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Anayopeleton 1 avitypagt|, amodfxeuorn xal dlavour TG Tupolous pYo-
olog, €€ ohoxhipou 1| TWAUATOSC AUTAS, VLol EUTOPXG OXoT6. Emitpéneton 1) ovo-
TUTOOT, AmOVXEUST] X OLVOUT YId OXOTO U1 XEEDOOXOTUXO, EXTOUOEUTIXNG
1 epeuvnTiXAg PUOTG, UTO TNV TEOUTOVEST] Vo aVIPERETAL 1) TNYY| TROEAELTTG
X0l vou SLoTneElTan To Toedy urvupd. Epwthuata tou apopoly T yerion tTng -
yaolag yio xepBooX0TIXG OXOTO TEETEL Vol AmeEVIUVOVTAL TPOG TOV GUYYEAUPE.

Ou améeic xon T CUUTERACUATO TOU TEQLEYOVTOL OE AUTO TO €YYQPUPO EX-
ppdlouv TOV CLYYPUPEN XL OEV TEETEL Vo EpUNVEUTEL OTL AVTITPOCKHTEVOUY TIG
enionuec Véoeig Tou Edvixol MetodBiou Tlohuteyvelou.



ITepiindm

H teyvnt vonuooivn yernowonoteitar cuy Ve yior Vo EpUNVEUCEL XL VoL aVa-
AOoEL UeYdAoUS OYX0oUS TERITAOXWY BEBOUEVWY aTtd BLdPOopa YVWOTXd TEDLAL.
Ye évo amd autd, TNV utohoyioTixy Blohoyia, 1) e£epEdVNOT) TUYOV ATOTEAEGUO-
TIXOV QUPUAXEUTIXWY CLUVIECEWY Yia Vepameleg TOU xoExVOU UEGK TEOCOUOL-
OOEWY amatTel TOA Ypbvo %ot TNV TURSAANAT yerion TANIMEC UTOAOYLO TIXGY
TOPWVY Yo Vo exmAnewiel. Ltny mapoloo SimhwpaTixy, QapuoloUUE Ui Lo-
vTépva U€V0ob0 evepYNTIXN g HdINoNE Yl TOV YOEAXTNEIOUO EVOS VEOU Y(MEOU
HAPUIVIXWY VEQUTELWDY, TOU TEPLEYEL UTOOYOUEVES Vepamnelec Yioo TOV TEPLOPL-
OUO HAPXIIXDY XUTTARMY, XEVOVTOS YRHOT| EVOS UVICYEDLUCUEVOU TEOGOUOLL-
T Yo in silico mewpopatiopole. Emmiéoyv, e€etdlouvye TNV eQoapuoyT| Bidpopwy
uedodwy cuctadonoinong xou Pertiotonolinong xou cuyxpivouue TNy enidoon
TOUG OF TELQUUATIXEG DOXWIES OE LUTER-UTIOMOYLOTIXG TepBdhhov. O Baocixdg
OTOYOG EVOL O YOPUXTNELOUOE TEQLOY (Y TOU YWEOL VEQUTELDY OF AUTEG TOU
TEPLEYOUV UmOTEAEOUATIXES VEPATElEC, 0L OE AUTEC TOU BEV TEPLEYOUV EVOLA-
(PEQOVCES TEPLTTWOELS, MOTE Vol xardodrynUel 1 oYETIXT EQEUVA OE TLO GTOYEL-
UEVaL xou amoTEAEopaTIXG TEtpduato ot acVeveic. Ta nelpouatind aroteAéopata
amoOEXVOOLY OTL 1) HEYODOG ETUTUYYEVEL EVOY OPXETY TOLOTIXO YUEAXTNELOUO
Tou Y®wpou Vepamelwy. Emmhéoyv, yivetar avtidnmtéd amd to amoteAéopato OTL
1 EQPUPUOYT| DLUPOPETIXGDY UeDOOWY cucTadoTolnong xou BekticTonolinong otny
uedodo emnpedlel Tov aELiud TOV ATAUTOVUEVKDY TEOCOUOLOEWY XAl TNV TOL-
OTNTOL TOU YOQUXTNELOUOU TOU YOEOU VEQUTELDY.

Ag€eig Khewdid: Evepyntixy] MdOnon, I'evetixol AAyopr-
not, Avalftnon Ue TPOCOUOLLUEVT avorTnoT, Ilpocopoiwoeig
HAPKIVIAXOY XLTTAPWY, Y ToloylioTixy Broloyia






Abstract

Machine learning is regularly used to interpret and analyze information from
large and complex datasets originating from numerous fields. In one of those
fields, namely Bioinformatics, the exploration of potentially beneficial drug
configurations for tumor treatments via simulations requires multiple pro-
cessing units to be used in parallel and a considerable amount of time to
be completed. In this thesis, we apply a state-of-the-art model exploration
active learning workflow for the characterization of a new drug configura-
tion parameter space, using a redesigned simulator for in silico experiments.
Moreover, we incorporate different clustering and optimization approaches
in the original workflow and compare their performance in simulation tri-
als on high-performance computing infrastructure. The overall goal is to
divide the parameter space into regions that contain effective and ineffec-
tive treatments, and thus guide the related research towards more focused
and effective real-world trials. Experimental results demonstrate that the
workflow achieves a fine characterization of the treatment parameter space.
Moreover, results indicate that the incorporation of different clustering and
optimization algorithms in the workflow affects the quality of the treatment
space characterization and the number of required simulations.

Keywords: Active Learning, Genetic Algorithms, Simulated An-
nealing, Tumor Simulations, Computational Biology






Euyaplotieg

Oa fjiela, EV TEWTOLS, VoL ELYARLC THCL TOUS EMBAETOVTEG Wou antd To E. K. E.®.E.
“Anuoxprtoc”, tov Ap. Xopihao Axactddn xar tov Ap. AAéCavdpo Aptixn, 1
xododHyNoT Twv onolwy émouie xoipto poho GTNY ohoXApwon TN TaEoVCuC
otmhwpatixc. Ot eBdouadlalec GUVAVTACELS UaC Xt oL GUUBOUAES Toug pe Po-
AUNCAY VoL AVTIIETWTOw To EUTOBLY TOU GUYVAVTOUGO GAAY 0L UE EVETVEUGOY
VoL EUTAOUTIOW TIC YVOOELS ou YUpw amtd To YVuoTixd avixeluevo tng Teyvn-
¢ Nonuoolvne. Enlong, Yo Aleia va euyaptothow tov utodriglo diddxtopa
Eudyyeho Muiyehiouddxr, ol mpoTtdoelg Tou onolou oy TOMITYES Yo TOV TRO-
CUVATOMOUO TNG DITAGUATIXAS.

Oélw, eniong, va evyaploThow Tov xodnynTh x. [Ndpyo Xtduou tne Xyo-
M Hhextpohdywy Mnyavixdyv xow Mnyoavixodv Troloyiotov tou EMII yio
TNV EUTIGTOOVVY TOU POV ETEBEIEE YOl TNV EXTOVNOT TNE TOEOUCUS DITAWUOTL-
xfic. O Blohégelc Tou Wiou OAAG xon TwV LUTOAOITWY PEADY Tou epyaoTrpiou
Yuotnudtwv Teyvnthc Nonuoolvng xow Mdlnong arnotéhecay e@aitriplo yo
TNV EVACYOANGT) HOU UE TOV GUVOETHO TIXO Topta g Teyvntric Nonuocivng.

Emimiéov, Ya Hieha vo euyaplot|ow Toug GiAoug Wou, GUVAEDBEAPOUS Xou 1),
Yior TIC A€y UGTEG AVOUVHOELS TOU OV TEOGEPEQALY.

Kietvovtag, Yo Hieha var euyoplo T TOUG YOVELS LoV X0t TOV UOERPS O
Yoo TNV op€ptoTn oThEEn Tou pou €8el€ay xodOAN TNV SLEPXELN TWY GTOLBKOY
uou, %ot Oyl uovo.
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Eiwcaywy™

Kivnteo

O xopxivog amotehel wior amd TIc oLy voTeERES autieg VavdTou Tayxoouing, xa-
V¢ amoterel umebuvo yia tepimou 10 exatoppdeta and auTolg CUUPHVIL UE
Tov Hayxdouo Opyavioud Tyelog. EI H avodhudn amoteleopatindy Yepamnet-
OV EVAVTIL 0TOV xoExivo elvor 0Tdy0¢ UPIoTNE TEOTEPAOTNTAS YL TNV LATELXN
gpeuvnTiXY) xowotnTa. 261600, 1) ANATNON PEYSAWY YENUATOOOTACEWY Yol
1 YpovoPBopa dladixacia YeAETNE xou enoAleuoNE VEWY VEQUTELDY ATOTEAOLY
ONUOYTIXE EUTOBL OTNY ETETELEY TOU avapepUEVTOC GTOYOU YR YORX YOl ATTOTE-
Aeopotixd. Emnicov, 1 duvouxr| xan anpoBAentn @UoT TNG 0ppo TG OEV ETiL-
TEETEL, O APXETEC MEQPLTTWOELS, TNV OLEVEQYEL OLECOOIXWY XAVIXGDY Epeuvmy. H
unohoyto T Broloyia éyel cuveloEpel TNy avoxdAun véwy Vepamewndy 11, 2
TOEEYOVTOG LOVTERA Tal OTO{oL EYOLY W GTOYO TNV TEPLYPUPT TNG CUUTEQLPORAS
TWV XOEXVIXOY XUTTAPWY EVIOC Tou avipwmivou opyaviopoL. Tétowou eldoug
HOVTEAQ EMITEETOUY GTOUC EPELVNTES TNV EEETUOT TNG ETUBOONC TWV VEQUTELDY
Ywelg va ebvan amopaltnTn 1) SlevEpYELd XAVIXWY TELRUUETWY, OTA OTtold EVOEYO-
uéveg va tedel 1 {wr TwV CUPPETEYOVIWY ot xivouvo. Emmiéov, 1 dievépyeia
TELQOUBTWY UEGEK TOV HOVTEAWY AUTOY ETITEETEL OTOUG EPELVNTES Vo EEETAGOUY
UEYOAUTERO OYXO TV VEQUTELDY X0 VoL TROYWENHCOLY TILO G TOYEVUEVH OTIG
HXAVIXES BOXUIES, UELOVOVTAC €TOL UPXETA TOV optdud Twv YEpamedY Tou omo-
TUYYAVOLY GTA TEAXE OTABLAL TWV DOXUUMDV.

(261660, 1 BIEVERYELX TELQUUATWY UECK TETOWWY HOVTEAWY elvan, cuvAtng,
war ypovoPBopa dadixacta, 1 omola amoutel TANUOEA LTOAOYIOTIXWY TOPWV.
Enopévwe, 1 moAumhoxdtnta twv HoviéAny xahotd mohd BUGKOAN- WS¢ ol
adUVATI TNV €EETAOT OAWY TWV BuvaTOY Vepameldy eCavtintixd. H yeron pe-
Y60wv e Mnyaviic Mddnong, wotéc0, umopel va 0dN YOl OE GTOYEUNEVT
UEl(OT) TWV UTAUTOVUEVWY TEOCGOUOLOOENY, UM XA VOl TPOGPEREL EVOL AGPUAES
uéco mpdPiedme tne enidoong twy Vepametdv. Luyxexpwéva, ot Ozik x.d. [3]

"https://www.who.int/news-room/fact-sheets/detail/cancer
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Topovotldoay o PEY080 ToU EYEL WC GTOYO TNV AVAXGAUPT TWV YopoXTNoL-
OTIXWY EATOOPORMY VEPATELDY, avaryVepllovTag To 0PN TWV TUEAUETEMY TWV
VEQATELDY TOU AVOEVETAL VoL €)0UV Tol TEOGOOXWUEVY amoTeréopota. H pédo-
6o¢, oty onola Var avapepOUIo TE EPEENC WS ‘TprToTUTY PéY0dOoC’, amoTeAElTaL
oo 0V0 UERT. XE oau@OTEROL Tl UEQRT) OELYUOTOANTTOUVTAL ot oloAOYOUVTOL L-
TOGUVORL TOU Y®EOL TapUUETewY TV Yepanewwy. To mpwmto pépoc anoteheiton
and évay ahyoépriuo Evepyntinic Mddnone [M] xou otoyeder oty avaryvpet-
OY) TV TEQLOYWY TOU YWEOU TUPUUETEWY TWV VEQUTELDY Ol OTO{EC TEPLEYOLY
eAmdopopeg Vepameieg. XTo ME®TO PEEPOC, OelyuaTo ONUEY TOU YOEOU TOU
eCetdletan ypnowdonotovTan ylo vor exmtandeutel évag tavountrc. O tagvo-
unTne yapaxtnelCet ta onuela yio T omolo €yel TV ueyohiTteeT offefoudtnTa,
Tae ool yerlouv allohdynong, mpotol exmoudeutel ex’ véou. (dotdco, o a-
ewuog Twv ofeBauny onueinv elvon apxetd peydhog, YEYOVOS Tou BucyEpAlVeL
Vv allohoynon toug. o va Eemepaotel autd, o onpeior cUCTABOTOLOUYTOL
BAoEL TV YOEIXOY YUQUXTNEIO TIXWDY TOUC XUl HOVO UEELX AVTITPOCWTELTIXG
onuela emhéyovtar TEAxd Yo v olohoynioly PEcw TEOGOUEIMOENY. XTO
oeUTEPO PEpOC YiveTon yperom evoc 'evetixold Alydprduou yio Tnv avoxdiudm
¢ OLUVIEONG TWV O ATOTEAECUOTIXWY VEQATELDY. LUYKEXQPWEVA, O OTOY0G
Tou I'evetixol Alyodpriuou eivor 1 elpeo TNC MO ATOTEAEOUUTIXNC VEQATE-
lag. H xatdotaon exxivnone tou Ievetivol Akyopiduou eivon eite tuyala elte
AofBdver uTOYLY Tar AMOTEAEGUOTA TOU TTEMTOU UEEOUS. XTO OEUTEQOD GEVIQLO,
o apyodc TAntuoude Tou I'evetinold Ahyodpriuou cuurmepiauBdvel Yepameleg
mou €youv alohoyniel ¢ oL o ATOTEAECUATIXEC amd Tov ohydorduo Evep-
ynTeric Mddnong. H mopoamdve uédodog amotehel eva moAdTiwo 6mAo oTnv
PUEETE TGV EPELVNTWY, APOU TOUG ETUTEETEL VO OLEVEQYOUY GTOYEUMEVOL ol
ATOTENECUATIXOTEQO XAWIXSL TELRSUATOL.

2uvelcpopd

Yy mapoloo Simhwpoatiny @apuoloude TNy TewTtotunr pédodo ot €va Blo-
(POPETIXG TELRAUOTIXG TEQIBAANOY. Luyxexpuléva, e¢etdlouue TV entidpoon Tng
npwtelvne Tumor Necrosis Factor (TNF) [5]. H npwtetvny TNF nailet onuovi-
%0 PONO GTNV PETABOCT GNUATWY PETOED TV XUTTARMY %ok UTOREL Var 001y oEL
otov Yavoto Twv xapxixwy. Emmiéov, yenowomnowiue to PhysiBoSSv2 EI
YL TNV OLEVEQYELN TWV TELROPATWY, TO 0Tolo AmOTEAE! Uio EMEXTUOT) TOU TPOTO-
uotwtr PhysiCell [6], tou yenowonotinxe ot mpwtétunn uédodo. To Physi-
BoSSv2 mepiéyetl éva WoVTERO TOMAATAGY XAUAXY BUCIOUEVO OE TEAXTORES
YL TNV TEOCOUOIWGT TN AVATTUENS TV XOPXIVIXWDY XUTTApwY. XTny pédo-
00, TO CUYXEXQPUIEVO HOVTENO Yenotdomote{ton Yo vo pehetniel n enldpoaom mou

Zhttps://github.com /bsc-life/PhysiBoSSv2
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€youv oL cuviécelc Twv eCeTalOUEVKY VEQATEWDY OTNY BIABOCT] TV XOOHIVL-
XOV ©UTTHpwY. Augdtepa tor uépn TG UEVOO0U BELYUATOANTTOUY UTOGUVORX
TWV OUVATOY YEPATEUTIXWY CUVIECEWY, OL OTIOLEC XWOLXOTIOLOUVTAL WS THIES OF
OUYXEXPWEVEC TOPAUETPOUS, UE OTOYO TNV alloAGYNOT) TOUS, PECK TOU TEO-
avageplévtog povtéhou. H alohdynomn towv Vepameldv mpoylotonoleltal ot
UTIER-UTIOAOYLOTIXO TEQLBAAAOV.

H cuctadomoinom twv offefouwy onueiny, 010 THTO xOPpdTL TG TEOTEL-
VoueVNG Uetdo0u, ennpedlel oNUayTXd Tov apliud TV AmotTOVUEVLY TPOGOUOL-
OOEWY, ahhd Toklel xan xaipto PORO GTNV TOLOTNTOL TOV TEALXDY ATOTEAEGUATGLY.
Enopévwg, dlapopetixol ahyopriuol cuctadonolnong evoEyeToL VoL 001 Yoy oE
AEXETE OLapOEETIXG amoteAEopata. Emmhéoy, o8 apxeTeg TEQINTOOELS UTopEl 0
TEOGOLOPLOUOS TV ATOUTOUUEVLY UTEQ-TURUUETRMY TWV EXACGTOTE ahyoplduwy
cucTadonoinong va ebvar apxetd d0oxoA0c. XNV TpwTOTUTY Yedodo yenot-
woroteiton o alyopruoc K-Means yio tny cuctadonoinon twv mo oféBawy
onuelwv. QoT1600, 0 K-Means amotuyydvel GTNY avory VOELoT) CUC TABMY UE ou-
YalpeTor oy AATA oL OTNY anoudvewor tou YoplBou. Emniéov, aduvatel otov
TEOGOLOPLOUG TOL UELIUOL TWV GUCTABWY BACEL TN XUTAVOURG TOV ONUEiY
TOU GUVOLOL BEBOUEVLY. O Topumdve TEQLOPLOHOL 0B YOUY OF TUPUUOPPWOT)
TWY TEAX®Y GUCTAOWY, apol YopuBndrn oruela Aaudvouy uépog oty dLadLxa-
olo xou peyahitepes ouoTddeg xotoxeppotilovton ot uxpoTepe (1 avtiotpopor)
YL VO VY VRO TEL 0 0pLoPEVOS aptduog cUCTABWY. AUt E€Yel WG AmOTENE-
OUOL VO EXTENOUVTOL OE OOXETEC TEQLTTWOELS ETUTAEOV 1| X AMYOTERES amd TIG
ATOUTOVUUEVES TEOCOUOLWOELS 1] VO TEOCOUOLWYOVTHL Vepumeleg mou BeV €youy
™V PEYLo TN TANpogoptox adla. XTo TAalota TG TaEoVcuS BITAWUATIXAS, ECE-
TALOUPE TNV EQUPUOYT| SLUPOPETXMY UEVOOWY UG TABOTOINOTC, CUYXEXPUIEVA
v BIRCH xae DBSCAN, 670 614810 g cuctadomoinong tng deryatoAnmTL-
x¢ OLadxaciog xan cuYXEivOUUE TNV ETBEAUCT) TOUC GTNV TOLOTNTO TOU TEALXOU
YUEAUXTNEIOUOU TOU YWEOU TUQUUETEMY AAAL X0 GTOV ELIUO TWV ATOUTOVUEVKY
TPOGOUOLWCEWY.

Axbun, pehetdue Ty enldoorn wog emmiéov yetdoou BetioTonolnong, e
AvalTnong Ue TEOCOUOLWUEVT AVOTITNOT), OTO OEUTEQD UEQOS TNG TROTEVOUE-
vNne HEVOB0L TOU apoEd TNV oVOXEALYPT TWV THO ATOTEAECUATIXGY VEQATELDY.
H Sotripnon norhamhedyv miovedy Aoewy ot xdie yevid amd tov I'evetind Ah-
yoprluo amontel TAnYmpa UTOAOYLO TIXWY TTOPWYV. XT0 GEVARELO GTO 0ol O apEY(I-
x6¢ mAnduouode Tou Ievetinold Alydprduou TepLEyeL YOO amd TO TEHOTO UEEOS
e uedod0ou, 0 apydS YWeog avalhtnone teptoptleTal OE TEQLOYEC UE UTOTE-
Aeopoatinée Vepanelec. Xe €vay meploplouévo yweo avalrtnone n Avalrtnon
UE TEOCOUOWWUEVT] AVOTITNGT) UTOEEL Vor 00N Y |OEL OE TOQOUOLY ATOTEAECUOTO UE
exeiva Tou levetinol Ahydprduou, apol xat ot 800 pédodol EmBEWVOOLY Xahég
emdboelc oty Pedtiwon evog oet mopapétewy YUpw ond i apyxh Ao [1].
Qo7t600, 1 AvalhTnon UE TEOCOUOWWUEVT] AVOTTNOY) AMULTEL ALYGTEQOUC UTO-
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AoyioTixolg Topoug, aol ecTidlel oTny BeATinon pac povadixic Aoong, eve
o evetinde Alydprduoc otny eZéhin evoc mhdoug mdavady Aboewy. Xtny
Topoloa Btmhwpatixy, e€eTdlouye TNV enidooT TwV 800 YEVOBWY WS PO TNV
OMOTEAECUATIXOTNTO TV AVOUXUALPIEIGHDY VEQUTELDY XAl (G TEOE TOV ATAULTO-
VUEVO 0ptlUd TEOGOUOLOCEMY.

To nelpdato tou devepyinxoy utodexviouy OTL LTdEyEL Ao VN TY Slopopd
OTIG EMBOCES TwV OLdPopwy eCeTalduevey pedodny. Emmiéov, topatnoolue
6TL uTtdpyEL €va t16olUYLo LETAED TOU dptdUo) TOV ATOUTOVUEVGY TEOCOUOLWGERY
XL TNG TOLOTNTOG TOV TOEAYOUEVHDY ATOTEAECUATWY, TOCO GTOV YULUXTNELOUO
TWY TEQLOYWY TOU TEPLEYOLY UTOCYOUEVES VEQATEIES, OGO X OTNV ovaxdAL(n
TWV TILO ATOTEAECUATIXGY VEQUTELDYV.

MegYodog yia tnv in silico e€epebvnon Yepo-
TELWY EVAVTIO OTOV %apxivo.

Entoxdnnon

H pédodoc nou e€etdloupe amoteheiton and oo uéen. To mpodto yépog anote-
Aefton amd evav adyopriuo Evepynunfic Mddnong mou agopd tov dtayweloud
TOU Y(OPEOU TV TUPUUETOWY TWV CUVIECEWY TV UVEQUTEWWDY O TEQLOYES TOU
EUTEQPLEYOLY UTOCYOUEVES Xon Wr Vepameleg, evey 1o deUTEPO PEPOg OXOTEVEL
UEoK TNG EQapUOYTE W peY6doUE BEATIOTOTOMONG GTOV TEOGBLOPIOUS TGV
O AMOTEAEGUOTIXGY Vepametwy. To Exﬁpa TOEEYEL ULOL CUVORLXT ETLOXOTNOT)
e eetalouevne ueddoou.

Apynd, évag tadvountic Random Forest yenowomotelton khote vor xoto-
TAEEL TIC OLAPOPES TEQLOYES TOU Y(WEOU GE EVOLUPELOUTES Xoi U1, Mo mepioyn
yopoxtnplleTton we evotagpépovoa av Yewpeiton 6Tl TEPLEYEL amodoTés Vepa-
neleg, onhadry Vepanelec mOU PELOVOUY TOV 0EIIUO TWV XUPXIVIXMY XUTTHRWY
xdtw and éva oplopévo 6plo. O TEAXOC GTOYOC TOU TEMTOU UEEOUC Efval Vo
XATUTAEOVUE TIC UTO-TEPLOYEC TOU YWEOU TURUUETRWY, Ywelc Vo yeetaoTel va
a€lOAOYNOOVUE OAeC TI Buvatég Vepanelec. O alyopriuog exteheiton xatd €-
TovdAndm, éng dtou extelectel évag mpoxadoplopévos apriudg enavakiPewy.
Ye xdie emavdindn emhéyovian Jepanelec mpoc allohdynon Bdoel plag Oevy-
uotoAnmTrg Otadixaciog armoteAoluevy and 600 GTAOLL. XTO TEMTO GTAOLO,
eméyovton T To af3éfora onuela. To cuyxexpwéva onueta yopaxtneilouv Tig
TEPLOYES YIO TOV YOQUXTNRIOUO TV OTolmY 0 TaEVOUNTAS EYEL TNV HEYUADTERT
ofeBondotnTo. "Eva mopdderypo Tou cuVvOLoL TwV ETAEYUEVKDY of3EBaiwy onueiny
o€ xdmola enavahndn Tou alyopiiuou anexovilovtar oTo My fua

210 6eUTEPO OTAd0 TNg detypotohndlog, Tor oféBono onueior TagvopovvTon
O€ GLOTAOES, OTWE alveTon 0To Lyrua , BdoeL NG YWEWNS XAUTAVOUNS TOUG
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Yyfua 1: Emoxémnon e egetalouevne uedosou

XL AVTITPOCWTELTIXG oTueia emAEyovTon amd xdie uia.

To mhflog TV avTITEOCWTELTIXGY oNuciwy elval opxeTd UixpdTepo and
exelvo Twv aféfowy onueiwy, dtwe galvetow 6To LyHuo @

Tumxd, ta onuela Tou emAéyovial and xde cLUCGTAdY TAPOLCIALOUY UEYHAN
OMOLOTNTAL UE ToL UTOAOLTTaL oTuela Tng cuoTtddag. ‘Etot, n aliohdynon toug yag
TEOCPEREL GNUAVTLIXY TANPOQORIa byl UOVO Yo AUTA XordeauTd, OAAS Xa Yt ToL
umoroima onpeio Tne. Emimiéov, n emhoyr onueiny and dla@opetiné cUCTAdES
eyyvdton TNV emAoYT onuelwy mou opiCouv avouoleg Yepameiee.

Aol MaBeL ywpa 1 a€lohbyNoN HECK TEOCOUOLWOENY TWY ETLAEYHEVGDY Ve-
PATELWY, O TOEVOUNTAG EXTOUBEVETOL €X VEOU, TPOCUETOVTAG OTA EXTALOEUTIXG
oedouéva Tic véeg adtohoynoeg. O tadivountic, TAoY, Hog TOREYEL EVay VEO,
O AETMTOUERT| YUQUXTNELOUS Tou YWeou Tapouetowy. H mapamdvey neprypape-
foo Srodixacio emovokopfBdvetor yio optopévo Thdog emavokhewy. ‘Omwe elvou
€UVONTO, 1) detydoTohnmTXr Btadacio xadopilel Tov aprlud TwV ATUTOVUEVGY
TEOCOUOLWOEWY. Enopevee, 1 emhoyr Twv onueinv pe Ty PEYLoTn TAnpogo-
eroocr a&ior amotehet xokpto Bruc oty PelwoT TV X0G TORORMY TEOCOUOLWOENY.
Méow tng ocustadomoinomg Twv a3éfotwy onuelwy xot Tng ETAOYHC AVTLTPOCH-
TEUTIXOY OTUEIWY TEUYUATOTOOVUE GTOYEVUEVES TEOCOUOLOCELS, TWY OTOIWY
ToL ATMOTEAEGPUTA TTEOGPEEOLY TOADTIUN TAnpogopia yio éva peydho mArfdog
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Yoyfua 2: ABEBonor Xnueio

onuelwv g cuoTtddac. Me autd Tov TEOTO, UToEOoUUE PE UXEOTERO apLiuo
TPOCOUOLWOEWY VoL ATOXTACOLUE TANROQopia yior UEYaAUTERO TARUOG oruelwy.
Metd 1o mépag TV enavarfbewy Tou alyopliuou, o yweog elvan ywelouévog
OE YWEOUS |UE UTOCYOUEVES xou U Vepaneieg, 6Twe galvetal 6To Zxﬁpa oTOo
omolo 1 TEPLOYY| TOL EYEL YPWUATIOTEL UE UTAE amoTEAEL TNV Teployh) Tou Vew-
eeltar amd Tov ToVoUNTYH WS N TEPLOYY| TV UTOCYOUEVWY Vepomeldv. Ta un
evoLapépovta onueta efvar 6ou Bev ypwpatilovTal 0ToV YHEO TOU YEUPHUATOC.

Y10 6eUTEpO PEPOg TNE UEVOOO0UL, GTOYOC Elval 1) aVaXGALYT) TWV TLO ATOTE-
Aeopatixey Yepomelv. o voemteuydel o otodyog yiveton yeron uiog uedddou
BehtioTonolnong Yl VoL amoxTHooUNE TNV Vepamnelor Tou odnyel HETE TNV EQOQUO-
Y1) TNG OTOV XEOTERO dELIUO ETLLMVTWY XOPHIVIXWDY XOTTURMY. LUYXEXPLUEVA,
eCetdloupe TNV £@appoyY| 800 uedddnv Behtiototoinong mou ovoudlovton A-
valATnon Ue mpocopolwuévn avottnon xat evetinog Ahydprduoc.

‘Ocov agopd tov I'evetind Ahydprduo, ta xahitepa onuela xdie TAnduoupon
emAéyovTon Bdoel tournament selection. Ta emheyuéva onueio Sloc Towpwvo-
vTon Bdoet plag oplopévng mavoeTnTog Slao Tademong TEoToU UTooToUY Tuy ol
uetdhholn. O minuoudg onueinv mou TEoxUTTEL and To TUEATAvVe BT
aflohoyelton BAcEL UG CUVEETNONG XATOAANAOTNTAG. LTNV TEQINTWOY| Yo, 1|
OLVEETNOT XATAAANAGTNTOC TTOL YeNoluoToLE(Tal efvon 0 oELIUOC TwV LWVTaVKY
HAPXVIXOY XUTTAPWY 670 Téhog Tng Vepanceiag. H mopomdve dSadixactio enava-
AofBdveton yior optopévo aprdud emavohipewy. Ntnv nepintwon e Avalhn-
ONG YE TPOCOUOLWUEVY aVOTTNOT), 0 ahybprluog mpoomadel Vo BEATIOCEL TNV
oy ) Aoom e€etdlovtog wg véeg miavég hoelg Yepaneleg Tou Bploxovtoun 6Tny
yertowd g Abong. E&etdlovtan 6Uo cevdplar OyeTIXd UE TOV 0Py X0 TANdu-
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Lyfuo 3: Xuotadoroinom twv mo aéfuwy onueinwy

ou6 TV pedodwy PehticTonolnong. LTo TE®TO GEVARLO, 0 VEYOS TANIUCUOS
amoteheiton amd Tuyaleg Vepamnelec. X0 OEUTEPO GEVAQLO UEQOC TOU OEYLXOU
mAnduouol tou T'evetixold Alydprduou amoteheltan and Yepameie mou €youv
YOUPUXTNEIOTEL W OL TO AMOTEAECUUTIXEC O TO TEWTO PEPOS TNG MeVBdou,
eV wg onuelo exxivnong tng AvalAtnong Ue TEocouowwuévn avontnorn tive-
vTon 1) Yepanela Tou allohoyHONXE WS 1) O ATOTEAEOUATIXT And TOV aAYOpLIp0
Evepynuixric Mddnorng.

O pdhog Tou BelTEROL PEPOUE Elvar BITTOC, XM GTOYEVEL GTNV AvVoXdAUY
TWV TLO OMOTEAECUATIXODVY VEPATELDY Kot AELTOVRYEL xou w¢ €val P€co emahrideu-
OYC TOV OMOTEAEOUATMY TOU TEMTOU UEEOUS, apoD OL TLO ATOTEAECUUTIXES Vepa-
eleg Yo TEETEL VoL TEPLE Y OVTOL OTIG TEQLOYEG TIOU YUPAXTARLOE (G EVOLUPEPOVTES
0 TagVOUNTAS TOU TRMOTOU UEEOUC.

Iewpapatixd AnoteAécuata

O x@dwog g vhomolnong Yag ahAd xaL 0ONYlEg Yol TNV AVATUEAY YT TV
Telpopdtwy Beloxovton oe éva online repositoryEl To mewpdpora Eraoy yopa
x&vovtag yeron tou Mare Nostrum 4 (MN4) HPC infrastructure tou Barcelona
Supercomputing Centreﬁ O mpocdLOPIGUOC TWY UTER-TUPUUETEWY TV |E-
YO0V €YWVeE YEAETOVTUC TNV ENLDOCT] TOUC Yol DLEPOPES TUES TWV UTEQTUQO-
UETPWY OF TELQUOTA UXEOTERNS XAluoxag.

3https://github.com/xarakas/spheroid-tnf-v2-emews
“https://www.bsc.es/marenostrum/marenostrum
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Yyfua 4: Avtimpoowneutnd onuela Teog allohdynon

AZLoAOYTNOT TOUL YAEAXTINELOUOL TOL YWEOL TAEU-
HETEWY

Yo melpduotd pog e€eTdloude TNV ETB0OT OLEPopLY EXBOYWY TNG TEWTNG
pdong g pedodou pog. O exdoyég T Yedooou BLapopoTolodVIaL WG TEOG
ToV ahyopriuo cuoTadonoinoNg Tou Yenoylomolunxe xotd To GTAdlO TNE OELy-
wotodndiog Tou alyoplduou evioyutixrc pdinong. Xtny npwtotunr uédodo e-
popuoc TNXE 0 alybpriuog cuctadotoinone K-Means. I'o va amoxtricouye v
eminedo avapopdg, e€etdooue TNy enidoor Tou alyopripou K-Means yio K (oo
ue 20 xou 50. Oo avapepdpac e 0TIC ToEATdVE Yevddous wg KMEANS 20 xau
KMEANS _ 50, avtictoya. Emniéov, epopuélovye tov ahydorduo K-Means
ue K ioo ye 500 (KMEANS_500) o¢ uior e€avtinuixn pétdodo devypotorndloc.
O aryopripoc DBSCAN pulduictnxe we Eps = 0.025 xaw MinPts = 20, evo)
o oly6prduoc BIRCH pe branching factor ico ye B = 100 xou distance thresh-
old ico pe T = 0.1. Emmiéov, exteréoope xou o e€avtAnTxr| avalATnon tou
YWPOU TUPUUETEWY, TNV omola amoxaiolue sweep search. To sweep search
amoteheiton amd o ETavoANTTIXY| alloAOY O VEQUTELDY TOU AVAXOUY OE EVal
TAEY o VEQUTELDY OUOLOMOPPNG XATUVOUTS Xt AetTovpyel w¢ benchmark.

[N vo ymopéoouye va Blaywpicoupe Tic Yepaneieg oc anoTeAeoUOTIXES Xou
un Yo meémel vor oplooupEe, TEMTA, Wi LETEWH 1) omtola var utoAoY(lel Ty o-
moteAeouoTinoTNTo plag Yepomelag. Opiloupe we Podud emldvTny xopXvixmy
XUTTApwY Wioag Yeponelog Tov Adyo Tou TAdouc Twv emlOVIWY XOPXIIXOY
XUTTAPWY PETE TNV Vepamela k¢ Teog Tov dptiud Twv {oVTUVKY XUTTIEWY TEWY
Vv Vepamelo, ONAADY wC:
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Yyfua 5: XapoxTneloog UTOCYOUEVWY TEptoy WY and Tov Tadivounth Random
Forest.

Baduéc Emloviov  IIAMYog TEAX®Y xopXvinmy XUTTdpwmy

Kopxvixov Kuttdpwy  TIMdoc apytkdv xapxivixdy xuttdpmy

Yo meElpduotd pog, Yewpolue w¢ amoTeAsopatiny| wo Yepamnela mou Eyel
Bordud emldVTLY XAPUIVIXDY XUTTHpwY uxeoTepo Tou 0.3, dnhadh mou o aptd-
HOC TWV TEAXMY XOPXIVIXMY XUTTAOWY Elval uxpdTepog 1) {oog e To 30% Ttwv
QEY UV HUEXVIXGY XUTTApwY. ot xdde melpoua, o alydpriuoc Evepynturc
Méinong étpele v 20 enavarrels.

[ vo aloAoyfiooupe Ta AmOTEAEOUATA TN TEMOTNS PACTS CUYXEIVOUUE
To amoteréopata TNg pedodou pag pe exelva tou benchmark Sweep Search.
LUYHEXQWEVA, 1) HEAETY TNG YRUPIXAC OVAUTURIOTUOTS TOU Y ARUXTNRIOHO) TOU
YWEOU TUPUUETEWY UAC TapEYEL €Vl TOTIXG YECOo Yo TNV o&loAoYNon TNg
enidoong tng menTNg @dong tng uevoddou. To anoteréopata g uedodou Yo
TI¢ Oudpopeg e€eTalOUEVES EXDOYES TNG TEOEXLYAY amd TOAAUTAY TELRAUATA UE
otapopeTxd random seeds. To yeyovog autd pog EMTEEREL VoL GUUTERLAGBOUUE
OTOL AMOTEAECUATOL TNV TUYUOTNTO TNG SLadLxaolog, ahhd xon Vo EETUCOUUE TIG
ex00y € TNE ueVE0U xdTw amd TIC (Bleg ouvifxes. Xta metpduata xde seed To
oY x6 GOVORO BEBOUEVMY YloL TNV oY LXT) EXTaidELUsT Tou Tadlvounth ftay (Blo
Yo OAeg Tig pedodoug. Emmiéov, e€etdloupe to mARlog twv offéfowy onueionv
TOU TAIVOUNTY] X0l TO GUVORXO Ao TV ATUTOVUEVWY TEOCGOUOUCEWY.
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Yyruo 6: Tehixdg yopaxtnelopos tou yweou napouétewy. To vrooyrua (o)
amewoviCel o anoteréoyata Tou  benchmark sweep search. To vnooyfuota
(B),(7),(8),(€),(Q) amexovilouv to amoteréopota Ty eEETalOUEVWY EXBOY MDY
e uevdoou.

XopaxTnelorog TOU YWEOU TAPAUETRWY

To Yyhuo [6] mopéyer uor ypopxr omexévion Tou yapaxtTetopol ToU Yweoy
TOPUUETEWY a6 TOV TOEWVOUNTY Yo TIC Oldpopeg eCeTalOuEvES EXDOYES TNG
ued6oou. Ot TEpLOYEC IOV €YOUV YPWUATIOTEL UE TEACLVO Yo UTAE €Y 0LV YO0~
xTNEo Tel Wg TEPLOYEC amoTEAEOUUTIXGY Vepanelwy and To benchmark Sweep
Search xat and Tov tadvounth Tng TE®ING @done Tng peddédou, aviicTolya.
Me %xdxavo €youv YewUATIoTEL Ol TEQLOYES UN-UTOTEAECUATIXDY VEQUTELDV.
Hapatneolue 6Tt GAeg oL ExBOYES TNG PEVOOOU XATAPERVOLY VAL EVIOTHOOLY TNV
YEVIXOTERN TEPLOY T TV anoTeAsouatixwy Yepanewwy. [upatnpoiue 6TL o dheg
TIC TEPLTTWOELS 1) UEVODOOC Uag 0ONYEL OTOV YURUXTNEIOUO HLAG EVOLUPEROUTAS
TEPLOY TG TaPOUOLIC X Sueca cuyxpiowng ue exelvn Tou Sweep Search. H
uovn mepintwon otny onola 1 u€V0BOC Yog ETOEVUEL UELWUEVT amddooT elvol
oTaY 0 oAY6pLi0g EVIoy LTS Udinong yenotonotel Tov adyopriuo DBSCAN
Yoo TV cuctadonoinon Twv oEfouwy onuelnwy, oty omola TeplnTwor 0dNYO-
VUOC TE OTNY AVAY VORLOT) LG UELWUEVNG EXDOY NG TNG EVOLUPELOUCIS TEQLOYYC.
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Emumiéov, xdvovtag yeron twv odyopiduwy BIRCH xa KMEANS 500, 7
uedodog 00NYEL OTOV TO AETMTOUERY| YUQUXTNEIOUS TNG EVOLUPEPOUCAUS TEQLO-
yNe. Emmpdoveta, n mpwtn @don tng uedodou mou yenowonolel toug ahyo-
elduouc xow KMEANS 20 xou KMEANS_ 50 avtiloufdveton ta oOvopa Tng
EVOLAUPEPOLCUC TIEQLOY G OE APXETA PEYEAO Bardud, woTdG0 amoTUYYdvEL OTO Vol
EVTOTIOEL TEQLOYES UE AMOTEAECUUTIXEG UEVOOOUC TIoU BEV aviXoLY 010 X0ELo
owua Tov evtonileTol.

ITA90¢ of3EBaiwy onueiny

O apriude v aféBouwy onueiny Tou Todvountn anotehel éva TOAITIHO UéCO
a€loAOYNONG TNE ETBOCTC TOL ol Y OELIUOU, aPOU UG TAUPEYEL [ULOL ELXOVOL YL TV
olyoupld Tou Tadvounth yia To TeEAx6 amotéheoua. ‘Eotw, to olvolo Ohwy
v miavey Yepaneutixmy cuviéoeny X, ot xAdoewc {0, 1}, mou avtinpocwne-
DOV TIC UN-OTOTEAEOUATIXES Xal amoTEAECUOTIXES Vepaneie, avTioTotya, xou 1
mdoavotnta Pr(i, ) ue v onolo Yewpet o todvountrc 6t 1 Yeponela & avixel
oty xhdom i. Tote o apriudg Twv aféfouwy onuelwy utoroyiletu we:

Ny = |{z € X | min(Pr(0, ), Pr(1,x)) > xatdeh afepubrnroc}|

ONnAadY| we o TARog Twv onuelny Twv omolwy N afeBudtnTa elvon Tévew and
Eval TEoX)0pLoHEVO XATAOPAL oSeBondTnToc. 2MTol TELRAUTE Yog, VETOUUE TO Xa-
@A oefoudtnrog (oo pe 0.4. To mhfdog twv aféfuiwy onuelwy utoroy(leton
oty opy | xde enavdhndng Tou akyopiduov. 'Etot, uropolue va unohoyicou-
ue TNV enidpaon NS a&loAGYNONE TV EMAEYUEVKDY GNUELWY OTNY TOLOTNTA TOU
YAUEUXTNPLOHOU TOU YMEOU TUQUUETOWY.

To va’wa amexovilel To TAlog Twv aBEPotwy onuelwy xotd TNV SLdpxeLa
TV Tewpopdtwy. Topatneoiue 61 ot exdoyéc Tne uedddou Tou yenoylomololy
Toug KMEANS_ 500 o BIRCH otnv derypatoindio odnyolv oto uxpedtepo
oprdud ofSEBonmv onuelwy. NUyREXPWEVA, Ol EXDOYES TOU YPTOYLOTOLOUY TOUG
BIRCH xou KMEANS_ 500 emtuyydvouv atodntd xaAOTEpES EMBOOE and
TIC UmOhoLTeg exdoyéc. Emmiéov, ol 800 exdoyéc Tic Yedodou emdeEVOOUY
xou TNy mo otadepr| enidoor ota Bidpopa TELRdUUTA TOU EAaBaY YWEo Xt BEV
Topouotdlouy Peydhes Blaxuudvoelc. ‘Onwe mapatneolue and To My fud , ol
exdoyeg Tou ahyopriuou evioyutixic udlinong mou yenowonolovy toug DB-
SCAN xar KMEANS _ 20 06nyoUv oe mopdpolo tAfdoc af3éBowy onueiwy oto
Téhog Tou ahyopriuou, ue v egapuoyr tou DBSCAN, wotéco, vo odnyel
o€ peydheg doxupdvoelc. Télog, 1 mpdn @don e uedddou Tou yenoWoToE!
Tov KMEANS _ 50 mapoucidlet xahltepn enidoon and Tig exdoyéc mou yenot-
womooy toug DBSCAN xou KMEANS 20, oalAd yeipdtepn and exciveg mou
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eqopuolouv toug BIRCH xou KMEANS _500. Eivou a&toonuelwTto 6Tt o aprd-
UOC TV aéfaiwv OMUEinY UEWOVETOL OTOTOUA OTIC TEWTES ETAVAUAELS, EVE
UELWOVETAL TIO CUVTNENTIXG XaTd Tic Teheutaiec. Autd ocupPoiver xadde o To-
Ewvourtng opto¥eTel TNV TEQLOYY| TV AMOTEAECUATIXWY VEQUTELDY OTA AP
BruoTo Tou ahydpriuou xon E0TIECEL OTIC AETTOUERELEG TOU YMEOU OTO TEAEUTO-
fo. Emmiéov, aiCer va onueidoouye 6Tl o oprduds tov offéforwy onuelwy dev
oy yilel ToTé To Undév, axdun xat oTNY TERITTWOT TS EEAVTANTIXAS EXBOY TS TNG
ueddoou tou yenorponotel tov KMEANS 500 6to 61d6i0 tng detyuatorndloc.
Auto ogelletar oTNY GTOYACTIXOTNTA TV BLOAOYIXWY UOVTEAWY TIOU YETOLUO-
TOLOUVTAL Y10 VO TROCOUOWGOUY TNV CUUTERLPORE TeV avipmTivey xUTTApwY.
Abyw TG OTOYACTIXOTNTOS TWV HOVTEAWY, 1) ATOTEAECUATIXOTNTO TwV VepaTEL-
OV eVOEYETOL VoL BLapEREL ENPEME HETUED TEOCOUOWWCEWY. Emouévwe, yia Tig
Yepaneleg Twv omolwv 1 anoTEAECUUTIXOTNTA EiVaL UEXETE XOVTE GTO XUTCOPAL
mou €youpe opioet, N aefondtnTar dev Vo Yewwiel TOTE %dTw Amd TO HATOPAL
ofBeBondtnToC.

ApIuog ANAUTOVUEVLY TEOCOUOLWOCEWY

Ov mpocouolwoelg Tou BIEVERYOUVTOL Yiol VO amo@aUvUOUUE Yol TNV OmOTEAE-
OUOTIXOTNTA TV Vepamelny ebvon apxetd ypovoPopes ot amawtoly Thndopa
UTOAOYLOTIXOV TOpwY.  Emouyévewe, o aprdudc Twv cUVOMX®DY amouToOUEVKY
TPOCOUOLWOEWY ATOTEREL Ular XAAY) HETEIXT YIOL TNV ATOBOTIXOTNTA TG TEMTNG
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BIRCH DBSCAN KMEANS_ 20 KMEANS 50 KMEANS_500

Total Simulations

Eyruo 8: Luvohde apriude amontoduevmy mpocogotoewy (o dEovag y elvo
o€ hoyoprduxr| xAipomxa.

pdone e pedodou elepedivnong Vepameldy, 6CoV aPopd TOCO TOUS UTOAOYL-
o TIX0UC TOPOUS, 6GO Yo TOV ATAUTOLUEVO Yeovo. Iapatneolue and To Lyrjuo
OTL 1 exdoyt) Tou ahyoplduou evicyuTixhAc uddnone mou yernoulomolel Tov
BIRCH omoutel onointd Aydtepeg TpocoUolmoelg and exelvn mou yenotuonotel
Tov KMEANS _ 500, av xou 1 pédodog uag odnyel oe mopdpola anotehéouota
OTIC OUYXEXPWEVES TEQITTMOELS, OTWS eldaue Tponyoupévewe. Emniéov, nopa-
TNeoVUE 6Tl ot exdoyéc mou epappolouvy toug BIRCH xow KMEANS_ 50 yia
™V cuoTadonoinon Twv ofEBuwy oNUElLwY amutTolY TEOUOLD KPS TEOGO-
wotoewy. doTt600, 1 ETBOOY TOUS, CUUPWVI UE TA Ly HUATA |§||’Z|, OLopEpEL
ouoOntd. Auth 1) Slapopd oeiletar 6TO YEYOVOS 6TL 0 aAYOEWIHOC GUCTABO-
moinong BIRCH anopovaver to YopuBnon onueia oe cuctddeg “Vopou’, eve
otov KMEANS_ 50 o ¥6pufoc nailet evepyd pdro otov xoopioyd TV Gu-
oTddwv. Emouévae, epapuolovtag tov ahyderiuo BIRCH, xatagépvel 1 pédo-
00¢ Hog Vo avTATOEL TANpogopla 1600 and cucTAdEC Ywplc YopuPo b6co xou
oMo ToL AmopaxELoEVA oruela Twv aEfutwy onueiwy. Emnicov, napatnpolue
oTL 6tay 1) pévodoc pog yenowonotel tov DBSCAN amoutel tic Atyotepeg mpo-
COUOLOOELS, KO TOCO XUl OE AUTH TNV TEPITTWOT OEV EMBEXVUEL G TEQOTNTOL.
Avuth 1 aoTdiclor ogetheTon GTO YEYOVOC OTL OTIC TEPLOCOTEQES TMEPITTWOELS To
of3éPona onuetor opiCouy pia emupdvelo Tou dev ywelletar oe Teployég Ue LPNAT
xou younAf tuxvotnTa, enouéveg o DBSCAN xadopilel yeydhe cuoTddeg mou
AmOTENOUY UEYSAES ETUPAVEIEG UE UEYAAT TUXVOTNTA oruelwy. Emmiéov, n a-
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otddeior ogetheTton xou 0TV YeydAn evancdnota mou €yet o DBSCAN otic Téc
TWYV UTER-TIOROUETOMY TOV.

A&LoAoynon avalNTnong ATOTEAECUATIXOTERTS VEpa-
neloc

Yy mpwtdtunn uédodo epapuoletar évag I'evetindg Ahydprduog yio tny avo-
%A1 TRV TO ATOTEAEOUATIXGDY VEQUTELDY, OIS avapépaue otny Evétnta .
O Tevetinde Ahyodpriuoc emavohauBdveton yia 30 yeviég, ue mAnduoud ico ue
50, ye tournament selection ye péyedog (oo ue 3, ouoLOUOEPT BLAC TUDEWOT) UE
miavotnta SoTtadpwong lon pe 0.75 xou moavotnto uetdAialng ion ue 0.5.
H Avalfnon pe npocopoiwuévn avontnor pviulotnxe ye 1,=100, Trnin=15
xaw N=10. To ypovodidypouua yiow TNV Uelwon tng Yeppoxpacioc oploTnxe
WS TO YEWUETPIXO YPOVOOLAYPAUUUY, UE ouvTEAEa T (0o pe 0.8, Xta melpdua-
Té pac e€etdloupe To GEVAELo xoTd To omolo ot BUo uéVodol apyIxoToloVVTIL
Bdoel TV amOTEAEOUATOY TOU TEMTOU UEQEOUS TNG UEVODOU. LUYXEXQWEVA, O
opyde Thnduoude tou 'evetinol Ahyopiduou amoteleltan amd 12 Vepaneieg
(25%) mou a&ohoyHinxay we oL o anotelecuatixéc and tov ohyopriuo Evee-
ynTueie Mddnone, eved tar urdhoima dropa Tou TANYUoUOUY (75%) amoteholy
tuyaleg Vepanelec. To onueio exxivione e AvalATnong UE TEOCOUOLWUEVT
avontnon tideton wg 1 Vepaneio mTou allOAOYAUNKE WS 1) TO ATOTEAECUOTIXT
and 10 mewto pépoc. E&etdlouue tnv apyixonoinomn twyv yedddwy BehtioTo-
molnong Bdoel Twv anoTeAEoUdTWY Tou exBOY MY Tou alyopriuou Evepyntinic
Méinone mou epapuélouvy tig yevddoug BIRCH, DBSCAN, KMEANS 20
KMEANS_ 50 xav KMEANS_ 500 o7to otddlo tne cuctadonolnong tng Oery-
HOTOANTTIXAG Dtodasiog.

O mtivaxec , Topouotdalouy Ty enidoon tou I'evetnod Alydprduou xau
e AvalTnong e TpocopolUEYY avottno, avtiototya. Ilapatneolue 611 og
Oheg i e€eTalOPEVES TIEPTTOOELS, 0 [evetinde Ahyodpriuog emdeeviet Ty xa-
Aotepn emldoor, apol avaxahinTel anoteecpoutinotepeg Vepancicg. Emmiéoy,
TopaTNEOUUE OTL 1) eTidooT Tou I'evetixol Alyodpriuou eivon mavopoloTuTY o€
OAaL ToL OEVAPLY, EVE OEV TAPATNEOVUE To (Bl0 Yl To anoTeréouata Tng A-
valATNONG UE TEOCOUOIWUEVT AVOTTNOT.  MUYXEXPUIEV, TURUTNEOVUE OTL 1)
apywonoinon tng pedodou e Bdorn ta armoteréouato Tou ahyopriuou Evepyn-
e Mddnong pe epapuoyr) tou KMEANS 500 odnyel oe awodntd xohbtepa
ATOTEAECUOLTAL.
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ivoxag 1: Anotedéoparta avalAtnong g mo anoteAeoyutixrc Yeponelaug Ue
yenon 'evetixol Ahyoprduou.

MéHodog Boduég Emlaviov  Aptdude npocouodseny Yuvohxde apriude
Kapravindy Kuttdpwy ¢ Seltepne (pdong ATOUTOVUEVRY TPOGOPOUICEWY

BIRCH 0.166 811 1853

DBSCAN 0.164 810 1007

KMEANS_ 20 0.166 742 1242

KMEANS_50 0.174 814 1914

KMEANS_ 500 0.169 661 10761

Hivoxag 2: Anoteréoporta avalATnone e mo anoTeAeopatinic Vepomeiog Ue
yerion AvalATnong Ue TEOCOUOLWUEVT AVOTTNOT).

Médodoc Badpoéc Emlaviwy  Aptdude tpocouoidoeny Yuvohxde apriude
Kaprvixdv Kuttdpwy g delTEPNE QdoTg ATOUTOVUEVRY TPOGOPOUIGEWY

BIRCH 0.196 91 1133

DBSCAN 0.209 91 288

KMEANS 20 0.209 91 591

KMEANS 50 0.183 91 1191

KMEANS 500 0.177 91 10191

Emniéov, mopatneolue 6Tt 1 exdoyn tne uevdoou mou yenowornotlel tnv
AvalATnon Ue TPOCOUOIWUEVT avOTTNOY amoutel aoUNnTd AyOTEQEC TPOGOUOL-
®oelc and 6tav 1) avalHTNoN Yiol TV ATOTEAECUATIXOTERT) Vepamelar TEoyUATO-
molelton pe egapuoyr tou Fevetixol Alydprduou, yeyovog mou v xahoTd
otoUNTE Mo AmodoTIX OGOV 0POEE TIC ATAUTOVUEVEC TOOGOUOLWOELS.

‘Oneg avagépinxe mopamdve, To BEUTERO UEQOC UTOREL VoL AELTOURYoEL Xou
oav pEco eMBELalwong TOU YUpUXTNELOUOY TOU YMEOU TURUUETOMY TwV Jepa-
Telov. ‘Onwg galvetar and to Lyfua @ oL To anoTeEAEoHATIXEC Vepameieg TOU
evtoniCovtar and Tic BVo uedodouc BehtioTomonoNe AVAXoLY ElTE GToL GUVO-
ea E{TE 0TO ECMTEPIG TOL YWEOU TOU YoUpoXTNRIGTNXE w¢ EVOLPEPOY amd TOV
TAEVOUNTH) TOU TEWTOU PEEOUC, YEYOVOS ToU ENUANUEVEL Tal ATOTEAECUATO TOU
TEMOTOL YEEOUS NG Uedddou.

>0votdhn

Yo mhadolor Tne Topolous BiTAwuaTXhc, etexTelvaue Ty uédodo yla TNy ee-
eelvnon mou mopouctdotnxe and toug Ozik et.al [3], Sivovtoc v duvatdtnta
OTOV EXAGTOTE YENOTN Vol EMAECEL AVAUETA OE BLAPOPETIXES UEVOBOUC GLUCTUBO-
molnong xou fehtiotonoinone. Emnhéoyv, mpooradcoue va yopauxtrpicovue Tov
YOPO TOQUUETOMV XARXIVIXWDY VEQUTELDY, XAVOVTAS YPHOT EVOS VEOU UTOAOYL-
O TIX0U LOVTEAOU, TO OTolo TEpLYpdgeL TNy aAAnienidpaon tng tewTteivng Tumor
Necrosis Factor pe ta xapxvind x0ttopa. Emnicov, yehetrioaue tnv enidpoon
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OL8POPWY EVPEMS YVWOTOV ahyopliuwy cucTadonolnone oTny SelyUUTOANTTL-
x1| Otadxacion TNS UEVOBOU YOULUXTNPIOMOU TOU YMEOU TURUUETEMY, ARG 1oL
NV enidoon Yetddwy PEATIOTOTOMONE GTNY AVOXEAUPT TV TO ATOTEAEGUOTL-
%WV YEPATELWDY, UE OTOYO TNV PEIWOT TWV ATUTOUUEVWY TEOGOUOLOOERY. Ta
TELQOPOTIXG UTOTEAEGHUATA UTOBELXVIOUY TNV UTOTEAECUATIXOTNTA TNG UEVEO0U
elepedivnong Yepameldy xatd Tou xapxivou xal TNy Umopdn evog teoluyiou ye-
Ta€) TNG TOLOTNTAC TWV ATOTEAECUSTWY XAl TWV ATOUTOVUEVGY TOPWY.
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Chapter 1

Introduction

1.1 Motivation

Cancer disease is one of the leading causes of death globally, being respon-
sible for approximately 10 million deaths in 2020 according to the World
Health Organization]l] The alarming statistics have made the discovery of
promising treatments a top priority for the medical and biological research
community [8]. The development of a new treatment can be divided into five
discrete phases. Phase 0 consists the pre-clinical stage of the development
in which basic research around the body processing and the efficiency of the
drug candidate is conducted [9]. The three subsequent phases consist the
clinical stage of the drug development. In particular, Phase I is designed to
determine the dose-toxicity in humans, the short term side effects associated
with increasing doses and get a first indication regarding the efficiency of
the examined drug [10]. Phase II is designed to evaluate the performance
of the treatment under examination, while Phase III aims at the estimation
of the balance between safety and effectiveness [I1]. Lastly, Phase IV aims
at the monitoring of long-term side effects and the interaction of the drug
with other treatments. The first four aforementioned phases consist the main
pipeline in drug discovery and take on average from 9 to 12 years [12] to be
completed.

It is apparent that the process described above is both costly and time-
consuming. Moreover, in the development of cancer treatments, the dynamic
nature and the mortality of the disease make conducting extensive clinical
trials difficult in many cases, since the recovery time window is often nar-
row and any possible error or miscalculation may have devastating results
to the patient’s health. To tackle this, computational biology has assisted

"https://www.who.int/news-room/fact-sheets/detail/cancer
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the researchers in drug discovery by providing models that attempt to de-
scribe the behavior of tumor cells in the human organism. These models
allow practitioners to study via simulations the effectiveness of various tumor
treatments in-silico, without putting the human lives on the line. Experi-
ments conducted using such models can lead to the reduction of the time
required for the pre-crinical phase of drug development. These experiments
can, also, reduce the percentage of treatments failing to meet the required
performance standards in later stages of the treatment development, as it
allows researchers to proceed to clinical trials focused only on promising
treatments [13].

Although biological computational models are detailed and insightful, in
most cases they are computationally expensive and time-consuming, hinder-
ing the researchers from exhaustively examining the effect of every possible
configuration of the examined treatments. To that end, Machine Learning
(ML) methods can be used to reduce the required number of simulations in an
informed manner, and to provide accurate predictions about the effectiveness
of treatments. In particular, Ozik et al. [3] presented a workflow that aims
to discover the characteristics of promising drug treatments, by identifying
the value ranges of the drug-related parameters that are expected to induce
desirable effects. Their proposed workflow (mentioned as “original workflow”
in the rest of this thesis) consists of two parts. In both parts of the workflow,
subsets of the treatment parameter space are sampled and evaluated. The
first part of the workflow comprises of an Active Learning (AL) algorithm
[4] that aims to identify the interesting regions of the treatments parameter
space, by iteratively evaluating sampled points and training a classifier. In
particular, the evaluated samples are used to train a classifier, which then
indicates the most uncertain regions that in turn determine the samples to
be evaluated next. These regions, however, presumably contain a large num-
ber of points. In order for the exploration in the subsequent iterations to
progress, the uncertain points are clustered according to their spatial simi-
larity and only a few representative points are finally evaluated. The second
part consists of a Genetic Algorithm (GA) for discovering optimized treat-
ment configurations. Particularly, the GA is applied in order to discover the
most effective treatment configuration. In the random scenario of the second
part, the initial state of the GA is random. However, the application of the
GA may, also, incorporate knowledge obtained by the first part of the work-
flow (seeded scenario). In the seeded scenario, part of the initial population
consists of treatments found to be the most effective by the AL algorithm.
This workflow provides a valuable tool in the researchers’ arsenal and enables
them to perform targeted and promising real-world trials.
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1.2 Contribution

In this thesis, we extend the original workflow, and apply it in a differ-
ent experimental setting. Specifically, we examine the effect of a signal
molecule that can induce death in tumor cells, in a similar manner to tu-
mor treatments, called Tumor Necrosis Factor (TNF) [5]. Moreover, we
conduct experiments utilizing PhysiBoSSv2E] an add-on that expands upon
the PhysiCell cell simulator [6] used in the original workflow. PhysiBoSSv2
introduces an agent-based multi-scale model for tumor cell growth used to
examine the impacts of given drug configurations. Both parts of the work-
flow sample subsets of the available parameter values, to evaluate them on a
high-performance computing infrastructure.

The requirements for computational resources to sufficiently explore al-
ternative treatments are quite high. Thus, it is important to devise faster
and less resource-demanding alternatives for such approaches, without com-
promising performance. Such modifications can be proven really valuable in
even more complex settings, such as when exploring the synergistic effects of
multiple drugs being administered simultaneously to the patient’s organism
[14].

In the first part of the workflow, the clustering component of the sampling
process plays an important role in the number of the required simulations
and the quality of the results produced. However, based on their design
principles, clustering methods of different categories may lead to results with
quite noticeable differences in a variety of settings. Moreover, they require
user-defined hyper-parameters in order to operate that may be difficult for
non-experts to determine in advance. In the original workflow, the K-Means
clustering algorithm was used in the sampling process. However, K-Means
fails to identify clusters of arbitrary shape and to eliminate noise in the
candidate points set. It is also unable to dynamically adjust the number
of clusters to the spatial distribution of each different candidate set. These
restrictions lead to a distortion of the sampling process, as outlying points
are taken into account in the formation of the clusters and, in many cases,
larger clusters are broken down to smaller ones (or vice versa) in order to
reach a user-defined number of clusters, which is a required configuration
parameter. Such restrictions might degrade the sampling process and often
result in the execution of redundant or less informative simulations. To this
end, we examine the effect of additional clustering methods, i.e., DBSCAN
and BIRCH, to the effectiveness of the sampling process in the workflow, and
compare their performance, in regards to the number of simulations required

Zhttps://github.com /bsc-life/PhysiBoSSv2
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and the quality of the parameter space characterization achieved by the AL
algorithm of the workflow.

Furthermore, we also examine the performance of an additional optimiza-
tion method, that is Simulated Annealing (SA), for the discovery of the most
efficient treatments. The maintenance of a big pool of candidate solutions
by the GA requires multiple computational resources in each generation. In
the seeded scenario of the optimal treatment discovery part of the workflow,
the initial search space of the optimization method is restricted to the ar-
eas found by the AL part to contain viable treatments. If the search space
is small, SA and GA may yield similar results, as both methods perform
well in the improvement of the set of parameters around an initial solution
[7]. However, SA focuses on a single candidate solution, while GA maintains
a population of possible solutions. The different approach of the methods
makes SA less demanding in terms of computational resources when facing
such problems. We take advantage of this characteristic and apply SA in the
optimized drug treatments discovery by incorporating the knowledge we have
deprived from the AL component, focusing only in regions already classified
as viable. In particular, we set the initial point of SA to be one of the most
promising treatments evaluated by AL. In this way, the algorithm examines
an area that has already been characterized as viable and mainly consists
of local optima that are of similar, or better magnitude. In this thesis, we
compare the performance of the two aforementioned optimization methods,
in regards to the resources required by each optimization method, namely
the number of simulations, and the effectiveness of the treatments discovered
by each method.

Our experiments demonstrate that our workflow achieves a treatment
space characterization of high quality. Also, results indicate the existence
of a trade-off between the amount of simulations performed and the stabil-
ity of the produced solutions, both in the characterization of the treatment
configuration space and in the discovery of the most effective treatments.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter [2| we present
the related work. First, we present various computational models designed to
describe the tumor microenvironment and then present various works apply-
ing machine learning methods in the Bioinformatics field. Then, in Chapter
we present the necessary theoretical background. In particular, we introduce
the examined clustering, optimization and classification methods. In Chapter
we introduce the multi-scale simulator used for the experimental purposes

33



and describe in detail the workflow for tumor treatment exploration used. In
Chapter [5] we present the results of our experiments, while in Chapter [6] we
summarise the work and discuss further research directions. In appendices,
results of various experimental runs are provided in order to supplement the
presentation of the experimental results, while avoiding overcrowding the
main body of the thesis.
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Chapter 2
Related Work

2.1 Computational Modeling methodologies of
tumor microenvironment

Computational modeling provides a resource-effective tool in the examina-
tion of the interactions taking part in various natural systems, such as the
initiation and growth stages of cancer. These mathematical models can be
divided on categories based on their attributes in several ways. One possible
division is the categorization based on the stochastisity of the model. In par-
ticular, we call discrete models the models that lead to the same end state
for certain initial conditions, while we call stochastic those that may lead
to different end states for the same initial conditions due to the inclusion
of randomness of the cellular interactions. Another popular categorization
divides the model into discrete and continuous ones. Discrete models exam-
ine the behavior of discrete cells, e.g. the interactions between individual
cells, whereas continuous models take into consideration groups of individual
cells. A multi-scale setting may incorporate approaches belonging to different
categories. Models following this approach are called hybrid models. Com-
putational models of the tumor environment lying into different categories
have been used widely in the examination of the response of the immune
system to cancer progression and immunotherapy. In this thesis, we use a
multi-scale agent-based model that simulates the growth of tumor cells and
can take into consideration the binding of a signaling molecule that binds to
cell receptors and may induce death to tumor cells.

Dreau et al. [15] developed an agent-based model that studies the associ-
ation between tumor intrinsic properties, the responsiveness of the immune
system and the vascularization and the progression of solid tumor treat-
ment. Their model mimics tumor growth based on the nutrition needs of tu-
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mor cells and consists of components representing tumor cells, immune cells
(macrophages and lymphocytes) and vascular regions with with low, moder-
ate and high vascularization. The model not only sets principles that describe
the relationships among the aforementioned components, but also uses time-
dependant interactions. The researchers concluded that an increased initial
immune response leads to a slow tumor growth and to decreased surviving tu-
mor cells. Moreover, experimental results presented that repeated increases
in the number of immune cells throughput the experimental runs lead to a
substantial decrease in tumor burden.

During cancer development, surviving cancer cells develop features that
allow them to avoid detection from the immune system. One of these features
is the inhibitory signalling from molecules that reduce the functionality of
the immune cells. The programmed cell death protein (PD-1) and its ligand
PD-L1 act as an immune checkpoint pathway, i.e. as a regulator of the
immune system that prevents excessive immune activities. Cancer cells can
stimulate immunity checkpoint targets, such as PD-1/PD-L1, and suppress
the host’s anti-tumor immunity. Immune checkpoint therapy [10] targets
at the control of such regulatory factors of the immune system in order to
release the total power of the anti-tumor immune response. Gong et al. [17]
presented an agent-based model to study the spatial dynamics of tumor cells
and T-cells, a type of lymphocyte cells that play an important role in the
adaptive immune response. In the presented model, the effect of the the
anti-PDL1 treatment is modeled as a factor that decreases the probability
that a T-cell is suppressed by a PDL1" cancer cell. Gong et al. found that
the effectiveness of the anti-PDL1 treatment is affected by the level of the
mutational burden of the cancer and by the neoantigen characteristics of each
patient. Moreover, experiments showed that, in the setting in which tumor
vasculature is responsible solely for the transportation of tumour antigen
specific T-cells, there is no clear correlation between the vasculature density
distribution and tumor growth. Based on the aforementioned results, the
authors proposed a scoring system to assess potential predictive biomarkers
for anti-PDL1 treatments.

Rejniak et al. [I8] introduced a model that describes the effect of the
structure and distribution of tumor cells on the delivery of chemical com-
pounds, such as those of cancer treatments. Simulations demonstrated that
the tumor cell distribution, which is identified by the cellular porosity and
density of the tumor tissue, play an important role in the depth of a drug’s
advective penetration. In particular, experiments showed that low density
tissues lead to longer times of drug penetration and to slower interstitial fluid
flow. Moreover, they showed that irregularities in the cells spatial configu-
ration may reduce the drug concentrations, as they lead to tissue zones with
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low exposure to molecules of the drug. Hence, the experimental findings sug-
gested that the tissue architecture influences greatly the depth of the tissue
penetration achieved by drug molecules.

2.2 Machine Learning in Bioinformatics

The amount of biological data that requires analysis by experts has risen
exponentially in recent years. In order to interpret the increasing available
data and discover behavioral patterns of biological systems, ML methods
have been widely used in Computational Biology and Bioinformatics. The
predictive models generated by ML give insights to the functional relation-
ships of the systems and provide accurate statistical predictions in a range
of biological applications |19, 20]. For instance, Blazewicz et al. [21] pro-
posed a time-effective method to discover low energy protein structures using
a heuristic optimization method. The authors used simplified protein struc-
ture prediction models and the Tabu Search algorithm in order to discover the
native structure of the protein. An essential feature of the Tabu Search algo-
rithm is the exclusion of possible candidate solutions that are characterized
as forbidden. In a similar manner, the AL algorithm of our workflow aims
at the mapping of uninterested regions. These regions are then eliminated
from the treatment search by the GA during the optimization.

Another common application area of machine learning methods in Bioin-
formatics is the biomedical image processing. The aim of the biomedical
imaging is the analysis of medical images for diagnostic and treatment pur-
poses. An important step of this analysis is the classification of the biomed-
ical images. In many instances, GAs have been combined with clustering
techniques in AL workflows for the classification of biomedical images. [22]
adopts such an approach combined with self-organizing maps, to reduce the
amount of manual labor required for annotating and analyzing cancer pa-
tient screening images. Even though the framework presented reduces the
required human labor, it achieves an accuracy level of equal or greater than
that achieved solely by human annotators. Interactivity allows human su-
pervision and intervention, but this is only required in smaller scale. Unsu-
pervised learning helps to detect uncertain regions and ask for more targeted
input by experts, while automatically expanding learned classification rules
to known cases.

Moreover, Evolutionary Algorithms have been widely used in de novo
drug design [23]. De novo drug design involves an incremental construction
of new molecules based on the structure of a receptor [24]. Wang et al.
[25] presented a tool called LigBuilder, which uses a GA approach to build
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new ligand molecules. In this approach, a step by step construction of new
molecules was applied resulting to an immerse possible solution space. In or-
der to render the construction process more efficient and to obtain a reduced
solution space, a GA was used in order to control the building process of the
new molecules, with the fittest individuals of the last generation of the GA
being selected as the final results.

Throughout the years, Active Learning algorithms have been used in var-
ious fields of Bioinformatics, such as the detection of potentially promising
regions of drug configurations [26], due to their ability of reducing the re-
quired resources based on their selective sampling strategy. Warmuth and
Putta [27] presented an AL algorithm in order to assist drug discovery. In
particular, they examine the application of a Support Vector Machine (SVM)
classifier in order to find efficient (active) drug compounds from a large collec-
tion of compounds. Their goal is to divide the compounds dataset to active
and non-active compounds with the minimum possible amount of screen-
ing trials. Moreover, they examined the performance of various selection
strategies for the sampling stage of the AL algorithm. Experiments showed
that the sampling of points that have the maximum positive distance from
the separation boundary (i.e. the ones supposed to be most active) is most
suitable for exploitation purposes, i.e. when the final goal is to find a high
number of active compounds. On the other hand, the sampling of points that
are near the separation boundary appeared to yield better results in the ex-
ploration of the entire data set, i.e. it provided a better understanding of the
distribution of the active and non active compounds in the whole collection.
In a similar manner, the AL algorithm of our workflow, which aims at the
exploration of the treatment parameter space, considers as most informative
the points lying on the classification boundary, i.e. the most uncertain points
as mentioned in Section 4.2

Microarray is a tool for studying the molecular basis of interactions used
widely in cancer research [2§8|, allowing researchers to study a vast num-
ber of genes simultaneously [29]. One objective of medical researchers is to
identify small sets of genes that have strong predictive performance regard-
ing the examined disease. The identification of this small set of genes and
the elimination of redundant genes allows researchers to focus their diagnos-
tics examinations. Liu [30] applied an AL algorithm with a SVM classifier
in the classification of cancer based expression data from DNA microarray
hybridization experiments. In particular, Liu used the genes profiles of sam-
ples of three common type of cancer, i.e. colon, lung and prostate cancer.
The SVM classifier was trained on a training dataset consisting of samples
with the largest predictive value (Active Learning) and its performance was
compared to a SVM classifier trained on random samples (Passive Learning).
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Experiments showed that although AL required the evaluation of significantly
fewer samples, it performed evenly or even better in many cases as compared
to passive learning. In a similar setting, Diaz et.al [31] presented the appli-
cation of a random forest classifier for the classification of microarray data
and the identification of small sets of genes that lead to good predictive per-
formance and can be used for diagnostic purposes, such as the classification
of cancer. Moreover, they compared the performance of the Random Forest
to other Machine Learning methods used by researchers. The results show
that Random Forest yields similar results in the classification task and leads
to smaller sets of genes in many cases compared to the other methods.

AL algorithms have assisted, also, in the understanding of protein pat-
terns and interactions. Proteins control the biological systems of a cell, with
the majority of proteins controlling biological activity via interaction with
other proteins. Hence, the understanding and prediction of the protein-
protein interactions can lead to a deeper understanding of the biology of the
human cells. Mohamed et al. [32] compared AL methods for guiding the
selection of protein pairs for future experimentation in order to accelerate
accurate prediction of the human protein interactions. The results suggested
that AL manages to accelerate the discovery of interacting protein pairs, even
in datasets where the ratio of interacting pairs is very low.

In our approach, we examine the application of different Machine Learn-
ing submodules in the exploration of tumor treatments and focus on the im-
pact of these submodules on the quality of the results. Moreover, we examine
their effectiveness with respect to the computational resources required. In
comparison with the aforementioned approaches, our method allows for the
selection of the different submodules to be used in each experiment. Thus,
it allows us not only to examine the perfomance of the submodules in the
given experimental setting, but also gives us the ability to select submodules
accordingly to the setting under examination. Hence, it makes the expansion
of the workflow to different experimental settings easier.
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Chapter 3

Theoretical Background

In this section, we cover the theoretical background behind the various meth-
ods examined in the treatment discovery. In particular, we introduce the
clustering algorithms used in the the sampling process of the workflow, the
optimization methods used for the optimal treatment discovery and the clas-
sification method applied in the separation of the parameter space to viable
and non viable treatments.

3.1 Clustering Algorithms

Clustering algorithms are used for the identification of similarities between
different data instances in a plethora of fields, such as finance [33]| or docu-
ment analysis [34]. The main goal of the clustering algorithms is to divide
a given set of data instances into groups, called clusters. Instances in the
same cluster must be similar as much as possible. The traditional clustering
algorithms can be divided into 9 categories depending on the approach they
use for the clustering of the data [35]. The three main categories of clustering
algorithms are partitioning, hierarchical and density-based [36].

The partitioning clustering algorithms are based on the idea that a cen-
ter data point can represent a cluster [37]. Partitioning algorithms’ goal is
to divide the data instances space into k clusters. Initially, £ random par-
titions are created and the partitioning is, then, iteratively improved using
a relocation method. Finding the optimal k parameter is crucial and re-
quires prior knowledge regarding the true distribution of the instances. This
knowledge is usually not available in most applications, especially in prob-
lems in which the distribution of the data instances changes dynamically.
Hierarchical algorithms aim in the hierarchical decomposition of the space,
i.e. in the understanding of the hierarchical relationship among the data in-

40



stances. The decomposition is represented as a tree that splits the space into
smaller sub-spaces (clusters) until a certain termination criterion is met, e.g.,
a distance threshold between clusters [38]. Finally, density-based algorithms
cluster the data based on the density and connectivity of the points. Clusters
are considered to be sets of points of high density separated by low density
regions [39]. In this thesis, we examine the effect that well-known clustering
algorithms belonging to the three aforementioned main categories have on
the performance of the treatment discovery workflow. For our experimenta-
tion purposes we selected a representative algorithm from each category, in
particular the K-Means, BIRCH, and DBSCAN algorithms [35].

3.1.1 K-Means

One of the most widely used clustering methods is the K-Means algorithm
[40], in which each cluster is represented by a point called the centroid of the
cluster and all points in the dataset are assigned to the closest centroid.

More formally, consider a set of points X = {x1,22,...,2,} a set of
clusters C' = {c1,¢a,..., ¢}, a function d(z,y) that measures the distance
of two points in the dataset and a function ¢c(z;) = argmin.ccd(z;, c) that
finds the closest centroid to point z;. The goal is to find the optimal set C
of clusters that minimize the inner cluster distance, defined as follows:

min Z d(¢c(z), x)
zeX

In brief, K-Means consists of three steps. First, k points are selected
from the dataset to form the initial centroids. Then, each point is assigned
to the nearest centroid, and each centroid is redefined as the center of mass
of all the points assigned to that cluster. The two last steps are repeated
until convergence is reached.

The K-Means algorithm is one of the most widely used algorithms due
to its simplicity and speed, and was utilized by [3]. However, it entails
some limitations that may lead to poor accuracy. As mentioned above, the
final number of clusters of the dataset must be decided by the user prior to
the application of the algorithm. However, the number of clusters may be
difficult to determine beforehand, as in most cases there is no prior knowledge
regarding the spatial distribution of the data instances. In addition, the
clustering process can be affected by noise, as outliers participate in the
calculation of the centroids. The participation of noise in the determination of
the centroids may lead to clusters with shifted centers, leading to a distorted
result. Moreover, K-Means identifies spherical clusters of similar sizes with
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Algorithm 1 K-Means Clustering
Input: D ={D;,Ds,...,D,}: Data instances, k number of desired clusters
Output: Data instances with cluster memberships

1: procedure K-MEANS(D. k)

2 Randomly initialize k centroids.

3 repeat

4 for each D, data instance do

5: Assign D; to closest centroid

6 Update the centroids of the clusters

7 until converge is met

8 return data instances with cluster memberships

radius equal to the distance of the centroid to the boundary points of the
cluster. Hence, K-Means fails to find clusters of arbitrary sizes and densities.

3.1.2 DBSCAN

Ester et al. [4I] introduced the DBSCAN algorithm, a density-based clus-
tering approach designed to identify clusters of arbitrary shapes. DBSCAN
relies on the Eps and MinPts parameters. Eps defines the maximum dis-
tance between two points to be considered as neighbors. Thus, the Eps
neighborhood of a point p is defined as follows:

Nips(p) = {q € D | d(p,q) < Eps}

MinsPts is the minimum number of points required to be in the neigh-
borhood of a point p in order for the point p to be considered a core point
of a cluster.

The concept of DBSCAN is based on the notions of density-reachability
and density-connectivity. A point p is density reachable from a point ¢ if
there is a chain of points p; = p,ps,...,p, = ¢ such that for each pair of
points p;, pit1: d(pi, piv1) < Eps and Neps(pir1) > MinPts. A point p is
density connected to a point ¢ if there is a point o, such that p and ¢ are
density-reachable from o.

According to DBSCAN;, points can be divided into three categories, the
core, border, and noisy points. Core points refer to representative points
of the cluster, while border points are the ones on the edges of the cluster.
Every other is considered as an outlying point.

The algorithm arbitrarily picks a point p and calculates the number of
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Figure 3.1: Points categories according to DBSCAN

points in its Eps neighborhood. If |Ng,s(p)| is greater than MinPts, then p
is the core point and a cluster is formed. If p is a border point, then DBSCAN
visits the next point in the dataset. The process is repeated until all points
are examined.

DBSCAN is a commonly used clustering algorithm due to its ability to
identify clusters of arbitrary shapes and sizes and its robustness to noise in
the dataset. Moreover, it is not required to specify the number of clusters in
the dataset beforehand. However, performance is sensitive to the user-defined
parameters Eps and MinPts. Also, DBSCAN does not perform well with
clusters of different densities, since it relies on a universal combination of Eps-
MinPts combination. Lastly, DBSCAN performs poorly in flat geometries,
due to the lack of density changes between clusters, as it considers clusters
to be sets of points of high density separated by low density regions.

3.1.3 BIRCH

BIRCH 1is a hierarchical clustering algorithm introduced by Zhang et al.
[42] to handle large datasets efficiently. Its efficiency is achieved by creating
a summary of the dataset and then processing this summary, instead of
clustering the original dataset as a whole. BIRCH bases on the concepts of
the Clustering Feature (CF) vector and the CF tree.

Given N d-dimensional data points in a cluster x;, where i =1,2,... N,
the clustering feature vector (CF) of the cluster is defined as a triple CF =
{N,LS,SS}, where N is the number of data points in the cluster, LS is the
linear sum of the N data points and SS is the square sum of them. A CF
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Algorithm 2 DBSCAN
Input: D ={D;,D,,...,D,}: Data instances, Eps, Min Pts
Output:

1: procedure DBSCAN(D,Eps,Min_Pts)
2 for each unvisited point D; in D do
3 mark D; as visited
4: neighPts < calculatethe Eps  Neighborsof D;
5: if size(neighPts) < Min_ Pts then
6 mark D; as outlying point
7 else

8 C + New Cluster

9 expandCluster(D;, neighPts, C, Eps, Min_Pts)

10: procedure EXPANDCLUSTER(P, neighPts, C', Eps, Min_ Pts)
11: add P to cluster C'

12: for each point Neigh in neighPts do

13: if Neigh is not visited then

14: mark Neigh as visited

15: neighPts’ < calculatethe Eps _Neighborsof Neigh
16: if size(neighPts’) < Min_ Pts then

17: neighPts < neighPts U neighPts’

18: if Neigh not part of a cluster then

19: C < C'UNeigh

Tree is a height-balanced tree, which acts as a compact representation of the
original dataset. A leaf node in the tree contains at most L entries of CFs
and two pointers linking the node to the previous and the next leaf node.
Internal nodes contain entries of the form [p, C'Fp|, where p is a pointer to a
child node and C'F'p is the sum of all the CFs in the child node.

Each CF Tree requires two parameters, the branching factor B and the
threshold 7. Each internal node of the tree can contains at most B entries
and the diameter of each leaf entry has to be less than T". The algorithm scans
the data and creates a CF Tree by iteratively selecting data samples. At each
step, a new data sample is selected and the nearest leaf node sub-cluster in
the existing CF tree is obtained. If the distance between the centroid of the
closest sub-cluster and the new sample is less than the threshold 7', then the
sample is added to the sub-cluster and the properties of the leaf node and
its parent nodes are updated. Otherwise, a new sub-cluster is created and
added to the CF Tree. In case the addition of the new sub-cluster breaks the
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Figure 3.2: Overview of BIRCH clustering algorithm

branch factor condition, then the parent node is split. In this way, outlying
points do not distort the existing clusters and can be isolated into smaller
clusters consisting only from close noisy points. An overview of the BIRCH
algorithm is illustrated in Figure [3.2

In detail, the four phases of BIRCH algorithm are:

Phase 1 The algorithm scans the data and creates a CF tree with an
initial threshold value by inserting points into the tree. If it runs out of
memory before the completion of the scan, it increases the threshold value
and rebuilds a new CF tree by re-inserting the leaf entries of the old tree and
resuming the scanning from the interruption point.

Phase 2 (Optional) In this phase, the algorithm scans the CF tree and
tries to merge the clusters of the leaf nodes in order to create a smaller CF
tree. This phase is optional and serves as a preparatory step for the optimal
performance of the clustering algorithm used in the third phase.

Phase 3 A global or semi-global algorithm is used to cluster all leaf entries
and a set of clusters is obtained. This set of clusters captures in a good man-
ner the correlations of the data instances. The algorithm can be terminated
after this phase.
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Method Characteristics Limitations

K-Means Clusters of similar shape and size Difficult definition of optimal k
Clustering data of varying sizes and density

DBSCAN Clusters of varying size and shape Parameter sensitive
Noise detection Varying density clusters

BIRCH Time and memory efficient Not scalable with high dimensional data
Noise detection

Table 3.1: Examined Clustering Methods Overview

Phase 4 (Optional) Another scan of the original data is performed and
each point scanned is assigned to closest centroid of the clusters found in the
third phase of the algorithm. This phase is optional and corrects any possible
inaccuracies. This phase can also act as a noise detection step. Each point
that lies too far from its closest centroid is considered to be an outlier and is
eliminated.

In our approach, we consider the leaf nodes of the CF Tree as the final
clusters. These clusters can be categorized to ones containing informative
points and those containing outlying points.

BIRCH is a fast algorithm, which efficiently clusters large datasets, does
not require specifying the number of clusters and can also detect outlying
points.

Table[3.I|summarizes the characteristics and limitations of each clustering
method under examination.

3.2 Search Procedure for Optimized Treatments

Heuristic search methods, such as the GAs, have been developed in order to
solve optimization problems that are difficult or even impossible to be reduced
into an analytical form and thus solved by exact numerical algorithms. Such
methods require little or no knowledge of the problem’s domain and aim in
the discovery of the global minimum (or maximum) of an objective function.
Although they cannot provide guarantees for finding the true global optimal
solution, they can discover many “good” solutions that are locally optimal.
Such methods have been applied in a wide variety of fields, e.g. finance
[43], or power systems [44]. We examine the performance of two well-know
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and widely used optimization methods in the discovery of optimized treat-
ments. In particular, we examine the optimization methods called Genetic
Algorithms and Simulated Annealing. The Genetic Algorithms consist one
of the most widely used optimization methods, as they search for the optimal
solution based on a population of candidate solutions, thus avoiding getting
stuck in local optima. Moreover, they have demonstrated good performance
in noisy environments in numerous applications. On the other hand, SA
aims at the discovery of the optimal solution based on a single candidate
solution. Hence, SA may require less resources in comparison to the op-
timization methods that are based on groups of solutions. Moreover, the
simplicity of the algorithm of SA allows the easy adaptation of the method
to the nature of each examined problem.

3.2.1 Genetic Algorithms

The Genetic Algorithms (GA) have been used widely in optimization ap-
plications in various fields [45, [46, 47]. GAs are a family of optimization
models inspired by evolution, and especially by natural selection [48]. These
algorithms encode each possible solution of the examined problem on a data
structure resembling a chromosome structure. The encoding selected depends
on the nature of the examined problem and may vary deeply from application
to application [49]. The aim of the algorithms is to derive the best attainable
solutions (fittest individuals) after applying some recombination operators.
A Genetic Algorithm consists of five phases. In particular, a set of ini-
tial solutions is created. Each solution is called an individual and a set of
individuals is called a population. Each individual is characterized by its
genes, i.e. the parameters specifying the represented solution. The genes
of each individual are joined into a data structure, which mimics the struc-
ture of a chromosome. In order to evaluate each individual an evaluation
function is defined. This evaluation function is called fitness function and
measures the fitness of an individual. The encoding of the possible solutions
and the fitness function are the two problem dependent parts of GA and the
selection of the most suitable ones play a crucial role in the performance of
the algorithm. In the second phase, the population is evaluated and each
individual is assigned a fitness score. Sequentially, the individuals with the
highest fitness scores are selected. These individuals are the fittest of the
population and will pass on their characteristics to the next population, via
the crossover phase of the algorithm. In particular, the fittest individuals
are mated and new individuals are derived maintaining desirable genes from
the original individuals. In order to maintain a certain level of diversity in
the newly generated population, some individuals undergo a mutation pro-
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Figure 3.3: Overview of genetic algorithm.

cess. The procedure, i.e. the evaluation, selection, crossover and mutation of
the individuals is repeated until some set termination criteria are met. The
repetition of this procedure leads to evolved-better solutions (individuals) to
the examined problem. Figure illustrates an overview of the phases of
the genetic algorithms.

G As consist a valuable tool when the search space is very large and when
each solution is defined by a large number of parameters. Moreover, they
provide a pool of good solutions, instead of a single best solution, in contrast
with many other optimization methods. Furthermore, the evaluation of the
population of each generation can be done efficiently using parallelization
techniques. However, if the fitness function is computationally expensive the
required resources for the maintenance of the populations may out weight the
benefits of parallelization. Lastly, the stohastic nature of the algorithm, and
especially of the recombination operators used, does not guarantee the quality
of the provided solutions, as different runs of the same Genetic Algorithm
may lead to different results.
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3.2.2 Simulated Annealing

In addition to the GA, we examine the application of the Simulated Anneal-
ing (SA) optimization technique [50, 51] for discovering the best treatment
configurations. SA has been applied for many years in problems that aim at
the minimization or maximization of an objective function, such as portfolio
problems in finance [52] or the physical design of Very Large Scale Integra-
tion (VLSI) circuits [53]. SA is a probabilistic optimization method that
mimics the process of metal annealing, in which a metal is heated and cooled
slowly in order to solidify its crystals and reach an optimal state of minimum
energy. The basic elements of the SA method are the set of possible points
S, an energy function F : S — R (objective function), an initial temperature
(T,), a minimum temperature (7),;,), the temperature at ky, level Ty, the
number of iterations in each temperature level N and the cooling schedule.
The SA algorithm consists of two nested loops. The algorithm starts from an
initial point (current solution s) and evaluates its “energy”. In the inner loop,
the set of neighbors of the current point is generated, a random neighbor n is
selected and in turn, its “energy” is evaluated as well. The selected neighbor
is accepted as the new solution s with probability:

(1, E(n) < E(s)
Paccept(n) - { 6.17]?( — kA_Ti) E(n) > E(S)

i.e. the new candidate solution is always accepted if it performs bet-
ter than the current solution. Otherwise, the candidate solution is accepted
with an acceptance probability. The acceptance probability decreases ex-
ponentially with the inferiority of the candidate solution. The inner loop
is repeated until NNV iterations are completed (equilibrium condition). The
acceptance of inferior candidate points gives the ability to escape from lo-
cal minima and continue the search for the globally optimal solution. In
the outer loop, the temperature level is decreased according to the cooling
schedule, until reaching T),;, (cooling condition).
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Algorithm 3 Simulated Annealing

Input: 7j: Initial Temperature, 7},;,: Minimum Temperature, Cooling
Schedule

Output: Sp.: Best Solution

1: procedure SIMULATED ANNEALING(Ty,Tpmin, COOLING SCHEDULE
2 s <— initial solution

3 Spest < S

4 T+ T()

5: while T" > T,,;, do

6 repeat

7 Sn < neighbor solution of s

8 AFE < difference between current solution and neighbor solu-

tion

9: if AE > 0 then

10: S < Sy

11: if s, <Spest then

12: Shest € Sn

13: else

14: Poceept < exp( — kA—f;)

15: v «— random number in [0, 1]

16: if Paccepr > v then

17: S < S,

18: until max iterations per temperature level reached
19: T < Decrased temperature based on cooling schedule
20: return Sp.s:

At a high temperature level, SA is more tolerant towards moving to infe-
rior solutions and aims in the discovery of the neighborhood of the optimal
solutions. As T decreases, the algorithm allows smaller deterioration in en-
ergy and focuses into the discovery of the globally optimal solution.

The simplicity of the SA algorithm allows for the easy implementation of
the algorithm and its adaptation to different problems and energy functions.
However, the quality of the solutions yielded relies heavily on the cooling
schedule selected, with most commonly used cooling schedules being very
slow, especially in cases where the energy fucntion is expensive to compute.
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3.3 Classification

In Supervised Learning, an agent observes some training input and output
pairs and aims at learning a function that maps from input instances to
output. A learning problem in which the output is one of a finite set of
values is called a classification problem. Various learning models, such as
linear models, nonlinear models or SVMs, have been used in practise to
tackle classification problems in many fields. With the rise of classification
problems, the enhancement of the performance of the learning models is
crucial. Ensemble Learning [54] is a popular technique used to improve the
performance of learning algorithms. FEnsemble learning methods combine
multiple base-models in order to reach a decision. The main concept behind
ensemble learning is that the combination of multiple base models will lead
to a prediction of better overall quality, based on the fact that errors in the
prediction of a single model may be compensated by the other models. For
example, suppose that we use M=9 base models in order to assign one of
two possible categories to a data instance. In order to classify falsely the
instance, at least 5 out of 9 base models should assign a wrong category
to the data instance. This example illustrates at best the idea that lies
behind ensemble learning. Taking into consideration the prediction made by
multiple base models leads to a reduction of the expected error. Suppose that
the errors between the predictions of each model are independent. Then,
it is evident that by increasing the number of base models participating
in the final prediction, we can significantly reduce the expected error [7].
Ensemble learning methods have been used widely in many fields due to their
application versatility and their effectiveness [55]. In the original workflow,
a well known ensemble learning method called Random Forest Classifier is
used. Random Forest is a simple and effective classification method using a
large number of Classifications Trees as its base models.

3.3.1 Classification Tree

A Classification Tree [56] aims at the assignment of a class to a data instance.
The root and internal nodes of the tree represent decisions and the edges
represent attributes, while leaf nodes represent the possible classes. Each
non-leaf node splits into two descendant nodes according to the value of
one of the categorical predictor variables. A categorical predictor variable
X; takes values from a set of categories S; = {s;1,...,8n}. The split of
the internal node sends a subset S of Si to one of the child nodes and the
remaining categories to the other child, as illustrated in Figure [3.4]

The split used to partition an internal node to its child nodes is chosen as
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Figure 3.4: Internal node splitting in classification tree

the best on some criterion, after examining all possible splits. A commonly
used criterion is the Gini index, also known as Gini impurity. The Gini index
is defined as [57]:

it) = S plnpGil) = 1 3 pln),
i#j i

where p(i|t) is the probability that a random sample belongs to class i, given
we are at node t. The Gini index calculates the probability of a specific
categorical variable being classified incorrectly, thus gives a measure of the
purity of a node. The classification tree is created using a training dataset
by iteratively splitting the internal nodes until a stopping criterion is met.
In order to assign a class to a data instance d, the instance d is dropped
down the tree until we meet a leaf node. The instance d belongs to the class
assigned to this leaf node. Each observation falls into one of the leaf nodes.

In many cases, the classification trees are grown as large as possible and
then pruned by cutting off branches leading to a subtree of the original
classification tree [58]. Pruning plays an important role in the avoidance of
over-fitting to the training dataset.

3.3.2 Random Forest Classifier

The Random Forest Classifier [56] is one of the most popular ensemble meth-
ods [59, 60], used widely in numerous fields [61), [62]. In recent years, vari-
ous extensions such as Random Survival Forests [63] and Enriched Random
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Forests [64] have been introduced by researchers. The individual classifica-
tion trees used as base learners are constructed using a training dataset as
mentioned in subsection with some modifications to inject randomness
in the trees. Firstly, each individual tree is fitted to an independent sample
from the original training set. Secondly, rather than choosing the best split
for each internal node, a subset of the attributes is sampled and the best split
for them is selected. The aim of the Random Forest classifier is to combine
the decisions of each individual tree regarding the data instances under as-
signment. This is achieved by an unweighted voting of the individual trees,
with the final final result being the result found by the majority of the trees.
In the original approach, the classification trees used are unprunned, i.e. the
trees are grown until the leaf nodes are pure. However, recent suggestions
have been presented in which the number of leaf nodes is set by the user. In
this setting, the user defines the maximum number of classes in the dataset
under examination.
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Chapter 4

Framework for model exploration

4.1 Multi-Scale Model Simulations

In the examined method, we incorporate a multi-scale model of a 3D tumor
spheroid using the PhysiCell framework [6] and the PhysiBoSSv2 add—onE]
PhysiCell is a physics-based cell simulator designed to study the interaction
between cells in 3-D microenviroments. The microenviroment is modelled
using a partial differential equations solver desinged for biological problems
called BioFVM [65]. The solver provides the necessary tools required for
the mathematical modelling of the responses of the tumor cells in changes
in the microenviroment, such as changes in the spatial distribution of cells.
Moreover, we use the PhysiBoSSv2 extension of PhysiCell, which simulates
the intracellular signal transduction models within each individual cell-agent.
Tumor spheroids are composed from different cells, with each tumor cell being
modelled as an individual agent. Each individual cell has a Tumor Necrosis
Factor (T'NF') receptor connected to the signal transduction network. The
simulated 3-D domain includes two diffusive molecules, one corresponding to
oxygen and another corresponding to TNF. Oxygen is responsible for the cell
growth, while TNF is a molecule capable of inducing death to tumor cells.
More details regarding the calibration of the simulator and the discovery of
treatments using the simulator can be found in [66]. TNF is a critical cy-
tokine that binds to cell receptors and activates signalling pathways, restrain-
ing in this way the growth and spread of tumor cells. Thus, the observation
of the effects of TNF can be used in order to estimate the effectiveness of
various tumor treatment configurations. In our setting, each treatment con-
figuration is defined by the duration, the frequency of administration and the
concentration of the TNF. Hence, each treatment can be defined by the tu-

Thttps://github.com /bsc-life/PhysiBoSSv2
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ple (TNF_FREQUENCY, TNF DURATION, TNF CONCENTRATION)
and the set of all possible treatment configurations defines a 3D parameter
space of our experiments.

4.2 Workflow for in silico tumor treatment ex-
ploration

The workflow for tumor treatment exploration consists of two phases. In
the first one, an AL algorithm is used in order to divide the treatment pa-
rameter space into promising and non-promising regions, while in the second
part, an optimization method is used in order to find the most promising
treatment configurations and to validate the results of the parameter space
characterization. Figure illustrates an overview of the workflow.
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Figure 4.1: Overview of the examined workflow.
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4.2.1 Characterization of the treatment parameter space

The aim of the first phase of our workflow is to identify the regions of the
treatment parameter space which contain effective treatments. In the AL
algorithm applied in the first phase, a Random Forest classifier is used to
divide the parameter space into promising and non-promising areas. An area
is considered to be promising if it includes treatments that reduce the count
of the alive tumor cells below a set threshold. The final goal of the AL
workflow is to obtain an understanding of the parameter space and its sub-
regions, without exhaustively evaluating the effectiveness of each possible
treatment configuration. Points are iteratively selected based on a two-step
sampling process.

First, the most uncertain points are selected in order to exploit the results
of previous iterations. These points compose the classification boundary and
indicate the regions with the most uncertainty, thus regions with points of
high informative value. Hence, if we understand the effectiveness of the
treatments represented by this points in the treatment parameter space, we
will reach a superior characterization of the parameter space. Figure [£.2]
illustrate the uncertain points an example of the most uncertain points in an
iteration of the AL algorithm.
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Figure 4.2: Points with highest uncertainty

The most uncertain points are, then, clustered in order to exploit their
spatial distribution. The clustering of the selected points is the stepping stone
for sampling only the most informative points and is depicted in Figure [£.3]

Points representing each cluster are selected, ensuring the diversity of the
sample. Then, evaluation via simulations takes place and the results are
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Figure 4.3: Clusters of the most uncertain points

included in the training set. We perform clustering on the candidate points
in order to exploit their spatial distribution, determine the most influential
points, and reduce the required number of simulations, by selecting only a few

representatives. Figure [4.4] illustrates the points selected as representatives
of the clusters of the uncertain points.
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Figure 4.4: Selected representative points for simulation
It is evident by comparing the number of points over the uncertainty
threshold and the representative points selected for simulation depicted in

Figure and Figure [4.4] respectively, that the required number of simu-
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lations is reduced dramatically. After the simulations of the selected points
are completed, the classifier is refitted, leading to a revised vision of the pa-
rameter space. This process is repeated for a set number of iterations. The
sampling process of the AL controls the number of simulations required for
a successful parameter space characterization. Since simulations are com-
putationally expensive, the selection of the most informative instances is of
crucial importance. In our approach, we examine the effect of three well-
known clustering algorithms, namely the K-Means, BIRCH and DBSCAN
algorithms, on the quality of the sampling process. Figure depicts the
separation of the treatment parameter space into areas containing promising
and non promising treatments after the termination of the AL algorithm.
The regions of the parameter space shaded with blue and red color are con-
sidered by the classifier to contain promising and non-promising treatments,
respectively.

Figure 4.5: Characterization of the treatment parameter space using a ran-
dom forest classifier.

4.2.2 Optimal treatment discovery

In the second phase of the workflow, an optimization technique is used in
order to obtain the most promising treatments, i.e. the treatments that lead
to the lowest final tumor cell counts. In particular, two optimization methods,
namely Genetic Algorithm and Simulated Annealing, are examined.
Regarding the GA, a tournament selection is used in order to sample the
best points from the current population. The sampled points are combined
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according to a crossover probability, and then mutated according to a mutat-
ing probability, before the new population is evaluated. The fitness function
we use for the evaluation of the treatments is the number of tumor cells after
the application of the treatment. The process is repeated until a predefined
number of iterations is reached. SA attempts to improve on the initial so-
lution by iteratively examining candidate points in the neighborhood of the
solution. The temperature of the algorithm is reduced based on a cooling
schedule set by the user until a minimum temperature is reached. The energy
function used by SA in order to evaluate each candidate solution is set as the
final count of tumor cells, as in the case of the fitness function of GA.

Two scenarios regarding the initial state of the optimization methods are
available. In the first scenario, the initial state is random, while in the second
one, the initialization of the methods takes into consideration the results of
the first part of the workflow (seeded scenario). In the seeded scenario, part
of the population of the GA consists of treatments evaluated as the most
effective by the AL algorithm. In the case of SA, the initial solution is set
to be the treatment found to be the most effective by the first part of the
workflow. The incorporation of the results of the AL part into the initial state
of the optimization methods guarantees that the initial solutions consist of
treatments considered as viable, and thus leads to a more focused search for
the most promising treatments.

The aim of this part of the workflow is twofold. Firstly, it aims at the
discovery of the most promising treatment. Secondly, it acts as a valida-
tion check for the results of the AL part. The treatment found to be most
promising by the optimization part of the workflow should lie inside the re-
gions found to contain promising treatments by the AL part of the workflow.

99



Chapter 5
Empirical Analysis

Our code implementation can be found in an online repository[] along with
instructions on how to reproduce the experiments presented in this section.
The scikit-learn Python library P| was used for the clustering methods and
the DEAP Python library was used for the Genetic Algorithm | All experi-
ments were performed using the Mare Nostrum 4 (MN4) HPC infrastructure
provided by the Barcelona Supercomputing CentreE] First, we present the
results of the first phase of our workflow. In particular, we examine the per-
formance of different versions of the AL algorithm. The versions of the AL
algorithm use different clustering algorithms for the sampling process of the
AL part of the workflow. Furthermore, we evaluate the effectiveness of the
optimal treatments discovered by the second phase of the workflow. To be
exact, we compare the performance of the GA against the SA in the dis-
covery of the most promising treatment configurations. The hyperparameter
configuration chosen for each method in both parts of the workflow was ob-
tained after performing smaller scale experimental runs and monitoring the
performance of the different configurations.

5.1 Evaluation of treatment parameter space
characterization

For each experiment conducted, the AL algorithm of the workflow was run
for 20 iterations. We examine the performance of our various versions of the
AL algorithm of the first phase of our workflow. The versions of the AL

"https://github.com/xarakas/spheroid-tnf-v2-emews
2nttps://github.com/scikit-learn/scikit-learn
3https://github.com/DEAP/deap
“https://www.bsc.es/marenostrum/marenostrum
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algorithm under examination apply different clustering algorithms for the
sampling process of the first phase. In the original workflow, K-Means clus-
tering was applied in the step of the sampling process. To obtain a baseline,
we examine the application of K-Means variants with k& equal to 20 and 50
in the sampling step of the AL algorithm. We refer to the aforementioned
configurations as KMEANS 20 and KMEANS 50, respectively. Moreover,
we examine a version of the first part of the workflow in which a K-Means
clustering with &k equal to 500, referred to as KMEANS 500, was applied
in the sampling of the uncertain points, in order to obtain a reference of
an exhaustive application of KMEANS clustering in the sampling process
of our workflow. For the evaluation purposes, the parameters of DBSCAN
were configured with Eps = 0.025 and MinPts = 20 and the parameters of
BIRCH with branching factor B = 100 and distance threshold 7'= 0.1. An
exhaustive sweep search of the parameter space was conducted as a bench-
mark for comparing the performance of the first phase of the workflow. The
sweep search iteratively evaluates a grid of individuals that are uniformly dis-
tributed in the search space. The grid of the sweep search is predetermined
and contains a finite set of points, thus representing a discretised version
of the treatment configuration parameter space. The sweep search consists
a valuable benchmark in the evaluation of the performance of the different
methods. However, the discretization of the parameter space and the trade-
off between the required simulations and number of points evaluated (size of
the uniform grid) leads to points lying between consecutive individuals in the
uniform grid not being evaluated, and thus important areas therein might be
ignored.

In order to characterize a treatment as viable or not, we need to define
a metric that measures the effectiveness of each treatment. We define the
tumor cell survival rate of each treatment configuration as follows:

Final Tumor Cell Count

Initial Tumor Cell Count
i.e., as the ratio of the count of alive tumor cells after the application of
the treatment to the count of the initial alive tumor cells, for a simulation
duration of 24 hours. This metric reflects the number of the final alive cells
as a percentage of the alive cells before the application of the treatment. We
consider as viable the treatments that achieve a treatment effectiveness score
of less than 0.3.

To measure the performance of our workflow, we compare the quality of
the treatment space characterization achieved by the first phase of our work-
flow to the one achieved by the benchmark sweep search. In particular, the
graphical representation of the characterization of the treatment parameter

Tumor Cell Survival Rate =
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space achieved acts a qualitative measure of the performance of our workflow.
Moreover, we examine the number of uncertain points at the end of the AL
algorithm and the total simulations performed until the execution terminates.
Experiments using various random seeds were conducted for each examined
version of the AL algorithm, allowing us to simulate the randomness of the
process, while still being able to compare the methods in similar experimen-
tal conditions. For the initialization of the Random Forest classifier, 100
points were selected at random and evaluated. These points compose the
initial training set of the classifier. In each experimental seed, the initial set
of points is identical for each version of the workflow and their selection is
independent of the clustering method used in the sampling process of the AL
algorithm.

5.1.1 Characterization of treatment parameter space

25 00&200
7.4, 0 15 600 o
/«*0(/434]70 4;0 s ED‘O:;UYREQ&NC*
(a) Sweep Search (b) KMEANS 500 (¢) KMEANS 20

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure 5.1: Final characterization of the viable regions of the parameter
space. Subfigure (a) depicts the results of the sweep search of the parameter
space. Subfigures (b), (c), (d), (e), (f) illustrate the results of the first phase
of the workflow using different clustering algorithms in the sampling process
of the AL algorithm.
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Figure [5.1] provides a visual representation of the parameter space char-
acterization achieved by the first part of the workflow, using different clus-
tering algorithms in the sampling process of the AL algorithm. The results
presented in this figure were produced by conducting experiments initiated
with the same random seed for each scenario examined. The figure also
includes results from the uninformed sweep search, that predetermines a rel-
atively sparse number of points, and evaluates them exhaustively. The areas
shaded in blue and green represent regions that are considered to contain
viable treatments by the classifier of our method and the benchmark sweep
search, respectively, while the regions shaded in red are considered to contain
non-viable treatment configurations. We observe that in all examined cases,
our workflow succeeds in characterising the general region of the viable treat-
ments and identifying a viable region comparable to the one identified by the
benchmark sweep search. In particular, the versions of the workflow using
BIRCH, KMEANS 20, KMEANS 50 and KMEANS 500 in the sampling
process achieve a space characterization similar and comparable to the one
obtained by the benchmark sweep search. In particular, the versions of the
AL algorithm using the KMEANS 20 and KMEANS 50 clustering methods
in the sampling step “understand” in a good manner the overall borders of
the interesting region, but fail in the identification of viable treatments that
are not part of the main interesting region. In the cases in which our work-
flow uses the BIRCH and KMEANS 500 algorithms, the first part of the
workflow identifies an interesting region with finer details and smoother bor-
ders. The smoothness of the borders indicates the certainty of the classifier
regarding the boundaries of the region. On the contrary, the AL algorithm
using DBSCAN for the clustering of the uncertain points identifies a reduced
version of the interesting region, failing to capture the details of the edges of
the area that includes the viable treatments.

5.1.2 Number of uncertain Points

As already noted, the set of the most uncertain points in each iteration of
the AL workflow defines the classification boundary of the classifier. Thus,
the number of uncertain points serves as a valuable indicator for monitoring
the performance of the first phase of the workflow, as it provides an estimate
of the certainty of the classifier regarding the characterization of the treat-
ment parameter space. Consider the set of all treatment configurations X,
the classes {0, 1} representing the non-viable and viable treatments, respec-
tively and Pr (7, x) the probability, assigned by the classifier, that a treatment
configuration x belongs to class ¢. Then, the number of uncertain points is
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computed based on the following rule:
Ny = Hx € X | min(Pr(0,z), Pr(l,z)) > threshold}|

i.e. the number of points whose uncertainty is above a predefined threshold.
In our experiments, we set the uncertainty threshold to be equal to 0.4. The
number of uncertain points is measured at the beginning of each iteration.
In this way, we measure the effect of the evaluation of the points selected
after the sampling process on the quality of the space characterization. The
clustering method used in the second part of the sampling process aims at
the selection of the most representative points in the set Ny and, thus, in the
reduction of the required simulations, as mentioned in Section £.2.1] These
points are the most informative ones and their evaluation leads to a better
classification of a wide region around them. A large number of uncertain
points at the end of an experiment reveals a weaker performance of the AL
algorithm, as it signals the existence of large ambiguous regions that cannot
be classified with relative certainty as viable or non-viable.
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Figure 5.2: Number of uncertain points per iteration.

Figure [5.2] depicts the number of uncertain points per iteration of the
AL algorithm. The results suggest that, the versions of the first phase of
the workflow that applied BIRCH and KMEANS 500 in the sampling pro-
cess achieve the lowest number of uncertain points in our experiments. Fur-
thermore, we note that the performance of both versions is stable across
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the different experimental runs without any large variations as iterations
progress. Moreover, the versions using the DBSCAN and KMEANS 20 in
the second stage of the sampling process converge to similar numbers of un-
certain points within the experimental time frame, while the version using the
KMEANS 50 method exhibits the “median” performance of the examined
versions of the AL algorithm. It is worth noting that the number of uncer-
tain points is reduced relatively more in the early iterations of the algorithm,
while it stabilizes at the later iterations.

(a) Sweep Search (b) Initial Characteriza- (c) Second Iteration
tion

(d) Tenth Iteration  (e) Last Characteriza-
tion

Figure 5.3: Characterization of the viable regions of the parameter space
throughout the experimental run. Subfigure (a) depicts the results of the
sweep search of the parameter space. Subfigure (b) demonstrates the ini-
tial parameter space characterization. Subfigures (c), (d), (e) illustrate the
characterization in the first, second and tenth iteration of the algorithm,
respectively. Subfigure (f) represents the final parameter space characteriza-
tion.

Figure illustrates an example of the characterization of the parameter
space in various stages of the AL part using the BIRCH clustering algorithm
in the sampling process and provides a general picture of the aforementioned
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observation. The areas shaded in blue and green represent regions that are
considered to contain viable treatment configurations by the classifier of our
method and the benchmark sweep search, respectively. The regions of the
treatment parameter space shaded in red are considered to contain non-viable
treatments. As can be clearly seen from Figure [5.3b] the considered viable
region at the initial stage of the algorithm is a reduced version of the area
considered as promising by the sweep search benchmark. In particular, a
great part of the area considered as viable by the benchmark is classified as
non-viable. In the initial iteration, the classifier solidifies the area considered
as viable, i.e. the uncertainty regarding various parts of the reduced viable
region is decreased. In the second iteration, the classifier captures a good
image of the viable region. In these stages, the classifier re-considers the
limits of the viable region as illustrated in Figure[5.3¢] Hence, the subsequent
iterations allow the classifier to determine the details of the viable region, as
seen in Figure[5.3dl In particular, the classifier has determined, in this stage,
in great detail the boundaries of the viable region. Comparing the results of
the tenth and the last iteration, we observe that only fine details regarding
the shape of the area containing promising treatments are determined in
the last iterations. These results agree with our conclusion regarding the
number of uncertain points presented above, as the classifier determines the
overall shape and position of the viable region in the initial stages of the
algorithm and more refined details in the later stages. Thus, the uncertainty
regarding the parameter space characterization is reduced drastically in the
initial iterations, followed by a moderate reduction in the uncertainty points
as the classifier refines its consideration regarding the viable region.

As can be clearly seen in Figure [5.2] the number of uncertain points is
not reduced to zero in all examined scenarios. The existence of uncertain
points is due to the stochasticity of the biological models used in order to
simulate the behaviour of the human cells. Hence, the observed effective-
ness of a treatment may vary slightly from simulation to simulation. This
may lead to a point considered always as uncertain, if it represents a treat-
ment configuration whose effectiveness is in the neighborhood of the viable
treatment effectiveness threshold.

5.1.3 Number of total simulations

As we stressed earlier, PhysiBoSSv2 simulations used to estimate the effec-
tiveness of tumor treatments are time-consuming and require multiple CPUs
for their execution. The resource-effectiveness of the examined workflow is
analyzed via the total number of simulations performed. This number can
also be considered a good indicator of the time performance of our approach.
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Figure 5.4: Total simulations performed by each version of the method (y-
axis in log-scale).

Results are depicted in Figure 5.4l In our experiments, the initial training
set of the Random Forest Classifier consisted of 100 random treatments and
their effectiveness evaluations. We observe that although the version of the
AL algorithm using BIRCH in the sampling process yields comparable results
to the version using KMEANS 500 with respect to the quality of the treat-
ment space characterization and the minimization of the number of uncertain
points, it requires significantly less simulations. In particular, the latter ver-
sion required 10,100 simulations, while the former required only 1,082 on
average, yielding approximately a 90% decrease. It is worth noting that the
version of our workflow using DBSCAN required the fewest simulations from
the examined versions, however the number of simulations required is not
stable enough across experiment repetitions. In particular, it required only
323 simulations, while the versions using KMEANS 50 and KMEANS 20
required 1,100 and 500 runs, respectively.

Figure [5.5| presents the number of simulations performed in each iteration
of the AL algorithm. In each iteration, a point from each resulting cluster of
the uncertain points is selected, and simulations are conducted for all selected
points. Hence, the number of simulations required in each iteration is equal to
the number of clusters identified in the second stage of the sampling process
of the AL algorithm.

Although the versions applying KMEANS 50 and BIRCH in the sam-
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Figure 5.5: Simulations performed per iteration (y-axis in log-scale).

pling process identify a similar number of clusters per iteration as seen in
Figure [5.5] their performance differs substantially as illustrated in subsec-
tions [5.1.1] and [5.1.2 An explanation to this is that the incorporation of
outlying points into the clusters of the uncertain points degrades the results
of the clustering process using KMEANS 50, leading to the identification
of distorted clusters for the candidate points. On the contrary, the BIRCH
clustering algorithm identifies outlying points and isolates them into smaller
sub-clusters, thus managing to identify clusters that consist either of informa-
tive points that play an important role in the definition of the classification
boundary, or of outlying points. The separation of the outlying points allow
the retrieval of information from both types of points.

Also, we observe an increased volatility in the number of the clusters
identified by DBSCAN, which reveals the high sensitivity of the method
to its hyperparameters and the density of the distribution of the candidate
points. In particular, we observe from both Figures [5.4] [5.5] that the version
of the AL algorithm applying DBSCAN requires the fewest simulations in the
majority of the conducted experiments. This is due to the distribution of the
uncertain points. In most cases, the uncertain points lie on the border of the
region considered as viable from the classifier at each stage of the algorithm.

As mentioned in Section DBSCAN performs poorly in flat geome-
tries such the one depicted in Figure [5.6] which illustrates an example of the
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Figure 5.6: Example of uncertain points clustering by DBSCAN. Subfigure
(a) depicts the set of uncertain points, while Subfigure (b) illustrates the
result of the clustering.

clustering of the uncertain points during an iteration of the algorithm. As
can been seen, the uncertain points define a flat area, which is not divided in
regions of high and low densities. Thus, DBSCAN fails to identify multiple
clusters and identifies only big clusters and some small ones. Although this
may lead to fewer simulations, the informative value of the selected points
is plummeted, as they are representatives of bigger clusters, with lower sim-
ilarity between their members.

5.2 Evaluation of optimal treatment discovery

As presented in Section [£.2.2] our workflow uses a GA in order to discover
the most promising treatment configuration. For the experimental purposes,
the GA was configured to run for 30 generations, with a population of 50 in-
dividuals, a tournament selection with tournament size equal to 3, a uniform
crossover with crossover probability 0.75 and a mutation probability 0.5. The
alternative method examined, SA, was configured with 7,=100, T,,;,=15 and
N=10. A geometrical cooling schedule with a cooling factor equal to a = 0.8
was applied, in which at each temperature level i the new temperature T; is
calculated as: T; = a’ - T,. We examine the scenario in which both methods
are initialized using information from the active learning part of the work-
flow. The initial population of the GA consists of 12 individuals (25% of
the total population that the GA evaluates) found to be the most promising
by the active learning, as well as of 38 random treatments (75% of the GA
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population). The initial point of the SA is set to be the most promising one
discovered by the AL. The incorporation of the findings of the first phase of
our workflow to the initialization step of the optimization methods allows us
to perform a more focused search for the optimal treatments. In our experi-
ments, we examine the initialization of both methods using information from
the first part of the workflow using the BIRCH, DBSCAN, KMEANS 20
and KMEANS 500 in the clustering step of the sampling process. In this
way, we also examine the effect of the quality of the space characterization
achieved by the first phase on the discovery of the optimal treatment.

Tables [5.1] present the results of the Genetic Algorithm and Simu-
lated Annealing, respectively, for the various examined clustering methods.
We observe that in all cases the GA discovers a more effective treatment
than the one discovered by SA. However, the effectiveness of the treatments
discovered by both methods presents no big difference. Moreover, we observe
that the treatments discovered by GA in the various scenarios yield a similar
effectiveness. However, SA discovers a noticeable more effective treatment
in the scenario in which the initial point is the treatment found to be most
effective by the version of the AL algorithm using KMEANS 500 in the sam-
pling process. Since SA focuses on the improvement of only one candidate
solution, the initial state plays an important role in the performance of the
method. The exhaustive approach of the AL algorithm using KMEANS 500
leads to a high number of simulated treatments, thus results to a bigger pool
of candidate treatments for the initial solution. It is also worth noting that
the most effective treatment is discovered by the GA in the scenario in which
the initial population is generated based on the results of the first phase in
which the DBSCAN algorithm was used for the clustering of the uncertain
points. Although this version of the first phase of our workflow results to
the identification of a reduced version of the viable region, as presented in
the previous section, the selection of the treatments found to be the most
effective by the AL workflow using the DBSCAN clustering method leads
to the discovery of the most effective treatment by the GA. Moreover, the
optimization part in this scenario yields results of similar (better) quality to
the other versions of the first phase of our method that led to a more fined
detailed characterization. Thus, we can conclude that the core part of the
viable region discovered by the version of the AL part using DBSCAN con-
tains some of the most effective treatments, which are a good starting point
for the optimization part.

Although GA yields better results, the treatment discovery by GA re-
quired noticeably more resources than SA, as presented in Tables [5.1] and
In particular, the second phase of the workflow using SA for the dis-
covery of the optimal treatment required noticeably less simulations in all
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scenarios compared to the version applying GA. The maintenance of only
one candidate solution makes SA less demanding in regards to the number
of required simulations, in comparison to the examination of a pool of 50
candidate treatments in each generation by the GA.

Table 5.1: Optimized drug treatment configuration exploration results for
the Genetic Algorithm.

Method Tumor Cell  Number of Simulations Total number of Simulations
Survival Rate  for the optimization of the optimal treatment
phase discovery
BIRCH 0.166 811 1853
DBSCAN 0.164 810 1007
KMEANS 20 0.166 742 1242
KMEANS 50 0.174 814 1914
KMEANS 500 0.169 661 10761

Table 5.2: Optimized drug treatment configuration exploration results for
the Simulated Annealing method.

Method Tumor Cell ~ Number of Simulations Total number of Simulations
Survival Rate  for the optimization of the optimal treatment
phase discovery

BIRCH 0.196 91 1133

DBSCAN 0.209 91 288

KMEANS 20 0.209 91 591

KMEANS 50 0.183 91 1191

KMEANS 500 0.177 91 10191

As stressed in Section [4.2] the optimization part of the workflow may also
act as a validation tool for the characterization of the treatment parameter
space. As seen in Figure [5.7 the treatments found to be the most effective
by both optimization methods lie either on the borders or inside the regions
considered to contain viable treatments by the Random Forest classifier in
each examined scenario. These results, allow us to validate in another way
the results of the first phase of our workflow. Hence, we observe, as already
stated in Section that all versions of the AL algorithm of the first phase
of our workflow lead to good results regarding the overall boundaries of the
viable regions of the treatment parameter space.
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Figure 5.7: Visual representation of the results of the optimization methods
for the various examined clustering methods. Treatments marked with ‘x’
and ‘+’ represent the optimal treatments found by GA and SA, respectively.
The area shaded blue represents the area characterized as interesting by the
version of the first phase of the workflow under examination.
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Chapter 6

Summary & Future Directions

6.1 Summary

Multi-scale simulations provide a valuable tool to researchers for various fields
and applications, including the discovery of promising tumor treatments. We
applied a multi-scale simulator in order to characterize the treatment con-
figuration space and identify the most effective treatments using an active
learning approach. In particular, we extended the workflow presented by
Ozik et.al [3], allowing users to select between various combinations of clus-
tering and optimization algorithms for their experiments, and applied the
workflow in a different experimental setting. In our approach, we incor-
porated a new simulation model imitating the application of the protein
called Tumor Necrosis Factor (TNF) in order to estimate the effect of tumor
treatments. Moreover, we examined the application of various well-known
clustering algorithms in the sampling process of the parameter space char-
acterization algorithm, as well as the application of the Genetic Algorithm
and Simulated Annealing optimization methods in the discovery of promising
drug treatment configurations aiming at the achievement of high quality re-
sults and the reduction of required simulations. Simulation trials conducted
in an HPC environment show that our workflow achieves a fine parameter
space characterization comparable to the one performed by the benchmark
sweep search. Moreover, the versions of the first phase of the workflow using
BIRCH and KMEANS 500 in the sampling process lead to the least un-
certain points and identify the region of viable treatments with the highest
certainty and detail. On the other hand, the version of the AL algorithm ap-
plying KMEANS 20 for the clustering of the uncertain points requires fewer
simulations and achieves a fine characterization of the parameter space with
less detail and higher uncertainty. Moreover, the application of the GA leads
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to the discovery of slightly more effective treatments than SA. However, GA
requires substantially more resources and simulations than SA. Thus, the
experimental results indicate that a trade-off between the required resources
and the quality of the results is evident in both parts of the workflow.

6.2 Future Directions

In future work, the examination of additional classification algorithms in
the active learning workflow, such as the Gradient Boosting Trees [67, 68|
might lead to a more detailed characterization of the treatment parameter
space, as compared to the characterization achieved using the Random For-
est classifier. Moreover, future studies could investigate the performance of
different optimization methods, such as Bayesian Optimization [69] [70] or
Particle Swarm Optimization [71], [72]. Furthermore, the workflow can also
be extended to explore the synergistic effects of multiple drugs administra-
tion [14], [73] in even more complex simulations. Lastly, forecasting techniques
can be applied for the early termination of simulation instances that cannot
be used to extract useful information.
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Appendix A

Experimental results of the
parameter space characterization

In this section we present the results of the various experiments conducted
using different random seeds. The initial training dataset of the Random
Forest classifier for each experimental seed was the same for each examined
clustering method.
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A.1 Experimental Seed 1
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Figure A.1: Initial characterization of treatment parameter space (Experi-
mental Seed 1).

(a) Sweep Search

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure A.2: Final characterization of the viable regions of the parameter
space (Experimental Seed 1)
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A.2 Experimental Seed 2
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Figure A.3: Initial characterization of treatment parameter space (Experi-
mental Seed 2).

(a) Sweep Search

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure A.4: Final characterization of the viable regions of the parameter
space (Experimental Seed 2)
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A.3 Experimental Seed 3
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Figure A.5: Initial characterization of treatment parameter space (Experi-
mental Seed 3).

(a) Sweep Search

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure A.6: Final characterization of the viable regions of the parameter
space (Experimental Seed 3)
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A.4 Experimental Seed 4
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Figure A.7: Initial characterization of treatment parameter space (Experi-
mental Seed 4).

(a) Sweep Search

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure A.8: Final characterization of the viable regions of the parameter
space (Experimental Seed 4)
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A.5 Experimental Seed 5
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Figure A.9: Initial characterization of treatment parameter space (Experi-
mental Seed 5).

(a) Sweep Search

(d) KMEANS_ 50 (e) DBSCAN (f) BIRCH

Figure A.10: Final characterization of the viable regions of the parameter
space (Experimental Seed 5)
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