

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE

ENGINEERING

DIVISION OF MARINE ENGINEERING

DIPLOMA THESIS

Analysis of Premixed Flame Data using Machine Learning Methods

Ioannis Stoupas

Supervisors: L. Kaiktsis, Professor NTUA

 Dr. C. E. Frouzakis, ETH Zürich

Examination

Committee:

L. Kaiktsis, Professor NTUA

M. Founti, Professor NTUA

 G. Triantafyllou, Professor NTUA

Athens, November 2021

1

Acknowledgements

This thesis marks the end of my undergraduate studies at the School of Naval Architecture and

Marine Engineering of the National Technical University of Athens. Therefore, I would like to

seize the opportunity to express my gratitude to all those people who supported me during the

past five years.

First of all, I would like to thank from the bottom of my heart my supervisors, Lambros Kaiktsis,

Professor at the National Technical University of Athens, and Dr. Christos E. Frouzakis of ETH

Zürich, for the excellent collaboration and great assistance in the course of my Diploma Thesis.

Special thanks go to Georgios Rossopoulos, PhD student at the Division of Marine Engineering,

for the mentoring, tutoring and integration on the field of Machine Learning. Furthermore, I would

like to thank Anastasios Kallieros, graduate of the School of Naval Architecture and Marine

Engineering, for his help and offering of programming codes during the first steps of the present

work.

Last but not least, I would like to thank my family, my friends and my colleagues for their support

and encouragement throughout my five-year studies at the National Technical University of

Athens.

2

Abstract

Chemistry acceleration via Machine Learning methods is a relatively recent area of research,

driven by the need for computational cost reduction in Computational Fluid Dynamics (CFD)

simulations. The present work deals with the reduction of computational time associated with

chemistry integration in combustion simulations. In particular, the target of computational cost

reduction is achieved via a neural network approach, promising to replace direct integration in

the forthcoming years. Here, methane combustion is studied as an approximation to LNG

combustion, which gains importance for the marine industry, in order for vessels to comply with

emission regulations.

The methodology proposed in the present study includes two main objectives: (i) clustering of the

state space, which is assessed by simulations of methane combustion at representative conditions,

and (ii) prediction of thermochemical states. Both objectives are handled by means of Machine

Learning methods. The desired subdomain of thermochemical states is covered by data generated

via premixed laminar flame simulations. Premixed laminar flames are a “canonical” combustion

problem, through which various points in state space can be assessed; thus, they support the

applicability of the developed approach to simulate a family of similar problems. In the present

study, the premixed laminar flame simulations are performed by means of the CANTERA open-

source suite, while Machine Learning methods are implemented by code development in Python.

The first objective is achieved by the development of a hybrid Self-Organizing Map – K-Means

neural network, which undertakes the clustering of the state space. This hybrid neural network

generates two-dimensional maps for each data feature, which are temperature and species mass

fractions for the present implementation, while pressure is kept constant. These maps can be used

for correlation of features, quality analysis of state space, as well as for the purposes of chemistry

acceleration, such as local mechanism reduction.

Regarding the second objective, Artificial Neural Networks are assigned in each cluster obtained

from the hybrid neural network, in order to regress the thermochemical states and simulate the

function of the ODE system describing chemistry. Two cases are studied: the first one refers to

direct prediction of heat release rate and species net production rates, whereas the second one

corresponds to prediction of thermochemical states after a specified time step, given the initial

thermochemical state. For both cases, the present approach yields an excellent accuracy. Further,

a 21x reduction in computational time is attained regarding chemistry direct integration. Overall,

the present approach is very promising, and should be further studied and optimized, with the

goal of being coupled with a reactive flow CFD code.

3

Σύνοψη

Η επιτάγχυνση των υπολογισμών που αφορούν τη χημεία ενός φαινομένου μέσω μεθόδων

Μηχανικής Μάθησης αποτελεί μια σχετικά νέα ερευνητική περιοχή, καθοδηγούμενη από την

ανάγκη για μείωση του υπολογιστικού κόστους σε προσομοιώσεις Υπολογιστικής

Ρευστομηχανικής (CFD). Η παρούσα διπλωματική εργασία πραγματεύεται τη μείωση του

υπολογιστικού χρόνου που απαιτείται για τη χρονική ολοκλήρωση της χημείας στο πλαίσιο της

προσομοίωσης φαινομένων καύσης. Συγκεκριμένα, ο στόχος της μείωσης του υπολογιστικού

κόστους επιτυγχάνεται μέσω ενός μηχανισμού Νευρωνικών Δικτύων, ο οποίος υπόσχεται να

αντικαταστήσει την άμεση ολοκλήρωση της χημείας κατά τα επόμενα χρόνια. Στην παρούσα

εργασία, μελετάται η καύση μεθανίου, ως μια προσέγγιση της καύσης Υγροποιημένου Φυσικού

Αερίου (LNG), η χρήση του οποίου κερδίζει έδαφος στον τομέα της ναυτιλίας, ώστε τα πλοία να

συμμορφώνονται με τους κανονισμούς για τις εκπομπές αέριων ρύπων.

Η μεθοδολογία που προτείνεται στην παρούσα εργασία περιλαμβάνει την υλοποίηση δύο κύριων

στόχων: (i) ομαδοποίηση του χώρου των θερμοχημικών καταστάσεων, ο οποίος προσεγγίζεται

μέσω προσομοιώσεων της καύσης μεθανίου σε αντιπροσωπευτικές συνθήκες, και (ii) πρόβλεψη

των θερμοχημικών καταστάσεων. Καί οι δύο στόχοι υλοποιούνται με χρήση μεθόδων Μηχανικής

Μάθησης. Ο επιθυμητός χώρος των θερμοχημικών καταστάσεων δημιουργείται από δεδομένα

που παράγονται μέσω προσομοιώσεων στρωτής φλόγας προανάμιξης. Η στρωτή φλόγα

προανάμιξης είναι ένα πρότυπο πρόβλημα καύσης, μέσω του οποίου προσεγγίζονται διάφορες

περιοχές του χώρου των θερμοχημικών καταστάσεων. Κατά αυτόν τον τρόπο, υποστηρίζεται η

δυνατότητα της παρούσας μεθοδολογίας να εφαρμοστεί επιτυχώς στην προσομοίωση μιας

οικογένειας παρόμοιων προβλημάτων καύσης. Στην παρούσα εργασία, οι προσομοιώσεις

στρωτής φλόγας προανάμιξης υλοποιούνται με χρήση της βιβλιοθήκης ανοιχτού λογισμικού

CANTERA, ενώ η υλοποίηση των μεθόδων Μηχανικής Μάθησης γίνεται με ανάπτυξη κώδικα

σε γλώσσα Python.

Ο πρώτος στόχος επιτυγχάνεται με την ανάπτυξη ενός υβριδικού νευρωνικού δικτύου, με

συνδυασμό των μεθόδων Self-Organizing Map και K-Means. Το δίκτυο αυτό είναι υπεύθυνο για

την ομαδοποίηση του χώρου των θερμοχημικών καταστάσεων. Δημιουργεί δισδιάστατους χάρτες

κατανομής των εξαρτημένων μεταβλητών του προβλήματος καύσης (δεδομένα του δικτύου), οι

οποίες είναι η θερμοκρασία και τα κλάσματα μάζας των ενώσεων, ενώ η πίεση διατηρείται

σταθερή. Οι χάρτες αυτοί μπορούν να χρησιμοποιηθούν για τη συσχέτιση ιδιοτήτων, για την

ποιοτική μελέτη του χώρου των θερμοχημικών καταστάσεων, καθώς επίσης και στο πλαίσιο της

επιτάγχυνσης της χημείας, όπως για παράδειγμα στην τοπική μείωση μηχανισμών χημικής

κινητικής.

Όσον αφορά στην υλοποίηση του δεύτερου στόχου, Νευρωνικά Δίκτυα συνδέονται σε κάθε

ομάδα-σύνολο που προέρχεται από το υβριδικό δίκτυο ομαδοποίησης, με σκοπό να προσεγγίσουν

τις θερμοχημικές καταστάσεις και να προσομοιώσουν τη λειτουργία του συστήματος διαφορικών

εξισώσεων που περιγράφει τη χημεία. Μελετώνται δύο περιπτώσεις: η πρώτη αφορά στην

απευθείας πρόβλεψη του ρυθμού έκλυσης θερμότητας και του ρυθμού παραγωγής ή

κατανάλωσης των χημικών ενώσεων που συμμετέχουν στον μηχανισμό, ενώ η δεύτερη

πραγματεύεται την πρόβλεψη της θερμοχημικής κατάστασης μετά από ένα δεδομένο χρονικό

βήμα ολοκλήρωσης, έχοντας ως δεδομένο εισόδου την αρχική θερμοχημική κατάσταση. Καί για

τις δύο περιπτώσεις, η παρούσα μεθοδολογία επιτυγχάνει εξαιρετική ακρίβεια. Επιπροσθέτως,

επιτυγχάνεται μείωση του υπολογιστικού χρόνου εκτέλεσης της άμεσης ολοκλήρωσης της

χημείας κατά 21 φορές. Συνολικά, η παρούσα μεθοδολογία εμφανίζει σημαντικά πλεονεκτήματα,

και ενδείκνυται η περαιτέρω μελέτη και η βελτιστοποίησή της, με στόχο της σύζευξή της με

κώδικα Υπολογιστικής Ρευστομηχανικής για την προσομοίωση αντιδρώσας ροής.

4

CONTENTS

Acknowledgements 1

Abstract 2

Σύνοψη 3

CONTENTS 4

CHAPTER 1: Introduction 6

1.1 Ship Emissions 6

1.2 Liquified Natural Gas 8

1.3 Motivation and Objectives of Present Study 8

CHAPTER 2: Chemistry Acceleration 9

2.1 Chemistry Acceleration in Computational Fluid Dynamics 9

2.2 Literature Review 12

2.3 Thesis Structure 15

CHAPTER 3: Machine Learning 16

3.1 Introduction to Machine Learning 16

3.2 Neural Network for Clustering 17

3.2.1 Principal Component Analysis 17

3.2.2 Self-Organizing Map 19

3.2.3 K-Means 23

3.2.3.1 Silhouette Coefficient 25

3.2.3.2 Davies-Bouldin index 26

3.2.3.3 Clustering of Self-Organizing Map 27

3.3 Neural Network for Regression 28

3.3.1 Cross Validation 30

3.3.2 Back Propagation 32

CHAPTER 4: Chemical Kinetics 35

4.1 Introduction to Chemical Kinetics 35

4.1.1 Law of Mass Action 35

4.1.2 Energy Conservation 37

4.1.3 Kinetic Mechanisms 37

4.2 Premixed Laminar Flame Propagation 39

4.2.1 Mallard and Le Chatelier Theory 40

4.3 Perfectly Stirred Reactor 41

4.4 CANTERA Simulations 42

4.4.1 Premixed Laminar Flame Simulations 43

4.4.2 Homogeneous Reactor Simulations 45

5

CHAPTER 5: Clustering of State Space 47

5.1 Training Data Generation 48

5.2 Self-Organizing Map Training Process 51

5.2.1 Principal Component Analysis 53

5.2.2 Self-Organizing Map 55

5.3 Self-Organizing Map Partitioning of State Space 58

5.4 Hybrid Neural Network Training Process 63

5.5 Hybrid Neural Network Partitioning of State Space 64

5.5.1 Case 1: Final Partitioning of State Space 64

5.5.2 Case 2: Final Partitioning of State Space 66

5.6 Discussion 69

CHAPTER 6: Prediction of the Heat Release Rate and the Species Rates of Change 70

6.1 Sample Generation 71

6.1.1 Data Augmentation 72

6.1.2 Final Dataset 73

6.2 Multi-Layer Perceptron Training Process 76

6.2.1 Neural Network Architecture 76

6.3 Prediction Results 78

6.3.1 Results for Cluster 1 79

6.3.2 Results for Cluster 2 81

6.3.3 Results for Cluster 3 83

6.3.4 Results for Cluster 4 85

6.4 Discussion 87

CHAPTER 7: Prediction of Thermochemical State Time Evolution 90

7.1 Sample Generation 91

7.2 Multi-Layer Perceptron Training Process 94

7.3 Prediction Results 95

7.3.1 Results for Cluster 1 96

7.3.2 Results for Cluster 2 98

7.3.3 Results for Cluster 3 100

7.3.4 Results for Cluster 4 102

7.4 Discussion 103

CHAPTER 8: Conclusions 107

8.1 Summary and Discussion of Results 107

8.2 Future Work 108

Literature 110

6

CHAPTER 1: Introduction

1.1 Ship Emissions

The air pollution caused by the shipping industry is a small fraction of the total man-made

emissions. According to the International Maritime Organization (IMO), maritime contributes to

2-3% of total anthropogenic CO2 emissions, 4-10% of total SOx emissions and 14-31% of total

NOx emissions. Emissions are projected to increase from about 90% to 130% of 2008 emissions

by 2050 for a range of plausible long-term economic, energy and maritime development

scenarios. Therefore, measures have to be taken in order to limit ship emissions. The main

contributors to air pollution due to the shipping industry are sulphur oxides (SOx) and nitrogen

oxides (NOx) that relate to bunker fuel types and engine operation conditions. SOx pollutants

originate from the low-quality fuel typically used, as the contained sulphur entering the

combustion chamber is oxidized forming sulphur oxides. NOx pollutants are also produced in the

combustion chamber from the nitrogen (N2) and oxygen (O2) contained in scavenge air by an

extremely complex formation process, mainly at high temperature and long residence time.

The International Maritime Organization (IMO) and local authorities have adopted several

regulations in order to protect environmentally sensitive sea areas, named as Emission Control

Areas (ECAs). Therefore, there must be interventions both for the exhaust gas treatment and

regarding the fuel used in the engine in order to comply with the IMO’s regulations and

regulations within ECAs. Even if a vessel is not calling at any port in an ECA, the vessel must

still comply with its requirements when passing through an ECA. There are currently four

established ECAs and some others into consideration for future establishment, as seen in Figure

1-1.

According to IMO’s MARPOL convention, the four currently established ECAs are:

▪ Baltic Sea area – as defined in Annex I of MARPOL (SOx only)

▪ North Sea area – as defined in Annex V of MARPOL (SOx only)

▪ North American area (entered into effect 1 August 2012) – as defined in Appendix VII

of Annex VI of MARPOL (SOx, NOx and Particular Matter) and

▪ United States Caribbean Sea area (entered into effect 1 January 2014) – as defined in

Appendix VII of Annex VI of MARPOL (SOx, NOx and Particular Matter).

Figure 1-1: Established and possible future Emission Control Areas.

7

Regarding SOx emissions reduction, the most realistic methods are the switch to higher-quality

fuels, low in sulphur content and generally referred to as lower-sulphur distillates, the usage of

exhaust gas cleaning systems, referred to as scrubbers, and the use of LNG. Other solutions, such

as use of alternative fuels (ammonia, biofuels, etc.), are also investigated for the near future.

Regarding the NOx emissions reduction, the use of exhaust gas cleaning systems such as selective

catalytic reduction (SCR) or exhaust gas recirculation (EGR) are considered to be a necessity for

seagoing ships.

Focusing on the SOx emissions reduction, the switch to lower-sulphur distillates is partially

proved as the measure that generally carries the lowest capital costs, as the modifications to the

vessel are smaller than in the other cases and lower-sulphur distillate fuels are now in principle

available worldwide. The major issue with lower-sulphur distillates has to do with the price at

which they are available and the price spread between low-sulphur fuels and heavy fuel oil.

Exhaust gas cleaning systems make use of chemical processes to clean the ship exhausts of

sulphur up to the regulatory limits. While scrubbers are a well-tested technology on land, their

use at sea is not well established yet. Maritime scrubbers are large pieces of equipment and their

use often requires detailed technical studies and carries relatively high installation cost, as well as

operational and maintenance costs. Exhaust gas cleaning systems for NOx emissions reduction

can be combined with each technology or method used for SOx emissions reduction, and the

choice between them is declared by the designer and the owner.

Figure 1-2: IMO limits for reduction of SOx emissions [1].

Concerning NOx emissions, IMO has set three Tiers [1], based on the ship construction date and

referring to engine certification according to specific NOx production. The Tier III controls are

applied only to ships operating in ECAs established to limit NOx emissions, while outside such

areas the Tier II controls are applied. IMO’s target of introducing Tier III is to reduce NOx

emissions inside ECAs to a total rate of 75%, as shown in Figure 1-3.

Figure 1-3: IMO Tiers for reduction of NOx emissions [1].

8

Carbon dioxide (CO2) is a main product of perfect hydrocarbon combustion process. However, it

is a gas responsible for the greenhouse effect (Greenhouse Gas or GHG). Carbon monoxide is a

product of incomplete hydrocarbon combustion and is also considered as GHG. The production

of these substances is intensified for fuels with large number of carbon atoms in their molecules,

such as marine fuels, which are hydrocarbon mixtures. Reduction of GHG emission can be

achieved by optimization of the combustion process or by consumption of hydrocarbons with

smaller carbon chains, such as LNG, or alternative fuels, such as ammonia, which is carbon free.

In conclusion, the solutions suggested for the reduction of ship emissions are several and it is an

owner’s or designer’s choice which path to follow. The present work focuses on LNG, a fuel that

can provide significant advantages by meeting requirements, offering competitiveness and

reducing GHG emissions.

1.2 Liquified Natural Gas

Liquified Natural Gas (LNG) is considered a superior marine fuel providing the best option to

improve air quality and is the only marine fossil fuel that advances the greenhouse gas reduction

objectives of the shipping industry [2]. According to DNV-GL [3], LNG reduces NOx emissions

by up to 80% and almost eliminates SOx and Particulate Matter emissions. Furthermore, GHG

emissions can be reduced by up to 23% with modern engine technology optimizing the

combustion process. Although LNG has several advantages regarding the reduction of ship’s

emissions, its use as a marine fuel faces difficulties associated with the storage and transportation

at low temperatures.

LNG is basically a hydrocarbon mixture of small size carbon chains: methane, ethane, propane

and butane. The mixture components depend on its origin and way of extraction. Commonly, the

LNG mixture consists up to 98% v/v by methane, thus the present study deals only with the

methane combustion process. The global chemical reaction of methane burned in air is:

CH4 + 2λ ∙ (O2 +
79

21
N2) → CO2 + 2H2O + 2λ ∙

79

21
N2 + 2(λ − 1)O2 , for λ ≥ 1

where λ=1/φ is the air-fuel ratio. If λ<1, corresponding to rich methane-air mixtures, the oxygen

is not sufficient to oxidize all available methane into carbon dioxide, thus resulting in a complex

reaction mechanism containing carbon monoxide in the products.

1.3 Motivation and Objectives of Present Study

Towards a wide adoption of LNG combustion technology in the marine industry, computational

tools for simulating methane combustion, or supporting and optimizing methane combustion

simulations should be developed and validated. Methane-air mixture combustion is not described

by a one-step global reaction as mentioned above, but by a detailed kinetics mechanism containing

a vast number of species and reactions. Therefore, numerical simulations of methane combustion

require the solution of numerous differential equations illustrating the reactive flow. In the context

of the present study, a neural network mechanism is developed, in order to reduce computational

cost of chemistry integration for CFD simulations of methane combustion process, as chemistry

term integration accounts for the largest portion of execution time.

9

CHAPTER 2: Chemistry Acceleration

2.1 Chemistry Acceleration in Computational Fluid Dynamics

Numerical simulations are essential in the study of reactive flows, such as combustion. Reactive

flows refer to fluid flows with chemical reactions occurring either within the fluid phase, at the

interface between different fluid phases (e.g. spray combustion) or at interphases to solids (e.g.

catalytic combustion). To simulate a reactive flow, a Strang-based splitting scheme is often

applied to deal with the governing equations, supposing a loose coupling between flow field and

chemistry. The decoupling of governing equations [4] can be expressed as:

dΦ

dt
= M(Φ) + S(Φ)

where Φ is the vector of thermochemical composition, specifically containing pressure,

temperature and species concentrations, and M and S represent the transport and the chemistry

terms, respectively.

The transport term, including convection and diffusion, is described by second-order partial

differential equations (PDEs). The chemistry term is described by first-order ordinary differential

equations (ODEs) and can be expressed as:

dΦ

dt
= S(Φ)

With such a splitting scheme, the integration of the chemical term is separated from transport and

at each time step the CFD solver first deals with the transport equations for all computational cells

and subsequently integrates the chemical kinetics equations. The calculated transport and

thermochemical properties are then evaluated before proceeding to the next time step. An

overview of the aforementioned methodology is presented in Figure 2-1, taken from [4]. The

bottleneck of reactive flow simulations seems to be the direct integration of chemistry, as it

occupies a large portion of total CPU time, approaching rates even of 90%, depending on the

complexity of the kinetic mechanism.

Figure 2-1: Flowchart during a time step of a reactive flow simulation [4].

10

Detailed chemical kinetics are necessary for reliable predictions of flames and emissions.

However, accurate simulations with detailed chemical mechanisms describing the combustion

process typically involve hundreds of species and hundreds to thousands of reactions, hence

inducing major challenges even for the most powerful computational facilities. These challenges

include the large number of coupled transport equations resulting from coupling a detailed

kinetics mechanism with a CFD code, the intrinsic non-linearity of equations because of reaction

rates expressions described by power-law and exponential terms, and the stiffness of these

ordinary differential equations due to the wide spectrum of characteristic evolution time-scales of

the species involved in detailed chemistry. Due to the non-linearity and stiffness of chemistry

ODE systems, implicit ODE solvers are mandatory, which however are expensive and their

computational cost increases following a power-law with the number of species. Furthermore, the

ODE system has to be solved in each computational cell at every time step, hence adding CPU

cost of direct integration. Nevertheless, direct integration can be performed for relatively simple

fuels. Another category of ODE solvers is stiff integrators, which are more expensive, but allow

for longer time steps.

Several strategies for chemistry integration have been developed to overcome these challenges.

One should be able to efficiently use large detailed kinetic mechanisms and easily integrate them

in existing numerical codes in order to access the desirable rate of accuracy, while retaining the

lowest possible computational cost. Some methods dealing with the aforementioned impediments

include reduction of chemical complexity, reduction of number of reactive environments and

storage/retrieval methodologies for acceleration of ODE integration [4].

Reduction of chemical complexity refers to reduction of chemical mechanisms in order to

generate skeletal or reduced mechanisms. A general mechanism reduction can be achieved by

removing species and reactions from the initial detailed mechanism, which are considered

inconsequential for the description of the phenomenon, and their absence will not significantly

decrease the accuracy of results. Other techniques classify the thermochemical states met in a

simulation, group the species into clusters and apply a local reduction of chemistry in each

respective subdomain.

Dynamic Adaptive Chemistry (DAC) and Sample-Partitioning Adaptive Reduced Chemistry

(SPARC) are some prominent techniques used for local reduction of chemistry. The word

“adaptive” refers to the fact that no a priori knowledge regarding simulation conditions is

required. DAC reduces the detailed mechanisms into sub-mechanisms at each computational cell

and at each hydrodynamic step of the calculation, during the simulation (on-the-fly) [5],[6]. On

the other hand, SPARC creates a library of reduced mechanisms during a pre-processing step (off-

line), covering the thermochemical states expected to be visited. During the CFD simulation, each

cell is classified and a proper reduced mechanism from the library is applied in order to construct

the describing kinetics equations and subsequently execute the chemistry integration.

Reduction of the number of reactive environments is basically the grouping of cells modeling

based on similar thermochemical conditions. This leads to reduction of the total number of ODE

systems that need to be integrated, as they are solved for each group of thermochemically similar

cells, thus resulting in a lower computational cost. The chemical kinetics equations based on

cluster averaged state variables are solved and the cluster averaged solution is then mapped to

each individual cell, preserving properties such as temperature and species stratification.

Mechanism reduction where the number of species and reactions is reduced systematically is an

important research area, and is usually the first choice regarding chemistry acceleration. Some

other interesting techniques aim directly at acceleration of ODE solution, by improving or

replacing the solvers. In this category belong storage and retrieval methodologies, which

11

essentially reduce the number of direct ODE integrations through tabulating and re-using

solutions. Thermochemistry is precalculated, and the values of thermochemical variables at the

end of a specific time are recorded and stored as a function of the thermochemical state at the

beginning of the time step. During the simulation, the table is scanned and interpolated in order

to calculate and retrieve the desired thermochemical state.

A practical and often used tabulation method is the In Situ Adaptive Tabulation (ISAT). Its main

characteristics are the storage of information in a binary tree structure, the restriction of tabulation

into only the region accessed by the specific problem (“in situ”) and the compromise between

accuracy and number of tabulated points (“adaptive”) in order to minimize the storage

requirements of the high-dimensional state space visited by conventional tabulation methods

[6],[7].

Chemistry Agglomeration is also a method used for reduction of time for solving the single ODE

systems. Specifically, the chemistry integration is not executed in a single step, but is split in a

sequence of ODE integrations of a cluster of species. A clustering algorithm is assigned in each

cell of the simulation, grouping together species with strong interactions. Chemical kinetics ODEs

are solved in each cluster and afterwards the solutions are coupled together to evaluate the final

thermochemical state after the specified time step in each cell [4].

Chemistry acceleration via Machine Learning methods is a relatively new field (see, for example,

[8] for an introduction in this technique and the recent work of S. Rigopoulos [10], [11], [17],

[18]), thus not yet mature, with significant potential benefits to be further explored. Machine

Learning methods, such as unsupervised clustering and deep learning networks essentially replace

the standard ODE solver for the execution of chemistry integration. The available variety of

Machine Learning methods and their intrinsic flexibility to sufficiently deal with non-linear,

multi-dimensional characteristics makes them a notably useful tool for reactive flow simulations.

Artificial Neural Networks (ANNs) are an evolution of Machine Learning, most of them falling

into the category of Deep Learning. Further examination of this terminology is presented in

Chapter 3: Machine Learning of the present study. The application of Artificial Neural Networks

for chemistry acceleration and the substitution of conventional ODE solvers is a procedure

consisting of four steps:

1. The first step is data generation, which will be used for training the ANN. The training

dataset is obtained either from previous simulations of the same combustion problem or

via a simpler “canonical” problem.

2. The next step is data preprocessing in order to filter and remove outliers. Usually, the

ANN which will be applied is sensitive to feature scaling. Thus, pre-scaled dataset may

also result in more robust predictions.

3. Subsequently, the ANN type and architecture is defined. ANN type refers to how the

information flows in the network, while ANN architecture is a hyperparameter to be

defined and is selected during a trial-and-error process targeting a compromise between

accuracy and computational cost.

4. Finally, the ANN is trained, meaning that its weights are adjusted in such a way that it

sufficiently learns and predicts patterns of the input data. The trained ANN is then stored

and called during the simulation.

In order to achieve satisfactory accuracy, multiple or more complex ANNs can be exploited, at

the expense of higher computational cost. A solution to this problem can be found by clustering

the state space. In combustion simulations, it is possible to identify several zones where the rate

of change of the relevant variables may differ widely. By applying proper unsupervised clustering

12

algorithms, the state space can be divided into subdomains that contain thermochemical

conditions close to each other. An ANN-regressor is then assigned to each cluster, reducing the

complexity and the computational cost of the previous proportion. Consequently, in each case,

the selection of ANN configuration is based on the problem which will be modeled, as well as its

complexity, and the researcher decides on the compromise between accuracy and computational

cost.

An overview of the aforementioned methods for chemistry acceleration is presented in the

following diagram (Figure 2-2), also taken from [4].

Figure 2-2: An overview of chemistry acceleration techniques in CFD simulations [4].

The present study focuses on chemistry acceleration via Machine Learning methods. Both

unsupervised clustering and deep learning neural networks are studied and evaluated in terms of

ease of use, accuracy and computational cost reduction for chemistry integration.

2.2 Literature Review

Numerous studies have been performed on the topic of adaptive chemistry and tabulation of

combustion via Artificial Neural Networks. Several alternative techniques can be found in the

literature associated with avoiding the numerical integration of stiff thermochemical equations

during the simulation of combustion processes, recently by applying neural network mechanisms.

The present study focuses on the Self-Organizing Map – Multi-Layer Perceptron (SOM-MLP)

concept, firstly introduced by Blasco et al. [8] (to the author’s knowledge). According to this

implementation, the SOM is employed for the unsupervised partitioning of the state space into

subdomains, while a specialized MLP is assigned to fit the thermochemical states belonging to

each subdomain. The concept was evaluated on a constant pressure partially stirred reactor (PaSR)

with a reduced methane-air mechanism derived from GRI 2.11 [56].

13

A recent work was conducted by An et al. [9] on the SOM-MLP concept for acceleration of

chemistry calculation. Compared to previous studies, the chemical reaction mechanism in this

study is a complex though skeletal mechanism, containing 41 species and 132 reactions for

hydrogen / carbon monoxide / kerosene supersonic combustion. The training data are generated

by RANS simulations of a rocket-based combined cycle (RBCC) combustion chamber, where

each cell is modeled as a PaSR. A splitting scheme is applied in order to solve separately the

chemical and the transport term. The proposed ANN-based mechanisms are validated through

LES simulations of the RBCC combustor.

Franke et al. [10] studied tabulation of methane turbulent combustion by ANNs trained via a

canonical problem. The state space is clustered into subdomains using the SOM and an MLP is

assigned to each subdomain for regression and time integration of the kinetics. The training data

are generated through simulations of an ensemble of igniting/extinguishing laminar flamelets to

anticipate the compositions visited in a typical simulation of a non-premixed turbulent flame. The

approach is employed to tabulate a Rate Controlled Constrained Equilibrium (RCCE) - reduced

mechanism based on GRI 1.2 [56]. The methodology is then verified through LES-PDF

simulations of Sydney flame L.

A previous study in this context was performed by Chatzopoulos and Rigopoulos [11], who

proposed a similar SOM-MLP approach for the chemistry tabulation and prediction of temporal

evolution of two non-premixed and non-piloted CH4/H2/N2 turbulent flames (DLR-A and DLR-

B). The training data are also generated through simulations of a canonical problem, specifically

non-premixed laminar flames, by recording the compositions of RCCE leading species. The

methodology is then evaluated via RANS-PDF simulations.

A work with many similarities to the current study is presented in Chi et al. [12]. They developed

ANNs for the tabulation of chemical reaction terms in DNS of both igniting and established

premixed methane/air flames. The flame structure is divided into four clusters based on the

chemistry evolving locally in each of them, after executing trial-and-error tests. The fact that the

whole training process takes place on-the-fly, so that the obtained ANN is properly adapted to the

specific configuration considered, is a point to be emphasized that differentiates this approach

from the current study. An ANN is assigned to each cluster and it is fitted properly during the

simulations in order to predict the mass production rate of each species. The detailed kinetic

mechanism GRI 3.0 is used for the simulations [56], which are performed by a DNS solver

coupled with CANTERA.

All aforementioned studies focus on the SOM-MLP concept. Specifically, the state space is a

priori clustered with an unsupervised machine learning method and an MLP regressor is assigned

to each one of the obtained clusters in order to predict either the thermochemical state after a time

step or species’ production rates. Other related studies deal with the partitioning of state space for

adaptive chemistry applications, such as generation of reduced mechanisms, while others consider

the direct assignment of ANNs without previous clustering of input space.

D’ Alessio et al. [13], [14] deal with the so-called Sample-Partitioning Adaptive Reduced

Chemistry (SPARC) methodology, which basically is state space partitioning for generation of

locally reduced mechanisms. A 2D unsteady co-flow laminar diffusion flame of methane –

nitrogen mix is studied and a respective detailed mechanism is used. The clustering methods

proposed are Local Principal Analysis (LPCA) and a hybrid SOM – K-Means which are compared

in terms of accuracy and speed up of adaptive chemistry simulations. An interesting point drawn

from this implementation is the efficient application of K-Means method on SOM feature maps

in order to group the closest neurons into clusters.

14

Zhang et al. [15] developed a binary ANN structure in order to consider the drastic changes of

the species vector gradient in low-temperature chemistry and high-temperature chemistry. The

network architecture is vast and complex, including a large number of neurons per hidden layer,

in order to model the homogenous autoignition of dimethyl-ether / air mixture with only two

ANNs. Each ANN executes the time integration for a state vector, containing temperature,

pressure and species mass fractions. A recently developed neural network architecture consists of

sub-networks, each responsible for the prediction of specific features, without pre-partitioning of

state space. For each case, the relative thermochemical state vector is used as network input.

In this framework, Sharma et al. [16] attempted with success to evolve the chemical source term,

after a splitting operation. They developed 12 MLPs in total, one for temperature, one for pressure

and the remaining 10 for each species mass fraction. Their model is demonstrated with a

hydrogen-oxygen reaction, while the simulations are performed in a perfectly stirred reactor

(PSR). An important notation from this work shows that data generated from CANTERA

simulations are sparse at low temperatures and, hence, the trained ANNs may lead to lower

prediction accuracy.

Departing from his previous works, the research team of Rigopoulos has been involved in various

recent studies proposing separate ANNs for each species over the entire training dataset, without

previous partitioning of state space. Readshaw et al. [17] focused on the construction of ANNs

aiming at generalization rather than specialization, in order to improve performance by obtaining

training data from a canonical combustion problem of one-dimensional laminar flamelets [11]

and then augmenting the training dataset with randomly generated data to better cover the state

space. Several ANN architectures combining SOM and MLPs were considered and compared.

The ANNs are applied to the tabulation of the GRI 1.2 mechanism [56], containing 32 species

and 177 elementary reactions. The MLP error analysis shows that the assignment of one MLP per

species outperforms the SOM-MLP concept of pre-clustering the state space in terms of

generalization. Furthermore, it is shown that the most meaningful clusters are biased to the major

variables, while the minor species play a less important role. The most efficient architecture seems

to be the one with separate MLPs for the prediction of concentration change of each considered

species and no previous partitioning of the state space, but it requires a slightly higher

computation time than the SOM-MLP concept (one MLP attached to each SOM subdomain and

integrating all the features at once). The latter is validated with LES-PDF simulations on the

Sydney Flame L.

An interesting note extracted from this study is that proper clustering of the Self-Organizing Map

seems favorable for the ANN precision and performance, in the case of separate MLPs dealing

with each considered species. By decreasing the number of SOM subdomains, the mean MLP

error is generally improved, even though poorer performance is observed for minor species.

Ding et al. [18] continued the above implementation [17] on tabulation of the GRI 1.2 mechanism

[56], in order to enhance the capacity for generalization and to improve the accuracy of ANN

prediction. Another method for random data generation is proposed, endowing the generalization

ability of ANN, while multiple MLPs are applied to states featuring different dynamics, retaining

the concentration change of each species as the target output. MLP error analysis emphasizes that

when using only a single MLP responsible for a specific species over the whole dataset may result

in similar absolute errors for all predictions, but this leads to large relative errors for outputs with

small magnitude. The only sufficient solution seems to be the training of separate MLPs

depending on the output range of concentration change. In other words, the multiple MLP

approach divides the domain based on the magnitude of concentration change, while the SOM-

MLP concept divides the domain via unsupervised clustering. The HFRD – MMP (hybrid

15

flamelet/random data – multiple multilayer perceptron) approach can be efficiently applied in a

variety of chemical kinetics simulations.

Finally, a recent different approach by Owoyele and Pal [19] presents the application of Neural

Ordinary Differential Equations (NODEs) for chemical kinetics solvers. Instead of training the

neural networks on thermochemical states of the system, their weights are adjusted accordingly

to minimize the difference between the predicted and the actual ODE solutions, in order to reduce

the propagating error during time integration.

2.3 Thesis Structure

In the present thesis, an artificial neural network approach is developed for reducing the

computational time required for the integration of chemistry ODEs in CFD simulations. The thesis

structure is outlined below.

Chapter 3 introduces the Machine Learning methods, and focuses on the ones applied in the

present study. The theoretical background of each method is examined, and techniques regarding

the network hyperparameters selection are presented. Additionally, Chapter 3 describes the way

of coupling the selected methods in order to develop the final hybrid SOM – K-Means neural

network, which undertakes the state space clustering.

Chapter 4 serves as an introduction to basic Chemical Kinetics theory. The ODE system

describing the chemistry term in CFD simulations is generated via the Law of Mass Action and

Principle of Energy Conservation. The canonical combustion problems of premixed laminar

flame propagation and homogeneous reactor time evolution are analyzed. Finally, the simulations

performed in order to generate training data for the neural networks are described in detail.

Chapter 5 examines the development of the hybrid SOM – K-Means neural network responsible

for clustering the state space. The sample generation process is presented, and both training

processes of SOM and K-Means neural networks are described. The final results are physically

evaluated through observations on distribution maps, created by the neural network.

Chapter 6 refers to the first ANN developed in the present study for the purposes of state space

regression. It receives a composition state vector as an input and the target outputs are the heat

release rate and the species net production rates. The sample generation process is described, and

the selection of the network hyperparameters and the training process are presented. Finally, the

prediction results for each ANN developed are assessed.

Chapter 7 refers to the second ANN developed in the present study for the purposes of state space

regression. It receives a composition state vector as an input and the target output is the

composition state vector after a specified time step. In other words, it executes the time integration

of chemistry. Similarly, the sample generation process is described, and the selection of network

hyperparameters and the training process are presented. Finally, the prediction results for each

developed ANN are assessed.

Chapter 8 concludes the present work by summarizing the observations and results of this study.

Finally, suggestions for future work, continuing the current thesis, are provided.

16

CHAPTER 3: Machine Learning

3.1 Introduction to Machine Learning

Artificial Intelligence (AI) was inspired by characteristics of brain function and refers to the

simulation of human intelligence processed by computer systems. The core characteristic of AI

is its ability to rationalize and take actions that have the best chance of achieving a specific goal.

Machine Learning (ML) is a subset of AI and refers to computer algorithms that execute tasks

without given specific instructions, but by learning and improving automatically through

experience. An algorithm is considered to learn through experience regarding a specific task when

its performance on the task is continuously improving. The three main categories of ML are:

1. Supervised Learning: The algorithm receives input and target data in order to learn the

rule that best matches the inputs with the results. Requires the human to define the labels

first. It includes classification and regression methods.

2. Unsupervised Learning: The algorithm must itself find patterns in input in order to create

a structure predicting the outputs from the inputs. It includes clustering and

dimensionality reduction methods.

3. Reinforcement Learning: The algorithm interacts with a dynamic environment, receiving

rewards for good “responses” and “punishments” for bad ones.

An evolution of ML is Deep Learning (DL), inspired by information processing and distributed

communication nodes in biological systems. The adjective “deep” refers to the use of multiple

layers in the network, connected together like a web. Its main intrinsic abilities are handling of

large data and enabling machines to process data in a non-linear approach.

Artificial Neural Networks (ANNs) is a DL method. They are computational systems inspired by

the function of biological neural networks of the human brain. They do not require prior

fundamental understanding of processes or phenomena, as they are able to identify and learn

correlated patterns between sets of inputs and targets. They are also able to predict outcomes from

new unseen input data, if properly trained [23]. Their architecture consists of synapsed neurons

in a set of layers. Each connection is assigned a weight that is adjusted during the training process.

The two main categories of ANNs are:

▪ Feed–Forward Neural Networks: information flows only forward.

▪ Recurrent Neural Networks: information flows both forward and backward, due to loops

created by connections between neurons.

According to Cybenko’s universal approximation theorem, any linear or non-linear function can

be approximated by a sufficiently deep ANN with an adequate number of hidden layers and

neurons per layer [24]. The generality of universal approximators, however, comes with the price

that each input affects the output in some complex and intransparemt way, rendering

interpretability of the fitted model difficult [25]. In general, for a network to be able to generalize,

it should have fewer parameters than the data points in the training set. In neural networks, one

wants to use the simplest network that can adequately represent the training set [26].

The Machine Learning methods applied in this study are Principal Component Analysis for

dimensionality reduction, Self-Organizing Maps and K-Means for clustering the input dataset,

and Multi-Layer Perceptrons for regression and prediction, which are a class of Feed–Forward

Neural Networks, composed of multiple layers of perceptrons with threshold activation. Further

description of these methods is presented in the following paragraphs.

17

3.2 Neural Network for Clustering

A hybrid neural network is developed for the purposes of clustering the input data space for the

current implementation. First, Principal Component Analysis (PCA) is applied for dimensionality

reduction and selection of initial values for the neurons’ weights. The main clustering method

employed is Self-Organizing Maps (SOMs), which are able to deal with high dimensional data

and create distribution maps for each feature. For certain applications, the number of clusters

obtained by SOMs may be higher than the desirable. Therefore, subsequently, the K-Means

clustering method is coupled and executed on SOM neurons in order to group them. All of these

ML techniques belong to unsupervised methods, because the algorithm itself finds patterns and

develops a proper structure.

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical dimensionality reduction technique, in which

a number of related variables are transformed to a smaller set of uncorrelated variables. It is used

to decompose a multivariate dataset in a set of successive orthogonal components, that explain a

maximum amount of the variance. It is noted that reducing the number of variables of a dataset

naturally comes at the expense of accuracy, but a trade between accuracy and simplicity is finally

achieved [27],[28].

A standardization method usually precedes the Principal Component Analysis, so that each of the

input variables contributes equally to the analysis, and possible outliers are detected and removed.

Let X be a matrix containing the observations, where each observation is described by n variables.

The PCA algorithm for matrix X consists of 3 steps:

Step 1: Compute the dataset covariance matrix. The covariance matrix is a nxn symmetric matrix

that has as entries the covariances associated with all possible pairs of the input variables. By

definition, the main diagonal of the covariance matrix includes the variances of the n input

variables. Furthermore, since the covariance formula is commutative (Cov(a,b) = Cov(b,a)), the

upper and the lower triangular portions of the covariance matrix are symmetric. The calculation

formula is:

S =
1

n − 1
∙ XT ∙ X

Step 2: Decompose the covariance matrix into:

S = A ∙ L ∙ AT

where:

● L is a diagonal matrix containing the eigenvalues of the covariance matrix S.

● A is a nxn matrix containing the eigenvectors of the covariance matrix S. These

eigenvectors are called Principal Components (PCs), they are uncorrelated and

constructed as linear combinations of the input variables. PCA assigns the largest possible

variance (maximum possible information) as the first component, the maximum

remaining variance in the second and so on (Figure 3-1). The variance is quantified by

the eigenvalues λi contained in the diagonal matrix L, and the percentage of variance

contained in each PC is 𝜆𝑖/ ∑ 𝜆𝑖𝑖 .

18

Figure 3-1: Example of percentage of variance (information) contained by each Principal

Component [29].

Step 3: Project the dataset matrix X onto a lower-dimension space, on the basis of principal

components. Dimensionality reduction comes by considering only a subset of PCs, depending on

the amount of variance accounted for. The most energetic eigenvectors are assigned as columns

of a non-square matrix Aq, and the projection Zq of the dataset matrix X follows the formula:

Zq = X ∙ Aq

Subsequently, the reconstruction of the original dataset in a q-dimensional space can be conducted

by inverting the above equation:

Xq = Zq ∙ Aq
T

It is important to note that the PCs are less interpretable and many times do not have any real

meaning. Geometrically speaking, they represent the directions of the data that explain a

maximum amount of variance (information). The projection of dataset by PCA is depicted in

Figure 3-2.

Figure 3-2: Dataset projection of a 3-dimensional space into two PCs by means of Principal Component

Analysis.

19

Each PC is associated with a certain percentage of variance by the magnitude of its associated

eigenvalue. Therefore, it is useful to measure the global variance explained by a selected subset

of PCs by defining the ratio:

tq =
∑ λi

q
i=1

∑ λi
p
i=1

where q is the chosen number of PCs, p is the total number of PCs and λi is the ith eigenvalue

obtained from the decomposition of covariance matrix S. The largest the ratio, the highest the

amount of information described by the selected number of PCs [30].

Principal Component Analysis is a linear transformation, while combustion is a highly non-linear

phenomenon. Its intrinsic linearity represents a major problem of the technique to deal with non-

linear processes in a proper way. Previous studies have proposed Local Principal Component

Analysis (LPCA), which essentially is performing PCA in each cluster of an already partitioned

dataset space [13],[14]. In the present study, PCA is used to initialize the neurons’ weights of the

Self-Organizing Map neural network, by decomposing the dataset into the first two Principal

Components.

3.2.2 Self-Organizing Map

Among the architectures and algorithms suggested for artificial neural networks for clustering,

the Self-Organizing Map (SOM) has the special property of effectively creating spatially

organized internal representations of various features of input observations and their abstractions

[31]. Based on brain behavior under visual and memory stimulation, SOMs are a type of neural

network which use competitive unsupervised training, as proposed by Kohonen [31],[32]. Since

their introduction, they have been applied in many research fields, mainly because of their

intrinsic ability to learn from high-dimensional input data, resulting in a low-dimensional (usually

bi-dimensional) output layer.

Most applications of SOMs are based on regular two-dimensional grids. The map structure

consists of neurons, capable of presenting high-dimensional data received as low-dimensional

data on a two-dimensional array. It is important to notice that each map neuron is connected to

each input manifold, and map neurons are not connected to each other [33]. The neurons are

basically vectors, having weights of the same dimensions as input data and acquired during the

training progress (Figure 3-3).

Figure 3-3: SOM grid adaptation through training process, on a two-dimensional array [31].

20

The learning progress of SOM consists of three stages; competition, cooperation and synaptic

update. The competition phase is responsible for identifying the map region which is most

activated by a specific input data. Such a region can be defined as the neighborhood of the most

activated neuron, the so-called winning neuron. In the cooperation phase, the influence of the

winning neuron on its neighborhood is defined. Finally, in the synaptic phase, the winning neuron

updates its weight value, leading to new and similar input data to activate the neuron again. At

the same time, neurons belonging to the neighborhood also change their weight values to a rate

prescribed from SOM hyperparameters. This iterative progress is called mesh adjustment, and

results in the representation of the feature space on low-dimensional grids. The learning progress

algorithm is iterative for each input data vector X and consists of the following steps:

Step 1: Initialize the weight values for each neuron. The most common method is random

initialization, but in this case, the training progress may not converge as fast as desired. A more

robust technique is drawing a random fold of input data and setting the initial weight values

accordingly.

Step 2: Determine the winning neuron, which is the neuron with the minimum Euclidean distance

from the input data vector X in the high-dimensional space. Let mi be the position of neuron i and

mc the winning neuron position, which is basically a vector containing the weights for each

dimension. The Euclidean distance between a n-dimensional input data vector X and a random n-

dimensional neuron mi is defined as:

d = √‖X1 − mi,1‖2 + ‖X2 − mi,2‖2 + ⋯ + ‖Xn − mi,n‖2

SOM seeks the smallest possible distance in order to define the winning neuron mc:

d = argmin{‖X − mi‖} , ∀i

Step 3: Update the weight values (or position respectively) of the winning neuron, as well as

neurons included in its neighborhood by:

mi(t + 1) = mi(t) + hci(t) ∙ [X(t) − mi(t)]

where:

● t is the iteration step,

● mi(t) is the position of any of the SOM’s neurons (i is the spatial index of the grid) at the

iteration step t, and

● hci(t) is the neighborhood function. This function resembles the kernel that is applied in

usual smoothing processes and its use aims to the determination of which and to what

degree neurons will update their weight values. The subscript c refers to the winning

neuron in the grid, namely the one with the position mc, implying that the function is

defined around this neuron. As a general approach, it is recommended that the closest

neurons to the winning neuron update their weight values to a high degree, while the

furthest neurons should be affected the minimum. Kohonen [32] suggested the so-called

bell curve, multiplied with a monotonically decreasing scalar function, as a

neighborhood function. A commonly used bell curve, also applied in the current study,

is the Gaussian distribution, given by the formula:

hci(t) = a(t) ∙
1

√2π ∙ σ2(t)
∙ exp {−

‖mc(t) − mi(t)‖2

2σ2(t)
}

21

where σ(t) is a monotonically decreasing standard deviation function, the so-called

neighborhood radius, and a(t) is also a monotonically decreasing function, named

learning rate. The justification on the choice of monotonically decreasing functions lies

on the robust convergence of the training process and the reduction of weight

modification as the iteration index increases. An illustration of the above features is

represented on Figure 3-4.

Figure 3-4: Determination of winning neuron’s neighborhood (left) and definition of neighborhood radius

(right) [34].

The SOM algorithm assumes that the aforementioned process converges and produces the desired

ordered values for the models after a specified number of iterations. During the training, the SOM

forms an elastic net that enfolds the cluster of the input data (Figure 3-5). The learning process

finishes when either the mesh update is smaller than a pre-defined threshold, or the maximum

number of iterations is reached. At this point, convergence has been achieved and the mesh can

represent the feature space in low-dimensional grids. Each SOM neuron’s location is fixed and

each neuron represents the center of a cluster. Therefore, new input data can be classified by the

nearest neuron (winning neuron), forming a set of clusters on the low-dimensional grid.

Figure 3-5: Training process of SOM (black grid) on a dataset cluster (blue color). At any iteration, an

input data (white point) excites a specific neighborhood (yellow color) and the SOM adapts properly its

nodes, until convergence is achieved (right illustration).

From the above description, an important and useful property of SOMs derives: neurons are

connected to adjacent ones by a neighborhood relation. Therefore, data points lying near each

other in the input space are mapped onto nearby winning neurons. In other words, SOM preserves

the input space topology [34]. The SOM quality evaluation is presented in a following paragraph,

but first an effective algorithm for speeding up the training process and the convergence of the

network is discussed.

22

Batch Training Process

A way of speeding up the training process is by using the batch computation algorithm. Let {X}

be a set of input data vectors and Ni be a neighborhood set of nodes. At the first stage of this

algorithm, each input data vector X is compared and assigned to a sublist, which is associated

with its winning neuron. Afterwards, the mean of X over neighborhood Ni is computed, which is

basically the mean of all vectors X that have been assigned into the union of all sublists in the

neighborhood Ni. A similar computation is executed above all winning neurons and their

neighborhoods. The final step consists of updating each neuron weights mi by their respective

means, in one concurrent computing operation over all nodes of the grid. This concludes an

updating cycle, instead of using only one input data vector X at each iteration t.

Quality Measures

It is essential to evaluate the quality of the resulting maps in order to ensure that the model is

indeed representative of the underlying data. Various measures have been proposed that quantify

the map performance on preservation of topology and neighborhood [35], as well as indicating

the training process convergence. Kohonen [31] proposes the quantization error (Qerror) as a

measure of the average distance between data points and their respectively winning neurons.

Another common quality measure is topographic error (Terror), which is a measure of how well

the structure of the high-dimensional input space is modeled by the low-dimensional grids of

SOM.

Let X be a specific input data and mc be the respectively winning neuron. For N total observations,

the mathematical formula of quantization error is:

Qerror =
1

N
∑ ‖X − mc‖

N

i=1

It is important to note that quantization error is on the same scale as the input data, and hence

shall only be used to compare and evaluate maps to each other rather than as a standalone

assessment of quality. In addition, it accounts for the relationship between the input data and the

winning neurons and not for the topographical organization of neurons. In other words,

quantization error only evaluates the local data structure.

For a more proper evaluation of SOM topography, topographical error shall be used. Let mc be

the winning neuron (best matching unit – BMU) of an input data and mc′ be the second best

matching unit in the map. If the neurons are next to each other, then topology is supposed to have

been preserved, else this is counted as an error. The formula to compute the topographical error

is:

Terror =
1

N
∑ f(t)

N

i=1

f(t) = {
0, if mc is next to mc

′
1, otherwise

}

where t is the iteration index. By definition, smaller values of Qerror and Terror indicate a better fit

and a satisfactory preservation of input space topology.

In this study, Self-Organizing Map neural network is applied as the basic clustering algorithm for

the input data. The input component space is high dimensional and a random initialization of

23

SOM may not lead to convergence of the training process. Therefore, Principal Component

Analysis precedes, in order to span the high-dimensional input data into its first two Principal

Components, and then randomly select bi-dimensional data weight values for the nodes of SOM.

Before the start of the SOM training process, the inverse transformation is applied in order to

compound the initial weight values back to the input high-dimensional space. This method is

called linear initialization and is expected to speed up the algorithm by orders of magnitude [32].

The generation of SOM is performed so that the reference map can subdivide the high-

dimensional input component space according to similarities in the data. Therefore, it surely

results in a large number of clusters spanned on two-dimensional maps. For certain applications,

the number of clusters obtained through SOM may be much higher. To reduce the number of

clusters, the K-Means algorithm offers an ideal method in order to group the SOM neurons into

a desirable number of clusters.

3.2.3 K-Means

The K-Means algorithm is an unsupervised Machine Learning method used to identify clusters in

a dataset. It belongs to partitional clustering methods, as it divides data in non-overlapping groups.

In other words, no object can be a member of more than one cluster, and every cluster must have

at least one object [37].

The core idea of the K-Means algorithm is to update the cluster center which is represented by

the center of data points, by iterative computation and the iterative progress will be continued

until a specified convergence criterion is met [38]. More specifically, this algorithm consists of

the following steps [39]:

Step 1: Select the number of clusters (groups) and randomly initialize their respective center

points. The center points are vectors of the same length as each data point vector. Let k be the

predefined number of clusters.

Step 2: Compute the distance between each data point and each cluster center and then assign

each data point to the cluster whose center is closest to it.

Step 3: Recompute the center of each cluster as the mean of all the vectors assigned in the cluster.

As a result, the cluster center is shifted by minimizing an error function, defined as the sum of

squared Euclidean distances between the set of observations belonging to the cluster and its

centroid:

E = ∑ ∑ ||xi − mj||
2

xi∈Cj

k

j=1

where xi is the ith component of the multi-dimensional data vector, Cj is the specific cluster and

mj is the cluster centroid, for j=1,…,k, where k is the predefined number of clusters. The

minimization is accomplished over all k clusters.

Step 4: Repeat the above steps for a fixed number of iterations or until convergence is achieved.

Convergence is defined when the positions of cluster centers do not change between two

consecutive iterations more than a user-defined threshold.

24

Both the initialization of K-Means algorithm during the first iteration and the clustering evaluation

at final iteration are represented on Figure 3-6. Initial and final cluster centers are noted with red

circles to make them more visible.

Figure 3-6: K-Means algorithm evaluation on discrete data objects [39].

The K-Means algorithm requires two user-specified parameters: the number of clusters and the

initial weights of cluster centroids, while Euclidean distance is usually used as distance metric

between dataset vectors and cluster centroids. As a result, K-Means finds hyper-spherical clusters

[40].

The most common technique for the initialization of cluster centroids is random initialization,

which causes the algorithm to be non-deterministic, meaning that cluster assignments will vary

for different executions, leading to local, non-optimal minima of error function. This depends on

the seed of the random algorithm. If the same seed is used, the resulting random sequence will be

the same. This intrinsic characteristic of K-Means method is treated to a specific degree by

running the algorithm multiple times and finally selecting the best clustering option, i.e. the one

characterized by the lowest error.

The main drawback of the K-Means clustering method is that the algorithm requires the number

of clusters to be a priori specified. Typically, K-Means is run independently for different values

of k (number of clusters), and the partition that appears the most meaningful to the dataset dealing

with is finally selected [40]. Generally, it is not possible to find any prescribed mathematical

criterion to efficiently set a priori the number of clusters, k. However, different indices have been

proposed in the literature to assist the choice of the optimal number of clusters. These indices

usually consider the capacity to separate data objects with maximum distance (external

evaluation) and the capacity of the data to gather together around the centroids, generating

maximal compact groups (internal evaluation) [36]. The most common indexes found in the

literature for the a priori determination of the number of clusters are the Silhouette Coefficient

and the Davies-Bouldin index.

First Iteration Last Iteration

25

3.2.3.1 Silhouette Coefficient

The Silhouette Coefficient allows for an appreciation of the relative quality of the clusters, as a

method of interpretation and validation of consistency within the clusters [43]. For a given data

sample, the Silhouette Coefficient is defined as:

s =
b − a

max {a, b}

where:

● a is the average distance between the sample and all other points of the same cluster, and

● b is the average distance between the sample and all other points of the nearest cluster.

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient

of each sample. By definition, this coefficient can achieve values in the range [-1,1]. The

minimum value (-1) appears when a>>b, meaning that the samples lie on the average closer to

the corresponding nearest cluster than their labeled cluster. This implies incorrect and overlapping

clustering. On the other hand, the maximum value (1) appears when a<<b, meaning that the

samples lie on average closer to their labeled cluster than the regarding nearest cluster. This

situation corresponds to a high dense clustering. An intermediate case occurs when Silhouette

Coefficient lies near zero. In this case, distance a≈b and hence it is not clear if each sample should

have been assigned to a specific cluster or to its nearest one.

In conclusion, the Silhouette Coefficient measures how well a sample has been classified. The

score is higher when clusters are dense and well separated from each other. Figure 3-7 is a

representation of intra-cluster and inter-cluster distances used for the calculation of the Silhouette

Coefficient.

Figure 3-7: Intra-cluster and inter-cluster distances for the calculation of Silhouette Coefficient [44].

26

3.2.3.2 Davies-Bouldin index

The Davies-Bouldin index is a similarity measure between two clusters, defined on a measure of

dispersion of one cluster and of dissimilarity between these two clusters. Similarity, or equally,

dissimilarity works as a measure that compares the distance between clusters with the size of the

clusters themselves (Figure 3-8).

Let Ci, Cj be two as similar as possible clusters, for i,j = 1,…,k, where k is the total number of

clusters. The mathematical formulation of the Davies-Bouldin index is:

DB =
1

k
∑ maxRij

k

i=1

, for i ≠ j

where Rij represents the average similarity between each cluster Ci and its most similar one Cj. Rij

is defined as:

Rij =
si + sj

dij

with:

● si the average distance between each point of cluster Ci and the centroid of this cluster,

commonly defined as cluster diameter and

● dij is the Euclidean distance between cluster Ci, Cj centroids.

By definition, the Davies-Bouldin index is symmetric and non-negative. The lowest possible

value is zero (0), which corresponds to a better partitioning, as the clusters are characterized by

the minimum possible similarity to each other.

Figure 3-8: Discovery of two similar clusters (left) with approximately equal cluster diameter and

distance between their centroids (right) [45].

It is important to be noted that the Davies-Bouldin index may result to an optimal partitioning

different from the one resulting from the Silhouette Coefficient, due to their different definitions.

In this study, both Silhouette Coefficient and Davies-Bouldin index are used for the clustering

evaluation analysis, and their results are evaluated by also taking into account the physics that

describe the phenomenon.

27

3.2.3.3 Clustering of Self-Organizing Map

The K-Means clustering method works properly for low complexity data, but seems not to be

ideal for high-dimensional data. The computational issue becomes critical when the application

involves large scale data, such as in the case of combustion. An immediate and tangible solution

is to pre-cluster the high-dimensional data and use the K-Means algorithm to group these sub-

clusters. In this study, the Self-Organizing Map neural network has already been introduced to

deal with combustion data clustering, and will be used to generate clustering maps for each

feature. Each cell on the 2D array-clustering map represents a sub-cluster.

Previous studies proposed clustering of the Self-Organizing Map (SOM). J. Vesanto and E.

Alhoniemi [41] firstly introduced SOM clustering by applying agglomerative and partitioning

algorithms. A predefinition of the number of clusters results by visual inspection of the unified

distance map (U-Matrix), which shows the distances between node vectors (neurons). Some

details of U-Matrix can be observed in Figure 3-9, for a SOM trained on the Iris dataset, a well-

known dataset for Machine Learning applications [42]. To select the best clustering among

partitions with different number of clusters, the Davies-Bouldin index was used.

Figure 3-9: U-Matrix of a trained Self-Organizing Map neural network on the Iris dataset. Light colors

depict closely spaced node vectors (neurons), and darker colors indicate more widely separated node

vectors [42].

Garcia et al. [34] and Brentan et al. [36] developed a Self-Organizing Map (SOM) coupled with

K-Means for implementation on water distribution and treatment monitoring. The data clustering

process consists of a two-stage procedure. The first step is SOM training, and next the acquired

node vectors are grouped to form the actual clusters. An initial idea regarding the number of

clusters in the SOM is also acquired by visual inspection of the U-Matrix, while Davies-Bouldin

index is used to evaluate the several structures obtained by K-Means. A major difference from

previous studies (e.g. [41]) is the application of K-Means algorithm on the dissimilarity matrix

rather than the SOM 2D array, in order to consider and emphasize the topography of the dataset.

In conclusion, by applying SOM as a clustering method, it is expected that the number of neurons

may be very high regarding the number of observations. Although SOM has the ability to

efficiently map any high-dimensional space, it could be undesirable for clustering purposes, as

the number of clusters may be overestimated and the number of observations in each cluster may

be too low to have any physical or statistical meaning. For this reason, SOM is coupled with the

K-Means algorithm in the current study, in order to group the closest neurons into clusters,

28

obtaining the prescribed or desired number of clusters required for the high-dimensional

combustion process.

The primary benefits of this two-level approach, in lieu of directly clustering the data, are the

reduction of the computational cost and the rough visual presentation and interpretation of clusters

on a 2D grid. Furthermore, clustering the SOM manually or grouping cells of the 2D array into

rectangular clusters may decrease the quality of clustering.

3.3 Neural Network for Regression

A Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural network (ANN), and

it is used in the present study for regression. It consists of at least three layers of neurons: an input

layer, an output layer and at least one intermediate hidden layer. The information propagates

through the network in a forward direction, on a layer-by-layer basis. In other words, if a random

neuron b takes an input from another neuron a, its output will not affect neuron a. Furthermore,

neurons belonging to a given layer are not connected with each other [46], [47]. The fundamental

structural element of MLP is the perceptron.

The perceptron can be considered as an element executing an algorithm for supervised learning,

utilizing linear binary classification tasks. Let x be a n-dimensional input vector. The perceptron

can learn a binary classifier called threshold function: a function that maps the input vector x to a

single binary output value f(x). For the simplest case, the threshold function is defined as:

f(x) = {
 1, if ∑ wixi + w0 > 0

n

i=1

0, otherwise

}

where w is a vector with real-valued weights, w∙x is the inner product and w0 is a weight constant

called bias. Depending on the sign of threshold function, the input data is assigned to a specific

class.

Figure 3-10: Structure of Perceptron [23].

A Multi-Layer Perceptron is a generalization of single layer Perceptrons. Its architecture consists

of multiple neurons represented as Perceptrons, organized into hidden layers and connected with

each other. Connections exist only between neurons from adjacent layers and not between neurons

belonging to the same layer. The first hidden layer is fed the information from the input data, and

the results are then applied as an input to the next hidden layer; and so on for the rest of the

network. Each neuron is designed to perform the computation of the function or discrete value

29

appearing at its output, which is expressed as the application of a continuous non-linear function

on the input signal and the synaptic weights associated with that neuron.

The final target is to assemble a MLP neural network to approximate a non-linear representation

from the input space RN to the output space Ro:

f(∙) : RN→ Ro

where N is the dimensionality of the input and o is that of the output. Given a set of features X

and a target Y, the MLP is assumed to learn and create a non-linear function approximator from

the input space RN to the output space Ro.

Figure 3-11: Structure of Multi-Layer Perceptron [23].

Let x be the N-dimensional input data vector and design a MLP neural network supplied k hidden

layers, each one having a specific number of neurons. The MLP computation algorithm of a

neuron consists of the following steps:

Step 1: Each feature of input data vector is multiplied with a weight wij, where i represents the

previous and j the current neuron index. Thus, i and j acquire values depending on the number of

neurons at each hidden layer.

Step 2: A bias term θ is added, to shift the activation function φ(∙), as it is defined in a following

paragraph. This term determines whether and how much the neuron will be activated.

Step 3: All products from the previous steps are summed on the respective neuron.

Step 4: An activation function is applied, producing the final neuron’s output.

The general mathematical formula of a neuron's output computation for each MLP’s hidden layer

can be expressed by the following equations. Index j corresponds to jth neuron at input or k hidden

layer, respectively.

30

Neuron’s output for first hidden layer:

yj
1 = φ1(∑ wij

1 ∙ xi + θj
1)

N

i=1

Neuron’s output for k hidden layer:

yj
k = φk(∑ wij

k ∙ yi
k−1 + θj

k)

Mk−1

i=1

The superscript indicates the layer and the subscript indicates the respective neuron within the

specific layer. The weight wij is associated with the connection of the ith neuron of the (k-1)th layer

(previous layer) to the jth neuron of the k layer (present layer). The number of input features to the

MLP is denoted as N and the number of neurons within the kth hidden layer is denoted by Mk. The

input data follows the forward flow direction through each layer using the above equations until

the final output is calculated.

The function φ is the so-called activation function, a non-linear function which is the source of

the MLP’s ability to perform non-linear function approximations. It shall be continuous, typically

in the range [0,1] or [-1,1] and activate a neuron whenever its value is sufficiently high. In this

study, the hyperbolic tangent is employed as the activation function for every hidden layer, due

to its property of being a zero-centered, smooth differentiable function, a property considered

important for the execution of the back propagation algorithm (see Section 3.3.2).

φ(x) = tanh (x) =
ex − e−x

ex + e−x

The weights and biases are the unknown coefficients for the model and the ones adjusted during

the training procedure. This fitting process is an optimization problem, where one seeks to find

the optimal values of weights and biases in order to minimize an objective function, expressing

the error between predictions and target output. For the current implementation, the back

propagation algorithm is employed to deal with training and optimization, and it is presented in

Section 3.3.2. But first of all, the architecture of MLP must be chosen by applying the cross

validation technique.

3.3.1 Cross Validation

An important issue of neural network design is the network architecture. The choice involves

setting the number of hidden layers and the neurons per layer. One should select the simplest

possible network that can adequately represent the training dataset [26], since this choice has a

significant impact on the network's computation cost, complexity and generalization ability. Since

this type of neural networks have a large number of tunable parameters, they tend to overfit.

The ideal network architecture for a task must be found via experimentation guided by monitoring

the validation set error. In the present study, the training procedure employs the cross validation

technique. The training data is randomly split into a training set and a validation set that is used

for testing the generalization ability. Apart from offering a preliminary evaluation of the MLP

performance and trend for overfitting, the cross validation technique can also be used as a

termination criterion of the training process.

31

Figure 3-12: Illustration of 5-Folds Cross Validation technique [61].

In the basic approach, called k-Folds cross validation, the initial training dataset is split into k

smaller groups of pairs of input-target data and the following procedure is executed:

▪ A clone model of regressor (MLP in this case) is trained using the k-1 folds.

▪ The resulting model is validated on the remaining fold, which is used as a test set for

performance accuracy, overfitting avoidance and generalization ability.

The performance measure reported by k-Folds cross validation is the average of the values

computed in the loop.

By applying k-Folds cross validation, one can decide on the so-called Bias-Variance Tradeoff.

The bias of an estimator is an indication of its average error, while its variance indicates how

sensitive it is to varying input datasets. High bias can cause an algorithm to miss relevant relations

between input features and target outputs (underfitting). On the other hand, high variance may

result from an algorithm modelling the random noise in the training data (overfitting). A

compromise between bias and variance is strived for in order to predict optimally the training set

while executing sufficiently on the basis of generalization.

Figure 3-13: Bias – Variance Tradeoff. Training and testing error as a function of model complexity [50].

32

For the current implementation, 3, 5 and 8-Folds cross validation is applied in order to compare

the results and evaluate the behavior of the neural network. Regarding the performance measure,

the Root Mean Square Error (RMSE) is used:

RMSE = √
1

N
∑(yi,target − yi,pred)2

N

i=1

where N is the total number of input data (observations).

After defining the network’s architecture and selecting a priori some basic hyperparameters, such

as the activation function, the training process is ready to start. The back propagation algorithm

is applied in this case.

3.3.2 Back Propagation

In Machine Learning, back propagation is a widely used algorithm for training feedforward neural

networks. The fitting process is based on efficiently computing the gradient of the loss function

with respect to the weights of the neural network. This efficiency justifies the use of gradient

descent methods for training the network, by updating the weights in order to minimize the loss

function.

The loss function is an objective function appearing in every optimization problem. In ANN

training, the optimization problem aims at assigning the optimal values of weights and biases.

Essentially, it measures the inconsistency between real and predicted output of the network, and

its output is a real number, representing a cost. For regression analysis, the most common loss

function is Mean Squared Error Loss Function (the so-called L2 Loss Function):

Є(yreal, ypred) =
1

N
∑(yi,real − yi,pred)

2
N

i=1

The loss is the mean overseen data of the squared differences between true and predicted values.

A main property of Mean Squared Error Loss Function is that large errors are significantly

(quadratically) more penalized than small ones.

The back propagation algorithm computes the gradient of the loss function (∂Є/∂wij) for each

layer k, by applying the chain rule and evaluating the expression for the derivative of the loss

function as a product of the derivatives between each layer. The algorithm yields the gradients of

the activation functions φk for each layer, k, starting from the output layer and flowing backwards

to the first hidden layer. These gradients can be interpreted as an indication of how each layer’s

output will change in order to reduce the error [48]. A schematic of the back propagation

algorithm is presented in Figure 3-14. During the forward pass, the weights and biases of neurons

are all fixed, while, during the backward pass, their values are all adjusted in accordance to the

error-correction rule.

33

Figure 3-14: Back propagation algorithm [23].

The initial values of weights and biases are randomly selected. It is important to note that they are

usually assigned small values [48]. During the backward bass at an epoch, i.e. at an iteration t, the

back propagation algorithm consists of the below steps:

Step 1: Compute the predicted outputs from the network, ypred, and calculate the loss function.

Step 2: Calculate the derivative of loss function at layer k by applying the chain rule:

∂Є

∂wij
k

=
∂Є

∂yj
k

∙
∂yj

k

∂wij
k

=
∂Є

∂yj
k

∙
∂yj

k

∂uj
k

∙
∂uj

k

∂wij
k

where 𝑢𝑗
𝑘 is the net output of neuron j at layer k, before applying the activation function. As

already defined, the net output of a neuron is given by the expression:

uj
k = ∑ wij

k ∙ yi
k−1 + θj

k

Mk−1

i=1

Therefore:

▪ The last term on the above chain rule simplifies to
∂uj

k

∂wij
k = yi

k.

▪ The middle term of the chain rule can be expressed as:

∂yj
k

∂uj
k

=
∂φk(uj

k)

∂uj
k

where the partial derivative of the activation function φk with respect to the net neuron

output 𝑢𝑗
𝑘 can be computed with knowledge of the activation function itself. Here lies

the justification for the back propagation algorithm requiring the activation function to

be differentiable.

▪ The last term on the above chain rule is directly computed for the output neuron.

However, it takes a more complicated formula when calculating this derivative for hidden

layers. It can be shown that [48]:

Loss function

 Є =
1

𝑁
∑ (𝑦𝑖,𝑟𝑒𝑎𝑙 − 𝑦𝑖,𝑝𝑟𝑒𝑑)

2𝑁
𝑖=1

34

∂Є

∂yj
k

= ∑
∂Є

∂ul
k

∙ wlj
k

l∈L

where L is the set containing all neurons receiving input from the jth neuron. This term is

easily computed when the derivatives of the loss function are known at the next layer,

the one nearest to the network output.

Step 3: Update the weights, based on the formula:

wij
k(t + 1) = wij

k(t) − η
∂Є

∂wij
k

where t is the training epoch (or iteration) index and η is a positive decreasing factor for the

convergence of the process, the so-called learning rate. It is important to note that each update

changes the weights in such a way that the loss function decreases, regardless of the sign of its

derivative.

Convergence of the above algorithm is achieved when the maximum number of epochs is reached

or when a desired threshold of loss function decrease is achieved. Additional and useful

information on the back propagation algorithm can be found in the literature (e.g. [26],[46],[48]).

It is important to note that the optimization problem is not convex, so there is no guarantee of

converging to the global minimum.

The computational cost of the algorithm is not negligible, and its application may lead to

prohibitively high execution times. A commonly used method to address this problem is

stochastic gradient descent. Instead of calculating the gradient for each neuron and each layer at

each epoch, an estimation is used by sampling a batch of input data drawn uniformly from the

input dataset.

An extension of the stochastic gradient descent method is the Adam (Adaptive Moment

Estimation) algorithm, suitable for deep learning applications and essential for large datasets. The

main difference from classical stochastic gradient descent is the computation of individual

adaptive learning rates for each network weight from estimations of first and second moments of

the gradients (mean and uncentered variance respectively). Due to this fact, the Adam optimizer

can properly avoid local minima. In the present study, the Adam optimizer is used to train each

MLP with constants, as they are proposed in the literature [51],[52].

35

CHAPTER 4: Chemical Kinetics

4.1 Introduction to Chemical Kinetics

Chemical Kinetics is the branch of Chemistry dealing with the progress of chemical reactions and

investigating the way through which a reaction reaches its final condition. It focuses on qualitative

and quantitative study of the rates of progress of chemical reactions as well as on the evaluation

of factors affecting this process. Better understanding of processes happening during the

conversion of reactants to products and development of mechanisms modelling properly these

phenomena are some of the major assets offered by Chemical Kinetics [53].

Each chemical reaction evolves with a finite rate depending on the conditions of the system, such

as concentrations of reactants, temperature, radiation effects and the presence of a catalyst. The

reaction rate can be expressed in terms of concentration change of any reactant or product. In

other words, the rate of a chemical reaction may be expressed as the rate of decrease of a reactant

concentration or the rate of increase of a product concentration [54]. The rate of a chemical

reaction and its dependencies are mathematically expressed by the Law of Mass Action.

The temporal evolution of a chemical reaction is fully defined by integrating an ODE system,

consisting of equations describing the changes in temperature and species concentrations [53]. In

the case of an isobaric process, the temperature change is calculated from the Energy

Conservation equation, while species concentrations evolution is described via the Law of Mass

Action. The number of ODEs is Ns+1, where Ns is the number of species participating in the

reaction mechanism. As shown, this ODE system is non-linear and stiff, due to the different time

scales of the species observed for each reaction.

4.1.1 Law of Mass Action

A stoichiometric relation describing an arbitrary one-way elementary chemical reaction of Ns

species can be written in the form:

∑ νi
′Mi

Ns

i=1

→ ∑ νi
′′Mi

Ns

i=1

where Mi is the species participating in the reaction, 𝜈𝑖
′ the stoichiometric coefficient of the

reactants and 𝜈𝑖
′′ the stoichiometric coefficient of the products. If a species represented by Mi does

not participate as a reactant or product, νi = 0.

The Law of Mass Action states that the rate of consumption or production of a chemical species,

defined as reaction rate (RR), is proportional to the product of concentrations of the chemical

species, where each concentration is raised to a power equal to the corresponding stoichiometric

coefficient [54]. The mathematical formula of Law of Mass Action is:

RR ~ ∏[Mi]
νi

′

Ns

i=1

 or RR = k ∙ ∏[Mi]
νi

′

Ns

i=1

36

The rate of change of the concentration of a chemical species Mi, defined as ωi, is then given by:

ωi̇ =
d[Mi]

dt
= (νi

′′ − νi
′) ∙ RR = (νi

′′ − νi
′) ∙ k ∙ ∏[Mi]

νi
′

Ns

i=1

since 𝜈𝑖
′′ moles of Mi are created for every 𝜈𝑖

′ moles of Mi consumed. The convention used in this

report is that parentheses around a chemical symbol signify the concentration of that species, i.e.

[Mi] signifies the concentration of species Mi.

The proportionality constant k is called reaction rate constant and introduces the temperature

dependence for reaction rates. It refers to a specific reaction and direction and it is calculated

through the empirical Law of Arrhenius, modified in the form:

k = A ∙ Tb ∙ exp {−
EA

R ∙ T
}

where:

▪ A, b: constants depending on the nature of the reaction, stereochemistry and molecular

characteristics, such as equivalent diameter and equivalent mass, and independent of

temperature,

▪ T: the absolute temperature (in Kelvin),

▪ EA: the activation energy, which is the energy barrier that must be surpassed for chemical

bonds to break and a reaction to proceed, and

▪ R = 8.314462 J/(mol∙K): the universal gas constant.

The pre-exponential term A∙Tb accounts for the frequency and the orientation of molecular

collisions, while the exponential term accounts for the probability of a collision to be successful,

in other words to have energy greater than activation energy. Consequently, the specific reaction

rate coefficient essentially represents the frequency of successful collisions. A notable

observation is that, at increasing temperature, the specific reaction rate coefficient also increases,

meaning that the number of successful collisions between molecules increases. As a result, the

reaction rate of the chemical reaction increases, following the proportional relation of the Law of

Mass Action.

The units of measurement of specific reaction rate coefficient k are determined by the order of

reaction. The order of a chemical reaction as to a specific species is equal to the stoichiometric

coefficient of this species. The overall order of a chemical reaction is the sum of the individual

orders.

Large kinetic mechanisms usually contain several independent, simultaneous, bidimensional,

elementary reactions. In this case, the rate of change of concentration of each specific species is

calculated via the principle of superposition, by adding the individual rates of change of

concentration for each reaction the species is participating in.

37

4.1.2 Energy Conservation

The first Law of Thermodynamics for a closed and adiabatic system subjected to an isobaric

chemical process of Ns species is expressed as:

dh

dt
= ∑ (Yi ∙

dhi

dt
+ hi ∙

dYi

dt
)

Ns

i=1

= 0 => ∑ (Yi ∙
dhi

dT
∙

dT

dt
)

Ns

i=1

+ ∑ (hi ∙
dYi

dt
) = 0

Ns

i=1

=>

=> ∑ (Yi ∙ cp,i ∙
dT

dt
)

Ns

i=1

+ ∑ (hi ∙
dYi

dt
)

Ns

i=1

= 0 => cp ∙
dT

dt
+ ∑ (hi ∙

dYi

dt
)

Ns

i=1

= 0 =>

=>
dT

dt
= −

∑ (hi ∙
dYi
dt

)
Ns
i=1

cp

where:

▪ hi , h: the specific enthalpy of species i and the specific enthalpy of system respectively.

▪ T: the absolute temperature (in Kelvin).

▪ Yi: the mass fraction of species i, defined as:

Yi =
mi

m
=

ni ∙ MWi

∑ ni ∙ MWi
Ns
i=1

where mi is mass of species i, m the total mass of the mixture, ni the moles of species i

and MWi the molecular weight of species i.

▪ cp,i , cp: the specific heat capacity of species i and the specific heat capacity of the mixture

respectively.

The above equation obtained from the first Law of Thermodynamics is used to calculate the

temporal evolution of temperature during a reaction process. In combination with the equations

obtained from the Law of Mass Action and referring to species concentrations changes, a system

of Ns+1 ODEs is formulated, which models the evolution of the thermochemical state of the

system [53].

4.1.3 Kinetic Mechanisms

Chemical reactions are described by detailed mechanisms, usually containing hundreds of species

and thousands of reactions. A detailed mechanism essentially consists of elementary chemical

reactions, which are reactions taking place at molecular level exactly in the way described by their

chemical reactions. A group of elementary chemical reactions may describe a specific chemical

process happening during combustion. The total set of these reactions form the detailed

mechanism and can model sufficiently the global chemical reaction.

Figure 4-1 summarizes the complexity of the available hydrocarbon combustion mechanisms.

The higher the hydrocarbon molecules contained in the fuel mixture, the more complex a

mechanism becomes, as it requires a large number of species and reactions to model the

combustion process.

38

Figure 4-1: Detailed kinetic mechanisms for hydrocarbons combustion [4].

For modeling sufficiently hydrocarbon combustion, a kinetic mechanism shall account at least for

the following features [53]:

1) Hydrocarbon oxidation, representing the consumption of the fuel, the production of water

and carbon monoxide (CO) and its further oxidation to carbon dioxide (CO2), a process

that releases the highest amount of heat during the combustion process,

2) NOx formation, an extremely complex process, mainly occurring at high temperature and

long residence time,

3) SOx formation, due to the sulphur contained into the combustible mixture, and

4) Soot and unburned hydrocarbons formation.

An optimized detailed mechanism to model natural gas combustion is the GRI Mech 3.0,

developed at Berkeley University, and used in the present study. In total, it contains 53 species

and 325 reactions. It includes NOx formation and reburn chemistry, and contains higher

hydrocarbon kinetics, up to propane.

The optimization refers to adjustment of the constants A, b, EA of specific reaction rates for each

reaction, in order for the mechanism to properly fit different available experimental data. More

specifically, the rate parameters are optimized against laminar flame speed experimental data,

shock-tube ignition delay and species profile measurements, prompt NO, HCN oxidation and

reburning measurements. The mechanism performance is validated via laminar flame speed and

ignition delay calculations, laminar flame and shock tube species profiles, flow and stirred reactor

experiments. For more details about construction and evaluation of the mechanism, the reader is

referred to the GRI Mech 3.0 official forum [56].

Kallieros [57] in his diploma thesis also validated the results of GRI Mech 3.0 with experimental

data, for premixed laminar flame propagation, ignition delay of homogenous mixture and species

profiles in perfectly stirred reactor (PSR). The simulations were performed in CANTERA, an

open-source suite of tools for problems involving chemical kinetics, thermodynamics and

transport processes [58]. The results show very good agreement with the experimental data for

the premixed laminar flame speed and ignition delay of homogenous mixture. As for the species

profiles in PSRs, the results show a small deviation from experimental data for specific inlet

39

conditions, probably due to non-target fitting of the present mechanism to these experimental data

or its relatively small size comparing to other available mechanisms, such as NUIG-NGM,

containing 293 species and 1593 reactions. Nevertheless, GRI Mech 3.0 is used extensively in

studies, and can sufficiently model natural gas combustion.

The present study deals with methane combustion, and employs GRI Mech 3.0 for premixed

laminar flame propagation and homogeneous reactors. These standard problems and their

theoretical background are discussed in the following section.

4.2 Premixed Laminar Flame Propagation

When a quiescent combustible premixed gas mixture within flammability limits contained in an

open tube is ignited by a spark, a combustion wave spreads through the gas, the so-called

deflagration wave. In the case of an open tube, this wave is subsonic, often observed to be nearly

planar and to travel at approximately a constant speed. This constant speed is an empirical laminar

burning velocity or flame speed, which is characteristic of the combustible mixture [55]. Thus,

premixed laminar flame speed is defined as the speed at which an unstretched laminar flame will

propagate through a quiescent, homogenous premixed mixture of unburned reactants.

The flame can be considered as an interface, separating the mixture into the unburned and the

burned gas region. The flame is thin and characterized by convective flow of unburned gas

mixture throughout the flame and diffusion of radicals from the high-temperature reaction zone

against the convective flow and towards the preheat region. A flame can hence be considered as

a rapid, self-sustaining chemical reaction occurring in a discrete reaction zone. Reactants may be

introduced into this reaction zone, or the reaction zone may move into the reactants, depending

on whether the unburned gas velocity is greater than or less than the flame deflagration velocity

[54]. Glassman et al. [54] define the laminar flame speed as the velocity at which unburned gases

move through the combustion (deflagration) wave in the direction normal to the wave surface.

The deflagration wave propagation is not steady for a still observer out of the system. However,

it is steady in time for an observer moving with the wave. The moving observer sees the burned

mixture fending off with velocity Vb and the unburned mixture approaching with velocity Vu.

Another definition for the premixed laminar flame speed is thus the relative speed of unburned

gas mixture for an observer moving with the flame (Figure 4-2).

Figure 4-2: Premixed laminar flame propagation in a tube. SL is defined as laminar flame speed.

It is proven from Hugoniot curve analysis that the process can be considered isobaric, as the

burned gas pressure is slightly lower than the unburned gas pressure. The parameters from which

the laminar flame speed depends can arise by Mallard and Le Chatelier theory analysis.

The convention used in this thesis is that subscript u or unb refers to unburned gas mixture and

subscript b or bur refers to burned gas mixture.

40

4.2.1 Mallard and Le Chatelier Theory

Mallard and Le Chatelier developed a thermal theory based on energy equation to define the

laminar flame speed. They postulated that the flame consists of two zones, preheat zone and

reaction zone, separated at the point where the next layer ignites (Figure 4-3). The heat conducted

from the reaction zone is equal to that necessary to raise the unburned gas mixture to the ignition

temperature (the boundary between preheat zone and reaction zone) [54]. Assuming a linear slope

of temperature curve and according to Fourier’s Law of thermal conduction, the enthalpy balance

for an adiabatic flame gives:

ṁ ∙ cp ∙ (Tign − T0) = λ ∙
Tf − Tign

δ
∙ A

where 𝑚̇ is the mass rate of the unburned gas mixture into the combustion wave, cP is the specific

heat capacity of the unburned gas mixture, λ is the thermal conductivity, A is the cross-sectional

area and δ is the reaction zone thickness. Additionally, T0 refers to inlet mixture temperature, Tf

refers to the flame temperature, approximately equal to burned gas temperature in the case of

adiabatic flame, and Tign is the mixture’s ignition temperature.

The mass rate of unburned gas mixture can be expressed as:

ṁ = ρu ∙ Vu ∙ A = ρu ∙ SL ∙ A

where ρu is the unburned gas density and Vu = SL is the laminar flame speed by definition. By

substituting in the enthalpy balance equation, the following expression for laminar flame speed is

obtained:

SL =
λ

ρu ∙ cp
∙

Tf − Tign

Tign − T0
∙

1

δ
 or SL = α ∙

Tf − Tign

Tign − T0
∙

1

δ

where α = λ/ρu∙cp is the thermal diffusivity coefficient.

Unfortunately, the reaction zone thickness, δ, is not known nor can it be easily defined. However,

it is possible to relate δ to the laminar flame speed SL. The total mass rate per unit area entering

the reaction zone must be equal to the consumption rate in that zone, given by chemistry for the

steady flow problem. The mathematical expression of the aforementioned is:

ṁ

A
= ρu ∙ SL = ω̇ ∙ δ

where 𝜔̇ is the reaction rate in terms of concentration per unit of time. Therefore, the expression

for laminar flame speed becomes:

SL = (α ∙
Tf − Tign

Tign − T0
∙

ω̇

ρu
)

1/2

 or SL~ (α ∙
ω̇

ρu
)

1/2

From the above analysis, it is concluded that laminar flame speed is a thermophysical property of

the unburned gas mixture, independent of the flow field. In other words, it depends on the

thermophysical properties of unburned gas mixture, namely the thermal diffusivity (α) and the

density (ρu), as well as on the combustion kinetics through consumption rate in reaction zone (𝜔̇).

41

Figure 4-3: Schematic representation of premixed flame structure and characteristic profiles for

temperature and concentrations [59].

The laminar flame speed mainly depends on the temperature of the inlet gas mixture Tu. An

increase of Tu will strongly affect the total reaction rate by increasing it, while thermal diffusivity

coefficient will also increase. Consequently, the laminar flame speed will increase..

4.3 Perfectly Stirred Reactor

Reactors are a standard layout for reactive flow simulations and validation of kinetic mechanisms.

In combustion simulations, Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR)

are extensively used. PSR is a constant volume system, in which happens an instantaneous and

complete mixing of reactants, offering spatial homogeneity. As a result, the system

thermochemical properties are defined exclusively by chemical kinetics. On the other hand, PaSR

considers a large number of regions with different thermochemical states which are mixing.

The convention used in this report is that homogeneous reactors are basically perfectly stirred

reactors, where complete mixing of fuel-oxidizer is achieved and, hence, transport properties are

neglected and the system behavior is affected only by chemical kinetics. In other words, properties

such as temperature, pressure and species concentrations can be considered constant throughout

the reactor volume. Subsequently, the reactor can be mathematically modeled as a zero-

dimensional configuration.

Homogeneous reactors can be modeled by open or closed volumes. Open reactors have inlet and

outlet valves ensuring the continuous mixture flow, while closed reactors do not exhibit mass

exchange with the environment. In the case of equal mass inlet and outlet, open reactors achieve

steady state operating conditions and, except of no spatial distribution, neither time change of

properties is observed. Closed reactors are usually applied for the evaluation of mixture’s time

change of temperature and species concentrations [53]. Fuel-oxidizer premixed mixture enters the

reactor at time t=0, and time progress of temperature and species are calculated through the

species and energy conservation equations.

L

42

Figure 4-4: Homogeneous open reactor (open Perfectly Stirred Reactor), exchanging mass with the

environment and ensuring continuous mixture flow [58].

A widespread method of computationally modeling combustion phenomena is the application of

reactor networks. As the method’s name suggests, several reactors are grouped into subsets and

properly connected, generating a reactor network. Each subset is responsible for modeling a

specific combustion zone, appearing similar flow and thermochemical properties. The reactors’

combination into a network is thus claimed to sufficiently simulate the total combustion process.

4.4 CANTERA Simulations

The structure of steady 1-D premixed laminar flames can be computed numerically by solving

the steady-state comprehensive mass, species and energy conservation equations coupled with a

detailed kinetic mechanism, dealing with the reaction term. The momentum conservation

equation is usually not necessary to be solved, as pressure remains approximately unchanged for

the whole system. More precisely, burned gas pressure is slightly lower than unburned gas

pressure, according to the Hugoniot analysis.

CANTERA is an open-source suite of tools for problems involving chemical kinetics,

thermodynamics and transport processes. It can be used as a third-party library interpreted in

external reactive flow simulation codes, compiled into Matlab, Python or C++ programming

language. Among other things, it can be used to evaluate thermodynamic and transport properties

of mixtures, compute chemical equilibrium, evaluate species chemical production rates, conduct

kinetics simulations with large reaction mechanisms, as well as simulate one-dimensional flames

and networks of stirred reactors [58].

The latter features are useful for the current implementation. More specifically, CANTERA

includes a set of models for representing steady-state one-dimensional flows, such as freely

propagating premixed laminar flames, burner stabilized premixed flames, counterflow premixed

flames and counterflow diffusion flames. Furthermore, CANTERA can model zero-dimensional

reactors and their interactions with the surroundings, as well as interconnect reactors into

networks. CANTERA reactor configuration corresponds to an extensive thermodynamic control

volume, in which all state variables are homogeneously distributed but at the same time are

functions of time. All of these configurations are simulated using a set of governing equations

within a zero or one-dimensional, respectively, flow domain, namely mass, species and energy

conservation equations.

43

4.4.1 Premixed Laminar Flame Simulations

Premixed laminar flame simulations are performed to the flame structure, flame speed, flame

thickness and temperature and species spatial distributions of freely propagating, one-

dimensional, adiabatic premixed flames into isobaric, steady-state ideal gas flow.

The code for premixed laminar flame simulations is developed in Python language, using

extensively the open-source CANTERA suite. The developed code firstly generates an ideal gas

mixture set to user-defined upstream initial conditions, reading the desired kinetic mechanism.

Next, it creates an one-dimensional flame object and solves it with a mixture averaged transport

model. The solver is applied to an adaptive grid, meaning that a first estimation of solution is

calculated using a minimum number of grid points and then continuous refinements follow until

a sufficient convergence of calculated laminar flame speed is achieved.

The developed code is tested for methane-air premixed flame propagation. The chemical kinetics

are described by GRI Mech 3.0, a detailed kinetic mechanism containing 53 species and 325

reactions. The initial state of the upstream mixture is set to p=1 atm and T=300 K. Fuel-air

equivalence ratio (φ) ranges from 0.6 to 1.6 with step equal to 0.2. The grid for the numerical

calculations is set to 4 cm.

First, flame speed and flame thickness are calculated and plotted in proper diagrams (Figure 4-5)

as a function of fuel-air equivalence ratio. An approximation of laminar flame thickness can be

calculated by the equation:

δL ≈
Tf − T0

(
dT
dx

)
max

where Tf is adiabatic flame temperature and T0 is initial mixture temperature.

It is observed that laminar flame speed for methane is maximum at slightly rich conditions (φ

slightly larger than 1), for which the adiabatic flame temperature is also maximum. This

observation verifies the strong effect of temperature. On the other hand, laminar flame thickness

values are inversely proportional to laminar flame speed, and therefore are inversely proportional

to temperature. The minimum laminar flame thickness is observed for stoichiometric conditions,

where laminar flame speed is maximized.

Figure 4-5: Laminar flame speed SL [cm/s] (left) and laminar flame thickness δL [mm] (right) of methane-

air premixed mixture at atmospheric conditions, as a function of fuel-air equivalence ratio.

44

Furthermore, the spatial distribution is calculated for species and for characteristic properties of

flow field, such as temperature and velocity. The flame seems to be embedded in a specific grid

region, meaning that the problem has been converted to a steady state. Unburned gas region,

governed by low temperatures and velocities, is located to the left part of diagrams, while burned

gas region, governed by high temperatures and velocities, is located to the right part of diagrams.

This separation of regions can also be verified by observing the species spatial distribution

diagrams. Unburned gas region refers to high mass fractions of fuel (CH4) and oxidizer (air),

while burned gas region refers to high mass fractions of main combustion products, namely

carbon dioxide (CO2) and water (H2O).

The species selected to be displayed are methane (CH4) and oxygen (O2) as the main reactants

(Figure 4-7) and carbon dioxide (CO2) and water (H2O) as the main products (Figure 4-8) of

methane combustion. Additionally, carbon monoxide (CO) and hydroxyl radical (OH) are

selected to be represented as species participating in main heat release processes (Figure 4-9).

The species spatial distribution diagrams are partially enlarged around the region containing the

thin flame layer.

Figure 4-6: Temperature (left) and velocity (right) spatial distribution for methane-air flame. The

upstream mixture is set to atmospheric conditions, while fuel-air equivalence ratio is considered as a

parameter.

Figure 4-7: Methane (CH4) and oxygen (O2) mass fraction spatial distribution for methane-air flame. The

upstream mixture is set to atmospheric conditions, while fuel-air equivalence ratio is considered as a

parameter.

45

Figure 4-8: Carbon dioxide (CO2) and water (H2O) mass fraction spatial distribution for methane-air

flame. The upstream mixture is set to atmospheric conditions, while fuel-air equivalence ratio is

considered as a parameter.

Figure 4-9: Carbon monoxide (CO) and hydroxyl radical (OH) mass fraction spatial distribution for

methane-air flame. The upstream mixture is set to atmospheric conditions, while fuel-air equivalence ratio

is considered as a parameter.

The above results are compared and validated with study material from the respective course of

Combustion at the Department of Naval Architecture and Marine Engineering of the National

Technical University of Athens, and also verified in the diploma thesis of Kallieros [57].

4.4.2 Homogeneous Reactor Simulations

A characteristic problem simulated by a simple batch reactor is how a homogenous chemical

composition changes in time when it is left to its own devices. Simulations are performed for a

homogenous, zero-dimensional reactor with adiabatic, chemically inert walls. For the specific

implementation, a constant pressure reactor is considered, meaning that reactor volume changes

as a function of time in order to keep the system pressure constant. A reactor network is required

in order to perform time integration. Temperature and species time evaluation are calculated,

while mass flow remains constant through the network.

The code for homogeneous reactor simulations is developed in Python language, using

extensively the open-source CANTERA suite. The developed code firstly generates an ideal gas

mixture set to user-defined initial conditions, reading the desired kinetic mechanism. The initial

state is specified by composition and a set of thermodynamic parameters, like pressure and

46

temperature. Upon this base, an ideal gas constant pressure reactor is created. The behavior of the

solution in time can be simulated as a reactor network containing only the formerly created

reactor.

The pre-defined premixed mixture enters the reactor at time t=0 sec. A final time shall also be

determined before the simulation starts, while the time step can be defined sufficiently low or use

instead an adaptive time step. Afterwards, the reactor network advances in time from the current

time for the specified time step. This procedure is repeated until final time is reached and time

integration is completed.

A problem simulated by the developed code is ignition delay for methane-air mixtures, for a range

of initial conditions considered by Kallieros in his diploma thesis [57]. The chemical kinetics are

described by GRI Mech 3.0, a detailed kinetic mechanism containing 53 species and 325

reactions. Ignition delay can be defined as the time when the rate of increase of temperature,

pressure or a radical concentration is maximized. The criterium applied by the developed code is

maximization of temperature’s rate of increase. A characteristic diagram of temperature time

evolution is presented below (Figure 4-10). In the same diagram, ignition delay time is also

marked following the above definition.

Figure 4-10: Time evolution of temperature in a constant pressure reactor, for a methane-air mixture.

Initial mixture properties are p=9.22 atm, T=1800 K and φ=1. Ignition delay time is defined as the time

when maximization of temperature rate of increase occurs. For the specific mixture properties,

tign=1.74∙10-5 s.

47

CHAPTER 5: Clustering of State Space

For the purposes of the current implementation, a hybrid neural network is developed in order to

subdivide the state space into subdomains. The term “hybrid” is used because in total three

Machine Learning methods are combined to construct the neural network: Principal Component

Analysis (PCA), Self-Organizing Map (SOM) and K-Means. The basic neural network of this

hybrid configuration is the Self-Organizing Map (SOM), which is used to divide the state space

into several subdomains. It consists of a two-dimensional grid of neurons, the so-called map. Each

neuron is represented by a vector and accounts for a cluster center in state space.

At the start of the training, the SOM neurons’ weights are randomly initialized. Due to the high

dimensionality of the state space, depending on the number of thermochemical features describing

the phenomenon, this random procedure may not lead to convergence, or at least fast convergence,

of the training process. Therefore, Principal Component Analysis (PCA) precedes, in order to

reduce the dimensionality. Initial neurons’ weights are then selected in this lower-dimensional

space and, afterwards, are inversely transformed back to the input high-dimensional space, in

order for the training process to start. It is highlighted that PCA is only applied during the first

step of the SOM training process and finds no further usage during the simulations.

The SOM training procedure refers to the adjustment of neurons’ weights, so that each neuron

represents an apparent center of a cluster in state space. The trained SOM is considered to be able

to subdivide the multi-dimensional state space according to similarities, preserving the input

space topology. In other words, data points lying near each other in the state space are mapped

onto nearby winning neurons in the two-dimensional SOM grid. After the training process is

completed, new input data can be classified into a cluster by the nearest neuron in terms of

Euclidean distance. It is important to note here that SOM dimensions do not correspond to

physical variables, but they construct a grid of cells which represent parts of state space.

One question appearing here is how to choose the number of areas in which to split the state space,

or equally the number of cells in the SOM grid. Extreme partitioning has its drawbacks, even

though it will probably offer a more refined regression, as a large number of cells will result in

areas with few samples and uneven regression quality. In other words, the number of observations

in each cluster obtained from SOM clustering may be too low to have physical or statistical

significance. Furthermore, the predictive power of regression neural networks is expected to

deteriorate at points lying at the boundaries between two subdomains. On the other hand, the use

of a small number of regression neural networks will lead to overfitting problems, due to the

complexity of the functions to fit. A good balance shall be found between these trends, accounting

for complexity and user-defined accuracy at the same time.

For certain applications, the number of clusters obtained through SOM may be much higher than

practical. To reduce the number of clusters, the K-Means algorithm is a useful method to apply

in order to group the SOM’s neurons into a desirable number of clusters, achieving a balance

between network’s accuracy and complexity. The number of clusters can be user- or a priori

defined through index analysis, such as Silhouette Coefficient and Davies-Bouldin index.

The primary benefits of this two-level approach, in lieu of only clustering the data by means of

SOM, are the reduction of computational cost and the rough visual presentation and interpretation

of clusters on a 2D grid. Furthermore, clustering the SOM manually or grouping cells of the 2D

array into rectangular clusters may decrease the quality of clustering.

48

Finally, a regression neural network is assigned to each subdomain for the purposes of prediction.

In the current implementation, Multi-Layer Perceptrons (MLPs) are used as a regression model.

The input of each one MLP is a state vector, containing the temperature and the species mass

fractions, and assigned to a specific state space subdomain by means of SOM – K-Means concept.

Regarding the output of MLPs, direct prediction of heat release rate and species net production

rates, as well as the integrated value of the state over a fixed time step are analyzed in the present

study. The whole neural network concept is illustrated schematically in Figure 5-1.

Figure 5-1: Schematic representation of the whole neural network implementation, illustrating the overall

procedure: (1) Classification of an arbitrary data point by SOM – K-Means, (2) assignment of an MLP on

a subdomain and (3) prediction using MLP [8].

The state space partitioning must be done on data obtained from simulations of the same

phenomenon or, alternatively, from simulations of an abstract problem. Regarding the latter case,

it is important to ensure that the generated training dataset covers the state space accessed during

the multi-dimensional CFD simulation. An ensemble of premixed laminar flames is used to

generate the training data for the current implementation.

5.1 Training Data Generation

The generation of training data for the Self-Organizing Map is carried out by means of one-

dimensional premixed laminar flames. Premixed laminar flame is considered a canonical

problem, such that the training data can span the state space of a family of combustion problems.

The current study deals with methane-air premixed combustion. The simulations were executed

using the CANTERA open-source suite in a Python code, as described in a previous section of

the present report (Section 4.4).

In the simulations, the pressure is held constant with a value of 1 atm. The inlet temperature is

between 300 K and 400 K. Fuel-air equivalence ratio ranges from 0.75 up to 1.25. The selection

of fuel-air equivalence ratio ranging around the value of 1 is justified by the fact that natural gas

combustion engines mainly operate in Otto cycle, which performs effectively near stoichiometric

conditions. With regard to chemical kinetics, the GRI Mech 3.0 mechanism is used, containing

53 species and 325 reactions. Therefore, a single point in state space is described by a vector of

Ns+1 = 54 variables; the temperature and the 53 species mass fractions.

49

Table 5-1: Initial conditions for 1D premixed laminar flame simulations.

 Initial Conditions Range Step

Pressure 1 [atm] -

Temperature 300 – 400 [K] 10 [K]

Fuel-air equivalence ratio 0.75 – 1.25 0.05

Through each premixed flame simulation, several properties are obtained in terms of spatial

distribution, such as velocity, density, temperature and species mass fractions. However, the

present concept is based on state space partitioning, meaning that only temperature and species

mass fractions are needed to generate a state vector, while all other features are discarded. Spatial

variable is unambiguously connected with temperature, meaning that the spatial distribution of

species mass fractions can be converted to temperature distribution, because each spatial point in

flame is characterized by a specific temperature. Indicative figures are presented, and correspond

to stoichiometric methane-air premixed laminar flame simulation, with pressure and initial

temperature set to atmospheric conditions.

Figure 5-2: Temperature spatial distribution for a stoichiometric methane-air premixed laminar flame at

atmospheric conditions.

It must be emphasized that premixed laminar flames are employed here only for sampling a set

of compositions. These compositions are thoroughly shuffled before starting the training process.

In other words, the spatial variable is discarded, as the current concept requires only combinations

of temperature and species mass fractions in order to create composition state vectors. The

conversion from spatial to temperature distribution of species mass fractions is an unambiguous

and well-defined procedure. Figures presented next depict the acquired main species mass

fractions indicatively through a stoichiometric methane-air premixed laminar flame (Figures 5-3,

5-4). As it can be easily observed, CANTERA uses an adaptive grid that is denser in the burned

gas region and particularly in the reaction region.

50

Figure 5-3: Main species mass fractions acquired data points based on spatial distribution for a

stoichiometric methane-air premixed laminar flame at atmospheric condition.

Figure 5-4: Main species mass fractions plotted with respect to temperature for a stoichiometric methane-

air premixed laminar flame at atmospheric condition.

The aforementioned simulation conditions correspond to 121 methane-air premixed laminar

flames, generating in total 127099 data samples. The data samples are then randomly split into

60% training set and 40% test set. A notable observation is that the produced dataset has no

outliers, as it is generated through robust direct numerical simulations. Therefore, there is no need

for application of data cleaning techniques before proceeding to neural network training.

Figure 5-5 presents the state space coverage from the full dataset obtained through the laminar

flame simulations. The diagrams presented are indicative of the temperature distribution of main

reactants (CH4, O2), main products (CO2, H2O) and intermediate species/ radicals (CO, OH)

supporting the main heat release of methane-air mixture combustion process.

51

Figure 5-5: Scatter plots representing the state space coverage of the data collected from methane-air

premixed laminar flame simulations.

5.2 Self-Organizing Map Training Process

The hybrid neural network applied for partitioning of state space in the current study consists of

three different Machine Learning methods; Principal Component Analysis (PCA), Self-

Organizing Map (SOM) and K-Means. The SOM and K-Means neural networks must be

separately trained in a serial procedure, using the training data generated via premixed laminar

flame simulations.

A common technique followed by machine learning researchers to split the full dataset into a

training set, used for the neural network training, and the test dataset, used for evaluating the

52

performance of the trained network. Regarding the current implementation, trial-and-error

showed that random splitting of the dataset obtained from premixed laminar flame simulations to

a rate higher than 50% has little effect on the final adjusted neurons. In other words, the training

procedure converges in approximately the same neurons weight values for any or no a priori

splitting of the dataset. Therefore, the initial dataset is randomly split in 60% training set and 40%

test set, in order to sufficiently reduce the time and the computational cost for training.

As aforementioned, a single point in state space is described by a vector of Ns+1 = 54 variables

with respect to GRI Mech 3.0; the temperature and the 53 species mass fractions. The species

mass fractions vary within the range between 0 and 1, whereas the temperature variable obtains

values from 300 K up to higher than 2000 K. In order to result in a robust clustering neural

network and avoid neglection of characteristics with low values, all features are rescaled to the

same order of magnitude.

First of all, temperature is normalized into the [0,1] range. The progress variable c is used for the

normalization:

c =
T − Tunb

Tmax − Tunb

where T is the temperature desired to be normalized, Tunb is the unburned mixture temperature

and Tmax is the maximum temperature along the flame.

It is notable to highlight that adiabatic flame temperature is typically used instead of maximum

temperature (Tmax) for the calculation of progress variable, c. Consequently, the maximum value

of progress variable, c, may be not be equal to 1, but slightly lower or larger than unity, when

using adiabatic flame temperature instead of maximum temperature, as super-adiabatic

temperature can exist in the flame. For this reason, maximum temperature is used instead of

adiabatic flame temperature.

Two cases of input data normalization are examined in this study:

▪ Case 1: Temperature is normalized using progress variable c, while species mass fractions

remain as computed. Major species have relatively high values of mass fractions, while

minor species and radicals acquire values near zero.

▪ Case 2: Temperature is normalized using progress variable, c, and species’ mass fractions

are scaled into the [0,1] range.

A major characteristic of Case 1 is that the training process will incline to features with large

values. The trained neural network will better approximate these features, while variables with

values near zero are not considered important. On the other hand, a neural network trained with

input data normalized according to Case 2 will consider all features with equal importance. The

training process will adjust properly the neuron weights in order for the network to sufficiently

approximate all the features. In each case, the respective inverse scaling transformation can then

follow to restore data values into composition space.

In the following paragraphs, the training procedure is described for each of the applied Machine

Learning methods. The results for each examined case of training data normalization, namely

Case 1 and Case 2, are also presented in each respective paragraph. Finally, two clustering neural

networks will be developed, corresponding to each one examined case of training data

normalization.

53

5.2.1 Principal Component Analysis

Principal Component Analysis is used as a dimensionality reduction method only during the

training process. Specifically, it reduces the high-dimensional state space into a lower-

dimensional one, in order to properly select the initial values of SOM’s neuron weights. After the

selection, the weight values are transformed back to the high-dimensional state space and the

SOM training process is ready to start.

For the needs of the present work, the 54-dimensional input state space is decomposed into the

first two principal components by means of PCA method. The consideration of 2 principal

components for the dimensionality reduction is justified by the amount of variance they account

for. By default, PCA tries to put the largest possible variance (maximum possible information) in

the first component, then maximum remaining variance in the second, and so on. Figures 5-6 and

5-7 present the percentage of explained information per principal component and per cumulative

number of principal components for both examined cases of input data normalization. As

mentioned, Case 1 corresponds to temperature normalized into [0,1] range and the rest 53 mass

species fractions remaining unchanged, while Case 2 corresponds to temperature and species mass

fractions scaled into the [0,1] range.

Regarding Case 1 of training data normalization, the first principal component contains 99.21%

of the total information, while the second one accounts for 0.48%. The cumulative variance

explained by the first two principal components is 99.69%, and it is considered very high for the

purposes of a neuron weights initialization technique (Figure 5-6). The ability to describe such a

high percentage of information by means of only one principal component is justified by the fact

that only the temperature variable is distributed in the [0,1] range, while all other features have

the values as such acquired through premixed laminar flame simulations, which are certainly

smaller than 1 and many of them nearly equal to zero.

Figure 5-6: Percentage of explained information per number of principal components (explained

variance) and percentage of information per cumulative number of principal components (cumulative

variance), for Case 1 of data normalization.

Regarding Case 2 of training data normalization, the first principal component contains 35.62%

of total information, while the second one contains 34.09% of total information. The cumulative

variance contained by the first two principal components is 69.71%, and it is considered sufficient

for the purposes of a neuron weights’ initialization technique (Figure 5-7).

54

Figure 5-7: Percentage of contained information per number of principal components (contained

variance) and percentage of information per cumulative number of principal components (cumulative

variance), for Case 2 of data normalization.

PCA is applied to span the 54-dimensional data generated through premixed laminar flame

simulations into a 2-dimensional space defined by the first two principal components, as they are

considered sufficient to describe the information contained in the training dataset. Afterwards, a

nested function of the MINISOM library is applied to initialize the neurons’ weights by creating

a 2-dimensional grid relative to the space defined by the first two principal components.

MINISOM [60] is an open-source library implementing Self Organizing Maps, and it is further

analyzed in the Section 5.2.2. The results of dimensionality reduction and neurons weights

initialization are plotted in Figures 5-8 and 5-9, for Case 1 and Case 2.

Figure 5-8: Training data and initial neuron weights in the 2-dimensional space defined by the first two

principal components for Case 1 of data normalization.

55

Figure 5-9: Training data and initial neuron weights in the 2-dimensional space defined by the first two

principal components for Case 2 of data normalization.

5.2.2 Self-Organizing Map

After the neuron weights initialization via PCA and inverse transformation of the weights back to

the 54-dimensional state space, the training process of SOM is ready to start. In the present study,

the MINISOM library is used for the SOM training process [60]. The code is developed in Python

language.

There is not much literature and research on network architecture selection. A common

configuration are two-dimensional rectangular grids, extensively used for state space partitioning.

Each cell of the rectangular grid represents a neuron. An et al. [9] used 30x30, 40x40 and 50x50

SOM neurons to model turbulent hydrogen/carbon monoxide/kerosene combustion. Blasco et al.

[8] and Franke et al. [10] employed a 20x20 grid for methane-air combustion data tabulation.

Chatzopoulos and Rigopoulos [11], who conducted a study in the same context, used a 40x40

SOM configuration.

According to available literature and taking into account the size of the GRI Mech. 3.0 and the

fact that the training data are generated through premixed laminar flame simulations and no

turbulence exists, a 20x20 SOM configuration seems to be sufficient for the current

implementation. Larger configurations were also tried (30x30 and 40x40 grids), but the network

did not use all the available neurons for the clustering process. This was considered as an

indication that a 20x20 configuration is appropriate for partitioning the state space of this study.

For a Self-Organizing Map neural network, the hyperparameters that need to be a priori defined

are the standard deviation or neighborhood radius (σ) and the learning rate (lr). In fact, these

hyperparameters are monotonically decreasing functions of iteration number, a choice resulting

in robust convergence of the training process and reduction of weight values modification as the

iteration index increases. They are defined as:

σ(t) =
σ

1 +
t
T

 and lr(t) =
lr

1 +
t
T

56

where t is the iteration number and T is half of the total number of iterations. Therefore, the initial

values of the standard deviation, σ, and learning rate, lr, are only to be pre-defined. By definition,

learning rate ranges between 0 and 1, whereas there is no limit on the standard deviation values.

The hyperparameters are selected iteratively. The SOM is trained for a set of hyperparameters

combinations, and then it is evaluated by studying the quantization error, which is a measure of

the average distance between data points and their respectively winning neurons (Section 3.2.2).

A “golden section” is expected in terms of quantization error minimization, as large initial values

of σ and lr may cause high modifications in neuron weights even when the iteration index is large,

whereas lower values may not be sufficient for a proper neuron adjustment.

Regarding Case 1 of training data normalization, the procedure resulted in a minimum

quantization error for standard deviation σ = 0.7 and learning rate lr = 0.1 (Figure 5-10). For

smaller values of standard deviation, the quantization error diverges and acquires values too high

to be depicted in the range shown in Figure 5-10. For larger values of standard deviation, the

quantization error tends to converge in a specific value but at the same time is increased.

Furthermore, a general observation on learning rate is that if high initial values are selected, the

quantization error also increases.

Figure 5-10: Quantization error as a function of network’s hyperparameters, namely standard deviation

(σ) and learning rate (lr), for Case 1 of data normalization.

Apart from the network's hyperparameters, the total number of iterations for the training process

shall be defined. The selection is based on quantization error and execution time. Evaluating the

following diagrams (Figure 5-11), the training process is selected to be executed for 106 iterations,

balancing quantization error minimization and execution time reduction.

Figure 5-11: Quantization error (left) and execution time of training process (right), as a function of

number of iterations, for Case 1 of data normalization.

57

Regarding Case 2 of training data normalization, the iterative procedure resulted in a minimum

quantization error for standard deviation σ = 0.8 and learning rate lr = 0.15 (Figure 5-12). The

trends of quantization error observed are the same as for Case 1 of training data normalization.

For smaller values of standard deviation, the quantization error diverges and acquires higher

values. For larger values of standard deviation, the quantization error tends to converge but at the

same time is increased. Furthermore, a general observation on learning rate is that if high initial

values are selected, the quantization error also increases.

Figure 5-12: Quantization error as a function of network’s hyperparameters, namely standard deviation

(σ) and learning rate (lr), for Case 2 of data normalization.

As for the total number of iterations for the training process, the selection is similarly based on

quantization error and execution time. Evaluating the following diagrams (Figure 5-13), the

training process is selected to be executed for 106 iterations, balancing quantization error

minimization and execution time reduction.

Figure 5-13: Quantization error (left) and execution time of training process (right), as a function of

number of iterations, for Case 2 of data normalization.

For the purposes of current implementation, the SOM training process was conducted in a Linux

environment on a personal desktop, running on an i3 processor.

Consequently, two Self-Organizing Maps are developed in total, each one regarding a case of

training data normalization. The basic characteristics as well as the selected network’s

hyperparameters are summarized in Table 5-2.

58

Table 5-2: Basic characteristics of developed SOMs for each case of data normalization.

 Case 1 Case 2

Characteristics Normalized temperature

Normalized Temperature,

Mass fractions scaled into

[0,1] range

SOM Architecture 20x20 20x20

Standard Deviation, σ 0.7 0.8

Learning Rate, lr 0.1 0.15

Number of Iterations 106 106

Time for Training Process Execution app. 900 [s] app. 900 [s]

Quantization Error, Qerror 4.9∙10-3 0.117

5.3 Self-Organizing Map Partitioning of State Space

Self-Organizing Map was selected for clustering the state space. After the training process is

finished, the trained SOM can assign any new sample to a specific subdomain, defined by the

neuron with the smallest Euclidean distance from the input sample.

SOM neurons are basically vectors of equal dimension such as the state space dimension. In the

present study, GRI Mech. 3.0 is used for the purposes of chemical kinetics modeling, containing

53 species. Pressure is held constant (atmospheric), while temperature is considered as a variable.

Therefore, the state space is defined by 54 dimensions, and so are the dimensions of SOM

neurons.

Figures 5-14 and 5-15 present the state space coverage from the full dataset obtained through

premixed laminar flame simulations, before splitting into training and test set, as well as the

adjusted SOM neuron weights, accounting for the cluster centers, for both cases of training data

normalization. The plots are indicative for the progress variable distribution of the main reactants

(CH4, O2), main products (CO2, H2O) and intermediate species/radicals (CO, OH) supporting the

main heat release of the methane-air mixture combustion process.

Each neuron represents the center of a cluster, in which the assigned samples have similar

thermochemical properties, specifically temperature and species mass fractions. For some values

of the temperature progress variable c and CO mass fraction, some neurons seem to diverge from

the state space accessed by dataset, since the SOM does not take into account equally all features,

but emphasizes on the ones with the higher numerical values. This is not considered a failure of

the training process, because the importance of this concept lies in the cluster defined by each

neuron. More specifically, the multi-dimensional center of a cluster may be outside in some

dimensions of the state space accessed by the dataset generated through premixed laminar flame

simulations, but the interest lies on the cluster which is defined by the specific neuron and in

which a new input sample will be assigned, a procedure executed successively and sufficiently

by the current SOM neural network. In addition, the state space will be further clustered by

applying K-Means method on SOM grids, in order to achieve a reduced and manageable number

of clusters, so the outbound neurons play a less important role.

59

Figure 5-14: Composition points accessed by dataset and SOM weight vectors, for Case 1 of data

normalization.

As already mentioned, a neuron weight vector has as many components as the SOM input

variables, or else, as the input data features, i.e. 54 in the present case. Therefore, the values of

the vector components are a useful indicator of how the multi-dimensional state space is projected

onto the two-dimensional SOM grid. In this context, distribution maps are used, which are

basically contour plots of the values of selected components plotted onto the two-dimensional

SOM grid. Each cell of the grid represents a neuron, and it is colored according to the weight

value of the variable under consideration.

60

Figure 5-15: Composition points accessed by dataset and SOM weight vectors, for Case 2 of data

normalization.

Distribution maps constitute a tool of optical observation, correlation and evaluation of features

after the clustering procedure is finished by the SOM. The diagrams selected to be presented in

the current report are indicative and account for the temperature distribution, expressed by

progress variable, c, distribution of main reactants (CH4, O2), main products (CO2, H2O) and

intermediate species/radicals (CO, OH) supporting the main heat release of methane-air mixture

combustion process. Figure 5-16 corresponds to Case 1 of training data normalization, where

temperature is normalized via progress variable c but all other features remain unchanged,

whereas Figure 5-17 corresponds to Case 2 of training data normalization, where temperature is

also normalized via progress variable c and each species mass fraction is scaled into the [0,1]

range.

61

Figure 5-16: SOM distribution maps for Case 1 of data normalization.

62

Figure 5-17: SOM distribution maps for Case 2 of data normalization.

63

Some general observations can be made in both figures. Lower temperatures (lower values of

progress variable, c) correspond to high CH4 mass fraction and O2 mass fraction, since the fuel is

not yet consumed, and low CO2 mass fraction and H2O mass fraction, as the main combustion

process has not yet taken place. On the other hand, higher temperatures (higher progress variable

c) correspond to low CH4 mass fraction and O2 mass fraction, because the fuel is in a great extent

oxidized, and high CO2 mass fraction and H2O mass fraction, which are the main products of the

chemical reaction. CO and OH mass fractions acquire significant values for intermediate to high

temperature, implying that these species appear mainly in the reaction zone and are either further

oxidized or recombined to a great extent towards the burned gas region.

Analyzing the distribution maps corresponding to Case 1 of training data normalization (Figure

5-16), the unburned gas region can be seen to be located on the lower right part of the grid, while

the burned gas region spreads all over the upper part of the grid. This is an expected result of

clustering the state space generated through premixed laminar flame simulations, as the burned

gas region is separated from the unburned gas region by the reaction regime.

Regarding the distribution maps corresponding to Case 2 of training data normalization (Figure

5-17), the unburned gas region is also observed in the lower right part of the grid, while the burned

gas region lies exactly above, on the upper right part of the grid. In fact, the state space is folded

and the burned gas region seems to approach the unburned gas region. This observation can be

justified by the kind of normalization applied in the SOM’s input data. Case 2 corresponds to all

data normalized into the [0,1] range, meaning that the network perceives all features as having

equal importance. Minor species and radicals exist in low concentrations both in the unburned

and burned gas regions, resulting in mass fractions approximately equal to zero in these regions

after the scaling is applied, while in the reaction regime they acquire values near unity. Therefore,

SOM perceives this phenomenon as a similarity between unburned and burned gas regions, thus

projecting and placing them near each other on the two-dimensional grid. This observation can

also be justified by the dimensionality reduction diagrams of Section 5.2.1 (Figures 5-8, 5-9),

where indeed the unburned gas region seems to be near the burned gas region at two dimensions

defined by the first two principal components for Case 2 of training data normalization.

In conclusion, both SOMs are able to cluster properly, accurately and sufficiently the state space

considered in the present work. Each network can be found useful for different implementations,

such as dynamic adaptive chemistry, local mechanism reduction or regression via Artificial

Neural Networks.

5.4 Hybrid Neural Network Training Process

Self-Organizing Map maintains the topology of the multi-dimensional dataset. This means that

neurons close to one another on the two-dimensional map are also close in the multi-dimensional

space. For several applications, the clusters created by SOM may be more than necessary and

overestimated, and can be grouped to clusters with similar properties into subdomains. An

increasing number of subdomains results in higher computational cost and, in the respective

applications, an increasing number of specialized Artificial Neural Networks, which will result in

more refined regression. On the contrary, partitioning into a large number of clusters has its

drawbacks, as too many ANNs need longer to train and it may result in areas with too few samples,

having no essential importance and thus uneven regression quality.

64

An et al. [9], Blasco et al. [8], Franke et al. [10], and Chatzopoulos and Rigopoulos [11] cluster

the SOM a posteriori, by splitting it manually into larger rectangular subdomains, by joining

adjacent cells. The configurations are then tested for the combination of SOM-MLP neural

network and their final choice of SOM configuration is based on the testing error. A more

innovative and interesting approach is proposed by D’ Alesssio et al. [13], who couple the SOM

with a K-Means clustering algorithm to group the closest neurons, obtaining a prescribed number

of clusters required for the specific application. This concept is also applied in the present work,

and the K-Means algorithm is used to cluster the SOM grids developed for both cases of training

data normalization. This two-level approach has been discussed in Section 3.2.3.3.

The K-Means method used is the one offered by scikit-learn, an open-source Python library that

is extensively used in Machine Learning for predictive data analysis [61]. The algorithm reads

the Self-Organizing Map, previously stored as an object, and classifies the neurons into an a priori

defined number of clusters. The number of clusters can be selected either by having a priori

knowledge of regions expected to be found in the dataset or by calculating clustering performance

evaluation indices, i.e., the Silhouette Coefficient and the Davies-Bouldin index. It should be

noted that the K-Means algorithm performs random initialization of cluster centers. The

developed code runs the K-Means algorithm ten times and selects the network with the lowest

error.

5.5 Hybrid Neural Network Partitioning of State Space

The K-Means algorithm is applied on both Self-Organizing Map neural networks developed, in

order to cluster the closest neurons of the two-dimensional grid. The final number of clusters

obtained through the SOM – K-Means hybrid neural network is a user-defined parameter.

According to Vesanto and Alhoniemi [41], the predefined number of clusters can be extracted

through visual inspection of the unified distance map (U-Matrix), which shows the distances

between neurons. Light colors in the U-Matrix depict closely spaced neurons, while darker colors

indicate more widely separated neurons. Consequently, a first estimation of the number of clusters

can be assessed by the number of different colors observed in the U-Matrix.

A more accurate prediction of ideal number of clusters can be extracted through the clustering

performance evaluation indexes, i.e. Silhouette Coefficient and Davies-Bouldin index, which

consider the capacity to separate data objects with maximum distance (external evaluation) and

the capacity of the data to gather together around the centroids, generating maximal compact

groups (internal evaluation), as discussed in Section 3.2.3.

5.5.1 Case 1: Final Partitioning of State Space

The dissimilar standardization followed in Case 1 and the different orders of magnitude between

all data features result in clustering performance evaluation indices not functioning as expected

for the purpose they were computed. Therefore, they cannot be trusted for selecting the optimal

number of clusters of the SOM two-dimensional grid. The unified distance matrix (U-Matrix) is

used, in lieu of an early assessment of the number of clusters, based on the number of colors

observed on the two-dimensional projection.

65

Figure 5-18: U-Matrix illustrating the unified distances between neurons of SOM, for Case 1 of data

normalization.

As can be seen in Figure 5-18, five colors can be discerned, from light blue to black. Figure 5-19

represents the selected clusters on the SOM two-dimensional grid next to progress variable, c,

distribution map for comparison reasons.

Figure 5-19: Progress variable, c, distribution map (left) and clustered SOM grid (right), by grouping the

closest neurons into subdomains via the K-Means method, for Case 1 of data normalization.

The selection of five clusters to group the state space data does not deviate much from reality. In

each premixed laminar flame, at least three regions can be observed; unburned gas region, burned

gas region and reaction region. The flame regime can be further separated into preheating zone,

main reaction zone and recombination zone.

Figure 5-20 displays the state space coverage from the full dataset obtained through premixed

laminar flame simulations, and its partitioning into the five clusters, indicatively for specific

species mass fractions. The same colormap is used as in the clustered SOM’s grid (Figure 5-19).

66

Figure 5-20: Composition points accessed by the dataset and its final partitioning, by applying the K-

Means method on the SOM two-dimensional grid, for Case 1 of data normalization.

5.5.2 Case 2: Final Partitioning of State Space

Case 2 of data normalization refers to all data features being standardized into the [0,1] range.

Clustering performance evaluation indexes perform well in this case, and they are used to evaluate

the number of clusters. The Silhouette Coefficient shows a higher score for four clusters, meaning

that clusters are dense and well separated from each other. The Davies-Bouldin index also

indicates an optimal number of clusters equal to four, suggesting that this configuration offers a

better partitioning of state space, as the clusters are characterized by the minimum possible

similarity to each other. Since both clustering performance evaluation indexes give the same

67

result, the K-Means algorithm is ordered to group the SOM neurons, and so the state space as an

aftermath, into four clusters.

Figure 5-21: Silhouette Coefficient (left) and Davies-Bouldin index (right) versus number of clusters.

Both indexes suggest an optimal number of clusters equal to 4 (marked with red point).

Figure 5-22 represents the clusters created on the SOM two-dimensional grid and the progress

variable, c, distribution map for comparison. By definition, the cluster distribution is the same for

each feature distribution map.

Figure 5-22: Progress variable c distribution map (left) and clustered SOM grid (right), by grouping

closest neurons into subdomains via K-Means method, for Case 2 of data normalization.

In this case, four clusters have a physical interpretation. Cluster 1 with low values of the progress

variable c contains the unburned gas region, while cluster 4 with high values of the progress

variable c contains the burned gas region. Clusters 2 and 3 correspond to intermediate values of

the progress variable c, meaning that they contain the reaction regime.

Figure 5-23 displays the state space coverage from the full dataset obtained through premixed

laminar flame simulations and its grouping into the five clusters, indicatively for specific species

mass fractions. The same colormap is used as in clustered SOM grid figure (Figure 5-19).

68

Figure 5-23: Composition points accessed by dataset and state space final partitioning, by applying the K-

Means method on the SOM two-dimensional grid, for Case 2 of data normalization.

69

5.6 Discussion

The partitioning of the state space into clusters (Figures 5-20, 5-23) can be related to the flame

structure, for both Case 1 and 2 of data normalization. Regarding Case 1, the final partitioning of

state space is in five clusters, according to the visual inspection of the SOM grid unified distance

map. The clusters define specific temperature zones, which can be transformed to spatial zones.

For Case 2 of data normalization, the optimal number of clusters defined through evaluation

indices is four. The generated clusters are not clearly separated in specific temperature zones, but

can be considered to correspond to specific flame regions. Cluster 3, corresponding to a region

with high alterations in species concentrations, has a smaller size compared to all other clusters,

and contains a large number of data points.

Evidently, the physical definition of premixed laminar flame regions does not necessarily go hand

in hand with the clusters defined by the neural network. Nonetheless, the state space partitioning

by the hybrid neural network mechanism is appropriate for the purposes of chemistry

computational cost reduction. Each of the two hybrid neural networks, as well as the SOMs

without applying further grouping via the K-Means method, can be considered as appropriate for

several applications for chemistry acceleration.

The hybrid neural network corresponding to Case 2 of data normalization is further studied for

the purposes of chemistry tabulation via Artificial Neural Networks. More specifically, an ANN

will be assigned to each one of the four clusters created by the hybrid clustering neural network,

in order to predict the state evolution, as discussed in the following two chapters.

70

CHAPTER 6: Prediction of the Heat Release Rate and the Species Rates

of Change

The next step of the present work is the development of an Artificial Neural Network for

chemistry tabulation and prediction of the state space. As discussed in Chapter 4, if a chemical

system is homogenous, the evolution of a chemical state is fully defined by integrating an ODE

system, consisting of equations describing the changes of temperature and species concentrations.

In this context, the ANN is developed to predict heat release rate (HRR) and the species

production or consumption rates, given a state vector as input. The state vector includes the

temperature and species mass fractions as features. The present study deals with methane-air

mixture combustion using the GRI Mech. 3.0, a detailed kinetics mechanism containing 53

species and 325 reactions. Therefore, the state vector contains Ns+1 = 54 features (temperature

and 53 species mass fractions).

Figure 6-1: An illustration of the ANN function.

Given a mechanism, the production or consumption rate of each chemical species can be

expressed by the following system of ODEs:

ωi̇ =
d[Mi]

dt
= (νi

′′ − νi
′) ∙ k ∙ ∏[Mi]

νi
′

Ns

i=1

since 𝜈𝑖
′′ moles of Mi are created for every 𝜈𝑖

′ moles of Mi consumed. The convention used in the

present work is that parentheses around a chemical symbol signify the concentration of that

species, i.e., [Mi] signifies the concentration of species Mi. Additionally, 𝜔𝑖̇ will be called net

production rate of species i, for the sake of brevity. The proportionality constant k is the reaction

rate constant, and introduces the temperature dependence for reaction rates. It is calculated

through Arrhenius Law (Section 4.1.1).

If the pressure is fixed, as considered in the present work, the net production rate of each species

is expressed by a function:

ωi̇ = f(T, Yi)

HRR T

YNs

Y2

Y1

𝜔̇2

𝜔̇1

𝜔̇𝑁𝑠

71

Thus, for a given chemical mechanism and a fixed pressure, the net production rates at a specific

reaction step are functions of temperature and the species mass fractions.

Furthermore, the heat release rate can be calculated as the sum over all species of net production

rate multiplied with species specific enthalpy:

HRR = ∑ ωi̇ hi

Ns

i=1

The developed ANNs shall be able to learn and regress the above mathematical relationships, for

a user-defined level of accuracy. These equations are non-linear and stiff, thus adding a level of

difficulty in the concept.

The state space is divided into four clusters using the hybrid SOM – K-Means neural network, for

Case 2 of data normalization. Multi-Layer Perceptrons are used for regression purposes, as they

are a class of feedforward ANNs. An MLP is then assigned to each one of these clusters, applying

the concept illustrated in Figure 6-1. It receives a 54-dimension composition state vector as input,

and predicts the heat release rate and species net production rates.

The Artificial Neural Network training must be done on data obtained from the simulations of the

same phenomenon or, alternatively, from simulations of an abstract problem. Regarding the latter

case, it is important to ensure that the generated training dataset covers the state space accessed

during the multi-dimensional CFD simulation. An ensemble of premixed laminar flames is used

to generate the training data for the current implementation.

6.1 Sample Generation

The approach followed in the present work implies that the developed ANNs shall be able to

generalize well, instead of focusing on specialized state space domains and operating sufficiently

only under specific thermochemical conditions. Therefore, the training data are obtained through

an abstract problem, while covering the state space expected to be encountered in future

simulations.

The generation of training data for Multi-Layer Perceptron training process is carried out by

means of one-dimensional premixed laminar flame simulations, similarly with the procedure

followed for SOM training data generation.

The simulation conditions are the same as those for the SOM training sample generation (Section

5.1): the pressure is held constant, at p = 1 atm, the inlet temperature ranges from 300 K to 400 K

and the fuel-air equivalence ratio ranges from 0.75 to 1.25.

The present concept is based on state space partitioning and thermochemical states regression,

meaning that only temperature and species mass fractions are needed to generate a state vector,

similarly to the procedure followed for training data generation for SOM training (Section 5.1).

Furthermore, heat release rate as well as species net production rates are stored as a function of

composition states. It is highlighted that the spatial variable is unambiguously connected with

temperature, meaning that the spatial distribution of heat release rate, species mass fractions and

net production rates can be converted to temperature distribution.

The simulation conditions correspond to 121 methane-air premixed laminar flames, generating in

a total of 127099 data samples. The data samples are combinations of input state vectors and

72

output vectors containing heat release rate and species’ net production rates. For the purpose of

MLP training, the data samples are a priori split into 60% training set and 40% test set, similarly

to the case of SOM training process. The full dataset is used only in the frame of the cross

validation technique, a method which is applied in order to tune the network hyperparameters. A

notable observation is that the produced dataset has no outliers, as it is generated through robust

simulations. Therefore, there is no need for application of data cleaning techniques before

proceeding to neural network training responsible for regression, similarly to the neural network

training responsible for state space clustering.

6.1.1 Data Augmentation

Through several early trials of MLP training, it was observed that the developed neural network

focused at specialized states, and could not perform sufficiently on data significantly different to

the training data. In addition, during cross validation applied in order to define the network

architecture, the metrics error displayed oscillations when the network architecture was slightly

modified, for example, in terms of addition of one more neuron per layer.

A common technique used extensively in Machine Learning to deal with network generalization

and stabilization is data augmentation. Basically, data augmentation refers to the enlargement of

the dataset by adding new synthetic data from existing data. This method is expected to reduce

“hollows” created during cross validation, which destabilize the neural network. Additionally, it

will improve the network performance in terms of generalization, as more available data points

will approximate and cover the state space. MLPs have the capacity to interpolate, but, if the

regions of state space are sparsely populated by the training data, the accuracy decreases.

The so-called augmented data can be generated by performing additional simulations, or

randomly, considering several restrictions and relationships between data features. For example,

a restriction relative to combustion simulations is that species mass fractions shall lie within the

solution tolerance at each thermochemical state. In the present work, additional data are obtained

through premixed laminar flame simulations for conditions lying between the initial ones (Table

6-1), using the already developed and validated code.

Table 6-1: Initial conditions for 1D premixed laminar flame simulations, for generation of augmented

data.

 Initial Conditions Range Step

Pressure 1 [atm] -

Temperature 300 – 400 [K] 20 [K]

Fuel-air equivalence ratio
0.76 – 1.21 0.05

0.78 – 1.23 0.05

The aforementioned simulation conditions correspond to 120 methane-air premixed laminar

flames, generating in total 125846 data samples. In addition to the initial acquired dataset

containing 127099 data samples and obtained through 121 flames, the final dataset contains

252945 data samples.

Data augmentation increases the density of the data coverage of state space mainly in the reaction

zone, characterized by intermediate to high values of temperature or progress variable, c.

Regarding low temperatures, the acquired data are not denser; this is not a problem, because in

the unburned gas region no changes in the heat release rate or species concentrations are observed.

73

Thus, this will probably not lead to reduced MLP ability to learn and generalize in this region.

The difference between initial and final (initial and augmented) dataset coverage of the state space

is illustrated indicatively in terms of methane mass fraction in Figure 6-2.

Figure 6-2: Scatter plots representing the state space coverage of the initial dataset (left) and full dataset

(right) collected from methane-air premixed laminar flame simulations.

6.1.2 Final Dataset

Figure 6-3 presents the state space coverage from the full dataset, containing both initial and

augmented data, obtained through laminar flame simulations. The diagrams presented are

indicative for the temperature distribution of main reactants (CH4, O2), main products (CO2, H2O)

and intermediate species/radicals (CO, OH), supporting the main heat release of methane-air

mixture combustion process. Temperature is normalized in terms of the progress variable, c.

74

Figure 6-3: Scatter plots presenting the state space coverage of the full dataset generated by methane-air

premixed laminar flame simulations.

The desired output of MLPs is the heat release rate and species net production rates. These

features are also obtained via the premixed laminar flame simulations and are functions of state.

Due to the differences in orders of magnitude between the heat release rate and species net

production rates, normalization of all features into the [0,1] range is considered mandatory.

Consequently, both input and output vectors of MLPs are standardized into the [0,1] range, a

technique offering better behavior and robustness to the neural network, while the adjusted

weights acquire values in the same order of magnitude.

Figure 6-4 presents the heat release rate and selected species net production rates obtained through

laminar flame simulations.

75

Figure 6-4: Scatter plots presenting the heat release rate (top) and indicative species net production rates

as a function of temperature progress variable, c, collected from methane-air premixed laminar flame

simulations and normalized into the [0,1] range.

Several important observations can be extracted from Figure 6-4. Regarding the top diagram, the

higher values of heat release rate are observed at intermediate to high temperatures, implying that

the main heat release occurs in the reaction regime.

Methane (CH4) and oxygen (O2) net production rates are negative, as they are consumed during

combustion. In the preheating zone, these species are consumed with an increasing rate, while in

the burned gas region, the rates of consumption decrease, until they finally reach a value equal to

zero. The dataset normalization into the [0,1] range leads this behavior to be represented by a

convex distribution, with the maximum scaled consumption rate equal to zero.

76

On the other hand, carbon dioxide (CO2) and water (H2O) net production rates are positive, as

they are the main products of the methane combustion process. In the preheating zone, these

species are gradually produced with an increasing rate, while in the burned gas region, the

production rates decrease, while remaining positive, until they finally reach a value equal to zero.

The dataset normalization into the [0,1] range leads this behavior to be represented by a concave

distribution, with the absolute maximum production rate scaled equal to unity.

Carbon monoxide (CO) and hydroxyl radical (OH) are produced in intermediate temperatures and

further oxidized or recombined in the burned gas region. This behavior can be observed in the

respective diagrams of Figure 6-4.

6.2 Multi-Layer Perceptron Training Process

The neural network applied for regression in the present work is the Multi-Layer Perceptron, a

type of feedforward Artificial Neural Network. As discussed in Section 3.3, the network is trained

through back-propagation method with the Adam optimization algorithm.

Before the training process starts, the network hyperparameters must be defined, similarly to the

Self-Organizing Map case (Section 5.2). The hyperparameters of an MLP neural network are the

following:

▪ Number of hidden layers.

▪ Number of neurons per layer.

▪ Activation function. Hyperbolic tangent is employed due to its property of being a zero-

centered, smooth differentiable function.

▪ Maximum number of epochs. An epoch is defined as a cycle of iterations, where all

training data are used exactly one time. Iterations terminate based on the loss function

convergence.

The number of hidden layers and the number of neurons per layer defines the neural network

architecture. Commonly, the architecture, as well as other network hyperparameters, are selected

by means of trial-and-error, resulting in a configuration that balances accuracy and computational

cost. A more robust method used extensively to define neural network hyperparameters is the

cross validation technique, as discussed in Section 3.3.1.

6.2.1 Neural Network Architecture

A common technique followed in Machine Learning is to split the full dataset into a training set,

responsible for the definition of network hyperparameters and training, and a test dataset, used

for evaluating the trained network. This method is applied in terms of training and testing

processes in the present work, by splitting randomly the dataset into 60% training set and 40%

test set, similarly to the SOM training and testing process. The cross validation technique makes

use of the full dataset, which is split into k smaller groups, the so-called folds. A clone model of

the regressor is trained using the k-1 folds as training data and the resulting model is validated on

the remaining fold of the data. In other words, it is used as a test set for performance accuracy and

generalization capability. The performance measure reported by the k-fold cross validation

method is then the average of the values computed in the loop. The metric applied for cross

validation in the present work is the root mean squared error (RMSE).

77

The concept of the current study consists of two neural networks. Firstly, a hybrid SOM – K-

Means neural network is applied to cluster the state space. Next, an MLP is assigned in each

cluster in order to learn and predict the desired patterns of input data. Regarding Case 2 of data

normalization, where all data features are scaled into the [0,1] range, four clusters are identified

by the hybrid neural network responsible for state space clustering. Therefore, four MLPs will be

developed, each assigned to a specific cluster.

Figure 6-5 depicts the results of the 3-folds cross validation technique applied on each of the four

MLPs, as a function of the number of neurons per layer. 5- folds and 8-folds cross validations

were also performed, and resulted to similar behavior with respect to the RMSE. A configuration

of two hidden layers is selected. Three hidden layers were also examined, but the error reduction

did not compensate the additional complexity of the neural network and the resulting increase in

computational cost.

Figure 6-5: 3-folds cross validation for each cluster generated by the SOM – K-Means neural network.

Progress variable, c (here noted as t), is used to define each cluster’s temperature range.

One should select the simplest possible network that can adequately represent the training dataset,

since this choice has a significant impact on network complexity and computational cost.

Observing Figure 6-5, a compromise between accuracy and complexity can be achieved for

approximately 40 up to 60 neurons per layer, for each of the four MLPs. Furthermore, the

selection of a lower number of neurons per layer may result in a biased neural network, leading

to missing relevant relations between input features and target outputs (underfitting). Taking into

account similar applications of combustion data regression (e.g. [8],[9]), a 54-54 neural network

configuration is selected, meaning that there are two hidden layers with 54 neurons each.

78

Network complexity can be expressed in terms of degrees of freedom (DoF), i.e., the total number

of synapses between neurons. For example, a 100-100 hidden layer configuration with 54 features

as input and 54 features as target output has in total:

DoF = 54 ∙ 100 + 100 ∙ 100 + 100 ∙ 54 = 20800

The degrees of freedom are plotted in Figure 6-6 as a function of the number of neurons per layer.

The network architecture consists of two hidden layers with equal number of neurons per layer.

The degrees of freedom follow a power-law increase. The selected 54-54 configuration seems to

offer a compromise regarding network complexity, as it can be justified by the power-law

relationship in Figure 6-6.

Figure 6-6: Neural network degrees of freedom as a function of the number of neurons per hidden layer.

The network architecture consists of 2 hidden layers having the same number of neurons.

6.3 Prediction Results

Multi-Layer Perceptrons serve the role of the basic regression algorithm of state space data. After

training is finished, the trained MLPs can predict the target output receiving a state vector as an

input. The outputs that each MLP attempts to predict are the heat release rate and the species net

production rates. In total, four MLPs are developed, each one assigned on each cluster generated

by the hybrid SOM – K-Means neural network.

Both MLP input and output data are vectors of equal dimension as the state space dimension,

which for the considered case is equal to 54. The output vector contains 54 features: the heat

release rate and the 53 species net production rates.

The following paragraphs discuss the results obtained by the trained MLPs, for each cluster

generated by the hybrid neural network responsible for clustering of state space. For convenience,

the clustering of state space shown in Figure 6-7 is taken from Section 5.5.

79

Figure 6-7: Progress variable, c, distribution map (left) and clustered SOM grid (right), by grouping the

closest neurons into subdomains via the K-Means method, for Case 2 of data normalization.

Table 6-2 summarizes the temperature region spanned by each cluster in terms of the progress

variable, c.

Table 6-2: Clusters of state space generated by the hybrid SOM – K-Means neural network.

 Range of Progress Variable, c

Cluster 1 0 – 0.55

Cluster 2 0.27 – 0.74

Cluster 3 0.67 – 0.93

Cluster 4 0.72 – 1

6.3.1 Results for Cluster 1

Cluster 1 (0 ≤ c ≤ 0.55) corresponds to the lower temperatures appearing in the state space

considered in the present study. It spans the unburned gas region and a part of the reaction zone,

where changes in temperature and species compositions start to occur.

Figure 6-8 shows the predicted values of the heat release rate and indicative species net production

rates versus the ones obtained from premixed laminar flame simulations. The species selected to

be plotted are the main reactants (CH4, O2), the main products (CO2, H2O) and the intermediate

species/radicals (CO, OH) supporting the main heat release of methane-air mixture combustion

process.

80

Figure 6-8: Prediction vs target output values of MLP assigned to Cluster 1, corresponding to temperature

progress variable c = 0 – 0.55.

The diagrams of Figure 6-8 are basically a representation of a confusion matrix. If the points lie

on the straight line y = x, then the prediction is exactly equal to the target output, and the fit is

considered excellent. Studying the above diagrams, a divergence on the higher temperatures

corresponding to the specific cluster is observed for all represented features. This divergence is

caused due to the fact that this cluster represents both the unburned gas region and a part of the

reaction regime. In the unburned gas region, the heat release rate and species net production rates

are actually equal to zero, whereas they acquire values different than zero while moving into the

reaction zone. The main reactants’ net production rates equal to zero are scaled equal to 1

following the dataset normalization, while the main products’ net production rates being equal to

zero are also scaled equal to zero, following the dataset normalization.

81

Thus, the prediction is sufficient for the low temperatures, corresponding to the unburned gas

region, where all rates are equal to zero, while the ANN output deviates from the target output for

the higher temperatures of the current cluster. In all cases, the ANN performance can be

considered satisfactory, taking into account the order of magnitude of the data belonging to the

current cluster.

Figure 6-9 presents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 1. On average, the main reactants and the main products net production rates are predicted

with excellent accuracy, while several minor species, such as CH3O, exhibit higher error values,

probably due to the actual order of magnitude of these features. The mean RMSE for the specific

MLP is equal to 2.2∙10-3.

Figure 6-9: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 1.

6.3.2 Results for Cluster 2

Cluster 2 (0.27 ≤ c ≤ 0.74) corresponds to intermediate temperatures appearing in the state space

covered in the present study. It spans the preheating zone and a part of the main reaction zone,

where high changes in temperature and species composition occur in both of them. A significant

overlap between Cluster 1 and Cluster 2 is observed in terms of the corresponding values of

progress variable, c. This can be justified by the intrinsic property of the clustering algorithm to

create groups of approximately equal number of data, while at the same time dealing with high-

dimensional data, resulting in overlapping of features in several projections of the high-

dimensional space.

82

 Figure 6-10: Prediction vs target output values of MLP assigned to Cluster 2, corresponding to

temperature progress variable c = 0.27 – 0.74.

83

Figure 6-11 represents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 2. On average, the main reactants and the main products net production rates are predicted

with excellent accuracy, while several minor species, such as CH2CHO, exhibit higher error

values, probably due to the actual order of magnitude of these features. Similar behavior was

observed for the MLP assigned to Cluster 1. The mean RMSE for the specific MLP is equal to

4.0∙10-3.

Figure 6-11: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 2.

6.3.3 Results for Cluster 3

Cluster 3 (0.67 ≤ c ≤ 0.93) corresponds to intermediate to high temperatures appearing in the state

space covered in the present study. It spans the main reaction regime, where the highest changes

in temperature and species compositions occur. An overlap between Cluster 2 and Cluster 3 is

also observed in terms of the corresponding values of progress variable, c.

84

Figure 6-12: Prediction vs target output values of MLP assigned to Cluster 3, corresponding to

temperature progress variable c = 0.67 – 0.93.

Figure 6-13 presents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 3. There is not much deviation in error between the main reactants and the main products

net production rates, as well as between several minor species ones. This is probably due to the

fact that radicals and minor species are activated for a small spatial window, contained in the

specific cluster, and acquire values of a higher order of magnitude. The mean RMSE for the

specific MLP is equal to 5.4∙10-3.

85

Figure 6-13: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 3.

6.3.4 Results for Cluster 4

Cluster 4 (0.72 ≤ c ≤ 1) corresponds to the higher temperatures appearing in the state space

covered in the present study. It spans the burned gas region and a part of the reaction regime,

where several species are oxidized or recombined, and the changes occurring in temperature and

species concentrations are not as high as in Cluster 3. A significant overlap between Cluster 3 and

Cluster 4 is also observed in terms of the corresponding values of progress variable, c.

86

Figure 6-14: Prediction vs target output values of MLP assigned to Cluster 4, corresponding to

temperature progress variable c = 0.72 – 1.

Figure 6-15 presents the root mean squared error (RMSE) of each feature contained in the MLP

output vector, regarding Cluster 4. On average, the main reactants and the main products net

production rates are predicted with excellent accuracy, while several minor species, such as N2O,

exhibit higher error values, probably due to the actual order of magnitude of these features.

Similar behavior was observed for MLPs assigned to Cluster 1 and Cluster 2. The mean RMSE

for the specific MLP is equal to 3.8∙10-3.

87

Figure 6-15: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 4.

6.4 Discussion

As aforementioned, the state space is partitioned into four clusters and a 54-54 MLP is assigned

in each cluster. The MLP is responsible for prediction of the heat release rate and the species net

production rates, receiving a state vector as an input. Figures 6-16 and 6-17 depict both target and

prediction values for the heat release rate and the main species net production rates. The target

data are plotted with blue color, whereas the prediction values are plotted with red color.

Figure 6-16: Heat release rate target and prediction values, for all four clusters of the state space. The

diagram on the right is a partial enlargement of the left one.

According to Figure 6-16, the target values overlap with the prediction values, meaning that the

prediction is identical with the target output. In the partial enlargement diagram, it is observed

better that the curves representing the prediction outputs (red color) lie on top of the curves

representing the target outputs (blue color). This observation indicates that the MLP regression

of the state space is satisfactory. Similar observations can be noted on the subsequent diagrams

(Figure 6-17), representing the net production rates of indicatively selected species. The species

selected are the main reactants (CH4, O2), the main products (CO2, H2O) and the intermediate

88

species/radicals (CO, OH) supporting the main heat release of methane-air mixture combustion

process.

Figure 5-17: Species net production rates target and prediction values, for all four clusters of the state

space.

Both Figures 6-16 and 6-17 demonstrate the prediction accuracy of all four developed MLPs,

combined into a common figure. The prediction performance can be considered excellent for the

state space covered in the current implementation. Small deviations can be observed mainly in

the lower temperature region, where the red color becomes more obvious, an observation also

denoted in the discussion of Cluster 1 results (Section 6.3.1). For a first trail on the concept, this

is not considered as a loss in network accuracy, due to the order of magnitude of the error.

However, this weakness of MLP assigned to Cluster 1 can probably be confronted through a filter,

89

responsible to set the heat release rate and the net production rates equal to their constant values,

appearing in the unburned reaction region, during the simulations.

Table 6-3 summarizes the average root mean squared error (RMSE) calculated for each one of

the four developed MLPs. The accuracy can be considered sufficient, taking into account that the

errors’ order of magnitude is 10-3, whereas the data are normalized into the [0,1] range. Higher

errors appear in intermediate to high temperature zones, where the main proportion of chemical

reaction occurs.

Table 6-3: Root mean squared error (RMSE) of each developed MLP.

MLP assigned to: RMSE

Cluster 1 2.2∙10-3

Cluster 2 4.0∙10-3

Cluster 3 5.4∙10-3

Cluster 4 3.8∙10-3

90

CHAPTER 7: Prediction of Thermochemical State Time Evolution

The final step of the present work includes the development of an Artificial Neural Network for

the chemistry tabulation and prediction of the state space temporal evolution, expected to be

visited in combustion simulations. According to Chapter 4 discussion, the evolution of a chemical

system is fully defined by integrating an ODE system, consisting of equations describing the

changes of temperature and species concentrations.

In this context, the ANN is developed in order to predict the temporal evolution of a

thermochemical state, given a thermochemical state vector as an input. In other words, it executes

the time integration of chemistry, from a specific time t to t+δt, where δt is the selected integration

time step. The thermochemical state is described by 54 features regarding the application of GRI

Mech. 3.0.

Figure 7-1: An illustration of the ANN function.

Given a mechanism, the production or consumption rate of each chemical species can be

expressed by the following system of ODEs:

d[Mi]

dt
= ωi̇ = (νi

′′ − νi
′) ∙ k ∙ ∏[Mi]

νi
′

Ns

i=1

since 𝜈𝑖
′′ moles of Mi are created for every 𝜈𝑖

′ moles of Mi consumed and [Mi] denotes the molar

concentration of species i. Additionally, 𝜔𝑖̇ will be called net production rate of species i for the

sake of brevity. The proportionality constant, k, is the reaction rate constant, and introduces the

temperature dependence for reaction rates. It is calculated through Arrhenius Law (Section 4.1.1).

Species concentration can be converted to mass fraction through the formula:

[Μι] =
ni

V
=

mi/MWi

V
=

mi

m
∙

m

V
∙

1

MWi
= Yi ∙

ρ

MWi

where ni are the moles of species i, V is the system volume, mi is the mass of species i, MWi is

the molecular weight of species i and m is the total mass contained in the system volume.

Correspondingly, ρ is the density of gas contained in the system volume and Yi is the mass fraction

T(t+δt) T(t)

YNs(t)

Y2(t)

Y1(t) Y1(t+δt)

YNs(t+δt)

Y2(t+δt)

91

of species i. Therefore, the temporal evolution of the species mass fraction can be calculated by

integrating the equation:

dYi

dt
=

ωi̇ ∙ MWi

ρ

The time evolution of temperature can be obtained from Energy Conservation (Section 4.1.2):

dT

dt
= −

∑ (hi ∙
dYi
dt

)
Ns
i=1

cp

In conclusion, the ANNs shall be able to learn and regress the above mathematical relationships

for a user-defined level of accuracy. These equations are non-linear and stiff.

The state space is divided into four clusters using the hybrid SOM – K-Means neural network for

Case 2 of data normalization, which corresponds to all features standardized into the [0,1] range.

Multi-Layer Perceptrons are used for regression, applying the concept illustrated in Figure 7-1.

The ANN receives a 54-dimension state vector as an input and predicts the temporal evolution of

this state vector.

The Artificial Neural Network training must be done on data obtained from simulations of the

same phenomenon or, alternatively, from simulations of an abstract problem. Regarding the latter

case, it is important to ensure that the generated training dataset covers the state space accessed

during the multi-dimensional CFD simulation. An ensemble of premixed laminar flames was

previously used to generate a dataset covering a specific part of state space. These thermochemical

states are loaded as input data in homogeneous reactor simulations, where time integration is

executed and the evolution of thermochemical states after a specific time step is calculated.

7.1 Sample Generation

The approach followed in the present work implies that the developed ANNs shall be able to

generalize well, instead of focusing on specialized state space domains and operating sufficiently

only under specific thermochemical conditions. Therefore, the training data are decided to be

obtained through a canonical problem, while covering the state space expected to be encountered

in future simulations.

The generation of training data for the Multi-Layer Perceptron training process is carried out by

integrating homogeneous, constant-pressure, zero-dimensional reactors with adiabatic,

chemically inert walls. Commonly, a time step δt=10-6 s is sufficient for chemistry integration,

however depending on the integration method and the state. The current study deals with methane-

air premixed mixture combustion. The simulations are executed using the CANTERA open-

source suite in a Python code, as described in Section 4.4.

The simulation conditions are not limited in a range of temperature and fuel-air equivalence ratio,

as they were in premixed laminar flame simulations (Section 5.1). Each state vector generated by

the premixed laminar flame simulations is introduced as an input condition in the homogeneous

reactor. Therefore, the simulation conditions of the homogeneous reactor basically refer to the

state space assessed by the premixed laminar flame simulations. Afterwards, a specific time step

is defined and then time integration is executed in order to calculate the new state vector. The

present concept is based on the state space partitioning and thermochemical states regression,

meaning that only temperature and species mass fractions are needed to generate a state vector.

92

The concept developed in the present Chapter is to test the ability of the 54-54 configuration of

MLPs to predict the value of temperature and species mass fractions after a time step δt, instead

of direct calculation of the time derivative, a concept studied in the previous chapter (Chapter 6).

For reasons of simplification of the procedure, the state vectors only from the initial 121 methane-

air premixed laminar flames are used, which correspond in total 127099 data samples. The data

samples are combinations of input state vectors and output state vectors. For the purpose of the

MLP training, the data samples are a priori split into 60% training set and 40% test set, similarly

to the case of the SOM training process. The cross validation, a method which is applied in order

to tune the network hyperparameters, is not introduced in the present case study, as the interest

focuses on evaluation of the already developed 54-54 MLP configuration. A notable observation

is that the produced dataset has no outliers, as it is generated through robust time integration.

Therefore, there is no need for application of data cleaning techniques before proceeding to neural

network training responsible for regression, similarly to the neural network training responsible

for state space clustering.

Figure 7-2 depicts the state space coverage from the full dataset obtained through laminar flame

simulations. These composition states enter each MLP as an input vector. All features are

normalized into the [0,1] range corresponding to Case 2 of data normalization. The diagrams

presented are indicative of the temperature distribution of the main reactants (CH4, O2), the main

products (CO2, H2O) and the intermediate species/radicals (CO, OH) supporting the main heat

release of methane-air mixture combustion process. Temperature is normalized via the progress

variable, c.

93

Figure 7-2: Scatter plots presenting the initial state space coverage of the data collected from methane-air

premixed laminar flame simulations.

The desired output of MLPs is the state after a specified time step is elapsed. These composition

states are obtained via the homogeneous reactor simulations and are certainly functions of the

initial state. Due to the differences in the order of magnitude between the temperature and the

species mass fractions, normalization of all features into the [0,1] range is considered mandatory.

Thus, both input and output vectors of MLPs are normalized into the [0,1] range, a technique

offering better behavior and robustness to the neural network, while the adjusted weights acquire

values in the same order of magnitude.

Figure 7-3 depicts the state space coverage from the full dataset obtained through homogeneous

reactor simulations for a specified time step δt = 10-6 s. The diagrams presented are indicative of

the temperature distribution of the main reactants (CH4, O2), the main products (CO2, H2O) and

the intermediate species/radicals (CO, OH), supporting the main heat release of methane-air

mixture combustion process. Temperature is normalized via the progress variable, c.

94

Figure 7-3: Scatter plots presenting the final state space coverage of the data collected from homogenous

reactor simulations, after a specified time step δt=10-6 s.

An important observation extracted from Figure 7-3 is that the states after a time step δt=10-6 s

are slightly changed in comparison to the initial ones (Figure 7-2). This observation implies that

the time step is small enough, and little alterations in temperature and compositions occur.

Furthermore, the neural network weights are expected to acquire values close to zero, because the

output does not differ to a high degree from the input vector.

7.2 Multi-Layer Perceptron Training Process

The neural network applied for regression in the present work is the Multi-Layer Perceptron, a

type of feedforward Artificial Neural Network. As discussed in Section 3.3, the network is trained

through a back-propagation method with the Adam optimization algorithm.

Before the training process starts, the network hyperparameters shall be defined, similarly to the

Multi-Layer Perceptrons discussed in Section 6.2. The hyperparameters of an MLP neural

network are the following:

▪ Number of hidden layers.

▪ Number of neurons per layer.

▪ Activation function. Hyperbolic tangent is employed due to its property of being a zero-

centered, smooth differentiable function.

▪ Maximum number of epochs. An epoch is defined as a cycle of iterations, where all

training data are used exactly one time. Iterations terminate based on the loss function

convergence.

95

The number of hidden layers and the number of neurons per layer defines the neural network

architecture. Commonly, the architecture, as well as other network hyperparameters, are selected

by means of trial-and-error, resulting in a configuration that balances accuracy and computational

cost. A more robust method used extensively to define neural network hyperparameters is the

cross validation technique, examined in Section 3.3.1.

In the context of the current study, the already developed 54-54 MLP configuration is evaluated

in terms of state prediction, instead of direct derivative prediction, for purposes of comparison

with the concept studied in the previous chapter (Chapter 6). Additionally, taking into account

relative applications of combustion data regression and prediction of thermochemical states found

in literature (e.g. [8],[9]), a 54-54 neural network configuration can be considered as a sufficient

selection, balancing accuracy and computational cost.

The concept of the current implementation consists of two neural networks; firstly, a hybrid SOM

– K-Means neural network is applied to cluster the state space. Next, an MLP is assigned to each

cluster, in order to learn and predict the desired patterns of input data. Regarding Case 2 of data

normalization, where all data features are scaled into the [0,1] range, four clusters are identified

by the hybrid neural network responsible for the state space clustering. Therefore, four MLPs will

be developed, each one assigned to a specific cluster.

7.3 Prediction Results

Multi-Layer Perceptrons serve the role of the basic regression algorithm of state space data. After

training is finished, the trained MLPs can predict the target output, receiving a state vector as an

input. The output that each MLP is assigned to predict is the state vector after a specified time

step. In total, four MLPs are developed, each one assigned to each cluster generated by the hybrid

SOM – K-Means neural network.

Both MLP input and output data are state vectors of dimension equal to the state space dimension,

which for the considered case is equal to 54.

The following paragraphs discuss the results obtained by the trained MLPs, for each cluster

generated by the hybrid neural network responsible for clustering of state space. For convenience,

the clustering of state space shown in Figure 7-4 is taken from Section 5.5.

Figure 7-4: Progress variable, c, distribution map (left) and clustered SOM grid (right), by grouping the

closest neurons into subdomains via K-Means method, for Case 2 of data normalization.

96

Table 7-1 summarizes the temperature region spanned by each cluster in terms of the progress

variable, c.

Table 7-1: Clusters of state space generated by hybrid SOM – K-Means neural network.

 Range of Progress Variable, c

Cluster 1 0 – 0.55

Cluster 2 0.27 – 0.74

Cluster 3 0.67 – 0.93

Cluster 4 0.72 – 1

7.3.1 Results for Cluster 1

Cluster 1 (0 ≤ c ≤ 0.55) corresponds to the lower temperatures appearing in the state space covered

in the present study. It spans the unburned gas region and a part of the reaction regime, where

changes in temperature and species compositions start to occur.

Figure 7-5 shows the predicted temperature and species mass fractions after a specific time step

versus the actual ones, as they are obtained from homogenous reactor simulations for the specified

time step, δt=10-6 s. The species presented are the main reactants (CH4, O2), the main products

(CO2, H2O) and the intermediate species/ radicals (CO, OH) supporting the main heat release of

methane-air mixture combustion process.

97

Figure 7-5: Prediction vs target output values of the MLP assigned to Cluster 1, corresponding to

temperature progress variable c = 0 – 0.55.

The diagrams of Figure 7-5 are basically a representation of the confusion matrix. If the points lie

on the straight line y = x, then the prediction is exactly equal to the target output, and the fit is

considered excellent. Studying the above diagrams, the fit seems excellent for all main features,

except for hydroxyl radical (OH), where an irregular behavior is observed for several values,

which becomes more intense due to the values that the specific species acquire. In other words,

the deviation of prediction from target hydroxyl radical mass fraction is optically intensified due

to the fact that this species ranges in small order of magnitude values in the specific cluster. In

general, the MLP prediction performance is considered satisfactory for Cluster 1, at least for the

temperature and the main species temporal evolution, as the predicted data are mainly plotted on

the y = x line, meaning that they are approximately equal to the target data. The use of the word

“approximately” is justified by the fact that a finite error exists, as it is subsequently presented.

Figure 7-6 presents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 1. On average, the temperature and the main species mass fractions are predicted with

excellent accuracy, while several minor species, such as C3H7, exhibit higher error values,

probably due to the actual order of magnitude of these features. The mean RMSE for the specific

MLP is equal to 1.9∙10-3.

98

Figure 7-6: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 1. t denotes the normalized temperature through the progress variable, c.

7.3.2 Results for Cluster 2

Cluster 2 (0.27 ≤ c ≤ 0.74) corresponds to intermediate temperatures appearing in the state space

covered in the present study. It spans the preheating zone and a part of the main reaction zone,

where high changes in temperature and species composition occur in both of them. A significant

overlap between Cluster 1 and Cluster 2 is observed in terms of the corresponding values of the

progress variable, c. This can be justified by the intrinsic property of the clustering algorithm to

create groups of approximately equal number of data, while at the same time dealing with high-

dimensional data, resulting in overlapping of features in several projections of the high-

dimensional space.

99

 Figure 7-7: Prediction vs target output values of the MLP assigned to Cluster 2, corresponding to

temperature progress variable c = 0.27 – 0.74.

Figure 7-8 represents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 2. On average, the temperature and the main species mass fractions are predicted with

excellent accuracy, while several minor species, such as C2H5 and C3H7, exhibit higher error

values, probably due to the actual order of magnitude of these features. The mean RMSE for the

specific MLP is equal to 4.6∙10-3.

100

Figure 7-8: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 2. t denotes the normalized temperature through progress variable, c.

7.3.3 Results for Cluster 3

Cluster 3 (0.67 ≤ c ≤ 0.93) corresponds to intermediate to high temperatures appearing in the state

space covered in the present study. It spans the main reaction regime, where the highest changes

in temperature and species compositions occur. An overlap between Cluster 2 and Cluster 3 is

also observed in terms of the corresponding values of progress variable, c.

101

Figure 7-9: Prediction vs target output values of the MLP assigned to Cluster 3, corresponding to

temperature progress variable c = 0.67 – 0.93.

Figure 7-10 represents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 3. There is not much deviation of the error between all features. This is probably due to

the fact that radicals and minor species are activated for a small spatial window, contained in the

specific cluster, hence their acquired values are in the same order of magnitude as the ones of

main species mass fractions. The mean RMSE for the specific MLP is equal to 5.4∙10-3.

Figure 7-10: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 3. t denotes the normalized temperature through progress variable, c.

102

7.3.4 Results for Cluster 4

Cluster 4 (0.72 ≤ c ≤ 1) corresponds to the higher temperatures appearing in the state space

covered in the present study. It spans the burned gas region and a part of the reaction regime,

where several species are oxidized or recombined, and the changes occurring in temperature and

species concentrations are not as high as in Cluster 3. A significant overlap between Cluster 3 and

Cluster 4 is also observed in terms of the corresponding values of progress variable, c.

103

Figure 7-11: Prediction vs target output values of the MLP assigned to Cluster 4, corresponding to

temperature progress variable c = 0.72 – 1.

Figure 7-12 presents the RMSE of each feature contained in the MLP output vector, regarding

Cluster 4. There is also not much deviation of error between all features, similarly to Cluster 3.

This is probably due to the fact that radicals and minor species remain activated for a small spatial

window, contained in the specific cluster, and are then oxidized or recombined. Hence, their

acquired values are of the same order of magnitude as the ones of main species mass fractions.

The mean RMSE for the specific MLP is equal to 2.5∙10-3 s.

Figure 7-12: Root Mean Squared Error (RMSE) of each feature contained in the MLP output vector,

regarding Cluster 4. t denotes the normalized temperature through progress variable, c.

7.4 Discussion

As previously mentioned, the state space is partitioned into four clusters, and a 54-54 MLP is

assigned in each cluster. The MLP is responsible for the prediction of state after a specified time

step, receiving an initial state vector as an input.

Figure 7-13 displays both target and prediction values for the temperature distribution of

indicative species mass fractions, after the specified time step δt=10-6 s. The target data are plotted

with blue color, whereas the prediction values are plotted with red color.

104

Figure 7-13: Temperature distribution of species mass fractions target and prediction values after the

specified time step δt=10-6, for all four clusters of the state space.

According to Figure 7-13, the target values overlap with the prediction values, meaning that the

prediction is identical to the target output. If a diagram is enlarged, it is observed better that the

points representing the prediction outputs (red color) lie on the points representing the target

outputs (blue color). Small deviations can be observed, mainly in the borders of covered state

space corresponding to the reaction regime, where the red color becomes more obvious. Overall,

the MLP regression of states is considered accurate.

MLP performance can also be evaluated through prediction versus target output diagrams,

presented in Figures 7-14 and 7-15, in terms of temperature and main species mass fractions,

respectively.

105

Figure 7-14: Prediction vs target output values for the temperature temporal evolution (top), for all four

clusters of the state space. Partial enlargements (bottom left and bottom right) indicate that there exists an

error of a low magnitude.

The prediction of temperature temporal evolution seems to be macroscopically excellent for the

total state space spanned in the current implementation. However, partial enlargements in any

range of temperature progress variable indicate that the prediction deviates from the target

outputs, with the error being quite low. These observations are generalized for each

thermochemical state feature in Figure 7-15, including the main species mass fractions.

106

Figure 7-15: Prediction vs target output values for the main species mass fractions temporal evolution, for

all four clusters of the state space.

Overall, the four developed MLPs exhibit macroscopically an excellent performance regarding

the time integration of a state over a specified time step. Observations of previous sections

regarding the low level of errors are also verified by the diagrams of Figures 7-14 and 7-15. Ideas

associated with a further reduction of error are presented in Section 8.2.

Table 7-2 summarizes the average RMSE calculated for each one of the four developed MLPs.

The accuracy can be considered sufficient, considering that the errors’ order of magnitude is

10-3, while the data are normalized into the [0,1] range. Higher errors appear the intermediate to

high temperature zones, where the main proportion of chemical reaction occurs.

Table 7-2: Root mean squared error (RMSE) of each developed MLP.

MLP assigned to: RMSE

Cluster 1 1.9∙10-3

Cluster 2 4.6∙10-3

Cluster 3 5.4∙10-3

Cluster 4 2.5∙10-3

107

CHAPTER 8: Conclusions

8.1 Summary and Discussion of Results

Chemistry acceleration via Machine Learning methods is examined in the present work using

Artificial Neural Networks. The proposed methodology consists of two main objectives: to reduce

the computational cost of chemistry integrations and to achieve a desired level of accuracy. The

development of this methodology has been driven by the needs of the combustion kinetics

tabulation problem, where different subdomains in state space can feature different dynamics.

Therefore, first of all, a neural network responsible for clustering the state space is developed. In

this context, Self-Organizing Maps are applied, which create two-dimensional grids representing

the distribution of data features. Subsequently, Multi-Layer Perceptrons, which are a type of

feedforward ANNs, are assigned, in order to regress the desired thermochemical feature.

The ANN performance is limited in learning and predicting accurately patterns visited in the

thermochemical state vectors used during the training process. Therefore, the training dataset is

generated through a canonical problem, in order to enhance the ANN capacity of generalization.

Here, the dataset is obtained through 1-D steady premixed laminar flame simulations. It must be

emphasized that the trained ANNs are not subject to the premixed laminar flame model, because

several features such as spatial distribution and velocity are discarded and the dataset is shuffled

prior to training. The temperature and species mass fractions are maintained as data features,

whereas pressure is kept constant, creating state vectors. Data normalization plays an important

role on the network behavior and performance; thus two associated cases are studied. Case 1

refers to temperature normalized into the [0,1] range while all other data features remain

unchanged, whereas Case 2 corresponds to all data features scaled into the [0,1] range.

The Self-Organizing Map performs excellently in terms of clustering the state space, for both

cases of data normalization; the generated maps can be used for correlation of features and quality

analysis. These maps are further clustered by the K-Means algorithm, in order to reduce the

number of subdomains, and a hybrid SOM – K-Means neural network is developed. Regarding

Case 1 of data normalization, temperature and main species mass fractions are accounted for more

than minor species, thus the developed SOM is specialized in these features of state space. Local

reduction of kinetics mechanism is an application that this SOM is considered to perform well.

Regarding Case 2, all data features are accounted for equally, and hence the developed SOM is

not specialized to them and can be applied for mathematical calculations by assigning regression

neural networks, an application examined in the present work.

The current approach is based on clustering and training ANNs specialized to particular

subdomains of the state space. The present developed hybrid SOM – K-Means neural network

clusters the state space into four subdomains. Therefore, a separate Multi-Layer Perceptron is

assigned in each state space cluster. Two case studies of MLP outputs are examined: the first one

is the heat release rate and the species net production rates prediction, whereas the second one is

the temperature and the species mass fractions temporal evolution over a specified time step. The

same network architecture is used for both case studies, defined via a cross validation approach

for the first case, and further evaluated for the second one, where temporal evolution is calculated

instead of direct integration of the ODE system. The errors are low, and considered acceptable

for the purposes of the present study.

Regarding computational time, the neural network methodology reduces it by approximately 21

times. Specifically, direct integrations of the homogeneous reactor for 127099 composition states

containing for a time step δt=10-6 s are executed in 38613 [s], or approximately 10.7 [hours]. On

108

the other hand, the computational time for the neural network mechanism to execute the same

simulations is 1817.41 [s], or about half an hour, out of which 0.41 [s] are required for the MLP

regression and 1817 [s] are spent for the determination of which state cluster contains the input

vector at each case. The measurements of the execution time were conducted on a personal

computer running on an i5 processor.

Figure 8-1: Execution time comparison between detailed numerical simulations and the developed neural

network mechanism.

Therefore, the developed neural network mechanism, consisting of the hybrid SOM – K-Means

and the MLP neural networks, offers a huge reduction in computational cost of chemistry

integration, while achieving a desired level of predictions’ accuracy.

8.2 Future Work

The Artificial Neural Networks developed in the present thesis can find several applications, such

as local characterization of state space and mechanism reduction, or reduction of time for solving

the ODE systems describing the chemistry term in CFD simulations. The results are very

encouraging for a first engagement with this field of research, paving the way for future work.

Some directions of interest for future studies are the following:

▪ Application of the developed hybrid SOM – K-Means neural network for local reduction

of a methane combustion kinetics mechanism.

▪ Further optimization of MLP architecture and tests on bow type configurations.

▪ Application of other methods for data augmentation in order to span a larger part of the

state space.

▪ Examination of separate MLPs development in each state space subdomain, each one

responsible for specific data features.

▪ Examination of separate MLPs development in each state space subdomain, each one

responsible for a different order of magnitude of the same feature.

▪ Coupling the developed neural network mechanism with a CFD code and evaluation of

performance in terms of accuracy and computational cost.

▪ Application of the present methodology for chemistry tabulation of a more complex fuel,

such as HFO, or of a fuel expected to be extensively used in the future, such as ammonia

or hydrogen.

109

The examination of developing separate MLPs in each state space subdomain, each one

responsible for specific data features, or for a different order of magnitude of the same feature, is

expected to further decrease the errors identified in the present study, albeit at an increase in

computational time, due to the increased number of ANNs used. Thus, a proper compromise

between accuracy and computational efficiency should be also investigated.

110

Literature

[1] L. Kaiktsis, X. Vouvakos, D. Kazangas and P. Kontoulis, «Modeling Approaches for

Internal Combustion Engine Applications». Presentation for the Course «Combustion»,

2020, Division of Marine Engineering, School of Naval Architecture and Marine

Engineering, National Technical University of Athens.

[2] SEA-LNG, “LNG as a marine fuel-the investment opportunity”, https://sea-lng.org,

accessed on August 2021.

[3] DNV-GL, https://www.dnv.com, accessed on August 2021.

[4] A. Cuoci, «Chemistry Acceleration in Computational Fluid Dynamics of combustion

and heterogeneous catalysis», IMPROOF Workshop, Ghent University, January 2020.

[5] Z. Ren, Y. Liu, T. Lu, L. Lu, O. Oluwole and G. Goldin, «The use of dynamic adaptive

chemistry and tabulation in reactive flow simulations», Combustion and Flame 161

(2014), pp. 127-137.

[6] J. An, G. He, F. Qin, X. Wei and B. Liu, «Dynamic adaptive chemistry with mechanisms

tabulation and in situ adaptive tabulation (ISAT) for computationally efficient modeling

of turbulent combustion», Combustion and Flame 206 (2019), pp. 467-475.

[7] S. Pope, «Computationally efficient implementation of combustion chemistry using in

situ adaptive tabulation», Combustion Theory and Modelling 1 (1997), pp. 41-63.

[8] J. Blasco, C. Dopazo, N. Fueyo and J-Y Chen, «A self-organizing map approach to

chemistry representation in combustion applications», Combustion Theory and

Modelling 4 (2000), pp. 61-76.

[9] J. An, G. He, K. Luo, F. Qin and B. Liu, «Artificial neural network based chemical

mechanism for computationally efficient modelling of hydrogen / carbon monoxide /

kerosene combustion», International Journal of Hydrogen Energy 45 (2020), pp. 29594-

29605.

[10] L. Franke, A. Chatzopoulos and S. Rigopoulos, «Tabulation of combustion chemistry

via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF

simulation of Sydney flame L», Combustion and Flame 185 (2017), pp. 245-260.

[11] A. Chatzopoulos and S. Rigopoulos, «A chemistry tabulation via Rate-Controlled

Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), with

application to turbulent non-premixed CH4/H2/N2 flames», Proceedings of the

Combustion Institute 34 (2013), pp. 1465-1473.

[12] C. Chi, G. Janiga and D. Thevenin, «On-the-fly artificial neural network for chemical

kinetics in direct numerical simulations of premixed combustion», Combustion and

Flame 226 (2021), pp. 467-477.

[13] G. D’ Alessio, A. Cuoci, G. Aversano, M. Bracconi, A. Stagni and A. Parente, «Impact

of the Partitioning Method on Multidimensional Adaptive Chemistry Simulations»,

Energies 2020, 13(10), 2567, May 2020.

[14] G. D’ Alessio, A. Parente, A. Stagni and A. Cuoci, «Adaptive chemistry via pre-

partitioning of state space and mechanism reduction», Combustion and Flame 211

(2020), pp. 68-82.

[15] T. Zhang, Y. Zhang, W. E and Y. Ju, «A deep learning-based ODE solver for chemical

kinetics», Princeton University, November 2020.

[16] A. Sharma, R. Johnson, A. Moses and D. Kessler, «Deep Learning for Scalable Chemical

Kinetics», Laboratories for Computational Physics & Fluid Dynamics, U.S. Naval

Research Laboratory, Washington D.C., 2020.

[17] T. Readshaw, T. Ding, S. Rigopoulos and W.P. Jones, «Modeling of turbulent flames

with the large eddy simulation-probability density function (LES-PDF) approach,

stochastic fields, and artificial neural networks», Physics of Fluids 33, 035154 (2021).

https://sea-lng.org/
https://www.dnv.com/

111

[18] T. Ding, T. Readshaw, S. Rigopoulos and W.P. Jones, «Machine learning tabulation of

thermochemistry in turbulent combustion: An approach based on hybrid

flamelet/random data and multiple multilayer perceptrons», Combustion and Flame 231

(2021), 111493.

[19] O. Owoyele and P. Pal, «ChemNODE: A Neural Ordinary Differential Equations

Approach for Chemical Kinetics Solvers», February 2021.

[20] J. Frankenfield, «Artificial Intelligence (AI)», www.investopedia.com , March 2021.

[21] M. Hargrave, «Deep Learning», www.investopedia.com , May 2021.

[22] G. Papalambrou, Course Notes «Artificial and Computing Intelligence for Ship Design

and Operation», April 2020.

[23] N. Afentoulis and X. Pournaras, «Artificial Neural Networks and Applications in

Maritime Industry», Presentation at National Technical University of Athens, 2019.

[24] A. Lorke, F. Schneider, J. Heck and P. Nitter, «Cypenko’s Theorem and the capability

of a neural network as a function approximator», September 2019.

[25] L. Codispoti, C. Frouzakis and K. Boulouchos, «Machine learning models for the local

displacement speed of hydrogen-air premixed flames», Swiss Federal Institute of

Technology (ETH), Zürich, December 2020.

[26] M. Hagan, H. Demuth, M. Beale and O. De Jesus, «Neural Network Design», E-book,

2nd Edition.

[27] J.E. Jackson, «A User’s Guide to Principal Components», John Wiley & Sons, Inc.,

2005.

[28] S. Wold, K. Esbensen and P. Gelaldi, «Principal Component Analysis», Chemometrics

and Intelligent Laboratory Systems, 1987.

[29] Z. Jaadi, «A step-by-step explanation of Principal Component Analysis (PCA)»,

www.builtin.com, April 2021.

[30] A. Parente and J. Sutherland, «Principal component analysis of turbulent combustion

data: Data pre-processing and manifold sensivity», Combustion and Flame 160 (2013),

pp. 340-350.

[31] T. Kohonen, «The Self-Organizing Map», IEEE, 1992.

[32] T. Kohonen, «Essentials of the self-organizing map», Neural Networks, 2012.

[33] N. Zivkovic, «Implementing Self-Organizing Maps with Python and TensorFlow»,

Rubik’s Code, July 2021.

[34] H. Garcia and I. Gonzalez, «Self-organizing map and clustering for wastewater treatment

monitoring», Engineering Applications of Artificial Intelligence, March 2004.

[35] G. Breard, «Evaluating Self-Organizing Map Quality Measures as Convergence

Criteria», University of Rhode Island, 2017.

[36] B. Brentan, G. Meirelles, E. Luvizotto and J. Izquierdo, «Hybrid SOM+K-Means

clustering to improve planning, operation and management in water distribution

systems», Environmental Modelling & Software, March 2018.

[37] K. Arvai, «K-Means Clustering in Python: A Practical Guide», www.realpython.com,

July 2020.

[38] D. Xu and Y. Tian, «A Comprehensive Survey of Clustering Algorithms», Annals of

Data Science, Springer, August 2015.

[39] G. Seif, «The 5 Clustering Algorithms Data Scientists Need to Know»,

www.towardsdatascience.com , February 2018.

[40] A. Jain, «Data clustering: 50 years beyond K-Means», Pattern Recognition Letters,

September 2009.

[41] J. Vesanto and E. Alhoniemi, «Clustering of Self-Organizing Map», IEEE, May 2000.

http://www.investopedia.com/
http://www.investopedia.com/
http://www.builtin.com/
http://www.realpython.com/
http://www.towardsdatascience.com/

112

[42] A. Ultsch, «U-Matrix: a tool to visualize clusters in high dimensional data», University

of Marburg, Germany, January 2003.

[43] P. Rousseeuw, «Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis», Journal of Computational and Applied Mathematics, November 1986.

[44] A. Bhardwaj, «Silhouette Coefficient: Validating Clustering Techniques»,

www.towardsdatascience.com , May 2020.

[45] H. Rhys, «Machine Learning with R, the tidyverse and mlr», Manning Publications.

[46] S. Haykin, «Neural Networks: A Comprehensive Foundation», McMaster University,

Canada, 2001.

[47] D. Rumelhart, G. Hinton and R. Williams, «Learning Internal Representations by Error

Propagation», Institute for Cognitive Science, California, September 1985.

[48] I. Goodfellow, Y. Bengio and A. Courville, «Deep Learning», 2016.

[49] P. Grover, «5 Regression Loss Functions All Machine Learners Should Know»,

www.heartbeat.com , July 2018.

[50] T. Hastie, T. Tibshirani and J. Friedman, «The Elements of Statistical Learning: Data

Mining, Inference and Prediction», Springer, 2009.

[51] D. Kingma and J. Ba, «Adam: A Method for Stochastic Optimization», University of

Toronto, 2015.

[52] S. Ruder, «An overview of gradient descent optimization algorithms», www.ruder.com,

January 2016.

[53] D. Kolaitis and M. Founti, «Combustion Theory», Fountas, 2014.

[54] I. Glassman and R. Yetter, «Combustion», 4th Edition, Academic Press, 2008.

[55] F. A. Williams, «Combustion Theory», 2nd Edition, 1985.

[56] GRI Mechanisms, Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W.

Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson,

Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin,

http://www.me.berkeley.edu/gri_mech.

[57] A. Kallieros, «Development of a skeletal mechanism for combustion of methane-

hydrogen mixtures using entropy production analysis», Diploma Thesis, National

Technical University of Athens, September 2020.

[58] CANTERA open-source suite, https://cantera.org/.

[59] V. M. van Essen, «Fundamental limits of NO formation in fuel-rich premixed methane-

air flames», Proefschrift Rijksuniveriteit Groningen, 2007.

[60] MINISOM, https://github.com/JustGlowing/minisom.

[61] scikit-learn, https://scikit-learn.org/stable/index.html.

http://www.towardsdatascience.com/
http://www.heartbeat.com/
http://www.ruder.com/
http://www.me.berkeley.edu/gri_mech/
https://cantera.org/
https://github.com/JustGlowing/minisom
https://scikit-learn.org/stable/index.html

	Acknowledgements
	Abstract
	Σύνοψη
	CONTENTS
	CHAPTER 1: Introduction
	1.1 Ship Emissions
	1.2 Liquified Natural Gas
	1.3 Motivation and Objectives of Present Study
	CHAPTER 2: Chemistry Acceleration
	2.1 Chemistry Acceleration in Computational Fluid Dynamics
	2.2 Literature Review
	2.3 Thesis Structure
	CHAPTER 3: Machine Learning
	3.1 Introduction to Machine Learning
	3.2 Neural Network for Clustering
	3.2.1 Principal Component Analysis
	3.2.2 Self-Organizing Map
	3.2.3 K-Means
	3.2.3.1 Silhouette Coefficient
	3.2.3.2 Davies-Bouldin index
	3.2.3.3 Clustering of Self-Organizing Map
	3.3 Neural Network for Regression
	3.3.1 Cross Validation
	3.3.2 Back Propagation
	CHAPTER 4: Chemical Kinetics
	4.1 Introduction to Chemical Kinetics
	4.1.1 Law of Mass Action
	4.1.2 Energy Conservation
	4.1.3 Kinetic Mechanisms
	4.2 Premixed Laminar Flame Propagation
	4.2.1 Mallard and Le Chatelier Theory
	4.3 Perfectly Stirred Reactor
	4.4 CANTERA Simulations
	4.4.1 Premixed Laminar Flame Simulations
	4.4.2 Homogeneous Reactor Simulations
	CHAPTER 5: Clustering of State Space
	5.1 Training Data Generation
	5.2 Self-Organizing Map Training Process
	5.2.1 Principal Component Analysis
	5.2.2 Self-Organizing Map
	5.3 Self-Organizing Map Partitioning of State Space
	5.4 Hybrid Neural Network Training Process
	5.5 Hybrid Neural Network Partitioning of State Space
	5.5.1 Case 1: Final Partitioning of State Space
	5.5.2 Case 2: Final Partitioning of State Space
	5.6 Discussion
	CHAPTER 6: Prediction of the Heat Release Rate and the Species Rates of Change
	6.1 Sample Generation
	6.1.1 Data Augmentation
	6.1.2 Final Dataset
	6.2 Multi-Layer Perceptron Training Process
	6.2.1 Neural Network Architecture
	6.3 Prediction Results
	6.3.1 Results for Cluster 1
	6.3.2 Results for Cluster 2
	6.3.3 Results for Cluster 3
	6.3.4 Results for Cluster 4
	6.4 Discussion
	CHAPTER 7: Prediction of Thermochemical State Time Evolution
	7.1 Sample Generation
	7.2 Multi-Layer Perceptron Training Process
	7.3 Prediction Results
	7.3.1 Results for Cluster 1
	7.3.2 Results for Cluster 2
	7.3.3 Results for Cluster 3
	7.3.4 Results for Cluster 4
	7.4 Discussion
	CHAPTER 8: Conclusions
	8.1 Summary and Discussion of Results
	8.2 Future Work
	Literature

