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ITepiAndm

Ov adtdoneg teyvoroyxée e€ehilelc xou 1 eviunwotaxy avinon tou Aladixtiou
v Hpoyudtwy (Internet of Things) €0V eEXTOLENTEL TOV AELIUG TV CUOXEUMY
TIOU GUVOEOVTOL X0l ETIXOWVWYVOUY UETAED Toug oTo dtadixtuo. Tlapdhinia, 1 pory-
oatar LoVETNON ePapUOY®Y TEYVNTAC VonuooUvng o cuoxeuég ToT Eyel Tpoxalé-
OEL XAToXOPLYPY adEnon Twv 0edouévwy Tou yerlouv enclepyaoiuc, eve 1) Tapa-
dootaxry Aoon Tne UeTapopdc xou encéepyactiac dedouevwy oto cloud €yet amodety-
Vel eMumric. H emxpatodoo Abon tou edge computing, mopd tar TAcovEXTAULTA
TIOL TIPOGPEQPEL, ONULOVEYEL VEEC TPOXANOELS, UE CNUAVTIXOTERT) [ow¢ TNV dlayelpton
TWV TEPLOPLOUEVWY UTOAOYLO TIXMY TOPwY Tou dlardéTouy ol cuoxeveg ToT.

Yty mopovoa dimhwuatiny epyacia Yo aoyorndolue ye éva oclotnuo edge
computing aroteroluevo amd eva cUVolo amd cuoxeue [oT xan xoufouc edge. O
GUOXEVES XOAOVUVTOL VOL (PEQOLV ELC TEQPAS UMOUTNTIXES EQYUCIEC HECO O AUCTNPES
mpoveouie, eV ol xoufol cUUBIAAOUY TPOGYECOVTOS TOUGC UTOAOYLO TLXOUS TOUG
Topoug oto clotnua. [Tpoxintel, emouevme, N vy xn anodoTIxhc BLayYElPLONG TWV
TOPWY TOU CGUCTAUATOS, TEOXEWEVOU VO ETLTUYYAVOVTOL Ol AELTOUQYIXES OTALTY|-
OELC TWV EQYOOLOY X0l Vo ELOTOOUYTOL OTOBOTIXA Ol TEQLOPIGUEVOL TOPOL TWV
GUOXEUMV.

[ Tov oxond autd, oyedidlouye Tov aryoprtuo SGRM, évav amoxevtpomoln-
UEVO ahyoprduo Olayelplong mopwy oe cuoTrata edge computing (oactopévo
oe otolyela tne Vewplac mouyviwy. Il cuyxexpwéva, o olydordudc uog uov-
TehoTOLEl TO TEOBANUO TNC XATAVOUTIC EQYATLOY LC CUOKELTC edge w¢ Eva Tatyvio
Yo MumERYH PETAC) TNE CUOXELNC xo TwV xOUBwY edge xon Ble€dyeL Yol XAELOTY
Snuonpacta deltepNC TWAS (YVWOoTH xou we dnuonpacio Vickrey) yio tnv enthoym
ToU BEATIOTOU XOUPoU EXPOETWONC.

Metd and po cOvtoun eloaywyr ot meotuna IoT, edge, xou oto Yewpntind
umoPBadpo e Yewploc mouyviwy, tapouctdlouye Tov alyopriuo SGRM, neprypd-
(POUNE AETTOUEPWS TNV AEtToupyiol Tou ot alohOYOUUE TIC ETLOOOELS TOU, TRy~
UOTOTIOLOVTOC L0l EXTEVY| TIELQOUATIXY| UEAETT) X0 CLUYXPIVOVTAC TOV UE XATIAANANL
ETAEYUEVOUC aAYoplToUC avapopdc.

Aegeic KAewdid — Cloud, Edge, Fog, IoT, Awycipion Iépwv, Katavour
Epyoaouwv, Oewpio Haryviov, Holyvio Etdaxehunéoyx, Anuonpocia Bixeel, SGRM






Abstract

The incessant technological advancements and the unprecedented surge in pop-
ularity of the Internet of Things have catapulted the number of devices con-
nected and communicating through the Internet, while the rapid adoption of
artificial intelligence applications in [oT devices has led the amount of data
that requires processing to skyrocket. The edge computing paradigm, albeit
effective in addressing the challenges that the cloud computing solution fails
to meet, presents its own challenges, with the resource management and task
allocation challenge being of prime importance.

In this bachelor thesis, we will describe an edge computing architecture con-
sisting of low-powered edge devices that are tasked with carrying out demanding
tasks within strict deadlines, and mid-powered edge nodes that offer their lim-
ited computational resources to the edge devices. Thus, the need to effectively
manage the limited resources of these devices and optimally allocate the tasks
among them to achieve the required objectives arises.

To that end, we put forward the SGRM algorithm, a distributed resource
management algorithm for edge computing systems based in theorems of game
and auction theory. More precisely, our algorithm models the task allocation
problem of an edge device as a Stackelberg game between the device and the
nodes, and conducts a sealed-bid second-price (or Vickrey) auction to select the
optimal offloading target node.

After a brief introduction to the basics of the edge and IoT paradigms and
the theoretical background of our algorithm, we present the SGRM algorithm,
describe its operation in detail and evaluate its performance through an exten-
sive comparative study.

Keywords — Cloud, Edge, Fog, Computing, IoT, Resource Management,
Task Offloading, Game Theory, Stackelberg Game, Vickrey Auction, SGRM






FEuyapiotieg

Apywd, euyopioted VYepud tov xodnyntr pou, x. Anuftelo XolLvTern, yla TNV
EUTLOTOOUVY TOU HOU EBElEE amb TNV TEMOTN MAC EMXOWVVI PEypL xol CHUEQL.
Erniong, éva peydho guyopioted otoug utorglouc diddxtopes x.x. Macolpo xou
Katooporydon yia tnv eanpetin) cuvepyaoior pog xou TNy axoleastn xododiynon
TIOL YOU TEOGEPERAY. TENOG, ELYUPLOTE ATO XAUPOLIC TOUG YOVEIC HOU, TNV UOEQPT
HOL, TOUG GIAOUC O %O TNV XOTEAW OV YL TNV ATEELOPLOTY GTHELEN Xt Unom
TOU LOU EBmoaY %o OAT) TNV oxadNUoixT) LoU TopElaL.
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Extetapevn Iepiindn

Eioaywym

Ou adidixoneg teyvoroyixéc e€eMEElS, 1) TEOCPUTY ELoAYwWYY| TOU BixTUAXO) TEO-
TOToU 5G X0 1) EXTETUPEVT) OLABOCT) EQUQUOYWV TEYYNTAS VONUOCUVNE EYOLY EX-
ToZeVoel TNV dnpotxdTnTa Tou Atadxtbou twv Ipoyudtwy ota On. H porydaio
vto¥€tnon xar adlomoinomn tou mpotidnou IoT €yel mpoxaréoel dpopatixnd adinon
TOU AELIOU TWV CUCKEVMY TIOU GUVOEOVTUL GTO JLIBIXTUO, EV® TO TTPdTUTO cloud
computing €yel anodelyVel eAMneC yia T auEnuéveg aviyxec enelepyaoiog Oe-
OOUEVWY TIOL TEOUGLALoUY ToL GUYY POV UTOAOYIG TG cuo Thuata. Toautdypeova,
TOANVGEWIUEC HOUVOTOUES EQUOUOYEC ToEOUGIAlOLY VEEC AMOUTHCELS, OTWS ENEEEp-
Yaoio OEQOUEVOY O TEUYUATIXG YEOVO 1) AUENUEVT] LOLWTIXOTNTO XAl AOPAAELL OE-
OOMEVWY, Ol OTOLEC OEV TANPOUVTUL ETUEXWE UTO TIC UTAEY0VoES AUoELS. AUTEC OL
VY ES 00Ny Nooy oTNY dnutovpyla Tou tpotuou Edge Computing, énou peydio
uépog tne enelepyaciag BEBOUEVKY o amanTelTal BEV TEOYUNTOTOLE(TOL OE amo-
waxpuopévoug cloud servers, ahhd exteieiton oe x6uPouc edge (1} edge nodes/-
gateways) mou Bploxovton xovtd otic ouoxeuvéc ToT. Mo tétolo apyttextovixy
edge mapouctdletar oty exdva 1.

Cloud

oo

Edge nodes

SO

I 1A

Edge devices [%T«» VW\
&5 & S '

Ewoéva 1: Apyitextovinr| Yuothuatoc Edge Computing

H \bon Ttou edge computing, ov ot amOTEAECUATIX OTNV LXAVOTOINCT TWV
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TOUEATEVE UTUTHOEWY, ELOAYEL TOAVAPLIUES VEEC EQELVNTIXEC TEOXANOELS. MTNV

ToEOLoO. BITAWUXTIXT Yo acyoiniolue ue to TEOBANua duyelpione Topwy xa

XATOVOUNC EQPYOOLOY, DLATUTOUEVO w¢ €€ Xe avtldeon ue Toug mavioyupoug

cloud servers, ot cuoxecuéc IoT Blotétouv eCapETIXG TEQLOPLOUEVOUC UTIOAOYIC-

TIx00¢ TOPOUC, TOUS OTOLOUC XUAOUVTAL VO DLOYELOLO TOUV ATOTEAECUATING, TOOXELUE-
VOU VO (PEPOLY ETUPUWG EIC TERAS TS EPYaoieg Tou Toug Eyouy avatevel. Ilopdiinia,
TOMES a6 AUTEC TIC EQYUCIEC EYOLY AUCTNEES YPOVIXEC TPOVECUIEC OAOXAT WO,

EVE TOL TOTUXE BIXTUOL TOU GUVBEOLY TIC CUOXEVEC UETaCU Toucg dlardéTouy TERLop-

lopévo evpog Cwvng. T autdy Tov oxond oyedidlovue tov alyodprdpo SGRM,

EVOLY XOTAVEUNUEVO Xl XAYOXGOO ohyoprduo dloyelptone TopmY xat XoTavoung

epyoolwy o ouoTHuota edge computing. Xtic axdhoudeg evotnTeg Vo THPOUGLS-

coupe To Yewpntixd undBadoo Tou ahyoplduou, Yo teptypddouue Tov GYEBIAOUO

TOU, Yol AVAAUGOUPE TNV TEYVIXY| TOU UAOTIOINCT) X0 Yol AELOAOYHOOUUE TELQOUATIXG

TIC EMOOOELC TOU PECL EXTEVOUC CUYXPITIXNAC UEAETTC.

Aratinworn tou llpoBArjuatog

X1y mapovoa dtmAwuatixy epyaoio e€etdlouue £va choTnua edge, anoTeAOUUEVO
antO cUoXELEC OVO ELOWV:

« Yuoxeuvég Edge: Yuoxeuéc IoT neplopioyévne unoroylotixic .oy vog, emi-
(POPTIOUEVES UE TNV EXTEAEDT) EQYACLOY TOU LETMEEVOLY TIC IXUVOTNTES TOUC.

« KouPBouw Edge (Edge Nodes/Gateways): Yuoxecuéc upnhdtepnc umoh-
OYLO TS Loy VOo¢ Tou TpoTievtan var avaAdBouy xaL Vo EXTEAECOLY EQYUOIES
TWV OUOXELWYV edge.

H apyttextoviny) Tou cuothuatoc mou Vo UeAETHOOUUE amoTeAeiToL amd Eva
obvolo X ocuoxeuwy edge, Y %xOuBwv xot Z €pyaoumy, ol OTolEC ToedyovIon OTIC
cuoxeVEg edge xou umopoly elte Vo exteAesTOVY el TOTOL, EITE VO EXPOPTOVOUV
otoug xoufoug Tou dixtiou. Tooco ol cuoxeueég doo xal oL xéufol Tou Guy-
UETEYOLY GTO GUOTNUN BLIETOUY TEQLOPLOUEVOUS UTOAOYLO TIX0UC TTOPOUC, EVE TO
(X TUO TTOL GUVOEEL TIC GUGKEVEC DL€ TEL TEQLOPLOUEVO £000C LOVNG VLot AVTOANLYTY)
UNVURATOY X0 DEDOUEVMV.

Kdée ovoxeur| edge mou ouypetéyel oto clotnua oplletal LoVOoTUAVTo omd
éva avayvwelotxd © € {1,..., X}, xou meprypdpetar and tnv mhewdda D, =
{Cy, My, Ny, t,}. Ov petafhnree Cp, M, xou N, unodexviouv tnyv Stondéouun
enelepyao T Loy, YweNTXOTNTA UvAuNnS xat €0pog Lovne avtioTolyo, eve 1
UETOBANTA E, elvou (oM P TOV cpLiud TWVY EPYUCLDY TOL EXTEAOUVTAL GTNY GUGKEUT).
[opoduola, xde edge gateway mou cuuuetéyel 6To cLoTNUA oplleTan amd Eva ovory-
voplotxd y € {1, ..., Y} xou wa mewdda Gy = {C,, M, Ny, t,}.
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Yuupoicunog Iepuypapn Tiuég
x Avayvoplotind Xuoxeurc 1,...X
Y Avaryvewpiotixd KouPou 1,....Y
Cy Awodéoun Enelepyactind Ioyde | 0 — 100%
M, Arodéoun Xwenuxdtnta MvAune | 0 — 100%
N, Awadéoo Edpoc Zovng 0 — 100%
t Teéyovteg Epyaoleg N

z Avayvoplotind Epyacioc 1.7
W, Edoc Epyaotioc N

Q, [TpoVeoulo Epyactiac R*%

T, Apoif3n epyaoiog R%

c Méyiotn enelepyaotiny woyic 0 — 100%
m! Méyiotn yphon wvhune 0 — 100%
nt Mévyiotn yerion ebpoug Lodvng 0 — 100%
T, Yuoxevy| Hapaywynig 1., X
Y Yuoxevr| Extéleorng 0,....Y

Hivoxag 1: MetoBAntéc Luothuatog

Avtiotouya, ot epyaoiec mou mapdyovion oto cUoTnua opilovTal and HOVOsT|-
HavTar avory vepto Tixd Tng popgnic z € {1, ..., Z}. Kéle epyaoia neprypdpeton omd
v mheddo T = {w,, 1, dhyml nl x,, y. } oc e€hc: O petafintée Q. xou 7,
optlouv Vv mpoldeouia tng epyaciog xou TNV TEocPeEOUEYY auolBT, avTioTolya.
O petafinréc ¢, m’ xou n’ opllouvv v péyiotn amoutoVUev enelepyaoTixd
oY 0, YWENTXOTNTO UVAUNG Xt EVEOC CWVNG YioL TNV EXTEAECT) TNC EpYaolac oTNnY
GUOXEVY| © , EVG OL PETUBANTEC T, XOL ¥, UTOOELXVOOUV TNV CUOXELY| 0TV oTola
ToEdyUnxe 1 epyacio xol TNV CUOXELY| OTNY OTolal EXTEAECTNXE. Y€ TEQIMTWOT)
ToTNC ExTEAEOTC TN gpyactac, Vetouue ¥y, = 0. Teélog, 1 yetofAnth w, »otn-
Yoptomolel TNV gpyacio Yo TIC AVEYXES TOU UNyavionol extiunong epyaoctoc Tou

TEQPLYPUPOUNE OE EMOUEVT] EVOTNTAL.

Or mpoavapepieioee yetafBAntéc nopouctalovton €v cuvtoula 6Tov Tivaxa 1.

‘Eyovtag oploel 10 obotnua, opiCouue tov Bacind 6TdY0 TOU GUOTAUATOC:

Z
ehaylotonoinoe > 4,
z=1

4

OOV

XNV ouvéyetd, oplCouue TOUC TEQLOPIGUOUS TTOU BLETOUY TO CUCTNUL

0  oAALC
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eploptopol Luoxeuoy : Ve, z to. (2.,y,) = (2,0):
Ve, z 1. (2.,y.) = (x,0):
Ve,z to. (2.,y,) = (z,0):
Iepropiopol KouPwv : Yy,z T.0. Y, =1y:
Yy, z Tt Yy, =1y
Vy,z T.0. Y, =1y:

SGRM: Stackelberg Game-Based Resource Management

Ipoxetévou var avTIETOTICOVUE ETTUYMS TO TEOBANUA Blaryelplong TOpwY TTou
TEPLYEAPOoE TOPUTAVG, UvaTTOCCOUUE Xat UAOTIOWOVUUE Tov okyoptiuo SGRM,
EVOLY XATAVEUNUEVO ol OpLIUO XUTAVOUTC EQYUOLWY Baolouevo ot VepeAwon Yew-
efjuotar xon povteha tng Yewplog maryviewy.

Oewpentixry Ocspciiworn touv SGRM

H xevtpu wéa tou aryopliuou SGRM elvou 1 povtehonoinomn tng dwdixactog
XATUVOUNG [tag epyaolog oe eva cuoTNnua edge computing w¢ Eva oty vio XTdxeAy-

TEQPYX.
Q¢ mabyvio Ltdxehunepyx oplleton €va un-cuVERYATIXG TaLy VIdL, 6To omolo oL

nodxteg Soxpivovton oe ‘nyétec’ (leaders) xou ‘axdhovdouc’ (followers) [3]. Me
Bdon auth TV BLdxplon, To Touyvidl taileTan ot yUpoug we eCAC:

1. O nyétec anogaoiCouv TNV oTEATNYIXT TOUC,
2. O nyETEC AVOXOVWOVOUY TNV GTEATHYIXT| TOUC,

3. Ov oxéhoudol eVvNUEROVOVTAL YO TNV CTEUTNYIXT TWV NYETOV Xl ATOPAGT-
Couv TNV oTEATNYIXY| TOUC,

4. Ov axdhovdol avaxoVGYOUY TNV GTEATNYLXY TOUC.

Yty neplntwon tou akyoplduou SGRM, ou cuoxeuéc edge dpouv we Nyetec,
allohoyOVTOC Lo epyacion xou amo@actloviac TNV EXPORTWOT) TNS 1 TNV TEoY-
HoTOTOINoT TNG TOTUXA. TNV CUVEYELY, Ol xOuPot edge, dpwvTag W axdhoutol 6To
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Ty VIO U TEXEAUTERY X, aloAOYOUV UE TNV OELPd TOUC TNV EQYUCTO XOU VOXOVE)-
YOUV TIC EXTWUNACELS TOUC 0TNY cUoxeLY|. TEélog, 1 cuoxeur) Bleddyel Yl XAEoTH
dnuompacio deltepne TWAS (Yvwoth xat we dnuompacio Bixpet), tpoxeipévou vo
OLoxplvel Tov Tty Tou adlohoyel uéyioTa TNy ev Aoyw epyacia. H epyaoio ex-
(POPTVETAL OTNV GUOXEUT 1) XOUPBO UE TNV UEYIOTN aLOAGYTOT), O OToloC XaTaETEL
moc6 ollag long ye TNV delTEPnN UEYUADTERT TPOCPORA TNG ONUOTEUGING (1 eo-
TEYTTEL, O TMEQIMTMWON APVNTIXWY TEOGPop®Y). Mokic oloxinpwiel 1 extéleor
e epyaociag, o malxtng avtapolBeton e T0G6 (00 Ye TNV oEyLxY| ool T, TG
epyaoioc.

>ie auto 10 onuelo, elvan oNUAVTIXG Vo oplcoLUE TNV EVVola TNG AVTAUOBHS 1)
XWATEOL oTNV TERITTWOT) Tou ahyopituou yoc. To xivrteo autd uropel vo malpvel
™V Hop®Y| yenuatixhc opolBhc N ¢hunc (reputation) [4], xou n yeron touv atov
oAy oeiud pog xohotd DUVATH TNV EQPUEUOYT| TOU OE TERIBEALNOVTO OTIOL Ol G-
UETEYOUGEC CUOXEVES DEV CUUHERILOVTOL TOV XEVTEIXG OTOYO TOU GUC TAUTOS TOU
avarypdoupe oty e€lowon 1, adhd dpouv e BdoT 10 TEOCHTUNG TOUS CUUPELOV.

Mnyovicpoi tou SGRM

[ Ty vAomoinon Tou SGRM xotacxeudloupe Eva xataveunuévo, duvouxd cOoTNUA,
ATOTENOVUPEVO OO TIC 0XONOLUEC LOVAOES:

o« Movdda Yuoxeung: Ilepihaufdver Toug unyaviouolc dnuonpactiog xou
EXPOPTWOTNG EQYAUCLOV.

o« Movdda Koufou: Ilepiioufdvel tov unyavioud xotdecns npocgopdc.

« Movdda Extipnone Epyaciag: Anoteieiton and évay unyovioud oxi-
aypdgone epyaotwy (task profiling), évov unyavioud extiunone yedvou ex-
TENEOTC €pYOolag xou EVAY UNYAVIOUS UTTOAOYLIOUOU YeNo TiXdTNTAS EpYaoiog
(utility function).

2T0 oYU 2 TUPOUGCIALETAL 1) OLUCUVOEST) Xl OPYBAVMOY TWY UOVABMY, EVE
TUEUAATE TEPLYPAPOUNE AVAALTIXG TNV AELTOLEYIA TOUG.

Movéda 3voxeung

Aedopévne wioe véag epyaotag, n povéda cuoxeunc (1 edge device module) o&l-
oloyel TNV gpyaoio YeNOWOTOLOVTIS TNV HoVada exTiunone epyaocioc Tou Teplypd-
poupe Tapaxdtw. Epocov auty n extiunon etvon VIO xdmowwy TpoxadoploUEVLY
oplwv, o unyavioudc dNUoTEActag AVUXOWOVEL TNY TEOVEST) EXPORTWONS TNG Ep-
Yaotag 0ToUC BLUCUVOESEUEVOUC XOUPBoUC, xat AauBAVEL TIC TPoGPoeES Toug. Mok
NIBeL OAEC TIC TPOCPOPECS, O UNYAVIOUOS EXPORTWOTNG TIC CUYHQRIVEL X0 EXPORTMVEL
NV gpyaoia 6ToV vixnTY| TS Onuonpaclog.
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' Epyaociag

Ewoéva 2: Opydvwon tou SGRM

Movéda Kopfou

H povddo x6uPou (1) edge gateway module) evepyomoteiton dtav o xéufog cuv-
oevel oe dixtuo edge mou extehel Tov ahyopiuo SGRM, xon apyixd avaxovmvel
™Y oLVOEST] Tou xOuBou xou TNV TEdYEsY) Tou Vo avakdBel TNV exTéAEoN Ep-
Yooy, ‘Otav Adfet o tpdleoT) expopTmomg amd XATOLL GUGKEUT], O UNYUVIOUOS
mpocopdc alloloyel TNy gpyaoio xou xatoetel TNV alloAGYNOT WS TEOCPOEd
OTOV TAELOTNELIOUG oL OleCdyel 1) cuoxeLr). Av o xoufog amodeytel vixntnc,
ATOOEYETAUL TNV €pYaClal xou TNV eEXTEAEL TOTUXA.

Movéda Extipunong Epyaciog

‘Omwe avopépae TOEATAVE, 1) BLYATOTNTA AELOAOY OIS EQYUCLMY EVOL amapaiTnTY
Yioe TNV owoTh Aettovpylo Tou adyoplduou. I'a Tov oxond autd, oyedidloupe pLo
Hovédo extiunone epyactog, amoTeEAOVUEVY] amtd TOUC UXOAOUTYOUC UMY UVIOHOUC:

Mnyaviopog Ixwayedpnons Epyaocidv (Task Profiling)

ITooxeWwEvou ulot GUOKELT] VoL UTTOPECEL VoL GUUMETAOYEL o€ £va edge GUOTNUN Tou
extelel Tov adyopriuo SGRM, omoutelton mpota vo mepdoet amd o dadxacio
‘onorypdgnong’, xatd Ty onola Yo tocoTixononYoly oL BUVATOTNTES TG CUCKEUTS
X0l OL ETUDOOEL TNG OTNV EXTEAECT) TWV EPUPUOYRY TTOU EXTEAOLYTOL GTO GUOTNHAL.
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H ev Aoyw Sradixacio ooy UaTtomole(Ton oand ToV Unyoviono oxLoyedgnong we e&hc:

1. Extipnorn Tepoayiwv (Chunk Gauging): Apyuxd, xdie unodrpla epop-
MOYT) EXTEAEITOU ATOUOVWUEVO GTNY GUCKELY| X0 HETEATAL O GUVORLXOS YPOVOC
extéheoric Tne. ¢ ‘tepdyto’ (1 chunk) optleton o TUAMA TNG epyaotiag Tou
exteleiton o€ 1 BEUTEQOAETTO - yiar TOEAOELYUAL, it EQUEUOYY| TToU amontel 12
OEUTEPOAETTOL Y10l VOL EXTEAEOTEL GTNY CUCKELT) amoTeAelTon amd 12 teudiyto

chunks,, ; = weety, ;(1) (8)

2. Yroloyiopnog Xepodvou Extéleong Xepodtepng Iepintwong (WCET
Estimation): O unyovioudc extehel cuVBUUGUOUE TV vrodneienv epap-
LOYVY, Xal Yo xGUE GUYBVIOUO EQYUCLMY EXTIUS TOV YPOVO EXTEAECTC CUY-
pwvo Ye TNV e&lowon:

weety, ;(t;) = chunks,; X t; 9)

Agol exteheotel 0 eV Aoyw cLVOLUCUOS xon UeTENUEl O TEXYUATIXNOC YEOVOC
EXTEAEOTNC TNC EQUOUOYHS, UTOROYILETOL XAl XATAY WEEITOL TO TOGOGTO Adoug

METACY TNE EXTUNONG Yo TNG TEAYUOTIXAC UETENONC.

3. AvtioctdOpion Addouvg (Error Compensation): Xougpovo pe to
T0GOGTY Adoug TOU TEONYOUUEVOU BAUATOS, O UNyoviopos uTohoy(lel Eva
Aoyoprduixd trendline Twv T0606TMV GLYVNETHOEL TOU TAHDOUC EQYUCLHY TOU
EXTEAOUVTOL:

comp fui(ti) = i X Int; + P, (10)

¢ amotéAeopa TG TUEUTAVE TEOERYAOIHS, TEOXVTTEL Lol TAELAON TNG LOPPTC
(chunksqy,i, i, Bu,i) Yoo x&de cUVBLOCUO CUOXEUNC ¢ Xol TUTIOL ERYAGIAC W, TNV
omola YeNOWOTOL0Y Ol ETOUEVOL UNYOVIGHOL TNG HOVADAS EXTIUNCTC TOU TEELY S
povTor Topuxdtw. ‘Ocov agopd To amoutoluevo TANYOC GUVOUNCU®Y EQYUCLHV
ToU TEETEL VoL EEETACVOUY amd TOV UNYUVIONO, GTO OYAUA 3 QUIVETOL WS oEXOUV
Tep{mou 25 GUVBLACUOL EQYUCLOY YLl TNV THEAYWYY| IXAVOTOLNTIX®Y TEOBAEPewY.

Mnyaviopnoc Extipnong Xpévou Extéleong Epyaociog

'Eyovtag 0hoxAne®oeL TNV oXLoypdPnoT| TV ERYUACLMY, O UNYAVIOUOS EXTIUNOTNC,
OTMOPEVOC UE TIC TAELWEDES (chunksy i, iy iy Buw.i), VTOMOYILEL TOV YpOVO EXTENEDTC
wog epyaciog TOTov w olUPWv PE Tov TOTO:

weety, ;(t;) = chunks,; x t; — compfy,i(t;) (11)
émov  compfyi(ti) = i X Int; + By (12)
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Combinations: H5 B 10 W25 50 W75 W 100

30% °

°
T [ ] [ ]
10%
0% —
-10% 1
L ]
[ ] [

Ewova 3: Bedtiwon Extiunong Xedvou Exteheonc

Prediction Error (%)

Mnyaviopog Yrohoyiopol Xenotxotntag Epyaciag (Utility Function)

Ipoxewévou va tocotixonotjooupe v ol uiag utodfglog epyaoioc, oyedid-
Coupe pa ouvdptnon yenouxétnrac (utility function) we e€nc:
Ipdta, uroloyileton o cuvdptnon xVewone (penalty function), n omolo eh-
ANATOVEL TNV YENOTIXOTNTO TNS EQYACLUC AVIAOYU UE TOV YPOVO EXTEAECNC TNC:
Q,

l,, = 13
’ Q, — weety, (t;) —wt, , (13)

Mo ehapetde Tapohhary eV ouvdptnon xUpwone Utohoyileton oToug xouBoug
edge:
l = 2
T, —weety, 4 (ty) =t — wt,,

O mivoxag 2 Tpoo@Epel uLor GOVTOUN TERLYPUPY| TWV UETUBANTOV TWV TURAUTAVE
GUVOPTHOEWY.

(14)

YuppPoiiopog Iepuypapn
Q, [Tpoveopio epyaoiog z
weely, ; Xpbvog extéleorng yedtepng Tepintwong epyaciog TOTOU W GTNY CUCKEUT 1
sy Xpbvog uetaopds tne epyaoiug z amd TNV oUOXEUT) T GTOV XOUB0o ¥
wt, Xpbvog avopovic Tne epyaoiog 2 TNy CUOKELT| 1

Hivoxag 2: Enefynon Xpovixwv MetoSAntov

TNV cLVEYELa, uToloyiCeTar tia 0e0TERT CLVAPTNOT *VPWaOTNC, 1) omtota PLUULLEL
™V a&lo e epyaciog avdhoyo e TOV dprlud TWV EQYUCLOY TOU EXTEANOUVTOL 1)OT
OTNY GUOXELY):
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v avil,, <0
Pz = { , (15)

Eoovl, >0

cte

AvtioTotya, Yo Tov x6ufo 1 delTepn cuVdETNoT xVpwonc utohoylletar oUY-
(POVAL JUE TOV TUTO:

G oV Ly >0

cty

v oavi,,, <0
e .

O oapiude ¢ anotehetl o otadepd YeYOADTERT TNS LOVADIC.
Téhoc, urtohoyl{oLUe TNV CLUVAETNGCT YENOTIXOTNTAUC OTNV CUCXELT| edge:

Tz

Uy = 17
o lz,x X Pz ( )
xaL otov xoufo edge:
Iz
Z,L,Y lz7x7y X py ( )

Iewpapatix”y TAorolnon

[Tpoxewévou va ollohoyficouue tnv anodoon tou SGRM, emotpatebouue plo
OELRAL U0 EPUPUOYES TEYVNTAC VONUOCUVNG, TIC OTIOIEC OPYAVIVOUUE YT CLLOTIOLV-
Tog TNy Thatpodpua edgebench [5], éva clotnua extéheone, napaxolodinong xat
GUVTOVIOUOU EQYUOLMY, XATUOXEVUCUEVO ELOEL YLOL TIC AVEYXES TNG Epyaoiog.

Eqappoyeég

Ot e@upuoYEC TOU ETOTEATEVCOHE YLt TIC AVaYXES TNS ACLOAOYNONS TOU ahyopll-
uou etvon ev cuvtopia:

o Deepspeech [6, 7], pla eapupoyY| Amopay VNTOQOVNONS OE TEAYHUATIXO YEOVO,
o Facenet [8, 9], utor eQopuoyn} avory voelong Teocmnwy,
o Lanenet [10, 11], ula eopuoyt real-time ovary voptong hwpldomv xuxlogopiog,

« Retain [12, 13], wa epappoyh) avdhuone Loty oxéhwy xou TedBAedng
xopdloxc avendpxetac. [14].

Or egappoyéc Deepspeech, Facenet xou Lanenet xdvouv yerion tng mhatpodouog
Tensorflow [15] tnc Google, v 1 epopuoyn Retain yenotponotel tnv Biiodhxn
unyovixhc udinone Theano [14].
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Edgebench

ITpoxetuévou VoL ETLTUYOUUE TOV GUVTOVIGUO XAl TNV ToRox0A00INCT TWV TORUmdve
eQopuoY®V, oyeddloupe TNy TAatgooua Edgebench, éva application workbench
Yoouuévo ot Yhwooeg mpoypauuatiopod Python xau Shell. ITogoucidloupe tnv
OPYAVLOT) TNG TAUTYOPUAS OTNV EOVA 4.

/ Edgebench.(’)ustodlan SGRM De\(|f:fe. Modum /Edge Gateway S \

Q
0
Q*
8
Q
9]
(a3
] Q
Q
9]
(a3
] Q
Q
0
(a3
] Q
i
Edgebench

Lo

QPP App App App  Edge Deviy &GRM Gateway Module Edgebench Custodian /

Ewoéva 4: [Thotpdpua edgebench

Kdévovtag extevr) yenon docker containers, n mhoatgédpua edgebench mpoo-
(PEQETAL YL YRV YORY] XoU EUXOAT EYXAUTAC TACT) OE TATIPEN GUOXEUGY KO AEYLTEX-
Tovxwy. Baowd cuotatind tng mhatgodpuac etvon 1 utneesia custodian, 1 omolo
eCacarilel TNV oplt| extéleot), TapaxoholinoT xoL CUVTOVIOUS TWV EPUPUOY MY,
OANG xan xoTorypopt| xan afloAdYNoN TV amoteheoudtwy. H emxowwvia tng
UTNEEGTOC UE TLC EPUPUOYES TTOU EXTEAOUVTAL OTO EXAC TOTE GUOTIUO ETULTUY Y AVETOL
UE TNV Yenon mvixwy pandas eve To ahyoprduixd modules emixovwvoly petoly
TOUC YPYCLLOTIOLWVTAS TO ONUOPLAES TewTOXO0AO emixoveviag MQTT.

ANyopripor Avagopdc

Ipoxetuévou vo alohoYNCOUNE To ATOTEAECUATO TNG EXTEAEOTNC TOU aAyopliuou
SGRM, xplveton avoryxatog o oyedlaouos optopévmy alyoplduny avapopds, Toug
onoloug Vo exteEAécouUE xat CUYXEIVOUUE PE Tol AmOTEAECUATA TOU ohyoplduou
woc. Autol ol alyoprduol ebvan ot e€hc:

« Offload None: Agehric alyopriuoc, efovoyxdlel OAEC TIC CUOXEVES VoL
EXTEAEGOLY TIC EQYUCIEC TOUC TOTUXAL.

« Offload All: Agehfc ahyoprduoc, eCovoryxdlel OAEC TIC CUOXEUES VoL EX-
(POPTLOOUY TS EPYAGIEC TOUS GTOV TANCLEGTERO dladéatuo xoufo.

e Oracle: Alyopriuoc eCavtintiic avalritnone, doxwdler Oha Tor eVOeYO-
UEVOL EXTEAECTC XOU EXPORTWOTNC EQYUACLMY XL ETLOTEEPEL TO BEATIOTO DLUVATO
OTOTEAETUOL.
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Ede onueidvoupe tog o ahyopwluoc Oracle, ovtac alydpriuoc eoavtAntinic
avalTNong, TaEouctdlel eXUETINT YPOVIXT) TOAUTAOXOTNTO CUVAPTHCEL TOU apEL-
Lo0 gpYaolwy xat xOuPwy expoéptnong. 'V autédv tov Adyo, Ja yenotuomoticouye
TOV EV AOY® ohYOpLIUO UOVO OTO OEVHRLYL ‘PLTMY EQYOCLOY TOU ToPOUCLELOVUE
TP TE.

Yuyxelttixr) Meietn

‘Eyovtoac vhomotioetl tov alyoprduo SGRM xo 1o newpopatind workbench mou
TEPLYEAPOE TORUTAVE, VAOTIOLOUUE €val Tparyotixd dixTuo edge, amoteAolUevo
OO Lol EVPELN YU ETEQOYEVV CUCKEUMY, UE TOLXLALX DUVATOTHTWY XL TEQL-
optop®y. Evdewtind, 1o 6ixTud pac nepthaufdver tpec ouoxevéc Raspberry Pi
4 Model B opyitextovinric ARMvT 32-bit, 800 cuoxeueg Jetson apyttextovinic
ARMvS8 64-bit (Jetson TX1 xou Jetson Nano), xaddc xar 800 oyvpd etxovixd
ovotAuato (Virtual Machines) opyttextovinic AMDG64 64-bit. Ilepioobtepec
TANPOGOEIES Yol TIC CUOXEVES UTopoLY Vo Bpedoly 6To xepdioto 6.1 Tne epyaotioc.

‘Pineg’ Epyaoiwyv

Apywd, vmofdilouue Toug ahyodprduouc oe plor Oelpd amd GUVTOUES oxOhoLViEC
EQYAOLOY, TIC omoieg ovoudloupe cupPBatxd ‘ounee’. ITo cuyxexpuéva, xaTtac Ten-
VOUUE o oevdpla epyaotwy 8overl, 8over2 xat 8over4, 6Tou o TEOTOS apLIUOS
UTIOONAWVEL TOV apldud TV €PYAOLOY TOU cevaplou xal o dedTepog aptiude Tov
optdud TV cuoxeuwy edge ToU GUUPETEYOUV 6To Gevdplo. Ot TapduUETEOL TWVY
oEVORIWY ToPOLCLALOVTOL TLO AVUAUTIXG GTOV Tivaxa 3.

Yevdpwo | Epyacieg | Yuoxeuég | KouPou | Xpovixry Katavoun
Soverl 8 1 1
Sover2 8 2 1 /\ Kovovixn
Soverd 8 4 1

[Tivacag 3: ‘Puéc’ Epyaowhv: Topduetool

Ko oto tplor evdiplor cupueteyel povo vag xoufog edge, ULog xou 1) CUUUETOYT
TEPLOCOTERWY UTOOEXVOETAUL TIEQLTTA YLl EVOY TOCO UIXPO OYXO EQYUOLOY. TNV
EOVAL 5 TUPOUCLACOUUE TNV EYLTEXTOVIXY| TOU OxTOOU edge TOU XAUTUCHEUSCOE
YL TOL TROXE(UEVOL OEVAPLYL, EVE OTNY €6V 6 TopouoldCoupe Tor anoTEAECUATA
NG EXTEAEOTC TV ahyopiluwy.

LNUEWWVOUUE TS O UIXEOC 0ptiUoC EQYOUCLIY XL 1) GUIUETOY Y| EVOC UOVO OU-
Bou oTo cUGTNUA EYEl WS amoTéAEoPa TNV UTapln 2% BlapopeTindV EVOEYOUEVWY
EXPOPTWONG, YEYOVOS TOU XoIGTE BUVITY| TNV EXTEAECT] TOU aAyopiduou eCavTA-
ntiic avalhtnone Oracle oe ebhoyo ypovixd dldoTnua.
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Edge Devices {

Raspbérry Pi 4 Jetson Nano

Ewoéva 5: ‘Punéc’ Epyoaowov: Xootnuo

m Offload None
m Offload All
u 3GRM
Oracle
0

8 over 1 & over 2 & over 4

Overdue Tasks
na [#%] E=N o on |

Ewova 6: ‘Putéc’ Epyaoiwv: Anoteléopota

‘Onwe gaivetonw xou oto ddypopud, o aiyderdpoc SGRM xotapépver vo oL-
OYEWLOTEL XL VO EXPORTWOEL GUVTOUES PLTEG OMOUTNTIXWY EQYACUDY ATOTEAEC-
wortixd, emoxidlovtac Toug ‘agehelc’ aiyopituouc Offfoad None & All xou mpoowuolhvov-
ToG O PEYAAO Pordud TNy cuumepLpopd Tou aiyopliuou Oracle.

ITopatetapéveg Axorovidiceg Epyaociwy

Y1y ouvéyela, oyedldCOUNE ULl OELRd OO TOPAUTETOUEVES OXOAOUVIES EQYOCLEY,
TEOXEWEVOU VoL UEAETYOOUNE TNV GUUTERLPOEE. Tou ahyopituov SGRM dtav xahel-
T va Oy Etplo tel ueydho mAndog epyaoliy oe eupl yeovixod didotrnua. lapouotd-
Coupe T eV AOYw oEVdpLa 0TOV Tiivoxa 4, TNV 0EYLTEXTOVIXT) TOL BIXTUOU OTO Gy YU
7 %o T AmOTEAEOUATO TNG OELOAOYNONG GTO G 8, EVK ONUELOVOUUE TS EBE
amo@Oyoue TNV Yeron tou aiyopiduou Oracle, wac xou to auinuévo mAfdoc ep-
YAoLOY XoTd TNV Ye1oT) TOU Oy OREVTIXH.
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Yevdpio | E@apuoyrég | Yuoxevég | KouPou Xpovixy Katavoun
32o0ver3, 32 3 1

64over3, 64 3 1 Konovir
64overd, 64 5 2 "
128overd, 128 ) 2

32over3, 32 3 1

64over3, 64 3 1 Poisson
G4overd,, 64 5 2

128over,, 128 5 2

Hivoxac 4: Hoapatetapévee Axolovdiec Epyaoiwyv: Tapduetpot

64-bit VM

320ver3 64overs

' Gdovers 1280ver5
Edge Gateways { ﬂ@D : HED

s
5]
p—
5]
5]

INNNN] INNNN] INNNN] i INNNNE INNNN}
Edge Devices { - - -

Raspberry Pi 4 Jetso;1 TX1 JetsonE Nano
Ewova 7: Topatetapévee Axohovdieg Epyaoumv: Xootnua
‘Onwe BPAETOUPE GTO BLAY AU, O AAYOPLIUOC XUTUPEQVEL VoL DLOYELOLO TEL ETUTUY G
TORUTETAUEVES IXOAOUDIEC EQYATLAY YLOL UEYHAL YEOVIXAL OLOC THUOTO X0 VL TTORBEEL

xohOTepar amotehéopota amd OTL ot agerelc ouyxpitixol alydpriuolr Offload None
xou Offload All.

126

Normal Distribution Poisson Distribution
a6
64
3z
m Offload Mone
I I I I uOffioad All
5 II . mSGRM

32 over3 64 aver3 64 aver 5 126 over5 | 32 over3 64 aver 3 64 aver 5 128 over 5

Owverdue Tasks

Ewoéva 8: Tlopatetopévee Axohoudiec Epyaoudv: Anotehéoyata
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ITgcoVeopiceg Epyaociwy

270 CEVEQLYL EQYUCLMY TWVY TEOTYOUUEVWY EVOTATWY, Ol TEOVEOUIES TV EQYUCLHV
ETAEY TNV XATAAANAA, TEOXEWEVOU Va e€acpohloVel 1 ToparywyT| SlopopoToln-
UEVOY ATOTEAEOUATOV UETAUED TWV ohYORIHUWY TOU EXTEAEG TNHOY Xl VoL XUTAOTE
OLYATY| 1) OUCLACTIXY| CUYXEIOT] TOug. XTNV eova 9 @aivetar 1 ETdpAOT TNG
Aovioaopévne emhoync Teoeouldy oty oUYXEIoT TwV aAyoplduwy xotd tnv
EXTEAEOT) TOU TUPATETOUEVOL OEVapiou EpYaolY 320verd, xome xou 1 oruay-
TIXOTNTA ETAOY NS 0pVWY TEOVECUI®Y.
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Ewoéva 9: Enidpaon Hpodeouiny ota Anoteréopata twyv [epaudtov

Ilepioccdtepa AnoteAéopata

Eéioou onuavtixd yia tnv alohdynon tou ahyoplduou yoc etvor 1 peAETn Tou
YEOVIXOU %ol UTOAOYIGTIX0) XOGTOUC oL TROGVETEL 6TO GUCTNUA HaC.

‘Onwe gaiveton xou 610 oyfjua 10, o akyoprduoc SGRM npocietel 2 deutepdhenta
XATE UECO OPO GTOV GUVOAIXO YPOVO EXTEAECTIC TWV EPYACLOY EVOS GUC TAUATOC,
EXTOC TWV TEQITTWOEWY OTOU 1) CUCXELT ETAEYEL ameulelog va exTEAEOEL TNV
exdotoTe epyacio Tomxd.

Yo oyfporto 1o xon 115 amecovileton 0 UTOAOYIG TG KOG TOC TOU ahyopEil-
Hov, 6Tay auTOC exTEAELTAL OF o cuoxELY| xou o Evay xoufo edge avtioTolya.
‘Onwe BAenovye, N xotavdhwor uviung tou alyoplduou dev Cemepvd ta 100MB
aVa TEOA OTLYUTR, EVE 1) XUTAVAAWGT) ENEEEQYACTIXNNC Loy Vg Elvon AtyOTERO OEA-
ntéa, PE ToV aAyopriuo var xotaAoufBdver uéypl xal 2 TURHVEC TOU eMECEQYAUOTY
NG cuoxeLT|C edge.

LYETIXA UE TNY XAOXWOLLOTNT ToU aAyopituou, enavolouBdvouue Eva amd
TOL TOQOTAVE TELRAUATOL ALEAVOVTOS TOV APl TV xOUPwy edge Tou CUUUETEYOUV
0TO GUOTNUA X0 TUPATNEOVUE TNV ETOECT qUTHS TNE adENCNE TNV CUUTEQLPORS!
Tou aryopliuou. ‘Onwg BActouue ota oyfuata 12a xou 1203, o yedvog andgpacng
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Ewxoéva 11: Trohoyiotxd Kdotog Ahyopituou

elvon {oog Ue TOV YpOVOo amdxplon Tou 0pYO6TEPOL xOuPBou edge xou eV emnpedeTal
QUECH OO TOV UELIUO TV CUVOEDEUEVWY XOUBWY.
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Ewoéva 12: En{dpaon cOvdeong meplocdtepnmy xOuBwy
Enlong, otnv edva 13 aneixoviCetar ) cuuneplpopd Tou ahyoplduou xatd Ty

apiEn TOAATADY gpyaolwy Tautoyeova. Ilapd Ty @awvouevixd porydado ypovixt
aOENoT TOU QUUVETOL OTO OYNU, OL LXAVOTIONTIXES ETOOCELS Tou ahyoplluou
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Ewoéva 13: Enidpaor tautdypovng dpiing TEpIOCOTEQWY EQYAUCLHOY

Téhoc, oto oyfua 14 TapouctdloVUE TNV ATOTEAECUATIXOTNTO TOU UMY oVIGUO0
TEOBAEYNE YPOVOL EXTEAECTC EQYUCLOY XATA TNV EXTEAEDT) TV CEVIURIWY EQYUCLHDY
Tou TepLypddope Topamdve. ‘Onwe BAénouye, To0 T0000Td Adog Tou UNYAVIoUOU
o xupadvetar xotd x0plo Aoyo petald —20% xo +20%, mocootd eloupetind
IXOVOTIOINTIXO YOl TIG AVEYXES TNG ERY TG, OEDOUEVNS TNG EYYEVOUS TUYOUOTNTAS
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Teluxr, Arotiunon

‘Eyovtoag unofdhiel tov akyoprduo SGRM oe extevh ouyxpttint] uehétn, Botoxo-
Moo TE oTNY V€N VoL AYOUUE OUAVTIXG CUUTERAOUATO Yo TOV OAYORrlud uag,
TNV €niBOOT TOL oL TA YAEAXTNELO T TOV. BLYXEXPWEV, 0 alyopriuoc SGRM
TOEOVCLECEL TO TOROUXATE) YOUEAUXTNELO TIXL:

e BeAtiototnta: O aryopriuoc SGRM emonidler toug agehelc ahyopld-
UoUC Ot xQUE OEVIQLO €QYOUOLDY TOU TOV UTOPBAAAAUE, EVE® Ol ATOPAOELS
EXQPOPTOONS ToL hofdvel mpooeyyilovy autéc Tou BéATIoTOU ahyopliuou
Oracle.

o Katavepnuevrn Aettovpyio: O alyodprduoc elvar TAomS amoxevTeoToL-
UEVOC, Xal XGUE GUGKEUT) TOU GUUUETEYEL OTO GUOTNUA ETUXOWVWVEL UE TOUC
XOUP0oug 1ot ToPVEL ATOPACELS AUTOVOUOL.

o« Khpoaxwowpotnto: H xataveunuévn @lon tou akyopliuou xau n aveloptn-
olot Tou UTOAOYIGTIXOU XL YEOVIXOU xOGTOUC TOU and TO TAUOC TWV CGUY-
UETEYOVTWY GUGHEUGMY X0l XOUPWY TOV xooTOLY XEmC XAUOXOCLIO.

¢ Xpovixo xou Yrohoyiotixd Kootog: O ahydprduoc npocdétel o
OYETIXA UIXET| YPOVIXT| XJUCTEPNOT OTNV EXTEAECT) TWV EQPUPUOYWY, 1) OTOld
umopel va puewwdel nepontepw pe Behtiotonolnon tou xwodxa xou avaBdiuion
TWY OIXTUOXOY UTTOO0UMY TOL GLUOTHUATOC edge.

e ITpocappootixdTnTa: Ol GUGKEVES £Y0UV TNV BUVITOTITA VO GUUUETAC) OUV
OTOV AAYOELIUO xon Vo avaAdBouy yeEn xOuPBou xatd To doxoHV.
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Chapter 1

Introduction

1.1 Internet of Things and Cloud Computing

Fueled by the continual advances in networking technologies and the ubiquitous
flourishing of artificial intelligence applications, the Internet of Things (or IoT)
has enjoyed an unprecedented surge in popularity in recent years. A strict
definition for the term is difficult to pin down, but, in short, “Internet of Things”
describes an assemblage of computing devices that possess the ability to monitor
and interact with the environment and transmit data through the internet.
These devices - or “things” - come in a variety of forms, ranging from vehicles
and mobile devices to “smart” home appliances, industrial machinery and even
biochip transponders embedded into farm animals [16]. The interconnection
of these devices through and with the internet, along with the ever-increasing
processing capabilities of mobile devices and microcomputers and the recent
introduction of the 5G network standard have opened up numerous research
opportunities and led industry leaders to rapidly embrace the IoT architecture.
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Figure 1.1: Expected Adoption Growth of IoT Devices [1]
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Notwithstanding the steadily increasing processing capabilities of IoT de-
vices, the data workloads produced by their sensors often prove too taxing to
be processed in place. Hence, the cloud computing paradigm was assumed:
powerful servers equipped with hefty multi-core CPUs and substantial amounts
of memory, persistently connected to the internet and tasked with process-
ing workloads generated and forwarded by the IoT devices. Stemming from
the principles of time-sharing, cloud computing rose as a solution to the ever-
growing need of companies for computing power with low upfront costs, and
proved to be a good fit for a lot of use-cases of the IoT architecture.

Despite its proven usefulness in numerous implementations, cloud computing
falls short in several applications that would be otherwise served greatly by the
[oT paradigm. Health and utility providers require user and data anonymity
that is difficult to ensure whilst transferring customer information to data cen-
ters, and the need for constant connection to the internet creates new vectors of
attack for safety-critical devices. At the same time, the expanding employment
of artificial intelligence and machine learning applications on IoT devices has
introduced new challenges that are not being catered to sufficiently by cloud
computing solutions. For example, voice command recognition or health moni-
toring applications require real time or low latency data processing, while road
monitoring auto-drive applications such as the ones employed on Tesla vehicles
require several layers of redundancy, as well as the capacity to work even when
not directly connected to the internet. Requirements like these eventually gave
rise to the “Edge Computing” paradigm.

1.2 Edge Computing

Edge Computing is a network architecture aiming to distribute processing work-
loads between IoT devices (labeled “edge devices”), local mid-powered process-
ing stations (labeled “edge nodes” or “edge gateways”) and, optionally, distant
high-end cloud servers. An overview of the architecture is presented in figure
1.2.

Coming back to the IoT paradigm, the IoT devices produce substantial data
workloads via their sensors interfacing with the environment, and require data
processing that often proves too arduous to be performed locally within sensible
time constraints. At the same time, some or all of this data processing needs to
be fast to near-instantaneous or the particularities of the situation dictate that
it is to be performed on a local network (and not transferred to cloud servers
through the internet). Through analysis, these data workloads are identified,
prioritized, and forwarded to more capable edge nodes connected to the local
network. Though usually not as powerful as off-site cloud servers, these edge
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Cloud

Edge nodes

Edge devices

Figure 1.2: Edge Computing Architecture [2]

nodes can perform the more “sensitive” data processing and significantly cut
down or even nullify the data needing to be transferred to a cloud server [1].

As a result, the edge computing architecture presents several apparent ad-
vantages over other solutions, including the capacity for larger workload pro-
cessing and real time task execution. The confinement of data transfers over
the local network ensures prime transfer speeds and provides a higher level of
data security, while the lower dependence on cloud servers and a stable internet
connection allows for mobility and geographical independence. Another note-
worthy feature is the utilization of low-powered edge nodes over power-hungry
data centers, leading to a smaller carbon footprint.

Along with these considerable advantages, edge computing comes with a slew
of challenges and potential research opportunities, with resource management
being the main focus of this thesis. Beyond that, the heterogeneity and inter-
operability of potential edge devices and nodes needs to be taken into account,
and high levels of redundancy and reliability need to be ensured in proposed
edge computing solutions and algorithms. Finally, even though the data local-
ity provided by the edge computing architecture reduces the potential attack
vectors on the system, the anonymity and security of data need to be antici-
pated for, in contrast to cloud computing solutions where the service provider
usually provides for these needs.

1.3 Resource Management in Edge Computing

One of the centerpieces of current research of edge computing architectures and
solutions is the management of the limited resources of edge devices and edge
nodes (or gateways, as we will often call them in this work). Every device taking
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part in an edge computing system is limited by certain constraints, ranging from
limited processing speeds and a finite memory capacity to a low power or energy
availability. Also, the network over which an edge computing system operates
presents its own limitations in the form of a limited bandwidth or dependence
on network reach.

If the aforementioned constraints are modelled as resources, the need to
analyze and estimate them becomes an essential first step in the quest to address
the resource management problem. After auditing the available resources comes
the workload allocation between the edge devices and the edge nodes, as well
as the coordination between those devices, in order to achieve the optimal
levels of resource utilization and, in turn, the highest quality of service for the
applications being executed on the edge.

Resource
Estimation

Workload
Allocation

Device
Coordination

Figure 1.3: Resource Management Cycle

1.4 Approaches to Resource Management

While the resource estimation and device coordination challenges can usually
be addressed by developing fitting techniques, the workload allocation chal-
lenge, once tackled, quickly proves to be an NP-hard problem. Given a certain
amount of devices and tasks and the problem of allocating said tasks to said
devices optimally, the obvious solution of validating every possible allocation
combination and accepting the optimal one, while deterministically producing
the optimal workload allocation strategy, is prohibitive to any time-sensitive
application due to its immense computational complexity.

As a result, researchers focusing on the resource management challenge have
utilized models, theories and paradigms from multiple scientific fields and de-
veloped various different approaches to the problem. The competition between
devices and applications over scarce resources paves the way for a game theo-
retic approach, where the resource management problem is modelled as a game
and the devices are modelled as the players of said game, competing with each
other over the workloads and resources. Once the problem is properly modelled
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as a game, it is possible to employ tools and theorems on offer by the field
of mathematical and algorithmic game theory in order to find a satisfactory
methodology to solving it.

1.5 Thesis Overview

The presented work employs a well-established edge architecture of a local net-
work consisting of edge devices and gateways. Tasks are continually generated
on the edge devices, and they, in turn, are granted the ability to offload said
tasks to the gateways. In our setup, both devices and gateways have resource
constraints in the form of limited processing power and memory, while the
network connecting them offers a limited bandwidth.

Consequently, an efficient system of coordinating between the devices, esti-
mating the available resources and deciding on which tasks should be offloaded
and where to becomes essential. While many different approaches have been
developed to tackle this particular challenge, this thesis offers a novel approach
with the following contributions:

o We present a model of an edge computing setup, where edge devices can
choose to offload generated tasks to edge gateways. We take into account
the limited resources and constraints of our system, and model the resource
management problem as a deadline miss minimization problem.

o We describe, design and implement SGRM, a distributed game-theoretic
resource management algorithm that models the resource management
problem as a Stackelberg game where devices act as leaders and decide
on which tasks to offload, and gateways act as followers and compete over
the tasks in a second-price sealed-bid auction.

o We evaluate our algorithm and compare it to common baselines utilizing
edgebench, a workbench of heterogeneous artificial intelligence applications
developed specifically for the needs of this thesis.

The remainder of this thesis is organized as follows:

e In chapter 2, we summarize existing work related to our research.

e In chapter 3, we discuss game theoretic models and their usefulness in
tackling the resource management challenge.

o In chapter 4, we formulate the resource management problem and put
forward our solution, the SGRM algorithm.
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e In chapter 5, we provide information related to the technical implementa-
tion of our algorithm, and present edgebench, an application workbench
especially designed for the needs of this thesis.

o In chapter 6, we assess SGRM, describe the evaluation methodology and
analyze the results of our experiments.

o Finally, in chapter 7, we draw conclusions from our work and provide ideas
for future research.
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Chapter 2

Related Work

Over the last years, a significant amount of research has been carried out in
order to address the resource management challenges present in edge and cloud
computing systems, and an array of interdisciplinary approaches have been
employed for that purpose; many with noteworthy success. In this chapter, we
offer a short survey of such proposals, focusing on those that employ elements
of game & market theory.

2.1 Game & Market Theory Based Approaches

In [17], authors design a game-theoretic top-down & bottom-up task allocation
algorithm for edge computing systems, while authors in [18] offer a cooperative-
competitive approach. Liu et al. in [19] combine a multi-item auction and a
congestion game in order to optimize a data offloading decision mechanism in
mobile cloud computing environments. Messous et al. in [20] and [21] formu-
late a computation offloading problem in UAV edge networks, and design two
discrete game theoretic algorithms to tackle it with significant success.

A lot of research has also gone into developing market and economic the-
ory based techniques for the resource management challenge. Katsaragakis et
al. in [22] offers “DMRM?”, a distributed market-based approach for resource
management in edge computing systems. Melissaris et al. in [23] put forward
“Agora”, a resource management algorithm based on principles of economic
theory for many-core systems. Lastly, [24] models the task allocation problem
in a software development process as a resource management problem, and of-
fers a Vickrey auction solution to address it, not unlike the one utilized in the
present thesis.

2.2 Stackelberg Game Approaches

Researchers have had notable success with employing the Stackelberg game
(SG) model to a variety of resource management challenges. Authors in [25]
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employ a multiple-leader, single-follower Stackelberg game based approach to
tackle an anti-jamming problem, while Yang et al. in [26] model the resource
allocation problem in energy-hungry data centers after a single-leader, multiple-
follower SG. In [27], authors introduce blockchain mining to the edge by con-
structing collaborative mining networks (CMNs) consisting of non-mining de-
vices and the edge cloud, and formulating the interactions between the edge
cloud operators and CMNs after a Stackelberg game, in order to estimate re-
source prices and demands. [28] follows along the same lines, putting forward
a three-stage SG for edge devices participating in the mobile blockchain.

Chen et al. in [29] tackle a resource management problem akin to the one
addressed by the present thesis utilizing a reverse Stackelberg model, whereas
authors in [30] combine an SG approach with a many-to-many matching game
to design a framework for resource allocation in three-tier edge networks. Facing
a similar allocation challenge, [31] models the interactions between cloud and
edge servers as an SG. Finally, [32] offers a multi-leader, multi-follower SG for
the purposes of allocating end users to mobile networks.
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Chapter 3

Game Theory and Models

3.1 Game Theory Fundamentals

Game theory, the branch of applied mathematics that studies the models of
conflict and cooperation between rational decision-takers [33], has been widely
utilized to tackle challenges present computing systems and networks with sig-
nificant success. Authors in [34] and [35] provide surveys of economic models
and components of pricing theory applied in resource management problems
in cloud networks and IoT systems respectively, while authors in [36] offer a
detailed presentation of applications of game theory in the field of mobile edge
computing (MEC).

A game is defined as any situation in which one or more agents can act
to maximize their utility through anticipating the responses to his actions by
other agents [37]. The agents (or decision-makers), are called players, and
the decisions they make are called actions. In games with multiple decision-
making steps, also called extensive-form games, a collection of actions of a
player is called this player’s strategy. The possible results of a game are called
outcomes, and they are usually quantified into payoff or utility values [38].

3.2 Game Theoretic Models

This diploma thesis focuses on classical games, defined as isolated encounters,
devoid of the behavioural regularities found in evolutionary games [39]. Classi-
cal games are distinguished further into cooperative and non-cooperative games,
depending on the ability of players to form coalitions with each other in pursuit
of a common goal [40)].

This thesis utilizes elements of non-cooperative (NC) game theory (namely
Stackelberg games (SG)), as well as auction theory. These elements are elabo-
rated upon further in the following sections.
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Figure 3.1: Taxonomy of Games

3.2.1 Non-Cooperative Games

Non-cooperative games constitute the fundamental type of game studied by
the field of game theory. In these games, the players are unable to coordinate
and cooperate with each other, but are forced to act independently. [41] puts
forward the following features as descriptive of non-cooperative game theory:

e Rules are complete.
e The ultimate decision units are the players.

o Commitments are not available.

A principal concept of non-cooperative game theory is the Nash Equilibrium
(NE), defined as a set of strategies (called a strategy profile) such that each
player maximizes their payoft, provided that all other players remain fixed in
their strategies [40].

Despite its merits, the parallel nature of generic non-cooperative games does
not lend itself well to the challenges being addressed by this thesis. For that
reason, the sequential Stackelberg game is introduced.

3.2.2 Stackelberg Games

A Stackelberg game is a special type of the non-cooperative game, where players
are segregated into leaders and followers [3]. A Stackelberg game is played
in cycles, and each cycle is defined as a series of actions:

1. The leaders choose their strategies,
2. The leaders announce their strategies,

3. The followers are informed of the leaders’ strategies and, in turn, choose
their own strategies,

4. The followers announce their strategies.
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Figure 3.2: Stackelberg Game Cycle

Stackelberg games are classified based on the number of followers and leaders
participating. Figure 3.2 provides a visual model of a cycle of a single-leader,
single-follower Stackelberg game, while the algorithm in this thesis models the
task offloading problem as a single-leader, multiple-follower game.

Similarly to the Nash equilibrium, a set of strategies that provide the optimal
outcomes for both leaders and followers participating in a Stackelberg game is
defined as the Stackelberg equilibrium of the game [3]. Authors in [36] sug-
gest that a Stackelberg game model constitutes a non-cooperative game model,
enhanced with the novel aspects of action observation and stage repetition.

3.2.3 Sealed-Bid Auctions

Sealed-Bid auctions provide a very straightforward way of assigning and auc-
tioning value to competing agents. In these auctions, buyers submit sealed bids
simultaneously, with no prior knowledge regarding the bidding strategy of the
competition. Afterwards, the bids are opened and announced, and the highest
bidder is awarded the good or service in question [42].

While first-price sealed-bid auctions are more common, in this thesis we
utilize Vickrey (or second-price, sealed-bid) auctions, where the winner of the
auction pays the price bid by the second highest bidder. Here, bidding truthfully
is proven to be the optimal strategy for all players [43]. In chapter 4.2.1, we take
advantage of this property to prove the existence of a Stackelberg equilibrium
for our game.

3.2.4 Other Approaches

Besides the elements described above, game theory offers a multitude of models
and theorems that may prove useful in addressing the diversity of challenges
introduced by the edge computing paradigm. Some possibilities would be:

« organizing the devices into coalitions and employing cooperative game
theory,
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modeling the prolonged interactions of edge devices after evolutionary
games,

reinterpreting and analyzing the system in question using economic the-
ory.
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Chapter 4

SGRM: Stackelberg Game-Based
Resource Management

This research addresses a common resource management challenge present in
edge computing networks. In this chapter, we model the system’s architecture,
objectives and constraints. Afterwards, we formulate the optimization problem
and put forward our proposed solution: the SGRM algorithm.

4.1 System & Problem Formulation

4.1.1 System Formulation

The edge computing architecture posited in this work is constituted by a number
of edge devices interconnected via a local network. The devices are distinguished
into two discrete groups:

o Edge Devices: IoT devices, ranging from sensors and systems-on-chips to
fully-fledged microcomputers. These devices are equipped with processing
capabilities but are tasked with carrying out tasks that exceed their limited
available resources.

« Edge Gateways: Edge computing devices, equipped with their own set
of limited resources and tasked with optimally utilizing these resources in
order to aid the execution of tasks generated on the edge devices. These
gateways can be IoT devices or any other type of device equipped with
processing, memory and networking capabilities, such as edge servers and
workstations.

Every edge device is assigned an identifying value x € {1,..., X}, and is
described by a tuple D, = {C,, M, N,,t,}. In the same manner, every edge
gateway is assigned an identifying value y € {1,..., Y}, and is described by a
tuple G, = {C,, M, N,,t,}. Variables C,, M, and N, denote the available
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Denotation Description Values
x Device ID 1,....X
Y Gateway 1D 1,....Y
C, Available CPU 0 — 100%
M, Available RAM 0 — 100%
N, Available Bandwidth 0 —100%
te Current Tasks N
z Task ID 1,.,72
w, Task Type N
Q, Task Deadline R%

r, Task Reward R%

c Maximum CPU Usage 0 — 100%
m! Maximum RAM Usage 0 — 100%
nt Maximum Bandwidth Usage | 0 — 100%
T, Generation Device 1., X
Y. Execution Device 0,...Y

Table 4.1: Key System Model Parameters

processing, memory and network resources of the device respectively, while %,
indicates the number of tasks currently being executed on the device.

Following along the same lines, every task is assigned an identifying value z €
{1,...,Z}, and is described by a tuple T, = {w,, Q.,7.,c.,m’ n’, x,,y.}. ., m’
and n’ signify the amount of processing power, memory and bandwidth required
for the task to be executed on device (or gateway) i, and are calculated via the
task evaluation module described in chapter 4.3.3. €2, signifies the deadline of
the task in seconds, while x, and y, denote the device wherein the task was
generated and the gateway whereto the task was offloaded, respectively. For
tasks that were executed locally and not offloaded, the variable vy, is set to zero.
Lastly, w, indicates the category (or “type”) of the task produced by the task
evaluation module, and r, signifies the base reward offered by the operator of
the algorithm to the device that carries out the task, as explained in section
4.1.3.

We summarize the denotations of our model in table 4.1, and offer a visual-
isation of the system architecture in figure 4.1. We also note that the variables
x and y indicate an edge device and gateway respectively, while the variable
¢ that we use in some of the following sections indicates a device that can be
either of the two.

Having properly defined the system architecture utilized in this research, we
move on to formulate the problem addressed in our work.
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4.1.2 Problem Formulation

Given a set of X edge devices and Y edge gateways, a set of Z tasks is generated
over a set period of time on the devices of the edge computing network. We
define the objective of our system as the minimization of the number of tasks
that overage their deadline:

zZ
minimize > 6, (4.1)

1 if task z misses its deadline
where ), = _
0 otherwise

We also define the constraints of the problem:

Device Constraints : Ve,z st (x,,y.) = (2,0): > el <Cp (4.2)
Ve, z st (x,,y,) = (z,0) : imﬁ < M, (4.3)

Ve, z st (x,,y,) = (z,0) : Zz:ng <N, (44)

Gateway Constraints : Vy,z st. y,=y: ZZCZ <C, (4.5)
Vy,z st y.,=y: szg <M, (4.6)

Vy,z st y,=uy: Zgng <N, (4.7)

It is important to note that modern CPUs do not offer quantifiable “pro-
cessing units”, as the constraints imply, but rather provide all their available
processing power, which is then split between all tasks currently being executed
on the device. Therefore, the processing constraints described by equations 4.2
and 4.5 are always enforced by the central processing unit of the device, and
only present an indirect constraint, in the sense of increasing the execution time
of a task, pushing it closer to the task deadline. The bandwidth constraints
described in equations 4.3 and 4.6 present a similar indirect constraint to the
system.

4.1.3 Incentive Definition

While completely optional, introducing an incentive mechanism for agents par-
ticipating in the RM algorithm allows for its application in scenarios where the
agents do not share the minimization objective of the system as formulated
in chapter 4.1.2, but work strictly for personal gain. [4] presents a survey of
mechanisms that could be adapted to be used as incentives for participating in
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Figure 4.1: Target system architecture

the algorithm, of which we suggest a pricing mechanism [22] or a reputation
system [44] as optimal for the nuances of SGRM.

4.2 Theoretical Fundamentals

Having strictly formulated the utilized system and the problem in question, we
proceed to designate the SGRM algorithm.

The fundamental idea behind SGRM is to model the interactions between
an edge device and the edge gateways offering to receive and perform the de-
vice’s computation tasks as a single-leader, multiple-follower Stackelberg
game. In this game, the edge device takes up the role of the leader, and the
edge gateways are the followers, reacting to the leader’s decisions. A single
Stackelberg game cycle is defined as a lifetime of a task, and is played as follows:

1. A task is generated on the edge device.

2. The device (leader) evaluates the newly generated task, calculates the util-
ity of executing the task locally, and, if it decides so, advertises the task
for offloading.

3. The edge gateways (followers) evaluate the newly advertised task, calculate
the utility of receiving the task, and announce the value to the edge device.

4. The device conducts an auction to designate the recipient of the task, using
the estimated utility values of itself and the gateways as bids.
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For the final step of our algorithm, we employ a Vickrey auction, also called
a second-price, sealed-bid auction. Here, the different utilities are entered in an
auction, and the winner of this auction receives the task and pays the second
highest bid to the edge network operator (or receives it, in the case of negative
bids). When the task is complete, the winner receives the initial reward value
associated with that particular task. Both the game and the auction make use
of a digital currency that can be quantified into one of the incentives suggested
in chapter 4.1.3.

4.2.1 Stackelberg Equilibrium

In order to prove the existence of a Stackelberg Equilibrium (SE) in our game,
we will generalize the well known property of truthful bidding dominating other
strategies in Vickrey auctions [45] for positive and negative bids. As explained
previously, when a player is allocated a task, they pay the value equivalent
to the second highest bid (or receive it, when the bid is negative), and once
the task is complete, they receive the reward for the task by the edge network
operator.

Let u; € Ry be player ¢’s utility for a given task, and let b; € Ry be that
player’s bid. The player’s payoff for this task is:

{ui — MaX; bj if b; > max;-; bj
Di =

0 otherwise

Obviously, the player’s payoff is positive if u; > max;.; b;. We will examine
the strategies of overbidding and underbidding.
Assume that b; > u; (overbidding). Then:

o If maxj4 b; < u; < b;, the player wins the auction, but overbidding does
not increase the payoff.

o If maxjy; b; > b; > u;, the player loses the auction, and their payoff is zero.

o If u; < maxjzb; < b;, the player wins the auction, but the payoff is
negative. Hence, overbidding decreases the payoff.

Thus, we proved that the strategy of bidding truthfully dominates the strat-
egy of overbidding.

Assume that b; < u; (underbidding). Then:

o If max;.; b; > u; > b;, the player loses the auction, and the payoff is zero.
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o If max;.; b; < b; < u;, the player wins the auction, but underbidding does
not increase the payoff.

o If b; < max;»; b; < u;, the player loses the auction, and the payoff is zero.

Thus, we proved that the strategy of bidding truthfully dominates the strat-
egy of underbidding.

Therefore, we prove that the strategy of bidding truthfully dominates the
strategies of overbidding and underbidding in every case. Thus, any player
that participates in the Stackelberg game maximizes their payoff when bidding
truthfully.

4.3 Modules

To achieve the goals set forth, SGRM is comprised by a number of discrete
modules:

e An edge device module, containing the task auctioning and offloading
mechanisms,

« An edge gateway module, executing a task bidding mechanism,

o A task evaluation module, executed on all devices.

Task Profiling

Y i Dont
Execution Time Auctlor]‘ Execute task z Dontt
Prediction : ’ .. .-Offload

. 4 :
L i ; Auctionin Offloadin
generated on : Utility Function | —— loning ing " Offload task 2z
N : H Mechanism Mechanism .
device T : .
Auction -+ Offload
- Bid
S
Bidding

Utility Function

Execute task z

Mechanism

A

Execution Time
Prediction

A
PE\WH
A<}

Task Evaluation Module 4

Task Profiling

Figure 4.2: SGRM Organization

Figure 4.2 describes the organization of these modules, and in the following
subsections we analyze their operations.
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4.3.1 Edge Device Module

The device module is comprised of a task auctioning and a task offloading
mechanism, with both of them being executed separately for each task generated
on the device.

Algorithm 1: SGRM Algorithm (device module)

Input: timeline // task timeline
Output: count // overdue task counter
begin
count = 0
for task in timeline open thread and do
utility = evaluate(task)
if wtility > threshold then // Don’t bother auctioning
| flag = executeLocally(task) // when utility adequately high
else
auction(task)
bidTable = receiveBid(task) // receive bids
winner = max(bidTable)
flag = offload(task, winner) // true if task overdue
if flag then
‘ count += 1

end
return count

end

Given a newly generated task z, the device first evaluates it, as described
in chapter 4.3.3, and assigns an appropriate utility value to it. Based on this
evaluation, the device decides on auctioning (and potentially offloading) the
task, or skipping the process and executing it locally. If the device decides
to auction the task, the auctioning mechanism advertises the task to the edge
gateways, who in turn bid as described in the following section. Once all bids
are collected, the task offloading mechanism determines the auction winner and
proceeds to transfer the task workload to them.

Algorithm 1 summarizes the functionality of the device module. We define
threshold as the utility value over which the task should not be considered for
offloading. Through experimental analysis we determine that a margin value of
1 produces adequate results in our use-case.

4.3.2 Edge Gateway Module

The gateway module is comprised by a single bidding mechanism, invoked once
for each task auctioned by the edge devices.

Given an advertised task z, the gateway follows a similar procedure as the
one described in chapter 4.3.1, evaluating the task and assigning a utility value
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to it. Next, the task bidding mechanism forwards the estimated utility value as
a bid for the auction conducted by the respective device module. Finally, if the
gateway wins the auction, it receives the offloaded task and executes it locally.
We summarize the functionality of the gateway module in algorithm 2.

Algorithm 2: SGRM Algorithm (gateway module)

Input: timeline // task timeline
Output: count // overdue task counter
begin
count = 0
for auctioned task open thread and do
utility = evaluate(task) // Evaluate task
bid(task, utility) // and place bid

winner = receiveResult(task)
if winner then
flag = executeLocally(task) // true if auction won
if flag then
‘ count +=1

end
return count

end

4.3.3 Task Evaluation Module

Both edge devices and gateways are equipped with a task evaluation module,
consisting of a task profiling mechanism, an execution time prediction mecha-
nism and a utility function. This module allows a device to appraise a task,
estimate its execution time and quantify the benefit it will receive for receiving
and executing it.

Task Profiling Mechanism

Before a device is able to participate meaningfully to the edge system governed
by our algorithm, a pre-processing step of profiling the different types of tasks
present in the system needs to be carried out on the device, and the effects of
multiple tasks being executed in parallel needs to be analyzed and quantified.

To that end, the task profiling mechanism executes multiple combinations
of tasks on the target device and records their execution times. Once enough
readings have been collected, an analysis of each type of task is performed, as
follows:

1. Chunk Gauging: Execute the task by itself, and define the work carried
out by the device in 1 second as a chunk. E.g., a 12 second task consists
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of 12 chunks:
chunks,, ; = wecety, ;(1) (4.8)

2. WCET Estimation: For each task combination tested by the task profil-

ing mechanism, estimate the worst case execution time, following a naive
formula:

weety, ;(t;) = chunks,; X t; (4.9)

Each time, calculate the error between the estimated value and the actual
value.

3. Error compensation: Generate a logarithmic trendline of the estima-
tion error percentage as a function of the current number of tasks being
executed on the device.

compfui(ti) = i X Int; + By, (4.10)

As a result of the aforementioned process, a tuple (chunks i, i, Puw.i) is
generated for every task type w and device ¢ combination, which is then utilized
by the execution time prediction mechanism. In regards to the amount of
different task combinations required to be run to produce sufficient results,
figure 4.3 displays the prediction error improvement as more combinations of
tasks are executed. In this case, we conclude that even with an average of
25 executed combinations, the time prediction mechanism manages to produce
satisfactory results.

Combinations: W5 W10 W25 50 W75 M 100
50%
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-30%

Figure 4.3: Time Prediction Improvement
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Execution Time Prediction Mechanism

Armed with the resulting tuples of the task profiling mechanism, the time pre-
diction mechanism predicts the worst case execution time of a task as a function
of the number of tasks currently running on the device, using the equation:

weety, i(t;) = chunks,,; X t; — compf,.i(t;) (4.11)
where compfyi(ti)) = qu; X Int; + By, (4.12)

We evaluate the accuracy of this prediction mechanism in chapter 6.3.

Utility Function

Central to the decision making of the algorithm is the utility function, which
quantifies the value that a device stands to gain by undertaking a particular
task, and doubles as a bid in the sealed-bid auction orchestrated by the corre-
sponding edge device.

First, two penalty functions are estimated. The first penalty function pe-
nalizes the final utility according to the estimated execution time of the task,
similarly to [18] and [17]. It becomes negative when the task is estimated to
miss its deadline:

Q- weety, (ty) — wt, »

(4.13)

lzgx

Table 4.2 offers an elaboration on the notation used in the penalty function
above.

A slightly altered version of this penalty function is estimated on the gateway
devices, taking into account the extra time required to receive the task:

Q.

T 4.14
T QL —weety, y(ty) =t 4y — wi,y, (4.14)

The second penalty function penalizes the device according to the number
of tasks currently being executed locally:

clv if ., <0
;= ’ 4.15
P { Loif L, >0 (4.15)

ctz

Similarly, when run on a gateway device the second penalty function is esti-
mated according to the equation:
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Denotation Description
Q. Deadline of task z
Weely, ; Worst Case Execution Time of task type w on device ¢
2y Transfer time of task z from device = to gateway y
wt, Waiting time for task z to begin execution on device i

Table 4.2: Time Variable Definitions

Dy = _ 4.16
Tl if L, >0 (4.16)
where ¢ > 1 constitutes a weight factor.
Finally, the utility function is estimated on the device:
T
Uy p = ——— 4.17
o lZ,CL‘ X Pz ( )
and on the gateway:
r
Uy ey = - (418)
Lay X Dy
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Chapter 5

Technical Implementation

Having formally defined SGRM in the previous chapter, here we describe the
details of the technical implementation of our algorithm in length. First, we
designate the artificial intelligence applications employed for the sake of pro-
viding our algorithm with realistic workloads. Then, we describe edgebench, an
application workbench designed for managing, coordinating and monitoring the
execution of these applications. Finally, we present the resource management
algorithms utilized as baselines to compare SGRM against.

5.1 Applications

In order to accurately simulate the execution of SGRM under realistic workloads
we employ a number of artificial intelligence applications. These applications
present real-time, heterogeneous workloads with disparate but significant pro-
cessing and memory requirements. In the following sections, we showcase these
applications, describe their functions and outline their processing and memory
requirements, as observed when run on a testing device (here, a Raspberry Pi
4 Model B, as described in chapter 6.1.1).

5.1.1 Deepspeech

Deepspeech [6, 7] is an open-source, real-time text-to-speech (TTS) engine,
utilizing a pretrained machine learning model [6] and Google’s Tensorflow [15]
platform. As shown in figure 5.1, the application receives as input a wave audio
format (WAV) file, preferably short in duration, and outputs the transcribed
text.

WAV 7 TXT
Figure 5.1: Deepspeech function
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As figure 5.2 shows, a single deepspeech task requires a miniscule amount of
RAM and an average, albeit consistent, percentage of processing power through-
out its lifetime of 12 seconds when run isolated on the testing device.
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Figure 5.2: Deepspeech Resource Utilization

5.1.2 Facenet

Facenet [8, 9] is a face recognition and classification algorithm, implementing
the machine learning techniques described in [8] on the Tensorflow platform
[15]. In its regular operating mode, the algorithm receives a collection of face
images in JPG format and classifies them in discrete clusters, as shown in figure

5.3.
L \=3 ]

Figure 5.3: Facenet function

For the purposes of this thesis, the algorithm is utilized as a real-time face
recognizer: after being provided with a database of “accepted” faces, it receives
an image containing a single face, and is tasked with discerning whether the
face in question coincides with one of the accepted faces.
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Unlike deepspeech, facenet presents a more considerable workload in terms
of memory usage, occupying upwards of 500 MB of RAM on the testing device
(figure 5.4). In contrast, its processing requirements are significantly lower,
with a single CPU core bearing the brunt of the processing throughout the 6.6
seconds of execution.
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Figure 5.4: Facenet Resource Utilization

5.1.3 Lanenet

Lanenet [10, 11] is a Tensorflow implementation [15] of a real-time lane detection
algorithm based on a Deep Neural Network [10]. As shown in figure 5.5, the
application receives a JPG formatted image of a road as input; then, it promptly
detects and outputs the discrete lanes of traffic in the image in question.

Figure 5.5: Lanenet function

As shown in figure 5.6, a lanenet task presents a short but taxing workload
for our testing device. More precisely, a single lanenet task requires less than
2 seconds to execute, provided it is run isolated from other applications, but it
occupies between 1 and 3 CPU cores, as well as 200 MB of RAM to that end.
Special note is also taken of the variance of the processing and memory usages,
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Figure 5.6: Lanenet Resource Utilization

in contrast to the other applications that maintain a mostly constant resource
utilization.

5.1.4 Retain

RETAIN [12, 13] utilizes the Theano ML library [14] to offer a heart failure pre-
diction model for healthcare use-cases. The application implements the algo-
rithm described in [12], and outputs predictions once provided with a patient’s
health record in CSV format, as shown in figure 5.7.

Figure 5.7: Retain function

Retain constitutes the lightest of the workloads presented in this section in
terms of resource requirements, requiring only 1 processing core and less than
60 MB of memory for the entire duration of its execution, which took 11 seconds
in total on our testing device (figure 5.8).
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5.2 Application Workbench

Having collected and properly configured the applications described in the pre-
vious section, the need to administer, monitor and coordinate them arises. To
that end, we design edgebench [5], an all-in-one application workbench written
in Shell and Python 3. A short overview of the workbench is offered below.

/ Edgebench'(')ustodlan SGRM De\(lgf Moduh /Edge Gateway e \

: App App App
PN T TN e e
: idocker docker  docker S !
& & & & Nk
docker docker docker docker : B '
T I . |

upp App App App  Edge DeviCy KSGRM Gateway Module Edgebench Custodian /

Figure 5.9: Edgebench organization

The workbench addresses the following challenges:

e Deployment of the application workbench on a variety of architectures
and devices is made easy and fast through the dockerization [46] of the
applications into discrete containers. This removes the need for prior con-
figuration or research into the nuances of the device (aside, of course, from
the need to install docker), while also allowing the quick addition or re-
moval of any other application onto the workbench.

o Coordination of the workbench and the algorithm modules with the ap-
plications is achieved through a custodian service, designed specifically
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for this purpose. This service, programmed in Python, initiates the ap-
plications, provides them with input, monitors their execution and keeps
comprehensive logs of a myriad of details, essential both for the orderly
operation of the workbench and the evaluation of the algorithm, as shown
in chapter 6.

o« Communication between the custodian service and the algorithmic mod-
ules being executed on the device is attained through pandas matrices,
which hold extensive information on the state of the device and the ap-
plications being executed. On the other hand, communication between
algorithmic modules running on different devices is realized through appli-
cation of the popular MQTT communication protocol [47].

5.3 Algorithmic Baselines

In order to effectively and meaningfully evaluate SGRM, we design and im-
plement a number of baseline algorithms, against which we will compare our
algorithm. By assigning identical workloads to SGRM and the baselines, we
can extract important information on the efficiency of our algorithm, as shown
in chapter 6.

5.3.1 Offload None & Offload All

An obvious first candidate for a comparison baseline is an algorithm that does
not allow the offloading of any tasks from the edge devices to the connected
gateways, but forces the devices to execute all tasks locally. Thus, we are able
to gauge the effectiveness of our algorithm compared to it being entirely absent
from the edge computing system. We present this algorithm, coined “Offload
None”, in algorithm 3.

Algorithm 3: Offload None Algorithm

Input: timeline // task timeline
Output: count // overdue task counter
begin
count = 0
for task in timeline do
flag = executeLocally(task) // True if task overdue
if flag then
‘ count += 1
end
return count

end

64



Crossing over to the other side of absolute decision making, we design the
“Offload All” algorithm, which instructs the devices to immediately offload
any workloads generated on them to a valid gateway. While representing an-
other obviously suboptimal offloading decision, this algorithm provides another
valuable metric for SGRM to compare against. “Offload All” is presented in
algorithm 4.

Algorithm 4: Offload All Algorithm

Input: timeline // task timeline
Output: count // overdue task counter
begin
count = 0
for task in timeline do

flag = offload(task) // True if task overdue

if flag then

‘ count += 1

end
return count

end

5.3.2 Oracle

Finally, it is essential to specify how well SGRM emulates the behaviour of
an optimal (as defined in chapter 4.1.2) offloading algorithm. To that end, we
put forward the Oracle prediction algorithm, a brute-force, exhaustive-search
algorithm that possesses the details of the workload a priori and infers the
optimal task offloading scenario by carrying out and experimentally evaluating
every possibility. It’s important to mention that the Oracle algorithm grows
exponentially in time as the number of tasks increases. Hence, we only employ
this algorithm in the “Burst” workload scenario for a maximum of 8 generated
tasks, as presented in chapter 6.2.1.
We present the algorithmic design in algorithm 5.
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Algorithm 5: Oracle Algorithm

Output: bestCount // overdue task counter
Input: timeline // task timeline
begin

bestCount = 0
combinations = iterate(timeline)
for combination in combinations do
for task, gateway in combination do
if gateway then // nonzero if task is destined
‘ flag = offload(task, gateway) // for offloading
else
| flag = executeLocally(task)
if flag then
‘ count +=1

end

if count < bestCount then
| bestCount = count

end
return bestCount

end
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Chapter 6

Experimental Evaluation

In this chapter, we perform an experimental assessment of SGRM in order to
evaluate its performance and illustrate the validity of our resource manage-
ment approach. First, we present the experimental setup we have prepared and
showcase the participating devices. Afterwards, we carry out an extensive com-
parative study, submitting SGRM and the baseline algorithms to an extensive
array of workload scenarios. Finally, we organize and present the results of our
study, and utilize them to arrive to a final verdict for our algorithm.

6.1 Experimental Setup

In order to provide a realistic framework on which to execute and assess the
algorithms, we put together a real edge network, consisting of a diverse array
of devices, showcased briefly below.

6.1.1 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is the latest rendition of the popular Raspberry Pi
microcomputer series, put together by the charitable Raspberry Pi foundation.
This Single-Board Computer (SBC) offers a significant performance step-up
from the previous versions, while maintaining a small size factor. The technical
specifications of the Pis employed in this thesis are !:

e Processor: Quad-core Cortex-A72 32-bit SoC @ 1.5GHz
e Memory: 4GB LPDDR4 RAM
e Graphics Processor: Broadcom VideoCore VI

o Networking: 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth
5.0, BLE, Gigabit Ethernet

Detailed specifications can be found at https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/specifications
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e Operating System: Raspbian Stretch Lite

e Architecture: ARMv7

Figure 6.1: Raspberry Pi 4 Model B

We note that the processing unit of this device, albeit branded as ARMvS,
in actuality implements an upgraded version of the ARMv7 instruction set.

6.1.2 Nvidia Jetson TX1

The Jetson TX1 board is a fully-fledged development platform, equipped with
Nvidia’s powerful Tegra X1 System on a Chip (SoC) and designed with visual
computing applications in mind. The Tegra X1 SoC offers four ARMv8 pro-
cessing cores and a Maxwell-Based graphics processing unit, and is notably the

basis for the popular Nintendo Switch console. The device’s technical specifi-

cations are 2:

o Processor: Quad-core Cortex-A57 64-bit SoC @ 1.9 GHz
e Memory: 4GB LPDDR4 RAM

e Graphics Processor: Maxwell 256-core GPU

e Networking: Gigabit Ethernet

e Operating System: Ubuntu Linux

e Architecture: ARMvS

2Detailed specifications can be found at https://developer.nvidia.com/embedded /jetson-tx1-developer-kit
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Figure 6.2: Jetson TX1 Developer Kit

6.1.3 Nvidia Jetson Nano

The Jetson Nano board is another SBC offering by Nvidia, a powerful embedded
device optimized for running neural networks. The Nano board is equipped with
a slightly downgraded version of the Tegra X1 SoC present in the Jetson TX1,
and the exact technical specifications are 3:

e Processor: Quad-core Cortex-A57 64-bit SoC @ 1.43 GHz
e Memory: 4GB LPDDR4 RAM

e Graphics Processor: Maxwell 128-core GPU

o Networking: Gigabit Ethernet

e Operating System: Ubuntu Linux

o Architecture: ARMvS8

Figure 6.3: Jetson Nano Developer Kit

3Detailed specifications can be found at https://developer.nvidia.com/embedded /jetson-nano-developer-kit
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6.1.4 64-bit Virtual Machine

Besides the microcomputers described above, we also utilize two powerful 64-
bit virtual machines as edge gateways in the “Sustained Workload” scenarios
presented in the following section. The VM'’s specifications are:

e Processor: Octa-core Intel Xeon 64-bit @ 2 GHz

Memory: 4GB DDR4 RAM

Networking: Gigabit Ethernet

Operating System: Ubuntu Linux
Architecture: AMDG64

6.2 Comparative Study

After configuring the application workbench in chapters 5.1 - 5.2, implementing
the algorithms described in chapters 4.3 and 5.3 in the Python 3 programming
language, and setting up an edge network with the devices showcased in chapter
6.1, we devise workload scenarios and conduct a comparative study in order to
properly and meaningfully assess the performance and characteristics of SGRM.

6.2.1 Burst Workloads

First, we submit the algorithms to a variety of “burst” workloads, consisting
of a small number of tasks generated in short succession on the edge devices.
Specifically, we design 3 separate workload scenarios, coined 8overl, 8over2
and 8over4, with the prefixed and suffixed numbers indicating the number of
tasks and devices participating in the scenario, respectively. An overview of
the scenario parameters and architecture is provided in table 6.1 and figure 6.4,
respectively.

Scenario || Tasks | Devices | Gateways Distribution Mean | Std. Dev.

Soverl 8 1 1 10 5
Sover2 8 2 1 A Gaussian 10
8over4d 8 4 1 10 5

Table 6.1: Burst Scenarios: Parameters

ot

In all three scenarios, we utilize the Jetson TX1 device as the sole gateway
of the edge system, since connecting more gateways or using one of the virtual
machines as a gateway proves to be excessive for such a limited number of tasks.
Furthermore, employing 8 tasks and a single gateway in this scenario equates
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to 28 offloading possibilities, allowing for the execution of the Oracle algorithm
in a realistic time frame. We present the results of this evaluation in figure 6.5.
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Figure 6.5: Burst Scenario Results

Evidently, when tasked with managing and allocating a quick burst of resource-
heavy tasks, the SGRM algorithm produces satisfactory results, outshining both
naive offloading algorithms, and achieving performances comparable to those
of the optimal Oracle algorithm.

6.2.2 Sustained Workloads

Next, we devise an array of “sustained” workload scenarios, where the system
in question is called to decide on offloading a larger amount of tasks, generated
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through a wider time frame. We design 4 separate scenarios, labeling them
32over3, 64over3, 64overd and 128overd and randomly generate the task
creation times according to the Gaussian and Poisson distributions; thus, we
create 8 distinct workload scenarios to test our algorithm with:

Scenario || Tasks | Devices | Gateways Distribution Mean | Std. Dev.
32over3, 32 3 1 30 15
64over3, 64 3 1 Ganssian 30 15
64overd, 64 5 2 60 30
128overd, 128 5 2 60 30
32over3,, 32 3 1 30 -
64over3, 64 3 1 Poisson 30 -
64overd, 64 5 2 60 -
128over5,, 128 5 2 60 -

Table 6.2: Sustained Scenarios: Parameters

In these workload scenarios, the increased number of tasks prohibits a com-
parison with the Oracle algorithm or any other exhaustive search task allocation
algorithm. Indicatively, even the smallest scale scenario of 32 tasks generated
over 3 devices with a single available gateway leads to 232 distinct offloading

possibilities, translating to a total evaluation time of thousands of years.
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Figure 6.6: Sustained Scenario System

We provide an overview of the device configuration in figure 6.6, and the
results of this evaluation in figure 6.7. As the chart shows, SGRM exhibits the
ability to effectively handle and allocate a large number of tasks over a prolonged
period of time, surpassing both naive baseline algorithms in all tested scenarios.
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Figure 6.7: Sustained Scenario Results

6.3 Implementation Specifics

Having evaluated the performance of the SGRM algorithm in terms of achiev-
ing the primary system objective of minimizing the number of tasks overaging
their deadlines, in this section we quantify and assess important features of the
algorithm.

6.3.1 Deadline Selection

In the workload scenarios described in the previous sections, each task type was
assigned a static deadline, as shown in table 6.3 (“Standard” label).

Task Type | Strict | Standard | Loose

Deepspeech | 16 sec 20 sec 24 sec
Facenet 10 sec 13 sec 16 sec
Lanenet 2 sec 3 sec 4 sec
Retain 16 sec 20 sec 24 sec

Table 6.3: Task Deadlines

These deadlines were found after a trial-and-error process to provide mean-
ingfully differentiated results between the algorithms used. For comparison,
figure 6.8 displays how setting a too strict or too loose deadline fuzzes the re-
sults between the competing algorithms. We also note that selecting a deadline
for each task randomly from the [strict,loose] time interval produces similar
results to our static deadline selection.
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6.3.2 Overhead

A crucial characteristic of the algorithm to be taken into account is the over-
head, both temporal and computational, that it introduces to a system execut-
ing it.

Figure 6.9 displays the time overhead introduced by SGRM during the exe-
cution of the 32over3 scenario. As pictured, the algorithm adds an average of
2 extra seconds of decision time to the total lifetime of a task. Albeit consider-
able, this time overhead is mostly attributed to the network latency present in
the edge network. This suspicion is further enforced by the fact that the deci-
sion time for tasks that were not auctioned - and hence, no network messages
were exchanged - is near-instantaneous.

Time (seconds)
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Mo

mDecision Time (Device) mDecision Time (Gateway)  m Decision Time (Final) Execution Time
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Figure 6.9: Time Overhead of SGRM
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Figure 6.10: Resource Overhead of SGRM

Another important metric is the computational overhead presented by the
algorithm. Figures 6.10a and 6.10b present the processor and memory utiliza-
tion of the algorithm when run on an edge device and gateway respectively, with
each green line indicating the generation and auction of a new task. Evidently,
SGRM introduces a negligible memory overhead, peaking at a measly 75MB
for both gateways and devices. On the other hand, the algorithm manages to
utilize a considerable percentage of the device’s processor, taking upwards of
two processing cores at times. However, given that no additional slowdown
is observed in the execution of the tasks, we can safely assume that this high
percentage is due to the optimality of modern CPUs’ in taking advantage of
their full processing power when asked to do so.

6.3.3 Scalability

Evaluating the scalability of our algorithm is another essential step to assessing
the usefulness of it. To that end, we conduct two additional experiments,
where we steadily increase the number of participating gateways and tasks
being generated simultaneously, and observe the effect of the increase to the
decision making time of SGRM.

As shown in figure 6.11, increasing the number of tasks simultaneously gen-
erated on the device creates a bottleneck and leads to a steep increase to the
decision making times of the device. Despite that observation, the satisfactory
performance of our algorithm in the “burst” workload scenarios leads us to be-
lieve that staggering the generation of the tasks even by a few milliseconds is
enough to bypass this bottleneck.

Regarding the connection between the number of gateways and the decision
making time of a device executing the SGRM algorithm, figures 6.12a and 6.12b
indicate that the decision time is equal to the response time of the slowest
gateway, and does not worsen due to more gateways participating in the edge
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computing network. Furthermore, extreme slowdowns can be entirely avoided
by introducing a timeout to the auctions.
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Figure 6.12: Effect of Additional Gateway Participants to Decision Times

6.3.4 Prediction Mechanism Evaluation

Lastly, figure 6.13 shows the accuracy of the execution time prediction module
throughout the different workload scenarios. The module produces satisfactory
results within acceptable error margins, and the few outliers are attributed to
the innate random nature of the real-life applications employed (in contrast to
synthetic or simulated workloads).
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6.4 Aggregate Evaluation

Having submitted SGRM to a variety of different workload scenarios and com-
pared it to a number of baseline resource management algorithms, as described
in the previous sections, we are able to confidently state that the algorithm
offers the following advantages:

Optimality: SGRM outperforms the inflexible decision-making of the
naive offloading algorithms, while also managing to produce results com-
parable to those of the optimal decision-making scenario.

Distributed nature: Every device participating in the algorithm com-
municates with the available gateways autonomously.

Scalability: SGRM scales extremely well due to its distributed nature.
The addition of more devices or gateways does not produce extra over-

heads, and the only potential restricting factor is a limited network band-
width.

Overhead: SGRM produces a small time overhead, which can be miti-
gated further by optimizing the algorithmic code or upgrading the network
connection between the devices and gateways.

Adaptability: Devices participate in the network dynamically, entering
and leaving at will. Also, the gateway and device roles are not mutually
exclusive, and a device can choose to act as a gateway at its own accord.
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Chapter 7

Conclusions

7.1 Thesis Summary

Resource Management in edge computing and IoT systems presents a demand-
ing problem, with numerous intricacies to be taken into account and challenges
to be overcome. In this thesis, we designated one such problem and addressed it
by proposing SGRM: a novel task offloading algorithm for real edge computing
systems under processing, memory, bandwidth and deadline constraints.

Our proposal, based on principles of game and auction theory, constitutes an
effective distributed solution for allocating resources and offloading tasks on the
“edge” of a network, and offers high degrees of adaptability and scalability to
any system that utilizes it. At the same time, the algorithm introduces a small
(albeit non-negligible) temporal and computational overhead to the system,
which we quantify and offer solutions for further minimization.

The extensive experimental evaluation showcases the validity of our approach
and exhibits the competence of our algorithm in tackling a diverse mix of work-
load scenarios. Through comparison with algorithmic baselines designed specif-
ically for this purpose, the SGRM algorithm proves to be a valuable asset for
an edge computing network operator that wishes to allocate a set of tasks opti-
mally between devices and minimize the dependence on cloud servers or similar
off-site solutions.

7.2 Future Work

While the concept of edge computing is not in any way new, with edge im-
plementations dating as far back as the 90’s, its recent surge in popularity
has rekindled the interest of researchers, and the widespread adoption of the
edge architecture by industry leaders has uncovered numerous opportunities for
study and research.

On the crucial matter of resource management in edge computing systems,
our own implementation tackles a specific rendition of the task allocation prob-
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lem by formulating it as a deadline miss minimization problem with processing,
memory and bandwidth constraints and utilizing a game theoretic approach
to solve it. The heterogeneity of edge computing networks presents numerous
possible variations of the task allocation problem in terms of differentiated sys-
tem objectives and constraints to be studied. Furthermore, new approaches to
the resource management challenge can be developed, utilizing elements from
mathematical theories and interdisciplinary fields of science (including market,
game and auction theory).

Lastly, the employment of an edge computing solution instead of cloud or
similar solutions reintroduces challenges that need to be addressed and ac-
counted for. Such examples include the safeguarding of data privacy and secu-
rity, as well as the certitude of reliability and redundancy.
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