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ITepiindm

O Auwyowplopde Pwvnuxeyv (Singing Voice Separation - SVS) eivou évor onpovtixd npdBinuo otny
Axpboon Tohoylo eV 10 onolo gpeuvdton €vtova e8¢ xou Tdpa TOANG Yeovia. To mpdBinua uropel va
TEQLYPAUPEL WS 1) AVTOUITY] ATOUOVKOT] TOU YWVITIX0) UEEOUS amd €Val BEBOUEVO HoVOIXO PElyYUa, yopic
TEOTEPY YVOOY OTIC WIOTNTES TwV ONudTwy Tou To anaptiCouv. Ilpdogata, €yel undpiel wa adénon
TOGO GTNY TOGOTNTU OGO oL GTNY TOLOTNTO TWV TEYVIXWY TIOU EXTEAOUV TOV Loy WELOUO GTO TESO TwV
XUUOTOUORPOY, UE XATOLL LOVTEA VO TETUYAVOUY TOAD XUAd OmMOTEAECUOTA. Y€ AUTAV TNV Epyocia
TelpopaTilOPac T Ue 500 amd T Xoh0TERES Borthéc Py ITEXTOVIXEC GTO TESIO TWV XUUATOUORPOY, YOO
pomolvTog To cUvoho dedopévwy MUSDBI18. Yto npwto pépoc enavuronoioaue to Wave-U-Net, wa
Bordid apyttexToviny xwdixomointi-omoxwdixorointy| Ye skip cuvdéoeig, pall Ue UepEG EMEXTATELS TTOU
elyav mpotadel and dhhec epyaoieg. X1n CUVEYELN, TEAYUATOTOMACHUE UL CUYXEVTPOTIXY EQEUVAL OF
OlopopeTIXéC EXBOYEC TOU UOVTEAOU, EAEYYOVTAC TIC EMEXTACELC UEUOVOUEVA 1) cuvBLaloueveS UeTaZ)
ToUg, TEOXEWEVOL va eAeyyUel 1 entldpact] Toug oty entldoon Tou wovtélou. XT0 BedTERO PEPOC TELOOUO-
Tiotixope pe to Conv-TasNet, pio opyttextovinn mou petaoynuotilel TRV xuaTopop@n €L6680L GE Evay
AovEvoVTOL YWEO, XATAAANAO YLoL TOV OLOYWELOUO, XATACKEVALEL o EQUPUOCEL Uiol TOMNAATAAGLAC TLXY
udoxa yioo xdde TNy xou €neita petaoynuatilel To ofua mow c6To medlo Tou Yedvou, TEoTElvovTIg
TohhamAES, VEeg emextdoels. Ta apyixd, diepeuvnTind melpduota EGe1Eay OTL Yol TOREAANAT, TOALLWVIXY
TEY VXY Tou Ywpllel To xwdxononuévo orjua o {wveg Tou Aavddvovta yweou xi énelta enelepydle-
ton xdde Lwvn EexwploTd, YeNOoULOTOWVTAS TOAATAOUS BlaywElo TES, UTOPEL Vo EVOL EUERYETIXY| OTO
povtélo, agol mopéyel wor afloonuelwtn adinon tng enidoorc tou. ¢ amoTéheoud, OTN CUVEYELW
TEOYWENCUUE GE WLa ¢ Bdog avdALeT TNG TEYVIXNC, OE OYEDT UE TNV EQUPUOCIOTNTA X0 TNV XAlL-
poxoootTd g, To amoteléopata €6etlav OTL 1 TEOTEWOUEVT UEV0BOEC ETUTUYYAVEL AVTUY WV TIX
AmOTENEGHUATA, UELOTIOUDVTAG TOL DL WELCTXE YopoXTNELoTixd Tne xdde {wvne xou mopdyovtog eEel-
OIXEVPEVOUS DL WPICTES, EVEM OLATNEEL TOV oELiUd TV EXTOUOEVOVUEVWY TORUUETEMOY GTaleRd. YTO
TehevTalo pépog NG epyaciog GUVOLALOUNE TNV TEOTEWOUEVT TOALLWVIXY| EMEXTACT, UE 000 Blapope-
TIX0UC XWOXOTONTES oL EYOLY TEOTAVEL GE GANES EQEUVES: EVaY EXTIUOEVGULO TOU GUVOUALEL YoooX-
TNELOTIXG TTOU TEOEPYOVTOL TOCO ONO XUUNTOUORPESC OGO XOL OTO TO YPOVO-CUYVOTIXO Tedlo xi Evay
oTtolepd MOV UOVTIEAOTOIEL TO AXOUGTIXO GUCTNUA TOU avip®dTou YeNoWOoTolomOVToS Uia gammatone
cuatotylo pihtewy. Ilopdro mou Tal ATOTEAEGUATA Yol TOV TEWTO XWAXOTOINTY OV E0EIE0Y VoL UTAOYEL
xdmota Bertivon, Yl Tov delTERO, Tar amoteAéopota delyvouy 6Tl uTdpyel adEnon Tng enidoong 6Tay o
TOALWVIXOG BlaywELoUOC GUVBLALETOL PE €var Ypauixd entinedo yio emhoy T LoV,

Keywords — Awywpetopoc Inyov, Awyopiopdc Pwvntixey, Conv-TasNet, Wave-U-Net, Xuve-
Axtixd Nevpwvixd Aixtua
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Abstract

Singing Voice Separation (SVS) is an important task of Computer Audition, that has been stud-
ied intensively for many years. The problem can be described as the automatic isolation of the
vocal component from a given musical mixture, without prior knowledge on the properties of the
participating signals. Recently, there has been an increase in both the quantity and quality of SVS
techniques in the waveform domain, with some models achieving state-of-the-art results. In this the-
sis we experiment with two of the top performing deep architectures in the waveform domain, using
the MUSDBI18 dataset. In the first part we reimplement Wave-U-Net, a deep autoencoder architec-
ture with skip connections, along with several modifications, already proposed by other studies. We
then perform an ablation study on different model configurations, by enabling individual or multiple
modifications each time, in order to examine their effect on the model’s performance. In the second
part we experiment with Conv-TasNet, an architecture that transforms the waveform input to a
latent space, suitable for separation, constructs and applies a multiplicative mask for each source
and then transforms the signal back to the time domain, proposing multiple novel modifications.
Preliminary, exploratory experiments indicated that a parallel multi-band separation technique that
splits the encoded signal in latent space bands and then processes each band individually, using
multiple separators, could be beneficial to the model, as it provided a significant performance boost.
As a result, we subsequently proceeded with an in-depth analysis of it, regarding its efficacy and
scalability. The results show that the proposed method achieves competitive performance by taking
advantage of the discriminative characteristics of each band and generating specialised separators,
while keeping the amount of trainable parameters the same. In the last part of the thesis, we com-
bine the proposed multi-band modification with two different encoders proposed in other studies, a
trainable one that combines features derived from both waveform and time-frequency domains and
a fixed one that models the human auditory system using a gammatone filterbank. Although the
results for the former encoder do not display some kind of improvement, the results for the latter
point towards performance improvements, with the assistance of a linear layer for band selection.

Keywords — Source Separation, Singing Voice Separation, Conv-TasNet, Wave-U-Net, Convo-
lutional Neural Networks
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Euyaplotieg

XNy mopoloo SITAOUTIXY EQYACI0 CUYXEVTPMVETOL X0l TOROUGIALETAL 1 EQEUVA TTOU TEAYHATOTOMON
oto Epyactiplo ‘Opacng Troroyiotohv, Emxowveviog Adyou xaw Enelepyacioc Yruatog tov tekeutaio
evduion yeovo. Toautdypova, ue Tny cpyacio auTh OAOXANEOVETAL Xl 1) @oltnor wou ot Lyohr) Hhex-
TEOAOY WV Mnyavixdv xou Mryoavixev Troloyiotomv, éva eCoetég Tagidl mou av xat TEpLAIUPove apxeT
TleoT), xoVpaon o AYYOC, UE OVTOUELPE UE XAVOURYLES YVOOELS X0l TOAES EUY QIO TES EUNELPES TTOL
Yo ue ouvodeouv otr peténerta (oY) pov. Me tnv agopun mou you divetor, Ya Heha va euyoplc TRoW:

Tov Kodnyntn x. IIétpo Mopayxd yio tn didooxahior Twv tplwy podnudtoy onudtwy (Unelmn Encg-
epyaoia Xuatog, Opoaon Trohoyiotwy, Avayvopton Ipotinwy) mou énouoy xadopotind pdbho otny
AVATTUEN TV EVOLUPEROVTOV UOU X0l OTNV OTOPAGT|, VO AGYOANID UE TO GUYXEXPUEVO aVTIXEUEVO,
%) ®G %o YLor TNV €LxtElol TOU YOL EBWGCE VoL EXTOVHOW T1) DITAWUATIXY OV EQYACIN OTO €pYUCTHELO
Tou.

Tov dwaxtopixd goitntr Xpnoto Iapolyn, yia Ty moAd xahy| cuvepyosia Tou elyoue OAN aUTHY TNV
nepiodo. H xododhynon, ot cuufoukéc, ol mpotdoelc xat ot dlopdwoelc Tou oy TOAITWES TOGO GTNY
OLEXTEPAULWOT TNG EEEUVIC X0 OTN) DLORPWOT) TNE ERYACING OGO XL GTNV AVTLIETOTLOT] TV OTOLWY
TEOBANUATOY, ATOELKY 1| EUTOBIKY ONULOUEYOUVTAY.

Toug yovelc pou, yio TNy auéptotn oTARIEN TOU UOU TEOGPEEOLY, OAI AUTE TO YEOVIA, TNV ABEAPT] ol
CLYXATOWO UOU oL elval GTadepd BiAd LoV, OTIC EUYTPIOTES X OUCUPECTES GTLIYUES UOU, TNV XOTENA
HOU YLt TNV UTOGTHELET] XAl OUCLACTIXY XATAVONOT) TTOU Uou EBELEE xaL Toug piloug pou, xau ewdxd «To
[opadooioaxd», yio T aETENTES ACEYAOTES EUTELRIEC TTOU UOLOUGTYXOYE.

[Momavtwvdxne ovoryiotng
Noéuferoc 2021
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Chapter 1. Extetapévn neptindm

1.1 Ewcaywyn

1.1.1 Opopog IlpoBApatog

O Awyopropodc Hnyov oplleton vq 1 dtadacion amociveecsne TV GNUATKOY TOY TNYOY TOU GUVLGTOVY
€vo OEDOUEVO UElYUA ONUATOY, HE OXOTO TNV aPAlpEsT) aveTIUUNTWY TUPEUPOA®MY amd XATOLO Grud
EVOLUPEPOVTOC 1| TNV AMOUOVWOT| TWV ETUEEOUS TNY®Y ONUdTeVY Yo Ttepautépw enelepyaot.

Avuth| ) epyooia aoyoleiton Ye war B TERITTWON TOU Bl WEICUOV TINYWV NYNTXOV CNUATWY, CUY-
XEXPWEVA TOU Alaywetopol PovnTxdy, otny ontola To NyNTx6 Yelypa etvor Eva Tporyoldl. X tdyog Tou
TEOBAUATOC Elvar, BEBOUEVOL TOU UEYHATOS X Ywelc dAAES TANpoopRies Yo TIC TNYES, OTWS 0 TOTOG
NG LOUCIXAC, O 0EtIUOS TOV TEAYOUBLE TV X.4., Vo emTeLY Vel Loy wplonds Tou PwvnTXo) u€poug amd
TO OPYNOTEXO, TOL ATOTEAEITOL OO EVOL GUVOUAOUO OUGIXWY ORYAVWYV.

To npdPAnua tou Aloywelopold PwvnTixwy cuVodeleTol and YEPKES TEOXAACELS TOU BUGXOAELOUY TN
AOoT Tou and €vay utohoylo . Hpwtov, Adyw Tne TepdoTiog Towhouop@lag TS Louoxrg, lvon TOAD
0UO%ONO €wg aBLVATO O BlaywEloUOS Vo Tpaypatonoiel ue Teyvixée mou otneilovton o€ éva GUvolo
AAVOVWY, OTKS CUUPUEVEL GE TROBARUATA YROUUATIXWY Yol GUVTAXTXOU YAWOGKOY. AeUTEQOY, GTO CLY-
XEXPWEVO TEOPBANUA TO Ny NTxod pelypa ebvar elte povoPmvixd, Tou onuaivel OTL €xel HOVO Eval XavahL
AYOU, 1 TOAVPWVIXO, YWElC OUWS Vo UTEEYEL TANEOQORIa VIOl TA IXEOPWVI TTOU YENOWOTOW UMV,
Emopévee, dev undeyouv Ta amouToUEVY GTOLYER Yot TOV YWEIXO EVIOTIOUSO TV TNY®Y, ATOXAElOV-
TAG TN QUVATOTNTO EQPUPUOYNG TEYVIXWY Ywexol @iktpopioyatog, onwe to "beamforming". Tpeltov,
oTN Houor) To Tyola ofjdota etvor TOAD cucyeTIoUEVA. §1¢ amOTEAECUA, BEV UTHEYEL Eval amAd, o&-
LOTUOTO YUPUXTNELOTIXG, OTWE 1) CLUYVOTNHTA 1 TO TAJTOS TOU CHUATOS TOU UTopel var yenowonowndel
¢ Bl wEIo TG GTOoLYElD, YLoL TNV amocVUVEEST TV TNYalwy onudteny. Kdtl tétolo dev woylel yio wia
Tandopea TpolAnudtwy anodopufonoinong onudtwy, ota ool o Y6puBoc uropel vo povtehoroiniel pe
Bdion BLdpopa CTATICTHY YAPAXTNELG TIXA, BIVOVTUS TN BUVATOTNTA YENONG OLAPOPWY TEYVIXWY ATO TNV
Unouaxy) Enegepyacio LApatog (VEY).

1.1.2 3toyot xou LUVELCPORES AVTNS TN ALTAOUATIXNGC

e auth TN SImAwpaTIX epyacior TEoYUOTOTOLEITOL Uiot EVOEAEY S EPELVA GTIC UTIEPY OUGES TEYVIXES OTOV
TOUEN TOU BLOY WELOUOU PWVNTIXAOY, ECTIALOVTOS 0TI VeOTERES TeyVxég Tou Paoilovton ot Porthd veup-
oVxd dixtua. Ot cuvelopopés Tne Bimhwpatixig ywellovton oe dlo pépr, avtioTolya ue TNy exdoToTe
Baowr apyitextovxr: ‘Ocov agopd otny mentn, To Wave-U-Net,

o Thomoulnxoy BLdpopes UTHPYOVCES TPOTOTIOLACELS X0l EEETACTNXE TO XOTA TOCO AUTEC CUVERY S
Covtou xau 1 enidpoct| Toug oty entdoon Tou Yoviélou.

Yyeuxd ye tn 6evtepn, to Conv-TasNet,

o Thomouinxe xan exmoudelTne Uio exdoyr| Tou Conv-TasNet, plog apyttextoviny|c Tou neTuyaivel
et TOAD XAAG ATOTEAEOUATA OTO TREOBANU TOU BLALYWELOUOU UOUGIXWY TYOV.

o Ilpotddnxav Bidpopec xavoUEYLES EMEXTACELS OTO LOVTENO, EOTIALOVTAS O Lol TOALLWVIXT) EMEX-
Taon, n omolo Ywellet Ty Aavidvouca avamapdoTaor o ouddec xou emelepydletar TNV xde
OUGDA YWELOTE, YENOULOTOLWVTAS TOAAOUS Blaty WELo TEC.

o E&etdotnxe xotd TOGOV 1) TEOTELVOUEVT) TEY VXY XALUAXWVEL, YPTNOULOTOWMVTIC OLUPORETIXO aptdud
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1.2. Wave-U-Net

OUABWY %ot BLO BLAPOPETIXES EXDOYES TNG TEYVIXTAC.

® JUVOUAOTNXE 1) TEOTEWVOUEVY TEYVIXY UE EVAY XOADTEPO XWOXOTONTY XoU WL TEOXAIOPLOUEVT
ouatolylo piktewy yior vo eheyydel xatd mécov 1 TeyVIxn umopel vou yevixeuTel oe dAAES apYLTEX-
TOVIXEC.

1.2 Wave-U-Net

Ye authv v evétnra o) Ya napouctactel to Wave-U-Net, éva vevpwvixd dixtuo mou mpotdidnxe
oto [61] we wo Aon v to TedBinua Tou dtaywptopol pouctxic xou B) Ya eZetactodv 1 Aettoupyia
XL 1) OLICUVOECLUOTNTO XATOLWY ETEXTUCEWY NG PACIXNC OPYLTEXTOVIXTC TOU TEOTAUMXAY ond Tig
epyooiec [44] xou [29]. O otdyol poc oyetxd Ye auth TNV oEyLTeXToViXf fitay xuplwe 1 eZoxelwon
UE TO TEOBANUA, To Yenoylomololueva epyaelo, Tig puUULoELS UTEPTUPUUETEMY %ol 1) BIEXTERALKOT ULog
€PELVAC ATV OTIC UTERYOUCES ETMEXTAUCELS TNG, OVTL TNG ELCAY WYY TEOTOTUTKY BEATIOCEWY GE AUTHYV.

1.2.1 Baown Apylttextovixy

To Wave-U-Net [61] eivar éva ovtélo tou enelepydleton nyntind ofjpote oto Tedio tou ypdvou. Autd
onuolvel OTL, ap’eEvog, TO LOVTEAO XAveL Wia aneLlelog exTUnon Twy SELYRATLY TwV TNYnY oNUdTeY
avti vo eopuolet yio pdoxa otny €lcodo 1 oe Pt AvIdvouso ovamoedc TooT Xol 0P ETEQOU, OL Aotv-
YEVOUOES OVAUTURUC TUGELS KO OL YHPTES YURUXTNELO TIXWY, TopdAo Tou Umopel va ebvar Tohuxavalxol,
elvon povodidototol xan vploTavton encéepyasio and 1A eninedoa.

To Wave-U-Net axohoulel pia apyttextovixt autoxwdixonomnts (autoencoder), anoteholpevn ond ta
e&nc Téooepa Uépn:

e ‘Eva povordtt xwodixomoinong 1 unodelyyatoAndlag, To onolo Talpvel To apyixd Ghud ooy (G000
xai To emegepydleTon xoT ETAVAANY, pewdVovTaS Tor Selypatd Tou, uéypet va mopayOel piar Tuxvi
hotvddvouoa avamopdoTaoT).

e To onpeio oupgpdenone (bottleneck), oto onoio xar exteheitar ) drowa enelepyaoio enl Tne TUXVAC
AVATORAGTUOTC.

e ‘Evo povondti anoxmdonoinong 1| unepdetyyotohndlag, to onolo Aertoupyel avtideta and tov
XWOXOTONTY, oPol BEyeTal TNV EMEEEQYUOUEVT QVUTORACTACT ot T Enavahndn cuvbudlet
Yoo TNEIo TIXd amd TeonyoLueve enimedo xou augdver Tov aptiud TV BelyudTov uéypl Vo
amoxatac Tadel 1) AvVamAUPdoTACT) OTNV AEYIXT) TNG VAU

e ‘Eva eninedo e£66ou mou exteAel 10 emduuntd €070, BNAABT 0 BloyWELOUOS TV TYOV.

ITio avahutind, to Wave-U-Net €yel Bddoc L emnédwy, mou onuaivel 6t xdde €vo amd Tor wovomdria
xwdxonolnong xat anoxwdixonoinone tepthopfdver L umiox enelepyootac. Kdie éva umhox meptéyel
éva 1A ouvehxtind eninedo ue LeakyReLU evepyomoinon xou dwduacio enovaderypatodndiog. Mto
HOVOTIATL XwdIXoToNoNg T0 cUVEAXTIXG eninedo mponyeltal Tng uTodelypatoindiog, Eved oTo Yovomdtt
amoxwdwonoinong cuufaivel To avtideto: 1 eaywYN YAUXTNEIOTIXWY oxohoulel TNV UTEEDELYUOTOA-
ndla. To onuelo ocuupodenone xo 1o eninedo €660y anoteAcolvTo and Eva Hovadixd 1A GUVEMXTIXO
eninedo, ywelc vo euniéxeton daduxacto derypatorndioc xou ue LeakyReLU xou tanh evepyonowjoeic
avtioTouya.
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Source 1 output Source K-1 output

Mixture audio
t ¢

[
Mm ----- : | 1D Convolution, Size 1 |
; y

Crop and concat
................................. .’
A
‘ 1D Convolution, Size 15 | | 1D Convolution, Size 5 |
.................................................... .’
" Crop and concat
‘ Downsampling | | Upsampling |
Downsampling block 1 Upsampling block 1
Downsampling block2 ~ ----------mieiee- > Upsampling block 2
¢ Crop and concat ?
Downsampling block L~ -----------m-i-e- > Upsampling block L

Crop and concat

1D Convolution, Size 15

Syfua 1.2.1: Wave-U-Net pe K mnyéc, Béddoc L xar e tnv npoodixm a) emnédouv e€680u ye
UToAOYLOWO dlapopdc xat b) eyolbtepou Thatoiou eloddou [61].

To poviého déyeton xatoxespuatioéva uelypata onudtov M € [—1,1]Fm*C érnou Ly, eivos to prhxog
Tou Tuuatog ot delypata xou C' o apriude Twv xavolwy Hyou. To mewto block auvgdvel Tov aprduod
TV XUVOMOY and Tov apyxd C oe éva otadepd aprdud Fr. Ta umdloino cuvehxTxd eminedo Tou
HOVOTATIOY XwdixoTolnong, xodog xoL ToU ONUEOL GUUPOENONE AVEAVOLY TOV OELIUO TV XAVUALDY
xatd Fr., oToyebovtog oTny e€aymY T OAOEVO Xal TEPLGCOTERO TAOVUGLLY GE TANROPORIA YURUXTNEIGTIXDY
Yl Vo oynuaticouy xon vor ene€epyasToby TN TuxvY avamapdotao. Xto Paditepo onuelo, UETd TO
onueto oupgdenong, 1 Aavddvovoo avoropdotaot éyet (L + 1) - Fi xavého ouvolixd. To povondtt
umepdelypatohnlag dovkelel Ye Tov avTtiVeTo TEOTO- T GUVEAXTIXG ETITES UELDVOUY TOV dpliUd TKV
XAVOALOY ETOL WOTE AUTOC Vo Tonptdlel YE To avTloTOLyo UTAOX TOU WOVOTATION UTOdELypotohniog
xot oTadlod va anoxodiotatal 0 aptluog TV xovolwy T avanopdotaons. Me cuvolxd L umiox
urepdetypoatohndiog, Ta xovdha yewdvovtal oe Fr. XNy apyxt| epyocia ot UVEAEELS TwV BUO0 TEGMTWY
HERPOY TNG ap)LTEXTOVIXS €Youy Uéyedog muprva (oo ue 15 xou Tou Teitou (oo pe 5.

MeTag) tTwv uniox tou dlou Bddouc undpyouyv skip cuvdéaelc oL onoleg eMTEENOUY TNV TANEOPOEia oTd
TO povoTndTL unoderyuatoAndiag vor QTaveEL 0TO YovoTdTL UTEESELYUaTOANDiog aveuTodlo Ty, Tapaheinov-
Tog evdudueon enelepyacion. T yapaxTnelo Tnd mou €pyovTal amd TOV XWOLXOTONTY CUVEVOYVOVTAL UE
QUTA TOU AmoxwdIxoTomnT TeoTo) urtooToly enclepyocio and To cuveMx TG eninedo. Autd yive-
Tou Yyl 800 Aoyoug: Ipdtov, ye Tov Tpémo awTd Aemtouépeleg LYol eminédou, mou umopel va etyay
yadel e€outlag e pelwong derypoatohndloc, @tdvouy xateuvdeiov oto onueio anoxatdotacne Tou ot
HOTOC, GUUPBEAOVTOC EUERYETIXE OTN) OWOTY AVUXATACKELY) TV ONudteny. AelTEQOV, SleUXOROVETOL 1)
EXTIUOEVOT| TWY TEWTOV ETUTEOWY, AVTIHETOTILOVTOC UEPIXNOS TO TEOBANUA TWV UEOVUEVKY TOQUY WY WY
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(vanishing gradient problem). Ouoctootixd, to TEOBANUa oBAOVETAL o) UE TN YEHON AUTHOV TOV
OLVOECEMY Tal TIPHTEPA G TEBLYL BEYOVTAL oAy (dYoUS amd dVo povordtiar (To xavovixd xou to skip).

Téhog, 1o eninedo €600 BEYETOU TNV TOAUXAVUALXY| AVATAEACTICT] UE AVAAUGT) (Bior ue Tou elyUoTog
€L0O00U Xl EXTEAEL TOV BLoyWELOUG UE EVOL CUVEMXTIXO eT{medo mou ahhdlel TOV apLiUd TWV XAVUALDY
oe K -C, 6mouv K o apuiudc twv tnyoyv. To oyfua 1.2.1 anewxovilel TNV Tapoamdve ooy LlTeEXTovixy.

Yyetind ye tn dadixactior odhoryrig derypoatorndlog, 1éco 1 unoderypotohnla 660 xaL 1 UTEESELYUAUTOA-
nlor AAGLoLY TNV aVEALGT) TOU YHETH YORUXTNELO TIXMY UE TORAYOVTA 2, UE TOV UOVOTIETL UEWONS Y
UTOBLTAACLACEL TNV AVIAUCT) XAl TO LOVOTATL abénong var T Oimhaoldlel. Autd EMITEETEL OTA GUVEAX-
Tixd enimeda vor eEAYOLY YUPAXTNEWO TIXA OE TOMAATAES XAHAXES, YWEl TNV avdyxT YeNong Tuphvey
OtapopeTixol Yeyédoug, mou Va enépepe uio abEnon tou uTohoyloTixol xdcTous. Ernlong, to yeyovig
ot ta o Podid enineda enelepydlovian YEETES YAPUXTNELO TIXWY UELWUEVNE AVIAUCTC O OYEOT UE TILO
enyd enineda, Bondd otn SloTENon TWV UTOAOYIC TIXWDY OTUTHOEWY OE AOYWXd ETUTED, TUEOAO TOU T
TEO T EQUEUOLouY GTa BEBOPEVA ONUAVTIXG TEpLoCOTERY PIATEN amd Tar deltepa. ‘Etol, yia éva Turua
€16680L e PAxoC Ly, 1 ovamapdotoon oto onuelo cuppdenonc Vo éyet whixoc Ly, /2L delypora. H
oday ) Serypotondiog elvon ulomomnuévn we war oAy omodexdtion (decimation) yio T pelwon xou
Yeouuxn ToeeuBolt yio Tnv adEnom.

1.2.2 Enextdoeig
MeyaiOtepo IThaicio Eic6dou

H mpdtn enéxtaom, tou ntpotdinxe and tnv apyixh epyacio [61], avuyetwnilel ) yelwon tou yeyédoug
TWVY YAPTOV YUPUXTNEICTIXWY, VAL YVOOTO TEOBANUOL TV GUVENXTIXWY ETUTEOWY.

ITio cuyxexpéva, ETEWDY| Yia TNV TEAYUATOTOMNOT TNE TEAENS TNS BlaxelTrg CUVENENG TEETEL OL TURTVES
VoL Y WEAVE €E ONOXAHPOU UECH GTO GHHA, OL YEPTES YORUXTNELOTIXWY €680V Efval UXpOTEROL amd aUTONG
e etoodou. Ta TV amopuyn authc Tng Uelwong Tou umopel Vo €yel BUCUEVY| ATOTEAEGUATO YLl TNV
exmaldevom xou TNV enidoon Tou povtélou, yenowornoleltar éva enindo padding. Ouwe, aveldptnta
amd v eV padding mou axohouvdeitan, 1 mpooTidéusvn TAnpogopia elvar ecQUAuéVn, XdTL TOU
umopel va @plcipel Tig ouveliZelc xovtd ota dxpa Tou chuatoc. Ilapdho mMou LTdEYOUV TERPLTTWOELS
mou 1 enidpoon tou padding eivan auentéa, otny encgepyacio Loucixrc, oTny onola Tor oAt AdYW
TOL peydhou ueyédoug Toug xatoxepuatilovion oe Tuata Alywy deuteporéntwy, 1 yenon padding
0VoLCTIXG TEooVETEL Adrdog HYoug TELY X HETA amd Xdde TURHL.

Auté to mpéPAnua eivon oAl évtovo oto Wave-U-Net, eneldr) o Adyog tou Uey€doug GUVERXTIXGDY
TUPTVWY TEOC TO UEYEDOC YAETYN YOEUXTNEICTIXWY, XL dpa 1 TocoTnTa diegpdapuévne TAnpogpopiog
audveton 600 petafatvoupe o Boditepa eminedo.  MdhioTa, avdloyo Ue TIC UTEPTAUPUUETOOUS TOU
HOVTENOU, AUTOC O AOYOC UTOREL VoL YIVEL Xou PEYUAUTEQOC TN HOVADOS, Yia TOMAATAS ETimeda, TOUL
onuadvel 6Tl xdde oTotyelo Tou YdETN YoEUXTNEIC TIXGY €E600U elvar emnpeacuévo and To padding.

Omnote, egbdoov 1 yeron padding yio Ty amo@uyT PElWONES TOV YUETOV YULUXTNPIC TIXWY ONUtoVEYE
TEPLOGOTERP TROBAAUATA GTO HOVTEND, TEOTEIVETAL AAS 1) Y prion UEYAURDTEPWY oNUdTwY elc6d0u. [pax-
TIXA, Yo €var OEQOUEVO TUAUA ELGOBOV UE UHXOS Ly, TOo Tnyolo ofjuo mou mapdyel To Yoviého Yo €yel
UE6TERO UNXoC L < Ly, mou onualvel 6Tt yior vor TeTOyel TNy (Bl €£080 €val povtélo Ue ueyahiTepo
mhaiolo eleddoL Va ypelaoTel ueyahiTepn €l0000, AUEAVOVTS ETOL TIC AVAYXES OE UVAUY TOU HOVTENOU.

[Mo v evowpdtwon peyahitepwy tapadpwy oto Wave-U-Net, n cuvévwon anoutel o ydpteg yopox-
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TNELO TIXWY TOU LOVOTATION XWOIXOTOINONE VAl TEQIXOTTOVTAL GTO UEYEDOC TWVY AVTIGTOLY WY YAETOY TOU
HOVOTOTIO) OTOXMOLXOTIONOTC.

Eninedo EE660u pe Yroloyiopnd Alapopds

Auth 1 enéxtaon, mou eniong npotdinxe oty apyxi epyaoia [61], yenowwonotel wo unddeon yio TN
pLOT TV dEdOUEVKLY TpoXEWEVOL Vo amhoTtoiniel To eninedo e€6dou. Suyxexpiuéva, exdletor OTL Ta
mnyodo ofpota cuvdudlovtar TEooUeTiXd, XdTL Tou Loy Vel Yot To oUvolo dedouévwy MUSDBI8 [50],
oo’ To PElyUo TEOXUTTEL WG TO AUEOLOUN TOV ETMPUEPOUS TNYaiwY oNUdT®Y, aAAd dev elvon amapaltnTo
OTL Loy Vel Yo xdie €ldoc BEdOPEVLV.

Yyetxd pe v vhomoinon tng eméxtoaong, Vewpwvtag éva petyyo M aroteholyevo omd K mnyaio
ofpota S;,7 = 1... K, v t0 onolo toyer M = ZjK:1 S;, To eninedo e€6d0u mEofAénel yovo K — 1
mnyolo orpato xou utoAoyilel To TeheuTaio Sk = M — Zf(:_ll §j. [TeplopiCovtdc to pe autov Tov
TEOTO, TO YOVTENO Bev YpeldleTon vor UdUel auTOV TOV XoVOVO UECL EXTABEVOTC, EMTAUYUVOVTOC TN
otaduaotar xan BeATiwdvovTtog €16l TNy enidooT] ToL.

Ynueio Svpgbdenong pe Avadpopixd Nevpwvixd Aixtua (RNN)

Y10 [29] mpoteivetar 1 mpoodfxn evée avadpopixol emmédov, dnwe LSTM A BiLSTM, oto onueio
CLUUPOENOTNS, TELY UG TO GUVEAXTIXO ETNEDO.

To xivnteo Tiow and auTAY TNV ENEXTACT) ElVAL OTL TOL GUVEMXTIXY ETUTEDX, AOY W TNS BouNg TOUC, EYOLV
éval Uixpd xan Temepoouévo dextixd nedio (receptive field). Enopévoe, unopodv va enelepydlovtot uévo
TOTUXEC CUOYETIOELS TOU GHUATOS Xol VoL ovoxathUTTouy Tomxd wotifa. H undpyouvoa Ao a&lomoinong
e Yelwong Serypoatorndiog yio var augniel To Sextind medlo Twv cUVENEEWY, oV X0 AELTOURY XY, ATALTEL
Toh) Bardéc xan cOVIETES aEyLTEXTOVIXES TTOU Elvar apYEQ xon BUGKOAES VoL EXTIABELUTOUY ol S1uLoupYEl
TOA) apatpeTIXEC AavIEVOUCES OVATUPACTACELS, TOU UTOREL VoL UELOOOLY T1 cUVolT entidoor e€outiog
e amOAslg TAnpogoplag.  Avtidétng, ta avadpopxd eninedo SiodéTtouv €val amepLOpLoTO BEXTIXO
TEdLO AL Gpal UTOPOUY VAL EVOWUATWU00Y GTO ONUElo GUUPOENONS YL VOL AUGOUY TO TOQUTAVG TEOBANUOL.
Avopévetan 6Tl 1) Ypron auTdY Twv emnédwy o emTEEPEL TN YpNOT O ENYOV HOVIEAWY, UELDOVOVTOC
TIC TOEOUETEOUS XOL TNV TOAUTAOXOTNTA Tou UovTélou xou Ya Bertiwoouvy tnv enidooy| Tou, ool
ewixedovton oTny eneiepyacio axohouioxmy SEBOUEVLY, OTWS Ta GHUATIA 1) OU.

Evooudtwon Awaxpitod Metacynuatiopwod Kupatidiou

H tedevtala Behtiwon yiwr v opyttextovixy etvon 1 yeron Atoxertod Metaoynuatiopot Ku-
potdiou (Discrete Wavelet Transform, DWT) ota urhox ohhayfc Serypotodndloc twv povonaticv
xwdonolnone xou anoxwdixonoinone [44].

H 3éa tiow and authv v enéxtaon eivar 61t 1 Stodixacio arnodexdtiong Snulovpyel emxdiuvdn (aliasing)
xat Oev elvon TAHEKC ovaoTEEPLUN, TOU OTUALVEL OTL XOUUATIO TV YOPTMY YAULUXTNOLCTIXWY YAVOVTAL.
Avutd o 800 TpofAAuaTa UTopOLY VoL UEWWGOLY T1) GUVORLXY| ETUBOOCT TOU HOVTEAOU, XS 1) emxdAudn
pUelpel TNV TANEOGOELa, SNULOLEYWVTAC NYNTIXE CHIAUATO TOU BV UTopoly VoL amopaxeuydoly amd To
umohoino Yovtélo xai 1 amoppupdcico TAnpogopla umopel var elvon oNUOVTIXG Yol TO LAY WELOUO TOV
ONUATWV.

H yerion tou yetaoynuatiopol xugatidiov cov dadixactio ahhayg derypotorndiog urmopel vo AOoeL xou
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{zgocltl)}r: ~ {E—IC}C {ér__](_
- 1/4
9]
z :I‘S‘ Ipl ‘Z/” [C'_’g
A
DWT {zﬁnt'n11)}(: {Sc}c {g(l}(:

(a) DWT layer.

(TR
—~c 1) 2 [P] 5

Inverse DWT

B

(b) Inverse DWT layer.

Yyfuo 1.2.2: Mriox dudrypopua T6kV TRoTelvopevwy emnédwy. To C xou 1o S emonuaivouy Tig
TEdEELC GUVEVWOTE %ol Ywplopole, avtioTolya, evéd ta C1 o S elvor ot avtiotpogec mpdeic [44].

T 800 owtd Vépara, xodme Stodéter giktpo avti-emxdiudne (anti-aliasing) xou urnopel vo avtio tpapel
Thipwe. H evowudtonon Tou YETAo NUATIONOY GTNY apYITEXTOVIXY YIVETAUL SNuLoupY®VTaS 500 UOVADES
ooy rg Sevypotorndiog, éva yia Tov eudl xou Evoy Yo TOV VTG TEOPO PETACYNUATIOUO, TOU AVTLXO-
Y15 T00V Toug opy oS, Alaypdupata Twy 800 LoVEdwY galvovton oTto Lyrua 1.2.2.

1.2.3 TIleipdpato
IMewpapatiny Aldtadn

[a ta epdparta yenotwonotidnxe to ohvoho dedopéveory MUSDBIS [50], tou elvon 1o mo dnuogiléc
oTIC epyaoieg yio Sy wplopd povoixnc. Iephopfdver tpayoldia and to chvora dedopévwy MedleyDB
[8] xou DSD100 [45] xardcde xan amd dhheg Tnyéc. Luyxexpuéva, €xet 150 tporyoldia dlapdpmy Louondy
eV, ue ouvolixt] Sidpxeta 10 wpdv. To tparyoldia eivon ohdxhnpa, ot pop@h oTépeo (2 xavdhia fiyou),
amodnxeuuévo oe LYNAY ToldTNTA xou Ye puIUO deryuatondiog 44.1kHz. Extog tou pouoxod uelypo-
T0¢, T0 GOVOAO BEDOUEVWY ToREYEL Ta 4 emupoug Tnyala orfjuata xdie TEayoudLo), TOU AVTIGTOLYOLY
o€ 4 TpoxadoploUEVES XATNYORIEC UOLOXMDY 0pYAVOLY ((PWYNTIXG, UTHC0, VTRPOUS, UTONOLTO ORY V).

Ye autd ta mewpdpata, o MUSDBI8 yenowonowflnxe ye 75-25 ywpetoud oe dedopéva exnaldeuvonc-
emoldeuong, ye ta Tparyoldial o pop@ stereo (2 xavia) xou e pudud derypatorndiog 22.05kHz. Olo
Ta povtéha e€dyouy Eva MyNTxd TUAUe Wixoug 16384 deryudtwv, dniady| nepirou 0.74 SeutepdAenTa.
Tao povtéha exmaudedTnxay e 0 ouvdptnon xoctoug L2 vy 50 emoyéc xan ypnowomoidnxe.  xou
emmpdodeta N exmaldeuon teppaTi{oTay O MERINTWON oL To o@dhua entolfdeuong dev BehtiwvoTtay
yio 20 cuveyouevee enoyéc. To o@dhua uToAoYIOTAY WS 0 UECOC 6POC TWV CPUNIATOY TS POVNTIXAC
xou opynotexnc cuviothoag. To yovtéha ye unoloyloud dlapopds oTo eninedo e£680L TEOEBAenay TO
0pYNOTEXO UEROS Xal UTOAOYILAY TO YWVNTIXO, WS TN SLopopd ToU 0pYNOTEIX0U UEEOUE amd TO UelyUo.
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L | £ | 4params | mPut | Difference o b bwr
Context Layer
M1 |12 | 24 6.07TM v X X X
M2 | 6 |48 3.63M v X X X
M3 |12 | 24 13.45M v X v X
M4 | 9 | 32| 10.13M X X v X
M5 |12 | 24| 6.07TM v v X X
M6 | 12 | 24 13.45M v v v X
M7 |12 | 24 7.12M v v X v
M8 | 9 | 32| 10.98M v v v v

[Tivoxag 1.1: Topayetponoinon twv Wave-U-Net povtéhwy mou extadedTnxay.

[Mo v o&lohdynomn Twv anoteAeoudtoy yenoylorot|dnxay ol ueteés Adyog Eruatog mpog Iopauode-
pwor (Signal to Distortion Ratio, SDR), Adyoc Eruatoc npoc Lpdhpata (Signal to Artifact Ratio,
SAR) xa Abdyoc Eruatoc npoc Iopepforéc (Signal to Interference Ratio, SIR), aZlonowdviac to
TEWTOKONNO BIGUECOC-TWV-BLOESHY TTOU TapoLadoTnxe oto [62]. Lougwva e autd 10 TpOTOXOANO
Ol UETPWES UTOAOYIZOVTOL YOl TIG EXTUOUEVES PWYNTIXES XA OPYNOTEMES CUVIGTWOES Xdde MyNnTxo0
TUAUOTOG.  2TN CUVEYELD, Ol TUNUIUTIXES UETEIXEC CUYXEVTROVOVTAL Yiol xdde Teayoldt utoloyilovtog
) O01duecd Toug xou Téhog umoloyileton 1) SIIUECOC OAWY TWV TEAYOLBLDY TOU GUVOAOL BEBOUEVLY,

ofvovTog plor xan LOvo T,

Yrov Iivaxa 1.1 mopouoidlovTtal Tor JOVTEAA TOU EXTIOUOEUTNHAY.

M1 M2 M3 M4 M5 M6 \Y i M8
SDR | 4.48 443 | 477 | 460 | 478 | 452 | 5.30 5.09

Voc. SIR | 12.35 | 10.53 | 12.07 | 11.62 | 10.93 | 10.87 | 11.81 | 11.90
SAR | 5.28 9.29 | 5.61 | 5.74 | 5.70 | 5.57 5.96 6.01
SDR | 9.99 | 10.11 | 10.10 | 10.19 | 10.15 | 10.15 | 10.84 | 10.81

Acc. SIR | 13.80 | 13.77 | 14.37 | 13.78 | 13.95 | 13.95 | 15.53 | 14.83
SAR | 13.15 | 13.02 | 12.91 | 13.30 | 12.98 | 13.10 | 13.18 | 13.50

[Tivoxag 1.2: Anoteréopota yia o povtédo M1-M8. Ot évtoveg Tyég UTOBEWVOOUY TNV XoADTERT)
enidoon YeTall TV HOVTEAWVY.

AToteAEéoUaATA X DY OANACUOG

O IIivaxog 1.2 mepthoufBdver Tol AmOTEAEGUATO.  LYETIXA UE QUTA, 1) TEOTYN Topatienon petald Tou
Baowxol yovtéhou M1 xar tou M2 elvar 6TL o enyd LOVTENX AELTOURYOUY TO (810 1) YELROTERO GUUPGVOL
UE OAEC TIC METEWEC. AUTO ATV AVOUEVOUEVO, ool NYOTERPES TUPAUETEOL LGOBUVIUOUY UE WXPOTERT
exgppacTotnTo. IlapdN autd, n pelworn otic TapaUETEoug XL ETOUEVKE TOU PEYEDOUC TOU UOVTEAOU
elvor TOA) peydAUTERT 08 GYéom PE TN Uelwon oty enidooT), Tou odnyel 6To cuuTépaoua OTL 1) ETldooT
enneedleTon TEPLOGOTERO amd Tol XavaAlaL Xou T BleTACWOTNTA, Topd To Bddoc Twv poviéhwy. Xe
QUTAY TNV TERITTWOTN TO TO ENYO UOVTERD €yel (Blo apuiud xavaliov pe To mo Padd oto onucio
ouugpdenong, e€ontiog Tou aLENuévou aprtuol xavokiwy avd enitedo Fe, eve éyel neptocdtepa Selyyorta
vo eneepyaoTtel, e€antiog Tou uxpdTePOU apLiuol AettoupYldy uTtodetypotoAndiog.
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1.2. Wave-U-Net

H npocdrxn tou avadpouixo) emnédou eMPEREL Uiar UEYAAT alENoT OTO YEOVO eXTUBELONG. LYETIXA
uE TNV emldoo, xplvovtoag amd o wovtédo M1 xou M3, to LSTM npocgépel plor abinon oe OAeg Tig
ueTEeWég extog and tov SIR twv gwvnuxdv xar tov SAR tou opynoteixol pépouc. To xahitepo
amotéheoua oto SDR umopel vo oyetileton pe tnv xolltepn Uoviehomoinon xou enelepyaoio Twv
axohovhoxyv dedopévev and o LSTM. T'a to M4, 9éhaue vo eréylouue av to LSTM unogel va
otayelpto Tel woxpTepeg axoloudieg mpoepyOUeEvES amd Eva TLo N0 LOVTEAO YwWelg Vo YenoyloTolel To
ueyahtepo mhaioto el06dou. To yeyovog 6ti 3 petpwés elvan xohltepeg and to M3 xou 5 xahitepeg 1
loeg amd to M1, unodewviel 6tL To LSTM evoéyeton vimg vo wpeelton and poxpdtepeg axohoudicg
X AYOTERO apanpeTnd yopoxtneto Txd. Ilapdh autd, unotétoupe OTL UTdEYEL €va onuEelo XaUTHS, OTO
omolo 1 TepaTépw abEnom Tou uhxous TN axolovdioc Vo pewwoel Ty enidoon tou LSTM, agol dev
elvon pTiorypévo vo dayetptleton TOAD peYdAe axohoLdieg xat, O GUYBLAOUS UE EVAL TILO PO LOVTERO,
Yo YelpoTeREPEL TN GUVOAXT] LXAVOTNTAL Lo WELOUOU TOU LOVTEAOU.

Yyetxd pe Tov DWT, 1o M7 netuyaivel tny xahOtepn enidoon Yetald OAwY TwV EXTOUOEUUEVODY UOV-
€AV ot 3 and TiC YeTpxés, cuumeptiauBovouévou xon Tou gwvntixol SDR. Tnyv Bl otiyur, Eenepvd
oe enidoon 1o M5 oe 6houg Toug Topeic, Ue uovVo pla uxey| adénon otig TapopéTeouc. Autd cuUPKVEL
e Ta anoteéopaTo TG apyxhc epyaotag [61] xou delyver Eexdlapo Tt 0 BLoyWELOUOS TWY YaUEaXTHELO-
TIXWV 68 UYNAAC ot YouNAiS cuyvoTNTag, GUVOLALOUEVOC UE TNY ATOPUYY| ATMAELIS TANEOPORLaS, YdELS
oTn cLVLETWOo LPNAYC cuyvotntag Tou DWT, tpogpodotel oto undroito yoviého ouciwdn Thnpogopia
yioe TN Sradixacio Tou daywetopol Tyodv. H tpootnn tou LSTM pe tautdypovn peiwon tou Bddoug
mou cuufaivel oto M8 yelpotepelel TNy eidooT o€ 3 PETEXES, CUUTERLAUUBAVOUEVOU TOU POVNTIXOUL
SDR, oAAd tn BelTicdver oTic uToloLeg, uTodeviovTag 6Tt xan To LSTM unogel vo enw@eindel onod
TO XUAVTERYL YoPoXTNELC TS Tou Tpoopepel o DWT.

Téhog, o M5 pe to eninedo €£680u Ye uTOhOYLOUO Blapopds €yel aoNTd xohlTeRET EidoCN Ond TO
amh6 povtého M1, emonuaivovtag 6Tt elvon evepyeTiny| 1 emBoly| Tng mpoocvetinhc WwotnTac. Ty Bl
oTLYUT) Ouwe, To M6 eyel yeipdTepn enldoorn cuvolxd oe oyéon ue to M5 xou to M3, dweddovrog
To TpoNyolUEvo cuurmépaoud. Aev PTopoluE Vo To eENYHOOUNE aUTO EToXEUBNOC, oARd uTodéTouue
oTL glte ToL amoTeEAEéoUTO TNG EMEXTAONS OEV EUPAVICOUY GUVETELL UETOED OLOPORETIXDY TELRUUATWY,
) OTL UTHEYEL Uiot SUOXOAD GTNY ETEEEPY ATl TV PoVOXGY 0pYavey and To LSTM, xaddc to M6
exnoudedeTol Pe BAom HOVO TO GQAIAUA TWV 0PYNOTEXOU UEEOUC.

Yuvoilovtag, €dv Bev undpyouv TEpLopIoUol GTN UVAUT, OeV UTdEyEl AdYog va Unv yenoylomoindet
T0 Yeyahltepo mhakoto eilcddou oto Wave-U-Net, eidwnd agol 1 enidpoaor tou padding elvon 600 ep-
pavihc. O DWT elvou pio teyvixr) mou goivetar TOAG UTOGY OUEVT] YL JRYLTEXTOVIXES TTOU TERLAAUBAVOLY
avdiuoT oe ToANES xMuoxeg ofotoc. O yetaoynuatiopnos oautdg taptdlet anohuta oto Wave-U-Net,
apol BeATiwveL TNV eNBOGT TOU X efval AEXETA EVEAXTOC Yol VO GUVOUALETOL Xl UE GANES EMEXTACELS.
Emopévee, moteboupe 6t Yo mpénel vo cupnepthauBdvetar o xdde mopduota EXBOY TNG oEYLTEX-
TOVXNAG. LYETS PE TO eninedo e£680L Ue UTOAOYLOUO BLAPOREC. oV Xol EVOEYOUEVWLS EVOL AELTOURYLXO,
10 yeyovog 0Tt Paoiletar otny avemPefalwtn unddeon 6T oL tnyég €xouv avaury Vel tpocietixd, pall ye
TO OTL TA AMOTEAECUATA {TOV AGUVETH, UG XAVEL VoL ELUAGTE TOAD ETLPUAAXTIXOL YIoL TNV ATOBOTIXOTNTA
tou. Téhog, 600V agopd oto avadpouxd emimeda, EVOEYETUL Vo AMOTEAEL €val YPNOWO XOUPATL TNG
apyttextovixric Wave-U-Net, nopdro mou ta anoteréopota dev €detlav wia Eexddapr Beitivon tne eni-
doone. Xe xdie meplntwor, moTtedouUe OTL 0 EMTAEOV Ypdvog exnaideuong arotehel {nula i enopévee
onowdrmote duvnTxy Beitiwon tng enidoong etvor avayTloToLy T TOU TURATAVE XOGTOUG.
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1.3 Conv-TasNet

1.3.1 Baown Apyitextovixy

To Conv-TasNet eivon éva povtélo mou ene€epydleton nynTixd pelyuata oto nedio tou ypdvou. To pov-
TéMo Srorywpellel Tor mnyolor GHUNTA EXTYLMVTAS Xt EQuEUOlovTag Udoxes o€ AavIEvOUsES ovamoEao Td-
oelg, Tou TapdyovTal and to oixtuo. H apyitextovin| anoteelton amd 3 otddia eneéepyaciog: €vay
XWOOTONTH, EVay Lo WELETH XL EVOY AmoXmOLXOTOINTY. Xe UPNAG einedo, To LoVTELO AEtTOURYEL WS
e€nc:

e O %x0OOTONTAC UETATEETEL TO onjua €16000u o€ Uir N X T yp0ovo-CuyVOTIXT AVATOEdoTAO,
XATAAANAT, yiar T Bradixacion Slary welouol

o O doywplothc eneepydleton tTny elcodo xou mpootoel vo e€dyel TANpoQopia Yo Yot GUVEETNOT
Bdpoug Yo xdle Ty, Auth 1 cUVAETNOY EQPUPUOLETOL TOANATAACLUCTIXG GTNY XWOIXOTONUEVT
AVOTORAGTACT), ATOTEAWVTOSG OUCLAGTIXG ULal UAOXAL.

o O anoxedXonoNTAC aVIoXEVALEL TIC XUUATOUOPPES TWV TNYOV UETATEETOVTAS XAVE orjud Tlow
OTNY 0EYIXT) OVUTORAGTACY).

1o GUYXEXEUIEVA, O XWOOTIONTAS UETATEETEL ETUXAAUTTOUEVL, OLUBOYIXY TUUUTA TOU PELYUATOS ELGO-
dou o€ o Aavidvouca avamapdo Toor UEYAANG Bido Taong, epoapudlovtoc TA Bruotied cUVEMEN pe éva
OYETXA YeYdho Tuprva, ueyédoug P. To yéyedog tou Bruatog elvon To uiod Tou TUETVA, BNULOUEYMV-
g 50% emxdhudn petald Swaboyixdy tunudtwy. H cuvéhin epapudler torhamhd @iktpa, avEdvovtag
TOV optdud TV XVoM®Y artd Tov apyxd A o N, TopdyovTog €Voy TOALXOVIALXO YAETH YoeaXTNeLo-
TIX®Y. Autdg douixd poldlel pe Eva QUoUATOYRAPNUA, OANS ETEWDY) TEoXUTTEL and exnaidevoT, elvou
mdavo vo dnuLovpynoly avomaEac TAGEL, TOU GHUNTOS TOU EIVOL TOAD TILO XATIAANNAES Yl TN Stodixacia
T0UL dLoywpetopol and tov Metaoynuatioud Poupté Beoyéwe Xpdvou (Short-Time Fourier Transform,
STFT) # xdmotov Ao mpoxadopiouévo petacynuactiopd. Ernione, n minpogopia yio tn @don tou
ofoTog, 1 omola TopoAElmeETL a6 TOAKES TeyVIXES Tou yenoylomooly tov STET, cuunepthouBdveton
TN Avidvouca avamapdo TAoT,

H €€0b0¢ Tou xwdonomntr diépyeton and uia evepyonoinon ReLU yuo va Siacpoiiotel 6Tt 1) avomapdo-
Toom ebvon pn apvnTixr, SnploupydvTag €10t ouctOdELg avamapactdoels. Ity Tov SlayweloTh o ydpTng
YOEAUXTNELO TIXWY XAVOVIXOTIOLE(TOL GTLS OLUO TUOELS XAUVAALOU X0l YPOVOU Yla vor Tty UVUEL 1) exmtoddeuon
%o TepVEEL amd €val cuvehxTxd eninedo 1x1 to omolo ahhdlel Tov aptiud Twv xavohomy ané N oe B.

O Boywpeothc yenotponotel v Xpovind Buvehtixd Aixtuo (TCN) [33] tou anotereiton and R un-
opovadeg, cuvdedeuéveg oelptaxd. Kdde utopovddo anoteheiton oamd X cuveAxTind umhox e auovouevo
debxtn dlacToMc, d; = {1,2,...,2%X 71} Ot todhamhol deixtec BlIOTONAC EMITEETOLY GTIC UTOUOVADES
VoL avaxohOTTouy LoTiBa 6 TOAATAES XAUOXES, ETELDT To EMUEPOUS UTAOX AELTOURYOLUY ¢ PIATEN UE
OLPOPETIXG BexTXO Tedlo. Kde cuvehixtind umhox UeTatEENEL TN AavUAVOUCH aVATUEAC TACT) XUTA
UMAXOC TN BLACTAONC XAVAUALWY oo TN BidoTaon Tou onueiov cuugdenone, B oe uia xpuey| dldotaon
H, mpoxewévou va extedectel 1 dradixaotior tng cuvénéne. Tlpwy xon petd autrg, ol exdotote ydpTeg
YOEAXTNELC TIXDY XAVOVIXOTIOLOUVTAL.

Ané v mopoamdve Sadixacior TpoxnTEL Uiot Udoxa, 1 omola yenouylomoteiton yio v topay ol dvo
¢€odol. H pdoxa oxohoudel 600 Slopopetind povondtia, xou 6Ta 600 €x TwV omoiwy UTdpyet éva enitedo
oLVENENC 1x1 mou adhdlel Tov aprlud TV xavaAlwy Tlow o B, odnyhvTag o€ 500 avamapaGTACELS.
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1.3. Conv-TasNet

Skip-connection

Output

Encoder Separation Decoder
pa <O CIV B,L) d
[ I 1x1-conv Tx1-conv
1D _ 1-D 1-D
Conv Conv d=2"" Cony @ ;'—1
Input i H H Separated Normalization
mixture t t t sources 1
1-0 4 1-D ,| 1-D
Conv Conv < Conv 1x1 PReLU
t 1 1 Conv (H, L} 4
1-D 1-D 1-D 1-D 1D D-conv
Conv Conv Conv Conv Conv +
Lt Sigmoid | Normalization
t
PReLU
=
r
éz : " !
5 1x1-conv
& (BL) SN

Mixture Input

(a) (b)

Tyfua 1.3.1: (a) Awdrypapyua tne apyttextovixric Conv-TasNet. (b) Lyedaoudc touv povodidototou
oLVEAXTXOU umhox Tou yenowornoteitar oto TCN. [37]

H mpdtn avanapdotaon npowdeiton e wa skip odvdeon 610 TEhOC TOU BLoyweloTy|, Ve 1) 8ebTepn
Teootivetan ue TNV £lcodo Tou umhox xa tpowdeitar oTo emoOUEVO UmAox w¢ elcodog. OuotlaoTixd, e
AUTOV TOV TEOTO Ol BelxTeg DL TOANAC Xdde umhox xou xGE LTOUOVADAS EVEVOVTAL, XAVOVTAS OAO TOV
BloywELOTH Var AeLToupYel ooy éval GIATEO Pe TOAD PeYdAo BexTxd Tedio, v var avaxaliper extog
amd tomxég xou xodohxée e€apTtioelc Tou onfuatoc. Ot emuépoug pdoxeg mou épyovtal amd Tig skip
ouvdéaelc adpollovTol TEOXEWEVOL Vo TUEAYSYOUY T GUVORXT UdoXd, 1) ool TEPVAEL UE TN OELRd
an6 wa PReLU evepyonoinon. éva cuvehxtind eninedo 1x1 mou oAAdlel Tov aptiud Twv xavaAldy onod
B oe C- N, émou C' 0 apriudg TV TNy®y xou Yo OLYUoELdT) evepyonoinon, ety teoxOel o TeEAxdS
TVaIXOIG LAOXOY.

O mivaxag pooxmy mou TEoxUTTEL and Tov dlayweloTh yweiletar o C udoxeg, plo yio xdde mny,
TOU PETETELTA EQUOUOLOVTAL OTNY XWOXOTOINUEVY] OVATOEAOTIOY), UE AMOTEAEGUO TOMNATAG GHUOTA
otov haviddvovta yweo. Téhog, to mnyaior orjuota avoxataoxeudloviol ond TOV ATOXWOXOTOMNTN
Yenouomonvtog Bruatixy, avdoteogn, 1A cuveli&n, pe to (Blo Briua xou yéyedog muprva e auThHY Tou

XWOOTONTH.

Yy exdoyf e apyitextovixic mou mapoucidotnxe oto [14], n omoio eivon xar owTH TOU YENOL-
pomotinxe oto TELRdUOTS pag, dev untdpyouv skip cuvdéoels. AvTrdétwe, o Tivoxag UooXOY TEOXUTTEL
amo TNV AVATUEACTACT) TOU TEAEUTAlOU GUVEAXTIXOU UTAoX Tou BlaywpetoTrh. Emnpociétwe, o arnox-
0OXOTONTAC avTl Vo yenoylomoLel £val LOVOBLAG TATO aVAGTEOPO GUVEAXTIXG ETUTEDO Yiol Var AhRAEEL TIC
OLOLO TAOELC HOVOAWY X0l YEOVOU, YRNOLLOTIOLEL EVOY YROUUULXO PETACY NUATIOUO Tou ahhdlel Tov aprdud
TV xovol@y and N oe A X P xou yetd avaoxeudlel To ofua yenotponotwviog uélodo emxdiudmnec-
npoo¥fxne (overlap-add), mou emavagéper TNV apyxh YEOVIXH AVIAUCT TOU GHUATOC.
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1.3.2 Enextdoeig
Ioyvedtepog Kwdixonomntvg

Auth 1 enéxtaon tpotdinxe oo [56] xar ouctaoTiXd amoTENEL EVary GUVIETOTERO XWBOIXOTONTH, XAV VoL
EVTOTIOEL TLO TOAAG YOEAX TNELOTIXG. a6 TO GHUN ELGOB0U. AuTd To TeTuyaivel cuVBUALovTag U0 OUddES
YOEAUXTNELOTIXWY, EPYOUEVES U0 ULl CUGTOLY {0l GUVEMXTIXWY ETUTEDMY X0k ATO EVOL PAUCUATOY RPN

TAdTOuC.

‘Ocov agopd 6Ny LAOTOINGT), YL TNV TEMOTN OUAOA YURUXTNPLO TIXWY, AvTl Vo YeNoLUoToLEl £va GUVE-
AMxTix6 €TineEdo, 0 *WOLXOTONTAS EVoUaT®OVEL K Tétola eminedo cUVOEdEUEVA TUPdAANAL UE Blapope-
TIXd peYEUT TUETVL, TEOXEWEVOL VoL AVaXOAUPOLY YU TNELOTIXE OE €val EUPU QACUA GUYVOTHTWY,
ToL OTOl0L OTY) GUVEYELN GUVEVWVOVTAL xou Tepvave and o evepyomoinon ReLU. To k-octé eninedo
1 4 4 4 2k ’ 7,

3k TOU 0pyol xou xovdhio foo e 5 Tou opyixol. To ) Sedtepn

OUGBOL YULUXTNELO TIXDY, O XWAXOTOINTAG TaPVEL YopaxTnELo TiXd and éva gaopatoyedgnue STET, ta

€yel muprva ye péyedoc (oo ue

OTOlal XAVOVIXOTIOLOUVTOL XL TEQPVAVE AmO VOV Yeuuuxd petacynuationo. To 0o eldn yopoxtnplo-
TIXWY CUVEVOVOVTOL oL OLEPYOVTAL omd 000 UOVOOLIG TUTO CUVEALXTIXG ETENEDN, YWELOUEVO AmO Ldl
evepyonoinon ReLU, ta onola Stopddvouv tov aptdud twv xovalidy vor Tanptdlel ue autov Tou oy ixod
xwdonontr, onAadr N. Enouévwe, o 1oyupdTepog xmOXOTONTHE UTOREL VO AVTIXATAC THOEL TAHEWS
TOV apyxd Ywelg xoula emmAéov ahlayy|) 6TO UTOAOLTO BiXTUO.

t

1D conv

1D conv

fully-connected

normalize

magnitude
|
STFT

b, f

Tyfua 1.3.2: Apyttextoviny| Tou 16 updTEROL Xwdomonth [56].

O amoxwdixomointc Aettovpyel avtioTolyd, UETATEENOVTOS TN AavIdvOUCH OVITORAGC TUGT| UE EVOL GUVE-
AMxTo emtindo xou pla cuvdptnon ReLU xoun yetd yweilovtoc tnv oe K pépn. Autd nepvdve omd cuve-
ANXTixd eTUNEDQ, (Blor GTOV oELIUO o GTA YUPAXTNELC XA UE AUTA TOU XWOIXOTOLNTY), TEOTOV adpoloToLY
yio vor tpoxouy tar Tpyakor orjuata e€600u.
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1.3. Conv-TasNet

Kwduwonownthg pe Gammatone Yuotouyia Piltpwv (Gammatone Filterbank)

Yy epyooio [15] wo tpoxadoplopévn cuototyia @iktpwy, n Tolupaony gammatone cuototyio @il
Tpwv (MP-GTF) npoteiveton »c avtixataoT8tng Tou apytxod XwdxonomnTh, Yo To TpoBAnuc Tou di-
oY WELOUOU OpLAlaC.

H MP-GTF Booileton otnv axovotixf gammatone cuotoyia @iitpwv (A-GTF) [46], n onola pov-
tehornolel TNV xivnomn g YepBpdvng Tou agTiol 6To axoLoTIXG choTNua Tou avdp®rou. Auth 1 cuo-
Totyla piATpwY amoteleiton and wa oelpd and ikteo oTevic Lwvng, TOTOVETNUEV UE UN YRUUUIXO TEOTO
oTN oLYVOTNTA xou pe awgavouevo ebpog Lovne. H xpovotnr andxpion tou xdie giktpou oplleton we

Y(t) = ot Ve 2™ cos(2m fot + )

omou fe elvan 1 xeEVTEWXT CUYVOTNTA, ¢ 1) BlaPoEd YAoNG, o TO TAdTOG, t > 0 0 YPOVOC OE DEUTEPOAETTY,
P 1 TEEN Tou @ilTeou xou b 1 TapdusTeog ebpoug Lovng. Ol xevipinéc ouyvotntee f. elvon TomodeTnuéveg
oe {oa dwothata oty xhipoxa ERB

sz
E Bscae z) = '2 1 1 24.7 % 9.265
RBscale(fH2) = 9.265 log ( * 947 x 9.265

H xhpoo auth mpoxdnter ohoxhnpdvovtac v tocdtrnte ERB(f.) ™1 ¢ mpoc 1 ouyvétnra, 6mou
ERB civar 10 10080vopo tetpaywvixd edpoc Lwvne (Equivalent Rectangular Bandwidth). T éva
00U€v QIATEO, AUTO TEOXELTAL Yol TO €0POC LWMVNG TWV TETPAYWVIXOY QIATEWY UE TO (Blo YEYloTo x€pdog
X0l GUVOALXY) EVERYELD, ot diveton amd Ttov axdhouto TOTO

e

ERB(f.) = 24.
RB(fe) 74_9.265

H MP-GTF yenowomnotel giltpa T4Eng p = 2, UE XEOUCTIXY OmOXELOY TOU XOBETOL GTO 2mS Xl TOV
omoiwv to elpog Lwvne unohoyiletar we b = ERB(f:)/1.57. O anootdoeic petoll TV XEVIPIXWY
CUYVOTATWY TwV QiATewy elvar 1 otnv xAlyaxa ERB, nou onuaivel 6ti 1 xevipn cuyvotnta Tou
enopevou pilteou xadopileton we

fi+1 =ERB_]

scale

(ERBscale(fi) + 1)

omou i o delxtng Tou giktpou.

Enlong, yio vor IxatvoTolElTo O TEQLOPLOUOS UT] AEVATIXOTNTAS TNS ELCOBOU TOU BLoy el TY, To QIATEA
otnv ouatoyia opilovton oe Lebym, mepthapBdvovtac yia xdde pihteo xou To apvnTind tou. Enopéveg,
0 optduoC TWV PINTEWY Elval

#filters = 2 - #center _frequencies = 2 - (| ERBscale(fmax) ] — | ERBscale(fmin)|)

OTOU Ol frmax O frin AVTIOTOLYOOV OTN PEYAADTERY %o UXQEOTEEN EMLUUUNTY XEVIQPIXTH GLYVOTNTO.
Tumxd autéc ov Twég eivar fr,ax = fayquist/2 xou frmin = 100Hz. Koddg autdg o aprdudg yio
ta @ihtpa elvon Alyo meptoplopévos (48 giltpo yior évar Bidotnua cuyvotitwy 100-4000Hz), uropolv
vo. totovetnloly emnAéov @ihtpo Ue TNV (Blot XEVTEIXY CUYVOTNTA XU BLUQORd PACTE GTO BLACTNUA
[0, ), oot o1 pdoelg and [m, 2m) emAéyovtar aUTOUATO OToL dEVTIXS pihTea, 1 var aplel 0 Teptoptopdie
anootaong 1 oty xhpoxo ERB petald twv @iitpwy.
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Chapter 1. Extetapévn neptindm

IToAuZwvixode Alaywelopmog

O nolulwvixdc draywpetoude v to Conv-TasNet eivon epnvevouévoc and to MMDenseLSTM [63],
€vol LOVTENO ToU TETLUYE TOAD XOAd amoTeAéopaTa 0TO TEOBANUA TOU Sl wetolol wvic. To povtélo
auT6 AeltoupYel GTO YPOVOSUYVOTXG TED(O, YwElloVTAS TO QUOUATOYEAUPTUN OE TOAATAES CUYVOTIXES
Coveg xou enegepyalopevo v xde Lovn Eeywpelotd. Ipoxewévou va dnulovpyniel uio topduola ap-
yrtextovint) oto Conv-TasNet avtiyetomilovye TNV avamopdo ooy ToU TURAYEL O XWIXOTONTAS oAy
Evot AavIdvoy QaoUaToYedpNUaL, POy TEOXELTAL YO [ULol OLOBLAC TAUTY) AVATUQRAGC TUCT), ATOTEAOUUEVY) Ao
TOAAG. XAVAALYL LOVOBIAC TATOY YAURTOV YULUXTNELOTIXWOY.  AUTHY, AOLITOY, 1 avanapdoTtaon ywelleto
XATE UAXOS TNS OLAG TUOTC XAVIAMY TROXEWEVOL Vo dnpLovpynioly @ {hveg w; € RBiXL/,i =1...0Q,
omou B; o apududg Ty xavohidy mou avatideviar o xdde (v, NnueidveTton 6Tl xdde xavaAL 6V
avTiotoly(leton ot anoxheloTxOTNTA o Wat LV, ohhd avTIETWS UTopel VoL CUUUETEYEL OE TOAAEG
Covee. Autéc ol Loveg mpowdolvton oe Q) BloywELoTES, 0 XUEVOSC EX TWV OTOIWY TUPAYEL TOV avTio-
TOLYO TUVAXOL HOOHGDY. 200G VoL OL BLoyWELeTES VoL €EELBIXELTOUY GTA CGUYXEXPWEVO XAVAALaL TOU
OEYOVTOL Xl VO BEATUDCOLY TNV IXAVOTNTO Ol WELOUO0 %L dpat T1 GUVOAXT| €Ttid0oT) TOL YoVTEAOU. 2T
GUVEYEOLY, Ol TVUXEC GUVEVHVOVTOL XATA UAXOS TNG OLAG TUOTEG XAUVOALGY TROXEWEVOU VOL ATOXAUTOC To-
Vel n Budotaon xou petd eneepydlovian and éva mAfpws ouvdedepévo (fully-connected) eninedo. To
UTIOAOLTIO BIXTUO UEVEL AMUPIAAUXTO. LTNV TEPITTMON Tou Xde xorvahl avartiieTon amOXAELCTIXG OE Wial
Codvn autd To TEREUTALO ETUNMEDO TUPUAEITETOL.

Separator

—){ Concat ﬂ

FullyConnected

LL L

.

Input Source
mixture | Encoder Decoder |—» Signals

Separator

Eyfuor 1.3.3: Mmhox dudrypoppo Tou tolulomvixod Sy wetopo. To xdxxava otouyeia
XENOWOTOLOUVTAL HOVO OTOY 1 xaTovoun) xovady oe {odveg dev etvon 1-1. To xdxoava Bérn delyvouv
OTL éval xovahL umopet va sovel w¢ elcodog ot 2 BlaywpeloTEC.

1.3.3 Ileipapotixry Adtadn

[ ta tewpduata yenotwonothinxe 1o ovvoho dedopévewv MUSDBIS [50] pe tic Biec WBotntec e
TELY, ahAd e 86-14 Biaywpetopd oe dedopéva exnaldevone xat enodfdevone. (¢ emadinon Sedouévey
yenouonotfiinxe 1 dtodixaoia and to [67]. Buyxexpwéva, to tporyoldia, Ue piot tdavotnta, ugpioTovtal
METABOAT pdong xatd T xan oAhoyt| Twv 000 xavahiwyv. Eniong, yenowonowinxe ypovixt| yetotodmion
€WC 2 BEUTEPOAETTWY Yo XGE GUVIGTWON TOL PelyUaTog EEYWELOTA Xat €x VEou cUvieaT Tou uelyyotog
UE oUVIOTOOES amd dropopeTinés aptidec (batches). ‘Ohot autol ot yetaoynuatioyol yivovtar xatd
Oudpxetla TN exnoldeuong, Ue anotéheoua éva LexmpeloTd olvoho exmaideuong xdlde enoyr, to omolo
Behtidver ) dradixacio Te extaideuone, anogedyovtog gouvoueve unepexuddnone (overfitting).
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1.3. Conv-TasNet

IMewpdpata pe tnv IToAuvlwvixy Apyrtextovixm

Ye autd 1o oet mepaudtov extoudeltnxay 5 povtéha (B1-B5) mou nepthaufBdvouy tov molulwvixd Bi-
ayweoud yio 150 enoyég. O diotnTeg Twv poviéhwy teptypdgovtal otov Ilivoxa 1.3, to amotehéopota
gotvovtar otov Ilivoxa 1.4, eved to Uyhua 1.3.4 napouctdlel TNy andxpiorn cuyvoTnTag Twv GIATewY Tou
xwdwononTh yia xde povtéro. Ta giltpa Tou xwdononTh elvar ywpelouéva e Bdon Tov dloywelo T
GTOV OTOLO XOTUVEUOVTOL.

Model | #params | #bands (@) | Bottleneck Coefficient | Full Band
B1 6.55M 1 x1 X
B2 6.47TM 2 x1 X
B3 12.87TM 2 X2 X
B4 6.51M 4 x1 X
B5 6.61M 3 x1 v

Mivocog 1.3: Aprdudc napauétpemy xou apyltextovixég Aentouépeleg Yo to B yovtéha. O ocuvtekeothc
onuelou cuuPdeNoNg yenowonoteitar yia va ocdAdEet To péyedog Tou onueiov cuupodenone xdie
LY WELOTH, TTIOU XOVOVIXA TaLEdlel e TOV opldud TV XovoAdy TS {OYNG TOU ELGERYETOL G AUTOV.

Bl [14] | B2 B3 | B4 | B5
SDR | 581 | 6.37 | 611 | 6.05 | 5.94
Voc. SIR | 14.13 | 14.25 | 14.69 | 14.61 | 14.23
SAR | 659 | 7.12 | 659 | 6.98 | 6.78
SDR | 11.78 | 12.21 | 12.47 | 11.66 | 11.76
Acc. SIR | 16.01 | 16.69 | 16.76 | 16.04 | 16.01
SAR | 1424 | 14.52 | 14.25 | 14.10 | 14.37

ITivoxag 1.4: Anoteréopota Twv ToALlwvixwy metpopdtony. Ol évtove Twég delyvouv Ty xahltepn
enidoomn. Ot vnoypauutopéves Tyég delyvouv wa otatiotixd onuovtxd Beitioon (p=0.01) évavtt Tou
Baowol poviéhou Bl.

Ta 800 SWllwvixd povtéha B2 o B3 netuyaivouv tnv xolUtepn enidoon puetadld OAwv Twv HOVIEAWY,
ue o B2 va ebvan Alyo xaddtepo otov gwvntixd SDR xou to B3 otov opynoted SDR. O anoxpioeig
CUYVOTNTOC TWV PIATEWY TOV BLoyWELETOY HOLELoUY Tdpa TOA) XL ETOUEVWS GUUTERULVETAL OTL O GTOYOC
yio dnptovpyla eEEBXELUEVWY BlayWEWO TV, UE BAoT TN cuyvOTNTA, ENETELY DT, apod O XWOLXOTONTAS
enc€epydletar T €10600UC TOU %d¥e BloywEOTH UE Wiat Ouddo PIATEWY UE BLUPOPETIXG YoEUXTNELO-
wwxd. ITo ouyxexpipéva, ota Lyfuata 1.3.4b)-c), o évac daywetotic hafdver Teptocdtepa ilTpo Ue
LVPNAOTERT XEVTPIXY CUYVOTNTA, EVK O JANO TEPLOCOTEQO UE YOUNAY XEVTPIXT] CUYVOTNTA, UXEOTERO
e0pog LOvNne xan uixpotepn evépyela. BéBaia, onueiwveton 6Tt To B3 €yel dimhdolec nopauétpoug amd To
B2, emopévee n avgnuévn exppoac tixdtnta eContiag tne dimhdotog Sidotaone B dev odnyel og xahltepo
OLay WELoUO.

To yovtého ye Tig 4 Lwvee, B4, Eenepvd oe enidoon 1o Poaoind, B, adhd oy ta povtéha ue Tic 2 {dveg
B2 xou B3. Auté umovoel 6TL 1) Yprior TEpLOGOTER®Y Bl WELo TMY TPOXEWEVOU AUTOL Vol Bl ELRLo TOVY
0TEVOTERES LY VOTIXEC (veg BeV xAaxwvel xohd. H yauniy entoon Yo unopoloe vo anododel xou
GTOV UXPOTERO 0ELIUO XOVOALKDY OV amodldovTon o€ xdde Blaywelo Th, xomS XAl OTO WXPOTEQO UEYE-
Yog g ddotaong B, mou yenowono\inxe yio va xpatniel o apriuods Twv TopauéTeny oTolepoq.
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256 128 128 64 i 128
1
64
: g 1 g ! £ £’
- 5 128 5 128 g * 5128
= i = i £
1
64 i
1 1 1 1 1
0 11025 0 11025 0 11025 0 11025 0 11025
Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)
(a) B1 (b) B2 (c) B3 (d) B4 (e) B5

Eyua 1.3.4: Avoamapdotao v gilTewy Tou xwdomonT 6To Tedlo TS cuyVOTNTOC Yol To
ToALlwVixd ovTéla, oUUPwva Ue Tor plATeo Tou dEyeTal xdde dloywplothc. To gliteo xdde Lodvng
€youv todivouniel e ad€ouoa CELRd WS TEOC TNV XEVTPIXTY TOUG GUYVOTNTA..

Ovoctaotind, dewpolue 6Tt xadde 1 TANpogopla Tou eivar Slodéotun yior x3de SloywELO T UEWDVETOL,
auTol BUoKOAELOVTAL Vo GUYXAVOUY aveldptnta o xohéc Aoelg mou Pootlovtal 0Ty amoxAeloTix
TAneogopla mou Sladétouy, apol dev €youv enlyvwor Tou TL poaivouv ol dhhol Blaywelotés. ‘Etat,
XATOATYOLY VoL €E8YOUY ETXAAVTITOUEVES TTANROYORIES, THaviS TeplopllovTag TN GUVOMXY LXAVOTNTA
Bloywplopol. Autd @aiveton xou amd TS ATOXEICEC CLYVOTNTIUC TWV PIATEMY TOU XWBIXOTOMNTH, APOU,
Topdho Tou ot 2 pecaleg Lwveg déyovton piktea pe EeywploTég WIOTNTES, oL 2 axpoleg {Wveg BEyovTon
piATEo TOU XAAOTTOLY TEP(TOL TI (BlEC CLUYVOTNTEC.

To povtého mou emmiéov enclepydleton OAn TN Aavddvouca avamapdotacy, B, xatéypade awcintd
UXEOTERX OMOTEAECUOTA OO TOL 3 TEONYNOUKEVA LOVTEAX, OE OREC TIC HETPES exTOC Tov SAR. Auto
lowg ogelieton 6TO OTL ) eMe€epyacioa OANG TNE avamapdoTaoTg, Tépa and Ty Leywplo T enclepyaoia
TV {WVOV, aXUEGVEL TNV ovOTNT eEEWBIXEUONE TWV SlaywEloT®Y. Autd @aiveton xou and To Lyrua
1.3.4-e), 6mou, ov xou LTdPYOLY XdmoleS dlapopés YeTall Twv Qlhtpwy Tou avotilevtar oe xdie di-
AYWELOTY, TO PAUVOUEVO BEV €lval TOCO EUPAVES OO0 OTIC TEPLTTOOELC oL OEV LTHEYE 1) enedepyaoia
OANG TN avamapdoTaoTg, OnAadY ota wovtéda B2 xan B3.

IMTewpdpoata pe IToAvlwvixod Atayweiopol pe AtagopetixoVs Kwdixonowntég

poxewévou va eheydel n evehi&io g TeVIXAC Tou TOALLWVIXOD BlayWELOUOY, GUVBUALETAL UE TOUC
0L0 BLaPOPETINOVE XWOIXOTOINTES oL avapépdnxay topamdve. O Ilivaxag 1.5 Selyvel tnv meprypagy
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1.3. Conv-TasNet

Z 4 z Z 4 ’
TWV EXTUOEUPEVWY HOVTEAWY ot o Iivoxag 1.6 ta anoteréopata. Ta C yoviéla yenowonololy Tov
LOYVEOTERT) XWOLXOTIOLNTH xou EXTUOEUTNXAY Yo 150 emoyée, evdd toe D yenowonolodv tov xwdixonontn
ue ouoTolyla QiATpwy gammatone xou exmoudevTNXAY Yiar 250 emoyéc.

‘Ocov agopd ota C povtéla, nopatneolue 0Tt Ta anoteAéopata Tou C2 elvon xovtd oe autd Tou Bactxoy,
C1, eved 1o C3 €gepe yewpdtepa anoteréopota. AT’ outd eEAYETOL TO CUUTEQUOUA OTL TOL Y UROXTNELGTLXS
TIOU TOREYOVTOL ATO TOV LOYUPOTERO XWOLXOTOLNTY| BeV elvon ouuBatd ue Ty Tohulwvixt| Teyvixy. Auto
UTOPEL VoL OPEIAETOL OTNY ETEPOYEVEL TV YOQUXTNELOTIXWY, ONAXDT dp’EVOC GTO OTL TPOERPYOVTOL Ao
2 BLPOPETIXG LOVOTIATIO ETEEEQYAOIOC UE EVIEANDC DLAPORETING YAURAXTNELOTIXG XAl 0p’ETEPOV GTO OTL
Tor 800 povordTia 8ev dnuLoupYolV Uia eviada cucTolyla QIATewy, O6Twe oTov apyxd 1 otov MP-GTF
XWOOTONTH.

H Swpopd otnyv enidoon towv poviéhwy C2 xan C3 anodideton oto OTL 1 emituyior TOU LoYUEOTEPOL
xwdxomont Baclletol 0TO GUVBLACUS TWV YEOVIXAOY UE T YPOVOCUYVOTXY YapuxTneioTixd. Etot,
0 YWEWOUOS TV 800 UOVOTUTIOV YAUPUXTNRIC TIXWY Yot TNV eNeepyaoia TOUC amd BLopopeTixols Ot
aywELoTEG, 6To wovtého C3, meptopilel Ty enidpact xou To 6QPeROC TOU xWOXOTONTY, o€ avtiicon e
10 C2 Tou Ta YoEoXTNEIC TG GUVEVKOVOVTAL Xo UploTavtan enelepyacio oha wall, Telv ywpeloToly ot
COVES YL TOUC BLOPORETIXOUC BLo WELO TEC.

‘Ocov agopd ota D yovtéha, n xdpla mapoatienon eivar 6TL 0 opynotewdg SDR elvon onuovtind youn-
AoTepoC amd xdde dANo povtéro. Autéd mbavotata oyetileton Ue To 6TL 1 cucTotyia PIATEwY gammatone
elvon oyedlaopévn va poviehonolel TNy avipdmive olthio, avti TWV NY®Y TV HOUCXGY opyavey. Katd
T'dMha, To povtého D4 etvon to xolUtepo petol twv D povtéhwy, pe 5 amd Tic 6 uetpxég va elvon
apxeTd xohltepeg. To D3 €yel Tov peyahitepo opynotewd SIR, adAd ev yével yétpia enidoor), eve To
D2 éyel oyetind yétpta mpog xaxh enidoom.

Model Description #params
C1 Stronger Encoder Baseline 7.28M
C2 Stronger Encoder + Multi-Band, Q = 2 7.22M
C3 Stronger Encoder + Multi-Band, Q = 2 + Split Feature Paths 7.07TM
D1 MP-GTF Baseline 6.52M
D2 MP-GTF + Multi-Band, @ = 2 6.44M
D3 MP-GTF + Multi-Band, ) = 2 + Channel distribution based on phase 6.44M
D4 MP-GTF + Multi-Band, @ = 2 4+ Channel distribution based on linear layer 6.44M

ivoxag 1.5: Aprdudc napapétpmy xou apyttextovixéc Aentouépetes yia to C xou D povtéra.

H Boaown diapopd TV TELOV HOVTEAWY EIVOL 1) XATOVOUY TWV CUYVOTIX®Y OLUCTNUITWY TOU 1 OUC-
Totyto xohOmtelL o {wveg yio Toug Slaywelotéc. Iho ocuyxexpwéva, oto woviého D3 ot Soywpelotég
OEYOVTOL CHUATO TTOU TEPLEYOUY OO TO GUYVOTIXO TEQLEYOUEVO TOU dpyx0) CHUATOC, amhd 6TNny xdie
TeplnTwon o opaTa €youv unooTel emelepyaoio ue @ilteo YeTnhc 1 apvnTixnc pdong. Kplvovtog ex
TWV AMOTEAEOUATOY, oUTO Bev @aiveton var dnutovpyel xdmola e€eldixeuon GToug BLoyWEIG TS, YEYOVOS
mou odnyel ot oxédn OTL mpoxeévou va undplel eeldixeuor Vo TEEMEL VoL UTAEYEL ULol TIEQLOPLO-
pévn emhoyy| @dopatogc oe xdde Lodvn. Xty eviehde avtidetn micupd, To woviého D2 xatoavéuel ta
xavéhia pe Bdomn xadopd T cuyvoTTa TwV QIATeWY, YwellovTag TNV avamoedoTocT, G YounhY xou
YNy ouyvotnTa. Autd eniong @alvetar Vo anoTeAEl TEOYOTED Yiol TV BLoyWELOTIXY XOVOTNTA TOU
otOou, o éviovn and v nepinTtworn Tou D3, unovodvtoag 6Tl Tapdio Tou oL Slaywelo TEC Yeetdlov-
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C1[56] | C2 C3 [[D1[55] [ D2 [ D3 | D4
SDR| 6.39 | 636 | 624 || 555 | 531 | 549 | 5.69

Voc. SIR | 14.39 | 14.92 | 13.84 || 14.96 | 14.92 | 14.63 | 15.06
SAR| 6.82 | 7.09 | 7.25 || 7.28 | 7.09 | 7.23 | 7.39
SDR | 12.23 | 12.03 | 11.78 || 8.06 | 8.03 | 7.99 | 8.09

Acc. SIR | 17.57 | 17.51 | 17.08 | 18.40 | 18.14 | 18.56 | 17.77
SAR | 14.20 | 14.07 | 14.25 || 14.65 | 14.57 | 14.64 | 14.94

Hivaxog 1.6: AnoTteAéopota TwV TERUUETWY UE BlapopeTixols xwdxonontég. Ot évtoveg Tég
UTOBEVOOUY TIC XUAUTERES EMBOCELS OE Xd¥E oUdda LOVTEAWY. Ol LTOYEUUULOUEVES THES Belyvouy
cattiouxd onuavtixh Bertiwon (p=0.01) we npoc ta Pacxd povtéha tne xde ouddog poviédny (C1

yio ta C povtéda, D1 yio toe D povtéha).

Ton €vol TEQLOPIOUEVO €Up0C (WVNE TEOXEWEVOL Var eZEBIXELTOUY, O TEPLOPLOUOS AUTOC BEV TEETEL Vol
amoxAelel xdmola GLYVOTIXE Blac THATY, Xxad®g umopel va ebvar yerowda yior T dtadxacta dlay wELoHoU
GAwv dlotnudteny. Télog, To D4 pe 1o evoldueco yoouuixd eninedo gofvetar 6Tl emwpeleital and Ta
TEOTEPAUATA TWY 0VO0 GAAWY HOVTEAWY, POV AOYL TOU YROUUIXOU UETACY NUATIOUOV, XAVE Bloy WP THG
€yel TN SuVATOTNTA VoL ETAEYEL XoL VoL GUVBUALEL TIg GUYVOTNTES XATd TO BoxoVV, TETUYalvoVTC ETOL
TOAD XOAG AMOTEAEGUATOL.

‘Ocov apopd xou oTic 800 OUEBES TERUUATWY, CUYXEIVOVTAC Tal «XoA0TEPOY LOVTEAX amd xdde oudda,
tor ovtéra C1 xan B2 elyov v xahOtepn enidoon otov SDR xou yia tig 8o mnyég, Eenepvidvtag To
apyo wovtého Bl, oe avtideon pe to D4 mou €pepe yeipdtepa anoTeAéoUoTa OE QUTH T METEIXY,
ed yia To opyNnoTtewd xouudtt. [lapdNautd, ooy apopd Tic utdloireg Yeteinés, To D4 metuyaivel
am6 Alyo €wg mToAD xohOTERES TWES amd OAaL ToL LOVTERAL.

Yuvodilovtag, 1 toAulwvixy teyvint| amodelydnxe evepyetiny| yior Tn Poctxr apyitextovixy, OnoTE TUo-
TeVOLUE OTL TRETEL var TepthopBdveTton oe exdoyéc tou Conv-TasNet. Xyetixd pe Toug 500 XWOIXOTOL-
NTES, O LOYVEOTEROC XWOXOTIONTAC TEOCEPERE Lol UEYIAT BEATiwon oTnVv eNBOCT OAWY TOV UETEXOY
XL €QOcov Eemépaae xou Tov xwdixomouth e Ty MP-GTF otny mo onuavtiny yetewnr], tov SDR,
elvor Toh0 mdavo var pmopel vor oupfdher ot dnwovpyia evog Conv-TasNet povtéhou pe xopupaleg
embooelg. Axdua xi €tol, motebouye 6TL 0 MP-GTF xwdwomnointig unogel var elvon pior EAXUGTIXN
emAoyY, xdeic oTic TOAD LPNAéC emBoaEIC OTIC PETEIXES eXTOC Tou SDR, oTo 611 €xel mpoxadoplopévn
dopn xau dev emnpedleton and TNV eXTABEUOT TOU HOVTEAOU XS oL GTO OTL QaiveTon Vo efvon oEXeTd
EVEMNTOC X0 VO UTOREL VoL GUVBVAGTEL PE BANES TEYVIXES, OTIC UE TOV TOAULWVIXO Bloy WELCUO.

1.4 >Ovodn xaw MeAloviixég Enextdoelg

Ye authy TNV epyacio mpaypatonot|Inxe Ui AETTOPERELXT] EPEUVO GTO TEOPBANUA Tou Aoy elouol
PwvnTiney xou Eyvay TElpduaTa U BV dnuoguielc xat emTUYNUEVES apyttexToViXéC Badéwv Neup-
VoY Awtdwy, to Wave-U-Net xouw to Conv-TasNet.

Avapopd oty mpdTn apytteXToVXY, eEETACTNXE TO Baowd HovTéro xou eEAEYyUnxe 1 enidpaor Oid-
POPWY AAAAYMV X0 ETEXTACEWY TOL Ely oy TpoTael GTNY apEyLxY| xaL o GAAEC epyacieg, oty eldooY
tou. ITo ouyxexpuéva, petald Ty ahhoy®y Tou tpotddnxay oto [61], tpayuotonotinxay Tewpduota
UE TO YEYOAOTERO TAGIGLO ELGOBOU YLl To GUVENXTIXG ETUTEDA, WULal TEYVIXY| TOU YpMoyloToteltal yior va
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1.4. Xovodn xou Mehhovtixéc Enextdoeig

ehaylotomoinloly oL apvNTIXEC GLVETELES TNE Yerone padding otnv apyttexTovixy, xou To eninedo e&o-
00U UE UTOAOYLOUO Blapopdc, To ontolo eMPBAAEL Evay TERLOPLOUS GTO ENIMEGO €650 YLOL VoL ATAOTIOLACEL
™V exnoideuon. Lyetind e enextdoelc and dhhec épeuvec [29, 56|, evonuatdyInxe 1 yphomn avadeouxol
dutdou oTo onueio cuuPoenomg, Yo va EAEYy Vel xatd téco Yo unopoloe va Bondoel oty eneep-
yaoio axohovhoxdv Se00UEVKDVY, Xxou avTIXaTao Tadnxay To uTdpyovTo umhox eneepyactag ue ovtio-
Totya ou eqopudlouy DWT otoug ydpeTeg yopaxTnelo TG, UE OXOTO VoL AVTIUETWTLO TEL TO TROBANUA
e emxdAuvdng xon Tne amwhietog TAnpogoplag. To anoteréopota €deilav 6Tl 1 yenon ueyahdTepou
mhauciou €106d0ou, o GLVBLACUS e T urhox enelepyacioc ue DWT Bedtudvouy Ayo, ok oucintd
TNV enidoom Tou aEyIxol povTéhou. AvTtidétwe, yia Ti¢ dAAeg 600 aAlayéc Tor amoTeAEoUaTA BEV Elvon
apxeTd Eexdiopa L emouEvie dev unopel va e€oydel xdmoto cuunépacua.

Avagopd otn deltepn apyitextovixr, To Conv-TasNet, éyivay Tpelg opddeg TeEpoUdTOY. LTNV TEKOTN
ouddaL, TEOTAVNNUAY UEPIXES TEWTOTUTES AAAAYES OTO apyind HOoVTERO, Yo va Bpedel plo amodotixr kot
vaavahulet eig Bddoc. Tho ouyxexpiuéva, mtpoTtddnxoy 6V0 APYLTEXTOVIXES TTOU YENOWOTOLO0Y TOANATAL
Conv-TasNet, cuvdedeuéva TopdAAN QL oL €V GELRA, W 0EYLTEXTOVIXY Tou dAAalE TOV BlaywELoTH,
YwplCovTdc Tov ot TOANOUS BlayweloTEG PE BAoT Toug BEXTEC BIICTOANC X0 OE [LOL EYLTEXTOVLXY| TTOU
YENOWOTOLEl TOAATAOUE BlaywEloTEG ToU EMEEEPYALOVTOL XOUUATIO TG AvIEVOUCHS AVaTAEdoTACTG
Eeywplotd. ‘Oheg oL ahhary€g exTOC TNE TEAELTALOC ATEBWOY TO (B0 1) YELROTERA AT TO dPYIXO UOVTERO,
ToU oNpaiVeEL OTL (TE Elvon Un AELTOURYIXES 1) TEETEL VoL EVOWOUATWIOUY UE BLUPORETIXG TEOTO.

H tekeutodor odhory?), 0 moAulwvinde Slaywpelouds, €pepe uétpla €mg XOAS ATOTEAEGUOTO XL ETOUEVLC,
oTN OEUTERY] OUAON TEWUUATWY EXTEAECTNXE TEpaLTERL avdAucT. Ta metpduata nepthduBovay arioy
TV apliud TV Lwvoy xor oAy OTIC UTERTORUUETEOUS, Yia Vo EAEYOEl 1) amoTEAEOUATIXOTTA XouL 1)
xhpoxoootnTo TS TEYVIXC Tor amotedéopata €del&ay 6TL, avdhoya Ue Tig pUINIoEC UTERTOEOUETEWY,
emTUYYAveTan olloonuelwTn e€eldixeuon o xdde BlaywEIoTH, OTWE ATAV XL O JPYIXOS OTOYOS, XOo-
VO TOVTOG TNV TEYVIXY ETLTUYNUEVT).

Y10 teheutalo PEPOC TWV TERUUATWY GUVBLACTIXE 0 TOALLMVIXOS Bl WEIOUOC UE BUO BLapopeTiXolg
AWOLXOTOINTES, €vay Loy LEOTERO XWOXOTONTH omd To [56] %t évay mpoxatopiouévo xwdixonotnty| gam-
matone ané To [46], Tpoxeévou vo ehey Vel xotd TG0 1 TEYVIXH UTOREL Vol YEVIXEUTEL YE GARES EXBOYES
¢ Paoinhc apyitextovinic. Ta anotedéopata frav cuyxpoudueva, xadng 1 enidpacT TNG CANXYHS HTOY
EVERYETIXY YId TOV BEVTERPO XWOXOTOUNTY Xai Aoyt Yio Tov TpwTto. H e€fynomn mou 869nxe €yxeito
GTO OTL 1) BOUT| TOU TEWTOU XWOIXOTONTY, Ot avTiUeon e auTH) TOU BEUTEPOU, BLUPEPEL OPXETE Ao TN
dour| Tou apYxoL, GE GYEOT UE TN YUOT TWV YPNOULOTOOVUEVOVY YOQUXTNOIO TIXWY, EQOCOV GE QUTHY
TNV TEPIMTWON TROEPYOVTOL TOCO ATd TO YEOVIXO GGO XL TO YEOVOCUYVOTIXO TEDLO.

Eyetind pe tov toAulwvind dloywpeloud, wa LeAovTixn épeuva o umopolce va EGTIIoEL TN YOO TNS
TEYVIXNG, EQEUVAOVTAS TIG WOLOTNTEC TOU AoVUAVOVTA Y(EOU TOU ONULOURYELTOL OTO TOV XWOXOTOUNTY
xaL TN oyéon Tou Ue T¢ dlaywpetopévee Loves. Autod Va Boniroel otny xaAUTERT XATAVONON TNG
enidpoone g TEXVIXAC xou Yo umopoloe vor 0dNYNOEL OE Wial XOADTERT] ETAOYY| TWV UTEPTOQUUETEMY
NG AELTOURYWVTAC EVERYETIXG YLOL TN CUVOALXY| ETBROCT, TOU HOVTENOU.

Axdun, wa eviiagépovoa xatediuvarn épeuvag eivon 1) onutoveyia Twv {wvey TwV BLoywelo TV Yelpoxiv-
ne, ovtl TG oawToUaTNG eVpeomg Lwviy Péow Tng exntoldeuong, omwe tpa. Me autédv Tov TpdTo. ot
Cveg Bo umopolooy Vo XUTAGXEVAG TOVY HOTE VoL €Y 0UV GUYXEXPWEVES LOLOTNTES, TOL Vol UToPoUCAY Vo
BIELXOVYOUY TN BladLXACToL Bl WEIGUOV YEVIXA 1} VO TNV TEOGUQUOCOLY GTIG OVEYXES LAl CUYXEXQULEVTS

EQoppoYTC.
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Chapter 1. Extetapévn neptindm

Téhog, Yo unopoloe va gpeuvnidel oe mowo Bodud 1 mEoTEWOUEYN TEYVIXY UTOREL VoL YENOULOTOL -
Vel Ue GAAEC dPYITEXTOVIXES YLOL DL WELOUO CNUATWY TOU EYOUV T1 SOUT XWOXOTOLNTH-OLoy WELOTY-
anoxwdixomointh. Autd Yo unopolce Vo 0ONYNOEL GTNY EVOWUATWOT| TNE TEYVIXNS OE JAAESC EQUOUOYES
NYNTLHOU DL WELOUOY, OTIKS O DL WELOUOS LOUCIXWY CNUATLY 1} O Sl weloudg outhlog.
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Chapter 2. Introduction

Artificial Intelligence (AI) is an exciting field of computer science, which is receiving increasing
research attention in recent years. As a whole, Al consists of the research, development and im-
plementation of algorithms and systems that enable computation machines to think and act like
humans, by receiving information, processing it and acting based on it, in order to solve a certain
task. Nowadays, Al is used seemingly everywhere, with applications ranging from recommendation
engines in online platforms and chatbots for customer support to speech synthesis software and self-
driving cars. As many applications require the processing of sensory input, respective subfields of
research have been created, like computer vision, which deals with the modelling of human vision and
the understanding of visual stimuli, and computer audition, which is related to the understanding
and analyzing of sound.

2.1 Problem Definition

A common problem in digital signal processing (DSP), which is the focus of much Al research, is

that of source separation.

Source Separation can be defined as the process of decoupling the various source signals that make
up a given signal mixture, in order to either eliminate any unwanted interferences of a single signal
of interest, or to isolate the source signals for further processing. The signals can be of any nature,
and hence there is a source separation task for images, audio signals or even electric signals, e.g.
during electroencephalography (EEG).

Source separation overlaps partly with the signal denoising problem, because we can model the
noise as a signal of the same nature as the signal of interest, generated by a different source (noise
generator). Nevertheless, source separation primarily focuses on separating "proper" signals, as
there are existing techniques that work extremely well on the generic denoising problem.

This thesis deals with a specific case of audio source separation, namely blind singing voice separa-
tion, in which the mixture is a music song. The goal of the problem is, given the mixture and no prior
information of the sources (such as music genre, number of singers, type of instruments, microphone
information etc), to separate the vocal component from the accompaniment, which is comprised of a
mix of instruments. The problem is closely related to music source separation, which performs fur-
ther separation of the mix to the participating, individual instrument signals, and speech separation,
which tries to isolate the speech of individual speakers from a multi-speaker environment.

The problem of singing voice and music separation has many applications, starting with the most
apparent one, which is the isolation of the stems of a song, that is the individual source components
that make it up. These stems can then be used to create new remixes, a process that is common
for DJs and in the electronic dance music scene. Also, the isolation of the instrumental part can
contribute to the automatic generation of instrumental versions of songs that interest a significant
part of the music audience and are essential for the karaoke industry. Finally, the separation of
the participating parts can be used as an intermediary step for many other applications, such as
automatic lyrics transcription, singer and music genre identification, generation of spatial effects by

source manipulation, music information retrieval, sound denoising for hearing aid devices and more.
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e o | e,

Figure 2.1.1: Overview of the music source separation problem [1].

2.2 Challenges of this Task

Singing voice separation is closely related to the cocktail party effect, which is the ability of the brain
to focus its auditory attention on a single source, fully filtering out and thus ignoring the others
[9]. Consequently, due to this "selective hearing", one can effortlessly take part in a conversation
happening in noisy environments, with many distracting sounds, such as a cocktail party, hence the
name of the effect. The main reasons that the brain is so successful at telling audio signals apart
or distinguishing between different types of audio signals are, on the one hand, the structure of the
human auditory system, which provides several cues that facilitate the sound localization and, on
the other hand, the innate ability of the human brain to subconsciously model and understand many
aural features. Regarding the first point, the source location can be used as a sound filtering criterion;
by estimating the direction and the proximity of a sound source, one can ignore distant or ambient
sounds, and amplify closer or spatially focused sounds. Regarding the second point, the human brain
can distinguish a rich set of characteristics of audio signals, such as the loudness, the tone, repeated
patterns etc, that can be used to filter information. Additionally, regarding speech, humans can
use their communicational skills and language knowledge, like the body language, the vocabulary
family etc, to further refine the distinguishability of sounds, by adapting the innate language model
according to the occasion. As a result, the brain is able to make context-aware assumptions about
the upcoming words in a sentence, thus making it easier to filter out non-appropriate sounds, match
sounds to phonemes and even completely fill in missing words [34].

Unlike the brain, in the current problem, the computer lacks all this information, so many difficulties
can be observed.

First and foremost, music has an irregular, unstructured nature. Depending on the instruments
used, the singers’ voices, the melody, the tempo and the combinations of them, based on the music
style and the artists’ preferences, there is an infinite number of audio mixtures, which differ vastly,
that could legitimately be considered as "music". So, it is impossible to base the separation on
rule-based techniques, although they have been proven very useful on tasks involving language [28],
which is another infinite, but heavily structured, human construction.
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Chapter 2. Introduction

Another difficulty lies behind the fact that either the sound mixture is monaural, meaning there is
only one sound channel, or, in the multi-channel case, there is no information on the microphones
used for recording. This raises a problem, because there is not enough information to localize
the sound sources, cancelling the ability to apply spatial filtering by, for instance, beamforming
techniques, as in [6].

Lastly, a key challenge arises from the fact that the source signals in music are highly correlated.
Therefore, there does not exist a simple, reliable feature, like the signal frequency or the signal
amplitude we can use as a discriminator factor, to separate the source signals. That is not the
case in many signal denoising tasks, in which the noise can be modelled to have certain statistical
characteristics, which enable the use of many DSP techniques, like Wiener filtering.

2.3 Goals and Contributions of this Thesis

In this thesis, a meticulous research on the existing techniques in the field of singing voice separation
is carried out, focusing on the newer techniques, which employ deep neural networks and are currently
the state of the art, as the provide the best results. The contributions of this research can be split
into two major categories, matching two basic architectures and are the following: Regarding Wave-

U-Net,

e We incorporate several existing modifications and test their synergy and their impact on the
performance.

Regarding Conv-TasNet,

e We reproduce and train an implementation of Conv-TasNet, an architecture that yields state-
of-the-art results in music source separation.

e We propose several extensions to the model, focusing on a multi-band extension, which splits
the separator latent space into latent bands and dealing with each band individually, using
multiple separators.

o We investigate the scalability of the proposed technique, using multiple numbers of bands and
two different frameworks.

e We combine the proposed technique with a better encoder and a fixed filterbank to test its
modularity.

2.4 Thesis Outline

The rest of the thesis is organized as follows.

e In Chapter 3, we provide the theoretical machine learning and signal processing background
that is necessary for the full comprehension of the different techniques and the intuition behind
them.

e In Chapter 4, we present an overview of the previous and related work in the field. We start
off with some traditional techniques and then move to more recent work, that utilized deep
neural networks (DNN). Also, we attempt to categorize the various DNN techniques based on
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some fundamental criteria. In this chapter, we also present our database, MUSDBI18, and our
evaluation protocol.

In Chapter 5, we provide an overview of the Wave-U-Net architecture and present the research
and the experiments performed.

In Chapter 6, we present the Conv-TasNet architecture and introduce our modifications to-
wards improving its performance. We also display and discuss the results from three sets of
experiments.

In Chapter 7, we draw some conclusions regarding the contributions and results of the thesis
and we discuss our thoughts on potential future extensions.
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3.1. Machine Learning

3.1 Machine Learning

Machine Learning (ML) is the field of research that focuses on teaching computers to learn from data
and improve with experience in order to perform certain tasks, instead of explicitly programming
them to do so. Of course, it must be noted that the motivation behind the development of ML
is not that humans lack the willingness to solve certain tasks. On the contrary, the constantly
evolving world has raised needs and applications that involve tasks whose mathematical modeling
is overly complex for humans to solve analytically. Nowadays, ML is present in a wide variety of
applications, such as computer vision, image classification, sentiment analysis on texts and images,

face recognition and many more.

In a high-level approach, a ML system can be seen as a single parametric function Y = f(X,¥6),
where X is the input matrix and 6 denotes the model’s parameters. The training process includes
calculating the system’s output when using samples from a given dataset as input, measuring its
performance and adapting its parameters in order to improve it. From this high-level rundown of
the way that ML systems work, we can see that each ML approach has four fundamental parts:

e The model itself, which is a parametric system containing a number of learnable parameters.

e The dataset, which is used for training and evaluation. In order to further check the gener-
alization ability of the model, the dataset is actually split in two disjoint sets, the train and
test set. This might be the most important part of an ML system, as it heavily influences
the performance of the model. A poor dataset that has either too few or not general enough
samples, can render a model useless for real world applications, where generalizability is of top

importance.

e A "performance" index, which is called "cost function" and numerically interprets how well
or badly the system perfomed its task. This cost function might be easily constructible or
even trivial for some problems (e.g. accuracy on a classification task), but may be extremely
difficult to find in other problems, due to the high level of abstractness of the output (e.g.
quality of generated human speech)

e An optimization algorithm that tunes the model’s parameters based on the output of the cost
function.

ML approaches can be broadly divided in three categories:

Supervised Learning

In Supervised Learning, the input is accompanied by the true output. Using formal notation,
for a given dataset D, the samples come in input-output pairs, forming the set D = {(xj,yi),7 =
1,...,N}, where N is the total number of samples. The task is to learn a function that maps the
input X to the output Y. In order to quantify how well the model fits the training data, a loss
function L : Y x Y — R20 is used as follows: for a sample (xj,y;i), the model predicts a value
vi = f(xi), and the respective loss is estimated as L(¥i,yi).

This approach has the advantages of making the training humanly interpretable and the system’s
performance easy to evaluate, by calculating several metrics/loss functions, since the correct output
is known for the dataset’s samples. On the other hand, supervised methods rely heavily on the used
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dataset, making them more susceptible to dataset mistakes and cannot extract hidden or unknown
information or assume an output that is missing from the dataset.

Supervised learning tasks can be further classified into two parts, classification and regression.

In classification tasks, the goal is to label the input data in two (binary classification) or more
classes. The classification can either assign to each sample one label (single-label classification),
or more (multi-label classification). A common example of binary classification is email filtering in

"spam" and "no spam".

Contrarily, in regression tasks, the system processes the input variables, also called "features", to
predict the output variable, which takes a value within a specific range. An example of regression
task is the prediction of a house’s price based on a set of features, such as house area, year of

construction, location etc.

One central problem in supervised learning is the bias-variance tradeoff that affects the two sources
of errors that cause a supervised learning algorithm to fail to generalize on unseen data, beyond the
training set.

Regarding the error, between an independent variable X and a dependent variable Y, we assume
that there is a function with noise Y = f(X) + ¢, where the noise, € has zero mean and variance o2.
As our system doesn’t know the true relation f, it can only find an estimate ]?(X), by optimizing
its parameters. Therefore, we get the equation Y = f(X) + €. Using a learning algorithm for the
model estimation, the expected mean square error can be written as:

o~ ~

Err((f(X) — f(X))Q) Bias(f(X))? + ariance( (X)) + 0% where
Bias(f(X)) = E[f(X)] - f(X) an
Vam'cmce(f(X)) =E[f (X)Z] [f( )]

The three error terms are separated in two categories; the irreducible error e which comes from
the problem itself and the reducible errors, bias and variance error, which are a matter of model
selection, based on the mentioned tradeoff.

Bias is the initial assumptions about the form that our model has to fit. In the context of training
data, bias can be thought of as how much we ignore them in favor of our initial assumptions. A model
with high bias can oversimplify our model, reduce its flexibility and prevent it from discovering the
underlying relation between inputs and outputs during training. Therefore, high bias models have
both high training and test set errors. On the other hand, variance is the variability of our model to
training data. In other words, it shows the dependency of our model to the training data. A model
with high variance can fit the training set very well to perfectly, but fails to generalise to unseen
data, leading to high test set error.

An ideal model would have low bias, so as to be flexible enough to fit well the training data, learning
the relevant input-output relations and low variance, so that it can avoid being too dependent to
training data and generalize well. Unfortunately, as it has been implied by the word "tradeoff",
these two parameters are not independent. Instead, they are the two sides of the same coin, that of

model’s complexity, and hence, minimising both bias and variance is not possible. On the one hand,
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High variance High bias Low bias, low variance

overfitting underfitting Good balance

Figure 3.1.1: Depiction of the bias-variance tradeoff |2]

a complex model has many learnable parameters and high expressibility, that is it can estimate a
wider range of functions. As such, it can overfit the training data, by accurately modeling both
the input and the noise, which hinders its ability to generalize. On the other hand, a simple model
has a few parameters, meaning that it can underfit the training data, that is to fail to model the
underlying function at all.

In order to check whether the model overfits or underfits and tune its hyperparameters accordingly,
it is common to remove a few samples from the training set to form the validation or dev (from
development) set. In a sense, this dataset functions as a hybrid; it contains samples that are used
to evaluate the model during training, but doesn’t participate in neither the training of the model
nor in the final testing.

Unsupervised Learning

In Unsupervised Learning the dataset is not accompanied by a label or a desired output value.
Instead, the goal of the system is to find patterns and useful correlations in the data by its own. In
contrast to supervised techniques, the unsupervised ones require simpler datasets, since they don’t
need any kind of data annotation, which constitutes the most time- and energy-consuming part
of dataset construction. A couple of typical categories of tasks that are solved with unsupervised
learning is clustering, where we want to find hidden groupings in the data, and dimensionality
reduction, where we want to create smaller and denser data representations from a high-dimensional
dataset.

Reinforcement Learning

Reinforcement Learning is very different from the other two methods, because it doesn’t involve
a fixed dataset. Instead, the system is given a set of allowable actions, rules and tools on how to
act in and interact with an environment. Also, it is provided feedback on its actions in terms of
reward and punishment, based on a set goal, score or potential end state(s). Then, the system is
left alone in the environment to learn on its own, by trying to perform the task repeatedly, building
experience in the process. This method is similar to trial and error that humans use in many tasks,
mainly those containing a fine use of motor skills. An example of reinforcement learning is teaching
a machine to play chess. Since providing the machine with a dataset containing all possible actions
would be inefficient, the program is equipped with the set of allowable actions, the rules and the
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finish condition and is left to practice. In this case, the rewards could be winning a game or capturing
an opponent’s piece.

3.2 Neural Networks

3.2.1 Introduction

Historically, Artificial Neural Networks or simply Neural Networks were created in an attempt
to mathematically model information processing of biological systems, by mimicking the structure
of biological neurons. Nowadays, neural networks are a class of models used in machine learning
that have proven to be very effective for multiple tasks.

3.2.2 Fully-Connected Networks
The Perceptron

A neural network, as its name suggests, is composed of multiple artificial neurons, often called nodes,

connected in a variety of layouts.

The perceptron is the simplest type of neural network as it contains just a single node. It can be
used to solve the task of binary classification of linearly separable classes. Although its applications
are very specific, it is worth mentioning, as it is the building block of a very valuable class of neural
networks, namely the multilayer perceptron, and it can help in understanding fundamental parts of

machine learning.

Using mathematical notation, given a vector of inputs x € R™ and an internal weight vector w € R",
n

the perceptron calculates their dot product, w-x = > w;x;. This value is summed with an additional
i=1

bias term that does not depend on the input, and then is passed through a "threshold" function A,

giving the result a = h(w-x+b), which constitutes the unit’s activation, and at the same time, since

this is the only unit in the network, its output. The threshold function is a very simple non-linear
activation function, defined as:

h(x):{ 1 >0

0 z <0

In classification tasks, where we want the model to predict the class of the input, the output of
the network isn’t perceptually meaningful, unless we first assign a class to each output value in an
one-one manner.

Multilayer Perceptron

Having seen how the perceptron works, we proceed to more complex networks, that can be used in
a wider range of applications.

Multilayer perceptrons (MLP), as their name suggests, consist of multiple layers of nodes, More
specifically, an MLP contains at least three layers: an input layer, an output layer and one or more
hidden layers. The input layer receives the signal to be processed and passes it on the hidden
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— » Dorl

binary step function

Figure 3.2.1: Graphic representation of the way a perceptron operates. The bias term is modeled
as an additional input with the value of 1, weighted by a weight of b [3].

layer. No processing takes place in this layer. The hidden layers perform the main computation and
processing on the input data, yielding some intermediate representations and transfer the information
to the output nodes. Finally, the output layer transforms the extracted representations in a proper
way depending on the task in hand. For instance, in binary classification tasks the output layer uses
the extracted information to provide a single binary value, while in regression tasks the output is
not necessarily bounded. Each layer, apart from the first one which is bound by the input features,
can have an arbitrary amount of nodes, receiving the outputs of the previous layer as inputs and
feeding their outputs to the nodes of the next layer. Each node is similar to the perceptron with the
difference that its activation function needs not to exclusively be the threshold function. In fact,
there is a great variety of activation functions, each one having its own advantages and drawbacks,
which will be covered in a next section.

In an MLP, the mathematical notation requires some additions in order to cover the multiple nodes
and layers. Let us consider a network with K + 1 layers, each with My nodes, k =0,..., K and an
input vector x € R”. The input layer nodes receive one input value each and forward it without any
processing or activation function application. The nodes of the first hidden layer are characterized

by the following equation
D

n _ SOJRIACY
ay) =D Wi wi+0;
i=1
where the subscript j = 1,..., M} corresponds to the node index in the layer and (1) indicates the
current layer (the input layer is considered to be the Oth layer). The parameters I/Vj(lk ) are the weights

and the bg-k) are the biases, composing the weight matrix and bias vector of the layer, respectively.
The quantities a are called activations and are given as input to the activation function to produce
the layer’s outputs.

For the following layers, the equation is slightly altered, as the inputs are the outputs of the previous
layer:
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where M is the number of nodes of the previous layer. Finally, the activations of the last layer are
transformed using an appropriate activation function to give the network’s outputs

in a network with K + 1 layers.

Training Algorithms

The process of training is fundamental in neural networks, as it is the one that enables them to
improve themselves by accumulating experience. Because the network’s output is affected by its
parameters, the goal of training is to find and assign correct weights to the various nodes, in order
to perform as well as possible.

In training we start off by calculating the performance of the network. As it has already been
mentioned, we can quantify its performance by calculating a cost (loss) function that, given the true
output and the predicted output of our network, calculates an error that shows how "close" the two
values are. This error is dependent on the weights of the nodes, so, the process of learning can be
thought of as an optimization problem.

As it is too complex to find an analytical solution to this problem, approximated solutions are offered
by iterative processes. These processes are split in two parts:

e A distribution of the total error to the individual nodes. We can think that this distribution
helps to see "in what way the weights of a node contribute to the total error".

e An algorithm that utilizes the above information to update the weights of each node in order
to reduce the total error.

The first part is covered by the Backward Propagation of Error algorithm and the second by
various iterative algorithms, such as gradient descent.

Backward Propagation of Errors or, shortly, backpropagation is a method for calculating the deriva-
tives of the error with respect to each of the weights of the network. The calculation of the partial
derivative is based on the chain rule of calculus. For example, suppose we have a network output y.
Then, the cost will be C(y,y), with y being the ground truth corresponding to the estimated value
y. To find the partial derivative of the cost with respect to a weight w;;, we use the chain rule as
follows:

0C _ 0C 0z O
81(11']' a aZj aaj 8w¢j

The above derivative can be calculated as the activation functions are partially differentiable.

Indeed, as we can infer from the above formula, the derivative with respect to a network weight
requires the calculation of the derivative with respect to the output and the derivative of the output
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with regard to the activation, which in turn is dependent on all subsequent layer weights. The
backpropagation algorithm takes advantage of this structure by calculating the derivatives efficiently,
as its name suggests, calculating the derivatives from the last, output, layer through the first, moving
backwards through the network.

Regarding the second part, the most common algorithm of updating the weights of a neural network
is gradient descent. Gradient descent is an iterative algorithm that is used to find local minima of a
differentiable function. This method is based on the fact that a function f(x) decreases the fastest
if we change x to the direction of the negative gradient of f.

So, in the case of neural networks, we can update the network weight matrices, W, as such:

W=W-—vy VgEW)

where v is the learning rate, a hyperparameter that controls how quickly or slowly we "descend"
and Vyy E(W) denotes the gradient of the error with respect to the network weights, as calculated
using the backpropagation algorithm.

Typically, the above algorithm requires that we accumulate the loss from all training samples in the
training set, before updating the weights. However, in practice and in the case of large datasets
and deeper network structures, this is slow and close to impossible due to memory limitations. So,
instead, a stochastic version of the algorithm is used, where we update the weights using a subset
of the training set, which is called batch. Of course, this algorithm doesn’t ensure that we always
follow the fastest way downhill, but in practice it works efficiently and manages to converge quickly.
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Figure 3.2.2: Graphs of the most popular activation functions [19].

Activation Functions

Activation functions are non-linear functions that are partially differentiable and have a crucial role
in neural networks. First of all, without non-linear activation functions decoupling the individual
linear transformations that the layers apply to the input, the whole neural network’s processing

33




Chapter 3. Theoretical Background

could be described by a single, linear transformation. Thus, neural networks could only deal with
tasks that are solved linearly. Secondly, because most activation functions have a small, finite range
of values, they act as a normalizer towards the activations, thus affecting the convergence and the
convergence speed of the network.

Figure 3.2.2 shows graphs of 4 activation functions. The top two, sigmoid and tanh, have a finite
range of (0,1) and (—1, 1) respectively. Their characteristics are that they normalize the activations,
by squashing the input values, and are continuously differentiable. The bottom two, Rectified Linear
Unit (ReLU) and Leaky ReLU, have an infinite range of values, are only partially differentiable and
have very simple formulas. For instance, ReLU can be computed as ReLU(z) = max(0,z). Thus
they require less computation during training, eventually reducing the overall training time.

Loss Functions

A loss function has the crucial role of quantifying the performance of the model in a specific task,
intuitively representing some "cost" associated with using the specific model. Thus, a loss function
can be any mathematical function that can take as inputs the true and predicted output values
and calculate their distance in a suitable space. Depending on the nature of the task (regression
or classification task), different loss functions are used. For regression tasks, commonly used loss
functions include the Mean Absolute Error (MAE) and the Mean Square Error (MSE), and for
classification tasks, there is the cross-entropy loss. MAE and MSE of two vectors x,y € RV are
defined as follows:

N
1
MAE(y,x) = N E \yi — X \
i=1

N
1
MSE(y,x) = N E | yi — i |?
=1

3.2.3 Convolutional Networks
Introduction

A convolutional neural network (CNN) is a class of deep neural networks designed for processing
structured arrays of data such as images. In many Computer Vision/Computer Audition tasks, the
state of the art architectures consist either entirely or partially of CNNs. What makes convolutional
networks special is their ability in discovering and extracting features, by picking up patterns in the
data. This property has opened up the path for end-to-end architectures, in which the data are
processed in their raw form by the network, instead of being pre-processed to extract hand-crafted
features.

Structure of a Convolutional Network

Typically, convolutional networks contain three types of layers: convolutional, pooling and fully
connected.
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The convolutional layer is the main computation block of a CNN. This layer, as its name suggests,
performs the convolution operation between a number of kernels also known as filters, and the input
data. The kernels can be thought of as "feature detectors", which, sliding through the input during
the convolution, generate a feature or activation map each, resulting in a multi-channeled output,
which is then passed to the next layer. The discrete convolution operation is as simple as calculating,
for each output point, the dot product of the kernel and an equally-sized slice of the data, aligned
with the output.

The convolutional operation is characterized by 3 hyperparameters, the tuning and the importance
of which is specific to and influenced by the application: the stride of the convolution and the size
and the dilation of the kernel.

The first parameter indicates the stride of the slide and determines how densely or sparsely the
convolution is applied. For example, a stride of 1 means that the kernel is applied on every sample
of the input, while a bigger stride means that the kernel skips some samples before being applied
again. Strided convolutions can be useful in reducing the computation cost of the layer in cases
where there is overlapping information on the data as they result in smaller feature maps.

The size and the dilation directly affect the kernel and determine the receptive field, that is the
area of the input that is visible to the kernel of the filter. In more detail, with a kernel size of
k and a dilation factor of n, the receptive field of the filter r is equal to r = k- n. The size is
simply the number of units that constitute the kernel. Whether these units are sequential or not
is determined by the dilation, that shows how many data samples are skipped between the kernel
units. For example, in the case of 1D convolution and data, a kernel of size 3 and dilation of 1 would
process three consecutive samples, while a dilation of 2 would mean that in a series of 5 samples,
the kernel would process the 1st, 3rd and 5th. Dilation can be thought of as searching for features
at a different scale, with low dilation indicating scanning of local patterns and high dilation global
patterns.

In contrary to what we know from traditional signal processing, in a neural network context, the
convolutional operation takes place only for those signal values that the kernel fits entirely inside
the aligned signal. As a result, the output feature map has a different (smaller) size than the input.
To prevent this, padding can be used to the input by adding zeros on the edges (zero-padding) or
repeating the edge values (same-padding).

Figure 3.2.3 showcases a variety of 1D convolution operations, with different settings.

Pooling layers are used to reduce the dimensionality of the feature map, by applying a downsampling
operation upon it, and are usually positioned in between convolutional layers. Since CNNs are deep,
containing multiple levels of layers, this allows the next convolutional layer to have a larger receptive
field, that is it can discover patterns/features of larger scale, while keeping the kernel size the same.
As with the convolutional layers, pooling layers have a kernel with a predefined size, which slides
through the input, performing an operation. Usually, pooling layers are not trainable, meaning that
the operation they perform is fixed and have no weights, although recent variants such as the auto-
pool layer have appeared [39]. The two main types of pooling are max and average pooling, where
the output in each step is the maximum and average, respectively, of the values of the receptive

field.
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Finally, fully-connected layers work in a similar fashion as the MLP; they connect each input to
each output with a weight. These are typically used at the end of a deep CNN, transforming the
processed feature maps in order to discover global patterns in the data or perform the required task.

Advantages of Convolutional Layers

The structure of convolutional networks provide them with some interesting and useful advantages
over the standard fully-connected networks.

First of all, convolutional layers require less computation and train faster than their fully-connected
counterparts. The transformations that fully-connected layers apply to the input data are imple-
mented as matrix multiplications. Even though these operations can be computed in parallel and
very quickly by modern hardware and software frameworks, in some cases where the data are of
high dimensionality, such as images, matrix multiplications are extremely costly and their training
is slow.

On the other hand, CNNs contain drastically fewer trainable parameters than fully-connected layers,
creating less complex models that train faster, require less memory and are less prone to overfitting.
More specifically, while the parameters p; of a fully connected layer are the product of input ¢ and
output o dimensions, py = i- o0 the parameters of a convolutional layer p. are affected by the number
of input ¢; and output ¢, filters/channels and the size of the kernel k, as p. = ¢; - ¢, - k.

The previous concept is known as "parameter sharing", because, at every training step, the kernel
that slides through the data has parameters that are independent on the input, as opposed to the
fully connected layers where each input value has a different weight depending on the node it is
connected to. This contributes to the most important property of CNNs, that is equivariance to
translation. This means that if we have a convolution operation g and a translation operation ¢,
applying the translation and then the convolution is equivalent to applying the convolution first and
then the translation, g(t(x)) = t(g(x)). Additionally, since the weights of the kernel are independent
of the input, convolutional networks are highly flexible to the input shape, as opposed to the the
fully-connected layers that demand the input to have a fixed size and properties.
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Figure 3.2.3: Plots of 1D convolutions with a kernel of size 3 and various configurations. a) Simple

convolution with 1 stride and dilation. b) Convolution when zero-padding is used. Note that the
output map is the same size as the input one, with the two edge elements containing possibly false
information. ¢) Convolution with stride of two. d) Dilated convolution with a factor of 2.
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Special Types of Convolutional Layers

Due to the wide use of convolutional layers in neural networks, we think that it is useful to present
two common, special cases of them, the 1x1 and the transposed convolution.

1x1 Convolutional Layer: This is a normal convolutional layer with a kernel with a size of 1 (1x1
denotes the width and height of the kernel). Although this layer has the smallest possible receptive
field and doesn’t associate neighboring samples, it can be used to change the number of channels
of a multi-channeled representation without heavy computational cost and increase in network’s
parameters. Additionally, since the filter is a single unit, the feature map size is left unaltered,
removing the need of using padding layers.

Transposed Convolutional Layer: The basic convolutional layer typically decreases the feature
map size. Transposed convolution is in a sense the opposite operation to the normal one, as it
typically upsamples the feature map size. We can think transposed convolution as the operation
that reconstructs an original input given the output of a convolutional layer.

As with the normal one, this operation includes a kernel, that can have a dilation factor and that
slides on the input with a fixed stride. Also, it can change the number of channels of the representa-
tion by applying an arbitrary amount of filters to the input. In contrast to the normal operation, the
kernel broadcasts the input elements, thereby creating an output that is larger than the input and
then the overlapping elements are summed to create the output feature map. Figure 3.2.4 contains
an example to better understand the operation.

Input Kernel

011 Transposed 011

2|3 Conv 2|3
Output
ol0 011 ojoj|1
=|0]0 + 213 |+|0]2 + o|l3|=|l0]4]6
4|6 6|9 4 112] 9

Figure 3.2.4: Example of tranposed convolution operation. Note that the output has a bigger size
than the input [4].

3.2.4 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of deep neural networks designed for processing of
sequential data. More commonly, the sequential nature is temporal, as in the frames of a video,
or the values in a time series data, but can also refer to spatial, or other kind of dependencies,
depending on the way we model a given problem and task. RNNs have seen much success in tasks
like language modeling [41], time series prediction [75] and speech synthesis [48].

Unlike the other neural network classes, the output of an RNN doesn’t depend only on the input,
but additionally on the inputs before it. Hence, the same input value, fed into an RNN after
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different sequences could produce a completely different output. This is made possible by the use
of an internal state, that acts as the network’s memory and accumulates information from prior
inputs to influence the current output. Moreover, in order to handle sequences of multiple inputs,
RNNs contain a feedback connection to themselves, creating a loop (thus the name), which passes
information of the internal state to the start of the network. In that way, a single RNN can handle

series of an arbitrary number of steps.

RNNs have some key differences from the other types of networks that offer a couple of advantages
over them. Firstly, an RNN can discover and make use of sequential dependencies, solving prob-
lems that otherwise would either need extremely complex architectures or not be solvable at all.
Secondly, RNNs are structured in such a way that they also benefit from the concept of parameter
sharing, similar to CNNs. By using the internal state, they are able to adapt themselves to the new
input, without the need of a great number of additional parameters. That’s why RNN architectures
typically have less parameters than their counterparts. Thirdly, as it has been already mentioned,
RNNSs can process sequences of any length, without increasing their nodes and their parameters.

Of course, there is a couple of shortcomings to this type of networks, which should always be taken
into consideration when incorporating them in architectures. Although RNNs can handle sequences
of any length, normal architectures tend to be affected significantly more by the most recent samples
in the sequence, than by the older ones, essentially canceling the property of the infinite receptive
field. Also, using extremely long sequences can lead to vanishing or exploding gradients, a problem
that is common in very deep architectures and that prevents networks from converging fast enough,
or entirely, respectively. Both of these cases are caused by the accumulation of very small or very
large values during the backpropagation algorithm, which can ruin the update of the weights in the
gradient descent algorithm. There are two architectures that try to solve both of these problems,
namely the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), but still RNNs
should be used with caution.

3.3 Audio Transformations and Representations

In signal processing, signals are basically functions that carry information about a phenomenon or an
observation. Depending on the transformations applied on this information, it can be represented in
a number of different ways, each one demonstrating and highlighting different parts of it and being
useful to different tasks.

Audio signals belong to the family of the uni-dimensional signals, which means that they are a
series of values spread across time. As such, their natural representation is the waveform, which
is the graph of this time-series over time. Although this representation is simple, provides a visual
interpretation of audio and doesn’t require any transformation, it isn’t that useful, concealing parts
of the information, such as the frequency content of the signal, that are vital to many tasks. For

that reason, other representations are used.

Short-Time Fourier Transform

The most commonly used time-frequency representation is the power or magnitude spectrogram of
the Short-Time Fourier Transform (STFT) of a signal. Since the STFT is part of the very general

38




3.3. Audio Transformations and Representations

and broad field of Fourier Analysis, we will only provide an intuitive explanation of it.

Fourier transform is a mathematical transformation that decomposes a complex-valued function
into its frequency content. This transformation is based on Fourier Analysis which dictates that
any function can be modeled as an infinite sum of weighted sinusoidal functions, according to the
following formula:

f)=ap+2 Z A, cos(nwot + ¢n,)

n=1

So, in this context, the frequency content refers to the magnitude A, and the phase ¢,, that is
the initial angle, of the participating components as functions of the frequency of the sinusoidal
functions. In a sense, the Fourier Transform can be thought of projecting a signal from the time
domain to the frequency domain, where much of the frequency related information is exposed.

In addition to the forward transformation, there is an inverse one, that transforms functions from the
frequency domain back onto the time domain. The forward and inverse transform, for continuous
functions, are defined as following;:

X(f) = / h x(t) - e g
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Since we work with digital signals, the Continuous Fourier Transform defined above cannot be
applied directly, as neither are the signals continuous, nor can we integrate them over an infinite
range. For that reason, we work with the Discrete (forward and inverse) Fourier Transform (DFT)
which are defined as:

N-1
X[k] _ :L'[n] . e—iQﬂkn/N
n=0
1 N-1 '
.%'[TL] _ N X[k] . e127rlm/N
k=0

where n is the sample index of the original signal, k the sample index of the transformed signal and
N the total length for both signals. In the case of the transformed X[k], N can be thought of as
the number of "frequency bins" that the transformation computes.

A problem of the Fourier Transform is that it assumes that the signals are stationary, meaning that
their characteristics are constant through time. Of course, in the case of audio signal analysis and
processing, this is not the case as the signals vary greatly through time and many characteristics have
a finite, small time span. So, applying the Fourier Transform to the entire signal is not informative
at all. A solution to this problem is to segment the signal by multiplying it element-wise with a
window function and apply the transform on the individual segments. Typically, the segments are
small and have an overlap to better capture the varying characteristics.
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Figure 3.3.1: Waveform and spectrogram representation of a song segment. Notice that the
periodic left part of the waveform, corresponds to the the part of the spectrogram with high values
at two, low frequency bands, while the aperiodic, noisy right part includes a wide range of
frequencies.

The above procedure constitutes the Short-Time Fourier Transform (STFT). This transformation
basically creates a two dimensional representation, in which one dimension represents the frequency
and the other corresponds to the time. The representation has as many columns as the number of
segments T' and as many rows as half the frequency bins estimated from the DFT, N/2. This is due
to the fact that real signals have a DFT that has the property of conjugate symmetry. This means
that the magnitude of the DFT has even symmetry and the phase has odd symmetry. This N/2 x
T representation is called "spectrogram", Since, in practice, the complex-valued spectrogram has
limited interpretability, we mostly use the magnitude, phase or power-of-magnitude spectrograms,
the last of which is the most common and is often referred to as plain "spectrogram".

Filterbanks

An alternative way to access a two-dimensional representation of a signal is to use a filterbank. A
filterbank is an array of bandpass filters, that is filters that process specific frequency bands, while
they zero out or suppress others. By applying these filters on a signal, it is separated in multiple
components, each one corresponding to a specific frequency band. Hence, the output of a filterbank
is a two dimensional representation, with each row containing a band-limited, processed form of the
original signal.

Depending on the number and the properties of the filters, like their bandwidth, central frequency
and shape, many filterbank designs have been proposed for various tasks. For example, the mel
filterbank tries to imitate the non-linear perception of sound of the human auditory system. To
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this end, it uses an array of triangular shaped filters with increasing bandwidth and with central
frequencies placed non-linearly in frequency, according to the following formula, which transforms
frequency values in Hz domain f to the corresponding values in mel scale m

f
= 25951 1+

Figure 3.3.2 shows 40 mel filters in the frequency domain.
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Figure 3.3.2: Depiction of mel-scale filterbank in the frequency domain [7].

Discrete Wavelet Transform

The Continuous Wavelet transformation (CWT), like the Fourier Transform, decomposes a signal
in components using a set of mutually orthogonal basis functions 1, called "wavelets", which are
scaled, translated and dilated versions of a base function v, called "mother wavelet". The original
signal can be completely recovered by an inverse transformation (ICWT). The wavelets have two
properties that differentiate them from the sinusoidals that the Fourier Transform uses. Firstly, they
are not periodic as they are spatially localized, that is they are non-zero only for a finite time range.
Secondly, the wavelets are functions of two variables, the translation which moves the non-zero part
in time, and the scale which determines how dilated or compressed the function is.

The motivation behind the Discrete Wavelet Transform (DWT) is that we want to analyse a signal
x[n] in two components; one that constitutes an approximation of the signal, a[n], which holds the
general trend of the original signal, and one that describes local details, d[n], which holds rapid
fluctuations of it. To this end, a low-pass filter A (LPF) and a high-pass filter g (HPF) need to
be used. The length and the coefficients of these filters are derived by wavelets, in order to satisfy
similar properties to their continuous counterparts.

The coefficients of the two filters are connected by the following formula:
g = (~1)Fhy 1,k €{0,...,n—1}

where n is the length of the filter.

For example, for the Haar wavelet, which is one of the most common ones the h and ¢ filter are

defined as:
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Due to the structure of the filters, their outputs contain half the frequency content of the original
signal. Thus, a decimation by a factor of two can be safely applied afterwards, to reduce the temporal

resolution and keep the total length of the output (approximation + detail signal) constant. The
application of the filters along with the down-sampling operation constitutes one level of the DW'T.

The above procedure can be applied multiple times for the approximation signal that is generated
each time, leading to multiresolution analysis of a signal. A block diagram of this analysis is depicted
in Figure 3.3.3. The end result is a set of N + 1 signals, {an[n],di[n],d2[n],...,dn[n]} where N
is the number of levels of the analysis. With a sampling frequency of f,, the approximation signal
an[n] contains frequencies in the range [0, fs/2V*!] and the detail signals dy[n] contain frequencies
in the ranges [fs/2!7, fs/2%,4 = 1,..., N. This means that for low temporal resolution, that is low
levels, the frequency resolution is high, while for high time resolution, the frequency resolution is
low. This is a very important property of the DW'T, that is absent from the discrete STFT, in which
the time and frequency resolution remain constant, throughout the transformation.

Level 3
coefficients

@ _.' @ ]L_-:.;;ficzients
x[n]——" @ ]L_-;:;}lclients

Figure 3.3.3: Block diagram of the three first stages of multiresolution analysis of a signal [5].
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Chapter 4. Literature Review

The general problem of source separation, along with the special case of single channel audio sepa-
ration, has been researched extensively for many years. Like many problems in the signal processing
field, source separation research can be divided in a pre and post (deep) neural networks era. Al-
though the DNN methods have dominated the field and currently are the state of the art, the
traditional techniques are worth mentioning both for the sake of history and because they still
provide ideas and intuition for neural network-based techniques. In fact, a state of the art DNN
technique is inspired by a matrix decomposition.

4.1 DSP Methods

Source separation, as it has already been mentioned, is a multifaceted problem, and its aspects can
be classified in many ways. A very basic classification can be made depending on the number of
sources and sensors. In the cases where the number of sensors is greater or equal to that of the
sources, the problem is classified as over-determined or determined, respectively, whereas in the
cases where the sensors are fewer than sources, the problem is labelled as under-determined.

For the first two cases, matrix factorisation methods revolving around Independent Component
Analysis (ICA) [25] [58] have yielded very good results.

ICA is a computational method for separating a signal into additive subcomponents, that are as-
sumed to be statistically independent and non-Gaussian. It expresses an observed mixture from n
sensors, x as the product of an n X p mixing matrix with linearly independent columns, A and p
statistically independent and non-Gaussian vector signals, s:

r = As,

ICA tries to find an unmizing matrix, which approximates the pseudoinverse of A, W ~ AT, so that
the estimated components u are as statistically independent as possible.

u=Wzr=WATs

Despite its elegancy and its success in the over-determined and determined cases, this method fails
at monaural source separation, mainly due to the requirement that the sensors are more than the

sources.

Regarding the under-determined case, and especially for the single-channel case, which is the
main problem of this research, the traditional methods can be separated into three broad cate-
gories: spectral-decomposition-based, model-based and Computational Auditory Scene
Analysis(CASA)-based.

In spectral decomposition methods, a representation of the input mixture is decomposed in basis
elements which are then grouped into disjoint sets, corresponding to the individual sources. The
representation of the signal can be of any form, but the most common one is the magnitude or power
spectrogram of the mixture, as estimated via the STFT. The constraints of the decomposition along
with the grouping criterion are the factor of differentiation of the various techniques.

One such technique is the Independent Subspace Analysis (ISA), an extension of the ICA, in which
the statistical independence assumption is relaxed for the basis elements of the same group; between
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elements of different groups, however, the constraint still stands. In [10], a method based on ISA
is used to decompose the mixture spectrogram into independent source subspaces, which yield the
separated sources, after they are inverted.

Another matrix decomposition technique is the Non-Negative Matrix Factorisation. As its name
suggests, NMF requires that all the participating matrices are non-negative. So, in the decomposition

V=WH

where V' is the known observation matrix, H is the matrix containing the basis vectors and W is
the weight matrix, every matrix element is greater or equal to zero. The non-negativity constraint
equips the technique with perceptual meaningfulness, something that is lacking from most matrix
decompositions. More specifically, the non-negative weights ensure that the basis elements are
combined in a purely additive manner, while the non-negative basis vectors prevent the possibility
of having elements that cancel each other out. As the magnitude and power spectrograms are
non-negative by definition, these representations are perfectly suitable for this technique.

An NMF based technique is used in [68] [70] with an additional term that enforces temporal conti-
nuity being utilised during the estimation of the weight and basis vector matrices.

CASA tries to mimic the way that the human auditory system decodes sounds into meaningful ele-
ments. CASA methods [65] and [72] achieve this by using psychoacoustical cues, such as harmonicity
and onset-offset time, and then by building streams based on pitch proximity. Due to that, these
methods fail at separating overlapping sources that play the same pitch. More advanced methods use
spectral filtering to allocate energy at overlapping streams [18], or add a time-frequency smoothness
constraint [71]. However, they require prior knowledge of the spectral content of the sources.

Regarding model-based techniques, generative models of the source signals are created in order to
perform the separation process. Because these models learn their parameters from solo excerpts,
they are very sensitive to the recording environment. The models can be based on Hidden Markov
Models (HMM), as for instance in [54] [23].

4.2 DNN Methods

4.2.1 Classification

With the advancement of deep learning, fully supervised techniques have been on the rise. DNN
methods can be roughly classified using the following major properties:

e Based on the domain in which the data are being processed, there is the waveform-based
methods, which utilize the waveform representation, which is the "natural", 1D representation
of audio data and the spectrogram-based, where a 2D time-frequency representation that
is derived from a transformation of the data is utilized. This transformation can be either
a predefined one, such as the the Short Time Fourier Transform (STFT) magnitude or an
independently learned one.

e Especially for the techniques that process spectrograms, based on the estimation of the signal,
there is the direct estimation, in which the spectrograms of the source signals are learned
directly, and the indirect estimation, in which the model estimates a 2D mask for each
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source, which is applied to the input spectrogram in an element-wise multiplicative manner,
to retrieve the source signal.

The method of signal estimation is not that influential of a choice to the model’s performance, apart
from the fact that masking techniques have an upper limit, set by Ideal Binary Mask (IBM) and
Ideal Ratio Mask (IRM), while direct estimation methods can theoretically recover perfectly the
source signals. In [73]|, IBM and IRM for time-frequency signals are defined as,

1, if SNR(t f) >0

0, otherwise

SNR(t, ) \?
SNR(t, f) + 1)

IBM(t, f) = {

IRM(t, f) = <

where 3 is a tunable parameter to scale the mask.
Contrarily, each choice regarding the domain of computation has its advantages and disadvantages.

On the one hand, data in the time-frequency domain are represented in a more compact way com-
pared to the waveform domain, which means that the model requires less processing, reducing
training times and also crucial information, like temporal dependencies, can be taken advantage of
by less complex models, which leads to fewer trainable parameters. Moreover, models that use 2D
representations can borrow techniques and ideas developed for image-related tasks, as the particular
field is heavily researched and the existing solutions are generally more advanced. On the other
hand, using the STFT magnitude as the time-frequency domain signal representation has several
shortcomings. Firstly, the STFT is a generic signal transformation, not necessarily optimised for the
task of source separation. Secondly, the vast majority of relative techniques omit the phase of the
signal from the estimation of the sources, thus limiting the overall performance, since part of total
information is ignored. As a result, the phase of the separated signals is not estimated; in order to
circumvent this problem, these methods either take for granted that the source phase is identical to
that of the mixture [12], or find an approximation by applying the Griffin-Lim algorithm [47], which
is slow and often unsuccessful [32]. Unlike magnitude, phase cannot be estimated easily by DNNs,
due to its periodic nature, that creates discontinuities at the wrapping point (e.g. if the value range
is (—m, 7|, the wrapping point is 7). Phase unwrapping could be used as a solution, but it solely
transforms the problem, as it greatly increases the value range, again making it hard for DNNs to
estimate the phase successfully. However, it has been shown that phase information is very vital in
speech enhancement tasks [20] and in audio separation tasks. In fact, [64] achieves good results by
approaching the problem of phase estimation in a novel manner, as it casts the regression problem
to a classification problem.

4.2.2 Methods using Time-Frequency (2D) Representations

Representing audio signals in the time-frequency domain, mainly using STF'T, has been very common
in various audio tasks. Thus, it is only natural that initial research in source separation using DNNs
was performed in this domain. This, along with the fact that the majority of the well-performing
techniques utilise this domain, is the reason we begin our literature review with this family of
methods, although this thesis proposes networks that operate in the waveform domain.
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Initial work was mainly done using simple and relatively shallow neural networks, because the
resources and the available machine learning tools and frameworks at the time were limited and
not as established as they are today. In [22], one of the earliest works to tackle the problem of
speech separation research using DNNs, a very simple network is used to combine single frame
estimates provided by NMF in a nonlinear way, as the linearity of the combination of the basis
vectors is considered to limit the separation capabilities, whilst the use of nonlinear activation
functions between layers seems to improve the expressibility of the model. In [66], instead of a single
spectrum frame, the network is fed with a set of neighbouring frames to provide temporal context
and use the relative information.

In the following years, DNN became deeper and deeper, combining various layers in complex ways
in order to improve separation performance. Because audio signals may have arbitrarily long tem-
poral dependencies, recurrent layers have been incorporated into architectures so as to handle long
sequences of frames efficiently. In [24], deep recurrent neural networks (DRNN) are used and differ-
ent temporal connections are explored. In [43], an autoencoder architecture is implemented using a
bidirectional GRU (BiGRU) as the encoder and a unidirectional GRU for the decoder. In [42] and
[16], the idea of recurrence is adopted for mask prediction in a very interesting manner. Simply put,
an iterative algorithm that runs until a convergence criterion is met, is used to employ a stochastic
depth to that specific network part, thus giving great flexibility and expressibility to the model. In
[26], an adaptation of U-Net [51] for spectrogram-based music separation is proposed. The archi-
tecture is a deep autoencoder, comprised of a series of 2D convolutional layers, applied on multiple
scales through upsampling and downsampling, in order to capture both local and global patterns.
The convolutional layers have been additionally used in one dimension to individually learn temporal
and timbre information, as in [13|, which uses "vertical" and "horizontal" convolutions to achieve
that. MMDenseLSTM, an architecture that integrates both recurrent and convolutional layers in
a unified pipeline is proposed in [63]. It first splits the input spectrogram in multiple frequency
bands, and then proceeds in a similar way as before, by processing each band, as well as the full
spectrogram on multiple scales using convolutional layers, and additionally using an LSTM module
at the bottleneck. This architecture achieved competitive performance among architectures that
operate in the time-frequency domain. After performing the source separation, some methods have
an additional denoising step, influenced by speech enhancing tasks. In [42], [16], the authors use
a fully connected autoencoder, that consists of an feedforward neural network (FNN) encoder and
an FNN decoder. while [43] uses a highway network [60] and a generalized Wiener filtering process,
heavily influenced by audio denoising tasks.

4.2.3 Methods using Time/Waveform (1D) Representations

Methods in the waveform domain have in common that they do not use predefined frontends for
feature extraction, such as the STFT and that they process data as one-dimensional. They achieve
that by either using a learned transformation that leads to a latent representation, or by processing
the input data directly, in an end-to-end manner. Another motivation for using 1D techniques is
that in the waveform domain there is no loss of phase information that occurs when using the STFT
magnitude, as mentioned in 4.2.1.

The one-dimensional aspect of these methods does not necessarily mean that the latent represen-
tations are themselves one-dimensional. Instead, it means that the data is treated by the various
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processing layers as being multi-channelled one-dimensional. So, the respective layers have one-
dimensional activation maps. For example, when a previous method would have used a 2D CNN to
process the data, these methods would use 1D convolutions.

In this category of methods, there are two major architectures which constitute the basis of almost
every technique; the TasNet [36]|, which was originally used for the speech enhancement task and
the Wave-U-Net [61]. Since both of these architectures are explained thoroughly in the following
chapters, below we will provide a concise overview of them and their variations.

TasNet

TasNet is a technique that learns a latent representation from the mixture waveform, in order to
retrieve the source signals by performing masking upon it. Simply put, it is comprised of three parts:
the encoder, the decoder and the separator. The architecture’s pipeline is the following:

e The encoder performs a decomposition of the input signal into a set of basis vectors and
weights.

e These weights are processed by the separator to produce a set of masks, one for each source.

e These masks are applied over the weights in an element-wise multiplicative manner and the
final product is passed through the decoder to reconstruct the source signals.

In the original paper [36], the encoder and the decoder consist of a strided convolutional layer
with a relatively large window size that alters the feature channels of their input. The separator is
comprised of a deep LSTM network that models the temporal dependencies of successive segments,
followed by a fully connected layer.

A number of variations of this base architecture alter the implementation of one of the modules, in
order to achieve better performance. Typically, the module that gets changed is the separator, while
the encoder and the decoder remain unaltered. In [35], the idea of the RNN separator used in the
original model is further refined, by splitting the input into fixed-size blocks and incorporating RNNs
that process the data on both feature and channel dimensions. Thus, the network extracts both
inter and intra block information, separately modeling local and global dependencies. Although the
above approach is very successful, the training of the RNNs is slow and processing of long sequences
increases the model’s processing and training time. Conv-TasNet in [37] tackles these problems by
using the Temporal Convolutional Network (TCN) [33], which is a series of residual blocks using
dilated, depthwise convolutions to capture information on multiple scales. Although, unlike RNNs;
the TCN does not have an infinite receptive field, it provides a rich set of features, an immense
speedup on training times and a reduction on trainable parameters, making the implementation
of [14] one of the top-performing in music separation. In [57|, FurcaPorta is introduced, further
increasing the separator’s performance by adding two gating mechanisms to the TCN; the first
gate controls information inflow and the second controls information processing and outflow. A
completely different approach on modifying the separator, inspired by meta-learning models, is
proposed in [56]. Essentially, a generator network learns source specific information and generates
the parameters of the separator, adapting it to the separation of a specific source and thus making
the model able to separate multiple sources and not just a specific one.

Even though the separator is the major point of interest in the TasNet architecture, significant
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research regurding the encoder and the decoder used has also been carried out. In [27] a deep,
non-linear encoder is proposed, by stacking a series of convolutional layers after the first strided
one (respectively before the last one for the decoder), which improves performance by a small but
significant amount. On a completely different approach, the authors of [15] propose to use a fixed,
Multi-Phase Gammatone Filterbank (MP-GTF) as the model’s encoder instead of a learned one.
Although a learned encoder provides more degrees of freedom, hence increasing the expressibility of
the model, it also adds more variance to it, due to the increased number of parameters, rendering
it more vulnerable to overfitting and thus less capable of generalizing. The proposed MP-GTF is a
variation of the Auditory Gammatone Filter (A-GTF), which is a filterbank that tries to model the
non-linear perception of sounds of the human auditory system, adapted to be used within Conv-
TasNet. It does so by using non-linearly spaced narrow-band filters with an increasing bandwidth
over the filter’s center frequency, whose impulse responses are given by a gamma probability distri-
bution function multiplied by a sinusoidal tone. Using MP-GTF as the encoder and pairing it with
a learnable decoder improves the network’s performance probably thanks to supplying the rest of
the network with representations of the input that are more meaningful and suitable for the sep-
aration task. In [56], a stronger encoder and its respective decoder are proposed as improvements
to the original Conv-TasNet architecture. This encoder combines two sets of features to enrich the
representation that is fed to the separator. The first set comes from an array of convolutional layers
with different receptive fields, that extract features in multiple scales, while the second set comes
from a spectrogram representation.

Wave-U-Net

The second architecture is simpler and more straightforward. Wawve-U-Net is an 1D adaptation
of U-Net [52]. The aim of the network is to create a dense representation of the input mixture
signal, which is fitting for the separation task and then restore the source signals to the original
representation. In simple words, the network consists of the following parts:

e The downsampling path, which is a series of downsampling blocks that extract information
in multiple scales.

e The bottleneck, which processes the dense representation.

e The upsampling path, which is the opposite of the downsampling path, as it takes the dense
representation and restores it to its original size by a series of upsampling blocks. Additionally,
these blocks concatenate the input features from their previous block in the upsampling path
and the features from the downsampling path that are provided through skip connections
between blocks that correspond to the same depth.

In the original paper [61], the downsampling blocks contain convolutions that increase the channels
of their input, in order to widen the representation and pooling layers in order to downsample it in
the temporal dimension. The bottleneck is a convolutional layer that performs a transformation of
the features without increasing or decreasing the feature channels. The upsampling blocks increase
the feature map size using linear interpolation and concatenate their input and the data coming
through the skip connections using a convolutional layer that also decreases the feature channels.
The last upsampling block outputs as many channels as the number of sources.

Further research based on Wave-U-Net attempts to increase its performance by changing the re-
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sampling block structure, the bottleneck or the combination of the features from same level blocks.
The model of [29] tries to make use of the long-range temporal dependencies of the data by using
two BiLSTM layers followed by a fully connected layer as the bottleneck. In [21], instead of simply
concatenating features in the upsampling path with their downsampling counterparts, an attention
mask is introduced in order to identify relevant and meaningful features. The authors of [44] focus
on the decimation procedure. More specifically, they support that since the downsampling layers
do not apply any kind of anti-aliasing filter, they propagate information containing high-level arti-
facts thus destroying a part of the information. The retrievability of the lost information through
skip connections, which are partially used for this exact reason, depends solely on training. To
solve this problem, they suggest resampling the feature map sizes by performing a Discrete Wavelet
Transformation (DWT) instead of the previously-used pooling layers. This transformation works
as an anti-aliasing filter and satisfies the perfect reconstruction property. The used implementation
fits the Wave-U-Net architecture perfectly and achieves a slight performance improvement, without
introducing additional parameters and with only a slight, constant increase of the training time.

4.3 Datasets

As we saw above, the solutions of the problem of music separation have shifted from traditional DSP
techniques to fully supervised end-to-end deep neural networks. This has made the existence of well-
constructed datasets for training and evaluation an absolute necessity. In [26], the authors, having
access to a music database, create a dataset suitable for singing voice separation by subtracting
instumental version of songs from the original mixtures to get the vocal component. Although
they created a huge dataset of 20,000 track pairs, this method is prone to errors, as it is not fully
supervised.

For that reason, most researchers use datasets that are constructed especially for that use, like
MedleyDB |[8], iKala [11], DSD100 [45], slakh [38], DALI [40] and MUSDB18 [50].

MedleyDB [8] is a dataset that was created mainly to promote research on melody extraction.
It contains 122 songs for a total length of 7.17 hours of audio. The songs are in stereo format,
recorded with a sampling rate of 44.1kHz. For each song, the mixture signal is accompanied by
the processed stems, raw audio and metadata, along with annotations about the melody f0, the
instrument activations and the genre.

The iKala dataset [11] was especially created for the task of singing voice separation. It consists of
252 30-second excerpts, sampled at 44.1kHz. Fach signal has two channels, with the one being the
music and the other the voice component. The dataset also contains pitch contour annotations and
lyrics with timestamps for every excerpt.

Synthesized Lakh (Slakh) [38] is a dataset of multi-track audio, designed for the tasks of music
source separation and multi-instrument automatic transcription. Each track is synthesized from the
Lakh MIDI Dataset v0.1 [49] with the use of professional-grade sample-based virtual instruments.
The end result is mixed together to create musical mixtures. The dataset contains 2100 tracks for
a total of 145 hours of mixture data, along with aligned MIDI files synthesized from 187 instrument
segments that are split into 34 classes.

The DALI dataset [40], in its current, second version, contains synchronised (vocal/instrumental)
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audio 7756 songs. Each song is accompanied with time-aligned lyrics, which appear in four levels
of granularity, and with time-aligned symbolic vocal melody notations. Additionally, for each song
there is provided multimodal information such as genre, language, musician, album covers or links
to the respective video clip.

The DSD100 dataset [45] consists of 100 songs of different musical genres, all of which are of stereo
format and sampled at 44.1kHz. The songs mixtures are accompanied by the isolated drums, bass,
vocals and other stems.

The MUSDBI18 dataset [50] is the most popular in music separation related papers and it was used
on all the conducted experiments. Its sources include both the other two aforementioned datasets
(MedleyDB and DSD100) and other material. It contains 150 songs of various musical genres, for
a total of 10 hours of audio. The songs are of full-length, in stereo format, recorded in high quality
and sampling rate of 44.1kHz. Apart from the mixture, the dataset contains 4 individual signals
(stems) for each song, which correspond to 4 predefined categories (vocals, bass, drums and the
rest of the accompaniment, denoted as "other") in order to facilitate and promote multi-instrument
separation. The song mixture is a linear combination of the individual sources, thus, the sum of the
4 stems returns the original signal. The dataset has a default train-test split of 100-50 songs.

4.4 Source Separation Evaluation Metrics

The general topic of Blind Audio Source Separation (BASS) has been an active research topic
for many years, with many successful techniques yielding good results. However, because of the
subjective nature and difficulty of the task, the quantification of the performance as well as the
comparison between several techniques requires the use of a widely accepted and of high quality
evaluation metric.

Historically, various metrics have been used, such as Inter-Symbol Inteference (ISI) [31], or the MSE
between Lo-normalized versions of the sources. Both of these measures, although relevant to the
problem, suffer from limitations, with the most important being that they consider the dsired signal
5j to be recovered up to a permutation and a gain, and not any other distortion, which is restricting
for a number of applications. Also, since these measures provide a single performance metric, they
are not able to distinguish the various error terms, such as the sensor noise, the interferences between
various sources, the spectral correctness of the extracted source and the introduction of unrelated
artifacts. This separation is crucial to the assessment of the technique. In particular, not all error
terms affect the perceived result in the same way, with artifacts being for instance more noticable
and pervasive than the sensor noise, and some applications are more sensitive to one type of error
over the others. In a separation task the errors can be classified in three categories; sensor noise,
énoise, interference from other sources, enter, and "burbling" artifacts, e,i¢, with the last being
considered the most annoying, while the first the less noticeable. Hence, a technique could have
scored higher in the metrics, while having worse perceived performance, due to a different mix of
error terms.

A toolkit that contains metrics that attempt to solve the above issues is BSS Eval. This toolkit was
originally created for MATLAB, but is widely used in the python community through the museval
package. The metrics provided by the BSS Eval toolkit are the Source to Distortion Ratio (SDR),
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Source to Interference Ratio (SIR) and Source to Artifacts Ratio (SAR), as defined in [69]. These
metrics can be configured to allow the signals to be recovered up to a time-invariant filter and a
time-invariant gain, in order to more closely adhere to the application’s needs.

Regarding the computation of these metrics, it is assumed that the estimated source signal, s; is
decomposed in 4 terms, as such: 5 = Starget + €interf + €noise + €artif- Lhe proposed decomposition is
based on orthogonal projections of the source signals onto subspaces spanned by the source signals
and/or the sensor noise. Therefore, the metrics are defined as:

H Starget ||2

SDR := 10log;, 5
Heinterf + €noise + eartif”

2
IR = 10 logy, 1 2tereet |

H €interf” 2

SAR := 10log;, | Starget + Cinterf + enoiseuz

||€artif||2

SDR is considered to measure the overall quality of the separated signals, while SIR and SAR
quantify the clarity of the separated sources and the existence of auditory artifacts, respectively.
Among these three metrics, usually SDR is considered the most important as the closest to human
perception, although SAR and SIR can be equally or more important, depending on the application.

Although the BSS Eval toolkit has been widely accepted and is used in the literature for the eval-
uation of source separation algorithms, there are still a couple of issues that should be taken into
consideration, regarding the allowed distortions and the correlation between the metrics and the

human perception.

Regarding the first point, the distortions that are allowed by the BSS Eval toolkit can deform the
reference in such an extent that it matches any estimated signal [53], thus hindering the objectivity
and the credibility of the evaluation of diefferent algorithms. More specifically, the space of signals
that is accessible by convolving the reference with a short FIR filter, the use of which is justified as
a counterbalance to the room impulse response (RIR), is huge and can lead to signals that differ a
lot from the original.

For that reason, the authors of [53] have proposed scale-invariant versions of the above metrics, that
replace and improve/redefine the aforementioned ones. More specifically, for a mixture x = s +n
of a target signal s and an interference signal n, the proposed metrics use a scaling factor to rescale
the target so that the residual signal s — § is orthogonal to it. The optimal such factor is obtained
as o = §Ts||s||2, the scaled reference is defined as etarget = s and the estimate is decomposed as
5 = €target T €res- A further decomposition of the eres as €res = €intert + €artif, Where €ipgers is defined
as the orthogonal projection of e..s onto the subspace spanned by s and n is used to define the

scale-invariant metrics:
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2
SI-SDR = 10log;, <||6tagt||>

||€1reSH2

2
SL-SIR = 101og;q <||6tgt||>

|| €interf | | 2

2
SI-SAR = 101log; <||etagt||>

||eartif||2

Unlike the BSS Eval toolkit, in which there was not a clear, intuitive relationship between the three
metrics, the definitions of these scale-invariant metrics are connected by the following formula:

1ost-SDR/10 _ 1ost-SAR/10 + 10*SI-SIR/10

since, due to the orthogonal decomposition, it stands that HereSHQ = HeinteerZ + HeartifHQ.

Regarding the second point, the metrics that are provided by the BSS Eval toolkit are objective
measures of separation quality. That is, they mathematically model how successful or not an algo-
rithm was at separating the signals. However, this does not necessarily mean that humans perceive
the results in the same way. For that end, the authors of [74], report that another evaluation toolkit,
PEASS [17], seems to correlate better with human perception than BSS Eval.
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5.1. Baseline Architecture

The goal of this chapter is a) to present Wave-U-Net, an architecture that was proposed in [61]
as a solution for the music source separation task, and b) to examine a number of extensions
that were proposed by [29] and [44] upon this base architecture, as well as their modularity. On
this architecture, our main goal was getting familiar with the task, framework, hyperparameter
tuning, and performing an ablation study of existing extensions rather than actually promoting

novel improvements to it.

5.1 Baseline Architecture

Wave-U-Net [61] is an end-to-end model that processes audio signals on the time domain. This
means that, on the one hand, the model estimates the samples of the source signals directly and
not by applying a mask to the input or a latent representation and, on the other hand, the latent
representations and feature maps, although they might be multi-channeled, are one dimensional,
processed by 1D layers.

"es —p

T T

Input Encoder Bottleneck Decoder Qutput

Figure 5.1.1: Abstract representation of an autoencoder network.

Wave-U-Net is the one dimensional adaptation of U-Net [51], a model that is used for biomedical
image segmentation. It has an autoencoder architecture, which contains four parts.

e An encoding or downsampling path, which takes the original signal as an input and repeatedly
processes and downsamples it until a dense latent representation is generated.

e The bottleneck, which is constituted by the processing and computation performed onto the
dense representation.

e A decoding or upsampling path, which operates in an opposite manner than the encoder, as
it receives the processed representation and repeatedly combines features from previous layers
and upsamples them until it restores the representation to the original resolution.

e An output layer that performs the desired task.
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In more detail, Wave-U-Net has a depth of L levels, meaning that each of the encoding and decoding
paths contains L processing blocks. Each processing block contains an 1-D convolutional layer with
LeakyReLU activation and a resampling operation. At the encoding path the convolutional layer
precedes the downsampling, while the opposite stands at the decoding; the feature extraction follows
the upsampling. The bottleneck and the output layer consist of a single 1-D convolutional layer,
with no resampling involved and with LeakyReLLU and tanh activations respectively.

LmxC where L,, is the segment length

The model receives segmented mixture signals M € [—1,1]
(in samples) and C' corresponds to the number of audio channels (1 for mono, 2 for stereo). The
first downsampling block increases the channels number from the original C' to a fixed number
F.. The rest of the convolutional layers of the downsampling path and the bottleneck increase
the number of channels by F., as they aim to extract increasingly information-rich features to
form and process the dense representation. At the deepest point, after the bottleneck, the latent
representation has a total of (L + 1) - F,. channels. The upsampling path works in the opposite way
than the downsampling one; the convolutional layers decrease the channel number, in order to match
the channels of the same-depth block of the downsampling path and gradually restore the channel
number of the representation. With a total of L upsampling blocks, the channels are reduced to F.
In the original paper, the convolutions of the downsampling path and bottleneck have a kernel size

of 15 and those of upsampling path a size of 5.

Between blocks of the same level there are skip connections, which, as their name suggests, enable
information from the downsampling blocks to reach the upsampling ones uninterrupted, skipping the
intermediate processing. The features coming from the encoder are concatenated with the ones in the
decoder, before getting processed by the convolutional layer. This is done for two reasons: Firstly,
it allows high level details, that might have vanished due to the downscaling, to flow directly to the
signal restoration stage, which can greatly contribute to a correct restoration of the signals. Secondly,
it facilitates training for the earlier layers, as it deals with the vanishing gradient problem. This
problem is common in deep architectures, where the backpropagation algorithm assigns gradients
to the nodes that get lower and lower, as it moves backwards through the network, making gradient
descent, and thus training, extremely slow. With the use of skip connections, earlier stages receive
gradients from both paths (normal and skip one) which partially mitigates the vanishing gradient
problem.

Finally, the output layer receives the multi-channeled representation at the original resolution of the
input mixture and performs the separation with a convolutional layer that changes the number of
channels to K - C, where K is the amount of sources, which can then be split, to retrieve the K
source signals. Figure 5.1.2 displays the above architecture in detail.

Regarding the resampling, both operations change the feature map resolution by a factor of two,
with the downsampling halving the resolution and the upsampling doubling it. This enables the
convolutional layers to extract features on multiple scales, without the need to use kernels of different
sizes, that would lead to an increase of the computation cost. Also, the fact that deeper levels process
downscaled feature maps compared to shallower ones helps in maintaining the computation cost at
reasonable levels, despite the former applying a significantly larger number of filters on the data than
the later ones. Thus, for an input segment with a length of L,,, the representation at the bottleneck
(deepest point) of the network would have a length of L,, /2" samples, vastly reducing computation
needs. The resampling is implemented with a simple decimation layer for the downsampling, and
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linear interpolation for the upsampling, avoiding aliasing artifacts that could appear by simply
decimating the signal or using transposed convolutions, respectively.

Source 1 output Source K-1 output

Mixture audio
[
""" H | 1D Convolution, Size 1 |
4

1 Crop and concat
................................. .’
A
‘ 1D Convolution, Size 15 | | 1D Convolution, Size 5 |
____________________________________________________ .’
" Crop and concat
‘ Downsampling | | Upsampling |
l Downsampling block 1 I Upsampling block 1
Downsampling block2 ~ ----------mieiee- > Upsampling block 2
¢ Crop and concat ?
Downsampling block L~ -----------m-i-e- > Upsampling block L

Crop and concat

1D Convolution, Size 15

Figure 5.1.2: Wave-U-Net with K sources, a depth of L and with the additions of a) difference
output layer and b) bigger input context [61].

5.2 Modifications

The Wave-U-Net architecture has been the subject of research for many papers, and as a result,
several modifications that improve the performance or reduce the complexity of the model have been
proposed. Here we will present 4 that were used in our experimentation.

5.2.1 Bigger Input Context

The first modification, which is proposed in the original paper [61], deals with a known problem of
convolutional layers; that of the feature map size reduction.

As it has already been mentioned, since convolution kernels need to entirely fit inside data, the
resulting feature map is smaller than the input. To avoid this shrinkage, which can have adverse
effects to the model’s performance and training, a padding layer is often used. But, despite the
padding technique used, the pads introduce false information, which can corrupt the convolutions
near the edges of the signal. There are cases where the effect of padding is negligible, due to the
nature of the data. However, in the case of music processing, where the signals are too big to be
processed as a whole and are instead cut in segments of a few seconds or less, the use of padding has
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an effect similar to the addition of false sounds before and after each segment. For instance, zero-
padding corresponds to adding silence before and after each segment, which, obviously, is erroneous
and ultimately leads to bad results.

This problem is extremely apparent in Wave-U-Net, because the ratio of the kernel size to the feature
map size and thus the amount of corrupted information due to padding, increases progressively as
we proceed to deeper levels. In fact, depending on the exact hyperparameters of the model, this
ratio can even get greater than one, for multiple levels, which means that every output element of
the feature map is more or less directly affected by the padding.

So, since using padding to counter the feature map reduction creates more problems to the model,
it is proposed to avoid using it entirely and to deal with the reduction just by using larger context
windows. In practice, for a given input segment with length L,,, the predicted source signals will
have a smaller length Ls < L,,, which means that, in order to achieve the same output length, a
model with larger context window will need larger input segments, greatly increasing the memory
requirements of the model during training.

To incorporate bigger context windows into Wave-U-Net, the concatenation operation requires that
the feature maps of the downsampling path that are forwarded through the skip connections are
cropped to the size of the respective maps of the upsampling path. Apart from that change which
adds a minuscule amount of computation, no further alteration to the model’s layers and parameters
is needed.

5.2.2 Difference Output Layer

This modification, which, again, is proposed by the original paper’s authors [61], makes an assump-
tion about the nature of the data to simplify the output layer. The assumption is that the source
signals are combined in an additive manner, which is valid for the MUSDB18 dataset, as the sum of
the individual source signals results in the mixture signal, but whether it holds generally depends
solely on the data.

Regarding the modification, assuming that for a mixture signal M, that consists of K source signals
S;,j=1...K, it stands that M = Z]K:1 S;, the output layer predicts only K — 1 source signals and
computes the last one as §K =M — ZJK:? §j. By constraining the model in this way, it doesn’t
need to learn this rule through training, which could speed up the learning process and improve
performance.

5.2.3 RNN Bottleneck

In [29], the addition of a recurrent layer at the bottleneck, such as an LSTM or BiLSTM, before the
convolutional layer of the baseline is proposed.

The motivation behind this extension is the fact that convolutional layers, due to their nature and
structure, have a small, finite receptive field. Thus, they only process local correlations of the signal
and are able to discover local patterns. The current workaround of repeated downsamplings of the
signal to increase the convolutions’ receptive field, although it has been shown to work, requires
very deep and complex architectures that are slow and hard to train and creates very abstract latent
representations, which can hinder the performance, due to loss of detail. Recurrent layers, on the

o8




5.2. Modifications

other hand, with their infinite receptive field can be included to the bottleneck to solve this issue.
It is expected that the integration of these layers will not only enable the use of shallower models,
reducing the network’s parameters and complexity in the process, but they will also improve the
performance, as they are more suitable for the processing of sequential data, like audio signals.

The integration of recurrent layers to the current architecture needs some attention, because the
semantic conversion from multi-channeled feature maps to sequences of feature vectors is non trivial.
In this case, since the feature map dimension is the temporal one, it is treated as the sequence
dimension from the RNN, while the channel dimension has the role of the feature vector. This
semantic remark is expressed in practice, as a transposition of these dimensions before and after the
recurrent layer is necessary to get correct results.

5.2.4 Incorporation of Discrete Wavelet Transformation

The last proposed improvement to the architecture is the use of the Discrete Wavelet Tranformation
(DWT) at the resampling blocks of the encoding and decoding path [44].

The motivation behind this modification is that the decimation process causes aliasing and is not
perfectly invertible, which means that parts of the feature maps are discarded. Both of these issues
can cause loss of performance, as on the one hand, aliasing corrupts information, creating audio
artifacts that the rest of the model cannot easily get rid of and on the other hand, the discarded
information may be vital to the separation task. Although the existence of skip connections can
compensate partially or totally for the discarded information, whether this happens heavily depends
on training, as there is no training bias imposed on the architecture, resulting in an inconsistent
behaviour that is undesired.

The use of wavelet transformation as a resampling operation can solve both these issues, as it
has an anti-aliasing filter and satisfies the perfect reconstruction property. The integration of the
transformation into the architecture is done by creating two new resampling modules, one for the
direct and one for the inverse transformation, that replace the original ones. The transformation
module operates as following:

Let us consider the feature map z € R7*C where T is the number of audio samples, which is
assumed even for simplicity (if it wasn’t even, a padding of one sample could be used). The feature
map of each channel is first split in odd and even parts, 224 € RT/2, zZ' e RT/2 depending on the
time sample indexing. The even component is considered as the one that will proceed to the rest of
the network, while the odd one has a supporting role to the whole procedure. More specifically, the
odd component is predicted by the even one using the prediction operator P leading to an error

e. = Z(c)dd . rngven

even

even contains aliasing artifacts due

This error term contains high frequency information. Because z
to the decimation, the error term is used to generate a smoothed version of it, termed as s., using
the update operator U, as

se =zo " +Ue,
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Both s. and e. components are then scaled by a normalization constant A and its reciprocal respec-
tively, resulting in

Sc = As.,e. =e./A

Finally, these normalized components are concatenated with form the downsampled feature map

- - - - T/2x2C
Z.=[61,...,8c,81,...,8¢0] € RT/?x

The values of operators P, U and the constant A depend on the wavelet used. For the Haar wavelet,
for example, the values of the operators are P = I7/5,U = 0.5 - I/ and of the constant A = V2,
where I is the identity matrix of size T' x T'. In this case, the signal s, is equivalent to the resulting
signal after applying average pooling. The inverse module performs the opposite operation. Figure
5.2.1 displays the block diagrams of the two modules.

{ZEOflcl) }e /\?_\ {ec }i > {é,__],_
——5] [P 4 ra i
<
A
DWT {zﬁnvnn)}c {Sc}c {éi'}(!
(a) DWT layer.

1 @ P

4 Inverse DWT.

(b) Inverse DWT layer.

Figure 5.2.1: Block diagrams of the proposed DW'T resampling layers. C' and S denote the
concatenation and splitting operation respectively, while C~! and S~! are their inverses [44].

In spite of the two new resampling modules not being learnable by any way, as they only contain fixed
parameters, they impose a small, fixed amount of computation, which along with the subsequent
increase in input channels of the following convolutional layer from C' to 2C, can have a slightly
noticeable impact on training times. However, it is expected that the benefits in performance greatly
surpass the additional computation cost.

5.3 Experiments

Our goal with the experiments on the Wave-U-Net architecture was to investigate in what way
the hyperparameters and the modifications affect the performance and whether the latter can be

60




5.3. Experiments

L | £ | 4params | mPut | Difference o b bwr
Context Layer
M1 |12 | 24 6.07TM v X X X
M2 | 6 |48 3.63M v X X X
M3 |12 | 24 13.45M v X v X
M4 | 9 | 32| 10.13M X X v X
M5 [ 12 ] 24| 6.07TM v v X X
M6 | 12 | 24 13.45M v v v X
M7 |12 | 24 7.12M v v X v
M8 | 9 | 32| 10.98M v v v v

Table 5.1: Configurations of the Wave-U-Net trained models.

combined, or not. Since the individual modifications have been previously evaluated by the re-
spective papers, we focused on training models that combine modifications and hyperparameters
configurations.

Experimental Setup

Regarding the experiment setup, we used the MUSDB18 dataset, with a 75-25 train-validation split,
at stereo format, downsampled to 22.05kHz, as commonly done in bibliography to reduce the training
cost [61, 29, 44|. Regarding the data augmentation, we apply random amplification on the signals’
magnitude, in the range [0.7,1].

The models were trained on the task of singing voice separation, thus we used the stems corre-
sponding to the whole mixture and the vocals, and created the ground truth accompaniment signals
by subtacting the vocals from their corresponding mixtures. All models output an audio segment
of 16384 samples, that is around 0.74 seconds. We trained each model using the Adam optimizer
with a cyclic Ir [59] of two cycles in the range [5-107°,1073]. The loss function was L2 and the
models were trained for 50 epochs, using early stopping if the validation loss was not improving for
20 consecutive epochs. The loss was calculated as the average of the vocals and accompaniment loss.
The models with the difference output layer modification predicted the accompaniment component
and calculated the vocals one, by subtracting the accompaniment from the mixture.

To evaluate our results, we used the SDR, SAR and SIR metrics, using the median-of-medians pro-
tocol devised in [62]. According to this protocol, the metrics were calculated for both the estimated
vocal and accompaniment components of each segment. The segment-wise scores were aggregated
over each song by calculating their median and then the median of the per-song scores is computed
throughout the whole test set, resulting in a single value.

Table 5.1 displays the features and the number of parameters of the models that were trained, which
are the following:

e M1 is the baseline of this set of experiments, which is a reproduction of of [61] with the use of
bigger input context.

e M2 is a shallower version of M1, having half its depth. In order for the latent representation to
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achieve a similar number of channels, the number of channels altered per block, Ft, is doubled.

e M3 includes an LSTM to M1 model. The incorporation of the recurrent layer is performed be-
fore the convolutional layer of the bottleneck, as mentioned before. LSTM’s hidden dimension
is set to 600.

e M4 is a shallower version of M3, without the input context.
e MS5 includes a difference layer to the M1 model.

e M6 incorporates both LSTM and difference output layer extensions to M1, acting as a combi-
nation of M3 and M5 models.

e M7 adds DWT-inspired resampling blocks to M5 model.

e MBS incorporates all three extensions to a shallower baseline M1 model. The hyperparamters
regarding the depth of the architecture and the width of the latent representation are similar
to M4 model.

First of all, as it can easily be observed by the experiments, we took bigger input context for granted
and included it in all but one experiments. This is due to the fact that, apart from the increased
memory usage which wasn’t a problem at this stage, the use of bigger context is the ideal way
of performing the convolution operation and is beneficial for Wave-U-Net for the aforementioned
reasons, something that is confirmed by the results from the original paper.

Secondly, as for the DWT resampling blocks, again, the results from the original paper displayed
an increase in performance, so we proceeded in using them in conjunction with other modifications,
without examining their contribution as a standalone.

Results and Discussion

Table 5.2 displays the results. Regarding our results, the first observation coming from M1 and M2
models is that the shallower model performed the same or worse in almost every aspect. This was
expected as less parameters are equivalent to a more restricted expressibility. However, the decrease
in parameters and thus model size is great compared to the small decrease in performance, which
leads us to the conclusion that the performance is affected more by the channels and dimensionality
of the latent representations and less by the depth and the sheer number of parameters. In this case,
the shallower model has an equal number of channels to the deeper one at the bottleneck, due to the
increased channel step F., while having more samples to process, due to the fewer downsampling
operations.

The addition of the recurrent layer comes with a great increase in number of trainable parameters
and training time. As far as performance in concerned, judging by M1 and M3 models, LSTM
provides a boost in all metrics except vocal SIR and accompaniment SAR. The better SDR score
can be associated with the better modeling and processing of sequential data by the LSTM. For
M4 we wanted to check whether the LSTM can deal with longer sequences coming from a shallower
model that also foregoes the larger input context used in M1-M3. The fact that 3 metrics are better
than M3 and 5 are better or almost equal than M1 hints that LSTM might in fact benefit from
longer sequences of less abstract features. However, we presume that there must be a turning point,
where a further increase of the sequence length will hinder the LSTM’s performance, as it is not

62




5.3. Experiments

M1 M2 M3 M4 M5 M6 \Y i M8
SDR | 4.48 4.43 | 477 | 460 | 478 | 452 | 5.30 5.09

Voc. SIR | 12.35 | 10.53 | 12.07 | 11.62 | 10.93 | 10.87 | 11.81 | 11.90
SAR | 5.28 9.29 | 5.61 | 5.74 | 5.70 | 5.57 5.96 6.01
SDR | 9.99 | 10.11 | 10.10 | 10.19 | 10.15 | 10.15 | 10.84 | 10.81

Acc. SIR | 13.80 | 13.77 | 14.37 | 13.78 | 13.95 | 13.95 | 15.53 | 14.83
SAR | 13.15 | 13.02 | 12.91 | 13.30 | 12.98 | 13.10 | 13.18 | 13.50

Table 5.2: Results for M1-M8 models, in terms of vocal and accompaniment SDR, SIR and SAR.
The values in bold are the top performing among all models.

made to handle extremely long sequences, and, combined with a slight reduction in performance due
to the shallower depth, will worsen the overall separation capabilities of the model.

Regarding the DWT, M7 scores the best performance among all compared and trained models in
3 of the metrics, including the vocal SDR. At the same time, it outperforms M5 in every aspect,
with only a relatively small increase in parameters. This comes in accordance with the results of
the original paper and clearly shows that the separation of features in high and low frequency ones,
along with the avoidance of information loss, thanks to the high-frequency component of the DW'T,
provide the rest of the model with meaningful information for the separation task. The addition of
LSTM and the decrease in depth that occurs in M8, worsens the performance in 3 metrics, including
the vocal SDR, but improve it in the rest, indicating that LSTM can benefit from the enhanced
features provided by the DWT-inspired pooling layer.

Finally, M5 with the difference output layer has substantially better performance than the simple
M1 model, pointing out that it is beneficial to enforce the additive property, instead of leaving
the model to learn it by itself. However, M6 has worse overall performance than both M5 and M3,
contradicting the previous point. We can’t really explain this, but we presume that either the results
the modifications are inconsistent, or that there might be a difficulty of instrument processing by
the LSTM, as in the M6 case we train based only on the loss coming from the accompaniment.

To conclude, if there are no memory constraints, we find no reason not to include bigger input
context to Wave-U-Net, especially since the impact of padding is significant. DW'T is a technique
that seems very promising for tasks and architectures that involve multi-resolution analysis of a
signal. The transformation fits the Wave-U-Net perfectly, by improving its performance and appears
to be modular enough to connect with other modifications. Therefore we think that it should be
included in any similar variant. The difference output layer might be functional, but the fact that it
is based on the unconfirmed assumption that sources are mixed in an additive manner along with the
inconsistent results leads us to be very reserved about its efficiency. Finally, as far as recurrent layers
are concerned, they might be a useful asset to Wave-U-Net architectures, although the results we got
did not point towards a definitive performance improvement. Nevertheless, we believe that the extra
parameters and training overhead constitute a handicap and therefore, any potential performance

boost is is not worth it.
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6.1. Baseline Architecture

This chapter has the goal of a) presenting Conv-TasNet, a waveform based architecture that was
proposed in [37] as a solution for the speech separation task, but has been adapted for music
separation by [14], b) experiment with several novel extensions and c) introduce a band splitting
method that significantly outperforms the baseline.

6.1 Baseline Architecture

Conv-TasNet is a model that processes audio mixtures in the time domain. The model separates
the source signals by predicting and applying masks on their latent representations, a concept that
is very popular with spectrogram-based techniques, but wasn’t tried out before in time-domain
architectures.

The Conv-TasNet architecture consists of three processing stages: an encoder, a separation module
and a decoder. In a high level approach, the model works as following;:

e The encoder transforms the input signal to an N x T “time-frequency” representation, that is
suitable for the separation task.

e The separator processes the input and tries to extract information to find a weighting func-
tion for each source. This function is applied multiplicatively to the encoded representation,

resembling a masking operation.

e The decoder reconstructs the source waveforms by transforming each signal back to the original
representation.

In more detail, the encoder transforms overlapping segments of the input mixture into a latent, high-
dimensional representation, by applying 1D strided convolutions with a relatively large kernel size L.
The stride is half the kernel size, in order to create a 50% overlap between the consecutive segments,
a value that is common in sound processing techniques. The convolution applies multiple filters,
increasing the number of channels from the original A to N, generating a multi-channeled feature
map. This feature map resembles structurally a spectrogram, but because it is learnable, it is possible
to create real-valued representations of the signal that are much more suitable for the separation
process than the STEFT or other fixed transformations. Also, information about the signal phase,
that is omitted by many STFT techniques, is included in the latent representation. The output of
the encoder is passed through a ReLU function to ensure that the representation is non-negative.
Similar to NMF, this constraint is imposed to create perceptually meaningful representations, by
additively combining a set of basis functions. Before the separator, the feature map is normalized
in both channel and time dimensions to speed up training and passes through an 1x1 convolutional
layer that changes the channels from the encoding dimension NV to the bottleneck dimension B.

The separation module utilizes a multi-block, residual temporal convolutional network (TCN) [33],
that uses serially connected stacks of R sub-modules. Each sub-module consists of X depthwise
separable convolutional blocks, each with an increasing dilation factor, d; = {1, 2, . 2X 11, The
multiple dilation factors enable the sub-modules to capture data patterns in multiple scales, be-
cause the individual blocks work as filters with different, gradually increasing receptive fields. Each
convolutional block transforms the latent representation along the channel dimension from the bot-
tleneck dimension, B to an internal hidden channel dimension, H, in order to perform the depthwise

separable convolution. Before and after the convolution, the respective feature maps are, again,

65




Chapter 6. Conv-TasNet

Skip-connection Output
Encoder Separation Decoder
pa €0 CIV B,L) d
[ [ 1x1-conv 1x1-conv
1D _ 1D | LoD L
Conv Conv d=2"" Conv @ ;'—1
Input i H H Separated Normalization
mixture t t t sources 1
1-0 4 1-D | q_5 1D
Conv Conv 174 Conv 1x1 PRelU
1 T Conv (H, L} +
1-D 1-D 1-D q_1| 1D 1-D D-conv
Conv Conv [] Conv || ' Conv || Conv 4+
Lt Sigmoid | Normalization
t
PRelLU
=
& H. L
éz : " !
n 1x1-conv
(B,L) [7

Mixture Input

(a) (b)

Figure 6.1.1: (a) Flowchart of the Conv-TasNet architecture. (b) The design of the 1-D
convolutional block used at the separator’s TCN. [37]

normalized. The above procedure produces a mask estimate, which is then used to form the two
outputs. The mask follows two distinct paths, in both of which there is an 1x1 convolutional layer
that transforms the channels number back to B, resulting in two representations. The first one is fed
through a skip connection to the outside of the module, while the second one, summed with the input
of the block, which is provided by a residual connection, makes up the input of the next block. These
residual connections essentially stack the dilation factor of each block and sub-module, making the
whole block operate as a single filter with a huge receptive field that is capable of discovering global
dependencies of the signal, apart from local ones. The individual mask estimates coming from the
skip connections are summed together in order to produce the overall multiplicative mask, which is
then passed through a PReLU, an 1x1 convolutional layer that changes the channels number from
B to C' - N, where C is the number of sources, and a sigmoid, resulting in the final mask matrix.
The convolutions of the separator are zero-padded to avoid feature map shrinkage. Contrary to the
Wave-U-Net, both the input mixture segment and the feature map size of the latent representation
are large enough, so that the effect of padding is less profound.

The mask that is provided by the separator is split in C' masks, matching the number of sources
that are then applied on the encoded representation, resulting in multiple signals in the latent space.
Finally, the source signals are reconstructed by the decoder using strided transposed 1D convolutions
with the same stride and kernel size as the encoder to transform the latent signals back to the original

space.

C /
Formally, given an input mixture s = Y. x; € RAXT" where x; is a source signal, C is the
i=1
total number of source signals, 7" is the segment length in samples and A is the channels of
the input (1 for mono, 2 for stereo etc): the encoder transforms it into a latent representation
w = encoder(s) € RV*T where N is the encoding dimension and 7T is the feature map size of the

c RCXNXT

latent representation. The separator generates the masks as M = separator(w) , where

each matrix along the first dimension is an instrument-specific mask. Finally, the decoder transforms
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the masked representations back to the initial domain, so as to get the estimated source signals, as
si’ = decoder(w ® my) € RA*T",

In the [14] variant of Conv-TasNet, which is the one we used the most in our experiments, there
are no skip-connections. Instead, the separator outputs the residual path representation of the
last convolutional block as the estimated mask matrix. Moreover, the decoder, instead of using an
1D transposed convolutional layer to change both the channel and time dimensions, uses a linear
transformation to change the number of channels from N to A - L and then reconstructs the signal
using an overlap-add method, that restores the dimensionality of the original signal, by taking into
consideration the overlap between successive segments.

6.2 Modifications

As we saw in chapter 4, Conv-TasNet has been the center of intensive research, with many techniques
and models been inspired by it. We experimented a lot with several novel extensions, focusing both
on the encoder-decoder and the separator modules.

6.2.1 Better Encoders

The encoder of the Conv-TasNet has a major role in the architecture, because the whole separation
process is performed on the latent space that it provides. So, changing and improving the encoder
can have an huge positive impact on the performance of the model.

Discrete Wavelet Transformation

Influenced by the results we got from our experimentation on Wave-U-Net, we wanted to investigate
whether this transformation can be used in Conv-TasNet. Our idea is based on the assumption that
the search for a good latent space by the encoder can benefit from the features that DWT provides,
as they are information-rich and split based on their frequency in low and high frequency ones.

The transformation can’t be used on its own, as it doesn’t have a way to explicitly set the represen-
tation’s channels to a desired number, which is crucial in creating a high-dimensional representation.
So, we use it in conjuction with the existing convolutional encoder. The DWT block can be placed
either before or after the encoder and the opposite for the decoder, operating on the original or
latent space respectively. Taking into consideration that the DWT module alters both the channel
and feature map dimensions, which are doubled and halved respectively, we change the encoder’s
parameters for kernel size and output channels accordingly, to keep the rest of the model the same.
More specifically, regardless of the transformation’s position, by halving the layer’s output channels
and doubling the kernel size, the combined encoder has the same characteristics as before, and can
be used without further alteration on the separator’s side.

Stronger Encoder

This improvement was proposed in [56] and is actually a more complex encoder, capable of capturing
more features from the input signals. It does so by combining two sets of features, coming from an
array of convolutional layers and from an STFT magnitude spectrogram.
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Regarding the implementation, for the first set of features, instead of using a single convolutional
layer, the encoder incorporates K such layers connected in parallel, with different kernel sizes, to
capture features with a wider frequency range, which are then concatenated and passed through a
ReLU activation. The k-th layer has a kernel size equal to 2% of the original and a channel dimension
equal to 22—2 of the original. For the second set of features, the encoder calculates features coming
from an STFT spectrogram, that are then normalized and passed through a linear transformation,
implemented with a fully-connected layer. The concatenation of these two types of features is
processed by two 1D convolutional layers, separated by a ReLLU, that correct the channels to match
those of the original encoder, that is N. Hence, this encoder can replace the original one without
any further change for the rest of the model components.

The decoder works in a similar fashion, transforming the latent representations with a convolutional
layer and a ReLU activation and then splitting it in K parts and passing them through the same
number of convolutional layers with the same kernel sizes as the encoder, before summing them to

produce the estimated source signals.

t
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Figure 6.2.1: Design of the stronger encoder module |56].

Encoder with Gammatone Filterbank

In [15] a fixed filterbank originating from the field of DSP, the multi-phase gammatone filterbank
(MP-GTF) was proposed as a replacement to the original learned encoder, for the task of speech
separation task. We expect this filterbank to be beneficial for the task of singing voice separation

as well.

The MP-GTF is based on the auditory gammatone filterbank (A-GTF) [46], a filterbank that tries
to model the basilar membrane motion in the human auditory system. This filterbank contains a
number of non-linearly spaced narrow-band filters with an increasing bandwidth over the filter’s
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center frequency. The impulse response of each filter is defined as
v(t) = at P2 cos (2 fut + &)

where f. is the center frequency, ¢ the phase shift, o the amplitude, £ > 0 the time in seconds, p the
filter order and b the filter bandwidth parameter. The center frequencies f. are placed in equally
spaced positions on the so called ERB scale

sz
ERB =9.2651 1+ ———
R scale(sz) 9.265 og < + 24.7 % 9.265
This scale is derived by integrating ﬁ(ﬁ) across frequency, where ERB is the equivalent rectangular
bandwidth. The equivalent rectangular bandwidth of the filters corresponds to the bandwidth of a
rectangular filter with same maximum gain and total energy, and is given by the following formula:

fe
9.265

ERB(f,) = 24.7 +

The MP-GTF uses filters of filter order p = 2, whose impulse response is truncated at 2ms and
whose bandwidth is given by b = ERB(f.)/1.57. The spacing between the center frequencies is set
to 1 in the ERB scale, meaning that

fi+1 = ERBS_C;IB(ERBscaIe(fi) + 1)
where 7 is the filter index.

Also, to satisfy the non-negativity constraint of the separator’s input, the filters come in pairs,
meaning that the negative of each fiter is included in the filterbank. In terms of phase, a negative
filters correspond to a filter with a phase shift of .

Due to the predefined spacing between the center frequencies, the total number of filters, including
the negative ones, is limited to

#filters = 2 - #center_frequencies = 2 - (| ERBgcate (fimaz) | — [ERBscale(fmin)])

where fq. and fy,:, correspond to the highest and lowest desired center frequency. Typically chose
values for these parameters are fpae = fNyquist/2 and fmin = 100Hz. This number might be low
(only 48 filters for the 100-4000Hz frequency range) for the application, so the authors of the paper
suggest including filters of the same center frequency, but with shifted phases. As only half the
filters can be picked freely, due to the filters coming in pairs, the phase shifts are picked so they are
equidistantly distributed on the interval [0, 7).

Figure 6.2.2 displays the magnitude of the filterbank that we used in our re-implementation. Note
the non-linear distribution of filters in frequencies; there are many filters at low frequencies and less
at high frequencies.

6.2.2 Multi-Conv-TasNet

As the name of this section suggests, we created new structures by combining multiple Conv-TasNets.
The premise behind this modification is that the two networks will specialize in different tasks, or
different parts of the signals, increasing the overall performance.
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Figure 6.2.2: Frequency domain representation of the gammatone filterbank. We use 256 filters in
total, with 48 distinct center frequencies.

Sequential connection

For the sequential variant, we use three Conv-TasNets forming a pyramid-like structure. More
specifically, we incorporate 2 layers of Conv-TasNets, connected serially. The first layer has 1
network, that performs an initial separation of the mixture signal to the two source components.
Then, each signal is fed to a distinct network to be processed a second time. In this second layer
of networks, each network generates one mask and thus outputs one signal. This means that the

signals are not further separated, but rather they are processed.

Since the first layer is left unaltered, we expect it to perform the separation task, as before. For
the second layer, we expect that its processing will operate as a denoiser, cleansing the signals from
annoying artifacts, and hence improving their quality.

Parallel connection

For this variant, we want to connect multiple networks at the same level, in parallel. One way is to
create an ensemble, that is a combination of multiple independently trained networks. In that case,
the networks would share the input signal, process it in isolation and and then group the results

with an aggregation function, such as averaging.

Although ensembles are effective, improving performance, as in [57], we opted for a more sophisti-
cated integration. Therefore, we used DWT at the input, before passing it to the networks, to split

70




6.2. Modifications

Separation Denoising

sl Conv- | Denoised

I TasMet Source 1

Input N Conv-
mixture TasNet

I Conv- |, Denoised

Sqource 2 TasNet Source 2

(a) Sequential connection with two layers of networks.

HIGH
FREQUENCY —y| CONV

TASNET _l

Input mixture —»  DWT CONCAT —>{IDWT/LEARNABLE —>§;ﬂ:§
LOwW j
FREQUENCYL 3| CONV
TASNET

(b) Parallel connection with DWT separating the features in high and low frequency.

Figure 6.2.3: Block diagrams of the proposed Multi-Conv-TasNet modifications.

the signal in high and low frequency components. These components are processed separately by
the two networks, resulting in a network specializing in high frequency features and the other in
low frequency ones. Finally, the separated signals are concatenated on the channel dimension and
passed through an IDW'T or learnable transformation to produce the source signals.

6.2.3 Multi-band Separation

The multi-band extension for Conv-TasNet was inspired by MMDenseLSTM [63], a time-frequency
domain model that yielded very competitive results in singing voice separation. This model splits
the spectrogram representation in multiple frequency bands and processes each band individually,
before combining the outputs. We try to create an as similar as possible structure, considering that
the domain of operation differs (waveform instead of time-frequency) and that the representation we
use is derived from a learnable transformation, while the STFT is fixed, with known properties and
interpretation. We expect the separators to specialize in the specific band they are processing and
that they will force the encoder to learn better representations to facilitate the separation procedure.

Parallel Multi-band Separation

In order to create multiple frequency bands, as in [63|, we approached the latent representation in
a way similar to a time-frequency one. More specifically, regardless of the number of channels and
the length of the input signal, the encoder produces a multi-channeled representation of 1D series of
features. This representation can be thought of having a “latent frequency” (channel) and a “latent
time” (feature map) dimension, resulting in a “latent spectrogram”.
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Having made the above semantic remark we proceed to the modification in the model’s architecture.
The encoded latent spectrogram is split along the channel dimension to create ) latent frequency
bands w; € RBiXL/,i = 1...Q, where B; corresponds to the number of channels that are assigned
to each band. We note that channels are not necessarily assigned to bands in a mutually exclusive
basis, meaning that each channel can be included in more than one bands. These bands are then
fed to @ individual separator components that work in parallel, and each separator generates its
respective sub-masks. These masks are concatenated along the channel axis and, in order to restore
the channel dimension of the encoded latent representation, are then processed by a fully-connected
layer. Afterwards, the rest of the network proceeds as normal. In the case where the relationship
between channels and bands becomes mutually exclusive (each channel is assigned to one band, and
is thus processed by one separator), we omit the fully-connected layer, as there is no need to correct
the channel dimension. Unless stated otherwise, the bottleneck size is adapted to match the number
of channels B; that is assigned to each band every time. The proposed modification is displayed in
Figure 6.2.4
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Figure 6.2.4: Block diagram of the parallel multi-band extension. The red elements are used only if
the assignment of channels to bands isn’t 1-1. Furthermore, the red arrows indicate that a channel
can be fed to two separators.

Dilation-split Separation

As in the Multi-Conv-TasNet extension, we can also connect the specialized separator modules in
series. In this case, our proposed variant doesn’t operate by splitting at the channel dimension
into latent frequency bands. Instead it creates “receptive field” bands, by splitting the TCN in
multiple separator components, based on the dilation factor of the contained convolutional blocks.
All separators output one mask that is used as input by the next separator, with the exception
of the last one, that outputs as many masks as the number of sources. This model is depicted in
Figure 6.2.5.

Implementation-wise, we propose the segmentation of the separator TCN module into a cascade of
@ serially connected separators, each retaining the original dimension of 3 stacks, but including only
D’ = D/Q dilated convolutional blocks, with ascending dilation factors d;; = 2D,(k_1){1, - 2D,_1},
k =1,...,Q. Thus, by manually tuning the receptive field of these separators using the dilation
factors of their convolutional blocks, we expect each separator to specialize on extracting more local
or global patterns, thus leading to improvements in the performance of the network.
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Figure 6.2.5: Block diagram of the dilation split model. Each separator has a fraction of the total
dilation factors. Each separator but the last output only one mask.

6.3 Experiments

Experimental Setup

Our research was done in three parts; The first part covers some exploratory experiments to investi-
gate the effectiveness of the multi-ConvTasNet, multi-band separation and DWT encoder modifica-
tions. The second part extends the research on multi-band separation, regarding hyperparameters
and its scalability. In the third part, we tested the modularity of the parallel multi-band separation,
which yielded the best results among those tested in the second part, by combining it with the
stronger and the gammatone encoder [56, 15].

For the experimental setup, we used the MUSDB18 dataset with the same properties as in Chapter 5,
but using a 86-14 train-validation split. Regarding the data augmentation, we perform normalization
on the songs, before processing them, so an amplification would be pointless. Additionally, we follow
the augmentation procedure introduced in [67]. That is, we flip the signal’s sign, which is equivalent
to a phase-shift of = and flip the stereo channels at random. Also, we use a random shift of up to 2
seconds to each stem individually and a remixing of stems between batches. All these transformations
result in a generation of a unique training set at each epoch, which can improve the training process
and avoid overfitting.

All models were trained with segments of 2 seconds in length, that is 44100 samples and separated the
mixture in two components, vocals and accompaniment, as dictated by the singing voice separation
task. The optimizer used is Adam [30], with a learning rate of of 0.003. Unless stated otherwise,
the loss function used was the L1 loss and the hyperparameters of the Conv-TasNet are as in Table
6.1. The evaluation protocol used is the same as in the experiments of Chapter 5, that is the
median-of-medians protocol, devised in [62].

Complementary to the evaluation results and in order to assess their validity over the whole distribu-
tions of the metric values, we performed the paired Wilcoxon signed rank test, over all the reported
metrics between each model we developed and its respective baseline. The values that indicate a

73




Chapter 6. Conv-TasNet

statistically significant improvement over the baseline are denoted with a highlight in the respective
tables.

6.3.1 Exploratory Experiments

In this part we trained many models for a small number of epochs to check whether the modified

versions offer any noticeable improvements or not. In Table 6.2 we display 8 such models, that were

trained for 50 epochs, using early stopping when a model hasn’t reduced its validation loss for 20

epochs.

A1 is our baseline, which as we previously mentioned, is the Conv-TasNet variant of [14], which
has no skip connections and its decoder uses a linear transformation and overlap-add method.

A2 is a Multi-Conv-TasNet in a sequential connection, containing 3 networks in the 2 layer

pyramid structure, as described before.

A3 is a Multi-Conv-TasNet with 2 networks connected in parallel and with DWT and IDWT
transforming the input and output, respectively.

A4 is similar to A3, but with a learnable 1D transposed convolutional layer performing the
inverse transformation.

A5 is similar to A3, with the transformation window of the Conv-TasNet encoders and decoders
halved, L = 10, to compensate for the resolution loss caused by the DWT.

A6 is a dilation-split model, with two separators, each containing half the dilation factors of

the original, in an ascending order.

A7 is a parallel multi-band model, with () = 2 bands, where each channel is uniquely assigned
to a band.

A8 is like A7, but incorporated DWT at the encoder in order to perform band-splitting, where
the transformation is performed on the latent space. Fig. 6.3.1 depicts the architecture.
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Figure 6.3.1: Block diagram of the multi band extension combined with a DW'T in latent space.

Discussion

First of all, it must be noted that as the Multi-ConvTasNet models (A2 to A5) have significantly
more parameters than the baseline, 50 epochs of training may not be as efficient as on the other

models, and as such, a direct comparison to the other ones might be unfair.
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Symbol Description Value
N Channel dimension of latent space 256
L Transformation window length 20
B Number of channels in bottleneck 256
H Hidden dimension 512
P Kernel size for non 1x1 convolutional layers 3
X Number of convolutional blocks in each sub-module 8
R Number of sub-modules in a TCN 3

Table 6.1: Values of the Conv-TasNet hyperparameters used.

Model Description #params
Al Baseline 6.55
A2 Sequential Multi-Conv-TasNet + DWT/IDWT 19.64
A3 Parallel Multi-Conv-TasNet + DWT /IDWT 13.09
A4 Parallel Multi-Conv-TasNet + DWT /Learnable 13.09
A5 | Parallel Multi-Conv-TasNet, P = 10 + DWT/IDWT 13.07
A6 Dilation-split 6.61
A7 Multi-Band, @ = 2 6.47
A8 Multi-Band, @ =2 + DWT/IDWT 6.48

Table 6.2: Description and number of trainable parameters for the models of the first phase of
experiments.

Starting off commenting on the results with A2, we can clearly see that the multiple networks
structured in such a way do not provide any improvement to the model, as all metrics score below
the original baseline. One reason might be that due to the model’s high depth and complexity,
our expectation of having two layers of networks specialized in different tasks (1st layer separation,
2nd layer denoising) might not be met, as there isn’t any training bias towards that behaviour. As
such, the model finds its own way of solving the task, which may lead to the creation of obscure
latent representations and a high number of artifacts as indicated by the low SAR value. A possible
solution to this issue could be the inclusion of deep supervision during training. This means that
instead of computing only one loss function at the output of the network, we compute multiple
loss functions, in various positions of the architecture, thus imposing additional constraints on the
training process. However, generating these intermediate goals and picking the right spots to enforce
them, in order to properly guide the training process, isn’t trivial and as there are successful neural
network architectures with different denoisers [16], and further research is required.

Regarding the models with two Conv-TasNets connected in parallel, each model excels in a metric,
(accompaniment SAR for A3, vocal SAR for A4, vocal SIR for A5), while having average performance
overall. A3 seems to be the best of the three, with only one metric significantly lower than the
baseline, A5 the next, with two metrics lower and A4 the last, with three metrics lower.

The main difference between A3 and A4 is that A3 uses IDWT to combine the two reconstructed
signals, instead of a learnable transformation. The better all-around performance of the former leads
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AL[14] [ A2 | A3 | A4 | A5 | A6 | A7 | AS
SDR | 539 | 4.82 | 540 | 542 | 538 | 5.03 | 5.48 | 5.21
Voc. STR | 13.43 | 13.05 | 13.36 | 11.98 | 14.04 | 12.06 | 13.78 | 11.56
SAR| 6.39 | 498 | 632 | 6.47 | 572 | 6.40 | 6.25 | 6.24
SDR 11.08 10.59 | 11.16 | 11.14 | 11.11 | 11.16 | 11.39 | 10.95
Acc. SIR | 15.53 | 13.63 | 14.00 | 15.25 | 13.99 | 14.63 | 15.18 | 15.42
SAR | 13.88 | 13.73 | 14.13 | 13.71 | 13.89 | 13.87 | 13.96 | 13.59

Table 6.3: Results of the first phase of experiments, in terms of vocal and accompaniment SDR,
SIR and SAR. Values in bold are the highest in each metric. Underlined values denote a
statistically significant improvement (p=0.05) over the baseline Al.

us to think that the learnable transformation doesn’t learn the IDWT efficiently.

Between A5 and the other two models, the main difference concerns the length of the transformation
window, which is halved so that it compensates for the halving in resolution caused by the DWT.
This change has a direct effect on the receptive field of the separator since it provides it with more
(double the) samples to work with. The right size of the receptive field, that is whether it is better for
it to be large or small, is completely up to the application, as both cases have their strong and weak
points. For instance, a large receptive field means the separator "sees" a larger part of the original
signal in each processing step, meaning that it can discover more global dependencies compared to a
smaller receptive field. Although this may be vital for the separation process, improving the overall
performance, it might also be disastrous, as the redundant information distracts the separator away
from the potentially important local patterns. On the other hand, we believe that regarding the
resolution, the things are clearer. A higher resolution, although it increases processing time, gives
the separator more samples to work with, without increasing the parameters due to the convolutional
layers’ property of parameter sharing. Also, it prevents a further downsampling of the feature map
and mitigates the effects of padding. Judging by the results, where A3 is slightly better than A5,
which in turn is better than A4, we can’t justify or contradict the above points and more in-depth
research is needed.

Proceeding with the multi-band models, the band-split model A7 excels in two metrics (vocal and
accompaniment SDR), while recording a very good performance overall, compared to the baseline.
On the contrary, A6 and A8 perform, generally, worse comparatively to the baseline.

Regarding A6, it is clear that the idea of halving the depth of the separators didn’t cause the
specialization we expected. A possible explanation is that by splitting the dilation factors and
damaging the convolution dilation continuity, the separators lose the property of a unified filter,
which leads to bad results after the first separator.

The results of A7 justify our goal, as the model excels in both SDR metrics that are considered
the most important ones. The two bands seem to contribute in the formation of more specialized
separators. At the same time and judging by A8, we can deduce that either DWT is incompatible
with this kind of band-splitting method or it only works with representations that contain some kind
of temporal continuity, like the waveforms and thus it can’t be applied on latent representations.
This can be further justified by the performance of A3, where the DWT was placed on the original
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space, instead of the latent one.

6.3.2 Multi-Band in-depth Experiments

Following the good results of the parallel multi-band model from the previous section, we performed
additional experiments. In this part we test the scalability of the technique and what happens if we
revoke the constraint of mutually exclusivity between the channels and the bands.

For all experiments, we used the same database and hyperparameter configurations as before, but
increased the total amount of epochs from 50 to 150, in order to get more trustworthy results.

We trained the following models:
e Bl is our baseline, Al, trained for 150 epochs.
e B2 shares the same architecture with A7, but is trained for 150 epochs.

e B3 is similar to B2 but with double the bottleneck size, to test its effect on the separation
capacity.

e B4 is a band-splitting model with @ = 4 bands, with each band consisting of N/@Q unique
channels. This model was trained to test the scalability of B2.

e B5 is a band-splitting model with Q = 3 bands. As in [63], apart from the 2 standard, mutually
exclusive bands, we include a third "full band", containing all N channels. These 3 separators
produce a representation with a total of 2NV channels and thus we use a linear transformation
to reduce the channels’ number to V.

Model | #params | #bands (@) | Bottleneck Coefficient | Full Band
B1 6.55M 1 x1 X
B2 6.47TM 2 x1 X
B3 12.87TM 2 X2 X
B4 6.51M 4 x1 X
B5 6.61M 3 x1 v

Table 6.4: Number of trainable parameters and architectural details of the models of the second
phase of experiments. The bottleneck coefficient is used to change the bottleneck size of each
separator, which is normally adapted to match the number of channels of each band.

Discussion

Table 6.4 showcases the number of parameters for each trained model, Table 6.5 shows the evaluation
results in terms of SDR, SIR and SAR and Figure 6.3.2 displays the frequency domain representation
of filters of the encoder for the B1-B5 models. The filters of the encoder are split based on the
separator they belong to. Also, Figure 6.3.3 displays the learning curves of the models.

The two-band models B2 and B3 achieve the best overall performance among latent frequency band
models, with B2 scoring better in vocal SDR and B3 in accompaniment SDR. We note that B2
achieves a lower SIR compared to B3, but compensates by recording a higher SAR. The frequency
domain representations of the filters the separators receive are too similar between the two models
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Bl [14] | B2 B3 | B4 | B5

SDR | 581 | 6.37 | 6.11 | 6.05 | 5.94
Voc. SIR | 14.13 | 14.25 | 14.69 | 14.61 | 14.23
SAR | 659 | 7.12 | 659 | 6.98 | 6.78
SDR | 11.78 | 12.21 | 12.47 | 11.66 | 11.76
Acc. SIR | 16.01 | 16.69 | 16.76 | 16.04 | 16.01
SAR | 14.24 | 14.52 | 14.25 | 14.10 | 14.37

Table 6.5: Results of the second phase of experiments, in terms of vocal and accompaniment SDR,
SIR and SAR. Values in bold are the highest in each metric. Underline values show statistically
significant improvement (p=0.01) over baseline model B1.

and they both indicate that our goal of creating specialized separators has been achieved, as the
encoder processes the input of each separator with a set of filters with distinct characteristics. More
specifically, as we see in Figure 6.3.2b)-c), one of the separators is assigned more filters with higher
central frequencies and the other more filters with lower central frequencies, narrower passbands and
lower energy. However, considering that B3 has double the parameters of B2 and the baseline model,
we deduce that the increased expressibility coming from the larger bottleneck doesn’t translate to

better separation capabilities.
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Figure 6.3.2: Frequency domain representation of the filters of the encoder. The sub-figures display
the sub-space that is processed the respective separator, each time. The filters of each band have
been sorted in ascending order of base frequency.
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The four-band model, B4, outperforms the baseline model B1, but not the two-band models B2
and B3, recording nevertheless a high vocal SIR. This implies that using more separators to process
“narrower” frequency bands has diminishing returns and that the technique might not be scalable in
that term. The low performance could be attributed to the lower number of bands being assigned
to each separator and to the decrease of the bottleneck factor which is done to keep the amount of
parameters the same; as the latent information available to each separator decreases, they struggle
to independently converge to good solutions that are based on mutually exclusive information, as
the separators are not aware of what the other ones are learning and thus extracting overlapping
information, potentially limiting the separation capacity. This is also visible from the frequency
representation of the encoder filters; as we can see, although the middle two bands — corresponding
to the two “middle” separators — receive distinct filters, the top and bottom bands receive filters that
roughly cover the same frequencies.

The model that additionally processes the entire latent representation, B5, recorded significantly
lower scores than the 3 previous models in all metrics except SAR, in which it has comparable
results. It seems that processing the entire representation in addition to separate bands has a
nullifying effect on the specialization of the separators. This is apparent from Figure 6.3.2e, where
we can see that while there are some differences between the frequency domain representation of the
filters assigned to each separator, the effect is not as profound as in the cases where no separation
path with access to the full latent spectrogram exists.

As can be seen at the Figure 6.3.3, the baseline B1, the four band model B4 and the full band
model B5 converge faster than the two band models B2 and B3, as they stop due to the used early
stopping protocol. Additionally, at the 100 epochs mark, the B5 model achieves its lowest loss value,
both in terms of training and validation. However, it seems that both B4 and B5 face some kind of
diminishing returns of training, due to overfitting, as the reduction of train loss does not translate
to less validation loss at the last epochs, in contrary to models B2 and B3. Of course, it should be
noted that for this task, the L1 loss and the evaluation metrics, SDR, SAR and SIR, are not fully
correlated, which means that although lower loss values generally lead to higher metric scores, two
models with the same loss may have substantially different performance.

6.3.3 Multi-Band Modularity Experiments

We proceed with experiments regarding the modularity of the parallel multi-band modification, by
combining the two band model with the stronger encoder and the gammatone filterbank encoder.

For this set of experiments we are more interested in the performance of the modified versions
compared to the respective baseline, than in the metrics scores themselves. We trained the following
models:

e C1 is the baseline for C models. It is the simple architecture (A1, B1) but instead of using
the original, learnable encoder and decoder we use the stronger encoder of [56], with 6 differ-
ent convolutional layers for the time-domain processing path and 256 features for the STFT
processing path.

e (2 is similar to C1, but the joint representation is split into @) = 2 bands, with N/@ channels
each, essentially merging the models B2 and C1.
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Figure 6.3.3: Graphs of training, validation and best validation loss per epoch for B models.

e (3 is similar to C2, but we modify the stronger encoder to not concatenate the features from
the two paths. Instead, the two paths are passed through an 1x1 convolutional layer each to
change their channels to N/@ and then are fed directly to the two different separators, one for
the features extracted from the signal waveform and one for those corresponding to the STFT
magnitude spectrogram.

e D1 is the baseline for D models. It is also based on the vanilla (A1) Conv-TasNet architecture,
with the caveat that it utilises a gammatone filterbank as its encoder, as in [15]. Regarding
the filterbank’s hyperparameters, instead of 24 center frequencies we use 48, which are spaced
equidistantly in the ERB scale, but with a smaller step size than 1 unit, and also similar to
[55]. Additionally, instead of the linear/overlap-add decoder of [14], that was used in every
other model, we use the decoder of the original paper, implemented as an 1D transposed
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convolutional layer.

D2 is similar to D1 but with @ = 2 bands, containing N/@ unique channels each. Similar to
C2, this model merges B2 and D1 models. In this case, the channels are assigned to bands
based on their central frequency, in ascending order.

D3 is similar to D2, but instead of feeding each separator with the first or last N/@Q channels,
we distribute the channels to the two separators depending on their respective filter phase.
One separator gets the channels that correspond to positive filters (phase € [0,7)) and the
other those that correspond to negative filters (phase € [m, 27)).

D4 is similar to D2 but we employ a linear transformation on the channel dimension on
the output of the filterbank before feeding it to the separators. This transformation doesn’t
change the number of channels, but it enables each separator to linearly combine the channels

it processes.

As before, we used the same database and hyperparameter configurations. The C models were

trained for 150 epochs, while the D models were trained for additional 100 epochs for a total of 250,

with the L2 loss, instead of L1, following the concurrent literature [15, 55].

Model Description #params
C1 Stronger Encoder Baseline 7.28M
C2 Stronger Encoder + Multi-Band, @ = 2 7.22M
C3 Stronger Encoder + Multi-Band, Q = 2 + Split Feature Paths 7.07TM
D1 MP-GTF Baseline 6.52M
D2 MP-GTF + Multi-Band, @ = 2 6.44M
D3 MP-GTF + Multi-Band, () = 2 + Channel distribution based on phase 6.44M
D4 MP-GTF + Multi-Band, @ = 2 4+ Channel distribution based on linear layer 6.44M

Table 6.6: Number of trainable parameters and architectural details of the models of the third

phase of experiments.

C1[56] [ C2 c3 [[D1[55]] D2 | D3 | D4

SDR| 6.39 | 636 | 624 || 555 | 531 | 549 | 5.69
Voc. SIR | 14.39 | 14.92 | 13.84 | 14.96 | 14.92 | 14.63 | 15.06
SAR| 682 | 709 | 7.25 || 7.28 | 7.09 | 7.23 | 7.39
SDR | 12.23 | 12.03 | 11.78 || 8.06 | 8.03 | 7.99 | 8.09
Acc. SIR | 17.57 | 17.51 | 17.08 | 1840 | 18.14 | 18.56 | 17.77
SAR | 14.20 | 14.07 | 14.25 || 14.65 | 14.57 | 14.64 | 14.94

Table 6.7: Results of the third phase of experiments, in terms of vocal and accompaniment SDR,

SIR and SAR. Values in bold are the top performing in each group of models. Underlined values

show statistically significant improvement (p=0.01) over the baseline model of each group of

models (C1 for C models, D1 for D models).
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Discussion

Regarding the C models, we observed that while the C2 model performed comparably to the baseline
C1, the C3 model yielded worse results. Hence, we deduce that the features provided by the stronger
encoder are incompatible with the band-splitting technique. This may be due to the heterogenous
nature of the provided features. What we mean by that is that on the one hand, there are two
processing paths that deal with completely different features (waveform vs T-F domain) and on
the other hand, the distinct convolutional layers of the waveform path do not result in a unified
filterbank, as is the case with the original or the gammatone encoder.

Our explanation about the difference in performance between the multi-band models C2 and C3 is
that the success of this stronger encoder lies in the combination of time and T-F domain features.
Thus, splitting the representation channels in mutually exclusive bands after merging the time-
domain and T-F-domain features, without any interconnections between the two separators, as in
the case of C2 model, allows the encoder to suitably combine both its input domains. On the other
hand, processing each feature type individually, as in C3 model, greatly restricts the potential benefit
that this encoder offers.

As can be seen by the Figure 6.3.4, the baseline model converges faster than the C2 model, which in
turn converges faster than the C3 model. The graphs are, also, in accord with the previous points
about the performance of these three models, as each model reaches a lower train and validation loss
than the next in the sequence. Both of these points constitute further evidence that the multi-band
modification does not cooperate well with the stronger encoder. Also, all C models and especially
C1 converge at a substantially lower train and validation loss than the B models, supporting the
generally better performance that is reported by the results.

Regarding the D models, the first, obvious observation is that all accompaniment SDR metrics
are considerably lower than every other model. This most likely has to do with the fact that the
gammatone filterbank was designed to model human speech, instead of instrument sounds. Moving
on to the individual models, we see that D4 excels in 5 out of 6 metrics (all but accompaniment
SIR), D3 excels in one metric but has mediocre performance at the others and D2 has comparatively
average to bad performance.

The main difference of the 3 models is the distribution of the frequency ranges that the filterbank
covers into bands. Starting of with D3, its separators receive components of the whole frequency
range, that are just processed by filters with negative phases. Judging by the results, this doesn’t
seem to create any kind of specialization at the separators, which leads us to think that in order
for the technique to work, a selection of frequency bands is needed. On the far opposite side, D2
distributes them based strictly on frequency range, splitting the gammtone filterbank representation
into high and low frequency components. This also seems to hinder the separation capacity, even
more severely than in the case of phase-uniform bands hinting that although each separator may
specialize in a specific band of frequencies, it still needs to process some information corresponding
to other frequency ranges. Finally, D4, with the use of a linear layer seems to enjoy the best of both
worlds, as it picks and combines those frequencies that are important to the separation process,
achieving extremely good results.

As can be seen by the Figure 6.3.5, all D models converge more or less at the same train and
validation loss value, with the D2’s values being a bit greater and D4’s value a bit lower. However,
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Figure 6.3.4: Graphs of training, validation and best validation loss per epoch for C models.

the rate of convergence differs significantly, with the top performing model, D4, converging at around
150 epochs, that is 100 less than the total training, which could ultimately be taken advantage of to
reduce the resources cost.

6.4 Overall Discussion

Figure 6.8 concentrates the results of the baseline and the best model of the two sets of in-depth
experiments. Namely, it displays the metrics for the models B1, B2, C1, D4. The C1 and B2
models score the top SDR for both sources, outperforming the baseline B1, in contrary to D4, which
scores lower than the baseline, especially on the accompaniment. However, regarding the rest of the
metrics, D4 clearly achieves the best performance, by a medium to large margin from the second
best model each time, which is either B2 or C1.
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Figure 6.3.5: Graphs of training, validation and best validation loss per epoch for D models.

So, to conclude, the multi-band technique has proven to be beneficial for the baseline architecture,
so we believe that it should be considered for addition in Conv-TasNet architectures. Regarding the
encoders, the stronger encoder provides a strong performance boost in all metrics and outperforms
the MP-GTF encoder in the most important one, SDR, so it is probable that the former one can
contribute in creating Conv-TasNet architectures with state-of-the-art performance. However, we
think that the MP-GTF encoder can still be a considerable option, as it achieved top performance
in the non SDR metrics, it does not depend on training due to its fixed nature and it seems to be
flexible enough to be combined with other techniques, such as the multi band modification.

To showcase the effect of the models on the mixture signal, a visual representation with the use of
spectrograms is presented below. For the demonstration, two segments of two seconds long are used;
the first is from the song "Falcon 69" by the "The Easton Ellises" and the second from "A Place
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B1[14] | B2 [ C1 [56] | D4 [55]
SDR | 581 | 637 | 6.39 | 5.69

Voc. SIR | 14.13 | 14.25 | 14.39 | 15.06
SAR | 659 | 7.12 | 6.82 | 7.39
SDR | 11.78 | 12.21 | 12.23 | 8.09

Acc. SIR | 16.01 | 16.69 | 17.57 | 17.77
SAR | 14.24 | 14.52 | 14.20 | 14.94

Table 6.8: Aggregated results of the baseline model and the top performing model from each set of
models.Values in bold are the best in each metric.

For Us" by the "Carloz Gonzalez", both of which are included in the test split of the MUSDB18
dataset. Figure 6.4.1 and 6.4.2 displays the spectrograms of the ground-truth mixture and vocal
component and the estimated vocal signal of top performing models of each category (B2, C1, D4)
for the first audio channel of the segment of the first and second song, respectively.

The Table 6.9 includes the metric scores for the vocal component of the models for the whole song
and for the particular segment.

First song Second song
SDR SAR SIR SDR SAR SIR
B2 | 6.10 (2.54) | 10.39 (7.04) | 7.31 (3.99) || 5.57 (4.42) | 7.26 (4.45) | 13.47 (12.61)
C1 | 5.89 (2.24) | 9.88 (6.41) | 7.02 (3.59) || 7.29 (4.44) | 7.85 (4.50) | 16.67 (12.43)
D4 | 6.94 (3.08) | 11.61 (6.31) | 9.44 (5.19) || 4.82 (3.85) | 7.38 (4.90) | 17.98 (14.65)

Table 6.9: The segment-wise and total metric (SDR, SAR, SIR) scores, in parenthesis, for the two
song segments for the vocal component. The total score is calculated as the median value of all

segments.

Regarding the first song, the spectrogram of C1 model is noticeably different than the ground truth.
In spite of including the fundamental frequency of the vowel sound, the model has cut off many
harmonics, something that is shown by the sparse distribution of horizontal pink lines in higher
frequencies. Also, it has erroneously generated a near silent part near the 1/3 mark of the segment,
which is displayed by the absence of lines. This wrong estimation has contributed to the worse
performance compared to the other two models.

The spectrograms of D4 and B2 are evidently more similar to the ground truth than that of C1.
In both spectrograms the fundamental and the overtone frequencies can be observed. Additionally,
the intermediate part, just before the second, prolonged sound has been predicted correctly, a bit
better for the D4 than the B2 model. The principal difference between the two spectrograms is
that the B2 one contains significantly more frequencies, which comes from the accompaniment and
appear as "noise" over the frequency dimension than that of D4. This can also be heard in the audio
playbacks, with the B2 including a lot more instrumental sounds that the D4.

Regarding the second song, the spectrogram of D4, although it has captured the base frequency of the
main sound and the beginning and end of the segment, it has missed the two higher base frequencies

along with several overtone frequencies, probably hindering its performance. The spectrogram of B2
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generally predicts both the base frequencies and the overtones correctly. However, it misses a major
base frequency at the beginning of the segment and prolongs a vocal sound in a silent segment,
leading to the mediocre reported SDR. Finally, the spectrogram of C1 seems to be closer to the
ground truth, as it seems to capture for the most part the base and overtone frequencies, without
missing the beginning and end of the song.

It must be stated that the reason the segment-wise metrics reported here do not necessarily match
the results of the previous sections, is that our evaluation protocol, according to which several
conclusions were drawn, aggregates the metrics from all segments and songs, which is completely
different to judging the models by a single, arbitrary snapshot.
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Figure 6.4.1: The spectrograms of the vocal component of the segment of the song "The Easton
Ellises - Falcon 69".
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Figure 6.4.2: The spectrograms of the vocal component of the segment of the song "Carloz
Gongzalez - A Place For Us".
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Chapter 7

Conclusion

7.1 Summary

In this Thesis, we conducted a meticulous study on the problem of Singing Voice Separation and
experimented with two popular and successful DNN architectures, namely Wave-U-Net and Conv-
TasNet.

Regarding the first architecture, we examined the basic model and tested the effect of several modi-
fications and extensions, proposed on both the original and other studies, on its performance. More
specifically, among the modifications proposed in [61], we experimented with the bigger input con-
text for convolutional layers, a technique that was used to get rid of the negative effects that padding
has on the architecture, and the difference output layer, which, based on the nature of data, imposes
a constraint on the output layer to simplify its training. On the other hand, among extensions
proposed in other studies [29, 56|, we incorporated an RNN layer on the bottleneck, to examine
whether its specialization on processing sequential data could prove beneficial for the model and we
replaced the existing processing blocks with ones that apply DW'T to the extracted feature maps,
in order to tackle the problem of aliasing and information loss. The results showed using a bigger
input context, along with the DWT processing blocks do improve the performance of the baseline
by a small but noticeable margin. In the contrary, the results of the other two modifications are not

clear enough and thus a conclusion cannot be drawn.

Regarding the second architecture, Conv-TasNet, three sets of experiments were constructed. In the
first part, we proposed several novel modifications to the baseline, in order to find an effective one
to further analyse it. More concretely, we proposed two architectures that incorporated multiple
Conv-TasNets, combined in parallel and sequentially, respectively, an architecture that altered the
separator module, by splitting it in multiple separators based on the included dilation factors, and
an architecture that used multiple separators that process the latent representation independently.
All but the last modifications performed the same or worse than the baseline, indicating that they
are either inoperative, or they need to be incorporated in another way.

The last modification, multi-band separation, yielded average to good results and thus, in the second
part of experiments, we performed an in-depth analysis. The experiments included changing the
number of bands and tuning the separators’ hyperparameters to check the efficacy and the scalability
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of the technique. The results indicated that, depending on the hyperparameter configuration, a
noticeable amount of specialisation on each separator occurs, which was the initial goal, rendering
the technique successful.

In the last part of experiments, we combined the multi-band separation with two different encoders,
a stronger encoder from [56] and a fixed, gammatone encoder from [46], in order to examine whether
the technique can be generalized with other versions of the baseline architecture. The received results
were conflicting, as the effect of the technique was significantly beneficial for the second encoder and
negligible for the first one. Our explanation for the root of this discrepancy is the structure of
the first encoder, which, unlike that of the second one, differs a lot from the original regarding
the nature of the extracted features, since they originate from both temporal and time-frequency
domains, instead of just the waveform domain, as in the original.

7.2 Future Work

Concerning the multi-band separation, future research could focus on the nature of the technique,
studying the properties of the latent subspace that is created by the encoder and its relationship
with the latent frequency bands. Apart from understanding the effect of the technique better, this
could open the way for a more fine-grained tuning of its hyperparameters that would be beneficial
in terms of the overall performance of the model.

Additionally, an interesting direction of research would be to manually craft the bands for the
separators, instead of leaving everything up to training, as it is now. In that way, the bands could
be constructed to have certain properties that would facilitate the separation process in general, or
adapt it to the needs of a specific task.

Finally, it should be investigated in what extent the proposed technique can be used in other sepa-
ration frameworks that follow the encoder-separator-decoder architecture. This could open the way
for the integration of the technique in other audio separation tasks, such as music source or speech

separation.
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