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Περίληψη

Τα τελευταία χρόνια, η Βαθιά Μάθηση έχει αναπτυχθεί ραγδαία και έχει συμβάλει σημα-

ντικά στην εξέλιξη της ΄Ορασης Υπολογιστών. Ομοίως, από την εμφάνιση των Παραγωγικών

Αντιπαραθετικών Δικτύων (Generative Adversarial Networks, GANs), ο τομέας της Παρα-

γωγικής Τεχνητής Νοημοσύνης έχει υποστεί ριζικές αλλαγές. Τα GANs είναι μια οικογένεια

μοντέλων που μπορούν να μαθαίνουν μοτίβα από υπάρχοντα δεδομένα, όπως εικόνες ή κείμενο,

και στη συνέχεια να παράγουν νέο περιεχόμενο με εντυπωσιακά αποτελέσματα. Η αποτελε-

σματικότητα των GANs έχει προκαλέσει μεγάλο ενδιαφέρον δίνοντας αφορμή για πολλές νέες

προσεγγίσεις και εφαρμογές, καθώς όλο και περισσότερη έρευνα αφιερώνεται γύρω από αυτά.

΄Ενα τέτοιο ερευνητικό θέμα είναι η μετάφραση από εικόνα σε εικόνα, το αντικείμενο του μετα-

σχηματισμού εικόνων από ένα πεδίο έτσι ώστε να έχουν το ύφος ή τα χαρακτηριστικά εικόνων

ενός άλλου πεδίου. Η μετάφραση από εικόνα σε εικόνα μπορεί να εφαρμοστεί για τη μεταφορά

καλλιτεχνικού ύφους (π.χ. για τη μετατροπή μιας φωτογραφίας ώστε να μοιάζει με τον πίνακα

ενός διάσημου ζωγράφου) ή ακόμη και για τη γεφύρωση του χάσματος μεταξύ συνθετικών

και πραγματικών εικόνων. Αυτή η διατριβή επικεντρώνεται στο τελευταίο και αποσκοπεί στη

μετατροπή εικόνων του παιχνιδιού Grand Theft Auto V (GTA V) ώστε να μοιάζουν με ρεαλι-

στικές εικόνες αστικών περιοχών, εφαρμόζοντας σύγχρονες μεθόδους μετάφρασης εικόνας σε

εικόνα. Πιο συγκεκριμένα, εκπαιδεύτηκαν τέσσερα μοντέλα μη επιβλεπόμενης μάθησης βασι-

σμένα σε GANs για την ενίσχυση του ρεαλισμού των εικόνων του GTA V. Οι μεταφρασμένες

εικόνες αξιολογήθηκαν με τη χρήση κοινών μέτρων αξιολόγησης των GANs, καθώς και μέσω

της επίδοσης στη σημασιολογική κατάτμηση. Τα αποτελέσματα υποδεικνύουν ότι τα μοντέλα

που βασίζονται στη μάθηση της κυκλικής συνέπειας (cycle-consistency learning) μπορούν

να διατηρήσουν καλύτερα τις λεπτομερείς γεωμετρίες, ενώ τα μοντέλα που βασίζονται στην

αντιφατική μάθηση (contrastive learning) εκτελούν πιο επιθετικές αλλαγές με αποτέλεσμα

να κάνουν περισσότερα λάθη, όπως να γεμίζουν τον ουρανό με δέντρα που δεν υπάρχουν. Η

αξιολόγηση της ποιότητας των εικόνων μέσω της σημασιολογικής κατάτμησης αποδείχθηκε

πιο αξιόπιστη σε τέτοιες περιπτώσεις, καθώς μετρικές όπως η Fréchet Inception Distance

(FID) δεν μπορούν να ανιχνεύσουν τέτοιες αναντιστοιχίες στη δομή τους.

Λέξεις Κλειδιά

Μετάφραση από εικόνα σε εικόνα, βαθιά μάθηση, υπολογιστική όραση, παραγωγικά αντι-

παραθετικά δίκτυα, σημασιολογική κατάτμηση.
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Abstract

Over the past years, Deep Learning has grown rapidly and has contributed significa-

ntly to the development of Computer Vision. Similarly, since the emergence of Generative

Adversarial Networks (GANs), the field of Generative Artificial Intelligence has been re-

volutionized. GANs are a family of models, a framework, that can learn patterns from

existing data, such as images or text, and then generate new content with impressive re-

sults. The effectiveness of GANs has sparked a lot of interest giving rise to many new

approaches and applications as more and more research is devoted around them. One

such research topic is image-to-image translation, the task of transforming images from

one domain so that they have the style or characteristics of images from another domain.

Image-to-image translation can be applied to transfer artistic style (e.g. to transform a

photo to look like a painting of a famous painter) or even to bridge the gap between sy-

nthetic and real images. This thesis focuses on the latter and aims to transform images

of the open-world game Grand Theft Auto V (GTA V) to look like realistic urban scenes

by applying state-of-the-art image-to-image translation methods. Specifically, four unsu-

pervised models based on GANs were trained to enhance the realism of GTA V images.

The translated images were evaluated with the use of common GAN evaluation measures

as well as through the performance in semantic segmentation. The results suggest that

models based on cycle-consistency learning can better preserve detailed geometries, while

models based on contrastive learning perform more aggressive changes resulting in mo-

re mistakes, like populating the sky with trees that do not exist. The evaluation of the

quality of the images through semantic segmentation proved to be more reliable in such

cases, as metrics like Fréchet Inception Distance (FID) cannot detect such mismatched

scene structures.

Keywords

Image-to-image translation, deep learning, computer vision, generative adversarial ne-

tworks, semantic segmentation.
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Chapter 1

Introduction

1.1 Motivation

With the advent of deep learning, a substantial amount of progress has been made

in various computer vision tasks such as image classification, object detection, semantic

segmentation, face recognition and human pose estimation. The recent advances of gen-

erative methods and especially Generative Adversarial Networks (GANs) have sparked a

huge interest in Generative Artificial Intelligence (AI). Generative AI is a technology that

allows the creation of new content such as images, text and audio by learning underlying

patterns of existing content. This field of AI offers many different use cases from simple

content generation [27, 16] to more complicated tasks like sketch colorization [48], face ag-

ing [1], super-resolution [29], text-to-image synthesis [47], text-to-speech [28] and symbolic

music generation [14].

Image-to-image translation, which falls under the category of Generative AI, is a class

of vision and graphics problems where the goal is to transform images from one domain so

that they have the style or characteristics of images from another domain. The techniques

used to perform image-to-image translation are mostly based on GANs and can be used

for tasks like artistic style transfer (e.g. photos to paintings) or to bridge the gap between

synthetic and real images.

The rendering of realistic visual content is one of the most defining goals of computer

graphics. Deep learning methods such as image-to-image translation could be used in the

future to assist realistic graphics rendering as a post-processing step [37]. Photorealism is

something many video games strive for and Grand Theft Auto V (GTA V) is one of them.

GTA V is a 2013 action-adventure game developed by Rockstar North and published by

Rockstar Games. It features a realistic open-world design that lets players freely roam

and drive in the open countryside and the fictional city of Los Santos, which is based on

Los Angeles. The photorealistic enhancement of GTA V graphics is something that the

modding community also strives for by creating mods (short for “modifications”) to alter

various aspects of the game so that it looks and feels more realistic.

Another application of image-to-image translation is in the context of domain adap-

13



14 Chapter 1. Introduction

tation [22]. Domain adaptation is a field of computer vision and machine learning which

aims to solve tasks in a target domain that has a different, but related distribution to the

source domain data on which a model was trained. Therefore, the goal is to reduce the

shift between the two distributions by aligning the two representations (e.g. in feature

space). For example, a model that allows self-driving cars to recognize driving areas may

perform badly on snowy or foggy roads if the dataset which it was trained on did not cap-

ture such conditions. Therefore, the model should be adapted to new weather conditions

or even to new driving scenarios in cities with different layouts.

Domain adaptation can also be used as a solution to small annotated datasets, with not

enough data to train effectively a deep learning model. In the case of semantic segmenta-

tion, which is the task of classifying each pixel of an image into a category (e.g. road, car,

person etc.) the annotation of training data is extremely time-consuming as it is usually

performed manually. As a result, the creation of semantic segmentation datasets is very

expensive leading to smaller amounts of available data. SYNTHIA [39], is an example of

a commonly used dataset in the context of domain adaptation. Even though it consists of

synthetic annotated images simulating driving scenarios in a virtual city, it can be used

in order to adapt a model for semantic segmentation and scene understanding problems

in real-world data. Similarly, annotated images from the game GTA V can be used for

domain adaptation as that too simulates realistic driving scenarios.

1.2 Goals

The goal of this thesis is to apply and evaluate state-of-the-art methods in order to

transform GTA V images into realistic urban scenes. These methods could later be used

as the core of frameworks to improve the realism of game graphics or the performance of

semantic segmentation through domain adaptation. For that purpose, this work aims to

offer the following:

• Translations of GTA V images to two real-world datasets with different styles.

• Qualitative comparison of the visual results of four image-to-image translation mod-

els that are based on two different learning methods: cycle consistency and con-

trastive learning.

• Quantitative evaluation of the translated images using common GAN metrics as well

as semantic segmentation.

1.3 Thesis Outline

This thesis is structured as follows:

Chapter 2 introduces the reader to the task of image-to-image translation. First, it

provides the theoretical background of generative adversarial networks (GANs), as well
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as their deep convolutional and conditional versions. The models tested in this thesis are

strongly based on those methods. Next, the different types of image-to-image translation

settings are presented with a few representative models and applications for each. Finally,

two related works are introduced which use image-to-image translation on GTA V im-

ages for two different tasks: photo-realistic enhancement of GTA V graphics and domain

adaptation for semantic segmentation.

Chapter 3 introduces the datasets, pre-processing, and models used to translate GTA

V images to real urban scenes. Specifically, four models for unsupervised image-to-image

translation are analyzed and applied to translate GTA V images to two different real-world

datasets. Additionally, the methods followed to evaluate the results are presented. These

include the use of common GAN metrics as well as semantic segmentation.

Chapter 4 presents the final qualitative and quantitative results. It compares the

performance of the image-to-image translation models both visually and with the use of

metrics that evaluate the quality of the generated images.

Chapter 5 concludes this thesis by listing some final remarks related to the performance

of the models and evaluation methods and it proposes potential future directions.

Appendices are also provided with additional visual results to complement chapter 4

without overcrowding the main body of the thesis.





Chapter 2

Image-to-Image Translation Using

GANs

This chapter first provides a basic theoretical background on Generative Adversarial

Networks (GANs), which is the main machine learning method used by the models tested

in this thesis. Additionally, it introduces the types of different image-to-image translation

tasks and most commonly adopted methods based on GANs. Finally, it presents related

applications that specifically involve translating GTA V images to real-world images.

2.1 Theoretical Background

2.1.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are an approach to generative modeling that

was introduced by Goodfellow et al. [15] in 2014. The goal is to capture the distribution of

the training data and discover its patterns so that the model can be used to generate new

data by sampling from the learned distribution. In order to do this, the GAN framework

uses two neural networks: the generator and the discriminator. In the original form of the

framework (Vanilla GAN) these networks, also known as adversarial nets, are multilayer

perceptrons (MLP). During training, the generator is constantly trying to outsmart the

discriminator by generating better fake samples, while the discriminator is trying to decide

whether a particular sample is real, meaning that it comes from the original dataset, or is

fake and was produced by the generator. This process is called adversarial training and

is based on game theory, where the generator competes against an adversary (i.e. the

discriminator). Specifically, the GAN framework corresponds to a minimax two-player

game where the discriminator D tries to maximize the probability it correctly classifies

real and fake data, and the generator G tries to minimize the probability that D will

predict its outputs are fake. The GAN loss function is formulated as:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.1)

17
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Figure 2.1: Illustration of the framework and learning process of Generative Adversarial

Networks. Source: tinyurl.com/9v9t6m2c

G(z) represents the generator function which maps a random noise vector z to data-space

and G tries to estimate the distribution pdata that the training data come from so it can

generate fake samples from the estimated distribution pg. pz(z) is a prior on input noise

variables. D(x) is the scalar output of the discriminator and represents the probability

that x came from the data rather than pg. D(G(z)) is the scalar probability that the

output of the generator G is real. D is trained to maximize logD(x) and simultaneously

G is trained to minimize log(1−D(G(z))).

Figure 2.1 illustrates the process of training GANs. During each training step a mini-

batch ofm noise samples {z(1), . . . , z(m)} is sampled from noise prior pg(z) and a minibatch

of m examples {x(1), . . . , x(m)} is sampled from data generating distribution pdata(x). The

discriminator tries to identify real from fake data and based on the outcome both networks

update their parameters alternately through backpropagation and the flow of gradients.

Specifically, the discriminator is updated by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
(2.2)

and the generator is updated by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)

)))
. (2.3)

In theory, the solution to the minimax game is where pg = pdata, which means that

tinyurl.com/9v9t6m2c
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neither the generator nor the discriminator can improve further as the discriminator is

unable to differentiate between real and fake data, i.e. D(x) = 1
2 . In practice, however,

models do not always train to this point. Moreover, the training of GANs is usually quite

difficult and unstable and may suffer from problems like the vanishing gradients and the

mode collapse [2]. The vanishing gradient problem occurs in GANs when the discriminator

learns to perfectly differentiate between real and fake data and as a result, it does not

provide reliable gradient information to train the generator. Indeed, it is often an easier

problem to distinguish real from fake data than to generate realistic samples. The mode

collapse problem occurs when the generator tries to fool the discriminator with a few

patterns or examples and only generates this small subset of outputs resulting in a limited

variety of produced data.

2.1.2 Deep Convolutional GANs

The use of multilayer perceptrons as generators and discriminators restricts the per-

formance and applications of GANs, especially in deep learning tasks such as image, text,

or sound generation. Radford et al. [36] extended the previous work by introducing deep

convolutional generative adversarial networks (DCGANs), which use convolutional neural

networks (CNNs) for the generator and discriminator. This framework serves as a strong

baseline for many other works that use GANs for deep generative modeling. The proposed

architectural guidelines for the training of stable DCGANs are the following:

• Replace any pooling layers with strided convolutions (discriminator) and fractional-

strided convolutions (generator).

• Use batchnorm in both the generator and the discriminator.

• Use ReLU activation in the generator for all layers except for the output, which uses

Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

Additionally, the authors initialize the weights of the networks from a zero-centered Normal

distribution with a standard deviation of 0.02. They also use the Adam optimizer with a

learning rate of 0.0002 instead of the usual 0.001 and change the momentum term β1 from

the default 0.9 to 0.5 to improve the training process.

The authors applied the DCGAN framework to image generation in their work. The

discriminator of DCGAN is basically a CNN for image classification which tries to dis-

tinguish between real and fake images. What may be more interesting is the generator,

which is comprised of fractional-strided convolutions, also known as transposed convo-

lutions, instead of traditional convolutions. The standard convolutional layers typically

reduce (downsample) the spatial dimensions (height and width) of the input, or keep them

unchanged. On the other hand, transposed convolutions increase (upsample) the spatial

dimensions of intermediate feature maps. As shown in figure 2.2, the input noise vector
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Figure 2.2: The convolutional generator of the DCGAN proposed in [36].

z of the generator is first projected and reshaped to 1024×4×4, and then with a series of

transposed convolutions, it goes to 3×64×64 which is the generated output image.

2.1.3 Conditional GANs

Traditional GANs can only generate samples randomly from the distribution they have

learned and there is no control over the output. Therefore, Mirza et al. [31] introduced

the conditional version of GANs. The conditioning can be performed by simply feeding

some extra information y into both the generator and discriminator as an additional input

layer. The conditional variable y can be any type of information. For example, in the case

of image-to-image translation, y is an entire image and more than one conditional variable

can also be used.

The authors used conditional GANs (cGANs) to control the generated images accord-

ing to their class labels. As shown in figure 2.3, the input of the generator is not only the

noise vector z but also the class labels y. As a result, the generator produces only images

of the desired classes. Additionally, the discriminator’s evaluation is done not only on the

similarity between fake and real images but also on the correspondence of the fake images

to its input labels. In this case, the objective function of the two-player minimax game is

modified to:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x | y)] + Ez∼pz(z)[log(1−D(G(z | y)))]. (2.4)
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Figure 2.3: The conditional GAN proposed in [31].

2.2 Image-to-Image Translation Types

2.2.1 Supervised Translation

Image-to-image translation is the task of transforming images from one domain so that

they have the style or characteristics of images from another domain while preserving the

content representations. A good way to think of image-to-image translation is as a special

case of the Conditional GAN. However, in this case, the generator is conditioned on a

complete image (rather than just a class) and the networks are CNN variations based on

DCGAN. When the ground truth of the transformation is available in the form of training

image pairs from the source and target domains then the task is called supervised or paired

image-to-image translation. For example, if we have many aligned image pairs of the same

locations captured both day and night, then it is possible to train a deep learning model

to translate photos from day to night.

Pix2pix [23] is one of the strongest baselines that allow this kind of transformation

using aligned data. It includes the training of a generative adversarial network that aims to

generate synthetic images indistinguishable from real-world images deploying an additional

L1 pixel-wise regression loss between the translated image and its ground truth pair.

Figure 2.4 shows an example of pix2pix applications.

Pix2pixHD [46] and later SPADE [34] introduced many improvements to the pix2pix
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Figure 2.4: Example applications of supervised image-to-image translation using pix2pix.

Source: [23]

model in order to synthesize more realistic and high-resolution images from semantic label

maps. Figure 2.5 shows an example usage of NVIDIA Canvas (also known as GauGAN)

which is a desktop application based on SPADE. It allows the generation of realistic-

looking landscapes out of simple brushstrokes which represent semantic label maps.

Figure 2.5: Example application of NVIDIA Canvas which is based on SPADE. Source:

https://www.nvidia.com/en-us/studio/canvas/

2.2.2 Unsupervised Translation

The applications where the supervised setting of image-to-image translation can be

applied are quite limited due to the difficulty of obtaining a large amount of paired data.

For example, if the task were to translate photos from summer to winter, it would be

much easier to create a dataset consisting of photos from random locations instead of the

same locations during summer and winter. Another application would be translating real

photos to have the style of a famous artist’s paintings. It would be nearly impossible to

create a paired dataset in this case, especially if the artist is not in life anymore.

Zhou et al. [50] introduced CycleGAN, which allows performing image-to-image trans-

https://www.nvidia.com/en-us/studio/canvas/
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lation even when training on unpaired data. Similar to pix2pix it is based on conditional

GANs, but it uses two pairs of generators and discriminators. Each pair translates images

from one domain to another and its key feature is the cycle-consistency loss, which ensures

that the translations are reversible. Figure 2.6 shows some applications of CycleGAN in

an unsupervised setting. This model, along with other approaches that introduce various

improvements, are tested in this thesis and described in more detail in Chapter 3.

Figure 2.6: Example applications of unsupervised image-to-image translation using Cy-

cleGAN. Source: [50]

2.2.3 Multi-Domain Unsupervised Translation

CycleGAN and other similar models are restricted in translating only one domain to

another. For example, if the task were to translate a person’s face to show three different

emotions (e.g. angry, happy and fearful) CycleGAN should be trained three times, one for

each domain of images. This would not be practical, especially when translating to even

more domains.

StarGAN [11] extends CycleGAN, in order to train a single network for multi-domain

unsupervised translation. Specifically, StarGAN can apply different translations on an

input image by providing the target domain label. Figure 2.7, shows an example of

applying StarGAN on the facial attribute transfer and facial expression synthesis tasks.

Each output is synthesized given the input image and the corresponding domain label.

StarGAN v2 [12] improves the diversity of StarGAN’s synthesized images across do-

mains, by providing style codes of a specific domain instead of predefined labels. Style

codes are extracted from a style encoder and represent different styles for a specific do-

main. For example, if the domains are based on the gender of a person the style codes

could represent different hairstyles or facial hair. Figure 2.8 shows example applications

of StarGAN v2.
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Figure 2.7: Example of multi-domain translations on the facial attribute transfer and

facial expression synthesis tasks using StarGAN. Source: [11]

Figure 2.8: Example applications of diverse translations across domains using StarGAN

v2. Source: [12]

2.3 Related Work Using GTA V Images

Richter et al. [37] propose in their work, “Enhancing photorealism enhancement”,

a framework to connect the deep learning approaches for image-to-image translation to

the rendering pipelines of computer games. The key ingredient of their model is the use

of G-buffers, which are intermediate rendering buffers produced by game engines dur-

ing the rendering process. Specifically, they designed a network to modulate features

from a rendered image according to representations extracted from G-buffers that pro-

vide information about geometric structure (surface normals, depth), materials (shader

IDs, albedo, specular intensity, glossiness, transparency), and lighting (approximate irra-

diance and emission, sky, bloom). They train their model using an LPIPS loss [49] which

penalizes large structural differences between input and output images and a perceptual
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discriminator that consists of a robust semantic segmentation network, a perceptual fea-

ture extraction network, and multiple discriminator networks. After an ablation study of

such training and architectural choices, they created a model that manages to improve

the photorealistic enhancement of GTA V images and reduce artifacts compared to gen-

eral image-to-image translation models that are trained only using the source and target

domain images.

Hoffman et al. proposed CyCADA [22], an adversarial domain adaptation model that

is based on the CycleGAN image-to-image translation model. In the case of GTA V, they

use CyCADA for the semantic segmentation adaptation of the synthetic images to real-

world imagery. This way they manage to recover approximately 40% of the performance

on semantic segmentation lost to domain shift. CyCADA adapts representations at both

pixel-level and feature-level and uses the cycle consistency together with a semantic con-

sistency loss to guide the mapping from one domain to another. The cycle consistency

loss, as introduced by CycleGAN, ensures that the translations from one domain to the

other are reversible. The semantic consistency is enforced through a pre-trained source

task model which is used as a noisy labeler to encourage an image to be classified in the

same way after translation as it was before translation.





Chapter 3

Methodology

This chapter describes the datasets used in this work, along with their preprocessing,

as well as the architectures and theoretical background of the different models that were

tested. Finally, it analyzes the methods that were followed to evaluate and compare the

performance of the models.

3.1 Datasets

This section presents the datasets used for the image-to-image translation task that is

explored. Specifically, a single dataset consisting of GTA V images represents the source

domain and two real-world datasets are used as target domains. Therefore, two different

kinds of translations are produced in this thesis, each with its own style.

3.1.1 GTA V

The motivation behind collecting the GTA V images in [38] is to create a very large

dataset with pixel-accurate semantic labels. GTA V is an open-world game that offers a

highly realistic environment and driving scenarios, therefore the performance of segmenta-

tion models could benefit from such data. As mentioned in Chapter 1, such a task is very

challenging due to the amount of human effort required to trace accurate object bound-

aries and as a result, the annotation of a single image requires 60 and 90 minutes for the

CamVid [5] and Cityscapes [13] datasets respectively. The authors, however, extracted

25 thousand images from GTA V and successfully annotated them automatically in only

49 hours. Annotating this dataset manually following the approach used for CamVid or

Cityscapes would take 12 person-years.

GTA V, however, is not an open-source game, which means that the source code is

not available. As a result, the creation of semantic labels is not very straightforward and

the authors apply a technique called detouring [6] using an off-the-shelf graphics debug-

ging tool called RenderDoc [26]. Specifically, they create a wrapper around the game’s

graphics library (i.e. Direct3D 11) and they use it to intercept communication with the

graphics hardware to gain access to the game’s resources and save all information needed

27
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Images Semantic label maps

Figure 3.1: Example images from the GTA V dataset with their corresponding semantic

label maps.

to reproduce a frame. They later use this information to annotate the images efficiently

using label propagation. Specifically, after annotating the first image their annotation

tool automatically propagates the labels to all image patches that share the same mesh,

texture and shader combination in all images. This way, as the annotation progresses

more and more image patches are pre-labeled significantly decreasing the annotation time

per image.

The dataset is available at https://download.visinf.tu-darmstadt.de/data/from_

games/ and it consists of 24966 frames from GTA V along with their semantic labels. Fig-

ure 3.1 shows some samples from this dataset. Each frame has a resolution of 1914×1052

pixels and there are labels for 19 classes, which are compatible with the Cityscapes dataset

described below. In this thesis, 18785 frames were used to train the image-to-image trans-

lation models, while the rest 6181 frames were used to evaluate their performance following

the official test split.

3.1.2 Cityscapes

Cityscapes [13] is a large-scale dataset that is commonly used to develop and test

models for semantic segmentation and visual understanding of complex urban scenes. In

order to create this dataset, the authors recorded videos on a moving vehicle in 50 cities

https://download.visinf.tu-darmstadt.de/data/from_games/
https://download.visinf.tu-darmstadt.de/data/from_games/
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Images Semantic label maps

Figure 3.2: Example images from the Cityscapes dataset with their corresponding semantic

label maps.

of Germany and other neighboring countries. The videos were recorded during several

months across spring, summer and fall to ensure the diversity of the data. However, the

authors chose not to record under unfavorable weather conditions such as heavy rain or

snow believing that would require specialized techniques and datasets.

The images were recorded with an automotive-grade stereo camera at a frame-rate of

17Hz. The sensors that were mounted behind the windshield yielded high dynamic-range

(HDR) images with 16 bits linear color depth. These images are also provided at 8-bit low

dynamic range (LDR) for comparability and compatibility with other existing datasets.

The authors provide 5000 images selected from 27 cities with dense pixel-level annotations

that were done on the 20th frame of a 30-frame video snippet. Additionally, they provide

20000 images with coarse annotations for the remaining 23 cities done every 20s or 20m

driving distance. All images have a resolution of 2048×1024 pixels.

The data can be found at https://www.cityscapes-dataset.com/ and Figure 3.2

shows a few samples. In this thesis, these images are used in two different ways. The

20000 coarsely annotated images are used for the image-to-image translation task in order

to transform GTA V to look like Cityscapes. The semantic labels are not used for this

task. The densely annotated images are then used to evaluate the translated results as

explained in section 3.4. The official train-validation split is followed for the densely

annotated images, comprising of 2975 and 500 images respectively. The test set of 1525

images is not used in the experiments, because no annotations are provided and serves as

https://www.cityscapes-dataset.com/
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Images Semantic label maps

Figure 3.3: Example images from the Mapillary Vistas dataset with their corresponding

semantic label maps.

a benchmark.

3.1.3 Mapillary Vistas

Mapillary Vistas [32], similarly to Cityscapes, is a large-scale street-level image dataset

introduced to contribute to the visual scene understanding task. Its main motivation is

the diversity, richness of detail and geographic extent of street-level data. The dataset

comprises of 25000 densely annotated images into 66 object categories. Figure 3.3 shows

a few samples from the dataset.

Unlike GTA V and Cityscapes, the image data of Mapillary Vistas are not collected as

frames from video footage. Instead, the images are extracted from Mapillary: https://

www.mapillary.com/ and visually cover parts of Europe, North and South America, Asia,

https://www.mapillary.com/
https://www.mapillary.com/
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Africa and Oceania. Mapillary is a community-led service where people and organizations

can contribute to visualizing the world and building better maps. Anyone can collect and

share street-level images of any place. As a result, the dataset consists of images taken from

different devices, such as smartphones or action cameras, as well as differently experienced

photographers. Additionally, in contrast to Cityscapes, the images of Mapillary Vistas

were selected in a way that they cover a variety of weather and lighting scenarios. Sunny,

rainy, cloudy, foggy and snowy conditions are represented in the dataset. Furthermore,

images are taken at day, dawn, dusk and night. The images do not have a fixed resolution,

but a minimum width/height of 1920×1080 is imposed.

This dataset can be found at https://www.mapillary.com/dataset/vistas. In this

thesis, the 18000 train images of the official train-validation-test split are used in order to

transform GTA V to look like Mapillary Vistas, while the 2000 images of the validation

set are used to evaluate the results. In this case, the semantic label maps are not used

for the evaluation of the translated results, because the semantic object categories are not

directly compatible with the GTA V annotations.

3.2 Preprocessing

The training of image-to-image translation models can be quite computationally ex-

pensive, rendering it extremely time-consuming or even impossible (due to memory con-

straints) to train them using high-resolution images in a single conventional GPU. For that

reason, all the images were resized to reduce the resolution but keeping the original aspect

ratio. Specifically, GTA V images were resized from the original 1914×1052 resolution to

468×256 and Cityscapes images from 2048×1024 to 512x256.

Before resizing the images of Mapillary Vistas they were cropped so that their height

equals half their width. Due to the nature of the dataset, many images contain too much

sky volume. This impacted the models negatively, as they learned to erase objects such

as buildings and replace them with the sky. Appendix B shows an example of this type

of failure. By cropping the images in order to reduce the sky volume in a straightforward

way this problem was solved. Figure 3.4 shows a sample from the dataset before and after

cropping. After that, the images were resized reducing the height to 256 and keeping the

original aspect ratio.

Finally, it is important to note that the semantic label maps of GTA V and Cityscapes

were resized using the nearest-neighbor interpolation method, because the pixel values rep-

resent class labels and they should not be changed, as would happen using other methods

such as bi-linear interpolation.

3.3 Image-to-Image Translation Models

The available datasets that were presented in section 3.1 are not paired. That means

that there is no ground truth of how a GTA V image should be translated to Cityscapes

https://www.mapillary.com/dataset/vistas
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Original Cropped

Figure 3.4: Example image from the Mapillary Vistas dataset before and after cropping

as a preprocessing step.

or Mapillary Vistas style. Therefore, the task at hand is that of unsupervised or unpaired

image-to-image translation. This section analyzes the four chosen models suitable for such

a task and which were tested in this thesis.

3.3.1 CycleGAN

CycleGAN was presented by Zhou et al. [50] introducing the use of two generative ad-

versarial networks in order to tackle the difficulty of unsupervised image-to-image transla-

tion. By using two generators and two discriminators it is possible to learn both mappings

between two domains X and Y . For example, considering the task of this thesis where X

denotes the GTA V images and Y denotes either the Cityscapes or Mapillary Vistas images,

CycleGAN learns to translate both GTA V images to real-world images (X −→ Y ) and the

inverse (Y −→ X). The generator G performs the first mapping G : X −→ Y and the second

generator F performs the inverse mapping F : Y −→ X, while the corresponding discrimina-

tors aim to distinguish between real and translated images. The official source code of Cy-

cleGAN is available at https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

Adversarial Loss

Both GANs are trained traditionally using the adversarial loss. Continuing the example

from above, the generator G tries to generate images G(x) that look similar to real-world

images from domain Y , while DY tries to distinguish between translated GTA V samples

G(x) and the real-world images y. The objective is expressed as:

LGAN (G,DY , X, Y ) = Ey∼pdata(y) [logDY (y)]

+ Ex∼pdan(x) [log (1−DY (G(x))] .
(3.1)

Similarly, the generator F tries to generate images F (y) that look similar to GTA V

images x, while DX aims to distinguish between translated real-world images F (y) and

the actual GTA V images x. This objective is expressed as:

 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 3.5: Illustration of the adversarial training of CycleGAN’s generators and discrim-

inators. Source: [50]

LGAN (F,DX , X, Y ) = Ex∼pdata(x) [logDX(x)]

+ Ey∼pdan(y) [log (1−DX(G(y))] .
(3.2)

The above procedure is illustrated in Figure 3.5.

Cycle Consistency Loss

Cycle consistency is a key feature of the model (hence the name CycleGAN). The

concept of transitivity can be found in the task of translating between languages [4, 18].

For example, an English phrase translated to French should be identical to the original if

it is then translated back to English. Similarly, translating a French phrase to English and

back to French should give the same phrase. This is the idea that the authors use but in the

context of translating images between domains. The cycle consistency loss encourages that

F (G(x)) ≈ x and G(F (y)) ≈ y. This means that if we translate from one domain to the

other and back again we should arrive at where we started. This is enforced by using two

cycle consistency losses. The forward cycle-consistency loss: x −→ G(x) −→ F (G(x)) ≈ x

and the backward cycle consistency loss: y −→ F (y) −→ G(F (y)) ≈ y. Figure 3.6 illustrates

this procedure. The objective, which is expressed as:

Lcyc (G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1]

+ Ey∼pdata (y) [∥G(F (y))− y∥1] ,
(3.3)

tries to minimize the L1 distance between the original image and its reconstruction through

a series of translations.

Identity Loss

The last loss function added is the identity loss [42], and the authors use it to encourage

the generator to learn the identity mapping. This way, when an image of the target domain

is used as an input, the generator is expected to produce nearly the same image. The

objective can be expressed as:
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Forward consistency loss Backward consistency loss

Figure 3.6: Illustration of the forward and backward consistency losses used to train

CycleGAN. Source: [50]

Lidentity (G,F ) = Ey∼pdata (y) [∥G(y)− y∥1] + Ex∼pdata (x) [∥F (x)− x∥1] . (3.4)

In practice, the authors noticed that it helps retain the colors of the original image, while

not using it might lead to unnecessary changes of the input image’s tint.

Architecture

Both of CycleGAN’s generators follow Johnson et al. [25] and have the same archi-

tectures. These consist of two convolutional layers followed by nine residual blocks and

lastly two transposed convolutions and the output layer. An instance normalization is

used after each convolutional layer followed by a ReLU activation function. In the case

of the discriminators, the authors use 70 × 70 PatchGAN [24] which consists of five con-

volutional layers. The discriminators also use instance normalization except for the first

convolutional layer and as activation function, they use the leaky ReLU with a slope of

0.2.

3.3.2 AttentionGAN

AttentionGAN gets its name from the Attention-Guided Generative Adversarial Net-

works that it uses and it was introduced by Tang et al. [43, 44]. This model builds upon

CycleGAN with the goal to improve the performance of image-to-image translation by

identifying the most discriminative foreground objects of the images and applying trans-

formations only on those, minimizing the change of the background. For example, when

transforming an image of a horse to look like a zebra, only this object should change and

the background should remain intact. The authors introduced two architectural schemes

for AttentionGAN, with the second being an improvement of the first. Therefore, this

thesis analyzes and tests only the second scheme. The official code of AttentionGAN can

be found at https://github.com/Ha0Tang/AttentionGAN.

https://github.com/Ha0Tang/AttentionGAN
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As previously mentioned AttentionGAN builds upon CycleGAN. Indeed, these two

models share most of their architectural and training details including the use of cycle

consistency and identity loss. The novelty of AttentionGAN, however, is the attention-

guided generators. By equipping these generators with a built-in attention module, it

is possible to disentangle the most discriminative foreground objects from the unwanted

background of the images. Specifically, each of the two generators G and F have two

separate sub-networks for generating content masks and attention masks. The generator

G for example consists of three parts. The parameter-sharing encoder GE , the content

mask generator GC which produces n− 1 content masks {Cf
y }n−1

f=1 and the attention-mask

generator GA, which produces both n − 1 foreground attention masks {Af
y}n−1

f=1 and one

background attention mask Ab
y (n = 10 in the experiments). In order to produce the

translated image, the attention masks are multiplied by the corresponding content masks,

which is expressed as:

G(x) =

n−1∑
f=1

(
Cf
y ∗Af

y

)
+ x ∗Ab

y (3.5)

for the generator G, and for the generator F as:

F (y) =

n−1∑
f=1

(
Cf
x ∗Af

x

)
+ y ∗Ab

x. (3.6)

In the case of cycle consistency, the reconstruction process of an image from domain X is

formulated as:

F (G(x)) = Cx ∗Ax +G(x) ∗ (1−Ax) . (3.7)

Similarly, if the image comes from domain Y it is expressed as:

G(F (y)) = Cy ∗Ay +G(y) ∗ (1−Ay) . (3.8)

The above procedures are illustrated in Figure 3.7.

3.3.3 CUT

CUT [33] is a novel approach for unpaired image-to-image translation, which is based

on contrastive learning. In contrast to CycleGAN and AttentionGAN, CUT abandons the

use of the cycle consistency loss, because it is too restrictive. The cycle consistency loss

helps preserve the content of the translated image. For example, when translating a horse

to a zebra the pose of the horse should not change. Similarly, the cycle consistency loss

ensures that when translating back to the horse we get the original. However, a zebra
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Figure 3.7: The framework of AttentionGAN. The illustration shows the way the attention

and content masks are produced and embedded into the image-to-image translation task.

The symbols ⊕, ⊗ and s○ denote element-wise addition, multiplication, and channel-wise

Softmax, respectively. Source: [43]

could translate to multiple horses (brown, black, white, etc.) and that would be correct.

It should not really matter what the color of the horse is as long as it keeps the same

pose as the zebra and of course looks like a horse. The cycle consistency though does not

allow this to happen. This is why the authors introduce the patchwise contrastive loss.

This loss, named PatchNCE loss by the authors, allows the model to keep the important

aspects of the image intact, like the orientation and the structure of the foreground object

to be translated, but does not apply restrictions on the appearance. Additionally, CUT

uses only one generator-discriminator pair making it faster and lighter to train, but can

only translate images in one direction. The official code of the model can be found at

https://github.com/taesungp/contrastive-unpaired-translation.

As shown in Figure 3.8, the generator considers a pair of input and output patches at

the same location and enforces that the embeddings of the pair are similar. Meanwhile,

the patches from other locations should be mapped far from them. This is formulated

as a contrastive loss inspired by InfoNCE loss [45], where the corresponding input and

output patches form a positive pair, while patches from other locations form negative

pairs. The objective is to maximize the mutual information between the positive pair

while minimizing that of the negative pairs. For example, a zebra’s head should be more

closely associated with an input horse’s head than the same horse’s leg or other parts of

the image. The authors do this by formulating a classification problem with the target

class as the positive pair. In order to project the patches to the embedding space, they

use the first half of the generator as an encoder. The output (called a “query”) and input

embedding pair of positive patches are denoted as v, v+ respectively and the negative

patches as v−. The cross-entropy loss used for this task is calculated as:

https://github.com/taesungp/contrastive-unpaired-translation


3.3.4 DCLGAN 37

Figure 3.8: Illustration of the patchwise contrastive learning used by CUT, which maxi-

mizes mutual information between the corresponding input and output patches. Source:

[33]

ℓ
(
v,v+,v−) = − log

[
exp (v · v+/τ)

exp (v · v+/τ) +
∑N

n=1 exp
(
v · v−

n /τ
)] (3.9)

and represents the probability of selecting the positive patch over the negatives. The

vector distances are scaled by a temperature τ = 0.07.

Finally, following CycleGAN, the authors apply an identity loss regularization, but

with a twist. In this case, they provide samples of the target domain to the generator and

enforce the contrastive loss to prevent making unnecessary changes to the input images of

the source domain. This loss can be considered as a learnable, domain-specific version of

the identity loss used by CycleGAN.

3.3.4 DCLGAN

DCLGAN was introduced by Han et al. [17]. This model follows CUT and employs

the technique of contrastive learning for image-to-image translation, but this time in a

dual learning setting. The authors believe that one embedding (used by CUT) may not

be enough to capture the domain gap when the images of the two domains are not similar

enough. For example, translating a horse into a zebra is relatively easy as it performs

changes mostly on color. However, when translating a cat to a dog significant geometric

changes should be applied. In order to improve the performance of contrastive learning

in such cases, the authors suggest the use of two different encoders. These encoders learn

separate embeddings for the two domains to maximize the mutual information between

input and output image patches. The official code of DCLGAN can be found at https:

//github.com/JunlinHan/DCLGAN.

 https://github.com/JunlinHan/DCLGAN
 https://github.com/JunlinHan/DCLGAN
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Figure 3.9: Illustration of the dual-contrastive learning setting of DCLGAN. Separate

domain embeddings are extracted from each of the two generators. Source: [17]

DCLGAN uses two pairs of generators and discriminators like CycleGAN. Therefore,

this model can also learn two mappings, G : X −→ Y and F : Y −→ X, and translate

images in both directions. The learning process of DCLGAN is very similar to CUT, with

the main difference that it uses the first part of both its generators in order to map the

image patches to the embedding space. Figure 3.9 illustrates this process. For example,

the generator G is split into the encoder part Genc and the decoder part Gdec. Then image

features are extracted from four layers of the encoder which are then passed to a two-layer

MLP head HX producing the embedding for domain X. Similarly for the generator F , the

encoder Fenc and the projection head HY produce the embedding for domain Y . Then the

maximization of mutual information is done by formulating a classification problem with

the target class as the positive pair of image patches and employing the same PatchNCE

loss that CUT uses for contrastive learning. Additionally, the authors choose to apply

the same identity loss regularization with CycleGAN and not the contrastive learning

based one that CUT uses, because the first one is faster to compute. Finally, the SIMLoss

(similarity loss) is used by an alternative version of DCLGAN called SimDCL. This version

of the model aims to solve the problem of mode collapse that appears in some tasks, where

the model keeps producing the same output independently of input. SIMLoss was not used

in the experiments of this thesis, as no such problem was encountered.

3.4 Evaluation Protocol

This section describes the evaluation methods used in the experiments. Specifically,

the translated results of each model were evaluated in two different ways. The first way

includes common metrics used to evaluate the generated images of GANs, while the second

way uses the translated images in the context of semantic segmentation and compares their



3.4.1 GAN Metrics 39

performance on the Cityscapes validation set. As mentioned in section 3.1, the annotations

of the Mapillary Vistas dataset are not directly compatible with the GTA V annotations.

This is why only the translated images from GTA V to Cityscapes were considered in the

segmentation task.

3.4.1 GAN Metrics

The evaluation of generated images in the context of unsupervised image-to-image

translation is not an easy task as there is no ground truth of how an image should be

translated. For example, it is not possible to know which is the correct translation of a

cat into a dog. As a result, common metrics like the Structural Similarity Index (SSIM),

Peak Signal to Noise Ratio (PSNR), or even a simple Mean Squared Error (MSE) can not

be used, because they require paired images. The most straightforward way to evaluate

unpaired translations is just by looking at them and scoring them manually. One common

way of doing this is the Amazon Mechanical Turk (AMT) [7] perceptual studies, where

participants are asked to assess the realism of the translated images. However, studies

based on human subjectivity cannot provide a fair benchmark for comparing different ap-

proaches in research. For that reason, some works have tried to design metrics suitable

for evaluating the quality of images without requiring a ground truth or human interven-

tion. The three most commonly used such metrics are chosen for the experiments. Those

are the Inception Score (IS), Fréchet Inception Distance (FID) and Kernel Inception Dis-

tance (KID). All three metrics use a pre-trained Inception v3 [41] on ImageNet for their

calculation. Their PyTorch [35] implementation used in the experiments is available at

https://github.com/toshas/torch-fidelity and their details are described below.

Inception Score (IS)

The inception score [40] is a metric used for evaluating the quality and variety of

generated images by GANs. The first step of calculating the inception score is using the

Inception v3 model to predict the class probabilities of each generated image and get the

conditional label distribution p(y|x). Y is a random variable with 1000 possible values

since the classifier is pre-trained on ImageNet in this case. If an image has a distinct

object included in the categories of ImageNet, then the probability of this label will be

close to 1, while the others will be close to 0. This is a characteristic of a good quality

image. Therefore, the conditional probability of all images in the collection should have low

entropy. Additionally, the marginal probability distribution indicates how much variety

there is in the generator’s output. The higher the entropy of the integral of the marginal

probability the higher the variety of the images is. The inception score is calculated using

the Kullback-Leibler (KL) divergence between the conditional and marginal distributions

and is expressed as:

IS = exp (ExDKL(p(y | x)∥p(y))) . (3.10)

https://github.com/toshas/torch-fidelity
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A higher inception score is better because then the two distributions are dissimilar. This

means that each image has a distinct object which is classified with a high probability

and that the collection of the generated images has a variety of labels (i.e. the images are

diverse).

Although the authors find that the inception score correlates well with the human

evaluation of image quality, this metric has the disadvantage that it is calculated only

using the generated fake images and does not compare them in any way to the real images

with which the generator was trained. Therefore, other metrics such as FID are usually

preferred over IS for the evaluation of generated images.

Fréchet Inception Distance (FID)

The Fréchet Inception Distance [20] measures the Fréchet distance, also calledWasserstein-

2 distance, between feature vectors of images extracted from a pre-trained Inception v3.

This metric is designed to solve the limitation of IS and compares the statistics of generated

images to the statistics of a collection of real-world images, while being more consistent

and reliable. FID does not extract probabilities from the output layer like IS. Instead,

for each image, it extracts a 2048 feature vector from the last pooling layer. This way,

the mean m and the covariance matrix C are calculated for the collection of real images.

Similarly, the mean mw and the covariance matrix Cw are calculated for the generated

images. Finally, FID is expressed as the distance between these two Gaussian distributions

of real and generated images:

FID = ∥m−mw∥22 +Tr
(
C +Cw − 2 (CCw)

1/2
)
. (3.11)

A lower FID indicates better-quality images as that means that the statistics of real and

generated images are similar and thus the synthetic images look more realistic.

Kernel Inception Distance (KID)

Kernel Inception Distance (KID) [3] is a metric similar to FID but is shown to be

superior. Same with FID, it measures the difference between the distributions of gener-

ated and real-world images in the representation space of a pre-trained Inception v3 as

a measure of image quality. Specifically, it calculates the Maximum Mean Discrepancy

(MMD), between Inception feature vectors using a polynomial kernel:

k(x, y) =

(
1

d
x⊤y + 1

)3

, (3.12)

where d is the representation dimension. According to the authors, KID has an unbiased

estimator, unlike FID, which is more reliable for small datasets as it does not depend on

the number of samples.
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3.4.2 Semantic Segmentation

Apart from GAN metrics, semantic segmentation was also used to evaluate the trans-

formation of GTA V images to look like Cityscapes images. The two datasets have com-

patible annotations, so it is easy to measure the segmentation performance when using

translated data. The idea is that if the translated images are similar to images of the tar-

get domain, then the performance of semantic segmentation should be better than using

the original images of the source domain. In this case, the chosen semantic segmentation

model is DeepLabv3+ [10]. DeepLabv3+ was trained each time using translated GTA V

images produced by one of the image-to-image translation models. Then, the segmenta-

tion was evaluated on the Cityscapes validation set. Finally, whichever model produced

the data that gave the best results on the Cityscapes validation set is considered to be

better at translating GTA V images. The metrics used for the evaluation of semantic

segmentation are the per-pixel accuracy, per-class accuracy, mIoU and class IoU. These

are described below, along with the details of DeepLabv3+.

DeepLabv3+

DeepLabv3+ [10] is a semantic segmentation model proposed by Google and builds

upon previous DeepLab models [8, 9]. It follows an encoder-decoder architecture and one

of its key features is the atrous separable convolution. The encoder module reduces the

feature maps and provides rich semantic information with the help of atrous convolution

and the decoder module refines the segmentation results along object boundaries in order

to obtain sharper segmentations. This architecture is illustrated in Figure 3.10.

Figure 3.10: The encoder-decoder architecture of DeepLabv3+. Source: [10]

The atrous convolution is employed to extract features of deep convolutional neural

networks at an arbitrary resolution. It can also control the filter’s field-of-view to capture

multiscale information. The atrous convolution is also known as dilated convolution or hole

algorithm because it inflates the kernel by putting holes between its values. An additional
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parameter r called the atrous or dilation rate controls the number of zeros between two

consecutive filter values along each spatial dimension. A rate of 1 corresponds to the

standard convolution. Figure 3.11 shows an example of applying the atrous convolution

with kernel size 3 × 3.

Figure 3.11: Example of atrous convolution with kernel size 3 × 3 and different rates.

Source: [8]

DeepLabv3+ employs depthwise wise separable convolution in combination with atrous

convolution to give the atrous separable convolution. The depthwise separable convolution

decomposes a standard convolution into a depthwise convolution (applying a single filter

for each input channel) and a pointwise convolution (combining the outputs from depthwise

convolution across channels). The authors find that the atrous separable convolution

significantly reduces the computational complexity of the model. This operation is shown

in figure 3.12.

Figure 3.12: The depthwise separable convolution decomposes a standard convolution into

(a) a depthwise convolution and (b) a pointwise convolution. DeepLabv3+ uses atrous

separable convolution where atrous convolution is adopted in the depthwise convolution,

as shown in (c). Source: [10]

Segmentation Metrics

The most straightforward way to evaluate the performance of a model in image se-

mantic segmentation is the per-pixel accuracy, which simply measures the percentage of
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pixels in the image that were correctly classified. However, this metric can provide mis-

leading results in the case of an imbalanced dataset, as the per-pixel accuracy can be high

even if the model classifies well only the dominant class and performs much worse on the

less frequent classes. Alternatively, the per-class accuracy measures the ratio of correctly

labeled pixels for each class and then averages over the classes.

Most commonly used is the Intersection-Over-Union (IoU), also known as the Jac-

card Index. This metric measures the area of overlap between the predicted and target

segmentation masks divided by the area of their union:

IoU =
target mask ∩ predicted mask

target mask ∪ predicted mask
. (3.13)

For each class, the area of the intersection between the two masks is the area of the

correctly classified pixels for that particular class, while the area of the union includes

all the pixels of that class be it ground truth or predicted (either correctly or not). In

terms of the confusion matrix, the intersection includes the true positives and the union

includes the true positives plus the false positives plus the false negatives. This metric is

more reliable than the accuracy even in the case of imbalanced classes, still, it also has

a limitation. Although it measures the number of pixels that are common between the

predictions and ground truth segmentation masks it does not necessarily evaluate how

accurate the segmentation boundaries are. In the results, the IoU is reported for each

class separately as well as globally (i.e. the mean of IoUs over the classes). These are

called the class IoU and mIoU respectively.
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Results

This chapter presents both qualitative and quantitative results of the image-to-image

translation task, evaluating the performance of the four models tested. Additionally, it

offers comparisons on the semantic segmentation task by using the translated images of

each model to train DeepLabv3+, while real-world images from the Cityscapes dataset

were used to test the performance.

4.1 Image-to-Image Translation Results

In the experiments, all four models were trained using 256×256 random crops of the

images and tested on full-sized 512×256 images. Additionally, a random horizontal flip

was applied for data augmentation. The Adam optimizer was used with a learning rate of

0.0002 and the models were trained for up to 25 epochs. More training does not show any

significant improvements, however, a common practice in literature is to apply a linear

learning rate decay during additional training epochs as the training of these models is

quite unstable. Instead, in this work, checkpoints were saved at the end of each epoch and

the saved checkpoint with the best results was chosen for each model as they require a lot

of time to be trained. Table 4.1 shows the number of parameters of each model and its

training time for each dataset. CUT is the fastest and lightest to train, while DCLGAN

is the slowest. The GPU used for training the models and reporting the training times is

an NVIDIA RTX 3060 OC.

Figure 4.1 shows a few examples of GTA V images transformed to look like Cityscapes.

All models are able to capture the color style of the 8-bit LDR images of the Cityscapes

dataset. Additionally, they completely change the texture of the roads to match the

smooth asphalt which most frequently appears in Cityscapes, something that traditional

color transfer methods are not able to do. CycleGAN and AttentionGAN can also make

vegetation look greener and more voluminous (2nd image) or even try to remove haze

from distant objects (4th image). It is interesting to note that the models based on cycle-

consistency learning (i.e. CycleGAN and AttentionGAN) can better preserve the geometry

of the objects in the images. They can even preserve very fine details like letters in signs

45
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Method Parameters Time (hours/epoch)

GTA V −→ Cityscapes GTA V −→ Mapillary Vistas

CycleGAN 28.286 M 1.8 1.6

AttentionGAN 29.176 M 2.1 1.9

CUT 14.703 M 1.6 1.4

DCLGAN 29.274 M 2.6 2.3

Table 4.1: Comparison of training time and number of parameters (total of all networks)

for each model.

(5th image). On the other hand, CUT and DCLGAN that use contrastive learning, apply

more aggressive or unnecessary changes which lead to lower quality images. For example,

both CUT and DCLGAN erroneously tend to populate the sky (or even buildings) with

trees. A large amount of trees along the roadsides is indeed a characteristic of central

European cities. Another common feature of the Cityscapes dataset is the Mercedes star

on the hood of the car used to capture the images. Unfortunately, for that reason, all

models tend to hallucinate star logos at the bottom of the images.

GTA V CycleGAN AttentionGAN CUT DCLGAN

GTA V −→ Cityscapes

Figure 4.1: Example translations from GTA V to Cityscapes using four different models.

Similar changes can be seen in Figure 4.2 when translating GTA V images to Mapillary

Vistas images. In this case, the models capture the bright and vibrant colors of the latter

dataset. Similar to Cityscapes, CycleGAN and AttentionGAN produce higher quality im-
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ages than CUT and DCLGAN, however, AttentionGAN applies minimal changes in many

images as the Mapillary Vistas dataset is very diverse and the domain gap is relatively

small. This frequently results in almost empty attention masks preserving almost the en-

tire images intact (2nd image). One common mistake that all models tend to make in this

case is that they try to blend the hood of the car with the road. This is because the images

of Mapillary Vistas are usually not taken from a camera mounted on the windshield of a

car and as a result, GANs try to erase the hood which frequently appears in the GTA V

dataset.

GTA V CycleGAN AttentionGAN CUT DCLGAN

GTA V −→ Mapillary Vistas

Figure 4.2: Example translations from GTA V to Mapillary Vistas using four different

models.

Appendix A shows a few examples of side-by-side translations of the same GTA V

images to Cityscapes and Mapillary Vistas using CycleGAN. Additionally, appendix C

shows translation examples of two models tested at the beginning of the experiments,

but not included in the analysis. Those are GANILLA [21], a variant of CycleGAN that

introduces changes to the generator such as a feature pyramid network and LPTN [30],

an approach to image translation using a laplacian pyramid network. When tested on

full-size GTA V images GANILLA could not perform the translations and worked only

with square images. LPTN was excluded because it introduced many halo-like artifacts

in almost all images while not performing such striking texture changes.

Table 4.2 evaluates the performance of the models using quantitative metrics. Starting

with IS, it seems that the original GTA V images have a quite high score and the best one

compared to Cityscapes translations. That is problematic and makes this metric unreli-
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able. As already mentioned, the fact that this metric does not compare generated images

with real images is a serious disadvantage. FID and KID generally correlate well to each

other. The performance on Mapillary Vistas translations is intuitive as CycleGAN has

the best FID and KID and indeed generated the highest quality images, while CUT and

DCLGAN have quite worse results. The same cannot be said in the case of Cityscapes

translations, where strangely CUT has the best FID and KID values followed by DCL-

GAN. That may happen because DCLGAN and especially CUT tend to populate the sky,

and sometimes buildings, with trees. This way, they manage to better approximate the

statistics of the Cityscapes dataset, but at the cost of altering the semantic content of the

images. FID and KID, however, cannot evaluate such mismatched scene structures giving

a better score when they should not.

Method GTA V −→ Cityscapes GTA V −→ Mapillary Vistas

IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓

GTA V 4.263 103.988 0.079 4.263 48.390 0.035

CycleGAN 3.491 55.864 0.022 4.248 30.226 0.015

AttentionGAN 3.659 56.348 0.021 4.353 32.858 0.018

CUT 3.246 49.998 0.015 4.131 33.580 0.021

DCLGAN 3.069 54.541 0.020 3.867 36.423 0.022

Table 4.2: Quantitative evaluation of the translated images generated by different models.

The performance of the original GTA V images is also provided for comparison.

4.2 Semantic Segmentation Results

In order to evaluate the quality of the GTA V images that were transformed to look like

Cityscapes, DeepLabv3+ was trained separately using the translated images of each image-

to-image translation model and then evaluated on the Cityscapes validation set. The

PyTorch implementation of DeepLabv3+ used in the experiments is available at https://

github.com/VainF/DeepLabV3Plus-Pytorch. The backbone (i.e. the encoder) used was

a ResNet-50 [19] model pre-trained on ImageNet. DeepLabv3+ was trained each time using

the SGD optimizer with a polynomial learning rate decay scheduler starting from a learning

rate of 0.01. For data augmentation, a random horizontal flip and random color jitter

(brightness, contrast, and saturation) were applied. The model was trained using a batch

size of 16 random 256×256 crops. The low resolution of the images constrained by the

image-to-image translation models hurts the performance of the semantic segmentation,

especially on small objects, and is a limitation of this work.

Table 4.3 evaluates the overall performance of DeepLabv3+ using different training

data. The translated GTA V images of CycleGAN and AttentionGAN help DeepLabv3+

perform better than using the original GTA V images, while the translated images of CUT

 https://github.com/VainF/DeepLabV3Plus-Pytorch
 https://github.com/VainF/DeepLabV3Plus-Pytorch
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and DCLGAN worsen the performance. That happens because, as already mentioned,

CUT and DCLGAN make more mistakes than CycleGAN and AttentionGAN, which alter

the semantic content of the images. This becomes clear when looking at the IoUs of each

class separately at table 4.4. The performance of DeepLabv3+ using images of CUT and

DCLGAN is lower on the ‘sky’ and ‘vegetation’ classes. The model seems to get confused

because CUT and DCLGAN tend to generate trees in the sky where they do not exist.

Figure 4.3 shows such an example, where DeepLabv3+ predicts some areas of sky although

those pixels belong to vegetation. According to the performance in semantic segmentation,

CycleGAN generates the highest quality images followed by AttentionGAN. However, all

models are able to translate effectively roads and sidewalks as the corresponding class IoUs

show a significant increase compared to the original GTA V images.

Data Per-pixel accuracy Per-class accuracy mIoU

Cityscapes 92.79% 70.02% 60.65%

GTA V 83.26% 46.68% 36.44%

CycleGAN 86.33% 49.01% 38.40%

AttentionGAN 86.49% 48.80% 37.96%

CUT 82.69% 44.95% 33.64%

DCLGAN 83.59% 45.82% 34.30%

Table 4.3: Semantic segmentation performance of DeepLabv3+ on the Cityscapes val-

idation set when trained with the translated GTA V images of different models. The

performance when trained with the original Cityscapes and GTA V images (1st and 2nd

row) is also provided for comparison.
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Class Cityscapes GTA V CycleGAN AttentionGAN CUT DCLGAN

road 96.55 82.13 90.98 91.21 89.29 89.70

sidewalk 73.37 31.06 43.41 43.17 40.10 41.19

building 87.04 79.75 79.74 80.25 74.74 76.48

wall 44.39 24.52 23.64 29.23 22.47 17.81

fence 36.06 12.24 16.89 12.93 11.19 14.32

pole 37.55 19.64 22.32 23.73 20.38 22.95

traffic light 37.93 17.92 21.36 23.94 19.52 17.37

traffic sign 53.13 3.01 9.58 6.73 2.83 8.04

vegetation 87.62 78.63 77.74 78.12 68.09 70.91

terrain 54.69 34.35 34.29 37.00 32.38 26.39

sky 91.92 84.80 77.35 74.66 59.52 65.36

person 62.62 45.77 46.73 44.91 43.84 43.21

rider 37.24 15.49 19.80 12.84 11.14 16.17

car 88.56 76.22 79.27 79.77 75.37 74.82

truck 54.83 33.47 31.45 27.20 26.42 28.88

bus 65.85 29.60 30.34 28.57 10.70 17.88

train 50.97 0 0 0 0 0

motorcycle 33.49 16.13 17.49 16.43 21.43 12.88

bicycle 58.59 7.63 7.23 10.49 9.77 7.32

Table 4.4: The class IoU scores of DeepLabv3+ when trained with the translated GTA V

images of different models. The scores for the original Cityscapes and GTA V images are

also provided for comparison.
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(a) Input (b) Ground truth

(c) CycleGAN (d) AttentionGAN

(e) CUT (f) DCLGAN

Figure 4.3: Example semantic segmentation predictions of DeepLabv3+. (a) Input image

from the Cityscapes validation set. (b) Ground truth label map. (c), (d), (e), (f) Overlay

predictions of DeepLabv3+ when trained with the translated GTA V images of the corre-

sponding models.





Chapter 5

Conclusions

This thesis explores the problem of transforming images from the game Grand Theft

Auto V (GTA V) to look like realistic urban scenes. This task falls under the category

of unsupervised image-to-image translation as there is no ground truth that exactly maps

GTA V images to real-world images. The related work on this problem, presented in

chapter 2, served as the main motivation of this thesis. In practice, a framework can

be built around image-to-image translation by leveraging additional information such as

semantic label maps or intermediate graphic buffers (G-buffers) produced by the game’s

engine. This can improve the quality of the results and can also serve as a method for

domain adaptation.

In this work, four state-of-the-art unsupervised image-to-image translation models were

trained to translate GTA V images to match the style of two different real-world datasets.

CycleGAN and AttentionGAN are based on cycle-consistency learning, while CUT and

DCLGAN leverage contrastive learning. Cycle consistency serves as a constraint and that

may be good or bad depending on the situation. Contrastive learning allows more variety

to the translated images and performs much better when images of the two domains are

not very similar. However, the domain gap between GTA V images and real-world data

is relatively small as GTA V already looks realistic enough. The results show that in this

case, the bijection constraint enforced by cycle consistency is more than welcome as the

generated images can retain detailed geometries and even letters (e.g. on store signs).

On the other hand, models based on contrastive learning make more aggressive changes

that distort images and even make more mistakes like adding non-existent trees to the

sky. When evaluating the quality of the images in such cases, the performance in semantic

segmentation was a more reliable measure than GAN metrics like FID and KID. That

is because those metrics cannot identify mismatches between the structure or semantic

content of two images.

The translated images, although far from perfect, are impressive and show that Cyl-

ceGAN and AttentionGAN perform better on this particular image-to-image translation

task. Therefore, a future direction of this thesis could be to use one of these models as

the core mechanism of a framework to perform more effective domain adaptation for se-
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mantic segmentation, by using not only semantic label maps as in [22], but also G-buffers

to improve the final quality, following [37]. However, even CycleGAN and AttentionGAN

make mistakes due to the mismatch between the structure of the GTA V sceneries of Los

Santos (the fictional city appearing in GTA V) and images from real-world datasets. Since

Los Santos is based on the real city of Los Angeles, it would be interesting to create a

dataset with images of the latter and train again image-to-image translation models in an

unsupervised manner. Feeding data to the networks that are closer to what the results

should ideally be, could maybe improve the realism of the translated GTA V images.
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Appendix A

Additional Results

GTA V Cityscapes Mapillary Vistas

Figure A.1: Side-by-side comparison of GTA V images transformed to match the

Cityscapes and Mapillary Vistas styles using CycleGAN.

63





Appendix B

Failures on Uncropped Mapillary

Vistas

GTA V CycleGAN

GTA V CUT

Figure B.1: When not cropping Mapillary Vistas images as a pre-processing step to reduce

sky volume, the image-to-image translation models often try to erase objects and replace

them with the sky, resulting in images that look more like stairways to heaven rather than

urban scenes.
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Appendix C

Example Results of Other Models

GTA V GANILLA

GTA V LPTN

Figure C.1: In early experiments, two additional image-to-image translation models were

tested, but are not included in the analysis. GANILLA [21] only worked on square images

and not on the full-size GTA V images. LPTN [30] introduced many holo-like artifacts

in most images, while not performing so striking texture changes. The samples shown in

this figure are translations from GTA V to Cityscapes.
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