

Tw.
eX Wj

P(’ijIX):W
k=1

2.3.4 'Training Pipeline

In order for the neural network to learn efficiently the data distribution, the architecture

engineer should also pick an optimizer and a loss function that fits to their needs. Different
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loss functions focus on different aspects of learning and different optimizers utilize different

algorithms in order to converge.

Loss Functions

A Loss function is a way to measure the performance of a supervised learning task.
It’s a method to evaluate how the algorithm models the data. It corresponds to a non
negative value that measures the error between the predicted and the target output. In
mathematical notation, if we denote our model as a function f with parameters w then for
a data pair (z;,y;) the loss is computed as L(y;, f(z;;w)). In order to quantify the total
loss, we denote an objective function J(w) as empirical risk, which we try to minimize over
the entire dataset of size N. That is:

N
1
J(w) =~ Z L(yi, f(zi;w))
=1
In this subsection we should also discuss some useful loss functions. The first is binary
cross entropy (BCE) loss which is suitable for binary classification tasks. If we denote

f(z;,w) as g and the ground truth label as y, it is defined as:
BCE(y,j) = —[ylog§ + (1 —y)log(1 — )]

Another important loss function for multi-class classification tasks is the generalization
of the binary cross entropy loss named cross-entropy. If we denote the probability vector
as y (usually with only one element equal to 1 and all others equal to 0) and the output

vector of the softmax output function as g, it is defined as:

L(y, ) = = Y yilog i

Optimization

Model training is an optimization process, in which we try to configure the model pa-
rameters w that minimize the loss function J(w). An optimizer is a method or algorithm
to update the various parameters that can reduce the loss in much less effort. In this

subsection we will discuss some frequently used techniques for optimization.

Gradient Descent is a simple optimization algorithm that provides the means to
iteratively find close to optimal arguments / parameters of a differentiable function with
access only to the derivative at the current configuration of parameters. In detail, given a

differentiable function R, we can express the function by its Taylor series approximation:

R(wlt] + Aw) ~ R(w]t]) + VR(w)] ey Aw

So, given parameters w(t], if we are looking for the value of Aw to modify it so as to

lower the value of R, then a sensible choice is to select a Aw in the opposite direction
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VR(W)| ey, 16 Aw = —aVR(w)|,_ > > 0. So in the next step w[t + 1] will be
equal to:
wt + 1] = wlt] — aVR(x)|,_,p
and
R(w[t +1]) = R(w(f] + Aw) = R(w(t]) = a| VR(w)],_ iy I* < R(w]t])

The process is repeated until the desired convergence critirion is met. Is is also impor-
tant to note that Taylor series approximation holds for small Aw, so a careful choice of «,

the learning rate, must be made.
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Yyfua 2.8: Illustration of Gradient Descend on for 1 parameter. Source [7]

The Gradient Descent algorithm is very simple and effective, but it has a major draw-
back. Computing the loss over the entire dataset at each iteration is computationally
expensive and inefficient, especially for large datasets.

Stochastic Gradient Descent (SGD) is a variant of Gradient Descent that solves
the aforementioned problem. It computes the gradient of the loss function over a subset
of samples, not for the whole dataset. It makes an estimation of the gradient, instead of
computing the true gradient using all samples, therefore the name "stochastic".

In its simplest form, the gradient is computed over each unique training example, but
this can lead to very noisy gradients and cause the loss function to fluctuate. For this
reason, a variation called mini-batch SGD is commonly used in practice. A mini batch of
B training data points is picked and the average gradient over those B points is calculated

and used:

B
1
wlt+1) = wlt] - ap bZ_; VR (@)]ymupy

This method is still fast to compute and gives a much better estimate of the true
gradient. The larger the batch size, the more accurate the estimation of the gradient,
which leads to smoother convergence and allows for larger learning rates.

One important thing to notice, is that when we train a deep neural network, the loss
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surface becomes non-convex because of the introduced non-linearities. This means that
there is no guarantee that a gradient based method will converge to a global minimum,

where the loss function is zero.

Backpropagation

In machine learning, backpropagation is a widely used algorithm for training feedfor-
ward neural networks. In fitting a neural network, backpropagation efficiently computes
the gradient of the loss function with respect to the weights of the network for a single
input—output example. The backpropagation algorithm works by computing the gradient
of the loss function with respect to each weight by the chain rule, computing the gradient
one layer at a time, iterating backward from the last layer to avoid redundant calculations
of intermediate terms in the chain rule*; This idea is essentially an example of dynamic

programming.

Normalization

Each layer of a neural network has inputs with a corresponding distribution, which
is affected during the training process by the randomness in the parameter initialization
and the randomness in the input data. The effect of these sources of randomness on the
distribution of the inputs to internal layers during training is described as internal covari-
ate shift. Although a clear-cut precise definition seems to be missing, the phenomenon
observed in experiments is the change on means and variances of the inputs to internal
layers during training. As all layers are changed during an update, the update procedure is
forever chasing a moving target. For example, the weights of a layer are updated given an
expectation that the prior layer outputs values with a given distribution. This distribution
is likely changed after the weights of the prior layer are updated. Furthermore, internal
covariate shift results in slower learning rates and careful parameter initialization making

training hard.

A method that addresses this problem is called batch normalization. This method
performs a normalization over the entire mini-batch. Utilizing batch normalization during
training, fixes the mean and the variance of each input layer and at the same time acts as

a regularizer.

Dropout

Dropout is a useful regularization method for neural network training. It helps in
reducing overfitting by preventing complex co-adaptations on training data. The term
dropout refers to randomly "dropping out", or omitting, units (both hidden and visible)

during the training process of a neural network.

“https://en.wikipedia.org/wiki/Chain_rule
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2.4 Deep Learning for Speech Emotion Recognition (SER)

2.4.1 Overview of the Field

Emotion recognition has seen huge improvement over the recent years and aims at bet-
ter communication between man and machine. There are many channels of communication
between people: the content of speech, the nods, face and body movements and emotions.
In order to make human-computer interaction more clear and comfortable, the computer
utilize emotional knowledge to understand and react appropriately to human emotions. It
has even been supported that emotional intelligence in computers is more important than
computing and verbal, to make applications more human-friendly. Emotional intelligence
is necessary to determine people’s preferences and to adapt computers to the characteris-
tics of each person individually. Some real world examples of speech emotion recognition

models applications are:

e Applications in psychology. The automatic detection of emotionally charged mo-

ments would facilitate psychologists in their work.

e Automation in call centers. In automated call centers many people find it difficult
to communicate with the voice recognition machine and lose their patience, as a result
of which their request is not fulfilled. If there was automatic recognition of anger,
frustration and resentment, the customer could be led to a human representative

without suffering.

Automatic speech emotion recognition (SER) is achieved by the development of method-
ologies based on digital signal processing and machine learning. The journey of research in
this field is three decades-long; still, the results are not good enough to be applied in nat-
ural environments with high accuracy. There is a multitude of information present in the
speech signal. A speech signal contains lexical contents (what has been spoken), speaker
(who is the speaker), emotions (how it has been spoken), and language (in which language
it has been spoken). If one has to recognize particular information in speech, then ideally
the effect of other information should be nullified. For example, if one has to recognize
emotion from speech, then the effect of the speaker, lexical content, and language should
ideally be nullified to generalize the SER system. This is the primary reason why automatic
SER systems don’t work very well for real-life applications. This problem occurs due to
mismatch of speaker, text, language, and culture — collectively referred to as ‘environment’
— in the training and testing data. As a result, the accuracy significantly decreases in the
case of real-life applications or ‘natural environment’. Here, ‘natural’ refers to the variation
of speakers, text, language, culture, surroundings, etc., within and across the development

and deployment environments of SER systems.

2.4.2 Basic Emotions

Emotions are psychological states brought on by neurophysiological changes, variously

associated with thoughts, feelings, behavioural responses, and a degree of pleasure or dis-
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pleasure.There is currently no scientific consensus on a definition. Emotions are often
intertwined with mood, temperament, personality, disposition, creativity, and motivation.

Emotions are complex. There are various theories on the question of whether or not
emotions cause changes in our behaviour. On the one hand, the physiology of emotion
is closely linked to arousal of the nervous system. Emotion is also linked to behavioral
tendency. Extroverted people are more likely to be social and express their emotions,
while introverted people are more likely to be more socially withdrawn and conceal their
emotions. Emotion is often the driving force behind motivation. On the other hand,
emotions are not causal forces but simply syndromes of components, which might include
motivation, feeling, behaviour, and physiological changes, but none of these components is

the emotion. Nor is the emotion an entity that causes these components.

Classification

For more than 40 years, Paul Ekman® has supported the view that emotions are dis-
crete, measurable, and physiologically distinct. Ekman’s most influential work revolved
around the finding that certain emotions appeared to be universally recognized, even in
cultures that were preliterate and could not have learned associations for facial expressions
through media. Another classic study found that when participants contorted their facial
muscles into distinct facial expressions (for example, disgust), they reported subjective
and physiological experiences that matched the distinct facial expressions. Ekman’s facial-
expression research examined six basic emotions: anger, disgust, fear, happiness, sadness

and surprise.

HAPPINESS SADNESS

DISGUST

SURPRISE

Yyfuo 2.9: Basic emotions as Ekman firstly defined them. Source [8]

Later in his career, Ekman theorized that other universal emotions may exist beyond
these six. In light of this, recent cross-cultural studies led by Daniel Cordaro and Dacher
Keltner, both former students of Ekman, extended the list of universal emotions. In addi-
tion to the original six, these studies provided evidence for amusement, awe, contentment,
desire, embarrassment, pain, relief, and sympathy in both facial and vocal expressions.
They also found evidence for boredom, confusion, interest, pride, and shame facial expres-

sions, as well as contempt, relief, and triumph vocal expressions.

Shttps://en.wikipedia.org/wiki/Paul_Ekman
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Robert Plutchik agreed with Ekman’s biologically driven perspective but developed the
"wheel of emotions", suggesting eight primary emotions grouped on a positive or negative
basis: joy versus sadness; anger versus fear; trust versus disgust; and surprise versus an-
ticipation. Some basic emotions can be modified to form complex emotions. The complex
emotions could arise from cultural conditioning or association combined with the basic
emotions. Alternatively, similar to the way primary colors combine, primary emotions
could blend to form the full spectrum of human emotional experience. For example, in-
terpersonal anger and disgust could blend to form contempt. Relationships exist between

basic emotions, resulting in positive or negative influences.
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Yyfua 2.10: The "wheel of emotions” as developed by Robert Plutchik. Source [9]

Psychologists have used methods such as factor analysis to attempt to map emotion-
related responses onto a more limited number of dimensions. Such methods attempt to boil
emotions down to underlying dimensions that capture the similarities and differences be-
tween experiences. Often, the first two dimensions uncovered by factor analysis are valence
(how negative or positive the experience feels) and arousal (how energized or enervated the
experience feels). These two dimensions can be depicted on a 2D coordinate map. This
two-dimensional map has been theorized to capture one important component of emotion
called core affect. Modern research suggests that a three-dimensional mapping can be used

as well and capture an extra dimension, called dominance.

2.4.3 Feature Extraction

In machine learning, pattern recognition, and image processing, feature extraction
starts from an initial set of measured data and builds derived values (features). Its
main goal is to reduce the dimensionality of the data by extracting informative and non-

redundant interpretations.
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Yyfua 2.11: Valence-Arousal-Dominance (VAD) model. For illustration, the position of
Ekman’s siz Basic Emotions are included. Source [10]

As it is for speech signal processing, raw waveform is frequently replaced by more dense

representations. In this subsection, we shall discuss some of them.

Mel-Frequency Cepstral Coefficients (MFCCs)

The mel-frequency cepstrum (MFC) is a representation of the short-term power spec-
trum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear
mel scale of frequency. This log scale concept derives from the human auditory system’s
response, as humans are much more capable in distinguishing low frequencies rather than
high, thus approximating it more closely than the linearly-spaced frequency bands used in
the normal spectrum.

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up
an MFC. In order to compute the MFCC of a sound signal, the process requires:

1. Applying the fourier transform® to the signal.

2. Mapping the powers of the spectrum obtained above onto the mel scale. This map-
ping is accomplished, using triangular overlapping windows or alternatively, cosine
overlapping windows.

3. Taking the logs of the powers at each of the mel frequencies.

4. Taking the discrete cosine transform of the list of mel log powers, as if it were a

signal.
5. Finally, the MFCCs are the amplitudes of the resulting spectrum.

One main disadvantage of the MFCC values, is that they are not very robust in the presence
of additive noise. As a result, it is common to normalise their values to lessen the influence

of noise.
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Yyfua 2.12: Three-dimensional spectrogram of a part from a music piece.

Mel Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal as
it varies with time. Spectrograms are used extensively in the fields of music, linguistics,
sonar, radar, speech processing, seismology, and others. Spectrograms of audio can be used
to identify spoken words phonetically, and to analyse the various calls of animals.

Spectrograms may be created from a time-domain signal in one of two ways: approxi-
mated as a filterbank that results from a series of band-pass filters (this was the only way
before the advent of modern digital signal processing), or calculated from the time signal
using the Fourier transform. These two methods actually form two different time—frequency
representations, but are equivalent under some conditions.

After applying a Mel-scale on the Spectrogram, Mel Spectrogram is computed.

2.4.4 Datasets

IEMOCAP

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) [22] database is an
acted, multimodal and multispeaker database. The IEMOCAP dataset consists of 151
videos of recorded dialogues, with 2 speakers per session for a total of 302 videos across
the dataset. Each segment is annotated for the presence of 9 emotions (angry, excited, fear,
sad, surprised, frustrated, happy, disappointed and neutral) as well as valence, arousal and

dominance (VAD). The dataset is recorded across 5 sessions with 5 pairs of speakers.

RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [23]
contains 24 professional actors (12 female, 12 male), vocalizing two lexically-matched state-
ments in a neutral North American accent. Speech includes calm, happy, sad, angry,
fearful, surprise, and disgust expressions, and song contains calm, happy, sad, angry, and
fearful emotions. Each expression is produced at two levels of emotional intensity (normal,

strong), with an additional neutral expression.

SFourier Transform Wikipedia
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2.5 Deep Learning for Speaker Recognition (SR)

2.5.1 Overview of the Field

Speaker recognition is the identification of a person from characteristics of voices. It
has a history dating back some four decades as of 2021 and uses the acoustic features of
speech that have been found to differ between individuals. These acoustic patterns reflect
both anatomy and learned behavioral patterns. Some real world examples of a speaker

recognition model applications are:

e Applications in security. Many modern security systems utilize speaker recognition

models as a means to authorize a person for accessing important documents.

e Applications in speech recognition. Speaker recognition technology can be used

to reduce speaker variability in speech recognition systems by speaker adaptation.

Verification versus Identification

There are two major applications of speaker recognition technologies and methodolo-
gies. If the speaker claims to be of a certain identity and the voice is used to verify this
claim, this is called verification or authentication. On the other hand, identification is the
task of determining an unknown speaker’s identity. In a sense, speaker verification is a
1:1 match where one speaker’s voice is matched to a particular template whereas speaker
identification is a 1:N match where the voice is compared against multiple templates.

From a security perspective, identification is different from verification. Speaker verifi-
cation is usually employed as a "gatekeeper" in order to provide access to a secure system.
These systems operate with the users’ knowledge and typically require their cooperation.
Speaker identification systems can also be implemented covertly without the user’s knowl-
edge to identify talkers in a discussion, alert automated systems of speaker changes, check
if a user is already enrolled in a system, etc.

In forensic applications, it is common to first perform a speaker identification process
to create a list of "best matches" and then perform a series of verification processes to
determine a conclusive match. Working to match the samples from the speaker to the
list of best matches helps figure out if they are the same person based on the amount of
similarities or differences. The prosecution and defense use this as evidence to determine
if the suspect is actually the offender.

Each speaker recognition system has two phases: enrollment and verification. Dur-
ing enrollment, the speaker’s voice is recorded and typically a number of features are
extracted to form a voice print, template, or model. In the verification phase, a speech
sample or "utterance" is compared against a previously created voice print. For identifica-
tion systems, the utterance is compared against multiple voice prints in order to determine
the best match(es) while verification systems compare an utterance against a single voice

print. Because of the process involved, verification is faster than identification.
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What is Speaker Verification?

Suppose that we have 2 utterances

We try to guess whether they came from the same speaker or not
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Yy 2.13: Enrollment and Verification phase in a real world example

Text Dependent versus Text Independent

Speaker recognition systems fall into two categories:

e Text-Dependent (TD-SV). If the text must be the same for enrollment and verifica-
tion this is called text-dependent recognition. In a text-dependent system, prompts
can either be common across all speakers (e.g. a common pass phrase) or unique. In
addition, the use of shared-secrets (e.g.: passwords and PINs) or knowledge-based

information can be employed in order to create a multi-factor authentication scenario.

e Text-Independent (TI-SV). Text-independent systems are most often used for speaker
identification as they require very little if any cooperation by the speaker. In this
case the text during enrollment and test is different. In fact, the enrollment may
happen without the user’s knowledge, as in the case for many forensic applications.
As text-independent technologies do not compare what was said at enrollment and
verification, verification applications tend to also employ speech recognition to de-
termine what the user is saying at the point of authentication. In text independent

systems both acoustics and speech analysis techniques are used.

2.5.2 History and commonly used methods
Equal Error Rate (EER)

In order to evaluate a SV system, we take advantage of EER. An SV system predicts
whether a person is an authenticated user with a probability p. Then a decision should
be taken for whether to accept or reject the user based on a threshold 6. A low threshold
would result in accepting all users but at the same time accepting many impostors. On
the other hand, a high threshold would not allow impostors, with the risk of rejecting
true clients themselves. This trade off between rejections in clients and impostors is well
described using false acceptance rate (FAR) and false rejection rate (FRR). FAR
depicts the rate in which the system falsely accepts impostors. FRR depicts the rate in
which the system falsely rejects an authenticated users. EER is the point where these two

curves intersect.
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Yyfua 2.14: EER as the point where FAR and FRR curves intersect. Source [11]

In order to define EER we should first define FAR and FRR. If we denote

# false acceptance

FAR =
#identi fication attempts
and l oot
FRR— — #fg t<>’e T‘?]GC ion
#identi fication attempts
then
EER =ming (| FAR(0) — FRR(0) |)
DET Curve

The two error rates on the speaker verification field are functions of the decision thresh-
old. As a result, it is common to represent the performance of such a system by plotting
False Acceptance Rate as a function of False Rejecetion Rate. This curve is monotonus,
decreasing and called system operating characteristic plot.

If we plot the error curve on a normal deviate scale 7?7 in which case the curve is known
as the detection error trade-offs (DETSs) curve. The closer to the origin the curve appears,
the better the system is. In real scenarios, the score distributions are not exactly Gaussians
but are quite close to it. Therefore, the DET curve representation is more clearly readable
and allows for a comparison of the system’s performances on a large range of operating

conditions. Figure 2.15 shows a typical example of a DET curve.

Gaussian Mixture Model

A Gaussian Mixture is a function that is comprised of several Gaussians, each identified
by k €1,..., K, where K is the number of clusters of our dataset. Each Gaussian k in the

mixture is comprised of the following parameters:
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Detection Error Tradeoff (DET) Curve
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Yyfua 2.15: A detection error trade-off curve [12]
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Yyfua 2.16: Gaussian Mizture Model for three clusters in two-dimensional space. [13]

e A mean p that defines its centre.
e A covariance X that defines its width.
e A mixing probability 7 that defines how big or small the Gaussian function will be.

As part of the "fitting" process, in order for each distribution to match a cluster, a
widely used algorithm for optimization problems, where the objective function has com-
plexities is used. It is called Expectation-Maximization (EM)”.

As stated in [24] , the GMM can be viewed as a hybrid between a parametric and
nonparametric density model. Like a parametric model it has structure and parameters
that control the behavior of the density in known ways, but without constraints that

the data must be of a specific distribution type, such as Gaussian or Laplacian. Like a

"EM-algorithm
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GMM-UBM for Speaker Verification
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Yyfua 2.17: A universal background model with a client-speaker model [14]

nonparametric model, the GMM has many degrees of freedom to allow arbitrary density

modeling, without undue computation and storage demands.

Universal Background Model (UBM)

In the early stages of speaker verification, Universal Background Model was the state
of the art method for discriminating different speakers. This model was used as a mean
to represent person-independent feature characteristics, which would later be compared
against a model of person-specific feature characteristics. This comparison provided the
final answer of whether we should accept or reject that person.

UBM is actually a Gaussian Mixture Model (GMM) which was trained with speech
samples from a large set of speakers to represent general speech characteristics. Providing
a speaker-specific GMM, which was trained on particular enrollment utterances from a
specific speaker, we can compute a likelihood ratio between the match score of that model
and the UBM. The UBM may also be used while training the speaker-specific model by
acting as a the prior model in Maximum A Posteriori (MAP) parameter estimation. For

the two-class hypothesis problem:
e Hy: X comes from the speaker
e H;: X comes from an impostor

P(X'9|Ho)

Ve P(X9|Hy) — log P(X©O|H
P(X(C)’.Hl) og ( ‘ 0) og ( ‘ 1)

score = log
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Afterwards, a threshold 6 is applied and if the score is greater than that, the speaker

is accepted. Otherwise he is considered an impostor and is rejected.

accept ,if score > 0

reject ,if score < 6

decision = {

Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a method used in statistics and other fields, to
find a linear combination of features that characterizes or separates two or more classes of
objects or events. The resulting combination may be used as a linear classifier, or, more
commonly, for dimensionality reduction before later classification.

LDA is closely related to principal component analysis (PCA) ® in that they both look
for linear combinations of variables which best explain the data. LDA explicitly attempts
to model the difference between the classes of data. PCA, in contrast, does not take into
account any difference in class.

Discriminant analysis is used when groups are known a priori (unlike in cluster analysis).
Each case must have a score on one or more quantitative predictor measures, and a score
on a group measure. In simple terms, discriminant function analysis is classification - the

act of distributing things into groups, classes or categories of the same type.

Loss Functions

Over the last years, severall different loss functions have been proposed in order to train

speaker verification models effeciently. In this subsection, we shall explain some of those:

e Triplet Loss: This loss samples mini-batch of triplets. If we denote X, our anchor
point, X, our positive example and X, our negative example we construct a tuple
as follows. Each one of them is a T" = (X, , X}, , X;,) and the aim is to push away

the negative point and bring as near as possible the positive point.

e N-pair Loss: In order to fix the traditional triplet loss issue, where it only payed
attention to the information of one negative sample in each optimization, in [25] the
authors introduce N-pair loss. This loss is actually a generalization of the triplet loss,
when N = 2. This loss optimizes the identification of a possible example from N — 1

negative examples.

2.5.3 Datasets
VoxCeleb

As introduced in [26], VoxCeleb is a large scale dataset that consists over 100,000
utterances for 1,251 celebrities. These utterances are extracted from videos uploaded on

YouTube via a fully automated pipeline based on computer vision techniques. The data is

8Principal Component Analysis
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2.5 Deep Learning for Speaker Recognition (SR)

Yyfua 2.18: Frames from VoxCeleb 1 Dataset

mostly gender balanced (males comprise of 55%). The celebrities span a diverse range of
accents, professions, and age. There is no overlap between the development and test sets.

VoxCeleb is consider classic nowadays for speaker recognition tasks. Due to the large
amount of speakers, it is excellent for such applications. Authors later produced an updated
version of VoxCeleb, named VoxCeleb2 [27], which contains over 1 million utterances for
6,112 celebrities. It is common for speaker recognition tasks to train on VoxCeleb 2 and
then test on VoxCeleb 1. Nonetheless, VoxCelebl includes its own evaluation file, which

we used in this thesis.
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Emotion Driven Speaker Verification

This chapter contains the main contribution of our thesis. First, we provide a detailed

related work section. Then we proceed with the problem definition and our methodology.

3.1 Related Work

I-Vectors

[-Vectors have been the state of the art model for many years in the speaker verification
field. This model, introduced in [28], instead of separating speaker and channel variability
subspaces, models them both in a "total variability space". This idea derives from the
fact that speaker variability was originally attributed to channel effects, ignoring intra-
speaker and phonetic variation effects involved. For each segment, this model creates a
low-dimensional representation, also called identity vector (for short i-vector).

The main idea is that session- and channel dependent supervectors of contatenated
GMM means can be modeled as:

s=m+Tw

In the equation above, m is the session- and channel-independent component of the mean
supervector, 7' is a matrix of bases spanning the subspace covering the important variability
(both speaker- and session-specific) in the supervector space, and w is a standard normally
distributed latent variable. For each utterance (observation), i-vector is computed as the

Maximum A Posteriori (MAP) ! point estimate of the latent variable w.

X-Vectors

X-vectors, take advantage of deep neural networks (DNN), so as to capture speaker
discriminative characteristics. As introduced in [29], x-vectors utilize a time-delay acoustic
model? with p-norm nonlinearities and LDA for dimensionality reduction. At the final
layer the representations are length-normalized and modeled by PLDA.

Combining best of both worlds, x-vectors had a strong contender for next-generation

representations for speaker recognition and became state of the art, replacing i-vectors.

'Maximum A Posteriori
2Time Delay Neural Network
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X-vectors meet emotions: A study on dependencies between emotion and

speaker recognition

In this work, authors came to the conclusion that knowledge learned for speaker recog-
nition can be reused for emotion recognition through transfer learning. As stated in [30] by
fine-tuning, they obtained 30.40%, 7.99%, and 8.61% absolute improvement on IEMOCAP,
MSP-Podcast, and Crema-D respectively over baseline model with no pre-training. Finally
they tested the effect of emotion on the performance of the speaker verification system by
creating speaker verification trials by comparing every utterance against each other. These
cross-emotion and same-emotion trials were then tested on speaker verification task and
obtained that neutral pairs performed best in IEMOCAP (2.4.4) and MSP-Podcast®.

Generalized End to End Loss (GE2E Loss)

As introduced in [31] by Google, GE2E loss is an efficient loss function for training
speaker verification systems. Its architecture constructs tuples from input sequences of
various lengths in a more efficient way, leading to a significant boost of performance and
training speed for both TD-SV and TI-SV.

GE2E loss exploits the network output and constructs a compact representation, called
centroid for every speaker in a batch. A centroid C; is computed for each speaker in the
batch, as a linear combination of all the utterances e;; of the speaker j. Then, it calculates
a similarity matrix Sj; . that holds the cosine similarity between a utterance and a centroid,
thus representing the effectiveness of the centroids. Ideally, after training, a neural network
should map different speakers far apart in the latent space, whereas utterances from the

same speaker should fall near each other.

3.2 Problem Setup

3.2.1 Intuition

The main point of our thesis, is to identify dependencies between speaker discriminative
voice characteristics and emotion. Assuming that a speakers voice contains information
such as age, gender and emotion on top of the linguistic attributes, it is easy to see that
voice identity can not be unambiguously settled. This arises a question about how do
all those characteristics alternate voice. A logical assumption would be, that, if these
characteristics modify voice in a complex manner, it would be difficult for a SV system to
correctly classify a user. In this thesis, we explore the effect of emotions in such a scenario.

In order for us, to be able to explore the effect of emotional content on speech, we
should first define our baseline models for both the emotion and the speaker verification
task. Then we should conduct a list of experiments, so as to explore emotional’s speech

results.

3MSP-Podcast
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3.2 Problem Setup

3.2.2 Approach

In this thesis, we explore the effect of emotional content on speech in a way that
addresses both pivotal issues that we have identified with previous work and the reliance
on traditional machine learning models.

We attempt to prove and quantify the problem, and then suggest some traditional
transfer learning methods, towards reducing or even eliminating the effect. Namely we use
a pretrained emotional model and try to transfer emotional information to a speaker
verification model. Then we create a set of experiments in an effort to address the following

questions:
e Does emotional pre-knowledge improve the speaker verification task ?
e Does emotional content have an effect on speaker verification task ?

e Does emotional intensity affect the speaker verification task 7

How does each emotion affect the speaker verification task 7

e Do same-emotion pairs on verification and enrollment perform better ?

3.2.3 Models Architecture

Before running any experiment, we construct two models. Our first model m1 is trained
on the speech emotion recognition (SER) task. We treat this model as the emotional brain
of our system. Our second model m2 is a speaker verification (SV) system. Our goal is
to transfer knowledge from ml to m2 and then examine their performance on different
scenarios.

In this direction, we assemble and evaluate different architectures, all of which aim at
discovering the most efficient way of transferring emotional knowledge into the speaker
verification task. We split our setup below, into two subsections: the emotional and the
speaker discriminative. For each one we try to discover the best standalone architecture,

but at the same time the most efficient ensemble.

Emotional Model

Our emotional model consists of a Convolutional Neural Network (CNN) with linear
layer at its final layers. More specifically, our model consists of 3 sequential convolutional
followed by 2 linear layers. Each convolution uses 32 channels, and a kernel of size 5
followed by batch normalization, a LeakyReLU unit and a max pooling (2-dimensional).
The linear layers project the output to 1024 and 256, making use of dropout with values
0.75 and 0.5 respectively. We made use of Cross Entropy Loss, set the optimizer to SGD
and trained for around 50 epochs on the 4-class task on IEMOCAP. Ideally, we would want
our model to correctly classify all the following emotions: neutral, anger, happiness and
sadness.

Our metric for these experiments is the fl-macro score and the accuracy. The results

are presented in the table 3.1. The confusion matrix is presented on Figure 3.2.
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m1 (randomly initialized weights)

train on
- Conv + BatchNorm Speech
= z Linear 024 Linear 256 | . Emotion
o
2 + LearkyRelU .
= (z to 1024) (1024 to 256) Recognition
(3x%) task

Yyfuo 3.1: Model ml: trained on SER and utilized as an emotional brain for experiments
later on.

model ‘ accuracy % ‘ fl-macro %
emotional brain m1 ‘ 56.7 ‘ 55.94

Iivoxoc 3.1: The training results of model m1.

It is important to notice, that ml is trained as the emotion aware part from which we
shall derive "emotional knowledge" later on. Therefore, it is crucial for the whole procedure
to correctly classify the emotions of the 4-class task. If that is not the case, problems could

arise, as it could disorientate model m2.

Confusion matrix

True label

Happiness - L= © 2 9

30

Sadness - 1= 2 o W 20

£2

5 o
& &
& d ?@QQ\ E4

Predicted label

%

Yyfua 3.2: The confusion matriz on the 4 classes task of IEMOCAP dataset.
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We observe that our model is sensitive to neutral class classification. This means that
it easily misclassifies neutral with happiness or sadness. Emotion misclassification could
become a problem later on, when speaker verification utterances are grouped by their

emotional content.

Verification Model

In anticipation of better capturing emotional knowledge, we construct 4 different ar-
chitectures. Each one of them was evaluated on every emotional experiment. On top of
that, different learning rates were used, assuring that the lower EER point will be found.

The architectures were the following:

M2 (randomly initialized weights)

e ™~
train on
Conv + BatchNorm
5 z Linear 1024 Linear 256 Speaker
2 + LearkyRelLU Verification
£ (z to 1024) (1024 to 256) task
(3x)
. /

Yyfua 3.3: t0 model: It does not contain any emotional information.

e model t0: This model will be utilized as our emotion unaware model in our ex-
periments. This means that, no emotional information should be specified during its
training. It only consists of the model m2 completely ignoring the emotional effect

on speech. This model’s architecture is visualized on 3.3.

e model t1: This model aims to transfer knowledge from m1 to m2 by applying fully
finetuning. More specifically, we use m1 pretrained weights and biases as a starting
point for m2. Then m?2 is fully trained on the SV task. In this process, different
learning rates are used, the best of which is kept as the emotion-aware ¢1 model.

This model’s architecture is visualized on 3.4.

e model t2: This model aims to transfer knowledge from m1 to m2 through fine tuning
in a unique way. Our goal is to keep the points where the original network focused
on the audio signal constant. We make use of m1 pretrained weights and biases as
a starting point for m2. We force every weight and bias on the convolutional layers
to be frozen. This means that no weight or bias in these layers can be updated,

during m2 training process. Then m?2 is trained on the SV task. Finally, different
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M2 (pretrained weights from m1)

train on
5 Conv+ Batehorm | 2 Linear 024 Linear 256 Speaker
15 + LearkyRelLU Verification
= 0 (z 10 1024) (1024 to 256) task
X

Yyfuo 3.4: t1 model: Its weights and are initialized as the m1’s model. The parts of the
network tuned are painted with green.

M2 (pretrained weights from m1)

train on
5 z f 1024 ; 256 Speaker
é- Linear Linear Verification
= (z to 1024) (1024 to 256) task

Yyfuo 3.5: t2 model: Its weights and are initialized as the m1’s model. The parts of the
network tuned are painted with green.

learning rates are used, the best of which is kept as the emotion-aware t2 model.

This model’s architecture is visualized on 3.5.

e model t3: This model aims to transfer knowledge from m1 to m2 utilizing a fusion
architecture. More specifically, we use m1 pretrained weights and biases as a starting
point for a sub-network in m2. That splits the neural network into two parts. The
"emotional brain", as ml is now a part of the bigger network, and the speaker
discriminative part. During the training procedure, the emotional part is not trained.

Its contribution in the overall process is to provide robust emotional embeddings to
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m2 (speaker verification with emotional brain)

/ M1 emotional brain \

.

5
o
g
/ randomly initialized model (speaker jon)
Conv + U w train on
inear
|- BatchNorm + Z Linear 1024 256 Sp??keﬁ
(1024+256 to Verification
LearkyRelLU (z to 1024) 256) task
- _/

Yyfuo 3.6: t8 model: The network m2 contains ml1 as a subnetwork providing emotional
embeddings. The parts of the network tuned are painted with green.

the network. These embeddings are concatenated with then SV embeddings, in the
final layers of the fusion network. While training for the speaker verification task,
different learning rates are used, the best of which is kept as the emotion-aware t3

model. This model’s architecture is visualized on 3.6.

Our speaker verification model has very similar architecture to the SER’s model. This
is done consciously, so as to facilitate the transfer learning process. We train each model
for 1000 epochs with early stopping enabled. The training procedure is achieved exploiting
the VoxCeleb 1 dataset. We feed our model with pairs of multiple speaker utterances and

compute the GE2E loss accordingly.

3.2.4 Evaluation Sets

A basic prerequisite for us to be able successfully conduct the experiments on Chapter
4, was the definition of our evaluation sets. These were in other words the test sets, which
we utilized. For each one of our experiments, we created a different test set and then
checked the performance of each model separately.

All the sets derive from the RAVDESS dataset. A set actually consists of a number
of carefully selected tuples. Each tuple contains an enrollment utterance, a verification
utterance and a label. The label indicates whether the two utterances belong to the same
person or not.

In order to strictly define, our experimental setup, we should first explain the RAVDESS
dataset’s structure. First of all we only made use of the audio modality and the speech vocal
channel. We denote the emotions as e € E = {neutral, calm, happy, sad, angry, fear ful,
disgust, surprised}. In order to exclude neutral from some experiments, we as denote
el € BT = {E\ {neutral}}. We denote the emotional intensity asi € I = {0,1} for "weak"

and "strong" respectively. At this point, we should note that there is no strong intensity
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for the neutral emotion. Then, we denote the different statements as st € ST = {1,2}, the
repetition as v € R = {1,2} and the actor as a € A = {a € N;1 < a < 24}. Finally, we
denote as X the samples which can be uniquely identified, using the different properties
described above as indexes and y the labels, where y € Y = {0,1}. We list our different

evaluation sets below:

e S71: In this evaluation file, we create tuples, where the enrollment is neutral, whereas
the verification utterance contains emotion. For each possible combination, we add
one pair for same-speaker tuple and one pair for different-speaker tuple. For the
experiment’s purpose, we further separate our set, based on the emotional intensities,

into two subsets. These are Sl;weak and Sl_ strong’
S1 weak = {(1, X (a,e,st,i = 0,r), X(a, neutral, st,i = 0,7)))}U

U{(0, X (a, el st,i= 0,7), X (a’' # a, neutral, st,i = 0,7)))}
VaVstyrve!

and

S1_strong = {(1, X (a, el st,i=1,r), X (a, neutral, st,i = 0,7)))}U
U{(0, X (a, e, st,i = 1,r), X(a' # a, neutral, st,i = 0,r)))}

, VaVstvrve!

e S5: In this evaluation file, we create tuples where the enrollment and the verification
contain emotion. For each possible combination, we add one pair for same-speaker
tuple and one pair for different-speaker tuple. We intensively do not include same-
emotion pairs. For the experiment purpose, we separate emotional intensities to two

subsets. No duplicates were included. That is Sg_weak and 527 strong
S?_weak: = {(L X(av €, St)i = Oa T)? X(a> 6/ 7& €, Stvi = 07 T)))}U

,VaVstVrVve

and

Sy strong = {(1, X (a,e,st,i =1,7), X (a,€ # e, st,i=0,r)))}U
U{(0, X (a,e,st,i =1,7),X(a # a,e #e,st,i=0,7)))}

,VaVstVrVve

e S3: In this evaluation file, we create tuples where the enrollment is neutral, whereas

the verification utterance contains emotion. For each possible combination, we add
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one pair for same-speaker tuple and one pair for different-speaker tuple. We inten-
sively do not include same-emotion pairs. For the experiment’s purpose, we separate
the set to 7 subsets S5 ¢, each one corresponding to a specific emotion, except neu-
tral. No duplicates were included. Finally, each emotion set S3 . is further split into
weak and strong emotional intensity. Therefore each set S3_emotion_intensity derives

from the following formula:

S3 ¢ weak = {1(1, X(a, el st,i =0,r), X (a, neutral, st,i = 0,7)))}U
U{(0, X (a, €', st,i=0,r),X(a" # a,neutral, st,i =0,7)))}
,Va,VstVrVeJr

and

S5 e strong = {(1, X (a,el, st,i =1,7), X (a, neutral, st,i = 0,7)))}U
U{(0, X (a, €', st,i = 1,7), X (d’' # a, neutral, st,i=0,r)))}

,VaVstVrvel

e S,: For the needs of the 4th experiment we construct two evaluation files (sets) each
one representing a different cause. Si ignorance stands for an evaluation file where an
neutral enrollment is followed by an emotional verification phase. That is similar to
S1, except here we are combining the two different intensities. Si knowiedge stands
for a verification file with an emotion, if it has preceded an enrollment with the same
emotion. Trivial pairs containing the same samples are rejected. Therefore our sets

derive from the following formula:

S4 e ignorance = {(1,X(a, el,st,i,r), X (a, neutral, st,i,r))) U
U{(0, X (a, el st,i =0,r), X(a' # a,neutral, st,i =0,7)))}

VaVstVrvelVi
S4_e_knowledge = {(L X(CL, €T7 st, ia T)v X((I, eTa St,a i,a T/)))}U

u{(0, X (a, el st,i = 0,7), X(a' # a, el, st ')}

,VaVstVrVeTVi & (st,i,r) # (st',i',r")
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Experiments

In this chapter, we present our experiments. In order to have a fair comparison, we
first create and train a model 0 on the speaker verification task. This model is con-
sider "emotion unaware" and is used in each experiment as baseline. Then we train our
emotion-aware models t1,t2 and t3. Afterwards each model is evaluated on each one of

our experiments.

4.1 Datasets

We take advantage of the following datasets:

1. IEMOCAP: This dataset was used for the training of the emotional model. Any
emotional aware model is pretrained on this dataset. More details are included in
the 2.4.4.

2. VoxCeleb: This dataset was used for training our models into the speaker verification
task. VoxCeleb’s default evaluation file is used as our baseline for the SV task.
More details for the dataset are included in the 2.5.3.

3. RAVDESS: This dataset is used for the emotional experiments setup. It provides
multiple utterances from different users, with different emotions. Most of all, it
provides different emotional intensities, classifying emotions as "weak" or "strong".
For each one of the following experiments, we utilize our predesigned evaluation sets
as described in 3.2.4. More details for the dataset can be found in the 2.4.4.

4.2 Emotion Driven Speaker Verification

4.2.1 Baseline SV Evaluation

In this subsection, we present the results that we derived while training our models
directly on the speaker verification task. The point of this experiment is to ascertain
whether emotional knowledge can improve a speaker verification model. The results are
presented on the 4.1.

We observe that both models t1 and t3 outperform our emotion unaware model ¢0.

More specifically we capture a 7.2% relative improvement in fusion model and a 17% in
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model | EER (%) | s* | statistical significance

t0 19.7 0.74 0.04
t1 16.35 0.43 0.02
2 20.66 0.79 0.03
t3 18.28 0.51 0.04

[Mivaxac 4.1: The results on the speaker verification task, on VoxCeleb’s evaluation set.
our fully finetuned model relatively to 0.

4.2.2 The effect of emotional content on SV task

The point of this experiment is to ascertain how does emotional content affect speaker
verification. In more detail, we construct tuples of neutral versus emotional content.
We separate emotional content into two classes: "weak" and "strong". Each one indicates
the emotional intensity of the emotional verification utterance that we feed our models
with. On the other hand, enrollment utterance remains neutral. These evaluation sets
are well described in 3.2.4 as S1 weak and S1_strong- A real world a scenario, would be

someone enrolling a service being emotionally neutral and evaluate being angry.

Exp ‘ model ‘ VoxCeleb eval. | RAVDESS weak emotion | RAVDESS strong emotion

1.1 t0 19.7 16.37 30.65
1.2 t1 16.35 16.74 27.23
1.3 2 20.66 17.51 30.51
14 t3 18.28 19.49 27.53

[Mivaxac 4.2: The effect of emotion on speaker verification task, in the case of a neutral
enrollment is followed by an emotional verification utterance.

Observing Table 4.2, we notice the effect of emotion on our models. Despite weak
emotion performing relatively well, we capture a significant EER increase with the presence
of strong emotional intensity. Taking a closer look, EER on weak emotion seems to be near
the baseline (VoxCeleb’s evaluation) for most of our models. This may suggest that our
training dataset for speaker verification task, contains some emotional information. On
contrast, in the case of strong emotion, we capture a massive relative increase 55.5% on
EER for model #0.

Examining our emotion aware models t1,¢2 and t3, we got some interesting remarks.
All emotion aware models seem to perform better than t0. Most significantly, our model
t1, achieves the lowest EER, both on baseline and strong emotional intensity. At the same
time, on weak emotion its EER is very close to that of #0, indicating a general emotional
robustness. Model 2 shows an improvement from the results of the baseline testing but
performs worse than the other models in general. Finally our fusion model t3 performs
relatively well especially in strong intensities but worse in weak.

It is interesting to notice, that lower baseline EER, does not come up with lower EER on
emotional context. If that was the case, we would expect models that performed better on

VoxCeleb’s evaluation set (baseline) to perform relatively well on different sets (emotional



4.2 Emotion Driven Speaker Verification

experiments). On the contrast, we capture, for example, that even though model ¢2 was
much worse on baseline than t0, it actually outperformed it on strong emotional intensity.

From the results above, we can deduce that strong emotional information can drop a
system’s performance drastically, degrading its overall performance. We can safely reject
the hypothesis that greater EER derives from domain mismatch, as on weak emotion all
models perform relatively well. On the contrast, strong emotion seems to affect all of
our models. Nevertheless, it is clear, that our emotion aware models can handle emotion
better that t0. Therefore we can suggest that emotional information during the training
procedure has affected the overall performance in a positive way.

Another interesting aspect, of emotional speech affecting speaker verification task,
would be to examine how do different emotional states both on enrollment and verifi-
cation affect speaker verification. For this purpose, we construct two sets of emotional
versus emotional content, as described in 3.2.4. That means, that both enrollment and
verification utterances will be "emotionally-injected". These sets are further split to weak
and strong emotional intensity. Nevertheless, we set the following constraint; no utterance
shall exist both in enrollment and verification, at the same time with the same emotion.
Providing that, we anticipated a greater EER increase in respect with the previous ex-
periment, as the effect of emotional content has already been identified. This experiment
interprets how do emotional expressions of speakers alternate their ability to be distin-
guished in a SV system. This scenario is aspired from real world cases, as it is not far from
reality. It is difficult for humans to enroll or verify being emotionally neutral due to the
fact that it is difficult to uniquely define emotions. Different people come up with different

definitions and understandings of neutral thus affecting the procedure.

Exp ‘ model ‘ VoxCeleb eval. ‘ RAVDESS weak emotion ‘ RAVDESS strong emotion

21 t0 19.7 21.88 32.64
2.2 t1 16.35 21.38 31.37
2.3 t2 20.66 20.78 31.13
24 t3 18.28 23.29 30.78

[Tivaxac 4.3: The effect of emotion on SV task, when different emotions occur both during
enrollment and verification phase.

After observing Table 4.3, it becomes obvious, that both emotional intensities perform
much worse than the VoxCeleb’s evaluation set. First of all, we capture a relative increase
around 10% on weak intensity relatively to the baseline. At the same time, emotionally
strong utterances, increase EER around 40%. These results indicate, that different emo-
tions affect significantly the speaker verification task, even at weak intensity.

Comparing Table 4.2 and Table 4.3, we capture that weak emotional intensities in-
creased EER around 25%. At the same time, strong emotional intensities increased EER
around 6 —15%. It is important to notice, that our emotional models outperform t0 again,
especially t1, which scores the lowest EER on baseline, weak and strong.

Our results above indicate that emotional information on both utterances (enrollment
and verification) can be a catalyst for very poor results. We can safely say, that all of our

models are strongly affected by emotion, this time even on weak. We notice that all of our
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emotional models once again outperform our emotion unaware model t0. On addition, we
can recognise that our fine tune model ¢1 outperforms ¢0 once again. Obviously, emotional
content implicates with the capability of a SV system to robustly discriminate speakers.
This arises questions about the characteristics that a SV neural network captures and their

sensibility to human expressions.

4.2.3 The effect of each emotion on SV task

After conducting the experiments on 4.2.2, the question arises as to how does each
emotion affect the speaker verification task individually? Are there any specific emotions
that magnify the effect? Is there any correlation between the errors from the "emotional
brain" (SER model) and these that occur under the presence of emotional utterances (SV
model)? In this subsection, we try to answer these questions.

In order to set up this experiment, we had to construct an evaluation file, where each
emotion would be examined independently, as explained in 3.2.4. We used the RAVDESS
dataset and create two custom test sets, in which, each emotion in the verification utterance
is tested against a neutral enrollment. These tests are further separated by emotional
intensity, to end up with a table of 7 emotions x 2 intensities. Then, we evaluate our
emotion unaware model t0. Finally, we examine our emotion aware models performance

and check their relative performance based on model t0 evaluation.

Exp | emotion | RAVDESS weak | RAVDESS strong
3.1 calm 9.38 15.62
3.2 happy 15.1 32.29
3.3 sad 12.5 31.77
3.4 angry 17.71 39.58
3.5 fearful 18.23 38.54
3.6 disgust 24.48 20.31
3.7 | surprised 17.71 27.6

[Mivaxac 4.4: The effect of different emotions on model t0.

First of all, we can see that calm performs better than all the other emotions. This
could be explained with the similarity it has with neutral. On the other hand, all the other
emotions increase EER drastically. Angry, fearful and happy and sad have the higher EER
on strong emotion and disqust on weak. As we can see, happy angry sad and fearful are
among the most diffucult emotions, significantly decreasing EER on model ¢0.

On tables 4.5, 4.6 and 4.7 we evaluate on the same task, our emotion aware models,
t1, t2 and t3 respectively. Each table contains two columns with the relative performance
to 0.

We capture a relative improvement in almost all pretrained emotions (happy, sad,
angry). We suggest that, the emotions which where present during the training of the
"emotional brain", resulted in a more emotionally robust model after fine tuning. We
should note that calm, fearful, disqust and surprised were emotions not taught to our
model. Improvement in these may suggest that our model tracks generally emotional

content in a more efficient way. We also note, that utterances with the unseen emotions of
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Exp | emotion | RAVDESS weak | relative to t0 (%) | RAVDESS strong | relative to t0 (%)
3.1 calm 10.42 —11.09 17.71 —13.38

3.2 happy 14.06 6.89 27.08 16.14

3.3 sad 11.46 8.32 30.73 3.27

3.4 angry 20.83 —17.62 34.9 11.82

3.5 fearful 18.23 0.0 32.81 14.87

3.6 | disgust 25.52 —4.25 23.96 —-17.97

3.7 | surprised 16.15 8.81 18.23 33.95

[Mivaxac 4.5: The effect of different emotions on model t1.

disgust and calm perform much worse than t0.

Exp | emotion | RAVDESS weak | relative to t0 (%) | RAVDESS strong | relative to t0 (%)
3.1 calm 14.06 —49.89 16.67 —6.72

32 | happy 17.71 —17.28 32.81 —1.61

3.3 sad 13.02 —4.16 28.12 11.49

3.4 | angry 20.83 —17.62 36.98 6.57

3.5 fearful 17.71 2.85 40.62 —-5.4

3.6 disgust 27.6 —12.75 29.17 —43.62

3.7 | surprised 21.88 —23.55 26.04 5.65

[Mivaxac 4.6: The effect of different emotions on model t2.

In the table 4.6, we observe that our model ¢2 performs much worse than our baseline

t0 especially on weak intensity emotional utterances. On the other hand, our model seems

to perform better on strong emotional content on sad, angry and surprised. Unfortunately,

at the same time, the emotions of calm, fearful and disgust undermine the model’s to-

tal performance. We should note that EER on disgust and calm worsens significantly,

relatively to ¢0.

Exp | emotion | RAVDESS weak | relative to t0 (%) | RAVDESS strong | relative to t0 (%)
3.1 calm 12.5 —33.26 19.27 —23.37

3.2 happy 16.67 -10.4 31.25 3.22

3.3 sad 11.46 8.32 25.0 21.31

3.4 angry 22.92 —29.42 38.54 2.63

3.5 fearful 21.35 —17.11 29.69 22.96

3.6 | disgust 24.48 0.0 25.52 —25.65

3.7 | surprised 21.88 —23.55 25.0 9.42

[Mivaxac 4.7: The effect of different emotions on model t3.

Observing the Table 4.7 we can capture similarities with the Table 4.5. Disgust and

calm seem to confuse the model t3, just as t1; this time on a greater degree though.

We capture that weak emotions perform much worse than t0, while almost all have not

negligible relative increases. On the other hand, 3 performs much better than ¢0 on strong

emotional content, with outstanding improvement on most emotions. Unfortunately, calm

and disgust drop our model’s performance, making it unstable and degrading its overall

performance.
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In summary, we should note that angry and fearful are the most difficult emotions
affecting drastically the overall speaker verification procedure. That is by shouting up
EER’s absolute value near to 40%. We should note that our model ¢1 manages to perform
relatively well even on these emotions. Additionally, on weak intensity, the worse EER is
spotted on disqust with EER’s absolute value to fluctuate around 25%. Last but not least,
we should mention that calm emotion does not perform very well in all our emotion aware

models.

4.2.4 The effect of same-emotion utterances both on enrollment and
verification

In this subsection, we explore the relations between emotion in the enrollment and
emotion in the verification phase. More specifically, given an emotional utterance during
the verification phase, we try to understand, whether a SV system performs better, having
a same-emotion enrollment. A real world scenario of such an extension, would require
the system to correctly classify the emotion of the utterance during evaluation and then
compare it with the corresponding same-emotion enrollment. This leads to a system that
registers its users with different emotional states on enrollment stage.

In order to set up this experiment, we create an evaluation file with some specific
properties. For each emotion, we construct tuples that fall onto two categories. Emotional
ignorance and emotional knowledge. We consider each tuple of neutral enrollment versus an
emotional verification as emotional ignorance in our system. Nevertheless, we consider each
tuple of the same emotion both on enrollment and verification phase to be an emotional
knowledge. This segregation is only considered during our model’s testing and has no
relation with our emotional training and our emotion aware models.

In the following tables, we list the performance of our models for each emotion and
each one of emotional ignorance and emotional knowledge. On the last column we capture
the relative performance increase, for each emotion. On the final row, we present the mean

values for each column.

Exp | emotion | ignorance EER (%) | knowledge EER (%) | relative improvement (%)
4.1 calm 9.9 7.66 22.63

4.2 happy 23.44 17.41 25.73

4.3 sad 20.83 22.92 —10.03

4.4 angry 33.33 20.46 38.61

4.5 fearful 28.39 24.93 12.19

4.6 disgust 19.01 14.58 23.3

4.7 | surprised 17.71 11.38 35.74

4.8 | average 21.80 17.05 21.17

[Mivaxac 4.8: Emotional ignorance versus emotional knowledge for model t0

For our model t0, we capture that all emotions except sadness, perform better than
emotional ignorance while having emotional knowledge. We spot an improvement of ~
12 — 38% with an average of ~ 21.17%. This result can also be interpreted as following; a

system suffering from emotional ignorance during testing can perform up to ~ 21% worse.
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Exp | emotion | ignorance EER (%) | knowledge EER (%) | relative improvement (%)
4.1 calm 14.32 6.85 52.16
42 | happy 20.83 19.49 6.43
4.3 sad 20.05 21.43 —6.88
4.4 angry 29.43 21.06 28.44
4.5 fearful 26.56 25.0 5.87
4.6 disgust 19.27 16.0 16.97
4.7 | surprised 13.8 12.28 11.01
4.8 average 20.61 16.65 17.34

[ivaxac 4.9: Emotional ignorance versus emotional knowledge for model t1

After examining our model t1, we capture similar results. First of all, we capture a
degrade on sadness error, therefore being less sensitive to emotional ignorance. Overall
all emotions get a ~ 5 — 52% increase, with an average of 17.34%. This result, indicates
a lower emotional dependence of our emotion aware model t1. At the same time the
average scores both on emotional ignorance and knowledge outperform those of model ¢0.
Most importantly, we capture a strong increase on calm emotion. This indicates that poor

performance on emotions spotted on 4.5 seems to fix straight forward.

Exp | emotion | ignorance EER (%) | knowledge EER (%) | relative improvement (%)
4.1 calm 11.72 6.7 42.83

4.2 happy 23.44 16.82 28.24

4.3 sad 18.75 21.35 —13.87

4.4 angry 31.25 23.51 24.77

4.5 fearful 27.6 23.88 13.48

4.6 | disgust 20.83 15.33 26.4

4.7 | surprised 19.79 9.82 50.38

4.8 average 21.91 16.77 24.6

[ivaxoc 4.10: Emotional ignorance versus emotional knowledge for model t2

Observing Table 4.10, we capture a huge improvement through emotional knowledge.
In more detail, there is a relative improvement of ~ 13 — 50% for all the emotions, except
sadness, with a mean of 24.6%. We should point out, that calm emotion which performed
poor on 4.6 improves around 43%. Finally, the average emotional knowledge’s EER, out-
performs t0 model.

After reviewing Table 4.11 we can detect many similarities with the previous tables.
That is sadness being the only emotion on which emotional knowledge degrades perfor-
mance. In other respects, all emotions face a relative increase ~ 6 —44% with an average of
22.49%. Despite the general improvement in performance, on the downside, t0 performed
better than ¢3 both on emotional ignorance and emotional knowledge.

In Table 4.12, we can see how model t1 outperforms once again model t0. First of all,
we capture a ~ 5.5% improvement on emotional ignorance. That means that model ¢1
is more likely to be robust in emotional content when no emotional clue is given during

evaluation. At the same time, when an emotional enrollment is provided, model ¢1 once
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Exp | emotion | ignorance EER (%) | knowledge EER (%) | relative improvement (%)
4.1 calm 18.75 10.34 44.85

42 | happy 94.92 18.15 25.06

4.3 sad 21.35 24.48 —14.66

4.4 angry 33.33 25.0 24.99

4.5 fearful 32.81 24.4 25.63

4.6 disgust 22.66 21.13 6.75

4.7 | surprised 26.82 14.81 44.78

4.8 average 25.71 19.76 22.49

IMivaxac 4.11: Emotional ignorance versus emotional knowledge for model t3

model | relat. improvement ignorance (%) | relat. improvement knowledge (%)

t1 5.47 2.32
t2 —-0.5 1.62
t3 —-17.91 —-15.9

[Mivaxac 4.12: Relative performance of models t1, t2 and t8 to t0 on emotional ignorance
and emotional knowledge

again outperforms model t0. At last, model ¢2 performs relatively well, while ¢3 does not.

4.3

Discussion

In this section, we summarize the main contribution of this thesis, as after conducting

the experiments above, we came to some interesting conclusions:

We showed that a pre-trained SER model, fine tuned on SV can outperform a model
trained directly on SV. More specifically, we observed that two out of three emotion-
aware architectures outperform the emotion-unaware model on VoxCeleb’s evaluation
set. We capture a 7% and a 17% increase in performance, relatively to our emotion-

unaware model.

We demonstrated that emotional content on speaker verification can drastically de-
grade a system’s performance, depending on the emotional intensity of the speaker.
This results on prone models easily effected by user’s emotional state. Furthermore
different emotions on the enrollment and the verification phase can magnify the ef-
fect ending in very poor results. This indicates that architectures trained directly on

speaker verification, have no intuition on the ways that emotion modulates speech.

We showed that anger and fear are the emotions affecting the most the speaker
discrimination procedure. After carefully examining the emotions provided by the
RAVDESS dataset, our experiments suggest that these two have the greater impact
on the procedure. Both anger and fear drastically increase EER, affecting heavily

the discrimination procedure. Emotion unaware models reach a poor performance

nearly 40% EER.

We demonstrated that by applying traditional transfer learning methods from SER
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to SV, we can effectively train emotion-aware models. We observed that these models
can reduce the effect of emotional content on speech and improve our overall results.
In more detail, our architecture ¢t1 outperforms one traditional emotion-unaware

model, such as t0, both on weak and strong emotional intensity.

We showed that emotional knowledge during evaluation phase, can improve a system’s
performance nearly 17 — 24%, even on an emotion unaware model. This is crucial,
considering that improvement on the SER can lead to improvement on the SV task.
This observation could have applications in real world systems, as we could provide

specific enrollment utterances, depending on the output of an emotional classifier.
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Conclusion

5.1 Summary

In this thesis, we studied the effect of emotion on speaker verification. We experimented
with different techniques, in order to better understand how different emotions implicate
with deep learning models.

First of all, we examined how emotional content affects the speaker verification task
and showed that emotional speech can significantly degrade an SV system’s performance,
depending on the emotional intensity. We found that strong intensity overall can make
a speaker verification model to perform very poorly. We examined how neutral emotion
affects the procedure and how does equal error rate change if we add emotional content
on the enrollment utterance besides the verification. The results indicate that different
emotion-pairs on these two utterances result in the worst possible performance making our
baseline models, practically incapable of correctly recognising speakers.

Then, we explored how does each emotion individually affect the procedure, and iden-
tified these which implicate the most. We found that anger and fear are the emotions that
are most likely to make our models more prone to false user rejections or false impostor
acceptances. More specifically, we noticed that equal error rate’s absolute value reached
40% when these emotions where present. Anger is an emotion that has an unexpected
behaviour in many cases.

Furthermore, we inspected, whether a SV system can be improved by inserting an
emotional utterance in the evaluation phase. Our suggestion showed a great improvement
on system’s performance, even when the models had not seen emotional information during
their training. We capture a relative increase about 20% for all of our models and for almost
all the emotions. Our results point out the need of taking into account the effect of emotion
on SV and design more complex architectures, where a SER classifier could interact with
the enrollment and verification utterance. In this way, SV process could become more
robust.

Last but not least, we came up with three architectures that aimed at reducing the
emotional effect on speaker verification, each one in a different manner. We showed that
each one of them excels our emotion-unaware model on some tasks. Most significantly, our
fine tune architecture, remarkably outperformed our baseline emotion-unaware model on

all the tasks that we examined. Therefore, our experiments demonstrate that by applying
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traditional transfer learning methods, we can efficiently transfer emotional knowledge to the
speaker verification task, improving the models’ robustness, even when emotional speech
is present.

As one easily understands, emotion has a crucial role and implicates with a speaker
verification system in a great degree. In this thesis, we identified some of these relations

and tried to overcome them by transferring emotional knowledge.

5.2 Future Work

This thesis could have many interesting future extensions. In this subsection we try to
address some of those.

First of all, one direction would be to study the effect of speaker verification on speech
emotion recognition and how speaker discriminative features relate with speaker emotional
expressions. More specifically, as these two tasks are correlated, we could try inserting
speaker specific knowledge, into the emotion recognition procedure. As emotions are not
unambiguously settled, it would be interesting to study whether speaker-specific charac-
teristics improve the overall performance.

Another interesting aspect to study, would be the implementation of a custom loss func-
tion. We know by this time, that training a model with common speaker verification losses
such as GE2E loss, does not take different modalities such as emotion into consideration.
This is a major flaw because essentially we completely ignore emotional information. As
a result we blindly focus on speaker discrimination without identifying the effect of emo-
tional modulation on speech. As shown in recent works [15], [16], loss functions specifically
customized for the task, can significantly improve the overall performance. Attempts have
been made even on the SER field [17] for splitting different modalities on the presence of
emotional speech. We suggest that we could examine how to integrate emotional informa-
tion into a custom loss function and inspect whether performance improves both on pure

speaker verification task and to emotion-injected speaker verification.
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