Χωροχρονική ομαδοποίηση των ακραίων παροχών και η σημασία της στην ασφάλιση έναντι πλημμυρών Κωνσταντίνος Παπουλάκος Επιβλέπων: Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Συνεπιβλέποντες: Θεανώ Ηλιοπούλου, Διδάκτωρ ΕΜΠ Παναγιώτης Δημητριάδης, Διδάκτωρ ΕΜΠ # **National Technical University of Athens** School of Civil Engineering Department of Water Resources and Environmental Engineering # Spatiotemporal clustering of streamflow extremes and relevance for flood insurance Konstantinos Papoulakos Supervisor: Demetris Koutsoyiannis, Professor, NTUA Co-supervisors: Theano Iliopoulou, PhD, NTUA Panayiotis Dimitriadis, PhD, NTUA # NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF CIVIL ENGINEERING # DEPARTMENT OF WATER RESOURCES AND ENVIRONMENTAL ENGINEERING # ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ # ΧΩΡΟΧΡΟΝΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΑΚΡΑΙΩΝ ΠΑΡΟΧΩΝ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΗΣ ΣΤΗΝ ΑΣΦΑΛΙΣΗ ENANTI ΠΛΗΜΜΥΡΩΝ # **DIPLOMA THESIS** # SPATIOTEMPORAL CLUSTERING OF STREAMFLOW EXTREMES AND RELEVANCE FOR FLOOD INSURANCE ### KONSTANTINOS PAPOULAKOS SUPERVISOR: DEMETRIS KOUTSOYIANNIS, PROFESSOR, NTUA **CO-SUPERVISORS:** THEANO ILIOPOULOU, PHD, NTUA PANAYIOTIS DIMITRIADIS, PHD, NTUA ATHENS, NOVEMBER 2021 | Cover: Claude Monet, 'Flood Waters'© The National Gallery, London. Bought, 1958. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) http://creativecommons.org/licenses/by-nc-nd/4.0/ | |---| | Minor changes were made. Link to the license: https://commons.wikimedia.org/wiki/File:Claude_Monet,_Flood_Waters.jpg | | | | | Copyright © Κωνσταντίνος Παπουλάκος, 2021 Με επιφύλαξη παντός δικαιώματος Απαγορεύεται η αντιγραφή, αποθήκευση σε αρχείο πληροφοριών, διανομή, αναπαραγωγή, μετάφραση ή μετάδοση της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό, υπό οποιαδήποτε μορφή και με οποιοδήποτε μέσο επικοινωνίας, ηλεκτρονικό ή μηχανικό, χωρίς την προηγούμενη έγγραφη άδεια του συγγραφέα. Επιτρέπεται η αναπαραγωγή, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν στη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Η έγκριση της διπλωματικής εργασίας από τη Σχολή Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου δεν υποδηλώνει αποδοχή των απόψεων του (Ν. 5343/1932, Άρθρο 202). Copyright © Konstantinos Papoulakos, 2021 All Rights Reserved Neither the whole nor any part of this diploma thesis may be copied, stored in a retrieval system, distributed, reproduced, translated, or transmitted for commercial purposes, in any form or by any means now or hereafter known, electronic or mechanical, without the written permission from the author. Reproducing, storing and distributing this thesis for non-profitable, educational or research purposes is allowed, without prejudice to reference to its source and to inclusion of the present text. Any queries in relation to the use of the present thesis for commercial purposes must be addressed to its author. Approval of this diploma thesis by the School of Civil Engineering of the National Technical University of Athens (NTUA) does not constitute in any way an acceptance of the views of the author contained herein by the said academic organization (L. 5343/1932, art. 202). This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Konstantinos Papoulakos, 2021 # Ευχαριστίες / (Acknowledgments in Greek) Με την εκπόνηση και την παρουσίαση της παρούσας διπλωματικής εργασίας κλείνει ο κύκλος των προπτυχιακών μου σπουδών στη Σχολή Πολιτικών Μηχανικών ΕΜΠ, ολοκληρώνοντας ένα σημαντικό κεφάλαιο της έως τώρα ζωής μου και σηματοδοτώντας την αρχή νέων προκλήσεων. Παρά τις παθογένειες που χαρακτηρίζει διαχρονικά το «Ελληνικό Πανεπιστήμιο», νιώθω ιδιαίτερα χαρούμενος και ευγνώμων που υπήρξα μέλος αυτού του φημισμένου στην Ελλάδα και το εξωτερικό τεχνολογικού Ιδρύματος. Κάνοντας ανασκόπηση των εμπειριών που αποκόμισα και των ανθρώπων που γνώρισα κατά τη διάρκεια των σπουδών μου, συνειδητοποιώ ότι αυτό το ταξίδι με διαμόρφωσε ανεξίτηλα ως άνθρωπο και ως χαρακτήρα, προσφέροντάς μου επιστημονική γνώση, οξύνοντας την κριτική μου ικανότητα και διευρύνοντας τους ορίζοντές μου προς κάθε κατεύθυνση. Πρωτίστως θα ήθελα να ευχαριστήσω από καρδιάς τον κ. Δημήτρη Κουτσογιάννη, Καθηγητή της Σχολής Πολιτικών Μηχανικών ΕΜΠ και επιβλέποντα της διπλωματικής μου εργασίας, για την ανάθεση ενός εξαιρετικά ενδιαφέροντος θέματος. Πέρα από τον δικαιολογημένο θαυμασμό που πάντα ένιωθα για αυτόν λόγω των επιστημονικών του επιτευγμάτων και της διδακτικής του δεινότητας, ο κος Κουτσογιάννης αποτελεί πηγή έμπνευσης για κάθε νέο μηχανικό και επιστήμονα. Παρά τη στοχαστικότητα του επιστημονικού πεδίου που μελετά, η καθαρότητα των ιδεών και των απόψεών του είναι βαθιά ντετερμινιστική χάρη στην αταλάντευτη πίστη του για ελεύθερη γνώση, προσβάσιμη έρευνα και τις αξίες του σχετικά με την επιστήμη και την τεχνολογία που βάζουν στο επίκεντρο τον άνθρωπο. Τον ευχαριστώ ειλικρινά για τη συνεργασία, τις γνώσεις και τις αρχές που μου μεταλαμπάδευσε. Στη συνέχεια, θα ήθελα να ευχαριστήσω θερμά τη διδάκτορα Άνυ Ηλιοπούλου για την επιστημονική γνώση που μοιράστηκε μαζί μου απλόχερα, τον πολύτιμο χρόνο της και την εν γένει καθοριστική συμβολή της ώστε να φτάσει η εργασία στην τελική της μορφή. Επίσης, θέλω να ευχαριστήσω τον διδάκτορα Παναγιώτη Δημητριάδη για τις πολύτιμες και καίριες παρατηρήσεις του καθ' όλη τη διάρκεια εκπόνησης της εργασίας. Νιώθω ιδιαιτέρως τυχερός που συνεργάστηκα με τόσο αξιόλογους νέους ανθρώπους και επιστήμονες, οι οποίοι κοσμούν το ΕΜΠ με την παρουσία τους και δείχνουν ότι το μέλλον της έρευνας και της τεχνολογίας στη χώρα μας είναι λαμπρό. Ακόμα, οφείλω ένα εγκάρδιο ευχαριστώ στον κ. Δημοσθένη Τσακνιά, Πολιτικό Μηχανικό με πολυετή επαγγελματική εμπειρία στον κλάδο των ασφαλειών έναντι πλημμύρας σε Μεγάλη Βρετανία, Ελβετία και Ελλάδα, ο οποίος μοιράστηκε μαζί μου με τρόπο γενναιόδωρο τις εμπειρίες και τις γνώσεις του στο επιστημονικό αυτό αντικείμενο, τόσο από ερευνητική όσο και πρακτική σκοπιά, προσφέροντάς μου την απαραίτητη θεμελιώδη γνώση και αντίληψη που απαιτούνταν για να προσεγγίσω το εν λόγω πεδίο. Οι πολύωρες συζητήσεις μαζί του, παρά τον ιδιαιτέρως υψηλό φόρτο εργασίας του, αποτέλεσαν για εμένα πυζίδα προσανατολισμού κατά τη διαδικασία προσέγγισης του συγκεκριμένου θέματος, δίνοντάς μου ερμηνείες, διαφωτίζοντας τυφλά σημεία και παρέχοντάς μου υπολογιστικά και θεωρητικά εργαλεία αντιμετώπισης των πολυεπίπεδων προκλήσεων οι οποίες εμφανίστηκαν κατά την εκπόνηση της εργασίας. Τέλος, το πιο μεγάλο ευχαριστώ το οφείλω στην οικογένειά μου, τους γονείς μου Γιώργο και Μαρία, τα αδέρφια μου Μιχάλη, Γιώργο και Πηνελόπη, και την Ειρήνη για την συνεχή υποστήριζή που μου παρέχουν σε οτιδήποτε με το οποίο καταπιάνομαι, την αγάπη, την υπομονή και τη σιγουριά που μου προσφέρουν, νιώθοντάς τους συνεχώς κοντά μου. Κωνσταντίνος Παπουλάκος Αθήνα, Νοέμβριος 2021 # **Abstract** Recent research has revealed the significance of Hurst-Kolmogorov dynamics (Koutsoyiannis, 2011), which is characterized by strong correlation and high uncertainty in large scales (Dimitriadis and Koutsoyiannis, 2015), in flood risk assessment as for example in inundated flood duration (Dimitriadis and Koutsoyiannis, 2020). However, classic risk estimation for flood insurance practices is formulated under the assumption of temporal independence of extreme flood events, which is unlikely to be tenable in real-world hydrometeorological processes exhibiting long range dependence (Iliopoulou and Koutsoyiannis, 2019). Additionally, insurable flood losses are considered as ideally independent and non-catastrophic in financial terms due to the widely spread perception of limited risk regarding catastrophically large flood losses. As the accurate risk assessment is a fundamental part of flood insurance and reinsurance practices, this study investigates the effects of lack of fulfillment of these assumptions, paving the way for a deeper understanding of the underlying clustering mechanisms of streamflow extremes. For this purpose, a spatiotemporal analysis of the daily flow series from the US-CAMELS dataset (Newman et al., 2014) is applied, comprising the impacts of clustering mechanisms on return intervals, duration and severity of the over-threshold events which are treated as proxies for collective risk. Moreover, stochastic approaches are developed and an exploratory analysis is introduced regarding the stochastic aspects of the correlation between the properties of the extreme events and the actual claims records of the FEMA National Flood Insurance Program which are recently published. Furthermore, regarding precipitation mechanisms, the presence of persistence in annual rainfall is expected to induce clustering in rainfall extremes (Iliopoulou et al., 2018), which should be manifested by clustering of floods. Therefore, in the framework of a case study, it is investigated whether the collective risk estimated using the former as a proxy, i.e. the magnitude of the rainfall peak over threshold events in a year, is correlated with the actual compensations given. Eventually, the current insurance practices and actual compensations given in the agriculture domain in Greece are reviewed, while inspecting the underlying stochastic assumptions and evaluating changes in the estimated risk in the case that
these assumptions are not valid. Key words: Insurance; Hurst-Kolmogorov dynamics; Clustering mechanisms; Symmetric Moving Average; Climacogram; Monte-Carlo simulation; Risk assessment; Extreme value analysis; Collective risk; Return interval; Floods; Streamflow extremes; Precipitation; Rainfall extremes; FEMA; NFIP; Greece; Agriculture. # Εκτεταμένη περίληψη στα Ελληνικά / Extended abstract in Greek Η επιστημονική έρευνα έχει αποκαλύψει τη σημασία της δυναμικής Hurst-Kolmogorov (Koutsoyiannis, 2011), η οποία χαρακτηρίζεται από ισχυρή συσχέτιση και υψηλή αβεβαιότητα στις μεγάλες κλίμακες (Dimitriadis and Koutsoyiannis, 2015), στην εκτίμηση πλημμυρικού κινδύνου, όπως για παράδειγμα στο πεδίο της διάρκειας πλημμυρικών γεγονότων (Dimitriadis and Koutsoyiannis, 2020). Παρ' όλα αυτά, οι κλασσικές μέθοδοι εκτίμησης ρίσκου στον τομέα των ασφαλειών έναντι πλημμύρας διατυπώνονται υπό την παραδοχή της ανεξαρτησίας των ακραίων πλημμυρικών γεγονότων στον χρόνο, η οποία όμως δεν συνάδει με τις πραγματικές υδρομετεωρολογικές διαδικασίες οι οποίες παρουσιάζουν μακροπρόθεσμη εμμονή (Iliopoulou and Koutsoyiannis, 2019). Επιπροσθέτως, οι ασφαλιστέες απώλειες λόγω πλημμύρας θεωρούνται ανεξάρτητες και μη καταστροφικές (σε οικονομικούς όρους) για τις ασφαλιστικές εταιρείες εξαιτίας της ευρεώς διαδεδομένης αντίληψης του περιορισμένου κινδύνου σχετικά με τις καταστροφικά μεγάλες απώλειες από πλημμυρικά γεγονότα. Μιας και η ακριβής εκτίμηση του ρίσκου είναι θεμελιώδης διαδικασία που ακολουθείται στον κλάδο των ασφαλειών και αντασφαλειών έναντι πλημμύρας, η παρούσα εργασία διερευνά τις επιπτώσεις της μη ικανοποίησης των παραπάνω υποθέσεων, προλειαίνοντας τον δρόμο για μια βαθύτερη κατανόηση των υποκείμενων μηχανισμών ομαδοποίησης των ακραίων πλημμυρικών παροχών. Έχοντας αυτό το σκοπό, η εργασία εφαρμόζει μια χωροχρονική ανάλυση των χρονοσειρών παροχών της βάσης δεδομένων US-CAMELS (Newman et al., 2014) μέσω της μεθόδου των υπερβάσεων πάνω από ένα κατώφλι (peak-over-threshold method). Αναλυτικότερα, για κάθε έναν από τους εξεταζόμενους σταθμούς μέτρησης της US-CAMELS, υπολογίστηκε το αποκαλούμενο συλλογικό ρίσκο S (collective risk), το οποίο είναι μια συνήθης πρακτική που ακολουθείται στον κλάδο των ασφαλειών και αντασφαλειών. Σε οικονομικούς όρους, το συλλογικό ρίσκο S ορίζεται ως το άθροισμα (συσσώρευση) ποσών απαίτησης (claim amounts) σε ετήσια χρονική βάση. Στον τομέα της υδρολογίας, πρόσφατα προτάθηκε ότι οι υπερβάσεις των παροχών ποταμών πάνω από ένα κατώφλι μπορεί να θεωρηθεί ότι αντιπροσωπεύουν τα ποσά απαίτησης λόγω οικονομικών απωλειών που οφείλονται σε πλημμυρικά φαινόμενα (Serinaldi and Kilsby, 2016). Επιπροσθέτως, πέρα από την επίδραση των μηχανισμών ομαδοποίησης στο συλλογικό ρίσκο S, εξετάστηκε η επιρροή που έχουν αυτοί οι μηχανισμοί σε συγκεκριμένα χαρακτηριστικά των πλημμυρικών γεγονότων που ξεπερνούσαν ένα επιλεχθέν κατώφλι, όπως στη διάρκεια, την ένταση και τα διαστήματα επαναφοράς τους. Επιπλέον, αναπτύχθηκαν στοχαστικές προσεγγίσεις που αφορούσαν τη συσχέτιση ανάμεσα στο συλλογικό ρίσκο S, σε συγκεκριμένες ιδιότητες των ακραίων πλημμυρικών γεγονότων και στα πραγματικά ιστορικά στοιχεία αποζημιώσεων τα οποία δημοσίευσε πρόσφατα η Ομοσπονδιακή Υπηρεσία Διαχείρισης Έκτακτων Αναγκών των ΗΠΑ (FEMA, 2019) στο πλαίσιο του Εθνικού Προγράμματος Ασφάλισης Έναντι Πλημμυρών (NFIP). Όπως θα παρουσιαστεί και παρακάτω, αυτή η αντιπαραβολή των ευρημάτων της παρούσας εργασίας με τα ιστορικά στοιχεία αποζημιώσεων προσέφερε σημαντικά συμπεράσματα τα οποία πράγματι μας επιτρέπουν να αξιολογήσουμε χωροχρονικά στις ΗΠΑ τις παραδοχές που γίνονται στον κλάδο των ασφαλειών και οι οποίες αφορούν την ανεξαρτησία μεταξύ των ακραίων πλημμυρικών γεγονότων, όπως αναπτύχθηκαν στην πρώτη παράγραφο. Ακόμα, σχετικά με τους μηχανισμούς κατακρήμνισης, η ύπαρξη εμμονής στα ετήσια μεγέθη βροχής δημιουργεί την προσδοκία ανάλογης συμπεριφοράς στα μέγιστα των βροχοπτώσεων (Iliopoulou et al., 2018), φαινόμενο το οποίο αναμένεται να εκδηλωθεί και στους μηχανισμούς ομαδοποίησης πλημμυρών. Για το λόγο αυτό, στο πλαίσιο μιας μελέτης περίπτωσης, διερευνάται ο βαθμός συσχέτισης του συλλογικού ρίσκου S, το οποίο πάλι θεωρούμε ότι μπορεί να εκτιμηθεί ότι αντιπροσωπεύεται από το άθροισμα των βροχοπτώσεων πάνω από ένα κατώφλι, με στοιχεία πραγματικών αποζημιώσεων λόγω πλημμύρας που έχουν δοθεί στον Ελλαδικό χώρο. Τέλος, σε ένα γενικότερο πλαίσιο, εξετάστηκαν οι υφιστάμενες πρακτικές ασφαλίσεων έναντι πλημμύρας και τα πραγματικά στοιχεία αποζημιώσεων στον αγροτικό τομέα στην Ελλάδα, με παράλληλη παρουσίαση των υποκείμενων στοχαστικών παραδοχών που προκύπτουν από αυτή την ανάλυση, αξιολογώντας τις μεταβολές που προκύπτουν σε περίπτωση αναίρεσης τους. Μεταξύ των παραδοσιακών στρατηγικών μοντελοποίησης που εφαρμόζονται στον ασφαλιστικό κλάδο, εξέχουσα θέση καταλαμβάνουν οι κατανομές ακραίων τιμών (extreme value analysis distributions), στις οποίες συμπεριλαμβάνονται οι κατανομές γενικευμένη ακραίων τιμών (generalized extreme value, GEV) και γενικευμένη Pareto (generalized Pareto, GPD), που χρησιμοποιούνται ως ένα εργαλείο για την στατιστική ανάλυση μεγίστων ή ελαχίστων και των υπερβάσεων πάνω από ένα κατώφλι. Η εισαγωγή αυτών των κατανομών στην παρούσα εργασία, πέρα από την ποιοτική διερεύνηση της συμπεριφοράς τους, μας προσέφερε τη δυνατότητα να αξιολογήσουμε την επίδραση που διαδραματίζει το επιλεχθέν κατώφλι στη μέθοδο των υπερβάσεων. Αυτό συμβαίνει γιατί, από τη μια μεριά, επιδιώκουμε να επιλέξουμε ένα υψηλό κατώφλι ώστε να εξετάσουμε τις πραγματικά υψηλές τιμές παροχών που είναι ικανές να επιφέρουν σημαντικές οικονομικές απώλειες, από την άλλη όμως μεριά, είναι απαραίτητο να έχουμε στη διάθεσή μας πολλές τιμές πάνω από ένα κατώφλι με σκοπό να υπάρχουν αρκετά δεδομένα ώστε να μην αλλοιώνεται η στατιστική τους συμπεριφορά, προκαλώντας πιθανά στρεβλά συμπεράσματα. Συνεπώς, ανάλογα με το μέγεθος της διατιθέμενης ιστορικής (παρατηρούμενης) χρονοσειράς, η απόφαση σχετικά με την τιμή που ορίζεται ως κατώφλι είναι εξαιρετικά σημαντική. Στην εργασία αυτή εξετάζονται οι εξής τιμές κατωφλίου: 90%, 95%, 98% και 99%. Σχήμα 1: Διάγραμμα που παρουσιάζει την επίδραση του κατωφλίου στην εμπειρική αθροιστική συνάρτηση κατανομής (ECDF) των ακραίων παροχών πάνω από το εν λόγω κατώφλι σε έναν συγκεκριμένο σταθμό (ID: 01552500). Η κατανομή των συνολικών ποσών απαίτησης, θεωρώντας ότι το χαρτοφυλάκιο μιας ασφαλιστικής εταιρείας είναι συλλογικό και ικανό να παράξει N αριθμό αιτημάτων προς αποζημίωση σε ένα πεπερασμένο χρονικό διάστημα, μπορεί να περιγραφεί από το μοντέλο συλλογικού ρίσκου (Kaas et al., 2008). Το συλλογικό ρίσκο S_x (collective risk) ορίζεται ως $$S_x = X_1 + X_2 + \dots + X_N,$$ (0.1) όπου X_i είναι η i τιμή ποσού απαίτησης. Ο όρος S_x αντιστοιχεί στο πραγματικό ποσό απαίτησης. Προφανώς, $S_x = 0$ αν N = 0. Όμοια, στην περίπτωση ασφαλειών λόγω ενός ακραίου πλημμυρικού γεγονότος, το συλλογικό ρίσκο S είναι το συνολικό ποσό απαίτησης, θεωρώντας ξανά ένα χαρτοφυλάκιο ασφαλιστέων περιουσιών ως συλλογικό που παράγει έναν τυχαίο αριθμό N αιτημάτων προς αποζημίωση σε ένα πεπερασμένο χρονικό διάστημα (ενός έτους στην περίπτωσή μας). Δηλώνοντας ως y_i τα στοιχεία μιας χρονοσειράς, έχει προταθεί από τους Serinaldi and Kilsby (2016) ότι ως ένα μέγεθος το οποίο αντιπροσωπεύει χρονικά το συλλογικό ρίσκο S μπορεί να οριστεί το $$S = \sum_{j=1}^{N} Y_j \tag{0.2}$$ όπου Y_j είναι η j αντιπροσωπευτική τιμή του ποσού απαίτησης (τιμή παροχής πάνω από το κατώφλι). Ξανά, τα συνολικά ποσά απαίτησης S=0 αν N=0. Στην περίπτωση διερεύνησης ακραίων τιμών βροχής, θεωρούνται οι τιμές βροχής που είναι πάνω από το κατώφλι. Αν και ο ορισμός του συλλογικού ρίσκου που σχετίζεται με τον ασφαλιστικό κλάδο έναντι πλημμύρας είναι ουσιαστικά μια αντιπροσωπευτική τιμή του πραγματικού συλλογικού ρίσκου, μιας και βασίζεται σε υδρολογικές χρονοσειρές και όχι σε πραγματικά ποσά απαίτησης, στην παρούσα εργασία αποκαλείται και αυτό ως συλλογικό ρίσκο S. Αυτός ο ορισμός ενέχει την παραδοχή, που εφαρμόζεται ευρέως στον κλάδο των ασφαλειών, ότι το συνολικό συλλογικό ρίσκο S προϋποθέτει ότι ο αριθμός αιτημάτων N και τα επιμέρους ποσά απαίτησης Y_j είναι ομοιόμορφα κατανεμημένα και ότι το N και τα συνολικά Y_j είναι ανεξάρτητα μεταξύ τους. Όπως έχει αναφερθεί και παραπάνω, αυτή η εργασία αξιολογεί την επίδραση της συσχέτισης και των μηχανισμών χωροχρονικής ομαδοποίησης στους υπολογισμούς, διερευνώντας την ορθότητα ή μη των παραπάνω υποθέσεων. Αρχικά, για να χαρακτηρίσουμε την εξάρτηση και να αξιολογήσουμε τους μηχανισμούς ομαδοποίησης, είναι σημαντικό να ποσοτικοποιήσουμε τη διαφορά που παρουσιάζουν οι ιστορικές χρονοσειρές με μια ακολουθία ανεξάρτητων μεταβλητών. Μια μέθοδος που ακολουθείται συχνά για τη δημιουργία αυτών των ανεξάρτητων μεταβλητών έγκειται στην τυχαιοποίηση των στοιχείων μιας χρονοσειράς (ανακατεύοντας τυχαία τα στοιχεία της) με σκοπό τη παραγωγή μιας νέας η οποία θα έχει τα ίδια στατιστικά χαρακτηριστικά αλλά όχι χρονική συσχέτιση. Η ποσοτικοποίηση της διαφοράς μεταξύ της ιστορικής και της ανεξάρτητης χρονοσειράς γίνεται συγκρίνοντας συγκεκριμένα χαρακτηριστικά που προκύπτουν από αυτές, όπως το ετήσιο συλλογικό ρίσκο S, τη διάρκεια των γεγονότων που περνούν ένα συγκεκριμένο κατώφλι ή τη συχνότητα εμφάνισης ενός θεωρούμενου πλημμυρικού γεγονότος. Για το λόγο αυτό, για κάθε μία από τις ιστορικές χρονοσειρές που εξετάστηκαν, παρήχθησαν 100 νέες τυχαιοποιημένες (ανεξάρτητες) χρονοσειρές. Στη συνέχεια, αναζητήθηκε η ύπαρξη της δυναμικής Hurst-Kolmogorov (HK), δηλαδή μακροπρόθεσμης εξάρτησης ή εμμονής, που, όπως έχει δείξει η επιστημονική έρευνα, κυριαρχεί σε πολλές φυσικές διεργασίες, όπως στους μηχανισμούς που σχετίζονται με τη παροχή ποταμών και τη βροχόπτωση. Με τον τρόπο αυτό διερευνήθηκαν οι υποκείμενες στοχαστικές διεργασίες που επικρατούν με σκοπό τη βαθύτερη κατανόηση πιθανών κυρίαρχων μοτίβων. Η εμμονή ή το φαινόμενο Hurst μπορεί να ποσοτικοποιηθεί με τον συντελεστή Hurst *H*. Αναλυτικότερα, για: - $0 \le H < 0.5$, η διαδικασία χαρακτηρίζεται από αντι-εμμονή (αρνητική συσχέτιση), - Η
= 0.5, η διαδικασία είναι ισοδύναμη με λευκό θόρυβο, που σημαίνει ότι δεν υπάρχει μακροπρόθεσμη εξάρτηση ή εμμονή στο δείγμα, - $0.5 < H \le 1$, η διαδικασία επιδεικνύει μακροπρόθεσμη εμμονή (ή θετικά συσχετιζόμενη), που είναι μια από τις πιο συνήθεις συμπεριφορές στις υδροκλιματικές διαδικασίες. Για τον υπολογισμό του συντελεστή Hurst H και τον εντοπισμό της μακροπρόθεσμης εμμονής μιας διαδικασίας, η πιο ακριβής μέθοδος είναι μέσω της παραγωγής του Kλιμακογράμματος (Koutsoyiannis, 2010; Dimitriadis and Koutsoyiannis, 2015), το οποίο είναι ένα διδιάστατο γράφημα που αποτυπώνει σε λογαριθμικούς άξονες τη διακύμανση $\gamma(k)$ της μέσης συναθροισμένης σειράς της τυχαίας μεταβλητής Z στον κατακόρυφο άξονα και της συναθροισμένης κλίμακας k στο οριζόντιο άξονα: $$Z_u^{(k)} = \frac{1}{k} \sum_{i=(u-1)k}^{uk} Z_i \tag{0.3}$$ όπου οι μεταβλητές Z και Z_u αναπαριστούν τη στοχαστική ανέλιξη και τη μέση στοχαστική ανέλιξη αντίστοιχα, ενώ u είναι το διάνυσμα-δείκτης του πεδίου, που δείχνει την υστέρηση, δηλαδή τη θέση στο πεδίο. Σε μερικές περιπτώσεις, όπως συνέβη και σε αυτή την εργασία, η προσαρμογή της ευθείας γραμμής στο Κλιμακόγραμμα που προέρχεται από τα ιστορικά δεδομένα δεν μπορεί να αποτυπώσει την πλήρη συμπεριφορά της διακύμανσης της διαδικασίας σε όλο το εύρος των κλιμάκων. Για αυτό το λόγο, εφαρμόστηκε η γενικευμένη ανέλιξη ΗΚ (generalized-HK, GHK), η οποία επίσης παρουσιάζει συμπεριφορά ΗΚ στις μεγάλες κλίμακες αλλά είναι πιο ευέλικτη στις μικρές κλίμακες. Είναι μια μέθοδος που διατηρεί ρητά (για πλήρη αναλυτικό υπολογισμό) τις τέσσερις κλασσικές ροπές μιας διαδικασίας κάθε είδους για κάθε μια από τις δομές συσχέτισης 2ας τάξης (Dimitriadis and Koutsoyiannis, 2018). Το Κλιμακόγραμμα αυτού του μοντέλου είναι: $$\gamma(k) = \frac{\lambda}{(1+k/q)^{2-2H}} \tag{0.4}$$ όπου η παράμετρος Hurst H παίρνει τιμές από μηδέν έως ένα, το q είναι θετικό, ενώ το λ και το q έχουν διαστάσεις $[x^2]$ και T. Επιπλέον, σε αυτή την εργασία εφαρμόστηκε η μέθοδος symmetric moving average (SMA) (Koutsoyiannis 2000 and 2016; Dimitriadis and Koutsoyiannis, 2018) ώστε να αναπτυχθούν και να αξιολογηθούν πιθανές στρατηγικές μοντελοποίησης. Η μέθοδος SMA είναι μια γενική μέθοδος για την παραγωγή συνθετικών χρονοσειρών μιας φυσικής ποσότητας διατηρώντας τις δομές συσχέτισης. Πιο συγκεκριμένα, το σύστημα παραγωγής του SMA για τη προσέγγιση της περιθώριας συνάρτησης πιθανότητας μπορεί να αναπαράξει τις φυσικές διαδικασίες διατηρώντας τις τέσσερις κεντρικές ροπές, το οποίο έχει βρεθεί ότι είναι ικανοποιητικό για πολλές κατανομές που κοινώς εφαρμόζονται στις γεωφυσικές διαδικασίες. Η μέθοδος SMA μπορεί να περιγραφεί από την ακόλουθη εξίσωση: $$\underline{x}_i = \sum_{j=-l}^l a_{|j|} \underline{v}_{i+j} \tag{0.5}$$ όπου \underline{x}_i είναι οποιαδήποτε διαδικασία με κάποιας μορφής εξάρτηση, $a_{|j|}$ είναι συντελεστές που υπολογίζονται από τη συνάρτηση αυτοσυσχέτισης, \underline{v}_{i+j} είναι ο λευκός θόρυβος σε διακριτό χρόνο και l θεωρητικά είναι ίσο με το άπειρο (αλλά ένας πεπερασμένος αριθμός μπορεί επίσης να χρησιμοποιηθεί διατηρώντας τη δομή συσχέτισης έως και καθυστέρηση μιας μονάδας). Η μεθοδολογία εφαρμόστηκε στη βάση δεδομένων US-CAMELS, η οποία περιέχει 671 ημερήσιες χρονοσειρές παροχών (Newman et al., 2014). Από αυτές τις χρονοσειρές, επιλέχθηκαν προς περαιτέρω ανάλυση και επεξεργασία οι 360 που είχαν κάλυψη στο μέγιστο χρονικό μήκος (35 ετών, από το 1980 έως το 2014) και λιγότερα από 10% ελλείποντα στοιχεία. Ακόμα, στην εργασία αξιοποιήθηκαν τα πραγματικά ιστορικά στοιχεία αποζημιώσεων τα οποία δημοσίευσε πρόσφατα η Ομοσπονδιακή Υπηρεσία Διαχείρισης Έκτακτων Αναγκών των ΗΠΑ (FEMA, 2019) στο πλαίσιο του Εθνικού Προγράμματος Ασφάλισης Έναντι Πλημμυρών (NFIP) τα οποία περιλαμβάνουν περισσότερα από δύο εκατομμύρια αιτήματα προς αποζημίωση από το 1970 έως σήμερα, καθένα εκ των οποίων εμπεριέχει πληροφορίες που επιμερίζονται σε 39 διαφορετικές μεταβλητές. Τα στοιχεία αυτά παρουσιάζονται χωροχρονικά και γραφικά σε χάρτες με βάση τους οποίους προκύπτουν σημαντικά συμπεράσματα για τις περιοχές που κυρίως πλήττονται από πλημμύρες στις ΗΠΑ, καθώς και για την ανάγκη που καταδεικνύεται σε κάθε περιοχή για ασφαλιστική κάλυψη. Σχήμα 2: Τα 671 σημεία μέτρησης της βάσης δεδομένων US-CAMELS. Σχήμα 3: Τα 360 τελικά σημεία μέτρησης της βάσης δεδομένων US-CAMELS που επιλέχθηκαν. Σχήμα 4: Ο αθροιστικός αριθμός αιτημάτων προς αποζημίωση ανά έτος (1970-2021). Στο αριστερό διάγραμμα παρουσιάζονται οι ονομαστικές τιμές, ενώ στο δεξί οι κανονικοποιημένες, αφαιρώντας από την κάθε ετήσια τιμή τη μέση τιμή και διαιρώντας με την τυπική απόκλιση. Τελευταία ενημέρωση δεδομένων: 24-10-2021. Για κάθε έναν από τους 360 σταθμούς μέτρησης που εξετάζονται και για κάθε μία από τις τέσσερις τιμές-κατώφλια (90%, 95%, 98%, 99%), υπολογίστηκε το ετήσιο συλλογικό ρίσκο S, η διάρκεια του θεωρούμενου πλημμυρικού γεγονότος καθώς και τα διαστήματα επαναφοράς τους, τόσο για τις ιστορικές (παρατηρούμενες) όσο και για τις 100 τυχαιοποιημένες (ανεξάρτητες) χρονοσειρές. Τα αποτελέσματα από αυτή τη διαδικασία είναι ιδιαιτέρως σημαντικά καθώς, σε πολλούς σταθμούς, η απόκλιση ανάμεσα στις πρώτες σε σχέση με τις δεύτερες στα διαγράμματα εμπειρικών αθροιστικών συναρτήσεων κατανομής (ECDF) ήταν μεγάλη. Τα παραπάνω αποτελέσματα είναι μια ξεκάθαρη ένδειξη μηχανισμών ομαδοποίησης ακραίων σε όρους συλλογικού ρίσκου S, διάρκειας γεγονότος αλλά και διαστημάτων επαναφοράς. Σχήμα 5: Διάγραμμα εμπειρικών αθροιστικών συναρτήσεων κατανομής (ECDF) και συλλογικού ρίσκου S. Σταθμός μέτρησης: Sf Trinity River Below Hyampom, California (ID: 11528700). Στη συνέχεια, υπολογίστηκε το μέσο Κλιμακόγραμμα από τη διαδικασία GHK (Dimitriadis and Koutsoyiannis, 2018) για όλες τις 360 ιστορικές χρονοσειρές παροχών της US-CAMELS, με την παράμετρο Hurst H να εκτιμάται ίση με 0.63, το οποίο είναι μια ένδειξη ισχυρής εμμονής. Η επίδραση της δομής συσχέτισης παρατηρείται στη συμπεριφορά των παροχών που ξεπερνούν το κατώφλι που τίθεται στην ετήσια κλίμακα όσο και στην εκτίμηση του συλλογικού ρίσκου. Συνεπώς, η συμπεριφορά των ημερήσιων παροχών της US-CAMELS βρέθηκε ότι είναι συνεπής με τη δυναμική HK, η οποία χαρακτηρίζεται από τιμές H στο διάστημα 0.6-0.7, μέσω προσομοιώσεων Monte Carlo. Σχήμα 6: Το μέσο Κλιμακόγραμμα των 360 επιλεγμένων χρονοσειρών της βάσης δεδομένων US-CAMELS. Σχήμα 7: Η παράμετρος Hurst H των 360 χρονοσειρών (σταθμών μέτρησης) της βάσης δεδομένων US-CAMELS. Ακολούθως, για την αποτελεσματικότερη αξιοποίηση των ιστορικών χρονοσειρών έγιναν προσεγγίσεις μοντελοποίησης και προσομοίωσης με σκοπό τη βαθύτερη κατανόηση της σχέσης ανάμεσα στη στοχαστική δομή των πλημμυρικών γεγονότων και του συλλογικού ρίσκου S, μέσω της εφαρμογής του μοντέλου SMA-GHK (Dimitriadis and Koutsoyiannis, 2018). Ο αλγόριθμος για την παραγωγή των συνθετικών χρονοσειρών από τις ιστορικές απαιτεί ως είσοδο τη μέση τιμή (S_m) , διακύμανση (S_v) , συντελεστές ασυμμετρίας και κύρτωσης $(S_s$ και $S_k)$, παράμετρο Hurst του μοντέλου GHK (H), παράμετρο κλίμακας (q), μήκος της συνθετικής χρονοσειράς (N). Μελετώντας τον σταθμό μέτρησης ID: 07071500, αναπτύχθηκαν 1000 συνθετικές χρονοσειρές μέσω προσομοιώσεων Monte Carlo από το μοντέλο GHK ($H=0.81,\ q=1.00\ d$). Παρακάτω παρουσιάζεται το Κλιμακόγραμμα, καθώς και τα διαγράμματα εμπειρικής αθροιστικής συνάρτησης κατανομής (ECDF) του συλλογικού ρίσκου S για όλες τις τιμές-κατώφλια. Η καμπύλη του S εμφανίζεται εντός των ορίων των προσομοιώσεων Monte Carlo που παρήχθησαν από το μοντέλο GHK. Αντίθετα, οι καμπύλες των τυχαιοποιημένων χρονοσειρών παρουσιάζουν μια διαφορετική συμπεριφορά, ειδικά στις ουρές της κατανομής. Σχήμα 8: Κλιμακόγραμμα του σταθμού μέτρησης Eleven Point river near Bardley, Missouri (ID: 07071500). Σχήμα 9: Διάγραμμα ECDF - S των ιστορικών, τυχαιοποιημένων και συνθετικών χρονοσειρών (ID: 07071500). Έχοντας υπολογίσει το ετήσιο συλλογικό ρίσκο S των επιλεγμένων 360 σταθμών μέτρησης της US-CAMELS για τα τέσσερα κατώφλια (90%, 95%, 98% και 99%) και έχοντας στη διάθεσή μας τα πραγματικά στοιχεία αποζημιώσεων της FEMA, μας δίνεται πλέον η δυνατότητα να διερευνήσουμε την εγκυρότητα της μεθοδολογίας μας σε χωροχρονική βάση, εξετάζοντας τον βαθμό συσχέτισης μεταξύ αυτών των μεγεθών. Αυτό το επιτυγχάνουμε με τον επιμερισμό των στοιχείων αποζημιώσεων σε κάθε μια από τις 21 υδρολογικές περιφέρειες των ΗΠΑ και ανά Πολιτεία. Σε αυτό το πλαίσιο, εκτιμάται ο συντελεστής συσχέτισης Spearman, ο οποίος ενδείκνυται στην ανάλυση ακραίων τιμών, συσχετίζοντας το ετήσιο συλλογικό ρίσκο S κάθε σταθμού μέτρησης με τα αθροιστικά αιτήματα προς αποζημίωση λόγω πλημμύρας που πραγματοποιήθηκαν στην υδρολογική περιφέρεια ή Πολιτεία που ανήκει ο σταθμός, για το μέγιστο διατιθέμενο χρονικό διάστημα (1980-2014). Απεικονίζοντας στον χάρτη τους παραπάνω συντελεστές συσχέτισης κάθε σταθμού μέτρησης μπορούμε να σκιαγραφήσουμε τη χωρική κατανομή των περιοχών που ο συντελεστής συσχέτισης Spearman είναι μεγαλύτερος και αυτές που είναι σημαντικά μικρότερος. Είναι εμφανές ότι δημιουργείται ένα χωρικό μοτίβο με υψηλούς συντελεστής στις Δυτικές Ακτές και σημαντικά μικρότερους στις Ανατολικές. Σχήμα 10: Συντελεστής συσχέτισης Spearman για κάθε έναν από τους 360 επιλεγμένους συντελεστές συσχέτισης μεταξύ του ετήσιου συλλογικού ρίσκου και των συνολικών πραγματικών αιτημάτων προς αποζημίωση για την υδρολογική περιφέρεια στην οποία ανήκει ο κάθε σταθμός (κατώφλι 99%). Μιας και το συλλογικό ρίσκο στην εργασία μας αναφέρεται κυρίως σε ποτάμια πλημμύρα, τα παραπάνω αποτελέσματα μας οδηγούν στο συμπέρασμα ότι αυτό το είδος πλημμύρας είναι επικρατέστερο στις Δυτικές Ακτές των ΗΠΑ. Αντίθετα, αποκαλύπτεται ότι οι Ανατολικές Ακτές χαρακτηρίζονται από ένα πιο περίπλοκο χωρικό μοτίβο, η δυσκολία στην ερμηνεία του οποίου οφείλεται κυρίως στην ευαλωτότητα και στην υψηλή ευαισθησία αυτών των περιοχών σε πλημμυρικά γεγονότα που οφείλονται σε τυφώνες, στην επίδραση της ταλάντωσης του βορείου Ατλαντικού (North Atlantic Oscillation, NAO), στην άνοδο της στάθμης της θάλασσας (SLR) και σε φαινόμενα κύματος καταιγίδας
(storm surge phenomena) τα οποία εμφανίζονται πολύ συχνότερα εκεί σε σχέση με τη Δυτική Ακτή (Ezer and Atkinson, 2014; Elsner et al., 2000). Επιπροσθέτως, πέρα από τις ιστορικές χρονοσειρές της US-CAMELS, η ίδια διαδικασία υπολογισμού του συντελεστή συσχέτισης Spearman, ανάμεσα στο συλλογικό ρίσκο S και τα αθροιστικά αιτήματα προς αποζημίωση λόγω πλημμύρας που πραγματοποιήθηκαν στην υδρολογική περιφέρεια που ανήκει ο σταθμός, ακολουθήθηκε και για κάθε μία από τις 100 τυχαιοποιημένες χρονοσειρές που δημιουργήσαμε για κάθε έναν από τους 360 σταθμούς μέτρησης, με σκοπό να διερευνήσουμε για ακόμα μια φορά τους μηχανισμούς ομαδοποίησης που δημιουργούνται, απεικονίζοντάς τα σε ένα θηκόγραμμα (box plot) για τα τέσσερα κατώφλια. Σχήμα 11: Θηκόγραμμα (box plot) των συντελεστών συσχέτισης Spearman του σταθμού μέτρησης Lopez C NR Arroyo Grande, California (ID: 11141280) ανάμεσα στο ετήσιο S και τα συνολικά αιτήματα προς αποζημίωση της υδρολογικής περιφέρειας στην οποία ανήκει ο σταθμός (1980-2014) για τα τέσσερα επιλεγμένα κατώφλια μελέτης. Τα αποτελέσματα αυτής της διερεύνησης είναι εντυπωσιακά καθώς σε πολλούς σταθμούς μέτρησης παρατηρούμε ότι η απόκλιση των συντελεστών συσχέτισης ανάμεσα στις ιστορικές και τις τυχαιοποιημένες (ανεξάρτητες) χρονοσειρές είναι σημαντική, μιας και ουσιαστικά ο συντελεστής συσχέτισης ανάμεσα στο ετήσιο συλλογικό ρίσκο S των τυχαιοποιημένων και στα ετήσια αιτήματα προς αποζημίωση εμφανίζεται να είναι αμελητέος. Η υποεκτίμηση του παραπάνω συντελεστή συσχέτισης, των μηχανισμών ομαδοποίησης και του ρίσκου στο σύνολό του, βάσει αυτών των αποτελεσμάτων, φαίνεται ότι μπορεί να αποφέρει αξιοσημείωτες οικονομικές επιπτώσεις σε περίπτωση ενός ακραίου πλημμυρικού γεγονότος, αν δεν λαμβάνονται υπόψη αυτές οι παράμετροι στις στρατηγικές μοντελοποίησης. Τέλος, με δεδομένο ότι συχνά οι ακραίες τιμές παροχών τείνουν να χαρακτηρίζονται από χωρική συσχέτιση (Quinn et al., 2019), διερευνήθηκαν πιθανοί χωρικοί μηχανισμοί ομαδοποίησης, μέσω του συντελεστή συσχέτισης Spearman, ανάμεσα στο ετήσιο συλλογικό ρίσκο S των σταθμών μέτρησης της US-CAMELS που ανήκουν στην ίδια υδρολογική περιφέρεια, για όλα τα επιλεγμένα κατώφλια μελέτης. Παρακάτω παρουσιάζεται ο βαθμός χωρικής συσχέτισης (συντελεστής Spearman) των σταθμών της υδρολογικής περιφέρειας 3 μέσω θερμοχάρτη (heatmap). Σχήμα 12: Θερμοχάρτης (heatmap) του συντελεστή συσχέτισης Spearman ανάμεσα στο συλλογικό ρίσκο S όλων των σταθμών μέτρησης που ανήκουν στην υδρολογική περιφέρεια 3 μεταξύ τους (κατώφλι 99%). Η ανάλυση έδειξε ότι επιλέγοντας χαμηλότερες τιμές-κατώφλια, ο συντελεστής συσχέτισης λαμβάνει σχεδόν ομοιόμορφα υψηλές τιμές σε όλη την έκταση της υδρολογικής περιφέρειας. Αντίθετα, αυξάνοντας τις τιμές των κατωφλίων που μελετώνται, δημιουργείται μια μεγαλύτερη ανομοιομορφία των συντελεστών συσχέτισης, ειδικά όταν αυτό φτάσει το 99%. Αναλυτικότερα, όταν ο συντελεστής συσχέτισης του S ανάμεσα σε δύο σταθμούς μέτρησης βρίσκεται στο διάστημα: - -0.25 έως 0.25, σημαίνει ότι η συσχέτιση είναι πρακτικά μηδενική, δηλαδή ότι δυο πιθανά πλημμυρικά γεγονότα σε κάθε έναν από τους εξεταζόμενους σταθμούς μέτρησης μπορούν να θεωρηθούν ανεξάρτητα. - 0.25 and 1, σημαίνει ότι όταν συμβεί ένα πλημμυρικό γεγονός σε έναν από τους δύο εξεταζόμενους σταθμούς μέτρησης, είναι πολύ πιθανό να συμβεί ανάλογο γεγονός και στον άλλο σταθμό μέτρησης. - -0.25 and -1, σημαίνει ότι όταν συμβεί ένα πλημμυρικό γεγονός σε έναν από τους δύο εξεταζόμενους σταθμούς μέτρησης, δεν είναι πολύ πιθανό να συμβεί ανάλογο γεγονός και στον άλλο σταθμό μέτρησης. Οι ασφαλιστικές εταιρείες επιδιώκουν να δημιουργούν χαρτοφυλάκια τα στοιχεία των οποίων έχουν αρνητική χωροχρονική συσχέτιση, ή τουλάχιστον μηδενική, ώστε να συνδυάζονται και συναθροίζονται ρίσκα τα οποία δεν είναι πιθανό να αντιπροσωπεύουν πιθανά πλημμυρικά γεγονότα τα οποία θα συμβούν στον ίδιο χώρο ή χρόνο. Για τον λόγο αυτό ο παραπάνω θερμοχάρτης είναι σημαντικός, καθώς επιτρέπει στις εταιρείες να διαμορφώνουν ένα αθροιστικά μειωμένου ρίσκου χαρτοφυλάκιο σε όρους συλλογικού ρίσκου S. # **Table of Contexts** | 1. | Introduction | 1 | |------|--|----| | 1.1. | . Research scope | 1 | | 1.2 | . Work structure | 2 | | 2. | Theoretical analysis on the impacts of natural hazards and flood events | 4 | | 2.1. | . An overview of the impacts of climate-related and geophysical disasters | 4 | | 2.2. | . Components of flood vulnerability and types of flood | 14 | | 2.3. | . The components of flood risk | 16 | | 2.4 | . Flood risk management | 19 | | 3. | The partnership for flood risk reduction | 21 | | 3.1. | . General principles of insurance | 21 | | 3.2 | . Flood risk share and reduction; the role of insurance and reinsurance | 26 | | 4. | Methodology | 28 | | 4.1. | . Extreme value analysis (EVA) distributions | 28 | | 4.2. | . Threshold selection process | 30 | | 4.3 | . Collective risk model | 32 | | 4.4. | . The Hurst-Kolmogorov dynamics | 34 | | 4.5 | . Climacogram | 35 | | 4.6 | . Generalized-HK (GHK) process | 36 | | 4.7 | . Symmetric-moving average (SMA) method | 36 | | 4.8 | . Pearson, Spearman and Kendall correlation | 37 | | 5. | Dataset | 39 | | 5.1. | . US-CAMELS dataset | 39 | | 5.2 | . Hydrologic Units in USA | 40 | | 5.3 | . FEMA's NFIP claims records | 41 | | 5.4 | . A graphical and diagrammatic visualization of the FEMA's NFIP claims records | 43 | | 6. | Evaluating the clustering mechanisms of extremes on flood insurance practices with | | | comp | outational tools | 48 | | 6.1. | . Impacts of clustering mechanisms on collective risk | 48 | | 6.2. | Impacts of clustering mechanisms on return intervals50 | |-------------------|--| | 6.3. | Impacts of clustering mechanisms on the duration of the over-threshold events51 | | 6.4.
related | Mean Climacogram of US-CAMELS, Monte Carlo simulations and modeling approaches with HK behavior53 | | 6.5.
over-thi | Impacts of clustering mechanisms on correlation between <i>Average Y_i</i> and Number of eshold events <i>N</i> 55 | | 6.6.
claims r | Validating the streamflow-based collective risk proxy method by FEMA's NFIP actual ecords62 | | 6.7. | Clustering mechanisms related with GEV distribution simulation70 | | 6.8. | A brief case study on spatial dependence mechanisms of US-CAMELS dataset71 | | | e interplay between precipitation clustering mechanisms, rainfall extremes and actual pensations; a Greek case study77 | | 7.1. | A review of the agricultural insurance practices and market in Greece | | 7.2. | Case study: Larissa (Thessaly), Greece79 | | 7.3. | Correlating Collective Risk with actual compensations | | 8. Cor | nclusions85 | | 8.1. | Collective risk, return intervals and duration of flood events85 | | 8.2. | HK dynamics and Monte Carlo simulation85 | | 8.3. | Correlation between Average Y _i and Number of over-threshold events N86 | | 8.4.
actual c | The association between streamflow-based collective risk estimation and FEMA's NFIP laims records86 | | 8.5. | Spatial dependence on US-CAMELS dataset87 | | 8.6. | Precipitation clustering mechanisms and correlation with actual claim amounts87 | | 8.7. | Suggestions for future research88 | | 9. Ref | erences90 | | 10. Apլ | pendix95 | | 10.1.
informa | Table A-1. The list of the 360 selected US-CAMELS gauge locations and related tion95 | | 10.2.
loss. as | Table A-2. The contribution of ERGO insurance company on the agricultural insurance an additional insurance coverage, in combination to ELGA's insurance coverage101 | | | 0.3. Table A-3. The actual compensations given by ELGA caused by flood refecture for the period 1999-2017 | • | |----|---|-------------------------| | 11 | Python scripts | 103 | | | 1.1. Selection of US-CAMELS timeseries with the maximum temporal overlap (ears from 1980 to 2014) and less than 10% of missing values. Distribution of tocations to their Hydrological Units (regions). Get their four first moments | hese gauge | | | 1.2. Plot of all US-CAMELS gauge locations and the selected ones in different USA | \ maps. 105 | | | 1.3. Shuffle timeseries. Calculation of annual collective risk, annual peak, Average uration and the number of the over-threshold events. Calculation of the ECDF collective risk and return intervals for all US-CAMELS timeseries and for all selected pplied on the observed as well as the shuffled time series, and all thresholds | diagrams of thresholds. | | | 1.4. Plot of the ECDF diagrams of collective risk, return intervals and the duraver-threshold events of the selected gauge locations and for all thresholds | | | | 1.5. Heatmaps of the Spearman and Pearson correlation of collective risk beauge locations of every Hydrological Unit (region) for all thresholds. | | | | 1.6. USA map with Spearman, Pearson and Kendall correlation coefficient between in and the Number of the over-threshold events N of the selected gauge locations are sholds | and for all | | | 1.7. Boxplot of the correlation coefficient (Spearman, Pearson and Kendall) by verage Yi and the Number of the over-threshold events N of the selected gauge considering observed and shuffled data, and for all thresholds. | e locations, | | | 1.8. Plot of the ECDF of annual peak of observed and shuffled, as well a istribution of observed and shuffled for all gauge locations and all thresholds | | | | 1.9. ECDF plot of observed time series and Generalized Pareto distribution for cations and all thresholds | | | | 1.10. Distribution of FEMA NFIP claims records per
County | 138 | | | 1.11. Distribution of FEMA NFIP claims records per State | 139 | | | 1.12. Distribution of FEMA NFIP claims, paid claims, amount paid on building mount paid on contents claims records per Hydrological Unit (region) | | | | 1.13. Plot of the USA map with Spearman correlation for all the selected gauge lo ll thresholds between annual collective risk of a specific gauge locations and the EMA claims of the Hydrological Unit (region) that this gauge location belongs to | aggregated | | | 1.14. Boxplots for all thresholds of the Spearman correlation coefficient betwee sk of every gauge location and FEMA's claims records of the hydrological unit that auge location belongs | at a specific | | 11.15. | Collective risk method on Larissa's precipitation mechanisms. Shuffle time series | |---------|---| | Calcula | ation of annual collective risk, annual peak, Average Yi, the duration and the number o | | the ov | er-threshold events for all thresholds. Calculation and plot of the ECDF diagrams o | | collect | ive risk, return intervals and duration of over-threshold events. Box plot of the correlation | | betwee | en Average Yi and N. Box plot of correlation between collective risk and actua | | compe | nsations. Application on the observed as well as the shuffled time series for al | | thresh | olds154 | | | | | 12. R | scripts171 | | 12.1. | Load libraries and dataset171 | | 12.2. | Select the columns we analyze and remove specific rows | | 12.3. | Histogram of the number of claims per year171 | | 12.4. | Number of claims by state171 | | 12.5. | Number of claims by county172 | # **List of Figures** | Figure 2.1 Top 10 countries/territories in terms of absolute losses (billion US\$), 1998-2017 (CRED and UNISDE | | |---|------| | 2018, modified) | | | Figure 2.2 Top 10 countries/territories in terms of average annual percentage losses relative to GDP, 1998-202 | 17 | | (CRED and UNISDR, modified). | | | Figure 2.3 Classification of Natural Hazards (Integrated Research on Disaster Risk, 2014) | 6 | | Figure 2.4 Number of disasters by major category per year 1998-2017 (CRED and UNISDR, 2018, modified) | 7 | | Figure 2.5 Numbers of disasters per type 1998-2017 (CRED and UNISDR, 2018, modified) | 7 | | Figure 2.6 Number of people affected per disaster type 1998-2017 (CRED and UNISDR, 2018, modified) | 8 | | Figure 2.7 Breakdown of recorded economic losses (US\$) per disaster type 1998-2017 (CRED and UNISDR, 201 | 18, | | modified) | 8 | | Figure 2.8 Total reported economic losses per year, with major events highlighted, 1998-2017 (CRED and | | | UNISDR, 2018, modified). | 9 | | Figure 2.9 Total share of losses due to storms as a percentage of annual climate-related disaster losses, 1998- | | | 2017 (CRED and UNISDR, 2018, modified) | 9 | | Figure 2.10 Recorded climate-related disaster losses per income group compared to GDP losses 1998-2017 | | | (CRED and UNISDR, 2018, modified). | . 12 | | Figure 2.11 Classification of disasters based on income data 1998-2017 (CRED and UNISDR, 2018, modified) | . 12 | | Figure 2.12 Climate-related disaster deaths in absolute numbers and percentage of per million population | | | potentially exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified) | . 13 | | Figure 2.13 Climate-related disaster affected totals in absolute numbers and percentage of per million | | | population potentially exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified) | . 13 | | Figure 2.14 Source-Pathway-Receptor-Consequence-Model (ICE, 2001, modified) | | | Figure 2.15 Stages of operational risk management (Eikenberg 1998, modified). | | | Figure 3.1The partnership for risk reduction (Kron, 2005, modified). | | | Figure 4.1 Diagram that shows the impact of threshold selection on ECDF of streamflow of the over-threshold | | | events. Gauge ID: 01552500 | | | Figure 5.1 The 671 US-Camels stream gauge locations | . 39 | | Figure 5.2 The selected 360 US-Camels stream gauge locations. | | | Figure 5.3 The 21 hydrological units of the USA. The gray lines are state lines, the blue lines are major rivers, a | | | the white lines are water-resources region boundary lines (Seaber, P.R., et al., 1987). | | | Figure 5.4 The names of the 21 Hydrological Units in the USA (Wikipedia, 2020) | | | Figure 5.5 The aggregated number of claims per year (1970-2018). | | | Figure 5.6 A per state depiction of the aggregated number of claims. It is clear that Louisiana experienced the | | | majority of claims, followed by Texas and Florida (1970-2018) | | | Figure 5.7 The claims values of all states split into 2 buckets (1970-2018). | | | Figure 5.8 The claims values of all states split into 7 buckets (1970-2018). | | | Figure 5.9 The aggregated number of claims per county (1970-2018). | | | Figure 5.10 The above bar plots show the number of claims (left) and the claim amounts (right) of the most | | | affected states. 6 states experienced more than 100,000 claims (red dashed line), with North Carolina barely | | | hitting that number. It is not surprising that the top 5 states with the most number of claims are also the top 5 | 5 | | states with the largest claim amounts. What might be more surprising is how much more money was claimed | | | LA and TX compared to the other states (1970-2018). | | | Figure 5.11 The aggregated number of claims per state regarding the Gulf states (1970-2018) | | | Figure 5.12 The aggregated number of claims per county regarding the Gulf states (1970-2018) | | | Figure 5.13 The aggregated number of claims per county regarding the Florida state (1970-2018) | | | Figure 6.1 Collective risk's ECDF diagrams in linear scale (Gauge location ID: 11528700). | | | Figure 6.2 Collective risk's ECDF diagrams in logarithmic scale (Gauge location ID: 11528700). | | | Figure 6.3 Collective risk's 5 diagrams in linear scale (Gauge location ID: 11528700) | | | Figure 6.4 Return interval's ECDF diagrams in linear scale (Gauge location ID: 11528700). | | | Figure 6.5 Return interval's ECDF diagrams in logarithmic scale (Gauge location ID: 11528700) | | | Figure 6.6 Events' duration ECDF diagrams in linear scale (Gauge location ID: 11528700) | | | Figure 6.7 Events' duration ECDF diagrams in logarithmic scale (Gauge location ID: 11528700) | | | | | | Figure 6.8 The mean Climacogram of the 360 selected gauge locations of the US-CAMELS dataset53 | |--| | Figure 6.9 Hurst coefficient H of each one of the 360 selected gauge locations of the US-CAMELS dataset 53 | | Figure 6.10 The <i>Climacogram</i> of the gauge location with ID:07071500 ($H = 0.66$, $q = 5.34d$)54 | | Figure 6.11 Collective risk's ECDF diagrams of observed, shuffled and synthetic time series (ID: 07071500) 55 | | Figure 6.12 Cumulative histogram curves of the Pearson, Spearman and Kendall correlation coefficient between | | Average Y_i and number of over-threshold events N for the 360 selected gauge locations and for all thresholds.56 | | Figure 6.13 Spearman correlation coefficient between <i>Average Y_i</i> and Number of over-threshold events <i>N</i> for all | | gauge locations (threshold 90%). | | Figure 6.14 Spearman correlation coefficient between Average Y_i and Number of over-threshold events N for all | | gauge locations (threshold 95%). | | Figure 6.15 Spearman correlation coefficient between Average Y_i and Number of over-threshold events N for all | | | | gauge locations (threshold 98%) | | | | gauge locations (threshold 99%) | | Figure 6.17 Box plot of Spearman correlation coefficient between <i>Average Y_i</i> and Number of over-threshold | | events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 02314500) 60 | | Figure 6.18 Box plot of Spearman correlation coefficient between Average Y_i and Number of over-threshold | | events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 11098000) 60 | | Figure 6.19 Box plot of Spearman correlation coefficient between Average Y _i and Number of over-threshold | | events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 11528700) 61 | | Figure 6.20 Box plot of Spearman correlation coefficient between Average Y _i and Number of over-threshold | | events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 13018300) 61 | | Figure 6.21 The cumulative histogram curves of the Spearman correlation coefficient between the annual | | collective risk of the 360 gauge locations and the States/Hydrological Units claims records that a specific gauge | | ocation belongs to | | Figure 6.22 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual | | collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to | | (threshold 90%). | | Figure 6.23 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual | | collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to | | (threshold 95%). | | Figure 6.24 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual | | | | collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to | | (threshold 98%). | | Figure 6.25 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual | | collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to | | (threshold 99%) | | Figure 6.26 Box plot of Spearman correlation coefficient between collective
risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 14301000) belongs to, for all thresholds66 | | Figure 6.27 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 12189500) belongs to, for all thresholds66 | | Figure 6.28 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 12035000) belongs to, for all thresholds67 | | Figure 6.29 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 11141280) belongs to, for all thresholds | | Figure 6.30 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 05556500) belongs to, for all thresholds | | Figure 6.31 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 03574500) belongs to, for all thresholds | | Figure 6.32 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | | | aggregated claims that the gauge location (ID: 03159540) belongs to, for all thresholds | | Figure 6.33 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's | | aggregated claims that the gauge location (ID: 01669000) belongs to, for all thresholds | | Figure 6.34 Annual peak ECDF diagrams related with GEV simulations in linear, logarithmic and 1/(1-ECDF) sc | | |---|-----| | (Gauge location ID: 11528700)
Figure 6.35 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; | /0 | | Threshold 90% | 73 | | Figure 6.36 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; | / 3 | | Threshold 95% | 71 | | Figure 6.37 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; | /4 | | Threshold 98% | 75 | | Figure 6.38 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; | /3 | | Threshold 99% | 76 | | Figure 7.1 The annual aggregated amounts of compensations related with flood events | | | Figure 7.1 The annual aggregated amounts of compensations related with flood events
Figure 7.2 The location of the selected NOAA station in Larissa, Thessaly, Greece, ID: GHCND:GR000016648 | | | Figure 7.3 Collective risk's ECDF diagrams in linear scale of Larissa station | | | | | | Figure 7.4 Collective risk's ECDF diagrams in logarithmic scale of Larissa station. | | | Figure 7.5 Collective risk's 1/(1-ECDF) diagrams in linear scale of Larissa station. | | | Figure 7.6 Return intervals' ECDF diagrams in linear scale of Larissa station. | | | Figure 7.7 Return intervals' ECDF diagrams in logarithmic scale of Larissa station. | | | Figure 7.8 Events' duration ECDF diagrams in linear scale of Larissa station | 82 | | Figure 7.9 Box plot of Spearman correlation coefficient between <i>Average</i> Y_i and Number of over-threshold | 0.0 | | events N for the shuffled as well as the observed time series for all thresholds (Larissa station). | 83 | | Figure 7.10 Box plot of Spearman correlation coefficient between annual collective risk and actual | | | compensations for the shuffled as well as the observed time series for all thresholds (Larissa station) | 84 | | List of Tables | | | Table 2.1 Reporting of economic losses (%) per income group (CRED and UNISDR, 2018, modified) | 10 | | Table 2.2 Reporting of economic losses (%) per continent (CRED and UNISDR, 2018, modified) | 10 | | Table 2.3 Reporting of economic losses per disaster type for climate-related (left) and geophysical (right) | | | disasters (CRED and UNISDR, 2018, modified) | 11 | | Table 4.1 The multiple definitions of <i>Climacogram</i> | 36 | | Table 5.1 The nominal and normalized direct economic losses of the five costliest Atlantic hurricanes in US | | | history | 44 | ### 1. Introduction #### 1.1. Research scope During the last decades, the rising demand for crops for human consumption and industrial processes has led to a growth of investments and search for innovative solutions across the field of agriculture. However, one major risk that both investors and low-income farmers encounter worldwide is the impact of extreme weather events on their crop yield. The risk caused by extreme events is an inhibitor of growth of agriculture and, apparently, insurance is strategically important for dealing with that risk. In particular, crop-yield insurance is purchased by agricultural producers, and in many cases is subsidized by governments, to protect them against the loss of their crops due to natural disasters, such as extreme flood events. In a wider point of view, population growth, economic development and risk-blind urbanization often increase exposure to risk, including that due to floods. While rural flooding may affect much larger areas of land, urban floods are more challenging to manage, since the higher population and asset density in the urban environment increase the environmental and social impacts of floods and make the potential flood damages more costly. Therefore, the need for integrated flood insurance policy and accurate flood risk assessment is pronounced in order to reduce the financial consequences of extreme flood events, which endanger in many cases the environmental, social and economic balance. Regarding the central role of flood insurance for societies and individuals as a tool for hedging against the risk of financial loss due to natural hazards, this study investigates some key aspects that should be considered in modeling strategies in order to improve current risk assessment processes. In this regard, the modeling approach of the peak-over-threshold method, including the evaluation of the so-called collective risk *S* is a common procedure that is followed in insurance and reinsurance sector. In financial terms, collective risk *S* is defined as the accumulation of claim amounts over fixed one-year time windows. Yet in hydrology, it was recently suggested (Serinaldi and Kilsby, 2016) that streamflow exceedances over given thresholds may be considered as proxies for claim amounts from flood losses. In this context, the aim of this research is to apply a stochastic approach for hydrological extremes informed by current insurance and reinsurance practices. To this end, it seeks to (a) provide insights into spatiotemporal clustering mechanisms of streamflow and rainfall extremes and (b) investigate their impacts on flood insurance practices. In addition to the development of modeling approaches, the properties of collective risk, return intervals, duration and the number as well as the severity of the over-threshold events are evaluated in order to utilize effectively all the historical data available for a wider understanding of their footprint on flood claim amounts. Furthermore, a spatiotemporal exploratory analysis of streamflow in USA and rainfall extremes in Greece is introduced regarding their stochastic aspects and their correlation with actual insurance data derived from the recently published database of the National Flood Insurance Program (NFIP) by Federal Emergency Management Agency (FEMA, 2019) and the Hellenic Agricultural Insurance Organization (ELGA), respectively. The latter organization provided us directly the aforementioned data. Preliminary outcomes of this research have been presented in the General Assembly of the European Geosciences Union (Papoulakos et al., 2020; Manolis et al., 2020; Goulianou et al., 2019). #### 1.2. Work structure The thesis is structured into nine distinct chapters, all of whom are sorted in a way similar to the line of reasoning required for the understanding of the objective. In the **first chapter** we present a preamble to the subject, the general context in which this study is introduced and its structure. In the **second chapter** we overview the impacts of natural hazards and flood events on individuals and societies. Moreover, we define flood risk and describe the components of an integrated flood risk management system. In the **third chapter** we introduce the principles of insurance and describe the partnership between societies, public and private sector for flood risk share and reduction. In the **fourth chapter** we make an extensive presentation of the methodology and the stochastic tools used, as well as the rudimentary stochastic theory behind it, namely Extreme Value Theory and the Hurst-Kolmogorov dynamics. In the **fifth chapter** we present the databases used, including the US-CAMELS dataset and the FEMA NFIP claims records. In addition, we explain the qualitative and quantitative criteria with which data were selected for processing, as well the preliminary data processing thereof. In the **sixth chapter** we evaluate the spatiotemporal clustering mechanisms of streamflow extremes on flood insurance practices, including modelling approaches and Monte Carlo simulations. Moreover, we assess the strength of association between the studied proxy of collective risk and the FEMA's NFIP actual claims records. In addition, we perform a brief analysis of spatial dependence mechanisms of US-CAMELS dataset. In the **seventh chapter** we investigate the interplay between precipitation clustering mechanisms, rainfall extremes and actual historic flood compensations considering a Greek case study in the Larissa region. In the **eighth chapter** we present the conclusions of this study and we propose some suggestions for future research. # 2.
Theoretical analysis on the impacts of natural hazards and flood events ## 2.1. An overview of the impacts of climate-related and geophysical disasters The Centre for Research on the Epidemiology of Disasters (CRED) defines a disaster as "a situation or event which overwhelms local capacity, necessitating a request at national or international level for external assistance; an unforeseen and often sudden event that causes great damage, destruction and human suffering". The scientific research on the economic impacts of disasters caused by extreme weather events is a versatile issue that draws continuously the attention of governments, policy-makers and societies. These disasters could be separated into two main categories; the climate-related and the geophysical ones. Figures 2.1 and 2.2 present the most financially affected countries by disasters for the period 1998-2017 in terms of absolute losses and average annual percentage losses relative to GDP. Figure 2.1 Top 10 countries/territories in terms of absolute losses (billion US\$), 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.2 Top 10 countries/territories in terms of average annual percentage losses relative to GDP, 1998-2017 (CRED and UNISDR, modified). According to the World Bank, the annual cost of disasters has been estimated to US\$ 520 billion, reducing rapidly at the same time the standard of living of some 26 million people, pushing them into poverty every year (World Bank, 2017). During the period 1998-2017, the death toll from both types of disasters (climate-related and geophysical) worldwide is estimated to be approximately 1.3 million people and the reported cumulative financial losses of these disasters amount to US\$ 2.908 billion (GDP and all economic data are adjusted at 2017 US\$ value). In addition, tens of millions affected people found themselves in a state of emergency, requiring assistance in local, national or international level. Although these cumulative losses may seem large, they do not describe the full picture as financial reviews that are collected by the Emergency Events Database (EM-DAT) reveal that, unfortunately, the vast majority of reports (63%) contain no economic data (CRED AND UNISDR, 2018). Figure 2.3 presents the proposed classification of the most common disasters (Integrated Research on Disaster Risk, 2014), excluding Biological and Extraterrestrial as their investigation is not part of the scope of this study. This introductory chapter focuses on events which are related to hydrological, meteorological and climatological parameters (which collectively are termed weather or climate-related) plus geophysical disasters. Figure 2.3 Classification of Natural Hazards (Integrated Research on Disaster Risk, 2014). The crucial factor that determines whether an extreme weather event or a natural hazard can be described as a humanitarian or financial disaster is the vulnerability of the affected regions. For example, impacts of extreme flood events are sharpened in cases of increased exposure to risk which arise by parameters such as nonsensical urban development in risk-prone areas, inadequate construction of flood protection works, incautious land use changes and weak governance. Thus, a river flooding near a low density populated city can be deadly with incalculable financial impacts; however, a major storm surge in an inhabitable coastal area will not be a disaster if no people are affected or harmed. Except anthropogenic interventions, it is under discussion and investigation whether climate change threatens the ability of policy-makers to manage risk. Nevertheless, there are scientific works which present evidence that, regarding extreme flood events, there is no detectable sign of human-induced climate change in the normalized flood losses. The steady increase in the original flood losses which is regularly observed in literature is mostly driven by societal factors (Barredo, 2008; Crompton and McAneney, 2019). Regarding the occurrences of each type of disasters, statistics show (Figure 2.4) that the climate-related ones were the most frequent during the period 1998-2017. Within this subgroup, floods appear to be the most numerous in terms of aggregated disasters and approximate number of people affected (Figures 2.5 and 2.6). Furthermore, storms appear to be the costliest type of disaster, followed by earthquakes and floods (Figure 2.7). Figure 2.4 Number of disasters by major category per year 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.5 Numbers of disasters per type 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.6 Number of people affected per disaster type 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.7 Breakdown of recorded economic losses (US\$) per disaster type 1998-2017 (CRED and UNISDR, 2018, modified). The quantification and the annual aggregation of the economic impacts of major disasters over the period 1998-2017 (Figure 2.8) unveil the significance of the structural and non-structural methods that should be developed in order to moderate the footprint of these events. Moreover, Figure 2.9 highlights the extensive contribution of storm events on the climate-related disasters mix. Figure 2.8 Total reported economic losses per year, with major events highlighted, 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.9 Total share of losses due to storms as a percentage of annual climate-related disaster losses, 1998-2017 (CRED and UNISDR, 2018, modified). As mentioned previously, one parameter that we should take into consideration is that, consistently, a high percentage of disasters worldwide were inaccurately or ineffectively reported. This unfortunate factuality characterizes the data collected from both wealthier as well as poorer countries. Tables 2.1, 2.2 and 2.3 present summaries of statistics regarding the report of economic losses (%) per income group, per continent and per disaster type. These statistics clearly highlight a gradual reduction of the percentage of the reported losses from the higher to the lower income groups. Searching for a continental pattern, Africa seems to be the continent with an extensive low report rate regarding disasters. In addition, storm is not only the costliest type of disaster, but also the one with the higher report rate. Eventually, efforts have been made in the direction of the improvement of disasters data collection process and the increase of their report rate by the United Nations and other organizations worldwide, such as the adoption of the Sendai Framework for Disaster Risk Reduction 2015-2030 (UNDRR, 2015). | | S P 🛎 | M | | |---------------------|-------|-----------------|-------------| | | ALL | Climate-related | Geophysical | | High income | 53 | 52 | 61 | | Upper-middle income | 40 | 40 | 37 | | Lower-middle income | 31 | 30 | 31 | | Low income | 13 | 13 | 20 | Table 2.1 Reporting of economic losses (%) per income group (CRED and UNISDR, 2018, modified). | | | 3 Pm 🚈 | | |----------|-----|-----------------|-------------| | | ALL | Climate-related | Geophysical | | Oceania | 48 | 51 | 23 | | Americas | 42 | 43 | 32 | | Asia | 42 | 42 | 40 | | Europe | 38 | 37 | 54 | | Africa | 14 | 14 | 24 | Table 2.2 Reporting of economic losses (%) per continent (CRED and UNISDR, 2018, modified). Table 2.3 Reporting of economic losses per disaster type for climate-related (left) and geophysical (right) disasters (CRED and UNISDR, 2018, modified). Deepening on the impacts of extreme events per income group or continent, statistics and scientific studies (SOPAC, 2009; Kawasaki et al., 2020) have spotlighted the close relationship between floods, disasters and poverty. It has been highlighted that people who experience poverty tend to live in flood-prone areas where flood policy preparation mechanisms are inadequate, governance is weak and flood protection systems are not well maintained or not constructed at all. Furthermore, in such cases, decisions on precautionary measures prior to the outbreak of an extreme flood event ground on deterministic methods, as calculations on the poverty exposure bias does not change significantly under future climate scenarios, although the absolute number of people potentially exposed to floods can increase or decrease significantly, depending on the scenario and the region (Winsemius et al., 2015). The same logic is being followed on extreme drought phenomena. Studies have also indicated the impact of natural disasters and especially that of extreme floods and drought events on human development index and local poverty (Rodriquez-Oreggia et al., 2013). Accurate risk assessment and strong governance is the solution to such phenomena. Although the report rate of economic losses is not ideal, some interesting conclusions could be extracted. Figure 2.10 present the recorded climate-related disaster losses per income group compared to GDP losses. Even though the absolute value (in US\$ billions) is higher in high income countries, which makes sense as values in general are extremely higher in those countries, the parameter we should consider is the GDP loss (%), which is well above the International Monetary Fund's threshold for a major economic disaster of 0.5% (International Monetary Fund, 2020) in low and lower-middle income countries. Figure 2.11 presents the classification of disasters based on income data. Although the disaster occurrences are almost equally divided between the income groups, deaths are higher in low and lower-middle income countries. Moreover, economic losses in high and upper-middle income group are extremely higher mainly due to the higher values that are dominant in those countries. Figure 2.10 Recorded climate-related disaster losses per income group compared to GDP losses 1998-2017 (CRED and UNISDR, 2018, modified). Figure 2.11 Classification of disasters based on income data 1998-2017 (CRED and UNISDR, 2018, modified). Regarding the human cost of disasters, the EM-DAT
measures it by two main parameters: the number of people killed, missing or presumed dead and the number of people affected by the events, which refers to people requiring immediate assistance to provide basic survival needs (food, water, shelter, sanitation, medical assistance) during a period of emergency and includes people injured, homeless, displaced or evacuated during the emergency phase of a disaster. Figures 2.12 and 2.13 show that climate-related disasters impact mostly people who live in low and lower-middle income countries, as the percentage of deaths and affected people of per million population potentially exposed is higher. Disasters can be considered as major contributors to entrenched poverty in low and middle income countries and, this is why, actions must be taken to empower the financially weak groups and countries. Reducing disaster risk is a cross-cutting issue for the reduction of poverty worldwide. Figure 2.12 Climate-related disaster deaths in absolute numbers and percentage of per million population potentially exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified). Figure 2.13 Climate-related disaster affected totals in absolute numbers and percentage of per million population potentially exposed (PPE) 2000-2017 (CRED and UNISDR, 2018, modified). ## 2.2. Components of flood vulnerability and types of flood Extreme flood events impact on both individuals and communities, endangering in many cases the economic prosperity and social balance. These impacts depend on the topography of the flood area, the dominant hydrodynamic mechanisms and the vulnerability of the affected environments. Societal and anthropogenic factors are frequently parts of the primary force that increase vulnerability in such environments, as economic development, risk-blind urbanization and population growth, place more people and assets in high-risk areas, such as flood plains, coastlines and dry lands, endangering their viability. Three basic areas of flood vulnerability can be distinguished according to the principle of sustainability: social and cultural, economic and ecological vulnerability (Schanze et al., 2004). Social and cultural vulnerability refers to the impacts on people's physical and mental health, disintegration of social cohesion and inadequate protection of the cultural heritage. Economic vulnerabilities refers to the processes needed to be done in order to protect major infrastructures, assets and property, both public and private, reduce the direct and indirect financial losses and support of the reconstruction and relief efforts of the affected people and societies. Last but not least, ecological vulnerability increases the risk of potential environmental impacts on flora and fauna, biotic and abiotic components, biodiversity, water pollution, and ecological systems in general. There are three main types of flood and a number of special cases that are introduced in the flood insurance practices (Munich Re, 1997; Kron, 2005; Lotsch, et al., 2010): - river flooding and inundation - flash floods - storm surge and coastal flooding ### 2.2.1. River flooding and inundation River flooding at any location can be caused by rainfall or snowmelt and may be occurred at long distances from the affected location. Distant rainfall from snowmelt or monsoons may be the main drivers of flood on major river systems, rather than localized rainfall. The actual extent of flood will be a combination of all contributing water, whether distant or localized, and is strongly affected by prior water logging of soils. By nature of the shallow slopes of a natural floodplain, river inundation and flood duration can last for days, or weeks. Recession of the floodwaters is a function of floodplain drainage (natural or artificial), slope, permeability and constrictions to water flow. In specific, river flooding occurs when the capacity of a river system is insufficient to contain the flow of water in the river, resulting in escape of water from the normal perimeter and submergence of surrounding low-lying land. Prolonged rainfall results in soil saturation and may occur at times of increased inflow from tributaries. As mentioned before, characteristics of the river flooding are determined by the capacity of river channel(s), slopes, soil permeability, land cover, land use, and control of water flows by any man-made engineering structures (training walls, dams, drainage, etc.). River floods are often slow moving and increased tributary flow can affect flood plains, as a result of land degradation in the catchment areas. Flood plains are formed from deposits made by earlier floods. In terms of flood mitigation, river systems range from heavily managed to unmanaged. In practice, although it is possible to take measures to manage floods arising from rivers, it is not possible to control such floods completely. Most river systems have been engineered, for purposes of urban flood protection, agricultural protection and irrigation management. Flood detention areas may be designated, which generally allow controlled flooding of agricultural areas in order to protect urban regions. #### 2.2.2. Flash floods Flash floods arise from intense, localized rainfall, and can happen practically anywhere. Intense rainfall can be measured over any specific period, typically between one hour and a maximum of six hours in the case of flash flooding and, regarding the duration of rainfall, it is longest in slow-moving or stationary storms. A characteristic of flash floods is that flood water rises suddenly, may be fast flowing, may collect in lower lying areas, and normally runs off and ponds rapidly. Residual ponded areas of water (sometimes larger lakes) may be trapped, remaining for long after the flash flood event. The flood impact of intensive rainfall is more severe when the ground is already saturated, where soils are impermeable or unstable, and in heavily sloped areas. Sequential intense rainfall events can therefore have a cumulative impact. Where ground is sloping, water is channeled to gullies and temporary watercourses, leading to erosion or landslides, and washing out bridges, culverts, or roads. Flash floods may also impact areas downstream of an intense rainfall event. Within a valley, flash floods can affect foothills, and rivers flood the valley bottoms. Within a country, regions may be affected by flash flooding whereas river flooding is the main national flood exposure. ### 2.2.3. Storm surge and coastal flooding Coastal zones are subject to flooding as a result of storm surge - increased sea levels driven by tropical storm systems (cyclones) or by strong windstorms arising from intense offshore low-pressure systems. Coastal areas most at risk are low lying, either river deltas or coastal plains. The extent of flooding caused by a coastal sea surge will depend on several factors, especially the topography of the low-lying inland areas, tidal conditions, wind and wave action, extent of inland river flow at the time of coastal surge, and occurrence of localized rainfall associated with the storm event. Torrential rains associated with monsoons and tropical cyclones are also important factors adding to the impact of storm surges. In Asia, severe floods recur during the monsoon and rainy seasons, often with disastrous consequences. The major cause of the most destructive phenomena is a storm surge - a rapid rise of sea level resulting from strong winds driving the water ashore and causing flooding in low-lying coastal areas. # 2.2.4. Other types of floods Furthermore, we have to mention some additional special cases of types of flood that, in many cases, are responsible for large numbers of human and financial losses; Tsunami, waterlogging and urban flooding. Tsunami is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Waterlogging is a form of natural flooding, especially in flat areas, when underground water rises to surface level as the result of over-irrigation. Urban flooding appears in cases of high rainfall's intensity and occurs when the city sewage system and draining canals do not have the necessary capacity to drain away the amounts of rain that are falling. ## 2.3. The components of flood risk National Oceanic and Atmospheric Administration (NOAA) defines flooding as an overflowing of water onto land that is normally dry. Floods are, in many cases, a natural phenomenon, such as in natural floodplains, and they could happen in small and large river basins, in estuaries, at coasts and locally. Nevertheless, floods occurrences cause troubles in catchments with extensive anthropogenic interventions, disturbing the established balance in agricultural and urban land use and planning. Each flood event can be characterized by features such as water depth, flow velocity, sediment transport fluxes and other spatiotemporal dynamics. Flood hazard maps are designed to indicate the probability of flooding over space and serve as a critical decision-making tool for a range of end users including building/infrastructure developers and disaster response planners (Sampson et al., 2015). Flood risk can be defined as the combination of the probability of occurrence of floods and the potentially adverse effects on human health, the environment, cultural heritage and economic activity associated with the occurrence of a flood (European Union, 2007). In more detail, flood risk is interpreted as harm to flood-prone elements with a specific vulnerability due to probable extreme events with their features. However, the term of risk should not be confused with the risk in the sense of reliability of structural projects which are used as a safety measure against flood events. The conceptual Source-Pathway-Receptor-Consequence-Model (SPRC-Model) has been proposed in order to describe flood risk (ICE, 2001; Figure 2.14) and offers a diagrammatic depiction of a simple
causal chain which introduces parameters regarding the meteorological and hydrological characteristics of the flood events, either in inland or at coasts (sources), through the discharge and inundation (pathways) and the physical impacts on the affected environments at risk (receptors) to the assessment of effects (consequences). The chain links 'source', 'pathway' and 'receptor' refer to the physical process, whereas the assessment of the '(negative) consequence' is a matter of societal values. According to Schanze et al. (2004), 'source' and 'pathway' represent the flood hazard. In more detail: - 'Source' is determined by the probability (p) of flood events with a certain magnitude and other features (m). Early warning (w) and the retention capacity of the source areas of inland floods (t) can be considered as two risk reduction factors. - The 'pathway' can be described by the inland discharge or coastal overflow and inundation (i) with various attributes (a) and interventions for flood control (c). - 'Receptor' and '(negative) consequence' state the vulnerability, whereas 'receptor' specifies the susceptibility (s) with interventions to strengthen resistance and resilience (r). - 'Consequence' stands for the harm to values (v; damage) with interventions to decrease or to compensate them (d). Accordingly, flood risk can be expressed by the following function: **Flood risk** = function($$(p, m, w, t)_{source}$$, $(i, a, c)_{pathway}$, $(s, r)_{receptor}$, $(v, d)_{consequence}$) Practice has shown that the causal chain of the SPRC-Model can be applied for each element at risk and each flood hazard. Policy makers should also take into consideration the complex interrelations that exist between the mentioned components. Eventually, these components form the so-called "flood risk system". The investigation of the mechanisms of this system leads to integrated solutions regarding the prevention and confrontation of extreme flood events. For inland floods, this system focuses on river catchments and for coastal floods, focuses on coastal cells, considering them as areas which are hydraulically connected. The overall risk assessment associated with a flood risk system can be described as the sum of risks of all individual elements. Figure 2.14 Source-Pathway-Receptor-Consequence-Model (ICE, 2001, modified). In many of the following chapters, the vital role of flood risk assessment in the field of flood risk management context will be emerged, indicating its role on the reduction of the negative impacts of a potential flood event on individuals and societies, ensuring their sustainability. #### 2.4. Flood risk management Flood risk management can be defined as the *continuous and holistic societal analysis, assessment and mitigation of flood risk* (Schanze et al., 2004). It includes tools for risk moderation regarding existing, under study or under construction systems in order to predict and control flood hazards and its negative consequences on individuals and societies with the assistance of instruments for risk management and reduction. The Source-Pathway-Receptor-Consequence-Model is inextricably linked with operational flood risk management, as presented on Figure 2.15. Figure 2.15 Stages of operational risk management (Eikenberg 1998, modified). Risk management operation can be considered as the combination of actions that must be planed and implemented in order to control the evaluated risk and to response in case of a disaster outbreak. Risk and vulnerability analysis are regularly performed in order to reassess hazard and risk according to new potential information and data available. Moreover, constant maintenance and improvement of the system is crucial in order to evaluate the existing risks, monitor changes and take technical and non-technical measures that decrease vulnerability. Furthermore, non-structural measures regarding preparedness planning should be considered, in order to provide the necessary decision support system for the unfortunate case that the flood protection system is being partially operated or failed. In addition, early warning systems and evacuation plans is a significant step towards the disaster mitigation, as an effective forecasting system permits the early identification and quantification of an imminent extreme flood event to which a population will be potentially exposed to. Finally, designing integrated disaster response plans reduces losses of lives and accelerates humanitarian assistance (Plate, 2002). The planning of disaster relief packages should be also introduced into the equation. Insuring assets and properties before the strike of a major flood event can provide sustainable financial solutions and the needed funding regarding the reconstruction process of the affected areas. # 3. The partnership for flood risk reduction ### 3.1. General principles of insurance Insurance is a means of protection from financial loss and is applied in the context of a risk management process, which aim is to hedge against the risk of a potential loss. Insurer or insurance company is called the entity that provides insurance services to other entities, such as companies or individuals, which are known as insured or policyholders. The insurance transaction involves the insured assuming a guaranteed and known relatively small loss in the form of payment to the insurer in exchange for the insurer's promise to compensate the insured in the event of a covered loss. The loss may or may not be financial, but it must be reducible to financial terms, and usually involves something in which the insured has an insurable interest established by ownership, possession, or pre-existing relationship (Vimala and Alamelu, 2018). The insured receives a contract, called the insurance policy, which details the conditions and circumstances under which the insurer will compensate the insured. The amount of money charged by the insurer to the policyholder for the coverage set forth in the insurance policy is called the premium. If the insured experiences a loss which is potentially covered by the insurance policy, the insured submits a claim to the insurer for processing by a claims adjuster. The insurer may hedge its own risk by taking out reinsurance, whereby another insurance company agrees to carry some of the risk, especially if the primary insurer deems the risk too large for it to carry, such as aggregated risks regarding costly extreme flood events (Wikipedia, 2020). #### 3.1.1. Basic principle Insurance involves pooling funds from many insured entities (known as exposures) to pay for the losses that some may incur. The insured entities are therefore protected from risk for a fee, with the fee being dependent upon the frequency and severity of the event occurring. In order to name a risk as insurable, the risk insured against must meet certain characteristics. Insurance as a financial intermediary is a commercial enterprise and a major part of the financial services industry, but individual entities can also self-insure through saving money for possible future losses (Gollier, 2003). ### 3.1.2. Insurability The term insurability is used to indicate whether a particular client is insurable for by a particular company because of particular circumstance and the quality assigned by an insurance provider pertaining to the risk that a given client would have. Risks which can be insured by private companies typically share seven common characteristics (Mehr and Cammack, 1972): - Large number of similar exposure units. Since insurance operates through pooling resources, the majority of insurance policies are provided for individual members of large classes, allowing insurers to benefit from the law of large numbers in which predicted losses are similar to the actual losses. However, all exposures will have particular differences, which may lead to different rates. For example, regarding flood insurance programs, rates may vary according to the flood zone the insured building belongs to. - **Definite Loss**. The loss takes place at a known time, in a known place, and from a known cause. Flood events, fire, automobile accidents, and worker injuries may all easily meet this criterion. Other types of losses may only be definite in theory. Occupational disease, for instance, may involve prolonged exposure to injurious conditions where no specific time, place or cause is identifiable. Ideally, the time, place and cause of a loss should be clear enough that a reasonable person, with sufficient information, could objectively verify all three elements. - Accidental Loss. The event that constitutes the trigger of a claim should be fortuitous, or at least outside the control of the beneficiary of the insurance. The loss should be 'pure,' in the sense that it results from an event for which there is only the opportunity for cost, such as the loss that is caused by a flood event on a building or on its contents. Events that contain speculative elements, such as ordinary business risks, are generally not considered insurable. - Large Loss. The size of the loss must be meaningful from the perspective of the insured. Insurance premiums need to cover both the expected cost of losses, plus the cost of issuing and administering the policy, adjusting losses, and supplying the capital needed to reasonably assure that the insurer will be able to pay claims. For small losses these latter costs may be several times the size of the expected cost of losses. There is little point in paying such costs unless the protection offered has real value to a buyer. This is why, in many countries including Greece, the growth of the domestic insurance market for extreme flood events is weak. - Affordable Premium. If the likelihood of an insured event is so high, or the cost of the event so large, that the resulting premium is large relative to the amount of protection offered, it is not likely that anyone will buy insurance, even if on
offer. Further, as the accounting profession formally recognizes in financial accounting standards, the premium cannot be so large that there is not a reasonable chance of a significant loss to the insurer. If there is no such chance of loss, the transaction may have the form of insurance, but not the substance. - Calculable Loss. There are two elements that must be at least estimable, if not formally calculable: the probability of loss, and the attendant cost. Probability of loss is generally an empirical exercise, while cost has more to do with the ability of a reasonable person in possession of a copy of the insurance policy and a proof of loss associated with a claim presented under that policy to make a reasonably definite and objective evaluation of the amount of the loss recoverable as a result of the claim. - Limited risk of catastrophically large losses. In most cases, insurable losses are considered as ideally independent and non-catastrophic, meaning that the losses do not happen all at once and individual losses are not severe enough to bankrupt the insurer. Nevertheless, taking into consideration the clustering mechanisms that characterize real-world hydroclimatic processes, this study investigates the effects of lack of fulfillment of this assumption on flood insurance practices. #### 3.1.3. Claims Insurance claim can be defined as a formal request by a policyholder to an insurance company for coverage or compensation for a covered loss or policy event. Claims and loss handling is the materialized utility of insurance. In other words, it is the actual "product" paid for. In more detail, claims may be filed by insured directly with the insurer or through insurance broker. In order to deal with the large workflow, insurance company claims departments employ a large number of claims adjuster supported by a staff of records management and data entry clerk. In most cases, incoming claims are classified based on severity and are assigned to adjusters whose settlement authority varies with their knowledge and experience. The adjuster undertakes an investigation of each claim, which is a crucial process, usually in close cooperation with the insured, determines if coverage is available under the terms of the insurance contract, and if so, the reasonable monetary value of the claim, and authorizes payment. The policyholder may hire their own public adjuster to negotiate the settlement with the insurance company on their behalf. For policies that are complicated, where claims may be complex, the insured may take out a separate insurance policy add-on, called loss recovery insurance, which covers the cost of a public adjuster in the case of a claim. Managing the claims handling function can be a really challenging process, as insurers seek to balance the elements of customer satisfaction, administrative handling expenses, and claims overpayment leakages. #### 3.1.4. Indemnification This term describes the process of reinstating the insured asset to the position that was is, in other words to make it whole again to the extent possible, prior to the happening of a specified event or peril. In general, we can categorize the types of insurance contracts that seek to indemnify an insured into three groups (Kulp and Hull, 1968): - A "reimbursement" policy - A "pay on behalf" or "on behalf of policy" - An "indemnification" policy In case of a "reimbursement" policy, the insured can be required to pay for a loss and then be reimbursed by the insurance carrier for the loss and out of pocket costs including, with the permission of the insurer, claim expenses. Regarding the "pay on behalf" policy, the insurance carrier would defend and pay a claim on behalf of the insured without any further action needed by the insured. Most modern liability insurance is written on the basis of "pay on behalf" language which enables the insurance carrier to manage and control the claim. Under an "indemnification" policy, the insurance carrier can generally either "reimburse" or "pay on behalf of" based on its decision which depends on the maximum potential benefit that comes out as a result from the claim handling process. Concerning the insurance policy, an entity seeking to transfer risk (an individual, corporation, or association of any type, etc.) becomes the 'insured' party once risk is assumed by an 'insurer', the insuring party, by means of a contract. Generally, an insurance contract includes, at a minimum, the following elements: identification of participating parties (the insurer, the insured, the beneficiaries), the premium, the period of coverage, the particular loss event covered, the amount of coverage (i.e., the amount to be paid to the insured or beneficiary in the event of a loss), and exclusions (events not covered). An insured is thus said to be "Indemnity" against the loss covered in the policy. When insured parties experience a loss for a specified peril, the coverage entitles the policyholder to make a claim against the insurer for the covered amount of loss as specified by the policy. Insurance premiums from many insured are used to fund accounts reserved for later payment of claims, in theory for a relatively few claimants, and for overhead (business) costs. So long as an insurer maintains adequate funds set aside for anticipated losses (called reserves), the remaining margin is an insurer's profit (Wikipedia, 2020). # 3.1.5. Underwriting and investing The business model of the insurance companies is to collect more in premium and investment income than is paid out in losses, and also to offer a competitive price which consumers will accept. This principle appears on flood insurance products, too. Profit can be reduced to a simple equation: $Profit = earned\ premium + investment\ income - incurred\ loss - underwriting\ expenses.$ Insurers make money in two ways: - Through underwriting, the process by which insurers select the risks to insure and decide how much in premiums to charge for accepting those risks - By investing the premiums they collect from insured parties It is a wide spread perception that the most complicated aspect of the insurance business is the actuarial science of ratemaking (price-setting) of policies, which uses statistics and probability to approximate the rate of future claims based on a given risk (Royal et al., 2014). After producing rates, the insurer will use discretion to reject or accept risks through the underwriting process. Regarding flood insurance products, this process can be really complex due to the multivariate factors that are introduced, such as the flood inundation modelling, several spatiotemporal dynamics elements under limited data availability and, in general, the uncertainties that characterize the calculation process. Ratemaking process initially involves looking at the frequency and severity of insured perils and the expected average payout resulting from these perils. Thereafter an insurance company will collect historical loss data, bring the loss data to present value, and compare these prior losses to the premium collected in order to assess rate adequacy (Brown, 1993). Loss ratios and expense loads are also used. Rating for different risk characteristics involves at the most basic level comparing the losses with "loss relativities" - a policy with twice as many losses would therefore be charged twice as much. More complex multivariate analyses are sometimes used when multiple characteristics are involved and a univariate analysis could produce confounded results. Other statistical methods may be used in assessing the probability of future losses. Upon termination of a given policy, the amount of premium collected minus the amount paid out in claims is the insurer's underwriting profit on that policy (Feldstein and Fabozzi, 2008). Underwriting performance is measured by something called the "combined ratio", which is the ratio of expenses/losses to premiums. A combined ratio of less than 100% indicates an underwriting profit, while anything over 100 indicates an underwriting loss. A company with a combined ratio over 100% may nevertheless remain profitable due to investment earnings, as insurance companies earn investment profits on "float". Float, or available reserve, is the amount of money on hand at any given moment that an insurer has collected in insurance premiums but has not paid out in claims. Insurers start investing insurance premiums as soon as they are collected and continue to earn interest or other income on them until claims are paid out. Nevertheless, float method is difficult to carry out in an economically depressed periods. ### 3.2. Flood risk share and reduction; the role of insurance and reinsurance Wolfgang Kron, the Head of Hydrological Risks in Munich Re's Geo Risks Research Department, states in his article "Flood Risk = Hazard • Values • Vulnerability" (2005) that the basic problem in flood insurance is the difference in the demand for coverage from potential clients who are exposed to flooding and the offer made by the insurance sector. It is evident that the fluctuation of demand, which usually depends on people's unfounded personal estimation on their potential exposure to flood risk, has a direct impact of many flood insurance parameters, such as the premium values and the amount of the total covered risk. This is why, in case that an insurance company wished to sell individual policies on a voluntary basis, the insurance premiums would have to be so high that policyholders would normally find them prohibitive. This phenomenon is called adverse selection or anti-selection. Furthermore, in other extreme flood phenomena, such as the storm surge hazard, the effect of adverse selection is even more severe. Another problem that flood insurance policy-makers face is that premiums for flood insurance must, at least at some point, reflect the individual exposure. Nevertheless, an individual assessment of the risk and the
calculation of an individual premium in most cases are impossible, so that the premium must be fixed on the basis of a flat-rate assumption. This is why zones with a similar flood hazard must be identified and/or defined, within which the premiums are constant. Regarding the viability of insurance and reinsurance companies, such companies must protect themselves against high losses in order to assure their survival by performing regular accumulation control processes, i.e. assess the probable maximum loss (PML) they may experience during an extreme event, evaluating their reserves and their reinsurance requirements as part of their portfolio analysis. Eventually, they estimate the aggregated losses in a regarded flood accumulation zone in order to obtain the probable maximum loss (accumulation). Experience has shown that the most efficient way to cope with nature's destructive forces is on the basis of cooperation between the people and the government plus a third component, the insurance industry (Kron, 2005). This is why an integrated approach must be adopted, in which public authorities, affected individuals and insurance industry must be involved (Figure 3.1). In addition, an integral part of the process of designing an optimal strategy for risk reduction is also aggregated loss reduction and the implementation of disaster prevention mechanisms. The combined efforts resulting in structural and non-structural measures by the three groups allow minimization of the total costs and prevent and mitigate the impacts from floods and other natural events. Inevitably, such calculations become difficult when non-monetary losses and benefits are involved, such as the threat to human lives, environmental awareness and ecological protection. Figure 3.1The partnership for risk reduction (Kron, 2005, modified). # 4. Methodology ### 4.1. Extreme value analysis (EVA) distributions Extreme value analysis (EVA) is widely used and applied as a tool to analyze and study statistics on sample values that deviate extremely from the mean of the full sample, in order to develop a deeper understanding of the sample and precise modeling strategies. It generates significant applications across many scientific fields such as hydrology, insurance and finance and can be also used in order to predict the occurrence of rare events, such as extreme flooding, large insurance losses, crashing of the stock market and many others (Reis and Thomas, 2007). One main application of extreme value analysis for the companies that operate in regional or global insurance market is to model the frequency of heavy damages caused by extreme flood events on urban or agricultural areas. It is important for them to balance the risk of damage with their potential consequences so as to make a profit or at least to minimize the financial losses over a fixed time-window. In this manner, generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) are introduced as a tool for the statistical analysis of maxima or minima and of exceedances over a given threshold. ## 4.1.1. Generalized Extreme Value distribution (GEV) The development of stochastic methods for the characterization of flood peaks in drainage basins is one of the classical problems in extreme value statistics (Morrison and Smith, 2002). In particular, the generalized extreme value (GEV) distribution has been used for the modeling of flood peaks in at-site and regional settings. In addition to flood modeling, the GEV distribution is commonly used to model many other natural extreme events, such as the wind speed, air pollution concentration and precipitation maxima. The term "extreme events" often describes the maximum values of a quantity over a given period of time, such as the maximum annual discharge in a river. The Generalized Extreme Value (GEV) distribution, introduced by Fisher and Tippett (1928) and developed furtherly by Jenkinson (1955), is a flexible three-parameter model that combines the Gumbel, Fréchet, and Weibull maximum extreme value distributions. Its probability density function is: $$f(x) = \begin{cases} \frac{1}{\sigma} \exp(-(1+kz)^{-1/k})(1+kz)^{-1-1/k} & for \ k \neq 0\\ \frac{1}{\sigma} \exp(-z)\exp(-\exp(-z)) & for \ k = 0 \end{cases}$$ (4.1) where $z = (x - \mu)/\sigma$, and k, σ , μ are the *shape*, *scale*, and *location* parameters respectively. The *scale* must be positive ($\sigma > 0$), the *shape* and *location* can take on any real value. The range of definition of the GEV distribution depends on k: $$1 + k \frac{(x - \mu)}{\sigma} > 0 \quad for \ k \neq 0$$ $$-\infty < x < \infty \qquad for \ k = 0$$ (4.2) Its cumulative distribution function is: $$F(x) = \begin{cases} \exp\left(-\left(1 + \frac{k}{\sigma}(x - \mu)\right)^{1/k}\right) & \text{for } k \neq 0 \\ \exp\left(-\exp\left(-\frac{(x - \mu)}{\sigma}\right)\right) & \text{for } k = 0 \end{cases}$$ $$(4.3)$$ Various values of the *shape* parameter yield the extreme value type I, II, and III distributions. Specifically, the three cases k = 0, k > 0, and k < 0 correspond to the Gumbel, Fréchet, and "reversed" Weibull distributions. The reversed Weibull distribution is a quite rarely used model because it is bounded on the upper side and thus it is not appropriate for hydrological extremes. In more detail: - $\mu + k/\sigma \le x < +\infty$ when k < 0 (Fréchet), - $-\infty < x < +\infty$ when k = 0 (Gumbel) and - $-\infty < x \le \mu + \sigma / \kappa$ when k > 0 (Weibull). #### 4.1.2. Generalized Pareto distribution (GPD) The peak over threshold method (POT) has become one of the most preferable extreme value approaches in insurance. Largely, the reason is the obvious drawback of the traditional EVA by the block maxima method which discards potentially useful information, especially considering the typical short records available. Indeed, if there is more than one large loss in a given block, only the largest loss in the block is used in the subsequent analysis. Information loss of this kind is very likely to happen with insurance data considering extreme flooding events, due to the well-known stylized fact of volatility clustering, as large changes in prices tend to cluster together, resulting in persistence of the amplitudes of price changes (Cont, 2007). This drawback is eliminated in the POT model of extreme losses by using all losses in a sample larger than some pre-specified threshold value. The probability density function for the generalized Pareto distribution, introduced by Pickands (1975), with *shape* parameter $k \neq 0$, *scale* parameter σ , and threshold parameter θ , is: $$f(x) = \left(\frac{1}{\sigma}\right) \left(1 + k \frac{(x - \theta)}{\sigma}\right)^{-1 - \frac{1}{k}} \tag{4.4}$$ for $\theta < x$, when k > 0, or for $\theta < x < \theta - \sigma/k$ when k < 0. For k = 0, the density is: $$f(x) = \left(\frac{1}{\sigma}\right) e^{-\frac{(x-\theta)}{\sigma}} \tag{4.5}$$ for $\theta < x$. The probability distribution function for the generalized Pareto distribution is: $$F(x) = \begin{cases} 1 - \left(1 - \frac{kx}{\sigma}\right)^{\frac{1}{k}} & \text{for } k \neq 0 \text{ and } \sigma > 0\\ 1 - \exp\left(-\frac{x}{\sigma}\right) & \text{for } k = 0 \text{ and } \sigma > 0 \end{cases}$$ (4.6) The range of x is x > 0 for $k \le 0$ and $0 < x < \frac{\sigma}{k}$ for k > 0. The case k = 0, which is the exponential distribution, is the limiting distribution as $k \to 0$. The following values of the parameter k are of particular interest: - When k = 0, the GPD reduces to the exponential distribution with mean σ . - When k = 1, the GPD becomes a uniform $U[0, \sigma]$ distribution. - When $k \le -\frac{1}{2}$, $var(X) = \infty$. In fact, the rth central moment exists only if $k > -\frac{1}{r}$. - When k < 0, the GPD reduces to the Pareto distribution. ### 4.2. Threshold selection process The wide use of generalized Pareto model in insurance, which deals with exceedances over a threshold, offers us the opportunity to investigate the key-role of the threshold selection on this POT analysis. Threshold selection is a challenge in insurance and especially in flood insurance practices. The threshold should be chosen such that all losses above the threshold are "extreme losses" in the sense of the underlying extreme value analysis. This clearly leads to some arbitrariness in the choice of the threshold value and also to a non-trivial trade-off. On the one hand, for the underlying theory to go through, we want to choose a high threshold in order to investigate the behavior of the (really) extreme events. On the other hand, for the estimation of the parameters in the distribution of the extreme losses, we need many observations above the threshold (i.e., we want to choose a low threshold) in order to create a solid statistical foundation for our conclusions, based on a long sequence of values. Figure 4.1 presents the observed streamflows as well as the ones that were developed by the process of fitting these observed data with the generalized Pareto distribution regarding one gauge station; it clearly shows that the selection of the threshold affects directly the cumulative probability of a specific streamflow value considering the over-threshold events. The dominant trend in insurance practices is to select high percentage thresholds (99% or greater) in order to analyze exclusively high-impact extreme flood events, which are mainly responsible for the large amounts of claims and compensations that insurance companies will have to pay to their clients. Although selecting a threshold of a significantly high percentage is a desirable option, it is not always a possible one. The main reason is that, in many cases, the length of the available observed time series is quite short and, as a result, selecting a high percentage threshold leads to inaccurate conclusions regarding their statistical behavior. In order to characterize the dynamics of
extreme streamflow values, this study performed a POT analysis using four different percentage thresholds (90%, 95%, 98%, and 99%). Figure 4.1 Diagram that shows the impact of threshold selection on ECDF of streamflow of the over-threshold events. Gauge ID: 01552500. #### 4.3. Collective risk model The theoretical background on the need of existence of insurance sector can be explained by the expected utility model, in which an insured is a risk averse and rational decision maker, who by virtue of Jensen's inequality is ready to pay more than the expected value of his claims just to be in a secure financial position. In mathematical terms, the Theorem of Jensen's inequality is developed by Kaas et al. (2008). In more detail, if v(x) is a convex function and Y is a random variable, then $$E[v(Y)] \ge v(E[Y]) \tag{4.7}$$ with equality if and only if $v(\cdot)$ is linear on the support of Y (the set of its possible values), or Var[Y] = 0. From this inequality, it follows that for a concave utility function $$E[u(w - X)] \le u(E[w - X]) = u(w - E[X])$$ (4.8) Apparently, decision makers with such utility functions prefer to pay a fixed amount E[X] instead of a risky amount X, so they are indeed *risk averse*. Now, suppose that a risk averse insured with capital w has the utility function $u(\cdot)$. Assuming he is insured against a loss X for a premium P, his expected utility will increase if $$E[u(w - X)] \le u(w - P) \tag{4.9}$$ Since $u(\cdot)$ is a non-decreasing continuous function, this is equivalent to $P \le P^+$, where P^+ denotes the maximum premium to be paid. This so-called zero utility premium is the solution to the following utility equilibrium equation $$E[u(w - X)] = u(w - P^{+}). \tag{4.10}$$ The insurer, say with utility function $U(\cdot)$ and capital W, will insure the loss X for a premium P if $E[U(W+P-X)] \ge U(W)$, hence $P \ge P^-$ where P^- denotes the minimum premium to be asked. This premium follows from solving the utility equilibrium equation reflecting the insurer's position: $$U(W) = E[U(W + P^{-} - X)]. \tag{4.11}$$ A deal improving the expected utility for both sides will be possible if $P^+ \ge P^-$. In this model, parameters such as the insured loss X, the capitals w of the insured risk averse, the insurer's capital W, the premium P, but also the maximum and minimum premium P^+ and P^- to be asked to be paid are introduced. The mechanism through which decisions are taken under uncertainty is not by direct comparison of the expected payoffs of decisions, but rather of the expected utilities associated with these payoffs. Additional parameters which have a significant role in this mechanism are the aggregated number of claims but also the claims amounts to be paid. Investigating the influence of uncertainty in the whole process, which characterizes and links many of these parameters, is a key element of this study in order to develop accurate risk assessment procedures and modelling strategies regarding flood insurance practices. The distribution of total claim amounts, considering the insurance company's portfolio as a collective that produces a random number N of claims in a certain time period, can be described by the collective risk model (Kaas et al., 2008). Collective risk is defined as $$S_x = X_1 + X_2 + \dots + X_N,$$ (4.12) where X_i is the *i*th claim amount. The terms of S_x correspond to actual claim amounts. Apparently, $S_x = 0$ if N = 0. Similarly, regarding flood insurance practices and in case of an extreme flood event, the collective risk S is the total claim amount, considering again the portfolio of (re)insured properties as a collective that produces a random number N of claims in a certain time period of one year in our case. Denoting the records y_i of a time series, a proxy of temporal collective risk S is defined by Serinaldi and Kilsby (2016) as $$S = \sum_{i=1}^{N} Y_j \tag{4.13}$$ where Y_i is the jth claim amount proxy (over-threshold flow fluctuation severity). Again, the total claim amounts S = 0 if N = 0. In case of rainfall extremes investigation, over-threshold rainfall fluctuation severity is considered. Although the definition of collective risk regarding flood insurance practices is a proxy of the actual collective risk, as it involves hydrological series and not actual claim amounts, it will be called in this study collective risk as well. The underlying assumption of this definition, which is applied abundantly in insurance practices, is that the aggregate amount S is to require that N and the individual claim amounts Y_j are independent and identically distributed, and also that N and all claim amounts Y_j are independent to each other. Additionally, it is usually assumed that the number of claims is a single Poisson process, or allows for some overdispersion by using the negative binomial distribution instead. This study evaluates the impact of dependence and spatiotemporal clustering mechanisms on the calculations, investigating the validity of the independence assumption. In order to characterize the dependence and the clustering mechanisms, it is important to quantify how the time series differs from a sequence of independent variables. A widely used method to create a sequence of independent variables is to shuffle (randomize) the series in order to get a new series which has the same dimensional distribution but no correlation; the quantification of the distance between the independent and the observed variables is performed by comparing specific characteristics, i.e. the annual collective risk, the duration of the peak-over-threshold events and the occurrence frequency of return intervals in the original time series and in the shuffled one. Hence, in order to assess the clustering of extremes of the 360 observed time series, 100 new shuffled time series were reproduced for each one of the 360 original time series. ### 4.4. The Hurst-Kolmogorov dynamics Long-term dependence and persistence is a theoretical property that was described mathematically by A. Kolmogorov (1941) on his work on turbulence characteristics and discovered by H.E. Hurst (1951) in the physical world during his investigation on long-term capacities of reservoirs. Nowadays, scientific research has revealed the existence of such behavior in many natural processes, including streamflow and rainfall dynamics, as a step towards the deeper understanding of the potential patterns of their underlying processes. The exhibited persistence is known as the Hurst phenomenon or Hurst-Kolmogorov (HK) dynamics and is quantified by the Hurst coefficient *H*. In more detail, for: - $0 \le H < 0.5$, the process is known as antipersistent (or anticorrelated) - H = 0.5, the process is equivalent to white noise, meaning that there is no long term change (dependence) or persistence in the sample - $0.5 < H \le 1$, the process has enhanced long-term persistence (or positively correlated), which is the most common behavior on hydroclimatic processes Regarding flood insurance practices, recent research has revealed the significance of Hurst-Kolmogorov dynamics, persistence and inherent uncertainties in real-world hydrometeorological processes (Koutsoyiannis, 2011; Dimitriadis, 2017), on flood inundation and flood mapping (Dimitriadis et al., 2016). These uncertainties affect directly the abovementioned parameters, such as the insured losses, the premiums to be asked to be paid by the clients, expected claim amounts and insurer's capital reserves. In other words, hydrological and hydraulic uncertainties are introduced in the financial calculations and are to be interpreted in financial terms though a risk estimation process. However, classic risk estimation for flood insurance practices is formulated under the assumption of temporal independence of extreme flood events, which is unlikely to be tenable in real-world hydrometeorological processes exhibiting long range dependence (Iliopoulou and Koutsoyiannis, 2019). Moreover, multiple analyses on observed and historical data worldwide note that floods and streamflow extremes have a tendency to exhibit a behavior that is closely related to short range and long range dependence. These clustering mechanisms have a prominent effect on spatiotemporal dynamics of streamflow and rainfall extremes. In this study, the effect of such clustering mechanisms on particular insurance parameters, such as the total claim amounts, is investigated. ## 4.5. Climacogram In order to calculate the Hurst coefficient H and detect the potential long term dependence (or else persistence, clustering) of a process, the most accurate method is by formulating the *Climacogram* (Koutsoyiannis, 2010; Dimitriadis and Koutsoyiannis, 2015). *Climacogram* is a two dimensional plot, typically depicted on a double logarithmic plot, of the variance $\gamma(k)$ of the mean-aggregated series of the random variable Z on the vertical axis, and the aggregated scale k on the horizontal axis: $$Z_u^{(k)} = \frac{1}{k} \sum_{i=(u-1)k}^{uk} Z_i \tag{4.14}$$ where Z and Z_u represent the random stochastic process and the mean aggregated stochastic process respectively, while u is the vector index of the field showing the lag; i.e. the location in the field. The *Climacogram* (Dimitriadis and Koutsoyiannis, 2015; Table 4.1), depends on the nature of the stochastic process; there is a fundamental difference between continuous and discrete time processes: Table 4.1 The Climacogram. | Туре | Climacogram | | | |------------------------------------|---|--|--| | Continuous | $\gamma(m) := \frac{\operatorname{Var}\left[\int_{t}^{t+m} \underline{x}(\xi) d\xi\right]}{m^{2}} =
\frac{\operatorname{Var}\left[\int_{0}^{m} \underline{x}(\xi) d\xi\right]}{m^{2}}$ where $m \in \mathbb{R}^{+}$ and $\gamma(0) := \operatorname{Var}\left[\underline{x}(t)\right]$ | | | | Discrete | $\gamma_d^{(\Delta)} := \frac{\operatorname{Var}\left[\sum_{l=k(i-1)+1}^{ki} \underline{x}_l^{(\Delta)}\right]}{k^2} = \frac{\operatorname{Var}\left[\sum_{l=1}^{ki} \underline{x}_l^{(\Delta)}\right]}{k^2} = \gamma(k\Delta)$ where $k \in \mathbb{N}$ is the dimensionless scale for a discrete time process | | | | Classical estimator | $\underline{\hat{\gamma}}_{d}^{(\Delta)} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{1}{k} \left(\sum_{l=k(i-1)+1}^{ki} \underline{x}_{l}^{(\Delta)} \right) - \frac{\sum_{l=1}^{n} \underline{x}_{l}^{(\Delta)}}{n} \right)$ | | | | Expectation of classical estimator | $E\left[\underline{\hat{\gamma}_d^{(\Delta)}}(k)\right] = \frac{1 - \frac{\gamma_d^{(\Delta)}(n)}{\gamma_d^{(\Delta)}(k)}}{1 - \frac{k}{n}} \gamma_d^{(\Delta)}(k)$ | | | #### 4.6. Generalized-HK (GHK) process In some cases, such as in this study, fitting of straight line in the *Climacogram* derived from the observed data cannot capture the full variance behavior of the process at the whole range of scales. Thus, the generalized-HK (GHK) process is applied, which exhibits also an HK behavior in large scales but has more flexibility in smaller scales. It is a method that can preserve explicitly (i.e. fully analytical calculations) four marginal moments of a process for any type of second-order dependence structure (Dimitriadis and Koutsoyiannis, 2018). The *Climacogram* of the model is: $$\gamma(k) = \frac{\lambda}{(1 + k/q)^{2-2H}}$$ (4.15) where the Hurst coefficient H is bounded between zero and one inclusive, q is positive, while λ and q have dimensions $[x^2]$ and T, respectively. #### 4.7. Symmetric-moving average (SMA) method In this study, the symmetric moving average (SMA) method (Koutsoyiannis 2000 and 2016; Dimitriadis and Koutsoyiannis, 2018) is applied in order to develop and evaluate potential modeling strategies. SMA is a general method for producing synthetic time series of a physical quantity by preserving its dependence structure. In particular, SMA generation scheme for approximating the marginal probability function can replicate a natural process by exactly preserving its first four central moments, which has been found to be sufficient for various distributions commonly applied in geophysical processes. The SMA method is described by the following equation: $$\underline{x}_i = \sum_{j=-l}^l a_{|j|} \underline{v}_{i+j} \tag{4.16}$$ where \underline{x}_i is any process with any type of dependence, $a_{|j|}$ are coefficients calculated from the autocovariance function, \underline{v}_{i+j} is white noise averaged in discrete-time and l theoretically equals infinity but a finite number can also be used for preserving the dependence structure up to lag l. The algorithm to produce time series with the SMA scheme, created by P. Dimitriadis (2018), required the first four central moments, the H coefficient of each physical quantity (average, maximum and minimum) and the length of the time series as well. #### 4.8. Pearson, Spearman and Kendall correlation Pearson's correlation coefficient (Pearson, 1895) when applied to a sample is commonly represented by r_{xy} and may be referred to as the sample correlation coefficient or the sample Pearson correlation coefficient. We can obtain a formula for r_{xy} by substituting estimates of the covariances and variances based on a sample into the formula above. Given paired data $\{(x_1, y_1), ..., (x_n, y_n)\}$ consisting of n pairs, r_{xy} is defined as: $$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$ (4.17) where: - *n* is sample size - x_i, y_i are the individual sample points indexed with i - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ The *Spearman correlation coefficient* (Spearman, 1904) is defined as the Pearson correlation coefficient between the rank variables. For a sample of size n, the n raw scores X_i , Y_i are converted to ranks rgX_i , rgY_i , and r_s is computed as $$r_{s} = \rho_{rg_{X},rg_{Y}} = \frac{\text{cov}(rg_{X},rg_{Y})}{\sigma_{rg_{X}}\sigma_{rg_{Y}}}$$ (4.18) where: - ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables - x_i , y_i are the individual sample points indexed with i - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ (the sample mean); and analogously for \bar{y} Regarding the *Kendall correlation coefficient* (Kendall, 1938), let $(x_1,y_1),...,(x_n,y_n)$ be a set of observations of the joint random variables X and Y, such that all the values of (x_i) and (y_i) are unique (ties are neglected for simplicity). Any pair of observations (x_i,y_i) and (x_j,y_j) , where i < j, are said to be *concordant* if the sort order of (x_i,x_j) and (y_i,y_j) agrees: that is, if both $x_i > x_j$ and $y_i > y_j$ holds or both $x_i < x_j$ and $y_i < y_j$; otherwise they are said to be *discordant*. The Kendall τ coefficient for n items is defined as: $$\tau = \frac{(number\ of\ concordant\ pairs) - (number\ of\ discordant\ pairs)}{\binom{n}{2}} \tag{4.19}$$ #### 5. Dataset #### 5.1. US-CAMELS dataset This analysis is applied on the US-CAMELS dataset which comprises 671 daily streamflow time series from catchments in the contiguous United States (CONUS) minimally impacted by human activities (Newman et al., 2014). From this dataset, 360 streamflow time series with the maximum temporal overlap (namely, 35 years from 1980 to 2014) and less than 10% of missing values were selected. Figure 5.1 shows the study area and stream gauge locations for the full dataset and Figure 5.2 shows the selected 360 stream gauge locations. The list of the 360 selected gauge locations and their characteristics are provided in the appendix (Table A-1). Figure 5.1 The 671 US-Camels stream gauge locations. Figure 5.2 The selected 360 US-Camels stream gauge locations. #### 5.2. Hydrologic Units in USA The United States Geological Survey (USGS) created a hierarchical system of hydrologic units originally called regions, sub-regions, accounting units, and cataloging units. Each unit was assigned a unique Hydrologic Unit Code (HUC). As first implemented the system had 21 regions, 221 subregions, 378 accounting units, and 2 264 cataloging units (Seaber, P.R., et al., 1987). The first level of classification divides the USA into 21 major geographic areas (Figures 5.3 and 5.4), or regions. These geographic areas contain either the drainage area of a major river, such as the Missouri region, or the combined drainage areas of a series of rivers, such as the Texas-Gulf region, which includes a number of rivers draining into the Gulf of Mexico. Figure 5.3 The 21 hydrological units of the USA. The gray lines are state lines, the blue lines are major rivers, and the white lines are water-resources region boundary lines (Seaber, P.R., et al., 1987). Figure 5.4 The names of the 21 Hydrological Units in the USA (Wikipedia, 2020). Eighteen of the regions occupy the land area of the conterminous United States. Alaska constitutes region 19, the Hawaii Islands are region 20, and Puerto Rico and other outlying Caribbean areas are region 21. #### 5.3. FEMA's NFIP claims records The Federal Emergency Management Agency (FEMA) is an agency of the United States Department of Homeland Security and its primary purpose is to coordinate the response to a disaster that has occurred in the United States and that overwhelms the resources of local and state authorities. The National Flood Insurance Program (NFIP) is a program administered by the FEMA and has a twofold purpose; to share the risk of flood losses through flood insurance and to reduce flood damages by restricting floodplain development. Furthermore, the program enables property owners in participating communities to purchase insurance protection, administered by the government, against losses from flooding. In addition, it requires flood insurance for all loans or lines of credit that are secured by existing buildings, manufactured homes, or buildings under construction, that are located in the Special Flood Hazard Area in a community that participates in the NFIP. Moreover, it is designed to provide an insurance alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by flood (FEMA, 1986). In more detail, according to the Federal Emergency Management Agency (FEMA): "The National Flood Insurance Program (NFIP) aims to reduce the impact of flooding on private and public structures. It does so by providing insurance to property owners, renters and businesses and by encouraging communities to adopt and enforce floodplain management regulations. These efforts help mitigate the effects of flooding on new and improved structures. Overall, the program reduces the socio-economic impact of disasters by promoting the purchase and retention of general risk insurance, but also of flood insurance, specifically." (FEMA NFIP, 2019). On June 11 2019 the Federal Emergency Management Agency (FEMA) published National Flood Insurance Program (NFIP) data including more than two million claims records dating back to 1970 and more than 47 million policy records for transactions from the past ten years on its OpenFEMA website (FEMA, 2019). This data supplements existing NFIP data through OpenFEMA and provides additional data of interest. It is evident that this is a giant contribution for supporting scientists and policy-makers on their research on how the National Flood Insurance Program (NFIP) works, where flood damage occurs, and what the costs are. "This data demonstrates FEMA's commitment to build a culture of preparedness by providing insights to our stakeholders that can help close the nation's insurance gap. It
gives the insurance industry, researchers, and the public the ability to analyze and evaluate this program. Insurance is the best tool to financially protect you and your family before a disaster." declared Dr. Daniel Kaniewski, FEMA's Deputy Administrator for Resilience, in a news release (FEMA, 2019). "The proactive publication of this data will assist the private market to grow in the flood insurance space and help close the insurance gap. The private market will now be able to identify areas with prior flood claims and historical flood insurance policies," said David Maurstad, FEMA's Deputy Associate Administrator for Insurance and Mitigation (FEMA, 2019). However, as useful as these data could be, the dataset does not include the exact addresses of affected buildings, to protect policyholders' privacy. Although it includes ZIP code-level data on where policyholders received payments, a home buyer might not be able to learn the full history of flood risk for a property. The published data enables analysis of how coverage has changed in a geographic area, and where NFIP claims have been filed for more than 40 years. Information such as: state, census tract, ZIP code, year of loss, and amount paid on claims are included. This dataset consists of around 2.4 million observations of 39 variables. The dataset's variables that are used in our study, accompanied by their data dictionary description, are the following: - o yearofLoss: Year in which the flood loss occurred (YYYY). - o countyCode: The Federal Information Processing Standard (FIPS) defined unique 5-digit code for the identification of counties and equivalent entities of the united States, its possessions, and insular areas. The NFIP relies on the geocoding service to assign county. - o state: The two-character alpha abbreviation of the state in which the insured property is located - o latitude: Approximate latitude of the insured building (to 1 decimal place). This represents the approximate location of the insured property. The precision has been lessened to ensure individual privacy. - o **longitude:** Approximate longitude of the insured building (to 1 decimal place). This represents the approximate location of the insured property. The precision has been lessened to ensure individual privacy. - o amountPaidOnBuildingClaim: Dollar amount paid on the building claim. In some instances, a negative amount may appear which occurs when a check issued to a policy holder isn't cashed and has to be re-issued. - o amountpaidoncontentsclaim: Dollar amount paid on the contents claim. In some instances, a negative amount may appear which occurs when a check issued to a policy holder isn't cashed and has to be re-issued. While there are supposed to be records from 1970, the records before 1978 seem to be pretty sparse. We also don't have a full year of records for 2021 yet. As such, records are filtered to comprise years between 1970 and 2021 (last data refresh: 10-24-2021). #### 5.4. A graphical and diagrammatic visualization of the FEMA's NFIP claims records Figure 5.5 shows the number of claims per year. The years with the largest aggregated number of claims are (in descending order) 2005, 2012 and 2017. The common characteristic of these years is the occurrence of at least one of the five costliest Atlantic hurricanes in US history. The normalized damages reported in Table 5.1 give an estimation of the direct economic loss of these five Atlantic hurricanes if the same event was to occur under contemporary societal conditions, as described on Weinkle et al. (2018). The applied general formula for normalized losses for the adjustment at 2018 US\$ value (D_{2018}) is: $$D_{2018} = D_v \times I_v \times RWPC_v \times P_{2018/v}$$ (5.1) where D_y is reported damage in current-year US dollars, I_y is the GDP deflator for inflation adjustment, $RWPC_y$ is an estimate of current-cost net stock of fixed assets and consumer durable goods to capture changes in real wealth per-capita, and $P_{2018/y}$ is county population adjustment. Table 5.1 The nominal and normalized direct economic losses of the five costliest Atlantic hurricanes in US history. | Name | Season | Nominal damage | Normalized damage | |---------|--------|---------------------|---------------------| | Katrina | 2005 | \$125.0 Billion USD | \$116.9 Billion USD | | Harvey | 2017 | \$125.0 Billion USD | \$62.2 Billion USD | | Maria | 2017 | \$90 Billion USD | N/A | | Irma | 2017 | \$77.2 Billion USD | \$31.0 Billion USD | | Sandy | 2012 | \$68.7 Billion USD | \$73.5 Billion USD | Figure 5.5 The aggregated number of claims per year (1970-2021). On the left diagram, the nominal values are presented, whereas, on the right diagram, the normalized values are presented by subtracting the mean from the individual values and dividing the difference by the standard deviation. Last data refresh: 10-24-2021. Apart from the number of claims that occurred due to the hurricanes (storm surge and coastal flooding), numerous claims are caused by other types of floods, similar to the ones that are described in section 2.4, such as river flooding and flash floods. At this point, someone can conceive the difficulty that researchers and policy makers face during the really complex process of quantifying the mechanisms that generate every single flood event in order to investigate ways of eliminating their causes and impacts. FEMA's NFIP claims dataset consists of aggregated claims provoked by all potential types of floods, and thus it is difficult to attribute claims records to a specific flood type, i.e. river flooding as in our study. One significant and clear conclusion that is highlighted by the analysis of this dataset is the spatial distribution of the recorded claims. Figures 5.6-5.13, based on R scripts originally created by K. Tay (2019), present the number of claims across the United States and show us that East Coast and Gulf states are by far the most flood-affected areas in terms of number of claims. These records indicate the need for further research on the field of flood risk management and the development of integrated financial solutions offered by the flood insurance sector in order to moderate the impacts of these extreme flood events. Recently, FEMA designed and published some interactive data visualization instruments that offer a better understanding of the historical flood risk across the USA and potential flood-related costs (FEMA, 2020). Among others, it is mentioned that the percent of U.S. counties that are impacted by a flooding event is 99% (1996-2019), the average flood claim payout from the NFIP in 2019 was \$52,000 and that the average annual flood insurance policy premium cost in 2019 was \$700. Figure 5.6 A per state depiction of the aggregated number of claims. It is clear that Louisiana experienced the majority of claims, followed by Texas and Florida (1970-2018). Figure 5.7 The claims values of all states split into 2 buckets (1970-2018). Figure 5.8 The claims values of all states split into 7 buckets (1970-2018). Figure 5.9 The aggregated number of claims per county (1970-2018). Figure 5.10 The above bar plots show the number of claims (left) and the claim amounts (right) of the most affected states. 6 states experienced more than 100,000 claims (red dashed line), with North Carolina barely hitting that number. It is not surprising that the top 5 states with the most number of claims are also the top 5 states with the largest claim amounts. What might be more surprising is how much more money was claimed in LA and TX compared to the other states (1970-2018). Figure 5.11 The aggregated number of claims per state regarding the Gulf states (1970-2018). Figure 5.12 The aggregated number of claims per county regarding the Gulf states (1970-2018). Figure 5.13 The aggregated number of claims per county regarding the Florida state (1970-2018). # 6. Evaluating the clustering mechanisms of extremes on flood insurance practices with computational tools #### 6.1. Impacts of clustering mechanisms on collective risk For each one of the selected 360 gauge locations and for each one of the 4 selected thresholds (90%, 95%, 98%, 99%), the annual collective risk is calculated for the observed as well as the shuffled time series. The results from this process are quite impressive as, in many gauge locations, the divergence between the observed and the shuffled (independent) time series on the diagram of the Empirical Cumulative Distribution Function (ECDF) of collective risk is evident in many gauge locations. These results are a clear indication of the existence of the clustering of extremes in terms of collective risk, which reflects directly on the claim amounts. The results regarding the gauge location at the Sf Trinity River Below Hyampom in California follow (Figures 6.1-6.3). Figure 6.1 Collective risk's ECDF diagrams in linear scale (Gauge location ID: 11528700). Figure 6.2 Collective risk's ECDF diagrams in logarithmic scale (Gauge location ID: 11528700). Figure 6.3 Collective risk's return period (1/(1-ECDF)) diagrams in linear scale (Gauge location ID: 11528700). #### 6.2. Impacts of clustering mechanisms on return intervals For each one of the selected 360 gauge locations and for each one of the 4 thresholds, the return intervals of the over-threshold events are calculated for the observed as well as the shuffled time series. The return interval between two over-threshold events is a significant parameter for the insurance companies, as higher or lower values in short temporal periods can even affect their reserves, provoking potential financial instability. Once again, the divergence between the observed and the shuffled (independent) time series on the Empirical Cumulative Distribution Function (ECDF) for the return intervals of the over-threshold events diagram is evident in many gauge locations. The results regarding the Sf Trinity River Below Hyampom in California follow (Figures
6.4-6.5). Figure 6.4 Return interval's ECDF diagrams in linear scale (Gauge location ID: 11528700). Figure 6.5 Return interval's ECDF diagrams in logarithmic scale (Gauge location ID: 11528700). #### 6.3. Impacts of clustering mechanisms on the duration of the over-threshold events For each one of the selected 360 gauge locations and for each one of the 4 thresholds, the duration of the over-threshold events are calculated for the observed as well as the shuffled time series. The duration of the over-threshold events is a challenging parameter for the insurance companies, as higher or lower values can affect the severity of the event in terms of financial losses as well as the claim amounts. Once again, the divergence between the observed and the shuffled (independent) time series on the Empirical Cumulative Distribution Function (ECDF) for the duration of the over-threshold events diagram is evident in many gauge locations. The results regarding the Sf Trinity River Below Hyampom in California follow (Figures 6.6-6.7). Figure 6.6 Events' duration ECDF diagrams in linear scale (Gauge location ID: 11528700). Figure 6.7 Events' duration ECDF diagrams in logarithmic scale (Gauge location ID: 11528700). # 6.4. Mean Climacogram of US-CAMELS, Monte Carlo simulations and modeling approaches related with HK behavior Based on the mean *Climacogram* of the GHK process (Dimitriadis and Koutsoyiannis, 2018) regarding the 360 empirical streamflow time series of the US-CAMELS dataset, the Hurst coefficient was estimated 0.63, which indicates clearly a persistent behavior (Figure 6.8-6.9). The effect of this dependence structure is tracked on the behaviors of POT flows at the annual scale and the estimation of the collective risk proxy. Subsequently, the behavior of daily streamflow in our dataset is found to be consistent with HK dynamics characterized by moderate *H* parameters (in the range 0.6-0.7), through Monte Carlo simulations. Figure 6.8 The mean Climacogram of the 360 selected gauge locations of the US-CAMELS dataset. Figure 6.9 Hurst coefficient *H* of each one of the 360 selected gauge locations of the US-CAMELS dataset (see appendix, Table A-2). Modelling and simulation approaches of extreme flows are developed as a step towards the deeper understanding of the relationship between the stochastic patterns of flood occurrence and proxies of insurance claims, paving the way for a more efficient use of the available streamflow records. In order to develop the stochastic simulation of a series with generalized long-range dependence, the SMA-GHK model is applied (Dimitriadis and Koutsoyiannis, 2018) by preserving explicitly the first four central moments of the sample series. The algorithm to produce synthetic time series from the data of the observed (empirical) one with the SMA scheme, created by P. Dimitriadis (2018), required as input the following: mean (S_m), variance (S_v), skewness and kurtosis coefficients (S_s and S_k), Hurst parameter of the GHK model (H), scale parameter (q), length of synthetic series (N). The *Climacogram* (Figure 6.10) was formulated and the SMA-GHK modelling simulations were developed regarding the USGS 07071500 gauge location, Eleven Point river near Bardley, State of Missouri, USA, with parameters H = 0.81 and q = 1.00 days. Figure 6.10 The Climacogram of the gauge location with ID: 07071500 (H = 0.81, q = 1.00 d). Moreover, 1000 synthetic time series through Monte Carlo simulations of the USGS 07071500 gauge location were developed; the diagrams of the empirical cumulative distribution function (ECDF) of collective risk for the four thresholds are extracted (Figure 6.11). The ECDF curve of the observed collective risk proxy (Figure 6.11) is contained in the Monte Carlo prediction limits by the GHK model, preserving the HK dynamics and the 4 four moments. In contrary, shuffled (randomized) curves have a different behavior, especially in the tails of the distribution. Figure 6.11 Collective risk's ECDF diagrams of observed, shuffled and synthetic time series (ID: 07071500). ### 6.5. Impacts of clustering mechanisms on correlation between Average Y_i and Number of over-threshold events N A common assumption in the computation of collective risk is the independence between *Average* Y_i and Number of over-threshold events N. Here, losses Y_i denote the flows exceeding the selected threshold and N is the number of such exceedances (number of events) over 365-day time windows. The relationship between *Average* Y_i and N is emerged by the Spearman, Pearson and Kendall correlation coefficient between N and the average value of the over-threshold flow intensities $$\frac{1}{N}\sum Y_i = \frac{S}{N} = Average\ Y_i \tag{6.1}$$ Insurance companies' concern about this correlation factor is noteworthy, due to the fact that they try to investigate the dependence between the annual number of extreme events and the provoked *Average Y_i*, which is a proxy of the average claim amounts per over-threshold event on a specific region. Introducing this parameter, Pearson correlation coefficient, Spearman correlation coefficient and Kendall correlation coefficient for the 4 selected thresholds are investigated. Figure 6.12 Cumulative histogram curves of the Pearson, Spearman and Kendall correlation coefficient between *Average* Y_i and number of over-threshold events N for the 360 selected gauge locations and for all thresholds. Figure 6.12 shows cumulative histogram curves of the Pearson, Spearman and Kendall correlation coefficient between $Average\ Y_i$ and number of over-threshold events N for the 360 selected gauge locations and for all thresholds. This study evaluates the Spearman correlation coefficient, as it is considered as the most suitable tool for the analysis of extremes. Instinctively, someone would expect that years that are more active in terms of Number of Events N tend to exhibit extreme events also in terms of $Average\ Y_i$ magnitude. Indeed, our study shows that this assumption holds true in most cases, yet there are exceptions shown in the maps in Figures 6.13-6.16 suggesting that it may not be universally applicable. The following Figures (6.13-6.16) present the Spearman correlation coefficient between $Average\ Y_i$ and Number of over-threshold events N for all the gauge locations for the selected thresholds. Figure 6.13 Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for all gauge locations (threshold 90%). Figure 6.14 Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for all gauge locations (threshold 95%). Figure 6.15 Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for all gauge locations (threshold 98%). Figure 6.16 Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for all gauge locations (threshold 99%). This depiction offers a spatial categorization of areas with high Spearman correlation coefficient between the *Average* Y_i and the Number of over-threshold events N, in contrast with the ones where the correlation coefficient is noticeably lower. In other words, this spatial categorization indicates the regions that are subjected to numerous claim amounts in case of a year that an extreme number of over-threshold events occur. Moreover, it is shown that threshold selection influence slightly the Spearman, Pearson and Kendall correlation coefficient. In addition, for each one of the 360 gauge locations and for all selected thresholds, the Spearman correlation coefficient between the *Average* Y_i and the Number of over-threshold events N was calculated for the observed as well as the shuffled (independent) time series in order to evaluate the clustering mechanisms on this correlation parameter. The following box plots show that clustering mechanisms that are prevailing over the observed data introduce significant correlation between the N and $Average\ Y_i$ in many gauge locations. The conclusions of this investigation are quite impressive once again, as the divergence of the correlation coefficient between the observed and the shuffled ones in many gauge locations is profound. In more detail, the shuffled series tend to underestimate the correlation coefficient in comparison with the observed ones, which apparently introduce the impacts of clustering mechanisms. Ignorance of this behavior could lead insurance policy-makers on inaccurate conclusions which could potentially provoke financial impacts. The results that are shown on the following Figures (6.17-6.20) present the above mentioned conclusions. The gauge locations of these figures are: - Suwannee River AT US 441 AT Fargo, GA (ID: 02314500) - Arroyo Seco NR Pasadena, CA (ID: 11098000) - SF Trinity R BL Hyampom, CA (ID: 11528700) - Cache Creek Near Jackson, WY (ID: 13018300) Figure 6.17 Box plot of Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 02314500). Figure 6.18 Box plot of Spearman correlation coefficient between *Average Y_i* and Number of over-threshold events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 11098000). Figure 6.19 Box plot of Spearman correlation coefficient between *Average* Y_i and Number of over-threshold events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 11528700). Figure 6.20 Box plot of Spearman correlation coefficient between *Average* Y_i and Number of over-threshold events N for the shuffled as well as the observed time series for all thresholds (Gauge ID: 13018300). ## 6.6. Validating the streamflow-based collective risk proxy method by FEMA's NFIP actual claims records The annual collective risk proxy of the 360 selected gauge locations of the US-CAMELS dataset has already
been computed, considering the 4 selected thresholds (90%, 95%, 98% and 99%) for the years 1980-2014. Moreover, the published FEMA claims records offers us the opportunity to investigate the validity of the developed method on a spatial basis by assessing the correlation between these claims records with the results of our study on streamflow POT events. The FEMA claims records were distributed spatially on the 21 Hydrological Units and the 50 States. In this respect, the Spearman correlation coefficient is evaluated between the annual collective risk for each one of the gauge locations and the aggregated claims records of the Hydrological Unit and the State that a specific gauge location belongs to. The cumulative histogram (Figure 6.21) curves of these Spearman correlation coefficients for the 360 gauge locations and for all the selected thresholds follow, showing that, in general, considering the aggregated claims of States tends to underestimate the correlation coefficient in contrast to the aggregated claims of the Hydrological Units. Figure 6.21 The cumulative histogram curves of the Spearman correlation coefficient between the annual collective risk of the 360 gauge locations and the States/Hydrological Units claims records that a specific gauge location belongs to. Subsequently, the USA maps that show the Spearman correlation coefficient between the collective risk and the Hydrological Units' claims records for all the gauge locations and the selected thresholds follow (Figures 6.22-6.25), highlighting the spatial distribution of the correlation coefficient and indicating the areas the latter is higher or lower. A spatial pattern is evident, showing that higher values of Spearman correlation coefficient emerge in West Coast, in comparison with the ones in East Coast, which are significantly lower. Figure 6.22 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to (threshold 90%). Figure 6.23 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to (threshold 95%). Figure 6.24 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to (threshold 98%). Figure 6.25 Spearman correlation coefficient for each one of the selected 360 gauge locations between annual collective risk and the claims records of the Hydrological Units that a specific gauge location belongs to (threshold 99%). As collective risk is formulated in order to refer to river flooding in our study, these results show that this type of flooding is dominant in West Coast. In contrast, it is revealed that the source of flooding events that provoke claims in East Coast present a different and more complicated pattern, mainly due to the significant vulnerability of these areas on accelerated flooding events due to hurricane hits, sea-level rise (SLR) and storm surge phenomena (Ezer and Atkinson, 2014). Moreover, these results are also explained by the fact that during relaxed (excited) North Atlantic Oscillation (NAO), Gulf (East) Coast is more susceptible to major hurricane strikes (Elsner et al., 2000). Furthermore, for each one of the 360 gauge locations and for all the selected thresholds, the Spearman correlation coefficient between the collective risk and claims records of the Hydrological Unit that the gauge location belongs to was calculated for the observed as well as the shuffled (independent) time series in order to evaluate, once again, the effect of the clustering mechanisms on this correlation parameter. The following box plots in Figures 6.25-6.32 show that the dominant clustering mechanisms introduce significant correlation. The conclusions of this investigation are quite impressive, as the divergence of the correlation coefficient between the observed and the shuffled series (independent) is evident in many gauge locations. In more detail, the shuffled series show no correlation between collective risk and actual claims records. Thus, the apparent existence of clustering mechanisms, which are indicated by this divergence between the observed and the shuffled, are considered to have significant financial impacts for the insurance companies, caused by inaccurate risk assessment. Underestimation of collective risk in cases where clustering mechanisms are not included in the calculations, could provoke unpredictable large values of collective risk (claim amounts) in case of an extreme flood event, stressing a company's reserves. Figures (6.26-6.33) present the gauge locations: - Nehalem River Near Forr, OR (ID: 14301000) - Sauk River Near Sauk, WA (ID: 12189500) - Satsop River Near Satsop, WA (ID: 12035000) - Lopez C NR Arroyo Grande, CA (ID: 11141280) - Big Bureau Creek at Princeton, IL (ID: 05556500) - Paint Rock River Near Woodville, AL(ID: 03574500) - Shade River near Chester, OH (ID: 03159540) - Piscataway Creek Near Tappahannock, VA (ID: 01669000) Figure 6.26 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 14301000) belongs to, for all thresholds. Figure 6.27 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 12189500) belongs to, for all thresholds. Figure 6.28 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 12035000) belongs to, for all thresholds. Figure 6.29 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 11141280) belongs to, for all thresholds. Figure 6.30 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 05556500) belongs to, for all thresholds. Figure 6.31 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 03574500) belongs to, for all thresholds. Figure 6.32 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 03159540) belongs to, for all thresholds. Figure 6.33 Box plot of Spearman correlation coefficient between collective risk and the Hydrological Unit's aggregated claims that the gauge location (ID: 01669000) belongs to, for all thresholds. #### 6.7. Clustering mechanisms related with GEV distribution simulation For each one of the 360 gauge locations and for each one of the 4 thresholds, the annual maximum peak was calculated for the observed as well as the shuffled time series. Subsequently, the scale, location and shape parameters were estimated for the observed and the shuffled annual data. The next step was to fit generalized extreme value distribution (GEV) to these block maxima data. The results are shown on the following figures. Once again, the divergence between the observed with the shuffled (independent) time series on the Empirical Cumulative Distribution Function (ECDF) is evident as a clear indication of the existence of the clustering mechanisms. The results regarding the Little Bighorn River at State Line Near Wyola, MT follow (Figure 6.34). Although, as it was mentioned in the section 4.1, peak-over-threshold methods are preferable in flood insurance practices in contrast to the traditional block maxima methods, which are likely to throw away information, this section highlights the indications of the impacts of the clustering mechanisms on annual maxima. Figure 6.34 Annual peak ECDF diagrams related with GEV simulations in linear, logarithmic and return period (1/(1-ECDF)) scale (Gauge location ID: 11528700). #### 6.8. A brief case study on spatial dependence mechanisms of US-CAMELS dataset Extreme river flows often appear to have spatial patterns, as a result, among others, of the complicated hydrological processes, weather systems' interplay and catchment structure. As Quinn et al. (2019) mention, "the spatial pattern of maximum flood return periods caused by a single weather event at a set of gauge sites across a region is usually characterized by spatial dependence"; therefore, in such cases, extreme flows in different sites are considered as spatially auto-correlated. In hydrological terms, this highlights the need of risk assessment procedures that account for the impacts of spatial dependence on flood frequency. On a global scale, firms that operate in the flood insurance and reinsurance sector utilize the theory and the applications of the spatial dependence in order to assess the probability distributions of annual losses to which their portfolio is exposed (i.e., the so-called loss-exceedance curve) and to reassure market regulators. The significance of this process is vital as regulators require evidence that firms can absorb the 0.5% annual probability (1 in 200-year return period) loss in order to ensure that companies can cope with major financial losses caused by extreme flood events. This is why treating the flood frequency at a point as if it were independent of all other points will misestimate the potential losses (Timonina et al., 2015). Moreover, governments, policy-makers and local authorities are interested in spatial dependence mechanisms, as they evaluate economic scenarios for investments and payments regarding flood defenses structures as well as compensations as a result of extreme flood events. In many countries, these compensations are subsidized as part of hybrid insurance programs
that involve both the public and the private sector. In all these cases, univariate extreme value analysis conducted at a series of sites independently cannot generate the year-to-year variation in flood losses that insurers experience (Pielke et al., 2008), and a multivariate analysis considering spatial dependence is required (Quinn et al., 2019). Furthermore, although scientific research (Schumann et al., 2016) has shown that large-scale modeling studies forced by observed gauged flows can capture elements of the historic spatial dependence, the length of these records is a crucial parameter of the process, as the 40- to 50-year length of typical gauged records is not sufficient to simulate all possible patterns of flooding (Serinaldi and Kilsby, 2017). The available methods that are used to investigate the spatial dependence in streamflow extremes during flood events can be categorized to (Quinn et al., 2019): - empirical analyses of spatial dependence in gauged records (e.g., Villarini et al., 2011) or model output (e.g., Falter et al., 2015; Lu et al., 2017); - studies which attempt to fit statistical models of the dependence to large sets of gauge records containing multiple events (Heffernan and Tawn, 2004; Keef et al., 2009). In the following figures (6.35-6.38), regarding spatial correlation mechanisms in Hydrological Unit 3 of the US-CAMELS dataset, the Spearman correlation coefficients between annual collective risk (which in our study is in fact a streamflow-based proxy for flood claims amounts) of the gauge locations that belong to this Hydrological Unit are presented for all the selected thresholds. It is clear that in lower thresholds, the correlation coefficient is higher across the unit. In contrast, increasing the threshold has a strong impact on the results, as the range of the correlation coefficient across the unit seems to vary greatly, especially when the threshold is set to 99%. In more detail, when the correlation coefficient between two gauge locations ranges between: - -0.25 and 0.25, it means that the correlation is practically zero and, as a result, flood events in these gauge locations can be considered as uncorrelated. - 0.25 and 1, it means that when a flood event occurs in one of these gauge locations, it is highly probable that another event will occur on the other gauge locations, too. - -0.25 and -1, it means that when a flood event occurs in one of these gauge locations, it is highly improbable that another potential event will occur on the other gauge locations. Insurance companies aim at having in their portfolios risks which have negative spatial or temporal correlation or, at least, zero correlation, in order to combine and aggregate risks which represent extreme flood events that are unlikely to happen at the same space or time (see chapter 2 and 3). Accordingly, the following figures are extremely significant from an insurance viewpoint, as they reveal which combination of insured properties on the mentioned gauge locations could compose a profitable portfolio in terms of zero or negative dependence. Figure 6.35 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; Threshold 90%. Figure 6.36 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; Threshold 95%. Figure 6.37 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; Threshold 98%. Figure 6.38 Spearman correlation between annual collective risk of gauge locations in Hydrological Unit 3; Threshold 99%. # 7. The interplay between precipitation clustering mechanisms, rainfall extremes and actual flood compensations; a Greek case study #### 7.1. A review of the agricultural insurance practices and market in Greece The agricultural insurance market in Greece is mainly supported by the Hellenic Agricultural Insurance Organization (ELGA), which is supervised by the Ministry of Agriculture and is wholly owned by the State. ELGA covers all crop damages caused by both natural (such as extreme flood events) and non-natural disasters. The annual maximum amount of compensation that ELGA may pay to its beneficiaries is defined as: - per beneficiary of compensation: the maximum amount of 250,000€ per year, - per parcel: 80% of the insurable value of the production of the damaged parcel. Compensation shall be paid by ELGA when the damage is greater than 20% of the production and it is equal to 88% of the over 15% of the loss. The 15% of loss that is not covered by ELGA can be covered by private insurance companies, such as ERGO Hellas. These additional private insurance products operate in addition to ELGA's coverage and cover the quantitative loss of the insured product. Private providers ensure that, in cooperation with ELGA, the total amount of compensation will be 85% of the total loss (up to 10,000€), based on ELGA's experts reports (see appendix, Table A-2). However, these insurance products are being estimated with simplified statistical methods, which systematically misestimate the risk. ERGO Hellas insurance company provided us statistics and data, in order to review the current insurance practices in Greece. The company offers crop insurance products which address to farmers, agricultural cooperatives, producer groups and food and agricultural companies. The insurance risks that are insured for crop production are mentioned below. - Natural hazards (damaging causes) covered by ELGA such as: - ➤ Hail & frost - ➤ Windstorm - > Flood - ➤ Heat & Solar radiation - > Rainfall - > Snow - Surge storms - Wildlife Damage covered by ELGA such as: - ➤ Bear - ➤ Wild boar - Wild rabbits on Lemnos Island In addition to the above risks, fire incidents and accidents at work are covered by this insurance package. The Crop Production Insurance Period starts on April 1st of each year and ends on December 31st, while insured can be included in the Program until August 31st. Loss is considered to be the loss of crop production that is expected to be harvested per plot or its qualitative deterioration due to the impact of the covered loss-making causes, which results in a reduction in the objectively expected income of the producers. Insurance coverage is valid after expiry (a) 7 days for "ELGA insurance" and (b) 24 hours for fire from the beginning of insurance. ELGA provided us statistics and data about the compensations (claim amounts) per crop and per prefecture which have been given to agricultural producers due to damages that occurred on their crops and caused exclusively by flood events during the period 1999-2017 (see appendix, Table A-3). Figure 7.1 shows the aggregated compensations related with flood events that are given per year. Figure 7.1 The annual aggregated amounts of compensations related with flood events. #### 7.2. Case study: Larissa (Thessaly), Greece Regarding precipitation mechanisms, the presence of persistence in annual rainfall is expected to induce clustering in rainfall extremes (Iliopoulou et al., 2018), which should be manifested by clustering of floods. Therefore, in the framework of a case study, it is investigated whether the collective risk estimated using the former as a proxy, i.e. the magnitude of the aggregated rainfall peak over threshold events in a year, is correlated with the actual compensations given. Following the methodology that was developed in chapters 3 and 4 regarding the annual collective risk computation on streamflow extremes, we investigate at this time, in the frame work of a case study, the clustering mechanisms of rainfall extremes using the available data on the NOAA dataset regarding the station with ID: GHCND:GR000016648 in Larissa (Lat/Lon: 39.65, 22.45), Thessaly, Greece (NOAA, 2019). The data consists of daily precipitation magnitudes for the years 1955-2018, respectively. Figure 7.2 The location of the selected NOAA station in Larissa, Thessaly, Greece, ID: GHCND:GR000016648. Once again, in order to characterize the dependence and the clustering mechanisms of the observed time series, we produced 100 new shuffled (randomized) time series, which have the same marginal distribution as the observed (historical) time series but no correlation, considering them as a sequence of independent variables. Selecting 4 thresholds (90%, 95%, 98%, 99%), the annual collective risk, the return intervals and the duration of the over-threshold events are calculated for the observed as well as the shuffled time series. The results from this procedure follow (Figures 7.3-7.8) and show that the divergence between the observed and the shuffled on the diagram of the Empirical Cumulative Distribution Function (ECDF) of collective risk and return intervals is slight and not as manifested as in the streamflow case studies. Figure 7.3 Collective risk's ECDF diagrams in linear scale of Larissa station. Figure 7.4 Collective risk's ECDF diagrams in logarithmic scale of Larissa station. Figure 7.5 Collective risk's return period (1/(1-ECDF)) diagrams in linear scale of Larissa station. Figure 7.6 Return intervals' ECDF diagrams in linear scale of Larissa station. Figure 7.7 Return intervals' ECDF diagrams in logarithmic scale of Larissa station. Figure 7.8 Events' duration ECDF diagrams in linear scale of Larissa station. #### 7.3. Correlating Collective Risk with actual compensations For all the selected thresholds, the Spearman correlation coefficient between the *Average* Y_i and the Number of the over-threshold events N is calculated for the observed as well as the shuffled time series in order to evaluate the clustering mechanisms on this correlation parameter. Figure 7.9 shows that the divergence of the Spearman correlation coefficient between the observed and the shuffled ones (considered as independent) is negligible. Figure 7.9 Box plot of Spearman correlation coefficient between $Average Y_i$ and Number of over-threshold events N for the shuffled as well as the
observed time series for all thresholds regarding the 1999-2017 period (Larissa station). Exploiting the actual compensation amounts data regarding the Larissa prefecture (see appendix, Table A-3), Figure 7.10 offers a depiction of the Spearman correlation coefficients between these amounts and the stations' annual collective risk for the years 1999-2017, respectively. Regarding precipitation clustering mechanisms, the case study in Larissa region highlights a fair correlation between the annual collective risk of the observed time series and the actual compensations, in contrast to correlation regarding the shuffled ones. In more detail, as for low thresholds (90% and 95%), the correlation coefficient of the observed is out of the boundaries of the shuffled ones. Moreover, increasing threshold (98% and 99%), provokes a decrease in the correlation coefficient of the observed, even though it is still close enough to the boundaries of the shuffled ones. Figure 7.10 Box plot of Spearman correlation coefficient between annual collective risk and actual compensations for the shuffled as well as the observed time series for all thresholds regarding the 1999-2017 period (Larissa station). Initially, the ECDF diagrams of collective risk and return intervals, as well as the low correlation of the observed and the shuffled between $Average\ Y_i$ and Number of over-threshold events N indicated that the impact of the precipitation clustering mechanisms on this case study is slight. On the contrary, the correlation between the annual collective risk (which is produced by precipitation data) and actual compensation amounts is remarkable. This is of outmost importance for the insurance companies, as it creates a relationship of dependence between the primary index of precipitation (in terms of magnitude) and the actual amounts of compensations that these companies would pay in cases of extreme precipitation events. Nevertheless, the accuracy of the data regarding the actual compensations given that ELGA provided us should be furtherly investigated in order to validate whether the claimed and given amounts are real and not manipulatively raised by the beneficiaries. #### 8. Conclusions From the very beginning, the aim of this study was to provide new insights into the spatiotemporal clustering mechanisms of streamflow and rainfall extremes, in order to pave the way for a more accurate risk assessment on flood insurance and reinsurance practices, as a non-structural measure against the impacts of extreme flood events on individuals and societies. Moreover, the classic assumption of independence between the frequency and the severity of extreme flood events as well as the assumption that insurable flood losses are independent were meant to be under investigation. Results and conclusions can be summarized in the following sections. #### 8.1. Collective risk, return intervals and duration of flood events Regarding the impacts of clustering mechanisms on collective risk, return intervals and the duration of the over-threshold events of US-CAMELS dataset, our analysis showed that, for all thresholds, the divergence between the observed and the shuffled (randomized, considered as independent) time series on the diagram of the Empirical Cumulative Distribution Function (ECDF) is evident in many gauge locations. These results are a clear indication of the existence of clustering of streamflow extremes on the observed time series and its impacts on increasing claim amounts (in terms of collective risk) and the severity of the over-threshold events (in terms of return intervals and duration of over-threshold events). In other words, this persistent behavior reflects directly on financial parameters. #### 8.2. HK dynamics and Monte Carlo simulation Based on the mean *Climacogram* of the GHK process regarding the 360 empirical streamflow time series of the US-CAMELS dataset, the Hurst parameter was estimated 0.63, which indicates clearly a persistent behavior. The effect of this dependence structure is tracked on the behaviors of POT flows at the annual scale and the estimation of the collective risk proxy. Subsequently, the behavior of daily streamflow in our dataset is found to be consistent with HK dynamics characterized by moderate *H* parameters (in the range 0.6-0.7), through Monte Carlo simulations. Regarding the Monte Carlo simulations based on the SMA-GHK model, the diagrams of the empirical cumulative distribution function (ECDF) curve of the observed collective risk proxy is contained in the Monte Carlo prediction limits by the model, preserving the HK dynamics and the 4 four moments. In contrary, shuffled (randomized) curves have a different behavior, especially in the tails of the distribution. #### **8.3.** Correlation between Average Y_i and Number of over-threshold events N A common assumption in the computation of collective risk is the independence between Average Y_i and Number of over-threshold events N. Insurance companies' concern about this correlation factor is noteworthy, due to the fact that they try to investigate the dependence between the annual number of extreme events and the provoked Average Y_i , which is a proxy of the average claim amounts per over-threshold event on a specific region. Initially, we showed that the assumption that years which are more active in terms of Number of events N tend to exhibit extreme events also in terms of Average Y_i magnitude generally holds true yet it cannot be universally applied. We categorized spatially the areas with high Spearman correlation coefficient between the Average Y_i and the Number of over-threshold events N, and the others (areas) where the correlation coefficient is noticeably lower. In other words, this spatial categorization indicates the regions that are subjected to numerous claim amounts in case of a year that an extreme number of over-threshold events occur. Subsequently, we highlighted through a box plot analysis the existence of clustering mechanisms that are prevailing over the observed data, as they introduce significant correlation between the N and $Average Y_i$ in many gauge locations, in contrast to the shuffled ones, in which the correlation is zero. ## 8.4. The association between streamflow-based collective risk estimation and FEMA's NFIP actual claims records Regarding the association between the streamflow-based collective risk proxy used herein and the FEMA's NFIP actual claims records, a spatial pattern is evident, showing that higher values of Spearman correlation coefficient between the two emerge in West Coast, in contrast to the ones in East Coast, which are significantly lower. As collective risk refers to river flooding, these results show that this type of flooding is dominant in West Coast. In contrast, it is revealed that the source of flooding events that provoke claims in East Coast present a different and more complicated pattern, mainly due to the significant vulnerability of these areas on accelerated flooding events due to hurricane hits, sea-level rise (SLR) and storm surge phenomena (Ezer and Atkinson, 2014). Moreover, these results are also explained by the fact that during relaxed North Atlantic Oscillation (NAO), Gulf Coast is more susceptible to major hurricane strikes; on the contrary, during excited NAO, such phenomena are strongly observable in the East Coast (Elsner et al., 2000). Furthermore, we performed a box plot analysis of the Spearman correlation coefficient between the collective risk and the claims records of the Hydrological Unit that the gauge location belongs to, which was calculated for the observed as well as the shuffled (independent) time series. This analysis showed that the dominant clustering mechanisms introduce significant correlation, as the divergence of the correlation coefficient between the observed and the shuffled ones (independent) is evident in many gauge locations. In more detail, the shuffled ones tend to underestimate the correlation coefficient in comparison with the observed ones. The apparent existence of clustering mechanisms, which are indicated by this divergence between the observed and the shuffled, are considered to have significant financial impacts for the insurance companies, due to inaccurate risk assessment processes. Underestimation of collective risk, in cases where clustering mechanisms are not included in the calculations, could provoke unpredictable large values of collective risk (claim amounts) in a potential extreme flood event, stressing their reserves. #### 8.5. Spatial dependence on US-CAMELS dataset Regarding the spatial dependence mechanisms of US-CAMELS dataset, these mechanisms were investigated in Hydrological Unit 3, as part of a case study. The analysis showed that in lower thresholds, the correlation coefficient is higher across the unit. In contrast, increasing the threshold has a strong impact on the results, as in that case the range of the correlation coefficient across the unit seems to vary greatly, especially when the threshold is set to 99%. Moreover, the extracted heat maps revealed which combination of insured properties on the mentioned gauge locations could compose a profitable portfolio in terms of zero or negative spatial dependence, as insurance companies' aim is to have in their portfolio risks which have negative spatial or temporal correlation or, at least, zero correlation, in order to combine and aggregate risks which represent potential extreme flood events that are unlikely to happen at the same space or time. #### 8.6. Precipitation clustering mechanisms and correlation with actual claim amounts Eventually, we reviewed the agricultural insurance practices in the public as well as in the private sector of Greece and we presented the compensations' collected data that ELGA provided us, caused exclusively by flood events. We applied again the collective risk model on precipitation time series, as part of a case
study in Larissa region, for the period 1955-2018. We showed that the impact of clustering mechanisms on collective risk, return intervals and the Spearman correlation coefficient between $Average\ Y_i$ and Number of over-threshold events N, for all thresholds, is negligible. Nevertheless, this case study highlighted a fair correlation between the annual collective risk of the observed time series and the actual compensations (period 1999-2017), in contrast to correlation regarding the shuffled ones. In more detail, as for low thresholds (90% and 95%), the correlation coefficient of the observed is out of the boundaries of the shuffled ones. Moreover, increasing threshold (98% and 99%), provokes a decrease in the correlation coefficient of the observed, even though it is still close enough to the boundaries of the shuffled ones. This is of outmost importance for the insurance companies, as it creates a relationship of dependence between the primary index of precipitation (in terms of magnitude) and the actual amounts of compensations in cases of extreme precipitation events. #### 8.7. Suggestions for future research The driving force of this study was to investigate the validity of the assumption of temporal independence of extreme flood events for insurance purposes. From the experience gained so far regarding the spatiotemporal stochastic nature of flood insurance variables, several issues have been detected for future research. In more detail: - Further study must follow regarding the deeper understanding why the Spearman correlation coefficients between the streamflow-based collective risk proxy (used herein) and the FEMA's NFIP actual claims records found to be higher in West Coast in contrast to the ones in East Coast, which appeared to be significantly lower. - The development of hydraulic and hydrologic simulations must be encouraged in order to validate the spatiotemporal stochastic patterns of floods in US-CAMELS dataset, evaluating the flood susceptibility for the vulnerable locations. - More research is essential in order to improve the effectiveness and the robustness of current computational techniques regarding flood insurance modelling strategies, as they are characterized nowadays by great complexity. Although the stochastic structure of extremes of flood insurance variables is evident, computational complexity is a principle reason why the gap between research in hydrological dependence and practical applications in insurance, engineering and finance is still widened. - Following the FEMA's NFIP claims and policy data publication, scientists and policy-makers have the opportunity to study more extensively and to investigate potential trends in the interplay between flood risk, climate variability and their impact on flood insurance claims and losses. The role of the three basic ocean-atmosphere oscillation modes (ENSO, IPO and AMO) in the economic outcomes must also be thoroughly investigated. #### 9. References - Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. *Natural Hazards and Earth System Sciences*, 9, 97–104. - Brown, R.L. (1993). *Introduction to Ratemaking and Loss Reserving for Property and Casualty Insurance*. ACTEX Publications. - Cont, R. (2007). Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models. *Teyssière G., Kirman A.P. (eds) Long Memory in Economics*, Springer, Berlin, Heidelberg, 289-309. - CRED, and UNISDR (2018). *Economic losses, poverty & disasters: 1998-2017*. [Online] Available at: https://www.undrr.org/publication/economic-losses-poverty-disasters-1998-2017 [Accessed July 2020] - Crompton, R. P., and McAneney K.J. (2008). Normalised Australian insured losses from meteorological hazards: 1967–2006. *Environmental Science & Policy*, 11 (5), 371-378. - Dimitriadis, P. (2017). *Hurst-Kolmogorov dynamics in hydrometeorological processes and in the microscale of turbulence*. PhD thesis, Department of Water Resources and Environmental Engineering, National Technical University of Athens, Greece. - Dimitriadis, P., and Koutsoyiannis, D. (2015). Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. *Stochastic Environmental Research & Risk Assessment*, 29 (6), 1649–1669. - Dimitriadis, P., and Koutsoyiannis, D. (2018). Stochastic synthesis approximating any process dependence and distribution. *Stochastic Environmental Research & Risk Assessment*, 32 (6), 1493-1515. - Dimitriadis, P., and Koutsoyiannis, D. (2020). The mode of the climacogram estimator for a Gaussian Hurst-Kolmogorov process. *Journal of Hydroinformatics*, 22 (1), 160-169. - Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., and Efstratiadis, A. (2016). Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. *Journal of Hydrology*, 534, 478-492. - Eikenberg, C. (1998). *Journalistenhandbuch zum Katastrophenman-agement*, fifth edition, German IDNDR-Committee, Bonn. - Elsner, J.B., Liu, K., and Kocher, B. (2000). Spatial Variations in Major U.S. Hurricane Activity: Statistics and a Physical Mechanism. Journal of Climate, 13(13), 2293-2305. - European Union (2007). Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. *Official Journal of the European Union*, L 288/27. - Ezer, T., and Atkinson, L.P. (2014). Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth's Future, 2 (8), 362-382. - Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., and Merz, B. (2015). Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. *Journal of Hydrology*, 524, 182-193. - Feldstein, S.G., and Fabozzi, F.J. (2008). The Handbook of Municipal Bonds. Wiley. - FEMA (1986). A Unified National Program for Floodplain Management. Washington, D.C.: FEMA. - FEMA (2019). FEMA publishes NFIP claims and policy data. [Online] Available at: https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1 Last Data Refresh: 10-24-2021 [Accessed: October 2021] FEMA (2020). Historical Flood Risk and Costs. [Online] Available at: https://www.fema.gov/data-visualization/historical-flood-risk-and-costs [Accessed: October 2021] FEMA NFIP (2019). The National Flood Insurance Program. [Online] Available at: https://www.fema.gov/national-flood-insurance-program [Accessed: October 2021] - Fisher, R.A., and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. *Proceedings of the Cambridge Philosophical Society*, 24 (2), 180-190. - Gollier, C. (2003). To Insure or Not to Insure?: An Insurance Puzzle. *The Geneva Papers on Risk and Insurance Theory*, 28 (1), 5-24. - Goulianou, T., Papoulakos, K., Iliopoulou, T., Dimitriadis, P., and Koutsoyiannis, D. (2019). Stochastic characteristics of flood impacts for agricultural insurance practices. *European Geosciences Union General Assembly 2019*, Geophysical Research Abstracts, Vol. 21, European Geosciences Union, Vienna, EGU2019-5891. - Heffernan, J. E., and Tawn, J. A. (2004). A conditional approach for multivariate extreme values (with discussion). *Journal of the Royal Statistical Society, Series B: Statistical Methodology*, 66 (3), 497-546. - Hurst, H.E. (1951). Long Term Storage Capacities of Reservoirs. *Transactions of the American Society of Civil Engineering*, 116, 776-808. - ICE (2001). Learning to live with rivers, Institution of Civil Engineers, London, UK. - Iliopoulou, T., and Koutsoyiannis, D. (2019). Revealing hidden persistence in maximum rainfall records, *Hydrological Sciences Journal*, 64 (14), 1673-1689. - Iliopoulou, T., Papalexiou, S.M., Markonis, Y., and Koutsoyiannis, D. (2018). Revisiting long-range dependence in annual precipitation. *Journal of Hydrology*, 556, 891-900. - Integrated Research on Disaster Risk (2014). *Peril Classification and Hazard Glossary (IRDR DATA Publication No. 1)*. Beijing: Integrated Research on Disaster Risk. - International Monetary Fund (2020). *Global Financial Stability Report: Markets in the Time of COVID-19*, Washington, DC, April. - Jenkinson, A.F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. *Quarterly Journal of the Royal Meteorological Society*, 81 (348) 158-171. - Kaas, R., Goovaerts, M., Dhaene, J., and Denuit, M. (2008). Modern Actuarial Risk Theory Using R. Springer. - Kawasaki, A., Kawamura, G., and Zin, W. W. (2020). A local level relationship between floods and poverty: A case in Myanmar. *International Journal of Disaster Risk Reduction*, 42. - Keef, C., Svensson, C., and Tawn, J. A. (2009). Spatial dependence in extreme river flows and precipitation for Great Britain. *Journal of Hydrology*, 378 (3-4), 240-252. - Kendall, M. (1938). A New Measure of Rank Correlation. Biometrika, 30 (1-2), 81-89. - Kolmogorov, A.N. (1940). Wienersche Spiralen und Einige Andere Interessante Kurven in Hilbertschen Raum. *Doklady Akademii nauk URSS*, 26, 115- 118. - Koutsoyiannis, D. (2000). A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. *Water Resources Research*, 36 (6), 1519-1533. - Koutsoyiannis, D. (2010). A random walk on water. Hydrology and Earth System Sciences, 14, 585-601. - Koutsoyiannis, D. (2011). Hurst-Kolmogorov dynamics and uncertainty. *Journal of the American Water Resources Association*, 47 (3), 481-495. - Koutsoyiannis, D. (2016). Generic and parsimonious stochastic modelling for hydrology and beyond. *Hydrological Sciences Journal*, 61 (2), 225-244. - Kron, W. (2005). Flood Risk = Hazard Values Vulnerability. Water
International, 30 (1), 58-68. - Kulp, C., and Hall, J. (1968). Casualty Insurance, The Ronald Press Company, fourth edition. - Lotsch, A., Dick, W., and Manuamorn, O.P. (2010). Assessment of innovative approaches for flood risk management and financing in agriculture, Agriculture and rural development discussion paper, no. 46, Washington, D.C.: World Bank Group. - Lu, P., Smith, J. A., and Lin, N. (2017). Spatial characterization of flood magnitudes over the drainage network of the Delaware River basin. *Journal of Hydrometeorology*, 18 (4), 957-976. - Manolis, G. T., Papoulakos, K., Iliopoulou, T., Dimitriadis, P., Tsaknias, D., and Koutsoyiannis, D. (2020). Clustering mechanisms of flood occurrence; modelling and relevance to insurance practices. *EGU General Assembly 2020, Online, 4-8 May 2020*, EGU2020-9357. - Mehr, R., and Camack, R. (1976). Principles of Insurance, Homewood, Ill.: R.D. Irwin, sixth edition. - Morrison, J.E., and Smith, J.A. (2002). Stochastic modeling of flood peaks using the generalized extreme value distribution. *Water Resources Research*, 38 (12), 41-1-41-12. - Munich Reinsurance Company (1997). Flooding and Insurance. - Newman, A., Sampson, K., Clark, M. P., Bock, A., Viger, R. J., and Blodgett, D. (2014). *A large-sample watershed-scale hydrometeorological dataset for the contiguous USA*. Boulder, CO: UCAR/NCAR. - NOAA (2019). *Data Tools: Find a Station*. [Online] Available at: https://www.ncdc.noaa.gov/cdo-web/datatools/findstation [Accessed: October 2021] - Papoulakos, K., Iliopoulou, T., Dimitriadis, P., Tsaknias, D., and Koutsoyiannis, D. (2020). Investigating the impacts of clustering of floods on insurance practices; a spatiotemporal analysis in the USA. *EGU General Assembly 2020, Online, 4-8 May 2020*, EGU2020-866. - Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. *Proceedings of the Royal Society of London*, 58, 240-242. - Pickands, J. (1975). Statistical inference using extreme order statistics. *Annals of Statistics*, 3, 119-131. - Pielke, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., and Musulin, R. (2008). Normalized hurricane damage in the United States: 1900-2005. *Natural Hazards Review*, 9 (1), 29-42. - Plate, E. (2002). Flood risk and flood management. Journal of Hydrology, 267 (1-2), 2-11. - Quinn, N., Bates, P.D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J., and Heffernan, J. (2019). The Spatial Dependence of Flood Hazard and Risk in the United States. *Water Resources Research*, 55 (3), 1890-1911. - Ramanathan, K.A., Bose, V. (2018). Insurance Penetration and Insurance Density in India An Analysis. *International Journal of Research and Analytical Reviews*, 5 (4), 229-232. - Reiss, R.D., and Thomas, M. (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Birkhäuser. - Rodriguez-Oreggia, E., De La Fuente, A., De La Torre, R., and Moreno. H.A. (2013). Natural Disasters, Human Development and Poverty at the Municipal Level in Mexico. *The Journal of Development Studies*, 49 (3), 442-455. - Royal, C., Evans, J., and Windsor, S.S. (2014). The missing strategic link human capital knowledge, and risk in the finance industry two mini case studies. *Venture Capital. An International Journal of Entrepreneurial Finance.*, 16 (3), 189-206. - Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E. (2015). A high-resolution global flood hazard model, Water Resources Research, 51 (9), 7358-7381 - Schanze, J., Zeman, E., and Marsalek, J. (2016). Flood Risk Management: Hazards, Vulnerability and Mitigation Measures. *NATO Science Series*, 67,. Springer, Dordrecht. - Schumann, G. J. -P., Stampoulis, D., Smith, A. M., Sampson, C. C., Andreadis, K. M., Neal, J. C., and Bates, P. D. (2016). Rethinking flood hazard at the global scale. *Geophysical Research Letters*, 43, 10,249-10,256. - Seaber, P.R., Kapinos, F.P., and Knapp, G.L. (1987). *Hydrologic Unit Maps*. United States Geological Water-Supply Paper 2294. - Serinaldi, F. and Kilsby, C.G. (2016). Understanding Persistence to Avoid Underestimation of Collective Flood Risk. *Water*, 8 (4), 152 - Serinaldi, F., and Kilsby, C. G. (2017). A blueprint for full collective flood risk estimation: Demonstration for European River flooding. *Risk Analysis*, 37 (10), 1958-1976. - SOPAC (2009). Relationship between natural disasters and poverty: a Fiji case study. *SOPAC Miscellaneous Report 678*. - Spearman, C. (1904). The proof and measurement of association between two things. *American Journal of Psychology*, 15 (1), 72-101. - Tay, K. (2019). Looking at flood insurance claims with choroplethr. [Online] Available at: https://github.com/kjytay/misc/blob/master/blog/2019-07-14_flood_data.R [Accessed: July 2020] - Timonina, A., Hochrainer-Stigler, S., Pflug, G., Jongman, B., and Rojas, R. (2015). Structured Coupling of Probability Loss Distributions: Assessing Joint Flood Risk in Multiple River Basins. *Risk Analysis : an Official Publication of the Society for Risk Analysis*, 35 (11), 2102-2119. - United Nations (2015). Sendai Framework for Disaster Risk Reduction 2015-2030. [Online] Available at: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 [Accessed: July 2020] - Villarini, G., Smith, J. A., Baeck, M. L., Marchok, T., and Vecchi, G. A. (2011). Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). *Journal of Geophysical Research*, 116, D23116. - Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R.P., Klotzbach, P.J., and Pielke Jr, R. (2018). Normalized hurricane damage in the continental United States 1900-2017. *Nature Sustainability*, 1, 808-813. Wikipedia (2020). *Indemnity*. [Online] Available at: https://en.wikipedia.org/wiki/Indemnity [Accessed: July 2020] Wikipedia (2020). Insurance. [Online] Available at: https://en.wikipedia.org/wiki/Insurance [Accessed: July 2020] Wikipedia (2020). *The 21 first-level 2-digit region hydrologic unit boundaries*. [Online] Available at: https://en.wikipedia.org/wiki/Water_resource_region [Accessed: July 2020] Winsemius, H. C., Jongman, B., Veldkamp, T.I.E. Hallegatte, S., Bangalore, M., and Ward, P.J. (2018). Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts. *Environment and Development Economics*, 23 (3), 328-348. World Bank (2017). World Bank Annual Report 2017. Washington, DC: World Bank. ### 10. Appendix ## 10.1. Table A-1. The list of the 360 selected US-CAMELS gauge locations and related information. **HU**: Region (2-digit USGS hydrologic unit code). GAUGE ID: Catchment identifier (8-digit USGS hydrologic unit code). **GAUGE NAME**: Gauge name, followed by the state. LATITUDE: The latitude of the gauge location. LONGITUDE: The longitude of the gauge location. DRAINAGE AREA (km²): The drainage (catchment) area. **GHK MODEL PARAMETERS**: For more information regarding the applied GHK modeling strategies, see 4.4, 4.5 and 4.6. | | | | | | | DRAINAGE | днк мо | GHK MODEL PARAMETERS | | | | |----|----|----------|---|----------|------------|------------|--------|----------------------|------|--|--| | | HU | GAUGE ID | GAUGE NAME | LATITUDE | LONGTITUDE | AREA (km²) | н | q | λ | | | | 1 | 1 | 01078000 | SMITH RIVER NEAR BRISTOL, NH | 43,56646 | -71,74786 | 222,46 | 0,46 | 17,42 | 1,06 | | | | 2 | 1 | 01162500 | PRIEST BROOK NEAR WINCHENDON, MA | 42,68259 | -72,11508 | 49,71 | 0,49 | 17,51 | 1,06 | | | | 3 | 2 | 01411300 | TUCKAHOE RIVER AT HEAD OF RIVER NJ | 39,30694 | -74,82056 | 79,32 | 0,43 | 52,23 | 1,03 | | | | 4 | 2 | 01440000 | FLAT BROOK NEAR FLATBROOKVILLE NJ | 41,10667 | -74,95222 | 167,72 | 0,60 | 5,57 | 1,15 | | | | 5 | 2 | 01440400 | BRODHEAD CREEK NEAR ANALOMINK, PA | 41,08481 | -75,21462 | 175,21 | 0,60 | 5,71 | 1,14 | | | | 6 | 2 | 01451800 | JORDAN CREEK NEAR SCHNECKSVILLE, PA | 40,66176 | -75,62685 | 135,84 | 0,55 | 5,30 | 1,17 | | | | 7 | 2 | 01466500 | MCDONALDS BRANCH IN LEBANON STATE FOREST NJ | 39,885 | -74,50528 | 5,38 | 0,53 | 46,34 | 1,03 | | | | 8 | 2 | 01484100 | BEAVERDAM BRANCH AT HOUSTON, DE | 38,90578 | -75,51275 | 9,00 | 0,70 | 2,57 | 1,23 | | | | 9 | 2 | 01485500 | NASSAWANGO CREEK NEAR SNOW HILL, MD | 38,22892 | -75,47144 | 141,54 | 0,56 | 10,83 | 1,08 | | | | 10 | 2 | 01486000 | MANOKIN BRANCH NEAR PRINCESS ANNE, MD | 38,21389 | -75,67139 | 11,18 | 0,64 | 3,24 | 1,22 | | | | 11 | 2 | 01487000 | NANTICOKE RIVER NEAR BRIDGEVILLE, DE | 38,72833 | -75,56186 | 187,41 | 0,40 | 76,04 | 1,02 | | | | 12 | 2 | 01491000 | CHOPTANK RIVER NEAR GREENSBORO, MD | 38,99719 | -75,78581 | 292,04 | 0,67 | 3,12 | 1,21 | | | | 13 | 2 | 01510000 | OTSELIC RIVER AT CINCINNATUS NY | 42,54118 | -75,89964 | 382,99 | 0,54 | 8,85 | 1,11 | | | | 14 | 2 | 01516500 | COREY CREEK NEAR MAINESBURG, PA | 41,79091 | -77,01469 | 31,48 | 0,65 | 1,00 | 1,63 | | | | 15 | 2 | 01539000 | FISHING CREEK NEAR BLOOMSBURG, PA | 41,07814 | -76,43106 | 701,78 | 0,57 | 5,34 | 1,16 | | | | 16 | 2 | 01542810 | WALDY RUN NEAR EMPORIUM, PA | 41,57895 | -78,29251 | 13,62 | 0,57 | 4,10 | 1,21 | | | | 17 | 2 | 01543000 | DRIFTWOOD BR SINNEMAHONING CR AT STERLING RUN, PA | 41,4134 | -78,19695 | 705,50 | 0,55 | 7,24 | 1,13 | | | | 18 | 2 | 01543500 | SINNEMAHONING CREEK AT SINNEMAHONING, PA | 41,31728 | -78,10306 | 1778,26 | 0,53 | 9,79 | 1,10 | | | | 19 | 2 | 01545600 | YOUNG WOMANS CREEK NEAR RENOVO, PA | 41,38951 | -77,69082 | 120,00 | 0,53 | 12,92 | 1,08 | | | | 20
| 2 | 01547700 | MARSH CREEK AT BLANCHARD, PA | 41,05951 | -77,60583 | 113,54 | 0,61 | 4,36 | 1,18 | | | | 21 | 2 | 01549500 | BLOCKHOUSE CREEK NEAR ENGLISH CENTER, PA | 41,47368 | -77,23081 | 97,49 | 0,59 | 5,44 | 1,15 | | | | 22 | 2 | 01550000 | LYCOMING CREEK NEAR TROUT RUN, PA | 41,41841 | -77,03275 | 452,68 | 0,58 | 5,44 | 1,16 | | | | 23 | 2 | 01552000 | LOYALSOCK CREEK AT LOYALSOCKVILLE, PA | 41,32508 | -76,91246 | 1129,49 | 0,57 | 4,80 | 1,18 | | | | 24 | 2 | 01552500 | MUNCY CREEK NEAR SONESTOWN, PA | 41,35702 | -76,53467 | 60,64 | 0,59 | 3,05 | 1,26 | | | | 25 | 2 | 01557500 | BALD EAGLE CREEK AT TYRONE, PA | 40,68367 | -78,23362 | 115,30 | 0,52 | 10,93 | 1,09 | | | | 26 | 2 | 01567500 | BIXLER RUN NEAR LOYSVILLE, PA | 40,37092 | -77,40221 | 38,77 | 0,66 | 2,28 | 1,29 | | | | 27 | 2 | 01568000 | SHERMAN CREEK AT SHERMANS DALE, PA | 40,32342 | -77,16887 | 534,39 | 0,61 | 3,93 | 1,20 | | | | 28 | 2 | 01580000 | DEER CREEK AT ROCKS, MD | 39,62997 | -76,40331 | 244,37 | 0,76 | 1,00 | 1,43 | | | | 29 | 2 | 01583500 | WESTERN RUN AT WESTERN RUN, MD | 39,51078 | -76,6765 | 155,85 | 0,73 | 1,00 | 1,48 | | | | 30 | 2 | 01591400 | CATTAIL CREEK NEAR GLENWOOD, MD | 39,25597 | -77,05106 | 59,09 | 0,70 | 1,00 | 1,52 | | | | 31 | 2 | 01605500 | SOUTH BRANCH POTOMAC RIVER AT FRANKLIN, WV | 38,63567 | -79,33782 | 463,85 | 0,61 | 3,12 | 1,25 | | | | 32 | 2 | 01606500 | SO. BRANCH POTOMAC RIVER NR PETERSBURG, WV | 38,99122 | -79,17587 | 1684,55 | 0,64 | 3,56 | 1,20 | | | | 33 | 2 | 01613050 | TONOLOWAY CREEK NEAR NEEDMORE, PA | 39,89842 | -78,13223 | 27,90 | 0,61 | 5,04 | 1,16 | | | | 34 | 2 | 01632000 | N F SHENANDOAH RIVER AT COOTES STORE, VA | 38,63706 | -78,8528 | 543,36 | 0,57 | 3,19 | 1,27 | | | | 35 | 2 | 01632900 | SMITH CREEK NEAR NEW MARKET, VA | 38,69345 | -78,64279 | 245,05 | 0,75 | 0,83 | 1,51 | | | | 36 | 2 | 01634500 | CEDAR CREEK NEAR WINCHESTER, VA | 39,08122 | -78,32945 | 263,98 | 0,71 | 1,00 | 1,50 | | | | 37 | 2 | 01638480 | CATOCTIN CREEK AT TAYLORSTOWN, VA | 39,25455 | -77,57638 | 232,00 | 0,67 | 1,00 | 1,59 | | | | 38 | 2 | 01639500 | BIG PIPE CREEK AT BRUCEVILLE, MD | 39,61236 | -77,23744 | 267,18 | 0,70 | 1,00 | 1,52 | | | | 39 | 2 | 01644000 | GOOSE CREEK NEAR LEESBURG, VA | 39,01955 | -77,57749 | 859,17 | 0,72 | 1,40 | 1,37 | | | | 40 | 2 | 01658500 | S F QUANTICO CREEK NEAR INDEPENDENT HILL, VA | 38,58734 | -77,4286 | 19,34 | 0,61 | 1,00 | 1,72 | | | | 41 | 2 | 01664000 | RAPPAHANNOCK RIVER AT REMINGTON, VA | 38,53068 | -77,8136 | 1605,10 | 0,76 | 1,00 | 1,42 | | | | 42 | 2 | 01666500 | ROBINSON RIVER NEAR LOCUST DALE, VA | 38,32513 | -78,09556 | 463,15 | 0,68 | 1,00 | 1,56 | | | | 43 | 2 | 01667500 | RAPIDAN RIVER NEAR CULPEPER, VA | 38,35041 | -77,975 | 1209,75 | 0,73 | 1,00 | 1,48 | | | | 44 | 2 | 01669000 | PISCATAWAY CREEK NEAR TAPPAHANNOCK, VA | 37,87708 | -76,90052 | 71,84 | 0,71 | 3,08 | 1,19 | | | | 45 | 2 | 02011400 | JACKSON RIVER NEAR BACOVA, VA | 38,04235 | -79,88144 | 407,72 | 0,59 | 4,86 | 1,17 | | | | 46 | 2 | 02011460 | BACK CREEK NEAR SUNRISE, VA | 38,2454 | -79,76866 | 156,34 | 0,59 | 2,37 | 1,34 | | | | 47 | 2 | 02013000 | DUNLAP CREEK NEAR COVINGTON, VA | 37,8029 | -80,047 | 424,78 | 0,67 | 1,00 | 1,58 | | | | 48 | 2 | 02014000 | POTTS CREEK NEAR COVINGTON, VA | 37,72901 | -80,04228 | 396,78 | 0,59 | 4,59 | 1,18 | | | | 49 | 2 | 02015700 | BULLPASTURE RIVER AT WILLIAMSVILLE, VA | 38,1954 | -79,57032 | 285,41 | 0,54 | 3,59 | 1,25 | | | | 50 | 2 | 02016000 | COWPASTURE RIVER NEAR CLIFTON FORGE, VA | 37,7918 | -79,75949 | 1194,55 | 0,58 | 3,43 | 1,24 | | | | | HU | GAUGE ID | GAUGE NAME | LATITUDE | LONGTITUDE | DRAINAGE | GHK MO | DEL PARAN | METERS | |------------|----|----------------------|---|----------------------|------------------------|-------------------|---------------|----------------|--------------| | | | | | | | AREA (km²) | н | q | λ | | 51 | 2 | 02017500 | JOHNS CREEK AT NEW CASTLE, VA | 37,50624 | -80,10671 | 276,15 | 0,57 | 8,06 | 1,11 | | 52
53 | 2 | 02018000
02027000 | CRAIG CREEK AT PARR, VA TYE RIVER NEAR LOVINGSTON, VA | 37,66596
37,71542 | -79,91144
-78,98169 | 852,34
240,77 | 0,59
0,66 | 4,82
3,68 | 1,17
1,19 | | 54 | 2 | 02027500 | PINEY RIVER AT PINEY RIVER, VA | 37,70236 | -79,02752 | 123,34 | 0,60 | 3,86 | 1,20 | | 55 | 2 | 02028500 | ROCKFISH RIVER NEAR GREENFIELD, VA | 37,86959 | -78,82335 | 245,45 | 0,68 | 3,45 | 1,19 | | 56 | 2 | 02038850 | HOLIDAY CREEK NEAR ANDERSONVILLE, VA | 37,41542 | -78,63584 | 22,00 | 0,67 | 1,00 | 1,59 | | 57 | 3 | 02046000 | STONY CREEK NEAR DINWIDDIE, VA | 37,06709 | -77,60249 | 288,52
144.82 | 0,74 | 1,33 | 1,36 | | 58
59 | 3 | 02051000
02051500 | NORTH MEHERRIN RIVER NEAR LUNENBURG, VA MEHERRIN RIVER NEAR LAWRENCEVILLE. VA | 36,99737
36,71681 | -78,34972
-77.83166 | 144,82 | 0,63
0,73 | 1,00 | 1,68
1,47 | | 60 | 3 | 02053200 | POTECASI CREEK NEAR UNION, NC | 36,37083 | -77,02556 | 583,66 | 0,60 | 13,73 | 1,07 | | 61 | 3 | 02053800 | S F ROANOKE RIVER NEAR SHAWSVILLE, VA | 37,14013 | -80,26643 | 280,72 | 0,74 | 1,00 | 1,46 | | 62 | 3 | 02055100 | TINKER CREEK NEAR DALEVILLE, VA | 37,41763 | -79,93532 | 30,54 | 0,64 | 1,00 | 1,64 | | 63
64 | 3 | 02056900
02059500 | BLACKWATER RIVER NEAR ROCKY MOUNT, VA GOOSE CREEK NEAR HUDDLESTON, VA | 37,04514
37,1732 | -79,8442
-79,52031 | 298,11 | 0,70 | 1,00 | 1,52 | | 65 | 3 | 02059300 | FALLING RIVER NEAR NARUNA, VA | 37,1732 | -79,32031 | 485,41
427,77 | 0,73
0,67 | 0,50
1,00 | 1,84
1,59 | | 66 | 3 | 02065500 | CUB CREEK AT PHENIX, VA | 37,07931 | -78,76362 | 252,58 | 0,70 | 1,00 | 1,52 | | 67 | 3 | 02069700 | SOUTH MAYO RIVER NEAR NETTLERIDGE, VA | 36,57097 | -80,12949 | 221,13 | 0,76 | 1,00 | 1,42 | | 68 | 3 | 02070000 | NORTH MAYO RIVER NEAR SPENCER, VA | 36,56819 | -79,98726 | 270,61 | 0,71 | 1,00 | 1,51 | | 69
70 | 3 | 02074500
02081500 | SANDY RIVER NEAR DANVILLE, VA | 36,61958 | -79,50419
-78.58306 | 288,53 | 0,64 | 1,00 | 1,65 | | 71 | 3 | 02081500 | TAR RIVER NEAR TAR RIVER, NC LITTLE FISHING CREEK NEAR WHITE OAK, NC | 36,19417
36,18333 | -78,58306
-77.87611 | 428,37
460,85 | 0,66
0,73 | 1,00 | 1,61
1,46 | | 72 | 3 | 02092500 | TRENT RIVER NEAR TRENTON, NC | 35,06417 | -77,46139 | 447,58 | 0,54 | 14,88 | 1,07 | | 73 | 3 | 02102908 | FLAT CREEK NEAR INVERNESS, NC | 35,18278 | -79,1775 | 19,73 | 0,77 | 1,00 | 1,41 | | 74 | 3 | 02108000 | NORTHEAST CAPE FEAR RIVER NEAR CHINQUAPIN, NC | 34,82889 | -77,83222 | 1569,48 | 0,54 | 22,23 | 1,05 | | 75
76 | 3 | 02111180
02111500 | ELK CREEK AT ELKVILLE, NC | 36,07139
36,175 | -81,40306
-81,16889 | 131,47 | 0,75 | 1,00 | 1,44 | | 77 | 3 | 02111300 | REDDIES RIVER AT NORTH WILKESBORO, NC ROARING RIVER NEAR ROARING RIVER, NC | 36,25028 | -81,16889 | 233,66
322,27 | 0,80
0,77 | 1,00
1,00 | 1,37
1,40 | | 78 | 3 | 02112360 | MITCHELL RIVER NEAR STATE ROAD, NC | 36,31139 | -80,80722 | 205,30 | 0,79 | 1,00 | 1,39 | | 79 | 3 | 02118500 | HUNTING CREEK NEAR HARMONY, NC | 36,00056 | -80,74556 | 400,53 | 0,74 | 1,00 | 1,46 | | 80 | 3 | 02125000 | BIG BEAR CR NR RICHFIELD, NC | 35,33472 | -80,33556 | 144,55 | 0,70 | 1,00 | 1,52 | | 81
82 | 3 | 02128000 | LITTLE RIVER NEAR STAR, NC | 35,38722 | -79,83139 | 273,48 | 0,64 | 1,00 | 1,65 | | 83 | 3 | 02137727
02143000 | CATAWBA R NR PLEASANT GARDENS, NC HENRY FORK NEAR HENRY RIVER, NC | 35,68583
35,68444 | -82,06028
-81,40333 | 329,54
216,67 | 0,76
0,75 | 1,00 | 1,43 | | 84 | 3 | 02143040 | JACOB FORK AT RAMSEY, NC | 35,59069 | -81,56704 | 66,48 | 0,73 | 1,00 | 1,47 | | 85 | 3 | 02149000 | COVE CREEK NEAR LAKE LURE, NC | 35,42345 | -82,1115 | 203,85 | 0,81 | 1,00 | 1,36 | | 86 | 3 | 02152100 | FIRST BROAD RIVER NEAR CASAR, NC | 35,49306 | -81,68222 | 154,99 | 0,73 | 1,00 | 1,47 | | 87
88 | 3 | 02177000
02178400 | CHATTOOGA RIVER NEAR CLAYTON, GA TALLULAH RIVER NEAR CLAYTON, GA | 34,81398 | -83,30599
-83,53044 | 526,77
151,28 | 0,84 | 1,00 | 1,35 | | 89 | 3 | 02178400 | BLACK CREEK NEAR BLITCHTON, GA | 34,89037
32,16798 | -83,53044 | 590,47 | 0,84
0,73 | 1,00
6,38 | 1,35
1,11 | | 90 | 3 | 02212600 | FALLING CREEK NEAR JULIETTE, GA | 33,09985 | -83,72351 | 187,96 | 0,67 | 1,00 | 1,59 | | 91 | 3 | 02221525 | MURDER CREEK BELOW EATONTON, GA | 33,25236 | -83,48128 | 490,80 | 0,77 | 1,00 | 1,41 | | 92 | 3 | 02231000 | ST. MARYS RIVER NR MACCLENNY, FLA. | 30,35885 | -82,0815 | 1748,37 | 0,53 | 23,56 | 1,04 | | 93
94 | 3 | 02235200
02245500 | BLACKWATER CREEK NEAR CASSIA, FL SOUTH FORK BLACK CREEK NR PENNEY FARMS, FLA. | 28,87453
29,97941 | -81,48938
-81,85204 | 297,70
348,43 | 0,55
0,72 | 75,89 | 1,03
1,50 | | 95 | 3 | 02245300 | NORTH FORK BLACK CREEK NR MIDDLEBURG, FLA. | 30,1133 | -81,90649 | 451,06 | 0,72 | 1,00
4,98 | 1,17 | | 96 | 3 | 02296500 | CHARLIE CREEK NEAR GARDNER FL | 27,37504 | -81,79647 | 886,40 | 0,49 | 52,71 | 1,03 | | 97 | 3 | 02297155 | HORSE CREEK NEAR MYAKKA HEAD FL | 27,48726 | -82,02342 | 93,60 | 0,59 | 8,33 | 1,10 | | 98 | 3 | 02297310 | HORSE CREEK NEAR ARCADIA FL | 27,19949 | -81,98842 | 528,38 | 0,53 | 27,18 | 1,04 | | 99
100 | 3 | 02298123
02298608 | PRAIRIE CREEK NEAR FORT OGDEN FL MYAKKA RIVER AT MYAKKA CITY FL | 27,052
27,34366 | -81,78453
-82,15676 | 540,65
312,34 | 0,50
0,58 | 50,32
11,38 | 1,03
1,08 | | 101 | 3 | 02299950 | MANATEE RIVER NEAR MYAKKA HEAD FL | 27,47365 | -82,2112 | 174,27 | 0,61 | 3,87 | 1,20 | | 102 | 3 | 02300700 | BULLFROG CREEK NEAR WIMAUMA FL | 27,79197 | -82,35204 | 73,84 | 0,58 | 3,01 | 1,28 | | 103 | 3 | 02314500 | SUWANNEE RIVER AT US 441, AT FARGO, GA | 30,68056 | -82,56056 | 3322,15 | 0,60 | 62,07 | 1,04 | | 104 | 3 | 02315500 | SUWANNEE RIVER AT WHITE SPRINGS, FLA. | 30,32578
30,09827 | -82,73818 | 6136,26 | 0,60 | 58,83 | 1,04 | | 106 | 3 | 02324400
02327100 | FENHOLLOWAY RIVER NEAR FOLEY, FLA. SOPCHOPPY RIVER NR SOPCHOPPY, FLA. | 30,12937 |
-83,47181
-84,49435 | 176,27
271,12 | 0,63
0,55 | 38,97
12,31 | 1,04 | | 107 | 3 | 02342933 | SOUTH FORK COWIKEE CREEK NEAR BATESVILLE AL | 32,01766 | -85,29577 | 290,10 | 0,66 | 1,00 | 1,60 | | 108 | 3 | 02349900 | TURKEY CREEK AT BYROMVILLE, GA | 32,19556 | -83,90222 | 122,87 | 0,75 | 1,00 | 1,43 | | 109 | 3 | 02361000 | CHOCTAWHATCHEE RIVER NEAR NEWTON, AL. | 31,34295 | -85,61049 | 1781,61 | 0,66 | 4,52 | 1,15 | | 110 | 3 | 02369800
02371500 | BLACKWATER RIVER NEAR BRADLEY AL CONECUH RIVER AT BRANTLEY AL | 31,02768
31,5735 | -86,70996
-86,25162 | 227,51
1292,79 | 0,75
0,53 | 1,00
21,37 | 1,44
1,05 | | 112 | 3 | 02371300 | PATSALIGA CREEK NEAR BRANTLEY AL | 31,59627 | -86,40552 | 1145,22 | 0,53 | 15,65 | 1,05 | | 113 | 3 | 02374500 | MURDER CREEK NEAR EVERGREEN AL | 31,4185 | -86,98664 | 445,72 | 0,75 | 1,73 | 1,28 | | 114 | 3 | 02381600 | FAUSETT CREEK NEAR TALKING ROCK, GA | 34,57037 | -84,46882 | 10,32 | 0,76 | 1,00 | 1,43 | | 115 | 3 | 02395120 | TWO RUN CREEK NEAR KINGSTON, GA | 34,24278 | -84,88972 | 84,01 | 0,72 | 1,00 | 1,48 | | 116
117 | 3 | 02408540
02422500 | HATCHET CREEK BELOW ROCKFORD AL MULBERRY CREEK AT JONES AL | 32,91679
32,58291 | -86,27025
-86,9036 | 682,41
527,55 | 0,73
0,72 | 1,00
1,50 | 1,48
1,35 | | 118 | 3 | 02422300 | RED BUD CREEK NR MOORES MILL, MS | 34,46667 | -88,28361 | 40,56 | 0,72 | 0,79 | 1,63 | | 119 | 3 | 02430615 | MUD CREEK NR FAIRVIEW, MS | 34,3925 | -88,355 | 28,71 | 0,70 | 1,00 | 1,53 | | 120 | 3 | 02450250 | SIPSEY FORK NEAR GRAYSON AL | 34,28538 | -87,39891 | 231,83 | 0,62 | 1,71 | 1,42 | | 121 | 3 | 02464000 | NORTH RIVER NEAR SAMANTHA AL | 33,47928 | -87,59723 | 578,94 | 0,63 | 2,46 | 1,29 | | No. CAUGE ID CAUGE NAME LILOTIST CERES AT MONRHOPILE AL 22,075 3,0 | METERS | |--|--------------| | 1324 3 0.245000 SATIPLE GREEN PRINT COLURS, MS 11,7482 88,0025 1 422,88 0.55 1,425 135 3 0.2472500 BOUR CREEK WIR HATTISSHIPS, MS 11,72583 88,01472 789,34 0,69 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0 | λ | | 122 3 0.2472000 | 1,44 | | 132 3 02473500 DOLUTE CREEK NET HATTISSHIPP, MS 31,02581 8-80,1676 137,28 130,33 131,33 32,477350 RED CREEK AT VESTEY, MS 31,02581 8-80,1676 137,28 130,33 135,33 132,3 | 1,28
1,10 | | 122 3 02479300 RED CREEK AT VESTEY, NS 30,78611 38,78611 1144,20 0.55 73,512 122 3 0245100 BIOUR RIVER AT WORTHAM, NS 30,55961 89,12104 249,23 0.57 0.53 5.51 123 3 0245100 BIOUR RIVER AT WORTHAM, NS 30,55961 89,12104 800,66 0.2 124 | 1,56 | | 122 3 02479500 ESCATAWAR NUTR HEAR AGRICOLA MS 30,8098 38,83983 1454,33 0,51 57,5 10,00 13,00
13,00 | 1,68 | | 129 3 0.2491000 | 1,11 | | 30 30 30 30 30 30 30 30 | 1,06 | | 131 5 030155000 BRUENTRAW CREEK AT YOUNGSVILLE, PA | 1,28
1,19 | | 132 5 0.3049000 | 1,13 | | 136 5 03076000 | 1,17 | | 135 5 03076600 | 1,35 | | 136 5 03179000 | 1,21 | | 138 5 03140000 | 1,11 | | 138 5 | 1,30 | | 140 5 03161000 SOUTH FORK NEW RIVER NEAR JEFFERSON, NC 36,39333 81,40694 \$27,86 0,77 1,00 141 5 03160000 NEW RIVER NEAR GALAX, VA 36,64735 60,97897 2952,74 0,74 2,4,4 142 5 03160000 CHESTMUT CREEK AT GALAX, VA 36,64736 60,97897 2952,74 0,74 2,4,4 143 5 03170000 LITTLE RIVER AT GRANSONTOWN, VA 37,03763 80,55672 794,64 0,76 1,00 143 5 03170000 LITTLE RIVER AT GRANSONTOWN, VA 37,03763 80,55672 794,64 0,76 1,00 144 5 03182500 GREENBRIER RIVER AT BUCKEYE, WV 38,18595 80,13062 1364,97 0,60 3,44 145 5 03182500 GREENBRIER RIVER AT BUCKEYE, WV 38,18595 80,13062 1364,97 0,60 3,44 146 5 03186500 WILLIAMAS RIVER AT DYFER, WV 38,379 40,64897 325,68 0,54 4,9; 147 5 03213700 TUG FORK AT WILLIAMAS ROVER AT DYFER, WV 38,379 40,64897 325,68 0,54 4,9; 148 5 032337500 OHIO BRUSH CREEK NEAR WEST UNION OH 38,80368 83,42102 1003,212 0,58 1,94 149 5 03241500 MASSIES CREEK AT WILLIAMAS ROVER AT BOONEVILLE, KY 37,64202 48,888271 170,911 0,61 3,91 150 5 03235500 SOUTH FORK KENTLUCKY RIVER AT BOONEVILLE, KY 37,64202 48,66078 822,344 0,69 1,00 152 5 03384500 DIR RIVER NEAR DANVILLE, KY 37,64202 48,66078 822,344 0,69 1,00 153 5 03346000 MIGLAT CHER KINER AND ROVER AT BOONEVILLE, KY 37,64202 48,66078 822,344 0,69 1,00 154 5 03345000 MIGLAT CHER AT BUCKEYE, WILLE, KY 37,64202 48,66078 822,344 0,69 1,00 155 5 03384500 MIGLAT CHER AT BUCKEYE, WILLIAMAS RIVER AT BOONEVILLE, KY 37,64202 48,66078 822,344 0,69 0,04 156 6 03433000 FORTION FORK EMBARRAS RIVER NEAR CHONG, KI 38,8422 38,66078 38,4420 0,04 0,04 157 6 03445000 MIGLAT CHER AND READ REPORT, KI 38,64607 48,560786 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 48,66078 | 1,62 | | 141 5 | 1,52 | | 143 5 03155000 | 1,40 | | 148 5 03170000 | 1,22 | | 144 5 0.3173000 | 1,51 | | 146 5 03182500 GREENBRIER RIVER AT BUCKEYE, WV 38,18595 80,13062 1364,97 0,60 3,44 | 1,19 | | 147 S 03213700 | 1,23 | | 148 S 03237500 | 1,19 | | 149 5 03241500 MASSIES CREEK AT WILBERFORCE OH 39,72284 83,88271 170,91 0,61 3,99 150 5 03281500 SOUTH FORK KENTUCKY RIVER AT BOONEVILLE, KY 37,47981 83,67519 1838,222 0,63 3,34 151 5 03285000 DIX RIVER NEAR DONEVILLE, KY 37,64202 84,66078 822,44 0,69 1,00 152 5 03300400 BEECH FORK AT MAUD, KY 37,64202 84,66078 822,44 0,69 1,00 153 5 03346000 NORTH FORK EMBARGA RIVER NEAR OBLONG, IL 39,01004 87,94559 814,69 0,48 4,8 153 5 03346000 NORTH FORK EMBARGA RIVER NEAR OBLONG, IL 39,01004 87,94559 814,69 0,48 4,8 154 5 03346500 MUSCATATUCK RIVER NEAR DEDUTY, IN 38,80422 83,67386 755,22 0,64 1,00 155 5 03384450 LUSK CREEK NEAR EDDIVILLE, IL 37,47227 88,54727 111,13 0,61 0,8 156 6 03439000 FRENCH BROAD RIVER AT ROSMAN, NC 35,14333 82,82472 178,67 0,80 1,00 157 6 03455500 W F FIEGEN RA BOYLE LIKE, LOGAN NE HAZELWOOD, NC 35,39611 82,375 72,95 0,73 1,00 158 6 03455500 EAST FORK PIGEON RIVER NEAR CATALOOCHEE, NC 35,6617 82,86972 133,43 0,73 1,55 159 6 03460000 CATALOOCHEE CREEK NEAR CATALOOCHEE, NC 35,6617 82,86972 133,43 0,73 1,55 160 6 03473500 SOUTH TOE RIVER NEAR CATALOOCHEE, NC 35,6617 82,86972 134,462 12,160 0,72 1,00 161 6 03473000 S F HOLSTON RIVER NEAR CANDON, NC 35,6617 83,07361 127,00 0,71 3,77 161 6 03473000 S F HOLSTON RIVER NEAR CARDON, NC 35,65178 83,84011 784,81 0,67 4,56 162 6 03473000 S F HOLSTON RIVER NEAR BADAMASCUS, VA 36,65178 83,8401 784,81 0,67 4,56 164 6 03488000 N F HOLSTON RIVER NEAR BADAMASCUS, VA 36,65178 83,8401 784,81 0,67 4,56 165 6 03498000 S F HOLSTON RIVER NEAR RARRYULLE, TN 35,78562 83,8846 696,76 0,73 1,00 166 6 03498000 S F HOLSTON RIVER NEAR RARRYULLE, TN 35,78562 83,8846 696,76 0,73 1,00 167 6 03498000 S | 1,14 | | 150 5 03281500 SOUTH FORK KENTUCKY RIVER AT BOONEVILLE, KY 37,47981 83,67519 1838,22 0,63 3,3* | 1,53 | | 151 5 03285000 DIX RIVER NEAR DANVILLE, KY 37,64202 -84,66078 822,34 0,69 1.00 | 1,20
1,22 | | 152 5 03300400 BEECH FORK AT MAUD, KY 37,83284 -85,29607 1128,58 0,68 1,00 | 1,54 | | 154 5 03366500 MUSCATATUCK RIVER NEAR DEPUTY, IN 38,80422 -85,67386 755,22 0,64 1,00 155 5 03384450 LUSK CREEK NEAR EDDYVILLE, IL 37,47227 -88,54727 111,13 0,61 0,83 156 6 03439000 FRENCH BROAD RIVER AT ROSMAN, NC 35,14333 -82,82472 178,67 0,80 1,00 157 6 03455500 WF PIGEON R ABOVE LAKE LOGAN NR HAZELWOOD, NC 35,4931 -82,9375 77,95 0,73 1,00 158 6 03465500 EAST FORK PIGEON RIVER NEAR CANTON, NC 35,66167 -82,86972 133,43 0,73 1,56 159 6 03460000 CATALOOCHEE CREEK NEAR CATALOOCHEE, NC 35,6675 83,07361 127,02 0,71 3,7 160 6 03471500 S F HOLSTON RIVER NEAR CELO, NC 35,66575 83,63123 198,16 0,63 4,88 162 6 03473000 S F HOLSTON RIVER NEAR CELO, NC 36,63178 81,84401 784,81 0,67 4,5 | 1,56 | | 155 5 03384450 LUSK CREEK NEAR EDDYVILLE, IL 37,47227 -88,54727 111,13 0,61 0,81 1,66 6 03439000 FRENCH BROAD RIVER AT ROSMAN, NC 35,14333 -82,82472 178,67 0,80 1,00 1,00 1,00 1,00 1,00 1,00 1,00 | 1,22 | | 156 6 03439000 FRENCH BROAD RIVER AT ROSMAN, NC 35,14333 -82,82472 178,67 0,80 1,00 | 1,66 | | 157 6 03455500 W F PIGEON R ABOVE LAKE LOGAN NR HAZELWOOD, NC 35,39611 -82,9375 72,95 0,73 1,00 158 6 03456500 EAST FORK PIGEON RIVER NEAR CANTON, NC 35,46167 -82,88972 133,43 0,73 1,55 159 6 0346000 CATALOOCHEE CREEK NEAR CATALOOCHEE, NC 35,6675 -83,07361 127,02 0,71 3,73 160 6 03463300 SOUTH TOE RIVER NEAR CELO, NC 35,83151 -82,18429 112,16 0,72 1,00 161 6 03471500 S F HOLSTON RIVER NEAR CELO, NC 35,83151 -81,63123 198,16 0,63 4,88 162 6 03473000 S F HOLSTON RIVER NEAR DAMASCUS, VA 36,6178 -81,84401 734,81 0,67 4,58 163 6 03479000 WATAUGA RIVER NEAR SALTVILLE, VA 36,89678 -81,24623 578,21 0,67 2,88 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 <t< th=""><th>1,87</th></t<> | 1,87 | | 158 6 03456500 EAST FORK PIGEON RIVER NEAR CANTON, NC 35,46167 -82,86972 133,43 0,73 1,55 159 6 03460000 CATALOOCHEE CREEK NEAR CATALOOCHEE, NC 35,6675 -83,07361 127,02 0,71 3,72 160 6 0346300 SUTH TOE RIVER NEAR CELO, NC 35,8151 -82,18429 112,16 0,72 1,00 161 6 03471500 S F HOLSTON RIVER AR RA RELLO, NC 36,65178 -81,83123 198,16 0,63 4,88 162 6 03473000 S F HOLSTON RIVER NEAR DAMASCUS, VA 36,65178 -81,84401 794,81 0,67 4,56 163 6 03479000 WATAUGA RIVER NEAR SUGAR GROVE, NC 36,23917 -81,82222 235,60 0,67 1,18 164 6 03498500 LITTLE RIVER NEAR SALTYILLE, VA 36,89578 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR PRENTISS, NC 35,1588 -83,3972 361,14 0,79 3,00 | 1,37
1,48 | | 160 6 03463300 SOUTH TOE RIVER NEAR CELO, NC 35,83151 -82,18429 112,16 0,72 1,00 161 6 03471500 S F HOLSTON RIVER AT RIVERSIDE NR CHILHOWIE, VA 36,76039 -81,63123 198,16 0,63 4,88 162 6 03473000 S F HOLSTON RIVER NEAR SUGAR GROVE, NC 36,65178 -81,84401 784,81 0,67 4,56 163 6 0348000 WATAUGA RIVER NEAR SUGAR GROVE, NC 36,83917 -81,82222 235,60 0,67 1,18 165 6 03488000 N F HOLSTON RIVER NEAR SALTVILLE, VA 36,839678 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE RIVER NEAR RAR PRENTISS, NC 35,15 -83,37972 361,14 0,79 3,06 167 6 035002040 CARTOGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 | 1,32 | | 161 6 03471500 S F HOLSTON RIVER AT RIVERSIDE NR CHILLHOWIE, VA 36,76039 -81,63123 198,16 0,63 4,88 162 6 03473000 S F HOLSTON RIVER NEAR DAMASCUS, VA 36,65178 -81,84401 784,81 0,67 4,56 163 6 03479000 WATAUGA RIVER NEAR SUGAR GROVE, NC 36,23917 -81,82222 235,60 0,67 1,18 164 6 03498500 N F HOLSTON RIVER NEAR SALTVILLE, VA 36,89678 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE TENNESSEE RIVER NEAR PRENTISS, NC 35,15 -83,37972 361,14 0,79 3,00 167 6 03500240 CARTOOGECHAYE CREEK NEAR FRANKLIN, NC 35,155889 -83,39417 145,86 0,79 1,93 168 6 03500240 CARTOOGECHAYE CREEK NEAR FANKLIN, NC 35,1275 -83,61861 134,52 0 | 1,17 | | 162 6 03473000 S F HOLSTON RIVER NEAR DAMASCUS, VA 36,65178 -81,84401 784,81 0,67 4,56 163 6 03479000 WATAUGA RIVER NEAR SUGAR GROVE, NC 36,23917 -81,82222 235,60 0,67 1,18 164 6 03488000 N F HOLSTON RIVER NEAR SALTVILLE, VA 36,89678 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE TENNESSEE RIVER NEAR PRENTISS, NC 35,15889 -83,37972 361,14 0,79 3,00 167 6 03500240 CARTOOGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 1,93 168 6 03504000 NANTAHALA RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,7 | 1,49 | | 163 6 03479000 WATAUGA RIVER NEAR SUGAR GROVE, NC 36,23917 -81,82222 235,60 0,67 1,11 164 6 03488000 N F HOLSTON RIVER NEAR SALTVILLE, VA 36,89678 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE TENNESSEE RIVER NEAR PRENTISS, NC 35,15 -83,37972 361,14 0,79 3,08 167 6 03500240 CARTOOGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 1,91 168 6 03500400 NANTAHALA RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,83 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 </th <th>1,15</th> | 1,15 | | 164 6 03488000 N F HOLSTON RIVER NEAR SALTVILLE, VA 36,89678 -81,74623 578,21 0,67 2,83 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE TENNESSEE RIVER NEAR PRENTISS, NC 35,15 -83,37972 361,14 0,79 3,08 167 6 03500240 CARTOGGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 1,93 168 6 03504000 NANTAHALA RIVER NEAR RAINBOW
SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,83 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 <th>1,15
1,51</th> | 1,15
1,51 | | 165 6 03498500 LITTLE RIVER NEAR MARYVILLE, TN 35,78562 -83,8846 696,76 0,73 1,00 166 6 03500000 LITTLE TENNESSEE RIVER NEAR PRENTISS, NC 35,15 -83,37972 361,14 0,79 3,08 167 6 03500240 CARTOOGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 1,93 168 6 03504000 NANTAHALA RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,82 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 <th>1,23</th> | 1,23 | | 167 6 03500240 CARTOOGECHAYE CREEK NEAR FRANKLIN, NC 35,15889 -83,39417 145,86 0,79 1,99 168 6 03504000 NANTAHALA RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,83 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 | 1,47 | | 168 6 03504000 NANTAHALA RIVER NEAR RAINBOW SPRINGS, NC 35,1275 -83,61861 134,52 0,71 7,33 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,83 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 | 1,18 | | 169 6 03574500 PAINT ROCK RIVER NEAR WOODVILLE AL 34,62425 -86,30637 813,80 0,53 4,83 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 < | 1,24 | | 170 6 03592718 LITTLE YELLOW CREEK EAST NR BURNSVILLE, MS 34,83556 -88,28806 66,99 0,52 1,00 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 | 1,10 | | 171 6 03604000 BUFFALO RIVER NEAR FLAT WOODS, TN 35,49591 -87,8328 1163,03 0,67 1,00 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 42,4 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,32 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 </th <th>1,19
1,93</th> | 1,19
1,93 | | 172 4 04045500 TAHQUAMENON RIVER NEAR PARADISE, MI 46,57502 -85,26955 1909,59 0,68 1,00 173 4 04105700 AUGUSTA CREEK NEAR AUGUSTA, MI 42,35337 -85,35389 98,04 0,72 9,94 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 42,4 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,32 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 | 1,58 | | 174 4 04122200 WHITE RIVER NEAR WHITEHALL, MI 43,46418 -86,23257 1048,28 0,61 29,2 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 42,4 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,32 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,49 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,69 | 1,56 | | 175 4 04122500 PERE MARQUETTE RIVER AT SCOTTVILLE, MI 43,94501 -86,27869 1769,19 0,54 42,1 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 42,4 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,32 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,49 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,69 182 9 05129115 VERMILLON RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,08 | | 176 4 04124000 MANISTEE RIVER NEAR SHERMAN, MI 44,43639 -85,69868 2243,63 0,48 42,4 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,33 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,49 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,69 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,04 | | 177 4 04127997 STURGEON RIVER AT WOLVERINE, MI 45,27446 -84,60003 487,16 0,79 4,33 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,49 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,69 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,03 | | 178 4 04161580 STONY CREEK NEAR ROMEO, MI 42,80086 -83,09021 64,31 0,59 1,00 179 4 04185000 TIFFIN RIVER AT STRYKER OH 41,5045 -84,42967 1064,00 0,68 1,00 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,49 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,69 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,15 | | 180 4 04196800 TYMOCHTEE CREEK AT CRAWFORD OH 40,92283 -83,34881 608,07 0,60 5,45 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,65 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,77 | | 181 4 04197100 HONEY CREEK AT MELMORE OH 41,02228 -83,10964 388,21 0,56 5,65 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,56 | | 182 9 05129115 VERMILION RIVER NR CRANE LAKE, MN 48,26463 -92,56599 2357,59 0,79 1,00 | 1,15 | | | 1,16 | | | 1,38
1,41 | | 184 7 05458000 LITTLE CEDAR RIVER NEAR IONIA, IA 43,03328 -92,50354 776,76 0,67 5,57 | 1,13 | | 185 7 05495000 FOX RIVER AT WAYLAND, MO 40,39241 -91,59788 1027,55 0,69 1,94 | 1,30 | | 186 7 05501000 NORTH RIVER AT PALMYRA, MO 39,81799 -91,5177 922,83 0,65 1,23 | 1,52 | | 187 7 05507600 LICK CREEK AT PERRY, MO 39,43143 -91,67627 275,38 0,60 1,00 | 1,75 | | 188 7 05508805 SPENCER CR. BL PLUM CR. NR FRANKFORD, MO 39,52046 -91,34275 536,40 0,63 0,93 189 7 05514500 CUIVRE RIVER NEAR TROY, MO 39,0088 -90,97754 2407,41 0.66 1,00 | 1,73 | | 189 7 05514500 CUIVRE RIVER NEAR TROY, MO 39,0088 -90,97754 2407,41 0,66 1,00 190 7 05525500 SUGAR CREEK AT MILFORD, IL 40,63004 -87,72392 1158,76 0,58 6,88 | 1,61
1,12 | | 191 7 05556500 BIG BUREAU CREEK AT PRINCETON, IL 41,36587 -89,49843 505,09 0,69 2,00 | 1,29 | | 192 7 05585000 LA MOINE RIVER AT RIPLEY, IL 40,02477 -90,63179 3354,61 0,62 12,4 | 1,07 | | | HU | GAUGE ID | GAUGE NAME | LATITUDE | LONGTITUDE | DRAINAGE | GHK MO | DEL PARAM | 1 | |------------|----------|----------------------|--|----------------------|--------------------------|--------------------|---------------|---------------|--------------| | 402 | 10 | 00454440 | LITTLE DECOLES COSSIVAISAD LIAVOAT | 47.0664 | 400.55074 | AREA (km²) | Н | q | λ |
 193 | 10 | 06154410
06191500 | LITTLE PEOPLES CREEK NEAR HAYS MT YELLOWSTONE RIVER AT CORWIN SPRINGS MT | 47,9661
45,11188 | -108,66071
-110,79438 | 33,41
6783,59 | 0,97
0,75 | 15,68
1,00 | 3,58
1,43 | | 195 | 10 | 06224000 | BULL LAKE CREEK ABOVE BULL LAKE, WY | 43,1769 | -109,20291 | 484,86 | 0,70 | 1,00 | 1,52 | | 196 | 10 | 06278300 | SHELL CREEK ABOVE SHELL CREEK RESERVOIR, WY | 44,50802 | -107,40369 | 58,85 | 0,63 | 1,00 | 1,68 | | 197 | 10 | 06280300 | SOUTH FORK SHOSHONE RIVER NEAR VALLEY, WY | 44,20828 | -109,55489 | 793,95 | 0,72 | 1,00 | 1,49 | | 198 | 10 | 06289000 | LITTLE BIGHORN RIVER AT STATE LINE NR WYOLA MT | 45,00691 | -107,61509 | 471,27 | 0,77 | 1,00 | 1,40 | | 199 | 10 | 06406000 | BATTLE CR AT HERMOSA SD | 43,82805 | -103,19602 | 436,34 | 0,90 | 1,00 | 1,44 | | 200 | 10
10 | 06431500
06622700 | SPEARFISH CR AT SPEARFISH SD NORTH BRUSH CREEK NEAR SARATOGA, WY | 44,48248
41.37024 | -103,86159
-106,52058 | 427,10
98,70 | 0,80
0,72 | 9,21
1,00 | 1,12
1,50 | | 202 | 10 | 06853800 | WHITE ROCK C NR BURR OAK, KS | 39,89925 | -98,25043 | 589,43 | 0,72 | 1,00 | 1,52 | | 203 | 10 | 06876700 | SALT C NR ADA, KS | 39,13907 | -97,83696 | 1056,44 | 0,65 | 9,61 | 1,08 | | 204 | 10 | 06878000 | CHAPMAN C NR CHAPMAN, KS | 39,03111 | -97,04029 | 776,42 | 0,71 | 0,87 | 1,57 | | 205 | 10 | 06885500 | BLACK VERMILLION R NR FRANKFORT, KS | 39,68192 | -96,44289 | 1062,87 | 0,69 | 1,00 | 1,55 | | 206 | 10 | 06888500 | MILL C NR PAXICO, KS | 39,06265 | -96,15025 | 842,35 | 0,68 | 1,00 | 1,56 | | 207 | 10
10 | 06889200 | SOLDIER C NR DELIA, KS | 39,23833 | -95,8886 | 385,66 | 0,66 | 1,00 | 1,61 | | 208 | 10 | 06889500
06892000 | SOLDIER C NR TOPEKA, KS
STRANGER C NR TONGANOXIE, KS | 39,09938
39,11633 | -95,72495
-95,01088 | 748,58
1092,72 | 0,64
0,67 | 1,00
2,49 | 1,65
1,25 | | 210 | 10 | 06910800 | MARAIS DES CYGNES R NR READING, KS | 38,56701 | -95,96163 | 444,60 | 0,63 | 1,00 | 1,67 | | 211 | 10 | 06917000 | L OSAGE R AT FULTON, KS | 38,01897 | -94,71367 | 765,78 | 0,60 | 2,07 | 1,38 | | 212 | 10 | 06918460 | TURNBACK CREEK ABOVE GREENFIELD, MO | 37,40237 | -93,80203 | 650,69 | 0,70 | 1,70 | 1,33 | | 213 | 10 | 06919500 | CEDAR CREEK NEAR PLEASANT VIEW, MO | 37,8342 | -93,87549 | 1069,42 | 0,59 | 3,89 | 1,21 | | 214 | 10 | 06921070 | POMME DE TERRE RIVER NEAR POLK, MO | 37,68265 | -93,37033 | 712,59 | 0,66 | 1,00 | 1,61 | | 215 | 10 | 06921200 | LINDLEY CREEK NEAR POLK, MO | 37,75047 | -93,26618 | 323,62 | 0,62 | 1,00 | 1,71 | | 216 | 7 | 07014500
07056000 | MERAMEC RIVER NEAR SULLIVAN, MO BUFFALO RIVER NEAR ST. JOE, AR | 38,15853
35.98318 | -91,10846
-92.74755 | 3845,50
2149,36 | 0,69
0,57 | 2,69
2,71 | 1,23
1,31 | | 217 | 11 | 07057500 | NORTH FORK RIVER NEAR TECUMSEH, MO | 36,62303 | -92,74733 | 1456,44 | 0,57 | 1,00 | 1,47 | | 219 | 11 | 07060710 | NORTH SYLAMORE CREEK NEAR FIFTY SIX, AR | 35,99535 | -92,21265 | 150,03 | 0,55 | 1,00 | 1,87 | | 220 | 11 | 07066000 | JACKS FORK AT EMINENCE, MO | 37,15408 | -91,35816 | 1053,50 | 0,69 | 1,60 | 1,36 | | 221 | 11 | 07067000 | CURRENT RIVER AT VAN BUREN, MO | 36,99138 | -91,01351 | 4349,01 | 0,79 | 1,00 | 1,38 | | 222 | 11 | 07068000 | CURRENT RIVER AT DONIPHAN, MO | 36,622 | -90,84762 | 5318,59 | 0,68 | 4,79 | 1,14 | | 223 | 11 | 07071500 | ELEVEN POINT RIVER NEAR BARDLEY, MO | 36,64868 | -91,20082 | 2023,77 | 0,81 | 1,00 | 1,36 | | 224 | 11
11 | 07145700
07148400 | SLATE C AT WELLINGTON, KS SALT FORK ARKANSAS RIVER NR ALVA, OK | 37,24955
36,81503 | -97,4039
-98,64814 | 399,81
2544,50 | 0,63 | 1,00 | 1,67 | | 226 | 11 | 07149000 | MEDICINE LODGE R NR KIOWA, KS | 37,0392 | -98,47021 | 2291,20 | 0,78
0,81 | 1,00
0,49 | 1,40
1,59 | | 227 | 11 | 07151500 | CHIKASKIA R NR CORBIN, KS | 37,12891 | -97,60144 | 2109,00 | 0,68 | 1,00 | 1,57 | | 228 | 11 | 07167500 | OTTER C AT CLIMAX, KS | 37,70821 | -96,2236 | 319,62 | 0,62 | 1,00 | 1,70 | | 229 | 11 | 07180500 | CEDAR C NR CEDAR POINT, KS | 38,19645 | -96,82458 | 275,51 | 0,63 | 1,00 | 1,68 | | 230 | 11 | 07195800 | FLINT CREEK AT SPRINGTOWN, AR | 36,25548 | -94,43394 | 38,23 | 0,68 | 1,57 | 1,38 | | 231 | 11 | 07196900 | BARON FORK AT DUTCH MILLS, AR | 35,88008 | -94,48661 | 106,35 | 0,63 | 1,00 | 1,67 | | 232 | 11
8 | 07197000
07291000 | BARON FORK AT ELDON, OK HOMOCHITTO RIVER AT EDDICETON. MS | 35,9212
31,50306 | -94,83856
-90,7775 | 808,45
479,30 | 0,69
0,59 | 1,00
1,00 | 1,55
1,76 | | 234 | 8 | 07291000 | HOMOCHITTO RIVER AT ROSETTA, MS | 31,30300 | -91,10944 | 2073,09 | 0,59 | 1,16 | 1,58 | | 235 | 11 | 07299670 | GROESBECK CK AT SH 6 NR QUANAH, TX | 34,35452 | -99,74037 | 828,36 | 0,53 | 1,00 | 1,92 | | 236 | 11 | 07301410 | SWEETWATER CK NR KELTON, TX | 35,4731 | -100,12095 | 769,67 | 0,78 | 1,00 | 1,39 | | 237 | 11 | 07340300 | COSSATOT RIVER NEAR VANDERVOORT, AR | 34,37955 | -94,23576 | 230,43 | 0,61 | 1,00 | 1,72 | | 238 | 11 | 07346045 | BLACK CYPRESS BAYOU AT JEFFERSON, TX | 32,77792 | -94,35742 | 959,89 | 0,60 | 18,99 | 1,05 | | 239 | 8 | 07362100 | SMACKOVER CREEK NEAR SMACKOVER, ARK. | 33,37596 | -92,77711 | 996,08 | 0,66 | 3,60 | 1,19 | | 240 | 8 | 07373000
07375000 | BIG CREEK AT POLLOCK, LA TCHEFUNCTA RIVER NEAR FOLSOM, LA | 31,53629
30,61602 | -92,40847
-90,24869 | 131,18
249,35 | 0,61
0,66 | 1,00
1,30 | 1,73
1,47 | | 242 | 8 | 07375000 | TICKFAW RIVER AT HOLDEN, LA | 30,5038 | -90,67732 | 651,61 | 0,66 | 6,73 | 1,12 | | 243 | 8 | 08013000 | CALCASIEU RIVER NR GLENMORA, LA | 30,99602 | -92,67375 | 1293,69 | 0,54 | 11,84 | 1,08 | | 244 | 8 | 08014500 | WHISKEY CHITTO CREEK NEAR OBERLIN, LA | 30,69875 | -92,89319 | 1305,15 | 0,60 | 6,37 | 1,13 | | 245 | 12 | 08029500 | BIG COW CK NR NEWTON, TX | 30,81889 | -93,78556 | 333,40 | 0,66 | 0,86 | 1,69 | | 246 | 12 | 08066200 | LONG KING CK AT LIVINGSTON, TX | 30,71631 | -94,95882 | 364,12 | 0,56 | 1,00 | 1,84 | | 247 | 12
12 | 08066300
08070000 | MENARD CK NR RYE, TX E FK SAN JACINTO RV NR CLEVELAND, TX | 30,48139
30,3366 | -94,77972
-95,1041 | 383,57
841,06 | 0,63
0,63 | 4,14
2,63 | 1,18
1,27 | | 249 | 12 | 08104900 | S FK SAN GABRIEL RV AT GEORGETOWN, TX | 30,62575 | -97,69112 | 342,62 | 0,64 | 1,00 | 1,66 | | 250 | 12 | 08150800 | BEAVER CK NR MASON, TX | 30,64352 | -99,09588 | 557,52 | 0,55 | 1,00 | 1,87 | | 251 | 12 | 08164000 | LAVACA RV NR EDNA, TX | 28,95998 | -96,68637 | 2124,00 | 0,64 | 1,81 | 1,38 | | 252 | 12 | 08164300 | NAVIDAD RV NR HALLETTSVILLE, TX | 29,46691 | -96,81276 | 861,54 | 0,61 | 1,00 | 1,71 | | 253 | 12 | 08165300 | N FK GUADALUPE RV NR HUNT, TX | 30,0641 | -99,38699 | 435,99 | 0,47 | 1,00 | 2,10 | | 254
255 | 12
12 | 08175000
08189500 | SANDIES CK NR WESTHOFF, TX MISSION RV AT REFUGIO, TX | 29,21525 | -97,44943
-97,27916 | 1421,66
1808,29 | 0,61 | 1,35 | 1,55 | | 256 | 12 | 08189500 | NUECES RV AT LAGUNA, TX | 28,29195
29,42857 | -97,27916 | 1961,43 | 0,56
0,66 | 3,26
1,00 | 1,27
1,60 | | 257 | 12 | 08195000 | FRIO RV AT CONCAN, TX | 29,48857 | -99,70478 | 1028,29 | 0,69 | 1,00 | 1,55 | | 258 | 12 | 08196000 | DRY FRIO RV NR REAGAN WELLS, TX | 29,50468 | -99,78145 | 326,98 | 0,63 | 1,00 | 1,67 | | 259 | 12 | 08198500 | SABINAL RV AT SABINAL, TX | 29,31431 | -99,48047 | 624,35 | 0,65 | 1,00 | 1,63 | | 260 | 13 | 08324000 | JEMEZ RIVER NEAR JEMEZ, NM | 35,66169 | -106,74337 | 1207,95 | 0,82 | 1,00 | 1,35 | | 261 | 14 | 09081600 | CRYSTAL RIVER AB AVALANCHE C, NEAR REDSTONE, CO. | 39,23221 | -107,22727 | 432,89 | 0,76 | 1,00 | 1,42 | | 262 | 14
15 | 09306242
09404450 | CORRAL GULCH NEAR RANGELY, CO. EAST FORK VIRGIN RIVER NEAR GLENDALE, UT | 39,92025
37,33943 | -108,47287
-112,60438 | 81,99
192,96 | 0,74 | 24,10 | 1,08 | | 203 | 13 | 05404430 | LAST FORK VINGIN RIVER INLAN GLENDALE, UT | 31,33343 | -112,00430 | 172,30 | 0,63 | 69,19 | 1,04 | | | HU | GAUGE ID | GAUGE NAME | LATITUDE | LONGTITUDE | DRAINAGE | | DEL PARAM | 1 | |------------|----------|----------------------|---|----------------------|--------------------------|--------------------|--------------|----------------|--------------| | 254 | 45 | 00.420500 | CHA DIVERNICAD CHA ANA | 22.05440 | 400 52727 | AREA (km²) | Н | q | λ | | 264 | 15
15 | 09430500
09480000 | GILA RIVER NEAR GILA, NM SANTA CRUZ RIVER NEAR LOCHIEL, AZ. | 33,06118
31,35538 | -108,53727
-110,58953 | 4804,93
213,38 | 0,74
0,60 | 1,00 | 1,45
1,73 | | 266 | 15 | 09492400 | EAST FORK WHITE RIVER NEAR FORT APACHE, AZ. | 33,82227 | -109,81454 | 128,97 | 0,60 | 43,35 | 1,04 | | 267 | 15 | 09494000 | WHITE RIVER NEAR FORT APACHE, AZ. | 33,73644 | -110,16677 | 1628,23 | 0,60 | 49,34 | 1,03 | | 268 | 15 | 09497800 | CIBECUE CREEK NEAR CHYSOTILE, AZ. | 33,84311 | -110,55761 | 750,86 | 0,76 | 1,00 | 1,42 | | 269 | 15 | 09497980 | CHERRY CREEK NEAR GLOBE, AZ. | 33,82783 | -110,85623 | 516,80 | 0,72 | 1,30 | 1,39 | | 270 | 15 | 09505800 | WEST CLEAR CREEK NEAR CAMP VERDE, AZ. | 34,53864 | -111,69404 | 614,94 | 0,68 | 1,46 | 1,40 | | 271 | 16
16 | 10172700
10172800 | VERNON CREEK NEAR VERNON, UT SOUTH WILLOW CREEK NEAR GRANTSVILLE, UT | 39,97939
40,49633 | -112,38023
-112,5744 | 69,93
11,07 | 0,95
0,60 | 24,40
73,71 | 2,32
1,04 | | 273 | 16 | 10244950 | STEPTOE C NR ELY, NV | 39,20154 | -114,68916 | 28,20 | 0,83 | 49,21 | 1,23 | | 274 | 18 | 10259000 | ANDREAS C NR PALM SPRINGS CA | 33,76002 | -116,55002 | 22,46 | 0,80 | 4,89 | 1,14 | | 275 | 16 | 10329500 | MARTIN C NR PARADISE VALLEY, NV | 41,53462 | -117,41791 | 454,52 | 0,51 | 49,66 | 1,03 | | 276 | 16 | 10343500 | SAGEHEN C NR TRUCKEE CA | 39,43157 | -120,23798 | 27,60 | 0,60 | 49,71 | 1,04 | | 277 | 17 | 10396000 | DONNER UND BLITZEN RIVER NR FRENCHGLEN OR | 42,79083 | -118,8675 | 528,89 | 0,60 | 31,75 | 1,04 | | 278 | 18 | 11098000 | ARROYO SECO NR PASADENA CA | 34,22223 | -118,17757 | 41,57 | 0,69 | 3,46 | 1,18 | |
279 | 18
18 | 11141280
11143000 | LOPEZ C NR ARROYO GRANDE CA BIG SUR R NR BIG SUR CA | 35,23553
36,2458 | -120,47239
-121,77329 | 54,01
120,61 | 0,76
0,55 | 2,85
30,93 | 1,19
1,04 | | 281 | 18 | 11151300 | SAN LORENZO C BL BITTERWATER C NR KING CITY CA | 36,26802 | -121,77323 | 608,23 | 0,68 | 1,00 | 1,57 | | 282 | 18 | 11162500 | PESCADERO C NR PESCADERO CA | 37,26078 | -122,32886 | 118,87 | 0,77 | 1,00 | 1,41 | | 283 | 18 | 11264500 | MERCED R A HAPPY ISLES BRIDGE NR YOSEMITE CA | 37,73159 | -119,55877 | 467,98 | 0,80 | 1,00 | 1,37 | | 284 | 18 | 11266500 | MERCED R A POHONO BRIDGE NR YOSEMITE CA | 37,71687 | -119,66628 | 833,08 | 0,82 | 1,00 | 1,36 | | 285 | 18 | 11381500 | MILL C NR LOS MOLINOS CA | 40,0546 | -122,02415 | 337,63 | 0,73 | 3,72 | 1,16 | | 286 | 18 | 11383500 | DEER C NR VINA CA | 40,01405 | -121,94832 | 539,78 | 0,71 | 5,03 | 1,13 | | 287 | 18
18 | 11451100
11468500 | NF CACHE C A HOUGH SPRING NR CLEARLAKE OAKS CA NOYO R NR FORT BRAGG CA | 39,16545
39,42822 | -122,61999
-123,73779 | 155,09
273,51 | 0,66
0,61 | 6,11
6,81 | 1,12 | | 289 | 18 | 11473900 | MF EEL R NR DOS RIOS CA | 39,70627 | -123,73779 | 1925,01 | 0,61 | 6,54 | 1,12
1,11 | | 290 | 18 | 11475560 | ELDER C NR BRANSCOMB CA | 39,7296 | -123,64391 | 16,79 | 0,48 | 27,99 | 1,04 | | 291 | 18 | 11476600 | BULL C NR WEOTT CA | 40,35125 | -124,00393 | 71,85 | 0,62 | 11,82 | 1,07 | | 292 | 18 | 11478500 | VAN DUZEN R NR BRIDGEVILLE CA | 40,48042 | -123,89088 | 572,38 | 0,59 | 7,49 | 1,11 | | 293 | 18 | 11481200 | LITTLE R NR TRINIDAD CA | 41,01096 | -124,08173 | 105,40 | 0,64 | 5,54 | 1,13 | | 294 | 18 | 11482500 | REDWOOD C A ORICK CA | 41,29929 | -124,05118 | 718,04 | 0,52 | 22,55 | 1,05 | | 295
296 | 18
18 | 11522500
11523200 | SALMON R A SOMES BAR CA TRINITY R AB COFFEE C NR TRINITY CTR CA | 41,37763
41,11126 | -123,47756
-122,70558 | 1943,12
382,94 | 0,67 | 19,54 | 1,05 | | 297 | 18 | 11523200 | SF TRINITY R BL HYAMPOM CA | 40,64986 | -123,4942 | 1980,08 | 0,79
0,62 | 1,00
16,98 | 1,38
1,06 | | 298 | 18 | 11532500 | SMITH R NR CRESCENT CITY CA | 41,7915 | -124,07619 | 1577,96 | 0,60 | 8,36 | 1,10 | | 299 | 17 | 12010000 | NASELLE RIVER NEAR NASELLE, WA | 46,37399 | -123,74348 | 142,18 | 0,48 | 12,18 | 1,09 | | 300 | 17 | 12013500 | WILLAPA RIVER NEAR WILLAPA, WA | 46,65093 | -123,65266 | 337,69 | 0,46 | 17,81 | 1,06 | | 301 | 17 | 12020000 | CHEHALIS RIVER NEAR DOTY, WA | 46,61732 | -123,27764 | 294,22 | 0,53 | 9,14 | 1,10 | | 302 | 17 | 12025000 | NEWAUKUM RIVER NEAR CHEHALIS, WA | 46,6201 | -122,94513 | 404,90 | 0,59 | 10,50 | 1,08 | | 303 | 17
17 | 12025700
12035000 | SKOOKUMCHUCK RIVER NEAR VAIL, WA SATSOP RIVER NEAR SATSOP, WA | 46,7726
47,00065 | -122,59401
-123,49488 | 103,30
769,90 | 0,53
0,53 | 10,57
11,60 | 1,09
1,08 | | 305 | 17 | 12033000 | QUEETS RIVER NEAR CLEARWATER, WA | 47,53786 | -124,31575 | 1153,44 | 0,53 | 6,74 | 1,14 | | 306 | 17 | 12041200 | HOH RIVER AT US HIGHWAY 101 NEAR FORKS, WA | 47,80675 | -124,25103 | 655,80 | 0,58 | 5,65 | 1,15 | | 307 | 17 | 12048000 | DUNGENESS RIVER NEAR SEQUIM, WA | 48,01426 | -123,13268 | 405,01 | 0,68 | 7,96 | 1,09 | | 308 | 17 | 12054000 | DUCKABUSH RIVER NEAR BRINNON, WA | 47,68398 | -123,01155 | 171,68 | 0,63 | 6,01 | 1,13 | | 309 | 17 | 12056500 | NF SKOKOMISH R BL STAIRCASE RPDS NR HOODSPORT, WA | 47,51426 | -123,32989 | 146,97 | 0,57 | 6,63 | 1,13 | | 310 | 17
17 | 12073500 | HUGE CREEK NEAR WAUNA, WA | 47,38926 | -122,69902 | 15,67 | 0,69 | 4,40 | 1,15 | | 311 | 17 | 12082500
12092000 | NISQUALLY RIVER NEAR NATIONAL, WA PUYALLUP RIVER NEAR ELECTRON, WA | 46,75261
46,90372 | -122,08372
-122,03511 | 350,00
240,88 | 0,60
0,56 | 6,64
6,79 | 1,12
1,13 | | 313 | 17 | 12114500 | CEDAR RIVER BELOW BEAR CREEK NEAR CEDAR FALLS, WA | 47,34205 | -121,54899 | 66,56 | 0,36 | 20,06 | 1,06 | | 314 | 17 | 12115000 | CEDAR RIVER NEAR CEDAR FALLS, WA | 47,37011 | -121,6251 | 102,80 | 0,54 | 9,16 | 1,10 | | 315 | 17 | 12115500 | REX RIVER NEAR CEDAR FALLS, WA | 47,35066 | -121,66316 | 34,72 | 0,52 | 6,56 | 1,15 | | 316 | 17 | 12117000 | TAYLOR CREEK NEAR SELLECK, WA | 47,38649 | -121,84622 | 44,85 | 0,27 | 59,60 | 1,03 | | 317
318 | 17
17 | 12141300
12145500 | MIDDLE FORK SNOQUALMIE RIVER NEAR TANNER, WA RAGING RIVER NEAR FALL CITY, WA | 47,48594 | -121,64788 | 401,51
78.98 | 0,72 | 1,00 | 1,48 | | 318 | 17 | 12145500 | NORTH FORK TOLT RIVER NEAR CARNATION, WA | 47,53982
47,71232 | -121,909
-121,78873 | 78,98
102,89 | 0,54
0,63 | 8,44
3,58 | 1,11 | | 320 | 17 | 12147600 | SOUTH FORK TOLT RIVER NEAR INDEX, WA | 47,71232 | -121,60011 | 14,13 | 0,58 | 2,60 | 1,32 | | 321 | 17 | 12167000 | NF STILLAGUAMISH RIVER NEAR ARLINGTON, WA | 48,26149 | -122,04764 | 683,75 | 0,58 | 5,29 | 1,16 | | 322 | 17 | 12175500 | THUNDER CREEK NEAR NEWHALEM, WA | 48,67263 | -121,0729 | 273,82 | 0,72 | 1,00 | 1,49 | | 323 | 17 | 12178100 | NEWHALEM CREEK NEAR NEWHALEM, WA | 48,65596 | -121,23846 | 69,68 | 0,61 | 7,53 | 1,11 | | 324 | 17 | 12186000 | SAUK RIVER AB WHITECHUCK RIVER NEAR DARRINGTON, WA | 48,16872 | -121,47067 | 398,44 | 0,60 | 7,27 | 1,11 | | 325
326 | 17
17 | 12189500
12358500 | SAUK RIVER NEAR SAUK, WA MIDDLE FORK FLATHEAD RIVER NR WEST GLACIER MT | 48,42456
48,49524 | -121,56846
-114,01012 | 1855,32
2939,19 | 0,62 | 7,70 | 1,10 | | 327 | 17 | 12358500 | PROSPECT CREEK AT THOMPSON FALLS MT | 48,49524 | -114,01012 | 470,23 | 0,71
0,78 | 1,00
1,00 | 1,50
1,39 | | 328 | 17 | 12451000 | STEHEKIN RIVER AT STEHEKIN, WA | 48,32958 | -120,69177 | 830,60 | 0,78 | 1,00 | 1,52 | | 329 | 17 | 12488500 | AMERICAN RIVER NEAR NILE, WA | 46,97762 | -121,1687 | 205,17 | 0,76 | 1,00 | 1,42 | | 330 | 17 | 13018300 | CACHE CREEK NEAR JACKSON, WY | 43,45215 | -110,70409 | 27,90 | 0,80 | 1,00 | 1,37 | | 331 | 17 | 13083000 | TRAPPER CREEK NR OAKLEY ID | 42,16583 | -113,98361 | 133,18 | 0,44 | 140,05 | 1,02 | | 332 | 17 | 13313000 | JOHNSON CREEK AT YELLOW PINE ID | 44,96167 | -115,5 | 561,94 | 0,75 | 1,00 | 1,43 | | 333 | 17
17 | 13331500
13337000 | MINAM RIVER NEAR MINAM, OR
LOCHSA RIVER NR LOWELL ID | 45,61987
46,15083 | -117,72659
-115,58722 | 618,93
3053,42 | 0,74 | 1,00 | 1,46 | | 334 | 1/ | 13337000 | LOCITOR RIVER IN LOWELL ID | -10,13003 | -113,30/22 | 3033,42 | 0,73 | 1,00 | 1,46 | | | | | | | | DRAINAGE | GHK MODEL PARAMETERS | | | | |-----|----|----------|--|----------|------------|------------|----------------------|--------|------|--| | | HU | GAUGE ID | GAUGE NAME | LATITUDE | LONGTITUDE | AREA (km²) | н | q | λ | | | 335 | 17 | 13338500 | SF CLEARWATER RIVER AT STITES ID | 46,08639 | -115,97667 | 3027,00 | 0,79 | 1,00 | 1,38 | | | 336 | 17 | 13340000 | CLEARWATER RIVER AT OROFINO ID | 46,47833 | -116,2575 | 14268,92 | 0,75 | 1,00 | 1,44 | | | 337 | 17 | 13340600 | NF CLEARWATER RIVER NR CANYON RANGER STATION ID | 46,84047 | -115,6207 | 3354,62 | 0,76 | 1,00 | 1,42 | | | 338 | 17 | 14020000 | UMATILLA RIVER ABOVE MEACHAM CREEK, NR GIBBON, OR | 45,71958 | -118,32329 | 341,43 | 0,24 | 67,96 | 1,02 | | | 339 | 17 | 14137000 | SANDY RIVER NEAR MARMOT, OR | 45,39956 | -122,13731 | 674,24 | 0,69 | 5,48 | 1,12 | | | 340 | 17 | 14138800 | BLAZED ALDER CREEK NEAR RHODODENDRON, OREG. | 0,51 | 6,91 | 1,14 | | | | | | 341 | 17 | 14138870 | FIR CREEK NEAR BRIGHTWOOD, OR | 45,48012 | -122,02564 | 14,02 | 0,51 | 8,58 | 1,12 | | | 342 | 17 | 14138900 | NORTH FORK BULL RUN RIVER NEAR MULTNOMAH FALLS, OR | 45,49429 | -122,03592 | 21,68 | 0,53 | 7,22 | 1,13 | | | 343 | 17 | 14139800 | SOUTH FORK BULL RUN RIVER NEAR BULL RUN, OR | 45,44456 | -122,10953 | 40,70 | 0,58 | 6,61 | 1,13 | | | 344 | 17 | 14141500 | LITTLE SANDY RIVER NEAR BULL RUN, OREG. | 45,4154 | -122,17148 | 59,87 | 0,58 | 7,48 | 1,11 | | | 345 | 17 | 14154500 | ROW RIVER ABOVE PITCHER CREEK NEAR, DORENA, OREG | 43,73596 | -122,8734 | 546,81 | 0,56 | 8,53 | 1,11 | | | 346 | 17 | 14158500 | MCKENZIE RIVER AT OUTLET OF CLEAR LAKE, OR | 44,36095 | -121,99562 | 237,08 | 0,42 | 129,58 | 1,02 | | | 347 | 17 | 14158790 | SMITH R AB SMITH R RES NR BELKNAP SPRGS,OREG. | 44,33457 | -122,04701 | 40,57 | 0,51 | 13,22 | 1,08 | | | 348 | 17 | 14166500 | LONG TOM RIVER NEAR NOTI, OREG. | 44,04984 | -123,42621 | 226,52 | 0,39 | 38,80 | 1,03 | | | 349 | 17 | 14182500 | LITTLE NORTH SANTIAM RIVER NEAR MEHAMA, OR | 44,79151 | -122,57897 | 286,85 | 0,53 | 7,82 | 1,12 | | | 350 | 17 | 14185000 | SOUTH SANTIAM RIVER BELOW CASCADIA, OR | 44,39179 | -122,49758 | 458,18 | 0,52 | 11,04 | 1,09 | | | 351 | 17 | 14185900 | QUARTZVILLE CREEK NEAR CASCADIA, OREG. | 44,54012 | -122,43591 | 258,20 | 0,49 | 10,36 | 1,10 | | | 352 | 17 | 14222500 | EAST FORK LEWIS RIVER NEAR HEISSON, WA | 45,83678 | -122,46621 | 323,89 | 0,45 | 19,37 | 1,06 | | | 353 | 17 | 14236200 | TILTON RIVER AB BEAR CANYON CREEK NEAR CINEBAR, WA | 46,59538 | -122,45956 | 360,99 | 0,50 | 13,02 | 1,08 | | | 354 | 17 | 14301000 | NEHALEM RIVER NEAR FOSS, OR | 45,704 | -123,7554 | 1743,54 | 0,30 | 50,54 | 1,03 | | | 355 | 17 | 14305500 | SILETZ RIVER AT SILETZ, OR | 44,71512 | -123,88733 | 526,33 | 0,51 | 12,49 | 1,08 | | | 356 | 17 | 14306500 | ALSEA RIVER NEAR TIDEWATER, OR | 44,38595 | -123,83178 | 857,16 | 0,38 | 38,59 | 1,03 | | | 357 | 17 | 14309500 | WEST FORK COW CREEK NEAR GLENDALE, OR | 42,804 | -123,61091 | 224,92 | 0,54 | 10,77 | 1,09 | | | 358 | 17 | 14316700 | STEAMBOAT CREEK NEAR GLIDE, OR | 43,34984 | -122,72894 | 587,90 | 0,57 | 8,90 | 1,10 | | | 359 | 17 | 14325000 | SOUTH FORK COQUILLE RIVER AT POWERS, OR | 42,8915 | -124,07065 | 443,07 | 0,56 | 9,71 | 1,09 | | | 360 | 17 | 14400000 | CHETCO RIVER NEAR BROOKINGS, OR | 42,12344 | -124,18731 | 702,63 | 0,44 | 26,19 | 1,04 | | 10.2. Table A-2. The contribution of ERGO insurance company on the agricultural insurance loss, as an additional insurance coverage, in combination to ELGA's insurance coverage. | % OF |
LOSS | LIMIT OF | ELGA'S | COMPENSATION | % OF | LOSS | LIMIT OF | ELGA'S | COMPENSATION | |------|------|----------|------------------|---------------|------|-------|----------|------------------|---------------| | LOSS | (€) | 85% (€) | COMPENSATION (€) | FROM ERGO (€) | LOSS | (€) | 85% (€) | COMPENSATION (€) | FROM ERGO (€) | | 21 | 2100 | 1785 | 528 | 1257 | 61 | 6100 | 5185 | 4048 | 1137 | | 22 | 2200 | 1870 | 616 | 1254 | 62 | 6200 | 5270 | 4136 | 1134 | | 23 | 2300 | 1955 | 704 | 1251 | 63 | 6300 | 5355 | 4224 | 1131 | | 24 | 2400 | 2040 | 792 | 1248 | 64 | 6400 | 5440 | 4312 | 1128 | | 25 | 2500 | 2125 | 880 | 1245 | 65 | 6500 | 5525 | 4400 | 1125 | | 26 | 2600 | 2210 | 968 | 1242 | 66 | 6600 | 5610 | 4488 | 1122 | | 27 | 2700 | 2295 | 1056 | 1239 | 67 | 6700 | 5695 | 4576 | 1119 | | 28 | 2800 | 2380 | 1144 | 1236 | 68 | 6800 | 5780 | 4664 | 1116 | | 29 | 2900 | 2465 | 1232 | 1233 | 69 | 6900 | 5865 | 4752 | 1113 | | 30 | 3000 | 2550 | 1320 | 1230 | 70 | 7000 | 5950 | 4840 | 1110 | | 31 | 3100 | 2635 | 1408 | 1227 | 71 | 7100 | 6035 | 4928 | 1107 | | 32 | 3200 | 2720 | 1496 | 1224 | 72 | 7200 | 6120 | 5016 | 1104 | | 33 | 3300 | 2805 | 1584 | 1221 | 73 | 7300 | 6205 | 5104 | 1101 | | 34 | 3400 | 2890 | 1672 | 1218 | 74 | 7400 | 6290 | 5192 | 1098 | | 35 | 3500 | 2975 | 1760 | 1215 | 75 | 7500 | 6375 | 5280 | 1095 | | 36 | 3600 | 3060 | 1848 | 1212 | 76 | 7600 | 6460 | 5368 | 1092 | | 37 | 3700 | 3145 | 1936 | 1209 | 77 | 7700 | 6545 | 5456 | 1089 | | 38 | 3800 | 3230 | 2024 | 1206 | 78 | 7800 | 6630 | 5544 | 1086 | | 39 | 3900 | 3315 | 2112 | 1203 | 79 | 7900 | 6715 | 5632 | 1083 | | 40 | 4000 | 3400 | 2200 | 1200 | 80 | 8000 | 6800 | 5720 | 1080 | | 41 | 4100 | 3485 | 2288 | 1197 | 81 | 8100 | 6885 | 5808 | 1077 | | 42 | 4200 | 3570 | 2376 | 1194 | 82 | 8200 | 6970 | 5896 | 1074 | | 43 | 4300 | 3655 | 2464 | 1191 | 83 | 8300 | 7055 | 5984 | 1071 | | 44 | 4400 | 3740 | 2552 | 1188 | 84 | 8400 | 7140 | 6072 | 1068 | | 45 | 4500 | 3825 | 2640 | 1185 | 85 | 8500 | 7225 | 6160 | 1065 | | 46 | 4600 | 3910 | 2728 | 1182 | 86 | 8600 | 7310 | 6248 | 1062 | | 47 | 4700 | 3995 | 2816 | 1179 | 87 | 8700 | 7395 | 6336 | 1059 | | 48 | 4800 | 4080 | 2904 | 1176 | 88 | 8800 | 7480 | 6424 | 1056 | | 49 | 4900 | 4165 | 2992 | 1173 | 89 | 8900 | 7565 | 6512 | 1053 | | 50 | 5000 | 4250 | 3080 | 1170 | 90 | 9000 | 7650 | 6600 | 1050 | | 51 | 5100 | 4335 | 3168 | 1167 | 91 | 9100 | 7735 | 6688 | 1047 | | 52 | 5200 | 4420 | 3256 | 1164 | 92 | 9200 | 7820 | 6776 | 1044 | | 53 | 5300 | 4505 | 3344 | 1161 | 93 | 9300 | 7905 | 6864 | 1041 | | 54 | 5400 | 4590 | 3432 | 1158 | 94 | 9400 | 7990 | 6952 | 1038 | | 55 | 5500 | 4675 | 3520 | 1155 | 95 | 9500 | 8075 | 7040 | 1035 | | 56 | 5600 | 4760 | 3608 | 1152 | 96 | 9600 | 8160 | 7128 | 1032 | | 57 | 5700 | 4845 | 3696 | 1149 | 97 | 9700 | 8245 | 7216 | 1029 | | 58 | 5800 | 4930 | 3784 | 1146 | 98 | 9800 | 8330 | 7304 | 1026 | | 59 | 5900 | 5015 | 3872 | 1143 | 99 | 9900 | 8415 | 7392 | 1023 | | 60 | 6000 | 5100 | 3960 | 1140 | 100 | 10000 | 8500 | 7480 | 1020 | ### 10.3. Table A-3. The actual compensations given by ELGA caused by flood events per Prefecture for the period 1999-2017. | PREFECTURE | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Total | |-----------------|-------------|-----------|-------------|---------------------|-----------------------|-------------|-----------------------|---------------------|----------------------|-------------|-------------|-------------|---------------------|--|-------------|---------------------|---------------------|-------------|-------------|--------------------------| | AITOLOAKARNANIA | 89.610 € | 5.166 € | 1.049 € | 59.079 € | 76.650 € | 5.859 € | 789.726 € | 72.628 € | 291.590 € | 3.371 € | 13.786 € | 10.674 € | 7.914 € | 2012 | 120€ | 7.871 € | 874 € | 2.982 € | 2.048 € | 1.440.996 € | | | | 289 € | 1.049 € | 1.189 € | 424.389 € | 5.859 € | | 13.279 € | 291.590 € | 0€ | 2.393 € | 12.334 € | 990 € | 4.333 € | 112.603 € | 7.8/1€ | 874€ | 2.962 € | 2.046 € | 785.710 € | | ARGOLIDA | 205.895 € | | 22.626.6 | | | 13.479 € | 8.016 € | | 24.020.6 | | | | | | | 1 220 6 | C 205 C | 1 200 0 | | | | ARKADIA
ARTA | 12.837 € | 1.412€ | 33.626 € | 54.361 €
7.259 € | 771.283 €
82.346 € | 475 € | 44.822 €
273.429 € | 53.818 €
4.312 € | 24.928 €
33.696 € | 12.239 € | 130.877 € | 127.018 € | 42.680 €
4.148 € | 51.571 €
118.256 € | 70.319 € | 1.329 €
13.227 € | 6.305 €
49.496 € | 1.396 € | 7.023 € | 1.454.300 €
957.529 € | | | 727.440.6 | 0.540.6 | 440.540.6 | | | | | | | 26.539 € | 188.410€ | 120.991 € | | | 27.923 € | | | 2 270 6 | | | | ATTICA | 737.140 € | 9.540€ | 148.513 € | 302.792 € | 68.602 € | 189.245 € | 88.927€ | 222.232 € | 48.872 € | 0€ | 4 247 227 6 | 42.540.6 | 2.276 € | 5.010 € | 0.522.6 | 6.765 € | 18.617 € | 2.278 € | 274.752 € | 2.125.560 € | | ACHAIA | 4.693 € | | 19.999€ | 407.441 € | 43.876 € | 1.293 € | 1.145.114 € | 6.978 € | 17.941 € | 767.6 | 1.347.327 € | 13.518 € | 458.400 € | 21.057€ | 8.532 € | 639€ | 4.442 € | 11.084 € | 6.927€ | 3.519.260 € | | VOIOTIA | 1.745 € | | 230.931 € | 453.289 € | 308.052 € | 227.958 € | 109.349 € | 93.063 € | 6.977€ | 767 € | 8.234 € | 18.641 € | 84.873 € | 12.582 € | 43.186 € | 23.521€ | 170.478 € | 5.424 € | 8.414 € | 1.807.483 € | | GREVENA | 155 € | | | 37€ | 287€ | F2 200 C | 446 000 6 | 264 € | 426 407 6 | 5 470 6 | 1.760 € | 40 557 6 | | 505.5 | 4 4 4 4 6 | 44 004 0 | 353 € | 453 € | | 3.309 € | | DRAMA | 4.025 € | | | 24.899€ | 10.256 € | 53.309 € | 416.028 € | 8.889 € | 126.187€ | 5.179€ | 8.194 € | 19.557€ | | 686 € | 1.144 € | 41.931€ | 1.649 € | 1.510€ | | 723.442 € | | DODEKANISA | 1.844 € | | | 11.977€ | 3.174 € | | | 5.462 € | 1.946 € | | 9.590€ | 1.741 € | 1.028 € | | 2.055 € | | 755 € | | | 39.572 € | | EVROS | 187.788 € | 262.493 € | 8.127€ | 231.502 € | 1.158.791 € | 23.358 € | 4.019.643 € | 13.706.735 € | 951.841 € | 184.951€ | 884.710 € | 8.669.030 € | 26.201€ | 531.412€ | 722.163 € | 999.524€ | 2.103.138 € | 562.828€ | 55.554€ | 35.289.790 € | | EVIA | 19.125€ | | 61.330€ | 492.367 € | 55.897€ | 33.711 € | 66.163€ | 216.300€ | | 0€ | 489.124€ | | | | | | 4.590 € | | 22.901 € | 1.461.507 € | | EVRITANIA | | | | | 351€ | | | | | | | 67 € | | | | | | | | 418€ | | ZAKYNTHOS | | | | 8.987€ | | | | | | | | | 6.643 € | | | | | 14.318€ | | 29.948 € | | ILEIA | 10.660€ | 162 € | 102.445 € | 174.078€ | 249.183 € | 104 € | 234.922 € | 154.804 € | 48.874 € | 0€ | 866.953 € | 285.377 € | 273.977€ | 234.831€ | 270.588 € | 96.192 € | 21.000€ | 28.362 € | 14.890 € | 3.067.401 € | | IMATHIA | 3.978 € | 8.786 € | 128.966 € | 263.452 € | 1.777.499 € | 15.110€ | 0€ | 21.600€ | 6.785 € | 5.965€ | 113.147€ | 140.929 € | | 358.252€ | 212.575€ | 39.516 € | 28.056 € | 345.979€ | 19.248 € | 3.489.844 € | | HERACLION | 23.305 € | 692 € | 633 € | 239.320€ | 13.690 € | 87.909 € | | 173.079€ | 570 € | 267.960 € | 199.087€ | 9.262€ | 7.747 € | | 297 € | | 5.043 € | | | 1.028.594€ | | THESPROTIA | 1.837 € | 821€ | | 117.755€ | 101.439 € | | 16.842 € | 77.848 € | 2.477 € | 2.331 € | 110.566€ | 396.205 € | | 61.436€ | 4.085 € | 111.175 € | 6.681€ | 55.703 € | 120.185€ | 1.187.385 € | | THESSALONIKI | 6.033€ | 79.524€ | 6.703 € | 281.354 € | 45.288 € | 115.916€ | 43.802 € | 663.073 € | 84.831 € | 1.939€ | 60.243 € | 38.528 € | 7.439 € | 1.334 € | 8.110 € | 53.167€ | 24.696 € | 2.242 € | | 1.524.221 € | | IOANNINA | | | | 104.183 € | 26.597€ | 1.393 € | 7.968 € | 313.888 € | 2.787 € | 6.295 € | 2.551€ | 16.916€ | | 27.511€ | | | 203 € | 11.224 € | 462 € | 521.978€ | | KAVALA | 1.027€ | | | 96.204 € | 16.822€ | 8.480 € | 95.354 € | 92.069€ | 33.936 € | | 22.398€ | 1.720 € | | 24.806€ | 809 € | 117.716€ | 8.129 € | | | 519.469€ | | KARDITSA | 3.483 € | 634 € | 57.779€ | 126.350€ | 79.692 € | 108.708€ | 3.119 € | 7.562 € | | | 80.910€ | 309.280 € | 144.345€ | 120.158€ | 16.942 € | 1.356 € | 42.031 € | 613.134 € | 19.286 € | 1.734.769 € | | KASTORIA | | | 1.719 € | 5.813€ | 336 € | 1.147 € | 4.244 € | 1.323 € | | | 2.972 € | 1.279 € | | | | | 2.723€ | 60.027 € | 12.543 € | 94.126 € | | KERKIRA | | 2.498 € | | 17.552€ | | 2.741 € | | 1.483€ | | | 286 € | 10.586 € | | | | | | | | 35.145 € | | KEFALLINIA | | 2.485 € | | | 102 € | | | | | | | | | | | | | | | 2.587€ | | KILKIS | 14.362 € | 32.879€ | 3.837 € | 278.001€ | 341.525 € | 329.827€ | | 112.857€ | 5.509 € | 3.256 € | 144.200€ | 180.285 € | 1.572 € | | 33.291 € | 278.730 € | 22.017€ | 130.444 € | 13.262 € | 1.925.853 € | | KOZANI | 1.248 € | | | 4.991€ | 227€ | 10.211€ | | 43.295 € | | | 11.657€ | 694 € | | | 3.976 € | | 80.891€ | 5.883 € | 84.228 € | 247.301 € | | KORINTHIA | 16.064 € | | 3.894 € | 6.071€ | 74.953 € | | 4.363 € | 63.601€ | | 8.039 € | 20.582 € | 18.000€ | 3.777€ | 5.305€ | 10.612€ | 8.195 € | 5.175€ | | | 248.631 € | | CYCLADES | 47.094 € | | 7.481 € | 60.008 € | 647.037 € | 70.435 € | | 43.664 € | 0€ | 7.580 € | | 834 € | 688.867€ | 2.185€ | | | | | | 1.575.184 € | | LACONIA | 425.341 € | 109.995€ | 483 € | | 139.240 € | 3.055 € | 219.309 € | 0€ | 28.502 € | | | | | 1.358€ | 693 € | 787 € | | 286.639 € | | 1.215.403 € | | LARISSA | 13.494 € | 64.195€ | 293 € | 569.451€ | 138.473 € | 46.884 € | 1.879 € | 12.410€ | 30.718€ | 643 € | 261.853 € | 29.462 € | | 217.043€ | 321 € | 6.831 € | 6.149 € | 230.394 € | 311.304 € | 1.941.796 € | | LASITHIOU | | 40.799 € | 67.150€ | 131.317 € | 242.050 € | 98.769€ | 9.200 € | 127.851€ | 845 € | 374.831 € | 537.916 € | 20.206 € | | 2.077€ | | | 25.879 € | | 34.478€ | 1.713.367 € | | LESVOS | 15.983 € | 549€ | 37.854 € | 41.515€ | 15.562 € | 54.353€ | 112.616€ | | | | 1.120€ | 317€ | 6.870 € | 34.713€ | | | 124.536 € | 69.318€ | 3.876 € | 519.183€ | | MAGNISIA | 37.206 € | | 19.747 € | 81.788€ | 104.573 € | 14.030€ | | 167.930 € | 13.467€ | 6.314 € | 148.098 € | | | 12.411€ | | | | | 2.455€ | 608.019€ | | MESSINIA | 1.100 € | | 703 € |
12.210€ | 165.646 € | 97 € | 93.455€ | 10.706 € | 2.261€ | | 154.567 € | | | | 36.305 € | 360.213 € | 35.172€ | 651.120€ | | 1.523.554€ | | XANTHI | 8.763 € | | | 1.150.278€ | 145.015€ | 9.764 € | 53.375 € | 182.387€ | 934.251 € | 585.231 € | 61.391€ | 411.343 € | | 330.593 € | 152.177€ | 726.755 € | 409.264 € | | 4.230€ | 5.164.817€ | | PEIRAIOS | | | | | 6.986 € | | | | | | | 48 € | | 1 | | 1 | | | | 7.034 € | | PELLA | | 4.850€ | 69.183 € | 115.767€ | 6.048.783 € | 7.568 € | 0€ | 19.232€ | | 3.497€ | 174.108 € | 88.990 € | 3.231 € | 8.452 € | 358.149 € | 372.862 € | 401.211€ | 425.522€ | 23.871€ | 8.125.276€ | | PIERIA | 144.732 € | 160 € | 6.286 € | 306.796 € | 27.669 € | 668.946 € | 1.105.144 € | 282.976 € | 209.554 € | 40.688 € | 183.586 € | 104.009 € | 675 € | 81.210 € | 4.085 € | 3.299 € | 1.197 € | 27.369 € | 79.225 € | 3.277.603 € | | PREVEZA | | | | 542.667€ | 8.204 € | 6.776 € | 83.393 € | 34.587 € | 60.280 € | 23.796 € | 677.529 € | 398.320 € | | 193.927 € | 95.474 € | 27.463 € | 36.538 € | 215.538 € | 59.057 € | 2.463.546 € | | RETHYMNO | | 6.298€ | 0€ | 21.130 € | 93 € | 240 € | 8.014 € | 4.417 € | 3.504 € | | | 2.798 € | | | | | | | | 46.493 € | | RODOPI | 7.196 € | 4.378 € | 638 € | 640.511 € | 64.748 € | 263.409 € | 302.404 € | 205.533 € | 1.231.814 € | 4.324€ | 195.217 € | 618.094 € | | 146.027 € | 102.137 € | 1.407.559 € | 21.334 € | 939.489 € | 13.347 € | 6.168.159 € | | SAMOS | 4.256 € | | 121.973 € | 2.0.511 0 | 11.527 € | _0000 0 | 302 | | 231 € | | 21.306 € | 11.505 € | 1.734 € | 0.02, 0 | 269 € | | 1 22.55 . 6 | 20000 0 | 13.3.7.0 | 172.800 € | | SERRES | 63.453 € | | 12.835 € | 1.239.141 € | 166.440 € | 307.713 € | 243.546 € | 502.798€ | 213.232 € | 9.005 € | 53.358 € | 61.893 € | 1 | 67.612 € | 81.356 € | 41.310€ | 459.506 € | 31.247 € | | 3.554.444 € | | TRIKALA | 10.825 € | 0€ | 0€ | 24.433 € | 24.482 € | 6.755 € | 7.951 € | 41.750 € | 9.034 € | 3.003 & | 25.850 € | 218.160 € | 11.850€ | 42.784 € | 2.010 € | 776€ | 27.599 € | 860.322 € | 7.592 € | 1.322.174 € | | FTHIOTIDA | 76.348 € | 0€ | 107.717 € | 568.699 € | 210.970 € | 257.545 € | 51.869 € | 281.489 € | 9.610 € | | 89.704 € | 30.418 € | 31.715 € | 9.742 € | 26.175 € | 18.248€ | 52.399 € | 179.933 € | 178.818 € | 2.181.397 € | | FLORINA | 3.222 € | 3.0 | 107.717 € | 300.033 € | 210.370 € | 0€ | 51.505€ | 6.108 € | 832 € | | 1.588 € | 1.597 € | 406 € | 3.,42 € | 2.985 € | 18.803 € | 48.680 € | 43.458€ | 170.010 € | 127.678 € | | FOKIDA | 222€ | | | | | 0 € | | 0.100 € | 032 € | | 1.300 € | 1.35/ € | 400 t | | 2.303 € | 10.003 € | 40.000€ | +3.430 € | | 222€ | | CHALKIDIKI | 6.013 € | 34.201 € | 1.097 € | 28.082 € | 27.009 € | 31.791 € | 16.394 € | 117.948 € | 51.193 € | 12.607€ | 22.595 € | 19.559€ | | 727 € | | 288 € | 5.432 € | | | 374.935 € | | CHARIDIKI | 795 € | 152.793 € | 20.384 € | 0€ | 24.180 € | 10.181 € | 233 € | 11.954€ | 1.494 € | 12.007€ | 2.040 € | 17.335 € | 1 | 121 € | | 200 € | 3.43∠ € | | | 224.055 € | | CHANIA | 795 € | 132./93€ | 20.384 € | 112.362€ | 24.180 € | ± 101.01 | 233 €
747.332 € | 11.954 € | 1.494 € | | 2.040 € | 21.227 € | 1 | | | | 7.553 € | | | 925.540 € | | | | 025 604 6 | 4 202 276 6 | | | 2 000 540 0 | | 40 404 477 6 | 4 400 555 6 | 4 507 245 0 | 7 224 706 6 | | 4 040 357 6 | 2 720 405 6 | 2 444 465 6 | 4 700 047 0 | | E 04E 636 6 | 4 270 074 0 | | | TOTAL | 2.219.075 € | 825.601€ | 1.283.376 € | 9.416.462 € | 13.980.881€ | 3.088.540 € | 10.427.941 € | 18.184.1/7€ | 4.490.565 € | 1.597.345 € | 7.331.781€ | 12.441.409€ | 1.819.357€ | 2.729.401€ | 2.411.465€ | 4.786.047€ | 4.269.789€ | 5.815.621 € | 1.3/9.9/4€ | 108.498.806 € | #### 11. Python scripts 11.1. Selection of US-CAMELS timeseries with the maximum temporal overlap (namely, 35 years from 1980 to 2014) and less than 10% of missing values. Distribution of these gauge locations to their Hydrological Units (regions). Get their four first moments. ``` import numpy as np 2. import pandas as pd import scipy import os from scipy.io import loadmat from pandas import DataFrame import seaborn as sns 8. from matplotlib import pyplot as plt 10. def missing_values_percentage(df_TS): 11. df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 12. Num_cols1=len(df_withoutNaN) 13. Num_cols2=len(df_TS) 14. missing_values_number=1-Num_cols1/Num_cols2 15. return missing_values_number 16. 17. def Get_Matlab_file_TS(filename): mat=scipy.io.loadmat("C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\"+filename) 18. a= mat['TS'] 19. 20. df_TS=pd.DataFrame(a) 21. return df TS 22. 23. #Selection of US-CAMELS time series with 35 years overlap (1980-2014) and max 10% missing values 24. acceptance mv rate=0.1 25. 26. mat=scipy.io.loadmat('C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\07067000.mat') 27. a= mat['TS'] 28. original_df=pd.DataFrame(a) 29. Num_cols_file = len(original_df) 30. 31. filenames=os.listdir('C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries') 32. df_filenames=pd.DataFrame(filenames) 33. df filenames.columns = ['Names'] 34. Num_cols_filenames = len(df_filenames) 35. 36. i=0 37. df_filenames_=df_filenames.copy() 38. while i<Num_cols_filenames: name=df_filenames_.iloc[i,0] 39. name1=name.replace(".mat","") mat=scipy.io.loadmat('C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\'+name) 40. 41. 42. a= mat['TS'] 43. file=pd.DataFrame(a) missing_values_per=missing_values_percentage(file) 44. 45. # print(missing_values_per) 46. if missing_values_per<=acceptance_mv_rate:</pre> 47. i+=1 48. else: df_filenames_=df_filenames_.drop([i], axis=0) 49. df_filenames_=df_filenames_.reset_index(drop=True) Num_cols_filenames=Num_cols_filenames-1 51. 52. #print(df_filenames_) 53. i=0 54. Num=len(df filenames) 55. while i<Num: name=df_filenames_.iloc[i,0] name1=name.replace(".mat","") 57. mat=scipy.io.loadmat('C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\'+name) 58. 59. a= mat['TS'] 60. file=pd.DataFrame(a) 61. if file.iloc[0,0]==1980: i+=1 ``` ``` 63. else: 64. df_filenames_=df_filenames_.drop([i], axis=0) df filenames =df filenames .reset index(drop=True) 65. 66. Num=Num-1 67. #print(df_filenames_) 68. df_filenames_.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 69. 70. #Dataframe with the Gauge info of all US-CAMELS time series (671 gauge locations) 71. df=pd.read_excel('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\GAUGE_INFO.xlsx') 72. Num_cols=len(df) 73. i=0 74. while i<Num_cols: 75. str_i=str(df.iloc[i,1]) x=df.iloc[i,1] 76. y=x/10000000 77. y=int(y) 78. 79. if y==0: df.iloc[i,1]='0'+str_i 80. 81. str_=str(df.iloc[i,1]) df.iloc[i,1]=str_ 82. 83. i+=1 84. #print(df) 85. df.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge info - 671 stations') 87. #Dataframe creation in order to distribute each station to its region (all stations without criteria) 88. i=1 89. while i<=18: 90. net_i=str(i) 91. stations=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge info- 671 stations') 92. Num_cols_stations = len(stations) 93. j=0 94. while j<Num_cols_stations:</pre> 95. if stations.iloc[j,0]!=i: 96. stations=stations.drop([j], axis=0) 97 stations=stations.reset_index(drop=True) 98. Num_cols_stations=Num_cols_stations-1 99. else: 100. j+=1 101. Num_cols=len(stations) 102. k=0 103 while k<Num_cols:</pre> 104. filename=stations.iloc[k,1] 105. filename1=filename.replace(".mat","") 106. stations.iloc[k,1]=filename1 107. k+=1 108. stations.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region '+net i+' - All stations without criteria') 109.# print(stations) 110. i+=1 111. 112.#Distribute each one of the 360 selected gauge locations to their Hydrologic Unit (regions) 113.df_360_stations=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 114. Num_cols_360_stations=len(df_360_stations) 115.i=0 116.while i<Num_cols_360_stations: filename=df_360_stations.iloc[i,0] 117. filename1=filename.replace(".mat","") 118. 119. df_360_stations.iloc[i,0]=filename1 120. 121.#print(df_360_stations) 122.i=1 123.sum_=0 124.while i<=18: 125. net_i=str(i) df_region=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region '+net_i+' All stations without criteria') 127. Num_cols_df_region=len(df_region) 128. index_region=0 129. while index_region<Num_cols_df_region:</pre> 130. identification_index=0 131. index_360=0 ``` ``` while index 360<Num cols 360 stations:</pre> 133. if df_region.iloc[index_region,1]==df_360_stations.iloc[index_360,0]: 134. identification index=1 135. index_360+=1 136. if identification_index==1: 137. index_region+=1 138. else: 139. df_region=df_region.drop([index_region], axis=0) 140. df region=df region.reset index(drop=True) Num_cols_df_region=Num_cols_df_region-1 141. 142.# print(df_region) 143. sum_=sum_+len(df_region) \label{thm:linear_def} $$ df_region.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\Region '+net_i+' -net_i+' 144. All stations with criteria (1980-2014 and 10% missing values') 145. 146.#print(sum_) #check if all 360 stations are distributed to regions 147. 148. 149. #Dataframe with the Gauge info of the selected US-CAMELS time series (360 gauge locations) 150.i=2 151.file=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region 1 - All stations with criteria (1980-2014 and 10% missing values') 152.while i<19: 153. file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region '+str(i)+' - All stations with criteria (1980-2014 and 10% missing values') 154. file=file.append(file1, ignore_index = True) 155. i+=1 156.#print(file) 157.file['GAUGE_NAME'] = file['GAUGE_NAME'].str.upper() 158.file = file.sort values(by ='GAUGE ID') 159.file=file.reset_index(drop=True) 160.file.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 360 stations')
161.file.to_excel("C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\GAUGE_INFO_360.xlsx") 162. 163. 164.#Get the Moments of the 360 selected timeseries 165.df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 166. Num_cols_filenames = len (df_filenames) 167.moments_df=df_filenames.copy() 168.moments_df['Mean']=df_filenames['Names'] 169.moments_df['Variance']=df_filenames['Names'] 170.moments_df['Skewness']=df_filenames['Names'] 171. moments_df['Kurtosis']=df_filenames['Names'] 172.i=0 173.while i<Num_cols_filenames: 174. filename=df_filenames.iloc[i,0] 175. filename1=filename.replace(".mat","") df_TS=Get_Matlab_file_TS(filename) df_TS.columns = ['Year', 'Month', 'Day', 'Q'] df_TS=df_TS.drop(['Year', 'Month', 'Day'], axis=1) df_TS=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 176 177. 178. 179. 180. x=df_TS['Q'] 181. moments_df.iloc[i,1]=x.mean() 182 moments_df.iloc[i,2]=x.var() moments_df.iloc[i,3]=x.skew() 183. 184. moments_df.iloc[i,4]=x.kurt() 185 i += 1 186.i=0 187.while i<Num cols filenames: filename=df_filenames.iloc[i,0] 188. filename1=filename.replace(".mat","") 189. 190. moments_df.iloc[i,0]=filename1 191 192.moments_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values MOMENTS') 193.#print(moments_df) ``` #### 11.2. Plot of all US-CAMELS gauge locations and the selected ones in different USA maps. ``` import geopandas as gpd import matplotlib.pyplot as plt ``` ``` import pandas as pd 4. shapefile='C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\\States\\states.\sp' 7. ax=stations1.plot(color='white', edgecolor='black',linewidth=0.3, figsize=(10,10)) 8. ax.set_xlim(xmin=-130, xmax=-65) 9. ax.set_ylim(ymin=20, ymax=55) 10. 11. Stations=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge info - 671 stations') 12. x=Stations.iloc[:,4] 13. y=Stations.iloc[:,3] 14. plt.scatter(x,y,c='darkgrey', marker='o', edgecolor='black', linewidth=0.4) 15. plt.title('All CAMELS gauge stations') 16. plt.xlabel('Longitude') 17. plt.ylabel('Latitude') 18. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Map with all the CAMELS gauge statio ns.png') 19. 20. region_index=1 21. while region_index<19: 22. region_index_str=str(region_index) 23. stations=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region '+region_inde x_str+' - All stations with criteria (1980-2014 and 10% missing values') 24. x=stations.iloc[:,4] 25. y=stations.iloc[:,3] 26. plt.scatter(x,y, c='darkgrey', marker='o', edgecolor='black', linewidth=0.4) 27. region_index+=1 28. plt.title('The selected 360 CAMELS gauge stations') 29. plt.xlabel('Longitude') 30. plt.ylabel('Latitude') 31. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Map with the selected 360 CAMELS gau ge stations.png') ``` 11.3. Shuffle timeseries. Calculation of annual collective risk, annual peak, $Average\ Y_i$, the duration and the number of the over-threshold events. Calculation of the ECDF diagrams of collective risk and return intervals for all US-CAMELS timeseries and for all selected thresholds. Applied on the observed as well as the shuffled time series, and all thresholds. ``` import pandas as pd import scipy 3. import os 4. 5. def Get_Matlab_file_TS(filename): mat=scipy.io.loadmat("C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\"+filename) 6. 7. a= mat['TS'] 8. df_TS=pd.DataFrame(a) 9. return df_TS 10. 11. def Get_Matlab_file_Info(filename): mat=scipy.io.loadmat("C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\"+filename) 12. b= mat['Info'] 13. 14. df_Info=pd.DataFrame(b) 15. return df_Info 16. 17. def missing_values_percentage(df_TS): df withoutNaN=df TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 18. Num_cols1=len(df_withoutNaN) 19. 20. Num_cols2=len(df_TS) 21. missing_values_percentage=1-Num_cols1/Num_cols2 return missing_values_percentage 22. 23. 24. def Get events df(df TS, threshold): 25. #Drop NaN (missing values) 26. df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) ``` ``` df_sorted_noNaN=df_withoutNaN.sort_values(3, axis=0, ascending=True, inplace=False, kind='quickso 27. rt', na_position='last') 28. Num cols = len (df withoutNaN) 29. position=int(threshold*Num_cols) 30. threshold_value=df_sorted_noNaN.iloc[position,3] 31. events_df=df_withoutNaN events_df.columns = ['Year', 'Month', 'Day', 'Q'] 32. events_df.drop(events_df.loc[events_df['Q'] < threshold_value].index, inplace=True) 33. 34. return events df 35. 36. def Get_events_df_without_ones(events_df): 37. Num_cols = len (events_df) 38. events_df_without_ones=events_df.take([0]) 39. 40. while i<=Num cols-1:</pre> 41. if events_df.index[i]-1==events_df.index[i-1]: 42. i+=1 43. else: 44. append_row=events_df.iloc[i].copy() 45. events_df_without_ones=events_df_without_ones.append(append_row) 46. i+=1 47. return events_df_without_ones 48. 49. def Get return interval df(events df without ones): Num_cols = len (events_df_without_ones) 50. 51. return_interval_df = {'Return interval': [events_df_without_ones.index[0]]} return_interval_df = pd.DataFrame(data=return_interval_df) 52. 53. i=1 54. while i<=(Num_cols-1):</pre> 55. j=events df without ones.index[i]-events df without ones.index[i-1] 56. append_row = {'Return interval': [j]} 57. append_row1 = pd.DataFrame(data=append_row) 58. return_interval_df=return_interval_df.append(append_row1) 59. i+=1 60. return_interval_df=return_interval_df.reset_index(drop=True) 61. return return interval df 62. 63. def collective_risk_function(df_TS, events_df): 64. first_year=df_TS.iloc[0,0] Num_cols = len (df_TS)-1 65. 66. last_year=df_TS.iloc[Num_cols,0] collective_risk_S_df = {'Year': [0], 'Collective Risk S': [0.0]} collective_risk_S_df = pd.DataFrame(data=collective_risk_S_df) 67. 68 69. a=first_year while a<=last_year-1:</pre> 70. m={'Year': [0], 'Collective Risk S': [0.0]} 71. 72. m = pd.DataFrame(data=m) 73. append row=m.iloc[0].copy() 74. collective_risk_S_df=collective_risk_S_df.append(append_row) 75. 76. collective_risk_S_df=collective_risk_S_df.reset_index(drop=True) 77. a=first_year 78. i=0 79. while a<=last year:</pre> 80. collective_risk_S_df.xs(i)['Year'] = a 81. 82. i+=1 a=first_year 83. i=0 84. 85. j=0 Num_cols = len (events_df) 86. 87. while a<=last_year:</pre> 88. while j<=(Num_cols-1):</pre> 89. if events_df.iloc[j,0]==a: collective_risk_S_df.xs(i)['Collective_Risk_S'] = collective_risk_S_df.iloc[i,1] + ev 90. ents_df.iloc[j,3] 91. j+=1 92. else: 93. j+=1 94. j=0 95. i+=1 96. a+=1 97. return collective_risk_S_df ``` ``` 99. def number_of_events_function(df_TS, events_df): 100. first_year=df_TS.iloc[0,0] 101. Num cols = len (df TS)-1 last_year=df_TS.iloc[Num_cols,0] 102. number_of_events_df = {'Year': [0], 'Number of events': [0.0]} 103. number_of_events_df = pd.DataFrame(data=number_of_events_df) 104. 105. a=first_year while a<=last_year-1:</pre> 106. 107. m={'Year': [0], 'Number of events': [0.0]} m = pd.DataFrame(data=m) 108. 109. append_row=m.iloc[0].copy() 110. number_of_events_df=number_of_events_df.append(append_row) 111. a+=1 112. number_of_events_df=number_of_events_df.reset_index(drop=True) a=first_year 113. 114 i=0 115. while a<=last_year:</pre> 116. number_of_events_df.xs(i)['Year'] = a 117. a+=1 118. i+=1 a=first_year 119. 120 i=0 j=0 121. 122. Num cols = len (events df) 123. while a<=last_year:</pre> 124. while j<=(Num_cols-1):</pre> 125. if events_df.iloc[j,0]==a: 126. number_of_events_df.xs(i)['Number of events'] = number_of_events_df.iloc[i,1] + 1 127. j+=1 128. else: 129. j+=1 130. j=0 131. i+=1 132. a+=1 133. return number_of_events_df 134. 135.def annual_peak_only_for_events_function(df_TS, events_df): 136. first_year=df_TS.iloc[0,0] 137. Num_{cols} = len (df_{TS})-1 138. last_year=df_TS.iloc[Num_cols,0] 139. annual_peak_only_for_events_df = {'Year': [0], 'Annual peak (Block maxima) only for events': [0.0]} 140. annual_peak_only_for_events_df = pd.DataFrame(data=annual_peak_only_for_events_df) 141. a=first_year 142. while a<=last_year-1:</pre> m={'Year': [0], 'Annual peak (Block maxima) only for events': [0.0]} 143. 144. m = pd.DataFrame(data=m) 145. append row=m.iloc[0].copy() 146. annual_peak_only_for_events_df=annual_peak_only_for_events_df.append(append_row) 147. 148. annual_peak_only_for_events_df=annual_peak_only_for_events_df.reset_index(drop=True) 149. a=first_year 150. i=0 151. while a<=last year:</pre> 152. annual_peak_only_for_events_df.xs(i)['Year'] = a 153. 154. i+=1 a=first_year 155. i=0 156. 157. j=0 158. Num_cols = len (events_df) 159. max=0 160. while a<=last_year:</pre> 161. while j<=(Num_cols-1):</pre> 162. if events_df.iloc[j,0]==a: 163. if events_df.iloc[j,3]>max: 164. annual_peak_only_for_events_df.xs(i)['Annual peak (Block maxima) only for events'] = events_df.iloc[j,3] max=events_df.iloc[j,3] 165. 166. j+=1 167. else: 168. j+=1 169. else: 170. j+=1 ``` ``` 171. max=0 172. j=0 173. i+=1 174. a+=1 175. return annual_peak_only_for_events_df 176. 177.\#Estimation\ of\ the\ annual_peak_for_ALL_df 178.def annual_peak_for_all_function(df_TS, events_df): first year=df TS.iloc[0,0] 180. Num_cols = len (df_TS)-1 181. last_year=df_TS.iloc[Num_cols,0] 182. annual_peak_for_all_df = {'Year': [0], 'Annual peak (Block maxima) for all': [0.0]} 183. annual_peak_for_all_df = pd.DataFrame(data=annual_peak_for_all_df) a=first_year 184. while a<=last_year-1:</pre> 185. m={'Year': [0.0], 'Annual peak (Block maxima) for all': [0.0]} 186 187. m = pd.DataFrame(data=m) 188. append_row=m.iloc[0].copy() 189. annual_peak_for_all_df=annual_peak_for_all_df.append(append_row) 190. 191. annual_peak_for_all_df=annual_peak_for_all_df.reset_index(drop=True) 192 a=first_year i=0 193. 194. while a<=last year:</pre> annual_peak_for_all_df.xs(i)['Year'] = a 195. 196. a+=1 197. i+=1 198. a=first_year 199. i=0 200. j=0
201. Num_cols = len (df_TS) 202. max=0 203. while a<=last_year:</pre> 204. while j<=(Num_cols-1):</pre> 205. if df_TS.iloc[j,0]==a: 206. if df TS.iloc[j,3]>max: annual_peak_for_all_df.xs(i)['Annual peak (Block maxima) for all'] = df_TS.iloc[j 207. 208. max=df_TS.iloc[j,3] 209. j+=1 210. 211. j+=1 212 else: 213. j+=1 214. max=0 215. j=0 216. i+=1 217. a+=1 218 return annual_peak_for_all_df 219. 220.def average_Yi_function(df_TS, events_df): 221. first_year=df_TS.iloc[0,0] 222. Num_{cols} = len (df_{TS})-1 223. last_year=df_TS.iloc[Num_cols,0] 224 average_Yi_df = {'Year': [0], 'Average Yi': [0.0]} 225. average_Yi_df = pd.DataFrame(data=average_Yi_df) a=first_year 226. 227. while a<=last_year-1:</pre> 228. m={'Year': [0], 'Average Yi': [0.0]} 229. m = pd.DataFrame(data=m) 230. append_row=m.iloc[0].copy() 231. average_Yi_df=average_Yi_df.append(append_row) 232. a+=1 233. average_Yi_df=average_Yi_df.reset_index(drop=True) 234. a=first year 235. i=0 236. while a<=last_year:</pre> 237. average_Yi_df.xs(i)['Year'] = a 238. a+=1 239. i+=1 a=first_year 240. 241. i=0 242. j=0 243. Num_cols = len (events_df) ``` ``` 244. while a<=last_year:</pre> 245. r=0 246. u=0 247. while j<=(Num_cols-1):</pre> 248. if events_df.iloc[j,0]==a: 249. r=r + events_df.iloc[j,3] 250. u+=1 251. j+=1 252. else: 253. j+=1 254. if u!=0: 255. average_Yi_df.xs(i)['Average Yi'] =r/u 256. j=0 257. i+=1 258. a+=1 259 return average_Yi_df 260. 261.def ecdf_S(collective_risk_S_df): ecdf_S_df=collective_risk_S_df.drop(['Year'], axis=1) 262. 263. ecdf_S_df.columns = ['Large sorted S'] ecdf_S_df=ecdf_S_df.sort_values(by=['Large sorted S'],ascending=False) 264. ecdf_S_df=ecdf_S_df.reset_index(drop=True) 265 266. Num_cols=len(ecdf_S_df) 267. x=ecdf S df.copy() ecdf_S_df['ECDF']=x['Large sorted S'] 268. 269. i=0 270. while i<Num_cols:</pre> 271. ecdf_S_df.iloc[i,1]=1-((ecdf_S_df.index[i]+1)/(Num_cols+1)) 272. i+=1 273. return ecdf S df 274. 275.def ecdf_r(return_interval_df): 276. ecdf_r_df=return_interval_df 277. ecdf_r_df.columns = ['Large sorted r'] 278. ecdf_r_df=ecdf_r_df.sort_values(by=['Large sorted r'],ascending=False) 279. ecdf_r_df=ecdf_r_df.reset_index(drop=True) Num_cols=len(ecdf_r_df) 280 281. x=ecdf_r_df.copy() 282. ecdf_r_df['ECDF']=x['Large sorted r'] 283. i=0 284. 285. ecdf_r_df.iloc[i,1]=1-((ecdf_r_df.index[i]+1)/(Num_cols+1)) 286 i+=1 287. return ecdf_r_df 288. 289.def Get_duration_df(return_interval_df): 290. ret int index=0 291. while ret_int_index<len(return_interval_df):</pre> 292. if return_interval_df.iloc[ret_int_index,0]!=1: 293. return_interval_df.iloc[ret_int_index,0]=0.0 294. ret int index+=1 295.# print(return_interval_df) 296. ret_int_index=1 297. Num return interval df=len(return interval df) 298. while ret_int_index<Num_return_interval_df:</pre> 299. if return_interval_df.iloc[ret_int_index,0]==1.0: 300. return_interval_df.iloc[ret_int_index-1,0]=return_interval_df.iloc[ret_int_index-1,0]+1 return_interval_df=return_interval_df.drop(return_interval_df.index[ret_int_index]) 301 302. return interval df=return interval df.reset_index(drop=True) 303. Num_return_interval_df=Num_return_interval_df-1 304. else: 305. ret_int_index+=1 306. ret_int_index=0 307. duration_df=return_interval_df.copy() 308. duration_df.columns=['Duration of event'] 309. while ret int index<len(duration df):</pre> 310. duration_df.iloc[ret_int_index,0]=duration_df.iloc[ret_int_index,0]+1 311. ret_int_index+=1 return duration_df 312. 313. 314.def ecdf_duration(duration_df): 315. duration_df.columns = ['Large sorted duration'] 316. duration_df=duration_df.sort_values(by=['Large sorted duration'],ascending=False) 317. duration_df=duration_df.reset_index(drop=True) ``` ``` 318. Num cols=len(duration df) 319. x=duration_df.copy() 320. duration df['ECDF']=x['Large sorted duration'] 321. 322. 323. duration_df.iloc[i,1]=1-((duration_df.index[i]+1)/(Num_cols+1)) 324. i+=1 325. return duration_df 326. 327. #Create 100 shuffled timeseries for observed timeseries 328.def Shuffle_100_timeseries(df_TS): 329. df_TS.columns = ['Year', 'Month', 'Day', 'Q'] shuffled_df=df_TS 330. 331. shuffled_df=shuffled_df.drop(['Year', 'Month', 'Day'], axis=1) 332. x=shuffled df 333 i=1 334. while i<101: 335. x = x.sample(frac=1, axis=1).sample(frac=1).reset_index(drop=True) 336. shuffled_df[i]=x['Q'] 337. i+=1 338. shuffled_df.insert(loc=0, column='Day', value=df_TS['Day']) shuffled_df.insert(loc=0, column='Month', value=df_TS['Month']) shuffled_df.insert(loc=0, column='Year', value=df_TS['Year']) 339 340. 341. return shuffled df 342. 343.filenames=os.listdir('C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries') 344.df_filenames=pd.DataFrame(filenames) 345.df_filenames.columns = ['Matlab'] 346.Num_cols_filenames = len(df_filenames) 347.d = {'Year': [1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,19 97,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,0]} 348.final_prototype_df = pd.DataFrame(data=d) 349.how_many_shuffled_timeseries=100 350.Collective_Risk_S_FOR_ALL_df=final_prototype_df.copy() 351.number_of_events_FOR_ALL_df=final_prototype_df.copy() 352.annual_peak_for_all_FOR_ALL_df=final_prototype_df.copy() 353.average_Yi_FOR_ALL_df=final_prototype_df.copy() 355.threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 356.threshold_df = pd.DataFrame(data=threshold_df_data) 357.Num_threshold_df=len(threshold_df) 358.#print(threshold df) 359 360.#Calculations for the observed time series 361.threshold loop=0 362.while threshold_loop<Num_threshold_df: threshold=threshold_df.iloc[threshold_loop,1] 363. 364. threshold text=threshold df.iloc[threshold loop,0] 365 i=0 while i<Num_cols_filenames:</pre> 366. 367. filename=df filenames.iloc[i,0] filename1=filename.replace(".mat","") 368. 369. df_TS=Get_Matlab_file_TS(filename) 370. df_Info=Get_Matlab_file_Info(filename) 371. print(df_TS) 372. print(df_Info) 373. events_df=Get_events_df(df_TS, threshold) 374 print(events df) 375. events_df_without_ones=Get_events_df_without_ones(events_df) 376. # print(events_df_without_ones) 377. return_interval_df=Get_return_interval_df(events_df_without_ones) 378. print (return_interval_df) collective_risk_S_df=collective_risk_function(df_TS, events_df) 379. 380. print(collective_risk_S_df) number_of_events_df=number_of_events_function(df_TS, events_df) 381. print(number_of_events_df) 382. # 383. annual_peak_only_for_events_df=annual_peak_only_for_events_function(df_TS, events_df) 384. print(annual_peak_only_for_events_df) annual_peak_for_all_df=annual_peak_for_all_function(df_TS, events_df) 385. 386. print(annual_peak_for_all_df) average_Yi_df=average_Yi_function(df_TS, events_df) 387. 388. # print(average_Yi_df) 389. missing_values_per=missing_values_percentage(df_TS) 390. print(missing_values_percentage) ``` ``` ecdf S df=ecdf_S(collective_risk_S_df) 391. 392. print(ecdf_S_df) ecdf S df.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the O 393. bserved\\'+threshold_text+'\\ecdf_S\\ecdf_S '+filename1) 394. ecdf_r_df=ecdf_r(return_interval_df) 395. print(ecdf_r_df) {\tt ecdf_r_df.to_pickle('C:\Wsers\Konstantinos\Documents\THESIS\Python\1. Results for the 0} 396. bserved\\'+threshold_text+'\\ecdf_r\\ecdf_r '+filename1) shuffled 100 df=Shuffle 100 timeseries(df TS) 397. 398. print(shuffled 100 df) 399. shuffled_100_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\2. The shuffle is the shuffle of d of all 671\\Shuffled 100 '+filename1) 400. 401. Collective_Risk_S_FOR_ALL_df[filename1]=collective_risk_S_df['Collective Risk S'] 402. Collective Risk S FOR ALL df.iloc[35,i+1]=missing values per number_of_events_FOR_ALL_df[filename1]=number_of_events_df['Number of events'] 403 404. number_of_events_FOR_ALL_df.iloc[35,i+1]=missing_values_per 405. annual peak for all FOR ALL df[filename1]=annual peak for all df['Annual peak (Block maxima) for all'] 406. annual_peak_for_all_FOR_ALL_df.iloc[35,i+1]=missing_values_per 407. average_Yi_FOR_ALL_df[filename1]=average_Yi_df['Average Yi'] average_Yi_FOR_ALL_df.iloc[35,i+1]=missing_values_per 408 409. 410. i+=1 411. Sorted_Collective_Risk_S_FOR_ALL_df = Collective_Risk_S_FOR_ALL_df.sort_values(by=35, axis=1, asc 412. ending=True) Sorted_number_of_events_FOR_ALL_df = number_of_events_FOR_ALL_df.sort_values(by=35, axis=1, ascen 413. ding=True) 414. Sorted annual peak for all FOR ALL df = annual peak for all FOR ALL df.sort values(by=35, axis=1, ascending=True) 415. Sorted_average_Yi_FOR_ALL_df = average_Yi_FOR_ALL_df.sort_values(by=35, axis=1, ascending=True) 416. #print(Sorted Collective Risk S FOR ALL df) #print(Sorted_number_of_events_FOR_ALL_df) 417. 418. #print(Sorted_annual_peak_for_all_FOR_ALL_df) 419. #print(Sorted average Yi FOR ALL df) 420 Sorted_Collective_Risk_S_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python 421. \\1. Results for the Observed\\'+threshold_text+'\\Collective Risk S CAMELS 1980-2014') Sorted_number_of_events_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\ 422. Results for the Observed\\'+threshold_text+'\\Number of events N CAMELS 1980-2014') 423. Sorted_annual_peak_for_all_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Pyth on\\1. Results for the Observed\\'+threshold_text+'\\Annual Peak CAMELS 1980-2014') Sorted_average_Yi_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Re 424. sults for the Observed\\'+threshold text+'\\Annual Average Yi CAMELS 1980-2014') 425. threshold_loop+=1 426. 427.#Calculations for the shuffled time series 428.threshold_loop=0 429.while threshold loop<Num threshold df: 430 threshold=threshold df.iloc[threshold loop,1] threshold_text=threshold_df.iloc[threshold_loop,0] 431. 432. i=0 433. 1=0 434 while i<Num_cols_filenames:</pre> 435. filename=df_filenames.iloc[i,0] filename1=filename.replace(".mat","") 436. pickle_file =
pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\2. The shuf 437. fled of all 671\\Shuffled_100 '+filename1) 438. j=0 439. while j+3<how_many_shuffled_timeseries+3:</pre> 440. df_TS=pickle_file[['Year', 'Month', 'Day',j+1]].copy() 441. df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 442 print(df_withoutNaN) 443. df_sorted_noNaN=df_withoutNaN.sort_values(j+1, axis=0, ascending=True, inplace=False, kin d='quicksort', na_position='last') 444 Num_cols = len (df_withoutNaN) 445. position=int(threshold*Num_cols) threshold_value=df_sorted_noNaN.iloc[position,3] 446. 447. events_df=df_withoutNaN events_df.columns = ['Year', 'Month', 'Day', 'Q'] 448. events_df.drop(events_df.loc[events_df['Q'] < threshold_value].index, inplace=True) 449. print(events_df) 450. 451. events_df_without_ones=Get_events_df_without_ones(events_df) ``` ``` print(events df without ones) 452. 453. return_interval_df=Get_return_interval_df(events_df_without_ones) 454. # print (return interval df) 455. collective_risk_S_df=collective_risk_function(df_TS, events_df) 456. # print(collective_risk_S_df) 457. number_of_events_df=number_of_events_function(df_TS, events_df) 458. ## print(number_of_events_df) 459. annual_peak_only_for_events_df=annual_peak_only_for_events_function(df_TS, events_df) 460. ## print(annual_peak_only_for_events_df) annual_peak_for_all_df=annual_peak_for_all_function(df_TS, events_df) 461. 462. ## print(annual_peak_for_all_df) 463. average_Yi_df=average_Yi_function(df_TS, events_df) 464. ## print(average_Yi_df) 465. if i==0: 466. ecdf S df=ecdf S(collective risk S df) 467 print(ecdf_S_df) 468. 1+=2 469. else: u=ecdf_S(collective_risk_S_df) 470. 471. u.columns = ['Large sorted S', 'ECDF'] ecdf_S_df[1]=u['Large sorted S'] 472. ecdf_S_df[l+1]=u['ECDF'] 473 474. print(ecdf_S_df) 475. 1+=2 ecdf_r_df=ecdf_r(return_interval_df) 476. 477.# print(ecdf_r_df) 478. Collective_Risk_S_FOR_ALL_df[j]=collective_risk_S_df['Collective Risk S'] number_of_events_FOR_ALL_df[j] = number_of_events_df['Number of events'] 479. 480. annual_peak_for_all_FOR_ALL_df[j]=annual_peak_for_all_df['Annual peak (Block maxima) for all'] 481. average_Yi_FOR_ALL_df[j]=average_Yi_df['Average Yi'] ecdf_r_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\4. Results for t 482. he Shuffled of the timeseries with criteria\\'+threshold text+'\\'+filename1+' 100 ecdf_r '+str(j)) print(filename+' shuffle:'+str(j)) 483.# print(threshold_text, i, j) 484.# 485. j+=1 ecdf_S_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\4. Results for the S 486. huffled of the timeseries with criteria\\'+threshold_text+'\\'+filename1+' 100 ecdf_S') Collective Risk_S_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4 487. Results for the Shuffled of the timeseries with criteria\\'+threshold_text+'\\'+filename1+' Collect ive Risk for 100 Shuffled') 488. number_of_events_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shuffled of the timeseries with criteria\\'+threshold_text+'\\'+filename1+' Number o f events N for 100 Shuffled') 489. annual peak for all FOR ALL df.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\ \4. Results for the Shuffled of the timeseries with criteria\\'+threshold_text+'\\'+filename1+' Annua 1 Peak for 100 Shuffled') 490. average_Yi_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Resul ts for the Shuffled of the timeseries with criteria\\'+threshold_text+'\\'+filename1+' Annual Average Yi for 100 Shuffled') 491. Collective_Risk_S_FOR_ALL_df=final_prototype_df.copy() number_of_events_FOR_ALL_df=final_prototype_df.copy() 492. 493. annual_peak_for_all_FOR_ALL_df=final_prototype_df.copy() 494. average_Yi_FOR_ALL_df=final_prototype_df.copy() 495.# print(i) 496. i+=1 497 threshold loop+=1 498 499.#Calculations of the duration of the over threshold events for the observed and the shuffled series 500.threshold loop=1 501.while threshold_loop<Num_threshold_df:</pre> threshold=threshold_df.iloc[threshold_loop,1] 502. 503. threshold_text=threshold_df.iloc[threshold_loop,0] 504. i = 0 505. while i<Num_cols_filenames:</pre> filename=df_filenames.iloc[i.0] 506. filename1=filename.replace(".mat" 507. 508. df_TS=Get_Matlab_file_TS(filename) 509. df_Info=Get_Matlab_file_Info(filename) 510. # print(df_TS) print(df Info) 511. 512. events_df=Get_events_df(df_TS, threshold) 513.# print(events_df) 514. return_interval_df=Get_return_interval_df(events_df) ``` ``` print(return interval df) 515.# 516. duration_df_obs=Get_duration_df(return_interval_df) duration df obs.columns=['Observed Duration'] 517. 518. duration_df_obs.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration_o f events\\duration_df\\'+threshold_text+'\\'+filename1+' duration_df OBSERVED '+threshold_text) 519.# print(duration_df_obs) ecdf_duration_df=ecdf_duration(duration_df_obs) 520. 521.# print(ecdf_duration_df) ecdf_duration_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of events\\ECDF files\\'+threshold_text+'\\'+filename1+' ECDF OBSERVED '+threshold_text) 522. pickle_file = pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\2. The shuf 523. fled of all 671\\Shuffled_100 '+filename1) 524. j=0 525. while j+3<how_many_shuffled_timeseries+3:</pre> 526. df_TS=pickle_file[['Year', 'Month', 'Day',j+1]].copy() 527.# print(df TS) 528. df withoutNaN=df TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 529. print(df_withoutNaN) df_sorted_noNaN=df_withoutNaN.sort_values(j+1, axis=0, ascending=True, inplace=False, kin 530. d='quicksort', na_position='last') 531. Num_cols = len (df_withoutNaN) 532. position=int(threshold*Num_cols) 533. threshold_value=df_sorted_noNaN.iloc[position,3] 534. events_df=df_withoutNaN 535.# print(events_df) 536. events_df.columns = ['Year', 'Month', 'Day', 'Q'] events_df.drop(events_df.loc[events_df['0'] < threshold_value].index, inplace=True)</pre> 537. 538. print(events df) 539. return_interval_df=Get_return_interval_df(events_df) 540.# print(return interval df) 541. duration_df_shuffled=Get_duration_df(return_interval_df) 542. duration_df_shuffled.columns=['Shuffled Duration'] duration_df_shuffled.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. D 543. uration of events\\duration_df\\'+threshold_text+'\\'+filename1+' duration_df SHUFFLED '+str(j+1)+' +threshold_text) 544.# print(duration df shuffled) ecdf_duration_df=ecdf_duration(duration_df_shuffled) 545 546.# print(ecdf duration df) 547. ecdf_duration_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Durat ion of events\\ECDF files\\'+threshold_text+'\\'+filename1+' ECDF SHUFFLED '+str(j+1)+' '+threshold_t ext) 548. i+=1 549 i+=1 550. threshold loop+=1 ``` 11.4. Plot of the ECDF diagrams of collective risk, return intervals and the duration of the over-threshold events of the selected gauge locations and for all thresholds. ``` import numpy as np 2. import pandas as pd 3. import seaborn as sns 4. from matplotlib import pyplot as plt 5. 6. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} threshold_df = pd.DataFrame(data=threshold_df_data) 7. 8. Num_threshold_df=len(threshold_df) 9 #print(threshold_df) 11. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 12. df_filenames.columns = ['Names'] 13. Num_cols_filenames = len (df_filenames) 14. 15. HU_df=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 360 stations') 16. HU_df=HU_df.drop("DRAINAGE AREA (KM^2)", axis=1) 17. HU_df=HU_df.drop("LONG", axis=1) 18. HU_df=HU_df.drop("LAT", axis=1) 19. Num=len(HU_df) 20. #print(HU_df) 21. i=0 ``` ``` 22. while i<Num: 23. filename=df_filenames.iloc[i,0] filename1=filename.replace(".mat","") 24. 25. if HU_df.iloc[i,1]==filename1: 26. i+=1 27. else: HU_df_df=HU_df.drop(HU_df.index[i]) 28. 29. Num=Num-1 30. HU df=HU df.reset index(drop=True) 31. #print(HU_df) 32. 33. how_many_shuffled_times=100 34. threshold_loop=0 35. while threshold_loop<Num_threshold_df: 36. threshold=threshold df.iloc[threshold loop,0] Export ECDF-S diagram 37. # 38. i=1 39. while j<=Num_cols_filenames:</pre> filename=df_filenames.iloc[j-1,0] 40. filename1=filename.replace(".mat","") 41. 42. HU=str(HU_df.iloc[j-1,0]) 43 Gauge_name=str.upper(HU_df.iloc[j-1,2]) 44. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100 ecdf_S') 45. Observed\\'+threshold+'\\ecdf_S\\ecdf_S '+filename1) 46. sns.set() 47. sns.set_style("ticks") 48. plt.figure(figsize=(8,5),dpi=200) 49. for i in np.arange(1,200,2): ecdf_s=file1.iloc[:,i] 50. 51. colrisk=file1.iloc[:,i-1] plt.plot(colrisk,ecdf_s,label='',color='darkgrey') plt.plot(colrisk,ecdf_s,label='Shuffled',color='darkgrey') 52. 53. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 54. ') plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 55. Threshold '+threshold,fontsize=13, y=1.01) plt.ylabel("ECDF", fontsize=14) 56. 57. plt.xlabel("Collective Risk (S)",fontsize=14) 58. plt.yticks(np.arange(0, 1.1, 0.1)) 59. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 60 61. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 62. plt.tight layout() 63. \\Linear\\ECDF_S\\Linear ECDF_S '+filename1+' '+threshold+'.png',facecolour='white') 64. plt.close() 65. j+=1 66. 67. #Export ECDF-r diagram 68. j=1 while j<=Num_cols_filenames:</pre> 69. 70. filename=df_filenames.iloc[j-1,0] filename1=filename.replace(".mat","") 71. 72. HU=str(HU_df.iloc[j-1,0]) 73. Gauge_name=str.upper(HU_df.iloc[j-1,2]) 74. file 2
= pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\1. Results for the Observed\\'+threshold+'\\ecdf_r\\ecdf_r '+filename1) 75. sns.set() sns.set_style("ticks") 76. 77. plt.figure(figsize=(8,5),dpi=200) 78. i=0 79. while i<100: file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100 ecdf r '+str(i)) ecdf_r=file1.iloc[:,1] 81. 82. retint=file1.iloc[:,0] plt.plot(retint,ecdf_r,label='',color='darkgrey') 83. 84. i+=1 plt.plot(retint,ecdf_r,label='Shuffled',color='darkgrey') 85. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 86. ``` ``` plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 87. Threshold '+threshold,fontsize=13, y=1.01) 88. plt.ylabel("ECDF", fontsize=14) plt.xlabel("Return Interval (r)", fontsize=14) 89. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 90. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 91. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 92. 93. plt.tight_layout() 94. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\5. ECDF diagrams for S and r \\Linear\\ECDF_r\\Linear ECDF_r '+filename1+' '+threshold+'.png',facecolour='white') plt.close() 95. 96. j+=1 97. 98. # Export LOG-LOG ECDF-S diagram 99. i=1 while j<=Num_cols_filenames:</pre> 100 101. filename=df_filenames.iloc[j-1,0] 102. filename1=filename.replace(".mat","") 103. HU=str(HU_df.iloc[j-1,0]) 104. Gauge_name=str.upper(HU_df.iloc[j-1,2]) file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the 105. Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100 ecdf_S') 106. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Observed\\'+threshold+'\\ecdf_S\\ecdf_S '+filename1) 107. sns.set() 108. sns.set_style("ticks") 109. plt.figure(figsize=(8,5),dpi=200) 110. for i in np.arange(1,200,2): ecdf_s=file1.iloc[:,i] 111. 112. colrisk=file1.iloc[:,i-1] plt.plot(colrisk,ecdf_s,label='',color='darkgrey') 113. plt.plot(colrisk,ecdf_s,label='Shuffled',color='darkgrey') 114. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 115. 116. plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - Threshold '+threshold,fontsize=13, y=1.01) plt.ylabel("ECDF", fontsize=14) 117 118. plt.xlabel("Collective Risk (S)", fontsize=14) plt.xscale('log') plt.yscale('log') 119. 120. labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 121. 122. 123 plt.yticks(nthreads, labels) 124. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 125. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 126. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 127. plt.tight layout() 128. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\5. ECDF diagrams for S and r \\LOG\\ECDF_S\\Log ECDF_S '+filename1+' '+threshold+'.png',facecolour='white') 129. plt.close() 130. j+=1 131. 132. #Export LOG-LOG ECDF-r diagram 133. i=1 134 while j<=Num_cols_filenames:</pre> 135. filename=df_filenames.iloc[j-1,0] 136. filename1=filename.replace(".mat","") 137 HU=str(HU_df.iloc[j-1,0]) 138. Gauge_name=str.upper(HU_df.iloc[j-1,2]) file 2 = pd.read_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\1. Results for the Observed\'+threshold+'\ecdf_r\ecdf_r'+filename1) 139. 140. sns.set() 141. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 142. 143. i=0 144. while i<100: file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for 145. the Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100_ecdf_r '+str(i)) ecdf_r=file1.iloc[:,1] 146. 147. retint=file1.iloc[:,0] plt.plot(retint,ecdf_r,label='',color='darkgrey') 148. 149. i+=1 plt.plot(retint,ecdf_r,label='',color='darkgrey') 150. 151. plt.plot(retint,ecdf_r,label='Shuffled',color='darkgrey') ``` ``` 152. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r ') plt.title(Gauge name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 153. Threshold '+threshold, fontsize=13, y=1.01) 154. plt.ylabel("ECDF", fontsize=14) 155. plt.xlabel("Return Interval (r)", fontsize=14) plt.xscale('log') 156. plt.yscale('log') plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 157. 158. 159. 160. plt.yticks(nthreads, labels) 161. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 162. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 163. 164. plt.tight layout() plt.savefig('C:\Users\Konstantinos\Documents\THESIS\Python\5. ECDF diagrams for S and r 165 \\LOG\\ECDF_r\\Log ECDF_r '+filename1+' '+threshold+'.png',facecolour='white') 166. plt.close() 167. j+=1 168. Export 1/(1-f) ECDF-S diagram 169.# 170 j=1 171. while j<=Num_cols_filenames:</pre> 172. filename=df filenames.iloc[j-1,0] filename1=filename.replace(".mat","") 173. 174. HU=str(HU_df.iloc[j-1,0]) 175. Gauge_name=str.upper(HU_df.iloc[j-1,2]) file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the 176. Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100 ecdf_S') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Observed\\'+threshold+'\\ecdf_S\\ecdf_S '+filename1) 178. sns.set() 179. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 180. 181. for i in np.arange(1,200,2): 182. ecdf s=1/(1-file1.iloc[:,i]) colrisk=file1.iloc[:,i-1] 183 plt.plot(colrisk,ecdf_s,label='',color='darkgrey') 184. plt.plot(colrisk,ecdf_s,label='Shuffled',color='darkgrey') 185. plt.plot(file2.iloc[:,0],1/(1- 186. file2.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' 187. Threshold '+threshold,fontsize=13, y=1.01) 188. plt.ylabel("1/(1-ECDF)", fontsize=14) 189. plt.xlabel("Collective Risk (S)",fontsize=14) 190.# plt.yticks(np.arange(0, 1.1, 0.1)) 191. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 192. plt.legend(frameon=1,fancybox=1,bbox to anchor=(1.005, 0.215),loc=1,ncol=1,fontsize=14) plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 193 194. plt.tight lavout() plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\5. ECDF diagrams for S and r \\1--(1-ECDF)\\ECDF_S\\1--(1-ECDF) ECDF_S '+filename1+' '+threshold+'.png',facecolour='white') 195. 196. plt.close() 197. j+=1 198 199. #Export 1/(1-f) ECDF-r diagram 200. i=1 201 while j<=Num_cols_filenames:</pre> 202. filename=df_filenames.iloc[j-1,0] 203. filename1=filename.replace(".mat","") 204 HU=str(HU_df.iloc[j-1,0]) Gauge_name=str.upper(HU_df.iloc[j-1,2]) 205. . file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Observed\\'+threshold+'\\ecdf_r\\ecdf_r '+filename1) 206. 207. sns.set() 208. sns.set_style("ticks") 209 plt.figure(figsize=(8,5),dpi=200) 210. i=0 211. while i<100: file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for 212. the Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename1+' 100_ecdf_r '+str(i)) 213. ecdf_r=1/(1-file1.iloc[:,1]) 214. retint=file1.iloc[:,0] 215. plt.plot(retint,ecdf_r,label='',color='darkgrey') ``` ``` 216. i+=1 plt.plot(retint,ecdf_r,label='Shuffled',color='darkgrey') 217. plt.plot(file2.iloc[:,0],1/(1- 218. file2.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 219. Threshold '+threshold,fontsize=13, y=1.01) 220. plt.ylabel("1/(1-ECDF)", fontsize=14) 221. plt.xlabel("Return Interval (r)",fontsize=14) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1, 1),loc=1,ncol=1,fontsize=14) 222. 223. 224. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 225. plt.tight_layout() 226. \\1--(1-ECDF)\\ECDF_r\\1--(1-ECDF) ECDF_r '+filename1+' '+threshold+'.png',facecolour='white') 227. plt.close() 228 j+=1 229. 230. #Export ECDF-Duration diagram 231. j=1 232. while j<=Num_cols_filenames:</pre> 233. filename=df_filenames.iloc[j-1,0] 234 filename1=filename.replace(".mat","") 235. HU=str(HU_df.iloc[j-1,0]) 236. Gauge_name=str.upper(HU_df.iloc[j-1,2]) file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of eve 237. nts\\ECDF files\\'+threshold+'\\'+filename1+' ECDF OBSERVED '+threshold) 238. sns.set() sns.set_style("ticks") 239. 240. plt.figure(figsize=(8,5),dpi=200) 241. shuffle index=1 242. while shuffle_index<=how_many_shuffled_times:</pre> 243. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of events\\ECDF files\\'+threshold+'\\'+filename1+' ECDF SHUFFLED '+str(shuffle_index)+' '+threshold) plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='',color='darkgrey') 244. 245. shuffle_index+=1 246. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Shuffled',color='darkgrey') plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 247. plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 248. Threshold '+threshold,fontsize=13, y=1.01) 249. plt.ylabel("ECDF", fontsize=14) 250. plt.xlabel("Duration of events (days)",fontsize=14) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 251 252. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1, 0.22),loc=1,ncol=1,fontsize=14) 253.
plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 254. plt.tight_layout() 255. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of events\\Plot s\\Linear\\Linear ECDF Duration '+filename1+' '+threshold+'.png',facecolour='white') 256 plt.close() 257. i+=1 258. 259. #Export LOG-LOG ECDF-Duration diagram 260. j=1 261. while j<=Num cols filenames:</pre> 262. filename=df_filenames.iloc[j-1,0] filename1=filename.replace(".mat","") 263. 264. HU=str(HU_df.iloc[j-1,0]) Gauge_name=str.upper(HU_df.iloc[j-1,2]) 265 file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of eve 266. nts\\ECDF files\\'+threshold+'\\'+filename1+' ECDF OBSERVED '+threshold) 267 sns.set() 268. sns.set_style("ticks") 269. plt.figure(figsize=(8,5),dpi=200) 270 shuffle_index=1 while shuffle_index<=how_many_shuffled_times:</pre> 271. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of events\\ECDF files\\'+threshold+'\\'+filename1+' ECDF SHUFFLED '+str(shuffle_index)+' '+threshold) 272. 273. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='',color='darkgrey') 274. shuffle index+=1 plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Shuffled',color='darkgrey') 275. plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 276. plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 277. Threshold '+threshold,fontsize=13, y=1.01) ``` ``` plt.ylabel("ECDF", fontsize=14) 278. plt.xlabel("Duration of events (days)",fontsize=14) 279. 280. plt.xscale('log') plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] 281. 282. nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 283. 284. plt.yticks(nthreads, labels) 285. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox to anchor=(1, 0.22),loc=1,ncol=1,fontsize=14) 286. 287. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 288. plt.tight_layout() 289. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\15. Duration of events\\Plot s\\LOG\\LOG ECDF Duration '+filename1+' '+threshold+'.png',facecolour='white') 290. plt.close() 291. j+=1 292 293. #Export 1/(1-f) ECDF-Duration diagram 294. j=1 295. while j<=Num_cols_filenames:</pre> filename=df_filenames.iloc[j-1,0] 296. filename1=filename.replace(".mat","") 297. 298 HU=str(HU_df.iloc[j-1,0]) 299. Gauge_name=str.upper(HU_df.iloc[j-1,2]) 300. file 1=pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\15. Duration of events and the sum of nts\\ECDF files\\'+threshold+'\\'+filename1+' ECDF OBSERVED '+threshold) 301. sns.set() 302. sns.set_style("ticks") 303. plt.figure(figsize=(8,5),dpi=200) 304. shuffle_index=1 305. while shuffle index<=how many shuffled times:</pre> file 2 = pd.read_pickle('C:\Vors\Konstantinos\Documents\THESIS\Python\15. Duration of the property pr 306. events\\ECDF files\\'+threshold+'\\'+filename1+' ECDF SHUFFLED '+str(shuffle_index)+' '+threshold) plt.plot(file2.iloc[:,0],1/(1-file2.iloc[:,1]),label='',color='darkgrey') 307. 308. shuffle index+=1 309. plt.plot(file2.iloc[:,0],1/(1-file2.iloc[:,1]),label='Shuffled',color='darkgrey') 310. plt.plot(file1.iloc[:,0],1/(1- file1.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') plt.title(Gauge_name+'\nGauge ID: '+filename1+' - Hydrological Unit: '+HU+' - 311. Threshold '+threshold, fontsize=13, y=1.01) 312. plt.ylabel("1/(1-ECDF)", fontsize=14) plt.xlabel("Duration of events (days)",fontsize=14) 313. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 314. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1.005, 1.008),loc=1,ncol=1,fontsize=14) 315 316. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 317. plt.tight layout() \verb|plt.savefig('C:\Users\Konstantinos\Documents\THESIS\Python\15. Duration of events\Plot | Plot 318. s\\1--(1-ECDF)\\1--(1-ECDF) ECDF Duration '+filename1+' '+threshold+'.png',facecolour='white') 319. plt.close() 320. j+=1 321. 322. threshold loop+=1 ``` ### 11.5. Heatmaps of the Spearman and Pearson correlation of collective risk between the gauge locations of every Hydrological Unit (region) for all thresholds. ``` import numpy as np import pandas as pd import seaborn as sns 4. from matplotlib import pyplot as plt 5. from scipy.stats import pearsonr 6. from scipy.stats import spearmanr 7. 8. def CorrMtx(df, region_index_str, threshold_text, correlation_label, dropDuplicates = True): 9. if dropDuplicates: 10. mask = np.zeros_like(df, dtype=np.bool) 11. mask[np.triu_indices_from(mask)] = True 12. sns.set_style(style = 'white') sns.set_style("ticks") 13. 14. fig, ax = plt.subplots(figsize=(20,15),dpi=200) 15. sns.heatmap(df, vmin=-1, vmax=1, cmap=plt.cm.get_cmap('RdBu', 8), 16. square=True, ``` ``` linewidth=.5, cbar_kws={"shrink": .7, "ticks":[-1,-0.75,-0.5,- 17. 0.25,0,0.25,0.5,0.75,1}, ax=ax) 18. 19. plt.title(correlation_label+' correlation for basin '+region_index_str+' - Threshold '+threshold_text, fontdict={'fontsize': 30,'verticalalignment':'top'}) plt.xlabel("Stations", fontsize=25,labelpad=15) plt.ylabel("Stations", fontsize=25,labelpad=15) plt.tick_params(axis='both',which='both',labelsize=15,zorder=20) 20. 21. 22. 23. if len(df)>50: 24. plt.tick_params(axis='both',which='both',labelsize=10,zorder=20) 25. plt.xticks(rotation=90) 26. plt.yticks(rotation=0) 27. cbar = ax.collections[0].colorbar 28. cbar.ax.tick_params(labelsize=17) cbar.set_label('Correlation coefficient', fontsize=19, labelpad=20) 29. 30 plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Correlation b etween 360 stations\\Basins\\Heatmap ('+correlation_label+') in Basin '+region_index_str+' ('+thresho ld_text+') - no zeros') 31. plt.close() 32. 33. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 34. threshold_df = pd.DataFrame(data=threshold_df_data) 35. Num_threshold_df=len(threshold_df) 36. #print(threshold df) 37. 38. threshold_loop=0 39. while threshold_loop<Num_threshold_df: threshold=threshold_df.iloc[threshold_loop,1] 40. 41. threshold_text=threshold_df.iloc[threshold_loop,0] 42. file=pd.read_pickle('C:\Wsers\Konstantinos\Documents\THESIS\Python\1. Results for the Observable of 43. ved\\'+threshold_text+'\\Collective Risk S CAMELS 1980-2014') 44. file=file.drop(file.index[35]) 45. file=file.drop('Year', axis=1) 46. 47. #print(df) pearson_df=file.corr(method ='pearson') 48 49. spearman df=file.corr(method ='spearman') 50. #print(pearson_df) 51. 52. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') Num_cols=len(df_filenames) 53. 54. i=0 55. while i<Num cols: 56. filename=df_filenames.iloc[i,0] filename1=filename.replace(".mat","") 57. 58. df filenames.iloc[i,0]=filename1 59 i+=1 60. length=len(pearson_df) 61. 62. i=0 while i<length:</pre> 63. 64. y=0 65. k=0 r=pearson_df.index[i] 66. 67. while y<Num cols: filename1=df_filenames.iloc[y,0] 68. if filename1==r: 69. 70. k=1 71. y=Num_cols 72. 73. if k==1: 74. i+=1 75. 76. pearson df=pearson df.drop([r], axis=1) pearson_df=pearson_df.drop([r], axis=0) 77. 78. spearman_df=spearman_df.drop([r], axis=1) 79. spearman_df=spearman_df.drop([r], axis=0) length=length-1 80. pearson_df=pearson_df.sort_index(axis=0) 81. 82. pearson df=pearson df.sort index(axis=1) 83. spearman_df=spearman_df.sort_index(axis=0) 84. spearman_df=spearman_df.sort_index(axis=1) ``` ``` pearson df.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Corr elation between 360 stations\\Pearson for observed S between 360 stations ('+threshold_text+') - with zeros') 86. spearman df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Cor relation between 360 stations\\Spearman for observed S between 360 stations ('+threshold_text+') - with zeros') 87. # print(pearson df) 88. # print(spearman_df) 89. 90. ii=0 91. while ii<Num_cols:</pre> 92. jj=0 93. while jj<Num_cols:</pre> 94. pearson_df.iloc[ii,jj]=0.0 95. spearman_df.iloc[ii,jj]=0.0 96 jj+=1 97. ii+=1 98. 99. i=0 while i<Num_cols:</pre> 100. filename1=df_filenames.iloc[i,0] 101. 102 i=0 103. while j<Num cols: 104. filename2=df_filenames.iloc[j,0] s1_df=file[filename1] 105. 106. s2_df=file[filename2] 107. Num_s=len(s2_df) 108. k=0 109. while k<Num_s: 110. x1=s1 df.iloc[k] x2=s2_df.iloc[k] 111. 112. if (x1==0) or (x2==0): s1_df=s1_df.drop(s1_df.index[k]) 113. 114. s2_df=s2_df.drop(s2_df.index[k]) 115. s1_df=s1_df.reset_index(drop=True) 116. s2 df=s2 df.reset index(drop=True) Num_s=Num_s-1 117 118. else: 119. k+=1 120. corr1,p_value1=spearmanr(s1_df, s2_df) 121. spearman_df.iloc[i,j]=corr1 122. corr2,p value1=pearsonr(s1 df, s2 df) pearson_df.iloc[i,j]=corr2 123 124. j+=1 125.# print(i) 126. i+=1 spearman_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Cor 127. relation between 360 stations\\Spearman for observed S between 360 stations ('+threshold text+') - no zeros') 128. pearson_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Corr elation between 360 stations\\Pearson for observed S between 360 stations ('+threshold text+') - no zeros') 129.# print(spearman_df) 130.# print(pearson df) 131 #Print correlation heat-map for every basin's stations 132. spearman_df=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\ 133. S Correlation between 360 stations\\Spearman for observed S between 360 stations ('+threshold_text+') 134. pearson_df=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Correlation between 360 stations\\Pearson for observed S between 360 stations ('+threshold_text+') no zeros') 135. region_index=1 136. while region_index<19:</pre> region_index_str=str(region_index) 137. 138. '+region_index_str+' - All stations with criteria (1980-2014 and
10% missing values') 139. Num_stations_in_region=len(stations_in_region) 140. pearson_df1=pearson_df.copy() 141. spearman_df1=spearman_df.copy() 142. i=0 143. Num=len(pearson_df) 144. while i<Num:</pre> 145. j=0 ``` ``` 146. k=0 147. r=pearson_df1.index[i] 148. while j<Num stations in region:</pre> 149. station_name=stations_in_region.iloc[j,1] 150. if station_name==r: 151. k=1 152. j=Num_stations_in_region 153. j+=1 154. if k==1: 155. i+=1 156. else: 157. pearson_df1=pearson_df1.drop(r, axis=0) pearson_df1=pearson_df1.drop(r, axis=1) 158. 159. spearman_df1=spearman_df1.drop(r, axis=0) 160. spearman df1=spearman df1.drop(r, axis=1) 161 Niim=Niim-1 162. spearman_df1.to_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\6. Correlations\V in the content of S Correlation between 360 stations\\Basins\\Dfs\\Spearman for observed S in basin '+region_index str+ ('+threshold_text+') - no zeros') 163. pearson_df1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\S Correlation between 360 stations\\Basins\\Dfs\\Pearson for observed S in basin '+region_index str+ ('+threshold_text+') - no zeros') 164. correlation label='Spearman' 165. CorrMtx(spearman_df1, region_index str, threshold_text, correlation_label, dropDuplicates = T rue) 166. correlation_label='Pearson' CorrMtx(pearson_df1, region_index_str, threshold_text, correlation_label, dropDuplicates = Tr 167. ue) 168. region_index+=1 169. threshold loop+=1 ``` # 11.6. USA map with Spearman, Pearson and Kendall correlation coefficient between *Average*Yi and the Number of the over-threshold events N of the selected gauge locations and for all thresholds ``` import numpy as np 2. import pandas as pd import seaborn as siis from matplotlib import pyplot as plt 5. import geopandas as gpd6. from scipy.stats import pearsonr 7. from scipy.stats import spearmanr 8. from scipy.stats import kendalltau 9. from mpl_toolkits.axes_grid1 import make_axes_locatable 10. 11. def Map_plot(corr_coef, threshold_text, correlation_label, zeros_label): 12. shapefile='C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\\States\\states.shp 13. stations1=gpd.read_file(shapefile) ax=stations1.plot(color='white', edgecolor='black',linewidth=0.3, figsize=(16,16)) 14. 15. ax.set_xlim(xmin=-130, xmax=-65) ax.set ylim(ymin=20, ymax=60) 16. 17. Stations=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 671 stations') 18. Num_stations=len(Stations) 19. lat_lon=corr_coef.copy() lat_lon['column']=corr_coef['Corr. coef.'] 20. lat_lon.columns=['Name','Lat','Lon'] 21. Num_lat_lon=len(lat_lon) 22. 23. #print(lat_lon) 24. i=0 j=0 25. while i<Num_lat_lon:</pre> 26. 27. i=0 28 while j<Num_stations:</pre> if lat_lon.iloc[i,0]==Stations.iloc[j,1]: 29. 30. lat_lon.iloc[i,1]=Stations.iloc[j,3] 31. lat_lon.iloc[i,2]=Stations.iloc[j,4] 32. ``` ``` 33. i+=1 34. lat_lon['Corr. coef.']=corr_coef['Corr. coef.'] 35. #print(lat lon) 36. x=lat_lon.iloc[:,2] y=lat_lon.iloc[:,1] 37. plt.scatter(x,y, c=lat_lon.iloc[:,3], marker='o', edgecolor='black', linewidth=0.2, alpha=1, cmap =plt.cm.get_cmap('RdYlGn', 8)) 38. 39. plt.clim(-1, 1); plt.title(correlation label+' correlation coefficient between Average Yi and Number of events N - 40. Threshold '+threshold_text,fontsize=19, y=1.05) plt.xlabel('Longitude',fontsize=18) plt.ylabel('Latitude',fontsize=18) plt.tick_params(axis='both',which='both',labelsize=17,zorder=20) 41. 42. 43. 44. 45. divider = make axes locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) 46 47. 48. v1 = np.linspace(-1, 1, 9) cbar = plt.colorbar(ticks=v1, cax=cax) 49. 50. cbar.ax.tick_params(labelsize=17) cbar.set_label('Correlation coefficient', fontsize=17, labelpad=20) 51. 52. 53. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correlation for Average Yi and N\\Observed Average Yi-N '+correlation_label+' correlation ('+threshold_text+') - '+zeros_label+'.png') 54. 55. 56. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 57. threshold_df = pd.DataFrame(data=threshold_df_data) 58. Num threshold df=len(threshold df) 59. #print(threshold_df) 60. 61. threshold_loop=0 62. while threshold_loop<Num_threshold_df: threshold=threshold_df.iloc[threshold_loop,1] 63. 64. threshold text=threshold df.iloc[threshold loop,0] 65 66. #File for Correlation coefficient of Average Yi and Number of Events per year N 67. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Obse rved\\'+threshold_text+'\\Annual Average Yi CAMELS 1980-2014') Yi=file1.drop(file1.index[35]) 68. 69. Yi=Yi.drop(['Year'], axis=1) 70. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Obse rved\\'+threshold_text+'\\Number of events N CAMELS 1980-2014') 71. N=file2.drop(file2.index[35]) 72. N=N.drop(['Year'], axis=1) 73. #print(Yi) 74. #print(N) 75. 76. corr_coef=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 77. pearson corr coef=corr coef.copy() 78. spearman_corr_coef=corr_coef.copy() 79. kendall_corr_coef=corr_coef.copy() 80. Num_cols=len(corr_coef) 81. i=0 82. while i<Num cols:</pre> filename=corr coef.iloc[i,0] 83. filename1=filename.replace(".mat","") 84. 85. pearson_corr_coef.iloc[i,0]=filename1 86. spearman_corr_coef.iloc[i,0]=filename1 kendall_corr_coef.iloc[i,0]=filename1 87. 88. i+=1 89. #Excluding the zero values on the correlation 90. 91. zeros label='without zeros' 92. i=0 93. while i<Num_cols: 94. filename=pearson_corr_coef.iloc[i,0] 95. N_column=N[filename] Yi_column=Yi[filename] 96. 97. j=0 98. k=34 99. while j<=k:</pre> ``` ``` 100. if N column.iloc[j]==0: N_column=N_column.drop(N_column.index[j]) 101. 102. Yi column=Yi column.drop(Yi column.index[j]) 103. k=k-1 else: 104. j+=1 105. 106. 107. corr1,p_value1=pearsonr(N_column, Yi_column) pearson corr coef.iloc[i,1]=corr1 108. 109. corr2,p_value1=spearmanr(N_column, Yi_column) 110. spearman_corr_coef.iloc[i,1]=corr2 111. corr3,p_value1=kendalltau(N_column, Yi_column) 112. kendall_corr_coef.iloc[i,1]=corr3 113. i+=1 114.# print(pearson corr coef) 115.# print(spearman corr coef) 116.# print(kendall corr coef) 117. pearson_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\ \Correlation for Average Yi and N\\Observed Average Yi-N Pearson correlation ('+threshold_text+') without zeros') spearman_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations \\Correlation for Average Yi and N\\Observed Average Yi-N Spearman correlation ('+threshold_text+') - without zeros') 119. kendall corr coef.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\ \Correlation for Average Yi and N\\Observed Average Yi-N Kendall correlation ('+threshold_text+') - without zeros') 120. correlation_label='Pearson' 121. 122. Map_plot(pearson_corr_coef, threshold_text, correlation_label, zeros_label) 123. correlation label='Spearman 124. Map_plot(spearman_corr_coef, threshold text, correlation_label, zeros_label) 125. correlation_label='Kendall' 126. Map_plot(kendall_corr_coef, threshold_text, correlation_label, zeros_label) 127. 128. threshold_loop+=1 129. 130.#Cumulative histograms for Pearson's and Spearman's correlation coefficients 131.pearson_corr_coef1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Pearson correlation (90%) without zeros') 132.spearman_corr_coef1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlatio ns\\Correlation for Average Yi and N\\Observed Average Yi-N Spearman correlation (90%) without zeros') 133.kendall_corr_coef1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Kendall correlation (90%) without zeros') 134.pearson_corr_coef2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Pearson correlation (95%) without zeros') 135.spearman_corr_coef2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlatio ns\\Correlation for Average Yi and N\\Observed Average Yi-N Spearman correlation (95%) without zeros') 136.kendall_corr_coef2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Kendall correlation (95%) without zeros') 137.pearson_corr_coef3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Pearson correlation (98%) without zeros') 138.spearman_corr_coef3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlatio ns\\Correlation for Average Yi and N\\Observed Average Yi-N Spearman correlation (98%) without zeros') 139.kendall_corr_coef3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Kendall correlation (98%) without zeros') 140.pearson_corr_coef4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Pearson correlation (99%) without zeros') 141.spearman_corr_coef4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlatio ns\\Correlation for Average Yi and N\\Observed Average Yi-N Spearman correlation (99%) without zeros') 142.kendall_corr_coef4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlation s\\Correlation for Average Yi and N\\Observed Average Yi-N Kendall correlation (99%) without zeros') 143. ``` ``` 144.plt.figure(figsize=(8,5),dpi=200) 145.plt.style.use('seaborn-white') 146.plt.xlabel('Correlation
coefficient') 147.plt.ylabel('Cumulative probability') 148.plt.title('Cumulative histogram curves of the correlation coefficient \nof Average Yi and Number of E vents N for the 360 stations') 149.sns.distplot(pearson_corr_coef1.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 150. kde_kws=dict(cumulative=True), hist = False, color="lightsalmon", label="Pearson 90%" 151.sns.distplot(pearson_corr_coef2.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 152. kde_kws=dict(cumulative=True), hist = False, color="red", label="Pearson 95%") 153.sns.distplot(pearson_corr_coef3.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 154. kde_kws=dict(cumulative=True), hist = False, color="indianred", label="Pearson 98%") 155.sns.distplot(pearson_corr_coef4.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True), hist = False, color="darkred", label="Pearson 99%") 156 157. 158.sns.distplot(spearman_corr_coef1.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True), hist = False, color="skyblue", label="Spearman 90%") 159. 160.sns.distplot(spearman_corr_coef2.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True),hist = False, color="royalblue", label="Spearman 95%") 162.sns.distplot(spearman_corr_coef3.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 163. kde_kws=dict(cumulative=True),hist = False, color="blue", label="Spearman 98%") 164.sns.distplot(spearman_corr_coef4.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 165. kde_kws=dict(cumulative=True),hist = False, color="navy", label="Spearman 99%") 166. 167.sns.distplot(kendall_corr_coef1.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 168. kde_kws=dict(cumulative=True), hist = False, color="lightgreen", label="Kendall 90%") 169.sns.distplot(kendall_corr_coef2.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True),hist = False, color="limegreen", label="Kendall 95%") 171.sns.distplot(kendall_corr_coef3.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True), hist = False, color="forestgreen", label="Kendall 98%" 172. 173.sns.distplot(kendall_corr_coef4.iloc[:,1], bins=100,hist_kws=dict(cumulative=True), 174. kde_kws=dict(cumulative=True), hist = False, color="green", label="Kendall 99%") 175.#plt.xlim(-1, 1, 0.1) 176.plt.xticks(np.arange(-1, 1.01, 0.2)) 177.plt.yticks(np.arange(0, 1.01, 0.1)) 178.plt.grid(axis='both', alpha=0.75) 179.plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1, 0.6),loc=1,ncol=1,fontsize=9) 180.plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correlation for Ave rage Yi and N\\Cumulative histogram curves of Pearson, Spearman and Kendall (all thresholds).png') ``` 11.7. Box plot of the correlation coefficient (Spearman, Pearson and Kendall) between the *Average Yi* and the Number of the over-threshold events *N* of the selected gauge locations, considering observed and shuffled data, and for all thresholds. ``` import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import pearsonr 5. from scipy.stats import spearmanr 6. from scipy.stats import kendalltau 8. def boxplot(correlation label, x, filename): file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correl 9. ation for Average Yi and N\\Shuffled\\Shuffled Average Yi-N '+correlation_label+' correlation (90%) - without zeros') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correl ation for Average Yi and N\\Shuffled\\Shuffled Average Yi-N '+correlation_label+' correlation (95%) - 10. without zeros') file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correlation for Average Yi and N\\Shuffled\\Shuffled Average Yi-N '+correlation_label+' correlation (98%) - 11. without zeros') ``` ``` file4=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correl ation for Average Yi and N\\Shuffled\\Shuffled Average Yi-N '+correlation_label+' correlation (99%) - without zeros') 13. 14. # Create data 15. collectn_1 = file1.iloc[x,1:100] collectn_11 = file1.iloc[x,101] 16. 17. collectn_2 = file2.iloc[x,1:100] collectn 22 = file2.iloc[x,101] 18. collectn_3 = file3.iloc[x,1:100] 19. 20. collectn_33 = file3.iloc[x,101] 21. collectn_4 = file4.iloc[x,1:100] collectn_44 = file4.iloc[x,101] 22. 23. 24. # combine these different collections into a list 25. data_to_plot = [collectn_1, collectn_11, collectn_2, collectn_22, collectn_3, collectn_33, collectn_3 tn 4, collectn 44] 26. 27. # Create a figure instance 28. fig=plt.figure(figsize=(11,6),dpi=200) 29. ax = fig.add_subplot(111) 30. medianprops = dict(linestyle='-', linewidth=2, color='red') 31. ax.set axisbelow(True) ax.set_title('Boxplot of the '+correlation_label+' correlation coefficient between \nAverage Yi a nd Number of Events (N) (Gauge ID: '+filename+')',fontsize=14) ax.set_ylabel(correlation_label+' correlation coefficient',fontsize=13) 32. 33. 34. ax.tick_params(axis='x', labelsize=10,zorder=20,rotation=0) bp = ax.boxplot(data_to_plot,medianprops=medianprops,patch_artist=True,labels=['90% Shuffled','90 35. % Observed', '95% Shuffled', '95% Observed', '98% Shuffled', '98% Observed', '99% Shuffled', '99% Observed']) 36. ax.grid(color='black', linestyle='-', linewidth=0.1) colors = ['skyblue','blue', 'moccasin','green', 'lightsalmon','tan', 'tan','pink'] for patch, color in zip(bp['boxes'], colors): 37. 38. patch.set_facecolor(color) 39. 40. plt.yticks(np.arange(-0.6, 1.01, 0.1)) 41. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correlation for Average Yi and N\\Boxplots\\'+correlation_label+' Boxplot '+filename+'.png') 42. plt.close() 43. 44. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 45. threshold_df = pd.DataFrame(data=threshold_df_data) 46. Num threshold df=len(threshold df) 47. #print(threshold_df) 48. 49. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 50. Num_cols_filenames = len (df_filenames) 51. i=0 52. while i<Num_cols_filenames:</pre> filename=df_filenames.iloc[i,0] 53. 54. filename1=filename.replace(".mat","") 55. df_filenames.iloc[i,0]=filename1 i+=1 57. df filenames1=df filenames.copy() 58. df1=df_filenames.copy() 59. i=1 60. while i<101: 61. i_str=str(i) df_filenames1.columns = [i_str] 62. 63. df1[i_str]=df_filenames1[i_str] 64. i+=1 65. #print(df1) 66. #print(df_filenames) 67. 68. pearson_corr_coef=df1.copy() 69. spearman_corr_coef=df1.copy() 70. kendall_corr_coef=df1.copy() 72. 73. threshold_loop=0 74. while threshold_loop<Num_threshold_df: 75. threshold=threshold df.iloc[threshold loop,1] 76. threshold_text=threshold_df.iloc[threshold_loop,0] ``` ``` 78. #Excluding the zero values on the correlation 79 i=0 80. while i<Num cols filenames:</pre> 81. filename=df_filenames.iloc[i,0] Yi=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shu 82. ffled of the timeseries with criteria\\'+threshold_text+'\\'+filename+' Annual Average Yi for 100 Sh uffled') 83. N=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shuf fled of the timeseries with criteria\\'+threshold text+'\\'+filename+' Number of events N for 100 Shu ffled') 84. Yi=Yi.drop(['Year'], axis=1) 85. N=N.drop(['Year'], axis=1) 86. j=0 87. while j<100: 88. Yi column=Yi[j] 89 N_column=N[j] z=0 90. 91. k=34 92. while z<=k:</pre> 93. if N_column.iloc[z]==0: N_column=N_column.drop(N_column.index[z]) 94. 95. Yi_column=Yi_column.drop(Yi_column.index[z]) 96. N_column=N_column.reset_index(drop=True) 97. Yi column=Yi column.reset index(drop=True) 98. k=k-1 99. else: 100. z+=1 101. corr1,p_value1=pearsonr(N_column, Yi_column) 102. pearson_corr_coef.iloc[i,j+1]=corr1 103. corr2,p value1=spearmanr(N column, Yi column) spearman_corr_coef.iloc[i,j+1]=corr2 104. 105. corr3,p_value1=kendalltau(N_column, Yi_column) kendall_corr_coef.iloc[i,j+1]=corr3 106. 107. j+=1 108. i+=1 109.# print(pearson corr coef) 110.# print(spearman_corr_coef) 111.# print(kendall corr coef) observed_pearson=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlati 112. ons\\Correlation for Average Yi and N\\Observed Average Yi- N Pearson correlation ('+threshold_text+') - without zeros') pearson corr coef['Observed']=observed pearson['Corr. coef.'] observed_spearman=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlat 114 ions\\Correlation for Average Yi and N\\Observed Average Yi- N Spearman correlation ('+threshold_text+') - without zeros') spearman_corr_coef['Observed']=observed_spearman['Corr. coef.'] 115. observed_kendall=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlati 116. ons\\Correlation for Average Yi and N\\Observed Average Yi- N Kendall correlation ('+threshold_text+') - without zeros') 117. kendall_corr_coef['Observed']=observed_kendall['Corr. coef.'] pearson_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\ 118. \Correlation for Average Yi and N\\Shuffled\\Shuffled Average Yi- N Pearson correlation ('+threshold_text+') - without zeros') spearman_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations 119. \\Correlation for Average Yi and N\\Shuffled\\Shuffled Average Yi- N Spearman correlation ('+threshold_text+') - without zeros') kendall_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\6. Correlations\\Correlation for Average Yi and N\\Shuffled\\Shuffled Average Yi- N Kendall correlation ('+threshold_text+') - without zeros') 121. 122. threshold_loop+=1 123. 124.i=0 125.while i<Num_cols_filenames: filename=df_filenames.iloc[i,0] 126. 127. correlation label='Spearman' 128. boxplot(correlation_label, i, filename) 129.
correlation_label='Pearson' boxplot(correlation_label, i, filename) correlation_label='Kendall' 130. 131. boxplot(correlation_label, i, filename) 132. 133. ``` 11.8. Plot of the ECDF of annual peak of observed and shuffled, as well as the GEV distribution of observed and shuffled for all gauge locations and all thresholds. ``` import numpy as np 2. import pandas as pd from scipy.stats import genextreme as gev 3. 4. import seaborn as sns from matplotlib import pyplot as plt 5. 6. 7. def ecdf_annual_maxima(file,filename): ecdf_annual_maxima=file[filename] 8. 9. ecdf_annual_maxima_df = pd.DataFrame(ecdf_annual_maxima) if len(ecdf annual maxima)==36: 10. ecdf_annual_maxima_df=ecdf_annual_maxima_df.drop(ecdf_annual_maxima_df.index[35]) 11. 12. ecdf_annual_maxima_df.columns = ['Large sorted Maxima'] 13. ecdf_annual_maxima_df=ecdf_annual_maxima_df.sort_values(by=['Large_sorted_Maxima'],ascending=Fals e) 14. ecdf_annual_maxima_df=ecdf_annual_maxima_df.reset_index(drop=True) 15. Num cols=len(ecdf annual maxima df) 16. x=ecdf_annual_maxima_df.copy() 17. ecdf_annual_maxima_df['ECDF']=x['Large sorted Maxima'] 18. j=0 19. while j<Num_cols:</pre> 20. ecdf_annual_maxima_df.iloc[j,1]=1-((ecdf_annual_maxima_df.index[j]+1)/(Num_cols+1)) 21. j+=1 22. return ecdf_annual_maxima_df 23. 24. def ecdf_annual_maxima_shuffled(file,i): 25. ecdf_annual_maxima=file.iloc[:,i] 26. ecdf_annual_maxima_df = pd.DataFrame(ecdf_annual_maxima) 27. if len(ecdf annual maxima)==36: ecdf_annual_maxima_df=ecdf_annual_maxima_df.drop(ecdf_annual_maxima_df.index[35]) 28. 29. ecdf_annual_maxima_df.columns = ['Large sorted Maxima'] 30. ecdf_annual_maxima_df=ecdf_annual_maxima_df.sort_values(by=['Large_sorted_Maxima'],ascending=Fals e) 31. ecdf_annual_maxima_df=ecdf_annual_maxima_df.reset_index(drop=True) 32. Num cols=len(ecdf annual maxima df) 33. x=ecdf_annual_maxima_df.copy() 34. ecdf_annual_maxima_df['ECDF']=x['Large sorted Maxima'] 35. i=0 36. while j<Num_cols:</pre> ecdf_annual_maxima_df.iloc[j,1]=1-((ecdf_annual_maxima_df.index[j]+1)/(Num_cols+1)) 37. 38. j+=1 39. return ecdf_annual_maxima_df 40. 41. 42. # Creation of ECDF dataframe files for annual peak for the observed and shuffled time series 43. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 44. Num_cols = len (df_filenames) 45. i=0 46. while i<Num_cols: 47. filename=df_filenames.iloc[i,0] filename1=filename.replace(".mat","") 48. df filenames.iloc[i,0]=filename1 49. 50. i+=1 51. file=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Observed\ \95%\\Annual Peak CAMELS 1980-2014') 52. 53. i=1 54. while i<Num cols+1: 55. filename=df_filenames.iloc[i-1,0] 56. #For observed ecdf_annual_maxima_df=ecdf_annual_maxima(file,filename) 57. 58. # print(ecdf_annual_maxima_df) ecdf_annual_maxima_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREM 59. E\\Observed\\'+filename+' ECDF annual maxima OBSERVED') #For shuffled 60. 61. file shuffled=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\4. Results for the Shuffled of the timeseries with criteria\\95%\\'+filename+' Annual Peak for 100 Shuffled') j=1 #1st shuffled ``` ``` 63. 0=2 64. while j<101: 65. if j==1: ecdf_annual_maxima_shuffled_df=ecdf_annual_maxima_shuffled(file_shuffled,j) 66. else: 67. 68. ecdf_annual_maxima_shuffled_df_1=ecdf_annual_maxima_shuffled(file_shuffled,j) ecdf_annual_maxima_shuffled_df[o]=ecdf_annual_maxima_shuffled_df_1['Large sorted Maxima'] 69. 70. ecdf annual maxima shuffled df[o+1]=ecdf annual maxima shuffled df 1['ECDF'] 71. j+=1 72. 0+=2 73. # print(ecdf_annual_maxima_shuffled_df) 74. ecdf_annual_maxima_shuffled_df.to_pickle('C:\\Vosers\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Shuffled\\'+filename+' ECDF annual maxima SHUFFLED') 75. i+=1 76. 77. #Get GEV parameters of the observed and the shuffled time series of the selected gauge locations and their ECDF dataframes files 78. #In GEV Annual Peak, threshold does not matter, only in Generalised Pareto 79. threshold='95%' #freezed value 80. 81. file=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results for the Observed\ \'+threshold+'\\Annual Peak CAMELS 1980-2014') 82. file=file.drop(file.index[35]) 83. file=file.drop(columns=['Year']) 84. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 85. Num_cols = len (df_filenames) 86. i=0 87. while i<Num cols: filename=df filenames.iloc[i,0] 88. 89. filename1=filename.replace(".mat","") 90. df_filenames.iloc[i,0]=filename1 91. i+=1 92. #print(df_filenames) 93. 94. i=1 95. while i<Num cols+1: filename=df_filenames.iloc[i-1,0] 96. 97. x=file[filename] 98. # print(x) 99. shape, loc, scale = gev.fit(x) print(shape) 100 # 101.# print(loc) 102.# print(scale) 103. d = {'Shape': [shape], 'Location': [loc], 'Scale': [scale]} 104. parameters_df = pd.DataFrame(data=d) 105. parameters_df.rename(index={0:'Observed'}, inplace=True) 106.# print(parameters_df) file_shuffled=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\4. Results for 107. the Shuffled of the timeseries with criteria\\'+threshold+'\\'+filename+' Annual Peak for 100 Shuffl ed') 108. file_shuffled=file_shuffled.drop(columns=['Year']) 109. i=0 110. while j<100: y=file_shuffled.iloc[:,j] 111. shape, loc, scale = gev.fit(y) d = {'Shape': [shape], 'Location': [loc], 'Scale': [scale]} 112. 113 114. parameters_df1 = pd.DataFrame(data=d) 115. k=i+1 116. k=str(k) k='Shuffled '+k 117. parameters_df1.rename(index={0:k}, inplace=True) 118. parameters_df=parameters_df.append(parameters_df1) 119. 120. j+=1 121.# print(parameters df) 122.# print(shape, loc, scale) 123. parameters_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\GEV P arameters\\'+filename+' GEV Parameters') 124. i+=1 125. 126.#ECDF tables for GEV distribution 127.i=1 128.while i<=Num_cols: ``` ``` GEV ECDF={'abc': [0.0],'def': [0.0]} 130. GEV_ECDF = pd.DataFrame(data=GEV_ECDF) GEV ECDF.index=['0.0'] 131. 132. filename=df_filenames.iloc[i-1,0] 133. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\GEV Para meters\\'+filename+' GEV Parameters') Num_cols1 = len (file1) 134. 135. j=0 136. while j<Num cols1:</pre> 137. if j==0: 138. GEV_ECDF1=GEV_ECDF 139. c=file1.iloc[j,0] l=file1.iloc[j,1] 140. 141. s=file1.iloc[j,2] 142. k=0 143 for ecdf_value in np.arange(0.03,0.97,0.01): 144. annual_peak_value=gev.ppf(ecdf_value, c, l, s) 145. GEV_ECDF1.loc[k,0]=annual_peak_value GEV_ECDF1.loc[k,1]=ecdf_value 146. 147. k+=1 annual_peak_value=gev.ppf(0.972222, c, 1, s) 148. 149 GEV_ECDF1.loc[k,0]=annual_peak_value 150. GEV_ECDF1.loc[k,1]=0.972222 GEV_ECDF1=GEV_ECDF1.drop(['abc'], axis=1) GEV_ECDF1=GEV_ECDF1.drop(['def'], axis=1) 151. 152. GEV_ECDF1=GEV_ECDF1.drop(['0.0'], axis=0) 153. 154. GEV_ECDF1.columns = ['Large annual peak OBS', 'ECDF OBS'] 155. 156. GEV_ECDF2=GEV_ECDF 157. c=file1.iloc[j,0] l=file1.iloc[j,1] 158. 159. s=file1.iloc[j,2] 160. 161. for ecdf_value in np.arange(0.03,0.97,0.01): 162. annual_peak_value=gev.ppf(ecdf_value, c, 1, s) 163. GEV ECDF.loc[k,0]=annual peak value 164 GEV_ECDF.loc[k,1]=ecdf_value 165. k+=1 annual_peak_value=gev.ppf(0.972222, c, 1, s) 166. 167. GEV_ECDF2.loc[k,0]=annual_peak_value 168. GEV_ECDF2.loc[k,1]=0.972222 GEV_ECDF2=GEV_ECDF2.drop(['abc'], axis=1) GEV_ECDF2=GEV_ECDF2.drop(['def'], axis=1) 169. 170 GEV_ECDF2=GEV_ECDF2.drop(['0.0'], axis=0) 171. 172. GEV_ECDF2.columns = ['Large annual peak SHU', 'ECDF SHU'] 173. z=str(j) 174. GEV_ECDF1['LARGE '+z]=GEV_ECDF2['Large annual peak SHU'] 175. GEV_ECDF1['ECDF '+z]=GEV_ECDF2['ECDF SHU'] 176 j+=1 177. GEV_ECDF1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\ECDF file 178. s for GEV\\'+filename+' GEV ECDF') 179.# print(GEV_ECDF1) 180. i+=1 181. 182.#Mean Shape, Mean Location and Mean Scale Parameters 183.i=1 184.while i<=Num cols: filename=df_filenames.iloc[i-1,0] 185. 186. file_GEV_Parameters=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXT REME\\GEV Parameters\\'+filename+' GEV Parameters') 187. Mean_shape=file_GEV_Parameters.iloc[1:,0].mean() Mean_location=file_GEV_Parameters.iloc[1:,1].mean() 188. 189. Mean_scale=file_GEV_Parameters.iloc[1:,2].mean() d = {'Mean Shuffled Shape': [Mean_shape], 'Mean Shuffled Location': [Mean_location], 'Mean Shuffl ed Scale: [Mean_scale]} 191. parameters_df1 = pd.DataFrame(data=d) parameters_df1.rename(index={0:filename}, inplace=True) 193.# print(parameters_df1) parameters_df1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Mean 194. Shuffled GEV Parameters\\'+filename+' Mean Shuffled GEV Parameters') 195. i+=1 196. 197.#ECDF tables for Mean Shape, Mean Location and Mean Scale ``` ``` 198.i=1 199.while i<=Num_cols: GEV ECDF={'abc': [0.0], 'def': [0.0]} 200. 201. GEV_ECDF = pd.DataFrame(data=GEV_ECDF) 202. GEV_ECDF.index=['0.0'] 203. filename=df_filenames.iloc[i-1,0] file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Mean Shu 204. ffled GEV Parameters\\'+filename+' Mean Shuffled GEV Parameters') 205. GEV ECDF1=GEV ECDF 206. c=file1.iloc[0,0] 207. l=file1.iloc[0,1] 208. s=file1.iloc[0,2] 209. k=0 210. for ecdf_value in np.arange(0.03,0.97,0.01): 211. annual_peak_value=gev.ppf(ecdf_value, c, 1, s) 212 GEV_ECDF1.loc[k,0]=annual_peak_value 213. GEV ECDF1.loc[k,1]=ecdf value 214. k+=1 215. annual_peak_value=gev.ppf(0.972222, c, 1, s) 216. GEV_ECDF1.loc[k,0]=annual_peak_value 217. GEV_ECDF1.loc[k,1]=0.972222 GEV_ECDF1=GEV_ECDF1.drop(['abc'], axis=1) GEV_ECDF1=GEV_ECDF1.drop(['def'], axis=1) 218 219. 220. GEV_ECDF1=GEV_ECDF1.drop(['0.0'], axis=0) GEV_ECDF1.columns = ['Large annual peak', 'ECDF'] 221. 222. s for Mean Shuffled GEV Parameters\\'+filename+' Mean Shuffled GEV ECDF') 223.# print(GEV_ECDF1) 224. i+=1 225. 226.# Plot of ECDF of
GEV distribution of annual peak and the ones of observed and shuffled timeseries 227.df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 228.Num_cols_filenames = len (df_filenames) 229.i=0 230.while i<Num cols filenames: filename=df_filenames.iloc[i,0] 231 filename1=filename.replace(".mat","") 232. 233. df_filenames.iloc[i,0]=filename1 234. i+=1 235. 236.HU_df=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 360 stations') 237.HU df=HU df.drop("DRAINAGE AREA (KM^2)", axis=1) 238.HU_df=HU_df.drop("LONG", axis=1) 239.HU_df=HU_df.drop("LAT", axis=1) 240.Num=len(HU_df) 241.#print(HU df) 242.i=0 243.while i<Num: 244 filename=df filenames.iloc[i,0] filename1=filename.replace(".mat","") 245. 246. if HU_df.iloc[i,1]==filename1: 247. i+=1 248 else: 249. HU_df_df=HU_df.drop(HU_df.index[i]) 250. Num=Num-1 HU_df=HU_df.reset_index(drop=True) 251 252.#print(HU_df) 253. 254. 255.#Export ECDF-Annual peak diagram 256.i=1 257.while j<=Num_cols_filenames: 258. filename=df_filenames.iloc[j-1,0] HU=str(HU_df.iloc[j-1,0]) 259. 260. Gauge_name=str.upper(HU_df.iloc[j-1,2]) 261.# print(filename) 262. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Shuffled \\'+filename+' ECDF annual maxima SHUFFLED') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Observed 263. \\'+filename+' ECDF annual maxima OBSERVED') file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\ECDF fil 264. es for GEV\\'+filename+' GEV ECDF') ``` ``` 265. es for Mean Shuffled GEV Parameters\\'+filename+' Mean Shuffled GEV ECDF') 266. sns.set() 267. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 268. 269. for z in np.arange(3,202,2): ecdf=file3.iloc[:,z] 270. 271. annual_peak=file3.iloc[:,z-1] plt.plot(annual_peak,ecdf,label='',color='gainsboro') 272. plt.plot(annual_peak,ecdf,label='GEV shuffled',color='gainsboro') 273. plt.plot(file4.iloc[:,0],file4.iloc[:,1],label='Mean GEV Shuffled', color='blue') 274. plt.plot(file3.iloc[:,0],file3.iloc[:,1],label='GEV observed',color='g') plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r') 275. 276. 277. plt.title(Gauge name+'\nGauge ID: '+filename+' - Hydrological Unit: '+HU,fontsize=13, y=1.01) 278 plt.ylabel("ECDF", fontsize=14) 279. plt.xlabel("Annual peak - Q (m^3/sec)",fontsize=14) 280. plt.yticks(np.arange(0, 1.1, 0.1)) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 281. 282. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.27, 1),loc=1,ncol=1,fontsize=10) plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 283. 284 plt.tight_layout() 285. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Plots\\ECDF diagr Linear\\ECDF_Linear_annual_peak_with_GEV '+filename+'.png',facecolour='white') 286. plt.close() 287. j+=1 288. 289. 290.#Export LOG-LOG ECDF-Annual peak diagram 291.j=1 292.while j<=Num_cols_filenames: 293. filename=df_filenames.iloc[j-1,0] 294. HU=str(HU_df.iloc[j-1,0]) 295. Gauge_name=str.upper(HU_df.iloc[j-1,2]) 296.# print(filename) 297. file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Shuffled +filename+' ECDF annual maxima SHUFFLED') 298. file2=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Observed \\'+filename+' ECDF annual maxima OBSERVED') 299. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\ECDF fil for GEV\\'+filename+' GEV ECDF') 300. file4=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\ECDF fil for Mean Shuffled GEV Parameters\\'+filename+' Mean Shuffled GEV ECDF') 301. sns.set() 302. sns.set style("ticks") plt.figure(figsize=(8,5),dpi=200) 303. 304. for z in np.arange(3,202,2): 305. ecdf=file3.iloc[:,z] 306 annual_peak=file3.iloc[:,z-1] 307. plt.plot(annual_peak,ecdf,label='',color='gainsboro') plt.plot(annual_peak,ecdf,label='GEV shuffled',color='gainsboro') 308 plt.plot(file4.iloc[:,0],file4.iloc[:,1],label='Mean GEV Shuffled', color='blue') 309. 310. plt.plot(file3.iloc[:,0],file3.iloc[:,1],label='GEV observed',color='g') 311. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r') 312. plt.xscale('log') plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] 313. 314 315. nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] plt.yticks(nthreads, labels) 316. plt.title(Gauge_name+'\nGauge ID: '+filename+' - Hydrological Unit: '+HU,fontsize=13, y=1.01) 317 318. plt.ylabel("ECDF",fontsize=14) plt.xlabel("Annual peak - Q (m^3/sec)",fontsize=14) plt.grid(color='whitesmoke',b=True, which='major',axis='both', linestyle='-',zorder=2) 319. 320 plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.27, 1),loc=1,ncol=1,fontsize=10) 321. 322. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 323 plt.tight_layout() 324. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Plots\\ECDF diagr ams LOG\\ECDF_LOG_annual_peak_with_GEV '+filename+'.png',facecolour='white') 325. plt.close() 326. j+=1 327. 328. 329.#Export 1/(1-f) ECDF diagram ``` ``` 330.j=1 331.while j<=Num_cols_filenames: filename=df filenames.iloc[j-1,0] 332. HU=str(HU_df.iloc[j-1,0]) 333. 334. Gauge_name=str.upper(HU_df.iloc[j-1,2]) 335.# print(filename) file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Shuffled 336. \\'+filename+' ECDF annual maxima SHUFFLED') file2=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Observed 337. \\'+filename+' ECDF annual maxima OBSERVED') 338. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\ECDF fil es for GEV\\'+filename+' GEV ECDF') 339. file 4=pd.read_pickle ('C:\Users\Konstantinos\Documents\THESIS\Python\7. \ GENEXTREME\ECDF file ('C:\Users\ECDF) ('C:\Users\E es for Mean Shuffled GEV Parameters\\'+filename+' Mean Shuffled GEV ECDF') 340. sns.set() 341 sns.set_style("ticks") 342. plt.figure(figsize=(8,5),dpi=200) 343. for z in np.arange(3,202,2): 344. ecdf=1/(1-file3.iloc[:,z]) annual_peak=file3.iloc[:,z-1] 345. plt.plot(annual_peak,ecdf,label='',color='gainsboro') 346. 347 plt.plot(annual_peak,ecdf,label='GEV shuffled',color='gainsboro') 348. plt.plot(file4.iloc[:,0],1/(1-file4.iloc[:,1]),label='Mean GEV Shuffled', color='blue') 349. plt.plot(file3.iloc[:,0],1/(1-file3).iloc[:,1],label='GEV observed',color='g') 350. plt.plot(file2.iloc[:,0],1/(1- file2).iloc[:,1],label='Observed', marker='o', markersize=3, color='r') plt.title(Gauge_name+'\nGauge_ID: '+filename+' - Hydrological Unit: '+HU,fontsize=13, y=1.01) 351. plt.ylabel("1/(1-ECDF)",fontsize=14) 352. plt.xlabel("Annual peak - Q (m^3/sec)",fontsize=14) 353. 354. plt.grid(color='whitesmoke',b=True, which='major',axis='both', linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.27, 1),loc=1,ncol=1,fontsize=10) 355. 356. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 357. plt.tight_layout() plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\7. GENEXTREME\\Plots\\ECDF diagr 358. ams 1--(1-ECDF)\\ECDF_1--(1-ECDF)_annual_peak_with_GEV '+filename+'.png',facecolour='white') 359. plt.close() 360. i+=1 ``` ### 11.9. ECDF plot of observed time series and Generalized Pareto distribution for all gauge locations and all thresholds. ``` import numpy as np 2. import pandas as pd import scipy import seaborn as sns 5. from matplotlib import pyplot as plt 6. from scipy.stats import genpareto 7. 8. def Get Matlab file TS(filename): 9. mat=scipy.io.loadmat("C:\\Users\\Konstantinos\\Documents\\THESIS\\Timeseries\\"+filename+".mat") a= mat['TS'] 11. df_TS=pd.DataFrame(a) 12. return df_TS 13. 14. def Get_events_df(df_TS, threshold): df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 15. df sorted noNaN=df withoutNaN.sort values(3, axis=0, ascending=True, inplace=False, kind='quickso 16. rt', na_position='last') Num_cols = len (df_withoutNaN) 17. 18. position=int(threshold*Num_cols) 19. threshold_value=df_sorted_noNaN.iloc[position,3] 20. events df=df withoutNaN events_df.columns = ['Year', 'Month', 'Day', 'Q'] 21. 22. events_df.drop(events_df.loc[events_df['Q'] < threshold_value].index, inplace=True) 23. return events_df 24. 25. def Get_events_df_without_ones(events_df): 26. Num_cols = len (events_df) 27. events_df_without_ones=events_df.take([0]) 28. i=1 ``` ``` while i<=Num cols-1: 30. if events_df.index[i]-1==events_df.index[i-1]: 31. i+=1 32. else: 33. append_row=events_df.iloc[i].copy() events_df_without_ones=events_df_without_ones.append(append_row) 34. 35. i+=1 36. return events_df_without_ones 37. 38. def ecdf(file): 39. ecdf_df=file 40. ecdf_df = pd.DataFrame(ecdf_df) 41. ecdf_df.columns = ['Large sorted'] 42. ecdf_df=ecdf_df.sort_values(by=['Large sorted'],ascending=False) 43. ecdf_df=ecdf_df.reset_index(drop=True) Num_cols=len(ecdf_df) 44 x=ecdf_df.copy() 45. 46. ecdf_df['ECDF']=x['Large sorted'] 47. j=0 while j<Num_cols:</pre> 48. 49. ecdf_df.iloc[j,1]=1-((ecdf_df.index[j]+1)/(Num_cols+1)) 50 j+=1 51. return ecdf df 52. 53. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 54. Num_cols_filenames = len (df_filenames) 55. i=0 56. while i<Num_cols_filenames:</pre> 57. filename=df filenames.iloc[i,0] filename1=filename.replace(".mat","") 58. 59. df_filenames.iloc[i,0]=filename1 60. 61. 62. HU_df=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 360 stations') 63. HU_df=HU_df.drop("DRAINAGE AREA (KM^2)", axis=1) 64. HU_df=HU_df.drop("LONG", axis=1) 65. HU_df=HU_df.drop("LAT", axis=1) 66. Num=len(HU df) 67. #print(HU_df) 68. i=0 69. while i<Num: 70. filename=df filenames.iloc[i,0]
71. filename1=filename.replace(".mat","") 72. if HU_df.iloc[i,1]==filename1: 73. i+=1 74. else: 75. HU_df_df=HU_df.drop(HU_df.index[i]) 76. Num=Num-1 77. HU df=HU df.reset index(drop=True) 78. #print(HU_df) 79. 80. threshold_df_data = {'Text': ['90%','95%','98%','99%','99.5%'],'Numerical': [0.9, 0.95, 0.98, 0.99, 0 .995]} 81. threshold_df = pd.DataFrame(data=threshold_df_data) 82. Num threshold df=len(threshold df) 83. #print(threshold_df) 85. threshold loop=0 86. while threshold_loop<Num_threshold_df-1: threshold=threshold_df.iloc[threshold_loop,1] 87. 88. threshold_text=threshold_df.iloc[threshold_loop,0] 89. 90. i=0 91. while i<Num cols filenames: filename=df_filenames.iloc[i,0] 92. 93. df_TS=Get_Matlab_file_TS(filename) 94. events_df=Get_events_df(df_TS, threshold) 95. events_df1=events_df events df without ones=Get_events df without ones(events_df1) 96. events_df_without_ones=events_df_without_ones.drop(['Year'], axis=1) events_df_without_ones=events_df_without_ones.drop(['Month'], axis=1) 97. 98. events_df_without_ones=events_df_without_ones.drop(['Day'], axis=1) ``` ``` events df without ones=events df without ones.reset index(drop=True) 100. events_df_without_ones.to_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\8. General G 101 ralized Pareto\\events without ones\\'+threshold text+'\\Events dataframes\\'+filename+' Events witho ut ones') 102. # print(events_df_without_ones) 103. 104. 105. i=0 106. while i<Num cols filenames:</pre> 107. filename=df_filenames.iloc[i,0] 108. file = pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Par eto\\events without ones\\'+threshold text+'\\Events dataframes\\'+filename+' Events without ones') 109. ecdf1=ecdf(file) ecdf1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\e 110. vents without ones\\'+threshold text+'\\ECDF files for observed\\'+filename+' ECDF without ones OBSER VFD') 111. print(ecdf1) 112. i+=1 113. 114. i=1 while i<=Num_cols_filenames:</pre> 115. filename=df_filenames.iloc[i-1,0] 116 x=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 117. events without ones\\'+threshold text+'\\Events dataframes\\'+filename+' Events without ones') shape, loc, scale = genpareto.fit(x) 118. 119. d = {'Shape': [shape], 'Location': [loc], 'Scale': [scale]} parameters_df = pd.DataFrame(data=d) 120. parameters_df.rename(index={0:'Observed'}, inplace=True) 121. parameters_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\8. Generalized\ Parameters_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\8. Generalized\ Parameters_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\R. Generalized\ Parameters_df.to_pickle('C:\Users\Konstantinos\Documents\R. Generalized\ Parameters_df.to_pickle('C:\Users\Konstantinos\R. Parameter 122. areto\\events without ones\\'+threshold text+'\\GPar Parameters\\'+filename+' GPar Parameters') 123. i+=1 124. 125. i=1 while i<=Num_cols_filenames:</pre> 126. 127. GPar_ECDF={'abc': [0.0],'def': [0.0]} 128. GPar ECDF = pd.DataFrame(data=GPar ECDF) GPar_ECDF.index=['0.0'] 129 130. filename=df filenames.iloc[i-1,0] file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pare 131. to\\events without ones\\'+threshold_text+'\\GPar Parameters\\'+filename+' GPar Parameters') 132. c=file1.iloc[0,0] 133. l=file1.iloc[0,1] s=file1.iloc[0,2] 134 135. k=0 136. for ecdf value in np.arange(0.00,1,0.01): 137. annual_peak_value=genpareto.ppf(ecdf_value, c, 1, s) 138. GPar_ECDF.loc[k,0]=annual_peak_value 139. GPar ECDF.loc[k,1]=ecdf value 140 k+=1 141. annual_peak_value=genpareto.ppf(0.999, c, 1, s) 142. GPar_ECDF.loc[k,0]=annual_peak_value GPar_ECDF.loc[k,1]=0.999 143. 144. GPar_ECDF=GPar_ECDF.drop(['abc'], axis=1) 145. GPar_ECDF=GPar_ECDF.drop(['def'], axis=1) GPar_ECDF=GPar_ECDF.drop(['0.0'], axis=0) 146 147. GPar_ECDF.columns = ['Large GPar', 'ECDF GPar'] GPar ECDF.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Paret 148. o\\events without ones\\'+threshold_text+'\\ECDF files for GPar\\'+filename+' GPar ECDF') 149. # print(GPar ECDF) 150. i+=1 151. 152.#Export Linear ECDF-Observed and GPar for ones and without ones 153.i=1 154.while i<=Num_cols_filenames: filename=df_filenames.iloc[i-1,0] 155. HU=str(HU_df.iloc[i-1,0]) 156. Gauge_name=str.upper(HU_df.iloc[i-1,2]) 157. 158. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\90%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 159. events without ones\\90%\\ECDF files for GPar\\'+filename+' GPar ECDF') 160. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\95%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') ``` ``` 161. file4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\95%\\ECDF files for GPar\\'+filename+' GPar ECDF') file5=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\98%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file6=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 163. events without ones\\98%\\ECDF files for GPar\\'+filename+' GPar ECDF') file 7 = pd.read_pickle('C:\\\\\\\) Python\\\\. Generalized Pareto\\\) 164. events without ones\\99%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file8=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 165. events without ones\\99%\\ECDF files for GPar\\'+filename+' GPar ECDF') 166. 167. sns.set() sns.set_style("ticks") 168. 169. plt.figure(figsize=(8,5),dpi=200) plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed 90%', linewidth=1.1, color='skyblue') plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='GPar 90%', color='blue') 170. 171 plt.plot(file3.iloc[:,0],file3.iloc[:,1],label='Observed 95%', linewidth=1.1, color='lime') 172. plt.plot(file4.iloc[:,0],file4.iloc[:,1],label='GPar 95%', color='green') plt.plot(file5.iloc[:,0],file5.iloc[:,1],label='Observed 98%', linewidth=1.1, color='lightsalmon' 173. 174. plt.plot(file6.iloc[:,0],file6.iloc[:,1],label='GPar 98%', color='red') plt.plot(file7.iloc[:,0],file7.iloc[:,1],label='Observed 99%', linewidth=1.1, color='pink') 175. 1.76. plt.plot(file8.iloc[:,0],file8.iloc[:,1],label='GPar 99%', color='purple') 177. 178. 179. axes = plt.gca() 180. max_value=max(file1.iloc[:,0].max(),file3.iloc[:,0].max(),file5.iloc[:,0].max(),file7.iloc[:,0].max(),fil ax()) 181. axes.set_xlim([0,max_value*1.1]) plt.title(Gauge_name+'\nGauge ID: '+filename+' - 182. Hydrological Unit: '+HU,fontsize=13, y=1.01) plt.ylabel("ECDF",fontsize=12); 183. plt.xlabel("Q (m^3/sec) for the over-threshold events",fontsize=12); 184. 185. plt.yticks(np.arange(0, 1.1, 0.1)) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 186. 187. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.992, 0.55),loc=1,ncol=1,fontsize=9) 188. plt.tick_params(axis='both',which='both',labelsize=12,zorder=20) 189 plt.tight_layout() 190. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\Plots for without ones for all thresholds\\ECDF diagrams Linear\\'+filename+' ECDF GPar Linear for all thresho lds') 191. plt.close() 192. i+=1 193 194. #Export LOG ECDF-Observed and GPar for ones and without ones 195.i=1 196.while i<=Num_cols_filenames: 197. filename=df_filenames.iloc[i-1,0] 198. HU=str(HU df.iloc[i-1,0]) Gauge_name=str.upper(HU_df.iloc[i-1,2]) 199 200. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\90%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED')
file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 201. events without ones\\90%\\ECDF files for GPar\\'+filename+' GPar ECDF') 202. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\95%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 203. events without ones\\95%\\ECDF files for GPar\\'+filename+' GPar ECDF') file5=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 204 events without ones\\98%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') 205. file6=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\98%\\ECDF files for GPar\\'+filename+' GPar ECDF') file7=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\99%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file8=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 207. events without ones\\99%\\ECDF files for GPar\\'+filename+' GPar ECDF') 208. 209 sns.set() 210. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 211. plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed 90%', linewidth=1.1, color='skyblue') 212 plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='GPar 90%', linewidth=1.1, color='blue') plt.plot(file3.iloc[:,0],file3.iloc[:,1],label='Observed 95%', linewidth=1.1, color='lime') 213. 214. plt.plot(file4.iloc[:,0],file4.iloc[:,1],label='GPar 95%', linewidth=1.1, color='green') 215. ``` ``` plt.plot(file5.iloc[:,0],file5.iloc[:,1],label='Observed 98%', linewidth=1.1, color='lightsalmon' 216. plt.plot(file6.iloc[:,0],file6.iloc[:,1],label='GPar 98%', linewidth=1.1, color='red') plt.plot(file7.iloc[:,0],file7.iloc[:,1],label='Observed 99%', linewidth=1.1, color='pink') 217. 218. plt.plot(file8.iloc[:,0],file8.iloc[:,1],label='GPar 99%', linewidth=1.1, color='purple') 219. 220. plt.xscale('log 221. plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 222. 223. 224. 225. plt.yticks(nthreads, labels) 226. axes = plt.gca() 227. axes.set_ylim([0.025,1.2]) 228. plt.title(Gauge_name+'\nGauge ID: '+filename+ Hydrological Unit: '+HU,fontsize=13, y=1.01) plt.ylabel("ECDF",fontsize=12); 229 plt.xlabel("Q (m^3/sec) for the over-threshold events",fontsize=12); 230. 231. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.992, 0.55),loc=1,ncol=1,fontsize=9) 232. 233. plt.tick_params(axis='both',which='both',labelsize=12,zorder=20) 234. plt.tight_layout() 235. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\Plots for without ones for all thresholds\\ECDF diagrams LOG\\'+filename+' ECDF GPar LOG for all thresholds') 236. plt.close() 237. 238. 239.#Export 1/(1-f) ECDF-Observed and GPar for ones and without ones 240.i=1 241.while i<=Num cols filenames: filename=df_filenames.iloc[i-1,0] 242. 243. HU=str(HU_df.iloc[i-1,0]) 244. Gauge_name=str.upper(HU_df.iloc[i-1,2]) file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 245. events without ones\\90%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 246. events without ones\\90%\\ECDF files for GPar\\'+filename+' GPar ECDF') 247. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\95%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file 4=pd.read_pickle ('C:\Users\Konstantinos\Documents\THESIS\Python\8. Generalized Pareto\Endowner ('C:\Users\Endowner ('C:\Users))))))))))))))))))))) 248. events without ones\\95%\\ECDF files for GPar\\'+filename+' GPar ECDF') 249. file5=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\98%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') 250. file6=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ events without ones\\98%\\ECDF files for GPar\\'+filename+' GPar ECDF') file7=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 251. events without ones\\99%\\ECDF files for observed\\'+filename+' ECDF without ones OBSERVED') file8=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\ 252. events without ones\\99%\\ECDF files for GPar\\'+filename+' GPar ECDF') 253. 254. sns.set() sns.set_style("ticks") 255. 256. plt.figure(figsize=(8,5),dpi=200) plt.plot(file1.iloc[:,0],1/(1- 257. file1).iloc[:,1],label='Observed 90%', linewidth=1.1, color='skyblue') 258. plt.plot(file2.iloc[:,0],1/(1-file2).iloc[:,1],label='GPar 90%', linewidth=1.1, color='blue') plt.plot(file3.iloc[:,0],1/(1- 259. file3).iloc[:,1],label='Observed 95%', linewidth=1.1, color='lime') plt.plot(file4.iloc[:,0],1/(1-file4).iloc[:,1],label='GPar 95%', linewidth=1.1, color='green') 260. 261. plt.plot(file5.iloc[:,0],1/(1- file5).iloc[:,1],label='Observed 98%', linewidth=1.1, color='lightsalmon') plt.plot(file6.iloc[:,0],1/(1-file6).iloc[:,1],label='GPar 98%', linewidth=1.1, color='red') 262. plt.plot(file7.iloc[:,0],1/(1- 263. file7).iloc[:,1],label='Observed 99%', linewidth=1.1, color='pink') 264. plt.plot(file8.iloc[:,0],1/(1-file8).iloc[:,1],label='GPar 99%', linewidth=1.1, color='purple') 265. plt.title(Gauge_name+'\nGauge ID: '+filename+' 266. Hydrological Unit: '+HU, fontsize=13, y=1.01) 267. plt.ylabel("1/(1-ECDF)", fontsize=12); plt.xlabel("Q (m^3/sec) for the over-threshold events",fontsize=12); 268. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 269. 270. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.992, 0.55),loc=1,ncol=1,fontsize=9) plt.tick_params(axis='both',which='both',labelsize=12,zorder=20) 271. 272. plt.tight_layout() ``` ``` 273. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\8. Generalized Pareto\\Plots for without ones for all thresholds\\ECDF diagrams 1--(1-ECDF)\\'+filename+' ECDF GPar ECDF diagrams 1-- (1-ECDF) for all thresholds') 274. plt.close() 275. i+=1 ``` #### 11.10. Distribution of FEMA NFIP claims records per County. ``` 1. import pandas as pd 2. 3. #Read FEMA records dataframe 4. \quad FEMA_file=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\9. FEMA_records\F ecords dataframe') 5. FEMA_file=FEMA_file[['countycode','state','yearofloss']] 6. #print(FEMA_file) 7. 8. #Number of NaN values per column 9. print('countycode column missing values: ',FEMA_file['countycode'].isnull().sum().sum()) 10. print('state column missing values: ',FEMA_file['state'].isnull().sum().sum()) 11. print('yearofloss column missing values: ',FEMA_file['yearofloss'].isnull().sum()).sum()) 12. 13. FEMA file=FEMA file.dropna() #Drop rows with NaN values 14. #print(FEMA file) 15. 16. #print(FEMA_file['countycode']) 17. FEMA_file['countycode']=FEMA_file['countycode'].astype(int, errors='ignore') #Convert floats to integ 18. #print(FEMA_file['countycode']) 19. 20. FEMA_dataframe_Num=len(FEMA_file) #Final number of rows of modified FEMA records' file 21. 22. d = {'Year': [1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 87, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2006, 2006, 2007,
2007, 23. draft_dataframe = pd.DataFrame(data=d) 24. Num draft dataframe=len(draft dataframe) 25. #print(draft_dataframe) 26. 27. #Claims per county (1970-2019) 28. x=FEMA file.groupby('countycode').size().reset index() 29. #print(x) 30. 31. county names df=x.iloc[:,0] 32. 33. #Aggregate claims per county per year (1970-2019) 34. x=FEMA_file.groupby(['countycode','yearofloss']).size().reset_index() 35. #print(x) 36. 37. county claims_matrix=draft_dataframe.copy() 38. county_claims_matrix=county_claims_matrix.drop(['Claims'], axis=1) 39. i=0 40. while i<len(county names df): 41. county_name=county_names_df.iloc[i] 42. county_claims_matrix[county_name]=draft_dataframe['Claims'] 43. j=0 44. while j<len(x):</pre> 45. if x.iloc[j,0]==county_name: 46. year=x.iloc[j,1] z=0 47. while z<len(county_claims_matrix):</pre> 48. if year==county_claims_matrix.iloc[z,0]: 49. 50. county_claims_matrix.iloc[z,i+1]=x.iloc[j,2] 51. 52. j+=1 i+=1 53. 54. 55. county_claims_matrix=county_claims_matrix.drop(county_claims_matrix.index[49]) 56. 57. county_claims_matrix.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA records - Results for every Basin and every State\\FEMA claims for COUNTIES\\Claims per county df') ``` #### 11.11. Distribution of FEMA NFIP claims records per State. ``` import pandas as pd 1. 2. 3. #Read FEMA records dataframe FEMA_file=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\9. FEMA records\\FEMA r 4. ecords dataframe') FEMA_file=FEMA_file[['countycode','state','yearofloss']] #print(FEMA_file) 7. 8. #Number of NaN values per column print('countycode column missing values: ',FEMA_file['countycode'].isnull().sum().sum()) 9 10. print('state column missing values: ',FEMA file['state'].isnull().sum().sum()) 11. print('yearofloss column missing values: ',FEMA_file['yearofloss'].isnull().sum().sum()) 12. 13. FEMA_file=FEMA_file.dropna() #Drop rows with NaN values 14. #print(FEMA_file) 15. 16. #print(FEMA file['countycode']) 17. FEMA_file['countycode']=FEMA_file['countycode'].astype(int, errors='ignore') #Convert floats to integ 18. #print(FEMA_file['countycode']) 19. 20. FEMA_dataframe_Num=len(FEMA_file) #Final number of rows of modified FEMA records' file 21. 22. d = {'Year': [1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 87,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200 23. draft_dataframe = pd.DataFrame(data=d) 24. Num draft dataframe=len(draft dataframe) 25. #print(draft_dataframe) 26. 27. #Claims per county (1970-2019) 28. x=FEMA_file.groupby('state').size().reset_index() 29. #print(x) 30. 31. states_names_df=x.iloc[:,0] 32. 33. #Aggregate claims per county per year (1970-2019) 34. x=FEMA_file.groupby(['state','yearofloss']).size().reset_index() 35. #print(x) 36. 37. states_claims_matrix=draft_dataframe.copy() 38. states_claims_matrix=states_claims_matrix.drop(['Claims'], axis=1) 39. i=0 40. while i<len(states_names_df): states_name=states_names_df.iloc[i] 41. states_claims_matrix[states_name]=draft_dataframe['Claims'] 42. 43. 44. while j<len(x):</pre> if x.iloc[j,0]==states_name: 45. 46. year=x.iloc[j,1] 47. z=0 while z<len(states claims matrix):</pre> 48. if year==states_claims_matrix.iloc[z,0]: 49. states_claims_matrix.iloc[z,i+1]=x.iloc[j,2] 50. 51. z+=1 52. j+=1 53. 54. 55. states_claims_matrix=states_claims_matrix.drop(states_claims_matrix.index[49]) 56. 57. states_claims_matrix.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA records - Results for every Basin and every State\\FEMA claims for STATES\\Claims per state df') ``` ## 11.12. Distribution of FEMA NFIP claims, paid claims, amount paid on building claims and amount paid on contents claims records per Hydrological Unit (region). ``` import geopandas as gpd 2. import pandas as pd 3. import math 4. from shapely geometry import Point 5. 6. #Read FEMA records dataframe FEMA_file=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\9. FEMA records\\FEMA r ecords dataframe') print(FEMA_file) print(FEMA file.columns) 10. FEMA_dataframe_Num=len(FEMA_file) 11. 12. print(FEMA_file['latitude'].isnull().sum().sum()) 13. print(FEMA_file['longitude'].isnull().sum().sum()) 14. print(FEMA_file['countycode'].isnull().sum().sum()) 15. print(FEMA_file['amountpaidonbuildingclaim'].isnull().sum().sum()) 16. print(FEMA_file['amountpaidoncontentsclaim'].isnull().sum().sum()) 17. print(FEMA_file['state'].isnull().sum().sum()) 18. print(FEMA_file['yearofloss'].isnull().sum().sum()) 20. d = {'Year': [1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 87,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200 21. Claims_dataframe = pd.DataFrame(data=d) 22. #print(Claims_dataframe) 23. d = {'Year': 1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 87,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200 24. Paid_claims_dataframe = pd.DataFrame(data=d) 25. #print(Paid claims dataframe) 26. d = {'Year': [1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 87,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200 7,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019], 'Amount paid on building claims': [0. 27. Amount_paid_on_building_claims_dataframe = pd.DataFrame(data=d) 28. #print(Amount_paid_on_building_claims_dataframe) 29. d = {'Year': [1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,19 7,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019], 'Amount paid on contents claims': [0. 30. Amount_paid_on_contents_claims_dataframe = pd.DataFrame(data=d) 31. #print(Amount_paid_on_contents_claims_dataframe) 32. Num_dataframe=len(Claims_dataframe) 33. 34. #Dataframes for Region 1 35. Claims dataframe Region 1=Claims dataframe.copy() 36. Paid_claims_dataframe_Region_1=Paid_claims_dataframe.copy() 37. Amount_paid_on_building_claims_dataframe_Region_1=Amount_paid_on_building_claims_dataframe.copy() 38. Amount_paid_on_contents_claims_dataframe_Region_1=Amount_paid_on_contents_claims_dataframe.copy() 39. 40. #Dataframes for Region 2 41. Claims_dataframe_Region_2=Claims_dataframe.copy() 42. Paid_claims_dataframe_Region_2=Paid_claims_dataframe.copy() 43. Amount paid on building claims dataframe Region 2=Amount paid on building claims dataframe.copy() 44. Amount_paid_on_contents_claims_dataframe_Region_2=Amount_paid_on_contents_claims_dataframe.copy() 45. 46. #Dataframes for Region 3 47. Claims_dataframe_Region_3=Claims_dataframe.copy() 48. Paid_claims_dataframe_Region_3=Paid_claims_dataframe.copy() 49. Amount_paid_on_building_claims_dataframe_Region_3=Amount_paid_on_building_claims_dataframe.copy() 50. Amount_paid_on_contents_claims_dataframe_Region_3=Amount_paid_on_contents_claims_dataframe.copy() 51. ``` ``` 52. #Dataframes for Region 4 53. Claims_dataframe_Region_4=Claims_dataframe.copy() 54. Paid claims dataframe Region 4=Paid claims dataframe.copy() 55. Amount_paid_on_building_claims_dataframe_Region_4=Amount_paid_on_building_claims_dataframe.copy() 56. Amount_paid_on_contents_claims_dataframe_Region_4=Amount_paid_on_contents_claims_dataframe.copy() 57. 58. #Dataframes for Region 5 59. Claims_dataframe_Region_5=Claims_dataframe.copy() 60. Paid claims dataframe Region 5=Paid claims dataframe.copy() 61. Amount_paid_on_building_claims_dataframe_Region_5=Amount_paid_on_building_claims_dataframe.copy() 62. Amount_paid_on_contents_claims_dataframe_Region_5=Amount_paid_on_contents_claims_dataframe.copy() 63. 64. #Dataframes for Region 6 65. Claims_dataframe_Region_6=Claims_dataframe.copy() 66. Paid claims dataframe Region 6=Paid claims dataframe.copy() 67. Amount_paid_on_building_claims_dataframe_Region_6=Amount_paid_on_building_claims_dataframe.copy() 68. Amount_paid_on_contents_claims_dataframe_Region_6=Amount_paid_on_contents_claims_dataframe.copy() 69. 70. #Dataframes for Region 7 71. Claims_dataframe_Region_7=Claims_dataframe.copy() 72. Paid_claims_dataframe_Region_7=Paid_claims_dataframe.copy() 73. Amount_paid_on_building_claims_dataframe_Region_7=Amount_paid_on_building_claims_dataframe.copy() 74.
Amount_paid_on_contents_claims_dataframe_Region_7=Amount_paid_on_contents_claims_dataframe.copy() 75. 76. #Dataframes for Region 8 77. Claims_dataframe_Region_8=Claims_dataframe.copy() 78. Paid_claims_dataframe_Region_8=Paid_claims_dataframe.copy() 79. Amount_paid_on_building_claims_dataframe_Region_8=Amount_paid_on_building_claims_dataframe.copy() 80. Amount_paid_on_contents_claims_dataframe_Region_8=Amount_paid_on_contents_claims_dataframe.copy() 81. 82. #Dataframes for Region 9 83. Claims_dataframe_Region_9=Claims_dataframe.copy() 84. Paid_claims_dataframe_Region_9=Paid_claims_dataframe.copy() 85. Amount_paid_on_building_claims_dataframe_Region_9=Amount_paid_on_building_claims_dataframe.copy() 86. Amount_paid_on_contents_claims_dataframe_Region_9=Amount_paid_on_contents_claims_dataframe.copy() 87. 88. #Dataframes for Region 10 89. Claims_dataframe_Region_10=Claims_dataframe.copy() 90. Paid claims_dataframe_Region_10=Paid_claims_dataframe.copy() 91. Amount_paid_on_building_claims_dataframe_Region_10=Amount_paid_on_building_claims_dataframe.copy() 92. Amount_paid_on_contents_claims_dataframe_Region_10=Amount_paid_on_contents_claims_dataframe.copy() 93. 94. #Dataframes for Region 11 95. Claims_dataframe_Region_11=Claims_dataframe.copy() 96. Paid claims dataframe Region 11=Paid claims dataframe.copy() 97. Amount_paid_on_building_claims_dataframe_Region_11=Amount_paid_on_building_claims_dataframe.copy() 98. Amount_paid_on_contents_claims_dataframe_Region_11=Amount_paid_on_contents_claims_dataframe.copy() 99. 100.#Dataframes for Region 12 101.Claims_dataframe_Region_12=Claims_dataframe.copy() 102. Paid claims dataframe Region 12=Paid claims dataframe.copy() 103. Amount_paid_on_building_claims_dataframe_Region_12=Amount_paid_on_building_claims_dataframe.copy() 104. Amount_paid_on_contents_claims_dataframe_Region_12=Amount_paid_on_contents_claims_dataframe.copy() 105. 106.#Dataframes for Region 13 107.Claims_dataframe_Region_13=Claims_dataframe.copy() 108.Paid_claims_dataframe_Region_13=Paid_claims_dataframe.copy() 109. Amount_paid_on_building_claims_dataframe_Region_13=Amount_paid_on_building_claims_dataframe.copy() 110. Amount paid on contents claims dataframe Region 13=Amount paid on contents claims dataframe.copy() 111. 112.#Dataframes for Region 14 113.Claims_dataframe_Region_14=Claims_dataframe.copy() 114.Paid_claims_dataframe_Region_14=Paid_claims_dataframe.copy() 115. Amount_paid_on_building_claims_dataframe_Region_14=Amount_paid_on_building_claims_dataframe.copy() 116. Amount paid on contents claims dataframe Region 14=Amount paid on contents claims dataframe.copy() 117. 118.#Dataframes for Region 15 119.Claims_dataframe_Region_15=Claims_dataframe.copy() 120.Paid_claims_dataframe_Region_15=Paid_claims_dataframe.copy() 121. Amount_paid_on_building_claims_dataframe_Region_15=Amount_paid_on_building_claims_dataframe.copy() 122. Amount paid on contents claims dataframe Region 15=Amount paid on contents claims dataframe.copy() 123. 124. #Dataframes for Region 16 125.Claims_dataframe_Region_16=Claims_dataframe.copy() ``` ``` 126. Paid claims dataframe Region 16=Paid claims dataframe.copy() 127. Amount_paid_on_building_claims_dataframe_Region_16=Amount_paid_on_building_claims_dataframe.copy() 128. Amount paid on contents claims dataframe Region 16=Amount paid on contents claims dataframe.copy() 129. 130. #Dataframes for Region 17 131.Claims_dataframe_Region_17=Claims_dataframe.copy() 132.Paid_claims_dataframe_Region_17=Paid_claims_dataframe.copy() 133. Amount_paid_on_building_claims_dataframe_Region_17=Amount_paid_on_building_claims_dataframe.copy() 134. Amount paid on contents claims dataframe Region 17=Amount paid on contents claims dataframe.copy() 135. 136.#Dataframes for Region 18 137.Claims_dataframe_Region_18=Claims_dataframe.copy() 138.Paid_claims_dataframe_Region_18=Paid_claims_dataframe.copy() 139. Amount_paid_on_building_claims_dataframe_Region_18=Amount_paid_on_building_claims_dataframe.copy() 140. Amount_paid_on_contents_claims_dataframe_Region_18=Amount_paid_on_contents_claims_dataframe.copy() 142. #Dataframes for Region 19 143.Claims_dataframe_Region_19=Claims_dataframe.copy() 144.Paid_claims_dataframe_Region_19=Paid_claims_dataframe.copy() 145.Amount_paid_on_building_claims_dataframe_Region_19=Amount_paid_on_building_claims_dataframe.copy() 146. Amount paid on contents claims dataframe Region 19=Amount paid on contents claims dataframe.copy() 147 148. #Dataframes for Region 20 149. Claims dataframe Region 20=Claims dataframe.copy() 150.Paid_claims_dataframe_Region_20=Paid_claims_dataframe.copy() 151.Amount_paid_on_building_claims_dataframe_Region_20=Amount_paid_on_building_claims_dataframe.copy() 152. Amount paid on contents claims dataframe Region 20=Amount paid on contents claims dataframe.copy() 153. 154. #Dataframes for Region 21 155. Claims dataframe Region 21=Claims dataframe.copy() 156.Paid_claims_dataframe_Region_21=Paid_claims_dataframe.copy() 157. Amount_paid_on_building_claims_dataframe_Region_21=Amount_paid_on_building_claims_dataframe.copy() 158.Amount_paid_on_contents_claims_dataframe_Region_21=Amount_paid_on_contents_claims_dataframe.copy() 159. 160.#Import shapefiles for all regions (HUs) 161.shapefile region 1=gpd.read file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 1\\WBDHU2.shp' 162.shapefile_region_2=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 2\\WBDHU2.shp') 163.shapefile_region_3=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 3\\WBDHU2.shp') 164.shapefile region 4=gpd.read file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 4\\WBDHU2.shp' 165.shapefile_region_5=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 5\\WBDHU2.shp') 166.shapefile_region_6=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 6\\WBDHU2.shp') 167.shapefile_region_7=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 7\\WBDHU2.shp' 168.shapefile_region_8=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 8\\WBDHU2.shp') 169.shapefile_region_9=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\ \Shapefiles Basin 9\\WBDHU2.shp') 170.shapefile_region_10=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 10\\WBDHU2.shp') 171.shapefile_region_11=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 11\\WBDHU2.shp') 172. shapefile_region_12=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 12\\WBDHU2.shp') 173.shapefile_region_13=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 13\\WBDHU2.shp' 174.shapefile_region_14=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 14\\\WBDHUZ.shp') 175.shapefile_region_15=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 15\\WBDHU2.shp') 176.shapefile_region_16=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 16\\WBDHU2.shp') 177.shapefile_region_17=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 17\\\WBDHU2.shp') 178.shapefile_region_18=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 18\\WBDHU2.shp') 179.shapefile_region_19=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 19\\WBDHU2.shp') ``` ``` 180.shapefile_region_20=gpd.read_file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 20\\WBDHU2.shp') 181.shapefile region 21=gpd.read file('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles \\Shapefiles Basin 21\\WBDHU2.shp') 182. 183.polygon1=shapefile_region_1.iloc[0,15] 184.polygon2=shapefile_region_2.iloc[0,15] 185.polygon3=shapefile_region_3.iloc[0,15] 186.polygon4=shapefile region 4.iloc[0,15] 187.polygon5=shapefile_region_5.iloc[0,15] 188.polygon6=shapefile_region_6.iloc[0,15] 189.polygon7=shapefile_region_7.iloc[0,15] 190.polygon8=shapefile_region_8.iloc[0,15] 191.polygon9=shapefile_region_9.iloc[0,15] 192.polygon10=shapefile region 10.iloc[0,15] 193.polygon11=shapefile_region_11.iloc[0,15] 194.polygon12=shapefile_region_12.iloc[0,15] 195.polygon13=shapefile_region_13.iloc[0,15] 196.polygon14=shapefile_region_14.iloc[0,15] 197.polygon15=shapefile_region_15.iloc[0,15] 198.polygon16=shapefile_region_16.iloc[0,15] 199.polygon17=shapefile_region_17.iloc[0,15] 200.polygon18=shapefile_region_18.iloc[0,15] 201.polygon19=shapefile_region_19.iloc[0,15] 202.polygon20=shapefile_region_20.iloc[0,15] 203.polygon21=shapefile_region_21.iloc[0,15] 204. 205. i=0 206.the_ones_that_were_in_no_watershed=0 207.while i<FEMA dataframe Num: year_of_loss=FEMA_file.iloc[i,36] 208. 209. longitude=FEMA_file.iloc[i,18] latitude=FEMA_file.iloc[i,16] 210. 211. p=Point(longitude,latitude) 212. amount_paid_on_building_claim1=FEMA_file.iloc[i,27] 213. if math.isnan(amount paid on building claim1)==True: amount_paid_on_building_claim=0.0 214 215. 216. amount_paid_on_building_claim=amount_paid_on_building_claim1 217. amount_paid_on_contents_claim1=FEMA_file.iloc[i,28] 218. if math.isnan(amount_paid_on_contents_claim1)==True: 219. amount paid on contents claim=0.0 220 else: 221. amount_paid_on_contents_claim=amount_paid_on_contents_claim1 222. state=FEMA file.iloc[i,33] 223. if amount_paid_on_building_claim < 0:</pre> 224. amount_paid_on_building_claim=amount_paid_on_building_claim*(-1) 225. if amount_paid_on_contents_claim <
0:</pre> 226. amount_paid_on_contents_claim=amount_paid_on_contents_claim*(-1) 227. #Find out the dataframe's index for the specific year of loss 228. find_out_year_index=0 229. while find_out_year_index<Num_dataframe:</pre> 230. if Claims_dataframe.iloc[find_out_year_index,0]==year_of_loss: 231. {\tt year_index=find_out_year_index} 232. find_out_year_index+=1 233. if polygon1.contains(p): 234. Claims_dataframe_Region_1.iloc[year_index,1]=Claims_dataframe_Region_1.iloc[year_index,1]+1 235 if amount_paid_on_building_claim>0: 236. Paid claims dataframe Region 1.iloc[year index,1]=Paid claims dataframe Region 1.iloc[yea r_{index,1}+1 237. Amount_paid_on_building_claims_dataframe_Region_1.iloc[year_index,1]=Amount_paid_on_building_ claims_dataframe_Region_1.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_1.iloc[year_index,1]=Amount_paid_on_contents_ 238. claims_dataframe_Region_1.iloc[year_index,1]+amount_paid_on_contents_claim 239. elif polygon2.contains(p): 240. Claims_dataframe_Region_2.iloc[year_index,1]=Claims_dataframe_Region_2.iloc[year_index,1]+1 241. if amount_paid_on_building_claim>0: 242. Paid_claims_dataframe_Region_2.iloc[year_index,1]=Paid_claims_dataframe_Region_2.iloc[yea r_index,1]+1 243. Amount_paid_on_building_claims_dataframe_Region_2.iloc[year_index,1]=Amount_paid_on_building_ claims_dataframe_Region_2.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_2.iloc[year_index,1]=Amount_paid_on_contents_ 244. claims_dataframe_Region_2.iloc[year_index,1]+amount_paid_on_contents_claim elif polygon3.contains(p): ``` ``` Claims_dataframe_Region_3.iloc[year_index,1]=Claims_dataframe_Region_3.iloc[year_index,1]+1 246. 247. if amount_paid_on_building_claim>0: Paid claims dataframe Region 3.iloc[year index,1]=Paid claims dataframe Region 3.iloc[yea 248. r_{index,1}+1 249 Amount_paid_on_building_claims_dataframe_Region_3.iloc[year_index,1]=Amount_paid_on_building_ claims dataframe Region 3.iloc[year index,1]+amount paid on building claim Amount_paid_on_contents_claims_dataframe_Region_3.iloc[year_index,1]=Amount_paid_on_contents_ 250. claims_dataframe_Region_3.iloc[year_index,1]+amount_paid_on_contents_claim 251. elif polygon4.contains(p): 252. Claims_dataframe_Region_4.iloc[year_index,1]=Claims_dataframe_Region_4.iloc[year_index,1]+1 253. if amount_paid_on_building_claim>0: 254. Paid claims dataframe Region 4.iloc[year index,1]=Paid claims dataframe Region 4.iloc[yea r_{index,1}+1 255. Amount_paid_on_building_claims_dataframe_Region_4.iloc[year_index,1]=Amount_paid_on_building_ claims_dataframe_Region_4.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_4.iloc[year_index,1]=Amount_paid_on_contents_ 256. claims_dataframe_Region_4.iloc[year_index,1]+amount_paid_on_contents_claim 257. elif polygon5.contains(p): 258. Claims_dataframe_Region_5.iloc[year_index,1]=Claims_dataframe_Region_5.iloc[year_index,1]+1 259. if amount_paid_on_building_claim>0: Paid claims dataframe Region 5.iloc[year index,1]=Paid claims dataframe Region 5.iloc[yea 260. r_{index,1}+1 261. Amount_paid_on_building_claims_dataframe_Region_5.iloc[year_index,1]=Amount_paid_on_building_ claims dataframe Region 5.iloc[year index,1]+amount paid on building claim Amount_paid_on_contents_claims_dataframe_Region_5.iloc[year_index,1]=Amount_paid_on_contents_ 262. claims_dataframe_Region_5.iloc[year_index,1]+amount_paid_on_contents_claim 263. elif polygon6.contains(p): 264. Claims_dataframe_Region_6.iloc[year_index,1]=Claims_dataframe_Region_6.iloc[year_index,1]+1 265. if amount_paid_on_building_claim>0: 266. Paid claims dataframe Region 6.iloc[year index,1]=Paid claims dataframe Region 6.iloc[yea r_{index,1}+1 267 Amount_paid_on_building_claims_dataframe_Region_6.iloc[year_index,1]=Amount_paid_on_building_ claims dataframe Region 6.iloc[year index,1]+amount paid on building claim Amount_paid_on_contents_claims_dataframe_Region_6.iloc[year_index,1]=Amount_paid_on_contents_ 268. claims_dataframe_Region_6.iloc[year_index,1]+amount_paid_on_contents_claim 269. elif polygon7.contains(p): 270 Claims_dataframe_Region_7.iloc[year_index,1]=Claims_dataframe_Region_7.iloc[year_index,1]+1 271. if amount_paid_on_building_claim>0: 272. Paid_claims_dataframe_Region_7.iloc[year_index,1]=Paid_claims_dataframe_Region_7.iloc[yea r_{index,1}+1 273. Amount_paid_on_building_claims_dataframe_Region_7.iloc[year_index,1]=Amount_paid_on_building_ claims_dataframe_Region_7.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_7.iloc[year_index,1]=Amount_paid_on_contents_ 274. claims_dataframe_Region_7.iloc[year_index,1]+amount_paid_on_contents_claim 275. elif polygon8.contains(p): 276. Claims_dataframe_Region_8.iloc[year_index,1]=Claims_dataframe_Region_8.iloc[year_index,1]+1 277. if amount_paid_on_building_claim>0: 278. Paid_claims_dataframe_Region_8.iloc[year_index,1]=Paid_claims_dataframe_Region_8.iloc[yea r_{index,1}+1 279. Amount_paid_on_building_claims_dataframe_Region_8.iloc[year_index,1]=Amount_paid_on_building_ claims_dataframe_Region_8.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_8.iloc[year_index,1]=Amount_paid_on_contents_ 280. claims_dataframe_Region_8.iloc[year_index,1]+amount_paid_on_contents_claim 281. elif polygon9.contains(p): 282. Claims_dataframe_Region_9.iloc[year_index,1]=Claims_dataframe_Region_9.iloc[year_index,1]+1 283. if amount_paid_on_building_claim>0: Paid claims dataframe Region 9.iloc[year index,1]=Paid claims dataframe Region 9.iloc[yea 284. r_{index,1}+1 Amount paid on building claims dataframe Region 9.iloc[year index,1]=Amount paid on building 285. claims_dataframe_Region_9.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_9.iloc[year_index,1]=Amount_paid_on_contents_ 286. claims_dataframe_Region_9.iloc[year_index,1]+amount_paid_on_contents_claim elif polygon10.contains(p): 287. Claims_dataframe_Region_10.iloc[year_index,1]=Claims_dataframe_Region_10.iloc[year_index,1]+1 288. 289. if amount paid on building claim>0: Paid_claims_dataframe_Region_10.iloc[year_index,1]=Paid_claims_dataframe_Region_10.iloc[y 290. ear_index,1]+1 291. Amount_paid_on_building_claims_dataframe_Region_10.iloc[year_index,1]=Amount_paid_on_building _claims_dataframe_Region_10.iloc[year_index,1]+amount_paid_on_building_claim Amount paid on contents claims dataframe Region 10.iloc[year index,1]=Amount paid on contents _claims_dataframe_Region_10.iloc[year_index,1]+amount_paid_on_contents_claim 293. elif polygon11.contains(p): ``` ``` 294. Claims_dataframe_Region_11.iloc[year_index,1]=Claims_dataframe_Region_11.iloc[year_index,1]+1 295. if amount paid on building claim>0: 296. Paid claims dataframe Region 11.iloc[year index,1]=Paid claims dataframe Region 11.iloc[y ear_index,1]+1 297. Amount_paid_on_building_claims_dataframe_Region_11.iloc[year_index,1]=Amount_paid_on_building _claims_dataframe_Region_11.iloc[year_index,1]+amount_paid_on_building_claim 298 Amount_paid_on_contents_claims_dataframe_Region_11.iloc[year_index,1]=Amount_paid_on_contents claims dataframe Region 11.iloc[year index,1]+amount paid on contents claim 299. elif polygon12.contains(p): 300. Claims_dataframe_Region_12.iloc[year_index,1]=Claims_dataframe_Region_12.iloc[year_index,1]+1 301. if amount_paid_on_building_claim>0: Paid_claims_dataframe_Region_12.iloc[year_index,1]=Paid_claims_dataframe_Region_12.iloc[y 302. ear index,1]+1 Amount_paid_on_building_claims_dataframe_Region_12.iloc[year_index,1]=Amount_paid_on_building 303. _claims_dataframe_Region_12.iloc[year_index,1]+amount_paid_on_building_claim 304. Amount_paid_on_contents_claims_dataframe_Region_12.iloc[year_index,1]=Amount_paid_on_contents _claims_dataframe_Region_12.iloc[year_index,1]+amount_paid_on_contents_claim 305. elif polygon13.contains(p): Claims dataframe Region 13.iloc[year index,1]=Claims dataframe Region 13.iloc[year index,1]+1 306. 307. if amount_paid_on_building_claim>0: 308. Paid claims dataframe Region 13.iloc[year index,1]=Paid claims dataframe Region 13.iloc[y ear_index,1]+1 309 Amount_paid_on_building_claims_dataframe_Region_13.iloc[year_index,1]=Amount_paid_on_building _claims_dataframe_Region_13.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_13.iloc[year_index,1]=Amount_paid_on_contents 310. _claims_dataframe_Region_13.iloc[year_index,1]+amount_paid_on_contents_claim 311. elif polygon14.contains(p): {\tt Claims_dataframe_Region_14.iloc[year_index,1]=Claims_dataframe_Region_14.iloc[year_index,1]+1} 312. 313. if amount_paid_on_building_claim>0: Paid_claims_dataframe_Region_14.iloc[year_index,1]=Paid_claims_dataframe_Region_14.iloc[y 314. ear_index,1]+1 315. Amount paid on building claims dataframe Region 14.iloc[year index,1]=Amount paid on building _claims_dataframe_Region_14.iloc[year_index,1]+amount_paid_on_building_claim 316. Amount_paid_on_contents_claims_dataframe_Region_14.iloc[year_index,1]=Amount_paid_on_contents claims_dataframe_Region_14.iloc[year_index,1]+amount_paid_on_contents_claim 317. elif polygon15.contains(p): 318. Claims_dataframe_Region_15.iloc[year_index,1]=Claims_dataframe_Region_15.iloc[year_index,1]+1 319 if amount_paid_on_building_claim>0: Paid_claims_dataframe_Region_15.iloc[year_index,1]=Paid_claims_dataframe_Region_15.iloc[y 320. ear index,1]+1 Amount_paid_on_building_claims_dataframe_Region_15.iloc[year_index,1]=Amount_paid_on_building 321. _claims_dataframe_Region_15.iloc[year_index,1]+amount_paid_on_building_claim 322. Amount paid on contents claims dataframe Region 15.iloc[year index,1]=Amount paid on contents _claims_dataframe_Region_15.iloc[year_index,1]+amount_paid_on_contents_claim 323. elif polygon16.contains(p): 324. Claims_dataframe_Region_16.iloc[year_index,1]=Claims_dataframe_Region_16.iloc[year_index,1]+1 325. if amount_paid_on_building_claim>0: 326.
Paid_claims_dataframe_Region_16.iloc[year_index,1]=Paid_claims_dataframe_Region_16.iloc[y ear_index,1]+1 Amount_paid_on_building_claims_dataframe_Region_16.iloc[year_index,1]=Amount_paid_on_building 327 _claims_dataframe_Region_16.iloc[year_index,1]+amount_paid_on_building_claim Amount_paid_on_contents_claims_dataframe_Region_16.iloc[year_index,1]=Amount_paid_on_contents 328 _claims_dataframe_Region_16.iloc[year_index,1]+amount_paid_on_contents_claim 329. elif polygon17.contains(p): 330. Claims_dataframe_Region_17.iloc[year_index,1]=Claims_dataframe_Region_17.iloc[year_index,1]+1 if amount_paid_on_building claim>0: 331. Paid_claims_dataframe_Region_17.iloc[year_index,1]=Paid_claims_dataframe_Region_17.iloc[y 332. ear_index,1]+1 333. Amount paid on building claims dataframe Region 17.iloc[year index,1]=Amount paid on building _claims_dataframe_Region_17.iloc[year_index,1]+amount_paid_on_building_claim 334. Amount_paid_on_contents_claims_dataframe_Region_17.iloc[year_index,1]=Amount_paid_on_contents _claims_dataframe_Region_17.iloc[year_index,1]+amount_paid_on_contents_claim 335. elif polygon18.contains(p): 336. Claims_dataframe_Region_18.iloc[year_index,1]=Claims_dataframe_Region_18.iloc[year_index,1]+1 337. if amount_paid_on_building_claim>0: ``` ``` Paid_claims_dataframe_Region_18.iloc[year_index,1]=Paid_claims_dataframe_Region_18.iloc[y 338. ear_index,1]+1 339. Amount paid on building claims dataframe Region 18.iloc[year index,1]=Amount paid on building _claims_dataframe_Region_18.iloc[year_index,1]+amount_paid_on_building_claim 340. Amount_paid_on_contents_claims_dataframe_Region_18.iloc[year_index,1]=Amount_paid_on_contents _claims_dataframe_Region_18.iloc[year_index,1]+amount_paid_on_contents_claim elif polygon19.contains(p): 341. 342. Claims_dataframe_Region_19.iloc[year_index,1]=Claims_dataframe_Region_19.iloc[year_index,1]+1 343. if amount_paid_on_building_claim>0: 344. Paid_claims_dataframe_Region_19.iloc[year_index,1]=Paid_claims_dataframe_Region_19.iloc[y ear_index,1]+1 Amount_paid_on_building_claims_dataframe_Region_19.iloc[year_index,1]=Amount_paid_on_building 345. _claims_dataframe_Region_19.iloc[year_index,1]+amount_paid_on_building_claim Amount paid on contents claims dataframe Region 19.iloc[year index,1]=Amount paid on contents 346. _claims_dataframe_Region_19.iloc[year_index,1]+amount_paid_on_contents_claim 347. elif polygon20.contains(p): 348. Claims_dataframe_Region_20.iloc[year_index,1]=Claims_dataframe_Region_20.iloc[year_index,1]+1 349. if amount_paid_on_building_claim>0: Paid claims dataframe Region 20.iloc[year index,1]=Paid claims dataframe Region 20.iloc[y 350. ear_index,1]+1 Amount_paid_on_building_claims_dataframe_Region_20.iloc[year_index,1]=Amount_paid_on_building 351. _claims_dataframe_Region_20.iloc[year_index,1]+amount_paid_on_building claim 352. Amount_paid_on_contents_claims_dataframe_Region_20.iloc[year_index,1]=Amount_paid_on_contents _claims_dataframe_Region_20.iloc[year_index,1]+amount_paid_on_contents_claim 353. elif polygon21.contains(p): Claims_dataframe_Region_21.iloc[year_index,1]=Claims_dataframe_Region_21.iloc[year_index,1]+1 354. 355. if amount paid on building claim>0: Paid claims dataframe Region 21.iloc[year_index,1]=Paid claims dataframe Region 21.iloc[y 356. ear_index,1]+1 357. Amount paid on building claims dataframe Region 21.iloc[year_index,1]=Amount paid on building _claims_dataframe_Region_21.iloc[year_index,1]+amount_paid_on_building_claim 358. Amount_paid_on_contents_claims_dataframe_Region_21.iloc[year_index,1]=Amount_paid_on_contents _claims_dataframe_Region_21.iloc[year_index,1]+amount_paid_on_contents_claim 359 else: 360. the ones that were in no watershed+=1 361.print('the ones that were in no watershed', the ones that were in no watershed) 362. 363.Claims_dataframe_Region_1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region 1') 364.Paid_claims_dataframe_Region_1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\\Regions\\Paid claims Region_1') 365. Amount paid on building claims dataframe Region 1.to pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Pvthon\\11. FEMA records - Results for every Basin and every State\Regions\\Amount paid on building claims dataframe Region_1' 366.Amount_paid_on_contents_claims_dataframe_Region_1.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on contents claims dataframe Region 1' 367.Claims_dataframe_Region_2.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region_2') 368.Paid_claims_dataframe_Region_2.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\Regions\Paid claims Region_2') 369. Amount_paid_on_building_claims_dataframe_Region_2.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Pvthon\\11. FEMA records Results for every Basin and every State\Regions\\Amount paid on building claims dataframe Region_2' 370. Amount_paid_on_contents_claims_dataframe_Region_2.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on contents claims dataframe Region_2' 371.Claims_dataframe_Region_3.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region_3') 372.Paid_claims_dataframe_Region_3.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\Regions\Paid claims Region_3') 373.Amount_paid_on_building_claims_dataframe_Region_3.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_3' 374. Amount_paid_on_contents_claims_dataframe_Region_3.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records - ``` ``` Results for every Basin and every State\Regions\\Amount paid_on contents claims dataframe Region_3' 375.Claims dataframe Region 4.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region 4') 376. Paid_claims_dataframe_Region_4. to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\11. FEMBLE For the content of A records - Results for every Basin and every State\Regions\Paid claims Region_4') 377. Amount_paid_on_building_claims_dataframe_Region_4.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\Regions\Amount paid on building claims dataframe Region 4' 378.Amount_paid_on_contents_claims_dataframe_Region_4.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_4' 379.Claims dataframe Region 5.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region_5') 380.Paid_claims_dataframe_Region_5.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\Regions\Paid claims Region_5') 381.Amount_paid_on_building_claims_dataframe_Region_5.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_5' 382.Amount_paid_on_contents_claims_dataframe_Region_5.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_5' 383.Claims_dataframe_Region_6.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\Regions\Claims Region_6') 384.Paid_claims_dataframe_Region_6.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\Regions\Paid claims Region 6') 385. Amount_paid_on_building_claims_dataframe_Region_6.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_6' 386.Amount_paid_on_contents_claims_dataframe_Region_6.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\Regions\Amount paid_on contents claims dataframe Region_6' 387.Claims_dataframe_Region_7.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region_7') 388.Paid_claims_dataframe_Region_7.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\Regions\Paid claims Region_7') 389.Amount_paid_on_building_claims_dataframe_Region_7.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region 7' 390. Amount_paid_on_contents_claims_dataframe_Region_7.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_7' 391.Claims_dataframe_Region_8.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\Regions\Claims Region_8') 392.Paid_claims_dataframe_Region_8.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A
records - Results for every Basin and every State\Regions\Paid claims Region_8') 393.Amount_paid_on_building_claims_dataframe_Region_8.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_8' 394. Amount paid on contents claims dataframe Region 8.to pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_8' 395.Claims_dataframe_Region_9.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA rec ords - Results for every Basin and every State\\Regions\\Claims Region_9') 396.Paid_claims_dataframe_Region_9.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - Results for every Basin and every State\\Regions\\Paid claims Region_9') 397.Amount_paid_on_building_claims_dataframe_Region_9.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_9' 398. Amount_paid_on_contents_claims_dataframe_Region_9.to_pickle('C:\\Users\\Konstantinos\\Documents\\THES IS\\Python\\11. FEMA records Results for every Basin and every State\Regions\Amount paid_on contents claims dataframe Region_9' ``` ``` 399.Claims_dataframe_Region_10.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_10') 400.Paid claims dataframe Region 10.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\Regions\Paid claims Region_10') 401. Amount_paid_on_building_claims_dataframe_Region_10.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\Regions\\Amount paid on building claims dataframe Region_10 402. Amount paid on contents claims dataframe Region 10.to pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_10 403.Claims_dataframe_Region_11.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_11') 404.Paid claims dataframe Region 11.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_11') 405.Amount_paid_on_building_claims_dataframe_Region_11.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_11 406.Amount_paid_on_contents_claims_dataframe_Region_11.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_11 407.Claims_dataframe_Region_12.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_12') 408.Paid_claims_dataframe_Region_12.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_12') 409.Amount_paid_on_building_claims_dataframe_Region_12.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\Regions\\Amount paid on building claims dataframe Region_12 ') 410.Amount_paid_on_contents_claims_dataframe_Region_12.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_12 411.Claims_dataframe_Region_13.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_13') 412.Paid_claims_dataframe_Region_13.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_13') 413.Amount_paid_on_building_claims_dataframe_Region_13.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\Regions\\Amount paid on building claims dataframe Region_13 414.Amount_paid_on_contents_claims_dataframe_Region_13.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_13 415.Claims_dataframe_Region_14.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_14') 416.Paid_claims_dataframe_Region_14.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_14') 417. Amount_paid_on_building_claims_dataframe_Region_14. to_pickle('C:\Users\Konstantinos\Documents\THE and the content of t SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_14 418.Amount_paid_on_contents_claims_dataframe_Region_14.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_14 419.Claims_dataframe_Region_15.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_15') 420.Paid_claims_dataframe_Region_15.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_15') 421. Amount paid on building claims dataframe Region 15.to pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_15 422. Amount_paid_on_contents_claims_dataframe_Region_15. to_pickle('C:\Users\Konstantinos\Documents\THE and the contents of SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_15 423.Claims_dataframe_Region_16.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_16') ``` ``` 424.Paid_claims_dataframe_Region_16.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_16') 425. Amount paid on building claims dataframe Region 16.to pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_16 426.Amount_paid_on_contents_claims_dataframe_Region_16.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on contents claims dataframe Region 16 427.Claims_dataframe_Region_17.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\Regions\Claims Region 17') 428.Paid_claims_dataframe_Region_17.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_17') 429. Amount_paid_on_building_claims_dataframe_Region_17.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\Regions\Amount paid on building claims dataframe Region 17 ') 430. Amount_paid_on_contents_claims_dataframe_Region_17. to_pickle('C:\Users\Konstantinos\Documents\THE Institute of the content con SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_17 431.Claims_dataframe_Region_18.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\Regions\Claims Region_18') 432.Paid_claims_dataframe_Region_18.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\Regions\Paid claims Region_18') 433.Amount_paid_on_building_claims_dataframe_Region_18.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\Regions\Amount paid on building claims dataframe Region_18 434. Amount_paid_on_contents_claims_dataframe_Region_18. to_pickle('C:\Users\Konstantinos\Documents\THE Institute of the contents con SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on contents claims dataframe Region_18 435.Claims_dataframe_Region_19.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region 19') 436.Paid_claims_dataframe_Region_19.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\\Regions\\Paid claims Region_19') 437.Amount_paid_on_building_claims_dataframe_Region_19.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\Regions\Amount paid on building claims dataframe Region_19 ') 438. Amount_paid_on_contents_claims_dataframe_Region_19. to_pickle('C:\Users\Konstantinos\Documents\THE Inc. on the contents of SIS\\Python\\11. FEMA records Results for every Basin and every
State\\Regions\\Amount paid on contents claims dataframe Region 19 439.Claims_dataframe_Region_20.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region 20') 440.Paid_claims_dataframe_Region_20.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\Regions\Paid claims Region_20') 441. Amount paid on building claims dataframe Region 20.to pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Pvthon\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_20 ') 442. Amount_paid_on_contents_claims_dataframe_Region_20. to_pickle('C:\Users\Konstantinos\Documents\THE Includes the contents of content SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on contents claims dataframe Region 20 443.Claims_dataframe_Region_21.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA re cords - Results for every Basin and every State\\Regions\\Claims Region_21') 444.Paid_claims_dataframe_Region_21.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FE MA records - Results for every Basin and every State\Regions\Paid claims Region_21') 445.Amount_paid_on_building_claims_dataframe_Region_21.to_pickle('C:\\Users\\Konstantinos\\Documents\\THE SIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid on building claims dataframe Region_21 ') 446. Amount_paid_on_contents_claims_dataframe_Region_21. to_pickle('C:\Users\Konstantinos\Documents\THE Institute of the contents con SIS\\Python\\11. FEMA records Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_21 ') 447. 448.#Sum buildings and contents compensations to one dataframe 449.sum_compensations_regions=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEM A records - ``` ``` Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_1' 450. Num=len(sum compensations regions) 451.i=0 452.while i<Num: 453. sum_compensations_regions.iloc[i,1]=0.0 454. i+=1 455.sum_compensations_states=sum_compensations_regions.copy() 456.sum_compensations_regions.columns=['Year','Sum compensations (buildings and contents)'] 457.sum_compensations_states.columns=['Year','Sum compensations (buildings and contents)'] 458.#print(sum_compensations_regions) 459.print(sum_compensations_states) 460. 461.i=1 462.while i<22: 463 sum_compensations_regions1=sum_compensations_regions.copy() 464. 465. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_'+ i_str) 466. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA records - Results for every Basin and every State\\Regions\\Amount paid_on contents claims dataframe Region_'+ 467. i=0 468. Num=len(file1) 469. while j<Num: 470. sum_compensations_regions1.iloc[j,1]=file1.iloc[j,1]+file2.iloc[j,1] 471. j+=1 472. sum_compensations_regions1.to_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\11. FEM In the compensations of the compensation comp A records Results for every Basin and every State\\Regions\\Sum of buildings and contents amount paid datafram e Region_'+str(i)) 473.# print(sum_compensations_regions1) 474. i+=1 ``` 11.13. Plot of the USA map with Spearman correlation for all the selected gauge locations and all thresholds between annual collective risk of a specific gauge locations and the aggregated FEMA claims of the Hydrological Unit (region) that this gauge location belongs to. ``` import geopandas as gpd import matplotlib.pyplot as plt import pandas as pd import numpy as np 5. from scipy.stats import spearmanr 6. from mpl_toolkits.axes_grid1 import make_axes_locatable 7. 8. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 9. threshold_df = pd.DataFrame(data=threshold_df_data) 10. Num_threshold_df=len(threshold_df) 11. #print(threshold_df) 12. 13. threshold_loop=0 14. while threshold_loop<Num_threshold_df:</pre> 15. threshold=threshold_df.iloc[threshold_loop,0] 16. 17. #Read collective risk S dataframe Collective Risk S=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1. Results 18. for the Observed\\'+threshold+'\\Collective Risk S CAMELS 1980-2014') 19. Collective_Risk_S=Collective_Risk_S.drop(Collective_Risk_S.index[35]) 20. #print(Collective_Risk_S) 21. 22. #Claims: Shapefile for USA states and stations (with correlation) 23. shapefile='C:\Users\\Konstantinos\\Documents\\THESIS\\Python\\10. Shapefiles\\States\\states.shp 24. stations1=gpd.read file(shapefile) 25. ax=stations1.plot(color='white', edgecolor='black',linewidth=0.3, figsize=(16,16)) 26. ax.set_xlim(xmin=-130, xmax=-65) ``` ``` 27. ax.set_ylim(ymin=20, ymax=55) 28. region_index=1 29. while region index<19: 30. sns.set() 31. region_index_str=str(region_index) Claims=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\11. FEMA records - 32. Results for every Basin and every State\\Regions\\Claims Region_'+region_index_str) 33. i=0 34. while i<10: Claims=Claims.drop(Claims.index[0]) 35. 36. Claims=Claims.reset_index(drop=True) 37. i+=1 38. i=0 39. while i<5: 40. Claims=Claims.drop(Claims.index[35]) Claims=Claims.reset_index(drop=True) 41 42. 43. stations=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Region '+region_ index_str+' - All stations with criteria (1980-2014 and 10% missing values') 44. print(stations) 45. Num_cols=len(stations) 46. corr_coef = pd.DataFrame(np.zeros((Num_cols, 3))) i=0 47. 48. while i<Num cols:</pre> 49. name=stations.iloc[i,1] 50. S_column=Collective_Risk_S[name] 51. PaidClaims=Claims['Claims'] corr,p_value=spearmanr(S_column, PaidClaims) 52. 53. corr_coef.iloc[i,0]=name 54. corr coef.iloc[i,1]=corr 55. corr_coef.iloc[i,2]=p_value 56. i+=1 57. print(corr_coef) Stations=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge_info - 58. 671 stations') 59. Num stations=len(Stations) 60. #print(Stations) 61. lat_lon=corr_coef.copy() 62. lat_lon.columns=['Name','Lat','Lon'] Num lat_lon=len(lat_lon) 63. 64. #print(lat_lon) 65. i=0 j=0 66. 67. while i<Num_lat_lon:</pre> 68. j=0 69. while j<Num_stations:</pre> 70. if lat_lon.iloc[i,0]==Stations.iloc[j,1]: 71. lat_lon.iloc[i,1]=Stations.iloc[j,3] 72. lat_lon.iloc[i,2]=Stations.iloc[j,4] 73. j+=1 74. i+=1 75. lat_lon['Corr. coef.']=corr_coef[1] 76. #print(lat_lon) 77. x=lat_lon.iloc[:,2] 78. y=lat_lon.iloc[:,1] 79. color=lat_lon.iloc[:,3] 80. plt.scatter(x,y, c=lat_lon.iloc[:,3], marker='o', edgecolor='black', linewidth=0.2, alpha=1, cmap=plt.cm.get_cmap('rainbow', 5)) 81. plt.clim(-0.25, 1); 82. region_index+=1 plt.title('Collective risk (S) vs Cumulative Claims - 83. Threshold '+threshold,fontsize=19, y=1.05) plt.xlabel('Longitude',fontsize=18) plt.ylabel('Latitude',fontsize=18) 84. 85. plt.tick_params(axis='both',which='both',labelsize=17,zorder=20) 86. 87. 88. divider = make_axes_locatable(ax) 89. cax = divider.append_axes("right", size="5%", pad=0.05) 90. 91. v1 = np.linspace(-0.25, 1, 6) cbar = plt.colorbar(ticks=v1, cax=cax) 92. 93. cbar.ax.tick_params(labelsize=17) 94. cbar.set_label('Correlation coefficient', fontsize=17, labelpad=20) ``` ``` 95. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation with FEMA record s\\Spearman\\Observed\\'+threshold+'\\MAP WITH STATES\\USA States map (Spearman) - Claims '+threshold+'.png') 96. threshold_loop+=1 ``` 11.14. Boxplots for all thresholds of the Spearman correlation coefficient between collective risk of every gauge location and FEMA's claims records of the hydrological unit that a specific gauge location belongs. ``` import numpy as np 2. import pandas as pd 3. from matplotlib import pyplot as plt 4. from scipy.stats import spearmanr 5. 6. def boxplot(x, filename): file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation with FE 7. MA records\\Spearman\\Spearman - HU claims and S (90%)') file 2 = pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\12. Correlation with FE in the property of proper 8. MA records\\Spearman\\Spearman - HU claims and S (95%)') 9. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation with FE MA records\\Spearman\\Spearman - HU claims and S (98%)') 10. file4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation with FE MA records\\Spearman\\Spearman - HU claims and S (99%)') 11. # Create data 12. collectn_1 = file1.iloc[x,1:100] 13. collectn_11 = file1.iloc[x,101] 14. collectn_2 = file2.iloc[x,1:100] 15. collectn_22 = file2.iloc[x,101] 16. 17. collectn_3 = file3.iloc[x,1:100] collectn_33 = file3.iloc[x,101] 18. 19. collectn_4 = file4.iloc[x,1:100] 20. collectn_44 = file4.iloc[x,101] 21. 22. # Combine these different collections into a list data_to_plot = [collectn_1, collectn_11, collectn_2, collectn_22, collectn_3, collectn_33, collectn_34 23. tn_4, collectn_44] 24. 25. # Create a figure instance fig=plt.figure(figsize=(11,6),dpi=200) 26. 27. ax = fig.add_subplot(111) medianprops = dict(linestyle='-', linewidth=2, color='red') 28. 29. ax.set_axisbelow(True) ax.set_title('Boxplot of the Spearman correlation coefficient between \nHydrological Unit Claims and Collective Risk S (Gauge ID: '+filename+')',fontsize=14) 30. ax.set_ylabel('Spearman correlation coefficient',fontsize=13) 31. plt.tick_params(axis='x',which='x') 32. # ax.tick_params(axis='x', labelsize=10,zorder=20,rotation=0) 33. bp = ax.boxplot(data_to_plot,medianprops=medianprops,patch_artist=True,labels=['90% Shuffled','90 % Observed','95% Shuffled','95% Observed','98% Shuffled','98% Observed','99% Shuffled','99% Observed'])
ax.grid(color='black', linestyle='-', linewidth=0.1) colors = ['skyblue', 'blue', 'moccasin', 'green', 'lightsalmon', 'tan', 'tan', 'pink'] for patch, color in zip(bp['boxes'], colors): 35. 36. 37. 38. patch.set_facecolor(color) 39. plt.yticks(np.arange(-0.6, 1.01, 0.1)) 40. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation with FEMA record s\\Spearman\\Boxplots HU\\Spearman S-HUCLAIMS Boxplot '+filename+'.png') 41. plt.close() 42. 43. 44. threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 45. threshold_df = pd.DataFrame(data=threshold_df_data) 46. Num threshold df=len(threshold df) 47. #print(threshold_df) 48. 49. df_filenames=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Timeseries 1980- 2014 and 10% limit for missing values') 50. Num_cols_filenames = len (df_filenames) ``` ``` 51. i=0 52. while i<Num_cols_filenames:</pre> filename=df filenames.iloc[i,0] 53. 54. filename1=filename.replace(".mat","") 55. df_filenames.iloc[i,0]=filename1 56. i+=1 57. df_filenames1=df_filenames.copy() 58. df1=df_filenames.copy() 59. i=1 60. while i<101: 61. i_str=str(i) 62. df_filenames1.columns = [i_str] df1[i_str]=df_filenames1[i_str] 63. 64. i+=1 65. df1['Observed']=df filenames1[i str] 66. #print(df1) 67. #print(df_filenames) 68. 69. threshold_loop=0 70. while threshold_loop<Num_threshold_df:</pre> threshold=threshold_df.iloc[threshold_loop,1] 71. 72. threshold_text=threshold_df.iloc[threshold_loop,0] 73. 74. spearman corr coef=df1.copy() 75. 76. i = 0 77. while i<Num_cols_filenames:</pre> filename=df_filenames.iloc[i,0] 78. 79. 80. stations df=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\Gauge info - 671 stations') 81. Num_stations=len(stations_df) 82. stations_index=0 while stations_index<Num_stations:</pre> 83. 84. if filename==stations_df.iloc[stations_index,1]: 85. HU=stations df.iloc[stations index,0] HU_str=str(HU) 86 87. break 88. stations_index+=1 HU_claims_df=pd.read_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\11. FEMA received and the substitution of sub 89. Results for every Basin and every State\\Regions\\Claims Region_'+HU_str) 90. HU claims df=HU claims df.iloc[10:45,:] 91. HU_claims_df=HU_claims_df.reset_index(drop=True) 92. HU_claims_df=HU_claims_df.drop(['Year'], axis=1) 93. # print(HU claims df) 94. 95. observed_S_df=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\1. Results for the Observed\\'+threshold text+'\\Collective Risk S CAMELS 1980-2014') observed_S_df=observed_S_df[filename] 96. 97. observed_S_df=observed_S_df.drop(observed_S_df.index[35]) 98. # print(observed S df) 99. 100. z=0 101. k=len(observed S df) 102 HU_claims_df_observed=HU_claims_df.copy() 103. while z<k: 104. if observed_S_df.iloc[z]==0 or HU_claims_df_observed.iloc[z,0]==0: observed_S_df=observed_S_df.drop(observed_S_df.index[z]) 105 HU claims df observed=HU claims df observed.drop(HU claims df observed.index[z]) 106. 107. observed_S_df=observed_S_df.reset_index(drop=True) HU_claims_df_observed=HU_claims_df_observed.reset_index(drop=True) 108. 109. k=k-1 110. else: z+=1 111. 112. 113. corr1,p value1=spearmanr(observed S df, HU claims df observed) 114. spearman_corr_coef.iloc[i,101]=corr1 115. 116. shuffle index=1 117. while shuffle_index<101:</pre> HU_claims_df_shuffled=HU_claims_df.copy() 118. 119. shuffled_S_df=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\4. Resulting the substitution of substitutio lts for the Shuffled of the timeseries with criteria\\'+threshold_text+'\\'+filename+' Collective Ris k for 100 Shuffled') ``` ``` 120. shuffled_S=shuffled_S_df.iloc[:,shuffle_index] 121. z=0 122. k=len(shuffled S) 123. while z<k: 124. if shuffled_S.iloc[z]==0 or HU_claims_df_shuffled.iloc[z,0]==0: shuffled_S=shuffled_S.drop(shuffled_S.index[z]) 125. HU_claims_df_shuffled=HU_claims_df_shuffled.drop(HU_claims_df_shuffled.index[z]) 126. 127. shuffled S=shuffled S.reset index(drop=True) 128. HU_claims df_shuffled=HU_claims_df_shuffled.reset_index(drop=True) 129. k=k-1 130. else: 131. 7+=1 132.# 133. corr1,p value1=spearmanr(shuffled S, HU claims df shuffled) 134 spearman_corr_coef.iloc[i,shuffle_index]=corr1 135. 136. shuffle_index+=1 137. 138. i+=1 139.# print(i) 140 # print(spearman_corr_coef) spearman_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\12. Correlation 141. with FEMA records\\Spearman\\Spearman - HU claims and S ('+threshold_text+')') 142. 143. threshold_loop+=1 144. 145.#Plot Boxplot 146.i=0 147.while i<Num cols filenames: filename=df_filenames.iloc[i,0] 148. 149. boxplot(i, filename) 150. ``` 11.15. Collective risk method on Larissa's precipitation mechanisms. Shuffle time series. Calculation of annual collective risk, annual peak, *Average Yi*, the duration and the number of the over-threshold events for all thresholds. Calculation and plot of the ECDF diagrams of collective risk, return intervals and duration of over-threshold events. Box plot of the correlation between *Average Yi* and *N*. Box plot of correlation between collective risk and actual compensations. Application on the observed as well as the shuffled time series for all thresholds. ``` import numpy as np 2. import pandas as pd 3. import seaborn as sns 4. from matplotlib import pyplot as plt from scipy.stats import pearsonr from scipy.stats import spearmanr 7. 8. def missing_values_percentage(df_TS): 9. df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) Num cols1=len(df withoutNaN) 10. Num cols2=len(df TS) 11. missing_values_percentage=1-Num_cols1/Num_cols2 12. 13. return missing_values_percentage 14. 15. #Estimation of the dataframe events_df (when an event occured) 16. def Get_events_df(df_TS, threshold): #Drop NaN (missing values) 17. 18. df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 19. df_sorted_noNaN=df_withoutNaN.sort_values(by=['Precipitation']) 20. # df_sorted_noNaN=df_withoutNaN.sort_values(3, axis=0, ascending=True, inplace=False, kind='quicks ort', na_position='last') Num cols = len (df withoutNaN) position=int(threshold*Num_cols) 22. ``` ``` threshold_value=df_sorted_noNaN.iloc[position,3] 23. 24. events_df=df_withoutNaN 25. events_df.columns = ['Year', 'Month', 'Day', 'Precipitation'] events_df.drop(events_df.loc[events_df['Precipitation'] < threshold_value].index, inplace=True)</pre> 26. 27. return events_df 28. 29. #Estimation of the dataframe without ones (continuous days of that events occur) 30. def Get_events_df_without_ones(events_df): 31. Num cols = len (events df) events_df_without_ones=events_df.take([0]) 32. 33. i=1 34. while i<=Num_cols-1:</pre> 35. if events_df.index[i]-1==events_df.index[i-1]: 36. i+=1 37. else: 38 append_row=events_df.iloc[i].copy() 39. events_df_without_ones=events_df_without_ones.append(append_row) 40. i+=1 41. return events_df_without_ones 42. 43. #Estimation of the returning_interval_df 44. def Get_return_interval_df(events_df_without_ones): 45. Num_cols = len (events_df_without_ones) 46. return_interval_df = {'Return interval': [events_df_without_ones.index[0]]} 47. return_interval_df = pd.DataFrame(data=return_interval_df) 48. i=1 49. while i<=(Num_cols-1):</pre> 50. j = events_df_without_ones.index[i] - events_df_without_ones.index[i-1] 51. append_row = {'Return interval': [j]} 52. append_row1 = pd.DataFrame(data=append_row) return_interval_df=return_interval_df.append(append_row1) 53. 54. i+=1 55. return_interval_df=return_interval_df.reset_index(drop=True) 56. return return_interval_df 57. 58. #Estimation of the collective risk S df 59. def collective_risk_function(df_TS, events_df): 60. first year=df TS.iloc[0,0] 61. Num_{cols} = len (df_{TS})-1 last_year=df_TS.iloc[Num_cols,0] 62. collective_risk_S_df = {'Year': [0], 'Collective Risk S': [0.0]} 63. collective_risk_S_df = pd.DataFrame(data=collective_risk_S_df) 64. 65. a=first_year 66. while a<=last_year-1:</pre> 67. m={'Year': [0], 'Collective Risk S': [0.0]} 68. m = pd.DataFrame(data=m) 69. append_row=m.iloc[0].copy() 70. collective_risk_S_df=collective_risk_S_df.append(append_row) 71. a+=1 72. collective_risk_S_df=collective_risk_S_df.reset_index(drop=True) 73. a=first_year 74. i=0 while a<=last_year:</pre> 75. 76. collective_risk_S_df.xs(i)['Year'] = a 77. a+=1 78. i+=1 a=first_year 79. i=0 80. 81. i=0 82. Num_cols = len (events_df) 83. while a<=last_year:</pre> 84. while j<=(Num_cols-1):</pre> 85. if events_df.iloc[j,0]==a: collective_risk_S_df.xs(i)['Collective Risk S'] = collective_risk_S_df.iloc[i,1] + ev 86. ents_df.iloc[j,3] 87. j+=1 88. else: 89. j+=1 90. i=0 91. i+=1 92. a+=1 93. return collective_risk_S_df 94. 95. #Estimation of the number_of_events_df ``` ``` 96. def number_of_events_function(df_TS, events_df): 97. first_year=df_TS.iloc[0,0] 98. Num cols = len (df TS)-1 99. last_year=df_TS.iloc[Num_cols,0] number_of_events_df = {'Year': [0], 'Number of events': [0.0]} 100. number_of_events_df = pd.DataFrame(data=number_of_events_df) 101. a=first_year 102. while a<=last_year-1:</pre> 103. m={'Year': [0], 'Number of events': [0.0]} 104. m = pd.DataFrame(data=m) 105. 106. append_row=m.iloc[0].copy() 107. number_of_events_df=number_of_events_df.append(append_row) 108. a+=1 109. number_of_events_df=number_of_events_df.reset_index(drop=True) a=first_year 110. i=0 111 112. while a<=last_year:</pre> 113. number_of_events_df.xs(i)['Year'] = a 114. a+=1 115. i+=1 116. a=first_year 117 i=0 118. j=0 119. Num cols = len (events df) 120. while a<=last_year:</pre> 121. while j<=(Num_cols-1):</pre> 122. if events_df.iloc[j,0]==a: number_of_events_df.xs(i)['Number of events'] = number_of_events_df.iloc[i,1] + 1 123. 124. j+=1 125. else: 126. j+=1 127. j=0 128. i+=1 129. a+=1 130. return number_of_events_df 131. 132.#Estimation of the annual_peak_ONLY_for_events_df 133.def annual_peak_only_for_events_function(df_TS, events_df): 134. first_year=df_TS.iloc[0,0] 135. Num_{cols} = len (df_{TS})-1 136.
last_year=df_TS.iloc[Num_cols,0] 137. annual_peak_only_for_events_df = {'Year': [0], 'Annual peak (Block maxima) only for events': [0.0]} 138. annual_peak_only_for_events_df = pd.DataFrame(data=annual_peak_only_for_events_df) a=first_year 139. 140. while a<=last_year-1:</pre> 141. m={'Year': [0], 'Annual peak (Block maxima) only for events': [0.0]} 142. m = pd.DataFrame(data=m) 143 append_row=m.iloc[0].copy() 144. annual_peak_only_for_events_df=annual_peak_only_for_events_df.append(append_row) 145. a+=1 146. annual_peak_only_for_events_df=annual_peak_only_for_events_df.reset_index(drop=True) 147. a=first_year 148. i=0 149 while a<=last_year:</pre> 150. annual_peak_only_for_events_df.xs(i)['Year'] = a 151. a+=1 152. i+=1 a=first_year 153. 154. i=0 155. j=0 156. Num_cols = len (events_df) 157. max=0 158. while a<=last_year:</pre> 159. while j<=(Num cols-1):</pre> 160. if events_df.iloc[j,0]==a: 161. if events_df.iloc[j,3]>max: 162. annual_peak_only_for_events_df.xs(i)['Annual peak (Block maxima) only for events'] = events_df.iloc[j,3] 163. max=events_df.iloc[j,3] 164. j+=1 165. else: 166. j+=1 167. else: ``` ``` 168. i+=1 169. max=0 170. j=0 171. i+=1 172. a+=1 173. return annual_peak_only_for_events_df 174. 175.#Estimation of the annual_peak_for_ALL_df 176. def annual peak for all function(df TS, events df): first_year=df_TS.iloc[0,0] 177. 178. Num_cols = len (df_TS)-1 179. last_year=df_TS.iloc[Num_cols,0] annual_peak_for_all_df = {'Year': [0], 'Annual peak (Block maxima) for all': [0.0]} 180. 181. annual_peak_for_all_df = pd.DataFrame(data=annual_peak_for_all_df) 182. a=first_year while a<=last_year-1:</pre> 183 m={'Year': [0.0], 'Annual peak (Block maxima) for all': [0.0]} 184. 185. m = pd.DataFrame(data=m) 186. append_row=m.iloc[0].copy() 187. annual_peak_for_all_df=annual_peak_for_all_df.append(append_row) 188. a+=1 189 annual_peak_for_all_df=annual_peak_for_all_df.reset_index(drop=True) 190. a=first_year 191. i=0 192. while a<=last_year:</pre> 193. annual_peak_for_all_df.xs(i)['Year'] = a 194. a+=1 195. i+=1 196. a=first_year 197. i=0 198. i=0 199. Num_cols = len (df_TS) 200. max=0 while a<=last_year:</pre> 201. 202. while j<=(Num_cols-1):</pre> 203. if df_TS.iloc[j,0]==a: if df_TS.iloc[j,3]>max: 204 205. annual_peak_for_all_df.xs(i)['Annual peak (Block maxima) for all'] = df_TS.iloc[j ,3] 206. max=df_TS.iloc[j,3] 207. j+=1 208. else: 209 j+=1 210. else: 211. j+=1 212. max=0 213. j=0 214. i+=1 215. a+=1 216. return annual_peak_for_all_df 217. 218.#Estimation of the average_Yi_df 219.def average_Yi_function(df_TS, events_df): 220. first_year=df_TS.iloc[0,0] 221. Num_{cols} = len (df_{TS})-1 222. last_year=df_TS.iloc[Num_cols,0] average_Yi_df = {'Year': [0], 'Average Yi': [0.0]} average_Yi_df = pd.DataFrame(data=average_Yi_df) 223. 224 225. a=first_year while a<=last_year-1:</pre> 226. m={'Year': [0], 'Average Yi': [0.0]} 227 228. m = pd.DataFrame(data=m) append_row=m.iloc[0].copy() 229. 230. average_Yi_df=average_Yi_df.append(append_row) 231. 232. average_Yi_df=average_Yi_df.reset_index(drop=True) 233. a=first_year 234. i=0 235. while a<=last_year:</pre> 236. average_Yi_df.xs(i)['Year'] = a 237. a+=1 238. i+=1 239. a=first_year ``` ``` 241. i=0 242. j=0 243. Num cols = len (events df) 244. while a<=last_year:</pre> 245. r=0 246. u=0 while j<=(Num_cols-1):</pre> 247. 248. if events_df.iloc[j,0]==a: 249. r=r + events_df.iloc[j,3] 250. u+=1 251. j+=1 252. else: 253. j+=1 254. if u!=0: 255. average_Yi_df.xs(i)['Average Yi'] =r/u 256 i=0 257. i+=1 258. a+=1 259. return average_Yi_df 260. 261.def ecdf_S(collective_risk_S_df): ecdf_S_df=collective_risk_S_df.drop(['Year'], axis=1) 262. 263. ecdf_S_df.columns = ['Large sorted S'] 264. ecdf_S_df=ecdf_S_df.sort_values(by=['Large sorted S'],ascending=False) ecdf S df=ecdf_S_df.reset_index(drop=True) 265. 266. Num_cols=len(ecdf_S_df) 267. x=ecdf_S_df.copy() ecdf_S_df['ECDF']=x['Large sorted S'] 268. i=0 269. 270. while i<Num cols:</pre> ecdf_S_df.iloc[i,1]=1-((ecdf_S_df.index[i]+1)/(Num_cols+1)) 271. 272. i+=1 273. return ecdf_S_df 274. 275.def ecdf_r(return_interval_df): 276. ecdf_r_df=return_interval_df 277 ecdf_r_df.columns = ['Large sorted r'] ecdf_r_df=ecdf_r_df.sort_values(by=['Large sorted r'],ascending=False) 278. 279. ecdf_r_df=ecdf_r_df.reset_index(drop=True) Num_cols=len(ecdf_r_df) 280. 281. x=ecdf_r_df.copy() 282. ecdf_r_df['ECDF']=x['Large sorted r'] 283 i=0 284. while i<Num cols:</pre> 285. ecdf_r_df.iloc[i,1]=1-((ecdf_r_df.index[i]+1)/(Num_cols+1)) 286. i+=1 287. return ecdf_r_df 288. 289. #Create 100 shuffled timeseries for observed timeseries 290.def Shuffle_100_timeseries(df_TS): 291. df_TS.columns = ['Year', 'Month', 'Day', 'Precipitation'] shuffled_df=df_TS 292. 293. shuffled_df=shuffled_df.drop(['Year', 'Month', 'Day'], axis=1) 294. x=shuffled df 295. i=1 296. while i<101: 297. x = x.sample(frac=1, axis=1).sample(frac=1).reset_index(drop=True) shuffled_df[i]=x['Precipitation'] 298. 299. shuffled_df.insert(loc=0, column='Day', value=df_TS['Day']) shuffled_df.insert(loc=0, column='Month', value=df_TS['Month']) shuffled_df.insert(loc=0, column='Year', value=df_TS['Year']) 300. 301. 302. return shuffled_df 303. 304. 305.def Get_duration_df(return_interval_df): ret_int_index=0 306. 307. while ret_int_index<len(return_interval_df):</pre> 308. if return_interval_df.iloc[ret_int_index,0]!=1: 309. return_interval_df.iloc[ret_int_index,0]=0.0 310. ret_int_index+=1 311.# print(return_interval_df) 312. ret int index=1 313. Num_return_interval_df=len(return_interval_df) while ret_int_index<Num_return_interval_df:</pre> ``` ``` if return interval df.iloc[ret int index,0]==1.0: 315. 316. return_interval_df.iloc[ret_int_index-1,0]=return_interval_df.iloc[ret_int_index-1,0]+1 return interval df=return interval df.drop(return interval df.index[ret int index]) 317. 318. return_interval_df=return_interval_df.reset_index(drop=True) 319. Num_return_interval_df=Num_return_interval_df-1 320. else: ret_int_index+=1 321. 322. ret_int_index=0 323. duration df=return interval df.copy() 324. duration_df.columns=['Duration of event'] 325. while ret_int_index<len(duration_df):</pre> 326. duration_df.iloc[ret_int_index,0]=duration_df.iloc[ret_int_index,0]+1 ret_int_index+=1 327. 328. return duration_df 329. 330.def ecdf_duration(duration_df): 331. duration_df.columns = ['Large sorted duration'] 332. duration_df=duration_df.sort_values(by=['Large sorted duration'],ascending=False) 333. duration_df=duration_df.reset_index(drop=True) 334. Num_cols=len(duration_df) 335. x=duration_df.copy() 336 duration_df['ECDF']=x['Large sorted duration'] 337. i=0 338. while i<Num_cols:</pre> 339. duration_df.iloc[i,1]=1-((duration_df.index[i]+1)/(Num_cols+1)) 340. i+=1 341. return duration_df 342. 343.def boxplot_Yi_N(correlation_label): file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N '+correlation_label+' (90%) no zeros') 345. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N '+correlation_label+' (95%) no zeros') 346. file3=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N '+correlation_label+' (98%) no zeros') 347. file4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N '+correlation_label+' (99%) no zeros') 348. # Create data collectn_1 = file1.iloc[0,1:100] 349 350. collectn_11 = file1.iloc[0,0] 351. collectn 2 = file2.iloc[0,1:100] collectn_22 = file2.iloc[0,0] 352. collectn_3 = file3.iloc[0,1:100] 353. 354. collectn 33 = file3.iloc[0,0] collectn_4 = file4.iloc[0,1:100] 355 collectn_44 = file4.iloc[0,0] 356. 357. # combine these different collections into a list data_to_plot = [collectn_1, collectn_11, collectn_2, collectn_22, collectn_3, collectn_33, collectn_34 358. tn_4, collectn_44] 359. # Create a figure instance 360. fig=plt.figure(figsize=(11,6),dpi=200) 361. ax = fig.add_subplot(111) 362. medianprops = dict(linestyle='-', linewidth=2, color='red') 363 ax.set_axisbelow(True) ax.set_title('Boxplot of the '+correlation_label+' correlation coefficient between \nAverage Yi a 364. nd Number of Events (N) in Larissa Station (precipitation)', fontsize=14) ax.set_ylabel(correlation_label+' correlation coefficient',fontsize=13) 365. plt.tick_params(axis='x',which='x') 366.# ax.tick_params(axis='x', labelsize=10,zorder=20,rotation=0) 367. bp = ax.boxplot(data_to_plot, median props=median props, patch_artist=True, labels=['90\% Shuffled', '90'] and the proposed prop 368. % Observed', '95% Shuffled', '95% Observed', '98% Shuffled', '99% Observed' 1) ax.grid(color='black', linestyle='-', linewidth=0.1) colors = ['skyblue', 'blue', 'moccasin', 'green', 'lightsalmon', 'tan', 'tan', 'pink'] for patch, color in zip(bp['boxes'], colors): 369. 370. 371. 372. patch.set_facecolor(color) 373. plt.yticks(np.arange(-1.0, 1.01, 0.2)) plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 1999- 374. 2017\\3. Average Yi - N correlation\\'+correlation_label+' Boxplot Larissa.png') 375. plt.close() ``` ``` 376. 377.def boxplot_compensations(correlation_label): file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\4. Compensations correlation\\Larissa compensations '+correlation_label+' (90%) no zeros') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\4. Compensations correlation\\Larissa compensations '+correlation label+' (95%) no zeros') file3=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\4. Compensations correlation\\Larissa compensations '+correlation label+' (98%) no zeros') 381.
file4=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\4. Compensations correlation\\Larissa compensations '+correlation_label+' (99%) no zeros') 382. # Create data collectn_1 = file1.iloc[0,1:100] 383 384. collectn 11 = file1.iloc[0,0] 385. collectn_2 = file2.iloc[0,1:100] 386. collectn_22 = file2.iloc[0,0] 387. collectn_3 = file3.iloc[0,1:100] collectn_33 = file3.iloc[0,0] 388. 389 collectn_4 = file4.iloc[0,1:100] 390. collectn 44 = file4.iloc[0,0] 391. # combine these different collections into a list 392. data_to_plot = [collectn_1, collectn_11, collectn_2, collectn_22, collectn_3, collectn_33, collectn_34, collectn_36 tn_4, collectn_44] # Create a figure instance 393. 394. fig=plt.figure(figsize=(11,6),dpi=200) 395. ax = fig.add_subplot(111) 396. medianprops = dict(linestyle='-', linewidth=2, color='red') 397. ax.set_axisbelow(True) 398. ax.set_title('Boxplot of the '+correlation_label+' correlation coefficient between \nCollective R isk S and compensations in Larissa Station (precipitation)',fontsize=14) 399. ax.set_ylabel(correlation_label+' correlation coefficient',fontsize=13) plt.tick_params(axis='x',which='x') 400.# 401. ax.tick_params(axis='x', labelsize=10,zorder=20,rotation=0) bp = ax.boxplot(data_to_plot,medianprops=medianprops,patch_artist=True,labels=['90% Shuffled','90 402 % Observed', '95% Shuffled', '95% Observed', '98% Shuffled', '98% Observed', '99% Shuffled', '99% Observed']) ax.grid(color='black', linestyle='-', linewidth=0.1) 403. colors = ['skyblue','blue', 'moccasin','green', 'lightsalmon','tan', 'tan','pink'] for patch, color in zip(bp['boxes'], colors): 404. 405. 406 patch.set_facecolor(color) 407. plt.yticks(np.arange(-1.0, 1.01, 0.2)) plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 1999- 408. 2017\\4. Compensations correlation\\Compensations '+correlation_label+' Boxplot Larissa.png') 409 plt.close() 410. 411. #Results of the observed time series 1955-2018 412.df = pd.read_excel('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\0. Scripts\\PRCT Larissa.xlsx , sheet_name = '1669565') 413.#print(df) 414.df_TS=df[['DATE','PRCP']] 415.Num=len(df TS) 416 i=0 417.while i<Num: 418. df_TS.iloc[i,1]=df_TS.iloc[i,1]*25.4 419 i+=1 420.# 421. 422.df_TS['DATE'] = pd.to_datetime(df_TS['DATE'], format='%m/%d/%Y') 423.df_TS = df_TS.sort_values(by=['DATE'], ascending=[True]) 424.df_TS.set_index('DATE', inplace=True) 425.df_TS = df_TS.resample('D').asfreq().reset_index() 426. 427.df TS['Year'] = pd.DatetimeIndex(df TS['DATE']).year 428.df_TS['Month'] = pd.DatetimeIndex(df_TS['DATE']).month 429.df_TS['Day'] = pd.DatetimeIndex(df_TS['DATE']).day 430.df_TS['Precipitation']=df_TS['PRCP'] 431.df_TS=df_TS.drop(['DATE'], axis=1) 432.df_TS=df_TS.drop(['PRCP'], axis=1) 433. 434.Num=len(df_TS) 435.i=0 ``` ``` 436.while i<Num: 437. if df_TS.iloc[i,0]==2019: df_TS=df_TS.drop(df_TS.index[i]) df_TS=df_TS.reset_index(drop=True) 438. 439. 440. Num=Num-1 441. else: 442. i += 1 443.#print(df_TS) 444.df TS.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa df TS') 445.df_TS=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa df_TS' 446. 447.d = {'Year': [1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,19 72,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,199 2,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 ,2013,2014,2015,2016,2017,2018,0]} 448.final_prototype_df = pd.DataFrame(data=d) 449.Collective_Risk_S_FOR_ALL_df=final_prototype_df.copy() 450.number_of_events_FOR_ALL_df=final_prototype_df.copy() 451.annual_peak_for_all_FOR_ALL_df=final_prototype_df.copy() 452.average_Yi_FOR_ALL_df=final_prototype_df.copy() 453 454.threshold_df_data = {'Text': ['90%','95%','98%','99%'],'Numerical': [0.9, 0.95, 0.98, 0.99]} 455.threshold df = pd.DataFrame(data=threshold df data) 456.Num threshold_df=len(threshold_df) 457.#print(threshold_df) 458. 459.threshold loop=0 460.while threshold_loop<Num_threshold_df: threshold=threshold df.iloc[threshold loop,1] threshold_text=threshold_df.iloc[threshold_loop,0] 462. 463. i=0 464. while i<1: 465. filename1='Larissa' 466. missing_values_per=missing_values_percentage(df_TS) 467.# print(missing values percentage) events_df=Get_events_df(df_TS, threshold) 468 469. print(events df) 470. events_df_without_ones=Get_events_df_without_ones(events_df) 471. print(events_df_without_ones) 472. return_interval_df=Get_return_interval_df(events_df_without_ones) 473. print (return interval df) collective_risk_S_df=collective_risk_function(df_TS, events_df) 474 475. collective_risk_S_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Laris sa\\1. Results for observed and shuffled\\'+threshold_text+' Collective Risk S '+filename1+' 1955- 2018') 476.# print(collective_risk_S_df) 477. number_of_events_df=number_of_events_function(df_TS, events_df) number_of_events_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14. Lariss 478. a\\1. Results for observed and shuffled\\'+threshold text+' Number of events N '+filename1+' 1955- 2018') 479. print(number_of_events_df) 480. annual_peak_only_for_events_df=annual_peak_only_for_events_function(df_TS, events_df) 481. print(annual_peak_only_for_events_df) annual_peak_for_all_df=annual_peak_for_all_function(df_TS, events_df) 482 annual_peak_for_all_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14. Larrence and the sum of 483. issa\\1. Results for observed and shuffled\\'+threshold_text+' Annual Peak '+filename1+' 1955- 2018') 484. print(annual_peak_for_all_df) 485. average_Yi_df=average_Yi_function(df_TS, events_df) average_Yi_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14. Larissa\1. 486. Results for observed and shuffled\\'+threshold_text+' Annual Average Yi '+filename1+' 1955-2018') 487. print(average_Yi_df) ecdf_S_df=ecdf_S(collective_risk_S_df) 488 489. print(ecdf_S_df) . ecdf_S_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Results for observed and shuffled\\'+threshold_text+' ecdf_S '+filename1) 490. 491. ecdf_r_df=ecdf_r(return_interval_df) print(ecdf_r_df) 492. ecdf_r_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Resu 493. lts for observed and shuffled\\'+threshold_text+' ecdf_r '+filename1) 494. return interval df=Get return interval df(events df) 495.# print(return_interval_df) 496. duration_df_obs=Get_duration_df(return_interval_df) ``` ``` duration df obs.columns=['Observed Duration'] 497. 498. ecdf_duration_df=ecdf_duration(duration_df_obs) 499.# print(ecdf duration df) 500. ecdf_duration_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\ 1. Results for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION OBSERVED '+threshold_text 501. shuffled_100_df=Shuffle_100_timeseries(df_TS) 502. print(shuffled_100_df) 503. shuffled 100 df.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\S huffled_100 '+filename1) 504. i+=1 505. threshold_loop+=1 506. 507. 508. #Results of the shuffled time series 1955-2018 509.how_many_shuffled_timeseries=100 510. 511.threshold_loop=0 512.while threshold_loop<Num_threshold_df: 513. threshold=threshold_df.iloc[threshold_loop,1] threshold_text=threshold_df.iloc[threshold_loop,0] 514. 515 i=0 516. 1=0 517. while i<1: filename1='Larissa' 518. 519. pickle_file = pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa \\Shuffled_100 '+filename1) 520. j=0 521. while j+3<how_many_shuffled_timeseries+3:</pre> 522. df_TS=pickle_file[['Year', 'Month', 'Day',j+1]].copy() df_withoutNaN=df_TS.dropna(axis=0,how='any', thresh=None, subset=None, inplace=False) 523. 524. print(df_withoutNaN) 525. df_sorted_noNaN=df_withoutNaN.sort_values(j+1, axis=0, ascending=True, inplace=False, kin d='quicksort', na_position='last') 526. Num_cols = len (df_withoutNaN) 527. position=int(threshold*Num cols) threshold_value=df_sorted_noNaN.iloc[position,3] 528 529. events df=df withoutNaN events_df.columns = ['Year', 'Month', 'Day', 'Precipitation'] 530. events_df.drop(events_df.loc[events_df['Precipitation'] < threshold_value].index, inplace 531. =True) 532. # print(events df) 533 events_df_without_ones=Get_events_df_without_ones(events_df) 534. # print(events_df_without_ones) 535. return interval df=Get return interval df(events df without ones) 536. # print (return interval df) 537. collective_risk_S_df=collective_risk_function(df_TS, events_df) 538. # print(collective risk S df) 539. number_of_events_df=number_of_events_function(df_TS, events_df) 540. # print(number_of_events_df) annual_peak_only_for_events_df=annual_peak_only_for_events_function(df_TS, events_df) 541. 542. # print(annual_peak_only_for_events_df) 543. annual_peak_for_all_df=annual_peak_for_all_function(df_TS, events_df) 544. # print(annual_peak_for_all_df) 545. average_Yi_df=average_Yi_function(df_TS, events_df) # print(average_Yi_df) 546. 547. return_interval_df=Get_return_interval_df(events_df) 548 print(return_interval_df) 549. duration_df_shuffled=Get_duration_df(return_interval_df) 550. duration_df_shuffled.columns=['Shuffled Duration'] 551. ecdf_duration_df=ecdf_duration(duration_df_shuffled) print(ecdf_duration_df) 552. ecdf_duration_df.to_pickle('C:\\\\\\\\)\Documents\\\THESIS\\\Python\\\14. Laris 553. sa\\1. Results for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION SHUFFLED '+str(j+1)+' +threshold_text) 554. 555. if j==0: 556. ecdf_S_df=ecdf_S(collective_risk_S_df) print(ecdf_S_df) 557. 558. ecdf_r_df=ecdf_r(return_interval_df) 559. print(ecdf_r_df) 560. 1+=2 561. else: 562. u=ecdf_S(collective_risk_S_df) ``` ``` u.columns = ['Large sorted S', 'ECDF'] 563. 564. ecdf_S_df[1]=u['Large sorted S'] 565. ecdf S df[l+1]=u['ECDF'] print(ecdf_S_df) 566. 567.
u=ecdf_r(return_interval_df) u.columns = ['Large sorted r', 'ECDF'] ecdf_r_df[1]=u['Large sorted r'] 568. 569. 570. ecdf_r_df[l+1]=u['ECDF'] 571. print(ecdf r df) 572. 1+=2 Collective_Risk_S_FOR_ALL_df[j]=collective_risk_S_df['Collective Risk S'] 573. 574. number_of_events_FOR_ALL_df[j]=number_of_events_df['Number of events'] 575. annual_peak_for_all_FOR_ALL_df[j]=annual_peak_for_all_df['Annual peak (Block maxima) for all'] 576. average_Yi_FOR_ALL_df[j]=average_Yi_df['Average Yi'] print(filename1+' shuffle:'+str(j)) 577.# 578. j+=1 579. ecdf_S_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Resu 580. 581. lts for observed and shuffled\\'+threshold_text+' 100 ecdf_r '+filename1) Collective_Risk_S_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\1 582. 4. Larissa\\1. Results for observed and shuffled\\'+threshold text+' Collective risk for 100 shuffled '+filename1) 583. number_of_events_FOR_ALL_df.to_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14 . Larissa\\1. Results for observed and shuffled\\'+threshold text+' Number of events N for 100 shuffl ed '+filename1) 584. annual_peak_for_all_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\ \14. Larissa\\1. Results for observed and shuffled\\'+threshold text+' Annual peak for 100 shuffled +filename1) 585. average_Yi_FOR_ALL_df.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Lari ssa\\1. Results for observed and shuffled\\'+threshold_text+' Annual Average Yi for 100 Shuffled for 100 shuffled '+filename1) 586. i+=1 587. threshold loop+=1 588 589. #Plot of ECDF for collective risk (S), return intervals (r) and duration of over-threshold events 1955-2018 590.threshold loop=0 591.while threshold_loop<Num_threshold_df:</pre> 592. threshold=threshold df.iloc[threshold loop,1] threshold_text=threshold_df.iloc[threshold_loop,0] 593 594.# Export ECDF-S diagram 595. j=1 596. while j<=1: 597. filename1='Larissa' 598. file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res ults for observed and shuffled\\'+threshold_text+' 100 ecdf_S Larissa') 599. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res ults for observed and shuffled\\'+threshold_text+' ecdf_S Larissa') 600. sns.set() 601. sns.set_style("ticks") 602. plt.figure(figsize=(8,5),dpi=200) 603 for i in np.arange(1,200,2): 604. ecdf_S_=file1.iloc[:,i] colrisk=file1.iloc[:,i-1] 605. plt.plot(colrisk,ecdf_S_,label='',color='darkgrey') 606 plt.plot(colrisk,ecdf_S_,label='Shuffled',color='darkgrey') 607. 608. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 609. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 610. plt.ylabel("ECDF", fontsize=14) plt.xlabel("Collective Risk (S)",fontsize=14) 611. 612. plt.yticks(np.arange(0, 1.1, 0.1)) 613. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 614. 615. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 616. plt.tight_layout() 617. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\Linear ECDF S '+filename1+' '+threshold_text+'.png',facecolour='white') 618. plt.close() 619. j+=1 620. ``` ``` 621. #Export ECDF-r diagram 622. j=1 623. while j<=1: 624. filename1='Larissa' file1=pd.read_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Res 625. ults for observed and shuffled\\'+threshold_text+' 100 ecdf_r Larissa') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res 626. ults for observed and shuffled\\'+threshold_text+' ecdf_r Larissa') 627. sns.set() sns.set_style("ticks") 628. 629. plt.figure(figsize=(8,5),dpi=200) 630. for i in np.arange(1,200,2): ecdf_ri=file1.iloc[:,i] 631. 632. retint=file1.iloc[:,i-1] plt.plot(retint,ecdf_ri,label='',color='darkgrey') plt.plot(retint,ecdf_ri,label='Shuffled',color='darkgrey') 633. 634 plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 635. 636. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 637. plt.ylabel("ECDF", fontsize=14) plt.xlabel("Return Interval (r)", fontsize=14) 638. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 639 640. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 641. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) plt.tight_layout() 642. 643. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\Linear ECDF_r '+filename1+' '+threshold_text+'.png',facecolour='white') 644. plt.close() 645. j+=1 646. Export LOG-LOG ECDF-S diagram 647.# 648. j=1 649. while j<=1: filename1='Larissa' 650. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res 651. ults for observed and shuffled\\'+threshold text+' 100 ecdf S Larissa') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res 652. ults for observed and shuffled\\'+threshold text+' ecdf S Larissa') 653. sns.set() 654. sns.set_style("ticks") 655. plt.figure(figsize=(8,5),dpi=200) 656. for i in np.arange(1,200,2): ecdf_S_=file1.iloc[:,i] 657 658. colrisk=file1.iloc[:,i-1] plt.plot(colrisk,ecdf_S_,label='',color='darkgrey') 659. plt.plot(colrisk,ecdf_S_,label='Shuffled',color='darkgrey') 660. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 661. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 662 plt.ylabel("ECDF", fontsize=14) 663. plt.xlabel("Collective Risk (5)",fontsize=14) plt.xscale('log') 664. 665. plt.yscale('log') 666. labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 667. 668 669. plt.yticks(nthreads, labels) 670. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 671. 672. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 673. plt.tight layout() plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram 674. s for S and r\\Log ECDF_S '+filename1+' '+threshold_text+'.png',facecolour='white') 675. plt.close() 676. j+=1 677. 678. #Export LOG-LOG ECDF-r diagram 679. j=1 680. while i<=1: 681. filename1='Larissa' file1=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Res 682. ults for observed and shuffled\\'+threshold_text+' 100 ecdf_r Larissa') 683. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res ults for observed and shuffled\\'+threshold_text+' ecdf_r Larissa') 684. sns.set() ``` ``` sns.set style("ticks") 685. 686. plt.figure(figsize=(8,5),dpi=200) 687. for i in np.arange(1,200,2): 688. ecdf_ri=file1.iloc[:,i] retint=file1.iloc[:,i-1] 689. plt.plot(retint,ecdf_ri,label='',color='darkgrey') plt.plot(retint,ecdf_ri,label='Shuffled',color='darkgrey') 690. 691. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 692. 693. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 694. plt.ylabel("ECDF", fontsize=14) 695. plt.xlabel("Return Interval (r)",fontsize=14) plt.xscale('log') 696. plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 697. 698. 699 700. plt.yticks(nthreads, labels) 701. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(0.95, 0.4),loc=1,ncol=1,fontsize=14) 702. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 703. 704. plt.tight_layout() 705. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\Log ECDF_r '+filename1+' '+threshold_text+'.png',facecolour='white') 706. plt.close() 707. i+=1 708. 709.# Export 1/(1-f) ECDF-S diagram 710. i=1 711. while j<=1: 712. filename1='Larissa' 713. file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res ults for observed and shuffled\\'+threshold_text+' 100 ecdf_S Larissa') 714. file 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Reserved File 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Reserved File 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Reserved File 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\14. Reserved File 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\N14. Larissa\14. Reserved File 2 = pd.read_pickle ('C:\Vsers\Konstantinos\Documents\THESIS\Python\N14. Larissa\N14. Reserved File 2 = pd.read_pickle ('C:\Vsers\N14. R ults for observed and shuffled\\'+threshold_text+' ecdf_S Larissa') 715. sns.set() 716. sns.set style("ticks") 717 plt.figure(figsize=(8,5),dpi=200) 718. for i in np.arange(1,200,2): 719. ecdf_S_=1/(1-file1.iloc[:,i]) 720. colrisk=file1.iloc[:,i-1] plt.plot(colrisk,ecdf_S_,label='',color='darkgrey') 721. plt.plot(colrisk,ecdf_S_,label='Shuffled',color='darkgrey') 722. 723. plt.plot(file2.iloc[:,0],1/(1- file2.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 724. 725. plt.ylabel("1/(1-ECDF)", fontsize=14) 726. plt.xlabel("Collective Risk (S)",fontsize=14) 727. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 728 plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1.005, 0.215),loc=1,ncol=1,fontsize=14) 729. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 730. plt.tight layout()
731. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\1--(1-ECDF) ECDF_S '+filename1+' '+threshold_text+'.png',facecolour='white') 732. plt.close() 733. j+=1 734. 735. #Export 1/(1-f) ECDF-r diagram 736 j=1 737. while j<=1: 738. filename1='Larissa' file1=pd.read_pickle('C:\Vsers\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Res 739. ults for observed and shuffled\\'+threshold_text+' 100 ecdf_r Larissa') file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res 740. ults for observed and shuffled\\'+threshold_text+' ecdf_r Larissa') 741. sns.set() 742. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 743. 744. for i in np.arange(1,200,2): 745. ecdf_ri=1/(1-file1.iloc[:,i]) 746. retint=file1.iloc[:,i-1] 747. plt.plot(retint,ecdf_ri,label='',color='darkgrey') 748. plt.plot(retint,ecdf_ri,label='Shuffled',color='darkgrey') 749. plt.plot(file2.iloc[:,0],1/(1- file2.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') ``` ``` 750. plt.title('Larissa station - Threshold '+threshold text,fontsize=13, y=1.01) 751. plt.ylabel("1/(1-ECDF)", fontsize=14) plt.xlabel("Return Interval (r)", fontsize=14) 752. 753. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 754. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1, 1),loc=1,ncol=1,fontsize=14) plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 755. plt.tight_layout() 756. 757. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\1--(1-ECDF) ECDF r '+filename1+' '+threshold text+'.png',facecolour='white') 758. plt.close() 759. j+=1 760. 761. #Export ECDF-Duration diagram 762. 763. while j<=1: 764 filename1='Larissa' file1=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res 765. ults for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION OBSERVED '+threshold_text) 766. sns.set() 767. sns.set_style("ticks") plt.figure(figsize=(8,5),dpi=200) 768. 769 shuffle_index=1 770. while shuffle_index<=how_many_shuffled_timeseries:</pre> 771. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Results for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION SHUFFLED '+str(shuffle_inde x)+' '+threshold_text) 772. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='',color='darkgrey') 773. shuffle index+=1 774. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Shuffled',color='darkgrey') 775. plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 776. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) plt.ylabel("ECDF", fontsize=14) 777. 778. plt.xlabel("Duration of events (days)",fontsize=14) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 779. 780. plt.legend(frameon=1,fancybox=1,bbox to anchor=(1, 0.22),loc=1,ncol=1,fontsize=14) plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 781 782. plt.tight layout() plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram 783. s for S and r\\Linear ECDF Duration '+filename1+' '+threshold_text+'.png',facecolour='white') 784. plt.close() 785. j+=1 786 787. #Export LOG-LOG ECDF-Duration diagram 788. j=1 789. while j<=1: 790. filename1='Larissa' 791. file1=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Res ults for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION OBSERVED '+threshold_text) 792. sns.set() 793. sns.set style("ticks") 794. plt.figure(figsize=(8,5),dpi=200) 795. shuffle_index=1 796. while shuffle_index<=how_many_shuffled_timeseries:</pre> file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. 797. Results for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION SHUFFLED '+str(shuffle_inde x)+' '+threshold text) 798 plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='',color='darkgrey') 799. shuffle index+=1 800. plt.plot(file2.iloc[:,0],file2.iloc[:,1],label='Shuffled',color='darkgrey') plt.plot(file1.iloc[:,0],file1.iloc[:,1],label='Observed', marker='o', markersize=3, color='r 801. 802. plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) plt.ylabel("ECDF", fontsize=14) 203 plt.xlabel("Duration of events (days)",fontsize=14) 804. plt.xscale('log') 805. plt.yscale('log') plt.yscale('log') labels = ['0.05', '0.1', '0.2', '0.5', '1.0'] nthreads = [0.05, 0.1, 0.2, 0.5, 1.0] 806. 807. 808. 200 plt.yticks(nthreads, labels) plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 810. 811. plt.legend(frameon=1,fancybox=1,bbox to anchor=(1, 0.22),loc=1,ncol=1,fontsize=14) 812. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 813. plt.tight_layout() ``` ``` plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram 814. s for S and r\\LOG ECDF Duration '+filename1+' '+threshold_text+'.png',facecolour='white') 815. plt.close() 816. j+=1 817. 818. #Export 1/(1-f) ECDF-Duration diagram 819. j=1 820. while j<=1: 821. filename1='Larissa' file1=pd.read_pickle('C:\Users\Konstantinos\Documents\THESIS\Python\14. Larissa\1. Res 822. ults for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION OBSERVED '+threshold_text) 823. sns.set() sns.set_style("ticks") 824. 825. plt.figure(figsize=(8,5),dpi=200) 826. shuffle index=1 827 while shuffle_index<=how_many_shuffled_timeseries:</pre> 828. file2=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\1. Results for observed and shuffled\\Duration\\'+filename1+' ECDF DURATION SHUFFLED '+str(shuffle inde x)+' '+threshold_text) 829. plt.plot(file2.iloc[:,0],1/(1-file2.iloc[:,1]),label='',color='darkgrey') 830. shuffle_index+=1 plt.plot(file2.iloc[:,0],1/(1-file2.iloc[:,1]),label='Shuffled',color='darkgrey') 831 plt.plot(file1.iloc[:,0],1/(1- 832. file1.iloc[:,1]),label='Observed', marker='o', markersize=3, color='r') plt.title('Larissa station - Threshold '+threshold_text,fontsize=13, y=1.01) 833. 834. plt.ylabel("1/(1-ECDF)", fontsize=14) plt.xlabel("Duration of events (days)",fontsize=14) 835. plt.grid(b=True, which='major',axis='both', color='0.90',linestyle='-',zorder=2) 836. plt.legend(frameon=1,fancybox=1,bbox_to_anchor=(1.005, 1.008),loc=1,ncol=1,fontsize=14) 837. 838. plt.tick_params(axis='both',which='both',labelsize=14,zorder=20) 839. plt.tight_layout() 840. plt.savefig('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\2. ECDF diagram s for S and r\\1--(1-ECDF) ECDF Duration '+filename1+' '+threshold_text+'.png',facecolour='white') 841. plt.close() 842. j+=1 843. threshold_loop+=1 844 845. 846. #Boxplot of Average Yi - N Pearson and Spearman correlation coefficient for observed and shuffled 1955-2018 847.a = np.zeros(shape=(1,101)) 848.zero df = pd.DataFrame(a) 849.#print(df) 850. 851.pearson corr coef=zero df.copy() 852.spearman_corr_coef=zero_df.copy() 854.threshold loop=0 855.while threshold_loop<Num_threshold_df: threshold=threshold_df.iloc[threshold_loop,1] 856. 857. threshold_text=threshold_df.iloc[threshold_loop,0] 858. 859. i=0 860. while i<1: filename='Larissa' 861. Yi=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 1 862. 2017\\1. Results for observed and shuffled\\'+threshold_text+' Annual Average Yi for 100 Shuffled fo r 100 shuffled Larissa') 863. N=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 2017\\1. Results for observed and shuffled\\'+threshold_text+' Number of events N for 100 shuffled La rissa') 864. Yi=Yi.drop(['Year'], axis=1) N=N.drop(['Year'], axis=1) 865. N=N.drop(N.index[len(N)-1]) 866. Yi=Yi.drop(Yi.index[len(Yi)-1]) 867. 868. j=0 while j<100: 869. Yi_column=Yi[j] 870. 871. N_column=N[j] 872. 7=0 873. k=len(Yi) 874. while z<k: ``` ``` 875. if N column.iloc[z]==0: 876. N_column=N_column.drop(N_column.index[z]) 877. Yi column=Yi column.drop(Yi column.index[z]) 878. N_column=N_column.reset_index(drop=True) 879. Yi_column=Yi_column.reset_index(drop=True) 880. k=k-1 881. else: z+=1 882. 883. corr1,p value1=pearsonr(N column, Yi column) 884. pearson_corr_coef.iloc[i,j+1]=corr1 885. corr2,p_value1=spearmanr(N_column, Yi_column) 886. spearman_corr_coef.iloc[i,j+1]=corr2 887. j+=1 888. Yi=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 1 999-2017\\1. Results for observed and shuffled\\'+threshold text+' Annual Average Yi Larissa 1955- 2018') 889. N=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Larissa 19 99-2017\\1. Results for observed and shuffled\\'+threshold_text+' Number of events N Larissa 1955- 2018') 890. Yi=Yi.drop(['Year'], axis=1) N=N.drop(['Year'], axis=1) N=N.drop(N.index[len(N)-1]) 891. 892 893. Yi=Yi.drop(Yi.index[len(Yi)-1]) 894. Yi column=Yi.copy() 895. N_column=N.copy() 896. z=0 897. k=len(Yi) 898. while zck: 899. if N_column.iloc[z,0]==0: 900. N column=N column.drop(N column.index[z]) Yi_column=Yi_column.drop(Yi_column.index[z]) 901. 902. N_column=N_column.reset_index(drop=True) 903. Yi_column=Yi_column.reset_index(drop=True) 904. k=k-1 else: 905. 906. z+=1 corr1,p_value1=pearsonr(N_column, Yi_column) 907 908. pearson_corr_coef.iloc[i,0]=corr1 corr2,p_value1=spearmanr(N_column, Yi_column) 909. 910. spearman_corr_coef.iloc[i,0]=corr2 911. 912. i+=1 913.# print(pearson_corr_coef) 914.# print(spearman_corr_coef) pearson_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Lar 915. issa 1999-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N Pearson ('+threshold_text+') - 916. spearman corr coef.to pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\La rissa 1999-2017\\3. Average Yi - N correlation\\Larissa Average Yi-N Spearman ('+threshold_text+') no zeros') 917
918. threshold loop+=1 919. 920.correlation label='Spearman' 921.boxplot_Yi_N(correlation_label) 922.correlation label='Pearson' 923.boxplot_Yi_N(correlation_label) 924 925. 926.#Boxplot of collective risk and compensations Pearson and Spearman correlation coefficient for observ ed and shuffled 1999-2017 927.compensations= {'Year': [1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2 014,2015,2016,2017],'Compensations': [13493.73,64195,293.22,569450.823,138472.615,46883.5,1878.74,124 10.36,30717.94,642.6,261853.335,29461.93,0,217043.16,321.25,6830.66,6148.71,230394.12,311303.87]} 928.compensations_df = pd.DataFrame(data=compensations) 929. 930.a = np.zeros(shape=(1,101)) 931.zero_df = pd.DataFrame(a) 932.#print(df) 933. 934.pearson_corr_coef=zero_df.copy() 935.spearman_corr_coef=zero_df.copy() 936. 937.threshold_loop=0 ``` ``` 938.while threshold loop<Num threshold df: 939. threshold=threshold_df.iloc[threshold_loop,1] 940. threshold text=threshold df.iloc[threshold loop,0] 941.# 942. #without zeros 943. i=0 944. while i<1: 945. filename='Larissa' 946. Coll risk=pd.read pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\La rissa 1999- 2017\\1. Results for observed and shuffled\\'+threshold_text+' Collective risk for 100 shuffled Laris sa') 947. Coll_risk=Coll_risk.drop(['Year'], axis=1) 948. Coll_risk['Compensations']=Coll_risk[0] 949. Coll risk=Coll risk.drop(Coll risk.index[len(Coll risk)-1]) 950 index=0 951. while index<len(Coll risk): 952. Coll_risk.iloc[index,100]=compensations_df.iloc[index,1] 953. index+=1 j=0 954. 955. while j<100: 956 Coll_risk_column=Coll_risk[j] 957. Comp_df=Coll_risk.iloc[:,100] 958. z=0 k=len(Coll_risk) 959. 960. while z<k: 961. if Comp_df.iloc[z]==0 or Coll_risk_column.iloc[z]==0: 962. Comp_df=Comp_df.drop(Comp_df.index[z]) 963. Coll_risk_column=Coll_risk_column.drop(Coll_risk_column.index[z]) 964. Comp_df=Comp_df.reset_index(drop=True) Coll_risk_column=Coll_risk_column.reset_index(drop=True) 965. 966. k=k-1 967. else: 968. z+=1 969. corr1,p_value1=pearsonr(Comp_df, Coll_risk_column) 970. pearson corr coef.iloc[i,j+1]=corr1 971 corr2,p_value1=spearmanr(Comp_df, Coll_risk_column) 972. spearman_corr_coef.iloc[i,j+1]=corr2 973. j+=1 974. Coll_risk_obs=pd.read_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa \\Larissa 1999- 2017\\1. Results for observed and shuffled\\'+threshold text+' Collective Risk S Larissa 1955- 2018') 975. Coll_risk_obs=Coll_risk_obs.drop(['Year'], axis=1) 976. Coll_risk['Observed']=Coll_risk_obs['Collective Risk S'] Coll_risk_column=Coll_risk.iloc[:,101] 977. 978. Comp_df=Coll_risk.iloc[:,100] 979. z=0 980 k=len(Coll_risk_column) 981. while z<k: 982. if Comp_df.iloc[z]==0 or Coll_risk_column.iloc[z]==0: 983. Comp_df=Comp_df.drop(Comp_df.index[z]) 984. Coll_risk_column=Coll_risk_column.drop(Coll_risk_column.index[z]) 985. Comp_df=Comp_df.reset_index(drop=True) 986 Coll_risk_column=Coll_risk_column.reset_index(drop=True) 987. k=k-1 988. else: 929 7+=1 990. corr1,p_value1=pearsonr(Comp_df, Coll_risk_column) 991. pearson_corr_coef.iloc[i,0]=corr1 992. corr2,p_value1=spearmanr(Comp_df, Coll_risk_column) 993. spearman_corr_coef.iloc[i,0]=corr2 994. 995. 996.# print(pearson_corr_coef) print(spearman_corr_coef) 997.# pearson_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\Lar 998. issa 1999-2017\\dagged. Compensations correlation\\Larissa compensations Pearson ('+threshold_text+') 999. spearman_corr_coef.to_pickle('C:\\Users\\Konstantinos\\Documents\\THESIS\\Python\\14. Larissa\\La rissa 1999-2017\\4. Compensations correlation\\Larissa compensations Spearman ('+threshold_text+') no zeros') 1000. 1001. threshold_loop+=1 ``` | 1002. | | |-------|--| | 1003. | correlation label='Spearman' | | 1004. | boxplot compensations(correlation label) | | 1005. | correlation label='Pearson' | | 1006. | boxplot compensations(correlation label) | # 12. R scripts The following scripts, originally created by K. Tay (2019), are modified in order to make the graphical and diagrammatic visualization of the FEMA's NFIP claims records in chapter 5. #### 12.1. Load libraries and dataset ### 12.2. Select the columns we analyze and remove specific rows ## 12.3. Histogram of the number of claims per year ### 12.4. Number of claims by state ``` # basic map state_choropleth(state_no_claims_df) # above and below median state_choropleth(state_no_claims_df, num_colors = 2) # continuous scale state_choropleth(state_no_claims_df, num_colors = 1) # zoom in on gulf states: have a shoreline on gulf of mexico gulf_states <- c("texas", "louisiana", "mississippi", "alabama", "florida")</pre> state_choropleth(state_no_claims_df, num_colors = 1, title = "No. of claims by state (Gulf states)", legend = "No. of claims", zoom = gulf_states) # bar plot of no. of claims ggplot(data = state_no_claims_df %>% arrange(desc(value)) %>% head(n = 10)) + geom_bar(aes(x = reorder(state, -value), y = value), stat = "identity", fill = "gray", col = "black") + geom_abline(intercept = 100000, slope = 0, col = "red", lty = 2) + labs(x = "State", y = "No. of claims", title = "Top 10 states by no. of claims") ########## # make plot of total claim amounts by state ########## state_claims_amt_df <- small_df %>% group_by(state) %>% summarize(value = log10(sum(total_cost))) # bar plot of claim amt ggplot(data = state_claims_amt_df %>% arrange(desc(value)) %>% head(n = 10)) + geom_bar(aes(x = reorder(state, -value), y = 10^value), stat = "identity", fill = "gray", col = "black") + geom_abline(intercept = 10^9, slope = 0, col = "red", lty = 2) + scale_y_continuous(labels = function(x) format(x, scientific = TRUE)) + labs(x = "State", y = "Total claims", title = "Top 10 states by total claims") ``` ### 12.5. Number of claims by county ``` county_summary_df <- small_df %>% group_by(countycode) %>% summarize(claim_cnt = n(), claim_amt = sum(total_cost)) %>% mutate(countycode = as.numeric(countycode)) names(county_summary_df) <- c("region", "value", "claim_amt")</pre> county_choropleth(county_summary_df) # change fill color for NAs to be white county_choropleth(county_summary_df, title = "No. of claims by county") + scale_fill_brewer(na.value = "white") # zoom into florida only county_choropleth(county_summary_df, title = "No. of claims by county (Florida)", state_zoom = "florida") + scale_fill_brewer(na.value = "white") # zoom into gulf county_choropleth(county_summary_df, title = "No. of claims by county (Gulf states)", state_zoom = gulf_states) + scale_fill_brewer(na.value = "white") ```