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Floods are 'acts of God', but flood losses are largely acts of man.

Gilbert F. White (1911-2006)






Evyoprotieg / (Acknowledgments in Greek)

Me v exkmovnon kot v mopovoiaon TS Tapodoos JITAMUATIKNG EPYOCIAS KAEIVEL 0 KDKAOG TV
TPOTTVOYIOKWDY HOD omovo@V oty Xyoln I[olimikwv Mnyovikeov EMII, olokinpdvoviog éva

ONUAVTIKO KEPOAOLO THG EWG TWPO. (WS UOV KOI CHUATOOOTOVTAS THY OP)H VEWY TPOKANGEMDV.

LHopa tic maboyéveleg mov yapoxtnpilel oloypovikd 1o «Elinviko [ovemotiuioy, viobw 1dioitepa.
XOPODUEVOS KOL EVYVOUMY TOD DEHPLEO. UEAOS avToD TOV PHuiouévoy atnyv EAAdda koi to eCwtepiko
1EYV0oL0YIKOD 10pDuaTOS. KAVOVvTag avaoKOrnon TV EUTEIPIOV TOV ATOKOULTO KOl TWV ovOpoTmy
OV YYWPLoO. KATA T OLGPKELO TV GTODOMY OV, GUVEIONTOTOL® OTL oTO TO Taliol UE OLOUOPPDTE
avecitnlo. wg avlpwmo Kal WS YOPOKTHPO, TPOTYEPOVIAS OV ETIGTHUOVIKN YVar, 0COVOVTOS THV

KPITIKI OV LKOVOTHTO. KO OLEDPDVOVTAS TOVS OPILOVTES 1oV Tpog kalbe KatevBvvor.

Hpwtiotwg Oa nbeia va evyapiotiow omoé kopoiag tov k. Aquntpn Kovtooyiavvy, KaOnynty g
2yoing Holimikwv Mnyovikeov EMII kou emifAémovio. ¢ OIMAWUATIKNG HOD EPYadiog, YLo. THY
avaleon evog eCaupetira evolapépovtog Beuotog. Tlépa amo tov dikaroloynuévo Bovuaoio Tov Taveo,
eviwbo y1o. 00TOV L0YW TV ETLGTHUOVIKDOV TOD ETITEVYUATWOV KO THS OLOOKTIKHS TOV OEIVOTHTAS, O
xog Kovtooyiavvng omotelel mnyn éumvevong yio. kabe véo unyovikd xoi emotiuova. Ilopd T
OTOYOOTIKOTNTO, TOV ETLOTHUOVIKOD TEILOD TOV UEAETA, N KOBapOTHTO TV 100V KOL TWV ATOWEDY TOD
givar fabid VIeTepuIvioTiKy Yopn oTHY aTalGvTenty oty Tov yia Ae0Bspn yvworn, mpoopaoiun
Epevva Kol TIG OLIEC TOV GYETIKG, UE TNV ETLOTHUN KAl TNV TEYVOLOYIa mov LAlovV aT0 EMIKEVIPO TOV
avlpwrmo. Tov evyopiot® eilikpiva yio. ™ oOVEPYOTIa, TIC YVOOEIS Kol TIC OPYES TOV [OD

UETOAOUTCOEDVTE.

2t ovvéyela, Ba nbeia va evyopiotnow Oepuc t o1daxtopo, Avo Hiromovlov yio thy emotnuovikn
YOO TOL UOIPAaTHKE Uall [oD amAdyepa, TOV TOADTIUO Ypovo THS Kol TNV €V yével kaboplotikn
ovufloln g wate va ptaocel n epyacio. otyv tedikn ¢ popen. Emiong, Gédw va evyopiothow tov
owvaxtopa Ilavayiaty Aquntpiddn yioa Ti¢ TOADTIUES KOI KOIPIEG TOPATHPHOELS TOL Ko’ oin T
OLGpKELD. EKTOVHONG TS EPYaoiog. NiwOw 10101TEPWS TOYXEPOS TOD TVVEPYATTHKA UE TOGO GL10A0Y0VS
VEODS avOpamonS Kai ETOTHUOVES, 01 0moiol koauovy to EMII ue tqv mopovacio tovg kot diyvovy ot

TO UEALOV TG EPEDVOG KO THGS TEYVOAOYIOS OTH XWPO. OGS EIVOL AGUTPO.

Aroua, opeilw éva eykapolo evyopiate atov k. Aquocbévy Tooaxvia, [loiitiko Muyoviko ue molvetn
ETOYYEAUOTIKY EUTEIPIO. GTOV KAGOO TV 0GPALELDV EvovTl TANUUDOpas ae Meyoin Bpetovia, Eifetia
ko1 EALdda, o omoiog poipdotnke poli pov [e tpomo yevvarodmpo Tig EUTEIPIES Kal TIS YVATELS TOV
OTO ETLOTHUOVIKO ODTO OVTIKEIUEVO, TOOO OO ENPEVVHTIKY 000 KOl TPOKTIKH OKOTLA, TPOTPENPOVIOS

HOV TNV omapoitnTy Oeueicon yvaan Kol avTiAnyn mov amoitodvIoy Yio, Vo TPOGEYYIom T0 €V AOY®



weoio. O1 molbwpeg avlnthoeis pali Tov, Topa ToV 1010UTEPDS VYNAO POPTO EPYOTIAG TOV, OTOTEAETOY
viow guéva molioo mPOTOVOTOMGUOD KATG TH Ol0OIKATI0, TPOTEYYIGHS TOV GULYKEKPIUEVOD BEuatog,
OIVOVTAS OV EpUNVELES, OLAPOTICOVTOS TOPAC OHUELN KOI TOPEYOVIAS MOV VTOLOYIOTIKG KOl
Oewpntira epyoreio aVTIUETOTIONS TV TOAVETITEIWY TPOKANTEWY Ol OTOIES EUPAVITTHKAY KOTO. THV

EKTOVHON THGS EPYATIOG.

Télog, T0 WO UEYBAO EVYOPIOTA TO OPEILW OTNV OIKOYEVELD, OV, TOVS YoVelS uov Liwpyo kar Mapia,
0. a0éppio. wov Muyain, Lwpyo xar IlyveAonn, kar v Ewpnvy yia tv aovexn vmootipily mov pov
TaPEYOVY € OTIONTOTE UE TO OTOI0 KATATIOVOUOL, TV OYATH, THY DIOUOVH KOI TH GLYOVPLE. TOV LUOD

TPOTPEPOVY, VIWHOVTAS TOVS GVVEYWDS KOVTA LLOD.

Kovotavtivog ITamovAdkog

AbMva, NoéuBprog 2021



Abstract

Recent research has revealed the significance of Hurst-Kolmogorov dynamics (Koutsoyiannis,
2011), which is characterized by strong correlation and high uncertainty in large scales (Dimitriadis
and Koutsoyiannis, 2015), in flood risk assessment as for example in inundated flood duration
(Dimitriadis and Koutsoyiannis, 2020). However, classic risk estimation for flood insurance
practices is formulated under the assumption of temporal independence of extreme flood events,
which is unlikely to be tenable in real-world hydrometeorological processes exhibiting long range
dependence (Iliopoulou and Koutsoyiannis, 2019). Additionally, insurable flood losses are
considered as ideally independent and non-catastrophic in financial terms due to the widely spread

perception of limited risk regarding catastrophically large flood losses.

As the accurate risk assessment is a fundamental part of flood insurance and reinsurance practices,
this study investigates the effects of lack of fulfillment of these assumptions, paving the way for a
deeper understanding of the underlying clustering mechanisms of streamflow extremes. For this
purpose, a spatiotemporal analysis of the daily flow series from the US-CAMELS dataset (Newman
et al., 2014) is applied, comprising the impacts of clustering mechanisms on return intervals,
duration and severity of the over-threshold events which are treated as proxies for collective risk.
Moreover, stochastic approaches are developed and an exploratory analysis is introduced regarding
the stochastic aspects of the correlation between the properties of the extreme events and the actual

claims records of the FEMA National Flood Insurance Program which are recently published.

Furthermore, regarding precipitation mechanisms, the presence of persistence in annual rainfall is
expected to induce clustering in rainfall extremes (Iliopoulou et al., 2018), which should be
manifested by clustering of floods. Therefore, in the framework of a case study, it is investigated
whether the collective risk estimated using the former as a proxy, i.e. the magnitude of the rainfall

peak over threshold events in a year, is correlated with the actual compensations given.

Eventually, the current insurance practices and actual compensations given in the agriculture
domain in Greece are reviewed, while inspecting the underlying stochastic assumptions and

evaluating changes in the estimated risk in the case that these assumptions are not valid.

Key words: Insurance; Hurst-Kolmogorov dynamics; Clustering mechanisms; Symmetric Moving Average;
Climacogram; Monte-Carlo simulation; Risk assessment; Extreme value analysis; Collective risk; Return interval;

Floods; Streamflow extremes; Precipitation; Rainfall extremes; FEMA; NFIP; Greece; Agriculture.






Exterapévn mepiinyn ota EAAnvika / Extended abstract in Greek

H emompovikny £€pegvva €xel amokalvyelr 1 onuoacio ¢ ovvapkng Hurst-Kolmogorov
(Koutsoyiannis, 2011), n omoia yapakmmpiletor amd 1oyvpn cuoyEtion kot VYA apfefordtnta oTIc
peyaies kAlpaxeg (Dimitriadis and Koutsoyiannis, 2015), omv ektipnon nAnppoptkod Kvohvov,
Omwg Yoo mopdosypo oto medio TG Odpkelng TANUUVPIKGV yeyovotwv (Dimitriadis and
Koutsoyiannis, 2020). ITap' 6Aa avtd, ot Khaoowkég péBodot extipnong piokov otov TOopEd T®V
OCQOAELDV EVAVTL TANUUOPAS SOTLTMOVOVTAL VIO TNV TOPAdoyN TG aveéaptnoiog Tov akpaiov
TANUUVPIKAOV  YEYOVOT®V GTOV XpOVO, 1 oOmoic OHMG O&v GUVAOEL UE TIG TPOYHOTIKES
VOPOUETEMPOAOYIKEG dladIKaGieg Ol omoieg mapovstdlovy pakporpdeoun eppovn| (Iliopoulou and
Koutsoyiannis, 2019). EmmpocOétmg, ot ac@aiiotéeg andieles AOy® mAnupopag Bewpodvrtan
aveEApTNTEG KO UN KOTOOTPOPIKEG (O OIKOVOUIKOUS OPOVG) YO TIC OCQUAICTIKEG ETAPEIEC
e€outiag ™G evupedc StdedopEVNG avTIANYNG TOL TEPLOPICUEVOL KIVOUVOL GYETIKA UE TIG

KOTOOTPOPIKA LEYAAEG OMMAELES OO TANLUVPIKA YEYOVOTOL.

Muog ko 1 axping ektipnon tov piockov givor BepeMdong ddkacio mov akolovbeitar oTov
KAAO0 TOV OGQPOAEIDV KOl OVIOCQOAEIDV £VOVTL TANUUOPOS, T TOPOVGO £PYACIN JEPELVA TIC
EMITMOGELS TNG WU KOVOTOINOoNG TOV TOpamdve vrofécemvy, mpoieloivovtag Tov SpOHo yio o
BaBvtepn KaTOVONON TOV VTOKEIPEVAOV UNXAVICU®V OUAOOTOINONG TOV OKPOI®V TANUUVPIKOV
napoy®v. Exovtag ovtd 10 okomd, M epyacio epopudlel poL YOPOYPOVIKN avAALON T®V
xpovocelp®v mapoydv g Paong dedopéveov US-CAMELS (Newman et al.,, 2014) péow g
pedddov TV vrepPhocmv Tave and Eva KatdeAl (peak-over-threshold method). Avaivtikotepa,
vy ké0e évav and tovg e€etalopevovg otabuovg pétpnong g US-CAMELS, vroioyiotnke 10
amokaAovpevo cvAhoykd pioko S (collective risk), o omoio eivar pioe cuvnONg TPOKTIKY TOL
aKoAovBeitan 6ToV KAAOO TOV AGPUAEIDV KOl OVTIOAGPUAEIDV. ZE OIKOVOULIKOVG OPOVS, TO GLALOYIKO
pioko S opiletar wg 10 dBpocpa (cvoompevon) moocwdv amaitnong (claim amounts) ce ol
ypovikn Baomn. Ltov topéa TG vdpoAoYiag, TPOcEATA TPOTAONKE OTL Ol LIEPPAGEIS TV TOPOYDV
TOTOU®V TOV® om0 £V KATOEAL pumopel va Bempnbel 411 avtimpocmmevovy o TOGd amaitnong
AOY® OKOVOMIK®MV OTMAELOV OV oPeidovion oe mAnppvpkd eowvopeva (Serinaldi and Kilsby,

2016).

EmnpocHétwg, mépa and v enidpaon TV UNYOVIGUAOV OROOOTOINCNG 6TO GLAAOYIKO pioko S,
eetdotnKe 1 €MPPON MOV £YOVV ALTOL Ol UNYXOVIGUOL GE GULYKEKPLUEVO YOPOKTNPLOTIKA TOV
TANUUVPIKAOV YEYOVOT®V TOL EEMEPVOVTAV Vol EMAEXDEV KATOOAL, OTwG oTN S1dpKeELD, TNV EVTAoN

Kol To OloTNHOTe €movo@opds tovs. EmmAéov, avamtiydnkov otoxaotikéc mpoceyyicelg mov



QPOPOVGAV TN GLOYETION OVAUESH GTO GLAAOYIKO pIioKO S, G& CLYKEKPUEVES O0TNTES TOV
AKPAiOV TANUUVPIKOV YEYOVOT®V KOl OTO TPAYLATIKG 1GTOPIKA oTotyElo amolndoemy to omoia
onuocievce mpoceata 1 Opoomovolaky Yrnpeosio Awnyeipiong ‘Extaktov Avaykov tov HITA
(FEMA, 2019) oto mhaicio tov EBvikod [Ipoypappatog Acediiong Evavtt [TAnupvpov (NFIP).
Onwc Oa mopovciactel kot mopakdto, avty M OvIOPAPOAr] TV EVPNUATOV TG TOPOVCIS
EPYOCIOG LE TO IOTOPIKA GTOLXEID AMOLNUIDGEMY TPOGEPEPE GNUOVTIKE CUUTEPACUATO TOL OTTOi0L
Tpaypatt pog emrpénovy vo. agltodoyncoovpe yopoypovikd otig HITA 11g mopadoyég mov yivovral
0TOV KAGOO TOV OGPOAEW®V Kol Ol Omoieg a@opohv v aveaptnoio HeTOED TV axpaiov

TANUUVPIKOV YEYOVOTOV, OTOS ovaTTOYOMNKOV GTNV TPOTY TOPAYPOPO.

Ao, GYETIKA PE TOLG UNYOVICUOVS KOTAKPNUVIONS, N Vmapén eUUOVNG oTo. €Tolo. LeyEim
Bpoyng omuovpyel v mPocdokio. avaAoyng CULUTEPIPOPES OTO UEYIOTO TOV PPOYOTTOCEDV
(Iliopoulou et al., 2018), @awvépevo 10 omoio avapéverar vo ekdNA®OEl Kol GTOVS PNYAVIGHOVG
opadonoinong TAnupvpodv. I'a 10 Ad0yo avtd, 6T0 TAAICIO HOG HEAETNG TEPITTMONG, OLEPELVATAL O
Babuog cuoyéTiong Tov GLALOYIKOV pickov S, To omoio mdAl Bewpovpe OTL umopel vo ekTiunBel 6Tt
AVTITPOCSHOTEVETOL OO TO (GOpOloUa TOV PBPOoYONTOGE®MY TAVED Omd £vo KATMOAL, HE GTOUXElN

TPAYUATIKOV amolnudce®mv AdY® TANUUOPpOS Tov Exovv dobel otov EAAadikd ydpo.

Téhog, oe éva yevikOTEPO TANIGLO, EEETAGTNKOV Ol VOIGTAUEVEG TPOKTIKES ACPOAIGEDV EVAVTL
TANUUOPOG KO TOL TPAYUATIKG GTOLXElR amolndcE®mV GTOV aypoTIKO Topén otnv EAAGSa, pe
TAPOAANAN TOPOVGIOOT) TOV VIOKEILEVOV GTOYOCTIKMV TOPAO0OY MY TOL TPOKVITOVY OO QVTH TNV

avdAvon, aElohoydVTag TI LETAPOAEG TTOL TPOKVTTOVV GE TEPIMTMON OVAIPESTG TOVG,.

Metalh TV mopadosIIK®OV GTPUTNYIKOV HOVIEAOTOINONG OV £PAPUOLOVTOL GTOV OGPOMOTIKO
KAado, e&éyovoa Béon KataAapPdavovv ot katavopés axkpoimv Tyumv (extreme value analysis
distributions), otic omoieg ocvumeptlopuPavovior Ol KOTOVOUES YEVIKELUEVY] OKPOU®V  TIUDV
(generalized extreme value, GEV) kot yevikevpévn Pareto (generalized Pareto, GPD), mov
YPNOOTOLOVVTOL G EVOL EPYUAEID YlOL TNV OTOTIOTIKN OVOALGN UEYIOTOV 1 €AOYIOTOV KOl TV

VrepPAcE®V TAVE amd £voL KOTOQAL.

H gcaynyn ovtdv TV KOTAVOU®OV GTNV TOPoVCo £PYACia, TEPO OO TNV TOLOTIKY OLEPEVLVON TNG
CLUUTEPLPOPAS TOVG, HOG TPOGEPEPE TN OLVATOTNTO VO OEOAOYNCOVLUE TNV EMOPACT] OV
dwdpapatiCel to emAeyfév KatdEAL ot PEBodo TV vepPacemv. Avtd copPaiverl yioti, amd ™
po peptd, EMOIOKOVUE Vo EMAEEOVUE €V DYNAO KOTOPA OOTE Vo EEETACOVUE TIG TPOYHOTIKY
VYNAEG TIHEG TTOPOYDV TTOL €IVOL IKAVEG VO ETLPEPOVY GNUOVTIKEG OLKOVOULIKES ATMOAEIEC, OO TNV

GAAN Oumg peptd, eival amoapaitmto vo €xovpe otn O1dbeon pog TOAAEG TIHEG TAVE amd Eva



KATOOAL LE GKOTMO VO LITAPYOLV OPKETE OEOOUEVE. DCTE VO UV OALOIDVETOL 1| GTATICTIKY] TOVG
CLUTEPLPOPEL, TPOKOAMVTOS TOAVAE GTPERAE CUUTEPACUATO. XVVETMG, OVOAOYa LE TO PEYEDOG NG
dtifépevng 16TopIkng (TapaTpPoOOUEVIC) XPOVOCEIPAS, M OTOPACT) CGYETIKO LE TNV TIL| TOV
opileTar MG KAT®PAL givor eopeTikd onuavTiky. Xty gpyocio avty eEetdlovtor ot eENG TIHES

KatoeAiov: 90%, 95%, 98% kot 99%.

1.0 4
0.9+
0.8
0.7 H
0.6
L
8 0.5 1 Observed 90%
| —— GPar 90%
0.4 4 Observed 95%
—— GPar 95%
0.3 A Observed 98%
—— GPar 98%
0.2 Observed 99%
—— GPar 99%
0.1 4 Observed 99.5%
0.0 GPar 99.5%
T T T T T T T
0 10 20 30 40 50 60 70

Q (m3/s) for the over-threshold events

Zynua 1: Awdypappe Tov mapovstdlet Ty enidpacn Tov KAT®PAIOL TV EUTELPIKN AfPOLISTIKY GUVAPTNON KATAVOUNG

(ECDF) 10v axpaiov Topoydv tave arnd 1o gv Adym Katdeit og Evav cuykekpipévo otafpod (ID: 01552500).

H xatavoun tov cuvolMk®dv mocov anaitnongs, Ocmpmdvtag 0Tt T0 YUPTOPLAGKIO LG AGPUAGTIKNG
etapeiog elvar ovAAoykd Kot wavd va mopdéet N aplBpd artnudtov mpog anolnuioon ce éva
TEMEPACUEVO YPOVIKO OldoTna, propel vo meprypagel omd To povtéAo cuAlloyuov pickov (Kaas et

al., 2008). To cvAloywo picko Sk (collective risk) opilerar wg

Sc=X1+Xo+ - + Xn, (0.1)

omov Xi etvar 1 i Ty mocov amaitnong. O Opog Sk avticToyel 6T0 TPAYUATIKO TOGO OmaiTnoNG.
[Ipogavac, Sx = 0 av N = 0. Opoua, oty mepintmon acQoAEIOV AdY® £vOG 0KPAiOL TANUHVPIKOD
YEYOVOTOC, T0 GLAAOYIKO picko S eivar 10 GVVOAIKO mocd amaitnone, OBewpoviog Eavd Eva
YOPTOPLAGKIO OCPOMOTEDV TEPOVCIOV ®OC GLAAOYIKO TOoL Topdyst €vav tuyaio aplBud N
arudtev mpog anolnuioon o€ £va TEMEPAGUEVO YPOVIKO SACTNUO (EVOG £TOVG GTNV TEPITTMOT)
paG). AnAdvovtog mg yr to. oToryeia pog ypovocelpds, £xel mpotadel amd toug Serinaldi and Kilsby
(2016) 61t @g éva péyebog to 0molo AVTITPOGMOTEVEL YPOVIKA TO GLAAOYKO piloko S pmopel vo

oplotel 10



s= iyj (0.2)

Jj=1

OmoL ¥ elvarl M j OVIIIPOCHOTELTIKY] T TOV TOGOV omaitnong (Tiun mopoyns méve amd To
KOTOQOAM). Zové, t0 cuvolkd mocd amaitnongS = 0 av N = 0. v zmepintoon depedvnong
axpaiov Tov Bpoyns, Bempodvtatl ot Tiuég Ppoyng mov gival move omd T0 KATOEAL. AV Kol O
OPLGUAG TOV GLAAOYIKOV PIGKOVL TTOV GYETICETAL LE TOV ACPUAITTIKO KAAOO EVOVTL TANUUOpOG Elvar
OVGLOOTIKA 10 OVTUTPOCMTEVTIKY T TOL TPAYLOTIKOD GLAAOYIKOD pickov, piag kot Paciletar o
VOPOAOYIKEG YPOVOCEIPEG KOl Oyl GE TPOYUATIKA TOGH omaitnong, OtV mopovsa €Pyacio

OTOKOAELTOL KOL 0VTO OC GLALOYIKO picko S.

AVTOG 0 0pIGUAG EVEXEL TNV TTOPAOOYN, TTOL EQPAPUOLETOL EVPEMG GTOV KAGOO TV OCOUAELDV, OTL TO
OLVOMKO GLAAOYIKO pioko S mpobmoBétel 6t 0 apBudg artnudtoy N Kol o EMPEPOVS TOGH
amaitnong Y; eivon opotdpopea katavepnuévo kot 0t To N kot to cuVoAlKE Y; glvor aveEdptnta
peta&y tovg. Ommg €xel avagepbel ko mapamdvo, oty 1 epyacio a&loloyel v enidpact TG
OLOYETIONG KO TOV UNYAVICU®V YOPOYPOVIKNG OLOOOTOINONG GTOVG VITOAOYIGHOVS, SIEPEVVDOVTOGC

v opBdTNTA 1| U TOV TAPUTdVED VTOBEGEWV.

Apyikd, ywoo vo yopokmnpicovpe tnv €£ApTNON Kot Vo AEOAOY|COVUE TOVG  UNYXAVICHOVS
opadomoinong, ival GNUOVTIKO VO TOGOTIKOTOW|GOVUE T S0pOPA OV TAPOLGLALOVY 01 1IGTOPIKEG
YPOVOCEPEG e o akoAovBio aveEdpmrtov petapfintodv. Mo pébodog mov akolovbeital cuyva
Yo T OMpovpyio avtdv TV aveEdptnTeOV LETAPANTOV EYKELTAL GTNV TUYALOTONGCT TOV GTOlXEIOV
LG YPOVOGEPAS (OVOKATEDOVTAG TLYOI0 TO. GTOLEID TNG) HE OKOTO TN TOPOYy®YY| HoG VEAG M
omoia Ba £xel Tol 1010 GTATIGTIKA YOPAKTNPIGTIKA ALY Oyl xpoviKn cvoyétion. H mocotikomoinon
™G Olpopds peta&h NG OTOPIKNG Kol TG aveapTnIng YPOVOCEPAS YIVETOL GLYKPIVOVTOG
GUYKEKPIUEVOL YOPAKTNPIOTIKA TTOV TPOKVTTOVV OO OVTEC, OTMG TO ETNGLO GLALOYIKO pioKo S,
OLAPKELDL TOV YEYOVOTMOV TTOV TEPVOVV £VO, GUYKEKPIUEVO KOTOPAL 1] TN GLYXVOTNTO EUPAVIONG EVOC
Bewpovpevoyr mANppLpKoH yeyovotoc. e 10 Adyo avtd, ywoo kdBe plo amd TG 16TOPIKES

YPOVOCELPEG TTOL eEeThotnKay, TapnxOnoav 100 véeg Tuyatomompéves (aveEapTnTES) YPOVOGELPES.

>m ovvérew, avalnmbnke mn vmopén g ovvauikng Hurst-Kolmogorov (HK), dniaon
pokpompdBeoung eEAPTNONS N ELUOVIG, OV, OGS ExEL OEIEEL 1 EMGTNOVIKT Epevval, Kuplapyet o€
TOALEG PUOIKES O1EPYOGIES, OTMG GTOVE UNYAVICHOVS TOV GYETICOVTOL LE TN TOLPOYT| TOTAUDV KOt TN

Bpoyxomtwon. Me tov 1poOmO 0vTO dlePELVNONKOV Ol VTOKEIUEVEG GTOYUOTIKEG Olepyacieg mOv



EMKPATOVV pe okomd TN Pabitepn katavonon mbovov kvpiopyov potifeov. H egppovy 1 10
eowvopevo Hurst pmopet va mocotikomomOei pe tov cvvteleot) Hurst H. Avalvtikdtepa, yuo:
* 0<H<0.5,n dwdwacio yopaktnpileton amd avti-eLovr| (0pVNTIKTY CLGYETION),
* H = 0.5, n dwdwaocia sivoar 1coddvoun pe Aevkd 06pvPo, mov onuaivel Tl dev LVILAPyEL
pokpompdheoun e£dptnon N eppovi oto detypa,
* 0.5 <H <1, n dwdwacio emdekvoel paxporpodeoun sppovn (1 Betikd cvoyetilopevn),

oL givor poL amd TG To GLVNOEIS GLUTEPLPOPES GTIC VOPOKAUATIKEG OLOOTKOGTES.

I Tov vrohoyopd tov cvvtereot Hurst H kot Tov €VTOTIGUO TG LOKPOTPOOESUNG EUILOVIG LLOG
dwdwkaciag, m mo oakpprg péBodog elvar péow Mg mopaymYNg Tov  KAiuaxoypouuotog
(Koutsoyiannis, 2010; Dimitriadis and Koutsoyiannis, 2015), 1o omoio eivor éva dd1dcTOTO
YPAPNLLOL TTOV ATOTLTTMOVEL G AOYaplOUIKoVg Aovec ) dtaxvuavon y(k) e néong svvadpoiopévng
oe1pag TG Tuyaiog LETAPANTG Z 6TOV KaTaKOpueo dEova kat TG cuvabpolopuévng kAipokag & oto

optlovtio dEova:

1 uk
2P =2 z 7, (0.3)
i=(u-1k
OOV 01 HLETAPANTES Z KOt Zu OVOTAPIGTOVV TH GTOYXOGTIKN AVEAEN KO TN LEGT] OTOYACTIKT) AvEMEN
avtiototya, eved U gival 10 dSIAVLCoUA-OEIKTNG TOL TTEdIOV, TOV JElYVEL TNV VOTEPT|OT), ONAadN TN OEom

0710 TEd10.

g LEPIKEG TEPUTTAOGELS, OO GLVEPN KOt GE VTN TNV EPYOTia, 1| TPOCAUPLOYN TNG EVOEING YPAUUNG
o010 Kliuaxoypoyuo, Tov TPOEPYETAL OO TO. 1GTOPIKO OEJOUEVO OEV UTOPEL VO OMOTUTMGEL TNV
TANPN GLUTEPLPOPE TNG OLKVUOVGTG TNG d10d1KaGiag 6€ OAO TO €VPOG TV KAMUAKwV. ['o avtd To
AOyo, epapuootnke M yevikevpévn avémEn HK  (generalized-HK, GHK), m omoia emiong
napovctalel cvpmeprpopd HK otig peydieg kiipakeg oAb eival mo evEAKTN OTIC IKPES KALOKEG.
Eivor pia pébodog mov datnpet pntd (yio mAfpn avaAvtikd Vtoloyicpd) TG TE66EPLS KAUOOIKES
POTEG oG dladtkaciog Kabe eidovg yio kabe pa amd T1g dopég ovoyétiong 20¢ taéng (Dimitriadis

and Koutsoyiannis, 2018). To Kiiuaxoypouuo. ootod Tov povtéLov sivat:

A
(1 +k/q)>=2"

y(k) = 0.4)

omov 1 mapdpetpog Hurst H maipvel tipég omd undév €émg €va, 1o g givor BeTikd, evd to 4 kot 10 ¢

&yovv daotdoelg [x°] won T.



EmumAéov, oe avt) v epyacio epappootnke 1 pébodog symmetric moving average (SMA)
(Koutsoyiannis 2000 and 2016; Dimitriadis and Koutsoyiannis, 2018) ®dote va avamtuyfovv kot va
a&oroynBovv mbavég otpatnykég povreroroinone. H pébodog SMA eivan pia yevikn pébodog yio
NV TOPAY®YN OULVOETIKOV YPOVOCEIP®V HOG QUOIKNG TOGOTNTOC OlOTNPAOVIAG TIG OOMES
ocvoyétiong. Ilo ovykekpévo, t0 cvommuo mopaymyng tov SMA vy ™ wpocEyyion g
nepmplog cuvaptnong mbavotntog umopel va avamopaEel TIG PUOIKES JOIKOGIES JUTPOVTOG
TIG TEOOEPLS KEVIPIKEG POTEG, TO 0moio £xel Ppebel OtL elvarl KAvOTOMTIKO Y10 TOAAES KOTAVOUES

TOL KOWMS £PAPUOLOVTOL OTIS YEOMPVGIKEG O10OTKAGTES.

H pébodog SMA pmopet va meptypaeei amd v akdlovdn eEicwoon:

l
= ) ey (0.5)

j==1

omov x; givar omoladNmote dladikacio pe Kamowag poperg e€aptnom, aj;| eivol cuvteAeoTég o
vroroyiCovtar amd TN GLVAPTNGT AVTOGVOYETIONG, V4 ivar 0 Aevkog BOpuPog og SrakpiTd ¥povo
kol [ Beopnrikd eivon 6o pe to amepo (0AAG €vag memepacuévog aplBpdg pmopetl emiong va

xPNOoTomBel S1TNPAOVTOS TN OOLUT CLGYETIONS £WG KOl KOBVOTEPNON LIKG LOVASAG).

H pebosoroyia epappoomie otn Paon dedopévov US-CAMELS, n onoia mepiéyel 671 nueproteg
ypovooelpés mopoy®v (Newman et al., 2014). And avtég T1g ypovocelpés, emAEYONKOV TPOG
TeEPALTEP® avaivon kot emeEepyacio ot 360 mov giyav kKGAvy”n oto PEYIGTO YPOoVIKO pnkog (35

etwv, and 10 1980 émwg 10 2014) kot Arydtepa and 10% ehieimovta ototyeia.

Axépa, oty gpyacia aflomombnkay o TPAYHOTIKO 16TOPIKE otoryeion amolndcemy To. omoia
dnpocievoe mpdoeota 1 Opocmovolakn Ymnpeoia Awyeipiong ‘Extoktov Avaykov tov HITA
(FEMA, 2019) o710 mAaicio tov E6viko® [poypdupatog Acediiong Evavtt [Tinppvpodv (NFIP) ta
omoia meptlappdvouyv teptocoTepa 0md dVO eKATOUpHPLO outUaTe TPog arolnuioon ard to 1970
€m¢ oNUEPD, KaBEVA €K TOV OTOIMV gumePLEYEl TANPOPOpieg mov empuepilovtarl o€ 39 doPopeTIKES
petafintés. Ta otoyeio avtd mapovstaloviatl YmPoYPOVIKA Kot YPUPIKA Gg YapTeg pe Paomn Tovg
0moloVG TPOKVATOLV CMUOVTIKA GLUTEPACLOTO Y10, TIG TEPLOYEG OV KLPIWG TANTTOVTOL OO
Tinuuopeg otic HITA, xaBdg kot yuoo v avaykn mov KatodelkvOeTal o€ KAOe meployn v

OCQOAIGTIKN KAALYT).
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Zynua 2: Ta 671 onpeto pétpnong g Paong dedopévov US-CAMELS.
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Tyqua 3: Ta 360 telikd onpeio pétpnong g Paong dedopévav US-CAMELS nov enthéyOnkay.

Aggregated number of claims per year Aggregated number of claims per year (normalized)
5
250000 44
>
o) 2
£ 200000 o 3
g g
g | £
£ 150000 s 29 =
- [N
E 100000 £ 1 I II I
£
= o
g ] - | |
50000 IIIIIIIII N | l “I Il 1" I nmjmw III
-1
0l
1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
Year Year

Zynua 4: O 08pototikdg apBuog atnudtmv mpog anolnpimon avé £tog (1970-2021). Zto apiotepd Sidypappio
TaPOLGLALOVTOL Ol OVOUUOTIKEG TIES, EVA GTO OEEL 01 KOVOVIKOTOUNUEVES, aPULPOVTAG oo TNV KAOe eTHoa TIUN ™)

PéoT TN Kot Sop@vTog pe Ty Tumikn amokAion. Tehevtaia evnuépmon dedopévav: 24-10-2021.
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INo kéBe évav and tovg 360 oTabpovg pétpnong mov eEetdlovion kot yio ke pio amd TIc TE6oEPIS
Tipéc-katoei (90%, 95%, 98%, 99%), vroAloyioctTnke 10 €TNC10 GLAAOYIKO picko S, 1 ddpkeln
OV BE®POVUEVOL TANUUVPIKOD YEYOVOTOG KAOMS KO TOL SIOCTILLOTO ETOVOPOPAS TOVG, TOGO Y10, TIG
1oTopkéG (Tapatnpovpeveg) 6co kot yia T 100 tuyoomompuéves (ave&aptnreg) ypovooelpés. Ta
amoteAécpaTo omd avTn T dtedikacio eivol Wtépwsg onUavTiKd Kabmg, o€ ToAAoVS otafovc, n
OmOKAIoN avApEso OTI TPMTEG O€ OYEON HE TIC OEVTEPES OTO OLLYPAUUOTH  EUTEPIKAOV
aBpototikmv cvuvaptioemv katavoung (ECDF) ntav peydin. Ta mapandve arotehécpato eival puo
EexaBapn EvOelEn UNYOVIGUAOV opadoToinong akpaimv oe Opovg cLALOYIKOD pickov S, SLaPKELNG

YEYOVOTOG OAAG KOl SLUCTNUATMV ETOVAPOPES.

SF TRINITY R BL HYAMPOM CA SF TRINITY R BL HYAMPOM CA
Gauge ID: 11528700 - Hydrological Unit: 18 - Threshold 90% Gauge ID: 11528700 - Hydrological Unit: 18 - Threshold 95%
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Synua 5: Adypopplo epmelptkdv afpototik@v cuvapthoeav kotovoung (ECDF) kot cuAloywkov piciov S.

Ytafpog pétpnong: St Trinity River Below Hyampom, California (ID: 11528700).

> ovvéyela, vrohoyiotnke to péco Kiiuoxoypouuo omd t owdwkosioo GHK (Dimitriadis and
Koutsoyiannis, 2018) yw 6ieg 11¢ 360 10t0opikec ypovooepés napoydv s US-CAMELS, pe v
napapetpo Hurst H va extipdton ion pe 0.63, to omoio sivor pia évoeln woyvpng eppovie. H
EMIOPOOT NG OOUNG CLOYETIONG TTAPAUTNPEITAL GTI] CUUTEPIPOPE TOV TOPOYDV TOL EETEPVOVV TO
KOTOQAL oL TifeTol otV €Ol KAIHOKO OCO KOl OTNV EKTIUNGY TOL GLAAOYIKOV picKov.

2uvendc, 1 CLUTEPLPOPA TV Nuepnolwv topoydv s US-CAMELS Bpébnke o1t elvan cuvenng pe
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) dvvopik HK, n omoia yapaktnpiletor omd tipnéc H oto ddotnpa 0.6-0.7, pécm mpocopotdsemy

Monte Carlo.
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0.001
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Zyua 6: To péoo Kiipoaxdypopua tov 360 emheypévev ypovoselpdv g fdaong dedopévav US-CAMELS.
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Yynua 7: H napapetpog Hurst H twv 360 ypovocepdv (otabudv pétpnong) g Paong dedopévaov US-CAMELS.

AkoAOVB®G, YO TNV OTOTEAECUATIKOTEPY, OEOMOINGN TOV IGTOPIKMOV  YPOVOCEP®V  £YIVOV
TPoceYYIGES HovTeAOTOiNoNG Kol Tpocopoimong e okomd  Pabvtepn kotavonon g oxéong
OVOUESO, GTN| GTOYOOTIKN OOUT TV TANUUVPIKOV YEYOVOT®V KOl TOV GLAAOYIKOD piokov S, HEcw
™¢ epappoyng tov poviéhov SMA-GHK (Dimitriadis and Koutsoyiannis, 2018). O aiyopBpog yio
TNV TOPAYOYN TOV GLUVOETIKOV YPOVOCELP®V O TIG 1I6TOPIKEG amattel oG 160d0 ™ péon tipn (Sm),
dwkvpavon (Sv), cvvieheotés acvppeTpiog Ko koptwong (Ss kot Sk), mapdpetpo Hurst tov

povtélov GHK (H), mapauetpo kAipokag (¢), UNKog T oLVOETIKNG ¥povooepdg (N).
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Meletovtag tov otabpo pétpnong ID: 07071500, avomtoyxbniov 1000 cvvBetcés ypovooelpéc
péom mpocsopowwoemv Monte Carlo amd 1o povtého GHK (H = 0.81, ¢ = 1.00 d). Iopakdtwm
napovctaletar 10 Kliuarxoypouuo, Kabmg Kot To SorypappLoto EUTEPIKNG 0BPOIGTIKNIG GUVAPTNONG
katavouns (ECDF) tov ovAdoyikov piokov S yia OAec Tig TéC-kat@QAl. H Kopmdin tov S
enpaviCetor evtog tov oplov tov tpocopoiwcemv Monte Carlo mov mapnydncav amd to poviého
GHK. Avrifeta, o1 KOUTOAEG TOV TUYOLOTONUEVOV XPOVOGEIPAOV TAPOLGLALOVY U0, SLOPOPETIKN

GUUTEPIPOPAEL, EOIKA GTIG OVPEG TNG KOTOVOUNG.
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Synpa 8: Kluaxoypauuo tov otabpod pétpnong Eleven Point river near Bardley, Missouri (ID: 07071500).

Gauge |D: 07071500 - Hydrological Unit: 1 - Threshold 90% Gauge |D: 07071500 - Hydrological Unit: 1 - Threshold 95%
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Zyua 9: Awdypappa ECDF - S tov 1topikdv, tuoyatorompuévey kot cuvletikdv ypovosepav (ID: 07071500).



"Exovtoc vroloyicet to £11610 GLALOYWKO pioko S tev emheypévav 360 otobumv pétpnong g US-
CAMELS vy 1o téooepa katdeio (90%, 95%, 98% kar 99%) kot €xoviag otn dudbeon Hag To
mpaypoatikd otoryeio arolnuiwcemv e FEMA, nag divetal mA&ov 1 SuvatdTnTo Vo O1EPELVIIGOVE
™V gykupotnto ¢ pebodoroyiag pog oe yopoypovikn Paon, eetdlovtag tov Pabud cvoyétiong
petald ovtdv tov peyebov. Avtd TO EMTUYYAVOLUE HE TOV EMUEPICUO TOV OTOVKElOV
aro{numcenv o Kabe o and 11 21 voporoyikéc mepipépeteg tov HITA wor avé ITolteio. Xe
oVTO TO TAOIC1O, EKTIHATAL O CULVTIEAEGTNG GLOYETIONG Spearman, O OMOi0g €VOEiKVLTOL OTNV
avOALOT aKPOi®V TIH®V, GVGYETILOVTOG TO £TNG10 GLALOYIKO pioko S kAOe otabuod pétpnong pe
0. afpoloTikd otiuote Tpog omolnuimorn AOY® TANUUOPOS TOL Tpaypotomomonkay otV
voporoyik| meprpépeta 1 [otelo mov avikel 0 GTAOUOG, Yo TO UEYIGTO SATIOEUEVO YPOVIKO

Sraotnpe (1980-2014).

AmewcoviCovtog otov YApTN TOLG TOPATAVE® GUVTIEAECTEG GLOYETIONG KAOE oTabuov pétpnong
UTOPOVLLE VO CKLOLYPOPTICOVLE T YMOPIKY] KATOVOUN TOV TEPLOYDV TOV O GUVTEAEGTNG GLGYETIONG
Spearman givor peyoAdTEPOG KO OVTEC TOL &lvarl onuoavtikd pkpodtepoc. Eivor gppoavég ot
onuovpyeitonr éva yopkd HOTIPo e LYNAOVS CUVTEAESTNG OTIS AVLTIKEG AKTEC KOl ONUOVTIKG

LIKPOTEPOLS OTIG AVATOMKES.
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Zypa 10: Xvvteleotig ovoyétiong Spearman yio ka0e évav and Toug 360 emheyLLEVOVS CUVTEAECTEG CUOYETIONG
peta&d Tov €TNOL0V GLALOYIKOV PIGKOV KOl TOV GUVOMKAOV TPUYLUATIKMV GLTHUATOV TPOG amolnpimaon yo Ty

VIPOLOYIKT| TEPLPEPELD. GTNV OTO1l0 AviKEL 0 KAOE aTafudc (katdeit 99%).

Mg kol T0 GLAAOYIKO PICKO GTNV €PYOcio LOG OVOQEPETOL KUPIMG GE TOTAULY TANUUDPA, TO

TAPOTAVE OTOTEAEGUOTO OGS 0ONYOUV GTO GULUTEPAGHN OTL oVTO TO €00G TANUUVOPOS Etvat
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emkpatéotepo ot Avtikég Axtég tov HITA. AvtifBeta, amokoldnteror 0Tt 0t AvoToMkég AKTEG
yopoaktpilovtor and éva mo mepimAoko yopkd potifo, n dvokoAia onv epunveia tov omoiov
opeiletal Kuplwg otV €LOAMTOTNTO KoL GTNV LYNAN gvoicOncio avtdv TV TEPOYDV OE
TANUUVPIKAE YEYOVOTA OV OQEIAOVTOL OE TVPMVEG, GTNV EMIOPACT TNG TOAAVI®ONS Tov Popeiov
Athavtucob (North Atlantic Oscillation, NAO), otnv dvodo g 6ta0unc e Bdraccag (SLR) ko
oe Qawvoueva KOpotog koatoryidog (storm surge phenomena) ta omoio epgaviCovior moOAD

ovyvotepa kel o oyéomn pe ™ Avtikr] Akt (Ezer and Atkinson, 2014; Elsner et al., 2000).

EmnpocBétwc, mépa amd T otopikéc ypovooepés e US-CAMELS, n idw dadwaocio
VTOAOYIOUOD TOL GUVTEAECTN CLGYETIONG Spearman, OVAUESH GTO GLAAOYIKO pioko S Kot Ta
afpolotikd artnuota wpog oamolnmmon A0y® TANUUOPOS TOL  TPAYHATOTOWONKOY otV
VOPOAOYIKY] TEPIPEPELDL TOL OVIKEL O oTaBUOG, akolovOnOnke kol yia kaBe pia amd Tig 100
TUYOLOTIOINUEVEG YPOVOCELPEG TTOV dNULOVPYNGaLE Yo kbBe Evav amd tovug 360 cTabpovg pétpnong,
HE OKOTO VO OEPELVIGOVUE Ylo. OKOMO 0L POPE TOLG UNYOVIGHOVS OUOOOTOINGNG 7oL

dnuovpyovvral, amekoviovtdc ta o€ éva Onkdypappa (box plot) yio ta t€coepa KOATOPALO.
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Zyqua 11: Onoypappa (box plot) tov cuviereotdv cuoyétiong Spearman tov otafpov pértpnong Lopez C NR Arroyo
Grande, California (ID: 11141280) avaueca 6to €TNo10 S KOl T0, GUVOMKE 0T HOTE TPOG ool UimacT) TG VOPOLOYIKHG

TePLPEPELag otV omoia avikel 0 otabudc (1980-2014) yia ta Téocepa EMAEYIEVO, KATOOAMO LEAETNG.

Ta aroteAéopato avTng TG dlepedlivnong eival EVILT®G1oKA Kabmg o€ TOAAOVS 6TaOOVG LETPTONG
TAPOTNPOVUE OTL 1 OMOKAIGN TOV GUVIEAEGTMV GUGYETIONG OVAUESH OTIG IOTOPIKEG KOL TIG
TUYOLOTOMNUEVES (aveEAPTNTES) YPOVOCELPEG EIVAL OTLUOVTIKY, U0 KOl OVGLOGTIKG O GUVTEAECTNG

GLOYETIONG AVALESH GTO ET1G10 GLALOYIKO picKOo S TV TVYAOTOMNUEVOV KOl GTO ETGL0L LTI LOITOL
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npog amolnuioon eppavileror va givor apeintéoc. H vmoektipnon tov mopondve cuvieleotn

OLGYETIONG, TOV UNYXOVIGUOV OHOOOTOINoNG Kot TOV piocKov 6To GUVOAO Tov, PACEL OVTOV TOV

OTOTEAECUATOV, QoiveTal OTL Pmopel vo omo@EPel AEI00MUEIMTEG OKOVOMKEG EMIMTMOGEL OF

TEPIMTOON EVOC KPOIOL TANUUVPIKOD YEYOVOTOC, AV OV AAUPAVOVTOL LTOYT OVTEC O1 TOPAUETPOL

OTIC GTPATNYIKEG LOVTIEAOTOIN GG,

TéNog, pe dedopévo OTL GLYVA Ol aKPOiES TIHEG TapOoy®V TEivOLV Vo yopaktnpilovtal and yopikn

ovoyétion (Quinn et al., 2019), depevvnOnkav mbavol ywpikol unyavicpuol opadomoinong, HEGH

TOV GUVIEAECTN GLGYETIONG Spearman, OVALEGO GTO £TNGLO GLAAOYIKO picko S TtV cTOOH®V

pétpnong g US-CAMELS mov avikovv oty 18100 VOpoAoYIKT TEPIPEPELD, Yiot OA TO ETAEYUEVOL

KatOQAl peAég. [loapakdteo mapovcidleton o Pabuodg ympikng cvoyétions (oLVTEAESTNS

Spearman) t®v oTaBudV TG VOPOLOYIKNG TEPLPEPELNG 3 péow Bepuoydptrn (heatmap).
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Zynpa 12: Ogppoyaptg (heatmap) tov cuvieleotn cvoyétiong Spearman avipesa 6To GLALOYIKO picko S OA®V TV

otafU@V HETPTONG TOV AVIIKOLV GTNV VIPOAOYIKT TEPLPEPELD 3 peTald Tovg (katdgit 99%).
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H oavélvorn £€deiée 011 emdéyovtag YopmAOTEPEG TIUEC-KATMOOAL, O GUVIEAEGTNG GLGYETIONG
Aoppével oxeddv opotOHOPPO VYNAEG TWEG o€ OAN TNV £KTACY TNG VOPOAOYIKNG TEPUPEPELOG.
AvtiBeta, avEavovtag TIg TIHEG TOV KATOPM®OV Tov UEAETOVTAL, ONUIOVPYEITOL Hot HEYOADTEP

OLVOLLOLOLOP@I0L TV GUVTELEGTMV GUGYETIONG, EWOKA OTAV VTO PTAGEL TO 99%.

AVOALTIKOTEPO, OTOV O CULVTEAEGTNG GLOYETIONG TOL S avdpeco € dVO otafuovc PETPNONG
Bpioketon 6to ddoTno:

o -0.25 émwc 0.25, onuaivel 6Tt N CLGYETION EIVOL TPAKTIKA UNOEVIKT, ONAAOT OTL dvo TBAVA
TANUULPIKA YeyovoTta o€ ka0e Evav and toug ££eTalopevons oTtafpovg HETPNONS UTOPOvV
va BewpnBovv aveEapnra.

e (.25 and 1, onuaiver 6t 6tav ovuPel Eva TANUPLPIKO YEYOVOS GE évav amd TOLG VO
e€etalopevoug otaBpovg péTpnong, etvat moAd mbavo va copuPel avdioyo yeyovog Kot 6Tov
Ao otaBud pétpnonge.

e -0.25 and -1, onuaivel 61t 6tav cvuPel Eva TANUULPIKO YEYOVOS GE évav amd Tovg dVO
e€etalopevoug otafuovc pétpnong, oev eitvar moAd mbavd va cupPet avdroyo yeyovog kot

oTOV GALO oTafpd péTpnonge.

Ot 00QaMoTIKEG eTaLpeles EMIIOKOVY VO SNILOVPYOVV XOPTOPLAGKLL TO oTOolKElol TV omoiwv
EYOUV OPVNTIKY] YOPOYPOVIKY GLGYETION, N TOLAAYIGTOV UNdEVIKY|, BOTE Vo cuvOVAlovTol Kot
ocvvafpoilovion picka ta omoio dev elval mOAvO Vo avTITPOS®TELOVY THAVA TANUUVPIKA YEYOVOTO
ta omoia B svpuPovv otov 1010 Ydpo 1 ypovo. I'a tov Adyo avtd o mapamdve Bepuoydptng eival
ONUAVTIKOG, KOOMG EMTPEMEL OTIS ETAPEIEG VAL OALUOPPDOVOLV Eva 0BPOIoTIKE LElOEVOL pickov

YOPTOPLAGKIO GE OPOLG GLAAOYIKOV pickov S.
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1. Introduction

1.1. Research scope

During the last decades, the rising demand for crops for human consumption and industrial
processes has led to a growth of investments and search for innovative solutions across the field of
agriculture. However, one major risk that both investors and low-income farmers encounter
worldwide is the impact of extreme weather events on their crop yield. The risk caused by extreme
events is an inhibitor of growth of agriculture and, apparently, insurance is strategically important
for dealing with that risk. In particular, crop-yield insurance is purchased by agricultural producers,
and in many cases is subsidized by governments, to protect them against the loss of their crops due

to natural disasters, such as extreme flood events.

In a wider point of view, population growth, economic development and risk-blind urbanization
often increase exposure to risk, including that due to floods. While rural flooding may affect much
larger areas of land, urban floods are more challenging to manage, since the higher population and
asset density in the urban environment increase the environmental and social impacts of floods and
make the potential flood damages more costly. Therefore, the need for integrated flood insurance
policy and accurate flood risk assessment is pronounced in order to reduce the financial
consequences of extreme flood events, which endanger in many cases the environmental, social and

economic balance.

Regarding the central role of flood insurance for societies and individuals as a tool for hedging
against the risk of financial loss due to natural hazards, this study investigates some key aspects
that should be considered in modeling strategies in order to improve current risk assessment
processes. In this regard, the modeling approach of the peak-over-threshold method, including the
evaluation of the so-called collective risk S is a common procedure that is followed in insurance and
reinsurance sector. In financial terms, collective risk S is defined as the accumulation of claim
amounts over fixed one-year time windows. Yet in hydrology, it was recently suggested (Serinaldi
and Kilsby, 2016) that streamflow exceedances over given thresholds may be considered as proxies

for claim amounts from flood losses.

In this context, the aim of this research is to apply a stochastic approach for hydrological extremes
informed by current insurance and reinsurance practices. To this end, it seeks to (a) provide insights

into spatiotemporal clustering mechanisms of streamflow and rainfall extremes and (b) investigate
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their impacts on flood insurance practices. In addition to the development of modeling approaches,
the properties of collective risk, return intervals, duration and the number as well as the severity of
the over-threshold events are evaluated in order to utilize effectively all the historical data available
for a wider understanding of their footprint on flood claim amounts. Furthermore, a spatiotemporal
exploratory analysis of streamflow in USA and rainfall extremes in Greece is introduced regarding
their stochastic aspects and their correlation with actual insurance data derived from the recently
published database of the National Flood Insurance Program (NFIP) by Federal Emergency
Management Agency (FEMA, 2019) and the Hellenic Agricultural Insurance Organization (ELGA),

respectively. The latter organization provided us directly the aforementioned data.

Preliminary outcomes of this research have been presented in the General Assembly of the
European Geosciences Union (Papoulakos et al., 2020; Manolis et al., 2020; Goulianou et al.,

2019).

1.2. Work structure

The thesis is structured into nine distinct chapters, all of whom are sorted in a way similar to the

line of reasoning required for the understanding of the objective.

In the first chapter we present a preamble to the subject, the general context in which this study is

introduced and its structure.

In the second chapter we overview the impacts of natural hazards and flood events on individuals
and societies. Moreover, we define flood risk and describe the components of an integrated flood

risk management system.

In the third chapter we introduce the principles of insurance and describe the partnership between

societies, public and private sector for flood risk share and reduction.

In the fourth chapter we make an extensive presentation of the methodology and the stochastic
tools used, as well as the rudimentary stochastic theory behind it, namely Extreme Value Theory

and the Hurst-Kolmogorov dynamics.



In the fifth chapter we present the databases used, including the US-CAMELS dataset and the
FEMA NFIP claims records. In addition, we explain the qualitative and quantitative criteria with

which data were selected for processing, as well the preliminary data processing thereof.

In the sixth chapter we evaluate the spatiotemporal clustering mechanisms of streamflow extremes
on flood insurance practices, including modelling approaches and Monte Carlo simulations.
Moreover, we assess the strength of association between the studied proxy of collective risk and the
FEMA'’s NFIP actual claims records. In addition, we perform a brief analysis of spatial dependence

mechanisms of US-CAMELS dataset.

In the seventh chapter we investigate the interplay between precipitation clustering mechanisms,
rainfall extremes and actual historic flood compensations considering a Greek case study in the

Larissa region.

In the eighth chapter we present the conclusions of this study and we propose some suggestions

for future research.



2. Theoretical analysis on the impacts of natural hazards and flood events

2.1. An overview of the impacts of climate-related and geophysical disasters

“«

The Centre for Research on the Epidemiology of Disasters (CRED) defines a disaster as “a
situation or event which overwhelms local capacity, necessitating a request at national or
international level for external assistance, an unforeseen and often sudden event that causes great
damage, destruction and human suffering”. The scientific research on the economic impacts of
disasters caused by extreme weather events is a versatile issue that draws continuously the attention
of governments, policy-makers and societies. These disasters could be separated into two main
categories; the climate-related and the geophysical ones. Figures 2.1 and 2.2 present the most
financially affected countries by disasters for the period 1998-2017 in terms of absolute losses and

average annual percentage losses relative to GDP.
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Figure 2.1 Top 10 countries/territories in terms of absolute losses (billion USS$), 1998-2017
(CRED and UNISDR, 2018, modified).
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(CRED and UNISDR, modified).

According to the World Bank, the annual cost of disasters has been estimated to US$ 520 billion,
reducing rapidly at the same time the standard of living of some 26 million people, pushing them
into poverty every year (World Bank, 2017). During the period 1998-2017, the death toll from both
types of disasters (climate-related and geophysical) worldwide is estimated to be approximately 1.3
million people and the reported cumulative financial losses of these disasters amount to US$ 2.908
billion (GDP and all economic data are adjusted at 2017 US$ value). In addition, tens of millions
affected people found themselves in a state of emergency, requiring assistance in local, national or
international level. Although these cumulative losses may seem large, they do not describe the full
picture as financial reviews that are collected by the Emergency Events Database (EM-DAT) reveal
that, unfortunately, the vast majority of reports (63%) contain no economic data (CRED AND
UNISDR, 2018).



Figure 2.3 presents the proposed classification of the most common disasters (Integrated Research
on Disaster Risk, 2014), excluding Biological and Extraterrestrial as their investigation is not part of
the scope of this study. This introductory chapter focuses on events which are related to
hydrological, meteorological and climatological parameters (which collectively are termed weather

or climate-related) plus geophysical disasters.

Weather or climate-related

Hydrological Meteorological = Climatological Geophysical

Figure 2.3 Classification of Natural Hazards (Integrated Research on Disaster Risk, 2014).

The crucial factor that determines whether an extreme weather event or a natural hazard can be
described as a humanitarian or financial disaster is the vulnerability of the affected regions. For
example, impacts of extreme flood events are sharpened in cases of increased exposure to risk
which arise by parameters such as nonsensical urban development in risk-prone areas, inadequate
construction of flood protection works, incautious land use changes and weak governance. Thus, a
river flooding near a low density populated city can be deadly with incalculable financial impacts;
however, a major storm surge in an inhabitable coastal area will not be a disaster if no people are

affected or harmed.

Except anthropogenic interventions, it is under discussion and investigation whether climate change
threatens the ability of policy-makers to manage risk. Nevertheless, there are scientific works which
present evidence that, regarding extreme flood events, there is no detectable sign of human-induced
climate change in the normalized flood losses. The steady increase in the original flood losses
which is regularly observed in literature is mostly driven by societal factors (Barredo, 2008;

Crompton and McAneney, 2019).



Regarding the occurrences of each type of disasters, statistics show (Figure 2.4) that the climate-
related ones were the most frequent during the period 1998-2017. Within this subgroup, floods
appear to be the most numerous in terms of aggregated disasters and approximate number of people
affected (Figures 2.5 and 2.6). Furthermore, storms appear to be the costliest type of disaster,
followed by earthquakes and floods (Figure 2.7).
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Figure 2.4 Number of disasters by major category per year 1998-2017 (CRED and UNISDR, 2018, modified).
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The quantification and the annual aggregation of the economic impacts of major disasters over the
period 1998-2017 (Figure 2.8) unveil the significance of the structural and non-structural methods
that should be developed in order to moderate the footprint of these events. Moreover, Figure 2.9

highlights the extensive contribution of storm events on the climate-related disasters mix.
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Figure 2.8 Total reported economic losses per year, with major events highlighted, 1998-2017
(CRED and UNISDR, 2018, modified).
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Figure 2.9 Total share of losses due to storms as a percentage of annual climate-related disaster losses, 1998-2017
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As mentioned previously, one parameter that we should take into consideration is that, consistently,
a high percentage of disasters worldwide were inaccurately or ineffectively reported. This
unfortunate factuality characterizes the data collected from both wealthier as well as poorer

countries.

Tables 2.1, 2.2 and 2.3 present summaries of statistics regarding the report of economic losses (%)
per income group, per continent and per disaster type. These statistics clearly highlight a gradual
reduction of the percentage of the reported losses from the higher to the lower income groups.
Searching for a continental pattern, Africa seems to be the continent with an extensive low report
rate regarding disasters. In addition, storm is not only the costliest type of disaster, but also the one
with the higher report rate. Eventually, efforts have been made in the direction of the improvement
of disasters data collection process and the increase of their report rate by the United Nations and
other organizations worldwide, such as the adoption of the Sendai Framework for Disaster Risk

Reduction 2015-2030 (UNDRR, 2015).

y ~
ALL Climate-related Geophysical
High income 53 52 61
40 40 37
31 30 31
Low income 13 13 20

Table 2.1 Reporting of economic losses (%) per income group (CRED and UNISDR, 2018, modified).

9 ™ & JaN

ALL Climate-related Geophysical

48 51 23
Americas 42 43 32
42 42 -
Europe 38 37 54
14 14 24

Table 2.2 Reporting of economic losses (%) per continent (CRED and UNISDR, 2018, modified).
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Table 2.3 Reporting of economic losses per disaster type for climate-related (left) and geophysical (right) disasters
(CRED and UNISDR, 2018, modified).

Deepening on the impacts of extreme events per income group or continent, statistics and scientific
studies (SOPAC, 2009; Kawasaki et al., 2020) have spotlighted the close relationship between
floods, disasters and poverty. It has been highlighted that people who experience poverty tend to
live in flood-prone areas where flood policy preparation mechanisms are inadequate, governance is
weak and flood protection systems are not well maintained or not constructed at all. Furthermore, in
such cases, decisions on precautionary measures prior to the outbreak of an extreme flood event
ground on deterministic methods, as calculations on the poverty exposure bias does not change
significantly under future climate scenarios, although the absolute number of people potentially
exposed to floods can increase or decrease significantly, depending on the scenario and the region
(Winsemius et al., 2015). The same logic is being followed on extreme drought phenomena. Studies
have also indicated the impact of natural disasters and especially that of extreme floods and drought
events on human development index and local poverty (Rodriquez-Oreggia et al., 2013). Accurate

risk assessment and strong governance is the solution to such phenomena.

Although the report rate of economic losses is not ideal, some interesting conclusions could be
extracted. Figure 2.10 present the recorded climate-related disaster losses per income group
compared to GDP losses. Even though the absolute value (in US$ billions) is higher in high income
countries, which makes sense as values in general are extremely higher in those countries, the
parameter we should consider is the GDP loss (%), which is well above the International Monetary
Fund’s threshold for a major economic disaster of 0.5% (International Monetary Fund, 2020) in low

and lower-middle income countries.
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Figure 2.11 presents the classification of disasters based on income data. Although the disaster
occurrences are almost equally divided between the income groups, deaths are higher in low and
lower-middle income countries. Moreover, economic losses in high and upper-middle income group

are extremely higher mainly due to the higher values that are dominant in those countries.
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Figure 2.10 Recorded climate-related disaster losses per income group compared to GDP losses 1998-2017
(CRED and UNISDR, 2018, modified).
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Figure 2.11 Classification of disasters based on income data 1998-2017 (CRED and UNISDR, 2018, modified).

Regarding the human cost of disasters, the EM-DAT measures it by two main parameters: the

number of people killed, missing or presumed dead and the number of people affected by the
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events, which refers to people requiring immediate assistance to provide basic survival needs (food,
water, shelter, sanitation, medical assistance) during a period of emergency and includes people
injured, homeless, displaced or evacuated during the emergency phase of a disaster. Figures 2.12
and 2.13 show that climate-related disasters impact mostly people who live in low and lower-
middle income countries, as the percentage of deaths and affected people of per million population

potentially exposed is higher.

Disasters can be considered as major contributors to entrenched poverty in low and middle income
countries and, this is why, actions must be taken to empower the financially weak groups and

countries. Reducing disaster risk is a cross-cutting issue for the reduction of poverty worldwide.
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Figure 2.12 Climate-related disaster deaths in absolute numbers and percentage of per million population potentially

exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified).
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Figure 2.13 Climate-related disaster affected totals in absolute numbers and percentage of per million population

potentially exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified).
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2.2. Components of flood vulnerability and types of flood

Extreme flood events impact on both individuals and communities, endangering in many cases the
economic prosperity and social balance. These impacts depend on the topography of the flood area,

the dominant hydrodynamic mechanisms and the vulnerability of the affected environments.

Societal and anthropogenic factors are frequently parts of the primary force that increase
vulnerability in such environments, as economic development, risk-blind urbanization and
population growth, place more people and assets in high-risk areas, such as flood plains, coastlines

and dry lands, endangering their viability.

Three basic areas of flood vulnerability can be distinguished according to the principle of
sustainability: social and cultural, economic and ecological vulnerability (Schanze et al., 2004).
Social and cultural vulnerability refers to the impacts on people’s physical and mental health,
disintegration of social cohesion and inadequate protection of the cultural heritage. Economic
vulnerabilities refers to the processes needed to be done in order to protect major infrastructures,
assets and property, both public and private, reduce the direct and indirect financial losses and
support of the reconstruction and relief efforts of the affected people and societies. Last but not
least, ecological vulnerability increases the risk of potential environmental impacts on flora and
fauna, biotic and abiotic components, biodiversity, water pollution, and ecological systems in

general.

There are three main types of flood and a number of special cases that are introduced in the flood
insurance practices (Munich Re, 1997; Kron, 2005; Lotsch, et al., 2010):

* river flooding and inundation

* flash floods

* storm surge and coastal flooding

2.2.1. River flooding and inundation

River flooding at any location can be caused by rainfall or snowmelt and may be occurred at long
distances from the affected location. Distant rainfall from snowmelt or monsoons may be the main
drivers of flood on major river systems, rather than localized rainfall. The actual extent of flood will
be a combination of all contributing water, whether distant or localized, and is strongly affected by

prior water logging of soils. By nature of the shallow slopes of a natural floodplain, river inundation
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and flood duration can last for days, or weeks. Recession of the floodwaters is a function of

floodplain drainage (natural or artificial), slope, permeability and constrictions to water flow.

In specific, river flooding occurs when the capacity of a river system is insufficient to contain the
flow of water in the river, resulting in escape of water from the normal perimeter and submergence
of surrounding low-lying land. Prolonged rainfall results in soil saturation and may occur at times
of increased inflow from tributaries. As mentioned before, characteristics of the river flooding are
determined by the capacity of river channel(s), slopes, soil permeability, land cover, land use, and
control of water flows by any man-made engineering structures (training walls, dams, drainage,
etc.). River floods are often slow moving and increased tributary flow can affect flood plains, as a
result of land degradation in the catchment areas. Flood plains are formed from deposits made by
earlier floods. In terms of flood mitigation, river systems range from heavily managed to
unmanaged. In practice, although it is possible to take measures to manage floods arising from
rivers, it is not possible to control such floods completely. Most river systems have been
engineered, for purposes of urban flood protection, agricultural protection and irrigation
management. Flood detention areas may be designated, which generally allow controlled flooding

of agricultural areas in order to protect urban regions.

2.2.2. Flash floods

Flash floods arise from intense, localized rainfall, and can happen practically anywhere. Intense
rainfall can be measured over any specific period, typically between one hour and a maximum of
six hours in the case of flash flooding and, regarding the duration of rainfall, it is longest in slow-
moving or stationary storms. A characteristic of flash floods is that flood water rises suddenly, may
be fast flowing, may collect in lower lying areas, and normally runs off and ponds rapidly. Residual
ponded areas of water (sometimes larger lakes) may be trapped, remaining for long after the flash
flood event. The flood impact of intensive rainfall is more severe when the ground is already
saturated, where soils are impermeable or unstable, and in heavily sloped areas. Sequential intense
rainfall events can therefore have a cumulative impact. Where ground is sloping, water is channeled
to gullies and temporary watercourses, leading to erosion or landslides, and washing out bridges,
culverts, or roads. Flash floods may also impact areas downstream of an intense rainfall event.
Within a valley, flash floods can affect foothills, and rivers flood the valley bottoms. Within a
country, regions may be affected by flash flooding whereas river flooding is the main national flood

exposure.
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2.2.3. Storm surge and coastal flooding

Coastal zones are subject to flooding as a result of storm surge - increased sea levels driven by
tropical storm systems (cyclones) or by strong windstorms arising from intense offshore low-
pressure systems. Coastal areas most at risk are low lying, either river deltas or coastal plains. The
extent of flooding caused by a coastal sea surge will depend on several factors, especially the
topography of the low-lying inland areas, tidal conditions, wind and wave action, extent of inland
river flow at the time of coastal surge, and occurrence of localized rainfall associated with the storm
event. Torrential rains associated with monsoons and tropical cyclones are also important factors
adding to the impact of storm surges. In Asia, severe floods recur during the monsoon and rainy
seasons, often with disastrous consequences. The major cause of the most destructive phenomena is
a storm surge - a rapid rise of sea level resulting from strong winds driving the water ashore and

causing flooding in low-lying coastal areas.

2.2.4. Other types of floods

Furthermore, we have to mention some additional special cases of types of flood that, in many
cases, are responsible for large numbers of human and financial losses; Tsunami, waterlogging and
urban flooding. Tsunami is a series of waves in a water body caused by the displacement of a large
volume of water, generally in an ocean or a large lake. Waterlogging is a form of natural flooding,
especially in flat areas, when underground water rises to surface level as the result of over-
irrigation. Urban flooding appears in cases of high rainfall’s intensity and occurs when the city
sewage system and draining canals do not have the necessary capacity to drain away the amounts of

rain that are falling.

2.3. The components of flood risk

National Oceanic and Atmospheric Administration (NOAA) defines flooding as an overflowing of
water onto land that is normally dry. Floods are, in many cases, a natural phenomenon, such as in
natural floodplains, and they could happen in small and large river basins, in estuaries, at coasts and
locally. Nevertheless, floods occurrences cause troubles in catchments with extensive anthropogenic
interventions, disturbing the established balance in agricultural and urban land use and planning.
Each flood event can be characterized by features such as water depth, flow velocity, sediment

transport fluxes and other spatiotemporal dynamics.
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Flood hazard maps are designed to indicate the probability of flooding over space and serve as a
critical decision-making tool for a range of end users including building/infrastructure developers
and disaster response planners (Sampson et al., 2015). Flood risk can be defined as the combination
of the probability of occurrence of floods and the potentially adverse effects on human health, the
environment, cultural heritage and economic activity associated with the occurrence of a flood
(European Union, 2007). In more detail, flood risk is interpreted as harm to flood-prone elements
with a specific vulnerability due to probable extreme events with their features. However, the term
of risk should not be confused with the risk in the sense of reliability of structural projects which are

used as a safety measure against flood events.

The conceptual Source-Pathway-Receptor-Consequence-Model (SPRC-Model) has been proposed
in order to describe flood risk (ICE, 2001; Figure 2.14) and offers a diagrammatic depiction of a
simple causal chain which introduces parameters regarding the meteorological and hydrological
characteristics of the flood events, either in inland or at coasts (sources), through the discharge and
inundation (pathways) and the physical impacts on the affected environments at risk (receptors) to
the assessment of effects (consequences). The chain links ‘source’, ‘pathway’ and ‘receptor’ refer to
the physical process, whereas the assessment of the ‘(negative) consequence’ is a matter of societal

values.

According to Schanze et al. (2004), ‘source’ and ‘pathway’ represent the flood hazard. In more
detail:

*  ‘Source’ is determined by the probability (p) of flood events with a certain magnitude and
other features (m). Early warning (w) and the retention capacity of the source areas of inland
floods (t) can be considered as two risk reduction factors.

* The ‘pathway’ can be described by the inland discharge or coastal overflow and inundation
(1) with various attributes (a) and interventions for flood control (c).

* ‘Receptor’ and ‘(negative) consequence’ state the vulnerability, whereas ‘receptor’ specifies
the susceptibility (s) with interventions to strengthen resistance and resilience (r).

* ‘Consequence’ stands for the harm to values (v; damage) with interventions to decrease or to

compensate them (d).
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Accordingly, flood risk can be expressed by the following function:

Flood risk = function((p, m, W, source » (i, a, C)pathway , (s, r')receptor (v, d)consequence)

Practice has shown that the causal chain of the SPRC-Model can be applied for each element at risk
and each flood hazard. Policy makers should also take into consideration the complex interrelations
that exist between the mentioned components. Eventually, these components form the so-called
“flood risk system”. The investigation of the mechanisms of this system leads to integrated
solutions regarding the prevention and confrontation of extreme flood events. For inland floods, this
system focuses on river catchments and for coastal floods, focuses on coastal cells, considering
them as areas which are hydraulically connected. The overall risk assessment associated with a

flood risk system can be described as the sum of risks of all individual elements.

Source

e. g. rainfall, wind, wave

v

Pathway

e. g. river catchment and channel, coastal cell

Receptor

e. g. people, property, environment

(Negative) Consequence
e. g. loss of life, economic damage, pollution

Figure 2.14 Source-Pathway-Receptor-Consequence-Model (ICE, 2001, modified).

In many of the following chapters, the vital role of flood risk assessment in the field of flood risk
management context will be emerged, indicating its role on the reduction of the negative impacts of

a potential flood event on individuals and societies, ensuring their sustainability.
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2.4. Flood risk management

Flood risk management can be defined as the continuous and holistic societal analysis, assessment
and mitigation of flood risk (Schanze et al., 2004). It includes tools for risk moderation regarding
existing, under study or under construction systems in order to predict and control flood hazards and
its negative consequences on individuals and societies with the assistance of instruments for risk
management and reduction. The Source-Pathway-Receptor-Consequence-Model is inextricably

linked with operational flood risk management, as presented on Figure 2.15.

Risk management
Operation

F

Risk control
> L) - .,
Risk Maintenance Prepared- Disaster
analysis improvement ness response
Emergent
~ Hazard- 1 technical Flanning J hE|pr_g,m{.E
determination MEAELPES o disaster
L Vulnerability ke Humanitarian
analysis ™ assistance
ld  non-techn. Early warning
L Risk PEASrES = and L Rrcon-
determination ayacuation structian

Figure 2.15 Stages of operational risk management (Eikenberg 1998, modified).

Risk management operation can be considered as the combination of actions that must be planed
and implemented in order to control the evaluated risk and to response in case of a disaster

outbreak.

Risk and vulnerability analysis are regularly performed in order to reassess hazard and risk
according to new potential information and data available. Moreover, constant maintenance and
improvement of the system is crucial in order to evaluate the existing risks, monitor changes and
take technical and non-technical measures that decrease vulnerability. Furthermore, non-structural
measures regarding preparedness planning should be considered, in order to provide the necessary
decision support system for the unfortunate case that the flood protection system is being partially
operated or failed. In addition, early warning systems and evacuation plans is a significant step
towards the disaster mitigation, as an effective forecasting system permits the early identification

and quantification of an imminent extreme flood event to which a population will be potentially
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exposed to. Finally, designing integrated disaster response plans reduces losses of lives and

accelerates humanitarian assistance (Plate, 2002).
The planning of disaster relief packages should be also introduced into the equation. Insuring assets

and properties before the strike of a major flood event can provide sustainable financial solutions

and the needed funding regarding the reconstruction process of the affected areas.
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3. The partnership for flood risk reduction

3.1. General principles of insurance

Insurance is a means of protection from financial loss and is applied in the context of arisk
management process, which aim is to hedge against the risk of a potential loss. Insurer or insurance
company is called the entity that provides insurance services to other entities, such as companies or
individuals, which are known as insured or policyholders. The insurance transaction involves the
insured assuming a guaranteed and known relatively small loss in the form of payment to the
insurer in exchange for the insurer's promise to compensate the insured in the event of a covered
loss. The loss may or may not be financial, but it must be reducible to financial terms, and usually
involves something in which the insured has an insurable interest established by ownership,

possession, or pre-existing relationship (Vimala and Alamelu, 2018).

The insured receives a contract, called the insurance policy, which details the conditions and
circumstances under which the insurer will compensate the insured. The amount of money charged
by the insurer to the policyholder for the coverage set forth in the insurance policy is called
the premium. If the insured experiences a loss which is potentially covered by the insurance policy,
the insured submits a claim to the insurer for processing by aclaims adjuster. The insurer
may hedge its own risk by taking out reinsurance, whereby another insurance company agrees to
carry some of the risk, especially if the primary insurer deems the risk too large for it to carry, such

as aggregated risks regarding costly extreme flood events (Wikipedia, 2020).

3.1.1. Basic principle

Insurance involves pooling funds from many insured entities (known as exposures) to pay for the
losses that some may incur. The insured entities are therefore protected from risk for a fee, with the
fee being dependent upon the frequency and severity of the event occurring. In order to name a risk
as insurable, the risk insured against must meet certain characteristics. Insurance as a financial
intermediary is a commercial enterprise and a major part of the financial services industry, but
individual entities can also self-insure through saving money for possible future losses (Gollier,

2003).
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3.1.2.

Insurability

The term insurability is used to indicate whether a particular client is insurable for by a particular

company because of particular circumstance and the quality assigned by an insurance

provider pertaining to the risk that a given client would have. Risks which can be insured by private

companies typically share seven common characteristics (Mehr and Cammack, 1972):

Large number of similar exposure units. Since insurance operates through pooling
resources, the majority of insurance policies are provided for individual members of large
classes, allowing insurers to benefit from the law of large numbers in which predicted losses
are similar to the actual losses. However, all exposures will have particular differences,
which may lead to different rates. For example, regarding flood insurance programs, rates
may vary according to the flood zone the insured building belongs to.

Definite Loss. The loss takes place at a known time, in a known place, and from a known
cause. Flood events, fire, automobile accidents, and worker injuries may all easily meet this
criterion. Other types of losses may only be definite in theory. Occupational disease, for
instance, may involve prolonged exposure to injurious conditions where no specific time,
place or cause is identifiable. Ideally, the time, place and cause of a loss should be clear
enough that a reasonable person, with sufficient information, could objectively verify all
three elements.

Accidental Loss. The event that constitutes the trigger of a claim should be fortuitous, or at
least outside the control of the beneficiary of the insurance. The loss should be ‘pure,’ in the
sense that it results from an event for which there is only the opportunity for cost, such as
the loss that is caused by a flood event on a building or on its contents. Events that contain
speculative elements, such as ordinary business risks, are generally not considered insurable.
Large Loss. The size of the loss must be meaningful from the perspective of the insured.
Insurance premiums need to cover both the expected cost of losses, plus the cost of issuing
and administering the policy, adjusting losses, and supplying the capital needed to
reasonably assure that the insurer will be able to pay claims. For small losses these latter
costs may be several times the size of the expected cost of losses. There is little point in
paying such costs unless the protection offered has real value to a buyer. This is why, in
many countries including Greece, the growth of the domestic insurance market for extreme
flood events is weak.

Affordable Premium. If the likelihood of an insured event is so high, or the cost of the

event so large, that the resulting premium is large relative to the amount of protection
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offered, it is not likely that anyone will buy insurance, even if on offer. Further, as the
accounting profession formally recognizes in financial accounting standards, the premium
cannot be so large that there is not a reasonable chance of a significant loss to the insurer. If
there is no such chance of loss, the transaction may have the form of insurance, but not the
substance.

e Calculable Loss. There are two elements that must be at least estimable, if not formally
calculable: the probability of loss, and the attendant cost. Probability of loss is generally an
empirical exercise, while cost has more to do with the ability of a reasonable person in
possession of a copy of the insurance policy and a proof of loss associated with a claim
presented under that policy to make a reasonably definite and objective evaluation of the
amount of the loss recoverable as a result of the claim.

e Limited risk of catastrophically large losses. In most cases, insurable losses are
considered as ideally independent and non-catastrophic, meaning that the losses do not
happen all at once and individual losses are not severe enough to bankrupt the insurer.
Nevertheless, taking into consideration the clustering mechanisms that characterize real-
world hydroclimatic processes, this study investigates the effects of lack of fulfillment of

this assumption on flood insurance practices.

3.1.3. Claims

Insurance claim can be defined as a formal request by a policyholder to an insurance company for
coverage or compensation for a covered loss or policy event. Claims and loss handling is the
materialized utility of insurance. In other words, it is the actual "product" paid for. In more detail,
claims may be filed by insured directly with the insurer or through insurance broker. In order to deal
with the large workflow, insurance company claims departments employ a large number of claims
adjuster supported by a staff of records management and data entry clerk. In most cases, incoming
claims are classified based on severity and are assigned to adjusters whose settlement authority
varies with their knowledge and experience. The adjuster undertakes an investigation of each claim,
which is a crucial process, usually in close cooperation with the insured, determines if coverage is
available under the terms of the insurance contract, and if so, the reasonable monetary value of the

claim, and authorizes payment.

The policyholder may hire their own public adjuster to negotiate the settlement with the insurance

company on their behalf. For policies that are complicated, where claims may be complex, the
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insured may take out a separate insurance policy add-on, called loss recovery insurance, which
covers the cost of a public adjuster in the case of a claim. Managing the claims handling function
can be a really challenging process, as insurers seek to balance the elements of customer

satisfaction, administrative handling expenses, and claims overpayment leakages.

3.1.4. Indemnification

This term describes the process of reinstating the insured asset to the position that was is, in other
words to make it whole again to the extent possible, prior to the happening of a specified event or
peril. In general, we can categorize the types of insurance contracts that seek to indemnify an
insured into three groups (Kulp and Hull, 1968):

e A "reimbursement" policy

e A "pay on behalf" or "on behalf of policy"

e An "indemnification" policy

In case of a “reimbursement” policy, the insured can be required to pay for a loss and then be
reimbursed by the insurance carrier for the loss and out of pocket costs including, with the
permission of the insurer, claim expenses. Regarding the "pay on behalf" policy, the insurance
carrier would defend and pay a claim on behalf of the insured without any further action needed by
the insured. Most modern liability insurance is written on the basis of "pay on behalf" language
which enables the insurance carrier to manage and control the claim. Under an "indemnification"
policy, the insurance carrier can generally either "reimburse" or "pay on behalf of" based on its
decision which depends on the maximum potential benefit that comes out as a result from the claim

handling process.

Concerning the insurance policy, an entity seeking to transfer risk (an individual, corporation, or
association of any type, etc.) becomes the 'insured' party once risk is assumed by an 'insurer', the
insuring party, by means of a contract. Generally, an insurance contract includes, at a minimum, the
following elements: identification of participating parties (the insurer, the insured, the
beneficiaries), the premium, the period of coverage, the particular loss event covered, the amount of
coverage (i.e., the amount to be paid to the insured or beneficiary in the event of a loss),
and exclusions (events not covered). An insured is thus said to be "Indemnity" against the loss

covered in the policy.
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When insured parties experience a loss for a specified peril, the coverage entitles the policyholder to
make a claim against the insurer for the covered amount of loss as specified by the policy. Insurance
premiums from many insured are used to fund accounts reserved for later payment of claims, in
theory for a relatively few claimants, and for overhead (business) costs. So long as an insurer
maintains adequate funds set aside for anticipated losses (called reserves), the remaining margin is

an insurer's profit (Wikipedia, 2020).

3.1.5. Underwriting and investing

The business model of the insurance companies is to collect more in premium and investment
income than is paid out in losses, and also to offer a competitive price which consumers will accept.

This principle appears on flood insurance products, too. Profit can be reduced to a simple equation:

Profit = earned premium + investment income — incurred loss — underwriting expenses.

Insurers make money in two ways:
e Through underwriting, the process by which insurers select the risks to insure and decide
how much in premiums to charge for accepting those risks

e By investing the premiums they collect from insured parties

It is a wide spread perception that the most complicated aspect of the insurance business is
the actuarial science of ratemaking (price-setting) of policies, which
uses statistics and probability to approximate the rate of future claims based on a given risk (Royal
et al., 2014). After producing rates, the insurer will use discretion to reject or accept risks through
the underwriting process. Regarding flood insurance products, this process can be really complex
due to the multivariate factors that are introduced, such as the flood inundation modelling, several
spatiotemporal dynamics elements under limited data availability and, in general, the uncertainties

that characterize the calculation process.

Ratemaking process initially involves looking at the frequency and severity of insured perils and the
expected average payout resulting from these perils. Thereafter an insurance company will collect
historical loss data, bring the loss data to present value, and compare these prior losses to the
premium collected in order to assess rate adequacy (Brown, 1993). Loss ratios and expense loads

are also used. Rating for different risk characteristics involves at the most basic level comparing the
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losses with "loss relativities" - a policy with twice as many losses would therefore be charged twice
as much. More complex multivariate analyses are sometimes used when multiple characteristics are
involved and a univariate analysis could produce confounded results. Other statistical methods may

be used in assessing the probability of future losses.

Upon termination of a given policy, the amount of premium collected minus the amount paid out in
claims is the insurer's underwriting profiton that policy (Feldstein and Fabozzi, 2008).
Underwriting performance is measured by something called the "combined ratio", which is the ratio
of expenses/losses to premiums. A combined ratio of less than 100% indicates an underwriting
profit, while anything over 100 indicates an underwriting loss. A company with a combined ratio
over 100% may nevertheless remain profitable due to investment earnings, as insurance companies
earn investment profits on "float". Float, or available reserve, is the amount of money on hand at
any given moment that an insurer has collected in insurance premiums but has not paid out in
claims. Insurers start investing insurance premiums as soon as they are collected and continue to
earn interest or other income on them until claims are paid out. Nevertheless, float method is

difficult to carry out in an economically depressed periods.

3.2. Flood risk share and reduction; the role of insurance and reinsurance

Wolfgang Kron, the Head of Hydrological Risks in Munich Re’s Geo Risks Research Department,
states in his article “Flood Risk = Hazard * Values * Vulnerability” (2005) that the basic problem in
flood insurance is the difference in the demand for coverage from potential clients who are exposed
to flooding and the offer made by the insurance sector. It is evident that the fluctuation of demand,
which usually depends on people’s unfounded personal estimation on their potential exposure to
flood risk, has a direct impact of many flood insurance parameters, such as the premium values and
the amount of the total covered risk. This is why, in case that an insurance company wished to sell
individual policies on a voluntary basis, the insurance premiums would have to be so high that
policyholders would normally find them prohibitive. This phenomenon is called adverse selection
or anti-selection. Furthermore, in other extreme flood phenomena, such as the storm surge hazard,

the effect of adverse selection is even more severe.

Another problem that flood insurance policy-makers face is that premiums for flood insurance must,
at least at some point, reflect the individual exposure. Nevertheless, an individual assessment of the

risk and the calculation of an individual premium in most cases are impossible, so that the premium
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must be fixed on the basis of a flat-rate assumption. This is why zones with a similar flood hazard

must be identified and/or defined, within which the premiums are constant.

Regarding the viability of insurance and reinsurance companies, such companies must protect
themselves against high losses in order to assure their survival by performing regular accumulation
control processes, i.e. assess the probable maximum loss (PML) they may experience during an
extreme event, evaluating their reserves and their reinsurance requirements as part of their portfolio
analysis. Eventually, they estimate the aggregated losses in a regarded flood accumulation zone in

order to obtain the probable maximum loss (accumulation).

Experience has shown that the most efficient way to cope with nature’s destructive forces is on the
basis of cooperation between the people and the government plus a third component, the insurance
industry (Kron, 2005). This is why an integrated approach must be adopted, in which public
authorities, affected individuals and insurance industry must be involved (Figure 3.1). In addition,
an integral part of the process of designing an optimal strategy for risk reduction is also aggregated
loss reduction and the implementation of disaster prevention mechanisms. The combined efforts
resulting in structural and non-structural measures by the three groups allow minimization of the
total costs and prevent and mitigate the impacts from floods and other natural events. Inevitably,
such calculations become difficult when non-monetary losses and benefits are involved, such as the

threat to human lives, environmental awareness and ecological protection.

Public authorities

Risk
reduction

People affected Insurance industry

Figure 3.1The partnership for risk reduction (Kron, 2005, modified).
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4. Methodology

4.1. Extreme value analysis (EVA) distributions

Extreme value analysis (EVA) is widely used and applied as a tool to analyze and study statistics on
sample values that deviate extremely from the mean of the full sample, in order to develop a deeper
understanding of the sample and precise modeling strategies. It generates significant applications
across many scientific fields such as hydrology, insurance and finance and can be also used in order
to predict the occurrence of rare events, such as extreme flooding, large insurance losses, crashing

of the stock market and many others (Reis and Thomas, 2007).

One main application of extreme value analysis for the companies that operate in regional or global
insurance market is to model the frequency of heavy damages caused by extreme flood events on
urban or agricultural areas. It is important for them to balance the risk of damage with their
potential consequences so as to make a profit or at least to minimize the financial losses over a fixed
time-window. In this manner, generalized extreme value distribution (GEV) and generalized Pareto
distribution (GPD) are introduced as a tool for the statistical analysis of maxima or minima and of

exceedances over a given threshold.

4.1.1. Generalized Extreme Value distribution (GEV)

The development of stochastic methods for the characterization of flood peaks in drainage basins is
one of the classical problems in extreme value statistics (Morrison and Smith, 2002). In particular,
the generalized extreme value (GEV) distribution has been used for the modeling of flood peaks in
at-site and regional settings. In addition to flood modeling, the GEV distribution is commonly used
to model many other natural extreme events, such as the wind speed, air pollution concentration and
precipitation maxima. The term “extreme events” often describes the maximum values of a quantity

over a given period of time, such as the maximum annual discharge in a river.

The Generalized Extreme Value (GEV) distribution, introduced by Fisher and Tippett (1928) and
developed furtherly by Jenkinson (1955), is a flexible three-parameter model that combines the
Gumbel, Fréchet, and Weibull maximum extreme value distributions. Its probability density

function is:
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where z = (x — @) /o, and k, o, u are the shape, scale, and location parameters respectively. The
scale must be positive (¢ > 0), the shape and location can take on any real value. The range of

definition of the GEV distribution depends on k:
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Various values of the shape parameter yield the extreme value type I, II, and III distributions.
Specifically, the three cases £k = 0, £ > 0, and & < 0 correspond to the Gumbel, Fréchet, and
"reversed" Weibull distributions. The reversed Weibull distribution is a quite rarely used model
because it is bounded on the upper side and thus it is not appropriate for hydrological extremes. In
more detail:

o u+k/o<x <+ when k <0 (Fréchet),

e —oo<x<+oo when k=0 (Gumbel) and

o —ow<x=<u+o/xkwhenk>0(Weibull).

4.1.2. Generalized Pareto distribution (GPD)

The peak over threshold method (POT) has become one of the most preferable extreme value
approaches in insurance. Largely, the reason is the obvious drawback of the traditional EVA by the
block maxima method which discards potentially useful information, especially considering the
typical short records available. Indeed, if there is more than one large loss in a given block, only the
largest loss in the block is used in the subsequent analysis. Information loss of this kind is very
likely to happen with insurance data considering extreme flooding events, due to the well-known

stylized fact of volatility clustering, as large changes in prices tend to cluster together, resulting in
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persistence of the amplitudes of price changes (Cont, 2007). This drawback is eliminated in the
POT model of extreme losses by using all losses in a sample larger than some pre-specified
threshold value. The probability density function for the generalized Pareto distribution, introduced

by Pickands (1975), with shape parameter k # 0, scale parameter o, and threshold parameter 6, is:

Fo = )<1+k("‘9)> (@44

o

for 8 <x, when k> 0, or for § <x < — o/k when k< 0. For k= 0, the density is:

Flx) = (%) e 4.5)

for 6 < x. The probability distribution function for the generalized Pareto distribution is:

=

(
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The range of x isx >0 for k < 0and 0 <x < % for £ > 0. The case k = 0, which is the exponential

distribution, is the limiting distribution as £ — 0. The following values of the parameter k are of

particular interest:

e  When £ = 0, the GPD reduces to the exponential distribution with mean o.

e When k=1, the GPD becomes a uniform U [0, o] distribution.

e Whenk < — %, var(X) = oo. In fact, the rth central moment exists only if £ > - %

e  When £ <0, the GPD reduces to the Pareto distribution.

4.2. Threshold selection process

The wide use of generalized Pareto model in insurance, which deals with exceedances over a
threshold, offers us the opportunity to investigate the key-role of the threshold selection on this
POT analysis.

Threshold selection is a challenge in insurance and especially in flood insurance practices. The

threshold should be chosen such that all losses above the threshold are “extreme losses” in the sense
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of the underlying extreme value analysis. This clearly leads to some arbitrariness in the choice of
the threshold value and also to a non-trivial trade-off. On the one hand, for the underlying theory to
go through, we want to choose a high threshold in order to investigate the behavior of the (really)
extreme events. On the other hand, for the estimation of the parameters in the distribution of the
extreme losses, we need many observations above the threshold (i.e., we want to choose a low
threshold) in order to create a solid statistical foundation for our conclusions, based on a long

sequence of values.

Figure 4.1 presents the observed streamflows as well as the ones that were developed by the process
of fitting these observed data with the generalized Pareto distribution regarding one gauge station; it
clearly shows that the selection of the threshold affects directly the cumulative probability of a
specific streamflow value considering the over-threshold events. The dominant trend in insurance
practices is to select high percentage thresholds (99% or greater) in order to analyze exclusively
high-impact extreme flood events, which are mainly responsible for the large amounts of claims and
compensations that insurance companies will have to pay to their clients. Although selecting a
threshold of a significantly high percentage is a desirable option, it is not always a possible one. The
main reason is that, in many cases, the length of the available observed time series is quite short
and, as a result, selecting a high percentage threshold leads to inaccurate conclusions regarding their
statistical behavior. In order to characterize the dynamics of extreme streamflow values, this study

performed a POT analysis using four different percentage thresholds (90%, 95%, 98%, and 99%)).

1.0 I
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0.8
0.7 1
0.6
L
S 0.5+ Observed 90%
| —— GPar 90%
0.4 4 Observed 95%
—— GPar 95%
0.3 Observed 98%
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0.2 1 Observed 99%
— GPar 99%
0.1 4 Observed 99.5%
0.0 GPar 99.5%
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Q (m?3/s) for the over-threshold events

Figure 4.1 Diagram that shows the impact of threshold selection on ECDF of streamflow of the over-threshold events.

Gauge ID: 01552500.
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4.3. Collective risk model

The theoretical background on the need of existence of insurance sector can be explained by the
expected utility model, in which an insured is a risk averse and rational decision maker, who by
virtue of Jensen’s inequality is ready to pay more than the expected value of his claims just to be in
a secure financial position. In mathematical terms, the Theorem of Jensen’s inequality is developed

by Kaas et al. (2008). In more detail, if v(x) is a convex function and Y is a random variable, then

E[v(Y)] = v(E[Y]) (4.7)

with equality if and only if v() is linear on the support of Y (the set of its possible values), or

Var[Y] = 0. From this inequality, it follows that for a concave utility function

Elu(w — X)] < u(E[w — X]) = u(w — E[X]) (4.8)

Apparently, decision makers with such utility functions prefer to pay a fixed amount E[X] instead of
a risky amount X, so they are indeed risk averse. Now, suppose that a risk averse insured with
capital w has the utility function u(-). Assuming he is insured against a loss X for a premium P, his

expected utility will increase if

Eluiw = X)] <u(w - P) (4.9)

Since u(+) is a non-decreasing continuous function, this is equivalent to P < P*, where P denotes
the maximum premium to be paid. This so-called zero utility premium is the solution to the

following utility equilibrium equation

Eluw — X)] = u(w — P*). (4.10)
The insurer, say with utility function U(-) and capital W, will insure the loss X for a premium P if
E[UW + P —X)] > U(W), hence P > P~ where P~ denotes the minimum premium to be asked. This

premium follows from solving the utility equilibrium equation reflecting the insurer’s position:

UW) = E[lUW + P~ — X)]. (4.11)
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A deal improving the expected utility for both sides will be possible if P*> P

In this model, parameters such as the insured loss X, the capitals w of the insured risk averse, the
insurer’s capital W, the premium P, but also the maximum and minimum premium P* and P to be
asked to be paid are introduced. The mechanism through which decisions are taken under
uncertainty is not by direct comparison of the expected payoffs of decisions, but rather of the
expected utilities associated with these payoffs. Additional parameters which have a significant role
in this mechanism are the aggregated number of claims but also the claims amounts to be paid.
Investigating the influence of uncertainty in the whole process, which characterizes and links many
of these parameters, is a key element of this study in order to develop accurate risk assessment

procedures and modelling strategies regarding flood insurance practices.

The distribution of total claim amounts, considering the insurance company’s portfolio as a
collective that produces a random number N of claims in a certain time period, can be described by

the collective risk model (Kaas et al., 2008). Collective risk is defined as
Sc=Xi+Xo+ -+ X, (4.12)

where X; is the ith claim amount. The terms of Sx correspond to actual claim amounts. Apparently,
Sx =0 if N = 0. Similarly, regarding flood insurance practices and in case of an extreme flood event,
the collective risk S is the total claim amount, considering again the portfolio of (re)insured
properties as a collective that produces a random number N of claims in a certain time period of one
year in our case. Denoting the records y: of a time series, a proxy of temporal collective risk S is

defined by Serinaldi and Kilsby (2016) as

S= Yy, (4.13)

Jj=1

where Y; is the jth claim amount proxy (over-threshold flow fluctuation severity). Again, the total
claim amounts § = 0 if N = 0. In case of rainfall extremes investigation, over-threshold rainfall
fluctuation severity is considered. Although the definition of collective risk regarding flood
insurance practices is a proxy of the actual collective risk, as it involves hydrological series and not

actual claim amounts, it will be called in this study collective risk as well.
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The underlying assumption of this definition, which is applied abundantly in insurance practices, is
that the aggregate amount S is to require that N and the individual claim amounts Y; are independent
and identically distributed, and also that N and all claim amounts Y; are independent to each other.
Additionally, it is usually assumed that the number of claims is a single Poisson process, or allows
for some overdispersion by using the negative binomial distribution instead. This study evaluates
the impact of dependence and spatiotemporal clustering mechanisms on the calculations,

investigating the validity of the independence assumption.

In order to characterize the dependence and the clustering mechanisms, it is important to quantify
how the time series differs from a sequence of independent variables. A widely used method to
create a sequence of independent variables is to shuffle (randomize) the series in order to get a new
series which has the same dimensional distribution but no correlation; the quantification of the
distance between the independent and the observed variables is performed by comparing specific
characteristics, i.e. the annual collective risk, the duration of the peak-over-threshold events and the
occurrence frequency of return intervals in the original time series and in the shuffled one. Hence,
in order to assess the clustering of extremes of the 360 observed time series, 100 new shuffled time

series were reproduced for each one of the 360 original time series.

4.4. The Hurst-Kolmogorov dynamics

Long-term dependence and persistence is a theoretical property that was described mathematically
by A. Kolmogorov (1941) on his work on turbulence characteristics and discovered by H.E. Hurst
(1951) in the physical world during his investigation on long-term capacities of reservoirs.
Nowadays, scientific research has revealed the existence of such behavior in many natural
processes, including streamflow and rainfall dynamics, as a step towards the deeper understanding
of the potential patterns of their underlying processes. The exhibited persistence is known as the
Hurst phenomenon or Hurst-Kolmogorov (HK) dynamics and is quantified by the Hurst coefficient
H. In more detail, for:

* (0 <H<A0.5, the process is known as antipersistent (or anticorrelated)

* H =0.5, the process is equivalent to white noise, meaning that there is no long term change

(dependence) or persistence in the sample
* 0.5 < H <1, the process has enhanced long-term persistence (or positively correlated),

which is the most common behavior on hydroclimatic processes
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Regarding flood insurance practices, recent research has revealed the significance of Hurst-
Kolmogorov dynamics, persistence and inherent uncertainties in real-world hydrometeorological
processes (Koutsoyiannis, 2011; Dimitriadis, 2017), on flood inundation and flood mapping
(Dimitriadis et al., 2016). These uncertainties affect directly the abovementioned parameters, such
as the insured losses, the premiums to be asked to be paid by the clients, expected claim amounts
and insurer’s capital reserves. In other words, hydrological and hydraulic uncertainties are
introduced in the financial calculations and are to be interpreted in financial terms though a risk
estimation process. However, classic risk estimation for flood insurance practices is formulated
under the assumption of temporal independence of extreme flood events, which is unlikely to be
tenable in real-world hydrometeorological processes exhibiting long range dependence (Iliopoulou
and Koutsoyiannis, 2019). Moreover, multiple analyses on observed and historical data worldwide
note that floods and streamflow extremes have a tendency to exhibit a behavior that is closely
related to short range and long range dependence. These clustering mechanisms have a prominent
effect on spatiotemporal dynamics of streamflow and rainfall extremes. In this study, the effect of
such clustering mechanisms on particular insurance parameters, such as the total claim amounts, is

investigated.

4.5. Climacogram

In order to calculate the Hurst coefficient H and detect the potential long term dependence (or else
persistence, clustering) of a process, the most accurate method is by formulating the Climacogram
(Koutsoyiannis, 2010; Dimitriadis and Koutsoyiannis, 2015). Climacogram is a two dimensional
plot, typically depicted on a double logarithmic plot, of the variance y(k) of the mean-aggregated
series of the random variable Z on the vertical axis, and the aggregated scale k on the horizontal

axis:
1 uk
Zflk)zz Z Z; (4.14)
i=(u—-1k

where Z and Zu represent the random stochastic process and the mean aggregated stochastic process

respectively, while u is the vector index of the field showing the lag; i.e. the location in the field.

The Climacogram (Dimitriadis and Koutsoyiannis, 2015; Table 4.1), depends on the nature of the
stochastic process; there is a fundamental difference between continuous and discrete time

Processes:
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Table 4.1 The Climacogram.

Type Climacogram

Var [/ 2(©)d¢] var[[;" x(9)d¢]

m2 m2

Continuous y(m) :=

where m € R"and y(0) := Var|[x(t)]

- @ x®
@ . Var [Z;‘ik(i_l)ﬂ X, ] Var [Zz 1%
Discrete Ya *= k2 ke e

where k € N is the dimensionless scale for a discrete time process

Classical estimator ]7(4) Z (Z (A)) Yi= 1x1
A n—1~4ai= I=k(i-1)+1 = n

A)
Expectation of )(n)
: : . . (k)
classical estimator E [Zém(k)] = —k v (k)
n

4.6. Generalized-HK (GHK) process

In some cases, such as in this study, fitting of straight line in the Climacogram derived from the
observed data cannot capture the full variance behavior of the process at the whole range of scales.
Thus, the generalized-HK (GHK) process is applied, which exhibits also an HK behavior in large
scales but has more flexibility in smaller scales. It is a method that can preserve explicitly (i.e. fully
analytical calculations) four marginal moments of a process for any type of second-order

dependence structure (Dimitriadis and Koutsoyiannis, 2018). The Climacogram of the model is:

A

YO =T wpen

(4.15)

where the Hurst coefficient H is bounded between zero and one inclusive, ¢ is positive, while 4 and

g have dimensions [x*] and T, respectively.

4.7. Symmetric-moving average (SMA) method

In this study, the symmetric moving average (SMA) method (Koutsoyiannis 2000 and 2016;
Dimitriadis and Koutsoyiannis, 2018) is applied in order to develop and evaluate potential modeling

strategies. SMA is a general method for producing synthetic time series of a physical quantity by
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preserving its dependence structure. In particular, SMA generation scheme for approximating the
marginal probability function can replicate a natural process by exactly preserving its first four
central moments, which has been found to be sufficient for various distributions commonly applied

in geophysical processes.

The SMA method is described by the following equation:

l
= ) ey (4.16)
j==t
where x; is any process with any type of dependence, a; are coefficients calculated from the
autocovariance function, v;,; is white noise averaged in discrete-time and / theoretically equals

infinity but a finite number can also be used for preserving the dependence structure up to lag 1.

The algorithm to produce time series with the SMA scheme, created by P. Dimitriadis (2018),
required the first four central moments, the H coefficient of each physical quantity (average,

maximum and minimum) and the length of the time series as well.

4.8. Pearson, Spearman and Kendall correlation

Pearson's correlation coefficient (Pearson, 1895) when applied to a sample is commonly
represented by 7y and may be referred to as the sample correlation coefficient or the sample
Pearson correlation coefficient. We can obtain a formula for 7y, by substituting estimates of the
covariances and variances based on a sample into the formula above. Given paired data

{(x1,¥1), -, (xp, Y1)} consisting of n pairs, 7y is defined as:

L Yisi (i =0 =)
o= Tt - DT 7

(4.17)

where:
* nissample size

* x;yi are the individual sample points indexed with i
1

- _1lon .
* x_n i=1Xi
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The Spearman correlation coefficient (Spearman, 1904) is defined as the Pearson correlation
coefficient between the rank variables. For a sample of size n, the n raw scores X;, Y; are converted
to ranks rgXi, rg¥i, and rs is computed as
cov(rgx, 7gy)

Ts = Prgyrgy = —————— (4.18)

s Tgxrgy 19 Orgy
where:

* p denotes the usual Pearson correlation coefficient, but applied to the rank variables

* X yi are the individual sample points indexed with i

e X= % i=1 X; (the sample mean); and analogously for y

Regarding the Kendall correlation coefficient (Kendall, 1938), let (x1,y1),...,(xn,yn) be a set of
observations of the joint random variables X and Y, such that all the values of (xi) and (y:) are unique
(ties are neglected for simplicity). Any pair of observations (x;)i) and (x;,y;), where i <j, are said to
be concordant if the sort order of (x;x;) and (1;,);) agrees: that is, if both x;> x; and yi > y; holds or

both x; <x;j and yi < yj;; otherwise they are said to be discordant.

The Kendall 7 coefficient for n items is defined as:

_ (number of concordant pairs) — (number of discordant pairs)

(2)

(4.19)
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5. Dataset

5.1. US-CAMELS dataset

This analysis is applied on the US-CAMELS dataset which comprises 671 daily streamflow time
series from catchments in the contiguous United States (CONUS) minimally impacted by human
activities (Newman et al., 2014). From this dataset, 360 streamflow time series with the maximum
temporal overlap (namely, 35 years from 1980 to 2014) and less than 10% of missing values were
selected. Figure 5.1 shows the study area and stream gauge locations for the full dataset and Figure
5.2 shows the selected 360 stream gauge locations. The list of the 360 selected gauge locations and

their characteristics are provided in the appendix (Table A-1).
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Figure 5.1 The 671 US-Camels stream gauge locations.
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Figure 5.2 The selected 360 US-Camels stream gauge locations.
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5.2. Hydrologic Units in USA

The United States Geological Survey (USGS) created a hierarchical system of hydrologic units
originally called regions, sub-regions, accounting units, and cataloging units. Each unit was
assigned a unique Hydrologic Unit Code (HUC). As first implemented the system had 21 regions,
221 subregions, 378 accounting units, and 2 264 cataloging units (Seaber, P.R., et al., 1987). The
first level of classification divides the USA into 21 major geographic areas (Figures 5.3 and 5.4), or
regions. These geographic areas contain either the drainage area of a major river, such as the
Missouri region, or the combined drainage areas of a series of rivers, such as the Texas-Gulf region,

which includes a number of rivers draining into the Gulf of Mexico.

Figure 5.3 The 21 hydrological units of the USA. The gray lines are state lines, the blue lines are major rivers, and the

white lines are water-resources region boundary lines (Seaber, P.R., et al., 1987).
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Figure 5.4 The names of the 21 Hydrological Units in the USA (Wikipedia, 2020).
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Eighteen of the regions occupy the land area of the conterminous United States. Alaska constitutes
region 19, the Hawaii Islands are region 20, and Puerto Rico and other outlying Caribbean areas are

region 21.

5.3. FEMA’s NFIP claims records

The Federal Emergency Management Agency (FEMA) is an agency of the United States
Department of Homeland Security and its primary purpose is to coordinate the response to a
disaster that has occurred in the United States and that overwhelms the resources of local and state

authorities.

The National Flood Insurance Program (NFIP) is a program administered by the FEMA and has a
twofold purpose; to share the risk of flood losses through flood insurance and to reduce flood
damages by restricting floodplain development. Furthermore, the program enables property owners
in participating communities to purchase insurance protection, administered by the government,
against losses from flooding. In addition, it requires flood insurance for all loans or lines of credit
that are secured by existing buildings, manufactured homes, or buildings under construction, that
are located in the Special Flood Hazard Area in a community that participates in the NFIP.
Moreover, it is designed to provide an insurance alternative to disaster assistance to meet the

escalating costs of repairing damage to buildings and their contents caused by flood (FEMA, 1986).

In more detail, according to the Federal Emergency Management Agency (FEMA): “The National
Flood Insurance Program (NFIP) aims to reduce the impact of flooding on private and public
structures. It does so by providing insurance to property owners, renters and businesses and by
encouraging communities to adopt and enforce floodplain management regulations. These efforts
help mitigate the effects of flooding on new and improved structures. Overall, the program reduces
the socio-economic impact of disasters by promoting the purchase and retention of general risk

insurance, but also of flood insurance, specifically.” (FEMA NFIP, 2019).

On June 11 2019 the Federal Emergency Management Agency (FEMA) published National Flood
Insurance Program (NFIP) data including more than two million claims records dating back to 1970
and more than 47 million policy records for transactions from the past ten years on its OpenFEMA
website (FEMA, 2019). This data supplements existing NFIP data through OpenFEMA and

provides additional data of interest. It is evident that this is a giant contribution for supporting
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scientists and policy-makers on their research on how the National Flood Insurance Program (NFIP)

works, where flood damage occurs, and what the costs are.

“This data demonstrates FEMA’s commitment to build a culture of preparedness by providing
insights to our stakeholders that can help close the nation’s insurance gap. It gives the insurance
industry, researchers, and the public the ability to analyze and evaluate this program. Insurance is
the best tool to financially protect you and your family before a disaster.” declared Dr. Daniel
Kaniewski, FEMA’s Deputy Administrator for Resilience, in a news release (FEMA, 2019).

“The proactive publication of this data will assist the private market to grow in the flood insurance
space and help close the insurance gap. The private market will now be able to identify areas with
prior flood claims and historical flood insurance policies,” said David Maurstad, FEMA’s Deputy
Associate Administrator for Insurance and Mitigation (FEMA, 2019).

However, as useful as these data could be, the dataset does not include the exact addresses of
affected buildings, to protect policyholders’ privacy. Although it includes ZIP code-level data on
where policyholders received payments, a home buyer might not be able to learn the full history of

flood risk for a property.

The published data enables analysis of how coverage has changed in a geographic area, and where
NFIP claims have been filed for more than 40 years. Information such as: state, census tract, ZIP

code, year of loss, and amount paid on claims are included.

This dataset consists of around 2.4 million observations of 39 variables. The dataset’s variables that

are used in our study, accompanied by their data dictionary description, are the following:

o YyearofLoss: Year in which the flood loss occurred (YYYY).
o countyCode: The Federal Information Processing Standard (FIPS) defined unique 5-digit
code for the identification of counties and equivalent entities of the united States, its

possessions, and insular areas. The NFIP relies on the geocoding service to assign county.

o state: The two-character alpha abbreviation of the state in which the insured property is
located.
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o latitude: Approximate latitude of the insured building (to 1 decimal place). This
represents the approximate location of the insured property. The precision has been lessened
to ensure individual privacy.

o longitude: Approximate longitude of the insured building (to 1 decimal place). This
represents the approximate location of the insured property. The precision has been lessened
to ensure individual privacy.

o amountPaidOnBuildingClaim: Dollar amount paid on the building claim. In some
instances, a negative amount may appear which occurs when a check issued to a policy
holder isn't cashed and has to be re-issued.

o amountpaidoncontentsclaim: Dollar amount paid on the contents claim. In some
instances, a negative amount may appear which occurs when a check issued to a policy
holder isn't cashed and has to be re-issued.

While there are supposed to be records from 1970, the records before 1978 seem to be pretty sparse.
We also don’t have a full year of records for 2021 yet. As such, records are filtered to comprise

years between 1970 and 2021 (last data refresh: 10-24-2021).

5.4. A graphical and diagrammatic visualization of the FEMA’s NFIP claims records

Figure 5.5 shows the number of claims per year. The years with the largest aggregated number of
claims are (in descending order) 2005, 2012 and 2017. The common characteristic of these years is
the occurrence of at least one of the five costliest Atlantic hurricanes in US history. The normalized
damages reported in Table 5.1 give an estimation of the direct economic loss of these five Atlantic
hurricanes if the same event was to occur under contemporary societal conditions, as described on
Weinkle et al. (2018). The applied general formula for normalized losses for the adjustment at 2018
USS$ value (D2018) is:

D201s5=Dy x I, x RWPC), x P2018/y (5.1)

where Dy is reported damage in current-year US dollars, [, is the GDP deflator for inflation
adjustment, RWPC) is an estimate of current-cost net stock of fixed assets and consumer durable

goods to capture changes in real wealth per-capita, and P2o1s/y is county population adjustment.
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Table 5.1 The nominal and normalized direct economic losses of the five costliest Atlantic hurricanes in US history.

Name Season Nominal damage Normalized damage
Katrina 2005 $125.0 Billion USD $116.9 Billion USD
Harvey 2017 $125.0 Billion USD $62.2 Billion USD
Maria 2017 $90 Billion USD N/A
Irma 2017 $77.2 Billion USD $31.0 Billion USD
Sandy 2012 $68.7 Billion USD $73.5 Billion USD
Aggregated number of claims per year Aggregated number of claims per year (normalized)
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Figure 5.5 The aggregated number of claims per year (1970-2021). On the left diagram, the nominal values are
presented, whereas, on the right diagram, the normalized values are presented by subtracting the mean from the

individual values and dividing the difference by the standard deviation. Last data refresh: 10-24-2021.

Apart from the number of claims that occurred due to the hurricanes (storm surge and coastal
flooding), numerous claims are caused by other types of floods, similar to the ones that are
described in section 2.4, such as river flooding and flash floods. At this point, someone can
conceive the difficulty that researchers and policy makers face during the really complex process of
quantifying the mechanisms that generate every single flood event in order to investigate ways of

eliminating their causes and impacts.

FEMA’s NFIP claims dataset consists of aggregated claims provoked by all potential types of
floods, and thus it is difficult to attribute claims records to a specific flood type, i.e. river flooding

as in our study.

One significant and clear conclusion that is highlighted by the analysis of this dataset is the spatial
distribution of the recorded claims. Figures 5.6-5.13, based on R scripts originally created by K.
Tay (2019), present the number of claims across the United States and show us that East Coast and
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Gulf states are by far the most flood-affected areas in terms of number of claims. These records
indicate the need for further research on the field of flood risk management and the development of
integrated financial solutions offered by the flood insurance sector in order to moderate the impacts

of these extreme flood events.

Recently, FEMA designed and published some interactive data visualization instruments that offer a
better understanding of the historical flood risk across the USA and potential flood-related costs
(FEMA, 2020). Among others, it is mentioned that the percent of U.S. counties that are impacted by
a flooding event is 99% (1996-2019), the average flood claim payout from the NFIP in 2019 was

$52,000 and that the average annual flood insurance policy premium cost in 2019 was $700.
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Figure 5.6 A per state depiction of the aggregated number of claims. It is clear that Louisiana experienced the majority

of claims, followed by Texas and Florida (1970-2018).
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Figure 5.7 The claims values of all states split into 2 buckets (1970-2018).
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Figure 5.9 The aggregated number of claims per county (1970-2018).
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Figure 5.10 The above bar plots show the number of claims (left) and the claim amounts (right) of the most affected
states. 6 states experienced more than 100,000 claims (red dashed line), with North Carolina barely hitting that number.
It is not surprising that the top 5 states with the most number of claims are also the top 5 states with the largest claim

amounts. What might be more surprising is how much more money was claimed in LA and TX compared to the other

states (1970-2018).
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Figure 5.11 The aggregated number of claims per state regarding the Gulf states (1970-2018).
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Figure 5.12 The aggregated number of claims per county regarding the Gulf states (1970-2018).
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Figure 5.13 The aggregated number of claims per county regarding the Florida state (1970-2018).
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6. Evaluating the clustering mechanisms of extremes on flood insurance

practices with computational tools

6.1. Impacts of clustering mechanisms on collective risk

For each one of the selected 360 gauge locations and for each one of the 4 selected thresholds (90%,
95%, 98%, 99%), the annual collective risk is calculated for the observed as well as the shuffled
time series. The results from this process are quite impressive as, in many gauge locations, the
divergence between the observed and the shuffled (independent) time series on the diagram of the
Empirical Cumulative Distribution Function (ECDF) of collective risk is evident in many gauge
locations. These results are a clear indication of the existence of the clustering of extremes in terms
of collective risk, which reflects directly on the claim amounts. The results regarding the gauge

location at the Sf Trinity River Below Hyampom in California follow (Figures 6.1-6.3).
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Figure 6.1 Collective risk’s ECDF diagrams in linear scale (Gauge location ID: 11528700).
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Figure 6.2 Collective risk’s ECDF diagrams in logarithmic scale (Gauge location ID: 11528700).
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Figure 6.3 Collective risk’s return period (1/(1-ECDF)) diagrams in linear scale (Gauge location ID: 11528700).



6.2. Impacts of clustering mechanisms on return intervals

For each one of the selected 360 gauge locations and for each one of the 4 thresholds, the return
intervals of the over-threshold events are calculated for the observed as well as the shuffled time
series. The return interval between two over-threshold events is a significant parameter for the
insurance companies, as higher or lower values in short temporal periods can even affect their
reserves, provoking potential financial instability. Once again, the divergence between the observed
and the shuffled (independent) time series on the Empirical Cumulative Distribution Function
(ECDF) for the return intervals of the over-threshold events diagram is evident in many gauge
locations. The results regarding the Sf Trinity River Below Hyampom in California follow (Figures

6.4-6.5).
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Figure 6.4 Return interval’s ECDF diagrams in linear scale (Gauge location ID: 11528700).
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Figure 6.5 Return interval’s ECDF diagrams in logarithmic scale (Gauge location ID: 11528700).

6.3. Impacts of clustering mechanisms on the duration of the over-threshold events

For each one of the selected 360 gauge locations and for each one of the 4 thresholds, the duration
of the over-threshold events are calculated for the observed as well as the shuffled time series. The
duration of the over-threshold events is a challenging parameter for the insurance companies, as
higher or lower values can affect the severity of the event in terms of financial losses as well as the
claim amounts. Once again, the divergence between the observed and the shuffled (independent)
time series on the Empirical Cumulative Distribution Function (ECDF) for the duration of the over-
threshold events diagram is evident in many gauge locations. The results regarding the Sf Trinity

River Below Hyampom in California follow (Figures 6.6-6.7).
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Figure 6.6 Events’ duration ECDF diagrams in linear scale (Gauge location ID: 11528700).
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Figure 6.7 Events’ duration ECDF diagrams in logarithmic scale (Gauge location ID: 11528700).
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6.4. Mean Climacogram of US-CAMELS, Monte Carlo simulations and modeling
approaches related with HK behavior

Based on the mean Climacogram of the GHK process (Dimitriadis and Koutsoyiannis, 2018)
regarding the 360 empirical streamflow time series of the US-CAMELS dataset, the Hurst
coefficient was estimated 0.63, which indicates clearly a persistent behavior (Figure 6.8-6.9). The
effect of this dependence structure is tracked on the behaviors of POT flows at the annual scale and
the estimation of the collective risk proxy. Subsequently, the behavio