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Extetopévn Iepiinyn

H mopayoyn tov xoilepyeidv oty obOyypovn yewpylae otnpileton
0Vo100TIKG 6T0 vepd Kot To. Mmdopoto (Boserup, 2005). Eivat, emopévac,
Kpio1o vo v100eTnB0VV 0Irod0TIKEG TPAKTIKES SLXEIPIONG TV KOAAEPYEIDY
®oTE Vo peyletomoinfel N amodoTIKOTNTA TOVG GTNV OmoPPOPNoT (OTIKAOV
OLOTOTIKOV VIO TOLG €ENG TEPLOPICUOVS: TN OPOUOTIKY HElmon TNng
KOAMEPYNOWUNG YNG, TIG TEPLOPICUEVES TOGHTNTEG LOATIVOV TOPWOV, TNV
Kapotikn oAdayn (aAlayég otig Ppoyontmoels, avénon Bepuokpaciog) Kot
™ Prooun aypotikny mapaymyn (Lynch, 2011). T va emtevyfel avtdg o
anOTEPOG OKOMOG, €ivor amapoitmro va Peitiwbel n Koatavonon tov
AELTOVPYIKOV UNYOVIGUOV TOL S1ETOVY TNV avATTLEN TV POV TOV QUTOV.
Emopévac, n avémtuén pebodwv mapatinpnons Kot xepaktnpiopot (TocoTikn
TEPLYPAPn) TOV HOTiPov avartuéng tov pldv sivarl eEapeTikd oNUaVTIK.
Nuepa givar mor dvvat M e€aymyn TOGOTIKOV YOPOKTNPIOTIKOV TNG
OPYLTEKTOVIKNG TV PIKOV CLUCTNUATOV HE  MU-0VTOUOTOTOUEVES
pnefodovg cvumeprrapfovopévav tov aptBpod twv pidv, ToL GLVOMKOD
TOVG UKOLG, TOV TPOCAVATOAMGLOV TOVG KABMG Kot TNG GUVOMKNG TEPLOYNG
oV KaAvTTOVY 6To Héco mov daPovy (Le Bot et al., 2010; Leitner et al.,
2014).

[Tapdéio mov mOAAG onpeia Ta omoio. APOPOLY GTNV AVATTLEN TOV
emMPEPOLS LAV eivar EMOPKAOS LEAETUEVA KO GE PeYEAo Babud kotavontd,
N AENTOUEPNG AVOTOPAGTOCT TOV OEPYACIOV OVATTVENG OA®V TV pLimdV
AmOKAAVTTEL TEPITAOKES YemueTpieg Tov pilikov cvotiuatoc (Zhu et al.,
2011). Molovott ol TOPATNPNOE KOl Ol HETPNOEI OYETIKO UE TIG

pop@oAoyieg tov piriikov GLOTHUOTOG WITOPOVV Vo ToPAEOLY Yp1yopo
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TEPAOTIEG TOGOTNTEC 0EOOUEVMV, Ol TeEAevTaiec ovvnbwe cuvoyilovtal og
YEVIKEG TEPLYPOPES TOV PLLIKOD GLGTHHOTOG OTMG TO GLVOAKO UNKOC TMV
p1Lmv, 1o Péy1oto PAB0C TOV UITOPOVV VO PTAGOLV 1) TNV KATUVOLUT TGOV TIUOV
™G SOUETPOV TOV PLL®V. AVCGTUYMG OUMG O0EV EKTYLOVV TIG TOPAUETPOVS TTOV
a(QOPOVV GTO UNYOVIGUO NG avATTLENG TV PLidV Tov Bo puropovoay va
PiEOoVV QMC GTO TAOC ONUIOVPYOVVTAL Ol TEPITAOKES OPYITEKTOVIKES TMV
PUIKAOV cvoTNUITOV. AVTO TO KEVO OTO UETAGYNUOTIOUO TOV OPYIKOV
QOIVOTLTIIK®V OedOUEVOY oL givor Swbéoipa, o€ pio pHopen omAmv
TOPOUETPOV TTOL B TEPTYPAPOVV LLE GUVETELL TNV EMUNKVVOT) TOV POV Kot
T1G Olepyaocieg mov oyetiCovial pe avamtuén ™G apyLTEKTOVIKNG TOL PikoD
GLGTNUATOG TaPApEVEL Eva onuaviikd mpdfinua. H ev Adyo advvapia
nepropilel eEapeTikd TV KATOVONoN OGS CYETIKE HE TNV avAamTuEn TOL
POy GLOTNUATOG €UTOOIfOVTOG YEVETIOTEG KOl KOAMEPYNTEG OTIG
GUVTOVIGUEVEG TTPOCSTAOELEG TOVG VO AVOTTTOEOVY VEEG TOKIMES KOAMEPYELDV
pe 10e0tdmoug priadv mov Sfétovy PEATIOUEVO GUOTNUATO LE CKOTO TNV
EMITEVEN TOV BEATIOTOL OIKOVOUIKOD EMTEOOL GTO TAOIGIO TAVTA AELPOPOV
OYPOTIKMV TPOKTIKDV.

MoaOnpatikd poviédla Bo LTopovcay Vo AmOTEAEGOVV L0 EVOAAUKTIKY OCTE
Vo amocaenVvicovpe Ty mepimAokn dadikacion TG avantuEng tov piitkov
GLGTNUATOG KOl VO EVIOTICOVUE TIG EMUEPOVS OlEPYAGIES aVATTLENG TOV
amoteAobVv ) Pdon G oLVOETNG OPYITEKTOVIKNG OOUNG TeV PLLkdV
ocvotudtov. ITo cvykekpyéva, To LOVIEAQ TOVL YL0L VO TTEPLYPAYOLY TNV
apyuTekToviKn odoun tov pullov tov eutev otnpilovtolr coe ocuvveyelg
ovvoptioelg mokvotrag (oto eéng Oa avaeépovior g density-based

models) eivar mOAAG vmooyOuEVa, €mMEW] AKPPDOS GLYKEVIPOVOLV TNV



KaTavoun TV pildv G GLVOPTNOEIS TUKVOTNTOG TEPLYPAPOVTIOS UE QLTOV
oV TPpOmo TV avantuén tov pilov oto £00pog. AVTEC Ol CLUVOPTNAGELS
TOKVOTNTOG TOV PLLOV oL EAPTMOVTOL OO TO YMPO KL TO YPOVO UTOPOVV
vo optotovv pe tn Pondela eiomocwv dathypnone patog (Addiscott and
Whitmore, 1987). Mg awtdv Tov TpOTO HAAOTO SIEVKOADVOVTOL Ol GYETIKEG
UEAETEG Kol avTuTapofOAES OVAUESH OTO TEPAUATIKG OEOOUEVO KOl TO
OTOTEAECUOTO TOV HOVIEA®MV, 0OV 1) GLVAPTNOT TLKVOTNTOG UKOLG TWV
PLL®V amoTeAel Eva AUECO ATOTEAESHO TTOV €EAYOVV TOL €V AOY® HoOnUaTIKG
povtéda. AVTo pe T GEpA ToL KaB1oTd dvvatn TV extipunon and Eva dPog
TEPOUATIKOV OEOOUEVOV EKEIVOV TOV TOPOUETPOV TOV HOVIEAOVL TOL
OVTOVOKAOUV KOl TEPLYPAPOVY TOGOTIKO GLYKEKPYEVOVS  PLOAOYIKOVG
U avic Lovg.

H ypfon tov ZTPocavatoACUEVOV GUVEX®V GLVAPTAGEMY KOTOVOUNG
eppaviomke mPOCEATO. MG Wi  EVOAAOKTIKY] OTNV  TPOTLTOTOINGN
TomoAoyk®v dopdv (Dupuy et al., 2005¢). ‘Eva and o, factkd TAeovEKTN U
QLTAG TNG TPOGEYYIONG EIVOL 1 LOONUOTIKY] TEPLYPAPT] TV OPYLTEKTOVIKADV
YOPOUKTNPIOTIKOV TV PLLIKOV GLOTNUATOV, CGLUTEPIAAUPAVOUEVOD TOV
TPOCAVATOMGUOD TV PV, HEGH GCLVEXDOV GLVOPTNCEMY KOTOUVOUNG
KaoTOVTOG £TG1 aYPEIOGTN TNV TOTH OVOTAPAGTOCT] TOV EXLUEPOVS PLLOV.
Ta ev Adym povtéda avamtdydnkay kot ovadlvdnkav emniong ot HEAET TV
Bastian et al. (2008) wg évag tpdTog Vo TEPLYPOPEL 1| OYECT| AVAUESH GTHV
Kivnon Tev eTOKPLOV PEPICTOUATOV Kot TG dvvopkng (Hetafoing) g
mokvotntog pkovg tev plov. ‘Eva yevikd mhaicio  Swutundbnke
HETAYEVESTEPO GLVOLALOVTOG TNV OVATTLEN TV EXAKPLOV LEPIGTOUATOV LUE

™mv évvola Tov (TpocavatoMcouévev) cuvaptioemy mokvotntag (Dupuy et



al., 2010b). Ot e&lomoeig dratnpnong Lalog o€ avtd T0 TAAICLO EIVOL GOP®OS
nePLocOTEPO SLUPATEG e TNV Proroyia TV pLlikdv GLGTNUATOV dEGOUEVOD
OTL Ol TOPAUETPOL TOL HOVTEAOL OYeTilovVIon AQUECH UE TIS OlEPYOCIES
avamtuéng Ommw¢ TV emunkuvon tov pldv kol To puoud euedviong
TAEVPIK®OV PLOV.

H epyoacio mov mapovcialetor 0 €pguvd Tn OSLVOLUKY GLTAG TNG
TPOGEYYIONG MG TPOG TN GLUPOAN VTOV TV HOVTEA®V 6TV PEATi®ON TOV
KOAAlEPYEW®V KOOMG Kol otnv emtdyvvon kot PBeAtioon Tng YEVETIKNG
avdAivong oto péArov. I cuykekpuéva, n ev AOym epyacio eotialel otnv
avAmTLEN  TPOCAVOATOAICUEVOV  HOVTEA®V pe PAon TG GCLVOPTNGCELS
TUKVOTNTOC, GTNV TOPALUETPOTOINGT) TOVS KABMG KOl GTNV EPAPLOYN TOVG OE
TEPOUATIKAE O£d0UEVO TTOV ALPOPOVV TOV QOVOTVLTO TMV PLLdV.

Inuoavtikd ototyeio mov yopaxtnpilovy 1n cuykekplévn epyacio apopovV
ot Peiltiopévn  epoppoyn  peBddwv  apBunTikng  avaivong  mov
YPNOCOTOMON KAV 5T Sl0KPLTOTOiNGN TV £E1I0MGEMV TOL HOVIELOL Kot
ava@épovtol oTn duvapukn g avartuéng tov  pilltkod GLOTNHOTOG.
EmwAéov, m ovumepinyn ypovodoTtépnong OTIC TPOGOLOLDCELS TOL
povtédov avtikatontpiletl To @avopevo Tov yopaktpilel TNV avantuén twv
dwkiadwoewv Tov Pacikov pillov kot mapatnpeitor oty mpasn. H
avAaTTLEN OMADY Kot KavoTOpmV HeBOd®mV Yo TV avaAvon kot Katavonon
NG OPYLTEKTOVIKNG TOV PiIkoy GUGTHUOTOC, OTMS OVTH ATOTVIMVETOL GTO
TEWPALOTIKE dedopéEva TOV apopovV 6To UTO Brassica rapa, entkevipoveran
OTN WETATPOTN TOV OOKPITOV ONUEI®V, HE TIG OMOIEG OCVLVEXEIEG TOL
TOPOTNPOVVTIOL GTO TEPAUATIKA dedOUEVA, KATOTV YOPTOYPAONONG TOL

pLIKOL GLGTHUOTOC KoL AVAALONG TOV EKOVOV OTMOC VTEG GLAAEYOVTOL
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KOTA TN SLAPKELN TOV TEPANATOC, 0 cLuvEYElG cuvaptnoels. Etol kabiotaton
SuvoT 1 CUYKPIOT KOl OVTITOPOPOAT LLE TO. OTOTEAEGUOTO TOV LOVTIEAOL.
Emopévmg, m ovykekpluévn epyoacio mpoteivel o YEVIKO €QAPUOGIUN
TEXVIKN aVECAPTNTN TOL EKAGTOTE GUOTNUATOS HEAETNG QoVOTOHT®V PLi®dV
OV YPNCUOTOIEITOL Y10 TN GVAAOYY| TWV TEIPULATIKOV SEGOUEVDV.

EminpocOétme, ot pobnuatikés mpocopotdcels Kavovy ypnon uebodswmv
Yol TV EKTIUNOT TOV TOPAUETPMV TOV LOVIELOV TTOV APOPOVY GE EVA EVPOG
dedopévov  (Tpotapykés Kol devtepevovoes pilec). Or ouyKekpluéveg
uéBodol pdAoTa €pELVOLV TNV TOAVTAOKOTNTO KOl TOWKIAMo oTa poTifa
aVATTUENG NG OPYLTEKTOVIKNG TOV PUIKAOV GLUCTNUATOV EKTIUOVTOG
ToGOTIKG ekelva ta yvopicpata tov piiov mov ta Kabopilovv. MdMota, o
€V AOY® EVOTONUEVO TAAIGLO TOL TOPOLGLALETAL Y10 TNV TOPAUETPOTOIN O
TOU HOVTEAOL KOl TNV E€KTIUNOTN TOV TOPopETpmv Tov Oa pmopovoe
HEALOVTIKG VO EQOPLOCTEL 0 aKOUN LEYOADTEPT) GLALOYT OESOUEV@V, AP0V
elvar epappocipo og Eva evph GHVOLO dEFOUEVMOV OV EVOEYETOL VAL OLPOPOVV
o€ JLIPOoPA TEPAUOTIKG PEGA KOl GYedacoVS. EmmAéov, amodeikvdeTon 0Tt
N ovon Tov dogdopévav mov eivar Swbéciua ywoo TNV EKTiUNOoM TV
TAPOUETPOV OV yopaktnpilouv v avantuén tov Pikov GLGTHHOTOC
emnpeadel QUECH TNV TOWOTNTA TV OTOTELECUATMOV TOV HOVIELOL HEG® TOV
apUOL TOV PLTMOV TOL YPTGLLOTOOVVTAL KAOE YPOVIKN OTIYUn 6To KAOE
nelpopo kKabdg emMiong Kol TOV EMTPEMOUEVOL E€DPOVS TOV GLVIEAEGTN
KAipaxag (scaling factor) mov ypnoponoteiton ota dedopéva Kot omoterel pio
1W01{TEPO GNUAVTIKT TOPBEUETPO.

To avtiotpo@o mpdPANUE TG EHPEONS TOV TYLDV TOV TOPUUETPOV TOV

LOVTEAOV OO TOL TEPAUATIKA OEGOUEVO GVVIGTOTOL TNV OTOGAPN VIO TOV
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KOPLOV TOPAYOVTOV OLTIOO0VS GUVAPELNS. ZVVETMGS, 1| LEYOAVTEPT] SLGKOALN
£YKELTAL OTNV EMAOYN TNG KOTAAANANG HEBOd0L PerTioTomoinomng Kot ehpeon
eKElVOV TV  OoKpOTAT®V (§V  TPOKEWEV®D  EAQYIOT®V  TIUOV) TG
OVTIKEWLEVIKNG GLVAPTNONG TOV 03N YOUV GTOV VITOAOYIGUO TOV TIUDV TOV
TOPOUETPOV OV Otav eloayBobv 1o poviéAo Ba mopdovv opbég kot
€LYPNOTEG TOCOTIKEG TANPOPOPieg oL o) Ba dTNPOvV TO0 PLGIKO TOLG
TEPLEYOUEVO Kol onuacia, eved B) Ba mpoxkvmtovy amd po dtdkacio
TOPOUETPOTOINo”NG Tov B eivar cuUPOTH LLE TO TEPARATIKAE OEOOUEVAL.

To mhaiclo Tov TaPoVCIAlETOL GE VTN TV £pyacio dHvaTal o) Vo
EKTIUNGEL TIC TOPAUETPOVS TOV HOVIEAOL UECH TNG EAOYLGTOMOINONG L0
OVTIKEWEVIKNG GLVAPTNONG ME Ploloyikn onuaocio kot epunveia, B) vo
TOPEYEL YVOOYN OYETWKG HE TNV OAANAETIOPOCT] TOV  OLPOPETIKAOV
INYOVICUOV ovarTLéNG TV pLidv Kat y) Vo cLUTEPIAAPEL 6TV aviAvon Tig
avtippomes eMOPACELS OVALESH GTNV OoKpPifela, TV KOTOAANAGTTA, TNV
TANPOTNTA Kot TNV TOAVTAOKOTNTA TNG £KAGTOTE HeBddoL PedtioTonoinomg
(Kokash, 2005).

To «bOplo mieovéknuo TG  ovykekpuévng  pebodoroyiog
Beltiotomoinong (preference-based procedure) wg mpog v €papuoyn Tov
HOVTEAOV GE TEPOUATIKO Ogdopéva  givor OTL 1 YPNOLUOTOLOVUEVN
OVTIKEYLEVIKT] GLVAPTNOT 00MYEL GE VO GUYKEKPIUEVO GUVOAO TOPAUETPOV
kabe popd (o avrtifeon pe v ideal multi-objective procedure). EmuAéov,
évag and Tovg Pactkods 6TOYOVS TNG TPOGEYYIONG TOV TAPOLGLALETAL OGOV
aPOpa 6T PEATIGTONTOINGCT TOV TAPUUETPOV TOV LOVTEALOL EIVOL VAL TPOTEIVEL
£va VOO HEVO TAAIG1O Y10 TV EQAPLLOYT| TOV HOVTEAOL GE £vaL EDPY GHVOAO

TEPOUATIKOV OEO0UEVDV. Q6TOG0, KAOE oAAayn oTa S10BECIULA TELPOUATIKA
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dedopévo odmyel o€ OlPOopeTIK KAOE QOPA OVTIKEWEVIKT] cLVAPTNHON.
2UVEN®MG, M EMAOYN €VOC amodoTikoh adyopibuov PeAtictonoinong mov Oo
elvol ePaPUOGILOC G O16.POPA TEWPAUATIKO OEOOUEVA YMPIG TNV OVAYKT VO
UEAETOVTOL KAOE pOPE 01 1010TNTEG TNG EKACTOTE AVTIIKELLEVIKNG GUVAPTNONG,
OT®OC M O1POPICIUOTNTO KOl 1] KLPTOTNTO, Elvol VYIOTNG onuaciog. Avtdg
glvol kor 0 KOPlog AOYOG TOL EMAEYOVTOL 1 CLYKEKPUEVN CLVAPTNON
KOGTOVG, OTMC TAPOLGLALETOL GE QVTH TNV EPYACIN, TO CLYKEKPIUEVO TANIG1O
EKTiUNONG TOV TapapusTpov kot 1 uébodog Pektiotonoinong Nelder-Mead, n
omoia dev €€apTdToLl AMO TIG TOPAYADYOVS TNG OVTIKELEVIKNG GLVAPTNOTG,
a(pOV TKOVOTTOL0VV TOV TTOPOUTAVE TPWOTAPYIKO GKOTO.

H Nelder-Mead &ivar pio gupiotikr] pébodog Pertiotomoinong mov
éxet ypnowonomBel apketd oe dapopa wpofAnuate Pedtictonoinong 6t
ynueia, ™ pnyavikn ko tnv wepikn (Lagarias et al., 1998). Xwpig va amortet
APTON TEPLOPIGUAOV MG TPOG TIG SVVATEG TILEG TOV TAPAUETPOV, 1] avolTnoT
eAOYIOTOV TNG OVTIKELEVIKNG GUVAPTNONG OLATPEYEL GTO UEYIGTO SLVATO TOV
TOPOUETPIKO YDPO SELKOAVVOVTAG KOTA GLVONKN Kot TV €0PEGN OALKOV
eAOYIOTOL TNG OVTIKEWWEVIKNG GLVAPTNONG. X& OUTH TNV gpyacia, 1
OVTIKEWEVIKN] ovvéptnon 6Oa pmopovce va peietnbel emiong ko pe
oToY00TIKEG HEBOOOVG EVpEGNG OMKGDV akpoTdtmv 6nmg Tnv basin hopping,
NV pETO-gVPLoTIKy avt péBodo, N omoio 6e Guvovacud pe T HEBOSO
Nelder-Mead 0a pmopovce va cupfdrel 6tov aEOTIGTO Kot GYETIKA YPIYOpO
EVTOTIGUO OAKMV OKPOTATMOV TNG OVTIKEWEVIKNG cuvaptnong (Stefanescu,
2007). EEGALov, 0 evtomoUOC OMK®OV OKPOTAT®V €ival OMUAVTIKOS GTO
YEVIKO TPpOPAN U BeATioTOMOINONG KAOMOG G GLUVOVAGUS LE TNV KATAAANAN

epunveia pmopet vo Bondnoet oy enilvomn tpoPfAnudTmv Tov evoyeTol vo
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TOPOVCIOCTOVV GTNV EKTIUNGCT TOV TOPAUETPOV TOL TEPLYPAPOVY TO PLOUO
eMUNKLVONG TOV pLiov Kabmg Kot To puOUd epedvions SlukAaddGE®Y, OTOV
000 O10POPETIKOL GLVOVAGHOL APIOUNTIKOV TILOV UTOPOVV VO, 0ONYNGOLV
oMV 1010, GLVAPTNGT| KATAVOUNG UKoV PLLMV.

H avantuén véov teyvoloyidv mov S1evKoAOVOLY TV avAaAvon HeYOAOV
apBuod eawvotummv plov onuovpyel véeg OepnTikéG Kol TPOKTIKEG
TPOKANGELS TOL GYETILOVTOL LE TNV EPUNVELD TOV TEPAUATIKOV OEOOUEVDV
Kol TV e€aywyn YPNOY®V GULUTEPUACUATOV amd ovtd. Etol, Aoutodv,
armorteitor 1 ovamtuén pobnpoatikov poviédmv mov Ba coppdrovv otnv
KaADTEPN KATOVOMON Kot EEQy®YN XPNOLUOV TANPOPOPIDV Ao Ta SLoBECLL
dedopéva. H ovykekpyévn gpyacio mapovotdlel ndg o v AOy® HOVIEAQ
Umopovv va ypnooronfodv yio TV EKTIUNGCT TOV TOPAUETP®V TOV
yopaktnpiCovv v avdntuén tov pillov eved opiletot 6€ o LNYOVIGTIKY|
mpocéyylon mov etvar ovpPortr pe dpopa mEWPOUATIKE  dedopéva,
TapodelyLaTog Yaptv eKEIVOL TOV EVOEYOLEVMOG TPOEPYOVTAL OO TEIPALOTOL
610 €d0apog Omov Hovo tunupate tov prlkod cvothuatog gival opatd. Ot
dwpetpot v pitodv Ba propovoay, emmALov, vo xpnoonomBodv g Evag
AKOUT| TPOTOS SLAPOPOTOINGNG HETAED TV PACIKMV Kol TOV OEVTEPELOVIMOV
pLdV akdUN Kot 6 SOLVOUIKE OEO0UEVA TTOL TEPIAAUPAVOVY TEPIETOTEPQ 0T
£va YpOoVIKd O10GTHOTA. 2TO andTEPO LEAAOV, TO GLYKEKPIUEVO LOVTELD Bl
UTOPOVGAV VO, GUUTEPIAAPOVY TANPOPOPIES CGYETIKA LLE TOV YEVOTUTO QALY
Kol EMTAEOV GTOLXEID TOL APOPOVV GTN PLGLOAOYiL TV ELT®V. Emiong, 1
EPOPLOYN TOL YEVIKELUEVOL HOVIEAOV OE TMEPOUOTIKE OEOOUEVO GTOV

TPLGOLAGTATO YMOPO AmOTEAEL £Vl aKOUN TPOCPOPO TTESIO EPEVVOLG.
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EminAéov, n e€dptnon tov mopapétpwv amd Tov YOPO Kol ToV XpOvo
umopel va epappoctel mote vo PBeAtiobel evdoeyouévaog 1 amdo0oT TOL
povtélov 6mov kpivetanr okomuo. H uébodog twv travelling wavelet 6o
umopovoe emiong va ypnotponombei 6e cuvovacud pe ™ ypnon Pocikdv
GLVOAPTNCEDV OGOV 0POPE TNV aPlOUNTIKY ETTAVON TOV LEPIKDV OLOPOPIKDY
eElomoswv 0V poviélov (Basdevant et al., 1990; Benhamidouche et al.,
1999), evd cvvdvacpoi peta&d in Vvivo kat in silico nepapdtov 6to uéAlov
o pmopovoe va amoderybel emwEeANC. Mio axOun WO YEVIKELUEVN
mopoAiayr] ¢ peBoddov Ba pumopovce JUVNTIKA Vo OVOAVEL aKOUT
peYoAOTEPA TEPOULOTIKE OEOOUEVA Y10l TTLO OTOSOTIKY] KO YPIYOPT EKTIUNON
TOV ToPAPETPOV TOL Hovtédlov. [vetar mhéov OA0 Kot o GaPég OTL OAEG oL
Tapomave TEXVOLOYIKES EEEAIEELS B dradpapaticovy kaBoploTikd pOLO GTNV
KOVOTNTA HOg €V YEVEL VAL XPNOLUOTOMGOVUE HOVTEAD GT] POVOLLKY TV
QLTOV KOl VO PEATIOGOVUE TIG KOAMEPYELEG Y10l O OTOOOTIKA OYPOTLK(L

GUGTNLOTO.
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Abstract

Crop yield in modern agriculture relies substantially on water and fertilisers
(Boserup, 2005). It is, therefore, crucial to adopt efficient crop management
strategies in order to maximise the efficiency of crops to absorb vital
resources under the following constraints: the shrinkage of arable land, the
restricted amount of water resources, the climate change (uneven rainfall) and
sustainable agriculture (Lynch, 2011). In order to achieve this overarching
aim, it is essential to improve our understanding of the functional mechanisms
of root growth. Therefore, the development of methods to observe and
characterise root growth patterns is crucial. The bulk of research in root
biology depends heavily on experimental data. The development of high
throughput phenotyping facilities in combination with the advancement of the
semi-automated image analysis software facilitate the generation of large
amounts of root data. However, morphology and topology of root systems is
usually outlined by the total root length, the maximum root depth or the range
of root diameters without providing any quantitative information that enables
the characterisation of the underlying functional mechanisms which give rise
to complex root system architectures (RSAS) (Le Bot et al., 2010; Leitner et
al., 2014). Therefore, valuable insights into the key growth parameters of
root system development are essential for assisting root biologists and farmers
in their efforts to identify the root phenotypes that are ideal for improved
nutrient capture with the aim of efficiently maximising crop yield.

The density-based models presented in this dissertation are
mathematical models that depict the structure of the root systems (geometry

and topology) as continuous maps and quantitatively describe the main RSA
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developmental mechanisms by incorporating them as parameters in the model
equations. The spread of roots in the growing medium (soil, filter paper etc.)
can be mathematically formulated by the conservation equation of continuous
density distribution functions, which include the root angle, defined over
space and time (Addiscott and Whitmore, 1987). Initially, Bastian et al.
(2008) built up root apical growth models in order to formulate the
dependence of the dynamic change in root length density on the root tip
movement. Then, a more general approach integrating the concept of the root
tip wavefront with the continuous density distribution functions was proposed
by Dupuy et al. (2005c) and Dupuy et al. (2010b). This modelling approach
is also suitable for juxtaposing real root length data and model results since
root length density functions can be calculated directly through the model.
Thus, the hereby suggested modelling framework can be employed in order
to extract useful information from various datasets, irrespective of their
format, in terms of model parameters that most importantly retain their
biological significance and pertain to root growth functions such as the rate
of root elongation and the rate at which laterals emanate from the mother root
axes.

This work presents the basis of the mathematical density-based
models of RSA as well as the integrated framework for using these models in
order to extract biologically significant information on the key developmental
mechanisms of RSA from the available experimental data. This dissertation
explains why density-based models have the potential to facilitate, upscale
and enhance the analysis of root datasets by providing useful tools and new

insights into root biology and plant breeding.
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The model presented in this work and its application to experimental data
suggests that these innovative methods can be used for generating continuous
RSA maps based on root density distributions from partially observed and/or
discrete experimental data so that they can be directly compared with the
model results. Thus, these methods are applicable to varied root data from
various phenotyping facilities and also form the core of an integrated
framework, for extracting information from data by estimating key root
growth parameters and characterising the growth patterns by quantitatively
describing the RSA developmental mechanisms. In addition, incorporating
the time lag in the initiation of lateral roots with respect to the formation of
the mother roots allows the model to describe RSA development more
accurately. The enhanced implementation of the suitable numerical methods
for solving the partial differential equations in the model leads to cost-
efficient simulation of the dynamics of root growth.

The presented pipeline is applicable to data from a wide range of plant
species, while the nature of the data available for extracting root growth
parameters as well as the number of replicates taken at a specific time point
influence the quality of the estimations of model parameters. In addition, the
range of acceptable values of the scaling factor applied to root densities that
are based on data is of major significance.

Regarding the model parameter estimation, the adequate assessment and
selection of the most suitable optimisation algorithm is one of the main
problems that needs to be properly addressed. As in any inverse problem, the

main issue is the identification of this optimiser which can output these
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parameter values that are biologically meaningful providing information
based on real data consistently, robustly and accurately.

The employed optimisation approach incorporates all the necessary
performance criteria, which retain the biological significance of the estimated
model parameters, in the cost function. The presented framework takes into
account the fact that the root growth parameters are inextricably linked with
the reposition and reorientation of roots while considering the trade-off
between optimality, accuracy, completeness and complexity of the employed
optimisation method (Kokash, 2005). A preference-based procedure
incorporated in the optimisation framework outputs a single set of optimal
values for the estimated parameters. However, the versatility of an efficient
optimisation algorithm that has the potential to work efficiently with various
cost functions, which change with respect to the available root data, without
constraints related to the differentiability and convexity of the cost function,
is of paramount importance. Therefore, based on the analysis presented in this
work, the employed optimiser of Nelder-Mead, which is derivative-free, as
well as the proposed cost function proved to be adequate for the analysis.

Nelder-Mead is an efficient heuristic optimisation algorithm, popular
for solving problems in chemistry, engineering and medicine (Lagarias et al.,
1998), which might also facilitate the investigation for global optima. It is
worth mentioning that the cost function as formulated in this work can also
be used with global non-linear optimisers (e.g. basin hopping). Calculation
of global optima is important in this specific problem, because non-identical
sets of optimal values of the later root elongation rate and the main root

branching rate can generate identical root length density distribution maps.
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The mechanistic and empirical approaches presented in this work
have the potential to be applied to root data generated in various experimental
set-ups. Root diameters and genotypic information can also be incorporated
in the model. The potential of the density-based models presented here can be
further investigated in future by validating them on experimental data from
roots growing in three-dimensional space. In addition, the efficiency of the
models could be enhanced by a) employing new methods for discretisation of
the partial differential equations (e.g. the travelling wavelet method), b)
implementing time- and space-dependence of model parameters and c)
imposing constraints on the cost function regarding the distribution of root
diameters. In general, the upscaling of high throughput phenotyping facilities
and the improvement of in vivo and in silico experimentation will play a
pivotal role in improving the models in plant phenomics and therefore
expanding the capacity of crops through efficient crop management strategies

in the realm of sustainable agriculture.
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Chapter 1
Modelling the development of plant root

systems

1.1 Understanding the importance of plant root

systems

Plants are vital to our health, clothing, housing, energy and
environmental quality. However, pollution, urbanisation, industralisation as
well as the shrinkage of arable land and water resources lead to the
unprecedented limited availability of plant-based products. Therefore, crops
need to be managed in such a way that they can still perform at maximum
efficiency while making use of less water, nutrients and energy in soils that
constantly become more infertile over time. In addition, it is estimated that
crop production must double to meet growing demands for food (Tomlinson,
2013; White et al., 2013).

However, the ability of plants to acquire vital resources such as nutrients
and water depends substantially upon roots. As a consequence, gaining
valuable insights into how root systems are formed, grow and develop over
time and space is crucial for maximising crop yield. This study shows how
mathematical modelling can play a pivotal role in sustainable agriculture and
efficient crop management by targeting those traits that identify optimal
phenotypes for abiotic stress.

Roots are organised in complex and highly organised branching
structures, whose geometry as well as topology, and their functional
mechanisms need to be adequately analysed and thoroughly understood.
Relocation and reorientation of roots are responses to environmental cues and
developmental signals. Roots move in the growing medium by increasing
their length (root elongation) and growing downwards (gravitropism) or
upwards (negative gravitropism). Roots can also bend horizontally
(plagiotropism) or towards the initial direction of the root (exotropism)
(Casimiro et al., 2003; Pageés et al., 2004; Bengough et al., 2000).

21



1.2 Density-based models: Mathematical models of

root growth

The architecture of the root structures is defined through their geometrical
features such as the position, orientation and size of roots. Root system
structures evolve constantly over space and time and as a result the generation
of RSAs is a dynamic phenomenon whose functional mechanisms are yet to
be understood.

1.2.1 The Root System Architecture (RSA) can be quantitively described
by a density-based model

Since root systems are organised in multiple levels of root branching
hierarchy, the density distribution functions can be defined for the roots of
each branching order i, with i € N. More precisely, the root tip density, the
root length density and the root branching density for the roots of branching
order i are real-valued multivariate functions denoted by pgi), pl(i), plgi):
R* - R* defined in L, x L, x L, xL;, withx e L, c R,y €L, CR™,a €
L, cR,t € R" and a € (—m, m]. Hence, at any point ¢ the total number of

roots of branching order i is given by [ 0 p§i> (x,y, a, t)dv, the total length of
roots is formulated as | 0 pl(i) (x,y, a, t)dv and the total number of branching

points is defined as | pl(,i) (x,y,a,t)dvwith 2 € Ly XLy X Lg.

1.2.2 Root growth is a dynamic phenomenon

A mathematical model, adapted from previous work by Dupuy et al. (2010a),
makes use of these density functions through partial differential equations
(PDEs) in order to characterise the root system structure by estimating the
root growth parameters. In an arbitrary volume 2, with 2 c L, x L), X L,
enclosed by a surface 012, any change in the number of roots with time is due
to two independent processes: the flow of the pre-existing roots through the
boundary via root elongation and root gravitropism, as well as the emanation

of new roots within the volume induced by root branching. In particular, the
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change in the number fﬂ pa(li)dv of tips of i-th order roots inside the volume

£ is due to root tip flow and, therefore, the total change in fn pgi)dv can be

evaluated after taking into account the number of roots that leave and enter

the volume in total over the specified period dt. Thus, the rate of change in
the number fﬂ p;i)dv of tips of i-th order roots in the volume 2 enclosed by

the surface a2 can be modelled by applying a conservation approach, i.e.

d ; NEEN

e f pPdv = - f pPu-fids, (1-1)
2 an

where p(i) = pa(f)(x, t) signifies the root tip density at the point X = (x, y, @),

a
fi is the unit normal vector to the surface area element ds and U = U (X, t)
denotes the velocity of the tips of i-th order roots. However, according to the

divergence theorem (Stolze, 1978)

Jo0 pU - ds = J,V (pgi)U)dv. (1-2)
By substituting the equation (1-2) into the equation (1-1), it follows that
d . .
T f pPdy = — f V-(pi‘)U)dv. (1-3)
0 0

Root elongation and root gravitropism are both modelled through the
velocity U (X, t) of the root tip of a particular branching order i at any point

X(x,y,a),le.

(1-4)

yo = (& & da

dt’dt’ dt
By definition, the change dI® in the length I® during the time interval dt
divided by the duration of this time interval is the root elongation e®, i.e.

L dl®
0 =—— 1-5
e . (1-5)
However, the rate of change dx and dy in the position x and y of the root tip
can be expressed as follows:

dx dl®

E = Wsina (1'6)
and

d dl®

d_f = ——cosa, (1-7)
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respectively. By plugging the equation (1-5) into the equations (1-6) and (1-7)

we get
dx .
= — pgj 1-8
- = ¢Usina (1-8)
and
d .
_d)t} = eWcosa. (1-9)

In addition, the gravitropic rate Z—‘: for the roots of branching order i is defined

as

= _,® 1-10
7 gVa, (1-10)

Solving the equation (1-10) (by separation of variables) yields
a(t) = a = agexp(—gWt), t = t, (1-11)
with a, the non-zero initial root angle (dimensionless) and g® > 0 denoting
the gravitropic parameter of roots, which generally grow downwards.
By substituting the equations (1-8), (1-9) and (1-10) into the equation

(1-4) , the velocity U® can be equivalently written as

U® = (eWDsina, ePcosa, —gPa), (1-12)
or
U®D = e@(sing, cosa, k), (1-13)
®
with i = — = denoting the local curvature of the root (Dupuy, 2011).

The equation (1-13) shows the relationship between the independent
parameters of the elongation rate and the gravitropic rate on the morphology
of the root system reiterating that the shape of the root system is determined
by the ratio between these two parameters.

Thus, the mathematical expression for the rate of change in the
number of root tips due to root flow is given by:
ifpgi)dv = —fV-(péi)(e(i)sina,e(i)cosa, —g(i)a)) dv. (1-14)

dt
0 )

The volumetric branching rate term b®, with i > 1, is given by:
b® =2 b0V o (x,y,a + 5P, t) + o7 (3,0 = b, ),

(1-15)
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where bﬁi_l)denotes the branching rate of a root of branching order i — 1

indicating the total number of roots of order i created by branching of one
root of order i — 1 per unit time dt, bg) is the branching angle at which lateral
roots of order i emerge and the coefficient % agrees with the model assumption

that there are two equally likely possibilities for the branches to appear on the
right-hand side or left-hand side of the mother root. Consequently, the rate of
change in the number of root tips can be modelled as

d [ |
= f pPdv = f bDdy. (1-16)

0 N
Thus, the equations (1-3) and (1-16) yield the total rate of change in

the number fﬂ pé”dv of tips of roots of branching order i in the volume 12,

ie.
d [ o Oy® ®
o | Pa dv = — V-(pa U )dv+ b - dv. (1-17)
0 0 0
However, the volume 2 is independent of time. So,
@
d ; dap
(i) a
— dv = | ——dv. -
dtfpa v f 5 (1-18)
0 0
Plugging the equation (1-18) into the left-hand side of the equation (1-17)
leads to
0p;” ®
a - _ NINONTO ® -
f o dv fV (pa U )dv+fb dv. (1-19)
0 0 0
Equivalently,
9 | g (pOuO) = pOyav = 0. (120
| v (pPu0) -5y av = o
So,
®
0pa Dy :
—= . @) p® = 1-21
at+V(an)b 0, (1-21)
or
®
0 N .
Si = v (pPU®) 4 O, (1-22)

Alternatively,
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0 . . . ) .
Pa_ _ -V- (pél)(e(‘)sina, eWcosa, —g(‘)a)) + p® (1-23)
or

apW a(péi)e(i) sina) a(pgi)e(i) cosa) a(pgi)g(i)a) ,
Pa __ — + +b®
ot ox oy oa '

(1-24)
Based on the equation (1-24), the root elongation rate e (cm-d?), the
gravitropic rate g (d) and the volumetric branching rate b (cm2-d%), are the
main growth parameters that affect the root tip density p,. Moreover, the
model equation (1-24) can be further modified so that the main root growth
parameters are time dependent, i.e.

Opa’ __9(ps V@ sing)  0(p"eV(0) cosw)  0(pa"9 V()

= ®
ot ox oy oa T

(1-25)
Furthermore, in order for the model to account for the time lag that is observed
in the emergence of laterals with respect to the appearance of the
corresponding mother roots, the equation (1-15) which describes the
volumetric branching rate, needs to be adequately modified so that
bV o8 (@ + bt = T@) 4+ o (x,y,0 = bP, ¢ = TO)]
2 )
(1-26)

p® =

for t > T®, with the time lag calculated from the experimental data and
denoted by T®,
Regarding the initial root tip density distribution, this is fully

incorporated from the experimental data so that
POy, at =ty) = pO (%, y, ), (1-27)
where the function ﬁgo) (x,y, a) denotes the data-based initial mother root tip

density distribution function at the start of the experiment. The boundary

conditions for the model simulations are given by
Orr. 6
U- =0, -
pa UM (1-28)

with f signifying the unit normal vector and B = Ly X Ly, X L.
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1.2.3 Numerical solution of the model

The PDE model is solved for the root tip density p, numerically by
applying the finite volume method (Heinen et al., 2003; Leveque, 2002;
Versteeg and Malalasekera, 2007). In order to solve the PDEs for the root tip
density p,, each coordinate was considered separately (dimensional splitting)
and an upwind scheme, a first order method, with minmod flux limiter
schemes, which are second order methods that improve the accuracy of the
solutions, were applied.

According to the CFL Condition (Courant, Friedrichs and Lewy)
(Leveque, 2002), which is not always sufficient for the convergence of the
applied numerical method, a numerical method can be convergent only if its
numerical domain of dependence contains the true domain of dependence of

the PDE, at least in the limit as At and Ax go to zero, i.e.
lugl-5- < C,withd = {x,y,a}and t € [0,T],  (1-29)
where C is Courant number with € < 1.

Hence, for the growth parameters of the seminal roots when d = x,

|lug| = e, and the CFL condition yields

t
< 1-30
ey x s C, ( )
or equivalently,
At
lesina| — < C (1-31)
Ax
and finally
c-A
A< —2X (1-32)
e

for ensuring stability of the dimensional sweep at each time increment.
However, given that Ax = Ay in the model simulations, the CFL condition

for the y axis gives

c-A c-A
< y= X.

At < (1-33)

e e
Applying the CFL condition (1-29) to the third spatial dimension « yields
te] -5 < C. (1-34)

However, according to the equation (1-10),
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ua—E——g-a (1-35)
So, substituting the equation (1-35) into (1-34) leads to
At
—g-a|l-—< 1-36
I=g-al-—<C, (1-36)
but since |—g| = |g|, then
At
. < 1-37
lg1-lal-5-<C (1-37)
or equivalently,
C-Aa
< -
= lgllel’ (1-38)

However, as explained in section 1.2.1, « € (—m, ] or || < m, SO

ar < 4% (1-39)
T gl
Therefore, equations (1-32), (1-33) and (1-39) lead to
. C-Ada C-Ax
0 < At < min (WT) (1-40)
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Chapter 2
Estimation of model parameters from

experimental data

The main aim of this work is to investigate whether the mathematical model
presented in Chapter 1 can be used to extract useful information from
experimental data. Therefore, the model is fitted to available root image data

derived from an experiment on Brassica rapa (B. rapa).

2.1 The root system of Brassica rapa

The root system of Brassica rapa (B. rapa) is made up of a single primary
root as well as first-order laterals (Figure 2.1). A total of 89 seedlings were
grown for 14 days after sowing on blue filter paper and images were taken
every 2 days and analysed using the image analysis software SmartRoot
(Lobet et al., 2011b), although the framework presented in this work can be
applied to datasets generated by other software for image analysis. Thus, the
primary and lateral roots consisted of 22,290 and 196,055 line segments,

respectively.

Figure 2.1 The Brassica rapa (B. rapa) root system. Image taken from Adu (2014).
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2.2 Model calibration
For the roots of each branching order i, the discrepancy between the model-
based density (pl(i)) and the data-based density distribution function

(7") were quantified through a cost function! E® defined as follows:

2

This cost function takes into account the local differences between the data-

~(1)

based root length density g, and the model-based root length density p(l)

through the first integral term (f,, p(‘) (pl(l) ﬁl(l)) dv), while the second

2
term ( ) (pl(l) ﬁfl)) v) quantifies the differences in total root length

density. It is worth noting that the first term reduces the dependency of the
objective function on areas where root length density is relatively low.

®

The vector of optimal model parameters &,

contains these parameter values

that minimise the difference between the model output and the experimental

data, i.e.

Eopt := argmingo) E@(§©), (2-2)

El()l;t = argmin;(i) E(l) (E‘()Op)t, ...,f(l D E(l)) 0<i<n.
For the numerical simulations and the implementation of the optimisation

method, the size of the domain (0, L,) X (O Ly) ( La L"‘) was derived

from the experimental set-up with L, = 15 (cm), L,, = 22 (cm), L, 3—” (rad)

and the Courant-Friedrichs-Lewy number C, as defined in Chapter 1, was set

equal to 0.5.

2.2.1 Centering experimental root data
Unfortunately, it is not always feasible to extract perfectly aligned root

images throughout the duration of the experiment. However, it is essential for

! In this work, the terms “cost function”, “error function” and “objective function” are used
interchangeably.
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the consistency of the analysis and applicability of the method that the seed
of any of the plants, whose data are to be processed, is located at a common

position, the midpoint of the horizontal plane (Figure 2.2).

— — — —~ — - -
— / / C— /- o — —— g
~ r - - -~
- - - - - -

Figure 2.2 (A) Before the centering of root data with seeds positioned at different points along the top
edge of the filter paper. (B) After the centering of data: All the seedlings are located at a common position,
the midpoint of the horizontal plane.

Therefore, horizontal position x; and vertical position y; of the successive
points of the traced root segments after the centring can be expressed with

respect to the relevant coordinates x; and y; before the centering as follows:

L
X[ =X; — Xo + 5 (2-3)

and
Yi =Yi~ Yo, (2-4)
with x, denoting the pre-centering horizontal position of the seed, L

signifying the length of the horizontal axis and (% 0) describing the midpoint

along the horizontal axis. For the post-centering horizontal position x| of the

seed for any plant, from the equation (2-3) follows that

L
Xy = Xg — Xo + 5 (2-5)

or
L
Xp==. 2-6
=5 (2-6)
It is worth mentioning that since §> 0, the horizontal coordinates of the

points which are located to the right of the position of the seed before the

centering (x; — x, > 0) are positive (x; > 0) following the centering, while

31



they are negative (x; < 0), for these points that before the centering are on

the left hand side of the original position of the seed (x; — x, < 0).

2.3 From root line segments to continuous root maps:
A computationally efficient method for estimating
root density distribution functions from traced

roots

2.3.1 Kernel-based density approach

A kernel density-based method as depicted in Figure 2.3 can be employed to
estimate root density functions from traced root data. This approach can be
considered as a generalisation of the histograms from multidimensional
datasets but with rigorous theoretical reasoning (Silverman, 1996; Scott and
Sain, 2005) with the estimated density distribution functions provided by the

sum of the kernel functions.

oot Length Density

R
<€

Figure 2.3 The kerned-based density method: (A) The midpoints of successive line segments on a traced
primary rootand laterals are denoted by blue X and red dots, respectively. (B) The total root length density
is estimated as the sum of the classical Gaussian kernel functions whose centres x; are the midpoints.

Therefore, the data-based root length density p; (X) can be given by:

32



m
AO = > LVX-Xy), -
i=1
with X € [0,L, ]1x [0,L,] x [—%“L?“] and X; denoting the location of the
center of the i-th root segment of length ;.

The classical Gaussian kernel V (cm™2) is given by:

V(X) = - lez—lx), (2-8)

1
e
V@m)dz| 2
with d signifying the number of dimensions and X denoting a non-zero

diagonal matrix defined as:

¢ 0 0
s=k2[ 0 ¢2? 0|, (2-9)
0 0 c,2

with the scaling factor k and normalisation factors c,, c,, c, representing the

spatial resolution and the varying spacing along the three independent and,

therefore, uncorrelated dimensions x, y, a.

2.3.2 Calculating the scaling factor by using the Cross Validation method
Our main aim is to evaluate the optimal value k,,, of the scaling factor k of
the kernel density function without underfitting or overfitting to the data with
all the available observations depending on each other. For this reason,
resampling techniques are needed and therefore the method of pseudo-log-
likelihood cross validation is applied. More precisely, the Leave-One-Out
cross-validation (CVyqo) method is employed, where all the data points apart
from one denoted by j are used to estimate the log likelihood at this specific

point, i.e.

n
1
CVLOO(k) = mz lOg z li vV (X]' Xi ) , (2'10)
j=1

i#j
with m signifying the total number of root segments under consideration.
However, in order to be able to differentiate between roots whose total

number is denoted by N, additional indexing is implemented to explicitly note

which root the different root segment belong to, i.e.
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1 (
CVioo(k) = —— z log Z LV (XiX00) |,

0<is<N 0<p=N
0<jsn; 0<qsn;,q+j for p=i

(2-11)

where X;; are the coordinates of the j-th root segment and [;; its length and
Lang =n.
In addition, a V-fold cross-validation CVy_rs;q method (Geisser,

1975) with cross-validation function defined as follows:

CW—fora (k) “n_1 Z log Z lqu(Xij-qu) :

0<is<N 0<p <N, p#i
0<jsny 0<q=n;

(2-12)
Therefore, the pseudo-log-likelihood, CV = log([Ti-, p;(X;)), attains its
maximum value at the optimal scaling factor k,,,, maximises, i.e.

kope := argmaxy CV (k) (2-13)

2.4 Hierarchical optimisation of model parameters

Evaluating the optimal values of the model parameters is computationally
intensive, but decoupling into optimisation sub-problems with respect to the
relevant branching order allows the problem to remain computationally
solvable.

In order to be able to assess different optimisation methods by using
simulated data, a target root length density distribution function was first
calculated based on user-defined values of model parameters. The
optimisation methods that were initially assessed using simulated data were
the Powell’s method (Powell, 1964), the Conjugate-Gradient method which
is based on a nonlinear conjugate gradient algorithm by Polak and Ribiere, a
variant of the Fletcher-Reeves method presented in Nocedal and Wright
(2006), the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) ((Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and the Nelder-Mead
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method (Nelder and Mead, 1965). The Powell’s method is a conjugate
direction method where minimisations occur sequentially along each entry of
the vector. Unfortunately, additional information regarding the optimal
direction is needed and this proves to impact on the efficiency and
convergence of the method. The Conjugate-Gradient method uses the
gradient of the cost function. However, the cost function might be unknown
or not well-conditioned and therefore the method is fraught with errors in the
approximation of the gradient. On the other hand, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method is a quasi-Newton algorithm. Although it
generally does not require many function calls, the use of the gradient of the
cost function which, when not known, needs to be estimated by first-order
differences and the approximation of the Hessian matrix at each step
negatively impact on the effectiveness, efficiency and cost of the method.

Interestingly, simplex-based optimisation techniques, such as Nelder-
Mead, performed better than the rest of the methods. The Nelder-Mead
algorithm consists in the generalisation of intervals and triangles to high-
dimensional domains (simplex) which constantly adapt while efficiently
spanning the parameter space (Olsson and Nelson, 1975). It works well with
noisy cost functions and does not involve approximation of derivatives.

By taking into account these factors that could affect the optimisation
such as the grid size, the initial condition and the total duration of the
experiment, the optimisation algorithm runs on a set of possible model
parameters in order to generate the root system and enable the model outputs
to be juxtaposed with the target root system through a cost function. The
optimisation procedure was iterated until convergence criteria were met
(Figure 2.4).
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Figure 2.4 Optimisation framework for estimating root growth parameters from simulated as well as
real data..
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Chapter 3

Results

3.1 V-fold cross validation works better than Leave-

One-Out cross validation

While the estimated total root length was 15.77 cm and 15.68 cm obtained by
Leave-One-Out (LOO) and V-fold cross validation for the primary root and
values of 106.45 cm and 105.56 cm for laterals and the data-based total root
length for the primary and the laterals was 15.54 cm and 105.26 cm
respectively, there were significant differences with the respect to the
calculated values of the optimal scaling factor as well as the output root length
density distribution maps. In particular, by applying the Leave-One-Out
(LOO) cross validation method the optimal scaling factor k', was 0.23 for
primary and 0.21 for laterals and generated patchy root length density
distributions (Figure 3.1 (A) and Figure 3.1 (B)). On the contrary, the optimal

scaling factor k,,, was 0.9 for primary and 0.57 for laterals when employing

the CVy_¢o1q method (Figure 3.1(A) and figure 3.1 (C)).
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Figure 3.1 (A) Optimal scaling factor determined by the V-fold cross-validation method (solid) and the
Leave-One-Out method (dashed). (B) Root length distribution map (cm™) for the optimal scaling factor
K'opt derived by the Leave-One-Out method. (C) Root length distribution map (cm™) for the optimal
scaling factor K'oy calculated by the Leave-One-Out method.

3.2 Effectiveness and efficiency of different
minimisation algorithms in retrieving root growth

parameters from simulated data

In this black-box optimisation problem, Nelder-Mead (simplex-based
optimisation technique) performed better than Conjugate-Gradient or
Broyden-Fletcher-Goldfarb-Shanno (BFGS) (gradient-based methods),
which were slower to converge towards optimal parameters (Figure 3.2). The
Powell’s conjugate direction method was not suitable and less effective for
this problem mainly because it needed to determine the most suitable
direction, which depends on the particular problem.

In general, experiments of longer duration improved the estimation of
the parameters and optimisation methods only work for grid sizes greater than
a specific threshold (Figure 3.2). A simulation grid of a little bigger size was

required in order for the Powell’s method, the Congugate-Gradient and BFGS
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method to converge to the expected value for the gravitropic rate of the
mother roots. However, all the methods performed quite similarly when
estimating the branching rate of mother roots in tandem with the elongation
rate of laterals. However, the Conjugate-Gradient method always required
more time to converge to the expected value of the model parameter

regardless of the mesh size.
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Figure 3.2 Optimisation of gravitropic rate for the main root using Powell’s method, Conjugate-Gradient method and BFGS method respectively. (A, C and E) show the ratio% plotted against the
0

number of grid elements (NY) for Powell’s method, Conjugate-Gradient method and BFGS method respectively. Panel B, panel D and panel F show the runtime for each of the methods versus different
number of grid elements. Duration of the simulated experiment refers to 15 days (red) and 25 days (green).
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3.2.1 Estimation of Brassica rapa root growth parameters and sensitivity

analysis

The model was fitted on 89 plants of B. rapa as described in Chapter 2 and
the results are presented in Table 3.1 and Figure 3.3. All the algorithms were

coded in Python (http://www.scipy.org/). In addition, a sensitivity analysis

was perfomed based on a 1% increase in each of the values of the model
parameters along with 95% confidence intervals (CI) with bootstrap sample
size N=100, the coefficient of variation (CoV) as well as the ratio of the
percentage change SE in the objective function E to the percentage change

6¢ in parameter & expressed through the Model Elasticity Value (MEV):

MEV := E (3-1)

Table 3.1 Sensitivity analysis: The model elasticity value (MEV), the 95% confidence interval (CI) as
well as the coefficient of variation (CoV).

Parameter Units Estimate MEV SE Cl CoV (%)
e® cm-dt 1.24 0.947 0.0043 1.229-13 3.62
g©® d? 0.02 0.073 0.00043 0.019-0.021 2.17
br(O) d? 2.94 0.996 0.027 2.927-2.948 0.77
e cm-d? 0.52 0.972 0.00053 0.513-0.527 1.19
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Chapter 4

Conclusions

This works shows that partial differential equations can be used to model root
growth while incorporating a sufficiently small number of biologically
meaningful model parameters such as elongation rate, branching rate and
gravitropism (Dupuy et al., 2010a; Dupuy et al., 2010b). These oriented
density-based models of root growth describe the root growth dynamics
through the linkage between the length density, tip density and branching
density focusing on the geometry (root length density) and topology (root
branching density, root tip density) of the complex and highly ordered
branching structures of the roots systems.

In addition, the kernel-based method for estimating root density maps
from traced root data proved to consist a generic approach independent of the
experimental set-up and the software used to trace roots. It is worth noting
that the employed approach takes into account the hierarchy of the branching
structure of root systems and addresses the oriented density-based model
parameter optimisation by dividing the main problem into solvable sub-
problems. The elongation rate, the branching rate and the gravitropic rate are
incorporated as model parameters that describe biological functional
mechanisms thus facilitating the comparison with the relevant root features
that can be measured in the experiments. Regarding the optimisation, the
simplex-based method Nelder-Mead converged fast leading to efficient
estimation of these values of the model parameters which minimise the cost
function. However, it is important to point out that the specific properties
which result in the outstanding performance of Nelder-Mead are not yet fully
understood (Lagarias et al., 1998).

This work provides an integrated framework for estimating root
growth parameters from experimental traced root data. Density-based models
allow for simulating RSA efficiently regardless of the number of primary and
lateral roots observed in the experiments. In future, since the root system is

modelled as a continuum through the density distribution functions, other
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mechanical phenomena and interactions between roots and the environment

can be implemented relatively easily.
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