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Summary 
 
This thesis examines efficient solution procedures for the structural analysis problem 
within topology optimization. The research is motivated by the observation that 
when the nested approach to structural optimization is applied, most of the 
computational effort is invested in repeated solutions of the analysis equations. For 
demonstrative purposes, the discussion is limited to topology optimization of linear 
problems within the field of structural mechanics. 
The main focus of the thesis is on the utilization of various approximations to the 
solution of the analysis problem, where the underlying model corresponds to linear 
elasticity. For computational environments that enable the direct solution of large 
linear equation systems using matrix factorization, we utilize efficient procedures 
based on model order reduction via reduced basis. 
These approaches are tested on two- and three-dimensional topology optimization 
problems of minimum compliance design. The topologies generated by the 
approximate procedures are practically identical to those obtained by the standard 
approach. 
The thesis starts with the presentation of Structural optimization, where emphasis is 
given in topology optimization and the implementation of SIMP approach. We also 
make a brief presentation of direct and iterative solution methods for linear 
structural analysis. In the following chapters of the thesis the concept of model order 
reduction is introduced, the approximate procedures that are utilized are described 
and finally the results from the numerical tests are presented.  
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1. Introduction 

 
The presented thesis deals with efficient solution procedures for the structural 

analysis problem within topology optimization. Over the last two decades topology 

optimization has undergone a rapid period of growth both in industry and academia 

spurred by a large number of theoretical, practical and algorithmic developments.  

This growth has resulted in dealing with large scale problems that can involve 

millions of degrees of freedom. In topology optimization problems the nested 

approach is frequently applied meaning optimization is performed in the design 

variables only while the equilibrium equations are solved separately. Such case is the 

topology optimization problem of minimization of the mean compliance of a static 

structure. It aims at finding the stiffest structure that fits into a given domain, 

satisfies external loads and boundary conditions and has a prescribed volume. 

Independently of the strategy adopted for solving such a problem, the most 

expensive step is the solution of the system of equations that describes the 

equilibrium conditions of the structure. Under the assumption that the structure is 

formed by an elastic material and is subject to small displacements, a single linear 

system has to be solved at each iteration of the optimization algorithm, to determine 

the nodal displacements that are used to evaluate the objective function. Because 

the stiffness matrix of the structure is symmetric and positive definite, this linear 

system is usually solved by means of the Cholesky factorization, despite its high cost 

in the large-scale setting. This motivates the search for efficient approaches aimed at 

reducing the computational effort invested in the analysis. Moreover, by applying 

efficient procedures the solution of larger and more complex models compared to 

standard procedures are available. 

In order to mitigate this cost, the use of reduced order modeling approaches, also 

known as reduced basis models, have been proposed. By projection of the system of 

equations that describes the equilibrium conditions of the structure on a reduced 

basis have proved to be efficient methods for achieving drastic dimensionality and 

computational cost reductions. The main idea behind this concept is to construct a 

so called reduced basis, and then solve the problem projected on this low 

dimensional basis with drastically reduced computational cost.  

In this thesis we address structural topology optimization problems in which the 

underlying analysis model is linear. For linear problems, the proposed procedures 

are based on constructing an appropriate reduced basis in which the equilibrium 

equations are being projected and a good approximation of the solution is obtained. 

The efficiency of such proposed approaches are examined and construction of the 

reduced basis via Proper Orthogonal Decomposition is proposed. 
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The thesis is organized as follows.  

In Chapter 2, we present the theoretical background of structural optimization, with 

particular reference to the method of topology optimization and its formulations 

using the modified SIMP approach. Emphasis is given on the problem formulations, 

objective functions and sensitivity analysis procedures considered in the various test 

cases that are examined.  Chapter 3 introduces the concept of Model Order 

Reduction and we briefly discuss various approximate procedures for linear 

structural analysis in topology optimization. Chapter 4 describes the background of 

the Solution Methods that are used in the various test cases examined. Chapter 5 

includes a summary of the results from the numerical tests derived from each 

solution method for different parameters and the efficiency and the accuracy these 

methods are examined.  
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2. Structural -Topology Optimization 
 
In this chapter we present an overview of what is structural optimization, the 

general mathematical concepts used to formulate the structural topology, the theory 

and the implementation issues of topology optimization and finally a few words 

about the solution of the equilibrium equation 𝐾𝑈 = 𝑓 that arises from linear 

structural analysis. 

 
2.1 Introduction to Structural optimization 
 

To formulate the structural optimization problem, an objective function, design 

variables and state variables needs to be introduced as described in [5]. The 

objective function 𝑓 represents an objective that could either be minimized or 

maximized. Such an objective could be the volume or the stiffness of a structure. 

Moreover, the structural design domain and the state variables associated to the 

objective function has to be defined. The design variables 𝑥 describes the design of 

the structure, it could represent for example the geometry. The state variables 𝑦 

describes the structural response which may represent stress, strain or 

displacement. The state variables depend on the design variables 𝑦(𝑥) . The 

objective function is subjected to the design and state variable constraints to steer 

the optimization to a sought solution. 

 
 

 

{
 
 

 
 min

𝑥
                          𝑓(𝑥, 𝑦(𝑥))                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑥

𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑦(𝑥)

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

 (2.1) 

 
 
A state function 𝑔(𝑦) that represents the state variables can be introduced, for 

example a displacement in a certain direction. This state function can be 

incorporated as a constraint to the optimization procedure, where it is usually 

formulated such that  𝑔(𝑦) ≤ 0. Consider the case where 𝑔(𝑦) is represented by a 

displacement vector 𝑔(𝑢(𝑥)) in a discrete finite element problem. To establish the 

state function, this requires that nodal displacement are solved for 

 

 𝑢(𝑥) = 𝐾(𝑥)−1𝑓(𝑥) (2.2) 
 

where 𝐾 is the global stiffness matrix and  𝑓 is the global load vector. This means 

that the optimization task can be expressed in a so-called nested formulation where 

the equilibrium constraint is taken care of by the state function formulation 
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 {
min
𝑥
                 𝑓(𝑥)                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑔(𝑢(𝑥)) ≤ 0
 (2.3) 

 
 
The optimization task presented in equation (2.1) is called simultaneous formulation 

in comparison. Equation 2.3 is usually solved by evaluating derivatives of 𝑓 and 𝑔 

with respect to 𝑥. In this context, 𝑥 will represent a geometrical feature. Based on 

what geometrical feature that is parametrized, the structural optimization problem 

can be classified into: 

 
Size optimization: the design variable 𝑥, represents a structural thickness such as a 

distributed thickness or a cross-sectional area of a truss model that can be varied. 

The optimal thickness distribution typically minimizes (or maximizes) a physical 

quantity such as the mean compliance (strain energy) or the deflection, while the 

equilibrium and other constraints on the state and design variables have to be 

fulfilled. The state function may then be the deflection of the structure  

 

Shape optimization: the design variable 𝑥, represents the boundary of the state 

equation. In this case, the boundary of the considered domain 𝑥 could vary such that 

some physical quantity is minimized.  

 

Topology optimization: the design variable 𝑥, represents the connectivity of the 

domain. It involves the determination of features such as the number and location 

ad shape  of holes and the connectivity of the design domain. 

 

In the present study we make use of the topology optimization and thus in the 

following section we will only describe the structural problem of topology 

optimization. 

 

 

2.2 Topology optimization 
 
Topology optimization is a mathematical method that optimizes material layout 

within a given design space, for a given set of loads, boundary conditions and 

constraints with the goal of maximizing the performance of the system. We seek an 

optimal placement of material points where the reference domain is partitioned into 

void and solid elements by a finite element discretization.  
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2.2.1 Material interpolation 
 
In the design of topology of a structure we are interested in determination of the 

optimal placement of a given isotropic material in space, i.e. we should determine 

which points of space should be material points and which should remain void. That 

is, we think of the geometric representation of a structure as similar to a black-white 

rendering of an image. In discrete form this then corresponds to a black-white raster 

representation of the geometry, with "pixels" (or "voxels") given by the finite 

element discretization. 

In mathematical terms we seek an optimal subset  𝛺𝑚𝑎𝑡 ⊂ 𝛺  where Ω is the 

available design domain. The design variable 𝑥 is now represented by the density 

vector 𝜌  containing elemental densities 𝜌𝑒 . The local stiffness tensor 𝑬  can be 

formulated by incorporating 𝝆 as a integer formulation: 

 
 

 

𝐸(𝜌) = 𝜌𝛦0 
 

𝜌𝑒 = {
1 𝑖𝑓 𝑒 ∈ 𝛺𝑚𝑎𝑡 
0 𝑖𝑓 𝑒 ∈ 𝛺\𝛺

𝑚𝑎𝑡

 
(2.4) 

 
and a volume constraint: 
 

 ∫𝜌𝑑𝛺
 

𝛺

= 𝑉𝑜𝑙(𝛺𝑚𝑎𝑡) ≤ 𝑉 (2.5) 

 
 
where 𝑉 is the volume of the initial design domain. When 𝜌𝑒 =  1 we consider an 

element to be filled whereas an element with 𝜌𝑒 =  0 is considered to be a void 

element. To use a gradient based solution strategy for the optimization problem, the 

integer problem described in (2.4) needs to be formulated as a continuous function 

so that the density function can take values between 0 and 1 [3]. The most common 

method to relax the integer problem is the so-called “power-law approach” or Solid 

Isotropic Material with Penalization (SIMP) method. Here, material properties are 

assumed constant within each element used to discretize the design domain and the 

variables are the element relative densities. The material properties are modelled as 

the relative material density raised to some power times the material properties of 

solid material. The density function is then written as 

 
 

 𝐸 = 𝜌𝑝𝐸0,  𝜌 ∈ [𝜌𝑚𝑖𝑛, 1],  𝑝 > 1 (2.6) 
 

 
where 𝑝 is the penalizing factor that penalizes elements with intermediate densities 

to approach 0 or 1, 𝜌𝑚𝑖𝑛 is the lower density value limit to avoid singularities. Thus, 
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the penalization is achieved without introducing any explicit penalization scheme. 

For materials with Poisson ratio ν = 0.3, it is recommended in [4] to use p ≥ 3. To 

ensure existence of solutions, the power-law approach must be combined with 

filtering techniques. 

 
 

2.2.2 The checkerboard problem 
 
Checkerboarding refers to the problem where optimization results shows elements 

which are alternating solid and void in a checkerboard like pattern. It was earlier 

believed that these regions represented some optimal microstructure design but 

proved to be due to poor stiffness representation using finite elements [6]. To avoid 

the formation of checkerboard patterns some sort of restriction on the resulting 

design must be introduced. This can be done by applying a filtering technique. An 

illustration of the checkerboard problem for a two dimensional problem is shown in 

figure 2.1 produced by the MATLAB code described in [2]. It is presented in Figure 

2.1, where it can be seen that the checkerboard pattern occurs in Figure 2.1a. 

Looking at Figure 2.1b, where a filter to mitigate the checkerboard phenomenon is 

applied, it can be seen that the material points are placed more homogeneously. 

Furthermore, higher order elements and mesh refinement could also mitigate the 

checkerboard problem. 

Figure 2.1: Illustration of the consequence by applying a filter (right case) or not (left case). 

 
 
 

2.2.3 Problem formulation 
 
The optimization problem formulated in a nested formulation in equation (2.3) is 

now written as: 

 

 

{
 
 

 
 min

𝑥
                          𝑓(𝜌)                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

0 ≤ 𝜌 ≤ 1
𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 (2.7) 
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when considering topology optimization using the SIMP interpolation method, 𝜌 is a 

vector containing the element densities. Two common objectives to be minimized 

are the compliance (𝐶) and the volume (𝑉). A state function constraint may be a 

displacement in a certain direction. 

 

Minimize compliance 

A possibility to maximize the global stiffness of a structure is to minimize its 

compliance. The compliance is therefore defined as the equivalent strain energy of 

the FE solution which yields higher stiffness when minimized. The compliance is 

defined as 

 𝐶(𝜌) = 𝑓𝑇𝑢 (2.8) 

 

where u  is the solution of the equilibrium equation 
 

 𝐾(𝜌)𝑢 = 𝑓 (2.9) 

 

and 𝐾(𝜌) is 

 

 𝐾(𝜌) =∑𝜌𝜀
𝑝𝐾𝑒

0

𝑛𝑒𝑙

𝑒=1

 (2.10) 

 

𝐾𝑒
0 is the elemental stiffness matrix with the initial stiffness tensor 𝐸0. To prevent 

the optimized structure from ending up with the full design volume as a result when 

searching for its maximum structural stiffness, we need to impose a volume 

constraint. If a gradient based approach is used, derivatives with respect to 𝐶(𝜌) are 

evaluated. 

 

Minimize volume 

Another possibility is to minimize the volume. 

 

 𝑉(𝜌) =∑𝜌𝑒
𝑝𝑉𝑒

0

𝑛𝑒𝑙

𝑒=1

 (2.11) 

 

where 𝑉𝑒
0 is the initial volume. To prevent the optimization from minimizing all 

material, we need for example to impose a constraint for maximum displacement or 

effective stress. The optimization task is carried out with respect to the objective 

function and constraints. However, if the objective function is formulated with 

respect to volume or weight, derivatives are evaluated with respect to the 

constraints. 
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If a gradient based solution method is used, the derivatives are evaluated with 

respect to the constraint instead of the objective. For example, if a displacement 

vector is imposed, the so-called state derivatives with respect to 𝑢(𝜌) are evaluated. 

 
 

2.2.4 Solution method 

 

Two common solutions methods for topology optimization are the Optimality 

Criteria (OC) and the Method of Moving Asymptotes (MMA), both of which are 

described more in detail in [3]. 

The MMA is similar to other mathematical programming algorithms such as 

Sequential Linear Programming (SLP) and Sequential Quadratic Programming (SQP) 

to solve non-linear optimization problems in the sense that they also uses sequences 

with sub-problems which are approximations of the original problem. For MMA, 

these sub-problems are constructed by gradient information, furthermore these 

approximations are assumed to be convex. 

The OC method uses the method of Lagrange multipliers to establish the 

optimization task where compliance is minimized under a volume constraint. This 

defines an update scheme for the design densities 𝜌 . For simple compliance 

optimization problems, the OC may be faster but for more complicated problems 

involving several load cases and constraints, the MMA gives better convergence. 

 
 
 

2.3  Topology optimization using SIMP approach 
 

 

2.3.1  SIMP approach 
 

In this thesis, we make use of the SIMP approach in compliance minimization 

problems. The design domain is descretized by square finite elements and a density-

based approach to topology optimization is followed [13]; i.e. each element 𝑒 is 

assigned a density 𝑥𝑒 that determines its Young’s modulus 𝐸𝑒: 

 

 

 𝐸𝑒(𝑥𝑒) = 𝐸𝑚𝑖𝑛 + 𝑥𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛), 𝑥𝑒 ∈ [0,1] (2.12) 

 

 

where 𝐸0 is the stiffness of the material (nominal Young’s modulus of the material), 

𝐸𝑚𝑖𝑛 is a very small stiffness assigned to void regions in order to prevent the stiffness 
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matrix from becoming singular, and 𝑝  is a penalization factor (typically 𝑝 = 3) 

introduced to ensure black-and-white solutions. 

The topology optimization problem is then expressed as a compliance minimization 

problem, i.e. the optimization formulation seeks to find the density distribution over 

all the elements that minimizes the work done by the external forces under 

prescribed loadings, boundary conditions and material volume fraction to be used. 

The mathematical formulation of the optimization problem reads as follows: 

 

 

 

 
where 𝒄 is the compliance, 𝑼 and 𝑭 are the global displacement and force vectors, 

respectively, 𝑲 is the global stiffness matrix, 𝑢𝑒 is the element displacement vector, 

𝑘0 is the element stiffness matrix for an element with unit Young’s modulus, 𝒙 is the 

vector of design variables (i.e. the element densities), 𝑁 is the number of elements 

used to discretize the design domain, 𝑉(𝑥)and 𝑉0 are the material volume and 

design domain volume, respectively, and f is the prescribed volume fraction. 

 
 

2.3.2 Optimality criteria method 
 
The optimization problem (2.13) is solved by means of a standard optimality criteria 

method. A heuristic updating scheme is followed 

 

 𝑥𝑒
𝑛𝑒𝑤 = {

max(0, 𝑥𝑒 −𝑚)    𝑖𝑓 𝑥𝑒𝐵𝑒
𝜂
≤ max (0, 𝑥𝑒 −𝑚)

min(1, 𝑥𝑒 +𝑚)   𝑖𝑓 𝑥𝑒𝐵𝑒
𝜂
≥ max (0, 𝑥𝑒 −𝑚)

𝑥𝑒𝐵𝑒
𝜂
                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.14) 

 
 

where m is a positive move limit, 𝜂 (=  1/2) is a numerical damping coefficient, and 

𝐵𝑒 is obtained from the optimality condition as: 

 

min
𝑥
    𝑐(𝑥) = 𝑈𝑇𝑈 =∑𝐸𝑒(𝑥𝑒)𝑢𝑒

𝑇𝑘0𝑢𝑒

𝑁

𝑒=1

 

 

 

                        Subject to:   𝑉(𝑥)/𝑉0 = 𝑓 

 

𝐾𝑈 = 𝐹 

 

   0 ≤ 𝑥 ≤ 1 

 

(2.13) 
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 𝐵𝑒 =
−
𝜕𝑐
𝜕𝑥𝑒

𝜆
𝜕𝑉
𝜕𝑥𝑒

 (2.15) 

 
 

where the Lagrangian multiplier λ must be chosen so that the volume constraint is 

satisfied; the appropriate value can be found by means of a bisection algorithm. The 

sensitivities of the objective function 𝑐 and the material volume V with respect to 

the element densities 𝑥𝑒 are given by: 

 
 

 
𝜕𝑐

𝜕𝑥𝑒
= −𝑝𝑥𝑒

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛)𝑢𝑒
𝑇𝑘0𝑢 (2.16) 

 
 

 
𝜕𝑉

𝜕𝑥𝑒
= 1 (2.17) 

 
 
Equation (2.17) is based on the assumption that each element has unit volume. 

 
 

2.3.3  Filtering 
 
In order to ensure existence of solutions to the topology optimization problem and 

to avoid the formation of checkerboard patterns [14][15][16], some restriction on 

the design is imposed. A common approach is the application of a filter to either the 

sensitivities or the densities.  

 

The sensitivity filter modifies the sensitivities 𝜕𝑐/𝜕𝑥𝑒 as follows: 

 
 

 
𝜕𝑐

𝜕𝑥𝑒

̂
=

1

max (𝛾, 𝑥𝑒)∑ 𝐻𝑒𝑖𝑖∈𝑁𝑒

∑𝐻𝑒𝑖𝑥𝑖
𝜕𝑐

𝜕𝑥𝑖
𝑖∈𝑁𝑒

 (2.18) 

 
 
where 𝑁𝑒 is the set of elements i for which the center-to center distance 𝛥(𝑒, 𝑖) to 

element e is smaller than the filter radius rmin and Hei is a weight factor defined as: 

 
 

 𝐻𝑒𝑖 = max (0, 𝑟𝑚𝑖𝑛 − 𝛥(𝑒, 𝑖)) (2.19) 
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The term γ (= 10−3) in (2.18) is a small positive number introduced in order to avoid 

division by zero. This is a difference to the classical SIMP approach where the term γ 

is not required, because the density variables cannot became zero. 

 

The density filter transforms the original densities xe as follows: 

 

 

 �̂�𝑒
 = 

1

∑ 𝐻𝑒𝑖∈𝑁𝑒
∑ 𝐻𝑒𝑖𝑥𝑖
𝑖∈𝑁𝑒

 (2.14) 

 
 
In this thesis a density filter is used [11] [12]. 
 
The original densities 𝑥𝑒 are referred to as the design variables. The filtered densities 

�̃�𝑒 are referred to as the physical densities. This terminology is used to stress the fact 

that the application of a density filter causes the original densities 𝑥𝑒 to loose their 

physical meaning. One should therefore always present the filtered density field �̃�𝑒 

rather than the original density field 𝑥𝑒 as the solution to the optimization problem 

[17]. 

 
The sensitivities with respect to the design variables 𝑥𝑗  are obtained by means of the 

chain rule: 

 
 

 
𝜕𝜓

𝜕𝑥𝑗
= ∑

𝜕𝜓

𝜕�̃�𝑒

𝜕�̃�𝑒
𝜕𝑥𝑗

𝑒∈𝑁𝑗

= ∑
1

∑ 𝐻𝑒𝑖𝑖∈𝑁𝑒𝑒∈𝑁𝑖

𝐻𝑗𝑒
𝜕𝜓

𝜕�̃�𝑒
 (2.14) 

 
 
where the function 𝜓 represents the objective function 𝑐 

 

 

As was mentioned earlier for topology optimization of large scale structures the bulk 

of the computational cost comes from the requirement to compute at each step of 

the optimization the solution of the equilibrium equations:  

 

 𝐾𝑈 = 𝐹 (2.14) 

 

Computing this solution for large scale problems involves the inversion of a very 

large system of equations that can consist of up to millions of degrees of freedom. 
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2.4  Linear structural analysis 
 

The system of algebraic equations to be solved in a SIMP problem of topology 

optimization and generally in any linear static finite element analysis (FEA) is 

 

 𝐾𝑢 = 𝐹 (2.15) 

 

where 𝐾 is the global stiffness matrix, 𝑢 is the unknown displacements vector and  𝐹 

is the external load vector. The stiffness matrix 𝐾in such cases is symmetric, positive 

definite and sparse. Having these properties 𝐾 can be stored in memory in a very 

compact manner by exploiting symmetry and sparsity. The solution of (2.15) is 

obtained by employing either a direct or an iterative equation solver. In general, 

direct solvers are more robust and are preferred when the factorized form of  𝐾 can 

be stored in memory. This is the case for small and medium scale 2-D FE problems. 

For 3-D models, 𝐾 usually has a relatively large bandwidth so that iterative solvers 

are more appropriate due to their low memory requirements. 

 

2.4.1 Direct solution methods  
 

As far as direct solution methods are concerned they are algorithms based on Gauss 

elimination. Due to the symmetry and positive definiteness of the stiffness matrix, it 

can be decomposed using the Cholesky factorization 

 

 𝐾 = 𝑈𝑇𝑈 (2.14) 

 

 

where  𝑈  is an upper triangular matrix. Then, we can obtain the vector of 

displacements 𝑢 by forward and backward substitutions 

 

 

𝑈𝑇𝑣 = 𝑓 

 

𝑈𝑢 = 𝑣 

 

 

In structural optimization, a sequence of analysis equations of the form (2.15) is 

generated and should be solved. In the nested approach to topology optimization, 

the overall computational effort is typically dominated by the cost of solving the 

analysis equations. 
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The relatively high cost of matrix factorization in large-scale problems, in particular 

in three-dimensional FEA, motivates the development of efficient procedures that 

avoid repeated factorizations. 

 

2.4.2 Iterative solution methods  
 

Iterative methods for solving large sparse linear systems have been gaining 

popularity over direct methods. In earlier times, iterative methods were usually 

developed for particular applications and their performance depended on the actual 

problem parameters. Nowadays, various general-purpose iterative solvers are 

available, among which the family of Krylov subspace solvers is applied most 

extensively. For 3-D models and parallel high performance computers, Krylov 

iterative solvers are much more efficient than direct solvers. Therefore in the context 

of reducing computational effort in topology optimization, it is essential to address 

the use of such solvers for solving the structural analysis equations. Among the 

family of Krylov subspace solvers, the most appropriate method for solving 

symmetric positive definite systems such as (2.15) is the conjugate gradient (CG) 

method. The rate of convergence depends on the condition number of the system 

matrix  𝐾, therefore it is necessary to use effective preconditioning in order to 

achieve fast convergence. Demonstrated with symmetric preconditioning, this 

means that in practice CG will be applied to solve 

 

�̃��̃� = 𝑓 

 

where 

 

�̃� = 𝑀−𝑇𝐾𝑀−1 

 

�̃� = 𝑀𝑢 

 

𝑓 = 𝑀−𝑇𝑓 

 

The preconditioner M can be, for example, an incomplete factor of K so that the 

eigenvalue distribution of �̃� is much better than that of K. 
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3. MODEL ORDER REDUCTION 

 
 

Abstract With the use of current computing technology and advanced algorithms we 

are able to cope with more complex problems than we could in previous years. 

Nevertheless, there is a need for model order reduction in order to address even 

more complex problems. In this chapter we give a detail aspect of what model order 

reduction is and how it can be implemented in linear systems. 

 
3.1 Introduction 

 
Prior to the recent appearance of powerful digital computers, it was necessary to 

construct models of physical behaviors that took advantage of existing analytical 

techniques or which involved numerical calculations with small numbers of degrees 

of freedom. Now, partial differential equations, representative of complex physics 

that were previously unobtainable, can be discretized and integrated with numerical 

algorithms implemented on massive parallel supercomputers. The simulation of 

physical behaviors in even three space dimensions has become relatively 

commonplace. This has led in today’s technological world, the computational 

simulation of a model to be generally accepted as an equal discipline with theory and 

real experiment. Physical experiments leads to theories which are constantly 

validated through the performance of more experiments, and with the use of theory 

we can produce predictions by performing virtual experiments. 

Computer simulations are now performed routinely for many physical, chemical and 

other processes, and virtual design environments have been set up for a variety of 

problem classes in order to ease the work of designers and engineers. In this way, 

new products can be designed faster, more reliably, and without having to make 

costly prototypes. 

There is an increasing demand for realistic simulations of complex problems which in 

turn increases the demand for more efficient mathematical models in the area of 

computational science and engineering. Realistic simulations imply that the errors of 

the virtual models should be small, and that different aspects of the product must be 

taken into account. To do so more care must be taken in the numerical treatment. 

An important factor in enabling the complex simulations carried out today is the 

increase in computational power. This increase in computational power goes hand-

in-hand with developments in numerical algorithms. Iterative solution techniques for 

linear systems are mainly responsible for this speed-up in algorithms. Important 

contributions in this area are the conjugate gradient (CG) method, preconditioned 

conjugate gradient (PCG) methods and multigrid methods. The combination of 

computational power with the use of advanced numerical algorithms offers a great 
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deal of speed-up that result in the continuous upgrade of computational science. 

The solution to many problems, that once where unsolvable, is now derived 

routinely. 

The developments described above also have a counter side. The increased power of 

computers and algorithms reduces the need to develop smart, sophisticated solution 

methods that make use of properties of the underlying systems. For example, 

whereas in the 1960s and 1970s one often had to construct special basis functions to 

solve certain problems, this can be avoided nowadays by using brute force methods 

using grids that are refined in the right places. The question arises whether we could 

use the knowledge generated by these very accurate, but time-consuming, 

simulations to generate the special basis functions that would have constituted the 

scientific approach a few decades ago. This is a promising idea, as many phenomena 

are described very well by a few dominant modes. 

 
3.2 The Concept of Model Order Reduction 

 

There are several definitions of model order reduction, and it depends on the 

context which one is preferred. Originally, MOR was developed in the area of 

systems and control theory, which studies properties of dynamical systems in 

application for reducing their complexity, while preserving their input-output 

behavior as much as possible. Nowadays, model order reduction is a field of 

research, both in systems and control theory and in numerical analysis. This has a 

very healthy effect on MOR as a whole, bringing together different techniques and 

different points of view, pushing the field forward rapidly.  

What do we mean by model order reduction? As was mentioned in the previous 

sections, we need to deal with models that may contain many equations and 

variables (105 – 109). To do so certain simplification of the models needs to be made. 

Such simplification is needed in order to perform simulations within an acceptable 

amount of time and limited storage capacity, but with reliable outcome. In some 

cases, we would even like to have on-line predictions of the behavior with 

acceptable computational speed, in order to be able to perform optimizations of 

processes and products.  

Model Order Reduction tries to capture as quickly as possible the essential features 

of a structure. This means that in an early stage of the process, the most basic 

properties of the original model must already be present in the smaller 

approximation. At a certain moment the process of reduction is stopped. At that 

point all necessary properties of the original model must be captured with sufficient 

precision. All of this has to be done automatically 
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Figure 3.1 Graphical illustration of model order reuction 

 

 

Figure 3.1 illustrates the concept in a graphical easy-to-understand way, 

demonstrating that sometimes very little information is needed to describe a model. 

This example with pictures of the Stanford Bunny shows that, even with only a few 

facets, the rabbit can still be recognized as such. Although this example was 

constructed for an entirely different purpose, and does not contain any reference to 

the way model order reduction is performed mathematically, it can be used to 

explain what model order reduction is about. 

 

 

3.3 Model order reduction via Reduced basis method  
 

The model order reduction methodology of reduced basis (RB) techniques offers 

efficient treatment to finite element schemes by providing both approximate 

solution procedures and efficient error estimates. 

Many real world problems can be modelled by parametrized partial differential 

equations, where a parameter vector µ characterizes the system in terms of 

material, geometry or control parameters. In simulation of general PDEs, repeated 

computation runs for varying parameters µ and fast simulation response can be 

required. Such scenarios occur in design optimization, optimal control with PDE-

constraints, online simulation, parameter identification or state estimation. Model 

order reduction techniques must be applied to satisfy these time demands. The 

methodology of reduced basis (RB) techniques aims at efficient treatment in such 

cases by providing both an approximate solution procedure and efficient error 

estimates. 

The main goal of RB-methods is to provide a reduced simulation scheme, in which 

for a newly given parameter vector µ a function  𝑢𝑁(µ) is determined as an 

approximation to the unknown detailed solution  𝑢𝐻(µ). In addition or alternatively 

to the field-variable itself, approximate computation of derived outputs can be 

desired, i.e. determination of 𝑠𝑁 (µ)  ≈ 𝑠( 𝑢𝐻(𝜇)) for some output functional s. The 

underlying reduced simulation scheme is based on a Galerkin projection of the 
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detailed simulation onto a low-dimensional space  𝑊𝑁  ⊂  𝑊𝐻, the reduced basis 

space of dimension 𝑁. This space is deliberately determined such that it captures the 

solution variety under parameter variations. This basis-construction is frequently 

based on so called snapshots, i.e. detailed simulation results  𝑢𝐻(𝜇𝑖) for stationary 

problems. In addition to the reduced simulation scheme, a second main focus of RB-

methods is to provide rigorous a-posteriori error bounds for the error between the 

reduced to the detailed solution or output. In addition to the reduced simulation 

scheme, a second main focus of RB-methods is to provide rigorous a-posteriori error 

bounds for the error between the reduced to the detailed solution or output. These 

error bounds are in general based on effective computation of residual norms during 

the reduced simulation and are quite tight. A further important aspect in RB-

methods is to make the reduced simulation useful in a multi-query context [34].  

 

 

3.4 Computational drawbacks of the solution of the full order 

model in linear systems 

 

Inverses of matrices play a role in formulas for important model order reduction 

problems. However, in numerical computations the explicit inversion of a matrix has 

to be avoided if possible. In most situations, the inverse of a matrix is used to denote 

an operator acting on a vector or another matrix. We consider the evaluation of the 

vector y defined as 

 

𝑦 = 𝐴−1𝑏 

 

Determining the explicit inverse of A is expensive. The classical way is to compute an 

LU factorization first and then solve linear systems with L and U for all canonical 

basis vectors. After 𝐴−1 has been obtained, it has to be multiplied with 𝑏 in order to 

obtain 𝑦. 

The vector y can be obtained in a much cheaper way. We see that 𝑦 has to be solved 

from 

 

𝐴𝑦 = 𝑏 

 

Again, we use the 𝐿𝑈 factorization and first solve 𝑧 from  𝐿𝑧 =  𝑏, followed by the 

solution from  𝑈𝑦 =  𝑧. These two solution steps require as much computation as 

the sole multiplication of 𝐴−1 and 𝑏, and we have avoided to solve the n systems 

with the canonical basis vectors as right-hand sides. Likewise, always when the 

matrix 𝐴−1 occurs as an operator acting on some vector or some other matrix, then 

the expression can be numerically evaluated as we have demonstrated for 𝑦. 
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For sparse matrices, computational differences may be even much more dramatic. In 

relevant cases, 𝐴−1 may be dense, while L and U are sparse. For instance, if A is a 

positive definite tridiagonal matrix, then solving  𝐴𝑥 = 𝑏  via LU decomposition 

requires only in the order of n arithmetic computations. The bottom line is: avoid 

explicit inversion. 

Direct computation of y via LU requires, for dense matrices, in total in the order of 

n3 floating point operations, which may pose practical limits for large values of n. 

This is a major motivation for Model Order Reduction: to save computational costs 

and computer memory storage. 

Eigenvalue computations lead to similar observations. The standard way to compute 

non-trivial λ and x, satisfying  

 

𝐴𝑥 =  𝜆𝑥 

 

requires the diagonalization of the matrix A. The state of the art technique for this is 

to first transform 𝐴  to a more efficient to handle form by orthogonal 

transformations. In particular, 𝐴 is transformed by a finite number of Householder or 

Givens transformations to upper Hessenberg form H: 𝑄𝑇𝐴𝑄 =  𝐻. The eigenvalues 

of 𝐴 are equal to those of 𝐴 and the eigenvalues of H are computed with the QR-

method. The operations in QR can efficiently be done on Hessenberg matrices. The 

eigenvalue computation is essentially an iterative process, but QR converges so fast 

that in practice the complete method (reduction to upper Hessenberg plus QR) is 

viewed as a direct technique. The whole process requires a few times n3 arithmetic 

operations, and again this poses practical problems if 𝑛 is large. 

 

 

3.5 Reduced basis modeling for linear systems 
 

Many numerical simulations in the engineering domain involve solving a partial 

differential equations problem. After space (or time) discretization, the problem 

often involves a large system of equations of the form  

 

 𝐾(𝑢; 𝜇) = 𝐹 (3.1) 

 

with 𝑢 ∈ ℝ𝑛  the unknown state variables and  𝜇 ∈ ℝ𝑝 a set of 𝑝 parameters of 

interest (material parameters, time...) so that 𝐾: ℝ𝑛 × ℝ𝑝, 𝑛 being the number of 

state variables. Let us assume that 𝐾 is such that given any value of the set of 

parameters 𝝁 a unique solution 𝑢 = 𝑢(𝜇) exists. 

Model order reduction aims at significantly decreasing the computational burden 

associated with the inversion of system (3.1). With the utilization of reduced basis 

approach we aim at reducing the number of state variables of the model by 
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projection on a certain basis. Accordingly, an approximation of the solution is sought 

in a subspace Ѵ of dimension m (with usually m<<n), while enforcing the residual to 

be orthogonal to the same sub-space Ѵ. Typically, Ѵ is defined by a so called reduced-

basis 𝛷 = {𝛷1, 𝛷2, … , 𝛷𝑚} 

The initial problem of Eq. 3.1 is rewritten projected onto the reduced basis: 

 

 𝛷𝛵𝛫(𝛷𝛼, 𝜇) = 𝛷𝛵𝐹 (3.2) 

 

where 𝜶  are the reduced state variables, that is the coefficients of vector 𝒖 

expressed in the reduced basis 𝜱.  

 

If 𝐾 is linear with respect to its first variable 𝒖, the problem of Eq. 3.1 can be written 

as:  

 

 𝐾(𝜇)𝑢 = 𝐹 (3.3) 

 

In structural mechanics 𝐾(𝜇) is the stiffness matrix, which usually depends on some 

parameters of interest 𝝁, that can be material properties, 𝒖 is the displacement 

vector and 𝑭 the vector of the forces. 

Similarly then, the projected problem of Eq. 3.3 can be written as:  

 

 𝛷𝛵𝛫(𝜇)𝛷𝛼 = 𝛷𝛵𝐹 (3.4) 

 

At this point it is important to realize that Eq. 3.4 is equivalent to a reduced order 

model of the initial problem of Eq. 3.3. Indeed, solving the problem of Eq. 3.3 

typically involves the inversion of a large system of equations of size 𝑛, the size of 

the stiffness matrix 𝐾(𝜇), which for large scale problems can easily reach hundreds 

of thousands. On the other hand solving the reduced order model of Eq. 3.4 involves 

the inversion of a much smaller system of equations of size m, the size of the 

projected stiffness matrix , which is equal to the dimensionality of the reduced basis 

m (typically m<<n, since m does usually not exceed a few dozen). Solving this 

reduced order model leads directly to  𝜶, the coefficients of the solution in the 

reduced basis. 

The problem projected onto the reduced basis thus yields an approximate solution 

whose accuracy can be quantified by measuring the following residual:  

 

 𝑒𝑟𝑏
2 =

‖𝛷𝛵𝛫(𝜇)𝛷𝛼 − 𝐹‖2

‖𝐹‖2
 (3.5) 

 

The subspace Ѵ on which the problem is projected, or more precisely one of its basis 

𝛷, is not specified and a variety of different choices are available for this projection. 
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For example, eigenmodes of the operators have been used to reduce numerically the 

size of the problems for applications in dynamics. These approaches are known as 

modal analysis, Craig-Bampton [27] In [18],[26] the reuse of Krylov subspaces 

generated during a Krylov iterative solvers was used as a reduced basis.  The 

generalized modes of variables separation techniques (like Proper Generalized 

decomposition) can also be used in such a context [25]. 

The proper orthogonal decomposition (POD) can also be a way to build a relevant 

reduced basis in the context of reduced order modeling by projection [18]-[20]. 

Indeed, POD [21] (also known as Karhunen Loeve decomposition [22],[23] or 

principal component analysis [24]) is an approach which consists in constructing a 

reduced basis from a set of solution, called snapshots. Mathematically, the 

extraction of the reduced basis from the snapshots is done by singular value 

decomposition. Generally, the snapshots are the results of full simulations on a set 

of points. 

Note that classical POD-type approaches do not generally go all the way to solving or 

even formulating the reduced order model of Eq. 3.4. Instead POD is often used only 

as a dimensionality reduction approach. Solutions 𝒖 that were already calculated by 

solving the full size problem (Eq. 3) are projected on the POD-reduced basis and 

expressed in terms of their basis coefficients 𝜶 thus allowing to express initial 

solutions 𝒖 with a drastically reduced dimensionality. Note however that these basis 

coefficients 𝜶 can also be obtained by solving the reduced order model of Equation 

(3.4), that is by solving the initial problem projected on the reduced basis. This 

option is not typically used in POD because solving the reduced order model for 

solutions that are already in the reduced basis (thus for which the full solution is 

already available) has no interest. However the reduced order model has an interest 

for obtaining the basis coefficients 𝜶 at a new point which is not part of the reduced 

basis. In this case, the reduced order solution is only an approximation and the 

approximation error can be assessed by the metric provided in Equation (3.5).  

The reduced basis modeling approach has two major assets: dimensionality 

reduction by the use of the basis coefficients and computational time reduction for 

approximating new solutions by the use of the reduced basis model.  
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4. Solution methods 
 
This section presents the theoretical background of the solution methods that are 

used for model reduction of the equilibrium equations that arise from the 

application of topology optimization using SIMP approach on linear structure 

analysis. These methods, as we mentioned earlier, project the state equations onto 

the subspace spanned by a reduced basis of small dimension. 

 

 

4.1. Model Reduction via Proper Orthogonal Decomposition  
 

4.1.1. Introduction  
 

Proper orthogonal decomposition (POD) is a powerful and elegant method for data 

analysis aimed at obtaining low-dimensional approximate descriptions of a high-

dimensional process. The POD provides a basis for the modal decomposition of an 

ensemble of functions, such as data obtained through experiments or numerical 

simulations. Its properties suggest that it is the preferred basis to use in various 

applications. The basis functions it yields are commonly called empirical 

eigenfunctions, empirical basis functions, empirical orthogonal functions, proper 

orthogonal modes, or basis vectors. The most striking feature of the POD is its 

optimality: it provides the most efficient way of capturing the dominant components 

of an infinite-dimensional process with only a finite number of “modes”, and often 

surprisingly few “modes”[1][28]. In recent years, there have been many reported 

applications of the POD methods in engineering fields. The POD has been used in 

various disciplines including random variables, image processing, signal analysis, data 

compression, process identification and control in chemical engineering, 

oceanography, etc. [28]. In the bulk of these applications, the POD is used to analyze 

experimental data with the objective of extracting dominant features. The POD has 

been used to obtain approximate, low-dimensional descriptions of turbulent fluid 

flows [28], structural vibrations and chaotic dynamical systems, and more recently, 

microelectromechanical systems (MEMS). 

 
 

4.1.2 Construction of the POD basis by Singular value decomposition 
 

The main idea of the POD is to find a set of ordered orthonormal basis vectors in a 

subspace (without loss of generality, denoting the subspace as ℝ𝑚) where a random 

vector takes its values, such that the samples in the sample space can be expressed 

optimally using the selected first 𝑙 basis vectors. 

The mean square error can be used as a measure for the optimal problem, i.e., 
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 𝐸{‖𝑥 − 𝑥(𝑙)‖2} ≤ 𝐸{‖𝑥 − �̂�(𝑙)‖2} (4.1) 

 

where 𝑥(𝑙) is the approximate expression of a random vector 𝑥 using the first 𝑙 basis 

vectors of the undetermined set of orthonormal basis vectors, and �̂�(𝑙) is the 

approximate expression of 𝑥 using arbitrary 𝑙 basis vectors in ℝ𝑚. 

The problem can be stated as follows. 

Assume that 𝑥 ∈ ℝ𝑚  is a random vector and {𝜑𝑖}𝑖=1
𝑚  is a set of arbitrary 

orthonormal basis vectors: then 𝑥 can be expressed as 

 

 𝑥 =∑𝑦𝑖𝜑𝜄

𝑚

𝑖=1

= 𝛷𝑦 (4.2) 

 

where 

 

𝑦𝑖 = 𝜑𝑖
𝑇𝑥     (𝑖 = 1,2, … ,𝑚) 

 

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚)
𝑇 

 

𝛷 = [𝜑1, 𝜑2, … , 𝜑𝑚] 

 

 

The objective of the POD is to find a set of basis vectors that satisfies the following 

extreme value problem: 

 

 

min
𝜑𝑖

𝑒2(𝑙) = 𝐸{‖𝑥 − 𝑥(𝑙)‖2} 

 

s.t 𝜑𝑖
𝑇𝜑𝑗 = 𝛿𝜄𝑗       𝑖, 𝑗 = 1,2, … ,𝑚 

 

(4.3) 

where 

 

𝑥(𝑙) = ∑ 𝑦𝑖
𝑙
𝑖=1 𝜑𝑖(𝑙 ≤ 𝑚). 

 

A method to realize the POD is the Singular Value Decomposition (SVD) which was 

established for real-square matrices in the 1870s by Beltrami and Jordan, for 

complex square matrices in 1902 by Autonne, and for general rectangular matrices 

in 1939 by Eckart and Young. SVD uses the singular-value decomposition to find the 

basis vectors satisfying the POD requirement in the sample space. The process for 

realizing the POD by using the SVD is stated as follows.  
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We are interested in reducing the linear system of Equations 

 

 𝐾𝑥 = 𝑓 (4.4) 

 

Since POD tries to find a good approximation in the state, we are not interested in 

the output behavior. POD finds a projection matrix W to minimize ‖𝑥 −𝑊�̂�‖ for a 

given norm ‖. ‖ at least approximately. POD is a Galerkin projection method, which 

means we only have to find one matrix W. The method we describe is sometimes 

referred to as the method of snapshots. Within some communities the general 

underlying concept of POD is also called principal component analysis (PCA) or 

Karhuenen–Loeve decomposition. A set of 𝑁 snapshots, samples are collected and 

collocated column-wise  in a matrix  𝑌. So The snapshot matrix 𝑌 has the following 

form  𝑌 =  [𝑥1 , 𝑥2 , … , 𝑥𝑁]. 

Given samples, snapshots 𝑥1, 𝑥2, … , 𝑥𝑁  of any kind (they could be solutions or 

outcomes of a process in general), the method extracts a basis 𝑢1, 𝑢2, … , 𝑢𝑙  that 

solves the following minimization problem:  

 

 

 min
𝑢1,…,𝑢𝑙

∑ ‖𝑥𝑘 − ∑ 〈𝑥𝑘, 𝑢𝑖〉
𝑙
𝑖=1 𝑢𝑖‖

𝑁
𝑘=1  s.t.  〈𝑢𝑖 , 𝑢𝑗〉 = 𝛿𝑖𝑗 (4.5) 

 

 

The solution to this problem is directly connected to the singular value 

decomposition (SVD) of the matrix  𝑌. 

 

 

Singular value decomposition 

Every matrix 𝐴 ∈ ℝ𝑛 𝑥 𝑚 can be decomposed into a product of three matrices  

 

 𝐴 = 𝑈𝛴𝑉𝑇  ∈ ℝ𝑛 𝑥 𝑚 (4.6) 

 

where 𝑈  and 𝑉  are unitary (orthogonal) and 𝛴 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎2) ∈ ℝ
𝑛 𝑥 𝑚  is 

diagonal with nonnegative diagonal entries called real singular values:  𝜎𝑖 =

√𝜆𝑖(𝐴𝑇𝐴) ≥ 𝜎𝑖+1, and the 2-induced norm of 𝐴 is 𝜎1. The left singular vectors are 

𝑈 = (𝑢1  𝑢2   …  𝑢𝑛) , 𝑈𝑈𝑇 = 𝐼𝑛  and the right singular vectors are 𝑉 =

(𝑣1  𝑣2  …  𝑣𝑛),. 𝑉𝑉
𝑇 = 𝐼𝑚.The columns of 𝑈 and 𝑉 together with 𝜎𝑖 can be obtained 

by solving the eigenvalue problems 

 

 

 𝐴𝐴𝑇𝑈𝑖 = (𝜎𝑖)
2𝑈𝑖 (4.7) 
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And 

 

 𝐴𝑇𝐴𝑉𝑖 = (𝜎𝑖)
2𝑉𝑖 (4.8) 

 

Finally, the dyadic decomposition of 𝐴 is 

 

 

 𝐴 =  𝜎1𝑢1𝑣1
𝑇 + 𝜎2𝑢2𝑣2

𝑇 +⋯+ 𝜎𝑛𝑢𝑛𝑣𝑛
𝑇 (4.9) 

 

 

Given the SVD of 𝑌 = 𝑈𝛴𝑉𝑇 the solution to (4.5) for the standard Euclidean inner 

product and Euclidean norm is obtained by the first 𝑙 left singular vectors which are 

the first 𝑙 columns of 𝑈. Now that the singular vectors 𝑢𝑖  of the snapshot matrix 𝑌 =

[𝑥1, 𝑥2, … , 𝑥𝑁] are available we have that 

 

 𝑥 ≈∑〈𝑥, 𝑢𝑖〉𝑢𝑖 =∑�̂�𝑖𝑢𝑖 =

𝑙

𝑖=1

𝑙

𝑖=1

𝑊�̂� (4.10) 

 

where 𝑊 is given by the matrix 𝑊 = [𝑢1, 𝑢2, … , 𝑢𝑁]. We are not able to compute 

‖𝑥 −𝑊�̂�‖ for every parameter values, but we minimize 

 

 ∑‖𝑥𝑘 −𝑊�̂�𝑘‖

𝑘

 (4.11) 

 

If the system is furthermore dependent on a parameter, this is typically extended by 

creating snapshots for several parameter values. All the snapshots will be put into 

one large matrix 𝑌 and the rest can be done as described above. 

 

 

4.1.3 POD on topology optimization 

 
In this section an approach is proposed for constructing the reduced basis in 

topology optimization with the use of POD using calculations of the state variables 

resulting from the high fidelity model. 

The snapshot matrix 𝑌  mentioned earlier will contain the state variables of 𝑁 

solutions of the full system of Eq (4.4). By applying SVD on the matrix 𝑌, the reduced 

basis 𝑊  containing the 𝑁  left singular vectors is formed. We then project the 

equilibrium equations on the basis 𝑊 
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 𝑊𝑇𝐾𝑊𝑎 = 𝑊𝑇𝐹 (4.12) 

 
and calculate the reduced state variables 𝑎, that is the coefficients of vector 𝑥 

expressed in the reduced basis 𝑊 . From the coefficients 𝑎  we obtain the 

approximate solution  �̂� = 𝑊𝑎  whose accuracy is measured based on a threshold on 

the value of the residuals Eq (3.5). If the approximate solution does not satisfy this 

threshold a new solution of the high fidelity model is obtained, the snapshot 

matrix 𝑌 is enriched with this solution and at the same time we discard the oldest 

solution of the matrix  𝑌. We are ready now to apply SVD on the snapshot matrix and 

obtain a new reduced basis 𝑊. The basic idea is that using previously calculated 

solutions to construction the reduced basis ensures relatively quick convergence 

whereas forming the reduced basis with randomly generated designs will not 

converge here due to the very high dimensionality of the problem (up to millions of 

input design variables). By doing so we keep the size of the reduced basis constant 

throughout the optimization procedure and thus make the whole procedure as 

efficient and fast as possible. The Algorithm POD is presented below. 

  

Algorithm POD: The code below replaces the line “ Ku=F” in a usual topology optimization 

algorithm. 

  1:  if iteration = 1 

  2:        x ⟵ solution of Kx=F 

  3:        Add 𝑥  to matrix Y 

  4:  else if 1 < iteration ≤ N 

  5:        x ⟵ solution of Kx=F 

  6:        Add 𝑥 to matrix Y 

  7:        if iteration=N 

  8:            Perform thin SVD on matrix 𝑌 (𝑌 = 𝑈𝛴𝑉𝑇) 

  9:            W⟵U 

10:        end if 

11:  else 

12:       α ⟵ solution of (WΤΚW)α=WΤF 

13:       erb ⟵ norm(K W α - F) / norm(F) 

14:       if  erb > ε 

15:                Remove oldest basis vector from matrix Y 

16:                x ⟵ solution of Kx=F 

17:                Add u to matrix Y 

18:               Perform thin SVD on matrix 𝑌 (𝑌 = 𝑈𝛴𝑉𝑇) 

19:                W⟵U 

20:       else 

21:              x ⟵ Wα 

22:       end if   

23:  end if 
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In the above algorithm lines 1 to 10 correspond to the initialization of the reduced 

basis. The reduced basis is calculated for the first time in line 9. This occurs when 𝑁 

solutions of the high fidelity model are acquired and SVD is performed on the 

snapshot matrix 𝑌 (line 8). After the computation of W, the approximate solution 

and the error of the residual are calculated (line 12 and 13 respectively).  If the error 

is higher than the threshold ε then a new solution of the full model is calculates, the 

snapshot matrix is updated and finally a new reduced basis is computed (lines 14 -

19). If the error is lower than the threshold ε then the approximate solution is used 

in place of the exact solution. The algorithm POD has two parameters that are 

defined by the user. These are the reduced basis size N and the value of the 

threshold. The effect of the choice of these parameters will be investigated in the 

next chapter of this paper. 

 

 

4.2 Model order reduction On The Fly 
 

Christian Gogu in his paper [29] proposed an  approach for constructing the reduced 

basis on the fly using previous calculations of the state variables which are 

orthogonalized and normalized by the Gram_Shimdt procedure. The redused basis is 

thus adaptively constructed and enriched, based on the convergence behavior of the 

topology optimization. 

 

 

4.2.1 Basic idea of constructing the Reduced Basis on the fly 
 

In a classical topology optimization process at iteration 𝑖,  𝑖 displacement vectors 

have already been calculated (one at each iteration) by inverting the full equilibrium 

equations of Eq. 3.1. Making use of these  𝑖 displacement vectors is the main idea, so 

as to  form a reduced basis 𝛷 which will be used for calculating the displacement 

vector at the next iteration. This means that the displacement vector, at iteration 𝑖 +

1 will be calculated using the reduced order model of Eq. 3.4, which calculates the 

reduced state variables at the current iteration 𝑖 + 1. So by solving the equilibrium 

equations projected on the subspace generated by the 𝑖  previously calculated 

displacement vectors will give the approximate displacement vector at iteration 𝑖 +

1. At iteration 𝑖 + 2 a new approximation of the displacement vector at this iteration 

can still be calculated using the reduced order model with the same reduced basis 𝛷 

as before. This process can be applied until the approximate solution using the 

reduced order model is no longer sufficiently accurate, based for example on a 

threshold on the value of the residuals (Eq. 3.5).  

Once the reduced order solution no longer satisfies this threshold a new full solution 

(inversion of the full system of Eq. 3) is computed again, solution which is also used 
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for enriching the reduced basis. To enrich the existing reduced basis 𝛷 =

{𝛷1, 𝛷2, … , 𝛷𝑚} the newly calculated solution 𝑈𝑛𝑒𝑤 is orthogonalized as shown in Eq. 

4.2 (Gram-Schimdt procedure), normalized, then added to the basis.  

 

 �̃�𝜄+1 = 𝑈𝑛𝑒𝑤 −∑〈𝑈𝑛𝑒𝑤 , 𝛷𝑗〉𝛷𝑗

𝑖

𝑗=1

 (4.13) 

 

 

Where 〈•,•〉 denotes the 𝐿2 scalar product.  

 The reduced basis uses solutions from previous iterations, and any new solution is 

only added to the basis after orthonormalization by the Gram Schimdt procedure. 

This is because only the component of the solution which is orthogonal to the 

already existing basis vectors is needed to be added to the basis.  

The basic idea is that due to the very high dimensionality of optimization problems, 

reduced basis that are formed with randomly designs will not converge. But when 

using previously calculated solutions to construct the reduced basis ensures 

relatively quick convergence. 

 

 

4.2.2 Construction of the Reduced Basis on the fly in topology 

optimization 
 

The proposed iterative approach works with a fixed, user defined, reduced basis size, 

denoted 𝑁𝑏. The reduced basis is initialized using the full equilibrium solutions of 

first 𝑁𝑏 iterations of the topology optimization process. At the first 𝑁𝑏 iterations the 

full equilibrium equations of Eq. 3.1 are solved and the corresponding solution 

displacement vector obtained. These 𝑁𝑏 solution vectors form the initial subspace of 

the reduced basis. In order to obtain the basis vectors of this subspace, the 𝑁𝑏 

solution vectors need to be orthonormalized. This is achieved by normalizing the first 

solution vector 𝑈1, orthogonalize the subsequent basis vectors by the Gram Schmidt 

orthogonalization and finally normalize them as shown: 

 

 𝛷1 =
𝑈1
‖𝑈1‖

 (4.14) 

 

 �̃�𝑖+1 = 𝑈𝑖+1 − ∑ 〈𝑈𝑖+1, 𝛷𝑗〉𝛷𝑗
𝑖
𝑗=1  for 𝑖 = 1, … ,𝑁𝑏 − 1 (4.15) 

 

 

 𝛷𝑖+1 =
�̃�𝑖+1

‖�̃�𝑖+1‖
  for 𝑖 = 1, … , 𝑁𝑏 − 1 (4.16) 
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After the first 𝑁𝑏 iterations the reduced basis is initialized and the reduced basis 

solutions obtained via Eq. 3.5 will be used in the next topology optimization 

iterations, replacing the call to the full solution of the equilibrium equation (Eq. 3.4). 

In order to maintain appropriate convergence of the topology optimization, the 

quality of the reduced basis approximation at each iteration needs to be checked. 

This is done by calculating the value of the residuals (Eq. 3.5). If the value of the 

residual 𝑒𝑟𝑏 is lower than a user defined threshold ε, then the reduced basis solution 

is considered to be accurate enough to be used. If this criterion is verified, the 

approximate solution will replace the exact solution for the current optimization 

iteration of the topology optimization process (e.g. for calculating sensitivities, 

objective function, etc). Otherwise, if 𝑒𝑟𝑏 > 휀 the reduced basis solution is not 

considered accurate enough and a new full solution is calculated by inverting the full 

equilibrium equations (Eq.3.4). The reduced basis is then updated using this new full 

solution vector. In order to maintain the size of the reduced basis the oldest vector 

in the reduced basis is discarded. Finally, to add the new solution vector to the 

reduced basis, it has to be is orthogonalized (Eq. 4.13) and normalized. The same 

process can then start over. 

 
Figure 2: Flowchart of the reduced basis topology optimization process using on the on 

the fly reduced basis construction 

 

The advantage of the proposed approach over the usual topology optimization 

process is that after the reduced basis initialization, at each iteration of the 

optimization process the reduced basis solution of the equilibrium equations is first 
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calculated. If the residuals criterion is verified then the approximate reduced basis 

solution is used at this iteration in place of the exact solution, meaning that 

significant computational savings can be achieved since obtaining the reduced basis 

solution is much quicker than obtaining the full solution.  

From an implementation point of view the proposed approach is quite simple, since 

one can take the topology optimization code of his preference and just replace the 

line of the code that calculates the solution of the equilibrium equation (typically this 

line calculates the solution of 𝐾𝑈 = 𝐹) with the Algorithm on the fly presented 

below. 

 

 

Algorithm on the fly: The code below replaces the line “ KU=F” in a usual topology 

optimization algorithm. 

  1:  if iteration = 1 

  2:        U ⟵ solution of KU=F 

  3:        Add U / norm(U) to matrix Φ 

  4:  else if 1 < iteration ≤ Nb 

  5:        U ⟵ solution of KU=F 

  6:        Uortho ⟵ U - Φ(ΦΤU) 

  7:        Add Uortho  / norm(Uortho) to matrix Φ 

  8:  else 

  9:       α ⟵ solution of (ΦΤΚΦ)α=ΦΤF 

10:       erb ⟵ norm(K Φ α - F) / norm(F) 

11:       if  erb > ε 

12:                Remove oldest basis vector from matrix Φ 

13:                U ⟵ solution of KU=F 

14:                Uortho ⟵ U - Φ(ΦΤU) 

15:                Add Uortho  / norm(Uortho) to matrix Φ 

16:       else 

17:              U ⟵ Φα 

18:       end if   

19:  end if 

 

 

In algorithm on the fly, lines 1-7 correspond to the reduced basis initialization. From 

iteration 1 to Nb of the topology optimization, the full solutions of the equilibrium 

equation 𝐾𝑈 = 𝐹 are calculated. Note that here, iteration denotes the number of 

the iteration (or cycle) of the topology optimization routine and that the matrix of 

the basis vectors 𝛷 is the empty matrix before the first iteration. It is also recalled 

that “𝐴 ←  𝐵” means assign to variable A the value of expression B.  

Once the reduced basis initialized, the reduced basis solution is first calculated (line 

9). The residual is calculated on line 10. If it is below the threshold ε, then the 

reduced basis solution is used in place of the exact solution (line 17) for the 

remaining calculations (sensitivity, objective function) of the current topology 
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optimization iteration. If the residual is higher than the threshold then the full 

solution is calculated (line 13) and the reduced basis updated.  

In usual topology optimization codes, the line that is being replaced here by 

Algorithm 1 provides the exact displacement vector solution U satisfying the 

equilibrium equations. Algorithm 1 also provides a displacement vector U as an 

output. This displacement vector is sometimes the exact solution and sometimes 

only the reduced basis solution, if the reduced basis approximation is found to be 

acceptable in terms of accuracy. Since the reduced basis solution is much cheaper to 

evaluate than the full solution, the frequency with which only the reduced basis 

solutions can be used will determine the computational savings of the proposed 

method.  

The Algorithm on the fly has only two parameters that are defined by the user, the 

size of the reduced basis 𝛮𝑏 and the threshold ε on the residuals. The effect of the 

choice of these parameters will be investigated in chapter 5 of this paper. 

 

 

4.3 Approximate Reanalysis by Combined Approximations  
 

Abstract. As we have already mentioned, in the nested approach to structural 

optimization, most of the computational effort is invested in the solution of finite 

element analysis equations. In the study of O. Amir [30] the integration of an 

approximate reanalysis procedure into the framework of topology optimization of 

continuum structures is investigated. 

 

4.3.1 Introduction 
 

The aim of using approximate reanalysis is to reduce the computational effort 

involved in repeated solutions of the equilibrium equations, which for large 

problems will dominate the computational cost of the whole process. In the study of 

O. Amir [30], approximate reanalysis is performed following the Combined 

Approximation (CA) approach for linear static reanalysis, originally proposed by 

Kirsch [31] for linear static reanalysis. The main feature of CA is the utilization of a 

local series expansion that form a reduced basis. By using CA for repeated structural 

analysis, the number of required factorizations of the stiffness matrix is reduced, 

thus removing a significant portion of the computational effort. It has been shown 

that the CA method is theoretically equivalent to the preconditioned conjugate 

gradient method [32]. Therefore, available results from one method, such as 

convergence criteria and error bounds, can also be used in the other method 

Amir in his study examined the integration of linear static reanalysis by CA into the 

widely used procedures for topology optimization using a distribution of material 

approach. The investigation was focused on two aspects — accuracy, meaning the 
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possibility to obtain the same topological designs as would be generated by a 

standard procedure; and efficiency, meaning that the approximate procedure should 

offer significant savings in computation time when compared with a standard 

procedure. In the next Sections we will review the CA approach for structural 

reanalysis and present the way CA method for Approximate reanalysis in topology 

optimization is formulated. 

 

4.3.2 Reanalysis by CA 
 

In this section we will present the formulation of linear reanalysis by CA. 

 

The linear system of equilibrium equations resulting from a finite element (FE) 

discretization of the computational domain corresponding to a certain iterative step 

of the optimization process is  

 

 𝐾𝑢 = 𝑓 (4.17) 

   

 

where 𝑲 is the stiffness matrix, 𝒖 is the unknown displacement vector, and 𝒇 is the 

external force vector. We assume that 𝒇 does not depend on the optimization and 

remains constant throughout the whole process. Instead of solving the full system of 

equations, it is possible to find an efficient approximation of the solution �̃� that will 

be accurate enough for the purpose of optimization 

 

 �̃� ≈ 𝑢 (4.18) 

 

 Kũ = f (4.19) 

 

The approximate solution according to the CA approach is obtained as follows. We 

denote 𝑲𝟎 as the stiffness matrix corresponding to a certain previous optimization 

step and given in its factorized form. The equation system (4.17) can be rewritten as 

 

 

 (K0 + ΔK)u = f (4.20) 

 

and hence 

 

 K0u = f − ΔKu (4.21) 

 

Here, 𝛥𝑲 represents the matrix of changes in stiffness due to changes in the values 

of the design variables. Defining the following recurrence relation 
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 K0u
k = f − ΔKuk−1 (4.22) 

 

leads to the so-called binomial series expansion 

 

 𝑢 = (𝛪 − 𝛣 + 𝛣2 − 𝛣3 +⋯)𝑢1 (4.23) 

 

 

Where 

 

 𝑢1 = 𝐾0
−1𝑓 (4.24) 

 

 

 𝛣 = 𝐾0
−1𝛥𝐾 (4.25) 

 

 

 𝑢𝑖 = −𝐵𝑢𝑖−1 (4.26) 

 

 

It is important to note that the first term 𝑢1 is already known from a previous 

optimization step and the following terms 𝑢𝑖  can be easily computed by forward and 

backward substitutions based on the available factorization of 𝐊𝟎. The main feature 

of CA is the utilization of the series terms from (4.23) as basis vectors which compose 

the reduced basis. Considering only the first s series terms, the approximate solution 

can now be expressed as 

 

 �̃� = 𝑦1𝑢1 + 𝑦2𝑢2 +⋯+ 𝑦𝑠𝑢𝑠 = 𝑅𝐵𝑦 (4.27) 

 

where 𝑅𝐵  is an n×s matrix (redused basis matrix) containing the basis vectors 

𝑢1, 𝑢2, … , 𝑢𝑠  and 𝑦  is a vector of 𝑠  unknowns. Replacing 𝑢  in (4.17) with �̃�  from 

(4.27) and premultiplying both sides by RB
T  

 

 RB
TKRBy = RB

T f (4.28) 

 

This ends up in a reduced system of equations, with 𝑠 equations instead of 𝑛 

 

 KRy = fR (4.29) 

 

Where 

 

 𝑲𝑹 = RB
TKRB (4.30) 
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 fR = RB
T f (4.31) 

 

 

It is important to point out that the computational benefit of this procedure is due to 

the fact that the basis vectors are easily generated by solving a linear system where 

the stiffness matrix is already given in its factorized form. The computational cost of 

the reanalysis procedure is much smaller than the cost of a complete new analysis, 

which is dominated by the cost of a matrix factorization. 

 

 

4.3.3 CA method for Approximate reanalysis in topology optimization 

 

We will now present the implementation of the CA method for approximate 

reanalysis into a topology optimization procedure. The issue will be addressed for 

minimum compliance problems, aiming at finding the optimal distribution of elastic 

material in a certain domain so that the stiffest structure is obtained. 

When applying the so-called nested approach, where optimization is performed in 

the design variables only and where the equilibrium equations are treated as 

function calls, the optimization problem is formulated as follows: 

 

 

min
𝜌
     𝑐(𝜌) = 𝑓𝑇𝑢 

 

s.t: ∑ 𝑢𝑒𝜌𝑒
𝑁
𝑒=1 ≤ 𝑉 

      

    0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1 ,        𝑒 = 1,… ,𝑁 

 

with:  𝐾(𝜌) = 𝑓 

 

(4.32) 

where 𝐊(𝛒) is the stiffness matrix whose entries depend on the design variables ρ. 

When using the SIMP interpolation and element-wise constant densities scheme, 

𝐊(𝛒) can be rewritten as a sum over all elements 

 

 𝐾(𝜌) =∑𝜌𝑒𝛫𝑒

𝑁

𝑒=1

 (4.33) 

 

where 𝛫𝑒 is a standard element stiffness matrix referring to an element density equal 

to 1.  

When applying approximate reanalysis, this formulation accurately represents the 

problem only for optimization cycles in which the full equation system is solved to 
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satisfy the structural equilibrium. For each optimization cycle in which an 

approximate reanalysis is performed by CA, an appropriate optimization problem is 

formulated in terms of the approximate solution of the equilibrium equations, �̃�. The 

objective function can be expressed as follows: 

 

 

 𝑐(𝜌) = 𝑓𝑇𝑢 ≈ �̃�𝑇𝐾(𝜌)�̃� (4.34) 

 

 �̃� = 𝑅𝐵𝑦 (4.35) 

 

 𝑐(𝜌) = 𝑦𝑇𝑅𝐵
𝑇𝐾(𝜌)𝑅𝐵𝑦 (4.36) 

 

 

When performing approximate reanalysis within a certain optimization cycle, a set of 

𝒔 basis vectors is generated and utilized according to the CA procedure. The size of 

this set is determined in the reanalysis stage and is then fixed for the sensitivity 

analysis. In this case the optimization problem will have the form  

It can be seen that the nested equations are the reduced reanalysis system of 

Equation (4.28) and the equation systems governing the generation of the basis 

vectors, based on the available factorization of the stiffness matrix 𝐾0(𝜌0) 

corresponding to a previous design cycle. In this nested problem, the matrix 𝑅𝐵 

contains the basis vectors 

 

 𝐑B = [u1, … , us] (4.38) 
 

and the matrix 𝐊(ρ) is split into two parts, the first corresponding to a previous 

factorization and the second to the changes in stiffness due to changes in the design 

 

 𝐾(𝜌) = 𝐾0(𝜌0) + 𝛥𝛫(𝜌, 𝜌0) (4.39) 
 

 

When using the SIMP interpolation and element-wise constant densities scheme, 

both matrices can be rewritten as a sum over all elements 

 

 

 𝐾0(𝜌0) =∑𝜌𝑒,[0]
𝑝 𝐾𝑒

𝑁

𝑒=1

 (4.40) 

 

 𝛥𝛫(𝜌, 𝜌0) =∑(𝜌𝑒
𝑝 − 𝜌𝑒,[0]

𝑝 )𝐾𝑒

𝑁

𝑒=1

 (4.41) 
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The optimization problem is formulated in terms of the original basis vectors 𝐑B and 

the corresponding reduced solution 𝑦 since this simplifies the sensitivity analysis.  

 

 

Computational considerations 

Solving an optimization problem in which the actual stiffness matrix is factorized 

only once within a certain number of design iterations can be seen as solving a series 

of ‘short’ optimization problems, each one of them a valid optimization problem on 

its own. Each ‘short’ optimization problem begins with a matrix factorization and 

therefore an accurate design iteration; then it continues with a sequence of 

approximate design iterations based on an approximate reanalysis.  

The main goal of using approximate reanalysis is to achieve an accurate result 

efficiently. When considering the accuracy of the proposed procedure, the 

somewhat limited scope of the ‘short’ problems should be taken into account. On 

the one hand, it is clear that an approximate procedure cannot accommodate 

extremely large changes in stiffness, hence these should be bounded in some way. 

This results in the use of an outdated physical model, so that in many cases the 

approximate problem cannot reach the true optimum and will converge to a higher 

value (assuming minimization is considered). On the other hand, in certain cases the 

approximate solution is not accurate enough and the optimization process leads to 

unreliable results, sometimes with a better objective value than the final optimum. 

Owing to these shortcomings, a certain frequency of updating the factorized matrix 

should be defined if we seek a stable convergence leading to the same optimum as 

found by solving the full problem. Considering the efficiency of the procedure, 

matrix factorizations are the most expensive part so that the number of updates 

should be minimized. Therefore, the key for achieving an accurate result efficiently is 

choosing the right time to stop a sequence of reanalyses and perform a new 

factorization. Possible options for controlling the procedure could be: 

 

 State a fixed frequency of matrix factorizations, which will be performed 

regardless of the convergence of the ‘short’ problem. 

 

 Perform a new matrix factorization when the current design variable vector 

ρ[k] is significantly different from the design variable vector corresponding to 

the factorized matrix, ρ[0]. This can be done by examining the angle between 

the two vectors. 

 

 Perform a new matrix factorization when the ‘short’ problem reaches a 

certain convergence criterion. Such a criterion could be, for example, the 
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relative change in the value of the objective function within the ‘short’ 

problem. 

 

In addition to the frequency of matrix factorizations, the size of the reduced basis 

also has a direct impact on the accuracy and efficiency of the procedure. Therefore, 

it is important to state a certain criterion that will determine the sufficient number 

of basis vectors. In this study, we examine the relative magnitude of the residual 

forces (the error due to approximation) for this purpose. If the relative magnitude of 

this residual (measured by the ratio between the Euclidean norms of the residual 

and the external force vector) exceeds a certain permitted tolerance value, another 

basis vector is generated, until the residual satisfies the criterion or the predefined 

maximum number of basis vectors is reached. 

 

 

4.4 Sensitivity analysis of the proposed Reduced Basis 

methods 

 
4.4.1 Sensitivity adjustment 
 

The approaches that were just presented have the advantage of being simple and 

straight forward to implement. Nevertheless they make the assumption that the 

exact solution can be replaced by the reduced basis solution at some iterations of 

the topology optimization process without negatively affecting the convergence or 

the solution of the topology optimization. This assumption can be reasonable 

depending on the choice of the user defined parameters. Nevertheless in the 

present subsection a different approach, is presented, taking into account the fact 

that only an approximate solution is being sometimes used.  

 

4.4.2 Sensitivity adjustment for POD and on the fly approach  

 

In order to update the topology at each iteration, the topology optimization process 

uses the sensitivity of the objective function (compliance) with respect to density 

variations. The classical expression of the sensitivity is: 

 

 

 
𝜕𝑐

𝜕𝜌𝑒
= −𝑈𝑇

𝜕𝐾

𝜕𝜌𝑒
𝑈 (4.42) 
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When using the reduced order models presented in the previous subsections, the 

displacement vector U is sometimes an approximation (the reduced basis solution 

URB = Φα), this expression of the sensitivity is thus only approximate. For this reason 

we seek to correct the value of the sensitivity by using the adjoint method [3] to take 

into account the approximation error.  

We define the following modified objective function, by adding additional terms that 

are equal to zero: 

 

 𝑐(𝜌𝑒) = 𝑎
𝑇𝛷𝑇𝐾𝛷𝛼 − 2�̃�𝛵(𝛷𝑇𝐾𝛷𝛼 − 𝛷𝑇𝐹) −∑𝜆𝑖

𝑇(𝐾𝑖𝑈𝑖 − 𝐹)

𝑁𝑏

𝑖=1

 (4.43) 

 

Where �̃� , 𝜆𝑖 (with 𝑖 = 1, … ,𝑁𝑏 ) are adjoint variables and 𝐾𝑖 and 𝑈𝑖are the stiffness 

matrix and displacement fields corresponding to the ith basis vector. 

The modified expression of the sensitivity is obtained by differentiating Eq. (4.43) 

with respect to the elemental density: 

 

 

𝜕𝑐

𝜕𝜌𝑒
= 2

𝜕𝑎𝑇

𝜕𝜌𝑒
𝛷𝑇𝐾𝛷𝛼 + 2𝑎𝑇

𝜕𝛷𝑇

𝜕𝜌𝑒
𝐾𝛷𝛼 + 2�̃�𝛵

𝜕𝛷𝑇

𝜕𝜌𝑒
𝐹

− 2�̃�𝛵
𝜕𝛷𝑇

𝜕𝜌𝑒
𝐾𝛷𝛼 − 2�̃�𝛵𝛷𝑇

𝜕𝐾

𝜕𝜌𝑒
𝛷𝛼 − 2�̃�𝛵𝛷𝑇𝛫

𝜕𝛷

𝜕𝜌𝑒
𝛼

− 2�̃�𝛵𝛷𝑇𝛫𝛷
𝜕𝛼

𝜕𝜌𝑒
−∑𝜆𝑖

𝑇

𝑁𝑏

𝑖=1

 
𝜕𝛫𝜄
𝜕𝜌𝑒

𝑈𝑖 −∑𝜆𝑖
𝑇

𝑁𝑏

𝑖=1

 𝛫𝜄
𝜕𝑈𝑖
𝜕𝜌𝑒

   

(4.44) 

 

 

We chose the adjoint variable  �̃� = 𝛼  such as to eliminate derivatives of the solution 

vectors. Furthermore, we can define the variable of the residual vectors as expressed 

in Eq. 13. 



 𝛥𝐹 = 𝐹 − 𝐾𝛷𝛼 (4.45) 

 

Moreover by applying the equality  2𝑎𝑇
𝜕𝛷𝑇

𝜕𝜌𝑒
𝛥𝐹 = ∑ 2𝛼𝑖

𝑁𝑏
𝑖=1  

𝜕𝑈𝑖
𝑇

𝜕𝜌𝑒
𝛥𝐹  we obtain the 

following simplified expression of the sensitivity: 

 

 
𝜕𝑐

𝜕𝜌𝑒
= −𝑎𝛵𝛷𝑇

𝜕𝐾

𝜕𝜌𝑒
𝛷𝛼 −∑𝜆𝑖

𝑇

𝑁𝑏

𝑖=1

 
𝜕𝛫𝜄
𝜕𝜌𝑒

𝑈𝑖 −∑
𝜕𝑈𝑖

𝑇

𝜕𝜌𝑒
(𝛫𝜄𝜆𝑖 − 2𝑎𝑖𝛥𝐹)

𝑁𝑏

𝑖=1

 (4.46) 

 

In order to eliminate the derivatives of the displacement vectors we define the 

adjoint variables 𝜆𝑖 as the solutions of Eq. 15. 
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 𝛫𝜄𝜆𝑖 = 2𝑎𝑖𝛥𝐹   𝑖 = 1,… ,𝑁𝑏  (4.47) 

 

Accordingly we obtain the final expression of the corrected sensitivity: 

 

 
𝜕𝑐

𝜕𝜌𝑒
= −𝑎𝛵𝛷𝑇

𝜕𝐾

𝜕𝜌𝑒
𝛷𝛼 −∑𝜆𝑖

𝑇

𝑁𝑏

𝑖=1

 
𝜕𝛫𝜄
𝜕𝜌𝑒

𝑈𝑖 (4.48) 

 

We note that the expression of the corrected sensitivities includes two terms. The 

first one is the sensitivity calculated on the approximate solution. This is the only 

term considered in the sensitivity of the POD and on the fly approach described 

earlier. The second term is the adjustment term, which corrects the sensitivity by 

taking into account that an approximate, reduced basis solution was used instead of 

the true solution of the problem. This correction has the potential to allow higher 

residuals for the approximate reduced basis solution because the sensitivity is 

corrected to account for this residual. 

When correcting the sensitivity we have the advantage of accounting for the 

approximation error. This means that fewer full simulations are likely to be required. 

On the downside this approach is more computationally expensive since it requires 

to calculate the adjoint variables. Even though this additional cost is decreased by 

storing the factorized stiffness matrices, required for the adjoint variables 

calculation, the number of adjoint variables calculations is large (Nb times the 

number of reduced basis iterations). This means that the approach may only be 

efficient for very large systems for which the cost of factorizing the stiffness matrix is 

large compared to the other costs, including that of backsubstitution, given the 

factorized stiffness matrix. 

 

4.4.3 Sensitivity adjustment for CA approach  

 

As was foretold when a full analysis is performed within a certain optimization cycle, 

the sensitivity is obtained using the adjoint method  leading to the well-known 

expression 

 

 
𝜕𝑐

𝜕𝜌𝑒
= −𝑢𝑇

𝜕𝐾

𝜕𝜌𝑒
𝑢 (4.49) 

 

Within the optimization cycles, in which approximate reanalysis is performed, the 

reduced solution in terms of the original basis vectors is obtained according to 

Equation.4.35 and then the corresponding sensitivity analysis can be performed by 

the adjoint method. Introducing adjoint variables �̃�, 𝜆𝑖 ( i =1, . . . , s, s being the 

number of basis vectors used in the reanalysis), the following modified objective 

function is obtained by adding zero terms: 
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𝑐(𝜌𝑒) = 𝑦
𝑇𝑅𝐵

𝑇𝐾𝑅𝐵𝑦 − 2�̃�
𝑇(𝑅𝐵

𝑇𝐾𝑅𝐵𝑦 − 𝑅𝐵
𝑇𝑓) − 𝜆𝑖

𝑇(𝐾0𝑢1 − 𝑓)

−∑𝜆𝑖
𝑇(𝐾0𝑢𝑖 + 𝛥𝐾𝑢𝑖−1)

𝑠

𝑖=2

 
(4.50) 

 
When differentiating the objective function with respect to a certain design variable, 

derivatives of the adjoint variables are obviously eliminated and the derivative will 

be 

 

 

𝜕𝑐

𝜕𝜌𝑒
= 2

𝜕𝑦𝑇

𝜕𝜌𝑒
𝑅𝐵
𝑇𝐾𝑅𝐵𝑦 + 2𝑦

𝑇
𝜕𝑅𝐵

𝑇 

𝜕𝜌𝑒
𝐾𝑅𝐵𝑦 + 𝑦

𝑇𝑅𝐵
𝑇
𝜕𝐾  

𝜕𝜌𝑒
𝑅𝐵𝑦

+ 2�̃�𝑇
𝜕𝑅𝐵

𝑇 

𝜕𝜌𝑒
𝑓 − 2�̃�𝑇

𝜕𝑅𝐵
𝑇 

𝜕𝜌𝑒
𝐾𝑅𝐵𝑦 − 2�̃�

𝑇𝑅𝐵
𝑇
𝜕𝐾  

𝜕𝜌𝑒
𝑅𝐵𝑦

− 2�̃�𝑇𝑅𝐵
𝑇𝐾

𝜕𝑅𝐵
 

𝜕𝜌𝑒
𝑦 − 2�̃�𝑇𝑅𝐵

𝑇𝐾𝑅𝐵
𝜕𝑦  

𝜕𝜌𝑒
− 𝜆𝑖

𝑇
𝜕𝐾0

 

𝜕𝜌𝑒
𝑢1

− 𝜆𝑖
𝑇𝐾0

𝜕𝑢1
 

𝜕𝜌𝑒

−∑𝜆𝑖
𝑇 [
𝜕𝐾0

 

𝜕𝜌𝑒
𝑢𝑖 + 𝐾0

𝜕𝑢𝑖
 

𝜕𝜌𝑒
+
𝜕𝛥𝐾 

 

𝜕𝜌𝑒
𝑢𝑖−1

𝑠

𝑖=2

+ 𝛥𝐾
𝜕𝑢𝑖−1 

 

𝜕𝜌𝑒
] 

(4.51) 

 

As is the case for the standard (full) problem, the adjoint variable vector should be 

chosen such that the derivatives of the solution vector are eliminated, is simply the 

solution vector itself, meaning that for the approximate problem 

 

 �̃� ≡ 𝑦 (4.52) 

 

By defining the vector of residual forces due to approximation errors 

 

 𝛥𝑓 = 𝑓 − 𝐾𝑅𝐵𝑦 (4.53) 

 

and applying the following equalities: 

 

 2𝑦𝑇
𝜕𝑅𝐵

𝑇 

𝜕𝜌𝑒
𝛥𝑓 =∑2𝑦𝑖

𝜕𝑢𝑖
𝑇

𝜕𝜌𝑒

𝑠

𝑖=1

𝛥𝑓 (4.54) 

 

 
𝜕𝐾0
𝜕𝜌𝑒

= 0 (4.55) 
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𝜕𝛥𝐾 

 

𝜕𝜌𝑒
=
𝜕𝐾  

𝜕𝜌𝑒
 (4.56) 

 

the following expression for the sensitivity is obtained as: 

 

 

𝜕𝑐

𝜕𝜌𝑒
= −𝑦𝑇𝑅𝐵

𝑇
𝜕𝐾  

𝜕𝜌𝑒
𝑅𝐵𝑦 −∑𝜆𝑖

𝑇
𝜕𝛥𝐾 

 

𝜕𝜌𝑒
𝑢𝑖−1

𝑠

𝑖=2

−∑
𝜕𝑢𝑖

𝑇

𝜕𝜌𝑒
[𝐾0𝜆𝑖 + 𝛥𝐾𝜆𝑖+1 − 2𝑦𝑖𝛥𝑓]

𝑠−1

𝑖=2

−
𝜕𝑢𝑠

𝑇

𝜕𝜌𝑒
[𝐾0𝜆𝑠 − 2𝑦𝑠𝛥𝑓] 

(4.57) 

 

It can be seen that the derivatives of the basis vectors can be eliminated by solving 

the adjoint problems, where 𝑖 = 1, . . . , 𝑠 − 1: 

 

 𝐾0𝜆𝑠 = 2𝑦𝑠𝛥𝑓 (4.58) 

 

 𝐾0𝜆𝑖 = 2𝑦𝑖𝛥𝑓 − 𝛥𝐾𝜆𝑖+1 (4.59) 

 

Therefore, the final expression for the sensitivity is 

 

 
∂c

∂ρe
= −yTRB

T
∂K 

∂ρe
RBy −∑λi

T
∂ΔK 

 

∂ρe
ui−1

s

i=2

 (4.60) 

 

Ιt can be seen that if there are no approximation errors, then the first term is 

identical to the sensitivity in the standard problem and the second term is 

eliminated. Οnce approximation errors occur, they are accounted for in the 

sensitivity analysis, meaning that relatively large inaccuracies could be tolerated. Τhe 

number of adjoint problems to be solved is s−1 since the first basis vector does not 

depend on changes in the design; hence, the additional computational cost is very 

low considering the availability of the factorized stiffness matrix. 
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5. Numerical Tests 

 

Several numerical results are presented in this chapter, and the effectiveness of the 

three approximate approaches described earlier is investigated. The addressed 

problems are minimum compliance problems in two and three dimensions. From the 

results we can see that quite accurate results can be obtained when using the 

approximate procedures and promising computational savings are achieved due to 

the reduction in the number of the required factorizations of the stiffness matrix. 

 

5.1. Description of topology optimization problem number 1 
 

To start with, we examine the impact of the proposed approximate methods in a 

classical minimum compliance benchmark problem, the MBB-beam in 2D. The 

boundary conditions of the beam are represented in Figure 5. Due to symmetry 

conditions only the half of the structure is modeled. The main task is to find the 

optimal material distribution inside the beam for minimum compliance given an 

upper bound on the material volume fraction. 

 
Figure 5.1: MBB-beam problem. Top: full design domain, bottom: half design 

domain, with symmetry boundary conditions 

 

As far as the value of the parameters of the problem are considered we chose: 

 

Nominal Young’s modulus   :   𝛦𝑛𝑜𝑚𝑖𝑛𝑎𝑙  =  1 

Minimum Young’s modulus  :  𝛦𝑚𝑖𝑛  =  1 ∗ 10 − 9 

Poisson’s ratio    :   𝜈 =  0.3 

Penalization factor   :   𝑝 =  3 

Μaximum allowable volume fraction :   𝑣𝑜𝑙𝑓𝑟𝑎𝑐 =  0.5 

Density filter radius    :  𝑟𝑚𝑖𝑛 =  1.5 

 

The optimization iterations are stopped either when the density variation within any 

of the elements is less than 1% or when the total number of iterations has reached 
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the maximum number of allowable iterations, whichever criterion is met first. The 

code implementation used was adapted from Andreassen et al. [2]. 

 

5.1.2 Results using the three proposed approximation methods 

 

To examine the performance of the described approaches we made use of two 

different mesh sizes, a low density and a high density mesh of a 2D MBB beam 

Problem. The low density mesh consists of 150 x 50 elements and the high density 

mesh is of 600 x 200 elements, that is 15.402 dofs and 241.602 dofs respectively.  

The study focuses on the impact the user define parameters have in the accuracy 

and efficiency of the optimization problem. For this reason different values of the 

parameters ε (residuals threshold) and 𝑁𝑏 (size of the reduced basis) are taken under 

consideration. 

 

In Table 1 we present the results of the topology optimization for the 2D MBB beam 

problem we obtained from the low density mesh of 150 x 50 elements. The first line 

of the table provides the results obtained by running the topology optimization of 

the high fidelity model. The proceeding lines provide the results of the topology 

optimization obtained when the reduced order model approaches are applied. In 

order to examine the efficiency me took under consideration the time speedup of 

each approximate approach, which is the CPU time of the full order model topology 

optimization solution divided by the CPU time of the reduced order model approach 

and the results are presented in the third column. The forth column provides the 

total number of iterations in the topology optimization routine. This is either the 

number of iterations until the convergence criterion was met or until the total 

number of available iterations (400 here) was reached. The fifth column provides the 

number of full solutions of the equilibrium equations that had to be computed 

throughout the optimization. To examine the accuracy of each approximate 

approach  we calculated the relative error in the objective function at the optimum 

for the approximate solution obtained using the reduced order models, compared to 

the solution of the high fidelity model(last column). This error (given in %) is 

expressed in Eq. (5.1).  

 

 𝑒𝑟𝑟 =
𝑐𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑐𝑒𝑥𝑎𝑐𝑡

𝑐𝑒𝑥𝑎𝑐𝑡
× 100 (5.1) 

 

Where 𝑐𝑒𝑥𝑎𝑐𝑡  represents the value of the objective function (compliance) at the 

optimal design. 
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Table 5.1. Results obtained from the different approximations approaches for 

different parameters for a 150 x 50 mesh density. 

Residuals 

threshold,ε 

Size of 

reduced 

basis, Nb 

Time 

speedup 

Number of 

iterations 

Number of 

full 

solutions 

Error in 

objective 

function (%) 

High Fidelity Model 

- - 1 400 400 0 

POD 

0.1 4 1.39 400 99 -0,00757 

0.1 10 1.31 400 97 -0,01262 

0.1 40 1.21 400 103 -0,00929 

On the fly 

0.1 4 1.19 400 116 -0,02202 

0.1 10 1.14 400 117 -0,02076 

0.1 40 1.11 400 107 -0,01293 

AR 

0.1 4 1.11 400 100 0,14435 

0.1 10 0.9 400 160 0,05904 

POD 

0.05 4 1.32 400 115 -0,01060 

0.05 10 1.17 400 114 -0,01091 

0.05 40 1.16 400 118 -0,00934 

On the fly 

0.05 4 1.18 400 143 -0,01025 

0.05 10 1.14 400 143 -0,01005 

0.05 40 1.11 400 131 -0,01071 

AR 

0.05 4 1,15 400 94 0,04159 

0.05 10 1,00 400 182 -0,00904 

POD 

0.01 4 1.21 400 173 -0,00439 

0.01 10 1.11 400 167 -0,00288 

0.01 40 1.05 400 167 -0,00318 

On the fly 

0.01 4 1.04 400 263 -0,00379 

0.01 10 1.03 400 263 -0,00389 

0.01 40 0.99 400 230 -0,00434 

AR 

0.01 4 1,09 400 110 0,06429 

0.01 10 0.94 400 177 0,04068 
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Table 5.1 gives us much information about the efficiency and accuracy of the 

proposed approximate models. First of all reduced order models give good solutions. 

The accuracy of these solutions is not affected from the size Nb of the reduced basis 

and so we can conclude that relatively small values for the reduced basis size Nb are 

already sufficient to obtain good solutions. In other words the size has very little 

impact on the error in the final value of the objective function. As far as the 

efficiency of the ROMs is concerned, it is obvious that the size of the reduced basis 

has a clear impact on computational cost (time speedup), with larger bases requiring 

more CPU time. A size of 4 appears enough to obtain good accuracy and topology 

optimization results (Fig 5.2). Figure 5.2 provides the obtained topologies for the 

high fidelity model as well as for the proposed reduced order modeling approaches 

when using the user defined parameters ε = 0.05 and Nb = 4. The images of Figure 

5.2 are direct plots of the density value of each pixel, without any other post-

processing. For all the different values examined of the user defined parameters the 

topology results were similar which makes the difference between the approximate 

solutions and the solution of the full order model undistinguishable to the naked 

eye.  

From Table 1 we can also see that the residuals threshold ε affects both the 

efficiency and the accuracy of the approximate approaches. With lower values of ε 

the efficiency of the ROMs is decreased significantly whereas the accuracy gains are 

minor. The value of the residuals threshold has such an impact in the efficiency of a 

ROM because it implicitly defines the number of the full solutions of the equilibrium 

equations need to be calculated. More specifically at the beginning of the 

optimization only full solutions of the equilibrium equations are calculated until the 

residuals go below the residuals threshold and the first reduced order solution is 

taken as a sufficient solution. So a lower threshold means more full solutions of the 

equilibrium equations at the beginning of the optimization. From then on, time to 

time the residuals exceed once again the threshold, thus requesting a new full 

solution, which will be used to update the reduced basis and thus guarantee that the 

reduced basis solutions will again be acceptable over a few iterations. This will be 

done more often for a lower value of the residuals threshold.  
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Figure 5.2: Optimal topologies with a 150x50 mesh size for : a)  the high fidelity topology optimization(upper 

left), b) the On the fly approach with 𝜺 =  𝟎. 𝟎𝟓 and 𝑵𝒃 =  𝟒  (upper right), c) the POD approach with 𝛆 =  𝟎. 𝟎𝟓 

and 𝑵𝒃 =  𝟒 (lower left) d) the CA approach with 𝜺 =  𝟎. 𝟎𝟓 and 𝑵𝒃 =  𝟒 (lower right). 

 

 

We can see that the maximum speedup is 1.39 when using the approximate models 

in the above optimization problem. We expect to achieve higher speedups in larger 

scale problems. So a similar investigation was carried out using a high density mesh 

of 600 x 200 elements (241602 dofs). The user define parameters that are examined 

are ε=0,1 e=0.05 and Nb=4, Nb=10. 

The computational results are provided in Table 2 and the topologies obtained are 

presented in Figure 5.3. 

 

 

Table 5.2 Relative computational cost associated to the different approximations 

approaches for different parameters for a 600 x200 mesh density. 

Residuals 

threshold,ε 

Size of 

reduced 

basis, Nb 

Time 

speedup 

Number of 

iterations 

Number of 

full 

solutions 

Error in 

objective 

function (%) 

High Fidelity Model 

- - 1 400 400 0 

POD 
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0.1 4 1,40 400 131 -0,02738 

0.1 10 1,37 400 125 -0,02436 

On the fly 

0.1 4 1,36 400 150 -0,01933 

0.1 10 1,31 400 152 -0,05422 

CA 

0.1 4 1,26 400 97 -0,16073 

0.1 10 1,08 400 90 -0.00463 

POD 

0.05 4 1,30 400 171 -0,0082 

0.05 10 1,28 400 165 -0,00825 

On the fly 

0.05 4 1,27 400 188 -0,01132 

0.05 10 1,25 400 188 -0,01007 

CA 

0.05 4 1,24 400 107 -0,05901 

0.05 10 1,06 400 77 -0,00221 

 

 

From analysis of Table 5.2 we can make the following comments regarding the 

choice of the user defined parameters Nb and ε. 

We can now make a safer conclusion that the reduced basis size Nb has an impact on 

the efficiency but hardy any on the accuracy of the final result. It appears to be more 

beneficial to use a low reduced basis size. As we see a reduced basis size of 10 

compared with that of size 4, degrades the efficiency of the problem The problem is 

that a too small reduced basis (i.e. size of one or two) may be counterproductive 

even in terms of efficiency since the residual threshold will be exceeded more often 

with such a small reduced basis, thus requiring more full simulations. So going much 

lower than 4 is not recommended since the efficiency gains would be negligible and 

for some problems the small size could be problematic. A size of four seems a safe 

starting point.  

As for the residuals threshold ε it appears again to have a bigger effect in the 

efficiency than in the accuracy of the approximate approaches. Lower values of the 

threshold imply a decrease in the efficiency. Making a choice of value of the residual 

threshold for a given problem seems to be more difficult than choosing the basis 

size, because the threshold is much more problem dependent. In the MBB Beam 

topology problem a value of 0.1 for the threshold ε gives sufficiently accurate 

results. 
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Figure 5.3: Optimal topologies with a 600x200 mesh size for : a) the high fidelity topology 

optimization(upper left), b) the On the fly approach with 𝜺 =  𝟎. 𝟎𝟓 and 𝑵𝒃 =  𝟒  (upper right), c) the 

POD approach with 𝛆 =  𝟎. 𝟎𝟓 and 𝑵𝒃 =  𝟒 (lower left) d) the CA approach with 𝜺 =  𝟎. 𝟎𝟓 and 𝑵𝒃 =

 𝟒 (lower right). 

 

 

In the topologies in Figure 5.3 occur some very small topological details, which are 

slightly different between the various solutions. A way to mitigate these fine 

topological details is to increase the filter radius. 
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5.2 Description of topology optimization problem number 2 
 

To further examine how the performance of the described approaches scale up with 

the size of the problems for this topology optimization problem we consider a 

classical minimum compliance benchmark problem of a 3D Cantilever beam Fig. (5.4 

). The code implementation used was adapted from Liu and Tovar [9]. 

 

 

 
Figure 5.3: 3D Cantilever beam problem 

 

 

The general parameters used for topology optimization problem of the 3D Cantilever 

beam are: 

 

Nominal Young’s modulus   :   𝛦𝑛𝑜𝑚𝑖𝑛𝑎𝑙  =  1 

Minimum Young’s modulus  :  𝛦𝑚𝑖𝑛  =  1 ∗ 10 − 9 

Poisson’s ratio    :   𝜈 =  0.3 

Penalization factor   :   𝑝 =  3 

Μaximum allowable volume fraction :   𝑣𝑜𝑙𝑓𝑟𝑎𝑐 =  0.2 

Density filter radius of   :  𝑟𝑚𝑖𝑛 =  1.5 

 

 

 

 

5.2.1 Results using the three proposed approximation methods 

 

To examine the performance of the approximate approaches we made use of two 

different mesh sizes, a low density and a high density mesh of a 3D Cantilever beam 

Problem. The low density mesh consists of 60x20x4 elements (19215 dofs)  and the 
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high density mesh is of 100x40x8 elements (111807 dofs). The maximum number of 

iterations is set to 300. 

We start by investigating the results for different values of the user define parameters in 

the 60 x 20 x 4 mesh density which are presented in Table 5.3. 

 

Table 5.3. Relative computational cost associated to the different approximations 

approaches for different parameters for a 60 x 20 x 4  mesh density. 

Residuals 

threshold,ε 

Size of 

reduced 

basis, Nb 

Time 

speedup 

Number of 

iterations 

Number of 

full 

solutions 

Error in 

objective 

function (%) 

High Fidelity Model 

- - 1 300 300 0 

POD 

0.1 4 1,28 300 231 -0,03347 

0.1 10 1,28 300 218 -0,01763 

On the fly 

0.1 4 1,17 300 272 -0,01569 

0.1 10 1,19 300 262 -0,0261 

CA 

0.1 4 1,29 300 48 0,012443 

0.1 10 1,14 300 51 -0,01763 

POD 

0.05 4 1.21 300 146 -0.01722 

0.05 10 1.24 300 137 -0.0105 

On the fly 

0.05 4 1.11 300 199 -0.01756 

0.05 10 1.22 300 197 -0.01529 

CA 

0.05 4 1.28 300 50 0.004179 

0.05 10 1.15 300 54 -0.00075 

 

As we can see the maximum speed-up is value is 1.29 and only 48 factorizations of 

the stiffness matrix were needed. Also the optimized topologies of the different 

approximate approaches have no difference compared with the topology of the high 

fidelity model is distinguished Fig. (5.3).  
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Figure 5.3: Optimal topologies with a 60 x 20 x 4 mesh size of a 3D cantilever beam problem 

of a) the high fidelity model (upper left), b) the POD approach with ε = 0.05 and Nb = 4 

(upper right), c) the On the fly approach with ε = 0.05 and Nb = 4 (lower left), d) the CA 

approach with ε = 0.05 and Nb = 4(lower right). 

 

 

In order to further investigate how the computational savings of the proposed 

methods scale up with the size of the problems we run the topology optimization for 

the same 3D beam topology optimization problem with a 100x40x8 mesh. The same 

parameters are used as before. In table 5.2 we present the numerical results. 

 

Table 5.4 Numerical results for the 3D problem with a100x40x8 mesh density 

Residuals 

threshold,ε 

Size of 

reduced 

basis, Nb 

Time 

speedup 

Number of 

iterations 

Number of 

full 

solutions 

Error in 

objective 

function (%) 

- - 1 200 200 0 

POD 

0.05 4 1.62 200 86 -0.00873 

On the fly 

0.05 4 1.42 200 109 -0.01222 

CA 

0.05 4 2.01 200 38 -0.00734 
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Comparing the results obtained from the two different meshes we can see that the 

computational savings continue to grow with the size of the problem. In the high density 

mesh a speed-up of 2.01 occurs whereas in the low density mesh the maximum speedup 

is 1.29. 

In figure 5.4 the optimized topologies of the different approximate approaches are 

presented. No difference compared with the topology of the high fidelity model is 

distinguished.  

 

  

  
Figure 5.4: Optimal topologies with a 100x40x8 mesh size of a 3D cantilever beam problem 

of a) the high fidelity model (upper left), b) the POD approach with ε = 0.05 and Nb = 4 

(upper right), c) the On the fly approach with ε = 0.05 and Nb = 4 (lower left), d) the CA 

approach with ε = 0.05 and Nb = 4(lower right). 
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5.3 Description of topology optimization problem number 3 
 

In this topology optimization problem a more complex 3D problem, known as the 3D 

wheel problem, is considered to further investigate the scaling of the computational 

cost savings for the approximate approaches described. Figure 5.5 illustrates the 

boundary conditions of this problem. The solid is simply supported at the four 

corners and a downward force is applied at the center of its bottom face. A mesh of 

40x20x40 is considered in this test case which accounts for 105.903 degrees of 

freedom in the finite element model. The code implementation used was adapted 

from Liu and Tovar [9]. 

 

 

The general parameters used for topology optimization problem of the 3D Cantilever 

beam are: 

 

Nominal Young’s modulus   :   𝛦𝑛𝑜𝑚𝑖𝑛𝑎𝑙  =  1 

Minimum Young’s modulus  :  𝛦𝑚𝑖𝑛  =  1 ∗ 10 − 9 

Poisson’s ratio    :   𝜈 =  0.3 

Penalization factor   :   𝑝 =  3 

Μaximum allowable volume fraction :   𝑣𝑜𝑙𝑓𝑟𝑎𝑐 =  0.2 

Density filter radius of   :  𝑟𝑚𝑖𝑛 =  1.5 

 

 

 
Figure 5.5: Boundary conditions for the 3D wheel problem 

 

 

5.3.1 Results using the three proposed approximation methods 

 

The numerical results of the proposed reduced order models with a reduced basis 

size of  𝑁𝑏 =  4 and a residuals threshold of  휀 =  0.05 are presented in Table 5.5 
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and the results of the reference topology optimization problems are presented in 

Figure 5.6. The maximum number of iterations in this analysis is set to 178. 

 

 

 

Table 5.6. Numerical results for the 3D problem with a 40 x 20 x 40 mesh 

Residuals 

threshold,ε 

Size of 

reduced 

basis, Nb 

Time 

speedup 

Number of 

iterations 

Number of 

full 

solutions 

Error in 

objective 

function (%) 

High Fidelity Model 

- - 1 178 178 0 

POD 

0.05 4 5.3 178 13 -0.13711 

On the fly 

0.05 4 5.03 178 15 -0.10016 

CA 

0.05 4 5.03 148 18 -0.04215 

 

 

In this topology optimization problem the approximate approaches give an accurate 

optimized topology of up to 5.3 times faster than the full order analysis. This is because 

only 13 out of 178 factorizations of the stiffness matrix are required for the solution via 

the POD approach. 

In figure 5.4 the optimized topologies of the different approximate approaches are 

presented. No significant difference compared with the topology of the high fidelity 

model is distinguished.  
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Figure 5.4: Optimal topologies with a 40x20x40 mesh size of a 3D cantilever beam problem 

of a) the high fidelity model (upper left), b) the POD approach with ε = 0.05 and Nb = 4 

(upper right), c) the On the fly approach with ε = 0.05 and Nb = 4 (lower left), d) the CA 

approach with ε = 0.05 and Nb = 4(lower right). 
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6. Conclusions  

 

In this thesis we examined the impact of reduced order models in topology 

optimization problems. More precisely the reduced basis approaches of POD, On the 

fly and Approximate Reanalysis were described and utilized in minimum compliance 

structural topology optimization problems. Different test cases were taken under 

consideration and conclusions of the efficiency and accuracy of the reduced order 

models for different user defined parameters were derived. The numerical results 

showed that for a small size reduced basis large speed-ups over topology 

optimization without reduced order modeling are obtained. Speedups up to a factor 

of 5 were achieved and this speedup can be increased with the size of the problem.  

As a final conclusion we can say that the larger the problem and the more time 

consuming a single solution of the equilibrium equations will be, the higher the 

efficiency gains allowed by calculating the full solutions at only some iterations while 

using quick reduced order models at the other.   
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