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Abstract

Design of disks in thermal turbomachines

This diploma thesis is concerned with the design of thermal turbomachinery disks. Design
process starts from an initial disk geometry and produces a new geometry of less weight
which meets all the required geometry and stress constraints. In particular, numerical tools
are developed in PROOSIS useful for the optimization of a disk.

For the purpose of this thesis the geometry of NASA’s/GE E3 engine is used for
reference. The dimensions of the disks were extracted by the digitization of engine
drawings from the bibliography. Important values about the blades were read from tables

and used to calculate their weights, centers of gravity and eventually the loads exerted on
the disk.

Optimization requires stress calculation in order to ensure the satisfaction of the stress
criteria. Prior to stress calculation a temperature profile needs to be calculated and be put
as an input to stress calculation so that the thermal stresses can be evaluated. Thus, the
tools that were developed before the optimization are a temperature profile calculating
function and a stress calculating function. The functions described above are based in one-
dimensional models, plane stress is assumed. The stress calculating function can handle
temperature gradient, if chosen to exist, isotropic and anisotropic materials and can change
the material properties according to the temperature at every node. In order to validate the
results, the same simulations are run using both PROOSIS functions and Solidworks three-
dimensional finite element analysis (FEA). Solidworks thermal study calculates the
temperature profile. Solidworks static study calculates the stresses given the loads, it is
possible to import the results of a thermal study into a static study to take thermal stresses
into consideration. The comparison of the temperature radial distribution can be done
individually using an arbitrary turbine disk geometry. Subsequently, the verification of the
stresses is done in three load cases. Load cases a and b are simulated at room temperature
for the disk geometries of the three first stages of NASA’s E3 engine high pressure
compressor. Load case ¢, examines the contribution of temperature gradient and uses the
same arbitrary turbine disk geometry that was used in the temperature validation. The
results of the two methods have in every case sufficiently small differences. Thus, the time
consuming FEA method can be replaced by the one-dimensional methods implemented
in the developed PROOSIS functions. This makes these functions suitable for an
optimization problem where the stresses should be calculated multiple times.

The goal of optimization is to reduce the mass with respect to the limitations and engine
design variables. Therefore, it also requires a disk mass calculating function. This function

2



uses an analytical formula to calculate the weight by the disk geometry. The weight results
are validated with Solidworks evaluation tool. The variables of the optimization are always
some of the disk dimensions. The constraints consist of stress limitations and geometric
limitations which frame dimensions and link them with each other. Simplex method is
used for the minimization of weight. At every iteration temperature, stresses and weight
calculating functions are called for the updated geometry. Since it is a method that requires
only the value of the objective function, a penalty value is added to the objective function
upon the violation of any constraint. The reduction of weight is equivalent to the increase
of stresses, so the objective function is constructed in a way that its minimization leads to
stresses maximization. The objective function is not necessarily continuous but this uses
Simplex method ability to handle non-continuous functions. The optimization consists of
three cases, each with its own variables and constraints, according to three bibliographical
sources: Lolis, Gasturb, Armand. Each of these three methods is used for optimizing the
disks of the first three stages of NASA’s E3 engine high pressure compressor. Additionally,
a verification with Gasturb Details 5 Software is executed. The default web disk geometry
of the program was used as an initialization. The same geometry, boundary conditions,
temperature distributions, variables and constraints were used at both GasTurb Details 5
and PROOSIS. The studies were run and the results were close.
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1. Introduction

The disks of a thermal turbomachine are vital components because they support the
rotating blades and connect them to the shaft. After the design of the blades an equally
efficient and reliable design of the disks should follow. The mechanical endurance of the
disks especially at the high temperature environment of the turbine is crucial. Figure 1
illustrates a section view of the High-Pressute Compressor of NASA/GE E3 engine where
the disks, their geometry and connection can be seen:

Figure 1 : Section view o NASA/GE E3 engine HPC [4]

Many researchers have engaged in the design and optimization of thermal turbomachine
disks.

Lolis does not develop a method for temperature calculation and uses an empirical curve
for the radial temperature distribution. Stress calculations are based on in-plane stress
analysis. The disk geometry is fully defined by the radii and thicknesses in six radial stations.
Stress criteria are limits upon the Von Mises stress and the average tangential stress of the
disk. Additional constraints are the geometrical ones. Disk dimension correlations are
applied to lower the number of design variables. For ring type disks, the design variable is
one, so Newton-Raphson method is used for optimization. For the two other cases, web
and hyperbolic type, 4 design variables are used and the optimization method is a gradient-
based non-linear sequential quadratic. [9]

Joachim Kurzke has developed a Software called “Gasturb Details 5 in which an initial
disk geometry can be inserted and optimized. The temperature radial distribution is
considered linear and the stresses are calculated based on in plane models. The stress
criteria involve the Von Mises stress and average tangential stress and are user defined.
The users can also choose the design variables and the value that they want minimized or
maximized. Two methods can be used for optimization, an adaptive random method
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search strategy or a gradient based method. There are correlations between the disk
dimensions, which should be valid in the initial geometry as well as the optimal.[5]

Armand calculates the stresses using in plane stress analysis. The radial temperature
distribution is modeled by an up to 5" degree polynomial, the coefficients of which are
user defined. His method does not apply correlations between the dimensions and thus
uses more variables than the previous methods. The geometrical constraints are also very
simple since they only require the radii at six radial stations to be in an ascending order.
The constricted stresses are the same as in the previously described methods. The used
optimization method is the sequence of unconstrained minimizations technique (SUMT)

[1]-

In the Tong approach in plane stress modeling is used as well. The resulting differential
equations for the stresses are solved by a self-adaptive numerical iteration scheme. At every
iteration, the step size is self-adjusted (increases or decreases) based on the differences in
the design margin between the current and previous iterations. The design margin is based
on the stress criteria which are considered the same as in the previous methods. The
temperature distribution is calculated by the analytical solution of one-dimensional
Fouriet’s law assuming constant disk thickness.[3]

Gutzwiller implements an in-plane stress modeling which handles anisotropic materials as
well as isotropic. The average tangential stress is limited. The weight optimization is
executed by a genetic algorithm [2].

In this thesis, the temperature radial distribution is calculated by the solution of the disk
thickness inclusive one-dimensional Fourier heat conduction law. The temperature profile
results match with the FEA thermal analysis results. The stress calculation process is the
same as in [2] since this method includes anisotropic materials. The stress results are also
validated by comparison with FEA results. Three cases of optimization were examined
and their results were presented, each one with its own variables and geometrical
constraints according to Lolis, Gasturb and Armand respectively. Stress criteria are
common in all the three cases. Von Mises stress and the average tangential stress are
constrained. The optimization method is the Nelder-Mead Simplex.
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2. Disk and blades geometry description and
parametrization

The disk-blades assembly can be divided into two sections according to their functionality,
the live weight and the dead weight. The live weight is the part that is considered to offer
support to the dead weight and therefore is structurally examined in this thesis. It is loaded
by its own centrifugal loads and the ones of the dead weight. The dead weight comprises
of the disk posts and the blades. The posts are the part of the disk that offers connection
with the blades. The live weight can take different shapes, there are three main types of
shapes used in the bibliography: ring type, web type and hyperbolic type. In HPC of E3
engine the first stage disk is ring type, the second hyperbolic type and the third web type.
Figure 2 illustrates the assembly of the blades to a web type disk and the dividing line
between the live and dead weight. The yellow part is the live weight of the disk, the blue
parts are the posts and the white parts are the blades. The connection between the disk
and the blades is loose, there is also a cavity between the blade and the rim radius of the
disk. Attachment is accomplished by the two complementary shapes of the blade root and
the post of the disk, which restrict the movement of the blade in the radial direction.

Figure 2: This figure illustrates a web disk-blades assembly. The yellow part is the live weight of the disk and the
blue one is the disk posts. The blades are the white parts and are attached to the disk by their positions between
the posts [5]
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All the disk types are configurated with six radial stations measured from the axis of
revolution

r, 1o, 13,1y, 7'5,1"6
and six thicknesses at the same stations

t1, 85, L3, 84, L5, tg

2.1 Ring Type Disk
The ring type geometry can be fully described with two radial stations (fpore , frim) and one
thickness variable (tim) which is considered constant throughout the disk. We choose to

express the ring geometry the same way as other disk types for consistency, therefore it
should be applied that:

b=t =t3 =t =t5 =t = trim

1 = Tpore» Te = Trim

. Ts .
Ti=T1+(l—1)'T fori=1,..,6

The radii are linearly distributed. Figure 3 illustrates a typical sketch of a ring type cross

section.

Airfoil

Dead weight
—

r“rs

~—TIg
—ry
:—rs
/—r2

L

Live weight —|

L

v

2

NN N N NN

/—I'-I

h=th=t3=44=t5=1

Figure 3: Cross section of ring disk type. The live dead is discretized linearly into 6 radial stations. Every radial
station shares the same thickness which is equal to the rim thickness. Above of the live weight there is the dead
weight, from which the post and the airfoil are visible.[3]
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2.2 Web Disk Type

Web disk type geometry is illustrated in Figure 4. Starting from the bore, between radial
stations 1 and 2 is the inner rim part which has constant thickness, between 2 and 3 is the
inner shoulder, between 3 and 4 lies the web which is the thinnest part of the disk. Between
stations 4 and 5 is the outer shoulder and finally the constant thickness outer rim at stations
5-6. Generally, the following are applied:

tlztz,t3:t4, t5:t6

ty <t,,ty <ts

Airfoil
Blade root
+ Post
o oy
Quter rim
t5 .
Quter Shoulder \ t—=Tg
2
Web
el
Fy 3
Inner shoulder
e Fa
12
Inner rim
~T
Yy - 1
Bore
Centerling —e—=—-— S ———

Figure 4: Web Type Disk. Starting from the bore we have successively, the inner rim, the inner shoulder, the web,
the outer shoulder and the outer rim. The rims have constant thickness and the web is the thinnest part of the disk

(3]
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2.3 Hyperbolic Disk Type

Figure 5 illustrates a cross section of a hyperbolic disk. Starting from the bore we meet
successively the constant thickness inner rim, the inner web, the outer web, the shoulder
and the constant thickness outer rim. The hyperbolic geometry differs from the web one
between the radial stations 2 and 3 where the inner shoulder is replaced by a curved
convergent geometry called inner web. In that space the contour is described by the
following equation where the thickness at any point 1 between 2-3 is expressed with its
radial distance [2]:

t;=t, + (¢ t)<ri_r2>d5f
i =1L 37 b2 P

Where dsf <1 is the disk shape factor and is user defined. If taken equal to 1 the relation
is linear.

The following relations apply for the hyperbolic type:
th=1t,ts =16

ty <ty,t, <ts

Airfoil
Blade root
+ Post
5
N
Outer rim ~Ts
ts .
Shoulder —=Tg
t3 €.
—r,
Quter web
—T:
tg —4 3
Inner web
T2
tz
Inner rim r
—
t4 - 1
Bore
Canterling —ce—ece——c——e————————————

Figure 5: Hyperbolic Type Disk. Starting from the bore we have successively the constant thickness inner rim, the
inner web, the outer web, the shoulder and the constant thickness outer rim. [3]
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2.4 Dead weight calculation

In this subchapter useful formulas for the disk rim load calculation are stated. In particular,
starting from the airfoil main dimensions and the disk rim radius, the mass and center of
gravity of the disk dead weight can be found. Consequently, the rim load is equal to the
centrifugal force of the dead weight.

The whole blade comprises of the airfoil and the blade root.

’j\blade platform

rl’OOt fr
neck.o

neck

~

neck. |

f Moost.0

fir tree

T rpos;t,l = rrim

Figure 6 Blade root geometry. The blade root consists of the fir tree (blue area), the neck whose existence is
optional (yellow area) and the blade platform (orange area) [5]

The airfoils masses are calculated according to [5]:
The axial cord is equal to the rim width tim. Mean blade chord is:

trim

c =—
bmean Cos (astagger)

The mean blade material thickness is:

t

th = Chmean " (_>
c b,mean

The mass of one airfoil is:

Mar = Pp (Ttip — Troot) " tp Ch,mean
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The center of gravity is not in the middle radius because of the blade taper. It is:
Tegar = 0.47¢p + 0.67750¢
If there are blade shrouds, it is assumed that their thickness is 5% of tim. Theitr mass is:

ZTTTb i
— . - C12 . tip
Mgrq = Pp * 0.05 - t7,

np

The center of gravity of the shroud is at the radius:

Tegsrd = Teip T 0.05t;4m
The formula above takes into consideration the tip fences, the shroud is not a simple plate.
Blade root masses and post masses are calculated as described below [5].

The blade root includes the blade platform, the neck and the fir tree. The neck exists only
if the total height of the blade root is bigger than the sum of blade platform thickness and
the fir tree height. The total height of the blade root is:

hroot = Troot — Trim

The blade platform thickness is taken as 5% of the rim width
Uplatform = 0.05t,im,

The fir tree height is:

hfir tree — Tneck,i — Trim
Also, Ry tree should not be greater than the blade platform width. Thus:

2T"-T'TOOt

hfir treemax —

ny

The inner radius of the neck is written:

Tneck,i = Trim + hfir tree,max

If Thecki > Troot — tpiatform then neck does not exist and we set:

Tneck,i = Troot — Uplatform

Then:

hfir tree = Troot — tplatform — Trim
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After parametrizing the geometry of the blade, we can calculate masses. The mass of the
blade platform is:

2 . 2MT o0t

Mplatform = Pp 0.05 - t5im
Np

The fir tree mass is:

2 2
Pp trimn(rneck,i - rrim)

an

mf irtree —

The posts extend to radius Tyes,0 Which is:

Tposto = Trim T 0-8(Tneck,i = Trim)

Then the mass of the post is:

2 2
ptrimn(rpost,o - rrim)

an

Mpost =

If neck exists it is assumed that its thickness is twice the thickness of the blade. Its mass is:

Mpeck = 2Pp tbtrim(rneck,o - rneck,i)

The centers of gravity of the platform, fir tree, post and neck are assumed to be at their
respective mean radii:

_ Troot T Tneck,o
rcg,platform - 2

_ Tneck,i + Trim
rcg,firtree - 2

_ rpost,o + Trim
Tcg,post - 2

_ Tneck,o + Tneck,i
rcg,neck - 2

The total dead mass per blade is:

my = maf + Mgrq + mplatform + Muyeck + mfirtree
+ Mpost (1)

The radius of center of mass of the total dead weight is calculated as:

rcg = (mafrcg,af + msrdrcg,shr + mplatformrcg,platform

+ mneckrcg,neck + mfirtreercg,firtree (2)
+ mpostrcg,post)/mb
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The rim stresses are calculated according to:

npymy rcg

2
O vim =T W 3
nrm 27Trrimtrim ( )
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3 Temperature profile calculation

3.1 Introduction to temperature calculation

In this chapter, two methods for the temperature profile calculation are described. The
first is a one-dimensional analytical solution of Fourier’s heat conduction law which takes
into account only the radial distance and assumes constant disk thickness. This method is
considered by some investigators for simplicity, see [3]. The second is the numerical
solution of another expression of Fourier’s law which takes into account the area through
which heat flows and thus the variation of disk thickness at every radius. After the
implementation in PROOSIS and the comparison of both method results with Solidworks
FEA it can be concluded that the second numerical solution gives a temperature curve
form close to reality and very accurate results.

3.2 Analytical solution of Fouriet’s law

The general form of heat conduction law in cylindrical coordinates is [6]:

0°T 10T 10°*T 0°*T q pc,dT
— et — =P 4
6r2+rar+r2602+622+k k ot K

. . . . aT aT
The problem is axisymmetric and steady. Therefore, we consider = O’E =0

respectively. Since there is no heat generated inside the disk, we have ¢ = 0.

If the problem is considered one dimensional it also applies that: Z—: = 0 . Then equation

(4) can be written:

d*T 1dT
= 5)
dr? rdr
For casting equation (5) into a non-dimensional form we set:
T r
T" = , T = (6)
Trim Trim
Then:
ar _ A(TrmaxT") _ Tinax dT” )
dr B d(rrimr*) B Trim dr*
d’T _d (dT) B d (Tmax dT*) _ Tnax d°T" @
drz  dr\dr)  drpnr*) \trg, dr*) 12 dr?
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Substituting (6),(7) and (8) into (5) we get:

Tax A2T° 1

Tnax dT*

2 *2
Trim dr

Tnax A°T*

rrimr*

Tmax dT”

Trim dr*

1
T

2 w2
Tyim AT

d*T*

— ©)

1dT*

=0

dr*Z

r*

dr*

We conclude that the undimensioned equation is the same as the initial one.

Equation (5) if multiplied by 72 is converted into:

dZT

r? +r
dar?

dT

10
= (10)

=0

Equation (10) is a Cauchy-Euler type differential equation, so we setr = e®,s = Inr

Thus:
dT dT ds
dr ds dr
dZT_ d (dTl) _d (dTl)
drz  dr\dsr) ds\dsr
_(d*T _ dT _\1
B dsze dse r

Substituting in (10) gives:

1

T'Z

d*T dT
r* ds? ds

dT 1
dsr
ds d (dT _S>ds
—\|—e _—
dr ds \ds dr

B d’T dT\ 1
“\ds?2 ds)r2

dT 1 _ 0
dsr

d*T dT ar

ds? ds

ds

ds?

T=cs+c, =>

T(r) =clnr+c,

24
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Similarly:

T*(r) =clnr* + ¢, (12)
We apply the boundary conditions:
Trim Trim
P = =1, T = =1
rm Trim rm Trim
T = Cilnr), + ¢, =>c, =1 (13)
* _ Thore * _ Tbore
Thore = Tbore -
rim Trim
Tbore -1
Trim (14)

clnrfpre + 1= Thpre =>4 =
1 bore bore 1 lnrbore _ lnrrim

Substituting (13) and (14) in (12) gives the analytical expression of the temperature radial

distribution for the one-dimensional heat conduction:

7’11_‘1707'6 -1
T*(r*) = rim Inr+1 (15)
lnrbore - lnrrim
Or
T —T.; T
T(T) _ bore rim In + Trim (16)

lnrbore - lnrrim Trim

3.3 Numerical solution of variable thickness inclusive Fourier’s law

The distribution expressed in equation (16) does not take into account the thickness of the
disk at every radial station. In order to do that we should use an alternative form of Fourier

heat conduction law in cylindrical coordinates [7]:

16<k aT)+,_ aT 17
A, or\hgp) TA4T Py a7
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Where Ay, , is the area through which the heat flows at every radial station. This area is at
every radial station the cross section of the disk with a cylindrical surface of the same radius

as the station. Figure 7 illustrates area Ap,.

Figure 7: The grey part is the disk. The area Ah is at every radial station the section between the disk volume and
the blue cylindrical surface. The blue surface has radius equal to the radial station.

For a steady state problem and no heat generation equation (17) turns into:

1d (kA dT)_0
Apdr\" "Mdr)

k (dAh dr dZT) .\

A \dr ar g2

T (18)

d’T 1 dA,dT _

_— =

dr? A, dr dr
Equation (18) is second order differential equation which is solved numerically. For this
reason, Eq. (18) is discretized using a finite difference scheme, where all derivatives are
discretized using second order central differences, Equations (19)-(21):

dT|  Tip1 —Tiq
—_— =—— Ar? 19
drl; 24r +0(4r) 19)
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d’T| Ty —2T; + Tiyq
= 0(Ar? 20
dr? ; Ar? +0(4r?) (20)
dAp Apiv1 — Ani1
— ) ) 0 A 2 21
dr |l 2ar Tour) @)

The area through which the heat flows is cylindrical and is calculated as:
Ah,i = aniti (22)

Substituting:

Tioq —2T; + Tiyq 4 1 Apiv1 —Ani-1Tis1 —Tiq _

0
Ar? 2mrit; 24r 24r
1 1 Apiv1 —Apia 2
- Tiog =T
Ar?  2mrt; 4Ar? Ar? (23)
4 ( 1 N 1 Apivg _Ah,i—1> r =0
Ar? - 2mmt; 4A7r? t+
Zy,iTioq + 25, T; + Z3,;Tiy1 =0
Where the coefficients of the temperatures are:
oot 1 Anivi=Ania
L7 Ar2 2@ty 4A7r?
2
ZZ,i = —P (24)
1 1 Apiy1—Ani-
Zgi h,i+1 h,i—1

LT A2 + 2mrit; 4Ar?

The boundary conditions are:
T1 = Thore

T, = Trim

Using the temperature coefficients, a square matrix (nxn) can be constructed and a linear
system of equations is formed in Equation (25). The system is of tridiagonal form and it is
solved by elimination of sub-diagonal vector and successive backward substitution. [10]
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0 0 7. T, 1
Ziy Zyy Z3z, 0 0 0 0 T,
0 Zy3 Zp3 Z33 0 0 0 Ts
0 0 0 0
0 0 0 Zin2 Zon2 Zzno 0 Tn-2
0 0 0 0 Zin-1 Zan-1 Zzn-1 Tn-1
L0 0 0 0 0 0 1 T d s
_Tbore_
0
0
0
0
_Trim_

The solution of the system is the vector of the temperatures at every radial station. The
temperatures are independent from the stresses, so they can be calculated prior to stress
analysis and then be used for the calculation of the stresses.

3.4 Implementation in PROOSIS

The temperature profile calculation is implemented in PROOSIS with the function
calcDiskT)()

The arguments of the function are:

istg: The number of the stage. It is used for naming the file
with the results

compINSTANCE_NAME: The name of the engine. It is used for naming the file
with the results

iswitch: The temperature distribution type option. By changing
this option the temperature profile can be calculated
either by the one dimensional method described in 2.2
or by the method described in 2.3 or be considered
constant and equal to the rim or room temperature or
even be put already calculated as an input from a

source.
Nd: The number of nodes
Rroot: The blade airfoil root radius
Troot: The blade airfoil root temperature
R[Nd]: The array of the discretized radius of the disk
t[Nd]: The array of the discretized thickness of the disk
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Trim: The boundary rim temperature

TbRTrPct_in: The ratio (Tbore/Trim)*100

T_in[Nd]: The array of the input temperature distribution, if any

printFuncRpts: Is a Boolean variable. If it is TRUE it prints the results
into a file

The outputs of the function is:

T[Nd]: The array of the temperatures calculated in every radial
station.

In Figure 8 the workflow of calcDiskT() is illustrated for the most complex and accurate
case, the numerical solution of Fouriet’s law

Inputs

If iswitch=
T_FOURIER_NUME

Calculate boundary
conditions

A

Calculate the 3 diagonal vectors
and the right-hand-side vector

A

call
AXEqQB_TDMA()

\

( TNa )

Figure 8 : Temperature profile calculation function calcDiskT() Workflow Diagram when the numerical calculation
type is chosen
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The function AxEqB_TDMA is called to solve the tridiagonal system. For this function
the inputs are:

N: System Dimension

AV|[N]: System diagonal vector
BV[N]: System sub-diagonal vector
CV[N]: System super-diagonal vector
FV[N]: System right-hand-side vector

The output is the solution T[INd]
The workflow of AxEqB_TDMA is illustrated in Figure 9

Inputs

l

Gauss elimination of the
sub-diagonal vector

\J

Successive Backward
substitution

Figure 9: Workflow of tridiagonal system solving function AXEqB_TDMA()

3.5 Validation with Solidworks

3.5.1 Brief description of FEA thermal analysis

Solidworks provides a three-dimensional thermal analysis with FEA. the part is divided
(meshed) into tetrahedrons. For a steady state heat conduction simulation, each of the 4
tetrahedron nodes has its own temperature which is unknown. All the unknowns are
collected inside the T vector. Also, each element has a known conductivity matrix Keond
formed by the heat conduction properties of the material. If conductivity matrices of all
elements are combined properly, with respect to the common nodes between bordering
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elements, a global matrix of conductivity is formed. Vector f is calculated from the
boundary conditions. The solution of the equation below gives the full temperature

distribution:

[f] = [Kcond] - [T]

3.5.2 Solidworks solution

For the validation of the temperature profile a test turbine disk of arbitrary geometry is
modeled in Solidworks as shown in Figure 10: Cross section of the test disk modeled in
Solidworks for the temperature validation. The dimensions are described in TableFigure

10.

Figure 10: Cross section of the test disk modeled in Solidworks for the temperature validation. The dimensions are

described in Table 1

The dimensions, material and boundary conditions are summarized in Table 1

Station 1 2 3 4 5 6

R (m) 0.05 0.1 0.2 0.3 0.375 0.4
t (m) 0.07 0.0225 0.0125 0.01 0.04 0.04
Material INCONEL 718

Tbore (K) 398.15

Trim (K) 823.15

Table 1: Dimensions,material and boundary condiotion of thermal study disk.
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Figure 11: Half cross section of the disk described in Table 1

The results of Solidworks are shown in Figure 12:

Temp (Kelvin)
8,232e+02
l 7,807e +02
_ 7,382e+02
. 6,957e+02
_ 6532e+02
H 6,107 +02
 5,682e+02
_ 5,257e+02
4,831e+02

4,406e +02

3,981e+02

Figure 12: Solidworks thermal study results. The study is described in Table 1.

Sensors of temperature were put radially at the center plane of the disk in order to obtain
a radial profile from Solidworks.

100

Figure 13: The blue points are sensors on the thermal study test disk in order to obtain the radial temperature
profile.



3.5.3 Comparison of the results

The results of the two methods described in 3.2 and 3.3 are compared with Solidworks
results for validation. Figure 14 compares the analytical one-dimensional solution with the
solution of Solidworks. Figure 15 compares the numerical thickness inclusive solution with
the Solidworks one.
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Figure 14: Comparison of the results of Solidworks and one-dimensional analytical solution of constant thickness
Fourier’s heat conduction law (method described in 3.2). The studies were conducted on the disk described at
Table 1.
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Figure 15: Comparison of the results of Solidworks and PROOSIS implementation of thickness inclusive Fourier’s
heat conduction law (method described in 3.3) . The studies were conducted on the disk described at Table 1.
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Solidworks sensor points do not match the program nodes. Therefore, in order to calculate
the percentage differences between the PROOSIS and Solidworks solution, a simple script
is written in MATLAB for the interpolation of Solidworks results and errors calculation.
At the same radial positions the error is calculated as:

Tsolid,interpolated - Tproosis
Torror(%) = .
error T

proosis

100

The results are shown in Figure 16:

0.5 T T T

0.3 . .

0.2 4

Difference percentage (%)
o
H
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Figure 16: Percentage differences between temperatures calculated with Solidworks and PROOSIS at the same
radial stations. The two compared temperature profiles are the ones shown in Figure 13.

Figure 16 indicates that the absolute temperature error is no more than 0.5%. As expected,
it can be concluded that the solution that takes into account the thickness of the disk is far
more accurate and the curve form is closer to reality. Also, the one-dimensional solution
is a lot quicker than the FEA one. Thus, it is chosen for usage in the stress calculation and
subsequently in the optimization algorithm.
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4 Stress Analysis

4.1 Introduction to stress analysis

The methodology of disk stress calculation is based on in plane stress analysis and will be
analyzed in this chapter. The disks of aircraft gas turbine engines are subjected to body
forces, blade loads, thermal loads, shaft torque loads, engine thrust and landing loads.
From the above, the most important loads for design are the body forces, blade loads and
thermal loads since the rest occur only locally. The calculations assume plane stress
condition, there are no variations of stresses and temperature gradient in the axial direction.
Small angles are assumed due to the small displacements. The parts that connect the disks
to the shaft are far less rigid than the disk and thus it is considered that they do not impose
a radial or tangential stresses on the disks. These connecting parts are cylinders or cones
and provide only shear and torsion [1]. In order to simulate the in-plane radial and
tangential stresses the disk’s cross section is discretized in small elements that are defined
by their radial and tangential position and their radial and tangential span, as shown in
Figure 17. The stress calculation described in this chapter is according to [2].

dF,
Fr+ T dr
or
A
ar d6/2
e o
/ - Fo
/ 0
Fr

Differential Q

\r
element

Section A-A

Figure 17: The disk is divided into elements [1]
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4.2 Equations of stress analysis

Due to the single plane problem it applies that:

E=O,Trz=rgz=az=0

Also due to axisymmetry:

a6 Y

According to the balance of forces in every small element the following can be deduced

1]
Z Fy=0 (26)

dF
ZFr = 0=> ZLdr - Fodd + tpriw’drdd = 0 @7)

The forces acting on the surfaces of the differential elements can be expressed as:
F. = o,rtdf (28)

Fg = O'Qtdr (29)

The equilibrium equation of the disk is obtained by substituting equations (28) and (29)
into (27):

d
E(trar) —tog + tpriw? =0 (30)

The strains can be obtained as:

& = —— (31)

(32)
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Every stress can be broken down to its two components, mechanical and thermal [2] :

T -

O'rm i O-Tr
O'én Og
ol |as

m|t T
Trz Trz

m T
Toz Toz

m
TT@ - Tro

(33)

According to general form of Hooke’s Law the stiffness tensor and the stresses are

expressed as:

€11 Ciz

Ciz Cy

_ |Gz Cy3
1=y o
0 0

| 0 0

[o"] = [CIIRIT

Where T is the difference of the temperature from the reference temperature.

Yz
Yoz
Yre

Be
B,
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—ﬁr@—

du
dr
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Wherte &, and 8, are calculated so that ]® = o} = 0 is satisfied.

Due to (33),(35),(36) the radial and tangential stress can be expressed as:

du u
ar=AE+B;—AarT—Ba9T (39)

du u
UQZBE+D;—BarT—Da9T (40)

Where:
A= C11Cs33 — C123 _ C12C33 — C13C53
C33 ’ C33 '
41
o Gl = G @
C33
And the stiffness tensor elements are:
E,.(Eg — E V3
Ee - 2Er1/9r
Ej
C 43
22 EG _ 2Ervgr ( )
ErEGVOr

Cir, =Cyr =

12 23 Ep — 2Erv§r (44)
EZVZ
Ci3 s 5 (45)
Eq — 2E,vj,

The equations above are general and cover anisotropic as well as isotropic materials.
However, in case the material is isotropic they can easily be converted by assuming E,. =
Eg and a, = ag.

The boundary condition at the rim of the disk is the total centrifugal load of the carried
dead weight divided by the cross-section area of these support points. The boundary radial
stress value at the bore of the disk is considered to be zero since, as it is discussed above,
the parts that connect the disk to the shaft are relatively flexible and do not impose radial
stresses.
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Consequently the bore boundary is :

du u
Orpore = A T + B - Aa, T — BagT =0 (46)
Tbore
The rim boundary is:
A% B 4a T — Ba,T DoMleg 2 (47
im = A— ——Aa, T — Ba = —
Orrim dr r " 0 roa 2TTyimt @ (47)

4.3 Discretization of the analytical equations

4.3.1 Stresses equation

The equation that should be solved and discretized is the equilibrium equation (30), with
the use of stress expressions (39), (40) and boundary conditions (46), (47). The disk is
radially discretized into n nodes, the first station is always the bore and the last station is
the rim. There, the boundary conditions are applied. The discretization is executed with
the use of 2 intervals [0,1] and [1,2] between three successive theoretical radial stations
0,1,2 or (i-1), i, (i+1) in the disk.

’. ‘ Rim

Bore 5 5
Boundary I » Boundary
condition 1 ' ' ' condition 2

0 1 2
(1) @)  (i+1)

Figure 18: The disk is radially discretized into n stations; the first station is always the bore and the last station is
the rim. There, the boundary conditions are applied. The discretization is executed with the use of 2 intervals
[0,1] and [1,2] between three successive theoretical radial stations 0,1,2 or (i-1), i, (i+1) in the disk.

Assuming an auxiliary variable x the following formulas can be expressed. Variable x can
be substituted with displacement u, thickness t, radius r, temperature T, terms A,B,D and
thermal expansion coefficient a.

Axz1 = Xip1 — X (48)
Ax19 = X; — X1 (49)
_ Xyt X
=T (50)
X; + x;_
K10 = lTll (51)
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Average radial stress at the intervals [0,1] and [1,2] is calculated using (39):

Oro + Or1
Or10 = >
_ Auyg - U - _
= Aqo A 10= — A100r10T10 (52)
_ T10_ T10
— B10Gg10T10
_ _ O0r1 + Or2
Or21 = —
= Aupp o Uy = 53
= Ay A + Byy — — A218,21T21 (53)
_ 21 121
— B310931T54

The integration of equation (30) at the intervals [0,1] and [1,2] can be expressed as:

2 d 2
f E(trar)dr = f (tog — tpriw?)dr
1 1
3 — 7”13> (54)

(tro,), — (tro,), = 3109214121 — L1 pw? < 3

1 d 1
J 2 (tro,)dr = f
o dar 0

(tro,); — (tro,)o = t19Gg104110 — L10pw? <

(tog — tpriw?)dr

S -1

) (55)

Integration of equation (40) in interval [1,2]:

2 2 qu 2 2
Jagdr=j B—dr+J D—dr—J Ba,Tdr
1 par 1 T 1

(56)

2
- f DagT dr
1

_ = = _ L4
092147121 = By 4uyy + Dyglinq In (r )
1
= _ = = _ = 57
— B1G,31T514151 — Dy1Gg21 1214754 ®7)
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Integration of equation (40) in interval [0,1]:

1 1 du 1y 1
f O'ng':f B—dr+f D—dr—f Ba,Tdr
0 o dr o T 0

! (58)
—f DagT dr
0
_ — - 7
09104110 = B1oAuyg + D1gliypIn (r_)
_ o _ 59
— B10Gr10T104710 — D10@610T104T10 ®9)
We set:
Bl = (tr)l (60)
ﬁZ = (tr)z (61)

Then by substituting in equation (54)

3 3
- _ - L ]
B20r2 — B10r1 = 910521411 — ty1pw? < 3 ) (62)

Then substituting equation (57) into (62):

N - — Ty
B20r2 — B10r1 = t2 IBz1Au21 + Dy1lyq In (7)
1

— B18,31T514151 — Dy1Gg21 1214754

Cw? r —rd
p 3

(63)

Then we eliminate the term f,0,, by multiplying equation (53) by 2f, and then
subtracting equation (63) from it:
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Aryq 2 E
— (Ay1Gyp1 + E215921)Tz1]

t21 = = _ T2
g [ P -aman )
+ (B21@y21 + D318g21) 21412,

3 3
(T2 — 11
+pw< 3

We follow the same procedure to express 0,1 over interval [0,1]. We set:

ﬁO = (tr)o (65)
ﬁl = (tT')1 (66)

Then equation (55) is written as:

- _ — 2 T13 - T03
B10r1 — BoOro = 1009104710 — t10pw 3 (67)

Substituting equation (59) into equation (67) gives:

_ — - 1£]
B10r1 — BoOro = t1o lBloﬂulo + D1ty In (r_)
0

— B10@r10T104710 — D10@10T104710

o -1
p 3

Then we eliminate the term (0, by multiplying equation (52) by 28 and then adding it
with equation (68):

(68)

2B, — Auyy < Upg
o= (G ) [0 g+ o5y

— (A10@r10 + B1og10)Tho

+ 51_0 B, Au
B+ Bg ) |Prodto

_ T
+ Dloulo ln (_>
_ To. _
— (B10@r10 + D10@g10) T104710

_ (1)2 T13 _TO3
P 3
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After this procedure there are two different expressions for 051 , (64) and (69). Into these
equations we substitute Au and U according to (48)-(51)

(70)
AulO = U T Ui (71)
— _ Uit + U;
mETy (72)
- U + Uiy
1o =7 (73)

Equating the two expressions of 0,1 gives an equation which comprises of terms with
U;_1,U;, U1 multiplied by their coefficients and remaining terms called RHS (right hand
side of the equation). The coefficients are:

_ Zﬁo 1410 EIO
Coeff.uj_y = <ﬁ1 + ﬁ()) (Arlo B Zw)

t10 _ Dyy. (71 (74)
* </31 + ﬁo) <B1o 2 i (E>>

B ZBZ —/Tzl EZI
Coeff.u; = (31 T 32> (Ar21 * Zz1>

() (a5 )
_ ( 2B, > <A10 _ By > (75)
B1 + Bo/ \Ary10 27"10
£ r1
_ <ﬁ1 +0,6’0> <B10 +—=2In <r0)>

Coeff.ujy1 = (,3125232) (;1421 +521>
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The right hand side of the equation is:

(A18r21 + B1Gg21)

> (B21Gr21 + D21Gg21)

> (A10Gr10 + B1oTe10)

_ _ (77)
(B10@r10 + D10@p10)

t_'21 >pw2 <T'23 — rl?’)
B1+ B2 3

t1o 2 =13
_<ﬁl+30>pw< 3 )

Assuming that the disk is discretized by n nodes, the equation above can be applied onto
the (n-2) internal nodes. The remaining 2 equations are obtained by the boundary

conditions.

4.3.2 Stress Boundary Conditions
For the bore boundary the displacement derivative is expressed via the three-point forward
difference approximation:

du  4u; —uz — 3y
dT N T3 - Tl (78)

By substituting (78) , equation (46) can be written:

=4 du + B ¢ Aa, T — BagT =0
Oy bore = dr r Ay ag rhore — Y
4du, —u3 — 3u u
Or bore = A1 ( 2 < 1) + B, - Ay Ty (79)
3—n L]
— Byag, T, =0
And the coefficients can be deduced:
c _ B, 34,
oeff.u, = e, (80)
¢ _ 4A,
oeff.u, _r3—r1 (81)
C 4
oeff.u3——r3_r1 (82)
RHS - AlarlTl + Blangl (83)
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For the rim boundary the displacement derivative is expressed via the three-point
backward difference approximation:

du  3u, —4uy 1 +up
dr Ty — Tneo (84)

Thus, equation (47) can be written:

du u NpMpTeg
m = A—+ B—— Aa,T — BagT| =——"2,
Orrim dr y o Ao %o o 2Tty @
3up —4up_q +up- u
Orrim = n( - = n2>+Bn_n
' h —Th—2 Tn (85)
- AnarnTn - Bn“BnTn
_ nbmbrcg w2
2nr,t,
C __ A
oeff Un-2 = Ty — Tz (86)
; | —44,
oeff Un-1 = Ty — Tz (87)
B, 34,
Coeffiu, = —+—"
Oeff tn Tn Th —Th—2 (88)
npympr,
RHS = ﬁwz + Ap @y Ty + Bpatg, Ty (69)

4.3.3 Stresses Final solution procedure

The coefficients formulated above are used to construct a (nxn) matrix, this matrix is
multiplied by the vector (nx1) of radial displacements at every node. The right side of the
system is the vector comprised of the RHSs.
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(80) (81) (82) O O

0 0 1 u,
(74) (75) (76) O 0 0 0 || w,
0 (74) (75) (76) O 0 0 || us
0 0 0 o || -
0 0 0 (74) (75 (76) 0 [|Un-2
0 0 0 0 (74) (75) (76)||%n-1
0 0 0 0 (86) (87) (88)l" "7 (gp
(83
(77)
(77)
(77)
(77)
[(89).

The five-diagonal system described in equation (90) is transformed into a tridiagonal
system by elimination of 2 diagonal vectors.

The first two rows of the system can be expressed as:
CgoUs + Cg1Up + CgaUs = Cg3 (91)
C74Uy + C75Uy + C76Uz = C77 (92)

In order to make cg, equal to zero :

91) —22(92) —>

76
Cg2 Cg2 Cg2
(Cso - _C74) u; + (Cs1 ——C75 Uy = Cgz3 ——Cy7 (93)
C76 C76 C76
Equation (93) becomes the new first row.
The last two rows can be expressed as:
C74Un—2 t C75Up_1 + C76Un = C77 (94)
CgelUn—2 T Cg7Un—1 T Cgglly = Cgo (95)
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In order to make cgg equal to zero

Cg

(95) — 22 (94) =>

Cy

Cse Cse Cse
(Cs7 - _C75> Up_1 T (Css ———Cy6 Uy = Cgg ———Cy7 (96)
C74 C74 C74

Equation (96) becomes the new last row

The resulting tridiagonal system is solved with a common algorithm as described in the
previous chapter.

Once the system is solved and the displacements are found their derivative can be
numerically computed and thus the radial and tangential stresses can be calculated at every
node according to equations (39),(40). Von mises stress is given by the equation:

_ (o1 = 03)% + (0, — 03)* + (03 — 01)?
Oyon Mises — 2

In a plane stress problem:

0'1 = O-T
0, = Opg
03=0

Thus:

_ (o, —0g)? + o5 + o?
Opon Mises — 2
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4.4 Stress calculation implementation in PROOSIS

Stress calculation is executed by calling the function calcDiskS_FV. The inputs are:

istg:
compINSTANCE_NAME:

NmechDes:
NmaxQNdes:
Nd:

R[Nd]:

t[Nd]:
T_in[Nd]:
rho:

Er [Nd]:

Et[Nd]:
ar[INd]:
at[Nd]:
nu[Nd]:
sigma_rr_bbv:
sigma_rr_rbv:

includeHeatTrans:

dT_in:

printFuncRpts:

The outputs of the function are:

sigma_rr[Nd]:
sigma_tt[INd]:
sigma_vM[Nd]:

The number of the stage. It is used for
naming the file with the results

The name of the engine. It is used for
naming the file with the results

Disk rotational speed (rpm)

Disk overspeed factor

The number of nodes

Discretized disk radius

Discretized disk thickness

Input temperature radial distribution
Material Density

Elastic modulus of the material in the
radial direction

Elastic modulus of the material in the
tangential direction

Thermal expansion coefficient of the
material in the radial direction
Thermal expansion coefficient of the
material in the tangential direction
Material poisson ratio

Boundary radial stress at the bore
Boundary tangential stress at the bore
Boolean variable. If it is TRUE , heat
transfer effects are included.
Temperature adder to the reference
temperature, which is considered the
room temperature

Boolean variable. If it is TRUE | the
results are printed inside files

Radial stress profile
Tangential stress profile
Von Mises stress profile
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Inputs

A
If includeHeatTrans=TRUE

Y

Calculate the differences of the
input temperature profile from
the reference temperature

Calculate
rotational
speed

l

Calculate stiffness matrix
C and coefficients A,B,D

Y

Calculate the coefficients of
the displacements and the
right-hand-side

\

Formulate the tridiagonal
system

\

call
AxEgB_TDMA()

Y

Solution of the system
u[Nd]

\i

Calculate u derivative with 3 point scheme

v

Calculation of

stresses

Figure 19: Workflow of the stress calculating function calcDiskS_FV()
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5. Stresses validation with Solidworks

5.1 Introduction to stress validation

The validation was implemented using the geometry of the three first stages’ disks of
NASA’s E3 Engine. The dimensions of the disks were extracted by the digitization of the
high-pressure compressor drawings [4]. Table 1 summarizes the geometry, material, disk

type and rotational speed of the 3 first stages of the High Pressure Compressor as obtained
from [4]:

Stage Index 1 [ 2 E
Rotational Speed 1300.3

(rad/s)

Material Ti-8-1-1 Ti-6A1-4V Ti-0A1-4V
Density (kg/m’) 4370.0 4430.0 4430.0
Disk Type RING HYPERBOLIC WEB
R1 (m) Bore Radius | 0.1041 0.1066 0.1063
R2 (m) 0.1142 0.1210 0.1201
R3 (m) 0.1243 0.1401 0.1536
R4 (m) 0.1344 0.1700 0.1986
R5 (m) 0.1445 0.1967 0.2171
R6 (m) Rim Radius 0.1546 0.2020 0.2303
tl (m) 0.0937 0.0329 0.0247
t2 (m) 0.0937 0.0329 0.0247
t3 (m) 0.0937 0.0153 0.0062
t4 (m) 0.0937 0.0075 0.0062
t5 (m) 0.0937 0.0462 0.0281
t6 (m) Rim Thickness | 0.0937 0.0462 0.0281

Table 2 E3 Disks Information

Using the information of Table 2Table 2 E3 Disks Information the three disks were
modeled in Solidworks and for each of them two static studies were run for two different
load cases. For the third load case which is the only one that includes temperature gradient
the turbine disk described in Table 1 is used. The results of the PROOSIS stress calculation

function were compared with the results of Solidworks studies.

5.2 Brief Description of Finite Element Analysis (FEA)

Solidworks uses Finite Element Analysis to calculate the stresses. This method is three-
dimensional since the whole part is divided (meshed) into tetrahedrons. A tetrahedron
element has 4 nodes with 6 deegres of freedom (DOFs) each. Six DOFs model every type
of displacement in the three dimensions. The DOFs variables are collected inside the u
vector. Also, each element has a known matrix of elasticity K. If the matrices of elasticity
of all elements are combined properly, with respect to the common DOFs between
bordering elements, a global matrix of elasticity is formed. Therefore, it applies:
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[F] = [Kglobal] +[u]

After the equation is solved, the strains can be calculated from the displacements vector
u. Thus, the stresses are calculated as follows:

5.3 Validation Process

The following validation cases were examined:
For E3 HPC three first disks:

a) There is no temperature gradient, the disk is at room temperature. The disk bore
and rim stresses are zero. The only loads are the body centrifugal loads.

b) There is no temperature gradient, the disk is at room temperature. The disk bore
stress is zero, the rim stress is as imposed from the dead weight and there are body
centrifugal loads.

For an arbitrary turbine disk with geometry described in Table 1:

¢) There is temperature gradient. The disk bore stress is zero, the rim stress is as
imposed from the dead weight and there are body centrifugal loads.

Load case a b C
Temperature no no yes
gradient

Disk bore stress no no no
Disk rim stress no yes yes
Centrifugal body | yes yes yes
loads

Table 3 The load cases

5.3.1 Boundary conditions and formulation of load cases

Substituting E3 blade dimensions into the equations described in section 1.4 we obtain the
values of the boundary conditions. The main calculations are summarized in Table 4:

Stage Index 1 2 3

Blades Number n; | 28 38 50
Overall Blade 0.8656 0.2792 0.1171
Weight m;, (kg)

Overall Blade 0.199106 0.230983 0.253347
Center of Gravity

Teg (M)

Rim Load 0y yim 89.7 70.6 61.6
(MPa)

Table 4 Rim stress calculations

51



Thus, the load cases conditions are summarized in the Tables 5,6 and 7.

LOAD CASE

a
Geometry, material See Table 2
Stage Index 1 2 3
Temperature gradient - - -
Bore Load 0y pore (MPa) 0 0 0
Rim Load 0y yi;, (MPa) 0 0 0
Rotational velocity (rad/s) 1300.3

Table 5: Load case a description
LOAD CASE b
Geometry , material See Table 2
Stage Index 1 2 3
Temperature gradient - - -
Bore Load 0, pore (MPa) 0 0 0
Rim Load Gy yip (MPa) 89.7 70.6 61.6
Rotational velocity (rad/s) 1300.3

Table 6: Load case b description
LOAD CASE c
Geometry, material See Table 1
Temperature gradient Tbore (K) 398.15

Trim (K) 823.15

Bore Load 0y pore (MPa) 0
Rim Load 0y yjp, (MPa) 66.8
Rotational velocity (rad/s) 392.7

Table 7: Load case c description
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5.3.2 Solidworks settings

FEM method is a three-dimensional method and hence, it can calculate stress
concentration, as well as stress gradients at the axial direction. Consequently, in order to
compare the results of the two methods under the same circumstances, in the Solidworks
environment sensors of radial and tangential stresses are put throughout the centerline of
the disk contour, as shown in Figure 20, Figure 21 and Figure 22:

Figure 20 : Section view of 1st stage of HPC in E3. The blue points are sensors of stress.

Figure 21: Section view of 2nd stage of HPC in E3. The blue points are sensors of stress.

Figure 22: Section view of 3rd stage of HPC in E3. The blue points are sensors of stress.

Another challenge was that most FEM software requires the movement of the object to
be restricted at every axis. This means that at least one face or edge of the part should be
a fixture which means zero displacement there. All fixtures together should restrict the
movement of the component at all three directions. In reality disks are not radially
restricted, there is no point with zero displacement since all points including the bore are
centrifuged in higher radii. This was something modelled in the analytical solution of the
previous chapter with the zero-stress boundary condition at the bore. However,
commercial software like Solidworks cannot accept stress boundaries so Inertial Relief was
used to avoid the fixtures. This setting calculates the opposite inertial load and imposes it
to every node so that the part is balanced without fixtures needed.
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Solver
DAutomatic Solver Selection
FFEPIus e

|:|Use inplane effect
|:| Use soft spring to stabilize model
Use inertial relief

Results folder ChlUsershagapinDocuments AINAG MATIKI‘ Ei‘?

DAxrerage stresses at mid-nodes [high-quality solid mesh only)

AKupo Epappoyn BorBex

Figure 23 Inertial relief setting.

Finally, for load case c it should be noted that the Solidworks solver cannot handle the
change of the material properties at every node that the temperature gradient causes. Thus,
INCONEL 718 properties are considered those at temperature T=373.15 K and constant
throughout the radius. PROOSIS function is capable of reading the material properties at
every node in accordance with the temperature profile, so in order to match this with the
PROOSIS stress calculation the temperature at which the material properties are read is
manually changed to 373.15 K and kept it constant at every node for the comparison.

5.3.3 Mesh Independence

A mesh independence study was conducted. For every disk we run the analysis multiple

times, each time reducing the element size until the maximum von Mises stress converges.

The study used for mesh independence is the load case a) for E3 HPC disks.
1.622
1.6215
1.621
1.6205
1.62
1.6195

1.619

vonMises stress (1078 Pa)

1.6185

1.618
35 30 25 20 15 10 5 0

Element size (mm)

Figure 24: Mesh independence chart for 15t stage disk of HPC NASA/GE E3.
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Element size (mm)

Figure 25: Mesh independence chart for 2" stage disk of HPC NASA/GE E3.

30 25 20 15 10 5

Element size (mm)

Figure 26: Mesh independence chart for 3" stage disk of HPC NASA/GE E3.
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5.3.4 Results Comparison

In this paragraph the resulting stress curves of PROOSIS algorithm and Solidworks static
analysis are compared. The radial stress is symbolized as 0, and 0y the tangential stress.

For Stage 1
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Figure 27: Stress curves comparison for NASA/GE E3 HPC ,Stage 1, Load case a): zero bore stress,zero rim stress,no
temperature gradient
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Figure 28: Stress curves comparison for NASA/GE E3 HPC, Stage 1, Load case b): zero bore stress, non-zero rim
stress, no temperature gradient
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For Stage 2:
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Figure 29: Stress curves comparison for NASA/GE E3 HPC, Stage 2, Load case a): zero bore stress,zero rim stress,no
temperature gradient

700 200.0
600 | Drig - 180.0
“Segag o
500 k S8 G-Besmaa-a TN - 160.0
\*Q E
0 - 140,
400 } S qqﬂaﬂ_ 00 g
2 PRI - | 1200 §
S 300 or°'° @ £
- 0@ : - 1000 2
& 200 F P N =
= 00 ° Qo - 800 ¥
100 F QQQ/ \,Qo.o T
Q% 0-0 - - 600 X
O 1 1 1 1 1 1 1 1 1 I
- 400
190 110 120 130 140 150 160 170 180 190 200 2]0
-100 I_\ / - 200
-200 0.0
Radial Distance (mm)
o orr(SOLID)  —-=-orr (PROOSIS) O  ott (SOLID)
------ ott (PROOSIS) Geometry

Figure 30: Stress curves comparison for NASA/GE E3 HPC, Stage 2, Load case b): zero bore stress, non-zero rim
stress, no temperature gradient
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For Stage 3:
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Figure 31: Stress curves comparison for NASA/GE E3 HPC, Stage 3, Load case a): zero bore stress,zero rim stress,no
temperature gradient
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Figure 32: Stress curves comparison for NASA/GE E3 HPC, Stage 3, Load case b): zero bore stress, non-zero rim
stress, no temperature gradient

58



For Turbine Disk LLoad case c:

1000 200.0
- 180.0
800 |
- 160.0
600 - 1400 E
E
= - 1200 @
& 400 | o
S £
e - 100.0 .8
g 5
= 200 F
& L 800 ¥
°
=
0 - 600 £
4%0
- 40.0
-200 f
- 20.0
-400 0.0
Radial Distance (mm)
O  orr (SOLID) O  ott (SOLID)
= « = grr (PROOSIS) e «= gtt (PROOSIS)
Geometry

Figure 33: Comparison of the radial and tangential stresses as calculated by Solidworks and PROOSIS analyses on
the disk described at Table 1 with temperature gradient, centrifugal load, rim load and zero bore load (Load case
c).

5.3.5 Conclusions

It is worth mentioning that at any point Solidworks assigns the stress value of the closest
node while probing the results. This means that solidworks points do not necessarily match
with the algorithm nodes. Therefore, we need to interpolate solidworks results and match
each radial distance with the equivalent proosis node in order to calculate the differences.
This is executed with a simple MATLAB code which calculates the von Mises stress error
as follows:

O-UM,solid,interpolated - GvM,proosis
OvM,error(%) = =100

OyM,proosis

Table 8 shows the RMS of the calculated stress errors at every node for every validation

case.
RMS of Von Mises stress errors (%)
HPC E3 Stage 1 2 3
Index
Load case a 0.983 1.903 1.480
Load case b 0.304 4.633 2.318
Turbine arbitrary disk

Load case ¢ | 2.327

Table 8: The RMS of von mises stress errors(%) for every validation case
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It is concluded that the in plane-stress calculation modeled in PROOSIS can replace a
much more time consuming FEA method without loss in accuracy. The PROOSIS model
uses approximately one to two hundred nodes whereas a FEA method uses hundreds of
thousands of nodes for a whole disk. The PROOSIS functions are used for the
optimization algorithm, where time efficiency is very important since stress calculation is
executed multiple times until convergence.
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6. Optimization

0.1 Introduction

In this chapter the method that was developed for weight optimization is described. A
function that calculates the disk weight is developed and validated by comparing the results
with those from Solidworks evaluation tool. Subsequently, an experiment was set for the
optimization of the first three stages disks of HPC NASA’s/GE E3 engine. The selection
of those three disks is convenient because they include all of the main disk types; Ring,
Hyperbolic and Web respectively. Every disk is optimized with three different approaches:
Lolis [9], Gasturb [5], Armand [1]. While the objective function and stress criteria are
considered common, each case provides its own design variables, constraints and
correlations between the dimensions. Nelder Mead Simplex algorithm is used for the
optimization because it was available in PROOSIS, it can handle non continuous functions
and does not require derivatives calculation. Upon the violation of every constraint a
penalty value is added to the objective function.

0.2 Mass Calculating function

The mass of a disk is calculated by the formula [1]:

o N
M =2rp% 23 [5 (o = 177) + 3 (e = 17)] (97)

A web type disk is divided in 5 parts as shown in Figure 4, the inner rim, the inner shoulder,
the web, the outer shoulder and the outer rim. At each of these parts the thickness is a
linear function of the radius :

t=m-r+n (98)

Thus, in a known geometry described by 6 thicknesses in 6 radial stations it can be deduced
that:

tiiq —t:
m; = J¥1 9
Ti+1 T
tiv1 — ¢ 99
Ti+1 —1j
Forj=1,..,5

The equation for mass calculation is used for ring and web as well as hyperbolic type disks,
since in the weight optimization we assume that all six geometry defining points are
connected through a straight line.
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The PROOSIS function that calculates the disk weight is
WKG_diskW_ARMAND_MOD().The inputs of the function are:

istg: The number of the stage. It is used for naming the file
with the results

compINSTANCE_NAME: The name of the engine. It is used for naming the file
with the results

material: Disk Material

nrs: Number of disk radial segments

R[nrs+1]: Disk radius at nrs+1 radial stations

t[nrs+1]: Disk thickness at nrs+1 radial stations

dsf_in[nrs]: User-defined thickness form factor for the nrs radial
segments

For a ring disk nrs=1 , for web or hyperbolic disk nrs=>5.
The output is the weight WKG

Inputs J

Y

Obtain the
density of the
material

Y
Calculate
coefficients
m,n

\J
Apply the
weight
calculation
formula

WKG

Figure 34: Workflow of weight calculation function WKG_diskW_ARMAND_MOD.
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0.3 Optimization problem construction

The initial geometries are those of the three first disks of NASA’s/GE E3 engine HPC,
which are summarized in Table 2. The rim radius and thickness (15 and ts) are always fixed.
The rim thickness should be equal to the axial component of the chord of the blade. The
rim radius should be equal to the airfoil hub radius minus the height of the blade root.
Blade root includes platform, neck if existing and fir-tree.

te = Chiax (100)

Te = Tairfoil hub — Rpiade root (101)

The stress criteria for the disk structural integrity require the average tangential stress
calculated at +120% overspeed to be lower than or equal to 0.9 times the ultimate material
strength at the disk average temperature. Additionally, the maximum von mises stress
should be lower than or equal to the yield strength at the maximum temperature (thus the
minimum yield strength) divided by the safety factor 1.1 [1] :

0-9.‘1179120

0g,avg_120 = 0.90yrsat avgr => RBMy3 = 0.90y7s <1 (102
O i 0. i
OyonMises,max = 1;17]1th => RDM = %j&"mx =1 (103)
11

To include the case where some tangential stresses are negative their average is calculated
by the formula:

Where N is the number of nodes.

In structural problems the weight reduction is equivalent to stress maximizing.
Consequently, the objective function is formed in a way that its minimization results in
maximum stresses. Optimal geometry is obtained by Nelder Mead Simplex method, which
does not require the calculation of derivatives and is suitable for discontinuous functions.
Thus, we set the objective function as:

1
F= > (max[RDM, RBM] — 1)? (104)
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Constraints that apply to every case is that the mass of the disk should be above zero, and

the bore radius should be above 1.1 time the maximum shaft radius:

6.4

M >0 (105)

L£] > 1-17ﬂshaft,max (106)

Implementation of optimization in PROOSIS

Prior to optimization experiment some useful functions are created:

Function t_vs_R() returns the disk thickness for an input radial station.

Function discrDiskGeom() discretizes the input disk geometry based on the
input number of nodes Nd

Function ObtainBoundLoad() calculates the boundary loads by the dead weight
centrifugal forces

Function getMtr_vs_T() obtains all the necessary material properties at every
node according to the temperature at every node

Function initGeom() initializes the geometry using the stage index as an input.
Depending on the stage index it obtains the appropriate dimensions from the table
that summarizes the geometry of all 3 disks.

Function updateGeom() updates the disk geometry based on the current values
of the design parameters.

Function OBJ_FCN() calculates the objective function value by running stress
analysis and adding penalty values if any constraint is violated.

Function runOptim() takes the objective function value as an input and calls the
Simpex method.

The declarations of the experiment are used as inputs for the procedure. These inputs are

the stage index, the optimization approach (Lolis,Gasturb,Armand), the temperature

profile calculation type (constant temperature, numerical or analytical Fourier solution or

input temperature profile), the inclusion of thermal effects or not and the safety factors
used at the stress criteria. In the HPC E3 optimization the temperature was chosen to be

constant and equal to the rim temperature.

Figure 35 shows a workflow diagram that represents the whole optimization procedure as

executed in the experiment.
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‘ Inputs

Initialize Geometry

initGeom()
Optimum
No. p Y
Y wgence )
Calculate weight 1

WKG_diskW_ARMAND_MOD()

Y

Discretize disk
discrDiskGeom()

v

Calculate temperature profile
calcDiskT()

v

Obtain material properties according to
temperature getMtr_vs_T()

|
¥ ¥
Obtain boundary load for operating speed Obtain boundary load for  120% overspeed
obtainBoundLoad() obtainBoundLoad()
A y
Calculate stresses Calculate stresses
calcDiskS_FV calcDiskS_FV

l J
v

[ Calculate objective function OBJ_FCN() ]

\i
[ Calculate variable new values with Simplex() ]

A4

Update Geometry updateGeom() J

Figure 35: The Workflow of optimization experiment

In the following subchapters the results for every case of optimization are presented.

6.5 E3 HPC 1% stage optimization

Due to the simplicity of the geometry no different cases can be implemented and the
problem is constructed as referred to Lolis [9]. Disk geometry is fully described by its rim
radius, bore radius and its constant thickness. Since the rim radius and thickness are fixed

for the attachment of the blade, there is only one unknown variable : 17
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Figure 36: Stresses at the initial disk of the 15t stage of E3 HPC. Von
Mises stress calculated at 100% speed and tangential stress

The following correlations are applied:

tLh=t, =3 =ty =t5 =t = Cprax (107)

rn=n+{—-1)——— fori=2,..,5

Te — T
5

(108)

The results of the optimization of the 1* stage ring disk are presented in Table 9:

Weights
Initial weight (kg) Optimal weight (kg) Difference (%)
16.806 10.218 -39.2
Initial Geometry
Bore Rim
r(m) 0.1041 0.1546
t(m) 0.0937 0.0937
Optimum Geometry
Bore Rim
r(m) 0.1263 0.1546
t(m) 0.0937 0.0937
Stress ratios
Initial Optimum
RBM_120 0.630805 1
RDM 0.596673 0.862939
Table 9: Results of 1st stage HPC E3 optimization
1200
1000 | ———
T 800 I ——
\ <
© 600 \
\ £ 400
200
0
12.5 13.5 14.5 15.5
10 12 e 14 e Radial distance (cm)
. 12(I?adlal dlstanci\slcwm)loo s tt_120 svM_100
Ymin/1.1 0.9UTSavg Ymin/1.1 0.9*UTSavg

calculated at 120% speed , compared with their maximum limits limits.
yield strength/1.1 and 0.9*ultimate strength.
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Figure 37: Stresses at the optimal geometry of 1st stage disk of HPC
E3. It is shown that the maximum stress criterion has reached its
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Figure 40: Initial and optimum 15t stage disk semi-contours for comparison. It is obvious that the disk weight is
reduced since the bore radius is increased.

6.6 E3 HPC 2™ stage optimization

The second stage disk is a hyperbolic type. The disk geometry is fully described by 12
variables. However, the rim radius and thickness is fixed and the outer and inner rim have
constant thickness. Thus:

Te = Trim
te = trim
ts = g
ty =ty



The remaining 8 variables are independent and will be handled differently according to
each approach.
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Figure 41: HPC E3 2nd stage initial stresses indicate that they can be further increased.

0.6.1 Lolis approach

From the 8 independent variables this approach chooses the following as design variables
and keeps the rest constant and equal to initial

Design variables: 7y, 15, t5, £y

There are additional constraints due to spacing. For each of them that is violated a penalty
value is added to the objective function:

rn=>11'n (109)
T4 2 11 " T'3 (110)
1.5, <t, <2-tg (111)
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Figure 42: Stresses at the optimal geometry of 2" stage disk of HPC E3 according to Lolis. The stresses have
reached their limits
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Figure 43: Comparison of 2nd stage HPC E3 initial and optimal geometry according to Lolis. It is obvious that the
new disk geometry is of lower weight.
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Figure 44: Weight convergence for 2nd stage disk Figure 45: Stress convergence for 2nd stage disk Lolis
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0.6.2 Gasturb approach

From the 8 independent variables this approach chooses the following 6 as design variables
and keeps the rest constant and equal to initial:

Design variables: 1y, 13, 15, tq, t3, ty

The geometric constraints are the following. For each of them that is violated a penalty
value is added to the objective function:

Te — 15
01l<s——X<1 (112)
te
t3
015<—<1 (113)
ls
n—"n
02<———<1 (114)
ls
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Figure 46: Stresses at the optimal geometry of 2" stage disk of HPC E3 according to Gasturb. The stresses have
reached their limits
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Figure 47: Comparison of 2nd stage HPC E3 initial and optimal geometry according to Gasturb. It is obvious that
the new disk geometry is of lower weight.
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Figure 48: Weight convergence for 2nd stage disk Figure 49: Stresses convergence for 2nd stage disk
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0.6.3 Armand approach
From the 8 independent variables this approach chooses the following 7 as design variables
and keeps the rest constant and equal to initial:

Design variables: 1y, 13,73, 7y, tq, t3, ty

The additional geometric constraints are:

n,—1,>0 (115)
3 —17,>0 (116)
7, —13>0 (117)
15— 14, >0 (118)
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Figure 50: Stresses at the optimal geometry of 2" stage disk of HPC E3 according to Armand. The stresses have
reached their limits
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Figure 51: Comparison of 2nd stage HPC E3 initial and optimal geometry according to Armand. It is obvious that
the new disk geometry is of lower weight.
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0.6.4 Table of optimization results for 2nd stage
The results are presented in the following Table 10 :

Stage 2 ‘ Initial weight (kg) : 9.695
Weight results
Approach Optimal weight (kg) Difference (%)
Lolis 8.815 -9.08
Gasturb 8.738 -9.87
Armand 8.289 -14.5
Geometry
Initial Lolis Gasturb Armand
r(m) t(m) r(m) t(m) r(m) t(m) r(m) t(m)
1] 0.1066 | 0.0329 | 0.1180 | 0.0307 | 0.1179 | 0.0322 0.1119 0.0323
2| 0.121 | 0.0329 | 0.13156 | 0.0307 | 0.1296 | 0.0322 0.1200 0.0323
31 0.1401 | 0.0153 | 0.1401 | 0.0153 | 0.1401 | 0.0156 0.1359 0.0147
41 0.17 0.0075 | 0.1700 | 0.0082 | 0.1700 | 0.0073 0.1768 0.0076
51 0.1967 | 0.0462 | 0.1967 | 0.0462 | 0.1970 | 0.0462 0.1967 0.0462
6] 0202 | 0.0462 | 0.202 | 0.0462 | 0.2020 | 0.0462 0.2020 0.0462
Stress ratios
Lolis Gasturb Armand
RBM_120 1 1
RDM 0.9364 0.9304 0.9372

6.7 E3 3¢ stage optimization

Table 10 : Summarization of the results of 2" stage of HPC E3 optimization

The third stage disk is a web type. The disk geometry is fully described by 12 variables.
However, the rim radius and thickness is fixed and the outer rim, inner rim and web have
constant thickness. Thus:

Te = Trim

The remaining 7 variables are independent and will be handled differently according to the

approach.
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Figure 54: HPC E3 34 stage initial stresses indicate that they can be further increased.

0.7.1 Lolis approach

From the 7 independent variables this approach chooses the following 4 as design
variables:

Design variables: 7y, 73, tq, t3

Two correlations are added since the shoulder angles are kept constant. The following
formulas are used in geometry update:

t, —t
T3 = Tz + 2—;—
2tan (§)

ts — 1y
Ty =15 ————
2tan (%)

The one remaining variable 75 is kept equal to initial.

There are additional constraints due to spacing. For each of them that is violated a penalty
value is added to the objective function:

rn=211l'n
T4 2 11 'T3

15t4£t2£2t6

74



1200

1000
— 800
© \
[a
2 \ ——s_tt_120
v 600
2 SVM
o
= s
Y400 Ymin/1.1
0.9UTS
200
0
10.5 12.5 14.5 16.5 18.5 20.5 22.5

Radial distance (cm)

Figure 55: Stresses at the optimal geometry of 3@ stage disk of HPC E3 according to Lolis. The stresses have
reached their limits
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Figure 56: Comparison of 3" stage HPC E3 initial and optimal geometry according to Lolis. It is obvious that the
new disk geometry is of lower weight.
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0.7.2 Gasturb approach

From the 7 independent variables this approach chooses the following 5 as design

variables:

Design variables: 14,15, 75, tq, t3

The two remaining dimensions are calculated by correlations. Gasturb keeps the shoulder
angles constant. Thus, the following formulas are used in geometry update:

The geometric constraints are:
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=15 ——F7
2tan (%)
Te — T
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Figure 59: Stresses at the optimal geometry of 37 stage disk of HPC E3 according to Gasturb. The stresses have

reached their limits
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Figure 60: Comparison of 3" stage HPC E3 initial and optimal geometry according to Gasturb. It is obvious that the
new disk geometry is of lower weight.
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60.7.3 Armand approach

From the 7 independent variables this approach chooses the following 6 as design
variables:

Design variables: 1y, 13,13, Ty, tq, t3
The one remaining variable 75 is kept equal to the initial one.

The additional geometric constraints are:

n—r>0
r3—1,>0
7, —13>0
15— 1, >0
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Figure 63: Stresses at the optimal geometry of 3@ stage disk of HPC E3 according to Armand. The stresses have
reached their limits.
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Figure 64: Comparison of 37 stage HPC E3 initial and optimal geometry according to Armand. It is obvious that the
new disk geometry is of lower weight.
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0.7.4 Table of optimization results for 3rd stage

The results are presented in the following Table 11 :

Stage 3 \ Initial weight (kg) : 8.527
Weight results
Approach Optimal weight (kg) Difference (%)
Lolis 7.222 -15.3
Gasturb 6.429 -24.6
Armand 6.72 -21.2
Geometry
Initial Lolis Gasturb Armand
r(m) t(m) r(m) t(m) r(m) t(m) r(m) t(m)
1] 0.1063 | 0.0247 | 0.1099 | 0.0235 | 0.1087 | 0.0248 0.1136 0.0240
2] 0.1201 | 0.0247 | 0.1211 | 0.0235 | 0.1165 | 0.0248 0.1191 0.0240
31 0.1536 | 0.0062 | 0.1331 0.006 | 0.1325 | 0.0062 0.1471 0.0058
41 0.1986 | 0.0062 | 0.2019 | 0.006 | 0.2132 | 0.0062 0.2112 0.0058
5] 0.2171 | 0.0281 | 0.2171 | 0.0281 | 0.2195 | 0.0281 0.2171 0.0281
6] 0.2303 | 0.0281 | 0.2303 | 0.0281 | 0.2303 | 0.0281 0.2303 0.0281
Optimum Stress ratios
Lolis Gasturb Armand
RBM_120 1 1 1
RDM 0.9643 0.9610 0.9534

Table 11 : Summarization of the results of HPC E3 34 stage optimization

6.8 Validation with “Gasturb Details 5”

6.8.1 Stress validation

Prior to optimization validation, a stress validation was executed in order to ensure that
Gasturb Software calculates the stresses the same way PROOSIS function does. The
Gasturb Demo Disk, the default file of “Gasturb Details 5” was used for this analysis. The
same geometry and boundary conditions of were inserted in PROOSIS and the stresses
were calculated. The blades were considered unshrouded and the temperature constant
throughout the disk and equal to 823.15 K.
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Figure 67: Comparison of stress results from Gasturb Details 5 and PROOSIS. The disk analyzed is the Demo disk
that opens with Gasturb Software as a default.

It is deduced that the stress results are very close so we can continue with comparing the
optimization results.

0.8.2 Optimization verification

An optimization case was run with PROOSIS experiment and Gasturb Software in order
to compare the results. The optimization was constructed according to the following
conditions that were applied at both studies to ensure that the problem is the same.

Initial geometry is the default Demo disk that comes with the Software. The geometry,
material and constant temperature are summarized in Table 12.

Radial Stations 1 2 3 4 5 6

t (mm) 150 168.2 185.5 237.3 242.5 250.5
t(mm) 26 26 6 6 24 24
Material INCONEL 718

Temperature (K) | 823.15

Table 12 : Gasturb Demo disk geometry
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Figure 68: Demo Disk semi-contour

The bore boundary stress is zero, the rim boundary condition is calculated as the dead
weight centrifugal load as indicated in Table 13.

Number of blades (nb) 103
Dead weight per blade (kg) 0.1118
Radius of dead weight center of gravity (m) | 0.346895
Rotational speed (rpm) 7350
Rim stress (MPa) 62.665

Table 13: Demo disk rim load calculation

The following three design variables are chosen. The rest disk dimensions are considered
constant and equal to the initial

t3
x1 =
ls
n—-n
x2 ==
ls
Te —Ts5
x3 ==
ls

The initial values of the design variables are:
X = {x1,x3,x3} = {0.25,0.7583,0.3333}
The geometrical constraints are :
015<x; <1
0.2<x,=<1

01<x3<1

Gasturb assumes constant angle in the shoulders of the disk; 30° for the inner shoulder
and 60° for the outer shoulder. This means that the following equations should be used
for the update of the geometry in PROOSIS:
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3 =1+
2tan (%
ls — Uy
T4 =T
2tan (%)

The disk is web type and the blades are considered unshrouded. Stress criteria are put as
constraints. In Gasturb there are two main stress criteria:

Burst Margin

0.47 - o,
BM (%) = < GU”"“ awgl _ 1) - 100 (119)
0,avg

Stress Margin

DM(%) = (L - 1) £100 (120)

Opon Mises,max

Generally, the stress margin is local, it should be calculated in every node and the minimum
of all resulting values should be kept as critical. In this particular optimization case, the
temperature is constant throughout the nodes and so is the yield strength. Therefore, the
minimum stress margin is expressed as in equation (120) .

In PROOSIS algorithm the stress criteria are expressed as:

0,
RBM = — 229 (121)

O-UTS,at avg T

Opon Mises,max

RDM = (122)
Oy
Substituting equations in we get
BM = (0 47 ! 1) 100 =>
~ \"""" RBM Bl
REM — 0.47 (123)
L
100
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1
DM =|——— 1) 100 =
(RDM 00 =>
1 (124)
RDM = M )
100
Gasturb suggests that the margins should be :
BM,DM = 10

Substituting in equations we get the stress constraints for the PROOSIS algorithm:
RBM < 0.4273
RDM < 091

The results of both methods are shown in Table 14 :

Initial weight = 13.2 kg

GASTURB

Optimal weight (kg) 9.84

RBM 0.4273

RDM 0.5714
X=[x1,x2,x3] [0.15,0.6329 , 0.1]
PROOSIS

Optimal weight (kg) 10.19

RBM 0.4273

RDM 0.5658
X=[x1,x2,x3] [0.15, 0.591 , 0.191]

Table 14: comparison of optimization results from Gasturb Details 5 and PROOSIS
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Figure 69: Contours of initial disk (black line), Gasturb Details 5 optimum disk (blue line) and PROOSIS optimum
disk (grey line).
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All the design variables are decreased in the final solution in comparison with their initial
values. This results in smaller disk dimensions and thus in less weight. All the final values
are of the same order of magnitude. The differences between the two solutions could be
attributed to the different optimization method used, the way the constraints are imposed

or the possible different calculation of the objective function since Gasturb Details 5 does
not give such information.
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7. Summary, conclusions and future suggestions

For the purpose of this thesis, bibliographical sources concerning the design and
optimization of thermal turbomachinery disks were extensively studied. Using this
information, tools for the design and optimization of disks were developed in PROOSIS.
Two main functions were developed; the temperature profile calculating function and the
stress calculating function which takes the results from the temperature analysis as an
input. The results of these functions were validated by comparison with Solidworks results.
Subsequently, they were used for the optimization problem. Weight optimization was
accomplished by the stresses maximization. The initial geometries were taken from the
first three disks of HPC NASA/GE E3. Nelder-Mead Simplex method was used for the
update of the geometry and in every iteration the temperature and stress calculating
functions were called to recalculate the objective function value. There were three
optimization cases examined, each with variables and constraints according to Lolis,
Gasturb and Armand.

It can be concluded that the one-dimensional modeling for temperature and stress
calculation gives results very close to the FEA method with far less nodes and thus in less
processing time. This makes the optimization quicker. Additionally, it is proven that the
maximization of the stresses using Simplex method can result in a lighter design with as
much as 7 design variables. Apart from that the proximity of the PROOSIS optimum
solution with the one calculated by “Gasturb Details 5” validates the efficiency of the
optimization program.

The developed tools are quite versatile since a lot of options are left to the user and can be
put as inputs in the functions. This makes them suitable for integration in bigger problems
like a whole engine design. After the airflow analysis, the resulting blade geometry can be
used for the extraction of an optimized disk geometry to support the blade. The same tools
can be run successively until the disks of a whole engine are designed. Alternatively, the
optimization method developed can be combined with other methods such as genetic
algorithms.
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8. Extetapevn mepindn (EAAvind)

e oot T Omlopatiny]  epyooie  peletdtat 0 oyedopodg  Slonwv  Oeppinav
otpoBthounyavev. H Swdwacio Eentva and pio apytnn yewpetpion Sionov xot TEOTELVEL Ye
VEX TIOL XAVOTIOLEl OAEG TIC XTALTYOELS TOL TOOUXTXOUTILOL GYESLAGULOD EVOG Slo%0v, e
Myotepo Bapoc. ITio ovyrexpipéva , dnuovpyndnrav oto Aoyopind PROOSIS 1o
axpBunTne epyokeia yoe ™V Bedtiotonoinen evog dionov.

TN tov oxond autig g epyaotag yonotporonnxe ooy npdtuno o uvnmeas NASA’s/GE
E3. Ot yewpetpleg twv dionwv twv 1otov newmtwy Baduidwy tou cupmteaty) vdnAing nieong tov
ovTANONuay amd v Prngromoinoy twy ayediwy Tov nynTea Tov Beebnuay ot BrBioyoapio.
Emmkéov sou aldeg onpavtineg TLég yto T TTeehyta avtAnOnuay amd mivareg Tou by oLY
otig myec. Me 1ig mAnpoyopieg y Tar TTEELYLX HTaY SLVXTOC O LTOAOYLOROG TOL BAEOLG
TOULG, TWV UEVTEWY KALAG TOLG MUl TEMUA TWV POETIWY TTOL ETLBIAAOLY GTOV BIGXO WG OPLANEG
ovvOnxec.

H Bektiotonoinon anattel 10V UTOAOYIGUO TAOEWY WOTE VoL EEXCPAALOTEL OTL LUAVOTIOLOLYTAL
T Teotnd xptnte. Iptv tov vmoloylopo v tdoewy 1 Bepponpactann xatavopy| Tov dioxov
elvat amaal T T Yo var yomotpononel wg elcod0g GTOV DTOAOYIGUO TWV TACEWY AL ETCL VX
ovvwnoloytotody ot Oeppinéc  thoelc.  Zvpmepoopotind, To  Pootxd  eQyadela  TOL
ovantoyOnxay  mplv v Bektiotonoinon  elvor  pa  oLYAETNGY]  LTOAOYLGHOL  TOUL
Depporpactanod TEOPIL naL Wit GLVEETYNOY] LTOAOYIOUOL TwvV Tacewy. Ot TaEATAVW
ovvapoetg Baotlovy ™ Aor toug oe povodidotates pebddovs. H ouvaptmon vroloyiopod
TAoEWY UTOEEL v Exel oay elcodo 1o Hepponpactond npowid, vo AapBavet Tig tdtdTNTEC TOL
vAxob oe ndbfle nouBo avakoya pe v Bepporpacia Tov nar pmoEel v StoyetoloTel
ovteOTEOTX LAMA. 1ot TV MeTOTOIN oY TwY ANOTEAECUATWY, Ol 1BLeg avaAdoELg ETEEENY Pe TIg
ovwvaptoelg mov avamtuynuav oto PROOSIS ot pe ™ toodidotaty pébodo twv
TeneUoUEVRY oTotyeiwv péow Tov SOLIDWORKS. H otatiuy Oepporpactoann aviduorn tov
Solidworks vrokoyilet v Oepponpactany natavourn otov dioxo. H ototiuny taoinn avadvon
TOL (BLOL AOYIOUIMOL LTOAOYILEL TNV XATAVOUY] TWV TUOEWYV XVIAOYX WKE TX POQTIX TOL
emBarioviat. Eivar Svvatov ta amotedéopata piag Oeppinng avddvong va etoaybodv otny
THOWT AVIALCY] Yl TOV GLYLTIOAOYIOUO Twv Bepuinwy tdcewy otig cvvoluég taoec. H
oLYHELOY] TWV ATOTEAEOUATWY TLG Depponpacioanng #ATAVOUNG UTOQEEL Vor YIVEL LELOVOMUEVX
YONOLULOTIOLWVTAG [t Tuyxin yewpetpio Sioxov oteofilov. Axorodbwg 7 motomoinoy twy
TROEWY  YIVETAL WUECW TOLWYV TEQUITWOEWY opTone. Ll T mepumtwoeg o xat J
YOYOLLOTIOLELTAL 7] YEWHUETOLN TWV TOLOV TEWTWY OlOUWY TOL CGLUTLESTY] LYNANG Tiieong TOL
nvnmoa NASA’s E3 oe Ospponpacia dwpatiov. Xty mepintwoy y o Sionog
TpocopolwveTal pe xatavopy bepuoxpaciac. H mepintworn y npocopowvetar pe v idax
yewpetola Siounov o1poBilov mov yenotpomombnxe ywo ™y notonoinon g Hepporpasiog.

To anoteréopata Tov TEOXLTTOLY ATO Tte dLO pebodoug éyouvy oe xabe nepinTwWoY enaUEKMS
upeg dtapopés. Enopévuwg, 1 ouyxprtina ypovoPopa pebodog twv nenepaopevwy atotyeinwy
umopet vo  aviataotabel and g pebodovg mov vhomombnrav oto PROOSIS.
2uumeQaivetal 0Tt ot GLVaETNoELS Tov avatLyOnray 6o PROOSIS eivar xatdAinieg yla éva
TEORANpa BektioTonoinong OTOL Ot ToELS YEELRLETAL Vo LTOAOYLGTOLY TOAAES YOQEC.

O onomog ¢ Bedttotomoinong etvat 1 pelwor Tov Bapoug TE®mvTag Toug Teptoptopone. Ia
awTd 10 AOYO, awvanthyOnne 6TO Aoylopind TOL EEYAGTYEIOL Wi GLVEQETYCY] LTTOAOYLOUOL
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Bapoug pe eloodo v yewuetpla dionov. H cuvaptnon yonotponotel Tov avaAutind tOno yio
TOV OY®0 ot T0 BAEOG Slo%OL UAL T ATOTEAECUNTA TG TULOTOTOLOLVTAL E T7] YOY0Y] TOL
epyxheiov vmoroyopov palag oto Solidworks. Ov petafintés oyedixopod eivor mavTa
1ATOLEG ATO TLC SLXOTAOELS TOL Slaxov. Ot TePLOPIGPOL ATOTEAODVTAL ATO TX ETMTEETOUEVX
0Pl TWV TAOEWY %0l TOLG YEWUETOUOLE TEQLOPLGLOLS TTOL POATOLY OQLGEVES OLULOTHOELG XL
g ovvdeowy pe oyéoelg petaéd tous. H pébodog molvtomov Nelder-Mead (Simplex)
yonotponombnue yi ™y elaylotonoiney tov Baoove. Xe xabe emavoahadindn 1 noatavour
Oepponpaciwy not Tdoewy ETUVUVTOAOYILETAL YL TNV AVAUVEWIEVY] YEWUETOLX Kol EAEYYETAL 1|
IXUVOTIOLY0Y] TWY TEQLOQLOUMY, ETUTAEOV ETAVALTOAOYILETAL HOL 1] TUUY] TNG OXVTIXELUEVINNC
owvdpong. Egdoov n Simplex eivar pébodog mov anattel pdvo v T TG AVTIHELUEVIUTC
oLVAETNONG, Ko Tt TEooTifetat oe avty pe xabe mapafidon evog teptoptopon. H pelwon
70V BAEOVG elvart LEOBLYVAUT] e TNV ADENOT] TWV THOEWY, ETOUEVWS ] AVTIXELLEVINY] GUVEQTYO
NATAOTOWVETAL e TOOTO TIOL 7] EAXYLOTOTOY|GY] T1)G GLUVETAYETAL LEYLOTOTOLYOY] TWY TUOEWV.
H avtitetpevins] ouvaptnon Sev eivat ana@ait)ta cuvey g aAla evar TAsOVEXTNa T1¢ Simplex
elvar OTL Sraryerpiletar o pn ovveyeic ouvapoets. H Beltiotonoinon vhomoteitar oe toetg
Stopopetinég nepintwaoetg, xalepio and Tig omoleg Eyet Sineg Tig ueTaBANTES xal TEQLOPLOPLOVS
obpgova pe ttg BrBhoyoapnég myés : Lolis, Gasturb, Armand. Kabe pla and avtég tig
uebodoug yonotponoteitar yla ™V BEATIOTOTONGY TV TOLLY TEWTWV SIOXWY TOL CLUTIECTY]
vYMing mieong g pnyoavne NASA’s E3. Emmniéov éywve obyuolom TV anoTeAeopdTwy
Beltiotonoinong pe 10 Aoyound «Gasturb Details 5». Xonoponombnue 1o apyeto
«DemoDisk» mov Bploxetoar md1 oto loyopind. H yewpetpla, o opuanés ouvbimeg, 7
Ospponpactont) xatavouy), ot petaBAnTeg ot ot teptoptapol endnxay idie oto GASTURB

nat oto PROOSIS. Ta amoteléopota 1Toy €OVTvd.

8.1 Ewoarywyn

Ot dioxor prag Oeppinng otpofropnyavng sivar Boonés ocvviotwoeg yrott otrpilovy ta
TIEQLOTEEPOUEVA TTEQLYLX ML T GLVOEOLY Pe Tov d€ova. Metd 10 oyedlaopd Twv TTEQLYIWY,
B moémet va oyedloTOLY Ol SionOL ETOL WOTE VO TNEOLYTAL OAEG Ol UNYAVIMES ATALTHOELS
eldwa otig vdnAég Bepponpaacieg mov emxpatoLy oto 61000, H Emova 1 avarnaplotd oe

onaplgMpa TNV NULTOPY] Tov cupmestn vdMAYc Teong g unyovic NASA/GE E3.

ﬁt —‘[‘;L_:'__ — ,I’h i‘

JIRIIRN ;'51..; THE
N L)) 3}

Ewkova 1: Skapipnua tng NUITOUAS Tou cuprieotr) NARG ieong tng unxovig NASA/GE E3
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To ouLVaEROROYN I BIo%OL %ot TTEQLYIWY UTOEEL Var SlaywELoTel oe VO vonTd Wép: to dead
weight xat o live weight. To live weight eivat 10 pépog touv Sioxov mov Bewpeitar Ot
TPOGYEQEL TNV UMYV OTNEEN MaL Elvat ALTO TOL UEAETATAL OE ALTY) TNV epyaata. Aéyetot
T PUYOMEVTONG POETIX TNG SuNg Tov palag xa ¢ palag tov dead weight. To dead weight
dev TpoaeEel aTNELEY, LOVO ETLRBUAAEL TO YLYOXEVTOIUO TOL YOETIO GTOV LTOAOLTO OLGHO.
Amoteleitar and o TTEELYLX KoL Tor posts Tou Sioxov. Ta posts eivar et8neG SLpUOQPWOELS
TV 0TOV SloXO YL T1Y TEOGAETY o7 Twy TTepLYiwy. To live weight unopet va AaBet dtapopa
oYNpaTa, Tol elvat T Baotnd TOL YENOLLOTOLODVTAL TEPLEGOTEQO 617 BtAtoypapla: To ring
type, 10 web type xat 10 hyperbolic type. Xtov ovpmieat) vning nicong g pnyovne E3 o
dlonog g mpwg Babuidag sivon ring type, g Sedtepng hyperbolic type xa g Toitng web
type. Xty Ewova 2 gaivetar 10 GLUVXQUOAOYNpa TOL SIO%OL PE TX TTEQLYLX XL )
Sraywototu] Yooy petald live xor dead weight. To uitpvo pépog eivar 1o live weight, to
yohalto pepog elva ta posts xat 10 Aeuno peEOG eivar ta mrepbytx. H ouvappoyn twv
TTeQLYIWY e TO Blo%o elval YOXAXQY), LIXOYEL UXL UK AOIAOTNTH OVAUECH OTO UATWTEQO
oNpelo TOL TTEELYLIOL %Al GTO AEYOUEVO rim , TO onuelo Tov live weight pe ™ peyoakbtepn
oaxtive. H mpoodptnon yivetow pe SLO GLUTANEWUATING CYNUXTX TOL TEELOELLOLY TNV
UETAXIVYOY] TOL TTEQLYLIOL AUTVIXG, TO €va elvar 6T Lo TOL TTTEELYLOL %At TO GAAO GTO pOSt
oL Slonov.

Ewkova 2: Ze auth TNV €lkova daivetat To cuvappoloynpa Slokou Kat mrepuyiwyv. To kitpwvo pEpog eival To live
weight , To yaAdllo Lépog eival Ta posts Kal To AEUKO HUEPOG ELVaL TA TTEPUYLA. Ta MTEPUYLA TIPOCAPTWVTOL OTOUG
SloKOUG HEOW TNG EMITAOKNAG LE TAL POSts.
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To oynpa evog Slonov pmogel vo meptypapel pe €L auTVIEG ATOCTACELS ATO TO KEVTQO
TEQLOTEOYNS

T4, 72,13, T4y 15, T
Ko €& naym otig avtiotoryeg axtiveg

t1, 85, L3, 84, L5, tg

Tbmoc ring: Avtog o Hnog Slonov Teptyedypetat and To TdY0g Tov Tov Hewpeitat otabepd oe
ndbe Oéon o Svo antvinég Oéoetg, ™V clwtepuy not ™y ecwtepny. I'o Tig evdidpeceg
ontivinég Oéoetg epappoletar Yooppny topeptBoin:

li=t =3 =1l =t; =t = lyim
1 = Tvore» Te = Trim

. Ts .
Ti=T1+(l—1)'T fori=1,..,6

H Ewdva 3 napovotalet mv topy evog dioxou ring yewuetplag.

Airfoil

Dead weight —i,
//“‘ rs
5
. . T.7 T4
Live weight ——» -, —r3
4
_,:,_,f

ty=ta=fa=t4=1t5=1tg

Ewkova 3: Topr evog diokou pe yewpetpia TUmou ring. Mavw amo 1o live weight, Bploketal to dead weight ano to
omnolo ¢alvetal To post KAl N agpoTtoun.

Tonoc web: Avtog o Hnog dionov napovataletor 611y Eova 4. Baoind tov yapantnetotind
elvai OTL éyet Tpla pépn pe otablepod mayog, to inner rim, To web xat o outer rim.

tl =t2, t3 =t4, ts =t6

ty <t,,t, <ts
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Blade root
+ Post

Quter rim

Quter Shoulder —1Is

Inner shoulder 3%

Inner rim

Ewkova 4: Tour) Slokou yewpetpiag web

Tomoc hyperbolic: Avtog o thnog Sionov paivetar otnv Ewmova 5. Eyet Vo pépn pe otabepo
Ty oG, T0 inner rim ot to outer rim. Baowég Stxpopég Tov and v yewpetpla web sivo 6Tt
o Ty otig Béoetg 3 uon 4 Sev eivar ioa petafu Toug not PetafL Twv axTvinwy Béocwy 2 xat
3 vmapyet xapnoly. To nayog oe nabe onpeio petald Twv 2 xar 3 divetar and ™V e€lowaon

[2]:

t;=t, + (¢ t)(ri_r2>d5f
i =t EALE2) Sy

O ovvteheotg oynpatog dsf<l emiéyetoar and tov yonot. loybovv ot maguudtw
OLOYETIOELS SLUOTATEWY:

tlztz,t5:t6

ty <t,,t, <ts
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Airfoil

Blade root
+ Post
te
Outer rim ~Ts
ts5 .
Shoulder =I5
ty €.
—ry
Outer web
Pl
ta 8
Inner web
T2
ta
Inner rim .
—
ty - 1
Bore
Centerling =—c—c—er—ec—c—c————————a

Ewkova 5: Tour| diokou yewpetpiag hyperbolic type

8.2 Ymoloyopotl yux to dead weight

E&owoetg yua ™y yewpetpla, 10 Bapog ot 10 #evipo Malog TOL TTEQLYIOL UTOEOLY VX
oavtanbodv anod ™y Bifloyoapia [5]. Eextveviag and v yewpetpla TG XeQOTOUNG 1ot
YONOLLOTOLOVTAG ALTES TG e€towoetlg umogel va vmokoytatet 1o dead weight ava TTepbyLO Kot
70 1évtpo palag Tou. Tote 10 Yuyonevtpd YoETio TOL TEOXAAELTAHL 6TO rim vroloyiletot
Al
Gy = — 20T 2
’ 2Ty imbrim
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8.3 Ynoloyiop.og Oepponpactoanod meogil

Yhomombnuay SvO TEOGEYYICES Y& TOV LTOAOYIOHO TNG OUTIVIMNG UATAVOUNG TG
Oepporpaoiag, po Tov dev AapPavet oY ™G TO PETABANTO TAYOG TOL SLEXOL %At PLLat TOV
10 hpBavet . T vao motomombovy 1o anoteléopata uot v SV, eytve Beppiny avahvo
evog Slonov pe g dvo mpoavaygepbeioeg pebodovg now pe 10 Aoyopind Solidworks mou
yonotponotel v tpladtdotaty webodo twv Tenepaopévey atotyeiwy. Yotepa cuyrptfnxay
TO. ATOTEAEGUATAL.

2V TEOTY TEQITTWOY YENOLRoTOotElTaL 1 hovodtdotaty ekiowon aywyng Oeppottag tov
Fourier oe #0MYOQINEG GUVTETAYUEVEG:

d?T 4 1dT

dr2  rdr
H napamave e€ioworn Avetar avodutind pe oplanés ouvbnueg tig Deppoxpasieg oto bore st
07O fim %ol TEOUDTTEL:

T(T‘) — Tbore - Trim In r +T.
lnrbore - lnrrim Trim rm

Xy Oebd1eEY TEPIMTWOY, 10 TEOPRANMa AapPavel vroYn 10 petafAnTd mayog Sionov
elodywvtag oty e€lowor Fourier v cuvelopopd tov mayoug oe xabe axtviny Beon péow
tov euPoadod Ap. To epfadov Ay eivar 10 nohvdpwmd epBadov péoa and To omolo dyetol 1|
Beppomra oe nabe antiviny Oéon. H e€iowor Fourier o auty ™V Tepintwo yoapetar g:

1 a<kA 6T>+._ aT
A, or gy ) TA4T Py,

H emwpavetn Ay meprypspetar oty Ewmove 6 o yioo plae axtiviny) 0éor 1 Siveton and v
ToEandTw e€lowon:

Ah,i = 271'7"1' ti
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Ewkova 6: To ykpilo tepdylo eival o Siokoc. To gppadov Ah oe kdBe aktviky B€on eival n Topn ™G UMAE
KUALVOPLKNG eTldaveLlag e To Sloko. H uimA€ emuddvela €xel kaBe popd aktTiva lon He TNV akTikh B€on tou diokou
mou pag adopd.

H tehevtaia cfiowon tov Fourier Staxpttonoteitor xot €tot uatoaoneualetal TOLSLXYOYLO

oLoTpa pe ayveotoug Ttg Bepporpasieg and o onolo mpoxdTTEL 1| ADGY.

H vlomoinoyn tov vroloytopod g Beppoxpaciog éyve ato PROOSIS pe 1 ovvaptnon

calcDiskT(). O ITivaxag 1 meptéyet ] yewpetpia, 10 MO xat Tig optaxes bepponpaoteg evog
dionov ateofiho

Station 1 2 3 4 5 6
R (m) 0.05 0.1 0.2 0.3 0375 | 0.4
t (m) 0.07 0.0225 |0.0125 | 0.01 0.04 0.04
Material INCONEL 718

Thore (K) 398.15

Trim (K) 823.15

Mivakag 1: H yewpetpia, To UAKO Kal oL oplakeg Bepuokpaacieg evog tuxaiov Siokou otpofilou

Axial
Distance

o (mm) &

e NN

50 100 150 200 250 300 350 400 450

Radial Distance (mm)

Ewkova 7: Huttoun tou diokou otpofilou

To anoteréopata ¢ Beppinng perétng oto Soldworks gaivoviat otnv Ewmove 8
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Temp (Kelvin)
8232e+02
. 7,807e+02
. 7,382e+02
. 6957e+02
. 6532e+02
I 6,107e +02
. 5,682e+02
. 5,257e+02
4,831 +02

24,4062 +02

3,981e+02

Ewkova 8: Elkova armo ta anoteAéopata tng AUong Tou Aoylopikou Solidworks

210 povtéro tou dionov oto Solidworks tonobetBnmnay aabntipeg Bepponpasioag oto puéco

eninedo Onwe aivetar oty Ewdva 9 yio v amodutmon tov axtvinod Oeppoxpactanod

TEOYIA

100

Ewkova 9: Ta uimAé onueia elval awoBntrpeg Beppokpaciag tonobetnuévol oto péco enimedo tou Slokou yla Tnv

anoKTnon tou Beppokpaclakol TPodiA.

[Mopoxatew paivetar 1 cLYXELEY TWY ADCEWY TOL TEOXLTTOLY ATO TG BLO MEQLNTWOELS UE TV

Abon tou Solidworks.
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Ewkova 10: Aldypoppa cUYKPLoNG TNG AVAAUTLKNG povoditaotatng AUong Kat Tng AUong tou Solidworks

850
800 |
750
g 700
2 650 F
600 f
550 |
500 F
450 |
400 F = - =+ T(NUMERICAL)
350 L L L L
0 100 200 300 400 500

Radial Distance (mm)

)

Temperatur

O T (SOLID)

Ewkova 11: Aldypappo oUyKpLong tng oplBpnTikng Aong kot tng Auong tou Solidworks.

Eivar gavepd 0Tt 1 aptBunmnn Abor elvat TO ®OVT& OT1V TEAYRATIHOTNTO %Al YLot AUTO
YOYOLLOTIOLELTAL YL TOV DTTOAOYIOUO TWV TAOEWY UL UXT EMEUTAGY Y 17 BektioTonoinoy.

8.4 YToAOYIOPOG TWY T&CEWY

To onpovtindTepa YopTia Yo Tov oyedlacpd Tou dioxov eivar T Oepping, Ta PLYOUEVTOHG
TOL (510D TOL BlOKOL AL TA PUYOAEVTOIXA TWV TTEELYLWY TOL nxAeitat v oTnEiket o dioxog.
[1]. H pebodoroyia mov avantdoetar Oewpet eninedn eviating x#a1dotoGy), KUEAODVTAL OL
uetaxBorég g Taomng xat g Hepponpascing oty akoviu Stevbuver, dnAudn xatd 10 mayOC
0L Slonov. XENOLLOTOLELTAL 1] ATAOTOLYOY] TOV IIXOWY YOVIOY AOYW WXOOY LETATOTIOEWY.
Ot dioxot ocvvdéovtar pe Tov a€ova (Eow OUXTLALWY 7] XWVWY OL OTOLOL Elval TOAL TLO
eDUOPUTTOL A0 TOLG Blonovg nat Yo avto Bewpeltar o1t Sev emPBaAovy KaVEVX AUTVIIHO N
TeEUpeEELtoand poETio. Lo avtd 1 opLany] cuvbNuN axTvinyg Tdog oto bore eivor pundeviny
To péoo eminedo tov Sionov yweiletat oe oTovyeia Tov opilovtat and Y oTOlYEWSY] axTive
dr , ™ otoryetmd yovie dO xor ™y axTviny] amOOTHOY] TOL KEVIQOL TOLG ATO TO UEVIQO
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TEQLOTEOYTS TOL Slonov, OTwG Yaivetar oty Ewova 12. H avdivon nov axolovbeitat yla tov

LTOAOYIGUO TWV TAGEWV avTAEiTaL Ao 11 BrBAtoypapia [2].

oF,
Fr+ —a—; dr
A
dr d0/2
B /

[ Fo
/ o

Fr

Differential Q

element ’r

1

ri

o

Section A-A

Elkova 12: Alaxwplopdg tou pécou emumédou tou Slokou og oToLE .

ATO v 100pEOTX TwV OTOlYElWY TEOXLTITEL 7] Bootny] Stapopnt| eélowa] Lo TLG TROELS TOV

olorov:

E(trar) — tog + tpriw? =0

O 1doeLg TEOXLTTOLY ATIO TO GLYLTOAOYLGPO DEQUIMMY UL UNYAVIMOY TROEWY :

o, romy [oF ]
Og O-én O-g
o |_|or|, |
Trz - ’L',rfé ‘[77:2
Tgz Tglz ng
Tro m T
-rQ - L Ty |

ZOPpwvo JE To YeVrevpevo vopo tov Hooke toybouy:
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C,y Cy Cizs 0 0 07
Ciy Cp Cps 0 0 0O
=[G Ca Ca 0 0 0
0 0 0 Cyu 0 0
0 0 0 0 Css O
(0 0 0 0 0 Cgl

Omov T eivar 1 Swpopd g Oeppoxpaciog and 11 Oeppoxpuciar avooEag xut ot
TEALOEYPWOELS LTOAOYIOVTaL WG e€Ng:

du ]
58 T
| €0 | -
£Z
e=|y |=|_Cizdu Cyu
[YQZJ C33dr Csi3r
Yro 0
0
0 ]
_ - [ a;
B o
.39 C C
B _ A8, 228,
B = ﬁrzz = Cs3 " C33 o
0
,BHZ O
—ﬁr@— | 0

Me eniluom WG TEOG TNV XATLVIAY] AL TEQUPEQELNNY] TATGY] TOOUDTTEL:

du Uu
0T=AE+B;—AarT—Ba9T
—Bdu+Du Ba, T — DagT
% =5 ur r o %o

'Onov ot cuvTeheoTéC elvat:

A= C11C33 B Clz3 B = ClZCS3 - 613623 D= CZZC33 - 6223
C33 ’ C33 ’ C33

Kot 1o otoryetor Tov nivoua ehaotinoTnTag elvat:
2
E, (EQ — ETVHT)
Eg — 2E,v§,
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C
22 Ep — 2EVE,
ErEHVHr
Ciz = Cp3 =
12 23 Ep— ZErv(Er
.- Ever
¥ By — 2E02,

Ot e€lowoetg #aAOTTOLY 1V TEQITTWOY] TOL AVIGOTEOTOL LAXOL

Ot optanég ouvOrnneg etva

du u
O—r,bore=AE+B;—AarT—Ba9T =0
Tbhore
du u nyMyT,
Oryrim = A——+ B——Aa,T — BayT =Mo)2
’ dr r rrim 2T rimt

Or mapamavew Staopinés eiowoetg xat optanés ouvbnueg Staxpltomotodvtar xal HoTEQX
ovvdvalovtat wote va Stapoppwbetl evag TOLSLAYOVIOG TUVOXAG UE AYVOCTOLS TG UETATOTIGELS
oe ndbe nouBo. Amo 1 Aon Tov GLETNHATOS LTOAOYILETAL TO SLAVLOUX TWV KETATOTICEWY
N UXT EMEUTAOY] Ol ANTIVINES uat TepLpepetanes taoele. H von mises taom Sivetat and tov
TOTO

_ (o, —0g)? + o5 + o?
Opon Mises — 2

O vnokoylopog Twv TaoewV Yivetar pe ™V yeNon g ovvaptong calcDiskS_FV() mov
dnuoveyndnre oto PROOSIS.

8.5 [Tiotonoinon Twy aNOTEAECUATWY TWY THOEWV

[ v motomoino twv anoteléopdtwy oyedidotxay oto Solidworks ot Sioxot twv ToLwY
npwtwv Bubuidwy tov HPC g unyavng NASA’s E3 7 yewpetpio Twv onolwy Teptyodpetot
otov [Tivara 2 . Kabe dionog npocopotwbnxe pe 1o Solidworks oe Sbo cevapta pdptiong, T
Loac case a ot b mouv neprypdgpovtat otoug Iivaneg 3 nor 4.

99



Aptbpog Babuidog 1 ‘ 2 ‘ 3
Twvion torydntor w 1300.3

(rad/s)

Yhnd Ti-8-1-1 Ti-6AI-4V Ti-6Al-4V
[Moxvdtnta (kg/m’) 4370.0 4430.0 4430.0
TOrog dlonov RING HYPERBOLIC WEB

R1 (m) axtiva oto 0.104071 0.106618 0.106278
Bore

R2 (m) 0.114167 0.121019 0.120074
R3 (m) 0.124264 0.140107 0.153574
R4 (m) 0.1343061 0.169950 0.198640
R5 (m) 0.144458 0.196733 0.217105
R6 (m) axtiva oto 0.154554 0.202010 0.230300
Rim

tl (m) 0.093678 0.032923 0.024693
t2 (m) 0.093678 0.032923 0.024693
t3 (m) 0.093678 0.015273 0.006238
t4 (m) 0.093678 0.007495 0.006238
t5 (m) 0.093678 0.046217 0.028137
t6 (m) ITayoc oto0 0.093678 0.046217 0.028137
Rim

Mivakag 2: MAnpodopieg yla toug TpeLg mpwtoug diokoug tou HPC Tou E3

[Tepintwon wopTioNg

o

T"ewpetoio, YAno BA. TTivora 2
Aptpog BaOuidog 1 2 3
OeQLONEACLANT| UATAVOUY] - - -
Or bore (MPa) 0 0 0
Orrim (MPa) 0 0 0
Yrop€n Quyorevioummy 1300.3
POOTIWY AOY®W YWVIUUNG
tayhnTag (rad/s)

Mivakag 3: Nepypadn g nepintwon ¢poéptiong a
[Tepintwon woptong B8
I"ewpetoio, YAno BA. TTivora 2
AptBuog Babuidag 1 2 3
OeQLONEACLANT| UATAVOUY] - - -
Or,pore MP2) 0 0 0
Orrim (MPa) 89.7 70.6 61.6
Yropén @uyorsvtomwy 1300.3

POOTLWY AOYW YWVIUUNG
taryhnTag (rad/s)

Mivakag 4: Neplypadn Tng nepimtwong dpoptiong B
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210 TPLTO CEVAELO POETIENG TepthapBaveTtat 1) DeQUOXQAGLONT] UATAVOUT] KAt Yot AVTO 1|
TEOCOPOIWOY Yyivetal pe Tov Olono G6TEORIAOL Pe TOV OTOoLo EYve 1 TOTOTOLNGY TwY
Oepporpactwv.

[Tepintwon popTioNg Y

Tewpetplo, YAno BA. IMivaro 1

OepUOAEACLANT] HATAVOUN Tbore (K) 398.15
Trim (K) 823.15

Or,pore (MPa) 0

Oy rim (MPa) 66.8

Yropé€n puyorevipummy 392.7

POOTILV AOYW YWVLIATG

taryhnTag (rad/s)

Mivakag 5: Nepypadn tng nepintwong ¢poptiongy

Xt povtéda Twy Sionwyv oto Solidworks torobethnuay arobntipeg tdong antvind oto péco
eninedo tov dionov ya vo Angbel éva antvind TEoYik Tdoewy. Emmiedv yio va mpocopotwbet
7 pNSevin] opLany) axtvint] 1o oto bore yonotponoOnxe to epyadeio inertial relief mov
emBariet oe uabe nopPo wo avtifetn adpaveronn Sdvapn pe t1eOMO moL O Slonog Vo
tooppomel ywolg va yeewxloviar edpdoelg ot omoieg Oev Oa  avtamoupivovtav oTnv
npaypatndo™ta not O eSvav Aavbooupéve amotedéopota. Avtd ovpPaiver yrott oTNY
TOUYUATIMOTY T UAVEVY OYUELO TOL OloUOL Sev Elval TEQLOPIOUEVO e U1OEVINY| HETATOTLOY
naxBwg oo @uyoxevtpilovtar mpog ta €w. Avtifeta, 01O epmoEMO AOYIGUIMO oV AATOLX
EMPAVELX TOL OLOXOL ETUAEYOTAV ooy €8paoY TOTe OAx Tar onpeio )¢ Oo eiyoy undeviun
UETXTOTLOY TOLAAYLOTOV o€ évay d€ova. T vao Bewpnbel o dlonog mAnpwe toopponnpévog
MO TO AOYLOPO nat va bhomownfel 1 avddvon Oa meénet eite va meplopiletan pe SLapoeg
edpaoelg 7 nivr o Tov ae OAoLG Toug dEoveg elte va yonotponowbel 1o epyakeio inertial relief.

[N v mepintwon optiong y étpeée apyna o Oeppnn avaivor touv Slouov ot To
ATOTELECPATA AVTNG ATOTEAECOY €l60S0 Yo TNV Taou] avahvon oto Solidworks. A&ilet va
onpetwbel 01t 0 Abtng Touv Solidworks Sev Stayetptlotay ™V TALTOYEOVY XAAAYT TV
t13totNTwy T0L LAKOL oe xabe xopfo avdioyx pe v Bepporpacia. I avtd 0 AOYO, OL
Stotteg emhéyOnuay oe po otabepy Bepporpacia xar yonoiponombnuay 1ot xar oToOV
nwdwa tov PROOSIS. Téhog, éytve perétn avefaptnolag TAEYURTOC GTOLG SIGXOVS GTO
Solidworks. Ta anotedéopata napatifevtot moapundto:
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IMtoe Tv BaOuida 1

200 200.0
- |3~.g__=| - 180.0
TE--a_ g - 1600
~——_
THmaeg g - 140.0
100 b == ‘
= - 120.0
o
>
o 50 F - 100.0
o
&H - 80.0
0 GG Or  ©: =0=10 - =0=""P-000G0-00-0:6.g
10p.0 110.0 120.0 130.0 140.0 150.0 16 5.060'0
- 40.0
_50 -
- 20.0
-100 — 0.0
Radial Distance (mm)
O  orr (SOLID) — - = - arr (PROOCSIS) 0O ott (SOLID)
------ ott (PROOSIS) Geometry

Disk Half Thickness (mm)

Ewova 13: KapmuAeg tdoswy ya tnv 11 Babuida tou NASA/GE E3 HPC otnv nepintwon ¢pdptiong a

Disk Half Thickness (mm)

530 200.0
B-a
S-. L
130 | s 180.0
-“"E‘“'Bﬁ--g.
E- - 160.0
330 | B88-p g _g
- 140.0
T 20T L 1200
=
< 130 } - 100.0
o .06 00 © 00 —0-0 -0
5 Co--9:-—-'9©-0¢ i
< 30 B e_ -G or : e -o‘ IO- 1 1 L 80‘0
- 60.0
-70 100 110 120 130 140 150 160
- 40.0
170 F L 200
-270 0.0
Radial Distance (mm)
O  orr (SOLID) — - = - orr (PROOSIS) O ott (SOLID)
------ ott (PROOSIS) Geometry

Ewkova 14: KapmUAeg tdoewy yia tnv 11 Babuida tou NASA/GE E3 HPC otnv niepintwon ¢poptiong B
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IMtoe ™v BaBuida 2:

______ ott (PROOSIS)

Geometry

310 200.0
260 | o - 180.0
Bw
Beeg - 1600
210 | E"EE"'B--BG..GE
‘Eﬂ-ﬂ-ﬁ-u-gqal - 1400
<160 | “a 120.0
o aa 3 .
s BE-
<110 } - 100.0
< O~ ¢
% 60 f 0@ 0O ® o %X . 800
o) N
o0 " Q
000 ®° a o - 60.0
10 . ~po0© | | | | | | Q0.q
L 40.0
100 110 120 130 140 150 160 170 180 190 200 0
40 F
I\ / - 20.0
-90 0.0
Radial Distance (mm)
©  orr (SOLID) - - = - orr (PROOSIS) O  ott (SOLID)

Half disk thickness (mm)

Ewkova 15: KapruAeg tdoswy yia tnv 21 Babuida tou NASA/GE E3 HPC otnv nepintwon ¢optiong a

700

600

500

400

300

200

Stress (MPa)

100

-

-100

-200

200.0
R o - 180.0
DEE‘Eﬂﬁ o
Geag g- =-~ |
5 G-EE-eggmad @ 160.0
i o Rog ag - 1400
el -
PR e | 1200
[ o-°'0 ‘@
oo . - 100.0
B o9 \
0o o Qo - 80.0
5 09 ~e Fe)
00o® ©.ao- | 600
ﬂpp 1 1 1 1 1 1 1 1 1
- 400
0 110 120 130 140 150 160 170 180 190 200 0
L - 20.0
I 0.0
Radial Distance (mm)
O  orr (SOLID) = - = - orr (PROOSIS) O  ott (SOLID)

------ ott (PROOSIS) Geometry

Half disk thickness (mm)

Ewkova 16: KapumUAeg tdoewy yia tnv 2" Babuida tou NASA/GE E3 HPC otnv niepintwon ¢optiong B

103




IMtoe ™v BaBuida 3:

370
- 140.0
320 F o~
70 F BBBESELE L 1200
= ¥xoC] -
- pIci=ct=) ﬁﬂﬂ-ﬁﬂﬁﬂﬁsﬂﬁ 1000 E
- EEE B o =
= S| 2
o | aun [}
=" Wag_ g - 800 &
a V0® o9 7 E
2120 } OP 0'00’00-0060 - ;
& o - 600 @
® % 3
70 F o0 =
o 00 ©
0000 0, - 400 T
20 f 0P Y5,
- 1 1 1 1 1 1 1 1 1 1 Nnd @ W1
30100 110 120 130 140 150 160 170 180 190 200 210 220 230 240200
- I\ 00
Radial Distance (mm)
O  orr (SOLID) — - = - orr (PROOSIS)
o ott(SOLD) = =e=—- ott (PROOSIS)
Geometry
Ewkova 17: KapruAeg tdoswv yia tnv 31 Babuida tou NASA/GE E3 HPC otnv nepintwon ¢optiong a
650
- 140.0
550 \EBN
Peg =
“Bag. Iog DU‘U--&& - 120.0
a0 | = FET ooy R
g 3
Qg - 1000 E
s pOUCTO00000s L Tmg
P d Q - 800 £
W 250 F b r 2
g d o £
a @ \o - 600 @
150 F o- "\O L]
9’o < q_t;
.00
. ~%o0. _ i I
50 | 0% ) 400
D‘IO 1 1 1 1 1 1 1 1 1 1 1 1
50160 110 120 130 140 150 160 170 180 190 200 210 220 230 240200
-150 0.0

Radial Distance (mm)

O  orr (SOLID) — - — - orr (PROOSIS)
O ott(SOLD)  ====- ott (PROOSIS)
Geometry

Ewkova 18: KapumuAeg tdoswy yia tnv 31 Babuida tou NASA/GE E3 HPC otnv nepimtwaon ¢optiong B
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INo v Toyada yewpetpio dioxov o1oBidov oty tepinTwo YOETIONG Y :

1000 200.0
- 180.0
800 |
- 160.0
600 - 1400 E
E
= - 1200 @
& 400 | o
S £
e - 100.0 .8
g 5
g 20 L 800 ¥
°
=
0 - 600 £
4%0
- 40.0
-200 f
- 20.0
-400 0.0
Radial Distance (mm)
O  orr (SOLID) O  ott (SOLID)
= « = grr (PROOSIS) e «= gtt (PROOSIS)
Geometry

Ewkova 19: KapmuAeg tdoewv yia Tov §ioko oTpoBLAlou Kat Thv mepintwon ¢optiongy

Xvpmepaivovpe 0Tt ot dvo pebodol éyovy TOAD 1OVTIVE XTOTEAECUXTX 1oL ETOL TO LOVTEAO
mov avantdybnue oto PROOSIS pmoget va aviinataotoet my uebodo twv menepaopévmy
oTOoLyElwY ToL elvar TOAD TiLo YEovoBopa xabng amattel TOAD TeptocdTEEOLS ©OUPBoLE. AvTd
TO UAVEL IOLUUTEQU YOYOLUO YL TO TEORBANUX g BEATIOTONOGG OOV O LTOAOYIGUOG TWY
TXOEWY YIVETAL TOMES POQEEC.

8.6 BeAtiotonoinon

2e a1 10 nePaAato mepypapetal 1 pebodog yua v Beltiotonoinom twv dioxwy. I'a avto
T0 AOYO QVXTTOOETAL GLVAQETYOY] LTOAOYIOCUOL TOL [BdEOLG TOL OlouoL pe €lcodo TNV
YEWPETOlX TOL. X1 ocuvvéyelx Onprovpyeitar éva  experiment oto PROOSIS  onov
BeAlttotonotobvtar ot Sionol Twv Tewy TEMTwy Bubuidwy tov HPC NASA’s/GE E3. Kde
dlonog Beltiotomotettan uatd TEelg Stxpopetinég mpooeyyloeg :Lolis [9], Gasturb [5],
Armand [1]. Eve 7 avuietpevin] ouvdptorn now o toownd xprtrota Hewpodvtar xowa, xdbe
TePINTwoY emtBarier Tt Sec C HETAPANTES OYESLAGUOL, TEQLOPLODS UXL GULOYETIELS
uetad petafAntwv. Ot dtaotacelg Tov diouov mov dev elvar puetaBANTES oyedlacpol 1] dev
ovoyetilovtat pe dAReS MoEapevoLy toeg pe ™V aEyen Tty tove. H pébodog Simplex twv
Nelder Mead ypnotponoteitar yio v Bekttotonoino.

105



H eiowon vmoloyiopol g walag evog dioxovu etvar 1 [1]:

M =2m¥)23 [ (s = 7) + L (53 — 7))

Evag 8iorog thnov web ywoiletar oe mévie meptoyés onwg gaivetat otnv Ewmova 4. Xe nabepio
MO ALTEG Lo LEL

t=m-r+n

Enopeveg ot 6uvtekeoTéc moL YO1OLUOTOLOOVTAL Yot TOV LTOAOYLORO ToL Bapoug Peloxoviat
ano TG OYETELG:

_bn Ty
Ti+1 =7
tivq —t;
=t =1
‘r'. —_— ‘r'.
jt+1 ]
Forj=1,..5

TN ™ perét e Behttotomoinong Hewpodpe OTL e GAOLS TOLG TOHTOLG Slonov, O Ta
onpeto Tov optlouvy T yewpetolo evwvovtat pe eubeieg, emopevwg 7 e€lowor LTOAOYLGOD TOL
Bapoug epappoletar avtovota oe OAeg Ti¢ Babpideg.

Ot petaPAntéc mov mpemet v uevouy otabepég eivar exeiveg mov oyetilovtat pe 11 QO TOL
epyalopevou pecou, dnhadi) ot 1s nat ts . To méyog 610 rim elvat Lo pe Ty a€ovint] GLVIETOOoX
™G YOEOYG TOL TTEELYLOL UL 7] ATV GTO rim eivart (60 Pe TNV antiva TodOG TG AEQOTOUNG
uetov 1o vog g ptlag Tov TTEELYLOUL.

le = Chiax

Te = Tairfoil hub — Pbiade root

To Tod ¥ELTNEL VLot TNV UIXOVIXY] AVTOYY] TOL SLOUOL ATAULTOLY 1] LECT] TTEQUPEQELANY] THOY|
vTohoYopevy 610 120% twv oTEoPrV va elvat pixEoTeEn 1 Lo pe to 0.9 Tov oplov weytoTyg
AVTOYNG OE EPEANLOMO ETAEYIEVO 0Ty péan Deppoxpacta dioxov. EmmAcov, emBailovy 1
ueylotn Taor von Mises va elvat (xpOTeEY 7] (07 TOL 0QPLOL BLXEPEONG GTNV HUEVLOTY
Bepporpacia Sioxouv Statpepévo pe tov cuvteleotn aopadetag 1.1

0-9'&779120
06,avg 120 < 0.90y7s 4t avgr => RBM150 = 090 e <
' UTS
Oy min OyonMises,max
OyonMisesmax < 11 => RDM = oy <1
1.1
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It v nochoepBet 7 mepInTwoy 6Ty OTolo UATOLEG TROELG EIVOL XQVNTIMES 1] LECT] TEQLPEQELUXAT]
1667 voloyiletat Ao TOV TOTO:

Omnouv N 10 mAinbog twv xouBwv.

210 TEORAUOTA U YAVIUNG AVTOYTS 1] HElwor] TOL Baoug eivat toodvvapy pe ™V abénon
TV  Taoewyv. ETOopévws, 7] GVTIXEIUEVINY] OLVEQTNOY| ETAEYETAL WUE TEOTO TOL 7]
eAXYLOTOTO G TNG OONYEL BTNV KEVLOTOTOMOY TwV Tdoewy. Egocov 1 uebodog Simplex dev
XTMXLTEL TOV LTOAOYIOUO THEAYOYWY ot SloyelolleTal %ol OLVEYELS OLVAQTYNOELS 1
OXVTIXELUEVINT| CLVAQTNOY] ETUAEYETAL WG:

1
F= E(max[RDM, RBM] — 1)?

Ot meptoptopol Tov entBAALOVTOL 0 OAES TIC TEQITTWOELS EIVAL TO BROOG VO U1V EVOL XEVNTIHO
noL 7 IEOTEEY axTiva Tov diouov va eivar peyaddtepn and 1.1 wopeég v péyot antiva
aéova

M>0

> 1-1rshaft,max

8.6.1 Behtiotonoinon 17 Babuidag HPC E3

O 8ioxog sivar tnov ring. Adyw ¢ ankoTTag TV TEOPRAUATOS OAEC Ol TEQUITRGCELS
Bektiotonoinong eivar iSeq. H yewpetplo meprypdpetar and v eowtepny] xat e€wtepnn
ontiva xa 10 Ty og Sioxou . Epocov 1 e€wtepuy autiva nat to méryog eiva tponaboptopeva

7 povadnr] peta AN oyedtacpol eivat n: 1y
Ioybouvv ot napardtw cvoyetioels:
ti =t =13 =1, =t =l = Cprax

Te — 1

5

rn=r+0—-1)- fori=2,..,5
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Ta anotedéopata paivoviar otov Iivarag 6:

Moalec

Ay pole (kg)

Béhniom pala (kg)

Arapopd (%0)

16.806 10.218 -39.2
Apymnn yewpetola
Bore Rim
r(m) 0.1041 0.1546
t(m) 0.0937 0.0937
Tehnn yewpetplo
Bore Rim
r(m) 0.1263 0.1546
t(m) 0.0937 0.0937
Aoyot tdoewy
Initial Optimum
RBM_120 0.630805 1
RDM 0.596673 0.862939
Mivakag 6: AntoteAéopata BeAtiotonoinong 1ns Babuidag touv HPC E3
0.05
0.045
0.04
0.035
£ o003
é 0.025
E 0.02
% 0.015
T o001
0.005
0
0.1 0.11 0.12 0.13 0.14 0.15 0.16
Radial Distance (m)
———LOLIS/ARMAND/GASTURB INITIAL

Ewkova 20: ZUyKpLon METOEL aPXLIKAG KO TEALKAG YEWHETPLag diokou tng 11 Babuidag tou HPC E3.
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8.6.2 Behniotonoinon 2% Babpidag HPC E3

O tmog dioxov eivon hyperbolic. Ot otabepéc petaBintég nat ot xowég ovoyetioetg petad
petaBAn @y etvot:

Te = Trim
te = trim
ts =l
t1 =1t

Kot Lolis:

Eméyovtat wg petaintég oyediaopol ot: 11,15, ty, ty

Kot emtBadlovior ot Toupand e YEWUETOHOL TEQLOQLGUOL
rn=>11'n
rnn=>11'r3

15t4£t2£2t6

£ 002

2

£ o.01 —— INITIAL
o

N

% 0 LOLIS
T 0.1 0.12 0.14 0.16 0.18 0.2

Radial distance (m)

Ewkova 21: ZUykplon HETafl OpXIKAG KOl TEAKNG YewUEeTplog Siokou tng 27 PBabuidag tou HPC E3 yw
BeAtiotomnoinon katd Lolis

Katé Gasturb:
Emkéyovtar wg petaintég oyediopol ot : 1,15, T, ty, t3, ty

Ot yewpeTEoL TEELOPLTOL elvat:

Te — T
01<-4—3<1

t3
0.15<—<1
ls

To — T
02<-2 %
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£ 002

(%]

(%]

()]

% 0.01 —— INITIAL
£ 0 ——— GASTURB
‘©

T 0.1 0.12 0.14 0.16 0.18 0.2

Radial distance (m)

Ewkova 22: ZUykplon HETAfl OPXIKAG KoL TEAKNG YeEwMETplag Siokou tng 27 PBabuidag tou HPC E3 yu
BeAtiotomnoinon katd Gasturb

Kotd Armand:
MetaAntég oyedlaopo & Ty, 1,13, Ty, t1, L3, ty

Tewpetonol neploplopoi:

rn—r >0

T3 - 7‘2 > 0

7, —13>0

5 —14,>0
£ 002 i —— INITIAL
a
@ ARMAND
= T—
©
T 0.1 0.12 0.14 0.16 0.18 0.2

Radial distance (m)

Ewkova 23: ZUykplon HeTafl OpXIKAG Kol TEAKNG YewUeTplog Siokou tng 27 Babuibag tou HPC E3 yw
BeAtiotomoinon katd Armand.
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Babpida 2

Apymo Bapog (kg) : 9.695

Anotehéopata Bdooug

[Tooaoéyyion Béhuioto Bapog (kg) Awapopeg(%0)
Lolis 8.815 -9.08
Gasturb 8.738 -9.87
Armand 8.289 -14.5
Tewpetplo
Ay Lolis Gasturb Armand
) ) | ) |rm) |qm) | m) ] )

110.1066 |0.0329 |0.1180 | 0.0307 |0.1179 |0.0322 | 0.1119 0.0323
210.1210 |0.0329 |0.1316 | 0.0307 |0.1296 | 0.0322 | 0.1200 0.0323
310.1401 | 0.0153 | 0.1401 |0.0153 | 0.1401 | 0.0156 | 0.1359 0.0146
410.1700 | 0.0075 |0.1700 | 0.0082 | 0.1700 | 0.0073 | 0.1768 0.0076
510.1967 | 0.0462 | 0.1967 | 0.0462 | 0.1970 | 0.0462 | 0.1967 0.0462
610202 |0.0462 |0.2020 | 0.0462 |0.2020 | 0.0462 | 0.2020 0.0462
Aoyou tacewv oto Béltioto

Lolis Gasturb Armand
RBM_120 1 1 1
RDM 0.9364 0.9304 0.9372

Mivakag 7: AnoteAéopata BeAtiotonoinong déutepng Babuidac.

8.6.3 Behniatonoinon 3™ Babpidag HPC E3

O tomog Stonov eivar web, enopévwg Loy doLY Ta TXEANATE

Te

= Trim




Kota Lolis:
MetaAntég oyedaopol : Ty, 1y, ty, t3

Xvoyetioelg petaBANToy:

t, —t
r3=r2+2—;

2tan(§)

ls — 1ty
Ty =T

> 2tan (%)
Tewpetoinol neploplop.oi:
rn=>11'n
=113

15 - t4_

IA

tzSZ't6

0.016
E INITIAL
~ 0.012
2 e LOLIS
£ 0.008
92
< 0.004
=
T 0
0.1 0.12 0.14 0.1 0.1 0.2 0.22 0.24
Radiaﬁ distance fgm)

Ewkova 24: IUOykplon HETOEL OpXIKAC Kol TEALKNAG Yewuetplag Siokou tng 37 Baduidag tou HPC E3 vy

BeAtiotomoinon katd Lolis.

Katd Gasturb:

MetaBAnteg oyedtaopou : 1y, 1y, 15, Ly, t3

Xvoyetioetg:
t, —t
r3 =71y + 2—;
2tan (E)
ts — 1ty
Ty =T
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Tewpetonol neploplop.oi:

Te — 15
0.1< <1
ts
3
015<—=<1
te
n—n
0.2 < <1
ls
0.016
€ INITIAL
= 0.012
A ——— GASTURB
2 0.008
v
©
€ 0.004
=
G
g 0
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Radial distance (m)

EwkOva 25: JUykplon HETOEL apXKAC Kol TEALKNAG yewuetplag Siokou tng 37 Babuidag tou HPC E3 vy
BeAtiotomoinon katd Gasturb.

Katd Armand:
Mertafintég oyedopol: 11,15, 13, 1y, ty, t3

I'ewpetowot meploptopol:

=1 >0
T‘3 - rz > 0
7, —13>0
5 —1,>0
0016 —— INITIAL
€
= 0.012 ARMAND
wv
2 0.008
¥4
©
£ 0.004
=
5 0

0.1 0.12 0.14 0.2 0.22 0.24

Ragi%?dista n%'el?m)

Ewkova 26: JUykplon METOEL OpXKAG Kol TEALKNG yewpeTplag diokou tng 37 Babuidag tou HPC E3 yua
BeAtiotomoinon katd Armand.
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BoOpida 3 Apymo Bapog (kg) : 8.527

Anotehéopata Bdooug

[Tooaoéyyion Béhuioto Bapog (kg) Awxpopég (%0)
Lolis 7.222 -15.3
Gasturb 06.429 -24.6
Armand 6.72 -21.2
T'ewpetoio
Ay Lolis Gasturb Armand
) ) | ) |rm) |dm) | m) ] )

110.1063 | 0.0247 | 0.1099 | 0.0235 | 0.1087 | 0.0248 | 0.1136 0.0240

210.1201 |0.0247 | 0.1211 | 0.0235 | 0.1165 | 0.0248 | 0.1191 0.0240

310.1536 | 0.0062 | 0.1331 | 0.0060 | 0.1325 | 0.0062 | 0.1471 0.0058

410.1986 | 0.0062 | 0.2019 | 0.0060 | 0.2132 | 0.0062 | 0.2112 0.0058

510.2171 |0.0281 | 0.2171 | 0.0281 | 0.2195 | 0.0281 | 0.2171 0.0281

610.2303 |0.0281 | 0.2303 | 0.0281 |0.2303 | 0.0281 | 0.2303 0.0281

Aoyou tacewv oto BéltioTo

Lolis Gasturb Armand
RBM_120 1 1 1
RDM 0.9643 0.9610 0.9534

MNivakag 8: AmoteAéopata Baltiotonoinong 3¢ Babuidag tou HPC E3

Téhog onpewwvetor OTL gtpele pio mepintwor Bekttotonoinong pe to hoyound Gasturb
Details 5 sou pe 10ov xwdma mov avantdybnre oto PROOSIS yur va motomombovy ta
anoteréopata. IToayuatt 1 Béltiot Ao TOv TEOEXLTTE TAY KOVTLVY).
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8.7 Avorepokalwor] ,CLUTEQROUATA UKL TOOTAOELG

e auTy] T OIMAWMUATIN EQYXTLX, aPOL Eytve eXTEVNC MeAeT!] Twv PBLBAMoypapMwy TNywy,
ovantoyOnuay epyareir 6to PROOSIS yia 10 oyediopd o 11 Behtiotonoinoy Siouwy
Oeppinwv otpofhopnyavev. Abo Baoinée GLVXETNGELS YOYOLLOTOLOLYTAL: 7] GLVRQTYOY
LTOAOYLGOL TOL DepponEaclanod TEOYIA 1oL 7] GUVAETYGY] LTOAOYIGUOD TWV TAGEWY TTOL
gyel wg eloodo o amoteréopata ¢ Beppnung avidvone. Ta anotedéopata Twv SVO ALTWY
CLYXETNOEWY TULGTOTOMONUAY PLEGW TVC GLYHELGYG TOLG E TX ATOTEAEGUATA TTOL TOOUVDTITOLY
and 1o Solidworks. Yotepa, ot ouvvaptnoslc avtég yoenotpmomoOnmoay  yroe TNy
Behtotomoinon. H peiwon touv Bapoug emttedybnue pe v peyiotonoinoy twv tdoewy. L2g
aEYHES YewueTpleg yonotponomnuay ot tpetg mpwtot dioxot too HPC NASA/GE E3. H
Simplex twv Nelder-Mead yonotponombnmre yiox v avavéwon mg yewpetplag 1ou dioxov
nat oe ndbe emavdAndn ot ovvapToelg vToAoytouoL ¢ Bepuoxpaciag xal TWY TAGEWY
NOUAOLYTOV VLo VX ETUVAVTOAOYIOTEL 1] TLY| TV|G AVTIUELLEVINYC oLVRETNONG. Efetaotnuay toetg
neptntwoelg Beltiotonoinong, uxbe pio pe petaBAntéc uat neproptopong xata Lolis, Gasturb
not Armand.

2UUTEQAIVETAL OTL 7] LOVOSIAGTATY] LOVTEAOTIOLYGY] TYG MATAVOUYS TwV Hepponpaotov xat Twv
TaGEWY OLVEL TOA) XOVTIVE XTOTEAECUXTA E TNV hEDOBO TwY TeMEPUOPEVWY GTOLYELWY € TOAD
MYOTEQOLG KOUPBOLE KAl G TOAD MYOTEQO YEOVO. ALTO xavel Ty BedTioTomoln oY Ty hTEE.
Emniéov, anodemvdetar 0Tt 1 LeyloTONOMGY] TV TROEWY Ke YENoY ¢ Simplex pnopetl vo
odnynoet oe chapELTEEY] yewpeTplr axopun nat pe 7 petafintéc oyediaopod. Téhog, 1
eyy_TN T ¢ BEATIoTNG Ao g Tov PROOSIS pe ™ Aon mov Sivetar and 1o «Gasturb Details

5» oTONOLEl TNV ATOTEASOUATIUOTITA TOL TOOYQRAUATOG.

To yonotpomotodpeva epyokeior eivar evéhnta xabwg TOMES emMAOYEC UTOQEOLY v
naBopLatody and ™y yeNoT xot va etaélbovy cav elcodot 6TIC cLVaETNoELS. ALTO Tar KdVeL
AATEAAAX YL EVOWPATWOY] O UeyaADTEQ TEOBANUXTA OTWG Elval O OYESLXOUOG MLNG
OAOUAN NG UNYAVNG. Y OTEQX AT TNY AVAALGY] T1G QO] 7] TEOXDTTOLGX YEWHUETOLX TTTEQLYLOL
umopet va yonotponotnfet yiox vae amontnbet pio Bektiotonompévy yewpetpia dioxov mov Hu
ompilet o mrepLyt. H (St Stdinaotar pmopet va epappootet Stadoywma oe uxbe Babpido
woTe va oyedlotody ot dionol okOuAnEov Tov nynTNEx. BEvolkoxtind, 7 pebodog
Behtiotomolnong mov avantdybnue propel va cuvdvaotel pe dideg uedodouvg OTwe etvar ot
yevetrol adyoptbuot.
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