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Abstract

In the Internet of Things (IoT) era, mobile devices possess powerful hardware and network-

ing capabilities, however they still fall short when it comes to executing compute-intensive

applications. Computation Offloading, i.e., delegating resource consuming tasks to servers

located at the Network Edge, contributes towards moving to a Mobile Cloud Computing

paradigm, which will potentially assist towards alleviating the computational strain from

the mobile devices. The motivation for this thesis is to deal with the inherent challenges

of computational offloading, the most important of which is resource allocation under con-

straints, while guaranteeing the Quality of Service (QoS) and Quality of Experience (QoE)

delivered to the users. Throughout this thesis, Control Theory concepts are leveraged as

this domain offers a plethora of tools that can be utilised to tackle the emerging challenges.

Additionally, concepts from Probability Theory are exploited as well.

Specifically, in this work, an effort is made to address the following crucial research chal-

lenges in resource allocation and computational offloading: i) modeling the heterogeneous

entities of the system (i.e., the infrastructure, users, applications resources and the interac-

tions among them), ii) estimating the workload that will be offloaded during a future time

window (by predicting the mobile devices’ positions), iii) optimizing resource allocation by

dynamically allocating (scaling) the available resources at the network edge while respect-

ing the given constraints, e.g., guaranteed execution of the estimated workload, delivering

the expected QoS/QoE and minimizing energy consumption of the edge infrastructure and,

finally, iv) optimizing computational offloading strategies. The aim of this thesis is to offer

solutions to the above-mentioned challenges, which can be combined into frameworks appli-

cable to real-world edge infrastructures that will allow IoT devices and applications to reach

their full potential.

To this end, a two-level dynamic resource allocation and admission control mechanism

for a cluster of edge servers is developed, to offer an alternative choice to mobile users for

executing their tasks. At the lower level, the dynamic behavior of edge servers is modeled by

a set of linear systems, and linear controllers are designed to meet the system’s constraints



and QoS metrics, while at the upper level, an optimizer tackles the problems of load bal-

ancing and application placement (bundled in Virtual Machines, VMs) towards maximizing

of the number the offloaded requests. The evaluation illustrates the effectiveness of the

proposed offloading mechanism regarding the performance indicators (e.g., the application’s

average response time) and the optimal utilization of the computational resources of the

edge servers.

Then, the main mechanism of this framework is put to a test; a three-level Cyber-Physical

Social System (CPSS) for early fire detection is presented, with an aim to assist public

authorities to promptly identify and act on emergency situations. In general, a CPSS tightly

integrates computer systems with the physical world and human activities. Specifically, at

the bottom level, the system’s architecture involves IoT nodes enabled with sensing and

forest monitoring capabilities. Additionally, in this level, the crowd sensing paradigm is

exploited to aggregate environmental information collected by end user devices present in

the area of interest. Since the IoT nodes suffer from limited computational and energy

resources, the resource allocation and admission control mechanism, at the middle level,

facilitates the offloaded data processing, regarding possible fire incidents. At the top level,

a decision-making service deployed on Cloud nodes, integrates data from various sources,

including users’ information on social media, and evaluates the situation’s criticality. In this

part, the dynamic resource scaling mechanism is designed to address the demanding QoS

requirements of this IoT-enabled time and mission critical application. The experimental

results indicate that the vertical and horizontal scaling on the Edge Computing layer is

beneficial for both the performance and the energy consumption of the IoT nodes.

Additionally, a switching computational offloading mechanism for Industry 4.0 appli-

cations is discussed. These applications rely on mobile robotic agents that execute many

complex tasks that have strict safety and time requirements. Under this setting, the Edge

Computing service delivery model allows the robotic agents to offload their computationally

intensive tasks to a powerful computing infrastructure in their vicinity. In this part, a novel

switching offloading mechanism for such robotic applications is proposed. In particular,

opportunistic offloading strategies for the path planning and localization services of mobile

robots are designed. The offloading decision is based on the uncertainty of the robot’s pose,

the resource availability at the Edge of the network and the difficulty of the path planning.



The proposed switching offloading framework is implemented and evaluated using a robot

in a real Edge Computing testbed, where the trade-off between execution time and the

successful completion of the robot trajectory is highlighted.

Finally, a Markovian Random Field (MRF)-based computational offloading and resource

allocation mechanism is developed. The proposed mechanism leverages switching systems

for modeling the computational resources at the network edge and allocating them dynam-

ically, while minimizing energy consumption. This mechanism consists of two repeated

stages; during the first, a Markov Chain-based technique is used to predict the mobile users’

movements and subsequently to estimate the offloaded workload demand. During the sec-

ond, a novel MRF-based technique undertakes the balancing of the offloaded tasks to the

available computational resources. These tasks cannot be executed locally, i.e., on the user

devices, under the given energy constraints and for a specific QoS. The proposed framework

manages to improve energy consumption in the edge infrastructure, while taking into consid-

eration the additional network delays induced by the MRF-based load balancing. Moreover,

the efficiency of the proposed scheme is evaluated via modeling and simulation and is shown

to outperform a well-known task offloading solution.

Summarizing, in this thesis, dynamic resource allocation mechanisms for computational

offloading are proposed, based on workload prediction, horizontal scaling, vertical scaling

and workload balancing. Research is conducted, also, on formulating offloading strategies

that work in harmony with these mechanisms, in order to guarantee a level of QoS and

QoE, and minimize energy consumption, while the frameworks emerging from combining

these techniques, are evaluated in the realistic, demanding environments of Industry 4.0,

Natural Disaster Management and Smart Environments, with successful results.



Abstract in Greek

Περίληψη στα Ελληνικά

Στην εποχή του Διαδικτύου των Αντικειμένων (ΔτΑ, Internet of Things), οι κινητές συσκευές

είναι εφοδιασμένες με ισχυρές υλικές και διαδικτυακές δυνατότητες· παρ' όλα αυτά, συνεχί-

ζουν να μην μπορούν να ανταπεξέλθουν στην εκτέλεση υπολογιστικά επίπονων διεργασιών. Η

Μεταφόρτωση Υπολογιστικών Διεργασιών (Computational Offloading), δηλαδή η ανάθεση των

διεργασιών που καταναλώνουν πολλούς πόρους σε εξυπηρετητές τοποθετημένους στα Άκρα

του Δικτύου (Network Edge), συνεισφέρει στην κατεύθυνση της υιοθέτησης του προτύπου του

Κινητού Υπολογιστικού Νέφους (Mobile Cloud Computing) το οποίο δυνητικά θα βοηθήσει στην

ελάφρυνση του υπολογιστικού φόρτου των κινητών συσκευών. Κίνητρο για τη συγγραφή αυτής

της διατριβής αποτελεί η αντιμετώπιση των εγγενών προκλήσεων της μεταφόρτωσης υπολογι-

στικών διεργασιών, η σημαντικότερη από τις οποίες είναι η κατανομή πόρων υπό περιορισμούς,

προσφέροντας ταυτόχρονα εγγυήσεις σχετικά με το επίπεδο ποιότητας υπηρεσιών (Quality of

Service – QoS) και το επίπεδο ποιότητας εμπειρίας (Quality of Experience, QoE) που παρέχεται

στους χρήστες. Στο πέρας αυτής της διατριβής γίνεται χρήση εννοιών από την Θεωρία Ελέγχου

καθώς πρόκειται για ένα πεδίο το οποίο προσφέρει πληθώρα εργαλείων προς αντιμετώπιση των

παραπάνω προκλήσεων. Επιπλέον, γίνεται χρήση εννοιών από την Θεωρία των Πιθανοτήτων.

Πιο συγκεκριμένα, η παρούσα διατριβή εστιάζει σε τέσσερις σημαντικές ερευνητικές πε-

ριοχές που αφορούν στην ανάπτυξη των παραπάνω τεχνικών, οι οποίες είναι: α) η μοντελο-

ποίηση των ετερογενών οντοτήτων του εξεταζόμενου συστήματος (τύπος υποδομής-χρηστών-

εφαρμογών-δικτυακών/υπολογιστικών πόρων), β) ο υπολογισμός του όγκου των διεργασιών

που αναμένεται να εκτελεστούν στα άκρα του δικτύου (μέσω της πρόβλεψης των θέσεων των

κινητών συσκευών), γ) η δυναμική κατανομή των διαθέσιμων πόρων της υποδομής, καθοδη-

γούμενη από κριτήρια όπως είναι η διατήρηση ενός συμφωνημένου επιπέδου ποιότητας υπηρε-

σιών και εμπειρίας, η παράλληλη φιλοξενία πολλαπλών εφαρμογών στους ίδιους διαθέσιμους

πόρους, καθώς και η ελαχιστοποίηση της ενεργειακής κατανάλωσης του συστήματος και δ) η

βελτιστοποίηση των στρατηγικών μεταφόρτωσης των διεργασιών στους κατανεμημένους πό-

ρους. Στόχος αυτής της διατριβής είναι ο εντοπισμός των σημαντικότερων ζητημάτων σε αυ-

τές τις ερευνητικές περιοχές και η ανάπτυξη κατάλληλων λύσεων για την βελτιστοποίηση των



επιμέρους διαδικασιών, δεδομένων των υφιστάμενων περιορισμών. Οι λύσεις αυτές στη συνέ-

χεια συνδυάζονται δημιουργώντας πλαίσια τα οποία μπορούν να εγκατασταθούν σε υποδομές

στα άκρα του δικτύου και να ελαφρύνουν την υπολογιστική καταπόνηση των -υπολογιστικά

περιορισμένων- φορητών συσκευών, βελτιώνοντας ταυτόχρονα την ποιότητα εμπειρίας που

αποκομίζουν οι χρήστες.

Για το σκοπό αυτό, αναπτύσσεται ένας διεπίπεδος μηχανισμός δυναμικής κατανομής πόρων

και ελέγχου μεταφόρτωσης διεργασιών για συστάδες εξυπηρετητών στα άκρα του δικτύου. Στο

χαμηλότερο επίπεδο, η δυναμική συμπεριφορά των εξυπηρετητών μοντελοποιείται με χρήση

γραμμικών συστημάτων, ενώ γραμμικοί ελεγκτές σχεδιάζονται για να διατηρούν το σύστημα

εντός των δοθέντων περιορισμών (π.χ. συμφωνημένο επίπεδο ποιότητας υπηρεσιών). Στο υψη-

λότερο επίπεδο, ένας μηχανισμός βελτιστοποίησης αναλαμβάνει την τοποθέτηση των εφαρμο-

γών/υπηρεσιών στους διαθέσιμους εξυπηρετητές (οι οποίες βρίσκονται σε μορφή εικονικών μη-

χανών, Virtual Machines – VMs) και τον καταμερισμό του φόρτου εργασίας μεταξύ τους, με

σκοπό την μεγιστοποίηση του αριθμού των διεργασιών που θα εκτελεστούν επιτυχώς σε αυ-

τούς. Η αποτίμηση του εν λόγω μηχανισμού αποδεικνύει την αποτελεσματικότητά του, τόσο

όσον αφορά στην προσφερόμενη ποιότητα υπηρεσιών, όσο και στην βέλτιστη διαχείριση των

υπολογιστικών πόρων στα άκρα του δικτύου.

Στη συνέχεια, ο παραπάνω μηχανισμός εντάσσεται στο πλαίσιο ενός Κυβερνο-Φυσικού Κοι-

νωνικού Συστήματος – ΚΦΚΣ (Cyber-Physical Social System – CPSS) τριών επιπέδων, το οποίο

προορίζεται για τον έγκαιρο εντοπισμό πυρκαγιών. Γενικά, ένα ΚΦΚΣ αφομοιώνει τα υπολο-

γιστικά συστήματα με τον φυσικό κόσμο και τις ανθρώπινες δραστηριότητες. Εν προκειμένω,

στο χαμηλότερο επίπεδο, η αρχιτεκτονική του ΚΦΚΣ περιλαμβάνει συσκευές ΔτΑ με αισθη-

τήρες ανίχνευσης και παρακολούθησης δασών. Επιπλέον, σε αυτό το επίπεδο, γίνεται χρήση

του προτύπου της αίσθησης πλήθους (crowd sensing), κατά το οποίο συλλέγονται πληροφορίες

σχετικά με το περιβάλλον από συσκευές χρηστών οι οποίοι βρίσκονται στην περιοχή ενδιαφέρο-

ντος. Δεδομένου ότι οι συσκευές ΔτΑ χαρακτηρίζονται από περιορισμένους υπολογιστικούς και

ενεργειακούς πόρους, ο μηχανισμός που αναπτύχθηκε στο Κεφάλαιο 3 εγκαθίσταται στο μεσαίο

επίπεδο του ΚΦΚΣ και αναλαμβάνει την μεταφόρτωση των υπολογιστικά ακριβών διεργασιών

των συσκευών ΔτΑ σε μια υποδομή στα άκρα του δικτύου. Σε αυτό το επίπεδο, ο μηχανισμός

δυναμικής κατανομής πόρων επιτυγχάνει την τήρηση των χρονικών απαιτήσεων απόκρισης

των εφαρμογών ανίχνευσης και παρακολούθησης. Στο υψηλότερο επίπεδο, ένας μηχανισμός



λήψης αποφάσεων εγκατεστημένος σε εξυπηρετητές Υπολογιστικού Νέφους (Cloud), συλλέγει

δεδομένα από τις διάφορες πηγές (συσκευές ΔτΑ, κοινωνικά δίκτυα χρηστών) και αποτιμά την

κρισιμότητα της κατάστασης. Τα πειραματικά αποτελέσματα υποδεικνύουν τη σημασία του

μηχανισμού δυναμικής κατανομής πόρων, τόσο στην εγγύηση της έγκαιρης εκτέλεσης των ση-

μαντικών διεργασιών, όσο και στη μείωση της ενεργειακής κατανάλωσης των συσκευών ΔτΑ.

Επιπροσθέτως, αναπτύσσεται ένας εναλλακτικός διακοπτικός (Switching Systems -based)

μηχανισμός μεταφόρτωσης διεργασιών για εφαρμογές της Βιομηχανίας 4.0. Οι εφαρμογές αυ-

τές απευθύνονται σε ρομπότ τα οποία εκτελούν περίπλοκες διεργασίες, οι οποίες παρουσιάζουν

αυστηρές απαιτήσεις τόσο σε χρονική απόκριση όσο και σε ασφάλεια. Σε αυτό το πλαίσιο, η με-

ταφόρτωση των διεργασιών στα άκρα του δικτύου επιτρέπει στα ρομπότ να ελαφρύνουν τον

υπολογιστικό τους φόρτο, αναθέτοντας την εκτέλεση των παραπάνω διεργασιών σε μία ισχυρή

υπολογιστική υποδομή σε κοντινή απόσταση. Σε αυτό το κεφάλαιο, λοιπόν, προτείνεται ένας

διακοπτικός μηχανισμός μεταφόρτωσης διεργασιών, ενώ σχεδιάζονται ευκαιριακές στρατη-

γικές μεταφόρτωσης για εφαρμογές που αφορούν στον προγραμματισμό της πορείας και τον

εντοπισμό της θέσης των ρομπότ. Η απόφαση για την μεταφόρτωση λαμβάνεται βάσει της αβε-

βαιότητας ως προς την τρέχουσα θέση του ρομπότ και την διαθεσιμότητα υπολογιστικών και

δικτυακών πόρων στα άκρα του δικτύου την δεδομένη στιγμή. Το διακοπτικό αυτό σύστημα

υλοποιείται και αξιολογείται χρησιμοποιώντας ένα πραγματικό ρομπότ σε μια πραγματική υπο-

δομή στα άκρα του δικτύου· κατά την αξιολόγηση τονίζεται το αντιστάθμισμα ανάμεσα στο

χρόνο ολοκλήρωσης των διεργασιών και την επιτυχή έκβαση της αποστολής τους.

Τέλος, μελετάται η μεταφόρτωση και ο διαμοιρασμός των διεργασιών με χρήση Μαρκοβια-

νών τυχαίων πεδίων. Συγκεκριμένα, στον προτεινόμενο μηχανισμό γίνεται χρήση διακοπτικών

συστημάτων για την μοντελοποίηση των υπολογιστικών πόρων στα άκρα του δικτύου και την

δυναμική κατανομή τους, βάσει κριτηρίων ενεργειακής κατανάλωσης. Ο μηχανισμός αποτε-

λείται από δύο επαναλαμβανόμενα στάδια. Κατά το πρώτο, γίνεται χρήση μιας τεχνικής βα-

σισμένης σε Μαρκοβιανές αλυσίδες, η οποία προβλέπει τις κινήσεις των χρηστών στο χώρο

για την υπολογισμό του όγκου των διεργασιών που αναμένεται να μεταφορτωθούν στα άκρα

του δικτύου. Κατά το δεύτερο, μια καινοτόμα τεχνική βασισμένη σε Μαρκοβιανά τυχαία πε-

δία αναλαμβάνει τον διαμοιρασμό των υπολογιστικών διεργασιών στους διαθέσιμους πόρους.

Οι διεργασίες αυτές δεν δύνανται να εκτελεστούν τοπικά στις συσκευές τον χρηστών υπό συ-

γκεκριμένους ενεργειακούς περιορισμούς και για συγκεκριμένο επίπεδο ποιότητας υπηρεσιών.



Ο προτεινόμενος μηχανισμός επιτυγχάνει βελτιωμένη ενεργειακή κατανάλωση, λαμβάνοντας

υπόψιν τις επιπρόσθετες δικτυακές καθυστερήσεις που επιφέρει ο διαμοιρασμός των εργασιών

στην υποδομή. Ακόμη, συγκρίνοντας τον προτεινόμενο μηχανισμό με μια γνωστή αντίστοιχη

δουλειά στη βιβλιογραφία, επιδεικνύεται η αποτελεσματικότητά του τόσο στη βελτιστοποίηση

της κατανάλωσης ενέργειας, όσο και στην ποιότητα των παρεχόμενων υπηρεσιών.

Συνοψίζοντας, στη διατριβή αυτή προτείνονται μηχανισμοί δυναμικής κατανομής πόρων

για μεταφόρτωση υπολογιστικών διεργασιών, βασισμένοι στην πρόβλεψη του φόρτου εργασίας,

στην οριζόντια και κατακόρυφη κλιμάκωση, καθώς και στην εξισορρόπηση φόρτου. Μελετά-

ται, επίσης, ο σχεδιασμός στρατηγικών μεταφόρτωσης οι οποίες δουλεύουν σε αρμονία με τους

παραπάνω μηχανισμούς, με σκοπό να εγγυηθούν ένα επίπεδο ποιότητας υπηρεσιών, ποιότητας

εμπειρίας και να ελαχιστοποιηθεί η κατανάλωση ενέργειας, ενώ, οι ολοκληρωμένες λύσεις που

προκύπτουν από τον συνδυασμό των παραπάνω τεχνικών, αξιολογούνται στα ρεαλιστικά και

απαιτητικά περιβάλλοντα της Βιομηχανίας 4.0, της Διαχείρισης Φυσικών Καταστροφών και

των Έξυπνων Περιβαλλόντων, με επιτυχία.
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Preface

Structure

The thesis will be structured as follows.

In Chapter 1, a general introduction on the topics that will concern this thesis will be

made, the environment which motivated this research and which will be considered for the

development of the proposed methods will be set and the contributions that were made in

this PhD thesis will be exhibited.

In Chapter 2, some basic mathematical background that is deemed necessary to un-

derstand the methods used in the approaches to tackle the proposed problems will be set.

Additional information will be provided in the main part of the thesis whenever it is needed.

The following chapters will be the main chapters of the thesis. Each chapter will present a

more specific problem that was considered important and was solved. First a general setting

specific to the problem and the related work on the topic will be provided. Then the proposed

solution will be discussed by presenting the system model, the mathematical formulation of

the problem and the architecture of our solution. Finally the proposed framework will be

evaluated.

In Chapter 3, an adaptive resource allocation and admission control mechanism for

computational offloading in Network Edge settings will be discussed. This framework utilises

concepts from Control Theory to offer mobile users a way of executing their tasks at the Edge

of the network, which guarantees a level of QoS while optimizing the resource utilisation at

the infrastructure.

In Chapter 4, the extension, integration and evaluation of the previous mechanism in a

Cyber-Physical System for early fire detection will be presented. This novel computational

15



offloading mechanism is enhanced with a Cloud-based decision making service, which accu-

rately predicts incident severity and notifies the responsible authorities. Its role is to alleviate

the computational stress of the IoT nodes involved in natural disaster confrontation.

Chapter 5 focuses on a switching system for computational offloading of robotic ap-

plications in Edge computing ecosystems. During this work both local (robot-based) and

remote (edge-based) application controllers were designed and implemented, followed by a

scheduling mechanism. These controllers are treated as switches and compose a system,

which is adaptive and can operate under different scenarios and usages.

Chapter 6 deals with an energy-aware framework that addresses jointly the full task

offloading and resource allocation problems in a multi-site setting. In this setting, a holistic

energy-aware resource optimization approach is proposed, based on the design of the VM

flavors complemented with an innovative distributed load balancing technique based on

Markov Random Fields, with the penultimate goal to minimize the total energy consumption

without sacrificing the QoS in terms of latency.

Finally in Chapter 7, the problems addressed in this thesis will be summarized, giving

the reader a comprehensive overview of the most important conclusions drawn from this

study. Then, recommendations for future work will be provided, which can be carried out

as an extension of the work presented in the thesis.
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Chapter 1

Introduction

In today’s information technology age, data is the main commodity; possessing more data

typically generates more value in data-driven businesses [2]. The amount of digital data

generated surpassed 1 zettabyte in 2010, according to the International Data Corporation

(IDC) [3]. Additionally, 2.5 exabytes of new data is generated daily since 2012 [4]. This

proliferation of data, alongside the significant growth in the processing and networking

capabilities of mobile devices over the past decades, has allowed for the development of

mobile applications for a wide range of human daily activities, including healthcare and

wellness, education, commerce and social media. Cisco estimates that there will be around

50 billion connected devices by the end of this year [5]. These connected devices constitute

the Internet of Things (IoT) and potentially generate a massive amount of data. In current

implementations of IoT applications, most data that needs storage, analysis, and decision

making is sent to the data centers in the Cloud [6]. However, with this astronomical amount

of data, the current mobile network architectures will have trouble managing the resulting

momentum and magnitude.

Cloud Computing (CC) has taken the world by storm as it facilitates users and devices

with several opportunities by providing a wide range of services and virtually unlimited

available resources (e.g., network, servers, storage) in a multi-tenant model [7, 8]. These

resources are available over a network and are accessed through standard mechanisms. The

cloud computing paradigm provides a variety of deployment and service models, from public

clouds (organizations that provide cloud computing services to any customer) to private
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clouds (organizations that deploy their own private cloud computing platform) and from

Infrastructure as a Service models (IaaS, where fundamental computing resources are offered

as a capability) to Software as a Service models (SaaS, where applications are offered as a

capability), among other things. This large pool of resources and services has enabled the

emergence of several new applications, such as virtual reality [9], smart grids [10, 11, 12], and

smart environments [13]. The benefits of cloud computing – minimal management effort,

convenience, rapid elasticity, pay per use, ubiquity – have given birth to a multi-billion

industry that is growing worldwide.

Generally, public cloud vendors have built large data centers in various parts of the world.

These large-scale, commodity-computer data centers have enough computing resources to

serve a very large number of users. However, the CC-induced euphoria transforms into

a problem as the speed and volume of the transferred data increases; this centralization of

resources implies a large average separation between end user devices and their clouds, which

in turn increases the average network latency and jitter [14]. As a result, moving the big data

from devices to the cloud might not be efficient, or might be even infeasible in some cases,

due to bandwidth constraints. On the other hand, as time-sensitive and location-aware

applications emerge (such as patient monitoring, real-time manufacturing, self-driving cars,

flocks of drones, augmented reality or cognitive assistance), the distant cloud will not be

able to satisfy the ultra-low latency requirements of these applications, provide location-

aware services, or scale to the magnitude of the data that these applications produce, as

cloud services are not able to directly access local contextual information, such as precise

user location, local network conditions, or even information about users’ mobility behavior

[15]. The problem becomes clearer and more intense as several smart devices and objects

are getting involved in human’s life, as in the case of smart cities [16] or Internet of Things

[17]. The current cloud computing paradigm [18] is unable to meet the requirements of

low latency, location awareness, and mobility support [19]. Moreover, in some applications,

sending the data to the cloud may not be a feasible solution due to privacy concerns.

Several approaches have been proposed over the last few years by the research community

to satisfy the quintessential need for a computing paradigm that takes place closer to the con-

nected devices, in order to address the issues of high-bandwidth, geographically-dispersed,

ultra-low latency, and privacy-sensitive applications. The emerged novel paradigms include
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Figure 1.1: Functional structure of edge computing paradigms.

Mobile Cloud Computing [20], Fog Computing [21], and Mobile Edge/Multi-access Com-

puting [22] among others [23, 24]. The common denominator in these edge paradigms is

the deployment of cloud computing-like capabilities at the edge of the network. Most edge

paradigms follow the structure depicted in Figure 1.1, [25]. Edge data centers, which are

owned and deployed by infrastructure providers, implement a multi-tenant virtualization

infrastructure [26]. Any customer – from third-party service providers to end users and

the infrastructure providers themselves – can make use of these data centers’ services. In

addition, while edge data centers can act autonomously and cooperate with one another,

they are not disconnected from the traditional cloud. It is therefore possible to create a

hierarchical multi-tiered architecture, interconnected by a network infrastructure. Besides,

the potential existence of an underlying infrastructure, or core infrastructure (e.g., mobile

core networks, centralized cloud services) that provide various support mechanisms, such as

management platforms and user registration services has to be considered. Finally, one trust

domain (i.e., edge infrastructure that is owned by an infrastructure provider) can cooperate

with other trust domains, creating an open ecosystem where multitude of customers can be

served.

There are various differences among edge paradigms, such as the focus on mobile network

operators as infrastructure providers in mobile edge computing, the existence of user-owned

edge data centers (i.e., personal cloudlets) in mobile cloud computing, and the use of differ-
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ent underlying protocols and interfaces, among others. Nonetheless, there remain numerous

similarities. Still, little of the research in these fields takes into consideration these sim-

ilarities. Most architectures, protocols, services, and mechanisms are designed with only

one edge paradigm in mind, and they do not consider the state of the art of other edge

paradigms.

1.1 Overview of Edge Computing Paradigms

1.1.1 Mobile Cloud Computing

Mobile Cloud Computing (MCC) is the emerging service delivery paradigm that integrates

cloud computing into the mobile environment. MCC mainly focuses on the notion of “mobile

delegation”: due to the limited resources available to mobile devices, the storage of bulk data

and the execution of computationally intensive tasks should be delegated to remote entities.

In this context, MCC provides on-demand, low-latency and secure access to a resourceful

group of servers in the spatial vicinity of mobile users. This comes again complementary to

the CC paradigm which suffers from latency issues due to the connection to remote servers

in the cloud through public Internet. In the original MCC concept, introduced in 2009,

only centralized cloud computing platforms were considered as the most viable solution to

implement the remote execution of tasks [27]. Later, other researchers expanded the scope

of MCC. In this new vision, tasks could also be delegated to devices located at the edge of

the network [28]. At present, both visions of MCC coexist [29]. This thesis will mostly focus

on the latter.

Initially, MCC sought to provide novel solutions to services such as mobile learning, mo-

bile healthcare, searching services, and others [30]. Nowadays, many of these services can be

implemented in a centralized cloud (e.g., voice-based search) or in the mobile devices them-

selves (e.g., text-to-speech engines). Nevertheless, the concept of MCC is still relevant, as

its potential has not been fully exploited. There are certain applications, such as augmented

reality and augmented interface applications, where the existence of an execution platform

located at the vicinity of the mobile devices can provide several benefits such as lower la-

tency and access to context information. Moreover, as mobile devices are equipped with

functional units such as sensors and high resolution cameras, it is possible to develop novel
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crowdsourcing and collective sensing applications that make use of the location information

[20].

1.1.2 Fog Computing

Fog Computing has been proposed to address the CC-related issues and to quench the need

for a computing paradigm closer to the connected devices [31]. Fog computing bridges the

gap between the cloud and IoT devices by enabling computing, storage, networking, and

data management on the network nodes within the close vicinity of IoT devices. Therefore,

computation, storage, networking, decision-making, and data management occur along the

path between IoT devices and the cloud, as data moves to the cloud from the IoT devices.

Thus, fog computing does not compete with cloud computing, but rather complements

it: the fog architecture facilitates the creation of a hierarchical infrastructure, where the

analysis of local information is performed at the ‘ground’ and the coordination and global

analytics are performed at the ‘cloud’. Here, cloud services are deployed mostly at the edge

of the network, but they can also be deployed in other locations, such as IP/multiprotocol

label switching (MPLS) backbones. In fact, the fog network infrastructure is heterogeneous,

where high-speed links and wireless access technologies will coexist [32].

The initial definition of fog computing was later expanded and revised by various re-

searchers ([21, 33]). Although this extended definition is debatable, it reveals all the ad-

vances that the fog might introduce. Under this new definition, fog computing does not

become a mere extension of cloud computing, but a paradigm of its own. The elements that

implement the cloud services, the fog nodes, can now range from resource-poor devices (e.g.,

end devices, local servers) to more powerful cloud servers (e.g., Internet routers, 5G base

stations). Also, all these elements can be able to interact and cooperate with each other

in a distributed fashion. This generates a three-tier architecture (end devices - fog nodes -

central servers) where centralized cloud servers coexist with fog nodes but are not essential

for the execution of fog services [34].

Originally, fog computing was defined as a platform that enabled the creation of new

applications and services in the context of IoT. Examples of such services include hierarchi-

cal Big Data analytics systems and smart infrastructure management systems (e.g., wind

farms, traffic lights) [21, 31]. Yet, at present, there are several studies that examined how
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this paradigm could be used to implement other types of services: low-latency augmented

interfaces for constrained (mobile) devices (e.g., brain–computer interfaces using wireless

electroencephalogram headsets [35], augmented reality and real-time video analytics [36]),

cyber-physical systems [37], novel content delivery and caching approaches under the con-

text of fog computing [38], and various vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) services such as shared parking systems [39].

1.1.3 Mobile/Multi-access Edge Computing

Mobile Edge Computing (MEC) was introduced to bring the cloud services and resources

closer to the user proximity by leveraging the available resources in the edge networks

[40]. To meet the above mentioned requirements of IoT applications, the mobile operators

are planning to integrate the computing, networking, and storage resources with the base

station in the form of a MEC platform. Similarly to Fog and Cloudlet [41, 42], MEC is

not replacing but complimenting the cloud computing model. The delay sensitive part of an

application can be executed on a MEC server, whereas the delay-tolerant, compute-intensive

part of the application can be executed on a cloud server. MEC aims to enable billions of

connected mobile devices to execute the real-time compute-intensive applications directly

at the network edge. The distinguishing features of MEC are its closeness to end-users,

mobility support, and dense geographical deployment of the MEC servers. In the MEC

World Congress 2016, MEC ISG has renamed Mobile Edge Computing as Multi-access

Edge Computing, in order to reflect the growing interests from non-cellular operators [43].

The benefits of deploying cloud services at the edge of mobile networks, like 5G, include

low latency, high bandwidth, and access to radio network information and location aware-

ness. Thanks to this, it will be possible to optimize existing mobile infrastructure services, or

even implement novel ones. An example is the Mobile Edge Scheduler [44], which minimizes

the mean delay of general traffic flows in the LTE downlink. Moreover, the deployment of

services will not be limited to mobile network operators, but it will also be opened to third

party service providers as well. Some of the expected applications include augmented real-

ity, intelligent video acceleration, connected cars, and Internet of Things gateways, amongst

others [45].

In order to implement the MEC environment, it is necessary to deploy virtualization
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servers (i.e., MEC servers) at multiple locations at the edge of the mobile network. Some

deployment locations considered by the MEC ISG are LTE/5G base stations (eNodeB), 3G

Radio Network Controllers (RNC), or multi-Radio Access Technology (3G/LTE/WLAN)

cell aggregation sites—which can be located indoors or outdoors. Besides, the MEC ISG

has suggested that this virtualization infrastructure should host not only MEC services, but

also other related services such as Network Function Virtualization (NFV) and Software

Defined Networking (SDN) [45]. Such a deployment would reduce the deployment costs and

provide a common management and orchestration infrastructure for virtualized services.

Concluding, even if there are several structural differences between the above mentioned

paradigms, it does not mean that they should exist in a vacuum, ignoring the advances in

other related fields. Due to the similarities between the paradigms, it is safe to assume

that there will be mechanisms and platforms that can provide a generic solution to a shared

problem. Such solutions can then be adapted to other edge paradigms. Hence, following this

notion, for the rest of the thesis, the servers used in the framework are called Edge Servers

independently of the architecture; edge servers receive and execute compute-intensive tasks

of mobile applications.

1.2 Computational Offloading

One of the most active areas of research in the field of edge computing is the delegation of

tasks to external services [29]. In this context, the computation migration is endeavoured

as a significant software-level solution that mitigates resource constraints of mobile devices

by migrating applications to available stationary (or not) computers [46, 47, 48]. There

are various solutions that allow applications to migrate part of their code from the mobile

devices to cloud-based computing resources located at the edge. Applications are usually

implemented using frameworks like .NET and JVM, which makes the code migration process

easier. Some research results allow mobile devices to migrate only part of their code, thus it

is necessary to statically or dynamically identify the code that needs to be offloaded. Other

researchers take a more extreme stance: an entire execution environment (i.e., clone), rep-

resentative of the mobile device, is created. Then, part of the mobile application (including

memory image, CPU state, and others) is loaded into the clone. Finally, some approaches
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make use of mobile agents’ infrastructures, where the mobile device creates a mobile agent

that will acquire/process information on its behalf, which is roughly the solution that is

mainly adopted in this thesis. There are even approaches, such as the concept of Aqua

Computing, that mix the notion of mobile agents and clones [49].

In any case, similarly to other research areas such as communication networks and dis-

tributed systems, optimization techniques are also widely used in application execution

frameworks of edge computing. The execution frameworks consider diverse optimization

objective functions as follows: saving processing power, efficient resource and bandwidth

utilization and minimizing energy consumption [50]. In short, the frameworks are designed

to optimize the execution cost. The overall aim of all such approaches is to enable the

compute-intensive mobile applications on resource-constrained mobile devices. The prob-

lem of determining what task, where and whether it should be offloaded in order to save

energy and/or meet time constraints is known as Computational Offloading [51].

1.3 Applications

The synergistic combination of recent technological developments improves our ways of liv-

ing in various societal domains. In the smart computing context, sensor networks, edge

computing, IoT and big data analytics are properly orchestrated to provide assisting appli-

cations for human daily activities such as education, health and transportation. Apart from

these classic IoT applications, this thesis will explore how natural disaster management and

Industry 4.0 applications can benefit from edge computing concepts such as computational

offloading. These complex applications are either time- and mission- critical applications

with stringent requirements.

1.3.1 Natural Disasters

Dealing with natural disasters, like wildfires, is an interesting field for the development of

edge computing -enabled IoT applications, since the early and precise detection of a forest

fire is the most important step for in-time firefighting. Various IoT node arrangements, for

example Wireless Sensor Networks (WSN) and, more recently, Unmanned Aerial Vehicle

(UAV) clusters equipped with remote sensing capabilities, have enabled the detection of
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wildfires [52, 53] and the automatic notification of the responsible public authorities. The

ability to perceive their environment and react to its changes, perform basic data processing

and exchange information, alongside the excellent scalability and the low capital and oper-

ational expenditures, make IoT networks a reliable solution for autonomous monitoring of

large forest areas. However, as these networks typically comprise of small battery powered

devices performing multiple tasks, limited energy resources and the scarcity of computation

capabilities for real-time processing are the most important disadvantages towards their

wide adoption in the fire-fighting domain. Dealing with these shortcomings, edge comput-

ing can provide the required rich computation resources near the IoT portable devices [54].

In the specific case of wildfires, a cluster of powerful servers is placed at the edge of the

network and enables the offloading and processing of the IoT nodes’ computation-intensive

tasks, e.g., image recognition, in order to reduce their energy consumption and achieve the

application’s strict time constraints.

Over the last years, forest fire fighting technology, enabling smart computing features on

Unmanned Aerial Vehicles (UAVs), has shown significant progress, making the deployment

of small-sized UAVs for forest fire detection a natural and increasingly realistic option [55].

UAVs are relatively inexpensive, easily manoeuvrable, can cover various terrain types under

different weather settings, both at day and night and, most importantly, their missions can be

achieved autonomously with minimal or even with zero human involvement. UAVs equipped

with remote sensing and data communication facilities demonstrate excellent potential for

monitoring, detecting and fighting forest fires. On the other hand, the potential advantages

of UAVs, depend on many factors, such as aircraft type, sensor types, mission objectives,

and the current regulatory requirements in the application domain the UAV operates in

[42]. Specifically for the fire-fighting domain, UAV technology still faces various obstacles

that need to be confronted in order to be applied in fully operational environments. One

of these barriers is, as mentioned, the scarcity of available energy and processing resources

on UAV platforms. Aerial monitoring of large fields and forests during dry spells to reduce

the risk of wildfires requires increased energy resources for UAVs to prolong their mission’s

endurance, which is very difficult to secure.

The proliferation of social media usage by large population proportions, alongside re-

cent advances in data sensing, collection, storage and analysis, supports the realization of
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the participatory data gathering paradigm, also known as social sensing. Data that are

produced on social media services can act as an additional source of information valuable

in various application domains, including the scope of disaster prevention, detection, con-

trol and assessment. For example, recent research efforts have evaluated the use of social

media in relation to extreme weather incidents [56], earthquake events detection [57] and

to estimate diseases spread such as influenza [58] and malaria [59]. These initial findings

suggest that social media may provide a promising approach for detecting and mapping

environmental hazards and climate-related impacts, however a robust methodology has yet

to be defined and validated. In particular, within the scope of wild-fire detection, social

media users, who happen to be in the proximity of a fire incident, can provide valuable

information and testimony about the current situation and help to timely and accurately

detect a wildfire [60]. The potential of this approach has been also confirmed by European

Commission’s JRC initiative named Digital Earth Nervous System [61].

1.3.2 Industry 4.0

As mentioned earlier, computation offloading in current and next-generation networks is be-

coming increasingly important due to the proliferation of IoT real world applications [62]. As

discussed, these applications introduce a vast number of low-capability, low-energy devices

to the networking ecosystem, which regularly need to perform computationally intensive

and/or energy-hungry tasks. However, when latency and energy consumption minimization

are required, the limited resources of the IoT devices prove inadequate [63]. In Industry 4.0

and especially in collaborative robotics, where humans and robots work together in dynamic

environments, computationally heavy algorithms enable IoT devices in sensing and actu-

ating [64]. Consequently, a large amount of information has to be processed and complex

algorithms need to be executed in real-time.

The increasing availability of networking in the Edge and Cloud supports new ap-

proaches, where processing is performed remotely, with access to extensive computing and

memory resources. In this direction, Edge Computing alongside Fog Computing [65] consti-

tutes a particularly prominent way of dealing with the aforementioned shortcomings of IoT

devices. It offers an attractive alternative providing low-latency and high energy efficient

operation, while maximizing system performance. This paradigm is currently more relevant
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than ever, especially in the context of the much-anticipated Industry 4.0 revolution [66] and

Industrial IoT (IIoT), where the concept of Fog Robotics (FR) is introduced. FR can be

defined as the architecture that distributes computing, storage and networking functions at

the Edge/Cloud continuum in a federated manner [67], i.e., where robots and automation

systems rely on data or code from a network to support their operation.

1.3.3 Smart Environments

Smart environments (SEs) (i.e., the open and dynamic systems typically extending over

an area and including a large number of interacting devices with a heterogeneous nature)

and the IoT paradigm, share the common vision of enabling a pervasive presence in the

environment of a variety of smart things that are able to interact with each other, with the

aim of creating new applications and reaching common goals. In this context, the research

and development challenges in creating a smart system are numerous [68]. Augmented

Reality (AR), i.e., the combination of a representation of the real-world environment and

computer-generated input from sensors, is a typical enabler of smart environments. An

example of an AR application in a smart environment is AR enhancing the experience of

a visitor to a smart museum; consider a visitor to a museum, art gallery, city monument,

music or sports event, pointing their mobile device towards a particular point of interest

with the application related to their visit activated (i.e., the museum application). The

camera captures the point of interest and the application displays additional information

related to what the visitor is viewing [69].

Offloading an Augmented Reality service on an platform located at the Network Edge

instead of the Cloud is advantageous since supplementary information pertaining to a point

of interest is highly localised and is often irrelevant beyond the particular point of interest.

In this setting, the processing of user location or camera view can be performed on the Edge

infrastructure rather than on a more centralized server. In AR applications there may be a

need to update information quickly, depending on how the users move, and the context in

which the augmented reality service is used (e.g., in an art gallery, exhibits are positioned

only a few metres apart and each piece is supplemented with additional text on the artist,

the interpretation of the artwork, etc.) In other words, AR data requires low latency and a

high rate of data processing in order to provide the correct information to the user’s device,
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depending on their location and orientation, making the Edge the perfect candidate for AR

tasks offloading.

1.4 Challenges and Motivation

As thoroughly discussed, the decentralization and proximity of the service infrastructure

to the edge brings various benefits (e.g., low latency, scalability), but it also brings new

issues that must be carefully considered. Despite the several advantages, realizing the vi-

sion of an edge computing framework is a challenging task because of the procedural and

security concerns involved (e.g., discovering edge nodes, partitioning and offloading tasks,

using edge nodes publicly and securely). Apparently, there is a need to investigate the key

requirements and potential opportunities for enabling the vision of edge computing. Thus,

it can be concluded that in the emerging edge computing paradigm, several problems arise

and innovative research is needed to address them. Technology has evolved in such a way

that we now have multiple tools, which enable us to come up with nifty solutions. For that

reason, this opportunity allows for solving modern and interesting problems concerning the

following topics:

• Optimizing Resource Utilization: This constitutes the main motivation behind

this thesis, as resource allocation is the main challenge faced in edge settings where,

naturally, resources are not considered abundant. Despite the earlier and ongoing

work on various aspects of edge computing, the problem of how to efficiently deploy

these new edge applications within an edge cloud has not been systematically studied.

Simply duplicating the successful cloud computing design will not work for the edge

applications. As the offloaded IoT workloads are required to be processed by different

types of applications, usually running on Virtual Machines (VMs) hosted on the edge

servers, the decision on the number of instances and the computing resources to assign

to each of them becomes challenging and has a direct impact on the response time

achieved. Furthermore, as many devices may be requiring the edge servers capabilities

at the same time, efficient and dynamic assignment of their workloads to the hosted

applications is required. Thus, resource management arises as an important concern

in the emerging computing paradigms [70]. Also, available resources on the edge
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servers are limited compared to the clouds. Therefore, the optimization of resource

utilization is necessary for gaining the better performance with limited resources [50,

71]. Generally, the optimization of resource utilization is a multi-objective function

that becomes a challenging task to solve because of the diverse nature of applications,

varying user demands, and varying users’ requirements. Most of the proposed studies

in the literature utilize queuing theory to model mobile devices and edge servers,

along with an optimization method for finding the optimal offloading policy. The

most commonly used criteria are the energy consumption of the mobile device and

the request throughput. However, there is a major shortcoming in these approaches

that can lead to the deterioration of the system’s performance: the static modeling

of the servers for fluctuating workload, which can lead to over provisioning or under

provisioning [72].

• Dealing with Resource Heterogeneity: Another challenge is imposed due to the

highly heterogeneous nature of edge clouds. Unlike central clouds, edge clouds are often

comprised of heterogeneous computation nodes with widely diverse communication,

computation, and storage capabilities. The edge nodes can include micro servers, IoT

gateways, routers, mobile devices, etc. A major challenge in edge computing settings

is to decide where to place the services and how many resources to allocate to it,

while taking into account the heterogeneity of edge nodes, services, and users. For

example, the response time of edge services can vary significantly depending on the

network interface and hardware configuration of edge nodes. Thus, the need to model

the available resources in a way that smooths the inherent heterogeneity out, as well

as to design appropriate resource allocation controllers that make use of these models,

is evident.

• Uncompromising Quality-of-Service (QoS) and Experience (QoE): Quality

delivered by the edge nodes can be captured by QoS and quality delivered to the

user by QoE [73]. One principle that will need to be adopted in edge computing is

to avoid overloading nodes with computationally intensive workloads [22, 74]. The

challenge here is to ensure that the nodes achieve high throughput and are reliable

when delivering for their intended workloads if they accommodate additional workloads
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from a data center or from mobile devices. Regardless of whether an edge node is

exploited, the user of an edge device or a data center expects a minimum level of

service. For example, when a base station is overloaded, it may affect the service

provided to the mobile devices that are connected to the base station. A thorough

knowledge of the peak hours of usage of edge nodes is required, so that tasks can be

partitioned and scheduled in a flexible manner. The role of a management framework

will be desirable but raises issues related to monitoring, scheduling and re-scheduling at

the infrastructure, platform and application levels. In most of the above studies there

is no formal guarantee of satisfying the physical constraints, i.e., CPU and memory

sharing, or meeting the QoS specifications, such as the average response time. Since

all edge computing architectures use a small cluster of servers, a fallacious resource

allocation mechanism can hamper the offloading performance.

• Optimizing Computational Offloading: The requirements for deploying applica-

tion workloads on edge computing frameworks, have to be well understood. Deploy-

ment strategies - where to place a workload, connection policies - when to use the

edge nodes and heterogeneity - how to deal with different types of nodes, need to be

taken into account for deploying applications on the edge. The execution of compute-

intensive components of IoT applications in edge computing infrastructures, involves

the complex application partitioning at different granularity levels and component mi-

gration to the edge server node. Furthermore, suitable as it may seem, solely utilising

remote computational resources might not be enough; a number of unwanted phe-

nomena potentially take place in the transmission and processing of the information,

such as network latency, variable QoS and downtime. For these reasons, for example,

autonomous mobile agents (e.g., robots, unmanned vehicles) often have some capacity

for local processing when targeting low-latency responses and during periods where

network access is unavailable or unreliable. Consequently, a major challenge, from a

control design, estimation, and network optimization point of view is to combine local

and remote resources in an efficient way.

• Dealing with User Mobility: User mobility is one of the most critical components

when it comes to making the computational offloading decision. End devices can either
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be considered as static or mobile for the time window which spans between initiating

and finishing the offloading of their tasks. In the latter case, mobility adds another level

of splitting decision, as it needs to be decided at which edge site should the tasks be

offloaded while the user is on the move. Even though mobility is considered a challenge,

it can generate a number of opportunities for the task offloading. First of all, it can

initiate a load balancing technique to allow the system to provide the necessary services

in distributed Edge site scenarios. Secondly, complementing mobility with appropriate

prediction solutions can enhance the system’s capacity, by finding the potential next

associated base station of the user. This can be even more beneficial in a dense

scenario, where the system can analyse the active users and their mobility patterns and

allocate the resources in an online manner to existing and newly requested services.

Moreover, mobility can benefit from handover mechanisms that can enable service

migrations between base stations and their edge servers. However, as the requirements

of zero millisecond handover are studied by the 5G community, mobility with prediction

mechanisms is starting to gain attention, in order to predict beforehand where the

tasks should be offloaded. This behavior can be decisive for the overall performance in

dense Edge deployments with multiple mobile users, and a major challenge in designing

computational offloading and resource allocation strategies [75].

1.5 Contributions

This thesis tries to tackle some of the aforementioned problems that arise on the edge

computing architecture. Focus is mainly placed on the decision making process, where

the devices need to make some choices regarding the resource allocation and exploitation

inside their environment. The contributions on the above topics can be summarized in the

following:

1. Modeling Abstractions to Capture System Dynamics: Performance modeling

of cloud applications is an open research problem and it is coupled with resource alloca-

tion. For monolithic applications, static models, queue models and state-space models

are used to describe the dynamic relation between control variables (computing and

network resources) and application’s outputs (latency or throughput). Additionally,
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various prediction approaches have been used to estimate the magnitude of the in-

coming tasks or the user’s behaviour, which facilitate the design of successful resource

allocation strategies. Available resource models are usually single-input single-output.

Energy or response time are typically the model’s output, while computing resources

(e.g., CPU, memory), incoming requests, and network bandwidth are the control vari-

ables. In most of the current studies, the relation between input and output is fixed

and empirically derived. For example, the processing time of a request is proportional

to its file size and inversely proportional to the service rate measured in CPU cy-

cles or millions of instructions per second. Although this assumption is reasonable,

the actual processing time depends on many time-varying parameters, which are not

easily measured. Furthermore, in combination with a static resource allocation, the

offloading decision performs adequately only for specific operating conditions, being

unable to guarantee stability under fluctuating workload and a heterogeneous IoT

communication infrastructure.

Contrary to current approaches that provide empirical static models, the aim is to de-

velop formal, realistic and dynamic traffic and resource models applicable to emulate

the generated traffic from various applications. To this purpose, a performance mod-

eling approach is proposed, based on System Theory, that has the capacity to include

several performance metrics (i.e., state variables) and resources as control parameters

(input variables) and describe their relationship under various operating conditions

and QoS guarantees. The resulting models are called flavors. The computation of

these flavors is based on switched systems from the System Theory. The advantage of

the flavor design is two-fold. First, a flavor is actually a feasible operating point and

facilitates the dynamic resource allocation process. Secondly, the combination of these

flavors with feedback controllers can enable fine-grained vertical and horizontal scaling

approaches for time- or mission- critical applications. Furthermore, a flavor-oriented

modeling and infrastructure design, paves the way for tackling resource heterogeneity,

as will be shown in the following sections.

2. A Dynamic Resource Allocation and Admission Control Mechanism: Cur-

rently, and regardless of the adopted edge computing architecture, the computation
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offloading decision is coupled with the resource allocation in the edge servers. Con-

sequently, together with the offloading decision, a dynamic resource allocation and

admission control mechanism is proposed that leverages the preceding modeling ab-

stractions, which is called Vertical and Horizontal Scaling Mechanism. This mechanism

is responsible for the (de)activation of the edge servers, the placement of the appli-

cation instances and the distribution of offloaded requests among them (Horizontal

Scaling), alongside the admission control and resource allocation for each application

instance within the active servers (Vertical Scaling). A workload profile estimator

and the dynamic modeling of the resources and overall status of the network/servers

provide the foundation upon which the resource allocation algorithm works. Specifi-

cally, the objective is to develop a joint communication and computing virtualization

paradigm that is updated and adapted dynamically. To this purpose, the problem

of simultaneously (i) allocating computing and communication resources, (ii) modify-

ing network topology/ protocol and (iii) structuring the edge computing data centres

(such as VMs distribution) is considered. This approach gives emphasis on the dy-

namic behaviour of the resource allocation. Also, the obtained dynamic models are

utilized and system-theoretic analysis methods and stabilizing controllers are devel-

oped. These algorithms are designed to be practicable, and guarantee feasibility and

performance specifications, such as robustness to rapid changes in the workload, re-

source availability, and unwanted network phenomena. This research addresses the

so far untouched challenge, of designing controllers that address a mixture of these

unwanted phenomena by changing the provisioning of the resources to the control al-

gorithm, if this is deemed necessary. This type of controllers are made possible by the

merging of two sets of hybrid models, namely a) the performance model, having as

internal variables performance metrics of the infrastructure and as inputs the resource

distribution and utilization, and b) the process model, having, for example, variables

related to position, orientation, and velocity of mobile agents.

3. A Cyber-Physical Social System for Assistance in Emergency Situations:

In the past, unexpected wildfires would mainly have an impact on the wild fauna

and flora, however, the interaction of humans with wildfires has significantly changed

during last decades; the expansion of urban areas near forests, called Urban-Wildland
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Interface, put human population and their assets at higher risk of wildfires than ever

before [76]. Thus, the strategy of the fire management and the preparedness towards

the continuously extended severe fire danger season must be updated and enhanced.

That is why all the aforementioned technologies are combined in a Cyber-Physical

Social System (CPSS), which integrates computing, networking and human resources.

In detail, a network consisting of static or mobile IoT nodes (i.e., UAVs) which moni-

tors forest areas for detecting fires at their initial stage is integrated. These nodes are

equipped with embedded camera modules to enable computer vision-based fire detec-

tion. This operation is assisted by a Scalable edge coMputing framewOrK for early

firE detection (SMOKE) which hosts classification services and overtakes the com-

putational workload of processing field snapshots captured from the UAVs. Utilizing

and extending the previously mentioned contributions, SMOKE comprises a dynamic

resource scaling mechanism for IoT-enabled, time- and mission- critical applications,

meant to be deployed at a cluster of servers at the network edge, in the nodes’ proxim-

ity, assisting the offloading of computationally intensive, energy hungry tasks. Finally,

a cloud-based decision-making service is leveraged that combines the classification re-

sults of the previous level, users’ actions on the social media and other services, such

as weather information services, in order to accurately infer the fire incident severity

and notify the responsible authorities.

4. A Switching Computational Offloading Mechanism for Robotic Applica-

tions: In modern manufacturing, the current trend is to remove robots from confined

spaces and allow free movement in the factory floor, enhancing cooperation and col-

laboration with humans, thus, increasing productivity and efficiency. Open challenges

in this area are concerned with developing adaptive multi-robot/machine control, cap-

turing, modelling, predicting and anticipating human-robot interactions and designing

distributed control and path planning algorithms that deliver flexible and safe working

environments. Thus, it seems only natural to utilize distributed computing and storage

resources to solve position estimation and path planning problems. These are the two

computational offloading opportunities that arise. In the studied case, to accommo-

date the offloading of these computationally demanding tasks, a small-scale network

infrastructure is set up, connecting the Robotic Agent wirelessly to an Access Point
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(WLAN), located within the Agent’s network range, which in turn connects via a wired

connection to an edge server (LAN) and a cloud server (Internet). Both these servers

offer the same services, specifically designed and developed for this thesis, virtualized

as Docker [77] containers, listening for potential offloading requests coming from the

Agent, at all times, in a client-server way. These two remotely located servers differ

from each other in the usual “edge computing vs. cloud computing” way, meaning

that the former exists in the same LAN network with the Robotic Agent (low net-

work latency) and is more adaptive when it comes to resource allocation management,

but has limited computational resources overall, while the former exists on a Cloud

Service Provider in the Internet (higher network latency) but its computational re-

sources are considered abundant. This design results in an emerging decision-making

problem on where it is more profitable for the Agent to offload its workload. Thus, in

order to orchestrate this decision-making problem, three components are developed:

a local one implemented on the Robot and two remote ones, one running on the edge

server and one on the cloud server. Eventually, the required computations are either

executed locally on the Robot or offloaded to the Edge and/or Cloud, based the fol-

lowing identified use-case requirements: Time and Energy Efficiency, Optimality in

Trajectory Planning and Robust Navigation. Consequently, a major challenge, from

a control synthesis, estimation as well as network optimization point of view, is to

combine local and remote methods in an efficient, safe and near-optimal way.

5. A Framework for Distributed Energy-aware Resource Allocation at the

Edge for Smart Environments: Apart from satisfying the users, an efficient re-

source allocation technique is required for infrastructure providers as well. On the

provider side, the primary goal is the minimization of the energy consumption of the

data center, which is mainly affected by the number of active servers and the amount

of their allocated resources. Thus, task offloading and resource allocation are coupled

and must be jointly addressed. To this end, a synergistic and distributed approach

between the end-devices and the edge infrastructure is necessary to accommodate the

dynamic demand of the applications. The main challenge of such an approach is to es-

timate the amount of the offloaded tasks and make appropriate decisions on where the

offloaded tasks should be executed. Taking into consideration the network conditions,
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the complexity of this resource allocation problem increases exponentially. Dynamic

physical channel conditions and user mobility require a proactive and dynamic resource

allocation technique to select the necessary computational and networking resources

at the Edge in an adaptive manner. In this direction, appropriate resource allocation

strategies enhanced with mobility prediction techniques are investigated, to further

ameliorate the delay and energy savings of both end-devices and edge infrastructure.

In more detail, a task offloading setting with applications of different characteristics

and requirements is considered and an optimal resource allocation framework lever-

aging the amalgamation of the edge resources is proposed. To balance the tradeoff

between retaining low total energy consumption, low end-to-end delay and load bal-

ancing at the Edge, a Markov Random Field -based mechanism is introduced for the

distribution of the excess offloaded workload. The proposed approach investigates a re-

alistic scenario, including different categories of mobile applications, edge devices with

different computational capabilities and dynamic wireless conditions modeled by the

dynamic behavior and mobility of the users. The framework is complemented with

a prediction mechanism that facilitates the orchestration of the physical resources.

The efficiency of the proposed scheme is evaluated via modeling and simulation and

is shown to outperform a well-known task offloading solution.

6. Evaluation of proposed frameworks with numerical results through real ex-

perimentation and simulations: For all the above contributions mentioned, either

real experimentation or simulations are performed in order to capture the effectiveness

and the efficiency of the proposed frameworks.

In the following, the proposed methods are presented, alongside a discussion on the main

contributions of this thesis. Then, each Chapter focuses on one of the aforementioned set-

tings, presenting related work on the field and introducing the developed solutions together

with some indicative evaluation that justifies the benefits of their adoption.
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Chapter 2

Background

In this chapter, the essential mathematical background necessary to understand the methods

that are used in the following work will be presented. Any additional information required

will be provided in the main part of the thesis, whenever it is needed.

2.1 Basic Definitions of Modeling and Control Theory

2.1.1 Linear Time Invariant State Space Models

A state space model of a system is the mathematical description of the relationship between

the cause and the effect or the inputs and the outputs of the system [78]. In this thesis,

discrete time state space models are solely utilised. The general form of a discrete time

state space model is

x(k + 1) = f(x(k), u(k)), f : Rn × Rm → Rn, (2.1)

where x(k) ∈ Rn, u(k) ∈ Rm are the state and the input vector respectively and k ∈ N. The

most widely used state space models are the linear time invariant (LTI) state space models,

where the function f(x(k), u(k)) of (2.1) is linearly dependent on x(k) and u(k),
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x(k + 1) = Ax(k) + Bu(k), (2.2)

y(k) = Cx(k) + Du(k). (2.3)

Here, A ∈ Rn×n and B ∈ Rn×m are constant, time invariant matrices that describe the

system’s dynamics and y(k) ∈ R is the system’s output vector.

2.1.2 Stability

In modern control theory, the notion of stability is strongly connected with the dynamic

behavior of a system. Many different kinds of stability are defined, i.e. input-output stability

or stability of an equilibrium point. In general, a stable system means that the state variables

of the system are driven to a specific equilibrium point or inside a desired area and they

remain there despite any insisting or momentary disturbances. In this chapter, focus is

put on the stability of an equilibrium point (xeq, ueq). An equilibrium point1 satisfies the

equality

xeq = Axeq + Bueq. (2.4)

The most general type of equilibrium point stability is Lyapunov stability, which guarantees

that the system trajectories will remain close to xeq, if they start from a neighborhood in

the equilibrium point’s vicinity [79].

Furthermore, in the following sections, asymptotic stability is adopted, together with

the set-theoretic notions of stability analysis and control design problem, which identify and

characterize subsets of the state space, containing the desired equilibrium state with special

properties: positively invariant sets are introduced here. In the forthcoming paragraphs,

without loss of generality, all the necessary definitions are given assuming that xeq = 0.

Definition 1. A sphere Bs with radius s > 0 and the origin as its center, is denoted as

Bs = {x ∈ Rn :∥x∥ ≤ s}, (2.5)
1It should be noted here that, for the rest of this thesis, the terms “equilibrium point”, “operating point”

and “flavor” will be used interchangeably.
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where ∥·∥ is any possible norm of vector x.

Definition 2. Assuming a discrete time system of the following form

x(k + 1) = f(x(k)), (2.6)

then the equilibrium point xeq = 0 is locally Lyapunov stable, if and only if ∀ϵ > 0,∃δ =

δ(ϵ) > 0. Then,

x0 ∈ Bδ(ϵ) ⇒ x(t; x0) ∈ Bϵ,∀t ≥ 0. (2.7)

Definition 3. The zero equilibrium point of (2.6) is contractive in a region D ⊂ Rn if

∀x0 ∈ D and

lim
t→∞

x(t; x0) = 0. (2.8)

The region D is called Domain of Attraction (DoA) of the equilibrium point.

Definition 4. The zero equilibrium point of (2.6) is asymptotically stable if and only if it

is Lyapunov stable and contractive,

lim
t→∞

x(t; x0) = 0, x0 ∈ Bδ(ϵ) ⊆ D, (2.9)

where D is DoA.

In the following definitions, the essential results of the Lyapunov theory (second or direct

Lyapunov method), which connect the stability property with a specific type of functions,

are presented.

Definition 5. Assuming a continuous function V (x), V : D → R, where D contains the

origin. Then V(x) is positive (semi)definite in D if

V (x) > (≥)0,∀x ∈ D\{0}, (2.10)

V (0) = 0. (2.11)
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Definition 6. Function V (x) is negative (semi)definite if −V (x) is positive (semi)definite.

Definition 7. For discrete time systems (2.6), the total difference of function V (x), V :

Rn → R, respectively to system (2.6) is

∆V (x)(2.6) = V (f(x))− V (x). (2.12)

Then, the Lyapunov theorem for discrete time system is formulated as,

Theorem 1. ([78, 79]) Assuming a positive definite function V (x), V : D → R, then

• If the total difference ∆V (x)(2.6) of (2.12) is negative semidefinite ∀x ∈ D, the system

is locally Lyapunov stable.

• If the total difference ∆V (x)(2.6) of (2.12) is negative definite ∀x ∈ D, the system is

locally asymptotically stable.

The function V (x), which satisfies the above theorem, is called Lyapunov Function (LF).

From the previous analysis, the stability problem is equal to finding a positive definite

function which is non-increasing or decreasing along the trajectories of the system (2.6).

Finding an LF, allows for defining sets with special properties respectively to the equilibrium

point. For example, if there exists an LF V (x) that guarantees the stability or asymptotic

stability in a region D and the sets R(V ; γ) = {x ∈ Rn : V (x) ≤ γ} ⊆ D are close and

contain the zero equilibrium point, then these sets consist an estimation of the DoA. The

essential definitions follow.

Definition 8. [80] The set S ⊆ Rn is positively invariant to (2.6), if and only if ∀x0 ∈ S

the system trajectory remains inside S for all future moments x(t; x0) ∈ S, ∀t ≥ 0.

Definition 9. [80] For a convex compact set S ⊆ Rn which contains the origin, the following

function is called the Minkowski function.

Ψs(x) = inf{λ ∈ R : λ ≥ 0, x ∈ λS}. (2.13)

Then, the set S is ϵ-contractive to (2.6), 0 ≤ ϵ < 1, if ∀x0 ∈ S

Ψs(x(t; x0)) ≤ ϵtΨs(x0), t ≥ t0. (2.14)
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Now the connection between the Lyapunov function, the positive invariant set, the DoA

and the ϵ-contractive set can be shown.

Remark 1. Assume the system (2.6) and a candidate LF V(x); if the set R(V ; γ) = {x ∈

Rn : V (x) ≤ γ} is convex, compact and contains the origin, then the following conclusions

apply:

• If V (x) is an LF that guarantees Lyapunov stability, then the set R(V ; γ) is positive

invariant to system (2.6).

• If V (x) is an LF that guarantees asymptotic stability, then the set R(V ; γ) ⊆ D is

positive invariant and DoA to system (2.6).

• If V (x) is an LF that guarantees Lyapunov stability and it applies that

∆V (x)(2.6) ≤ (ϵ− 1)V (x(t)), 0 ≤ ϵ < 1, (2.15)

then the set R(V ; γ) ⊆ D is ϵ-contractive to system (2.6).

The most important benefits from the Lyapunov theory is the characterization of the

stability of the equilibrium point and the possibility of defining sets with interesting prop-

erties. For example, if an LF can be found, which ensures the asymptotic stability of the

equilibrium point of a constrained system x(t) ∈ Sx ⊂ Rn, then any trajectory that begins

from a point inside R(V ; γ) ⊆ Sx will be driven to the equilibrium point, without violating

the system constraints.

2.2 Basic Definitions of Markovian Random Fields

Let us continue with some necessary definitions regarding the Markovian Random Field

(MRF) structure, used in this thesis to model computational offloading problems and acquire

solutions in the area of resource allocation and workload balancing at the network edge. As

in [81], a finite set S, |S| = n, is assumed, with elements s ∈ S referred to as sites or nodes.

Every site s is associated with a random variable Xs that expresses its state. Let the phase

space Λ be the set of possible states of each s ∈ S, i.e., Xs takes a value xs ∈ Λ. The
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collection X = {Xs, ∀s ∈ S} of random variables with values in Λ consists of a Random

Field (RF) on S with phases in Λ. A configuration ω = {xs : xs ∈ Λ, ∀s ∈ S} corresponds

to one of all possible states of the system and the product space Λn, ω ∈ Λn denotes the

configuration space. A neighborhood system on S is defined as a family N = {Ns}s∈S of

subsets Ns ⊂ S, such that for every s ∈ S, s ̸= Ns and r ∈ Ns if and only if s ∈ Nr. Ns

is called the neighborhood of site (node) s. The RF X is called a Markov Random Field

(MRF) with respect to N , if for every site s ∈ S,

P(Xs = xs | Xr = xr, r ̸= s) = P(Xs = xs | Xr = xr, r ∈ Ns). (2.16)

A RF X is called a Gibbs Random Field (GRF) if it satisfies:

P (X = ω) = 1
Z

e− U(ω)
T , (2.17)

where Z :=
∑

ω∈Λn e− U(ω)
T is the partition function and T is the temperature of the system.

U(ω) is called the potential function and represents a quantitative metric of the current

state of the configuration ω. The potential function is not unique. A very useful class of

potential functions, which will be employed in the studied approach, is one in which U(ω)

is decomposed into a sum of clique (maximally connected subgraph) potential functions, as

U(ω) =
∑

c∈C Vc(ω), where C is the set of the cliques formed by the sites and each clique

potential Vc depends only on the states of the cliques formed in the underlying system graph.

The Hammersley-Clifford theorem [82] asserts that a GRF with distribution P (X = ω) =
1
Z e− U(ω)

T and potential function expressed in terms of clique potentials leads to an MRF

with conditional probabilities P(Xs = xs | Xr = xr, r ̸= s) = P(Xs = xs | Xr = xr, r ∈ Ns)

and vice-versa. This property will be also employed for the design of the potential function

and the implementation of distributed decision-making via Gibbs sampling.

More explanations on modeling and control theory, as well as MRF-related concepts will

also be provided in this thesis whenever needed.
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Chapter 3

Adaptive Resource Allocation

for Computation Offloading: A

Control-Theoretic Approach

3.1 General Setting

Contrary to the cloud computing environments where dynamic modeling and control mecha-

nisms have been extensively adopted [83], [84], little attention has been given to the optimal

use of the edge servers. In this chapter, a two-level cooperative resource allocation mecha-

nism for a single cluster of edge servers hosting a group of applications is presented, that

allows IoT devices/mobile users, within the coverage area, to offload application-specific

tasks. It should be noted, however, that user mobility within the cluster’s proximity has

not been considered in this setting; this problem is covered in the following chapters. The

proposed mechanism can on-demand allocate the edge servers’ resources to different appli-

cations using virtual machines (VMs). At the lower level, the dynamic operation of VMs

is captured by linear dynamics. Local controller components are responsible for regulating

allocated CPU shares and accepted offloading requests, according to a varying, however

bounded in a given interval, incoming workload. This comprises the Vertical Scaling part of

the mechanism. At the upper level, a horizontal scaling process is responsible for activating
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the essential number of edge servers and placing the appropriate VMs into them. This com-

prises the Horizontal Scaling part. In particular, the incoming requests are distributed to

the activated servers in order to serve the total demand. This process is orchestrated while

taking the local controllers into consideration, making this mechanism cooperative.

3.2 Related Work

One of the initial and influential works on MCC [85] proposed a dynamic VM synthesis of

a cloudlet infrastructure. The position paper [86] presented the potentials of MCC ecosys-

tems; wearable devices, Internet of Things (IoT) applications, automotive and industrial

environments alongside tactile Internet can leverage from the mobile-cloud convergence.

The extended survey [87] presented a definition of MCC, the vision and the challenges, a

taxonomy of heterogeneity in MCC and open issues. The survey paper [88] analyzed the

challenges of Fog Computing in terms of architecture, service and security and classified the

existing studies according to these criteria.

Surveys of existing computation offloading approaches are provided in [51], [89]. The

authors of [90] addressed computation offloading as an admission control problem in MCC

hotspots with a cloudlet, using semi-Markov decision process modeling and linear program-

ming. The resource constraints were considered when obtaining the optimal solution. A

similar dynamic offloading algorithm was proposed in [91]. Therein, the admission con-

trol problem on cloudlets was modeled and solved as a Markov decision process, aiming to

minimize the computation and offloading costs. Also the mobility of the users was taken

into account. Khojasteh et al. [92] presented two flexible resource allocation algorithms for

computation offloading. The resource allocation process and VM provisioning were mod-

eled by a Markovian multiserver queuing system with priority levels and a multidimensional

Markov system, based on a Birth-Death queuing system with finite population, respectively.

In [93] three resource allocation schemes were proposed for computation offloading. Several

stochastic sub-models captured the operation of a physical machine, under the policy of each

scheme. The Markov Reward Model was applied to obtain the output of the sub-models

and the decision criteria consist of the request rejection probability and mean response

delay. The authors in [94] proposed a hierarchical MCC architecture where users could of-
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fload their tasks, modeled by queuing models, either to local cloudlets or the remote public

cloud. Computation offloading was modeled as a generalized Nash equilibrium problem and

a distributed algorithm computed an equilibrium strategy for each user.

Many studies focus on energy-aware offloading. In the work of Xia et al. [1] a two-

tier MCC environment was adopted; mobile devices, cloudlets and the remote cloud were

described by static models and an algorithm that optimized the minimum residual energy

ratio was developed. Jalali et al. [95] proposed static, flow-based and time-based energy

consumption models. They presented a detailed energy consumption comparison between

cloud computing and fog computing architectures while taking the network equipment into

account. Their numerical results demonstrated how offloading leads to energy saving for

IoT applications. In the work of Kiani and Ansari [96], a task scheduling scheme for code

partitioning in a hierarchical cloudlet environment was proposed for two different use cases.

The one finds the optimal task scheduling for already defined radio parameters, while the

other optimizes both the task scheduling and the transmission power of the mobile devices.

Finally, there are some interesting studies that examine other problems in the area of

computation offloading. In the work of Barbera et al. [97], the feasibility of computa-

tion offloading and data backups in real-life scenarios was examined. Since communication

is not free, the authors focused on bandwidth and power consumption of WiFi, 2G and

3G technologies. A real testbed with smartphones and Amazon EC2 nodes was used for

thorough analysis. Xu et al. [98] focused on cloudlet placement in order to minimize the

average cloudlet access delay between mobile devices and cloudlets. A heuristic scalable

algorithm was proposed for the special case of homogeneous cloudlets. Jia et al. [99] used

the placement of Xu et al. [98] and proposed a load balancing algorithm to utilize fairly

a group of cloudlets. Queuing models were adopted for cloudlets and a scalable algorithm

computed the optimal request redirection such that the maximum of the average response

times at cloudlets was minimized. Trying a different approach, Liu et al. [100] proposed

a game-based distributed MEC scheme where the users competed for the cloudlet’s finite

computation resources via a pricing approach, modeled as a Stackelberg game. The algo-

rithms examined there were implemented in a distributed manner. In [101], the authors

proposed two algorithms for maintaining the low end-to-end delay between the mobile de-

vices and the cloudlets when the users move around the network topology. The key idea
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lies in optimally deploying the mobile device’s corresponding VMs in the available cloudlets,

while adapting to the user’s movement. Dealing with the opposite data flow, i.e., offloading

from the cloud to the edge, the authors of [102] presented a collaborative content caching

system at the network edge. They developed a model to instruct the edge node to trigger on

demand caching when popular content has been identified. SDN techniques were leveraged

to manage and distribute the content among the access nodes in a coordinated manner.

A shortcoming of studies [1], [95], [97], [98] and [99] is that the modeling of the edge

servers captures accurately a single operating point and not the whole operating range.

On the other hand, for the various Markov process approaches [90], [91], [92] and [93], the

execution time of each request derived from a fixed service rate. However, these assumptions

on the static operating range and service rate apply only when the operating conditions

are close to that point. Furthermore, in the preceding studies, a systematic analysis on

satisfaction of the QoS specifications and the constraints is missing. This thesis aims to

address the aforementioned shortcomings. Thus, state-space modeling is used to capture

the dynamic behavior of the edge server under different operating conditions. The local

controller computes the system’s feasible operating (equilibrium) points while considering

different competitive criteria and guarantees the stability and confinement in a specific

area around them. The Horizontal Scaler takes these operating points into account and

determines the appropriate placement that serves the incoming varying workload.

3.3 Contribution & Outline

Specifically, to overcome the aforementioned drawbacks, a two-level, adaptive and coop-

erative resource allocation mechanism for a single cluster of edge servers hosting a group

of applications is proposed, which allows mobile users to offload application-specific tasks,

while offering control-theoretic based QoS guarantees. As mentioned in Chapter 1, compu-

tation offloading mitigates the energy consumption of resource-constrained mobile devices

by relocating the execution of the compute-intensive tasks to a group of edge servers that

are placed in the Mobile Users’ spatial vicinity. This placement enables low-latency access

to the servers, contrary to accessing the remote cloud through the public Internet, which is

unpredictable when it comes to response times. Figure 3.1 depicts the MCC computation
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Figure 3.1: MCC Computation Offloading Architecture

offloading architecture studied in this chapter. Specifically, the offloaded traffic, generated

from the mobile devices, is directed to the Horizontal Scaler through the local Wireless Ac-

cess Point (with WiFi, 3G/4G or LTE support). There lies the upper level control process

of the proposed mechanism; this component selects an appropriate VM placement to be

implemented to each edge server directly connected to it and consequently distributes the

incoming workload accordingly. This decision defines the number of active servers alongside

the number and the operating state of the VMs to be placed in them. This upper level

process is performed in an online and proactive manner, through the use of an internal pre-

diction mechanism, the Workload Predictor, described in more details in Subsection 3.5.2,

able to estimate the incoming offloading requests in the following time window. The es-

sential input for this estimation process is provided by the Monitoring Service component,

which is responsible for collecting data regarding both the network traffic (e.g., offloading

requests issued, end-to-end response times) and the servers’ resources utilization (e.g., CPU

usage) at each given time. As mentioned earlier, this is the horizontal scaling part of the

proposed mechanism and the theory behind it is described thoroughly in Subsection 3.5.2.

At the lower level, each edge server is equipped with a Local Controller, able to create,

run, scale and stop application-specific VMs, thus assisting the realization of the selected

VM placement for the given time window. Additionally, the lower level control process is

implemented in this component, as it moderately scales the VMs vertically based on data

coming from the Monitoring Service. In this way, it ensures that the VMs remain within the

selected operating state, thus guaranteeing minimum and stable application response times.

The theoretical design behind this control process is described in more detail in Subsection

47



3.5.1.

Figure 3.2: MCC Computation Offloading Mechanism Workflow

Figure 3.2 illustrates the workflow of the proposed MCC computation offloading mecha-

nism. In the proposed approach, the operation of the VMs is modeled by a group of Linear

Time Invariant (LTI) systems that are subject to additive exogenous disturbances. The

parameters of the LTI systems are identified by experimental data. At first, for each LTI

system, a feasible equilibrium of the nominal disturbance-free model of the VM, (xe, ue),

is computed. Each equilibrium point corresponds to an operating state (flavor) of the VM

without assuming disturbances. For example, an operating point might correspond to 3 re-

quests per second, utilizing 20% of CPU allocation and resulting in an average response time

of 3sec. For each equilibrium point a linear state feedback controller, meaning the control

gain k, is designed by taking the disturbed system into account, within the Local Controller

component. Specifically, by regulating the assigned CPU allocation and the number of ad-

mitted requests, a controller is designed such that the closed loop system (i) is stable, (ii)

satisfies the constraints and the QoS specifications at all times and for any initial condition,

starting from within the constraint set, and (iii) behaves optimally in steady state. Since

the proposed resource management mechanism offers guaranteed response time to mobiles

users, the offloading decision breaks down to a simple comparison between the estimated

execution time on the mobile device and the guaranteed response time provided by the edge

servers.

At the upper level, for each application the Horizontal Scaler receives an estimation of

the forthcoming requests Λ̃, made by the Workload Predictor component, and the set of

the feasible operating points (xe, ue), computed by the feedback controller, as input. Then,

based on this information, it decides the minimum number of active edge servers and the VM

placement to be implemented in them, towards the satisfaction of the total demand for each
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application. This cooperation of the two control levels ensures that the selected operating

point of each VM from the Horizontal Scaler will be realized by the feedback controller

of the VM. Briefly, the basic contributions and differences of the proposed approach and

framework are summarized as follows:

1. this modeling approach can accurately capture the dynamic behavior of the application-

specific VM under different operating conditions.

2. a multitude of feasible operating points can be calculated, considering different per-

formance and utilization costs, which allows to design different control strategies for

different pairs of workload and applications.

3. formal guarantees regarding resource allocation and QoS specifications are provided.

4. the minimum number of edge servers is activated to satisfy the overall workload of all

applications, based on the set of the feasible operating points of the lower level.

3.4 System Modeling

In this setting, a number of N ≥ 1 different applications are hosted in isolated VMs in an

edge server. For each application and for a range of incoming request rates, a scalar discrete

LTI system is identified. To this purpose, let

λ(t) ∈ [Λm, ΛM ],

denote the incoming Request Rate (RR) per second at time instant t, which is varying in

an interval [Λm, ΛM ]. The range of incoming RR is divided in L subintervals of the form

[Λi,m, Λi,M ] ⊂ [Λm, ΛM ], i = 1, . . . , L. Consequently, for each application and each request

rate subinterval a linear system with additive disturbances is identified of the form

x(t + 1) = max{ax(t) + bu(t) + w(t), 0}. (3.1)

In the above equation, x(t) is the average response time, u(t) = [u1(t) u2(t)]⊤ ∈ R2 is

the input vector and w(t) ∈ [wm, wM ], wm < 0 < wM , is an unknown, however bounded,

signal, which accounts for the disturbances induced by the communication between the edge
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server and the mobile users and the modeling error of the identified model. In this case,

focus is placed on CPU intensive applications, thus, VM memory is statically assigned and

not included in the linear systems. However, the Horizontal Scaler takes memory constraints

in the VM placement problem into account, as it described in Subsection 3.5.2. To simplify

notation, the exposition is not indicated to be done for system (i), since this is arbitrary

chosen.

The input u1 ∈ [u1m, u1M ] corresponds to the allocated CPU share of the VM whereas

u2 ∈ [Λi,m, Λi,M ] is RR the controller admits. The parameter a ≥ 0 is a known scalar

while b ∈ R1×2 is a row vector. Both a, b can be estimated using the Recursive Least

Square (RLS) algorithm [103]. The maximum operator in eq. (3.1) ensures that there are

no negative average response times in the model.

The state and input variables x and u are inherently constrained due to the finite re-

sources and the control specifications. In particular,

X :={x : 0 ≤ x(t) ≤ XM}, (3.2)

U :={u : um ≤ u(t) ≤ uM}, (3.3)

for all t ≥ 0, where um = [u1m Λi,m]⊤, uM = [u1M Λi,M ]⊤.

By having a set of models (3.1) corresponding to different RR intervals, a better level

of accuracy is provided than a single LTI model for the whole range of RR. Additionally,

the number of models scales linearly with respect to L, since the co-hosted applications are

considered decoupled and depend only on the number of subintervals of the RR.

At the lower level, the local controllers focus on the joint resource allocation and admis-

sion control of edge servers in order to perform guaranteed response time under the varying

workload of the consolidated applications. For the lower control level (vertical scaling), the

main goals are summarized as follows.

P1. Consider system (3.1) subject to the constraints (3.2), (3.3) that corresponds to a

certain incoming request rate. Given a desired response time, find a feasible operating

region for the system (3.1), which is optimal with respect to a well defined cost.

P2. For each operating condition calculated in P1, compute an admissible control strategy,

which steers the closed loop system to it and respects the constraints at all times.
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The following table sums up the main symbols used in the next subsections, alongside

their description:

Table 3.1: Notation Table

t Time instant
λ Incoming Request Rate per second (RR)
x Average Response Time (sec.)
u Input u(t) = [u1(t) u2(t)]⊤; u1 is the allocated VM CPU;

u2 is the RR admitted at the VM
(xe, ue) Feasible Operating Point
re Statically allocated VM memory
w Communication disturbances
a, b LTI system parameters
k Control gain
X,U State and Input Constraints
S Invariant set
P The Set of Feasible VM placements
E Number of edge servers
Λ̃ Predicted Incoming RR

3.5 System Architecture

3.5.1 Vertical Scaling

In this section, a discussion on how this approach tackles the problems P1, P2 simultane-

ously is made. In specific, an optimization problem is formulated whose solution retrieves

both the operating condition and the control strategy. This approach is less conservative

than the multi-step approaches in the literature [104], [105].

Let us consider an admissible equilibrium pair (xe, ue) for the disturbance-free system

(3.1), i.e., when w(t) = 0, for all t ≥ 0. Clearly, xe and ue satisfy the equation

xe = axe + bue

and satisfy the constraints (3.2), (3.3). An affine state feedback control laws of the form is

considered

u(t) = k(x(t)− xe) + ue, t ≥ 0, (3.4)

where k ∈ R2 is the control gain and ue ∈ R2 is a constant vector. A state and input
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coordinate transformation is applied by introducing z(t), v(t), defined by

z(t) = x(t)− xe,

v(t) = u(t)− ue.

Consequently, the closed-loop form of the system (3.1) with the control strategy (3.4) be-

comes

z(t + 1) = max{(a + bk)z(t) + w(t),−xe}. (3.5)

Contrary to the nominal, disturbance-free case, for the actual system (3.5) each operating

condition refers inevitably to a set of average response times x rather than a singleton due

to the presence of additive disturbances. This set is known in the control literature as the

minimal robust positively invariant set or the 0-reachable set [106], [107]. It represents the

set of states that can be reached from the equilibrium point under a bounded disturbance.

Definition 10. Consider system (3.5). An interval S = [sm, sM ] is called an invariant set1

for system (3.5), if z(0) ∈ S implies z(t) ∈ S, for all t ≥ 0 and any w(t) ∈ [wm, wM ]. If,

additionally, |a + bk| < 1, an interval Smin is called the minimal invariant set with respect to

(3.5) if it is invariant and it is included in any other invariant interval. Last, consider the

constraints z(t) ∈ Z = [zm, zM ]. The interval Smax ⊆ Z is called the maximal admissible

invariant set with respect to (3.5) if it is invariant and includes any other invariant interval.

Computing the minimal invariant set exactly is difficult, since in the general case it is the

limit of a set sequence which converges only asymptotically. Nevertheless, in this case since

it was preferred to utilize scalar systems, it has an analytical description. This fact allows

the simultaneous characterization of a stabilizing control gain and the minimal invariant set.

1By invariance, robust positive invariance is meant, or D-invariance, see, e.g., [107],[108].

52



Theorem 2. Let xe ∈ R, ue ∈ R2 and k ∈ R2 satisfy (3.6)–(3.11)

(1− a)xe = bue, (3.6)

0 ≤ xe ≤ xM , (3.7)

um ≤ ue ≤ uM , (3.8)
wM

1− a− bk
≤ xM − xe, (3.9)

0 ≤ a + bk < 1, (3.10)

max{ um − ue

xM − xe
,

uM − ue

−xe
} ≤ k ≤ min{uM − ue

xM − xe
,

um − ue

−xe
}. (3.11)

The following hold.

(i) The set

Smin =
[
max{xe + wm

1−a−bk , 0}, xe + wM

1−a−bk

]
(3.12)

is the minimal robust positively invariant set with respect to the system (3.1) under state

feedback (3.4).

(ii) The set Smax = X is the maximal robustly invariant set with respect to the system (3.1)

under state feedback (3.4).

(iii) For any initial condition x(0) ∈ Smax and any positive number ϵ, there is a time T > 0

such that

max
y∈Smin

|x(T )− y| ≤ ϵ. (3.13)

Proof. (i) From (3.6)–(3.8), xe is an admissible equilibrium point for the nominal system

(3.1) with control input ue. By (3.10) and [108, Theorem 4.1], the minimal invariant set

with respect to (3.5) is given by the limit of the forward reachable sets sequence. In this

case, this sequence is defined by the iteration2

R0 = {0},

Ri+1 =
(
(a + bk)Ri ⊕ [wm, wM ]

)
∩ [−xe,∞).

2For two sets X , Y, we have X ⊕ Y = {x + y : x ∈ X , y ∈ Y}.
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Since we are dealing with intervals, it is straightforward to see that for any i ≥ 0

Ri =

max


i−1∑
k=0

(a + bk)iwm,−xe

 ,

i−1∑
k=0

(a + bk)iwM

 ,

and consequently, the minimal invariant set for the system (3.1) is directly given by (3.12).

(ii) By setting z = x − xe, it is shown that Smax = S1 ∩ S2, where S1 := {z : um − ue ≤

kz ≤ uM − ue} and S2 := {z : −xe ≤ z ≤ xM − xe}. Specifically, it is shown that S2 is

invariant and also S2 ⊆ S1. Since S2 is the translation of the state constraints X in z, the

claim will be proved.

To this purpose, for S2, it is first assumed that w = wM ; then from (3.9) we get w ≤

(1 − a − bk)(xM − xe). Considering the maximum value of S2 z0 = xM − xe, then z1 =

xM − xe, z1 ∈ S2. Accordingly, considering the minimum value of S2 z0 = −xe, then

z1 = (1 − a − bk)xM − xe and by applying (3.10) we still get that z1 ∈ S2. Next, let

us assume that w = wm; as it stands, wm < wM so the aforementioned paradigm let us

conclude that z1 ∈ S2. Thus, by induction, it is concluded that −xe ≤ zt+1 ≤ xM −xe while

zt ∈ Smax, for all t ≥ 0 and any w(t) ∈ [wm, wM ].

To show S1 ⊇ S2, it suffices to show that −xe ∈ S1 and xM − xe ∈ S1. Indeed, for

z1 = xM − xe it holds that
um − ue

xM − xe
≤ k ≤ uM − ue

xM − xe
,

while for z1 = −xe we have that

uM − ue

−xe
≤ k ≤ um − ue

−xe

Both sets of the inequalities are satisfied due to the hypothesis (3.11). Consequently, S1 ⊇ S2

and since S2 invariant, Smax is invariant and admissible as well. Maximality of Smax follows

directly by observing that any x0 /∈ Smax violates the state constraints (3.2).

(iii) It is shown that any trajectory beginning from Smax is driven asymptotically (in fact

exponentially) to Smin. To this purpose, for any z0 ∈ Smax then after i time intervals it

holds that,

zi = (a + bk)iz0 +
i−1∑
j=0

(a + bk)jwj , (3.14)
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where wj ∈ [wm, wM ], j = 0, ..., i − 1. By (3.10), the first term in (3.14) converges to zero

exponentially, while the second term, as shown in (i), is bounded in Smin. Thus, given any

ϵ > 0 and setting a + bk = l < 1, from (3.14) we have that since z0 ∈ Smax, then necessarily

zi ∈ liSmax ⊕ Smin. Consequently zi ∈ Smin.

Since Smax and Smin are intervals containing zero, a positive scalar can always be found

d such that Smax = dSmin, thus zi+1 = (lid + 1)Smin. Thus, (3.13) can be satisfied for any

T such that (lT d + 1)Smin ≤ (1 + ϵ)Smin, or, T ≥ logl
ϵ
d .

Remark 2. Any choice of the control gain k that satisfies the relations (3.2) and (3.3), will

render the whole constraint set as invariant.

Theorem 2 characterizes simultaneously the minimal invariant set and the gain of the

associated control law. More importantly, it provides a tractable method of retrieving

Smin and k. Specifically, for each model of (3.1) and given the equilibrium xe, a feasible

equilibrium pair (xe, ue), close to the pair of the desired values (xe, u⋆
e), and a state feedback

control law of (3.4), which steers the closed loop system inside the minimal invariant set,

can be calculated by solving the following linear programming problem,

min
ue,k

∥ue − u⋆
e∥∞ (3.15a)

subject to

(1− a)xe = bue (3.15b)

um ≤ ue ≤ uM (3.15c)

bk ≤ 1− a− wM

xM − xe
(3.15d)

− ue − (xM − xe)k ≤ um (3.15e)

ue + xek ≤ uM (3.15f)

um ≤ ue + (xM − xe)k ≤ uM (3.15g)

um ≤ ue − xek ≤ uM (3.15h)

0 ≤ a + bk < 1 (3.15i)
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where constraint (3.15b) ensures that (xe, ue) is an equilibrium pair, (3.15c) means that the

input constraints are satisfied. The constraint (3.15d), identically to (3.9), indicates that

(xe, ue) belongs to Smin, whereas the constraints (3.15e)-(3.15h) are an analytical description

of (3.11) ensuring that (xe, ue) belongs to Smax. Finally, the constraint (3.15i) is identical

to (3.10).

Apart from the guarantee of the QoS metrics, the computed feasible operating points

are used by the upper control level to determine the operating state of the activated VMs.

The Horizontal Scaler, as it is described in Section 3.5.2, selects the operating area of each

activated VM from the set of feasible operating point. Complementary to this, the local

controller ensures that the chosen VM operating state will be realized by the described

vertical scaling approach.

3.5.2 Horizontal Scaling

As discussed earlier, the upper control level consists of two essential components; the Hori-

zontal Scaler and the Workload Predictor. The former aims to implement the appropriate

VM placement on the minimum number of active edge servers, in order to satisfy the total

workload of the co-hosted applications. The latter estimates the workload for the following

time window, based on the previous actual value measured. This control level considers

a cluster of edge servers located in a single place. Load balancing between geographically

dispersed edge server clusters is not goal of this work, but is part of future research.

Horizontal Scaler

The Horizontal Scaler aims to compromise the mutually exclusive goals of performance and

resource utilization. In particular, since the edge servers’ resources are not abundant, un-

regulated performance demands for a single application would require the high allocation

of computational resources on all servers, leaving the co-hosted applications in resource

starvation. This is not desirable if the QoS requirements are met with less resources. The

Horizontal Scaler component is responsible for optimizing the VMs’ instantiation and for

distributing the total requests of the implemented applications among them. The optimiza-

tion objective of this approach is to minimize the number of the active edge servers, with the

constraint of meeting the total workload demands. This indirectly results in reducing the
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consumed energy and optimally allocating the resources in the server side. The proposed

Horizontal Scaler component leverages the fact that the size of a cluster of edge servers is

small compared to a cloud datacenter, thus a heuristic solution can be reached with small

computation effort. In this approach, the assumption that each edge server hosts at most

one VM per application is made. Taking this into consideration, the Horizontal Scaler’s

functionality breaks down in two steps; at the first off-line step, it computes all the feasible

VM placements within a single server, based on the set of the VMs’ feasible operating points.

These feasible placements are the ones where the total CPUs and memory required from the

co-hosted VMs’ operating points do not exceed a predefined threshold. Since memory is not

considered as a control variable, a static portion of memory re is assigned to every feasible

operating point. For example, assume two applications Appx and Appy; a VM running Appx

and instantiated at an operating point which requires 25% allocated CPU and 4GB of RAM,

alongside a VM running Appy and instantiated at an operating point, which requires 55%

allocated CPU and 8GB of RAM, is a feasible VM placement for a single edge server, as

the total allocated CPU and memory do not exceed the threshold CE , set at the 90% of the

server’s total CPU capacity and RE set 32 GB of RAM respectively. More formally, the set

of all feasible VM placements is defined as,

P := {pi =
(

(u1
1e, r1

e), . . . , (uN
1e, rN

e ),
)

, i = 1, . . . , N :
N∑

i=1
ui

1e ≤ CE ,

N∑
i=1

ri
e ≤ RE}

Then, assuming this set P, this set’s cardinality |P| and the total number of the edge servers

E, it determines the number of servers to be activated EA, by solving the following mixed

integer linear program in an on-line fashion,

57



min
fi,EA

{EA} (3.16a)

subject to

fi ≥ 0, i = 1, . . . , |P| (3.16b)

EA =
|P|∑
i=1

fi (3.16c)

0 ≤ EA ≤ E (3.16d)
|P|∑
i=1

fiu
j
2e ≥ Λ̃j , j = 1, . . . , N (3.16e)

where the positive integer variables fi denotes how many servers with the pi VM placement

of set P need to be activated. As the constraint (3.16c) denotes, the sum of these variables

is equal to EA. The constraint (3.16d) simply restricts these activated servers to the total

number of the edge servers. Finally, the last N constraints of (3.16e) denote that the esti-

mated total workload for each application Λ̃j , as it is computed in the following subsection,

is satisfied by the selected VM placements. It is important to point out that the Horizontal

Scaler component is triggered only if a significant variation in any of the application’s work-

load occurs. This intends to avoid the frequent server activation/deactivation, which leads

to oscillation of resource allocation and degradation of the VM’s performance.

Workload Predictor

For each application, the total incoming RR is estimated by the Holt linear exponential

smoothing filter [109] that captures the linear trend of time series. For any time interval i,

the one-step prediction Λ̃(i) of the incoming request rate Λ(i) is:

Λ̃(i) = Λ̂(i) + c(i),

Λ̂(i) = αΛ(i) + (1− α)(Λ̂(i− 1) + c(i− 1)),

c(i) = β(Λ̂(i)− Λ̂(i− 1)) + (1− β)c(i− 1).

(3.17)

where α, β are smoothing constants, Λ̂(i) is the smoothed value and c(i) denotes the linear

trend in the measurement series. For the initialization, a random value of Λ̂(0) is used within
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the range of the incoming RR and c(0) = 0.5.

3.6 Experimental Evaluation

In this section, an experimentation on the proposed computation offloading mechanism is

presented together with the respective results. These results illustrate the success of this

approach in guaranteeing the stability of application response times within an acceptable

margin. The optimization of the resource allocation in terms of edge servers activated to

serve the incoming workload is highlighted. Moreover, an experimental comparison between

the vertical scaling part of this mechanism and [1] is demonstrated. The benchmarking is

performed using CloudSim Plus [110], a simulation environment suitable for cloud computing

and MCC experimentation, on a dual-core, macOS powered system with 8GB of available

memory.

3.6.1 Horizontal Scaler’s Complexity

Before proceeding with the detailed presentation of the experimental setup used throughout

the detailed evaluation study and the presentation of the corresponding performance of the

proposed computation offloading mechanism, some initial numerical results are presented

regarding the complexity of the Horizontal Scaler. As expected, the problem solved is

a combinatorial one expressed as a mixed integer linear program in (16). For treating

the mixed integer problem of the Horizontal Scaler the GLPK solver [111] is used. The

problem under consideration is generally NP-Hard and the lower bound of the computational

complexity of the Branch-and-Cut algorithm used to find a solution is exponential [112].

Specifically, in the following, the performance of the Horizontal Scaler is analysed considering

the dominant parameters of the optimization problem: the number of mobile applications,

the total number of the feasible operating points of all applications and the number of

available edge servers.

Figure 3.3 illustrates the effect of the preceding parameters. The left panel demonstrates

the effect of the number of the feasible operating points. Three applications are co-hosted in

a cluster of servers and the number of available operating points per application varies from

3 to 6, which produces a set P with a cardinality of 27 to 116 respectively. Subsequently,
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Figure 3.3: Analysis of Horizontal Scaler’s Computational Complexity.

the computational time of (3.16a) increases accordingly. The middle panel of Figure 3.3

shows that the computational time also increases as the consolidated applications grow

in numbers. More applications lead to more operating points, and consequently to the

exponential increase of the computational time. Finally, at the right side of Figure 3.3,

the effect of the number of the available edge servers is illustrated. As observed by the

corresponding results, this parameter substantially affects the computational time only when

the number of active edge servers is high. However, it should be noted that mobile edge

computing, contrary to the traditional cloud environment, is usually based on small/medium

data centers that typically are expected to host few applications.

3.6.2 Experiment Setup

In this simulation, which spans around 4h and 10min, or 15000sec, three physical machines

with 32GB of RAM which are utilized as edge servers; as mentioned earlier, each of them

is manually restricted to hosting at most two isolated VMs, each of which realizes one of

Table 3.2: VM Operating Points (xe, u1e, u2e, re).

VMs of App1 VMs of App2

(0, 0, 0, 0) (0, 0, 0, 0)
(3, 25, 2.95, 4) (3.75, 25, 3.23, 4)
(3, 35, 4.63, 6) (3.75, 35, 5.29, 6)
(3, 45, 6.18, 6) (3.75, 45, 7.38, 6)
(3, 55, 8.02, 8) (3.75, 55, 9.58, 8)
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the two supposed applications, (N = 2), named App1 and App2; the edge servers are also

restricted to hosting no more than one VM per application. More specifically, this notation

is followed: V Mij corresponds to the VM running on the ith server and implementing the

jth application. The mobile traffic is simulated with a Poisson distribution of requests

arriving at the Horizontal Scaler component, while the length of each request follows an

Exponential distribution. For both applications, the incoming offload RR varies between

1 and 25req/sec. However, for each of the application-specific VMs, the distributed RR

range is divided in the following four subintervals: [0, 3.5], [3.5, 5.5], [5.5, 7.5] and [7.5, 10].

A model of (3.1) is identified and an equilibrium point and a control law are computed

by solving (3.15a) through (3.15i) for every subinterval. Thus, in total eight systems and

their respective controllers are identified offline. The worst acceptable response time for the

offloaded requests is set to 6sec and 7.5sec for App1 and App2 respectively. The desired

average response time of the equilibrium points of the applications are set to the half of

these values, x1
e = 3 and x2

e = 3.75. Indicatively, Table 3.2 depicts the operating points

computed for both applications (xi
e, ui

1e, ui
2e, ri

e). The first operating point, with zero input

and average response time, corresponds to an inactive VM. Table 3.2, also, justifies the

assumption of hosting only one VM per application per server. For example, co-locating

two VMs of App1, namely running on the second operating point of Table 3.2 would result in

cumulatively serving less offloaded requests on average than deploying a single VM running

on the fourth operating point, though the latter choice would result in allocating less CPU.

This is a consequence of the related operating overhead of each separate VM deployment.

As described earlier, at the end of the time window, i.e., every 30sec, the Workload

Predictor estimates the incoming RR for the next window. When the previously predicted

RR and the currently predicted RR, have an absolute difference greater than a predefined

threshold, specific to the nature of this application, the Horizontal Scaler is triggered and

selects the appropriate VM placement to be instantiated at the edge servers. For the par-

ticular applications, this threshold is set at 3req/sec. The duration of this time window is

selected after considering the maximum time it would take for an in-range user to take the

decision to offload, connect, offload and receive the results. During this window the request

rate remains relatively stable. Much larger time window would fail to adapt to the changes

in the request rates, while much shorter time window would probably result in unneces-
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Figure 3.4: Incoming Offloading Request Rates for both App1 and App2.

sary invocations. Furthermore, the control interval of 30sec appears to be adequate for the

computation of the VM placement by the Horizontal Scaler, as it is later shown in Section

3.6.3. However, for other types of applications, this control time interval could be selected

differently: on the one hand to, it could be larger than the computational time of the mixed

integer problem that needs to be solved and, on the other hand, it could be large enough to

properly follow the variation of the incoming requests.

3.6.3 Numerical Results

The results depicted in Figures 3.4 through 3.8 are used to evaluate the efficiency of the

proposed mechanism in the preceding scenario. Figure 3.4 depicts the fluctuations in the

actual (red line) and the predicted (blue line) RR per application during the experiment.

For both applications, the actual incoming RR is altered every 50min, or 3000sec. Figures

3.5 through 3.7 illustrate the measured average response time and the inputs per VM in

each server respectively; the left graph of each figure depicts the actual application response

time (red line) together with the boundaries of the positive invariant sets, Smin (blue line)

and Smax (black line). The middle shows the actual RR served by the respective VM on the

edge server (red line), together with the RR rejected by the particular VM and sent back

to the mobile device for execution (black line). The nominal RR value of the selected VM’s

operating point is also shown (blue line). In the right graph, the actual CPU share allocated

to the VM is shown (red line), alongside the operating point’s nominal value (blue line), for

each given moment.

It can be observed, in the left graph of subfigures 3.5a, 3.6a and 3.7a, that the aver-
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(a) V M11 Performance.

(b) V M12 Performance.

Figure 3.5: Average Response Time, Request Rate and CPU Share Allocation of VMs in
first server.

age application response time for App1 remains between the given constraints, despite the

workload fluctuation. The similar results are observed in the left graph of subfigures 3.5b,

3.6b and 3.7b for App2. This means that the theoretical guarantees of Theorem 2 (i) are

translated in the response times not exceeding the boundaries of the minimal invariant set,

Smin and Smax. The middle graphs of Figures 3.5 through 3.7 depict how the Horizon-

tal Scaler adapts to these fluctuations and selects the appropriate placement, in terms of

number of active edge servers, VMs and their operating points, in order to meet the de-

manded RR. As shown in Figure 3.8, it activates one edge server between 0 − 3000sec,

6000− 9000sec and 12000− 15000sec; two edge servers between 9000− 12000sec and three

between 3000 − 6000sec. Of these incoming workload fluctuations, the rapid ones, e.g.,

around the 3000sec area, allow to also demonstrate the Local Controllers’ functionality; in
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(a) V M21 Performance.

(b) V M22 Performance.

Figure 3.6: Average Response Time, Request Rate and CPU Share Allocation of VMs in
second server.

such situations, the Workload Predictor component requires a time window to adapt, due

to the fact that the estimated RR value is based on the previous actual incoming RR value.

This results in the Horizontal Scaler failing to select the appropriate VM placement for

the specific time window. However, each VM’s Local Controller proves to be en garde by

rejecting the excessive offloading requests and redirecting them back to the mobile device

for execution, in order to guarantee the stability of the response time. This guarantee is

also provided by the Local Controller in the form of vertically scaling the VM; the Workload

Predictor’s minor inaccuracies are handled by moderately regulating the CPU resources and

the accepted RR within limits of the operating point’s area. This procedure is illustrated in

the middle graph of each subfigure of Figures 3.5 through 3.7; when the RR accepted in the

VM has reached the value calculated from the Local Controller for the selected operating
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(a) V M31 Performance.

(b) V M32 Performance.

Figure 3.7: Average Response Time, Request Rate and CPU Share Allocation of VMs in
third server.

point, the excessive, rejected RR, which as a consequence is relocated to the mobile devices

for execution, is increased. Also at the third graph of each subfigure, where some minor

fluctuations are observed in the actual CPU share from the respective nominal values of

the operating point. It is important to remark that for every VM and for the most part of

the experiment, the actual and the nominal values of the CPU share overlap, making only

the blue line observable. Furthermore, some short sudden changes in the selected operating

points of the VMs, depicted in the second and third graphs of the subfigures, occur due to

certain spikes in the incoming RR; these spikes are so acute that the Horizontal Scaler’s

trigger condition is satisfied. Consequently the appropriate VM placement is recalculated

with the updated operating points. It can be seen that it is this combination of horizontal

and vertical scaling that results in the overwhelming majority of offloading requests being
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successfully served; 95.18% of the total requests for App1 and 98.74% for App2 respectively.

Another interesting remark is that the Horizontal Scaler selects a VM placement, which

minimizes the number of active servers but not necessarily the total allocated CPU share.

This happens due to the structure of the optimization problem’s objective function in (3.16a).

One approach to additionally include this optimization objective in this framework would

be to revert to multi-objective optimization, either by using preemptive optimization or a

multi-objective cost. However, this would significantly increase the time complexity of the

decision-making part without envisioning substantial benefits.

3.6.4 Comparative Results

A second experiment better demonstrates the performance of the proposed vertical scaling

mechanism alone and compares it to [1]. This is an energy-aware offloading approach, which

uses edge server VMs with fixed CPU shares allocated. The offload decision depends on an

SLA threshold for the response time of the offloaded requests, named Td. At the end of

each time window, i.e., every 30sec, an estimation of the incoming RR for each application

is computed by (3.17) and the input vector is updated according to (3.4), regarding the

following window. The upper left graph of Figure 3.9 depicts the actual response time

and the boundaries of Smin and Smax for App1. After the initial interval, the response

time steers from Smax, which is equal to X, to Smin and remains within. This proves the

validity of Theorem 2 (iii). In particular, by computing the control law solving the linear

program (3.15a) through (3.15i), the convergence to the minimal invariant set is shown. The

upper right graph shows the average response time for allocated CPU = 25%, 45%, and

Td = 6 of the approach [1]. In the first quarter of this graph, the SLA is violated for the

under provisioned VM with CPU = 25%. The second row of Figure 3.9 again illustrates the

request rates served by the edge server and the mobile devices. On the left side, the discussed

approach seems to adapt well against the various incoming RR. Once again, the observed

Figure 3.8: Active VMs in Edge Servers
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Figure 3.9: Evaluation and comparison of proposed approach with [1]

rapid fluctuation of the served requests exist due to false predictions of the incoming RR.

As expected, this does not affect the response time. On the right side, it seems that the

use of Td restricts the amount of requests directed to the edge server. This explains the

better response times of the upper right graph. For the proposed offloading mechanism,

the requests served at the edge server approach 95.54% of the whole workload, whereas for

[1] this percentage is limited to approximately 76%, for both CPU shares. It is clear that

the proposed approach performs better against the varying workload because of the vertical

scaling of the VMs.
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Chapter 4

Control-based Resource

Allocation for IoT in Natural

Disaster Applications in Edge

Computing

4.1 General Setting

As mentioned in Chapter 1, dealing with natural disasters, especially firefighting, can be

an interesting field for the application of computation offloading mechanisms, since they

can contribute to early and precise detection of forest fires, the most important step for

in-time intervention. Thus, in this work, an extension of the work presented in Chapter 3 is

integrated in a Cyber-Physical Social System (CPSS), together with computing, networking

and human resources, for early fire detection.

Specifically, in this setting, at the bottom level, a network consisting of static or mobile

IoT nodes (i.e., UAVs) monitors forest areas for detecting fires at their initial stage. Following

the machine learning trend [113], these nodes are equipped with embedded camera modules

to enable computer vision-based fire detection. Thus, at the middle level, a Scalable edge
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coMputing framewOrK for early firE detection (SMOKE), hosts two image classification

services, which process field snapshots captured from the IoT nodes. SMOKE is actually a

dynamic resource scaling mechanism for IoT-enabled, time- and mission-critical applications,

meant to be deployed at a cluster of servers at the network edge, in the nodes’ proximity,

assisting the offloading of computationally intensive, energy hungry tasks. At the top level, a

Cloud-based decision-making service combines the classification results of the previous level,

users’ actions on the social media and other services, such as weather information services,

in order to accurately infer the fire incident severity and notify the responsible authorities.

4.2 Related Work

In this section, the most interesting studies in bibliography from the perspectives of IoT,

Edge and Cloud Computing, social media and image-based wildfire and/or emergency de-

tection are presented.

Zhang et al. [114] composed a study on the application of IoT infrastructures on the fire

fighting industries. In that work, the status quo regarding the usage and the main charac-

teristics that make IoT devices appealing, was presented, while, subsequently, suggestions

on the wider adoption of them in the fire fighting domain, were discussed, with China as

the main example. In the same direction, the authors in [115] analyzed the trend of lever-

aging Cloud Computing and IoT techniques on agriculture and forestry. On the first part,

several relevant applications of these paradigms were listed; there, forest monitoring for fire

prevention held a significant place. On the second part, ideas on the combination of those

two for maximizing vegetation benefits were proposed. Another IoT setting, this time in

the form of a Wireless Sensor Network, was studied in [116], to support early fire detect-

ing activities; this work briefly discussed some indoor as well as forest based installations.

Finally, on their search for additional flexibility, the authors in [117] used images captured

from UAVs to detect forest fires. The Forest Fire Detection Index was utilised, alongside

other classification methods for vegetation classification and tonalities of flames and smoke

in order to assess the spread rate.

One of the difficulties that software systems, which aim to integrate multiple infor-

mation sources, have to face, is the homogenization of data. This issue, also known as
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data interoperability, is one of the key requirements in building cross-domain IoT applica-

tions and it gets even more complicated when the goal is to combine information sources

from completely diverse software services areas (e.g., IoT and social networking services).

There are various ongoing standardization efforts toward this scope and organizations such

as IEEE Standards Association, AIOTI, oneM2M and W3C are in collaboration trying to

reach consensus on defining common APIs and data models within the IoT application

domain [118]. In addition, and with regards to Machine-to-Machine interoperability the

European Telecommunications Standards Institute (ETSI) contributes to the worldwide

standardization efforts along with OneM2M through the oneM2M Global Initiative in order

to standardize a common M2M service layer platform for globally applicable and access-

independent M2M services [119]. In the study [120], authors defined a common approach

and data model able to represent in a uniform way information both from IoT environment

and social media services. The data homogenization issue in the presented approach is tack-

led based on the adaptation of semantic and syntactic interoperability mechanisms which

are detailed presented in [121, 122, 123].

In the case of wildfires, social media can be a powerful crowd-sensing tool for situation

awareness and fast data diffusion. A review on the use of social media on forest fire detec-

tion was presented in [124]. This study categorized the wildfire risk management systems

and the social media methodologies followed, crowd-sourcing applications developed and

social media frameworks deployed for disaster management. Furthermore, a sensing pro-

cess based on social media data management and a general architecture of a wildfire social

sensor management platform were proposed. The following social media-based studies are

the most relevant to the discussed approach. Wang et al. [125] provided a Twitter-based

spatial, temporal and content analysis for wildfires. The Kernel Density Estimation (KDE)

method was used to analyze the possible spatial patterns of the tweets referring to the

wildfires. This analysis was also combined with the temporal evolution of the tweets and a

term frequency analysis to validate the ability of social media to characterize an emergency

over time and space. Also, other parameters, such as the influence of the opinion leaders,

were taken into account. Twitcident [126] was a web-based system connected to emergency

broadcasting services that automatically searched, filtered and classified emergency situa-

tions. Additionally, analytical tools and users were allowed to make customized searches for
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specific events, including wildfires.

In the 5G context, dynamic scaling of Edge and Cloud Computing resources, i.e., the

on-runtime, on-demand provisioning of the amount and type of server resources, plays a

key role for the performance guarantee of time- and mission-critical applications. On the

contrary, a priori, static resource provisioning fails to deal with unanticipated changes in

resource demands [127]. As explained earlier in Chapter 3, resource scaling can also be clas-

sified as either Vertical or Horizontal. With the term Vertical Scaling, a reference is made to

the ability of increasing/decreasing the capacity of existing virtual machines or containers

by dynamically adding/removing CPU cores, RAM or storage; on the other hand, Hori-

zontal Scaling deals with the activation/deactivation of servers and the number of virtual

machines or containers to be placed in them. It is reminded that the interested reader can

refer to [128] for a complete survey on Cloud elasticity. Leontiou et al. [84] proposed a

hierarchical vertical and horizontal scaling framework for Cloud services. At the bottom

level, fuzzy Takagi-Sugeno systems were used to model the dynamic operation of the VMs

and a robust controller was designed to guarantee the Quality of Service (QoS) require-

ments and a stability analysis was discussed. At the top level, an unbounded knapsack

problem was solved in order to simultaneously tackle the application placement within the

active servers and the load balancing of the incoming requests into the VMs. Saikrishna et

al. [129] proposed an algorithm to develop a multi-objective switching controller that en-

sured asymptotic stability with pole placement and addressed the problem of performance

management of a web-server hosted on a private Cloud. Moreover, in [130], Grimaldi et

al. used a PID gain scheduler to horizontally scale the available resources dynamically and

achieve a desired CPU use. Similar to this work, the authors tried to maintain the control

error close to zero by splitting the operating spectrum of each VM to distinct regions and

solving an optimization problem to calculate the controller gains within them. Finally, the

authors of [131] used operating regions, as well, and designed specific models to represent

the behavior of each one of them; multiple fixed PI feedback controllers which alternated

on runtime based on the operating region, comprised a switching control system that dy-

namically allocated CPU capacity to the VMs in order to achieve a desired average response

time.

Contrary to Cloud Computing, little attention has been given to the dynamic resource
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scaling in Edge Computing settings. The resource provisioning problem on Edge Comput-

ing is usually dictated by the computation offloading strategy. Again, as explained in the

previous chapter, Computation Offloading is the process of redirecting the heavy processing

tasks of mobile or IoT devices to a nearby Edge Computing infrastructure for execution.

Most of the proposed computation offloading studies used fixed modeling and static resource

provisioning for the Edge Computing resources. However, these resources are, as mentioned

earlier, limited and a dynamic resource scaling approach is necessary to guarantee QoS.

Jia et al. [99] proposed a load balancing framework for geographically spread cloudlets, i.e.,

small-scale data centers or clusters of computers designed to quickly provide Cloud Comput-

ing services to mobile and IoT devices, within close geographical proximity. The operation of

each cloudlet was modeled with the use of queuing models and static provisioning of cloudlet

resources was adopted. A scalable load balancing algorithm was then used to minimize the

maximum average application response time of the cloudlets. In [95], the authors presented

a comprehensive analysis on energy consumption modeling in Edge Computing settings.

These models were classified as either static, flow-based or time-based. Furthermore, con-

sidering various network parameters, the energy consumption in Cloud and Edge Computing

related scenarios was discussed. The experimental results demonstrated that computation

offloading can significantly reduce the energy consumption of IoT devices. MAGA [132]

proposed a mobility-aware, genetic algorithm-based decision system that aimed to improve

the offloading success rate and reduce the energy consumption on mobile devices while the

response time requirements were met. Frequent user mobility patterns were inferred via a

tail matching sub-sequence mobile access prediction method and a modified genetic algo-

rithm decided which components of the work flow were to be offloaded or executed locally

otherwise. The resource provisioning of the cloudlets was considered static.

4.3 Contribution & Outline

This work proposes a hierarchical CPSS that leverages the advantages of a control-based

resource allocation mechanism, in terms of achieving high request throughput, while pre-

serving the QoS above the acceptable levels and keeping the energy consumption minimum.

In more detail, at the bottom level, the sensing capabilities of IoT devices are exploited for
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continuous fire monitoring. The computation intensive image processing is offloaded to the

middle level, where the SMOKE framework implements the horizontal and vertical scaling

of the edge servers’ resources, in order to guarantee specific response time requirements.

Finally, at the top, Cloud Computing layer, the image classification results are forwarded

and combined with various sensor data, as well as with a spatial and temporal analysis of

social media actions and then a decision making service infers additional information on

the incident severity. This information is subsequently forwarded to the responsible local

authorities for further actions. As already mentioned, this mechanism is extending the

work presented in Chapter 3 and scaling it to accommodate the needs of a CPSS, while

now utilising containers instead of virtual machines for serving the workload of the hosted

applications. The main contributions of it can be summarized to the following three topics:

1. a vertical scaling mechanism that fits the needs of an emergency detection, IoT-based

setting; contrary to a Cloud Computing environment, the computational resources

available on the servers located at the edge (specifically in a rural area) are lim-

ited [133]. Hence, the simultaneous tenancy of more than one emergency detecting

applications at each edge server may risk the Quality of Service (QoS) satisfaction.

Consequently, a dynamic resource allocation and admission control mechanism is de-

veloped with the use of a linear switching system and a state feedback controller.

2. a two-staged horizontal scaling mechanism; in the same direction, this optimization

mechanism is responsible for the activation/deactivation of each edge server, the place-

ment of the applications’ instances within them and the distribution of the incoming

offloaded requests among those instances, while taking into account various perfor-

mance criteria.

3. a Cloud decision making service; Among the main challenges in early detection of

fire related emergency situations is the richness of the data that are gathered from

various sources (either sensors or humans), the efficient and fast processing of them

and finally the estimation of the criticality level of the emergency situation. In this

work, the decision support system aims to combine data from diverse sources such as

IoT-generated images, satellite information, historic weather data and social media

services but at the same time aims to produce decisions in a timely manner.
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4.4 System Architecture

The hypothetical scenario addressed in this work describes an IoT network, consisting of IoT

nodes equipped with camera modules (e.g., Raspberry Pis or IQ FireWatch [134]), capturing

images in order to detect emergency incidents (i.e., fire). At the same time, it is assumed

that wireless sensors are scattered in the same forest area; in this case, a wireless sensor is

nothing more than a low cost sensor, monitoring gas-emissions, humidity or smoke in the

trees or vegetation. The proposed CPSS is envisioned as a semi-rural area installation were

forests are in the proximity of a populated area. This has a twofold effect on the system;

first, its whole operation is based on a local private network (e.g., WLAN) and a cellular

network is not necessary. Second, civilians with mobile devices are present. The sensors’

data alongside the information provided from the IoT nodes and the social media traffic

produced by the human factor, are fed to a decision-making service deployed on the Cloud,

able to assert the risk level and give further guidance to public authorities. Finally, an

emergency mode of the CPSS is specified, when, in the case of a possible fire outbreak and

in order to better examine the incident, there is a rapid increase of the pictures needed to

be analyzed.

Thus, regarding this IoT-based fire detection scenario, the following identified use-case

requirements evince the importance of a scalable Edge Computing architecture to accom-

modate the offloading of the computationally demanding processes to the network edge.

• Timely incident detection and identification: The ability of wildfires to spread out ex-

tremely quickly [135], makes the detection and suppression at an early stage a necessity.

Such time-critical applications, demand low-latency access to servers at the edge of

the network, ability to perform rapid computations and take immediate decisions.

• Optimal use of IoT nodes resources: As mentioned above, although IoT nodes demon-

strate excellent fire-detecting fitting capabilities like automation and control of their

functionality in relation to their perception of the environment, wireless data transfer-

ring, small size and the ability to form scalable networks, they usually lack the com-

putational and energy resources to perform complex tasks and operate autonomously

for prolonged periods of time. As a result, frequent usage of sensors, communication

and data processing has to be minimized in order to find a balance between increasing
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battery life and accurate incident detection. The proposed Edge Computing approach

enables IoT nodes to offload energy and/or computational hungry tasks (i.e., image

recognition) to servers in proximity, wirelessly via a local network. This placement

enables low-latency access to the servers, contrary to the access to the remote Cloud

through the public Internet, which might be unpredictable when it comes to response

times.

• Ability to handle the application’s rapid scalability needs: The hypothesis that IoT

nodes produce a fluctuating workload, depending on whether they operate normally

or in the emergency mode, increases and decreases the offloading rate for a specific edge

server rapidly. As a result, computational needs at the edge of the network may vary

differently from time to time for the image recognition application. There is also the

possibility that additional applications are co-located at the edge servers; this makes

static resource provisioning a problematic situation that may lead to resource under-

use and subsequently to hold the ability of applications to coexist at the same server

back, or resource over-use which will possibly introduce delay to the execution off the

offloaded requests and jeopardize the application’s mission-critical aspect. Thus, the

need for fine grained resource allocation and QoS guarantee is evident.

• Interoperability of sensors’ Data: A critical obstacle when integrating information

from heterogeneous sources is that the underlying information systems (e.g., IoT plat-

forms) are mainly isolated and act as “vertical silos”. The lack of interoperability

among these systems impedes the creation of cross-domain, cross-platform and cross-

organizational services. To overcome these obstacles syntactic and semantic interop-

erability solutions are necessary to be enforced. To this end, syntactic interoperability

is associated with the ability of systems to exchange information in order to communi-

cate on a technical abstraction level. Semantic Interoperability, denotes the ability of

different applications and business entities to understand exchanged data in a similar

way, implying a precise and unambiguous meaning of the exchanged information.

• Privacy protection of individuals: A common challenge that society has to address in

the recent years is to keep a balance between preventing and mediating the damage

that occurs from disastrous situations without on the same time violating human rights
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such as the right of privacy protection of individuals. Advances on sensing technologies

and data collection mechanisms make feasible the deployment of vast sensor networks

that can potentially become intrusive and violate established regulations (e.g., GDPR).

Edge computing paradigm assists in keeping the processing at the edge of the network

thus avoiding the indiscriminate transmission and storage of sensitive information,

such as image and video recordings.

In this section the design of the CPSS’ architecture is described in more detail. As de-

picted in Figure 4.1, the designed system consists of two main agents, namely the SMOKE

framework and the Intelligent Decision Making component, and four subordinate agents

which interact with each other and contribute in a unique way to deal with the emergency

incident; the IoT nodes, the Sensors, the Social Media and the Public Authorities. The Intel-

ligent Decision Making agent operates as a Cloud component gathering data from the other

components, operating as the top layer of this CPSS. Although this proposed architecture

is intrinsically linked with the early-fire detection use case, which is studied in this work, it

can be easily adapted to accommodate a variety of settings with similar requirements.

Figure 4.1: CPSS Architecture.
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4.4.1 SMOKE

The SMOKE framework follows a top-down design in a manner that there exists a centralized

controller that makes the decisions, which are in turn propagated to the lower levels of

the architecture to be realized by local controllers. The proposed architecture is generally

applicable in a single-site Edge Computing infrastructure but can be easily expanded for

Edge-to-Cloud or Edge-to-Edge collaboration; its components are described in detail bellow.

Figure 4.2: SMOKE Architecture.

Containerized Applications

SMOKE supports the simultaneous management of co-hosted applications that are able to

receive offloaded requests on the edge servers. The only prerequisite is that those applications

be containerized. In this work, for the sake of demonstrating the multitenancy efficiency

of SMOKE, two TensorFlow-based object recognition applications, able to recognize images

containing events of interest (i.e., fire), were developed and trained off-line in a supervised

manner. These applications were then containerized and deployed on the Docker Platform

installed of each edge server. Containers were selected instead of VMs, as a means of

virtualization, because of their overall lower overhead, smaller footprint and lightweight

vertical scalability.

78



Central Controller

The offloaded traffic, generated by the IoT nodes, is directed to the Central Controller (lo-

cated on the Central Server) through a local Wireless Access Point. Here lies the upper level

control process of the proposed mechanism, as depicted in Figure 4.2. To accommodate this

control process, time in the proposed framework is quantized in discrete time intervals; at the

beginning of each time interval this component selects an appropriate container formation

to be implemented to each edge server directly connected to it and consequently distributes

the incoming workload accordingly. This formation defines the number of active servers

alongside the number and the operating point of the containers to be placed in them. With

the term operating point a reference is made to the number of the offloaded requests that

each container will accept, the number of cores that it will be allowed to use, as well as the

average response time it is requested to achieve during the next time interval. These operat-

ing points of the containers are calculated on the Local Controllers, as described in the next

section. This control process, hereinafter referred to as Horizontal Scaling, is performed in

an on-line and proactive manner, leveraging an internal prediction mechanism, the Workload

Predictor, which provides an estimation on the number of requests to be expected on the

time interval, for each application. The essential input for this estimation process is provided

by the Monitoring Service component of the Local Controller deployed in each edge server,

which is responsible for collecting data regarding both the network traffic (i.e., offloading

requests admitted and end-to-end response times) and the containers’ resources use (i.e.,

CPU usage) at each given time. Then, the Optimizer component uses the output of the

Workload Predictor and the feasible operating points, calculated offline, and computes the

optimal number of active servers and containers required to meet the different performance

criteria. The theoretical background of this process is discussed in more detail in Section 4.5.

Hence, depending on the aforementioned decision and considering the predicted workload for

each time interval, the Central Controller dictates the creation, scaling and destruction of

the application-specific containers to the Local Controllers accordingly. Also, at the end of

each time interval, the average classification score of the offloaded images is calculated here.

Additionally, when a classification score above a predefined threshold emerges, indicating

a possible fire outbreak, information is transmitted to the respective IoT node regarding

its new operating mode (normal or emergency). The time between the capturing of the
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image of interest and the transmission of the updated IoT node information is defined as

the application’s response time. All the monitoring data involved in this process are stored

in a relational database present in the Central Server, in order to be used for demonstration

purposes. It is also worth noting here that, physically, the Central Server is nothing more

than an edge server, located on the users’ proximity, with a more advanced role; this of the

decision maker.

Local Controller

At the lower level, each edge server is equipped with a Local Controller, responsible for both

gathering the request-related statistics from the containers, as mentioned earlier, needed for

the Monitoring Service and tackling the small fluctuations of the incoming workload, ac-

cording to the predicted number of requests for each time interval. The lower level control

process implemented in this component moderately scales the containers vertically, pro-

viding the required resources, thus realizing the decision made by the Central Controller.

In more technical terms, the communication between the Central Controller and the Local

Controllers is performed via a REST-API present in the latter; the Local Controller also uses

the Docker Platform in order to scale the containers. This Vertical Scaling ensures that the

containers remain within an area around the selected operating point, hence guaranteeing

minimum and stable application response times, in order to meet certain QoS requirements.

Section 4.5 provides further mathematical justification for this process.

4.4.2 Intelligent Decision Making

This Intelligent Decision Making (IDM) service is deployed on the Cloud Layer of the pro-

posed architecture. The geo-tagged images are processed and classified at the SMOKE

framework on the edge layer and, if the average classification score is above a confidence

threshold of fire and smoke detection, then an ongoing emergency situation probably occurs

and the IDM’s operation is triggered. In order to further evaluate the criticality of the

incident at the targeted area additional data are collected by the Data Collection Engine in

order to be fed to the Decision Algorithm. The latter applies logical rules on the provided

data collection in order to timely infer the level of the associated danger of the situation and

render the respective estimation in an intuitive manner.

80



Figure 4.3: Intelligent Decision Making Architecture.

Data Collection Engine

As illustrated in Figure 4.3, the main data sources integrated with this system are:

• SMOKE service: The SMOKE service provides the classification score of the images

along with the time and location, in terms of GPS coordinates corresponding to the

IoT node’s location, from the associated area that the images were captured. It is

the image classification score that triggers the overall data gathering process, while

additional data are retrieved based on location criteria indicated by the respective

images coordinates. To this end, a reverse geo-coding process is applied in order to

extract the associated readable addresses and place names which are particularly useful

in the retrieval of data from social media services.

• European Forest Fire Information System: The European Forest Fire Information Sys-

tem (EFFIS) calculates on a daily bases an index, called Forest Fire Weather Index,

for all the regions of EU based on environmental and weather related information,

such as the humidity of the air at the beginning of the afternoon; the temperature

in the middle of the afternoon; the precipitation during the last 24 h; the maximum

speed of the average wind. The fire danger is mapped in five classes with a spatial

resolution of about 16 km. The fire danger classes are the same for all EU countries

and information is provided encoded as GeoTIFF format maps showing a harmonized

picture of the spatial distribution of fire danger level throughout EU. The GeoTIFF
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standard allows georeferencing information to be embedded within a TIFF file. The

Fire Danger Forecast maps are updated daily and are freely available from the EFFIS

online service [136]. The actual file has a small size (<1 MB) hence it can be efficiently

processed. The five classes of the Forest Fire Weather Index embedded as different

color codes (bands) in the GeoTIFF file are:

1. LOW—Fuels do not ignite readily from small firebrands although a more intense

heat source, such as lightning, may start fires in duff or light fuels.

2. MODERATE—Fires can start from most accidental causes, but with the ex-

ception of lightning fires in some areas, the number of starts is generally low.

3. HIGH—All fine dead fuels ignite readily and fires start easily from most causes.

4. VERY HIGH—Fires start easily from all causes and, immediately after ignition,

spread rapidly and increase quickly in intensity.

5. EXTREME—Fires start quickly, spread furiously, and burnt intensely. All fires

are potentially serious.

• Social networking services. In the current implementation of the IDM the Twitter

micro-blogging platform has been integrated. Twitter maintains a total number of 335

million monthly active users, who produce more than 500 million number of Tweets

per day. The fact that 80 percent of Twitter users use the service through mobile

devices, makes this social network an ideal platform for applying the social sensing

paradigm. In addition, Twitter has been selected in the scope of the work presented

in this thesis due to its openness and the almost unrestricted access to the publicly

available user provided content and profile information through APIs. Data collection

for the needs of the IDM is facilitated through hashtags and keywords associated

with wildfires combined with tags denoting geo-reference. Although Twitter offers the

option to geo-tag the provided Tweets, this feature is not frequently used, thus it can

not be exploited effectively for the needs of the IDM service. On the other hand, it is

a common practice for Twitter users to introduce their own tags in order to express

the connection of their post with an area. The reverse geo-coding allows the IDM

to extract a set of local area names, also expressed in local language, which will be
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used as keyword criteria for retrieving Tweets that potentially are associated with an

emerging wildfire incident.

Decision Algorithm

The Decision Algorithm aggregates information from the described sources, homogenizes

their input and generates a normalized score that ranges from zero to one (highest value)

denoting the emergency level. The overall operation is triggered periodically by SMOKE

classification score and runs continuously, meaning that the IDM may receive multiple im-

ages’ scores from various locations, where a decision should be extracted for each case. As

it is already stated, the image classification score is the main criterion for the early identifi-

cation of the fire incident while the additional data gathered are utilised in order to further

evaluate the severity of the incident in terms of human presence in the area, potential fire

spreading, etc.

4.5 System Modeling

4.5.1 SMOKE Scaling Framework

As described in the previous section, a single SMOKE deployment consists of many Lo-

cal Controllers and one Central Controller; each Local Controller aims at controlling and

regulating the operation of containers that run on the same edge server with it; the Cen-

tral Controller makes the decisions on the activation of the edge servers and the respective

containers, as well as the load balancing of the incoming requests. Trying to be compliant

with the taxonomy defined on the survey on [128], the Local Controller was designed to use

linear switching systems for modeling the containerized applications and a state feedback

controller for each linear system, designed to apply admission control decisions. At the same

time, the Central Controller solves a mixed integer programming problem to determine the

number of active servers and containers, which are necessary for serving the total workload

of the hosted applications.
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Local Controller

As mentioned above, the dynamic operation of the containerized applications is modeled

with the use of switching linear systems, with the switching criterion being the number of

the allocated CPU cores to each container. This modeling approach captures the dynamic

behavior of the containers under different operational conditions and enables performing

indirect resource allocation. In this case, the various operational conditions, under which

the modeling is performed, include different image sizes, resolutions and transmission delays

(depending on the network congestion at each given moment) per request and a variety of

request rate values. So, for each different CPU core allocation, the operation of the container

is described by a discrete linear system of the following form,

x(t + 1) = ax(t) + bu(t), (4.1)

where x(t) is the state variable that expresses the average application response time for time

interval t and u(t) is the control variable that represents the number of the admitted requests

within time interval t. Here, with the term admitted the requests that are actually allowed

to the container for processing are described. The parameters α and b of the above model

are estimated by using the Recursive Least Square (RLS) algorithm [137].

Physically, a container with c allocated cores is constrained to serving up to ue requests

of the containerized application while maintaining an average response time of xe. This pair

(xe, ue) is called an operating point and generally, for each such switching system, a set of

feasible operating points of this kind can be computed according to various performance

criteria and while taking into account the constraints of the state and input variables. In

the discussed case, these feasible operating points are computed by solving the following

linear programming with the goal of maximizing the number of the admitted requests:

maxxm,xM ,xe,um,uM
ue

subject to

xe = axe + bue

xm ≤ xe ≤ xM

um ≤ ue ≤ uM .

(4.2)
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The first constraint implies that each operating point must also be an equilibrium of

the discrete linear system and this will guarantee its stability and confinement in a specific

operating area around it. The second constraint dictates that the state variable must lay

between a minimum (xm) and a maximum value (xM ) set by the application’s requirements,

while the last constraint refers to the control variable varying between the minimum available

(um) and the maximum available value (uM ).

For each operating point of every linear system, a state feedback controller is designed in

order for the respective containerized application to meet the response time requirements.

This control law is defined as,

u(t) = K(x(t)− xe) + ue, (4.3)

where K ∈ R is the control gain. Applying (4.3) in (4.1), we get the closed loop form of the

linear system,

x(t + 1) = (a + bK)x(t) + c, (4.4)

where c = b(ue−Kxe) is a constant term. Regulating the eigenvalue λ = a+bK of the system

(4.4), the stability of the closed loop system and the convergence speed to the equilibrium

point are affected. Thus, a stable eigenvalue is selected, which lays inside the unitary circle,

in order to compute the control gain K = λ−a
b . To give a better understanding of the

whole process Figure 4.4 illustrates a block diagram describing the closed loop system. The

following list explains the role of each signal presented there,

- Reference Input: The average application response time for the respective operating

point xe.

- Control error: The difference between the actual average response time of the last

interval and the reference value, x− xe.

- Controller: An affine switched state feedback control process, as the main process in

the Local Controller.

- Control Input: The maximum request rate to be admitted at the container for the

next time interval, computed by (4.3).
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- Docker: The Docker Platform as the the control system’s actuator.

- Container: The containerized applications as the controlled process.

- Measured Output: The measured average application response time of the container

for the previous time interval.

- Feedback: The sensor of the control system, monitoring and recording its current state

at each time.

Figure 4.4: Feedback control system in Vertical Scaling.

Central Controller

The main functionality of the Central Controller on the top layer, is to decide the switching

action for the Horizontal Scaling process, as described in subsection 4.4.1. As shown in

the upper part of Figure 4.4, the Optimizer component consumes information regarding

the available operating points and the predicted workload, for the next time interval, for

each application. The prediction of incoming workload, estimated according to a linear

trend forecasting procedure as described, in [83], alongside the operating points facilitate

the formulation of an optimization problem solved by the Optimizer; as mentioned earlier,

the assumption that each application is deployed to at most one container per edge server

is made. Furthermore, at a preliminary stage, an offline exhaustive procedure where all the

feasible combinations of the containerized applications’ operating points within a server, is
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calculated. Feasible combinations are the ones that do not exceed the total computational

capacity of the respective server. Then, the Optimizer minimizes the number of active

servers and the allocated CPU resources by solving, sequentially, two mixed integer linear

optimization problems (MILPs). At the first MILP, the minimum number of edge servers

to be activated on the next time interval, in order to serve the estimated workload, is

determined by solving the following,

minS,P,A,R̃i
Sa

subject to

Sa ∈ S

pij ∈ P

pij ∈ [0, S]∑
∀i∈A

∑
∀j∈S pijuei ≤ R̃i.

(4.5)

Here, the first constraint dictates that the servers to be activated are selected from the pool

of the available servers. The next two constraints imply that each of the selected containers

to be deployed on the selected servers corresponds to an existing operating point and that

their placement on the active servers must correspond to an acceptable combination. Finally,

the last constraint means that the estimated total workload for each application, R̃i, must

be served by the containers. On the second MILP, the minimum amount of computational

resources, in terms of CPU cores per container per server, are computed, while taking into

account the result of the previous optimization,

minSa,P,A,R̃i

∑
∀i∈A

∑
∀j∈Sa

pijCij

subject to

pij ∈ P

pij ∈ [0, S]∑
∀i∈A

∑
∀j∈S pijuei ≤ R̃i,

(4.6)

where Cij is the number of allocated CPU cores to the container of the ith containerized

application on the jth activated server. The reason behind distinguishing the optimization

process into two distinct subproblems is that, at first, an attempt to solve a Multi-Objective
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MILP was made by combining the two optimization targets to one weighted objective func-

tion, but that led to the one objective being successfully optimized while the other one

concluded to a sub-optimal solution, regardless of the assigned weights. Also it should be

noted that the number of edge servers is relatively small so the overall computation time of

these optimization processes does not disrupt the Central Controller’s smooth operation.

4.5.2 Decision Making Algorithm

As already stated, the decision making process is triggered by the SMOKE system when

the fire-related average classification score of images, captured by the IoT node, is above

a predefined threshold, thus indicating a considerable probability of fire occurrence. The

respective score sent to the IDM is denoted by Sim(t, p), where t is the time when the image

was captured by the IoT node and p = (x, y) expresses the GPS coordinates of the point

where the IoT node was located at upon image capturing (latitude x and longitude y). As

already stated, the value of Sim(t, p) lies within the range of [0, 1].

Once Sim(t, p) is obtained, the IDM triggers a reverse geo-coding process in order to map

the GPS coordinates to a specific country and language, and to extract multiple area names

for the specified point. The output of this process is a set of location-related keywords or tags

denoted by L(p) = [lp
1, lp

2, ..., lp
N ]. Various combinations Clf

r (p) = [lp
i , lp

j , ..., fk, fl, ...] of these

tags coupled with terms fi linked with fire emergency are generated and are subsequently fed

to the Twitter API in order to fetch all Tweets that involve the specific term combinations

and are posted in the latest window frame of duration ∆. The population N lf
r of the retrieved

Tweets TW lf
r (Clf

r (p), [t−∆, t]) = [twlf
r1, twlf

r2, ..., twlf
rN ] that use both keywords linked to the

area of interest as well as terms related to fire emergencies is then averaged by the population

N l
r of all Tweets TW l

r(Cl
r(p), [t−∆, t]) = [twl

r1, twl
r2, ..., twl

rN ] that only use keywords linked

to the area of interest. A respective social media score Ssm(t, p) =
∑

r

N
lf
r (t,p)

2

Nl
r(t,p)∑

r
N lf

r (t,p)
is eventually

calculated that lies within the range of [0, 1].

With regards to the Fire Weather Index (FWI) provided by EFFIS, the IDM retrieves the

respective values from the GeoTIFF image that correspond to the specified GPS coordinates

of the point of interest p = (x, y). To deliver this, mapping of the GPS coordinates above to

the GeoTIFF geo reference system is necessary. The value of the retrieved FWI for the spec-

ified coordinates is FWI(t, p) and the respective normalized score is SF W I(t, p) = F W I(t,p)
5
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that lies within the range of [0, 1].

Finally, the IDM estimates an overall score Sfire(t, p) of fire incident at point p and time

t that indicates the severity of fire incident occurrence and is expressed as

Sfire(t, p) = wim · Sim(t, p) + wsm · Ssm(t, p) + wF W I · SF W I(t, p) (4.7)

where the weights wim, wsm, wF W I indicate the significance of the respective scores, lie

within the range of [0, 1] and for which it stands that wim + wsm + wF W I = 1. The

experiments conducted so far have assumed that wim ≥ wsm ≥ wF W I , considering the

reliability of the respective information sources. The nature of the assigned weights indicate

that the image classification engine is considered as more important for the initial detection

of the fire incident while the other two sources of information (social media data and EFFIS)

have a complementary role in further evaluating the severity of the situation.

4.6 Experimental Evaluation

In this section the experimental setup is thoroughly presented alongside an evaluation of

the obtained results. At first, the significant role of SMOKE is evinced, after intense exper-

imentation for proof of concept of the Horizontal and Vertical resource scaling on an Edge

Computing topology and a comparison of the proposed architecture with the naive solution

of the static resource allocation is presented. Subsequently, a time-related evaluation on the

socially-aware intelligent decision making component, with input from social media, addi-

tional sensors’ data and image classification scores produced by the SMOKE framework, is

discussed.

To demonstrate the operation of a SMOKE installation, the hypothetical setting of a

forest and IoT nodes mounted on UAVs that fly over it, while capturing images in order to

detect fire occurrence, is emulated. As discussed in Section 4.4, at the same time the presence

of wireless sensors and civilians using social media is assumed in the field. Furthermore, two

additional assumptions are made; first, that due to the large space UAVs need to cover

and investigate, each one of them takes over a smaller area, while, second, in the case of a

possible fire outbreak, they are dictated to gather to the area of interest to better examine
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the incident, leading to a rapid increase of the pictures offloaded. UAVs were selected as

the evaluation scenario because, although they pack amazing characteristics like operational

versatility and durability in various weather conditions, they usually lack the resources to

accommodate long-spanning missions, like vast forest areas surveillance. Additionally, the

hypothesis that UAVs gather in a specific geographic area when certain events occur, and

spread otherwise, allows for denoting the fine-grained, scaling-enabled resource allocation

taking place in the system.

At this point, it should be made clear that UAV-based image analysis and fleet coor-

dination algorithms are decoupled from the CPSS initial design and operation. Therefore,

given the context and focus of this work, UAV actual, real world operational methods and

algorithms—though very challenging and of high practical importance—are considered out-

of-scope of this chapter. They just serve the purpose of a conventional use case to enable the

demonstration of the capabilities of such a combination of an Edge Computing framework

and a decision-making platform.

4.6.1 SMOKE Evaluation

The first experiment illustrates the performance of the SMOKE framework when deployed

on the NETMODE testbed [138] at the National Technical University of Athens in Greece.

In this case, two identical 16-core edge servers with 16 GB of RAM were used, that each

hosted two TensorFlow [139]-based applications, deployed in separate Docker containers

as explained in Section 4.4. Without loss of generality, the assumption that each edge

server can host exactly one container of each of these applications is made, due to the

fact that more than one instances of the same service would introduce additional overhead

costs when deployed on different containers on the same host. The differentiation between

those two applications, developed solely for the experimentation purposes, was that the

first implemented an image classification for conventional, visible light pictures, while the

second one for infrared pictures. The model trained for the conventional image recognition

was fed with a specific dataset [140] containing either pictures of forest wildfires or plain

forests. For the infrared recognition model, a synthetic dataset was used, generated from

the aforementioned one, by applying an infrared Photoshop effect to each image. Following

the architecture described earlier, these edge servers also hosted an instance of the Local
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Controller. Regarding the emulation of the UAVs, two Raspberry Pi devices were acting

as the mobile nodes, each of which was assigned to offloading requests to the edge servers,

targeting one of the two applications. The mobile nodes were connected via Wi-Fi to an

Alix3d2-based node hosting the Central Controller, which was in turn linked via Ethernet

to the two identical edge servers. This whole setting represented a fully deployed SMOKE

installation in a forest area. It should be once again noted that the process from the moment

a UAV captured an image and offloaded it to the proximate edge server Infrastructure for

processing until the result was calculated, as stated before, was defined as the response

time. In addition to this, it was assumed that the edge servers were responsible for the

UAVs’ operating mode, depending on the situation’s severity. Thus, the time until the

detection of a possible fire incident, i.e., the response time, should kept below an acceptable

value. Finally, the average classification score of the captured images was calculated and

advertised to the IDM on the Cloud nodes, at each time interval.

In the presented emulation, this time interval, that additionally defines the overall op-

eration of the SMOKE framework, as explained in Section 4.4, is set to 30 sec. To make

the offloading patterns more plausible, the amount of requests produced within the interval

follows a Poisson distribution, while the inter-arrival time between two successive requests

follows an exponential distribution. As depicted in the third diagrams of Figures 4.5 and 4.6,

the experiment scenario kicks off with the Raspberry Pis offloading an average of around

10 requests per time interval (blue-colored, solid line), for each application, simulating a

normal period where no fire indications are present in the forest area (tracking mode). After

approximately 5 min, the average number of requests per interval starts escalating, mimick-

ing the UAVs’ behaviour of gradually approaching the area of interest, i.e., the framework’s

proximity, when an emergency situation is detected (emergency mode). This average value

peaks and stabilizes at 25 from the 20th to the 40th simulation min, where it is assumed that

a fire has been recognized and more visual coverage of its area and spread rate is required.

Finally, in the last part of the emulation, the offloading request generating rate returns to

normal values, reflecting the wildfire being put under control and subsequently the UAVs

reverting back to their normal operating mode.
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Figure 4.5: Conventional Tensorflow application.

Regarding the evaluation of the scaling mechanism of the proposed framework, one can

observe the following; in the second diagrams of Figures 4.5 and 4.6, that the Central Con-

troller’s Horizontal Scaler adapts to the increased requirements in computational resources

while on emergency mode (blue-colored solid line) and dictates the activation of a second

server (black-colored, dashed line) between the 10th and 40th min of the emulation, in order

to accommodate the mobile devices’ higher average offloading request rate. On the contrary,

for the most of the initial as well as the final part of the emulation, only one server is active

(red-colored, dotted line), proving to be adequate for the tracking mode of the UAVs. As ex-

plained thoroughly in Sections 4.4 and 4.5, the Workload Predictor component estimates

the incoming workload for the next time interval and then the Horizontal Scaler selects an

appropriate formation, in terms of number and operating point of containers to be placed in

the active servers, for each following time interval. Table 4.1 contains the offline calculated

operating points for both application-specific containers, from which the Horizontal Scaler

gets to choose; each operating point defines the nominal amount of offloaded requests, ue,

that the respective container is able to process, alongside the reference input xe, when 1, 2, 3

or 4 Cores are allocated to it. A remark regarding the restriction of cores to be made avail-

able to each container to 4, is that this seemed to be a plateau where the containers became

saturated and could not serve significantly more requests, despite allocating more cores to
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them. Furthermore, one can observe that certain outliers in the Poisson distribution, of

either rapid increase or decrease in the offloading requests, cause the Workload Predictor

to poorly estimate the incoming workload for the following time interval; this results to

an increased amount of rejected requests, as well as a slight oscillation on the number of

activated servers.

Figure 4.6: Infrared Tensorflow application.

Table 4.1: Server operating points.

TensorFlow Conventional TensorFlow Infrared
Cores X (s) U (reqs) X (s) U (reqs)

1 3.0 4.2417 3.5 4.9487
2 3.0 14.2357 3.5 16.6083
3 3.0 17.1731 3.5 20.0353
4 3.0 18.4604 3.5 21.5371

With respect to the Vertical Scaling part of SMOKE, the admission control process,

executed on each Local Controller of each server, results in the rejection of approximately

19.58% of the offloaded requests for the conventional image recognition application and

23.01% for the infrared one (black-colored dashed line in each third diagram of Figures 4.5

and 4.6). This is a consequence of the real incoming workload of the interval exceeding

the projected one. Although the rejected volume is not negligible, it is not detrimental to

the event detection precision. As a reminder, both these scaling processes aim to maintain
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the average response time below an acceptable value, Tref , which is an application-specific

value. To achieve this, the reference input xe of each operating point is empirically set near

to T ref
3 . In this scenario, Tref is set equal to 10 sec for both applications, thus the reference

inputs of the operating points in Table 4.1 are set to 3 sec and 3.5 sec respectively. This

goal is achieved, as depicted with the blue-colored solid line in the first diagrams in both

Figures 4.5 and 4.6; the response time remains within the limit of 10 sec, despite the work-

load fluctuations. In these diagrams, average transmission and computation times are also

plotted with red-colored, dotted and black-colored, dashed lines respectively; one can easily

note that the average response time follows the same patterns as the average computational

time, meaning that it is mainly affected by it. The average transmission time is negligible

due to the use of the IEEE 802.11ac standard, which provides high throughput for the im-

ages (size of about 5 MB) used in this experiment. Finally, the vertical scaling of SMOKE

is compared to a static allocation of four cores for each application; the green-colored, dot

dashed line on each first subfigure denotes the average response time of this static allocation,

while on each second the total cores statically allocated. One can easily observe that when

the experiment is on the tracking mode, it demonstrates better average response times for

both applications, however, it still suffers from the phenomenon of overprovisioning; that

is when a Container uses resources, that could be allocated other processes, without signif-

icant benefits. On the other hand, when the experiment enters the emergency mode, there

are times when 4 statically allocated cores are inadequate for the processing requirements,

resulting in violation of the 10 sec limit for the average application response time. This

problem of providing less than the necessary resources is called underprovisioning and it

potentially puts the mission’s accuracy into risk.

4.6.2 IDM Evaluation

As stated in Section 4.5.2, the socially-aware Intelligent Decision Making process is trig-

gered when the SMOKE component calculates an average classification score of the images

offloaded in the last time interval that is associated with a high probability of fire incident

detection. In this subsection, the evaluation results of the IDM component are presented

focusing on the overall time overhead that is imposed until a final fire detection decision

is reached. To this end, several experiments have been executed in order to identify the
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average time delays imposed by the various individual steps of the IDM algorithm. These

steps are the following:

• Step A: Reverse geocoding process of the provided GPS coordinates, which is based

on the call of external APIs (e.g., Google Maps API) in order to obtain a set of area

names and location identifying keywords.

• Step B: Extraction of Fire Weather Index extracted from the GeoTIFF image based

on the provided GPS coordinates.

• Step C: Collection and analysis of Twitter posts that are related with the indicated

area.

Figure 4.7: Decision extraction in relation to amount of Tweets retrieved.

After executing several experiments, the results obtained indicate that the average time

required for Step A is 0.42 sec, while the average time needed for Step B is 0.08 sec. As one

can easily observe, the introduced time overhead is minimal. On the other hand, Twitter

data retrieval and Tweet processing may introduce a significant time overhead that depends

heavily on the overall number of Tweets that comply with the retrieval criteria (e.g., Twitter

posts containing tags and keywords related with the area and a forest-fire incident). Fig-

ure 4.7 illustrates the aggregated time needed for the IDM to perform steps A, B and C

for increasing volumes of retrieved Twitter data. In order to estimate the expected volume

of Twitter data that is generated during wild-fire incidents, a thorough review of existing

approaches has been conducted and an analysis of the respective datasets indicating the evo-

lution of the Tweet posts upon fire incident occurrence. The results, presented in Table 4.2,
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show that the total number of Tweets are not more than 10.000 for the entire duration of the

wild-fire incident. In the discussed case, the Twitter stream API is utilised and the retrieval

and processing of Tweets is taking place in an online mode aiming to detect the incident as

soon as possible. Hence, it is safe to assume a few hundred Tweets to be generated within

the first minutes of the wild-fire ignition. Therefore, given the results captured in Figure 4.7,

the overall time overhead imposed by the social media mining process lies between 5 and

40 sec, which enables the proposed IDM to reach a decision in a timely manner.

All in all, these two proposed CPSS mechanisms work seamlessly and efficiently towards

the time- and mission-critical application of the early forest fire detection. The SMOKE

framework manages to alleviate the IoT nodes’ computational workload, timely dictate their

operating mode and orchestrate their new formation, should it be deemed necessary, while

the servers’ resources are optimally used. Subsequently, the IDM is fed with the needed

information that enables it to communicate the decision promptly to the public authorities.

Table 4.2: A review of wildfire incidents and fire-related Tweets volumes.

Year Country Incident Location Duration (Days) Tweets Ref.
2012 USA Colorado 32 4.2 K [141]
2013 Australia Australia 21 2.0 K [141]
2014 Indonesia Sumatra 92 9.7 K [142]
2014 USA San Marcos, Bernardo 9 1.3 K [125]
2015 USA California 52 1.9 K [143]
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Chapter 5

Switching Computational

Offloading for Robotic

Applications in Edge

Computing

5.1 General Setting

In this chapter, the tradeoffs between computing and communication resources are inves-

tigated with a focus on control design, estimation, and implementation. Specific effort is

placed on exploring the offloading opportunities of the decision-making and monitoring al-

gorithms (control and estimation) in the path planning problem for autonomous agents. To

this end, a control based, computation offloading mechanism for robotic applications in Edge

Computing ecosystems is proposed [144]. In particular, an IoT-enabled localization and path

planning framework is realized and the expected gains of computation offloading are verified

by utilizing a real Edge Computing setting. To achieve this, local and remote localization

and path planning controllers are designed and implemented, followed by a scheduling mech-

anism. The offloading mechanisms are treated as switches, leading to different dynamics of
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the resulting closed-loop system.

In more detail, regarding the localization process, a decision algorithm is developed, that

triggers an accurate image-based pose estimator in the cloud/edge, whenever the uncertainty

of the robot’s position and orientation becomes too large. Regarding the path planning

part, a more accurate, however more computationally intensive decision algorithm, runs

remotely in the edge/cloud, whenever a prediction cost indicates a possible amelioration of

the current reference trajectory generated locally. Roughly, for both cases, the offloading

decision takes into account the position of the robot, the network traffic and the available

computation resources in the edge/cloud (estimated by a Kalman filter). These switches

compose a switching system that is adaptive and can operate under different scenarios and

applications. This architecture perspective, which constitutes the main contribution of this

work, offers the proposed framework a degree of contextual awareness; that is the ability to

sense and dynamically adapt to the robot’s environment, implicitly enhancing to an extent

the robustness of its operation, as well as improving the QoS of the supported applications.

5.2 Related Work

Many works have been exploring the benefits of that computational offloading provides to

robotic applications [145]. Open challenges in this area throughout the literature are con-

cerned with developing adaptive multi-robot/machine control, capturing, modelling, pre-

dicting and anticipating the agent’s interactions and designing distributed control and path

planning algorithms that deliver flexible and safe working environments. The offloading-

based studies leverage the network and computing capabilities of edge servers to execute

remotely navigation or localization algorithms. To begin with, the authors in [146] pre-

sented how two reference architecture concepts, namely Network Function Virtualization

(NFV) and Multi-access Edge Computing (MEC), can be utilized on orchestrating network

and computing resources for deploying robotic applications. Furthermore, they proposed

an integration of a MEC architecture in an NFV environment. To demonstrate the ben-

efits of this hybrid architecture, the coordination of a mobile robot swarm on two robotic

applications was used.

Approaches similar to ours include [147], where gesture-based semaphore mirroring with
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a humanoid robot is split to remotely and locally executed functionality; [148], in which

the authors identify a three-layered environment (Robot, Edge and Cloud) to overcome the

challenges of network limits in a Deep Robot Learning application and [149] where Dew

Robotics is introduced; this concept posits that critical computations are executed locally

so that the robot can always react properly, while less critical tasks are offloaded to the Fog

and Cloud, so to exploit the larger availability in computing, storage, and power supply. In

[150], finally, the authors utilize a Fog-Cloud infrastructure to alleviate the tasks of object

detection, tracking and mapping in a confined area. In a different manner, the authors in

[151] proposed a symbiotic robotic network for task offloading in the factory floor. Based on

their vicinity, the robots formed clusters where members could offload tasks to each other.

Additionally, a reward-based feedback task offloading mechanism was proposed to support

delay-sensitive applications. Based on these rewards, each node had a social repute score

which was used to select the appropriate node to offload the tasks and for the election of the

cluster head. However, none of the aforementioned offloading decision schemes addresses

the dynamic nature of the robot’s environment.

5.3 Contribution & Outline

The scenario addressed in this work involves a mobile robot equipped with sensing, comput-

ing, and wireless communication capabilities, which makes its way from a starting position

to a target position in an operating ground (e.g., a factory floor), navigating through obsta-

cles. This functionality is a key component to realizing autonomous robotic navigation in

Industry 4.0 use cases, e.g., warehousing and logistic robots which automate the process of

storing and moving supply chain goods. Tracking the robot location is essential for a robust

and safe trajectory planning. However, a common problem in such a scenario is that the

uncertainty in estimating the exact pose (i.e.,position and orientation) grows over time in

motion, due to inaccuracies in sensing, wheel slips, hardware failures, etc., [152]. Thus, the

importance of an accurate, dynamically adjusted localization technique is evident. The key

contributions of this work that differentiate it from the rest of the literature are summarized

as follows:

1. A novel computation offloading mechanism for robotic applications that utilises an
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Edge Computing setting to improve the accuracy of both the robot’s localization and

trajectory.

2. An offloading scheme, based on switched systems, that addresses the dynamic nature

of the robot’s movement and deals with the unpredictability in its exact pose over

time.

3. An innovative position and orientation estimation component that achieves high pre-

cision while using the simplest camera system and the minimum amount of identified

natural landmarks.

It should also be noted that the testbed of the proposed framework is a vehicular mobile

robot development platform, called AlphaBot [153] (Figure 5.6), equipped with a single

frontal pivoted camera and a Raspberry Pi 3 Model B+ as the control unit.

5.4 System Architecture

In the discussed setting, the image processing and decision algorithms become computation-

ally intensive and energy-hungry tasks. The proposed framework realizes an IIoT-enabled

assistive remote path planning mechanism, with the aim to find the expected gains of com-

putation offloading in the edge and the cloud.

Specifically, self-localization through landmark assisted pose estimation is implemented;

the robots are equipped with a camera module, while in their proximity unique cylindrical

beacons are used as landmarks to assist in the pose estimation process. In the computation-

ally demanding involved algorithms, two offloading opportunities are revealed in, namely,

pose estimation and path planning. To this purpose, a small-scale network infrastructure is

set up, connecting the robot to a wireless LAN (WLAN) through an Access Point located

within the robots’ network range, which in turn connects via a wired connection (LAN) to

a server in the robot’s proximity, the edge server.

Locally, the intangible assets include the (i) the Tracking Controller (TC), (ii) the Local

Odometry-Based Estimator (LOE), (iii) the Local Beacon-Based Estimator (LBE), (iv) the

Local Path Planner (LPP) and (v) the Offloading Decision Mechanism (ODM) components,

all located within the robot; component (i) is responsible for carrying out movement-related
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Figure 5.1: Architecture Overview. The locally executed components are highlighted with
blue color, while the remotely executed ones with green.

decisions, (ii), (iii) and (iv) are the locally executed pose estimation and path planning

applications respectively and (v) encompasses the intelligence of the proposed switching

system by monitoring the offloading-related metrics and realizing the offloading decisions.

On the remote side, containerized counterparts of the path planning and pose estimation

applications are co-hosted on the edge server; these are namely (vi) the Remote Beacon-

Based Estimator (RBE) and (vii) the Remote Path Planner (RPP) which are able to receive

offloaded requests from the robot. A more detailed discussion on these components follows

in Sections 5.5, 5.6 and 5.7.

In order to outline the sequence of interactions between the main components of the

architecture, a representative scenario is showcased in which the proposed solution applies

successfully. Figure 5.1 depicts an overview of this scenario. Without loss of generality, it

is assumed that only one robot operates in the field. Also, its starting pose, the operating

space dimensions and the obstacles’ and beacons’ positions and shapes are considered known

a priori.

A typical activity flow of this scenario, initiates with Local Path Planner component

calculating locally a trajectory from the starting position to the target position. This triggers

the ODM for the first time; should a quick analysis on the projected trajectory indicate room

for significant refinement of the selected path, the Remote Path Planner is invoked. This

analysis is based on the trajectory curvature and the degree in which the more elegant
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remote component is potentially able to smooth it around obstacles; Section 5.7.3 provides

more insight on this process. Eventually, the resulted trajectory dictates the intermediate

positions the robot needs to reach. In order to sequentially perform the transition to each

of them, the Tracking Controller component is invoked.

After reaching the next position of its trajectory, an uncertainty indicator of the pose

estimation is calculated; this indicator is a scalar that grows with time and actually accumu-

lates the error between the estimated and the reference pose after each move, as explained

thoroughly Section 5.7.1. Here, the second decision occurs; if this indicator measures bellow

a predefined threshold, the robot continues to move based on the feedback coming from the

Tracking Controller’s monitoring process, i.e., the Local Odometry-Based Estimator, which

leverages the robot’s photoelectric sensors (encoders) attached to each wheel to measure

the wheels’ angular velocities during a period of time. Else, it invokes the more precise,

but computationally heavy, Beacon-Based Pose Estimator, leveraging information coming

from the beacons in the environment. That triggers the ODM once again; the edge server

is queried to provide an estimation on the duration of the potentially offloaded pose esti-

mation task. As described by the mathematical modelling in Section 5.7.2, this duration

is proportional to the availability of the computational resources and is actually indicating

the resources able to be dedicated for the execution of this task. Based on this estimated

duration, a decision is made on whether to offload the pose estimation task to the Remote

Beacon-Based Estimator, or execute it locally. The flow ends with the robot checking if the

target position is reached. If not, it reverts to first step.

It is worth highlighting that the tracking controller, as well as the path planning and pose

estimation are aperiodic. The position of the robot on the operating ground, is defined by

the state vector xixixi =
[
x1 x2

]⊤

. The robot has to move towards the next reference position

xi
refxi
refxi
ref = [x1,ref(ti) x2,ref(ti)]⊤, generated by the path planning algorithms, to approach the

target position. Figure 5.2 gives a brief insight on the timing sequence in which the rest of the

sections will refer to. Let subscript i correspond to the step during which the robot reaches

the next reference position in ki actuation steps, while simultaneously tracking its pose.

In particular, at time t0
i the robot is in the position xi. When the next reference position

xi+1
ref is close, the uncertainty about the current estimation is calculated. Thus, the time

duration T 1
i corresponds to the time spent for localization. When the local odometry-based
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estimator is used, this time is equal to zero, while the beacon-based estimation algorithm is

time consuming. The time duration T 2
i corresponds to the path planning algorithm running

time either remote or local, which generates the next reference position. Similarly, the time

to execute the local path planning algorithm is equal to zero.

Figure 5.2: The timing sequence in the proposed scenario.

5.5 System Modeling

5.5.1 Robot dynamics

The differential-drive robot used in this study has two wheels that can turn at different

rates, allowing motion by changing the orientation and the position (x1, x2) either sepa-

rately or simultaneously. For the robot dynamics, the 2D coordinates, i.e.,position, and the

orientation of the robot are denoted by the state variables z1, z2 and z3. Hence, we consider

zzz =
[
z1 z2 z3

]⊤

=
[
xxx⊤ θ

]⊤

. The robot is controlled by the angular velocities wR and

wL, accounting for the right and left wheel respectively. The robot dynamics is defined

by the following continuous time system, based on the work in [154], using the aforesaid

state-space representation. Specifically, we have for any t ≥ 0,

ż1(t) = r

2
(wL(t) + wR(t)) cos z3(t), (5.1)

ż2(t) = r

2
(wL(t) + wR(t)) sin z3(t), (5.2)

ż3(t) = r

l
(wL(t)− wR(t)), (5.3)

where l, r are the distance between the two wheels and the radius of each wheel respectively.

The odometry measurements w̃L(tj
i ),w̃R(tj

i ) are taken at each time instant tj
i , i = 0, 1, ...,

j = 0, . . . , ki of the timing sequence introduced in Section 5.4. The corresponding discretized
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system using Euler forward method is:

z̃1(tj+1
i ) = r

2
(w̃L(tj

i ) + w̃R(tj
i )) cos z̃3(tj

i )(tj+1
i − tj

i ) + z̃1(tj
i ), (5.4)

z̃2(tj+1
i ) = r

2
(w̃L(tj

i ) + w̃R(tj
i )) sin z̃3(tj

i )(tj+1
i − tj

i ) + z̃2(tj
i ), (5.5)

z̃3(tj+1
i ) = r

l
(w̃L(tj

i )− w̃R(tj
i ))(tj+1

i − tj
i ) + z̃3(tj

i ). (5.6)

5.5.2 Tracking controller

As previously mentioned, the robot moves towards the next reference position xi
refxi
refxi
ref to reach

the target position. This transition is broken down into two parts: a rotational movement to

the new orientation and a translational movement to the new position on the grid. For this

actuation phase, given the specific robot dynamics, a tracking controller is proposed, which

is executed locally on the robot, by fixing the control inputs wL, wR to be either equal or

opposite. Therefore, the control input is w, while |w| = |wL| = |wR|. As a result, the motion

of the robot is restricted to a straight line, i.e.,“translational motion”, or a rotation around

the center of the wheel axle, i.e.,“rotational motion”, respectively. This control structure is

chosen as it is efficient for tracking purposes, leading to a simple structure of the closed-loop

system. Specifically, the closed-loop dynamics for the translational and rotational motion

are

ST ran
1 :



ż1(t) = r
2 (w(t)) cos z3(t),

ż2(t) = r
2 (w(t)) sin z3(t),

ż3(t) = 0

(5.7)

SRot
2 :



ż1(t) = 0,

ż2(t) = 0,

ż3(t) = r
l (w(t)),

(5.8)

where Stran
1 is used for the translational motion and Srot

2 when the robot needs to rotate. Let

R(tj
i ) =

∥∥∥∥∥∥∥
z̃1(tj

i )

z̃2(tj
i )

 −

z1,ref(ti)

z2,ref(ti)


∥∥∥∥∥∥∥

2

be the distance between the robot’s current estimation and
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the reference position and let ϕ(tj
i ) = z̃3(tj

i )−tan−1
(

z̃2(t
j
i

)−z2,ref(ti)

z̃1(t
j
i

)−z1,ref(ti)

)
be the angle between the

robot’s current estimation of orientation and the line connecting the robot and the reference

position. Here, z̃ accounts for the estimation of its current pose calculated by Equations

(5.4) – (5.6) at the time period of the actuation t = tj
i , j = 0, 1, . . . , ki.

Figure 5.3: The hybrid automaton of the proposed system.

The closed-loop system with the tracking controller can be modeled by a discrete-event

system, see, e.g., [155], as shown in Figure 5.3, where the control input can be calculated as

follows:

w(tj
i ) =



L1R(tj
i ), ϕ(tj

i ) ≤ ϵ2
∧

R(tj
i ) > ϵ1,Translational,

L2ϕ(tj
i ), ϕ(tj

i ) > ϵ2
∧

R(tj
i ) > ϵ1,Rotational,

0, R(tj
i ) ≤ ϵ1, Stop.

The quantities ϵ1, ϵ2 are positive constants, while the gains L1, L2 are constant control

parameters.

The reference position is reached when the estimation of its position is close, and in

particular is inside a ball of radius ϵ1 close to the reference, i.e., centered at B(xi
refxi
refxi
ref , z(tj

i )) =

{z ∈ R3 : ∥z − z̃(tj
i )∥ ≤ ϵ1}. The effect of the uncertainty is taken into account explicitly in

the offloading decision, as it will be explained in section 5.7.
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5.6 Localization and Path Planning

In what follows, the algorithms chosen for localization and path planning are presented, with

a varying degree of complexity and accuracy, that are implemented locally and remotely

accordingly.

5.6.1 Localization

The localization problem is equivalent to the pose estimation problem in the discussed

setting. Two algorithms of different complexity are implemented, namely, (i) an odometry-

based one, and (ii) a camera-based estimation. The first estimation algorithm is light enough

to run efficiently on the robotic platform. Roughly, the robot’s on-board wheel encoders

readings are fed to the motion model of (5.4) – (5.6). While this is a lightweight and fairly

accurate localization technique when it comes to short trajectories, odometry is known to

be prone to accumulative errors [156].

The second localization technique is the computationally heavier beacon-based estimator

that was also presented in [157]. Roughly, the technique is based on a bilateration method

using principles of the projective geometry. Distance calculation is based on feature ex-

traction from pictures depicting the landmarks, with the localization algorithm relying on

minimum two strategically positioned landmarks. To address this requirement, the attached

camera scans the area in front of the robot, capturing pictures and analysing them until

two landmarks are detected. Hence, computationally intensive, real time image processing

is required to achieve highly accurate results. Relevant works include [158] and [159].

(a) Beacon Schematic (b) Actual Beacon

Figure 5.4: Landmarks
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In more detail, in order to estimate the AlphaBot’s 3-degrees-of-freedom pose in the grid,

in terms of (x, y) coordinates and θ heading orientation, a single vision -based self-localization

algorithm was developed. This algorithm is classified as single vision -based, because the

robot uses a single frontal camera. Moreover, it is landmark-assisted, since it requires a single

landmark feature (width of beacon) to work. The approach taken here is feature-based and

relies on the principles of projective geometry. In particular, the cylinder was selected as

the shape of the Beacons (Figure 5.4), because of its interesting property; its 2D projection

is a rectangle, independently of any viewing angle that has a rotation axis parallel to the

cylinders axis. The Beacons are colored differently from the environment colors, e.g., blue,

red, orange and green, in order to facilitate the detection from the AlphaBot’s camera. The

camera mounted on the AlphaBot has a 30-degree horizontal angle of view, so a rotation of

six 30-degree steps is needed in order to cover the 180-degree-area in front of it, on aggregate,

and detect two, at least, Beacons. This requirement is discussed further on Subsection 5.6.1.

The following three steps are performed:

Beacon Recognition

In order to detect the presence of a Beacon within an image, the Python OpenCV Library1

was utilized; first, the image is transferred to the HSV (Hue, Saturation and Value) color

space, because this conversion is robust towards external lighting changes. In particular, in

cases of minor changes in external lighting, such as pale shadows, Hue values vary relatively

less than RGB values. After this, the algorithm applies an offline calculated HSV mask to

the image, acting as a color filter for each of the Beacon colors. Then, it groups the adjacent

filtered pixels and draws the minimum-area rectangles that surround each of these groups.

This mask consists of a set of lower and upper values regarding the Hue, Saturation and

Value of each color, acting as boundaries. In this study, the following ranges where used:

H ∈ [0o, 180o], S ∈ [0, 255] and V ∈ [0, 255]. For example, the [H, S, V ] mask corresponding

to blue colored pixels is: lower[30, 75, 100] and upper[110, 255, 255].

Next, from the rectangles drawn on the image, the ones that possess the following features

are considered to be classifiable as a Beacon:

1. The identified rectangle is in upright position.
1https://github.com/opencv/opencv
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Figure 5.5: Beacon contour detection in HSV color space.

2. Its shorter side is parallel to the x axis and its longer side parallel to the y axis of the

image plane.

3. Its aspect ratio stays between Beacon-specific, predefined, boundaries.

These simple criteria are defined to filter out objects on the field that are similarly shaped

and colored as the Beacons. If no rectangle fits these criteria, then it is assumed that the

image does not depict a Beacon in whole. On the other hand, if more than one Beacons

are detected, a selection is made to consider only one of them. Figure 5.5 depicts the result

of the above process. The resulting information retrieved is the perceived width p of the

contour rectangle surrounding the Beacon, in pixels.

Figure 5.6: AlphaBot’s main axes.
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Distance and Angle Relative to Beacon Estimation

After detecting a Beacon within an image, the process of estimating the AlphaBot’s distance

and angle from this Beacon, takes place. Performing this step twice, for two distinct Beacons,

allows the deduction of the exact position and pose of the AlphaBot on the grid. It is worth

noting that in the scope of this work, the positions of the Beacons are assumed to be

known. However, this method is extensible to the case where the positions of the Beacons

is unknown, e.g., where a Simultaneous Localization and Mapping (SLAM) technique can

be leveraged to initially identify these positions. The camera mounted on the AlphaBot

follows the pinhole camera model [160]; that means that the relative size of the projected

objects depends on their distance to the focal point. To find the distance, the triangle

similarity theorem is utilised, i.e., the distance of the object to the camera, dc, is given from

the following equation:

dc = wf

p

where:

w = Beacon width in cm.

f = camera’s focal length in mm (known from camera’s datasheet or computed through

camera calibration).

p = perceived Beacon width in pixels (px).

It should be noted here that across the localization process the AlphaBot is considered to

be a dimensionless point on the center of its wheel axis. However, the AlphaBot’s camera

lenses axis is placed 7cm from the robot’s center, as shown in Figure 5.6. Thus, the actual

estimated distance, d, between the Beacon and the AlphaBot is:

d = dc + 7

The core novelty of the proposed localization method lies in the calculation of the angle

between the AlphaBot and the Beacon. As shown in Figure 5.7, the 2D projection of the

Beacon is assumed on the plane of the captured image. It is also assumed that the origin
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Figure 5.7: Method for calculating the angle between the AlphaBot and the Beacon.

(0, 0) is at the middle of the bottom border of the image plane and the axis z, coming

through it, as shown in Figure 5.7. To calculate the angle θb between the camera’s line of

sight and the line which starts from the camera lens and is perpendicular to the Beacon’s

axis, d and a are required. An insight of this angle’s real-world nature would be this: “the

angle that the camera has to rotate to horizontally centre the Beacon’s 2D projection on

the image plane”. The distance ap, in pixels, is the perpendicular distance between the axis

z and the Beacon’s axis, which are parallel to each other, and can be readily calculated

as the contour’s vertices coordinates are known from the last step. The distance between

the Beacon’s axis and the AlphaBot, d, in cm, was calculated in the previous step as well.

Hence, it is only needed to translate the distance ap to the distance a in cm. To enable this

conversion, it is first ensured that the cm-per-pixel ratio, which applies to the Beacon’s 2D

projection on the image plane, is preserved throughout the rest of the plane. This holds true,

as the real-world z axis and its projection on the image plane coincide, which subsequently

means that the real-world distance a and its projection coincide as well. Moreover, the pixel
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size has the same cm length, independently of the pixel’s position through the camera’s

conformity with the pinhole model, which makes the projection free of any linear distortion.

Consequently, we have

a = ap(w

p
),

where w

p
is equivalent to the cm-per-pixel ratio. With a and d known, we can calculate θb,

θb = arcsin(a

d
).

The approach still works when other objects, such as obstacles in the environment, are

depicted in the projection. The only constraint is that the Beacon has to be captured in

whole. The last thing to note is that, as mentioned earlier, the camera rotates on its pivoted

system in order to scan the area in front of the robot for Beacons. However, the angle θc to

which the camera is rotated is known. As a result, the overall θo to which the AlphaBot is

rotated, with the given Beacon as reference, is

θo = θc + θb.

Figure 5.8: Bilateration method for calculating AlphaBot’s position in the grid.
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Figure 5.9: Method for invalidating one of the two possible solutions.

Grid Position and Orientation (Pose) Estimation

After having the distance, (d0, d1), and angle (θo0 , θo1) from two Beacons available, the

AlphaBot’s pose in terms of position and orientation is estimated. The locus formed by

the set of possible (x, y) locations whose distance from Beacon Pi equals the estimated

distance di, i ∈ [0, 1], is a circle. This observation allows for utilizing the bilateration method

in order to estimate the position of the AlphaBot, as shown in Figure 5.8 with P3; this

method has been used extensively in previous works regarding localization in wireless sensor

networks [161], as it requires much lower computational complexity, yet still retains the same

localization accuracy, if the environmental setup allows it.

In the discussed setting, a unique solution of the location of the AlphaBot is feasible

to be retrieved by combining the knowledge of the relative angle observations θo0 and θo1 .

Indeed, for the two (at most) candidate locations that the observations were taken as shown

in Figure 5.8, there is always exactly one feasible configuration that allows both angle values

to be attained, or equivalently, that result in the same absolute angle θ estimation. This is

demonstrated in Figure 5.9; for example, let θo1 = 20° and θo2 = 150°. As shown there is

only one feasible point where both angle measurements are verified.

The developed method requires only two beacons for localization, under the assumption

of course that the measurements are accurate. Nevertheless, the problem of placing the

minimal number of landmarks in the map still remains. This number depends on the viewing

angle of the camera and the density of the obstacles, or equivalently, visibility of the beacons

from all directions. For the discussed setting where the viewing angle is 180o and for a
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rectangular map with obstacles not obstructing the visibility of the beacons, the minimum

number of beacons need to be placed is 4. The problem becomes significantly harder for

non-convex and/or non-static maps and tall obstacles and it is deferred for future research.

The bilateration process is briefly depicted in Figure 5.8; the mathematical justifica-

tion behind calculating the circles’ intersection points is the following; considering the two

triangles P0P2P3 and P1P2P3 we can write

c2
0 + h2 = d0

2

and

c2
1 + h2 = d1

2

where c0 and c1 are the distances of P0 and P1, respectively, from the bisector coming

through the two intersection points of the circles and c0 + c1 equals the distance d2 between

the two Beacons. Using d2 = c0 + c1 we can solve for c0,

c0 = d0
2 − d1

2 + d2
2

2d2

Then we solve for h by substituting c0 into the first equation, h2 = d0
2 − c2

0, so we get

P2 = P0 + c0(P1 − P0)
d2

And finally, P3 = (x3, y3) in terms of P0 = (x0, y0), P1 = (x1, y1) and P2 = (x2, y2), is either

x3 = x2 + h(y1 − y0)
d2

, y3 = y2 + h(x1 − x0)
d2

or

x3 = x2 − h(y1 − y0)
d2

, y3 = y2 − h(x1 − x0)
d2

As mentioned above, one of the two solutions is always rejected as invalid.

The final part of the localization process is to calculate the AlphaBot’s orientation in the

grid with respect to a given reference point. As a first step, a Reference Point in a known

113



Figure 5.10: Method for calculating the angle between the AlphaBot and the Beacon.

location on the AlphaBot’s South is asssumed, in Cartesian coordinates; as shown in Figure

5.10, the exact locations of both the Beacon (P0) and the AlphaBot are known by now, thus

calculating the distances b (Beacon - Reference Point) and r (AlphaBot - Reference Point)

is straightforward. Also, distance d0 (Beacon - AlphaBot) and angle θo (AlphaBot’s angle

with Beacon as reference) have been calculated in the previous steps; hence, by utilizing the

cosine rule, the θt angle can be obtained:

θt = arccos(b2 + r2 − d0
2

2br
)

The actual orientation angle, θ is given from the following subtraction:

θ = θt − θo

5.6.2 Path Planning

Many works exist in the literature addressing the path planning problem; a realistic robot

navigation and smooth trajectory planning is a major challenge [162], [163]. Planning algo-

rithms generate a trajectory consisting of intermediate reference positions to reach the final

target position. In this work, graph-based methods of varying complexity are selected and

adapted, see, e.g., [154, Chapter 8]. As a result, the algorithms described below, take as
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input a graph that represents the real-space grid space along with the target positions, the

obstacles and the starting position. This grid has a predefined cell size, that depends on

the length of the robot. Each cell corresponds to a possible reference position. In this case,

the obstacles are rectangular-shaped, for the sake of simplicity, however, arbitrarily-shaped

obstacles could also be included.

On the one hand, a lightweight implementation of the A⋆ algorithm [164] acts as the Local

Path Planner. Similar to [165], four directions of movement are allowed in the grid. The

cells containing obstacles are not connected with the neighboring cells. The A⋆ algorithm

returns a sequence of positions to reach the target position, according to a heuristic cost

function; in this case this is the Manhattan Distance. The implementation is suitable for a

robot with minimal computational resources providing a solid and quick solution, however

the generated trajectory is not smooth.

The computationally intensive algorithm acting as the Remote Path Planner is deployed

on the edge server. Similar to [166], the main process of the proposed algorithm is to

locate a possible move towards a node that is closer to the target given the aforementioned

graph. For this purpose, a multiple sources single destination problem is solved, utilising

Dijkstra’s shortest path algorithm, which calculates a path from each node towards the

target position, offline. These precalculated paths, along with the total cost to reach the

desired destination, are stored in a database on server’s startup. When the Remote Path

Planner is invoked, given the current location of the robot, a neighbour pruning is performed

similar to [167]. A node of the graph is considered to be a neighbor of the current position

if (i) the distance between them is less than twice the specified cell size and (ii) no obstacle

is in the line of sight of the current position to that node. Consequently, to retrieve the set

of possible neighbours, it is sufficient to search for avoidance of line clipping (intersection)

between the line connecting the current position to each of the adjacent cells and the set

of obstacles present in the real-space grid. The optimal path is chosen by comparing all

possible neighbours. In particular, the cost to reach each one of them from the current

position is added to the cost from each neighbour to reach the desired target. In this way,

the algorithm allows “shortcuts” to the neighbouring nodes, while any-angle trajectories are

feasible.
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Figure 5.11: The block diagram of the switching system. Component abbreviations and
colors follow the pattern introduced in Section 5.4.

5.7 Switching System

In this section, the switching mechanisms that are realizing the Offloading Decision Mecha-

nism of the proposed framework are presented. It is assumed that starting from a position

x0x0x0 = [x1(0) x2(0)]⊤, the closed-loop system converges asymptotically to a reference po-

sition xrefxrefxref = [x1,ref(ti) x2,ref(ti)]⊤ when exact measurements are available, i.e., when

z̃̃z̃z(t) = zzz(t). Two offloading opportunities are identified, related to the pose estimation and

the path planning problem. In Figure 5.11 the proposed switching system is presented. In

particular, switches S1 and S2 relate to the estimation procedure, and switch S3 concerns

path planning part.

5.7.1 Sensor selection (Switch 1)

The measurement of the encoder is not perfect, while the model does not capture exactly

the system behaviour. Consequently, there is an accumulating error between the state and

its estimation. This error is modeled by a simple linear update mechanism. When the error

becomes too large, the more precise, yet more computationally intensive remote localization

algorithm is invoked. In order to decide when to offload, the variable δ(·) is introduced that
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describes the uncertainty in estimation. We set

δ(tj+1
i ) = δ(tj

i ) + b0 + b1δ̃(tj
i ),

j = 1, . . . , ki, i ∈ N , where δ̃ is the deviation between the measurements of the states z̃,

computed by the Equations (5.4) – (5.6) and the model-based estimations z̆̆z̆z, i.e.,

δ̃(tj
i ) =

∥∥∥z̆̆z̆z(tj
i )− z̃̃z̃z(tj

i )
∥∥∥

2
,

where z̆̆z̆z(tj
i ) consists of:

z̆1(tj+1
i ) = r

2
(wL(tj

i ) + wR(tj
i )) cos z̆3(tj

i )(tj+1
i − tj

i ) + z̆1(tj
i ),

z̆2(tj+1
i ) = r

2
(wL(tj

i ) + wR(tj
i )) sin z̆3(tj

i )(tj+1
i − tj

i ) + z̆2(tj
i ),

z̆3(tj+1
i ) = r

l
(wL(tj

i )− wR(tj
i ))(tj+1

i − tj
i ) + z̆3(tj

i ),

which are the model-based estimation of the dynamics at time instants tj
i , j = 1, . . . , ki and

wL,wR are the outputs of the tracking controller. At time t0
0, the model-based estimation

is equal to a known initial position, i.e., z̆̆z̆z1(t0
0) = z̆̆z̆z0

1. As a result, δ linearly depends on the

deviation, and is getting bigger as the robot actuates, especially when the actual motion of

the robot differs from what the model dictates.

The offloading mechanism, aiming to reset the uncertainty, is triggered when δ becomes

too large, namely larger than a prespecified threshold δ⋆, i.e.,

S1(tki
i ) =


OFF, if δ(tki

i ) ≤ δ⋆,

ON, else,

where ki refers to the time instant, when the robot’s position, calculated by Equations

(5.4) and (5.5), is close to the next reference position xref,kxref,kxref,k. Moreover, ON corresponds to

using the beacon-based localization and OFF to proceeding based on the local odometry

estimation. In the scope of this work, it is assumed that the uncertainty becomes equal to

zero when the beacon-based localization is used. Hence, when S1(tki
i ) = ON, then δ(t0

i+1) =
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0, which means we get a valid measurement of the states zzz. Otherwise, δ(t0
i+1) = δ(tkj

i ).

5.7.2 Estimation Offloading (Switch 2)

Switch S2 decides whether the localization algorithm will be executed locally on the mi-

crocontroller mounted on the robot, or remotely on the edge server. The decision is based

on the availability of the remote computing resources. Although the execution of such a

computationally heavy algorithm on a battery-powered IoT device is energy-consuming, it

may be preferable in some cases as offloading might result to larger response times due to

lack of available resources on the remote server and network congestion.

Resource modelling and estimation

It is assumed that the resources of the localization service on the edge server are managed

by the resource orchestrator of the infrastructure provider and the allocated resources can

only be estimated through measurements. Thus, the resource allocation strategy on the

edge server are modeled as a linear dynamical system subject to process and measurements

uncertainty disturbances

c((k + 1)Ts) = c(kTs) + w(kTs),

z(kTs) = c(kTs) + v(kTs),

where c accounts for the virtual CPU cores of the container, z is the measurement of c

and Ts is a constant sampling time. The terms w, v are the process and measurement

noise respectively, both following a normal distribution. Based on previous measurements,

a current estimation of the virtual CPU cores allocated to the container is computed, ĉ, by

applying a Kalman Filter [168], which is a computationally light prediction method.

Processing time estimation

Having acquired the estimation of the available remote virtual CPU cores ĉ, the estimated

processing time of the beacon-based localization algorithm can be calculated. To this pur-

pose, the processing time, tp is modeled as a linear relationship of the available resources,

tp = aĉ + b. The coefficients a,b are calculated using the least squares fitting method, on a
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set of pairs (tp, ĉ) produced offline while experimenting with a dataset of pictures.

Regarding the wireless network transmission delay, the assumption is made that the

wireless access technique between the robot and the access point is based on IEEE 802.11g.

In this network deployment, a common effect that occurs when a signal travels through a

communication channel is its power level decreases as the distance increases. To estimate

this propagation loss, the well-accepted Log-Distance Path Loss (LDPL) model is utilized

[169]. The LDPL model applies to indoor environments with the presence of obstacles,

having a propagation exponent that indicates whether the environment has more or fewer

obstacles, impacting on the computed loss. The respective path-loss is calculated as follows:

PL(d)dB = PL(d0)dB + 10nlog10( d

d0
), d ≥ d0, (5.9)

where PL(d0)dB is the path-loss at a reference distance d0 = 1m, n is the path-loss exponent

(PLE), which depends on the presence of obstacles in the environment. To set the upper

bounds of the channel capacity the signal-to-noise-ratio (SNR) is leveraged metric,

SNR(d) = PdB − PL(d)dB −NdB , (5.10)

where PdB is the incoming signal to the access point and NdB is a Gaussian noise. Then,

the channel capacity C can be calculated using the Shannon–Hartley theorem,

C(d) = B log2(1 + SNR(d)), (5.11)

where B is the available WLAN bandwidth (in Hz), giving in this way an estimation of

the tightest upper bound on the information rate of data (in bits per second) that can be

communicated at an arbitrarily low error rate using SNR. Having this bound available, an

estimation of the task transmission duration (in seconds) can be calculated as follows:

tnet(d) = 8 m

C(d)
, (5.12)

where m is the size of the offloaded data in bytes.
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Localization Offloading

The processing time is related directly to the CPU availability. The local beacon-based

localization has an average time tloc to be executed based on the robot’s resources. Hence,

Switch S2 is formulated as:

S2(tki
i ) =


ON, if tp + tnet ≤ tloc,

OFF, else,

where ki refers to the time instant that the robot must decide whether to offload or not the

beacon-based localization algorithm. Moreover, ON corresponds to the remote execution of

the self-localization algorithm and OFF to the local execution.

5.7.3 Path Planning Offloading (Switch 3)

Two path planning algorithms are implemented. By default, the computationally light A⋆

algorithm presented in Section 5.6.2, provides a reference trajectory on the robot. However,

whenever a prediction cost indicates a possible amelioration by choosing a more refined path,

the remote path planning algorithm is invoked. Both algorithms take as input the current

estimation of the position and the reference position and generate a reference trajectory.

The offloading decision for the path planning depends on a cost consisting of two parts;

the first part estimates the closeness of the generated reference trajectory to obstacles and

the second part evaluates the curvature of the trajectory. Both terms follow theoretical

aspects from standard works, e.g., [170]. The function D(xxx) is defined, that quantifies the

“density” of obstacles according to the estimation of the current position x̂̂x̂x, either computed

by the beacon-based localization or the local odometry measurements.

D(xxx) =
∑

x̂obsx̂obsx̂obs∈Xobs

exp
(
−∥xxx− xobsxobsxobs∥

)
,

and XobsXobsXobs is the set of positions that correspond to the centers of the cells that are unreach-

able, e.g., occupied by an obstacle.

Let {x̌̌x̌x(i)}i=1,....,M be the part of the path sequence consisting of the first M positions,

generated by the local path planning algorithm.
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The local path planning algorithm takes as input the current position estimation x̂̂x̂x(tki
i )

at t = T ki
i + T 1

i and creates a reference trajectory sequence {x̌̌x̌x(i)}i=0,1,...,M , with x̌̌x̌x(0) =

x̂̂x̂x(tki
i + T 1

i ). We define:

Jlocal(x̂̂x̂x(tki
i + T 1

i )) =
M−1∑
i=0

(∥∥x̌̌x̌x(i + 1)− x̌̌x̌x(i)
∥∥)
−

∥∥x̌̌x̌x(M)− x̌̌x̌x(0)
∥∥ ,

as a cost describing the curvature of the reference local trajectory. The offloading strategy

can be formulated as:

S3(tki
i + T 1

i ) =


OFF, if D(x̂̂x̂x(tki

i + T 1
i ))− Jlocal(x̂̂x̂x(tki

i + T 1
i )) ≤ J⋆,

ON, else,

where tki
i + T 1

i indicates the time instant after the actuation and pose estimation. The

constant J⋆ accounts for the degree of difficulty of the next moves in terms of proximity

to obstacles and curvature of the trajectory. When S3 in ON, the remote path planning

provides the next step to reach the target position. Otherwise, the robot relies on the local

path planning trajectory. It should be mentioned that, contrary to Switch 2, here, the CPU

availability does not take part in the offloading decision, as it is noticed that the remote

path planner chosen is mainly memory intensive.

5.8 Experimental Evaluation

The experiments were conducted in an operating space of 2.5×2.5 meters, divided by 25×25

cells, with a cell size of 10×10cm. The length of the AlphaBot is 22cm and the radius

of each wheel is 6.6cm. The coloured beacons were placed at the periphery of the grid

for the localization procedure described in Section 5.6. The rectangular-shaped obstacles

were placed as depicted with grey colour in Figure 5.14. The map is considered known.

The Access Point used was a MikroTik wireless SOHO AP, providing up to 100Mbs LAN

connection, Single Band (2.4GHz). The edge server deployed on the NETMODE, testbed

part of Fed4FIRE2 initiative, was equipped an Intel Atom CPU, up to 1Gbit Ethernet

port and 8GB of RAM. The services provided by the edge server were deployed as Docker
2https://www.fed4fire.eu/testbeds/netmode/
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Figure 5.12: Absolute error of the estimated distance relative to the real distance from a
Beacon, for different orientations.

containers. For each Docker container, one can set constraints, to limit a given container’s

access to the host machine’s CPU cores, by provisioning a percentage of them as the virtual

cores of the containers. Thus, containers can be assigned with partial virtual CPUs using

decimal values. Using a collection of pictures from the actual experimentation room, from

different positions and viewing angles, a dataset was created to estimate the time duration

of the remote beacon-based localization.

In the first part of the evaluation, the effectiveness of the self localization technique

described in Subsection 5.6, is briefly demostrated. The evaluation of the proposed technique

is broken down into two parts; i) the association of the perceived distance’s error with the

real distance from the detected Beacon and ii) the overall accuracy of the final estimation

of the AlphaBot’s pose.

As depicted in Figure 5.12, the AlphaBot is located between 50cm and 250cm from the

Beacon of interest. The distance of 50cm corresponds to the minimum distance from which

a Beacon can be portrayed in whole with the current camera setup. One can notice that

the absolute error of the distance-to-Beacon estimation increases gradually as the distance

increases, but the accuracy never drops bellow 93%. Moreover, the different relative ori-

entations of the AlphaBot seem to have a negligible effect in the accuracy of the distance

estimation; −30°, 0° and 30° were randomly selected to illustrate this behaviour. It must
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be highlighted that the most accurate estimations, though, were observed when the real

distance between the AlphaBot and the identified Beacon was in the range [80cm, 100cm],

as the average of the estimation’s absolute error was in the area of 1.3cm, or approximately

1%.

When comparing the estimated poses with the real ones, it can be noticed that the

combined coordinates error, after the bilateration of the two relative distances takes place,

never exceeds 20% in either x or y axis. Regarding the estimation of the orientation, at

each point, the absolute error lies in the [2°, 12.5°] range. All in all, when a Beacon is

correctly detected within the captured image, it is noticed that the proposed method is not

only precise but also independent of environmental variables, e.g., light conditions, when it

comes to pose estimation. To illustrate the overall accuracy of the proposed self-localization

method, a random walk was composed for the AlphaBot to perform on the aforementioned

operating space; the robot followed a predefined trajectory of random poses and estimated

its position and orientation at each point. In Figure 5.13 the trajectory of the real positions is

depicted with the blue dashed line, having at each point a specific orientation depicted with

blue arrows, while the estimated positions and orientations are depicted with red dashed

lines and green arrows respectively. The lines connecting the different points do not represent

the actual movement of the AlphaBot but are drawn for clarity. The deviation between the

real poses and the estimated ones produced by the proposed algorithm for this random walk,

is considered acceptable for the selected application. It is noted that in a typical setting

Figure 5.13: Real versus estimated AlphaBot trajectory.
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where the robotic agent moves autonomously, the measurements generated by the discussed

method can be fed to a state observer of the robot’s position and orientation, improving

significantly the accuracy.

Average Time per picture (sec), tp Virtual Allocated Cores, ĉ
2.41 0.25
1.06 0.5
0.56 0.75
0.39 1
0.30 1.25
0.26 1.5

Table 5.1: The average time for remote beacon-based estimation per virtual allocated core
to the container.

In the second part of the evaluation, the benefits of the switching offloading mechanism

are demonstrated. In Table 5.1, the values of the set of pairs (tp, ĉ), introduced in Section

5.7.2, are presented. Using the least squares fitting method the coefficients a = −1.34 and

b = 1.675 were calculated. Hence, the estimated processing time of the remote beacon-

based localization is given by tp = −1.34ĉ + 1.675. Provisioning over 1.5 cores resulted in

similar computation time, thus, the maximum CPU allocation was set to that value. In the

experiments conducted, the allocated cores of the containerized application were updated

every 10sec, following a Normal Distribution with a mean value of 0.75 and 0.5 variance.

The following values were used for the aforesaid constant values: b0 = 1; b1 = 0.2; e1 = 5cm

e2 = 5°, L1 = 0.2, L2 = 0.6, δ⋆ = 6 and J⋆ = 3.

Regarding the networking settings, a signal of power PdB is assumed for the uplink, which

is proportional to the distance between the robot and the access point it is connected to

and which has a maximum value of P max
dB = 24dB. Moreover, PL(d0) is fixed at −20dBm,

based on the work of [169], which presents an access point with the same characteristics

of ours and the same reference distance. The path-loss exponent n was set equal to 3.5, a

value typical for a factory floor setting [171]. The size of offloaded data, in MB, followed a

uniform distribution with a mean value of 0.075 and variance equal to 0.25. The Gaussian

Noise NdB was set equal to −114dB while the bandwidth B allocated to the robot at any

given time was set to 1MHz.

Three experiments were conducted, namely, local only execution, remote only execution

and the proposed switching offloading scheme. In Table 5.2 the average completion time
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Figure 5.14: The experiment setup and the trajectories produced by the three experiments.

Experiment Average completion time (sec) Success Rate
Local Only Execution 61 40%
Remote Only Execution 105 100%

Switching System 90 100%

Table 5.2: The average completion time and success rate of 10 experiments for each setting.

and the average success rate for 10 experiments of each setting is presented. For the rest of

the evaluation, the results of the best trials for each setting will be presented. Moreover, in

Figure 5.14 the reference trajectories of these trials for the three experiments, are illustrated,

with green colour for local only execution, red colour for remote only execution and purple

colour for the switching system. As outlined in Section 5.6, the local A⋆ algorithm allows only

four directions of movement, while the remote path planner allows any-angle movements.

For better visualization, timelapse videos from the conducted trials for each setting have

been uploaded3. In these experiments, the starting position for the AlphaBot was the

already known position A(3, 14), while the desired target reference positions were B(10, 5)

and C(14, 18) in sequence. The scale of uncertainty is illustrated as a percentage of δ⋆,

i.e.,δ/δ⋆, which is the predefined quantity for Switch 1 to be ON.

3https://github.com/Dspatharakis/alphabot-ppl/tree/master/timelapsed-videos
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Experiment A - Local Only Execution

In the first experiment, Switches 1 and 3 were ON, throughout the experiment and Switch

2 was never used. During this, the AlphaBot never used the beacon-based localization. As

a result, the only estimation of its position is coming from the photoelectric sensors and

the local estimation procedure. Moreover, the path planning algorithm chosen was the A*

algorithm, executed locally at the Pi at each given time. This setting results to a fast,

although not precise navigation with δ/δ⋆ growing monotonically. Without executing the

sophisticated beacon-based localization or the modified Dijkstra’s shortest path planning

algorithm, the average duration was 61 sec. Also, in Figure 5.15, one can notice that the

duration of the experiment is proportional to the number of steps produced by the A*

solution. Thus, the actuation of the AlphaBot is the main time consuming process in the

experiment.

Figure 5.15: Experiment A - Duration of the steps of A* at the Raspberry

Finally, the amount of successful trials was low. Consequently, without a more so-

phisticated localization algorithm and a more precise path planning technique there is no

guarantee the target reference position is reached; the pose uncertainty grows with time, as

depicted in Figure 5.16.
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Figure 5.16: Experiment A - Uncertainty during Experiment A.

Experiment B - Remote Only Execution

In the second experiment, whenever the uncertainty about AlphaBot’s pose grew over the

predefined threshold δ⋆, beacon-based localization was invoked (Switches 1 and 2 ON) on

the edge server. Moreover, the path planning chosen was the modified Dijkstra’s shortest

path algorithm, which was also always executed remotely (Switch 3 ON). In this setting, the

robot always reached the target positions, as shown in Table 5.2, although the completion

time was heavily affected, as shown in Figure 5.17. Beacon-based localization was executed

twice during this experiment and, as a result, δ/δ⋆ became equal to 0. The setup of the

particular experiment underlines the importance of a slower but more precise navigation.

The minimum transmission time for the photos used for beacon-based localization was 1sec,

while the maximum was close to 1.5sec. Moreover, the time consumed for the Dijkstra’s

solution at the remote server had an average value of 0.9sec. This experiment involves a

powerful server at the Edge layer with designated computing cores for the needs of each

process. As a result, the computing time for each task is low. However, the overhead of

transmission is significant in comparison to the previous experiment. Last but not least,

although the computational time is significantly low, one must not forget that this is the

result of overprovisioning the resources of a whole server. The resources of the server were

underutilized for the most time during this experiment.
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Figure 5.17: Experiment B - Remote Only Execution.

Figure 5.18: Experiment C - Switching System.

Experiment C - Switching System

In this experiment the full functionality of the switching system proposed in this work is

highlighted. As described in Section 5.7.3, Switch 3 decides which path planning algorithm

solution the AlphaBot will use to generate the next reference position. A server at the edge of

the network was utilized as the remote server to draw attention to the advantages of the low

transmission time due to WAN connection between the server and the Raspberry mounted on

the AlphaBot. This communication between the server and the Raspberry was over http. In

comparison to the “Local Only Execution” experiment, the time spent to reach the final goal

was much longer, due to the time consuming beacon-based localization, and the increased

computation time needed for the more advanced path planning solution of the modified

Dijkstra implemented at the dedicated server. However, this setup provided a very precise

and robust navigation for the robot, leading to a very high success rate of the experiments.

At the dedicated server, a dynamic resource allocation mechanism was deployed, changing
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the allocated CPU cores of the Docker Container which hosted the service waiting to execute

offloaded tasks. As a result, this optimal resource allocation led to guaranteed low response

times in the offloaded localization and navigation tasks, while overprovisioning of the CPU

resources was avoided (opposed to the “Remote Only Execution” experiment).

In detail, when, the curvature function of the trajectory calculated by the A⋆ algorithm

and the obstacle density function exceeded the threshold value J⋆, the remote path planning

solution was selected; e.g., from the beginning of the experiment until the 25th sec of the

simulation and from the 43rd sec till the 67th sec, as illustrated with green dashed line in

Figure 5.18. In the same figure, with red solid line, δ/δ⋆ is depicted. Two times during the

experiment the more precise beacon-based estimation was invoked to reset δ/δ⋆. The first

estimation attempt, at the 25th sec of the experiment, was executed on the edge server,

because S2 was ON. The second one, at the 71st sec of the experiment, was executed locally,

as S2 dictated (OFF), because the estimation of the CPU availability of the edge server,

provided by the Kalman Filter, along with the network delay for each picture, at that

time, would have provided worse results than the local execution. This setup provided a

very precise and robust navigation for the robot, leading to a very high success rate of the

experiments, achieving a balance between execution time and trajectory accuracy.
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Chapter 6

MRF-based Distributed

Energy-aware Resource

Allocation at the Network Edge

6.1 General Setting

As mentioned in the Introduction of this thesis, efficient resource allocation for task of-

floading at the Network Edge, is required for both the IoT devices/end users as well as

the infrastructure providers. On the users’ side, as discussed in previous chapters, efficient

resource allocation is translated to an overall improvement in the experienced QoS and QoE.

On the providers’ side the benefits are pinpointed in the minimization of the energy con-

sumption of the data centers, which is mainly affected by the number of the servers that

are activated to serve the incoming workload and which, in turn, is directly proportional to

the operating expenses of the infrastructure.

Thus, in this chapter a framework is introduced which simultaneously addresses energy

consumption minimization and distributed load balancing, while respecting the applications’

QoS requirements. Initially, a wireless protocol is simulated in order to extract the instanta-

neous throughput under dynamic wireless network conditions, and the mobility of the users

is predicted with the use of an n-Mobility Markov Chain location prediction method. Based
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on this prediction, pre-computed profiles of virtual machines (VMs) are leveraged to enable

proactive and dynamic resource allocation at each edge site, ensuring the QoS constraints

of any deployed application. Containers can also be considered as the virtualization units

without any change in the modeling. Finally, a novel load balancing technique based on

Markov Random Fields (MRF) is introduced to appropriately distribute the excess workload

among the available edge sites, towards the minimization of the total energy consumption.

6.2 Related Work

The problem of task offloading falls into the knapsack resource allocation category which is

NP-hard in general [172]. Most of the proposed approaches follow a partial or full offloading

technique, according to whether the tasks are separated or not, with the goal to minimize the

overall latency and/or energy. Furthermore, they propose static resource allocation schemes

on the edge infrastructure. In this chapter, the design principles of [173] are adopted and the

ENERDGE framework is proposed, which is a mobility-aware and full offloading approach

in order to minimize the energy consumption of the edge infrastructure under specific QoS

guarantees for the mobile applications hosted. In this context, there are three interesting

and related directions in the literature: i) mobility prediction for task offloading, ii) single-

site task offloading and resource allocation, and iii) multi-site task offloading and resource

allocation.

6.2.1 Mobility Prediction for Task Offloading

The success of offloading decisions depends heavily on the dynamic nature of task behavior

and user mobility. In particular, the users may move and resource prices for offloaded task

execution may vary over time. This led the authors in [174] to propose an online algorithm

with a logarithmic objective to minimize the resource usage of the edge infrastructure, while

taking into account the impact of mobility in the latency. They also formulate a VM migra-

tion cost for the tasks that need to follow the users’ movement. In a similar manner, Wang

et al. [175] assume a mobility prediction with fixed accuracy and propose VMs migration

based on predicting the future costs of their placement. A migration policy, however, for

containers, is also formulated in [176], where the authors introduce an architecture in which
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Fog Computing services constantly move in order to be always close enough to the served

IoT mobile devices.

Since the mobility of the users can significantly impact the latency and increase the

migration cost, the authors in [177] introduced a prediction mechanism to ameliorate the

offloading performance. A similar approach is followed in [101], where the most popular

services are proactively installed in the Edge servers located in the positions that the users

will most probably visit, thus reducing the network delay during task offloading. Another

approach, denoted as MAGA and introduced in [178], is based on frequent moving patterns

of the users and a genetic algorithm to partially offload tasks to edge servers. However, in

all of the aforementioned works the authors assume static resource allocation at the edge,

in terms of amount of resources utilized.

6.2.2 Single-Site Offloading & Resource Allocation

In case of task offloading, a single edge site is usually available in close proximity to the

users. The main focus in this type of resource allocation problem lies in the latency and

energy minimization. For example, the authors in [179] investigate the task offloading of

augmented reality applications emphasizing on the computation intensive tasks (i.e., object

recognition and position tracking). A successive convex approximation approach is proposed

to minimize energy consumption under latency constraints, while emphasizing on both the

available computation and communication resources at the Edge. Another energy-efficient

based approach is presented in [172], following a mixed discrete-continuous optimization

approach along with a low-complexity heuristic based on Johnson’s algorithm.

Regarding latency, authors in [72] study the admission control and resource allocation

problem of computationally intensive IoT applications at the Edge. A Lyapunov dynamic

stochastic optimization approach is used with the goal to reduce the end-to-end delay, while

improving the overall throughput. Similarly, [180] investigates the mobile-edge computing

offloading problem with the goal to minimize the latency in a multi-user scenario with

joint communication and computational resources. The solution is based on the Lagrange

multiplier method. However, such centralized task offloading approaches usually fail to apply

to realistic scenarios of larger edge infrastructures with multiple, geographically distributed

sites.
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6.2.3 Multi-Site Offloading & Resource Allocation

In case there are multiple edge sites in close proximity to the devices, task offloading includes

both the resource allocation of the tasks and the selection of the right administrative domain

(i.e., edge infrastructure). In this context, an edge orchestrator can be used to assign the

tasks to the appropriate domain, with the goal to maximize the number of successfully

assigned task requests [181]. Sonmez et al. [182], proposed a fuzzy workload orchestrator

for multiple Edge and Cloud infrastructures. For each offloaded request, a set of fuzzy rules

determined the destination computational unit within a hierarchical multi-site architecture.

However, the authors empirically defined the fuzzy rule sets, while assuming static resource

provisioning on the edge servers, which might not be applicable to real conditions where

services typically bear different workload characteristics. Plachy et al. [183] leveraged a

probabilistic modeling of the mobile users’ movements in order to pre-allocate computing

resources on multiple edge base stations and alleviate the potentially unreliable mobility

and channel predictions. Subsequently, a low complexity algorithm decides on the best

communication path between the user and the selected base station.

Another goal can be the balancing of the load between edge servers while minimizing the

application response time. In [99], over-utilized edge servers redirect part of their incoming

workflow to resource-rich or under-utilized servers, using a minimum cost max flow algo-

rithm towards achieving total balance in terms of average application response time in the

whole edge infrastructure. An extension to this work is presented in [184], where a genetic

algorithm is exploited for a distributed load balancing of traffic, yielding a solution that

converges to the minimization of maximum task response time through gene mutations.

6.2.4 Markovian Random Field -based Solutions

The motivation behind the decision to utilize an MRF-based solution in the load balancing

and resource allocation problem originates from the work in [185], where a distributed control

approach is proposed for self-organization of autonomous swarms. The swarm is modeled

as an MRF and the desired global behaviors can are encoded into the Gibbs potential func-

tion characterized by local interactions. The proposed scheme is scalable, the computational

requirements remain the same as the number of nodes increases and it can can easily accom-
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modate various constraints. Due to these inherent advantages, MRFs have been successfully

utilised in various applications of different domains during the past years; for example, in

computer vision, Geman et al. [186] used MRFs to model the correlation among neigh-

boring pixels and capture certain statistics of natural images. In the field of recommender

systems, Liu et al. [187] used the representational power of MRFs and Conditional Random

Fields (CRF), to find out the predicted ratings for inducing unknown preference relations

(PRs). On the other hand, Karyotis et al. [188] collects and presents works that incorporate

MRFs in hybrid recommender system, which also combine the filtering of huge collections

of items with analysing behavioral properties and the interplay between the entities of a

social platform in order to achieve more precise recommendations. Finally, in the cognitive

radio networks (CRN) domain, Anifantis et al. [189] adopted a Radio Channel Allocation

(RCA) framework that combines a Markov Random Field formulation with Gibbs sampling,

allowing distributed and efficient operation for each Secondary User (SU). According to this,

every SU can calculate an “energy” function based on its current state and the states of its

neighbors. The goal for each SU is to minimize interference through minimization of its local

energy function. SUs asymptotically converge to global optimal solutions, by progressively

updating their energy functions through local sampling. In [190], the authors also utilize an

implementation of an MRF-based cross-layer framework for resource allocation among SUs

in CRN environments.

6.2.5 Contributions & Outline

In order to overcome the aforementioned challenges and achieve the discussed goals, a novel

framework is proposed, referred to as ENERDGE, which jointly tackles task offloading and

resource allocation of multiple edge data centers in a distributed and energy-efficient manner.

The framework has a gradual operation, introducing the following key contributions:

• A performance modeling approach based on Switching Systems Theory is proposed,

to define virtual hardware profiles, i.e., flavors, for the edge infrastructure, provid-

ing application QoS guarantees under various operating conditions. This modeling

allows for dynamic selection and allocation of the appropriate amount of resources for

each application (i.e., switching between the different hardware profiles), based on the
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anticipated workload demands. Leveraging the capabilities provided by this switch-

ing, a two-stage distributed, energy-aware, proactive resource allocation mechanism is

designed.

• During the first stage, the works of Chapter 3 and 4 are extended, that jointly ad-

dress task offloading and resource allocation on a single edge site (i.e., [63, 191]), to

simultaneously minimize the total energy consumption of each edge site and provide

guaranteed satisfaction of the QoS requirements of each deployed application. In order

to accommodate the workload prediction needs at this stage, an existing user mobil-

ity prediction mechanism is utilised, based on the concept of the n-Mobility Markov

Chains location prediction [192], to estimate the movement of the mobile devices be-

tween different sites within the edge infrastructure.

• During the second stage, this approach is combined with a novel Markov Random Field

(MRF) mechanism that incorporates in its objective function all optimization criteria;

this mechanism aims at redirecting tasks that cannot be executed locally under the

given energy and QoS requirements of the first step, balancing resource utilization

throughout the whole infrastructure. Thus, it achieves a better total energy man-

agement optimization through an efficient state space search in a distributed fashion,

while taking into consideration any additional network delays incurred. This is the first

approach of such a combination, and it could potentially pave the way for other similar

MRF designs as optimizers in relevant problems. The integration of the above mod-

eling and resource allocation approaches composes a task offloading and energy-aware

resource allocation mechanism for accommodating dynamic spatiotemporal workload

demands.

• Finally, a detailed evaluation of the proposed approach is provided, in terms of en-

ergy consumption minimization and QoS satisfaction for both stages of the mecha-

nism. Then, it is compared with a well-established study in [99]. Based on a realistic

application simulation, the discussed solution outperforms the approach in terms of

adaptation efficiency. In other words, the proposed approach yields less energy con-

sumption for achieving the same QoS guarantees, or equivalently, it achieves higher

QoS guarantees for the same energy consumption.
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6.3 System Modeling

6.3.1 Edge Infrastructure & Applications

To facilitate the extensive modeling employed in this work, Table 6.1 summarizes the key

notation used throughout this chapter. The physical infrastructure is modeled as a group

of wireless access points, each directly connected with a cluster of homogeneous servers,

as illustrated in Figure 6.1. These physical resources altogether form an edge data center,

which hereafter is referred to as site sk, with S = {sk}n
k=1 being the set of sites, for n sites

in total. This set forms a graph, where each site corresponds to a node and the edges to

the interconnections between them through routers, used only for forwarding purposes (i.e.,

backhaul network). Furthermore, the servers of the edge infrastructure are considered to

be located in different sites are heterogeneous. This implies differentiation on processing

capabilities and service completion time among sites.

Figure 6.1: Example of considered edge infrastructure.

For the access layer, the existence of various and heterogeneous end-devices (e.g., IoT,

mobile devices) is assumed, each associated with one of M specific mobile applications (i.e.,

augmented reality, wearables, etc.). Each application m ∈ {1, . . . , M} comes with specific

requirements in terms of QoS (e.g., average response time) that will guide the allocation of

the resources.
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Table 6.1: Summary of the key notation.

Symbol Interpretation
sk Site k
S Set of sites, n = |S| sites in total
M Number of applications
θm Acceptable response time for App. m
ϕm VM flavor of application m
cm Cores requested by VM flavor ϕm

µm Throughput guaranteed by VM flavor ϕm

Sercpu Server’s CPU capacity
Pser Server’s power consumption
Pmax Server’s max. power consumption

P (ϕm) Power consumption of VM flavor ϕm

zi A feasible VM formation
Zk Set of feasible VM formations at site sk

N Size of zi VM formation
Cser

k Servers’ CPU cores threshold at site sk

PA Edge infrastructure’s power consumption
Pk Power consumption of site sk

fi Number of servers with zi VM formation
Ek Number of available servers in site sk

pi Power consumption of VM formation zi

rm
i Max. workload served by VM formation zi

L̃k = [L̃m
k ] Predicted workload for site sk

Nsk
Neighborhood of site sk

wk = [w(k)
m ] Excess workload for App. m at site sk

bk = [b(k)
i ] Number of servers of type i at site sk

P (bk) Power consumption of bk
Xk = {Wk, Bk}n

k=1 Random field
V (ω) MRF potential function

C1, C2, C3, ∆1, ∆2 Properly selected MRF constants
L, K, x0 Parameters of reflected sigmoid function

t Visiting epoch of MRF
w MRF sweep index

T (w) MRF temperature at sweep w
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6.3.2 Task Offloading

As depicted in Figure 6.1, each end-device running an application m offloads its computa-

tional intensive processes to the Edge to reap the benefits of the more powerful computa-

tional resources. In this work, an IEEE 802.11ac access network to offload the tasks from

the devices is assumed. Following the work of [193], the access network is modeled by using

an indoor TGnAC Channel B, suitable for large open space and office environments [194].

Along the same lines, in order to capture the dynamic nature of the wireless network, the

transmission rate of the devices is adjusted according to an enhanced version of the Minstrel

algorithm [195]. In this manner, the devices are able to change the modulation and coding

scheme (MCS) used, and thus the transmission rate, conforming to the varying channel con-

ditions and interference from nearby devices (SINR). This procedure allows the creation of

a realistic dataset containing tuples of the form <number of users, offloading request rate of

each user>, which is publicly available1, and utilize it to translate the predicted number of

users to the anticipated request rate, for a specific edge site. Specifically, it is assumed that

each user constantly offloads at his/her maximum achievable data rate, and, considering

a fixed offloaded task size, producing the anticipated workload volume for the estimated

number of users is feasible.

It is assumed that each end-device needs to fully offload its requests on edge servers

following a VM/container-based provisioning method. Depending on the user’s location,

the offloaded tasks are assigned to the site where the wireless transmission occurs. Each

VM/container of the site’s servers serves the offloaded requests of the application m that it

was assigned to. It is noted here that, for the sake of simplicity, focus is placed on scenarios

and settings where the user’s movement is typically limited close to the site of interest

during the whole offloading procedure. Therefore, the offloading procedure for a single task

is assumed to complete within the same site that it was initiated in and, consequently,

no handover processes and costs are considered. The most important QoS requirement of

the offloaded tasks of application m is the maximum acceptable response time θm value,

which is application-specific. Under this setting, the end-device accelerates the execution of

computationally intensive tasks and extends its battery lifetime.

1https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
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6.3.3 VM Flavor Design

On each edge site, it is essential to facilitate the proactive dynamic resource allocation due

to the varying number of the offloading requests received. The term VM (or container)

flavor is introduced for every deployed application, which describes the relation between the

application’s response time, the allocated CPU cores and the number of the offloaded re-

quests. The computation of these VM flavors is based on switching systems from the System

Theory. The advantage of the VM flavor design is two-fold; first, this modeling approach

allows for accurately capturing the dynamic behavior of the application-specific VMs, un-

der various operating conditions. Second, calculating a multitude of VM flavors, allows for

quickly adjusting the edge infrastructure to different pairs of workloads and applications,

while providing a level of guarantee for the QoS specifications.

The VM (or container) flavor ϕm ∈ Φ of application m is defined as a tuple that includes

the QoS specifications of the hosted application, the requested resources for the VM that

will provide the QoS guarantees and the maximum throughput of offloaded requests, for

which the VM will be able to achieve these guarantees, ϕm : < θm, cm, µm >. Specifically,

parameter θm denotes the average response time that the VM of flavor ϕm guarantees to

achieve with cm CPU cores allocated to it and for a maximum throughput of µm offloaded

requests per time unit. The assumption is made that the response time consists of two terms:

(a) transmission time and (b) service completion time. The transmission time includes the

time to transmit/upload the application’s request through a wireless link. In particular,

since the wireless link has been modeled through the IEEE 802.11ac protocol, calculating this

delay is feasible by leveraging the information of throughput achieved and the application’s

task size. Regarding, the time to download the response from the server, since the size of

the output is generally much smaller than the input, this delay can be usually omitted [196].

Service completion time includes the VM/container startup time, as well as the queuing and

processing time of the application tasks at the assigned servers. A flavor could also define

the memory requested by the VM. However, it is omitted from the problem formulation

due to the following reasons: First and foremost, memory power consumption is negligible

compared to CPU power consumption [197]. Secondly, following the paradigm set by well-

known edge computing frameworks like MAUI [198] and ThinkAir [199], focus is placed on

the offloading of CPU-intensive tasks.
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In principle, the performance of an application hosted on a VM is non-linear and cannot

be described analytically. However, adopting linear modeling allows for an easier identifi-

cation of the system, without significant loss of accuracy, and enables the implementation

of various optimization and control methodologies. In order to extract the VM flavors for

each application deployed on a site, the modeling approach of Chapter 4 [63] is modified; for

each application and for each flavor ϕm of this applications’ VMs, a scalar, discrete Linear

Time-Invariant (LTI) system is identified. In particular, the VM flavors are mainly differen-

tiated based on the number of CPU cores they require, which also constitutes the switching

criterion of the proposed mechanism. Thus, during this identification phase, for each appli-

cation and for each different CPU core allocation, the operation of the corresponding VM is

described by a discrete linear system of the following form,

θ(τ + 1) = aθ(τ) + bµ(τ), (6.1)

where θ(τ) represents the average response time for the deployed application, within a

time period τ and µ(τ) the number of offloaded requests within the said time period. The

coefficients a ≥ 0 and b ≥ 0 are known scalars which can be estimated by the Recursive

Least Square algorithm [200].

Physically, a VM with cm allocated cores can only serve up to µm offloaded requests of

the deployed application while guaranteeing an average response time of θm for the specific

time period. This constitutes the physical interpretation of a flavor ϕm and generally, for

each such switching system, a set of feasible VM flavors of this kind can be computed

according to certain performance criteria and input constraints. In this case, these feasible

VM flavors are computed by solving the following linear programming problem with the

goal to maximize the number of the offloaded requests:

max
θm,cm

µm (6.2a)

subject to θm = aθm + bµm (6.2b)

θmin ≤ θm ≤ θmax (6.2c)

µmin ≤ µm ≤ µmax (6.2d)
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The first constraint dictates that each flavor must also be an equilibrium point of the discrete

linear system, which will guarantee its stability and confinement in a specific operating area

around it. The second constraint implies that the average response time must lay between

a minimum (θmin) and a maximum value (θmax) set by the application’s QoS requirements,

while the last constraint refers to the offloaded requests varying within the applications

anticipated throughput range.

By having a set of VM flavors corresponding to different core allocations and maximum

throughputs, a better level of accuracy is provided than using a single LTI model for the

whole operation. In such a way, the extracted VM flavors correspond to realistic operating

conditions and constitute the fundamental elements for the ENERDGE resource allocation

mechanism.

6.3.4 Power Modeling

When fully offloading tasks, the total computational and energy burden is shifted away

from the devices. However, reviewing this shift from a complete network-wide view one can

easily understand that the problem is simply pushed at the Edge. Thus, in this work, the

minimization of power consumption at the edge infrastructure is also taken into considera-

tion. This includes switching physical devices on and off and optimizing the computational

resource usage during the offloading.

Usually, for the server power dissipation, an almost linear relationship between the power

consumption of a server and its CPU utilization exists. The following model, can accurately

predict the servers’ power consumption Pser with an error below 5% [197]:

Pser = γ · Pmax + (1− γ) · Pmax · u, (6.3)

where Pmax is the maximum power consumed when the server is fully utilized, γ is the

percentage of power consumed by an idle server (usually around 60% [201]) and u is the

current CPU utilization.

In order to extract the power consumed by a VM of flavor ϕm provisioned in a server,
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the above equation is transformed as follows:

P (ϕm) =


γ · Pmax + (1− γ) · Pmax · cm

Sercpu
, if u = 0

(1− γ) · Pmax · cm

Sercpu
, otherwise,

(6.4)

where Sercpu is the total amount of the available computational resources in a server, i.e.,

CPU cores. Hence, for the first VM provisioned at a server the power consumption will

include activating the server and the power consumption added by the particular VM. For

the rest of the VMs only their power consumption is taken into consideration. It is worth

mentioning, that an isolcpus technique [202] is assumed, where the requested CPU resources

are isolated and pinned to the VM. This is a common technique for performance optimization

when virtualizing x86 servers. Thus, each VM will have access only to its share of CPU

resources consuming as well the corresponding power.

6.3.5 Mobility and Workload Prediction

As discussed in the previous subsections, each site hosts a group of IoT/mobile applications

and serves the offloaded requests that are generated by the devices within the range of its

wireless access point. However, in both mobile and IoT applications, mobility is a key feature

and must be considered by the offloading decision and resource allocation mechanism, as

it creates dynamic network conditions. Towards the optimal resource allocation policy, an

accurate prediction of this is necessary.

In order to address this issue, a variation of the n-Mobility Markov Chains (n-MMC)

location prediction method described in [192] is implemented. In a nutshell, this method

incorporates the two previous visited sites of a mobile device and a Mobility Markov Chain in

order to probabilistically predict the device’s next location. As a prerequisite, this method

requires a transition matrix available, containing all the feasible transitions of a device

between the sites, associated with their probability of occurring.

In order to create this transition matrix, the Melbourne Museum dataset [203] is used,

which comprises 158 complete real visitor pathways, in the form of time-annotated sequences

of visited exhibit sites. After processing the data, each path was assigned a probability based

on its frequency of occurrence. This resulted in a transition matrix whose rows represent
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the three last visited sites and its columns represent the next site to be visited. In this way,

predicting the next location of a visitor is simple. Their three most recently visited sites

are traced, the row in the transition matrix that corresponds to this trace is searched and

the column with the maximum probability of transition for this row is located. The site of

this column is the predicted next location. Finally, having available the collective statistics

regarding the predicted locations of the users for the upcoming time period, the predicted

offloaded workload, L̃k = [L̃m
k ], is acquired for the respective site sk and application m, as

described in Subsection 6.3.2.

6.4 Resource Allocation & Workload Balancing

Leveraging the Switching System modeling approach introduced in the previous section, in

this section a 2-stage distributed, energy-aware, proactive resource allocation mechanism is

proposed. In the first stage, an initial resource allocation optimization takes place locally at

the site of each Edge, which balances between energy consumption minimization and QoS

satisfaction. In the second stage, a novel distributed technique is applied to redirect the

excess workload to under-utilized sites, thus balancing the resource utilization and achieving

a better energy management.

6.4.1 Resource Allocation Optimization

In order to accommodate a proactive and dynamic resource allocation, the work of Chapter

4 [63] is followed where time is considered slotted. In this stage, at the beginning of each

system slot, a decision is made on the topology to be implemented on each site, which will

enable it to handle the projected offloaded workload. This topology defines the number of

edge servers to be activated in each site along with the VM formation to be placed in each

edge server, i.e., the number and flavor of the VMs.

Feasible VM formations are the ones where the sum of the CPU cores requested from

the co-hosted VMs’ flavors does not exceed a predefined threshold. For instance, assume

two applications App1 and App2. A VM running App1 and instantiated in a flavor that

requests two CPU cores, along with a VM running App2 and instantiated in a flavor that

requests one allocated CPU core, is a feasible VM formation for a single edge server, as
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the cumulative number of allocated CPU cores does not exceed the threshold of three cores

(75% of the server’s total available CPU capacity, Sercpu = 4).

The set of all feasible VM formations for edge servers in site sk is defined as,

Zk := {zi =
(

ϕ(j)
m , . . . , ϕ(N)

m

)
, m ∈ [1, M ], j ∈ [1, N ] :

N∑
j=1

c(j)
m ≤ Cser

k } (6.5)

where i ∈ [1, |Zk|] is the index of the VM formation, ϕ
(j)
m is the VM flavor, c

(j)
m the number

of cores requested by the flavor of VM j of application m, M is the number of applications

available at site sk, N is the total number of VMs contained in formation zi and Cser
k is the

CPU cores threshold set for each edge server of sk. Due to the fact that the edge servers

within a single site are considered homogeneous in terms of their resources, Cser
k has the

same value for all of them that are tied to a site sk.

The system cost is defined as the total power consumption of the edge infrastructure.

Since in this stage of the resource allocation mechanism no exchange of workload takes place

between the sites, minimizing locally the power consumption, Pk, of each individual site, sk,

results in minimizing the total power consumption, PA =
∑n

k=1 Pk, where n stands for the

total number of sites in the infrastructure. This can be achieved by optimizing the amount

of edge resources that will be activated in each slot to serve the total predicted workload.

Consequently, the corresponding optimization problem can be defined as:

min
fi,Pk

{Pk} (6.6a)

subject to fi ≥ 0, i = 1, . . . , |Zk| (6.6b)
|Zk|∑
i=1

fi ≤ Ek (6.6c)

Pk =
|Zk|∑
i=1

fipi (6.6d)

|Zk|∑
i=1

fir
m
i ≥ L̃m

k , ∀m ∈ {1, . . . , M}, (6.6e)

where the positive integer variables fi denote how many servers need to be activated with

the zi VM formation of set Zk, assuming the total number of formations of edge servers in

site sk is |Zk| and the total number of the available edge servers is Ek. Then, the sum of the
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Figure 6.2: Resource Allocation Optimization Overview (Stage 1).

fi variables cannot be greater than Ek (constraint (6.6c)). Constraint (6.6d) requires that a

site’s power consumption is equal to the sum of the power consumption of its activated edge

servers. It should be noted that, following common considerations in the literature [63], it

is assumed that the total number of available edge servers in a site is relatively small, thus

the overall computation complexity of the optimization process is kept minimum, allowing

the problem to be solved online.

As discussed in Subsection 6.3.4, the power consumption of each VM is proportional to

its flavor. As a result, power consumption pi of one edge server activated with the zi VM

formation is calculated as follows:

pi := p(zi) =
N∑

j=1
P (ϕ(j)

m ), m ∈ {1, . . . , M}. (6.7)

Finally, the last M constraints of (6.6e) denote that the total predicted workload for each

application at sk, L̃m
k , for the next system slot, is satisfied by the activated edge servers in
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each site. Again, as discussed in Subsection 6.3.3, the workload guaranteed to be served by

one edge server with the zi VM formation is:

rm
i := rm(zi) =

N∑
j=1

µ(j)
m , m ∈ {1, . . . , M}. (6.8)

Problem (6.6a) is solved in a distributed fashion, locally in each site and proactively at the

beginning of each system slot, after collecting all the required information (i.e., available

resources and predicted workload). An overview of this process is depicted in Figure 6.2.

6.4.2 Inter-site Balancing of Excess Workload

In edge infrastructures, network traffic, therefore offloading requests, exhibit considerable

variation. On the one hand, there are cases where the total predicted workload for a site

exceeds its available resources’ capabilities, in which case problem (6.6a) has no solution. In

this situation, all the site’s edge servers are activated with a fixed zmax formation, where

zmax stands for the VM formation that accommodates the maximum possible number of

offloaded requests for each application. Even so, a portion of the predicted workload will

remain unserved (overloaded site). On the other hand, it is common that the total predicted

workload for a site is lower than the predefined threshold that dictates whether the energy

cost of activating the site’s edge servers is worth serving it. Again, a portion of the pre-

dicted workload will remain unserved (underloaded site). The aggregation of the remaining

predicted workload of each of these sites is denoted as the excess workload wk of site sk,

and this is handled through the novel approach that follows.

This second stage aims towards better balancing the previous resource management

decisions so that excess workload requests of a site are distributed in neighboring (or even

farther apart) sites. The excess workload is handled in such a way that it does not allow sites

to become operational for a number of requests lower than a threshold of their total capacity,

which will ensure eventually better energy efficiency, as explained in previous subsections.

To achieve this, the theory of Markov Random Fields (MRFs) [82] is employed, mainly

due to its agile design and straightforward implementation, which allows simple distributed

decision-making, while achieving results very close to the optimal ones (and frequently the

optimal ones) with very low convergence times.
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In this work, the sites sk ∈ S are considered, that correspond to access points of the

considered infrastructure. A neighborhood system N = {Nsk
}sk∈S is defined on S, while

Nsk
denotes the neighborhood of site sk and includes the nodes within single hop distance.

Assume wk = [w(k)
m ] is the vector indicating the amount of excess workload for application

m at each site sk and bk = [b(k)
i ] the vector indicating the number of selected servers of type

i, to be additionally activated at site sk. Considering ek, the number of available servers

per site sk, which is obtained from the solution of the initial resource optimization problem

(6.6a), bk is such that

bk =
[
b

(k)
i , . . . , b

(k)
|Zk|

]
,

|Zk|∑
i=1

bi ≤ ek. (6.9)

Vectors wk, bk are stochastic, since their values depend on the instantaneous system state

and user activity. The collection of random variables Xk = {Wk, Bk}n
k=1 is defined as a

collection of random vectors Wk = wk, Bk = bk,∀ k ∈ [1, n], defining the state of each

site and cumulatively the state of the system with respect to excess workload and available

servers at each site sk. The random field X = {Xk}n
k=1 takes values {Xk = xk}n

k=1 in

Λ =W ×B, which is the product space of phase spaces wk ∈ W, bk ∈ B, respectively. The

configuration ω = {xk : xk ∈ Λ,∀sk ∈ S} corresponds to one of all possible states of the

system state and Λ denotes the configuration space.

Due to the distributed topology of the sites, the above random field X can be considered

an MRF, and based on the Hammersley-Clifford theorem, the potential function V (ω) is

considered, which can be decomposed in clique potentials:

V (ω) =
∑
C∈C

VC(ω) =
∑

sk∈S

V
(1)

{sk}(ω) +
∑

sg∈Nsk

V
(2)

{sk,sg}(ω), (6.10)

where C is the set of all cliques in the network of sites (where a clique denotes a subset of

nodes, all of which are connected to each other). The potential function is the objective

function to be minimized, and it will be used as a quantitative measure of the success

of each system state to fulfil the optimization criteria, namely the reduction of the total

power consumption of the Edge infrastructure. The lower the potential function, the more

desired the corresponding system state will be. Due to the topology formed by the sites (i.e.,

the access points), only one-clique (cliques consisting of one node) and two-cliques (cliques

148



consisting of pairs only) exist, so that the potential function is decomposed in singleton

V
(1)

{sk}(ω) and doubleton (pairwise) V
(2)

{sk,sg}(ω) terms, respectively. Each singleton term is

defined as follows:

V
(1)

{sk}(xk) =



C1 · P (bk)
[
1 +

∑
m

sig(w(k)
m )

]
+ C2 · d · ak, if ∃ bk∑|Zk|

i=1 b
(k)
i rm

i > w
(k)
m ,∀m,

∆1 > 0, otherwise,
(6.11)

where C1 and C2 are properly selected constants and ∆1 > 0 is a constant with very

high value. The power consumption of formation bk is P (bk) =
∑|Zk|

i=1 b
(k)
i pi. Function

sig(·) = L − L
1+exp−K(x−x0) is the reflection of the sigmoid function with respect to the

vertical axis through the inflection point x = x0. The parameters of the reflected sigmoid

function are L, the maximum value, K, the gain and x0, the inflection point. By giving

the inflection point a value equal to 0.5 rm
i , the inclusion of this reflected sigmoid function

tends to grow singleton terms that describe states where edge servers are under-utilised (i.e.,

when they serve less than 50% of their nominal workload capacity), close to the maximum

value (undesired system state). The intuition behind this design is that the singleton terms

express the goal of each site individually for lower energy consumption. Each site strives

to reduce its consumption as much as possible, which in turn will drive its singleton term

to lower values. At the same time, the term d · ak tends to drive the system towards a

solution which keeps the total additional delay, induced by the workload redirections, as low

as possible; d stands for the single hop network delay in ms while ak corresponds to the

ingress workload (i.e., how much additional workload the edge site sk will accommodate,

compared to the original).
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The doubleton terms are defined as follows:

V
(2)

{sk,sg}(xk, xg) =



C3wk ·wg + C4P (bg)
[
1 +

∑
m sig(w(g)

m )
]

, if ∃ bg∑|Zk|
i=1 b

(g)
i rm

i > w
(g)
m ,

∀m

∆2 > 0, otherwise,

(6.12)

where C3 and C4 are properly selected constants and ∆2 > 0 is again a constant with very

high value. The intuition behind the design of the doubleton terms is that as far as the

interactions of the neighboring sites are concerned, ideally the system should be driven to

states where neighboring sites exchange the remaining workload so that it is concentrated

in specific sites, thus avoiding having to maintain multiple active sites for a small value of

excess workload. It is also important to point out that the MRF activates servers with the

appropriate VMs of the flavors described in Subsection 6.3.3 in order to serve the balanced

excess workload, thus the primary QoS requirement of the maximum acceptable response

time is respected. An overview of the MRF balancing process is depicted in Figure 6.3.

Each site seeks to minimize its contribution to the cumulative potential function by

minimizing its local neighborhood potential function comprised of the sum of its singleton

and doubleton (pairwise) potentials with its one-hop neighbors. The state of each site

depends only on the states and the information of its neighbors. Gibbs sampling [186]

can be applied by each site individually, reaching global optima through local sampling.

Cumulatively, this distributed sampling converges to global optimizers of the system. This

approach has a very low computational overhead, O(n), n being the number of sites, while

reaching asymptotically the global optimal resource allocation solutions, frequently yielding

the optimal ones. Furthermore, the signaling overhead is rather small, since each site sk is

only required to exchange system state information locally with its one-hop neighbors only.

The sequential Gibbs sampling method proceeds as follows. Consider a logarithmic

annealing schedule of the form T (w) = c0
ln(1+w) , where c0 is a constant (equal to 2 in the

experiments) and T (w) is called the “temperature” of the w-th annealing step. Also, consider
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Figure 6.3: MRF Inter-Site Balancing Overview (Stage 2).

a sequential visiting scheme of all sites, where at each epoch t (mini-slot in a sweep) within

a step w, only one site updates its value (Figure 6.4 depicts the relations of the system slots,

sweeps and update epochs). Starting with an arbitrary initial configuration X(w = 0), at

epoch t of w, let ω = X(t) and denote by ωxk the configuration that has value xk at site sk

and agrees with ω everywhere else. The update (decision to transition to a new state) at

Figure 6.4: Relation of system slots, sweeps and update epochs.
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site sk takes place according to the distribution:

P (Xk(t) = xk|Xg(t) = xg, g ̸= k) =
exp (− 1

T (w)
∑

C:sk∈C

VC(ωxi))∑
xk∈Λ

exp (− 1
T (w)

∑
C:sk∈C

VC(ωxs))
, (6.13)

where C is the set of the cliques formed by the sites (here only one-clique and two-cliques

are formed in the graph). Namely, with probability determined by (6.13), site sk will choose

xk as its state in sweep w + 1. The site states are updated sequentially within a sweep w.

The annealing schedule represents a decreasing rate of system temperature T (w), where w

stands for the index of the w-th sweep (i.e., the system temperature is updated at the end

of each sweep). The w-th annealing step is equivalent to the w-th sweep, and consists of n

visiting epochs (denoted by t in the above), one for each site. Since sampling begins at high

temperatures, where the local characteristics are practically uniform, it permits transitions

to higher-potential function configurations, thus avoiding getting trapped in local minima.

After each sweep, the resulting system states form an inhomogeneous Markov Chain on the

configuration space that converges to the uniform distribution on the set of global potential

function minimizers.

Figure 6.5 showcases an example of the effect of the MRF excess workload balancing,

for two applications in an Edge infrastructure of nine sites, by comparing the starting and

final state where the MRF has converged. As the starting formation for each site, the set of

edge servers with the minimum number of allocated resources is selected in order to serve

the excess workload locally. It can be observed that in the final state, the MRF yields a

rather desired solution where it has grouped all the excess requests, wk, in a single site, thus

minimizing the associated energy consumption of the network, while serving properly the

remaining requests, within the capacity bounds imposed in each site. Specifically, Table 6.2

shows the selected VM formation for the particular site, with three activated servers.

Table 6.2: VM formations selected by the MRF mechanism.

Server (bk) App1 VMs App2 VMs
1 1 × medium 1 × small
2 1 × medium 1 × small
3 1 × medium -

Site Workload Capacity
(
∑|Zk|

i=1 b
(k)
i rm

i )
81 82
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Figure 6.5: Workload Balancing example: starting and final states.

It is observed that this site formation fits to accommodate the workload. The total power

consumption, P (bk), is 5200W , which is around half of the 10000W power consumption of the

initial site formations selected, had the excess workload been executed locally. The number

of available servers per site ek, is also depicted. Also, local execution would lead to some

requests being rejected, as there is one site that has no available servers to accommodate

its excess workload. Consequently, the MRF based mechanism emerges as rather effective

in increasing the energy efficiency of the whole approach.
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6.4.3 ENERDGE Core Algorithm

In this subsection, the core algorithm of a full ENERDGE deployment in an edge infras-

tructure is described:

Algorithm 1 ENERDGE Core Algorithm.
Data: Trajectory Dataset
Result: Optimal VM placement in Edge Infrastructure
begin

// Offline
1: create the Task Offloading Dataset, Sec. (6.3.2)
2: while τ ≤ identificationPhaseDuration do

for m ∈M do
for c ∈ Cser do

// Identify VM flavors
ϕm ←− solve Eq. (6.2)

end
end

end
3: create the Transition Matrix, Sec. (6.3.5)
// Online
4: track last position of users, Sec. (6.3.5)
5: for sk ∈ S do // Optimization
Zk ←− calculate VM formations, Eq. (6.5)
for m ∈M do

L̃m
k ←− predict workload, Sec. (6.3.5)

end
L̃k = [L̃m

k ] place VMs by solving, Eq. (6.6)
end
6: for sk ∈ S do // MRF

wk ←− calculate excess workload, Sec. (6.4.1)
repeat

bk ←− calculate additional servers, Eq. (6.10)
until converges
activate extra servers, Sec. (6.4.2)

end
wait until next system slot
go to 4

end

At first, the required datasets are produced and the VM flavor design procedure is per-

formed offline. Then, as shown in Algorithm 1, the initial optimization and the distributed

resource allocation for each site of the edge infrastructure take place, as explained in the pre-

vious sections. During this online phase, first, the mobility of users and devices is predicted

using the n-MMC method. Then, the incoming workload at each site of the infrastructure
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is estimated for the current system slot. The resource allocation optimization produces an

initial solution subject to QoS and energy constraints for a given predicted workload at

each site. For each site, the excess predicted workload or workload that cannot be served,

along with the available resources, are computed. Finally, the excess workload is balanced

between the extra servers activated in under-loaded sites, according to the MRF solution,

achieving the minimization of the energy consumption for the edge infrastructure.

6.5 Performance Evaluation

In this section, the performance of the proposed resource allocation and load balancing

mechanism is presented via modeling and simulation. The results illustrate the success

of the proposed approach in minimizing the energy consumption while guaranteeing the

stability of the application’s QoS (i.e., response time) within an acceptable margin. The

optimization of the resource allocation is highlighted in terms of the power consumption of

the activated edge servers and the VM flavors used to serve the incoming workload. The

benchmarking is conducted using CloudSim Plus [110], a Java-based simulator suitable for

Edge and Cloud environment experimentation. Then, a comparison with a well-established

study in the literature follows.

6.5.1 Smart Museum Experiment Setting

To demonstrate the operation of an ENERDGE real-world application, the environment of

a smart museum is emulated, accommodating different categories of interactive exhibits, a

large number of IoT sensors, edge devices with heterogeneous computational capabilities and

dynamic network conditions modeled by the dynamic behavior and mobility of the users.

In particular, the physical infrastructure consists of interactive exhibits-sites, each of which

hosts an edge data center, resembling a smart museum floor. The applications deployed in

the museum are classified in two categories with different characteristics and requirements:

Interactive Exhibit Apps: On the one hand, the museum is considered to be leveraging

Augmented Reality (AR) and Virtual Reality (VR) settings to provide rich and detailed

access to artwork and artifacts, bring life to works of art and allow visitors to engage in

adaptable visual guided tours by using their mobile devices. In order to achieve the high
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QoS requirements of these types of applications, mobile devices can offload some workload

by sharing video decoding tasks to the more powerful edge devices. Mobility is high in these

applications as visitors move from one exhibit to the other.

Sensor Monitoring Apps: On the other hand, IoT is making it possible to deploy low-

cost, automated monitoring of collections and museum facilities, e.g., static sensors for

temperature, humidity, counting number of visitors. Such applications are low on delay

requirements, i.e., the processing can be performed in a delay tolerable manner, sending

data and information after a completion of an activity. However, they produce numerous

requests to the edge servers.

Table 6.3: Identified VM flavors.

Flavor Small Medium Large
App1 App2 App1 App2 App1 App2

Cores 1 1 2 2 4 4
QoS (sec) 3 3 3 3 3 3

Maximum
Requests/Slot 11 38 27 82 59 173

One application of the Interactive Exhibit type is assumed, denoted as App1, and one

of the Sensor Monitoring type, denoted as App2, co-hosted in each site. This means that

VMs of both application types are able to run simultaneously in the edge servers, receiving

offloading requests from their counterparts in the visitors’ mobile devices and the IoT sensors,

respectively. For demonstration purposes, both apps are assumed to be based on image

recognition processes, thus their acceptable response time (QoS) is set at 3sec, which lies

within the margins of a typical image recognition service time [204] and provides a satisfying

Edge Computing AR application experience to the user [205]. As the design of the proposed

framework and modeling of the applications are independent of the level of the applications

QoS requirements, applications that require lower (or higher) response times are naturally

supported. Following the modeling approach explained in Subsection 6.3.3, the VM flavors

shown in Table 6.3 are identified, tuned towards achieving the above QoS requirement.

It should be noted here that App1 requests require considerably heavier computations to

achieve this response time than the ones of App2, a fact that limits the Maximum App1

Requests served per Slot to a third of those served by the App2 equally sized VMs. The

system slot is arbitrarily set at 30sec and the experiments last for a period of 1 hour, or
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120 system slots. The simulation code alongside any related dataset used in this section is

publicly available2.

6.5.2 Resource Allocation Evaluation

In this subsection, the evaluation of the resource allocation algorithm is presented. At first,

the impact of the selected mobility method is assessed and then a summary of the core

optimization results is provided. Finally, a comparison with a well-known work in the field

is demonstrated.

Mobility Prediction Impact

As described in Subsection 6.4.3, predicting the visitors’ positions in the next system slot is

the first step of optimizing the allocation of the edge resources in each site. This provides

an estimation on the projected workload. To quantify the impact of the mobility prediction

accuracy, a sensitivity analysis is performed as illustrated in Figure 6.6; this assesses the

impact of the prediction error on satisfying the required application QoS, both in terms of

the average response time (ART) per request and the percentage of the violations occurred in

respecting the QoS. Logarithmic scale is used to better visualize both impacts in a combined

fashion.

Showcasing the impact analysis at the end of both Stages of the resource allocation

mechanism separately, was preferred, so as to highlight the significant effect the MRF-

based workload balancing has on alleviating the disruptions caused by the prediction error.

The results are collected from running the simulation for 10, 000 system slots, for various

topologies, and averaging the stats in batches of 10. Thus, the x axis of Figure 6.6 represents

the range of the prediction error. The dataset used is again the Melbourne Museum one

[203].

Underestimating the real incoming workload leads to under-provisioning of resources and

subsequently to slight degradation of the response time. In detail, it is noticed that both

the ART and the violations grow almost linearly with the prediction error. It is also clear

that the application of the MRF-based balancing in each system slot has a great impact on

respecting the QoS requirements, with the redirections of the excess projected workload from
2https://github.com/maravger/netmode-cloudsim
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Figure 6.6: ART & QoS violations sensitivity to prediction error.

overutilised sites to underutilised ones; the ART lies around 2sec and the QoS violations do

not exceed 10% of the offloaded requests, when the prediction error is less than 10%, while the

ART grows to around 3sec, which is still acceptable for both applications, and the violations

to 20%, when the error is less than 20%. Beyond the point of a 30% prediction error, it

is noticed that the extra, unpredicted workload puts excessive strain on the mechanism.

However, this should not be a problem, as selecting an appropriate prediction mechanism,

like the n-MMC used here and other comparable works, e.g., [206], leads to an average

prediction accuracy of 70− 95%.

Response to Dynamic Network Conditions

In this subsection, a close examination on how the resource allocation optimization reacts

to the dynamic workload demands caused by the visitors’ mobility is made, in terms of

edge servers activated and the VMs placed in them. Figure 6.7 showcases the scalability

of the proposed technique, as a response to the mobility of the visitors’ devices and the

fluctuations in the sensors’ offloading rate. The behavior of a single site is presented, which

is equipped with three servers of four cores each, and this acts as a baseline for the rest of the

evaluation. With regard to power consumption, for demonstration purposes, it is assumed
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that the average maximum power consumption of an edge server is 2000W , in accordance

to [207].

Figure 6.7: Dynamic resource allocation: allocated cores, activated edge servers, power
consumption and ART as a response to the predicted requests, for a single site.

Figure 6.7a shows the predicted workload per system slot, as calculated in the previous

step, while Figs. 6.7b-d demonstrate how the resource optimizer adapts to the fluctuations.

In particular, they depict how the optimizer selects the appropriate topology in terms of

number of active edge servers and their allocated cores, in order to meet the demands for

the selected site. For instance, when the predicted requests are high, e.g., at system slots

{3, 46, 86}, with {206, 182, 181} predicted requests respectively for both applications (red-
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colored marks), the optimization results in three activated edge servers and seven cores

allocated among them. On the other hand, when the incoming request prediction is consid-

erably lower, as in system slots {9, 38, 76}, with {84, 83, 84} predicted requests respectively

(green-colored marks), only one server with three allocated cores is activated. The results

corroborate the total power consumption, as shown in Figure 6.7d.

Exploring further, an example is demonstrated regarding the specific VM formations

selected for the above activated servers, at system slot 3. The total of 206 predicted requests

consisted of 17 requests for App1 and 189 requests for App2. Table 6.4 shows the selected

VM formation for the three activated servers for this system slot. It can be seen that this

VM formation fits to accommodate the predicted workload. The site’s power consumption,

in this slot, is 5000W .

Table 6.4: VM formations in slot 3.

Server App1 VMs App2 VMs Allocated Cores
1 1 × small 1 × medium 3
2 1 × small 1 × medium 3
3 - 1 × small 1

Site Workload
Capacity 22 202

While the proposed approach adapts very well against the various predicted incoming

workloads in terms of allocated resources, satisfying the QoS for these applications is chal-

lenging. This is due to the fact that the VM topology to serve these requests is selected

based on the predicted workload which is potentially fallacious, as explained in the previous

subsection, and this leads to violations in the QoS. For instance, as shown in Figure 6.7e, in

system slots {42, 63, 68} (yellow-colored marks), the average response time for both applica-

tions was slightly above 4sec, or approximately 35% larger than the reference value, set at

3sec. This is an indication of under-provisioning due to incoming workload underestimation.

Violations like this took place 17 times in this site, or 14% in a total of 120 system slots. This

is considered to be an acceptable margin of error for the satisfaction of the perceived QoS.

Finally, it should be pointed out that for this experimentation, the average service com-

pletion time mainly affected the measured response time. The average transmission time is

negligible, due to the use of the IEEE 802.11ac standard, which provides high throughput

for requests of application types used in this experiment.

160



MRF-based Excess Workload Balancing Evaluation

In this subsection, initially the convergence behavior of the MRF approach is demonstrated

for a standard and a larger topology. Figure 6.8 demonstrates the variation of the cumulative

potential function of the MRF (Eq. (6.10)) for a complete set of sweeps corresponding to

an execution of the MRF in the beginning of a system slot. The results of this evaluation

have been averaged over 100 different topologies, both for a 9-site (Medium) and a 36-site

(Large) Edge infrastructure.

Figure 6.8: MRF-based workload balancing convergence.

It is observed that the Gibbs sampler converges rather quickly and it succeeds in reducing

the variability of the potential value rapidly. The Gibbs sampler is able to identify the

local neighborhood of desired solutions relatively fast, within the first five sweeps, and

then fine-tune the search, eventually selecting one solution among the global minimizers of

the potential function. As expected the larger topology exhibits greater variability of the

cumulative potential function in the first sweeps, but eventually convergence is smooth and

within the maximum number of designated sweep iterations (here employing a maximum of

50 sweeps).

To evaluate the efficiency of this second stage of the proposed mechanism, as discussed
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in Section 6.4.2, two cases of excess workload at the end of the first stage are identified.

Regarding the workload coming from overloaded sites, Figure 6.9 depicts the improvement

in the QoS satisfaction that comes with the application of the MRF balancing. It is observed

that, while both the ART and the violations metrics grow almost linearly with the excess

workload, by applying the MRF balancing, the proposed mechanism achieves to provide the

QoS guarantees (i.e., ART ≤ 3sec and violations ≈ 10%). This comes as a natural result as

the overloaded sites are alleviated of the excess workload, which is balanced throughout the

infrastructure.

Figure 6.9: MRF QoS improvements for various excess workloads in overloaded sites.

On the other hand, regarding the underloaded sites, Figure 6.10 demonstrates the effect

of the MRF-based excess workload balancing on the total energy consumption of the infras-

tructure, by comparing it to the case where no balancing of any kind takes place. During the

latter, as the average excess workload increases, the power consumption increases radically,

as extra, underloaded edge servers are activated in each site in order to accommodate the

low volume of excess requests locally. From that point on, power consumption increases

moderately, as larger VMs are installed to meet the increasing workload demands, until the

point where all the resources are allocated in each site and the maximum power consump-

tion of the infrastructure is reached. On the contrary, when MRF balancing is employed,
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Figure 6.10: MRF Energy Savings for various excess workloads in underloaded sites.

Figure 6.11: MRFWorkload Redirection -Induced Delay Minimizing for various excess work-
loads.

power consumption adjustment is more fine-grained, as only the minimum combination of

activated servers and installed VMs flavors are deployed in each case.

Finally, Figure 6.11 illustrates the impact of the delay minimizing term in the MRF-based

workload balancing. It is clear that the MRF-based solution minimizes the redirection-

induced overhead per request (≈ 10ms average), when compared to a solution that randomly
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places the excess workload to available edge sites (≈ 26ms average) in a medium sized edge

infrastructure. It should be also noted that the average additional delay is far more stable

throughout the average excess workload increase, compared to the random placement case.

6.5.3 Comparison

Following, a comparative evaluation of the overall resource allocation of ENERDGE with

the work presented in [99] is carried out. Similar to the proposed work, this study presents a

setting of dispersed and interconnected clusters of computers, namely cloudlets, which form

a wireless metropolitan area network. Contrary to ENERDGE, each cloudlet has a static

VM provisioning method to serve offloaded requests. This study focuses on identifying over-

utilized cloudlets and redirecting part of their incoming workload to under-utilized ones in

order to achieve load balancing. In [99], instead of having an estimation of the incoming

workload, it is considered known for each cloudlet and for each system slot. The offloaded

workload served at each cloudlet is bounded by its service rate capabilities. The rest of it

is rejected and redirected back to the end-device for local execution. The service rate of a

cloudlet is defined as the number of requests that each VM can serve in a system slot.

In order to highlight the importance of dynamic resource allocation towards simultane-

ously guaranteeing the QoS requirements and minimizing energy consumption, the proposed

method is compared with two differently oriented resource provisioning settings of [99]. The

first, attempts to minimize energy consumption (Experiment A), while the second aims at

satisfying the QoS (Experiment B). To make the comparison fair, the exact same nine-

site edge infrastructure, described in Subsection 6.5.1, is simulated for both methods. The

generated workload traffic is the same for both methods as well.

Regarding Experiment A, a frugal static resource allocation for [99] is chosen, that would

approximately match the total energy consumption of ENERDGE (Figure 6.12b). QoS

violations were calculated for both methods based on the SLA threshold for the response time

of the offloaded requests, set at 3sec, as in Subsection 6.5.2. In one hour of experimentation,

the ENERDGE sites reported 207 violations, or 9% of the offloaded requests, compared to

the 470 violations or 22% of the requests in [99], as shown in Figure 6.12a.

On the contrary, in Experiment B, a resource-abundant static allocation was selected for

[99], in order to match the QoS satisfaction of ENERDGE (Figure 6.13a). In this case, as
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(a) QoS Violations. (b) Energy Consumption.

Figure 6.12: QoS violations and energy consumption during Experiment A.

(a) QoS Violations. (b) Energy Consumption.

Figure 6.13: QoS violations and energy consumption during Experiment B.

shown in Figure 6.13b, energy consumption for one hour in [99] was roughly 41kWh, or more

than 65% bigger when compared to the 26.5kWh of the proposed method. In addition to the

previous results, it is clear that even a static resource provisioning method enhanced with

workload redirecting mechanisms is incapable of finding a balance between QoS satisfaction

and infrastructure energy consumption minimization, the way ENERDGE does.
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Chapter 7

Conclusion

In this study, multiple aspects for designing resource allocation mechanisms and computa-

tional offloading strategies have been studied, that will allow the network edge to become

a reliable ally for IoT devices in their quest for transforming the world as we know it. In

order to do so, the interdependency among various different types of actors has taken into

account. Key problems have been identified, novel algorithms have been developed and their

performance has been evaluated.

7.1 Outcomes

At first, the basic mechanism on which most of the work in this thesis is based, was intro-

duced. Specifically, in Chapter 3, a cooperative, two-level computation offloading mech-

anism for IoT/mobile applications was presented. The VM operation was modeled by a

group of LTI models and for each model an equilibrium operating point, a proper controller

and the minimal and maximal positive invariant sets were computed. At the upper level

a horizontal scaling procedure took place; an optimizer determined the number of active

edge servers and the operating points of the VMs to be implemented in them, in order to

serve the total workload for each application. This decision took into consideration the cal-

culated equilibrium points for each underlying VM, thus guaranteeing the scalability of the

presented mechanism towards major workload fluctuations. At the local level, a controller

handled the minor workload fluctuations by scaling the VMs vertically, ensuring that the
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average response time was stabilized and restricted in a specific range of values. The experi-

mental evaluation showed that the proposed mechanism achieved high percentage of requests

admitted in the edge servers, while the performance constraints were met, outperforming a

well established energy aware offloading method.

Then, based on this work, in Chapter 4, a Cyber-Physical Social System for early

fire detection was presented; a Scalable Edge Computing Framework, called SMOKE, was

deployed on the network edge and was receiving captured images from several IoT nodes

to evaluate the criticality of the situation; on a higher level, an intelligent decision-making

service was deployed on the Cloud, receiving data from various sources (i.e., various low

cost sensors, social media users and SMOKE) and communicated with the local authorities

in case of emergency. This work focused on two main aspects, namely (a) the Horizontal

and Vertical scaling of the available edge servers’ resources, in order to achieve optimal

allocation and use of resources and (b) the decision-making mechanism, for a time-critical

application, that takes the social factor into consideration. The proposed computation

offloading mechanism is generic and applicable on several types of Mobile Edge Computing

(MEC) environments and applications.

The experiments conducted and presented in these two first chapters allowed for drawing

some significant conclusions regarding the performance of the proposed frameworks. Hor-

izontal and Vertical Scaling of edge servers is essential for guaranteeing the QoS metrics

of time- and mission- critical applications, while dynamic resource allocation prevents over-

or under- provisioning of the edge servers’ resources. Moreover, admission control on the

incoming offloaded requests is a key factor for time-critical applications with stringent re-

quirements in terms of retention of the desired QoS levels, like average task execution and

transmission latency. Specifically in Chapter 4, the evaluation with regards to the time

needed for the IDM component to collect the necessary data and extract a decision, shows

that the overall time overhead is not higher than 40 sec. This time duration is considered

within the time limits of such a time-critical system especially considering the heterogeneity

of the collected information types and sources.

Next, in Chapter 5, computation offloading strategies were investigated and a switching

offloading mechanism for localization and path planning applications of mobile robots was

introduced. The offloading decision for localization was based on pose uncertainty and the
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availability of edge (network and computing) resources, while the offloading decision for path

planning depended on the difficulty of the trajectory. The proposed framework is shown to

achieve more precise navigation than the case of exclusive local execution of the applications,

without paying the price of a slower execution time, like in the case of remote only execution

of the algorithms. Also, it is modular and applicable to various scenarios, applications and

objectives under the robot’s dynamic environment.

Apart from that, a vision-based self localization approach for indoor autonomous mobile

robots was proposed. Based on a bilateration method and some core principles of the

projectile geometry, the proposed algorithm required the detection of distinct landmarks

in the environment and the calculation of the robot’s relative distance from them in order

to obtain the robot’s pose (i.e., position and orientation). Distance calculation was based

on feature extraction from the landmarks. The localization algorithm had to rely on the

minimum number of landmarks as they are scarce in the discussed application’s setting, thus

a bilateration approach that required the identification of two landmarks was used.

Finally, Chapter 6 introduced the ENERDGE framework that addressed jointly the full

task offloading and resource allocation problems in a multi-site setting. A holistic energy-

aware resource optimization approach was proposed, based on the design of the VM flavors

complemented with an innovative distributed load balancing technique based on MRFs,

with the penultimate goal to minimize the total energy consumption without sacrificing

the QoS in terms of latency. To minimize the inverse impact of user mobility during task

offloading, ENERDGE considered the dynamic wireless conditions of the access network and

supported a mobility prediction scheme to better guide the allocation solution. Numerical

results showed that the prediction mechanism accurately predicts the mobile behavior of the

users, while the ENERDGE resource optimizer outperforms a well-established load balancing

technique in terms of both latency and energy consumption. The MRF scheme is shown to

converge rapidly to minimum energy solutions, thus allowing further energy optimizations

in an efficient manner.
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7.2 Recommendations for Future Work

Concluding this thesis, this final section sheds light on some of the possible future research

directions that can be followed based on the outcomes of the presented work and the chal-

lenges faced during the research process. While the thesis treats resource allocation and

computational offloading problems that concern some of the most dynamic procedures in

IoT environments, there still exists much room for further development.

Regarding the resource allocation mechanism, future work could focus on further in-

vestigating improvements on the modeling and control of the application-specific VMs and

leveraging different combinatorial optimization criteria to improve the Horizontal Scaler’s

decision-making mechanisms, introduced in Chapters 3 and 4.

• Specifically, it should be noted that, as mentioned before, this work aimed at mini-

mizing the number of active servers with the constraint of meeting the total workload

demands. By offloading as many tasks as possible, while keeping the number of active

servers low, energy efficiency on the mobile nodes and the edge servers is implicitly

targeted as well. However, dealing explicitly with optimizing energy cost in the mobile

nodes (e.g., maximizing the offloaded requests) is also an interesting and challenging

problem.

• Additionally, minimizing functional costs like data transmission costs (e.g., how the

requests are distributed among the servers), or maximizing revenue/income for the

infrastructure providers (e.g., how many different VM-applications can be deployed

per server) can be used as additional or alternative objectives for the Horizontal Scaler

component of the proposed framework.

• Another issue that would be interesting to study is the use of the 5G or even 6G

technologies as an alternative to the WiFi access points currently used for the commu-

nication between the IoT nodes and the Edge servers. This would allow the proposed

frameworks to expand their operational range beyond indoor and semi-rural areas and

enable the coverage of vast areas. Consequently, this would arise interesting chal-

lenges like workload balancing among geographically dispersed edge server clusters.

Additionally, evaluating and conducting a comparative study on trying to minimize
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the data transmission overhead, would be essential for a complete study in IoT-based

applications.

Concerning the computational offloading strategies, future work could focus on extending

the proposed algorithms to more sophisticated control ones, providing theoretical guarantees

for stability and convergence of the devices’ dynamics.

• In detail, developing more precise estimation and planning algorithms, specifically

in multi-robot scenarios, and more sophisticated control algorithms in the co-design

setting, that would manage and allocate the available networking resources on the

infrastructure side as well, is of great interest as well.

• Effort should also be placed on the use of more dynamic environments (e.g., servers

and robots moving at the same time) and designing dynamic allocation mechanisms

that will manage the available resources appropriately, in order to provide theoretical

guarantees for stability.

• Additionally, the establishment of more sophisticated estimation/control algorithms

in a co-design setting should propose faster and more reliable planning strategies.

• Last, non-deterministic/stochastic approaches could be evaluated for estimation and

control purposes and machine learning techniques could be integrated to the mobility

prediction approaches to enable addressing errors in the predictions of dynamically

estimated values of the position and number of the involved devices.
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Chapter 8

Extensive Summary in Greek

Εκτεταμένη Περίληψη στα Ελληνικά

Η παρούσα διατριβή εστιάζει στην ανάπτυξη τεχνικών για τη δυναμική κατανομή πόρων

και τη μεταφόρτωση υπολογιστικά απαιτητικών διεργασιών εφαρμογών του Διαδικτύου των

Αντικειμένων – ΔτΑ (Internet of Things – IoT) στα άκρα του δικτύου (Network Edge). Παρά-

δειγμα εφαρμογών που μπορούν να επωφεληθούν από τις παραπάνω τεχνικές αποτελούν οι

διάφορες ρομποτικές εφαρμογές και οι εφαρμογές επαυξημένης πραγματικότητας (Augmented

Reality – AR) που εκτελούνται σε κινητές συσκευές. Για την ανάπτυξη των τεχνικών αυτών,

χρησιμοποιούνται πρωτίστως τεχνικές και εργαλεία από τους τομείς της Θεωρίας Συστημάτων

Αυτόματου Ελέγχου, καθώς και μερικές από τη Θεωρία Πιθανοτήτων.

Πιο συγκεκριμένα, η παρούσα διατριβή εστιάζει σε τέσσερις σημαντικές ερευνητικές πε-

ριοχές που αφορούν στην ανάπτυξη των παραπάνω τεχνικών, οι οποίες είναι: α) η μοντελο-

ποίηση των ετερογενών οντοτήτων του εξεταζόμενου συστήματος (τύπος υποδομής-χρηστών-

εφαρμογών-δικτυακών/υπολογιστικών πόρων), β) ο υπολογισμός του όγκου των διεργασιών

που αναμένεται να εκτελεστούν στα άκρα του δικτύου (μέσω της πρόβλεψης των θέσεων των

κινητών συσκευών), γ) η δυναμική κατανομή των διαθέσιμων πόρων της υποδομής, καθοδη-

γούμενη από κριτήρια όπως είναι η διατήρηση ενός συμφωνημένου επιπέδου ποιότητας υπηρε-

σιών και εμπειρίας, η παράλληλη φιλοξενία πολλαπλών εφαρμογών στους ίδιους διαθέσιμους

πόρους, καθώς και η ελαχιστοποίηση της ενεργειακής κατανάλωσης του συστήματος και δ) η

βελτιστοποίηση των στρατηγικών μεταφόρτωσης των διεργασιών στους κατανεμημένους πό-
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ρους. Στόχος αυτής της διατριβής είναι ο εντοπισμός των σημαντικότερων ζητημάτων σε αυ-

τές τις ερευνητικές περιοχές και η ανάπτυξη κατάλληλων λύσεων για την βελτιστοποίηση των

επιμέρους διαδικασιών, δεδομένων των υφιστάμενων περιορισμών. Οι λύσεις αυτές στη συνέ-

χεια συνδυάζονται δημιουργώντας πλαίσια τα οποία μπορούν να εγκατασταθούν σε υποδομές

στα άκρα του δικτύου και να ελαφρύνουν την υπολογιστική καταπόνηση των -υπολογιστικά

περιορισμένων- φορητών συσκευών, βελτιώνοντας ταυτόχρονα την ποιότητα εμπειρίας που

αποκομίζουν οι χρήστες.

Κεφάλαιο 2

Στο Κεφάλαιο 2 παρουσιάζονται οι ορισμοί των βασικών στοιχείων από τους τομείς της Θε-

ωρίας Συστημάτων Αυτόματου Ελέγχου και της Θεωρίας Πιθανοτήτων. Η γνώση του βασικού

μαθηματικού υποστρώματος που δίνεται περιεκτικά στο κεφάλαιο αυτό, είναι κρίσιμη για την

κατανόηση των προβλημάτων αλλά και των αλγορίθμων που παρουσιάζονται στην συνέχεια

στην προτεινόμενη διατριβή. Συγκεκριμένα, εδώ δίνονται συνοπτικά οι βασικές έννοιες γύρω

από τα γραμμικά χρονικά αμετάβλητα (Linear Time-Invariant, LTI) μοντέλα, που χρησιμοποιού-

νται για τη μοντελοποίηση και τον έλεγχο των συστημάτων ενδιαφέροντος, καθώς και οι ορι-

σμοί και τα θεωρήματα ευστάθειας που εφαρμόζονται για την αντιμετώπιση της δυναμικότητας

τους. Ακόμα, δίνονται οι βασικοί ορισμοί γύρω από τις μαρκοβιανές αλυσίδες (Markov Chains)

και τα μαρκοβιανά τυχαία πεδία (Markov Random Fields), εργαλεία που χρησιμοποιούνται για

την πρόβλεψη του όγκου των διεργασιών και τη μεταφόρτωσή τους στους διαθέσιμους πόρους

αντίστοιχα.

Κεφάλαιο 3

Στο Κεφάλαιο 3 περιγράφεται η ανάπτυξη του βασικού διεπίπεδου μηχανισμού δυναμι-

κής κατανομής πόρων και ελέγχου μεταφόρτωσης διεργασιών για συστάδες εξυπηρετητών στα

άκρα του δικτύου. Στο χαμηλότερο επίπεδο, η δυναμική συμπεριφορά των εξυπηρετητών μο-

ντελοποιείται με χρήση γραμμικών συστημάτων, ενώ γραμμικοί ελεγκτές σχεδιάζονται για να

διατηρούν το σύστημα εντός των δοθέντων περιορισμών (π.χ., συμφωνημένο επίπεδο ποιότη-

τας υπηρεσιών) (Μηχανισμός Κατακόρυφης Κλιμάκωσης). Στο υψηλότερο επίπεδο, ένας μηχα-

νισμός βελτιστοποίησης αναλαμβάνει την τοποθέτηση των εφαρμογών/υπηρεσιών στους διαθέ-
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σιμους εξυπηρετητές (οι οποίες βρίσκονται σε μορφή εικονικών μηχανών - ΕΜ, Virtual Machines

– VMs) και τον καταμερισμό του φόρτου εργασίας μεταξύ τους, με σκοπό την μεγιστοποίηση

του αριθμού των διεργασιών που θα εκτελεστούν επιτυχώς σε αυτούς (Μηχανισμός Οριζόντιας

Κλιμάκωσης). Η αποτίμηση του εν λόγω μηχανισμού αποδεικνύει την αποτελεσματικότητά του,

τόσο όσον αφορά στην προσφερόμενη ποιότητα υπηρεσιών, όσο και στη βέλτιστη διαχείριση

των υπολογιστικών πόρων στα άκρα του δικτύου.

Αναλυτικότερα, η μεταφόρτωση υπολογιστικών διεργασιών μετριάζει την κατανάλωση ενέρ-

γειας των υλικά-περιορισμένων κινητών συσκευών αναθέτοντας την εκτέλεση των υπολογι-

στικά ακριβών διεργασιών σε μία συστάδα εξυπηρετητών στα άκρα του δικτύου, οι οποίοι είναι

τοποθετημένοι στην χωρική εγγύτητα των χρηστών. Η τοποθέτηση αυτή επιτρέπει την - χαμηλή

σε καθυστέρηση - πρόσβαση στους εξυπηρετητές, σε αντίθεση με την πρόσβαση σε απομακρυ-

σμένους εξυπηρετητές (π.χ., ΥπολογιστικούΝέφους) μέσω του Διαδικτύου, η οποία εμφανίζεται

απρόβλεπτη όσον αφορά τους χρόνους απόκρισης. Η εικόνα 3.1 παρουσιάζει την αρχιτεκτονική

μεταφόρτωσης υπολογιστικών διεργασιών η οποία μελετάται σε αυτό το κεφάλαιο. Συγκεκρι-

μένα, η κίνηση η οποία μεταφορτώνεται και η οποία δημιουργείται από τις κινητές συσκευές,

κατευθύνεται στον Μηχανισμό Οριζόντιας Κλιμάκωσης μέσω ενός τοπικού ασύρματου σημείου

πρόσβασης (WiFi, 4G, LTE). Εκεί διενεργείται η υψηλότερη διαδικασία ελέγχου του προτεινόμε-

νου μηχανισμού, κατά την οποία επιλέγεται η κατάλληλη τοποθέτηση ΕΜ σε κάθε εξυπηρετητή

που είναι απευθείας συνδεδεμένος σε αυτό και εν συνεχεία διαμοιράζεται σε αυτούς η μεταφορ-

τωμένη κίνηση κατάλληλα. Η διαδικασία αυτή καθορίζει όχι μόνο το πλήθος των εξυπηρετητών

που θα ενεργοποιηθούν, αλλά και το πλήθος των ΕΜ που θα τοποθετηθούν σε αυτούς, καθώς

και την κατάσταση λειτουργίας τους. Ακόμη, η διαδικασία αυτή έχει προληπτικό χαρακτήρα,

καθώς γίνεται χρήση ενός εσωτερικού μηχανισμού πρόβλεψης τουφόρτου που θα μεταφορτωθεί

(Προβλεπτής Φόρτου), ο οποίος δύναται να υπολογίσει την κίνηση που θα κληθεί το σύστημα

να διαχειριστεί, για ένα παράθυρο χρόνου στο μέλλον. Η διαδικασία πρόβλεψης αυτή τροφοδο-

τείται από το Σύστημα Παρακολούθησης, το οποίο είναι υπεύθυνο για την συλλογή δεδομένων

που αφορούν τόσο στην δικτυακή κίνηση (π.χ., πλήθος αιτήσεων προς μεταφόρτωση, χρόνοι

απόκρισης του συστήματος), όσο και στη χρησιμοποίηση των διαθέσιμων πόρων (π.χ., ποσοστό

χρησιμοποίησης της κεντρικής μονάδας επεξεργασίας ενός εξυπηρετητή) στο άμεσο παρελθόν.

Σε χαμηλότερο επίπεδο, κάθε εξυπηρετητής είναι εξοπλισμένος με έναν Τοπικό Ελεγκτή, ο

οποίος δύναται να δημιουργήσει, να εκτελέσει, να κλιμακώσει και να σταματήσει την εκτέλεση

175



των ΕΜ που έχουν ανατεθεί σε κάθε εφαρμογή, βοηθώντας έτσι στην υλοποίηση των επιλεγμέ-

νων τοποθετήσεων ΕΜ του παραπάνω μηχανισμού για το τρέχον χρονικό παράθυρο. Επιπρο-

σθέτως, σε αυτό το επίπεδο υλοποιείται μια διαδικασία ελέγχου κατά την οποία κλιμακώνονται

κάθετα οι ΕΜ, βάσει των δεδομένων που συλλέγονται στο Σύστημα Παρακολούθησης. Κατά

αυτόν τον τρόπο, βεβαιώνεται ότι οι ΕΜ παραμένουν εντός των επιλεγμένων καταστάσεων λει-

τουργίας, παρέχοντας έτσι μια εγγύηση για ελάχιστους και σταθερούς χρόνους απόκρισης της

εφαρμογής την οποία εκτελούνε.

Η εικόνα 3.2 παρουσιάζει τη ροή εργασιών του προτεινόμενου μηχανισμού μεταφόρτωσης

υπολογιστικών διεργασιών. Σύμφωνα με αυτή την προσέγγιση, η λειτουργία των ΕΜ μοντελο-

ποιείται από ένα σύνολο Γραμμικών Χρονικά Αμετάβλητων (ΓΧΑ) συστημάτων τα οποία υπό-

κεινται σε επιπρόσθετες εξωγενείς διαταραχές και τα οποία έχουν τη μορφή της εξίσωσης (3.1).

Οι παράμετροι των συστημάτων αυτών αναγνωρίζονται μέσω πειραματικών διεργασιών. Αρ-

χικά, υπολογίζεται για κάθε ΓΧΑ σύστημα ένα εφικτό σημείο ισορροπίας για το ονομαστικό,

χωρίς διαταραχές μοντέλο του ΕΜ. Κάθε σημείο ισορροπίας αντιστοιχεί σε μια κατάσταση λει-

τουργίας («προφίλ») ενός ΕΜ χωρίς να λαμβάνονται υπόψιν διαταραχές. Για παράδειγμα, μια

κατάσταση ισορροπίας μπορεί να αντιστοιχεί σε δυνατότητα εκτέλεσης 3 αιτήσεων μεταφόρτω-

σης ανά δευτερόλεπτο, με ταυτόχρονη εγγύηση χρησιμοποίησης (το πολύ) του 20% της παρεχό-

μενης υπολογιστής ισχύος και ενός μέσου χρόνου απόκρισης της εφαρμογής που δεν ξεπερνά

τα 3 δευτερόλεπτα. Για κάθε ένα σημείο ισορροπίας σχεδιάζεται ένας γραμμικός ελεγκτής ανα-

τροφοδότησης κατάστασης, εντός του Τοπικού Ελεγκτή, λαμβάνοντας υπόψιν τις διαταραχές

του συστήματος. Συγκεκριμένα, ρυθμίζοντας την παρεχόμενη υπολογιστική ισχύ και το πλήθος

των αιτήσεων προς μεταφόρτωση (που θα ανατεθούν σε κάθε ΕΜ) σχεδιάζεται ένας ελεγκτής

έτσι ώστε το σύστημα κλειστού βρόγχου: α) να είναι ευσταθές, β) να ικανοποιεί τους περιορι-

σμούς και τις προδιαγραφές ποιότητας υπηρεσιών, για κάθε χρονική στιγμή και για κάθε αρ-

χική συνθήκη, ξεκινώντας από το σύνολο των περιορισμών και γ) να συμπεριφέρεται βέλτιστα

στη σταθερή του κατάσταση. Δεδομένου ότι ο προτεινόμενος μηχανισμός διαχείρισης πόρων

προσφέρει εγγυημένο χρόνο απόκρισης της εφαρμογής στους χρήστες, η απόφαση μεταφόρτω-

σης υπολογιστικών διεργασιών μετατρέπεται σε μια απλή σύγκριση ανάμεσα στον εκτιμώμενο

χρόνο εκτέλεσης της εφαρμογής στη συσκευή του χρήστη και στον εγγυημένο χρόνο απόκρι-

σης των εξυπηρετητών στα άκρα του δικτύου. Τα παραπάνω συνοψίζονται φορμαλιστικά στα

προβλήματα P1, P2. Για την επίλυση αυτών των προβλημάτων, σχεδιάζεται και λύνεται ένα

176



πρόβλημα βελτιστοποίησης ((3.15a)-(3.15i)), από τη λύση του οποίου προκύπτει τόσο η κατά-

σταση λειτουργίας των ΕΜ όσο και ο έλεγχος που θα εφαρμοστεί. Το σύνολο των καταστάσεων

λειτουργίας στο οποίο εγγυάται ο μηχανισμός ότι θα παραμείνουν οι ΕΜ, ξεκινώντας από το

σημείο ισορροπίας και παρά τις όποιες (φραγμένες) διαταραχές, αποτελεί το «ελάχιστο θετικά

αμετάβλητο σύνολο», δίνεται από την εξίσωση (3.12) και αποδεικνύεται ότι προκύπτει από το

όριο της ακολουθίας των προσβάσιμων συνόλων.

Στο υψηλότερο επίπεδο, ο Μηχανισμός Οριζόντιας Κλιμάκωσης στοχεύει στο να συμβιβά-

σει τους αμοιβαία αποκλειόμενους στόχους της επίτευξης επιδόσεων και της ελαχιστοποίησης

χρήσης πόρων. Συγκεκριμένα, δεδομένου ότι οι πόροι των εξυπηρετητών στα άκρα του δικτύου

δεν βρίσκονται σε αφθονία, οι ανεξέλεγκτες απαιτήσεις για επιδόσεις από κάθε εφαρμογή θα

οδηγούσαν σε κατανομή μεγάλου αριθμού υπολογιστικών πόρων σε όλες τις αντίστοιχες ΕΜ,

πράγμα ανέφικτο. Γι' αυτόν το λόγο, ο μηχανισμός αυτός είναι υπεύθυνος για την βελτιστοποί-

ηση της τοποθέτησης των ΕΜ (ελαχιστοποίηση κατανάλωσης ενέργειας/χρησιμοποίησης πό-

ρων υποδομής) και την κατάλληλη κατανομή των αιτήσεων προς μεταφόρτωση μεταξύ τους.

Για κάθε εφαρμογή, ο Μηχανισμός Οριζόντιας Κλιμάκωσης δέχεται ως είσοδο μία πρόβλεψη

των αιτήσεων προς μεταφόρτωση, από τον Προβλεπτή Φόρτου, και το σύνολο των εφικτών κα-

ταστάσεων λειτουργίας που έχουν υπολογιστεί στον ελεγκτή ανατροφοδότησης κατάστασης.

Αξίζει εδώ να σημειωθεί ότι η λειτουργία του Προβλεπτή Φόρτου βασίζεται σε ένα γραμμικό

εκθετικό φίλτρο εξομάλυνσης Holt, το οποίο συλλαμβάνει τη γραμμική τάση χρονοσειρών και

το οποίο περιγράφεται από την εξίσωση (3.17). Στη συνέχεια, βασισμένος σε αυτήν την πλη-

ροφορία, ο Μηχανισμός Οριζόντιας Κλιμάκωσης αποφασίζει τον ελάχιστο αριθμό των εξυπη-

ρετητών που πρέπει να ενεργοποιηθούν και την τοπολογία των ΕΜ που θα τοποθετηθούν σε

αυτούς, για να ικανοποιηθεί η συνολική ζήτηση για μεταφόρτωση διεργασιών, από κάθε εφαρ-

μογή, και να επιτευχθεί το ζητούμενο επίπεδο ποιότητας υπηρεσιών. Δεδομένου ότι το σύνολο

των εξυπηρετητών σε μια υποδομή στα άκρα του δικτύου είναι μικρό σε πλήθος, προτείνεται

μια ευρυστική λύση, η οποία μπορεί να προσφέρει τα επιθυμητά αποτελέσματα με μικρό υπο-

λογιστικό κόστος στο παραπάνω πρόβλημα. Έτσι, προτείνεται ένας αλγόριθμος αποτελούμενος

από δύο βήματα: στο πρώτο βήμα, υπολογίζονται όλες οι εφικτές τοποθετήσεις ΕΜ σε έναν

εξυπηρετητή, οι οποίες βασίζονται στις καταστάσεις λειτουργίας που έχουν υπολογιστεί προη-

γουμένως. Στο δεύτερο βήμα υπολογίζεται ο αριθμός των εξυπηρετητών που θα ενεργοποιηθεί,

λύνοντας το πρόβλημα μικτού ακέραιου γραμμικού προγραμματισμού που περιγράφεται στις
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εξισώσεις (3.16a)-(3.16e).

Αυτή η συνεργασία των δύο επιπέδων ελέγχου, εξασφαλίζει ότι η επιλεγμένη κατάσταση

λειτουργίας της κάθε ΕΜ από τον Μηχανισμό Οριζόντιας Κλιμάκωσης θα υλοποιηθεί από τον

αρμόδιο ελεγκτή ανατροφοδότησης. Εν συντομία, λοιπόν, οι βασικές συνεισφορές και οι διαφο-

ροποίηση του προτεινόμενου μηχανισμού σε αυτό το κεφάλαιο συνοψίζονται ως εξής:

1. η προτεινόμενη μοντελοποίηση μπορεί να συλλάβει με ακρίβεια τη δυναμική συμπεριφόρα

των ΕΜ της κάθε εφαρμογής, κάτω από ποικίλες καταστάσεις λειτουργίας.

2. ένα πλήθος εφικτών καταστάσεων λειτουργίας μπορεί να υπολογιστεί, λαμβάνοντας υπό-

ψιν τα διάφορα κόστη στην επίδοση και στη χρησιμοποίηση των πόρων, πράγμα το οποίο

επιτρέπει τον σχεδιασμό διαφορετικών στρατηγικών ελέγχου για διαφορετικά ζεύγη φόρ-

του εργασίας και εφαρμογών.

3. παρέχονται φορμαλιστικές εγγυήσεις σχετικά με την κατανομή πόρων και τις προδιαγρα-

φές στην ποιότητα υπηρεσιών της εφαρμογής.

4. ενεργοποιείται ο ελάχιστος αριθμός των εξυπηρετητών στα άκρα του δικτύου για να ικα-

νοποιηθεί ο συνολικός φόρτος εργασίας όλων των εφαρμογών, με βάση το σύνολο των

εφικτών καταστάσεων λειτουργίας στο χαμηλότερο επίπεδο.

Η αξιολόγηση του παραπάνω διεπίπεδου μηχανισμού μεταφόρτωσης υπολογιστικών διερ-

γασιών και κατανομής πόρων, επιβεβαιώνει την επιτυχία της προτεινόμενης προσέγγισης στην

εγγύηση της ευστάθειας των χρόνων απόκρισης των εφαρμογών εντός ενός αποδεκτού περι-

θωρίου. Ακόμη, τονίζεται η επίτευξη της βελτιστοποίησης της κατανομής πόρων, όσον αφορά

στους εξυπηρετητές στα άκρα του δικτύου που ενεργοποιούνται για να εξυπηρετήσουν τον

φόρτο εργασίας από αιτήσεις μεταφόρτωσης. Συγκεκριμένα, η αξιολόγηση ξεκινά με τον υπολο-

γισμό της υπολογιστικής πολυπλοκότητας του Μηχανισμού Οριζόντιας Κλιμάκωσης, σε σχέση

με τις κυρίαρχες παραμέτρους του βασικού προβλήματος βελτιστοποίησης. Η εικόνα 3.3 αποτυ-

πώνει την αύξηση του χρόνου υπολογισμού των λύσεων συναρτήσει της αύξησης του αριθμού

των εφαρμογών, των εφικτών καταστάσεων λειτουργίας των ΕΜ και των διαθέσιμων εξυπη-

ρετητών στα άκρα του δικτύου, ο αριθμός των οποίων φαίνεται να έχει τη σημαντικότερη επί-

δραση στον συνολικό χρόνο υπολογισμού της λύσης. Υπενθυμίζουμε όμως ότι αυτό δεν δημιουρ-

γεί πρόβλημα στη συγκεκριμένη εφαρμογή, καθώς ο αριθμός των διαθέσιμων εξυπηρετητών
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στα άκρα του δικτύου είναι χαμηλός σε αντίστοιχες υποδομές. Προχωρώντας στο βασικό μέρος

της πειραματικής αξιολόγησης, στα πρώτα γραφήματα των εικόνων 3.5a, 3.6a και 3.7a και στα

πρώτα των 3.5b, 3.6b και 3.7b, γίνεται φανερή η ικανότητα του μηχανισμού να διατηρεί το μέσο

χρόνο απόκρισης των εφαρμογών εντός του ελάχιστου θετικά αμετάβλητου συνόλου, εντός των

δοθέντων περιορισμών και παρά τις διακυμάνσεις στις αιτήσεις μεταφόρτωσης. Στα μεσαία

γραφήματα των εικόνων 3.5-3.7, αποτυπώνεται η ικανότητα του Μηχανισμού Οριζόντιας Κλι-

μάκωσης να ανταποκρίνεται σε αυτές ακριβώς τις διακυμάνσεις, διαλέγοντας δυναμικά τις

κατάλληλες τοπολογίες ΕΜ ως απόκριση. Στα τελευταία γραφήματα των παραπάνω εικόνων

φαίνεται, επίσης, η χρησιμοποίηση της παρεχόμενης υπολογιστικής ισχύος για κάθε ΕΜ.

Επιπλέον, στο πλαίσιο της αξιολόγησης του παραπάνω διεπίπεδου μηχανισμού γίνεται η

σύγκριση του με το [1], μία δουλειά που στοχεύει στην εξοικονόμηση ενέργειας κατά τη με-

ταφόρτωση υπολογιστικά ακριβών διεργασιών στα άκρα του δικτύου, χρησιμοποιώντας όμως

εξυπηρετητές με σταθερή κατανομή υπολογιστικής ισχύος. Η απόφαση για τη μεταφόρτωση αυ-

τών των διεργασιών λαμβάνεται, βάσει μιας συμφωνίας επιπέδου εξυπηρέτησης σχετικά με το

μέσο χρόνο απόκρισης της εφαρμογής. Στην πρώτη σειρά της εικόνας 3.9, γίνεται εμφανής η δυ-

νατότητα του προτεινόμενου μηχανισμού στο να διατηρεί τον μέσο χρόνο απόκρισης εντός των

αποδεκτών ορίων, συγκριτικά με το [1], το οποίο παρουσιάζει παραβάσεις στο επίπεδο εξυπη-

ρέτησης, για την ίδια διακύμανση φόρτου, και 20% λιγότερη συνολική εξυπηρέτηση αιτημάτων

μεταφόρτωσης.

Κεφάλαιο 4

Στη συνέχεια, στο Κεφάλαιο 4, ο μηχανισμός δυναμικής κατανομής πόρων και ελέγχου με-

ταφόρτωσης διεργασιών που παρουσιάστηκε στο Κεφάλαιο 3, εντάσσεται στο πλαίσιο ενός

Κυβερνο-ΦυσικούΚοινωνικού Συστήματος –ΚΦΚΣ (Cyber-Physical Social System –CPSS) τριών

επιπέδων, το οποίο προορίζεται για τον έγκαιρο εντοπισμό πυρκαγιών. Γενικά, ένα ΚΦΚΣ αφο-

μοιώνει τα υπολογιστικά συστήματα στον φυσικό κόσμο και τις ανθρώπινες δραστηριότητες. Εν

προκειμένω, στο χαμηλότερο επίπεδο, η αρχιτεκτονική του ΚΦΚΣ περιλαμβάνει συσκευές ΔτΑ

με αισθητήρες ανίχνευσης και παρακολούθησης δασών. Επιπλέον, σε αυτό το επίπεδο, γίνεται

χρήση του προτύπου της αίσθησης πλήθους (crowd sensing), κατά το οποίο συλλέγονται πλη-

ροφορίες σχετικά με το περιβάλλον από συσκευές χρηστών, οι οποίοι βρίσκονται στην περιοχή

ενδιαφέροντος. Δεδομένου ότι οι συσκευές ΔτΑ χαρακτηρίζονται από περιορισμένους υπολο-
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γιστικούς και ενεργειακούς πόρους, ο μηχανισμός που αναπτύχθηκε στο Κεφάλαιο 3 εγκαθί-

σταται στο μεσαίο επίπεδο του ΚΦΚΣ και αναλαμβάνει τη μεταφόρτωση των υπολογιστικά

ακριβών διεργασιών των συσκευών ΔτΑ σε μια υποδομή στα άκρα του δικτύου. Σε αυτό το επί-

πεδο, ο μηχανισμός δυναμικής κατανομής πόρων επιτυγχάνει την τήρηση των χρονικών απαι-

τήσεων απόκρισης των εφαρμογών ανίχνευσης και παρακολούθησης. Στο υψηλότερο επίπεδο,

ένας μηχανισμός λήψης αποφάσεων, εγκατεστημένος σε εξυπηρετητές Υπολογιστικού Νέφους

(Cloud), συλλέγει δεδομένα από τις διάφορες πηγές (συσκευές ΔτΑ, κοινωνικά δίκτυα χρηστών)

και αποτιμά την κρισιμότητα της κατάστασης. Τα πειραματικά αποτελέσματα υποδεικνύουν

την σημαντική συμβολή του μηχανισμού δυναμικής κατανομής πόρων, τόσο στην εγγύηση της

έγκαιρης εκτέλεσης των σημαντικών διεργασιών, όσο και στη μείωση της ενεργειακής κατα-

νάλωσης των συσκευών ΔτΑ. Οι βασικές συνεισφορές αυτού του κεφαλαίου συνοψίζονται ως

εξής:

1. σχεδιασμός και υλοποίηση ενός μηχανισμού κατακόρυφης κλιμάκωσης: όπως έχει ανα-

φερθεί και προηγουμένως, η ταυτόχρονη συνύπαρξη περισσότερων της μίας εφαρμογής

σε εξυπηρετητές στα άκρα του δικτύου, δύναται να θέσει σε ρίσκο το επίπεδο της ποιότη-

τας των προσφερόμενων υπηρεσιών για τον έγκαιρο εντοπισμό καταστάσεων έκτακτης

ανάγκης, λόγω των εκ φύσεως περιορισμένων πόρων που είναι διαθέσιμοι σε αντίστοιχες

υποδομές.

2. σχεδιασμός και υλοποίηση ενός μηχανισμού οριζόντιας κλιμάκωσης: στην ίδια κατεύ-

θυνση, αυτός ο μηχανισμός βελτιστοποίησης είναι υπεύθυνος για την ενεργοποίηση / απε-

νεργοποίηση κάθε εξυπηρετητή, την τοποθέτηση των ΕΜ των εφαρμογών μέσα σε αυτούς

και τον διαμοιρασμό του εισερχόμενουφόρτου από αιτήσεις μεταφόρτωσης των συσκευών

ΔτΑ.

3. σχεδιασμός και υλοποίηση ενός μηχανισμού λήψης αποφάσεων στο υπολογιστικό νέφος:

ανάμεσα στις βασικότερες προκλήσεις για τον έγκαιρο εντοπισμό καταστάσεων έκτακτης

ανάγκης, βρίσκεται ο πλούτος των δεδομένων που συλλέγονται από τις διάφορες πηγές

(μεταφορτωμένα δεδομένα από αισθητήρες ή ανθρώπους), η αποδοτική και γρήγορη επε-

ξεργασία τους και τέλος η ορθή εκτίμηση του επιπέδου κρισιμότητας της κατάστασης. Σε

αυτό το κεφάλαιο, ο μηχανισμός λήψης αποφάσεων που σχεδιάζεται, στοχεύει στο να

συνδυάσει δεδομένα από ετερογενείς πηγές, όπως φωτογραφίες τραβηγμένες από συ-
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σκευές ΔτΑ, πληροφορίες από δορυφόρους, ιστορικά δεδομένα καιρικών συνθηκών και

κοινωνικών μέσων δικτύωσης, ενώ ταυτόχρονα να παρέχει εγκαίρως πορίσματα για την

κρισιμότητα των καταστάσεων.

Κατά τη σχεδίαση του προτεινόμενου ΚΦΚΣ αναγνωρίστηκαν οι παρακάτω απαιτήσεις, οι

οποίες αποδεικνύουν τη χρησιμότητα ενός κλιμακώσιμου μηχανισμού για μεταφόρτωση υπολο-

γιστικά ακριβών διεργασιών σε εξυπηρετητές στα άκρα του δικτύου:

• Έγκαιρος εντοπισμός και αναγνώριση καταστάσεων έκτακτης ανάγκης.

• Βέλτιστη χρησιμοποίηση των πόρων των συσκευών ΔτΑ.

• Δυνατότητα αντιμετώπισης των αναγκών των εφαρμογών για γρήγορη κλιμάκωση.

• Διαλειτουργικότητα των διάφορων αισθητήρων σε επίπεδο δεδομένων.

• Προστασία προσωπικών δεδομένων.

Στην εικόνα 4.1 παρουσιάζεται η αρχιτεκτονική του προτεινόμενου ΚΦΚΣ, η οποία αποτε-

λείται πρωτίστως από δύο βασικές συνιστώσες: έναν μηχανισμό δυναμικής κατανομής πόρων

και ελέγχου μεταφόρτωσης διεργασιών και έναν ευφυή μηχανισμό λήψης αποφάσεων, και δευ-

τερευόντως από τέσσερις υφιστάμενες συνιστώσες, οι οποίες αλληλεπιδρούν μεταξύ τους και

συνεισφέρουν στην αντιμετώπιση των καταστάσεων έκτακτης ανάγκης: τις συσκευές ΔτΑ, τους

αισθητήρες, τα μέσα κοινωνικής δικτύωσης και τις δημόσιες αρχές. Αν και στο συγκεκριμένο

κεφάλαιο γίνεται εξειδίκευση του ΚΦΚΣ στην έγκαιρη αντιμετώπιση πυρκαγιών σε δάση, η

προσαρμογή του σε άλλες καταστάσεις έκτακτης ανάγκης είναι εφικτή.

Ο μηχανισμός δυναμικής κατανομής πόρων και ελέγχου μεταφόρτωσης διεργασιών που

σχεδιάζεται και υλοποιείται σε αυτό το κεφάλαιο (εικόνα 4.2), απευθύνεται σε εφαρμογές ανί-

χνευσης πυρκαγιών οι οποίες είναι πακεταρισμένες σε εικονικά «δοχεία» (ContainerizedApplica-

tions, ΕΔ), αντί για ΕΜ που χρησιμοποιήθηκαν στο προηγούμενο κεφάλαιο, η ανάπτυξη των

οποίων, εν προκειμένω, βασίζεται σε τεχνικές μηχανικής μάθησης στην αναγνώριση εικόνων.

Τα αιτήματα μεταφόρτωσης αυτών των εφαρμογών απο τις συσκευές ΔτΑ στους εξυπηρετητές

στα άκρα του δικτύου κατευθύνονται σε έναν Κεντρικό Ελεγκτή, ο οποίος αποτελεί μία επέ-

κταση του Μηχανισμού Οριζόντιας Κλιμάκωσης που παρουσιάστηκε στο Κεφάλαιο 3. Ο Κε-

ντρικός Ελεγκτής επιλέγει με παρόμοιο τρόπο την τοπολογία των ΕΔ που θα υλοποιηθεί στους
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εξυπηρετητές και αναλόγως κατανέμει τον εισερχόμενο φόρτο εργασίας, για το ερχόμενο χρο-

νικό παράθυρο (οριζόντια κλιμάκωση). Αντίστοιχα δομικά στοιχεία της αρχιτεκτονικής του Κε-

φαλαίου 3, όπως ο Προβλεπτής Φόρτου και το Σύστημα Παρακολούθησης, τα συναντάμε και

σε αυτήν την αρχιτεκτονική και οι έξοδοί τους αποτελούν τις εισόδους ενός νέου δομικού στοι-

χείου, του Βελτιστοποιητή (βλ. εικόνα 4.4), ο οποίος αναλαμβάνει την βελτιστοποίηση της κα-

τανομής πόρων στην υποδομή στα άκρα του δικτύου, λύνοντας διαδοχικά δύο μικτά ακέραια

προβλήματα γραμμικής βελτιστοποίησης. Το πρώτο αφορά στην ενεργοποίηση των ελάχιστων

εξυπηρετητών που θα χρειαστούν για την εξυπηρέτηση του εκτιμώμενου φόρτου εργασίας και

η μορφή του δίνεται από την εξίσωση (4.5). Το δεύτερο αφορά στην ελαχιστοποίηση των πόρων

που παρέχονται σε κάθε ΕΔ για την ικανοποίηση του φόρτου που θα τους ανατεθεί και έχει τη

μορφή που δίνεται από την εξίσωση (4.6). Επιπροσθέτως, στο τέλος κάθε χρονικού παραθύρου,

τα αποτελέσματα της αναγνώρισης εικόνων από τα αιτήματα που μεταφορτώθηκαν και εκτελέ-

στηκαν επιτυχώς, χρησιμοποιούνται για να παρθεί η απόφαση σχετικά με την κρισιμότητα της

κατάστασης. Επίσης, ο χρόνος μεταξύ της λήψης των φωτογραφιών που θα μεταφορτωθούν

και της λήψης της απόφασης, ορίζεται ως ο χρόνος απόκρισης της εφαρμογής.

Σε ένα χαμηλότερο επίπεδο ελέγχου, κάθε εξυπηρετητής στα άκρα του δικτύου είναι εξο-

πλισμένος με έναν Τοπικό Ελεγκτή, ο οποίος συγκεντρώνει τα ιστορικά στοιχεία λειτουργίας

των ΕΔ που βρίσκονται εγκατεστημένα σε αυτόν, καθώς και τις προβλέψεις για τον μελλοντικό

φόρτο εργασίας που θα κληθεί να εκτελέσει και αντίστοιχα ρυθμίζει τους πόρους που παρέ-

χονται στα ΕΔ για το επόμενο χρονικό παράθυρο (κατακόρυφη κλιμάκωση), υλοποιώντας τις

αποφάσεις του Κεντρικού Ελεγκτή. Η λειτουργία των ΕΔ μοντελοποιείται με χρήση διακοπτι-

κών συστημάτων (Switching Systems), με το κριτήριο αλλαγής να είναι ο αριθμός των κεντρικών

μονάδων επεξεργασίας που παρέχονται σε κάθε ΕΔ. Η μοντελοποίηση αυτή, δύναται να συλ-

λάβει τη δυναμικότητα της λειτουργίας των ΕΔ, ενώ επιτρέπει την εύκολη κατανομή πόρων.

Συγκεκριμένα, η λειτουργία ενός ΕΔ περιγράφεται από ένα διακριτό γραμμικό σύστημα της

μορφής (4.1). Για την ευσταθή λειτουργία των ΕΔ γύρω από μια συγκεκριμένη περιοχή, ανα-

γνωρίζονται οι εφικτές καταστάσεις λειτουργίας τους (σημεία ισορροπίας του γραμμικού συ-

στήματος που τα χαρακτηρίζει), λύνοντας το πρόβλημα γραμμικού προγραμματισμού (4.2), για

διάφορες τιμές των περιορισμών. Στη συνέχεια, για κάθε εφικτή κατάσταση λειτουργίας, σχε-

διάζεται ένας ελεγκτής ανατροφοδότησης κατάστασης της μορφής (4.3), με σκοπό την επίτευξη

των απαιτήσεων σε χρόνο απόκρισης. Στην εικόνα 4.4 συνοψίζεται η λειτουργία ενός Τοπικού
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Ελεγκτή. Η συνύπαρξη αυτών των δύο ιεραρχικών επιπέδων ελέγχου και κλιμάκωσης εξασφα-

λίζει την ομαλή λειτουργία των ΕΔ εντός των συμφωνηθέντων επιπέδων ποιότητας υπηρεσιών,

όσον αφορά το χρόνο απόκρισης των εφαρμογών.

Από την άλλη, ο ευφυής μηχανισμός λήψης αποφάσεων τοποθετείται στο υπολογιστικό νέ-

φος και δέχεται τα αποτελέσματα της αναγνώρισης των εικόνων από τον Κεντρικό Ελεγκτή.

Επιπλέον, ένας Μηχανισμός Συλλογής Δεδομένων χρησιμοποιείται για να συλλέξει δεδομένα

από διάφορες πηγές, τα οποία θα αποσταλούν στον Αλγόριθμο Απόφασης, ο οποίος θα εφαρ-

μόσει λογικούς κανόνες σε αυτά, με σκοπό να συμπεράνει το επίπεδο κρισιμότητας της κατά-

στασης έγκαιρα. Όπως απεικονίζεται στην εικόνα 4.3, οι κύριες πηγές δεδομένων που έχουν

συμπεριληφθεί σε αυτόν τον μηχανισμό είναι: α) τα αποτελέσματα της επεξεργασίας των φωτο-

γραφιών από τις ΔτΑ, μέσω του Κεντρικού Ελεγκτή (ώρα, συντεταγμένες, αποτέλεσμα κρισιμό-

τητας), β) καιρικά δεδομένα από το Ευρωπαϊκό Σύστημα Πληροφοριών για Πυρκαγιές Δασών

(European Forest Fire Information System), τα οποία συγκροτούν πέντε κατηγορίες πιθανότητας

πυρκαγιάς ανά δάσος (χαμηλή, μέτρια, υψηλή, πολύ υψηλή, ακραία) και γ) δεδομένα από μέσα

κοινωνικής δικτύωσης και συγκεκριμένα από το Twitter. ΟΑλγόριθμοςΑπόφασης ομογενοποιεί

τα παραπάνω δεδομένα πριν να εξαγάγει το συνολικό βαθμό κρισιμότητας της κατάστασης, ο

οποίος δίνεται από την εξίσωση (4.7).

Η αξιολόγηση του παραπάνω μηχανισμού έγινε σε μια πραγματική εγκατάσταση στο Εργα-

στήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής (NETMODE) της Σχολής

Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών του Ε.Μ.Π., ενώ για τις εφαρμογές οι οποίες επι-

λέχθηκαν, αναπτύχθηκαν δύο αλγόριθμοι αναγνώρισης πυρκαγιών σε εικόνες από δάση. Ως

συσκευές ΔτΑ, χρησιμοποιήθηκαν συσκευές Raspberry Pi, οι οποίες ανέλαβαν το ρόλο μη επαν-

δρωμένων αεροσκαφών που τραβούσαν τις φωτογραφίες και μεταφόρτωναν την επεξεργασία

τους σε εξυπηρετητές στα άκρα του δικτύου. Στις εικόνες 4.5 και 4.6, παρατηρούμε ότι ο Κεντρι-

κός Ελεγκτής κλιμακώνει οριζόντια τους διαθέσιμους πόρους, ενεργοποιώντας επιπλέον εξυ-

πηρετητές όταν αυτό είναι αναγκαίο (π.χ., όταν υπάρχει υψηλή πιθανότητα πυρκαγιάς), για να

ικανοποιήσει τις αυξημένες ανάγκες σε υπολογιστική ισχύ λόγω της αύξησης των αιτημάτων

μεταφόρτωσης. Στον Πίνακα 4.1, φαίνονται οι περιοχές λειτουργίας που έχουν αναγνωριστεί

για τα ΕΔ που τοποθετούνται μέσα σε αυτούς τους εξυπηρετητές. Όσον αφορά στην κατακό-

ρυφη κλιμακωσιμότητα του μηχανισμού, οι Τοπικοί Ελεγκτές κάθε εξυπηρετητή απορρίπτουν

περίπου το 20% των εισερχόμενων αιτημάτων μεταφόρτωσης διεργασιών, πράγμα που οφεί-
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λεται στα πιθανά σφάλματα του Προβλεπτή Φόρτου. Οι δύο αυτές διαδικασίες ελέγχου και

κλιμάκωσης, επιτυγχάνουν να διατηρήσουν το μέσο χρόνο απόκρισης των εφαρμογών εντός

των επιτρεπτών ορίων, τα οποία καθορίζονται από το συμφωνηθέν επίπεδο ποιότητας παροχής

υπηρεσιών των εν λόγω εφαρμογών, παρά τις διακυμάνσεις του συνολικού φόρτου εργασίας.

Επιπλέον, γίνεται μια υποτυπώδης σύγκριση του δυναμικού αυτού μηχανισμού με μία στατική

κατανομή πόρων, η οποία φαίνεται επίσης στις εικόνες 4.5 και 4.6 και η οποία πάσχει από τα

προβλήματα της υπερ- και υπο- προμήθειας πόρων στους εξυπηρετητές στα άκρα του δικτύου,

ανάλογα με τις αυξομειώσεις του φόρτου εργασίας. Αυτά τα προβλήματα είναι εξαιρετικά ση-

μαντικά σε τέτοιου είδους εφαρμογές, καθώς δύνανται να βάλουν σε ρίσκο το αποτέλεσμα της

αποστολής.

Το Κεφάλαιο 4 τελειώνει με την αξιολόγηση του ευφυούς μηχανισμός λήψης αποφάσεων, η

οποία επικεντρώνεται στον επιπλέον χρόνο που προστίθεται στη διαδικασία αναγνώρισης της

κρισιμότητας της κατάστασης. Από την εικόνα 4.7, μπορεί να συμπεράνει κανείς ότι ο χρόνος

αυτός επηρεάζεται κατά κύριο λόγο από την ανάλυση των δεδομένων από τα μέσα κοινωνικής

δικτύωσης. Παρ' όλα αυτά, συνολικά το προτεινόμενο ΚΦΚΣ επιτυγχάνει το στόχο της μείωσης

του χρόνου απόκρισης των εφαρμογών έκτακτης ανάγκης και την μείωση του υπολογιστικού

φόρτου των συσκευών ΔτΑ.

Κεφάλαιο 5

Το Κεφάλαιο 5 εστιάζει στην ανάπτυξη ενός εναλλακτικού διακοπτικού μηχανισμού μετα-

φόρτωσης υπολογιστικών διεργασιών στα άκρα του δικτύου, για εφαρμογές της Βιομηχανίας

4.0. Οι εφαρμογές αυτές, απευθύνονται σε ρομπότ τα οποία εκτελούν περίπλοκες διεργασίες, οι

οποίες παρουσιάζουν αυστηρές απαιτήσεις τόσο σε χρονική απόκριση όσο και σε ασφάλεια. Σε

αυτό το πλαίσιο, η μεταφόρτωση των διεργασιών στα άκρα του δικτύου επιτρέπει στα ρομπότ να

ελαφρύνουν τον υπολογιστικό τους φόρτο, αναθέτοντας την εκτέλεση των παραπάνω διεργα-

σιών σε μία ισχυρή υπολογιστική υποδομή σε κοντινή απόσταση. Σε αυτό το κεφάλαιο, λοιπόν,

προτείνεται ένας διακοπτικός μηχανισμός μεταφόρτωσης διεργασιών, ενώ σχεδιάζονται ευκαι-

ριακές στρατηγικές μεταφόρτωσης για εφαρμογές που αφορούν στον προγραμματισμό της πο-

ρείας και τον εντοπισμό της θέσης των ρομπότ. Η απόφαση για τη μεταφόρτωση λαμβάνεται

βάσει της αβεβαιότητας ως προς την τρέχουσα θέση του ρομπότ και την διαθεσιμότητα υπο-

λογιστικών και δικτυακών πόρων στα άκρα του δικτύου, την δεδομένη στιγμή. Το διακοπτικό
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αυτό σύστημα υλοποιείται και αξιολογείται χρησιμοποιώντας ένα πραγματικό ρομπότ σε μια

πραγματική υποδομή στα άκρα του δικτύου· κατά την αξιολόγηση τονίζεται το αντιστάθμισμα

ανάμεσα στο χρόνο ολοκλήρωσης των διεργασιών και την επιτυχή έκβαση της αποστολής τους.

Αναλυτικά, το σενάριο που παρουσιάζεται σε αυτό το κεφάλαιο περιγράφει ένα ρομπότ

εξοπλισμένο με αισθητήρες και υπολογιστικούς και δικτυακούς πόρους, το οποίο επιχειρεί να

φτάσει από ένα αρχικό σε ένα τελικό σημείο, εντός ενός εργοστασιακού χώρου, ανάμεσα σε

εμπόδια. Αυτή η λειτουργικότητα είναι βασική για την υλοποίηση εφαρμογών που αφορούν

στον εφοδιασμό και την αποθήκευση εμπορευμάτων. Ένα σύνηθες πρόβλημα που αντιμετωπί-

ζεται σε τέτοιου είδους σενάρια είναι η αβεβαιότητα γύρω από την ακριβή «στάση» (θέση και

προσανατολισμό) ενός ρομπότ, η οποία αυξάνεται με τον χρόνο κατά την κίνηση, λόγω συσσω-

ρευόμενων ανακριβειών των αισθητήρων, ολισθημάτων των τροχών και αστοχιών στο υλικό.

Συνεπώς, η ανάγκη για μια ακριβή, δυναμικά ρυθμιζόμενη τεχνική εντοπισμού θέσης είναι εμ-

φανής. Οι βασικές συνεισφορές αυτού του κεφαλαίου συνοψίζονται, λοιπόν, ως εξής:

1. σχεδίαση και υλοποίηση ενός πρωτότυπου μηχανισμού μεταφόρτωσης υπολογιστικών διερ-

γασιών για ρομποτικές εφαρμογές, ο οποίος χρησιμοποιεί μια υπολογιστική υποδομή στα

άκρα του δικτύου ενός βιομηχανικού χώρου, για να βελτιώσει την ακρίβεια του εντοπι-

σμού θέσης και της πορείας του ρομπότ.

2. σχεδίαση και υλοποίηση ενός αλγορίθμου απόφασης μεταφόρτωσης υπολογιστικών διερ-

γασιών, ο οποίος λαμβάνει υπόψιν την δυναμική φύση των κινήσεων του ρομπότ και αντι-

μετωπίζει την αβεβαιότητά που προκαλούνε στον ακριβή εντοπισμό της θέσης τους στο

χρόνο.

3. σχεδίαση και υλοποίηση καινοτόμων αλγορίθμων εντοπισμού θέσης και προσανατολι-

σμού, οι οποίοι επιτυγχάνουν υψηλή ακρίβεια χρησιμοποιώντας το απλούστερο σύστημα

καμερών και τον ελάχιστο αριθμό εντοπισμένων διακριτών σημείων στο περιβάλλον.

Η αρχιτεκτονική του προτεινόμενου συστήματος απεικονίζεται στην εικόνα 5.1. Στο εξετα-

ζόμενο σενάριο, οι προϋποθέσεις για μεταφόρτωση υπολογιστικών διεργασιών δημιουργούνται

από τις δύο βασικές εφαρμογές που εκτελούν τα ρομπότ: την εκτίμηση της στάσης και τον σχε-

διασμό της διαδρομής τους. Για να υποστηριχθεί η μεταφόρτωση αυτών των διεργασιών, εισά-

γονται τα παρακάτω δομικά στοιχεία της αρχιτεκτονικής, τα οποία εγκαθίστανται στο ρομπότ:

α) ο Ελεγκτής Παρακολούθησης (ΕΠ), β) ο Τοπικός Εκτιμητής με βάση την Οδομετρία (ΤΕΟ),
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γ) ο Τοπικός Εκτιμητής με βάση Διακριτά Σημεία στο περιβάλλον (ΤΕΔΣ), δ) ο Τοπικός Σχεδια-

στής Διαδρομής (ΤΣΔ) και ε) ο Μηχανισμός Απόφασης Μεταφόρτωσης Διεργασιών (ΜΑΜΔ).

Στην πλευρά των εξυπηρετητών στα άκρα του δικτύου, εγκαθίστανται τα παρακάτω δομικά

στοιχεία: στ) ο Απομακρυσμένος Εκτιμητής με βάση Διακριτά Σημεία στο περιβάλλον (ΑΕΔΣ)

και ζ) ο Απομακρυσμένος Σχεδιαστής Διαδρομής (ΑΣΔ).

Μία τυπική εκτέλεση ενός σεναρίου της εξεταζόμενης εφαρμογής εκκινεί με τον ΤΣΔ να

υπολογίζει μια τροχιά από την αρχική στην τελική θέση. Αυτό δίνει το πρώτο έναυσμα στον

ΜΑΜΔ, ο οποίος αναλύει την τροχιά και αποφασίζει αν η μεταφόρτωση του υπολογισμού στα

άκρα του δικτύου και τον ΑΣΔ μπορεί να έχει ως αποτέλεσμα μια βελτιωμένη έκδοσή της. Από

την μία, η υλοποίηση του ΤΣΔ βασίζεται σε μια απλή, ελαφριά έκδοση του γνωστού αλγορίθ-

μου A∗, με χαμηλή όμως ποιότητα παραγόμενης τροχιάς. Από την άλλη, η υλοποίηση του ΑΣΔ

βασίζεται σε μία περίπλοκη υπολογιστικά έκδοση του αλγορίθμου Dijkstra, η οποία επιλέγει το

καταλληλότερο ανάμεσα σε υψηλής ποιότητας μονοπάτια, τα οποία έχουν υπολογιστεί πριν την

εκτέλεση του σεναρίου. Στη συνέχεια, ο ΕΠ αναλαμβάνει να μετακινήσει το ρομπότ στις εν-

διάμεσες θέσεις της τροχιάς. Η κίνηση του ρομπότ μοντελοποιείται με ένα σύστημα συνεχούς

χρόνου, το οποίο έχει την αναπαράσταση κατάστασης-χώρου που δίνεται στις εξισώσεις (5.4)

- (5.6). Κάθε ενδιάμεση κίνηση αναλύεται σε δύο επιμέρους κινήσεις: α) μια περιστροφική κί-

νηση, ακολουθούμενη από β) μία μεταφορική. Συγκεκριμένα, η δυναμική κλειστού βρόχου που

χρησιμοποιείται, περιγράφεται από τις εξισώσεις (5.7) και (5.8), ενώ στην εικόνα 5.3 δίνεται το

αυτόματο που περιγράφει τη λειτουργία του ΕΠ. Κατά τη διάρκεια αυτών των ενδιάμεσων κινή-

σεων, δίνεται το δεύτερο έναυσμα στον ΜΑΜΔ ώστε να αποφασίσει, ανάλογα με την συνολική

συσσωρευμένη αβεβαιότητα στην στάση του ρομπότ και ανάλογα με τη διαθεσιμότητα πόρων

στους εξυπηρετητές στα άκρα του δικτύου, αν ο ΕΠ θα κινείται με βάση ανατροφοδότηση από

τον ΤΕΟ και τον ΤΕΔΣ ή αν θα μεταφορτωθούν οι υπολογισμοί στα άκρα του δικτύου και τον

ΑΕΔΣ. Η λειτουργίας του ΤΕΟ είναι αρκετά ελαφριά όσον αφορά τους υπολογισμούς, καθώς

βασίζεται σε μετρήσεις που παρέχουν οι κωδικοποιητές που βρίσκονται στους τροχούς, αλλά

συσσωρεύει αβεβαιότητα στον εντοπισμό της θέσης με την πάροδο του χρόνου. Από την άλλη,

οι ΤΕΔΣ και ΑΕΔΣ βασίζονται στην αναγνώριση διακριτών σημείων και μάλιστα κυλινδρικών

ορόσημων στον περιβάλλοντα χώρο. Η τεχνική αυτή είναι σημαντικά πιο ακριβή υπολογιστικά,

καθώς χρησιμοποιούνται τεχνικές αναγνώρισης εικόνων για να εντοπιστούν τα ορόσημα σε

πραγματικό χρόνο, τα οποία στη συνέχεια αναλύονται και εξάγονται τα απαραίτητα χαρακτη-
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ριστικά τους για να υπολογιστεί η θέση του ρομπότ, μέσω μιας τεχνικής προβολικής γεωμετρίας.

Ο βρόχος κίνησης κλείνει με τον έλεγχο του ρομπότ σχετικά με την προσέγγιση της τελικής θέ-

σης. Στην εικόνα 5.2 γίνεται φανερή η απεριοδικότητα της κλήσης των παραπάνω δομικών

στοιχείων.

Όπως αναφέρθηκε και προηγουμένως, οι αποφάσεις του ΜΑΜΔ για μεταφόρτωση διεργα-

σιών παίρνονται με βάση ένα διακοπτικό σύστημα το οποίο αποτελείται από τρεις διακόπτες

(εικόνα 5.11). Ο πρώτος διακόπτης αφορά στην επιλογή του τρόπου εκτίμησης της θέσης και του

προσανατολισμού του ρομπότ μεταξύ των παρακάτω: α) τους αισθητήρες οδομετρίας και β) το

σύστημα κάμερας. Η μετάβαση από την επιλογή α) στην β) γίνεται βάσει ενός ορίου επιτρεπόμε-

νης αβεβαιότητας σχετικά με τη στάση του ρομπότ. Ο δεύτερος διακόπτης ενεργοποιείται μόνο

σε περίπτωση που στον πρώτο έχει επιλεχθεί ο β) τρόπος εκτίμησης στάσης και αφορά στην

μεταφόρτωση ή όχι της εκτέλεσης του αλγορίθμου, με βάση την διαθεσιμότητα υπολογιστικών

και δικτυακών πόρων στα άκρα του δικτύου. Η διαθεσιμότητα των υπολογιστικών πόρων για το

ερχόμενο χρονικό διάστημα, υπολογίζεται με τη χρήση ενός φίλτρου Kalman πάνω σε ιστορικά

δεδομένα της διαθεσιμότητας και ο εκτιμώμενος χρόνος εκτέλεσης δίνεται από μια γραμμική

σχέση. Ο εκτιμώμενος χρόνος μεταφοράς των δεδομένων στα άκρα του δικτύου δίνεται από τις

σχέσεις (5.9) - (5.12) και βασίζεται σε ένα λογαριθμικό μοντέλο των απωλειών σε σχέση με την

απόσταση, καθώς και στην αναλογία του σήματος προς το θόρυβο. Τέλος, ο τρίτος διακόπτης

αφορά στην επιλογή ανάμεσα σε μία χαμηλής (τοπικά υπολογιζόμενης) και σε μία υψηλής (από

μεταφόρτωση στα άκρα του δικτύου) ποιότητας τροχιά προς το στόχο και λαμβάνει υπόψιν δυο

παραμέτρους: α) ένα βαθμό εγγύτητας της χαμηλής ποιότητας τροχιάς στα διάφορα εμπόδια

του χώρου και β) την καμπυλότητά της. Με βάση αυτές, αποφασίζει αν υπάρχει περιθώριο ση-

μαντικής βελτίωσης της μορφής της τροχιάς με τη μεταφόρτωση των υπολογισμών στα άκρα

του δικτύου.

Για την πειραματική αξιολόγηση των παραπάνω μηχανισμών χρησιμοποιήθηκε η ρομπο-

τική πλατφόρμα AlphaBot, ενώ στήθηκε ένας χώρος στο Εργαστήριο Διαχείρισης και Βέλτιστου

Σχεδιασμού Δικτύων Τηλεματικής (NETMODE) της Σχολής Ηλεκτρολόγων Μηχ. & Μηχ. Υπο-

λογιστών του Ε.Μ.Π., ειδικά για να προσομοιάζει το εργοστασιακό περιβάλλον της εφαρμογής

(εικόνα 5.14). Για να μπορέσει να αξιολογηθεί σωστά ο μηχανισμός υπολογιστικής μεταφόρ-

τωσης ως προς τον χρόνο εκτέλεσης της εφαρμογής, πρώτα έπρεπε να αξιολογηθεί η αποτε-

λεσματικότητα των εφαρμογών τις οποίες διαχειρίζεται. Σχετικά με την τεχνική εντοπισμού
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θέσης, στην εικόνα 5.12 φαίνεται ότι παρόλο που η απόκλιση από την πραγματική θέση αυξά-

νεται όσο αυξάνεται η απόσταση του ρομπότ από τα ορόσημα, η ακρίβεια της δεν πέφτει ποτέ

κάτω από 93%. Σχετικά με τον σχεδιασμό της πορείας του ρομπότ, στην εικόνα 5.13 γίνεται φα-

νερή η εγγύτητα μιας υπολογισμένης τροχιάς με την πραγματικά βέλτιστη, η οποία βρίσκεται

εντός αποδεκτών πλαισίων για την εφαρμογή. Προχωρώντας στο βασικό κομμάτι της αξιολό-

γησης, αυτό του διακοπτικού μηχανισμού μεταφόρτωσης υπολογιστικών διεργασιών, γίνεται η

σύγκρισή του με τις δύο ακραίες αλλά απλοϊκές προσεγγίσεις εκτέλεσης των υπολογιστικών

διεργασιών: α) μόνο τοπική εκτέλεση και β) μόνο υπολογιστική μεταφόρτωση. Στον πίνακα 5.2

δίνονται οι μέσοι χρόνοι εκτέλεσης του ίδιου πειράματος, για τις τρεις διαφορετικές τεχνικές

εκτέλεσης. Από τα αποτελέσματα, γίνεται εμφανής η υπεροχή του προτεινόμενου μηχανισμού,

τόσο στον μέσο χρόνο εκτέλεσης όσο και στο ποσοστό επιτυχούς έκβασης των αποστολών που

κλήθηκε να υλοποιήσει το ρομπότ. Αναλυτικότερα, στη μόνο τοπική εκτέλεση της σχεδίασης

διαδρομής, ο χρόνος εκτέλεσης του πειράματος είναι γραμμικώς ανάλογος των βημάτων που

αποφασίζει ο A∗ αλγόριθμος που εκτελείται (εικόνα 5.15), ενώ η αβεβαιότητα στον εντοπισμό

της θέσης του ρομπότ δεν σταματά ποτέ να αυξάνεται (αφού το σύστημα καμερών δεν αξιο-

ποιείται ποτέ (εικόνα 5.16). Συνεπώς δεν υπάρχει κάποια εγγύηση σχετικά με την επιτυχή πε-

ράτωση του πειράματος. Στην περίπτωση β), της μεταφορτωμένης εκτέλεσης μόνο, από τη μία

έχουμε την εγγύηση για την επιτυχή περάτωση του πειράματος, αφού το σύστημα καμερών χρη-

σιμοποιείται για τον εντοπισμό της θέσης του ρομπότ κάθε φορά, έχουμε όμως αυξημένο μέσο

χρόνο εκτέλεσης της αποστολής, λόγω ακριβώς αυτής της επιλογής (εικόνα 5.17): η υπολογι-

στικά πιο ακριβή τεχνική εντοπισμού θέσης χρησιμοποιείται άκριτα, κάθε φορά που χρειάζεται

εντοπισμός, ακόμα και όταν η αβεβαιότητα σχετικά με την στάση είναι ελάχιστη και δυνητικά το

ρομπότ θα μπορούσε να κινηθεί για κάποιο χρονικό διάστημα και με τα αποτελέσματα του ΤΕΟ.

Η σύγκριση αυτή καταλήγει με τα αποτελέσματα του διακοπτικού μηχανισμού μεταφόρτωσης

διεργασιών στα άκρα του δικτύου, ο οποίος τα καταφέρνει σημαντικά καλύτερα σε σχέση με τις

άλλες δύο προσεγγίσεις, παρέχοντας τόσο εγγυήσεις για την επιτυχή περάτωση του πειράματος,

όσο και χαμηλότερους μέσους χρόνους εκτέλεσης (εικόνα 5.18).

Κεφάλαιο 6

Το Κεφάλαιο 6 πραγματεύεται την μεταφόρτωση και τον διαμοιρασμό των υπολογιστικών

διεργασιών με χρήση μαρκοβιανών τυχαίων πεδίων. Συγκεκριμένα, στον προτεινόμενο μηχανι-
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σμό γίνεται χρήση διακοπτικών συστημάτων για την μοντελοποίηση των υπολογιστικών πόρων

στα άκρα του δικτύου και την δυναμική κατανομή τους, βάσει κριτηρίων ενεργειακής κατανά-

λωσης. Ο προτεινόμενος μηχανισμός αποτελείται από δύο επαναλαμβανόμενα στάδια. Κατά το

πρώτο, γίνεται χρήση μιας τεχνικής βασισμένης σε μαρκοβιανές αλυσίδες, η οποία προβλέπει

τις κινήσεις των χρηστών στο χώρο, για τον υπολογισμό του όγκου των διεργασιών που αναμέ-

νεται να μεταφορτωθούν στα άκρα του δικτύου. Κατά το δεύτερο, μια καινοτόμα τεχνική βα-

σισμένη σε μαρκοβιανά τυχαία πεδία, αναλαμβάνει τον διαμοιρασμό των υπολογιστικών διερ-

γασιών στους διαθέσιμους πόρους. Οι διεργασίες αυτές δεν δύνανται να εκτελεστούν τοπικά

στις συσκευές τον χρηστών, υπό συγκεκριμένους ενεργειακούς περιορισμούς και για συγκε-

κριμένο επίπεδο ποιότητας υπηρεσιών. Ο προτεινόμενος μηχανισμός επιτυγχάνει βελτιωμένη

ενεργειακή κατανάλωση, λαμβάνοντας υπόψιν τις επιπρόσθετες δικτυακές καθυστερήσεις που

επιφέρει ο διαμοιρασμός των εργασιών στην υποδομή. Ακόμη, συγκρίνοντας τον προτεινόμενο

μηχανισμό με μια γνωστή αντίστοιχη δουλειά στη βιβλιογραφία, επιδεικνύεται η αποτελεσμα-

τικότητά του τόσο στη βελτιστοποίηση της κατανάλωσης ενέργειας, όσο και στην ποιότητα των

παρεχόμενων υπηρεσιών. Αναλυτικότερα, οι καινοτόμες συνεισφορές αυτής της δουλειάς συ-

νοψίζονται ως εξής:

1. προτείνεται μια προσέγγιση μοντελοποίησης βασισμένη στη θεωρία διακοπτικών συστη-

μάτων, σύμφωνα με την οποία προσδιορίζονται εικονικά προφίλ («προφίλ ΕΜ») του υλι-

κού της υπολογιστικής υποδομής στα άκρα του δικτύου, και η οποία παρέχει εγγυήσεις

επιπέδου ποιότητας παροχής υπηρεσιών στις εφαρμογές που φιλοξενούνται στην υπο-

δομή, για διάφορες συνθήκες λειτουργίας. Η μοντελοποίηση αυτή επιτρέπει τη δυναμική

επιλογή και κατανομή των κατάλληλων πόρων σε κάθε εφαρμογή (δηλ. την εναλλαγή

ανάμεσα στα διάφορα εικονικά προφίλ), βάσει του εκτιμώμενου φόρτου εργασίας. Οι

δυνατότητες που προσφέρουν τα διακοπτικά συστήματα, επιτρέπουν το σχεδιασμό ενός

προληπτικού μηχανισμού κατανομής πόρων δύο σταδίων, με έμφαση στη μείωση της ενερ-

γειακής κατανάλωσης.

2. κατά το πρώτο στάδιο, επεκτείνονται οι δουλειές που παρουσιάστηκαν στα Κεφάλαια

3 και 4, οι οποίες αντιμετωπίζουν ταυτόχρονα τα προβλήματα της δυναμικής κατανομής

πόρων και της μεταφόρτωσης υπολογιστικών διεργασιών στα άκρα του δικτύου, με σκοπό

αυτή τη φορά τη μείωση της συνολικής κατανάλωσης ενέργειας της υπολογιστικής υποδο-
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μής και την παροχή εγγυήσεων ως προς την ποιότητα των παρεχόμενων υπηρεσιών. Για

την απαραίτητη εκτίμηση του πλήθους των αιτήσεων προς μεταφόρτωση που χρειάζεται

σε αυτό το επίπεδο, χρησιμοποιείται ένας μηχανισμός πρόβλεψης της κίνησης των χρη-

στών ανάμεσα στις διαφορετικές τοποθεσίες της υποδομής, βασισμένος σε μαρκοβιανές

αλυσίδες.

3. κατά το δεύτερο στάδιο, οι παραπάνω μηχανισμοί συνδυάζονται με έναν καινοτόμο μη-

χανισμό βασισμένο σε μαρκοβιανά τυχαία πεδία, ο οποίος στοχεύει στην ανακατεύθυνση

των «πλεοναζόντων» αιτήσεων μεταφόρτωσης μεταξύ των τοποθεσιών της υποδομής. Οι

αιτήσεις αυτές δεν δύνανται να εξυπηρετηθούν τοπικά στις τοποθεσίες που δημιουργήθη-

καν, υπό συγκεκριμένους περιορισμούς σχετικά με την ενεργειακή κατανάλωση και την

ποιότητα των υπηρεσιών. Με αυτόν τον τρόπο, επιτυγχάνεται εξισορρόπηση του φόρτου

σε όλη την υποδομή στα άκρα του δικτύου, ενώ ταυτόχρονα βελτιστοποιείται η κατανά-

λωση ενέργειας. Πρόκειται για την πρώτη φορά που εφαρμόζεται μια τέτοιου είδους προ-

σέγγιση στην βιβλιογραφία. Η ενσωμάτωση του προτεινόμενου αυτού μηχανισμού εξισορ-

ρόπησης στους παραπάνω μηχανισμούς, συνθέτει μια ολιστική λύση για την ενεργειακά

προσανατολισμένη μεταφόρτωση διεργασιών και κατανομή πόρων που ανταποκρίνεται

στις δυναμικές (σε χώρο και χρόνο) απαιτήσεις των αιτήσεων μεταφόρτωσης.

Όπως φαίνεται και στην εικόνα 6.1, η φυσική υποδομή μοντελοποιείται στο εξεταζόμενο

σενάριο ως γράφος. Κάθε τελική συσκευή αιτείται τη μεταφόρτωση των διεργασιών της μέσω

μιας IEEE 802.11ac σύνδεσης δικτύου, στους εξυπηρετητές της υποδομής που βρίσκονται στην

τοποθεσία της, στους οποίους εγκαθίστανται ΕΔ ή ΕΜγια την εξυπηρέτηση των διεργασιών.Με

την εφαρμογή εκ των προτέρων του αλγόριθμου Minstrel, παράγεται ένα σύνολο δεδομένων, το

οποίο χρησιμοποιείται για τη μετατροπή του εκτιμώμενου αριθμού χρηστών κάθε τοποθεσίας σε

εκτιμώμενο φόρτο εργασίας για την τοποθεσία αυτή. Τα προφίλ των ΕΔ/ΕΜ που εγκαθίστανται

στους εξυπηρετητές, για κάθε εφαρμογή, περιγράφουν πρακτικά τη σχέση ανάμεσα στην πα-

ρεχόμενη υπολογιστική ισχύ και την δυνατότητα εκτέλεσης των αιτήσεων μεταφόρτωσης, υπό

συγκεκριμένους χρονικούς και ενεργειακούς περιορισμούς. Το πλεονέκτημα της χρήσης τους εί-

ναι διπλό: από τη μία, επιτρέπουν την περιγραφή της δυναμικής συμπεριφοράς των ΕΔ/ΕΜ, υπό

ποικίλες συνθήκες λειτουργίας. Από την άλλη, η χρήση τους επιτρέπει στο διακοπτικό σύστημα

να ρυθμίζει άμεσα την εγκατεστημένη τοπολογία ΕΔ/ΕΜ στην υποδομή, ανταποκρινόμενο στον
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δυναμικό φόρτο εργασίας και εγγυώμενο ένα επίπεδο παροχής υπηρεσιών. Για την αναγνώριση

των προφίλ των ΕΔ/ΕΜ κάθε εφαρμογής, χρησιμοποιείται μια παρόμοια τεχνική με αυτή που

παρουσιάστηκε στο Κεφάλαιο 4 για την αναγνώριση των σημείων ισορροπίας: για κάθε μία από

αυτές, σχεδιάζεται ένα γραμμικό χρονικά αμετάβλητο σύστημα της μορφής (6.1), το οποίο περι-

γράφει τη σχέση ανάμεσα στο χρόνο απόκρισης της εφαρμογής και την παρεχόμενης υπολογι-

στικής ισχύ στο ΕΔ/ΕΜ. Η παρεχόμενη υπολογιστική ισχύς αποτελεί και το διακοπτικό κριτήριο

για την επιλογή των προφίλ. Στη συνέχεια, οι παράμετροι κάθε συστήματος προσδιορίζονται λύ-

νοντας το πρόγραμμα γραμμικού προγραμματισμού των εξισώσεων (6.2b) - (6.2d). Σημαντικό

κομμάτι της μελέτης που παρουσιάζεται σε αυτό το κεφάλαιο, αποτελεί επίσης η μοντελοποί-

ηση της κατανάλωσης ισχύος του συστήματος, η οποία δίνεται από τη σχέση (6.4). Επίσης, για

την πρόβλεψη των αιτημάτων μεταφόρτωσης για το επόμενο χρονικό παράθυρο, χρησιμοποιεί-

ται, όπως ειπώθηκε, μία παραλλαγή των μαρκοβιανών αλυσίδων ν-κινητικότητας. Σύμφωνα

με αυτήν, χρησιμοποιούνται οι δύο προηγούμενες τοποθεσίες που επισκέφθηκε ο κάθε χρήστης

και πιθανοτικά εκτιμάται η επόμενή του θέση. Ως προαπαιτούμενο για να λειτουργήσει σωστά

αυτή η τεχνική, δημιουργείται ένας πίνακας μεταβάσεων ο οποίος προκύπτει από την καθημε-

ρινή παρακολούθηση κινήσεων χρηστών σε αντίστοιχα περιβάλλοντα, η οποία δημιουργείται

από σχετικά σύνολα δεδομένων.

Προχωρώντας στην περιγραφή του πρώτου σταδίου της λειτουργίας του μηχανισμού κα-

τανομής πόρων, συναντάμε την γνώριμη τακτική της επιλογής της κατάλληλης τοπολογίας

ΕΔ/ΕΜ, η οποία θα υλοποιηθεί στο ερχόμενο χρονικό παράθυρο για την ικανοποίηση του εκτι-

μώμενου φόρτου εργασίας (εικόνα 6.2). Για την βελτιστοποίηση της επιλογής της τοπολογίας,

αρχικά υπολογίζονται όλες οι πιθανές εφικτές τοποθετήσεις προφίλ ΕΔ/ΕΜ για έναν μοναδικό

εξυπηρετητή. Ως εφικτή τοποθέτηση, νοείται αυτή στην οποία το σύνολο της υπολογιστικής

ισχύος που ζητείται από τα εμπλεκόμενα προφίλ ΕΔ/ΕΜ δεν υπερβαίνει τη συνολική διαθέσιμη

υπολογιστική ισχύ του εξυπηρετητή. Η περιγραφή της δίνεται στην εξίσωση (6.5). Στη συνέχεια,

λαμβάνοντας υπόψιν τις παραπάνω τοποθετήσεις, λύνεται ένα πρόβλημα βελτιστοποίησης (εξι-

σώσεις (6.6a) - (6.6e)) το οποίο εγκαθιστά τις ΕΔ/ΕΜ, με ενεργειακά προσανατολισμένο τρόπο,

σε μία περιοχή της υποδομής, ικανοποιώντας παρόλα αυτά τον συνολικό προβλεπόμενο φόρτο

εργασίας για το επόμενο διάστημα.

Στη λειτουργία του παραπάνω σταδίου, αναγνωρίζουμε δύο φαινόμενα τα οποία δημιουρ-

γούν τον λεγόμενο πλεονάζων φόρτο εργασίας: το πρώτο αφορά στις περιπτώσεις κατά τις
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οποίες μία περιοχή της υποδομής δεν δύναται να εξυπηρετήσει όλα τα εκτιμώμενα αιτήματα

μεταφόρτωσης διεργασιών, λόγω έλειψης των απαιτούμενων υπολογιστικών πόρων. Το δεύτερο

αφορά στις περιπτώσεις στις οποίες κρίνεται ενεργειακά ακριβή η ενεργοποίηση ενός ολόκλη-

ρου εξυπηρετητή για την εξυπηρέτηση ενός μικρού φόρτου εργασίας. Κατά το δεύτερο στάδιο

της λειτουργίας του προτεινόμενου μηχανισμού, λοιπόν, λαμβάνει χώρα η εξισορρόπηση του

πλεονάζοντος φόρτου εργασίας σε όλη την υποδομή. Για να επιτευχθεί αυτό, χρησιμοποιείται η

θεωρία των μαρκοβιανών τυχαίων πεδίων, λόγω του ευέλικτου σχεδιασμού τους, ο οποίος επι-

τρέπει την κατανεμημένη λήψη αποφάσεων, με αποτελέσματα που προσεγγίζουν τα βέλτιστα

σε πολύ χαμηλούς χρόνους σύγκλισης. Οι εξισώσεις (6.9) - (6.12) περιγράφουν φορμαλιστικά

τη λειτουργία του παραπάνω μηχανισμού: εν συντομία, οι μονήρεις όροι της εξίσωσης (6.11)

εκφράζουν τη στόχευση της κάθε τοποθεσίας της υποδομής να ελαχιστοποιήσει τοπικά την κα-

τανάλωση ενέργειάς της. Επίσης, σε αυτούς τους όρους, συμπεριλαμβάνεται ένα κομμάτι που

τείνει να οδηγήσει το σύστημα σε λύσεις που ελαχιστοποιούν παράλληλα και τη συνολική επι-

πρόσθετη καθυστέρηση που συμβαίνει λόγω των ανακατευθύνσεων των πλεοναζόντων αιτη-

μάτων μεταφόρτωσης. Από την άλλη, οι διπλοί όροι αφορούν στις αλληλεπιδράσεις των γειτο-

νικών τοποθεσιών μεταξύ τους και ιδανικά οδηγούν το σύστημα σε καταστάσεις στις οποίες

ανταλλάσσονται πλεονάζοντα αιτήματα μεταφόρτωσης, με σκοπό αυτά να συγκεντρωθούν σε

συγκεκριμένες τοποθεσίες, αποφεύγοντας την διασπορά τους και άρα την ενεργοποίηση περίσ-

σειας εξυπηρετητών. Μία επισκόπηση της διαδικασίας αυτής δίνεται στην εικόνα 6.3, ενώ η

εικόνα 6.4 δίνει την σχέση ανάμεσα στις χρονικές οντότητες στις οποίες συμβαίνουν οι παρα-

πάνω διαδικασίες. Επιπλέον, στην εικόνα 6.5 απεικονίζεται η αρχική και η τελική κατάσταση

μιας υποδομής στην οποία έχει εφαρμοστεί η παραπάνω τεχνική εξισορρόπησης του πλεονά-

ζοντος φόρτου εργασίας, για καλύτερη κατανόηση της λειτουργίας του, ενώ στον Αλγόριθμο 1

δίνεται με ψευδογλώσσα η σειρά των βημάτων που ακολουθούνται.

Για την αξιολόγηση του παραπάνω μηχανισμού, γίνεται προσομοίωση ενός έξυπνου μου-

σείου, στις διάφορες τοποθεσίες του οποίου βρίσκονται εγκατεστημένα διαδραστικά εκθέματα

εξοπλισμένα με εξυπηρετητές με υπολογιστική ισχύ. Οι εφαρμογές που φιλοξενούνται σε αυτήν

την υποδομή, είναι βασισμένες σε τεχνικές εικονικής και επαυξημένης πραγματικότητα. Συγκε-

κριμένα, η αξιολόγηση ξεκινά με την εκτίμηση της επίπτωσης των σφαλμάτων στην εκτίμηση

του φόρτου εργασίας. Στην εικόνα 6.6 φαίνεται η επίπτωση αυτή στο συνολικό βαθμό εξυπηρέ-

τησης των αιτημάτων, καθώς και στο μέσο χρόνο εκτέλεσής τους. Και στις δύο αυτές μετρικές, η
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εφαρμογή της εξισορρόπησης πλεονάζοντος φορτίου, ελαφρύνει τις διαταραχές που προκαλούν

τα λάθη της πρόβλεψης. Εν συνεχεία, στην εικόνα 6.7 αποτυπώνεται η αντίδραση του μηχανι-

σμού στις δυναμικές συνθήκες του δικτύου μιας περιοχής και συγκεκριμένα στην κινητικότητα

των χρηστών που αιτούνται μεταφόρτωση διεργασιών. Πιο λεπτομερώς, αποτυπώνεται η απο-

τελεσματικότητα του βελτιστοποιητή στο να διαλέγει την ενεργειακά βέλτιστη λύση για την εξυ-

πηρέτηση του προβλεπόμενου φόρτου εργασίας. Προχωρώντας στην αξιολόγηση συγκεκριμένα

του δεύτερου σταδίου λειτουργίας του μηχανισμού, στην εικόνα 6.8 επιδεικνύεται η ταχύτητα

σύγκλισης της εξισορρόπησης πλεονάζοντος φορτίου, για δύο διαφορετικά μεγέθη υποδομών,

ενώ η εικόνα 6.9 απεικονίζει τη βελτίωση στο συνολικό επίπεδο της ποιότητας των παρεχόμε-

νων υπηρεσιών που προκαλεί το συγκεκριμένο στάδιο, όταν το εξισορροπούμενο πλεονάζων

φορτίο προέρχεται από τοποθεσίες που δεν δύνανται να το ικανοποιήσουν. Στην περίπτωση

που αυτό έχει προκύψει από ενεργειακά κριτήρια, στην εικόνα 6.10 φαίνεται η οικονομία που

γίνεται στην κατανάλωση ενέργειας. Επιπλέον, στην εικόνα 6.11 φαίνεται η ελαχιστοποίηση

της επιπλέον καθυστέρησης που προκαλείται στο συνολικό χρόνο εκτέλεσης λόγω των ανακα-

τευθύνσεων των αιτημάτων. Τέλος, ο προτεινόμενος μηχανισμός συγκρίνεται με μια παρόμοια,

γνωστή λύση του ίδιου προβλήματος στη βιβλιογραφία [99]. Για το σκοπό αυτό, διεξάγονται

δύο σετ πειραμάτων: στο πρώτο στοχεύεται η ελαχιστοποίηση της κατανάλωσης ενέργειας και

για τους δύο μηχανισμούς, το οποίο έχει ως αποτέλεσμα τις διπλάσιες περίπου παραβάσεις στο

συμφωνηθέν επίπεδο παρεχόμενων υπηρεσιών (χρόνος απόκρισης της εφαρμογής, εικόνα 6.12),

για τον συγκρινόμενο μηχανισμό. Στο δεύτερο σετ πειραμάτων, στοχεύεται η ικανοποίηση του

συμφωνηθέντος επιπέδου παρεχόμενων υπηρεσιών, πράγμα το οποίο έχει ως αποτέλεσμα την

κατά 65% μεγαλύτερη ενεργειακή κατανάλωση του συγκρινόμενου μηχανισμού (εικόνα 6.13).

Κεφάλαιο 7

Κλείνοντας, το Κεφάλαιο 7, συνοψίζει το σύνολο της διατριβής, επιχειρηματολογώντας για

τη σπουδαιότητα των εξεταζόμενων ερευνητικών προβλημάτων και των μεθόδων που επιλέχτη-

καν για την επίλυση τους, ενώ παράλληλα παραθέτει συγκεντρωμένα τα κύρια συμπεράσματα

που ανέκυψαν. Ακόμη, προτείνονται ανοιχτά ερευνητικά θέματα για μελλοντική εργασία που

είτε θα μπορούσαν να αποτελούν τη συνέχεια αυτής της ερευνητικής προσπάθειας, είτε μπορούν

να εκμεταλλευτούν την αποκτημένη γνώση προκειμένου να την εφαρμόσουν σε νέους τομείς και

δραστηριότητες.
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• Spatharakis D., Avgeris, M., Athanasopoulos, N. and Papavassiliou S., 2021. Resource-

aware Estimation and Control for Edge Robotics: a Set-based Approach. IEEE In-

ternet of Things Journal. (under review)

• Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J.,

Leivadeas, A., Athanasopoulos, N., Mitton, N. and Papavassiliou, S., 2021. Task
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Adaptive resource allocation for computation offloading: A control-theoretic approach.
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pavassiliou, S., 2019. Where there is fire there is smoke: a scalable edge computing

framework for early fire detection. Sensors, 19(3), p.639.

• Kalatzis, N., Routis, G., Marinellis, Y., Avgeris, M., Roussaki, I., Papavassiliou, S.

and Anagnostou, M., 2019. Semantic interoperability for iot platforms in support of
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International Conferences
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D., 2021, September. User association and behavioral characterization during task

offloading at the edge. Ιn 2021 IEEE International Mediterranean Conference on
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2021, September. Enabling industrial network slicing orchestration: A collaborative

edge robotics use case. Ιn 2021 IEEE International Mediterranean Conference on
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molitsas I., Dechouniotis D., Karyotis V., and Papavassiliou S., 2021, July. Industrial

robotics experimentation over federated next generation internet testbeds. Ιn 2021

IEEE International Mediterranean Conference on Communications and Networking

(MeditCom): Demo Sessions (IEEE MeditCom 2021 - Demos). IEEE.

• Spatharakis, D., Avgeris, M., Athanasopoulos, N., Dechouniotis, D. and Papavassil-

iou, S., 2020, November. A Switching Offloading Mechanism for Path Planning and

Localization in Robotic Applications. In 2020 International Conferences on Internet

of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData) and IEEE Congress on Cybermatics (Cybermatics) (pp. 77-84). IEEE.
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iou, S., 2019, August. Single Vision-Based Self-Localization for Autonomous Robotic
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2018, October. Utility decisions for QoE-QoS driven applications in practical mo-

bile broadband networks. In 2018 Global Information Infrastructure and Networking

Symposium (GIIS) (pp. 1-5). IEEE.

• Kalatzis, N., Avgeris, M., Dechouniotis, D., Papadakis-Vlachopapadopoulos, K.,

Roussaki, I. and Papavassiliou, S., 2018, June. Edge computing in IoT ecosystems for

UAV-enabled early fire detection. In 2018 IEEE International Conference on Smart

Computing (SMARTCOMP) (pp. 106-114). IEEE.

• Avgeris, M., Kalatzis, N., Dechouniotis, D., Roussaki, I. and Papavassiliou, S., 2017,

September. Semantic Resource Management of Federated IoT Testbeds. In Interna-

tional Conference on Ad-Hoc Networks and Wireless (pp. 25-38). Springer, Cham.
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