

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ – ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ

ΑΝΙΧΝΕΥΣΗ – ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΚΑΙ ΕΚΤΙΜΗΣΗ ΤΩΝ ΕΚΛΕΠΤΥΝΣΕΩΝ ΤΡΙΩΝ ΚΙΟΝΩΝ ΤΟΥ ΝΑΟΥ ΤΟΥ ΟΛΥΜΠΙΟΥ ΔΙΟΣ

$\frac{\Delta I \Pi \Lambda \Omega MATIKH ΕΡΓΑΣΙΑ}{XΡΙΣΤΟΣ ΑΡΒΑΝΙΤΗΣ}$

<u>ΕΠΙΒΛΕΠΟΥΣΑ</u> ΕΛΙΣΑΒΕΤ ΤΕΛΕΙΩΝΗ

ΑΘΗΝΑ, ΙΟΥΝΙΟΣ 2021

ΕΥΧΑΡΙΣΤΙΕΣ

Με την ολοκλήρωση της παρούσας διπλωματικής εργασίας θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες προς όλους όσους συνέβαλαν στην πραγματοποίησή της.

Αρχικά, θα ήθελα να ευχαριστήσω τους Λέκτορες της σχολής Αγρονόμων και Τοπογράφων Μηχανικών - Μηχανικών Γεωπληροφορικής του Ε.Μ.Π., Ελισάβετ Τελειώνη και Γιώργο Γεωργόπουλο, για την ανάθεση της συγκεκριμένης εργασίας αλλά και για την άριστη συνεργασία και την καθοριστική και συνεχή βοήθειά τους τόσο σε θεωρητικό όσο και εφαρμοσμένο επίπεδο καθ' όλη τη διάρκεια εκπόνησής της.

Επιπλέον, θα ήθελα να ευχαριστήσω την Εφορεία Αρχαιοτήτων Αθηνών και συγκεκριμένα την κυρία Ευρύκλεια Αλεξανδράκη, Πολιτικό Μηχανικό Ε.Μ.Π., για την χορήγηση της άδειας πραγματοποίησης των εργασιών στον χώρο του μνημείου, όπως επίσης την Αρχιφύλακα κυρία Σταυροπούλου, όλους τους φύλακες και το προσωπικό του μνημείου για την συνεργασία και τη διευκόλυνση κατά την διάρκεια της πραγματοποίησης των χώρο του μνημείου.

Τέλος, θα ήθελα να ευχαριστήσω τους συμφοιτητές και φίλους μου Νίκο Στάικο και Ευσταθία Διακουμή για την πολύτιμη βοήθειά τους.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΚΕΦΑΛΑΙΟ 1 - ΕΙΣΑΓΩΓΗ
1.1 Σκοπός της Διπλωματικής Εργασίας14
1.2 Δομή της Διπλωματικής Εργασίας1
ΚΕΦΑΛΑΙΟ 2 - ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ1
2.1 Γενικά1
2.2 Αρχιτεκτονική αρχαίων ελληνικών ναών1
2.2.1 Τύποι αρχαιοελληνικού ναού1
2.2.2 Στοιχεία κάτοψης αρχαιοελληνικού ναού20
2.2.3 Αρχιτεκτονικοί ρυθμοί2
2.2.4 Οπτικές εκλεπτύνσεις των αρχαίων ναών2!
2.3 Ο αρχαιολογικός χώρος του Ολυμπιείου20
2.4 Ο ναός του Ολυμπίου Διός2
ΚΕΦΑΛΑΙΟ 3 - ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΟΡΙΖΟΝΤΙΟΥ ΕΛΕΓΧΟΥ
3.1 Γενικά30
3.2 Αναγνώριση περιοχής
3.2.1 Οι κίονες ενδιαφέροντος3
3.2.2 Επιλογή των κορυφών του δικτύου34
3.3 Εξοπλισμός
3.4 Έλεγχοι
3.5 Μέτρηση των στοιχείων του δικτύου3
3.6 Προσανατολισμός του δικτύου3!
3.7 Συνόρθωση παρατηρήσεων - Επίλυση δικτύου οριζοντίου ελέγχου
3.8 Στατιστικοί έλεγχοι4
3.8.1 Ολικός έλεγχος αξιοπιστίας – Test χ^2 4
3.8.2 Σάρωση δεδομένων κατά Baarda4
3.9 Υψομετρική εξάρτηση του δικτύου4
ΚΕΦΑΛΑΙΟ 4 - ΓΕΩΜΕΤΡΙΚΗ ΤΕΚΜΗΡΙΩΣΗ ΚΙΟΝΩΝ
4.1 Γενικά4
4.2 Εξοπλισμός4
4.3 Διαδικασία σάρωσης4
ΚΕΦΑΛΑΙΟ 5 - ΕΠΕΞΕΡΓΑΣΙΑ ΣΑΡΩΣΕΩΝ

5.1 Γενικά53
5.2 Συνένωση νεφών και αφαίρεση θορύβου53
5.3 Πραγματοποίηση οριζόντιων τομών στους κίονες60
5.4 Υλοποίηση τομών στο νέφος σημείων63
5.5 Προσαρμογή βέλτιστου κύκλου σε κάθε οριζόντια τομή
ΚΕΦΑΛΑΙΟ 6 - ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ ΚΙΟΝΩΝ71
6.1 Γενικά72
6.2 Ανίχνευση και προσδιορισμός των οριζόντιων μετακινήσεων των σπονδύλων των κιόνων 72
6.3 Προσδιορισμός των στροφών των σπονδύλων των κιόνων
ΚΕΦΑΛΑΙΟ 7 - ΕΚΤΙΜΗΣΗ ΤΩΝ ΟΠΤΙΚΩΝ ΕΚΛΕΠΤΥΝΣΕΩΝ ΤΩΝ ΚΙΟΝΩΝ82
7.1 Γενικά83
7.2 Μείωση83
7.3 Ένταση85
ΚΕΦΑΛΑΙΟ 8 - ΚΑΤΑΝΟΜΗ ΕΡΓΑΣΙΩΝ92
8.1 Γενικά93
ΚΕΦΑΛΑΙΟ 9 - ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΤΑΣΕΙΣ96
9.1 Γενικά97
9.2 Συμπεράσματα97
9.3 Προτάσεις

ΒΙΒΛΙΟΓΡΑΦΙΑ - ΙΣΤΟΓΡΑΦΙΑ	119
ΠΑΡΑΡΤΗΜΑ 1 - ΕΞΑΣΦΑΛΙΣΕΙΣ	120
ΠΑΡΑΡΤΗΜΑ 2 - ΠΡΩΤΟΓΕΝΕΙΣ ΜΕΤΡΗΣΕΙΣ ΔΙΚΤΥΟΥ	
ΠΑΡΑΡΤΗΜΑ 3 – ΕΛΕΓΧΟΣ ΚΥΚΛΙΚΟΥ ΣΦΑΛΜΑΤΟΣ	131
ΠΑΡΑΡΤΗΜΑ 4 – ΣΑΡΩΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΤΑ BAARDA	132
ΠΑΡΑΡΤΗΜΑ 5 - ΟΙ ΠΙΝΑΚΕΣ Vx ΚΑΙ ΥΠΟΛΟΙΠΩΝ	133
ΠΑΡΑΡΤΗΜΑ 6 – ΜΕΤΡΗΣΕΙΣ ΓΕΩΜΕΤΡΙΚΗΣ ΧΩΡΟΣΤΑΘΜΗΣΗΣ	
ΠΑΡΑΡΤΗΜΑ 7 – ΣΚΑΡΙΦΗΜΑΤΑ ΤΩΝ ΔΙΕΥΘΥΝΣΕΩΝ ΑΝΑΦΟΡΑΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓ ΤΩΝ ΣΤΡΟΦΩΝ ΤΩΝ ΣΠΟΝΔΥΛΩΝ ΤΩΝ ΚΙΟΝΩΝ	`ΙΣΜΟ 136

ΕΥΡΕΤΗΡΙΟ ΕΙΚΟΝΩΝ

Εικόνα 2.1: Τα μέρη των αρχαίων ναών	19
Εικόνα 2.2: Κατηγοριοποίηση αρχαίων ναών ανάλογα με τη θέση των κιόνων τους	19
Εικόνα 2.3: Κατηγοριοποίηση αρχαίων ναών ανάλογα με τον αριθμό σειρών κιόνων	20
Εικόνα 2.4: Τα μέρη της βάσης αρχαίου ναού	20
Εικόνα 2.5: Στοιχεία κίονα Δωρικού ρυθμού	22
Εικόνα 2.6: Στοιχεία ναού Ιωνικού ρυθμού	23
Εικόνα 2.7: Διακόσμηση κιονοκράνου Κορινθιακού ρυθμού	24
Εικόνα 2.8: Κιονόκρανο από τον ναό του Ολυμπίου Διός	24
Εικόνα 2.9: Η θέση του αρχαιολογικού χώρου	26
Εικόνα 2.10: Αναπαράσταση κτιμάστων που βρίσκονταν στον χώρο του Ολυμπιείου	27
Εικόνα 3.1: Ο κίονας Κ1	31
Εικόνα 3.2: Οι κίονες Κ2, Κ3	32
Εικόνα 3.3: Η θέση των κιόνων Κ1, Κ2, Κ3 σε κάτοψη	33
Εικόνα 3.4: Η θέση των κιόνων Κ1, Κ2, Κ3 σε δυτική όψη του ναού	33
Εικόνα 3.5: Η μορφή του γεωδαιτικού δικτύου ελέγχου	35
Εικόνα 3.6: Σήμανση των κορυφών του γεωδαιτικού δικτύου ελέγχου	35
Εικόνα 3.7: Θέση υψομετρικής αφετηρίας R1	42
Εικόνα 4.1: Σάρωση σφαιρικού στόχου και καθορισμός του κέντρου του	46
Εικόνα 4.2: Εισαγωγή στοιχείων σαρωτή και στόχου στο λογισμικό Cyclone	47
Εικόνα 4.3: Υπολογισμός αποκλίσεων γεωαναφοράς	47
Εικόνα 4.4: Καθορισμός παραμέτρων πριν την έναρξη της σάρωσης	48
Εικόνα 4.5: Οπτικό παράδειγμα σαρωμένων περιοχών	49
Εικόνα 5.1: Δημιουργία αρχείου συνένωσης νεφών	53
Εικόνα 5.2: Άνοιγμα λίστας σαρώσεων	54
Εικόνα 5.3: Επιλογή των προς συνένωση νεφών	54
Εικόνα 5.4: Λίστα επιλεγμένων νεφών	55
Εικόνα 5.5: Υλοποίηση συνένωσης	55
Εικόνα 5.6: Άνοιγμα αρχείου συνένωσης	56
Εικόνα 5.7: Οπτικό αποτέλεσμα συνένωσης	56
Εικόνα 5.8: Αφαίρεση θορύβου λόγω κοντινών αντικειμένων	57
Εικόνα 5.9: Αφαίρεση θορύβου λόγω βλάστησης	57
Εικόνα 5.10: Αποτέλεσμα συνένωσης μετά την αφαίρεση θορύβου	58
Εικόνα 5.11: Οριζόντιο επίπεδο σε συγκεκριμένη στάθμη στο Cyclone	63
Εικόνα 5.12: Οπτικό αποτέλεσμα οριζόντιας τομής σε κάτοψη	64
Εικόνα 5.13: Επιλογή εσώτερων σημείων στις ραβδώσεις του σπονδύλου	66
Εικόνα 9.1: Η ρωγμή του επιστυλίου των κιόνων Κ2-Κ3	98

ΕΥΡΕΤΗΡΙΟ ΔΙΑΓΡΑΜΜΑΤΩΝ

Διάγραμμα 4.1: Διάγραμμα ροής της διαδικασίας σάρωσης	50
Διάγραμμα 5.1: Διάγραμμα ροής συνένωσης νεφών και αφαίρεσης θορύβου	59
Διάγραμμα 5.2: Διάγραμμα ροής για υλοποίηση τομών στο λογισμικό Cyclone	65
Διάγραμμα 6.1: Διάγραμμα οριζόντιων μετακινήσεων όλων των σπονδύλων υπό κλίμακα	x80
Διάγραμμα 7.1: Οπτική απόδοση έντασης στον κίονα Κ1	87
Διάγραμμα 7.2: Οπτική απόδοση έντασης στον κίονα Κ2	89
Διάγραμμα 7.3: Οπτική απόδοση έντασης στον κίονα Κ,	91
Διάγραμμα 8.1: Κατανομή εργασιών πεδίου και γραφείου	93
Διάγραμμα 8.2: Κατανομή εργασιών υπαίθρου	94
Διάγραμμα 8.3: Κατανομή εργασιών γραφείου	95

<u>ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ</u>

Πίνακας 3.1: Τελικές τιμές οριζόντιων γωνιών και αποστάσεων	38
Πίνακας 3.2: Συντεταγμένες κορυφών Σ1 και Σ5 στο ΕΓΣΑ'87	39
Πίνακας 3.3: Παράμετροι και αποτελέσματα συνόρθωσης του δικτύου	40
Πίνακας 3.4: Υψόμετρα και αβεβαιότητές τους στις κορυφές του δικτύου	43
Πίνακας 4.1: Οριζοντιογραφικές και υψομετρικές αποκλίσεις κατά τη γεωαναφορά	49
Πίνακας 5.1: Υψόμετρα οριζόντιων τομών στον κίονα Κ1	61
Πίνακας 5.2: Υψόμετρα οριζόντιων τομών στον κίονα Κ2	62
Πίνακας 5.3: Υψόμετρα οριζόντιων τομών στον κίονα Κ3	63
Πίνακας 5.4: Στοιχεία και αβεβαιότητες βέλτιστων κύκλων στον κίονα Κ1	68
Πίνακας 5.5: Στοιχεία και αβεβαιότητες βέλτιστων κύκλων στον κίονα Κ2	69
Πίνακας 5.6: Στοιχεία και αβεβαιότητες βέλτιστων κύκλων στον 14º σπόνδυλο του K2	70
Πίνακας 5.7: Στοιχεία και αβεβαιότητες βέλτιστων κύκλων στον κίονα Κ3	70
Πίνακας 6.1: Μέτρο-διεύθυνση και στατιστικός έλεγχος μετακινήσεων στον κίονα Κ1	73
Πίνακας 6.2: Μέτρο-διεύθυνση και στατιστικός έλεγχος μετακινήσεων στον κίονα Κ2	73
Πίνακας 6.3: Μέτρο-διεύθυνση και στατιστικός έλεγχος μετακινήσεων στον κίονα Κ3	74
Πίνακας 6.4: Στροφές σπονδύλων και στατιστικός τους έλεγχος στον κίονα Κ1	77
Πίνακας 6.5: Στροφές σπονδύλων και στατιστικός τους έλεγχος στον κίονα Κ2	78
Πίνακας 6.6: Στροφές σπονδύλων και στατιστικός τους έλεγχος στον κίονα Κ3	79
Πίνακας 7.1: Μείωση διαμέτρων στον κίονα Κ1	83
Πίνακας 7.2: Μείωση διαμέτρων στον κίονα Κ2	84
Πίνακας 7.3: Μείωση διαμέτρων στον κίονα Κ3	85

<u>ΕΥΡΕΤΗΡΙΟ ΣΧΕΣΕΩΝ</u>

Σχέση 3.1: Αβεβαιότητα απόκλισης στον έλεγχο κυκλικού σφάλματος	37
Σχέση 3.2: Ο τύπος του Ferrero	40
Σχέση 3.3: Ανισότητα ολικού ελέγχου αξιοπιστίας	41
Σχέση 3.4: Ανισότητα σάρωσης δεδομένων κατά Baarda	41
Σχέση 3.5: Αβεβαιότητα υπολογισμού υψομετρικών διαφορών	42
Σχέση 3.6: Υπολογισμός υψομέτρου κορυφής	43
Σχέση 5.1: Εξίσωση παρατήρησης του κύκλου	67
Σχέση 6.1: Υπολογισμός γωνίας διεύθυνσης	76
Σχέση 6.2: Αβεβαιότητα υπολογισμού γωνίας διεύθυνσης	76
Σχέση 6.3:Αβεβαιότητα διαφοράς γωνιών διεύθυνσης	76
Σχέση 7.1: Σχέση υπολογισμού της έντασης των κιόνων	85

<u>ΕΥΡΕΤΗΡΙΟ ΣΧΗΜΑΤΩΝ</u>

Σχήμα 7.1: Η ένταση του κίονα Κ1	
Σχήμα 7.2: Η ένταση του κίονα Κ2	
Σχήμα 7.3: Η ένταση του κίονα Κ3	90

ΠΕΡΙΛΗΨΗ

Ο αρχαιολογικός χώρος του Ολυμπιείου βρίσκεται στο κέντρο της Αθήνας και περικλείει στο εσωτερικό του σημαντικό αριθμό μνημείων της αρχαιότητας. Σημαντικότερο και επιβλητικότερο αυτών είναι ο Ναός του Ολυμπίου Διός, ο οποίος αποτελεί μνημείο πολιτιστικής κληρονομιάς και παγκόσμιο τουριστικό πόλο έλξης. Σήμερα, σώζονται δεκαέξι κίονες από τον αρχικό ναό, ένας εκ των οποίων βρίσκεται πεσμένος στον αρχαιολογικό χώρο. Πολλοί από αυτούς έχουν υποστεί εμφανείς φθορές και παραμορφώσεις, με συνέπεια να υπάρχει η ανάγκη αναστήλωσής τους.

Με βάση τα παραπάνω, στην παρούσα Διπλωματική Εργασία το ενδιαφέρον εστιάστηκε στις παραμορφώσεις τριών από τους κίονες αυτούς, μετά από υπόδειξη της Εφορείας Αρχαιοτήτων Αθηνών. Συγκεκριμένα, αντικείμενο της παρούσας Διπλωματικής Εργασίας αποτελεί η ανίχνευση και ο προσδιορισμός του μεγέθους των μετακινήσεων και των στροφών των σπονδύλων των τριών αυτών κιόνων. Επιπλέον, έγινε προσπάθεια εκτίμησης των οπτικών τους εκλεπτύνσεων, δηλαδή της μείωσης και της έντασής τους.

Για το σκοπό αυτό, ιδρύθηκε στον χώρο του ναού περιμετρικά των εξεταζόμενων κιόνων γεωδαιτικό δίκτυο οριζοντίου ελέγχου. Το δίκτυο προσανατολίστηκε ως προς το κρατικό σύστημα αναφοράς ΕΓΣΑ '87 και εξαρτήθηκε υψομετρικά από το Ελληνικό σύστημα αναφοράς υψομέτρων. Οι συντεταγμένες των κορυφών του εκτιμήθηκαν μετά από μετρήσεις των στοιχείων του και συνόρθωση των παρατηρήσεων με τη Μέθοδο των Ελαχίστων Τετραγώνων (Μ.Ε.Τ.).

Στη συνέχεια, από κάθε κορυφή του δικτύου πραγματοποιήθηκε σάρωση των εξεταζόμενων κιόνων με τρισδιάστατο επίγειο laser σαρωτή, με σκοπό τη δημιουργία του ψηφιακού τους τρισδιάστατου μοντέλου. Σε κάθε σπόνδυλο πραγματοποιήθηκαν οριζόντιες τομές και εκτιμήθηκαν οι συντεταγμένες του κέντρου και η ακτίνα του βέλτιστα προσαρμοζόμενου εγγεγραμένου κύκλου στα εσώτερα σημεία των ραβδώσεων. Με βάση αυτά τα στοιχεία προσδιορίστηκαν οι στατιστικά σημαντικές μετακινήσεις (2.8mm ÷ 11.4mm) και οι στροφές (1.3grad ÷ 4.5grad) των σπονδύλων του κάθε κίονα. Τέλος, εκτιμήθηκαν οι οπτικές εκλεπτύνσεις μείωση και ένταση.

ABSTRACT

The archaeological site of Olympieio is situated in the center of the city of Athens and encloses several antiquity sites and monuments. The most important and imposing is the Temple of the Olympian Zeus, that constitutes a monument of cultural heritage and a worldwide tourist attraction. Nowadays, sixteen columns of the peristalsis of the original temple remain in place, one of which has collapsed after a severse storm at the end of the 19th century. Many of these columns show signs of significant deformations.

This Diploma Thesis has as subject the detection of the deformations of three of the peristasis columns through the estimation of the statistically significant horizontal and rotational movements of their drums. The attempt to estimate the optical refinements (meiosis and entasis) of these columns is also presented.

For this purpose, a geodetic horizontal control network was established around the columns of interest. The network is oriented to the national reference system GGRS '87 and connected to the national height reference system. The coordinates of the network's points were estimated through the adjustment of the measured networks's elements.

In order to create the digital model of the columns, all three of them were scanned using a 3D terrestrial laser scanner. The scanning was performed from the network's points. Following, horizontal cross sections of the columns' drums were applied. In each cross section the elements (centre coordinates and radius) of the best fitting escribed circle were estimated using least square techniques. From these estimates the horizontal displacements and the rotations of every two successive drums for each column were estimated and their statistical significance was tested for confidence level 95%. Statistically significant horizontal displacements ranging from 2.8mm up to 11.4mm and rotations ranging from 1.3grad up to 4.5grad were detected. Finally the refinements (meiosis and the entasis) of each column were estimated.

ΚΕΦΑΛΑΙΟ 1 - ΕΙΣΑΓΩΓΗ

1.1 Σκοπός της Διπλωματικής Εργασίας

Αντικείμενο της παρούσας Διπλωματικής Εργασίας αποτελεί η γεωμετρική τεκμηρίωση τριών κιόνων της περίστασης του Ναού του Ολυμπίου Διός με σκοπό την ανίχνευση και τον προσδιορισμό του μεγέθους των παραμορφώσεων τους, καθώς και την εκτίμηση των οπτικών τους εκλεπτύνσεων. Για το σκοπό αυτό πραγματοποιήθηκε η σάρωση των κιόνων με χρήση επίγειου 3D laser σαρωτή από τις κορυφές γεωδαιτικού δικτύου ελέγχου που ιδρύθηκε περιμετρικά των κιόνων. Οι κίονες αυτοί υποδείχθηκαν από την Εφορία Αρχαιοτήτων και είναι οι εξής:

Ο προτελευταίος δυτικός κίονας του ναού (Κ1) και, από τους κίονες της νοτιοανατολικής γωνίας της περίστασης, το δυτικότερο ζεύγος κιόνων (Κ2, Κ3), συνδεόμενο με επιστύλιο. Και οι τρεις κίονες ανήκουν στη δεύτερη σειρά των κιόνων της περίστασης.

Σκοπός της Διπλωματικής Εργασίας είναι:

- 1. Η ανίχνευση και ο προσδιορισμός του μεγέθους των στατιστικά σημαντικών μετακινήσεων και στροφών μεταξύ των σπονδύλων των τριών κιόνων, ώστε τα στοιχεία αυτά να αξιοποιηθούν σε μελλοντικές αναστηλωτικές εργασίες.
- 2. Η εκτίμηση των οπτικών εκλεπτύνσεων, μείωση και ένταση, των κιόνων.

Τα στάδια τα οποία ακολουθήθηκαν είναι συνοπτικά τα εξής:

- Ίδρυση γεωδαιτικού δικτύου οριζοντίου ελέγχου, μέτρηση των στοιχείων του, προσανατολισμός του δικτύου στο ΕΓΣΑ '87, εκτίμηση των συντεταγμένων των κορυφών του με τη Μέθοδο των Ελαχίστων Τετραγώνων (Μ.Ε.Τ.).
- Εξάρτηση των κορυφών του δικτύου από το Ελληνικό Σύστημα Αναφοράς
 Υψομέτρων για τον προσδιορισμό των υψομέτρων τους.
- Σάρωση των κιόνων από κάθε κορυφή του δικτύου με χρήση επίγειου τρισδιάστατου laser σαρωτή και δημιουργία του ψηφιακού τους μοντέλου στο λογισμικό Cyclone.
- Υλοποίηση οριζόντιων τομών σε στάθμη που αντιστοιχεί στο μέσον και σε στάθμες κοντά στην άνω και κάτω έδρα των σπονδύλων του κάθε κίονα.
- Προσδιορισμός σε κάθε οριζόντια τομή με τη Μ.Ε.Τ. του βέλτιστου εγγεγραμένου κύκλου που εφάπτεται στα εσώτερα σημεία των ραβδώσεων των σπονδύλων, εκτίμηση των συντεταγμένων του κέντρου του και της ακτίνας του με τις αντίστοιχες αβεβαιότητές τους.
- Εκτίμηση των μετακινήσεων και στροφών μεταξύ των διαδοχικών σπονδύλων κάθε κίονα και στατιστική αξιολόγηση της σημαντικότητάς τους για επίπεδο εμπιστοσύνης 95%, καθώς και προσπάθεια εκτίμησης των οπτικών εκλεπτύνσεων των κιόνων (μείωση και ένταση).

1.2 Δομή της Διπλωματικής Εργασίας

Η παρούσα Διπλωματική Εργασία αποτελείται από εννέα κεφάλαια και επτά παραρτήματα. Ειδικότερα:

Στο **πρώτο κεφάλαιο** περιλαμβάνεται η εισαγωγή, στην οποία αναφέρεται ο σκοπός και η δομή της διπλωματικής εργασίας.

Στο **δεύτερο κεφάλαιο** παρουσιάζεται η περιοχή μελέτης. Γίνεται αναφορά συνολικά στον αρχαιολογικό χώρο, στην ιστορία του Ναού του Ολυμπίου Διός και δίνονται γενικά στοιχεία της αρχιτεκτονικής των αρχαίων ναών.

Το **τρίτο κεφάλαιο** αναφέρεται στο δίκτυο οριζοντίου ελέγχου που εγκαταστάθηκε περιμετρικά των εξεταζόμενων κιόνων. Περιγράφονται η αναγνώριση της περιοχής, η επιλογή και ο τρόπος υλοποίησης των κορυφών του δικτύου, οι έλεγχοι των οργάνων που χρησιμοποιήθηκαν στις μετρήσεις, η διαδικασία και η επεξεργασία των παρατηρήσεων, ο προσανατολισμός του δικτύου στο κρατικό σύστημα αναφοράς (ΕΓΣΑ '87), η συνόρθωση των παρατηρήσεων, η επίλυση του δικτύου και ο στατιστικός έλεγχος των αποτελεσμάτων, καθώς και η εξάρτηση του δικτύου από το κρατικό υψομετρικό σύστημα αναφοράς.

Το **τέταρτο κεφάλαιο** αναφέρεται στη σάρωση των κιόνων για τη δημιουργία του ψηφιακού μοντέλου τους. Σε αυτό περιγράφεται ο εξοπλισμός που χρησιμοποιήθηκε και η διαδικασία της σάρωσης.

Στο πέμπτο κεφάλαιο περιγράφεται η επεξεργασία του νέφους σημείων που προέκυψε από τις σαρώσεις. Αναλύτεται η διαδικασία της συνένωσης των μεμονομένων σαρώσεων σε ένα ενιαίο νέφος σημείων και της αφαίρεσης του θορύβου, η επιλογή των κατάλληλων υψομετρικών σταθμών για την υλοποίηση των οριζόντιων τομών και ο προσδιορισμός σε αυτές των βέλτιστων εγγεγραμένων κύκλων. Τέλος, παρουσιάζονται τα αποτελέσματα που προέκυψαν.

Στο **έκτο κεφάλαιο** παρουσιάζεται η εκτίμηση των οριζόντιων μετακινήσεων και των στροφών μεταξύ των διαδοχικών σπονδύλων για κάθε κίονα.

Στο **έβδομο κεφάλαιο** γινεται προσπάθεια για την εκτίμηση των οπτικών εκλεπτύνσεων των κιόνων, και συγκεκριμένα της μείωσης και της έντασης τους.

Στο **όγδοο κεφάλαιο** παρουσιάζεται η χρονική κατανομή των εργασιών υπαίθρου και γραφείου που πραγματοποιήθηκαν στο πλαίσιο της παρούσας διπλωματικής εργασίας.

Στο **ένατο κεφάλαιο** παρουσιάζονται τα συμπεράσματα που προκύπτουν από τα αποτελέσματα της παρούσας Διπλωματικής Εργασίας και γίνονται οι αντίστοιχες προτάσεις.

Η Διπλωματική Εργασία ολοκληρώνεται με την αντίστοιχη βιβλιογραφία και ιστογραφία που χρησιμοποιήθηκε για την εκπόνησή της.

Τέλος, παρατίθενται τα ακόλουθα παραρτήματα:

Παράρτημα 1 – ΕΞΑΣΦΑΛΙΣΕΙΣ

Παράρτημα 2 – ΠΡΩΤΟΓΕΝΕΙΣ ΜΕΤΡΗΣΕΙΣ ΔΙΚΤΥΟΥ

Παράρτημα 3 – ΕΛΕΓΧΟΣ ΚΥΚΛΙΚΟΥ ΣΦΑΛΜΑΤΟΣ

Παράρτημα 4 – ΣΑΡΩΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΤΑ BAARDA

Παράρτημα 5 – ΟΙ ΠΙΝΑΚΕΣ Vx ΚΑΙ ΥΠΟΛΟΙΠΩΝ

Παράρτημα 6 – ΜΕΤΡΗΣΕΙΣ ΓΕΩΜΕΤΡΙΚΗΣ ΧΩΡΟΣΤΑΘΜΗΣΗΣ

Παράρτημα 7 – ΣΚΑΡΙΦΗΜΑΤΑ ΤΩΝ ΔΙΕΥΘΥΝΣΕΩΝ ΑΝΑΦΟΡΑΣ ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΣΤΡΟΦΩΝ ΤΩΝ ΣΠΟΝΔΥΛΩΝ ΤΩΝ ΚΙΟΝΩΝ κεφαλαίο 2 - περιοχή μελετής

2.1 Γενικά

Στο κεφάλαιο αυτό γίνεται αναφορά στα χαρακτηριστικά στοιχεία της αρχιτεκτονικής των αρχαίων ναών. Στη συνέχεια παρουσιάζονται περιληπτικά, στοιχεία για τον αρχαιολογικό χώρο του Ολυμπιείου και την ιστορία του Ναού του Ολυμπίου Διός.

2.2 Αρχιτεκτονική αρχαίων ελληνικών ναών

Ο ναός στην ελληνική αρχαιότητα θεωρούνταν η κατοικία του θεού και ο ρόλος του ήταν αυτός της στέγασης του λατρευτικού αγάλματος μιας ή περισσότερων θεοτήτων. Οι πιστοί δεν συγκεντρώνονταν μέσα στον ναό αλλά στον περιβάλλοντα χώρο του, όπου βρισκόταν και ο βωμός για την προσφορά θυσιών και την άσκηση της λατρείας.

Η βασική αυτή λειτουργική ιδιομορφία του αρχαιοελληνικού ναού επιδρά στην αρχιτεκτονική που τον χαρακτηρίζει, καθώς ο ναός σχεδιαζόταν με βάση το άγαλμα που επρόκειτο να στεγάσει, το οποίο τοποθετούνταν στο βάθος του ναού, πάνω στον διαμήκη άξονα του κτηρίου.

2.2.1 Τύποι αρχαιοελληνικού ναού

Τον πυρήνα του αρχαίου ελληνικού ναού αποτελεί ο **σηκός**, ένας χώρος του ναού με ορθογωνική κάτοψη και είσοδο στην ανατολική στενή πλευρά του ναού. Στον χώρο αυτό τοποθετείται το άγαλμα της λατρευόμενης θεότητας. Συνήθως, οι ναοί περιλαμβάνουν και άλλους χώρους,τον **προθάλαμο**, πριν την είσοδο στον σηκό που ονομάζεται **πρόδομος ή πρόναος** καθώς και έναν αντίστοιχο χώρο στην πίσω πλευρά του σηκού, που όμως δεν επικοινωνεί με αυτόν, και ονομάζεται **οπισθόδομος ή οπισθόναος**. Συχνά, μεταξύ του οπισθόναου και του σηκού (ή στη θέση του οπισθόναου), υπάρχει ένας ακόμα χώρος, ο οποίος επικοινωνεί με τον σηκό, είναι προσβάσιμος μόνο για τους ιερείς και ονομάζεται **άδυτον**. Τα στοιχεία αυτά φαίνονται αναλυτικά στην Εικόνα 2.1 που ακολουθεί.

Ανάλογα με την ύπαρξη ή μη των παραπάνω χώρων ο ναός διακρίνεται σε:

- Μονόχωρος : Περιλαμβάνει μόνο τον σηκό
- **Απλός**: Περιλαμβάνει τον σηκό και τον πρόδομο
- Διπλός: Περιλαμβάνει τον σηκό, τον πρόδομο και τον οπισθόδομο

Εικόνα 2.1: Τα μέρη των αρχαίων ναών. (1)Πρόδομος (2)Σηκός (3)Άδυτον (4)Οπισθόδομος **Picture 2.1**: The parts of a ancient greek temple (1)Prodomos (2) Cella (3)Sanctum (4)Opisthodomos

Στην είσοδο του πρόδομου και του οπισθόδουμου υπάρχουν, συνήθως, κίονες. Αν οι κίονες του προδόμου βρίσκονται μεταξύ των πλευρικών τοίχων του ναού (παραστάδες), ο ναός λέγεται **εν παραστάσι**, αν βρίσκονται μπροστά απο τους πλευρικούς τοίχους, ο ναός λέγεται **πρόστυλος**. Επιπλέον, αν η κιονοστοιχία του πρόστυλου πρόδομου επαναλαμβάνεται και στον οπισθόδομο, τότε ο νεός ονομάζεται **αμφιπρόστυλος**. Στην Εικόνα 2.2 που ακολουθεί παρουσιάζεται αυτή η κατηγοριοποίηση.

Εικόνα 2.2: Κατηγοριοποίηση αρχαίων ναών ανάλογα με τη θέση των κιόνων στις στενές πλευρές. Εν παραστάσι (Αριστερά) - Πρόστυλος (Κέντρο) - Αμφιπρόστυλος (Δεξιά) **Picture 2.2**: Categorization of greek ancient temples according to the location of the columns of the narrow sides.

Temple in antis (Left)-Prostyle temple (Center) - Amphiprostyle temple (Right)

Τέλος, άλλη μια κατηγοριοποίηση των αρχαίων ναών βασίζεται στις σειρές κιόνων που περιβάλλουν συνολικά τον ναό από όλες τις πλευρές, οι οποίες ονομάζονται περίσταση. Όπως φαίνεται και στην Εικόνα 2.3 που ακολουθεί, αν ο ναός περιβάλλεται από μια σειρά κιόνων ονομάζεται περίπτερος, ενώ αν περιβάλλεται από δυο σειρές ονομάζεται δίπτερος. Σε κάποιες περιπτώσεις, ο ναός μπορεί να περιβάλλεται από μονή σειρά κιόνων, η οποία όμως να βρίσκεται στη θέση που θα βρισκόταν η εξωτερική σειρά κιόνων ενός δίπτερου ναού. Σε αυτή την περίπτωση ο ναός ονομάζεται ψευδοδίπτερος. Πτερόν ή πτέρωμα ονομάζεται ο χώρος ανάμεσα στον σηκό και την περίσταση.

Εικόνα 2.3: Κατηγοριοποίηση αρχαίων ναών ανάλογα με τον αριθμό των περιβάλλοντων σειρών κιόνων.

Περίπτερος (Αριστερά) - Δίπτερος (Κέντρο)- Ψευδοδίπτερος (Δεξιά) **Picture 2.3**: Categorization of ancient Greek tempes depending on the number of the surrounding column rows.

Peripteral temple (Left) - Dipteral temple (Center) - Pseudoperipteral temple (Right)

2.2.2 Στοιχεία κάτοψης αρχαιοελληνικού ναού

Το θεμέλιο του ναού ονομάζεται στερεοβάτης, και είναι χτισμένο μέσα στο έδαφος. Πάνω στον στερεοβάτη είναι χτισμένο το **κρηπίδωμα ή κρηπίδα**, το οποίο αποτελείται από τέσσερις στάθμες (αναβαθμούς): την **ευθυντηρία**, τον **α και β αναβαθμό** και τον **στυλοβάτη**, στον οποίο τοποθετείται η βάση των κιόνων. Σε αρχαιότερους ναούς (πριν τον 5° π.Χ. αιώνα) μπορεί να απουσιάζουν οι αναβαθμοί του κρηπιδώματος και ο στυλοβάτης να κατασκευάζεται απ' ευθείας πάνω στον στερεοβάτη. Σε κάποιους ναούς, κυρίως του 4^{ου} και 5^{ου} π.Χ. αιώνα μπορεί να υπάρχουν περισσότεροι αναβαθμοί. Στην Εικόνα 2.4 που ακολουθεί φαίνονται αναλυτικά τα μέρη στα οποία αναφέρεται αυτή η παράγραφος.

Εικόνα 2.4: (1)Κίονας (2)Τοίχος του σηκού (3)Στυλοβάτης (4)Στερεοβάτης (5)Ευθυντήρια (6)Κρηπίδωμα **Picture 2.4**: (1)Column (2)Wall of the cella (3)Stylobate (4)Stereobate (5)Euthyntiria (6)Cripis

2.2.3 Αρχιτεκτονικοί ρυθμοί

Πάνω στον στυλοβάτη πραγματοποιείται η κατασκευή του κίονα, τα στοιχεία του οποίου εξαρτώνται από τον αρχιτεκτονικό ρυθμό στον οποίο ανήκει. Οι κύριοι αρχιτεκτονικοί ρυθμοί στους οποίους βασίστηκε η κατασκευή των αρχαίων ναών είναι τρεις: ο **δωρικός**, ο **ιωνικός** και ο **κορινθιακός**. Η αρχιτεκτονική του Ναού του Ολυμπίου Διός ανήκει στον κορινθιακό ρυθμό. Ακολουθούν τα στοιχεία των κιόνων στους παραπάνω κύριους αρχιτεκτονικούς ρυθμούς.

Α. Δωρικός ρυθμός

Κύριο χαρακτηριστικό των κιόνων του δωρικού ρυθμού είναι η απουσιά βάσης, δηλαδή ο κίονας στηρίζεται απ'ευθείας πάνω στον στυλοβάτη. Το σώμα του κίονα αποτελείται από **σπονδύλους**, συνήθως δεκατρείς. Οι ακμές των ραβδώσεων των σπονδύλων είναι οξείες και όχι επίπεδες όπως στους άλλους δυο ρυθμούς. Το **κιονόκρανο** είναι λιτό και αποτελείται από δυο μέρη, τον **εχίνο** και τον **άβακα**. Ο άβακας είναι το τετραγωνικής κάτοψης ανώτερο σημείο του κιονοκράνου, πάνω στο οποίο στηρίζεται το επιστύλιο.Ο εχίνος βρίσκεται ακριβώς κάτω από τον άβακα και αποτελεί μια ομαλή μετάβαση από τον άβακα στον κυρίως κίονα.

Ακριβώς πάνω από το κιονόκρανο υπάρχει ο **θριγκός** που αποτελείται από τρία μέρη.

α) το **επιστύλιο**: είναι μια ζώνη λίθινων δόμων τοποθετημένων πάνω στο κιονόκρανο και χαρακτηρίζεται από την απουσία διακοσμητικών στοιχείων, με εξαίρεση μια λεπτή ταινία στο ανώτερο μέρος του επιστυλίου, η οποία αποτελεί συνέχεια της διακόσμησης των τριγλύφων που βρίσκονται ακριβώς από πάνω.

β) τη **ζωφόρο**: αποτελείται από μια συνεχή εναλλαγή **τριγλύφων** και **μετοπών**. Τα τρίγλυφα είναι τρία μακρόστενα και κάθετα λαξεύματα στο μάρμαρο ενώ οι μετόπες που βρίσκονται ανάμεσα στα τρίγλυφα είναι ή απλά κομμάτια μαρμάρου ή φέρουν γραπτές ή ανάγλυφες παραστάσεις.

γ) το **γείσον**: αποτελεί μια λωρίδα που βρίσκεται μεταξύ της ζωφόρου και του αετώματος που βρίσκεται ακριβώς από πάνω και ολοκληρώνει τον ναό.

Στην εικόνα 2.5 που ακολουθεί παρουσιάζονται τα στοιχεία του κίονα Δωρικού ρυθμού.

Εικόνα 2.5: Στοιχεία κίονα Δωρικού ρυθμού **Picture 2.5**: Parts of a Doric order Greek ancient temple

Β. <u>Ιωνικός ρυθμός</u>

Στον Ιωνικό ρυθμό, ο κίονας στηρίζεται πάνω σε **βάση**, η οποία αποτελείται από τρία μέρη: μια τετράγωνη πλάκα στο κάτω μέρος που ονομάζεται **πλίνθος**, το κοίλο μέρος που λέγεται **τροχίλος ή σκοτία**, και το κυρτό, που λέγεται **τόρος ή κυμάτιο**.

Οι κίονες του ιωνικού ρυθμού είναι λεπτότεροι από αυτούς του δωρικού. Οι ακμές μεταξύ των ραβδώσεων δεν είναι οξείες αλλά επίπεδες. Συνήθως, το πλήθος των ραβδώσεων των σπονδύλων είναι 24.

Το **κιονόκρανο** στον ιωνικό ρυθμό είναι λεπτεπίλεπτο, στηρίζεται πάνω σε λεπτή πλάκα μεταξύ του κίονα και του κιονοκράνου που ονομάζεται **αστράγαλος**. Έχει πολλά και πεπλατυσμένα διακοσμητικά ανάγλυφα και καταλήγει στους **κοχλίες** δεξιά και αριστερά, πάνω στους οποίους στηρίζεται ένας λεπτός **άβακας** διακοσμημένος με **κυμάτια**.

Πάνω από το κιονόκρανο βρίσκεται ο **θριγκός**, που αποτελείται από το **επιστύλιο**, τη **ζωφόρο** και το **γείσο**, ενώ πάνω απ' τον θριγκό βρίσκεται το **αέτωμα**.

Στην εικόνα 2.6 που ακολουθεί παρουσιάζονται τα κυριότερα στοιχεία του κίονα Ιωνικού ρυθμού.

Εικόνα 2.6: Στοιχεία ναού Ιωνικού ρυθμού. **Picture 2.6**:Parts of an Ionic order Greek temple.

Γ. <u>Κορινθιακός ρυθμός</u>

Ο Κοριθνιακός ρυθμός αποτελεί τον τελευταίο χρονολογικά ρυθμό της αρχαίας ελληνικής αρχιτεκτονικής, είναι ο πιο διακοσμημένος από όλους και μπορεί να θεωρηθεί ως μετεξέλιξη του ιωνικού.

Όσον αφορά τα στοιχεία του κίονα, ο κορινθιακός ρυθμός ταυτίζεται με τον ιωνικό. Η διαφοροποίηση του βρίσκεται στο κιονόκρανο, το οποίο αποτελείται από **υψηλό** εχίνο (κάλαθος) και τον άβακα. Ο κάλαθος περιβάλλεται από μια ή δυο σειρές φύλλων ακάνθου και έλικες που φυτρώνουν μέσα από αυτά. Τέσσερις από αυτούς τους έλικες, οι υψηλότεροι, καταλήγουν και ταυτόχρονα υποστηρίζουν τις τέσσερις γωνίες του άβακα. Στις Εικόνες 2.7 και 2.8 που ακολουθούν φαίνονται τα στοιχεία ενός κιονόκρανου κορινθιακού ρυθμού.

Εικόνα 2.7: Η διακόσμηση ενός κιονοκράνου Κορινθιακού ρυθμού. **Picture 2.7**: The decoration of a Corinthian order capital.

Εικόνα 2.8: Κιονόκρανο Κορινθιακού ρυθμού από τον Ναό του Ολυμπίου Διός. **Picture 2.8**: Corinthian order capital of the temple of Olympian Zeus.

Σύμφωνα με τον ρωμαίο συγγραφέα, αρχιτέκτονα και μηχανικό Βιτρούβιο, εμπνευστής του κορινθιακού ρυθμού είναι ο γλύπτης Καλλίμαχος (τέλος 5^{ου} αιώνα π.Χ.), ο οποίος τον εμπνεύστηκε από ένα καλάθι που βρισκόταν στον τάφο ενός κοριτσιού στην Κόρινθο. Το καλάθι στο οποίο ήταν τοποθετημένα τα παιχνίδια της σκεπαζόταν από μια τετράγωνη πλάκα, ενώ γύρω από το καλάθι είχαν φυτρώσει άκανθοι ακολουθώντας το σχήμα του.

2.2.4 Οπτικές εκλεπτύνσεις των αρχαίων ναών

Βασικό στοιχείο στην αρχιτεκτονική των αρχαίων ναών αποτελούν οι οπτικές εκλεπτύνσεις τους. Πρόκειται για μικρές αποκλίσεις από την κατακόρυφο, την οριζόντια και την κάθετο ευθεία, που παρατηρούνται στα αρχαία ελληνικά κτήρια, με σκοπό την καλύτερη αισθητική παρουσίασή τους.

Σημαντική εκλέπτυνση αποτελεί η κατασκευαστική κυρτότητα **της κρηπίδας** του ναού (από την ευθυντήρια μέχρι το στυλοβάτη), η οποία διορθώνει την εντύπωση της καμπύλωσης του με τα κοίλα στραμένα προς τα πάνω η οποία θα δημιουργούνταν αν η κρηπίδα ήταν οριζόντια.

Η κρυπίδα παρουσιάζει **εγκάρσια και διαμήκη κλίση** προς τα έξω. Η εκγάρσια κλίση εξασφαλίζει την απορροή των υδάτων ενώ η διαμήκης κλίση διορθώνει την δυσμενή οπτική αίσθηση της καμπύλωσης της κρηπίδας. Οι εκλεπτύνσεις της κρηπίδας μεταφέρονται και στους κίονες της περίστασης, επιβάλλοντας και καθορίζοντας το μέγεθος της κλίσης τους ως προς την κατακόρυφο προς το εσωτερικό του ναού.

Επιπλέον, ελαφρά κλίση προς τον σηκό παρουσιάζουν και το επιστύλιο με τη ζωφόρο, που ακολουθούν και την καμπυλότητα του στυλοβάτη της κρηπίδας, με σκοπό να αρθεί η εντύπωση χαλάρωσης που θα προκαλούνταν από τις οριζόντιες γραμμές του κτηρίου.

Μια ακόμα βασική εκλέπτυνση του κίονα είναι η μείωση, δηλαδή η ελλάτωση της διαμέτρου των σπονδύλων καθώς αυξάνει το ύψος του. Το μέγεθός της είναι συνάρτηση του ύψους του κίονα και της διαμέτρου της κάτω έδρας του πρώτου σπονδύλου. Η εκλπέπτυνση αυτή δίνει την αίσθηση της αυξημένης ευστάθιας.

Τέλος, η **ένταση** του κίονα αφορά τον ρυθμό μείωσης της διαμέτρου με την αύξηση του ύψους, ο οποίος δεν είναι γραμμικός. Αντίθετα μειώνεται με μικρότερο ρυθμό μέχρι περίπου τα 2/5 του ύψους του κίονα, όπου παρατηρείται και η μεγαλύτερη έξαρση του σπονδύλου στις οριζόντιες διαστάσεις, και με μεγαλύτερο ρυθμό από αυτό το ύψος μέχρι τον τελευταίο σπόνδυλο. Αυτό σημαίνει ότι κάθε σπόνδυλος, εκτός της βάσης του πρώτου και της κορυφής του τελευταίου έχουν μεγαλύτερη διάμετρο από ότι θα είχαν αν δεν υπήρχε ένταση και η μείωση ήταν γραμμική. Έτσι τελικά, ο κίονας παρουσιάζει βαρελοειδή μορφή.

2.3 Ο αρχαιολογικός χώρος του Ολυμπιείου

Το Ολυμπιείο, όπως φαίνεται στην Εικόνα 2.9 που ακολουθεί βρίσκεται στο κέντρο της Αθήνας, νοτιοδυτικά του Εθνικού Κήπου και του Ζαππείου Μεγάρου. Περιβάλλεται από τις λεωφόρους Συγγρού και Βασιλίσσης Όλγας και από τις οδούς Αρδηττού και Αθανασίου Διάκου.

Εικόνα 2.9: Η θέση του αρχαιολογικού χώρου σε σχέση με την ευρύτερη περιχή των Αθηνών. **Picture 2.9**: The archaeological site of Olympieion with respect to the wider area of the city of Athens.

Ο χώρος του Ολυμπιείου αποτελεί περιφραγμένο αρχαιολογικό χώρο που περιλαμβάνει τον Ναό του Ολυμπίου Διός, Νότια του ναού εντοπίζονται ερείπια ρωμαικών λουτρών και οικιών των κλασσικών χρόνων, αλλά και ότι έχει απομείνει από άλλους μικρότερους ναούς ή κτίσματα, όπως ο περίπτερος δωρικός ναός του Δελφινίου Απόλλωνος (500 π.Χ.), το επί Δελφινίω Δικαστήριο (500 π.Χ.), ο ναός του Πανελληνίου Διός (131-132 μ.Χ.) και ο μικρός δίπτερος ναός της Ρέας και του Κρόνου (150 μ.Χ.).

Στη βόρεια πλευρά του ναού υπάρχουν ερείπια ρωμαϊκού βαλανείου (130 μ.Χ), το οποίο αποτελούσε δημόσιο λουτρό που χρησιμοποιούσαν οι αθλητές μετά την εκγύμνασή τους. Τέλος, έξω από τον περιφραγμένο αρχαιολογικό χώρο, στα βορειοδυτικά επί της Λεωφόρου Αμαλίας βρίσκετα η Πύλη του Αδριανού (131 μ.Χ.). Στην Εικόνα 2.10 που ακολουθεί φαίνεται αναλυτικά η θέση όλων αυτών των κτισμάτων.

Εικόνα 2.10: Αναπαράσταση των κτισμάτων που βρίσκονταν στον χώρο του Ολυμπιείου. (1)Ρωμαϊκό Βαλανείο (2)Η πύλη του Αδριανού (3)Ο ναός του Ολυμπίου Διός (4)Ο ναός του Δελφινίου Απόλλωνος

(5)Το επι Δελφινίω Δικαστήριο (6)Ο ναός του Κρόνου και της Ρέας (7)Ο ναός του Πανελληνίου Διός Picture 2.10: Representation of the buildings that situated inside the Olympieion site
 (1)Roman public bath (2)Arch of Hadrian (3)Temple of the Olympian Zeus (4)Temple of Apollo Delphinium

(5)Delphinium Court (6)Temple of Saturn and Rea (7)Temple of Panhellenic Zeus

2.4 Ο ναός του Ολυμπίου Διός

Η κατασκευή του ναού του Ολυμπίου Διός ξεκίνησε το 515 π.Χ. από τον Πεισίστρατο τον Νεότερο. Τα αρχικά κατασκευαστικά σχέδια προέβλεπαν ο ναός να είναι δωρικού ρυθμού, πώρινος, με διαστάσεις στυλοβάτη 41μ Χ 108μ, οκτάστυλος με διπλή σειρά κιόνων στις στενές πλευρές και εικοσιένα κίονες στις μακρές σε μονή σειρά. Η κατασκευή έφτασε ως το κρηπίδωμα, με την κατάρευση όμως της τυραννίας και την ίδρυση της δημοκρατίας η οικοδόμηση σταμάτησε, μιας και ο ναός θεωρήθηκε σύμβολο της τυραννίας.

Ο ναός παρέμεινε ημιτελής, μέχρι το 174 π.Χ. όταν ο βασιλέας της Συρίας Αντίοχος ο Δ' ο Επιφανής, με αρχιτέκτονα τον Ρωμαίο Κοσσούτιο αποφάσισε να συνεχίσει την

κατασκευή του. Το αρχικό σχέδιο τροποποιήθηκε έτσι ώστε ο ναός να είναι κορινθιακού ρυθμού, μαρμάρινος, με τρεις σειρές οκτώ κιόνων στις στενές πλευρές της περίστασης, ενώ στις μακρές θα είχε δυο σειρές είκοσι κιόνων. Οι εργασίες όμως σταμάτησαν ξανά με τον θάνατο του Αντίοχου το 164 π.Χ.

Το 86 π.Χ. με την άλωση της Αθήνας από τους Ρωμαίους, ο στρατηγός Σύλλας πήρε στη Ρώμη δύο κίονες από τον μισοτελειωμένο ναό για να κοσμήσει τον ναό του Δία στο Καπιτώλιο. Μια τρίτη προσπάθεια για την κατασκευή του ναού έγινε ανεπιτυχώς από τον Οκταβιανό Αύγουστο λίγα χρόνια μετά.

Ο ναός τελικά αποπερατώθηκε το 124-125 μ.Χ από τον αυτοκράτορα Αδριανό ο οποίος σεβάστηκε πλήρως το σχέδιο του Κοσσούτιου, με δυο σειρές των είκοσι κιόνων στις μακρές πλευρές της περίστασης και τρεις σειρές των οκτώ κιόνων στις στενές. Ο ναός είχε μήκος 110.35 μέτρα και πλάτος 43.68 μέτρα και δέσποζε στο μέσο ενός μεγάλου ορθογώνιου περιβόλου με πρόπυλο στα βόρεια. Μέσα στον συκό του ναού στεγάζονταν δυο υπερμεγέθη χρυσελεφάντινα αγάλματα, ένα του Δία και ένα του αυτοκράτορα Αδριανού.

Η παρακμή του ναού άρχισε το 267 μ.Χ με την εισβολή των Ερούλων στην Αθήνα: ο ναός ερημώθηκε και υπέστη σοβαρές ζημιές. Από τον 10° ως τον 12° αιώνα μ.Χ, άκμασε στην περιοχή μια βυζαντινή συνοικία. Κατά την περίοδο αυτή ο ναός αποτέλεσε λατομείο καθώς το μάρμαρό του χρησιμοποιήθηκε για την παρασκευή ασβέστη. Τον Απρίλη του 1759, κατά τη διάρκεια της τουρκοκρατίας, ο τούρκος διοικητής της Αθήνας ανατίναξε έναν ακόμα κίονα για να παρασκευάσει ασβέστη για το τζαμί που κατασκεύαζε νοτιοανατολικά του ναού. Σήμερα, από τους 104 κίονες που είχε αρχικά ο ναός έχουν διασωθεί οι 16, ο ένας εκ των οποίων κατέρρευσε κατά τη διάρκεια πολύ ισχυρής καταιγίδας το 1852 και βρίσκεται ακόμα πεσμένος μέσα στον αρχαιολογικό χώρο.

κεφαλαίο 3 - γεωδαιτικό δικτύο οριζοντίου ελεγχού

3.1 Γενικά

Το κεφάλαιο αυτό αναφέρεται στο γεωδαιτικό δίκτυο οριζοντίου ελέγχου που ιδρύθηκε στον χώρο του μνημείου. Από τις κορυφές του δικτύου πραγματοποιήθηκε η σάρωση των κιόνων με σκοπό τον προσδιορισμό των παραμορφώσεων και την εκτίμηση των εκλεπτύνσεων τους.

Αρχικά, παρουσιάζονται οι τρεις κίονες των οποίων τις παραμορφώσεις μελετά η παρούσα Διπλωματική Εργασία. Στη συνέχεια, περιγράφεται η διαδικασία της αναγνώρισης της περιοχής, κατά την οποία επιλέγονται οι θέσεις των κορυφών του δικτύου. Αναλύονται οι λόγοι για τους οποίους είναι απαραίτητο ένα γεωδαιτικό δίκτυο, τα κριτήρια με βάση τα οποία επιλέγονται οι θέσεις των κορυφών του, καθώς και η αναγκαιότητα προσανατολισμού του δικτύου στο ΕΓΣΑ '87.

Στη συνέχεια, γίνεται αναφορά στον εξοπλισμό που χρησιμοποιήθηκε για τις μετρήσεις των στοιχείων του δικτύου, στους ελέγχους των οργάνων που χρησιμοποιήθηκαν, στη διαδικασία των μετρήσεων καθώς και στη διαδικασία προσανατολισμού του δικτύου.

Ακολουθεί η διαδικασία της συνόρθωσης των παρατηρήσεων με τη Μέθοδο των Ελαχίστων Τετραγώνων (Μ.Ε.Τ.) και της επίλυσης του δικτύου, καθώς και της στατιστικής αξιολόγησης των αποτελεσμάτων της επίλυσης.

Τέλος, περιγράφεται η διαδικασία της υψομετρικής εξάρτησης του δικτύου από το Κρατικό Υψομετρικό Σύστημα Αναφοράς.

3.2 Αναγνώριση περιοχής

3.2.1 Οι κίονες ενδιαφέροντος

Οι τρεις κίονες των οποίων θα ανιχνευθούν οι παραμορφώσεις, κωδικοποιήθηκαν ως K1, K2 και K3. Ανήκουν στη δεύτερη σειρά κιόνων της νότιας μακράς πλευράς της περίστασης. Ο κίονας K1 είναι ο ανατολικότερος από τους δύο ιστάμενους κίονες στο δυτικό άκρο της νότιας πλευράς της περίστασης. Είναι ελεύθερος (δεν διαθέτει επιστύλιο) και αποτελείται από 16 σπονδύλους. Στην Εικόνα 3.1 που ακολουθεί φαίνεται ο κίονας K1.

Εικόνα 3.1: Ο Κίονας Κ1. **Picture 3.1**: Column K1.

Οι κίονες K2 και K3 είναι οι δυτικότεροι του ανατολικού άκρου της περίστασης, συνδέονται με επιστύλιο και αποτελούνται από 14 σπονδύλους ο καθένας. Στην Εικόνα 3.2 που ακολουθεί φαίνονται οι κίονες K2 και K3.

Εικόνα 3.2: Οι Κίονες Κ2 και Κ3. **Picture 3.2**: Columns K2 and K3.

Στις επόμενες εικόνες (Εικόνα 3.3, Εικόνα 3.4) φαίνεται πανοραμικά η θέση των κιόνων σε κάτοψη και από τη νότια όψη του ναού.

Εικόνα 3.3: Η θέση των κιόνων K1, K2 και K3 σε κάτοψη του ναού. **Picture 3.3**: The situation of columns K1, K2 and K3 temple's floor plan view.

Εικόνα 3.4: Η θέση των κιόνων K1, K2 και K3 από τη νότια όψη του ναού. **Picture 3.4**: Columns K1,K2 and K3 as seen from the south.

3.2.2 Επιλογή των κορυφών του δικτύου

Το γεωδαιτικό δίκτυο οριζοντίου ελέγχου είναι απαραίτητο προκειμένου να γίνει η γεωαναφορά και η συνένωση των νεφών των σημείων που προκύπτουν από τις σαρώσεις των κιόνων σε ένα ενιαίο νέφος. Αποτελείται από ένα σύνολο κορυφών, οι συντεταγμένες των οποίων εκτιμώνται με ακρίβεια της τάξης του χιλιοστού. Από κάθε κορυφή του δικτύου πραγματοποιούνται σαρώσεις με τον τρισδιάστατο επίγειο laser σαρωτή σε κάθε ένα από τους κίονες K1, K2 και K3. Σε κάθε σάρωση δημιουργείται το αντίστοιχο νέφος σημείων. Με βάση τις συντεταγμένες των κορυφών του δικτύου όλα τα νέφη γεωαναφέρονται αυτόματα ως προς το σύστημα αναφοράς του δικτύου και στη συνέχεια συνενώνονται σε ένα ενιαίο νέφος, για κάθε ένα κίονα.

Για την επιλογή της θέσης των κορυφών του γεωδαιτικού δικτύου πραγματοποιήθηκε αναγνώριση στην περιοχή του ναού. Ως κριτήρια για την επιλογή των θέσεων των κορυφών του δικτύου τέθηκαν:

- Η αμοιβαία ορατότητα μεταξύ όσο το δυνατόν περισσότερων κορυφών
- Να εξασφαλίζεται η σάρωση των κιόνων, περιμετρικά, με επικάλυψη της τάξης του 30%, μεταξύ των σαρώσεων για κάθε κίονα, ώστε οι κίονες να σαρωθούν πλήρως και να μην υπάρχουν κενά στο ψηφιακό μοντέλο.
- Η μονιμότητα των κορυφών, χωρίς σημαντική παρέμβαση στον χώρο του μνημείου.

Λαμβάνοντας υπ'όψη τα παραπάνω κριτήρια, αποφασίστηκε να ιδρυθεί δίκτυο οκτώ συνολικά κορυφών, περιμετρικά των τριών κιόνων, το οποίο θα προσανατολισθεί στο ΕΓΣΑ '87, ώστε να είναι δυνατή η συσχέτιση των πιθανών μετακινήσεων των σπονδύλων με σεισμικές διεγέρσεις στο λεκανοπέδιο Αττικής ή με ανθρωπογενείς παράγοντες. Στην Εικόνα 3.5 που ακολουθεί φαίνεται η περιοχή του ναού, οι θέσεις των κορυφών και η μορφή του γεωδαιτικού δικτύου ελέγχου.

Εικόνα 3.5: Το γεωδαιτικό δίκτυο που εγκαταστάθηκε περιμετρικά των κιόνων K1, K2 και K3. **Picture 3.5**: The established geodetic network for the scaning of the columns K1, K2 and K3.

Για την υλοποίηση των κορυφών του δικτύου χρησιμοποιήθηκαν μπετόκαρφα, με ενσωματωμένα παξιμάδια και ροδέλες, έτσι ώστε να είναι δυνατή η τοποθέτηση της σταδίας για τον προσδιορισμό του υψομέτρου τους με τη μέθοδο της Γεωμετρικής Χωροστάθμησης (εικόνα 3.6).

Εικόνα 3.6: Σήμανση των κορυφών του δικτύου. **Picture 3.6**: Marking of the geodetic network points.

Οι κορυφές του δικτύου, εξασφαλίστηκαν μετρώντας τις αποστάσεις τους από τρία κοντινά σταθερά σημεία. Στο Παράρτημα Ι παρατίθενται τα σκαριφήματα των εξασφαλίσεων καθώς και φωτογραφίες, στις οποίες φαίνονται μέσα σε κύκλο τόσο το σημείο της κορυφής όσο και τα σημεία από τα οποία έγινε η εξασφάλιση.

3.3 Εξοπλισμός

Για την πραγματοποίηση των μετρήσεων χρησιμοποιήθηκε ο παρακάτω εξοπλισμός:

- Ολοκληρωμένος Γεωδαιτικός Σταθμός Topcon GPT 3105N:
 - Ακρίβεια μέτρησης απόστασης: ±3mm ±2ppm (χωρίς πρίσμα),
 ± 2mm ±2ppm (με πρίσμα)
 - Ακρίβεια γωνιακής ανάγνωσης : ±15cc
- Τρία τρικόχλια με οπτική κέντρωση
- Δύο βάσεις αντάπτορες για τους στόχους (ανακλαστήρες)
- Δύο ανακλαστήρες
- Τρείς τρίποδες αλουμινίου
- Μετροταινία
- Ο δέκτης δορυφορικού εντοπισμού SmartStation 4700 της εταιρείας Leica
- Ψηφιακός χωροβάτης Sprinter της εταιρείας Leica, ακρίβειας ±1.5mm/√km και ακρίβειας ανάγνωσης στη σταδία ±0.5mm
- Κωδικοποιημένη σταδία αλουμινίου
- Χωροσταθμική βάση-«χελώνα» βαρέως τύπου

3.4 Έλεγχοι

Πριν την έναρξη των μετρήσεων πραγματοποιήθηκαν οι ακόλουθοι έλεγχοι:

Αρχικά, έγινε έλεγχος της ορθότητας της οπτικής κέντρωσης των τρικοχλίων των στόχων και του οργάνου.

Στη συνέχεια πραγματοποιήθηκε έλεγχος για την ύπαρξη ή μη κυκλικού σφάλματος στον γεωδαιτικό σταθμό. Ο έλεγχος αυτός έγινε στα βάθρα που βρίσκονται στη σήραγγα ελέγχου στο υπόγειο του κτιρίου Λαμπαδαρίου της Σ.Α.Τ.Μ.-Μ.Γ., των οποίων οι μεταξύ τους αποστάσεις είναι προσδιορισμένες με ακρίβεια της τάξης του ±0.01mm.

Για τις μετρήσεις χρησιμοποιήθηκαν δύο βαριές βάσεις εξαναγκασμένης κέντρωσης KERN, ώστε να εξασφαλίζεται η κέντρωση του οργάνου και του ανακλαστήρα με ακρίβεια καλύτερη του ±1mm. Το όργανο τοποθετήθηκε στο βάθρο B1 και έγιναν μετρήσεις κατακόρυφων γωνιών και κεκλιμένων αποστάσεων σε μια πλήρη περίοδο προς τα βάθρα B5–B6-B7-B8-B9-B10-B11-B12-B13-B14-B15-B16-B17-B18-B19-B20-B21-B22-B23-B24-B25-B26. Τα αποτελέσματα των μετρήσεων καθώς και οι αποκλίσεις Δs, ως προς τις ονομαστικές αποστάσεις που προέκυψαν, δίνονται σε πίνακα στο παράρτημα II.
Ελέγθηκε αν οι αποκλίσεις βρίσκονται εντός του θορύβου των μετρήσεων για επίπεδο εμπιστοσύνης 95%. Η αβεβαιότητα σΔs της απόκλισης υπολογίζεται από τη σχέση 3.1:

$$\sigma_{\Delta s} = \pm \sqrt{\sigma_{\gamma \nu \omega \sigma \tau \acute{o}}^2 + \sigma_{\mu \epsilon \tau \rho \eta \mu \acute{e} \nu o}^2}$$
(3.1)

όπου $\sigma_{\Delta s} \approx \pm 2mm$, με $\sigma_{\gamma \nu \omega \sigma \tau \delta} = \pm 0.01mm$ και $\sigma_{\mu \epsilon \tau \rho \eta \mu \epsilon \nu \sigma} = \pm 2mm$.

Για να θεωρηθεί ότι οι αποκλίσεις που προέκυψαν ανήκουν μέσα στον θόρυβο των μετρήσεων πρέπει να ικανοποιούν τη σχέση $|\Delta s| \le z_{95} * |\sigma_{\Delta s}| => |\Delta s| \le 1.96 * |\sigma_{\Delta s}| => |\Delta s| \le 4$ mm.

Η μεγαλύτερη τιμή των αποκλίσεων είναι |Δs_{max}| = 4mm. Επομένως, μπορεί να θεωρηθεί ότι όλες οι αποκλίσεις βρίσκονται μέσα στον θόρυβο των μετρήσεων για επίπεδο εμπιστοσύνης 95% και συνεπώς, δεν υπάρχει κυκλικό σφάλμα στο όργανο με την αντίστοιχη πιθανότητα.

3.5 Μέτρηση των στοιχείων του δικτύου

Πραγματοποιήθηκαν μετρήσεις οριζοντίων και ζενίθιων γωνιών, και κεκλιμένων αποστάσεων, σε δυο πλήρεις περιόδους μεταξύ των κορυφών του δικτύου.

Τα πρωτογενή στοιχεία των μετρήσεων παρατίθενται στο Παράρτημα 2. Στον Πίνακα 3.1 που ακολουθεί παρουσιάζονται οι τελικές τιμές των οριζόντιων γωνιών και των οριζόντιων αποστάσεων μεταξύ των κορυφών του δικτύου.

ΚΕΦΑΛΑΙΟ 3 – ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΟΡΙΖΟΝΤΙΟΥ ΕΛΕΓΧΟΥ

	Σ2-Σ1-Σ3	392.5491	Σ6-Σ5-Σ2	38.9850
	Σ2-Σ1-Σ4	2.6715	Σ6-Σ5-Σ3	75.0546
	Σ2-Σ1-Σ5	32.8276	Σ6-Σ5-Σ4	110.4491
	Σ2-Σ1-Σ6	43.7810	Σ6-Σ5-Σ7	391.3382
	Σ2-Σ1-Σ7	66.5051	Σ6-Σ5-Σ8	395.9888
	Σ2-Σ1-Σ8	126.2845	Σ7-Σ6-Σ1	52.5880
	Σ3-Σ2-Σ1	215.4783	Σ7-Σ6-Σ2	91.0953
	Σ3-Σ2-Σ4	19.7874	Σ7-Σ6-Σ3	13.2289
	Σ3-Σ2-Σ5	66.7074	Σ7-Σ6-Σ4	168.6028
	Σ3-Σ2-Σ6	97.7608	Σ7-Σ6-Σ5	221.0439
	Σ3-Σ2-Σ7	132.8781	Σ7-Σ6-Σ8	14.9016
υριζοντιες Ι ωνιες (grad)	Σ3-Σ2-Σ8	178.7695	Σ8-Σ7-Σ1	51.8189
(grad)	Σ4-Σ3-Σ1	164.9449	Σ8-Σ7-Σ2	102.7222
	Σ4-Σ3-Σ2	156.9233	Σ8-Σ7-Σ3	131.5037
	Σ4-Σ3-Σ5	59.6924	Σ8-Σ7-Σ4	153.8245
	Σ4-Σ3-Σ6	99.8148	Σ8-Σ7-Σ5	188.8941
	Σ4-Σ3-Σ7	118.5796	Σ8-Σ7-Σ6	176.5124
	Σ4-Σ3-Σ8	143.2635	Σ1-Σ8-Σ2	37.0179
	Σ5-Σ4-Σ1	79.9727	Σ1-Σ8-Σ3	44.5935
	Σ5-Σ4-Σ2	81.6096	Σ1-Σ8-Σ4	57.2589
	Σ5-Σ4-Σ3	104.9062	Σ1-Σ8-Σ5	81.9530
	Σ5-Σ4-Σ6	37.0991	Σ1-Σ8-Σ6	79.8244
	Σ5-Σ4-Σ8	60.8383	Σ1-Σ8-Σ7	88.4040
	Σ6-Σ5-Σ1	20.5949		
	Σ1-Σ2	23.352	Σ3-Σ5	35.046
	Σ1-Σ3	44.741	Σ3-Σ6	33.336
	Σ1-Σ4	31.324	Σ3-Σ7	43.234
	Σ1-Σ5	59.062	Σ3-Σ8	59.901
	Σ1-Σ6	39.490	Σ4-Σ5	28.339
	Σ1-Σ7	31.365	Σ4-Σ6	38.103
Οριζόντιες	Σ1-Σ8	23.186	Σ4-Σ7	51.716
αποστάσεις (m)	Σ2-Σ3	21.719	Σ4-Σ8	73.000
	Σ2-Σ4	38.002	Σ5-Σ6	21.257
	Σ2-Σ5	40.419	Σ5-Σ7	35.685
	Σ2-Σ6	26.066	Σ5-Σ8	61.194
	Σ2-Σ7	28.165	Σ6-Σ7	14.905
	Σ2-Σ8	38.954	Σ6-Σ8	40.002
	Σ3-Σ4	18.551	Σ7-Σ8	25.736

Πίνακας 3.1: Οι τελικές τιμές των οριζόντιων γωνιών και αποστάσεων μεταξύ των κορυφών του δικτύου. Table 3.1: The values of the horizontal angles and distances between the network's points.

3.6 Προσανατολισμός του δικτύου

Το δίκτυο προσανατολίστηκε ως προς το κρατικό σύστημα αναφοράς ΕΓΣΑ '87. Ο προσανατολισμός έγινε με δορυφορικό εντοπισμό με τη μέθοδο RTK (Real Time Kinematic) στις κορυφές Σ1 και Σ5 του δικτύου, με ακρίβεια εκατοστού. Για τις μετρήσεις χρησιμοποιήθηκε ο δέκτης SmartStation 4700 της εταιρίας Leica. Τα αποτελέσματα δίνονται στον επόμενο πίνακα (Πίνακας 3.2).

Κορυφή	x(m)	σ _x (m)	y(m)	σ _y (m)
Σ1	476388.486	±0.01	4202168.349	±0.01
Σ5	476436.264	±0.01	4202133.682	±0.01

Πίνακας 3.2: Οι συντεταγμένες των κορυφών Σ1 και Σ5 του δικτύου στο ΕΓΣΑ '87 με τις αβεβαιότητές τους.

Table 3.2: GGRS '87 coordinates of the geodetic control network's points $\Sigma 1$ and $\Sigma 5$ together with theirstandard deviations.

3.7 Συνόρθωση παρατηρήσεων - Επίλυση δικτύου οριζοντίου ελέγχου

Η συνόρθωση των παρατηρήσεων και η επίλυση του δικτύου έγινε με τη Μ.Ε.Τ., με τη μέθοδο των εμμέσων παρατηρήσεων, με τις ελάχιστες εξωτερικές δεσμεύσεις

Ως σταθερή κορυφή επιλέχθηκε η Σ1, με συντατεγμένες x=476388.486m και y=4202168.349m, και ως ημισταθερή κορυφή η Σ5 (a_{Σ1Σ5}=139.9601^{grad}). Οι προσωρινές συντεταγμένες των υπόλοιπων κορυφών υπολογίστηκαν με βάση τα θεμελιώδη προβλήματα.

Το πλήθος των παρατηρήσεων είναι n=75, ενώ ο αριθμός των ανεξάρτητων καθοριστικών παραμέτρων είναι m=13. Συνεπώς, ο βαθμός ελευθερίας είναι r=62.

Ως a priori τυπικό σφάλμα σ $_0$ της μονάδας βάρους θεωρήθηκε η μονάδα.

Για την εκτίμηση του πίνακα βαρών Ρ θεωρήθηκαν οι παρακάτω αβεβαιότητες των μετρημένων μεγεθών :

 $σ_{\gamma}$ = ±30^{cc} για τις οριζόντιες γωνίες, και

 $σ_D = ±3mm$ για τις αποστάσεις

Η εκτίμηση της αβεβαιότητας των αποστάσεων έγινε με βάση την αβεβαιότητα που δίνει ο κατασκευαστής του οργάνου συνυπολογίζοντας και την αβεβαιότητα των

ΚΕΦΑΛΑΙΟ 3 – ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΟΡΙΖΟΝΤΙΟΥ ΕΛΕΓΧΟΥ

κεντρώσεων, ενώ των γωνιών εκτιμήθηκε από τα κλεισίματα των τριγώνων του δικτύου, χρησιμοποιώντας τη σχέση του Ferrero

$$\sigma_{\gamma} = \pm \sqrt{\frac{\sum w_i^2}{3 * v}}$$
(3.2).

όπου $\sum w_i^2$ το άθροισμα των τετραγώνων των σφαλμάτων κλεισίματος ικανού αριθμού ν τριγώνων του δικτύου.

Στον επόμενο πίνακα (Πίνακας 3.3) παρουσιάζονται τα στοιχεία του δικτύου, καθώς και τα αποτελέσματα της επίλυσης που προέκυψαν.

n	m	r	σ γ(cc)	σ _D (mm)	σ₀_apriori	Σταθερή Κορυφή	Ημισταθερή Κορυφή
75	13	62	±30	±3	±1	Σ1	Σ5
Προ	οσωρινές συντε	εταγμένες		Διορθώ	σεις προσωρι	νών συντεταγ	γμένων(mm)
Κορυφή	x(m)	y(m)					
Σ1	476388.486	4202168.349		δx2	2.5	δx6	-1.1
Σ2	476411.694	4202165.742		δy2	3.0	δy6	0.2
Σ3	476433.226	4202168.585		δx3	-0.2	δx7	-1.8
Σ4	476449.086	4202158.962		δy3	-7.4	δy7	2.2
Σ5	476436.290	4202133.663		δx4	0.3	δx8	1.2
Σ6	476416.011	4202140.029		δy4	-12.2	δy8	2.6
Σ7	476401.110	4202139.636		δS1-5	0		
Σ8	476376.869	4202148.281					
Βέλτι	στες τιμές συν	τεταγμένων και α	αβεβαιότητα	ές τους			σ ₀ _aposteriori
Κορυφή	x(m)	y(m)	σ _x (mm)	σy(mm)			±1.006
Σ1	476388.486	4202168.349	0	0			
Σ2	476411.696	4202165.739	±0.9	±0.4			
Σ3	476433.226	4202168.578	±1.0	±0.7			
Σ4	476499.086	4202158.950	±1.0	±0.9			
Σ5	476436.290	4202133.663	±0.8	±0.6			
Σ6	476416.010	4202140.031	±0.8	±06			
Σ7	476401.108	4202139.638	±0.8	±0.7			
Σ8	476376.870	4202148.284	±0.5	±0.9			

Πίνακας 3.3: Τα στοιχεία και τα αποτελέσματα της επίλυσης του δικτύου οριζοντίου ελέγχου. **Table 3.3**: The parameters and results of the horizontal control network's adjustment.

Ο πίνακας μεταβλητότητας-συμμεταβλητότητας καθώς και τα υπόλοιπα των παρατηρήσεων μετά τη συνόρθωση παρατίθενται στο Παράρτημα 4.

3.8 Στατιστικοί έλεγχοι

3.8.1 Ολικός έλεγχος αξιοπιστίας – Test χ^2

Ο ολικός έλεγχος χρησιμοποιείται για να ελεγχθεί αν το μαθηματικό και στοχαστικό μοντέλο που επιλέχθηκαν για την συνόρθωση είναι ορθά.

Ελέγχεται αν ισχύει η ανισότητα

$$\frac{r * \sigma_0^2 \text{aposteriori}}{\sigma_0^2 \text{apriori}} < \chi^2_{r,(1-a)}$$
(3.3)

όπου α η τιμή της αθροιστικής συνάρτησης της κατανομής χ^2 .

Με στοιχείο εισόδου τους βαθμούς ελευθερίας r=62 και για επίπεδο εμπιστοσύνης 95%, από τους πίνακες της κατανομής χ² προκύπτει: 62.75 < 81.33

Η ανισότητα επαληθεύεται επομένως ισχύει η υπόθεση ότι το μαθηματικό και στοχαστικό μοντέλο είναι ορθά.

3.8.2 Σάρωση δεδομένων κατά Baarda

Ο συγκεκριμένος έλεγχος χρησιμοποιείται για να ελέγξει την πιθανή ύπαρξη χονδροειδούς ή συστηματικού σφάλματος σε κάθε μια από τις παρατηρήσεις. Κατά αυτόν τον έλεγχο κάθε παρατήρηση θεωρείται ότι είναι η μοναδική με χονδροειδές ή συστηματικό σφάλμα.

Η μηδενική υπόθεση H_0 που ελέγχεται θεωρεί ότι δεν υπάρχει χονδροειδές ή συστηματικό σφάλμα στην παρατήρηση και τα σφάλματα των παρατηρήσεων είναι τυχαία. Για να ισχύει η υπόθεση αυτή και για επίπεδο εμπιστοσύνης 95% πρέπει να ισχύει για κάθε μια από τις παρατηρήσεις η ανισότητα

$$\left|\frac{u_{i}}{\sigma_{u_{i}}}\right| \leq \sqrt{F_{(1,\infty,1-\alpha_{0})}} \tag{3.4},$$

όπου α_0 : το επίπεδο σημαντικότητας του μονοδιάστατου ελέγχου.

Πρέπει επομένως για κάθε παρατήρηση να ισχύει η ανισότητα $\left|\frac{u_i}{\sigma_{u_i}}\right| \leq 3.29.$

Όλες οι παρατηρήσεις επαληθεύουν την παραπάνω ανισότητα, επομένως ισχύει για όλες η μηδενική υπόθεση. Τα αποτελέσματα του ελέγχου δίνονται αναλυτικά στο Παράρτημα 5

ΚΕΦΑΛΑΙΟ 3 – ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΟΡΙΖΟΝΤΙΟΥ ΕΛΕΓΧΟΥ

3.9 Υψομετρική εξάρτηση του δικτύου

Για τον προσδιορισμό του ορθομετρικού υψομέτρου των κορυφών του δικτύου ελέγχου εφαρμόσθηκε η μέθοδος της διπλής γεωμετρικής χωροστάθμησης. Το δίκτυο εξαρτήθηκε από υψομετρική αφετηρία υλοποιημένη στην κρηπίδα του ναού στα πλαίσια προηγούμενης διπλωματικής εργασίας (Παναγιώτης Κουλουμέντας, 2010). Όπως φαίνεται στην εικόνα 3.7 που ακολουθεί, η υψομετρική αφετηρία βρίσκεται στο νοτιοανατολικό άκρο της κρηπίδας του ναού, στη στάθμη της ευθυντηρίας, υλοποιημένη με ορειχάλκινο μπουλόνι. Η χωροσταθμική αφετηρία αυτή στην παρούσα διπλωματική εργασία ονομάστηκε R1 (H_{R1} = 78.781m.)

Εικόνα 3.7: Η θέση της υψομετρικής αφετηρίας R1. **Picture 3.7**: The position of the vertical reference point R1.

Πριν την έναρξη των μετρήσεων έγινε ο έλεγχος της κύριας συνθήκης του χωροβάτη (έλεγχος μέσου-άκρου). Τα αποτελέσματα των μετρήσεων της γεωμετρικής χωροστάθμησης δίνονται αναλυτικά στο Παράρτημα 6.

Η αβεβαιότητα των υψομετρικών διαφορών εκτιμήθηκε από τη σχέση

$$\sigma_{\Delta H} = \pm \sigma_{\alpha} * \sqrt{n} \tag{3.5}$$

όπου:

n: ο μέσος όρος των στάσεων του χωροβάτη σε μετάβαση και επιστροφή, και σ_α: η ακρίβεια ανάγνωσης του χωροβάτη πάνω στη σταδία, σ_α =±0.5mm, σύμφωνα με τον κατασκευαστή.

ΚΕΦΑΛΑΙΟ 3 – ΓΕΩΔΑΙΤΙΚΟ ΔΙΚΤΥΟ ΟΡΙΖΟΝΤΙΟΥ ΕΛΕΓΧΟΥ

Η αβεβαιότητα του υψομέτρου προσδιορίζεται εφαρμόζοντας τον νόμο μετάδοσης σφαλματων στη σχέση

$$H_{i} = H_{i-1} + \Delta H_{i,i-1}$$
(3.6).

Τα υψόμετρα των κορυφών του δικτύου με τις αβεβαιότητές τους φαίνονται στον επόμενο Πίνακα 3.3

Κορυφή	H (m)	σ _H (mm)
Σ1	80.264	±2.0
Σ2	80.363	±2.3
Σ3	80.519	±2.7
Σ4	80.673	±3.0
Σ5	78.534	±0.6
Σ6	78.737	±0.9
Σ7	78.695	±1.2
Σ8	80.430	±1.6

Πίνακας 3.4: Υψόμετρα των κορυφών του δικτύου και οι αβεβαιότητές τους. **Table 3.4**: Heights of the network's points together with their standard deviations.

4.1 Γενικά

Στο κεφάλαιο αυτό περιγράφεται αναλυτικά η διαδικασία που ακολουθήθηκε για την γεωμετρική τεκμηρίωση των κιόνων με τον τρισδιάστατο επίγειο laser σαρωτή. Αρχικά, γίνεται αναφορά στον εξοπλισμό που χρησιμοποιήθηκε ενώ στη συνέχεια περιγράφονται αναλυτικά όλες οι ενέργειες που πρέπει να γίνουν στο πεδίο μέχρι να ολοκληρωθεί η διαδικασία της σάρωσης. Στο τέλος του κεφαλαίου δίνεται ένα εποπτικό διάγραμμα ροής που περιγράφει συνοπτικά την ακολουθία αυτών των ενεργειών.

4.2 Εξοπλισμός

Για τη διαδικασία της σάρωσης χρησιμοποιήθηκε ο εξής εξοπλισμός (όργανο και παρελκόμενα):

• Ο τρισδιάστατος επίγειος laser σαρωτής Scanstation 2 της εταιρίας Leica.

Ο συγκεκριμένος σαρωτής έχει ακρίβεια ±4mm στη μέτρηση απόστασης και ±12" στην μέτρηση οριζόντιων και κατακόρυφων γωνιών. Η ακρίβεια της θέσης (Χ,Υ,Ζ) κάθε σημείου είναι σύμφωνα με τον κατασκευαστή ±6mm. Έχει συνολικό οπτικό πεδίο 360° οριζόντια και 270° κατακόρυφα.

- Ειδικός βαρύς τρίποδας, στον οποίο τοποθετείται ο σαρωτής.
- Ειδικός HDS σφαιρικός στόχος για την αυτοματοποιημένη συνένωση και γεωαναφορά κάθε νέφους σημείων.
- Τρίποδας αλουμινίου και τρικόχλιο με αντάπτορα για την τοποθέτηση του σφαιρικού στόχου.
- Μετροταινία για τη μέτρηση του ύψους σαρωτή και σφαιρικού στόχου
- Φορητός υπολογιστής με εγκατεστημένο το λογισμικό Cyclone για τον έλεγχο του σαρωτή στο πεδίο και την αποθήκευση των σαρώσεων.
- Καλώδιο τροφοδοσίας του σαρωτή και καλώδιο δικτύου για την επικοινωνία του φορητού υπολογιστή με τον σαρωτή.

4.3 Διαδικασία σάρωσης

Η σάρωση των κιόνων πραγματοποιήθηκε από όλες τις κορυφές του γεωδαιτικού δικτύου ελέγχου. Συγκεκριμένα, ο κίονας Κ1 σαρώθηκε από τις κορυφές Σ1,Σ2,Σ6,Σ7,Σ8, ενώ το ζεύγος των κιόνων Κ2,Κ3 σαρώθηκε από τις κορυφές Σ2,Σ3,Σ4,Σ5,Σ6.

Η διαδικασία της σάρωσης περιγράφεται παρακάτω:

Ο σαρωτής κεντρώνεται και οριζοντιώνεται στην επιλεγμένη κορυφή του δικτύου. Ο ειδικός σφαιρικός στόχος κεντρώνεται και οριζοντιώνεται σε άλλη κορυφή του δικτύου, κατά προτίμηση κοντινή στον σαρωτή. Αφού ο σαρωτής ολοκληρώσει τη διαδικασία εκκίνησης, η οποία πραγματοποιείται αυτόματα με τη σύνδεσή του στην τροφοδοσία, συνδέεται με τον φορητό υπολογιστή. Ελέγχεται ψηφιακά μέσω του λογισμικού Cyclone, η οριζοντίωση του σαρωτή και γίνονται οι απαραίτητες διορθώσεις.

Στη συνέχεια, φωτογραφίζεται με την κάμερα του σαρωτή ο περιβάλλων χώρος ώστε να φαίνεται ο σφαιρικός στόχος και το αντικείμενο που θα σαρωθεί. Το άνοιγμα του κλείστρου της κάμερας του σαρωτή μπορεί να ρυθμιστεί ανάλογα με τις συνθήκες φωτισμού της περιοχής ώστε οι φωτογραφίες να είναι ευκρινείς.

Το επόμενο βήμα είναι η σάρωση του σφαιρικού στόχου με σκοπό τον μηδενισμό του σαρωτή για την λήψη των στοιχείων μέτρησης (οριζόντια γωνία, κατακόρυφη γωνία, κεκλιμένο μήκος) κάθε ενός σημείου πάνω στο αντικείμενο. Επειδή οι συντεταγμένες των στάσεων του σαρωτή και του στόχου αναφέρονται στο σύστημα αναφοράς του γεωδαιτικού δικτύου, επιτυγχάνεται η απ' ευθείας συνένωση των νεφών και γεωαναφορά τους στο παραπάνω σύστημα. Αφού ολοκληρωθεί η σάρωση του στόχου επιλέγεται μέσω του λογισμικού το κέντρο του. (Εικόνα 4.1)

Εικόνα 4.1:Αποτέλεσμα της σάρωσης του σφαιρικού στόχου και του καθορισμού του κέντρου του. **Picture 4.1**:Result of the sphere HDS target scanning and the selection of it's centre. Στη συνέχεια, εισάγονται στο λογισμικό οι συντεταγμένες των κορυφών που βρίσκεται ο σαρωτής και ο σφαιρικός στόχος, το είδος του σφαιρικού στόχου, τα ύψη οργάνου και στόχου και η μέθοδος της γεωαναφοράς (Known Backsight). (Εικόνα 4.2)

- Field Setup	
Method	Known Backsight 💌 🗐
Station ID	stash8 🗨
HI	1.510 m 💌
Target ID	< stash1 💌 >
HT	1.444 m 💌
Azimuth	30.067 deg 💌
×	476388.486 m 💌
Y	4202168.349
Z	80.264
Туре	HDS Sphere Target 📃
Search	Pick 💌
Acquire	Calculate Apply

Εικόνα 4.2: Παράδειγμα εισαγωγής στοιχείων σαρωτή και στόχου στο λογισμικό Cyclone. **Picture 4.2**: Example of importing data concerning scanner and target in Cyclone software.

Αφού συμπληρωθούν τα παραπάνω στοιχεία, με την εντολή Acquire ο σαρωτής πραγματοποιεί μετρήσεις στο κέντρο του σφαιρικού στόχου, όπως αυτό υποδείχθηκε, και με την εντολή Calculate υπολογίζει τις αποκλίσεις στην απόσταση, αλλά και οριζοντιογραφικά και υψομετρικά μεταξύ των συντεταγμένων που έχουν εισαχθεί και αυτών που υπολογίστηκαν κατά τη σάρωση. Έτσι, δίνει πληροφορία για την ποιότητα της γεωαναφοράς του νέφους σημείων που θα δημιουργηθεί από τη σάρωση του αντικειμένου στη συνέχεια. Παράδειγμα του υπολογισμού αυτού δίνεται στην Εικόνα 4.3 που ακολουθεί.

Εικόνα 4.3: Παράδειγμα υπολογισμού των αποκλίσεων της γεωαναφοράς. **Picture 4.3**: Example of the georeference deviations calculation.

Εφόσον η τιμή των αποκλίσεων είναι της τάξης των λίγων χιλιοστών, με την εντολή Apply αποθηκεύονται οι συντεταγμένες (οργάνου και στόχου) και χρησιμοποιούνται σε όλα τα νέφη σημείων που θα μετρηθούν από την συγκεκριμένη κορυφή.

Η συγκεκριμένη διαδικασία μπορεί να πραγματοποιηθεί και μετά την ολοκλήρωση της σάρωσης από την κάθε κορυφή, όμως είναι σκόπιμο να πραγματοποιείται στην αρχή της διαδικασίας, ώστε να εντοπίζονται έγκαιρα πιθανά μη ανεκτά σφάλματα θέσης της κορυφής.

Αφού ολοκληρωθεί η διαδικασία της γεωαναφοράς, επιλέγεται μέσω του λογισμικού, στη φωτογραφία η προς σάρωση περιοχή του αντικειμένου. Όπως φαίνεται στην Εικόνα 4.4 που ακολουθεί, καθορίζονται το βήμα της σάρωσης και η μέγιστη απόσταση σαρωτή αντικειμένου. Στην παρούσα Διπλωματική Εργασία η απόσταση σαρωτή-κιόνων δεν ξεπέρασε τα 30m, ενώ ως βήμα σάρωσης επιλέχθηκαν τα 2mm, εξαιτίας της απαίτησης της μέγιστης δυνατής πυκνότητας του νέφους σημείων στον προσδιορισμό του ψηφιακού μοντέλου για την εκτίμηση των παραμορφώσεων των κιόνων.

Εικόνα 4.4: Οι παράμετροι που καθορίζονται πριν ξεκινήσει μια σάρωση. **Picture 4.4**: The parameters set before executing a scan.

Αξίζει να σημειωθεί ότι καλό είναι να μην σαρώνεται όλο το αντικείμενο ενιαία, σε μια σάρωση, αλλά τμηματικά, έτσι ώστε σε περίπτωση που προκύψει σφάλμα στη διαδικασία της σάρωσης να μην υπάρχει μεγάλη απώλεια δεδομένων και χρόνου.

Τα βήματα που αναλύθηκαν παραπάνω εφαρμόσθηκαν σε κάθε μια από τις κορυφές του δικτύου.

Στον επόμενο πίνακα (Πίνακας 4.1) παρουσιάζονται αναλυτικά οι αποκλίσεις στην γεωαναφορά για κάθε στάση σάρωσης, ενώ στην εικόνα που ακολουθεί (Εικόνα 4.5) δίνεται οπτικό παράδειγμα των σαρωμένων αντικειμένων όπως απεικονίζονται στο

λογισμικό Cyclone. Τέλος, όλες οι ενέργειες που περιγράφηκαν παραπάνω παρουσιάζονται εποπτικά σε διάγραμμα ροής (Διάγραμμα 4.1)

Κορυφή Στάσης Σαρωτή	Κορυφή Στάσης Σφαιρικού Στόχου	Οριζοντιογραφική Απόκλιση (mm)	Υψομετρική Απόκλιση (mm)
$\Sigma 4$	Σ3	-4	4
Σ5	Σ4	-2	2
Σ3	Σ4	-1	2
Σ1	Σ8	-3	1
Σ7	Σ6	-1	2
Σ6	Σ2	2	1
Σ8	Σ1	0	4
Σ2	Σ4	-6	2
$\Sigma 4$	Σ3	0	3
Σ5	Σ3	0	0

Πίνακας 4.1: Οι οριζοντιογραφικές και υψομετρικές αποκλίσεις που προέκυψαν κατά τη γεωαναφορά του νέφους σημείων από όλες τις κορυφές που στάθηκε ο σαρωτής.

Table 4.1: Horizontal and vetrical deviations that occurred during the point cloud georeference from
all of the network's points.

Εικόνα 4.5: Παράδειγμα των σαρωμένων περιοχών όπως φαίνεται στην οθόνη του υπολογιστή στο λογισμικό Cyclone.

Picture 4.5: Example of scanned areas as seen on the computer screen through Cyclone software.

Διάγραμμα 4.1: Διάγραμμα ροής της διαδικασίας σάρωσης στο ύπαιθρο. **Diagramm 4.1**: Flowchart of scaning process in the field.

κεφαλαίο 5 - επεξεργάσια σαρώσεων

5.1 Γενικά

Στο κεφάλαιο αυτό περιγράφεται αναλυτικά η διαδικασία της επεξεργασίας των σαρώσεων.

Πιο συγκεκριμένα, γίνεται αρχικά αναφορά στον τρόπο συνένωσης των επιμέρους σαρώσεων σε ένα ενιαίο νέφος σημείων και στην αφαίρεση του θορύβου που αυτό περιέχει, ενώ δίνεται και διάγραμμα ροής που παρουσιάζει εποπτικά τα βήματα που απαιτούνται.

Στη συνέχεια, αναλύεται ο τρόπος με τον οποίο επιλέχθηκαν και προσδιορίσθηκαν τα υψόμετρα των οριζόντιων τομών που πραγματοποιήθηκαν, καθώς και ο τρόπος υλοποίησης των τομών μέσω του λογισμικού Cyclone, ενώ δίνεται και το αντίστοιχο διάγραμμα ροής.

Τέλος, αναλύεται η διαδικασία εκτίμησης των στοιχείων του εγγεγραμένου κύκλου που προσαρμόζεται βέλτιστα στα εσώτερα σημεία των ραβδώσεων της κάθε τομής.

5.2 Συνένωση νεφών και αφαίρεση θορύβου

Το πρώτο βήμα για την επεξεργασία του αποτελέσματος των σαρώσεων είναι η συνένωση των νεφών των σημείων και η αφαίρεση του θορύβου, δηλαδή σαρωμένης πληροφορίας η οποία είναι άχρηστη. Η συνένωση των νεφών γίνεται εύκολα και αυτοματοποιημένα μέσω του λογισμικού Cyclone.

Χρησιμοποιώντας την εντολή Create -> Registration δημιουργείται το νέο αρχείο συνενωμένων νεφών και δίνεται το όνομά του (Εικόνα 5.1)

93	Cyclone - Navigator	- 0 ×
File Edit View Configure Create Tools H	dp	
Fa Edit View Configure Fals Edit View Configure Fals Edit View Configure False Edit False Edit View Configure False Edit View Confi	Cyclone - Navigator	- 0 ×
Create a Registration under the selected object		

Ανοίγει το αρχείο που δημιουργήθηκε και στο αναδυόμενο παράθυρο επιλέγεται η εντολή: ScanWorld -> Add ScanWorld (Εικόνα 5.2)

Ø			Re	egistration: syne	enwsh trial		- 5 ×
Registration Edit Se	canWorld Constraint Cloud Const	raint Viewers Help	p				
]] * * * * * -	Set Home ScanWorld		4 4 4 CI C C C	> 📱 🤌 🕫	+ •• •• K & #	🍇 🐐 🔤 🕾 🛪 🖓 🕌	
📥 ScariWorlds' C	Toronto Concellito dalla contrad						
ScanWolds/Constr	Toggle scanwond Leveled	Status Weight	Error Vector				
	View ModelSpace						
	show current transform						
<u> </u>							
11				11			

Εικόνα 5.2: 'Ανοιγμα της λίστα των νεφών σημείων. **Picture 5.2**: Opening of the point cloud list.

Εμφανίζεται λίστα με όλα τα νέφη σημείων που έχουν μετρηθεί. Επιλέγονται αυτά που θα συμμετέχουν στη συνένωση και με το βελάκι προστίθενται στο δεξί μέρος.(Εικόνα 5.3)

Εικόνα 5.3: Επιλογή των επιθυμητών νεφών σημείων και προσθήκη τους στο συνενωμένο αρχείο. **Picture 5.3**: Selection of the point clouds and adding them to the merged file.

Αφού επιλεχθούν τα νέφη σημείων και δοθεί η εντολή ΟΚ, δημιουργείται μια λίστα με τα νέφη που επιλέχθηκαν. (Εικόνα 5.4)

Εικόνα 5.4: Λίστα με τα επιλεγμένα νέφη σημείων. **Picture 5.4**: List of the selected point clouds.

Στη συνέχεια επιλέγεται η εντολή: Registration -> Create Scanworld/Freeze Registration (Εικόνα 5.5)

0	Registration: synerwsh trial	- 8 ×
Registration Edit ScanWorld Constraint Cl		
Auto-Update		
Show Diagnostics	I ModeSpaces	
Show Traverse Report	Status Weight Error Error Vector	
View Interim Results		
Create ScanWorld/Freeze Registration		
Unfreeze Registration		
Create ModelSpace		
Create and Open ModelSpace		
Import Registration		
Close		

Εικόνα 5.5: Πραγματοποίηση της συνένωσης. **Picture 5.5**: Merging of the point clouds .

Με την εντολή Registration -> Create and Open Modelspace, η συνένωση έχει ολοκληρωθεί και ανοίγει το αρχείο που περιλαμβάνει όλα τα συνενωμένα νέφη. (Εικόνα 5.6)

Εικόνα 5.6: Άνοιγμα του νέου αρχείου συνενωμένων νεφών. **Picture 5.6**: Opening the new file with the merged point clouds.

Στην επόμενη εικόνα 5.7 φαίνεται το αποτέλεσμα της συνένωσης.

Εικόνα 5.7: Το αποτέλσμα της συνένωσης όλων των νεφών σημείων. **Picture 5.7**: Result of the point clouds merging.

Από την εικόνα 5.7 είναι φανερό ότι εκτός από τη χρήσιμη πληροφορία υπάρχει και μεγάλος όγκος πληροφορίας που δεν χρησιμοποιείται. Αυτή η πληροφορία αποτελεί τον θόρυβο, ο οποίος πρέπει να απομακρυνθεί. Στη συγκεκριμένη περίπτωση, θόρυβο αποτελεί το μέρος των κιόνων που βρίσκονται ανατολικά από τους κίονες ενδιαφέροντος και η φυτοκάλυψη. Αυτός ο θόρυβος πρέπει να αφαιρεθεί, ώστε να είναι εφικτή και ευκολότερη η επεξεργασία των νεφών που αφορούν στους τρεις κίονες που εξετάζονται.

Η διαδικασία αφαίρεσης του θορύβου πραγματοποιείται επίσης εύκολα μέσα από το λογισμικό Cyclone. Αρχικά, μέσω των εντολών Polygonal Fence Mode ή Rectangular

Fence Mode δημιουργείται πολύγωνο που περιλαμβάνει τα προς διαγραφή σημεία . Στη συνέχεια με δεξί κλικ -> Fence -> Delete Inside διαγράφονται όλα τα σημεία εντός του πολυγώνου.

Εικόνα 5.8: Παράδειγμα αφαίρεσης θορύβου (σαρωμένα κοντινά αντικείμενα που δεν ενδιαφέρουν). **Picture 5.8**: Example of noise removal(nearby scanned objects of no interest).

Εικόνα 5.9: Παράδειγμα αφαίρεσης θορύβου βλάστησης στη βάση του κίονα. **Picture 5.9**: Example of vegetation noise removal at the base of the column.

Στην επόμενη εικόνα (Εικόνα 5.10) φαίνεται πως διαμορφώθηκε το νέφος σημείων μετά την ολοκλήρωση της αφαίρεσης του θορύβου.

Εικόνα 5.10: Αποτέλεσμα των συνενωμένων νεφών σημείων μετά την ολοκλήρωση αφαίρεσης του θορύβου. **Picture 5.10**: Result of the merged point clouds after the noise removal.

Στο επόμενο διάγραμμα ροής (Διάγραμμα 5.1), παρουσιάζονται οι ενέργειες που έγιναν για την συνένωση των νεφών και την αφαίρεση του θορύβου.

Διάγραμμα 5.1: Διάγραμμα ροής για τις διαδικασίες συνένωσης νεφών και αφαίρεσης θορύβου. **Diagram 5.1**: Flowchart illustrating the point cloud merging and noise removal processes.

5.3 Πραγματοποίηση οριζόντιων τομών στους κίονες

Για την ανίχνευση και τον προσδιορισμό του μεγέθους των παραμορφώσεων των τριών κίονων καθώς και για την εκτίμηση των εκλεπτύνσεών τους, κρίθηκε σκόπιμο να γίνουν τρεις οριζόντιες τομές σε κάθε σπόνδυλο: η μια στο μέσον του και οι άλλες δυο κοντά στην κάτω και πάνω έδρα του αντίστοιχα, συμμετρικά ως προς τη μεσαία τομή, σε «υγιείς» θέσεις, όπου δεν εμφανίζονται περιμετρικές θραύσεις ή σημαντικές αποφλοιώσεις.

Επειδή στο νέφος σημείων δεν είναι εμφανείς οι θέσεις των αρμών των σπονδύλων, ώστε να ορισθούν υψομετρικά οι θέσεις των τομών, προσδιορίστηκαν με τριγωνομετρική υψομετρία από την κορυφή Σ6 οι υψομετρικές θέσεις των αρμών.

Στη συνέχεια προσδιορίστηκαν τα υψόμετρα των οριζόντιων τομών των σπονδύλων όπως περιγράφεται παρακάτω.

Το υψόμετρο (H_M), της στάθμης της τομής στο μέσον του κάθε σπονδύλου, προέκυψε από τον μέσο όρο των υψομέτρων (H_K) και (H_A) του κάτω και άνω αρμού κάθε ενός σπονδύλου. Έτσι H_M = (H_K + H_A)/2. Αντίστοιχα, τα υψόμετρα των σταθμών των τομών κοντά στην κάτω και άνω έδρα των σπονδύλων, (H_{TK}) και (H_{TA}), προέκυψαν από την υψομετρική διαφορά Δ H = H_A – H_K των υψομέτρων των αρμών ως εξής :

$H_{TK} = H_M - (1/3) * \Delta H$ και $H_{TA} = H_M + (1/3) * \Delta H$.

Με αυτό τον τρόπο, έγινε προσπάθεια να εξασφαλισθεί η δυνατότητα, ώστε οι τομές να γίνουν σε «υγιείς», καθ΄ύψος, περιοχές του σπονδύλου. Ωστόσο, στις περιπτώσεις που σε κάποια θέση οριζόντιας τομής υπήρχε πρόβλημα, όπως π.χ. θραύση ή αποφλοίωση ή μικρή πυκνότητα του νέφους σημείων, η τομή μετατοπίσθηκε μερικά cm προς την «υγιή» καθ' ύψος περιοχή, ώστε να γίνει σε θέση με επαρκή και ορθή πληροφόρηση.

Ο κίονας Κ1 αποτελείται από 16 σπονδύλους ενώ οι κίονες Κ2 και Κ3 αποτελούνται από 14 σπονδύλους. Στους επόμενους πίνακες (Πίνακες 5.1, 5.2 και 5.3) φαίνονται αναλυτικά οι υψομετρικές θέσεις των οριζοντίων τομών σε κάθε κίονα, καθώς και οι υψομετρικές θέσεις των σπονδύλων των κιόνων (στάθμη κάτω έδρας).

Κίονας Κ1					
Σπόνδυλος	Στάθμη Τομής	H(m)	Σπόνδυλος	Στάθμη Τομής	H(m)
105	ΚΑΤΩ ΕΔΡΑ	81.881	9ος	ΚΑΤΩ ΕΔΡΑ	88.990
	ΚΑΤΩ	82.146		ΚΑΤΩ	89.120
	ΜΕΣΗ	82.329		ΜΕΣΗ	89.393
	ΑΝΩ	82.627		ΑΝΩ	89.667
2°5	ΚΑΤΩ ΕΔΡΑ	82.777	10 ^{oç}	ΚΑΤΩ ΕΔΡΑ	89.797
	ΚΑΤΩ	82.927		ΚΑΤΩ	89.977
	ΜΕΣΗ	83.260		ΜΕΣΗ	90.353
	ΑΝΩ	83.592		ΑΝΩ	90.728
3 0ç	ΚΑΤΩ ΕΔΡΑ	83.742	1105	ΚΑΤΩ ΕΔΡΑ	90.908
	ΚΑΤΩ	83.892		ΚΑΤΩ	91.008
	ΜΕΣΗ	84.207		ΜΕΣΗ	91.220
	ΑΝΩ	84.523		ΑΝΩ	91.432
4ος	ΚΑΤΩ ΕΔΡΑ	84.673	12 ^{oç}	ΚΑΤΩ ΕΔΡΑ	91.532
	ΚΑΤΩ	84.803		ΚΑΤΩ	91.602
	ΜΕΣΗ	85.061		ΜΕΣΗ	91.958
	ΑΝΩ	85.319		ΑΝΩ	92.235
5 ^{0ç}	ΚΑΤΩ ΕΔΡΑ	85.449	13 ^{oç}	ΚΑΤΩ ΕΔΡΑ	92.385
	ΚΑΤΩ	85.599		ΚΑΤΩ	92.535
	ΜΕΣΗ	85.890		ΜΕΣΗ	92.845
	ΑΝΩ	86.180		ΑΝΩ	93.156
6 ^{0ç}	ΚΑΤΩ ΕΔΡΑ	86.330	14 ^{oç}	ΚΑΤΩ ΕΔΡΑ	93.306
	ΚΑΤΩ	86.480		ΚΑΤΩ	93.456
	ΜΕΣΗ	86.751		ΜΕΣΗ	93.755
	ΑΝΩ	87.021		ΑΝΩ	94.054
7 ος	ΚΑΤΩ ΕΔΡΑ	87.171	15 ^{oç}	ΚΑΤΩ ΕΔΡΑ	94.204
	ΚΑΤΩ	87.321		ΚΑΤΩ	94.304
	ΜΕΣΗ	87.595		ΜΕΣΗ	94.490
	ΑΝΩ	87.868		ΑΝΩ	94.676
8 ⁰⁵	ΚΑΤΩ ΕΔΡΑ	88.018	1605	ΚΑΤΩ ΕΔΡΑ	94.776
	ΚΑΤΩ	88.168		ΚΑΤΩ	94.906
	ΜΕΣΗ	88.504		ΜΕΣΗ	95.160
	ΑΝΩ	88.840		ΑΝΩ	95.342

Πίνακας 5.1: Τα υψόμετρα των οριζοντίων τομών στον Κίονα Κ1. **Table 5.1**: Heights of horizontal sections for column K1.

		Κίο	νας Κ2		
Σπόνδυλος	Στάθμη Τομής	H(m)	Σπόνδυλος	Στάθμη Τομής	H(m)
1°5	ΚΑΤΩ ΕΔΡΑ	81.908	80ç	ΚΑΤΩ ΕΔΡΑ	89.207
	ΚΑΤΩ	82.186		ΚΑΤΩ	89.367
	ΜΕΣΗ	82.367		ΜΕΣΗ	89.691
	ΑΝΩ	82.685		ΑΝΩ	90.025
2°ç	ΚΑΤΩ ΕΔΡΑ	82.835	9 ος	ΚΑΤΩ ΕΔΡΑ	90.185
	ΚΑΤΩ	82.995		ΚΑΤΩ	90.335
	ΜΕΣΗ	83.332		ΜΕΣΗ	90.645
	ΑΝΩ	83.679		ΑΝΩ	90.964
3ος	ΚΑΤΩ ΕΔΡΑ	83.839	10 ^{oç}	ΚΑΤΩ ΕΔΡΑ	91.114
	ΚΑΤΩ	84.059		ΚΑΤΩ	91.274
	ΜΕΣΗ	84.509		ΜΕΣΗ	91.611
	ΑΝΩ	84.970		ΑΝΩ	91.958
4ος	ΚΑΤΩ ΕΔΡΑ	85.190	1105	ΚΑΤΩ ΕΔΡΑ	92.118
	ΚΑΤΩ	85.410		ΚΑΤΩ	92.248
	ΜΕΣΗ	85.826		ΜΕΣΗ	92.517
	ΑΝΩ	86.262		ΑΝΩ	92.796
4ος	ΚΑΤΩ ΕΔΡΑ	86.472	12°ç	ΚΑΤΩ ΕΔΡΑ	92.926
	ΚΑΤΩ	86.612		ΚΑΤΩ	93.046
	ΜΕΣΗ	86.888		ΜΕΣΗ	93.308
	ΑΝΩ	87.173		ΑΝΩ	93.580
6 ⁰	ΚΑΤΩ ΕΔΡΑ	87.313	13 ^{oç}	ΚΑΤΩ ΕΔΡΑ	93.700
	ΚΑΤΩ	87.453		ΚΑΤΩ	93.830
	ΜΕΣΗ	87.736		ΜΕΣΗ	94.114
	ΑΝΩ	88.028		ΑΝΩ	94.408
7 ^{0ς}	ΚΑΤΩ ΕΔΡΑ	88.168	14 ⁰	ΚΑΤΩ ΕΔΡΑ	94.538
	ΚΑΤΩ	88.338		ΚΑΤΩ	94.598
	ΜΕΣΗ	88.683		ΜΕΣΗ	95.000
	ΑΝΩ	89.037		ΑΝΩ	95.322

Πίνακας 5.2: Τα υψόμετρα των οριζοντίων τομών στον Κίονα Κ2. **Table 5.2**: Heights of horizontal sections for column K2.

ΚΕΦΑΛΑΙΟ 5 -	ΕΠΕΞΕΡΓΑΣΙΑ	ΣΑΡΩΣΕΩΝ
--------------	-------------	----------

Σπόνδυλος Στάθμη Τομής Η(m) Σπόνδυλος Στάθμη Τομής 1°ς ΚΑΤΩ ΕΔΡΑ 81.939 8°ς ΚΑΤΩ ΕΔΡΑ 8 ΝΕΣΗ 82.210 ΚΑΤΩ ΚΑΤΩ 6 ΜΕΣΗ 82.419 ΜΕΣΗ 8 ΑΝΩ 82.700 ΑΝΩ 6 2°ς ΚΑΤΩ ΕΔΡΑ 82.908 9°ς ΚΑΤΩ ΕΔΡΑ 6 Δ ΑΝΩ 83.058 ΚΑΤΩ ΕΔΡΑ 6 Δ ΚΑΤΩ 83.058 ΚΑΤΩ 6 ΜΕΣΗ 83.369 ΜΕΣΗ 6 ΑΝΩ 83.689 ΑΝΩ 6 3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 3°ς ΚΑΤΩ ΕΔΡΑ 84.039 ΚΑΤΩ 6 ΜΕΣΗ 84.447 ΜΕΣΗ 6 ΑΝΩ 84.864 ΑΝΩ 6 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 6	
1°ς ΚΑΤΩ ΕΔΡΑ 81.939 8°ς ΚΑΤΩ ΕΔΡΑ 81.939 8°ς ΚΑΤΩ ΚΑΤΩ 82.210 ΚΑΤΩ ΚΑΤΩ ΚΑΤΩ 6 ΜΕΣΗ 82.210 ΜΕΣΗ 82.419 ΜΕΣΗ 6 ΑΝΩ 82.700 ΑΝΩ 82.700 ΑΝΩ 6 2°ς ΚΑΤΩ ΕΔΡΑ 82.908 9°ς ΚΑΤΩ ΕΔΡΑ 6 ΜΕΣΗ 83.058 ΚΑΤΩ 6 6 ΜΕΣΗ 83.369 ΜΕΣΗ 6 ΑΝΩ 83.689 ΑΝΩ 6 3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 6 ΜΕΣΗ 84.039 ΚΑΤΩ ΜΕΣΗ 6 6 ΜΕΣΗ 84.864 ΑΝΩ 6 6 6 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 6	H(m)
ΚΑΤΩ 82.210 ΚΑΤΩ 8 ΜΕΣΗ 82.419 ΜΕΣΗ 8 ΑΝΩ 82.700 ΑΝΩ 9 2° ΚΑΤΩ ΕΔΡΑ 82.908 9° ΚΑΤΩ ΕΔΡΑ 9 ΚΑΤΩ ΕΔΡΑ 83.058 ΚΑΤΩ ΕΔΡΑ 9 ΜΕΣΗ 83.369 ΜΕΣΗ 9 ΑΝΩ 83.689 ΑΝΩ 9 ΑΝΩ 83.839 10° ΚΑΤΩ ΕΔΡΑ 9 ΑΝΩ 83.839 10° ΚΑΤΩ ΕΔΡΑ 9 ΜΕΣΗ 84.039 ΚΑΤΩ 9 9 ΜΕΣΗ 84.864 ΑΝΩ 9 9 4° ΚΑΤΩ ΕΔΡΑ 85.064 11° 9	89.407
ΜΕΣΗ 82.419 ΜΕΣΗ 82.419 ΑΝΩ 82.700 ΑΝΩ 4 2°ς ΚΑΤΩ ΕΔΡΑ 82.908 9°ς ΚΑΤΩ ΕΔΡΑ 6 ΚΑΤΩ 83.058 ΚΑΤΩ ΕΔΡΑ 6 6 6 6 ΜΕΣΗ 83.058 ΚΑΤΩ 6 6 6 6 6 ΜΕΣΗ 83.689 ΜΕΣΗ 6	89.547
ΑΝΩ 82.700 ΑΝΩ ΑΝΩ 2°ς ΚΑΤΩ ΕΔΡΑ 82.908 9°ς ΚΑΤΩ ΕΔΡΑ 9 ΚΑΤΩ 83.058 ΚΑΤΩ ΚΑΤΩ 9 ΜΕΣΗ 83.369 ΜΕΣΗ 9 9 ΑΝΩ 83.689 ΜΕΣΗ 9 9 9 ΑΝΩ 83.689 ΜΕΣΗ 9 </td <td>89.826</td>	89.826
2ος ΚΑΤΩ ΕΔΡΑ 82.908 9ος ΚΑΤΩ ΕΔΡΑ 9 ΚΑΤΩ 83.058 ΚΑΤΩ 6 ΜΕΣΗ 83.369 ΜΕΣΗ 6 ΑΝΩ 83.689 ΑΝΩ 6 3ος ΚΑΤΩ ΕΔΡΑ 83.839 10ος ΚΑΤΩ ΕΔΡΑ 6 ΜΕΣΗ 84.039 ΚΑΤΩ ΕΔΡΑ 6 6 ΜΕΣΗ 84.447 ΜΕΣΗ 6 ΑΝΩ 84.864 ΑΝΩ 6 4ος ΚΑΤΩ ΕΔΡΑ 85.064 11ος ΚΑΤΩ ΕΔΡΑ 6	90.095
ΚΑΤΩ 83.058 ΚΑΤΩ Κ ΜΕΣΗ 83.369 ΜΕΣΗ 9 ΑΝΩ 83.689 ΑΝΩ 9 3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 9 ΜΕΣΗ 84.039 ΚΑΤΩ ΕΔΡΑ 9 9 9 9 ΜΕΣΗ 84.447 ΜΕΣΗ 9 9 9 9 9 ΜΕΣΗ 84.864 ΑΝΩ 9	90.245
ΜΕΣΗ 83.369 ΜΕΣΗ 9 ΑΝΩ 83.689 ΑΝΩ 9 3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 9 ΜΕΣΗ 84.039 ΚΑΤΩ ΕΔΡΑ 9 9 9 9 ΜΕΣΗ 84.447 ΜΕΣΗ 9 9 9 9 9 ΜΕΣΗ 84.864 ΑΝΩ 9	90.395
ΑΝΩ 83.689 ΑΝΩ ΑΝΩ 3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 9 ΚΑΤΩ ΚΑΤΩ 84.039 ΚΑΤΩ 9 9 ΜΕΣΗ 84.447 ΜΕΣΗ 9 9 ΑΝΩ 84.864 ΑΝΩ 9 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 9	90.704
3°ς ΚΑΤΩ ΕΔΡΑ 83.839 10°ς ΚΑΤΩ ΕΔΡΑ 9 ΚΑΤΩ ΚΑΤΩ 84.039 ΚΑΤΩ 9 9 ΜΕΣΗ 84.447 ΜΕΣΗ 9 9 ΑΝΩ 84.864 ΑΝΩ 9 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 9	91.013
ΚΑΤΩ 84.039 ΚΑΤΩ 9 ΜΕΣΗ 84.447 ΜΕΣΗ 9 ΑΝΩ 84.864 ΑΝΩ 9 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 9	91.163
ΜΕΣΗ 84.447 ΜΕΣΗ 9 ΑΝΩ 84.864 ΑΝΩ 9 4°ς ΚΑΤΩ ΕΔΡΑ 85.064 11°ς ΚΑΤΩ ΕΔΡΑ 9	91.303
ΑΝΩ 84.864 ΑΝΩ 9 4ος ΚΑΤΩ ΕΔΡΑ 85.064 11ος ΚΑΤΩ ΕΔΡΑ 9	91.591
4ος ΚΑΤΩ ΕΔΡΑ 85.064 11ος ΚΑΤΩ ΕΔΡΑ 9	91.879
	92.019
$KAT\Omega$ 85.194 $KAT\Omega$ 9	92.169
ΜΕΣΗ 85.474 ΜΕΣΗ 9	92.462
ΑΝΩ 85.764 ΑΝΩ 9	92.765
4ος ΚΑΤΩ ΕΔΡΑ 85.894 12ος ΚΑΤΩ ΕΔΡΑ 9	92.915
ΚΑΤΩ 86.054 ΚΑΤΩ 9	93.065
ΜΕΣΗ 86.399 ΜΕΣΗ 9	93.560
ΑΝΩ 86.753 ΑΝΩ 9	94.064
6 ^{ος} ΚΑΤΩ ΕΔΡΑ 86.913 13 ^{ος} ΚΑΤΩ ΕΔΡΑ 9	94.214
KATΩ 87.133 KATΩ 9	94.314
ΜΕΣΗ 87.602 ΜΕΣΗ 9	94.520
ΑΝΩ 88.070 ΑΝΩ 9	94.735
7ος ΚΑΤΩ ΕΔΡΑ 88.290 14ος ΚΑΤΩ ΕΔΡΑ 9	94.835
KATΩ 88.470 KATΩ 9	94.935
ΜΕΣΗ 88.844 ΜΕΣΗ 9	95.153
ANΩ 89.227 ANΩ 9	95.241

Πίνακας 5.3: Τα υψόμετρα των οριζοντίων τομών στον Κίονα K3. **Table 5.3:** Heights of horizontal sections for column K3.

5.4 Υλοποίηση τομών στο νέφος σημείων

Στο λογισμικό Cyclone, μέσω των εντολών Tools -> Reference Plane -> Edit Active Plane μπορεί να δημιουργηθεί ένα οριζόντιο επίπεδο στο επιθυμητό υψόμετρο. (Εικόνα 5.11)

Εικόνα 5.11: Παράδειγμα ορισμού επιπέδου σε συγκεκριμένο υψόμετρο στο οποίο υλοποιείται οριζόντια τομή.

Picture 5.11: Cross section with a horizontal plane set at a selected height.

Στη συνέχεια εφαρμόζονται οι εντολές Tools -> Cutplane -> Set from Active Ref Plane έτσι ώστε η τομή να ταυτιστεί με το επίπεδο που δημιουργήθηκε προηγουμένως, ενώ με την εντολή Set Slice Thickness καθορίζεται το πάχος της τομής και με την εντολή View Slice εμφανίζεται η τομή. Σε όλες τις τομές που υλοποιήθηκαν επιλέχθηκε πάχος 5mm εκτός των περιπτώσεων που δεν υπήρχε αρκετή πληροφορία οπότε επιλέχθηκε πάχος 1cm. (Εικόνα 5.12).

Εικόνα 5.12: Ααποτέλεσμα υλοποιημένης οριζόντιας τομής σε κάτοψη. **Picture 5.12**: Result of an implemented horizontal section.

Αφού υλοποιηθεί η τομή, επιλέγονται τα σημεία της και εξάγονται σε αρχείο .dxf ώστε να γίνει περαιτέρω επεξεργασία στο λογισμικό AutoCAD.

Στο διάγραμμα ροής που ακολουθεί (Διάγραμα 5.2) παρουσιάζονται οι ενέργειες που έγιναν για την υλοποίηση των οριζόντιων τομών.

Διάγραμμα 5.2: Διάγραμμα ροής της διαδικασία υλοποίησης οριζόντιων τομών στο λογισμικό Cyclone. **Diagram 5.2**: Flowchart of the horizontal section realization process with Cyclone software.

5.5 Προσαρμογή βέλτιστου κύκλου σε κάθε οριζόντια τομή

Προκειμένου να προσδιορισθούν οι πιθανές μετατοπίσεις και στροφές των σπονδύλων απαιτείται να υπολογιστούν οι συντεταγμένες του κέντρου των σπονδύλων σε κάθε υλοποιημένη τομή. Αυτό επιτυγχάνεται προσδιορίζοντας για κάθε τομή τον εγγεγραμμένο κύκλο που προσαρμόζεται βέλτιστα στα εσώτερα σημεία των ραβδώσεων του αντίστοιχου σπονδύλου. Στην Εικόνα 5.13 που ακολουθεί φαίνεται ένα χαρακτηριστικό παράδειγμα επιλογής των εσώτερων σημείων ενός σπονδύλου στα οποία θα προσαρμοστεί, βέλτιστα, ο εγγεγραμμένος κύκλος.

Εικόνα 5.13: Τα εσώτερα σημεία των ραβδώσεων επιλεγμένα με μια γραμμή(Polyline) στο περιβάλλον του λογισμικού AutoCAD. Τα σημεία των ραβδώσεων με μη επαρκή πληροφορία δεν έχουν επιλεγεί.

Picture 5.13: The innermost points of the flutes joined with a Polyline (AutoCad). Flutes with insufficient data are not selected.

Για να εκτιμηθούν οι καλύτερες τιμές του κέντρου (X_0, Y_0) και της ακτίνας (R_0) του βέλτιστου κύκλου, χρησιμοποιήθηκε η Μ.Ε.Τ. (μέθοδος των εμμέσων παρατηρήσεων). Για κάθε τομή οι ανεξάρτητες καθοριστικές παράμετροι των οποίων θα εκτιμηθούν οι βέλτιστες τιμές είναι τρεις (οι συντεταγμένες του κέντρου και η ακτίνα του εγγεγραμμένου κύκλου). Το πλήθος των εξισώσεων παρατήρησης

διαφέρει από τομή σε τομή και είναι ίσο με το πλήθος των εσώτερων σημείων των ραβδώσεων που ήταν δυνατό να προσδιοριστεί σε κάθε τομή.

Η εξίσωση παρατήρησης που συνδέει τις συνταταγμένες X_i και Y_i κάθε εσ'ωτερου σημείου με τις ανεξάρτητες καθοριστικές παραμέτρους (X_0 , Y_0 , R_0) είναι η εξής:

$$(X_i - X_0)^2 + (Y_i - Y_0)^2 - R^2 = 0$$
(5.1)

Η εξίσωστη ως μη γραμμική, αναπτύσεται κατά Taylor στην περιοχή των προσωρινών τιμών των ανεξάρτητων καθοριστικών παραμέτρων, οι οποίες υπολογίζονται μέσω του λογισμικού AutoCAD.

Τα αποτελέσματα των προσαρμογών για κάθε κίονα δίνονται στου πίνακες που ακολουθούν (Πίνακες 5.4, 5.5, 5.6 και 5.7).

Κίονας Κ1							
Σπόνδυλος	Στάθμη	Y _c (m)	σΧο	$V_{c}(\mathbf{m})$	$\sigma \Upsilon_0$	$\mathbf{P}_{\alpha}(\mathbf{m})$	σR_0
Δπονουλος	Τομής	A ₀ (III)	(mm)	10(m)	(mm)	K ₀ (III)	(mm)
1ος	ΚΑΤΩ	476388.163	±1.0	4202151.238	±1.2	0.847	±1.2
	ΜΕΣΗ	476388.164	±0.9	4202151.236	±0.7	0.842	±0.7
	ANΩ	476388.164	±1.0	4202151.235	±0.7	0.839	±0.7
2ος	ΚΑΤΩ	476388.164	±1.2	4202151.235	±1.0	0.839	±1.0
	ΜΕΣΗ	476388.164	±0.9	4202151.236	±0.9	0.837	±0.9
	ΑΝΩ	476388.163	±1.0	4202151.234	±1.0	0.835	±1.0
3ος	ΚΑΤΩ	476388.165	±1.1	4202151.235	±0.9	0.834	±0.9
	ΜΕΣΗ	476388.164	±0.8	4202151.236	±0.9	0.834	±0.9
	ΑΝΩ	476388.166	±1.0	4202151.237	±1.5	0.834	±1.5
4ος	ΚΑΤΩ	476388.165	±0.9	4202151.235	±0.8	0.830	±0.8
	ΜΕΣΗ	476388.164	±0.8	4202151.236	±0.9	0.830	±0.9
	ΑΝΩ	476388.166	±1.2	4202151.235	±1.2	0.828	±1.2
5ος	ΚΑΤΩ	476388.167	±0.8	4202151.233	±0.8	0.826	±0.8
	ΜΕΣΗ	476388.166	±1.1	4202151.234	±1.3	0.824	±1.3
	ΑΝΩ	476388.167	±0.7	4202151.235	±0.9	0.822	±0.9
6 ⁰⁵	ΚΑΤΩ	476388.169	±1.2	4202151.231	±1.4	0.819	±1.4
-	ΜΕΣΗ	476388.169	±1.1	4202151.231	±1.2	0.818	±1.2
	ΑΝΩ	476388.170	±1.0	4202151.231	±1.2	0.815	±1.2
7 05	ΚΑΤΩ	476388.169	+1.0	4202151.226	+1.1	0.814	+1.1
	ΜΕΣΗ	476388.167	+1.0	4202151.227	+1.0	0.810	+1.0
	ANO	476388169	+0.9	4202151 226	+1.0	0.807	+1.0
8 05	KATO	476388167	+0.8	4202151.228	+0.9	0.805	+0.9
0 /	ΜΕΣΗ	476388168	+0.9	4202151.228	+1.0	0.803	+1.0
	ANO	476388167	+0.8	4202151.220	+0.9	0.800	+0.9
9 ος	KATO	476388168	+1.2	4202151.220	+1.2	0.000	+1.2
, ,	ΜΕΣΗ	476388166	+1.0	4202151.227	+11	0.795	+1.1
	ANO	476388168	+1.0	4202151.220	+1.2	0.793	+1.1
1005	KATO	476388164	+1.1	4202151.220	+1.2	0.791	+1.2
10 /	ΜΕΣΗ	476388166	+11	4202151.231	+11	0.784	+1.1
	ANO	476388166	+0.9	4202151.233	+0.9	0.784	+0.9
1105	KATO	476388167	± 0.7	4202151.233	+0.7	0.778	+0.7
11	ΜΕΣΗ	476388166	+0.6	4202151.232	+0.7	0.774	+0.7
	ANO	476388167	+0.8	4202151.232	+0.9	0.773	+0.9
1205	KATO	476388160	+0.8	4202151.233	+0.8	0.772	+0.8
1205	ΜΕΣΗ	476388162	+0.9	4202151.220	+1.0	0.772	+1.0
	ANO	476388162	± 0.7	4202151.227	+0.8	0.763	+0.8
1300	KATO	476388163	+0.8	4202151 229	+0.9	0.762	+0.9
13%	ΜΕΣΗ	476388162	+10	4202151 230	+11	0.756	+1 1
	ANO	476388162	+0.7	4202151 232	+0.8	0 751	+0.8
14oc	KATO	476388159	+10	4202151 230	+1 2	0.746	+1 1
1405	ΜΕΣΗ	476388161	+1.0	4202151 231	+11	0 741	+1 1
	ANO	476388161	+0.6	4202151.231	+0.7	0.737	+0.7
15%	KATO	476388161	+10	4202151.230	+1 1	0.735	+1 1
1.5.7	MEL	476388162	+1.0	4202151.250	+10	0.733	+1.1
		476388162	+1.0	4202151.250	+0.0	0.720	+0.9
16%	KATO	476388163	+1 3	4202151.251	+11	0.729	+1 1
10.7	ΜΕΣΗ	476388165	+10	4202151 231	+10	0.721	+1.0
	ANO	476388166	+0.8	4202151.251	+0.7	0.721	+0.7

Πίνακας 5.4: Στοιχεία (X₀, Y₀, R₀) των βέλτιστων κύκλων των τομών και οι αβεβαιότητές τους για τον Κίονα K1.

Table 5.4: Column K1: center coordinates X_0 , Υ_0 , and radius R_0 of the best escribed circles togetherwith their standard deviations.

			Κίονας	К2			
Σπόνδυλος	Στάθμη Τομής	X ₀ (m)	σX ₀ (mm)	Υ ₀ (m)	σY₀ (mm)	R₀ (m)	σR₀ (mm)
1°ç	ΚΑΤΩ	476432.410	±1.3	4202151.046	±1.1	0.844	±1.1
	ΜΕΣΗ	476432.410	±1.3	4202151.048	±0.8	0.843	±0.8
	ANΩ	476432.411	±1.0	4202151.048	±0.9	0.843	±0.9
2°5	ΚΑΤΩ	476432.412	±1.2	4202151.048	±1.2	0.842	±1.2
	ΜΕΣΗ	476432.414	±1.0	4202151.046	±1.0	0.843	±1.0
	ΑΝΩ	476432.414	±0.8	4202151.048	±0.8	0.842	±0.8
3 0ç	ΚΑΤΩ	476432.415	±0.7	4202151.048	±0.8	0.842	±0.8
	ΜΕΣΗ	476432.415	±0.8	4202151.048	±0.8	0.839	±0.8
	ΑΝΩ	476432.414	±1.0	4202151.048	±1.0	0.839	±1.0
4ος	ΚΑΤΩ	476432.415	±0.9	4202151.045	±1.2	0.839	±1.2
	ΜΕΣΗ	476432.414	±1.1	4202151.051	±1.3	0.835	±1.3
	ANΩ	476432.415	±0.8	4202151.051	±0.9	0.833	±0.9
5 ⁰ 5	ΚΑΤΩ	476432.415	±1.1	4202151.051	±1.2	0.830	±1.2
	ΜΕΣΗ	476432.415	±1.2	4202151.051	±1.2	0.828	±1.2
	ANΩ	476432.414	±0.9	4202151.053	±1.0	0.826	±1.0
6 ⁰⁵	ΚΑΤΩ	476432.415	±0.6	4202151.053	±0.6	0.825	±0.6
	ΜΕΣΗ	476432.413	±0.9	4202151.053	±1.0	0.824	±1.0
	ANΩ	476432.413	±0.9	4202151.055	±1.0	0.820	±1.0
7º\$	ΚΑΤΩ	476432.410	±1.1	4202151.058	±1.3	0.819	±1.3
	ΜΕΣΗ	476432.408	±1.2	4202151.057	±1.4	0.817	±1.4
	ΑΝΩ	476432.408	±1.1	4202151.058	±1.2	0.815	±1.2
8 05	ΚΑΤΩ	476432.408	±0.9	4202151.055	±1.2	0.813	±1.2
	ΜΕΣΗ	476432.403	±1.3	4202151.058	±1.3	0.806	±1.3
	ΑΝΩ	476432.406	±1.1	4202151.056	±1.2	0.805	±1.2
9 ος	ΚΑΤΩ	476432.400	±2.2	4202151.059	±2.7	0.802	±2.7
-	ΜΕΣΗ	476432.405	±1.4	4202151.058	±1.3	0.797	±1.3
	ΑΝΩ	476432.402	±1.0	4202151.055	±1.2	0.795	±1.2
10 ^{0ς}	ΚΑΤΩ	476432.404	±1.0	4202151.056	±1.1	0.787	±1.1
	ΜΕΣΗ	476432.405	±1.2	4202151.057	±1.4	0.782	±1.4
	ΑΝΩ	476432.404	±1.2	4202151.057	±1.4	0.777	±1.4
1105	ΚΑΤΩ	476432.407	±1.0	4202151.059	±1.2	0.775	±1.2
	ΜΕΣΗ	476432.404	±0.8	4202151.060	±0.9	0.771	±0.9
	ΑΝΩ	476432.405	±1.1	4202151.060	±1.3	0.768	±1.3
12 ^{oç}	ΚΑΤΩ	476432.404	±1.2	4202151.062	±1.3	0.763	±1.3
	ΜΕΣΗ	476432.406	±1.0	4202151.063	±1.1	0.760	±1.1
	ΑΝΩ	476432.407	±1.1	4202151.063	±1.3	0.756	±1.3
1300	ΚΔΤΟ	476432407	+1 4	4202151 064	+1.6	0.754	+1.6

Πίνακας 5.5: Στοιχεία (X₀, Y₀, R₀) των βέλτιστων κύκλων των τομών και οι αβεβαιότητές τους για τον Κίονα Κ2.

±1.3

±1.3

4202151.065

4202151.065

0.749

0.751

±1.5

±1.6

±1.5

±1.6

476432.406

476432.406

ΜΕΣΗ

ANΩ

Table 5.5: Column K2: center coordinates X_0 , Υ_0 , and radius R_0 of the best escribed circles togetherwith their standard deviations.

Ειδικά για τον 14° σπόνδυλο του Κίονα Κ2 ο οποίος έχει θραυσθεί πλήρως σε δύο τμήματα, έγινε προσαρμογή δυο βέλτιστων κύκλων στην τομή που αντιστοιχεί στη μέση στάθμη του σπονδύλου. Ο ένας βέλτιστος κύκλος προσαρμόστηκε στο βόρειο τμήμα ενώ ο άλλος στο νότιο τμήμα του σπονδύλου. Τα στοιχεία παρατίθενται στον Πίνακα 5.6 που ακολουθεί.

Κίονας Κ2 - 14ºς σπόνδυλος								
Τμήμα	Στάθμη Τομής	X ₀ (m)	σX₀ (mm)	Υ ₀ (m)	σΥ₀ (mm)	R ₀ (m)	σR₀ (mm)	
Βόρειο	ΜΕΣΗ	476432.411	±1.2	4202151.078	±1.1	0.742	±1.0	
Νότιο	ΜΕΣΗ	476432.407	±1.3	4202151.016	±1.4	0.759	±1.0	

Πίνακας 5.6: Στοιχεία (X₀, Y₀, R₀) των βέλτιστων κύκλων των τομών και οι αβεβαιότητές τους για τον 14° σπόνδυλο του Κίονα Κ2.

Κίονας Κ3							
Σπόνδυλος	Στάθμη Τομής	X ₀ (m)	σX ₀ (mm)	Υ₀ (m)	σΥ₀ (mm)	R ₀ (m)	σR₀ (mm)
105	ΚΑΤΩ	476437.966	±1.0	4202151.023	±1.1	0.849	±1.1
	ΜΕΣΗ	476437.964	±1.3	4202151.022	±1.1	0.847	±1.1
	ANΩ	476437.965	±1.0	4202151.022	±1.3	0.847	±1.3
2°5	ΚΑΤΩ	476437.962	±0.7	4202151.022	±0.6	0.848	±0.6
	ΜΕΣΗ	476437.964	±0.6	4202151.021	±0.6	0.847	±0.6
	ΑΝΩ	476437.963	±0.7	4202151.020	±0.7	0.845	±0.7
3ος	ΚΑΤΩ	476437.964	±0.7	4202151.020	±0.6	0.844	±0.6
	ΜΕΣΗ	476437.966	±0.7	4202151.019	±0.7	0.842	±0.7
	ΑΝΩ	476437.965	±0.6	4202151.018	±0.6	0.841	±0.6
4ος	ΚΑΤΩ	476437.965	±0.8	4202151.019	±0.7	0.839	±0.7
	ΜΕΣΗ	476437.966	±0.6	4202151.019	±0.5	0.837	±0.5
	ΑΝΩ	476437.964	±0.7	4202151.018	±0.5	0.835	±0.5
5 ⁰⁵	ΚΑΤΩ	476437.966	±0.8	4202151.017	±0.7	0.836	±0.7
	ΜΕΣΗ	476437.968	±0.7	4202151.017	±0.6	0.834	±0.6
	ΑΝΩ	476437.967	±0.8	4202151.018	±0.8	0.833	±0.8
6 ⁰⁵	ΚΑΤΩ	476437.968	±0.8	4202151.016	±0.8	0.830	±0.8
	ΜΕΣΗ	476437.967	±0.7	4202151.015	±0.6	0.825	±0.6
	ANΩ	476437.967	±0.8	4202151.013	±0.8	0.823	±0.8
7 ος	ΚΑΤΩ	476437.969	±0.6	4202151.014	±0.6	0.820	±0.6
	ΜΕΣΗ	476437.967	±0.6	4202151.016	±0.5	0.816	±0.5
	ΑΝΩ	476437.967	±0.7	4202151.015	±0.8	0.812	±0.8
8 05	ΚΑΤΩ	476437.978	±0.8	4202151.014	±0.8	0.810	±0.8
	ΜΕΣΗ	476437.978	±0.7	4202151.013	±0.6	0.807	±0.6
	ΑΝΩ	476437.978	±0.8	4202151.013	±0.8	0.804	±0.8
9 05	ΚΑΤΩ	476437.977	±0.7	4202151.011	±0.7	0.803	±0.7
	ΜΕΣΗ	476437.981	±0.8	4202151.008	±0.7	0.797	±0.7
	ΑΝΩ	476437.980	±0.7	4202151.006	±0.7	0.795	±0.7
10 ^{0ς}	ΚΑΤΩ	476437.981	±0.8	4202151.009	±0.7	0.791	±0.7
-	ΜΕΣΗ	476437.982	±0.6	4202151.008	±0.5	0.789	±0.5
	ANΩ	476437.982	±1.0	4202151.008	±0.8	0.785	±0.8
1105	ΚΑΤΩ	476437.981	±0.9	4202151.008	±0.8	0.780	±0.8
	ΜΕΣΗ	476437.981	±1.1	4202151.009	±1.0	0.776	±1.0
	ΑΝΩ	476437.982	±0.8	4202151.009	±0.8	0.772	±0.8
12 ⁰ 5	ΚΑΤΩ	476437.982	±0.9	4202151.009	±0.7	0.769	±0.7
	ΜΕΣΗ	476437.982	±1.0	4202151.012	±0.9	0.763	±0.9
	ΑΝΩ	476437.983	±0.9	4202151.011	±0.8	0.757	±0.8
1305	ΚΑΤΩ	476437.983	±1.1	4202151.010	±1.0	0.755	±1.0
	ΜΕΣΗ	476437.983	±0.9	4202151.010	±0.9	0.751	±0.9
	ΑΝΩ	476437.986	±1.4	4202151.010	±1.1	0.749	±1.1
14 ⁰ S	ΚΑΤΩ	476437.983	±1.5	4202151.012	±1.2	0.744	±1.2
	ΜΕΣΗ	476437.990	±1.1	4202151.011	±1.0	0.744	±1.0
	ANO	476437987	+11	4202151 010	+0.9	0.742	+0.9

ΑΝΩ476437.987±1.14202151.010±0.90.742±0.9Πίνακας 5.7: Στοιχεία (X₀, Y₀, R₀) των βέλτιστων κύκλων των τομών και οι αβεβαιότητές τους για τον
Κίονα K3.

Table 5.7: Column K3: center coordinates X₀, Y₀, and radius R₀ of the best escribed circles togetherwith their standard deviations.

ΚΕΦΑΛΑΙΟ 6 - ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ ΚΙΟΝΩΝ

6.1 Γενικά

Το κεφάλαιο αυτό ασχολείται με την εκτίμηση των παραμορφώσεων των τριών κιόνων, χρησιμοποιώντας τα αποτελέσματα του προηγούμενου κεφαλαίου.

Αρχικά, περιγράφεται η διαδικασία προσδιορισμού του διανύσματος μετακίνησης μεταξύ δυο διαδοχικών σπονδύλων για κάθε κίονα. Υπολογίζεται η τιμή και η γωνία διεύθυνσής του, και γίνεται έλεγχος στατιστικής σημαντικότητας της μετακίνησης. Τα στοιχεία που προκύπτουν παρουσιάζονται αναλυτικά σε πίνακες ενώ δίνεται το αντίστοιχο διάγραμμα των μετακινήσεων σε κατάλληλες κλίμακες.

Στη συνέχεια, περιγράφεται η διαδικασία υπολογισμού των στροφών κάθε σπονδύλου ως προς τον πρώτο σπόνδυλο του κάθε κίονα, και ελέγχεται η στατιστική σημαντικότητα των αποτελεσμάτων. Τα στοιχεία που προκύπτουν παρουσιάζονται αναλυτικά σε πίνακες ενώ δίνεται και το αντίστοιχο διάγραμμα.

6.2 Ανίχνευση και προσδιορισμός των οριζόντιων μετακινήσεων των σπονδύλων των κιόνων

Για τον προσδιορισμό των οριζόντιων μετακινήσεων των διαδοχικών σπονδύλων κάθε κίονα υπολογίζεται το διάνυσμα μετακίνησης (D) των κέντρων των εγγεγραμμένων κύκλων των μεσαίων τομών των διαδοχικών σπονδύλων καθώς και η γωνία διεύθυνσής του (a). Κρίθηκε σκόπιμο να χρησιμοποιηθούν τα στοιχεία από τις τομές στο μέσο του κάθε σπονδύλου επειδή, στη θέση αυτή, κατά κανόνα, δεν υπάρχουν φθορές ή αυτές είναι μικρές.

Οι μετακινήσεις ελέγχθηκαν ως προς τη στατιστική σημαντικότητά τους για επίπεδο εμπιστοσύνης 95% με μονοδιάστατο έλεγχο. Για τον έλεγχο χρησιμοποιήθηκαν τα στοιχεία του πίνακα μεταβλητότητας-συμμεταβλητότητας του διανύσματος μετακίνησης, τα οποία προσδιορίσθηκαν από τους αντίστοιχους πίνακες μεταβλητότητας - συμμεταβλητότητας των συντεταγμένων των κέντρων των αντίστοιχων βέλτιστων κύκλων, με εφαρμογή του νόμου μετάδοσης μεταβλητοτήτων.

Παρακάτω, παρουσιάζονται για κάθε κίονα οι μετακινήσεις μεταξύ των διαδοχικών σπονδύλων του και οι αντίστοιχοι έλεγχοι στατιστικής σημαντιότητας των μετακινήσεων (Πίνακας 6.1, 6.2 και 6.3). Οι μετακινήσεις των σπονδύλων απεικονίζονται και σε ενιαίο διάγραμμα (Διάγραμμα 6.1) σε κατάλληλες κλίμακες ώστε να είναι άμεσα και εποπτικά συκγρίσιμες ως προς το μέτρο (D) και την διεύθυνσή τους (a).
Κίονας Κ1					
Σπόνδυλοι	D (mm)	σD (mm)	a (grad)	Στατιστικός έλεγχος (ε.ε. 95%) (mm)	
1-2	0.0	±1.2	0.00	2.6	
2-3	0.0	±1.2	0.00	2.7	
3-4	0.0	±1.0	0.00	2.6	
4-5	2.8	±1.6	150.00	3.2	
5-6	4.2	±1.7	150.00	3.5	
6-7	4.5	±1.5	229.50	3.2	
7-8	1.4	±1.3	50.00	2.9	
8-9	2.0	±1.4	300.00	2.9	
9-10	5.0	±1.6	0.00	3.2	
10-11	1.0	±1.3	200.00	2.7	
11-12	6.4	±1.1	243.00	3.0	
12-13	3.0	±1.5	0.00	3.0	
13-14	1.4	±1.6	350.00	3.2	
14-15	1.4	±1.5	150.00	3.0	
15-16	3.2	±1.4	79.50	2.8	
1-16	5.0	±1.4	187.50	2.8	

Πίνακας 6.1: Κίονας Κ1: Μέτρο και διεύθυνση οριζόντιων μετακινήσεων και στατιστικός έλεγχος σημαντικότητας για ε.ε.95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές μετακινήσεις.

Table 6.1: Column K1 : Measure and direction of the horizontal displacements of every two successivedrums and the test of their statistical significance for confidence level 95%. The statistically significantdisplacements are depicted with red color.

Κίονας Κ2						
Σπόνδυλοι	D (mm)	σD (mm)	a (grad)	Στατιστικός έλεγχος (ε.ε. 95%) (mm)		
1-2	4.5	±1.7	129.50	3.3		
2-3	2.2	±1.1	29.50	2.8		
3-4	3.2	±1.6	379.50	3.1		
4-5	1.0	±1.6	100.00	3.6		
5-6	2.8	±1.7	350.00	3.4		
6-7	6.4	±1.8	343.00	3.7		
7-8	5.1	±1.9	312.50	4.3		
8-9	2.0	±1.8	100.00	4.3		
9-10	1.0	±1.7	200.00	4.2		
10-11	3.2	±1.7	379.50	3.5		
11-12	3.6	±1.1	37.40	3.1		
12-13	2.0	±2.0	0.00	3.9		
1-13	18.0	±1.9	385.30	3.9		

Πίνακας 6.2: Κίονας Κ2: Μέτρο και διεύθυνση οριζόντιων μετακινήσεων και στατιστικός έλεγχος σημαντικότητας για ε.ε.95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές μετακινήσεις.

Table 6.2: Column K2 : Measure and direction of the horizontal displacements of every two successive drums and the test of their statistical significance for confidence level 95%. The statistically significant displacements are depicted with red color.

Κίονας Κ3						
Σπόνδυλοι	D (mm)	σD (mm)	a (grad)	Στατιστικός έλεγχος (ε.ε. 95%) (mm)		
1-2	1.0	±1.3	200.00	2.9		
2-3	2.8	±1.0	150.00	1.9		
3-4	0.0	±0.8	0.00	1.9		
4-5	2.8	±1.0	150.00	1.9		
5-6	2.2	±0.8	229,50	2.0		
6-7	1.0	±0.9	0.00	1.9		
7-8	11.4	±0.9	117.00	1.9		
8-9	5.8	±1.0	165.60	2.1		
9-10	1.0	±0.9	100.00	2.0		
10-11	1.4	±1.3	350.00	2.6		
11-12	3.2	±1.2	20.50	3.1		
12-13	2.2	±1.4	170.50	2.8		
13-14	7.1	±1.4	91.00	2.8		
1-14	28.0	±1.6	125.50	3.3		

Πίνακας 6.3: Κίονας Κ3: Μέτρο και διεύθυνση οριζόντιων μετακινήσεων και στατιστικός έλεγχος σημαντικότητας για ε.ε.95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές μετακινήσεις.

Table 6.3: Column K3 : Measure and direction of the horizontal displacements of every two successivedrums and the test of their statistical significance for confidence level 95%. The statistically significantdisplacements are depicted with red color.

Από τους παραπάνω πίνακες και το Διάγραμμα 6.1 διαπιστώνονται τα εξής:

Στον **κίονα K1** οι στατιστικά σημαντικές μετακινήσεις κυμαίνονται από 3.2mm ως 6.4mm. Δεν υπάρχει συστηματικότητα ως προς την κατεύθυνση των μετακινήσεων. Αναλυτικά:

• Στους πέντε πρώτους σπονδύλους δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.

- 0 6°ς σπόνδυλος έχει μετακινηθεί ως προς τον 5°, 4.2mm νοτιοανατολικά.
- 0 7°ς σπόνδυλος έχει μετακινηθεί 4.5mm, ως προς τον 6°, νοτιοδυτικά.

• Στον 8° και 9° σπόνδυλο δεν ανιχνεύονται στατιστικά σημαντικές μετακινήσεις.

- 0 10°ς σπόνδυλος έχει μετακινηθεί ως προς τον 9°, 5mm βόρεια.
- Στον 11° σπόνδυλο δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.
- 0 12°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 11°, 6.4mm δυτικά-

• Στους 13°, 14° και 15° σπόνδυλο δεν ανιχνεύονται στατιστικά σημαντικές μετακινήσεις.

Ο 16°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 15°, 3.2mm
βορειοανατολικά-

• Η συνολική μετακίνηση (16^{ος} σπόνδυλος σε σχέση με τον 1^{ο)} είναι **5mm, με** νότια διεύθυνση, και είναι στατιστικά σημαντική.

Στον **κίονα K2** οι στατιστικά σημαντικές μετακινήσεις κυμαίνονται από 3.6mm ως 6.4mm. Από τον 2° σπόνδυλο μέχρι και τον 13° διαπιστώνεται ότι οι μετακινήσεις έχουν γενικά βορειοδυτική κατεύθυνση. Αναλυτικά:

• Ο **2°^ς σπόνδυλος** έχει μετακινηθεί, ως προς τον 1°, **4.5mm νοτιοανατολικά**.

• Από τον 3° έως και τον 6° σπόνδυλο δεν ανιχνεύονται στατιστικά σημαντικές μετακινήσεις.

- 0 7°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 6°, 6.4mm βορειοδυτικά-
- Ο 8°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 7°, 5.1mm δυτικά.

• Από τον 9° έως και τον 11° σπόνδυλο δεν ανιχνεύονται στατιστικά σημαντικές μετακινήσεις.

0 12°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 11°, 3.6mm
βορειοανατολικά.

Δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση του 13^{ου} σπονδύλου.

Ο 14ος σπόνδυλος έχει θραυσθεί και συγκρατείται στη θέση του με μεταλλική στεφάνη, και συνεπώς δεν μπορεί να εκτιμηθεί η μετακίνησή του. Το βόρειο τμήμα του σπονδύλου έχει μετακινηθεί, ως προς τον 13°, 14mm βορειοανατολικά, ενώ το νότιο τμήμα του σπονδύλου έχει μετακινηθεί 49mm νότια. Τα δύο τμήματα του σπονδύλου απέχουν μεταξύ τους 6.2cm.

Η συνολική μετακίνηση (13°ς σπόνδυλος σε σχέση με τον 1°) είναι 18mm,
με βόρεια διεύθυνση, και είναι στατιστικά σημαντική.

Στον **κίονα K3** οι στατιστικά σημαντικές μετακινήσεις κυμαίνονται από 2.8mm ως 11.4mm. Η δεσπόζουσα κατεύθυνση των μετακινήσεων των σπονδύλων είναι προς τα νοτιοανατολικά.

 Στον 2° σπόνδυλο του κίονα δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.

- Ο 3°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 3°, 2.8mm νοτιοανατολικά.
- Στον 4º σπόνδυλο δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.
- 0 5°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 4°, 2.8mm νοτιοανατολικά.
- Ο 6°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 5°, 2.2mm νοτιοδυτικά.
- Στον 7° σπόνδυλο δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.

Ο 8°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 7°, 11.4mm
νοτιοανατολικά.

• Ο 9°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 8°, 5.8mm νοτιοανατολικά.

 Στον 10° και 11° σπόνδυλο δεν ανιχνεύονται στατιστικά σημαντικές μετακινήσεις.

0 12°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 11°, 3.2mm
βορειοανατολικά.

- Στο 13° σπόνδυλο δεν ανιχνεύεται στατιστικά σημαντική μετακίνηση.
- 0 14°ς σπόνδυλος έχει μετακινηθεί, ως προς τον 13°, 7.1mm ανατολικά.

• Η συνολική μετακίνηση (14°ς σπόνδυλος σε σχέση με τον 1°) είναι **28mm**, με νοτιοανατολική διεύθυνση, και είναι στατιστικά σημαντική.

6.3 Προσδιορισμός των στροφών των σπονδύλων των κιόνων

Προσδιορίστηκαν οι στροφές των σπονδύλων κάθε κίονα ως προς τον πρώτο σπόνδυλό του. Για τον προσδιορισμό των στροφών των σπονδύλων ακολουθήθηκε η εξής διαδικασία:

Επιλέχθηκε μια από τις ραβδώσεις του κίονα στην οποία να μην υπάρχει φθορά καθ' όλο το ύψος του κίονα. Υπολογίστηκε η γωνία διεύθυνσης της ευθείας που συνδέει το κέντρο της μεσαίας τομής με το εσώτερο σημείο της επιλεγμένης ράβδωσης. Με αυτόν τον τρόπο, οι στροφές των σπονδύλων, ως προς τον πρώτο σπόνδυλο του κίονα, υπολογίστηκαν ως διαφορές γωνιών διεύθυνσης (δa).

Οι στροφές ελέγχθηκαν ως προς τη σημαντικότητά τους για επίπεδο εμπιστοσύνης 95%. Για τον έλεγχο εφαρμόζεται ο νόμος μετάδοσης σφαλμάτων στη σχέση υπολογισμού της γωνίας διεύθυνσης,

$$a_{ij} = \arctan \frac{x_j - x_i}{y_j - y_i}$$
(6.1)

οπότε προκύπτει ότι:

$$\sigma_{a} = \pm \sqrt{ \begin{pmatrix} \frac{1}{\left(\left(y_{j}-y_{i}\right)\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} \sigma_{x_{j}}^{2} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} \sigma_{x_{i}}^{2} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} \sigma_{x_{i}}^{2} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} \sigma_{y_{i}}^{2} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-y_{i}\right)^{2}+1\right)}\right)^{2}} + \left(-\frac{1}{\left(\left(y_{j}-y_{i}\right)^{2}\left(\frac{\left(x_{j}-x_{i}\right)^{2}}{\left(y_{j}-x_{i}\right)^{2}+1\right)}\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}+1\right)^{2}}\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}+1\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}+1\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}+1\right)^{2}}\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_{i}\right)^{2}+1\right)^{2}} + \left(-\frac{1}{\left(\left(x_{j}-x_$$

Η αβεβαιότητα της διαφοράς δα των γωνιών διεύθυνσης προκύπτει:

$$\sigma_{\delta_a=} \pm \sqrt{\sigma_{a_i}^2 + \sigma_{a_1}^2} \tag{6.3}$$

Στους πίνακες που ακολουθούν (Πινακας 6.4, 6.5, 6.6) παρουσιάζονται για κάθε κίονα οι στροφές των σπονδύλων ως προς τον πρώτο, καθώς και ο έλεγχος της στατιστικής τους σημαντικότητας για επίπεδο εμπιστοσύνης 95%. Στο Παράρτημα 8 δίνονται τα σκαριφήματα με την επιλεγμένη διεύθυνση αναφοράς για κάθε κίονα.

ΚΙΟΝΑΣ Κ1		
α/α σπονδύλου	Στροφές (grad)	Στατιστικός έλεγχος (ε.ε 95%)
1		
2	1.0	1.3
3	0.4	1.3
4	0.3	1.3
5	0.3	1.3
6	2.1	1.3
7	0.8	1.3
8	3.4	1.3
9	1.3	1.3
10	0.9	1.3
11	1.0	1.3
12	2.0	1.3
13	1.0	1.3
14	1.3	1.4
15	0.7	1.4
16	1.0	1.4

Πίνακας 6.4: Κίονας Κ1. Οι στροφές των σπονδύλων ως προς τον πρώτο και ο έλεγχος της στατιστικής σημαντικότητάς τους για επίπεδο εμπιστοσύνης 95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές στροφές.

Table 6.4: Column K1. Drums' rotations with respect to the first drum and test of their statistical significance for confidence level 95%. Statistically significant rotations are depicted with red color.

Όπως φαίνεται από τον Πίνακα 6.4, οι στατιστικά σημαντικές στροφές των σπονδύλων του Κίονα Κ1 ως προς τον πρώτο σπόνδυλό του είναι οι εξής:

- 0 6°ς σπόνδυλος έχει στραφεί δεξιόστροφα κατά 2.1 grad
- 0 8°ς σπόνδυλος έχει στραφεί δεξιόστροφα κατά 3.4 grad
- 0 12°ς σπόνδυλος έχει στραφεί δεξιόστροφα κατά 2.0 grad

ΚΙΟΝΑΣ Κ2		
α/α σπονδύλου	Στροφές (grad)	Στατιστικός έλεγχος (ε.ε 95%)
1		
2	0.4	1.3
3	0.7	1.3
4	1.5	1.3
5	0.8	1.3
6	0.3	1.3
7	1.1	1.3
8	0.9	1.3
9	0.9	1.3
10	1.3	1.3
11	1.2	1.3
12	1.1	1.3
13	1.8	1.4

Πίνακας 6.5: Κίονας Κ2. Οι στροφές των σπονδύλων ως προς τον πρώτο και ο έλεγχος της στατιστικής σημαντικότητάς τους για επίπεδο εμπιστοσύνης 95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές στροφές.

Table 6.5: Column K2. Drums' rotations with respect to the first drum and test of their statistical significance for confidence level 95%. Statistically significant rotations are depicted with red color.

Όπως φαίνεται από τον Πίνακα 6.5, οι στατιστικά σημαντικές στροφές των σπονδύλων του Κίονα Κ2 ως προς τον πρώτο σπόνδυλό του είναι οι εξής:

- 0 4°ς σπόνδυλος έχει στραφεί δεξιόστροφα κατά 1.5 grad
- 0 13°ς σπόνδυλος έχει στραφεί δεξιόστροφα κατά 1.8 grad

ΚΙΟΝΑΣ Κ3			
α/α σπονδύλου	Στροφές (grad) (δεξιόστροφες)	Στροφές (grad) (αριστερόστροφες)	Στατιστικός έλεγχος (ε.ε 95%)
1			
2	0.1		1.3
3	1.1		1.3
4		0.1	1.3
5		0.0	1.3
6	0.2		1.3
7		0.1	1.3
8		0.8	1.3
9		0.8	1.3
10		0.8	1.3
11		1.3	1.3
12		0.7	1.3
13		1.3	1.3
14		1.0	1.4

Πίνακας 6.6: Κίονας Κ3. Οι στροφές των σπονδύλων ως προς τον πρώτο και ο έλεγχος της στατιστικής σημαντικότητάς τους για επίπεδο εμπιστοσύνης 95%. Με κόκκινο χρώμα παρουσιάζονται οι στατιστικά σημαντικές στροφές.

Table 6.6: Column K3. Drums' rotations with respect to the first drum and test of their statistical significance for confidence level 95%. Statistically significant rotations are depicted with red color.

Όπως φαίνεται από τον Πίνακα 6.6, μόνο ο **11°ς σπόνδυλος** έχει στραφεί **αριστερόστροφα κατά 1.3 grad**.

Διάγραμμα 6.1: Οριζόντιες μετακινήσεις των σπονδύλων στους Κίονες Κ1, Κ2, Κ3. **Diagramm 6.1**: Horizontal displacements of the drums of the columns K1, K2, K3.

7.1 Γενικά

Το κεφάλαιο αυτό αναφέρεται στην εκτίμηση των οπτικών εκλεπτύνσεων των τριών κιόνων. Αρχικά, γίνεται ο υπολογισμός των στοιχείων της μείωσης, δηλαδή της σταδιακής ελάττωσης της διαμέτρου των σπονδύλων όσο αυξάνεται το ύψος του κίονα, ενώ τα αποτελέσματα δίνονται εποπτικά σε κατάλληλους πίνακες.

Στη συνέχεια, γίνεται εκτίμηση της έντασης. Τα αποτελέσματα δίνονται ποσοτικά και ποιοτικά σε κατάλληλα διαγράμματα.

7.2 Μείωση

Η οπτική εκλέπτυνση της μείωσης αφορά στη σταδιακή μείωση της διαμέτρου D των σπονδύλων του κίονα όσο αυξάνεται το ύψος του. Στους επόμενους πίνακες (Πίνακας 7.1, 7.2, και 7.3) δίνεται για κάθε κίονα η διάμετρος των σπονδύλων του σε κάθε τομή.

Κίονας Κ1					
α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)	α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)
1.00	ΚΑΤΩ	1.694	Ooc	ΚΑΤΩ	1.595
	ΜΕΣΗ	1.683	905 500NAYAO5	ΜΕΣΗ	1.589
211011/11/102	ΑΝΩ	1.679	211011217102	ANΩ	1.582
2 oc	ΚΑΤΩ	1.678	1000	ΚΑΤΩ	1.577
ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.674	ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.569
211011/11/102	ΑΝΩ	1.670	211011217102	ANΩ	1.569
2 oc	ΚΑΤΩ	1.667	11.00	ΚΑΤΩ	1.556
ουν ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.668		ΜΕΣΗ	1.549
211010417102	ΑΝΩ	1.668	211011217102	ΑΝΩ	1.545
4.00	ΚΑΤΩ	1.661	12°5	ΚΑΤΩ	1.543
	ΜΕΣΗ	1.659		ΜΕΣΗ	1.534
211011/217102	ΑΝΩ	1.657	211011217102	ANΩ	1.526
For	ΚΑΤΩ	1.651	10.00	ΚΑΤΩ	1.523
ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.649		ΜΕΣΗ	1.513
211011211102	ΑΝΩ	1.643	211011217102	ANΩ	1.502
	ΚΑΤΩ	1.638	1400	ΚΑΤΩ	1.493
6 ^{0ς}	ΜΕΣΗ	1.636		ΜΕΣΗ	1.483
ΣΠΟΝΔΥΛΟΣ	ΑΝΩ	1.630	211011217102	ANΩ	1.475
Zoc	ΚΑΤΩ	1.627	1500	ΚΑΤΩ	1.470
ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.621		ΜΕΣΗ	1.462
	ΑΝΩ	1.614	211011217102	ΑΝΩ	1.457
Qoc	ΚΑΤΩ	1.610	1600	ΚΑΤΩ	1.449
ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.606	ΣΠΟΝΛΥΛΟΣ	ΜΕΣΗ	1.443
211011/217/02	ΑΝΩ	1.601	211011/21/102	ANΩ	1.440

Πίνακας 7.1: Η μείωση των διαμέτρων των σπονδύλων του κίονα K1 **Table 7.1**: Column K1: The diminution of the drums' diameters (meiosis)

Όπως φαίνεται από τον Πίνακα 7.1 στον κίονα Κ1, η διάμετρος στην κάτω τομή του 1^{ου} σπονδύλου είναι 1.694m ενώ στην άνω τομή του 16^{ου} σπονδύλου 1.440m, δηλαδή **η συνολική μείωση είναι 0.254m.**

Κίονας Κ2					
α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)	α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)
1.00	ΚΑΤΩ	1.687		ΚΑΤΩ	1.625
	ΜΕΣΗ	1.686	8ος ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.611
211010217102	ANΩ	1.686		ΑΝΩ	1.610
200	ΚΑΤΩ	1.684		ΚΑΤΩ	1.604
ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.687	9ος ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.594
211010417102	ANΩ	1.684		ΑΝΩ	1.590
200	ΚΑΤΩ	1.684		ΚΑΤΩ	1.573
ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.678	10ος ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.563
	ANΩ	1.678		ANΩ	1.554
4	ΚΑΤΩ	1.679	11ος ΣΠΟΝΔΥΛΟΣ	ΚΑΤΩ	1.549
	ΜΕΣΗ	1.671		ΜΕΣΗ	1.541
ΣΠΟΝΔΥΛΟΣ	ANΩ	1.666		ANΩ	1.535
F	ΚΑΤΩ	1.660	12ος ΣΠΟΝΔΥΛΟΣ	ΚΑΤΩ	1.525
	ΜΕΣΗ	1.657		ΜΕΣΗ	1.519
ZHONATAOZ	ΑΝΩ	1.651]	ΑΝΩ	1.512
6°ς ΣΠΟΝΔΥΛΟΣ	ΚΑΤΩ	1.649		ΚΑΤΩ	1.509
	ΜΕΣΗ	1.649	13ος ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.498
	ΑΝΩ	1.639]	ΑΝΩ	1.501
5	ΚΑΤΩ	1.638			
	ΜΕΣΗ	1.633			
ΣΠΟΝΔΥΛΟΣ	ΑΝΩ	1.629			

Πίνακας 7.2: Η μείωση των διαμέτρων των σπονδύλων για τον κίονα K2 Table 7.2: Column K2: The diminution of the drums' diameters (meiosis)

Στον κίονα Κ2, για τον υπολογισμό της μείωσης δεν λαμβάνεται υπ' όψη ο 14°ς σπόνδυλος διότι, όπως αναφέρθηκε προηγουμένως έχει θραυσθεί σε δύο τμήματα. Η διάμετρος στην κάτω τομή του 1°^υ σπονδύλου είναι 1.687m, ενώ στην άνω τομή του 13°^υ σπονδύλου 1.501m, δηλαδή **η συνολική μείωση μέχρι και τον 13° σπόνδυλο** είναι 0.186m.

Κίονας Κ3					
α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)	α/α ΣΠΟΝΔΥΛΟΥ	томн	D (m)
1 oc	ΚΑΤΩ	1.697	Qoc	ΚΑΤΩ	1.620
	ΜΕΣΗ	1.695	ΣΠΟΝΑΥΛΟΣ	ΜΕΣΗ	1.613
211010217102	ANΩ	1.695	211010417102	ANΩ	1.608
Joc	ΚΑΤΩ	1.696	Ooc	ΚΑΤΩ	1.606
	ΜΕΣΗ	1.693		ΜΕΣΗ	1.594
ZHUNATAUZ	ANΩ	1.690	ZHUNATAUZ	ΑΝΩ	1.591
2	ΚΑΤΩ	1.689	10.00	ΚΑΤΩ	1.582
	ΜΕΣΗ	1.684	ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.577
ZHUNATAUZ	ANΩ	1.682		ΑΝΩ	1.569
Acc	ΚΑΤΩ	1.678	11.00	ΚΑΤΩ	1.561
	ΜΕΣΗ	1.675	ΣΠΟΝΔΥΛΟΣ	ΜΕΣΗ	1.553
ZHUNATAUZ	ΑΝΩ	1.670		ΑΝΩ	1.545
For	ΚΑΤΩ	1.672	12.00	ΚΑΤΩ	1.539
	ΜΕΣΗ	1.668		ΜΕΣΗ	1.527
ZHUNATAUZ	ANΩ	1.665	ZHUNATAUZ	ΑΝΩ	1.514
	ΚΑΤΩ	1.660	12.00	ΚΑΤΩ	1.510
6 ⁰⁵	ΜΕΣΗ	1.651		ΜΕΣΗ	1.502
ΣΠΟΝΔΥΛΟΣ	ΑΝΩ	1.645		ΑΝΩ	1.497
7.00	ΚΑΤΩ	1.640	1.4 oc	ΚΑΤΩ	1.489
	ΜΕΣΗ	1.632		ΜΕΣΗ	1.489
211010/217/02	ANΩ	1.625	ΣΠΟΝΔΥΛΟΣ	ANΩ	1.483

Πίνακας 7.3: Η μείωση των διαμέτρων των σπονδύλων του κίονα K3 **Table 7.3**: Column K3: The diminution of the drums' diameters (meiosis)

Όπως φαίνεται από τον Πίνακα 7.3 στον κίονα K3, η διάμετρος στην κάτω τομή του πρώτου σπονδύλου είναι 1.697m ενώ στην άνω τομή του 14^{ου} σπονδύλου 1.483m, **δηλαδή η συνολική μείωση είναι 0.214m**

7.3 Ένταση

Όπως αναφέρθηκε στο Κεφάλαιο 2, η εκλέπτυνση της έντασης αφορά τη μη γραμμική μείωση της διαμέτρου των σπονδύλων του κίονα όσο αυξάνει το ύψος του. Υπάρχει μια έξαρση στις οριζόντιες διαστάσεις η οποία δίνει στον κίονα μια βαρελοειδή μορφή.

Το μέτρο f_i της έντασης σε κάθε σπόνδυλο δίνεται από την εξής σχέση:

$$f_i = \frac{H_i}{h} * \mu - \frac{d_k - d_i}{2} \tag{7.1}$$

Όπου:

 $H_{i,}$ το ύψος του
ί σπονδύλου, μετρημένο από την κάτω έδρα του

h, το συνολικό ύψος του κίονα

μ, η συνολική μείωση του κίονα

d_k, η διάμετρος της βάσης του 1°
υ σπονδύλου

di, η διάμετρος της κάτω έδρας του i σπονδύλου

Στα σχήματα και διαγράμματα που ακολουθούν (Σχήμα 7.1, Διάγραμμα 7.1, Σχήμα 7.2, Διάγραμμα 7.2, Σχήμα 7.3, Διάγραμμα 7.3) παρουσιάζονται για κάθε κίονα οι τιμές της έντασης, ενώ δίνεται και γράφημα της μεταβολής της.

<u>Κίονας Κ1</u>

Διάγραμμα 7.1: Διάγραμμα μεταβολής της έντασης του κίονα K1 **Diagram 7.1**: Representation of column's K1 entasis

<u>Κίονας Κ2</u>

Σχήμα 7.2: Η ένταση του κίονα K2 **Figure 7.2:** The entasis of column K2

Διάγραμμα 7.2: Διάγραμμα μεταβολής της έντασης του κίονα K2 **Diagram 7.2**: Representation of column's K2 entasis

<u>Κίονας K3</u>

		— dα —	
[$f_{14} = 0$ $f_{13} = 0.005$
			f ₁₂ = 0.009
			f ₁₁ = 0.013
			f ₁₀ = 0.017
f:	h i+1	d i+1	f ₉ = 0.021
- <u> </u> ;	hi	di	f ₈ = 0.021
		u i	f ₇ = 0.022
			f ₆ = 0.022
			f ₅ = 0.019
			$f_4 = 0.014$
) 			f ₃ = 0.010
(<u> </u>		d 2	f ₂ = 0.006
l	h 1		$f_1 = 0$
		-d κ = d 1	
0 5 10 20 0 50 100 200	50 cm (Κλίμ] 500 cm (Κλίμ	ακα διάμετρων σπουνδύλων) ακα ύψους κίονα)	Κίονας Κ3

Σχήμα 7.3: Η ένταση του κίονα K3 **Figure 7.3:** The entasis of column K3

Διάγραμμα 7.3: Διάγραμμα μεταβολής της έντασης του κίονα K3 **Diagram 7.3:** Representation of column's K3 entasis

κεφαλαίο 8 - κατανομή εργασιών

8.1 Γενικά

Στο κεφάλαιο αυτό περιγράφονται οι εργασίες που πραγματοποιήθηκαν για την ολοκλήρωση της παρούσας διπλωματικής εργασίας και η χρονική κατανομή τους.

Οι εργασίες αυτές διαχωρίζονται σε εργασίες πεδίου, οι οποίες ολοκληρώθηκαν σε 13 μέρες και καταλαμβάνουν το 16% των συνολικών εργασιών, και σε εργασίες γραφείου οι οποίες ολοκληρώθηκαν σε 67 με αντίστοιχο ποσοστό 84%. Ο μέσος όρος εργασίας ανά μέρα εκτιμήθηκε ίσος με 5 ώρες.

Διάγραμμα 8.1: Κατανομή των εργασιών πεδίου και γραφείου. **Diagram 8.1**: Distribution of field and office work.

ΚΕΦΑΛΑΙΟ 8 – ΚΑΤΑΝΟΜΗ ΕΡΓΑΣΙΩΝ

Εργασίες πεδίου

Πιο αναλυτικά, οι εργασίες πεδίου περιελάμβαναν:

- Τον έλεγχο του εξοπλισμού (2 μέρες)
- Την εξοικίωση με τον τρισδιάστατο σαρωτή και την πραγματοποίηση δοκιμαστικής σάρωσης στον χώρο της ΣΑΤΜ (3 μέρες)
- Την αναγνώριστη της περιοχής μελέτης, την ίδρυση του γεωδαιτικού δικτύου και την εξασφάλιση των κορφών του (2 μέρες)
- Την μέτρηση των στοιχείων του γεωδαιτικού δικτύου και την πραγματοποίση γεωμετρικής χωροστάθμησης στις κορυφές του (3 μέρες)
- Τις σαρώσεις των κιόνων (3 μέρες)

Οι εργασίες πεδίου πραγματοποιήθηκαν κατά τις περιόδους Μαρτίου-Απριλίου 2018 και Σεπτεμβρίου 2018. Στο επόμενο διάγραμμα (Διάγραμμα 8.2) παρουσιάζεται αναλυτικά η χρονική κατανομή των εργασιών αυτών.

Διάγραμμα 8.2: Κατανομή των εργασιών υπαίθρου. **Diagram 8.2**: Field work distribution.

<u>Εργασίες γραφείου</u>

Οι εργασίες γραφείου περιελάμβαναν:

- Την επίλυση του γεωδαιτικού δικτύου (2 μέρες)
- Την επεξεργασία του νέφους σημείων και την υλοποίηση των οριζόντιων τομών (10 μέρες)
- Τον προσδιορισμό των παραμορφώσεων και των οπτικών εκλεπτύνσεων των κιόνων (25 μέρες)
- Την συγγραφή των κειμένων (30 μέρες)

Διάγραμμα 8.3: Κατανομή των εργασιών γραφείου. **Diagram 8.3**: Office work distribution. ΚΕΦΑΛΑΙΟ 9 - ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΤΑΣΕΙΣ

9.1 Γενικά

Στο κεφάλαιο αυτό παρατίθενται τα συμπεράσματα που εξάγονται από τη μεθοδολογία που εφαρμόστηκε και τα αποτελέσματα που προέκυψαν κατά την εκπόνηση της παρούσας Διπλωματικής Εργασίας. Στη συνέχεια, παρουσιάζονται οι προτάσεις, που θα βοηθήσουν στην πληρέστερη απεικόνιση και γεωμετρική τεκμηρίωση του Ναού του Ολυμπίου Διός και θα συνεισφέρουν στις αναστηλωτικές εργασίες που είναι απαραίτητες για την ενίσχυση του μνημείου.

9.2 Συμπεράσματα

Τα συμπεράσματα μπορούν να κατηγοριοποιηθούν όπως παρακάτω.

Σχετικά με την **γεωδαιτική μεθοδολογία** :

Η εγκατάσταση γεωδαιτικού δικτύου οριζοντίου ελέγχου και η πραγματοποίηση των σαρώσεων από τις κορυφές του δίνει τη δυνατότητα της γεωμετρικής τεκμηρίωσης του αντικειμένου που μελετάται με ενιαία υψηλή ακρίβεια της τάξης των λίγων mm. Ο προσανατολισμός του δικτύου στο κρατικό σύστημα αναφοράς, επιτρέπει τη συσχέτιση των παραμορφώσεων που ανιχνεύονται με πιθανά φυσικά αίτια ή ανθρωπογενείς δράσεις μέχρι την παρούσα πρώτη φάση των μετρήσεων.

Με το συγκεκριμένο δίκτυο οριζοντίου ελέγχου, δίνεται η δυνατότητα της συσχέτισης των πιθανών μεταβολών των παραμορφώσεων των κιόνων, μετά από την εμφάνιση των παραπάνω πιθανών δράσεων, σε επόμενη φάση διεξαγωγής μετρήσεων. Με βάση αυτές τις μεταβολές, δίνεται η δυνατότητα προσδιορισμού της απόκρισης ολόκληρης της περιοχής μεταξύ των δυο φάσεων.

 Η εκτίμηση των παραμορφώσεων του αντικειμένου μέσω των κατάλληλων τομών και η προσαρμογή σε αυτές του επιλεγμένου γεωμετρικού σχήματος ή γραμμής με χρήση της Μ.Ε.Τ., δίνει τη δυνατότητα ανίχνευσης στατιστικά σημαντικών παραμορφώσεων της τάξης των λίγων mm με αξιόπιστο και ελεγχόμενο τρόπο. Συγκεκριμένα, εξελίσσεται η γεωδαιτική μεθοδολογία μέσω της εφαρμογής της αξονικής τομογραφίας πάνω στο ολογράφημα του αντικειμένου

Όσον αφορά τις μετακινήσεις που ανιχνεύθηκαν στους τρεις κίονες, που εξετάζονται διαπιστώνονται τα εξής :

• Στον <u>κίονα K1</u> ανιχνεύονται στατιστικά σημαντικές μετακινήσεις που κυμαίνονται από 3.2mm ως 6.4mm, και στατιστικά σημαντικές δεξιόστροφες στροφές στον 6°, 8° και 12° σπόνδυλο (Πίνακας 6.1, Πίνακας 6.4) Οι μετακινήσεις

ΚΕΦΑΛΑΙΟ 9 – ΣΥΜΠΕΡΑΣΜΑΤΑ- ΠΡΟΤΑΣΕΙΣ

εμφανίζουν μια κίνηση, που θα μπορούσε να χαρακτηρισθεί ως μη αιτιοκρατική. (Διάγραμμα 6.1). Η συνολική μετακίνηση (16^{ος} σπόνδυλος ως προς τη βάση του 1^{ου}) είναι 5mm, με νότια κατεύθυνση.

Στον <u>κίονα K2</u> ανιχνεύονται στατιστικά σημαντικές μετακινήσεις που κυμαίνονται από 3.6mm ως 6.4mm, και στατιστικά σημαντικές δεξιόστροφες στροφές στον 4° και 13° σπόνδυλο (Πίνακας 6.2, Πίνακας 6.5). Η συνολική μετακίνηση (13°ς σπονδύλος ως προς τη βάση του 1°υ, είναι 18mm. Οι μετακινήσεις των σπονδύλων του κίονα K2 από τον 3° σπόνδυλο και πάνω παρουσιάζουν γενική κατεύθυνση προς τα βόρεια-βορειοδυτικά (Διάγραμμα 6.1) Γενικά παρουσιάζεται στον κίονα μια δεσπόζουσα αριστερόστροφη συστροφή, η οποία στο 2° σπόνδυλο παρουσιάζεται μια βόρεια – βορειοδυτική κίνηση.

• Ο 14°ς σπόνδυλος του κίονα Κ2 που έχει θραυσθεί σε δύο τεμάχη, παρουσιάζει στο βόρειο τέμαχός του μετακίνηση 13.9mm με βόρεια διεύθυνση, ενώ στο αντίστοιχο νότιο, μετακίνηση 4.9mm με νότια διεύθυνση.

Στον <u>κίονα K3</u> ανιχνεύονται στατιστικά σημαντικές μετακινήσεις που κυμαίνονται από 2.2mm ως 11.4mm, και στατιστικά σημαντική αριστερόστροφη στροφή μόνο στον 11° σπόνδυλο (Πίνακας 6.3, Πίνακας 6.6). Η συνολική μετακίνηση (14°ς σπόνδυλος ως προς τη βάση του 1°^ν) είναι 28mm. Οι μετακινήσεις του κίονα K3 παρουσιάζουν γενική κατεύθυνση προς τα ανατολικά - νοτιοανατολικά.

Οι κίονες Κ2 και Κ3 έχουν μετακινηθεί σε αντίθετες κατευθύνσεις. Αυτή η μετακίνηση έχει ως αποτέλεσμα να διευρυνθεί η απόσταση των στηρίξεων του επιστυλίου που τους συνδέει. Είναι πιθανό, η εφελκυστική ρωγμή του επιστυλίου (Εικόνα 9.1), να οφείλεται στην αύξηση της ροπής κάμψης στο μέσον του λόγω ακριβώς της μετακίνησης των κιόνων Κ2 και K3 σε αντίθετες κατευθύνσεις.

Εικόνα 9.1: Η ρωγμή στο επιστύλιο των κιόνων K2-K3 **Picture 9.1**: Crack of the architrave of columns K2-K3

9.3 Προτάσεις

Οι προτάσεις στις οποίες καταλήγει η παρούσα Διπλωματική Εργασία είναι οι εξής:

1. Στις 19 Ιουλίου 2019 εκδηλώθηκε στην περιοχή του λεκανοπεδίου Αττικής ισχυρή σεισμική δόνηση μεγέθους 5.1 R, προκαλώντας πολλές υλικές ζημιές σε κτίρια της Αθήνας. Προτείνεται συνεπώς να πραγματοποιηθεί επανάληψη των σαρώσεων και του προσδιορισμού των παραμορφώσεων των σπονδύλων των κιόνων K1, K2 και K3 ώστε να διαπιστωθεί αν και πως επηρεάστηκαν από αυτή τη σεισμική διέγερση.

2. Προτείνεται η εφαρμογή της μεθοδολογίας που ακολουθήθηκε στην παρούσα Διπλωματική Εργασία και για τους υπόλοιπους κίονες του Ναού, ώστε να δημιουργηθεί το ψηφιακό μοντέλο για το σύνολο του μνημείου, και να εκτιμηθούν οι παραμορφώσεις των μελών του ναού (κιόνων και επιστυλίων), για να αξιοποιηθούν σε μελλοντικές αναστηλωτικές εργασίες.

3. Στο χώρο του Ολυμπιείου είναι σκόπιμο να εγκατασταθεί δίκτυο κατακορύφου ελέγχου, τόσο πάνω στις μνημειακές εγκαταστάσεις, όσο και σε επιλεγμένα σημεία στον περιβάλλοντα χώρο. Σκοπός αυτού του δικτύου θα είναι η διαχρονική παρακολούθηση των κατακόρυφων μετακινήσεων, λόγω των κραδασμών εξαιτίας του έντονου κυκλοφοριακού φόρτου της εγγύτατης περιοχής, αλλά και της διέλευσης του τροχιόδρομου (τραμ) σε πολύ μικρή απόσταση.

4. Τέλος, είναι σκόπιμο να γίνει μια γενική πρόταση για όλα τα μνημειακά σύνολα. Συγκεκριμένα, με βάση τη γεωδαιτική μεθοδολογία που αναπτύχθηκε και εφαρμόσθηκε στο συγκεκριμένο μνημείο, επιβάλλεται να γίνουν ανάλογες εργασίες και σε άλλα μνημειακά σύνολα, έτσι ώστε να δημιουργηθεί μια τράπεζα πληροφοριών, η οποία θα συνεισφέρει:

α) Στην εκτίμηση της στατικής επικινδυνότητας των μνημείων, μέχρι τη χρονική στιγμή της εφαρμογής της παραπάνω μεθοδολογίας στο πλαίσιο αρχικής φάσης (φάση αναφοράς).

β) Στη διευκόλυνση των απαραίτητων μελλοντικών αναστηλωτικών εργασιών, που θα κριθεί ότι πρέπει να γίνουν σε αυτά, για να προληφθούν οι πιθανές αστοχίες και καταρρεύσεις.

γ) Στην καταγραφή της απόκρισης των δομικών στοιχείων τους, σε ενδεχόμενες, πιθανές φυσικές ή ανθρωπογενείς δράσεις, μετά τη φάση αναφοράς, σε απόμενη συγκεκριμένη χρονική στιγμή (π.χ. μετά από σεισμική διέγερση).

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- 1. **Αγατζά Μπαλοδήμου Α. Μ.** : Θεωρία σφαλμάτων και Συνορθώσεις Ι, Σημειώσεις μαθήματος, Σ.Α.Τ.Μ. Ε.Μ.Π., Αθήνα 2007
- Αγατζά Μπαλοδήμου Α. Μ. : Θεωρία σφαλμάτων και Συνορθώσεις ΙΙ, Σημειώσεις μαθήματος, Σ.Α.Τ.Μ. Ε.Μ.Π., Αθήνα 2009
- Λάμπρου Ε. Πανταζής Γ. : "Εφαρμοσμένη Γεωδαισία", Εκδόσεις Ζήτη, Αθήνα 2011
- Γεωργόπουλος Γ., Γκίκας Β., Τελειώνη Ε., Τσακίρη Μ.: Μετρήσειςδιορθώσεις-αναγωγές-προσδιορισμός θέσης, Σημειώσεις μαθήματος
 Σ.Α.Τ.Μ. Ε.Μ.Π., Αθήνα 2011
- 5. **Ζάμπας Κ.** : "Οι εκλεπτύνσεις των κιόνων του Παρθενώνος", Διδακτορική διατριβή, Ε.Μ.Π, Αθήνα 1998
- 6. Τσόντζου Α.: Έλεγχος των παραμορφώσεων και μελέτη των εκλεπτύνσεων του κίονα K31 του Ναού του Νεμείου Διός με χρήση επίγειου τρισδιάστατου σαρωτή, Διπλωματική Εργασία, Σ.Α.Τ.Μ. Ε.Μ.Π., Αθήνα 2014
- Κουλουμέντας Π.: Έλεγχος των μετακινήσεων της κρηπίδας του Ναού του Ολυμπίου Διός, Διπλωματική Εργασία, Σ.Α.Τ.Μ. Ε.Μ.Π., Αθήνα 2010
- 8. **Georgopoulos G.D., Telioni E., Tsontzou A.** : The contribution of laser scanning technology in the estimation of ancient Greek monuments; deformations, Survey Review, 2016, Vol.46, No 349.
- Georgopoulos G.D., Telioni E., Antoniou G., Diakoumi E. : Axial tomography as a tool for the estimation of constructions' deformations, 4th Joint International Symposium on Deformation Monitoring, 15 -17 May, Athens, Greece.

ΙΣΤΟΓΡΑΦΙΑ

- 1. <u>www.el.wikipedia.org</u>
- 2. <u>www.ancientathens3d.com</u>
- 3. <u>www.geomythiki.blogspot.com</u>
- 4. <u>www.odysseus.culture.gr</u>

ΠΑΡΑΡΤΗΜΑ 1 - ΕΞΑΣΦΑΛΙΣΕΙΣ

ΑΥΤΟΣΧΕΔΙΑ ΕΞΑΣΦΑΛΙΣΕΩΝ

<u>ΚΟΡΥΦΗ Σ1</u>

<u>ΚΟΡΥΦΗ Σ2</u>

<u>ΚΟΡΥΦΗ Σ3</u>

<u>ΚΟΡΥΦΗ Σ4</u>

<u>ΚΟΡΥΦΗ Σ5</u>

κοργφη Σ6

<u>ΚΟΡΥΦΗ Σ7</u>

<u>ΚΟΡΥΦΗ Σ8</u>

ΠΑΡΑΡΤΗΜΑ 2 – ΠΡΩΤΟΓΕΝΕΙΣ ΜΕΤΡΗΣΕΙΣ ΔΙΚΤΥΟΥ

		Σκοπ	εύσεις	εις Οριζόντιες γωνίες(gr) Κατακόρυφες γωνίες (grad)				
		Από	Поос	ΙΘέση	ll Qéan	ΙΘέση	ΙΘέση	Κεκλιμένο μήκος S(m)	Ύψος Στόχου(m)	Υψος οργάνου(m)
		51	52	399 9998	200,0000	99.7654	300 2446	22 252	1 536	1 5/18
	ő	21	52	202 5479	192 5492	99.4972	200 5220	23.333	1.550	1.546
	8		25	352.3476	192.9492	00.6802	300.3230	44.741	1.000	
	E		24	2.0722	202.0714	55.0652	500.5170	61.324	1.440	
	Ē		25	32.8390	232.8414	101.8988	298.1102	59.088	1.522	
	լ		26	43.7800	243.7820	102.5572	297.4438	39.522	1.483	
			Σ7	66.5020	266.5100	103.2164	296.7926	31.404	1.532	
E			Σ8	126.2832	326.2860	99.8594	300.1464	23.187	1.433	
୍ <u>ୟ</u>										
L L	ĸ	Σ1	Σ2	0.0002	200.0004	99.7624	300.2452	23.353		
	ğ		Σ3	392.5494	192.5502	99.4850	300.5246	44.741		
	Ŀ,		Σ4	2.6702	202.6724	99.6896	300.3188	61.324		
	Ē		Σ5	32.8394	232.8402	101.8980	298.1070	59.088		
	5		Σ6	43.7794	243.7830	102.5594	297.4468	39.522		
	7		Σ7	66.5042	266.5044	103.2174	296.7896	31.404		
			Σ8	126.2852	326.2840	99.8582	300.1464	23.187		
	L.	Σ2	Σ1	215.4862	15.4860	100.5564	299.4494	23.355	1.425	1.530
	õ		Σ3	0.0000	200.0016	99.4732	300.5324	21.719	1.540	
	,ē		Σ4	19,7850	219,7892	99.3964	300.6110	38.002	1.581	
	β		Σ5	66 7072	266,7086	102,7620	297.2466	40.457	1.607	
	5		56	97 7610	297 7632	130 7978	296 2134	26 113	1.603	
	1		57	132 8780	332 8786	103 8400	296 1714	28 215/28 216	1.501	
2			28	178 7720	378 7696	100.0484	299.9588	28 952/28 954	1.001	
6			20	170.7720	378.7050	100.0404	255.5500	38.553738.554	1.455	
-8		52	51	215 4926	15 //960	100 5564	299 4492	23 254/22 255		
L L	S	22	22	213.4830	200,000	00.3304	200 5016	20.004/20.000		
	00		23	10.7004	200.0006	39.4/30	200.5310	29.719		
	, D		24	19.7884	219.7848	39.3394	300.0104	38.002		
	Ĕ		25	00.7090	200./0/0	102.7604	297.2496	40.457		
	7		26	97.7586	297.7626	103.7962	296.2122	26.113		
			Σ/	132.8790	332.8790	103.8402	296.1672	28.215		
			Σ8	178.7682	378.7704	100.0502	299.9596	38.954		
	ĸ	Σ3	Σ1	164.9438	364.9462	100.3796	299.6296	44.742/44.743	1.536	1.543
	ğ		Σ2	156.9236	356.9224	100.5672	299.4388	21.720	1.501	
)ji		Σ4	0.0000	200.0004	99.3420	300.6648	18.551/18.552	1.579	
ող 3	1դ Пе		Σ5	59.6922	259.6928	103.5240	296.4832	35.098	1.593	
			Σ6	99.8132	299.8166	103.5248	296.4830	33.388	1.481	
			Σ7	118.5784	318.5792	102.7168	297.2914	43.272/43.273	1.523	
			Σ8	143.2636	343.2636	100.2114	299.7954	59.902/59.903	1.436	
, ŭ										
片	ĸ	23	Σ1	164.9454	364.9446	100.3788	299.6312	44.742		
	90		22	156.9236	356.9238	100.5668	299.4410	21.720		
	, jč		24	399.9996	200.0004	99.3442	300.6644	18.552/18.551		
	Ĕ		25	59.6902	259.6944	103.5246	296.4866	35.099/35.098		
	5		20	99.8120	299.8174	103.5272	296.4814	33.388/33.389		
			2/	118.5804	318.5808	102.7176	297.2920	43.252		
			28	143.2050	343.2022	100.2102	299.7952	59.902		
	ĸ	Σ4	Σ1	79.9716	279.9730	100.3968	299.6058	61.326	1.489	1.460
	Š		Σ2	81.6082	281.6092	100.6014	299.4042	38.005	1.415	
	Бí,		Σ3	104.9040	304.9066	100.7596	299.2452	18.553	1.394	
	프		Σ5	399.9998	200.0004	104.6494	295.3556	28.413/28.414	1.526	
			Σ6	37.0974	237.0996	103.1982	296.8070	38.151/38.152	1.483	
4	1		Σ7				Δει	ν υπήρχε ορατότητα		
			Σ8	60.8380	260.8382	100.2752	299.7302	73.001	1.389	
<u></u>										
۲ <u>۲</u>	<u>د</u>	Σ4	Σ1	79.9716	279.9726	100.3970	299.6066	61.326		
M	ç,		Σ2	81.6092	281.6100	100.6012	299.4020	38.004		
	, je		Σ3	104.9066	304.9056	100.7592	299.2472	18.552		
	da L		Σ5	399.9980	200.0000	100.6494	295.3572	28.413		
			Σ6	37.0978	237.0998	103.1974	296.8064	38.152		
	21		Σ7				Δ.F.	ν υπήρχε ορατότητα		
			58	60.8368	260.8382	100.2750	299.7298	73.001		
				00.0000	20010302	200.2750	2001.200	751001		
	č	Σ5	Σ1	20.5931	220.5950	98.1558	301.8496	59.087	1.552	1.564
	Ş		Σ2	38.9836	238.9850	97.4654	302.5396	40.451/40.452	1.351	
)(c		Σ3	75.0542	275.0530	96.7592	303.2520	35.092	1.370	
	<u></u>		Σ4	110.4498	310.4484	95.6350	304.3686	28.405	1.374	
	-		Σ6	0.0000	199.9996	99,8122	300,1944	21.255	1,423	
	T,		57	391 2282	191 3374	99 811/	300 1970	35 686/35 685	1 510	
ъ			27	205 0006	105.0000	00.0053	201.0124	61 001	1.510	
۲ ۲			28	333.9880	133.3888	98.0962	301.9124	01.221	1.005	
<u>қ</u> ,										
Ĕ	ĸ	Σ5	Σ1	20.5948	220.5946	98.1568	301.8508	59.087		
	õ		Σ2	38.9846	238.9850	97.4700	302.5400	40.451/40.452		
	,e		Σ3	75.0542	275.0550	96.7588	303.2494	35.093		
	da		Σ4	110,4502	310.4460	95,6354	304,3704	28,405/28,406		
	<u> </u>		26	399 9990	199 9996	99 91 24	300 1950	21 255		
	2rl		57	201 2260	101 2202	00 0100	200 1052	25.605		
			2/	371.3300	191.3392	55.8108	200.1925	53.065		
			28	395.9878	195.9882	98.0976	301.9110	61.221		

	Ś	Σ6	Σ1	52.5850	252.5886	97.7030	302.3028	39.516	1.422	1.517	
	οõ		Σ2	91.0938	291.0954	96.1800	303.8264	26.111	1.460		
	,e		Σ3	136.2290	336.2288	96.7716	303.2340	33.378	1.429		
	ם		Σ4	168.6020	368.6028	96.8790	303.1274	38.147/34.148	1.453		
	Ē	Σ5 221.0364 21.0360 100.8936 299.1092 21.257 1.42 Σ7 0.0000 199.9998 100.2064 299.7998 14.906 1.51 Σ8 14.9000 214.9016 97.4078 302.5994 40.034 1.45	1.423								
.0	-		199.9998	100.2064	299.7998	14.906	1.510				
Ĕ			Σ8	14.9000	214.9016	97.4078	302.5994	40.034	1.457		
g											
12	Ś	Σ6	5 Σ1 52.5880 252.5884 97.7058 302.3024 39.516 Σ2 91.0952 291.0948 96.1810 303.8268 26.113/26.114								
	ş		Σ2	91.0952	291.0948	96.1810	303.8268	26.113/26.114			
	,e		Σ3	136.2278	336.2280	96.7742	303.2350	33.378/33.377			
	ם		Σ4	168.6036	368.6008	96.8840	303.1264	38.148/38.149			
	Ľ		Σ5	221.0360	21.0384	100.8972	299.1062	21.257/21.258			
	2		Σ7	399.9994	199.9990	100.2070	299.7988	14.906			
			Σ8	14.9010	214.9020	97.4108	302.5988	40.034			
	ۍ	Σ7	Σ1	51.8170	251.8182	96.9010	303.1038	31.403	1.475	1.516	
	δõ		Σ2	102.7236	302.7216	96.2114	303.7986	28.215	1.528		
	,õ		Σ3	131.5038	331.5032	97.2974	302.7102	43.273/43.274	1.523		
	<u>p</u>		Σ4	153.8234	353.8238	97.3406	302.6682	51.761	1.707		
	<u> </u>		Σ5	188.8932	388.8950	100.3844	299.6208	35.685	1.462		
~	1		Σ6	176.5106	376.5136	99.7100	300.2954	14.906/14.905	1.542		
2			Σ8	0.0000	200.0004	96.1620	303.8408	25.781	1.334		
5											
۲ġ.	ر د	Σ7	Σ1	51.8186	251.8198	96.8998	303.1052	31.403			
M	δõ		Σ2	102.7206	302.7210	96.2140	303.7968	2.215			
)(Σ3	131.5046	331.5012	97.2994	302.7090	43.274			
	ם		Σ4	153.8238	353.8250	97.3404	302.6690	51.762			
	ļ		Σ5	188.8938	388.8926	100.3850	299.6224	35.685			
	7		Σ6	176.5126	376.5108	99.7092	300.2978	14.906/14.905			
			Σ8	399.9984	199.9994	96.1630	303.8438	25.781			
	ۍ	Σ8	Σ1	0.0000	200.0000	100.4332	299.5708	23.186	1.569	1.562	
	δo		Σ2	37.0180	237.0182	100.1260	299.8842	38.954	1.554		
	jç,		Σ3	44.5928	244.5946	99.9960	300.0118	59.901/59.900	1.489		
	ם		Σ4	57.2560	257.2600	99.8060	300.2024	73.000	1.548		
			Σ5	81.9522	281.9544	102.0796	297.9270	61.226/61.225	1.462		
~	+		Σ6	79.8242	279.8246	102.6384	297.3668	40.038/40.037	1.599		
ĩ			Σ7	88.4046	288.4050	104.3238	295.6838	25.796	1.551		
9											
<u>ع</u>	ۍ	Σ8	Σ1	399.9990	200.0010	100.4362	299.5690	23.186			
M	- QO		Σ2	37.0174	237.0178	100.1238	299.8834	38.954			
	<u>,</u> 9		Σ3	44.5934	244.5930	99.9956	300.0110	59.900			
	<u>a</u>		Σ4	57.2578	257.2616	99.8070	30.2018	73.000			
	5		Σ5	81.9526	281.9526	102.0782	297.9292	61.225			
	7		Σ6	79.8236	279.8250	102.6394	297.3680	40.038			
			Σ7	88.4020	288.4044	104.3224	295.6832	25.796/25.797			

Από	Προς	Γνωστή απόσταση (m)	Μετρημένη απόσταση (m)	Απόκλιση (mm)
	B5	10.00309	10.001	2.1
	B6	14.00270	14.000	2.7
	B7	15.02294	15.020	2.9
	B8	18.00204	18.000	2.0
	B9	20.00099	19.998	3.0
	B10	22.00080	21.999	1.8
	B11	23.00152	22.998	3.5
	B12	24.99963	24.997	2.6
	B13	25.99980	25.998	1.8
	B14	28.99642	28.994	2.4
D1	B15	29.99986	29.997	2.9
DI	B16	34.00208	33.998	4.1
	B17	35.00013	34.997	3.1
	B18	38.00014	37.998	2.1
	B19	40.00119	39.998	3.2
	B20	41.99875	41.996	2.8
	B21	45.00119	44.999	2.2
	B22	46.00385	46.001	2.9
	B23	47.00223	46.999	3.2
	B24	48.00001	47.997	3.0
	B25	49.00060	48.997	3.6
	B26	50.00263	49.999	3.6

ΠΑΡΑΡΤΗΜΑ 3 – ΕΛΕΓΧΟΣ ΚΥΚΛΙΚΟΥ ΣΦΑΛΜΑΤΟΣ

<u>ΠΑΡΑΡΤΗΜΑ 4 – ΣΑΡΩΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΤΑ BAARDA</u>

Παρατήρηση Γωνίας	$ \mathbf{u}_{i}/\sigma_{ui} $	Παρατήρηση Απόστασης	$ \mathbf{u}_{i}/\boldsymbol{\sigma}_{ui} $
Σ2-Σ1-Σ3	1.12	Σ1-Σ2	0.96
Σ2-Σ1-Σ4	1.51	Σ1-Σ3	0.23
Σ2-Σ1-Σ5	1.34	Σ1-Σ4	0.31
Σ2-Σ1-Σ6	1.72	Σ1-Σ5	0.07
Σ2-Σ1-Σ7	1.09	Σ1-Σ6	0.04
Σ2-Σ1-Σ8	2.52	Σ1-Σ7	0.74
Σ3-Σ2-Σ1	1.52	Σ1-Σ8	0.32
Σ3-Σ2-Σ4	2.32	Σ2-Σ3	1.18
Σ3-Σ2-Σ5	1.65	Σ2-Σ4	0.28
Σ3-Σ2-Σ6	0.74	Σ2-Σ5	0.06
Σ3-Σ2-Σ7	0.77	Σ2-Σ6	0.41
Σ3-Σ2-Σ8	0.90	Σ2-Σ7	0.56
Σ4-Σ3-Σ1	0.93	Σ2-Σ8	0.65
Σ4-Σ3-Σ2	0.46	Σ3-Σ4	1.05
Σ4-Σ3-Σ5	0.90	Σ3-Σ5	0.96
Σ4-Σ3-Σ6	0.44	Σ3-Σ6	0.01
Σ4-Σ3-Σ7	0.40	Σ3-Σ7	0.62
Σ4-Σ3-Σ8	0.20	Σ3-Σ8	0.99
Σ5-Σ4-Σ1	0.20	Σ4-Σ5	0.40
Σ5-Σ4-Σ2	0.59	Σ4-Σ6	0.56
Σ5-Σ4-Σ3	0.86	Σ4-Σ7	0.97
Σ5-Σ4-Σ6	0.44	Σ4-Σ8	0.17
Σ5-Σ4-Σ8	0.91	Σ5-Σ6	0.49
Σ6-Σ5-Σ1	1.57	Σ5-Σ7	0.21
Σ6-Σ5-Σ2	0.99	Σ5-Σ8	0.66
Σ6-Σ5-Σ3	1.11	Σ6-Σ7	0.30
Σ6-Σ5-Σ4	2.09	Σ6-Σ8	0.62
Σ6-Σ5-Σ7	0.77	Σ7-Σ8	0.80
Σ6-Σ5-Σ8	0.29		
Σ7-Σ6-Σ1	1.85		
Σ7-Σ6-Σ2	0.14		
Σ7-Σ6-Σ3	1.09		
Σ7-Σ6-Σ4	0.24]	
Σ7-Σ6-Σ5	1.50]	
Σ7-Σ6-Σ8	1.93		
Σ8-Σ7-Σ1	0.21]	
Σ8-Σ7-Σ2	0.13]	
Σ8-Σ7-Σ3	1.74]	
Σ8-Σ7-Σ4	0.90		
Σ8-Σ7-Σ5	1.62]	
Σ8-Σ7-Σ6	0.83		
Σ1-Σ8-Σ2	1.24]	
Σ1-Σ8-Σ3	1.90]	
Σ1-Σ8-Σ4	0.45	1	
Σ1-Σ8-Σ5	0.30	1	
Σ1-Σ8-Σ6	0.85	1	
Σ1-Σ8-Σ7	0.26	1	

<u>ΠΑΡΑΡΤΗΜΑ 5 – ΟΙ ΠΙΝΑΚΕΣ Vx(mm²) ΚΑΙ ΥΠΟΛΟΙΠΩΝ</u>

Vx													
7.73E-07	-6.47E-08	4.71E-07	-2.57E-07	3.80E-07	-2.93E-07	3.00E-07	-2.18E-07	4.67E-07	-1.94E-07	3.41E-07	-1.70E-07	-1.62E-08	1.01E-08
-6.47E-08	1.79E-07	-6.65E-08	2.10E-07	-2.45E-08	2.26E-07	-7.50E-08	5.44E-08	-5.06E-08	9.15E-08	8.94E-09	8.73E-08	6.94E-08	2.59E-08
4.71E-07	-6.65E-08	1.01E-06	-1.46E-07	6.00E-07	-1.47E-07	4.05E-07	-2.94E-07	3.75E-07	-1.74E-07	2.32E-07	-1.10E-07	-6.51E-09	9.56E-08
-2.57E-07	2.10E-07	-1.46E-07	4.59E-07	-3.13E-08	5.19E-07	-9.88E-08	7.17E-08	-1.09E-07	1.12E-07	1.84E-08	7.31E-08	9.32E-08	-8.53E-08
3.80E-07	-2.45E-08	6.00E-07	-3.13E-08	9.71E-07	-2.92E-07	6.12E-07	-4.44E-07	3.37E-07	-2.67E-07	2.46E-07	-2.16E-07	-2.61E-08	-4.78E-08
-2.93E-07	2.26E-07	-1.47E-07	5.19E-07	-2.92E-07	8.75E-07	-2.23E-07	1.62E-07	-9.16E-08	1.36E-07	5.88E-08	5.28E-08	1.10E-07	-1.85E-07
3.00E-07	-7.50E-08	4.05E-07	-9.88E-08	6.12E-07	-2.23E-07	5.79E-07	-4.20E-07	2.66E-07	-3.04E-07	1.88E-07	-2.80E-07	-6.75E-08	-1.62E-07
-2.18E-07	5.44E-08	-2.94E-07	7.17E-08	-4.44E-07	1.62E-07	-4.20E-07	3.05E-07	-1.93E-07	2.21E-07	-1.37E-07	2.03E-07	4.90E-08	1.18E-07
4.67E-07	-5.06E-08	3.75E-07	-1.09E-07	3.37E-07	-9.16E-08	2.66E-07	-1.93E-07	6.87E-07	-2.37E-07	3.05E-07	-2.97E-07	-3.99E-08	-2.11E-07
-1.94E-07	9.15E-08	-1.74E-07	1.12E-07	-2.67E-07	1.36E-07	-3.04E-07	2.21E-07	-2.37E-07	3.29E-07	-1.34E-07	3.47E-07	1.05E-07	2.96E-07
3.41E-07	8.94E-09	2.32E-07	1.84E-08	2.46E-07	5.88E-08	1.88E-07	-1.37E-07	3.05E-07	-1.34E-07	7.22E-07	-1.65E-07	3.24E-08	-1.42E-07
-1.70E-07	8.73E-08	-1.10E-07	7.31E-08	-2.16E-07	5.28E-08	-2.80E-07	2.03E-07	-2.97E-07	3.47E-07	-1.65E-07	4.61E-07	1.28E-07	4.65E-07
-1.62E-08	6.94E-08	-6.51E-09	9.32E-08	-2.61E-08	1.10E-07	-6.75E-08	4.90E-08	-3.99E-08	1.05E-07	3.24E-08	1.28E-07	2.39E-07	7.65E-08
1.01E-08	2.59E-08	9.56E-08	-8.53E-08	-4.78E-08	-1.85E-07	-1.62E-07	1.18E-07	-2.11E-07	2.96E-07	-1.42E-07	4.65E-07	7.65E-08	7.84E-07

	Σ2-Σ1-Σ3	32.0	Σ6-Σ5-Σ2	27.1
	Σ2-Σ1-Σ4	-43.0	Σ6-Σ5-Σ3	27.9
	Σ2-Σ1-Σ5	37.5	Σ6-Σ5-Σ4	51.5
	Σ2-Σ1-Σ6	-47.4	Σ6-Σ5-Σ7	-22.3
	Σ2-Σ1-Σ7	-27.3	Σ6-Σ5-Σ8	-8.4
	Σ2-Σ1-Σ8	-62.5	Σ7-Σ6-Σ1	-48.9
	Σ3-Σ2-Σ1	-38.2	Σ7-Σ6-Σ2	-3.5
	Σ3-Σ2-Σ4	-66.6	Σ7-Σ6-Σ3	-26.9
	Σ3-Σ2-Σ5	-44.0	Σ7-Σ6-Σ4	-6.2
26 (2)	Σ3-Σ2-Σ6	17.9	Σ7-Σ6-Σ5	37.6
ι πολοιπα	Σ3-Σ2-Σ7	18.3	Σ7-Σ6-Σ8	55.7
Οριζοντίων	Σ3-Σ2-Σ8	-23.5	Σ8-Σ7-Σ1	5.3
Γωνιών	Σ4-Σ3-Σ1	-24.6	Σ8-Σ7-Σ2	3.1
	Σ4-Σ3-Σ2	-12.2	Σ8-Σ7-Σ3	-46.8
	Σ4-Σ3-Σ5	23.6	Σ8-Σ7-Σ4	24.4
	Σ4-Σ3-Σ6	11.3	Σ8-Σ7-Σ5	42.0
	Σ4-Σ3-Σ7	-10.8	Σ8-Σ7-Σ6	-21.8
	Σ4-Σ3-Σ8	-5.4	Σ1-Σ8-Σ2	-34.8
	Σ5-Σ4-Σ1	-5.5	Σ1-Σ8-Σ3	-53.5
	Σ5-Σ4-Σ2	16.0	Σ1-Σ8-Σ4	-12.6
	Σ5-Σ4-Σ3	21.8	Σ1-Σ8-Σ5	-8.1
	Σ5-Σ4-Σ6	11.9	Σ1-Σ8-Σ6	-23.3
	Σ5-Σ4-Σ8	25.4	Σ1-Σ8-Σ7	6.8
	Σ6-Σ5-Σ1	-43.6		
	Σ1-Σ2	2.8	Σ3-Σ5	2.8
	Σ1-Σ3	-0.6	Σ3-Σ6	0.0
	Σ1-Σ4	0.9	Σ3-Σ7	-1.8
	Σ1-Σ5	0.2	Σ3-Σ8	-2.8
	Σ1-Σ6	0.1	Σ4-Σ5	1.1
Υπόλοιπα	Σ1-Σ7	-2.2	Σ4-Σ6	1.6
Αποστάσεων	Σ1-Σ8	-0.9	Σ4-Σ7	2.8
Αποστασεων	Σ2-Σ3	-3.4	Σ4-Σ8	-0.4
(mm)	Σ2-Σ4	-0.8	Σ5-Σ6	1.4
	Σ2-Σ5	0.2	Σ5-Σ7	0.6
	Σ2-Σ6	1.2	Σ5-Σ8	-1.9
	Σ2-Σ7	1.6	Σ6-Σ7	0.9
	Σ2-Σ8	1.9	Σ6-Σ8	-1.8
	Σ3-Σ4	3.0	Σ7-Σ8	-2.3

ΠΑΡΑΡΤΗΜΑ 6 – ΜΕΤΡΗΣΕΙΣ ΓΕΩΜΕΤΡΙΚΗΣ ΧΩΡΟΣΤΑΘΜΗΣΗΣ

Μετρήσεις γεωμετρικής χωροστάθμησης			
	Σημείο	Ανάγνωση στη σταδία(m)	
		'Οπισθεν	Έμπροσθεν
	R1	1.147	
	Σ5	1.461	1.394
	Σ6	1.387	1.258
	Σ7	2.619	1.429
	Σ8	1.367	0.884
Aller	Σ1	1.535	1.533
	Σ2	1.467	1.436
	Σ3	1.516	1.311
	Σ4	1.093	1.362
	В	1.341	3.065
	R1		1.262
	R1	1.221	
	В	3.152	1.300
	Σ4	1.325	1.182
	Σ3	1.296	1.479
	Σ2	1.377	1.452
Retour	Σ1	1.544	1.477
	Σ8	1.027	1.378
	Σ7	1.336	2.762
	Σ6	1.323	1.295
	Σ5	1.457	1.526
	R1		1.211

<u>ΠΑΡΑΡΤΗΜΑ 7 – ΣΚΑΡΙΦΗΜΑΤΑ ΤΩΝ ΔΙΕΥΘΥΝΣΕΩΝ ΑΝΑΦΟΡΑΣ ΓΙΑ</u> <u>ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΣΤΡΟΦΩΝ ΤΩΝ ΣΠΟΝΔΥΛΩΝ ΤΩΝ ΚΙΟΝΩΝ</u>

Κίονας Κ1

Κίονας Κ2

Κίονας Κ3