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Abstract

In the Internet of Things (IoT) era, mobile devices possess powerful hardware and network-
ing capabilities, however they still fall short when it comes to executing compute-intensive
applications. Computation Offloading, i.e., delegating resource consuming tasks to servers
located at the Network Edge, contributes towards moving to a Mobile Cloud Computing
paradigm, which will potentially assist towards alleviating the computational strain from
the mobile devices. The motivation for this thesis is to deal with the inherent challenges
of computational offloading, the most important of which is resource allocation under con-
straints, while guaranteeing the Quality of Service (QoS) and Quality of Experience (QoE)
delivered to the users. Throughout this thesis, Control Theory concepts are leveraged as
this domain offers a plethora of tools that can be utilised to tackle the emerging challenges.
Additionally, concepts from Probability Theory are exploited as well.

Specifically, in this work, an effort is made to address the following crucial research chal-
lenges in resource allocation and computational offloading: i) modeling the heterogeneous
entities of the system (i.e., the infrastructure, users, applications resources and the interac-
tions among them), ii) estimating the workload that will be offloaded during a future time
window (by predicting the mobile devices’ positions), iii) optimizing resource allocation by
dynamically allocating (scaling) the available resources at the network edge while respect-
ing the given constraints, e.g., guaranteed execution of the estimated workload, delivering
the expected QoS/QoE and minimizing energy consumption of the edge infrastructure and,
finally, iv) optimizing computational offloading strategies. The aim of this thesis is to offer
solutions to the above-mentioned challenges, which can be combined into frameworks appli-
cable to real-world edge infrastructures that will allow IoT devices and applications to reach
their full potential.

To this end, a two-level dynamic resource allocation and admission control mechanism
for a cluster of edge servers is developed, to offer an alternative choice to mobile users for
executing their tasks. At the lower level, the dynamic behavior of edge servers is modeled by

a set of linear systems, and linear controllers are designed to meet the system’s constraints



and QoS metrics, while at the upper level, an optimizer tackles the problems of load bal-
ancing and application placement (bundled in Virtual Machines, VMs) towards maximizing
of the number the offloaded requests. The evaluation illustrates the effectiveness of the
proposed offloading mechanism regarding the performance indicators (e.g., the application’s
average response time) and the optimal utilization of the computational resources of the

edge servers.

Then, the main mechanism of this framework is put to a test; a three-level Cyber-Physical
Social System (CPSS) for early fire detection is presented, with an aim to assist public
authorities to promptly identify and act on emergency situations. In general, a CPSS tightly
integrates computer systems with the physical world and human activities. Specifically, at
the bottom level, the system’s architecture involves IoT nodes enabled with sensing and
forest monitoring capabilities. Additionally, in this level, the crowd sensing paradigm is
exploited to aggregate environmental information collected by end user devices present in
the area of interest. Since the IoT nodes suffer from limited computational and energy
resources, the resource allocation and admission control mechanism, at the middle level,
facilitates the offloaded data processing, regarding possible fire incidents. At the top level,
a decision-making service deployed on Cloud nodes, integrates data from various sources,
including users’ information on social media, and evaluates the situation’s criticality. In this
part, the dynamic resource scaling mechanism is designed to address the demanding QoS
requirements of this IoT-enabled time and mission critical application. The experimental
results indicate that the vertical and horizontal scaling on the Edge Computing layer is

beneficial for both the performance and the energy consumption of the IoT nodes.

Additionally, a switching computational offloading mechanism for Industry 4.0 appli-
cations is discussed. These applications rely on mobile robotic agents that execute many
complex tasks that have strict safety and time requirements. Under this setting, the Edge
Computing service delivery model allows the robotic agents to offload their computationally
intensive tasks to a powerful computing infrastructure in their vicinity. In this part, a novel
switching offloading mechanism for such robotic applications is proposed. In particular,
opportunistic offloading strategies for the path planning and localization services of mobile
robots are designed. The offloading decision is based on the uncertainty of the robot’s pose,

the resource availability at the Edge of the network and the difficulty of the path planning.



The proposed switching offloading framework is implemented and evaluated using a robot
in a real Edge Computing testbed, where the trade-off between execution time and the
successful completion of the robot trajectory is highlighted.

Finally, a Markovian Random Field (MRF)-based computational offloading and resource
allocation mechanism is developed. The proposed mechanism leverages switching systems
for modeling the computational resources at the network edge and allocating them dynam-
ically, while minimizing energy consumption. This mechanism consists of two repeated
stages; during the first, a Markov Chain-based technique is used to predict the mobile users’
movements and subsequently to estimate the offloaded workload demand. During the sec-
ond, a novel MRF-based technique undertakes the balancing of the offloaded tasks to the
available computational resources. These tasks cannot be executed locally, i.e., on the user
devices, under the given energy constraints and for a specific QoS. The proposed framework
manages to improve energy consumption in the edge infrastructure, while taking into consid-
eration the additional network delays induced by the MRF-based load balancing. Moreover,
the efficiency of the proposed scheme is evaluated via modeling and simulation and is shown
to outperform a well-known task offloading solution.

Summarizing, in this thesis, dynamic resource allocation mechanisms for computational
offloading are proposed, based on workload prediction, horizontal scaling, vertical scaling
and workload balancing. Research is conducted, also, on formulating offloading strategies
that work in harmony with these mechanisms, in order to guarantee a level of QoS and
QoE, and minimize energy consumption, while the frameworks emerging from combining
these techniques, are evaluated in the realistic, demanding environments of Industry 4.0,

Natural Disaster Management and Smart Environments, with successful results.



Abstract in Greek

Iepiinyn ote. EAAnvika

Sy emoyn tov AladikTiov Tov Aviikelévav (ATA, Internet of Things), oL KIviTEG GUOKEVEG
elval EQPOSLOOUEVEG e LOYUPEG VMKEG Kol SLadIKTVaKEG Suvatdtnteg: map' OMa QUTd, GUveEyL-
Touv va. unv Wtopolv vo avtasteEEABouY 0TV eKTELEOT UTTOMOYLOTIKA etitovwy Siepyaotdv. H
Metagoptwon Troroyiotikdv Aepyaoumv (Computational Offloading), Snhadn 1 avadeon twv
SLEPYaoLDY TTOU KATAVAADVOUY TTOAAOUG TTOPoVg 0t eEummpetntég TomodeTnuévoug ota Akpa
tov Aktov (Network Edge), ouvelopépel oty KatedBuvon g viod£Tnong Tov TpoTimou Tou
Kot Taoloyrotikot Négoug (Mobile Cloud Computing) to omolo duvitikd Oa fondioel otnv
EMAPPUVOT] TOV VITOAOYLOTIKOU (POPTOV TV KIVITMV 0VOKEVDY. KiviTtpo yio T ouyypagn avtg
™G SLATPLPIG QITOTEAEL 1] AVTLUETMITLON TWV EYYEVMV TTPOKANOEMV TNG UETAPOPTWOTG VTTOAOYL-
OTLKOV SLEPYAOLDV, 1) OUOVILKOTEPT] 0ITO TLG OTTOLEG ELVOL 1] KOTOVOWT] TTOPMY VITO TEPLOPLOUOVGS,
TPOCPEPOVTOG TUUTOYPOVA EYYUNOELG OXETIKA UE TO eTLTedo modTntag vrnpeotwv (Quality of
Service — QoS) kau To enimtedo moloTTag eumelplog (Quality of Experience, QoE) mmov opeyeToL
OTOUG YPNOTEG. ZTO TEPUG CUTIG TG SLATPLPYG YLVETAL XPNOT EVVOLDV 07td TV Oewpia EAgyyou
KaBMOG TPOKELTAL YLOL EVOL TTESLO TO OTTOLO TPOOTPEPEL TTANODPA EPYARELMV TPOG AVTLUETDTLOT TWV
TOPATOVE TPoKANoemY. EmuwAheov, yivetal ypnon evvolmy amd v Ocwpia twv IIbavothtomy.

Mo ouykekplueva, N Tapoloo SLaTpLfn e0TLATEL 08 TEOOEPLG ONUAVTIKEG EPEVVITIKEG TE-
PLOYEG TTOV OLPOPOVY 0TIV AVAITTUET TMV TOPATAV® TEXVIKMV, OL OTTOLEG ELVAL: O) 1) WOVTELO-
TTOLNON TWV ETEPOYEVMV OVIOTITOV TOV EEETALOUEVOV CUOTNUATOG (TOTOG VITOSOUNG-YPNOTMV-
EQAPUOYDV-OIKTUOKDV/UTTOAOYLOTIKOV TTOPWV), ) 0 VTOLOYLOUOG TOU OYKOU TWV SLEPYAOLMV
OV AVOUEVETAL VO, EKTELEOTOVY 0TA GKPA TOU SIKTVOU (LECW TNG TTPOPAEYTG TV BE0EWV TV
KLVNTOV GUOKEVMV), ¥) 1] SUVOULKT KaTavour Twv SubEotiwv Topmv g vrodoung, kabodn-
YOUEVT] GTTO KPLTNPLA OTTMG ELVAL 1) SLOTNPNOT) EVOG CUUPOVIUEVOD ETLTESOU FTTOLOTHTOG VTN PE-
OLMV KL EUTTELPLAG, 1] TTOPAAAAT PLLOEEVIQ TTOMATADY EQAPUOYDY 0TOVG 110VG SLabEoLuovg
TOPOVG, KOOMG KL 1] EAAYLOTOTTOIN 0T TG EVEPYELUKNG KOTUVAAMONG TOU GUOTNUATOG KOl 8) 1)
BEATLOTOTOINOT TWV OTPUTNYIKMOV HETAPOPTMONG TMV SIEPYUOLDY OTOVG KATAVEUNUEVOUS TTO-
POVG. ZTOY0G GUTNG TG SLATPLPIG ELVAL O EVIOTLOUOS TWV ONUAVTIKOTEPMV TNTNUATOV OE aV-

TEG TIG EPEVVITIKEG TTEPLOYES KO 1 AVATTTVEY KATAAMNAWV MIGEWV YLo. TNV BEATLOTOTOLON TWV



ETMUEPOVS SLOSIKAGLDV, SESOUEVOV TWV VPLOTAUEVOVY TTEPLOPLOUDY. OL MGELG AUTEG 0T CUVE-
YELOL GUVOVAZOVTOL SNULOVPYDVTOG TTAALOLAL TOL OTTOL0L UTOPOVV VO, EYKATAOTOH0UV 08 VITOSOUEG
0TO AKPO. TOU SIKTHOU KOl VO EAAQPPUVOUV TNV UTTOAOYLOTIKT] KATATOVIOT TOV ~UTOAOYLOTLK(,
TEPLOPLOUEVOV- POPTITAOV CUOKEVMV, BEATIOVOVTOG TUUTOYPOVA THV JTOLOTNTO EUTELPLAG TOU

ATTOKOWEZOVY OL YPNOTEG,

L0 70 0KOTTO 0UTO, AVATTTUOOETAL EVALG DLETUTTESOG UMY OVIOUOG SUVOLKNG KATAVOUNG TTOPWV
KO ELEYYOV UETAPOPTOONG SLEPYAOLMV VL0, CUOTASES EEVTTNPETNTMV 0TA AKPA TOV dLKTVOU. ZT0
YOAUNAOTEPO ETTITEDO, 1) SUVALLKY] CUWITEPLPOPG TV EEVTNPETTMV LOVIELOTIOLELTAL UE YPTOT|
YPOUUK®DV CUOTUATMOV, EVE YPOUULKOL ELEYKTEG OYESLALOVTOL VLA VO SLATNPOVV TO GVOTNU
eVTOG TV 800EVTMV TTEPLOPLOUMY (TT.%. CUUPOVIUEVO ETLTTESO TOLOTNTOG VUTNPESLDHYV). ZTO VYP1)-
AOTEPO ETITEDO, £Vag UNYAVIOUOG PEATLOTOTTOIONG AVOACUBAVEL TV TOTODETION TWV EQPOPUO-
YOV/VTNPESLDY 0TOVG SLaBETLIOUg EEVTTNPETNTEG (OL OTTOLEG PPLOKOVTOL OE LOPQT] ELKOVIKMV (1)
yovdv, Virtual Machines — VMs) Kol TOV KATAUEPLOWO TOV QOPTOV £PYOOLOG UETAED TOVG, Ue
OKOTO TNV UEYLOTOTON 01 TOU aptiuol TV SLepyaoidmv ov 00 eKTELEOTOVV ETITUYMOG OF V-
t00c. H amotiunon Tov v Adym Pnyoviopol oItodetkvigL TV OTOTEAEOUATIKOTNTA TOV, TO0O
OO0V aPOPEL OTNV TPOCPEPOUEVT] TTOLOTNTOL VITNPECLDV, 000 KoL 0TV BEATLOTY) SLAXELPLON TOV
VITOLOYLOTLKMV TTOPWV 0TC, GKPA TOU SIKTVOU.

11 GUVEYELX, O TTOPOITAV® PNYAVIOUOG eVTAooeTal 0To TTAalowo evog KuBepvo-Puoikol Kot
vovikol Zvotnuotog — KOKE (Cyber-Physical Social System — CPSS) tpudv emumteédmv, To omolo
TPOOPLLETAL YLOL TOV EYKOALPO EVIOMLOUO TupKaytdv. Levikd, évo KOKT agououmvel ta vtolo-
YLOTLKG GUOTNUATA e TOV (UOLKO KOOUO Kait Tig avBpdmiveg dpaotnpiottes. Ev mpokeluévm,
0to YaUnhoTEPO emTEDO, 1 apyLteKToviKT] Tov KOKE mepihaufdavel ovokeveg ATA ue cuobn-
TNPEG AViYVEVONG KoL TTapakorloVBnong daomv. Emmhéov, oe autd To emimedo, yiveToL ypnon
TOV FTPOTHTTOV TG AoOnong mANBoug (crowd sensing), KATA TO OTOLO GUAAEYOVTOL TANPOPOPLEG
OYETLKG. LLE TO TTEPLRAMLOV ATTO GUOKEVEG XPNOTMV OL OTTOLOL BPLOKOVTOL 0TIV TTEPLOYT] EVOLUPEPO-
VT0G. AeSOUEVOL OTL OL GUOKEVEG ATA YOPUKTNPLLOVTOL A0 TEPLOPLOUEVOUG VITOAOYLOTLKOVG KOl
EVEPYELAKOVG TOPOUG, O WY AVIOUOG TTou avarttiydnke oto Kegdahato 3 eykadiotatal 0to necaio
eminedo tov KK ko avalapufaver TV UETAQOPTOON TOV VITOAOYLOTLKG aKPLBOV Stepyaotdv
TV OVOKEVOY ATA 0g . vTodowy 0T GKPO TOU SIKTUOU. Z€ aUTo TO EMLTESO, O UNYOVIOUOG
SUVOKNG KATOVOUNG TTOPMV ETLTUYYAVEL TNV THPTOT) TV XPOVIKOV GITOLTIOEMV OITOKPLONG

TWV EPAPUOYDY AVIYVEVONG KaL TaPoKoAoUONONG. ZTt0 VYNAOGTEPO EMITEDO, EVAG UNYOVIOUOG



MYNG ATOPAOEMY EYKATEOTNUEVOG 0 eEumnpeTTEG Ymoloylotikov Négoug (Cloud), oulAiéyel
dedouéva oo Tig SLapopeg TYEG (CVOKEVEG ATA, KOLVWVLKG SIKTUO, YPNOTMV) KO OITTOTLLA TV
KpLowwdTTa TG Kotdotaons. Ta mepapuatikd amoTeAEoIOTo VTOSELKVIOUV TN ONUOOL0. TOU
UNYOVIOROU SUVOILKTG KOTAVOUNG TTOPMY, TOGO OTNV £YYUN0N TG EYKALPNG EKTELEONG TWV O1)-
UOVTIKDV SLEPYOOLDYV, 000 KOL 0TI LELWOT) TNG EVEPYELGKTG KOTAVALWONG TWV OCUOKEV(DV ATA.

Emupoobétwe, avamtiooetal £vog evallakTikog Sakomtikdg (Switching Systems -based)
LY AVIOUOG UETAPOPTOONG SLEPYUOLDY VLol EPUPUOYES TG Blopumyaviag 4.0. Ou epopuoyés av-
T€G 0TevOVVOVTOL 0€ POUTTOT TO. OTTOLOL EKTENOVV TTEPLITAOKEG SLEPYUOLEG, OL OTTOLEG TAPOVOLALOUV
QUOTNPEG ATTALTIOELG TOOO GE YPOVLKY ATTOKPLON 000 KOl OF GOPALELD. € OUTO TO TAALOLO, 1] e~
TOPOPTWON TOV SLEPYAOLMV OTO AKPO. TOU SIKTUOU ETULTPETEL OTAL POUTOT VO EAOPPUVOUV TOV
VITOLOYLOTLKO TOUG POPTO, AVOOETOVTAG TV EKTELEDT] TWV TOPUTAVD SLEPYOOLMV OF ILOL LOYVPT
VITOLOYLOTLKY UTTOSOUY O KOVILVI] OTO0TOO0N. Z€ GUTO TO KEQAAOLO, AOLTTOV, TPOTELVETAL EVAG
SLOKOTTTLKOG WY AVIOUOG UETAPOPTOONG SLEPYOUOLDY, eV OXESLALOVTAL EVKOUPLOKES OTPOTY)-
YIKEG UETOPOPTWONG YLOL EPAPLOYEG TTOV APOPOVY GTOV TPOYPUUUATIONO TNG TOPELAG KOL TOV
evromopo g 0€omg twv poprtdt. H amdgpoon yio tnv petagoptoon haufavetar Baost tg afe-
BawdtnTag mg TPog TNV TPEXOVCH BET TOV POUTOT KL TNV SLHOEGLUOTNTA VITOLOYLOTIKMV KOL
dikTuakmv TOpwv ot AKpo Tov dikthov TV dedouévn otryur. To SLaKomTiKd autd choTnua
VAOTTOLELTAL KOl AELOROYELTOL Y PNOLUOTOLD VTG EVAL TEPOYUATLKO POUTTOT OF [LOL TEPALYILOLTLKY] VTTO-
dour ota GKpo TOU SIKTHoV- KATd TV AEOAOYNOT TOVILETAL TO AVTLOTAOULOUO AVAUEST. OTO
YPOVO OLOKANPWONG TWV SLEPYAOLDV KUL TNV ETLTUYN £KBAOT TG ATOOTOANG TOUG,

T£hoG, LELETATOL 1] HETAPOPTMOT] KA O SLOUOLPAOUOG TV SLEPYaoumv e xpron Mapkofio-
VOV TUXALOV TESLWV. ZUYKEKPLUEVQ, GTOV TTPOTELVOUEVO UNYOVLOUO YIVETOL YPNOT SLOKOTTIKMY
OUOTNUATOVY YLOL TV HOVTIEAOTIOMOT] TWV VTOMOYLOTIKMDVY TOPMV 0TO. Akpa Tov SIKTVOU Ko TNV
SUVOLUKT KATAVOUT] TOUG, BAOEL KPLTNPLWV EVEPYELOKNG KATAVAAMONG. O unyaviopdg amote-
Aelton amd dvo emavoarapfavoueva otadia. Katd to mpdTo, YIveToL Ypnor Wog TEXVIKNG Ba-
oLougVNg oe MopkopLaveg alvoideg, 1 omtola TPOPAETEL TIG KIVIOELG TV XPNOTMOV 0TO YDPO
YLOL TV UTTOLOYLOUO TOU OYKOU TWV SLEPYAOLDV TTOU AVOUEVETOL VO LETAPOPTOHOUY 0T GKpaL
tov diktvov. Katd to deltepo, (o Kavotopa Texvikn Bactouévy oe Mapkofava Tuyaio mte-
S0 avolauBAavEL TOV SLOUOLPACUO TWV VITOMOYLOTIKMV SLEPYOOLMV 0TOVG SLAOEOLUOVG TOPOUE,
O1 diepyaoieg auTég dev dUVOVTOL VO EKTELEOTOVY TOTTLKG OTLG OUOKEVEG TOV YPNOTAOV VIO OU-

YKEKPLUEVOUG EVEPYELAKOVG TTEPLOPLOUOVG KOL YLOL FUYKEKPLUEVO ETUTEDO TOLOTNTAG VTNPECLAV.



O TPOTELVOUEVOG UNYAVIOUOG ETUTUYYAVEL BEATLOUEVY] EVEPYELOKT] KATOVAAMOT, Aaufdvovtag
VITOYLY TLG EMUTPOOHETEG SIKTVOUKEG KAOVOTEPNOELG TTOV ETULPEPEL O SLALOLPATUOG TWV EPYUOLDV
otV virodout). AKOUT, CUYKPLVOVTOG TOV TPOTELVOLEVO UNYAVIOUO UE L0 YVOOTH AVTLOTOLY
dovheld ot PLPMOYPOPLE, ETLOELKVIETOL 1) OTTOTEAEOUATIKOTITA TOV TOOO 0TI PEATLOTOTOLON)
™G KOTOVAADMONG EVEPYELOG, OG0 KOL 0TIV TTOLOTITO, TWV TAPEYOLEVWV VITNPECLMOV.
Suvoyitovtog, ot SLaTPLpl] GUTY TPOTEVOVTCL [NYOVIOUOL SUVOKTG KOTOVOUNG TOP™V
YLO LETOPOPTWOT VTTOLOYLOTIKMV SLEPYUOUDV, BACLOUEVOL TNV TPOBAEYT] TOV (POPTOV EPYOOLOGC,
otV 0pLLOVILA KoL KOTOKOPUPN KAUAK®OT), KaBhg Kau oty eElcoppodmnon @optov. Mehetd-
TOL, ETLONG, O OXESLAOUOG OTPUTNYLKDOV UETAPOPTMONG OL OTTOLES SOULEVOUV OF ALPLOVIL UE TOVG
TOPOTTAVM UNYOVIOUOUGS, LE TKOTO VOL £YYUNB0UV £Vl ETTLITESO TOLOTN TG VINPECUDYV, TTOLOTITAG
EUTTELPLAG KA VOL EAAYLOTOTOWNOEL 1] KATAVAANDOT] EVEPYELUG, EVA, OL OLOKANPpmUEVEG MDOELG TTOU
TPOKVIATOVY OTTO TOV GUVOUAOUO TOV TAPOTTAV® TEYVIKDY, AELOAOYOUVTOL 0TO PECALOTIKG KO
amarTika mepdirovia g Blounyoaviag 4.0, tg Awayeipiong Puotkmv Kataotpopdmv kou

v BEvnvov MeptBorrovimy, [ emttuyic.
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Preface

Structure

The thesis will be structured as follows.

In Chapter 1, a general introduction on the topics that will concern this thesis will be
made, the environment which motivated this research and which will be considered for the
development of the proposed methods will be set and the contributions that were made in
this PhD thesis will be exhibited.

In Chapter 2, some basic mathematical background that is deemed necessary to un-
derstand the methods used in the approaches to tackle the proposed problems will be set.
Additional information will be provided in the main part of the thesis whenever it is needed.

The following chapters will be the main chapters of the thesis. Each chapter will present a
more specific problem that was considered important and was solved. First a general setting
specific to the problem and the related work on the topic will be provided. Then the proposed
solution will be discussed by presenting the system model, the mathematical formulation of
the problem and the architecture of our solution. Finally the proposed framework will be
evaluated.

In Chapter 3, an adaptive resource allocation and admission control mechanism for
computational offloading in Network Edge settings will be discussed. This framework utilises
concepts from Control Theory to offer mobile users a way of executing their tasks at the Edge
of the network, which guarantees a level of QoS while optimizing the resource utilisation at
the infrastructure.

In Chapter 4, the extension, integration and evaluation of the previous mechanism in a

Cyber-Physical System for early fire detection will be presented. This novel computational
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offloading mechanism is enhanced with a Cloud-based decision making service, which accu-
rately predicts incident severity and notifies the responsible authorities. Its role is to alleviate
the computational stress of the IoT nodes involved in natural disaster confrontation.

Chapter 5 focuses on a switching system for computational offloading of robotic ap-
plications in Edge computing ecosystems. During this work both local (robot-based) and
remote (edge-based) application controllers were designed and implemented, followed by a
scheduling mechanism. These controllers are treated as switches and compose a system,
which is adaptive and can operate under different scenarios and usages.

Chapter 6 deals with an energy-aware framework that addresses jointly the full task
offloading and resource allocation problems in a multi-site setting. In this setting, a holistic
energy-aware resource optimization approach is proposed, based on the design of the VM
flavors complemented with an innovative distributed load balancing technique based on
Markov Random Fields, with the penultimate goal to minimize the total energy consumption
without sacrificing the QoS in terms of latency.

Finally in Chapter 7, the problems addressed in this thesis will be summarized, giving
the reader a comprehensive overview of the most important conclusions drawn from this
study. Then, recommendations for future work will be provided, which can be carried out

as an extension of the work presented in the thesis.

16



Chapter 1

Introduction

In today’s information technology age, data is the main commodity; possessing more data
typically generates more value in data-driven businesses [2]. The amount of digital data
generated surpassed 1 zettabyte in 2010, according to the International Data Corporation
(IDC) [B]. Additionally, 2.5 exabytes of new data is generated daily since 2012 [4]. This
proliferation of data, alongside the significant growth in the processing and networking
capabilities of mobile devices over the past decades, has allowed for the development of
mobile applications for a wide range of human daily activities, including healthcare and
wellness, education, commerce and social media. Cisco estimates that there will be around
50 billion connected devices by the end of this year [5]. These connected devices constitute
the Internet of Things (IoT) and potentially generate a massive amount of data. In current
implementations of IoT applications, most data that needs storage, analysis, and decision
making is sent to the data centers in the Cloud [f]. However, with this astronomical amount
of data, the current mobile network architectures will have trouble managing the resulting
momentum and magnitude.

Cloud Computing (CC) has taken the world by storm as it facilitates users and devices
with several opportunities by providing a wide range of services and virtually unlimited
available resources (e.g., network, servers, storage) in a multi-tenant model [7, 8]. These
resources are available over a network and are accessed through standard mechanisms. The
cloud computing paradigm provides a variety of deployment and service models, from public

clouds (organizations that provide cloud computing services to any customer) to private
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clouds (organizations that deploy their own private cloud computing platform) and from
Infrastructure as a Service models (IaaS, where fundamental computing resources are offered
as a capability) to Software as a Service models (SaaS, where applications are offered as a
capability), among other things. This large pool of resources and services has enabled the
emergence of several new applications, such as virtual reality [J], smart grids [10, 11, 12], and
smart environments [13]. The benefits of cloud computing — minimal management effort,
convenience, rapid elasticity, pay per use, ubiquity — have given birth to a multi-billion

industry that is growing worldwide.

Generally, public cloud vendors have built large data centers in various parts of the world.
These large-scale, commodity-computer data centers have enough computing resources to
serve a very large number of users. However, the CC-induced euphoria transforms into
a problem as the speed and volume of the transferred data increases; this centralization of
resources implies a large average separation between end user devices and their clouds, which
in turn increases the average network latency and jitter [14]. As a result, moving the big data
from devices to the cloud might not be efficient, or might be even infeasible in some cases,
due to bandwidth constraints. On the other hand, as time-sensitive and location-aware
applications emerge (such as patient monitoring, real-time manufacturing, self-driving cars,
flocks of drones, augmented reality or cognitive assistance), the distant cloud will not be
able to satisfy the ultra-low latency requirements of these applications, provide location-
aware services, or scale to the magnitude of the data that these applications produce, as
cloud services are not able to directly access local contextual information, such as precise
user location, local network conditions, or even information about users’ mobility behavior
[15]. The problem becomes clearer and more intense as several smart devices and objects
are getting involved in human’s life, as in the case of smart cities [L6] or Internet of Things
[17]. The current cloud computing paradigm [18] is unable to meet the requirements of
low latency, location awareness, and mobility support [L19]. Moreover, in some applications,

sending the data to the cloud may not be a feasible solution due to privacy concerns.

Several approaches have been proposed over the last few years by the research community
to satisfy the quintessential need for a computing paradigm that takes place closer to the con-
nected devices, in order to address the issues of high-bandwidth, geographically-dispersed,

ultra-low latency, and privacy-sensitive applications. The emerged novel paradigms include
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Figure 1.1: Functional structure of edge computing paradigms.

Mobile Cloud Computing [@], Fog Computing [@], and Mobile Edge/Multi-access Com-
puting [@] among others [@, @] The common denominator in these edge paradigms is
the deployment of cloud computing-like capabilities at the edge of the network. Most edge
paradigms follow the structure depicted in Figure @, [@] Edge data centers, which are
owned and deployed by infrastructure providers, implement a multi-tenant virtualization
infrastructure [@] Any customer — from third-party service providers to end users and
the infrastructure providers themselves — can make use of these data centers’ services. In
addition, while edge data centers can act autonomously and cooperate with one another,
they are not disconnected from the traditional cloud. It is therefore possible to create a
hierarchical multi-tiered architecture, interconnected by a network infrastructure. Besides,
the potential existence of an underlying infrastructure, or core infrastructure (e.g., mobile
core networks, centralized cloud services) that provide various support mechanisms, such as
management platforms and user registration services has to be considered. Finally, one trust
domain (i.e., edge infrastructure that is owned by an infrastructure provider) can cooperate
with other trust domains, creating an open ecosystem where multitude of customers can be

served.

There are various differences among edge paradigms, such as the focus on mobile network
operators as infrastructure providers in mobile edge computing, the existence of user-owned

edge data centers (i.e., personal cloudlets) in mobile cloud computing, and the use of differ-
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ent underlying protocols and interfaces, among others. Nonetheless, there remain numerous
similarities. Still, little of the research in these fields takes into consideration these sim-
ilarities. Most architectures, protocols, services, and mechanisms are designed with only
one edge paradigm in mind, and they do not consider the state of the art of other edge

paradigms.

1.1 Overview of Edge Computing Paradigms

1.1.1 Mobile Cloud Computing

Mobile Cloud Computing (MCC) is the emerging service delivery paradigm that integrates
cloud computing into the mobile environment. MCC mainly focuses on the notion of “mobile
delegation”: due to the limited resources available to mobile devices, the storage of bulk data
and the execution of computationally intensive tasks should be delegated to remote entities.
In this context, MCC provides on-demand, low-latency and secure access to a resourceful
group of servers in the spatial vicinity of mobile users. This comes again complementary to
the CC paradigm which suffers from latency issues due to the connection to remote servers
in the cloud through public Internet. In the original MCC concept, introduced in 2009,
only centralized cloud computing platforms were considered as the most viable solution to
implement the remote execution of tasks [27]. Later, other researchers expanded the scope
of MCC. In this new vision, tasks could also be delegated to devices located at the edge of
the network [28]. At present, both visions of MCC coexist [29]. This thesis will mostly focus
on the latter.

Initially, MCC sought to provide novel solutions to services such as mobile learning, mo-
bile healthcare, searching services, and others [30]. Nowadays, many of these services can be
implemented in a centralized cloud (e.g., voice-based search) or in the mobile devices them-
selves (e.g., text-to-speech engines). Nevertheless, the concept of MCC is still relevant, as
its potential has not been fully exploited. There are certain applications, such as augmented
reality and augmented interface applications, where the existence of an execution platform
located at the vicinity of the mobile devices can provide several benefits such as lower la-
tency and access to context information. Moreover, as mobile devices are equipped with

functional units such as sensors and high resolution cameras, it is possible to develop novel
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crowdsourcing and collective sensing applications that make use of the location information

2d).

1.1.2 Fog Computing

Fog Computing has been proposed to address the CC-related issues and to quench the need
for a computing paradigm closer to the connected devices [B1]. Fog computing bridges the
gap between the cloud and IoT devices by enabling computing, storage, networking, and
data management on the network nodes within the close vicinity of IoT devices. Therefore,
computation, storage, networking, decision-making, and data management occur along the
path between IoT devices and the cloud, as data moves to the cloud from the IoT devices.
Thus, fog computing does not compete with cloud computing, but rather complements
it: the fog architecture facilitates the creation of a hierarchical infrastructure, where the
analysis of local information is performed at the ‘ground’ and the coordination and global
analytics are performed at the ‘cloud’. Here, cloud services are deployed mostly at the edge
of the network, but they can also be deployed in other locations, such as IP/multiprotocol
label switching (MPLS) backbones. In fact, the fog network infrastructure is heterogeneous,
where high-speed links and wireless access technologies will coexist [32].

The initial definition of fog computing was later expanded and revised by various re-
searchers ([21, B3]). Although this extended definition is debatable, it reveals all the ad-
vances that the fog might introduce. Under this new definition, fog computing does not
become a mere extension of cloud computing, but a paradigm of its own. The elements that
implement the cloud services, the fog nodes, can now range from resource-poor devices (e.g.,
end devices, local servers) to more powerful cloud servers (e.g., Internet routers, 5G base
stations). Also, all these elements can be able to interact and cooperate with each other
in a distributed fashion. This generates a three-tier architecture (end devices - fog nodes -
central servers) where centralized cloud servers coexist with fog nodes but are not essential
for the execution of fog services [34].

Originally, fog computing was defined as a platform that enabled the creation of new
applications and services in the context of IoT. Examples of such services include hierarchi-
cal Big Data analytics systems and smart infrastructure management systems (e.g., wind

farms, traffic lights) [21, Bl]. Yet, at present, there are several studies that examined how
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this paradigm could be used to implement other types of services: low-latency augmented
interfaces for constrained (mobile) devices (e.g., brain—computer interfaces using wireless
electroencephalogram headsets [35], augmented reality and real-time video analytics [36]),
cyber-physical systems [37], novel content delivery and caching approaches under the con-
text of fog computing [Bg], and various vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) services such as shared parking systems [39].

1.1.3 Mobile/Multi-access Edge Computing

Mobile Edge Computing (MEC) was introduced to bring the cloud services and resources
closer to the user proximity by leveraging the available resources in the edge networks
[40]. To meet the above mentioned requirements of IoT applications, the mobile operators
are planning to integrate the computing, networking, and storage resources with the base
station in the form of a MEC platform. Similarly to Fog and Cloudlet [41, 42], MEC is
not replacing but complimenting the cloud computing model. The delay sensitive part of an
application can be executed on a MEC server, whereas the delay-tolerant, compute-intensive
part of the application can be executed on a cloud server. MEC aims to enable billions of
connected mobile devices to execute the real-time compute-intensive applications directly
at the network edge. The distinguishing features of MEC are its closeness to end-users,
mobility support, and dense geographical deployment of the MEC servers. In the MEC
World Congress 2016, MEC ISG has renamed Mobile Edge Computing as Multi-access
Edge Computing, in order to reflect the growing interests from non-cellular operators [43].

The benefits of deploying cloud services at the edge of mobile networks, like 5G, include
low latency, high bandwidth, and access to radio network information and location aware-
ness. Thanks to this, it will be possible to optimize existing mobile infrastructure services, or
even implement novel ones. An example is the Mobile Edge Scheduler [44], which minimizes
the mean delay of general traffic flows in the LTE downlink. Moreover, the deployment of
services will not be limited to mobile network operators, but it will also be opened to third
party service providers as well. Some of the expected applications include augmented real-
ity, intelligent video acceleration, connected cars, and Internet of Things gateways, amongst
others [45].

In order to implement the MEC environment, it is necessary to deploy virtualization
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servers (i.e., MEC servers) at multiple locations at the edge of the mobile network. Some
deployment locations considered by the MEC ISG are LTE/5G base stations (eNodeB), 3G
Radio Network Controllers (RNC), or multi-Radio Access Technology (3G/LTE/WLAN)
cell aggregation sites—which can be located indoors or outdoors. Besides, the MEC ISG
has suggested that this virtualization infrastructure should host not only MEC services, but
also other related services such as Network Function Virtualization (NFV) and Software
Defined Networking (SDN) [45]. Such a deployment would reduce the deployment costs and
provide a common management and orchestration infrastructure for virtualized services.
Concluding, even if there are several structural differences between the above mentioned
paradigms, it does not mean that they should exist in a vacuum, ignoring the advances in
other related fields. Due to the similarities between the paradigms, it is safe to assume
that there will be mechanisms and platforms that can provide a generic solution to a shared
problem. Such solutions can then be adapted to other edge paradigms. Hence, following this
notion, for the rest of the thesis, the servers used in the framework are called Edge Servers
independently of the architecture; edge servers receive and execute compute-intensive tasks

of mobile applications.

1.2 Computational Offoading

One of the most active areas of research in the field of edge computing is the delegation of
tasks to external services [29]. In this context, the computation migration is endeavoured
as a significant software-level solution that mitigates resource constraints of mobile devices
by migrating applications to available stationary (or not) computers [46, 47, 48]. There
are various solutions that allow applications to migrate part of their code from the mobile
devices to cloud-based computing resources located at the edge. Applications are usually
implemented using frameworks like .NET and JVM, which makes the code migration process
easier. Some research results allow mobile devices to migrate only part of their code, thus it
is necessary to statically or dynamically identify the code that needs to be offloaded. Other
researchers take a more extreme stance: an entire execution environment (i.e., clone), rep-
resentative of the mobile device, is created. Then, part of the mobile application (including

memory image, CPU state, and others) is loaded into the clone. Finally, some approaches
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make use of mobile agents’ infrastructures, where the mobile device creates a mobile agent
that will acquire/process information on its behalf, which is roughly the solution that is
mainly adopted in this thesis. There are even approaches, such as the concept of Aqua
Computing, that mix the notion of mobile agents and clones [49].

In any case, similarly to other research areas such as communication networks and dis-
tributed systems, optimization techniques are also widely used in application execution
frameworks of edge computing. The execution frameworks consider diverse optimization
objective functions as follows: saving processing power, efficient resource and bandwidth
utilization and minimizing energy consumption [60]. In short, the frameworks are designed
to optimize the execution cost. The overall aim of all such approaches is to enable the
compute-intensive mobile applications on resource-constrained mobile devices. The prob-
lem of determining what task, where and whether it should be offloaded in order to save

energy and/or meet time constraints is known as Computational Offloading [51].

1.3 Applications

The synergistic combination of recent technological developments improves our ways of liv-
ing in various societal domains. In the smart computing context, sensor networks, edge
computing, IoT and big data analytics are properly orchestrated to provide assisting appli-
cations for human daily activities such as education, health and transportation. Apart from
these classic IoT applications, this thesis will explore how natural disaster management and
Industry 4.0 applications can benefit from edge computing concepts such as computational
offloading. These complex applications are either time- and mission- critical applications

with stringent requirements.

1.3.1 Natural Disasters

Dealing with natural disasters, like wildfires, is an interesting field for the development of
edge computing -enabled IoT applications, since the early and precise detection of a forest
fire is the most important step for in-time firefighting. Various IoT node arrangements, for
example Wireless Sensor Networks (WSN) and, more recently, Unmanned Aerial Vehicle

(UAV) clusters equipped with remote sensing capabilities, have enabled the detection of
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wildfires [62, b3] and the automatic notification of the responsible public authorities. The
ability to perceive their environment and react to its changes, perform basic data processing
and exchange information, alongside the excellent scalability and the low capital and oper-
ational expenditures, make IoT networks a reliable solution for autonomous monitoring of
large forest areas. However, as these networks typically comprise of small battery powered
devices performing multiple tasks, limited energy resources and the scarcity of computation
capabilities for real-time processing are the most important disadvantages towards their
wide adoption in the fire-fighting domain. Dealing with these shortcomings, edge comput-
ing can provide the required rich computation resources near the IoT portable devices [54].
In the specific case of wildfires, a cluster of powerful servers is placed at the edge of the
network and enables the offloading and processing of the IoT nodes’ computation-intensive
tasks, e.g., image recognition, in order to reduce their energy consumption and achieve the

application’s strict time constraints.

Over the last years, forest fire fighting technology, enabling smart computing features on
Unmanned Aerial Vehicles (UAVs), has shown significant progress, making the deployment
of small-sized UAVs for forest fire detection a natural and increasingly realistic option [55].
UAVs are relatively inexpensive, easily manoeuvrable, can cover various terrain types under
different weather settings, both at day and night and, most importantly, their missions can be
achieved autonomously with minimal or even with zero human involvement. UAVs equipped
with remote sensing and data communication facilities demonstrate excellent potential for
monitoring, detecting and fighting forest fires. On the other hand, the potential advantages
of UAVs, depend on many factors, such as aircraft type, sensor types, mission objectives,
and the current regulatory requirements in the application domain the UAV operates in
[42]. Specifically for the fire-fighting domain, UAV technology still faces various obstacles
that need to be confronted in order to be applied in fully operational environments. One
of these barriers is, as mentioned, the scarcity of available energy and processing resources
on UAV platforms. Aerial monitoring of large fields and forests during dry spells to reduce
the risk of wildfires requires increased energy resources for UAVs to prolong their mission’s

endurance, which is very difficult to secure.

The proliferation of social media usage by large population proportions, alongside re-

cent advances in data sensing, collection, storage and analysis, supports the realization of
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the participatory data gathering paradigm, also known as social sensing. Data that are
produced on social media services can act as an additional source of information valuable
in various application domains, including the scope of disaster prevention, detection, con-
trol and assessment. For example, recent research efforts have evaluated the use of social
media in relation to extreme weather incidents [pG], earthquake events detection [57] and
to estimate diseases spread such as influenza [68] and malaria [59]. These initial findings
suggest that social media may provide a promising approach for detecting and mapping
environmental hazards and climate-related impacts, however a robust methodology has yet
to be defined and validated. In particular, within the scope of wild-fire detection, social
media users, who happen to be in the proximity of a fire incident, can provide valuable
information and testimony about the current situation and help to timely and accurately
detect a wildfire [60]. The potential of this approach has been also confirmed by European

Commission’s JRC initiative named Digital Earth Nervous System [61].

1.3.2 Industry 4.0

As mentioned earlier, computation offloading in current and next-generation networks is be-
coming increasingly important due to the proliferation of IoT real world applications [62]. As
discussed, these applications introduce a vast number of low-capability, low-energy devices
to the networking ecosystem, which regularly need to perform computationally intensive
and/or energy-hungry tasks. However, when latency and energy consumption minimization
are required, the limited resources of the IoT devices prove inadequate [63]. In Industry 4.0
and especially in collaborative robotics, where humans and robots work together in dynamic
environments, computationally heavy algorithms enable IoT devices in sensing and actu-
ating [64]. Consequently, a large amount of information has to be processed and complex
algorithms need to be executed in real-time.

The increasing availability of networking in the Edge and Cloud supports new ap-
proaches, where processing is performed remotely, with access to extensive computing and
memory resources. In this direction, Edge Computing alongside Fog Computing [65] consti-
tutes a particularly prominent way of dealing with the aforementioned shortcomings of IoT
devices. It offers an attractive alternative providing low-latency and high energy efficient

operation, while maximizing system performance. This paradigm is currently more relevant
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than ever, especially in the context of the much-anticipated Industry 4.0 revolution [66] and
Industrial IoT (IToT), where the concept of Fog Robotics (FR) is introduced. FR can be
defined as the architecture that distributes computing, storage and networking functions at
the Edge/Cloud continuum in a federated manner [67], i.e., where robots and automation

systems rely on data or code from a network to support their operation.

1.3.3 Smart Environments

Smart environments (SEs) (i.e., the open and dynamic systems typically extending over
an area and including a large number of interacting devices with a heterogeneous nature)
and the IoT paradigm, share the common vision of enabling a pervasive presence in the
environment of a variety of smart things that are able to interact with each other, with the
aim of creating new applications and reaching common goals. In this context, the research
and development challenges in creating a smart system are numerous [68]. Augmented
Reality (AR), i.e., the combination of a representation of the real-world environment and
computer-generated input from sensors, is a typical enabler of smart environments. An
example of an AR application in a smart environment is AR enhancing the experience of
a visitor to a smart museum; consider a visitor to a museum, art gallery, city monument,
music or sports event, pointing their mobile device towards a particular point of interest
with the application related to their visit activated (i.e., the museum application). The
camera captures the point of interest and the application displays additional information
related to what the visitor is viewing [69].

Offloading an Augmented Reality service on an platform located at the Network Edge
instead of the Cloud is advantageous since supplementary information pertaining to a point
of interest is highly localised and is often irrelevant beyond the particular point of interest.
In this setting, the processing of user location or camera view can be performed on the Edge
infrastructure rather than on a more centralized server. In AR applications there may be a
need to update information quickly, depending on how the users move, and the context in
which the augmented reality service is used (e.g., in an art gallery, exhibits are positioned
only a few metres apart and each piece is supplemented with additional text on the artist,
the interpretation of the artwork, etc.) In other words, AR data requires low latency and a

high rate of data processing in order to provide the correct information to the user’s device,
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depending on their location and orientation, making the Edge the perfect candidate for AR

tasks offloading.

1.4 Challenges and Motivation

As thoroughly discussed, the decentralization and proximity of the service infrastructure
to the edge brings various benefits (e.g., low latency, scalability), but it also brings new
issues that must be carefully considered. Despite the several advantages, realizing the vi-
sion of an edge computing framework is a challenging task because of the procedural and
security concerns involved (e.g., discovering edge nodes, partitioning and offloading tasks,
using edge nodes publicly and securely). Apparently, there is a need to investigate the key
requirements and potential opportunities for enabling the vision of edge computing. Thus,
it can be concluded that in the emerging edge computing paradigm, several problems arise
and innovative research is needed to address them. Technology has evolved in such a way
that we now have multiple tools, which enable us to come up with nifty solutions. For that
reason, this opportunity allows for solving modern and interesting problems concerning the

following topics:

¢ Optimizing Resource Utilization: This constitutes the main motivation behind
this thesis, as resource allocation is the main challenge faced in edge settings where,
naturally, resources are not considered abundant. Despite the earlier and ongoing
work on various aspects of edge computing, the problem of how to efficiently deploy
these new edge applications within an edge cloud has not been systematically studied.
Simply duplicating the successful cloud computing design will not work for the edge
applications. As the offloaded IoT workloads are required to be processed by different
types of applications, usually running on Virtual Machines (VMs) hosted on the edge
servers, the decision on the number of instances and the computing resources to assign
to each of them becomes challenging and has a direct impact on the response time
achieved. Furthermore, as many devices may be requiring the edge servers capabilities
at the same time, efficient and dynamic assignment of their workloads to the hosted
applications is required. Thus, resource management arises as an important concern

in the emerging computing paradigms [70]. Also, available resources on the edge
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servers are limited compared to the clouds. Therefore, the optimization of resource
utilization is necessary for gaining the better performance with limited resources [b0,
71]. Generally, the optimization of resource utilization is a multi-objective function
that becomes a challenging task to solve because of the diverse nature of applications,
varying user demands, and varying users’ requirements. Most of the proposed studies
in the literature utilize queuing theory to model mobile devices and edge servers,
along with an optimization method for finding the optimal offloading policy. The
most commonly used criteria are the energy consumption of the mobile device and
the request throughput. However, there is a major shortcoming in these approaches
that can lead to the deterioration of the system’s performance: the static modeling
of the servers for fluctuating workload, which can lead to over provisioning or under

provisioning [[72].

Dealing with Resource Heterogeneity: Another challenge is imposed due to the
highly heterogeneous nature of edge clouds. Unlike central clouds, edge clouds are often
comprised of heterogeneous computation nodes with widely diverse communication,
computation, and storage capabilities. The edge nodes can include micro servers, loT
gateways, routers, mobile devices, etc. A major challenge in edge computing settings
is to decide where to place the services and how many resources to allocate to it,
while taking into account the heterogeneity of edge nodes, services, and users. For
example, the response time of edge services can vary significantly depending on the
network interface and hardware configuration of edge nodes. Thus, the need to model
the available resources in a way that smooths the inherent heterogeneity out, as well
as to design appropriate resource allocation controllers that make use of these models,

is evident.

Uncompromising Quality-of-Service (QoS) and Experience (QoE): Quality
delivered by the edge nodes can be captured by QoS and quality delivered to the
user by QoE [73]. One principle that will need to be adopted in edge computing is
to avoid overloading nodes with computationally intensive workloads [22, 74]. The
challenge here is to ensure that the nodes achieve high throughput and are reliable

when delivering for their intended workloads if they accommodate additional workloads
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from a data center or from mobile devices. Regardless of whether an edge node is
exploited, the user of an edge device or a data center expects a minimum level of
service. For example, when a base station is overloaded, it may affect the service
provided to the mobile devices that are connected to the base station. A thorough
knowledge of the peak hours of usage of edge nodes is required, so that tasks can be
partitioned and scheduled in a flexible manner. The role of a management framework
will be desirable but raises issues related to monitoring, scheduling and re-scheduling at
the infrastructure, platform and application levels. In most of the above studies there
is no formal guarantee of satisfying the physical constraints, i.e., CPU and memory
sharing, or meeting the QoS specifications, such as the average response time. Since
all edge computing architectures use a small cluster of servers, a fallacious resource

allocation mechanism can hamper the offloading performance.

Optimizing Computational Offloading: The requirements for deploying applica-
tion workloads on edge computing frameworks, have to be well understood. Deploy-
ment strategies - where to place a workload, connection policies - when to use the
edge nodes and heterogeneity - how to deal with different types of nodes, need to be
taken into account for deploying applications on the edge. The execution of compute-
intensive components of IoT applications in edge computing infrastructures, involves
the complex application partitioning at different granularity levels and component mi-
gration to the edge server node. Furthermore, suitable as it may seem, solely utilising
remote computational resources might not be enough; a number of unwanted phe-
nomena potentially take place in the transmission and processing of the information,
such as network latency, variable QoS and downtime. For these reasons, for example,
autonomous mobile agents (e.g., robots, unmanned vehicles) often have some capacity
for local processing when targeting low-latency responses and during periods where
network access is unavailable or unreliable. Consequently, a major challenge, from a
control design, estimation, and network optimization point of view is to combine local

and remote resources in an efficient way.

Dealing with User Mobility: User mobility is one of the most critical components

when it comes to making the computational ofloading decision. End devices can either
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be considered as static or mobile for the time window which spans between initiating
and finishing the offloading of their tasks. In the latter case, mobility adds another level
of splitting decision, as it needs to be decided at which edge site should the tasks be
offloaded while the user is on the move. Even though mobility is considered a challenge,
it can generate a number of opportunities for the task offloading. First of all, it can
initiate a load balancing technique to allow the system to provide the necessary services
in distributed Edge site scenarios. Secondly, complementing mobility with appropriate
prediction solutions can enhance the system’s capacity, by finding the potential next
associated base station of the user. This can be even more beneficial in a dense
scenario, where the system can analyse the active users and their mobility patterns and
allocate the resources in an online manner to existing and newly requested services.
Moreover, mobility can benefit from handover mechanisms that can enable service
migrations between base stations and their edge servers. However, as the requirements
of zero millisecond handover are studied by the 5G community, mobility with prediction
mechanisms is starting to gain attention, in order to predict beforehand where the
tasks should be offloaded. This behavior can be decisive for the overall performance in
dense Edge deployments with multiple mobile users, and a major challenge in designing

computational offloading and resource allocation strategies [[75].

1.5 Contributions

This thesis tries to tackle some of the aforementioned problems that arise on the edge
computing architecture. Focus is mainly placed on the decision making process, where
the devices need to make some choices regarding the resource allocation and exploitation
inside their environment. The contributions on the above topics can be summarized in the

following:

1. Modeling Abstractions to Capture System Dynamics: Performance modeling
of cloud applications is an open research problem and it is coupled with resource alloca-
tion. For monolithic applications, static models, queue models and state-space models
are used to describe the dynamic relation between control variables (computing and

network resources) and application’s outputs (latency or throughput). Additionally,
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various prediction approaches have been used to estimate the magnitude of the in-
coming tasks or the user’s behaviour, which facilitate the design of successful resource
allocation strategies. Available resource models are usually single-input single-output.
Energy or response time are typically the model’s output, while computing resources
(e.g., CPU, memory), incoming requests, and network bandwidth are the control vari-
ables. In most of the current studies, the relation between input and output is fixed
and empirically derived. For example, the processing time of a request is proportional
to its file size and inversely proportional to the service rate measured in CPU cy-
cles or millions of instructions per second. Although this assumption is reasonable,
the actual processing time depends on many time-varying parameters, which are not
easily measured. Furthermore, in combination with a static resource allocation, the
offloading decision performs adequately only for specific operating conditions, being
unable to guarantee stability under fluctuating workload and a heterogeneous IoT

communication infrastructure.

Contrary to current approaches that provide empirical static models, the aim is to de-
velop formal, realistic and dynamic traffic and resource models applicable to emulate
the generated traffic from various applications. To this purpose, a performance mod-
eling approach is proposed, based on System Theory, that has the capacity to include
several performance metrics (i.e.7 state variables) and resources as control parameters
(input variables) and describe their relationship under various operating conditions
and QoS guarantees. The resulting models are called flavors. The computation of
these flavors is based on switched systems from the System Theory. The advantage of
the flavor design is two-fold. First, a flavor is actually a feasible operating point and
facilitates the dynamic resource allocation process. Secondly, the combination of these
flavors with feedback controllers can enable fine-grained vertical and horizontal scaling
approaches for time- or mission- critical applications. Furthermore, a flavor-oriented
modeling and infrastructure design, paves the way for tackling resource heterogeneity,

as will be shown in the following sections.

. A Dynamic Resource Allocation and Admission Control Mechanism: Cur-

rently, and regardless of the adopted edge computing architecture, the computation
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offloading decision is coupled with the resource allocation in the edge servers. Con-
sequently, together with the offloading decision, a dynamic resource allocation and
admission control mechanism is proposed that leverages the preceding modeling ab-
stractions, which is called Vertical and Horizontal Scaling Mechanism. This mechanism
is responsible for the (de)activation of the edge servers, the placement of the appli-
cation instances and the distribution of offloaded requests among them (Horizontal
Scaling), alongside the admission control and resource allocation for each application
instance within the active servers (Vertical Scaling). A workload profile estimator
and the dynamic modeling of the resources and overall status of the network/servers
provide the foundation upon which the resource allocation algorithm works. Specifi-
cally, the objective is to develop a joint communication and computing virtualization
paradigm that is updated and adapted dynamically. To this purpose, the problem
of simultaneously (i) allocating computing and communication resources, (ii) modify-
ing network topology/ protocol and (iii) structuring the edge computing data centres
(such as VMs distribution) is considered. This approach gives emphasis on the dy-
namic behaviour of the resource allocation. Also, the obtained dynamic models are
utilized and system-theoretic analysis methods and stabilizing controllers are devel-
oped. These algorithms are designed to be practicable, and guarantee feasibility and
performance specifications, such as robustness to rapid changes in the workload, re-
source availability, and unwanted network phenomena. This research addresses the
so far untouched challenge, of designing controllers that address a mixture of these
unwanted phenomena by changing the provisioning of the resources to the control al-
gorithm, if this is deemed necessary. This type of controllers are made possible by the
merging of two sets of hybrid models, namely a) the performance model, having as
internal variables performance metrics of the infrastructure and as inputs the resource
distribution and utilization, and b) the process model, having, for example, variables

related to position, orientation, and velocity of mobile agents.

. A Cyber-Physical Social System for Assistance in Emergency Situations:
In the past, unexpected wildfires would mainly have an impact on the wild fauna
and flora, however, the interaction of humans with wildfires has significantly changed

during last decades; the expansion of urban areas near forests, called Urban-Wildland
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Interface, put human population and their assets at higher risk of wildfires than ever
before [[76]. Thus, the strategy of the fire management and the preparedness towards
the continuously extended severe fire danger season must be updated and enhanced.
That is why all the aforementioned technologies are combined in a Cyber-Physical
Social System (CPSS), which integrates computing, networking and human resources.
In detail, a network consisting of static or mobile IoT nodes (i.e., UAVs) which moni-
tors forest areas for detecting fires at their initial stage is integrated. These nodes are
equipped with embedded camera modules to enable computer vision-based fire detec-
tion. This operation is assisted by a Scalable edge coMputing framewOrK for early
firE detection (SMOKE) which hosts classification services and overtakes the com-
putational workload of processing field snapshots captured from the UAVs. Utilizing
and extending the previously mentioned contributions, SMOKE comprises a dynamic
resource scaling mechanism for IoT-enabled, time- and mission- critical applications,
meant to be deployed at a cluster of servers at the network edge, in the nodes’ proxim-
ity, assisting the offloading of computationally intensive, energy hungry tasks. Finally,
a cloud-based decision-making service is leveraged that combines the classification re-
sults of the previous level, users’ actions on the social media and other services, such
as weather information services, in order to accurately infer the fire incident severity

and notify the responsible authorities.

. A Switching Computational Offloading Mechanism for Robotic Applica-
tions: In modern manufacturing, the current trend is to remove robots from confined
spaces and allow free movement in the factory floor, enhancing cooperation and col-
laboration with humans, thus, increasing productivity and efficiency. Open challenges
in this area are concerned with developing adaptive multi-robot/machine control, cap-
turing, modelling, predicting and anticipating human-robot interactions and designing
distributed control and path planning algorithms that deliver flexible and safe working
environments. Thus, it seems only natural to utilize distributed computing and storage
resources to solve position estimation and path planning problems. These are the two
computational offloading opportunities that arise. In the studied case, to accommo-
date the offloading of these computationally demanding tasks, a small-scale network

infrastructure is set up, connecting the Robotic Agent wirelessly to an Access Point
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(WLAN), located within the Agent’s network range, which in turn connects via a wired
connection to an edge server (LAN) and a cloud server (Internet). Both these servers
offer the same services, specifically designed and developed for this thesis, virtualized
as Docker [[77] containers, listening for potential offloading requests coming from the
Agent, at all times, in a client-server way. These two remotely located servers differ
from each other in the usual “edge computing vs. cloud computing” way, meaning
that the former exists in the same LAN network with the Robotic Agent (low net-
work latency) and is more adaptive when it comes to resource allocation management,
but has limited computational resources overall, while the former exists on a Cloud
Service Provider in the Internet (higher network latency) but its computational re-
sources are considered abundant. This design results in an emerging decision-making
problem on where it is more profitable for the Agent to offload its workload. Thus, in
order to orchestrate this decision-making problem, three components are developed:
a local one implemented on the Robot and two remote ones, one running on the edge
server and one on the cloud server. Eventually, the required computations are either
executed locally on the Robot or offloaded to the Edge and/or Cloud, based the fol-
lowing identified use-case requirements: Time and Energy Efficiency, Optimality in
Trajectory Planning and Robust Navigation. Consequently, a major challenge, from
a control synthesis, estimation as well as network optimization point of view, is to

combine local and remote methods in an efficient, safe and near-optimal way.

. A Framework for Distributed Energy-aware Resource Allocation at the
Edge for Smart Environments: Apart from satisfying the users, an efficient re-
source allocation technique is required for infrastructure providers as well. On the
provider side, the primary goal is the minimization of the energy consumption of the
data center, which is mainly affected by the number of active servers and the amount
of their allocated resources. Thus, task offloading and resource allocation are coupled
and must be jointly addressed. To this end, a synergistic and distributed approach
between the end-devices and the edge infrastructure is necessary to accommodate the
dynamic demand of the applications. The main challenge of such an approach is to es-
timate the amount of the offloaded tasks and make appropriate decisions on where the

offloaded tasks should be executed. Taking into consideration the network conditions,
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the complexity of this resource allocation problem increases exponentially. Dynamic
physical channel conditions and user mobility require a proactive and dynamic resource
allocation technique to select the necessary computational and networking resources
at the Edge in an adaptive manner. In this direction, appropriate resource allocation
strategies enhanced with mobility prediction techniques are investigated, to further
ameliorate the delay and energy savings of both end-devices and edge infrastructure.
In more detail, a task offloading setting with applications of different characteristics
and requirements is considered and an optimal resource allocation framework lever-
aging the amalgamation of the edge resources is proposed. To balance the tradeoff
between retaining low total energy consumption, low end-to-end delay and load bal-
ancing at the Edge, a Markov Random Field -based mechanism is introduced for the
distribution of the excess offloaded workload. The proposed approach investigates a re-
alistic scenario, including different categories of mobile applications, edge devices with
different computational capabilities and dynamic wireless conditions modeled by the
dynamic behavior and mobility of the users. The framework is complemented with
a prediction mechanism that facilitates the orchestration of the physical resources.
The efficiency of the proposed scheme is evaluated via modeling and simulation and

is shown to outperform a well-known task offloading solution.

6. Evaluation of proposed frameworks with numerical results through real ex-
perimentation and simulations: For all the above contributions mentioned, either
real experimentation or simulations are performed in order to capture the effectiveness

and the efficiency of the proposed frameworks.

In the following, the proposed methods are presented, alongside a discussion on the main
contributions of this thesis. Then, each Chapter focuses on one of the aforementioned set-
tings, presenting related work on the field and introducing the developed solutions together

with some indicative evaluation that justifies the benefits of their adoption.
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Chapter 2

Background

In this chapter, the essential mathematical background necessary to understand the methods
that are used in the following work will be presented. Any additional information required

will be provided in the main part of the thesis, whenever it is needed.

2.1 Basic Definitions of Modeling and Control Theory

2.1.1 Linear Time Invariant State Space Models

A state space model of a system is the mathematical description of the relationship between
the cause and the effect or the inputs and the outputs of the system [78€]. In this thesis,
discrete time state space models are solely utilised. The general form of a discrete time

state space model is

ok +1) = f(a(k), u(k)), f : R" x R™ — R", (2.1)

where z(k) € R™, u(k) € R™ are the state and the input vector respectively and k& € N. The
most widely used state space models are the linear time invariant (LTT) state space models,

where the function f(x(k),u(k)) of (El]) is linearly dependent on x(k) and u(k),
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z(k+1) = Az(k) + Bu(k), (2.2)

y(k) = Cx(k) + Du(k). (2.3)

Here, A € R™™ and B € R™™™ are constant, time invariant matrices that describe the

system’s dynamics and y(k) € R is the system’s output vector.

2.1.2 Stability

In modern control theory, the notion of stability is strongly connected with the dynamic
behavior of a system. Many different kinds of stability are defined, i.e. input-output stability
or stability of an equilibrium point. In general, a stable system means that the state variables
of the system are driven to a specific equilibrium point or inside a desired area and they
remain there despite any insisting or momentary disturbances. In this chapter, focus is
put on the stability of an equilibrium point (x4, ueq). An equilibrium pointE satisfies the

equality

Teg = AZeq + Blieg. (2.4)

The most general type of equilibrium point stability is Lyapunov stability, which guarantees
that the system trajectories will remain close to .4, if they start from a neighborhood in
the equilibrium point’s vicinity [[79].

Furthermore, in the following sections, asymptotic stability is adopted, together with
the set-theoretic notions of stability analysis and control design problem, which identify and
characterize subsets of the state space, containing the desired equilibrium state with special
properties: positively invariant sets are introduced here. In the forthcoming paragraphs,

without loss of generality, all the necessary definitions are given assuming that z., = 0.

Definition 1. A sphere By with radius s > 0 and the origin as its center, is denoted as

B, = {z € R":||z|| < s}, (2.5)

11t should be noted here that, for the rest of this thesis, the terms “equilibrium point”, “operating point”
and “flavor” will be used interchangeably.
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where ||| is any possible norm of vector x.

Definition 2. Assuming a discrete time system of the following form

z(k+1) = f(x(k)), (2.6)

then the equilibrium point x.q = 0 is locally Lyapunov stable, if and only if Ve > 0,30 =
0(e) > 0. Then,

T € By = x(t;20) € Be,Vt > 0. (2.7)

Definition 3. The zero equilibrium point of (@) is contractive in a region D C R™ if

Vxo € D and

tlggo x(t; o) = 0. (2.8)
The region D is called Domain of Attraction (DoA) of the equilibrium point.
Definition 4. The zero equilibrium point of (@) is asymptotically stable if and only if it

is Lyapunov stable and contractive,

lim l‘(t;xo) =0,29 € Bé(e) cD, (29)

t—o0

where D is DoA.

In the following definitions, the essential results of the Lyapunov theory (second or direct
Lyapunov method), which connect the stability property with a specific type of functions,

are presented.

Definition 5. Assuming a continuous function V(z),V : D — R, where D contains the

origin. Then V(x) is positive (semi)definite in D if

V(z) > (2)0,Yz € D\{0}, (2.10)

V(0) = 0. (2.11)
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Definition 6. Function V(z) is negative (semi)definite if —V () is positive (semi)definite.

Definition 7. For discrete time systems (@), the total difference of function V(z),V :

R™ — R, respectively to system (@) 18

AV (@) = V(f(@) - V(). (2.12)
Then, the Lyapunov theorem for discrete time system is formulated as,

Theorem 1. ([78, |79]) Assuming a positive definite function V(x),V : D — R, then

o If the total difference AV (x)gd) of () is negative semidefinite Vx € D, the system

is locally Lyapunov stable.

e If the total difference AV (z)Ed) of () is negative definite Vo € D, the system is

locally asymptotically stable.

The function V' (x), which satisfies the above theorem, is called Lyapunov Function (LF).
From the previous analysis, the stability problem is equal to finding a positive definite
function which is non-increasing or decreasing along the trajectories of the system (@)
Finding an LF, allows for defining sets with special properties respectively to the equilibrium
point. For example, if there exists an LF V(z) that guarantees the stability or asymptotic
stability in a region D and the sets R(V;vy) = {z € R" : V(z) < v} C D are close and
contain the zero equilibrium point, then these sets consist an estimation of the DoA. The

essential definitions follow.

Definition 8. [80] The set S C R™ is positively invariant to (E), if and only if Vxg € S

the system trajectory remains inside S for all future moments x(t;xo) € S,Vt > 0.

Definition 9. [80] For a convex compact set S C R™ which contains the origin, the following

function is called the Minkowski function.

Ue(x)=inf{AeR:A>0,z € AS}. (2.13)

Then, the set S is e-contractive to (@), 0<e<1,ifVzgesS

U (z(t;20)) < € Wy(x0),t > to. (2.14)
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Now the connection between the Lyapunov function, the positive invariant set, the DoA

and the e-contractive set can be shown.

Remark 1. Assume the system (@) and a candidate LF V(z); if the set R(V;vy) = {z €

R™ : V(x) < v} is convex, compact and contains the origin, then the following conclusions

apply:

o If V(x) is an LF that guarantees Lyapunov stability, then the set R(V';~) is positive

invariant to system (@)

o If V() is an LF that guarantees asymptotic stability, then the set R(V;vy) C D is

positive invariant and DoA to system (@)

o IfV(zx) is an LF that guarantees Lyapunov stability and it applies that

AV(z)gd) < (e—1)V(2(1)),0<e< 1, (2.15)

then the set R(V;~) C D is e-contractive to system (@)

The most important benefits from the Lyapunov theory is the characterization of the
stability of the equilibrium point and the possibility of defining sets with interesting prop-
erties. For example, if an LF can be found, which ensures the asymptotic stability of the
equilibrium point of a constrained system z(t) € S, C R™, then any trajectory that begins
from a point inside R(V;~) C S, will be driven to the equilibrium point, without violating

the system constraints.

2.2 Basic Definitions of Markovian Random Fields

Let us continue with some necessary definitions regarding the Markovian Random Field
(MRF) structure, used in this thesis to model computational offloading problems and acquire
solutions in the area of resource allocation and workload balancing at the network edge. As
in [81], a finite set S, |S| = n, is assumed, with elements s € S referred to as sites or nodes.
Every site s is associated with a random variable X that expresses its state. Let the phase

space A be the set of possible states of each s € 5, i.e., X, takes a value x, € A. The
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collection X = {X,, Vs € S} of random variables with values in A consists of a Random
Field (RF) on S with phases in A. A configuration w = {xs : 5 € A, Vs € S} corresponds
to one of all possible states of the system and the product space A™, w € A™ denotes the
configuration space. A neighborhood system on S is defined as a family N’ = {N;}ses of
subsets NV, C S, such that for every s € S, s # N and r € N if and only if s € N,.. N,
is called the neighborhood of site (node) s. The RF X is called a Markov Random Field

(MRF) with respect to N, if for every site s € S,
PXy = 25 | Xp = xpyr # s8) = PXy = 2z, | X, = z,,r € N). (2.16)
A RF X is called a Gibbs Random Field (GRF) if it satisfies:
P(X =w)= Ee_T, (2.17)

where Z 1= e~ is the partition function and T is the temperature of the system.
U(w) is called the potential function and represents a quantitative metric of the current
state of the configuration w. The potential function is not unique. A very useful class of
potential functions, which will be employed in the studied approach, is one in which U(w)
is decomposed into a sum of clique (maximally connected subgraph) potential functions, as
U(w) = > ccc Ve(w), where C is the set of the cliques formed by the sites and each clique
potential V. depends only on the states of the cliques formed in the underlying system graph.
The Hammersley-Clifford theorem [82] asserts that a GRF with distribution P (X =w) =
%e*# and potential function expressed in terms of clique potentials leads to an MRF
with conditional probabilities P(X; = x5 | X, = z,.,7 # 5) = P(Xs = x5 | X, = 2,7 € Nf)
and vice-versa. This property will be also employed for the design of the potential function
and the implementation of distributed decision-making via Gibbs sampling.

More explanations on modeling and control theory, as well as MRF-related concepts will

also be provided in this thesis whenever needed.
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Chapter 3

Adaptive Resource Allocation
for Computation Offloading: A

Control-Theoretic Approach

3.1 General Setting

Contrary to the cloud computing environments where dynamic modeling and control mecha-
nisms have been extensively adopted [83], [84], little attention has been given to the optimal
use of the edge servers. In this chapter, a two-level cooperative resource allocation mecha-
nism for a single cluster of edge servers hosting a group of applications is presented, that
allows IoT devices/mobile users, within the coverage area, to offload application-specific
tasks. It should be noted, however, that user mobility within the cluster’s proximity has
not been considered in this setting; this problem is covered in the following chapters. The
proposed mechanism can on-demand allocate the edge servers’ resources to different appli-
cations using virtual machines (VMs). At the lower level, the dynamic operation of VMs
is captured by linear dynamics. Local controller components are responsible for regulating
allocated CPU shares and accepted offloading requests, according to a varying, however
bounded in a given interval, incoming workload. This comprises the Vertical Scaling part of

the mechanism. At the upper level, a horizontal scaling process is responsible for activating
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the essential number of edge servers and placing the appropriate VMs into them. This com-
prises the Horizontal Scaling part. In particular, the incoming requests are distributed to
the activated servers in order to serve the total demand. This process is orchestrated while

taking the local controllers into consideration, making this mechanism cooperative.

3.2 Related Work

One of the initial and influential works on MCC [85] proposed a dynamic VM synthesis of
a cloudlet infrastructure. The position paper [86] presented the potentials of MCC ecosys-
tems; wearable devices, Internet of Things (IoT) applications, automotive and industrial
environments alongside tactile Internet can leverage from the mobile-cloud convergence.
The extended survey [87] presented a definition of MCC, the vision and the challenges, a
taxonomy of heterogeneity in MCC and open issues. The survey paper [88] analyzed the
challenges of Fog Computing in terms of architecture, service and security and classified the
existing studies according to these criteria.

Surveys of existing computation offloading approaches are provided in [51], [89]. The
authors of [90] addressed computation offloading as an admission control problem in MCC
hotspots with a cloudlet, using semi-Markov decision process modeling and linear program-
ming. The resource constraints were considered when obtaining the optimal solution. A
similar dynamic offloading algorithm was proposed in [91]. Therein, the admission con-
trol problem on cloudlets was modeled and solved as a Markov decision process, aiming to
minimize the computation and offloading costs. Also the mobility of the users was taken
into account. Khojasteh et al. [92] presented two flexible resource allocation algorithms for
computation offloading. The resource allocation process and VM provisioning were mod-
eled by a Markovian multiserver queuing system with priority levels and a multidimensional
Markov system, based on a Birth-Death queuing system with finite population, respectively.
In [93] three resource allocation schemes were proposed for computation offloading. Several
stochastic sub-models captured the operation of a physical machine, under the policy of each
scheme. The Markov Reward Model was applied to obtain the output of the sub-models
and the decision criteria consist of the request rejection probability and mean response

delay. The authors in [94] proposed a hierarchical MCC architecture where users could of-
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fload their tasks, modeled by queuing models, either to local cloudlets or the remote public
cloud. Computation offloading was modeled as a generalized Nash equilibrium problem and

a distributed algorithm computed an equilibrium strategy for each user.

Many studies focus on energy-aware offloading. In the work of Xia et al. [l] a two-
tier MCC environment was adopted; mobile devices, cloudlets and the remote cloud were
described by static models and an algorithm that optimized the minimum residual energy
ratio was developed. Jalali et al. [95] proposed static, flow-based and time-based energy
consumption models. They presented a detailed energy consumption comparison between
cloud computing and fog computing architectures while taking the network equipment into
account. Their numerical results demonstrated how offloading leads to energy saving for
ToT applications. In the work of Kiani and Ansari [96], a task scheduling scheme for code
partitioning in a hierarchical cloudlet environment was proposed for two different use cases.
The one finds the optimal task scheduling for already defined radio parameters, while the

other optimizes both the task scheduling and the transmission power of the mobile devices.

Finally, there are some interesting studies that examine other problems in the area of
computation offloading. In the work of Barbera et al. [97], the feasibility of computa-
tion offloading and data backups in real-life scenarios was examined. Since communication
is not free, the authors focused on bandwidth and power consumption of WiFi, 2G and
3G technologies. A real testbed with smartphones and Amazon EC2 nodes was used for
thorough analysis. Xu et al. [98] focused on cloudlet placement in order to minimize the
average cloudlet access delay between mobile devices and cloudlets. A heuristic scalable
algorithm was proposed for the special case of homogeneous cloudlets. Jia et al. [99] used
the placement of Xu et al. [98] and proposed a load balancing algorithm to utilize fairly
a group of cloudlets. Queuing models were adopted for cloudlets and a scalable algorithm
computed the optimal request redirection such that the maximum of the average response
times at cloudlets was minimized. Trying a different approach, Liu et al. [100] proposed
a game-based distributed MEC scheme where the users competed for the cloudlet’s finite
computation resources via a pricing approach, modeled as a Stackelberg game. The algo-
rithms examined there were implemented in a distributed manner. In [L01], the authors
proposed two algorithms for maintaining the low end-to-end delay between the mobile de-

vices and the cloudlets when the users move around the network topology. The key idea
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lies in optimally deploying the mobile device’s corresponding VMs in the available cloudlets,
while adapting to the user’s movement. Dealing with the opposite data flow, i.e., offloading
from the cloud to the edge, the authors of [102] presented a collaborative content caching
system at the network edge. They developed a model to instruct the edge node to trigger on
demand caching when popular content has been identified. SDN techniques were leveraged
to manage and distribute the content among the access nodes in a coordinated manner.

A shortcoming of studies [1], [95], [97], [98] and [99] is that the modeling of the edge
servers captures accurately a single operating point and not the whole operating range.
On the other hand, for the various Markov process approaches [90], [91], [92] and [93], the
execution time of each request derived from a fixed service rate. However, these assumptions
on the static operating range and service rate apply only when the operating conditions
are close to that point. Furthermore, in the preceding studies, a systematic analysis on
satisfaction of the QoS specifications and the constraints is missing. This thesis aims to
address the aforementioned shortcomings. Thus, state-space modeling is used to capture
the dynamic behavior of the edge server under different operating conditions. The local
controller computes the system’s feasible operating (equilibrium) points while considering
different competitive criteria and guarantees the stability and confinement in a specific
area around them. The Horizontal Scaler takes these operating points into account and

determines the appropriate placement that serves the incoming varying workload.

3.3 Contribution & Outline

Specifically, to overcome the aforementioned drawbacks, a two-level, adaptive and coop-
erative resource allocation mechanism for a single cluster of edge servers hosting a group
of applications is proposed, which allows mobile users to offload application-specific tasks,
while offering control-theoretic based QoS guarantees. As mentioned in Chapter m, compu-
tation offloading mitigates the energy consumption of resource-constrained mobile devices
by relocating the execution of the compute-intensive tasks to a group of edge servers that
are placed in the Mobile Users’ spatial vicinity. This placement enables low-latency access
to the servers, contrary to accessing the remote cloud through the public Internet, which is

unpredictable when it comes to response times. Figure EI depicts the MCC computation
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Figure 3.1: MCC Computation Offloading Architecture

offloading architecture studied in this chapter. Specifically, the offloaded traffic, generated
from the mobile devices, is directed to the Horizontal Scaler through the local Wireless Ac-
cess Point (with WiFi, 3G/4G or LTE support). There lies the upper level control process
of the proposed mechanism; this component selects an appropriate VM placement to be
implemented to each edge server directly connected to it and consequently distributes the
incoming workload accordingly. This decision defines the number of active servers alongside
the number and the operating state of the VMs to be placed in them. This upper level
process is performed in an online and proactive manner, through the use of an internal pre-
diction mechanism, the Workload Predictor, described in more details in Subsection ,
able to estimate the incoming offloading requests in the following time window. The es-
sential input for this estimation process is provided by the Monitoring Service component,
which is responsible for collecting data regarding both the network traffic (e.g., offloading
requests issued, end-to-end response times) and the servers’ resources utilization (e.g., CPU
usage) at each given time. As mentioned earlier, this is the horizontal scaling part of the
proposed mechanism and the theory behind it is described thoroughly in Subsection .

At the lower level, each edge server is equipped with a Local Controller, able to create,
run, scale and stop application-specific VMs, thus assisting the realization of the selected
VM placement for the given time window. Additionally, the lower level control process is
implemented in this component, as it moderately scales the VMs vertically based on data
coming from the Monitoring Service. In this way, it ensures that the VMs remain within the
selected operating state, thus guaranteeing minimum and stable application response times.

The theoretical design behind this control process is described in more detail in Subsection
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Figure 3.2: MCC Computation Offloading Mechanism Workflow

Figure @ illustrates the workflow of the proposed MCC computation offloading mecha-
nism. In the proposed approach, the operation of the VMs is modeled by a group of Linear
Time Invariant (LTI) systems that are subject to additive exogenous disturbances. The
parameters of the LTI systems are identified by experimental data. At first, for each LTI
system, a feasible equilibrium of the nominal disturbance-free model of the VM, (x.,u.),
is computed. Each equilibrium point corresponds to an operating state (flavor) of the VM
without assuming disturbances. For example, an operating point might correspond to 3 re-
quests per second, utilizing 20% of CPU allocation and resulting in an average response time
of 3sec. For each equilibrium point a linear state feedback controller, meaning the control
gain k, is designed by taking the disturbed system into account, within the Local Controller
component. Specifically, by regulating the assigned CPU allocation and the number of ad-
mitted requests, a controller is designed such that the closed loop system (i) is stable, (ii)
satisfies the constraints and the QoS specifications at all times and for any initial condition,
starting from within the constraint set, and (iii) behaves optimally in steady state. Since
the proposed resource management mechanism offers guaranteed response time to mobiles
users, the offloading decision breaks down to a simple comparison between the estimated
execution time on the mobile device and the guaranteed response time provided by the edge

SErvers.

At the upper level, for each application the Horizontal Scaler receives an estimation of
the forthcoming requests A, made by the Workload Predictor component, and the set of
the feasible operating points (z., u.), computed by the feedback controller, as input. Then,
based on this information, it decides the minimum number of active edge servers and the VM

placement to be implemented in them, towards the satisfaction of the total demand for each
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application. This cooperation of the two control levels ensures that the selected operating
point of each VM from the Horizontal Scaler will be realized by the feedback controller
of the VM. Briefly, the basic contributions and differences of the proposed approach and

framework are summarized as follows:

1. this modeling approach can accurately capture the dynamic behavior of the application-

specific VM under different operating conditions.

2. a multitude of feasible operating points can be calculated, considering different per-
formance and utilization costs, which allows to design different control strategies for

different pairs of workload and applications.
3. formal guarantees regarding resource allocation and QoS specifications are provided.

4. the minimum number of edge servers is activated to satisfy the overall workload of all

applications, based on the set of the feasible operating points of the lower level.

3.4 System Modeling

In this setting, a number of N > 1 different applications are hosted in isolated VMs in an
edge server. For each application and for a range of incoming request rates, a scalar discrete

LTT system is identified. To this purpose, let
A(t) € [Am, Apr],

denote the incoming Request Rate (RR) per second at time instant ¢, which is varying in
an interval [A,,, Aps]. The range of incoming RR is divided in L subintervals of the form
[Aims Niv] C [AmsAu], i =1,..., L. Consequently, for each application and each request

rate subinterval a linear system with additive disturbances is identified of the form

z(t + 1) = max{az(t) + bu(t) + w(t), 0}. (3.1)

In the above equation, x(t) is the average response time, u(t) = [u1(t) wua(t)]T € R? is
the input vector and w(t) € [Wm, war], wm < 0 < wyy, is an unknown, however bounded,

signal, which accounts for the disturbances induced by the communication between the edge
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server and the mobile users and the modeling error of the identified model. In this case,
focus is placed on CPU intensive applications, thus, VM memory is statically assigned and
not included in the linear systems. However, the Horizontal Scaler takes memory constraints
in the VM placement problem into account, as it described in Subsection . To simplify
notation, the exposition is not indicated to be done for system (i), since this is arbitrary
chosen.

The input uy € [u1m,u1a] corresponds to the allocated CPU share of the VM whereas
ug € [Aim,Ni ) is RR the controller admits. The parameter a > 0 is a known scalar
while b € R'*2 is a row vector. Both a,b can be estimated using the Recursive Least
Square (RLS) algorithm [103]. The maximum operator in eq. (@) ensures that there are
no negative average response times in the model.

The state and input variables z and w are inherently constrained due to the finite re-

sources and the control specifications. In particular,

Xi={z: 0<z(t) < Xn}, (3.2)
U:={u: upy <u(t) <upu}, (3.3)
for all ¢ > 0, where u,, = [u1m ALm]T, up = [uine Ay

By having a set of models (@) corresponding to different RR intervals, a better level
of accuracy is provided than a single LTI model for the whole range of RR. Additionally,
the number of models scales linearly with respect to L, since the co-hosted applications are
considered decoupled and depend only on the number of subintervals of the RR.

At the lower level, the local controllers focus on the joint resource allocation and admis-
sion control of edge servers in order to perform guaranteed response time under the varying
workload of the consolidated applications. For the lower control level (vertical scaling), the
main goals are summarized as follows.

P1. Consider system (@) subject to the constraints (@), (@) that corresponds to a
certain incoming request rate. Given a desired response time, find a feasible operating
region for the system (@), which is optimal with respect to a well defined cost.

P2. For each operating condition calculated in P1, compute an admissible control strategy,

which steers the closed loop system to it and respects the constraints at all times.
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The following table sums up the main symbols used in the next subsections, alongside

their description:

Table 3.1: Notation Table

Time instant
Incoming Request Rate per second (RR)
Average Response Time (sec.)
Input u(t) = [u1(t) wua(t)]"; uy is the allocated VM CPU;
us is the RR admitted at the VM
(e,u.) Feasible Operating Point
Statically allocated VM memory
Communication disturbances
b LTT system parameters
Control gain
State and Input Constraints
Invariant set
The Set of Feasible VM placements
Number of edge servers
Predicted Incoming RR

e 8 > <+

Sm YO R TR s
e

3.5 System Architecture

3.5.1 Vertical Scaling

In this section, a discussion on how this approach tackles the problems P1, P2 simultane-
ously is made. In specific, an optimization problem is formulated whose solution retrieves
both the operating condition and the control strategy. This approach is less conservative
than the multi-step approaches in the literature [104], [L05].

Let us consider an admissible equilibrium pair (z.,u.) for the disturbance-free system

(@), i.e., when w(t) = 0, for all ¢ > 0. Clearly, z. and u, satisfy the equation
Te = e + bu,

and satisfy the constraints (@), (@) An affine state feedback control laws of the form is

considered

u(t) = k(x(t) — xe) +ue, t>0, (3.4)
where k € R? is the control gain and u, € R? is a constant vector. A state and input
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coordinate transformation is applied by introducing z(¢),v(t), defined by

Consequently, the closed-loop form of the system (@) with the control strategy (@) be-

comes

z(t + 1) = max{(a + bk)z(t) + w(t), —x.}. (3.5)

Contrary to the nominal, disturbance-free case, for the actual system (@) each operating
condition refers inevitably to a set of average response times = rather than a singleton due
to the presence of additive disturbances. This set is known in the control literature as the
minimal robust positively invariant set or the 0-reachable set [106], [107]. It represents the

set of states that can be reached from the equilibrium point under a bounded disturbance.

Definition 10. Consider system (@) An interval 8 = [$m, Snm) is called an invariant sedl
for system (@), if z(0) € S implies z(t) € S, for all t > 0 and any w(t) € [Wm,wpr]. If,
additionally, |a+bk| < 1, an interval Spmin @s called the minimal invariant set with respect to
(@) if it is invariant and it is included in any other invariant interval. Last, consider the
constraints z(t) € Z = [zm, 2m). The interval Spmax C Z is called the maximal admissible

invariant set with respect to (@) if it is invariant and includes any other invariant interval.

Computing the minimal invariant set exactly is difficult, since in the general case it is the
limit of a set sequence which converges only asymptotically. Nevertheless, in this case since
it was preferred to utilize scalar systems, it has an analytical description. This fact allows

the simultaneous characterization of a stabilizing control gain and the minimal invariant set.

1By invariance, robust positive invariance is meant, or D-invariance, see, e.g., [IL07],[L0§].
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Theorem 2. Let z. € R,u, € R? and k € R? satisfy (@)7()

(1 —a)ze = bue, (3.6)
0<z. <zpy, (3.7)
Uy < e < upg, (3.8)
W
M < — .
T—a—bk ="M~ " (3.9)
0<a+bk<l, (3.10)

Um — Ue Up — U . UM — Ue Um — U
m e M e}ékﬁmln{ M e m e

b) b
Ty — Te —T, Ty — Te —T,

max{

The following hold.

(i) The set

Smin = [max{me + lfua}fibk ) 0}7 Te + lfué,il\fbk} (312)

is the minimal robust positively invariant set with respect to the system (@) under state

feedback (@)

(i) The set Smax = X is the mazimal robustly invariant set with respect to the system (Ell)
under state feedback (@)

(iit) For any initial condition x(0) € Smax and any positive number €, there is a time T > 0
such that

T) — | < e. 3.13
Jnax lz(T) —y| < e (3.13)

Proof. (i) From (@)f(@), Z. is an admissible equilibrium point for the nominal system
(@) with control input u.. By () and [, Theorem 4.1], the minimal invariant set

with respect to (@) is given by the limit of the forward reachable sets sequence. In this

case, this sequence is defined by the iterationE

Ro = {0},

Riy1 = ((a + bk)Rz D [wm,wM]) N [—l’e, OO)

2For two sets X', Y, we have Y @Y = {z+y:z € X,y € V}.
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Since we are dealing with intervals, it is straightforward to see that for any ¢ > 0

i—1 i—1
Ri = |max Z(a + bk)zwmy —Ze ¢ Z(a + bk)ZwM ’
k=0 k=0

and consequently, the minimal invariant set for the system (Ell) is directly given by ()
(ii) By setting z = x — ., it is shown that Spax = S1 N S2, where St = {2z : Uy, — ue <
kz < up —uet and Sy = {2z : —x. < z < xp — x.}. Specifically, it is shown that Sy is
invariant and also So C S;. Since Sy is the translation of the state constraints X in z, the
claim will be proved.

To this purpose, for Ss, it is first assumed that w = wy; then from (@) we get w <
(1 —a—bk)(xp — x.). Considering the maximum value of S zg = xp — x,, then z; =
Ty — Te, 21 € So. Accordingly, considering the minimum value of Sy 2y = —x,, then
z1 = (1 — a — bk)xp — x. and by applying () we still get that z; € Sa. Next, let
us assume that w = w,; as it stands, w,, < wys so the aforementioned paradigm let us
conclude that z; € Sz. Thus, by induction, it is concluded that —x, < 2441 < 2 — . While
2t € Smax, for all ¢ > 0 and any w(t) € [wpm, war].

To show S; D 8o, it suffices to show that —z, € S; and zp; — z. € S1. Indeed, for

z1 = Tpr — Te it holds that

U — U UN — U
m e S k S M e7
Ty — Te Ty — Te
while for z; = —x, we have that
UN — U U — U
M T e c < m e
—Te —Te

Both sets of the inequalities are satisfied due to the hypothesis () Consequently, S 2 Sa
and since Sy invariant, Sy is invariant and admissible as well. Maximality of Spax follows

directly by observing that any xg ¢ Smax violates the state constraints (@)

(iii) It is shown that any trajectory beginning from Sy,.x is driven asymptotically (in fact
exponentially) to Spin. To this purpose, for any zp € Spax then after ¢ time intervals it
holds that,

i—1

zi = (a+ bk) 2 + Z(a + bk) wj, (3.14)
=0

54



where w; € (W, wn), § =0,...,i —1. By (), the first term in () converges to zero
exponentially, while the second term, as shown in (i), is bounded in Sy, Thus, given any
€ > 0 and setting a + bk =1 < 1, from () we have that since zg € Spax, then necessarily
2i € I'Smax @ Smin. Consequently 2z; € Smin.

Since Smax and Sy, are intervals containing zero, a positive scalar can always be found
d such that Spax = dSmin, thus z; 11 = (I*d + 1)Spmin. Thus, () can be satisfied for any
T such that (I"d + 1)Smin < (1 + €) Smin, or, T > log; <.

O

Remark 2. Any choice of the control gain k that satisfies the relations (@) and (@), will

render the whole constraint set as invariant.

Theorem 2 characterizes simultaneously the minimal invariant set and the gain of the
associated control law. More importantly, it provides a tractable method of retrieving
Smin and k. Specifically, for each model of (@) and given the equilibrium z., a feasible
equilibrium pair (x., u.), close to the pair of the desired values (z.,u}), and a state feedback
control law of (@), which steers the closed loop system inside the minimal invariant set,

can be calculated by solving the following linear programming problem,

min [|ue — oo (3.15a)
subject to

(1 —a)xe = bue (3.15b)
U, < Ue < Upgp (3.15¢)
bk<1-—a— % (3.15d)
—Ue — (T — Te)k < Uy (3.15¢)
Ue + Tk < ups (3.151)
U < Ue + (T — )k < unyy (3.15g)
Uy, < Ue — Tk < upr (3.15h)
0<a+bk<l (3.151)
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where constraint () ensures that (x.,u.) is an equilibrium pair, () means that the
input constraints are satisfied. The constraint (), identically to (@), indicates that
(e, ue) belongs to Smin, whereas the constraints (B )—() are an analytical description
of () ensuring that (x.,u.) belongs to Spax. Finally, the constraint (B.151) is identical
to (B.10).

Apart from the guarantee of the QoS metrics, the computed feasible operating points
are used by the upper control level to determine the operating state of the activated VMs.
The Horizontal Scaler, as it is described in Section , selects the operating area of each
activated VM from the set of feasible operating point. Complementary to this, the local
controller ensures that the chosen VM operating state will be realized by the described

vertical scaling approach.

3.5.2 Horizontal Scaling

As discussed earlier, the upper control level consists of two essential components; the Hori-
zontal Scaler and the Workload Predictor. The former aims to implement the appropriate
VM placement on the minimum number of active edge servers, in order to satisfy the total
workload of the co-hosted applications. The latter estimates the workload for the following
time window, based on the previous actual value measured. This control level considers
a cluster of edge servers located in a single place. Load balancing between geographically

dispersed edge server clusters is not goal of this work, but is part of future research.

Horizontal Scaler

The Horizontal Scaler aims to compromise the mutually exclusive goals of performance and
resource utilization. In particular, since the edge servers’ resources are not abundant, un-
regulated performance demands for a single application would require the high allocation
of computational resources on all servers, leaving the co-hosted applications in resource
starvation. This is not desirable if the QoS requirements are met with less resources. The
Horizontal Scaler component is responsible for optimizing the VMs’ instantiation and for
distributing the total requests of the implemented applications among them. The optimiza-
tion objective of this approach is to minimize the number of the active edge servers, with the

constraint of meeting the total workload demands. This indirectly results in reducing the
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consumed energy and optimally allocating the resources in the server side. The proposed
Horizontal Scaler component leverages the fact that the size of a cluster of edge servers is
small compared to a cloud datacenter, thus a heuristic solution can be reached with small
computation effort. In this approach, the assumption that each edge server hosts at most
one VM per application is made. Taking this into consideration, the Horizontal Scaler’s
functionality breaks down in two steps; at the first off-line step, it computes all the feasible
VM placements within a single server, based on the set of the VMs’ feasible operating points.
These feasible placements are the ones where the total CPUs and memory required from the
co-hosted VMs’ operating points do not exceed a predefined threshold. Since memory is not
considered as a control variable, a static portion of memory r. is assigned to every feasible
operating point. For example, assume two applications App® and AppY; a VM running App®
and instantiated at an operating point which requires 25% allocated CPU and 4GB of RAM,
alongside a VM running AppY and instantiated at an operating point, which requires 55%
allocated CPU and 8GB of RAM, is a feasible VM placement for a single edge server, as
the total allocated CPU and memory do not exceed the threshold Cg, set at the 90% of the
server’s total CPU capacity and Rg set 32 GB of RAM respectively. More formally, the set

of all feasible VM placements is defined as,

N N
P = {pi = ((u}e,ri),...,(uﬁ,ré\l),), izl,...J\f:Zuie §CE7Z7“§ < Rgp}
i=1 i=1

Then, assuming this set P, this set’s cardinality |P| and the total number of the edge servers
FE, it determines the number of servers to be activated E 4, by solving the following mixed

integer linear program in an on-line fashion,
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[min {E4} (3.16a)

subject to

fi>0,i=1,...,|P| (3.16b)
|P|

Ey= Z fi (3.16¢)
=1

0<Es<E (3.16d)

L

d fuj, >N, j=1,...,N (3.16¢)

=1

where the positive integer variables f; denotes how many servers with the p; VM placement
of set P need to be activated. As the constraint () denotes, the sum of these variables
is equal to 4. The constraint () simply restricts these activated servers to the total
number of the edge servers. Finally, the last N constraints of () denote that the esti-
mated total workload for each application A , as it is computed in the following subsection,
is satisfied by the selected VM placements. It is important to point out that the Horizontal
Scaler component is triggered only if a significant variation in any of the application’s work-
load occurs. This intends to avoid the frequent server activation/deactivation, which leads

to oscillation of resource allocation and degradation of the VM’s performance.

Workload Predictor

For each application, the total incoming RR is estimated by the Holt linear exponential
smoothing filter [109] that captures the linear trend of time series. For any time interval i,

the one-step prediction A(i) of the incoming request rate A(4) is:

Ai) = AGD) + (i),
AG) + (1 — a)(A(i — 1) + (i — 1)), (3.17)
BA®) = Ali = 1) + (1 = B)e(i — 1).

S =
~. —
~— )
N—
I I
o

where «, § are smoothing constants, A(z) is the smoothed value and ¢(i) denotes the linear

trend in the measurement series. For the initialization, a random value of A(O) is used within
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the range of the incoming RR and ¢(0) = 0.5.

3.6 Experimental Evaluation

In this section, an experimentation on the proposed computation offloading mechanism is
presented together with the respective results. These results illustrate the success of this
approach in guaranteeing the stability of application response times within an acceptable
margin. The optimization of the resource allocation in terms of edge servers activated to
serve the incoming workload is highlighted. Moreover, an experimental comparison between
the vertical scaling part of this mechanism and [Il]] is demonstrated. The benchmarking is
performed using CloudSim Plus [110], a simulation environment suitable for cloud computing
and MCC experimentation, on a dual-core, macOS powered system with 8GB of available

memory.

3.6.1 Horizontal Scaler’s Complexity

Before proceeding with the detailed presentation of the experimental setup used throughout
the detailed evaluation study and the presentation of the corresponding performance of the
proposed computation offloading mechanism, some initial numerical results are presented
regarding the complexity of the Horizontal Scaler. As expected, the problem solved is
a combinatorial one expressed as a mixed integer linear program in (16). For treating
the mixed integer problem of the Horizontal Scaler the GLPK solver [111] is used. The
problem under consideration is generally NP-Hard and the lower bound of the computational
complexity of the Branch-and-Cut algorithm used to find a solution is exponential [112].
Specifically, in the following, the performance of the Horizontal Scaler is analysed considering
the dominant parameters of the optimization problem: the number of mobile applications,
the total number of the feasible operating points of all applications and the number of
available edge servers.

Figure @ illustrates the effect of the preceding parameters. The left panel demonstrates
the effect of the number of the feasible operating points. Three applications are co-hosted in
a cluster of servers and the number of available operating points per application varies from

3 to 6, which produces a set P with a cardinality of 27 to 116 respectively. Subsequently,
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Figure 3.3: Analysis of Horizontal Scaler’s Computational Complexity.

the computational time of () increases accordingly. The middle panel of Figure @
shows that the computational time also increases as the consolidated applications grow
in numbers. More applications lead to more operating points, and consequently to the
exponential increase of the computational time. Finally, at the right side of Figure @7
the effect of the number of the available edge servers is illustrated. As observed by the
corresponding results, this parameter substantially affects the computational time only when
the number of active edge servers is high. However, it should be noted that mobile edge
computing, contrary to the traditional cloud environment, is usually based on small/medium

data centers that typically are expected to host few applications.

3.6.2 Experiment Setup

In this simulation, which spans around 4h and 10mzen, or 15000sec, three physical machines
with 32GB of RAM which are utilized as edge servers; as mentioned earlier, each of them

is manually restricted to hosting at most two isolated VMs, each of which realizes one of

Table 3.2: VM Operating Points (¢, U1e, Uze, Te)-

VMs of App? VMs of App?
(0,0,0,0) (0,0,0,0)
(3,25,2.95,4) | (3.75,25,3.23,4)
(3,35,4.63,6) | (3.75,35,5.29,6)
(3,45,6.18,6) | (3.75,45,7.38,6)
(3,55,8.02,8) | (3.75,55,9.58,8)
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the two supposed applications, (N = 2), named App! and App?; the edge servers are also
restricted to hosting no more than one VM per application. More specifically, this notation
is followed: V M;; corresponds to the VM running on the 44, server and implementing the
Jen application. The mobile traffic is simulated with a Poisson distribution of requests
arriving at the Horizontal Scaler component, while the length of each request follows an
Exponential distribution. For both applications, the incoming offload RR varies between
1 and 25req/sec. However, for each of the application-specific VMs, the distributed RR
range is divided in the following four subintervals: [0,3.5], [3.5,5.5], [5.5,7.5] and [7.5,10].
A model of (@) is identified and an equilibrium point and a control law are computed
by solving () through () for every subinterval. Thus, in total eight systems and
their respective controllers are identified offline. The worst acceptable response time for the
offloaded requests is set to 6sec and 7.5sec for App! and App? respectively. The desired
average response time of the equilibrium points of the applications are set to the half of
these values, 1 = 3 and 22 = 3.75. Indicatively, Table @ depicts the operating points
computed for both applications (z%,u},, ub,,r?). The first operating point, with zero input
and average response time, corresponds to an inactive VM. Table @, also, justifies the
assumption of hosting only one VM per application per server. For example, co-locating
two VMs of App!, namely running on the second operating point of Table @ would result in
cumulatively serving less offloaded requests on average than deploying a single VM running
on the fourth operating point, though the latter choice would result in allocating less CPU.

This is a consequence of the related operating overhead of each separate VM deployment.

As described earlier, at the end of the time window, i.e., every 30sec, the Workload
Predictor estimates the incoming RR, for the next window. When the previously predicted
RR and the currently predicted RR, have an absolute difference greater than a predefined
threshold, specific to the nature of this application, the Horizontal Scaler is triggered and
selects the appropriate VM placement to be instantiated at the edge servers. For the par-
ticular applications, this threshold is set at 3req/sec. The duration of this time window is
selected after considering the maximum time it would take for an in-range user to take the
decision to offload, connect, offload and receive the results. During this window the request
rate remains relatively stable. Much larger time window would fail to adapt to the changes

in the request rates, while much shorter time window would probably result in unneces-
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Figure 3.4: Incoming Offloading Request Rates for both App' and App?.

sary invocations. Furthermore, the control interval of 30sec appears to be adequate for the
computation of the VM placement by the Horizontal Scaler, as it is later shown in Section
. However, for other types of applications, this control time interval could be selected
differently: on the one hand to, it could be larger than the computational time of the mixed
integer problem that needs to be solved and, on the other hand, it could be large enough to

properly follow the variation of the incoming requests.

3.6.3 Numerical Results

The results depicted in Figures @ through @ are used to evaluate the efficiency of the
proposed mechanism in the preceding scenario. Figure @ depicts the fluctuations in the
actual (red line) and the predicted (blue line) RR per application during the experiment.
For both applications, the actual incoming RR is altered every 50mzin, or 3000sec. Figures
@ through @ illustrate the measured average response time and the inputs per VM in
each server respectively; the left graph of each figure depicts the actual application response
time (red line) together with the boundaries of the positive invariant sets, Spin (blue line)
and Sy,q. (black line). The middle shows the actual RR served by the respective VM on the
edge server (red line), together with the RR rejected by the particular VM and sent back
to the mobile device for execution (black line). The nominal RR value of the selected VM’s
operating point is also shown (blue line). In the right graph, the actual CPU share allocated
to the VM is shown (red line), alongside the operating point’s nominal value (blue line), for

each given moment.

It can be observed, in the left graph of subfigures , and , that the aver-
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Figure 3.5: Average Response Time, Request Rate and CPU Share Allocation of VMs in
first server.

age application response time for App! remains between the given constraints, despite the
workload fluctuation. The similar results are observed in the left graph of subfigures ,
and for App?. This means that the theoretical guarantees of Theorem 2 (i) are
translated in the response times not exceeding the boundaries of the minimal invariant set,
Smin and Spax. The middle graphs of Figures @ through @ depict how the Horizon-
tal Scaler adapts to these fluctuations and selects the appropriate placement, in terms of
number of active edge servers, VMs and their operating points, in order to meet the de-
manded RR. As shown in Figure @, it activates one edge server between 0 — 3000sec,
6000 — 9000sec and 12000 — 15000sec; two edge servers between 9000 — 12000sec and three
between 3000 — 6000sec. Of these incoming workload fluctuations, the rapid ones, e.g.,

around the 3000sec area, allow to also demonstrate the Local Controllers’ functionality; in
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Figure 3.6: Average Response Time, Request Rate and CPU Share Allocation of VMs in
second server.

such situations, the Workload Predictor component requires a time window to adapt, due
to the fact that the estimated RR value is based on the previous actual incoming RR value.
This results in the Horizontal Scaler failing to select the appropriate VM placement for
the specific time window. However, each VM’s Local Controller proves to be en garde by
rejecting the excessive offloading requests and redirecting them back to the mobile device
for execution, in order to guarantee the stability of the response time. This guarantee is
also provided by the Local Controller in the form of vertically scaling the VM; the Workload
Predictor’s minor inaccuracies are handled by moderately regulating the CPU resources and
the accepted RR within limits of the operating point’s area. This procedure is illustrated in
the middle graph of each subfigure of Figures @ through @; when the RR accepted in the

VM has reached the value calculated from the Local Controller for the selected operating
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Figure 3.7: Average Response Time, Request Rate and CPU Share Allocation of VMs in
third server.

point, the excessive, rejected RR, which as a consequence is relocated to the mobile devices
for execution, is increased. Also at the third graph of each subfigure, where some minor
fluctuations are observed in the actual CPU share from the respective nominal values of
the operating point. It is important to remark that for every VM and for the most part of
the experiment, the actual and the nominal values of the CPU share overlap, making only
the blue line observable. Furthermore, some short sudden changes in the selected operating
points of the VMs, depicted in the second and third graphs of the subfigures, occur due to
certain spikes in the incoming RR; these spikes are so acute that the Horizontal Scaler’s
trigger condition is satisfied. Consequently the appropriate VM placement is recalculated
with the updated operating points. It can be seen that it is this combination of horizontal

and vertical scaling that results in the overwhelming majority of offloading requests being
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successfully served; 95.18% of the total requests for App! and 98.74% for App? respectively.

Another interesting remark is that the Horizontal Scaler selects a VM placement, which
minimizes the number of active servers but not necessarily the total allocated CPU share.
This happens due to the structure of the optimization problem’s objective function in ()
One approach to additionally include this optimization objective in this framework would
be to revert to multi-objective optimization, either by using preemptive optimization or a
multi-objective cost. However, this would significantly increase the time complexity of the

decision-making part without envisioning substantial benefits.

3.6.4 Comparative Results

A second experiment better demonstrates the performance of the proposed vertical scaling
mechanism alone and compares it to [l]. This is an energy-aware offloading approach, which
uses edge server VMs with fixed CPU shares allocated. The offload decision depends on an
SLA threshold for the response time of the offloaded requests, named Ty. At the end of
each time window, i.e., every 30sec, an estimation of the incoming RR for each application
is computed by () and the input vector is updated according to (@), regarding the
following window. The upper left graph of Figure @ depicts the actual response time
and the boundaries of Sy, and Spax for Appl. After the initial interval, the response
time steers from Sp.x, Which is equal to X, to Spin and remains within. This proves the
validity of Theorem 2 (iii). In particular, by computing the control law solving the linear
program () through (), the convergence to the minimal invariant set is shown. The
upper right graph shows the average response time for allocated CPU = 25%, 45%, and
Ty = 6 of the approach [[l]. In the first quarter of this graph, the SLA is violated for the
under provisioned VM with CPU = 25%. The second row of Figure @ again illustrates the
request rates served by the edge server and the mobile devices. On the left side, the discussed

approach seems to adapt well against the various incoming RR. Once again, the observed
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Figure 3.8: Active VMs in Edge Servers
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Figure 3.9: Evaluation and comparison of proposed approach with [[]

rapid fluctuation of the served requests exist due to false predictions of the incoming RR.
As expected, this does not affect the response time. On the right side, it seems that the
use of T, restricts the amount of requests directed to the edge server. This explains the
better response times of the upper right graph. For the proposed offloading mechanism,
the requests served at the edge server approach 95.54% of the whole workload, whereas for
[1] this percentage is limited to approximately 76%, for both CPU shares. It is clear that
the proposed approach performs better against the varying workload because of the vertical

scaling of the VMs.
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Chapter 4

Control-based Resource
Allocation for IoT in Natural
Disaster Applications in Edge

Computing

4.1 General Setting

As mentioned in Chapter B, dealing with natural disasters, especially firefighting, can be
an interesting field for the application of computation offloading mechanisms, since they
can contribute to early and precise detection of forest fires, the most important step for
in-time intervention. Thus, in this work, an extension of the work presented in Chapter E is
integrated in a Cyber-Physical Social System (CPSS), together with computing, networking
and human resources, for early fire detection.

Specifically, in this setting, at the bottom level, a network consisting of static or mobile
IoT nodes (i.e., UAVs) monitors forest areas for detecting fires at their initial stage. Following
the machine learning trend [113], these nodes are equipped with embedded camera modules

to enable computer vision-based fire detection. Thus, at the middle level, a Scalable edge
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coMputing framewOrK for early firE detection (SMOKE), hosts two image classification
services, which process field snapshots captured from the IoT nodes. SMOKE is actually a
dynamic resource scaling mechanism for IoT-enabled, time- and mission-critical applications,
meant to be deployed at a cluster of servers at the network edge, in the nodes’ proximity,
assisting the offloading of computationally intensive, energy hungry tasks. At the top level, a
Cloud-based decision-making service combines the classification results of the previous level,
users’ actions on the social media and other services, such as weather information services,

in order to accurately infer the fire incident severity and notify the responsible authorities.

4.2 Related Work

In this section, the most interesting studies in bibliography from the perspectives of IoT,
Edge and Cloud Computing, social media and image-based wildfire and/or emergency de-
tection are presented.

Zhang et al. [114] composed a study on the application of IoT infrastructures on the fire
fighting industries. In that work, the status quo regarding the usage and the main charac-
teristics that make IoT devices appealing, was presented, while, subsequently, suggestions
on the wider adoption of them in the fire fighting domain, were discussed, with China as
the main example. In the same direction, the authors in [115] analyzed the trend of lever-
aging Cloud Computing and IoT techniques on agriculture and forestry. On the first part,
several relevant applications of these paradigms were listed; there, forest monitoring for fire
prevention held a significant place. On the second part, ideas on the combination of those
two for maximizing vegetation benefits were proposed. Another IoT setting, this time in
the form of a Wireless Sensor Network, was studied in [116], to support early fire detect-
ing activities; this work briefly discussed some indoor as well as forest based installations.
Finally, on their search for additional flexibility, the authors in [117] used images captured
from UAVs to detect forest fires. The Forest Fire Detection Index was utilised, alongside
other classification methods for vegetation classification and tonalities of flames and smoke
in order to assess the spread rate.

One of the difficulties that software systems, which aim to integrate multiple infor-

mation sources, have to face, is the homogenization of data. This issue, also known as
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data interoperability, is one of the key requirements in building cross-domain IoT applica-
tions and it gets even more complicated when the goal is to combine information sources
from completely diverse software services areas (e.g., IoT and social networking services).
There are various ongoing standardization efforts toward this scope and organizations such
as IEEE Standards Association, AIOTI, oneM2M and W3C are in collaboration trying to
reach consensus on defining common APIs and data models within the IoT application
domain [11§]. In addition, and with regards to Machine-to-Machine interoperability the
European Telecommunications Standards Institute (ETSI) contributes to the worldwide
standardization efforts along with OneM2M through the oneM2M Global Initiative in order
to standardize a common M2M service layer platform for globally applicable and access-
independent M2M services [119]. In the study [120], authors defined a common approach
and data model able to represent in a uniform way information both from IoT environment
and social media services. The data homogenization issue in the presented approach is tack-
led based on the adaptation of semantic and syntactic interoperability mechanisms which

are detailed presented in [121, 122, 123].

In the case of wildfires, social media can be a powerful crowd-sensing tool for situation
awareness and fast data diffusion. A review on the use of social media on forest fire detec-
tion was presented in [124]. This study categorized the wildfire risk management systems
and the social media methodologies followed, crowd-sourcing applications developed and
social media frameworks deployed for disaster management. Furthermore, a sensing pro-
cess based on social media data management and a general architecture of a wildfire social
sensor management platform were proposed. The following social media-based studies are
the most relevant to the discussed approach. Wang et al. [125] provided a Twitter-based
spatial, temporal and content analysis for wildfires. The Kernel Density Estimation (KDE)
method was used to analyze the possible spatial patterns of the tweets referring to the
wildfires. This analysis was also combined with the temporal evolution of the tweets and a
term frequency analysis to validate the ability of social media to characterize an emergency
over time and space. Also, other parameters, such as the influence of the opinion leaders,
were taken into account. Twitcident [126] was a web-based system connected to emergency
broadcasting services that automatically searched, filtered and classified emergency situa-

tions. Additionally, analytical tools and users were allowed to make customized searches for
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specific events, including wildfires.

In the 5G context, dynamic scaling of Edge and Cloud Computing resources, i.e., the
on-runtime, on-demand provisioning of the amount and type of server resources, plays a
key role for the performance guarantee of time- and mission-critical applications. On the
contrary, a priori, static resource provisioning fails to deal with unanticipated changes in
resource demands [127]. As explained earlier in Chapter E, resource scaling can also be clas-
sified as either Vertical or Horizontal. With the term Vertical Scaling, a reference is made to
the ability of increasing/decreasing the capacity of existing virtual machines or containers
by dynamically adding/removing CPU cores, RAM or storage; on the other hand, Hori-
zontal Scaling deals with the activation/deactivation of servers and the number of virtual
machines or containers to be placed in them. It is reminded that the interested reader can
refer to [12§8] for a complete survey on Cloud elasticity. Leontiou et al. [84] proposed a
hierarchical vertical and horizontal scaling framework for Cloud services. At the bottom
level, fuzzy Takagi-Sugeno systems were used to model the dynamic operation of the VMs
and a robust controller was designed to guarantee the Quality of Service (QoS) require-
ments and a stability analysis was discussed. At the top level, an unbounded knapsack
problem was solved in order to simultaneously tackle the application placement within the
active servers and the load balancing of the incoming requests into the VMs. Saikrishna et
al. [129] proposed an algorithm to develop a multi-objective switching controller that en-
sured asymptotic stability with pole placement and addressed the problem of performance
management of a web-server hosted on a private Cloud. Moreover, in [L30], Grimaldi et
al. used a PID gain scheduler to horizontally scale the available resources dynamically and
achieve a desired CPU use. Similar to this work, the authors tried to maintain the control
error close to zero by splitting the operating spectrum of each VM to distinct regions and
solving an optimization problem to calculate the controller gains within them. Finally, the
authors of [131] used operating regions, as well, and designed specific models to represent
the behavior of each one of them; multiple fixed PI feedback controllers which alternated
on runtime based on the operating region, comprised a switching control system that dy-
namically allocated CPU capacity to the VMs in order to achieve a desired average response

time.

Contrary to Cloud Computing, little attention has been given to the dynamic resource
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scaling in Edge Computing settings. The resource provisioning problem on Edge Comput-
ing is usually dictated by the computation offloading strategy. Again, as explained in the
previous chapter, Computation Offloading is the process of redirecting the heavy processing
tasks of mobile or IoT devices to a nearby Edge Computing infrastructure for execution.
Most of the proposed computation offloading studies used fixed modeling and static resource
provisioning for the Edge Computing resources. However, these resources are, as mentioned
earlier, limited and a dynamic resource scaling approach is necessary to guarantee QoS.
Jia et al. [99] proposed a load balancing framework for geographically spread cloudlets, i.e.,
small-scale data centers or clusters of computers designed to quickly provide Cloud Comput-
ing services to mobile and IoT devices, within close geographical proximity. The operation of
each cloudlet was modeled with the use of queuing models and static provisioning of cloudlet
resources was adopted. A scalable load balancing algorithm was then used to minimize the
maximum average application response time of the cloudlets. In [95], the authors presented
a comprehensive analysis on energy consumption modeling in Edge Computing settings.
These models were classified as either static, flow-based or time-based. Furthermore, con-
sidering various network parameters, the energy consumption in Cloud and Edge Computing
related scenarios was discussed. The experimental results demonstrated that computation
offloading can significantly reduce the energy consumption of IoT devices. MAGA [132]
proposed a mobility-aware, genetic algorithm-based decision system that aimed to improve
the offloading success rate and reduce the energy consumption on mobile devices while the
response time requirements were met. Frequent user mobility patterns were inferred via a
tail matching sub-sequence mobile access prediction method and a modified genetic algo-
rithm decided which components of the work flow were to be offloaded or executed locally

otherwise. The resource provisioning of the cloudlets was considered static.

4.3 Contribution & Outline

This work proposes a hierarchical CPSS that leverages the advantages of a control-based
resource allocation mechanism, in terms of achieving high request throughput, while pre-
serving the QoS above the acceptable levels and keeping the energy consumption minimum.

In more detail, at the bottom level, the sensing capabilities of IoT devices are exploited for
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continuous fire monitoring. The computation intensive image processing is offloaded to the
middle level, where the SMOKE framework implements the horizontal and vertical scaling
of the edge servers’ resources, in order to guarantee specific response time requirements.
Finally, at the top, Cloud Computing layer, the image classification results are forwarded
and combined with various sensor data, as well as with a spatial and temporal analysis of
social media actions and then a decision making service infers additional information on
the incident severity. This information is subsequently forwarded to the responsible local
authorities for further actions. As already mentioned, this mechanism is extending the
work presented in Chapter E and scaling it to accommodate the needs of a CPSS, while
now utilising containers instead of virtual machines for serving the workload of the hosted

applications. The main contributions of it can be summarized to the following three topics:

1. a vertical scaling mechanism that fits the needs of an emergency detection, IoT-based
setting; contrary to a Cloud Computing environment, the computational resources
available on the servers located at the edge (specifically in a rural area) are lim-
ited [133]. Hence, the simultaneous tenancy of more than one emergency detecting
applications at each edge server may risk the Quality of Service (QoS) satisfaction.
Consequently, a dynamic resource allocation and admission control mechanism is de-

veloped with the use of a linear switching system and a state feedback controller.

2. a two-staged horizontal scaling mechanism; in the same direction, this optimization
mechanism is responsible for the activation/deactivation of each edge server, the place-
ment of the applications’ instances within them and the distribution of the incoming
offloaded requests among those instances, while taking into account various perfor-

mance criteria.

3. a Cloud decision making service; Among the main challenges in early detection of
fire related emergency situations is the richness of the data that are gathered from
various sources (either sensors or humans), the efficient and fast processing of them
and finally the estimation of the criticality level of the emergency situation. In this
work, the decision support system aims to combine data from diverse sources such as
ToT-generated images, satellite information, historic weather data and social media

services but at the same time aims to produce decisions in a timely manner.
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4.4 System Architecture

The hypothetical scenario addressed in this work describes an IoT network, consisting of IoT
nodes equipped with camera modules (e.g., Raspberry Pis or IQ FireWatch [134]), capturing
images in order to detect emergency incidents (i.e., fire). At the same time, it is assumed
that wireless sensors are scattered in the same forest area; in this case, a wireless sensor is
nothing more than a low cost sensor, monitoring gas-emissions, humidity or smoke in the
trees or vegetation. The proposed CPSS is envisioned as a semi-rural area installation were
forests are in the proximity of a populated area. This has a twofold effect on the system;
first, its whole operation is based on a local private network (e.g., WLAN) and a cellular
network is not necessary. Second, civilians with mobile devices are present. The sensors’
data alongside the information provided from the IoT nodes and the social media traffic
produced by the human factor, are fed to a decision-making service deployed on the Cloud,
able to assert the risk level and give further guidance to public authorities. Finally, an
emergency mode of the CPSS is specified, when, in the case of a possible fire outbreak and
in order to better examine the incident, there is a rapid increase of the pictures needed to
be analyzed.

Thus, regarding this IoT-based fire detection scenario, the following identified use-case
requirements evince the importance of a scalable Edge Computing architecture to accom-

modate the offloading of the computationally demanding processes to the network edge.

e Timely incident detection and identification: The ability of wildfires to spread out ex-

tremely quickly [[135], makes the detection and suppression at an early stage a necessity.
Such time-critical applications, demand low-latency access to servers at the edge of

the network, ability to perform rapid computations and take immediate decisions.

¢ Optimal use of IoT nodes resources: As mentioned above, although IoT nodes demon-

strate excellent fire-detecting fitting capabilities like automation and control of their
functionality in relation to their perception of the environment, wireless data transfer-
ring, small size and the ability to form scalable networks, they usually lack the com-
putational and energy resources to perform complex tasks and operate autonomously
for prolonged periods of time. As a result, frequent usage of sensors, communication

and data processing has to be minimized in order to find a balance between increasing
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battery life and accurate incident detection. The proposed Edge Computing approach
enables IoT nodes to offload energy and/or computational hungry tasks (i.e., image
recognition) to servers in proximity, wirelessly via a local network. This placement
enables low-latency access to the servers, contrary to the access to the remote Cloud
through the public Internet, which might be unpredictable when it comes to response

times.

Ability to handle the application’s rapid scalability needs: The hypothesis that IoT

nodes produce a fluctuating workload, depending on whether they operate normally
or in the emergency mode, increases and decreases the offloading rate for a specific edge
server rapidly. As a result, computational needs at the edge of the network may vary
differently from time to time for the image recognition application. There is also the
possibility that additional applications are co-located at the edge servers; this makes
static resource provisioning a problematic situation that may lead to resource under-
use and subsequently to hold the ability of applications to coexist at the same server
back, or resource over-use which will possibly introduce delay to the execution off the
offloaded requests and jeopardize the application’s mission-critical aspect. Thus, the

need for fine grained resource allocation and QoS guarantee is evident.

Interoperability of sensors’ Data: A critical obstacle when integrating information

from heterogeneous sources is that the underlying information systems (e.g., IoT plat-
forms) are mainly isolated and act as “vertical silos”. The lack of interoperability
among these systems impedes the creation of cross-domain, cross-platform and cross-
organizational services. To overcome these obstacles syntactic and semantic interop-
erability solutions are necessary to be enforced. To this end, syntactic interoperability
is associated with the ability of systems to exchange information in order to communi-
cate on a technical abstraction level. Semantic Interoperability, denotes the ability of
different applications and business entities to understand exchanged data in a similar

way, implying a precise and unambiguous meaning of the exchanged information.

Privacy protection of individuals: A common challenge that society has to address in

the recent years is to keep a balance between preventing and mediating the damage

that occurs from disastrous situations without on the same time violating human rights
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such as the right of privacy protection of individuals. Advances on sensing technologies
and data collection mechanisms make feasible the deployment of vast sensor networks
that can potentially become intrusive and violate established regulations (e.g., GDPR).
Edge computing paradigm assists in keeping the processing at the edge of the network
thus avoiding the indiscriminate transmission and storage of sensitive information,

such as image and video recordings.

In this section the design of the CPSS’ architecture is described in more detail. As de-
picted in Figure @, the designed system consists of two main agents, namely the SMOKE
framework and the Intelligent Decision Making component, and four subordinate agents
which interact with each other and contribute in a unique way to deal with the emergency
incident; the IoT nodes, the Sensors, the Social Media and the Public Authorities. The Intel-
ligent Decision Making agent operates as a Cloud component gathering data from the other
components, operating as the top layer of this CPSS. Although this proposed architecture
is intrinsically linked with the early-fire detection use case, which is studied in this work, it

can be easily adapted to accommodate a variety of settings with similar requirements.

Edge Layer
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Figure 4.1: CPSS Architecture.
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4.4.1 SMOKE

The SMOKE framework follows a top-down design in a manner that there exists a centralized
controller that makes the decisions, which are in turn propagated to the lower levels of
the architecture to be realized by local controllers. The proposed architecture is generally
applicable in a single-site Edge Computing infrastructure but can be easily expanded for

Edge-to-Cloud or Edge-to-Edge collaboration; its components are described in detail bellow.
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Figure 4.2: SMOKE Architecture.

Containerized Applications

SMOKE supports the simultaneous management of co-hosted applications that are able to
receive offloaded requests on the edge servers. The only prerequisite is that those applications
be containerized. In this work, for the sake of demonstrating the multitenancy efficiency
of SMOKE, two TensorFlow-based object recognition applications, able to recognize images
containing events of interest (i.e., fire), were developed and trained off-line in a supervised
manner. These applications were then containerized and deployed on the Docker Platform
installed of each edge server. Containers were selected instead of VMs, as a means of
virtualization, because of their overall lower overhead, smaller footprint and lightweight

vertical scalability.

78



Central Controller

The offloaded traffic, generated by the IoT nodes, is directed to the Central Controller (lo-
cated on the Central Server) through a local Wireless Access Point. Here lies the upper level
control process of the proposed mechanism, as depicted in Figure @ To accommodate this
control process, time in the proposed framework is quantized in discrete time intervals; at the
beginning of each time interval this component selects an appropriate container formation
to be implemented to each edge server directly connected to it and consequently distributes
the incoming workload accordingly. This formation defines the number of active servers
alongside the number and the operating point of the containers to be placed in them. With
the term operating point a reference is made to the number of the offloaded requests that
each container will accept, the number of cores that it will be allowed to use, as well as the
average response time it is requested to achieve during the next time interval. These operat-
ing points of the containers are calculated on the Local Controllers, as described in the next
section. This control process, hereinafter referred to as Horizontal Scaling, is performed in
an on-line and proactive manner, leveraging an internal prediction mechanism, the Workload
Predictor, which provides an estimation on the number of requests to be expected on the
time interval, for each application. The essential input for this estimation process is provided
by the Monitoring Service component of the Local Controller deployed in each edge server,
which is responsible for collecting data regarding both the network traffic (i.e., offloading
requests admitted and end-to-end response times) and the containers’ resources use (i.e.,
CPU usage) at each given time. Then, the Optimizer component uses the output of the
Workload Predictor and the feasible operating points, calculated offline, and computes the
optimal number of active servers and containers required to meet the different performance
criteria. The theoretical background of this process is discussed in more detail in Section @
Hence, depending on the aforementioned decision and considering the predicted workload for
each time interval, the Central Controller dictates the creation, scaling and destruction of
the application-specific containers to the Local Controllers accordingly. Also, at the end of
each time interval, the average classification score of the offloaded images is calculated here.
Additionally, when a classification score above a predefined threshold emerges, indicating
a possible fire outbreak, information is transmitted to the respective IoT node regarding

its new operating mode (normal or emergency). The time between the capturing of the
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image of interest and the transmission of the updated IoT node information is defined as
the application’s response time. All the monitoring data involved in this process are stored
in a relational database present in the Central Server, in order to be used for demonstration
purposes. It is also worth noting here that, physically, the Central Server is nothing more
than an edge server, located on the users’ proximity, with a more advanced role; this of the

decision maker.

Local Controller

At the lower level, each edge server is equipped with a Local Controller, responsible for both
gathering the request-related statistics from the containers, as mentioned earlier, needed for
the Monitoring Service and tackling the small fluctuations of the incoming workload, ac-
cording to the predicted number of requests for each time interval. The lower level control
process implemented in this component moderately scales the containers vertically, pro-
viding the required resources, thus realizing the decision made by the Central Controller.
In more technical terms, the communication between the Central Controller and the Local
Controllers is performed via a REST-API present in the latter; the Local Controller also uses
the Docker Platform in order to scale the containers. This Vertical Scaling ensures that the
containers remain within an area around the selected operating point, hence guaranteeing
minimum and stable application response times, in order to meet certain QoS requirements.

Section @ provides further mathematical justification for this process.

4.4.2 Intelligent Decision Making

This Intelligent Decision Making (IDM) service is deployed on the Cloud Layer of the pro-
posed architecture. The geo-tagged images are processed and classified at the SMOKE
framework on the edge layer and, if the average classification score is above a confidence
threshold of fire and smoke detection, then an ongoing emergency situation probably occurs
and the IDM’s operation is triggered. In order to further evaluate the criticality of the
incident at the targeted area additional data are collected by the Data Collection Engine in
order to be fed to the Decision Algorithm. The latter applies logical rules on the provided
data collection in order to timely infer the level of the associated danger of the situation and

render the respective estimation in an intuitive manner.
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Figure 4.3: Intelligent Decision Making Architecture.

Data Collection Engine

As illustrated in Figure @, the main data sources integrated with this system are:

e SMOKE service: The SMOKE service provides the classification score of the images
along with the time and location, in terms of GPS coordinates corresponding to the
IoT node’s location, from the associated area that the images were captured. It is
the image classification score that triggers the overall data gathering process, while
additional data are retrieved based on location criteria indicated by the respective
images coordinates. To this end, a reverse geo-coding process is applied in order to
extract the associated readable addresses and place names which are particularly useful

in the retrieval of data from social media services.

e European Forest Fire Information System: The European Forest Fire Information Sys-

tem (EFFIS) calculates on a daily bases an index, called Forest Fire Weather Index,
for all the regions of EU based on environmental and weather related information,
such as the humidity of the air at the beginning of the afternoon; the temperature
in the middle of the afternoon; the precipitation during the last 24 h; the maximum
speed of the average wind. The fire danger is mapped in five classes with a spatial
resolution of about 16 km. The fire danger classes are the same for all EU countries
and information is provided encoded as GeoTTFF format maps showing a harmonized

picture of the spatial distribution of fire danger level throughout EU. The GeoTIFF
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standard allows georeferencing information to be embedded within a TIFF file. The
Fire Danger Forecast maps are updated daily and are freely available from the EFFIS
online service [[136]. The actual file has a small size (<1 MB) hence it can be efficiently
processed. The five classes of the Forest Fire Weather Index embedded as different

color codes (bands) in the GeoTIFF file are:

1. LOW—Fuels do not ignite readily from small firebrands although a more intense

heat source, such as lightning, may start fires in duff or light fuels.

2. MODERATE-—Fires can start from most accidental causes, but with the ex-

ception of lightning fires in some areas, the number of starts is generally low.
3. HIGH—AII fine dead fuels ignite readily and fires start easily from most causes.

4. VERY HIGH—Fires start easily from all causes and, immediately after ignition,

spread rapidly and increase quickly in intensity.

5. EXTREME—Fires start quickly, spread furiously, and burnt intensely. All fires

are potentially serious.

¢ Social networking services. In the current implementation of the IDM the Twitter

micro-blogging platform has been integrated. Twitter maintains a total number of 335
million monthly active users, who produce more than 500 million number of Tweets
per day. The fact that 80 percent of Twitter users use the service through mobile
devices, makes this social network an ideal platform for applying the social sensing
paradigm. In addition, Twitter has been selected in the scope of the work presented
in this thesis due to its openness and the almost unrestricted access to the publicly
available user provided content and profile information through APIs. Data collection
for the needs of the IDM is facilitated through hashtags and keywords associated
with wildfires combined with tags denoting geo-reference. Although Twitter offers the
option to geo-tag the provided Tweets, this feature is not frequently used, thus it can
not be exploited effectively for the needs of the IDM service. On the other hand, it is
a common practice for Twitter users to introduce their own tags in order to express
the connection of their post with an area. The reverse geo-coding allows the IDM

to extract a set of local area names, also expressed in local language, which will be
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used as keyword criteria for retrieving Tweets that potentially are associated with an

emerging wildfire incident.

Decision Algorithm

The Decision Algorithm aggregates information from the described sources, homogenizes
their input and generates a normalized score that ranges from zero to one (highest value)
denoting the emergency level. The overall operation is triggered periodically by SMOKE
classification score and runs continuously, meaning that the IDM may receive multiple im-
ages’ scores from various locations, where a decision should be extracted for each case. As
it is already stated, the image classification score is the main criterion for the early identifi-
cation of the fire incident while the additional data gathered are utilised in order to further
evaluate the severity of the incident in terms of human presence in the area, potential fire

spreading, etc.

4.5 System Modeling

4.5.1 SMOKE Scaling Framework

As described in the previous section, a single SMOKE deployment consists of many Lo-
cal Controllers and one Central Controller; each Local Controller aims at controlling and
regulating the operation of containers that run on the same edge server with it; the Cen-
tral Controller makes the decisions on the activation of the edge servers and the respective
containers, as well as the load balancing of the incoming requests. Trying to be compliant
with the taxonomy defined on the survey on [[128], the Local Controller was designed to use
linear switching systems for modeling the containerized applications and a state feedback
controller for each linear system, designed to apply admission control decisions. At the same
time, the Central Controller solves a mixed integer programming problem to determine the
number of active servers and containers, which are necessary for serving the total workload

of the hosted applications.
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Local Controller

As mentioned above, the dynamic operation of the containerized applications is modeled
with the use of switching linear systems, with the switching criterion being the number of
the allocated CPU cores to each container. This modeling approach captures the dynamic
behavior of the containers under different operational conditions and enables performing
indirect resource allocation. In this case, the various operational conditions, under which
the modeling is performed, include different image sizes, resolutions and transmission delays
(depending on the network congestion at each given moment) per request and a variety of
request rate values. So, for each different CPU core allocation, the operation of the container

is described by a discrete linear system of the following form,

z(t+ 1) = ax(t) + bu(t), (4.1)

where x(t) is the state variable that expresses the average application response time for time
interval ¢ and u(t) is the control variable that represents the number of the admitted requests
within time interval ¢. Here, with the term admitted the requests that are actually allowed
to the container for processing are described. The parameters a and b of the above model

are estimated by using the Recursive Least Square (RLS) algorithm [137].

Physically, a container with ¢ allocated cores is constrained to serving up to u. requests
of the containerized application while maintaining an average response time of x.. This pair
(e, ue) is called an operating point and generally, for each such switching system, a set of
feasible operating points of this kind can be computed according to various performance
criteria and while taking into account the constraints of the state and input variables. In
the discussed case, these feasible operating points are computed by solving the following

linear programming with the goal of maximizing the number of the admitted requests:

maXmeM,;ce,um,uAf Ue

subject to

Te = T + bue (4.2)
Ty S Te STy

U < Ue < Up-
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The first constraint implies that each operating point must also be an equilibrium of
the discrete linear system and this will guarantee its stability and confinement in a specific
operating area around it. The second constraint dictates that the state variable must lay
between a minimum (z,,) and a maximum value (x /) set by the application’s requirements,
while the last constraint refers to the control variable varying between the minimum available
() and the maximum available value (uar).

For each operating point of every linear system, a state feedback controller is designed in
order for the respective containerized application to meet the response time requirements.

This control law is defined as,
u(t) = K(z(t) — ze) + e, (4.3)

where K € R is the control gain. Applying (@) in (@)7 we get the closed loop form of the
linear system,

2(t+1) = (a+ bK)a(t) +c, (4.4)

where ¢ = b(u.—Kx.) is a constant term. Regulating the eigenvalue A = a+bK of the system
(Q)7 the stability of the closed loop system and the convergence speed to the equilibrium
point are affected. Thus, a stable eigenvalue is selected, which lays inside the unitary circle,

in order to compute the control gain K = )‘;a. To give a better understanding of the

whole process Figure @ illustrates a block diagram describing the closed loop system. The

following list explains the role of each signal presented there,

- Reference Input: The average application response time for the respective operating

point x..

- Control error: The difference between the actual average response time of the last

interval and the reference value, x — x..

- Controller: An affine switched state feedback control process, as the main process in

the Local Controller.

- Control Input: The maximum request rate to be admitted at the container for the

next time interval, computed by (@)
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Docker: The Docker Platform as the the control system’s actuator.

- Container: The containerized applications as the controlled process.

- Measured Output: The measured average application response time of the container

for the previous time interval.

- Feedback: The sensor of the control system, monitoring and recording its current state

at each time.

Central Controller
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Figure 4.4: Feedback control system in Vertical Scaling.

Central Controller

The main functionality of the Central Controller on the top layer, is to decide the switching
action for the Horizontal Scaling process, as described in subsection . As shown in
the upper part of Figure @, the Optimizer component consumes information regarding
the available operating points and the predicted workload, for the next time interval, for
each application. The prediction of incoming workload, estimated according to a linear
trend forecasting procedure as described, in [83], alongside the operating points facilitate
the formulation of an optimization problem solved by the Optimizer; as mentioned earlier,
the assumption that each application is deployed to at most one container per edge server
is made. Furthermore, at a preliminary stage, an offline exhaustive procedure where all the

feasible combinations of the containerized applications’ operating points within a server, is
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calculated. Feasible combinations are the ones that do not exceed the total computational
capacity of the respective server. Then, the Optimizer minimizes the number of active
servers and the allocated CPU resources by solving, sequentially, two mixed integer linear
optimization problems (MILPs). At the first MILP, the minimum number of edge servers
to be activated on the next time interval, in order to serve the estimated workload, is

determined by solving the following,

ming p 4z, Sa

subject to
S, €8
pij € P
pij € [0, 5]

D vieA 2ovjes Pijlei < R;.

Here, the first constraint dictates that the servers to be activated are selected from the pool
of the available servers. The next two constraints imply that each of the selected containers
to be deployed on the selected servers corresponds to an existing operating point and that
their placement on the active servers must correspond to an acceptable combination. Finally,
the last constraint means that the estimated total workload for each application, R;, must
be served by the containers. On the second MILP, the minimum amount of computational
resources, in terms of CPU cores per container per server, are computed, while taking into

account the result of the previous optimization,

ming, pa i, 2viea 2ovjes, PiiCij

subject to

pij € P (4.6)
pi; € 10,5]

D oviea 2uvjes Pijtes < Ri,

where C;; is the number of allocated CPU cores to the container of the ith containerized
application on the jth activated server. The reason behind distinguishing the optimization

process into two distinct subproblems is that, at first, an attempt to solve a Multi-Objective
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MILP was made by combining the two optimization targets to one weighted objective func-
tion, but that led to the one objective being successfully optimized while the other one
concluded to a sub-optimal solution, regardless of the assigned weights. Also it should be
noted that the number of edge servers is relatively small so the overall computation time of

these optimization processes does not disrupt the Central Controller’s smooth operation.

4.5.2 Decision Making Algorithm

As already stated, the decision making process is triggered by the SMOKE system when
the fire-related average classification score of images, captured by the IoT node, is above
a predefined threshold, thus indicating a considerable probability of fire occurrence. The
respective score sent to the IDM is denoted by S;., (¢, p), where t is the time when the image
was captured by the IoT node and p = (z,y) expresses the GPS coordinates of the point
where the IoT node was located at upon image capturing (latitude = and longitude y). As
already stated, the value of S;, (¢, p) lies within the range of [0, 1].

Once Sim(t, p) is obtained, the IDM triggers a reverse geo-coding process in order to map
the GPS coordinates to a specific country and language, and to extract multiple area names
for the specified point. The output of this process is a set of location-related keywords or tags
denoted by L(p) = [If,15, ..., I},]. Various combinations Cf (p) = [If,1%, ..., fx, fi, ...] of these
tags coupled with terms f; linked with fire emergency are generated and are subsequently fed
to the Twitter API in order to fetch all Tweets that involve the specific term combinations
and are posted in the latest window frame of duration A. The population N}/ of the retrieved
Tweets TWL (CH (p), [t — A, t]) = [twi{, twf];, e twff;\,} that use both keywords linked to the
area of interest as well as terms related to fire emergencies is then averaged by the population
N! of all Tweets TWE(CL(p), [t — A, t]) = [twly, twl,, ..., tw' ] that only use keywords linked

Z N,l‘f(tvp)2
. . . . - NI .
to the area of interest. A respective social media score Sg, (t,p) = % is eventually

calculated that lies within the range of [0, 1].

With regards to the Fire Weather Index (FWI) provided by EFFIS, the IDM retrieves the
respective values from the GeoTIFF image that correspond to the specified GPS coordinates
of the point of interest p = (z,y). To deliver this, mapping of the GPS coordinates above to
the GeoTIFF geo reference system is necessary. The value of the retrieved FWI for the spec-

ified coordinates is FWI(t,p) and the respective normalized score is Spw1(t,p) = %(tp)
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that lies within the range of [0, 1].

Finally, the IDM estimates an overall score Sy;re(t, p) of fire incident at point p and time

t that indicates the severity of fire incident occurrence and is expressed as
Sfire(tvp) = Wim * Szm(tap) + Wgsm - Ssm(tap) + WFWTI * SFWI(tap) (47)

where the weights w;.,, Wem, wpw indicate the significance of the respective scores, lie
within the range of [0,1] and for which it stands that w, + wsm + wrpwy = 1. The
experiments conducted so far have assumed that w;,, > ws, > wrw;r, considering the
reliability of the respective information sources. The nature of the assigned weights indicate
that the image classification engine is considered as more important for the initial detection
of the fire incident while the other two sources of information (social media data and EFFIS)

have a complementary role in further evaluating the severity of the situation.

4.6 Experimental Evaluation

In this section the experimental setup is thoroughly presented alongside an evaluation of
the obtained results. At first, the significant role of SMOKE is evinced, after intense exper-
imentation for proof of concept of the Horizontal and Vertical resource scaling on an Edge
Computing topology and a comparison of the proposed architecture with the naive solution
of the static resource allocation is presented. Subsequently, a time-related evaluation on the
socially-aware intelligent decision making component, with input from social media, addi-
tional sensors’ data and image classification scores produced by the SMOKE framework, is

discussed.

To demonstrate the operation of a SMOKE installation, the hypothetical setting of a
forest and IoT nodes mounted on UAVs that fly over it, while capturing images in order to
detect fire occurrence, is emulated. As discussed in Section @, at the same time the presence
of wireless sensors and civilians using social media is assumed in the field. Furthermore, two
additional assumptions are made; first, that due to the large space UAVs need to cover
and investigate, each one of them takes over a smaller area, while, second, in the case of a

possible fire outbreak, they are dictated to gather to the area of interest to better examine

89



the incident, leading to a rapid increase of the pictures offloaded. UAVs were selected as
the evaluation scenario because, although they pack amazing characteristics like operational
versatility and durability in various weather conditions, they usually lack the resources to
accommodate long-spanning missions, like vast forest areas surveillance. Additionally, the
hypothesis that UAVs gather in a specific geographic area when certain events occur, and
spread otherwise, allows for denoting the fine-grained, scaling-enabled resource allocation
taking place in the system.

At this point, it should be made clear that UAV-based image analysis and fleet coor-
dination algorithms are decoupled from the CPSS initial design and operation. Therefore,
given the context and focus of this work, UAV actual, real world operational methods and
algorithms—though very challenging and of high practical importance—are considered out-
of-scope of this chapter. They just serve the purpose of a conventional use case to enable the
demonstration of the capabilities of such a combination of an Edge Computing framework

and a decision-making platform.

4.6.1 SMOKE Evaluation

The first experiment illustrates the performance of the SMOKE framework when deployed
on the NETMODE testbed [13€] at the National Technical University of Athens in Greece.
In this case, two identical 16-core edge servers with 16 GB of RAM were used, that each
hosted two TensorFlow [[139]-based applications, deployed in separate Docker containers
as explained in Section @ Without loss of generality, the assumption that each edge
server can host exactly one container of each of these applications is made, due to the
fact that more than one instances of the same service would introduce additional overhead
costs when deployed on different containers on the same host. The differentiation between
those two applications, developed solely for the experimentation purposes, was that the
first implemented an image classification for conventional, visible light pictures, while the
second one for infrared pictures. The model trained for the conventional image recognition
was fed with a specific dataset [140] containing either pictures of forest wildfires or plain
forests. For the infrared recognition model, a synthetic dataset was used, generated from
the aforementioned one, by applying an infrared Photoshop effect to each image. Following

the architecture described earlier, these edge servers also hosted an instance of the Local
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Controller. Regarding the emulation of the UAVs, two Raspberry Pi devices were acting
as the mobile nodes, each of which was assigned to offloading requests to the edge servers,
targeting one of the two applications. The mobile nodes were connected via Wi-Fi to an
Alix3d2-based node hosting the Central Controller, which was in turn linked via Ethernet
to the two identical edge servers. This whole setting represented a fully deployed SMOKE
installation in a forest area. It should be once again noted that the process from the moment
a UAV captured an image and offloaded it to the proximate edge server Infrastructure for
processing until the result was calculated, as stated before, was defined as the response
time. In addition to this, it was assumed that the edge servers were responsible for the
UAVS’ operating mode, depending on the situation’s severity. Thus, the time until the
detection of a possible fire incident, i.e., the response time, should kept below an acceptable
value. Finally, the average classification score of the captured images was calculated and
advertised to the IDM on the Cloud nodes, at each time interval.

In the presented emulation, this time interval, that additionally defines the overall op-
eration of the SMOKE framework, as explained in Section Q, is set to 30 sec. To make
the offloading patterns more plausible, the amount of requests produced within the interval
follows a Poisson distribution, while the inter-arrival time between two successive requests
follows an exponential distribution. As depicted in the third diagrams of Figures @ and @7
the experiment scenario kicks off with the Raspberry Pis offloading an average of around
10 requests per time interval (blue-colored, solid line), for each application, simulating a
normal period where no fire indications are present in the forest area (tracking mode). After
approximately 5 min, the average number of requests per interval starts escalating, mimick-
ing the UAVs’ behaviour of gradually approaching the area of interest, i.e., the framework’s
proximity, when an emergency situation is detected (emergency mode). This average value
peaks and stabilizes at 25 from the 20th to the 40th simulation min, where it is assumed that
a fire has been recognized and more visual coverage of its area and spread rate is required.
Finally, in the last part of the emulation, the offloading request generating rate returns to
normal values, reflecting the wildfire being put under control and subsequently the UAVs

reverting back to their normal operating mode.

91



Response
01— Transmission
———Computation
Response (Static)

10— —
N . D U\
2 A N
7 R N A 2 N//&/\ —
L

2000 2500 3000

Total
» Server0
O o ——— n
5 Serverl
8] Static
]
o s— A —
(] '/f\/\ /~" N A
_ [ oA TR
) /l N N %
2000 2500 3000
Time (s)
s ‘ ——Offloaded
ol Served
Iu) — ——Rejected
0
g 30— —
o
© o y —
I
” h
* 10 A / ) / 74 W0 \ a N //\\ N
D AR \ b AR ! - ! / A ™, 1
./ i Sy N e AN T A SN - ~ Voo P
o¥n o AU 4 VAR ARVIANER WA VERNAY WA Vo Ny T ~ o~
500 1000 500 2000 2500 000
Time (s)

Figure 4.5: Conventional Tensorflow application.

Regarding the evaluation of the scaling mechanism of the proposed framework, one can
observe the following; in the second diagrams of Figures @ and @, that the Central Con-
troller’s Horizontal Scaler adapts to the increased requirements in computational resources
while on emergency mode (blue-colored solid line) and dictates the activation of a second
server (black-colored, dashed line) between the 10th and 40th min of the emulation, in order
to accommodate the mobile devices’ higher average offloading request rate. On the contrary,
for the most of the initial as well as the final part of the emulation, only one server is active
(red-colored, dotted line), proving to be adequate for the tracking mode of the UAVs. As ex-
plained thoroughly in Sections @ and @, the Workload Predictor component estimates
the incoming workload for the next time interval and then the Horizontal Scaler selects an
appropriate formation, in terms of number and operating point of containers to be placed in
the active servers, for each following time interval. Table @ contains the offline calculated
operating points for both application-specific containers, from which the Horizontal Scaler
gets to choose; each operating point defines the nominal amount of offloaded requests, u.,
that the respective container is able to process, alongside the reference input x., when 1, 2, 3
or 4 Cores are allocated to it. A remark regarding the restriction of cores to be made avail-
able to each container to 4, is that this seemed to be a plateau where the containers became

saturated and could not serve significantly more requests, despite allocating more cores to
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them. Furthermore, one can observe that certain outliers in the Poisson distribution, of
either rapid increase or decrease in the offloading requests, cause the Workload Predictor
to poorly estimate the incoming workload for the following time interval; this results to
an increased amount of rejected requests, as well as a slight oscillation on the number of

activated servers.
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Figure 4.6: Infrared Tensorflow application.

Table 4.1: Server operating points.

TensorFlow Conventional TensorFlow Infrared

Cores X (s) U (reqs) X (s) U (reqs)
1 3.0 4.2417 3.5 4.9487
2 3.0 14.2357 3.5 16.6083
3 3.0 17.1731 3.5 20.0353
4 3.0 18.4604 3.5 21.5371

With respect to the Vertical Scaling part of SMOKE, the admission control process,
executed on each Local Controller of each server, results in the rejection of approximately
19.58% of the offloaded requests for the conventional image recognition application and
23.01% for the infrared one (black-colored dashed line in each third diagram of Figures @
and @) This is a consequence of the real incoming workload of the interval exceeding
the projected one. Although the rejected volume is not negligible, it is not detrimental to

the event detection precision. As a reminder, both these scaling processes aim to maintain
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the average response time below an acceptable value, T'ref, which is an application-specific
value. To achieve this, the reference input z. of each operating point is empirically set near
to TTTef In this scenario, Tref is set equal to 10 sec for both applications, thus the reference
inputs of the operating points in Table @ are set to 3 sec and 3.5 sec respectively. This
goal is achieved, as depicted with the blue-colored solid line in the first diagrams in both
Figures @ and @; the response time remains within the limit of 10 sec, despite the work-
load fluctuations. In these diagrams, average transmission and computation times are also
plotted with red-colored, dotted and black-colored, dashed lines respectively; one can easily
note that the average response time follows the same patterns as the average computational
time, meaning that it is mainly affected by it. The average transmission time is negligible
due to the use of the IEEE 802.11ac standard, which provides high throughput for the im-
ages (size of about 5 MB) used in this experiment. Finally, the vertical scaling of SMOKE
is compared to a static allocation of four cores for each application; the green-colored, dot
dashed line on each first subfigure denotes the average response time of this static allocation,
while on each second the total cores statically allocated. One can easily observe that when
the experiment is on the tracking mode, it demonstrates better average response times for
both applications, however, it still suffers from the phenomenon of overprovisioning; that
is when a Container uses resources, that could be allocated other processes, without signif-
icant benefits. On the other hand, when the experiment enters the emergency mode, there
are times when 4 statically allocated cores are inadequate for the processing requirements,
resulting in violation of the 10 sec limit for the average application response time. This
problem of providing less than the necessary resources is called underprovisioning and it

potentially puts the mission’s accuracy into risk.

4.6.2 IDM Evaluation

As stated in Section , the socially-aware Intelligent Decision Making process is trig-
gered when the SMOKE component calculates an average classification score of the images
offloaded in the last time interval that is associated with a high probability of fire incident
detection. In this subsection, the evaluation results of the IDM component are presented
focusing on the overall time overhead that is imposed until a final fire detection decision

is reached. To this end, several experiments have been executed in order to identify the

94



average time delays imposed by the various individual steps of the IDM algorithm. These

steps are the following:

e Step A: Reverse geocoding process of the provided GPS coordinates, which is based
on the call of external APIs (e.g., Google Maps API) in order to obtain a set of area

names and location identifying keywords.

o Step B: Extraction of Fire Weather Index extracted from the GeoTIFF image based

on the provided GPS coordinates.

o Step C: Collection and analysis of Twitter posts that are related with the indicated

area.
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Figure 4.7: Decision extraction in relation to amount of Tweets retrieved.

After executing several experiments, the results obtained indicate that the average time
required for Step A is 0.42 sec, while the average time needed for Step B is 0.08 sec. As one
can easily observe, the introduced time overhead is minimal. On the other hand, Twitter
data retrieval and Tweet processing may introduce a significant time overhead that depends
heavily on the overall number of Tweets that comply with the retrieval criteria (e.g., Twitter
posts containing tags and keywords related with the area and a forest-fire incident). Fig-
ure @ illustrates the aggregated time needed for the IDM to perform steps A, B and C
for increasing volumes of retrieved Twitter data. In order to estimate the expected volume
of Twitter data that is generated during wild-fire incidents, a thorough review of existing
approaches has been conducted and an analysis of the respective datasets indicating the evo-

lution of the Tweet posts upon fire incident occurrence. The results, presented in Table @,

95



show that the total number of Tweets are not more than 10.000 for the entire duration of the
wild-fire incident. In the discussed case, the Twitter stream API is utilised and the retrieval
and processing of Tweets is taking place in an online mode aiming to detect the incident as
soon as possible. Hence, it is safe to assume a few hundred Tweets to be generated within
the first minutes of the wild-fire ignition. Therefore, given the results captured in Figure @,
the overall time overhead imposed by the social media mining process lies between 5 and
40 sec, which enables the proposed IDM to reach a decision in a timely manner.

All in all, these two proposed CPSS mechanisms work seamlessly and efficiently towards
the time- and mission-critical application of the early forest fire detection. The SMOKE
framework manages to alleviate the IoT nodes’ computational workload, timely dictate their
operating mode and orchestrate their new formation, should it be deemed necessary, while
the servers’ resources are optimally used. Subsequently, the IDM is fed with the needed

information that enables it to communicate the decision promptly to the public authorities.

Table 4.2: A review of wildfire incidents and fire-related Tweets volumes.

Year Country Incident Location Duration (Days) Tweets Ref.

2012 USA Colorado 32 42K [141]
2013  Australia Australia 21 20K [141]
2014 Indonesia Sumatra 92 9.7K [142]
2014 USA San Marcos, Bernardo 9 1.3 K [125]
2015 USA California 52 1.9 K [143]
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Chapter 5

Switching Computational
Offloading for Robotic
Applications in Edge

Computing

5.1 General Setting

In this chapter, the tradeoffs between computing and communication resources are inves-
tigated with a focus on control design, estimation, and implementation. Specific effort is
placed on exploring the offloading opportunities of the decision-making and monitoring al-
gorithms (control and estimation) in the path planning problem for autonomous agents. To
this end, a control based, computation offloading mechanism for robotic applications in Edge
Computing ecosystems is proposed [[144]. In particular, an IoT-enabled localization and path
planning framework is realized and the expected gains of computation offloading are verified
by utilizing a real Edge Computing setting. To achieve this, local and remote localization
and path planning controllers are designed and implemented, followed by a scheduling mech-

anism. The offloading mechanisms are treated as switches, leading to different dynamics of
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the resulting closed-loop system.

In more detail, regarding the localization process, a decision algorithm is developed, that
triggers an accurate image-based pose estimator in the cloud/edge, whenever the uncertainty
of the robot’s position and orientation becomes too large. Regarding the path planning
part, a more accurate, however more computationally intensive decision algorithm, runs
remotely in the edge/cloud, whenever a prediction cost indicates a possible amelioration of
the current reference trajectory generated locally. Roughly, for both cases, the offloading
decision takes into account the position of the robot, the network traffic and the available
computation resources in the edge/cloud (estimated by a Kalman filter). These switches
compose a switching system that is adaptive and can operate under different scenarios and
applications. This architecture perspective, which constitutes the main contribution of this
work, offers the proposed framework a degree of contextual awareness; that is the ability to
sense and dynamically adapt to the robot’s environment, implicitly enhancing to an extent

the robustness of its operation, as well as improving the QoS of the supported applications.

5.2 Related Work

Many works have been exploring the benefits of that computational offloading provides to
robotic applications [145]. Open challenges in this area throughout the literature are con-
cerned with developing adaptive multi-robot/machine control, capturing, modelling, pre-
dicting and anticipating the agent’s interactions and designing distributed control and path
planning algorithms that deliver flexible and safe working environments. The offloading-
based studies leverage the network and computing capabilities of edge servers to execute
remotely navigation or localization algorithms. To begin with, the authors in [[146] pre-
sented how two reference architecture concepts, namely Network Function Virtualization
(NFV) and Multi-access Edge Computing (MEC), can be utilized on orchestrating network
and computing resources for deploying robotic applications. Furthermore, they proposed
an integration of a MEC architecture in an NFV environment. To demonstrate the ben-
efits of this hybrid architecture, the coordination of a mobile robot swarm on two robotic

applications was used.

Approaches similar to ours include [147], where gesture-based semaphore mirroring with
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a humanoid robot is split to remotely and locally executed functionality; [148], in which
the authors identify a three-layered environment (Robot, Edge and Cloud) to overcome the
challenges of network limits in a Deep Robot Learning application and [149] where Dew
Robotics is introduced; this concept posits that critical computations are executed locally
so that the robot can always react properly, while less critical tasks are offloaded to the Fog
and Cloud, so to exploit the larger availability in computing, storage, and power supply. In
[150], finally, the authors utilize a Fog-Cloud infrastructure to alleviate the tasks of object
detection, tracking and mapping in a confined area. In a different manner, the authors in
[151] proposed a symbiotic robotic network for task offloading in the factory floor. Based on
their vicinity, the robots formed clusters where members could offload tasks to each other.
Additionally, a reward-based feedback task offloading mechanism was proposed to support
delay-sensitive applications. Based on these rewards, each node had a social repute score
which was used to select the appropriate node to offload the tasks and for the election of the
cluster head. However, none of the aforementioned offloading decision schemes addresses

the dynamic nature of the robot’s environment.

5.3 Contribution & Outline

The scenario addressed in this work involves a mobile robot equipped with sensing, comput-
ing, and wireless communication capabilities, which makes its way from a starting position
to a target position in an operating ground (e.g., a factory floor), navigating through obsta-
cles. This functionality is a key component to realizing autonomous robotic navigation in
Industry 4.0 use cases, e.g., warehousing and logistic robots which automate the process of
storing and moving supply chain goods. Tracking the robot location is essential for a robust
and safe trajectory planning. However, a common problem in such a scenario is that the
uncertainty in estimating the exact pose (i.e.,position and orientation) grows over time in
motion, due to inaccuracies in sensing, wheel slips, hardware failures, etc., [152]. Thus, the
importance of an accurate, dynamically adjusted localization technique is evident. The key
contributions of this work that differentiate it from the rest of the literature are summarized

as follows:

1. A novel computation offloading mechanism for robotic applications that utilises an
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Edge Computing setting to improve the accuracy of both the robot’s localization and

trajectory.

2. An offloading scheme, based on switched systems, that addresses the dynamic nature
of the robot’s movement and deals with the unpredictability in its exact pose over

time.

3. An innovative position and orientation estimation component that achieves high pre-
cision while using the simplest camera system and the minimum amount of identified

natural landmarks.

It should also be noted that the testbed of the proposed framework is a vehicular mobile
robot development platform, called AlphaBot [153] (Figure @), equipped with a single

frontal pivoted camera and a Raspberry Pi 3 Model B+ as the control unit.

5.4 System Architecture

In the discussed setting, the image processing and decision algorithms become computation-
ally intensive and energy-hungry tasks. The proposed framework realizes an IToT-enabled
assistive remote path planning mechanism, with the aim to find the expected gains of com-
putation offloading in the edge and the cloud.

Specifically, self-localization through landmark assisted pose estimation is implemented;
the robots are equipped with a camera module, while in their proximity unique cylindrical
beacons are used as landmarks to assist in the pose estimation process. In the computation-
ally demanding involved algorithms, two offloading opportunities are revealed in, namely,
pose estimation and path planning. To this purpose, a small-scale network infrastructure is
set up, connecting the robot to a wireless LAN (WLAN) through an Access Point located
within the robots’ network range, which in turn connects via a wired connection (LAN) to
a server in the robot’s proximity, the edge server.

Locally, the intangible assets include the (i) the Tracking Controller (TC), (ii) the Local
Odometry-Based Estimator (LOE), (iii) the Local Beacon-Based Estimator (LBE), (iv) the
Local Path Planner (LPP) and (v) the Offloading Decision Mechanism (ODM) components,

all located within the robot; component (i) is responsible for carrying out movement-related
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Figure 5.1: Architecture Overview. The locally executed components are highlighted with
blue color, while the remotely executed ones with green.
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decisions, (ii), (iii) and (iv) are the locally executed pose estimation and path planning
applications respectively and (v) encompasses the intelligence of the proposed switching
system by monitoring the offloading-related metrics and realizing the offloading decisions.
On the remote side, containerized counterparts of the path planning and pose estimation
applications are co-hosted on the edge server; these are namely (vi) the Remote Beacon-
Based Estimator (RBE) and (vii) the Remote Path Planner (RPP) which are able to receive
offloaded requests from the robot. A more detailed discussion on these components follows
in Sections @, @ and @

In order to outline the sequence of interactions between the main components of the
architecture, a representative scenario is showcased in which the proposed solution applies
successfully. Figure EI depicts an overview of this scenario. Without loss of generality, it
is assumed that only one robot operates in the field. Also, its starting pose, the operating
space dimensions and the obstacles’ and beacons’ positions and shapes are considered known
a priori.

A typical activity flow of this scenario, initiates with Local Path Planner component
calculating locally a trajectory from the starting position to the target position. This triggers
the ODM for the first time; should a quick analysis on the projected trajectory indicate room
for significant refinement of the selected path, the Remote Path Planner is invoked. This

analysis is based on the trajectory curvature and the degree in which the more elegant
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remote component is potentially able to smooth it around obstacles; Section provides
more insight on this process. Eventually, the resulted trajectory dictates the intermediate
positions the robot needs to reach. In order to sequentially perform the transition to each

of them, the Tracking Controller component is invoked.

After reaching the next position of its trajectory, an uncertainty indicator of the pose
estimation is calculated; this indicator is a scalar that grows with time and actually accumu-
lates the error between the estimated and the reference pose after each move, as explained
thoroughly Section . Here, the second decision occurs; if this indicator measures bellow
a predefined threshold, the robot continues to move based on the feedback coming from the
Tracking Controller’s monitoring process, i.e., the Local Odometry-Based Estimator, which
leverages the robot’s photoelectric sensors (encoders) attached to each wheel to measure
the wheels’ angular velocities during a period of time. Else, it invokes the more precise,
but computationally heavy, Beacon-Based Pose Estimator, leveraging information coming
from the beacons in the environment. That triggers the ODM once again; the edge server
is queried to provide an estimation on the duration of the potentially offloaded pose esti-
mation task. As described by the mathematical modelling in Section , this duration
is proportional to the availability of the computational resources and is actually indicating
the resources able to be dedicated for the execution of this task. Based on this estimated
duration, a decision is made on whether to offload the pose estimation task to the Remote
Beacon-Based Estimator, or execute it locally. The flow ends with the robot checking if the

target position is reached. If not, it reverts to first step.

It is worth highlighting that the tracking controller, as well as the path planning and pose
estimation are aperiodic. The Eosition of the robot on the operating ground, is defined by
the state vector z* = [361 x2] . The robot has to move towards the next reference position
xief = [#1ref(ti) Tarer(ti)] ", generated by the path planning algorithms, to approach the
target position. Figure @ gives a brief insight on the timing sequence in which the rest of the
sections will refer to. Let subscript ¢ correspond to the step during which the robot reaches
the next reference position in k; actuation steps, while simultaneously tracking its pose.
In particular, at time t9 the robot is in the position z*. When the next reference position
xﬁ} is close, the uncertainty about the current estimation is calculated. Thus, the time

duration T}! corresponds to the time spent for localization. When the local odometry-based
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estimator is used, this time is equal to zero, while the beacon-based estimation algorithm is
time consuming. The time duration T2 corresponds to the path planning algorithm running
time either remote or local, which generates the next reference position. Similarly, the time
to execute the local path planning algorithm is equal to zero.

0 L1 Ki—1 k; _ _
Loy 3;2 A Tl Tl 4T?

o+ - ' T |
/

i+

Figure 5.2: The timing sequence in the proposed scenario.

5.5 System Modeling

5.5.1 Robot dynamics

The differential-drive robot used in this study has two wheels that can turn at different
rates, allowing motion by changing the orientation and the position (x1,xs) either sepa-
rately or simultaneously. For the robot dynamics, the 2D coordinates, i.e.,position, and the
orientation of the _llfobot are den_lc_)ted by the state variables z1, zo and z3. Hence, we consider
z= |:Zl 29 23] = {xT 9] . The robot is controlled by the angular velocities wgr and
wr,, accounting for the right and left wheel respectively. The robot dynamics is defined
by the following continuous time system, based on the work in [154], using the aforesaid

state-space representation. Specifically, we have for any ¢ > 0,

4(t) = g(wL(t) + wr(t)) cos z3(t), (5.1)
55(t) = S(wi () + wa(t)) sin (1), (5.2)
za(t) = +(wr(t) — wa(t)), (5.3)

l

where [, r are the distance between the two wheels and the radius of each wheel respectively.
The odometry measurements wy, (ti ), R(tg) are taken at each time instant tz ,1=0,1,..,

j=0,...,k; of the timing sequence introduced in Section @ The corresponding discretized
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system using Euler forward method is:

21t = (@) + Da(t]) cos () (¢ — ) + 21(H]), (5.4)
5 (1) = S (@r(t]) +Da(t]) sin Z5(t) (6 — ) + 2(t), (5.5)
51 = T(@0(t]) — Dr()) (T — ) + Z(t)). (5.6)

5.5.2 Tracking controller

As previously mentioned, the robot moves towards the next reference position zf,ef to reach
the target position. This transition is broken down into two parts: a rotational movement to
the new orientation and a translational movement to the new position on the grid. For this
actuation phase, given the specific robot dynamics, a tracking controller is proposed, which
is executed locally on the robot, by fixing the control inputs wy,, wgr to be either equal or
opposite. Therefore, the control input is w, while|w| =|wy| =|wg|. As a result, the motion
of the robot is restricted to a straight line, i.e.,“translational motion”, or a rotation around
the center of the wheel axle, i.e.,“rotational motion”, respectively. This control structure is
chosen as it is efficient for tracking purposes, leading to a simple structure of the closed-loop
system. Specifically, the closed-loop dynamics for the translational and rotational motion

are

ST+ { 25(t) = L (w(t)) sin 23(t), (5.7)
Z3(t) =0
z1 (t) = O,

S5 s (t) = 0, (5.8)

where 579" is used for the translational motion and S5° when the robot needs to rotate. Let

) z t{ 21,ret(ts
R(t]) = (5 - (t) be the distance between the robot’s current estimation and

22(tz) ZQ,ref(ti)
2
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‘ . () s .
the reference position and let ¢(t7) = 23(t]) —tan™* (M) be the angle between the
Z1(ty) =21 ref(t
robot’s current estimation of orientation and the line connecting the robot and the reference

position. Here, Z accounts for the estimation of its current pose calculated by Equations

(@) - (@) at the time period of the actuation ¢t = ¢/, j = 0,1,..., k;.

$(t) < es AR(E) > €

$(t) > e AR(E) > e
< (NI s (D

Figure 5.3: The hybrid automaton of the proposed system.

The closed-loop system with the tracking controller can be modeled by a discrete-event

system, see, e.g., [[155], as shown in Figure @, where the control input can be calculated as

follows:

LiR(t), ¢(t) < ey NR(t]) > €1, Translational,
w(t]) = Loo(t), () > ex AR(t)) > 1, Rotational,

0, R(t)) < ey, Stop.

The quantities €1, €; are positive constants, while the gains L, Ly are constant control
parameters.

The reference position is reached when the estimation of its position is close, and in
particular is inside a ball of radius ¢; close to the reference, i.e., centered at B(},, 2(t)) =

{z€R3:|z—2(t))|| < e1}. The effect of the uncertainty is taken into account explicitly in

the offloading decision, as it will be explained in section @
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5.6 Localization and Path Planning

In what follows, the algorithms chosen for localization and path planning are presented, with
a varying degree of complexity and accuracy, that are implemented locally and remotely

accordingly.

5.6.1 Localization

The localization problem is equivalent to the pose estimation problem in the discussed
setting. Two algorithms of different complexity are implemented, namely, (i) an odometry-
based one, and (ii) a camera-based estimation. The first estimation algorithm is light enough
to run efficiently on the robotic platform. Roughly, the robot’s on-board wheel encoders
readings are fed to the motion model of (@) - (@) While this is a lightweight and fairly
accurate localization technique when it comes to short trajectories, odometry is known to
be prone to accumulative errors [[156].

The second localization technique is the computationally heavier beacon-based estimator
that was also presented in [] Roughly, the technique is based on a bilateration method
using principles of the projective geometry. Distance calculation is based on feature ex-
traction from pictures depicting the landmarks, with the localization algorithm relying on
minimum two strategically positioned landmarks. To address this requirement, the attached
camera scans the area in front of the robot, capturing pictures and analysing them until

two landmarks are detected. Hence, computationally intensive, real time image processing

is required to achieve highly accurate results. Relevant works include [] and []
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Figure 5.4: Landmarks
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In more detail, in order to estimate the AlphaBot’s 3-degrees-of-freedom pose in the grid,
in terms of (z, y) coordinates and 8 heading orientation, a single vision -based self-localization
algorithm was developed. This algorithm is classified as single vision -based, because the
robot uses a single frontal camera. Moreover, it is landmark-assisted, since it requires a single
landmark feature (width of beacon) to work. The approach taken here is feature-based and
relies on the principles of projective geometry. In particular, the cylinder was selected as
the shape of the Beacons (Figure @), because of its interesting property; its 2D projection
is a rectangle, independently of any viewing angle that has a rotation axis parallel to the
cylinders axis. The Beacons are colored differently from the environment colors, e.g., blue,
red, orange and green, in order to facilitate the detection from the AlphaBot’s camera. The
camera mounted on the AlphaBot has a 30-degree horizontal angle of view, so a rotation of
six 30-degree steps is needed in order to cover the 180-degree-area in front of it, on aggregate,
and detect two, at least, Beacons. This requirement is discussed further on Subsection .

The following three steps are performed:

Beacon Recognition

In order to detect the presence of a Beacon within an image, the Python OpenCV Libmryﬂ
was utilized; first, the image is transferred to the HSV (Hue, Saturation and Value) color
space, because this conversion is robust towards external lighting changes. In particular, in
cases of minor changes in external lighting, such as pale shadows, Hue values vary relatively
less than RGB values. After this, the algorithm applies an offline calculated HSV mask to
the image, acting as a color filter for each of the Beacon colors. Then, it groups the adjacent
filtered pixels and draws the minimum-area rectangles that surround each of these groups.
This mask consists of a set of lower and upper values regarding the Hue, Saturation and
Value of each color, acting as boundaries. In this study, the following ranges where used:
H €[0°,180°], S € [0,255] and V' € [0, 255]. For example, the [H, S, V] mask corresponding
to blue colored pixels is: lower[30,75,100] and upper[110, 255, 255].

Next, from the rectangles drawn on the image, the ones that possess the following features

are considered to be classifiable as a Beacon:

1. The identified rectangle is in upright position.

Thttps://github.com/opencv/opencv
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Figure 5.5: Beacon contour detection in HSV color space.

2. Its shorter side is parallel to the z axis and its longer side parallel to the y axis of the

image plane.
3. Its aspect ratio stays between Beacon-specific, predefined, boundaries.

These simple criteria are defined to filter out objects on the field that are similarly shaped
and colored as the Beacons. If no rectangle fits these criteria, then it is assumed that the
image does not depict a Beacon in whole. On the other hand, if more than one Beacons
are detected, a selection is made to consider only one of them. Figure @ depicts the result
of the above process. The resulting information retrieved is the perceived width p of the

contour rectangle surrounding the Beacon, in pixels.

camera lenses axis

Figure 5.6: AlphaBot’s main axes.
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Distance and Angle Relative to Beacon Estimation

After detecting a Beacon within an image, the process of estimating the AlphaBot’s distance
and angle from this Beacon, takes place. Performing this step twice, for two distinct Beacons,
allows the deduction of the exact position and pose of the AlphaBot on the grid. It is worth
noting that in the scope of this work, the positions of the Beacons are assumed to be
known. However, this method is extensible to the case where the positions of the Beacons
is unknown, e.g., where a Simultaneous Localization and Mapping (SLAM) technique can
be leveraged to initially identify these positions. The camera mounted on the AlphaBot
follows the pinhole camera model [L60]; that means that the relative size of the projected
objects depends on their distance to the focal point. To find the distance, the triangle
similarity theorem is utilised, i.e., the distance of the object to the camera, d., is given from

the following equation:

where:

w = Beacon width in c¢m.

f = camera’s focal length in mm (known from camera’s datasheet or computed through

camera calibration).

p = perceived Beacon width in pixels (pz).

It should be noted here that across the localization process the AlphaBot is considered to
be a dimensionless point on the center of its wheel axis. However, the AlphaBot’s camera
lenses axis is placed 7cm from the robot’s center, as shown in Figure @ Thus, the actual

estimated distance, d, between the Beacon and the AlphaBot is:

d=d.+7

The core novelty of the proposed localization method lies in the calculation of the angle
between the AlphaBot and the Beacon. As shown in Figure @, the 2D projection of the

Beacon is assumed on the plane of the captured image. It is also assumed that the origin
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Figure 5.7: Method for calculating the angle between the AlphaBot and the Beacon.

(0,0) is at the middle of the bottom border of the image plane and the axis z, coming
through it, as shown in Figure @ To calculate the angle 6, between the camera’s line of
sight and the line which starts from the camera lens and is perpendicular to the Beacon’s
axis, d and a are required. An insight of this angle’s real-world nature would be this: “the
angle that the camera has to rotate to horizontally centre the Beacon’s 2D projection on
the image plane”. The distance a,, in pixels, is the perpendicular distance between the axis
z and the Beacon’s axis, which are parallel to each other, and can be readily calculated
as the contour’s vertices coordinates are known from the last step. The distance between
the Beacon’s axis and the AlphaBot, d, in cm, was calculated in the previous step as well.
Hence, it is only needed to translate the distance a, to the distance a in cm. To enable this
conversion, it is first ensured that the cm-per-pixel ratio, which applies to the Beacon’s 2D
projection on the image plane, is preserved throughout the rest of the plane. This holds true,
as the real-world z axis and its projection on the image plane coincide, which subsequently

means that the real-world distance a and its projection coincide as well. Moreover, the pixel
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size has the same cm length, independently of the pixel’s position through the camera’s
conformity with the pinhole model, which makes the projection free of any linear distortion.

Consequently, we have

);

('lU
a = Qp\ —
p

w
where — is equivalent to the cm-per-pixel ratio. With a and d known, we can calculate 6y,
p

Oy = arcsin(g).

The approach still works when other objects, such as obstacles in the environment, are
depicted in the projection. The only constraint is that the Beacon has to be captured in
whole. The last thing to note is that, as mentioned earlier, the camera rotates on its pivoted
system in order to scan the area in front of the robot for Beacons. However, the angle 6. to
which the camera is rotated is known. As a result, the overall 6, to which the AlphaBot is

rotated, with the given Beacon as reference, is

0, =0, +0p.

Figure 5.8: Bilateration method for calculating AlphaBot’s position in the grid.
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Figure 5.9: Method for invalidating one of the two possible solutions.

Grid Position and Orientation (Pose) Estimation

After having the distance, (dg,d;), and angle (6,,,6,,) from two Beacons available, the
AlphaBot’s pose in terms of position and orientation is estimated. The locus formed by
the set of possible (x,y) locations whose distance from Beacon P; equals the estimated
distance d;, i € [0, 1], is a circle. This observation allows for utilizing the bilateration method
in order to estimate the position of the AlphaBot, as shown in Figure @ with Ps; this
method has been used extensively in previous works regarding localization in wireless sensor
networks [[161], as it requires much lower computational complexity, yet still retains the same

localization accuracy, if the environmental setup allows it.

In the discussed setting, a unique solution of the location of the AlphaBot is feasible
to be retrieved by combining the knowledge of the relative angle observations 6,, and 6,,.
Indeed, for the two (at most) candidate locations that the observations were taken as shown
in Figure @, there is always exactly one feasible configuration that allows both angle values
to be attained, or equivalently, that result in the same absolute angle 6 estimation. This is
demonstrated in Figure @; for example, let 6,, = 20° and 6,, = 150°. As shown there is

only one feasible point where both angle measurements are verified.

The developed method requires only two beacons for localization, under the assumption
of course that the measurements are accurate. Nevertheless, the problem of placing the
minimal number of landmarks in the map still remains. This number depends on the viewing
angle of the camera and the density of the obstacles, or equivalently, visibility of the beacons

from all directions. For the discussed setting where the viewing angle is 180° and for a

112



rectangular map with obstacles not obstructing the visibility of the beacons, the minimum
number of beacons need to be placed is 4. The problem becomes significantly harder for
non-convex and/or non-static maps and tall obstacles and it is deferred for future research.

The bilateration process is briefly depicted in Figure @; the mathematical justifica-
tion behind calculating the circles’ intersection points is the following; considering the two
triangles Py P> Ps and P P, P we can write

g+ h* =dy®

and

A+ h?=d?

where ¢y and c¢; are the distances of Py and Pj, respectively, from the bisector coming
through the two intersection points of the circles and ¢y 4 ¢; equals the distance ds between

the two Beacons. Using dy = ¢ + ¢1 we can solve for ¢y,

_dy® —di? +do?

€0 2dy

2 2, so we get

Then we solve for h by substituting ¢y into the first equation, h? = dgy
_ Btal-R)

P.
2 5

And finally, P; = (x3,y3) in terms of Py = (20,y0), P1 = (x1,y1) and P> = (z2,y2), is either

_x2+ h(y1 — yo) Js = Y2 + h(z1 — o)

xg - d2 y Y3 — d2
or
22— hy1 —vo)  y2— h(x1 — 20)
L3 = yYs =
d2 d2

As mentioned above, one of the two solutions is always rejected as invalid.
The final part of the localization process is to calculate the AlphaBot’s orientation in the

grid with respect to a given reference point. As a first step, a Reference Point in a known
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Figure 5.10: Method for calculating the angle between the AlphaBot and the Beacon.

location on the AlphaBot’s South is asssumed, in Cartesian coordinates; as shown in Figure
, the exact locations of both the Beacon (P,) and the AlphaBot are known by now, thus
calculating the distances b (Beacon - Reference Point) and r (AlphaBot - Reference Point)
is straightforward. Also, distance dy (Beacon - AlphaBot) and angle 6, (AlphaBot’s angle
with Beacon as reference) have been calculated in the previous steps; hence, by utilizing the

cosine rule, the #; angle can be obtained:

b2 + 12 — dy?

0; = arccos( 5
"

)

The actual orientation angle, § is given from the following subtraction:

0=0,—-10,

5.6.2 Path Planning

Many works exist in the literature addressing the path planning problem; a realistic robot
navigation and smooth trajectory planning is a major challenge [], [@] Planning algo-
rithms generate a trajectory consisting of intermediate reference positions to reach the final
target position. In this work, graph-based methods of varying complexity are selected and

adapted, see, e.g., [, Chapter 8]. As a result, the algorithms described below, take as
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input a graph that represents the real-space grid space along with the target positions, the
obstacles and the starting position. This grid has a predefined cell size, that depends on
the length of the robot. Each cell corresponds to a possible reference position. In this case,
the obstacles are rectangular-shaped, for the sake of simplicity, however, arbitrarily-shaped

obstacles could also be included.

On the one hand, a lightweight implementation of the A* algorithm [164] acts as the Local
Path Planner. Similar to [L65], four directions of movement are allowed in the grid. The
cells containing obstacles are not connected with the neighboring cells. The A* algorithm
returns a sequence of positions to reach the target position, according to a heuristic cost
function; in this case this is the Manhattan Distance. The implementation is suitable for a
robot with minimal computational resources providing a solid and quick solution, however

the generated trajectory is not smooth.

The computationally intensive algorithm acting as the Remote Path Planner is deployed
on the edge server. Similar to [166], the main process of the proposed algorithm is to
locate a possible move towards a node that is closer to the target given the aforementioned
graph. For this purpose, a multiple sources single destination problem is solved, utilising
Dijkstra’s shortest path algorithm, which calculates a path from each node towards the
target position, offline. These precalculated paths, along with the total cost to reach the
desired destination, are stored in a database on server’s startup. When the Remote Path
Planner is invoked, given the current location of the robot, a neighbour pruning is performed
similar to [167]. A node of the graph is considered to be a neighbor of the current position
if (i) the distance between them is less than twice the specified cell size and (ii) no obstacle
is in the line of sight of the current position to that node. Consequently, to retrieve the set
of possible neighbours, it is sufficient to search for avoidance of line clipping (intersection)
between the line connecting the current position to each of the adjacent cells and the set
of obstacles present in the real-space grid. The optimal path is chosen by comparing all
possible neighbours. In particular, the cost to reach each one of them from the current
position is added to the cost from each neighbour to reach the desired target. In this way,
the algorithm allows “shortcuts” to the neighbouring nodes, while any-angle trajectories are

feasible.
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Figure 5.11: The block diagram of the switching system. Component abbreviations and
colors follow the pattern introduced in Section @

5.7 Switching System

In this section, the switching mechanisms that are realizing the Offloading Decision Mecha-
nism of the proposed framework are presented. It is assumed that starting from a position
xo = [21(0) 22(0)]7, the closed-loop system converges asymptotically to a reference po-
sition Zpef = [1 res(ti) T2 ref(ti)]T when exact measurements are available, i.e., when
Z(t) = z(t). Two offloading opportunities are identified, related to the pose estimation and
the path planning problem. In Figure the proposed switching system is presented. In
particular, switches S; and S, relate to the estimation procedure, and switch S3 concerns

path planning part.

5.7.1 Sensor selection (Switch 1)

The measurement of the encoder is not perfect, while the model does not capture exactly
the system behaviour. Consequently, there is an accumulating error between the state and
its estimation. This error is modeled by a simple linear update mechanism. When the error
becomes too large, the more precise, yet more computationally intensive remote localization

algorithm is invoked. In order to decide when to offload, the variable d(-) is introduced that
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describes the uncertainty in estimation. We set
S(EF) = 6(t]) + bo + b1d(t]),

j=1,...,k;, i € N, where ¢ is the deviation between the measurements of the states z,
computed by the Equations (@) - (@) and the model-based estimations %, i.e.,

.
2

5(t]) = ||&(t]) — £(¢])

where %(t]) consists of:

() = G (wr(t]) + wr(t) cos ()@ — ) + 21(),

S = S i) + wr(®]) sin 2 (E) (¢ — ) + 2(t)),

BT = J(wi(f) —wr(G)(ET — 1) + Z(t),

which are the model-based estimation of the dynamics at time instants t{ ,j=1,...,k; and
wr,wr are the outputs of the tracking controller. At time tJ, the model-based estimation
is equal to a known initial position, i.e., ¥1(t3) = #Y. As a result, J linearly depends on the

deviation, and is getting bigger as the robot actuates, especially when the actual motion of

the robot differs from what the model dictates.

The offloading mechanism, aiming to reset the uncertainty, is triggered when ¢ becomes

too large, namely larger than a prespecified threshold 6*, i.e.,

OFF, if o(th) < 6%,

ON, else,

where k; refers to the time instant, when the robot’s position, calculated by Equations
(@) and (@), is close to the next reference position &yefk. Moreover, ON corresponds to
using the beacon-based localization and OFF to proceeding based on the local odometry
estimation. In the scope of this work, it is assumed that the uncertainty becomes equal to

zero when the beacon-based localization is used. Hence, when S (t¥) = ON, then 6(t) 1) =
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0, which means we get a valid measurement of the states z. Otherwise, 6(t0,,) = ¢ (tfj ).

5.7.2 Estimation Offloading (Switch 2)

Switch Sy decides whether the localization algorithm will be executed locally on the mi-
crocontroller mounted on the robot, or remotely on the edge server. The decision is based
on the availability of the remote computing resources. Although the execution of such a
computationally heavy algorithm on a battery-powered IoT device is energy-consuming, it
may be preferable in some cases as offloading might result to larger response times due to

lack of available resources on the remote server and network congestion.

Resource modelling and estimation

It is assumed that the resources of the localization service on the edge server are managed
by the resource orchestrator of the infrastructure provider and the allocated resources can
only be estimated through measurements. Thus, the resource allocation strategy on the
edge server are modeled as a linear dynamical system subject to process and measurements

uncertainty disturbances

c((k + DTs) = c(kTs) + w(kTy),

2(kT,) = c(kTs) + v(kTs),

where ¢ accounts for the virtual CPU cores of the container, z is the measurement of ¢
and Ty is a constant sampling time. The terms w, v are the process and measurement
noise respectively, both following a normal distribution. Based on previous measurements,
a current estimation of the virtual CPU cores allocated to the container is computed, ¢, by

applying a Kalman Filter [168], which is a computationally light prediction method.

Processing time estimation

Having acquired the estimation of the available remote virtual CPU cores ¢, the estimated
processing time of the beacon-based localization algorithm can be calculated. To this pur-
pose, the processing time, ¢, is modeled as a linear relationship of the available resources,

t, = ac 4+ b. The coeflicients a,b are calculated using the least squares fitting method, on a
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set of pairs (tp, é) produced offline while experimenting with a dataset of pictures.

Regarding the wireless network transmission delay, the assumption is made that the
wireless access technique between the robot and the access point is based on IEEE 802.11g.
In this network deployment, a common effect that occurs when a signal travels through a
communication channel is its power level decreases as the distance increases. To estimate
this propagation loss, the well-accepted Log-Distance Path Loss (LDPL) model is utilized
[169]. The LDPL model applies to indoor environments with the presence of obstacles,
having a propagation exponent that indicates whether the environment has more or fewer

obstacles, impacting on the computed loss. The respective path-loss is calculated as follows:
d

PL(d)dB = PL(do)dB + 10nloglo(d—), d > dy, (5.9)
0

where PL(dy)qp is the path-loss at a reference distance dy = 1m, n is the path-loss exponent
(PLE), which depends on the presence of obstacles in the environment. To set the upper

bounds of the channel capacity the signal-to-noise-ratio (SNR) is leveraged metric,
SNR(d) = Py — PL(d)ap — Nyg, (5.10)

where P;p is the incoming signal to the access point and Nyp is a Gaussian noise. Then,

the channel capacity C can be calculated using the Shannon—Hartley theorem,
C(d) = Bloga(1 4+ SNR(d)), (5.11)

where B is the available WLAN bandwidth (in Hz), giving in this way an estimation of
the tightest upper bound on the information rate of data (in bits per second) that can be
communicated at an arbitrarily low error rate using SNR. Having this bound available, an

estimation of the task transmission duration (in seconds) can be calculated as follows:
thet(d) = = (5.12)

where m is the size of the offloaded data in bytes.
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Localization Offloading

The processing time is related directly to the CPU availability. The local beacon-based
localization has an average time t;,. to be executed based on the robot’s resources. Hence,

Switch S5 is formulated as:

()1\I7 if tp + thet < tlom

OFF, else,

where k; refers to the time instant that the robot must decide whether to offload or not the
beacon-based localization algorithm. Moreover, ON corresponds to the remote execution of

the self-localization algorithm and OFF to the local execution.

5.7.3 Path Planning Offloading (Switch 3)

Two path planning algorithms are implemented. By default, the computationally light A*
algorithm presented in Section , provides a reference trajectory on the robot. However,
whenever a prediction cost indicates a possible amelioration by choosing a more refined path,
the remote path planning algorithm is invoked. Both algorithms take as input the current
estimation of the position and the reference position and generate a reference trajectory.
The offloading decision for the path planning depends on a cost consisting of two parts;
the first part estimates the closeness of the generated reference trajectory to obstacles and
the second part evaluates the curvature of the trajectory. Both terms follow theoretical
aspects from standard works, e.g., [170]. The function D(z) is defined, that quantifies the
“density” of obstacles according to the estimation of the current position Z, either computed

by the beacon-based localization or the local odometry measurements.

D)= > exp(—|z— zobs|l),

£obs EXobs

and Xpps is the set of positions that correspond to the centers of the cells that are unreach-
able, e.g., occupied by an obstacle.
Let {#(7)};=1,...,m be the part of the path sequence consisting of the first M positions,

generated by the local path planning algorithm.
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The local path planning algorithm takes as input the current position estimation :i(tfl)
at t = Ti’“ + T} and creates a reference trajectory sequence {Z(@) }i=0,1,...,m, with £(0) =

(" + T}). We define:

S

Toea (Bt +T1) = Y (26 + 1 - 2@)]) - [2(20) - (0],

2

I
o

as a cost describing the curvature of the reference local trajectory. The offloading strategy

can be formulated as:

OFF, if D&(t" 4+ T1)) — Jioear &5 + T1)) < J*,
53(75? +T)) =

ON, else,

where tfi + T} indicates the time instant after the actuation and pose estimation. The
constant J* accounts for the degree of difficulty of the next moves in terms of proximity
to obstacles and curvature of the trajectory. When S3 in ON, the remote path planning
provides the next step to reach the target position. Otherwise, the robot relies on the local
path planning trajectory. It should be mentioned that, contrary to Switch 2, here, the CPU
availability does not take part in the offloading decision, as it is noticed that the remote

path planner chosen is mainly memory intensive.

5.8 Experimental Evaluation

The experiments were conducted in an operating space of 2.5x2.5 meters, divided by 25x25
cells, with a cell size of 10x10cm. The length of the AlphaBot is 22¢m and the radius
of each wheel is 6.6¢m. The coloured beacons were placed at the periphery of the grid
for the localization procedure described in Section @ The rectangular-shaped obstacles
were placed as depicted with grey colour in Figure . The map is considered known.
The Access Point used was a MikroTik wireless SOHO AP, providing up to 100Mbs LAN
connection, Single Band (2.4GHz). The edge server deployed on the NETMODE, testbed
part of Fed4FIREE initiative, was equipped an Intel Atom CPU, up to 1Gbit Ethernet

port and 8GB of RAM. The services provided by the edge server were deployed as Docker

2https:/ /www.fed4fire.eu/testbeds/netmode/
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Figure 5.12: Absolute error of the estimated distance relative to the real distance from a
Beacon, for different orientations.

containers. For each Docker container, one can set constraints, to limit a given container’s
access to the host machine’s CPU cores, by provisioning a percentage of them as the virtual
cores of the containers. Thus, containers can be assigned with partial virtual CPUs using
decimal values. Using a collection of pictures from the actual experimentation room, from
different positions and viewing angles, a dataset was created to estimate the time duration

of the remote beacon-based localization.

In the first part of the evaluation, the effectiveness of the self localization technique
described in Subsection @, is briefly demostrated. The evaluation of the proposed technique
is broken down into two parts; ¢) the association of the perceived distance’s error with the
real distance from the detected Beacon and i) the overall accuracy of the final estimation

of the AlphaBot’s pose.

As depicted in Figure , the AlphaBot is located between 50c¢m and 250c¢m from the
Beacon of interest. The distance of 50cm corresponds to the minimum distance from which
a Beacon can be portrayed in whole with the current camera setup. One can notice that
the absolute error of the distance-to-Beacon estimation increases gradually as the distance
increases, but the accuracy never drops bellow 93%. Moreover, the different relative ori-
entations of the AlphaBot seem to have a negligible effect in the accuracy of the distance

estimation; —30°, 0° and 30° were randomly selected to illustrate this behaviour. It must
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be highlighted that the most accurate estimations, though, were observed when the real
distance between the AlphaBot and the identified Beacon was in the range [80cm, 100cm)],
as the average of the estimation’s absolute error was in the area of 1.3c¢m, or approximately
1%.

When comparing the estimated poses with the real ones, it can be noticed that the
combined coordinates error, after the bilateration of the two relative distances takes place,
never exceeds 20% in either x or y axis. Regarding the estimation of the orientation, at
each point, the absolute error lies in the [2°,12.5°] range. All in all, when a Beacon is
correctly detected within the captured image, it is noticed that the proposed method is not
only precise but also independent of environmental variables, e.g., light conditions, when it
comes to pose estimation. To illustrate the overall accuracy of the proposed self-localization
method, a random walk was composed for the AlphaBot to perform on the aforementioned
operating space; the robot followed a predefined trajectory of random poses and estimated
its position and orientation at each point. In Figure the trajectory of the real positions is
depicted with the blue dashed line, having at each point a specific orientation depicted with
blue arrows, while the estimated positions and orientations are depicted with red dashed
lines and green arrows respectively. The lines connecting the different points do not represent
the actual movement of the AlphaBot but are drawn for clarity. The deviation between the
real poses and the estimated ones produced by the proposed algorithm for this random walk,

is considered acceptable for the selected application. It is noted that in a typical setting
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Figure 5.13: Real versus estimated AlphaBot trajectory.
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where the robotic agent moves autonomously, the measurements generated by the discussed
method can be fed to a state observer of the robot’s position and orientation, improving

significantly the accuracy.

Average Time per picture (sec), t, | Virtual Allocated Cores, é
2.41 0.25
1.06 0.5
0.56 0.75
0.39 1
0.30 1.25
0.26 1.5

Table 5.1: The average time for remote beacon-based estimation per virtual allocated core
to the container.

In the second part of the evaluation, the benefits of the switching offloading mechanism
are demonstrated. In Table @7 the values of the set of pairs (¢p, ¢), introduced in Section
, are presented. Using the least squares fitting method the coefficients a = —1.34 and
b = 1.675 were calculated. Hence, the estimated processing time of the remote beacon-
based localization is given by t, = —1.34¢ + 1.675. Provisioning over 1.5 cores resulted in
similar computation time, thus, the maximum CPU allocation was set to that value. In the
experiments conducted, the allocated cores of the containerized application were updated
every 10sec, following a Normal Distribution with a mean value of 0.75 and 0.5 variance.
The following values were used for the aforesaid constant values: by = 1; by = 0.2; e; = Scm
ea=5° L1 =02, Ly =0.6, *=6and J* = 3.

Regarding the networking settings, a signal of power P,;p is assumed for the uplink, which
is proportional to the distance between the robot and the access point it is connected to
and which has a maximum value of PJi** = 24dB. Moreover, PL(dy) is fixed at —20dBm,
based on the work of [169], which presents an access point with the same characteristics
of ours and the same reference distance. The path-loss exponent n was set equal to 3.5, a
value typical for a factory floor setting [171]. The size of offloaded data, in MB, followed a
uniform distribution with a mean value of 0.075 and variance equal to 0.25. The Gaussian
Noise Nyp was set equal to —114dB while the bandwidth B allocated to the robot at any
given time was set to 1M H z.

Three experiments were conducted, namely, local only execution, remote only execution

and the proposed switching offloading scheme. In Table @ the average completion time
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Figure 5.14: The experiment setup and the trajectories produced by the three experiments.

Experiment Average completion time (sec) | Success Rate
Local Only Execution 61 40%
Remote Only Execution 105 100%
Switching System 90 100%

Table 5.2: The average completion time and success rate of 10 experiments for each setting.

and the average success rate for 10 experiments of each setting is presented. For the rest of
the evaluation, the results of the best trials for each setting will be presented. Moreover, in
Figure the reference trajectories of these trials for the three experiments, are illustrated,
with green colour for local only execution, red colour for remote only execution and purple
colour for the switching system. As outlined in Section @, the local A* algorithm allows only
four directions of movement, while the remote path planner allows any-angle movements.
For better visualization, timelapse videos from the conducted trials for each setting have
been uploadedE. In these experiments, the starting position for the AlphaBot was the
already known position A(3,14), while the desired target reference positions were B(10,5)
and C(14,18) in sequence. The scale of uncertainty is illustrated as a percentage of §*,

i.e.,0/6*, which is the predefined quantity for Switch 1 to be ON.

3https://github.com/Dspatharakis/alphabot-ppl/tree/master/timelapsed-videos
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Experiment A - Local Only Execution

In the first experiment, Switches 1 and 3 were ON, throughout the experiment and Switch
2 was never used. During this, the AlphaBot never used the beacon-based localization. As
a result, the only estimation of its position is coming from the photoelectric sensors and
the local estimation procedure. Moreover, the path planning algorithm chosen was the A*
algorithm, executed locally at the Pi at each given time. This setting results to a fast,
although not precise navigation with §/6* growing monotonically. Without executing the
sophisticated beacon-based localization or the modified Dijkstra’s shortest path planning
algorithm, the average duration was 61 sec. Also, in Figure , one can notice that the
duration of the experiment is proportional to the number of steps produced by the A*
solution. Thus, the actuation of the AlphaBot is the main time consuming process in the
experiment.

Experiment Time
70 T T T T T

1
0 5 10 15 20 25 30
Steps

Figure 5.15: Experiment A - Duration of the steps of A* at the Raspberry

Finally, the amount of successful trials was low. Consequently, without a more so-
phisticated localization algorithm and a more precise path planning technique there is no

guarantee the target reference position is reached; the pose uncertainty grows with time, as

depicted in Figure .
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Figure 5.16: Experiment A - Uncertainty during Experiment A.

Experiment B - Remote Only Execution

In the second experiment, whenever the uncertainty about AlphaBot’s pose grew over the
predefined threshold ¢*, beacon-based localization was invoked (Switches 1 and 2 ON) on
the edge server. Moreover, the path planning chosen was the modified Dijkstra’s shortest
path algorithm, which was also always executed remotely (Switch 3 ON). In this setting, the
robot always reached the target positions, as shown in Table @, although the completion
time was heavily affected, as shown in Figure . Beacon-based localization was executed
twice during this experiment and, as a result, §/6* became equal to 0. The setup of the
particular experiment underlines the importance of a slower but more precise navigation.
The minimum transmission time for the photos used for beacon-based localization was 1sec,
while the maximum was close to 1.5sec. Moreover, the time consumed for the Dijkstra’s
solution at the remote server had an average value of 0.9sec. This experiment involves a
powerful server at the Edge layer with designated computing cores for the needs of each
process. As a result, the computing time for each task is low. However, the overhead of
transmission is significant in comparison to the previous experiment. Last but not least,
although the computational time is significantly low, one must not forget that this is the
result of overprovisioning the resources of a whole server. The resources of the server were

underutilized for the most time during this experiment.
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Figure 5.17: Experiment B - Remote Only Execution.
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Figure 5.18: Experiment C - Switching System.

Experiment C - Switching System

In this experiment the full functionality of the switching system proposed in this work is
highlighted. As described in Section , Switch 3 decides which path planning algorithm
solution the AlphaBot will use to generate the next reference position. A server at the edge of
the network was utilized as the remote server to draw attention to the advantages of the low
transmission time due to WAN connection between the server and the Raspberry mounted on
the AlphaBot. This communication between the server and the Raspberry was over http. In
comparison to the “Local Only Execution” experiment, the time spent to reach the final goal
was much longer, due to the time consuming beacon-based localization, and the increased
computation time needed for the more advanced path planning solution of the modified
Dijkstra implemented at the dedicated server. However, this setup provided a very precise
and robust navigation for the robot, leading to a very high success rate of the experiments.

At the dedicated server, a dynamic resource allocation mechanism was deployed, changing
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the allocated CPU cores of the Docker Container which hosted the service waiting to execute
offloaded tasks. As a result, this optimal resource allocation led to guaranteed low response
times in the offloaded localization and navigation tasks, while overprovisioning of the CPU
resources was avoided (opposed to the “Remote Only Execution” experiment).

In detail, when, the curvature function of the trajectory calculated by the A* algorithm
and the obstacle density function exceeded the threshold value J*, the remote path planning
solution was selected; e.g., from the beginning of the experiment until the 25th sec of the
simulation and from the 43rd sec till the 67th sec, as illustrated with green dashed line in
Figure . In the same figure, with red solid line, §/6* is depicted. Two times during the
experiment the more precise beacon-based estimation was invoked to reset §/6*. The first
estimation attempt, at the 25th sec of the experiment, was executed on the edge server,
because S2 was ON. The second one, at the 71st sec of the experiment, was executed locally,
as S2 dictated (OFF), because the estimation of the CPU availability of the edge server,
provided by the Kalman Filter, along with the network delay for each picture, at that
time, would have provided worse results than the local execution. This setup provided a
very precise and robust navigation for the robot, leading to a very high success rate of the

experiments, achieving a balance between execution time and trajectory accuracy.
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Chapter 6

MRF-based Distributed
Energy-aware Resource

Allocation at the Network Edge

6.1 General Setting

As mentioned in the Introduction of this thesis, efficient resource allocation for task of-
floading at the Network Edge, is required for both the IoT devices/end users as well as
the infrastructure providers. On the users’ side, as discussed in previous chapters, efficient
resource allocation is translated to an overall improvement in the experienced QoS and QoE.
On the providers’ side the benefits are pinpointed in the minimization of the energy con-
sumption of the data centers, which is mainly affected by the number of the servers that
are activated to serve the incoming workload and which, in turn, is directly proportional to
the operating expenses of the infrastructure.

Thus, in this chapter a framework is introduced which simultaneously addresses energy
consumption minimization and distributed load balancing, while respecting the applications’
QoS requirements. Initially, a wireless protocol is simulated in order to extract the instanta-
neous throughput under dynamic wireless network conditions, and the mobility of the users

is predicted with the use of an n-Mobility Markov Chain location prediction method. Based
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on this prediction, pre-computed profiles of virtual machines (VMs) are leveraged to enable
proactive and dynamic resource allocation at each edge site, ensuring the QoS constraints
of any deployed application. Containers can also be considered as the virtualization units
without any change in the modeling. Finally, a novel load balancing technique based on
Markov Random Fields (MRF) is introduced to appropriately distribute the excess workload

among the available edge sites, towards the minimization of the total energy consumption.

6.2 Related Work

The problem of task offloading falls into the knapsack resource allocation category which is
NP-hard in general [172]. Most of the proposed approaches follow a partial or full offloading
technique, according to whether the tasks are separated or not, with the goal to minimize the
overall latency and/or energy. Furthermore, they propose static resource allocation schemes
on the edge infrastructure. In this chapter, the design principles of [173] are adopted and the
ENERDGE framework is proposed, which is a mobility-aware and full offloading approach
in order to minimize the energy consumption of the edge infrastructure under specific QoS
guarantees for the mobile applications hosted. In this context, there are three interesting
and related directions in the literature: i) mobility prediction for task offloading, ii) single-
site task offloading and resource allocation, and iii) multi-site task offloading and resource

allocation.

6.2.1 Mobility Prediction for Task Offloading

The success of offloading decisions depends heavily on the dynamic nature of task behavior
and user mobility. In particular, the users may move and resource prices for offloaded task
execution may vary over time. This led the authors in [174] to propose an online algorithm
with a logarithmic objective to minimize the resource usage of the edge infrastructure, while
taking into account the impact of mobility in the latency. They also formulate a VM migra-
tion cost for the tasks that need to follow the users’ movement. In a similar manner, Wang
et al. [175] assume a mobility prediction with fixed accuracy and propose VMs migration
based on predicting the future costs of their placement. A migration policy, however, for

containers, is also formulated in [[176], where the authors introduce an architecture in which
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Fog Computing services constantly move in order to be always close enough to the served
IoT mobile devices.

Since the mobility of the users can significantly impact the latency and increase the
migration cost, the authors in [177] introduced a prediction mechanism to ameliorate the
offloading performance. A similar approach is followed in [101], where the most popular
services are proactively installed in the Edge servers located in the positions that the users
will most probably visit, thus reducing the network delay during task offloading. Another
approach, denoted as MAGA and introduced in [L7§], is based on frequent moving patterns
of the users and a genetic algorithm to partially offload tasks to edge servers. However, in
all of the aforementioned works the authors assume static resource allocation at the edge,

in terms of amount of resources utilized.

6.2.2 Single-Site Offloading & Resource Allocation

In case of task offloading, a single edge site is usually available in close proximity to the
users. The main focus in this type of resource allocation problem lies in the latency and
energy minimization. For example, the authors in [179] investigate the task offloading of
augmented reality applications emphasizing on the computation intensive tasks (i.e., object
recognition and position tracking). A successive convex approximation approach is proposed
to minimize energy consumption under latency constraints, while emphasizing on both the
available computation and communication resources at the Edge. Another energy-efficient
based approach is presented in [172], following a mixed discrete-continuous optimization
approach along with a low-complexity heuristic based on Johnson’s algorithm.

Regarding latency, authors in [72] study the admission control and resource allocation
problem of computationally intensive IoT applications at the Edge. A Lyapunov dynamic
stochastic optimization approach is used with the goal to reduce the end-to-end delay, while
improving the overall throughput. Similarly, [180] investigates the mobile-edge computing
offloading problem with the goal to minimize the latency in a multi-user scenario with
joint communication and computational resources. The solution is based on the Lagrange
multiplier method. However, such centralized task offloading approaches usually fail to apply
to realistic scenarios of larger edge infrastructures with multiple, geographically distributed

sites.
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6.2.3 Multi-Site Offloading & Resource Allocation

In case there are multiple edge sites in close proximity to the devices, task offloading includes
both the resource allocation of the tasks and the selection of the right administrative domain
(i-e., edge infrastructure). In this context, an edge orchestrator can be used to assign the
tasks to the appropriate domain, with the goal to maximize the number of successfully
assigned task requests [[181]. Sonmez et al. [182], proposed a fuzzy workload orchestrator
for multiple Edge and Cloud infrastructures. For each offloaded request, a set of fuzzy rules
determined the destination computational unit within a hierarchical multi-site architecture.
However, the authors empirically defined the fuzzy rule sets, while assuming static resource
provisioning on the edge servers, which might not be applicable to real conditions where
services typically bear different workload characteristics. Plachy et al. [183] leveraged a
probabilistic modeling of the mobile users’ movements in order to pre-allocate computing
resources on multiple edge base stations and alleviate the potentially unreliable mobility
and channel predictions. Subsequently, a low complexity algorithm decides on the best
communication path between the user and the selected base station.

Another goal can be the balancing of the load between edge servers while minimizing the
application response time. In [99], over-utilized edge servers redirect part of their incoming
workflow to resource-rich or under-utilized servers, using a minimum cost max flow algo-
rithm towards achieving total balance in terms of average application response time in the
whole edge infrastructure. An extension to this work is presented in [184], where a genetic
algorithm is exploited for a distributed load balancing of traffic, yielding a solution that

converges to the minimization of maximum task response time through gene mutations.

6.2.4 Markovian Random Field -based Solutions

The motivation behind the decision to utilize an MRF-based solution in the load balancing
and resource allocation problem originates from the work in [185], where a distributed control
approach is proposed for self-organization of autonomous swarms. The swarm is modeled
as an MRF and the desired global behaviors can are encoded into the Gibbs potential func-
tion characterized by local interactions. The proposed scheme is scalable, the computational

requirements remain the same as the number of nodes increases and it can can easily accom-
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modate various constraints. Due to these inherent advantages, MRFs have been successfully
utilised in various applications of different domains during the past years; for example, in
computer vision, Geman et al. [186] used MRFs to model the correlation among neigh-
boring pixels and capture certain statistics of natural images. In the field of recommender
systems, Liu et al. [[187] used the representational power of MRFs and Conditional Random
Fields (CRF), to find out the predicted ratings for inducing unknown preference relations
(PRs). On the other hand, Karyotis et al. [188] collects and presents works that incorporate
MRFs in hybrid recommender system, which also combine the filtering of huge collections
of items with analysing behavioral properties and the interplay between the entities of a
social platform in order to achieve more precise recommendations. Finally, in the cognitive
radio networks (CRN) domain, Anifantis et al. [189] adopted a Radio Channel Allocation
(RCA) framework that combines a Markov Random Field formulation with Gibbs sampling,
allowing distributed and efficient operation for each Secondary User (SU). According to this,
every SU can calculate an “energy” function based on its current state and the states of its
neighbors. The goal for each SU is to minimize interference through minimization of its local
energy function. SUs asymptotically converge to global optimal solutions, by progressively
updating their energy functions through local sampling. In [190], the authors also utilize an
implementation of an MRF-based cross-layer framework for resource allocation among SUs

in CRN environments.

6.2.5 Contributions & Outline

In order to overcome the aforementioned challenges and achieve the discussed goals, a novel
framework is proposed, referred to as ENERDGE, which jointly tackles task offloading and
resource allocation of multiple edge data centers in a distributed and energy-efficient manner.

The framework has a gradual operation, introducing the following key contributions:

e A performance modeling approach based on Switching Systems Theory is proposed,
to define virtual hardware profiles, i.e., flavors, for the edge infrastructure, provid-
ing application QoS guarantees under various operating conditions. This modeling
allows for dynamic selection and allocation of the appropriate amount of resources for

each application (i.e., switching between the different hardware profiles), based on the
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anticipated workload demands. Leveraging the capabilities provided by this switch-
ing, a two-stage distributed, energy-aware, proactive resource allocation mechanism is

designed.

During the first stage, the works of Chapter E and H are extended, that jointly ad-
dress task offloading and resource allocation on a single edge site (i.e., [63, 191]), to
simultaneously minimize the total energy consumption of each edge site and provide
guaranteed satisfaction of the QoS requirements of each deployed application. In order
to accommodate the workload prediction needs at this stage, an existing user mobil-
ity prediction mechanism is utilised, based on the concept of the n-Mobility Markov
Chains location prediction [192], to estimate the movement of the mobile devices be-

tween different sites within the edge infrastructure.

During the second stage, this approach is combined with a novel Markov Random Field
(MRF) mechanism that incorporates in its objective function all optimization criteria;
this mechanism aims at redirecting tasks that cannot be executed locally under the
given energy and QoS requirements of the first step, balancing resource utilization
throughout the whole infrastructure. Thus, it achieves a better total energy man-
agement optimization through an efficient state space search in a distributed fashion,
while taking into consideration any additional network delays incurred. This is the first
approach of such a combination, and it could potentially pave the way for other similar
MRF designs as optimizers in relevant problems. The integration of the above mod-
eling and resource allocation approaches composes a task offloading and energy-aware
resource allocation mechanism for accommodating dynamic spatiotemporal workload

demands.

Finally, a detailed evaluation of the proposed approach is provided, in terms of en-
ergy consumption minimization and QoS satisfaction for both stages of the mecha-
nism. Then, it is compared with a well-established study in [99]. Based on a realistic
application simulation, the discussed solution outperforms the approach in terms of
adaptation efficiency. In other words, the proposed approach yields less energy con-
sumption for achieving the same QoS guarantees, or equivalently, it achieves higher

QoS guarantees for the same energy consumption.
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6.3 System Modeling

6.3.1 Edge Infrastructure & Applications

To facilitate the extensive modeling employed in this work, Table EI summarizes the key
notation used throughout this chapter. The physical infrastructure is modeled as a group
of wireless access points, each directly connected with a cluster of homogeneous servers,
as illustrated in Figure EI These physical resources altogether form an edge data center,
which hereafter is referred to as site sg, with S = {s;}}7_; being the set of sites, for n sites
in total. This set forms a graph, where each site corresponds to a node and the edges to
the interconnections between them through routers, used only for forwarding purposes (i.e.,
backhaul network). Furthermore, the servers of the edge infrastructure are considered to
be located in different sites are heterogeneous. This implies differentiation on processing

capabilities and service completion time among sites.

VMs of
flavors

b1,2,M

Figure 6.1: Example of considered edge infrastructure.

For the access layer, the existence of various and heterogeneous end-devices (e.g., IoT,
mobile devices) is assumed, each associated with one of M specific mobile applications (i.e.,
augmented reality, wearables, etc.). Each application m € {1,..., M} comes with specific
requirements in terms of QoS (e.g., average response time) that will guide the allocation of

the resources.
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Table 6.1: Summary of the key notation.

Symbol Interpretation
Sk Site k
S Set of sites, n = | S| sites in total
M Number of applications
O, Acceptable response time for App. m
b, VM flavor of application m
Cm Cores requested by VM flavor ¢,,
L Throughput guaranteed by VM flavor ¢,,
Sercpu Server’s CPU capacity
Py, Server’s power consumption
Pax Server’s max. power consumption
P(ém) Power consumption of VM flavor ¢,,
Z; A feasible VM formation
2k Set of feasible VM formations at site sy,
N Size of z; VM formation
cper Servers’” CPU cores threshold at site sy
Py Edge infrastructure’s power consumption
Py Power consumption of site s
fi Number of servers with z; VM formation
FE; Number of available servers in site s
Di Power consumption of VM formation z;
ri Max. workload served by VM formation z;
Ly = [L}] Predicted workload for site sy
N, Neighborhood of site s,
Wy = [wfff)] Excess workload for App. m at site si
by = [bgk)] Number of servers of type i at site sy,
P(by) Power consumption of by
Xk = {Wk, Bk}2:1 Random field
V(w) MRF potential function
C1,C5,C3,A1, Ay | Properly selected MRF constants
L, K, xg Parameters of reflected sigmoid function
t Visiting epoch of MRF
w MRF sweep index
T (w) MRF temperature at sweep w
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6.3.2 Task Offloading

As depicted in Figure @, each end-device running an application m offloads its computa-
tional intensive processes to the Edge to reap the benefits of the more powerful computa-
tional resources. In this work, an IEEE 802.11ac access network to offload the tasks from
the devices is assumed. Following the work of [193], the access network is modeled by using
an indoor TGnAC Channel B, suitable for large open space and office environments [[194].
Along the same lines, in order to capture the dynamic nature of the wireless network, the
transmission rate of the devices is adjusted according to an enhanced version of the Minstrel
algorithm [195]. In this manner, the devices are able to change the modulation and coding
scheme (MCS) used, and thus the transmission rate, conforming to the varying channel con-
ditions and interference from nearby devices (SINR). This procedure allows the creation of
a realistic dataset containing tuples of the form <number of users, offloading request rate of
each user>, which is publicly availablem, and utilize it to translate the predicted number of
users to the anticipated request rate, for a specific edge site. Specifically, it is assumed that
each user constantly offloads at his/her maximum achievable data rate, and, considering
a fixed offloaded task size, producing the anticipated workload volume for the estimated

number of users is feasible.

It is assumed that each end-device needs to fully offload its requests on edge servers
following a VM /container-based provisioning method. Depending on the user’s location,
the offloaded tasks are assigned to the site where the wireless transmission occurs. Each
VM/container of the site’s servers serves the offloaded requests of the application m that it
was assigned to. It is noted here that, for the sake of simplicity, focus is placed on scenarios
and settings where the user’s movement is typically limited close to the site of interest
during the whole offloading procedure. Therefore, the offloading procedure for a single task
is assumed to complete within the same site that it was initiated in and, consequently,
no handover processes and costs are considered. The most important QoS requirement of
the offloaded tasks of application m is the maximum acceptable response time 6,, value,
which is application-specific. Under this setting, the end-device accelerates the execution of

computationally intensive tasks and extends its battery lifetime.

Ihttps://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
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6.3.3 VM Flavor Design

On each edge site, it is essential to facilitate the proactive dynamic resource allocation due
to the varying number of the offloading requests received. The term VM (or container)
flavor is introduced for every deployed application, which describes the relation between the
application’s response time, the allocated CPU cores and the number of the offloaded re-
quests. The computation of these VM flavors is based on switching systems from the System
Theory. The advantage of the VM flavor design is two-fold; first, this modeling approach
allows for accurately capturing the dynamic behavior of the application-specific VMs, un-
der various operating conditions. Second, calculating a multitude of VM flavors, allows for
quickly adjusting the edge infrastructure to different pairs of workloads and applications,
while providing a level of guarantee for the QoS specifications.

The VM (or container) flavor ¢,, € ® of application m is defined as a tuple that includes
the QoS specifications of the hosted application, the requested resources for the VM that
will provide the QoS guarantees and the maximum throughput of offloaded requests, for
which the VM will be able to achieve these guarantees, ¢, : < O, C, i >. Specifically,
parameter 6,, denotes the average response time that the VM of flavor ¢,, guarantees to
achieve with ¢, CPU cores allocated to it and for a maximum throughput of pu,, offloaded
requests per time unit. The assumption is made that the response time consists of two terms:
(a) transmission time and (b) service completion time. The transmission time includes the
time to transmit/upload the application’s request through a wireless link. In particular,
since the wireless link has been modeled through the IEEE 802.11ac protocol, calculating this
delay is feasible by leveraging the information of throughput achieved and the application’s
task size. Regarding, the time to download the response from the server, since the size of
the output is generally much smaller than the input, this delay can be usually omitted [196].
Service completion time includes the VM /container startup time, as well as the queuing and
processing time of the application tasks at the assigned servers. A flavor could also define
the memory requested by the VM. However, it is omitted from the problem formulation
due to the following reasons: First and foremost, memory power consumption is negligible
compared to CPU power consumption [197]. Secondly, following the paradigm set by well-
known edge computing frameworks like MAUI [198] and ThinkAir [199], focus is placed on

the offloading of CPU-intensive tasks.
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In principle, the performance of an application hosted on a VM is non-linear and cannot
be described analytically. However, adopting linear modeling allows for an easier identifi-
cation of the system, without significant loss of accuracy, and enables the implementation
of various optimization and control methodologies. In order to extract the VM flavors for
each application deployed on a site, the modeling approach of Chapter H [63] is modified; for
each application and for each flavor ¢,, of this applications’ VMs, a scalar, discrete Linear
Time-Invariant (LTT) system is identified. In particular, the VM flavors are mainly differen-
tiated based on the number of CPU cores they require, which also constitutes the switching
criterion of the proposed mechanism. Thus, during this identification phase, for each appli-
cation and for each different CPU core allocation, the operation of the corresponding VM is

described by a discrete linear system of the following form,
O(t+1) = ad(7) + bu(r), (6.1)

where 0(7) represents the average response time for the deployed application, within a
time period 7 and p(7) the number of offloaded requests within the said time period. The
coefficients ¢ > 0 and b > 0 are known scalars which can be estimated by the Recursive

Least Square algorithm [200].

Physically, a VM with ¢, allocated cores can only serve up to ., offloaded requests of
the deployed application while guaranteeing an average response time of 6, for the specific
time period. This constitutes the physical interpretation of a flavor ¢,, and generally, for
each such switching system, a set of feasible VM flavors of this kind can be computed
according to certain performance criteria and input constraints. In this case, these feasible
VM flavors are computed by solving the following linear programming problem with the

goal to maximize the number of the offloaded requests:

max i (6.2a)
subject to  6,, = ab,, + by, (6.2b)
Omin < O < Omax (6.2¢)

Hmin < flm < fimax (6.2d)
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The first constraint dictates that each flavor must also be an equilibrium point of the discrete
linear system, which will guarantee its stability and confinement in a specific operating area
around it. The second constraint implies that the average response time must lay between
a minimum (6,;,) and a maximum value (6,.x) set by the application’s QoS requirements,
while the last constraint refers to the offloaded requests varying within the applications

anticipated throughput range.

By having a set of VM flavors corresponding to different core allocations and maximum
throughputs, a better level of accuracy is provided than using a single LTI model for the
whole operation. In such a way, the extracted VM flavors correspond to realistic operating
conditions and constitute the fundamental elements for the ENERDGE resource allocation

mechanism.

6.3.4 Power Modeling

When fully offloading tasks, the total computational and energy burden is shifted away
from the devices. However, reviewing this shift from a complete network-wide view one can
easily understand that the problem is simply pushed at the Edge. Thus, in this work, the
minimization of power consumption at the edge infrastructure is also taken into considera-
tion. This includes switching physical devices on and off and optimizing the computational

resource usage during the offloading.

Usually, for the server power dissipation, an almost linear relationship between the power
consumption of a server and its CPU utilization exists. The following model, can accurately

predict the servers’ power consumption Pj., with an error below 5% [197]:

Pser:’Y'Pmax"‘r(l_’y)'Pmax"uw (63)

where Ppax is the maximum power consumed when the server is fully utilized, v is the
percentage of power consumed by an idle server (usually around 60% [201]) and w is the

current CPU utilization.

In order to extract the power consumed by a VM of flavor ¢,, provisioned in a server,

142



the above equation is transformed as follows:

’Y.Pmax—’—(l_’y)'Pmax'cim ifu:()

Sercpu’

(1—=7) - Puax - #mw’ otherwise,

where Sery, is the total amount of the available computational resources in a server, i.e.,
CPU cores. Hence, for the first VM provisioned at a server the power consumption will
include activating the server and the power consumption added by the particular VM. For
the rest of the VMs only their power consumption is taken into consideration. It is worth
mentioning, that an isolcpus technique [202] is assumed, where the requested CPU resources
are isolated and pinned to the VM. This is a common technique for performance optimization
when virtualizing x86 servers. Thus, each VM will have access only to its share of CPU

resources consuming as well the corresponding power.

6.3.5 Mobility and Workload Prediction

As discussed in the previous subsections, each site hosts a group of IoT/mobile applications
and serves the offloaded requests that are generated by the devices within the range of its
wireless access point. However, in both mobile and IoT applications, mobility is a key feature
and must be considered by the offloading decision and resource allocation mechanism, as
it creates dynamic network conditions. Towards the optimal resource allocation policy, an
accurate prediction of this is necessary.

In order to address this issue, a variation of the n-Mobility Markov Chains (n-MMC)
location prediction method described in [192] is implemented. In a nutshell, this method
incorporates the two previous visited sites of a mobile device and a Mobility Markov Chain in
order to probabilistically predict the device’s next location. As a prerequisite, this method
requires a transition matrix available, containing all the feasible transitions of a device
between the sites, associated with their probability of occurring.

In order to create this transition matrix, the Melbourne Museum dataset [203] is used,
which comprises 158 complete real visitor pathways, in the form of time-annotated sequences
of visited exhibit sites. After processing the data, each path was assigned a probability based

on its frequency of occurrence. This resulted in a transition matrix whose rows represent
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the three last visited sites and its columns represent the next site to be visited. In this way,
predicting the next location of a visitor is simple. Their three most recently visited sites
are traced, the row in the transition matrix that corresponds to this trace is searched and
the column with the maximum probability of transition for this row is located. The site of
this column is the predicted next location. Finally, having available the collective statistics
regarding the predicted locations of the users for the upcoming time period, the predicted

offloaded workload, Ly = [IZ}?], is acquired for the respective site s; and application m, as

described in Subsection .

6.4 Resource Allocation & Workload Balancing

Leveraging the Switching System modeling approach introduced in the previous section, in
this section a 2-stage distributed, energy-aware, proactive resource allocation mechanism is
proposed. In the first stage, an initial resource allocation optimization takes place locally at
the site of each Edge, which balances between energy consumption minimization and QoS
satisfaction. In the second stage, a novel distributed technique is applied to redirect the
excess workload to under-utilized sites, thus balancing the resource utilization and achieving

a better energy management.

6.4.1 Resource Allocation Optimization

In order to accommodate a proactive and dynamic resource allocation, the work of Chapter
H [63] is followed where time is considered slotted. In this stage, at the beginning of each
system slot, a decision is made on the topology to be implemented on each site, which will
enable it to handle the projected offloaded workload. This topology defines the number of
edge servers to be activated in each site along with the VM formation to be placed in each
edge server, i.e., the number and flavor of the VMs.

Feasible VM formations are the ones where the sum of the CPU cores requested from
the co-hosted VMs’ flavors does not exceed a predefined threshold. For instance, assume
two applications Appl and App2. A VM running Appl and instantiated in a flavor that
requests two CPU cores, along with a VM running App2 and instantiated in a flavor that

requests one allocated CPU core, is a feasible VM formation for a single edge server, as
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the cumulative number of allocated CPU cores does not exceed the threshold of three cores
(75% of the server’s total available CPU capacity, Sercp, = 4).

The set of all feasible VM formations for edge servers in site s is defined as,
Zcoi= Az = (600N m e LML, G o€ [LN] 2 Yo < G} (65)
j=1

where i € [1,|2k]] is the index of the VM formation, ¢ is the VM flavor, ¢ the number
of cores requested by the flavor of VM j of application m, M is the number of applications
available at site sy, N is the total number of VMs contained in formation z; and C;°" is the
CPU cores threshold set for each edge server of si. Due to the fact that the edge servers
within a single site are considered homogeneous in terms of their resources, Ci*" has the
same value for all of them that are tied to a site sg.

The system cost is defined as the total power consumption of the edge infrastructure.
Since in this stage of the resource allocation mechanism no exchange of workload takes place
between the sites, minimizing locally the power consumption, Py, of each individual site, sy,
results in minimizing the total power consumption, P4 = ZZ=1 Py, where n stands for the
total number of sites in the infrastructure. This can be achieved by optimizing the amount
of edge resources that will be activated in each slot to serve the total predicted workload.

Consequently, the corresponding optimization problem can be defined as:

in {5 6.6
iy {Pe} (6.6a)
subject to  f; >0, i=1,...,| 2| (6.6b)
| 2]
> fi<Ey (6.6¢)
i=1
| 2|
Pe=> fipi (6.6d)
i=1
| Zic] .
S g > L, vmee {1,..., M}, (6.6¢)
i=1

where the positive integer variables f; denote how many servers need to be activated with
the z; VM formation of set Zy, assuming the total number of formations of edge servers in

site sy, is | Zx| and the total number of the available edge servers is Ej. Then, the sum of the
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Figure 6.2: Resource Allocation Optimization Overview (Stage 1).

fi variables cannot be greater than Ej (constraint ()) Constraint () requires that a
site’s power consumption is equal to the sum of the power consumption of its activated edge
servers. It should be noted that, following common considerations in the literature [@], it
is assumed that the total number of available edge servers in a site is relatively small, thus
the overall computation complexity of the optimization process is kept minimum, allowing

the problem to be solved online.

As discussed in Subsection , the power consumption of each VM is proportional to

its flavor. As a result, power consumption p; of one edge server activated with the z; VM
formation is calculated as follows:
N

pii=pz) =Y P(¢), mefl,... M} (6.7)

j=1

Finally, the last M constraints of () denote that the total predicted workload for each

application at sy, E’,y, for the next system slot, is satisfied by the activated edge servers in
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each site. Again, as discussed in Subsection , the workload guaranteed to be served by

one edge server with the z; VM formation is:

N
rit = 7”7"(zi):z:u$,{)7 me{l,...,M}. (6.8)

j=1
Problem () is solved in a distributed fashion, locally in each site and proactively at the
beginning of each system slot, after collecting all the required information (i.e., available

resources and predicted workload). An overview of this process is depicted in Figure @

6.4.2 Inter-site Balancing of Excess Workload

In edge infrastructures, network traffic, therefore offloading requests, exhibit considerable
variation. On the one hand, there are cases where the total predicted workload for a site
exceeds its available resources’ capabilities, in which case problem () has no solution. In
this situation, all the site’s edge servers are activated with a fixed zmax formation, where
Zmax Stands for the VM formation that accommodates the maximum possible number of
offloaded requests for each application. Even so, a portion of the predicted workload will
remain unserved (overloaded site). On the other hand, it is common that the total predicted
workload for a site is lower than the predefined threshold that dictates whether the energy
cost of activating the site’s edge servers is worth serving it. Again, a portion of the pre-
dicted workload will remain unserved (underloaded site). The aggregation of the remaining
predicted workload of each of these sites is denoted as the excess workload wy, of site s,
and this is handled through the novel approach that follows.

This second stage aims towards better balancing the previous resource management
decisions so that excess workload requests of a site are distributed in neighboring (or even
farther apart) sites. The excess workload is handled in such a way that it does not allow sites
to become operational for a number of requests lower than a threshold of their total capacity,
which will ensure eventually better energy efficiency, as explained in previous subsections.
To achieve this, the theory of Markov Random Fields (MRFs) [82] is employed, mainly
due to its agile design and straightforward implementation, which allows simple distributed
decision-making, while achieving results very close to the optimal ones (and frequently the

optimal ones) with very low convergence times.
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In this work, the sites s € S are considered, that correspond to access points of the
considered infrastructure. A neighborhood system N = {N, }s,es is defined on S, while
N5, denotes the neighborhood of site s; and includes the nodes within single hop distance.
Assume wy, = [wgf)] is the vector indicating the amount of excess workload for application
m at each site s, and by, = [b( )] the vector indicating the number of selected servers of type
i, to be additionally activated at site s;. Considering e, the number of available servers

per site sg, which is obtained from the solution of the initial resource optimization problem

(), b}, is such that

=

_ [bg'@,.. ok J Zb < ex. (6.9)
Vectors wy, by are stochastic, since their values depend on the instantaneous system state
and user activity. The collection of random variables X, = {Wy,By}}_, is defined as a
collection of random vectors Wy = wy, By = bg,V k € [1,n], defining the state of each
site and cumulatively the state of the system with respect to excess workload and available
servers at each site s;. The random field X = {X;}7_, takes values {X; = xz}}_, in
A =)W x B, which is the product space of phase spaces wi € W, by, € B, respectively. The
configuration w = {xj : xx € A,Vs, € S} corresponds to one of all possible states of the

system state and A denotes the configuration space.

Due to the distributed topology of the sites, the above random field X can be considered
an MRF, and based on the Hammersley-Clifford theorem, the potential function V(w) is

considered, which can be decomposed in clique potentials:

=Y Vew) =D Vihw+ 3 VE L), (6.10)

cecC spE€S 5g€EN,

where C is the set of all cliques in the network of sites (where a clique denotes a subset of
nodes, all of which are connected to each other). The potential function is the objective
function to be minimized, and it will be used as a quantitative measure of the success
of each system state to fulfil the optimization criteria, namely the reduction of the total
power consumption of the Edge infrastructure. The lower the potential function, the more
desired the corresponding system state will be. Due to the topology formed by the sites (i.e.,

the access points), only one-clique (cliques consisting of one node) and two-cliques (cliques
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consisting of pairs only) exist, so that the potential function is decomposed in singleton
1 _ 2 . . .
V{(Sk)}(w) and doubleton (pairwise) V{(Sk)ysg}(w) terms, respectively. Each singleton term is

defined as follows:

C1 . P(bk) l:l +281g(w£,’f))} +02 'd'Clk, if 4 bk

Z k k
V. (x) = S 6 > wiy), vm,
{s}\ Tk

A1 >0, otherwise,

(6.11)
where C7 and Cy are properly selected constants and A; > 0 is a constant with very
high value. The power consumption of formation by is P(by) = Z‘i’i‘ bl(-k)pi. Function
sig(+) = L — m is the reflection of the sigmoid function with respect to the
vertical axis through the inflection point x = zy. The parameters of the reflected sigmoid
function are L, the maximum value, K, the gain and xzg, the inflection point. By giving
the inflection point a value equal to 0.5 7}, the inclusion of this reflected sigmoid function
tends to grow singleton terms that describe states where edge servers are under-utilised (i.e.,
when they serve less than 50% of their nominal workload capacity), close to the maximum
value (undesired system state). The intuition behind this design is that the singleton terms
express the goal of each site individually for lower energy consumption. Each site strives
to reduce its consumption as much as possible, which in turn will drive its singleton term
to lower values. At the same time, the term d - a; tends to drive the system towards a
solution which keeps the total additional delay, induced by the workload redirections, as low
as possible; d stands for the single hop network delay in ms while ay corresponds to the
ingress workload (i.e., how much additional workload the edge site s will accommodate,

compared to the original).
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The doubleton terms are defined as follows:

Cswy - wy + C4P(b,) [1+ 3, sig(w)|, if3 b,
S > wl,

2
VE L (xk,xg) = vm

Ay >0, otherwise,

(6.12)
where C3 and Cy are properly selected constants and Ag > 0 is again a constant with very
high value. The intuition behind the design of the doubleton terms is that as far as the
interactions of the neighboring sites are concerned, ideally the system should be driven to
states where neighboring sites exchange the remaining workload so that it is concentrated
in specific sites, thus avoiding having to maintain multiple active sites for a small value of
excess workload. It is also important to point out that the MRF activates servers with the
appropriate VMs of the flavors described in Subsection in order to serve the balanced
excess workload, thus the primary QoS requirement of the maximum acceptable response

time is respected. An overview of the MRF balancing process is depicted in Figure @

Each site seeks to minimize its contribution to the cumulative potential function by
minimizing its local neighborhood potential function comprised of the sum of its singleton
and doubleton (pairwise) potentials with its one-hop neighbors. The state of each site
depends only on the states and the information of its neighbors. Gibbs sampling [186]
can be applied by each site individually, reaching global optima through local sampling.
Cumulatively, this distributed sampling converges to global optimizers of the system. This
approach has a very low computational overhead, O(n), n being the number of sites, while
reaching asymptotically the global optimal resource allocation solutions, frequently yielding
the optimal ones. Furthermore, the signaling overhead is rather small, since each site s is

only required to exchange system state information locally with its one-hop neighbors only.

The sequential Gibbs sampling method proceeds as follows. Consider a logarithmic

annealing schedule of the form T'(w) = ln(lCiiw)’ where ¢y is a constant (equal to 2 in the

experiments) and T'(w) is called the “temperature” of the w-th annealing step. Also, consider
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Figure 6.3: MRF Inter-Site Balancing Overview (Stage 2).

a sequential visiting scheme of all sites, where at each epoch ¢ (mini-slot in a sweep) within
a step w, only one site updates its value (Figure @ depicts the relations of the system slots,

sweeps and update epochs). Starting with an arbitrary initial configuration X(w = 0), at

epoch t of w, let w = X(¢) and denote by w** the configuration that has value x, at site s

and agrees with w everywhere else. The update (decision to transition to a new state) at

MRF sweeps Visiting steps
S e (eﬁjﬂ%) [e—system Slot%
R

Figure 6.4: Relation of system slots, sweeps and update epochs.

| »
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site s takes place according to the distribution:

exp (—ﬁ ngec Vo (w*))

S (-1 > Vel )
xR EA C:speC

P(Xi(t) = xp|Xy(t) = x4,9 # k) =

(6.13)

where C is the set of the cliques formed by the sites (here only one-clique and two-cliques
are formed in the graph). Namely, with probability determined by (), site s will choose
X} as its state in sweep w + 1. The site states are updated sequentially within a sweep w.
The annealing schedule represents a decreasing rate of system temperature 7'(w), where w
stands for the index of the w-th sweep (i.e., the system temperature is updated at the end
of each sweep). The w-th annealing step is equivalent to the w-th sweep, and consists of n
visiting epochs (denoted by ¢ in the above), one for each site. Since sampling begins at high
temperatures, where the local characteristics are practically uniform, it permits transitions
to higher-potential function configurations, thus avoiding getting trapped in local minima.
After each sweep, the resulting system states form an inhomogeneous Markov Chain on the
configuration space that converges to the uniform distribution on the set of global potential
function minimizers.

Figure @ showcases an example of the effect of the MRF excess workload balancing,
for two applications in an Edge infrastructure of nine sites, by comparing the starting and
final state where the MRF has converged. As the starting formation for each site, the set of
edge servers with the minimum number of allocated resources is selected in order to serve
the excess workload locally. It can be observed that in the final state, the MRF yields a
rather desired solution where it has grouped all the excess requests, wy, in a single site, thus
minimizing the associated energy consumption of the network, while serving properly the
remaining requests, within the capacity bounds imposed in each site. Specifically, Table @

shows the selected VM formation for the particular site, with three activated servers.

Table 6.2: VM formations selected by the MRF mechanism.

Server (by) Appl VMs | App2 VMs
1 1 X medium 1 x small
2 1 X medium 1 x small
3 1 x medium -

Site Workload Capacity

81 82
(2 o)
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Figure 6.5: Workload Balancing example: starting and final states.

It is observed that this site formation fits to accommodate the workload. The total power
consumption, P(by), is 5200, which is around half of the 10000W power consumption of the
initial site formations selected, had the excess workload been executed locally. The number
of available servers per site ey, is also depicted. Also, local execution would lead to some
requests being rejected, as there is one site that has no available servers to accommodate
its excess workload. Consequently, the MRF based mechanism emerges as rather effective

in increasing the energy efficiency of the whole approach.
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6.4.3 ENERDGE Core Algorithm

In this subsection, the core algorithm of a full ENERDGE deployment in an edge infras-

tructure is described:

Algorithm 1 ENERDGE Core Algorithm.

Data: Trajectory Dataset
Result: Optimal VM placement in Edge Infrastructure

begin
// 0ffline
1: create the Task Offloading Dataset, Sec. ()
2: while 7 < identificationPhaseDuration do
for m € M do
for c € C*°" do
// Identify VM flavors
¢m <— solve Eq. (@)

end
end
end
3: create the Transition Matrix, Sec. ()
// Online
4: track last position of users, Sec. ()
5: for s, € S do // Optimization
Zy <— calculate VM formations, Eq. (@)
for m € M do
| L +— predict workload, Sec. ()
end
Ly = [L}"] place VMs by solving, Eq. (@)
end
6: for s, € S do // MRF
wy, «— calculate excess workload, Sec. ()
repeat
| by +— calculate additional servers, Eq. ()
until converges
activate extra servers, Sec. (5.4.2)

end
wait until next system slot
go to 4

end

At first, the required datasets are produced and the VM flavor design procedure is per-
formed offline. Then, as shown in Algorithm m, the initial optimization and the distributed
resource allocation for each site of the edge infrastructure take place, as explained in the pre-
vious sections. During this online phase, first, the mobility of users and devices is predicted

using the n-MMC method. Then, the incoming workload at each site of the infrastructure

154



is estimated for the current system slot. The resource allocation optimization produces an
initial solution subject to QoS and energy constraints for a given predicted workload at
each site. For each site, the excess predicted workload or workload that cannot be served,
along with the available resources, are computed. Finally, the excess workload is balanced
between the extra servers activated in under-loaded sites, according to the MRF solution,

achieving the minimization of the energy consumption for the edge infrastructure.

6.5 Performance Evaluation

In this section, the performance of the proposed resource allocation and load balancing
mechanism is presented via modeling and simulation. The results illustrate the success
of the proposed approach in minimizing the energy consumption while guaranteeing the
stability of the application’s QoS (i.e., response time) within an acceptable margin. The
optimization of the resource allocation is highlighted in terms of the power consumption of
the activated edge servers and the VM flavors used to serve the incoming workload. The
benchmarking is conducted using CloudSim Plus [110], a Java-based simulator suitable for
Edge and Cloud environment experimentation. Then, a comparison with a well-established

study in the literature follows.

6.5.1 Smart Museum Experiment Setting

To demonstrate the operation of an ENERDGE real-world application, the environment of
a smart museum is emulated, accommodating different categories of interactive exhibits, a
large number of IoT sensors, edge devices with heterogeneous computational capabilities and
dynamic network conditions modeled by the dynamic behavior and mobility of the users.
In particular, the physical infrastructure consists of interactive exhibits-sites, each of which
hosts an edge data center, resembling a smart museum floor. The applications deployed in
the museum are classified in two categories with different characteristics and requirements:
Interactive Exhibit Apps: On the one hand, the museum is considered to be leveraging
Augmented Reality (AR) and Virtual Reality (VR) settings to provide rich and detailed
access to artwork and artifacts, bring life to works of art and allow visitors to engage in

adaptable visual guided tours by using their mobile devices. In order to achieve the high
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QoS requirements of these types of applications, mobile devices can offload some workload
by sharing video decoding tasks to the more powerful edge devices. Mobility is high in these
applications as visitors move from one exhibit to the other.

Sensor Monitoring Apps: On the other hand, IoT is making it possible to deploy low-
cost, automated monitoring of collections and museum facilities, e.g., static sensors for
temperature, humidity, counting number of visitors. Such applications are low on delay
requirements, i.e., the processing can be performed in a delay tolerable manner, sending
data and information after a completion of an activity. However, they produce numerous

requests to the edge servers.

Table 6.3: Identified VM flavors.

Flavor Small Medium Large
avo Appl | App2 | Appl | App2 | Appl | App2
Cores 1 1 2 B 1 1
QoS (sec) 3 3 3 3 3 3
Maximum
Requests/Slot 11 38 27 82 59 173

One application of the Interactive Exhibit type is assumed, denoted as App1, and one
of the Sensor Monitoring type, denoted as App2, co-hosted in each site. This means that
VMs of both application types are able to run simultaneously in the edge servers, receiving
offloading requests from their counterparts in the visitors’ mobile devices and the IoT sensors,
respectively. For demonstration purposes, both apps are assumed to be based on image
recognition processes, thus their acceptable response time (QoS) is set at 3sec, which lies
within the margins of a typical image recognition service time [204] and provides a satisfying
Edge Computing AR application experience to the user [205]. As the design of the proposed
framework and modeling of the applications are independent of the level of the applications
QoS requirements, applications that require lower (or higher) response times are naturally
supported. Following the modeling approach explained in Subsection , the VM flavors
shown in Table @ are identified, tuned towards achieving the above QoS requirement.
It should be noted here that AppI requests require considerably heavier computations to
achieve this response time than the ones of App2, a fact that limits the Maximum Appl
Requests served per Slot to a third of those served by the App2 equally sized VMs. The

system slot is arbitrarily set at 30sec and the experiments last for a period of 1 hour, or
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120 system slots. The simulation code alongside any related dataset used in this section is

publicly availableE.

6.5.2 Resource Allocation Evaluation

In this subsection, the evaluation of the resource allocation algorithm is presented. At first,
the impact of the selected mobility method is assessed and then a summary of the core
optimization results is provided. Finally, a comparison with a well-known work in the field

is demonstrated.

Mobility Prediction Impact

As described in Subsection , predicting the visitors’ positions in the next system slot is
the first step of optimizing the allocation of the edge resources in each site. This provides
an estimation on the projected workload. To quantify the impact of the mobility prediction
accuracy, a sensitivity analysis is performed as illustrated in Figure @; this assesses the
impact of the prediction error on satisfying the required application QoS, both in terms of
the average response time (ART) per request and the percentage of the violations occurred in
respecting the QoS. Logarithmic scale is used to better visualize both impacts in a combined
fashion.

Showcasing the impact analysis at the end of both Stages of the resource allocation
mechanism separately, was preferred, so as to highlight the significant effect the MRF-
based workload balancing has on alleviating the disruptions caused by the prediction error.
The results are collected from running the simulation for 10,000 system slots, for various
topologies, and averaging the stats in batches of 10. Thus, the z axis of Figure @ represents
the range of the prediction error. The dataset used is again the Melbourne Museum one
[203].

Underestimating the real incoming workload leads to under-provisioning of resources and
subsequently to slight degradation of the response time. In detail, it is noticed that both
the ART and the violations grow almost linearly with the prediction error. It is also clear
that the application of the MRF-based balancing in each system slot has a great impact on

respecting the QoS requirements, with the redirections of the excess projected workload from

2https://github.com/maravger/netmode-cloudsim
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Figure 6.6: ART & QoS violations sensitivity to prediction error.

overutilised sites to underutilised ones; the ART lies around 2sec and the QoS violations do
not exceed 10% of the offloaded requests, when the prediction error is less than 10%, while the
ART grows to around 3sec, which is still acceptable for both applications, and the violations
to 20%, when the error is less than 20%. Beyond the point of a 30% prediction error, it
is noticed that the extra, unpredicted workload puts excessive strain on the mechanism.
However, this should not be a problem, as selecting an appropriate prediction mechanism,
like the n-MMC used here and other comparable works, e.g., [], leads to an average

prediction accuracy of 70 — 95%.

Response to Dynamic Network Conditions

In this subsection, a close examination on how the resource allocation optimization reacts
to the dynamic workload demands caused by the visitors’ mobility is made, in terms of
edge servers activated and the VMs placed in them. Figure @ showcases the scalability
of the proposed technique, as a response to the mobility of the visitors’ devices and the
fluctuations in the sensors’ offloading rate. The behavior of a single site is presented, which
is equipped with three servers of four cores each, and this acts as a baseline for the rest of the

evaluation. With regard to power consumption, for demonstration purposes, it is assumed
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that the average maximum power consumption of an edge server is 2000W in accordance

to [207).
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Figure 6.7: Dynamic resource allocation: allocated cores, activated edge servers, power
consumption and ART as a response to the predicted requests, for a single site.

Figure @a shows the predicted workload per system slot, as calculated in the previous
step, while Figs. @b—d demonstrate how the resource optimizer adapts to the fluctuations.
In particular, they depict how the optimizer selects the appropriate topology in terms of
number of active edge servers and their allocated cores, in order to meet the demands for
the selected site. For instance, when the predicted requests are high, e.g., at system slots

{3,46,86}, with {206, 182,181} predicted requests respectively for both applications (red-
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colored marks), the optimization results in three activated edge servers and seven cores
allocated among them. On the other hand, when the incoming request prediction is consid-
erably lower, as in system slots {9, 38,76}, with {84, 83,84} predicted requests respectively
(green-colored marks), only one server with three allocated cores is activated. The results
corroborate the total power consumption, as shown in Figure @d.

Exploring further, an example is demonstrated regarding the specific VM formations
selected for the above activated servers, at system slot 3. The total of 206 predicted requests
consisted of 17 requests for Appl and 189 requests for App2. Table @ shows the selected
VM formation for the three activated servers for this system slot. It can be seen that this
VM formation fits to accommodate the predicted workload. The site’s power consumption,

in this slot, is 5000W .

Table 6.4: VM formations in slot 3.

Server Appl VMs | App2 VMs | Allocated Cores
1 1 x small 1 X medium 3
2 1 x small 1 X medium 3
3 - 1 X small 1
%i;:):z:;kload 29 202

While the proposed approach adapts very well against the various predicted incoming
workloads in terms of allocated resources, satisfying the QoS for these applications is chal-
lenging. This is due to the fact that the VM topology to serve these requests is selected
based on the predicted workload which is potentially fallacious, as explained in the previous
subsection, and this leads to violations in the QoS. For instance, as shown in Figure @e, in
system slots {42, 63,68} (yellow-colored marks), the average response time for both applica-
tions was slightly above 4sec, or approximately 35% larger than the reference value, set at
3sec. This is an indication of under-provisioning due to incoming workload underestimation.
Violations like this took place 17 times in this site, or 14% in a total of 120 system slots. This
is considered to be an acceptable margin of error for the satisfaction of the perceived QoS.
Finally, it should be pointed out that for this experimentation, the average service com-
pletion time mainly affected the measured response time. The average transmission time is
negligible, due to the use of the IEEE 802.11ac standard, which provides high throughput

for requests of application types used in this experiment.
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MRF-based Excess Workload Balancing Evaluation

In this subsection, initially the convergence behavior of the MRF approach is demonstrated
for a standard and a larger topology. Figure @ demonstrates the variation of the cumulative
potential function of the MRF (Eq. ()) for a complete set of sweeps corresponding to
an execution of the MRF in the beginning of a system slot. The results of this evaluation
have been averaged over 100 different topologies, both for a 9-site (Medium) and a 36-site

(Large) Edge infrastructure.
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Figure 6.8: MRF-based workload balancing convergence.

It is observed that the Gibbs sampler converges rather quickly and it succeeds in reducing
the variability of the potential value rapidly. The Gibbs sampler is able to identify the
local neighborhood of desired solutions relatively fast, within the first five sweeps, and
then fine-tune the search, eventually selecting one solution among the global minimizers of
the potential function. As expected the larger topology exhibits greater variability of the
cumulative potential function in the first sweeps, but eventually convergence is smooth and
within the maximum number of designated sweep iterations (here employing a maximum of

50 sweeps).

To evaluate the efficiency of this second stage of the proposed mechanism, as discussed
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in Section , two cases of excess workload at the end of the first stage are identified.
Regarding the workload coming from overloaded sites, Figure @ depicts the improvement
in the QoS satisfaction that comes with the application of the MRF balancing. It is observed
that, while both the ART and the violations metrics grow almost linearly with the excess
workload, by applying the MRF balancing, the proposed mechanism achieves to provide the
QoS guarantees (i.e., ART < 3sec and violations = 10%). This comes as a natural result as

the overloaded sites are alleviated of the excess workload, which is balanced throughout the

infrastructure.
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Figure 6.9: MRF QoS improvements for various excess workloads in overloaded sites.

On the other hand, regarding the underloaded sites, Figure demonstrates the effect
of the MRF-based excess workload balancing on the total energy consumption of the infras-
tructure, by comparing it to the case where no balancing of any kind takes place. During the
latter, as the average excess workload increases, the power consumption increases radically,
as extra, underloaded edge servers are activated in each site in order to accommodate the
low volume of excess requests locally. From that point on, power consumption increases
moderately, as larger VMs are installed to meet the increasing workload demands, until the
point where all the resources are allocated in each site and the maximum power consump-

tion of the infrastructure is reached. On the contrary, when MRF balancing is employed,
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Figure 6.10: MRF Energy Savings for various excess workloads in underloaded sites.
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Figure 6.11: MRF Workload Redirection -Induced Delay Minimizing for various excess work-
loads.

power consumption adjustment is more fine-grained, as only the minimum combination of

activated servers and installed VMs flavors are deployed in each case.

Finally, Figure illustrates the impact of the delay minimizing term in the MRF-based
workload balancing. It is clear that the MRF-based solution minimizes the redirection-

induced overhead per request (= 10ms average), when compared to a solution that randomly
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places the excess workload to available edge sites (= 26ms average) in a medium sized edge
infrastructure. It should be also noted that the average additional delay is far more stable

throughout the average excess workload increase, compared to the random placement case.

6.5.3 Comparison

Following, a comparative evaluation of the overall resource allocation of ENERDGE with
the work presented in [99] is carried out. Similar to the proposed work, this study presents a
setting of dispersed and interconnected clusters of computers, namely cloudlets, which form
a wireless metropolitan area network. Contrary to ENERDGE, each cloudlet has a static
VM provisioning method to serve offloaded requests. This study focuses on identifying over-
utilized cloudlets and redirecting part of their incoming workload to under-utilized ones in
order to achieve load balancing. In [99], instead of having an estimation of the incoming
workload, it is considered known for each cloudlet and for each system slot. The offloaded
workload served at each cloudlet is bounded by its service rate capabilities. The rest of it
is rejected and redirected back to the end-device for local execution. The service rate of a
cloudlet is defined as the number of requests that each VM can serve in a system slot.

In order to highlight the importance of dynamic resource allocation towards simultane-
ously guaranteeing the QoS requirements and minimizing energy consumption, the proposed
method is compared with two differently oriented resource provisioning settings of [99]. The
first, attempts to minimize energy consumption (Experiment A), while the second aims at
satisfying the QoS (Experiment B). To make the comparison fair, the exact same nine-
site edge infrastructure, described in Subsection , is simulated for both methods. The
generated workload traffic is the same for both methods as well.

Regarding Experiment A, a frugal static resource allocation for [99] is chosen, that would
approximately match the total energy consumption of ENERDGE (Figure ) QoS
violations were calculated for both methods based on the SLA threshold for the response time
of the offloaded requests, set at 3sec, as in Subsection . In one hour of experimentation,
the ENERDGE sites reported 207 violations, or 9% of the offloaded requests, compared to
the 470 violations or 22% of the requests in [99], as shown in Figure .

On the contrary, in Experiment B, a resource-abundant static allocation was selected for

[99], in order to match the QoS satisfaction of ENERDGE (Figure ) In this case, as
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Figure 6.12: QoS violations and energy consumption during Experiment A.
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Figure 6.13: QoS violations and energy consumption during Experiment B.

shown in Figure , energy consumption for one hour in [@] was roughly 41kWh, or more
than 65% bigger when compared to the 26.5kWh of the proposed method. In addition to the
previous results, it is clear that even a static resource provisioning method enhanced with
workload redirecting mechanisms is incapable of finding a balance between QoS satisfaction

and infrastructure energy consumption minimization, the way ENERDGE does.
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Chapter 7

Conclusion

In this study, multiple aspects for designing resource allocation mechanisms and computa-
tional offloading strategies have been studied, that will allow the network edge to become
a reliable ally for IoT devices in their quest for transforming the world as we know it. In
order to do so, the interdependency among various different types of actors has taken into
account. Key problems have been identified, novel algorithms have been developed and their

performance has been evaluated.

7.1 Outcomes

At first, the basic mechanism on which most of the work in this thesis is based, was intro-
duced. Specifically, in Chapter E, a cooperative, two-level computation offloading mech-
anism for IoT/mobile applications was presented. The VM operation was modeled by a
group of LTI models and for each model an equilibrium operating point, a proper controller
and the minimal and maximal positive invariant sets were computed. At the upper level
a horizontal scaling procedure took place; an optimizer determined the number of active
edge servers and the operating points of the VMs to be implemented in them, in order to
serve the total workload for each application. This decision took into consideration the cal-
culated equilibrium points for each underlying VM, thus guaranteeing the scalability of the
presented mechanism towards major workload fluctuations. At the local level, a controller

handled the minor workload fluctuations by scaling the VMs vertically, ensuring that the
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average response time was stabilized and restricted in a specific range of values. The experi-
mental evaluation showed that the proposed mechanism achieved high percentage of requests
admitted in the edge servers, while the performance constraints were met, outperforming a

well established energy aware offloading method.

Then, based on this work, in Chapter H, a Cyber-Physical Social System for early
fire detection was presented; a Scalable Edge Computing Framework, called SMOKE, was
deployed on the network edge and was receiving captured images from several IoT nodes
to evaluate the criticality of the situation; on a higher level, an intelligent decision-making
service was deployed on the Cloud, receiving data from various sources (i.e., various low
cost sensors, social media users and SMOKE) and communicated with the local authorities
in case of emergency. This work focused on two main aspects, namely (a) the Horizontal
and Vertical scaling of the available edge servers’ resources, in order to achieve optimal
allocation and use of resources and (b) the decision-making mechanism, for a time-critical
application, that takes the social factor into consideration. The proposed computation
offloading mechanism is generic and applicable on several types of Mobile Edge Computing

(MEC) environments and applications.

The experiments conducted and presented in these two first chapters allowed for drawing
some significant conclusions regarding the performance of the proposed frameworks. Hor-
izontal and Vertical Scaling of edge servers is essential for guaranteeing the QoS metrics
of time- and mission- critical applications, while dynamic resource allocation prevents over-
or under- provisioning of the edge servers’ resources. Moreover, admission control on the
incoming offloaded requests is a key factor for time-critical applications with stringent re-
quirements in terms of retention of the desired QoS levels, like average task execution and
transmission latency. Specifically in Chapter @, the evaluation with regards to the time
needed for the IDM component to collect the necessary data and extract a decision, shows
that the overall time overhead is not higher than 40 sec. This time duration is considered
within the time limits of such a time-critical system especially considering the heterogeneity

of the collected information types and sources.

Next, in Chapter B, computation offloading strategies were investigated and a switching
offloading mechanism for localization and path planning applications of mobile robots was

introduced. The offloading decision for localization was based on pose uncertainty and the
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availability of edge (network and computing) resources, while the offloading decision for path
planning depended on the difficulty of the trajectory. The proposed framework is shown to
achieve more precise navigation than the case of exclusive local execution of the applications,
without paying the price of a slower execution time, like in the case of remote only execution
of the algorithms. Also, it is modular and applicable to various scenarios, applications and
objectives under the robot’s dynamic environment.

Apart from that, a vision-based self localization approach for indoor autonomous mobile
robots was proposed. Based on a bilateration method and some core principles of the
projectile geometry, the proposed algorithm required the detection of distinct landmarks
in the environment and the calculation of the robot’s relative distance from them in order
to obtain the robot’s pose (i.e., position and orientation). Distance calculation was based
on feature extraction from the landmarks. The localization algorithm had to rely on the
minimum number of landmarks as they are scarce in the discussed application’s setting, thus
a bilateration approach that required the identification of two landmarks was used.

Finally, Chapter E introduced the ENERDGE framework that addressed jointly the full
task offloading and resource allocation problems in a multi-site setting. A holistic energy-
aware resource optimization approach was proposed, based on the design of the VM flavors
complemented with an innovative distributed load balancing technique based on MRFs,
with the penultimate goal to minimize the total energy consumption without sacrificing
the QoS in terms of latency. To minimize the inverse impact of user mobility during task
offloading, ENERDGE considered the dynamic wireless conditions of the access network and
supported a mobility prediction scheme to better guide the allocation solution. Numerical
results showed that the prediction mechanism accurately predicts the mobile behavior of the
users, while the ENERDGE resource optimizer outperforms a well-established load balancing
technique in terms of both latency and energy consumption. The MRF scheme is shown to
converge rapidly to minimum energy solutions, thus allowing further energy optimizations

in an efficient manner.
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7.2 Recommendations for Future Work

Concluding this thesis, this final section sheds light on some of the possible future research
directions that can be followed based on the outcomes of the presented work and the chal-
lenges faced during the research process. While the thesis treats resource allocation and
computational offloading problems that concern some of the most dynamic procedures in
IoT environments, there still exists much room for further development.

Regarding the resource allocation mechanism, future work could focus on further in-
vestigating improvements on the modeling and control of the application-specific VMs and
leveraging different combinatorial optimization criteria to improve the Horizontal Scaler’s

decision-making mechanisms, introduced in Chapters E and H

o Specifically, it should be noted that, as mentioned before, this work aimed at mini-
mizing the number of active servers with the constraint of meeting the total workload
demands. By offloading as many tasks as possible, while keeping the number of active
servers low, energy efficiency on the mobile nodes and the edge servers is implicitly
targeted as well. However, dealing explicitly with optimizing energy cost in the mobile
nodes (e.g., maximizing the offloaded requests) is also an interesting and challenging

problem.

o Additionally, minimizing functional costs like data transmission costs (e.g., how the
requests are distributed among the servers), or maximizing revenue/income for the
infrastructure providers (e.g., how many different VM-applications can be deployed
per server) can be used as additional or alternative objectives for the Horizontal Scaler

component of the proposed framework.

e Another issue that would be interesting to study is the use of the 5G or even 6G
technologies as an alternative to the WiFi access points currently used for the commu-
nication between the IoT nodes and the Edge servers. This would allow the proposed
frameworks to expand their operational range beyond indoor and semi-rural areas and
enable the coverage of vast areas. Consequently, this would arise interesting chal-
lenges like workload balancing among geographically dispersed edge server clusters.

Additionally, evaluating and conducting a comparative study on trying to minimize
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the data transmission overhead, would be essential for a complete study in IoT-based

applications.

Concerning the computational offloading strategies, future work could focus on extending
the proposed algorithms to more sophisticated control ones, providing theoretical guarantees

for stability and convergence of the devices’ dynamics.

e In detail, developing more precise estimation and planning algorithms, specifically
in multi-robot scenarios, and more sophisticated control algorithms in the co-design
setting, that would manage and allocate the available networking resources on the

infrastructure side as well, is of great interest as well.

o Effort should also be placed on the use of more dynamic environments (e.g., servers
and robots moving at the same time) and designing dynamic allocation mechanisms
that will manage the available resources appropriately, in order to provide theoretical

guarantees for stability.

o Additionally, the establishment of more sophisticated estimation/control algorithms

in a co-design setting should propose faster and more reliable planning strategies.

o Last, non-deterministic/stochastic approaches could be evaluated for estimation and
control purposes and machine learning techniques could be integrated to the mobility
prediction approaches to enable addressing errors in the predictions of dynamically

estimated values of the position and number of the involved devices.
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Chapter 8

Extensive Summary in Greek

Exterapévn epidnyn oto EAMyvika

H mapovoa StotpiPr) €0TLaleL 0TNY AvATTUEN TEXVIKMOVY YLOL TN SUVAULKT] KATAVOWUY TOPWV
KOL TN UETAPOPTWOT VITOLOYLOTIKG OITCLTNTIKDY SLEPYAOLDV EQUPUOYDV TOU ALoSIKTIOU TmV
Avuxeévov — ATA (Internet of Things — IoT) ota dkpa tov diktdou (Network Edge). Mapd-
SELYIO EQAPUOYDV TOU WTOPOVY VO ETMPEAN00UY amTd TIG TAPATAVM TEYVIKEG OTTOTEAOTV OL
SLAPOPEG POUTTOTIKEG EPAPUOYEG KO OL EQPOPUOYEG ETAVENUEVIG TTPAYUATIKOTTOG (Augmented
Reality — AR) mtov gktehovToL 08 KIvNTEG OVOKEVES. [la TNV AVATTUEY TWV TEXVIKOY aUThV,
YPNOLUOTOLOVVTOL TIPMTIOTWG TEYVIKEG KOl EPYUAELR ATTO TOUG TOUELG TNG Oewplog ZVoTNUAT®mV
Avtouatou Eréyyov, kabmg kar pepikég amd ) Oewplo [Mbavottwv.

Mo ouykekplueva, N Tapoloo. SLaTpLfn e0TLATEL 08 TEOOEPLG ONUAVTIKEG EPEVVITIKEG TE-
PLOYEG TTOV ALPOPOVV OTNV AVATTVEN TWV TOPUTAV® TEYVIKMV, OL OTTOLEG ELVAL: O) 1] LOVTEAO-
TTOLNON TOV ETEPOYEVMV OVIOTHTWV TOV EELTATOUEVOU GUOTNUATOG (TUITTOG VITOSOUNG-YPNOTDOV-
EQAPUOYDV-OLKTUOKDV/UTTOAOYLOTIKOV TTOPWV), B) 0 VITOAOYLOUOG TOU OYKOU TWV SLEPYAOLMV
JTOU AVOUEVETAL VO, EKTELEOTOVV 0TA GKPA TOU SIKTVOU (LECW TG TTPOPAEYTG TV BE0EWV TV
KLVNTOV GUOKEVMV), ¥) 1] SUVOULKT KaTavourn Twv SloubEowv Topmv g vrodoung, kabodn-
yoUuevn amd KpLThpLa Omg eLvaL 1) ST oT eVOG CUUPMVIUEVOU ETLTESOV TOLOTNTAG VI PE-
OLDV KL EUTTELPLAG, 1] TTOPOAANAT PLLOEEVIO TOMATADY EQAPUOYDY 0TOUG 1L0VG SLadEoLIoVG
TOPOUG, KOOMG KL 1] EAOYLOTOTTOIN 0T TG EVEPYELOKNG KOTUVAAMONG TOU GUOTNUATOG KoL 8) 1)

BeATLOTOTOINOT TWV OTPUTNYIKMOV HETAPOPTMONG TV SIEPYUOLDY OTOVG KATAVEUNUEVOUS TTO-
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POVG. ZTOXO0G AUTNG TG SLATPLBNG ELVOL O EVIOTOUOG TWV ONUAVTIKOTEPMVY TTNUATWY OF Qv-
TEG TIG EPEVVITIKEG TEPLOYES KO 1) AVATTTVEY KATAAMNAWV MOGEWV YLo. TNV BEATLOTOTOLON TWV
ETMUEPOVG SLOSIKAOLDV, SESOUEVOV TWV VPLOTAUEVOVY TEPLOPLOUDY. OL MOELG AUTEG 0T CUVE-
YELOL, GUVOVAZOVTOL SNULOVPYDVTOG TTAALOLAL TO OTTOL0L UTOPOVV VO, EYKATAOTOH0UV 08 VITOSOUEG
0T0 GKPO. TOU SIKTVOU KOl VO EAAQPUVOUV TNV UTTOAOYLOTIKT] KATATOVIOT TOV ~UTOAOYLOTLKG,
TEPLOPLOUEVOV- QPOPTITAOV CVOKEVMV, BEATLOVOVTOG TUUTOYPOVA THV TOLOTNTO EUTELPLAG TTOU

ATTOKOWEZOVY OL YPNOTEG,

Kegalowo 2

1o Kegpdharo 2 mapovoldLovioL oL 0pLopol TV BOoLK®V GTOLXELMV OITO TOUG TOUELG TG Ot~
wplag Zvotnuatov Avtopatov Eréyyou kot g Oewplog IMbavotytov. H yvdon tov factkot
LOONUATIKOD VITOOTPMOUATOG TTOU SLVETAL TEPLEKTIKA 0TO KEPAAALO AUTO, ELVAL KPLOLLY YL TNV
KOTOVONoN TOV TPOPANUATOV OAAG Kol TwV alyoplOuwy Tov Topovoldlovial 0TV GUVEYELC
0TIV TPOTELVOUEVT SLATPLRT. ZUYKEKPLUEVA, £8() IVOVTAL GUVOTTTIKA oL BAOLKEG Evvoleg YOp®
oo T ypouuKa xpovika auetdpfinta (Linear Time-Invariant, LTI) povtéla, mov xpnoLpuomolon-
VTOL YL T WOVTEAOTTOLOT KO TOV EAEYXO TV OLOTNUATOV EVOLOPEPOVTOS, KBS KaL oL 0pL-
ool Ko T OempnUata EVOTABELNG TTOV EPAPUOTOVTOL YLOL TV AVTLUETMITLON THG DUVAULKOTITAG
Toug. AKOUa, SIvovTal oL BaoLKOL 0pLOUOL YUpw atd Tig papkofLaveg alvoideg (Markov Chains)
Ko To popkopLavd Tuyaia edio (Markov Random Fields), epyaieio o xpnoLuomolouvIoL yio
™V TPOPREPY TOU OYKOU TV SLEPYOOLDV KL T UETAPOPTMOT TOUG 0TOVG SLAOETLIOUG TOPOUG

AVTLOTOLYOL.

Kegaloo 3

210 Kegpahoto 3 meprypdpetal 11 avamtugn tov BaotKol SLEMTESOV UNYovIouoy Suvout-
KNG KATUVOUNG TOPWV KL ELEYYOU LETAPOPTWONG SLEPYAOLDY VL0, OVOTADEG EEVTNPETNTAV 0T
dKpa Tov SikTHoV. ZT0 YAUNAOTEPO £MLTTedO, 1) SUVAULKY CUIITEPLPOPA TWV EEVTTNPETNTAOV HO-
VIENOTTOLELTOL UE YPNOT] YPUUUK®DY CUOTNUATWYV, EVED YPOUUULKOL EAEYKTEG Oy edLATOVTOL VIO VO
dLoTnPohv To oVoTHUA EVTOG TWV SOOEVTOV TEPLOPLOUMV (TT.X., CUUPOVIIUEVO ETTLITESO TOLOTY-
TG VINPEoLwV) (Mnyaviouds Kataxdovpne Khudxwong). Zto vPnAoTepo emimedo, £vag unyo-

VIOUOG BEATLOTOTOLNOTG AVOLAUBAVEL TNV TOTOOETION TWV EPAPLOYDV/VITNPECLHV OTOUG SL00E-
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OLLOVG EVTINPETNTES (0L 0TTOlEG BPLOKOVTAL OE HLOPPT] ELKOVIK®V uryavmv - EM, Virtual Machines
— VMS) KdL TOV KATAUEPLOUO TOU POPTOV EPYAOLAG UETAED TOVG, UE OKOTO TNV UEYLOTOTONOT|
TOU apLOROT TV dLEPYAoLMV TOV B0 EKTELEOTOVVY EMLTLY MG 08 avToVg (Mnyaviouds OpiiévTiag
Khpdrwong). H amotipunon Tov v Aoym punyaviopol erodeLKVUEL TV ATOTELECUOTIKOTNTA TOV,
TO00 OGOV OPOPA. GTNV TPOOPEPOUEVT] TOLOTITO. VINPECLMV, 000 KoL 0T BEATLOTY SLarelplom

TV VITOMOYLOTIKMOY TOPWV 0TO AKPO. TOU SLKTVOV.

AvOoAUTIKOTEPT, 1] LETAPOPTWOT VTTOMOYLOTIKMV SLEPYOOLMV UETPLATEL THV KATAVAWOT) EVEP-
YELOG TOV VALKG-TTEPLOPLOUEVMV KIVIITOV GUOKEVDY AVOOETOVIOS TV EKTELEDT TMWV VITOLOYL-
OTLKG AKPLBMV SLEPYOOLDV OF Wi CVOTASA EEVTNPETNTMOV OTO GKPA TOU SIKTVOU, OL OTTOLOL ELVOL
TOTTOOETNUEVOL TNV YWPLKT] EYYUTNTA TOV XpNotdv. H Tomo0£Ton auth) emiTpemet TV - xounin
oe kaBuoTtEpn o - TPOOoPaoN oToug eEVNPETNTES, 08 AVTIOEOT UE TNV TPOOPAOT) OF ATOUAKPV-
OuEVOUG eEVTINPETNTEG (TT.%., TIToAOYLoTLKOU NEQPOUG) LECH TOU ALASLKTVOU, 1) OTTOLC: EUPOVITETOL
apOPAETTY OGOV 0popd TOVG Y pdvoug amdkprong. H etkdva B mapovotdZer v apyttektoviky
UETOPOPTWONG VTOLOYLOTIKDV SLEPYAOLDVY 1) OTTOLOL UELETATAL OF AUTO TO KEPAAALO. SUYKEKPL-
UEVA, 1) KIVION 1] OTTOL0. LETAPOPTMVETOL KOL 1] OTTOLOL SNULOVPYELTOL AItd TIG KIVITEG OUOKEVEG,
Katevudivetar otov Mnyavioud OptZovriag Khudkwong péow evog Tomkol) aoupuatov oNueLou
npoopaong (WiFi, 4G, LTE). Exel Sievepyeiton n uymhotepn Stadikaoio eAEyy0V TOV TPOTELVOuE-
VOU UM OVLIOUOV, KOTE TNV OTTOLa, ETAEYETAL 1) KatdAAnAn tooOetnon EM og ka0e eEvmmpetntn
7OV £LvoL 0TTeVOELOG OUVOESEUEVOG O UTO KO £V GUVEYELO SLAUOLPATETAL GE OUTOVG 1] UETAPOP-
TOUEVY Kivnon katddnia. H Stadikaotio auth kabopilel oyt wdvo 1o TAn0og v eEumnpetntmy
sov Oa evepyomonBotv, alld koL To TAn0og Twv EM mov 0a tortofetn0olv oe avtolg, kadmg
KOL TNV KOTAGTAON LELTOUPYLOG TOUG. AKOW, 1) SLOSIKAGLO 0T E)EL TPOA)TTTLKO YOPAKTHPC,
KaBMG YIVETOL X PN 0T EVOG ECWTEPLKOV LY OVLOHOD TPOBLEYNG TOV POPTOU TTOU B HeTAPOPT®OEL
(llooBAertiic @EeTOV), O OTOLOG SUVOTUL VO VITOAOYLOEL TNV Kivion mov B kKAnOet To ovoTnua
VO SLOLELPLOTEL, V1AL EVaL TTOPABUPO YpdVoL oTo uéAkov. H Stadikaoio tpofreyng outh Tpopodo-
teltan amd 10 Tvotnua HagaxolovOnong, To 0molo elval vITeVBUVO YL TV GUALOYY dedouEvmv
OV 0POPOVY TOCO OTNV SLKTVOKTY Kivion (TT.)., TANO0G CUTHOEWY TPOG UETAPOPTWON, YPOVOL
ATOKPLONG TOU GUOTNUALTOS), OG0 KL OTH YPNOLULOTOIN 01 TWV SLAOETLH®Y TOPMV (IT.X., TTOCOOTO
YPNOLWOTTOINONG TNG KEVIPLKTG LOVASAG emeEepyaoiag evog eEVmNPETNT) 0TO AUECO TaPELDOV.

Se yaunhotepo emimedo, KaOe eEvmnpeTnTg elvar eEomhouévog ue évov Tomkd EAeykti), o

07T0L0G SUVATAL VO STULOVPYT|OEL, VO EKTELEDEL, VO, KALUOK(DOEL KOL VO, OTOUATIOEL TV EKTEAEDT]
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twv EM mov éxouv avatebel og kKaOe epapuoyn, Bonddvtag £ToL 0TV VAOTONOT TWV ETAEYUE-
vav Torto0etnocmy EM Tou Topamdve maviopol yio To TPEXOV YPoviKo tapddupo. Emumtpo-
00£TWG, 08 AVTO TO EMTLTTESO VAOTTOLELTOL ULOL SLASLKAOLAL ELEYYOV KOTA TNV 0TTOLC KAUOKMOVOVTOL
kaBeta oL EM, Bdoel tov dedouévav mov ovikéyoviar oto Zhotua [Mopakorovbnong. Katd
AUTOV TOV TPOTO, Befadvetal 0Tt ot EM apapévouy eviog Tmv eMAEYUEVOY KOTUOTAOEDY AEL-
TOVPYLOG, TTAPEYOVTAG £TOL (L EYYONOT YL EAAYLOTOVG KOl 0TAOEPOVG YPOVOUG UTTOKPLONG TNG

EQPOAPLOYNG TNV OTTOL0L EKTEAOVVE.

H ewcéva B.2 mapovotdLel ™ pov) pyaoLdv Tou TPOTELVOIEVOU INYAVIOHOD UETAPOPTWONG
VITOLOYLOTLKMV SLEPYAOLDV. SUUPOVOL L QUTI] TV TPOCEYYLON, 1 Agttoupyila Twv EM uovtelo-
Joteltal 0o £vo ouvoro Fpapukdy Xpovikd Auetafintov (FXA) cuotnudTov To 0oL VITo-
KewTal oe empoodeteg eEmyevelc dtatapoyés Ka Ta omota £xouv T open g eEtowong (B.1)).
OL TOPGUETPOL TWV CUOTHUATMV AUTOV AVOYVOPLLOVTOL LESW TELPAUATIKOV Siepyaotdv. Ap-
YUK, vtohoyiletan Yo KG0e IXA oVoTnuo £Vo EQLKTO ONUELD LOOPPOITTLAG YL, TO OVOUCOTIKO,
ywpig droTapoyég noviého tov EM. Kabe onueto Looppostiag aVTLOTOLYEL O UL, KOTAOTAON AEL-
Tovpylag («rtpo@ily») evog EM ywpig va Aaufavoviol vaoywy datapayes. o mapaderyuo, uo
KOTAOTAOT LOOPPOTTLOG UWTTOPEL VO, AVTLOTOLYEL 08 SUVOTOTNTA EKTEAEONG 3 CULTHOEWMY UETAPOPTM-
ONG VA SEVTEPOAETTO, IUE TAVTOYPOVT EYYUN 0T XPNOLUOTTOIN oG (To TOA) Tov 20% Tng TOpe)O-
UEVNG VITOAOYLOTNG LOYV0G KaiL EVOG LEGOU YPOVOU OTTOKPLONG TG EQAPUOYNG TTov dev Eemepvdl
ta 3 devtepdhemta. Lo kABe Eva oMuUELO LOOPPOTLAG OYESLATETOL EVOG YPOULKOG EAEYKTIG OVaL-
TPOPOBOTNONG KOTAOTANG, eVTOG Tov Tomikoh EAeyktt), Aaufavovtag vmopLy TG SLotapayEs
TOV GUOTNUOTOG. ZUYKEKPLUEVE, PUBULTOVTAG TNV TTAPEOUEVT] VITOAOYLOTLKT LoYD KoL TO TAN00G
TV AULTNOEMV TPOG UETAPOPTMON (7Tov B avateBov oe kdBe EM) oyedlaletol £vag eAeykTng
£T0L MOTE To GVOTNUE KAELOTOU BPdyyovL: o) va givonr evoTtaBEg, B) VO LKOVOTTOLEL TOUG TTEPLOPL-
OpoUG KO TIG TTPOSLOYPUPEG TOLOTITOG VITNPECLMV, YLo. KABE YPOVLKY OTLYUn KoL Yio KaOg ap-
YUKT) OLVONKY, EEKIVOVTAG AItO TO GVVORO TV TEPLOPLOUMDY KOL Y) VO OUUTEPLPEPETOL BEATLOTOL
011 0TadEPT TOV KATAOTUON. AedOUEVOU OTL O TIPOTELVOUEVOS UNYOVIOUOG SLOELPLONG TTOPMV
TPOCPEPEL EYYUNUEVO YPOVO ATTOKPLONG TG EQAPUOYIG TTOVG YPNOTES, 1) ATOPAOT| UETAPOPTO-
ONG VITOAOYLOTIKMV SLEPYOOLDY UETUTPETETOL OE U0, OTTAT) GVYKPLOT OVALETO. GTOV EKTLUMUEVO
YPOVO EKTELEONG TG EPAPUOYNG 0TI OUOKELT] TOU XPNOTI KOL OTOV EYYUNUEVO XPOVO OITOKPL-
oNg TV EEVINPETNTMOV 0TAL AKPO TOV StKTVOV. Tol TOPATAV®D GUVOPLLOVTOL QOPUOUALOTIKG 0T

apofinuata P1, P2. o Ty emnihuon autdv Tov TpofAnuatmy, oyedialetor kol Abvetal éva,
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npopAua Pertiotomoinong ((B.15d)-(B.151)), amd ) Mbon Tov omoiov mpokiTeL TOGO 1 KaTd-
otaon hertovpyiog Twv EM 600 ka0 éheyyog mtov Ba e@apuootel. To GUVOAO TOV KOTOOTACEWV
LELTOUPYLOG OTO OTTOLO EYYVATOL O UIXAVIOUOG 0Tl Ba tapapeivovv or EM, Eekivdvtag amd to
ONUELD LOOPPOTTLAG Kai TAPE. TG OTTOLEG (PPAYUEVES) SLATAPAYES, ATOTEAEL TO «EAAYLOTO BETLKA
AUETAPANTO GUVOLO», diveton amd v eElomon (B.12) kon amodetcvieTal dTL TPOKVITTEL AT TO

OpLo g oKorovblog TWV TPOSRACL®Y GUVOAMV.

210 vYMAOTEPO emimtedo, 0o Mnyavioudg Opttoviag Khpdkwong otoyever oto va. ouufBipa-
O€L TOUG UOLBaLe. OTTOKAELOUEVOUG OTOYOUG TG ETITEVENG EMOOOEMV KL THG EAXLOTOTOINONG
APNONG TOPWV. ZUYKEKPLUEVTL, SESOUEVOU OTL OL TTOPOL TOV EEVTNPETNTMV O0TO. AKPO, TOU SIKTHOV
dev Bplokovian oe apOovia, oL aveEEAEYKTEG ATOLTIOELG VLo EMLO00ELG atd KaOe epapuoyn Oa
odnyoloav og Katavour] Heyahou aptduol VITOAOYLOTIKMOY TOPWV 0¢ OAEG TG avtioToryeg EM,
TPAYUO avEQPLKTO. Tt auTtdv T AGY0, 0 Uy aviopdg auTdg elvat vITevBUVOg YLo. TNV PEATLOTOMOL-
nom g tomodEtnong Twv EM (eAaylotomoinot KoTovalmong EVEPYELOC/XPNOLILOTTOINONG TTO-
PWV VITOSOUNG) KL TV KATAAANAY KATAVOUT TWV GLTHOEWY TPOG UETUPOPTMOT UETOED TOUG.
T k6O epapuoyn, o Mnyaviopnog OplZoviiag Khudkwong déxetal wg 10080 uie. Tpofieym
TV GLTNOEWV TPOG UETAPOPTWOT), 0.t Tov ITpoPiemt POpTOU, KoL TO GVVOAO TWV EPLKTMV KO-
TAOTOOEMV AELTOUPYLOG TTOV £YOVV VITOMOYLOTEL OTOV EAEYKTI AVATPOPOSOTNONG KATAOTOUONG,
AEiLeL €80 va. onuemOel 6TL 1 Aettovpylo Tov [poPienty POpTov PAUCLLETAL O £VA YPOUUKO
ekBetikd @idtpo eEopdluvong Holt, To 0710l0 GUAAAUBAVEL TH YPOUULKT] TAON Y POVOGELPMV KoL
10 omoto meptypdpetan and ™V eElowon (B.17). =t cvvéyela, Bactopévog oe otV TV TAN-
pogopia, 0 Mnyoviopog Optzoviiog Khpdkmong amogpooilel Tov eAdyloto aptBud tmv eEumn-
PETNTAOV TTOV TIPETEL VO evePYOToL0oUY koL Thv Tomoroyio Twv EM mov 0a tomobetnotv oe
QUTOVG, YL VO, LKOVOTTOWBel 1) ouvolLky TNTHOT VLo UETAPOPTWOT SLEPYAOLOV, ATt KAOE epap-
Hoy™, Kot vo emtevyBel 1o LNTOVUEVO ETTLTESO TOLOTNTOG VITNPEOLMV. AeSOUEVOU OTL TO OVVOLO
TV EEVTNPETNTAOV 0L L0 VITOSOUT OTO GKPa TOU SIKTOOU glval pikpd og whnbog, Tpoteiveton
Lo EVPVOTLKY AVOT, 1) OTTOLOL WTTOPEL VO, TPOOPEPEL TO. EMLOVUNTE. ATOTELECUOTA UE WKPO VITO-
AOYLOTLKO KOOTOG 0TO TTapamave stpofinuc. ‘ETot, Tpoteivetal £vag alyOplOuog orotehoupevog
amd dvo Pfuata: 0to TPOTO Prua, vtohoyiLoviar Oheg oL eikTég Tomobetnoelg EM oe évav
eEVmNPETNTH, OL 07T0lEG PACLIOVTAL OTLG KATAOTAOELG AELTOUPYLOG TTOV £(OVV VITOAOYLOTEL TTPON)-
YOUREVIG,. ZT0 de0TEPO PrUa. LITOLOYLLETOL 0 aPLOUOS TV eEVvINpeTTMOY Tov Ba evepyoron s,

AMOvovTtog To TPOPANUE WKTOU GKEPOLOV YPOUULKOD TTPOYPOUULATLOUO TTOV TTEPLYPAPETOL OTLG
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eElomoeig (B.16d)-(B.16d).

Avti M ovvepyooio Tmv S0 emEdWV eAEYYOV, EEQ0QARTEL OTL 1] ETAEYUEVY] KOTAOTOON
Aertovpylag g kaBe EM ammd tov Mnyaviopd OptZovriag Khudkmong 0o viomowm0el amd Tov
apuodio eheykTh avatpopoddtnong. Ev ouvtopia, AoLov, oL BaoLKEG GUVELGPOPES KAl OL SLapo-

POTTOLN|ON TOV TPOTELVOUEVOU WY AVLOUOD OE auTd TO KEPAAao cuvoypilovial wg e&ng:

1. 1 TPOTELVOUEVT] LOVTEAOTTOLT|ON) UTTOPEL VO, OUAAABEL UE GKPLBELD T SUVAULKT] CUUTEPLPOPQL

twv EM g k&0 epapuoyne, KAtm omd molkileg KaTaoTdoelg Aeltoupylag.

2. &va TAN00G EPLKTOV KATAOTOOEWV AELTOVPYLOG UWTOPEL VO. VTTOMOYLOTEL, AAUBAVOVTOG VITO-
Y oL SLAPopa. KOOTN 0TV £MLO00N KOl 0TY] YPTOLUOTOLOT] TWV TOPWV, TPAYLO. TO OTTOLO
ETUTPETIEL TOV OYESLAOUO OLAPOPETIKMY OTPATNYLKMY EAEYYOU VL0 SLAOPETLKE Lty @op-

TOV £PYOOLOG KOL EQOPUOYDV.

3. TAPEYOVTOL POPUAMOTIKEG EYYUNOELG OYETLKG. LE TV KATAUVOUY TOPWV KO TLG TPOSLAYPa-

QEC OTNV TOLOTNTOL VITNPECLDV TG EQAPUOVTC.

4. gvepyomoleitan 0 EAALOTOG aPOIOG TV EEVTNPETNTOV 0T AKPC TOU SLKTVOU YLC. VOL LKL
vorom0el 0 oUVOMKOG (POPTOG EPYAOLAG OMDV TWV EQAPUOYDYV, UE BAOT TO OVVOLO TWV

EPLKTOV KATACTAOEMY AELTOUPYLOG 0TO YAUNAOTEPO EMLITEDO.

H oEohdynom tov mopamdve SIETUTESOU Y AVIOUOU UETOPOPTMOTG VTTOAOYLOTIKOVY Siep-
YOOLDV KOL KATAVOUTIG TOPMV, ETMLBERALOVEL TV ETLTUYLC TG TPOTELVOUEVNG TTPOOEYYLONG OTIV
£yyUnon TG gVOTAOELAG TV YPOVOV ATTOKPLONG TMV EPAUPUOYDV EVIOG EVOG OITOSEKTOV TTEPL-
Bwpiov. Akdun, Tovifetar 1 enitevEn TG BELTLOTOTOINONG TG KATAVOUNG TOPWY, OGOV apopd.
0Tovg eEVTNPETNTEG 0TA GKPA TOU SIKTUOU TTOU EVEPYOTTOLOVVTCL YLO. VO EEUTNPETIOOUV TOV
POPTO EPYACLAG ATTO CUTHOELG LETAPOPTWONG. ZUYKEKPLUEVA, 1] AELOAOYT 0N EEKLVA e TOV VITONO-
YLOUO TG VTTOAOYLOTIKNG TTOAVTTAOKOTTOG Tov Miyaviopot OptZovriag Khpdkmong, oe oygon
LE TLG KUPLOPYEG TUPAUETPOVS TOV Baotko tpoPAnuatog fertiotomoinong. H etkova B.3 amotv-
TAVEL TNV AOENON TOV YPOVOU VITOAOYLOUOD TOV ADOEMY OUVAPTNOEL THG AENONG Tov aplduot
TWV EQPOPUOYDV, TOV EPIKTHOV KATAOTAOEOV Lettovpyiog tov EM kau towv dwabéopumv eEumn-
PETNTAOV 0TA AKPA TOU SIKTVOV, 0 ApLBIOG TV OTTOLMV (POLVETOL VO, EXEL TI) ONUAVTIKOTEPT] £TTL-
dpaon 0ToV GUVOLKO YPOVO VITOAOYLOUOD TG AoNG. TrevOuuiZovpe duwg 6Tl ovtd dev dnuovp-

vel TPOBANUCL 0T GUYKEKPLUEVY EQOAPUOYT), KAOMG 0 apldudg tmv Stabéoumy sEvmnpetntdv
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0T0L AKPE TOU SLKTVOV ELVaL XOUNAOG 08 AvTLOTOLYES VTTodoLES. [TpoympdvTag 0To Baotkd UEPOg
NG TELPOUOTLKNG AELOAOYNONG, 0T TIPMTOL YPOUPYUATA TV etkovary B.5d, KL KOl 0TO
nphTo Twv B.5H, o B.7H, yivetou qavepn 1 tcavoTTae Tov pnyaviopod va Statnpel To 1éco
YPOVO OTTOKPLOTIG TOV EQPAPUOYDVY EVTOG TOV EMIYLOTOU OETIKA AUETARANTOU GUVOLOV, EVTOG TWV
S00EVTOV TTEPLOPLOUDY KoL TTOPA TIG SLOKVUAVOELG OTIG CULTNOELG UETOPOPTOONG. ZTC UECOLC,
ypagnuata Twv etkovov B.3-B.7, amotvmdvetar 1 tkavdmta tov Myyaviopot Optioviog Kit-
UAKMOTG VO OVIUTOKPLVETOL 08 QUTEG OKPLBADG TIG SLOKVUAVOELS, SLAAEYOVTOG SUVOULKA TIG
Katdlnkeg Tomohoyieg EM mg amodkpLon. ZTo TEAEUTALO YPOQENIOTO TV TUPAUTAVE® ELKOVWV
QOLVETOL, ETTLONG, 1) YP1OLLOTOLNOT] TG TUPEYOUEVIG VITOAOYLOTIKNG LOYVOG Yo KGOe EM.
EmutAéov, 010 mAaLolo TG ELOAOYNONG TOU TOPOTAVM SIETITESOV UNYOVIOUOD YIVETAL 1|
ovyKkpLon tou pe to [[l], pia dovkeld mov oToYXEVEL TNV EEOLKOVOUNON EVEPYELAG KOTA TH) UE-
TAPOPTWOT) VITOAOYLOTIKG OKPLBOV SLEPYAOLOV 0TA GKPA TOU SLKTVOU, YPNOLUOTOLOVTAG OUmG
eEumnpeTNTEG e 0TaOEPT) KATAVOUT] VTTOAOYLOTIKNG Loy VoG, H ammdpaon yia t) petagpdptmon av-
TMOV TOV dEPYAOLDV MAPBAVETAL, PACEL ILOG CUUPMVICG ETLTESOV EEVTNPETNONG OYETIKA UE TO
LEGO % POVO ATTOKPLONG TNG EPUPLOYNG. ZTNV TPMTN oeLpd TG etkdvag B.Y, yiveton epgpavig 1 dvu-
VOTOTITO TOV TLPOTELVOUEVOD U AVLOUOD OTO VO SLOTNPEL TOV LEGO YPOVO ATTOKPLONG EVTOG TWV
OTOdEKTMV OplwV, CUYKPLTLKA e To [If], To omoto Tapovoldlel Tupadoelg 0To emlmedo eEvmn-
PETNONG, YLt TNV 1dLA dLaKVUAVOT) POPTOU, Kat 20% AyOTept) GUVOLLKT] EEVTTNPETNON LT UATOV

UETAPOPTWONC.

Kegalowo 4

21 ovveyela, 0to Kegpdhato 4, o pnyaviopos SUuvOoUKNG KOTOVOUNG TOPMVY KoL EAEYYOU e~
TAPOPTWONG SLePyaoLdv Tov Tapovoldotnke oto Kepdhao 3, evtdooetal 0to mAaiolo gvog
KvuBepvo-Puotkot Kowvovikoh Zvotyuatog— KOKE (Cyber-Physical Social System — CPSS) tpudv
EMITES WV, TO OTTOLO TLPOOPLLETAL YLOL TOV EYKOALPO EVIOTLOUO TupkoyLdv. Fevikd, éva KOKE ago-
UOLDVEL TA VITTOMOYLOTIKG GUGTHUALTA OTOV (PUOLKO KOO KoL TG avOpdmiveg dpaotnprotntes. Ev
TPOKEWUEV®, OTO YOUNAOTEPO £mtiedo, 1) apyitektovikt) Tov KOKE mepihaufdvel ovokevég ATA
Ue aLobNTNPEg aviyveuong kot apoakolovinong dacdhv. Emutléov, og autd to emimedo, yiveTon
%P0 TOV FTPOTHTTOV TG aioBnong AnBovg (crowd sensing), KOTG TO 0TOLO GUALEYOVTAL TTAY)-
POPOPLEG TYETIKA (1€ TO TEPLRAMNOV OTTO GUOKEVEG YPNOTMV, OL OTTOLOL BPLOKOVTAL OTNV TTEPLOYN

evOLOQEPOVTOG. AeSOUEVOU OTL OL OVOKEVEG ATA YOpOKTNPILOVTOL OTTO TEPLOPLOUEVOUG VITONO-
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YLOTLKOUG KOl EVEPYELAKOUG TTOPOUGS, O UNYOVIOIOG TTov avasttiyOnke oto Kegdiowo 3 eykabi-
otatol 01o ueoaio emimedo Tov KOKS kat avolapBaver T UETOQOPTmOT TV VITOMOYLOTLKO
OKPLBDOV SLEPYOOLDY TWV CVOKEVMV ATA OF L0 VITOSOUT| 0TO. AKPO. TOV SLKTVOV. Z€ 0UTO TO £TTL-
7180, 0 UNYOVIOUOG SUVOULKNG KATAVOUNG TOPWV ETLTUYYAVEL TNV TNPNOT] TOV YPOVIKMV OITOL-
TNOEMV ATOKPLOTNG TWV EPOPUOYMV AVIYVEVONG Kdit TTapakololBnong. Zto vpmidtepo emimedo,
EVOG INYOVIOROG MPNG ITTOPAOEMY, EYKATEOTNUEVOG 08 eEumnpetnTég Troroytotikol Négpoug
(Cloud), ouliéyel dedopeva artd TG SLapopeg TNYEG (CUOKEVEG ATA, KOWVOVLKA SIKTULA PN oThV)
KO OTOTIUG TNV KPLOWOTNTO TG Katdotaons. Ta Telpauatikd amoTeléopuaTo vrodetkviouy
TNV ONUOVTLKY) OUUBOAT TOU U OVIOHOD SUVOULKNG KOTAVOUNG TOPMV, TOO GTHV £YYUN0T TG
EYKOLPNG EKTELEONG TWV ONUAVTILKOV SLEPYAOLDV, OO0 KOL OTI] UELWON TNG EVEPYELOKNG KOTA-

VaAmONG TV ovoKevdV ATA. O BaolkEg OUVELGPOPEG AUTON TOU KEQAANIOU OUVOYILOVTOL 0OG

eEng:

1. 0yedLooudg Kol VAOTTOW oY £VOg UNXOVIOROU KaTakOopueng KAMUGK®ONG: OTmg EXEL AVOL-
PePOEL KL TPONYOUUEVIG, 1] TAVTOYPOVI] CUVOTTOPEN TEPLOOOTEPMV THG MLOG EPAPUOYNG
o€ eEUTNPETNTEG OTa GKPa TOV SLkTHoU, Svatal va O£0EL 08 PLOKO TO EMTLITESO TG TOLOTN-
TOAG TV TPOCPEPOUEVWV VITNPECLOV VLG, TOV EYKULPO EVIOTLOUO KOTAOTAOEWY EKTUKTNG
AVAYKNG, MOY® TOV EK PUOENG TEPLOPLOUEVWV TOPWV TTOU elvail SLaBETLUOL O AVTIOTOLYES

VITOSOUEC.

2. oyedlaonog KAl VAOTONGOT €VOG WY OVLoUoD opLtiovTlag KAUAK®OoNG: otV i8Le Kotew-
Buvor), autdg 0 UNYOVIoHOG BERTLOTOTTOINONG ELVOL VITEVOUVOG VLA TV EVEPYOTTOLNOT) / oLte-
vepyoroinon ke eEvmnpetTi), TV Tomo0£TN0oN Twv EM TV apuoymv néca o€ autolg
KOLL TOV SLAUOLPACHO TOV ELOEPYOUEVOU POPTOV ALTTO ULTHOELG UETAPOPTMONG TWV CUOKEVMV

ATA.

3. oyedLaonog Kat VAOTTOIN O VO UNYOVIOUOU AMYPNG OTTOPAOEMY O0TO VITOAOYLOTIKO VEQOG:
AVAUEDT OTLG BOOLKOTEPEG TPOKATOELG YLC TOV £YKALPO EVTIOTLOUO KOTOOTACEWY EKTAKTNG
AVAYKNG, BPLOKETOL O TAOUTOG TV SESOUEVMV TTOU GUALEYOVTOL OTTO TLG SLAWOPEG TTIYEG
(ueTagopTmueva Sedopeva atd aoONTHPEG 1] AvOPAOITOUS), 1] ALTTOSOTLKT) KOL YPTYOPT| £TTE-
Eepyaoia Toug ko TEMOG 1) 0pO1) EKTIUNOT] TOV ETTESOV KPLOLWOTNTAG TNG KATAOTOONG. 2€
OUTO TO KEQAAALO, O UIYAVIOUOG MYPNG OUTOQAOEWY TTOU OYESLALETOL, OTOYEVEL GTO VO,

oVVOVAoEL SEQOUEVA OTTO ETEPOYEVELG TINYEG, OTTWG POTOYPAPLEG TPAPNYUEVEG ATTO OU-
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OKeVEG ATA, TANPOYOpieg ATtd SOPUPOPOVS, LOTOPLKE SESOUEVA KALPLKDY CUVONK®OV Ko
KOLVWVIKMV LECMV SIKTOMONG, EVH TAUTOYPOVO VO, TOPEYEL EYKALPMOG TOPLOUOTO, YLOL TV

KPLOWOTNTA TOV KOTAOTACEWY.

Katd ) oyediaon tov mpotetvouevour KOKS avayvmploTnKay oL Topokotn GTarToELS, oL
OTTOLEG OTTOOELKVVIOVY TN YPNOUOTNTO EVOG KAUOKDOLUOU U 0VIOUOD YLOL LETAPOPTWOT] VITOAO-

YIOTIKG aKPLBDOV SLEPYOOLMV 08 EEVTNPETNTEG OTO, AKPC. TOV SIKTVOL:

* "EyKaupog evIomopdg Kol avoyvipLon KOTOOTACEWY EKTOKTIG AVAYKNG.

* BELTLOTN XPNOLULOTTIOIN 0T TV TOPMY TWV CVOKEVDV ATA.

o AUVOTOTITO OVILIETMOITLONG TWV OVAYKDY TWV EQAPUOYDV YL YPNYOPT KAUAK®WO.
* ALGAELTOVPYLKOTNTO TOV SLAQPOPWY aLoONTNPWV O€ ETLTESO SESOUEVWY.

* TIpo0TaGLO TPOOMITLKMV SESOUEVMV.

Zv eikovo B 1| TapovotaleTol 1 0PXLITEKTOVIKY Tou potevopuevoy KOKE, 1) ool oote-
Aelton TPOTLOTOG 0td S0 PACLKEG CUVIOTMOEG: EVOV UNYOVIOUO SUVOUKNG KOTOVOUNG TOPWV
KoL EAEYYOU UETOPOPTMONG SLEPYUOUDV KO EVOLV EVQPUI Y AVLOUO AMYNG OTTOPAOEMV, KOL SEV-
TEPEVOVIMG OITO TETOEPLG VPLOTAUEVES OUVLOTMOES, OL OTTOLEG OAANAETLOPOUV HeTaED Toug Kal
OUVELOPEPOVY OTNY OVTILUETMILOT] TOV KOATOOTAOEMV EKTUKTIG AVAYKNG: TIG CUOKEVEG ATA, TOUG
AoONTHPEG, TA PECO. KOWVOVIKNG SIKTOMONG KoL TLG SNUOOLEG 0PYES. AV KOL 0TO OUYKEKPLUEVO
Keahato yivetar eEeldikevon tov KOKE otnv £yKaipn avIUETOILON TUPKAyLOV 08 8o, 1
TPOCOPUOYT] TOV OF GAAEG KATUOTAOELG EKTAKTIG OVAYKNG ELVOL EQUKTY).

O uNYOVIOUOG SUVOIIKTG KOTAVOUNG TOPMV KL EAEYYOU UETAPOPTWONG SLEPYAOLOV TOU
oyedLdleton kKo vhomoteitow og avtd To Keqdhato (erkdva B.2), amevBivetan oe eqappoyég avi-
YVEVOTG TTUPKOYLOV OL OTTOLES ELVOLL TAKETUPLOUEVES OF ELKOVIKA «doyela» (Containerized Applica-
tions, EA), avti yio EM mou ypnouuomonfnkay oto mponyoluevo Kepaloto, 1 ovamtugn Tov
OTTOLWY, €V TPOKELUEVM, BACLLETOL 08 TEXVIKEG UNYOVIKNG WAONONG OTNY 0vVayVMPLOT] ELKOVOV.
To LTUATE HETOPOPTMONG CUTHV TOV EQAPUOYDV OTTO TLG CLOKEVEG ATA 0TOVG EEVTNPETNTEG
oto Gxpo. Tov dikthov Katevbuvovtal o évav Kevrowkd EAsykTr), 0 OTTOLOG QITOTEAEL WOL ETTE-
Ktaon tov Miyaviouot OpiLoviiag Khpdkwong mov mapovotdotnke oto Kegparalo 3. O Ke-

vIpLkog EheykTig emhéyel ue mopouolo Tpdo thv tomoroyia tTwv EA wov Ba vhomomnOel otoug
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eELTNPETNTEG KAl OVAAOYIG KATAVEUEL TOV ELOEPYOLUEVO POPTO EPYOOLOGC, YLO. TO EPYOUEVO YPO-
VIKO TapaBVPo (0PLLOVTLO KAMUAK®MOT)). AVILOTOLY O SOULKE OTOLYELX TG apyLTekTOoVIKNG Tov Ke-
palaiov 3, 6mwg o Hoofrertic @doTov Kau 10 Stotnua IogakolotOnong, To. GUVAVTOUE KoL
0€ QUTNY TNV OPYLTEKTOVIKY Kol 0L EE080L TOUG AToTEAOVY TIG EL0OB0VG EVOG VEOU SOULKOD GTOL-
yetov, Tov BeAnioromounth (BA. etcdva B.4), o omotog avahauBdver Ty Peltiotomoinon g Ko-
TOVOUNG TOPWYV OTNV VITOSOUT] OTO. AKPQ TOU SIKTVUOU, AMOVOVTAG SLadoyKa 800 WKTH aKEPOLOL
TPOPANUATE YPOUULKNG BEATLOTOTOINONG. TO TPMTO APOPG OTNY EVEPYOTTOLNOT TOV ELAYLOTWV
eEurnpeTNTdV oV B YPELAOTOVV YLOL TV EEVTTNPETNON TOU EKTLUMUEVOU (POPTOV EPYAOLOG KO
1 wop1) Tov divetaw amd ™y eElomon (|.3). To detepo apopd 0TNY EAAYLOTOTOMOY TOV TOPWY
7OV TOPEXOVTOL 08 KB BEA yia TV tkovomoinon Tou gopTtov tov Oa Toug avatedel Ko €eL ™)
wopen wov divetar amd ™y eElomon (B.6). Emimpoodétmg, 0to téhog Kae ypovikol mapadipov,
TOL ATTOTEAEOUNLTOL TG AVOLYVPLONG ELKOVOV OTTO TOL LTHLOTCL TTOU UETAPOPTOONKAV Kol EKTENE-
OTNKAY ETULTUYDGS, YPNOULOTOLOVVTUL YLOL VO TOPOEL 1) ATdQAoT OYETIKA UE TNV KPLOLWWOTHTO TG
Katdotaons. Emnlong, o xpdvog ueta€l mg Mymg tmv pwtoypapLdy mov 0o petagoptmdolv

Ko TG AMYNG TG armdpaons, opileton wg 0 pOvog AmOKPLONG THG EPUPUOYNG.

Se eva, YauUNAOTEPO EMLTESO EAEYYOU, KAOE EEVTNPETNTHG OTA AKPA TOV SIKTVOU elval eEo-
TMougvog pe évov Tomkd EAeykTi), 0 0TOLOG CUYKEVIPWMVEL T, LOTOPLKA OTOLYELC AELTOVPYLOG
v EA o Bplokovtol eyKaTeoTnueVo oe ouTtov, Komg Kot TG TPoBREPELG YLA TOV HEMLOVTLKO
POpTO £pyOolog Tov Bo KANOEL Vo eKTEAEOEL KAl AVTLOTOL(O PUBULTEL TOVG TTOPOVG TTOV TTOPE-
yovtat ota EA yia 1o emouevo ypovikd mapdfupo (katakdpuen KAMUGK®OOT]), VAOTOUDVTOG TLG
amopdoelg Tov Kevipiko® Eheykt). H Aettovpyia tov EA povtehomoleitol pe ypnon SLokomtt-
KoV ovotnudtov (Switching Systems), (e To KpLtNpLo allaymg vo eivon o apltBrog Twv KEVIpLKov
uovadwv eneEepyaoiog mov mopixovion o ke EA. H povtehomolnon autr, dvatat vo, ouk-
AaBeL T duvoukdTTo TG Asttoupyilag Twv EA, evd emLTPEREL TV VKO KOTOVOLUT TOPOV.
SuyKeKpUEVa, 1) Aertoupyla evog EA meprypdepetan amd €va SLoKpLtd ypouko ovotnuo me
uopeng (B.1)). Two v evotadm Aertovpyio Twv EA yOpo amd (o cuyKeKpLUEVY TepLoyy, ova-
YVOPLLOVTOL OL EPLKTEG KATOOTAOELG AELTOVPYLOG TOVG (ONUELD. LOOPPOTTLOG TOU YPOUULKOD G-
OTNUOITOG TTOV TO, YOPOUKTNPLLEL), AOVOVTOG TO TPOPANLCL YPOUULKOD TTPOYPOUUATLOUOD @2, yia
SLAPOPEG TUIEG TWV TTEPLOPLOUMV. ZTH) GUVEYELD, YL KAOE EPIKTN KOTAOTOON AELTOUPYLAG, O)E-
dLaLeTan évag eELeYKTIG avaTpopodoTong katdotaong mg popeng (1.3), e oxomd tv emitevin

TOV ATOUTHOEMV O XPpOVO amdkplong. Sty etkdva B4 ovvoyitetar n Aertovpyia evog Tomiko
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Ereyktn. H ouvimopEn avtdv Tov 810 Lepapylkdv emmedmv eLeyyov KoL KMUAK0ong eEaoga-
MCer TV opadt) Aettovpyia Twv EA evidg Tov OUUQOVNOEVTOVY ETTESWV TOLOTITOG VTNPECLADV,

600V aPOPd TO YPOVO ATTOKPLONG TOV EQPAPUOYDV.

Agtd TV GARY, 0 EVQPUNG UNYAVIOUOG AMYNG OITOPAOEWY TOTTOOETEITOL TO VITOMOYLOTIKO VE-
OG KOl SEYETAL TOL ATOTELECUOTOL TG AVOYVMPLONG TWV elKOVOV 0td tov Kevipikd Eheykt.
Emumhéov, évag Myyavicuds SvAropnc AeSouévav ypoLIOTTOLELTAL Y0, VO, OUMAEEEL dedouival
amd SLapopeg TNYES, To. ortola, Ba. arootalolv otov AAydotbuo Ardpacg, o omolog 0o epap-
uooEL AoYLKOUG KOVOVEG 08 QUTd, e OKOTTO VO GUMITEPGIVEL TO ETELTTEDO KPLOWWOTNTOG TG KOTA-
otoong éykoupa. ‘Ommg ometkovileton otV etkova B3, oL kKipLeg myEg SedoUEVmV OV £xOoVV
OVUTTEPIANPOEL OE AUTOV TOV UNYOVIOUO ELVOL: O) TOL LTTOTEAEGLLATOL TG ETEEEPYOLOLAG TWV (PUWTO-
YpopLDV 070 TG ATA, uéow tov Kevrpukot Ereykti (0pa, OUVTETAYUEVES, OTTOTELEOUA KPLOWO-
™mrag), B) korpikd dedouéva amd to Evpwmaixd Svotua Inpogopidv yia Mupkayiég Aaomv
(European Forest Fire Information System), T 0TToL0. GUYKPOTOUY TTEVTE KATNYOPLEG TOOVOTITOG
TUPKAYLAG ava SAG0G (YOUNAT), LETPLO, VYPNAT, TOAD VYNAT, aKpaia) KoL y) dedouéva amd uéoa,
Kowvwvikng dtktdmong ko ouykekpLuévo amd o Twitter. O ALyopLOuog AmOQa.ong OUOYEVOTTOLEL
TO TOPATAVED dedopeva TPLy va eEaydyeL To ouvorikd Badud KPLoWOTNTAG TG KATAOTAONG, O

omotog divetar amd ™y eElomon #.7).

H aE10AOYN01] TOU TOPATOV® WY OVIOUOD EYLVE O ULOL TTPAYUOTLKT] £YKOTA0TO0N 070 Epya-
otiplo Awaygiplong ko Bédtiotou Zyediaopot Awktdwv Tniepotikng (NETMODE) g Zxolng
Hhiextpordymv Mny. & Mny. Troroyiotdv touv EIMLIL, evd yia TG eQOPUOYES OL OTTOLEG ETTL-
Ay Onkav, ovamthydnkav d0o aAyopLOLoL avayvdpLong TUPKOYLOVY 08 LkOVEG artd ddom. Qg
OVOKEVEG ATA, ypnotpomonnkov cvokevég Raspberry Pi, oL omtoleg avéhafav to pOLo un emav-
SpWUEVWV 0EPOOKAPMV TTOV TPAROVOAY TIG PWTOYPOPLEG KA UETAPOPTMVAY TV ENEEEPYOAOLOL
Toug o eEVINPETNTEG 0TaL dkpa Tov dtkThov. ZTig ekdveg .9 wou B.6, mapatpoipe 6t o Kevrpt-
KOG EAeyKkTig KApuakdveL opliovio. Toug SLabEoLoug TOPoVS, EVEPYOTOLMVTOG ETLTAEOV EEV-
TNPETNTEG OTAV CUTO ELVOL OVAYKALO (TT.)., OTOV VITAPYEL VPYNAY TLOAVOTNTA TUPKAYLAG), VL0 VO,
LKOLVOTTOLNOEL TIG QUENUEVEG AVAYKEG OE VITOAOYLOTLKT LoY1 AOY® TG aDENONG TOV aLtnudTov
uetagpdptwone. Ztov Mivaka B.1, gaivovior oL weploxég Aettovpylog Tov £xouy avoyvmpLoTet
yioe to. EA mtou tomoBetodvran péoa oe autovg toug eEunmpetmtéc. ‘Ocov agopd 0TV KoToKo-
PUPTN KMUOK®OOUOTNTO TOV punyoviopnol, ot Tomikol Eleyktég kaOe eEvmnpetnt amopplmtouv

nepimov 1o 20% TV ELOEPYOUEVOY UTNUATMV UETAPOPTMONG SLEPYAOLMV, TTPAYL TOU OPEL-
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Aeton ota mbava opaluoto tov Mpofrent) @optov. O S0 avtég SLadikaoieg eAEYYOU Ko
KMUAK®OONG, ETULTUYYAVOUV VO SLOTIPNOOUY TO HECO YPOVO OTTOKPLOTG TWV EQAPUOYDV EVTOG
TV EMLTPETTAOV OPLOV, TO, 0TTOLA KABOPLZOVTOL 0TO TO CUUPWVHOEY ETUTESO TOLOTNTOG TAPOYNG
VITNPECLMOV TWV EV AOYW® EQAPUOYDV, TTAPX TIG SLOKUUAVOELG TOU GUVOLLKOD (POPTOU EPYUOLOG.
Emumhéov, YIvETOw o, vToTutddng oUYKPLOT TOU SUVOULKOD QuTOU Uy ovioUon Le Pio OTOTUKT|
KaTavou TOPmV, 1 ooia paivetal emtong otig etkoveg 4.9 wou B.6 ka1 omolo mhoyer amd o
TPOPANUATO TG VTTEP- KO VITO- TPOUNOELAG TOPMV GTOVG EEVITNPETNTEG OTA AKPOL TOU SIKTHOV,
AVAAOYA UE TIG AVEOUELDOELG TOV POPTOV EPYAOLAG. AUTA TO, TPOPANUATO ELVOL EECLPETIKA ON)-
UOVTLKG, 08 TETOLOU E80VG EQAPUOYES, KaODG dUVOvTAL Vo BAAOUV 08 PLOKO TO OITOTELECUO, TNG
OTTOOTOMG,

To Kegahato 4 tehetdvel pe v aEoAoynon Tov gugpuolg Ui aviouog ANYng arogdoewy, 1
OTTOLOL EMKEVTPOVETOL OTOV ETUTAEOV YPOVO TOV TPOOTIDETAL 0T SLASLKAGLO AVAyVAPLONG TNG
KPLOWOTTOG TG Katdotaong. Amod Ty etkdva B.7, umopel va cvumepdver kavelg 6L 0 ypdvog
auTOG emNPedleTal KOTd KUPLo AOYo amd TNV avaluot Twv Sedopeévmy astd Ta HEGT KOWVWVLKTG
Sduktvmong. Iap' 6ha avtd, ovvolkd To Ttpotevouevo KOKS emmituyyavel To 0Tdy o TG LELDONG
TOU YPOVOL QITOKPLOTG TWV EQUPUOYDV EKTOKTNG AVAYKNG KOL TNV UELWOT TOU VITOMOYLOTLKOV

POPTOV TWV OVOKEV(DV ATA.

Kegadlowo 5

To Ke@dahoto 5 eatidlel 0tV ovAmTuEn evOg eVOAAOKTIKOD SLOKOTTIKOU Uy oviouow UETa-
POPTWONG VITOLOYLOTIKDY SLEPYOOLDY 0T GKPOL TOU SLKTVOV, Yo epapioyEg TG Blounyaviag
4.0. OL OPUOYEG OUTEG, ATEVBUVOVTAL O POUTTOT TO, OTTOLOL EKTEAOVV TTEPLTAOKEG SLEPYAOLES, OL
OTTOLEG TTAPOVOLALOUV CVOTNPEG ATTAUTHOELG TOGO OF YPOVLKT] ATTOKPLOT OO0 KOL OF AOPALELD. €
QUTO TO TTAALOLO, 1] LETOPOPTWOT TWV SLEPYOOLMV 0T, AKPO. TOU SIKTVOU EMLTPETEL OTO POUITOT VA,
eMAPPHVOUV TOV VITOAOYLOTLKO TOUG POPTO, OVABETOVTOG THV EKTELEDT) TMOV TOPUTAVD SLEPYa-
OLMV OF ULOL LOYVPT] VITOAOYLOTLKT] VITOSOUT| O€ KOVTLVY] ITOGTO0N. Z€ CUTO TO KEPAAALO, AOLTTOV,
TPOTELVETOL EVOG SLAKOTTTIKOG WY AVLOUOG UETOPOPTWONG SLEPYAOLDV, EVHD TYeSLATOVTOL EVKAL-
PLOKES OTPOTIYLKEG HETAPOPTMONG YL EPOAPUOYES TTOU ALPOPOVY GTOV TPOYPOUUATIOUO TG TTO-
pelog kat Tov gvromopud g 0€ong Twv poustdt. H amdpoon yio ) uetagoptwon Aaufdveton
Bdoel g afefaldTnTag wg TPog TV TPEXOVON BE0N ToV PouTdT Kot TV diabeoiudTnTa vito-

AOYLOTIK(OV Kait SLKTVOKMV TOPWOY 0T GKPA TOU SIKTVOV, TV dedouévn otiyur). To SLaKomTikod
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auTO oVOTNUE VAOTTOLELTOL KOl AELOMOYELTOL YPNOLUOTOUDVTOG EVA TPAYUATIKO POUTOT OF (LLCL
TPAYUATLKT] VITOSOUT] 0TC, AKPO. TOU SIKTVOV- KOTA THV AELOAOYNOT) TOVILETAL TO AVTLOTAOOUO.
AVAUEDQ 0TO YPOVO OAOKANPWONG TV SLEPYAOLDY KOL TNV ETLTUYT EKBALON TG ATTOGTOANG TOUG.

AvOAUTIKG, TO OEVAPLO TTOV TOPOVOLALETAL OF GUTO TO KEPALOLO TEPLYPAPEL EVO. POUTOT
€E0TAMONEVO pE 0LoONTPEG Ko VITOROYLOTLKOUG Kot SLKTUAKOUG TOPOUG, TO OTTOLO ETTLYELPEL VO.
QTAOEL OTTO V0L APYLKO OF £VOL TEMKO ONUELD, EVTOG EVOG EPYOOTUOLAKOD YMDPOV, AVAUETH OF
EUTOdL0. AUTN 1] AELTOUPYLKOTNTA £LVOL BAGLKY YLO. TNV VAOTTOINOT] EQUPUOYDY TTOV 0POPOVV
0ToV £QOdLOOUO Kat TNV asobnKevon eumopeupdtmy. "Eva o0vneg mpoBAnue. ov avIUETmIT-
Teton o TETOWOL eldovg oevapla eivol 1 afefordtnta Yipw amd TV axpipi «otdor» (BEom Ko
TPOOUVATOAMGUO) EVOG POUITTOT, 1) 0TTOLC, VEGVETOL UE TOV XPOVO KATA TNV KLVOT], AOYW GUOOM-
PEVOUEVOV AVOKPLBELDY TOV aLoBNTNPWV, OMOONUATOV TMV TPOYMV KL GOTOYLDY 0TO VMKO.
SUVETDGC, 1] OVAYKT Yo, Jol akpLf), Suvaukd puButopevn texviky evromopol OEong eiva eu-

@avng. OL BaoLKEG GUVELGQOPES AUTOV TOU KEPOUAALOV OUVOYILOVTOL, AOLTOV, w¢ eENG:

1. oyedloon Kot vAoToLNon EVOG TPMTOTUITOV INYAVIOUOD LETOPOPTMOTG VTTOMOYLOTIKMV SLep-
YOOV VL0 POUTTOTIKEG EPAUPUOYES, O OTTOLOG YPNOLUOTOLEL (ILC VITOAOYLOTLKT VTTOSOLT 0T
AKPOL TOU SIKTVOV EVOG PBLOUNKOVIKOD YMPOV, VLo VO BEATLOOEL THV AKPLBELXL TOV EVTOTTL-

opov BE0NG KaL TNG TTOPELRG TOV POUTTOT.

2. oyedlaon Ko VAOTTOINOT £VOG AAYOPLOUOU ATTOPAONG HETAPOPTMONG VTTOMOYLOTIKMV SLep-
YAOLDV, 0 0TTOLOG AAUPBAVEL VTTOPYLV TNV SUVAULKT VO TV KIV)GEWV TOU POUTTOT KO OVTL-
netmrTilel Ty afefardTNTd IOV TPOKAAOUVE GTOV akpLBN evTomoud g BEong Tovg 0T0

YPOVO.

3. oyedlaon Kol VAOTOoiNon KovoTouwy ahyoplOumy eviomopuol 0£omg KoL TPOsaVOTOML-
OUOY, OL OTTOLOL ETULTUYYAVOUV VYPNAT AKPLBELOL XPNOLUOTTOLMVING TO OTAOVOTEPO GUOTIUOL

KOUEPMV KaL TOV EAAYLOTO apLOUO EVIOMLOUEVWY SLAKPLTMOV ONUELWY OTO TEPLRAALOV.

H 0pyLTEKTOVIKY) TOU TIPOTELVOUEVOY GUOTHILATOG aTelkovitetal oy ewkdva b1l Sto eEeta-
TOuevo oevapLo, OL TPOVTODEELG VL0 HETAPOPTMOOT VITOLOYLOTIKDV SLEPYAOLMV SNULOVPYOVVTOL
a7t TG V0 PAOIKEG EQAPUOYEG TTOV EKTEAOVV TAL POUTOT: TNV EKTIUNON TNG OTAONG KOL TOV O)e-
daoud g dradpoung tovg. o va vrooTPLyHeL N HETAPOPTWON CUTOV TWV SLEPYUOLDV, ELGG-
YOVTOLL TO, TTOPOKATM SOULKA OTOLYELC TNG OPYLTEKTOVLKNG, TC. OTTOL0L YKOOLOTAVTOL GTO POUTOT:

a) o Edeyktig HagaxorotOnong (EID), B) o Tomkds Extiunting ue faon tnv Odouetoio. (TEO),
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V) 0 Tomkdg Extiuntig ue faon Awaxoitd Snueio oto wegifailov (TEAZ), 8) o Tomikds Zyedia-
otn¢ Avadoounc (TZA) xou €) o Myyawouos Axogpaons Metapootwons Aegyactddv (MAMA).
STV TAEVPA TOV EEVTNPETNTOV 0TA GKPA TOV SIKTVOV, £YKOOLOTOVTIOL TO TAPOKATW SOULKA
otouyelo: ot) 0 Amouakguouévog Extiuntig ue Bdon Aaxoitd Snusic oto megifdilov (AEAT)

Ko §) o Amouaxovouévos Zyediaotic Aadoouns (AZA).

Mic TUTTLKT] EKTELEOT EVOG OEVAPLOV TG EEETALOUEVNG EQPaAPIOYNG ekKIvel ue Tov TEA va
VITOLOYLTEL L TPOYLG aTtd TNV aPXLKT OTNV TeMKT O£0om. AuTtO Slvel TO TPMTO EVOVOUA OTOV
MAMA, 0 07010g 0VahVEL THV TPOYLG KOL GITOPAGLEEL AV 1] HETAPOPTMOT TOU VITOAOYLOUOD 0TaL
GKpOL TOU SLKTVOV Kot ToV AZA UTOPEL VO, £XEL 10G OTOTEAECIO, LLoL BEATLOUEVY EKS0ON TG, ATTO
™MV wa, 1 vhomoinon tov TEA Baociletal oe o amhy], ELa@PLa £K8001 TOU YVOOTOU GAYOopLO-
nov A*, pe yaunin Ouwg ToLdTNTO TAPAYOUEVNG TPOYLAG. ATTO TV GAAT, 1] VAOTTOINON Tov AZA
BaolZeTon oe o TEPLITAOKY VITOAOYLOTLKG £K8001 ToU 0AyopiBuov Dijkstra, 1) omola: mAéyeL TO
KaTaANAOTEPO AVAUEDT. OE VYNANG TOLOTITAG LOVOTTTLC,, TOL OTTOLC, £X0UV VITOAOYLOTEL TTPLV TV
€KTELEON TOV Ogvaplov. 2t ouveyela, o BIT avalapuBaver vo UETAKLVIOEL TO POUTOT OTLG EV-
duaueoeg O£oelg ™G TPOoYLaG. H Kiviomn Tov popstdt HOVIEAOTTOLELTOL (e EVO CVOTNUO GUVEYOUG
YPOVOU, TO 0OTT0L0 €xEL TNV AVATTAPAOTOOY KATAGTOONG-XMPOL TTov divetar otig eEtohoeig (5.4)
- (B.6). K&Be evdripeon kivnon avolietol oe $00 emPUEPOUS KIVIOELS: O) LLOL TEPLOTPOPLKT| Ki-
vNom, akoAouOoVUEVT 0TTO B) WO LETOPOPLKT]. SVYKEKPLUEVE, 1) SUVOULKT) KAELGTOU BPOYOL TTOU
ypnowomoteitar, meptyplpetal amd Tig eSlomoetg (5.7) kau (B.8), eved oty ercdva .3 divetan to
CUTOUOITO TTOV TEPLYPAPEL TN Aettoupyio. Tov EIT. Katd ) SLdpKeLa autmv Tmv eVvOLAUESmY KIvN-
ogwv, divetal 1o §eTeEPO Evououo 0tov MAMA MOTE VO OTTOQAGLOEL, AVOLOYC. UE TV GUVOALKT)
OVOOWPEVUEVT APBEPALOTITA OTNV GTAON TOV POUTTOT Ka avaloya ue tn drabeoudtnta mopwv
0TOVG EEVINPETNTEG OTO. GAKpa Tov dtkthov, av o EIT Ho kiveital e BAom ovatpo@odotnon omd
tov TEO xau tov TEAZ M av 0o petagoptmOoly oL VIToAoyLouol 0ta. Gkpa Tov SLKTou Kol Tov
AEAZ. H Aertovpylag tov TEO glvar apketd ehagppld 000V 0popd TOUG VITOAOYLOUOVS, KaONOG
BaolleTon 08 UETPNOELG TTOV TAPEYOUV OL KWOLKOTTOTEG TTOV BPLOKOVTOL OTOVG TPOYOVG, AN
oVoowpPeEL ABERULOTNTO OTOV EVTOTLOUO TNG BEONG pe TV TAPOSO Tov YPOVoU. ATtd TV GANY,
ot TEAS ko AEAT Bacifoviol oty avayvdpLon SLoKpLTmV ONUelmy KoL LOAOTo KUMVOPLK®OV
0pOONUMV 0TOV TEPLRFAAAOVTO Y hPO. H TEYVIKT 0UTH ELVAL ONUAVTIKG TTLO 0KPLBY VTTOAOYLOTIKGL,
KaOMG YPNOLUOTOLOVVTUL TEXVIKEG OVAYVADPLONG ELKOVAV YLOL VO EVIOTLOTOUV T OPOONUOL OF

TPAYUATLKO YPOVO, TO OTTOLCL 0TY) OUVEXELS AVOADOVTOL KO EEGYOVTOL TO OTTOLPALTITOL Y OPOKTY)-
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PLOTLKC TOUG YLOL VO, VTTOAOYLOTEL 1] BE0T] TOU POUITOT, LESM PLOG TEYVIKNG TTPOPOALKTG YEWUETPLOG.
O Bpoyog Kivong KAELVEL [1E TOV EAEYYO TOU POUTTOT OYETLKA UE TNV TTPOGEYYLOT TG TEAMKNG OE-
ong. Smv ewkdva 5.2 yivetar pavepn 1 ameplodikdmTa ™G KMONG TWV TOPUTAVD SOULKOV

OTOLYELOV.

‘Ontwg avagepONKE KoL TPONYOUUEVOG, OL ATtopaoelg Tov MAMA yio netagdptmon diepya-
oLV TALPVOVTOL e BAoN £Va SLOKOTTIKO GVOTNUA TO OO0 OTOTELELTOL T TPELG dLAKOTTEG
(evkdva.11). O mpdTog SLoKdTTNG aopdt OTNY ETAOYY TOV TPOTTOV EKTLUNONG TG OéoNG Kall TOV
TPOCAVOUTOALGUOD TOU POUTTOT UETAED TWV TAPAKATW: ¢) TOUG AaBnTNPES 0doueTplag Kou B) To
ovomua kapepag. H uetdfoon amd vy emhoyn o) oty B) yivetol BAoeL vOg 0plov ELTPETOUE-
VNG 0BEPALOTNTAG OYETIKA [E T1 0TAON TOV Popstot. O SeVTePOg SLAKOTTIG EVEPYOTTOLELITOL UOVO
0¢ TEPLITTWOT TOV OTOV TPMOTO £xeL emheyOel 0 B) TPOTOG EKTIUNONG OTAONG KOl QLPOPd. 0TIV
UETOQPOPTWOT) 1] OYL TNG EKTELEONC TOV GAYOPLOUOV, e BAon TNV SLaOEoLUdTTO VITOAOYLOTLKDV
Ko SIKTUOKMV TOpWV 0Ta GKPa Tov dtkTthov. H SLa0eo1udtnto Tov vrohoyLoTikdv mopwy Lo To
£PYOUEVO YPOVLKO SLaoTnua, vtohoyiletal ue T ypnon evog giltpov Kalman wavm og 1otopLkd
dedouéva TG dLaOEoLUOTNTAG KOl 0 EKTLUMUEVOG XPOVOG EKTEAEONG OLVETOL OTTO LG YPOUULKY)
0y£om. O eKTILMUEVOG YPOVOG UETAPOPAS TV SESOUEVMV 0TA AKPO TOV SIKTVOU SiveTol artod Tig
oyéoeig (5.9) - (5.12) ko paoileton oe £vo LoyoptOKd OVTELD TV ATWAELDV OF OYECY e TV
amOOTO0N, KOOMG KAl 0TIV avaAoYLoL TOV ONUOTOg TTPog To B0pufo. TEéhog, o Tpitog SakdmTng
AQOPA. OTNV ETLAOYY AVAUEST. OF (O, YOUNANG (TOTTLKG VITOROYLLOUEVNC) KO O€ wio. VPNANG (07td
LETAPOPTWOT] 0T AKPA. TOV SIKTVOV) TTOLOTTAG TPOYLA TTPOG TO OTOYO KoL ACUBAVEL VITOYLY VO
TOPAUETPOVS: O) €Va. BaOUO eyyOTNTOG TNG XOUNING TOLOTNTOG TPOYLAG OTA SLAPOPT, EUTOSLOL
TOV YOPOV Ko ) THV KAUTVAOTNTA TG Me BAon QuTég, amopaoilel av VTdpyeL TeplddpLo on-
UOVTLKNG BEATLIONG TNG LOPPNG TNG TPOYLAS UE T LETOPOPTMOT] TMV VITOLOYLOUWMV 0T AKPO.

,
TOV OLKTVOV.

Tl TV TELPAUATIKT AELOMOYNOT] TV TUPATAVD WYAVIOW®V YPNOLOTONONKE 1 pouso-
KN Thatpopua AlphaBot, evd otnOnke £vog xmpog oto Epyaotnpio Aayeipiong kow Béhtiotou
Zyedroopuo Actowv Tniepotikng (NETMODE) tng Zxoing Hiektpordywv Mny. & Mny. Yro-
Aoyrotdv Tov E.MLIL., el81kd yia. VoL TTPOGOUOLATEL TO £PYO0TAOLOKO TEPBAAAOV TG EQAPUOYNG
(ewcova B.14). Twa va popéoet vo aEtohoyn0el 0mOoTd 0 Y aVIGUOG VITOAOYLOTIKNG LETApOp-
TWONG WG TPOG TOV YPOVO EKTENEDNG TG EPAPLOYNG, TPMTO. £mtperne vo. aohoynBel 1 asote-

AEOUATLKOTNTO TWV EQPOPUOYMV TLG OTTOLEG SLOLELPLLETAL. ZYETIKG UE TNV TEYVIKT] EVTOTLOUOUD
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Bong, 0TV eLKOVOL PALVETOL OTL TTOPONO TTOU 1] ATTOKALOT] AITO TNV TPAYUATIKY 0€01 AVEG-
VETOL 000 QUEGVETAL 1) AITOGTAON TOV POUITOT GO TO. OPOONUC, 1) AKPLBELD TG SEV TEPTEL TOTE
KAt arwd 93%. Zyetikd pe Tov oYedLaoud TG TOPELOG TOU POUTTOT, GTIV ELKOVO, ylvetou ga-
VEPT] 1) EYYUTNTA WLOG VITOAOYLOUEVIG TPOYLAG UE TNV TPAYUATIKG BENTIOTY, 1] omtola, BplokeTon
eVTOG QITOdEKTMV TAALOLWV Lo TV eappoy. TIpoywpdviag 0to Bactkd Kopudtt T oELoAO-
YNONG, GUTO TOU SLOKOTTTLKOU PNX0VIGHOU UETAQPOPTMONG VTOMOYLOTIKMDVY SLEPYOOLMV, YIVETOL 1|
00YKpLON ToU pe Tig dVo aKpaieg oG UTAOIKEG TPOOEYYLOELG EKTELEOTG TWV VITOAOYLOTLKDV
BLEPYOLOLMV: (1) LOVO TOTILKT| EKTELEOT Kall B) OVO VITOAOYLOTLKY) HETAPOPTMON. Ztov mivaka B.2
Sivovtal oL LEGOL YPOVOL EKTELEONG TOV LOLOV TELPAUOTOG, YL TIG TPELG SLOPOPETLKEG TEYVIKEG
EKTELEONG. ATIO TO ATTOTEAEOULALTAL, YIVETOL EWPOAVNG 1) VITEPOYT] TOV TPOTELVOUEVOU UNYOVLOUOD,
TO00 OTOV UECO YPOVO EKTELEONG OO0 KOl 0TO FTOOOOTO ETLTLYOVG £KPOONG TMWV ATTOGTOADY JTOU
KANONKE VO VAOTONOEL TO POUTOT. AVOAUTIKOTEPO, 0TI WOVO TOTTLKT] EKTELEON TG O)EdLOONG
SLadpoung, 0 POVOG EKTEAEDTG TOV TELPGUOTOSG ELVOL YPAUWKDG GVAAOYOG TMV BNUATWV TOU
amogacilel o Ax alyopBuog mov ekteheiton (stcova B.13), evid 1 afefoldTnTa oTov EVIomoUo
™G O€0MNG TOV POUTTOT deV OTOUOTA TTOTE VO VEGVETOL (Aol TO 0VOTNUA Kauephy dev aELo-
motettow oté (ekdva B.16). Suvemmg dev vtdpyel KAmoLo eyyimon OXETIKG. e TV eTTLTUYY) Tre-
PATWOT TOV TELPAUOTOG. STV TEPLITTWON B), TNG UETOPOPTOUEVNG EKTEAETTG LOVO, OTTO T WiC:
£YOULE TNV EYYONON YLOL TNV ETLTUYT TEPATWON TOU TELPAUATOS, 0OV TO GVOTNUA KAUEPDV YP1)-
OLILOTTOLELTOLL YLOL TOV EVTOTLOUO TNG O£0MGg TOU poustdT kabe popd, £xouue OUmG AVENUEVO HECO
YPOVO EKTELEONG TNG ATOOTOMIG, AOY™ akpLpmS avthg TG emhoyng (etkdva B.17): n vohoyt-
OTLKG, TTL0 aKPLPT) TEYVIKT] EVTOTTLOROU OE0TC X PN OLULOTTOLELTOL GKPLTO, KAOE QOPa TTOU YPELALETOL
EVTOTLONOG, OKOUOL KOl OTOV 1] aBEPOLOTITA OYETLKG, LE TV OTAOT ELVOL EAGLOTY Ko SUVNTLKG TO
poUTTOT B0, PITOPOVOE Va. KIvNOEL YL, KAITOLO YPOVIKO SLA0TNUA Kat Ue Ta atoteléopuoto tov TEO.
H oUyKpLon auTh) KATOANYEL UE TO, GTOTELECUOTO TOU SLOKOTTTLKOU UNYOVIOUOU LETAPOPTWONG
SLEPYAOLMDV 0TO AKPA. TOV SIKTVOU, 0 0TTOLOG TO KATUPEPVEL ONUAVTLKG KOADTEPT OE OYEOT) UE TIG
dAheg 810 TPOOEYYLOELS, TAPEXOVTOG TOOO EYYUNOELS YLOL TNV ETLTUYT] TEPATWOT) TOU TELPAUATOC,

600 Kau YouNAOTEPOVG EcOVG YpdVoUg ekTédeong (eikova B.18).

Kegalowo 6

To Kegpdhawo 6 mpayuatedeToL TV HETAPOPTMOT KAl TOV SLOUOLPOOUO TWV VITOAOYLOTIKMV

SLepyaoLdY Pe XPNON UAPKOBLAVDY TUXOLMY TTESLMV. SVYKEKPLUEVA, GTOV TPOTELVOUEVO WY OVL-
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Oud YLVETOL PN 0T SLOKOTTTLKMV GUOTIUATOV YL TNV LOVTEAOTTOWOT) TMWV VTOAOYLOTIK®OV TOPWV
0T0 AKPO. TOV SIKTVOU KOl TNV SUVOULKT] KOTAVOUT TOUG, BAOEL KPLTNPLOYV EVEPYELUKTG KOTOVA-
Awomg. O TPOTELVOUEVOG UNYOVIOIOG atoTelelTaL amtd Vo emovaiaufavoueva otddia. Katd to
TPWTO, YIVETOL XPNON LLOG TEXVIKNG BOOLOUEVIG 08 LOPKOPBLAVEG CAVOLDEG, 1) 0TTOLC TTPOPBAETEL
TG KIVI|OELG TWV YPNOTMV 0TO XMPO, VL0 TOV VTTOAOYLOUO TOU OYKOU TWV SIEPYAOLDY TTOV OVOLUE-
VETOL VO UETOPOPTOBHOUV 0Ta dKkpa Tov Siktov. Katd to deltepo, uio KouvoTopo Texviky fa-
OLOUEVT] OE LAPKOPLOVE TUYOLE. TTESLO, OVOLCUBAVEL TOV SLOUOLPAOUO TV VITOMOYLOTLKMV SLep-
yaoumv otoug dtabioipovg mopovg. O diepyaoieg autég dev SUVOVTAL VO EKTEAECTOVV TOTTLK
OTIG OUOKEVEG TOV YPNOTOV, VIO GUYKEKPLUEVOUS EVEPYELOKOUG TTEPLOPLOUOVG KO YIOl CUYKE-
KPLUEVO ETLITESO TOLOTNTAG VANPESLDV. O TPOTELVOUEVOS UIYOVIOHOG ETLTUYYAVEL BEATLOUEVT]
EVEPYELOKT] KATAVAAMDOT], AAUBAVOVTOG VITOYPLY TLG EMLITPO0DETEG SIKTUAKEG KOOVOTEPTOELG TTOU
ETUPEPEL O DLAUOLPATUOG TMWV EPYOOLDY 0TIV VTTOd0U. AKOLT, CUYKPLVOVTOG TOV TPOTELVOUEVO
UNYOVIOUO IE WLOL YVOOTY] OVTLOTOLYY SOUAELG 0T BLBAOYPAPLE, ETLOELKVIETOL 1) AITOTEAEOUOL-
TLKOTNTA TOV TO00 071 BELTLOTOTOIN O] THG KATUVAAWONG EVEPYELAS, OGO KL OTNV TOLOTITA TOV

TOPEXOUEVWV VTNPEOLDV. AVOAMUTIKOTEPT, OL KOLVOTOUEG OUVELGPOPES QTG TG DOVAELAG GU-

voyiLovral wg ENG:

1. TTPOTELVETAL PLOL TTPOOEYYLON WOVIELOTTOINONG PACLOUEVT] 0T DEMPLOL SLAKOTTIKMV CLOTH-
UATWV, COUPOVOL ILE TV OTTOLC, TTPOTSLOPLLOVTOL ELKOVLKG TEPO@Lh («tpo@il EM») Tou vAL-
KOU TG UITOAOYLOTIKTG VITOSOUNG OTC GKPO. TOU SIKTUOU, KOl 1] OTTOL0, TTAPEYEL EYYUNOELG
EMUTESOV TTOLOTNTAG TTAPOYNG VINPECLDV OTIG EPAPUOYES TTOU PLLOEEVOVVTOL 0TIV VITO-
doun, yia Suapopeg cuvOnKeg Aettovpyiag. H poviehomoinon aut) emTpEmel T Suvoukn
ETAOYY] KOl KOTOVOUY TV KATGANAwV Ttopmv ot KGO epapuoyn (dni. v evailaym
CVOUEDO. OTOL SLAPOPO. ELKOVIKG TTPOIA), BAOEL TOU EKTLUMUEVOL POpTOL gpyaoiag. Ot
dUVUTOTNTEG TTOV TPOGPEPOVY T SIAKOTTTIKGL GUOTIUALTC, ETUTPETOVV TO OYESLOOUO EVOG
TPOAMITTLKOV LNy OVIOUOU KaTavoung Topwv S0 oTadlwv, e EUQaon ot LELWOT) TNG EVEP-

YELKNG KOTAVOADOTGC.

2. KAt TO TPOTO OTASLO, EMEKTEIVOVTAL OL SOVAELEG TTOV FTOPOVOLAOTHKAY 0T0 Kegpahaia
3 ka4, oL OTTOLEG AVTLUETWITLLOVY TAVTOY POV TO, TTPOPANUATA TNG SUVALKTG KOTOVOUNG
TOPWV KOL TNG UETAPOPTMONG UTOMOYLOTIKDY SLEPYAOLDY 0TOL KPa: TOV SIKTVOV, UE OKOTTO

QT T1) POPAL TN UELWOT) TG GUVOAMKTG KATAVAALWONG EVEPYELOG TG VTTOAOYLOTLKNG UTT0S0-
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UNG KaL TNV TTAPOYT EYYVNOEMY OG TTPOG TNV TOLOTITO TOV TTApeXOUEVWV vItnpectdv. [
TNV ATOPALTITY EKTIUNOT] TOU TANOOUG TV ALTOEMV TPOG LETAPOPTWOT TTOU YPELATETOL
0€ aUTO TO EMLTTESO, YPNOLUOTOLELTAL EVOG UNYOVIOROG TTPOBLEYNS TG KIVIoTNG TV YPN)-
OTMV AVAUEDO. OTLG SLOPOPETIKEG TOTODETLES TG VITODOUNG, PACLOUEVOG 08 LOPKOPBLAVEG

aAvoldeg.

3. katd o SeVTEPO OTADIO, OL TAPATTAV® UNYOVIOUOL CUVOVALOVTIOL UE EVAV KALVOTOUO UT)-
YOVLOUO PACLOUEVO GE UAPKOPLOVE TUYOLE. TTEDLO, O OTTOLOG OTOYEVEL 0TIV avakaTenOuvon
TWV «TAEOVALOVIOV» OUTHOEMV UETAPOPTOONG UETOED TwV Toroeotdhv Tng vrodoung. Ou
QLT oELg aUTEG Sev duvavtal va eEumnpetn 0oV Tomka 0TLg ToTo0EsieEg TOU SnuLovpYNON-
Kav, V70 OUYKEKPLUEVOUG TTEPLOPLOUOVG OYETLKCL [LE TV EVEPYELOKT] KOTAVAAWOT] KOL TNV
TOLOTNTA TWV VITNPECLWV. ME aUTOV TOV TPOTO, ETLTUYYAVETAL EELOOPPOTNOT TOV POPTOU
o€ OA TNV VITOSOUT 0T GKPO TOU SLKTVOU, EVMD TAVTOYPOVO. BEATLOTOTOLELTAL 1] KOTAVOL-
Moo evepyerog. [IPOKELTOL YLOL TV TPWTY QOPA. TTOU EQAPUOTETOL L0 TETOLOV ELSOVG TTPO-
ogyyion oty BMoypogic. H evowudtmon Tou TpoTtetvouevou autol unyaviopo eEloop-
POTNONG OTOVG TAPATAV® UNYOVIOUOVG, CUVOETEL oL OAMOTLKT MU0 YiaL TV EVEPYELUK
TPOCAVATOAOUEVT] UETOPOPTWOT SLEPYAOLMV KAl KOUTOVOUN] TOPWV JTOV GVTOTOKPLVETOL

0TLG SUVOULKEG (O€ YMPO KL XPOVO) CLTTALTIOELG TMWV OULTIOEMV UETOPOPTWONG,.

Onwg gaivetol kow oty etkova b, 1 guotky vrodowr) poviehomoteitar oto eEeTalopevo
0evapLo 0g YPagos. Kabe TehK GuoKeLT] QUTELTOL TN UETAPOPTMOT TOV SLEPYAOLDY TNG UECW
wag IEEE 802.11ac 00vdgong Stktov, 0TOUG EEVNPETNTES THG VITOSOUNG TTOU BPLOKOVTIAL 0TIV
Tomofeoia TG, 0ToVG omolovg eykadiotovtal EA 1 EM yio v eEvmnpémnon twv Siepyaoidv. Me
TNV £QOPUOYT EK TWV TPOTEPWYV TOV 0AyOpLOuov Minstrel, Tapdyetal £vo 6UVoLo Se80UEVWV, TO
0TTOLO YPTOLULOTTOLELTOL YLOL T1] UETOTPOTTI) TOU EKTIUDUEVOU apLBroD ypnotmv KaOe tomobeolog og
EKTLULOUEVO POPTO epYOOLog Yo TNV Tortobeoia aut). Ta tpopil Twv EA/EM mov eykabiotovton
0TOUG EEVTTNPETNTES, VL0 KAOE EQOPUOYT, TEPLYPAPOUV TTPAKTIKG TV OYEOY OVAUESH OTIV T
PEYOUEVT] VITOLOYLOTLKY LOYY KL TNV SUVATOTITA EKTELEONG TMWV OUTNOEMY UETAPOPTMONG, VIO
OUYKEKPULEVOUG YPOVIKOUG KO EVEPYELOKOUG TTEPLopLopovs. To TheoVEKTNUA TG XPTONG TOUG €L
Vo SLThO: ot T PO, ETLTPETOVY TV TTEPLYPAPT] TG SUVOILKTG OLUTEPLPOPAG Twv EA/EM, vitd
TOLKIAEG OUVONKEG AELTOVPYLAG. ATTO TNV GAAN, 1] XPNOT] TOUG ETLTPETEL 0TO SLAKOTTIKO 0VOTNUA.

va, puOWILEL AUESH TNV EYKOTECTNUEVT TOTTOAOYL0. EA/EM 0TnY vtodout], GVTamoKpLVOUEVO OTOV
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SUVOLKO POPTO EPYOOLOG KOLL EYYVMUEVO £V ETLITESO TOPOYNG VINPETLOV. TLo TNV ovaryvapLom)
v Tpoeik Twv EA/EM KGO e@aployne, yP1OLUOTOLELTOL UL0L TAPOUOLL. TEXVLKT UE CLUTI] TTOU
TAPOVOLAoTNKE 0T0 Ke@ahato 4 yio Ty avaryvapLon Tov OUELmVY LOOPPOTLOG: YL KABE pio 0o
auTéc, oyeditdletal éva ypoputkd xpovikd apetafinto obomua mg popeng (b.1), To omoio mept-
YPOPEL T1) OYEOT AVAUEDO. OTO XPOVO ATTOKPLONG TG EPAPUOYNG KOL TNV TAPEYOUEVNG VTTOMOYL-
otkng oy oto EA/EM. H sapeyduevi umohoyLoTik Loyl aroTelel Kol To SLUKOTTTLKO KPLTHPLO
YL TNV ETUAOYT TWV TPOPLA. ZTH) GUVEYELXL, OL TOPGUETPOL KAOE GUOTNUATOG TPOTSLOPLLOVTOL AD-
VOVTOG TO TTPOYPOUIE. YPOILKOD TpoypayoTionot Tov eEtomoewv (6.28) - (b.2d). Znuavkd
KOUUATL TG UEAETNG TTOV TOPOVOLALETOL 08 QUTO TO KEPAAOLO, ITTOTEAEL ETTLONG 1) LOVIENOTTOL-
N1 TG KATAVEAWONG LOYVOG TOU CUOTHUATOS, 1 omota divetan amd ) oyéon (6.4). Estiong, yio
Y TPOPREYT TOV CULTHUATWV UETAPOPTMONG YLOL TO ETTOUEVO YPOVIKO TapdOupo, Y PNOLUOTOLEL-
TOL, OTTMG EWTMONKE, Ui TOUPAALAYT TWV UOPKOBLAVAOY AVOLOMY V-KIvNTKOTNTAG. Z0Upmvo
LE QUTNV, XPTOLULOTOLOVVTEL Ot S0 TTPOTYoUUEVEG TOTOOEDLEG TTOV EMLOKEPONKE 0 KAOE XPNOTNG
Ko TOavoTLKd EKTLIATOL 1] ETOUEVT] TOU O£01). QG TPOATALTOVUEVO YLOL VO AELTOUPYNOEL COOTA
QLT 1] TEYVLKT, SNUOVPYELTOL EVAG TVAKOG UETARACEWY 0 OTTOL0G TPOKVITTEL ATTd TNV KalOnue-
PLVI] TTOPOKOLOVONOT KIVI|OEMV XPNOTMV OF GVTLOTOLY(C TEPLBAAAOVTA, 1 OTTOLC. dSNULOVPYELTOL

oo OYETLKG 0VVOLO, SedoUEVDV.

Tpoy®POVTOG 0TV TEPLYPOPY TOV TPDOTOV OTUSIOU TG AELTOUPYLOG TOU UIYOVIOUOD KO-
TAVOUNG TOPWV, CUVOVTAUE TNV YVOPLUT TOKTIKN TG ETMAOYNG TG KATAAANANG TOTOMOYLOG
EA/EM, 1) ortoia Oa vhomoin0gl 6To gpyOUEVO YXPOVIKO Tapa.Ovpo YLo. TV LKOVOTTOL 0T TOV EKTL-
uopevov poptov epyaoiog (erkova b.2). Mo v fedtiotomoinon g emhoyng TG TOTOAOYLOG,
apyLkd vitohoyifovran Oheg oL mBaveg epikTég TomoBetnoelg popih EA/EM yio évav povadikod
eEummpet). Q¢ eQIKTI TOTOBETNON, VOELTOL CLUTH OTNV OTTOLG TO OUVOAO TG VTOAOYLOTIKNG
oybog ov Tnreltan amod ta epumhekopeva tpogil EA/EM dev vitepfaivel Th Guvolkt) Stobgoiun
VIOAOYLOTLKY Loy 0 Tov eEvmmpe ). H mepiypagi) g divetan oy eElomon (b.3). Ztn ovvéyera,
AAUBAVOVTOG VTTOYPLY TIG TTAPATAVM TOTTOOETHOELS, AMDveTal Eva TpdBAnua Bertiotomoinong (eEt-
omoeig (b.6d) - (6.6d)) to omoto eykabLoTé TIg EA/EM, |1E £VEPYELOKA TPOGAVOTOMGLEVO TPOTO,
0€ ULoL TTEPLOYT TG VITODOUNG, LKOVOTTOLDVTOG FTAPOLA CUTH TOV GUVOAKO TTPOPBAETOUEVO POPTO

£PYOOLOG YLOL TO ETOUEVO SLAGTNUAL.

11 AELTOVPYLOL TOV TTAPATAV® O0TASLOV, AvoyvmpLLovue SV0 QOLVOUEVE. T 0TT0LC. SNULovp-

yolv Tov Aeyouevo mheovalmv gpOpTo EPYACLAG: TO TPMTO CPOPd OTIG TEPUTTMOELS KOTA TLG
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OTTOLEG WAL TTEPLOYT] TNG VITOdOUNG SeV SUVOTOL VO EEVTTNPETIOEL OAOL TOL EKTILMUEVA CLTIULOTOL
UETAQPOPTWONG SLEPYAOLDV, AOY® EAELPTG TWV ATTALTOVUEVOY VITOLOYLOTIKMV TTOPwV. To devtepo
APOPA OTIG TEPUTTMOELG OTLG OTTOLEG KPLVETAL EVEPYELOKA CKPLBY] 1] EVEPYOTTOLNOT] EVOG OMOKAY-
pov eEumnpeTnTh Yo TV eEVaNpETon evog wKpol popTou epyaoiag. Koatd to devtepo otddio
NG AELTOUPYLOG TOU FTPOTELVOUEVOU Y CVIOUOD, Mowtdv, AauBaveL ydpa 1 eELooppomnon tov
TAEOVATOVTOG POPTOV gpyaoiag og OA TV virodoun. Tio va emtrtevy el auTod, YP1OLUOTOLELTOL 1)
Bewpia TV PAPKOPLOVAY TUXOLWV TESLMV, AOYM TOU EVEMKTOU 0YESLAOUOT TOVG, O OTTOLOG ETTL-
TPETEL TV KOTOVEUNUEVT ANYPT] OTTOPAOEMY, UE ATOTELECUOTO TTOV TPOCEYYLLOVY Ta. BEATLOTA
og oA yauniolc xpovoug ovykiong. O eElomoslg 6.9 - 6.12) weprypdgovv popuoltoTikd
™0 AELTOUPYLC TOV TOPOTAVED [XAVIOHOD: £V GUVTOLLD, OL tovipelg Opot TG eStomong (B.11)
eKQPALOVY TN 01O EVON TG KAOE Tomo0E0laG THG VITOSOUNG VO ENOL(LOTOTOLOEL TOTLKG TV Kai-
TavaAmon evépyelag . Emiong, og autolg toug Opovg, OUUTEPIAAUBAVETOL EVO KOWUATL TTOU
TELVEL VO, 081 YNOEL TO OVOTNUA 08 MIGELG TTOU EAAYLOTOTTOLOVV TTOPGAANAC KCL TV GUVOALKT] E7TL-
TPOo0ETN KOOVOTEPNON TOV CUUPGLVEL AOYW TWV AVOKOTEVOUVOEMY TOV TAEOVOLOVTIMV OLTH-
UATWV UETOPOPTWONG. ATTd TNV AT, oL SLThol OpoL 0popoly 0TLG AANAETLOPATELG TWV YELTO-
VIK®OV To100£01hv peta&l Toug Kot 1avikd 0d1yolv 1o 60oTNUe: 08 KOTOOTACELS OTLG OTTOLEG
AVTOAAGOOOVTOL TTAEOVATOVTOL CLTNUOTO UETAPOPTWONG, LUE OKOTO auTd VO OUYKEVIPWOOUV og
OVYKEKPLUEVEG TOTODEDLEG, ATTOPEVYOVTOG TNV SLACTOPE TOUG KaiL PC. TV EVEPYOTTOLNOT] TTEPLO-
oelag eEvmpeTov. Mia emokdmon g dradikaciog avtig divetar oy etkdva b.3, evad 1
etkovo b.4 dtver Ty oyEon avipeca oTIG YPOVIKEG OVIOTNTEG OTIC OTTOLEC GUUPOLVOUV OL TTOPOL-
navo dadikaotec. Emumhéov, omv eicova b.g ametcovieton 1 apytih) Kow 1 tehky Kotdotaon
ULO.G VITOSOUNG OTNV OTTOLA, £)EL EQPUPUOOTEL 1] TOPATAV® TEYVLKY EELCOPPOTTNOTG TOU TAEOVAL-
COVTog (POPTOV £PYAOLUGC, YL KAADTEPT] KOTAVONOT TNG AELTOVPYLHG TOV, V(D 0TOV ALyOpLOuo

divetal ue Peudoyhmooo 1 0eLpd. TWV PNUATMY TOV akolovOohvTaL.

T TV aELOAOYNON TOV TAPATTAV®D UNYaVIOUOU, YIVETOL TPOCOUOLMOT EVOG EEVTTVOU Lov-
0€lov, 0TLG SLAPOPES TOTOOETIES TOV 0TTOLOV BPLOKOVTOL EYKOTECTNUEVA SLOSPAOTIKY eKOEUATA
eEomMopEva ue eEVTTNPETNTEG e VITOMOYLOTLKT] Loy D). OL EQPOPUOYEG TTOU PLAOEEVOUVTOL OF QUTIV
™V VTTOSOUT, ELVOL BOOLOUEVEG OE TEXVIKEG ELKOVIKTG KO ETTOVENUEVNG TPOYUATIKOTITA. ZUYKE-
KPLUEVD, 1] AELOAOYNON EEKIVA e TNV EKTLUNOT TG ETUTTOONG TOV CPOAIATWV OTNV EKTLUNOT
oV (PopTOV pyaciag. v erkdva b.4 paivetol 1) enimTmon avt) 0to cuvolikd Badud eEvmnpé-

TNONG TWV ALTNUATWYV, KAODG KoL 0TO LECO YpOvo ekTEAEONG TOVG. Kau oTig 800 autég petpikeéc, 1
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£QaPLOYTN TNG EELOOPPOTNONG TAEOVALOVTOG POPTIOV, EAAPPUVEL TLG SLOTUPUYES TTOV TPOKAAOUV
T LGB g TpdPreync. Ev ovveyeia, omv etkdva b.7 amotumdveton 1 avtidpaon tov unyovt-
OpOY 0TIG SUVOULKEG GUVONKEG TOU SLKTVOV LILAG TTEPLOYNG KL GCUYKEKPLUEVO 0TV KLVITLKOTITA.
TV XPNOTOV TOV ATOUVTOL HETAPOPTOON Slepyaotmv. ITlo AeTTOUEPMS, ATOTUTDVETAL 1) OTTO-
TELEOUATIKOTITO TOU BEATLOTOTOLTY OTO VO. SLAAEYEL TNV EVEPYELAKE BEATLOTY ADoN Yo TV eEv-
TNPETNOT TOV TPOPAETOUEVOL POPTOV pyaoiag. [Ipoywpdvrag otnv aELOAGYNOT CUYKEKPLUEVA.
Tov debTepov 0TadioV AetToupyiag Tou U oviopoy, oV erkdva b.§ emdetkvietal 1 oy TC
00yKAMONG TG eEL00PPOTNONG TAEOVALOVTOG (POPTIOV, Lo SV0 SLapopeTikd PeyEd vitodoudv,
evd 1) erkovo b.9 ametcoviter ) Beltioon 0To ouVOALKS emtiedo TG TOLOTTAG TWV Tape)OLLe-
VOV UTNPECLHY TOV TPOKALEL TO GUYKEKPLUEVO 0TASL0, OTav To £EL0OPPOTOVUEVO TREOVATWY
QOPTLO TPOEPYETAL ATtO TOTTOOEDLEG TOV eV SVVAVTAL VO TO LKAVOTTOLOOLY. STV TEPLITTWON
JTOU AUTO £XEL TTPOKVYPEL OITO EVEPYELOKA KPLTNPLO, 0TV ELKOVAL (POLVETOL 1) OLKOVOLLLCL TTOV
YIVETOL 0TV KaTavalwon evépyelag. Emumhéov, oty eikovo (POLVETOL 1] ENO(LOTOTTOLNON
™G ETTALOV KOOVOTEPTONG TTOV TPOKAAELTOL OTO GUVOMKS YPOVO EKTEAEONG AOY® TWOV AVOKQL-
1eVOHVoEOY TOV ATNUAT®V. TELOG, 0 TPOTELVOUEVOG UIYAVIOUOG OUYKPIVETOL UE [LCL TTOPOUOLL,
yvooT AMon Tou idov mpopinuatog oty Ppioypagio [99]. T to okomd avtd, SieEdyovton
810 OET TEPAPATWV: GTO TPADTO OTOXEVETOL 1] ELAYLOTOTONON] TNG KUTAVAADONG EVEPYELAG KO
Y10 TOVG 810 WY OVIOUOUG, TO OTTOLO E£)EL WG ATOTEAEOLA TLG SUTAAOLEG TEPLITOV TAPAPATELG OTO
CUUPOVNOEV ETLTEDO TTAPEYOUEVOV VTINPECLOV (XPOVOG ATTOKPLONG TNG EQaPLOYG, etkova b.12),
YL TOV GUYKPLYOUEVO U aVIOUO. ZT0 SEUTEPO OET TELPAUATWY, OTOYEVETAL 1] LKOVOITIOLN O TOV
OVUPWVNOEVTOG EMLITESOV TUPEYOUEVMV VINPECLDV, TPAYUC TO OTTOL0 EXEL G OTTOTELEOUA, TNV

Katd 65% peyaliTepn EVEPYELOKT] KATAVAAWOY TOU GUYKPLVOUEVO [ aviopo (etkdva b.13).

Kegalowo 7

Kheivovrag, to Kepahowo 7, ouvopilel To 0UVoLo TG SLaTpLpig, ETLYELPNUCTOAOYMVIUG VLo
™ OOV ULOTITA TWV EEETALOUEVMV EPEVVIITIKMV TPOPANUATOV Kol TV ueBOdwv mov emhéy -
KOV L0 TV €TTLAV0T TOVG, VA TAPAAANAQ TOPAOETEL CUYKEVTPOUEVE, TO KUPLOL OUIITEPAOUOTOL
7OV avEKLPav. AKOUT|, TPOTELVOVTOL OVOLYTO EPEVVITTLKG OEUATOL Y10 LEAAOVTLKT] EPYOLOLOL TTOU
elte O IToPOVEAY VO, ATOTEAOVV T1 CUVEXELDL GUTHG THG EPEVVITLKNG TTPOOTTAOELAG, ELTE UTOPOUV
VO EKUETOAAEVTOVY TNV ATOKTNUEVY YVDOT] TPOKELUEVOV VO, TV EQOPUOCOUV OE VEOUG TOUELG KL

SpaoTNPLOTITEG.
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Appendix A

Author’s Publications

International Peer Reviewed Journals

e Avgeris, M., Spatharakis D., Dechouniotis D., Leivadeas A., Karyotis V. and Pa-
pavassiliou S., 2021. ENERDGE: Distributed Energy-aware Resource Allocation at

the Edge. IEEFE Transactions on Network and Service Management. (under review)

o Spatharakis D., Avgeris, M., Athanasopoulos, N. and Papavassiliou S., 2021. Resource-
aware Estimation and Control for Edge Robotics: a Set-based Approach. IEEE In-

ternet of Things Journal. (under review)

o Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J.,
Leivadeas, A., Athanasopoulos, N., Mitton, N. and Papavassiliou, S., 2021. Task
offloading in Edge and Cloud Computing: A survey on mathematical, artificial intel-

ligence and control theory solutions. Computer Networks, 195, p.108177.

o Papathanail, G., Pentelas, A., Fotoglou, I., Papadimitriou, P., Katsaros, K.V., Theodorou,
V., Soursos, S., Spatharakis, D., Dimolitsas, 1., Avgeris, M. and Dechouniotis, D.,
2020. MESON: Optimized Cross-Slice Communication for Edge Computing. [EEE

Communications Magazine, 58(10), pp.23-28.

e Avgeris, M., Dechouniotis, D., Athanasopoulos, N. and Papavassiliou, S., 2019.
Adaptive resource allocation for computation offloading: A control-theoretic approach.

ACM Transactions on Internet Technology (TOIT), 19(2), pp.1-20.
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e Avgeris, M., Spatharakis, D., Dechouniotis, D., Kalatzis, N., Roussaki, I. and Pa-
pavassiliou, S., 2019. Where there is fire there is smoke: a scalable edge computing

framework for early fire detection. Sensors, 19(3), p.639.

o Kalatzis, N., Routis, G., Marinellis, Y., Avgeris, M., Roussaki, I., Papavassiliou, S.
and Anagnostou, M., 2019. Semantic interoperability for iot platforms in support of

decision making: an experiment on early wildfire detection. Sensors, 19(3), p.528.
International Conferences

o Saeik, F., Violos, J., Leivadeas, A., Avgeris, M., Spatharakis, D., and Dechouniotis
D., 2021, September. User association and behavioral characterization during task
offloading at the edge. In 2021 IEEE International Mediterranean Conference on

Communications and Networking (MeditCom) (IEEE MeditCom2021). IEEE.

e Dimolitsas 1., Avgeris, M., Spatharakis, D., Dechouniotis D., and Papavassiliou S.,
2021, September. Enabling industrial network slicing orchestration: A collaborative
edge robotics use case. In 2021 IEEE International Mediterranean Conference on

Commaunications and Networking (MeditCom) (IEEE MeditCom2021). TEEE.

e Spatharakis, D., Avgeris, M., Kakkavas G., Papadakis-Vlachopapadopoulos k., Di-
molitsas I., Dechouniotis D., Karyotis V., and Papavassiliou S., 2021, July. Industrial
robotics experimentation over federated next generation internet testbeds. In 2021
IEEE International Mediterranean Conference on Communications and Networking

(MeditCom): Demo Sessions (IEEE MeditCom 2021 - Demos). IEEE.

e Spatharakis, D., Avgeris, M., Athanasopoulos, N., Dechouniotis, D. and Papavassil-
iou, S., 2020, November. A Switching Offloading Mechanism for Path Planning and
Localization in Robotic Applications. In 2020 International Conferences on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom,)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics) (pp. 77-84). IEEE.

e Avgeris, M., Spatharakis, D., Athanasopoulos, N., Dechouniotis, D. and Papavassil-

iou, S., 2019, August. Single Vision-Based Self-Localization for Autonomous Robotic
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Agents. In 2019 7th International Conference on Future Internet of Things and Cloud

Workshops (FiCloudW) (pp. 123-129). IEEE.

Karyotis, V., Avgeris, M., Michaloliakos, M., Tsagkaris, K. and Papavassiliou, S.,
2018, October. Utility decisions for QoE-QoS driven applications in practical mo-
bile broadband networks. In 2018 Global Information Infrastructure and Networking

Symposium (GIIS) (pp. 1-5). IEEE.

Kalatzis, N., Avgeris, M., Dechouniotis, D., Papadakis-Vlachopapadopoulos, K.,
Roussaki, I. and Papavassiliou, S., 2018, June. Edge computing in IoT ecosystems for
UAV-enabled early fire detection. In 2018 IEEFE International Conference on Smart

Computing (SMARTCOMP) (pp. 106-114). IEEE.

Avgeris, M., Kalatzis, N., Dechouniotis, D., Roussaki, I. and Papavassiliou, S., 2017,
September. Semantic Resource Management of Federated IoT Testbeds. In Interna-

tional Conference on Ad-Hoc Networks and Wireless (pp. 25-38). Springer, Cham.
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