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Abstract

The goal of this thesis is to propose methods of numerical modelling of spur gear loading
through the Finite Element Method. This is achieved both via the implementation of the
commercial software ANSYS Workbench and by the development of an original code in the
computational environment of MATLAB/Simulink. The process begins with the analysis of
the theory of Hertzian contact between cylindrical bodies that links the geometrical features of
the gears with the surface pressure that arises during their operation. The Hertz theory provides
the base and the benchmark for the setup of static loading model of two-dimensional of ideal
spur gears in ANSYS Workbench. More importantly, it helps to determine details about the
mesh size in the areas of contact. The two-dimensional results are then used for the creation of
the equivalent three-dimensional model which concludes to the development of sufficiently
working models for the simulation of loading in the presence of misalignment and the presence
of crowing in spur gears. Therefore, a methodology is established in which specific steps and
adjustments are used of the modelling of gear loading in ANSYS Workbench. All the above
lead to the development of a finite element code in MATLAB/Simulink, where the conclusions
from the modelling structure from ANSYS Workbench are implemented. The purpose of this
code is to replace the modelling in a commercial software with more simple and
straightforward procedures that offers the same accuracy with reduced computational cost.
Moreover, once again the results from the Hertzian contact theory are used in combination with
Lo’s algorithms for triangular mesh. The modelling is done in a single gear tooth using both
CST (Constant Strain Triangular Element) and LST (Linear Strain Triangular Element) and a
comparison is done between the two. In addition, the nodal load distribution exploits the
theoretical elliptical shape of surface pressure. The results, remarks and conclusions drawn
from this research will serve as a guide for the numerical modelling of gear loading and can
also be applied to the modelling of contact phenomena in general. Furthermore, the MATLAB
code will be used by the Machine Design Laboratory of N.T.U.A. for the study of gears with
Finite Elements and its enrichment in the modelling options will continue from there.
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MeplAnn

O oxomdg avtig ™G OMAMUOTIKNAG &ivor M mpodTtaon peBddwv Yoo v  aplfuitikng
povtelomoinon g eopTiong evbeimv 000VTOTOV TPOY®V eEEAElYUEVNG KAUTOANG UE TNV
MéBodo tov Ilenepacuévov Xtotyeiowv. AVTd eMTLYYAVETAL PE TNV XPNON TOV EUTOPIKOV
Loyiopkov ANSYS Workbench aAld kot pe v avamtoén mpoTOTLION KMOOIKO GTO
vroloytotikd mepiPdirov MATLAB/Simulink. H dwdikooia yia v e&oyoyn tov pebodmv
povtelomoinong Eekva pe v avaivon te Bewpiog emapng tov Hertz peta&d koAvopikmv
COUAT®V 1) 0010 GUVOEEL TAL YEDMUETPIKA YOPOUTKNPLOTIKE TOV 000VIWOTOV TPOYMV LLE TNV TEOT
emavelag mov TpokHITEL Katd TV Asttovpyia tovc. H Oewpio Hertz amoteiel mv Bdon ko
TO0 ONUEID aVaPOPAS Yoo TV ONoVPYic TOV S1GO1AGTATOV HOVTIEAOV TNG GTATIKNG POPTIONS
TV 10e0t®V 0doviwtdv Tpoy®dv oto ANSYS Workbench. Enuovtikdtepa, Ponbaer otov
TPOGOIOPIGHO TOL HEYEBOVG TOL TAEYUOTOG GTNV TTEPLOYT] TNG EMAPTG LETAED T®V 000VT®V. Ev
ouvveyela, To amoteAéopato Tov eEAyoviot amd TNV S1oOIAGTATY OVAAVOT YPTCILOTOLOVVTOL
Yo v dnuovpyio TG avticToyng TPICOEoTUTNG OVAALGNG, 1 Omoio. KATOANYEL GTNV
ONUovpyio IKAVOTOUMTIKA AEITOVPYIKAOV HOVIEA®V Y10 TNV TPOGMOUEIMGN TG POPTIONG TOV
000VIMTMOV TPOY®V VIO TNV Tapovcia cedApatog gvBuypdupong Kot €xovtag LmooTel
Katepyaoio crowning. Eropévog, dnpovpysiton pia pebodoroyio oty omoia akolovbodvtot
CLYKEKPIUUEVO PHATO KOt YIVOVTOL GUYKEKPIUUEVEG pLOUICELS Yo TNV HOVTIELOTOINGT TNG
@opTiong odovimvidv Tpoydv oto ANSYS Workbench. Ola ta mapamdve odnyodv teAikd
omv avantuén evog KodKa memepacpévav otoreiov oto MATLAB/Simulink, 6mov
epapuolovior OAa To cLUTEPAGLTO TOL £xovV eayOel Yo TNV dopun| TG povtelonoinong amnd
70 ANSY'S Workbench. O ot6yoc avtol tov KddKa givat va ovTIKaTasTHGEL TV dladtkacio
LLOVTEAOTTOINGNG GE EUTOPIKA AOYIGUIKA, e £vav O amAd Kot AUEGO TPOTO LOVTEAOTOINGNG
OV TPOcPEPEL TNV 101 axpifela pe pEWUEVO LTOAOYIOTIKO KOoTOG. EmumAéov, kot €00
YPNOLOTOL0VVTOL TO amoTeEAEG LT oo TV Bewpia Hertz oe cuvovaoud pe Toug akyopiBupovg
tov LO yw v mieypatomoinon &vog kAewotov ywpiov pe Tpryovike otowyeio. H
povteAomoinon yivetat pe v xpNon TPKOUPIKOV Kot EAKOUPIKOV TPIYOVIKAOV GTOLEIDV N
oAlmg CST won LST kan yiveton pio odykpion peta&d toug. AkOun, n kopPikn Katovoun mg
duvaung Paociletoar omv Bewpntikny eAlemtiky] Katavoun g mieong emooveiog. Ta
OTOTEAEGLLATO, TO GYOALOL KOL TOL GUUTEPAGLLOLTO TO, OO0 TPOKVITOTVY OO QVTHV TNV £PELVAL
Ba Aettovpyncovv cav 0dNYOG Yol TNV aPBULTIKY LOVIEAOTOINGT TS POPTICNG 000OVIOVIMV
TPOYDOV OAAG KO YEVIKA QOVOLEVOV GTO OTTOT0 VITAPYEL ETOPT pLeTall copdtov. Emmpdcheta,
o kmokag o MATLAB 6a ypnowomnombBel and 10 Epyactipio Xtoryeiov Mnyoavov tov
E.M.IL. yo v péiletn odoviwtdv tpoymv pe v ypnon llemepacpévov Xtoyeiov kot o
EUTAOVTIGUOG TOV E TEPLGGOTEPES EMAOYES LovTELoToinomg Ba cuveyicetl péca amd avTo.
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1. Introduction

Gears are one of the most commonly used machine element in various industrial and civil
applications. In fact, gears are used since ancient years, but their spread became greater with
the development of more accurate manufacturing methods and the design of more complex
tooth profiles that contributed even more to their ability both in the steady and the efficient
transmission of large amount of mechanical power. Consequently, the industry is in great need
robust methods for the design and testing of gears that can ensure their quality and their
functionality.

The current study will be focusing on the contact analysis between the very widely used spur
gears. Spur gears are one of the most popular types of precision cylindrical gears. These gears
feature a simple design of straight, parallel teeth positioned around the circumference of a
cylinder body with a central bore that fits over a shaft. In many variants, the gear is machined
with a hub which thickens the gear body around the bore without changing the gear face. The
central bore can also be broached as to allow the spur gear to fit onto a spline or keyed shaft.
Spur gears are used in mechanical applications to increase or decrease the speed of a device or
multiply torque by transmitting motion and power from one shaft to another through a series
of mated gears. Spur gears provide several benefits to industrial applications and processes,
including:

e Simplicity. Spur gears feature a simple, compact design that makes them easy to design
and install, even in limited or restricted spaces.

e Constant Speed Drive. These gears increase or decrease shaft speed with a high degree
of precision at a constant velocity.

e Reliability. Unlike other power and motion transmission components, spur gears are
unlikely to slip during operation. Additionally, their durability decreases their risk of
premature failure.

e Cost-Effectiveness. The simplicity of their design also allows for greater
manufacturability, making them less expensive to fabricate and purchase even with
highly specific or customized dimensions.

e Efficiency. Spur gear systems have power transmission efficiencies between 95% and
99% and can transfer large amounts of power across multiple gears with minimal power
loss.

Spur gears are used to transfer motion and power from one shaft to another in a mechanical
setup. This transference can alter machinery’s operating speed, multiply torque, and allow for
the fine-tuned control of positioning systems. Their design makes them suitable for lower speed
operations or operational environments with a higher noise tolerance. Some of the typical
industrial applications include:

e Transmissions

e Conveyor systems

e Speed reducers

e Engines and mechanical transportation systems
e Gear pumps and motors

e Machining tools
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In spur gears, the ideal contact will be investigated along with the contact with a misalignment
error and with the tooth modification of crowning which will be analysed in their respective
chapters.

Nowadays, when it comes to designing a product there are two main schools of thought. The
first one is investing in the fast prototyping. Meaning that the industry will use the analytical
formulas and experience to make a conceptual design and after some changes manufacture a
prototype to submit it to several tests and verify its strength for example. This is usually done
by using manufacturing methods such 3D Printing or Injection Molding which are
manufacturing procedures that can produce one prototype of the product at a fast pace. The
second one is the use of numerical simulations to test the product before it is even manufactured
and then proceed to the creation of prototype and test it. In this way, the industry can save time
form the physical tests and money both form the use of the testing machined and from the loss
of prototypes especially if the tests are destructive which they usually are. The most common
method applied in these numerical simulations is the Finite Element Method.

The Finite Element Method (FEM) is a widely used method for numerically solving differential
equations arising in engineering and mathematical modelling. Typical problem areas of interest
include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and
electromagnetic potential. The FEM is a general numerical method for solving partial
differential equations in two or three space variables (i.e., some boundary value problems). To
solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called
finite elements. This is achieved by a particular space discretization in the space dimensions,
which is implemented by the construction of a mesh of the object: the numerical domain for
the solution, which has a finite number of points. The finite element method formulation of a
boundary value problem finally results in a system of algebraic equations. The method
approximates the unknown function over the domain. The simple equations that model these
finite elements are then assembled into a larger system of equations that models the entire
problem. There are also other methods that have been based in the idea of FEM like the Applied
Element Method (AEM), the Extended Finite Element Method (X-FEM), the Spectral
Elements Method etc but these will not be part of the discussion in this thesis. The Finite
Element method combined with the analytical formulas of Hertz theory about elastic are the
heart of the concept of the methodologies to be presented.

The primary goal of the present thesis is the proposal of functional methodologies for the
numerical modelling of contact between spur gears including the cases of ideal contact, contact
with a misalignment error and contact with crowing effect. As it was previously stated, the
modern industry mainly follows two paths but the one of the numerical modelling can save
time and money from it and aid as a prediction tool of its existing products. Thus, this study
will constitute a source of steps, comments, and conclusion for effective ways to conduct these
numerical simulations and it will also serve as benchmark for the testing of the results of the
simulations. In the chapters that will follow, an overview of the Hertzian contact theory will be
presented that will be followed by the presentation of the setup of FEM models in ANSYS
Workbench and the MATLAB code for the gear analysis. Each modelling procedure will be
accompanied by the results and their verification. Finally, there will be a discussion on the
presented results.
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2. Overview of Hertz contact theory

Let us assume that two bodies come into contact as in Picture 2.1 and that these bodies have
been deformed under the influence of a vertical force acting on one of the two bodies. As a
result, a contact area is created.

/ £z
Rz
- —
N
TG‘ _____ : £z X
_____ . 71
M|
[
Ri
k|

Picture 2.1. Bodies that gradually come into contact.[3]

By ignoring the higher order terms the surfaces of the bodies in the area of contact can be
expressed by the following formula:

Z1 = A1X2 + Azxy + A3y2 (21)
Z, = B1x? + Byxy + B3y? (2.2)

where z; and z, are the distances from the area of contact to the points M and N, respectively.
If we add (2.1) and (2.2) and choose as coordinate system, the one of the principal curvatures
then we receive the following formula:

Z, + z, = Ax? + By? (2.3)

So, by choosing this coordinate system we were able to erase the xy terms and replace A; + B;
and A; + B; by A and B, respectively.

Moreover, R, and R; are the principal curvatures of Body 1 and R, and R’ are the principal
curvatures of Body 2. R, and R; belong to perpendicular planes and the same applies for R,
and R;. Furthermore, we define 1 the angle between the planes of R; and R,. Thus, the values
of the constants A, B can be found by solving the following system:
1,1 1 1 1
A+ B _E(R_+R_1+R_2+R_£) (2.4)

1
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1 1 1 1

B—A= ;J((Ril_ 2+ Go =)+ 26— )G~ ) cos ) (25)

Ry R}

To simplify the problem, we assume that 1) = 0. As the two bodies come into contact the points
M, N are moving by w;, w, respectively along the Z axis. If the initial distance between M and
N was d then:

W1+W2 +Zl+ZZ == d(26)
By combining (2.3) and (2.6) we get:
wy +w, =d — Ax? — By? (2.7)

Assuming now that the two bodies are semi-infinite (that suits the case of gear contact since
their materials usually have low compliance and the area of contact is very small comparable
to the dimensions of the gears) we can use the following expression:

1-v2
Eq

1—y2
wy +w, = (— 4+ E—:Z) J, rqd (2.8)

where g is the normal pressure applied to an infinitely small part d2 that lies in a distance r
from the centre of the contact area 2. In addition, v,, v, are the Poisson ratio of the material of
the Body 1 and 2 and E;, E, their Young Modulus.

We insert the variable E :

1_1vi, 1-v} (2.9)
E- B E,

where Eis the equivalent Young’s Modulus.

By combining (2.7), (2.8) we receive the following expression:
1 _ 2 2
Efﬂ rqdQ = d — Ax? — By? (2.10)

Based on (13) all it takes is to determine a suitable pressure distribution that can satisfy the
formula and Hertz chose as distribution the one of the half ellipsoid. This distribution has also
been verified experimentally. It is evident that if the pressure follows an elliptical distribution,
then the shape of the contact area will be an ellipse itself with dimensions a and b as shown in
the Picture 2.2.
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Picture 2.2. Hertz pressure distribution.[6]

If P is the compressional load acting on the contact surfaces, then the maximum pressure p,,qx
is given by:

2P
Pmax = 3mab (2-11)

The axes of the ellipsoid are calculated by the following formulas:

3P
4E(A+B)

a=m’ (2.12)

3 3mP
4E(A+B)

(2.13)

The values of the constants m, n are given by table like the following Table 1 that H.L.
Whittemore and N.S. Petrenko proposed.

O(deg) | 30° | 35° | 40° | 45° | 50° | 55° | 60° | 60° | 70° | 75° | 80° | 85° | 90°

m 2371|2397 | 2137 | 1.926 | 1.754 | 1.611 | 1.486 | 1.378 | 1.284 | 1.202 | 1.128 | 1.061 | 1.000

n 0.493 | 0.53 | 0.567 | 0.607 | 0.641 | 0.678 | 0.717 | 0.759 | 0.802 | 0.846 | 0.893 | 0.944 | 1.000

Table 2.1. H.L. Whittemore and N.S. Petrenko table for selection m and n of values.
where 8 is calculated is equal to:
0 = cos~1 222 (2.14)
A+B

Since primarily we want to study the contact behaviour in spur gears, we can make the
following simplifications:
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1. The contact surfaces of gears are cylindrical. Consequently R;, R; — oo and (4), (5)
becomes:

_1e1 .1
A+B =G +7) (215)

1 1
B—A=3lr—+l(216)

1

Ry
2. The assumption that 1 = 0 applies in this case since lie R;, R, on the same plane.

3. The type of contact is line contact instead of the general point contact. Therefore, the
contact area does not have the shape of an ellipse but instead it is shaped as a
rectangle with height h, and width w equal to:

w = gear width

where R is the equivalent curvature radius and is given by the formula:
1 1 1
i R_1 + R_2(2'18)

4. The pressure distribution still follows the one of the half ellipsoid but it does not vary
in the direction of the gear width.
5. The maximum pressure p,,q. 1S given by:

2P
Pmax = Thw (2.19)
and the pressure distribution is given by the following formula:

P = Pmax |1 — (%)2 (2.20), where x € (—h, h)

The setting up and the verification of the numerical simulations with the FEM modelling will
be based in this theory.
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3. FEM models in ANSYS WORKBENCH

In this chapter an algorithm for the effective FEM modelling of contact between gears will be
presented. First, the two-dimensional modelling of ideal spur gears will be explained followed
by the three-dimensional. Afterwards, the modelling of the misalignment error of the gear
shafts on the plane of action will be displayed and finally there will be the modelling of the
crowning effect. The dimensions and material of gears that will be used in the simulation are
the shown in Table 3.1.

Involute spur gears Pinion Conjugate gear
Pressure angle (deg) 20° 20°
Module (mm) 4 4
Tooth number 20 30
Width (mm) 40 40
Tip diameter (mm) 88 128
Root diameter (mm) 70 110
Backlash(mm) - 0.05-0.1
Gear material SCMA415 SCM415

| Torque load (Nm) - 98

Table 3.1. Dimensions and material of gears.

The characteristics of the gears were selected to be able to verify the results of the simulations
by comparing them to [2].

3.1 Two-dimensional modelling of involute spur gears
In the following paragraphs the two-dimensional modelling of gear contact in ANSYS
Workbench will be discussed. This will be done by explaining every step of the process.

3.1.1 Pre simulation calculations

Before the setting up of the simulation some calculations are necessary to assist the mesh
process and to verify our results. For this purpose, the MATLAB program [] was created. This
program was given the characteristics of gears as an input and had as an output the maximum
theoretical pressure from Hertz theory and the maximum bending stress.

First and foremost, we must calculate some basic quantities of gears like the radius of the pitch
and form circle and the maximum degree of overlap. The radii of the pitch circle and form
circle for each gear is given by:

mz,
2

(3.1)

To1 =

Toy = 22 (3.2)

Tg1 = To1 COS A, (3.3)
Tg2 = To2 €OS A, (3.4)

where m is the gear module, a, is the pressure angle, Z; and Z,are the number of teeth of the
conjugate gear and pinion respectively, r,; and r,, are the radii of pitch circles of the gear in
collaboration and pinion respectively and finally, 7, and 7, are the radii of form circles of the
gear in collaboration and pinion respectively. This results in:

July 15, 2021



o1 (mm) | 40
r,, (mm) | 60
T41 (MM) | 37.59
T4, (MM) | 56.38
Table 3.2. Basic gear radii

The maximum degree of overlap & can be calculates via the following formula:

£ =" (3.5)
tgl
where t,; is the tooth width of gear in collaboration in pitch circle and AB is the total length
of the contact trajectory of the gears. This is straight line passing from the centre of axes at
(0,0), with an incline equal to the pressure angle since we study involute spur gears. These
quantities are given by the following formulas:

tg1 = mmecosa, (3.6)

BC = /(1,1 + M)? — (151 COS @)% — Ty Sina, (3.7)

CA = /(1o + M)% — (T, cOS ay)% — Ty Sin a, (3.8)
AB = BC + CA (3.9)

This results in:

ty1 (Mm) 11.81

AB (mm) 18.95
5 1.61
Table 3.3. Maximum degree of overlap calculation

Secondly, we need to specify the position in which the teeth of the gears are engaged. This is
a necessary step that provides us with information of the gear geometry at the area of contact
and of the LSR (Load Sharing Ratio). In the [2] all the simulation results were shown for
position 6, which is shown in the LSR diagram of Fig 1. Therefore, for using [2] to compare
our results and for running the simulation in a more complex tooth engagement position
(because in position 6 we there is a double pair tooth contact), position 6 was selected.

Having chosen the position in which the gears engage we can calculate quantities needed to do
the Hertz analysis. From Table 2, it is given that the torque M on the conjugate gear is equal to
98 Nm. In this case we must define two separate normal forces P; , P, each for one contact
pair and for the LSR diagram we know that at position 6 (it is evident that P, corresponds to
the pair that is engaged in position 6 and P, to the second pair):

LSR = 0.575 (3.10)
P, =LSR *P (3.11)
P, = LSR * P (3.12)

where P is the force that acts if there is only one pair in phase of engagement. This happens in
positions 8 through 12 and to have an average value of it we choose to calculate it in position

10. Can be calculated by the following formula:
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P, =2 (3.13)

T10

Py
= cosal (3.14)
where P, is the x-component of P and ry, is the radius from the centre of conjugate gear in
which it comes in contact in position 10. In this position we observe from Fig 1. that the degree
of overlap &, is 0.8.

Ideal gears
120%
8 9 10 11 12
o 100% p—o—o—0—¢
-
c 80%
o0
= 5 6 7
= 1 > e
T 40% 0/0/& \Q\"\O-\s
g  Double pair tooth | _Single pair tooth
o ™ contact positions “1™contact positions”
£ 20% = e
g € One period of tooth engagement )J
= 0%
0.00 0.32 064 0.96 1.28 1.60

Engagement position of the tooth

Fig 3.1. LSR of the ideal gears.[2]

Now we can find the exact coordinates of this position (x;,, y1,) Which are equal to:
X10 = CA — %AB * cos a, (3.15)
V10 = CA — %OAB * sina, (3.16)

This results in (x10, ¥10) = (0.268,0.097). Finally, we can calculate the radius ry:

T0 = \/x102 + (V10 — 701)% (3.17)

This results in r;, = 59.90 mm and from equation (3.14) it gives us that P = 1,740.97 N. In
addition, from equations (3.11), (3.12) we receive:

P, (N) | 1,001.05
P, (N) | 739.91
Table 3.4. LSR in the contact pairs.

Now that the normal forces acting on each pair are known we also require the equivalent
Young’s Modulus and the equivalent radius of curvature in the points of contact to fully define
the loading and geometry of contact area according to Hertz theory. Concerning the equivalent
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Young’s Modulus, it is stated that the material of both gears is SCM415 which is a typical steel
with following properties:

VscM415 0.3
Escmars (MPa) 2:10°

Table 3.5. Material properties of gears.

From (2.9) by setting we get v; = v, = vgcma1s and Ey = E, = Egcpmars We get E = 1.099 -
10° MPa. To find the equivalent radius of curvature we need to find the radii from the centre
of gears at the point of each contact pair. From Fig 1. We know that in position 6, &, = 0.48
so by using again (3.15) through (3.17) we find that 75, = 58.89 mm (we now use 61 instead
6 to denote that this concerns the radius of the gear in collaboration and 62 will be used to
denote the radius of pinion.). For r,, the following formula will be used:

Te3 = \/xez + (V6 + 752)% (3.18)

and thus rg3 = 41.34 mm.

After having computed the radii from the centre of each gear at the point of contact in position
6, we must find the radii of curvatures Rs; and R, of gear in collaboration and pinion,
respectively. These will be obtained by the following relations:

ag; = cos™1 22 (3.19)
Te1

ag, = cos™1 %2 (3.20)
Te2

R61 = g1 Sll‘l a61 (321)
R62 = rgz sin a62 (322)

Thus, by replacing R,; and R, to equation (2.18) we get R, = 8.55 mm. The same procedure
from (3.15) to (3.22) is done for the second pair of contact that has 5, = ¢ + 1 = 1.48 .The
results about the radii of curvature for both gears are presented in Table 6 and Table 7.

Rgy (mm?) | 16.99
Rg; (mm?) | 17.20
Ry (mm) 8.55
Table 3.6. Radii of curvature for position 6.

Rgq (mm) 28.80
R4y (mm?) 5.39
Rg (Mmm™) 4.54

Table 3.7. Radii of curvature for position 6°.

By replacing all the above to (2.17) and (2.19) we get the height of the rectangle that will form
as contact area and the maximum pressure at each pair of contact which are presented in Table
8 and Table 9.

he (mm) 0.099
pmax,6 (|V|Pa) 319.98
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Table 3.8. Height of rectangle of contact area and maximum contact pressure at
position 6.

hg, (Mm)

0.062

pmax,6l (M Pa)

377.32

Table 3.9. Height of rectangle of contact area and maximum contact pressure at
position 6°.

The last calculation before we set up the simulation is that of the maximum theoretical bending
Stress o, max- This is given by the following formula:

Pxndq
Opmaxn = %mk (3-23)1

where w is the gear width and the value of constant g, depends on the number of teeth and the
displacement of the axes of gears So from tables we get that for zeros displacement and for
Z, =30, g, = 2.6. In Table 10 the theoretical maximum bending stress for each position in
the teeth of conjugate gear are presented (the computation of bending stress at the teeth of
pinion are omitted because it is sufficient only the ones for the gear in collaboration to be

verified through the simulation).

O bmax,61 (Mpa)

15.29

O pmax,61' (MPa)

11.30

Table 3.10. Maximum theoretical bending stresses at each contact pair in the teeth of
conjugate gear.

3.1.2 Importing the CAD models into ANSYS Workbench
The CAD models of gears were created via KISSOFT and Solidworks and then they were
imported into Design Modeler of Static Structural module of ANSYS Workbench as shown in

Picture 3.1.
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Picture 3.1.CAD models of gears in Design Modeler.

The assembly of gears was initially created in Solidworks, but at the first time that the
simulation run a problem was observed that led to specific modifications of the assembly that
were done using the tools of Design Modeler. This problem was that Solidworks’ assembly
tools were not accurate enough and thus the gears did not engage at the desired position but in
some position very close to it. An even bigger problem was that due to the fault positioning of
gears unwanted penetrations were created between the gears and there was a considerable
difference between the penetration of the first and the second pair which results in having false
values in contact pressure. So, to avoid these the gears were inserted from Solidworks as shown
in Picture and then they were rotated by a specific angle that was computed in MATLAB
program [].

Picture 3.2. Gears at the initial state of their insertion in Design Modeler.

The way that the Matlab program calculates these angles is that it specifies the coordinates on
the tooth profile of each gear by the equation of involute curve since we know the radius from
the centre of each gear to the point of contact. These equations are shown below:

t= /(rg—”n)z —1(3.24)

x = (sint — tcost) (3.25)

y = (cost + tsint) (3.26)
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X, = x cos fi — ysin fi (3.27)
Yp = xsinfi + y cos fi (3.28)

where 7, is the radius of each gear at the point of contact and x,,, ,, the coordinates of the
points in this radius when the tooth is in the vertical position.

Furthermore, in the previous section we have computed the coordinates of the contact point of
each pair, so the angle of rotation is just the angle that is formed between the lines that are
creates if lines are drawn from these points to the centre of the axes. For this case, the angles
are shown in Table 3.11:

Rotation angle of gear in collaboration (deg) | 180.94
Rotation angle of pinion (deg) -6.54
Table 3.11. Angles of rotations of gears in Design Modeler.

It must be noted that this procedure was done using the Rotate tool of Design Modeler which
is found in Create — Body transformation and the sign of angles depends on the positive
direction of the axes of rotation. Another important configuration of the model that was done
in Design Modeler was the creation of the two-dimensional surfaces of gears which was done
using Mid-Surface tool which is found in Tools. Finally, the model does not include the whole
gear but just the two pairs of teeth that are engages and two more teeth in each gear. This is
done to decrease the computational time since a smaller model means less nodes in our mesh.

3.1.3 Setting up the material properties

Since the material of gears has the properties of a common steel, in the simulation the default
material of Structural Steel is selected that has the properties of Table 3.5. Moreover, it also
required to choose the behaviour of the material which is set to Plane Stress and to define the
width of the gear. All of these are done in the Geometry Section inside the Model module of
Static Structural and are shown in Picture 3.3 and Picture 3.4.

Details of "Structural Steel” | Details of "Geometry" K
. - | Definiti
-1 Common Material Properties inffion :
- 5 Source D:ADIPLOMATIKNSD_gear_contact_simulat..,
Density 7.85e-0% tonne/mm Type DesignModeler
Young's Modulus 2e+05 MPa Length Unit Meters
Thermal Conductivity 0.0605 W/mm:"C Element Control | Program Controlled
5 ific Heat 434805 J -C 2D Behavior Plane Stress
Peditic ned e /tonne- Display Style Body Colaor
Tensile Yield Strength 250 MFPa +| Bounding Box
Tensile Ultimate Strength | 460 MPa +| Properties
- " Statisti
Monlinear Behavior False * SHes -
- - - - +|| Update Options
Full Details Click To View Full Details +| Basic Geometry Options
—|| Statistics +|| Advanced Geometry Options
Assigned Bodies 2 =l| CAD Attributes
I CADSources

Picture 3.3. Material Properties and behaviour in Static Structural.
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Details of "30_pinion” 2 | Details of "30_in_cellaboration” x

+|| Graphics Properties +|| Graphics Properties
|| Definition -|| Definition
Suppressed Mo Suppressed Mo
Stiffness Behavior Flexible Stiffness Behavior Flexible
Coordinate System Default Coordinate System Coordinate System Default Coordinate System
Reference Temperature | By Environment Reference Temperature | By Environment
Thickness 40, mm Thickness 40. mm
Thickness Mode Refresh on Update Thickness Maode Refresh on Update
Behavior MNane Behavior Mone
-1| Material -1| Material
Assignment Structural Steel Assignment Structural Steel
Maonlinear Effects Yes Manlinear Effects Yes
Thermal Strain Effects | Yes Thermal Strain Effects | Yes
+|| Bounding Box +|| Bounding Box
+|| Properties +|| Properties
+|| Statistics +|| Statistics
-1| CAD Attributes -1| CAD Attributes
DMSheetThickness 0.04 DM 5SheetThickness 0.04

Picture 3.4. Width of gears in Static Structural.

3.1.4. Setting up of the contact parameters

The basic contact parameters that were tuned were the following. The first one and most
important one if the Type of contact. This was set to frictionless since we want to verify our
results with Hertz’s theory where contact is assumed to be frictionless. The next parameter was
the Normal Stiffness Factor. The function of Normal Stiffness factor is basically to soften of
harden the stiffness of the contact area. We may think of it as a spring between the contact
surfaces that when the value of its stiffness is increased it is more rigid and when it is decreased
it is more flexible. The default value of this parameter is 1 but to have more accurate results its
value was set to 10. This was done because making the contact pair more stiff decreases the
penetration between the bodies and provides us with more realistic solution (this stands true up
to a point because if the Normal Stiffness Factor becomes too large then oscillations are created,
and the program is facing convergence issues). All the rest parameters were set to default
values. The setting up of the two contact pairs (since there are two contact areas in this gear
engagement) are shown in Picture 3.5 and Picture 3.6.

Details of "Frictionless - 30_in_collaberation To 3D_pinion"

Type Frictionless ~
Scope Mode Manual
Behavior Auto Asymmetric
Trim Contact Program Controlled
Suppressed Mo

—|| Advanced
Farmulation Augmented Lagrange
Small Sliding Program Controlled
Detection Method On Gauss Point
Penetration Tolerance Program Controlled
MNarmal Stiffness Factar
Maormal Stiffness Factor 10,
Update Stiffness Program Controlled
Stabilization Damping Factor | Q.
Pinball Region Program Controlled
Time Step Controls Mone

Picture 3.5. Setting up of contact parameters of contact pair in position 6.
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Details of "Frictionless - 3D_in_collaberation To 30_pinion” 3

Type Frictionless A.
Scope Mode Manual
Behaviar Auto Asymmetric
Trim Contact Program Controlled
Suppressed MNa

=) Advanced
Formulation Augmented Lagrange
Small 5liding Program Controlled
Detection Method On Gauss Point
Penetration Tolerance Program Controlled
Maormal 5tiffness Factor
Maormal Stiffness Factar 10,
Update Stiffness Pragram Controlled
Stabilization Damping Factor | 0.
Finball Regian Pragram Contralled
Time Step Contrals MNone

Picture 3.6. Setting up of contact parameters of contact pair in position 6.

Another essential tool that can save the user from errors is the Contact Tool which is found in
the section Contacts. This tool is a pre-processing tool that calculates the penetrations or gaps
between the two meshed bodies and can prove to be extremely useful since for instance when
the type of contact is set to Frictionless the simulation cannot run if a gap is detected between
the two bodies. In Picture 3.7 the results of contact tool for the case of gears are shown.

For additonsl optons, plemss vint the context meny for fiee table {nght mouse buttom)

ZD&NT

LE307e005

Color Legend
- The contact status = open but the type of contact is meant to be closed, The apphes to bonded and no separation cortact types.

Yullow | The conkact status w open, This masy be scceptable,

m The contact status & chosed but has a lrge amount of gap or Oheck pi and gap compared to pinball and depth.

“ Contact is mactve. The can occur for MPC and Normal Legrange formulations. it can also occur foe auto asymmetnc behanor

Picture 3.7. Results of Contact Tool.

Form Picture 3.7, the status on both contact pairs is closed and the penetration is at an
acceptable degree and almost the same in both pairs which is also crucial. If the difference in
the value of penetration among the pairs is large, then one pair the pair with the larger
penetration will present larger stresses than the actual ones and this is the reason why the
assembly was not completed in Solidworks, and the gears were positioned correctly in Design
Modeler as it is mentioned in chapter.

3.1.5 Setting up of the mesh parameters
The meshing was done using quadratic quadrilaterals and the initial focus was on the area
where the contact area is going to be formed be formed. From Table 3.8 and Table 3.9, we
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know that the height of the rectangular contact area is 0.099 for position 6 and 0.062 for
position 6°. So the element size was selected to be 3-10° to have at least 20 elements in the
area. It is crucial to understand that if the element size in this area is not at least a tenth of the
length of the heights then the mesh cannot fully model the pressure distribution in the area and
the model will yield wrong results. This is performed using the option of Face Sizing combined
with the option of Sphere of Influence, otherwise we would end up with a fine mesh in all the
gear profile which is unnecessary and would cost more computational time. The radius of the
Sphere of Influence was set to be a little higher that the half of the heights of the contact areas.
The basic criterion for how much bigger the radius depends on how much of the most loaded
area is in the fine mesh. For example, if a big part of the most loaded area is outside of the fine
mesh, then the radius should increase to capture that part also and observe if there is a
significant change in the results. Furthermore, a total refinement in the mesh of the gear is done
to create mesh whose element size changes more gradually as we move from the gear hub to
the contact area. In Picture 3.9(a), (b).the initial mesh is shown:

0.00 25.00 50.00 (mm)
I 2000000909

12.50 37.50

Picture 3.8(a)
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Picture 3.8(b)

(a) Initial mesh in Static Structural, (b) Mesh around the contact area.

Finally, someone could argue that another area of interest is the trochoid of the gear where we
expect to see the maxim bending stress being developed. That would be right but after the
previous mesh refinement we already have a sufficiently small element size in these areas too,
but if there is a problem there, it will be corrected in the mesh convergence that would be
presented in the las paragraph of this chapter.

3.1.6 Application of boundary conditions and load

The boundary conditions that are applied were the following. Firstly, we want to prevent the
pinion gear from rotating and from moving axially or radially. The latter is already fixed since
the analysis is two-dimensional. The radial and rotational displacement could easily be
prevented if we just fix the edge of the gear hub by using the option of Fixed Support,
Displacement or Cylindrical Support. Even if this way of modelling does not make much
difference in the results it is not sufficient because, we would like to fix the centre of the gear
and not the edge of the hub. To do that we use the option of Remote Displacement that allows
us to impose the displacement and rotation values in a Remote Point and in this case the centre
of the gear, and we can select the edge of the hub to be correlated with this point. So, for the
gear we set and the rotation around Z axis to be zero. For the gear in collaboration, we also set
displacements along X axis and Y axis to be zero but the rotation around Z axis will be left free
because in this gear the moment is applied. The boundary conditions of the two gears are shown

in Picture 3.9(a), (b).
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0.00 40.00 80.00{mm)
I 009 a0

20.00 60.00

Picture 3.9(a)

L
0.00 45.00 90.00 (mm)
BN 0 a0
22,50 67.50
Picture 3.9(b)

(a) Remote Displacement in the centre of pinion gear, (b) Remote Displacement in the
centre of conjugate gear.
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As far as the load is concerned, a moment of 98 Nm is applied in the Remote Point at the centre
of the gear in collaboration. Again, the moment could also be applied directly to the edge of
the hub of the gear without having much difference in the results, but this would be a less
realistic way to model the problem. The load application is shown in Picture 3.10.

C

0.00 45.00 90.00 (rrm)
I 2440 a0 )
22,50 67.50

Picture 3.10. Moment application in conjugate gear.

3.1.7 Results and verification

After the simulation is run the results in Reaction Force, Equivalent VVon-Mises Stress, Contact
Pressure and Penetration in each contact pair will be presented. To be completely sure that the
results are independent from the mesh in the areas of interest which are the contact areas and
the trochoid gears, a mesh refinement procedure was performed to have a stress convergence
in these areas. The Adaptive Mesh refinement can be enables by the inserting the Convergence
option in the results that interest us and its parameters can change in the tool of Convergence
and in the section Solution and are presented in Picture 3.11 and in Picture 3.12.

Details of "Convergence" o
[=]| Definition

Type Maximum

Allowable Change | 5. %

Picture 3.11. Paramteres of Convergence tool.
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Details of "Selution (AB)"

B

B

Solution

Mumber Of Cores to Lse (Beta)

| Solve Process Settings

Adaptive Mesh Refinement

Max Refinement Loops

Refinement Depth

Picture 3.12. Parameters of Adaptive Mesh Refinement.

Reaction Force

The results of the Reaction Force are shown in Picture 3.13 and Picture 3.14. Their values

match well with the theoretical ones and their actual error are presented in Table 3.12.

Details of "Force Reaction”

Definition

Type

Force Reaction

Location Method

Contact Region

Contact Region

Frictionless - 3D_pinion To 3D _in_col...

Orientation Global Coordinate System
Extraction Contact (Underlying Element}
Suppressed Mo
Options
Result Selection | All

Display Time |End Time
Results

¥ Axis 905.21 N

¥ Axis 3294 N

Total 963.28 M

Picture 3.13. Reaction Force at Position 6.

Details of "Force Reaction 2"

[=1| Definition
Type Force Reaction
Lacation Method | Contact Region
Contact Region | Frictionless - 3D_pinion To 3D_in_col...
Orientation Global Coordinate System
Extraction Contact (Underlying Element}
Suppressed Mo
Options
Result Selection | All
Display Time |End Time
Results
X Axis 72811 N
¥ Axis 265. M
Total T74.84 N

Picture 3.14. Reaction Force at Position 6°.

Position 6 | Position 6’
Reaction Force ANSYS (N) 963.28 774.84
Reaction Force Theoretical (N) 1,001.05 739.91
| Error (%) 3.77 472 |

Table 3.12. Reaction Forces at each pair of contact.
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Von Mises Stress

The results of Equivalent VVon-Mises Stress are shown in Picture 3.15, Picture 3.16. As we can
see, the stresses follow the elliptical distribution that we were expecting. Moreover, the most
loaded area is located well inside the finer mesh, so this is another indication that the mesh is
probably ok.

Picture 3.15. Equivalent Von-Mises stress in Position 6. Max value is 297.25 MPa.

Picture 3.16. Equivalent Von-Mises stress in Position 6°. Max value is 366.72 MPa.

Finally in Picture 3.17 and in Picture 3.19 we can see the values of the stress in the foot of the
conjugate gear. These values match well with the theoretical ones calculated in paragraph 3.1.1,
if we also think that the theoretical values assume that the force is applied in the tip of the tooth.
This was expected since the Reaction Forces also confirm the theoretical model. Moreover, we
can see in Picture 3.18 and in Picture 3.20 that the mesh convergence is achieved. Their actual
errors are presented in Table 3.13. For the calculation of errors, the average value from bending
stress at each position was used.
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Picture 3.17. Bending stress in conjugate gear at Position 6.

Convergence History

9.0456
QUME —fo--m oo
T
Z
8
E 0043 o T
=
E
5
Z 0042 oo e
G041 oo
9.0405
1 2
Solution Number
Normal Stress (MPa) | Change (%) | Nodes | Elements
1 9.0405 306491 101365
2 9.0456 5.6811e-002 310046 102520

Picture 3.18. Convergence with Adaptive Meshing in tooth of gear in collaboration at
Position 6.
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Picture 3.19. Bending stress in conjugate gear at Position 6°.

Convergence History

14.747

14.746 |

14,745

14,744

14,743

MNormal Stress 2 (MPa)

14,742

1474

1 2
Solution Number
Normal Stress 2 (MPa) | Change (35) | Nodes | Elements
1 14.747 306491 101365
2 14,741 -3.7803e-002 310046 102520

Picture 3.20. Convergence with Adaptive Meshing in tooth of gear in collaboration at
Position 6°.
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Position 6 Position 6’
Left Right Left Right
Bending stress ANSYS (MPa) 9.99 9.05 16.61 14.74
Bending stress Theoretical (MPa) 15.29 11.30
Error (%) 37.74 38.7

Table 3.13. Bending stress of conjugate gear at each contact pair.

Contact Pressure

The results of the Contact Pressure are shown in Picture 3.21 and Picture 3.22. Again, we
expect that also the values of contact pressure will be close to the theoretical ones. Indeed, the
maximum values match well with the theoretical ones their actual error are presented in Table
3.14. Furthermore, we see in picture 3.23 that the mesh convergence is achieved.

0,000 1,000
I 20O O 00000

0500

1.500

2.000{mm).

Picture 3.21. Contact Pressure in Position 6.
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Picture 3.22. Contact Pressure in Position 6°.

Convergence History

367.82
FETT T
=
o
g
@ 3676 | e
3
]
a
FETS T
36T | T
367.36
1 2
Solution Number
I Pressure (MPa}I Change (%}I Nadsl Elements
1 367.36 280687 92869
2 367.82 0.12618 306491 101365

Picture 3.23. Convergence with Adaptive Meshing in Contact Pressure.

Position 6 | Position 6’
Contact Pressure ANSYS (MPa) 299.99 367.82
Contact Pressure Theoretical (MPa) 319.98 377.32
Error (%) 6.25 2.52

Table 3.14. Contact Pressure at each contact pair.
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Penetration

The results of the Penetration are shown in Picture 3.24 and in Picture 3.25. To verify that the
selection of the value for the Normal Stiffness Factor is ok we must compare the values of
Penetration to the values of Displacement in the contact areas which are shown in Picture 3.26
and Picture 3.27. For the calculation of errors, the average value from total displacement at
each position was used.

Picture 3.24. Penetration in position 6.
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0.000 0.450 0.900 (rmm)
I 209 0090900

0.225 0.675

Picture 3.25. Penetration in position 6°.

Picture 3.26. Total Displacement in position 6 in each gear.
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1.1747e-002 4
8.208e-004

Picture 3.27. Total Displacement in position 6’ in each gear.

Position 6 Position 6’
Conjugate gear | Pinion Conjugate gear Pinion
Total Displacement ANSYS (mm) 1.41-10° 1.92-10° 8.21-10* 1.17-10°3
Penetration ANSYS (mm) 1.56:10° 1.61-10°
Penetration Percent (%) 0.09 0.16

Table 3.15. Penetration at each contact pair.

As we can see in Table 3.15, the maximum Penetration is 0.09% of the Displacement in contact
pair of position 6 and 0.16% in contact pair of position 6’. These are both acceptable values so
Normal Stiffness Factor value is also acceptable.

3.2 Three-dimensional modelling of involute spur gears

The setting up of the three-dimensional analysis of involute spur gears resembles with the one
described in the two-dimensional analysis except some changes in the meshing process and in
the application of boundary conditions.

3.2.1 Pre-processing in Design Modeler

To save computational time by reducing the number of nodes and elements in our mesh the
Symmetry Tool is used in Design Modeler. In particular, the gears are divided in half in the
direction of their width and a symmetry condition is applied in the plane that divided them
which is the XY-plane. The process is shown in Picture 3.28.
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Picture 3.28. Application of symmetry condition.

Apart from the benefits in meshing process, the symmetry condition also allows to leave free
the displacement in Z-direction and not put another constraint in it.

3.2.2 Setting up of the mesh parameters

To have the same mesh quality as in two-dimensional mesh some modifications are necessary.
First, for the finer meshing of the contact area the option of Body of Influence is used (instead
of Sphere of Influence in two-dimensional analysis) which can be enabled if in the Mesh menu
the Solver changes from Mechanical to CFD. This tool makes things a lot easier since we create
anew body in Design Modeler, and more specifically a cylinder with radius equal to the radius
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of Sphere of Influence in two-dimensional modelling and use it to mesh the whole contact area
in each contact pair as it is shown in Picture 3.29.

Picture 3.29. The green and orange cylinders are the bodies used in the Body of
Influence option.

Of course, this body is sacrificed or in other words it is not included in the analysis beyond the
meshing process. Secondly, since the Refinement tool is not suitable for the three-dimensional
modelling, the areas of trochoid were mesh separately by using the Edge Sizing option with an
Element Size of 0.2 mm. Finally, in the three-dimensional analysis the bodies need also to be
meshed in the Z-direction and for this purpose the Sweep Method option was used and the
width of each gear was meshed with 160 elements or with an element length of 0.125 mm.

3.2.3 Application of boundary conditions and load

The major changes in this part of the analysis are in the application of displacement conditions.
Again, the option of Remote Displacement applied in Remote Points is used but in the pinion
the displacement in X-direction, Y -direction and the rotations around all the three axes are set
to zero and in the gear in collaboration the displacement in X-direction, Y -direction and the
rotation around X axis and Y axis are set to zeros and the rotation around Z axis is left free.
Finally, concerning the load application, again the Moment tool is used but the load must only
be applied in the Z-component of Moment and since we have used a symmetry condition it
must be half of the load used in two-dimensional analysis; namely 49 Nm.

3.2.4 Results and verification

After the simulation is run the results in Reaction Force, Equivalent Von-Mises Stress, Contact
Pressure and Penetration in each contact pair will be presented. In the three-dimensional
analysis the refinement of the mesh by the Adaptive Meshing option was not used since the
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way of modelling the gears and the mesh independence was verified in the two-dimensional
analysis.

Reaction Force

The results of the Reaction Force are shown in Picture3.30 and Picture 3.31. Their values match
well with the theoretical ones and their actual error are presented in Table3.16. Of course, since
there is a symmetry condition the Reaction Force in the results is the half of the actual force so
we are comparing it to the half of the theoretical one.

Details of "Force Reaction”
[=|| Definition A
Type Farce Reaction
Location Method | Contact Region
Contact Region | Frictionless - 3D_pinion To 3D _in_col...

Orientation Global Coordinate System
Extraction Contact (Underlying Element]
Suppressed Mo

[=1| Options

Result Selection | All
Display Time | End Time

[=I| Results
X Axis 453. N
¥ Axis 164.85 N
Z Axis 17714 W
Total 432,07 N

Picture 3.30. Reaction Force at Position 6.

Details of "Force Reaction 2"
[=I| Definition ~
Type Force Reaction
Location Method | Contact Region
Contact Region | Frictionless - 3D_pinion To 3D_in_col...

Orientation Global Coordinate System
Extraction Contact (Underlying Element]
Suppressed MNa

[=I| Options

Result Selection | All
Display Time |End Time

[=I| Results
X Axis 363.66 N
¥ Axis 13236 N
Z Axis -1.694% N
Total 387. N

Picture 3.31. Reaction Force at Position 6°.

Position 6 | Position 6’
Reaction Force ANSYS (N) 482.07 387
Half of the Reaction Force Theoretical (N) 500.52 369.96
Error (%) 3.68 3.53

Table 3.16. Reaction Forces at each pair of contact.
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Von Mises Stress

The results of Equivalent VVon-Mises Stress are shown in Picture 3.32 and Picture 3.33. As we
can see, the stresses follow the elliptical distribution that we were expecting. Moreover, the
most loaded area is located well inside the finer mesh, so this is another indication that the
mesh is probably ok.

Picture 3.32. Equivalent VVon-Mises stress in Position 6. Max value is 262.4 MPa.

Picture 3.33. Equivalent VVon-Mises stress in Position 6'. Max value is 301.99 MPa.

Finally in Picture we can see the values of the stress in the foot of the conjugate gear. These
values match well with the theoretical ones calculated in paragraph. This was expected since
the Reaction Forces also confirm the theoretical model. Their actual errors are presented in
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Table 3.17. For the calculation of errors, the average value of bending stress at each position
was used.

L) 450 (mm)
1250 £7%0

Picture 3.34. Bending stress in the right side of the tooth of gear in collaboration at
Position 6.

Picture 3.35. Bending stress in the left side of the tooth of gear in collaboration at
Position 6.
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Picture 3.36. Bending stress in the right side of the tooth of gear in collaboration at
Position 6°.

1500 7500

Picture 3.37. Bending stress in the left side of the tooth of gear in collaboration at
Position 6°.

Position 6 Position 6’
Left Right Left Right
Bending stress ANSYS (MPa) 10.24 9.42 16.65 15.16
Bending stress Theoretical (MPa) 15.29 11.30
Error (%) 35.71 40.75

Table 3.17. Bending stress at each contact pair.
Contact Pressure

The results of the Contact Pressure are shown in Picture 3.38 and Picture 3.39. Again, we
expect that also the values of contact pressure will be close to the theoretical ones. Indeed, the
maximum values match well with the theoretical ones their actual error are presented in Table

3.18.
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Time: 1
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Picture 3.38. Contact Pressure in position 6.

A Static Structural
Preriim

Typt: Presuun

Unit: MRy

Teme:

1106201 1258

Picture 3.39. Contact pressure in position 6°.

Position 6 | Position 6’
Contact Pressure ANSYS (MPa) 307.15 369.61
Contact Pressure Theoretical (MPa) 319.98 377.32
Error (%) 4.01 2.04
Table 3.18. Contact Pressure at each contact pair.
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Penetration

The results of the Penetration are shown in Picture 3.40 and Picture 3.41. To verify that the
selection of the value for the Normal Stiffness Factor is ok we must compare the values of
Penetration to the values of Displacement in the contact areas which are shown in Picture 3.42,
Picture 3.43, Picture 3.44 and Picture 3.45. For the calculation of errors, the average value from
total displacement at each position was used.

A St Stractin s
Penetration

Type Penetreman
Yot mm

Times |
1106000 1506

L1905 Max
£,0Mze.S
1B
15505
1im8ey
108165
770556
E1755-6
150006

0 M

Picture 3.40. Penetration in position 6.

Picture 3.41. Penetration in position 6°.
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Picture 3.42. Total Displacement in position 6 of conjugate gear.

Picture 3.43. Total Displacement in position 6 of pinion.
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Picture 3.44. Total Displacement in position 6’ of pinion.

Picture 3.45. Total Displacement in position 6° of conjugate gear.

Position 6 Position 6’
Conjugate Pinion Conjugate gear Pinion
gear
Total Displacement ANSYS (mm) 1.31:107 1.80-1073 7.8:10™ 1.11-107
Penetration (mm) 1.69-10° 2.24-10°
Penetration Percent (%) 1.09 2.54

Table 3.19. Penetration at each contact pair.
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As we can see in Table 3.19. Penetration is 1.09% of the Displacement in contact pair of
position 6 and 2.54% in contact pair of position 6’. These are both acceptable values so Normal
Stiffness Factor value is also acceptable.

3.3 Modelling of misalignment in involute spur gears
In this paragraph the modelling of misalignment error in involute spur gears is explained. First,
a definition of this error must be given.

It is widely known that assembly errors of a pair of gears have significant effects on vibration,
noise, and strength of them. One of these errors is the misalignment error of the gear shafts on
the plane of action. The misalignment error of the gear shafts on the plane of action can be
expressed by an inclination angle of the contact teeth on the plane of action as shown in Picture
3.46.

Picture 3.46. Misalignment error.[2]

The setting up of this simulation does not differ from the previous one about ideal fear contact
(apart from the symmetry condition of course that cannot be applied in this case). Nevertheless,
there is on necessary modification that must be made in the Design Modeler to create this
misalignment in the assembly on purpose.

3.3.1 Modifications in Design Modeler

To create the misalignment error, one must follow the following steps. Frist of all from the
definition of the error we know that one of the two gears-for instance here we choose the
pinion-must be acquire a relative angle to the other gear in the direction of the plane of action.
For this purpose, a line drawn at the point of contact in position which is perpendicular to the
contact trajectory of the gears which as explained previously is a line that passes from the centre
of the plane XY and has an incline of angle equal to a,. This line will serve as rotational axis
and is shown in Picture 3.47.
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Picture 3.47. Design of rotation axis in Design Modeler.

Secondly, by using the Rotate tool and giving as inputs the line created as axis of rotation and
the value of 0.004 deg for the angle of rotation the misalignment error is created. Now the
setting up of the model can continue with the setting up of the parameters discussed in the
previous paragraphs.

3.3.2 Results and verification

After the simulation is run the results in Reaction Force, Equivalent VVon-Mises Stress, Contact
Pressure and Penetration in each contact pair will be presented. In contrast to the other
simulations, since the Hertz theory cannot easily be applied to the geometry of the crowned
gears, the verification was intended to be done by comparing the results of the simulation with
results of [2]. The results of [2] only provide information about the contact pressure which was
found to be different than the which will be presented in the following paragraphs, but the stress
filed is very similar. Therefore, for this simulation there will not be any verification provided
other than the comparison of the stress fields.

Reaction Force

The results of the Reaction Force are shown in Picture 3.48 and Picture 3.49.
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Details of "Force Reaction”

[=I| Definition

Type Force Reaction
Location Method | Contact Region

Contact Region | Frictionless - 3D_in_collabaoration T...

Crientation Global Coordinate System
Extraction Contact (Underlying Element)
Suppressed Mo

[=| Options

Result Selection | All
Display Time |End Time

[=/| Results
¥ Axis 81534 N
¥ Aodis -333.09 N
I Axis 6.5002e-002 N
Total 574.06 N

Picture 3.48. Reaction Force at Position 6.

Details of "Force Reaction 2"

[=I| Definition

Type Farce Reaction

Location Method | Contact Region

Contact Region | Frictionless - 3D_in_collaboration T...

QOrientation Global Coordinate System
Extraction Contact (Underlying Element)
Suppressed Mo

=| Options

Result Selection | All
Display Time | End Time

[=I| Results
X Axis -717.96 N
¥ Axis -261.25 N
Z Axis 5.3339e-002 N
Total 764,02 N

Picture 3.49. Reaction Force at Position 6°.

Position 6 | Position 6’
| Reaction Force ANSYS (N) |  974.06 764.02 |
Table 20. Reaction Forces at each pair of contact.

Von Mises Stress

The results of Equivalent VVon-Mises Stress are shown in Picture 3.50 and Picture 3.51. As we
can see, the stresses follow the elliptical distribution that we were expecting. Moreover, the
most loaded area is located well inside the finer mesh, so this is another indication that the
mesh is probably ok.
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Picture 3.50. Equivalent VVon-Mises stress in Position 6. Max value is 315.61 MPa.

C: Misalingment

Equivalent Stress

Type: Equnalent fvon Mize:) Soees
Unit: MPy
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Picture 3.51. Equivalent Von-Mises stress in Position 6°. Max value is 363.82 MPa.

Finally in Picture we can see the values of the stress in the foot of the gear. Their values are
presented in Table 3.21.
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Picture 3.52. Bending stress in the right side of the tooth of conjugate gear at Position 6.

Picture 3.53. Bending stress in the left side of the tooth of conjugate gear at Position 6.
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Picture 3.53. Bending stress in the right side of the tooth of conjugate gear ion at

Position 6°.

Picture 3.54. Bending stress in the left side of the tooth of conjugate gear at Position 6°.

Position 6 Position 6’
Left Right Left Right
| Bending stress ANSYS (MPa) 17.36 18.54 26.87 20.34

Table 3.21. Bending stress at each contact pair.
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Contact Pressure

The results of the Contact Pressure are shown in Picture 3.55 and Picture 3.56.

|
|
]
t
a

Picture 3.55. Contact Pressure in position 6.

Picture 3.56. Contact Pressure in position 6°.
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Picture 3.57. Contact Pressure from [] in position 6 and 6°.[2]

Position 6 | Position 6’
Contact Pressure ANSYS (MPa) 394.22 481.84
Contact Pressure in [2] (MPa) 350 600

Table 3.22. Contact Pressure at each contact pair.

Contact stresses
Unt. MPa

As we can see in Picture 3.73 and in Table 3.22, even if the results are not the same, the fields
of contact pressure are very much alike.

Penetration

The results of the Penetration are shown in Picture 3.58 and Picture 3.59. To verify that the
selection of the value for the Normal Stiffness Factor is ok we must compare the values of
Penetration to the values of Displacement in the contact areas which are shown in Picture 3.60,
Picture 3.61, Picture 3.62 and Picture 3.63.
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Picture 3.58. Penetration in position 6.

Picture 3.59. Penetration in position 6°.
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Picture 3.60. Total Displacement in position 6 of conjugate gear.

ﬂﬂﬂﬂﬂﬂﬂﬂ

Picture 3.61. Total Displacement in position 6 of pinion.




Picture 3.62. Total Displacement in position 6’ of pinion.

Picture 3.59. Total Displacement in position 6’ of conjugate gear.

Position 6 Position 6’
Conjugate gear | Pinion Conjugate gear Pinion
Total Displacement ANSYS (mm) 2.09:1073 2.46:1073 1.41-10°3 1.54-10°
Penetration ANSYS (mm) 7.15:10° 7.11-10°
Penetration Percent (%) 3.14 4.82

Table 3.23. Penetration at each contact pair.
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As we can see in Table 3.23. Penetration is 3.14% of the Displacement in contact pair of
position 6 and 4.82% in contact pair of position 6’. These are both acceptable values so Normal
Stiffness Factor value is also acceptable.

3.4 Modelling of crowning in involute spur gears
In this chapter the modelling of crowning in involute spur gears is described. But what is
crowning?

Some of the most common problems that gear manufacturers and users of gears in several
application come across are gear noise and misalignment errors and. One of the simple
solutions proposed to fix that is gear crowning. Gear crowning is a process that involves
changing the chordal thickness of the tooth along its axis as shown in Picture 3.64. This solution
is also used to counter offset loads commonly found in cantilevered gear shafts. In this case the
crown on the lead would be offset to the centre of the gear face width. Crowning can be done
by using several auxiliary geometries but here the study of crowning using a circular arc with
an amount of crowing equal to 5 um is examined. This value was selected to be able to compare
the simulation results to the results of [2].
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Quantity of crowning

Picture 3.64. Crowning process.[2]

As far as the setting up of the simulation is concerned it is very similar to the one of the three-
dimensional ideal involute spur gears apart from some modifications in the defining of contact
and in the meshing procedure which will be discussed in the next paragraphs. Moreover, a
symmetry condition was used with exact same way as described in the modelling of three-
dimensional ideal involute spur gears.
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3.4.1 Setting up of the contact parameters
In the modelling of crowning the value of the Normal Stiffness Factor is set to one.

3.4.2 Setting up of the mesh parameters

In the simulation of crowning there was no need to create a fine mesh across a whole strip like
in the other simulations. This happens because the high stresses are mainly concentrated at a
small area close to the initial point of contact. Therefore, instead of using the option Body
Influence, the option Sphere of Influence was used with its centre located in each point of
contact. In addition, because of the more complexed shape of the crowned gears the meshing
was performed using LST elements instead of the quadratic quadrilaterals used in the rest of
the simulations.

3.4.3 Results and verification

After the simulation is run the results in Reaction Force, Equivalent Von-Mises Stress, Contact
Pressure and Penetration in each contact pair will be presented. Again, since the Hertz theory
cannot easily be applied to the geometry of the crowned gears, the verification will be done by
comparing the results of the simulation with results of [2]. However, the results of [] only
provide information about the contact pressure so the rest of the results will be taken as realistic
if the error between it is confirmed that the contact pressure of the model matches the one of

12].

Reaction Force

The results of the Reaction Force are shown in Picture 3.65 and Picture 3.66. Of course, since
there is a symmetry condition the Reaction Force in the results is the half of the actual force.

Details of "Force Reaction” o
[=1| Definition -
Type Force Reaction

Location Method | Contact Region
Contact Region | Frictionless - 3D_pinion{pinion_Cra...

Orientation Global Coordinate System
Extraction Contact (Underlying Element)
Suppressed Mo

[=]| Options

Result Selection | All
Display Time |[End Time

[=]| Results
X Axis 344.37THN
¥ Axis 12529 N
Z Axis 1.6601 N
Total 36645 N

Picture 3.65. Reaction Force at Position 6.
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4 Details of "Force Reaction 2"

A [=I| Definition ~
Type Force Reaction

Location Method | Contact Region

Contact Region | Frictionless - 3D_pinionfpinion_Cro...

Crientation Global Coordinate System
Extraction Contact (Underlying Element}
Suppressed Mo

-1 Options

Result Selection | All
Display Time |End Time

o |- Results
X Axis 47224 N
Y Axis 17132 N
Z Axis 20309 N
Total 502.36 N

Picture 3.66. Reaction Force at Position 6°.

Position 6 | Position 6’
| Reaction Force ANSYS (N) | 366.45 502.36 |
Table 3.24. Reaction Forces at each pair of contact.

Von Mises Stress

The results of Equivalent Von-Mises Stress are shown in Picture 3.67 and Picture 3.68.
Moreover, the most loaded area is located well inside the finer mesh, so this is another
indication that the mesh is probably ok.

Picture 3.67. Equivalent Von-Mises stress in Position 6. Max value is157.49 MPa.
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Picture 3.68. Equivalent Von-Mises stress in Position 6'. Max value is 231.05 MPa.

Finally, in Picture 3.69, Picture 3.70, Picture 3.71 and Picture 3.72, we can see the values of
the stress in the foot of the gear. Their values are presented in Table 3.25.
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Picture 3.70. Bending stress in the left side of the tooth of conjugate gear at Position 6.
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Picture 3.71. Bending stress in the right side of the tooth of conjugate gear at Position
6.

Picture 3.72. Bending stress in the left side of the tooth of conjugate gear at Position 6°.

Position 6 Position 6’
Left Right Left Right
\ Bending stress ANSYS (MPa) 13.88 12.52 33.91 29.63

Table 3.25. Bending stress at each contact pair.

Contact Pressure

The results of the Contact Pressure are shown in Picture 3.73 and Picture 3.74 and in Picture
3.75 we have the results from [2]. We can see in Table 3.26 that the maximum values match
well with the ones presented in [2] and the pressure fields are alike Thus, we also expect the
rest of the simulation results to be correct.
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Picture 3.75. Contact Pressure from [] in position 6 and 6°.[2]

Picture 3.73. Contact Pressure in position 6.

Picture 3.74. Contact Pressure in position 6°.
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Position 6 | Position 6’
Contact Pressure ANSYS (MPa) 377.51 579.36
Contact Pressure in [2] (MPa) 350 600
Error (%) 7.86 3.4

Table 3.26. Contact Pressure at each contact pair.

Penetration

The results of the Penetration are shown in Picture 3.76 and in Picture 3.77. To verify that the
selection of the value for the Normal Stiffness Factor is ok we must compare the values of
Penetration to the values of Displacement in the contact areas which are shown in Picture 3.78,
Picture 3.79, Picture 3.80 and Picture 3.81.

Picture3.76. Penetration in position 6.

Picture 3.77. Penetration in position 6°.
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Picture 3.78. Total Displacement in position 6 of conjugate gear.

2.5014e-003 3

Picture 3.79. Total Displacement in position 6 of pinion.
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Picture 3.80. Total Displacement in position 6’ of pinion.

Picture 3.81. Total Displacement in position 6’ of conjugate gear.

Penetration Percent (%)
Table 3.27. Penetration at each contact pair.
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As we can see in Table 3.27. Penetration is 5.74% of the Displacement in contact pair of
position 6 and 12.33% in contact pair of position 6°. These value in position 6 is acceptable but
the value in position 6’ which is over 10% may be problematic but in this case is our results
are ok we can accept it.

4. MATLAB code for modelling of gear contact

In this paragraph the structure of the MATLAB for the modelling of involute spur gear contact
will be described along with the FEM used in it. The case used for the presentation of the code
will be the same for gears engaged in the same position as in the previous chapter. As it is
already mentioned the analysis will be two-dimensional and the elements used will be CST and
LST. The code with the CST elements was first written by Prof Christophoros Provatidis in
collaboration with the student at the time Emanouil Sakaridis and | made the necessary changes
to function properly and yield the desired results.

4.1 Description of CST element

Since the meshing process is well established, the equations used for the modelling of the
problem with the CST element must also be explained. For this reason, one of the triangular
elements is taken and its nodes are numbered as shown in Picture 4.1.

VA
tva

3 .
2 , u3
/ A1\

1 .;»-_-'_'ul

2

Picture 4.1. CST element

The displacements u and v along the axes x and y respectively of a random point included in
the element are given by the following equations:

u= N1u1 + Nzuz + N3u3 (41)
v = N;v; + Nyv, + Nyv; (4.2)

Where (x1,y1), (x5, y2)and (x3,y3) and (uq, v4), (uy, vy)and (us, v3) are the coordinates and
displacements of nodes 1, 2 and 3 respectively and N;, N, and N5 are called shape functions.
The shape functions are the functions used to interpolate the coordinates and displacement of
any given point inside the element. Since we are talking about the CST element, these shape
functions are chosen to be the triangular coordinates. This means that:
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Ny, = 2 (4.3)
N, =22 (4.4)
N; =22 (45)

The areas A,, A, and A5 are shown in Picture and for instance if we area node 1 then 4; = A
and A,, A; = 0. Thus, they area called triangular coordinates. From equations () through ()
we end up with:

Ny = i((xzh —x3y2) + (¥2 — y3)x + (x3 — x,)y) (4.8)
Ny = o= (Cesy1 — %1y3) + (73 — y)x + (11 — x3)y) (4.9)

N3 = — (132 = %231) + (1 = ¥2)x + (2 — x1)y) (4.10)

As far as the computation of strains of any given point inside the triangle is concerned, from
equations of two-dimensional linear elasticity we know that:
s = E¢or€ (4.11)

s=|sy| @412

e=|¢&|(4.13)

where s, and s, are the normal stress along the axes x and y respectively and ¢,, the shear
stress and &y, &, and y,,, are the equivalent strains and E,, is equal to:

di; dia 0
Etor = d12 d11 0 (4-14)
0 0 dss

If the state of the linear elasticity model is Plane Stress, then the parameters d, 4, d;, and d,,
are defined as:

E

VE

E
ds; = ETeReeY (4.17)
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And if the state of linear elasticity model is Plane Strain, then the parameters d,, d;, and d,,
are defined as:

_ E(1-v)
117 (1+v)(1-2v) (4.18)
diz = (1+v)(1 2v) (4.19)
E

To receive the stresses, first the strains must be calculated, and this is done with the following
equations:

dx dx dx

!
dN, dN, dN3
0 o 0 = 0 luw@2y
lle le dN2 dNZ dN3 dNSJ

dx dy dx dy dx dy

l[ﬂo%o%o]
I

E =

1
1]

|V
i i (4.22)
Lo |

From () we observe that for the strains to be calculated it is necessary to get the nodal
displacements and this is done with the general equations of FEM in the static analysis which
is:

KU = F (4.23)

_Fxl_
Fyq
Fx2
Fx2
Fx3

_Fy3_

(4.24)

where K is the stiffness matrix and F is the array of nodal forces.

To calculate the stiffness matrix is calculated from the theory of Possible Works with the
following formula:

K = [, BTEyB dA (4.25)

where B is equal to:
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N, ANz g dNs
dx dx dx
dN; dN, dNs

l dx dy dx dy dx dy J

For the simple case of CST element, the stiffness matrix is equal to:

Eh Eh
T 4A(1-v2) Ky + 8A(1+v)

K, (4.27)

where for the case of Plane Stress K; and K, are equal to:

[ by> bycyv biby bycyv bibs bicsv]
bic,v 2 b261v cicp b3V cocs
bib, byciv  b,® bacav bsby bycsv
bic,v €1C; byc,v 2 b3tV c3cy
bib; bsciv bzb, bscyv by® baczv
|bycsv €163 bycav €3C; bacgv C3%

ke
I

(4.28)

[ ¢,? bici cicy bycy cicg bscqT
bicy b12 bic; biby bics bibs
C1C2 bycy Cc,? bycy €3€2 bscy
bycy bib, byc, b22 bz¢s bsb,
€1C3 hycy €3C2 bycy C3° bscs
D3¢y p by b3C2 bob, b3C3 p,? |

(4.29)

by =y, — y3 (4.30) €1 = x3 — x; (4.31)
bz =Y¥Y3— V1 (432) Cyr = X1 — X3 (433)
b3 =Y1— Y2 (434) C3 =Xy —Xq (435)

Therefore, the general procedure is first to calculate the displacements which lead us to the
calculation of strains which result in the stresses.

4.2 Description of LST element

Despite all if its advantages like the vast variety of meshing algorithms and the simple
mathematical modelling, the CST element has one very important disadvantage which is as its
name denotes that throughout the whole element there is a constant strain. This happens
because if we examine closely the equation () we will observe that the derivatives of shape
functions are constant. So, to achieve a satisfying level of accuracy we need to have much of
those elements that results in more computational time. For this reason, the LST element is
used which is shown in Picture 4.2. In contrast to the CST element, the LST element has 6
nodes instead of 3 (the extra nodes are found in the middle of each side of the triangle).
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Picture 4.2. LST element.

Again, to obtain the stresses we must first calculate the displacements and then the strains. The
difference is that now is there are 6 nodes the displacements are given by the following
equations:

u = Sjuy + Syuy + Szus + Syuy + Ssus + Sgug (4.36)
v = 85,0, + S0, + S3v3 4+ S, + Ssvs + Sgve (4.37)
where the new shape functions S;, S,, S3, S4, Ss and S¢ are equal to:
S, = N;(2N; — 1) (4.38)
S, = N,(2N, — 1) (4.39)
S; = N3(2N; — 1) (4.40)
S, = 4N, N, (4.41)
Ss = 4N,N; (4.42)
Se = 4N3N; (4.43)

All the other equation presented for CST element also apply here but with the new shape
functions in them. However, looking back at equation () for the calculation of stiffness matrix,
now because the shape functions contain x and y in the second power we must follow a
different process to solve the integral. For this reason, we use the Gauss-Hammer integration
and to do that we modify the shape functions. In particular, the Gauss-Hammer integration
requires that the integration range be from 0 to 1 and from equation () we know that N, N, and
N5. Therefore, we set:

s = Ny (4.44)
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t = N, (4.45)
1—s—t=N;(4.46)
So, the shape functions take the following form:
S1=s(2s—1) (4.47)
S, = t(2t — 1) (4.48)
S;=(1—s—1t)(2(1 —s—t)—1) (4.49)
S, = 4st (4.50)
Ss = 4t(1 —s —t) (4.51)
Se = 4(1 —s —t)s (4.52)

After this transformation of shape functions another problem that arises is the calculation of
the derivatives of shape functions in respect to x and y to obtain matrix B, because now we
have the shape functions in respect to s and t. This problem is solved with the use of the
Jacobian matrix J with the following formula:

asi asi

d

dy dt

The Jacobian matrix is defined as:

dx dy
J=|E &|(454)
dt dt

and we can calculate the derivatives of x and y in respect to s and t by differentiating the
following equations:

X = 51X1 + Szxz + 53X3 + S4,X4 + Ssxs + S6x6 (455)
Y =511+ 82Y2 + S3¥3 + S4Ya + Ss¥s + Se Ve (4.96)

This happens because as it is already mentioned, shape functions are used to interpolate the
displacements and the coordinates of any random point inside the element. To summarize,
after all the necessary modification the equation () becomes:

K =j BTE,,,BdA=>K =f J BTE,,.B dxdy =
A y X

K = [} [ 0.5BTEoB |]|ds dt (4.57)

Now from equation (), we can perform the Gauss-Hammer integration which is given by the

following formula:
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K=" Z;n 0.5B"E¢o¢B || w;w; (4.58)

where w; and w; are the Gauss-Hammer integration weights. The 0.5B"E;,,B |]| is evaluated
in the Gauss-Hammer integration points which are set in the position of s and t. After trials in
the code, it is observed that if four or more Gauss-Hammer points are used then the integral
yields an acceptable result. The results that will be presented are obtained for seven points. For
the case of four points the values of w; and w; are given in Table 4.1 and for seven in Table

4.2.
s 1 3 1 1
3 5 5 5
t 1 1 3 1
3 5 5 5
w 27 | 25 | 25 | 25
48 | 48 | 48 | 48
Table 4.1. Values of w; and w; for four Gauss-Hammer weights.
1 0.597158717 | 0.4701420641 | 0.4701420641 | 0.7974269853 | 0.1012865073 | 0.1012865073
3
1 10.4701420641 | 0.597158717 | 0.4701420641 | 0.1012865073 | 0.7974269853 | 0.1012865073
3
225 | 0.1323941527 | 0.1323941527 | 0.1323941527 | 0.1259391805 | 0.1259391805 | 0.1259391805

Table 4.2. Values of w; and w; for four Gauss-Hammer weights.

4.3 Description of the meshing method
The meshing algorithm used for the creation of triangular elements over the gear tooth is chosen
to be the Advancing Front Triangulation (AFT) method. This method was initially proposed
by Lo and it was rapidly developed by the FE communities. The process of the AFT method is
basically composed of the following steps:

Step 1: Creation of the outline nodes for the initiation of the algorithm.

In the beginning the user must provide a specific spacing function to create
outline points in the boundaries of the geometry. These will serve as the first
nodes. If the boundary is external, then nodes must be created in a counter
clockwise direction and if the boundary is internal nodes must be created in a
clockwise direction. In this way the boundaries of the geometry to be meshed is
decomposed into straight lines.

Step 2:

Selection of the base line segment.

Next, a line segment from the boundaries must be selected for the formation of
the first element. Usually, this line segment is the last one created in Step 1.
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Nevertheless, if there is a rapid change in the size in the element size then the
stability of the meshing process and the quality of the elements can be improved
if the shortest line segment is selected as base segment. The base segment is
called AB.

Step 3: Creation of a new element

Since we have selected the base segment, we can now form a new element. For
this purpose, the ideal location of the third node must be found which can belong
to the boundary or it can be a totally new point inside our geometry. If the third
node C belongs to the boundary, then to select it, we use the metric A whose
value is given by the following formula:

A= ad (4.59)
where « is the geometrical shape factor of the triangle and is defined as:

o= 2v/3ABXAC
lABIIZ+|IBC||2+]ICAll?

(4.60) (if the triangle is equilateral then a = 1)

and ¢ is the node conformity factor and is defined as:

_ . ACI pq

6, = mm(—p1 'IIACII) (4.62)
_ . AIBCIl  ps

o, = mm(—p2 '_IIBCII) (4.63)

In which p,and p, are values of node spacing function evaluated at the mid-
points of AC and CB, respectively. If the third node I does not belong to the
boundary the same metrics are used for its evaluation but to the searching is
done across the normal bisector of segment AB. Of course, this new node must
be selected in a way that it does not intersect the boundary. Finally, the A values
of node C and I are compared and the node that has the biggest A value is chosen
for the formulation of the new element.

Step 4: Boundary update

If the node C is selected for the new element, then:
e If CA belongs to the boundary, then it is deleted from the boundary.
e If BC belongs to the boundary, then it is deleted from the boundary.

But, if node I is selected for the new element, then both CA and BC are added
to the boundary. Thus, a new boundary is formed. For the creation of a new
element, we return to Step 2 and the whole process is repeated.

Step 5: End of meshing process

The meshing process ends when there are no sides left in the boundary and this
is when we receive the final triangular mesh.
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4.4 Structure of MATLAB code

In the following paragraphs the MATLAB codes of CST and LST elements for the modelling
of gear contact will be presented. The general idea of the code is to model only one of the two
teeth that participate in a contact and apply the normal force in it.

4.4.1 Definition of gear parameters

The first section of the code is the definition of gear parameters. All these parameters are given
by the user and stored in the variable gear which is defined as struct in MATLAB. The fields
of this struct are shown in Table 4.3.

gear.z=30 Number of teeth for pinion gear
gear.m=4 Module
gear.a0 Pressure angle
gear.cs Thickness coefficient at rolling circle
gear.ck Addendum coefficient
gear.cf Dedendum coefficient
gear.cc=0.3 Rack curvature coefficient
gear.width Gear width
gear.i Gear ratio
gear.contact r | Array of dimensions 1 x 2, in which the first element is the radius from
the centre of pinion gear to the point of contact and the second is the
radius from the centre of conjugate gear to the point of contact

Table 4.3. User defined gear parameters.

The struct gear is then inserted to the equation gear radii angles for the calculation
of some secondary gears parameters which are also saved as fields as shown in Table 4.4.

gear.r0 | Pitch radius of pinion gear

gear.rg | Form radius of pinion gear

gear.rk | Tip radius of pinion gear

gear.rf | Root radius of pinion gear

gear.rc | Trochoid radius of pinion gear

gear.fi | Involute rotation angle

gear.w | Trochoid rotation angle

Table 4.4. Secondary gear parameters.

4.4.2 Definition of material properties

In this section the user provides the Young Modulus and the Poisson ratio of the material of
each gear. In addition, the user can choose if the problem is in Plane Stress or in Plane Strain.
These are stored in the struct material. The fields of this struct are shown in Table 4.5.

material.E Array of dimensions 1 X 2, in which the first element is the Young Modulus of
pinion and the second is the Young Modulus of conjugate gear
material.v Array of dimensions 1 x 2, in which the first element is the Poisson ratio of pinion

and the second is the Poisson ratio of conjugate gear

material.PlaneType | Ifthisissetto 0 then we are in Plane Stress and if it is set to 1 we are in Plane Strain.

Table 4.5. User defined material properties.

July 15, 2021




4.4.3 Hertz calculations

In this section the calculation of Hertz quantities is done. This is performed through the
equationhertz calc which takes as input the structs gear andmaterial and the contact
force F provided by the user and gives as outputs the maximum theoretical contact pressure
pmax_th and the theoretical height b th of the rectangular contact area as described in
chapter 2. These are used both to verify our results and to aid the meshing process and the load
application process. In addition, the force F is calculated by a MATLAB program written by
the Ph.D. student Christos Papalexis.

4.4.4 Code implementation of the AFT method

As it is already mentioned to use the AFT method, we first need to create outline nodes in the
boundary of the gear tooth to divide it into line segments. Therefore, we initially divide the
boundary into the parts shown in Picture 4.3 and Picture 4.4 for the engagement of gears in
Position 6. The type of the curve in every part is explained in Table 4.6.

Arcas of gear

F F
B
C Cc
Al 8 BM
G G

Picture 4.3. Gear boundary.
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Picture 4.4. DE section of gear boundary.

AB Root circle

BC Trochoid

CD Involute curve

DE Contact area in the involute curve
EF Involute curve

FF’ Tip circle

F'C” | Involute curve

C’B” | Symmetrical part of BC
B"A” | Symmetrical part of AB
A'G’
G’'G | Gear hub circle

GA Symmetrical part of G'G

Table 4.6. Divisions of the boundary of gear.

This is initial division of the boundary is done for the user to be able to set a different element
size in each part, because for example in the part of trochoids and in the part of contact area we
want to have a finer mesh. So, for each one of those parts we use a desired mesh size the value
if which is stores in the matrix mesh seeds. The dimensions of this matrix are 12 x 2,
because the boundary was initially divided to 12 areas and its row of the matrix contains the
mesh size or in other words the spacing for the nodes of the boundary. The code is structured
in a way that if in a row the first element is a certain value and the second is 0 then the part of
the boundary associated to this row will have nodes with a spacing equal to the first element of
the row. However, if both elements of the row are non-zero then, the part of the boundary
corresponding to this row will contain nodes whom spacing will vary linearly from the value
of the first element to the value of the second element of this row. For the values in
mesh seeds shown in Picture 4.5 we receive the outline nodes shown in Picture 4.6. This
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procedure takes place in the equation outline points which gives as output the matrix
outline points in which each row contains the coordinates of each outline point. In
addition, from this equation we receive the matrices Loaded nodes which contains the
nodes that belong to the section DE or in other words the contact area, fixed nodes which
contains the nodes that belongs to the sections A’G", G'G, and GA which will be fixed and
bending nodes which contains the nodes found in the sections BC and C'B” or in other

words the trochoids.

mesh seeds = | L0 % (A-B)
07 % (B-C)
(b th/lo; E(C-I)
h/10,0; % (D-E)
h/10,0.2; £ (E-F)
)

-

-
- -
LT T

-
LT

mmeQQC\WIWC‘-C‘-Q
i T e T s A T T T O R S (T (T X
-
(5% = I s R s R

-
8]
[

Picture 4.5. Mesh seeds

Outline points for advancing front mesh generation

\

Picture 4.6. Outline points
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Afterwards the triangular mesh is created with the steps described in paragraph . This is done
with the equation Advancing Front LO_2D which takes as main input the matrix
outline points and returns as output the coordinates of the nodes of the final mesh
which are stored in the column matrices Xxnodes and Ynodes which are the x-intercepts
and the y-intercepts of the nodes respectively, the number of nodes which is stored in the
variable NN , the number of elements which is stored in the variable NE and the connectivity
matrix which is stored in the matrix ME and as its name states it provides information about
the way that the nodes are connected to form the elements. Finally, the column matrices
Xnodes and Ynodes are stored in the two-column matrix nodes and the matrix ME is
inserted into the following for — loop for the formation of the matrix elements:

elements=zeros (NE, 3) ;

for i=1:NE
elements (i, 1)=ME (3* (i-1)+1);
elements (i,2)=ME (3* (i-1)+2);
elements (i, 3)=ME (3* (i-1)+3);

end

Each row of the matrix elements corresponds to one element and contains the 3 nodes that
compose it if we are referring to a CST element. For instance, the first row corresponds to the
first element and so on. In Picture 4.7. the final mesh appears which is done with the equation
plot tri mesh.

Picture 4.7. Meshed gear with CST elements.
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The code also offers the possibility for the creation of figures with the numbered nodes and

elements which are done with the following equations:

e plot tri mesh nodal points numbered

plot tri mesh elements numbered

[ ]
plot tri mesh nodes and elements numbered

[ ]

Although, this procedure is enough for the CST element, when the code with the LST elements
is used, a function is also required for the insertion of mid-nodes in the sides of each triangular
element. This is done with the equation. Now, the matrix elements contains the 6 nodes that
compose each LST element. Again, the final mesh is shown in Picture .4.8 and is done with

the equation plot six node tri mesh.

Picture 4.8. Meshed gear with LST elements.
The creation of figures with the numbered nodes and elements which are done with the

following equations:

plot six node tri mesh nodal points numbered

[ ]
plot six node tri mesh elements numbered

plot six node tri mesh node and elements numbered
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4.4.5 Load application

In this section the load application is done. This is one of the most important parts of the code
because this offers a way to avoid the full modelling of the contact between the gears -like it
was done in ANSY'S Workbench- and to decouple the gears, by just moving the contact force
to the pinion gear. This procedure is done via the equation load distribution and
load distribution six nodes for the CST and LST elements, respectively. This
equation has as output the array Fext that contains all the nodal forces. The core function of
this equation of is to divide the contact force F to the nodes found in the contact area by
following the theoretical elliptical distribution of contact pressure in Hertz theory. given in
equation () These nodes are stored in the matrix 1loaded nodes as mentioned earlier. If in

this equation we replace x by [ where [ € [ —b_th, b_th] and we replace the fraction ﬁ by
div where div € [ 0,1] then the equation () can be rewritten as:

p = pmax_thv1 — div? (4.64)

In the code dive is an array of dimensions 1 X number of loaded_nodes. So, each two
consecutive elements of div correspond to two consecutive values of p and to two consecutive
nodes that form the side of the triangular element that belongs to the contact area. Since we are
interested only in the side of the element that belongs to the contact area, we can assume
without loss of generality that in a CST element this side is formed by nodes 1 and 2 and on
this side, it is true that:

ss = N; (4.65)
1 —ss =N, (4.66)
N3 = 0 (4.67), this applies because we are on side 12 of the element.

The total nodal force F;that corresponds to node 1 is equal to:

’ l
F, = f N,pdA = F, = gear. Widthf Nypmax_th [1— (m)zdl =
A l -

F, = gear.width fol ss pmax_th\/1 — ((1 — ss)div, + ss * divz)z\/(%)z + (%)sts
(4.68)

Where div, and div, are the values of the array div for nodes 1 and 2. Of course instead of
node 1 and 2 we could have nodes i and i + 1 and the total nodal forces F; and F;,;.
Respectively the total nodal force F, for node 2 is equal to:

F, = gear.width fol(l -

ss) pmax_thy'1 — (1 — ss)div; + ss * divz)z\/(%)2 + (%)sts (4.69)
We said that these are the total nodal forces, but we also need to find the x-component and the
y-component of those forces and insert them into the array F,,;. In general, when we refer to
the nodes i and i + 1 we set as:
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Foxt(2i — 1) = F; , = F; cos angle (4.70)
Fext(20) = F;,, = F; sinangle (4.71)
Forxe(2(i+1) — 1) = F41 5 = Fiy1 cosangle (4.72)
Fert 2(i + 1)) = Fi41 = Fiyq sinangle (4.73)

where angle is the angle that is formed between the x-axis and the total force vector, which
always is perpendicular to the contact area. Thus, a formula for the calculation of thus angle is:

angle = tan~! Yioaded nodes(end) "Yloaded nodes(1) _ Pi (4.74)

Xloaded_nodes(end)~Xloaded_nodes(1) 2
For the case of LST element we apply all the above but now since its side of the element has 3
nodes, we must calculate at first 3 total nodal forces. Again, without loss of generality we can
assume that the nodes that interest as are 1,2 and 4 where the node 4 is found in the middle of
the side 12. From paragraph we have the shape functions of LST element in parametric form,
S0 we can just replace s with ss and t with 1 — ss and receive the following formulas for the
total nodal forces:

F, = gear.width fol ss(2 xss —

1) pmax_thy1 — ((1 — ss)div; + ss * divz)z\/(%)2 + (%)sts (4.75)

F, = gear.width fol(l —55)(2* (1 —s5) —

1) pmax_thy/1 — (1 — ss)div, + ss * divz)z\/(%)z + (%)sts (4.76)

F, = gear.width fol 4ss(1 —

ss) pmax_thy1 — (1 — ss)div; + ss * div,)? J ()2 + (32)2dss (4.77)

An important difference here is that div, and div, still corresponds to the values of the array
div for nodes 1 and 2 but nodes 1 and 2 are no longer consecutive because between them
there is node 4. After that, we can fill the array F,,, as shown previously.

4.4.6 Boundary conditions application

The application of boundary conditions is done via the array BC in the code. This is an array
of size 2NN, because there are NN nodes and consequently DOFs (Degrees Of Freedom) are
2NN. Thus, there are two cases:

0, if not fixed

1, if fixed 77

BC(DOF) = {

The tooth is modelled in a way that the nodes of sides A'G’", G'G, and GA are completely
fixed. So, if node g belongs to one of these sides, then:

BC(2q —1) = 1 (4.78)
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BC(2q) = 1 (4.79)

Of course, these nodes are already found previously in the code and stored in the array
fixed nodes.

4.4.7 Solver and Post processor

In this final section the solving of the finite element model is performed and its post processing.
The model is solved through the equation FEA for the code with CST elements and through
the equation FEA six nodes for the code with the LST elements. In both equations the
inputs are the matrices nodes, elements, BC, Fext and U and the variables NODES and
NELE and the output is the matrix U which contains the nodal displacements calculates as
discussed in paragraphs 4.1 and 4.2 . For the CST element the post processing is done in the
equation Element Strain Stress where we receive the element stresses and strains,
because as it is already mentioned the CST element has a single value for strain and stress
throughout the element. The inputs of the equation are the matrices nodes and elements and
U, the variable NELE and the struct material. The outputs of equation are presented in
Table 4.7. Furthermore, the code through the equations SmoothNodalStress and
SmoothElementStress which provide the user with the opportunity to see the smoothed
stresses.

Strain Element normal and shear strains

Stress Elements stresses. The first three columns contain the normal and
shear stresses and the rest contain the principal stresses and the
equivalent Von-Mises stresses

PrincipStress Element principal stresses

Svm Element equivalent VVon-Mises stresses

Table 4.7. Outputs of the equation Element Strain Stress.

The post processing for the LST element is don with the equation
Nodal Strain Stress_ six nodes. Through the LST element we can directly receive
nodal strain and nodal stresses so there is no need for smoothening. Once again, the inputs are
the matrices nodes, elements, BC, Fext and U, the variable NELE and the struct
material. The outputs of equation are shown in Table 4.8.

StrainNodal Nodal normal and shear strains

StressNodal Nodal stresses. The first three columns contain the normal and
shear stresses and the rest contain the principal stresses and the
equivalent Von-Mises stresses

PrincipStressNodal | Nodal principal stresses

SvmNodal Nodal equivalent VVon-Mises stresses

Table 4.8. Outputs of the equation Nodal Strain Stress_six nodes.

4.5 Results and verification of MATLAB code
After the simulation has run the results in Contact Pressure and Bending stress in each contact
pair will be presented. Moreover, there will be a comparison between the theoretical results,
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the results from the two-dimensional analysis in ANSYS and the results from the MATLAB
codes.

Bending Stress

The Bending Stress of conjugate gear for Position 6 and Position 6’are shown in Picture 4.9
and Picture 4.10 for the CST elements and in Picture 4.11 and Picture 4.12 for the LST
elements. In Table 4.9 a comparison is done between the results from MATLAB and the
theoretical ones and the ANSY'S results from the two-dimensional analysis.

ELEMENT-BASED BENDING STRESS

Picture 4.9. Bending stress of conjugate gear in Position 6 with CST elements.
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Picture 4.10. Bending stress of conjugate gear in Position 6° with CST elements.
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Picture 4.11. Bending stress of conjugate gear in Position 6 with LST elements.
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Picture 4.12. Bending stress of conjugate gear in Position 6’ with LST elements.

Position 6 Position 6’

Left Right Left Right
Bending stress ANSYS (MPa) 9.99 9.05 16.61 14.74
Bending stress MATLAB CST (MPa) 10.44 9.24 16.31 13.32
Bending stress MATLAB LST (MPa) 9.16 9.33 15.64 12.92
Bending stress Theoretical (MPa) 15.29 11.30
Error ANSYS (%) 37.74 38.7
Error MATALAB CST (%) 35.64 31.11
Error MATALAB LST (%) 39.54 26.37

Table 4.9. Comparison of Bending Stress results of conjugate gear in Position 6 and
Position 6°.

From Table 4.9 it is obvious that the MATLAB code yields better results since the errors are
smaller. Moreover, from Table 4.10 we observe that the MATLAB models save 75% more
computational time for the CST elements and 85% more computational time for the LST
elements than the ANSYS model.
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ANSYS

MATLAB CST

MATLAB LST

| Setup and Solving time (min) 20

5

Table 4.10 . Comparison of simulation times between MATLAB and ANSYS models.

Finally, another thing worth mentioned is that model with LST elements was able to provide
the same quality of results and even better by using half of the mesh sizes used in CST elements

and thus using of the computational time.

Contact Pressure

The Contact Pressure for Position 6 and Position 6’are shown in Picture 4.13 and Picture 4.14
for the CST elements and in Picture 4.15 and Picture 4.16 for the LST elements. In Table 4.11
a comparison is done between the results from MATLAB and the theoretical ones and the

ANSYS results from the two-dimensional analysis.

ELEMENT-8ASED VON-MISES STRESS Svm
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Picture 4.13. Contact Pressure in Position 6 with CST elements.
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ELEMENT-BASED VON-MISES STRESS Svm
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Picture 4.14. Contact Pressure in Position 6° with CST elements.
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Picture 4.15. Contact Pressure in Position 6 with LST elements.
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Picture 4.16. Contact Pressure in Position 6’ with LST elements.

Position 6 Position 6’
Contact Pressure ANSYS (MPa) 299.99 367.82
Contact Pressure MATLAB CST (MPa) 309.30 372.41
Contact Pressure MATLAB LST (MPa) 314.74 369.82
Contact Pressure Theoretical (MPa) 319.98 377.32
Error ANSYS(%) 6.25 2.52
Error MATLAB CST (%) 3.34 1.30
Error MATLAB LST (%) 1.64 1.98

Table 4.11. Comparison of Contact Pressure results in Position 6 and Position 6°.

Comparison between ANSYS and MATLAB code in several positions

Apart from the testing of the MATLAB code in Position 6 and Position 6°, the simulations with
the CST and LST elements also run for the positions presented in Table 4.12. These positions

of gear contact run in two-dimensional models in ANSYS too.
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Pinion’s rotation angle(deg)

0

9.36

10.08

13.14

16.20

16.92

Radius of conjugate gear(mm)

63.46

60.97

60.80

60.11

59.42

59.28

Table 4.12. Comparing positions for the testing of MATLAB code

The results of the simulations regarding the contact pressure and the bending stress of conjugate
gear are presented in Picture 4.17, Picture 4.18 and Picture 4.19 respectively.

Contact Pressure
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Picture 4.17. Contact pressure in comparing positions.
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Bend Stress right{MPa)
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Picture 4.18. Bending stress in the right side of conjugate gear in comparing positions.
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Picture 4.19. Bending stress in the left side of conjugate gear in comparing positions.

July 15, 2021



5. Conclusion

The goal of this thesis has been the presentation step by step of several methodologies for the
modelling of gear contact. In particular, the case that were investigated were the modelling of
ideal gear contact in two-dimensional and three-dimensional modelling, the modelling of the
misalignment error and finally the modelling of the crowning modification. The simulations of
those case were done with the combination of FEM and the Hertz theory of contact and aimed
at a fast and efficient modelling. They done both in the software ANSYS and with the
development of an original MATALB code.

In the ANSYS modelling all the above cases were examined and explained. It was given
emphasis in the CAD treatment of the model especially in the cases of misalignment error and
crowning where specific geometric modifications are necessary, to the setting up of the mesh
parameters, the setting up of the contact parameters and the application of boundary conditions
and of the load. Finally, the results of each case are presented and are compared with the ones
yielded from theoretical calculations.

As far as the MATLAB code is concerned, the purpose was the creation of a code that it is
easily handled from a user with a basic background in finite element analysis and the code
should be fast to save much of the computational time that is required in ANSYS. Both goals
were achieved as it was shown in chapter 4 and thus a complete code that models one tooth
with a distributed force applied in it with the abilities of two-dimensional modelling with CST
elements and LST elements was handed.

All the methodologies of modelling gear contact that are presented in this project aim at making
the gears design process more effective both in cost and in product functionality and offer some
ideas about modelling of contact phenomena in general which can also be applied in various
cases. Some future improvements, to the methods presented in this thesis would be the
modelling in ANSYS of a case that combines the misalignment error with the crowing
modification to build an effective model that can predict the necessary quantity of crowing for
each case and the enrichment of the MATLAB code with the insertion of quadrilateral elements
and with the option of automated mesh refinement.
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Appendix
MATLAB codes for the positioning of gears in ANSYS

clc

clear all

format long

%Gear parameters

gear.al=deg2rad(20) ;

gear.m=4;

gear.z=30;

gear.width=40; Smm

gear.rO=gear.m*gear.z/2;

gear.rg=cos (gear.al) *gear.r0;

gear.i=1/1.5;

$gear.contact r=[82.64 117.92;75.88 126.86]/2;
BC=sqgrt ( (gear.r0+gear.m) "2-gear.r0"2*cos (gear.al) *2) -gear.r0*sin (gear.a0) ;
CA=sqgrt ((gear.i*gear.r0+gear.m)"2-(gear.i*gear.r0) "2*cos (gear.al) "2) -
gear.i*gear.r0*sin(gear.a0);

e=(BC+CA) / (2*pi*gear.r0*cos (gear.al) /gear.z) ;

x _desired=-(CA-(((l+e-1)/2)/e)* (BC+CA)) *cos (gear.a0l);
y _desired=-(CA-(((l+e-1)/2)/e)* (BC+CA)) *sin(gear.al);
contact r=[sgrt(x_desired”2+(y desired-gear.r0)"2)
sqgrt (x_desired”2+ (y desired+gear.i*gear.r0)"2)];
gear.contact r=contact r;

$Pinion load

M=98; $Nm

load ratio=[1 0.575 1-0.575];

$Material properties

material.E=[2e5 2e5];%MPa

material.v=[0.3 0.3];

o

b th=zeros(3,1);

pmax th=zeros(3,1);

R _eg=zeros(3,1);

R=zeros(3,2);

d=zeros(3,1);

F tot=zeros(3,1);
[b_th(l),pmax th(l,:),R eg(l),R(1,:),d(1l),F tot(l)] =
hertz calc(M,gear,material);

x _desired2=-(CA-(0.48/e)* (BC+CA)) *cos (gear.al) ;

y _desired2=-(CA-(0.48/e)* (BC+CA)) *sin(gear.a0l);

contact r(2,:)=[sqgrt(x _desired2”2+(y desired2+gear.r0)"2)
sqrt (x_desired2”2+ (y desired2-gear.i*gear.r0)"2)];

x _desired3=-(CA-(1.48/e)* (BC+CA)) *cos (gear.al);

y _desired3=-(CA-(1.48/e)* (BC+CA)) *sin(gear.a0);

contact r(3,:)=[sqrt(x _desired3”2+ (y desired3+gear.r0)"2)
sqrt (x_desired3”2+(y desired3-gear.i*gear.r0)"2)];

bend stress=zeros(2,1);
for 1i=2:3
rg=[gear.rg gear.i*gear.rqg];
al=gear.al;
L=gear.width;
E=material.E;
v=material.v;
F _tot(i)=load ratio(i)*F _tot(l);
a:acos(rg./contact_r(i,:));
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R(i, :)=sin(a) .*contact r(i,:);
R_eq(i)=R(i,1)*R(i,2)/(R(1,1)+R(1,2));
E_eqg=1/((1-v(1)"2) /E(1)+(1-v(2)"2) /E(2));
pmax th(i)=sqrt(F_tot (i) *E_eq/ (pi*L*R _eqg(i)));
b_th(i)=2*F_tot(i)/(pi*L*pmax_th(i));
d(i)=(2*F _tot(i)*(1-
v(1)"2)/(pi*E (1) *L))*(2/3+1log(4*R(i,1)/b_th(i))+log(4*R(i,2)/b_th(i)));

gk=2.6;
bend stress(i-1)=F tot(i)*cos(a0l)*qgk/ (L*gear.m);
end
function [b_th,pmax th,R eq,R,d,F tot] = hertz calc(M,gear,material)

$pmax_th is the theoritical maximum surface pressure (MPa)
b _th is the theoritical halfwidth of contact (mm)

%F is force between gears (N)

rg=[gear.rg gear.i*gear.rg]l;

contact r=gear.contact r;

al=gear.al;

L=gear.width;

E=material.E;

v=material.v;

F(l)=-M*le3/contact r(l);

F(2)=tan (a0) *F (1) ;

F _tot=sqrt(F (1) "24F(2)"2);

a=acos (rg./contact_r);

R=sin(a) .*contact r;

R _eqg=R (1) *R(2)/(R(1)+R(2));

E_eqg=1/((1-v(1)"2) /E(1)+(1-v(2)"2) /E(2));

pmax th=sqrt (F_tot*E eq/ (pi*L*R eq));

b th=2*F tot/(pi*L*pmax th);

d=(2*F_tot* (1-v(1)"2)/(pi*E(1)*L))*(2/3+1log (4*R (1) /b_th)+log (4*R(2) /b _th));
end

9900000000000000000000000000000000000000000000000000000000000000000000000000
OO0OO0OOOOOOOOOOOOOOOOOOOOOOOODOOODOOOOOOOODOOODOOODOOOOODOOODOOODOOOOOOOODOOODOOOOOOOOO™O
%% HISTORY of GEARCALC-PRO:

% First draft by C. Provatidis (21.02.2020), for BEM analysis.

% Generalization and gear-tooth mirroring by E. Sakaridis (03.04.2020)

% Introduction of Finite Element Analysis (FEA) by C. Provatidis (15.04.20)
9900000000000 00000000000000000000000000000000000000000000000000000000000000 0
OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOODOOOOOOOOOOODOOODOOOOOOOODOOOOOOOOOOOO™O

% Continued after line #163 by C.Provatidis (13-15.04.2020): Plot & FEA
% Functions for the advancing front method (advancing front functions) are
% directly borrowed from GEARCALC-PRO

% Runs with MATLAB R2014b and later
% (Some secondary operations require the PDE-Toolbox)

% This code generates a triangular finite element mesh for an arbitrary
% gear tooth profile and with arbitrary mesh seeds, set by the user
% Then FEA is performed and postprocessing outpouts are plotted.

addpath (genpath ('advancing front functions'))

addpath (genpath ('geometry functions'))

addpath (genpath ('outline functions'))

addpath (genpath ('plotting functions'))

addpath (genpath ('FEA functions')) by C.P. (15.04.2020)
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(15.04.2020)

addpath (genpath ('display functions')) Sby P
b .P. (25.11.2020)

addpath (genpath ('meshGen functions')) %
)

clear all
clc

format long
hold on

% no cutting tool displacement allowed!!!

% tooth outline descriprion

% E D (A-B) Root circle

5 | -—- (B-C) Trochoid

% \ \C (C-D) Involute

% \ \B A  (D-E) Tip circle

% \ -— | (E-F) Straight symmetry line

% \ | (F-G) Hub circle

% | ——————— \ (G-A) Straight line border with next tooth
% F G

%% algorithm parameters
tol=10"-8; % universal tolerance for geometry calculations in length units
npoints=1000; % number of points to sample from the tooth flank

o

% basic geometric parameters

gear.z=20; % # of teeth

gear.m=4; % module

gear.a0=20* (pi/180); %deg2rad(20); % pressure angle [Convert angle from
degrees to radians]

gear.cs=0.4928;%0.492835; % thickness coefficient at rolling circle
gear.ck=1l; % addendum coefficient

gear.cf=1.25; % dedendum coefficient

gear.cc=0.3; % rack curvature coefficient

gear.i=1.5;

% Mesh size array: mesh seeds

% Define the seed size for the corresponding segments, in length units.

% Two options:

% A) Constant element size: To invoke this option set the second array

% element for each segment to zero, for example [0.1,0]

% B) Linearly changing element size: To invoke this option set the second
% array element for each segment to a positive real. For example using the
% value [0.1,0.2] for segment AB will result in element size 0.1 at A and
% 0.2 at B, whereas [0.2,0.1] gives 0.2 at A and 0.1 at B.

mesh seeds = [0.001,0; % (A-B)
0.01,0;. % (B-C)
0.01,0;. % (C-D)
0.01,0; % (D-E)
0.1,0;.. % (E-F)
0.01,0;. % (F-G)
0.001,0;1; % (G-R)

o©

%% supplementary geometry calculations
[gear.r0,gear.rg,gear.rf,gear.rk,gear.rc,gear.fi,gear.w] =
gear radii_ angles (gear);

o

% calculating the trochoid and involute meeting radius
gear.rs = trochoid meet involute (gear,tol);

July 15, 2021



o

o\

assigning the gear hub radius
ear.rh=22.%15%gear.rf-2*gear.m;

e Q

sampling the flank points at equidistant y
gear.flank points,gear.trochoid points,gear.involute points] =
flank points(gear,npoints);

— 0P

o

Q

%% extracting the outline points
outline points=zeros(l,2);

o\

% (A-B)

fi start=pi/2-pi/gear.z;
fi end=pi/2-gear.w;
r=gear.rf;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(1l,:));
outline points=[outline points(l:end-1,:);outline nodes];

% (B-C)

outline nodes = outline nodes curve(gear,mesh seeds(2,:), 'trochoid', tol);
outline points=[outline points(l:end-1,:);outline nodes];

% (C-D)

outline nodes = outline nodes curve(gear,mesh seeds(3,:), "involute',tol);
outline points=[outline points(l:end-1,:);outline nodes];

% (D-E)

ak=acos (gear.rg/gear.rk); % pressure angle on tip circle

o)

invak=tan (ak)-ak; % involute function

[

fi start=pi/2-gear.fi+invak;
fi end=pi/2;
r=gear.rk;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(4,:));
outline points=[outline points(l:end-1,:);outline nodes];
% (E-F)

point start=[0,gear.rk];
point end=[0,gear.rh];

outline nodes = outline nodes line(point start,point end,mesh seeds(5,:));
outline points=[outline points(l:end-1,:);outline nodes];
s (F-G)

fi start=pi/2;
fi end=pi/2-pi/gear.z;
r=gear.rh;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(6,:));
outline points=[outline points(l:end-1,:);outline nodes];
% % (G-R)

o\°

point start=[gear.rh*cos(pi/2-pi/gear.z),gear.rh*sin(pi/2-pi/gear.z)];
point end=[gear.rf*cos(pi/2-pi/gear.z),gear.rf*sin(pi/2-pi/gear.z)];
outline nodes =

outline nodes line(point start,point end,mesh seeds(7,:));

outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)];
This is the last segment, so the last node is omitted, as it coincides
with the first node of the first segment

gear.contact r=[82.64 117.92;75.88 126.86]/2;

a=acos (gear.rg/gear.contact r(1l,2));

phi=tan (a)-a;

phiO=tan (gear.al) -gear.al;

o\°

o

o° d° od° P o° o°

o
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o

SO=gear.cs*pi*2*gear.r0/gear.z;
S:gear.contact_r(l,2)*(SO/gear.rO+2*(phiO—phi));
x=rad2deg (S/ (2*gear.contact r(1,2)));

o d° o oe
o\

o\

BC=sqgrt ( (gear.r0+gear.m) "2-gear.r0"2*cos (gear.al) *2) -gear.r0*sin (gear.a0);
CA=sqgrt ((gear.i*gear.rO+gear.m)"2-(gear.i*gear.r0) "2*cos (gear.al)"2) -
gear.i*gear.r0*sin(gear.a0);

% x_desired2=-(BC-(5* (BC+CA) /16)) *cos (gear.al) ;
% y_desired2=-(BC-(5* (BC+CA)/16)) *sin(gear.al) ;
% X_desired:(CA—(O.l/l.6)*(BC+CA))*cos(gear.aO);
$ y desired=(CA-(0.1/1.6)* (BC+CA)) *sin(gear.a0);

b

_desired=-2.077183160124260;
y desired=-0.756032841404238;

[

gear.contact r=sqrt(x _desired”2+(y desired-gear.r0)"2);
t=sqrt (gear.contact r"2/gear.rg”2-1);

X=gear.rg* (sin(t)-t.*cos(t));

y=gear.rg* (cos(t)+t.*sin(t));

x1=-(cos(gear.fi) *x-sin(gear.fi) *y);
yl=sin(gear.fi) *x+cos (gear.fi) *y;

angle=atan2 (y desired-gear.r0,x desired)-atan2(yl,x1);
rad2deg (angle)

t=sqgrt ((linspace (gear.rg,gear.rk,1e3) .”2) /gear.rg”2-1);
x=gear.rg* (sin(t)-t.*cos(t));

y=gear.rg* (cos(t)+t.*sin(t));

x1=-(cos (gear.fi) *x-sin(gear.fi) *y);

yl=sin(gear.fi) *x+cos(gear.fi) *y;
x2=x1*cos (angle) -yl*sin (angle) ;

y2=x1*sin (angle)+yl*cos (angle) ;

plot (outline points(:,1),outline points(:,2))

plot (x2,y2+gear.r0)

o

°

gear.z=30;
[gear.r0,gear.rg,gear.rf,gear.rk,gear.rc,gear.fi,gear.w] =
gear radii angles (gear);

gear.contact r=sqrt(x desired”2+(y desired+gear.r0)"2);
t=sqrt (gear.contact r"2/(gear.rg)”2-1);

X=gear.rg* (sin(t)-t.*cos(t));

y=gear.rg* (cos(t)+t.*sin(t));

x1=-(cos(gear.fi) *x-sin(gear.fi) *y);
yl=sin(gear.fi) *x+cos (gear.fi) *y;

angle=atan2 (y_desired+gear.r0,x desired)-atan2(yl,x1);
rad2deg (angle)

t=sqgrt ((linspace (gear.rg,gear.rk,1e3) .”2) /gear.rg”2-1);
X=gear.rg* (sin(t)-t.*cos(t));

y=gear.rg* (cos(t)+t.*sin(t));

x1=-(cos (gear.fi) *x-sin(gear.fi) *y);
yl=sin(gear.fi) *xtcos (gear.fi) *y;

x2=x1*cos (angle)-yl*sin (angle) ;

y2=x1*sin (angle)+yl*cos (angle);

plot (x2,y2-gear.r0)

plot (x _desired,y desired, 'o"')

axis equal

o°

o©
o

X _ansys=outline nodes(:,1);
y_ansys=outline nodes(:,2);
z=zeros (size(x_ansys,1),1);
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coordinates=[ones (size(x_ansys,1),1) (l:size(x_ansys,1l))' x ansys y ansys-
gear.r0 z ];
fileID = fopen('coordinates.txt','w');
for i=l:size(x ansys,1)
fprintf (fileID, '%d %d %d %d %d\n',coordinates (i, :));
end
fclose (fileID);

MATLAB code and functions for CST element

tic

close all

clear all

clc

format long

%% algorithm parameters

tol=10"-8; % universal tolerance for geometry calculations in length units
npoints=100; % number of points to sample from the tooth flank

o

% basic geometric parameters

gear.z=30; % # of teeth

gear.m=4; % module

gear.al=deg2rad(20); % pressure angle [Convert angle from degrees to
radians]

gear.cs=0.5; % thickness coefficient at rolling circle
gear.ck=1l; % addendum coefficient

gear.cf=1.25; % dedendum coefficient

gear.cc=0.38; % rack curvature coefficient
gear.width=40; %gear width

gear.i=1/1.5;%gear ratio

%%Material parameters

material.E=[2e5 2e5];%Elastic Modulus of gears (MPa)
material.v=[0.3 0.3];%Poisson coefficient
material.PlaneType=0;% plane-stress (0), plane-strain (=/0)

.008912416112217e+03; 3N

%% supplementary geometry calculations
[gear.r0,gear.rg,gear.rf,gear.rk,gear.rc,gear.fi,gear.w] =

gear radii angles (gear);
gear.contact r=[59.280370567072850 40.822387699923972];

$%$Hertz calculations

[b_th,pmax th] = hertz calc(F,gear,material);
b=b th;

%$Theoretical Bending stress calculation

s _bend th = bending stress_ th(F,gear);

o\°

o\°

Mesh size array: mesh seeds

Define the seed size for the corresponding segments, in length units.
Two options:

A) Constant element size: To invoke this option set the second array
element for each segment to zero, for example [0.1,0]

B) Linearly changing element size: To invoke this option set the second
array element for each segment to a positive real. For example using the
value [0.1,0.2] for segment AB will result in element size 0.1 at A and
0.2 at B, whereas [0.2,0.1] gives 0.2 at A and 0.1 at B.

d° dO A° P o° o° o° o° o

o

July 15, 2021



mesh seeds = [0.2,0; % (A-B)
0.2,0;... % (B-C)
0.2,b th/10; % (C-D)
b th/10,0; % (D-E)
b th/10,0.2; % (E-F)
0.2,0.5; % (F-F")
0.2,0.5; $(F'-C")
0.2,0; %(C'-B")
0.2,0; $(B'-A")
4,0.2; $(A'-G")
5,0; % (G'-G)
4,0.21; % (G-AR)

o

o

calculating the trochoid and involute meeting radius
ear.rs = trochoid meet involute (gear,tol);

o° Q

% assigning the gear hub radius

gear.rh=33;

%circle of influence
circle=circle of infuence calculation(gear,b);

o

%% extracting the outline points

[division points,outline points, loaded nodes, fixed nodes,bending nodes] =
outline points(gear,circle,mesh seeds,tol);

$plot (outline points(:,1),outline points(:,2),'-")

o

o\°

% meshing

neleoutline=size (outline points,1);

[NN, NE, ME, Xnodes, Ynodes] = Advancing Front LO 2D...

(outline points(:,1),outline points(:,2),neleoutline,l:neleoutline, ...
[l:neleoutline,1]);

o\°

% reshaping the node and element connectivity matrices
nodes=[Xnodes, Ynodes, zeros (size (Xnodes)) ];
elements=zeros (NE, 3) ;
for i=1:NE
elements (i, 1)=ME(3*(i-1)+1);
elements (i,2)=ME (3* (i-1)+2);
elements (i, 3)=ME (3* (i-1)+3);
end
% plotting results

splot tooth flank(gear);

°

plot division points (outline points,division points)

>

plot outline points(outline points)

plot tri mesh(nodes,elements) %

%**************************************************************************

%Date: Friday 10.04.2020 (after SKYPE meeting) - 15.04.2020

% CP-addons: continues with node numbering and element numbering

%$---Node numbering (in red color):
plot tri mesh nodal points numbered (nodes,elements) %

%$—-—--Element numbering (in black color, italics):
plot tri mesh elements numbered(nodes,elements)
%$---Both node and element numbering (red and black, as abovementioned) :
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plot tri mesh node and element numbering(nodes,elements) 5%

o o
o\
5|
=
=
|
Q
]
Q
=
=
9]
-
9]
*

Memory allocation and some useful nodal variables:
NELE : total number of elements in the mesh
NODES: total number of nodes in the mesh

% NDF number of DOF per node

% NDM : dimension of problem (here is 2D-analysis)

% NEL : number of nodes per element (linear triangle)

% Area : cross-sectional area)

$ BC : index for boundary conditions (O=free, 1l=fixed)
% Fext : externally applied forces (initialization)

$ U : nodal displacements (initialization)

[NELE, NODES, NDF,NDM, NEL, Area, BC, Fext,U] = AllocateMEMORY (NE, nodes) ;

Boundary Conditions

Initially, all DOFs are free (BC=0)

Then, we determine only the restrained (i.e. fixed) DOFs:
C = plot boundary conditions (BC,nodes,elements, fixed nodes);
Externally Applied Forces

default: all imposed forces, are initially =zero.

Thus, we define only the non-vanishing force components
$Fext = plot load(Fext,nodes,elements, loaded nodes, F, gear) ;

o° 0o o° oe

o0 oo oe W

Fext = load distribution (Fext, loaded nodes,pmax th,gear,nodes,circle);
% ENTER Thickness of elements (MANUALLY) :
Thickness (1:NELE, 1) =gear.width; % element thickness

%% Calculate the unknown displacements:

[U] = FEA(nodes,elements,NODES,NELE,material,BC,Fext, ...
Thickness, U) ;

%% POST-PROCESSING: Calculate the element strains and stresses:

[Strain,Stress,PrincipStress,Svm] = Element Strain Stress (nodes
,elements, NELE,material, U, Thickness) ;

[s_bend,bending elements right,bending elements left] =

bending stress (Stress,elements,nodes,bending nodes,NELE) ;
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o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

DISPLAY NODAL DISPLACEMENTS-STRAINS-STRESSES ON SCREEN and REPORT-file:

o 0o oe
o° o o°

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o) o) o)
000 0000000000000 00000000000000000000000000000000000000O0000O0000O0O00O00D0

o\
o\

o\°

1 o
Z o
H o
o

R the name of Report file and Control the Printout-options:
( |l

fidl6e = fopen('REPORT FEA.txt','w'); %0pen file to print the results
ScreenKey = 1; S$SCREEN (l=performs printout, O=cancels printout)

ReportFileKey 1; SREPORT (l=performs printout, O=cancels printout)

PlotStressKey = 1; SPLOTS (1) or cancels plot (0), accordingly.
Output of displacements:

Display Displacements (NODES, NELE, nodeLoad, U, NDF, ...
ScreenKey,ReportFileKey, £id1l6) ;

Output of element strains (as calculated):

Display Strains (NELE,Strain, ScreenKey,ReportFileKey, £idl6) ;
Output of element stresses (as calculated):

d° 0P d° o° oe

o©

Display Stresses (NELE, Stress,PrincipStress, ScreenKey,ReportFileKey, £idl6)
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o

% COLOR FILL and Plot (ELEMENT STRESSES)
Sxx stress component:
plotSxx (NELE, nodes,elements, Stress) ;
Syy stress component:
plotSyy (NELE, nodes,elements, Stress) ;
% Sxy=Txy stress component:
plotSxy (NELE, nodes,elements, Stress) ;
Von-Mises element stress:
s % titleChar = 'ELEMENT-BASED VON-MISES STRESS Svm';
plot VonMises (NELE, nodes, elements, Svm) ;
S11 Principal element stress: PrincipStress(i,1:2)
plotS1ll (NELE, nodes,elements, PrincipStress) ;
S22 Principal element stress: PrincipStress (i
plotS22 (NELE, nodes,elements, PrincipStress);

[N}

o

o\

o\

oe oe

o\

[

~
=
N

[ ) 0000000000000000000000000

%% NODAL SMOOTHED STRESS COMPONENTS (Svm nodal is in excess):
[StressNodal, Svm_nodal] = SmoothNodalStress (NODES,NELE, elements,
Stress, Svm, PrincipStress) ;

%% PRINT NODAL STRESSES (Sxx, Syy, Sxy, Svm, S11, S$22):
fprintf ('*** STRESSES ***\n');
for i1i=1:NODES
fprintf ('node=%31 Sxx=%12.5e Syy=%12.5e
Sxy=%12.5e\n',1i,StressNodal (3*i-2),StressNodal (3*1i-1),StressNodal (3*i-0)) ;
end
fprintf ('

*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k**********************\n' ) ;

%% RECALCULATE SMOOTHED ELEMENT STRESS COMPONENTS (Sxx,Syy,Sxy,Svm,S11,S22)

(based on smoothed nodal values at element centroids).

[SmoothElementStress] = Smooth Element Stress (NELE,elements,
StressNodal) ;

o\°

[

% Plot smoothed von Mises stresses:
plot Smooth VonMises (NELE, nodes,elements, StressNodal)
$——--Check 1it!

titleChar = '%%% ALTERNATIVE %%%';
StressSmooth (1:NELE) = SmoothElementStress (l1:NELE,4);

plot General Smooth Stress(NELE,nodes,elements,StressSmooth,titleChar)

%% trisuf

% Plot the FEM approximation U(x,y) with values U 1 to U N at the nodes
clear t

t = elements;

p = nodes(:,1:2);

Ux=U(1l:2:end); %horizontal displacement

Uy=U(2:2:end); %vertical displacement

Ures=sqgrt (Ux."2+U0y."2);
trisurf(t,p(:,1),p(:,2),0*p(:,1),Ures, 'edgecolor','k', "facecolor', "interp")
view(2),axis equal,colorbar

[

% view(2),axis([-1 1 -1 1]),axis equal,colorbar
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function [r0,rg,rf,rk,rc,fi,w] = gear radii angles (gear)

o\

% extracting data from the structure
z=gear.z;

m=gear.m;

al=gear.al;

cs=gear.cs;

ck=gear.ck;

cf=gear.ct;

cc=gear.cc;

o\

% calculating radii and angles
rO0=z*m/2; % rolling circle
rg=r0*cos(al); % base circle
rf=r0-cf*m; % root circle
rk=r0+ck*m; % tip circle

[

rc=cc*m; % rack tip curvature

o)

fi=pi*cs/z+tan(a0)-al; % involute rotation angle
w=(pi*cs+2* (cf-cc) *tan(al)+2*cc/cos (a0)) /z;

end

function [b_th,pmax th] = hertz calc(F_tot,gear,material)
$pmax_th is the theoritical maximum surface pressure (MPa)
%b_th is the theoritical halfwidth of contact (mm)

%F is force between gears (N)
rg=[gear.rg gear.i*gear.rqg];
contact r=gear.contact r;
L=gear.width;

E=material.E;

v=material.v;

a=acos (rg./contact _r);
R=sin(a) .*contact r;
R _eg=R(1) *R(2)/(R(1)+R(2));

E_eq=1/((1-v(1)"2)/E(1)+(1-v(2)"2)/E(2));

pmax_th=sqrt (F_tot*E _eq/ (pi*L*R eq));
b th=2*F tot/(pi*L*pmax th);
end

function s bend th = bending stress th(F,gear)

m=gear.m;
l=gear.width;

al=gear.al;

gk=2.6;

s _bend th=F*cos (a0) *qgk/ (m*1);
end

function [rs] = trochoid meet involute (gear,tol)

o\°

% extracting data from the struct
rO=gear.r0; rolling circle
rg=gear.rg; base circle

rf=gear.rf; root circle

rk=gear.rk; tip circle

rc=gear.rc; rack tip curvature
fi=gear.fi; involute rotation angle
w=gear.w; % trochoid rotation angle

oe

o 0o oe

o\°

o

trochoid rotation angle
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o

o\

suplementary geometry calculations

o

o

calculating ymin from trochoid
ymin=rf*cos (w) ;

o\

% calculating ymax from involute
t_ymax=sqrt (rk*2/rg”2-1);

X _ymax=rg*(sin(t_ymax)-t ymax*cos(t ymax)) ;
y_ymax=rg* (cos (t_ymax)+t ymax*sin(t_ ymax));
ymax=sin (fi) *x ymax+cos (fi) *y ymax;

o\

% calculating the minimum y on which the involute is defined (rg)
yinvmin=rg*cos (fi) ;

o\

% bisection related calculations
iter=ceil (log (ymax-ymin)-log(tol)) /log(2);
for i=l:iter

yrs=(ymax+ymin) /2;

°
[

if yrs<yinvmin % case 1l: involute is not defined at yrs, yrs is
trochoid
ymin=yrs;
else % case 2: involute is defined at yrs, comparison needed
xrs_tr=trochoid y(r0O,rk,rf,rc,w,yrs);
xrs_inv=involute y(rg,rk, fi,yrs);
if xrs _tr<xrs_inv % case Z2a: trochoid inside involute, yrs is
trochoid
ymin=yrs;
else % case 2b: trochoid outside involute, comparison needed
ytrial=yrs+tol/10; % trial point at slightly higher y than yrs;
% used to detect whether trochoid approaches or is moving away
% from involute
xtrial tr=trochoid y(r0,rk,rf,rc,w,ytrial);
xtrial inv=involute y(rg,rk,fi,ytrial);
if xtrial tr-xtrial inv < Xrs tr-xrs inv

o)

% case 2bl: trochoid is moving towards involute for increasing

% yrs is trochoid
ymin=yrs;
else
% case 2b2: trochoid is moving away from involute for
increasing y
% yrs is involute
ymax=yrs;
end
end
end
end
xrs=involute y(rg,rk,fi,yrs); % it does not matter if involute or trochoid
is used
rs=sqrt (xrs*2+yrs”2);
end
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function [ x ] = involute y( rg,rk,fi,y )

o

ymin=rg*cos (fi);
ymax=rk;
if ( y<ymin )
disp('Error in involute y');

x=0;
return

elseif ( y>ymax ) %shifting the bisection limit
ymax=ymax+2* (y-ymax) ;

end

tmin=0;

tmax=sqrt (ymax”*2/rg”2-1); %this gives radius==rk==ymax

for 1i=1:100 %set number of biscections here
t=(tmin+tmax)/2;

[

xinv=rg* (sin(fi-t)+t*cos (fi-t));
yinv=rg* (cos (fi-t)-t*sin(fi-t));
if (yinv>y)
tmax=t;
else
tmin=t;
end
end

[

o
x=xinv;
o

°

end

function [ x ] = trochoid y( r0,rk,rf,rc,w,y )

o

B=rO0-rf-rc;

ymin=rf*cos (w) ;

ymax=rk;

if ( y<ymin || y>ymax )
disp('Error in trochoid y');
x=0;
return

end

o

tmin=0;

tmax=sqrt (rk"2-rc"2-(rf+rc)”2)/r0; %this gives radius>rk

for i=1:100 %set number of biscections here
t=(tmin+tmax)/2;

A=atan( (-t*rO*sin(t)+B*cos(t)) / (B*sin(t)+t*rO*cos(t)) );

o©

xtr=-rc*cos (A-w) + (r0-B) *sin (t+w) -rO*t*cos (t+w) ;
ytr=-rc*sin (A-w)+ (r0-B) *cos (t+w) +r0*t*sin (t+w) ;
if (yvtr>vy)
tmax=t;
else
tmin=t;
end
end

o
o
x=xtr;

o
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end

function circle = circle of infuence calculation(gear,b)

rO=gear.r0;
rk=gear.rk;
rg=gear.rg;
fi=gear.fi;
contact r=gear.contact r(1l);

circle.r=b;

t=sqrt (contact r"2/rg”2-1);
x=rg* (sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1=-(cos (fi) *x-sin (fi) *vy);
yl=sin (fi) *x+cos (fi) *y;
circle.C=[x1 yl];

$upper point

a=contact r;

b=rk;

=(a+b)/2;
t=sqrt(r"2/rg”2-1);
X=rg*(sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1=-(cos (fi) *x-sin (fi) *vy);
yl=sin (fi) *x+cos (fi) *y;
error=le-7;

l=sgrt ((xl-circle.C (1)) "2+ (yl-circle.C(2))"2);

e=abs(l-circle.r)/circle.r;
while e>error
if 1>circle.r
b=r;
r=(a+b)/2;
t=sqrt(r*"2/rg”2-1);
X=rg* (sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1=-(cos (fi) *x-sin(fi) *vy);
yl=sin (fi) *x+cos (fi) *y;
error=le-7;

l=sgrt ((xl-circle.C(1l)) "2+ (yl-circle.C(2))"2);

e=abs (l-circle.r)/circle.r;
else

a=r;

=(a+b)/2;

t=sqrt(r*"2/rg”2-1);

X=rg* (sin(t)-t.*cos(t));

y=rg* (cos (t)+t.*sin(t));

x1=-(cos (fi) *x-sin(fi) *y);

yl=sin (fi) *x+cos (fi) *y;

error=le-7;

l=sgrt ((xl-circle.C (1)) "2+ (yl-circle.C(2))"2);

e=abs(l-circle.r)/circle.r;
end
end
circle.cross points(l,:)=[x1 yl r];
%$lower point
a=rg;
b=contact r;
=(atb)/2;

July 15, 2021



t=sqrt (r"2/rg”2-1);
X=rg* (sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1l=-(cos (fi) *x-sin(f )*y)'
yl=sin (fi) *x+cos (fi) *
error=le-7;
l=sqgrt ((xl-circle.C (1)) "2+ (yl-circle.C(2))"2);
e=abs (l-circle.r)/circle.r;
while e>error
if 1>circle.r
a=r;
=(a+b)/2;
t sqrt r*2/rg”2-1);
x=rg* (sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1=-(cos (fi) *x-sin (fi) *vy);
yl=sin (fi) *x+cos (fi) *y;
error=le-7;
l=sgrt ((xl-circle.C (1)) "2+ (yl-circle.C(2))"2);
e=abs (l-circle.r)/circle.r;
else
b=r;
=(a+b)/2;
t=sqgrt(r*"2/rg”2-1);
X=rg* (sin(t)-t.*cos(t));
y=rg* (cos (t)+t.*sin(t));
x1=-(cos (fi) *x-sin (fi) *y);
yl=sin (fi) *x+cos (fi) *y;
error=le-7;
l=sgrt ((xl-circle.C(1l)) "2+ (yl-circle.C(2))"2);
e=abs (l-circle.r)/circle.r;
end
end
circle.cross points(2,:)=[x1 yl r];
end

function

[division points,outline points, loaded nodes, fixed nodes,bending nodes] =
outline points(gear,circle,mesh seeds,tol)

outline points=zeros(l,2);

oe

% (A-B)

fi start=pi/2-pi/gear.z;

fi end=pi/2-gear.w;

r=gear.rf;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(1l,:));
outline points=[outline points(l:end-1,:);outline nodes];

division points=outline points ([l end], :);

o
o

% (B-C)

outline nodes = outline nodes curve trochoid(0,1,gear,mesh seeds(2,:),tol);
outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end, :)];

bending nodes=size (outline points,1)-
size(outline nodes,1l)+l:size(outline points,1);

o
o

% (C-D)
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outline nodes =
outline nodes curve involute(gear.rs,circle.cross _points(2,3),gear,mesh see
ds(3,:),tol);

outline points=[outline points(l:end-1,:);outline nodes];
division points=[division points;outline points(end, :)];
$ (D-E)

outline nodes =

outline nodes curve involute(circle.cross points(2,3),circle.cross points (1l
,3),gear,mesh seeds(4,:),tol);

outline points=[outline points(l:end-1, :);outline nodes];

loaded nodes=size (outline points,1)-

size (outline nodes,1l)+l:size(outline points,1);

division points=[division points;outline points(end, :)];

o\

% (E-F)

outline nodes =

outline nodes curve involute(circle.cross points(1l,3),gear.rk,gear,mesh see
ds (5, :),tol);

outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end, :)];

o°

s (F-F")
ak=acos (gear.rg/gear.rk); % pressure angle on tip circle

[

invak=tan (ak)-ak; % involute function

[

fi start=pi/2-gear.fi+invak;
fi end=pi/2+gear.fi-invak;
r=gear.rk;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(6,:));
outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end, :)];

s (F'-C")

outline nodes =

outline nodes curve involute(gear.rs,gear.rk,gear,mesh seeds(7,:),tol);
outline nodes(:,1)=-outline nodes(:,1);

outline nodes=flip(outline nodes) ;

outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end, :)];

s (C'-B")

outline nodes = outline nodes curve trochoid(0,1,gear,mesh seeds(8,:),tol);
outline nodes(:,1)=-outline nodes(:,1);

outline nodes=flip(outline nodes) ;

outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end,:)];

bending nodes (2, :)=size (outline points,1)-

size (outline nodes,l)+l:size(outline points,1);

o©

$ (B'-A")

fi start=pi/2-pi/gear.z;
fi end=pi/2-gear.w;
r=gear.rf;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(9,:));
outline nodes(:,1l)=-outline nodes(:,1);

outline nodes=flip(outline nodes) ;

outline points=[outline points(l:end-1,:);outline nodes];

division points=[division points;outline points(end, :)];

$ (A'-G'")
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point start=[gear.rh*cos(pi/2-pi/gear.z),gear.rh*sin(pi/2-pi/gear.z)];
point end=[gear.rf*cos(pi/2-pi/gear.z),gear.rf*sin(pi/2-pi/gear.z)];

outline nodes = outline nodes line(point start,point end,mesh seeds(10,:));
outline nodes(:,1)=-outline nodes(:,1);

outline nodes=flip(outline nodes) ;

outline points=[outline points(l:end-1,:);outline nodes];

fixed nodes=size(outline points,1)-
size (outline nodes,1l)+l:size(outline points,1);
division points=[division points;outline points(end, :)];

o\

o\

(G'-G)

fi start=pi/2+pi/gear.z;

fi end=pi/2-pi/gear.z;

r=gear.rh;

outline nodes = outline nodes circle(r,fi start,fi end,mesh seeds(11,:));
outline points=[outline points(l:end-1,:);outline nodes];

fixed nodes=[fixed nodes(l:end-1) size(outline points,1)-

size (outline nodes,1l)+l:size(outline points,1)];

division points=[division points;outline points(end, :)];

[

% (G-RA)

point start=[gear.rh*cos(pi/2-pi/gear.z),gear.rh*sin(pi/2-pi/gear.z)];
point end=[gear.rf*cos(pi/2-pi/gear.z),gear.rf*sin(pi/2-pi/gear.z)];
outline nodes = outline nodes line(point start,point end,mesh seeds(12,:));
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)1];

fixed nodes=[fixed nodes(l:end-1) size(outline points,1)-

size (outline nodes, 1l)+2:size(outline points,1) 1];

end

function [outline nodes] =
outline nodes circle(r,fi start, fi end,ele lengths)

o

arc_length=r*abs (fi start-fi end);
unitary distribution=unitary length distribution(arc length,ele lengths);
nnodes=length (unitary distribution);
$fis=fi start:(fi end-fi start)/(nnodes-1):fi end;
fis=zeros (nnodes, 1) ;
for i=l:nnodes
fis(i)=(fi end-fi start)*unitary distribution(i)+fi start;
end
outline nodes=zeros (nnodes, 2) ;
for i=l:nnodes
outline nodes (i, 1l)=r*cos(fis(i));
outline nodes (i, 2)=r*sin(fis(i));
end
end

function outline nodes =
outline nodes curve trochoid(divmin,divmax,gear,ele lengths, tol)

o°

% extracting data from the struct
rO=gear.r0;
rg=gear.rg;
rf=gear.rf;
rk=gear.rk;
rc=gear.rc;
rs=gear.rs;
fi=gear.fi;

oe

base circle

root circle

tip circle

rack tip curvature

involute - trochoid meeting circle
involute rotation angle

o° o oo o°

o\
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w=gear.w; % trochoid rotation angle

o

npoints=le2;
curve points=trochoid points(divmin,divmax, gear,npoints):;

[

°
[

ymin curve=rf*cos(w); % ymin at rf

o

t ys=sqrt(rs”2/rg”2-1);

X _ys=rg*(sin(t_ys)-t ys*cos(t
y_ys=rg*(cos(t_ys)+t ys*sin(t
ymax_ curve=sin(fi)*x ys+cos (fi
ymin=ymin curve;

ymax=ymax curve;

ymin curve=(l-divmin) *ymin+divmin*ymax;
ymax curve=(l-divmax) *ymin+divmax*ymax;

Yy

));
v .
)

s
s))i
*y ys; % ymax at rs

o

o

calculating an approximate curve length by summing all line segments
% between the sampled curve points

curve dxs=curve points(2:end,1l)-curve points(l:end-1,1);

curve dys=curve points(2:end,2)-curve points(l:end-1,2);

o

°

curve length=sum(sqgrt (curve dxs.”2+curve dys.”"2));

o\°

o\°

unitary distribution =

unitary length distribution(curve length,ele lengths);
nnodes=length (unitary distribution);

outline nodes=zeros (nnodes, 2) ;

outline nodes (1, :)=[trochoid y(r0,rk,rf,rc,w,ymin curve),ymin curve];

oe

oe

The curve length calculated so far is approximate and using this length
to distribute the nodes along the curve may result in the last node not
being coincident with the last curve point. Thus, the nodes are
distributed along the curve preserving the unitary distribution given
above but not the curve length. This will result in elements with
slightly different sizes than the ones specified.

o 0P o° o° oe

oe

curve length min=0.5*curve length; % initial boundaries for bisection
curve length max=1.5*curve length;

[

iter out=ceil (log(curve length max-curve length min)-log(tol))/log(2);
interval extension=1.1;

iter in=ceil (log(interval extension* (ymax curve-ymin curve))-
log(tol))/log(2);

for iout=l:iter out
curve length trial=(curve length min+curve length max)/2;
point distances=curve length trial* (unitary distribution(2:end)-
unitary distribution(l:end-1));
for i=2:nnodes
ymin=outline nodes(i-1,2); % lower bound is set by the previous
point
ymax=ymin curve+ (ymax curve-ymin curve) *interval extension;
% higher than ymax, so that overshoot above ymax is possible
for iin=l:iter in
ytrial=(ymin+ymax) /2;
xtrial=trochoid y(r0O,rk,rf,rc,w,ytrial);
dist=sqgrt ((xtrial-outline nodes(i-1,1)) "2+ (ytrial-
outline nodes (i-1,2))"2);
if dist>point distances(i-1)
ymax=ytrial;
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else
ymin=ytrial;
end
end
outline nodes (i, :)=[xtrial,ytrial];
if ytrial>ymax curve % overshoot has occured
curve length max=curve length trial;
break $ there is no need to calculate further points, they will
just overshoot more
elseif i==nnodes % all points have been completed without overshoot
curve length min=curve length trial;
end
end
outline nodes(:,2);
end
end

function outline nodes =
outline nodes curve involute(rmin, rmax,gear,ele lengths, tol)

o\°

% extracting data from the struct
rg=gear.rg; base circle

rk=gear.rk; tip circle

fi=gear.fi; % involute rotation angle

%

o\°

oe

npoints=le2;
curve points=involute points (rmin, rmax,gear,npoints);

o

t ymin=sqgrt (rmin”2/rg”2-1);

X _ymin=rg* (sin(t_ymin)-t ymin*cos(t ymin));

y_ymin=rg* (cos(t_ymin)+t ymin*sin(t ymin));

ymin curve=sin(fi)*x ymin+cos(fi)*y ymin; % ymin at rmin

t ymax=sqgrt (rmax”2/rg”2-1);

X _ymax=rg* (sin(t_ymax)-t ymax*cos(t_ymax)) ;

y_ymax=rg* (cos (t_ymax)+t ymax*sin(t ymax));

ymax curve=sin(fi)*x ymax+cos (fi)*y ymax; % ymax at rmax

oe

calculating an approximate curve length by summing all line segments
between the sampled curve points

curve dxs=curve points(2:end,1l)-curve points(l:end-1,1);

curve dys=curve points(2:end, 2)-curve points(l:end-1,2);

°

curve length=sum(sgrt (curve dxs.”2+curve dys.”"2));

o
°
3
°

o\°

o\°

unitary distribution =

unitary length distribution(curve length,ele lengths);
nnodes=length (unitary distribution);

outline nodes=zeros (nnodes, 2) ;

outline nodes (1, :)=[involute y(rg,rk, fi,ymin curve),ymin curve];

o)

o\

o©

The curve length calculated so far is approximate and using this length
to distribute the nodes along the curve may result in the last node not
being coincident with the last curve point. Thus, the nodes are
distributed along the curve preserving the unitary distribution given
above but not the curve length. This will result in elements with
slightly different sizes than the ones specified.

o° oo

o° e oe

oe

[

curve length min=0.5*curve length; % initial boundaries for bisection
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curve length max=1.5*curve length;

o

iter out=ceil (log(curve length max-curve length min)-log(tol))/log(2);
interval extension=1.1;

iter in=ceil (log(interval extension* (ymax curve-ymin curve))-
log(tol))/log(2);

for iout=l:iter out
curve length trial=(curve length min+curve length max)/2;
point distances=curve length trial* (unitary distribution(2:end)-
unitary distribution(l:end-1));
for i=2:nnodes
ymin=outline nodes(i-1,2); % lower bound is set by the previous
point
ymax=ymin curve+ (ymax curve-ymin curve) *interval extension;
% higher than ymax, so that overshoot above ymax is possible
for iin=l:iter in
ytrial=(ymin+ymax) /2;
xtrial=involute y(rg,rk, fi,ytrial);
dist=sqgrt ((xtrial-outline nodes(i-1,1)) "2+ (ytrial-
outline nodes (i-1,2))"2);
if dist>point distances (i-1)
ymax=ytrial;

else
ymin=ytrial;
end
end
outline nodes (i, :)=[xtrial,ytrial];

o)

if ytrial>ymax curve % overshoot has occured
curve length max=curve length trial;
break % there is no need to calculate further points, they will
just overshoot more
elseif i==nnodes % all points have been completed without overshoot
curve length min=curve length trial;
end
end
outline nodes(:,2);
end
end

function [outline nodes] =
outline nodes line(start point,end point,ele lengths)

o

line vector=end point-start point;
line length=sqrt(line vector(l)"2+line vector(2)"2);
%line_vector:line_vector/line_length;

o)

unitary distribution=unitary length distribution(line length,ele lengths);
nnodes=length (unitary distribution);
outline nodes=zeros (nnodes, 2) ;
for i=l:nnodes

outline nodes (i, :)=start point+unitary distribution(i)*1line vector;
end
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function [distribution] = unitary length distribution (length,ele lengths)

o

if ele lengths(2) == 0 % Case 1: No bias
nele=max ([round(length/ele lengths(1)),1]); % a minimum of 1 element
distribution=0:1/nele:1; % nele is number of intervals, not points
else % Case 2: Bias
nele=2*length/sum(ele_lengths);
if nele>2 % Case 2a: at least 2 elements fit as requested
ele lengths=nele*ele lengths/round(nele); % scale element lengths
so that they fit exactly
nele=round (nele);
ele length distr=ele lengths(1l): (ele lengths(2) -
ele lengths(1l))/(nele-1):ele lengths(2);

o°

% culminativery summing dimensionless element lengths

distribution=zeros(l,nele+l);

for i=l:nele
distribution(i+l)=distribution(i)+ele length distr (i) /length;

end

distribution (nele+l)=1; % avoiding rounding errors

else % Case 2b: 2 elements do not fit as requested
if 2*min(ele_ lengths)>length % Case 2bl: Small element does not fit

twice
distribution=0:1; % assign single element
else % Case 2b2: Small element fits more than twice
distribution=0:0.5:1; % 2 element uniform distribution
end
end
end

o\°

% This program is a MATLAB translaton of the FORTRAN 90 code cited

% in the CRC book (pp. 606-612, 2015) by Lo. It implements Lo (1992) code:

% S. H. LO, GENERATION OF HIGH-QUALITY GRADATION FINITE ELEMENT MESH,

% Engineering Fracture Mechanics Vol. 41, No. 2, pp. 191-202, 1992.
% MEMO: Due to many GOTO-commands, a lot of corresponding break were made.
% Final code (15/5/2019)

% A.12 LIST OF FORTRAN PROGRAM ADF2D

% ADF2D is a mesh generation program of 2D triangular meshes based on the
% ADF approach (Lo 1992). The input is a list of boundary segments

% {MA(I), MB(I), I = 1,NB} following the convention, as depicted in
Section 3.6.2. This is the final boundary for mesh generation by

ADF2D, and in case boundary nodes need to be added by some boundary

% discretisation process, it should be done by a separate procedure earlier
% beforehand. The output is a mesh of triangular elements

$ {ME(I), I = 1,3*NE}, where NE = number of elements. The element size

is computed based on the line segments on the boundary, as described

in Section 3.5.6.3.

%$---To cope with a general node spacing function, the part related to the
% generation of interior nodes ought to be modified such that the height

% of the triangle to be created is no longer related to the boundary

% segments but computed from the specified node spacing function.

%--- An example of mesh generation is shown in Figure A.6. In this example,
% the four edges the triangular mesh is improved to 0.96120, as shown in

% Figure A.6b. Exercise: Following Section 3.6.3, introduce the background
% grid to speed up the mesh generation process.
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o

°

Section 3.6.3,
generatlon process.

function

0900000 000000000

[NN, NE, ME,

X,Y]

0000000000000000000000000000

to make easier the compu

o

introduce the background grid to speed up the mesh

000000000000000000000000

VO

—

1:nodesB) ;

yb (1:nodesB)

=Y (1:nodesB) ;

o

tion of element lengths:

o

o

= Advancing Front LO 2D(X,Y,NB,MA,MB)

o

xb(nodesB+l) xb(l);

plot (X,Y, 'bo'")

for i=1l:nodesB
text (xb (i) +ds, yb (1

end

axis equal

pause (1)

yb (nodesB+1)=yb (1) ;

) +ds, int2str (i), 'Color','r")

o

nodesB NB;
neleB nodesB;
for i=l:neleB-1
MA (i) =1i;
MB (1i)=1i+1;
end
MA (neleB)
MB (neleB)

=nodesB;

o

NB nodesB;

o

! ADF MESHING ON PLANAR DOMAINS WITH ELEMENT SIZE BASED ON BOUNDARY
SEGMENTS
! INPUT: COORDINATES OF NODAL POINTS,
! BOUNDARY SEGMENTS, {MA(I),MB(I),
! OUTPUT: TRIANGULAR ELEMENTS, {ME (I)
! WORKING ARRAY: {XP(I),YP(I),DP(I),
SEGMENTS
! {MA(I),MB(I),I=1,1000} CANDIDATE SEGMENTS IN ELEMENT CONSTRUCTION
% DIMENSION X (*),Y(*),ME(*),MA(*),MB(*)

DIMENSION MS (1000),MT (1000),XP(5000),YP(5000),DP(5000)
COMPUTE THE LENGTHS OF THE BOUNDARY SEGMENTS AND THEIR MID-POINTS
fprintf ("AFT2D: NB=%3i\n',6NB) ;
$ My action: MY INITIALIZATION>>>>>>>>>>

NN=NB; NE=0; ME [1; II=0; B

F<LLLLLLLLLLLL LKL L L LKL L L L L L L LKL L LKL L L L L L L Ll <L

o

o\°

{X(I
I=1,NB}
, I=1,3*NE}

I=1,5000} MID-POINTS AND LENGTHS OF

), Y(I), I=1,NN}

o 9P o° o° o° o

oe

o o
5 ©
|

o° oo

o\°

°

NP=NB;
for I=1:NB
IA=MA(I);
IB=MB(I);
XP(I)=(X(IA)+X(IB))/2;
YP(I)=(Y(IA)+Y(IB))/2;
DP(I)=(X(IB)=-X(IA))"2+(Y(IB)-Y(IA))"2;
end
% PREPARATION WORKS FOR THE BASE SEGMENT, J1-J2 = LAST SEGMENT ON THE FRONT
NELnumber = 0; % current element (ascending) number
MaxNoElement = 10000; Smaximum expected number of elements

for i5=1:MaxNoElement

o

°

fprintf (9588888555555 88855555888555555888555555888555558885555888885558888
$SSSS8S85558888858559\nt)

o

°

SRS R L L L L L L

P e85 555555555\n ") ;
July 15, 2021

$dummy index (OUTER LOOP: Command 5 in FORTRAN)

’

°

% fprintf ('---EXTERNAL ITERATION 1i5 =%5i\n',ib5);




J3=0;

J1=MA (NB) ;

J2=MB (NB) ;

NB=NB-1; %here we reduce the boundary by-one
X1=X(J1) ;

Y1=Y (J1);

X2=X(J2);

Y2=Y (J2) ;

A=Y1-Y2;

B=X2-X1;

DD=A*A+B*B;
TOR=DD/100;

XM= (X1+X2)/2;
YM=(Y1+Y2)/2;
RR=1.25*DD+TOR;

XC=XM+A;

YC=YM+B;
% lcl=sqgrt ((XC-X1) "2+ (YC-Y1)"2); Slength of produced side CA=Cl
% lc2=sqgrt ((XC-X2) "2+ (YC-Y2)"2); Slength of produced side CB=C2

o

fprintf ('1lcl=%8.4f 1c2=%8.4f\n',1cl,1c2);
hold on
plot (XC,YC, 'm+")
C=X2*Y1-X1*Y2+TOR;
5 FILTER OFF SEGMENTS TOO FAR AWAY FROM THE BASE SEGMENT

o
o
o

o
o
o

\o

for 19=1:5 $dummy  (INNER LOOP: Command 9 in FORTRAN) .

% fprintf ('---INTERNAL ITERATION 19 =%5i\n',19);
NS=0;
for I=1:NB $do 11
IA=MA (I) ;
IB=MB(I) ;

if (~(DPL(X(IA),Y(IA),X(IB),Y(IB),XC,YC) > RR)) %GOTO 11

NS=NS+1;
MS (NS)=IA;
MT (NS) =IB;
end
end
$ DETERMINE CANDIDATE NODES ON THE GENERATION FRONT
for I=1:NS $do 22
J=MS (I);
P=X(J) ;
Q=Y (J);

if (~((P-XC) "2+ (Q0-YC)”"2 > RR || A*P+B*Q < C)) %GOTO 22
[Index] = CHKINT (J1,J2,J,X1,Y1,X2,Y2,P,Q,NS,MS,MT,X,Y);

1if (Index~=11 && Index~=22)
[XC,YC,RR] = CIRCLE (X1,Y1,X2,Y2,P,Q);
J3=3J;
end
end
end

if (J3 == 0)
H:sqrt(RR—TOR—DD/4);
R=sqgrt (RR-TOR) ;
AREA=sqrt (DD) * (R+H) ;
ALPHA=AREA/ ( (R+H) ~2+0.75*DD) ;
else
AREA=A*X (J3) +B*Y (J3) +X1*Y2-X2*Y1;
S=DD+ (X (J3) -X1) "2+ (Y (J3)-Y1) "2+ (X (J3)-X2) "2+ (Y (J3)-Y2)
ALPHA=sqrt (12.0) *AREA/S;
end

% CREATE INTERIOR NODES, CHECK THEIR QUALITIES AND COMPARE WITH

Usually 1i9=1.

/\2;

$*22)

FRONTAL
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% NODE J3
XX=XM+A/2;
YY=YM+B/2;

S51=0;
S2=0;
for I=1:NP $do 44

S=(XP(I)-XX)"2+(YP(I)-YY)"2+TOR;
S1=S1+DP(I)/S;
S2=82+1/S;

end

F=sqrt (0.75*S1/(S2*DD)) ;

Fl=F;

for I=1:5 $do 111
F1=(2*F1"3+3*F) / (3*F1*F1+2.25);

end

S=F*DD/AREA;

if (S > 1)
S=1/S;
end
BETA=S* (2-S) *ALPHA;
T=1/ALPHA-sqgrt (abs (1/ALPHA®2-1)) ;

[SIe Ie I e Iue e Jae e e e Iue e e Jre Jare Jure e Jare I are Jure Jre Jare Jure Iure Jare Jre e Jare By e Jure Jre Jare Jure Iare Jare Jre are Jre Jre e Jare Jure e Jare Jre Jre Jare e Jare Jre e Jare Jre e e Ire Jare Jre e Jare Jre e Jre Ry e e Bc Jre e Ie e e}
flag=0;
for I=1:9 %$do 66

S=(11-I)*F1/10;
GAMMA=sqgrt (3.0) *S*S* (2-S/F) / (S*S*F+0.75*F) ;
if (GAMMA < BETA) S%GOTO 1

flag=1;
break $OK
end
P=XM+A*S;
Q=YM+B*S;
if (~((P-XC) "2+ (Q-YC)"2 > RR)) %GOTO 66
227

[Index] = CHKINT (J1,J2,0,X1,Y1,X2,Y2,P,Q,NS,MS,MT,X,Y);
f (Index~=11 && Index~=22)

D= (X (MT (1)) -X(MS(1))) "2+ (Y (MT(1))-Y(MS (1 ))) ;

H=DPL (X (MS(1)),Y(MS(1)),X(MT(1)),Y(MT(1)),P,Q);

/\

for J=2:NS $do 99
S=DPL (X (MS (J)),Y(MS(J)),X(MT(J)),Y(MT(J)),P,Q);
if (S < H)
$GOTO 99
H=S;
D= (X (MT (J))-X(MS (J))) "2+ (Y (MT (J))-Y(MS(J))) "2;
end

end %99-continue
if (H > D*T"2)
flag=3; %GOTO 3
break
end
end $refers to check CHKINT
end % % 66 CONTINUE
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o

Here execution comes when flag=0,1,3

% fprintf ('---IMMEDIATELY AFTER 66-CONTINUE: flag=%3i\n', flagqg);
if (flag==3)
break %goes out the "9-continue"
else
II=3*NE; $when i1iflag=0,1.
end

% IF NO NODE CAN BE FOUND TO FORM A VALID ELEMENT WITH THE BASE SEGMENT,
% ENLARGE THE SEARCH RADIUS

% fprintf (' J3 =%3i\n"',J3);
if (J3 ~= 0) %GOTO 2
flag=2;
% fprintf ('Immediately at definition: flag=%3i\n', flag);
break %$goes out the "9-continue" and is controlled again
end SNEW (13/5/19, 11:05am) <—====——————————m—

if (RR > 100*DD) STHEN
fprintf ('*** Mesh generation failed! ***\n');
return

end

XC=XC+XC-XM;

YC=YC+YC-YM;

RR= (XC-X1) 2+ (YC-Y1) *2+TOR;

%$GOTO 9 %1s replaced by an artificial "i9-loop"

end $refers to 19=500000 continue

R e L e et 9—CONTINUE —————————————mmm oo e
990000000000000000000000000000000000000000000000000000000000000000000000000
OOO0OOOOOOOOOOOOODOOODOOOOOOOODOOODOOODOOOOOOOODOOODOOOOODOOODOOODOOOOOOOODOOODOOOOOOOOODO
% Here the cursor comes when flag=3 (after corresponding break)

% fprintf (' Immediately After 9-CONTINUE, flag=%3i\n',6flagqg);

% fprintf ('i5=%3i 1i9=%3i\n',15,19);

% fprintf ('--->KUKU-1\n");

% NODE J3 IS FOUND TO FORM VALID ELEMENT WITH BASE SEGMENT J1-J2
% UPDATE GENERATION FRONT WITH FRONTAL NODE J3

if(flag ~= 3) SNEW
if(flag== || flag== || flag==2)
% fprintf ('--->KUKU-2\n"') ;
NE=NE+1;
ME(II+1)=J1;
ME(II+2)=J2;
)

ME (II+3)=J3;

xloc=[X(Jl) X(J2) X(JIJ3) X(J1)1;
yloc=[Y (J1l) Y (J2) Y (J3) Y (J1l)]

$ % % hold on
$ % % plot(xloc,yloc, 'k")
NELnumber = NELnumber + 1;

xc= (X (J1)+X (J2)+X (J3)) /3;
ye= (Y (J1)+Y (J2)+Y (J3)) /3;

Q
°

text (xc,yc, int2str (NELnumber) , 'FontAngle', 'italic', '"FontSize',11, 'FontWeigh
t','Bold') %activate or not!

icount=0;
for I=1:NB $do 77
fprintf ('--->KUKU-3\n"') ;

oe

July 15, 2021



if (~((MA(I)~=J3 || MB(I)~=J1l))) S%GOTO 77
MA (I)=MA (NB) ;
MB (I)=MB (NB) ;
NB=NB-1;
icount=icount+1;
flag=7;
break %goes out the 77-loop
end
end
% fprintf ('icount = %$3i\n',icount);
if (~(flag==7))
% fprintf ('--->KUKU-4\n") ;
NB=NB+1;
MA (NB)=J1;
MB (NB)=J3;
end

end % flag=0,1,2

% fprintf ('--->KUKU-5\n") ;
% 7 DO 88 I=1,NB
for I=1:NB
1f(~((MA(I)~=J2 || MB(I)~=J3))) % GOTO 88
if (NB==1) S%RETURN
return
end

MA (I)=MA (NB) ;
MB (I)=MB (NB) ;

NB=NB-1;
$GOTO 5
flag = 5; SNEW
break %goto 5

end %end-of-IF
end %% 88 CONTINUE

if (flag~=5)
% fprintf ('--->KUKU-6\n") ;
NB=NB+1;
MA (NB)=J3;
MB (NB)=J2;
% break
end
$GOTO 5

% INTERIOR NODE NN CREATED, UPDATE GENERATION FRONT WITH INTERIOR NODE NN

else SNEW

fprintf<'***************** INTERIOR POINT ***********************\n');

fporintf (' Immediately After INTERIOR POINT, flag=%3i\n', flag);

fprintf ('--->KUKU-7\n") ;
NN=NN+1;
X (NN) =P;
Y (NN) =Q;
II=3*NE;
NE=NE+1;
ME (II+1)=J1;
ME (II+2)=J2;
ME (II+3)=NN;

o oe

o\°
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NB=NB+1;

MA (NB)=J1;
MB (NB) =NN;
NB=NB+1;
MA (NB) =NN;
MB (NB)=J2;
S % fprintf ('Interior Point was finished\n');
S hold on
S plot (P,Q, 'ct+")
% ds=1/50;
S % text (P+ds,Q+ds, int2str (NN), 'Color', 'c') %activate or not!
% xloc=[X(J1l) X(J2) P X(J1)1;
% yloc=[Y(J1l) Y (J2) Q Y(J1)]1;
% plot (xloc,yloc, 'k")
% NELnumber = NELnumber + 1;
% xc= (X (J1)+X (J2)+P) /3;
% ye= (Y (J1)+Y (J2)+Q) /3;

text (xc,yc, int2str (NELnumber) , 'FontAngle', 'italic', 'FontSize',11, 'FontWeigh
t','Bold') %activate or not!

% fprintf ('J1=%31 J2=%31 J3=%3i\n',J1,J2,3J3);
end %end-of-flag3 SNEW
% fprintf ('--->KUKU-8\n'

)
end $refers to i5=1:1000000
o) 990900900000000000000000000000000000000000000000000000000000000000000900

function [Index] = CHKINT (J1,J2,J,X1,Y1,X2,Y2,P,Q,NB,MA,MB,X,Y)

% % % % IMPLICIT DOUBLE PRECISION (A-H,0-7)
% % % % DIMENSION MA(*),MB(*),X(*),Y(*)

TOL = 0.000001;

Index=0; Sdummy value

o\°

Check if there are any intersections between line segment (P,Q)-(X1,Y1)
and the non-Delaunay segments MA(i)-MB (i), i=1,NB
Cl=Q-Y1;
C2=P-X1;
C=Q*X1-P*Y1;
CC=C1l*Cl+C2*C2;
TOR=-TOL*CC*CC;
for I=1:NB $DO 11 I=1,NB
IA=MA(I);
IB=MB(I);
if (~(J==IA || J==IB || Jl==IA || J1==1IB)) $GOTO 11
XA=X (IA) ;
YA=Y (IA);
XB=X (IB) ;
YB=Y (IB) ;
if (~((C2*YA-C1l*XA+C) * (C2*YB-C1*XB+C) > TOR)) $GOTO 11
H1=YB-YA;
H2=XB-XA;
H=XA*YB-XB*YA;
if ((H2*Y1-H1*X1+H)* (H2*Q-H1*P+H) < TOR) SRETURN 1
Index=11;
return
end
end

oe
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end
11 CONTINUE
end
! Check if there are any intersections between line segment (P,Q)-(X2,Y2)
! and the non-Delaunay segments MA(i)-MB (i), i=1,NB
Cl=Q-Y2;
C2=P-X2;
C=Q*X2-P*Y2;
CC=C1l*Cl+C2*C2;
TOR=-TOL*CC*CC;
for I=1:NB %$DO 22 I=1,NB
IA=MA(I);
IB=MB(I);
if (~(J == IA || == IB || J2 == IA || J2 == 1IB)) $GOTO 22
XA=X (IA);
YA=Y (IA);
XB=X (IB) ;
YB=Y (IB) ;
if (~((C2*YA-C1*XA+C) * (C2*YB-C1*XB+C) > TOR)) $GOTO 22
H1=YB-YA;
H2=XB-XA;
H=XA*YB-XB*YA;
if (((H2*Y2-H1*X2+H)* (H2*Q-H1*P+H) < TOR)) $RETURN 1
Index=22;
return
end
end
end
% 22 CONTINUE % 22 CONTINUE

o\

o° oo

function [XC,YC,RR] = CIRCLE (X1,Y1,X2,Y2,P,Q)
% % % IMPLICIT DOUBLE PRECISION (A-H,O0-%7)
Al=X2-X1;

A2=Y2-Y1;

Bl1=P-X1;

B2=Q-Y1;

AA=A1*A1+A2*A2;

BB=B1*B1+B2*B2;

AB=A1*B1+A2*B2;

DET=AA*BB-AB*AR;

Cl=0.5*BB* (AA-AB) /DET;

C2=0.5*AA* (BB-AB) /DET;

XX=C1l*Al1l+C2*B1l;

YY=C1l*A2+C2*B2;

RR=1.000001* (XX*XX+YY*YY) ;

XC=X1+XX;

YC=Y1+YY;

end
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$CALCULATE THE DISTANCE BETWEEN POINT (X3,Y3) TO LINE SEGMENT (X1,Y1)-

function [DPLvalue] = DPL(X1l,Y1,X2,Y2,X3,Y3)
% % % IMPLICIT DOUBLE PRECISION (A-H,O0-%Z)
R=(X2-X1) "2+ (Y2-Y1)"2;
S=(X2-X1)*(X3-X1)+(Y2-Y1) * (Y3-Y1);
T=(X3-X1) "2+ (Y3-Y1) "2;
DPLvalue=T-S*S/R;
if (S > R)
DPLvalue=(X3-X2) "2+ (Y3-Y2)"2;
end
if (S < 0)
DPLvalue=T;
end
end
function [] = plot division points(outline points,division points)
figure
hold on

plot ([outline points(:,1);outline points(l,1)], [outline points(:,2);outline
_points(1,2)])

text (division points(1l,1)+0.1,division points(1l,2),'A", 'FontSize' )
text (division points(2,1),division points(2,2)+0.6, 'B', '"FontSize' )
text (division points(3,1)+0.1,division points(3,2),'C', 'FontSize', 14)
text (division points(4,1)+0.001,division points(4,2),'D"', 'FontSize',6 14)
text (division points(5,1)+0.001,division points(5,2),'E"', 'FontSize',6 14)
text (division points(6,1)+0.4,division points(6,2),'F', 'FontSize', 14)
text (division points(7,1)-0.6,division points(7,2),'F"''", "FontSize' )
text (division points(8,1)-0.9,division points(8,2),'C"''", '"FontSize' )
text (division points(9,1),division points(9,2)+0.6,'B"''", "FontSize',6 14)
text (division points(10,1)-0.6,division points(10,2),'A"'", 'FontSize', 14)
text (division points(1l1l,1)-1,division points(11,2),'G"'","FontSize', 14)
text (division points(12,1)+0.1,division points(12,2),'G", '"FontSize', 14)
axis equal

title('Areas of gear')

hold off

xlabel ('X")

ylabel ('Y")

end

function [] = plot outline points (outline points)

figure

plot (outline points(:,1),outline points(:,2),".")
axis equal
title('Outline points for advancing front mesh generation')

xlabel ("X")
ylabel ('Y")
drawnow
end
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function [] = plot tri mesh(nodes,elements)

o

figure

hold on

plot (nodes(:,1),nodes (:,2),"'.b")

for i=l:size(elements, 1)
nodes local=[nodes (elements (i, :),:) ; nodes(elements(i,1l),:)];
plot (nodes local(:,1),nodes local(:,2),'b")

end

axis equal

title('Final triangle mesh')

xlabel ("X")

ylabel ('Y")

drawnow

hold off

end

function [] = plot tri mesh nodal points numbered(nodes,elements)

[

figure

hold on

plot (nodes(:,1),nodes(:,2),"'.b")

for i=l:size(elements, 1)
nodes local=[nodes (elements (i, :),:) ; nodes(elements(i,1l),:)];
plot (nodes local(:,1),nodes local(:,2),'b")

end

axis equal

title('Final triangle mesh with NODAL POINT numbering')

drawnow

hold off

[

% CP actions:
xmax=max (nodes (:,1)); xmin=min (nodes(:,1));
ymax=max (nodes (:,2)); ymin=min (nodes(:,2));
dsx=(xmax-xmin); dsy=(ymax-ymin) ;
hold on
for i=l:size (nodes, 1)
text (nodes (i, 1), nodes (i, 2),int2str (i), 'Color', 'red', 'FontSize',09)
end

end %end-of-function

function [] = plot tri mesh elements numbered(nodes,elements)

o

figure
hold on
plot(nodes(:,1),nodes(:,2),"'.b")
for i=l:size(elements, 1)
nodes local=[nodes (elements (i, :),:) ; nodes(elements(i,1),:)];
plot (nodes local(:,1),nodes local(:,2),'b")
end
axis equal
title('Final triangle mesh with ELEMENT numbering')
drawnow
hold off
% Addon by C.P. (15.04.2020):
for i=l:size(elements, 1)
xc=0.3333*sum (nodes (elements (i, :),1));
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yc=0.3333*sum (nodes (elements (i, :),2));

text (xc,yc,int2str (i), 'FontAngle', 'italic', 'FontSize', 08, 'FontWeight', 'Bold

")

end
end send-of-function
function [] = plot tri mesh node and element numbering(nodes,elements)
figure
hold on

plot (nodes(:,1),nodes(:,2),"'.b")
for i=l:size(elements, 1)

nodes local=[nodes (elements (i, :),:) ; nodes(elements(i,1l),:)];

plot (nodes local(:,1),nodes local(:,2),'b")
end
axis equal
title('Final triangle mesh with NODE and ELEMENT numbering')
drawnow
hold off

[

% CP actions:

xmax=max (nodes (:,1)); xmin=min (nodes(:,1));
ymax=max (nodes (:,2)); ymin=min (nodes(:,2));
dsx=(xmax-xmin); dsy=(ymax-ymin) ;

hold on

for i=l:size (nodes, 1)

text (nodes (i, 1), nodes (i, 2),int2str (i), 'Color', 'red', '"FontSize',09)

end

% Addon by C.P. (15.04.2020):
for i=l:size(elements, 1)
xc=0.3333*sum (nodes (elements (i, :),1));
yc=0.3333*sum (nodes (elements (i, :),2));

text (xc,yc,int2str (i), 'FontAngle', 'italic', 'FontSize', 08, '"FontWeight', 'Bold

")
end

end $end-of-function

function [NELE,NODES,NDF,NDM,NEL,Area,BC,Fext,U] = AllocateMEMORY (NE, nodes)

$% === PRE-PROCESSOR & MEMORY ALLOCATION:

NELE = NE; % total number of elements

NODES = size(nodes, 1) ; % total number of nodes

% Prepare (initialize) matrices and vectors:

NDF = 2; % number of DOF per node

NDM = 2; % dimension of problem (here is 2D-analysis)
NEL = 3; % number of nodes per element (linear triangle)
Area = zeros (NELE,1); % cross-sectional area)

BC = zeros (2*NODES, 1) ; % boundary conditions)

Fext = zeros (2*NODES, 1) ;

o\°

U = zeros (2*NODES,1); % Nodal Displacements (global)

externally applied forces (initialization)
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end $end-of-function

function BC = plot boundary conditions (BC,nodes,elements, fixed nodes)
% MEMO: Boundary Conditions (k=1,...,2*NODES) :

BC(k) = 0 (unrestrained DOF, k-th DOF)

BC(k) = 1 (restrained DOF, k-th DOF)

l:numel (fixed nodes)

(2*fixed nodes(i)-1:2*fixed nodes (i))=1;

o

o

for i=
BC
end

o)

figure

hold on

plot (nodes(:,1),nodes (:,2),"'.b")

for i=l:size(elements, 1)
nodes local=[nodes (elements (i, :),:) ; nodes(elements(i,1),:)];
plot (nodes local(:,1),nodes local(:,2),'b")

end

axis equal

title('Fixed nodes')

drawnow

hold off

hold on

plot (nodes (fixed nodes, 1) ,nodes (fixed nodes,2), 'ko-");

end

function [Fext] =

load distribution (Fext,loaded nodes,pmax_ th,gear,nodes,circle)
div=linspace (-1, 1, numel (loaded nodes));

rg=gear.rg;

fi=gear.fi;

rmin=circle.cross points(2,3);
rmax=circle.cross _points(1l,3);
r=zeros (size(loaded nodes));r(l)=rmin;r (end)=rmax;
e=le-6;
for i=2:size(r,2) -
a=rmin;
b=rmax;

r test=(atb)/2;
t=sqrt ((r_test/rg)"2-1);

=(rg*(sin(t)-t*cos(t)));
y=rg* (cos (t)+t*sin(t));
x1=-(cos (fi) *x-sin(fi) *vy);

yl=sin (fi) *x+cos (fi) *y;
error=(sqrt ( (nodes (loaded nodes(i),1)-x1) "2+ (nodes(loaded nodes (i), 2)-
v1l)~2));
while error>e
if yl>nodes (loaded nodes (i), 2)
b=r test;
else
a=r_ test;
end
r test=(atb)/2;
t=sqgrt ((r_test/rg)~"2-1);
=(rg*(sin(t)-t*cos(t)));
y=rg* (cos (t)+t*sin(t));
x1=-(cos (fi) *x-sin(fi) *y);
yl=sin (fi) *x+cos (fi) *y;
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error=(sqrt ( (nodes (loaded nodes(i),1)-

x1) "2+ (nodes (loaded nodes (i), 2)-yl)"2));

end

r(i)=r_ test;
end
theta=atanZ (nodes (loaded nodes (end),2) -
nodes (loaded nodes(1),2),nodes (loaded nodes (end),1)-
nodes (loaded nodes(1),1))-pi/2;
for i=1l:numel (div)-1

rmin=r (i) ;

rmax=r (i+1) ;

divmin=div (i) ;
divmax=div (i+1) ;

s=linspace(0,1,100000) ;

Fext (2*loaded nodes (i)-1)=Fext (2*loaded nodes (i) -
1) +trapz (s, funl (gear, rmin, rmax, s, pmax_th,divmin, divmax) ) *cos (theta) *gear.wi
dth;

Fext (2*loaded nodes (i) )=Fext (2*loaded nodes(i))+trapz (s, funl (gear, rmin, rmax
,S,pmax_th,divmin,divmax)) *sin (theta) *gear.width;

Fext (2*loaded nodes (i+1)-1)=Fext (2*loaded nodes (i+1) -
1) +trapz (s, fun2 (gear, rmin, rmax, s, pmax_th,divmin, divmax) ) *cos (theta) *gear.wi
dth;

Fext (2*loaded nodes (i+l))=Fext (2*loaded nodes (i+l))+trapz (s, fun2(gear, rmin,
rmax, s,pmax_th,divmin,divmax)) *sin(theta) *gear.width;
end

function F = funl (gear,rmin, rmax,s,pmax_th,divmin, divmax)
rg=gear.rdg;
fi=gear.fi;

tmin=sqrt ((rmin/rg)~2-1);
tmax=sqrt ((rmax/rg) *2-1);

dx ds=rg* ((-tmin+tmax) *cos ((1l-s) .*tmin+s*tmax) - (-tmin+tmax) .*cos ((1-
s) *tmin+ts*tmax)+((1l-s) .*tmin+s*tmax) .* (-tmin+tmax) .*sin ((1-

s) *tmin+s*tmax) ) ;

dy ds=rg* (- (-tmint+tmax) *sin((l-s).*tmin+s*tmax)+ (-tmin+tmax) .*sin ((1-
s) *tmin+s*tmax)+((1l-s).*tmin+s*tmax) .* (-tmin+tmax) .*cos ((1-

s) *tmin+s*tmax)) ;

dx1l ds=cos(fi)*dx ds-sin(fi) *dy ds;
dyl ds=sin(fi)*dx_ds+cos (fi) *dy ds;

F=-s*pmax th.*sqrt (1-((1-
s) *divmin+s*divmax) .”2) .*sqrt (dxl ds.”2+dyl ds.”2);
end
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function F = fun2(gear, rmin, rmax,s,pmax_ th,divmin,divmax)
rg=gear.rg;
fi=gear.fi;

tmin=sqgrt ((rmin/rg) *2-1);
tmax=sqrt ( (rmax/rg) ~2-1) ;

dx ds=rg* ((-tmin+tmax) *cos ((1l-s) .*tmin+s*tmax) - (-tmin+tmax) .*cos ((1-
s) *tmin+ts*tmax)+ ((1l-s) .*tmin+s*tmax) .* (-tmin+tmax) .*sin ((1-

s) *tmin+s*tmax) ) ;

dy ds=rg* (- (-tmin+tmax) *sin((l-s) .*tmin+s*tmax)+ (-tmin+tmax) .*sin((1-
s)*tmin+s*tmax)+((1l-s).*tmin+s*tmax) .* (-tmin+tmax) .*cos ( (1-

s) *tmin+s*tmax) ) ;

dxl ds=cos(fi)*dx ds-sin(fi) *dy ds;
dyl ds=sin(fi)*dx ds+cos (fi) *dy ds;

F=-(1-s) *pmax_th.*sqrt (1-((1-
s) *divmint+s*divmax) .”2) .*sqrt (dxl ds.”2+dyl ds.”2);
end

%% FEM-analysis
function [U] = FEA (nodes,elements,NODES,NELE,material, BC, Fext, ...
Thickness, U)
Young=material .E (1) ;
xnu=material.v (1l);
PlaneType=material.PlaneType;
% PREPARE FOR ANALYIS
% Matrix preparation (Initialization):
Kglob = sparse (2*NODES,2*NODES); % Global Stiffness Matrix

Kloc = zeros(6,6); % Local Stiffness Matrix
U = zeros (2*NODES,1); % Nodal Displacements (global)
Strain = zeros (NELE, 3); % Global Strains (&x,ay,axy)
Stress = zeros (NELE, 3); % Global Stresses (6x,06y,0xy)
free dofs = []; % serial numbers of free DOFs
fixed dofs = []; % serial numbers of fixed DOFs
G=== FINITE ELEMENT ANALYSIS (FEA)

% We define the analysis type through the variable 'PlaneType':
SPLANE-STRESS: PlaneType=0 (plane-stress state)
SPLANE-STRAIN: PlaneType~0 (plane-strain state)

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)
dll=Young (1) / (1-xnu”~2); dl2=xnu*dll;
else

dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu); dl2=xnu/ (l-xnu)*dll;
end
% LOOP Over All triangular elemenets:
for i=1:NELE % For each triangular element
% Find the triangle's area Area(i) of i-th element
x1=nodes (elements(i,1),1); yl=nodes(elements(i,1),2);
x2=nodes (elements (i,2),1); y2=nodes (elements(i,2),2);

(
x3=nodes (elements (i,3),1); y3=nodes(elements(i,3),2);

Area (1) ((x2-x1) * (y3-yl) - (y2-yl)*(x3-x1))/2;
% Determine the stiffness Kloc of i-th element:
bi = y2 - y3; ci = x3 - x2;
by = y3 - yl; cj = x1 - x3;
bm = yl - y2; cm = x2 - x1;
K1l = [ bi®2*d1l1l Dbi*ci*dl2 bi*bj*dll bi*cj*dl2 bi*bm*dll bi*cm*dl2;
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K2

Kloc

o)

°
e
[

°

Kglob (edof, edof)

end

Fi

o\°

ci*bi*dl2
bj*bi*dll
cj*bi*dl2
bm*bi*dll
cm*bi*dl2
ci®2 ci*bi ci*cj
ci*bi bi”2 bi*c]
cj*ci cj*bi cj”2
bj*ci bj*bi bj*cj
cm*ci cm*bi cm*cj
bm*ci bm*bi bm*cj
Thickness (i) /4/Area (
Define the global DOF numbe
dof=[2*elements (i, 1) -1; 2*e

2*elements (i,2); 2%e

cir2*dll

bj*ci*dl2
cj*ci*dll
bm*ci*dl2
cm*ci*dll
c
b
c
b

cm*bj
bm*bj

ci*bj*dl2
bj~2*d1l1l

cj*bj*dl2
bm*bj*dll
cm*bj*dl2
i*bj ci*cm
i*bj bi*cm
J*bj cji*cm
%2 bj*cm
cm” 2

ci*cj*dll
bj*cj*dl2
cjnr2*dll
bm*cj*dl2
cm*ci*dll
ci*bm;
bi*bm;
cj*bm;
bj*bm
cm*bm
bm*cm bm”~2];
i)* ( K1 + d33 * K2);
ring of this element:
lements (i, 1) ;
lements (i, 3)-1;

ci*bm*dl2
bj*bm*dl1l
cj*bm*dl2
bm*2*d11

cm*bm*d12

2*elements (i, 2)
2*elements (i,3)1];

ci*cm*dll;
bj*cm*dl2;
cj*cm*dll
bm*cm*dl12
cm”2*d11];

_1;

Add the global stiffness matrix Kglob of i-th element in Global matrix:

Kglob (edo

nd the unrestrained (free)
free dofs = find(BC==0);
fixed dofs = find(BC==1);

f,edof) + Kloc;

(fixed)

/////////

and restrained

/////////

>3
°

DOF's:

$MATLAB's advantage

% le a/a OUl ig- 6ane1ne01Y1u1 AA

% Calculate the unknown displacement components solving a linear system:

o

o

Af

U

(free dofs,1) Kglob (fre

terwards, U consists of ALL

e dofs, free dofs) \ Fext

displacement components,

(free dofs,1);
The above solutions concerns the free-DOF positions of U-vector.

known nd unknown.

%**************************************************************************

func

o\°

% We define the analysis type through the wvariable

Youn
xnu
Plan
d33=
if |

else

end

o©

o
°

for

tion [Strain, Stress,Princip

SPLANE-STRESS: PlaneType=0
SPLANE-STRAIN: PlaneType~0
g=material.E (1) ;

=material.v(1l);

eType=material.PlaneType;
Young (1) /2/ (1+xnu) ;
PlaneType == 0)
dll=Young (1) / (1-xnu”2); d12

dll=Young (1) * (1-xnu) / (1+xnu

i=1:NELE
x1l=nodes (elements(i,1),1);
x2=nodes (elements (i,2),1);
x3=nodes (elements (i, 3),1);
Area (i) = ((x2-x1)*(y3-yl)
=[(y2-y3) (y3-yl) (yl-y2)
Ny=[(x3-x2) (x1-x3) (x2-x1)
% Local displacements:
Ul=U(2*(elements(1,l))
U3=U(2* (elements (i, 3))
Vle(Z*(elements(l,l))
V3=U(2* (elements (i, 3))

Q

% Element strains:
epsl Nx (1) *Ul + Nx(2)

)
-1);

)

)

Stress, Svm]

Element Strain Stress(nodes...

,elements,NELE, material, U, Thickness)

(plane-stress state)
(plane-strain state)

%plane-stress (0),

=xnu*dll;

)/ (1-2*xnu) ;

We calculate Strains & Stresses within each element:

2);
2);
2);

yl=nodes (elements (i, 1),
y2=nodes (elements (i, 2),
y3=nodes (elements (i, 3),
- (y2-yl)*(x3-x1))/2;
Y1/ (2*Area (1)) ;
)1/ (2*Area(i));

; U2=U(2* (elements (i,2))

; V2=U(2* (elements (i, 2))

’

*U2 + Nx(3)*U3;

'PlaneType'’

plane-strain

-1);

)i

KK AR R AR A A A A A A A A A A A A A AR A AR A A A A AR A A KA A A A A AR A I A A A A AR A A A A AN A A A AR A AR A AR A AR A A KA KK

=/0)

dl2=xnu/ (1-xnu) *d11;

ax
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eps2 = Ny (1l)*V1 + Ny (2)*V2 + Ny(3)*V3; % ay
eps3 = Ny (1) *Ul+Ny (2) *U2+Ny (3) *U3+Nx (1) *V1+Nx (2) *V2+Nx (3) *V3; % axy
% Store strains into the global vector:
Strain(i,1l) = epsl; Strain(i,2) = eps2; Strain(i,3) = eps3;
% Element stresses:
sig = [dl1l d12 0O;
dilz di1l 0;
0 0 d33] * [epsl eps2 eps3]';
% Store all stresses into a global vector:
Stress(i,1) = sig(l); Stress(i,2) = sig(2); Stress(i,3) = sig(3);
% Principal element stresses:
Il=sig(1l)+sig(2); $ first stress invariant
I2=sig(1l) *sig(2) - sig(3)"2; % second stress invariant
sl=(I1-sqrt (I172-4*12))/2; s2=(I1l+sqrt(I1"2-4*12))/2;
sigll = max(sl,s2); % maximum principal stress
sig22 = I1 - sigll; % minimum principal stress
PrincipStress(i,1:2) = [sigll sig22];
% Von Mises element stress:
Svm(i) = sqgrt(sigll”2+sig22”2-sigll*sig22);
% Enlarge the stress vector by von-Mises and principal stresses:
Stress(i,4) = Svm(i);
Stress(i,5) = PrincipStress(i,l);
Stress(i,6) = PrincipStress(i,2);
end
end %$end-of-function

function [s_bend,bending elements right,bending elements left] =
bending stress (Stress,elements,nodes,bending nodes,NELE)
Sy=Stress(:,2);
for i=1:NELE

for j=l:size(bending nodes, 2)

if elements(i,1l)==bending nodes(1,3j) ||
elements (i, 2)==bending nodes(1l,Jj) || elements(i,3)==bending nodes(1,3)
bending elements right (i)=1i;
break
end

end
end
bending elements right=bending elements right (bending elements right~=0);
for i=1:NELE

for j=l:size(bending nodes, 2)

if elements(i,1l)==bending nodes(2,3j) ||
elements (i,2)==bending nodes(2,j) || elements(i,3)==bending nodes (2, ])
bending elements left (i)=i;
break
end

end
end
bending elements left=bending elements left (bending elements left~=0);
s_bend=max (Sy (bending_elements right));
s _bend(2,1)=min (Sy (bending elements left));

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1l)' nodes(elements(i,1),1)],
[nodes (elements (i, :),2)"' nodes(elements(i,1),2)]1,'k");
end

[

°
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bending elements=[bending elements right bending elements left];
for i=l:size(bending elements, 2)

ex=[nodes (elements (bending elements(i),1),1)
nodes (elements (bending elements(i),2),1)

nodes (elements (bending elements(i),3),1)];
ey=[nodes (elements (bending elements(i),1),2)
nodes (elements (bending elements (i), 2),2)

nodes (elements (bending elements(i),3),2)];
Svalue = Sy (bending elements(i));

fill (ex, ey, Svalue) ;

end

colorbar

title ('ELEMENT-BASED BENDING STRESS')
xlabel ("X")
ylabel ('Y")
axis equal

function Display Displacements (NODES,NELE, nodeLoad, U, NDF,
ScreenKey,ReportFileKey, £id16)

if (ScreenKey == 1)

% SCREEN:
fprintf(' ********************************************************\n' ) ;
fprintf (' GEAR TOOTH ANALYSIS\n') ;
fprintf (' NUMBER OF NODES =%5i\n"', NODES) ;
fprintf (' NUMBER OF ELEMENTS =%5i\n',NELE) ;
$fprintf (' NODE WHERE LOAD IS APPLIED =%5i\n',nodelLoad) ;
fprintf (' \n');
fprlntf(' ********************************************************\n‘ ) ;
fprintf (' \n');
fprintf (' RESULTS\n'");
fprintf (' \n');
fprintf (' NODAL DISPLACEMENTS\n') ;
fprintf (' NODE U v \n'");
for I=1:NODES
K1=NDF* (I-1)+1;
K2=K1+NDF-1;
fprintf ('%101 %15.7f %15.7f \n',I,U(K1),U(K1+1));
end
end
if (ReportFileKey == 1)
$ REPORT-FILE:
fprintf (fidle, '
********************************************************\n' ) ;
fprintf (£idl16, "' GEAR TOOTH ANALYSIS\n');
fprintf (£idl16, ' NUMBER OF NODES =%5i\n"', NODES) ;
fprintf (fidl6, ' NUMBER OF ELEMENTS =%5i\n',NELE) ;
fprintf (fidl6, ' NODE WHERE LOAD IS APPLIED =%51\n"', nodeLoad) ;
(

fprintf
fprintf (fidle,

********************************************************\n') .

fidle, ' \n');

fprintf (fidle, "’ \n');
fprintf (fidl6, ' RESULTS\n');
fprintf (fidle, ' \n');

’
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fprintf (£fidl16, ' NODAL DISPLACEMENTS\n');
fprintf (£idle, ' NODE U v \n');
for I=1:NODES

K1=NDF* (I-1)+1;

K2=K1+NDF-1;

fprintf (fidle, '$101 %$15.7f %15.7f \n',I,U(K1l),U(K1+1));

function Display Strains(NELE, Strain, ScreenKey, ReportFileKey, £idl6)

6]
S 29000000000000000000000000000000000000000000000000000000000000000000000000
o OO0OO0OO0OO0OO0OO0OOODOOODODOODODOOODOOODODOOODODOODODOOODOOODODOOOOOODODOODODOOODODOOODOOODOOODODOOODOOODO©OO™DO
o o
o o
% DISPLAY THE ELEMENT STRAINS ON SCREEN and REPORT-file: %
o o
E] E]
©90000000000000000000000000000000000000000000000000000000000000000000000000
[SIe Ie R e Ie e Jae e e e Iue e e le e Jure e e Jue e Jure Jure Jare Jure Jre Jare Jare e Jare By e Jure Jre Jare Jure Iare Jare Jye are Jare Jre e Jare Jre Jare Jare Jre Jre Jare e Jare Jre e Jare Jre e I Jre Jare Jre e Jare Jre e Jre By Ie e e e e Ire e e}
%
if (ScreenKey == 1)
% SCREEN:

fprintf (' \n');

fprintf (' ELEMENT STRAINS\n');

fprintf (' ELEMENT Exx Eyy Gxy\n') ;

for I=1:NELE
fprintf ('$101i %15.4f %15.4f %15.4f\n',I,Strain(I,1),...
Strain(I,2),Strain(I,3)):;

end

fprintf ('
*k*k*k*k*k*k*k*k*************************k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k********************\n' ) ;
end
if (ReportFileKey == 1)
% REPORT-FILE:

fprintf (fidle, ' \n'");

fprintf (fidl16,' ELEMENT STRAINS\n');

fprintf (£idle, ' ELEMENT Exx Eyy
Gxy\n');

for I=1:NELE
fprintf (fidle, '$10i %15.4f %15.4f %15.4f\n',I,Strain(I,1),...
Strain(I,2),Strain (I, 3))

4
end
fprintf (fidle, "'
R I I b b b b b b b db b b b b b b b b b b b b b b b b b b b b b b b b b db b b b i b b b b b b b b b b b b b b b b b b b b b d b b b b b b b b b g
*k*k**********************\n' );
end

o3
°

end $end-of-function
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function
Display Stresses (NELE, Stress, PrincipStress, ScreenKey,ReportFileKey, £idl6)

if (ScreenKey == 1)
% SCREEN:

fprintf (' \n');

fprintf (' ELEMENT STRESSES\n') ;

fprintf (' MEMBER SXX SYY SXY
PRINCIP-11 PRINCIP-22\n"'");

o

°

for I=1:NELE
fprintf ('$101 %$15.4f %15.4f %$15.4f %$15.4f %15.4f\n',I,Stress(I,1),.
Stress(I,2),Stress(I,3),PrincipStress(I,1l),PrincipStress(I,2));

end

fprintf ('
**********************************************************************\n' ) ;
end
if (ReportFileKey == 1)
$ REPORT-FILE:

fprintf (fidle, ' \n');

fprintf (£idl6,' ELEMENT STRESSES\n');

fprintf (fidle, ' MEMBER SXX SYY SXY
PRINCIP-11 PRINCIP-22\n"'");

o

for I=1:NELE
fprintf (fidle6, '$10i %15.4f %15.4f $15.4f %15.4f %15.4f\n"', I,
Stress(I,1),Stress(I,2),Stress(I,3),PrincipStress(I,1),
PrincipStress(I,2));
end
fprintf (fidle, "’
R e e I b b b b ab S S b b b b b db db S I b b b b Ib ab S I b b b b b b b S I e b b b b (I b S i b b b b (b (ab b db i b 2 b b b b (Ib ab db 2 2 b b b (b 4
*k*k*k*k********************\n' ),-
end

end $end-of-function.

function plotSxx (NELE,nodes,elements, Stress)

%% COLOR FILL ELEMENT STRESS Sxx:
figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1)"' nodes(elements(i,1),1)1,
[nodes (elements (i, :),2)"' nodes(elements(i,1l),2)],'b");
ey=[nodes (elements(i,1l),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements (i, 1); i2=elements(i,2); i3=elements (i, 3);
end

Q

°

for i=1:NELE
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ex=[nodes (elements (
nodes (elements (i, 3),1)1;
ey=[nodes(elements( i,1),2) nodes (elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);
Sxx = Stress(i,1l);
fill (ex, ey, Sxx) ;
end
colorbar
title ('ELEMENT-BASED STRESS Sxx')
xlabel ("X")
ylabel ('Y")
axis equal

i,1),1) nodes(elements(i,2),1)

end $end-of-function

function plotSyy(NELE,nodes,elements, Stress);

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1) "' nodes(elements(i,1l),1)],
[nodes (elements (i, :),2)' nodes(elements(i,1),2)],'b");

ey=[nodes (elements(i,1l),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;

il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);
end

for i=1:NELE

ex:[nodes(elements(l,l ,1) nodes(elements(i,2),1)
nodes (elements (1 )1z
ey=[nodes(elements( i,1),2) nodes(elements (i, 2),2)
)17

nodes (elements (1
ilzelements(l,l), i2=elements (i,2); i3=elements (i, 3);
Syy = Stress(i,2);
fill (ex, ey, Syy);

end

colorbar

title ("ELEMENT-BASED STRESS Syy')

xlabel ("X")

ylabel ('Y")

axis equal

’

end $end-of-function

function plotSxy(NELE, nodes,elements, Stress)

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1l)' nodes(elements(i,1),1)],
[nodes (elements (i, :),2)' nodes(elements(i,1),2)]1,'b");

ey=[nodes (elements(i,1),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;

il=elements (i, 1l); i2=elements (i, 2); i3=elements (i, 3);
end

o)

for i=1:NELE
ex=[nodes (elements (i, 1l),1) nodes(elements(i,2),1)
nodes (elements (i,3),1)];
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ey=[nodes (elements (i,1),2) nodes (elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements (i, 1); i2=elements(i,2); i3=elements (i, 3);
Sxy = Stress (i, 3);
fill (ex, ey, Sxy) ;
end
colorbar
title ('"ELEMENT-BASED STRESS Sxy')
xlabel ("X")
ylabel ('Y")
axis equal

end $end-of-function

function plot VonMises (NELE, nodes, elements, Svm)

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1) "' nodes(elements(i,1l),1)],
[nodes (elements (i, :),2)"' nodes(elements(i,1l),2)],'b");

ey=[nodes (elements(i,1l),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;

il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);
end

o)
°

for i=1:NELE
ex=[nodes (elements (i, 1),1
nodes (elements (i, 3),1)1;
ey=[nodes (elements (i, 1),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements(i,1); i2=elements(i,2); i3=elements (i, 3);

) nodes (elements (i, 2),1)

Svalue = Svm(i);
fill (ex, ey, Svalue);
end
colorbar
title ('ELEMENT-BASED VON-MISES STRESS Svm')
xlabel ('X")
ylabel ('Y")

axis equal

end $end-of-function

function plotS1ll (NELE,nodes,elements,PrincipStress)

%% COLOR FILL ELEMENT PRINCIPAL STRESS S11:

o3
°

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1l)' nodes(elements(i,1),1)1],
[nodes (elements (i, :),2)"' nodes(elements(i,1l),2)],'b");

ey=[nodes (elements(i,1),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;

il=elements (i, 1l); i2=elements(i,2); i3=elements (i, 3);
end

[

°
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for i=1:NELE
ex=[nodes (elements (i, 1l),1) nodes(elements(i,2),1)
nodes (elements (i, 3),1)1;
ey=[nodes (elements(i,1l),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);
Splot = PrincipStress(i,1);
fill (ex,ey,Splot);
end
colorbar
title ('ELEMENT-BASED PRINCIPAL STRESS S11'")
xlabel ("X")
ylabel ('Y")
axis equal

end $end-of-function

function plotS22 (NELE, nodes,elements,PrincipStress)

o\°

%% COLOR FILL ELEMENT PRINCIPAL STRESS S22:

o

figure
hold on
for i=1:NELE
plot ([nodes (elements(i,:),1) "' nodes(elements(i,1l),1)],
[nodes (elements (i, :),2)"' nodes(elements(i,1),2)],'b");

ey=[nodes (elements (i, 1),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;

il=elements(i,1); i2=elements(i,2); i3=elements (i, 3);
end

o

for i=1:NELE
ex=[nodes (elements (i, 1l),1) nodes(elements(i,2),1)
nodes (elements (i, 3),1)1;
ey=[nodes (elements (i, 1),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements (i, 1l); i2=elements(i,2); i3=elements (i, 3);
Splot = PrincipStress(i,2);
fill (ex, ey, Splot);
end
colorbar
title ('ELEMENT-BASED PRINCIPAL STRESS S22'")
xlabel ('X")
ylabel ('Y")
axis equal

end $end-of-function

function [StressNodal,Svm nodal] = SmoothNodalStress (NODES,NELE, elements,

Stress, Svm, PrincipStress)
%% NODAL SMOOTHED STRESS COMPONENTS
%% COMPUTE and PRINT NODAL STRESSES:
fprintf ('*** STRESSES ***\n');
StressNodal (1:6*NODES)=0; % '6' refers to S(xx,yy,xy,vm,11,22).

NodesConnected (1:NODES) =0; %number of elements connected to a node
for i=1:NELE
il=elements(i,1); 1i2=elements(i,2); i3=elements (i, 3);
SIGxx=Stress (i,1); SIGyy=Stress(i,2); SIGxy=Stress (i, 3);
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**********************************************************************\n'

end

SIGvm=Svm (i

o

°

);

S11=PrincipStress (i, 1l);

S22=PrincipStress (i, 2);

StressNodal (6*i1-5)=StressNodal (6*11-5) +SIGxx;
StressNodal (6*11-4)=StressNodal (6*11-4)+SIGyy;
StressNodal (6*11-3)=StressNodal (6*11-3)+SIGxy;
StressNodal (6*11-2)=StressNodal (6*11-2)+SIGvm;
StressNodal (6*11-1)=StressNodal (6*11-1)+S11;
StressNodal (6*i1-0)=StressNodal (6*1i1-0)+S22;
StressNodal (6*12-5)=StressNodal (6*12-5) +SIGxxX;
StressNodal (6*12-4)=StressNodal (6*12-4)+SIGyy;
StressNodal (6*12-3)=StressNodal (6*12-3) +SIGxy;
StressNodal (6*i2-2)=StressNodal (6*12-2) +SIGvm;
StressNodal (6*i2-1)=StressNodal (6*i2-1)+S11;
StressNodal (6*12-0)=StressNodal (6*12-0)+S22;
StressNodal (6*13-5)=StressNodal (6*13-5)+SIGxx;
StressNodal (6*13-4)=StressNodal (6*13-4)+SIGyy;
StressNodal (6*13-3)=StressNodal (6*13-3) +SIGxy;
StressNodal (6*13-2)=StressNodal (6*13-2)+SIGvm;
StressNodal (6*13-1)=StressNodal (6*13-1)+S11;
StressNodal (6*13-0)=StressNodal (6*13-0)+S22;
NodesConnected (il)=NodesConnected (il) +1;
NodesConnected (1i2)=NodesConnected (12) +1;
NodesConnected (1i3)=NodesConnected (13) +1;
end
for i=1:NODES
StressNodal (6*i-5)=StressNodal (6*1-5) /NodesConnected (1) ; %Sxx
StressNodal (6*1i-4)=StressNodal (6*1-4) /NodesConnected (i) ; %Syy
StressNodal (6*1-3)=StressNodal (6*1-3) /NodesConnected (i) ; %$Sxy
StressNodal (6*i-2)=StressNodal (6*1-2) /NodesConnected (i); %Von-Mises
StressNodal (6*1i-1)=StressNodal (6*i-1) /NodesConnected (i); %S11
StressNodal (6*1 )=StressNodal (6*i ) /NodesConnected(i); %S22
Svm nodal (i)=StressNodal (6*i-2) ;
fprintf ('node=%31 Sxx=%12.5e Syy=%12.5e Sxy=%12.5e\n',1i,

StressNodal (6*i-5)

end
fprintf ('

$end-of-function

,StressNodal (6*1i-

4),StressNodal (6*i-3)) ;

) ;

fun

oo
© 0

oo
° 0

end

ction

[SmoothElementStress]

Smooth Element Str

NODAL SMOOTHED STRESS COMPONENTS
COMPUTE and PRINT NODAL STRESSES:

for i=1:NELE

il=elements (i, 1);

for j=1:6

SmoothElementStress (i, j)=

end
end
$end-of-function

i2=elements (i, 2);

(StressNodal (6%
StressNodal (6*
StressNodal (6*

ess (NELE, elements,
StressNodal)

i3=elements (i, 3);

(11-1)+3J) +
(12-1)+ J)
(13-1) /3
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function plot Smooth VonMises (NELE,nodes,elements, StressNodal)

figure
hold on
for i=1:NELE
plot ([nodes (elements (i, :),1)' nodes(elements(i,1),1)]1,
[nodes (elements (i, :),2)' nodes(elements(i,1),2)]1,'b");

ey=[nodes (elements (i,1),2) nodes (elements(i,2),2)
nodes (elements (i, 3),2)];
il=elements(i,1); i2=elements(i,2); i3=elements (i, 3);

for i=1:NELE
ex=[nodes (elements (i, 1l),1) nodes(elements(i,2),1)
nodes (elements (i, 3),1)1;
ey=[nodes (elements (i,1),2) nodes (elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);
Svml=StressNodal (6*i1-2);
Svm2=StressNodal (6*1i2-2);
Svm3=StressNodal (6*13-2) ;
SVMcm = 1/3* (Svml+Svm2+Svm3); %at center of mass of element based on
nodes
fill (ex, ey, SVMcm) ;
end
colorbar
title ('NODAL-BASED (SMOOTHED) VON-MISES STRESS Svm')
$ % % title(titleChar)
xlabel ("X")
ylabel ('Y")
axis equal

MATLAB code and functions for LST element
Some of the functions involved in the code of LST elements are also used in the code of CST
elements so they will not be in this section.

tic

close all

clear all

clc

format long

%% algorithm parameters

tol=10"-8; % universal tolerance for geometry calculations in length units

o)

npoints=100; % number of points to sample from the tooth flank

o©

% basic geometric parameters

gear.z=30; % # of teeth

gear.m=4; % module

gear.al=deg2rad(20); % pressure angle [Convert angle from degrees to
radians]

gear.cs=0.5; % thickness coefficient at rolling circle
gear.ck=1l; % addendum coefficient

gear.cf=1.25; % dedendum coefficient

gear.cc=0.38; % rack curvature coefficient
gear.width=40; %gear width

gear.i=1/1.5;%gear ratio

%$%Material parameters
material .E=[2e5 2e5];%Elastic Modulus of gears (MPa)
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material.v=[0.3 0.3];%Poisson coefficient

material.PlaneType=0;% plane-stress (0), plane-strain (=/0)
$%Load
F=1.008912416112217e+03; %N

%% supplementary geometry calculations
[gear.r0,gear.rg,gear.rf,gear.rk,gear.rc,gear.fi,gear.w] =

gear radii angles (gear);
gear.contact r=[59.280370567072850 40.822387699923972];

$%Hertz calculations

[b_th,pmax th]=hertz calc(F,gear,material);

b=b th;

%$Theoretical Bending stress calculation

s_bend th = bending stress_ th(F, gear);

% Mesh size array: mesh seeds

% Define the seed size for the corresponding segments, in length units.

% Two options:

% A) Constant element size: To invoke this option set the second array

% element for each segment to zero, for example [0.1,0]

% B) Linearly changing element size: To invoke this option set the second
% array element for each segment to a positive real. For example using the
% value [0.1,0.2] for segment AB will result in element size 0.1 at A and
% 0.2 at B, whereas [0.2,0.1] gives 0.2 at A and 0.1 at B.

mesh seeds = [0.2,0; $ (A-B)
0.2,0;... % (B-C)
0.2,b th/10; % (C-D)
b th/10,0; % (D-E)
b th/10,0.2; $(E-F)
0.2,0.5; S(F-F")
0.2,0.5; S(F'=-C")
0.2,0; $(C'-B'")
0.2,0; S(B'-A")
4,0.2; S(A'-G")
5,0; $(G'-G)
4,0.21*%1.5; % (G-R)

% calculating the trochoid and involute meeting radius
gear.rs = trochoid meet involute(gear,tol);

% assigning the gear hub radius
gear.rh=33;

%circle of influence

circle=circle of infuence calculation(gear,b);

%% extracting the outline points

[division points,outline points,loaded nodes, fixed nodes,bending nodes] =
outline points(gear,circle,mesh seeds,tol);

$plot (outline points(:,1),outline points(:,2),'-")

o\°

o©

% meshing

neleoutline=size (outline points,1);

[NN,NE, ME, Xnodes, Ynodes] = Advancing Front LO 2D...

(outline points(:,1),outline points(:,2),neleoutline,l:neleoutline, ...
[l:neleoutline,1]);

oe

% reshaping the node and element connectivity matrices
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nodes=[Xnodes, Ynodes, zeros (size (Xnodes)) ];
elements=zeros (NE, 3) ;
for i=1:NE
elements (i, 1)=ME(3* (i-1)+1);
elements (i,2)=ME (3* (i-1)+2);
elements (i, 3)=ME (3* (i-1)+3);

end

[nodes, elements] = tri midnodes insertion (NE,elements,nodes);
$ for i=1:NE

% X=[nodes (elements (i, 1),1) nodes(elements(i,2),1)

nodes (elements (i, 3),1) nodes (elements(i,1),1)];

% Y:[nodes(elements(i,l),2) nodes(elements(i,Z),Z)

nodes (elements (i, 3),2) nodes (elements(i,1l),2)];

plot(X,Y,'k— )
end
plot (outline points(loaded nodes,1l),outline points(loaded nodes,2), 'ro')
plot (outline points(fixed nodes, 1) ,outline points(fixed nodes,2), 'bo'")
% plotting results

o° d° od° e o° o°

o\

plot tooth flank(gear);

o

plot division points(outline points,division points)

%

plot outline points(outline points)

°
[

plot six node tri mesh(nodes,elements) %

%**************************************************************************

% Date: Friday 10.04.2020 (after SKYPE meeting) - 15.04.2020

%% CP-addons: continues with node numbering and element numbering
%$—-—--Node numbering (in red color):
plot six node tri mesh nodal points numbered(nodes,elements) %

%$-—--Element numbering (in black color, italics):
plot six node tri mesh elements numbered(nodes,elements) %
%-—--Both node and element numbering (red and black, as abovementioned) :

plot six node tri mesh node and element numbering(nodes,elements) %

% Memory allocation and some useful nodal variables:

% NELE : total number of elements in the mesh

% NODES: total number of nodes in the mesh

% NDF : number of DOF per node

% NDM : dimension of problem (here is 2D-analysis)

% NEL : number of nodes per element (linear triangle)

% Area : cross-sectional area)

$ BC : index for boundary conditions (O=free, 1l=fixed)
% Fext : externally applied forces (initialization)

5 U : nodal displacements (initialization)

[NELE NODES, NDF,NDM, NEL, Area, BC, Fext, U] =
six node tri AllocateMEMORY (NE, nodes) ;

%Boundary Conditions

% Initially, all DOFs are free (BC=0)

% Then, we determine only the restrained (i.e. fixed) DOFs:

fixed nodes = fixed mid nodes (nodes, fixed nodes) ;

BC = plot boundary conditions_six node tri (BC,nodes,elements, fixed nodes) ;
% Externally Applied Forces

% default: all imposed forces, are initially =zero.
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)

% Thus, we define only the non-vanishing force components

loaded nodes = loaded mid nodes (nodes, loaded nodes) ;

$Fext = plot load six node tri (Fext,nodes,elements, loaded nodes, F, gear);
Fext =

load distribution six nodes (Fext, loaded nodes,pmax_th,gear,nodes,circle);
% ENTER Thickness of elements (MANUALLY) :

Thickness (1:NELE, 1) =gear.width; % element thickness

%% Calculate the unknown displacements:
[U] = FEA six node tri (nodes,elements,NODES,NELE,material, BC, Fext,
Thickness, U) ;
%% NODAL STRESS COMPONENTS
[StrainNodal, StressNodal, PrincipStressNodal, SvmNodal] =
Nodal Strain Stress_ six nodes (nodes,elements...

,NODES,NELE, material, U);
[s_bend,bending elements right,bending elements left] =
bending stress six nodes (elements,nodes,bending nodes,NELE,material,U);
%% COLOR FILL and Plot (ELEMENT STRESSES)
% Sxx stress component:
plotSxx six nodes (nodes,elements...
,NODES,NELE, material, U);
% Syy stress component:
plotSyy six nodes (nodes,elements...
,NODES,NELE, material, U);
Sxy=Txy stress component:
plotSxy six nodes (nodes,elements...
,NODES,NELE, material, U);
Von-Mises element stress:
s % titleChar = 'ELEMENT-BASED VON-MISES STRESS Svm'
plot VonMises six nodes (nodes,elements...
,NODES,NELE, material, U);
S11 Principal element stress: PrincipStress(i,1:2)
plotSll six nodes (nodes,elements...
,NODES,NELE, material, U);
S22 Principal element stress: PrincipStress(i,1:2)
plotSZZ_six_nodes(nodes elements.

o\°

o\°

o\°

oe

o\°

function [nodes,elements] = tri midnodes_ insertion (NE,elements, nodes)
k=size (nodes,1);
for i=1:NE

for j=1l:k
if nodes(j,1l)==(nodes(elements(i,1l), 1) +nodes(elements (i, 2) )y/2 &&
nodes (j,2)==(nodes (elements (i, 1),2)+nodes (elements (i, 2),2)) /2
elements (i, 4)=7;
break
elseif j==
k=k+1;
elements (i, 4)=k;
nodes (k, :)=(nodes (elements (i, 1), :)+nodes (elements (i,2),:))/2;
end
end
for j=1:k
if nodes(j,1l)==(nodes(elements(i,2),1)+nodes(elements (i, 3) ) /2 &&
nodes (j, 2)==(nodes (elements (i,2),2)+nodes (elements (i, 3),2)) /2

elements (i, 5)=j
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break

elseif j==
k=k+1;
elements (i, 5)=k;
nodes (k, :)=(nodes (elements (i,2), :)+nodes (elements (i,3),:))/2;
end
end
for j=1:k
if nodes(]j,1)==(nodes (elements (i, 3),1)+nodes (elements(i,1),1))/2 &&
nodes (j, 2) ==(nodes (elements (i, 3),2) +nodes (elements (i,1),2)) /2
elements (i, 6)=7;
break
elseif j==
k=k+1;
elements (i, 6) =k;
nodes (k, :)=(nodes (elements (i, 3), :)+nodes (elements (1i,1),:))/2;
end
end
end
end
function [] = plot six node tri mesh(nodes,elements)
figure
hold on

plot(nodes(:,1),nodes(:,2),"'.b")
for i=l:size(elements, 1)

nodes local=[nodes (elements (i, 1), :)
nodes (elements (i, 4),:)
nodes (elements (i, 2),:)
nodes (elements (i, 5), :)
nodes (elements (i, 3), :)
nodes (elements (i, 6), :)
nodes (elements (i, 1), :)];
plot (nodes local(:,1),nodes local(:,2),'b")
end
axis equal
title('Final triangle mesh')
xlabel ('X")
ylabel ('Y")
drawnow
hold off
end
function [] = plot six node tri mesh nodal points numbered(nodes,elements)
figure
hold on
plot(nodes(:,1),nodes(:,2),"'.b")
for i=l:size(elements, 1)
nodes local=[nodes (elements (i, 1), :)
nodes (elements (i, 4), :)
nodes (elements (i, 2), :)
nodes (elements (i, 5), :)
nodes (elements (i, 3), :)
nodes (elements (i, 6), :)
nodes (elements (i, 1), :)1;
plot (nodes local(:,1),nodes local(:,2),'b")

end
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axis equal

title('Final triangle mesh with NODAL POINT numbering')
drawnow

hold off

% CP actions:
xmax=max (nodes (:,1)); xmin=min (nodes(:,1));
ymax=max (nodes (:,2)); ymin=min (nodes(:,2));
dsx= (xmax-xmin); dsy=(ymax-ymin) ;
hold on
for i=l:size (nodes, 1)
text (nodes (i, 1), nodes (i, 2),int2str (i), 'Color', 'red', "FontSize',09)
end

end %end-of-function

function [] = plot six node tri mesh elements numbered (nodes,elements)
figure
hold on
plot(nodes(:,1),nodes(:,2),"'.b")
for i=l:size(elements, 1)
nodes local=[nodes(elements (i, 1
nodes (elements (i, 4
nodes (elements (i, 2
nodes (elements (i, 5
nodes (elements (i, 3
nodes (elements (i, 6
nodes (elements ( 1;
plot (nodes local(:,1),nodes local(:,2),'b")
end
axis equal
title('Final triangle mesh with ELEMENT numbering')
drawnow
hold off
% Addon by C.P. (15.04.2020) :
for i=l:size(elements, 1)
xc=(1/6) *sum(nodes (elements (i, :),1));
yc=(1/6) *sum (nodes (elements (i, :),2));

)

)
1)
r i)
)

)

)

text (xc,yc,int2str (i), 'FontAngle', 'italic', 'FontSize', 08, '"FontWeight', 'Bold
")
end

end %end-of-function

function [] =
plot six node tri mesh node and element numbering (nodes,elements)

o)

figure
hold on
plot (nodes(:,1),nodes (:,2),"'.b")
for i=l:size(elements, 1)
nodes local=[nodes (elements (i, 1), :)
nodes (elements (i, 4), :)
nodes (elements (i, 2), :)
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nodes (elements (i, 5), :)

nodes (elements (i, 3), :)

nodes (elements (i, 6), :)

nodes (elements (i, 1),:)1;
plot(nodes_local(:,l),nodes_local(:,Z),‘b‘)

end

axis equal

title('Final triangle mesh with NODE and ELEMENT numbering')

drawnow

hold off

o)

% CP actions:
xmax=max (nodes (:,1)); xmin=min (nodes(:,1));
ymax=max (nodes (:,2)); ymin=min (nodes(:,2));
dsx= (xmax-xmin); dsy=(ymax-ymin) ;
hold on
for i=l:size (nodes, 1)
text (nodes (i, 1), nodes (i, 2),int2str (i), 'Color', 'red', 'FontSize',09)
end

% Addon by C.P. (15.04.2020):
for i=l:size(elements, 1)
xc=(1/6) *sum(nodes (elements (i, :),1));
=(1/6) *sum (nodes (elements (i, :),2));

text (xc,yc,int2str (i), 'FontAngle', 'italic', 'FontSize',08, '"FontWeight', 'Bold
")

end

end $end-of-function

function [NELE,NODES,NDF,NDM,NEL,Area,BC,Fext,U] =
six node tri AllocateMEMORY (NE, nodes)

% === PRE-PROCESSOR & MEMORY ALLOCATION:
NELE = NE; % total number of elements
NODES = size(nodes,1); % total number of nodes

o)

% Prepare (initialize) matrices and vectors:

NDF = 2; % number of DOF per node

NDM = 2; % dimension of problem (here is 2D-analysis)
NEL = 6; % number of nodes per element (linear triangle)
Area = zeros (NELE,1); % cross-sectional area)

BC = zeros (2*NODES, 1) ; % boundary conditions)

Fext = zeros (2*NODES, 1) ;

o\°

externally applied forces (initialization)

U = zeros (2*NODES,1); % Nodal Displacements (global)
end $end-of-function

function BC =
plot boundary conditions six node tri (BC,nodes,elements, fixed nodes)

% MEMO: Boundary Conditions (k 1, , 2*NODES) :
% BC(k) = 0 (unrestrained DOF, k—th DOF)
% BC(k) = 1 (restrained DOF, k-th DOF)
for i=l:numel (fixed nodes)
BC(2*fixed nodes(i)-1:2*fixed nodes(i))=1;
end

o

July 15, 2021



figure

hold on

plot (nodes(:,1),nodes(:,2),"'.b")

for i=l:size(elements, 1)

nodes local=[nodes (elements (]
nodes (elements (i
nodes (elements (i
nodes (elements (i
nodes (elements (i
nodes (elements (i
nodes (elements (i 1;
plot(nodes_local(:,l),nodes_local(:,Z),‘b‘)

end

axis equal

title('Fixed nodes')

drawnow

hold off

hold on

plot (nodes (fixed nodes, 1) ,nodes (fixed nodes,2), 'ko-");

end

~ e~ o~~~ —~

function loaded nodes = loaded mid nodes (nodes, loaded nodes)
Inl=loaded nodes;
1In2=zeros (1, numel (1nl)-1);
k=1;
for i=1l:numel (1nl)-1
for j=1:numel (nodes)
if nodes(j,l)==(nodes(lnl(i),1)+nodes(lnl(1+l )y/2 &&
nodes (j,2)==(nodes (1nl (i), 2)+nodes (1nl (i+1) )y /2
1n2 (k)=3;
k=k+1;
break
end
end
end
loaded nodes=zeros (1,2*numel (1n2));
for i=1:numel (1n2)
loaded nodes (2*i-1)=1nl(1);
loaded nodes (2*i)=1n2(1);
end
loaded nodes (end+1)=1nl (end) ;
end

function [Fext] =

load distribution six nodes (Fext, loaded nodes,pmax th,gear,nodes,circle)
div=linspace (-1, 1, numel (loaded nodes));

rg=gear.rg;

fi=gear.fi;

rmin=circle.cross points (2, 3);
rmax=circle.cross points (1, 3);
r=zeros (size (loaded nodes));r(l)=rmin;r (end)=rmax;
e=le-6;
for i=2:size(r,2)-1
a=rmin;
b=rmax;

r test=(atb)/2;

t=sqrt((r_test/rg)"2-1);
=(rg* (sin(t)-t*cos(t))
y=rg* (cos (t)+t*sin(t));

)7

July 15, 2021



x1=-(cos (fi) *x-sin(fi) *y);
yl=sin (fi) *x+cos (fi) *y;
error=(sqrt ( (nodes (loaded nodes(i),1)-x1) "2+ (nodes(loaded nodes (i), 2)-
yl)~2));
while error>e
if yl>nodes(loaded nodes (i), 2)
b=r test;
else
a=r test;
end
r test=(atb)/2;
t=sqrt((r_test/rg)"2-1);
x=(rg* (sin(t)-t*cos(t)));
y=rg* (cos (t)+t*sin(t));
x1=-(cos (fi) *x-sin(fi) *vy);
yl=sin (fi) *x+cos (fi) *y;
error=(sqgrt ( (nodes (loaded nodes(i),1)-
x1) 72+ (nodes (loaded nodes (i),2)-yl)"2));
end
r(i)=r_test;
end
theta=atan2 (nodes (loaded nodes (end),2) -
nodes (loaded nodes (1), 2),nodes (loaded nodes (end), 1) -
nodes (loaded nodes(1),1))-pi/2;
for i=1:2:numel (div) -2
rmin=r (i) ;
rmax=r (i+2) ;

divmin=div (i) ;
divmax=div (i+2) ;

s=linspace(0,1,100000) ;

Fext (2*loaded nodes(i)-1)=Fext (2*loaded nodes (i) -
1) +trapz (s, funl six nodes(gear, rmin, rmax,s,pmax_th,divmin,divmax) ) *cos (thet
a) *gear.width;

Fext (2*loaded nodes (i) )=Fext (2*loaded nodes(i))+trapz (s, funl six nodes (gear
,rmin, rmax, s,pmax_th,divmin,divmax) ) *sin(theta) *gear.width;

Fext (2*loaded nodes (i+l)-1)=Fext (2*loaded nodes (i+l) -
1) +trapz (s, fun3_six nodes(gear, rmin, rmax,s,pmax_th,divmin,divmax) ) *cos (thet
a) *gear.width;

Fext (2*loaded nodes (i+1l))=Fext (2*loaded nodes (i+l))+trapz (s, fun3 six nodes (
gear, rmin, rmax, s, pmax_th,divmin, divmax)) *sin(theta) *gear.width;

Fext (2*loaded nodes (i+2)-1)=Fext (2*loaded nodes (i+2) -
1) +trapz (s, fun2 six nodes(gear,rmin, rmax,s,pmax_ th,divmin,divmax)) *cos (thet
a) *gear.width;

Fext (2*loaded nodes (i+2))=Fext (2*loaded nodes (i+2))+trapz (s, fun2 six nodes (
gear, rmin, rmax, s,pmax_th,divmin,divmax)) *sin (theta) *gear.width;
end
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%% FEM-analysis

function [U] =

FEA six node tri(nodes,elements,NODES,NELE,material,BC, Fext, ...
Thickness, U)

Young=material.E (1) ;

xnu=material.v (1) ;

PlaneType=material.PlaneType;

% PREPARE FOR ANALYIS

% Matrix preparation (Initialization):

Kglob = sparse (2*NODES, 2*NODES) ; Global Stiffness Matrix

o

Kloc = zeros(12,12); % Local Stiffness Matrix
U = zeros (2*NODES,1); % Nodal Displacements (global)
Strain = zeros (NELE, 3); % Global Strains (a&x,ay,axy)
Stress = zeros (NELE, 3); % Global Stresses (6x,0y,0xYy)
free dofs = []; % serial numbers of free DOFs
fixed dofs = []; % serial numbers of fixed DOFs
=== FINITE ELEMENT ANALYSIS (FEA)

% We define the analysis type through the variable 'PlaneType':
$PLANE-STRESS: PlaneType=0 (plane-stress state)
$PLANE-STRAIN: PlaneType~0 (plane-strain state)

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)
dll=Young (1l)/ (1-xnu”~2); dl2=xnu*dll;
else

dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu); dl2=xnu/ (l-xnu)*dll;

end

E=[d1l1l d12 0 ;d12 d11 0;0 0O d331];

% LOOP Over All triangular elemenets:

for i=1:NELE % For each triangular element

% Find the triangle's area Area(i) of i-th element
x1l=nodes (elements(i,1),1); yl=nodes(elements(i,1),2);
x2=nodes (elements(i,2),1); y2=nodes(elements(i,?2),2);
x3=nodes (elements(i,3),1); y3=nodes(elements (i, 3),2);
Area(i) = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/2;

% Determine the stiffness Kloc of i-th element:

u=[nodes (elements (i, 1), 1) ;nodes (elements (i, 1l),2);nodes (elements(i,2),1);...
nodes (elements (i, 2),2) ;nodes (elements (i, 3),1) ;nodes (elements (i,3),2); ...
nodes (elements (i, 4),1) ;nodes (elements (i, 4),2) ;nodes (elements(i,5),1);...

nodes (elements (i, 5),2) ;nodes (elements (i, 6),1) ;nodes (elements (i, 6),2)];
Kloc = Kloc_triag2 calculation(u,E,Thickness (i));

[

% Define the global DOF-numbering of this element:

edof=[2*elements (i, 1)-1; 2*elements(i,1l); 2*elements (i, 2)-1;
2*elements (i,2); 2*elements (i,3)-1; 2*elements(i,3);...
2*elements (i,4)-1; 2*elements (i, 4); 2*elements (i, 5)-1;...
2*elements (i,5); 2*elements (i, 6)-1; 2*elements (i, 6)];

% Add the global stiffness matrix Kglob of i-th element in Global matrix:

Kglob (edof,edof) = Kglob(edof,edof) + Kloc; SMATLAB's advantage

end
% Find the unrestrained (free) and restrained (fixed) DOFs:
free dofs = find(BC==0); S ié 4/4& 6ui ic-0anéinésiviui AA

/////////

fixed dofs = find(BC==1); % ié& 4/4& Bul dARéiniédiviui AA

o

Calculate the unknown displacement components solving a linear system:
U (free dofs,1) = Kglob(free dofs,free dofs) \ Fext (free dofs,1);
% The above solutions concerns the free-DOF positions of U-vector.
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)

% Afterwards, U consists of ALL displacement components, known and unknown.

function [s_bend,bending elements right,bending elements left] =
bending stress six nodes (elements, nodes,bending nodes,NELE,material, U)
for i=1:NELE

for j=l:size (bending nodes, 2)

if elements(i,1l)==bending nodes(1,]) ||
elements (i, 2)==bending nodes(1l,Jj) || elements(i,3)==bending nodes(1,])
bending elements right (i)=1i;
break
end

end
end
bending elements right=bending elements right (bending elements right~=0);
for i=1:NELE

for j=l:size (bending nodes, 2)

if elements(i,1l)==bending nodes(2,]) ||
elements (i, 2)==bending nodes(2,]j) || elements(i,3)==bending nodes(2,])
bending elements left (i)=i;
break
end

end
end
bending elements left=bending elements left (bending elements left~=0);

Young=material.E (1) ;

xnu=material.v (1) ;

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)
dll=Young (1l)/ (1-xnu”"2); dl2=xnu*dll;

else
dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu) ; dl2=xnu/ (l-xnu)*dll;

end

o

div=2;
figure
hold on

$right side
maxx=0;
for i=l:size(bending elements right, 2)
xl=nodes (elements (bending elements right(i),1
yl=nodes (elements (bending elements right(i),1),2);
x2=nodes (elements (bending elements right(i),2),1);
y2=nodes (elements (bending elements right (i), 2),2)
x3=nodes (elements (bending elements right(i),3
y3=nodes (elements (bending elements right (i), 3),2)
Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/

Sx=[(y2-y3) (y3-yl) (yl-y2)1/(2*Area);
Sy=[ (x3-x2) (x1-x3) (x2-x1)]1/(2*Area);

Ul=U(2*elements (bending elements right(i),1
U2=U(2*elements (bending elements right (i), 2
U3=U(2*elements (bending elements right (i), 3
U4=U (2*elements (bending elements right (i), 4
U5=U (2*elements (bending elements right(i),5
U6=U (2*elements (bending elements right (i), 6
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V1=U(2*elements (bending elements right (i
V2=U(2*elements (bending elements_ right (i

bending elements right (i
V4=U (2*elements (bending elements_ right (3
V5=U (2*elements (bending elements right (]
V6=U (2*elements (bending elements right (i

( (
( (
V3=U(2*elements (
( (
( (
( (

ll=sqgrt ((x2-x3)"
12=sqgrt ((x3-x1)"
13=sgrt ((x1-x2)"

ele lengths=[min

2+
2+
2+
([

[

(y2-y3)"2);
(y3-y1)”
(yl-y2)"
11 12 13

2);
2);
2);

1)/div 0]

start point=

[x1 y11;

end point=[x2 y2];
outline nodes outline nodes line(start point,end point,ele lengths);
outline points=outline nodes;

start point=[x2 y2];

end point=[x3 y3];

outline nodes outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes];

start point=[x3 y3];

end point=[x1l yl];

outline nodes outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)];

neleoutline=size (outline points,1);

[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot]
Advancing Front LO 2D...

(outline points(:,1)

,outline points(:,2),neleoutline,l:neleoutline, ...
[l:neleoutline,1]);

nodes plot=[Xnodes plot,Ynodes plot,zeros (size(Xnodes plot))];

elements plot=zeros (NE plot, 3);

for j=1:NE plot

elements plot(j,1)=ME plot (3*(j-1)+1);
elements plot(j,2)=ME plot (3*(j-1)+2);
elements plot(j,3)=ME plot (3*(j-1)+3);

end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot(elements plot(j,2),1) nodes plot(elements plot (j,3)
ey=[nodes plot (elements plot(j,1),2)
nodes plot (elements plot(j,2),2) nodes plot(elements plot(j,3),2)];
x=sum(ex) /3;
y=sum (ey) /3;

1)1

=[(x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3)+x* (y3-yl)+y* (x1-x3)
(xl*yZ x2*yl)+x*(yl y2)+y* (x2-x1) 1/ (2*Area);
Nx=[Sx (1) *(2*S(1)-1)+S(1)*2*sx (1)
Sx(2) (2*S(2)-1)+S(2) *2*Sx (2)
Sx(3)*(2*S(3)-1)+S(3) *2*Sx (3)
4*Sx (1) *S(2)+4*S (1) *Sx (2)
4*Sx (2) *S(3)+4*S(2) *Sx (3)
4*Sx (3)*S(1)+4*S(3)*Sx(1)1;
Ny=[Sy (1) *(2*S(1)-1)+S(1)*2*sy (1)
Sy (2) *(2*S(2)-1)+S(2)*2*Sy (2)
Sy (3)*(2*S(3)-1)+S(3)*2*Sy (3)
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eps3=Ny (

4*Sy (1) *S
4*Sy (2) *S

4*Sy (3)

(2)+4*S (1) *Sy (2
(3)+4*S(2) *Sy (3
*S(1)+4*sS(3) *sSy (1

)
)

)1

eps1=Nx (1) *UL+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *U5+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;

1) *Ul+Nx (1) *V1+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4

) *U4+Nx (4)

*V

44Ny (5) *US5+Nx (5) *V5+Ny (6) *U6+Nx (6) *V6;

sig = [d1l1 d12 O;
di2 di1l 0;
0 0 d33] * [epsl eps2 eps3]'

s _bend=abs (sig(2));
fill (ex,ey,s bend, 'LineStyle', 'none') ;
%scatter(x,y,100,Sxx, "'filled'");
if s _bend>maxx
maxx=s_ bend;
end
end
end
s_bend=maxx;
$left side
minn=0;
for i=l:size (bending elements left, 2)
x1= nodes(elements(bendlng elements left (i )
yl=nodes (elements (bending elements left (i), 1),
x2=nodes (elements (bending elements left (i )
y2=nodes (elements (bending elements left( ), 2),
x3=nodes (elements (bending elements _left(d )
y3=nodes (elements (bending elements left (i), 3),
Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3- xl))/

m)~1u>v M‘v =

Sx=[
Sy=I[

Ul=U
U2=0
U3=U
U4=0
U5=U
U6=U

V1=U
V2=U
V3=U
V4=U
V5=U
Ve6=U

1ll=s
12=s

(y2-y3)
(x3-x2)

(y3-yl)
(x1-x3)

(yl-y2)]
(x2-x1) ]

/ (2*Area) ;
/ (2*Area) ;
2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

bending elements left
bending elements left
bending elements left
bending elements left
bending elements left
bending elements left

~ e~ o~~~ —~
o~~~ o~~~

2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

bending elements left
bending elements left
bending elements left
bending elements left
bending elements left
bending elements left

o~ o~ o~~~ —~
o~ o~ o~~~ —~

grt ((x2-x3) "2+ (y2-y3)"

’

’

13=sqrt((xl—x2)A

ele lengths=[min

2+ 2
grt ((x3-x1) "2+ (y3-yl) "2
2+ 2
([ ]

(yl-y2)”
11 12 13

—_ — — ~—

/le

0]

start point=

[x1 y1];

end point=[x2 y2];
outline nodes = outline nodes line(start point,end point,ele lengths);

outline points=outline nodes;
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start point=[x2 y2];

end point=[x3 y3];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes];

start point=[x3 y3];

end point=[x1 yl];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)];

neleoutline=size (outline points,1);
[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot] =
Advancing Front LO 2D...
(outline points(:,1),outline points(:,2),neleoutline,l:neleoutline, ...
[l1:neleoutline,1]);
nodes plot=[Xnodes plot,¥Ynodes plot,zeros (size(Xnodes plot))];
elements plot=zeros (NE plot, 3);
for j=1:NE plot
elements plot(j,1)=ME plot(3*(j-1)+1);
elements plot(j,2)=ME plot(3*(j-1)+2);
elements plot(j,3)=ME plot(3*(j-1)+3);
end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot(elements plot(j,2),1) nodes plot(elements plot(j,3),1)];
ey=[nodes plot (elements plot(j,1),2)
nodes plot(elements plot(j,2),2) nodes plot(elements plot(j,3),2)];
x=sum(ex) /3;
y=sum (ey) /3;

=[(x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3) +x* (y3-yl)+y* (x1-x3)
(Xl*yZ X2*y1)+x*(y1 y2)+y* (x2-x1) 1/ (2*Area) ;
Nx=[Sx (1) *(2*S(1)-1)+S(1)*2*Sx (1)
SX(2) (2*S(2)-1)+S(2) *2*Sx(2)
Sx(3)*(2*S(3)-1)+S(3) *2*3x(3)
4*Sx (1) *S(2)+4*S (1) *Sx (2)
4*Sx (2)*S (3 )+4*S(2)*SX(3)
4*Sx (3)*S(1)+4*3(3)*Sx (1)1
Ny=[Sy (1) *(2*S(1)-1)+S(1)*2*Sy (1)
Sy (2)*(2*S(2)-1)+S(2) *2*Sy (2)
Sy (3)*(2*S(3)-1)+S(3) *2*3y (3)
4*Sy (1) *S(2)+4*S (1) *Sy (2)
4*Sy (2)*S(3)+4*S(2) *Sy (3)
4*3y (3)*S (1) +4*S(3)*Sy (1) 1];

eps1=Nx (1) *ULl+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *U5+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;

eps3=Ny (1) *ULl+Nx (1) *V1+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4) *U4+Nx (4) *V
44Ny (5) *U5+Nx (5) *V5+Ny (6) *Ub+Nx (6) *V6;

sig = [dll d12 0;
di2z di1 0;
0 0 d33] * [epsl eps2 eps3]';
s _bend(2,1)=sig(2);
fill (ex,ey,s bend(2,1), 'LineStyle', 'none');
$scatter(x,y,100,Sxx, 'filled'") ;
if s bend(2,1)<minn
minn=s_bend(2,1);
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end
end
end
s _bend(2,1)=minn;

for i=1:NELE
plot ([nodes (elements (1
[nodes (elements (i, [1 4 2 5

4

[1 425 36]),1)" nodes(elements(i,1),1)],
3 6] )

),2)"' nodes(elements(i,1),2)],'k");
end
colorbar
title ('BENDING STRESS'")
xlabel ('X")
ylabel ('Y")
axis equal
end

function plotSxx six nodes (nodes,elements...
,NODES,NELE, material, U)

o\°

% COLOR FILL ELEMENT STRESS Sxx:

o\°

KA R AR A AR AR A A A A A A A A A A A A A A A AR AR KR A AR A AR A AR A AR A A AR A AR A AR A AR A A AR A AR A ARk ARk A ARk k%

o

% We define the analysis type through the variable 'PlaneType':
$PLANE-STRESS: PlaneType=0 (plane-stress state)
$PLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material.E (1) ;

xnu=material.v (1) ;

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)
dll=Young (1l)/ (1-xnu”~2); dl2=xnu*dll;

else
dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu) ; dl2=xnu/ (l-xnu)*dll;

end

o

div=2;
figure
hold on

for i=1:NELE

x1l=nodes (elements(i,1),1); yl=nodes(elements(i,1),2);
x2=nodes (elements (i,2),1); y2=nodes (elements(i,2),2);
x3=nodes (elements (i,3),1); y3=nodes(elements(i,3),2);
Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/2;

Sx=[(y2-y3) (y3-yl) (yl-y2)1/(2*RArea);
Sy=[ (x3-x2) (x1-x3) (x2-x1)]1/(2*Area);

Ul=U0
U2=U0
U3=U
U4=U
U5=0
U6=U

2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

~ e~ o~~~ —~

V1=U (2*elements (i, 1)) ;
V2=U(2*elements (i, 2));
V3=U(2*elements (i,3));
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V4=U (2*elements (i
V5=U(2*elements (i
Vo=U(2*elements (i

r4))

1ll=sqgrt ((x2-x3) "2+
12=sqgrt ((x3-x1) "2+
13=sqgrt ((x1-x2) "2+
ele lengths=[min([1l1

start point=[x1 yl];
end point=[x2 y2];
outline nodes

/5));
1 0));

(y2-y3)"
(y3-y1)”
(yl-y2)”

’
’

I

2);
2);
2);
12 13])/div 0]

outline points=outline nodes;

start point=[x2 y2];
end point=[x3 y3];

outline nodes
outline points=

start point=[x3 y3];
end point=[x1l yl];

outline nodes
outline points=

neleoutline=size (outline points,1);

[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot]

Advancing Front LO 2D...
(outline points(:,1)

nodes plot=

;outline points(:,

2)

elements plot=zeros (NE plot, 3);

for j=1:NE plot
elements plot (J,
elements plot (J,
elements plot (J,

end

for j=1:NE plot
ex=

1)
2)
3)

nodes plot(elements plot(j,2),

ey=

nodes plot(elements plot (j,2)

x=sum(ex) /3;
y=sum (ey) /3;

(x3*yl-x1*y3)

(x1*y2-x2*yl
=[Sx(1l)*(2*S(1
Sx (2)*(2*S (2
Sx(3) * (2*S(
4*%Sx (1) *S(
4*Sx (2) *S(
4*Sx (3) *S (
[Sy (1) *(2*S
Sy (2)*(2*8
Sy (3)*(2*8
4*Sy (1) *S(
4*Sy (2)*S (3
4*Sy (3)*S (1

—_ — — ~—

2
3
1

Ny=

[[(x2*y3-x3*y2)+x* (y2-y3) +y* (

3
)+
)
)

+
+
1)-
)
)
+

(
(2
(3)-
2)

)

)

=ME plot (3*
=ME plot (3*
=ME plot (3*

[nodes plot(elements plot(j,1),1)
nodes plot (elements plot (j,3)
[nodes plot (elements plot(j,1)
nodes plot(elements plot (j, 3)

1)
1 2)
1 2)

x3-x2)
+x* (y3-yl)+y* (x1-x3)
+x*(y1 y2)+y* (xZ x1)
1)+S (1) *2*3Sx (1
1)+S(2) *2*8Sx (2 )
1)+S(3)*2*Sx( )
4*S5 (1) *Sx(2)
4*%S5(2) *Sx(3)
4*S(3) *sx (1) 1;
1)+S(1)*2*Sy (1)
-1)+S(2) *2*Sy (2)
1)+S(3)*2*Sy (3)

4*S (1) *Sy (2)

+4*S(2) *Sy (3)
+4%5(3) *Sy (1) 1;

outline nodes line(start point,end point,ele lengths);

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:)

;outline nodes];

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:)

)1

;outline nodes(l:end-1,

,neleoutline, l:neleoutline, ...

[l:neleocutline, 1]);

[Xnodes_plot, Ynodes plot, zeros(size (Xnodes plot))];

1)1

12) 1

1/ (2*Area) ;
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eps1=Nx (1) *ULl+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *U5+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;

eps3=Ny (1) *ULl+Nx (1) *V1+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4) *U4+Nx (4) *V
4+Ny (5) *US+Nx (5) *V5+Ny (6) *U6+Nx (6) *V6;

sig = [d1l1 d12 O;
di2 di1 0;
0 0 d33] * [epsl eps2 eps3]'

Sxx=sig (1) ;
fill (ex, ey, Sxx, 'LineStyle', "none'") ;
%$scatter(x,y,100,Sxx, 'filled'");
end
end
for i=1:NELE
plot ([nodes (elements (i, [1 4 2 5 3 6]),1)"' nodes(
[nodes (elements (i, [1 4 2 5 3 6]),2)"' nodes (elements(
ey=[nodes (elements(i,1),2) nodes(elements(i,2),2
nodes (elements (i, 3),2)1;
il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);

elements(i,1),1)1,
i,1),2)],'k")
)

end

colorbar

title ('NODAL-BASED STRESS Sxx'")
xlabel ("X")

ylabel ('Y")

axis equal

end $end-of-function

function plotSyy six nodes (nodes,elements...
,NODES,NELE, material, U)

oe

% COLOR FILL ELEMENT STRESS Sxx:

oe

R R I I I I I I I b I I e I I b S I I b I b S I I I I I b S I I I I I S I I I b I b S I e b b I b I e b S I i

o°

o°

We define the analysis type through the variable 'PlaneType'
SPLANE-STRESS: PlaneType=0 (plane-stress state)
$PLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material .E (1) ;

xnu=material.v (1) ;

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)

dll=Young (1) / (1-xnu”~2); dl2=xnu*dll;

else

dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu); dl2=xnu/ (l-xnu)*dll;
end

o

div=2;
figure
hold on

for i=1:NELE

x1=nodes (elements(i,1),1); yl=nodes(elements(i,1),2);
x2=nodes (elements(i,2),1l); y2=nodes(elements(i,2),2);
x3=nodes (elements(i,3),1); y3=nodes(elements(i,3),2);
Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/2;

=[(y2-y3) (y3-yl) (yl-y2)1/(2*Area);
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Sy=[ (x3-x2) (x1-x3) (x2-x1)]1/(2*Area);

Ul=U(2*elements (i, 1)-1)
U2=U(2*elements (i,2)-1)
U3=U(2*elements (i, 3)-1);
U4=U (2*elements (i, 4)-1)
U5=U (2*elements (i, 5)-1)
Uob=U (2*elements (i, 6)-1)

V1=U(2*elements (i, 1))
V2=U(2*elements (i, 2))
V3=U(2*elements (i, 3));
V4=U (2*elements (i, 4))
V5=U (2*elements (i, 5))
V6=U (2*elements (i, 6))

’

1l=sqgrt ((x2-x3) "2+ (y2-y3) "2
12=sqgrt ((x3-x1) "2+ (y3-yl) "2
)y N2+ 2

[ ]

)
) ;
13=sqgrt ((x1-x2) "2+ (yl-y2)"2);
ele lengths=[min([11 12 13])/div 0];

start point=[xl yl];

end point=[x2 y2];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=outline nodes;

start point=[x2 y2];

end point=[x3 y3];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes];

start point=[x3 y3];

end point=[x1 yl1];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)];

neleoutline=size (outline points,1);
[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot] =
Advancing Front LO 2D...
(outline points(:,1),outline points(:,2),neleoutline,l:neleoutline, ...
[l:neleoutline,1]);
nodes plot=[Xnodes plot,Ynodes plot,zeros(size (Xnodes plot))];
elements plot=zeros (NE plot, 3);
for j=1:NE plot
elements plot(j,1)=ME plot(3*(j-1)+1);
elements plot(j,2)=ME plot(3*(j-1)+2);
elements plot(j,3)=ME plot(3*(j-1)+3);
end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot (elements plot(j,2),1) nodes plot(elements plot(j,3),1)];
ey=[nodes plot (elements plot(j,1),2)
nodes plot (elements plot(j,2),2) nodes plot(elements plot(j,3),2)];
x=sum(ex) /3;
y=sum (ey) /3;

S=[ (x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3)+x* (y3-yl)+y* (x1-x3)
(x1*y2-x2*yl)+x* (yl-y2)+y* (x2-x1) 1/ (2*Area) ;

Nx=[Sx (1) *(2*S(1)-1)+S(1l)*2*Sx (1)
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S
S

Sx(2)* (2
Sx(3)* (2
4*Sx (1) *S (2
4*Sx (2)*S (3
4*Sx (3)*S (1
(
(
(

*S |
*S |
S
S

Ny=[Sy (1) *(2*S
Sy (2)*(2*s
Sy (3) * (2*8
4%Sy (1) *S (2
4*8y (2) *S (3
4*8y (3)*S (1

2)-1)+
3)-1)+
) +4*S (
) +4*S (
) +4*S (

y-1)+
2)-1)+
3)-1)+
) +4*S (
) +4*S (2
)+4*S (3

4
4
+4

S(2) *2*5x (2
S (3) *2*Sx (3
1) *Sx (2)

2) *Sx (3)
3)*sx (1)1
S (1) *2*sy (1
S(2) *2*Sy (2
S(3) *2*Sy (3
1) *Sy (2)

) *Sy (3)

) *Sy (1) 1;

)
)

)
)
)

epsl=Nx (1) *Ul+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *US+Nx (6) *U6;

eps2=Ny (

eps3=Ny (

1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4

1) *UL+Nx (1) *V1+Ny (2) *U24+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4

44Ny (5) *US5+Nx (5) *V5+Ny (6) *U6+Nx (6) *V6;

sig = [d11l d12 0;

dl2 dil1 0;

0 0 d33] * [epsl
Syy=sig(2);
fill (ex,ey,Syy, 'LineStyle', "'none

%scatter(x,y,100,Sxx, "'filled'");

end
end
for i=1:NELE

plot ([nodes (elements (i,

[1 425 3 6]

eps2 eps3]'

")

),1)' nodes(elements (i, 1)

[nodes (elements (i,

[1 425 3 6])

P 2)"

nodes (elements 2)1,'k");

) *V4+Ny (5) *V5+Ny (6) *V6;

) *U4+Nx (4)

1)1,

*V

ey=[nodes (elements (i, 1),2)
nodes (elements (i, 3),2)1;
il=elements (i,1);
end
colorbar

(e
(i,1),
nodes (elements (i, 2),2)

title ('NODAL-BASED STRESS Syy')

xlabel ("X")
ylabel ('Y")
axis equal
end $end-of-function

i2=elements (i,2);

i3=elements (i, 3);

function plotSxy six nodes (nodes,elements...
,NODES,NELE, material, U)

o oe

o

% COLOR FILL ELEMENT STRESS Sxx:

R R R I e b b b b b I e b b b b b b I b b b IR b b b Sh b b I b b I Sh b b 2h Sh b 2 Sh b I IR Ih b 2 Ih b b SR b b b Sh b b Ih Sb b b Sh b b 2 Sh b 2 Sh I b 2h e 4

% We define the analysis type through the variable 'PlaneType'
$PLANE-STRESS: PlaneType=0 (plane-stress state)
SPLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material.E (1) ;

xnu=material.v(1l);

PlaneType= material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == () $plane-stress (0), plane-strain (=/0)

dll=Young(l)/ (1-xnu"2);

dl2=xnu*dll;

else
dll=Young(1l) *
end

(1-xnu) / (1+xnu) / (1-2*xnu) ;

dl2=xnu/ (l-xnu) *d1l1;
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o

div=2;
figure
hold on

for i=1:NELE
x1=nodes (
x2=nodes (
x3=nodes (
(

Area = ((x2

Sx=[(y2-y3)
Sy=[(x3-x2)

Ul=0U (
U2=U (
U3=U (
U4=0 (
U5=0U (
U6=0U (

V1=U (
V2=U (
V3=U (
V4=0U (
V5=U (
V6=U (
ll=sqgrt ((x2
12=sqgrt ( (x3
13=sqgrt ((x1

start point=
[x2 y2];
outline nodes

end point=

elements (1
elements (
elements (
-x1) *(y

2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

-x3)"
-x1)"
-x2)"
ele lengths=

yl=nodes (elements (i, 1),2);
y2=nodes (elements (i,2),2);
y3=nodes (elements (i, 3),2);
(y2-yl)*(x3-x1))/2;

i, 1
i, 2
i,3
3-y

), 1)
), 1)
), 1)
1) -
1/ (2*Area) ;
1/ (2*Area) ;

(y3-yl)
(x1-x3)

(yl-y2)
(x2-x1)

(y2-y3)"
(y3-y1) "
(yl-y2)”
11 12 13

2+ 2);
2+ 2);
2+ 2);
[min ([ 1)/div 0]

[x1 y11;

outline nodes line(start point,end point,ele lengths);

outline points=outline nodes;

start point=
[x3 y31;
outline nodes
outline points=

end point=

start point=
[x1 yl];
outline nodes
outline points=

end point=

neleoutline=
_plot,ME plot,Xnodes plot,Ynodes plot]
Advancing Front

(outline points(:,

[NN plot,NE

nodes plot=

[x2 y2];

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:);outline nodes];

[x3 y31;

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:);outline nodes(l:end-1,:)];

size (outline points,1);

LO 2D...

1) ,outline points(:,2),neleoutline,l:neleoutline, ...

[l:neleoutline,1]);
[Xnodes_plot, Ynodes plot, zeros(size (Xnodes plot))];

elements plot=zeros (NE plot, 3);
for j=1:NE plot

elements
elements
elements

_plot(j,1)=ME plot (3* (j-1)+1);
_plot(j,2)=ME plot(3*(j-1)+2);
_plot(j,3)=ME plot(3*(j-1)+3);
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end
for j=1:NE plot
ex=

nodes plot(elements plot(j,2),1)
[nodes plot(elements plot(j,1),2)
nodes plot(elements plot(j,3),2)];

ey=

nodes plot(elements plot(j,2),2)

x=sum (ex) /3;
y=sum (ey) /3;

[nodes plot(elements plot(j,1),
nodes plot(elements plot(j,3),

1)

=[(x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3)+x* (y3-yl)+y* (x1-x3)
(x1*y2- x2*yl)+x*(yl y2)+y* (x2-x1) 1/ (2*Area) ;
Nx=[Sx (1) *(2*S(1)-1)+S(1)*2*sx (1)
SX(2)*(2*S(2)-1)+S(2)*2*Sx (2)
SX(3)*(2*S(3)-1)+S(3)*2*Sx (3)
4*Sx (1) *S(2)+4*S (1) *Sx (2)
4*Sx (2)*S(3)+4*S(2) *Sx (3)
4*Sx (3)*S(1)+4*S(3)*Sx(1)1;
Ny=[Sy (1) * (2*S (1) 1) +S (1) *2*Sy (1)
Sy (2) *(2*S(2)-1)+S(2) *2*Sy (2)
Sy (3)*(2*S(3)-1)+S(3) *2*Sy (3)
4*%Sy (1) *S(2)+4*S (1) *Sy (2)
4%Sy (2) *S (3) +4*S (2) *Sy (3)
4*Sy (3) *S(1)+4*S(3) *Sy (1) 1;

11:

eps1=Nx (1) *UL+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *US+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;

eps3=Ny (1

44Ny (5) *US5+Nx (5) *V5+Ny (6) *UG+Nx (6) *V6;

sig = [dl1l d12 O;
dil2 di1 0;
0 0 d33] * [epsl eps2 eps3]'

Sxy=sig(3);

fill (ex,ey,Sxy, 'LineStyle’
%scatter (x,y,100,

end
end
for i=1:NELE

plot ([nodes (elements (i,

[nodes (elements (i, [1 4 2

ey=

nodes (elements (i, 3),2)1;
il=elements(i,1); 1i2

end

colorbar

[nodes (elements (i,

=elements (i,2);

'none’
Sxx,'filled"');

) ;

[1 425 3 6]),1)'" nodes(elements (i,
5 3 6]),2)"' nodes(elements(i,1),2)], "'k’
nodes (elements (i, 2),2)

1),2)

title ('"NODAL-BASED STRESS Sxy')

xlabel ("X")
ylabel ('Y")
axis equal
end $end-of-function

function plot VonMises six nodes (nodes,elements...

oo
[CRNe)

,NODES,NELE, material, U)

COLOR FILL ELEMENT STRESS Sxx:

i3=elements (i, 3);

) *UL+Nx (1) *V14Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4

) *U4+Nx (4) *V

1),
) ;

1,
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o\

% We define the analysis type through the wvariable
$PLANE-STRESS: PlaneType=0 (plane-stress state)
$PLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material.E (1) ;

xnu=material.v (1) ;

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0)
dll=Young(1l)/ (1-xnu”2);

else
dll=Young (1) *

end

Q

div=2;
figure
hold on
maxx=0;
for i=1:NELE
x1l=nodes (
x2=nodes (
(
(

'PlaneType’

$plane-stress (0), =/0)

dl2=xnu*dll;

plane-strain

(1-xnu) / (1+xnu) / (1-2*xnu) ; dl2=xnu/ (l-xnu) *d1l1l;

elements (1,1
elements (i, 2
elements (i, 3
x2-x1)* (y3-

; yl=nodes (elements (i, 1),2);
y2=nodes (elements (i,2),2);
; y3=nodes (elements (i, 3),2);
(y2-yl) * (x3-x1)) /2;

x3=nodes
Area = (
Sx=[(y2-y3)
Sy=[(x3-x2)

(y3-yl)
(x1-x3)

(yl-y2)1]
(x2-x1) ]

(2*Area) ;
(2*Area) ;

~ .

Ul=0
U2=U
U3=U

(2*elements
(
(
U4=0U (
(
(

(4
2*elements (1
2*elements (1
2*elements (i

Us=U (4
U6=U (i

2*elements
2*elements

V1=U
V2=U
V3=U
V4=U
V5=U
Ve=U

2*elements
2*elements
2*elements
2*elements
2*elements
2*elements

o~~~ o~ o~ —~

ll=sgrt ((x2-x3)"
12=sqgrt ((x3-x1)"

(y2-y3)"
(y3-y1) "

’

’

13:sqrt((x1—x2)A
ele lengths=[mi

start point=[x1
end point=[x2 y2
outline nodes

in

(yl-y2)"

2+
2+
2+
([11 12 13

2
2
2
]

—_— — — —

/le 0]

y1ll;
1

outline nodes line(start point,end point,ele lengths);

outline points=outline nodes;

start point=
[x3 y31;
outline nodes
outline points=

end point=

start point=
[x1 yl];
outline nodes
outline points=

end point=

[x2 y2];

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:);outline nodes];

[x3 y3];

outline nodes line(start point,end point,ele lengths);
[outline points(l:end-1,:);outline nodes(l:end-1,:)];
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neleoutline=size (outline points,1);

[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot]
Advancing Front LO 2D...

(outline points(:,1),

2),neleoutline, l:neleoutline, ...
[l1:neleoutline,1]);
nodes plot=[Xnodes plot,Ynodes plot,zeros(size(Xnodes plot))];
elements plot=zeros (NE plot, 3);
for j=1:NE plot
elements plot(j,1)
elements plot (j,2)
elements plot (j, 3)
end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot(elements plot(j,2),1) nodes plot(elements plot(j,3),1)];
ey=[nodes plot (elements plot(j,1),2)
nodes plot(elements plot(j,2),2) nodes plot(elements plot (j,3)
x=sum (ex) /3;
y=sum (ey) /3;

outline points(:,

=ME plot (3*
=ME_plot (3* (j-1)+2);
=ME plot (3* (3] ;

r2) 17

=[(x2*y3-x3*y2)+x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3) +x* (y3-yl)+y* (x1-x3)
(Xl*yZ X2*yl)+x*(yl y2)+y* (x2-x1) 1/ (2*Area) ;
Nx=[S *(2*S(1)-1)+S (1) *2*Sx (1)
Sx(2) (2*S(2)=-1)+S(2) *2*Sx (2)
SX(3)*(2*S(3)-1)+S(3)*2*Sx (3)
4*Sx (1) *S(2)+4*S (1) *Sx (2)
4*Sx (2)*S (3 )+4*S(2)*SX(3)
4*Sx (3)*S(1)+4*S(3)*Sx(1)1;
Ny=[Sy (1) *(2*S(1)-1)+S(1)*2*Sy (1)
Sy (2)*(2*S(2)-1)+S(2)*2*Sy (2)
Sy (3)*(2*S(3)-1)+S(3) *2*Sy (3)
4*%Sy (1) *S(2)+4*S (1) *Sy (2)
4*%Sy (2) *S(3)+4*S(2) *Sy (3)
4*Sy (3)*S(1)+4*S(3)*Sy (1)1,

epsl=Nx (1) *Ul+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *US5+Nx (6) *U6;

eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;
eps3=Ny (1) *UL+Nx (1) *V1+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4) *U4+Nx (4) *V
44Ny (5) *US5+Nx (5) *V5+Ny (6) *UG+Nx (6) *V6;

sig = [dll d12 0;
diz di1 0;
0 0 d33] * [epsl eps2 eps3]';
Il=sig(1l)+sig(2);
I2=sig(l)*sig(2) - sig(3)"2;
sl=(I1l-sqrt (I172-4*12))/2; s2=(I1l+sqrt(I1°2-4*12))/2;

sigll = max(sl,s2);
sig22 I1 - sigll;
Svm=sqgrt (sigll”®2+sig2272-sigll*sig22);
fill(ex,ey,Svm, 'LineStyle', "none');
$scatter(x,y,100,Sxx, 'filled');
if Svm>maxx
maxx=Svm;
end
end
end
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for i=1:NELE
plot ([nodes (elements (i, [1 4 2 5 3 6]),1)"' nodes(elements(i,1),1)],
[nodes (elements (i, [1 4 2 5 3 6]),2)"' nodes(elements(i,1),2)],'k");
ey=[nodes (elements(i,1l),2) nodes(elements(i,2),2)
nodes (elements (i, 3),2)1;
il=elements(i,1l); i2=elements(i,2); i3=elements (i, 3);

end

maxx

colorbar

title ('NODAL-BASED STRESS VON MISES')
xlabel ("X")

ylabel ('Y")

axis equal

end $end-of-function

function plotSll six nodes (nodes,elements...
,NODES,NELE, material, U)

o

% COLOR FILL ELEMENT STRESS Sxx:

o\°

R R R R I R e I b I I I I I I I e I I b S I I i I e b S I e I I I I S I I I I I I S I e I b I I S I e b b I b b I I b I I i S

o\°

% We define the analysis type through the variable 'PlaneType':
$PLANE-STRESS: PlaneType=0 (plane-stress state)
$PLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material.E (1) ;

xnu=material.v(1l);

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) %$plane-stress (0), plane-strain (=/0)
dll=Young (1l)/ (1-xnu”2); dl2=xnu*dll;

else
dll=Young (1) * (1-xnu) / (1+xnu) / (1-2*xnu); dl2=xnu/ (l-xnu)*dll;

end

o

div=2;
figure
hold on

for i=1:NELE

x1l=nodes (elements(i,1),1); yl=nodes(elements(i,1l),2);
x2=nodes (elements (i,2),1); y2=nodes (elements(i,2),2);
x3=nodes (elements(i,3),1); y3=nodes(elements(i,3),2);
Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/2;
Sx=[(y2-y3) (y3-yl) (yl-y2)1/(2*Area);

Sy=[ (x3-x2) (x1-x3) (x2-x1)]1/(2*Area);
Ul=U(2*elements (i, 1)-1);

U2=U(2*elements (i, 2)-1);

U3=U (2*elements (i, 3)-1);

U4=U (2*elements (i,4)-1);

U5=U (2*elements (i, 5)-1);

U6=U(2*elements (i, 6)-1);

V1=U(2*elements (i, 1))

V2=U (2*elements (i, 2));

V3=U(2*elements (i, 3));

V4=U (2*elements (i,4));

V5=U(2*elements (i,5));
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Vo6=U (2*elements (i,

ll=sgrt ((x2-x3)"
12=sgrt ((x3-x1)"

6));

(y2-y3)"
(y3-y1) "

’

l3=sqrt((xl—x2)A
ele lengths=[min

(yl-y2)"

2+
2+
2+
([11 12 13

2);
2);
2);
1)/div 01;
start point=[x1 yl];

end point=[x2 y2];

outline nodes outline nodes line(start point,end point,ele lengths);
outline points=outline nodes;

start point=[x2 y2];

end point=[x3 y3];

outline nodes outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1, :);outline nodes];

start point=[x3 y3];

end point=[x1 yl];

outline nodes outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)1];

neleoutline=size (outline points,1);

[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot]
Advancing Front LO 2D...

(outline points(:,1)

2),neleoutline, l:neleoutline, ...
[l:neleoutline,1]);

nodes plot=[Xnodes plot,Ynodes plot,zeros(size(Xnodes plot))];

elements plot=zeros (NE plot, 3);

for j=1:NE plot

,outline points(:,

elements plot(j,1)=ME plot (3*(j-1)+1);
elements plot(j,2)=ME plot (3*(j-1)+2);
elements plot(j,3)=ME plot (3*(j-1)+3);

end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot(elements plot(j,2),1) nodes plot(elements plot(j,3),1)];
ey=[nodes plot (elements plot(j,1),2)
nodes plot(elements plot(j,2),2) nodes plot(elements plot (j,3)
x=sum (ex) /3;
y=sum (ey) /3;

12) 1

=[(x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*yl-x1*y3) +x* (y3-y1l) +y* (x1-x3)
(xl*yZ x2*y1)+x*(y1 y2)+y* (x2-x1) 1/ (2*Area) ;
Nx=[Sx (1) *(2*S(1)-1)+S (1) *2*Sx (1)
SX(2) (2*S(2)-1)+S(2)*2*Sx(2)
Sx(3) *(2*S(3)-1)+S(3) *2*Sx(3)
4*Sx (1) *S(2)+4*S (1) *Sx (2)
4*Sx (2)*S (3 )+4*S(2)*Sx(3)
4*Sx (3)*S(1)+4*S(3)*Sx (1) ];
Ny=[Sy (1) *(2*S(1)-1)+S(1l)*2*Sy (1)
Sy (2)*(2*S(2)-1)+S(2) *2*Sy (2)
Sy (3)*(2*S(3)-1)+S(3) *2*Sy (3)
4*Sy (1) *S(2)+4*S (1) *Sy (2)
4*Sy (2)*S(3)+4*S(2) *Sy (3)
4*Sy (3)*S(1)+4*S(3)*Sy (1) ];

eps1=Nx (1) *UL+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *U5+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;
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eps3=Ny (1) *Ul+Nx (1) *V1I+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4) *U4+Nx (4) *V
44Ny (5) *U5+Nx (5) *V5+Ny (6) *U6+Nx (6) *V6;

sig = [d1l1 d12 O;
diz di1 0;
0 0 d33] * [epsl eps2 eps3]';

Il=sig(1l)+sig(2);

I2=sig(1l) *sig(2) - sig(3)"2;
sl=(I1-sqrt(I172-4*1I2))/2; s2=(I1l+sqrt(I1"2-4*12))/2;
sigll = max(sl,s2);

sig22 = I1 - sigll;

Sll=sigll;

fill (ex,ey,S1ll, 'LineStyle', "none'");
%scatter(x,y,100,Sxx, "'filled'");
end
end
for i=1:NELE
plot ([nodes(elements (i, [1 4 2 5 3 6]),1)"' nodes(
[nodes (elements (i, [1 4 2 5 3 6]),2)"' nodes(elements (
ey=[nodes (elements (i, 1), 2) nodes(elements(i,2),2
nodes (elements (i, 3),2)1;
il=elements(i,1); i2=elements(i,2); i3=elements (i, 3);

elements (i, 1),1)],
i,1),2)1,'k");
)

end

colorbar

title ('NODAL-BASED STRESS S11'")
xlabel ("X")

ylabel ('Y")

axis equal

end $end-of-function

function plotS22 six nodes (nodes,elements...
,NODES,NELE, material, U)

o\°

% COLOR FILL ELEMENT STRESS Sxx:

o\°

R R I e b I S Sh I b 2 Sh b b dh e b S Sh b b 2h b b 2 Sh b b 2b Sh b 2 Sh b S 2b Sh b 2 Sh b b S Ih b 2 Sh b b 2h Ih b 2 Sh b b 2h b b S Sh b b 2h Sh b 2 Sh b I 2b e 3

oe

% We define the analysis type through the variable 'PlaneType':
$PLANE-STRESS: PlaneType=0 (plane-stress state)
SPLANE-STRAIN: PlaneType~0 (plane-strain state)

Young=material.E (1) ;

xnu=material.v(1l);

PlaneType=material.PlaneType;

d33=Young (1) /2/ (1+xnu) ;

if (PlaneType == 0) $plane-stress (0), plane-strain (=/0)
dll=Young (1l)/ (1-xnu”~2); dl2=xnu*dll;

else
dll=Young(l) * (1-xnu) / (l+xnu) / (1-2*xnu); dl2=xnu/ (l-xnu)*dll;

end

>

div=2;
figure
hold on

for i=1:NELE
x1l=nodes (elements(i,1l),1l); yl=nodes(elements(i,1l),2);
x2=nodes (elements (i,2),1); y2=nodes (elements(i,2),2);
x3=nodes (elements (i,3),1); y3=nodes(elements(i,3),2);
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Area = ((x2-x1)*(y3-yl) - (y2-yl)*(x3-x1))/2;

Sx=[(y2-y3) (y3-yl) (yl-y2
Sy=[(x3-x2) (x1-x3) (x2-x1

)1/ (2*Area);
)1/ (2*Area);
Ul=U(2*elements(i,1)-1)
U2=U(2*elements (i,2)-1)
U3=U (2*elements (i, 3)-1);
U4=U (2*elements (i, 4)-1)
US5=U(2*elements (i,5)-1)
Uob=U (2*elements (i, 6)-1)
V1=U(2*elements (i, 1))
V2=U(2*elements (i, 2))
V3=U(2*elements (i, 3))
V4=U (2*elements (i,4));
V5=U (2*elements (i, 5))
Vo6=U (2*elements (i, 6))

1l=sqgrt ((x2-x3) "2+ (y2-y3)"2);
12=sqgrt ((x3-x1) "2+ (y3-yl)"*2);
13=sqgrt ((x1-x2) "2+ (yl-y2)"2);

ele lengths=[min([11 12 13])/div 0];

start point=[xl yl];

end point=[x2 y2];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=outline nodes;

start point=[x2 y2];

end point=[x3 y3];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes];

start point=[x3 y3];

end point=[x1 yl1];

outline nodes = outline nodes line(start point,end point,ele lengths);
outline points=[outline points(l:end-1,:);outline nodes(l:end-1,:)];

neleoutline=size (outline points,1);
[NN_plot,NE plot,ME plot,Xnodes plot,Ynodes plot] =
Advancing Front LO 2D...

(outline points(:,1),outline points(:,2),neleoutline,l:neleoutline, ...
[l1:neleoutline,1]);

nodes plot=[Xnodes plot,Ynodes plot,zeros (size(Xnodes plot))];

elements plot=zeros (NE plot, 3);

for j=1:NE plot

elements plot(j,1)=ME plot(3*(j-1)+1);
elements plot (j,2)=ME plot(3*(j-1)+2);
elements plot(j,3)=ME plot (3*(j-1)+3);

end
for j=1:NE plot
ex=[nodes plot (elements plot(j,1),1)
nodes plot (elements plot(j,2),1) nodes plot(elements plot(j,3),1)];
ey=[nodes plot (elements plot(j,1),2)
nodes plot (elements plot(j,2),2) nodes plot(elements plot(j,3),2)];
x=sum (ex) /3;
y=sum (ey) /3;
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=[(x2*y3-x3*y2) +x* (y2-y3) +y* (x3-x2)
(x3*y1l-x1*y3)+x* (y3-yl)+y* (x1-x3)
(x1*y2-x2*y1l +X*(yl y2)+y* (x2-x1) 1/ (2*Area) ;
=[Sx(1)*(2*S(1)-1)+S(1)*2*Sx (1)
Sx(2)*(2*s(2 (2)
Sx(3) * (2*3( (3)
4*Sx (1) *S (2
4*Sx (2) *S (3
4*Sx (3)*S (1

)

) =

)-1)+S(2) *2*Sx
)-1)+S(3) *2*Sx
+4*S (1) *Sx (2)
+4*S(2) *Sx (3)
+
)

3
)
)
) +4*S(3) *Sx (1) ];

Ny=[Sy (1) *(2*S(1)-1)+S(1)*(2*Sy(1)-1) Sy(2)*(2*S(2)~
1)+8(2) *(2*Sy (2) =1) Sy(3)*(2*S(3)-1)+5(3)* (Z*SY(3) 1.
4*Sy (1) *S(2)+4*S (1) *Sy (2) 4*Sy(2) *S(3) +4* (2)*SY(3)

4*Sy (3) *S(1)+4*S(3) *Sy (1) ];

eps1=Nx (1) *UL+Nx (2) *U2+Nx (3) *U3+Nx (4) *U4+Nx (5) *U5+Nx (6) *U6;
eps2=Ny (1) *V1+Ny (2) *V2+Ny (3) *V3+Ny (4) *V4+Ny (5) *V5+Ny (6) *V6;

eps3=Ny (1) *Ul+Nx (1) *V1+Ny (2) *U2+Nx (2) *V2+Ny (3) *U3+Nx (3) *V3+Ny (4) *U4+Nx (4) *V
44Ny (5) *US5+Nx (5) *V5+Ny (6) *U6+Nx (6) *V6;

sig = [d1l1 d12 O;
di2 di1 0;
0 0 d33] * [epsl eps2 eps3]';

Il=sig(l)+sig(2);
I2=sig(l) *sig(2) - sig(3)"2;
sl=(I1-sqrt (I172-4*12))/2; s2=(I1l+sqrt(I1"2-4*12))/2;
sigll = max(sl,s2);
sig22 = I1 - sigll;
S22=sig22;
fill (ex,ey,S22, 'LineStyle', "none'") ;
%scatter(x,y,100,Sxx, "filled'");
end
end
for i=1:NELE
plot ([nodes(elements (i, [1 4 2 5 3 6]),1)"' nodes(
[nodes (elements (i, [1 4 2 5 3 6]),2)"' nodes (elements(
ey=[nodes (elements(i,1),2) nodes(elements(i,2),2
nodes (elements (i, 3),2)1;
il=elements (i, 1l); i2=elements(i,2); i3=elements (i, 3);
end
colorbar
title ('NODAL-BASED STRESS S22'")
xlabel ('X")
ylabel ('Y")
axis equal
end %end-of-function

elements(i,1),1)1,
i,1),2)1,'k");
)
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