ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΡΜΑΝΣΗ ΚΤΗΡΙΟΥ ΜΕ ΗΛΙΑΚΑ ΥΠΟΒΟΗΘΟΥΜΕΝΗ ΑΝΤΛΙΑ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΨΥΚΤΙΚΟ ΜΕΣΟ ΔΙΟΞΕΙΔΙΟ ΤΟΥ ΑΝΘΡΑΚΑ

Λίβας Γεώργιος

Επιβλέπων: Τζιβανίδης Χρήστος, Αναπληρωτής καθηγητής

Αθήνα, Ιούνιος 2021

Ευχαριστίες

Ευχαριστώ θερμά τον αναπληρωτή καθηγητή κ. Τζιβανίδη Χρήστο για την ανάθεση της συγκεκριμένης διπλωματικής εργασίας, αλλά πολύ περισσότερο για την κατανόηση και την βοήθεια που μου προσέφερε κατά την εκπόνησή της. Ακόμα θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους που στάθηκαν στο πλευρό μου και με βοήθησαν όταν το είχα περισσότερο ανάγκη.

Περίληψη

Στην παρούσα εργασία εξετάστηκε η λειτουργία συστήματος θέρμανσης με αντλία θερμότητας αέρα-νερού και ψυκτικού μέσου διοξειδίου του άνθρακα υποβοηθούμενη από επίπεδους ηλιακούς συλλέκτες στο περιβάλλον προσομοίωσης TRNSYS 18. Η κατοικία βρίσκεται στην περιοχή της Αθήνας και στεγάζει οικογένεια τεσσάρων μελών. Η εγκατάσταση που μελετήθηκε καλύπτει της ανάγκες θέρμανσης της μονοκατοικίας διατηρώντας τη θερμοκρασία στο εσωτερικό του κτηρίου μεταξύ 20 και 22 °C, καθώς και της παροχής ζεστού νερού χρήσης των κατοίκων του οποίου η θερμοκρασία κυμαίνεται από 40 έως 45 °C. Περιλαμβάνει εναλλάκτη ανάκτησης θερμότητας από το απορριπτόμενο στο περιβάλλον ρεύμα αέρα, για απόδοση της στο εισερχόμενο στο κτίριο ρεύμα φρέσκου αέρα. Επιπλέον βρέθηκε ο όγκος του δοχείου αποθήκευσης του νερού και της επιφάνειας των ηλιακών συλλεκτών για τα οποία η εγκατάσταση γίνεται οικονομικά πιο συμφέρουσα. Έπειτα διερευνήθηκε η επίπτωση της αύξησης του όγκου του δοχείου αποθήκευσης της εγκατάστασης στην συνολική κατανάλωση ενέργειας για την σεζόν θέρμανσης. Ακόμα βρέθηκε ότι η χρήση επίπεδων ηλιακών συλλεκτών βοηθά στη μείωση της κατανάλωσης της ηλεκτρικής ενέργειας κατά 45 % σε σχέση με την ίδια εγκατάσταση αλλά χωρίς ηλιακούς συλλέκτες. Επιπροσθέτως βρέθηκε ότι επιτυγχάνεται 19.1% εξοικονόμιση ηλεκτρικής ενέργειας με τη χρήση εναλλάκτη ανάκτησης θερμότητας. Συμπληρωματικά έγινε σύγκριση της εγκατάστασης με αντλία θερμότητας CO_2 με την ίδια εγκατάσταση αλλά με αντλία θερμότητας ψυκτικού R410A. Διαπιστώθηκε ότι η τελευταία αν και καταναλώνει 13.6 % λιγότερη ηλεκτρική ενέργεια καθίσταται περισσότερο επιβλαβής για το περιβάλλον λόγω της μεγάλης επίπτωσης που μπορεί να έχει διαρροή ψυκτικού R410A. Η εγκατάσταση του συστήματος θέρμανσης με αντλία θερμότητας CO2 βοηθά στη μείωση της κατανάλωσης ηλεκτρικής ενέργειας και στη μείωση των αέριων ρύπων για τις ανάγκες θέρμανσης των κτηρίων και αποτελεί μια φιλική προς το περιβάλλον λύση.

Abstract

This paper examines the operation of a heating system implemeting an air to water heat pump charged with carbon dioxide as a refrigerant, assisted by flat plate collectors for capturing solar energy, simulated in TRNSYS 18. The residential building is located in Athens and accommodates a family of four. This heating system covers the heating demand of the building, maintaining the temperature inside the building between 20 and 22°C. The system also provides hot water for the residence at a temperature between 40 and 45°C. The heating system includes an air heat recovery system feeding heat coming from the building's exhaust air to the fresh air stream entering the building. Next the optimum volume of the storage tank and collector area was found so that the system achieves the minimum cost. The author also examines the influence of the storage tank volume on the total electricity consumption of the heating system. The use of the solar collector array helps reduce the total electricity by 45% compared to the non-solar assisted system. The addition of a heat recovery system also reduces total electricity consumption by 19.1 %. The same heating system but using an R410A heat pump was compared with the initial solar assisted system implementing a CO_2 heat pump. The former consumes 13.6 % less electricity, but in case of a refrigerant leak it potentially causes more damage to the environment, because R410A has a greater global warming potential, compared with the system using a CO_2 heat pump. Consequently, the solar assisted system featuring a CO_2 heat pump helps reduce the electricity consumption and greenhouse gases making it an environmentally friendly heating system solution.

Περιεχόμενα

Ευχαριστίες	3
Περίληψη	4
Abstract	4
Περιεχόμενα	6
1. Εισαγωγή	9
1.1 Πηγές και κατανάλωση ενέργειας	9
1.2 Ανανεώσιμες πηγές ενέργειας	10
1.3 Ενέργεια και κτήρια	12
2. Ενεργειακές παράμετροι κτηρίων	14
2.1 Εισαγωγικά στοιχεία	14
2.2 Γεωγραφική θέση και γεωμετρικά χαρακτηριστικά κτηρίου	15
2.3 Δομικά υλικά κτηρίου	15
2.4 Επιλογή και θέση υαλοπινάκων	19
2.5 Θερμική άνεση	21
2.6 Φορτία κλιματισμού	22
2.7 Θέρμανση και ψύξη κτηρίου	22
2.8 Ηλιακά υποβοηθούμενη αντλία θερμότητας	
3 Ηλιακή ενέργεια	
3.1 Βασικές έννοιες	
3.2 Επίπεδος ηλιακός συλλέκτης	
3.3 Συλλέκτες σωλήνων κενού	
3.4 Συγκεντρωτικοί συλλέκτες	40
4. Το περιβάλλον προσομοίωσης TRNSYS	43
4.1 Εισαγωγή στο TRNSYS	43
4.2 Το περιβάλλον Simulation Studio	45
4.3 Δημιουργία ενός απλού συστήματος	47
4.3.1 Εισαγωγή και επεξεργασία ενός στοιχείου (type)	47
4.3.2 Διασύνδεση βασικών στοιχείων	
4.3.3 Εισαγωγή online plotter	54
4.3.4 Εισαγωγή printegrator	55
4.3.5 Έναρξη και αποτελέσματα της προσομοίωσης	

5. Η εγκατάσταση στο TRNSYS 18	58
5.1 Βασικά στοιχεία κτηρίου και περιγραφή της εγκατάστασης	58
5.2 Εισαγωγή των παραμέτρων του κτηρίου	59
5.2.1 Εισαγωγή κτηριακής εγκατάστασης (Building Project Multizone)	59
5.2.2 Εισαγωγή των παραμέτρων των δομικών υλικών του κτηρίου	64
5.2.3 Εισαγωγή φορτίων (φωτισμού, ανθρώπων, συσκευών, κ.α.) στο κτήριο	76
5.3 Σύστημα αερισμού του κτηρίου	86
5.3.1 Δημιουργία του συστήματος αερισμού του κτηρίου	86
5.3.2 Προσδιορισμός του μέγιστου φορτίου θέρμανσης του κτηρίου	96
5.4 Δημιουργία του συστήματος θέρμανσης της εγκατάστασης	102
5.4.1 Ο βρόχος δοχείου αποθήκευσης-θερμαντικού στοιχείου	103
5.4.2 Ο βρόχος αντλίας θερμότητας – δοχείου αποθήκευσης	110
5.5 Δημιουργία του συστήματος παροχής ζεστού νερού χρήσης	116
5.6 Ο βρόχος ηλιακού συλλέκτη-δοχείου αποθήκευσης	123
6. Αποτελέσματα προσομοίωσης	131
6.1. Εύρεση της βέλτιστης τιμής όγκου δοχείου αποθήκευσης και επιφάνειας ηλιακού συλλέκτη	131
6.2 Διαγράμματα από τη λειτουργία της εγκατάστασης για τις βέλτιστες τιμές	132
6.3. Δείκτες λειτουργίας της βέλτιστης εγκατάστασης και σύγκριση με μη ηλιακά υποβοηθούμεν	<i>ν</i> η.
	137
6.4. Μεταβολή του όγκου του δοχείου αποθήκευσης για επιφάνεια ηλιακών συλλεκτών 28 m2.	139
6.5 Εναλλακτικές εγκαταστάσεις	141
6.5.1 Ηλιακά υποβοηθούμενη αντλία θερμότητας <i>CO</i> 2 χωρίς ανάκτηση θερμότητας	141
6.5.2: Ηλιακά υποβοηθούμενη αντλία θερμότητας R410A	143
6.6. Σύγκριση αποτελεσμάτων της βέλτιστης εγκατάστασης με τις εναλλακτικές	145
7. Ανακεφαλαίωση και συμπεράσματα.	147
Βιβλιογραφία	149
Κατάλογος σχημάτων	151
Κατάλογος πινάκων	157
Παραρτήματα	158
Παράρτημα Α: Προγράμματα φορτίων από ανθρώπους, φωτισμού και συσκευών	158
Παράρτημα Β: Επεξεργασία δεδομένων αντλίας θερμότητας CO2 και δημιουργία του αρχείου εισόδου του type 941.	162
Παράρτημα Γ: Επιλογή κλίσης συλλέκτη	168

Παράρτημα Δ: Επεξεργασία δεδομένων αντλίας R410A και δημιουργία αρχείου εισόδου στο type	
941	. 169
Παράρτημα Ε: Συμπληρωματικοί πίνακες αποτελεσμάτων προσομοίωσης	. 172

1. Εισαγωγή

1.1 Πηγές και κατανάλωση ενέργειας

Στη σημερινή εποχή η ενέργεια αποτελεί το βασικότερο στοιχείο για την ευημερία των ανθρώπων, την οικονομική ανάπτυξη καθώς επίσης και για την καταπολέμηση της φτώχειας. Για τους λόγους αυτούς είναι αναγκαίο να υπάρχει συνεχής πρόσβαση στο αγαθό αυτό από όλους. Οι ενεργειακές απαιτήσεις συνεχώς αυξάνονται λόγω της ραγδαίας αύξησης του πληθυσμού καθώς και λόγω των αναγκών της σύγχρονης ζωής. Η ενέργεια αποτελεί βασικό στοιχείο της σύγχρονης καθημερινότητας αφού χρειάζεται στην παραγωγική διαδικασία αγαθών, στην ψύξη και την θέρμανση, στις μετακινήσεις και τις μεταφορές.

Τον προηγούμενο αιώνα η βιομηχανία και οι ενεργειακές απαιτήσεις του ανθρώπου στηρίχθηκαν σχεδόν αποκλειστικά στα ορυκτά καύσιμα. Τα ορυκτά καύσιμα όμως αποτελούν μια μη ανανεώσιμη πηγή, ενώ η καύση του πετρελαίου και των γαιανθράκων έχει ως αποτέλεσμα την ρύπανση της ατμόσφαιρας με ρύπους όπως οξείδια του αζώτου και του θείου, άκαυστους υδρογονάνθρακες ικανούς να προκαλέσουν και προβλήματα στην υγεία των ανθρώπων. Επίσης η καύση τους έχει ως αποτέλεσμα την η αύξηση των εκπομπών του διοξειδίου του άνθρακα και άλλων αερίων του θερμοκηπίου, τα οποία είναι υπεύθυνα για την κλιματική αλλαγή και την αύξηση της μέσης θερμοκρασίας του περιβάλλοντος.

Σχήμα 1. 1: Παγκόσμια κατανάλωση πρωτογενούς ενέργειας [1].

Στο σχήμα 1.1 η παρουσιάζεται παγκόσμια κατανάλωση πρωτογενούς ενέργειας από τις αρχές του 19ου αιώνα έως και σήμερα. Με τον όρο πρωτογενής κατανάλωση ενέργειας εννοείται το ποσό των καυσίμων που χρειάζεται για να παραχθεί η ενέργεια προς χρήση, συμπεριλαμβανομένων δηλαδή και των απωλειών των ορυκτών καυσίμων που προκύπτουν κατά των μετασχηματισμό τους στην τελική ενέργεια. Από το σχήμα 1.1 γίνεται αντιληπτή η ραγδαία αύξηση της κατάναλωσης ενέργειας. Παρατηρείται ότι έγινε σταδιακή μετάβαση από τα παραδοσιακά βιοκαύσιμα (οργανικά καύσιμα όπως φυτά και ζωικά υπολείμματα) στους γαιάνθρακες και το πετρέλαιο, ενώ στην πιο σύγχρονη εποχή παρατηρείται και η είσοδος των ανανέωσιμων πηγών ενέργειας. Τέλος αξίζει να σημειωθεί ότι η συνολική κατανάλωση πρωτογενούς ενέργειας το έτος 2018 ανήλθε σε 157063.77 *TWh* [1].

1.2 Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες είναι εκείνες οι πηγές ενέργειας οι οποίες ανανεώνονται μέσω του κύκλου της φύσης, και θεωρούνται στην πράξη ανεξάντλητες, όπως είναι η ηλιακή, η αιολική και η υδροηλεκτρική ενέργεια, η ενέργεια από τα κύματα, η γεωθερμία, η βιομάζα [2]. Ή χρήση των πηγών αυτών έγινε εντατικότερη την τελευταία δεκαετία, λόγω της έντασης του φαινομένου του θερμοκηπίου, και της επιτάχυνσης της κλιματικής αλλαγής εξαιτίας της σχεδόν αποκλειστικής χρήσης των ορυκτών καυσίμων. Η αξιοποίηση των ανανεώσιμων πηγών δεν επιβαρύνει το περιβάλλον με διοξείδιο του άνθρακα και άλλους ρύπους που προκύπτουν από την καύση των ορυκτών καυσίμων.

Σχήμα 1. 2: Πρωτογενής κατανάλωση ενέργειας ανά πηγή [1].

Στο σχήμα 1.2 φαίνεται ότι ήδη από την τελευταία δεκαετία του 20ου αιώνα ξεκίνησε η χρήση των ανανεώσιμων πηγών, ενώ έως σήμερα έχει γίνει σημαντική και συνεχώς αυξανόμενη η χρήση τους,

εξαιτίας των περιβαλλοντικών προβλημάτων που προέκυψαν από την καύση των ορυκτών καυσίμων, όπως προαναφέρθηκε. Σημειώνεται ότι το σημερινό μοντέλο ενέργειας στηρίζεται ακόμη στα ορυκτά καύσιμα, το 2018 το 84.7% της πρωτογενούς ενέργειας προήλθε από ορυκτά καύσιμα [1]. Επιπλέον αξίζει να σημειωθεί πως δεν παρατηρείται αύξηση της της πρωτογενούς ενέργειας από πυρηνικά καύσιμα, αφού δεν αποτελεί καθαρή πηγή ενέργειας, ενώ τα τελευταία χρόνια γίνεται συζήτηση για περιορισμό της χρήσης της.

Σχήμα 1. 3: Συνολική ετήσια παραγωγή διοξειδίου του άνθρακα, ανά ήπειρο [3].

Στο σχήμα 1.3 παρατηρείται η διαρκώς αυξανόμενη παραγωγή του διοξειδίου του άνθρακα, ενώ το 2017 ήταν 36.15 εκατομμύρια τόνοι [3].Τα τελευταία χρόνια έχει γίνει παγκοσμίως μια στροφή προς την πράσινη (δηλαδή ανανεώσιμη) και καθαρή (χωρίς ρύπους και απόβλητα) ενέργεια, ενώ πολλές πόλεις καθώς και χώρες στοχεύουν στο να έχουν μηδενικό αποτύπωμα άνθρακα έως τα μέσα του 21ου αιώνα.

1.3 Ενέργεια και κτήρια

Πέραν της χρήσης ανανεώσιμων πηγών ενέργειας έναντι των ορυκτών καυσίμων, είναι σημαντική και η εξοικονόμηση ενέργειας σε όλες τις πτυχές της καθημερινότητας. Τις τελευταίες δεκαετίες έχουν γίνει προσπάθειες που έχουν ως στόχο τα κτήρια να καταναλώνουν λιγότερη ενέργεια για θέρμανση και ψύξη, δηλαδή των περιορισμό των θερμικών απωλειών τους, εξοικονομώντας έτσι μεγάλα ποσά ενέργειας. Η επιλογή των σωστών δομικών υλικών, της τοποθεσίας και του προσανατολισμού του κτηρίου είναι μερικές μόνο παράμετροι που αφορούν την κατασκευή ενός κτηρίου, και θα αναλυθούν σε επόμενο κεφάλαιο.

Στην Ελλάδα μέχρι και τα τέλη της δεκαετίας του 1970 δεν υπήρχε κανονισμός που να προβλέπει τη θερμομόνωση των κτηρίων. Έτσι σε πολλά κτήρια με οικοδομική άδεια μέχρι και εκείνη την περίοδο δεν υπήρχε επαρκής έως και καθόλου θερμομόνωση. Το 1979 εκδόθηκε και τέθηκε σε εφαρμογή ο Κανονισμός Θερμομόνωσης Κτηρίων (Κ.Θ.Κ.), που συντάχθηκε από το Τεχνικό Επιμελητήριο Ελλάδας [4]. Ο κανονισμός αυτός είχε ως απαίτηση ολόκληρο το κτήριο να ικανοποιεί έναν μέσο συντελεστή θερμικής διαπερατότητας $U(W/m^2K)$, ανάλογα με την γεωγραφική ζώνη που βρίκεται (Α, Β ή Γ).

Το 2010 τέθηκε σε εφαρμογή ο Κανονισμός Ενεργειακής Απόδοσης Κτηρίων (Κ.Εν.Α.Κ.)- ο οποίος εναρμονίζεται και με τις ευρωπαϊκές νομοθεσίες και πρότυπα, αντικαθιστώντας τον Κ.Θ.Κ., ενώ από το 2017 εφαρμόζεται η αναθεωρημένη έκδοσή του [5]. Με την εφαρμογή του νέου αυτού κανονισμού επιδιώκεται η μείωση της χρήσης συμβατικών πόρων (ηλεκτρική ενέργεια, πετρέλαιο, καυσόξυλα) για τη θέρμανση, ψύξη, κλιματισμό (ΘΨΚ) και φωτισμό των κτηρίων καθώς και παραγωγή ζεστού νερού χρήσης (ZNX), διασφαλίζοντας ταυτόχρονα την θερμική άνεση και την ποιότητα του εσωτερικού περιβάλλοντος του κτηρίου. Οι στόχοι αυτοί επιτυγχάνονται μέσω του αποδοτικού σχεδιασμού του κελύφους, της χρήσης ενεργειακά αποδοτικών δομικών υλικών και ηλεκτρομηχανικών συστημάτων, ανανεώσιμων πηγών ενέργειας και συστημάτων συμπαραγωγής

1. Ορισμό μεθοδολογίας υπολογισμού της ενεργειακής απόδοσης των κτηρίων για την εκτίμηση των ενεργειακών καταναλώσεων των κτηρίων για ΘΨΚ, φωτισμό και ΖΝΧ.

2.Καθορισμό των ελάχιστων απαιτήσεων για την ενεργειακή απόδοση και κατηγοριών για την ενεργειακή κατάταξη των κτηρίων.

3.Καθορισμό παραμέτρων για τον ενεργειακά αποδοτικό σχεδιασμό των κτηρίων, των θερμοφυσικών χαρακτηριστικών των δομικών στοιχείων του κτηριακού κελύφους και των προδιαγραφών των τεχνικών συστημάτων κτηρίων.

4. Καθορίζεται ο τύπος και το περιεχόμενο της μελέτης ενεργειακής απόδοσης (MEA).

5. Καθορίζεται ο τύπος και το περιεχόμενο του πιστοποιητικού ενεργειακής απόδοσης (ΠΕΑ).

6. Καθορίζεται η διαδικασία των ενεργειακών επιθεωρήσεων των κτηρίων, καθώς και η διαδικασία των επιθεωρήσεων των συστημάτων θέρμανσης και κλιματισμού.

Σύμφωνα με το άρθρο 5 του Κ.Εν.Α.Κ., για τους υπολογισμούς της ενεργειακής απόδοσης και της ενεργειακής κατάταξης των κτηρίων εφαρμόζεται η μέθοδος ημι-σταθερής κατάστασης μηνιαίου βήματος του ευρωπαϊκού προτύπου ΕΛΟΤ ΕΝ ISO 13790 και των υπόλοιπων ευρωπαϊκών προτύπων.

Ο Κ.Εν.Α.Κ. ταξινομεί την χώρα σε 4 κλιματικές ζώνες, ενώ στο άρθρο 8 αναγράφονται και οι ελάχιστοι συντελεστές θερμοπερατότητας ανάλογα με το υπό εξέταση κτήριο (νέο ή υφιστάμενο) και την κλιματική ζώνη στην οποία ανήκει [5].

Η μεθοδολογία υπολογισμού της ενεργειακής απόδοσης του υπό εξέταση κτηρίου περιλαμβάνει τον υπολογισμό της συνολικής κατανάλωσης πρωτογενούς ενέργειας. Η υπολογιζόμενη τελική καταναλισκόμενη ενέργεια ανά τύπο καυσίμου πολλαπλασιαζόμενη με έναν συντελεστή (οι συντελεστές δίνονται σε πίνακες) δίνει την αντίστοιχη κατανάλωση πρωτογενούς ενέργειας. Η ενέργεια από ανανεώσιμες πηγές ή από συμπαραγωγή εκτιμάται θετικά. Έπειτα γίνεται σύγκριση με το κτήριο αναφοράς. Το κτήριο αναφοράς έχει τα ίδια γεωμετρικά χαρακτηριστικά, θέση, προσανατολισμό, χρήση και χαρακτηριστικά λειτουργίας με το εξεταζόμενο κτήριο και πληροί τις ελάχιστες προδιαγραφές. Με βάση την συνολική τελική καταναλισκόμενη ενέργεια ανηγμένη σε πρωτογενό συμαιαραγωγή εντήριο [6].

Ο νέος κανονισμός επιτυγχάνει την κατασκευή κτηρίων που καταναλώνουν σημαντικά λιγότερα ποσά ενέργειας για θέρμανση και ψύξη εξοικονομώντας και οικονομικούς πόρους, ενώ εξασφαλίζει την θερμική άνεση των χρηστών τους.

2. Ενεργειακές παράμετροι κτηρίων.

2.1 Εισαγωγικά στοιχεία.

Σύμφωνα με τον 2° Θερμοδυναμικό νόμο, θερμότητα είναι η ενέργεια που μεταφέρεται από ένα σώμα μεγαλύτερης θερμοκρασίας, σε ένα σώμα χαμηλότερης θερμοκρασίας. Για την μεταφορά θερμότητας από ένα σώμα χαμηλότερης σε ένα σώμα μεγαλύτερης θερμοκρασίας απαιτείται δαπάνη ενέργειας (μηχανικού συνήθως έργου). Μερικές φορές η πρόσδοση θερμότητας σε ένα σώμα συνοδεύεται και από αλλαγή της φυσικής του κατάστασης ή φάσης.

Τρόποι μετάδοσης Θερμότητας:

1. Αγωγή: Όταν σε ένα σώμα υπάρχει διαφορά θερμοκρασίας, τότε έχουμε αγωγή διαμέσου αυτού του σώματος. Αγωγή έχουμε και όταν έρχονται σε επαφή σώματα διαφορετικής θερμοκρασίας [7]. Η εξίσωση Fourier δίνει την ροή θερμότητας διαμέσου ενός υλικού:

$$q = \kappa \; \frac{T_1 - T_2}{dx} \quad (2.1)$$

Όπου q η ροή θερμότητας διαμέσου του υλικού (W/m^2) , κ η αγωγιμότητα του υλικού σε W/mK, T_1 και T_2 (σε K) οι θερμοκρασίες

στις επιφάνεις του υλικού, με την T_1 υψηλότερη της T_2 και dx το πάχος του υλικού σε (m).

 Συναγωγή: Όταν ένα ρευστό έρχεται σε επαφή με ένα στερεό διαφορετικής θερμοκρασίας, τότε έχουμε μετάδοση θερμότητας με συναγωγή [7]. Η συναγωγή διέπεται από τη σχέση:

$$q = h \left(T_s - T_\infty \right) \quad (2.2)$$

Ρευστό Τ ∞

Όπου q η ροή θερμότητας, h η ειδική συναγωγιμότητα σε

 $W/m^2 K$, T_s και T_∞ οι θερμοκρασίες (σε K, με $T_s > T_\infty$) του στερεού σώματος και του ρευστού αντίστοιχα.

3. Ακτινοβολία: Ορισμένα σώματα έχουν την ικανότητα να απορροφούν την προσπίπτουσα σε αυτή ακτινοβολία και να την επανεκπέμπουν. Η μετάδοση θερμότητας με ακτινοβολία γίνεται μέσω ηλεκτρομαγνητικών κυμάτων, και σε αντίθεση με την αγωγή και την συναγωγή δεν απαιτείται υλικό μέσο για την μετάδοση θερμότητας, δηλαδή μεταδίδεται και στο κενό [7].

$$q=\varepsilon\sigma T_s^4~(2.3)$$

όπου q η ροή θερμότητας, ε ο συντελεστής εκπομπής του σώματος, που κυμαίνεται από 0 έως 1, $\sigma = 5.6697 \cdot 10^{-8} W/m^2 K^4$ η σταθερά Stefan-Boltzmann και $T_s(K)$ η θερμοκρασία του σώματος.

Σχήμα 2. 1: Αγωγή θερμότητας [7].

 $q = h \cdot (T_{r} - T_{r})$

2.2 Γεωγραφική θέση και γεωμετρικά χαρακτηριστικά κτηρίου.

Η θέση του ηλίου είναι η βασικότερη παράμετρος η οποία λαμβάνεται υπόψη κατά την ανοικοδόμηση ενός κτηρίου. Ο ήλιος «βρίσκεται» χαμηλότερα το χειμώνα και ψηλότερα το καλοκαίρι. Έτσι τα κτήρια που βρίσκονται στο βόρειο ημισφαίριο συνηθίζεται να έχουν νότιο προσανατολισμό (γωνία αζιμουθίου $\gamma = 0^{\circ}$), δηλαδή τοίχο με μεγάλη επιφάνεια και μεγάλη επιφάνεια ναοινόκων που να «κοιτά» στον νότο. Αυτό συμβαίνει καθώς στη νότια κατεύθυνση έχουμε μεγιστοποίηση της προσπίπτουσας ηλιακής ακτινοβολίας το χειμώνα, λόγο του τρόπου με τον οποίο κινείται η γη ως προς τον ήλιο. Με αυτόν τον τρόπο το κτήριο ζεσταίνεται για περισσότερο χρόνο τον χειμώνα, ενώ το καλοκαίρι, με σκίαστρο, μπορεί να αποκοπεί μεγάλο ποσό της προσπίπτουσας ηλιακής ακτινοβολίας το χειμώνα δέντρα που ρίχνουν το φύλλωμα τους το χειμώνα φυτεύονται στην νότια μεριά του κτηρίου και βοηθούν στη διέλευση της ηλιακής ακτινοβολίας και άρα στην φυσική θέρμανσή του [8]. Αντιθέτως δέντρα που διατηρούν το φύλλωμά τους όλες τις εποχές τοποθετούνται στην βόρεια μεριά εμποδίζοντας το κτήριο. Τέλος ο όγκος του κτηρίου επηρεάζει των αριθμό και μέγεθος τον υαλοπινάκων, και γενικότερα την

θέρμανση του κτηρίου, καθώς όσο μεγαλύτερο το κτήριο, τόσο περισσότερη θερμότητα απαιτείται για την θέρμανσή του.

2.3 Δομικά υλικά κτηρίου.

Τα δομικά στοιχεία ενός κτήρια παίζουν σημαντικό ρόλο στον περιορισμό των θερμικών απωλειών και κατ' επέκταση στην ενεργειακή εξοικονόμηση. Στο παρακάτω σχήμα 2.3 φαίνεται η ροή θερμότητας για θερμοκρασία εξωτερικού περιβάλλοντος μεγαλύτερη από αυτή στο εσωτερικό. Με βάση τις εξισώσεις 2.1 και 2.2 είναι:

$$q = h_{out}(T_{out} - T_1) = \kappa_1 \frac{T_1 - T_2}{l_1} = \kappa_2 \frac{T_2 - T_3}{l_2} = \kappa_3 \frac{T_3 - T_4}{l_3}$$
$$= h_{in}(T_4 - T_{in}) \qquad (2.4)$$

Tα $U_1 = \frac{\kappa_1}{l_1} = \frac{1}{R_1}$, $U_2 = \frac{\kappa_2}{l_2} = \frac{1}{R_2}$, $U_3 = \frac{\kappa_3}{l_3} = \frac{1}{R_3}$ ονομάζονται θερμοπερατότητες, ενώ τα $R_i \ \mu \varepsilon \ i = 1,2,3$ ονομάζονται θερμικές αντιστάσεις των δομικών στοιχείων. Προσθέτοντας κατά μέλη, προκύπτει η θερμοροή από το περιβάλλον στο εσωτερικό του τοίχου:

$$q = \frac{T_{out} - T_{in}}{\frac{1}{h_{out}} + \frac{1}{\kappa_1/l_1} + \frac{1}{\kappa_2/l_2} + \frac{1}{\kappa_3/l_3} + \frac{1}{h_{in}}} \quad \acute{o}\pi ov \ U_{tot} = \frac{1}{\frac{1}{h_{out}} + \frac{1}{\kappa_1/l_1} + \frac{1}{\kappa_2/l_2} + \frac{1}{\kappa_3/l_3} + \frac{1}{h_{in}}} \quad (2.5)$$

Η ροή θερμότητας μεταξύ κτηρίου και περιβάλλοντος οφείλεται στη διαφορά θερμοκρασίας μεταξύ του περιβάλλοντος και του εσωτερικού του κτηρίου. Το χειμερινούς μήνες υπάρχει ροή θερμότητας από το κτήριο πρός το περιβάλλον (θερμικές απώλειες), ενώ του καλοκαιρινούς μήνες η αντίθετη ροή (θερμικά κέρδη).

Η ροή αυτή θερμότητας διαμέσου του τοίχου (ομοίως της οροφής και του δαπέδου) γίνεται με αγωγή. Ο συντελεστής θερμοπερατότητας του τοίχου $U(W/m^2K)$ επηρεάζει το ποσό θερμότητας

που θα εισέλθει ή θα διαφύγει από το κτήριο και εξαρτάται από το υλικό καθώς και το πάχος του τοίχου, ή της στρώσης του υλικού για περισσότερα από ένα υλικά. Πιο συγκεκριμένα όσο μικρότερη τιμή έχει η θερμική αγωγιμότητα κ (W/mK) τόσο μικρότερη τιμή έχει η θερμοπερατότητα και άρα η εσωτερική θερμοκρασία του κτηρίου θα επηρεάζεται λιγότερο από τις θερμοκρασιακές μεταβολές του περιβάλλοντος.

Θερμομόνωση

Ο όρος θερμομόνωση εκφράζει την ικανότητα ενός υλικού (ή συνδυασμό υλικών) να περιορίζει τη ροή θερμότητας εκατέρωθεν αυτού. Η θερμομονωτική ικανότητα ενός υλικού εξαρτάται από την θερμική αγωγιμότητα αυτού. Γενικά τα αέρια είναι καλύτεροι μονωτές από τα υγρά και τα στερεά. Ο αέρας αποτελεί τον πιο καλό μονωτή όταν ευρίσκεται ακίνητος, συνήθως σε μικρές κοιλότητες (θερμική αγωγιμότητα στους 20°C $\kappa = 0.025 W/m K$). Αυτό συμβαίνει εξαιτίας της αέριας του κατάστασης, αφού η μικρή του πυκνότητα σημαίνει μεγάλη απόσταση μεταξύ των μορίων του, που συμβάλλουν στην μικρή μετάδοση θερμότητας. Η παγίδευση αέρα σε θύλακες και στο πορώδες υλικών αποτελεί την πιο κοινή πρακτική δημιουργίας θερμομονωτικών υλικών, όπως είναι το άχυρο, ο υαλοβάμβακας, η πολυστερίνη, η πολυουρεθάνη, κ.α. Στον παρακάτω πίνακα φαίνονται οι τιμές της θερμοικής αγωγιμότητας ορισμένων δομικών και θερμομονωτικών υλικών.

Δομικά Υλικά	к (W/т К)
οπτοπλινθοδομή (τούβλα)	0.490-0.780
οπτοπλινθοδομή με τρύπες	0.450-0.640
τσιμεντόλιθοι	0.560-0.1.300
Οπλισμένο σκυρόδεμα	1.510-2.300
ξύλο	0.120-0.210
Θερμομονωτικά υλικά	
υαλοβάμβακας	0.033-0.041
διογκωμένη πολυστερίνη	0.032-0.041
πολυουρεθάνη	0.023-0.030
πλάκες πεπιεσμένου αχύρου	0.040-0.070

Π_{1}^{\prime}	Τυπικός πικός	Acouvra on			
πνακάς Ζ. Ι.	τυπικές τιμές	υερμικής αγ	νωγιμοτητάς	ορισμενων	υλικων [9].

Θερμική μάζα

Κάθε στρώση του υλικού έχει μία μάζα και αποτελεί μέρος της συνολικής μάζας του τοίχου. Κάθε υλικό έχει και μία διαφορετική θερμοχωριτικότητα, δηλαδή κάθε υλικό αποθηκεύει ή αποδίδει την αποθηκευμένη του ενέργεια έαν έχει φορτιστεί θερμικά, σύμφωνα με την εξίσωση:

$$Q = m C_p \Delta T \quad (2.6)$$

Όπου $m \sigma \varepsilon (kg)$ η (θερμική) μάζα, $C_p \sigma \varepsilon (KJ/kg K)$ η θερμοχωρητικότα της στρώσης και $\Delta T (K)$ η διαφορά θερμοκρασίας μεταξύ μιας επιφάνειας της μάζας και του συνορεύοντος υλικού ή ρεύματος αέρα (ή θερμοκρασιακή διαφορά μεταξύ κόμβων, εάν γίνει ανάλυση σε κόμβους για την ίδια την μάζα). Η θερμική μάζα είναι μια σημαντική παράμετρος της θερμικής συμπεριφοράς των

κτηρίων. Για παράδειγμα σε έναν θερμασμένο χώρο, τον χειμώνα, ο τοίχος αποθηκεύει θερμότητα κατά την διάρκεια της θέρμανσης, και όταν παύει να θερμαίνεται ο χώρος (πχ. την νύκτα), την αποδίδει θερμαίνοντας το εσωτερικό. Όπως διαπιστώνεται, η θερμική μάζα επιβραδύνει την εισροή θερμότητας στο εσωτερικό (όταν φορτίζεται από το περιβάλλον), ενώ εξαλείφει και τις διακυμάνσεις της εξωτερικής θερμοκρασίας. Έτσι τους καλοκαιρινούς μήνες η θερμότητα που αποθηκεύεται στους εξωτερικούς τοίχους, όταν έλθει η νύκτα και πέσει η θερμοκρασία, τότε αποδίδεται και πάλι στο περιβάλλον [8].

Θερμογέφυρες

Θερμογέφυρες ονομάζονται οι θέσεις εκείνες του κτηριακού κελύφους στις οποίες παρουσιάζεται διαφοροποίηση της θερμικής αντίστασης (ισοδύναμα της θερμικής διαπερατότητας), σε σχέση με τις γειτονικές τους, εξαιτίας ασυνέχειας της στρώσης της θερμομόνωσης, είτε λόγω της αλλαγής του δομικού υλικού κατά μήκος του δομικού στοιχείου, είτε λόγω αλλαγής της γεωμετρίας της διατομής. Σε αυτές της θέσεις παρατηρείται μεταβολή στη ροή θερμότητας και την εσωτερική επιφανειακή θερμοκρασία σε σχέση με τις γειτονικές.

Οι θερμογέφυρες αποτελούν ασθενή σημεία του κτηριακού περιβλήματος, καθώς δρούν επιβαρυντικά στη θερμική προστασία του κτηρίου. Επιδεινώνουν την ενεργειακή συμπεριφορά του κτηρίου καθώς και την αίσθηση της άνεσης στο εσωτερικό του, ενώ είναι αιτίες φθορών λόγω της επιφανειακής συμπύκνωσης των υδρατμών, η οποία προκαλείται από την πτώση της επιφανειακής θερμοκρασίας των δομικών στοιχείων σε τιμή χαμηλότερη της θερμοκρασίας δρόσου [10].

Υπάρχουν δύο τύποι θερμογεφυρών:

Οι **γραμμικές θερμογέφυρες**, οι οποίες έχουν ομοιόμορφη διατομή κατά μία διάσταση και οφείλονται στη δημιουργία θέσεων, στις οποίες η ροή θερμότητας παρουσιάζει έντονα δισδιάστατη φύση και η παραδοχή της μονοδιάστατης ροής θερμότητας παύει να ισχύει.

Οι **σημειακές θερμογέφυρες**, οι οποίες εμφανίζονται στις ενώσεις των γραμμικών θερμογεφυρών, στις οποίες η ροή θερμότητας έχει τρισδιάστατη φύση, ενώ οι ίδιες δεν έχουν καμία διάσταση και η επίδρασή τους στις θερμικές ανταλλαγές θεωρείται πρακτικά αμελητέα.

Ως προς την αιτία προέλευσής τους διακρίνονται στις:

Γεωμετρικές θερμογέφυρες, οι οποίες δημιουργούνται σε θέσεις όπου η βασική γεωμετρία του δομικού στοιχείου παύει να είναι γραμμική, για παράδειγμα στη θέση κάθετης τομής δύο εξωτερικών δομικών στοιχείων με τη συνέχεια της θερμομόνωσης να μην διακόπτεται (γωνία). Σε αυτή την περίπτωση, επειδή η συνολική εξωτερική επιφάνεια των δομικών στοιχείων διαφέρει από την εσωτερική, αναπτύσσονται έντονα φαινόμενα δισδιάστατης ροής θερμότητας (σχήμα 2.4.α).

Κατασκευαστικές θερμογέφυρες, οι οποίες παρουσιάζονται στις θέσεις εκείνες όπου υπάρχει ασυνέχεια της στρώσης του θερμομονωτικού υλικού (σχήμα 2.4.β). Σημειώνεται ότι είναι δυνατόν να υπάρξει και συνδυασμός των δύο αιτιών.

Σχήμα 2. 4: (α) Γεωμετρική θερμογέφυρα, (β) Κατασκευαστική θερμογέφυρα [10].

Οι θερμογέφυρες μπορεί να προκαλούν από 5 έως 30% αύξηση στη θερμική κατανάλωση ενός κτηρίου. Το ποσοστό αυτό εξαρτάται από το μέγεθος του κτηρίου, τα γεωμετρικά του χαρακτηριστικά και τα αρχιτεκτονικά του στοιχεία, καθώς και το πλήθος των εμφανιζόμενων θερμογεφυρών.

Οι τοίχοι του κτηριακού κελύφους, καθώς και η οροφή (ή ταράτσα) βρίσκονται σε επαφή με τον εξωτερικό αέρα του περιβάλλοντος καθώς επίσης είναι εκτεθειμένοι και στην ηλιακή ακτινοβολία. Η προσπίπτουσα ηλιακή ακτινοβολία φορτίζει τον τοίχο ανάλογα με την απορροφητικότητα (*α* = 0 ÷ 1) της εξωτερικής στρώσης του τοίχου, δηλαδή του επιχρίσματος (σοβάς). Λαμβάνοντας υπόψη όσα έχουν αναφερθεί στην παρούσα ενότητα παρακάτω αναφέρονται οι συνήθεις θέσεις της θερμομόνωσης ενός κτηριακού κελύφους.

Εσωτερική μόνωση

Η εσωτερική θερμομόνωση (βλ. σχήμα 2.5) συνήθως συναντάται σε κτίρια που στεγάζουν γραφεία και διάφορες επιχειρήσεις, οι οποίες λειτουργούν για συγκεκριμένες ώρες μέσα στη μέρα και όχι καθ' όλη τη διάρκεια της [8]. Με έναν τέτοιου τύπο τοίχο ο οποίος έχει εσωτερική θερμομόνωση, κατά τη διάρκεια θέρμανσης του κτηρίου, επειδή η οπτοπλινθοδομή (ή άλλου είδους δομικά υλικά) βρίσκεται μετά την θερμομόνωση δεν θα φορτιστεί που σημαίνει ότι θα χρειαστεί

Σχήμα 2. 5: Εσωτερική μόνωση [11].

λιγότερος χρόνος, σε σχέση με το αν η οπτοπλινθοδομή βρισκόταν πριν την θερμομόνωση, για να θερμανθεί το κτίριο. Αυτό συμβαίνει επειδή η οπτοπλινθοδομή δεν θα προλάβει να αποθηκεύσει θερμότητα στη μάζα της. Αυτού του είδους τα κτίρια λειτουργούν μόνο για ορισμένες ώρες μέσα στη μέρα και στόχος είναι γρήγορη θέρμανση του κτηρίου, ενώ με αυτόν τον τρόπο εξοικονομείται και ενέργεια, αφού δεν δαπανείται για την θέρμανση των υπόλοιπων δομικών στοιχείων.

Εξωτερική μόνωση

Σε αντίθεση με την εσωτερική, η εξωτερική θερμομόνωση (σχήμα 2.6) χρησιμοποιείται συνήθως σε ανακαινιζόμενα κτήρια τα οποία πρόκειται να χρησιμοποιηθούν ως κατοικίες ή γενικότερα σε κτίρια που λειτουργούν όλες της ώρες της μέρας [8]. Σε τέτοιου είδους τοίχους σημαίνει ότι η οπτοπλινθοδομή έπεται της μόνωσης, και άρα θα φορτίζεται κανονικά, και θα αποδίδει (ή θα απορροφά) ποσά θερμότητας κατά την

Σχήμα 2. 6: Εξωτερική μόνωση [11].

διάρκεια της ημέρας όπου η θέρμανση (ή ψύξη) του κτηρίου έχει σταματήσει. Με αυτόν τον τρόπο εξασφαλίζεται σημαντική εξοικονόμηση ενέργειας σε αυτού του είδους κτήρια.

Ενδιάμεση μόνωση

Η ενδιάμεση μόνωση ή θερμομόνωση πυρήνα, συνήθως υιοθετείται στα καινούρια υπο κατασκευή κτίρια [11]. Συνοπτικά η θερμική μάζα της οπτοπλινθοδομής στο εσωτερικό του κτηρίου συνεισφέρει με τον τρόπο που περιγράφηκε στην προηγούμενη παράγραφο (της εξωτερικής θερμομόνωσης), ενώ η εξωτερική οπτοπλινθοδομή αποθηκεύει ποσά ενέργειας από την προσπίπτουσα ηλιακή ακτινοβολία και λόγω συναγωγής με τον αέρα θερμοκρασίας περιβάλλοντος στη μάζα της, καθυστερώντας την έτσι να 'εισέλθει' προς το

Σχήμα 2. 7: Θερμομόνωση πυρήνα [11].

εσωτερικό, την οποία αποδίδει και πάλι στο περιβάλλον κατά την διάρκεια της νύκτας (τους καλοκαιρινούς μήνες). Η θερμομόνωση πυρήνα έιναι αυτή η οποία υιοθετείται κυρίως στις κατοικίες καθώς εξασφαλίζει της αποδοτικότερη θέρμανση ή ψύξη του κτηρίου [8].

Η επιλογή και ο τρόπος τοποθέτησης της θερμομόνωσης είναι μείζονος σημασίας. Κάθε ένας από τους τρείς τρόπους τοποθέτησης της θερμομονωτικής προστασίας εξαρτάται από την λειτουργία του κτηρίου, όπως κατέστη σαφές παραπάνω. Πρέπει να λαμβάνονται όμως υπόψη και η σωστή κατασκευή και τοποθέτηση της μόνωσης έτσι ώστε να αξιοποιείται στο μέγιστο η θερμική μάζα του κτηρίου καθώς και να δίνεται προσοχή για τυχόν δημιουργία θερμογεφυρών. Για παράδειγμα στην περίπτωση της θερμομόνωσης πυρήνα δεν αξιοποιείται η μάζα του εξωτερικού τοίχου (ωστόσο αξιοποιείται αυτή του εσωτερικού) ενώ, στην περίπτωση της εσωτερικής θερμομόνωσης πρέπει να μην δημιουργούνται θερμογέφυρες, λόγω ασυνέχειας της μόνωσης.

2.4 Επιλογή και θέση υαλοπινάκων

Οι υαλοπίνακες ενός κτηρίου εξυπηρετούν τον φυσικό φωτισμό αλλά και την παθητική θέρμανση του κτηρίου και η συμβολή τους στο ενεργειακό ισοζύγιο του κτηρίου είναι σημαντική. Τους χειμερινούς μήνες όπου ο ήλιος είναι χαμηλότερα το κτίριο θερμαίνεται σε σημαντικό ποσοστό από αυτόν, και γι αυτό επιδιώκεται να μην εμποδίζεται η ηλιακή ακτινοβολία (π.χ. από δέντρα, τέντες κλπ.), όπως αναφέρθηκε στην παράγραφο 2.2. Αντίθετα τους καλοκαιρινούς φυσική σκίαση (δέντρα) ή τεχνητή (κουρτίνες, τέντες μπαλκόνια) εμποδίζει την ηλιακή ακτινοβολία ώστε το κτήριο να μένει δροσερό.

Παράμετροι υαλοπίνακα

Ο αριθμός και η επιφάνεια των υαλοπινάκων ποικίλλει ανάλογα με το μέγεθος (όγκο) του κτηρίου. Συνήθως τοποθετείται μεγάλη επιφάνεια υαλοπινάκων στη νότια διεύθυνση για μεγιστοποίηση της εισερχόμενης ηλιακής ακτινοβολίας, ενώ τοποθετούνται και σε ανατολή και δύση, κυρίως για λόγους φωτισμού. Αποφεύγεται η τοποθέτηση τους στο βορρά προς αποφυγή εισόδου της ηλιακής ακτινοβολίας το καλοκαίρι και για να μην συμβάλλουν αρνητικά στο ενεργειακό ισοζύγιο του κτηρίου τον χειμώνα (αποφυγή θερμικών κερδών το καλοκαίρι, και απωλειών το χειμώνα).

Η εισερχόμενη ηλιακή ακτινοβολία μέσω του υαλοπίνακα είναι SHG = Σχήμα 2.8: Παράμετροι υαλοπίνακα $G_T A_a \tau_a SC$ (w) (2.7), όπου G_T η στιγμιάια ολική ακτινοβολία σε

 W/m^2 στο επίπεδο του υαλοπίνακα, τ_a η διαπερατότητα του υαλοπίνακα, A_a (m^2) η επιφάνεια του υαλοπίνακα και SC ένας συντελεστής που εκφράζει τους παραάγοντες σκίασης του υαλοπίνακα. Ωστόσο λόγω διαφοράς θερμοκρασίας μεταξύ εξωτερικού και εσωτερικού χώρου του κτηρίου έχουμε αγωγή μέσω του υαλοπίνακα: $Q_{rad} = U_q A_q (T_{out} - T_{in})$ (W) (2.8), όπου $U_q (W/m^2 K)$ ο συντελεστής θερμοπερατότητας του υαλοπίνακα. Η ηλιακή ακτινοβολία μέσω του υαλοπίνακα είναι επιθυμητή τον χειμώνα ενώ το καλοκαίρι εύκολα μπορεί να περιοριστεί (π.χ. με χρήση τέντας, κουρτίνας κ.α.). Η δια αγωγής όμως εισερχόμενη θερμότητα πρέπει να περιορίζεται καθώς συμβάλλει αρνητικά στο ενεργειακό ισοζύγιο. Έτσι επιδιώκεται ο συντελεστής θερμοπερατότητας του υαλοπίνακα να είναι χαμηλός [12].

Παλαιότερα γινόταν χρήση μονών υαλοπινάκων, ο οποίος έχει τυπικές τιμές $U_a = 5 - 5.7 W/m^2 K$, ενώ σταδιακά έγινε αντικατάστασή τους από διπλούς υαλοπίνακες ($U_g = 2.9 - 3.4 W/m^2 K \gamma i \alpha \alpha \epsilon \rho \alpha$). Ο διπλός υαλοπίνακας περιέχει συνήθως αέρα μεταξύ δύο τζαμιών, ενώ μπορεί να περιέχει άλλα αέρια όπως αργό, κρύπτο με καλύτερα θερμομονωτικά αποτελέσματα. Σημειώνεται ότι σε ορισμένες κατασκευές μπορεί να χρησιμοποιούνται και τριπλοί υαλοπίνακες.

Τα κουφώματα (το υλικό από τον τοίχο μέχρι το πλαίσιο του παραθύρου) καθώς και το πλαίσιο του υαλοπίνακα μπορεί να είναι αιτία δημιουργίας θερμογεφυρών, και είναι συνήθως κατασκευασμένο από υλικά όπως ξύλο, αλουμίνιο ενώ τελευταία χρησιμοποιείται και PVC (πλαστικό πολυβινυλοχλωρίδιο) ή συνδυασμός των δύο τελευταίων. Τέτοιου είδους κουφώματα και πλαίσια έχουν σημαντική θερμομονωτική προστασία, ενώ μπορεί να περιέχουν και κάποιο θερμομονωτικό υλικό.

Στο παρακάτω σχήμα 2.9 απεικονίζεται ένας τριπλός υαλοπίνακας. Μεταξύ των τζαμιών υπάρχει αργό (5), ενώ διαχωρίζονται με μία θερμομονωτική επίστρωση (4). Επιπλέον η δομή αυτού του πλαισίου έχει θαλάμους (1,2,3) οι οποίοι συμβάλλον τόσο στη μηχανική αντοχή του αλλά και στην θερμομόνωσή του, αφού υπάρχει εγκλωβισμένος αέρας. Σε αυτούς τους θαλάμους ορισμένοι κατασκευαστές τοποθετούν και μονωτικό (πολυστερίνη) για καλύτερη θερμομονωτική προστασία. Ο εικονιζόμενος υαλοπίνακας μπορεί να έχει τιμές συντελεστή θερμοπερατότητας U_g από 1.2 έως 0.8 $W/m^2 K$.

Σχήμα 2. 9: Τριπλός υαλοπίνακας από PVC.

2.5 Θερμική άνεση

Η θερμική άνεση ενός εσωτερικού χώρου είναι η νοητική εκείνη κατάσταση που νιώθει ένα άτομο κατά την οποία δεν επιθυμεί αλλαγή των συνθηκών του χώρου αυτού. Σύμφωνα με τεχνική οδηγία του ΤΕΕ (ΤΟΤΕΕ 2425/86) οι δύο βασικότερες παράμετροι της θερμικής άνεσης είναι η σχετική

υγρασία και η θερμοκρασία του εσωτερικού χώρου, ενώ η ταχύτητα του αέρα στον χώρο, η θερμική ακτινοβολία (απώλειες προς μεγάλα παράθυρα ή τοίχους), η κατακόρυφη ψυχρούς διαφορά θερμοκρασίας (σε έναν κλειστό χώρο όσο αυξάνει η απόσταση από το έδαφος τόσο αυξάνει και η θερμοκρασία του αέρα, και τοπικά υπάρχουν διακυμάνσεις) καθώς και η ενδυμασία του ατόμου είναι παράγοντες της θερμικής άνεσης [13]. Στο σχήμα 2.10 φαίνεται η περιοχή της θερμικής άνεσης ως προς την θερμοκρασία και την σχετική υγρασία. Γενικά οι συνήθεις τιμές που ικανοποιούν την θερμική άνεση είναι θερμοκρασία 20 με 25°C και σχετική υγρασία 30 με 50%, ενώ οι περιοχές αυτές διαφέρουν αν είναι χειμώνας ή καλοκαίρι.

Σχήμα 2. 10: Συνθήκες θερμικής άνεσης [13].

2.6 Φορτία κλιματισμού.

Ο εσωτερικός χώρος ενός κτηρίου δέχεται θερμικά κέρδη, τα οποία ονομάζονται φορτία, και προέρχονται από την ανανέωση του εσωτερικού αέρα του, τους ανθρώπους που βρίσκονται μέσα στο κτίριο, τις χρησιμοποιούμενες συσκευές, τον φωτισμό. Τα φορτία αυτά μπορεί να έχουν υπολογίσιμη τιμή και λαμβάνονται υπόψη στον ισολογισμό του κτηρίου.

Ανανέωση και διείσδυση αέρα

Τα διάκενα των παραθύρων και τον εξωτερικών θυρών ενός κτηρίου επιτρέπουν τη διείσδυση εξωτερικού αέρα στο εσωτερικό του. Εάν η πίεση στο εσωτερικό του κτηρίου είναι μεγαλύτερη από αυτή του εξωτερικού περιβάλλοντος τότε θεωρούμε ότι δεν υπάρχει διείσδυση αέρα.

Ο αέρας ενός κλιματιζόμενου χώρου θα πρέπει να ανανεώνεται με φρέσκο, έτσι ώστε να υπάρχει ένα υγιές και ικανοποιητικό περιβάλλον για τους ανθρώπους στο εσωτερικό του κτηρίου. Τυπικές τιμές παροχής παροχής φρέσκου αέρα για κάλυψη ενός κλιματιζόμενου χώρου είναι 2.5 – 3.5 *L/s* /άτομο για χώρο χωρίς κάπνισμα και 12 – 20 *L/s* / άτομο για χώρο με κάπνισμα [12].

Η ανανέωση και η δυείσδυση αέρα, λόγω της θερμοκρασιακής διαφοράς μεταξύ αέρα του εσωτερικού και του εξωτερικού περιβάλλοντος, αποτελούν φορτία. Το φόρτίο σε αυτές τις περιπτώσεις υπολογίζεται ως:

$$Q = \dot{m}(h_{out} - h_{in}) = \rho_{air} \dot{V}(h_{out} - h_{in}) (W)$$
(2.9)

Όπου \dot{m} η παροχή μάζας του εισαγόμενου στο χώρο αέρα σε kg/s, $\rho_{air} = 1.2kg/m^3$ η πυκνότητα του αέρα, \dot{V} η παροχή όγκου του αέρα σε m^3/s , και h_{out} , h_{in} οι ενθαλπία του εξωτερικού και εσωτερικού αέρα αντίστοιχα σε kJ/kg.

2.7 Θέρμανση και ψύξη κτηρίου

<u>Θέρμανση</u>

Η θέρμανση είναι μια βασική απαίτηση ενός εσωτερικού χώρου, ώστε στους χειμερινούς μήνες να ικανοποιούνται οι συνθήκες θερμικής άνεσης του χώρου. Παραδοσιακά κύρια συσκευή θέρμανσης ήταν και είναι έως σήμερα η χρήση διάταξης η οποία μετατρέπει την αποθηκευμένη χημική ενέργεια ενός καυσίμου σε θερμότητα. Τέτοιες διατάξεις μπορεί να είναι το τζάκι, σόμπες ξύλου, ενώ πλέον είναι διαδεδομένη η χρήση καυστήρων συνήθως πετρελαίου, φυσικού και άλλων καυσίμων. Μια τυπική τιμή του ονομαστικού βαθμού απόδοσης ενός καλά σχεδιασμένου και συντηρημένου καυστήρα είναι 75-80%. Ωστόσο, οι καυστήρες ορυκτών καυσίμων είναι αρκετά ενεργοβόροι, ενώ απελευθερώνουν και σημαντικές ποσότητες*CO*₂.

Μια εναλλακτική επιλογή θέρμανσης ενός κτηρίου είναι η αντλία θερμότητας. Οι αντλίες θερμότητας διαφέρουν ως προς την βασική τους αρχή σε σχέση με τους καυστήρες, καθώς δεν καίνε κάποιο καύσιμο μετρέποντάς το σε θερμότητα, αλλά μεταφέρουν θερμότητα από το περιβάλλον στον εσωτερικό χώρο. Η λειτουργία της αντλίας θερμότητας βασίζεται στον κύκλο μηχανικής συμπίεσης ατμών. Ψυκτικός κύκλος μηχανικής συμπίεσης ατμών.

Με βάση τον δεύτερο θερμοδυναμικό νόμο, θερμότητα μεταφέρεται από ένα μέσο χαμηλής θερμοκρασίας σε ένα μέσο υψηλότερης με την πρόσδοση ενέργειας. Ο κλασικός ψυκτικός κύκλος βασίζεται στον αντίστροφο κύκλο Carnot (σχήμα 2.11) ο οποίος αποτελείται από δύο ισοθερμοκαρασιακές μεταβολές (απορρόφηση και απόδοση θερμότητας), και από δύο ισεντροπικές μεταβολές (αδιαβατική συμπίεση και εκτόνωση). Ο κύκλος της μηχανικής συμπίεσης ατμών αξιοποιεί το φαινόμενο

Στον ατμοποιητή το ψυκτικό μέσο ατμοποιείται απορροφώντας θερμότητα από τον χώρο τον οποίο ψύχεται. Η διεργασία 41 γίνεται υπό σταθερή θερμοκρασία ατμοποιήσεως T_{ψ} και χαμηλή πίεση P_L . Στη θέση 1 το μέσο είναι σε μορφή κορεσμένου ή υπέρθερμου ατμού εάν

Σχήμα 2. 11: Αντίστροφος κύκλος Carnot [14].

αλλαγής φάσης ενός σώματος και των θερμικών συναλλαγών που τη συνοδεύουν για παραγωγή

Σχήμα 2. 12: Ψυκτική διάταξη μηχανικής συμπίεσης ατμών [14].

υπάρχει υπερθεμαντής μετά τον ατμοποιητή, έτσι ώστε να αυξάνεται η ψυκτική ισχύς. Ακολουθεί η είσοδος στον συμπιεστή (ισεντροπική μεταβολή) όπου το μέσο αποκτά υψηλή πίεση (πίεση συμπυκνώσεως) και θερμοκρασία αρκετά μεγαλύτερη από αυτή του περιβάλλοντος. Στο συμπυκνωτή αποβάλλεται η προσδιδόμενη, μέσω του ατμοποιητή, θερμότητα στο περιβάλλον έως ότου το μέσο να είναι υπό μορφή κορεσμένου υγρού 3 (ή υπόψυκτου αν υπάρχει υπόψυξη). Τέλος ακολουθεί η στραγγαλιστική βαλβίδα (ισενθαλπική μεταβολή) όπου το ψυκτικό μέσο επιστρέφει στην αρχική κατάσταση 4.

Κάθε ψυκτική εγκατάσταση συνοδεύεται από τον συντελεστή συμπεριφοράς COP (Coefficient of performance) ο οποίος δείχνει πόσο αποδοτική είναι η εγκατάσταση και για την συγκεκριμένη ορίζεται ως:

$$COP = \frac{Q_{\psi}}{W_{th}} = \frac{\dot{m_r}(h_1 - h_4)}{\dot{m_r}(h_2 - h_1)} = \frac{h_1 - h_4}{h_2 - h_1} \quad (2.10)$$

Όπου Q_{ψ} η ψυκτική ισχύς σε W, W_{th} η ισχύς του συμπιεστή σε W, \dot{m}_r η παροχή μάζας του ψυκτικού υγρού (kg/s) και $h_i \ \mu \varepsilon \ i = 1 \div 4$ η ενθαλπία του ψυκτικού μέσου στις αντίστοιχες θέσεις σε kJ/kg.

<u>Ψύξη/ Θέρμανση</u>

Ο ψυκτικός κύκλος δεν χρησιμοποιείται μόνο για παραγωγή ψύξης, αλλά μπορεί να χρησιμοποιηθεί

και για θέρμανση. Συσκευές όπως τα κλιματιστικά και οι αντλίες θερμότητας αξιοποιούν αυτή την δυνατότητα. Εφόσον κατά την παραγωγή ψύξης μεταφέρεται θερμότητα από το 'θερμό' εσωτερικό χώρο στο περιβάλλον, αυτή η διαδικασία μπορεί να αντιστραφεί, δηλαδή να μεταφέρεται θερμότητα από το περιβάλλον στο εσωτερικό χώρο για κάλυψη των αναγκών θέρμανσης. Αυτό στην πράξη γίνεται αντιστρέφοντας των ρόλο των δύο εναλλακτών θερμότητας, του ατμοποιητή και του συμπυκνωτή, με την βοήθεια της τετράοδης βαλβίδας [15].

Σχήμα 2. 13: Ψύξη σε αντλία θερμότητας [15].

<u>Ψύξη</u>

Στο σχεδιάγραμμα του σχήματος 2.13 διακρίνονται τα στοιχεία μιας αντλίας θερμότητας για λειτουργία ψύξης. Το ψυκτικό μέσο διέρχεται από τον εσωτερικό εναλλάκτη ο οποίος έχει τον ρόλο του ατμοποιητή, έπειτα διέρχεται από την τετράοδη βαλβίδα και στη συνέχεια τον συμπιεστή, εν συνεχεία διέρχεται από τον εξωτερικό εναλλάκτη ο οποίος λειτουργεί ως συμπυκνωτής. Τέλος το ψυκτικό διέρχεται από την στραγγαλιστική βαλβίδα και εισέρχεται ξανά στον εσωτερικό εναλλάκτη. Η θερμότητα που δύναται να απορροφήσει ο ατμοποιητής είναι ψυκτική ισχύς Q_{ψ} , και ο COP για

την λειτουργία ψύξης της αντλίας θερμότητας είναι $COP = \frac{Q_{\psi}}{P_c}$ (2.11), όπου P_c η ισχύς που καταναλώνει ο συμπιεστής σε W.

<u>Θέρμανση</u>

Όπως προαναφέρθηκε, κατά την λειτουργία θέρμανσης πραγματοποιείται ο ψυκτικός κύκλος, μόνο που σε αυτή την περίπτωση ο εξωτερικός εναλλάκτης έχει τον ρόλο του ατμοποιητή, ο οποίος απορροφά θερμότητα από το περιβάλλον. Συνεχίζοντας τον ίδιο κύκλο το ψυκτικό μέσο διέρχεται από τον συμπιεστή (η τετράοδη βαλβίδα βρίσκεται σε διαφορετική θέση) και εν συνεχεία από τον συμπυκνωτή (εσωτερικός εναλλάκτης), όπου και απορρίπτει την θερμότητα (που έχει απορροφήσει) στον εσωτερικό χώρο. Με ισολογισμό ενέργειας (ο οποίος είναι ο ίδιος και στις δύο περιπτώσεις) προκύπτει ότι

είναι ο ίδιος και ότις δύο περιπτωσεις) προκυπτεί ότι AW (2.12), και ο αντίστοιχος COP στην περίπτωση θέρμανσης είναι $COP = \frac{Q_{\theta}}{P_c}$ (2.13).

<u>Τύποι αντλιών θερμότητας</u>

Οι αντλίες θερμότητας ανάλογα με την πηγή από την οποία αντλούν θερμότητα κατατάσσονται σε αντλίες πηγής αέρα (Air Source Heat Pump), αντλίες πηγής νερού (Water Source Heat Pump) και γεωθερμικές αντλίες θερμότητας (Ground Source Heat Pump).

1. Αντλίες θερμότητας πηγής αέρα (ASHP)

Οι αντλίες αυτές αντλούν (ή απορρίπτουν) θερμότητα από τον αέρα του εξωτερικού περιβάλλοντος, ενώ το μέσο απόδοσης της θερμότητας στο εσωτερικό του κτηρίου μπορεί να είναι και πάλι αέρας

(Air to Air HP) ή νερό (Air to Water). Το COP τέτοιου είδους αντλιών κυμαίνεται από 3.2 - 6 [16]. Όμως λόγω της σημαντικής διακύμανσης της θερμοκρασίας του εξωτερικού αέρα και του απαιτούμενου φορτίου (θέρμανσης ή ψύξης) η αντλία θερμότητας με πηγή αέρα δεν λειτουργεί πάντα με το ονομαστικό COP. Έτσι υπάρχει το SCOP (Seasonal Coefficient Of Performance) το οποίο είναι ο λόγος της συνολικής παραγόμενης θερμότητας προς την συνολικά καταναλισκόμενη ενέργεια για την

Σχήμα 2. 15: Αντλία θερμότητας αέρα-νερού [16].

χειμερινή περίοδο. Το SCOP τέτοιων αντλιών θερμότητας έχει τυπική τιμή 3.5. Έτσι υπάρχει σημαντική εξοικονόμηση ενέργειας από 30 – 70% σε σχέση με τους καυστήρες πετρελαίου, όμως το κόστος κτήσης είναι τουλάχιστον πενταπλάσιο σε σύγκριση με έναν καυστήρα πετρελαίου ή φυσικού αερίου [6]. Στο σχήμα 2.15 απεικονίζεται μια αντλία θερμότητας αέρα- νερού. Στο σχήμα 2.14 μια αντλία θερμότητας αέρα-αέρα όπου η απορροφούμενη θερμότητα αποδίδεται από το ψυκτικό μέσω σε νερό (συμπυκνωτής), το οποίο θερμαίνει τον εσωτερικό χώρο.

2. Αντλίες θερμότητας πηγής νερού (WSHP)

Αυτού του τύπου οι αντλίες αντλούν θερμότητα από πηγές νερού, και μπορεί να είναι νερού-νερού (Water to Water) ή νερού-αέρα (Water to Air). Όπως ποτάμια ή υπόγειες δεξαμενές που κατακρατούν νερό, ή ακόμα και από δοχεία νερού σε κλειστό κύκλωμα (σε συνδυασμό συνήθως με ηλιακά). Προσφέρουν τα ίδια πλεονεκτήματα με τις ASHP και ενδείκνυται για περιοχές κοντά σε όχθη ποταμών, ή σε περίπτωση υβριδικών συστημάτων ηλιακών συλλεκτών τα οποία διοχετεύουν θερμότητα μέσω νερού σε κλειστό κύκλωμα, όπως θα αναφερθεί παρακάτω. Το κόστος κτήσης και εγκατάστασης είναι αρκετά υψηλότερο από τους καυστήρες [17].

3.Γεωθερμικές αντλίες θερμότητας (GSHP)

Οι γεωθερμικές αντλίες αντλόυν θερμότητα από το έδαφος, το οποίο έχει σταθερότερη θερμοκρασία σε σχέση με τον αέρα του εξωτερικού περιβάλλοντος, μέσω σωληνώσεων νερού στο έδαφος το οποίο μέσω εναλλάκτη διοχετεύει την θερμότητα στο ψυκτικό μέσο, το οποίο εν συνεχεία ζεσταίνει νερό και αποδίδει θερμότητα στο εσωτερικό κτηρίου (μέσω fan coils). Στην πράξη η εγκατάσταση είναι η ίδια με αυτή της αντλίας νερού-νερού. Το COP των γεωθερμικών αντλιών είναι κοντά στο 4 και δεν αλλάζει σημαντικά, σε αντίθεση με αυτό τον αντλιών θερμότητας πηγής αέρα. Έτσι εξοικονομούν σημαντική ενέργεια, αλλά το κόστος αγοράς και εγκατάστασης είναι αρκετά υψηλό [18].

Συνοπτικά οι αντλίες θερμότητας εξοικονομούν έως και 70% ενέργεια σε σχέση με τους καυστήρες ορυκτών καυσίμων, ενώ έχουν πολύ μικρότερο αποτύπωμα διοξειδίου του άνθρακα, καθώς και αθόρυβη λειτουργία, ενώ οι διατάξεις καταλαμβάνουν λιγότερο χώρο εντός της οικίας. Η διάρκεια ζωή τους είναι υψηλή (τουλάχιστον 25 χρόνια) και είναι εύκολο να συντηρηθούν. Το μοναδικό μειονέκτημα είναι το υψηλό συνήθως αρχικό κόστος κτήσης και εγκατάστασης, το οποίο αντισταθμίζεται από τα περιβαλλοντικά και οικονομικά οφέλη και από την εξοικονόμηση ενέργειας.

Σχήμα 2. 16: Γεωθερμική αντλία θερμότητας (νερού-νερού) [18].

Στο σχήμα 2.16 παρουσιάζεται μια γεωθερμική αντλία θερμότητας, η οποία είναι μια αντλία νερούνερού, αφού η θερμότητα από το έδαφος αποδίδεται σε νερό το οποίο εν συνεχεία την αποδίδει στο ψυκτικό μέσο μέσω ενός εναλλάκτη ψυκτικού-νερού (ατμοποιητής). Τέλος στο συμπυκνωτή η θερμότητα αποδίδεται σε νερό το οποίο μέσω εναλλακτών νερού αέρα διοχετεύεται στο περιβάλλον, ή χρησιμοποιείται ως ζεστό νερό χρήσης.

<u>Ψυκτικά-ODP-GWP.</u>

Η επιλογή ενός ψυκτικού μέσου είναι πολύ σημαντική, και εξαρτάται από την εφαρμογή στην οποία θα χρησιμοποιηθεί. Η επιλογή ενός ψυκτικού μέσου του επηρεάζεται από την ψυκτική του ικανότητα (Cooling capacity) Q_{ψ} , ασφάλεια κατά την χρήση του, ευκολία χρήσης, κόστος και διαθεσιμότητα των εξαρτημάτων καθώς και κόστος σχεδιασμού της ψυκτικής διάταξης, αλλά και την περιβαλλοντική του επίδραση. Στην πλειονότητα των περιπτώσεων κατά την επιλογή ενός ψυκτικού επιλέγεται οι θερμοκρασίες ατμοποίησης και συμπύκνωσης να είναι πάνω από το τριπλό σημείο και κάτω από το κρίσιμο σημείο.

Τα πρώτα ψυκτικά που χρησιμοποιήθηκαν ήταν η αμμωνία (NH_3) και το διοξείδιο του άνθρακα (CO_2) . Όμως η τοξικότητα της αμμωνίας και οι υψηλές πιέσεις λειτουργίας των κύκλων με διοξείδιο του άνθρακα οδήγησαν σε αντικατάστασή τους από τους χλωροφθοράνθρακες, όπως τα R11 (CCl_3F)) και R12 (CCl_2F_2) . Όμως οι ουσίες αυτές ανακαλύφθηκε ότι έχουν σημαντικές περιβαλλοντικές επιπτώσεις, καθώς είναι υπαίτιες για την καταστροφή της στοιβάδας του όζοντος. Οι ρίζες χλωρίου που προκύπτουν από διάσπαση των χλωροφθορανθράκων από την ηλιακή ακτινοβολία αντιδρούν με το όζον, ενώ μια ρίζα χλωρίου μπορεί να αντιδράσει από 100 έως 10000 φορές. Επιπλέον οι χλωροφθοράνθρακες έχουν μεγάλη διάρκεια ζωής, συνεπώς είναι ιδιαίτερα καταστροφικοί για το περιβάλλον. Ο δείκτης δυναμικό καταστροφής της στοιβάδας του όζοντος ODP (Ozone Depletion Potential) χρησιμοποιείται για την εκτίμηση της καταστροφικής επίδρασης μιας ουσίας στη στοιβάδα του όζοντος και έχει ως αναφορά το R11 [19].

Η απαγόρευση των χλωροφθορανθράκων οδήγησε στη χρήση των υδροφθορανθράκων, (όπως R134a, R32) και μιγμάτων αυτών (π.χ. R404A, R410A) οι οποίοι δεν καταστρέφουν την στοιβάδα του όζοντος όμως συμβάλλουν στην υπερθέρμανση του πλανήτη και εκφράζεται από το GWP (Global Warming Potential) το οποίο υπολογίζεται σε kg ή τόνους ισοδύναμου CO_2 . Οι τιμές του GWP αφορούν μια χρονική περίοδο, συνήθως 100 έτη. Για παράδειγμα το R134a ($C_2H_2F_4$) έχει GWP 1430, το R12 10900, το R32 (CH_2F_2) 675 [20].

Υπερκρίσιμος κύκλος CO2

Τις τελευταίες δύο δεκαετίες, η προστασίας σημασία της του περιβάλλοντος οδήγησε στη χρήση ψυκτικών με χαμηλό GWP. Έτσι το διοξείδιο άνθρακα του χρησιμοποιείται πλέον σε μεγαλύτερη κλίμακα, καθώς έχει πολύ μικρές περιβαλλοντικές επιπτώσεις, σε σύγκριση με άλλα ψυκτικά, ενώ δεν είναι τοξικό και έχει πολύ μικρότερο κόστος. Έτσι το CO₂ θεωρείται μια καλύτερη μακροχρόνια επιλογή σε σχέση με τα συνήθη

Σχήμα 2. 17:Υπερκρίσιμος κύκλος σε δίαγραμμα T-h. 1-2 συμπίεση, 2-3 αποβολή θερμότητας στον ψύκτη αερίου, 3-4 ισενθαλπικός στραγγαλισμός, 4-1 ατμοποίηση [21].

ψυκτικά που χρησιμοποιούνται στις αντλίες θερμότητας, όπως R410A, R404A, R407C, R134a.

Το CO_2 έχει χαμηλή κρίσιμη θερμοκρασία (31 °C) και υψηλή κρίσιμη πίεση (73.8 bar). Έτσι ως ψυκτικό μέσο στις αντλίες θερμότητας λειτουργεί σε πιέσεις 5 έως 10 φορές υψηλότερες από ότι σε αντλίες με συνήθη ψυκτικά μέσα, όπως R134a. Πιο συγκεκριμένα η πίεση στον ατμοποιητή μπορεί να είναι 20 με 40 bar ενώ η πίεση κατά την απόρριψη θερμότητας 80 με 130 bar. Σε αντίθεση με τους υποκρίσιμους κύκλους, στον υπερκρίσιμο κύκλο η αποβολή θερμότητας του ψυκτικού CO_2 δεν γίνεται με συμπύκνωση αλλά με με ψύξη του υπερκρίσιμου αερίου σε έναν εναλλάκτη που αποκαλείται ψύκτης αερίου (gas cooler). Η θερμοκρασιακή αυτή πτώση στον ψύκτη αερίου είναι γνωστή και ως θερμοκρασιακή ολίσθηση (temperature glide) [21].

Στο παρακάτω σχήμα 2.18 παρουσιάζεται το διάγραμμα πίεσης-ενθαλπίας (P-h) του διοξειδίου του άνθρακα, καθώς και η μεταβολές που συμβαίνουν στον ψυκτικό κύκλο.

Σχήμα 2. 18: Διάγραμμα P-h του ψυκτικού CO2 [21].

Η αποδιδόμενη θερμότητα (heat capacity) σε αυτόν τον κύκλο είναι $Q_{\theta} = \dot{m}_{CO2}(h_2 - h_3)$ (2.14) και ο αντίστοιχος συντελεστής συμπεριφοράς της αντλίας θερμότητας:

$$COP_{HP} = \frac{Q_{\theta}}{P_{C}} = \frac{h_2 - h_3}{h_2 - h_1}$$
 (2.15)

Όπου \dot{m}_{CO2} η παροχή μάζας του CO_2 σε kg/s, $h_i \gamma_i \alpha i = 1 \div 4$ η ενθαλπία του ψυκτικού στις αντίστοιχες θέσεις, Q_{θ} και P_c η αποδιδόμενη θερμότητα και η καταναλισκόμενη ισχύς στον συμπιεστή σε W.

Παρατηρείται ότι για μικρότερη θερμοκρασία εξόδου του CO_2 από τον ψύκτη αερίου επιτυγχάνεται μεγαλύτερη απόδοση θερμότητας και άρα μεγαλύτερος συντελεστής συμπεριφοράς, για την ίδια υψηλή πίεση. Μεγαλύτερη απόρριψη θερμότητας στον ψύκτη αερίου όμως προυποθέτει μικρότερη

θερμοκρασία εισόδου του νερού στον εναλλάκτη ψυκτικού – νερού (gas cooler) ή/και μεγαλύτερη παροχή μάζας νερού.

<u>Αντλία θερμότητας με CO₂</u>

Η θέρμανση με αντλίες θερμότητας είναι μια καλή επιλογή για κτήρια με χαμηλή ενεργειακή κατανάλωση και παθητικά κτήρια (low energy and passive buildings), δηλαδή σε σπίτια που είναι πολύ καλά θερμομονωμένα [21].

Στις περισσότερες περιπτώσεις, επειδή στον ψύκτη αερίου μιας αντλίας θερμότητας με CO_2 η θερμοκρασία εισόδου στον ψύκτη είναι αρκετά υψηλή (μεγαλύτερη από 80°C), προτιμάται η χρήση διάταξης (Integrated Heat Pump Systems) για κάλυψη αναγκών τόσο θέρμανσης (Space Heating) του κτηρίου οσο και παροχής ζεστού νερού χρήσης(Domestic Hot Water). Στο παρακάτω σχήμα 2.19 φαίνεται μια διάταξη αυτού του τύπου.

Σχήμα 2. 19: Σύστημα θέρμανσης και παροχής ζεστού νερού με αντλία θερμότητας CO2 [21].

Η θερμοκρασία εξόδου του ψυκτικού CO_2 από τον ψύκτη αερίου παίζει σημαντικό ρόλο καθώς όσο μικρότερη τιμή έχει τόσο πιο ενεργειακά αποδοτικό είναι το σύστημα, όπως φάνηκε σε προηγούμενη παράγραφο, και σε τέτοιες διατάξεις εξαρτάται από το δοχείου αποθήκευσης νερού και το σύστημα διανομής θερμότητας, τον σχεδιασμό του ψύκτη αερίου, την θερμοκρασία εξόδου από τον συμπιεστή και τις παροχές μάζας στον ψύκτη αερίου [21].

Η χρήση αντλιών θερμότητας με ψυκτικό μέσο CO_2 παρουσιάζει πλεονεκτήματα όπως:

- μεγαλύτερη θερμική ικανότητα, μικρότερο λόγο συμπίεσής συμπιεστή και συνεπώς καλύτερο ισεντροπικό βαθμό απόδοσης, μικρότερες διαστάσεις σωλήνων και εναλλακτών εξαιτίας του μικρότερου ειδικού όγκου του CO₂ στις πιέσεις λειτουργίας, σε σχέση με τους υδροφθοράνθρακες.
- Μη διαβρωτικό με τα περισσότερα υλικά που χρησιμοποιούνται τα οποία είναι σχεδόν τα ίδια με αυτά στους κύκλους με υδροφθοράνθρακες.
- Μη τοξικό, μη εύφλεκτο και με πολύ μικρό δυναμικό θέρμανσης του πλανήτη (GWP), χαμηλό κόστος.
- Μη υπάρχουσα νομοθεσία, οπότε κατάλληλο για μακροχρόνια χρήση.

Όμως υπάρχουν και ορισμένα μειονεκτήματα που αφορούν την χρήση του ως ψυκτικού, όπως:

- Οι υψηλές πιέσεις λειτουργίας (πάνω από 20 bar) μπορεί να οδηγήσουν σε αστοχία των υλικών και διαρροές ψυκτικού.
- Περίπλοκος σχεδιασμός και χρήση σωλήνων με μεγαλύτερο πάχος, για αποφυγή αστοχίας, οδηγεί σε μεγαλύτερο κόστος.
- Τέτοια συστήματα δεν ενδείκνυται σε περιοχές με υψηλές θερμοκρασίες περιβάλλοντος [22].

Η χρήση αντλιών θερμότητας με ψυκτικό *CO*₂ γίνεται πιο αποδοτική σε υβριδικά συστήματα, π.χ σε συνδυασμό με ηλιακούς συλλέκτες, ενώ για ψύξη συνήθως χρησιμοποιούνται σε συνδυασμό με άλλα ψυκτικά (cascade systems).

2.8 Ηλιακά υποβοηθούμενη αντλία θερμότητας

Όπως δηλώνει το όνομά τους, οι ηλιακά υποβοηθούμενες αντλίες θερμότητας αξιοποιούν την ηλιακή ενέργεια ώστε να γίνουν περισσότερο αποδοτικές. Αυτό επιτυγχάνεται είτε με την χρήση φωτοβολταϊκών, οπότε η παραγόμενη ηλεκτρική ενέργεια αντικαθιστά μέρος της ηλεκτρικής ενέργειας του δικτύου που καταναλώνει ο συμπιεστής, είτε με την χρήση θερμικών ηλιακών.

Η ηλιακά υποβοηθούμενες αντλίες θερμότητας (Solar Assisted Heat Pump) αξιοποιούν την ηλιακή ενέργεια μέσω θερμικών ηλιακών συλλεκτών, και διακρίνονται σε συστήματα άμεσης εκτόνωσης (Direct expansion SAHP) και έμμεσης εκτόνωσης (Indirect expansion SAHP) [23].

Σε ένα σύστημα άμεσης εκτόνωσης (βλ. Σχήμα 2.20) ο ηλιακός συλλέκτης έχει τον ρόλο του ατμοποιητή, όπου το ψυκτικό μέσο κυκλοφορεί μέσα στους σωλήνες του συλλέκτη, το οποίο απορροφά θερμότητα και η οποία αποδίδεται μέσω του συμπυκνωτή σε δοχείο νερού από το οποίο τροφοδοτούνται εναλλάκτες νερού αέρα οι οποίοι θερμαίνουν το κτήριο. Αυτού του είδους διατάξεις έχουν υψηλό κόστος εγκατάστασης, καθώς απαιτείται η εγκατάσταση σωλήνων από την στέγη στο δοχείο θερμικής αποθήκευσης, το οποίο βρίσκεται στο εσωτερικό των κτηρίων, ενώ οι σωλήνες αυτοί θα πρέπει να πληρωθούν και με το ψυκτικό μέσο [23].

Σχήμα 2. 20: Ηλιακά υποβοηθούμενη αντλία θερμότητας άμεσης εκτόνωσης [23].

Τα συστήμα ηλιακά υποβοηθούμενης αντλίας θερμότητας έμμεσης εκτόνωσης διακρίνονται σε δύο κύριες κατηγορίες: σε σειρά και παράλληλη σύνδεση.

Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε σειρά

Σε ένα σύστημα έμμεσης εκτόνωσης σε σειρά (βλ. Σχήμα 2.21) η διάταξη που χρησιμοποιείται είναι η ίδια με αυτή της άμεσης εκτόνωσης, όμως σε αυτή το ψυκτικό μέσο δεν διέρχεται από τον συλλέκτη αλλά από έναν εναλλάκτη νερού- ψυκτικού, στον οποίο το νερό το οποίο θερμαίνεται από τον συλλέκτη ατμοποιεί το ψυκτικό. Η απορροφούμενη θερμότητα αποβάλλεται στον συμπυκνωτή, ο οποίος τη διοχετεύει σε δοχείο νερού το οποίο είτε χρησιμοποιείται ως νερό χρήσης, είτε μέσω εναλλακτών νερού αέρα θερμαίνει το κτήριο [23].

Σχήμα 2. 21: Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε σειρά [23].

Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε παράλληλη σύνδεση

Σε τέτοιες διατάξεις (σχήμα 2.22) ο ηλιακός συλλέκτης χρησιμοποιείται για να αυξήσει τη θερμοκρασία του νερού, το οποίο μέσω εναλλακτών θερμότητας νερού αέρα θερμαίνει το σπίτι, ή χρησιμοποιείται ως ζεστό νερό χρήσης. Σε περιόδους όπου η ηλιακή ακτινοβολία είναι περιορισμένη, εξαιτίας σύννεφων ή την νύχτα, η αντλία θερμότητας αέρα νερού μπαίνει σε λειτουργία και μεταφέρει θερμότητα από τον αέρα του εξωτερικού περιβάλλοντος σε δοχείο νερού το οποίο χρησιμοποιείται όπως περιγράφηκε προηγουμένως [24].

Σχήμα 2. 22: Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε παράλληλη σύνδεση [24].

3 Ηλιακή ενέργεια

3.1 Βασικές έννοιες

<u>Ηλιακή σταθερά</u> G_{sc} . Η γη κινείται γύρω από τον ήλιο με τροχιά τέτοια ώστε η απόσταση μεταξύ των δύο σωμάτων να μεταβάλλεται κατά ± 1.7% της μέσης απόστασης γης ηλίου, η οποία είναι 1.495 × $10^{11}m$. Η ηλιακή σταθερά, G_{sc} , είναι η ενέργεια ανά μονάδα χρόνου που δέχεται εκτός ατμοσφαίρας επιφάνεια κάθετη στη διεύθυνση διάδοσης της ακτινοβολίας, όταν η απόσταση γής ηλίου λαμβάνει τη μέση τιμή της. Η ηλιακή σταθερά έχει τιμή $G_{sc} = 1353 W/m^2$. Η μεταβολή της απόστασης γής-ηλίου προκαλεί μεταβολή στην ακτινοβολία εκτός ατμοσφάιρας που δέχεται επίπεδου κάθετο στην διεύθυνση των ακτίνων, και είναι $G_{on} = G_{sc}(1 + 0.033) \cos \frac{360n}{365} \left[\frac{W}{m^2}\right]$ (3.1), όπου $n = 1 \div 365$ η μέρα του έτους [25].

<u>Γωνία ζενίθ, θ_z </u> είναι η γωνία που σχηματίζεται από την κατακόρυφο και την ευθεία όρασης του ηλίου.

<u>Αζιμούθιο ηλίου, $\gamma_{s.}$ </u> είναι η γωνία που σχηματίζεται μεταξύ της προβολής της ευθείας όρασης του ηλίου στο οριζόντιο επίπεδο, και της νότιας κατεύθυνσης.

<u>Αζιμούθιο επιφανείας, γ</u>, είναι η γωνία που σχηματίζεται από την την προβολή της καθέτου στην επιφάνεια πάνω στο οριζόντιο επίπεδο και την νότια κατεύθυνση. Είναι $-180^\circ \le \gamma \le 180^\circ$, με $\gamma = 0^\circ$ στο νότο, $\gamma = 90^\circ$ στη δύση, $\gamma = 180^\circ$ στο βορρά και $\gamma = -90^\circ$ στην ανατολή.

<u>Κλίση επιπέδου, β</u>, είναι η γωνία που σχηματίζει μια επίπεδος επιφάνεια με το οριζόντιο επίπεδο. Είναι $0^{\circ} \leq \beta \leq 180^{\circ}$, όπου το οριζόντιο επίπεδο έχει $\beta = 0^{\circ}$, το κατακόρφο $\beta = 90^{\circ}$ και για $\beta > 90^{\circ}$ το επίπεδο βλέπει προς τα κάτω.

<u>Ωριαία γωνία, ω</u>, είναι η γωνιακή μετατόπιση του ηλίου ανατολικά ή δυτικά του τοπικού μεσημβρινού λόγω περιστροφής της γης περί τον άξονά της με ρυθμό $15^{\circ}/h = 0.25^{\circ}/min$. Ισχύει $\omega = 0.25^{\circ} \times (\min \alpha \pi \delta \eta \lambda \iota \alpha \kappa \delta \mu \epsilon \sigma \eta \mu \epsilon \rho \iota)$, [°] (3.2). Λαμβάνεται $\omega > 0$ για μ.μ. και $\omega < 0$ για π.μ.

<u>Ηλιακή απόκλιση, δ</u>, είναι η γωνιακή θέση του ηλίου κατά το ηλιακό μεσημέρι ως προς το επίπεδο του ισημερινού. Είναι $-23.45 \le \delta \le 23.45$, με θετικές τιμές προς τον βορρά. Η ηλιακή απόκλιση υπολογίζεται από τη σχέση:

$$\delta = 23.45 \sin \frac{360(284+n)}{365} \quad \mu \varepsilon \, n = 1 \div 365 \quad (3.3)$$

Στο παρακάτω σχήμα 3.1 φαίνονται η γωνία ζενίθ, το αζιμούθιο επιφανείας , το αζιμούθιο ηλίου και η κλίση συλλέκτη.

Σχήμα 3. 1: Γωνία ζενίθ θ_z , αζιμούθιο επιφανείας γ, αζιμούθιο ηλίου γ_s , κλίση συλλέκτη β [25].

<u>Άμεση ακτινοβολία</u> είναι το μέρος της ηλιακής ακτινοβολίας που φθάνει κατ' ευθείαν στη γη, χωρίς να διασκορπιστεί στην ατμόσφαιρα. Η στιγμιαία τιμή (σε W/m^2) της άμεσης ακτινοβολίας που δέχεται το οριζόντιο επίπεδο συμβολίζεται με G_b ενώ για κεκλιμένο επίπεδο με G_{bT} .

Διάχυτη ακτινοβολία είναι το μέρος της ηλιακής ακτινοβολίας που φθάνει στη γη ύστερα από διασκορπισμό και αλλαγή κατεύθυνσης κατά τη διαδρομή μέσα στην ατμόσφαιρα. Η στιγμιαία τιμή της διάχυτης ακτινοβολίας συμβολίζεται με G_d .

<u>Ολική ακτινοβολία</u> είναι το άθροισμα της άμεσης και της διάχυτης ηλιακής ακτινοβολίας, συμπεριλαμβανομένου και της ανακλώμενης ακτινοβολίας από παρακείμενες επιφάνειες. Η ολική ακτινοβολία οριζοντίου επιπέδου συμβολίζεται με *G*, ενώ του κεκλιμένου επιπέδου με *G*_T.

<u>Ακτινοβολία καθέτου επιπέδου</u>, ή κάθετος ακτινοβολία είναι η ακτινοβολία που δέχεται επίπεδο κάθετο στις ηλιακές ακτίνες, και δηλώνεται με τον δείκτη *n*, π.χ. *G*_{bn} είναι άμεση ακτινοβολία καθέτου επιπέδου.

<u>Γωνία πρόσπτωσης, θ</u>, της άμεσης ακτινοβολίας πάνω σε μια επιφάνεια είναι η γωνία που σχηματίζεται μεταξύ των προσπτιπτουσών ηλιακών ακτίνων και τις καθέτου στην επιφάνεια. Η γωνία πρόσπτωσης υπολογίζεται από την ακόλουθη σχέση:

$$\cos \theta = \sin \delta \sin \varphi \cos \beta - \sin \delta \cos \varphi \sin \beta \cos \gamma + \cos \delta \cos \varphi \cos \beta \cos \omega + \cos \delta \sin \varphi \sin \beta \cos \gamma \cos \omega + \cos \delta \sin \varphi \sin \beta \sin \omega$$
(3.4)

Όπου δ η ηλιακή απόκλιση, φ το γεωγραφικό πλάτος του τόπου ($-90^\circ \le \varphi \le 90^\circ$ και για την Αθήνα $\varphi = 37.97^\circ$), ω η ωριαία γωνία, β η κλίση και γ το αζιμούθιο της επιφάνειας.

Για τις οριζόντιες επιφάνειες ($\beta = 0^{\circ}$) η γωνία πρόσπτωσης ταυτίζεταμε την γωνία ζενίθ: cos $\theta_z = \sin \delta \sin \varphi + \cos \delta \cos \varphi \cos \omega$ (3.5).

Για κεκλιμένες επιφάνειες που βρίσκονται στο βόρειο ημισφαίριο και έχουν νότια κατεύθυνση ($\gamma = 0^{\circ}$) ισχύει: $\cos \theta = \sin \delta \sin(\varphi - \beta) + \cos \delta \cos(\varphi - \beta) \cos \omega$ (3.6).

Άμεση ακτινοβολία οριζοντίου και κεκλιμένου επιπέδου.

Σχήμα 3. 2: Άμεση ακτινοβολία οριζοντίου και κεκλιμένου επιπέδου [25].

Σύμφωνα με το σχήμα 3.2 ισχύουν τα ακόλουθα: $G_b = G_{bn} \cos \theta_z \, \kappa \alpha \iota \, G_{bT} = G_{bn} \cos \theta$, όπου G_b , G_{bT} και G_{bn} είναι η άμεση ακτινοβολία που δέχεται το οριζόντιο, το κεκλιμένο και το κάθετο στις ηλιακές ακτίνες επίπεδο, αντιστοίχως. Έτσι προκύπτει ο λόγος R_b της άμεσης ακτινοβολίας κεκλιμένου επιπέδου προς την άμεση οριζοντίου επιπέδου:

$$R_b = \frac{G_{bT}}{G_b} = \frac{\cos\theta}{\cos\theta_z} \quad (3.7)$$

Για επιφάνειες στο βόρειο ημισφαίριο, στραμμένες προς το νότο ($\gamma = 0^\circ$) η εξίσωση 3.7 γίνεται:

$$R_{b} = \frac{\cos\theta = \sin\delta\sin(\varphi - \beta) + \cos\delta\cos(\varphi - \beta)\cos\omega}{\cos\theta_{z} = \sin\delta\sin\varphi + \cos\delta\cos\varphi\cos\omega} \quad (3.8)$$

Ο λόγος R_b χρησιμοποιείται για τον υπολογισμό της άμεσης ακτινοβολίας κεκλιμένου επιπέδου, G_{bT} , όταν είναι γνωστή η τιμή της άμεσης ακτινοβολίας οριζοντίου επιπέδου, G_b [25].

3.2 Επίπεδος ηλιακός συλλέκτης

Ο ηλιακός συλλέκτης αποτελεί μια ειδική μορφή ενός εναλλάκτη θερμότητας, καθώς σε αντίθεση με τους κοινούς εναλλάκτες όπου θερμότητα μεταφέρεται από ένα ρευστό σε ένα άλλο, μετατρέπουν την ηλιακή ακτινοβολία σε θερμότητα, προσδίδοντας την σε ένα ρευστό. Δυσκολίες στην ανάλυση των ηλιακών συλλεκτών έγκειται στις χαμηλές και συνεχώς μεταβαλλόμενες τιμές στις ηλιακής ακτινοβολίας.

Ο ηλιακός συλλέκτης (σχήμα 3.3) αποτελείται από:

α) μια πλάκα απορρόφησης (απορροφητήρας) μαύρου χρώματος, η οποία απορροφά την ηλιακή ακτινοβολία.

β) Σωλήνες ή αεραγωγούς για μεταφόρα της απορροφούμενης ενέργειας (για θέρμανση υγρού ή αέρα αντίστοχια) που βρίσκονται πάνω από τον απορροφητήρα. Η ροή του υγρού μπορεί να είναι φυσική, ή να υποβοηθείται από αντλία.

γ) Ένα ή περισσότερα καλύμματα για περιορισμό των θερμικών απωλειών λόγω συναγωγής και ακτινοβολίας προς το περιβάλλον.

δ) Μόνωση της πίσω και των παραπλεύρων επιφανειών για μείωση των θερμικών απωλειών.

ε) πλαίσιο που περιβάλλει τον συλλέκτη.

Σχήμα 3.3: Επίπεδος ηλιακός συλλέκτης, με τα επιμέρους στοιχεία του.

Στη μόνιμη κατάσταση λειτουργίας του, η συμπεριφορά του συλλέκτη δίνεται από τον ακόλουθη σχέση, που προκύπτει ισολογισμό ενέργειας και εκφράζει τον καταμερισμό της προσπίπτουσας ηλιακής ενέργειας [25]:

$$Q_u = A_c \left[S - U_L \left(T_{p,m} - T_\alpha \right) \right] \quad (3.9)$$

όπου:

 Q_u η ωφέλιμη αποδιδόμενη ισχύς [W]

 A_c η επιφάνεια του συλλέκτη (επιφάνεια καλύμματος) $[m^2]$

S η απορροφούμενη ηλιακή ακτινοβολία, δηλαδή η διαφορά μεταξύ της προσπίπτουσας ακτινοβολίας και των οπτικών απωλειών $[W/m^2]$

 U_L ο συντελεστής μεταφοράς θερμότητας, που εκφράζει τις θερμικές απώλειες από το συλλέκτη στο περιβάλλον δια αγωγής, συναγωγής και ακτινοβολίας $[W/m^2K]$

 $T_{p,m}$ η μέσης θερμοκρασία απορροφητήρα [°C]

 T_{α} η θερμοκρασία περιβάλλοντος [°C].

Ο συντελεστής συνολικών θερμικών απωλειών U_L είναι άθροισμα των συντελεστών $U_L = U_t + U_b + U_e$ (3.10), όπου U_t , U_b , U_e ο συντελεστής θερμικών απωλειών κορυφής, πυθμένα και πλευρικών θερμικών απωλειών αντίστοιχα.
Παράγων θερμικής απολαβής F_R ονομάζεται ο λόγος της πραγματικά αποδιδόμενης ισχύς, Q_u , προς τη θερμική ισχύ που θα αποδιδόταν αν όλοκληρος ο απορροφητήρας είχε την θερμοκρασία εισόδου του ρευστού, είναι δηλαδή:

$$F_{R} = \frac{Q_{u}}{A_{c} \left[S - U_{L} \left(T_{f,i} - T_{\alpha} \right) \right]} = \frac{\dot{m} C_{p} \left(T_{f,o} - T_{f,i} \right)}{A_{c} \left[S - U_{L} \left(T_{f,i} - T_{\alpha} \right) \right]} \quad (3.10)$$

όπου $T_{f,i}$, $T_{f,o}$ οι θερμοκρασίες εισόδου και εξόδου του ρευστού σε °C, και C_p η θερμοχωρητικότητα του ρευστού σε J/kg K. Ο λόγος F_R είναι μέγεθος ισοδύναμο με τον βαθμό απόδοσης εναλλάκτη θερμότητας, ο οποίος είναι ο λόγος της πραγματικής προς τη μέγιστη δυνατή μεταφερόμενη θερμότητας. Στον συλλέκτη η μέγιστη θερμότητας αποδίδεται για θερμοκρασία απορροφητήρα ίση με τη θερμοκρασία εισόδου του ρευστού [25].

Χρησιμοποιώντας τις εξισώσεις 3.9 και 3.10 προκύπτει η εξίσωση του επίπεδου συλλέκτη:

$$Q_{u} = A_{c}F_{R}[S - U_{L}(T_{f,i} - T_{\alpha})] \quad (3.11)$$

Η απορροφούμενη ηλιακή ακτινοβολία γράφεται και ως $S = (\tau \alpha)G_T$ (3.12), όπου G_T η στιγμιαία προσπίπτουσα ηλιακή ακτινοβολία στο επίπεδο του συλλέκτη και ($\tau \alpha$) το μέσο και προσαυξημένο γινόμενο διαπερατότητας (τ) του καλύμματος επί την απορροφητικότητα (α) του απορροφητήρα. Έτσι η εξίσωση 3.11 γίνεται $Q_u = A_c F_R [(\tau \alpha)G_T - U_L (T_{f,i} - T_\alpha)]$ (3.13).

Ο στιγμιαίος βαθμός απόδοσης του συλλέκτη, η_i , ορίζεται ως ο λόγος της ωφέλιμης αποδιδόμενης ισχύος, Q_u , προς την αντίσοτιχη προσπίπτουσα ακτινοβολία στον συλλέκτη $A_c G_T$. Με βάση την εξίσωση 3.13 είναι:

$$\eta_i = \frac{Q_u}{A_c G_T} = F_R(\tau \alpha) - F_R U_L \frac{T_{f,i} - T_\alpha}{G_T} \quad (3.14)$$

Ο στιγμιαίος βαθμός απόδοσης εκφράζεται και με τις θερμοκρασίες εισόδου κι εξόδου του υγρού:

$$\eta_{i} = \frac{\dot{m}C_{p}(T_{f,o} - T_{f,i})}{A_{c}G_{T}} \quad (3.15)$$

Η προσπίπτουσα ηλιακή ακτινοβολία εξαρτάται σε μεγάλο βαθμό από την γωνία κλίσης του ηλιακού συλλέκτη (β). Τυπικές τιμές της κλίσης του συλλέκτη είναι $\beta = 30^{\circ} \kappa \alpha i \, 45^{\circ}$, ενώ βέλτιστη τιμή για μέγιστη ενέργεια το χειμώνα είναι $\beta = \varphi + 15^{\circ}$ όπου φ το γεωγραφικό πλάτος της περιοχής στην οποία βρίσκεται ο συλλέκτης [25].

Οι ηλιακοί συλλέκτες που περιγράφηκαν παραπάνω είναι οι πιο συχνά απαντώμενοι ηλιακοί συλλέκτες καθώς έχουν ορισμένα πλεονεκτήματα, όπως χαμηλό κόστος κτήσης και συντήρησης, συλλέγουν και την άμεση και την διάχυτη ακτινοβολία, δεν απαιτούν μηχανισμό παρακολούθησης του ηλίου, δηλαδή είναι μηχανικά απλούστεροι και αποδίδουν νερό με θερμοκρασία έως και 100° πάνω από την θερμοκρασία περιβάλλοντος, ικανοποιητική για οικιακές εφαρμογές παροχής ζεστού νερού χρήσης και θέρμανσης.

3.3 Συλλέκτες σωλήνων κενού

Οι συλλέκτες σωλήνων κενού (Evacuated tube collectors) έχουν σημαντικές διαφορές σε σχέση με τους επίπεδους ηλιακούς συλλέκτες. Μια διάταξη τέτοιου τύπου(σχήμα 3.4) αποτελείται από έναν αριθμό γυάλινων σωλήνων από τους οποίους έχει αφαιρεθεί ο αέρας, δηλαδή υπάρχει κενό, οι οποίοι είναι συνδεδεμένοι με έναν εναλλάκτη (manifold), στο επάνω μέρος της κατασκευής. Κάθε ένας από τους γυάλινους σωλήνες αποτελείται από ένα πτερύγιο (μια επιλεκτική απορροφητική επιφάνεια) η οποία μεταφέρει την απορροφούμενη θερμότητα σε έναν σωλήνα, κατασκευασμένο από αλουμίνιο ή χαλκό, μέσα από τον οποίο ρέει υγρό. Οι σωλήνες αυτοί αποδίδουν την θερμότητα στο επάνω μέρος του συλλέκτη [26].

Το κενό που υπάρχει μεταξύ του μεταλλικού σωλήνα και του γυαλιού εξασφαλίζει σημαντική μείωση των θερμικών απωλειών, ενώ λόγω της κυλινδρικής μορφής των στοιχείων του συλλέκτη αυτού, οι ακτίνες του ηλίου είναι σχεδόν καθ' όλη τη διάρκεια της ημέρας κάθετες σε αυτά. Έτσι είναι δυνατή η συλλογή της ηλιακής ακτινοβολίας της πρωινές καθώς και τις απογευματινές ώρες, αλλά και σε περίπτωση συννεφιάς. Επιπλέον η θερμοκρασία που αναπτύσσεται είναι σημαντικά υψηλότερη (έως 150°C) από αυτή των επίπεδων συλλέκτες, όμως έχουν πολύ υψηλότερο κόστος κτήσης (τουλάχιστον διπλάσιο) από τους επίπεδους συλλέκτες. [26] [27]

Σχήμα 3. 4: Σχηματική αναπαράσταση ηλιακού συλλέκτη σωλήνων κενού [27].

Οι συλλέκτες σωλήνων κενού διακρίνονται σε δύο τύπους: θερμικού σωλήνα (Heat pipe) και άμεσης ροής (direct flow).

Συλλέκτης κενού θερμικού σωλήνα (Heat Pipe Evacuated Tube Collector)

Οι συλλέκτες κενού θερμικού σωλήνα (βλ. Σχήμα 3.5) αποτελούνται από τις μονάδες που περιγράφηκαν στην προηγούμενη παράγραφο. Εντός του εσωτερικού σωλήνα, που είναι συνήθως κατασκευασμένος από χαλκό, υπάρχει μικρή ποσότητα μίγματος νερού-αλκοόλης με ορισμένα

πρόσθετα ώστε να εμποδίσουν τυχόν διάβρωση και οξείδωση του σωλήνα. Το μίγμα αυτό απορροφά θερμότητα (υπό μορφή προσπίπτουσας ακτινοβολίας), και ατμοποιείται σε χαμηλότερες θερμοκρασίες από ότι αν υπήρχε ατμοσφαιρική πίεση αντί κενού μεταξύ των δύο σωλήνων. Ο ατμός συλλέγει θερμότητα και όταν φτάσει στο επάνω μέρος του σωλήνα (που έχει μορφή βολβού) αποδίδει την θερμότητα σε νερό που περνά από το επάνω μέρος του συλλέκτη. Στη συνέχεια ο ατμός ψύχεται, όπου συμπυκνώνεται, και επαναλαμβάνεται η ίδια διαδικασία. Αυτός ο τύπος έχει το πλεονέκτημα της 'στεγνής' σύνδεσης των επιμέρους μονάδων και του εναλλάκτη, καθώς και την εύκολη αντικατάσταση των επιμέρους σωλήνων κενού σε περίπτωση αστοχίας, χωρίς να επηρεάζεται κανένα από τα υπόλοιπα στοιχεία του συλλέκτη.

Σχήμα 3. 5: Συλλέκτης σωλήνων κενού θερμικού σωλήνα [27].

Συλλέκτης σωλήνων κενού άμεσης ροής (Direct Flow Evacuated Tube Collector)

Αυτοί οι συλλέκτες διαφέρουν από τους συλλέκτες θερμικού σωλήνα, καθώς εντός του κάθε γυάλινου εξωτερικού σωλήνα υπάρχει κενό, πλάκα απορρόφησης (επίπεδη ή καμπύλη) αλλά δύο μεταλλικοί σωλήνες, οι οποίοι συνδέονται στο κάτω μέρος μεταξύ τους. Σε αυτόν τον τύπο συλλέκτη το υγρό που κυκλοφορεί στους επιμέρους σωλήνες δεν αποδίδεται σε κάποιο άλλο υγρό, όπως στην προηγούμενη περίπτωση, αλλά εισέρχεται στον επόμενο σωλήνα κενού (βλ. σχήμα 3.6), δηλαδή λειτουργεί σαν τον επίπεδο συλλέκτη, με μόνη διαφορά την ύπαρξη κενού.

Σχήμα 3. 6: Συλλέκτης σωλήνων κενού άμεσης εκτόνωσης [26].

Οι συλλέκτες σωλήνων κενού παράγουν υψηλές θερμοκρασίες εξαιτίας του κενού, και για αυτό για να μην δημιουργηθούν ρωγμές στους σωλήνες, λόγω υπερθέρμανσης, το πλεονάζον πολύ ζεστό νερό αναμιγνύεται με κρύο και απορρίπτεται, σε περίπτωση πολύ υψηλών θερμοκρασιών.

Συνοπτικά οι συλλέκτες σωλήνων κενού είναι αποδοτικότεροι από τους επίπεδους ηλιακούς συλλέκτες σε περιπτώσεις περιορισμένης ηλιακής ακτινοβολίας, αλλά έχουν πολύ υψηλότερο κόστος, ενώ πρέπει να δίνεται προσοχή ώστε να μην δημιουργούνται ρωγμές στους σωλήνες κενού λόγω υπερθέρμανσης, καθώς έτσι δεν θα υπάρχει κενό και θα μειωθεί η αποδοτικότητά τους.

3.4 Συγκεντρωτικοί συλλέκτες

Οι συγκεντρωτικοί συλλέκτες χρησιμοποιούν ανακλαστικές επιφάνειες (ή διαθλαστικές συσκευές), οι οποίες παρεμβάλλονται μεταξύ της πηγής (ήλιος) και μιας μικρής επιφάνειας απορρόφησης, στην οποία συγκεντρώνεται η ηλιακή ακτινοβολία. Τέτοιες διατάξεις χρησιμοποιούνται όταν είναι επιθυμητή η απόδοση της ενέργειας σε θερμοκρασίες υψηλότερες από αυτές που επιτυγχάνουν οι επίπεδοι ηλιακοί συλλέκτες [25] [26]. Επιπλέον οι υψηλές θερμοκρασίες που αναπτύσσονται στη μικρή επιφάνεια απορρόφησης έχουν ως αποτέλεσμα μικρότερες θερμικές απώλειες προς το περιβάλλον. Τα κύρια μέρη του συγκεντρωτικού συλλέκτη είναι ο συγκεντρωτής και ο δέκτης, οποίος περιλαμβάνει τον απορροφητήρα και την διάταξη μετατροπής της ακτινοβολίας σε άλλη ενέργεια (ηλεκτρική ή υπό μορφή ζεστού νερού). Ένα χαρακτηριστικό μέγεθος των συγκεντρωτικών συλλεκτών είναι ο λόγος συγκέντρωσης:

$$C = \frac{A_a}{A_r} \quad (3.16)$$

όπου: A_a η επιφάνεια ανοίγματος ή παραθύρου, δηλαδή η επιφάνεια από την οποία εισέρχεται η ηλιακή ακτινοβολία και A_r η επιφάνεια του δέκτη, δηλαδή η επιφάνεια που απορροφά την συγκεντρωμένη ηλιακή ακτινοβολία.

Ο δέκτης μπορεί να είναι κοίλος, κυρτός, με κάλυμμα ή χωρίς.

Ο συγκεντρωτής μπορεί να είναι:

α) ανακλαστικός ή διαθλαστικός (κάτοπτρο ή φακός).

β) Επιμήκης (κυλινδρικός) ή κυκλικός. Ο επιμήκης συγκεντρωτής χαρακτηρίζεται ως δισδιάστατος και εστιάζει σε μια ευθεία γραμμή. Αν η κάθετη τομή του προς την ευθεία αυτή είναι παραβολή, τότε ονομάζεται παραβολικός συγκεντρωτής. Ο κυκλικός συγκεντρωτής είναι επιφάνεια εκ περιστροφής (π.χ. σφαίρα ή παραβολοειδές), εστιάζει σε σημείο και χαρακτηρίζεται ως τρισδιάστατος.

γ) Συνεχής ή αποτελούμενος από τμήματα.

δ) Χωρίς είδωλο ή με είδωλο. Η συγκεντρωτές χωρίς είδωλο έχουν χαμηλό λόγο συγκέντρωσης (C < 10) και δεν σχηματίζουν σαφώς καθορισμένο είδωλο του ηλίου πάνω στον απορροφητήρα. Οι συγκεντρωτές με είδωλο δίνουν (χαμηλής ποιότητας) είδωλο πάνω στον απορροφητήρα και επιτυγχάνουν πολύ υψηλούς λόγους συγκέντρωσης.

Με αύξηση του λόγου συγκέντρωσης αυξάνεται και η αναπτυσσόμενη θερμοκρασία αλλά και η ακρίβεια της κατασκευής και η ποιότητα του οπτικού συστήματος, συνεπώς και το κόστος. Στους συγκεντρωτικούς συλλέκτες αξιοποιείται μόνο η άμεση ακτινοβολία, με εξαίρεση τους συλλέκτες με

χαμηλούς λόγους συγκέντρωσης. Σε πολλές περιπτώσεις απαιτείται μηχανισμός (αυτοματοποιημένος ή χειροκίνητος) κίνησης και προσανατολισμού έτσι ο συλλέκτης να παρακολουθεί την τροχιά του ήλιου στον ουρανό.

Οι συγκεντρωτικοί συλλέκτες χρησιμοποιούνται συνήθως για εφαρμογές όπου απαιτούνται υψηλές θερμοκρασίες, όπως παραγωγή ατμού για χρήση σε ατμογεννήτρια και για θερμική απαλλαγή από τοξίνες με χρήση υψηλών θερμοκρασιών.

Μερικοί τύποι συγκεντρωτικών συλλεκτών είναι: α) ο επιμήκης παραβολικός συγκεντρωτής, ο οποίος είναι δισδιάστατος (έχει παραβολική διατομή) και ο δέκτης τοποθετείται πάνω από τον συλλέκτη και στο κέντρο, μέσα από τον οποίο διέρχεται υγρό (νερό με άλας) και αποκτά θερμοκρασίες μεταξύ 150°C και 350°C) β) παραβολοειδής συγκεντρωτής στον οποίο το υγρό που διέρχεται από τον σφαιρικό (ή ημισφαιρικό) δέκτη αποκτά θερμοκρασίες μεταξύ 250° C – 750° C γ) ο ανακλαστήρας Fresnel ο οποίος είναι ένας μη συνεχής συγκεντρωτής που αποτελείται από πολλά επίπεδα κάτοπτρα και διοχετεύει την ηλιακή ακτινοβολία στον κυλινδρικής μορφής δέκτη, από όπου περνά το υγρό δ) ηλιακός πύργος, ο οποίος περιλαμβάνει ηλιοστάτες (κάτοπτρα) οι οποίοι περιστρέφονται σε δύο άξονες έτσι ώστε να παρακολουθούν την τροχιά του ηλίου αντί να την παρακολουθεί ο ίδιος ο ηλιακός πύργος. Οι ηλιακές ακτίνες συγκεντρώνονται στον πύργο (σε ύψος έως και 500 m) από όπου το εργαζόμενο μέσο (νερό) θερμαίνεται σε θερμοκρασίες 500°C — 1000°C και ο παραγόμενος ατμός χρησιμοποιείται σε ατμογεννήτρια για παραγωγή ρεύματος ε) ο σύνθετος παραβολικός συλλέκτης (Compound Parabolic Collector), οποίος ανήκει στην κατηγορία των συλλεκτών χωρίς είδωλο και αξιοποιεί την ηλιακή ακτινοβολία (και τη διάχυτη) υπό ευρεία περιοχή γωνιών πρόσπτωσης και δεν έχει απαιτήσεις κίνησης, ενώ έχει χαμηλούς λόγους συγκέντρωσης. Οι CPC έχουν επιμήκη (δισδιάστατη μορφή) τύπου σκάφης και κάθε πλευρά τους είναι παραβολή ενώ στη βάση τους βρίσκεται ο δέκτης στ) επίπεδος δέκτης με επίπεδους ανακλαστήρες ο οποίος έχει χαμηλό λόγο συγκέντρωσης (C < 4) και μπορεί να θεωρηθεί σαν επίπεδος συλλέκτης με αυξημένη προσπίπτουσα ακτινοβολία [25].

Σχήμα 3. 7: Τύποι συγκεντρωτικών συλλεκτών: a) Κάτοπτρα Fresnel b) Παραβολικός συλλέκτης c) Επίπεδος δέκτης με επίπεδους ανακλαστήρες d) Ηλιακός πύργος e) Παραβολοειδής συγκεντρωτής με σημειακό δέκτη f) Σύνθετος παραβολικός συλλέκτης [26].

4. Το περιβάλλον προσομοίωσης TRNSYS.

4.1 Εισαγωγή στο TRNSYS.

To TRNSYS (TRaNsient SYstem Simulation) είναι ένα περιβάλλον προσομοίωσης συστημάτων τα οποία μεταβάλλονται συναρτήσει του χρόνου. Χρησιμοποιείται από μηχανικούς και ερευνητές για την προσομοίωση θερμικών και ηλιακών συστημάτων, συστημάτων ζεστού νερού χρήσης αλλά και για τον σχεδιασμό και την ενεργειακή μελέτη, θερμική συμπεριφορά και προσομοίωση πολυζωνικών κτηρίων καθώς και την επιλογή των συστημάτων κλιματισμού και της στρατηγικής λειτουργίας που αυτά χρησιμοποιούν. Στο πρόγραμμα αυτό ο χρήστης έχει επίσης την δυνατότητα να εισάγει ανανεώσιμες και εναλλακτικές πηγές ενέργειας, όπως ηλιακή και αιολική ενέργεια, γεωθερμία.

Μια προσομοίωση στο TRNSYS αποτελείται από επιμέρους στοιχεία (components) τα οποία είναι γνωστά ως types (π.χ. το πολυζωνικό κτήριο είναι το type 56). Κάθε στοιχείο συνοδεύεται από εξισώσεις που περιγράφουν την συμπεριφορά του, ενώ τις περισσότερες φορές ο ίδιος ο χρήστης καλείται να δώσει δεδομένα για ένα στοιχείο, για παράδειγμα ισχύς και παροχή μιας αντλίας. Ο τρόπος σύνδεσης των επιμέρους στοιχείων μιας εγκατάστασης είναι όμοιος με αυτόν όπως και στην πραγματικότητα. Κάθε φορά που καλείται να "τρέξει" το πρόγραμμα, διαβάζει το αρχείο εισόδου στο οποίο περιέχονται όλα τα στοιχεία που χρησιμοποιούνται στην προσομοίωση καθώς ελέγχει και για τυχόν λάθη. Σε κάθε χρονικό βήμα καλούνται οι υπορουτίνες για κάθε type και οι επαναλήψεις σταιματούν όταν οι μεταβλητές του κάθε στοιχείου να μην αλλάζουν, και συνεχίζει στο επόμενο χρονικό βήμα. Στο τέλος της προσομοίωσης δημιουργείται ένα αρχείο σφαλμάτων (error log file) καθώς και αρχεία εξόδου, όπως ζητήθηκαν από τον χρήστη μέσω του περιβάλλοντος προσομοίωσης. Το error log file περιέχει παρατηρήσεις (notices), προειδοποιήσεις (warnings) και σφάλματα (errors) που σταμάτησαν την προσομοίωση.

Κάθε type αποτελείται από τις μη χρονικά μεταβαλλόμενες μεταβλητές εισόδου (PARAMETERS) οι οποίες προσδιορίζονται από τον χρήστη (όπως ονομαστική ισχύς και παροχή αντλίας), τις χρονικά μεταβαλλόμενες μεταβλητές εισόδου (INPUTS) οι οποίες σε κάθε χρονικό βήμα μπορεί να αλλάζουν (όπως θερμοκρασία εισόδου της αντλίας), και τις μεταβλητές εξόδου OUTPUTS (θερμοκρασία εξόδου της αντλίας). Για το TRNSYS κάθε type είναι ένα "μαύρο κουτί" το οποίο τροφοδοτείται με μεταβλητές εισόδου (inputs) και χρησιμοποιώντας τις υπορουτίνες γραμμένες σε FORTRAN λύνει τις εξισώσεις και δίνει μεταβλητές εξόδου (outputs).

Το TRNSYS δεν είναι ένα μόνο πρόγραμμα αλλά αποτελείται από περισσότερα, τα οποία παρουσιάζονται συνοπτικά παρακάτω.

1. Simulation Studio. Εδώ ο χρήστης έχει ένα εύχρηστο γραφικό περιβάλλον όπου μπορεί να συνδέσει τα επιμέρους types αλλά και να εισάγει δεδομένα στο κάθε type καθώς και μέσω του output manager να δημιουργήσει γραφικές παραστάσεις συναρτήσει του χρόνου. Η εγκατάσταση που σχεδιάστηκε σώζεται ως αρχείο .tpf και κάθε φορά που καλείται το TRNSYS δημιουργείται το αρχείο εισόδου της εγκατάστασης το όποιο διαβάζει το πρόγραμμα, και περιέχει όλα τα δεδομένα εισόδου.

2. Simulation Engine και TRNEXE. Η μηχανή προσομοίωσης, γνωστή και ως kernel, γραμμένη σε fortran και όντας compiled σε Windows Dynamic Library (DLL), είναι αυτή που πραγματοποιεί την προσομοίωση και ανοίγει το input file (γνωστό και ως deck file .dck) καθώς και άλλα αρχεία (όπως αρχεία δεδομένων weather data και επιπλέον δεδομένα για κάποιο type .dat) τα οποία χρειάζονται. Το πρόγραμμα καλείται από την εφαρμογή TRNEXE.exe η οποία δίνει και τα γραφήματα όπως αυτά ζητήθηκαν από τον χρήστη μέσω του simulation studio.

3. Multizone building interface – TRNBUILD. Στο TRNBUILD ο χρήστης εισάγει τα δεδομένα του κτηρίου, όπως τα υλικά των δομικών του στοιχείων, τον προσανατολισμό του, τα φορτία, τους υαλοπίνακες και τις παραμέτρους τους κ.α. Το TRNBUILD εκτελείται πάντα πρώτο και δημιουργεί ένα αρχείο .bui (ή b18) στο οποίο υπάρχουν όλα τα στοιχεία αναφορικά με το κτήριο.

Επιπλέον υπάρχει το TRNSYS3d το οποίο χρησιμοποιεί το google Sketch up και μέσω αυτού ο χρήστης εναλλακτικά μπορεί με αυτόν τον τρόπο να εισάγει την γεωμετρία του κτηρίου, την θέση των υαλοπινάκων κ.α.

4. TRNEDIT και TRNSED. Το πρόγραμμα TRNEDIT χρησιμοποιείται για την τροποποίηση του αρχείου εισόδου (.dck) μιας εγκατάστασης. Όμως αυτός ο τρόπος απευθύνεται κυρίως σε έμπειρους χρήστες, ενώ το πιο σύνηθες είναι ο χρήστης να βασίζεται για την δημιουργία της εγκατάστασης στο simulation studio. Επιπλέον το TRNEDIT μπορεί να χρησιμοποιηθεί για την δημιουργία εφαρμογών (TRNSED applications) που παρέχουν ένα γραφικό περιβάλλον για βασικές αλλαγές στις εγκαταστάσεις και απευθύνονται σε χρήστες που δεν έχουν άδεια για το TRNSYS 18.

4.2 Το περιβάλλον Simulation Studio.

Όπως αναφέρθηκε, στο simulation studio πραγματοποιείται η δημιουργία της επιθυμητής εγκατάστασης-συστήματος. Στο σχήμα 4.1 παρουσιάζεται το περιβάλλον του simulation studio. Πατώντας επάνω αριστερά το εικονίδιο με την κενή σελίδα New (κάτω από το File) ο χρήστης επιλέγει να δημιουργήσει ένα καινούργιο στοιχείο ή εγκατάσταση, ή πατώντας Open, δίπλα από το New, να ανοίξει ένα υπάρχον αρχείο.tpf.

🚴 Simulation Studio		- 🗆 ×
File View Direct Access Tools ?		
		×
☆ ◎ ♂ 四 × ● ☆ № 回 ● ■ ■ ● ■ ■ ● ■ ♥ ♥ № み ■ ☆	New X Select project type Description Furthy TKNSYS New Component (moltarian) Solar hot water Building Project (system) Solar hot water Building Project (system)	Applications Library (TESS) Controllers Controllers Library (TESS) Electrical Electrical Electrical Ground Coupling Hight Complexity Hight Complex

Σχήμα 4. 1: Δημιουργία νέου αρχείου στο simulation studio.

Ο χρήστης έχει την δυνατότητα να επιλέξει την δημιουργία α) ενός κενού αρχείου, όπου στη συνέχεια θα προστεθούν τα επιμέρους στοιχεία της υπό μελέτη εγκατάστασης, β) ενός νέου στοιχείου (type) όπως αυτά που είναι ήδη διαθέσιμα από το TRNSYS, γ) ενός ηλιακού συστήματος ζεστού νερού, δ) μιας απλοποιημένης κτηριακής εγκατάστασης, ε) ενός πολυζωνικού κτηρίου (γίνεται εκτενής αναφορά στο επόμενο κεφάλαιο, στ) μιας κτηριακής εγκατάστασης με ακριβή γεωμετρικά στοιχεία ζ) μιας κτηριακής εγκατάστασης με χρήση του προγράμματος Mathis (κώδικας που μοντελοποιεί το δίκτυο αερισμού του κτηρίου και εισάγεται από το type 159).

Δεξιά στο παράθυρο του simulation studio βρίσκονται βιβλιοθήκες οι οποίες περιέχουν τα στοιχεία (types) τα οποία χρησιμοποιούνται για την δημιουργία της εγκατάστασης. Κάποιες από αυτές (με την επέκταση TESS) δεν περιέχονται στην βασική έκδοση του TRNSYS 18, αλλά επέκταση του προγράμματος, και διατίθενται (ξεχωριστά από το κυρίως πρόγραμμα) από την Thermal Energy System Specialists.

Παρακάτω αναφέρονται συνοπτικά οι σημαντικότερες βιβλιοθήκες (σχήμα 4.2) και κάποια στοιχεία που περιέχουν.

Controllers: Στη βιβλιοθήκη αυτή περιέχονται ελεγκτές για έλεγχο θερμοκρασίας μιας ζώνης (type 166), θερμοκρασίας νερού (type 113 και type 106), διαφορικοί ελεγκτές γενικής χρήσης (type 165, solver 0 type 2b), PID ελεγκτές, για έλεγχο υγρασίας, κ.α.

ΗVAC: Στις δυο βιβλιοθήκες αυτής της κατηγορίας υπάρχουν στοιχεία για την θέρμανση και τον κλιματισμό του κτηρίου, όπως εναλλάκτες και αντλίες θερμότητας, fan coil, καυστήρες, ψυκτικοί πύργοι, εναλλάκτες ανάκτησης ενέργειας, υγραντήρες κ.α.

Hydronics: Εδώ περιέχονται στοιχεία σχετιζόμενα με την διαχείριση αέρα, και άλλων ρευστών, όπως σωλήνες και αγωγοί αέρα, αντλίες (type 114), ανεμιστήρες (type 146), μίκτες και εκτροπείς ρευστών, κ.α.

Loads and Structures: Σε αυτή την κατηγορία ανήκουν στοιχεία που σχετίζονται με το κτήριο και τα θερμικά του κέρδη, όπως το πολυζωνικό κτήριο (type 56), το μονοζωνικό κτήριο, άλλα στοιχεία που συμβάλλουν στο θερμικό κέρδος εντός του κτηρίου, παράθυρα, τοίχοι θερμικής αποθήκευσης.

⊕ ☐ Applications Library (TESS)
⊕ ☐ Cogeneration (CHP) Library (TESS)

in Controllers Library (TESS)

🗄 💼 Electrical Library (TESS)

💼 💼 Ground Coupling Library (TESS)

👜 🧰 High Temperature Solar (TESS)

💼 💼 HVAC Library (TESS)

👜 💼 Hydronics Library (TESS)

🗄 💼 Physical Phenomena

🗄 💼 Solar Library (TESS)

🖮 🧰 Hydrogen Systems

🗄 🧰 Controllers

🗄 💼 Electrical

🗄 🚞 HVAC

🗄 🚞 Hydronics

ie-iei Nostand ie-iei Obsolete

🗄 💼 Output

Σχήμα 4. 2: Οι βιβλιοθήκες του TRNSYS.

Outputs: Σε αυτή την βιβλιοθήκη υπάρχουν στοιχεία που

σχετίζονται με την εξαγωγή δεδομένων μετά το τέλος της προσομοίωσης, όπως ο online plotter δίνει γράφημα με επιλεγμένες από την χρήστη μεταβλητές συναρτήσει του χρόνου, printer και printergrator που δίνουν την τιμή μιας μεταβλητής ή το ολοκλήρωμά της, αντίστοιχα, για ένα ορισμένο χρονικό διάστημα.

Solar Thermal Collectors: Εδώ βρίσκονται οι θερμικοί ηλιακοί συλλέκτες, όπως ο επίπεδος ηλιακός συλλέκτης (type 1b) και οι συλλέκτες σωλήνων κενού.

Thermal Storage: Η βιβλιοθήκη αυτή περιέχει δοχεία θερμικής αποθήκευσης σταθερού (type 158 και type 156) ή μεταβλητού όγκου, με ή χωρίς εσωτερικό εναλλάκτη, με ή χωρίς ηλεκτρική αντίσταση.

Utility: Αυτή η βιβλιοθήκη περιέχει στοιχεία για την εισαγωγή ενός προφίλ κατανάλωσης, λειτουργίας ενός άλλου στοιχείου (Forcing Function-General-type 14h), στοιχείων για να προσδιορίσουν ποια μοναδική ημέρα της εβδομάδας, ή του μήνα θα λειτουργεί ένα type 14h (Forcing Function Sequencers- Type 41), Ολοκληρωτές μιας ποσότητας (type 24).

Weather Data Reading and processing: Εδώ βρίσκονται τα στοιχεία που καλούν τα μετεωρολογικά δεδομένα (type 15).

Electrical: Σε αυτό την βιβλιοθήκη βρίσκονται στοιχεία που σχετίζονται με την παραγωγή, αποθήκευση, διανομή ηλεκτρικής ενέργειας, όπως φωτοβολταϊκά, μηχανές ντίζελ, ανεμογεννήτριες, μπαταρίες.

4.3 Δημιουργία ενός απλού συστήματος

Σε αυτή την παράγραφο παρουσιάζεται ένα απλό παράδειγμα μιας προσομοίωσης ενός συστήματος στο περιβάλλον TRNSYS 18 για μια πρώτη επαφή με βασικά στοιχεία από της βιβλιοθήκες του TRNSYS (weather data, online plotter, integrator, solar collector-type 1b, type 158, forcing functiontype 14h, pump-type 114 κ.α.), καθώς και των βασικών λειτουργιών και εργαλείων. Το παρακάτω παράδειγμα είναι μια απλή εγκατάσταση αξιοποίησης και αποθήκευσης της ηλιακής ενέργειας μέσω ζεστού νερού.

4.3.1 Εισαγωγή και επεξεργασία ενός στοιχείου (type).

Έχοντας δημιουργήσει ένα νέο κενό αρχείο επιλέγεται ο επίπεδος ηλιακός συλλέκτης από Solar Thermal Collectors> Quadratic Efficiency> 2nd Order Incidence Angle Modifiers> Type 1b.

Σχήμα 4. 3: Εισαγωγή επίπεδου ηλιακού συλλέκτη.

Με διπλό κλικ στο type εμφανίζονται οι καρτέλες parameters, inputs, outputs από τις οποίες αποτελείται (βλέπε σχήμα 4.3). Ένα type μπορεί να αποτελείται και από άλλες καρτέλες όπως derivatives, external files κ.α. Στις παραμέτρους ο χρήστης εισάγει της μεταβλητές ενός στοιχείου οι οποίες δεν αλλάζουν με τον χρόνο, ενώ οι μεταβλητές εισόδου μεταβάλλονται με τον χρόνο, όταν ο χρήστης τις συνδέσει με μεταβλητές εξόδου άλλων στοιχείων. Οι μεταβλητές εξόδου αποτελούν την είσοδο σε ένα άλλο type, ή/και εκτυπώνονται σε στοιχεία όπως γραφήματα και "εκτυπωτές" (printers). Κάθε type στα αριστερά έχει ένα εικονίδιο με το λατινικό i, το οποίο δίνει βασικές πληροφορίες για το συγκεκριμένο στοιχείο, ενώ σε κάθε μεταβλητή το κουτί more δίνει περαιτέρω πληροφορίες για την εκάστοτε μεταβλητή. Για τον συγκεκριμένο ηλιακό συλλέκτη, η οποία αποτελεί μεταβλητή εισόδου, και άρα έξοδο ενός άλλου στοιχείου (type 15), όπως θα αναφερθεί

στη συνέχεια. Ο χρήστης μπορεί να εισάγει τα δεδομένα του κατασκευαστή τα οποία αφορούν τη απόδοση του συλλέκτη στην καρτέλα parameters. Εδώ χρησιμοποιούνται οι προεπιλεγμένες παράμετροι.

Μια συστοιχία ηλιακών συλλεκτών μπορεί να είναι σε σειρά ή παράλληλη. Εάν ο χρήστης έχει έναν ηλιακό συλλέκτη 4 m^2 και επιθυμεί να εισάγει άλλον έναν σε παράλληλη διάταξη, τότε πρέπει να διπλασιάσει την επιφάνεια (2η παράμετρος) και την παροχή που περνά από τους συλλέκτες, ενώ αν θέλει να είναι σε σειρά απλά διπλασιάζει την 1η και 2η παράμετρο, αριθμός συλλεκτών σε σειρά και εμβαδό αντίστοιχα.

4.3.2 Διασύνδεση βασικών στοιχείων.

Για την παραγωγή ζεστού νερού ο ηλιακός συλλέκτης πρέπει να συνδεθεί με τα μετεωρολογικά δεδομένα. Τα μετεωρολογικά δεδομένα βρίσκονται στη θέση: Weather Data Reading and Processing> Standard Format> TMY2> Type 15-2. Από την καρτέλα των παραμέτρων ορίζεται ο αριθμός των επιφανειών (number of surfaces), η κλίση της επιφάνειας (slope of surface), και η γωνία αζιμουθίου γ (σχήμα 4.4). Για αυτή την εφαρμογή επιλέγουμε μια επιφάνεια με κλίση 50°, γ=0°. Επιπλέον από την καρτέλα external files πατώντας browse (σχήμα 4.5) επιλέγεται το αρχείο που περιέχει τα μετεωρολογικά δεδομένα για την περιοχή μου μας ενδιαφέρει, εδώ TRNSYS18> Weather> Meteonorm> Europe> GR-Athinai-167140.tm2.

(Project	Project18.tpf) Type15-2 —									
Parame	Parameter Output External Files Comment									
đ			Name	Value	Unit	More	Macro	^		
	2	8	Logical unit	30	-	More				
1	3	đ	Tilted Surface Radiation Mode	5	-	More				
26	4	đ	Ground reflectance - no snow	0.2	-	More				
_	5	đ	Ground reflectance - snow cover	0.7	-	More				
	6	đ	Number of surfaces	1	<u> </u> -	More				
	7	đ	Tracking mode	1	-	More				
	8	đ	Slope of surface	50	degrees	More				
	9	đ	Azimuth of surface	0	degrees	More				

Σχήμα 4. 4: Επιλογή παραμέτρων των μετεωρολογικών δεδομένων.

(Project18.tpf) Type15-2									
Parameter Output External Files Com	ment								
1 Which file contains the TMY-2 weather data?	C:\TRNSYS18\Weather\M eteonorm\Europe\GR-Ath inai-167140.tm2								

Σχήμα 4. 5: Επιλογή αρχείου μετεωρολογικών δεδομένων.

Για τη διασύνδεση δύο στοιχείων επιλέγεται το εικονίδιο που απεικονίζει την σύνδεση αυτών, στην αριστερή στήλη εργαλείων, όπως φαίνεται στο σχήμα 4.6.

Όταν συνδέονται τα δύο στοιχεία εμφανίζεται το παράθυρο με τις μεταβλητές εξόδου του πρώτου και τις μεταβλητές εισόδου του δεύτερου. Μια μπλε γραμμή σύνδεσης συμβολίζει ότι δεν υπάρχει καμία σύνδεση μεταξύ των μεταβλητών, ενώ πατώντας διπλό κλικ ανοίγει το παράθυρο διασύνδεσης (σχήμα 4.7).

Για την σύνδεση ενός ηλιακού συλλέκτη με τα μετεωρολογικά δεδομένα πραγματοποιούνται οι ακόλουθες συνδέσεις μεταξύ των μεταβλητών.

Dry bulb temperature --> Ambient temperature

Σχήμα 4. 6: Σύνδεση δύο στοιχείων στο TRNSYS 18.

Type1b

- Total tilted surface radiation for surface --> Incident radiation
- Total horizontal radiation --> Total horizontal radiation
- Total diffuse radiation on the horizontal --> Horizontal diffuse radiation
- Ground reflectance --> Ground reflectance
- Angle of incidence for surface --> Incidence angle
- Slope of surface --> Collector slope

Ŀ,

ማ

Q

Ро

×

۰.

್" Project18.tpf

Type15-2

Σχήμα 4. 7: Παράθυρο σύνδεσης μεταξύ των μεταβλητών των μετεωρολογικών δεδομένων και του ηλιακού συλλέκτη.

Σε μια προσομοίωση οι παροχές καθορίζονται από αντλίες, για διακίνηση υγρών, και ανεμιστήρες για αέρα. Από την βιβλιοθήκη Hydronics> Pumps> Single speed> Type 114, εισάγουμε μια αντλία για να καθορίσουμε την παροχή που θα κυκλοφορεί στον συλλέκτη (Σχήμα 4.8). Στην καρτέλα των παραμέτρων εισάγουμε την ονομαστική παροχή της αντλίας (rated flow rate), και είναι η παροχή που θα δίνει η αντλία κάθε φορά που βρίσκεται σε λειτουργία. Για τον ηλιακό συλλέκτη είναι 40 – $60 kg/hr/m^2$, συνεπώς εδώ εισάγουμε την τιμή 300 kg/hr. Οι αντλίες έχουν σαν είσοδο παροχή, αλλά την χρησιμοποιούν μόνο για επαλήθευση ισοζυγίου μάζας που περνά από αυτές. Συνδέουμε

την εξερχόμενη παροχή και θερμοκρασία της αντλίας με τα αντίστοιχα εισερχόμενα μεγέθη του συλλέκτη (Σχήμα 4.9).

Type15-2 Type1b											
+	(Project18.tpf) Type114										
•		Paramet	er	Inpu	ut Output Comment						
□ (▶)		đ			Name	Value	Unit	More	Macro		
Type114	_	•	1	ď	Rated flow rate	300	kg/hr	More			
0 10			2	ď	Fluid specific heat	4.19	kJ/kg.K	More			
		23	3	3 💣 Rated power		2684.0	kJ/hr	More			
			4	đ	Motor heat loss fraction	0.0	-	More			

Σχήμα 4. 8: Εισαγωγή αντλίας και ορισμός της παροχής της.

Σχήμα 4. 9: Σύνδεση παροχής και θερμοκρασίας αντλίας κα ηλιακού συλλέκτη.

Για την αποθήκευση της δευσμευόμενης ηλιακής ακτινοβολίας χρειάζεται ένα δοχείο αποθήκευσης. Από την βιβλιοθήκη Thermal Storage> Constant Volume Liquid Storage> Vertical Tank> No Hx> Type 158, εισάγουμε το δοχείο αποθήκευσης χωρίς εσωτερικό εναλλάκτη. Επιλέγουμε όγκο δοχείου 0.4m³ και ύψος 1.5 m καθώς και αριθμό κόμβων 7, για την προσομοίωση της θερμοκρασιακής διαστρωμάτωσης σε αυτό. Στο σχήμα 4.10 φαίνονται οι παράμετροι του δοχείου αποθήκευσης, ενώ ο χρήστης μπορεί να επιλέξει το ύψος από όπου εισέρχεται και εξέρχεται το κάθε ένα από τα δύο ρεύματα. Σημειώνεται ότι στο type 158 μοντελοποιούνται έως δύο ρεύματα, συνεπώς για περισσότερα χρησιμοποιούνται άλλα type, όπως type 534 (από βιβλιοθήκη της TESS). Τα δοχεία επίσης περιέχουν στην καρτέλα derivatives οι αρχικές θερμοκρασίες του δοχείου σε κάθε κόμβο. Επιπλέον η παροχή στην έξοδο ενός ρεύματος του δοχείου λαμβάνεται ίση με αυτή στην είσοδό του, αφού προσομοιώνεται ένα σταθερού όγκου δοχείο.

Project	t18.tp	of) Ty	ype158			-		×
Parame	eter	Inpu	t Output Derivative Commer	nt				
đ			Name	Value	Unit	More	Macro	^
•	1	ď	Tank volume	0.4	m^3	More		
1	2	ď	Tank height	1.5	m	More		
먭	3	ď	Number of tank nodes	7	-	More		
	4	ď	Top loss coefficient	3.325	kJ/hr.m^2.K	More		
	5	ď	Edge loss coefficient	3.325	kJ/hr.m^2.K	More		
	6	ď	Bottom loss coefficient	3.325	kJ/hr.m^2.K	More		
	7	ď	Fluid specific heat	4.182	kJ/kg.K	More		
	8	ď	Fluid density	992.	kg/m^3	More		
•	10	đ	Height fraction of inlet 1	1.	Fraction	More		Ť
1	11	ď	Height fraction of outlet 1	0.	Fraction	More		
26	12	ď	Height fraction of inlet 2	0.	Fraction	More		
	13	ď	Height fraction of outlet 2	1.	Fraction	More		
	14	ď	Number of thermostats	1	-	More		
	15	ď	Height fraction of thermostat	0.75	Fraction	More		
	16	ď	Number of auxiliary heat inputs	1	-	More		
	17	ď	Height fraction of auxiliary input	0.25	Fraction	More		

Σχήμα 4. 10: Παράμετροι δοχείου αποθήκευσης.

Ακολουθεί η σύνδεση της θερμοκρασίας και της παροχής από τον συλλέκτη με τα αντίστοιχα μεγέθη του εισερχόμενου στο δοχείο ρεύματος 1 (σχήμα 4.11) και του εξερχόμενου ρεύματος 1 με την θερμοκρασία και την παροχή στην αντλία.

A				Þ	
Outlet temperature	Inlet temperature for port 1	20.	Temperature at outlet 1	Inlet fluid temperature	20.0
Outlet flowrate	Inlet flow rate for port 1	0.	Flow rate at outlet 1	Inlet fluid flow rate	1000
Useful energy gain	Inlet temperature for port 2	20.	Temperature at outlet 2	Control signal	1.0
	Inlet flow rate for port 2	0.	Flow rate at outlet 2	Overall pump efficiency	0.6
	Top loss temperature	20.	Average tank temperature	Motor efficiency	0.9
	Edge loss temperature	20.	Energy delivered via port 1		
	Bottom loss temperature	20.	Energy delivered via port 2		
	Auxiliary heat input	0.	Top losses		
			- Edge Losses		

Σχήμα 4. 11: Σύνδεση του δοχείου με τον βρόχο του ηλιακού συλλέκτη.

Στους βρόχους όπου υπάρχει ηλιακός συλλέκτης είναι επιθυμητό να διέρχεται νερό από αυτόν μόνο όταν υπάρχει αρκετή ηλιακή ακτινοβολία, αφού στις περιπτώσεις όπου δεν υπάρχει αρκετή ακτινοβολία χάνεται η προηγουμένως δεσμευμένη ενέργεια αποθηκευμένη στο δοχείο, όπως όταν υπάρχουν σύννεφα ή τη νύκτα. Ο έλεγχος της παροχής από τον συλλέκτη γίνεται με την χρήση ενός διαφορικού ελεγκτή, ο οποίος βρίσκεται: Controllers> Differential Controller w_Hysteresis> for Temperatures> Complex Control Strategy> Solver 0 (Successive Substitution)> Type 2b. Οι δύο θερμοκρασίες που πρέπει να ελέγχονται είναι η θερμοκρασία εισόδου και εξόδου του συλλέκτη. Στην καρτέλα των παραμέτρων ο χρήστης ορίζει τον αριθμό των εσωτερικών επαναλήψεων μέχρι να "κολλήσει" ο ελεγκτής, ο οποίος συνίσταται να είναι περιττός, και η μέγιστη θερμοκρασία στην οποία ο ελεγκτής θα σταματήσει την αντλία (θα δίνει μηδενικό σήμα) για αποφυγή καταστροφών στο σύστημα (High limit cut-out), συνήθως 90-100°C και αφορά το δοχείο αποθήκευσης (βλ. Σχήμα 4.12).

(Project	:18.t	pf) T	/pe2b			_		×
Parame	ter	Inpu	t Output Comment					
đ			Name	Value	Unit	More	Macro	
-	1	8	No. of oscillations	5	-	More		
1	2	đ	High limit cut-out	95.0	С	More		
20			,	,				
(Project	:18.t	pf) T	/pe2b			_		×
Parame	ter	Inpu	t Output Comment					
đ			Name	Value	Unit	More	Macro	
	1	đ	Upper input temperature Th	20.0	С	More		
1	2	đ	Lower input temperature TI	10.0	С	More		
20	3	đ	Monitoring temperature Tin	20.0	c	More		
	4	đ	Input control function	0	-	More		
	5	đ	Upper dead band dT	10.0	deltaC	More		
	6	đ	Lower dead band dT	2.0	deltaC	More		

Σχήμα 4. 12: Παράμετροι και είσοδοι του διαφορικού ενισχυτή type 2b.

Η τιμή της μεταβλητής εισόδου 5 (Upper dead band dT) είναι η θερμοκρασιακή διαφορά η οποία όταν ξεπεραστεί το σήμα που δίνει ο ελεγκτής γίνεται 1, όντας προηγουμένως 0. Αντίθετα η είσοδος 6 είναι η θερμοκρασιακή διαφορά κάτω από την οποία το σήμα του ελεγκτή γίνεται 0, όντας προηγουμένως 1. Η σύνδεση του ελεγκτή με τα υπόλοιπα στοιχεία φαίνεται στο σχήμα 4.13.

AT	OFF				ON	
Outlet temperature	Upper input temperature Th	20.0	Temperature at outlet 1		Upper input temperature Th	20.0
Outlet flowrate	Lower input temperature T1	10.0	Flow rate at outlet 1		Lower input temperature T1	10.0
Useful energy gain	Monitoring temperature Tin	20.0	Temperature at outlet 2	1	Monitoring temperature Tin	20.0
	Input control function	0	Flow rate at outlet 2	/	Input control function	0
	Upper dead band dT	10.0	Average tank temperature	/	Upper dead band dT	10.0
	Lower dead band dT	2.0	Energy delivered via port 1		Lower dead band dT	2.0
	ON F		Energy delivered via port 2			
	OFF		Top losses	/		
Outlet fluid temperature	Upper input temperature Th	20.0	Edge Losses			
Outlet flow rate	- Lower input temperature TI	10.0	Bottom losses			
Power consumption	Monitoring temperature Tin	20.0	Auxiliary heating rate	/		
Fluid heat transfer	Input control function	0	Tank energy storage rate	1		
Environment heat transfer	Upper dead band dT	10.0	Tank energy balance error	/		
	Lower dead band dT	2.0	Temperature at thermostat	/		
			Tank nodal temperature-1			
UIT	UR A		OFF			
Output control function	Upper input temperature Th	20.0	Output control function		Inlat fluid temperature	20.0
	Lower input temperature T1	10.0	Culput condor function		Inlet fluid flow rate	1000
	Monitoring temperature Tin	20.0			Control signal	1.0
	 Input control function 	0			Overall nump efficiency	0.6
	Upper dead band dT	10.0			Motor efficiency	0.0
	Lower dead band dT	2.0			Motor enterency	v

Σχήμα 4. 13: Σύνδεση του διαφορικού ελεγκτή με τα υπόλοιπα στοιχεία της εγκατάστασης.

Σε ένα σύστημα ζεστού νερού χρήσης θα πρέπει να ορίσουμε και τον ρυθμό και τις ώρες που καταναλώνεται το ζεστό νερό. Αυτό επιτυγχάνεται με το στοιχείο: Utility> Forcing Functions> General> Type 14h. Για να ορίσουμε τις ώρες και το ποσοστό του νερού που θα χρησιμοποιείται επιλέγουμε το κουμπί "plug in" κάτω αριστερά στην καρτέλα parameters και εισάγουμε κάθε σημείο με το αντίστοιχο ποσοστό της παροχής, όπως φαίνεται στο σχήμα 4.14.

Σχήμα 4. 14: Εισαγωγή του στοιχείου type 14h.

Το επόμενο βήμα είναι να εισαχθεί η μέγιστη παροχή ή οποία πολλαπλασιαζόμενη με το ποσοστό όπως ορίστηκε στο type 14h θα δώσει την παροχή για την αντίστοιχη ώρα. Αυτό γίνεται με την εισαγωγή μιας εξίσωσης από την οριζόντια γραμμή εργαλείων: Assembly> Insert new equation και έπειτα με κλικ πάνω στο σημείο που θέλουμε να την εισάγουμε, όπως φαίνεται στο σχήμα 4.15.

Σχήμα 4. 15: Εισαγωγή εξίσωσης στο simulation studio.

Για να εισάγουμε μία μεταβλητή εισόδου και εξόδου στο κουτί της εξίσωσης επιλέγουμε το κενό φύλλο όπως φαίνεται στο σχήμα 4.16 και έπειτα αφού ορίσουμε το όνομα της μεταβλητής εξόδου με διπλό κλικ εισάγουμε την εξίσωση που την διέπει. Εδώ εισάγεται η μεταβλητή water_draw που δίνει την ποσότητα του νερού που χρειάζεται και η θερμοκρασία από το δίκτυο Tsup= 15°C. Αυτές οι δύο μεταβλητές ορίζουν το φορτίο, δηλαδή την παροχή και την θερμοκρασία του νερού που θα εισέρχεται στο δοχείο και θα αντικαθιστά το ζεστό νερό που θα εξέρχεται από το δοχείο με την ίδια παροχή (βλ. σχημα 4.16). Οπότε η μεταβλητή του δοχείου outlet temperature for port 2 και outlet flow rate for port 2 είναι η παροχή και η θερμοκρασία του ζεστού νερού χρήσης που ζητείται σε αυτή την εγκατάσταση.

(Project18.tpf) Equa	- 0	×			
Show input in Macro Intermediates & Outputs Contr_Sig Water_Draw Tsup		0	Average value of function	Contr_Sig	
× \$\$		× \$5			
		Q	Water_Draw	Inlet temperature for port 1	20.
			Tsup	Inlet flow rate for port 1	0.
Water Draw = 180*Contr Sig ! Water draw in kg/hr				Inlet temperature for port 2	20.
				Inlet flow rate for port 2	0.
Show output in Macro				Top loss temperature	20.
1				Edge loss temperature	20.
				Bottom loss temperature	20.
				Auxiliary heat input	0.
			I		

Σχήμα 4. 16: Εισαγωγή μεταβλητών εισόδου και εξόδου και σύνδεση του equation type με άλλα στοιχεία της εγκατάστασης.

4.3.3 Εισαγωγή online plotter.

Σε μια προσομοίωση ενδιαφέρει η μεταβολή μιας παραμέτρου συναρτήσει του χρόνου. Αυτό είναι δυνατόν να παρατηρηθεί με την εισαγωγή ενός type το οποίο παράγει ένα διάγραμμα κατά τη διάρκεια της προσομοίωσης. Αυτό είναι το online plotter και εισάγεται από την καρτέλα Assembly> Output (σχημα 4.17) και επιλογή από την πάνω αριστερή μεριά Plot-Files του δεύτερου κατά σειρά εικονιδίου, όπως φαίνεται στο σχήμα 4.18.

Σχήμα 4. 17: Εισαγωγή online plotter σε μια εγκατάσταση.

Στην καρτέλα properties ο χρήστης εισάγει το όνομα του διαγράμματος και του αριστερού και δεξιού άξονα, το εύρος των αξόνων και των αριθμό των μεταβλητών που θα παρασταθούν ανά άξονα. Για την εισαγωγή της θερμοκρασίας εξόδου από τον συλλέκτη ακολουθείται η εξής διαδικασία: α) επιλέγεται η μεταβλητή left axis variable-1, β) η μεταβλητή outlet temperature του type 1b, γ) και το βελάκι προς τα δεξιά, μεταξύ της καρτέλας Outputs και Plots-Files δ) εισαγωγή της ονομασίας Coll_out στην καρτέλα Label. Για να διαγραφεί αυτή η μεταβλητή εξόδου από τη θέση left axis variable-1 απλά επιλέγουμε αυτή και το βελάκι προς τα αριστερά. Ακολουθείται η ίδια διαδικασία και για τις υπόλοιπες μεταβλητές, όπως φαίνεται στο σχήμα 4.18.

Σχήμα 4. 18: Σύνδεση μεταβλητών εξόδου των στοιχείων με το online plotter.

4.3.4 Εισαγωγή printegrator.

Για τις μεταβλητές που ενδιαφέρει το άθροισμα τους στο τέλος μιας περιόδου μπορεί να χρησιμοποιηθεί ένας ολοκληρωτής (type 24), για την ολοκλήρωση π.χ. μιας μεταβλητής ισχύος με σκοπό τη συνολική ενέργεια που καταναλώθηκε ή παράχθηκε, και ένας εκτυπωτής (type 25) για την εμφάνιση του αποτελέσματος σε ένα αρχείο εξόδου. Εναλλακτικά μπορεί να χρησιμοποιηθεί ένα στοιχείο που επιτελεί και τις δύο παραπάνω λειτουργίες το type 46a (Printegrator).

Σε αυτή την εγκατάσταση έχει ενδιαφέρον πόση ενέργεια δεσμεύει ο ηλιακός συλλέκτης κατά τη διάρκεια λειτουργίας της. Εισάγεται το παραπάνω type από: Output> Printegrator> Unformatted> User defined period> Type 46a. Στην καρτέλα inputs επιλέγονται πόσες μεταβλητές θα ολοκληρωθούν και θα τυπωθούν ενώ στο πεδίο label κάθε μεταβλητής επιλέγεται το όνομα της ολοκληρωμένης μεταβλητής που θα γραφεί στο αρχείο εξόδου. Το αρχείο εξόδου θα πάρει την ονομασία του αρχείου tpf της προσομοίωσης, εκτός αν ο χρήστης την αλλάξει στο external files.

Στην καρτέλα των παραμέτρων επιλέγεται η περίοδος που θα γίνεται η ολοκλήρωση και εκτύπωση της μεταβλητής (printing & integrating interval), που εδώ είναι επιθυμητό στο τέλος της προσομοίωσης. Τέλος συνδέεται η μεταβλητή του ηλιακού συλλέκτη με τον printegrator (βλ. σχήμα 4.19).

Σχήμα 4. 19: Εισαγωγή και επεξεργασία του type 46α.

4.3.5 Έναρξη και αποτελέσματα της προσομοίωσης.

Η εγκατάσταση έχει τη μορφή που φαίνεται στο σχήμα 4.20.

Σχήμα 4. 20: Εγκατάσταση ζεστού νερού χρήσης.

Από το κουμπί με σχήμα γρανάζι ο χρήστης μπορεί να επιλέξει την περίοδο που θέλει να τρέξει η προσομοίωση και το χρονικό βήμα, ενώ πατώντας το κουμπί run (με το ανθρωπάκι) τρέχει το πρόγραμμα και εμφανίζεται και το online plotter (σχήμα 4.21). Αφού τρέξει η προσομοίωση πατώντας το κουμπί με το βελάκι που δείχνει την σελίδα (αρχείο .lst) ο χρήστης βλέπει πιθανά σφάλματα, προειδοποιήσεις και σημειώσεις που προέκυψαν κατά τη διάρκειά της.

Σχήμα 4. 21: Το γράφημα που εμφανίζεται κατά τη διάρκεια της προσομοίωσης.

Επιπλέον στον φάκελο που είναι αποθηκευμένη η εγκατάσταση εμφανίζεται το αρχείο με την ενέργεια που δέσμευσε ο ηλιακός συλλέκτης, και είναι $Q_{col} = 2.07923 \cdot 10^5 \ kJ$.

5. Η εγκατάσταση στο TRNSYS 18.

5.1 Βασικά στοιχεία κτηρίου και περιγραφή της εγκατάστασης.

Το κτήριο της συγκεκριμένης μελέτης είναι μια μονοκατοικία μιας τυπικής οικογένειας τεσσάρων (4) μελών ευρισκόμενη στην περιοχή της πόλης των Αθηνών. Το εμβαδό της κατοικημένης ζώνης του κτηρίου είναι $100 m^2$ και κάθε ένας από τους τέσσερις τοίχους "κοιτάει" ένα από τα σημεία του ορίζοντα. Οι διαστάσεις του κτηρίου είναι πλάτος $X \mu \eta \kappa o \zeta X \psi \phi c = 10m X 10m X 3m$. Παρακάτω δίνεται η σύνθεση (τα υλικά από τα οποία αποτελούνται) των τοίχων και της οροφής, καθώς και το μέγεθος των υαλοπινάκων.

Σύνθεση τοίχων (ίδια σε βορρά, νότο, δύση και ανατολή):

Σοβάς 15 mm | τούβλο 120 mm | μόνωση 80 mm | τούβλο 120 mm | σοβάς 15 mm

Σύνθεση οροφής (από έξω προς τα μέσα):

• Επίστρωση οροφής 20 mm | μόνωση 60 mm | τσιμέντο | 150 mm.

Υαλοπίνακες :

• Επιφάνεια διπλού υαλοπίνακα: 3 m^2 σε δύση και ανατολή | 6 m^2 στο νότο.

Η εγκατάσταση είναι σχεδιασμένη ώστε να προσφέρει συνθήκες θερμικής άνεσης κατά τη διάρκεια της χειμερινής περιόδου, καθώς και ζεστό νερό χρήσης για τα 4 μέλη της οικογένειας. Στο παρακάτω σχήμα 5.1 φαίνεται το σκαρίφημα της εγκατάστασης.

Σχήμα 5. 1: Σκαρίφημα της εγκατάστασης θέρμανσης του κτηρίου.

Στο κτήριο υπάρχου δύο ανεμιστήρες, ένας για την εισαγωγή του φρέσκου αέρα στο κτήριο και ένας για την εξαγωγή αέρα ίσο με αυτόν που εισάγεται. Το ρεύμα του φρέσκου αέρα αποτελεί το 10% του εισερχόμενου στο κτήριο αέρα, ενώ το υπόλοιπο είναι αέρας ανακυκλοφορίας (βλέπε σχήμα 5.1). Ο αέρας προερχόμενος από το κτήριο, πριν την απόρριψή του προθερμαίνει το ρεύμα του φρέσκου αέρα μέσω ενός εναλλάκτη αντιρροής, δηλαδή χρησιμοποιείται ένα σύστημα ανάκτησης θερμότητας. Έπειτα το ρεύμα του εισαγόμενου αέρα θερμαίνεται από έναν εναλλάκτη αέρα νερού. Ο εναλλάκτης αυτός τροφοδοτείται από ένα δοχείο αποθήκευσης το οποίο με τη σειρά του τροφοδοτείται με ζεστό νερό είτε από επίπεδους ηλιακούς συλλέκτες είτε από την αντλία θερμότητας. Τέλος από το δοχείο αποθήκευσης διέρχεται σπειροειδής εναλλάκτης ο οποίος χρησιμοποιείται για παροχή του ζεστού νερού χρήσης.

ΣΤΡΑΤΗΓΙΚΗ ΛΕΙΤΟΥΡΓΙΑΣ

<u>Ηλιακός συλλέκτης.</u>

Ο βρόχος του ηλιακού συλλέκτη τίθεται σε λειτουργία όταν η διαφορά θερμοκρασίας της εισόδου από την έξοδο του συλλέκτη είναι μεγαλύτερη των 8°C, ενώ τιθεται εκτός λειτουργίας όταν η ίδια διαφορά θερμοκρασίας γίνει μικρότερη των 2°C.

Αντλία θερμότητας.

Η αντλία θερμότητας τίθεται σε λειτουργία όταν η θερμοκρασία στη μέση του δοχείου αποθήκευσης γίνει μικρότερη των 45°C και βγάινει εκτός λειτουργίας όταν γίνει μεγαλύτρη των 50°C. (Σκοπός είναι η διατήρηση της θερμοκρασίας στη μέση του δοχείου μεταξύ 45 – 50°C.

Θερμαντικό στοιχείο.

Όταν η θερμοκρασία εντός του κτηρίου γίνει μικρότερη από 20°C και ταυτόχρονα υπάρχουν άνθρωποι μέσα στο κτήριο η αντλία του θερμαντικού στοιχείου τίθεται σε λειτουργία, ενώ όταν η θερμοκρασία εντός του κτηρίου ξεπεράσει τους 22°C, κλείνει η αντλία.

5.2 Εισαγωγή των παραμέτρων του κτηρίου.

5.2.1 Εισαγωγή κτηριακής εγκατάστασης (Building Project Multizone)

To simulation studio του TRNSYS 18 διευκολύνει την εισαγωγή του κτηρίου με τη βοήθεια του building wizard το οποίο εισάγει τις βασικές παραμέτρου του κτηρίου και πραγματοποιεί τις βασικές συνδέσεις μεταξύ των στοιχείων που αποτελούν το κτήριο. Αρχικά δημιουργείται ένα νέο αρχείο πατώντας το εικονίδιο με την κενή σελίδα πάνω αριστερά στο simulation studio και επιλέγεται το Building Project multizone (βλέπε σχήμα 5.2). Πατώντας next εισάγονται στα επόμενα βήματα οι βασικές παράμετροι του κτηρίου.

New	×
Select project type Empty TRNSYS Project Building Project Coupled MAT	Description Multizone building model The assistant will help you set up a multizone building project, including the building description. You can use the TRNSYS building editor (TRNBuild) Afterwards to modify the building in the project window (right-click on type56 and choose 'Edit Building').
Step 1 Next->	Cancel

Σχήμα 5. 2: Βήμα 1 εισαγωγή Building Project multizone.

Στο επόμενο βήμα εισάγονται οι ζώνες από τις οποίες αποτελείται το κτήριο καθώς και εάν έχουν κάποιο κοινό τοίχο (αριστερό παράθυρο). Οι ζώνες οι οποίες γειτονεύουν φαίνονται στο δεξί παράθυρο του βήματος 2. Εδώ θεωρείται ότι όλο το κτήριο είναι μία ζώνη (Zone A1) και συνεπώς δεν συνορεύει με καμία ζώνη. Στο επόμενο βήμα επιλέγοντας μια ζώνη εισάγονται οι διαστάσεις αυτής. Εδώ η ζώνη A1 έχει ύψος 3 m πλάτος και μήκος (βάθος) 10 m (βλ. σχήμα 5.3).

Σχήμα 5. 3: Βήμα 2 & 3, εισαγωγή των ζωνών και των διαστάσεών τους.

Στο επόμενο βήμα εισάγονται η περιοχή στην οποία βρίσκεται το κτήριο, η έκταση των υαλοπινάκων ως ποσοστό του τοίχου στον οποίο βρίσκονται, σε κάθε κατεύθυνση, και η προσανατολισμός του κτηρίου, δηλαδή εάν η κάθετη στον νότιο τοίχο αποκλίνει από την βόρεια διεύθυνση (βλ. σχήμα 5.4). Σε αυτή την εφαρμογή η γωνία (αζιμουθίου) αυτή είναι 0°. Επιπλέον το μέγεθος των υαπλοπινάκων και η περιοχή του κτηρίου μπορούν να αλλάξουν στη συνέχεια από το TRNBUILD και το simulation studio.

Windows, orientation and location	×
Fraction of windows in external walls [%] North 0.0 West 0.0 0.0 East 0.0 South Building rotation North 0 (deg.)	
Location .\Weather\US-TMY2\US-WI-Madison-14837.tm2 Browse	
<< Previous Step 4/10 Next >> Cancel	

Σχήμα 5. 4: Θέση, απόκλιση κτηρίου και ποσοστό υαλοπινάκων ως προς του εξωτερικούς τοίχους.

Το βήμα 5 αφορά την διείσδυση αέρα στις ζώνες του κτηρίου. Σε αυτό το βήμα ο χρήστης εισάγει μία τιμή για όλες τις ζώνες, όμως έχει την δυνατότητα να την αλλάξει μετά την ολοκλήρωση των βασικών βημάτων στο περιβάλλον του TRNBuild. Εδώ επιλέγεται η προεπιλεγμένη τιμή 0.2 αλλαγές/h, τιμή που στη συνέχεια θα αλλάξει. Στο βήμα 6 εισάγονται ιδανική θέρμανση ή/και ψύξη του κτηρίου. Εδώ δεν επιλέγεται ούτε ψύξη ούτε θέρμανση, καθώς θα δημιουργηθεί συγκεκριμένο σύστημα θέρμανσης του κτηρίου, όπως περιγράφεται σε επόμενη παράγραφο (βλ. σχήμα 5.5).

Infiltration and ventilation	Х	Heating and cooling	×
Infiltration (valid for all zones) Leakage 0.2 [1/h]	1	Heating	
Mechanical ventilation			
Natural ventilation			
<< Previous Step 5/10 Next >>	Cancel	<< Previous Step 6/10 Next >> Cancel	

Σχήμα 5. 5: Εισαγωγή διείσδυσης αέρα και θέρμανσης ή ψύξης στο κτήριο.

Στο επόμενο βήμα 7 εισάγονται οι τιμές των κερδών που τυχόν υπάρχουν στο εσωτερικό του κτηρίου, καθώς και των φορτίων λόγω φωτισμού. Τα κέρδη αυτά μπορούν να αλλάξουν αργότερα στο TRNBuild, για αυτό και παίρνουν τις προεπιλεγμένες τιμές τους (βλ. σχήμα 5.6).

Gains and lighting	×
	. <u>(</u>
Internal gains	
Specific gains [14] [W/m^2] Values apply to all zones. They can be changed in	
Occupant density 0.1 [occupants/m^2] TRNBuild later.	
Lighting	
Light ON if total	
Light OFF if total horizontal rad > 200 [W/m^2] Values apply to all zones. They can be changed in TRNBuild later.	
Specific light 10 [W/m^2]	
<< Previous Step 7/10 Next >>	Cancel

Σχήμα 5. 6: Προσδιρισμός εσωτερικών φορτίων και φωτισμού του κτηρίου.

Στα επόμενα βήματα 8 και 9 εισάγονται η σταθερή και η κινητή σκίαση του κτηρίου. Εδώ θεωρείται ότι δεν υπάρχει κανένα είδος σκίασης και για αυτό δεν γίνεται καμία αλλαγή σε αυτά τα βήματα (βλ. σχήμα 5.7).

Fixed shading ×	Movable shading X
Orientation Active	Orientation Active
<< Previous Step 8/10 Next >> Cancel	<< Previous Step 9/10 Next >> Cancel

Σχήμα 5. 7: Εισαγωγή σταθερής και κινητής σκίασης στο κτήριο.

Τέλος το βήμα 10 έχει τον χαρακτήρα επαλήθευσης και ενημερώνει το χρήστη ότι όλα τα δεδομένα των προηγούμενων βημάτων θα εισαχθούν πατώντας το κουμπί create project (βλ. Σχήμα 5.8).

Σχήμα 5. 8: Τελευταίο βήμα επαλήθευσης και δημιουργία της βασικής κτηριακής εγκατάστασης.

Μετά το τελευταίο βήμα δημιουργείται η βασική εγκατάσταση που περιλαμβάνει το κτήριο, τα μετεωρολογικά δεδομένα και άλλα στοιχεία έπειτα από την ολοκλήρωση των βασικών βημάτων (βλ. σχήμα 5.9).

Σχήμα 5. 9: Η κτηριακή εγκατάσταση στο simulation studio.

Το TRNSYS δημιουργεί αυτόματα ένα φάκελο με τα τα αρχεία του κτηρίου (.b18), της εγκατάστασης στο simulation studio (.tpf) και του αρχείου εισόδου αυτής (.dck) στη θέση TRNSYS18> MyProjects>BuildingProject (βλ. σχήμα 5.10).

📙 🛃 📙 🖛 BuildingP	roject			
File Home Share	View			
← → ~ ↑ 🔒 > Thi	is PC → Local Disk (C:) → TRNSYS18	» MyProjects > BuildingProject		v Ū /
- Quick accord	Name	Date modified	Туре	Size
	📄 BuildingProject.b18	3/9/2021 1:20 AM	B18 File	23 KB
Desktop 🗶	BUILDINGPROJECT.bld	3/9/2021 1:20 AM	BLD File	7 KB
👆 Downloads 🛛 🖈	📄 BuildingProject.dck	3/9/2021 1:20 AM	DCK File	13 KB
🔮 Documents 🛛 🖈	🔄 BuildingProject	3/9/2021 1:20 AM	Setup Information	24 KB
📰 Pictures 🛛 🖈	📄 BuildingProject	3/9/2021 1:20 AM	Text Document	1 KB
📙 Documentation	📄 BuildingProject.tpf	3/9/2021 1:20 AM	TPF File	198 KB
Multizone_Bulding_	BUILDINGPROJECT.trn	3/9/2021 1:20 AM	TRN File	2 KB
MyProjects				
Screenpresso				
💻 This PC				
💣 Network				

Σχήμα 5. 10: Θέση φακέλου της νέας κτηριακής εγκατάστασης.

Στο μπλοκ εξισώσεων με τίτλο Radiation έχουν δημιουργηθεί για κάθε μια από τις επιφάνειας με αζιμούθιο επιφανείας $\gamma = 0^\circ$, 90° , $180^\circ \kappa \alpha \iota - 90^\circ$ είσοδοι για την γώνια πρόσπτωσης, την άμεση, διάχυτη και ολική ακτινοβολία, οι οποίες χρησιμοποιούνται από TRNBUILD. Αυτές δημιουργήθηκαν μέσω του building wizard αυτόματα, αλλιώς ο χρήστης θα πρέπει να τις δημιουργήσει μόνος του.

5.2.2 Εισαγωγή των παραμέτρων των δομικών υλικών του κτηρίου.

Η αλλαγή της δομής των τοίχων, της οροφής και άλλων παραμέτρων του κτηρίου γίνεται με δεξί κλικ στο type 56 (Building) και επιλογή Edit Building (σχήμα 5.11), οπότε ανοίγει παράθυρο του TRNBuild με τις παραμέτρους του κτηρίου.

Σχήμα 5. 11: Αλλαγή παραμέτρων κτηρίου.

Στο περιβάλλον του TRNBuild υπάρχει αριστερά το πράθυρο με την περιγραφή του κτηρίου, το ημισφαίριο στο οποίο βρίσκεται και οι παράμετροι των επιφανειών που χρησιμοποιούνται σε αυτό (σχήμα 5.12). Η έκφραση H_0_0 δηλώνει μια επιφάνεια με αζιμούθιο 0° (κοιτάει στο νότο) και κλίση 0° (οριζόντια επιφάνεια). Το αριστερό παράθυρο (TRNBuild Navigator) περιέχει όλες τι παραμέτρους του κτηρίου, όπως μεταβλητές εισόδου και εξόδου στο κτήριο, ο χρήστης μπορεί να ορίσει φορτία, θέρμανση κ.α., ενώ περιέχει και τις ζώνες του κτηρίου.

Σχήμα 5. 12: Το περιβάλλον του TRNBuild.

Εδώ υπάρχει μια ζώνη, όπως επιλέχθηκε προηγουμένως, και πατώντας σε αυτή (Zone A1) ανοίγει ένα παράθυρο το οποίο αφορά μόνο αυτή τη ζώνη και εδώ ο χρήστης μπορεί να επιλέξει την δομή των τοίχων, τα φορτία της ζώνης, τη θερμοχωρητικότητα αυτής κ.α.

🕏 Zone: Zone_A1 - Airnode: Zone_A1	- • ×
Airnodes Airnode Regime Data	Therm. Zone
Zone_A1 volume: 300 m^3 ·] rhilltration 🏰 Heating 🧘 Gains/losses 🌞 Initial Values 🏠 Couplin	ng Radiation Modes
Capacitance: 720 kJ/K Cooling Cooling Comfort	Geometry Modes
Walls, floors, ceilings, roofs (Total number: 5)	Daylight Modes
suf-ID suf-type construction-type area category	u-Value g-Value
Additional Windows	
1 VALL 0UTWALL - 30:00 EXTERNAL N:180:30 2 WALL 01TWALL - 30:00 EXTERNAL 50:00 3 WALL 01TWALL - 30:00 EXTERNAL 50:00 4 WALL 01TWALL - 30:00 EXTERNAL E_270:90 4 WALL 01TWALL - 30:00 EXTERNAL W_30:30 5 WALL 01TWALL - 30:00 EXTERNAL W_30:30	
surface-ID: 1	
surface-type: 💽 wall C floor C ceiling C roof	
construction-type: OUTWALL < new	
area: 30 m^2 incl. windows	
category: EXTERNAL -	
geosuft D.1	
surf. gain inside: D	
surf. gain outside:	
orientation: N_180_90	
view fac. to sky: 0.5	
🗖 external shad. factor: 💽 🕖	
Shading control: O integrated radiation control acc. to wall type	
 external control [included in shading factor] 	

Σχήμα 5. 13: Οι μεταβλητές της ζώνης Α1.

Για την επιλογή της δομής των τοίχων επιλέγεται η επιφάνεια 1, και κάτω από τον κατάλογο των επιφανειών επιλέγεται στη θέση construction type -> new (σχήμα 5.13). Έτσι ανοίγει το construction type manager και ο χρήστης εισάγει για το συγκεκριμένο δομικό στοιχείο (κάθετος τοίχος) τα υλικά από τα οποία αποτελείται. Για τον κάθε τοίχο κάθε δομικό υλικό εισάγεται από την λίστα στα δεξία αυτού του παραθύρου πατώντας το επιθυμητό υλικό και έπειτα το βελάκι προς τα αριστερά. Επισημαίνεται ότι στην λίστα με τα υλικά/στρώσεις από τα οποία αποτελείται ο τοίχος επάνω γράφει front/inside, δηλαδή το πρώτο υλικό/στρώση θα είναι στο εσωτερικό του κτηρίου, ενώ το τελευταίο θα "βλέπει" το περιβάλλον (βλ. Σχήμα 5.14). Για διαγραφή του υλικού επιλέγεται αυτό και έπειτα το βελάκι προς τα δεξιά.

🕏 Zone: Zone_A1 - Aimode: Zone_A1	
Airnodes Airnode Regime Data	Therm. Zone
Zone_A1 volume: 300 m^3 Zone_A1 capacitance: 720 kJ/K ref. floor area: 1 m^2	New Construction Type Construction Type" Manager
Walls, floors, cellings, roofs (Total number: 5)	new construction type: WALL001
surf-ID surf-lype construction-type area category Additional Windows	Layer
1 WALL OUTWALL - 30.00 EXTERNAL N 2 WALL OUTWALL - 30.00 EXTERNAL N 3 WALL OUTWALL - 30.00 EXTERNAL 4 WALL OUTWALL - 30.00 EXTERNAL V 5 WALL OUTWALL - 30.00 EXTERNAL V 5 WALL GROUND - 100.00 BOUNDARY	Image: state in the state i
surface-D: 1	SILENCE GYPSUM INSUL
surface-type: • wall C floor C ceiling C roof	beck
construction-type: OUTWALL < new	total thickness: 0.350 m
area: 30 m^2 incl windo	u - value: 0.406 W/m ² 2 K for reference only
category: EXTERNAL -	(incl. h_i+7.7 W/m^2 K and h_o+25 W/m^2 K)
geosurf: 💽 0.1	Solar Absorptance Longwave Emission Coefficient
surf. gain inside: 💽 0	front: 0.6 - front: 0.9 -
surf. gain outside: 💽 0	back 0.6 - back 0.9 -
orientation: N_180_90 N_180_90 view fac. to sky: 0.5	Note. The emissivity of inside surfaces are applied by the detailed longwave radiation mode only! For the standard model fixed values of 0.9 are used. For the standard model fixed values of 0.9 are used.
	front back
	Cuserdefined IP internal calculation IP userdefined IP internal calculation
external shad, factor: for the state of the stat	C floor C ceiling 🕫 vertical wall 💽 🤂 kJ/h m 12 K
	~

Σχήμα 5. 14: Εισαγωγή δομής κάθετων τοίχων.

Το TRNBuild επιτρέπει στον χρήστη να επιλέξει τον τρόπο υπολογισμού της ειδικής συναγωγιμότητας αέρα. Για την εσωτερική (front) επιφάνεια του τοίχου επιλέγεται internal calculation>vertical wall. Για την εξωτερική επιφάνεια επιλέγεται user defined, πατώντας το πράσινο βελάκι, input και έπειτα new input με όνομα HOUTSIDE και μονάδες $kJ/h m^2 K$ (βλ. σχήμα 5.15). Αυτή η μεταβλητή τώρα είναι είσοδος στο κτήριο και θα οι τιμές που θα παίρνει θα οριστούν σε επόμενο βήμα στο simulation studio.

Back [kJ / h m² K]	
Back [k] / h m² K]	
C Constant Value Input I Schedule	
Input	
1 × undefined + 0	
New Input	-
New Input	
name: HOUTSIDE	
unit: 🔣/hr.m°2.K	
short description: Input	
Caution: There is no unit check available yet! The user has to ensure that the units are matching.	
1011. bash	
Cuserdefined C internal calculation C userdefined C internal calculation	
1000 Cetting (* vertical wall bill 164 kJ/h m^2 K	
	¥

Σχήμα 5. 15: Εισαγωγή ειδικής συναγωγιμότητας για την εξωτερική επιφάνεια των τοίχων.

Στο επόμενο σχήμα 5.16 φαίνεται η δομή του εξωτερικού τοίχου WALLOO1(σχήμα 5.16). Η δομή αυτή αποτελεί την δομή των τεσσάρων εξωτερικών τοίχων του κτηρίου και επιλέγεται πατώντας σε κάθε επιφάνεια στο construction type και επιλογή του WALLOO1 (βλ. σχήμα 5.17).

New Construction Type	
Construction Type" Manager	
new construction type: WALL001	
Layer	
front / inside	
No. Layer Thickness Typ 1 PLASTER 0.015 massive 2 BRICK 0.120 massive 3 INSUL 0.080 massive 4 BRICK 0.120 massive 5 PLASTER 0.015 massive back total thickness: 0.350 m u - value: 0.406 W/m ² 2 K for ref	
[incl. h_i=7.7 W/m^2 K and h_o=25 \ Solar Absorptance	W/m^2 K)
front: 0.6 -	front: 0.9
back 0.6 -	back 0.9 -
Convective Heat Transfer Coefficient	Note. The emissivity of inside surfaces are applied by the detailed longwave radiation mode only! For the standard model fixed values of 0.9 are used.
front	back
Cuserdefined C internal calculation C floor C ceiling C vertical wall	userdefined C internal calculation Internal calculation
	~

Σχήμα 5. 16: Δομή και συναγωγιμότητες εσωτερικής και εξωτερικής επιφάνειας του εξωτερικού τοίχου.

-	noue ^T M1
Airnodes	Airnode Regime Data
Zone_A1 Zone_A1 Tone_A1 Tone_A1 Tone_A1	volume: 300 m^3 · · · · Infilm capacitance: 720 kJ/K ref. floor area: 1 m^2
sufJD Leaf-tune Loopstruction	dune I latea Icateroni I
Additional Windows 1 WALL WALL001 2 WALL WALL001 3 WALL WALL001 4 WALL WALL001 5 WALL GROUND	- 30.00 EXTERNAL N_180_90 - 30.00 EXTERNAL S_0.90 - 30.00 EXTERNAL S_0.90 - 30.00 EXTERNAL E_270_90 - 30.00 EXTERNAL W_90_90 - 100.00 BOUNDARY
surface-ID: 2 surface-type: @ wa construction-type: area:	WALLOD1 C new V 30 C new
category: EXTE geosurf: surf. gain inside: surf. gain outside: orientation:	RNAL GROUND 0.1 INTFLOOR INTWALL O 0 OUTWALL 0 WALL001 0 WALL001 0 WALL001

Σχήμα 5. 17: Επιλογή του WALL001 για όλους του εξωτερικούς τοίχους.

To building wizard κατά την δημιουργία του κτηρίου δεν δημιούργησε την επιφάνεια που αφορά την οροφή. Για την εισαγωγή μιας νέας επιφάνειας ο χρήστης πατάει το "+" στη λίστα με τις επιφάνειες όποτε δημιουργείται η επιφάνεια 6. Επιλέγεται είδος επιφάνειας surface type> roof, category> external και προσανατολισμός orientation> H_0_0 (οριζόντια επιφάνεια). Ο συντελεστής θέασης στον ουρανό (view factor to sky) παίρνει τιμή μηδέν εάν εμποδίζεται τελείως η θέαση της επιφάνειας στον ουρανό, και 1 εάν είναι ανεμπόδιστη. Εδώ επιλέγεται μια τιμή 0.9 για την οροφή ενώ για τους κάθετους τοίχους είναι 0.5 (σχήμα 5.18).

surf-ID surf-type co	nstruction-type		area	category	
dditional Windows	11.001		20.00	EVICEDIU	N 100 00
1 WALL WA 2 WALL WA	LL001		30.00	EXTERNAL	N_180_90 S_0.90
3 WALL WA	LL001	-	30.00	EXTERNAL	E_270_90
4 WALL WA	LL001		30.00	EXTERNAL	W_90_90
5 WALL GRI 6 BODE und	lefined		100.00	EXTERNAL	ноо
0 11001 010	STILLES ST		100.00	Entre Interes	11_0_0
+)					
urface-ID:	6				
urface-type:	C wall	C floor	C ceiin	g 🔍 roof	
surface-type: construction-type:	C wall	C floor	C ceilin	g 💽 roof	- -
surface-type: construction-type:	C wall	C floor indefined	C ceiin	g (● roof <new m^2_inclusi</new 	
surface-type: construction-type: area:		C floor indefined	C ceilin 100	g roof <-new m^2 incl.wi	- ndows
urface-type: construction-type: rea: ategory:	C wal	floor Indefined	C ceilin 100	g (°roof ∢-new m^2 incl.wi	↓ ndows
auface-type: construction-type: area: category: geocurf:	C wall	C floor indefined	C ceilin 100 T	g (* roof <-new m^2 incl.wi	ndows
auface-type: construction-type: area: category: geosurf: suf. gain inside:	C wal	C floor Indefined	C ceilin 100	g (* roof <-new m^2 incl.wi	ndows
auface-type: construction-type: area: category: geosurf: suf, gain inside: suf, gain outside:	C wal	C floor Indefined	C ceiin 100	g (* roof <-new m^2 incl.wi	ndows
urface-type: construction-type: rea: ategory: eosurf: urf. gain inside: urf. gain outside:	C wal	C floor Indefined	C ceiin 100 T	g (* roof (- new , m^2 incl.wi	kJ/h
urface-type: construction-type: rea: ategory: ecosurf: urf. gain inside: urf. gain outside:	C wal	C floor indefined	C ceiin 100 T	g (* roof (*-new m^2 incl.wi	kJ/h
urface-type: construction-type: ategory: ategory: urf. gain inside: urf. gain outside: ientation:	C wal	C floor indefined L H_0_0	C ceiin	g (* roof (* new) m^2 incl.wi	ndows kJ/h kJ/h

Σχήμα 5. 18: Εισαγωγή της νέας επιφάνειας (οροφή).

Πατώντας τη δημιουργία νέας δομής στο construction type ανοίγει το construction type manager (βλ. σχήμα 5.18). Ο χρήστης μπορεί να εισάγει ένα υλικό με τις επιθυμητές ιδιότητες μέσω του layer type manager, πατώντας new, δεξιά από τη σύνθεση της δομής, στο πάνω μέρος τις λίστας με τα ήδη υπάρχοντα υλικά. Εδώ εισάγεται τσιμέντο και επίστρωση οροφής με θερμοφυσικές ιδιότητες όπως φαίνονται στο σχήμα 5.19.

New Layer Type	
Line "Layer Type" Manager	Layer Type* Manager
new layer type: concrete_new	layer type: rooling v
Definition	Definition
If Massive Layer ∩ Massless Layer ∩ Active Layer ∩ Chiled Celling conductivity: 1.908 kJ / h m K capacity: 0.84 kJ / kg K density: 1280 kg / m ³	C Massive Layer C Massless Layer C Active Layer C Child Celing conductivity: 0.504 kJ / h m K cepacity: 0.5 kJ / kg K density: 0.53 kg / m^3
Embodied Energy (optional data, not required for thermal simulation) total renewable primacy energy: 0 MJ / kg total non-renewable primacy energy: 0 MJ / kg	Embodied Energy (optional data, not required for thermal simulation) total renewable primary energy: MJ / kg total non-renewable primary energy: 0 MJ / kg

Σχήμα 5. 19: Εισαγωγή νέων υλικών μέσω layer type manager.

Η σύνθεση της οροφής και οι ειδικές συναγωγιμότητες στην εσωτερική και εξωτερική επιφάνεια της φαίνονται στο σχήμα 5.20.

		ie. Iware	.002			
front	/inside					
N	0. 1 con 2 INS	Layer crete_new UL	Thickness 0.150 0.060	Type massive massive	4	C- new C- Library BRICK CONCRETE
					-	INSUL
back	otal thickn u - value:	ess: 0.2 0.4 (incl. h_i=	30 m 77 W/m^21 77.7 W/m^2 K and	K for reference only i h_o=25 W/m^2 Kj	+	INSUL concrete_new roofing
back I Solar Ab	otal thickn u - value: sorptario	ess: 0.2 0.4 (incl. h_i=	30 m 77 W/m^21 77.7 W/m^2 K and	K for reference only d h_o=25 W/m^2 K) Longwar	ve Emiss	INSUL concrete_new roofing
back I Solar Ab	otal thickn u - value: sorptanc	ess: 02 0.4 (incl. h_i= 2 0.6 -	30 m 77 W/m^21 77.7 W/m^2 K and	K for reference only d h_o=25 W/m^2 K) <u>Longwar</u> front:	ve Emiss	INSUL concrete_new roofing ion Coefficient
back I Solar Ab front back	otal thickr u- value: sorptanc	ess: 0.2 0.4 (incl. h_i= 0.6 - 0.6 -	30 m 77 W/m^21 7.7 W/m^2 K and	K for reference only d h_o=25 W/m^2 KJ front: back	ve Emiss	INSUL concrete_new roofing ian Coefficient 0.9 -
back Solar Ab front back	otal thickr J - value: Sorptano	ess: 0.2 0.4 (incl. h_i= 0.6 - 0.6 - Transfer Coeff	30 m 77 W/m^2 7.7 W/m^2 K and	K for reference only d h_o=25 W/m^2 KJ front: back. Note. The er detaile For the	ve Emiss missvity o d longwa s standard	INSUL concrete_new roofing ion Coefficient 0.9 - 0.9 - of inside surfaces are applied by th rve radiation mode only! d model fixed values of 0.9 are use

Σχήμα 5. 20: Σύνθεση της δομής της οροφής μέσω construction type manager.

Για το συγκεκριμένο κτήριο η επιφάνεια του πατώματος αποτελεί μέρος της θεμελίωσης του κτηρίου, όπου οι επιφάνεια αυτή στις άκρες της εκτείνεται προς τη γη (slab on grade). Έτσι εδώ υπάρχει διάδοση θερμότητας σε τρείς διαστάσεις. Για την απλοποίηση αυτού του προβλήματος χρησιμοποιήθηκε η μέθοδος του συντελεστή F (F factor method) που περιγράφεται στο παράρτημα Α του προτύπου 90.1-2019 (οι τιμές του πίνακα F δίνονται στον πίνακα A 6.3.1-1) της ASHRAE.

Η θερμική ροή υπολογίζεται από $q = F \cdot P (T_i - T_a)$ 5.1 όπου F ο συντελεστής F, P η περίμετρος της εκτεθειμένης επιφάνειας (του πατώματος) και T_i , T_a η θερμοκρασία εντός του κτηρίου και του περιβάλλοντος αντίστοιχα. Επιπλέον η θερμοροή υπολογίζεται και ως $q = U \cdot A (T_i - T_a)$ 5.2 όπου U είναι ο συντελεστής μετάδοσης θερμότητας του πατώματος και A το εμβαδό του. Στον πίνακα A 6.3.1-1 του παραπάνω προτύπου δίνονται οι τιμές του συντελεστή F συναρτήσει του μήκους της μόνωσης της θεμελίωσης. Εδώ επιλέγεται η τιμή του F για 12 ίντσες κάθετης μόνωσης R-10, δηλαδή μόνωσης με θερμική αντίσταση $10 \frac{ft^{2} \cdot F \cdot h}{Btu}$. Η τιμή του συντελεστή F είναι 0.58 $\frac{Btu}{h \cdot ft \cdot F}$ ή $F = 1.004 \frac{W}{m \cdot K}$. Από τις εξίσωσης 5.1 και 5.2 προκύπτει $U = \frac{F \cdot P}{A}$ 5.3, όπου P = 40 m και $A = 100 m^2$. Προκύπτει $U = 0.4016 \frac{W}{m^2 \kappa}$. Έχοντας εισάγει τα επιθυμητά δομικά υλικά του πατώματος (floor,
concrete new) προστίθεται το κατάλληλο πάχος μόνωσης για επιτευχθεί η παραπάνω τιμή του συντελεστή μετάδοσης θερμότητας. Επιπλέον για την συναγωγιμότητα της εξωτερικής επιφάνειας του πατώματος επιλέγεται τιμή 0.001 καθώς βρίσκεται σε επαφή με το έδαφος. Το πάτωμα συνδέεται με την θερμοκρασία του εδάφους μέσω της μεταβλητής TGROUND, η οποία θα καθοριστεί αργότερα μέσω στο simulation studio (βλ. σχήμα 5.21).

Zone: Zone_A1 - Aimode: Zone_A1		
Airnodes Airnode Regime Data		Therm. Zone
Airnodes Airnode Regime Data Zone_A1 • Cone_A1 • Cone_A1 • •	Construction Type Manager Construction Type" Manager construction Type" Manager construction Type GROUND Layer Front / inside No. Layer Thickness Type 1 FLOOR 0.005 massive 2 concrete_new 0.100 massive 3 INSUL 0.002 massive	Therm. Zone ✓ Concentration <p< th=""></p<>
surface-ID: 5 surface-type: C wall I foor C ceiling C roof construction-type: GROUND K-new V area: 100 m ² category: BOUNDARY V geosurf: 0.6 surf. gain inside: 0 kJ/h	back total thickness: 0.187 m u - value: 0.403 W/m²2 K for reference only (incl h_=7.7 W/m²2 K and h_o=25 W/m²2 K) Solar Absorptance Longwa front 0.8 · front: back 0.4 · back	ve Emission Coefficient
coupling air flow: 0 kg/h coupl. ret. humidity: 0 % boundary conditions: • userdefined identical % It 1*TGROUND *C	Note: The e The details Convective Heat Transfer Coefficient Model For the front back Back Cuserdefined Cinternal calculation Cuserdefined C toor Ceiling Vertical wall 0.0	nissivity of inside surfaces are applied by the d longwave radiation mode only! e standard model fixed values of 0.9 are used. atimed C internal calculation 01 kJ/h m^2 K

Σχήμα 5. 21: Εισαγωγή της δομής του πατώματος του κτηρίου.

Για την εισαγωγή του υαλοπίνακα στη νότια κατεύθυνση του κτηρίου επιλέγεται ο τοίχος της νότιας κατεύθυνσης (επιφάνεια 2) και πατώντας το "+" κάτω από το πεδίο με τα παράθυρα δημιουργείται ο υαλοπίνακας στη νότια κατεύθυνση (βλ. σχήμα 5.22). Η επιφάνειά του είναι 6 m^2 και συμπληρώνεται στο πεδίο area, ενώ η σύνθεσή του από το construction type>DOUBLE. Πατώντας δεξί κλικ στο double ανοίγει παράθυρο με τις παραμέτρους του διπλού υαλοπίνακα. Εδώ αλλάζουν μόνο οι συναγωγιμότητες της εσωτερικής και εξωτερικής επιφάνειας του υαλοπίνακα, όπως φαίνεται στο παρακάτω σχήμα 5.23.

🕏 Zone: Zone_A1 - Air	node: Zone_A1									-	
Airnodes		Airnode Re	gime Data							Therm	Zone
Zone_A1 Zone_A1	•	volume:	300 m^3	3 · 💽 · Infiltra	stion 🏰	Heating 🧕	👝 Gains/losses 📫	nitial Values 🧲	Coupling		Radiation Modes
	ber 1	capacitance:	720 kJ/	K 🛞 Venti	ation 🦂	Cooling 📡	👷 Comfort 🛛 💏 H	lumidity		()	Geometry Modes
Walls, floors,	, ceilings, roo	ref. floor area: ifs (Total nu	imber:6)	2		Windows	(Total number: 1)				Daylight Modes
surf-ID surf-type con	struction-type	area	category	1	sur	ID surf-type	construction-type	area	category	u-Value	∣g-Value
Additional Windows 1 WALL WAL 2 WALL WAL 3 WALL WAL 4 WALL WAL 5 FLOOR GRO 6 RODF WAL	L001 L001 L001 L001 UND L002	- 30.00 - 30.00 - 30.00 - 30.00 - 100.00 - 100.00	EXTERNAL EXTERNAL EXTERNAL EXTERNAL BOUNDARY EXTERNAL	N_180_90 S_0_90 E_270_90 W_90_90 H_0_0	7	WINDOW	DOUBLE	6.00	EXTERNAL	1.1	0.62
00					6)=					
surface-ID:	2				sur	ace-ID:	7				
surface-type:	🖲 wali 🤇 f	loor . C ceilin	g 🔿 roof		surf	ace-type:	window				
construction-type:	WAL	L001	< new	•	con	struction-type:	DOUBLE	< ner	w	•	[
area		30	m^2 incl. win	dows	are	r		6 m^2			
category:	EXTERNAL	•			cat	sgory:	EXTERNAL	-		_	
geosuf:	0.1				geo	sum: gain inside:				-	
surf. gain inside:	D 0			kJ/h	sur	gain outside:				- kJ/h	
surf. gain outside:	D D			kJ/h	orie	ntation:	S_0_90	N_180	0_90		[
orientation: view fac. to sku:	S_0	_90	N_180_90	*	vie	v fac. to sky:	0.5				
	1									_	

Σχήμα 5. 22: Εισαγωγή υαλοπινάκων στο κτήριο.

dow Type Manager		
Window Type" Manager		🗸 🗙
window type: DOUBLE]	
Glazing		Frame
ID number: 201 slope of window: So userdefined So utrace orientation So doge Carl design of the width D m beight D m	u - value: 1.1 W/m*2K values acc. 10 ga: value: 0.62 %/100 reference only	window frame ▶ 0.2 . c - value (1/ R) ▶ 817 kJ/h m*2 (without corw, + rad heat transfer coefficients!) solar absorptance: 0.6 . eminisivity: 0.9 . . .
Optional Properties of Shading Devices		Glazing + Frame
Additional Thermal Resistance	Reflection Coefficient of Internal Device	Front (inside) - Convective Heat Transfer Coefficient
internal device:	towards window. D 0.5 - towards zone: D 0.5 -	Cusedefined Finternal calculation Cintloor Cinceting Fivertical window
Radiation depending shading control (internal model)	Emissivity of Internal Device towards zone 0.9 - Fraction of abs. Solar Radiation of Internal Device transformed to a conv.	Back (outside) - Convective Heat Transfer Coefficient
window >	Heat Flow Rate (CCISHADE)	Embodied Energy (onlines) data and you used for thermal rise (bline)
Open if total F76 kJ/h m^2 radiation on F76 kJ/h m^2	0.5 % / 100 Add as conv. gain to aimode: 1	total renewable primary energy. 0 MJ / m^2
Daylight Properties (required if window is used in thermal zone with	laylight sensor points)	total non-renewable primary energy: 0 MJ / m^2
Visible light transmittance: 0.78 - (acc. to Material name unshaded: undefined Used ni	lazing library for reference only) tes have to be defined in the radiance matrial file:	
Material name shaded: undefined	en radiance material file	
Note: For the shaded configuration it is assumed that the binds cover all gl approach for selecting a material for shaded state is to reduce the visual lig	ing area without the need of modeling the device geometrical. A simplified transmittance of the unshaded glazing by a shading factor.	

Σχήμα 5. 23: Επιλογή ειδικής συναγωγιμότητας της εσωτερικής και εξωτερικής επιφάνειας του υαλοπίνακα.

Με το ίδιο τρόπο εισάγονται και οι υαλοπίνα
κας εμβαδού 3 m^2 στον ανατολικό και δυτικό τοίχο.

Αποθηκεύοντας της αλλαγές του κτηρίου, κλείνοντας το TRNBuild, επιστρέφουμε στο simulation studio. Πατώντας δεξί κλικ στο κτήριο (type 56) και πατώντας Update variables list (σχήμα 5.24) οι νέες μεταβλητές που ορίστηκαν στο TRNBuild προηγουμένως (HOUTSIDE, TGROUND) φαίνονται ως είσοδοι στο type 56. Οι εξισώσεις και ελεγκτές Light thresholds, shading & light, και Lights που δημιουργήθηκαν από το building wizard δεν χρειάζονται σε αυτή την εγκατάσταση αφού θα ορίσουμε εκ νέου τα φορτία φωτισμού, οπότε διαγράφονται.

Σχήμα 5. 24: Εμφάνιση των νέων μεταβλητών, που ορίστηκαν στο TRNBuild, στο simulation studio.

Η ειδική συναγωγιμότητα για εξωτερικούς χώρους δίνεται από τη σχέση McAdams $h_{out} = 3.6 \cdot (3.8 \cdot Windspeed + 7.4)$ (5.4) διορθωμένη, έτσι ώστε να έχει μονάδες $kJ/h m^2 K$, καθώς αυτές οι μονάδες που έχουν οριστεί στο TRNBuild. Εισάγεται μια καινούργια εξίσωση από τη γραμμή εργαλείων assembly> new equation και έχει ως είσοδο την ταχύτητα του αέρα και έξοδο την ειδική συναγωγιμότητα όπως περιγράφεται από την εξίσωση 5.4 (σχήμα 5.25).

(BuildingProject.tpf) Convection	on	-		×
= 🗹 Show input in Macro	Intermediates & Outputs			
Windspeed	D ConvCoef			
	×			×
	85			85
				Q
ConvCoef	 3.6"(3.8"windspeed 7.4) [Outside convection 	coefficient	(
Show output in Macro				
			_	

Σχήμα 5. 25: Υπολογισμός της ειδικής συναγωγιμότητας στο simulation studio.

Από το weather data (type 15) συνδέεται η ταχύτητα του αέρα με την αντίστοιχη είσοδο στην εξίσωση (Wind Velocity> Windspeed) και η έξοδος από την εξίσωση με την είσοδο στο κτήριο (Convcoef> HOUTSIDE).

Για την θερμοκρασία του εδάφους TGROUND επιλέγεται από την βιβλιοθήκη Physical Phenomena> Simple Ground Temperature Model> type 77. Για την περιοχή του Θησείου, όπου βρίσκεται η εξεταζόμενη κατοικία, ισχύει ότι η μέση ετήσια θερμοκρασία του αέρα είναι 17.7 °C και η μέση ετήσια θερμοκρασία του εδάφους (σε βάθος 0 m) είναι κατά 2.69 °C μεγαλύτερη. Εδώ στο πεδίο των παραμέτρων του type 77 στη μέση θερμοκρασία εδάφους εισάγεται η τιμή των 20°C και η διαφορά μεταξύ της μέγιστης τιμής της και της μέσης είναι 10 °C (Amplitude of surface temperature). Η μεταβλητή 4 (time shift) είναι ο αριθμός των ημερών από την αρχή του έτους όπου η θερμοκρασία εδάφους παίρνει την ελάχιστη τιμή της (δηλαδή 20°C – 10°C = 10°C). Η παράμετρος 8 αφορά το βάθος του σημείου το οποίο χρειάζεται να υπολογιστεί η θερμοκρασία του εδάφους και αφήνεται όπως έχει (βλ. σχήμα 5.26). Από το type 77 συνδέεται η έξοδος Temperature at point με την μεταβλητή εισόδου του κτηρίου TGROUND του κτηρίου (type 56).

me	ter	Out	put Comment				
٩		Γ	Name	Value	Unit	More	Macro
1	1	đ	Number of temperature nodes	1	-	More	
	2	æ	Mean surface temperature	20.0	с	More	
Ĩ	3	đ	Amplitude of surface temperature	10.0	deltaC	More	
	4	æ	Time shift	30	day	More	
	5	æ	Soil thermal conductivity	8.72	kJ/hr.m.K	More	
	6	đ	Soil density	3200.0	kg/m/3	More	
	7	æ	Soil specific heat	0.84	kJ/kg.K	More	
	8	1.0	Depth at point	0.25	m	More	

Σχήμα 5. 26: Υπολογισμός της θερμοκρασίας εδάφους TGROUND σε βάθος 0.25m.

Εφόσον η προς εξέταση κατοικία βρίσκεται στην περιοχή της Αττικής είναι αναγκαίο να γίνει εισαγωγή των μετεωρολογικών δεδομένων αυτής της περιοχής. Από το type 15 (Weather Data) στο πεδίο external files εισάγονται τα συγκεκριμένα δεδομένα πατώντας το κουμπί Browse, από: TRNSYS18> Weather Data> Meteoronorm> Europe> GR-Athinai-167140tm2 (βλ. σχήμα 5.27).

(Building	gPro	ject.tpf) Weather dat	ta			
Parame	ter	Output	External Files	Com	ment		
i	1 Which tile contains th TMY-2 weather data		s the sta?	C:\TRNSYS18WVeatherW eteonorm\Europe\GR-Ath inai-167140.tm2	Brows	Edit	

Σχήμα 5. 27: Εισαγωγή των μετεωρολογικών δεδομένων της περιοχής της Αττικής.

5.2.3 Εισαγωγή φορτίων (φωτισμού, ανθρώπων, συσκευών, κ.α.) στο κτήριο. Διείσδυση αέρα.

Στα αρχικά βήματα δημιουργίας του κτηρίου κατά την επιλογή της παραμέτρου της διείσδυσης αέρα αφέθηκε η τιμή 0.2 $\alpha\lambda\lambda\alpha\gamma$ ές/h. Για να αλλάξει αυτή η τιμή από το TRNBuild Navigator ο χρήστης πατά διπλό κλικ στο LEAKY, κάτω από το infiltration type, και αλλάζει την τιμή σε 1.5 1/h, που αφορά αυτό το κτήριο (βλ. σχήμα 5.28).

Infitration Types (1) Infitration Types (1) Infitration Types (2) Infitration Types (2) Infitration Types (2)								
B A Heating Types (1)								
Infiltration Type Manager								
Infiltration Type" Manager								
infiltration type:								
Airchange of Infiltration								
▶ 1.5 1/h								

Σχήμα 5. 28: Αλλαγή της τιμής διείσδυσης του αέρα.

Η εισαγωγή του LEAKY στο κτήριο γίνεται από το παράθυρο της ζώνης Zone A1, πατώντας το κουμπί Infiltration και επιλέγοντας ON και infiltration type> LEAKY, όπως φαίνεται στο παρακάτω σχήμα 5.29.

Zone: Zone_A1 - Aimode: Zone_A1	
Airnodes	Airnode Regime Data
Zone_A1 Zone_A1	volume: 🔢 📶 m^3 🔢 📜 Infiltration 🎎 Heating 🧘 Gains/losses 🌞 Initial Values 👍 Coupling 🗧
🛨 💳 🕑 number. 1	capacitance: 720 kJ/K ref. floor area: 100 m^2
Walls, floors, ceilings, root	fs (Total number: 6) 💼 Windows (Total number: 3)
surf-ID surf-type construction-type	surf-ID surf-type construction-type area category u
Additional Windows	Infiltration [AirNode: Zone_A1]
2 WALL WALL001 3 WALL WALL001 4 WALL WALL001 5 FLOOR GROUND 6 ROOF WALL002	3000 EXTERNAL \$_0.30 3000 EXTERNAL \$_0.20 3000 EXTERNAL \$_0.20 3000 EXTERNAL \$_0.20 100.00 BOUNDARY 100.00 EXTERNAL H_0_0 C off € on
88	Infiltration Type
surface-ID: 1	
construction-type: WALL	1001 (new
area	30 m^2 incl. windows

Σχήμα 5. 29: Ανάθεση της νέας τιμής διείσδυσης του αέρα στη ζώνη Α1.

Χωρητικότητα Ζώνης.

Ανάλογα με τα έπιπλα και τα αντικείμενα που περιέχει μια ζώνη αλλάζει και η αντίστοιχη χωρητικότητά της, δηλαδή η θερμότητα που αποθηκεύεται για μεταβολή θερμοκρασίας 1 Κ. Συνήθως η τιμής είναι η αντίστοιχη του υπό εξέταση αέρα του κτηρίου πολλαπλασιαζόμενη με έναν συντελεστή από 5 έως 15. Το κτήριο έχει όγκο $300 m^3$, και συνεπώς η χωρητικότητα του αέρα για αυτό τον όγκο είναι: $C_{air(300)} = m_{air(300)} \cdot Cp_{air} = \rho_{air} \cdot V_{air(300)} \cdot Cp_{air} = 1.2 \frac{kg}{m^3} \cdot 300 m^3 \cdot 1.0 \frac{kJ}{kg \kappa} = 360 \frac{kJ}{\kappa}$. Για την επαρκώς επιπλομένη κατοικία 4 ατόμων που εξετάζεται επιλέγεται τιμή

χωρητικότητας $C_{zone} = 8 \cdot C_{air(300)} = 2880 \frac{kJ}{K}$ και εισάγεται στο πεδίο Capacitance στο παράθυρο των στοιχείων της ζώνης Airnode: Zone A1 (βλ. σχήμα 5.30).

Airnode Regime Data						
	200					
volume:		mз				
capacitance:	2880	kJ/K				
ref. floor area:	100	m^2				

Σχήμα 5. 30: Εισαγωγή της χωρητικότητας ζώνης στο TRNBuild.

Φορτία ανθρώπων, φωτισμού και συσκευών.

To building wizard έχει δημιουργήσει και αναθέσει ορισμένα φορτία στη ζώνη τα οποία δε είναι επιθυμητά για αυτή την εγκατάσταση. Για να διαγραφούν πρώτα αφαιρούνται από την ζώνη Airnode: Zone A1 πατώντας το κουμπί Gains/Losses, επιλέγοντας το φορτίο από τον κατάλογο των φορτίων και πατώντας το "-" (βλ. σχήμα 5.31).

Gains	/losses [AirNode: Zone_A1]					
Ĵ	Gains/losses					
ī	ania llana tuna mana	ania dana tura antarana	ania dana kaon mad	a la carda 1	anda 2	
	GAIN_SP	miscellaneous	absolute gain	S: 100°USE	1	
İ	38					
	gain/loss type					geo position
	GAIN_SP		< new TRNBuild		×	
	GAIN_SP category: miscella	neous gain mode: absolute	egain			
				Gaintype: GAIN_SP		
	scale			are you sure to delete this ga	iin/loss ?	
	scale 1: 💽 S: 100*USE					
	Note: The two scales are mulitplie	d. For example, scale 1 could	be used fo	Yes	No	
						-

Σχήμα 5. 31: Αφαίρεση όλων των φορτίων από την ζώνη Α1.

Έπειτα από το TRNBuild Navigator επιλέγεται το φορτίο και με δεξί κλικ διαγράφεται. Για τη δημιουργία νέου φορτίου από ανθρώπους πατώντας δεξί κλικ στο Gains/Losses και επιλέγοντας Add gain from library (σχήμα 5.32) και επιλέγοντας το ASHRAE 130W Person.

Comfort Types (0)					
Gainilass Tupes (3)					
	Add Gain				
😳 Zones					
🗄 😳 Zone:	Add Gain from Library				
di 🔗 Alume	1117 MI				

Σχήμα 5. 32: Εισαγωγή νέου φορτίου από βιβλιοθήκη.

Με διπλό κλικ στο τέταρτο κατά σειρά φορτίο από ανθρώπους αυτό εισάγεται στο πεδίο με τα επιλεγμένα φορτία από βιβλιοθήκες (σχήμα 5.33) και με το "+" εισάγεται ως φορτίο στον κατάλογο των φορτίων (όχι στη ζώνη).

Carlos I Show									
Jain Libr	ary								
"Gains	<u> </u>								
-									
Pro	ogram Library 🥤 User Library								
_									
Progra	am Library							18.0.0	001;
CATE	NSYS18\Building\Lib\American	Munhuild, casin lib							
	into i o romoniong coo venicircari	ternburg_ganne					-		_
No	Name	Description	Category	Absolute /	Convective	Radiative	Electric Power Fraction	Humidity	1
140.	14GIIIG	Dissonption	Calogoly	arcanoidica	[kJ/hr]	[kJ/hr]	[-]	[kg/hr]	
1	ASHRAE 95W-Person Al	Degree of activity [(seated	people	absolute	93.6	140.4	0	0.044	
2	ASHRAE 105W-Person A	Degree of activity II (seate	people	absolute	100.8	151.2	ō	0.052	
3	ASHRAE 115W-Person A.	Degree of activity III (seate	people	absolute	100.8	151.2	0	0.066	
4	ASHRAE 130W-Person A	Degree of activity IV (mode	people	absolute	113.4	156.6	0	0.081	
5	ASHRAE_145W-Person_A	Degree of activity VI (walki	people	absolute	113.4	156.6	0	0.103	
6	ASHRAE_160W-Person_A	Degree of activity VII (sede	people	absolute	120.96	167.04	0	0.118	
7	ASHRAE_220W-Person_A	Degree of activity VIII (light	people	absolute	146.88	141.12	0	0.206	
8	ASHRAE_250W-Person_A	Degree of activity IX (mode	people	absolute	165.24	158.76	0	0.236	
9	ASHRAE_295W-Person_A	Degree of activity X (walkin	people	absolute	201.96	194.04	0	0.272	
10	ASHRAE_425W-Person_A	Degree of activity XI (bowli	people	absolute	281.52	330.48	0	0.375	
11	ASHRAE_425W-Person_A	Degree of activity XII (heav	people	absolute	281.52	330.48	0	0.375	
12	ASHRAE 470W-Person A	Decree of activity XIII (hea	people	absolute	306.36	359.64	0	0.42	Ŷ
C-1	and Thomas								
Select	ea rypes								
	1	1		Absolute /	Convective	Badiative	Electric	Humidity	T
No.	Name	Description	Category	area-related	Power	Power	Power Fraction		
					[kJ/hr]	[kJ/hr]	[·]	[kg/hr]	
1	ASHRAE_130W-Person_A	Degree of activity V (standi	people	absolute	113.4	156.6	0	0.081	
-									
	<								

Σχήμα 5. 33: Εισαγωγή φορτίου από ανθρώπους στον κατάλογο με τα φορτία του TRNBuild Navigator.

Ομοίως με πατώντας Add Gain στο Gains/Losses εισάγονται τα φορτία φωτισμού και από συσκευές, με κέρδος από ακτινοβολία και από συναγωγή 0.8 kJ/h και 0.2 kJ/h για το φωτισμό και 0.5 kJ/h και 0.5 kJ/h για τις συσκευές (βλ. σχήμα 5.34). Προσοχή, οι μονάδες ισχύος στο TRNSYS είναι kJ/h και όχι W, για αυτό και πρέπει να γίνονται οι απαραίτητες μετατροπές όπου χρειάζεται.

New Gain/loss Type	New Gain/loss Type
🔔 "Gain/loss Type" Manager	Gain/loss Type" Manager
new gain type: UGHT	new gain type: EQUIP
Gain/loss Category	Gain/loss Category
lights 💽	electrical equipment
☞ absolute gain/loss ⊂ gain/loss related to reference floor area	œ absolute gain/loss
Radiative	Radiative
🔁 🔯 kJ / h	▶ 0.5 kJ / h
Convective	Convective
D2 kJ / h	0.5 kJ / h
Electric Power Fraction	Electric Power Fraction
fraction of actual radiative + convective power	fraction of actual radiative + convective power
0	D .
Note: The electric power has no influence on the thermal energy balance.	Note: The electric power has no influence on the thermal energy balance.
Abs. Humidity	Abs. Humidity
D kg / hr	🔁 🛛

Σχήμα 5. 34: Κέρδος από ακτινοβολία και από συναγωγή για τα κέρδη φωτισμού και συσκευών.

Η ανάθεση των φορτίων στη ζώνη γίνεται στο Airnode: Zone A1 και πατώντας το Gains/Losses. Στο πεδίο gains losses type, στη δεύτερη καρτέλα θα πρέπει να εμφανίζονται τα φορτία που ορίστηκαν προηγουμένως στο TRNBuild Navigator (βλ. σχήμα 5.35). Επιλέγεται το φορτίο από ανθρώπους και στο scale 1 δημιουργείται μια νέα μεταβλητή με όνομα PEOP (και μονάδες any) που είναι ο αριθμός των ανθρώπων της ζώνης και θα οριστεί στη συνέχεια στο simulation studio.

Gains/losses [AirNode: Zone_A1]							
•							
La Gains/losses							
La cia Nece barra acora	and the last strengtheres	La coindica base and a	L and 1	L and 2		of our footion	
ASHRAE_130W-Person_AV_24°C	people	absolute gain	I: 1*PEOP	1 scale 2		no	
gain/loss type					geo position		
ASHRAE_130W-Person_AV_24*0	2	ASHRAE_130W-Person_	_AV_24"C	<u> </u>			
ASHRAE_130W-Person_AV_24	I°C category: people g	<- Library	AV 2410				
scale		LIGHT	MT_24 0				
_							_
scale 1: 💽 I: 1*PEOP		1	scale 2: 下 1				
Note: The two scales are mulitplie	d. For example, scale 1 could	l be used for a weekly prof	ile and scale 2 for an an	nual profile			
Multiplication by reference area of a	innede Obernal bridger envels	no seas other reference B	(ene 100				
indisplication by relevence area or a	iniode (inemia bridge, enreid	pe area, onier, reference n	our area)				
€ no							
C yes							

Σχήμα 5. 35: Ανάθεση του φορτίου από ανθρώπους στη ζώνη Α1.

Με το ίδιο τρόπο εισάγονται τα φορτία φωτισμού και συσκευών στη ζώνη με scale 1 LIGHT και EQUIP αντίστοιχα (σχήμα 5.36).

Gain	s/losses [AirNode: Zone_A1]									
1										
	Gains/losses									
			1							
	gain/loss type name	gain/loss type category	gain/loss type mode	scale 1	scale 2		ref.area traction	geo pos	daylight control	
	LIGHT	jeopie lights	absolute gain absolute gain	I: 1ºLIGHT	1		no	0		
	EQUIP	electrical equipment	absolute gain	I: 1*EQUIP	1		no	0		
	88									
	gain/loss type					geo position				
			,							
	EQUIP		EQUIP		-	0				reset
	EQUIP category: electrical e	quipment gain mode: abs	olute gain I							
	scale									
								_		
	scale 1: 💽 I: 1'EQUIP			scale 2: 下 1						
	Note: The two scales are multiplie	d For example, scale 1 coul	t he used for a weekly pro	file and scale 2 for an ann	ual profile					
			,,,							
	Multiplication by reference area of a	irnode Obermal bridge: envel	one area: other: reference f	loor area)						
		annova çaranma ornogar arres								
	(no									
	C yes									

Σχήμα 5. 36: Τα φορτία που έχουν ανατεθεί στη ζώνη Α1.

Επειδή στη συνέχεια τα φορτία εκφράζονται ανά τετραγωνικό μέτρο του κτηρίου εισάγουμε μια εξίσωση, με όνομα Area και μοναδική μεταβλητή εξόδου το εμβαδό του κτηρίου Area = 100 m² (βλ. Σχήμα 5.37).

(BuildingProject.tpf) Area	-	\times
= Show input in Macro Intermediates & Outputs		
D Area		
×		×
85		85
		Q
Area = 100 ! Area of the building in m2		

Σχήμα 5. 37: Εισαγωγή εξίσωσης με το εμβαδό του κτηρίου σε m^2 .

Τα μέγιστα φορτία από ανθρώπους, φωτισμού και συσκευών επίσης εισάγονται σε μια εξίσωση, καθώς είναι εύκολο να αλλάξουν οι τιμές τους Για το φορτίο από ανθρώπους είναι $OccDen = 1/25 \, \acute{\alpha} v \theta \rho \omega \pi o i / m^2$, για το φωτισμό $LightDen = 3.6 * 8 \, kJ/h \, m^2$ και για τις συσκευές $EqpDen = 3.6 * 8 \, kJ/h \, m^2$ (σχήμα 5.38).

Σχήμα 5. 38: Εισαγωγή των μέγιστων φορτίων ανά m^2 του κτηρίου.

Για τα τρία αυτά φορτία μένει να οριστεί το ποσοστό χρήσης αυτών στο simulation studio. Ο αριθμός των ανθρώπων, τα φορτία από φωτισμό και συσκευές δεν είναι πάντα τα ίδια μέσα στη μέρα ή για όλες τις ημέρες της εβδομάδας, αλλά ακολουθούν κάποιο πρόγραμμα. Από την βιβλιοθήκη Utility> Forcing Function> General> type 14h εισάγουμε το στοιχείο μέσα στο οποίο θα ορίσουμε το ποσοστό των ανθρώπων που βρίσκονται εντός της κατοικίας για της ημέρες Δευτέρα έως Παρασκευή. Τα προγράμματα τα οποία χρησιμοποιήθηκαν φαίνονται αναλυτικά στο παράρτημα Α1. Στο πεδίο των παραμέτρων ο χρήστης μπορεί να εισάγει κάθε σημείο του προγράμματος ορίζοντας πρώτα τα σημεία εκτός του αρχικού (σχήμα 5.39) ή μπορεί να τα εισάγει μέσω του plug in (κουμπί κάτω αριστερά).

Σχήμα 5. 39: Εισαγωγή του προγράμματος του κτηρίου για κατοίκηση από ανθρώπους από Δευτέρα έως Παρασκευή.

Ομοίως εισάγεται και το πρόγραμμα κατοίκησης από ανθρώπους για τα σαββατοκύριακα. Για να συνδυαστούν τα δύο αυτά προγράμματα σε ένα χρησιμοποιείται από τη βιβλιοθήκη Utility> Forcing Function Sequencers> Unique Days of the Week> type 41c. Οι πρώτες πέντε μεταβλητές εισόδου του type 41c συνδέονται με την έξοδο του προγράμματος των καθημερινών ημερών κατοίκησης (βλ. σχήμα 5.40) και οι υπόλοιπες δύο με την έξοδο του προγράμματος για Σάββατο και Κυριακή.

Σχήμα 5. 40: Σύνδεση του προγράμματος των καθημερινών ημερών κατοίκησης με το type 41c.

Για τον υπολογισμό του αριθμό των ανθρώπων εισάγουμε μία εξίσωση όπως φαίνεται στο παρακάτω σχήμα 5.40. Η είσοδος FracOcc είναι η έξοδος του type 41c, και η έξοδος της εξίσωσης υπολογίζεται ως εξής: $Zone_{occ} = FracOcc * Area * OccDen$ (σχήμα 5.41). Οι μεταβλητές Area και OccDen δεν είναι ανάγκη να συνδεθούν ως είσοδοι σε αυτό το μπλοκ εξίσωσης, αρκεί τα ονόματά τους να είναι ακριβώς ίδια με αυτά που έχουν οριστεί στα μπλοκ εξισώσεων Area και Gains_Peak.

(BuildingProjecttpf) Occupancy	-	×
= Show input in Macro Intermediates & Outputs		
FracOcc D Zone_Occ		
×		×
80		Ęs
		Q
Zone_Ucc - FracUcc/Area/UccDen !Number of people		
Show output in Macro		

Σχήμα 5. 41: Υπολογισμός των ανθρώπων με βάση το ποσοστό κατοίκησης από τα προγράμματα κατοίκησης.

Έπειτα η μεταβλητή Zone_Occ συνδέεται με την μεταβλητή εισόδου του κτηρίου PEOP, όπως φαίνεται στο σχήμα 5.42.

	`	
Zone_Occ \	1- TAMB	0
	2- RELHUMAMB	0
	3- TSKY	0
	4-TSGRD	0
	5- AZEN	0
	6- AAZM	0
	7-IT_N_180_90	0
	8-IT_S_0_90	0
	9-IT_E_270_90	0
	10-IT_W_90_90	0
	11-IT_H_0_0	0
	12-IB_N_180_90	0
}	13-IB_S_0_90	0
	14-IB_E_270_90	0
	15-IB_W_90_90	0
	16-IB_H_0_0	0
	17- AI_N_180_90	0
	18- AI_S_0_90	0
	19- AI_E_270_90	0
	20- AI_W_90_90	0
	21- AI_H_0_0	0
	22- GRDREF	0.2
	23- CNAT_1	0
	24 T_COOL_ON	0
	25- MS_N_180_90	0
	26- MS_S_0_90	0
	27- MS_E_270_90	0
	28- MS_W_90_90	0
	29- BRIGHT	0
	30- HOUTSIDE	0
	31- TGROUND	0
	32- PEOP	0
	33- LIGHT	0
	34-EQUIP	0

Σχήμα 5. 42: Σύνδεση της μεταβλητής Zone_Occ με την είσοδο του κτηρίου PEOP.

Η ίδια διαδικασία ακολουθείται για τα προγράμματα των φορτίων φωτισμού και συσκευών, τα οποία υπολογίζονται αντίστοιχα ως εξής: $Light_Gain = FracLight * Area * LightDen$ και

 $Eqp_Gain = FracEqp * Area * EqpDen$. Η εγκατάσταση στο simulation studio πρέπει να είναι όπως στο σχήμα 5.43.

Σχήμα 5. 43: Η εγκατάσταση στο simulation studio μετά την εισαγωγή και σύνδεση των φορτίων.

Επιπλέον πατώντας το Humidity στο Airnode: Zone A1, αλλάζει η χωρητικότητα humidity capacitance ratio σε 10 (βλ. σχήμα 5.44).

Humidity Models [AirNode: Zone_A1]	×
Humidity Models	
Simple Humidity Model (Capacitance Humidity Model)	
C Moisture Capacitance Model (Buffer Storage Model)	
Simple Humidity Model (Capacitance Humidity Model)	
Humidity capacitance ratio: 10 -	

Σχήμα 5. 44: Αλλαγή του humidity capacitance ratio.

5.3 Σύστημα αερισμού του κτηρίου.

5.3.1 Δημιουργία του συστήματος αερισμού του κτηρίου.

Σε αυτή την προσομοίωση ενδιαφέρει η δημιουργία του συστήματος θέρμανσης του κτηρίου. Η θερμότητα που είναι αναγκαία για το κτήριο εισάγεται μέσω του αέρα που εισέρχεται σε αυτό. Δηλαδή ενδιαφέρει ο έλεγχος της θερμοκρασίας και της σχετικής υγρασίας που εισάγεται στο κτήριο. Για να μπορεί να βλέπει αυτές τις μεταβλητές το κτήριο είναι αναγκαία η δημιουργία ενός ventilation type, που γίνεται με δεξί κλικ Add Ventilation στο πεδίο Ventilation Types στο TRNBuild Navigator (βλ. σχήμα 5.45).

Σχήμα 5. 45: Εισαγωγή νέου ventilation type στο κτήριο.

Στο πεδίο που ανοίγει το νέο ventilation type ονομάζεται VENTILAT, και η παροχή αέρα αλλάζει σε παροχή μάζας αέρα (από αλλαγές ανά ώρα), και ισούται με $\dot{m}_{air} = 1 * Vent_z$ σε kg/h. Ομοίως η θερμοκρασία και η σχετική υγρασία προσδιορίζονται από το χρήστη (userdefined) και αλλάζουν από σταθερές τιμές σε μεταβλητές εισόδου του κτηρίου $Temp_z$ σε °C και $Relhum_z$ % (σχήμα 5.46).

Ventilation Type Manager new ventilation type: VENTILAT Supply air flow mass flow rate Imass fl	/ Ventilation Type		
new ventilation type: VENTILAT Supply air flow	S "Ventilation Type" Manager		V X
Supply air flow Imass flow rate Image rate rate rate rate rate rate rate rat	new ventilation type: VENTILAT		
mass flow rate i: 1*Vent_z kg/h Specific fan power (related to supply air flow): i: 0 kg/h Supply air conditioning • external by other component • internal calculation Temperature of supply air flow • outside ai • userdefined • relative humidty • absolute humidty • outside ai • outside ai • userdefined	Supply air flow		
Image inverting Image inverting Specific fan power (related to supply air flow): Image inverting Image in	mace flow rate	-	
kg/h Specific fan power (related to supply air flow): Image: Description of the specific fan power has no influence on the thermal energy balance. Supply air conditioning Image: external by other component Image: relative of supply air flow Image: outside air Image: relative humidity Image: relative humidity Image: outside air Image: relative humidity Image: outside air Image: relative humidity Image: outside air Image: outside air Image: relative humidity Image: outside air Image: outside air			
Specific fan power (related to supply air flow): Description of a power has no influence on the thermal energy balance. Supply air conditioning e external by other component internal calculation Temperature of supply air flow outside air userdefined Humidity of Air Flow e relative humidity c outside air userdefined internal calculation E Inflemp_z 2 2	E l: 1ºVent_z	kg/h	
Note: The spec. fan power has no influence on the thermal energy balance. Supply air conditioning • external by other component • internal calculation Temperature of supply air flow • outside air • userdefined • I'lTemp_z • C • Humidity of Air Flow • relative humidity • outside air • userdefined • I'lTemp_z • C • Supply air flow • relative humidity • outside air • userdefined • I'lTemp_z • C • C • C	Specific fan power (related to supply air flow):	kJ/hr /(m^3/hr)	
Supply air conditioning	Note: The spec. fan power has no influence	e on the thermal energy balance.	
 external by other component internal calculation Temperature of supply air flow outside air userdefined Enditive humidity relative humidity absolute humidity outside air userdefined Enditive humidity outside air userdefined 	Supply air conditioning		
 C internal calculation Temperature of supply air flow C outside air Is 1*Temp_z *C Humidity of Air Flow Is relative humidity C absolute humidity C outside air Is userdefined Is 1*Rehum_z ≈ 2 	external by other component		
Temperature of supply air flow [∩] outside air [•] relative humidity [•] outside air [•] userdefined [•] I''Temp_z ² ²	C internal calculation		
 C outside air Is 1ºTemp_z °C Humidity of Air Flow In relative humidity C outside air Is userdefined Is 1ºTemp_z ? 	Temperature of supply air flow		
	C outside air		
Humidity of Air Flow relative humidity outside air userdefined I: 1'Relhum_z 2	 userdefined 	l: 1*Temp_z	*C
Humidity of Air Flow relative humidity outside air vertication userdefined I: 1'Relhum_z			
relative humidity should be humidity outside air userdefined I: 1'Rehum_z	Humidity of Air Flow		
C absolute humidity C outside air C userdefined I: 1*Rethum_z %	relative humidity		
C outside air userdefined I: 1'Rehum_z %	 absolute humidity 		
🕫 userdefined 💽 🗈 1'Rehum_z 🕺			
	C outside air		

Σχήμα 5. 46: Ορισμός των παραμέτρων του νέου ventilation type.

Ακόμα πρέπει να ανατεθεί το συγκεκριμένο ventilation type στη ζώνη Α1. Αυτό γίνεται από το Airnode: Zone A1, και επιλέγοντας το πεδίο Ventilation, και στο νέο παράθυρο που ανοίγει πατώντας "+" επιλέγεται το VENTILAT, και με το "ν" ολοκληρώνεται η εισαγωγή του νέου ventilation type (σχήμα 5.47).

Ventilation [AirNode: Zone_A1]
& Ventilation
Ventilation Type
VENTILAT
0
Ventilation Type
VENTILAT
VENTILAT
✓ ×

Σχήμα 5. 47: Ανάθεση του νέου ventilation type στο κτήριο.

Στο TRNSYS στις περιπτώσεις της διείσδυσης αέρα (infiltration) και του αερισμού του αέρα (ventilation) η ποσότητα που εισάγεται είναι ίση με την ποσότητα εσωτερικού αέρα (του κτηρίου) που εξάγεται. Έτσι για το σύστημα διαχείρισης του αέρα πρέπει να υπάρχουν μεταβλητές εξόδου στο κτήριο και για την θερμοκρασία καθώς και για την σχετική υγρασία. Για την παροχή δεν είναι δυνατόν να οριστεί τέτοια μεταβλητή στο κτήριο, καθώς είναι ίση με τον αέρα που εισάγεται (μέσω του ventilation) οπότε είναι γνωστή ποσότητα. Η θερμοκρασία του εσωτερικού του κτηρίου (ή θερμοκρασία ζώνης A1) έχει οριστεί ήδη από το building wizard ως μεταβλητή εξόδου, και μένει να οριστεί μόνο της σχετικής υγρασίας. Από το TRNBuild Navigator επιλέγεται το πεδίο Outputs (βλ. σχήμα 5.48).

Σχήμα 5. 48: Επιλογή Outputs για ανάθεση νέων μεταβλητών εξόδου στο κτήριο.

Στο επόμενο παράθυρο στο πεδίο Outputs Definitons επιλέγεται το "+". Από το επάνω δεξιά πεδίο επιλέγεται από τις διαθέσιμες ζώνες η Zone A1 (η οποία μετά θα εμφανίζεται και στο αριστερό πεδίο ως επιλεγμένη) και από το κάτω δεξιά πεδίο η μεταβλητή της σχετικής υγρασίας RELHUM (NType 9). Στη συνέχεια πατώντας το βελάκι προς τα αριστερά εισάγεται στο κάτω αριστερά πεδίο ως επιλεγμένη μεταβλητή εξόδου. Πατώντας το "ν" ολοκληρώνεται η διαδικασία (βλ. σχήμα 5.49 και 5.50).

Outputs				
e userdefined C defa	suk			
Aimodes				
	Selected "Thermal Aimodes"			Available "Thermal Aimodes"
 thermal aimodes 	No Thermal Aimodes			
aimode outputs Selected "Outputs" (N	Group of aimode outputs C s	urface outputs C Available	Comfort outputs (balances
No NType	Key Additional Data	NType	Key	Description
	LHUM not available	3 4 5 6 7 8 9 10 11 12 13 14 <	QUSURF QVENT QCOUP QGCONV DQAIR RELHUM QLATD QLATD QLATG QSRAD QGRAD QTABSI	total convection to air from all surfaces within aimode (incl. internal sha sensible verification energy gain of aimode sensible verification energy gain of aimode internal convective gains of aimode change in internal sensible energy of aimode air since beginning of sim relative hunidity of aimode air latent energy demand of aimode, humidification(-), dehumidification (+) latent energy demand of aimode, humidification, (-), dehumidification (+) latent energy demand of aimode, air aimode, air aimode air since beginning of sim total shottwave solar radiation transmitted through external windows of defined internal radiative gain of aimode (Rad, gains are distributed ove total radiation absorbed (and transmitted) at all inside suf. of aimode [in v

Σχήμα 5. 49: Εισαγωγή της μεταβλητής εξόδου RELHUM για την ζώνη Α1.

Outputs				
Calculate Transfer Fun	ctions			^
Timebase: 1				
Outputs				
Resulting Output List				
No Name 1 TAIR_Zone_A1	Unit ZNr C 1	Aimode SurfNr Zone_A1	Description air temperature of aimode	
2 HELHUM_Zone_	A1 % I	Zone_A1	relativ humidity of arnode air	
-				
Output Definition				
No Aimodes/Nodes/ 1 Zone_A1	Airlinks	NTy	pes	
2 Zone_A1		9		
X				

Σχήμα 5. 50: Επιλεγμένες μεταβλητές εξόδου για την ζώνη Α1.

Κάνοντας update variables list στο κτήριο (type 56), στο simulation studio, εμφανίζονται οι μεταβλητές εισόδου και εξόδου που ορίστηκαν σε αυτό.

Επόμενο τώρα είναι να τοποθετηθούν τα κατάλληλα types για την προσομοίωση του συστήματος αερισμού του κτηρίου. Σε αυτό το σύστημα υπάρχει εναλλάκτης ανάκτησης θερμότητας (ένας εναλλάκτης αντιρροής) όπου ένα ποσοστό (10%) απορριπτόμενου αέρα από το κτήριο θερμαίνει το ρεύμα του φρέσκου αέρα που αναμιγνύεται με τον υπόλοιπο αέρα από το κτήριο. Το αναμεμιγμένο ρεύμα φρέσκου αέρα και ανακυκλοφορίας επανεισέρχεται στο κτήριο (βλ. σχήμα 5.51).

Σχήμα 5. 51: Σύστημα παροχής αέρα στο TRNSYS18.

Η παροχή του φρέσκου αέρα καθορίστηκε με βάση το πρότυπο της ASHRAE: Standard 62.1.2019: Ventilation for Acceptable Indoor Air Quality [28]. Το πρότυπο αυτό, στην παράγραφο 6.2.1.1, ορίζει ότι η ελάχιστη παροχή του φρέσκου αέρα καθορίζεται από την εξίσωση 6.1: $V_{bz} = R_p \times P_z + R_a \times A_z$ όπου P_z ο αριθμός ευρισκόμενων ανθρώπων στο κτήριο, A_z το εμβαδό του κτηρίου, R_p η παροχή αέρα που απαιτείται ανά άτομο και R_a η παροχή αέρα που απαιτείται ανά μονάδα εμβαδού του κτηρίου. Από τον πίνακα 6-1 του προτύπου αυτού είναι $R_p = 2.5 L/s/άτομο$ και $R_a = 0.3 L/s$ για κατοικία (dwelling unit). Στην εξεταζόμενη περίπτωση υπάρχουν 4 άτομα στην κατοικία και $A_z = 100 m^2$, οπότε είναι η ελάχιστη παροχή φρέσκου αέρα κου αέρα είναι $V_{bz} = 40 L/s$ ή 144 m^3/h .

Έτσι ορίστηκε η παροχή φρέσκου αέρα του κτηρίου, όταν μέσα σε αυτό βρίσκονται άνθρωποι, σε $170 m^3/h$. Η παροχή του συνολικού εισερχόμενου αέρα στο κτήριο, μαζί με την ανακυκλοφορία ορίζεται σε $1700 m^3/h$.

Από τη βιβλιοθήκη Hydronics> Fan> Constant Speed> type 146 εισάγεται ένας ανεμιστήρας (Return Air Fan), για να οριστεί η παροχή αέρα που εξάγεται από το κτήριο. Στο πεδίο των παραμέτρων εισάγεται η παροχή του ανεμιστήρα (μεταβλητή 2), και η ισχύς που καταναλώνει 396 kJ/h (110 W). Η παροχή του ανεμιστήρα καθορίζεται μόνο από την παράμετρο 2 (Rated Volumetric Flow Rate). Ο ανεμιστήρας έχει ως είσοδο παροχή, αλλά την χρησιμοποιεί μόνο για να κάνει έλεγχο ισοζυγίου παροχής μάζας. Ακόμα η παράμετρος 1 Humidity Mode έχει τιμή 2, έτσι ώστε το συγκεκριμένο type να χρησιμοποιεί για τους υπολογισμούς την σχετική υγρασία. Σε όλα τα types που διαχειρίζονται αέρα η μεταβλητή Humidity Mode έχει τιμή 2, για χρήση της σχετικής υγρασίας του αέρα και ΟΧΙ του λόγου υγρασίας (για χρήση του λόγου υγρασίας το Humidity Mode παίρνει τιμή 1). Στη συνέχεια συνδέεται η θερμοκρασία και η σχετική υγρασία της ζώνης Α1 με τα αντίστοιχα μεγέθη του ανεμιστήρα, όπως φαίνεται στο σχήμα 5.52.

(Final_v Parame	1.tpf) Re	turn_Air_Fan .t Output Comment			-		×	\$	R	
	_							_	1-TAIR_Zone_A1	Inlet Air Temperature	20.0
đ			Name	Value	Unit	More	Macro		2-RELHUM Zone A1 ~	Inlet Air Humidity Ratio	0.002
	1	æ	Humidity Mode	2	-	More				Inlat Air % Relative Humidity	50
1	2	ď	Rated Volumetric Flow Rate	1700	m^3/hr	More				Air Flow Rate	2000.0
PC:	3	đ	Rated Power	396	kJ/hr	More	M				1
	4	-	Mator Efficiency	0.00			_			Inlet Air Fressure	1.
	-	ø	and the Emplement	0.50	-	More	M			Control Signal	1.0
	5	ď	Motor Heat Loss Fraction	0.0	-	More				Air-Side Pressure Increase	0.0

Σχήμα 5. 52: Εισαγωγή ανεμιστήρα εξαγωγής του αέρα από το κτήριο.

Για τον διαχωρισμό του εξερχόμενου αέρα σε αέρα που θα απορριφθεί στο περιβάλλον και σε αέρα που θα επανεισέλθει στο κτήριο χρησιμοποιείται το type 148a, από Hydronics> Flow Diverter> Moist Air> type 148a. Στο πεδίο των μεταβλητών εισόδου η μεταβλητή 6 (Control Signal) παίρνει την τιμή 0.1. Έτσι το ρεύμα 2 θα έχει παροχή $170 m^3/h$ (προς απόρριψη στο περιβάλλον) και το ρεύμα 1 $1700 - 170 m^3/h$ για επανείσοδο στο κτήριο (σχήμα 5.53).

(Buildi	ngPr	oject Inp	.tpf) Type148a			-		×	×	×	
1 aran	ever		oupu connen						Outlet Air Temperature	Infet Air Temperature	20.0
ය			Name	Value	Unit	More	Macro		Outlet Air Humidity Ratio	Inlet Air Humidity Ratio	800.0
	1	ď	Inlet Air Temperature	20.0	с	More			Outlet Air % Relative Humidity	Inlet Air Relative Humidity	50
1	2	đ	Inlet Air Humidity Ratio	0.008	-	More			Outlet Flow Rate	Inlet Air Flow Rate	100.0
26	3	đ	Inlet Air Relative Humidity	50	% (base 100)	More			Outlet Air Pressure	Inlet Air Pressure	1
	4	đ	Inlet Air Flow Rate	100.0	kg/hr	More			Power Consumption	Control signal	0.1
	5	ď	Inlet Air Pressure	1	atm	More			Air Heat Transfer		
	6	đ	Control signal	0.1	-	More			Ambient Heat Transfer		
	Г										

Σχήμα 5. 53: Διαχωρισμός του εξερχόμενου ρεύματος αέρα με το type 148a.

Έπειτα εισάγεται ένας ανεμιστήρας (type 146) για παροχή φρέσκου αέρα με ογκομετρική παροχή 170 m^3/h , και ισχύ 141 kJ/h (39 W). Εισάγεται ένα ακόμα type 15-2 με μετεωρολογικά δεδομένα Αθήνας, και η θερμοκρασία περιβάλλοντος ή ξηρού βολβού συνδέεται με την θερμοκρασία εισόδου του ανεμιστήρα, και η επί τοις εκατό σχετική υγρασία με το αντίστοιχο μέγεθος του ανεμιστήρα (βλ. σχήμα 5.54).

(Final_v	1.tpl) Fre	t Octavit Commont			-		×	1		×	
T Grank		npu	a Output Comment						Dry buib temperature		Inlet Air Temperature	20.0
ദ്			Name	Value	Unit	More	Macro		Dew point temperature		Inlet Air Humidity Ratio	0.008
	1	æ	Humidity Mode	2	-	More			Wet bulb temperature	/	Inlet Air % Relative Humidity	50.
1	2	đ	Rated Volumetric Flow Rate	170	m^3/hr	More	Ø		Effective sky temperature		Air Flow Rate	2000.0
1 1	3	đ	Rated Power	141	kJ/hr	More			Mains water temperature		Inlet Air Pressure	1.
	4	đ	Motor Efficiency	0.90	-	More	Ø	1	Humidity ratio		Control Signal	1.0
	5	ď	Motor Heat Loss Fraction	0.0	-	More		1	Percent relative humidity		Air-Side Pressure Increase	0.0
									Wind velocity			

Σχήμα 5. 54: Σύνδεση του ανεμιστήρα φρέσκου αέρα με θερμοκρασία και σχετική υγρασία του περιβάλλοντος.

Για την εισαγωγή της ανάκτησης θερμότητας εισάγεται το type 760 από: HVAC Library (TESS)> Heat Exchangers> Air to Air Heat Exchangers> Sensible Only with Cotrol Modes> Air to Air Heat Recovery> Type 760. Στην καρτέλα των μεταβλητών εισόδου ορίζεται η αποτελεσματικότητα αυτού του εναλλάκτη (μεταβλητή 13), που εδώ έχει τιμή 0.84 για εναλλάκτη αντιρροής. Η θερμοκρασία, η παροχή και η σχετική υγρασία του ανεμιστήρα φρέσκου αέρα συνδέονται με τις αντίστοιχες του type 760, όπως φαίνεται στο σχήμα 5.55.

Buildin Parame	gPro	ject Inpu	.tpf) Type760 ut Output Comment			-		×	<	×		=0 =	
ദ്			Name	Value	Unit	More	Macro	^		Outlet Air Temperature		Exhaust Air Temperature	20.0
	8	đ	Fresh Air Humidity Ratio	0.005	-	More	Ø	1		Outlet Air % Polotime Humidity		Exhaust Air Huminity Ratio	60.0
1	9	ď	Fresh Air % Relative Humidity	50.0	-	More	Ø	1		Outlet All % Relative Humanly	$\langle \rangle$	Exhaust Air Flowrate	0.0
1	10	đ	Fresh Air Flowrate	0.0	kg/hr	More		1		Outlet Air Processo	$\langle \rangle$	Exhaust Air Program	1.0
	11	ď	Fresh Air Pressure	1.0	atm	More		1 -		Power Consumption	///	Exhaust Air Pressure Dron	0
	12	ď	Fresh Air Pressure Drop	0.0	atm	More		1		Air Heat Transfer	// /	Fresh Air Temperature	20.0
	13	đ	Sensible Effectiveness	0.84	Fraction	More		1		Ambient Heat Transfer		Fresh Air Humidity Ratio	0.005
	14	đ	On/Off Control Signal	1.0	-	More		1			//	Fresh Air % Relative Humidity	50.0
	15	ď	Control Temperature	20.0	c	More		1				Fresh Air Flowrate	0.0
		_	1	,		I	<u>, </u>	- L				Fresh Air Pressure	1.0

Σχήμα 5. 55: Εισαγωγή του εναλλάκτη ανάκτησης θερμότητας και σύνδεση του με τον ανεμιστήρα φρέσκου αέρα.

Η θερμοκρασία, παροχή και σχετική υγρασία του ρεύματος 2 του type 148a (διαχωριστής ρεύματος αέρα) συνδέονται με τα αντίστοιχα μεγέθη του ρεύματος exhaust air του type 760. Ακόμα εισάγεται ένας μίκτης αέρα για ανάμειξη του θερμασμένου αέρα και αέρα ανακυκλοφορίας από Hydronics> Tee Piece Flow Mixer> Moist Air> type 148b. Τα μεγέθη θερμοκρασία, παροχή και σχετική υγρασία του φρέσκου αέρα που εξέρχεται από το type 760 συνδέονται στο ρεύμα 2 του μίκτη type 148b (βλ. σχήμα 5.56).

×	=0 =		≓ @∓	×	
Temperature at Outlet 1	Exhaust Air Temperature	20.0	Exhaust Air Temperature	Inlet Air Temperature - 1	20.0
Humidity Ratio at Outlet 1	Exhaust Air Humidity Ratio	0.005	Exhaust Air Humidity Ratio	Inlet Air Humidity Ratio - 1	0.008
Relative Humidity at Outlet 1	Exhaust Air % Relative Humidity	60.0	Exhaust Air % Relative Humidity	Inlet Air Relative Humidity - 1	50
Flow Rate at Outlet 1	Exhaust Air Flowrate	0.0	Exhaust Air Flowrate	Inlet Air Flow Rate - 1	1800
Pressure of Outlet 1	Exhaust Air Pressure	1.0	Exhaust Air Pressure	Inlet Air Pressure - 1	1
Temperature at Outlet 2	Exhaust Air Pressure Drop	0	Fresh Air Temperature	Inlet Air Temperature - 2	25
Humidity Ratio at Outlet 2	Fresh Air Temperature	20.0	Fresh Air Humidity Ratio	Inlet Air Humidity Ratio - 2	0.001
Relative Humidity at Outlet 2	Fresh Air Humidity Ratio	0.005	Fresh Air % Relative Humidity	Inlet Air Relative Humidity - 2	30
Flow Rate at Outlet 2	Fresh Air % Relative Humidity	50.0	Fresh Air Flowrate	Inlet Air Flow Rate - 2	200
Pressure at Outlet 2	Fresh Air Flowrate	0.0	Fresh Air Pressure	Inlet Air Pressure - 2	1
	Fresh Air Pressure	1.0	Heat Transfer Rate		
	Fresh Air Pressure Drop	0.0			
	Sensible Effectiveness	0.84			
	On/Off Control Signal	1.0			

Σχήμα 5. 56: Σύνδεση του type 760 με τα type 148α και 148b.

Ακόμα συνδέεται το ρεύμα 1 από ανακυκλοφορία του type 148a με το ρεύμα 1 του type 148b, όπως φαίνεται στο σχήμα 5.57.

K	æ	
Temperature at Outlet 1	Inlet Air Temperature - 1	20.0
Humidity Ratio at Outlet 1	Inlet Air Humidity Ratio - 1	0.008
Relative Humidity at Outlet 1	Inlet Air Relative Humidity - 1	50
Flow Rate at Outlet 1	Inlet Air Flow Rate - 1	1800
Pressure of Outlet 1	Inlet Air Pressure - 1	1
Temperature at Outlet 2	Inlet Air Temperature - 2	25
Humidity Ratio at Outlet 2	Inlet Air Humidity Ratio - 2	0.001
Relative Humidity at Outlet 2	Inlet Air Relative Humidity - 2	30
Flow Rate at Outlet 2	Inlet Air Flow Rate - 2	200
Pressure at Outlet 2	Inlet Air Pressure - 2	1

Σχήμα 5. 57: Σύνδεση του ρεύματος ανακυκλοφορίας από το type 148a με το type 148b.

Τέλος οι μεταβλητές της θερμοκρασίας, σχετικής υγρασίας και παροχής του αναμεμιγμένου αέρα συνδέονται με τα αντίστοιχα μεγέθη του κτηρίου (type 56) όπως φαίνεται στο σχήμα 5.58.

Σχήμα 5. 58: Σύνδεση θερμοκρασίας, σχετικής υγρασίας και παροχής του αναμεμιγμένου αέρα με τα αντίστοιχα μεγέθη του κτηρίου.

Το σύστημα αερισμού σε αυτή τη φάση δεν είναι ολοκληρωμένο. Σε αυτή του τη μορφή θα παρέχει αέρα στο κτήριο σε οποιαδήποτε στιγμή ανεξάρτητα από την ύπαρξη ατόμων στο κτήριο. Αντιθέτως είναι επιθυμητό οι ανεμιστήρες να λειτουργούν μόνο όταν υπάρχουν άνθρωποι στο εσωτερικό του κτήριο, με βάση το πρόγραμμα που ορίστηκε προηγουμένως. Για αυτό το σκοπό ορίζεται μία εξίσωση (Fan_Signal) με μεταβλητή εισόδου το κλάσμα των ανθρώπων μέσα στο κτήριο (Occ) και έξοδο *Control_Signal* = GT(Occ, 0) όπως φαίνεται στο σχήμα 5.59. Η συνάρτηση GT(x,y) επιστρέφει τιμή 1 για x > y και 0 για $x \le y$.

(BuildingProject.tpf) Fan_Signa			-		×
= Show input in Macro		Intermediates & Outputs			
Occ		Control_Signal			
	×				×
	¢s				85
					Q
Contro_Signal ☑ Show output in Macro	= GT(0	cc,0) (Control signal returns 1 if there is or	cupancy	and 0 if no	J XI

Σχήμα 5. 59: Εισαγωγή εξίσωσης ελέγχου των ανεμιστήρων παροχής αέρα στο κτήριο.

Η είσοδος της εξίσωσης είναι η έξοδος του Occupancy Schedule και η έξοδός της συνδέεται με το σήμα ελέγχου των ανεμιστήρων (βλ. σχήμα 5.60).

Σχήμα 5. 60: Σύνδεση της εξίσωσης ελέγχου των ανεμιστήρων με το occupancy schedule και τους ανεμιστήρες.

Έπειτα εισάγεται ένα online plotter, με τίτλο Ventilation, από την γραμμή εργαλείων Assembly>Output Manager για να φαίνονται οι τιμές βασικών μεγεθών του συστήματος αερισμού κατά τη διάρκεια της προσομοίωσης, όπως φαίνεται στο σχήμα 5.61.

Plots - Files	Properties	×
🙀 😼 🔤 📈 🔛 🗙	Unit name	Ventilation
Temperatures and Gains - "Temperatun Irradiation - "Irradition" Ventilation - "Ventilation" Left axis variable-1 - Ret_Air_Tem	Graph title	"Ventilation"
Return_Air_Fan - Outlet Air Ti Left axis variable-2 - Fr_Air_Temp Fresh_Air_Fan - Outlet Air Tei Left axis variable-3 - Rec_Temp Left axis variable-3 - Rec_Temp Left axis variable-4 - Sup_Temp Left axis variable-4 - Sup_Temp Type148b - Outlet Temperatu	Left Axis Title Min Max Number of va	"Temperatures" 0.0 50.0 ariables 4 ~
Right axis variable-1 - Ret_Air_Fi Return_Air_Fan - Outlet Flow Right axis variable-2 - Fr_Flow Right axis variable-3 - Ret_Flow Right axis variable-3 - Ret_Flow Type760 - Fresh Air Flowrate Right axis variable-4 - Sup_Flow Type148b - Outlet Flow Rate	Right Axis Title Min Max Number of va Number of plot	"Flow rates" 0.0 2500.0 ariables 4 ✓ cs per simulation 1

Σχήμα 5. 61: Εισαγωγή γραφήματος για έλεγχο θερμοκρασιών και παροχών από types του συστήματος αερισμού.

5.3.2 Προσδιορισμός του μέγιστου φορτίου θέρμανσης του κτηρίου.

Αφού σχεδιάστηκε το σύστημα αερισμού στο simulation studio ενδιαφέρει ο προσδιορισμός του μέγιστου φορτίου θέρμανσης. Με βάση αυτό θα καθοριστεί το μέγεθος (σε kW) της συσκευής θέρμανσης (αντλία θερμότητας) του συστήματος που θα καλύπτει της ανάγκες του κτηρίου. Σε αυτό το κτήριο η επιθυμητές τιμές της θερμοκρασίας στο εσωτερικό του είναι μεταξύ 20 – 22°C.

Για να υπολογιστεί αυτό το μέγιστο φορτίο θέρμανσης εισάγεται μια ιδανική πηγή θερμότητας στο TRNBuild . Από το TRNBuild Navigator επιλέγοντας το Heating types (σχήμα 5.62) και συγκεκριμένα το HEAT1 (το δημιούργησε το building wizard αλλιώς δεξί κλικ Add) αλλάζουμε την θερμοκρασία ελέγχου σε 22°C, την ισχύ θέρμανσης (Sensible Heating Power) σε απεριόριστη (Unlimited), όπως φαίνεται στο σχήμα 5.63.

Σχήμα 5. 62: Εισαγωγή Heating type.

Heating Type Manager
👑 "Heating Type" Manager
heating type: HEAT1
Room Temperature Control
set temperature: 22 °C
Sensible heating power
✓ unlimited ✓ limited
radiative fraction: D
Electric Power Fraction
fraction of actual sensible power: Image: sensible power Image: sensible
Humidification
off C on

Σχήμα 5. 63: Αλλαγή παραμέτρων ιδανικού στοιχείου θέρμανσης.

Στη συνέχεια από το Airnode: Zone A1 επιλέγεται το HEAT1 από το πεδίο Heating, και επιλέγεται On για να είναι ενεργό το ιδανικό στοιχείο θέρμανσης.

Heating [AirNode: Zone_A1]
👑 Heating
Coff F on
Heating Type
HEAT1
HEAT1

Σχήμα 5. 64: Ανάθεση του ιδανικού στοιχείου θέρμανσης στη ζώνη Α1.

Ακόμη μένει να οριστεί στο κτήριο ως μεταβλητή εξόδου η ισχύς που απαιτείται για την διατήρηση της θερμοκρασίας στο εσωτερικό τους κτηρίου κάθε χρονική στιγμή. Από το TRNBuild Navigator με διπλό κλικ στο πεδίο Outputs ανοίγει το παράθυρο του σχήματος 5.65. Πατώντας "+" ο χρήστης μπορεί να αναθέσει στο κτήριο μια μεταβλητή εξόδου σε αυτό.

Outp	uts							
Cal	culate	e Transfer Functions						^
	Timeba	ase:						
Ou	tputs							
ļ	Result	ing Output List						
	No	Name	Unit	ZNr	Aimode	SurfNr	Description	
	2	TAIR_Zone_A1 RELHUM_Zone_A1	C %	1	Zone_A1 Zone_A1		air temperature of aimode relativ humidity of aimode air	
	Outpu	It Definition						
	No	Aimodes/Nodes/Airlinks				NTy	pes	
	1 2	Zone_A1 Zone_A1				1		
- (Đ							
	_							
\checkmark	×							Ų

Σχήμα 5. 65: Ανάθεση νέας μεταβλητή εξόδου στο κτήριο.

Επιλέγοντας την ζώνη Α1 από της διαθέσιμες ζώνες και πατώντας το βελάκι προς τα αριστερά στο πάνω δεξιά πεδίο επιλέγεται η επιθυμητή ζώνη για την οποία μας ενδιαφέρουν οι μεταβλητές εξόδου. Έπειτα από το κάτω δεξιά πεδίο επιλέγεται το QHEAT με κωδικό 30 και με το βελάκι προς τα αριστερά ανατίθεται ως μεταβλητή εξόδου στο κτήριο (βλ. σχήμα 5.66).

itputs				
🖲 userdefined 🕓 defa	ault			
Aimodes				
	Selected "Thermal Aimodes"			Available "Thermal Aimodes"
thermal aimodes	No Thermal Arnodes 1 Zone_A1			
ainode outputs	G group of aimode outputs ⊂ su	iface outputs	comfort outputs	balances
Airnode outputs Selected "Outputs" (N	C group of aimode outputs. C su	iface outputs C Available '	comfort outputs	balances
NTypes C ainode outputs Selected "Outputs" (N No NType	Group of aimode outputs ⊂ su ITYPES) Key Additional Data	iface outputs C Available ' NType	comfort outputs C Outputs" (NTYPES)	balances Description
	group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	face outputs C Available ' NType 24	comfort outputs C Outputs'' (NTYPES) Key TMSURF	balances Description weighted mean surface temperature of aimode
	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	face outputs C Available ' NType 24 25	comfort outputs C "Dutputs" (NTYPES) Key TMSURF TOP	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature
innode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs ⊂ su ITYPES) Key Additional Data IEAT not available	face outputs C Available ' Available ' Available ' Available ' 24 25 26	comfort outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode
ainode outputs (Selected "Dutputs" (N No NType 1 30 QH	Group of aimode outputs ⊂ su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 27	comfort outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW QUA	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adoption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values gir
Ainode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data	Available ' Available' NType 24 25 26 27 28	comfoit outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW QUA - DP	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values gi values of all schedules
Airnode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 28 29 29	comfort outputs C Outputs" (NTYPES) Key TMSUBF TOP QVAPW QUA ABSHUM OUTST	balances Description weighted mean surface temperature of aimode obsolet use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA+dT using the u-values gi values of all schedules absolute humidity of aimode air
Airnode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 28 29 30	comfoit outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW QUA ABSHUM QHEAT QHEAT	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values gin values of all schedules absolute humidity of aimode air sensible heating demand of aimode [positive values] emotion and the sender of aimode [positive values]
C aimode outputs C aimode outputs Selected "Dutputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' Available ' 24 25 26 27 28 29 30 31 55	comfoit outputs C "Outputs" (NTYPES) Key TMSURF TOP QVAPW QUA - ABSHUM QHEAT QCOOL OSCC	balances Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values gin values of all schedules absolute humidity of aimode air sensible heating demand of aimode (positive values) sensible heating demand of aimode (positive values) executed wheat 6 word of aimode (positive values)
Airnode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 28 29 30 31 56	comfort outputs C Outputs" (NTYPES) Key TMSUBF TOP QVAPW QUA ABSHUM QHEAT QCOOL QSEC DM/	Description weighted mean surface temperature of aimode obsolet use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values git values of all schedules absolute humidity of aimode air sensible heating demand of aimode (positive values) sensible cooling demand of aimode (positive values) secondary heat flux of all windows of aimode extende area even extend to the formed 16: Bit of the descention
NTypes Caimode outputs Caimod	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' Available ' NType 24 25 26 27 28 29 30 31 56 62 29	Comfot outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW QVAPW QUA - ABSHUM QHEAT QCOL QSEC PMV PED	Description weighted mean surface temperature of armode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of armode static UA-transmission losses of aimode (UA*dT using the u-values giv values of all schedules absolute humidity of armode air sensible heating demand of armode (positive values) sensible cooling demand of armode (positive values) secondary heat flux of all windows of aimode obsolete use new comfort outputs (Version 16: Predicted mean vote) elevalete use new comfort outputs (Version 16: Predicted mean vote)
NTypes Cainode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	face outputs C Available ' NType 24 25 26 27 28 29 30 31 56 62 63 63	comfoit outputs C "Outputs" (NTYPES) Key TMSURF TOP QVAPW QVAPW QVA ABSHUM QHEAT QCOOL QSEC PMV PPO OTSEL	balances
NTypes aimode outputs (Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 28 29 30 31 56 62 63 69 59 59 59 59 50 50 50 5	comfort outputs C Outputs" (NTYPES) Key TMSUBF TOP QVAPW QUA ABSHUM QHEAT QCOOL QSEC PMV PPD QTSGL	Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values giv values of all schedules absolute humidity of aimode air sensible heating demand of aimode (positive values) sensible heating demand of aimode (positive values) secondary heat flux of all windows of aimode obsolete use new comfort outputs (Version 16: Precientage of person- total solar absorption on all panes of all windows of aimode
NTypes Cainode outputs Cainod	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' Available ' NType 24 25 26 27 28 29 30 31 56 62 63 63 63 63 63 63 6	Comfot outputs C Outputs" (NTYPES) Key TMSURF TOP QVAPW QVA ABSHUM QHEAT QSEC PMV PPD QTSGL	Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature; heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values giv values of all schedules absolute humidity of aimode air sensible heating demand of aimode (positive values) secondary heat flux of all windows of aimode obsolete use new comfort outputs (Version 16: Predicted mean vote) obsolete use new comfort outputs (Version 16: Percentage of person total solar absorption on all panes of all windows of aimode
NTypes ainode outputs Selected "Outputs" (N No NType 1 30 QH	C group of aimode outputs C su ITYPES) Key Additional Data IEAT not available	Available ' Available ' NType 24 25 26 27 28 29 30 31 56 62 63 69 <	comfoit outputs C "Outputs" (NTYPES) Key TMSURF TOP QVAPW QVAPW QVA QVA QVA QVA QVA QVA QVA QVA	Description weighted mean surface temperature of aimode obsolete use new comfort outputs (Version 16: Operative temperature heat of vapour adsorption in walls of aimode static UA-transmission losses of aimode (UA*dT using the u-values giv values of all schedules absolute humidity of aimode aimode (positive values) sensible heating demand of aimode (positive values) sensible heating demand of aimode (positive values) secondary heat Rux of all windows of aimode obsolete use new comfort outputs (Version 16: Percentage of person total solar absorption on all panes of all windows of aimode

Σχήμα 5. 66: Επιλογή του QHEAT για μεταβλητή εξόδου στο κτήριο.

Στο σχήμα 5.67 φαίνονται οι μεταβλητές εξόδου που έχουν ανατεθεί στο κτήριο. Επιπλέον στο simulation studio με δεξί κλικ πάνω στο κτήριο και Update Variables List εμφανίζεται η νέα μεταβλητή QHEAT που ανατέθηκε σε αυτό.

Outpu	5	
Calc	late Transfer Functions	^
	nebase: 1	
0.1		
	No Name Unit ZNr Aimode SuriNr Description TAIR_Zone_A1 C 1 Zone_A1 air temperature of aimode	
	2 RELHUM Zone_A1 % 1 Zone_A1 relativ humidity of aimode air 3 OHEAT Zone_A1 kJ/hr 1 Zone_A1 heating demand	
_		
9	utput Definition	
	No Aimodes/Nodes/Airlinks	
	I Zone_A1 1 2 Zone_A1 9	
	3 Zone_A1 30	
-		
$\mathbf{\nabla}$		~

Σχήμα 5. 67: Οι μεταβλητές εξόδου που έχουν ανατεθεί στο κτήριο.

Επιλέγοντας από την βιβλιοθήκη Output> Printer> Unformatted> No Units> Type 25c εισάγεται ένας εκτυπωτής στην εγκατάσταση. Ο εκτυπωτής τυπώνει σε κάθε χρονικό βήμα και ξεκινάει από την αρχή της προσομοίωσης και τελειώνει στο τέλος αυτής, όπως φαίνεται στο σχήμα 5.68 (παράμετροι 1,2 και 3). Επιπλέον ο χρήστης πρέπει να επιλέξει το όνομα του αρχείου εξόδου που θα δημιουργηθεί μετά το πέρας της προσομοίωσης (Heat_Load). Η θέση αυτού θα είναι στον φάκελο που βρίσκεται και το αρχείο της εγκατάστασης (.tpf). Η ισχύς του θερμαντικού στοιχείου από το κτήριο συνδέεται ως είσοδος στον εκτυπωτή (βλ. σχήμα 5.69). Επιπλέον εισάγεται και ένα online plotter με μοναδική μεταβλητή που αναπαρίσταται την ισχύ (QHEAT) του στοιχείου θέρμανσης (σχήμα 5.70). Οι μονάδες ισχύος στο TRNSYS 18 είναι kJ/h, και αυτές είναι και της ισχύος του στοιχείου θέρμανσης.

		Name	Value	Unit	More	Macro
1	đ	Printing interval	STEP	hr	More	\checkmark
2	ď	Start time	START	hr	More	Z
3	đ	Stop time	STOP	hr	More	2
4	۵	Logical unit	33	-	More	2
5	۵	Units printing mode	0	-	More	
6	đ	Relative or absolute start time	0	-	More	
7	ď	Overwrite or Append	-1	-	More	2
8	ď	Print header	-1	-	More	Z
7 8 -	ef) 1	Overwrite or Append Print header Type25c	-1	-	More	

Σχήμα 5. 68: Εισαγωγή εκτυπωτή type 25c για εύρεση του μέγιστου φορτίου θέρμανσης του κτηρίου.

Σχήμα 5. 69: Σύνδεση της ισχύος του ιδανικού στοιχείου θέρμανσης με τον εκτυπωτή type 25c.

Plots - Files	Properties
	Unit name QHEAT
Temperatures and Gains - "Temperature Irradiation - "Irradition" Ventilation - "Ventilation" CHEAT - "CHEAT" - Left axis variable - QHEAT_Zone_A - Building - 3- QHEAT_Zone_A1 - Yype2Sc - Heat_Load.out	Graph title "QHEAT" Left Axis Title "QHEAT" Min 0.0 Max 30000.0 Number of variables 1 ✓ Right Axis
	Title "Heat transfer rates" Min 0.0 Max 1000.0 Number of variables 0
< >>	Number of plots per simulation 1

Σχήμα 5. 70: Εισαγωγή Online Plotter για αναπαράσταση της ισχύος του ιδανικού στοιχείου θέρμανσης QHEAT.

Η προσομοίωση έγινε για μια ολόκληρη χρονιά (αρχή 0 h και τέλος 8760 h) και βήμα 5 min. Η γραφική παράσταση μας δίνει μια ιδέα για την τιμή της μέγιστης ισχύος του ιδανικού στοιχείου θέρμανσης (βλ. σχήμα 5.71).

Σχήμα 5. 71: Αναπαράσταση της ισχύος του ιδανικού στοιχείου θέρμανσης για διατήρηση της εσωτερικής θερμοκρασίας του κτηρίου για μια ολόκληρη χρονιά.

Εισάγοντας τις τιμές του στοιχείου θέρμανσης σε ένα αρχείο excel βρίσκεται η μέγιστη τιμή ισχύος 17246 kJ/h ή 4791 W. Έτσι για την συσκευή θέρμανσης (αντλία θερμότητας) η ονομαστική ισχύς της θα είναι 5 kW (θα είναι παραπάνω γιατί θα υπάρχει και το μέγιστο φορτίο της θέρμανσης του ζεστού νερού χρήσης, που θα υπολογιστεί στη συνέχεια).

5.4 Δημιουργία του συστήματος θέρμανσης της εγκατάστασης.

Έχοντας προσδιορίσει το μέγιστο φορτίο θέρμανσης μένει να σχεδιαστεί η εγκατάσταση της ηλιακά υποβοηθούμενης αντλίας θερμότητας στο simulation studio. Πρώτα όμως ο χρήστης πρέπει να αφαιρέσει το ιδανικό στοιχείο θέρμανσης από το κτήριο, από το Airnode: Zone A1 και επιλέγοντας το Heating: OFF (βλ. σχήμα 5.72).

Heating [AirNode: Zone_A1]		
🁑 Heating		
⊂ off ⊂ on		

Σχήμα 5. 72: Αφαίρεση της ιδανικής θέρμανσης του κτηρίου από το TRNBuild.

5.4.1 Ο βρόχος δοχείου αποθήκευσης-θερμαντικού στοιχείου.

Σε αυτή την ενότητα σχεδιάζεται ο βρόχος του στοιχείου θέρμανσης (εναλλάκτης αέρα- νερού) με το δοχείο αποθήκευσης στο οποίο αποθηκεύεται η θερμότητα από τις πηγές (αντλία θερμότητας και ηλιακοί συλλέκτες) όπως φαίνεται στο σχήμα 5.73.

Σχήμα 5. 73: Η εγκατάσταση μαζί με τον βρόχο θερμαντικού στοιχείου και δοχείου αποθήκευσης.

Ο εναλλάκτης αέρα- νερού του συστήματος θέρμανσης παρεμβάλλεται μεταξύ του μίκτη αέρα (type 148b) και του κτηρίου. Το αναμεμιγμένο ρεύμα αέρα ανακυκλοφορίας και φρέσκου παραλαμβάνει την απαραίτητη θερμότητα για να διατηρήσει την θερμοκρασία του κτηρίου μεταξύ 20 – 22°C.

Σε αυτή την προσομοίωση ο εναλλάκτη αυτός είναι το type 670, και εισάγεται από την βιβλιοθήκη ως εξής: HVAC Library (TESS)> Heating Coils> Effectiveness Approach> Type 670. Αυτό το type έχει μοντελοποιήθει έτσι ώστε μέρος του ρεύματος αέρα να μπορεί να παρακάμπτει τον εναλλάκτη με σκοπό την διατήρηση μιας μέγιστης τιμής της θερμοκρασίας εξόδου του αέρα, εδώ 40 °C. Μια τυπική τιμή της αποδοτικότητας του εναλλάκτη είναι 0.5, όπως φαίνεται στο σχήμα 5.74.

	ter	Inpu	ut Output Comment				
ŝ			Name	Value	Unit	More	Macr
	3	đ	Air Inlet Temperature	20.0	с	More	
1	4	đ	Air Inlet Humidity Ratio	0.008	-	More	
8	5	đ	Air Inlet % Relative Humidity	50.	% (base 100)	More	
	6	đ	Air Inlet Flowrate	1000.0	kg/hr	More	
	7	đ	Air Inlet Pressure	1.	atm	More	
	8	đ	Effectiveness of Heat Exchanger	0.5	-	More	
	9	đ	Air-Side Pressure Drop	0.0	atm	More	
	10	đ	Air Set Point Temperature	40	с	More	

Σχήμα 5. 74: Αποδοτικότητα και μέγιστη θερμοκρασία εξόδου του αέρα του type 670.

Στα παρακάτω σχήματα 5.75 και 5.76 συνδέονται η θερμοκρασία, η σχετική υγρασία και η παροχή του αέρα του εναλλάκτη ως έξοδοι με τα αντίστοιχα του type 148b και σαν είσοδοι του κτηρίου.

Σχήμα 5. 75: Σύνδεση του type 148b με το type 670.

Σχήμα 5. 76: Σύνδεση του type 670 με το κτήριο.

Το θερμαντικό στοιχείο τροφοδοτείται από το δοχειό αποθήκευσης με μια αντλία. Η παροχή της αντλίας υπολογίζεται ως εξής: $\dot{m}_p = \frac{Q_{heat}}{C_{pw} \cdot \Delta T_w}$ 5.5, όπου \dot{m}_p η παροχής της αντλίας σε kg/s, $Q_{heat} = 5000 W$ η μέγιστη ισχύς που θα μεταφέρει το νερό του θερμαντικού στοιχείου στο ρέυμα αέρα, $C_{pw} = 4190 J/kg/K$ η θερμοχωρητικότητα του νερού και $\Delta T_w = 7$ °C η επιθυμητή διαφορά θερμοκρασίας του νερού. Έτσι προκύπτει παροχή αντλίας 0.1704 kg/s ή 614 kg/h. Η αντλία εισάγεται από τη βιβλιοθήκη: Hydronics> Pumps> Single Speed> Type 114, και έχει καταναλισκόμενη ισχύ 54 kJ/h (15W). Τα δεδομένα αυτά εισάγονται στο πεδίο των παραμέτρων όπως φαίνεται στο σχήμα 5.77.

inal_v	1.tp	f) Co	pil Pump			-	
arame	ter	Inpu	t Output Comment				
ď	Г	Π	Name	Value	Unit	More	Macro
	1	æ	Rated flow rate	614	kg/hr	More	
1	2	ď	Fluid specific heat	4.19	kJ/kg_K	More	
18	3	æ	Rated power	64	kJ/hr	More	Ø
	4	æ	Motor heat loss fraction	0.0	-	More	М

Σχήμα 5. 77: Παράμετροι αντλίας θερμαντικού στοιχείου.

Στο παρακάτω σχήμα 5.78 φαίνεται η σύνδεση της θερμοκρασίας εξόδου και της παροχής της αντλίας με τα αντίστοιχα μεγέθη του θερμαντικού στοιχέιου type 670.

	-	
Outlet fluid temperature	 Fluid Inlet Temperature 	40.0
Outlet flow rate	 Fluid Flowrate 	1000.0
Power consumption	Air Inlet Temperature	20.0
Fluid heat transfer	Air Inlet Humidity Ratio	0.008
Environment heat transfer	Air Inlet % Relative Humidity	50.
	Air Inlet Flowrate	1000.0
	Air Inlet Pressure	1.
	Effectiveness of Heat Exchanger	0.5
	Air-Side Pressure Drop	0.0
	Air Set Point Temperature	40

Σχήμα 5. 78: Σύνδεση αντλίας θερμαντικού στοιχείου με το type 670.

Από την βιβλιοθήκη εισάγεται το δοχείο αποθήκευσης με σωληνοειδή εσωτερικό εναλλάκτη: Storage Tank Library (TESS)> Cylindrical Storage Tank> Vertical Cylinder> Version without Plug in> Coiled tube HXs> Type 534 Coiled. Το δοχείο αυτό είναι χωσισμένο σε 11 κόμβους, έτσι ώστε να υπάρχει διακύμανση της θερμοκρασίας μέσα στο δοχείο. Ο κόμβος 1 είναι στο υψηλότερο σημείο του δοχείου και ο 11 στο χαμηλότερο (0m). Το ύψος του δοχείου τέθηκε 2m και ο όγκος του σε $1\ m^3$ (βέλτιστος). Η εύρεση της βέλτιστης τιμής του όγκογ του δοχείου γίνεται σε επόμενη παράγραφο. Ο αριθμός των θυρίδων του δοχείου είναι 3 ζεύγη (6 οπές, δηλαδή 3 ρεύματα). Τα δύο ρεύματα αφορούν τις πηγές θερμότητας του ζεστού νερού, δηλαδή την αντλία θερμότητας και τους ηλιακούς συλλέκτες, και η τρίτη την κατανάλωση του ζεστού νερού-το ρεύμα προς το θερμαντικό στοιχείο. Οι είσοδοι των δύο πηγών είναι στο πάνω μέρος του δοχείου (κόμβος 1) και οι έξοδοί τους στο κάτω μέρος κόμβος (11). Αντίθετα για το ρεύμα προς το type 670 η είσοδος είναι στο κάτω μέρος του δοχείου και η έξοδος στο πάνω μέρος. Ο συντελεστής θερμικών απωλειών του δοχείου περιμετρικά όλων των κόμβων (Edge losses) και στο άνω (Top Loss και κάτω μέρος (Bottom Loss) του δοχείου είναι $U = 0.425 W/m^2/K$ ή 1.53 $kJ/h/m^2/K$ που αντιστοιχεί σε 80mm πολυουρεθάνης με θερμική αγωγιμότητα k = 0.034 W/m/K. Τα παραπάνω φαίνονται στο σχήμα 5.79 και εισάγονται στο πεδίο των παραμέτρων του θερμαντικού στοιχείου.

(Final_v	inal_v1.tpf) Type534-Coiled —										nput Output Derivative Comment	t				
Parame	ter	Inpu	t Output Derivative Comment	t				ත්	ΗĒ	Т	Name	Value	Unit	More	Macro	
æ			Name	Value	Unit	More	Macro		1	6	Top loss coefficient	1.53	kJ/hr.m*2.K	More		
	1	a	LU for data file	-1	-	More			15	; e	Edge loss coefficient for node-1	1.53	kJ/hr.m^2.K	More		
1	2	ď	Number of tank nodes	11	-	More			16 17	i G	Edge loss coefficient for node-2	1.53	kJ/hr.m^2.K	More		
28	3	đ	Number of ports	3	-	More		1		17	6	Edge loss coefficient for node-3	1.53	kJ/hr.m*2.K	More	
	4	â	Number of immersed heat	1	-	More		1	18	6	Edge loss coefficient for node-4	1.53	kJ/hr.m*2.K	More		
	5		exchangers Number of miscellaneous heat	0	-				19	¹ 6	Edge loss coefficient for node-5	1.63	kJ/hr.m^2.K	More		
	Ľ	ď	flows	ľ		More			20	6	Edge loss coefficient for node-6	1.53	kJ/hr.m*2.K	More		
	6	ď	Tank volume	1.0	m^3	More			21	6	Edge loss coefficient for node-7	1.53	kJ/hr.m^2.K	More		
	7	ď	Tank height	2	m	More		. 🖻	22	2 6	Edge loss coefficient for node-8	1.53	kJ/hr.m*2.K	More		
	8		Tank fluid	0					23 24	23	; G	Edge loss coefficient for node-9	1.53	kJ/hr.m^2.K	More	
ď	20		Name	Value	Unit	More	Macro	1		6	Edge loss coefficient for node-10	1.53	kJ/hr.m^2.K	More		
1	20	ď	Entry Hode-1	' 44	-	More			25	6	Edge loss coefficient for node-11	1.53	kJ/hr.m^2.K	More		
-	30	đ	Exit hode-1	11	-	More			26	- G	Bottom loss coefficient	1.53	kJ/hr.m*2.K	More		
116	31	۵	Inlet flow mode-2	1	-	More		l ber		1		-	i			
	32	đ	Entry node-2	1	-	More										
	33	ď	Exit node-2	11	-	More										
	34	â	Inlet flow mode-3	1	-	More										
	35	đ	Entry node-3	11	-	More										
	36	đ	Exit node-3	1	-	More		~								
							11									

Σχήμα 5. 79: Παράμετροι του δοχείου αποθήκευσης type 534.

Συνεχίζοντας στην εισαγωγή παραμέτρων του δοχείου οι συντελεστές απωλειών Flue loss coefficient for node-x, τίθεται 0 καθώς αφορούν την ύπαρξη άλλης πηγής θερμότητας του δοχείου από θερμά καυσαέρια, και μη μηδενισμός αυτών συντελεί σε μη ισολογισμό ενέργειας. Οι επόμενες παράμετροι αφορούν τον εναλλάκτη στο εσωτερικό του δοχείου, οποίος υπάρχει για το ζεστό νερό χρήσης, που θα μελετηθεί σε επόμενη παράγραφο. Ο αριθμός των κόμβων για τον εναλλάκτη είναι 4, και το μήκος του 20 m. Κάθε κόμβος καταλαμβάνει το 1/4 του εναλλάκτη και βρίσκονται στους δύο πρώτους κόμβους του δοχείου (βλ. σχήμα 5.80).

Parame	meter Input Dutput Derivative Comment								Inpu	at Output Derivative Commen	t			
ත්		Name	Value	Unit	More	Macro	ഷ്			Name	Value	Unit	More	Macro
-	38	Flue loss coefficient for node-2	0	kJ/hr.m^2.K	More			58	æ	Geometry exponent for natural	1.0	-	More	
	39	Flue loss coefficient for node-3	0	kJ/hr.m*2.K	More		1	59	æ	Inner tube diameter	0.020	m	More	
88	40	Flue loss coefficient for node-4	0	kJ/hr.m^2.K	More		F13	60	-	Outer tube clameter	0.022	m	More	
	41	Flue loss coefficient for node-5	0	kJ/hr.m*2.K	More			61	æ	HX wall thermal conductivity	2.14	k.l/hr.m.K	More	
	42	Flue loss coefficient for node-6	0	k.J/hr.m^2.K	More			62		Length of coiled tubes	20.0	m	More	
	43	Flue loss coefficient for node-7	0	kJ/hr.m*2.K	More			63	-	Number of tubes	1	-	More	
	44	Flue loss coefficient for node-8	0	kJ/hr.m*2.K	More			64	æ	HX header volume	0.	m^3	More	
_	45	Flue loss coefficient for node-9	0	k.J/hr.m^2.K	More			65		HX cross sectional area	0.05	m^2	More	
Parame	ter	Input Output Derivative Commer	rit (Parame	eter	Inp	ut Output Derivative Commer	it			
്		Name	Value	Unit	More	Macro	æ		Г	Name	Value	Unit	More	Macro
-	48	Type of HX	3	-	More		-	68	ď	Tank node for HX node-1	1	-	More	
	49	Number of HX nodes	4	-	More		1	69	ď	Fraction of HX length-1	0.25	-	More	
13	50	B HX fluid	0	-	More		28	70	đ	Tank node for HX node-2	1	-	More	
	51	HX fluid specific heat	4.19	k.Ukg.K	More			71	æ	Fraction of HX length-2	0.25	-	More	
	52	HX fluid density	1000	kg/m*3	More			72	ď	Tank node for HX node-3	2	-	More	
	53	HX fluid thermal conductivity	2.14	k.Mhr.m.K	More			73	đ	Fraction of HX length-3	0.25	-	More	
	54	HX fluid viscosity	3.21	kg/m.hr	More			74	ď	Tank node for HX node-4	2	-	More	
	55	Multiplier for natural convection	0.6	-	More			75	ď	Fraction of HX length-4	0.25	-	More	

Σχήμα 5. 80: Συνέχεια παραμέτρων δοχείου και εσωτερικού εναλλάκτη αυτού.

Επιπλέον στο πεδίο Inputs του δοχείου εισάγεται η θερμοκρασία που βλέπουν τα τοιχώματα του δοχείου και υπολογίζονται οι θερμικές απώλειες αυτού. Εδώ γίνεται η παραδοχή ότι το δοχείο

αποθήκευσης βρίσκεται σε κάποιο μη κλιματιζόμενο χώρο (πατάρι, αποθήκη) εντός του κτηρίου. Η θερμοκρασία αυτή τίθεται 15 °C, όπως φαίνεται στο σχήμα 5.81.

ter	Inpu	t Output Derivative Commen	t				
		Name	Value	Unit	More	Macro	^
9	đ	Top loss temperature	15	с	More	N	
10	đ	Edge loss temperature for node-1	15	с	More		
11	đ	Edge loss temperature for node-2	15	с	More		
12	đ	Edge loss temperature for node-3	15	c	More		
13	đ	Edge loss temperature for node-4	15	с	More		
14	đ	Edge loss temperature for node-5	15	с	More		
15	đ	Edge loss temperature for node-6	15	c	More		
16	đ	Edge loss temperature for node-7	15	с	More		~
	er 9 10 11 12 13 14 15	er Inp. 9 3 10 3 11 3 12 3 13 5 16 5	Input Dutput Derivative Comment 9 Image: Top loss temperature Top loss tempera	Input Dutput Derivative Comment Name Value 9 Top loss temperature 15 10 Edge loss temperature for node-1 15 11 Edge loss temperature for node-2 15 12 Edge loss temperature for node-3 15 13 Edge loss temperature for node-4 15 14 Edge loss temperature for node-5 15 15 Edge loss temperature for node-6 15 16 Edge loss temperature for node-7 15	Input Dutput Derivative Comment Image: Second	Input Dutput Derivative Comment Name Value Unit More 9 Top loss temperature 15 C More 10 Edge loss temperature for node-1 15 C More 11 Edge loss temperature for node-2 15 C More 12 Edge loss temperature for node-3 15 C More 13 Edge loss temperature for node-4 15 C More 14 Edge loss temperature for node-5 15 C More 14 Edge loss temperature for node-6 15 C More 14 Edge loss temperature for node-7 15 C More	Input Dutput Derivative Comment Name Value Unit More Macro 9 Top loss temperature 15 C More ✓ 10 Edge loss temperature for node-1 15 C More ✓ 11 Edge loss temperature for node-2 15 C More ✓ 12 Edge loss temperature for node-3 15 C More ✓ 13 Edge loss temperature for node-4 15 C More ✓ 14 Edge loss temperature for node-5 15 C More ✓ 14 Edge loss temperature for node-6 15 C More ✓ 15 edge loss temperature for node-7 15 C More ✓

Σχήμα 5. 81: Θερμοκρασία τοιχωμάτων δοχείου.

Ακόμα ο χρήστης στην καρτέλα Derivatives (σχήμα 5.82) μπορεί να ορίσει αρχική θερμοκρασία των κόμβων του δοχείου. Εδώ η αρχική θερμοκρασία όλων των κόμβων είναι 40 °C.

Parame	ter	Inpu	ut Output Derivative Commen	t				
đ			Name	Value	Unit	More	Macro	^
	1	đ	Initial Tank Temperature-1	40	С	More	Ø	
1	2	ď	Initial Tank Temperature-2	40	с	More	Ø	
66	3	đ	Initial Tank Temperature-3	40	c	More	Ø	
	4	đ	Initial Tank Temperature-4	40	c	More	Ø	
	5	ď	Initial Tank Temperature-5	40	с	More	Ø	
	6	đ	Initial Tank Temperature-6	40	с	More		
	7	đ	Initial Tank Temperature-7	40	c	More	Ø	
	8	ď	Initial Tank Temperature-8	40	с	More		
	-		i	i	-i	-		*

Σχήμα 5. 82: Αρχική θερμοκρασία των κόμβων του δοχείου αποθήκευσης.

Ακολουθεί η σύνδεση του δοχείου με την αντλία παροχής του θερμαντικού στοιχείου και το ίδιο το θερμαντικό στοιχείο. Η θερμοκρασία και η παροχή του δοχείου στην έξοδο 3 (κόμβος 1) συνδέονται με τα αντίστοιχα μεγέθη της αντλίας (σχήμα 5.83). Ακόμα το εξερχόμενο ρεύμα από το θερμαντικό στοιχείο συνδέεται με τα μεγέθη του εισερχόμενου στο δοχείο ρεύματος 3.

Σχήμα 5. 83: Σύνδεση του δοχείου με το θερμαντικό στοιχείο και την αντλία του.

Όπως έγινε επιθυμητό σε προηγούμενη παράγραφο η θέρμανση του κτηρίου θα λειτουργεί μόνο όταν υπάρχουν άνθρωποι μέσα σε αυτό και όταν η θερμοκρασία στο εσωτερικό του πέσει κάτω από 20 °C. Έτσι εισάγεται ένας θερμοστάστης από την βιβλιοθήκη Controllers> Simple Thermostat> Type 166. Ο θερμοστάτης θα δώσει σήμα 1 για να ξεκινήσει το σύστημα θέρμανσης όταν η θερμοκρασία πέσει κάτω από *Heating setpoint* – *Temperature dead band*/2 = 21 - 1 = 20°C, και συνεχίσει να είναι 1 μέχρι η θερμοκρασία του κτηρίου υπερβεί την *Heating setpoint* + *Temperature dead band*/2 = 21 + 1 = 22°C, όπως φαίνεται στο σχήμα 5.84.

r [Name	Value	Unit	More	Macro
- 1	1	e No), of oscillations permitted	7	-	More	7
	2,	a ∎Te	mperature dead band	2	deltaC	More	2
sta_H arama	-leat. eter	tpf) T	pe166 Output Comment	,		_	
sta_H arama	Heat. eter	tpf) T	ype166 Output Comment Name	, Value	, Unit		Macr
ista_h 'arame	Heat. eter	tpf) T Input	ype166 Dutput Comment Name Vonitoring temperature	, Value 20.0	Unit C	More	Macr
ista_H arama a	Heat. eter	tpf) T Input	Vpe166 Dutput Comment Name Vonitoring temperature Heating setpoint	20.0 21.0	C C	More More More More More More More More	Macr

Σχήμα 5. 84: Παράμετροι του θερμοστάτη του κτηρίου type 166.

Η θερμοκρασία του κτηρίου συνδέεται με την έξοδο 1 (Monitoring Temperature) του θερμοστάτη (βλ. σχήμα 5.85).

Σχήμα 5. 85: Σύνδεση κτηρίου και θερμοστάτη type 166.

Επιπλέον εισάγεται μια εξίσωση (Coil Signal) που θα πολλαπλασιάζει τα δύο σήματα του θερμοστάτη (RoomSig) και της κατοίκισης (OccSig), δηλαδή του σήματος που εκκινεί του ανεμιστήρες. Η τιμή του σήματος θα είναι $Pump_Sig = RoomSig * OccSig$ και θα ελέγχει πότε λειτουργεί η αντλία του θερμαντικού στοιχείου, όπως φαίνεται στο σχήμα 5.86.

(Insta_Heat.tpf) Coil Signal			-		\times
= Show input in Macro		Intermediates & Outputs			
RoomSig		PumpSig			
OccSig	×				×
	És				És
					Q
PumpSig	- Room	Sig*OccSig ! equals 1 If room signal is 1 :	setpoint ar	nd occup	ancy si
Show output in Macro					

Σχήμα 5. 86: Εξίσωση με το σήμα ελέγχου της αντλίας του θερμαντικού στοιχείου.

Στη συνέχεια συνδέεται το σήμα του θερμοστάτη και της κατοίκησης με την εξίσωση Coil Signal και του συνδυασμένου σήματος με το σήμα ελέγχου της αντλίας του θερμαντικού στοιχείου (σχήμα 5.87).

Σχήμα 5. 87: Σύνδεση των δύο σημάτων θερμοστάτη και σήματος κατοίκησης και του σήματος ελέγχου της αντλίας του θερμαντικού στοιχείου.

5.4.2 Ο βρόχος αντλίας θερμότητας – δοχείου αποθήκευσης.

Η αντλία θερμότητας που χρησιμοποιήθηκε σε αυτή την εγκατάσταση βασίζεται το μοντέλο της Sanyo Ecocute 9 kW, όπως χρησιμοποιήθηκε σε πείραμα του πανεπιστημίου Strathclyde [29]. Στη συσκευή αυτή το ψυκτικό CO2 εκτελεί υπερκρίσιμο κύκλο, και μετά τον ψύκτη αερίου (gas cooler) ένα μέρος του ψυκτικού εκτονώνεται σε μια ενδιάμεση πίεση, παρακάμπτει τον ατμοποιητή και εισέρχεται και πάλι στη δεύτερη βαθμίδα του διβάθμιου συμπιεστή, αφού προηγηθεί θερμική συναλλαγή με το κυρίως ρεύμα σε ενδιάμεσο εναλλάκτη (βλ. σχήμα 5.88).

Σχήμα 5. 88: Σχηματική αναπαράσταση και κύκλος στο p-h διάγραμμα της αντλίας θερμότητας CO2 Sanyo Ecocute [29].

Από την ανάλυση δεδομένων κατά τη λειτουργίας της αντλίας στην πόλη Oban, προέκυψε ο παρακάτω χάρτης απόδοσης της αντλίας (σχήμα 5.89).

Σχήμα 5. 89: Χάρτης απόδοσης της αντλίας θερμότητας CO2.

Για την μοντελοποίηση της αντλίας θερμότητας με ψυκτικό CO2 χρησιμοποιήθηκε το **type 941**, από τη βιβλιοθήκη: HVAC Library (TESS)> Air-Water Heat Pump> Humidity Effects Neglected> Type 941. Το στοιχείο αυτό μοντελοποιεί μια αντλία θερμότητας αέρα-νερού και απαιτεί τα εξής:

Την ονομαστική θερμαντική ικανότητα (Heating Capacity), συνολική απαιτούμενη ηλεκτρική ισχύ (μαζί με την ισχύ του ανεμιστήρα 40 W), την ισχύ του ανεμιστήρα που διοχετεύει την αντλία με αέρα (40 W) και την παροχή του.

 Αρχείο με την αδιάστατη θερμαντική ικανότητα και ολική ηλεκτρική ισχύ ως προς τα ονομαστικά μεγέθη, για ένα εύρος συνδυασμών θερμοκρασιών εισόδου του νερού στην αντλία και αέρα περιβάλλοντος.

Για τη δημιουργία του αρχείου εισόδου (σχήμα 5.89) ως ονομαστικές τιμές χρησιμοποιήθηκαν οι θερμαντική ικανότητα και ισχύς της αντλίας (του πειράματος) για θερμοκρασία περιβάλλοντος 8.5°C και θερμοκρασία εισόδου του νερού στον ψύκτη αερίου 30°C, δηλαδή $Q_{HP} = 9000 W$, ισχύ αντλίας $P_{HP} = 3035 W COP_{HP} = 2.96$, και ολική ηλεκτρική ισχύ $P_{tot} = 3075 W$ (μαζί με τον ανεμιστήρα). Διαιρώντας της τιμές της θερμαντικής ικανότητας και της ολικής ηλεκτρικής ισχύς με τις ονομαστικές, για κάθε σημείο λειτουργίας προέκυψε το παρακάτω αρχείο εισόδου του σχήματος 5.90 (βλ. παράρτημα B):

AWH	P_Type941_	H_CO2_Fi	nal - Notepad						
File Edit	t Format	View H	Help						
30	35	40	45	50			!T_water_in		
-5	0.5	3.5	5.5	8.5	11.5	25	!T air in		
1.000	1.285						<pre>!Fraction capacity and power at T_air = -5 deg</pre>	g. C and T_water_in	= 30
1.000	1.145						<pre>!Fraction capacity and power at T_air = 0.5 deg</pre>	g. C and T_water_in	= 30
1.000	1.107						<pre>!Fraction capacity and power at T_air = 3.5 deg</pre>	g. C and T_water_in	- 30
1.000	1.052						<pre>!Fraction capacity and power at T_air = 5.5 deg</pre>	g. C and T_water_in	= 30
1.000	1.000						<pre>!Fraction capacity and power at T_air = 8.5 deg</pre>	<pre>g. C and T_water_in</pre>	= 30
1.000	0.941						<pre>!Fraction capacity and power at T_air = 11.5 deg</pre>	<pre>g. C and T_water_in</pre>	= 30
1.000	0.728						<pre>!Fraction capacity and power at T_air = 25 deg</pre>	<pre>g. C and T_water_in</pre>	= 30
0.919	1.264						<pre>!Fraction capacity and power at T_air = -5 deg</pre>	<pre>. C and T_water_in</pre>	= 35
0.914	1.127						<pre>!Fraction capacity and power at T_air = 0.5 deg</pre>	 C and T_water_in 	= 35
0.928	1.089						<pre>!Fraction capacity and power at T_air = 3.5 deg</pre>	<pre>g. C and T_water_in</pre>	= 35
0.908	1.035						<pre>!Fraction capacity and power at T_air = 5.5 deg</pre>	<pre>g. C and T_water_in</pre>	= 35
0.912	0.984						<pre>!Fraction capacity and power at T_air = 8.5 deg</pre>	 C and T_water_in 	= 35
0.913	0.925						<pre>!Fraction capacity and power at T_air = 11.5 deg</pre>	 C and T_water_in 	= 35
0.929	0.717						<pre>!Fraction capacity and power at T_air = 25 deg</pre>	<pre>g. C and T_water_in</pre>	= 35
0.816	1.263						<pre>!Fraction capacity and power at T_air = -5 deg</pre>	<pre>g. C and T_water_in</pre>	= 40
0.840	1.126						<pre>!Fraction capacity and power at T_air = 0.5 deg</pre>	<pre>c and T_water_in</pre>	= 40
0.856	1.088						<pre>!Fraction capacity and power at T_air = 3.5 deg</pre>	<pre>c and T_water_in</pre>	= 40
0.847	1.034						<pre>!Fraction capacity and power at T_air = 5.5 deg</pre>	. C and T_water_in	- 40
0.840	0.983						<pre>!Fraction capacity and power at T_air = 8.5 deg</pre>	. C and T_water_in	= 40
0.842	0.925						<pre>!Fraction capacity and power at T_air = 11.5 deg</pre>	. C and T_water_in	= 40
0.8/4	0./16						<pre>!Fraction capacity and power at I_air = 25 deg</pre>	. C and I_water_in	= 40
0.86/	1.439						<pre>!Fraction capacity and power at l_air = -5 deg</pre>	. C and I_water_in	= 45
0.874	1.282						<pre>!Fraction capacity and power at I_air = 0.5 deg</pre>	. C and T_water_in	= 45
0.883	1.239						<pre>!Fraction capacity and power at l_air = 3.5 deg</pre>	. C and I_water_in	= 45
0.897	1.1//						Fraction capacity and power at Lair = 5.5 deg	. C and I_water_in	= 45
0.895	1.119						Fraction capacity and power at Lair = 8.5 deg	. C and I_water_in	= 45
0.000	1.055						Fraction capacity and power at I_air = 11.5 deg	. C and T_water_in	= 45
0.955	0.015						Fraction capacity and power at T_air = 25 deg	. C and T_water_in	= 45
0.785	1.619						Fraction capacity and power at Lair = -5 deg	. C and I_water_in	= 50
0.890	1.442						Fraction capacity and power at Lair = 0.5 deg	. C and T_water_in	- 50
0.097	1.394						Fraction capacity and power at T_air = 5.5 deg	. C and T_water_in	- 50
0.952	1.020						Fraction capacity and power at T_air = 5.5 deg	. C and T_water_in	- 50
0.902	1 194						Erraction capacity and power at T_air = 0.5 deg	, C and T_water_in	- 50
0.901	0.016						Enaction capacity and power at T_air = 11.5 deg	, C and T_water_in	- 50
								,, , , ,,,, , [_] ,,,,,, [_] ,,,,,,,, [_] ,,,,,	
<								Ln 1. Col 1	100% Wi

Σχήμα 5. 90: Το αρχείο εισόδου της αντλίας θερμότητας για το type 941.

To type 941 χρησιμοποιώντας το αρχείο εισόδου και οποιεσδήποτε ονομαστικές τιμές της θερμαντικής ικανότητας και ισχύος στο πεδίο των παραμέτρων μοντελοποιεί διαφορετικά μεγέθη αντλιών χωρίς αλλαγή στο αρχείο εισόδου. Για τις συγκεκριμένες παραμέτρους κτηρίου υπολογίστηκε ότι μια αντλία με θερμαντική ικανότητα 5 kWth είναι αρκετή για να ικανοποιήσει το μέγιστο φορτίο θέρμανασης, ενώ για το ζεστό νερό χρήσης απαιτείται $Q_{DHW,MAX} = \dot{m}_{DHW,MAX} \cdot Cp_w \cdot \Delta T_w = 40 kg/hr \cdot 4.19 kj/kg/K \cdot (45 - 15)K = 1.39 kW$ (βλ. παράγραφο 5.5). Συνεπώς το μέγιστο φορτίο εκτιμάται σε $Q_{max} = 5 + 1.39 = 6.39 kW$. Έτσι επιλέχθηκε αντλία με θερμαντική ικανότητα 7kW.

Στο πεδίο των παραμέτρων ο χρήστης είναι αναγκαίο να εισάγει τον αριθμό των θερμοκρασιών εισόδου του νερού στην αντλία θερμότητας και των αριθμό των θερμοκρασιών περιβάλλοντος που χρησιμοποιούνται στο αρχείο εισόδου (βλ. σχήμα 5.91). Γνωρίζοντας την ονομαστική θερμαντική ικανότητα της αντλίας θερμότητας Q_{HP} και τον συντελεστή συμπεριφοράς COP_{HP} , η ισχύς του συμπιεστή $P_{HP} = \frac{Q_{HP}}{COP_{HP}} = 2365 W$ ή 8514 kJ/h. Στο πεδίο των παραμέτρων εισάγεται η ισχύς του συμπιεστή μαζί με την ισχύ του ανεμιστήρα (40 W) που παρέχει αέρα στην αντλία. Έτσι η ολική ισχύς είναι 2405 W ή 8658 kJ/h. Η θερμότητα του αέρα που εισέρχεται στην αντλία απορροφάται από τον ατμοποιητή $Q_{Evap} = Q_{HP} - P_{HP} = \dot{m}_{air} \cdot Cp_{air} \cdot \Delta T_{air}$. Για διαφορά θερμοκρασία του αέρα 5°C προκύπτει $\dot{m}_{air} = 0.927 kg/s = 772 kg/h$. Στον παρακάτω πίνακα 5.1 φαίνονται τα ονομαστικά μεγέθη της αντλίας θερμότητας της εγκατάστασης.

CO2 HP	
Heat pump no	minal 8.5oC amb T
Q(W)	7000
Q(kJ/hr)	25200
P(W)	2364.86
P(kJ/hr)	8513.51
COPhp	2.96
Ptot(W)	2404.86
Ptot(kJ/hr)	8657.51
Pfan(kJ/hr)	144
AirFlow(kg/s)	0.927
AirFlow(I/s)	772.523

Πίνακας 5. 1: Ονομαστικά μεγέθη αντλίας θερμότητας της εγκατάστασης.

Στο παρακάτω σχήμα 5.91 παρουσιάζονται οι παράμετροι της αντλίας θερμότητας και οι μεταβλητές εισόδου. Ο χρήστης πρέπει να προσέξει το σήμα εισόδου για την ψύξη να είναι 0, αλλιώς μπορεί να υπάρξει λάθος στους υπολογισμούς όταν τρέχει η προσομοίωση. Στο πεδίο External Files ο χρήστης προσδιορίζει την θέση του αρχείου εισόδου της αντλίας.

Σχήμα 5. 91: Παράμετροι, μεταβλητές εισόδου και αρχείο εισόδου της αντλίας θερμότητας της εγκατάστασης.

Επιπλέον συνδέεται η θερμοκρασία περιβάλλοντος και η σχετική υγρασία από τα μετεωρολογικά δεδομένα με τα αντίστοιχα μεγέθη της αντλίας θερμότητας (σχήμα 5.92).

Σχήμα 5. 92: Σύνδεση αντλίας θερμότητας με τα μετεωρολογικά δεδομένα.

Η παροχή της αντλίας που τροφοδοτεί την αντλία θερμότητας έχει παροχή $\dot{m}_w = \frac{Q_{HP}}{Cp_w \cdot \Delta T_w} = \frac{7000}{4190 \cdot 5}$ και είναι $\dot{m}_w = 0.334 \frac{kg}{s} \approx 1200 \ kg/h$. Η καταναλισκόμενη ισχύς της αντλίας είναι 18 W ή 65 kJ/h. Στο παρακάτω σχήμα 5.93 φαίνονται οι παράμετροι της αντλίας παροχής του type 941 και η σύνδεση αυτής με το δοχείο. Οι θυρίδες εισαγωγής και εξαγωγής νερού που αφορούν την αντλία θερμότητας είναι το ζεύγος 1.

Σχήμα 5. 93: Παράμετροι αντλίας του type 941 και σύνδεση αυτής, του δοχείου και του type 941 μεταξύ τους.

Σε αυτή την εγκατάσταση είναι επιθυμητό η θερμοκρασία στη μέση του δοχείου να διατηρείται πάνω από τους 45°C. Αυτό γίνεται με την αντλία θερμότητας, η οποία θα λειτουργεί όταν η θερμοκρασία του μεσαίου κόμβου του δοχείου (κόμβος 6) πέσει κάτω από 45°C μέχρι η θερμοκρασία αυτού να φτάσει τους 50°C, οπότε και θα σταματά να λειτουργεί. Αυτό επιτυγχάνεται με την εισαγωγή ενός ελεγκτή, ο οποίος εισάγεται από την βιβλιοθήκη: Controllers> Basic Aquastat> Heating Mode> Type 106. Στο πεδίο Inputs εισάγεται η επιθυμητή θερμοκρασία διατήρησης, και στο πεδίο των παραμέτρων το εύρος στο οποίο ο ελεγκτής θα δίνει σήμα 1 (βλ. σχήμα 5.94). Έτσι ο ελεγκτής θα δίνει σήμα 1 όταν η θερμοκρασία του κόμβου 6 πέσει κάτω από *Heating Setpoint* – *Temperature dead band*/2 = 47.5 – 5/2 = 45°C και θα σταματήσει να δίνει σήμα 1 όταν αυτή υπερβεί την τιμή *Heating Setpoint* + *Temperature dead band*/2 = 47.5 + 5/2 = 50°C.

sta_He	eat.t	f) Type106			-)
aramet	er	nput Output Comment					
ď		Name	Value	Unit	More	Macro	_
	1	No. of oscillations permitted	5	-	More		
1	2	Temperature dead band	5	deltaC	More		
nsta_H Parame	Heat eter	pf) Type106 Input Dutput Comment			-		
đ		Name	Value	Unit	More	Macro	
=	1	Monitoring temperature	20.0	c	More		
1	2	Heating setpoint	47.5	с	More		
FILM			,	,	1		

Σχήμα 5. 94: Παράμετροι και είσοδοι του ελεγκτή type 106.

Η θερμοκρασία του κόμβου 6 του δοχείου συνδέεται με τη θερμοκρασία ελέγχου του type 106, όπως φαίνεται στο σχήμα 5.95.

Σχήμα 5. 95: Σύνδεση type 106 με το δοχείο αποθήκευσης.

Τέλος συνδέεται το σήμα εξόδου του ελεγκτή με την αντλία θερμότητας και την αντλία παροχής αυτής, όπως φαίνεται στο σχήμα 5.96.

Σχήμα 5. 96: Σύνδεση ελεγκτή με την αντλία θερμότητας και την αντλία παροχής αυτής.

Η εγκατάσταση θα πρέπει να έχει την μορφή του σχήματος 5.97.

Σχήμα 5. 97: Η εγκατάσταση μαζί με τον βρόχο της αντλίας θερμότητας.

5.5 Δημιουργία του συστήματος παροχής ζεστού νερού χρήσης.

Η εγκατάσταση αυτή πέρα από την κάλυψη του φορτίου θέρμανσης καλύπτει και το φορτίο του ζεστού νερού χρήσης των τεσσάρων κατοίκων του κτηρίου. Η θερμοκρασία του νερού από το δίκτυο

τέθηκε στους 15°C. Μια τυπική οικογένεια τεσσάρων ατόμων καταναλώνει 187.5 kg νερού την ημέρα. Στο παρακάτω σχήμα 5.98 φαίνεται απαιτούμενη παροχή ζεστού νερού χρήσης σε kg/h ως συνάρτηση της ώρας της ημέρας.

Σχήμα 5. 98: Ημερήσιο πρόγραμμα κατανάλωσης ζεστού νερού χρήσης του κτηρίου.

Η συνολική κατανάλωση νερού ανέρχεται σε 187.5 kg. Διαιρώντας τις τιμές του παραπάνω διαγράμματος με την μέγιστη παρατηρούμενη παροχή (βλ. παράρτημα Α) προκύπτουν αδιάστατες τιμές παροχής συναρτήσει της ώρας τις ημέρας και είναι αυτές που εισάγονται μέσω ενός type 14h στο simulation studio (σχ. 5.99).

amete	f In	put Output Derivative Spe	cial Cards External F	iles Comment			
P [Name	Value	Unit	More	Macro	
1	6	nitial value of time	0	hr	More		
- 2	2 6	lnitial value of function	0	any	More		
8	3 6	P Time at point	7	hr	More		
- 4	· 6	r Value at point	0	any	More		
1	; e	Time at point	7	hr	More		
Ē	5 G	Value at point	0.375	any	More		
7	' G	ng Time at point	8	hr	More		
8	1	Value at point	0.375	any	More	M	

Σχήμα 5. 99: Εισαγωγή προγράμματος κατανάλωσης ζεστού νερού μέσω type 14h.

Οι αδιάστατες τιμές εξυπηρετούν σε περίπτωση που ο αριθμός των ατόμων ή η κατανάλωση αλλάξει, να αλλάξουν οι τιμές τις παροχής αλλάζοντας την μέγιστη παροχή και όχι όλο το πρόγραμμα.

Η εισαγωγή της μέγιστης παροχής (mass_w = 40 kg/h) και της θερμοκρασίας του νερού του δικτύου (Tsupw = 15° C) γίνεται με εισαγωγή εξίσωσης (Supply Water), όπως φαίνεται στο σχήμα 5.100. Η είσοδος της εξίσωσης είναι το κλάσμα της μέγιστης παροχής (WaterFrac) και συνδέεται με τη μέση τιμή του προγράμματος κατανάλωσης ζεστού νερού (σχ. 5.101).

(Insta_HP_DHW.tpf) Supply Wa	er	-	×
= Show input in Macro WaterFrac	Intermediates & Outputs mass_w Tsupw		□ × ∮
mass_w	WaterFrac*40 Thot water flow rate demand in kg/	/h.]	

Σχήμα 5. 100: Εισαγωγή εξίσωσης με την μέγιστη παροχή και την θερμοκρασία του νερού χρήσης.

Average value of function	WaterFrac
Instantaneous value of function over the timestep	

Σχήμα 5. 101: Σύνδεση προγράμματος κατανάλωσης με την εξίσωση του νερού χρήσης.

Για να μην υπερβαίνει η θερμοκρασία του νερού τους 45°C η ζητούμενη, με βάση το πρόγραμμα κατανάλωσης, η παροχή διαιρείται σε δύο μέρη. Το ένα περνά από τον εναλλάκτη του δοχείου και το άλλο παρακάμπτει την πηγή αυτή θερμότητας. Τα δύο ρεύματα αυτά αναμιγνύονται και δίνουν την επιθυμητή παροχή και θερμοκρασία. Ο λόγος των δύο ρευμάτων καθορίζεται από έναν ελεγκτή (tempering valve). Για την υλοποίηση αυτού του βρόχου χρειάζεται μια ρυθμιζόμενη βαλβίδα παροχής (διαχωριστής ροής), και εισάγεται ως εξής: Hydronics> Flow Diverter> Other Fluids> Type 11f, ένας μίκτη υγρών: Hydronics> Tee Piece Flow Mixer> Other Fluids> Type 11h, και τον ελεγκτή: Controllers> Tempering Valve Control> Heating Mode> Type 115.

Αφού γίνει σύνδεση της θερμοκρασίας και της παροχής από την εξίσωση DHW Demand με τα αντίστοιχα μεγέθη του διαχωριστή type 11f (σχήμα 5.102), το ρεύμα 1 αυτού συνδέεται με τη θερμοκρασία και την παροχή του εναλλάκτη του δοχείου (σχήμα 5.103). Ακόμα γίνεται σύνδεση του εξερχόμενου ρεύματος του εναλλάκτη του δοχείου με το ρεύμα 1 του μίκτη type 11h (σχήμα 5.104).

Σχήμα 5. 102: Σύνδεση θερμοκρασίας και παροχής DHW Demand με type 11f.

Σχήμα 5. 104: Σύνδεση του εξερχόμενου ρεύματος του εναλλάκτη με το ρεύμα 1 του μίκτη.

Το ρεύμα που παρακάμπτει την πηγή θερμότητας (εναλλάκτης του δοχείου) είναι το ρεύμα 2 του διαχωριστή type 11f, καθώς το ρεύμα 2 προκύπτει από τον πολλαπλασιασμό του σήματος του διαχωριστή με την αρχική παροχή. Στο σχήμα 5.105 συνδέεται το ρεύμα 2 του διαχωριστή με το ρεύμα 2 του μίκτη.

Σχήμα 5. 105: Σύνδεση του ρεύματος 2 του type 11f με το ρεύμα 2 του type 11h.

Στο πεδίο inputs του type 115 η μεταβλητή 1 αφορά την επιθυμητή θερμοκρασία εξόδου, και είναι 45°C. Η θερμοκρασία του νερού του δικτύου (Tsupw) συνδέεται με την θερμοκρασία του ρυθμιστικού υγρού (Tempering Fluid Temperature) του ελεγκτή type 115 και το σήμα για παράκαμψη της πηγής θερμότητας (Fraction to Bypass Heat Source) συνδέεται με το σήμα ελέγχου του διαχωριστή type 11f (βλ. σχήμα 5.106).

ď		Name	Value	Unit	More	Ma
i	1	Setpoint Temperature	45.0	c	More	
	2	Source Temperature	10.0	С	More	
	3	Tempering Fluid Temperature (Return Temperature)	20.0	с	More	Ø
0000		₿				
\$\$	_w	Setpoint	Temperature		4	15.0
u	ipw	Source T	emperature		1	0.0
		Temperir	ng Fluid Temperature	e (Return Tempera	ature) 🛛	0.0
			•	<		
		Fraction to Heat Source	Ini	et temperature	20.0	
'n	actio	on to Bypass Heat Source 🔍	Ini	et flow rate	100.0	
			Co	ntrol signal	0.5	

Σχήμα 5. 106: Σύνδεση του ελεγκτή με τον διαχωριστή και τη θερμοκρασία του νερού του δικτύου.

Ακόμα συνδέεται η θερμοκρασία του εναλλάκτη (Temperature at HX Oulet) με την θερμοκρασία της πηγής του ελεγκτή (Source Temperature), όπως φαίνεται στο σχήμα 5.107.

Σχήμα 5. 107: Σύνδεση θερμοκρασία εναλλάκτη με θερμοκρασία πηγής θερμότητας του type 115.

Τέλος εισάγεται ένα online plotter (σχήμα 5.108) που δίνει την τιμή της θερμοκρασίας και της παροχής του νερού χρήσης καθώς και των δύο ρευμάτων πριν την ανάμιξη.

Plots - Files	Properties
🗟 😨 🔤 🚾 📾 🗙	Unit name DHW
Irradiation - "Irradition"	Graph title "DHW"
Ventilation - "Ventilation"	
DHW - "DHW"	
- Left axis variable-1 - Tsupw	
Supply Water - Tsupw	- Left Avic
 Left axis variable-2 - T_bypass 	Title "Temperatures"
Type11f - Temperature at outle	
 Left axis variable-3 - Temp_HX 	Min 0.0
Type534-Coiled - Temperature -	Max 100.0
 Left axis variable-4 - T_DHW 	
Type11h - Outlet temperature	Number of variables 4 ~
 Right axis variable-1 - mass_w 	
Supply Water - mass_w	Right Axis
 Right axis variable-2 - Flow_bypass 	Title "Flow rates"
Type11f - Flow rate at outlet 2	Min 0.0
 Right axis variable-3 - Flow_HX 	0.0
Type534-Coiled - HX flow rate	Max 50.0
 Right axis variable-4 - Flow_DHW 	Number of variables 4 V
Type11h - Outlet flow rate	
*	Number of plots per simulation 1

Σχήμα 5. 108: Εισαγωγή online plotter για παρατήρηση βασικών μεγεθών του νερού χρήσης.

Τέλος η εγκατάσταση μετά την εισαγωγή του βρόχου του νερού χρήσης φαίνεται στο σχήμα 5.109.

Σχήμα 5. 109: Η εγκατάσταση μετά την εισαγωγή του βρόχου του νερού χρήσης.

5.6 Ο βρόχος ηλιακού συλλέκτη-δοχείου αποθήκευσης.

Για την υλοποίηση της ηλιακής υποβοήθησης της αντλίας θερμότητας χρειάζεται η δημιουργία ενός ακόμη βρόχου, ο οποίος περιλαμβάνει τους επίπεδους ηλιακούς συλλέκτες. Η κλίση των ηλιακών συλλεκτών και η γωνία αζιμουθίου αυτών εισάγεται στα κλιματικά δεδομένα type 15-2 που εισήχθη προηγουμένως. Η κλίση των ηλιακών συλλεκτών επιλέγεται ώστε να μεγιστοποιείται συνολικά δεσμευόμενη ενέργεια κατά την χειμερινή περίοδο, που διαρκεί από 1 Νοεμβρίου έως 30 Απριλίου. Η βέλτιστη τιμή της κλίσης των συλλεκτών βρέθηκε ίση με $\beta = 47^\circ$ (βλέπε παράρτημα Γ). Οι μεταβλητές 8 και 9 του type 15 αφορούν την κλίση και την γωνία αζιμουθίου των συλλεκτών (σχήμα 5.110).

ter	Out	put External Files Comment				
		Name	Value	Unit	More	Macro
2	â	Logical unit	32	-	More	
3	ď	Tilted Surface Radiation Mode	5	-	More	Ø
4	đ	Ground reflectance - no snow	0.2	-	More	Ø
5	đ	Ground reflectance - snow cover	0.7	-	More	Ø
6	ď	Number of surfaces	1	-	More	Ø
7	đ	Tracking mode	1	-	More	Ø
8	đ	Slope of surface	47	degrees	More	Ø
9	ď	Azimuth of surface	0	degrees	More	Ø

Σχήμα 5. 110: Εισαγωγή κλίσης και αζιμούθιου συλλεκτών.

Οι επίπεδοι ηλιακοί συλλέκτες εισάγονται από: Solar Thermal Collectors> Quadratic Efficiency Collector> 2nd Order Incidence Angle Modifiers> Type1b. Η βέλτιστη επιφάνεια των ηλιακών συλλεκτών βρέθηκε 28 m^2 και εισάγεται στη μεταβλητή 2 του πεδίου των παραμέτρων, ενώ η μεταβλητή 1 έχει τιμή 1 (σχήμα 5.111).

ame	ter	Inpu	t Output Comment				
r			Name	Value	Unit	More	Macro
	1	đ	Number in series	1	-	More	Ø
L	2	ď	Collector area	28	m*2	More	Ø
e.	3	đ	Fluid specific heat	4.190	kJ/kg_K	More	Ø
	4	đ	Efficiency mode	1	-	More	Ø
	5	đ	Tested flow rate	40.0	kg/hr.m^2	More	Ø
	6	đ	Intercept efficiency	0.80	-	More	
	7	æ	Efficiency slope	13.0	kJ/hr.m*2.K	More	Ø
	8	æ	Efficiency curvature	0.05	kJ/hr.m*2.K*2	More	

Σχήμα 5. 111: Εισαγωγή επιφάνειας ηλιακών συλλεκτών μέσω type 1b.

Για τη σύνδεση των ηλιακών συλλεκτών με τα κλιματικά δεδομένα συνδέονται οι παρακάτω μεταβλητές μεταξύ τους (βλ. σχήμα 5.112):

- Dry bulb Temperature -> Ambient Temperature
- Total Tilted surface radiation for surface -> Incident radiation
- Total horizontal radiation -> Total horizontal radiation
- Total diffuse radiation on the horizontal -> Horizontal diffuse radiation
- Ground reflectance -> Ground reflectance
- Angle of incidence for surface -> Incidence angle
- Slope of surface -> Collector slope

Σχήμα 5. 112: Σύνδεση ηλιακών συλλεκτών type 1b με τα κλιματικά δεδομένα type 15.

Για κάθε m^2 συλλέκτη χρειάζεται παροχή περίπου 40 kg/h. Εισάγεται μια αντλία type 114 με παροχή 1200 kg/h και ισχύ 213 kJ/h ή 59 W, όπως φαίνεται στο σχήμα 5.113.

	der							
arama	aer	inpu	t Output Comment					
ď			Name	Value	Unit	More	Macro	
•	1	đ	Rated flow rate	1200	kg/hr	More		
1	2	ď	Fluid specific heat	4.19	kJ/kg_K	More		
	3	đ	Rated power	213	kJ/hr	More		
	4	æ	Motor heat loss fraction	0.0	-	More	R	

Σχήμα 5. 113: Εισαγωγή αντλίας ηλιακών συλλεκτών.

Το ζεύγος 2 του δοχείου αποθήκευσης είναι αυτό που αφορά το βρόχο των ηλιακών συλλεκτών. Συνδέεται η θερμοκρασία και η παροχή της εξόδου 2 από το δοχείο με τα αντίστοιχα μεγέθη της αντλίας, και τα ίδια μεγέθη με τα αντίστοιχα του type 1b. Ακόμα συνδέεται και η θερμοκρασία και παροχή εξόδου των ηλιακών συλλεκτών με το δοχείο (βλ. σχήμα 5.114).

Σχήμα 5. 114: Σύνδεση δοχείου αποθήκευσης, αντλίας παροχής και ηλιακών συλλεκτών.

Είναι επιθυμητό να περνά νερό από τους ηλιακούς συλλέκτες μόνο όταν υπάρχει επαρκής ηλιακή ακτινοβολία, ικανή ώστε να ανεβάσει την θερμοκρασία του νερού που τους διαπερνά κατά μια ορισμένη τιμή. Για παράδειγμα το βράδυ και σε περιόδους συννεφιάς κατά τη διάρκεια της ημέρας η αντλία δεν πρέπει να διακινεί νερό μέσα από τους ηλιακούς συλλέκτες, γιατί αλλιώς θα παίρνει αποθηκευμένη θερμότητα από το δοχείο και θα την απορρίπτει στο περιβάλλον. Η λειτουργία της αντλίας των ηλιακών συλλεκτών ελέγχεται με ένα διαφορικό ελεγκτή, από τη βιβλιοθήκη: Controllers> Differential Controller w Hysterisis> for Temperatures> Complex Control Strategies> Solver 0 (Successive Substitution)> Type 2b. Εδώ επιλέγεται η αντλία να λειτουργεί όταν η διαφορά θερμοκρασίας μεταξύ της εξόδου του ηλιακού συλλέκτη και της εισόδου του να είναι μεγαλύτερη από 8°C, ενώ όταν η ίδια διαφορά πέσει κάτω από 2°C να βγαίνει εκτός λειτουργίας. Επιπλέον ίθισται η θερμοκρασία στο δοχείο αποθήκευσης να μην ξεπερνά μια ορισμένη τιμή (95 – 100° C) για λόγους ασφαλείας. Σε αυτή την προσομοίωση ορίζεται σε 100°C, και όταν ξεπεραστεί αυτή η τιμή στο επάνω μέρος (κόμβος 1) του δοχείου δίνεται σήμα στην αντλία να σταματήσει. Έτσι στο πεδίο των παραμέτρων εισάγεται η τιμή 100°C στην παράμετρο 2 (High limit cut-out) και για τις εισόδους 5 (Upper dead band temperature) και 6 (Lower dead band temperature) οι τιμές 8° C και 2°C αντίστοιχα (βλ. σχήμα 5.115).

Refer	Input	t Output Comment				
	Π	Name	Value	Unit	More	Macro
1	đ	No. of oscillations	5	-	More	
2	ď	High limit cut-out	100	c	More	
meter	Inpu	t Output Comment				
meter	Inpu	t Output Comment	Value	Unit	More	Macro
meter	inpu	A Output Comment Name Upper input temperature Th	Value 20.0	Unit	More More	Macro
meter 1	inpu ගේ ගේ	At Output Comment Name Upper input temperature Th Lower input temperature TI	20.0 10.0	Unit C C	More More	Macro
neter 1 2 3	hpi d d d	At Output Comment Name Upper input temperature Th Lower input temperature Ti Monitoring temperature Tin	Value 20.0 10.0 20.0	C C C C	More More More	Macro
neter 1 2 3	hpu ම ම ම ම ම	A Output Comment Name Upper input temperature Th Lower input temperature Ti Monitoring temperature Tin Input control function	Value 20.0 10.0 20.0 0	Unit C C C -	More More More More	Macro
1 2 3 4 5	hp.	A Output Comment Name Upper input temperature Th Lower input temperature Ti Monitoring temperature Tin Input control function Upper dead band dT	Value 20.0 10.0 20.0 0 8.0	Unit C C C - detaC	More More More More More	Macro 5 5 5 5 5 5

Σχήμα 5. 115: Εισαγωγή παραμέτρων του ελεγκτή type 2b.

Στο παρακάτω σχήμα 5.116 φαίνεται η σύνδεση των μεταβλητών που περιγράφηκαν προηγουμένως με τον ελεγκτή. Επιπλέον το σήμα εξόδου του ελεγκτή γίνεται είσοδός του ώστε να επιτυγχάνεται μια υστέρηση στο τελικό σήμα εξόδου. Τέλος το σήμα εξόδου συνδέεται με το σήμα εισόδου της αντλίας των συλλεκτών.

Σχήμα 5. 116: Σύνδεση του ελεγκτή type 2b με τα στοιχεία του βρόχου των ηλιακών συλλεκτών.

Στο σχήμα 5.117 φαίνεται η σύνδεση της θερμοκρασίας του κόμβου 1 του δοχείου με τη θερμοκρασία προς παρακολούθηση του ελεγκτή, έτσι ώστε να μην ξεπερνά τους 100°C.

Σχήμα 5. 117: Σύνδεση θερμοκρασίας κόμβου 1 του δοχείου με τον ελεγκτή type 2b.

Ακόμα για την ολοκλήρωση της εγκατάστασης εισάγονται δύο online plotter. Το Heat & Tank Sources, για έλεγχο της θερμοκρασίας του μεσαίου κόμβου του δοχείου και των θερμοκρασιών εισόδου και εξόδου του ηλιακού συλλέκτη (σχήμα 5.118), της αντλίας θερμότητας και του θερμαντικού στοιχείου type 670 (σχήμα 5.119).

Plots - Files	Properties
2 3 🛌 🛁 🗙 🗙	Unit name Tank & Heat Sources
Left axis variable-1 - T_tank_6 Type534-Colled - Tank nodal	Graph title "Tank &Heat Sources"
Left axis variable-2 - T_HP_in Type534-Coiled - Temperatur	
Left axis variable-3 - T_HP_out Type941 - Exiting Fluid Temp	Left Axis Title "Temperatures"
Left axis variable-4 - T_Col_n Type534-Colled - Temperatur	Min 0,0
Left axis variable-5 - T_Coil_out	Max 100.0
Collector_Pump - Outlet fluid	DiahtAuin
Type1b - Outlet temperature	Title "Heat transfer rates"
Type941 - Exiting Fluid Flowr	Min 0.0
Right axis variable-2 - V_Coil Type670 - Outlet Fluid Flowrz	Max 2000.0 Number of variables 3 ~
Right axis variable-3 - V_col	Number of plots per simulation 1

Σχήμα 5. 118: Εισαγωγή Online Plotter Tank & Heat Sources.

Ακόμα εισάγεται άλλο ένα online plotter με όνομα Air Con για έλεγχο της θερμοκρασία του αέρα πριν και μετά το θερμαντικό στοιχείο.

Plots - Files	Properties
🗟 💈 🔤 🚧 🙀	Unit name Air Con
Temperatures and Gains - "Temperatur Sirradiation - "Irradition" Ventilation - "Ventilation"	Graph title "Air Con"
Ar Con - "Ar Con" Left axis variable-1 - T_airCoil_in Type148b - Outlet Temperat. Left axis variable-2 - T_air_Coil_ox Type670 - Outlet Air Tempera Left axis variable-3 - TAIR_Zone_, Building - 1 - TAIR_Zone_A1 Picht axis variable - Coil Air_Elow	Left Axis Title "Temperatures" Min 0.0 Max 100.0 Number of variables 3 ~
Gent axis variable - Coll_Air_Flow Type670 - Outlet Air Flowrate Tank & Heat Sources - "Tank &Heat So	Right Axis Title "Flow rates" Min 0.0 Max 2500.0 Number of variables 1

Σχήμα 5. 119: Εισαγωγή online plotter Air Con.

Η τελική μορφή της εγκατάστασης στο simulation studio φαίνεται στο παρακάτω σχήμα 5.120.

Σχήμα 5. 120: Η προς εξέταση εγκατάσταση ολοκληρωμένη στο simulation sudio.

6. Αποτελέσματα προσομοίωσης.

6.1. Εύρεση της βέλτιστης τιμής όγκου δοχείου αποθήκευσης και επιφάνειας ηλιακού συλλέκτη.

Οι ηλιακοί συλλέκτες εισάγονται στην εγκατάσταση ώστε να μειώσουν την κατανάλωση ηλεκτρικής ενέργειας αυτής, μέσω της μετατροπής της ηλιακής ενέργειας σε θερμότητα. Μοντελοποιήθηκαν επίπεδοι ηλιακοί συλλέκτες. Η μείωση της κατανάλωσης ηλεκτρικής ενέργειας σημαίνει μείωση του κόστους χρήσης της εγκατάστασης (λειτουργικό κόστος), αλλά αυξάνεται το αρχικό κόστος της εγκατάστασης, αφού όσο μεγαλύτερη είναι η επιφάνεια των ηλιακών συλλεκτών και του δοχείου αποθήκευσης, τόσο μεγαλύτερο γίνεται το αρχικό κόστος της εγκατάστασης.

Με δεδομένο ότι την αλλαγή στο κόστος την επιφέρουν η κατανάλωση ηλεκτρικής ενέργειας, το μέγεθος των ηλιακών συλλεκτών και του δοχείου, αναζητείται το ελάχιστο κόστος από τον συνδυασμό αυτών, είναι δηλαδή:

Συνολικό Κόστος =
$$A_{col} \cdot K_{col} + V_{tank} \cdot K_{tank} + E_{tot} \cdot K_{kwh} \cdot R$$
 (6.1)

Η εγκατάσταση υποτέθηκε ότι θα λειτουργεί για 25 έτη. Για την αξία του χρήματος από Ν έτη στο σήμερα με επιτόκιο αναγωγής r χρησιμοποιείται ο τύπος:

$$R = \sum_{i=1}^{N} \frac{1}{(1+r)^{i}} = \frac{(1+r)^{N} - 1}{(1+r)^{N} \cdot r} \quad (6.2)$$

Όπου A_{col} και K_{col} είναι η συνολική επιφάνεια των ηλιακών (m^2) και το κόστος των συλλεκτών, V_{tank} και K_{tank} είναι ο όγκος (m^3) και E_{tot} η συνολική κατανάλωση ενέργειας της εγκατάστασης σε kWh και K_{kwh} το κόστος του της μιας kWh σε €/kWh. Επιλέχθηκαν $K_{col} = 80.5 €/m^2$, $K_{tank} = 810 €/m^3$, $K_{kwh} = 0.14 €/kWh$. Επιπλεόν για N = 25 έτη και επιτόκιο αναγωγής r = 3% προκύπτει R = 17.413.

Στο control cards του τελικού αρχείου της εγκατάστασης ως χρονικό βήμα ορίστηκε 3 min και η περίοδος λειτουργίας της εγκατάστασης από 1^{η} Νοεμβρίου έως 30 Απριλίου (7296 hr έως 11640 hr).

Ο όγκος δοχείου αποθήκευσης και η επιφάνεια των συλλεκτών που ελαχιστοποιούν την παραπάνω συνάρτηση κόστους βρέθηκε ότι είναι $V_{tank} = 1.0 m^3$ και $A_{col} = 28 m^2$, με συνολικό κόστος 7877.67. Η εγκατάσταση με τις βέλτιστες αυτές τιμές θα αναφέρεται ως βέλτιστη (optimum). Στον παρακάτω πίνακα 6.1 φαίνονται οι τιμές της συνάρτησης κόστους για σημεία γειτονικά του βέλτιστου. Στο σχήμα 6.1 φαίνεται επίσης η γραφική παράσταση της συνάρτησης κόστους.

Vtank/Acol	25	26	27	28	29
0.8	7901.731	7907.831	7939.772	7911.928	7968.701
0.9	7900.685	7892.221	7904.522	7917.894	7937.541
1	7894.758	7891.432	7891.701	7877.668	7906.742
1.1	7906.151	7899.864	7885.863	7899.286	7905.047
1.2	7921.061	7913.391	7891.156	7908.79	7887.104

Πίνακας 6. 1: Τιμές συνάρτησης κόστους των γειτονικών σημείων της βέλτιστης λύσης.

Σχήμα 6. 1: Επιφάνεια συνάρτησης κόστους στην περιοχή της βέλτιστης λύσης.

6.2 Διαγράμματα από τη λειτουργία της εγκατάστασης για τις βέλτιστες τιμές.

Στην παράγραφο αυτή παρουσιάζονται διαγράμματα και δείκτες λειτουργίας της ηλιακά υποβοηθούμενης αντλίας θερμότητας με ψυκτικό CO_2 με τις βέλτιστες τιμές $V_{tank} = 1.0 m^3$ και $A_{col} = 28 m^2$. Στα παρακάτω σχήματα 6.2 εώς 6.4 παρουσιάζονται τα διαγράμματα από τη λειτουργία της εγκατάστασης αυτής για όλη τη σεζόν θέρμανσης (από 1^η Νοεμβρίου έως 30 Απριλίου) απεικονίζοντας τη θερμοκρασία εντός του κτηρίου, την θερμοκρασία του μεσαίου κόμβου του δοχείου αποθήκευσης και τη θερμοκρασία του ζεστού νερού χρήσης.

Στο σχήμα 6.2 παρατηρείται ότι η θερμοκρασία εντός του κτηρίου διατηρείται μεταξύ 20°C και 22°C, εκτός από την περίπτωση που δεν υπάρχουν άτομα στο κτήριο, οπότε δεν λειτουργεί το σύστημα θέρμανσης, και στις περιπτώσεις όπου η θερμοκρασία του περιβάλλοντος υπερβαίνει τους 22°C. Στο σχήμα 6.3 η θερμοκρασία του μεσαίου κόμβου του δοχείου διατηρείται στους 45°C, όπως ακριβώς έχει σχεδιαστεί το σύστημα. Στο σχήμα 6.4 η θερμοκρασία του ζεστού νερού χρήσης κυμαίνεται μεταξύ 40 και 45°C κατά τη διάρκεια της κατανάλωσης με βάση το πρόγραμμα. Οι θερμοκρασίες πάνω από 45°C που απεικονίζονται στο σχήμα 6.4 αφορούν τις ώρες εκτός κατανάλωσης.

Σχήμα 6. 2: Θερμοκρασία εντός του κτηρίου (κόκκινη γραμμή) και της θερμοκρασίας περιβάλλοντος (μπλέ) για τη σεζόν θέρμανσης.

Σχήμα 6. 3: Θερμοκρασία του μεσαίου κόμβου (6) του δοχείου αποθήκευσης για τη σεζόν θέρμανσης.

Σχήμα 6. 4: Θερμοκρασία του ζεστού νερού χρήσης για τη σεζόν θέρμανσης.

Στα παρακάτω διαγράμματα αναπαρίστανται βασικές μεταβλητές κατά τη λειτουργία της βέλτιστης εγκατάστασης για τις δύο πρώτες ημέρες του Ιανουαρίου.

Σχήμα 6. 5: Θερμοκρασία εντός του κτηρίου (κόκκινη γραμμή) και θερμοκρασία περιβάλλοντος για τις δύο πρώτες ημέρες του Ιανουαρίου.

Στο σχήμα 6.5 η θερμοκρασία εντός του κτηρίου κυμαίνεται από 20°C εώς 22°C και πέφτει κάτω από τους 20 °C μόνο τις ώρες όπου στο κτήριο δεν υπάρχουν άνθρωποι.

Σχήμα 6. 6: Θερμοκρασία δοχείου αποθήκευσης και εισόδου και εξόδου αντλίας θερμότητας.

Στο σχήμα 6.6 η κόκκινη γραμμή είναι η θερμοκρασία του μεσαίου κόμβου του δοχείου η οποία δεν πέφτει κάτω από 45°C (εκτός από την αρχή όπου το δοχείο έχει αρχική θερμοκρασία 40 °C), ενώ φαίνεται ότι όταν υπάρχει ηλιοφάνεια κατά τη διάρκεια της ημέρας το φορτίο θέρμανσης του κτηρίου καλύπτεται από τους ηλιακούς συλλέκτες και το δοχείο αποθηκεύει την επιπλέον θερμότητα, ενώ τις νυκτερινές (ή πρώτες πρωινές) ώρες τίθεται σε λειτουργία η αντλία θερμότητας (είσοδος αντλίας μπλε γραμμή, έξοδος ροζ και παροχή αντλίας καφέ γραμμή) για να διατηρήσει τη θερμοκρασία του δοχείου στην επιθυμητή.

Στο σχήμα 6.7 φαίνεται η θερμοκρασία του ζεστού νερού χρήσης (μπεζ γραμμή) η οποία διατηρείται στους 45 °C όταν υπάρχει ροή νερού (καφέ γραμμή) από τον εσωτερικό εναλλάκτη του δοχείου με βάση το πρόγραμμα κατανάλωσης που ορίστηκε.

Σχήμα 6. 7: Θερμοκρασία και παροχή ζεστού νερού χρήσης.

Σχήμα 6. 8: Ανάκτηση θερμότητας φρέσκου αέρα και ανάμιξη ρευμάτων του εισαγόμενου στο κτήριο αέρα.

Στο σχήμα 6.8 η μπλε γραμμή είναι η θερμοκρασία του φρέσκου αέρα, με ροζ είναι η θερμοκρασία του ρεύματος του φρέσκου αέρα μετά την ανάκτηση θερμότητας και με κίτρινο είναι η θερμοκρασία του αέρα που εισάγεται στο κτήριο μετά την ανάμιξη των ρευμάτων του φρέσκου αέρα και ανακυκλοφορίας.

6.3. Δείκτες λειτουργίας της βέλτιστης εγκατάστασης και σύγκριση με μη ηλιακά υποβοηθούμενη.

Η συνολική κατανάλωση ηλεκτρικής ενέργειας του συστήματος θέρμανσης με ηλιακά υποβοηθούμενη αντλία θερμότητας CO_2 για τη σεζόν θέρμανσης είναι $E_{tot} = 1974.5 \, kWh$, ενώ ο συντελεστής συμπεριφοράς αυτής προκύπτει ως εξής:

$$COP_{system} = \frac{Q_{Heating\ Coil} + Q_{Heat\ Recovery} + Q_{DHW}}{E_{tot}} \quad (6.3)$$

Όπου $Q_{Heating\ Coil}$ είναι η θερμότητα που παρείχε το θερμαντικό στοιχείο στον εισερχόμενο στο κτήριο αέρα, $Q_{Heat\ Recovery}$ είναι η θερμότητα που έδωσε ο εναλλάκτης ανάκτησης στο ρεύμα φρέσκου αέρα και Q_{DHW} είναι η θερμότητα που προσφέρθηκε για την παροχή του ζεστού νερού χρήσης στους 45°C. Το φορτίο για την θέρμανση του χώρου του κτηρίου είναι: $Q_{Space\ Heating} = Q_{Heating\ Coil} + Q_{Heat\ Recovery}$.

Η εγκατάσταση αυτή για τη σεζόν θέρμανσης έχει $COP_{system} = 4.24$, ενώ η αντλία θερμότητας CO_2 έχει μέσο συντελεστή συμπεριφοράς 2.31. Στον παρακάτω πίνακα 6.2 φαίνονται τα βασικά μεγέθη για την βέλτιστη εγκατάσταση καθώς και για την εγκατάσταση χωρίς ηλιακή υποβοήθηση, με όγκο δοχείου πάλι 1 m^3 .

	Optimum	No Solar
Tank Volume (m3)	1	1
Collector Area (m2)	28	0
Total Electricity(kWh)	1974.562	3587.397
Q collector (MJ)	15340.02	0
Q Heat Pump (MJ)	11761.21	26259.15
Q Heating Coil (MJ)	20767.69	20801.53
Q Heat Recovery (MJ)	5129.884	5133.939
Q tank Losses (MJ)	2008.76	1272.61
Q Space Heating (MJ)	25897.57	25935.46
Q Domestic Hot Water (MJ)	4260.548	4243.34
COP system	4.24	2.34
Average COP HP	2.31	2.40
Maximum COP HP	3.00	3.51
Minimum COP HP	1.84	1.82

Πίνακας 6. 2: Βασικοί δείκτες από τη λειτουργία της βέλτιστης εγκατάστασης και χωρίς ηλιακή υποβοήθηση.

Η εγκατάσταση με την ηλιακή υποβοήθηση καταναλώνει 1613 kWh ηλεκτρικής ενέργειας λιγότερες από αυτή χωρίς ηλιακή υποβοήθηση. Παρατηρείται ότι η μη ηλιακά υποβοηθούμενη

εγκατάσταση έχει μεγαλύτερο μέσο και μέγιστο COP αντλίας θερμότητας σε σχέση με την ηλιακά υποβοηθούμενη. Αυτό συμβαίνει καθώς η πρώτη δίνει θερμότητα στο σύστημα όλες τις ώρες που αυτή χρειάζεται (πρωινές και βραδινές ώρες), ενώ η ηλιακά υποβοηθούμενη μόνο στις δυσμενέστερες συνθήκες (τις βραδινές ώρες, και με συννεφιά) για αυτό και το χαμηλό μέσο COP.

Στο παρακάτω σχήμα 6.9 παρουσιάζεται η μηνιαία και ολική κατανάλωση ηλεκτρικής ενέργειας για την βέλτιστη και τη μη ηλιακά υποβοηθούμενη εγκατάσταση.

Σχήμα 6. 9: Μηνιαία και ολική κατανάλωση ηλεκτρικής ενέργειας βέλτιστης και μη ηλιακά υποβοηθούμενης εγκατάστασης,

Στα παρακάτω σχήματα 6.10 και 6.11 παρουσιάζεται το ενεργειακό ισοζύγιο για την βέλτιστη εγκατάσταση και για χωρίς ηλιακή υποβοήθηση.

Σχήμα 6. 10: Ενεργειακό ισοζύγιο για την βέλτιστη εγκατάσταση.

Σχήμα 6. 11: Ενεργειακό ισοζύγιο για την εγκατάσταση χωρίς ηλιακή υποβοήθηση.

6.4. Μεταβολή του όγκου του δοχείου αποθήκευσης για επιφάνεια ηλιακών συλλεκτών 28 m^2 .

Σε αυτή την παράγραφο εξετάζεται η επίδραση στο συντελεστή συμπεριφοράς, στην κατανάλωση ενέργειας και στο ηλιακό κλάσμα από την μεταβολή του όγκου του δοχείο και για σταθερή επιφάνεια συλλεκτών 28 m^2 . Το ηλιακό κλάσμα υπολογίζεται ως εξής: Solar Fraction = $\frac{Q_{SC}+Q_{HP}}{Q_{SC}}$, όπου Q_{SC} η θερμότητα που δεσμεύτηκε από τους ηλιακούς συλλέκτες και Q_{HP} η θερμότητα που προσφέρθηκε από την αντλία θερμότητας.

Σχήμα 6. 12: Ηλιακό κλάσμα συναρτήσει του όγκου του δοχείου για συλλεκτική επιφάνεια 28 m².

Σχήμα 6. 13: Συνολική κατανάλωση ενέργειας συναρτήσει του όγκου του δοχείου και για συλλεκτική επιφάνεια 28 m².

Σχήμα 6. 14: Συντελεστής συμπεριφοράς του συστήματος συναρτήσει του όγκου του δοχείου για συλλεκτική επιφάνεια 28 m².

Αύξηση του δοχείου αποθήκευσης σημαίνει ότι αυτό μπορεί να αποθηκεύει περισσότερη θερμότητα καθυστερώντας να πιάσει τη θερμοκρασία των 100°C όπου σταματά να λειτουργεί ο βρόχος του ηλιακού συλλέκτη. Έτσι μειώνεται και η κατανάλωση ηλεκτρικής ενέργειας και υπάρχει βελτίωση του ηλιακού κλάσματος και του συντελεστή συμπεριφοράς λόγω της δέσμευσης περισσότερης ηλιακής ενέργειας. Όταν ο όγκος του δοχείου ξεπεράσει τα 2.6 m^3 παρατηρείται ότι δεν υπάρχει σημαντική μείωση στην κατανάλωση ενέργειας, καθώς η τιμή αυτή του δοχείου επαρκεί για την αποθήκευση της προσφερόμενης ηλιακής ενέργειας.

6.5 Εναλλακτικές εγκαταστάσεις.

Σε αυτή ην παράγραφο συγκρίνεται η ηλιακά υποβοηθούμενη αντλία θερμότητας CO_2 με τις βέλτιστες τιμές επιφάνειας συλλεκτών και δοχείου αποθήκευσης με: α) την ίδια εγκατάσταση με τιμές δοχείου αποθήκευσης και επιφάνειας ηλιακών συλλεκτών όπως στη βέλτιστη ($V_{tank} = 1 m^3$ και $A_{col} = 28 m^2$) αλλά χωρίς ανάκτηση θερμότητας, β) εγκατάσταση με $V_{tank} = 1 m^3$ και $A_{col} = 28 m^2$, ανάκτηση θερμότητας αλλά με αντλία θερμότητας με ψυκτικό μέσο R410a.

6.5.1 Ηλιακά υποβοηθούμενη αντλία θερμότητας CO_2 χωρίς ανάκτηση θερμότητας.

Η πρώτη εναλλακτική εγκατάσταση είναι η ίδια η βέλτιστη εγκατάσταση με αντλία θερμότητας CO₂ αλλά χωρίς τον εναλλάκτη ανάκτησης θερμότητας. Για την προσομοίωση αυτής της εγκατάστασης στο TRNSYS ο χρήστης αφαιρεί τον εναλλάκτη ανάκτησης θερμότητας την προσομοίωση αυτής της εγκατάστασης ατο TRNSYS ο χρήστης αφαιρεί τον εναλλάκτη ανάκτησης θερμότητας του τανέκτησης θερμότητας του εναλλάκτη ανάκτησης θερμότητας του τα αντίστοιχα μεγέθη του ρεύματος 2 του μίκτη type 148b.

Το μέγιστο φορτίο που είχε υπολογιστεί αρχικά στην παράγραφο 5.3.2 εμπεριέχει την ανάκτηση θερμότητας, οπότε πρέπει να υπολογιστεί ξανά (όπως στην παράγραφο 5.3.2) αλλά χωρίς τον εναλλάκτη ανάκτησης θερμότητας type 760. Το νέο μέγιστο φορτίο που υπολογίστηκε είναι $Q_{max} = 21011 \ kJ/hr$ ή 5836 W. Το φορτίο από το νερό χρήσης είναι 1.39 kW. Έτσι το νέο μέγεθος της αντλίας θερμότητας CO_2 επιλέχθηκε 8kW ή 28800 kJ/hr. Από το πεδίο των παραμέτρων του type 941 αλλάζουν μόνο η ονοματική θερμαντική ικανότητα (Rated Heating Capacity) σε 28800 kJ/hr, η

ονομαστική ισχύς θέρμανσης (Rated Heating Power) σε 9874 kJ/hr και η συνολική παροχή αέρα στην αντλία θερμότητας (Air Total Flowrate) σε 883 l/s. Επιπλέον η παροχή της αντλίας της αντλίας θερμότητας αλλάζει σε 1350 kg/hr. Η κατανάλωση ενέργειας της εγκατάστασης χωρίς ανάκτηση θερμότητας είναι $E_{tot} = 2440 \ kWh$, ενώ ο συντελεστής συμπεριφοράς της εγκατάστασης για τη σεζόν θέρμανσης είναι $COP_{system} = 3.43$. Στον παρακάτω πίνακα 6.3 παρουσιάζονται βασικά μεγέθη της εγκατάστασης χωρίς ανάκτηση θερμότητας, ενώ στο σχήμα 6.15 το ισοζύγιο ενέργειας αυτής.

	CO2 ,SOLAR, NO
	HR
Tank Volume (m3)	1
Collector Area(m2)	28
Total Electricity(kWh)	2440
Q collector (MJ)	16191
Q Heat Pump (MJ)	15903
Q Heating Coil (MJ)	25849
Q Heat Recovery (MJ)	0
Q tank Losses (MJ)	1943
Q Space Heating (MJ)	25849
Q Domestic Hot Water (MJ)	4261
COP system	3.43
Average COP HP	2.36
Maximum COP HP	3.04
Minimum COP HP	1.87

Πίνακας 6. 3: Βασικά μεγέθη εγκατάστασης χωρίς ανάκτηση θερμότητας για την σεζόν θέρμανσης.

Σχήμα 6. 15: Ισοζύγιο θερμότητας της εγκατάστασης χωρίς ανάκτηση θερμότητας.

6.5.2: Ηλιακά υποβοηθούμενη αντλία θερμότητας R410A.

Η δεύτερη εναλλακτική εγκατάσταση θέρμανσης περιλαμβάνει τη χρήση αντλίας θερμότητας με ψυκτικό R410A, υποβοηθούμενη από επίπεδους ηλιακούς συλλέκτες και ανάκτηση θερμότητας. Οι αντλίες θερμότητας με ψυκτικό R410A είναι οι πιο διαδεδομένες σε εγκαταστάσεις οικιακής θέρμανσης, για αυτό το λόγο επιλέγεται η σύγκριση αυτής με την ηλιακά υποβοηθούμενη θερμότητας με ψυκτικό *CO*₂ που μελετήθηκε στην παρούσα εργασία.

Ο χάρτης απόδοσης της αντλίας θερμότητας αέρα – νερού με ψυκτικό R410A φαίνεται στο παρακάτω σχήμα 6.16. Ο όγκος του δοχείου αποθήκευσης είναι $V_{tank} = 1 m^3$ και η επιφάνεια των ηλιακών συλλεκτών $A_{col} = 28 m^2$ όπως στην περίπτωση της βέλτιστης εγκατάστασης με ψυκτικό CO_2 . Η εισαγωγή των δεδομένων της αντλίας θερμότητας με R410A γίνεται και πάλι από το type 941, όπου στο πεδίο των παραμέτρων εισάγονται η παροχή αέρα (Air Total Flowrate) σε 873 l/s, ονομαστική θερμαντική ικανότητα (Rated Heating Capacity) 25200 kJ/hr και ονομαστική ισχύ θέρμανσης (Rated Heating Power) 6492 kJ/hr. Επιπλέον εισάγεται από το πεδίο External files το νέο αρχείο εισόδου με τα δεδομένα της αντλίας θερμότητας R410A για την λειτουργία θέρμανσης (βλ. παράρτημα Δ).

Σχήμα 6. 16: Χάρτης απόδοσης αντλίας θερμότητας R410A.

Στον παρακάτω πίνακα 6.4 φαίνονται οι βασικοί δείκτες της εγκατάστασης με ηλιακά υποβοηθούμενη αντλία θερμότητας R410A. Ο συντελεστής συμπεριφοράς της εγκατάστασης αυτής είναι $COP_{system} = 4.91$ και η συνολική κατανάλωση ηλεκτρικής ενέργειας 1707 kWh, για τη σεζόν θέρμανσης.

	R410A, HR, SOLAR
Tank Volume (m3)	1
Collector Area(m2)	28
Total Electricity(kWh)	1707
Q collector (MJ)	15324
Q Heat Pump (MJ)	11781
Q Heating Coil (MJ)	20767
Q Heat Recovery (MJ)	5130
Q tank Losses (MJ)	2009
Q Space Heating (MJ)	25897
Q Domestic Hot Water	4263
(MJ)	
COP system	4.91
Average COP HP	2.83
Maximum COP HP	4.03
Minimum COP HP	2.13

Πίνακας 6. 4: Βασικοί δείκτες εγκατάστασης με αντλία θερμότητας R410A.

Σχήμα 6. 17: Ενεργειακό ισοζύγιο για την εγκατάσταση με αντλία θερμότητας R410A.

6.6. Σύγκριση αποτελεσμάτων της βέλτιστης εγκατάστασης με τις εναλλακτικές.

Σε αυτή την παράγραφο παρουσιάζονται συγκεντρωτικά βασικοί δείκτες λειτουργίας για την περίοδο θέρμανσης και των τεσσάρων εγκαταστάσεων που μελετήθηκαν. Στον πίνακα 6.5 φαίνεται η συνολική κατανάλωση ηλεκτρικής ενέργειας και ο συντελεστής συμπεριφοράς των εγκαταστάσεων για την σεζόν θέρμανσης, ενώ στα σχήματα 6.18 και 6.19 φαίνονται σχηματικά η κατανάλωση ηλεκτρικής ενέργειας για κάθε μήνα και για ολόκληρη την περίοδο και ο συντελεστής συμπεριφοράς των μελετανάλωση ηλεκτρικής ενέργειας και για ολόκληρη την περίοδο και ο συντελεστής συμπεριφοράς του κατανάλωση ηλεκτρικής ενέργειας για κάθε μήνα και για ολόκληρη την περίοδο και ο συντελεστής συμπεριφοράς του μαι την σεζον θέρμανσης.

Οι εγκαταστάσεις που συγκρίνονται είναι οι ακόλουθες:

- 1) Ηλιακά υποβοηθούμενη αντλία θερμότητας CO_2 με όγκο δοχείου $1 m^3$ και επιφάνεια συλλεκτών $28 m^2$ και ανάκτηση θερμότητας (CO2, Solar Assisted with Heat Recovery Optimum)
- 2) Αντλία θερμότητας CO_2 χωρίς ηλιακή υποβοήθηση με όγκο δοχείου 1 m^3 και ανάκτηση θερμότητας (CO2, No Solar with Heat recovery)
- 3) Ηλιακά υποβοηθούμενη αντλία θερμότητας CO_2 με όγκου δοχέιου 1 m^3 και επιφάνεια συλλεκτών 28 m^2 χωρίς ανάκτηση θερμότητας (CO2, Solar Assisted, NO Heat Recovery)
- 4) Ηλιακά υποβοηθούμενη αντλία θερμότητας R410A με όγκου δοχέιου $1 m^3$ και επιφάνεια συλλεκτών $28 m^2$ και ανάκτηση θερμότητας (R410A, Solar Assisted with Heat Recovery).

Πίνακας 6. 5: Συνολική κατανάλωση ηλεκτρικής ενέργειας και συντελεστής συμπεριφοράς τ	ων
συστημάτων θέρμανσης για την σεζόν θέρμανσης.	

Heating System	Total Electricity Consumption	COPsystem
	(kWh)	
CO2, Solar Assisted with Heat Recovery (Optimum)	1974	4.24
CO2, No Solar with Heat recovery	3587	2.34
CO2, Solar Assisted, NO Heat Recovery	2440	3.43
R410A, Solar Assisted with Heat Recovery	1707	4.91

Σχήμα 6. 18: Συνολική και μηνιαία κατανάλωση ηλεκτρικής ενέργειας των εγκαταστάσεων θέρμανσης.

Σχήμα 6. 19: COP εγκαταστάσεων για την σεζόν θέρμανσης.

7. Ανακεφαλαίωση και συμπεράσματα.

Η παρούσα μελέτη αφορά τη λειτουργία συστήματος θέρμανσης και παροχής ζεστού νερού χρήσης κατοικίας $100 m^2$ οικογένειας τεσσάρων μελών, η οποία υλοποιεί τη χρήση αντλίας θερμότητας CO_2 αέρα-νερού υποβοηθούμενη από επίπεδους ηλιακούς συλλέκτες για αξιοποίηση της ηλιακής ενέργειας, για κάλυψη των αναγκών θέρμανσης κατά τη χειμερινή περίοδο. Ακόμα το σύστημα παροχής αέρα αξιοποιεί εναλλάκτη αντιρροής για ανάκτηση θερμότητας από το απορριπτόμενο ποσό αέρα και διοχέτευσης της θερμότητας αυτής στο εισερχόμενο ρεύμα φρέσκου αέρα στο κτήριο. Όπως διαπιστώθηκε σε μια τυπική ημέρα οι ηλιακοί συλλέκτες συλλέγουν και αποθηκεύουν την ηλιακή ενέργεια στο δοχείο για χρήση τόσο την ημέρα, αλλά και για τις πιο κρύες νυχτερινές ώρες. Όταν δεν επαρκεί η αποθηκευμένη ηλιακή ενέργεια τίθεται σε λειτουργία η αντλία θερμότητας CO_2 για κάλυψη των αναγκών θέρμανσης.

Το σύστημα αυτό θέρμανσης διατηρεί τη θερμοκρασία του κτηρίου μεταξύ 20 και 22°C, ενώ παρέχει ζεστό νερό όταν αυτό χρειάζετια σε θερμοκρασία 40 με 45°C.

Η επιλογή του όγκου αποθήκευσης και της συνολικής επιφάνειας των ηλιακών συλλεκτών επιλέχθηκε έτσι ώστε στο τέλος της περιόδου 25 ετών ο συνδυασμός αυτών να προσφέρει την οικονομικότερη λύση. Η οικονομικότερη λύση είναι αυτή για την οποία το κόστος των ηλιακών συλλεκτών, του δοχείου αποθήκευσης και της συνολικής κατανάλωσης ενέργειας της εγκατάστασης για 25 έτη, είναι το ελάχιστο. Έτσι βρέθηκε ότι η βέλτιστη λύση είναι αυτή με όγκο δοχείου $1m^3$ και επιφάνειας συλλεκτών 28 m^2 .

Η βέλτιστη εγκατάσταση καταναλώνει κατά τη διάρκεια της περιόδου θέρμανσης 1974 kWh, ενώ ο συντελεστής συμπεριφοράς της εγκατάστασης αυτής είναι $COP_{system} = 4.24$.

Για μεταβολή του όγκου του δοχείου αποθήκευσης και για σταθερή επιφάνεια συλλεκτών παρατηρήθηκε ότι μετά τα 2.6 m^3 η κατανάλωση ηλεκτρικής ενέργειας δεν μειώνεται σημαντικά και έχει τιμή 1722 kWh. Η αύξηση του όγκου του δοχείου βοηθά στη μείωση της κατανάλωσης της ηλεκτρικής ενέργειας καθώς αποθηκεύεται περισσότερη ενέργεια στη μάζα του νερού, πιάνοντας πιο αργά τη θερμοκρασία των 100 °C, όπου σταματά η λειτουργία του κόμβου του συλλέκτη για λόγους ασφαλείας. Η μείωση της κατανάλωσης της ηλεκτρικής ενέργειας και άρα του λειτουργικού κόστους είναι 12.7%, ενώ παρατηρείται αύξηση της απόδοσης της εγκατάστασης και του ηλιακού κλάσματος (αύξηση της προσφοράς της ηλιακής ενέργειας). Όμως αυξάνεται σημαντικά το συνολικό κόστος της εγκατάστασης.

Ακόμα έγινε σύγκριση της βέλτιστης εγκατάστασης με την ίδια εγκατάσταση αλλά χωρίς ηλιακούς συλλέκτες. Σε αυτή την περίπτωση η συνολική ετήσια κατανάλωση ηλεκτρικής ενέργειας ανήλθε σε 3587 kWh, αύξηση δηλαδή κατά 45% σε σχέση με την εγκατάσταση με τις βέλτιστες τιμές δοχείου αποθήκευσης και επιφάνειας ηλιακών συλλεκτών. Ο συντελεστής συμπεριφοράς του συστήματος χωρίς ηλιακή υποβοήθηση μειώθηκε σε 2.34.

Επιπλέον διαπιστώθηκε ότι η προσθήκη του εναλλάκτη αντιρροής, για ανάκτηση θερμότητας από το απορριπτόμενο ρεύμα αέρα, στην εγκατάσταση με βέλτιστες τιμές δοχείου αποθήκευσης και επιφάνειας ηλιακών συλλεκτών εξοικονομεί 466 kWh ηλεκτρικής ενέργειας κάθε χρόνο σε σχέση

με την ίδια την εγκατάταση αλλά χωρίς την ανάκτηση θερμότητας. Αυτό σημαίνει ότι η ανάκτηση θερμότητας μειώνει την κατανάλωση ηλεκτρικής ενέργειας κατά 19.1%.

Επιπρόσθετα έγινε σύγκριση της εγκατάτασης θέρμανσης με βέλτιστες τιμές δοχείου αποθήκευσης και επιφάνειας ηλιακών συλλεκτών, με ανάκτηση θερμότητας και αντλία θερμότητας ψυκτικού CO_2 με εγκατάσταση με τα ίδια στοιχεία και μεγέθη δοχείου και επιφάνειας ηλιακών συλλεκτών, αλλά με αντλία θερμότητας ψυκτικού R410A. Οι αντλίες με αυτό το ψυκτικό απαντώνται πολύ συχνά σε οικιακές εφαρμογές θέρμανσης και ψύξης, για αυτό και έγινε αυτή η σύγκριση. Η εγκατάσταση με αντλία θερμότητας ψυκτικού R410A έχει συνολική ετήσια κατανάλωση ενέργειας 1707 kWh, μείωση δηλαδή κατά 13.6% σε σχέση με την εγκατάταση με αντλία θερμότητας CO_2 .

Συμπερασματικά, η ηλιακή υποβοήθηση του συστήματος βοηθά σημαντικά στην εξοικόνομηση ηλεκτρικής ενέργειας και άρα και στη μείωση των εκπομπών του CO2 που αποτελεί αέριου του θερμοκηπίου και επιδιώκεται η μείωση της παραγωγής του από τις ανθρώπινες δραστηριότητες σε παγκόσμια κλίμακα. Η Εισαγωγή εναλλάκτη ανάκτησης θερμότητας για απόδοση θερμότητας στο ρεύμα φρέσκου αέρα, από το απορριπτόμενο στο περιβάλλον ρεύμα αέρα προερχόμενο του κτηρίου, βοηθά σημαντικά στη μείωση της κατανάλωσης ηλεκτρικής ενέργειας. Η εναλλακτική εγκατάσταση με αντλία θερμότητας R410A αν και μειώνει αισθητά την κατανάλωση ηλεκτρικής ενέργειας, έχει περιβαλλοντικό αντίκτυπο καθώς το R410A έχει δυναμικό θέρμανσης του πλανήτη (GWP) 2088. Έτσι η επιλογή ηλιακά υποβοηθούμενης αντλίας θερμότητας CO₂ συμβάλλει σημαντικά στην εξοικονόμηση ηλεκτρικής ενέργειας καθώς και στην προστασία του περιβάλλοντος καθώς συμβάλλει στη μη χρήση επιβλαβών ψυκτικών, ενώ με την μικρότερη κατανάλωση ενέργειας βοηθά στην μείωση των λειτουργικών εξόδων καθώς και στη μείωση των εκπομπών CO2 που είναι μια παγκόσμια ανησυχία. Αναμένεται τέτοιους είδους εγκαταστάσεις θέρμανσής καθώς και ψύξης με ψυκτικά φιλικά προς το περιβάλλον να εισαχθούν σημαντικά στην αγορά καθώς η Ευρώπη έχει θέση στόχο μέχρι το 2050 την μηδενική παραγωγή αερίων του θερμοκηπίου από ανθρώπινες δραστηριότητες.

Βιβλιογραφία

- [1] H. Ritchie and M. Roser, "Energy," Our World in Data, 2020. [Online]. Available: https://ourworldindata.org/energy.
- [2] «Κέντρο Ανανεώσιμων Πηγών Ενέργειας,» ΚΑΠΕ, [Ηλεκτρονικό]. Available: http://www.cres.gr/kape/energeia_politis/energeia_politis.htm. [Πρόσβαση 2020].
- [3] H. Ritchie and M. Roser, "CO2 and other Greenhouse Gas Emissions," Our World in Data, 2020. [Online]. Available: from https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.
- [4] Κανονισμός Θερμομόνωσης Κτηρίων, Θεσσαλονίκη: Τεχνικο Επιμελητήριο Ελλάδας Τμήμα Κεντρικής Μακεδονίας, 1979.
- [5] ΦΕΚ Αρ. 2367/B/12.07.2017. Έγκριση Κανονισμού Ενεργειακής Απόδοσης Κτηρίων.
- [6] Τεχνική Οδηγία Τ.Ο.Τ.Ε.Ε. 20701-1/2017, Αθήνα: Τεχνικό Επιμελητήριο Ελλάδας, 2017.
- [7] Α. Στέγγου και Ζ. Σαγιά, Μετάδοση Θερμότητας, Αθήνα: Εθνικό Μετσόβιο Πολυτεχνείο, 2016.
- [8] Χ. Τζιβανίδης, Σημειώσεις Μαθήματος Θερμικής Συμπεριφοράς Κτηρίων, Αθήνα, 2019.
- [9] Τεχνική Οδηγία Τ.Ο.Τ.Ε.Ε. 20701-2/2017, Αθήνα: Τεχνικό Επιμελητήριο Ελλάδας, 2017.
- [10] Σύλλογος Ηλεκτρολόγων Μηχανολόγων Βορείου Ελλάδας, «Θερμογέφυρες,» Σύλλογος Ηλεκτρολόγων Μηχανολόγων Βορείου Ελλάδας, 25 1 2011. [Ηλεκτρονικό]. Available: http://www.smhbe.gr/images/downloads/Files/Thermogefyres%20(25-01-2011).pdf.
- [11] "Θερμομόνωση σπιτιού," [Online]. Available: https://atyourservice.com.cy/blog/posts/thermomonosi-spitiou. [Accessed 2020].
- [12] Κ. Αντωνόπουλος, Κλιματισμός Μέρος Α, Αθήνα: Εθνικό Μετσόβιο Πολυτεχνείο, 2015.
- [13] Τεχνική Οδηγία 2425/86 Εγκαταστάσεις σε κτήρια: Στοιχεία υπολογισμού φορτιών κλιμαστισμού κτηριακών χώρων, Αθήνα: Τεχνικό Επιμελητήριο Ελλάδας, 2002.
- [14] Σ. Χατζηδάκης, Σημειώσεις Ψύξης Α' και Β' Μέρος, Αθήνα: Εθνικό Μετσόβιο Πολυτεχνείο, 2003.
- [15] "4-Way Reversing Valve Pump diagram and Heat pump schematic," Xuzhou Shunfeng Valve Co., Ltd., 28 9 2018. [Online]. Available: http://www.shunfengvalve.com/4-way-reversing-valve-pumpdiagram-and-heat-pump-schematic/.
- [16] "Introduction to Heat Pumps. Technical Description (Part 1/2)," Wattler.eu, [Online]. Available: https://wattler.eu/en/2017/05/heat-pump-1/. [Accessed 2020].

- [17] "Water Source Heat Pumps," Ground Source Heat Pump Association, [Online]. Available: https://www.gshp.org.uk/WSHP.html. [Accessed 2020].
- [18] "Ten Reasons to choose Ground Source Heat Pumps," Ground Source Heat Pump Association, [Online]. Available: https://www.gshp.org.uk/Ten_Reasons_To_Use_GSHPs.html. [Accessed 2020].
- [19] Ε. Κορωνάκη, Συστήματα Βιομηχανικής Ψύξης, Αθήνα: Εθνικό Μετσόβιο Πολυτεχνείο, 2015.
- [20] "High GWP refrigerants," California Air Resources Board, [Online]. Available: https://ww2.arb.ca.gov/resources/documents/high-gwp-refrigerants. [Accessed 2020].
- [21] J. Stene, "Integrated CO2 heat pump systems for space heating and hot water heating in lowenergy houses and passive houses," in *International Energy Agency*, Kyoto, 2007.
- [22] "CO2 as a Refrigerant R744 Advantage/ Disadvantages," Emerson Climate Conversations,
 [Online]. Available: https://emersonclimateconversations.com/2015/07/30/co2-as-a-refrigerant-r-744-advantagesdisadvantages/. [Accessed 2020].
- [23] A. G. Bridgeman, "Experimental analysis of an indirect solar assisted heat pump for domestic water heating," Queen's University, Kingston, Ontario, Canada, 2010.
- [24] C. Huan, S. Li, F. Wang, L. Liu, Y. Zhao, Z. Wang and P. Tao, "Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi'an China," *Energies*, vol. 12, no. 13, 2019.
- [25] Κ. Αντωνόπουλος, Θερμικά Ηλιακά Συστήματα, Αθήνα: Εθνικό Μετσόβιο Πολυτεχνείο, 2015.
- [26] I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems. Fundamentals, Experiments and Applications, Academic Press, 2017.
- [27] "Evacuated tube collector," Alternative Energy Tutorials, [Online]. Available: https://www.alternative-energy-tutorials.com/solar-hot-water/evacuated-tube-collector.html.
- [28] "ANSI/ASHRAE Standard 62.1-1019: Ventilation for Acceptable Indoor Air Quality," ASHRAE, 2019.
 [Online]. Available: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.1_2019.
- [29] "CO2 Air Source Heat Pump," University of Strathclyde, [Online]. Available: http://www.esru.strath.ac.uk/EandE/Web_sites/10-11/ASHP_CO2/intro-project.html. [Accessed 2020].
- [30] "Reversible Air to Water Heat Pump 30 AW," Carrier, [Online]. Available: https://ahi-carrier.gr/wpcontent/uploads/2017/10/PSD-30AW_-LR-2.pdf. [Accessed 2020].
- [31] J. F. Chen, Y. J. Dai and R. Z. Wang, "Experimental and theoretical study on a solar assisted CO2 heat pump for space heating," *Elsevier*, 2015.

Κατάλογος σχημάτων. Κεφάλαιο 1

κεφαλαίο 1.	
Σχήμα 1. 1: Παγκόσμια κατανάλωση πρωτογενούς ενέργειας [1]	9
Σχήμα 1. 2: Πρωτογενής κατανάλωση ενέργειας ανά πηγή [1]	10
Σχήμα 1. 3: Συνολική ετήσια παραγωγή διοξειδίου του άνθρακα, ανά ήπειρο [3]	11
<u>Κεφάλαιο 2.</u>	
Σχήμα 2. 1: Ανωνή Αρομότρτας [7]	11
2χήμα 2. 2. Συναικινά Ορομότητας [7]	14
2χ (μα 2. 2. 20 ναγωγί) δερμοτητας [7]	14 1 E
2χ (μα 2. 3. Θερμορροί) κατα παχός τοιχού [8].	10
$2\chi(μα 2. 4: (α) Γεωμειρική θερμογεφυρα, (ρ) Κατασκευαστική θερμογεφυρα [10]$	10
2χημα 2. 5: Εσωτερική μονωση [11]	10
2χημα 2. δ: Εξωτερική μονωσή [11].	19
2χ ημα 2. /: Θερμομονωση πυρηνα [11]	19
2χ ημα 2. 8: Παραμετροί υαλοπίνακα [12]	20
Σχημα 2. 9: Τριπλος υαλοπινακας απο Ρνζ	21
Σχήμα 2. 10: Συνθήκες θερμικής άνεσης [13]	21
Σχήμα 2. 11: Αντίστροφος κύκλος Carnot [14].	23
Σχήμα 2. 12: Ψυκτική διάταξη μηχανικής συμπίεσης ατμών [14]	23
Σχήμα 2. 13: Ψύξη σε αντλία θερμότητας [15]	24
Σχήμα 2. 14: Θέρμανση αντλίας θερμότητας [15]	24
Σχήμα 2. 15: Αντλία θερμότητας αέρα-νερού [16]	25
Σχήμα 2. 16: Γεωθερμική αντλία θερμότητας (νερού-νερού [18])	26
Σχήμα 2. 17:Υπερκρίσιμος κύκλος σε δίαγραμμα T-h. 1-2 συμπίεση, 2-3 αποβολή θερμότητας στον	
ψύκτη αερίου, 3-4 ισενθαλπικός στραγγαλισμός, 4-1 ατμοποίηση [21]	27
Σχήμα 2. 18: Διάγραμμα P-h του ψυκτικού CO2 [21]	28
Σχήμα 2. 19: Σύστημα θέρμανσης και παροχής ζεστού νερού με αντλία θερμότητας CO2 [21]	29
Σχήμα 2. 20: Ηλιακά υποβοηθούμενη αντλία θερμότητας άμεσης εκτόνωσης [23]	31
Σχήμα 2. 21: Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε σειρά [23]	31
Σχήμα 2. 22: Ηλιακά υποβοηθούμενη αντλία θερμότητας έμμεσης εκτόνωσης σε παράλληλη σύνδεση	
[24]	32
<u>Κεφάλαιο 3.</u>	
Surface 2. 1. Funda Zani 0.02 a Zana (0.02) and a matrix of (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)	24
2χ ημα 3. 1: Γωνία ζενίθ θ2, αζιμουθίο επιφανείας γ, αζιμουθίο ηλίου γS, κλιοή δυλλεκτή β [25]	34
2χ ημα 3. 2: Αμεσή ακτινορολία ορίζοντίου και κεκλιμένου επιπεσού [25]	35
2χ ημα 3.3: Επίπεδος ηλίακος συλλεκτής, με τα επίμερους στοιχεία του	36
2χ ημα 3. 4: 2χ ηματική αναπαραστασή ηλιακού συλλεκτή σωληνών κενού [27]	38
Σχήμα 3. 5: Συλλέκτης σωλήνων κενού θερμικού σωλήνα [27]	39
Σχήμα 3. 6: Συλλέκτης σωλήνων κενού άμεσης εκτόνωσης [26]	39
Σχήμα 3. 7: Τύποι συγκεντρωτικών συλλεκτών: a) Κάτοπτρα Fresnel b) Παραβολικός συλλέκτης c)	
Επίπεδος δέκτης με επίπεδους ανακλαστήρες d) Ηλιακός πύργος e) Παραβολοειδής συγκεντρωτής με	
σημειακό δέκτη f) Σύνθετος παραβολικός συλλέκτης [26]	42
<u>Κεφάλαιο 4.</u>	

Σχήμα 4. 1: Δημιουργία νέου αρχείου στο simulation studio	. 45
Σχήμα 4. 2: Οι βιβλιοθήκες του TRNSYS	. 46
Σχήμα 4. 3: Εισαγωγή επίπεδου ηλιακού συλλέκτη	. 47
Σχήμα 4. 4: Επιλογή παραμέτρων των μετεωρολογικών δεδομένων	. 48
Σχήμα 4. 5: Επιλογή αρχείου μετεωρολογικών δεδομένων	. 48
Σχήμα 4. 6: Σύνδεση δύο στοιχείων στο TRNSYS 18	. 49
Σχήμα 4. 7: Παράθυρο σύνδεσης μεταξύ των μεταβλητών των μετεωρολογικών δεδομένων και του	
ηλιακού συλλέκτη	. 49
Σχήμα 4. 8: Εισαγωγή αντλίας και ορισμός της παροχής της	. 50
Σχήμα 4. 9: Σύνδεση παροχής και θερμοκρασίας αντλίας και ηλιακού συλλέκτη	. 50
Σχήμα 4. 10: Παράμετροι δοχείου αποθήκευσης	. 51
Σχήμα 4. 11: Σύνδεση του δοχείου με τον βρόχο του ηλιακού συλλέκτη	. 51
Σχήμα 4. 12: Παράμετροι και είσοδοι του διαφορικού ενισχυτή type 2b	. 52
Σχήμα 4. 13: Σύνδεση του διαφορικού ελεγκτή με τα υπόλοιπα στοιχεία της εγκατάστασης	. 52
Σχήμα 4. 14: Εισαγωγή του στοιχείου type 14h	. 53
Σχήμα 4. 15: Εισαγωγή εξίσωσης στο simulation studio	. 53
Σχήμα 4. 16: Εισαγωγή μεταβλητών εισόδου και εξόδου και σύνδεση του equation type με άλλα	
στοιχεία της εγκατάστασης	. 54
Σχήμα 4. 17: Εισαγωγή online plotter σε μια εγκατάσταση	. 54
Σχήμα 4. 18: Σύνδεση μεταβλητών εξόδου των στοιχείων με το online plotter	. 55
Σχήμα 4. 19: Εισαγωγή και επεξεργασία του type 46a	. 56
Σχήμα 4. 20: Εγκατάσταση ζεστού νερού χρήσης	. 56
Σχήμα 4. 21: Το γράφημα που εμαφανίζεται κατά τη διάρκεια της προσομοίωσης	. 57
Κεφάλαιο 5.	
Σχήμα 5. 1: Σκαρίφημα της ενκατάστασης θέρμανσης του κτηρίου	. 58
Σχήμα 5. 2: Βήμα 1 εισανωνή Building Project multizone	. 60
Σχήμα 5. 3: Βήμα 2 & 3, εισαγωγή των ζωνών και των διαστάσεών τους	. 60
Σχήμα 5. 4: Θέση, απόκλιση κτηρίου και ποσοστό υαλοπινάκων ως πρός του εξωτερικούς τοίχους	. 61
Σχήμα 5. 5: Εισαγωνή διείσδυσης αέρα και θέρμανσης ή ψύξης στο κτήριο	. 61
Σχήμα 5. 6: Προσδιρισμός εσωτερικών φορτίων και φωτισμού του κτηρίου	. 62
Σχήμα 5. 7: Εισανωνή σταθερής και κινητής σκίασης στο κτήριο	. 62
Σχήμα 5. 8: Τελευταίο βήμα επαλήθευσης και δημιουργία της βασικής κτηριακής ενκατάστασης	. 63
χήμα 5. 9: Η κτηριακή εγκατάσταση στο simulation studio	. 63
Σχήμα 5. 10: Θέση φακέλου της νέας κτηριακής εγκατάστασης	. 64
Σχήμα 5. 11: Αλλανή παραμέτρων κτηρίου	. 65
Σχήμα 5. 12: Το περιβάλλον του TRNBuild	. 65
Σχήμα 5. 13: Οι μεταβλητές της ζώνης Α1	. 66
Σχήμα 5. 14: Εισαγωγή δομής κάθετων τοίχων	. 67
Σχήμα 5. 15: Εισαγωγή ειδικής συναγωγιμότητας για την εξωτερική επιφάνεια των τοίχων	. 68
Σχήμα 5. 16: Δομή και συναγωγιμότητες εσωτερικής και εξωτερικής επιφάνειας του εξωτερικού τοίχα	ου.
	. 69
Σχήμα 5. 17: Επιλογή του WALL001 για όλους του εξωτερικούς τοίχους	. 70
Σχήμα 5. 18: ΕΙσαγωγή της νέας επιφάνειας (οροφή)	.71
Σχήμα 5. 19: Εισανωνή νέων υλικών μέσω laver type manager	. 71

Σχήμα 5. 20: Σύνθεση της δομής της οροφής μέσω construction type manager	. 72
Σχήμα 5. 21: Εισαγωγή της δομής του πατώματος του κτηρίου	. 73
Σχήμα 5. 22: Εισαγωγή υαλοπινάκων στο κτήριο	.74
Σχήμα 5. 23: Επιλογή ειδικής συναγωγιμότητας της εσωτερικής και εξωτερικής επιφάνειας του	
υαλοπίνακα	. 74
Σχήμα 5. 24: Εμφάνιση των νέων μεταβλητών, που ορίστηκαν στο TRNBuild, στο simulation studio	. 75
Σχήμα 5. 25: Υπολογισμός της ειδικής συναγωιμόητας στο simulation studio	. 75
Σχήμα 5. 26: Υπολογισμός της θερμοκρασίας εδάφους TGROUND σε βάθος 0.25m	. 76
Σχήμα 5. 27: Εισαγωγή των μετεορολογικών δεδομένων της περιοχής της Αττικής	. 76
Σχήμα 5. 28: Αλλαγή της τιμής διείσδυσης του αέρα	. 77
Σχήμα 5. 29: Ανάθεση της νέας τιμής διείσδυσης του αέρα στη ζώνη Α1	. 77
Σχήμα 5. 30: Εισαγωγή της χωρητικότητας ζώνης στο TRNBuild	. 78
Σχήμα 5. 31: Αφαίρεση όλων των φορτίων από την ζώνη Α1	. 78
Σχήμα 5. 32: Εισαγωγή νέου φορτίου από βιβλιοθήκη.	. 78
Σχήμα 5. 33: Εισαγωγή φορτίου από ανθρώπους στον κατάλογο με τα φορτία του TRNBuild Navigato	r.
	. 79
Σχήμα 5. 34: Κέρδος από ακτινοβολία και από συναγωγή για τα κέρδη φωτισμού και συσκευών	. 80
Σχήμα 5. 35: Ανάθεση του φορτίου από ανθρώπους στη ζώνη Α1	. 81
Σχήμα 5. 36: Τα φορτία που έχουν ανατεθεί στη ζώνη Α1.	. 81
Σχήμα 5. 37: Εισαγωγή εξίσωσης με το εμβαδό του κτηρίου σε $m2$. 82
Σχήμα 5. 38: Εισαγωγή των μέγιστων φορτίων ανά m2 του κτηρίου.	. 82
Σχήμα 5. 39: Εισαγωγή του προγράμματος του κτηρίου για κατοίκηση από ανθρώπους από Δευτέρα	-
έως Παρασκευή.	. 83
Σχήμα 5. 40: Σύνδεση του προγράμματος των καθημερινών ημερών κατοίκησης με το type 41c	. 83
Σχήμα 5. 41: Υπολογισμός των ανθρώπων με βάση το ποσοστό κατοίκησης από τα προγράμματα	
κατοίκησης	. 84
Σχήμα 5. 42: Σύνδεση της μεταβλητής Zone Οcc με την είσοδο του κτηρίου PEOP.	. 84
Σχήμα 5. 43: Η εγκατάσταση στο simulation studio μετά την εισαγωγή και σύνδεση των φορτίων	. 85
Σχήμα 5. 44: Αλλανή του humidity capacitance ratio.	. 86
Σχήμα 5. 45: Εισαγωγή νέου ventilation type στο κτήριο	. 86
Σχήμα 5. 46: Ορισμός των παραμέτρων του νέου ventilation type	. 87
Σχήμα 5. 47: Ανάθεση του νέου ventilation type στο κτήριο	. 88
Σχήμα 5. 48: Επιλογή Outputs για αγάθεση γέων μεταβλητών εξόδου στο κτήριο	. 88
Σχήμα 5. 49: Εισαγωγή της μεταβλητής εξόδου RELHUM για την ζώνη Α1	. 89
Σχήμα 5. 50: Επιλεγιμένες μεταβλητές εξόδου για την ζώνη Α1	.89
Σχήμα 5. 51: Σύστημα παροχής αέρα στο TRNSYS18.	.90
Σχήμα 5, 52: Εισαγωγή ανεμιστήρα εξαγωγής του αέρα από το κτήριο	.91
Σχήμα 5, 52: Διαχωρισμός του εξερχόμενου ρεύματος αέρα με το type 148a	.91
Σχήμα 5. 54: Σύνδεση του ανεμιστήρα φρέσκου αέρα με θερμοκρασία και σχετική μνοασία του	
περιβάλλοντος	91
Σχήμα 5, 55: Εισαγωγή του εγαλλάκτη αγάκτησης θεομότητας και σύνδεση του με τον αγειμστήρα	
φρέσκου αέρα	.92
Σχήμα 5, 56: Σύνδεση του type 760 με τα type 1482 και 148b	92
Σχήμα 5. 55. Σύνδεση του οεύματος ανακμκλοφορίας από το type 148a με το type 148b	92
$-\lambda$ (particular of the property and the to the $1-00$ pc $1-00$ (the $1-00$ for the $1-00$ for 1	

Σχήμα 5. 58: Σύνδεση θερμοκρασίας, σχετικής υγρασίας και παροχής του αναμεμιγμένου αέρα με τα	
αντίστοιχα μεγέθη του κτηρίου) 4
Σχήμα 5. 59: Εισαγωγή εξίσωσης ελέγχου των ανεμιστήρων παροχής αέρα στο κτήριο) 5
Σχήμα 5. 60: Σύνδεση της εξίσωσης ελέγχου των ανεμιστήρων με το occupancy schedule και τους	
ανεμιστήρες) 5
Σχήμα 5. 61: Εισαγωγή γραφήματος για έλεγχο θερμοκρασιών και παροχών από types του συστήματος	ς
αερισμού	96
Σχήμα 5. 62: Εισαγωγή Heating type) 6
Σχήμα 5. 63: Αλλαγή παραμέτρων ιδανικού στοιχείου θέρμανσης) 7
Σχήμα 5. 64: Ανάθεση του ιδανικού στοιχείου θέρμανσης στη ζώνη Α1) 7
Σχήμα 5. 65: Ανάθεση νέας μεταβλητή εξόδου στο κτήριο	98
Σχήμα 5. 66: Επιλογή του QHEAT για μεταβλητή εξόδου στο κτήριο) 9
Σχήμα 5. 67: Οι μεταβλητές εξόδου που έχουν ανατεθεί στο κτήριο	00
Σχήμα 5. 68: Εισαγωγή εκτυπωτή type 25ς για εύρεση του μέγιστου φορτίου θέρμανσης του κτηρίου.	
)1
Σχήμα 5. 69: Σύνδεση της ισχύος του ιδανικού στοιχείου θέρμανσης με τον εκτυπωτή type 25c10)1
Σχήμα 5. 70: Εισαγωγή Online Plotter για αναπαράσταση της ισχύος του ιδανικού στοιχείου θέρμανση	ς
QHEAT)1
Σχήμα 5. 71: Αναπαράσταση της ισχύος του ιδανικού στοιχείου θέρμανσης για διατήρηση της	
εσωτερικής θερμοκρασίας του κτηρίου για μια ολόκληρη χρονιά)2
Σχήμα 5. 72: Αφαίρεση της ιδανικής θέρμανσης του κτηρίου από το TRNBuild)3
Σχήμα 5. 73: Η ενκατάσταση μαζί με τον βρόχο θερμαντικού στοιχείου και δοχείου αποθήκευσης 10)3
Σχήμα 5. 74: Αποδοτικότητα και μένιστη θερμοκρασία εξόδου του αέρα του type 670)4
Σχήμα 5. 75: Σύνδεση του type 148b με το type 670)4
Σχήμα 5. 76: Σύνδεση του τγρε 670 με το κτήριο)5
Σχήμα 5. 77: Παράμετροι αντλίας θερμαντικού στοιχείου)6
Σχήμα 5. 78: Σύνδεση αντλίας θεομαντικού στοιχείου με το type 670)6
Σχήμα 5. 79: Παράμετροι του δοχείου αποθήκευσης type 534)7
Σχήμα 5. 80. Συνέχεια παραμέτρων δοχείου και εσωτερικού εναλλάκτη αυτού)7
Σχήμα 5. 81: Θεομοκοασία τοιχωμάτων δοχείου)8
Σχήμα 5.82: Αργική θεριμοκρασία των κόμβων του δοχείου αποθήκευσης	18
Σχήμα 5. 83: Σύνδεση του δοχείου με το θεομαντικό στοιχείο και την αντλία του	19
Σχήμα 5. 84: Παράμετροι του θερμοστάτη του κτηρίου type 166)9
Σχήμα 5. 85: Σύνδεση κτηρίου και θεομοστάτη type 166	10
Σχήμα 5. 86: Εξίσωση με το σήμα ελέγχου της αντλίας του θεομαντικού στοιχείου	10
Σ_{λ} ήμα 5. 80. Εξισωσή με το σημα ελεγχου της αντλίας του σερμαντικού στοιχειου	
της αντλίας του θεουαντικού στοιχείου	10
της αντλίας του σερμαντικου στοιχείου. Σχήμα 5, 88: Σχηματική αναπαράσταση και κύκλος στο n-h διάνοαμμα της αντλίας θεομότητας CO2	10
2_{A1} μα 3. 30. 2_{A1} ματική αναλαραστασή και κοκλος στο μ-η σταγμαμμα της αντλίας σερμοτητάς CO2 Sanvo Ecocute [29]	11
Στήμα 5, 89: Χάρτης απόδραης της αυτλίας θεριμότητας CO2	. <u>.</u> 1
2_{A1} μα 5. 35. Λαρτης αποσούης της αντλίας θερμότητας για το type 9/1 11	12
2_{A} ήμα 5. 50. το αρχειο είσουσο της αντλίας σερμοτητάς για το τγρε 541	۲2
2χημα 3. 31. παραμετροί, μεταρλητές είθουου και αρχείο είθουου της αντλίας σερμοτητάς της	12
εγκατασταστης	L) 1/1
2χημα 3. 52. 20νοεύη αντλίας σερμοτητάς με τα μετεωρυλογικά οεούμενα	4٤

Σχήμα 5. 93: Παράμετροι αντλίας του type 941 και σύνδεση αυτής, του δοχείου και του type 94	11
μεταξύ τους	114
Σχήμα 5. 94: Παράμετροι και είσοδοι του ελεγκτή type 106	115
Σχήμα 5. 95: Σύνδεση type 106 με το δοχείο αποθήκευσης	115
Σχήμα 5. 96: Σύνδεση ελεγκτή με την αντλία θερμότητας και την αντλία παροχής αυτής	116
Σχήμα 5. 97: Η εγκατάσταση μαζί με τον βρόχο της αντλίας θερμότητας	116
Σχήμα 5. 98: Ημερήσιο πρόγραμμα κατανάλωσης ζεστού νερού χρήσης του κτηρίου	117
Σχήμα 5. 99: Εισαγωγή προγράμματος κατανάλωσης ζεστου νερού μέσω type 14h	117
Σχήμα 5. 100: Εισαγωγή εξίσωσης με την μέγιστη παροχή και την θερμοκρασία του νερού χρήσ	ης 118
Σχήμα 5. 101: Σύνδεση προγράμματος κατανάλωσης με την εξίσωση του νερού χρήσης	118
Σχήμα 5. 102: Σύνδεση θερμοκρασίας και παροχής DHW Demand με type 11f	118
Σχήμα 5. 103: Σύνδεση ρεύματος 1 του διαχωριστή με το εισερχόμενο ρεύμα του εναλλάκτη το	υ
δοχείου	119
Σχήμα 5. 104: Σύνδεση του εξερχόμενου ρεύματος του εναλλάκτη με το ρεύμα 1 του μίκτη	119
Σχήμα 5. 105: Σύνδεση του ρεύματος 2 του type 11f με το ρεύμα 2 του type 11h	120
Σχήμα 5. 106: Σύνδεση του ελεγκτή με τον διαχωριστή και τη θερμοκρασία του νερού του δικτί	ύου 120
Σχήμα 5. 107: Σύνδεση θερμοκρασία εναλλάκτη με θερμοκρασία πηγής θερμότητας του type 1	15121
Σχήμα 5. 108: Εισαγωγή online plotter για παρατήρηση βασικών μεγεθών του νερού χρήσης	122
Σχήμα 5. 109: Η εγκατάσταση με την εισαγωγή του βρόχου του νερού χρήσης	123
Σχήμα 5. 110: Εισαγωγή κλίσης και αζιμούθιου συλλεκτών	124
Σχήμα 5. 111: Εισαγωγή επιφάνειας ηλιακών συλλεκτών μέσω type 1b	124
Σχήμα 5. 112: Σύνδεση ηλιακών συλλεκτών type 1b με τα κλιματικά δεδομένα type 15	125
Σχήμα 5. 113: Εισαγωγή αντλίας ηλιακών συλλεκτών	125
Σχήμα 5. 114: Σύνδεση δοχείου αποθήκευσης, αντλίας παροχής και ηλιακών συλλεκτών	126
Σχήμα 5. 115: Εισαγωγή παραμέτρων του ελεγκτή type 2b	127
Σχήμα 5. 116: Σύνδεση του ελεγκτή type 2b με τα στοιχεία του βρόχου των ηλιακών συλλεκτών	127
Σχήμα 5. 117: Σύνδεση θερμοκρασίας κόμβου 1 του δοχείου με τον ελεγκτή type 2b	128
Σχήμα 5. 118: Εισαγωγή Online Plotter Tank & Heat Sources	128
Σχήμα 5. 119: Εισαγωγή online plotter Air Con	129
Σχήμα 5. 120: Η προς εξέταση εγκατάσταση ολοκληρωμένη στο simulation sudio	130
<u>Κεφάλαιο 6.</u>	
Σνήμα 6. 1: Επιφήψεια συνήστησης κόστους στην περιοχή της βάλτιστης λύσης	122
2χ (μα 6. 1. Επιφανεία συναρτησης κοστους στην περιοχή της βεπτιστης ποσης	
$2\chi(\mu a 0, 2, 0)$	122
(μπλε) για τη δεξον θερμανοης.	
$2\chi(\mu\alpha 0.5.6)$	ιανοης. 122
Σνήμα 6. Δ. Θεομογοασία του ζεστού γεορύ γρήσρε για τη σεζήν θέομονσης	
Σχήμα 6. Ε: Θερμοκρασία ευτός του κτροίου (κόκκυρ μοσιμιά) και θεουρκοσσία περιβάλλουτος	
2χημα δ. 5. Θερμοκραδία έντος του κτηρίου (κοκκτνη γραμμη) και σερμοκραδία περιραλιοντος	, για τις 124
δύο πρωτές πμέρες του πανουαρίου	134 125
2 τημα 6. 7: Θεομοκρασία και παρογή ζεστού γερού γρήσης	135 126
Σχήμα 6. 8: Δνάκτηση θεοιμότητας φοέσκου σέοα και ανάμερο οριμάτων του εισανόμενου στο	130 κτήριο
αέρα	126
черч	

Σχήμα 6. 9: Μηνιαία και ολική κατανάλωση ηλεκτρικής ενέργειας βέλτιστης και μη ηλιακά
υποβοηθούμενης εγκατάστασης,
Σχήμα 6. 10: Ενεργειακό ισοζύγιο για την βέλτιστη εγκατάσταση
Σχήμα 6. 11: Ενεργειακό ισοζύγιο για την εγκατάσταση χωρίς ηλιακή υποβοήθηση
Σχήμα 6. 12: Ηλιακό κλάσμα συναρτήσει του όγκου του δοχείου για συλλεκτική επιφάνεια $28\ m2.$ 140
Σχήμα 6. 13: Συνολική κατανάλωση ενέργειας συναρτήσει του όγκου του δοχείου και για συλλεκτική επιφάνεια 28 m2
Σχήμα 6. 14: Συντελεστής συμπεριφοράς του συστήματος συναρτήσει του όνκου του δοχείου για
π_{λ} μα στη μετική επιφάνεια 28 m2
Σχήμα 6. 15: Ισοζύνιο θεομότητας της εγκατάστασης χωρίς ανάκτηση θερμότητας
Σχήμα 6. 16: Χάρτης απόδοσης αντλίας θερμότητας R410a
Σχήμα 6. 17: Ενεργειακό ισοζύνιο για την εγκατάσταση με αντλία θερμότητας R410a
Σχήμα 6. 18: Συνολική και μηνιαία κατανάλωση ηλεκτρικής ενέρνειας των ενκαταστάσεων θέρμανσης.
Σχήμα 6. 19: COP εγκαταστάσεων για την σεζόν θέρμανσης146 <u>Παράρτημα Α.</u>
Σχήμα Α. 1: Πρόγραμμα κατοίκησης από ανθρώπους158
Σχήμα Α. 2: Πρόγραμμα φωτισμού της κατοικίας
Σχήμα Α. 3: Πρόγραμμα φορτίου από συσκευές της κατοικίας160
Παράρτημα Β.
Σχήμα Β. 1: Συντελεστής συμπεριφοράς αντλίας θερμότητας συναρτήσει θερμοκρασίας περιβάλλοντος
και εισόδου στον ψύκτη αερίου162
Σχήμα Β. 2: Χάρτης λειτουργίας της αντλίας θερμότητας165
Σχήμα Β. 3: Κλάσμα καταναλισκόμενης ενέργειας συμπιεστή συναρτήσει της θερμοκρασίας εισόδου
του νερού στην αντλία για 7 διαφορετικές θερμοκρασίες περιβάλλοντος
Σχήμα Γ. 1: Συνολική ενέργεια δεσμευμένη από ηλιακό συλλέκτη επιφάνειας 4 m2
Σχήμα Δ. 1: Αρχείο εισόδου στο type 941 αντλίας R410A171
Σχήμα Δ. 2: Επιλογή θέσης αρχείου της αντλίας R410A στο type 941
Σχήμα Δ. 3: Πεδίο παραμέτρων του type 941 για την αντλία θερμότητας R410A που μελετήθηκε 172

Κατάλογος πινάκων.

<u>Κεφάλαιο 2.</u>
Πίνακας 2. 1: Τυπικές τιμές θερμικής αγωγιμότητας ορισμένων υλικών [9]16 <u>Κεφάλαιο 5.</u>
Πίνακας 5. 1: Ονομαστικά μεγέθη αντλίας θερμότητας της εγκατάστασης <u>Κεφάλαιο 6.</u>
Πίνακας 6. 1: Τιμές συνάρτησης κόστους των γειτονικών σημείων της βέλτιστης λύσης
Πίνακας Α. 1: Ποσοστά κατάληψης της κατοικίας από ανθρώπους για τις αντίστοιχες ώρες της ημέρας.
Πίνακας Α. 2: Ποσοστά του μέγιστου φορτίου φωτισμού της κατοικίας για της αντίστοιχες ώρες της ημέρας
Πίνακας Α. 3: Ποσοστό του μέγιστου φορτίου από συσκευές της κατοικίας για την αντίστοιχη ώρα της ημέρας
Πίνακας Α. 4: Ποσοστό παροχής ζεστού νερού χρήσης για την αντίστοιχη ώρα της ημέρας
Πίνακας Β. 1: Βασικά μεγέθη λειτουργίας συναρτήσει της θερμοκρασίας περιβάλλοντος και της θερμοκρασίας εισόδου του νερού στην αντλία163 Πίνακας Β. 2: Ισχύς, ωφέλιμη θερμότητα και συντελεστής συμπεριφοράς αντλίας θερμότητας CO2, για
θερμοκρασίες περιβάλλοντος από $-5 εως 25$ °C
Παράρτημα Δ. Πίνακας Δ. 1: Θερμαντική ικανότητα και καταναλισκόμενη ισχύς αντλίας θερμότητας <i>R</i> 410 <i>A</i>

Πίνακας Ε. 1: Αποτελέσματα επαναλήψεων για διαφορετικό όγκο και επιφάνεια ηλιακών συλλεκτών.

Παραρτήματα.

Παράρτημα Α: Προγράμματα φορτίων από ανθρώπους, φωτισμού και συσκευών

Σε αυτό το παράρτημα παρουσιάζονται τα προγράμματα των φορτίων από ανθρώπους, φωτισμού και χρήσης συσκευών. Στα παρακάτω σχήματα και πίνακες παρουσιάζεται η τιμή του αντίστοιχου φορτίου ως ποσοστό του μέγιστου φορτίου, δηλαδή τιμή 1 αντιστοιχεί στη μέγιστη τιμή του φορτίου.

Το παρακάτω σχήμα Α.1 και ο πίνακας Α.1 δείχνουν το ποσοστό των ανθρώπων (μέγιστό 1, δηλαδή το 100% των ανθρώπων που κατοικούν -4 άτομα) που βρίσκονται στην κατοικία την αντίστοιχη ώρα, για τις καθημερινές ημέρες και τα σαββατοκύριακα. Τα δεδομένα αυτά χρησιμοποιούνται στα type 14h όπως αναφέρθηκαν στην παράγραφο 5.2.3.

Σχήμα Α. 1: Πρόγραμμα κατοίκησης από ανθρώπους.

	4 1 1	() (,	,	0 /		,	,	,
Πινακας Α.	1:Ποσοστα	καταληψης της	ς κατοικιας	απο α	νιτοωπους νια	YTIC	αντιστοιγες	$\omega \Omega \mathcal{E} \mathcal{C} T \mathcal{D} \mathcal{C}$	ημερας.
	11110000000		, not to the ory	00700 00	100000000000000000000000000000000000000	~ ~ ~ >		wpey eijy	· mepas

OCCUPAN	NCY		1	30W person	
Weekdays			Weekend		
hour	fraction (1 is 100%)			hour	fraction
0	0.75			0	0.75
7	0.75			9	0.75
7	1			9	1
8	1			12	1
8	0			12	0
14	0			14	0
14	0.5			14	1
16	0.5			18	1

16	1	18	0
23	1	21	0
23	0.75	21	1
24	0.75	23	1
		23	0.75
		24	0.75

Ακολουθεί το πρόγραμμα για τα φορτία φωτισμού της κατοικίας. Η τιμή 1 αντιστοιχεί στη μέγιστη τιμή του φορτίου (8 $W/m^2 * 100 m^2$).

Σχήμα Α. 2: Πρόγραμμα φωτισμού της κατοικίας.

Πίνακας Α.	2: Ποσοστά τ	ου μέγιστου	φορτίου	φωτισμού	της	κατοικίας	για τη	<i>ης αντίστ</i> ο	ιχες (ώρες	της
ημέρας.											

Lighting		peak=8 W/m2		
Weekday	/S	Weeke	end	
hour	fraction	hour	fraction	
0	0	0	0	
7	0	9	0	
7	0.5	9	0.3	
8	0.5	11	0.3	
8	0	11	0	
14	0	14	0	
14	0.1	14	0.1	
17	0.1	17	0.1	
17	0.5	17	0.5	
19	0.5	19	0.5	

19	0.9	19	0.9
23	0.9	23	0.9
23	0	23	0
24	0	24	0

Τέλος ακολουθεί το πρόγραμμα του φορτίου από συσκευές της κατοικίας. Η τιμή 1 αντιστοιχεί στο μέγιστο του φορτίου των συσκευών (11 $W/m^2 * 100 m^2$).

Σχήμα Α. 3: Πρόγραμμα φορτίου από συσκευές της κατοικίας.

Πίνακας Α. 3: Ποσοστό του μέγιστου φορτίου από συσκευές της κατοικίας για την αντίστοιχη ώρα της ημέρας.

Equipr	nent	peak=11W/m2	
Weeko	days	Weeke	end
hour	fraction	hour	fraction
0	0.1	0	0.1
7	0.1	9	0.1
7	0.4	9	0.4
8	0.4	12	0.4
8	0.1	12	0.1
14	0.1	14	0.1
14	0.3	14	0.9
16	0.3	16	0.9
16	0.9	16	0.6
18	0.9	18	0.6
18	0.6	18	0.1

23	0.6	21	0.1
23	0.1	21	0.6
24	0.1	23	0.6
		23	0.1
		24	0.1

Ακολουθεί το πρόγραμμα κατανάλωσης ζεστού νερού της κατοικίας. Οι τιμές που παρουσιάζονται στην αριστερή μεριά του πίνακα Α.4 είναι οι τιμές της παροχής του νερού συναρτήσει της αντίστοιχης ώρας της ημέρας, ενώ δεξιά μεριά του πίνακα Α.4 είναι αδιάστατες και έχουν διαιρεθεί με την μέγιστη παροχή.

Domestic Hot Wate	er Daily Deman	d		
4 person data	Tdwh =45oC			
hour	l/h = kg/h		hour	fraction of max water
				flow
0	0		0	0
7	0	0	7	0
7	15	0	7	0.375
8	15	15	8	0.375
8	5	0	8	0.125
9	5	5	9	0.125
9	2.5	0	9	0.0625
10	2.5	2.5	10	0.0625
10	20	0	10	0.5
11	20	20	11	0.5
11	5	0	11	0.125
12	5	5	12	0.125
12	2.5	0	12	0.0625
17	2.5	12.5	17	0.0625
17	20	0	17	0.5
18	20	20	18	0.5
18	7.5	0	18	0.1875
19	7.5	7.5	19	0.1875
19	15	0	19	0.375
20	15	15	20	0.375
20	40	0	20	1
22	40	80	22	1
22	5	0	22	0.125
23	5	5	23	0.125
23	0	0	23	0

Πίνακας Α. 4: Ποσοστό παροχής ζεστού νερού χρήσης για την αντίστοιχη ώρα της ημέρας.

24	0	0	24	0
Total usage		187.5		

Παράρτημα Β: Επεξεργασία δεδομένων αντλίας θερμότητας CO2 και δημιουργία του αρχείου εισόδου του type 941.

Από τα δεδομένα του πειράματος στην πόλη Oban της Σκωτίας, ήταν εφικτό να προσδιοριστούν βασικά μεγέθη λειτουργίας (καταναλισκόμενη ισχύς, ωφέλιμη θερμότητα και συντελεστής συμπεριφοράς) της αντλίας θερμότητας CO2. Σε αυτό το πείραμα η θερμοκρασία περιβάλλοντος κυμαίνεται από –1 έως 15 °C. Έτσι ήταν εφικτό να προσιοριστούν ο συντελεστής συμπεριφοράς, η καταναλισκόμενη ισχύς και η ωφέλιμη θερμότητα για θερμοκρασίες περιβάλλοντος μεταξύ Ο και 11°C και για θερμοκρασία εισόδου του νερού στον ψύκτη αερίου (gas cooler) 30 έως 50°C. Στο παρακάτω σχήμα B.1 οργανώθηκε σε κλάσεις εξωτερικής θερμοκρασίας συναρτήσει της θερμοκρασίας εισόδου του νερού στον ψύκτη αερίου ο συντελεστής συμπεριφοράς.

Σχήμα Β. 1: Συντελεστής συμπεριφοράς αντλίας θερμότητας συναρτήσει θερμοκρασίας περιβάλλοντος και εισόδου στον ψύκτη αερίου.

Για την κλάση 0-1 βρέθηκαν η ισχύς, ωφέλιμη θερμότητα και ο συντελεστής συμπεριφοράς για ένα σημείο που ανήκει σε αυτή την κλάση, από τα δεδομένα του πειράματος, για κάθε θερμοκρασία εισόδου του νερού στην αντλία και ορίστηκε ότι αυτοί οι παράμετροι αφορούν την ενδιάμεση θερμοκρασία περιβάλλοντος (0.5°C) της κλάσης (βλ. πίνακα Β.1). Το ίδιο έγινε και για τις υπόλοιπες κλάσεις, ενώ για τα σημεία που δεν υπάρχουν δεδομένα έγινε γραμμική παρεμβολή μεταξύ των γειτονικών τους σημείων (αναπαρίσταται με έντονους χαρακτήρες).

Tamb	Tw in HP	Tw in HP	Qht(W)	Pcomp	СОР
0.5	30		8993.987	3479.9	2.584553
	35		8218.088	3422.4	2.401265
	40		7551.186	3420	2.207949
	45		7857.07	3900	2.014633
	50		8001.048	4393	1.821318
3.5	30		8141.301	3042.9	2.675507
	35		7143.651	2829	2.52515
	40		7759.315	3330.4	2.329845
	45		8676.745	4117	2.107541
	50		8078.932	4250.4	1.900746
5.5	30		7903.104	2806	2.816502
	35		7076.535	2720.9	2.600807
	40		7507.772	3093.5	2.426951
	45		7209.902	3200	2.253094
	50		7069.41	3400	2.079238
8.5	30		6717.067	2265.5	2.964938
	35		7274.404	2645	2.750247
	40		7602.887	3001.5	2.533029
	45		6862.629	2898	2.368057
	50		7020.118	3312	2.119601
11.5	30		7254.866	2300	3.15429
	35		7039.627	2403.5	2.928907
	40		7299.514	2700	2.703524
	45		7922.616	3197	2.478141
	50		7137.921	3169.4	2.252136

Πίνακας Β. 1: Βασικά μεγέθη λειτουργίας συναρτήσει της θερμοκρασίας περιβάλλοντος και της θερμοκρασίας εισόδου του νερού στην αντλία.

Στην περίπτωση της Αθήνας η θερμοκρασία του περιβάλλοντος ξεπερνά τους 11.5 °C. Για αυτό χρησιμοποιήθηκαν οι τιμές του κατασκευαστή για $T_{amb} = 25$ °C και θερμοκρασία εισόδου του νερού στην αντλία $T_{w,in} = 30$ °C των μεγεθών της ισχύς και την ωφέλιμης θερμότητας, που είναι 9000 W και 2200 W, με COP = 4.09. Η εύρεση του συντελεστή συμπεριφοράς για αυτή τη θερμοκρασία περιβάλλοντος και για της υπόλοιπες θερμοκρασίες εισόδου νερού, έγινε με γραμμική παρεμβολή, με χρήση αυτού του αρχικού σημείου και της κλίσης της ευθείας των 11.5°C. Οι συντελεστές συμπερισφοράς για $T_{amb} = -5$ °C έχουν υπολογιστεί από τους συντελεστές του πειράματος και είναι αναρτημένα στο διαδίκτυο. Στον πίνακα B.2 φαίνονται συγκεντρωτικά όλα τα σημεία που χρειάζονται για να καλύψουν τη συγκεκριμένη μελέτη στην περιοχή της Αθήνας, ενώ η γραφική απεικόνιση αυτών βρίσκεται στο σχήμα B.2.

Tamb	Tw in HP	Qht(W)	Pcomp(W)	СОР	Pcomp+fan(W)	COP(HP+Fan)
-5	30	7820	3400	2.3	3440	2.27325581
	35	7525	3500	2.15	3540	2.12570621
	40	7067	3700	1.91	3740	1.88957219
	45	7120	4000	1.78	4040	1.76237624
	50	6435	4500	1.43	4540	1.41740088
0.5	30	8993.987	3479.9	2.584553	3519.9	2.55518249
	35	8218.088	3422.4	2.401265	3462.4	2.37352371
	40	7551.186	3420	2.207949	3460	2.1824236
	45	7857.07	3900	2.014633	3940	1.99418016
	50	8001.048	4393	1.821318	4433	1.80488338
3.5	30	8141.301	3042.9	2.675507	3082.9	2.64079305
	35	7143.651	2829	2.52515	2869	2.48994449
	40	7759.315	3330.4	2.329845	3370.4	2.302194
	45	8676.745	4117	2.107541	4157	2.08726115
	50	8078.932	4250.4	1.900746	4290.4	1.88302539
5.5	30	7903.104	2806	2.816502	2846	2.77691628
	35	7076.535	2720.9	2.600807	2760.9	2.5631263
	40	7507.772	3093.5	2.426951	3133.5	2.39596998
	45	7209.902	3200	2.253094	3240	2.22527851
	50	7069.41	3400	2.079238	3440	2.05506112
8.5	30	6717.067	2265.5	2.964938	2305.5	2.91349683
	35	7274.404	2645	2.750247	2685	2.70927507
	40	7602.887	3001.5	2.533029	3041.5	2.49971639
	45	6862.629	2898	2.368057	2938	2.3358167
	50	7020.118	3312	2.119601	3352	2.09430719
11.5	30	7254.866	2300	3.15429	2340	3.10037008
	35	7039.627	2403.5	2.928907	2443.5	2.88096049
	40	7299.514	2700	2.703524	2740	2.6640561
	45	7922.616	3197	2.478141	3237	2.44751793
	50	7137.921	3169.4	2.252136	3209.4	2.22406714
25	30	9000	2200	4.090909	2240	4.01785714
	35	8890.671	2300	3.865509	2340	3.79943201
	40	8736.262	2400	3.640109	2440	3.58043517
	45	8536.773	2500	3.414709	2540	3.36093414
	50	8292.204	2600	3.189309	2640	3.14098623

Πίνακας Β. 2: Ισχύς, ωφέλιμη θερμότητα και συντελεστής συμπεριφοράς αντλίας θερμότητας CO2, για θερμοκρασίες περιβάλλοντος από —5 έως 25 °C.

Έγινε υπόθεση ότι ο ανεμιστήρας του φρέσκου αέρα καταναλώνει 40W για να βρεθούν η ολική καταναλισκόμενη ισχύς.

Σχήμα Β. 2: Χάρτης λειτουργίας της αντλίας θερμότητας.

Τέλος για κάθε θερμοκρασία περιβάλλοντος έγινε κανονικοποίηση της ισχύος ως προς την ισχύ για θερμοκρασία εισόδου του νερού στην αντλία 30°C. Η απαιτούμενη ισχύς αυξάνεται όσο αυξάνεται η θερμοκρασία εισόδου του νερού στην αντλία, όπως φαίνεται στο σχήμα Β.3.

Σχήμα Β. 3: Κλάσμα καταναλισκόμενης ενέργειας συμπιεστή συναρτήσει της θερμοκρασίας εισόδου του νερού στην αντλία για 7 διαφορετικές θερμοκρασίες περιβάλλοντος.

Η καμπύλη της ισχύος θερμοκρασίας περιβάλλοντος 0.5 °C (βλ. και πίνακα Β.3) είναι αυτή που θα ακολουθούν και οι ισχύες για τις υπόλοιπες θερμοκρασίες περιβάλλοντος.

Πίνακας Β. 3: Κανονικοποιημένες τιμές ισχύος συναρτήσει της θερμοκρασίας εισόδου του νερού στην αντλία για θερμοκρασία περιβάλλοντος 0.5 °C.

Tamb=0.5 oC				
Twin (oC) Pfr				
30	1			
35	0.983477			
40	0.982787			
45	1.120722			
50	1.262393			

Για μια θερμοκρασία περιβάλλοντος γνωρίζοντας το *COP* από τον πίνακα B.2 και το κλάσμα της ισχύος P_{fr} για τις πέντε διαφορετικές περιπτώσεις $T_{w,in} = 30,35,40,45,50$ °C (εισόδου του νερού στην αντλία) υπολογίζεται το κλάσμα της ωφέλιμης θερμότητας. Για παράδειγμα για την περίπτωση των -5 °C για κάθε σημείο i = 1:5 που αντιστοιχεί σε θερμοκρασία $T_{w,in} = 30,35,40,45,50$ °C (κ.οκ, ισχύει: $Q_i = Q_{fr,i} \cdot Q_{ov}$ και $Q_i = COP_i \cdot P_{fr,i} \cdot P_{ov}$ όπου Q_i η ωφέλιμη θερμότητα, $Q_{fr,i}$ κλάσμα της ωφέλιμης θερμότητας, το κλάσμα της ωφέλιμης θερμότητας, COP_i ο συντλεστής συμπεριφοράς και $P_{fr,i}$ το κλάσμα της καταναλισκόμενης ισχύος για το σημέιο i, Q_{ov} και P_{ov} είναι η ωφέλιμη θερμότητα και ισχύς για το σημέιο i=1, δηλαδή για $T_{w,in} = 30$ °C. Η μεγαλύτερη ωφέλιμη θερμότητα για μια θερμοκρασία περιβάλλοντος συνήθως αποδίδεται για την χαμηλότερη θερμοκρασία εισόδου του νερού, εδώ $T_{w,in} = 30$ °C, και είναι $Q_{ov} = 9000W$. Έτσι υπολογίζεται το κλάσμα της ωφέλιμης θερμότητας διαιρώντας τις δύο παραπάνω εξισώσεις και προκύπτει: $Q_{fr,i} = \frac{COP_i \cdot P_{fr,i}}{COP_{ov}}$, όπου COP_{ov} είναι το COP για i=1 ($T_{w,in} = 30$ °C). Έτσι υπολογίζεται το κλάσμα της ωφέλιμης θερμότητας διαιρώντας τις δύο παραπάνω εξισώσεις και προκύπτει: $Q_{fr,i} = \frac{COP_i \cdot P_{fr,i}}{COP_{ov}}$, όπου $COP_{ov} = 9000W$ αλλά COP_{ov} το αντίστοιχο για $T_{w,in} = 30$ °C και τη συγκεκριμένη εξωτερική θερμοκρασία. Προκύπτει ο παρακάτω πίνακας B.4.

Πίνακας Β. 4: Επεξεργασμένα	μεγέθη την	αντλίας CO2 9kW.
-----------------------------	------------	------------------

Sanyo	Ecocute 9k	W processe	d data						
Nomin	al Point Tar	nb=8.5 oC 8	k Twin=30 oC	Qht=9kW &	Pcom=3.035	5kW	Pfan=40 W		
Tamb	Tw in HP	Qht(W)	Pcomp(W)	Qfr	Pfrc	COPhp	Ptot(W)	COPtot	
-5	30	9000	3913.0435	1	1	2.3	3953.043	2.276727	
	35	8274.031	3848.3864	0.919337	0.983477	2.15	3888.386	2.127883	
	40	7345.264	3845.6877	0.81614	0.982787	1.91	3885.688	1.890338	
	45	7806.071	4385.4334	0.867341	1.120722	1.78	4425.433	1.763911	
	50	7063.91	4939.7971	0.784879	1.262393	1.43	4979.797	1.418514	
0.5	30	9000.001	3482.2269	1	1	2.584553	3522.227	2.555202	
	35	8223.584	3424.6885	0.913732	0.983477	2.401265	3464.688	2.373542	
	40	7556.235	3422.2869	0.839582	0.982787	2.207949	3462.287	2.18244	

	45	7862.324	3902.6078	0.873592	1.120722	2.014633	3942.608	1.994194
	50	8006.398	4395.9375	0.8896	1.262393	1.821318	4435.937	1.804894
3.5	30	9000.001	3363.8484	1	1	2.675507	3403.848	2.644066
	35	8353.869	3308.266	0.928208	0.983477	2.52515	3348.266	2.494984
	40	7702.341	3305.946	0.855816	0.982787	2.329845	3345.946	2.301992
	45	7945.298	3769.9385	0.882811	1.120722	2.107541	3809.938	2.085414
	50	8071.514	4246.4973	0.896835	1.262393	1.900746	4286.497	1.883009
5.5	30	8999.999	3195.4531	1	1	2.816502	3235.453	2.781681
	35	8173.434	3142.6531	0.908159	0.983477	2.600807	3182.653	2.56812
	40	7621.716	3140.4493	0.846857	0.982787	2.426951	3180.449	2.396427
	45	8068.814	3581.2141	0.896535	1.120722	2.253094	3621.214	2.228207
	50	8387.473	4033.9163	0.931941	1.262393	2.079238	4073.916	2.058823
8.5	30	9000	3035.4766	1	1	2.964938	3075.477	2.926376
	35	8210.368	2985.32	0.912263	0.983477	2.750247	3025.32	2.713884
	40	7556.6	2983.2265	0.839622	0.982787	2.533029	3023.227	2.499515
	45	8055.953	3401.925	0.895106	1.120722	2.368057	3441.925	2.340537
	50	8122.232	3831.9632	0.90247	1.262393	2.119601	3871.963	2.097704
11.5	30	8999.999	2853.257	1	1	3.15429	2893.257	3.110681
	35	8218.838	2806.1113	0.913204	0.983477	2.928907	2846.111	2.887743
	40	7581.068	2804.1435	0.842341	0.982787	2.703524	2844.143	2.665501
	45	7924.369	3197.7075	0.880485	1.120722	2.478141	3237.707	2.447525
	50	8112.039	3601.9305	0.901338	1.262393	2.252136	3641.931	2.227401
25	30	9000	2200	1	1	4.090909	2240	4.017857
	35	8363.603	2163.6484	0.929289	0.983477	3.865509	2203.648	3.795343
	40	7870.393	2162.1311	0.874488	0.982787	3.640109	2202.131	3.573989
	45	8419.266	2465.5881	0.935474	1.120722	3.414709	2505.588	3.360196
	50	8857.553	2777.2638	0.984173	1.262393	3.189309	2817.264	3.144027

Προσθέτωντας την ισχύ του ανεμιστήρα 40W στην ισχύ προκύπτει η ολική ισχύς που καταναλώνει η αντλία για κάθε θερμοκρασία περιβάλλοντος και θερμοκρασία εισόδου του νερού στην αντλία.

Διαιρώντας τις παραπάνω τιμές με τις τιμές ωφέλιμης θερμότητας Q = 9000W και ολικής καταναλικόμενης ισχύος P = 3075.477 W για $T_{amb} = 8.5$ °C και $T_{w,in} = 30$ °C και ταξινομώντας τες πρώτα ανά θερμοκρασία εισόδου τον νερού και έπειτα ανά θερμοκρασία περιβάλλοντος προκύπτει ο παρακάτω πίνακας B.5. Εισάγοντας τις T_{amb} και $T_{w,in}$ στο επάνω μέρος του αρχείου εισόδου και τις τιμές του πίνακα B.5 ολοκληρώνεται το αρχείο εισόδου του type 941, όπως φαίνεται στο σχήμα 5.89.

Πίνακας Β. 5: Κλάσμα ωφέλιμης θερμότητας και ολικής ισχύος αντλίας για είσοδο στο type 941.

Tamb	Tw in HP	Qht	Ptot
-5	30	1	1.285343
0.5	30	1	1.145262
3.5	30	1	1.106771
5.5	30	1	1.052017
8.5	30	1	1
11.5	30	1	0.940751
25	30	1	0.728342
-5	35	0.919337	1.26432
0.5	35	0.913732	1.126553
3.5	35	0.928208	1.088698
5.5	35	0.908159	1.034849
8.5	35	0.912263	0.983691
11.5	35	0.913204	0.925421
25	35	0.929289	0.716522
-5	40	0.81614	1.263442
0.5	40	0.839582	1.125772
3.5	40	0.855816	1.087944
5.5	40	0.846857	1.034132
8.5	40	0.839622	0.983011
11.5	40	0.842341	0.924781
25	40	0.874488	0.716029
-5	45	0.867341	1.438942
0.5	45	0.873592	1.28195
3.5	45	0.882811	1.238812
5.5	45	0.896535	1.177448
8.5	45	0.895106	1.119152
11.5	45	0.880485	1.05275
25	45	0.935474	0.814699
-5	50	0.784879	1.619195
0.5	50	0.8896	1.442358
3.5	50	0.896835	1.393767
5.5	50	0.931941	1.324645
8.5	50	0.90247	1.25898
11.5	50	0.901338	1.184184
25	50	0.984173	0.916041

Παράρτημα Γ: Επιλογή κλίσης συλλέκτη.

Η σωστή τοποθέτηση του συλλέκτη εξασφαλίζει περισσότερη συγκέντρωση ηλιακής ακτινοβολίας και συνεπώς αύξηση της απόδοσης της ηλιακά υποβοηθούμενης αντλίας θερμότητας. Η γωνιά αζιμουθίου για συλλέκτες ευρισκόμενους στο βόρειο ημισφαίριο είναι $\gamma = 0^{\circ}$, δηλαδή κοιτά προς

τη νότια κατεύθυνση. Η κλίση του συλλέκτη εξαρτάται όσο από το γεωγραφικό πλάτος που βρίσκεται, καθώς και από το είδος την εγκατάστασης, δηλαδή την χρήση για την οποία προορίζεται. Σε εγκαταστάσεις όπου είναι επιθυμητό η μέγιστη συγκέντρωση ενέργειας κατά τη χειμερινή περίοδο, όπως στη παρούσα εγκατάσταση, η κλίση συλλέκτη έχει περίπου τιμή $\beta = \varphi + 15^{\circ}$ (Αντωνόπουλος, σελ.25) [25] όπου $\varphi(^{\circ})$ το γεωγραφικό πλάτος της θέσης του συλλέκτη. Για την Αθήνα είναι $\varphi = 37.97^{\circ}$, οπότε $\beta = 53^{\circ}$. Στη εγκατάσταση που εξετάζεται σε αυτή την εργασία η περίοδος λειτουργίας της είναι από 1 Νοεμβρίου έως 30 Απριλίου. Στο παρακάτω σχήμα Γ.1 παρουσιάζεται η συνολικά δεσμευόμενη ενέργεια για την περίοδο αυτή, συναρτήσει της κλίσης συλλέκτη. Η βέλτιστη τιμή είναι $\beta = 47^{\circ}$.

Σχήμα Γ. 1: Συνολική ενέργεια δεσμευμένη από ηλιακό συλλέκτη επιφάνειας 4 m2.

Παράρτημα Δ: Επεξεργασία δεδομένων αντλίας R410A και δημιουργία αρχείου εισόδου στο type 941.

Για την προσομοίωση της αντλίας R410A στο TRNSYS 18 χρησιμοποιήθηκαν δεδομένα της αντλίας Carrier AquaSnap 30AWH008H [30] η οποία έχει ονομαστική ισχύ 7160 W για θερμοκρασία περιβάλλοντος 7 °C και θερμοκρασία εισόδου του νερού στην αντλία 30 °C. Στον παρακάτω πίνακα Δ.1 φαίνονται οι θερμαντική ικανότητα και η καταναλισκόμενη ισχύς αυτής για θερμοκρασία περιβάλλοντος από -7 έως 20 °C και για θερμοκρασία εισόδου του νερού από 30 έως 55 °C.

Πίνακας Δ. 1: Θερμαντική ικανότητα και καταναλισκόμενη ισχύς αντλίας θερμότητας R410A.

Tamb	Twin(oC)	Twout(oC)	Qht(W)	Pcomp(W)	СОР
-7	30	35	3760	1429.658	2.63
	40	45	3850	1726.457	2.23
	50	55	3600	1935.484	1.86
	55	60	1830	1165.605	1.57

-3	30	35	4360	1551.601	2.81
	40	45	4450	1901.709	2.34
	50	55	4230	2147.208	1.97
	55	60	2060	1226.19	1.68
0	30	35	4740	1612.245	2.94
	40	45	4810	1987.603	2.42
	50	55	4500	2163.462	2.08
	55	60	2240	1272.727	1.76
2	30	35	5120	1712.375	2.99
	40	45	5150	2019.608	2.55
	50	55	4860	2209.091	2.2
	55	60	2350	1263.441	1.86
7	30	35	7160	1803.526	3.97
	40	45	7360	2307.21	3.19
	50	55	6700	2913.043	2.3
	55	60	3040	1433.962	2.12
10	30	35	7820	1835.681	4.26
	40	45	8030	2334.302	3.44
	50	55	7250	2526.132	2.87
	55	60	3250	1438.053	2.26
20	30	35	9870	1807.692	5.46
	40	45	10020	2308.756	4.34
	50	55	9005	2580.229	3.49
	55	60	3950	1457.565	2.71

Θεωρήθηκε ισχύς ανεμιστήρα της αντλίας 40 W. Προσθέτοντας την ισχύ αυτή στην ισχύ της αντλίας όπως φαίνεται στον παρακάτω πίνακα και διαιρώντας με την θερμαντική ικανότητα 7160 W και συνολική ισχύ 1803 + 40 = 1843 W ο παρακάτω πίνακα Δ.2 αδιάσταστων μεγεθών για τις θερμοκρασίες περιβάλλοντος και εισόδου του νερού που αναφέρθηκαν προηγουμένως.

Tamb	Twin(oC)	Qht	Pcomp+fan
-7	30.0	0.52514	0.7972106
-7	40.0	0.537709	0.9582085
-7	50.0	0.502793	1.0715942
-7	55.0	0.255587	0.6539762
-3	30.0	0.608939	0.8633585
-3	40.0	0.621508	1.0532733
-3	50.0	0.590782	1.1864432
-3	55.0	0.287709	0.6868405
0	30.0	0.662011	0.8962544

Πίνακας Δ. 2: Αδιάστατες τιμές θερμαντικής ικανότητας και συνολικής ισχύος για την αντλία R410A.

0	40.0	0.671788	1.0998662
0	50.0	0.628492	1.1952599
0	55.0	0.312849	0.7120842
2	30.0	0.715084	0.9505693
2	40.0	0.719274	1.1172269
2	50.0	0.678771	1.2200113
2	55.0	0.328212	0.7070468
7	30.0	1	1.0000143
7	40.0	1.027933	1.2732357
7	50.0	0.935754	1.6018679
7	55.0	0.424581	0.7995456
10	30.0	1.092179	1.0174563
10	40.0	1.121508	1.2879318
10	50.0	1.01257	1.3919894
10	55.0	0.453911	0.8017646
20	30.0	1.378492	1.0022741
20	44.5	1.399441	1.2740742
20	50.0	1.257682	1.421334
20	55.0	0.551676	0.8123486

Αυτές οι τιμές εισάγονται σε ένα αρχείο κειμένου με κατάληξη .dat, όπως φαίνονται στο σχήμα Δ.1 και έπειτα η θέση αυτού του αρχείου επιλέγεται στο πεδίο External files του type 941 βλ σχήμα Δ.2.

AWHP	_Type941_H	H_R410a	- Notepad					
File Edit	Format	View	Help					
30	40	50	55				!T_water_in	
-7	-3	0	2	7	10	20	!T_air_in	
0.525	0.797						<pre>!Fraction capacity and power at T_air = -7</pre>	deg. C and T_water_in = 30
0.609	0.863						<pre>!Fraction capacity and power at T_air = -3</pre>	deg. C and T_water_in = 30
0.662	0.896						<pre>!Fraction capacity and power at T_air = 0</pre>	deg. C and T_water_in = 30
0.715	0.951						<pre>!Fraction capacity and power at T_air = 2</pre>	deg. C and T_water_in = 30
1.000	1.000						<pre>!Fraction capacity and power at T_air = 7</pre>	deg. C and T_water_in = 30
1.092	1.017						<pre>!Fraction capacity and power at T_air = 10</pre>	deg. C and T_water_in = 30
1.378	1.002						<pre>!Fraction capacity and power at T_air = 20</pre>	deg. C and T_water_in = 30
0.538	0.958						<pre>!Fraction capacity and power at T_air = -7</pre>	deg. C and T_water_in = 40
0.622	1.053						<pre>!Fraction capacity and power at T_air = -3</pre>	deg. C and T_water_in = 40
0.672	1.100						<pre>!Fraction capacity and power at T_air = 0</pre>	deg. C and T_water_in = 40
0.719	1.117						<pre>!Fraction capacity and power at T_air = 2</pre>	deg. C and T_water_in = 40
1.028	1.273						<pre>!Fraction capacity and power at T_air = 7</pre>	deg. C and T_water_in = 40
1.122	1.288						<pre>!Fraction capacity and power at T_air = 10</pre>	deg. C and T_water_in = 40
1.399	1.274						<pre>!Fraction capacity and power at T_air = 20</pre>	deg. C and T_water_in = 40
0.503	1.072						<pre>!Fraction capacity and power at T_air = -7</pre>	deg. C and T_water_in = 50
0.591	1.186						<pre>!Fraction capacity and power at T_air = -3</pre>	deg. C and T_water_in = 50
0.628	1.195						<pre>!Fraction capacity and power at T_air = 0</pre>	deg. C and T_water_in = 50
0.679	1.220						<pre>!Fraction capacity and power at T_air = 2</pre>	deg. C and T_water_in = 50
0.936	1.602						<pre>!Fraction capacity and power at T_air = 7</pre>	deg. C and T_water_in = 50
1.013	1.392						<pre>!Fraction capacity and power at T_air = 10</pre>	deg. C and T_water_in = 50
1.258	1.421						<pre>!Fraction capacity and power at T_air = 20</pre>	deg. C and T_water_in = 50
0.256	0.654						<pre>!Fraction capacity and power at T_air = -7</pre>	deg. C and T_water_in = 55
0.288	0.687						<pre>!Fraction capacity and power at T_air = -3</pre>	deg. C and T_water_in = 55
0.313	0.712						<pre>!Fraction capacity and power at T_air = 0</pre>	deg. C and T_water_in = 55
0.328	0.707						<pre>!Fraction capacity and power at T_air = 2</pre>	deg. C and T_water_in = 55
0.425	0.800						<pre>!Fraction capacity and power at T_air = 7</pre>	deg. C and T_water_in = 55
0.454	0.802						<pre>!Fraction capacity and power at T_air = 10</pre>	deg. C and T_water_in = 55
0.552	0.812						<pre>!Fraction capacity and power at T_air = 20</pre>	deg. C and T_water_in = 55

Σχήμα Δ. 1: Αρχείο εισόδου στο type 941 αντλίας R410A.

Instal_P	410	0.tpf) Type941				-	-	×
Parame	ter	Inp	out Output External File	es Comment					
1	1	đ	Which file contains the heat pump cooling performance data?	.\Tess Models'SampleCatalogDa ta'Wir-to-WaterHeatPump VAWHP_Type941_C.dat	Brows	Edit			
	2	ď	Which file contains the heat pump heating performance data?	C:\TRNSYS18\MyProject s\GiorgosL\A\WHP_Type 941_H_R410a.dat	Brows	Edit			

Σχήμα Δ. 2: Επιλογή θέσης αρχείου της αντλίας R410A στο type 941.

Επιπλέον ο χρήστης πρέπει να εισάγει τον αριθμό των διαφορετικών θερμοκρασιών εισόδου του νερού (4) στην αντλία καθώς και των θερμοκρασιών περιβάλλοντος (7) για την περίπτωση της θέρμανσης, όπως φαίνεται στο σχήμα Δ.3. Για αντλία θερμότητας *R*410*A* με θερμαντική ισχύ 7 *kW* που μελετήθηκε στην παράγραφο 6.5.2 φαίνεται το πεδίο των παραμέτρων του type 941 στο ίδιο σχήμα.

(Instal_	Instal_P410.tpf) Type941 — > (Instal_P410.tpf) Type941 — >														
Parameter Input Output External Files Comment Parameter Input Output External Files Comment															
ങ		Name	Value	Unit	More	Macro	^	ත්		Name	Value	Unit	More	Macro	^
	1	Humidity Mode	2	-	More			=	9	Specific Heat of DHVY Stream	4.190	kJ/kg.K	More		
ĩ	2	Logical Unit for Cooling Data	34	-	More				10	Blower Power	144	kJ/hr	More		
1	3	Logical Unit for Heating Data	35	-	More			88	11	Total Air Flowrate	873	l <i>i</i> s	More		
	4	Number of Water Temperatures -	6	-	More	Ø			12	Rated Cooling Capacity	40301	kJ/hr	More		
	-	Cooling	-		morein				13	Rated Cooling Power	7722	kJ/hr	More		
	S	Number of Water Temperatures - Heating	4	-	More	☑			14	Rated Heating Capacity	25200	kJ/hr	More		
	6	Number of Dry Bulb Temperatures	6	-	More				15	Rated Heating Power	6492	kJ/hr	More		
	7	Mumber of Dry Bulb Temperatures	7	-	More		~		16	Capacity of Auxiliary	0.0	kJ/hr	More		~

Σχήμα Δ. 3: Πεδίο παραμέτρων του type 941 για την αντλία θερμότητας R410A που μελετήθηκε.

Παράρτημα Ε: Συμπληρωματικοί πίνακες αποτελεσμάτων προσομοίωσης.

Ο παρακάτω πίνακας περιλαμβάνει τις επαναλήψεις που έγιναν για την εύρεση του βέλτιστου όγκου δοχείου αποθήκευσης και επιφάνειας ηλιακών συλλεκτών. Στην τελευταία στήλη φαίνεται η καθαρή παρούσα αξία (σε ευρώ) της εγκατάστασης για 25 έτη όπως περιγράφεται στην παράγραφο 61.

Simulat ion	Vtank(m3)	Acol(m2)	Total Energy (kWh/y)	Total Energy (kJ/h)	Tank Cost	Collec tor Cost	E_cos t/y	EnegryC ost	Total Present Cost
1	0.8	26	2119.43	762994 5.57	648	2093	296.7 2	5166.83	7907.8
2	0.8	24	2179.09	784471 1.76	648	1932	305.0 7	5312.27	7892.3
3	0.8	29	2045.33	736320 5.67	648	2334. 5	286.3 5	4986.20	7968.7
4	1.2	26	1988.81	715970 0.24	972	2093	278.4 3	4848.39	7913.4
5	1	26	2046.25	736650 0.85	810	2093	286.4 8	4988.43	7891.4
6	0.9	26	2079.80	748728 0.60	729	2093	291.1 7	5070.22	7892.2

Πίνακας Ε. 1: Αποτελέσματα επαναλήψεων για διαφορετικό όγκο και επιφάνεια ηλιακών συλλεκτών.

7	1.1	26	2016.48	725933	891	2093	282.3	4915.86	7899.9
				9.00			1		
8	1	27	2013.34	724802	810	2173.	281.8	4908.20	7891.7
				2.49		5	7		
9	1	23	2160.60	777815	810	1851.	302.4	5267.19	7928.7
				2.19		5	8		
10	1	24	2119.80	763129	810	1932	296.7	5167.74	7909.7
				4.22	0.1.0	0010	/		7004.0
11	1	25	2080.64	749028	810	2012.	291.2	5072.26	7894.8
10	0.0	25	2110 20	7.85	720	5	9	5450.40	7000 7
12	0.9	25	2116.29	701805	729	2012.	296.2	5159.18	7900.7
12	1 1	25	2052.09	5.05	001	2012	0 107 1	E002 6E	7006.2
15	1.1	25	2052.08	/38/49	891	2012.	287.2	5002.05	7906.2
14	0.0	25	2140.05	0.95	610	5 2012	300.0	E 2/11 22	7001 7
14	0.8	25	2149.95	2 11	040	5	300.9 Q	5241.25	7901.7
15	0.9	24	21/17 80	773208	729	1932	300.6	5236.00	7897.0
15	0.5	24	2147.00	5 49	125	1552	9	5250.00	7857.0
16	0.8	23	2224 59	800853	648	1851	311.4	5423 20	7922 7
10	0.0	25	2224.55	3 42	0-10	5	4	5425.20	, 522.7
17	0.7	24	2226.00	801359	567	1932	311.6	5426.63	7925.6
	•			2.05			4	0.20100	/ 0 _ 0 1 0
18	0.9	27	2051.82	738656	729	2173.	287.2	5002.02	7904.5
				9.29		5	6		
19	1.1	27	1977.72	711978	891	2173.	276.8	4821.36	7885.9
				6.92		5	8		
20	1.2	28	1920.88	691515	972	2254	268.9	4682.79	7908.8
				4.06			2		
21	1.1	28	1950.20	702073	891	2254	273.0	4754.29	7899.3
				4.18			3		
22	1	28	1974.56	710842	810	2254	276.4	4813.67	7877.7
				3.87			4		
23	1.2	27	1946.66	700798	972	2173.	272.5	4745.66	7891.2
				9.50		5	3		
24	0.9	28	2024.29	728744	729	2254	283.4	4934.89	7917.9
			4050.47	0.73	0.1.0		0	4762.04	7006 7
25	1	29	1953.47	703248	810	2334.	2/3.4	4762.24	/906./
26	1 1	20	1010 55	2.55	801	5	9		7005.0
26	1.1	29	1919.55	5 56 5 56	891	2334. 5	268.7	4679.55	7905.0
27	0.0	20	1000 22	710757	720	2334	4 270.0	1874 04	7027 5
27	0.9	29	1999.33	7 13	125	5	279.9	4074.04	/93/.5
28	1 /	28	1869.27	672938	113/	2254	261.7	1556.99	7945.0
20	1.4	20	1005.27	8 40	1134	2234	0	4550.55	7545.0
29	1.6	28	1825.25	657090	1296	2254	255 5	4449 67	7999.7
	1.0			7.29	1250		4		
30	1.8	28	1787.76	643592	1458	2254	250.2	4358.27	8070.3
				8.93			9		
31	2	28	1759.00	633240	1620	2254	246.2	4288.17	8162.2
				5.91			6		

32	2.2	28	1736.67	625202	1782	2254	243.1	4233.73	8269.7
				0.27			3		
33	2.4	28	1723.13	620327	1944	2254	241.2	4200.72	8398.7
				1.88			4		
34	2.6	28	1722.01	619922	2106	2254	241.0	4197.98	8558.0
				1.60			8		
35	2.8	28	1731.80	623449	2268	2254	242.4	4221.86	8743.9
				4.76			5		
36	3	28	1716.48	617932	2430	2254	240.3	4184.51	8868.5
				9.13			1		
37	3.2	28	1708.45	615043	2592	2254	239.1	4164.94	9010.9
				2.54			8		
38	0.8	28	2055.07	739824	648	2254	287.7	5009.93	7911.9
				4.80			1		
39	0.8	27	2099.51	755823	648	2173.	293.9	5118.27	7939.8
				7.61		5	3		
40	1.2	29	1878.96	676425	972	2334.	263.0	4580.60	7887.1
				4.03		5	5		
41	1.2	25	2024.97	728990	972	2012.	283.5	4936.56	7921.1
				2.39		5	0		
42	1	0	3587.40	129146	810	0	502.2	8745.50	9555.5
				28.0			4		