EOviko MetooBo MoAuteyveio
ZxoAl MnxavoAdywv Mnxavikwv
Topéag MnyavoAoyilkwv Kataokevwv & Autopdtou EAéyxou

Systematic modeling of disease mechanisms
and drug mode of action

Awbaktopikni AatplBn
Xpnotog dwtng
AINAQOMATOYXOY MHXANOAOIOY MHXANIKOY EMT

ENIBAEMNQN:
Newvidag AAe€omouloc, Av. KaBnyntrg, EMN



EOviko MetooBo MoAuteyveio
ZxoAl MnxavoAdywv Mnxavikwv
Topéag MnyavoAoyilkwv Kataokevwv & Autopdtou EAéyxou

Systematic modeling of disease mechanisms
and drug mode of action

Awbaktopikn Atatpn
Xprnotoc dwng
AINMAQMATOYXOY MHXANOAOTOY MHXANIKQY EMT

TPIMEAHZ 2YMBOYAEYTIKH ENITPONH: ENTAMEAHZ EZETAZTIKH ENITPOMH:

A. AAe€omoulog, Av. KaB. EMIN (ETuBAEnwv) A. Ahe€omoulog, Av. KaB. EMNM (ETupAEnwv)
K. Kuptakomoulocg, Kab. EMM K. Kuptakomoulocg, KaB. EMM

A. Xat{nwavvou, Epsuvntic A, EIE A. Xat{nwavvou, Epeuvntrg A, EIE

E. Mikpdg, KaB. EKMA
J. Saez-Rodriguez, KaB. RWTH Aachen
E. Namagppavoun, Kad. MSKCC

. Matoomnoulog, KaB. EMN
Athens, July 2021






H mapoloa spyacia xopnysital pe adslo Creative Commons Antribution - Share
Alike 4.0 International. Avtiypado tng adelag Bploketal otnv LotooeAida: http:
//creativecommons.org/licenses/by-sa/4.0/

H éykplon tng S18aktopikng SLatpPAg amo tnv Avwtatn ZxoArn Mnxavoloywv
Mnxovikwy tou E.M. MoAutexveiou Sev uoSNAWVEL amodoxr TwV YVWUWV Tou

ocuyypodéa (N. 5343/1932, ApOpo 202)






Prologue

The research for this dissertation was carried out under the supervision of the Associate professor of
the Mechanical Engineering School of NTUA, Leonidas G. Alexopoulos. My research has been co-
financed by the European Union and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH — CREATE — INNOVATE
(project code:T1EDK-02829).

| would like to thank the people in my life and work environment that helped me pursue my dreams
and conduct my research. First of all, | would like to thank my mentor, professor Alexopoulos, for
introducing me to the field of systems biology through his class in the NTUA School of mechanical
engineering. From the very first lectures, | knew that this was what | wanted to do with my life. His
passion and love for the field along with his entrepreneurial spirit inspired me to pursue my goals and
seek a research position in his lab. His innovative thinking was transferred to me through our countless
meetings and his constant guidance and mentorship made me a better researcher, as well as a better
person overall. From the bottom of my heart, thank you for being a professor at NTUA, without you |
would be lost. | would then like to thank my partner Nefeli, for always believing in me, supporting me
and filling my life with positivity. In times that | was doubting myself, she was always there to support
me emotionally and practically, by making my life beautiful. Without her support, love and motivation
| wouldn’t be able to do half the things | have done. | would like to thank my parents for providing me
everything growing up, nourishing my passion to pursue a career in science and always believing in
me, even in times when they shouldn’t. Especially, | would like to thank my mother for teaching me
how to study and conduct research from a very young age and for always giving me the opportunity
to make my own choices. Additionally, | would like to thank my friend and colleague Nikos, for all his
help during my research. | believe that we did our best work together in the lab and | am excited to
see his future endeavors. Guiding him and teaching him everything | know was maybe the most
valuable lesson | learned during my PhD. The lesson is that investing in the right people is the most
rewarding investment that you can make. | was very lucky to have worked with him during his first
steps of his research path. | would like to thank my colleague Danae for her support, which was
plentiful, since we faced similar issues during our PhD thesis. Furthermore, | would like to thank all
the members of the computational team that worked together with me in my research and who | can
call my friends and colleagues. Your passion, thinking and work ethics motivated me to be a better
leader and our success made me believe in myself. Finally, | would like to thank Teo and Asier, for
teaching and mentoring me during my early days in the lab.

Christos Fotis

Athens, July 20

Vi



Summary

Systems pharmacology methods aim to prioritize compounds that not only exhibit maximal binding
affinity to the specified target, but also cause the desirable biological effect. One specific approach
that has gained considerable attraction is modeling the cellular system as a complex network of
molecular interactions, in order to identify changes in the signaling mechanism that best explain the
experimental response data. In this thesis, we first present a concise review of omics repositories and
knowledge bases of molecular interactions, along with network-based methods for their analysis.
Furthermore, we present two novel deep learning pipelines, called deepSNEM and deepSIBA, which
can be used to investigate the connection of a compound’s signaling network and chemical structure
to its mechanism of action (MoA) and biological effect.

DeepSNEM is a novel unsupervised graph deep learning pipeline that is trained to encode the
information in the compound-induced signaling networks into fixed length high-dimensional
representations. DeepSNEM is a graph transformer network, trained to maximize the mutual
information between whole-graph and sub-graph representations that belong to similar
perturbations. By clustering the deepSNEM representations, we were able to identify distinct clusters
that are significantly enriched for specific MoAs. In order to increase the interpretability of deepSNEM,
we developed a subgraph importance method to elucidate the important subgraphs that cause the
signaling networks to cluster together. As a case study, deepSNEM was applied to cluster the
representations of signaling networks created from gene expression profiles of various experimental
platforms (MicroArrays and RNA sequencing). In order to take into account the structural attributes
of compound perturbations, alongside deepSNEM, we developed the deepSIBA pipeline to investigate
the connection between a compound’s chemical structure and its biological effect.

DeepSIBA is a supervised Siamese graph convolutional model that is trained to predict the biological
effect distance between a pair of compounds, using their molecular graphs as input. The proposed
model was able to encode molecular graph pairs and identify structurally dissimilar compounds that
affect similar biological processes, with high precision. Additionally, by utilizing deep ensembles to
estimate uncertainty, we were able to provide reliable and accurate predictions for chemical
structures that are very different from the ones used during training. Finally, we present a novel
inference approach, where the trained deepSIBA models are used to estimate the signaling pathway
signature of a compound perturbation, using only its chemical structure as input, and subsequently
identify which substructures influenced the predicted pathways. As a use case, deepSIBA was used to
infer important substructures and affected signaling pathways of FDA-approved anticancer drugs.
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Extended summary

Introduction

Drug discovery is a complex and time consuming process that aims to identify the right compound for
the right disease and target. Despite the development of many successful drugs, the attrition rates
still remain high. Recent advances in systems-pharmacology and omics technologies have led to the
development of computational tools that aim to model the biological effect of the compound
perturbation in the cellular system. These tools, based on biological pathways and signaling networks,
offer a systematic approach to unravel a compound’s Mechanism of Action (MoA) and prioritize
compounds that have the desired effect for further experimental validation. In this thesis, we first
provide a thorough review of omics databases and knowledge bases of molecular interactions, along
with network-based modeling tools that can be applied across all stages of the drug discovery pipeline
to elucidate the compound’s MoA. Furthermore, we provide a concise list of studies that have
successfully implemented these network-based approaches for various drug discovery projects.
However, due to their complex structure, large scale datasets of compound-induced signaling
networks and methods specifically tailored to their comparison are still very limited. One approach
that holds promise to overcome these limitations is the use of graph deep learning models to
transform signaling networks into high-dimensional representations. On this front, we proposed the
deepSNEM pipeline that uses an unsupervised graph transformer network to encode a compound’s
signaling network and investigate its relationship with the compounds’ MoA. However, systems
pharmacology approaches that rely on cellular response data are limited in their application to
compounds with available data and most importantly do not take into account the compounds’
structural attributes that are closely related to their efficacy, effect and toxicity profiles. To this end,
we aimed to use graph deep learning to match the chemical structure of compound perturbations to
their biological effect on specific cellular models. Thus, we proposed the deepSIBA pipeline that can
be used to infer a compound’s signaling pathway signatures, without available expression data, using
only its structure as input.

DeepSNEM: Deep Signaling Network Embeddings for compound mechanism of
action identification using deep learning

DeepSNEM methods

Transcriptomic signatures following compound treatment were retrieved from the CMap dataset.
After assigning a quality score to its experiment, the highest quality data were selected and
transformed into compound-induced signaling networks using the CARNIVAL pipeline. CARNIVAL
solves an ILP optimization problem to infer a family of highest scoring subgraphs, from a prior
knowledge network of signed and directed protein-protein interactions, which best explain the
experimental data, subject to specific constraints. In total, more than 700000 networks were created
from 7781 transcriptomic signatures of 3005 compounds across 70 cell lines. Afterwards, an



unsupervised deep learning model that takes as input a compound-induced signaling network and
outputs a fixed-length high dimensional representation was developed. The signaling networks were
represented as input to the model using three matrices that contain information regarding the nodes
of each network, their activity and the network’s connectivity (sign and direction). The core of
deepSNEM is a graph transformer network that pays specific attention to each node’s neighborhood,
when extracting the important features that describe the signaling mechanism. Finally, a whole-graph
representation is created by summarizing the node embeddings, using a 2-layer Long Short Term
Memory network. The model was trained by maximizing the mutual information between the nodes
and subgraphs that belong to the same or duplicate experiments. Thus, the deepSNEM model creates
similar representations for similar compound-induced signaling networks. The resulting 256-
dimensional embeddings of the compounds’ signaling networks were clustered using the k-means
algorithm, into 200 unique clusters. These clusters were then analyzed based on their MoA
composition, using labels provided by the Drug Repurposing Hub dataset. Furthermore, we developed
a node importance pipeline, using the saliency approach, to identify the nodes that the model pays
attention to, when creating the network representations. Finally, this node importance score was
integrated with each node’s frequency in a cluster to extract important subgraphs, in the original
networks, that cause the representations to cluster together.

DeepSNEM results

The deepSNEM approach was evaluated based on the validity of the resulting embeddings on two
separate tasks. The first task examines the models’ ability to produce similar embeddings from
signaling networks that are created from the same differential gene expression signature, while the
second task evaluates the similarity of graph embeddings created from duplicate gene signatures, as
compared to the similarity of embeddings from random gene signatures. On this front, the
embeddings produced by the graph transformer architecture, termed deepSNEM-GT-MI, were
compared to embeddings created from three additional models. These models include, a graph
transformer trained to predict the edge presence between nodes (termed deepSNEM-GT-LP), a
siamese GCN model to predict the graph edit distance between signaling networks (termed
deepSNEM-GED) and the widely used graph2vec model (termed deepSNEM-G2V). Across both tasks,
all deepSNEM model variations were able to identify embeddings produced from similar signaling
networks, with the deepSNEM-GT-MI variation showing the best performance. The embeddings of the
deepSNEM-GT-MI model were clustered, and the resulting clusters were analyzed based on their MoA
composition. On this front, we were able to identify distinct clusters that are significantly enriched for
mTOR, topoisomerase, HDAC and protein synthesis inhibitors respectively. Additionally, by applying
the importance pipeline, on the clusters enriched for mTOR inhibitors, we were able to identify
important nodes and subgraphs that are directly related to the mTOR/PI3K signaling mechanism. As a
case study, deepSNEM was used to assign clusters to signaling networks created from compounds’
gene expression profiles from various experimental platforms (MicroArrays and RNA sequencing). The
results show that the majority of the compounds’ signaling networks were correctly assigned to
clusters that were enriched for their respective MoA. For the compounds in the use case, we also
compared the cluster assignment of deepSNEM to a clustering of the compounds’ differential
expression gene measurements into the same number of clusters (k=200). Comparing the two
approaches, 3/8 compounds were assigned to clusters composed of similar mechanisms. However,



the remaining compounds were assigned to clusters not enriched for any particular MoA, when the
gene-clustering pipeline is used. Finally, for each compound of the use case, we calculated the Jaccard
similarity index between the perturbations of the identified clusters using the two methods
(deepSNEM and gene-based clustering). The similarity between the clusters was very low, with only
two clusters showing a similarity higher than 0.1.

DeepSNEM discussion

DeepSNEM was not only able to identify clusters of network representations that were enriched for
specific MoAs, but also identify important subgraphs that are related to them. However, the majority
of the compounds’ MoA labels are still unknown, which can result in a different MoA composition for
the identified clusters, when they are taken into account. By comparing the deepSNEM pipeline to a
simple gene-based clustering approach, we showed that the two approaches result in a different
clustering of the perturbations. We argue that is due to the different biological hierarchy of
information provided by the compound-induced signaling networks and differential gene expression
signatures. Thus, the deepSNEM pipeline, by using the knowledge of molecular interactions, can
identify similarities and differences in the compounds’ signaling networks that are hidden in their
transcriptomic signatures.

DeepSIBA: Chemical Structure-based Inference of Biological Alterations using
deep learning

DeepSIBA methods

Gene expression profiles following compound treatment were collected from the L1000 Connectivity
Map resource (GSE92742). For this study, only level 5 expression data (z-scores) of the landmark genes
were considered. For each compound perturbation, enrichment scores (ES) of GO terms related to
biological processes were calculated using Gene Set Enrichment Analysis. Afterwards, a Kolmogorov-
Smirnov based distance function was used to calculate the pairwise distance at the GO-term level. For
each pair in the dataset, the distance was calculated using 5 different thresholds for up-regulated and
down-regulated GO-terms. Finally, the distances were averaged. This pairwise GO-term distance score
was then used as the target variable for the learning model. The learning model takes as input the
chemical structures of compound pairs, represented as undirected graphs, with nodes being the
atoms and edges the bonds between them. The architecture consists of two Siamese (identical) graph
convolutional and convolutional encoders, one for each compound, that embed the chemical
structure into a high dimensional latent space. The absolute difference of the embeddings is then fed
through 2 convolutional layers followed by 2 fully connected layers. The final layer is a Gaussian
regression layer that outputs a mean and standard deviation of the biological effect distance between
the pair. By treating the distance as a sample from a Gaussian distribution with the predicted mean
and variance, the model is trained by minimizing the Negative Log Likelihood. Model ensembles are
created by taking the uniformly-weighted mixture of each model’s Gaussian. Furthermore, we
developed a novel inference approach method, similar to k-NN that can be used to infer a signaling
pathway signature from a compound’s chemical structure. To this end, the trained deepSIBA ensemble
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is used to predict the biological effect distances between the target compound and all the compounds
in the dataset. Then, training compounds with the lowest distance are selected as neighbors and a
target signature is inferred by using a voting scheme between the neighbors’ pathway signatures.
Finally, in order to increase the interpretability of our approach, we developed an importance pipeline,
based on graph gradients, to identify the important substructures that deepSIBA pays attention to,
when inferring the signaling pathway signature of a compound.

DeepSIBA results

The performance of deepSIBA was evaluated with a realistic drug discovery scenario in mind, where
gene expression data are available for only one compound per pair. Additionally, deepSIBA’s
performance was compared to machine learning models for pairwise distance learning tasks. Across
all cell lines, deepSIBA was able to outperform the machine learning models and exhibited a very high
precision and low MSE. By utilizing a transfer learning method, we were able to expand the coverage
of our approach to 7 additional cell lines, with fewer data points, but with similar performance.
Furthermore, deepSIBA was able to maintain high precision and low MSE, regardless of the chemical
similarity of the input compounds. We also evaluated the performance of our approach in a scenario,
where the test compounds are completely different, in terms of chemical structure, to the ones used
in training. We showed that in this case the precision of the model decreases, while the MSE remains
comparable. However, by utilizing deepSIBA’s uncertainty estimate, we were able to focus on a
specific subset of samples that the model was more certain, which led to a dramatic increase in
performance. As a case study, deepSIBA was tasked to infer the signaling pathway signature of FDA
approved anticancer drugs that were not present in our dataset, using only their structure as input.
For the drugs of the use case, deepSIBA was able to infer a signaling pathway signature that is directly
related to the compounds’ MoA and subsequently identify the correct chemical substructures as
important for the inference.

DeepSIBA discussion

DeepSIBA was able to encode molecular graph pairs and identify structurally dissimilar compounds
that affect similar biological processes with high precision. Additionally, by utilizing deep ensembles
to estimate uncertainty, we were able to provide reliable and accurate predictions for chemical
structures that are very different from the ones used during training. However, there were many
compound pairs with similar biological effect that were missed by the model. We argue that this
happens due to the limited chemical coverage of the CMap dataset and we believe that as more data
become available, the performance of our approach will increase as well.

Conclusion

We believe that deepSNEM and deepSIBA have the potential to augment in-silico drug discovery,
either by identifying a compound’s MoA, using its signaling network effect, or by exploring on a
massive scale the biological effect of compounds/libraries without available GEx data and suggesting
new chemical structures with desired biological effect.
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NepiAnyn

OL puéBodol mou edappolovral otn dpapuakoloyia cuotnuatwy Pacilovral otnv emidoyr GapUakwy
TIOU €MLOELKVUOUV TN HEYLOTN SUvapn MPocdeong otnV MPWTEIVN-0TOXO Kal cuvaua odnyolv oTo
emBUUNTO PBLloAoyLKO amoTéAeopo. Mo CUYKEKPLUEVN TEXVLKN, N omoia €XEL OUYKEVTPWOEL UPNAO
evbladépov, eival n povtehomoinon Tou KUTTAPOU w¢ €va SIKTUO poplakwy oAANAETISpACEWY, UE
OTOX0 TNV aVOKAAUYN TOU ONUOTOS0TIKOU HNXOQVLOMOU, TIoU Tieplypadel pe PEATIOTO TPOMO T
TELPAUOTIKA Sebopéva. TNV mapovuca Slatplpr, MpWTa MApPoucLAloUE Lo EKTEVH) CUAAOYI TOOO
Bdoswv 6ebopévwv TUMOU omics OO0 Kol HOPLAKWY OAANETLOPACEWY, CUVOSEUOUEVEG ATIO TIG
avtiotolyeg peBOdoug SIKTUWV yla TNV avaluohn autwv. Mepattépw, mapouctdloupe SV0 VEEG
uebodoug deep learning, mou ovopalovral deepSNEM kot deepSIBA, ol omoieg €xouv wg oTOX0 va
£PEUVNOOUV TOV TPOTIO HE TOV OMOI0 TOOO TO ONUATOSOTIKO SIKTUO OGO KoL N XNULKA Soun €vog
dapudakou cuoxetilovtal PUE TO UNXOVIOUO SpAcng KoL To BLOAOYIKO AmmOTEAECHA TOU GOPUAKOU OE
KUTTOPLKA LOVTEAQL.

To povtélo deepSNEM eival éva unsupervised deep learning Siktuo to omoio ekmaldeveTal
TIPOKELUEVOU VO KWOLKOTIOLHOEL KoL vo. 0ploBeToel TO oNUATOS0TIKO SiKTUO €VOg POpUAKOU OF
otaBepol pey€Boug TOAUSLACTATEG OVATTOPOOTACEL,. TO HOVTEAO eKMALSEVETOL WOTE va
LEyLOTOTIOOEL TNV apolBaia mAnpodopia HeTaly avamapaoTAcEWV SIKTUWV Kal UTTOSIKTUWY, TToU
TPOKUTITOUV amod mopopola Melpapata. Opadomolwvtag TIC aVAMoPaoTACEL, KatadEpape vo
ovakKoAUPOUE CUYKEKPLUEVEG OUABEC, OL OTIOLEG ElVaL EUTAOUTIOMEVEG CNUAVTLKA LE GAPLAKA, TIOU
potpalovtal &val CUYKEKPLUEVO HUNXaVIoORO Opdong. Me otdxo tnv KaAltepn eme€nynon Ttwv
omoteAeopdtwy avamtuxbnke pa péBodog avadeléng twv onpavtikwv UToSIkTiwy, Ta omola
o6nyolv otnv ekAoTtote opadomnoinon Twv avanapaotdcewyv. H péBodog deepSNEM edapuootnke
yla TNV opadomoinon Twy avamapacTACEWY TIOU TIPOKUTITOUV arnd onuatodoTikd Siktua Gapudkwy,
ta omnoia Baoilovtal oe debopéva yovidlakng ékbpaong and Sladopes MEPAUATIKEG TIAATPOPUEC
(Microarrays and RNA-sequencing). ©@€Aovtag va AdBoupe umoPnv Kat tn Xnuikn 6o Twv oucLwy,
napaAnAa pe to deepSNEM avantuxBnke kot To poviého deepSIBA, pe otdxo tn Siepelivnon g
CUOXETLONG TOUG LLE TO BLOAOYLKO ATOTEAECHLA TWV PAPHAKWV.

To povtého deepSIBA eival éva supervised deep learning poviéAo to omoio ekmaldevETAL YL TNV
npoPAedn TG amootaong HeTaly Twv Ploloylkwv Slepyaclwv evog leuyouc apUAKWY,
XPNOLLOTIOLWVTAC TA HOPLOKA Toug Siktua w¢ €l00d0. To povtédo Kwdlkomoinoe kal avakdAupe
levyn dopudkwv pe Slodopetikn xnuikp dopn, ta omoio emnpedlouv TOPOUOLEC BLOAOYIKEG
Slepyaoieg, pe vPnAn suotoyio kal akpifela. Ev cuvexeia, xpnolpomolwvtag mAnog HovTiéAwy,
T(POKELEVOU VO eKTIHRooUUE TNV ofefaldotnta Twv poPAEPewy, Katadpépape va £Xoupse EUOTOXEC
npoBAEPel yia ddppaka, ta omola €xouv evieAwg Olodopetik Sopn amd ekeiva TOU
xpnowomowntnkav Katd tn Sldpkela TnG ekmaibeuong. Ev KaTtokAElSL, TMOPOUCLA{OUME HLa VEQ
MEBOSO yla TNV ECaywyn XAPAKTNPLOTIKWY ONUATOSOTIKWY LOVOTIATLWY, XPNOLUOTIOLWVTAS WS £i00d0
MOVO TN XNHULKA Sopn Ttwv dappdkwv. fav edappoyr), To HOVIEAO XpNOLUOTolOnKe ylo tnv
ovVaKAAUPN CNUAVTIKWY ONUOTOSOTIKWY HOVOTIOTLWY KoL XOPOKTNPLOTIKWY XNULKWV SOUWY O £va
OUVOAO EYKEKPLUEVWV OVTIKAPKLVIKWV GOPUAKWY.

Xiii



Ektevi¢ nepiAnyn
Elocaywyn

H avakaAun véwv pappdakwv gival pla moAUTAOKN Kal xpovoBopa Stadikaoia, n onoia anmookormet
otnV elpechn VEWV XNUIKWV SOUWV, HE OKOMO VO TPOCSECOUV GTOV KATAAANAO OTOXO Kal va
KOTATIOAEUNOOUV TNV €KAoTOTE acBévela. H avamtuén tng dopUakoAoylog CUCTNUATWY Kal TwV
TEXVOAOYLWYV TUTIOU omics, €xel 08NYNOEL 0TNV SNLOUPYLA UTIOAOYLOTLKWVY gpYaAeiwy, TTIOU £XOUV WG
oTOX0 TN Jovtehomoinon g BloAoyikng emibpaong evog Gdapudkou OTO KUTTAPLKO cuotnua. Ot
uéBodol Baoilovtal oe ONUATOSOTIKA HOVOTATIA Kol SiKkTtua Kol TIPOCPEPOUV HLA OALOTIKN
OVTLUETWITLON TOU TPOoPANRUAToC TnG SLlEPEUVNONG TOU UNXaviopol 8paong Twv GpopUaKwy. ITnV
napovca SLatpLPr), MPWTA TAPOUCLAlOUME Mol EKTEVR] GUAAOYH TOoo Bacewv Sedopévwy TUMOU
omics 000 Kal HOPLOKWY AAANETLOPACEWY, CUVOSEVUOUEVEC Ao TIC avtioTtolxeg pebBodoug Siktuwv
yla TNV ovaAucon autwv. Apxilkd, ovalvovtal ol péBodol kal ev cuvexeia mapouoiaovral
napadelypato ebpopUoync QUTWY, 6TNV avokKaAuyn Tou pnxoviopol dpaong papudkwy. MNapd tnv
MANBwWpPA TWV TAEOVEKTNUATWY TOUG, Ta onuotodotikd &iktua efakolouBolv va amoteAolv
TLOAUTTIAOKEC OVATIOPAOTACELG KL WG EK TOUTOU, LEYAAEG Baoelg Sedopévwy KabBwg kat péBodol yla tn
OUYKPLON QUTWV ELvOiL TIEPLOPLOUEVEC. Mol EBOSOC YLl TNV OVTLUETWITLON OUTWV TWV TIEPLOPLOUWY,
gival n xprion povtéhwv deep learning, ebappoopéva o SIKTUQ, TTOU AMOCKOTIOUV OTN UETATPOTN
TOUC 0€ SLOXELPIOLUEG avamapaoTAaoels. Mo autd To Aoyo, dnuoupynbnke to povtédo deepSNEM,
wote va Kwdlkomoinoel onuatodotikd Siktuo GapUAKWY KoL Vo T CUCKETIOEL PUE TO UNXOVIOUO
6pAong TOUG. 3TN OUVEXELD, HME YVWUOVO TN onuooia tg XNUIKAG Sopng Twv Gapuakwy,
SnuoupynBnke to povtélo deepSIBA, e otdxo th Slepelivnon TG OXEoNG LETAED TNG XNIULKNAG SOUNG
£VOC pappakou Kal TNS BLOAOYLKNG TOU eMiSpAcNE OTO KUTTAPLKO cUOTNUA.

DeepSNEM: Deep Signaling Network Embeddings for compound mechanism of
action identification using deep learning

DeepSNEM pnéBodot

Méow tng Baong dedopévwv CMap AndBnoav dedopéva yoviSLlakng ékbpaaong, Ta onoia ekdppalouv
TNV KOTAOTAON KUTTAPLKWY HOVTEAWV HETA Tn Xprion dadopwv ¢Goapudkwy. ITn CUVEXELX, Ta
TELPAUOTA YOVLOLOKNG EKdpaong He TNV UPNAOTEPN TOLOTNTA LETATPATINKAV OE XOPOKTNPLOTIKA
onpatodotikd Siktua, xpnotponowwvtag th néBodo CARNIVAL. H péBodog CARNIVAL Alvel éva
npoBAnua BeAtiotonoinong pe tn HEB0SO TOU OKEPALOU TIPOYPOUUATIONOU, WOTE va eEAyeL Eva
XOPaKTNPLOTIKO onuatodotikd Siktuo mou ekdppdlel oto peyoAltepo Babud Ta TMELPOUATIKA
Sebopéva. TuvoAka SnuloupynBnke pla Baon Sedopévwy e meplocodtepa and 70000 Siktua, ta
omola avtiotolyolv oe 7781 melpduarta yovidlakng €kdppaong petaty 3005 ¢appdakwv kot 70
KUTTAPLKWVY HOVTEAwV. la tnv avaAuon toug dnuioupyndnke €va unsupervised deep learning
HOVTEND, TO omoio 6€xetal wg (0060 Ta ONUATOSOTIKA LOVOTIATIO KOL T QVATapaoTel og €va
moAudlactdto xwpo. lNa tv €ioodo Toug oTo POVTEAD Ta onpatodotikd Siktua kwdikomolndnkav
XPNOLLOTIOLWVTAC TPELG TILVAKEC TIOU TIEPLYPAdOUV £KAOTOC, TOUG KOUBOUG, TNV Katdotaon Tou Kabe
koupou kat tn ocuvdeouoloyia tou Siktuou. To poviéAo eival évag transformer diktowv mou Sivel
dlaitepn mpoooxn o KABe yeltovid Tou SIKTUOU, TPOKELUEVOU va SNULOUPYEL TIG AVOTAPAOTACELG
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TWV KOPPWV. H TeAkA avamapdotaoh Tou SIKTUou SnuLoupyeital xpnolonolwvtag éva Lovtélo Long
Short Term Memory TPOOPLOUEVO YLot TNV KWBELKOTIOINGoN TwV ovamopacTACEWY TWV KOUPBwWv. To
MovTEAO ekmodeVEeTOL WOTE Vo [eyLotorolel tnv apotBaia mAnpodopia petafy SikTUWV Kol UTo-
SIKTUWV TIOU TPOKUTITOUV Ao TAPOMOLA TIEPAUATA YOVIOLOKAG €Kdpaons. TolLouToTPOMwE, N
OMOLOTNTO TWV AVATIOPACTACE WV LAPTUPA KOL CUVAUA TNV OUOLOTATA TWV CNUATOSOTIKWY SIKTUWV.
OL TEAIKECG QVaTOPACTACELG OTLG 256 SlaoTtacelg opadomnolnonkav pe tov ahyoplBpo k-means, kal ot
opadeg mou mpogkuPav avaAlBnkav wg Mpog Th cUCTACH TOUG OE NXAVIOUOUC Spaong dopUaKwy.
Ouoiwg, SnuioupynBnke pla véa pEBodog yia tnv avakaAuPn onUavVILKWY UTtoSIKTU WV TTou 08nyouyv
OTNV eKACTOTE opadormoinon, xpnolomnolwvtag tn HEBodo saliency.

DeepSNEM anotsAéocpata

OL avamapacTAoeLlg TwV oNUATOSOTIKWY SIKTUWV Tou dnuoupyndnkav emaAnBelBnkav wg mPog tn
Suvatotnta Slaxwplopol autwy oe Siktua mou pogpxovtal amod To (810 Teipapa Kol ormd napopoLa
TElpApaTA. € aUTO To otadlo, n uEBodog deepSNEM transformer cuykpiBnke pe dAAeg 3 pebddoug
deep learning yia diktua. OAeg oL uéBodol katadepav va Sltaxwpiocouy Ta onpatodotika Siktua mou
TIPOEPYOVTOAL ATO TapOUoLa Tielpdpata, pe tn HEBodo deepSNEM transformer va mapoucotalel Tov
KOAUTEPO SlaxwpLopo. Katd tTnv opadomoinon Twy avanapooTaoEwy Kal TNV avaAuon Twv Opddwy,
ovakoAUPONKOV CUYKEKPLUEVEG OUASEC, OL OMOLlEG NTAV EUMAOUTIONEVEG He ovaotoleic mTOR,
topoisomerase, HDAC kat protein synthesis. EmutA£ov, xpnolponolwvtog tn LEB0S0 oNUAVTIKWY UTIO-
SiktOwy, KotadEpape va avokKaAUPoUUe onUAVTLKA UTTOSIKTUA yLo TIC OUASEC TWV AVOOTOAEWY
mTOR, ta omoia £ivol AUECO CUCKETIOUEVA UE TO ONUATOSOTIKO povoratt mTOR/PI3K. H uébodog
deepSNEM edapuootnke ylo TO XAPAKTNPLOUO TOU MNXOVIOHOU Opdong VEWV GOpUAKWY HE
Sebopéva yovidlakng ékbpacng ano Stadopeg nelpapatikég Sladikaciec. Ta anmoteAéopata deiyvouv
OTL Ta VEa PpAppOKaA EVIAXONKAV 0 OUASEC OL OTOlEC Elval EUTTAOUTIOMEVEC e PpApOKa, T omola
potpalovtal to pnxaviopd Spaonc twv vEwv dapudkwv. Entiong, n edpappoyn tng uebddou deepSNEM
ouykpiBnke pe pa pEBodo avabeong opddwy xpnolomolwvtag ta dedopéva YyoviSLakAG EKppacng
TWV VEWV dopudkwy. Katd tn olykplon autwy, mapatnpndnke otL 3/8 dapuaka, avatédnkav os
OMAdEG e TapopoLla cUOTAON UNXAVIOUWY 8pAonG, EVW Ta UTIOAOLTA O OUASEG e SladopeTIKNA
ocuotaon. Ev TéAel, unmohoyiotnke n opoldtnTa Jaccard PETAEU Twv OUASWY TIou SnuLoupyolvtol
Xpnolomolwvtag T U0 SLadopeTIKEG TEXVIKEG opadomnoinong kat Bpebnke OtTL elvat MOAU XapunAn,
UE HOVo U0 oudSEeC va €xouv opolotnTa peyaAutepn amd 0.1.

DeepSNEM oculitnon

To povtélo deepSNEM katddepe va avayvwpiosl OpAdeG avomapaoTtdcoswy, oL omoleg eival
EUMAOUTIOUEVEG UE GAPUOKA CUYKEKPLUEVOU HNXaviopoU Spacng kobwg kal va xapaktnpiost
onUavTika umo-8iktua, To omoila 0dnyouv ot cUyKekpLUévn opadornoinon. NMoapoAa autd, To peydho
TANB0¢ papUaKkwy, To omola £Xouv AYVWOTo Unxaviopd dpdong Umopel va 08nynost os SlodpopeTikn
cuoTaon Twv ouddwv Tou avayvwpiotnkav. EmumAéov, cuykpivovtag tnv avdBeon opddwv ota
dappaka NG epapproyng LeTaty Twy peBodwv deepSNEM kat yovidlakng ékbpaong, yivetal eludaveg
OTL QUTEC KataAAnyouv oe Sladopelky opadomoinon Twv MEPOUATWY. JUVENWS, N HEB0SOG
deepSNEM, xpnoiuomnolwvtag tnv mAnpodopia Twv onuatodoTikwy SIKTUwyv, Suvatal va avakaAuy et
OMOLOTNTECG Kal SLadopEg, oL omoieg lval KPUUUEVEC oTa apXLIKA dedopéva Ekdpaong TwV YoviSiwv.
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DeepSIBA: Chemical Structure-based Inference of Biological Alterations using
deep learning

DeepSIBA ngbodot

Aebopéva yovidlakng Ekppacnc, MPOEPXOUEVA OO MELPAOTA XPNong dapudkwy, Andbnoav amno
v mAatdoppa L1000 tng Bdong dedopévwv CMap. MNa kabe neipapa, umtodoyiotnkayv ta enrichment
scores (ES) onuovtikwv PBlohoyikwv Slepyoactwv pe th HEBobdo Gene Set Enrichment Analysis. Ev
ouvexeia, n amoéotoon UETALU TWV XOPOKTNPLOTIKWV Blodoylkwv Slepyaciwv yla éva {guyog
ApUAKWY UTIOAOYLOTNKE XPNOLUOTIOLWVTAG UL oUVAPTNON BACLOUEVN OTO OTATLOTIKO OTOLYELQ
Kolmogorov-Smirnov. MNa kaBe {éuyog dpapudkwy, N anootacn urtoAoylotnke yia 5 StadopeTika opla
ONUOVTLKWV BLOAOYIKWVY SLEPYOOLWV KOl 0 HECOC OPOC TOUCG XPNOLUOTOLRONKE w¢ n petafAnth
nPpOPAePNG evog povtehou deep learning. To HOVTEAD SEXETOL oAV €(0060 TIG XNULKEC SOUEG EVOG
{evyouc dapuaKkwV Kal TtPoPAEMEL TRV amooTach HETAED TwV BLOAOYIKWY Toug Slepyaotwy. OLXNULKEG
S60EC W elo060L 0TO PLOVTEAD KWEIKOTIOLOUVTOL OO TPELG TILVOKEG TIOU £KOLOTOG TTEPLYPAdEL TA ATOUA,
TOV TUTIO TWV SE0UWV Kal Tn ouvdeopoloyia Tou poplakol ypddou. H apXLTEKTOVIKH TOU HOVTEAOU
anoteleital and SUo mavopolotunoug encoders ol omoiol xpnotpomowoUv &vo layers graph
convolution kat éva layer convolution. H amootacn petall twv Slepyaciwv TpoBAEneTal
xpnowomnowwvtag convolution kat fully connected deep learning layers. H teAikr £€€060¢ Tou HOVTEAOU
amoteAsital anod T YECH TIUA KOl TUTIKY armokAlon the mpoPAedng, xpnolponowwvtag éva Gaussian
regression layer. @gopwvtag Ot N teAkn T mpoPAedng amoteAsital amo pio KaTavour, To LoVtéAo
ekmaldeVeTaL WOTE Vo eAaylotonoinoel tn Negative Log-Likelihood. Ev téAel, ekmatdsbovrag moAa
pHovTéAQ, Snuloupysital éva poviéAo TUmou ensemble AapBdvoviag To HElyHO TWV KOTOVOUWY
npoBAednc. Emiong, avamtuxOnke pia véo pebodog mpdPAeng Twv oNUATOSOTIKWY LOVOTIATLWY EVOC
dapuakou, Baollopevn otn néBodo kNN, xpnoLomoLwvTag POVo T XNKIKA Toug Soun wg elcodo. 2
autn TN HEB0BO, To LovieAo deepSIBA, xpnOLUOTIOLELTAL YLa TNV AVOKAAU YN YELTOVIKWVY GAPUAKWY T
omnola ennpealouv mapopoleg Plohoyikég dladikaoieg pe To GAPUAKO PO AVAAUCH. 2T CUVEXELQ,
xpnotpomnowwvtag pio pébodo Pndodopiag petafd twv yertovwy, dnuoupysitol pa popAedn
ONUATOSOTIKWY LOVOTIOTIWY Yo TO apXIKO dApuaKko. TEAOG He OKOTIO TNV KAAUTEPN EPUNVELA TWV
oanoteAeopatwy, dnuoupyndnke pia péBodog Pacl{Opevn OTIC TTAPAYWYOUG TOU HOVTEAOU WE TIPOG
v eloodo tou, n omola pmopel va avakoAUPEeL TTOLEG XNULKEG UTIOSOUEC CUVELOHEPOUV TIEPLOCOTEPO
otn 6ebopévn mpdPAen ONUATOSOTIKWY LOVOTIOTLWV.

DeepSIBA amotsAféopata

Ot eTudO0oEelg TOU HOVTEAOU e€eTdoTnKav o€ {eUYN YVWOTWV Kal Ayvwotwyv dapudkwy. Ta dyvwota
dappako amoteAoUV XNULKEG EVWOELC OL omoleg Sev xpnotpomolndnkav katd tn Sladikaoia
ekmaideuong tou povtélou. EmumAéov, oL embOoelg Tou povtélou deepSIBA cuykpiBnkav pe TIg
embooelg tplwv PoviéAwv machine learning, mou eival €l8kd oxedloopéva yla mpoBAnuata
npoPAednc amootdoswyv. I OAoug Toug eAéyyoug, To povtélo deepSIBA mopouciaos kalUtepa
omoteAéopaTa 08 CUYKPLON LLE TIG UTIOAOLITEG TEXVLKEC. Me oKoTtd TnV a€non tou elpoug ebapUOYAC
™G uebodou, xpnowomowBnke pia texvikn transfer learning, kat ebopuoOOTNKeE UE emITUXia OF
KUTTOPLKEG OELPEC Ue Ayotepa dedopéva. Ev ouveyeia, e¢etaotnkav ol eMIOOCELS TOU HLOVTEAOU O€
gva el61KO oevaplo Tou Tta dpappaka-sicodol eival evieAwg SlapopeTIKA G OXECN LE AUTA TIOU
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Xpnolgomnotntnkav Katd tn SLapKela tTng ekmaideuong. X autr tv bk nepintwon, Seifape otl
Xpnolgomnolwvtag TNV mpoPAePn tng afeBatdtntag, UMopoUe va eTIKEVTPWOOUUE o€ TPoPALPELG
TIOU TO UoVTEAD Seiyvel peyaAUTepn olyoupia Kal oL OTtoleg £xouv PeyaAUTepN TBavotnTa va gival
gvotoyeC. TENog, kata tnv epapuoyr] Tou deepSIBA oTLC XNULKEG SOUEC EYKEKPLUEVWV OVTLKAPKLVIKWY
dapudkwy, avakaAupOnkav XopaKTNPLOTIKA CNUATOSOTIKA LOVOTIATIO KOl XNULKEG UTTOSOUEC ol
orolec eival dpeca cuVSESEUEVEG LIE TO UNXAVLOUO §pAong TwWV GpapUAKwV.

DeepSIBA culiitnon

To povtého katddepe e emituyia Kot akpifeta va avakaAu el SLadopeTIKES XNMULKEG SOLEG, OL OTIOlEC
napouctdlouv mapopola PloAoyikr) emidpoon O CUYKEKPLUEVA KUTTOPIKA HOVTEAQ. ETumAéov,
xpnotpomnotlwvtag thv npoPAedn tng apfePfaldtntag, o poviého kotddepe va dtatnpnoet VPnALg
emudooelg os (elyn dopudkwy ta omoia Stadpépouv mMoAL armo ta mapadsiypato katd tn Stadikaocia
™G ekmaidevong. Mapoha autd, umrpxay opKeTd {evyn bopUAKwY e TtapopoLa Blohoyikr enidpaon
to omoia Sev avakaAldOnKav armod To PoVTEAO. MIOTEVOULE WG AUTO OPEINETAL OTNV OXETIKA XA
KGAUYIN TOU XWPOU TwV SUVATWV XNHULKWY oUCLWV Ttou TipoodEpouv ta Slabéoiua dedopéva tng
Baong CMap. TEAOG, MLOTEVOUHE TTWG N XPHON MEPLOCOTEPWY SESOUEVWV YOVISLOKNAG £kdppaaonc Ba
oénynostL otnv apeon BeAtiwon Twv ANMOTEAECUATWY TOU LOVIEAOU.

Tuunepaopato

To HOVTEAQ TIOU TIOPOUCLACTNKAY £XOUV TN duvatdtnta va Bonbricouv tn dladikacia UTIOAOYLOTIKNAG
avakaAuPng papudkwy eite cuoyetiloviag Ta onUATOSOTIKA SIKTUA PE TO UNXOVIOUO Spdong Twv
dapudkwy, elte avoKAAUTITOVTOC VEEC XNULKEC SOpEC ToU emnpedlouv eMOUUNTEG PBLOAOYIKEG
Slepyaoiec.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

Drug discovery is a complex and time-consuming process that aims to identify the right drug,
for the right target and disease. The drug discovery pipeline stretches from target
identification to hit discovery and lead optimization up to preclinical and clinical trials [1]. The
first step of the pipeline is the target identification, where a disease is studied in order to
understand its mechanism and identify key molecules that act as drivers of the disease. These
key molecules have the potential to act as targets for small molecule perturbations in order
to stop the disease progression or reverse its state [2]. After a potential set of targets has been
identified, they have to be prioritized based on their ability to inhibit the disease mechanism(s)
and to eliminate targets that are associated with adverse effects. This step of the pipeline,
called target validation, is performed experimentally using small interfering RNA (siRNA) or
CRISPR-cas9 editing to specifically silence or catalyze the specified targets [3]. The next step
of the pipeline is the hit identification phase, where a small molecule that inhibits the
identified target(s) has to be discovered. The goal of this process is to discover chemical
compounds that exhibit strong binding affinity to the selected targets. Traditionally, the most
widely employed method for in-vitro hit identification is High Throughput Screening (HTS). In-
vitro HTS can produce hits with strong binding affinity that may later be developed into lead
compounds through lead optimization [4]. However, due to the vast chemical space of
possible chemical structures, even large scale in-vitro HTS offers limited chemical coverage
and does not guarantee the biological efficacy and low toxicity of the identified hit
compounds. During lead optimization the chemical compounds are optimized in order to
improve their chemical properties and study their off-target effects, which could potentially
cause adverse reactions, such as unwanted side effects and toxicity. In order to improve the
success rate of the drug discovery pipeline, computational methods have been developed that
aim to prioritize compounds in the hit identification and lead optimization phases.

The development of Computer Aided Drug Design (CADD) methods allows the virtual High
Throughput Screening (VHTS) of large compound datasets, thus effectively increasing the
search space of hit identification. CADD methods for vHTS prioritize compounds, which are
likely to have activity against the target, for further experiments and are broadly categorized
into structure-based and ligand-based [5]. Structure-based CADD approaches require the
solved 3D structure of the target protein, either through X-ray crystallography or NMR
spectroscopy and focus on docking simulations to assess protein-ligand complexes. On the
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other hand, ligand-based virtual screening is used when the 3D structure of the target is
unknown and involves the calculation of 2D or 3D structural similarities between a known
active ligand and a virtual library. Structural similarity screening is based on the hypothesis
that similar chemical structures will cause similar response. Even though CADD methods have
revolutionized the drug development pipeline, the attrition rates of the process still remain
high. The majority of the newly identified compounds fail at the preclinical trial stages due to
poor efficacy or unfavorable side effects and toxicity profiles [6]. This happens in part, due to
the nature of CADD methods, where efforts are focused on identifying compounds with
maximal binding affinity to the target protein, often disregarding the effect that the
compound will have on a biological system. A field that holds promise to improve the attrition
rates of drug discovery, by understanding the compound’s effect on the biological system, is
systems pharmacology.

Systems pharmacology utilizes omics data coupled with computational methods in order to
study the mechanism of action (MoA) of a chemical perturbation in a biological system. One
specific omics approach that has gained considerable attraction is the analysis of gene
expression data (transcriptomics) following treatment with a compound. Analyzing the post
transcriptional state of a cellular system after a chemical perturbation has the potential to
elucidate the compound’s effect in term of which key genes are over- or under-expressed
compared to the normal state. On this front, a large number of public gene expression data
repositories have been developed, such as the Gene Expression Omnibus (GEO) from NCBI
and ArrayExpress [7,8]. These repositories can be accessed to retrieve gene expression data
from various cellular models following compound treatment that can then be analyzed using
computational tools. For their analysis the Bioconductor library in R offers a large collection
of packages for preprocessing and differential expression that can be applied on gene
expression data from various platforms [9]. The output of the differential expression analysis
is a set of genes that are over- or under-expressed in the condition under study. However, a
compound’s effect in a cellular system is rarely the effect of the change in expression of
specific genes, rather the compound’s effect is caused by changes in the expression of genes
that interact with each other to form specific biological processes [10]. Additionally, since the
analysis focuses on the most over- or under-expressed genes, the smaller but significant
change in expression of genes that belong to the same biological pathways are often
disregarded. For these reasons, a majority of computational methods that aim to identify
enriched biological processes affected by a compound, using gene expression data, have been
developed [11].

Pathway analysis methods utilize the results of the differential expression analysis, coupled
with a form of prior knowledge of molecular interactions, in order to identify which pathways
are affected by a compound. Today there exist several knowledge bases of pathway
interactions, such as the KEGG database, Reactome, MsigDB, etc [12-14]. Computational
methods that aim to identify enriched pathways are based on the assumption that the change
in a gene’s expression is translated to changes in the proteins’ that are encoded by it. The
majority of computational tools for pathway analysis aim to extract a score statistic for each
pathway that signifies its enrichment, accompanied by a p-value that compares the
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enrichment score to chance. One of the most widely used methods for pathway analysis is
Gene Set Enrichment Analysis (GSEA). In GSEA the list of differentially expressed genes is
ordered based on their expression and a statistic based on the Kolmogorov-Smirnoff test is
calculated for pathway enrichment [15]. Additionally the VIPER algorithm utilizes the mean of
ranks of genes’ expression values with an analytic Rank-based Enrichment Analysis method to
compute the enrichment of proteins from gene expression data. VIPER has been utilized to
infer Transcription Factor (TF) activity scores using gene expression data and the appropriate
Regulons, which are networks that show the relationship between the TFs and the genes’
expression [16]. In order to overcome the limitations of pathway analysis, regarding the
hypothesis of the connection between gene and protein expression, a new class of methods
that model the compound’s effect as a network of protein-protein interactions (PPl), has been
developed [10]. These methods couple gene expression data with prior knowledge networks
in a causal reasoning scheme to identify which sub-networks better explain the observed
experimental data. Initially network creation methods have utilized phosphoproteomic data
to describe the compound’s effect [17]. Since large scale phosphoproteomic datasets
following compound treatment are very rare, there has been a concentrated effort to develop
methods for signaling network creation based on transcriptomics [18-20]. On this front, the
CARNIVAL method is a causal reasoning framework to identify signaling networks that best
explain a set of transcription factor (TF) activity scores, calculated from differential GEx data
using VIPER [21]. The resulting networks are complex representations of the compounds’
effect, since they incorporate the prior knowledge of molecular interactions in the form of a
PPI network.

There have been many studies that utilize gene expression data along with pathway and
network analysis methods to investigate the compounds’ MoA in biological systems. One of
the most influential approaches that have been widely used in this field is the Connectivity
Map (CMap) approach [22]. CMap (CMap) and the LINCS project have been a cornerstone of
transcriptomic-based approaches by providing a large scale database of transcriptomic
signatures from compound perturbations along with essential signature matching algorithms.
CMap can be accessed to query a large database of transcriptomic signatures in order to find
compounds that have similar gene expression profiles. CMap’s approach is based on the
hypothesis that compounds with similar transcriptomic signatures will cause similar
physiological effects on the cell and has been widely adopted by the field of drug repurposing.
The original Microarray CMap dataset along with the more recent L1000 dataset have been
used by many systems pharmacology studies to investigate the effect of compounds on the
biological system. On this front, lorio et al. analyzed similarities between drugs’ transcriptional
responses from CMap to create a drug network and identified the mechanism of action of new
drugs based on their position in the network [23]. Furthermore, Verbist et al. showed how
GEx data were able to influence decision making in eight drug discovery projects by
uncovering potential adverse effects of the lead compounds [24]. Although, systems
pharmacology approaches can be used to identify a compound’s MoA at the later stages of
the drug development pipeline, they don’t take into account the structural elements of the
chemical compound, which are crucial during the hit identification phase. Given the large
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datasets generated by vHTS and chemical libraries, as well as the rise in computing power,
machine learning and especially deep learning methods have been developed and applied
across all stages of drug discovery. Deep learning models have the potential to incorporate
both systems-based and structural-based approaches in order to identify drugs with optimal
binding affinity and effect on the biological system.

Machine learning (ML) models are trained on data in order to improve their predictions for a
specific task. The rise of big data and computing power has led to the development of a special
class of ML models, called deep learning (DL). DL models offer the advantage of automatic
feature extraction in order to learn the important features that are associated with the specific
task. This advantage has important applications in the field of drug discovery, where the
complexity of the problem is very high and pre-computed features are usually associated with
a specific task. There have been many studies for the development and application of deep
learning models in drug discovery. The majority of these approaches utilize the compound’s
chemical structure as input and have been developed for various tasks, including binding
affinity, toxicity, side effect and chemical property prediction. In this regard, the DeepChem
library along with MoleculeNet have been a cornerstone of DL approaches in drug discovery
by providing a plethora of architectures along with benchmark datasets for their comparison
[25]. For example, Ozturk et al. developed a deep learning model that encodes a compound’s
SMILE representation and a protein’s amino acid sequence in order to predict the binding
affinity, in terms of the dissociation constant Kd, of the drug-target pair [26]. For the binding
affinity and property prediction task, deep learning models have achieved state of the art
results and have outperformed traditional ML methods like random forests and support
vector machines [27]. Despite their improved performance, DL models are still very sensitive
to the training dataset and have shown generalization errors, when tested on chemical
structures that are very different from the ones used to train them. This effect is mostly caused
by the vast size of the chemical space and its small coverage by the training datasets. In order
to address this issue, methods like one-shot learning and uncertainty estimation are crucial.
One-shot learning techniques, such as Siamese and Matching networks, aim to learn a
meaningful distance function between related inputs and have shown increased performance
over traditional methods in tasks with few data points [28-31]. Furthermore, uncertainty
estimation methods can be used in order to quantify the model’s confidence in the predictions
and avoid unnecessary experimental testing of new compounds. Methods that quantify
uncertainty in deep learning models include test-time Dropout, deep ensembles and Bayesian
NNs [32-35]. One particular deep learning approach that has achieved state of the art results
in structure-based tasks is the representation of the chemical structure as a molecular graph
and the use of graph deep learning models to encode them.

Graph deep learning models operate on graph structured data and aim to extract features
that are representative of the graph’s nodes and connectivity. One of the most widely used
graph DL models is the graph convolutional neural network (GCNN). GCNNs apply filters on
the neighborhoods of the graph and utilize a message passing algorithm to aggregate this
information into representations of the graph’s node attributes and connectivity [36]. GCNNs
have been successfully applied to various drug discovery tasks, achieving state of the art
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results. The input to molecular GCNNs is a compound undirected graph, with atoms being the
nodes of the graph and bonds being the edges. As an example, Torng et al. applied GCNNs to
encode both the compound’s structure and the protein’s binding pocket to predict the
protein-ligand binding strength, outperforming traditional DL approaches [37]. Furthermore,
Kearnes et al. developed the Weave graph convolution module, which encodes both atom and
bond representations and combines them using fuzzy histograms to extract meaningful
molecule-level representations [38]. GCNNs can be combined with one-shot learning
methodologies in order to learn representations and distance functions between compound
graphs, aiming to improve their generalization capabilities on new chemical structures that
are very different from the ones used to train them. Altae-Tran et al. implemented one-shot
learning for drug discovery by combining graph convolutions and Long Short Term Memory
(LSTM) networks with attention and achieved better results than traditional GCNNs [39].
Recently, DL models that had been originally developed for Natural Language Processing (NLP)
tasks have been modified and applied on graphs. These models encode the nodes of the graph
as words in a sentence and their positioning based on the graph’s connectivity. For example,
the graph2vec model was inspired by the doc2vec approach for NLP tasks. Graph2vec treats
the entire graph as a document and each node’s neighborhood as a word and aims to learn a
fixed-length representation of the entire graph in a fully unsupervised task [40]. Furthermore,
the graph transformer model was developed that utilizes an attention mechanism for each
node that is a function of the neighborhood’s connectivity, rather than a message passing
algorithm [41]. Although deep learning models have been applied in various structure-based
learning tasks, their application in systems-based approaches is still very limited. DL and graph
DL models can be applied for various systems pharmacology tasks in order to investigate the
relationship between omics data following compound treatment and the compound’s MoA.

Recently, there has been increased interest in the application of deep learning models for
systems pharmacology approaches that utilize cellular response data. This is evident by the
recent release of the CTD? Pancancer Drug Activity DREAM Challenge, which tasked the
community to predict a compound’s MoA based on post-transcriptional and cell viability data
[42]. Additionally, deep learning models have been applied to predict the IC50 of compounds
on specific cellular models by using transcriptomic data along with structural data [43]. Deep
learning models present an interesting modeling opportunity for interdisciplinary drug
discovery problems, by being able to incorporate information both from the structural and
cellular domain. On this front, Jeon et al. developed the ReSimNet model to predict the
transcriptional similarity score between compound perturbations using their molecular
fingerprints as input [44].

The aim of this thesis is to investigate the ability of graph deep learning models to model a
compound’s MoA in terms of affected biological processes and molecular targets, by
combining information from both the structural and systems domain. The thesis is organized
into three distinct but complementary chapters. In the first chapter of the thesis we present
a concise review of network pharmacology approaches for early drug discovery, while in the
second and third chapters we present two novel graph deep learning approaches, called
deepSIBA and deepSNEM. More specifically, the first chapter contains a thorough review of
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available omics databases and knowledge bases of molecular interactions, along with
network-based methods for their analysis. In the first chapter we also review a large number
of network pharmacology studies ranging across all stages of the drug development pipeline.

In the second chapter we employ graph deep learning to develop a pipeline that can assess a
compound’s affected biological processes based on its chemical structure (deepSIBA).
DeepSIBA is a Siamese GCNN that takes as input pairs of compound structures, represented
as graphs and outputs their biological effect distance, in terms of enriched biological processes
(BPs) along with an estimated uncertainty. The performance of DeepSIBA is evaluated in
realistic drug development scenario, where GEx data are available for only one compound in
a pair. Additionally, we present a novel inference pipeline to identify the affected signaling
pathways of a chemical compound along with the important substructures that cause the
effect. As a use case, DeepSIBA was used to successfully infer the signaling pathway signature
of FDA approved anticancer drugs. DeepSIBA can be used in combination with existing in-silico
drug discovery pipelines to identify structures that not only exhibit maximal binding affinity
but also cause a desired biological effect.

In the third chapter of the thesis we employ graph deep learning to investigate the
relationship between compound-induced signaling networks and the compounds’ MoA. We
present deepSNEM, a novel pipeline that encodes a compound’s signaling network into a
unique representation and assesses its relationship with the compound’s MoA. The core of
deepSNEM is an unsupervised graph transformer trained to maximize the mutual information
between representations of graphs’ substructures that belong to signaling networks created
from similar perturbations. The network embeddings were clustered with the k-means
algorithm and the resulting clusters were analyzed and characterized based on their MoA
composition. Furthermore, a subgraph importance method was developed in order to identify
which nodes and subgraphs in the original signaling networks cause the embeddings to cluster
this way. As a use case, deepSNEM was used to assign clusters and assess the MoA of
compounds with Gene expression data collected from various experimental platforms.
DeepSNEM can be applied to generate hypotheses regarding the MoA of new lead compounds
or suggest new potential mechanisms for already existing drugs.
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2.1 Chapter abstract

Although the traditional drug discovery approach has led to the development of many
successful drugs, the attrition rates remain high. Recent advances in systems-oriented
approaches (systems-biology and/ or pharmacology) and ‘omics technologies has led to a
plethora of new computational tools that promise to enable a more-informed and successful
implementation of the reductionist, one drug for one target for one disease, approach. These
tools, based on biomolecular pathways and interaction networks, offer a systematic approach
to unravel the mechanism(s) of a disease and link them to the chemical space and network
footprint of a drug. Drug discovery can draw upon this holistic approach to identify the most-
promising targets and compounds during the early phases of development.
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2.2 Introduction

Drug discovery is a complex and time-consuming process that stretches from target selection
and validation, through preclinical screening, to clinical trials and regulatory agency approval
[1]. Traditionally, pharmaceutical companies have adopted a reductionist approach regarding
the discovery of a new drug, which focuses on identifying one drug for one target for one
disease. Although this approach has led to the development of many successful drugs, the
attrition rates associated with this pipeline remain high [2]. In a recent study of the cause of
attrition of drug candidates from four major pharmaceutical companies by Waring et al., the
authors highlighted that efficacy issues accounted for 9% and 35% of overall terminated
compounds during Phases | and I, respectively, whereas clinical safety problems accounted
for 25% of terminated compounds across both Phases [3]. During the early phases of clinical
trials, efficacy and clinical safety issues arise mostly because of the inherent complexity of the
biological system and partly because of a lack of in-depth knowledge of the mechanism(s) of
disease or the mode of action (MoA) of a drug [4]. Breakthroughs in systems-approaches
(systems biology and systems pharmacology), driven by the latest technological
advancements both in experimental technologies and computational methods, allow
researchers to consider the system as a whole, with individual biomolecules interacting with
each other and, thus, permitting their integration into classes of higher order. These classes,
called pathways, are sets of molecules acting in concert, usually involved in a particular
function or process [5]. Currently, there are several computational methods for the analysis
of biological data at the pathway and network level that connect molecular data from a
variety of ‘omics databases (genomics, transcriptomics, proteomics, and metabolomics) to
their biological functions using knowledge bases as templates to build associations between
them. These methods can help decipher the mechanism(s) of disease or the MoA of a drug by
offering a more- holistic view of the whole system and should enable one to pick the most-
promising targets and model the effect of their modulation during the early phases of drug
discovery. On this front, the focus on pathways as functional units rather than on individual
biomolecules also increases explanatory power and eases result interpretation [6].

In this review, we focus on the combination of ‘omics experiments and pathway- and network-
based approaches for early drug discovery, to connect basic research on pathway models to
the actual needs of the early drug discovery pipeline. We explore the plethora of tools that
can be used to unravel the signaling mechanism(s) of a disease, tools that can decipher the
signaling footprint of a target or a drug and how these can be used together for: (i) target
identification; (ii) target verification and validation; and (iii) hit discovery and validation (Fig.
2.1). Three main elements are common to all these tools: molecular data related to the
condition under study (in-house data and public/private repositories), knowledge bases
(functional annotation of molecules and information about drugs, clinical trials, and biological
pathways), and the appropriate computational method to analyze this complex combination.
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Figure 2.1. Schematic overview of the drug discovery pipeline (a) depicting the area of application of
pathway-and network-based technologies (b). By using pathway technologies, the decision from target
to hit to lead is based on network footprints. From target identification and validation, to hit discovery
and lead selection, pathway- and network-based tools can help elucidate the disease mechanism,
prioritize targets belonging to identified deregulated pathways, assess the importance of those targets,
and unravel the MoA of a hit compound to predict adverse effects and efficacy.

2.3 Data gathering and integration

A drug discovery project usually starts with a focus on a disease that requires a new or a better
therapeutic intervention. In the era of systems approaches, this can be achieved by identifying
the diverse mechanisms that lead to disease as well as the optimal targets and/or drugs that
can eradicate those mechanisms. The first step in building a quantitative representation of
the biological processes of a cell and its alterations in the disease is data gathering. The
different types of ‘omics data (DNA, RNA, proteins, and metabolites) [7, 8] report on different
levels of cell or organismal function. ‘Omics data can be generated in-house or gathered from
many publicly available repositories, such as the Gene Expression Omnibus (GEO;
www.ncbi.nlm.nih.gov/geo/), the Proteomics IDEntifications (PRIDE;
www.ebi.ac.uk/pride/archive/) or ArrayExpress (www.ebi.ac.uk/arrayexpress/) or mined
from the literature by using text-mining methods [9,10] (Table 2.1). The different technologies
used to generate these types of data result in a diverse set of quantitative data that makes
their normalization and integration a daunting task [i.e., picks on liquid chromatography—mass
spectrometry data (LC—MS), fluorescent intensity of affinity multiplexed assays and expression
microarrays, copy number on next-generation sequencing, etc.].

The analysis of a single type of data (e.g. gene expression) is relatively easy and might provide
useful information on its own. However, successful integration and modeling of different
types of biomolecule together in healthy and disease states is a major endeavor of many
computational efforts and can enhance the knowledge of the mechanism of a disease or the
MoA of a drug [9]. In arecent review, Cisek et al. highlighted that, although genomics attempts
to map phenotypic features to genetic background with genome-wide association studies
(GWAS), it is only able to identify single nucleotide polymorphisms (SNPs), but notrisk genes
[11,12]; and, although transcriptomics can identify risk genes, it does not include information
on protein expression, interaction, and post-translational modification [13]. By contrast,
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proteomics can provide information about protein interactions, but cannot capture the

function of a protein in its metabolic pathway [14]. Metabolomics is the final missing link that

completes the circle of ‘omics, providing functional information about proteins when

influenced by their cellular environment [15]. System-based approaches require functional

annotation of the molecules participating in biological processes, but such annotation can be

challenging even for biomolecules belonging to the same ‘omic domain. To facilitate data

integration, a large number of public databases (also known as knowledge bases) exist, whose

aim is to collect causal, correlational, functional, and contextual information about

biomolecules and serve as templates for the association of individual biological entities into

the aforementioned classes of higher order (pathways) [8].

Table 2.1. List of public omics repositories. !

Name Link Brief description Category?

GEO https://www.ncbi.nIm. Gene Expression gene expression
nih.gov/geo/ Omnibus

ArrayExpress https://www.ebi.ac.uk  Archive of Functional gene expression

/arrayexpress/ Genomics Data

GeneSigDB https://www.genesigd Gene Signature gene expression

b.org/genesigdb/index DataBase
Jsp
Oncomine https://www.oncomin Cancer microarray gene expression

Expression Atlas

miRGator

PRIDE

PaxDB

The Human Protein
Atlas

e.org/resource/login.h
tml

https://www.ebi.ac.uk

/gxa/home

http://mirgator.kobic.r
e.kr/

https://www.ebi.ac.uk
/pride/archive/

https://pax-db.org/

https://www.proteinat
las.org/

data by gene or cancer
type
Gene expression gene expression
across species and
biological conditions
microRNA target gene expression
prediction, functional
analysis and gene
expression data

Proteomics peptide proteomics
identification database
Protein Abundance proteomics
Database
MS-based proteomics, proteomics

transcriptomics and
antibody-based
imaging
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Open Proteomics
Database

ProteomeXchange

HMDB

BiGG Models

Metabolights

Metabolomics
Workbench

GenBank

dbSNP

Ensembl

ENA

UniProt

https://www.hsls.pitt.
edu/obrc/index.php?p
age=URL1152112355

http://www.proteome
xchange.org/

http://www.hmdb.ca/

http://bigg.ucsd.edu/

https://www.ebi.ac.uk
/metabolights/

http://www.metabolo
micsworkbench.org/

https://www.ncbi.nlm.
nih.gov/genbank/

https://www.ncbi.nlm.
nih.gov/SNP/

https://www.ensembl.
org/index.html

https://www.ebi.ac.uk

/ena

http://www.uniprot.or

g/

MS-based proteomics

Proteomics resources
portal

Curated human
metabolism and
metabolite data

Biochemically,
Genetically and
Genomically
structured metabolic
networks

A database for
metabolomics
experiments and the
associated metadata

Data repository for
metabolomics data
and metadata

An annotated
collection of all
publicly available
nucleotide and protein
sequences

Database of single
nucleotide
polymorphisms

Annotated
information on
eukaryotic genomes

European Nucleotide
Archive

All known protein
sequences

proteomics

proteomics

metabolomics

metabolomics

metabolomics

metabolomics

DNA

DNA

DNA

DNA

Protein
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PDB https://www.rcsb.org/ Protein structures Protein
pdb/home/home.do

PDBe https://www.ebi.ac.uk  European resource for Protein
/pdbe/ protein structures

lIndicative list of open-access databases. For a full list of databases see Nucleic Acids Research Database
Summary (http://www.oxfordjournals.org/nar/database/a/).

2A database may correspond to more than one categories but only the major one is shown here

2.4 Knowledge bases

Knowledge bases can associate the data gathered during the drug discovery and development
pipeline and include clinical outcomes, drug information (i.e., chemical structure, adverse
effects, etc.) or biological knowhow of drugs. Here, we focus on pathway and interactome
databases that aim to capture the biological knowledge of molecular interactions and have
been assembled from experimental data or through text mining followed by manual curation
(Table 2.2). The result is an interaction model, either represented as a biological network or a
bipartite graph [16]. There are different types of interaction models depending on the
relationships that they represent. Signaling networks account for cellular processes, whereas
metabolic networks represent the bio- chemical reactions of metabolism as well as the
regulatory interactions that guide these reactions. For example, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a collection of databases (www.genome.jp/kegg/) providing
systems, chemical, and health information that serves as a computer representation of the
biological system. Most notably, the KEGG Pathway database contains manually drawn
pathway maps in the form of directed graphs representing the interactions between genes
and proteins. By contrast, Protein—Protein Interaction (PPI) maps represent physical
interactions on a molecular level. As an example, InWeb_IM
(www.intomics.com/inbio/map/#home) is a recently proposed interactome resource in the
form of a human PPI network that can be used for accurate and costefficient functional
interpretation of massive genomic datasets. IntAct is another manually curated open-access
database focusing on PPIs (www. ebi.ac.uk/intact/), which was recently merged with the
Molecular INTeraction (MINT) database (http://mint.bio.uniroma2.it/) and now includes
more than 700000 binary protein interactions. In addition, the Reactome [17] Functional
Interaction network (Reactome Fl) is a manually curated protein functional interaction
network organized in pathways covering over 60% of human proteins. The connection
between two disjoint sets of nodes is considered In bipartite graphs, such as between genes
and diseases or between drugs and their targets. As an example, the connectivity map (Cmap)
is a widely used database (https://portals. broadinstitute.org/cmap/) connecting drugs and
gene expression profiles that allows researchers to identify connections between drug
candidates, and changes in gene expression profiles and diseases by using the similarity
detection tool that the database offers. The Biological General Repository for Interaction
Datasets (BioGRID) is a public database dedicated to manually curated functional interactions
between genes and physical interactions between proteins, reported in biomedical
publications (https://thebiogrid.org/). Recently, BioGRID expanded its coverage to
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incorporate chemical—protein interactions and established themed curation projects based

on particular biological processes and diseases to further facilitate early drug discovery.

Besides open-source initiatives and free web-based tools, several commercial providers also

focus on pathways relevant to human disease. Companies such as Ingenuity Systems (IPA),

GeneGo, Ariadne Genomics, and Cambridge Cell Networks provide manually curated and

usually high-quality pathway databases and analysis tools.

Those knowledge bases are the cornerstone of many computational tools that aim to extract

the most-valuable information and deliver it to the end user.

Table 2.2. List of widely used knowledge bases.!

KEGG PATHWAY

http://www.genome.jp/ke
gg/pathway.html

Wiring diagrams of
molecular interactions,
reactions and relations

Metabolic and signaling
pathways

Reactome

Pathway Commons

NetPath

OmniPath

BioCyc

InWeb_IM

IntAct

BioGRID

https://reactome.org/

http://www.pathwaycomm
ons.org/

http://www.netpath.org/

http://omnipathdb.org/

https://biocyc.org/

https://www.intomics.com/i
nbio/map/#home

https://www.ebi.ac.uk/intac
t/

https://thebiogrid.org/

Manually curated and peer
reviewed pathway database

A web resource for
biological pathway data

A curated resource of signal
transduction pathways

A collection of curated
signaling pathways

Pathway/Genome

database collection?

A human protein-protein
interaction network to
catalyze genomic
interpretation

Molecular interaction
database

Biological General
Repository for Interaction
Datasets

Metabolic and signaling
pathways

Metabolic and signaling
pathways

Signaling pathways

Signaling pathways

Genome and metabolic
pathways

PPI

PPI

PPI, functional gene
interactions
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Pathguide

UniHI

ConsensusPathDB

TTD

DisGeNET

Open Targets

PHAROS

SuperTarget

Drug2gene

cmap

PharmGKB

http://www.pathguide.org/

http://www.unihi.org/

http://cpdb.molgen.mpg.de
/

https://db.idrblab.org/ttd/

http://www.disgenet.org/w
eb/DisGeNET/menu/home

https://www.opentargets.or

g/

https://pharos.nih.gov/idg/i
ndex

http://insilico.charite.de/su
pertarget/index.php

http://www.drug2gene.com

/

https://portals.broadinstitut
e.org/cmap/

https://www.pharmgkb.org
/

Collection of biological
pathway resources

Collection of PPl and
regulatory transcriptional
interactions

Protein-protein, genetic,
metabolic, signaling, gene
regulatory and drug-target

interactions

Therapeutic Target
Database

A collection of gene and
variants associated to
human disease

Platform for Target
identification and
prioritisation

Knowledge base for the
Druggable Genome (DG)

Relations between
drugs,proteins and side
effects

A resource to explore the
drug-target relation
network

Collection of gene
expression profiles
following drug perturbation

Knowledge base about
clinically actionable gene-
drug and genotype-
phenotype relationships

PPI, pathways

PPI

Collection of interaction
networks

Therapeutic target
information

Gene-disease associations

Target-disease associations

Target-disease associations

Drug-target associations

Drug-target associations

Drug-gene expression
associations

Drug-gene associations
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http://www.dgidb.org/searc The Drug Gene Interaction o
DGIdb i . Drug-gene associations
h_interactions Database

A bioinformatics and

chemoinformatics resource Drugs and targets
DrugBank https://www.drugbank.ca/ . ] .

that combines drug and information

drug-target information

A database to advance

understanding about Chemical-gene-disease
cTD http://ctdbase.org/ ) ) : :
environmentally influenced interactions
diseases

Known and predicted
STITCH http://stitch.embl.de/ interactions between
chemicals and proteins

Chemical-protein
interactions

Information on marketed
SIDER http://sideeffects.embl.de/ medicine and their recorded  Drug-side effect interactions
adverse drug reactions

o A web server to elucidate
. https://intside.irbbarcelona. . . .
IntSide the molecular processes Drug-side effect interactions
org/ ) ) )
involved in drug side effects

1 All knowledge bases listed are open-access or part open-access. This collection, however, by no means
pictures the whole range of knowledge bases regarding pathways and drug-target-disease
Interactions that are currently available. The above knowledge bases were selected based on their
relevance to the content of the review. For a full list please refer to Nucleic Acids Research Database

Summary (http://www.oxfordjournals.org/nar/database/a/).

2 BioCyc has now moved to a subscription based access plan.

2.5 Computational tools for target identification

The target identification is the first step of the drug discovery pipeline and aims to identify the
magic molecular target that ideally cures or stops the progression of a disease. For a more
informed implementation of the target identification process, a detailed disease mechanism
becomes essential and network- and pathway-based approaches can be of great use in that
regard [18]. Computational tools for the analysis of disease-specific ‘omics data, at the
pathway and network level rather than the molecular profile level, can identify ill-functioning
cellular routes and altered biological functions and, thus, help draw potential targets for
therapeutic intervention that will reverse those deregulated processes (Fig. 2.2) [19].
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Figure 2.2. (a) The topology-based target identification process. Topology-based pathway analysis
deciphers the disease mechanism(s) and identifies molecular pathways characteristic of the disease.
Then, candidate targets are selected belonging to those pathways that, when perturbed, have the
ability to reverse the disease state. (b) Verification and validation of proposed targets based on
topological analysis. Targeting nodes with high degrees (representing hubs), although efficacious, can
be linked to adverse effects. By contrast, targets with very few connections are not preferred because
their perturbation usually will not reverse the disease state (low efficacy). Finally, candidate targets
proximal to known toxicity pathways should not be selected. Based on those principles, machine-
learning computational tools can prioritize candidate targets before their experimental validation.

There are several publicly available pathway and network analysis tools that can be applied
for target identification (Table 2.3). NetworkAnalyst [20] is a web-based tool for the
visualization, meta-analysis, and interpretation of gene expression data, and can be used to
elucidate the disease mechanism. In NetworkAnalyst, genes of interest are identified from the
user’s submitted data, through differential expression analysis. Then, the identified genes are
mapped to a PPl database to construct the whole network. Finally, hub or module analysis
followed by topology-based pathway analysis can identify pathways characteristic of the
disease. A similar web-based tool that allows users to integrate data from two commonly
performed ‘omics experiments (i.e., gene expression and metabolomics) is MetaboAnalyst. By
combining the evidence based on changes in both gene expression and metabolite
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concentrations, one is more likely to pinpoint the pathways involved in the underlying
biological process [21]. MetaboAnalyst maps the user-submitted data to KEGG metabolic
pathways for over-representation analysis and pathway topology analysis. The Database for
Annotation, Visualization for Integrated Discovery (DAVID) is a tool that uses the KEGG
pathway database as a knowledge base for functional interpretation of large set of genes
derived from different genomic studies [22]. Another widely used open-source package to
interpret genomic data and study the disease mechanism is PANTHER’s analysis software [23].
Using PANTHER’s gene list analysis software, users can analyze gene list expression data files
and map them to multiple annotation data sources from the Gene Ontology Consortium, as
well as biological pathways [24].

Table 2.3. Classification of computational tools to help decipher the disease mechanism and

the drug MoA.

Name Method Reasoni Data Knowle Use Approa Key Main Availabi Ref.
: ng input dge topolog ch points applicat lity
base y ion
Networ ORA 2, Forwar Gene/p InnateD Yes Mechan Interact Disease Web- [20]
kAnalys  Networ d rotein B(PPI) istic ive mechan based
t k list KEGG visualiz ism
analysis Gene Reacto ation,
expressi me easy to
on use
Metabo MSEA3 Forwar Metabo HMDB, Yes Mechan Integrat  Disease Web- [21]
Analyst  Topolog d lite KEGG istic ive mechan based
y-based concent pathwa ism
pathwa rations y
y /lists analysis
analysis ,gene ,
list biomark
er
analysis
PANTH ORA, Forwar gene PANTHE No Mechan  Phyloge Disease Web- [23]
ER GSEA d list R, istic netic mechan based
Reacto trees of ism
me protein
coding
genes
Whistle Causal Backwa Gene Causal Yes Mechan  Qualitat  Disease Local [28]
reasoni rd expressi  networ istic ive mechan  Installat
ng on k in mechan ism ion
BEL* istic Drug
hypoth MoA
eses
CRE Causal Backwa Gene Causal Yes Mechan  Qualitat  Disease Local [27]
reasoni rd expressi  networ istic ive mechan Installat
ng on kin molecul ism ion
BEL* ar
hypoth
eses,
improv
ed

robustn
ess
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towards
noise
TopoNP Causal Backwa Gene Causal Yes Mechan  Quantit  Systems Local [43]
A reasoni rd expressi  networ istic ative toxicolo  Installat
ng on kin perturb gy, ion*
BEL* ation disease

assessm  mechan
ent, ism,
diagnos drug

tic MoA
signatur
e
extracti
on
FS- Multi- Predicti  Benchm KEGG, No Data Multi- Side Local [46]
MLKNN label K ve ark data SIDER, driven label effect Installat
nearest sets® DrugBa learning  predicti ion
neighbo nk on
rs
DrugClu  Clusteri Predicti  Benchm KEGG, No Data Novel Side Local [49]
st ng, ve ark data SIDER, driven® clusteri effect Installat
GSEA sets® Matado ng predicti ion
r, algorith on
DrugBa m,
nk adoptio
n of
Bayesia
n score,
easily
modifie
d,
mechan
istic
insight

!Although a computational tool may utilize more methods than the ones listed we chose to include
those highly relevant to the contents of the article (pathway and network based).

2Extended Over Representation Analysis using topology.

3Metabolite Set Enrichment Analysis is similar to Gene Set Enrichment Analysis (2nd generation
pathway analysis method).

4A cause-effect network model is used as a knowledge base in the form of Biological Expression
Language (BEL) statements (see: causalbionet.com for a database of cause-effect biological networks).

SFor training, validation and testing of the side effect prediction algorithms the data sets of Mizutani et
al. [47], Liu et al. [48], Zhang et al. [46].

5Can also provide mechanistic insight utilizing GSEA on genes most prevalent in a cluster of drugs.

The merits of the pathway- and network-based approach are also prominent when analyzing
‘omics data belonging to different domains. As an example, in a recent study by Perco et al.
[25], several of the aforementioned tools were combined for the integrated analysis of three
transcriptomics and a proteomics data set for chronic kidney disease (CKD) (Fig. 2.3). Whereas
separate gene and protein profile analysis identified only a limited number of features altered
in both data sets, cojoint pathway and network analysis using KEGG PATHWAY, DAVID, and
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omicsNET served in the functional interpretation of the data and identified a significant
overlap of enriched biological functions (pathways) between both data sets, thus providing
mechanistic insights into CKD.

I Data sets | Cojoint analysis. I Results —

framework
Proteomics —3» List of deregulated proteins  Pathway level S Enriched pathways
Pathway 1 & r)
Pathway 2

(KEGG pathway, david)
Enriched subgraphs
of biological functions @\
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=
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Figure 2.3. Schematic overview of the computational framework developed by Perco et al. [25] for the
integrated analysis of four chronic kidney disease (CKD)-relevant data sets. Cojoint analysis at the
pathway and network level revealed cell structure, cell adhesion, as well as immunity and defense
mechanisms as jointly populated with deregulated features from both the proteomics and
transcriptomics data sets

Another possible avenue for understanding the mechanism(s) of disease, based on molecular
profiling data and interactome networks, is the Causal Reasoning (CR) method. Although CR
is distinct from pathway analysis, in the sense that it does not rely on the assumption that
differential RNA expression equates to differential protein activity (forward reasoning), the
two methods can be applied in complementary fashion. CR is used to infer hypotheses mostly
from gene expression data by detecting upstream regulators that could have led to the
observed changes in gene expression between two states (backward reasoning). CR methods
require as input a knowledge base of cause—effect relationships along with the gene
expression data and can output a ranked list of causal drivers, called hypotheses [26]. Some
notable examples of open-or part-open access computational tools utilizing CR are the Whistle
algorithm (https://github.com/Selventa/whistle) by Selventa and the Causal Reasoning Engine
(CRE) by Chindelevitch et al. (R source code available upon request to the original authors)
[27,28]. The main characteristic of Whistle is that it infers mechanistic hypotheses in a
qualitative manner as activated or inhibited and produces statistical metrics to evaluate their
significance. By contrast, CRE infers molecular hypotheses from the data and offers a unique
way to calculate the significance of the identified molecular drivers, with improved robustness
towards noise. In addition, several commercial providers, such IPA and Thomson Reuters, also
offer CR-based analysis tools [29].

In a different category, more recently, organizations have established open web-based
platforms specifically tailored towards target identification, following a different pipeline than
the above pathway topology-based and network analysis tools. This pipeline is more
investigative than analytical, focusing on the integration and visualization of evidence
gathered from available knowledge bases to score the association between biological targets
and diseases. Based on the score provided, novel biological targets can be identified and
prioritized for follow-up. For example, the Open Targets partnership established the Target
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Validation Platform, which allows investigation and visualization of the evidence that
associates targets and diseases [30]. The evidence that is integrated into the platform comes
from public knowledge bases and includes rare and common disease genetics,
transcriptomics, approved drugs and clinical candidates, animal models, Reactome
biochemical pathways, and text mining from the medical literature. Similar to Open Targets,
the NIH has launched the PHAROS platform to identify potential new drug targets within the
four most-commonly drug-targeted protein families (G-protein- coupled receptors, nuclear
receptors, ion channels, and protein kinases). PHAROS follows a similar approach to Open
Targets by integrating multiple sources of biomedical data, albeit concentrating on these four
protein families [31].

2.6 Target verification and validation

Following the identification of disease-specific mechanisms, a set of targets representative of
those mechanisms can be selected. However, not all of those targets are equally potent and
safe points of therapeutic intervention and their prioritization is the next logical step of the
drug discovery process [1]. On that front, considering the position of the target node(s) inside
the network along with the global properties of biological networks, arising from graph theory,
can provide an early estimation of their safety and implication in potential adverse effects [32]
(Fig. 2.2). Biological networks are usually scale free, which means that, although many nodes
have a small degree, there are nodes, called hubs that have a great number of connections
and have a key role in the information flow of the system [33]. Given that hubs drive the
network traffic, targeting them has a significant impact on the cell behavior, including not only
the increased chance of lethality, but also adverse effects [34]. That is why we need to be
aware of the degree and betweenness of the target (i.e., the number of shortest paths
traversing a node) and select between influential high-degree nodes (with potential adverse
effects) versus nodes with middle to low degrees [35]. For example, NetworkAnalyst [20]
estimates target importance using the network metrics of degree centrality and betweenness
centrality. Furthermore, inside the network, pathway modules are connected to each other
via bridging nodes indicating that, in the same way that the expression of each gene (node) is
not independent from each other, the activity of each pathway is not independent from each
other (a phenomenon known as cross-talk). Thus, even though a candidate target could
belong to a non-vital and/or secondary pathway, because of cross-talk, alterations could be
caused in another interlinked pathway, which could, in turn, cause adverse effects. In a recent
study, Donato et al. developed a method to detect and quantify the crosstalk effect and
identify novel functional sub-pathways involved in the condition under study [36].

Several studies have used network models to identify the optimal set of targets that affect
specific disease mechanisms while minimizing adverse effects [37—-39]. Ruths et al. used graph
theory algorithms on signaling networks to identify sets of nodes that, when targeted,
inhibited the function of a subnetwork while preserving signal flow to a different subnetwork
[37]. Similarly, Dasika et al. proposed an optimization framework for signaling networks to
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identify targets that block a specific mechanism while minimizing adverse effects [38]. Lu et
al. developed an integer linear programming (ILP)-based method for multiple metabolic
networks to identify the minimum set of reactions whose removal would block the production
of a target in one network but not in the others [39].

Finally, the resulting set of targets that has been identified to inhibit the disease-specific
mechanism(s), following the in-silico network-based target prioritization, needs to be verified
and validated in the lab. Experimentally, this can be done with small interfering RNA (siRNA)
or CRISPR-cas9 gene editing, specifically designed to silence and/or catalyze the specified
target(s).

2.7 Hit and lead selection

Once the target(s) have been set, specific chemical or biological molecules need to be found
that either catalyze or inhibit such target(s) [1]. This hit discovery phase is traditionally
addressed by high- throughput screening (binding and phenotypic assays) where compounds
(known as hits) with the desired effect over the targets are selected. For small molecules,
many cheminformatics tools have been developed [18], with the aim to identify the best
chemical structure. Experimentally, the Innovative Medicines Initiative (IMI) has established
the European Lead Factory (ELF), offering a large collection of compounds and a state-of-the-
art screening center to connect innovative drug targets to high-quality compounds (www.
imi.europa.eu/content/european-lead-factory). Despite their importance, in-depth analysis
of experimental and chemical optimization tools is out of the scope of this review. Instead,
here we focus on the step after hit identification, where the most promising candidates should
be selected from the identified hit compounds. In this step, biological networks and pathways
can again serve as a link between the chemical space and the biological space to elucidate
how hit compounds affect pathways and how those pathways can be associated with adverse
effects and efficacy. On this front, multiomic experimental data of the hit compounds are
essential for use with several pathway-based methods and to infer potential adverse effects
and efficacy predictions [40-42].

Adverse effects of drugs are common and are either caused by off-target effects, (i.e.,
unforeseen direct physical drug—protein interactions because of drug and/or protein
promiscuity), or indirect effects because of signal propagation after the direct interaction [4].
On this front, a study by Mitsos et al. identified via ILP how drugs or compounds alter the
signaling pathways [40]. During the hit to lead stage, pathway effects (not just targets) can be
used to predict efficacy and toxicity and enhance the drug discovery pipeline by providing
better compounds to the optimization stage. Current efforts are focusing in relating drug
effects to perturbed biological pathways. Biological annotation of adverse effects with
associated pathways is a key step that allows one to predict the adverse effects of a
compound. To provide biological insight into the generation process of adverse effects,
several methods have been proposed utilizing molecular interaction data gathered from
various knowledge bases, such as DrugBank (https://www. drugbank.ca/) and KEGG Drug
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(www.genome.jp/kegg/drug/) for drug-affected pathway(s) interactions, the Therapeutic
Target Database (TTD; http://bidd.nus.edu.sg/group/cjttd/) for target— pathway(s)—disease
interactions, SIDER (http://sideeffects.embl. de/) and IntSide (source:
https://intside.irbbarcelona.org/) for drug—adverse effect interactions, and Cmap for drug-
transcriptional profile associations. Lee et al. used gene set enrichment analysis (GSEA), a
second-generation pathway analysis tool, to reveal enriched pathways from the Cmap drug-
induced transcriptional profiles and utilized Gene Ontology ontologies to connect them to
biological processes [41]. The authors then built a tripartite net- work of biological processes—
drugs—adverse effects by using SIDER to discover connections between biological processes
and adverse effects. In another study by Bauer-Mehren et al., the authors gathered drug—
target associations from DrugBank and protein— adverse effect associations from DisGeNET
and, by intersecting them, were able to identify pathways from Reactome-containing proteins
present in both sets as the links explaining the adverse effect generation mechanisms [42]
(Fig. 2.4).

Another possible avenue for mechanistic toxicology, besides pathway analysis, is the usage of
cause—effect network models to identify and quantify characteristic network signatures
following perturbation by a drug. The quantification of the perturbation of a network is
important in toxicology and pharmacology, where dose and time response are studied. In a
recent study by Martin et al., the authors established a computational method, TopoNPA, for
the analysis of gene expression data using cause-and-effect net- works as prior knowledge to
identify, interpret, and quantify the perturbation of the network [43]. TopoNPA was
successfully applied to infer a mechanistic hypothesis for the unequal efficacy of an anti-
inflammatory drug and to generate a robust network signature for predicting individual
patient responses.

Based on key insights generated into adverse effects, several machine-learning (ML) tools
have been developed to predict the adverse effects of a hit compound based on the affected
pathway(s) in conjunction with its chemical information (i.e., chemical structure) gathered
from databases such as PubChem (https:// pubchem.ncbi.nlm.nih.gov/) (Fig. 2.4) [44,45]. As
an example, Zhang et al. proposed a method named ‘feature selection-based multi-label k-
nearest neighbor method’ (FS-MLKNN) for adverse effect predictions [46]. In this study, a
feature selection approach identified predictors based on pathways, targets, enzyme,
transporters, and chemical structure that were later combined in a weighted scoring system
to predict adverse effects. In terms of area under the precision-recall curve (AUPR) and other
ML performance metrics, FS-MLKNN performed better on benchmark data sets than did other
similar ML methods [44, 47, 48]. Zhang et al. also tested FS-MLKNN on a new data set from
SIDER and reported that the average of recall scores for the test-set drugs was 0.463, which
means that, on average, 46.3% of the adverse effects of a candidate drug could be predicted
in-silico. Recently, DrugClust [49], a new ML tool for adverse effect prediction with a similar
hybrid approach, albeit only using drug—target and chemical substructure as features for the
prediction, was developed and is freely available as an R package (https://cran.r-
project.org/web/packages/DrugClust/ index.html). Comparing DrugClust and FS-MLKNN,
Dimitri et al. reported that DrugClust produced a slightly higher AUPR for the Zhang data set,
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when all respective features were considered, and a slightly lower AUPR for the Liu data set.
Additionally, DrugClust can provide mechanistic insight into the drug adverse effect(s)
generation process by performing pathway analysis on proteins that more frequently appear
in a certain cluster of drugs.

Computational tools and algorithms based on pathway networks can similarly be used to
evaluate the efficacy of hit compounds and prioritize them before experimental validation
[50]. In a recent study by Gu et al., the authors proved that the degrees of the decrease of
network efficiency and network flux, which are both measures of the connectivity of a
pathway network, could evaluate the efficacy of a compound. The authors followed this
approach to predict the drug—response curves of drugs on the pathway network of LPS-
induced PGE2 production and their prediction agreed with the experimental results [50]. In
another study by Guney et al., a disease—gene network was built and a drug— disease proximity
measure was introduced using various distance metrics between the target of 238 drugs and
78 disease modules. The study concluded that proximity is a good measure to assess drug
efficacy and that drug to pathway proximity, calculated from the distance of drug targets to
proteins belonging in a pathway, can elucidate the drug MoA. [51].

Hit—effect association and prediction

Hit Hit-perturbed pathways Pathway—effect
association

Q Predicted
~ | —— .' — — effect
= efficacy
toxicity
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Figure 2.4. The hit—effect association and prediction process. Adverse effects of hit compounds are
either caused by off-target effects or indirect effects because of signal propagation after the direct
interaction. Thus, biological annotation of hit effects with associated pathways is a key step to predict
the adverse effects and efficacy of a compound based on the affected pathway(s)
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2.8 Conclusion

Drug discovery is a complex and time-consuming process that involves several steps, ranging
from target discovery to clinical trials. In this review, we have shown that pathway- and
network- based technologies help foster the conception of mechanism-based drug discovery
and enhance the early stages of the drug discovery pipeline by shedding light on the
underlying biology of drugs and diseases. On this front, topology-based pathway analysis tools
can help decrease the number of false positives in the target identification step, prioritize
target validation, select optimal hits, and help the hit to lead step.

Although the incorporation of pathway- and network-based drug discovery can improve the
hit success rate, there are still limitations and challenges that need to be addressed. On the
one hand, network topology databases have many conflicting reports and, in several
instances, their quality is also debatable. On the other hand, computational tools that extract
information from knowledge bases might have a bias towards pathways or molecules that are
better studied and more present in the data and knowledge bases. On the data front, rapid
changes on experimental technologies, lack of data formats, and lack of standardizations of
experimental designs, influence the overall data quality. Finally, the simplistic static approach
that most computational methods adopt, overlooks the dynamic behavior of biological
systems, which limits the capability to model in detail the disease or drug state. We need to
keep an eye on both technological and methodological advancements because they can help
bridge the gap between in-silico verification and experimental validation. We anticipate that,
as more disease- and drug-specific ‘omics data are generated and shared, and as biological
information is better annotated, knowledge bases will keep expanding their coverage and
pathway- and network-based computational methods will capitalize on those advancements,
paving a new path towards an evolved drug discovery pipeline with lower attrition rates.
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Chapter 3

DeepSNEM: Deep Signaling Network
Embeddings for compound
mechanism of action identification

3.1 Chapter abstract

Motivation

The analysis and comparison of compounds’ transcriptomic signatures can help elucidate a
compound’s Mechanism of Action (MoA) in a biological system. In order to take into account
the complexity of the biological system, several computational methods have been developed
that utilize prior knowledge of molecular interactions to create a signaling network
representation that best explains the compound’s effect. However, due to their complex
structure, large scale datasets of compound-induced signaling networks and methods
specifically tailored to their analysis and comparison are very limited. Our goal is to develop
graph deep learning models that are optimized to transform compound-induced signaling
networks into high-dimensional representations and investigate their relationship with their
respective MoAs.

Results

We created a new dataset of compound-induced signaling networks by applying the
CARNIVAL network creation pipeline on the gene expression profiles of the CMap dataset.
Furthermore, we developed a novel unsupervised graph deep learning pipeline, called
deepSNEM, to encode the information in the compound-induced signaling networks in fixed-
length high-dimensional representations. The core of deepSNEM is a graph transformer
network, trained to maximize the mutual information between whole-graph and sub-graph
representations that belong to similar perturbations. By clustering the deepSNEM
embeddings, using the k-means algorithm, we were able to identify distinct clusters that are
significantly enriched for mTOR, topoisomerase, HDAC and protein synthesis inhibitors
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respectively. Additionally, we developed a subgraph importance pipeline and identified
important nodes and subgraphs that were found to be directly related to the most prevalent
MoA of the assigned cluster. As a use case, deepSNEM was applied on compounds’ gene
expression profiles from various experimental platforms (MicroArrays and RNA sequencing)
and the results indicate that correct hypotheses can be generated regarding their MoA.

Availability and Implementation

The source code and pre-trained deepSNEM models are available at
https://github.com/BioSysLab/deepSNEM.

3.2 Introduction

Characterizing a compound’s Mechanism of Action (MoA) in a cellular system is a very
important step in the development of new drugs or the repurposing of existing ones. On this
front, several systems-based computational methods that utilize omics data, following
treatment with a compound, have been developed [1]. One approach that has gained
considerable attraction for the MoA identification task is the analysis of post-transcriptional
data from compound perturbations [2]. These approaches analyze compounds’
transcriptomic signatures in order to identify key genes and signaling mechanisms that either
cause the compound’s therapeutic effect or are associated with specific adverse effects [3].
Furthermore, the comparison of transcriptomic signatures can be used to elucidate the MoA
of new compounds, by associating them with compounds of known MoA, or propose new
indications for already existing drugs.

There have been many studies that utilize differential gene expression (GEx) data to
characterize a compound’s MoA [4]. The Connectivity Map (CMap) and the LINCS project have
played a pivotal role in this field, by providing large datasets of compounds’ transcriptomic
signatures and methods for their analysis, comparison and interpretation [5,6]. As an
example, lorio et al. utilized compounds’ transcriptomic signatures from the CMap dataset to
build a network, where perturbations are connected if they have similar transcriptional
profiles [7]. This network was then analyzed to find communities and clusters that consisted
of perturbations with similar MoA. Since a compound’s phenotypic effect is usually caused by
changes in the expression of interacting genes/proteins, combining transcriptomic data with
a prior knowledge-base of molecular interactions, e.g. sighaling pathways, can result in a more
mechanistic explanation of a compound’s MoA [1]. On this front, a promising modeling
technique is the representation of a compound’s effect as a network of signaling proteins
(nodes), showing their activity and how these interact with each other to transfer the signal
of the perturbation in the system [8].

Signaling network creation methods combine omics data with a prior knowledge network of
protein-protein interactions (PPI) in order to extract a graph that best explains the
experimental data. Mitsos et al. developed an Integer Linear Programing (ILP) optimization
task to identify the signaling network that characterizes a compound’s effect based on
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phosphoproteomic data [9]. Since large scale phosphoproteomic datasets following
compound treatment are very rare, there has been a concentrated effort to develop methods
for signaling network creation based on transcriptomics [10-12]. Liu et al. developed
CARNIVAL, a causal reasoning framework to identify signaling networks that best explain a set
of transcription factor (TF) activity scores, calculated from differential GEx data [13].
Compound-induced signaling networks are information-rich and complex representations of
the compounds’ effect, since they incorporate the prior knowledge of molecular interactions
in the form of a PPl network. However, this complexity poses limitations for their large scale
analysis and comparison of networks from different compounds using traditional network
similarity algorithms, i.e. graph kernels. More specifically, graph similarity algorithms, such as
the Graph Edit Distance (GED), graphlet-based methods or graph kernels, utilize hand crafted
features and are not optimized for signaling networks, which can result in reduced
generalization performance and reduced scalability [14-16]. An interesting approach is to
employ deep learning models for graphs in order to encode the complete information of the
signaling network into high dimensional fixed-length representations [17]. These
representations can then be compared using traditional algorithms in order to identify
similarities between compound-induced signaling networks that could translate to similarities
in the compounds’ MoA.

There have been many studies for the development of deep learning models for graph data
in a variety of fields. These models are usually neural networks that aim to learn new task-
specific node and graph representations by using the graph’s connectivity [18]. For example,
the graph convolutional model utilizes a message passing algorithm to learn neighborhood-
level representations of the input graph. Recently, the successful transformer architecture for
natural language processing (NLP) problems has been modified and applied on graph data
[19,20]. Graph transformers utilize an attention mechanism for each node that is a function
of the neighborhood’s connectivity, rather than a message passing algorithm. Similarly, the
graph2vec model was inspired by the doc2vec approach for NLP tasks. Graph2vec treats the
entire graph as a document and each node’s neighborhood as a word and aims to learn a
fixed-length representation of the entire graph in a fully unsupervised task [21]. Another
important unsupervised approach for graph representation learning is the InfoGraph model
[22,23]. InfoGraph aims to maximize the mutual information between graph-level
representations and representations of the graph’s substructures at different levels, e.g.
nodes, edges and triangles. These unsupervised graph representation learning methods can
be modified for compound-induced signaling networks in order to extract fixed-length feature
vectors that can then be associated with the compound’s MoA.

In this paper, we developed a novel deep learning framework, called deepSNEM, to learn new
representations (embeddings) of signaling networks and investigate their relationship with
the compound’s MoA. Compounds’ signaling networks were created using the CARNIVAL
pipeline and the transcriptomic signatures of the CMap dataset, resulting in a large scale
dataset of signaling networks that can aid future studies. The core of deepSNEM is an
unsupervised graph transformer trained to maximize the mutual information between
representations of graphs’ substructures that belong to signaling networks created from
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similar perturbations. The resulting embeddings were evaluated based on their ability to
identify similar signaling networks and compared with representations created by different
graph-based models. Subsequently, the embeddings were clustered with the k-means
algorithm and the resulting clusters were analyzed based on their MoA composition.
Furthermore, a subgraph importance method was developed to identify the most important
nodes for each graph-level representation and the subgraphs that cause the signaling
networks to cluster together. As a use case, deepSNEM was tasked to assign clusters to
compounds’ signaling networks generated using gene expression profiles from various
experimental platforms. Analyzing the MoA composition of a compound’s assigned cluster,
deepSNEM can generate hypotheses regarding the MoA of new lead compounds or suggest
new potential mechanisms for already existing drugs.

3.3 Results

3.3.1 The deepSNEM approach

The overview of our approach is presented in Figure 3.1. Differential gene expression
signatures following compound treatment across cell lines were retrieved from the L1000
dataset (GSE92742) [6]. In total, 7722 signatures from 3005 compounds across 70 cell lines
were utilized. The first step of the deepSNEM pipeline is the creation of signature specific
signaling networks following the CARNIVAL framework [13]. In this framework, the gene
expression signatures are first transformed into transcription factor activity scores and then
an ILP model is tasked to extract the optimal subgraph from a global PPl network that best fits
the calculated activity scores (see Methods 3.5.1). The created network is a labeled (protein
activity), signed (edge activation or inhibition) and directed PPl graph that captures the
signaling network effect of the drug-induced transcriptomic signature. The core of deepSNEM
is a DL model, trained in an unsupervised setting, which takes as input the drug-induced
signaling networks, created with CARNIVAL, and outputs a high dimensional embedding that
best captures the information contained in the input graph. Regarding the DL models, we
evaluated the use of a graph transformer trained to either maximize the mutual information
of nodes belonging to the same signature (termed deepSNEM-GT-MI) or predict the edge
presence between nodes (termed deepSNEM-GT-LP), a siamese GCN model to predict the
graph edit distance between signaling networks (termed deepSNEM-GED) and the widely
used graph2vec model (termed deepSNEM-G2V) (see Methods 3.5.2).
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Figure 3.1. Schematic overview of deepSNEM. For each compound-induced differential expression
signature, a signaling network is created using the CARNIVAL framework. Then an unsupervised DL
model is tasked to encode the created signaling network in a high dimensional embedding that best
captures the input graph information.

3.3.2 Model-embedding evaluation

The different deepSNEM model variations were evaluated based on the validity of the
produced embeddings on two separate tasks. The first task examines the models’ ability to
produce similar embeddings from signaling networks that are created from the same
differential gene expression signature. On this front, we utilized the slightly different but
feasible network solutions of CARNIVAL’s ILP model for the same signature and investigated
the distributions of Euclidian distances between embeddings belonging to the same signature
and between embeddings from different signatures (Figure 3.2A). As it can be seen in Figure
3.2A, there is a clear distinction between the distance distributions of embeddings from the
same and different signatures. Thus, all models are able to produce embeddings that are
significantly more similar for graphs created from the same measurements of differential
expression. Inthe second task, we evaluated the similarity of graph embeddings created from
duplicate gene signatures as compared to the similarity of embeddings from random gene
signatures. Duplicate signatures indicate transcriptomic signatures from the same compound
perturbation, cell line, dose and time point that were assayed on different L1000 plates [24].
Figure 3.2B shows the distributions of Euclidian distances between embeddings belonging to
duplicate signatures and between embeddings of random signatures. For all models, the
difference between the distributions is significant, as indicated by a two sample t-test (p-
values < 0.001). Thus, all models are able to produce similar graph embeddings for gene
signatures that share the same experimental conditions. Based on these results, we chose to
perform a clustering analysis on the embeddings produced by the deepSNEM-GT-MI
architecture, in order to examine the connection between a drug’s induced signaling network
and its reported MoA.
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Normalized Euclidian distances between embeddings duplicate and random gene expression signatures

for all model variations.
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3.3.3 Clustering analysis for MoA identification

The signaling network effect of a compound perturbation in a cellular model presents a
systematic view into the compound’s MoA. In order to investigate this relationship, we first
identified groups of perturbations with similar network effect, by clustering the deepSNEM
network embeddings, and then analyzed the resulting clusters based on the reported MoA of
the compounds. On this front, the 256-dimensional deepSNEM-GT-MI embeddings were
clustered using the k-means algorithm. The optimal number of clusters was found to be 200,
according to the k-means elbow plot (see Supplementary Material (SM) 6). Additionally, in
order to analyze and characterize the resulting clusters, we utilized the MoA labels provided
by the Broad’s Institute Repurposing Hub [25]. Out of the 3005 unique compounds, 912 were
mapped to 261 unique MoA labels using the Repurposing Hub dataset (see SM 1). Figure 3.3A
shows the 2-dimensional t-SNE projections of all available signaling network embeddings.
Additionally, the signaling network embeddings that belong to the top 9 most prevalent MoA
labels in the dataset are presented with different colors (Figure 3.3A). In order to characterize
the identified clusters, we focused on the subset of clusters that are significantly enriched for
at least one mechanism (Figure 3.3B). The selected clusters have at least 25% of their
compound perturbations belonging to the same MoA, with a p-value lower than 10°
compared to a random selection. Figure 3.3B shows the breakdown of the available MoA in
the selected clusters. As it can be seen, the identified clusters are enriched for the same
mechanisms that are most prevalent in the labeled dataset. As a result, DeepSNEM was able
to identify 11 clusters that are significantly enriched for specific mechanisms, i.e. mTOR,
HDAC, topoisomerase, protein and ATP synthesis inhibitors. We have to note that clusters that
are enriched for MTOR inhibitors are also enriched for PI3K inhibitors, which is expected due
to the PI3K/mTOR signaling pathway. However, the majority of the compounds in each cluster
still do not have available labels regarding their MoA (represented with grey color in Figure
3.3B). Thus, due to the unknown labels, the distribution of MoA between clusters that are
enriched for the same MoA can still be quite different.
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analyzed clusters. The Y axis represents the frequency, as a percentage, of each MoA in the cluster (CL:
cluster).

3.3.4 Subgraph importance

The analysis of compound-induced signaling networks for MoA identification offers the
benefit of easier result interpretation. In order to utilize this benefit and increase the
interpretability and explainability of deepSNEM, we created a framework to identify the
important subgraphs for the subset of clusters analyzed in the previous section. For each
cluster, important nodes were identified using an aggregate score based on their importance
to the embedding model and the nodes’ prevalence in the cluster’s graphs (see Methods
3.5.3). Figure 3.4A shows the overlap, as a percentage, between the 20 most important nodes
of the analyzed clusters. As it can be seen, clusters that are enriched for the same MoA, have
a higher similarity between their most important nodes. Thus, the proposed importance
framework can identify nodes of high importance in each cluster that show a connection to
the cluster’s most prevalent mechanism of action. For visualization purposes, the most
important nodes in each cluster were connected by selecting the shortest paths between
them, from the Omnipath PPI that also maximize the overall sum of importance scores in the
path. Figure 3.4B shows an example of the important subgraphs for the clusters that are
enriched for mTOR and PI3K inhibitors. The common most important nodes across the
presented networks include the mTOR regulated transcription factors NRF1 and TFDP1 and
the CSKNK2A1, RHOA, PRKACA and LCK proteins, which are involved in the PI3K-Akt-mTOR
signaling pathway [26-30]. Finally, across all clusters, AKT1 and MAPK1 serve as central nodes
that connect the most important nodes (Figure 3.4B). The important subgraphs for all
analyzed clusters are presented in SM 7.
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Figure 3.4. Cluster subgraph importance. (A) Heatmap showing the similarity, as percentage overlap,
between the 20 most important nodes of each cluster. (B) Important subgraphs identified for the
clusters enriched for mTOR and PI3K inhibitors (Clusters 8, 112 and 200). The average activity of each
node in the cluster is color coded from blue to red. Blue nodes are inhibited, while red are activated.
Each node’s importance score, ranging from 0 to 1, is represented by the size of the node’s circle.
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3.3.5 Use case: cluster assignment

Gene expression data from 7 additional compounds with known mechanism of action were
retrieved from the GEO database. The details regarding the experimental data used in the use
case are presented in Table 3.1. Overall, the data were collected from 6 different studies, 4
cell lines and 3 different experimental platforms, i.e. Affymetrix/Agilent Microarrays and
Illumina next generation sequencing. Following the deepSNEM pipeline, each differential gene
expression signature was transformed into a compound induced signaling network with
CARNIVAL and embedded using the deepSNEM-GT-MI model. Finally, each embedding was
assigned to one of the already identified clusters (Table 3.1). Figure 3.5A shows the assigned
clusters and the distribution of each cluster’s available MoA. The topoisomerase inhibitor
SN38 and the HDAC inhibitors Sodium-Butyrate, Panobinostat and Belinostat were assigned
to clusters significantly enriched for topoisomerase and HDAC inhibitors respectively.
Furthermore, the topoisomerase inhibitor Doxorubicin and the mTOR inhibitor Sirolimus were
assigned to clusters enriched for their respective MoA, albeit having a large number of
compounds with unknown MoA. Finally, the compound CDK-887 was assigned to a cluster
that was not enriched for any particular MoA. Thus, the deepSNEM pipeline can be used to
assign a cluster to a compound-induced gene expression signature, independent of the
experimental platform, and provide insight into the compound’s potential MoA. For the
compounds in the use case, we also compared the cluster assignment of deepSNEM to a
clustering of the compounds’ differential expression gene measurements into the same
number of clusters (k=200) (see SM 8) (Figure 3.5B). Comparing the two approaches, SN38,
Belinostat and Panobinostat were assigned to clusters composed of similar mechanisms.
However, this is not the case for Sirolimus, Doxorubicin and Sodium Butyrate, which are
assigned to clusters not enriched for any particular MoA, when the gene-clustering pipeline is
used. Finally, for each compound of the use case, we calculated the Jaccard similarity index
between the perturbations of the identified clusters using the two methods (deepSNEM and
gene-based clustering) (Table 3.2). As it can be seen in Table 3.2, across all compounds the
similarity of the clusters is very low, with only the clusters assigned to the SN38 having a
slightly higher Jaccard index. Thus, the deepSNEM and gene-based pipeline result in a
different clustering of the perturbations, due to the different biological hierarchy of
information provided by the compound-induced signaling networks and differential gene
expression signatures.

Table 3.1. Information regarding the perturbations used in the use case and their assigned

clusters.

Compound MoA Cell line GSE Platform Cluster (CL)

o mTOR Affymetrix

Sirolimus R MCF7 GSE116447 ) 53
inhibitor Microarray
CDK Affymetrix

CDK-887 L MCF7 GSE19638 ) 163
inhibitor Microarray

41



Chapter 3 DeepSNEM

Panobinosta HDAC lumina
. A375 GSE145447 22
t inhibitor NextSeq
Sodium- HDAC Agilent
o HT29 GSE61429 ) 22
Butyrate inhibitor Microarray
) HDAC lumina
Belinostat o A549 GSE96649 188
inhibitor NextSeq
Topoisomer .
Affymetrix
SN38 ase | MCF7 GSE18552 ) 158
o Microarray
inhibitor
Topoisomer )
o Affymetrix
Doxorubicin ase Il MCF7 GSE19638 ) 33
R Microarray
inhibitor

Table 3.2. Jaccard similarity index between the clusters that the use case compounds were
assigned to, using the gene-based and deepSNEM pipelines.

Sirolimus 0.004
CDK-887 0
Panobinostat 0
Sodium-Butyrate 0.006
Belinostat 0.029
SN38 0.162
Doxorubicin 0.012
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3.4 Discussion

The changes in the protein signaling network caused by a compound perturbation can aid in
studying the compound’s mechanism of action in the cellular system. However, analyzing
compound-induced signaling networks on a massive scale is a very complex problem, not only
due to the limited availability of large datasets containing such networks but also due to the
complex structure of the data. This complex structure of signaling networks limits their
representation abilities and poses a challenge in identifying similarities or differences
between them. In this study, we created a large dataset of compound-induced signaling
networks from the CMap dataset, using the CARNIVAL network creation pipeline and
developed an unsupervised deep learning model to transform them into high-dimensional and
information-rich representations. This novel approach, called deepSNEM was used to identify
clusters of perturbations with similar network representations and offer insight into the
compounds’ MoA by analyzing the distribution of MoA in the clusters.

The prediction of a compound’s MoA from biological response data has gained considerable
attraction in the machine learning community [31,32]. This is evident by the recent release of
the CTD? Pancancer Drug Activity DREAM Challenge, which tasked the community to predict
a compound’s MoA based on post-transcriptional and cell viability data [32]. Even though the
learning task of MoA prediction is frequently modeled as supervised, in our approach we
decided to develop deepSNEM in a fully unsupervised fashion. This decision was based on the
nature of the learning task and the compounds’ MoA, wherein if a compound has a reported
MoA based on binding affinity data, we can’t know with absolute certainty that it doesn’t have
additional MoA labels due to other binding targets or interactions between the proteinsin a
pathway. Thus, for some compounds the negative labels for all possible MoA indications might
not be truly negative, rather they might be simply unknown. Additionally, another important
benefit of using an unsupervised approach, is that we can greatly increase the amount of
available data by including transcriptomic signatures following treatment with compounds
that have no reported MoA. In deepSNEM the learning model is tasked to produce meaningful
representations that capture the information included solely in the compound-induced
signaling networks without taking into account the compounds’ reported MoA. However, this
unsupervised task makes the evaluation of the different models and the resulting embeddings
quite challenging.

The evaluation of the validity of the resulting embeddings was based upon two tasks that test
if the models can produce embeddings that capture the similarities of the input perturbation.
Those tasks however, more closely resembling pass/fail tasks, rather than quantitative metrics
(Figure 3.2). Thus, we cannot know with certainty which deepSNEM model variation, i.e. graph
transformers, graph convolutions or graph2vec is better in terms of the resulting embeddings.
For the downstream task of mechanism of action identification, we decided to use the
embeddings of the graph transformed trained to maximize the mutual information between
nodes that belong to networks created from the same or duplicate gene expression
signatures. We argue that this deepSNEM variation is better suited to capture the information
of the signaling networks, due to the graph transformer architecture and due to the mutual
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information task that forces networks created from the same perturbation to have similar
embeddings (see Methods 3.2). Finally, we have to note that the resulting 256-dimensional
graph embeddings contain all the information of the input signaling networks, which makes it
difficult for the t-SNE algorithm to project them in 2 dimensions, as it can be seen in Figure
3.3A.

The clustering analysis and MoA identification using the deepSNEM-GT-MI embeddings was
performed by analyzing the MoA labels provided by the Broad Institute in the drug
repurposing hub. Using this dataset, 912 out of the 3005 total compounds were mapped to
261 unique labels. We argue that this diversity of mechanisms and large number of
compounds with unknown MoA in the dataset resulted in the large number k (k = 200) of
clusters that were identified using the elbow plot of the k-means algorithm. Additionally, due
to the large number of unlabeled compounds, in order to analyze the resulting clusters, we
focused on a specific subset that is significantly enriched for at least one specific MoA (Figure
3.3B). Using this approach, we identified 11 clusters that each were enriched for the most
prevalent mechanisms in the dataset. However, even for the clusters enriched for the same
MoA, the large number of unknown compounds could result in different cluster compositions,
which potentially further signifies the importance of analyzing biological response from
different points of view, e.g. genes, pathways, signaling networks.

There have been many studies for the identification of a compound’s MoA using biological
response data. The majority of these approaches utilize post-transcriptional data and have
been utilized successfully in the fields of systems pharmacology and drug repurposing [34,35].
Since the initial part of deepSNEM relies on transcriptomic data, similarities between the
results and clustering of gene signatures and signaling networks are expected. This effect is
evident in the presented use case, where some of the compounds were assigned to clusters
with similar MoA composition between the gene-based and network-based pipeline.
However, some compounds were assigned to clusters enriched for different MoA between
the two approaches (Figure 3.5). Most importantly, between the two methods, each
compound was assigned to clusters that had a very low Jaccard similarity index, meaning that
the transcriptomic signatures and signaling network embeddings of deepSNEM cluster in a
different way (Table 3.2). Thus, even though transcriptomic signatures do provide meaningful
insight into a compound’s MoA, there are cases, where analyzing the signaling networks can
reveal complex relationships that are hidden in the original expression data. We argue that
this is because a compound’s effect on a biological system is usually caused by changes in the
expression of genes that interact with each other to form specific biological processes. By
supplying deepSNEM with this required prior knowledge of interactions in the form of the
Omnipath PPI, the compound-specific signaling networks can provide a mechanistic view of
the compound’s effect and translate to the identification of its MoA [36]. Additionally,
deepSNEM'’s signaling network creation via the CARNIVAL pipeline can provide a robust
normalization factor to analyze and incorporate data from different experimental platforms
(Table 3.1). Finally, the analysis of compound-induced signaling networks has the inherent
benefit of increasing the interpretability of results.
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The interpretability and explainability of machine learning models is a concept that has gained
considerable attraction since the creation and application of powerful and complex deep
learning models in various fields [37]. This is especially true in the fields of drug discovery and
systems pharmacology, where understanding why the model made specific decisions and
predictions can not only validate and help interpret the results, but also generate new
knowledge and hypotheses regarding the complex systems under study [38]. Here, we
developed a node and subgraph importance method to identify which nodes the model pays
attention to when creating the embeddings and which nodes in the original networks cause
the embeddings to cluster together. This resulted in the better understanding and
interpretation of the novel representations that were extracted from the DL model. Using this
approach, we showed that the models pay attention to similar nodes in order to cluster
together compounds with similar MoA and were able to identify important signaling
subgraphs that are characteristic of each cluster (Figure 3.4). For example, in the clusters
enriched for mTOR inhibitors, even though mTOR as a node was not present in the input
signaling networks of the cluster, deepSNEM was able to extract important subgraphs that are
related to the mTOR signaling pathway.

The deepSNEM pipeline serves as proof of concept that compound-induced signaling
networks can be analyzed on a massive scale, using deep learning and provide insight into the
compound’s effect. In a real-world application, deepSNEM would be used in combination with
existing methods, utilizing transcriptomic data or pathway signatures, for a consensus-based
assignment of compound perturbations into clusters that are enriched for specific MoA.
Subsequently, deepSNEM could be used to identify which nodes and subgraphs mostly
influenced the proposed cluster assignment, thus increasing its interpretability and help
generate new hypotheses. We believe that our signaling network dataset and the proposed
pipeline can help pave the way towards more studies that utilize the inherent knowledge of
the changes in the signaling cascade of a system to better elucidate a compound’s mechanism
of action.

3.5 Methods

3.5.1 Signaling network creation

Gene expression profiles (level-5 z-score transformed) of compound perturbations were
downloaded from the L1000 CMap dataset [6]. In the current study, only measurements of
the relative gene expression of the 978 landmark genes in the L1000 assay were used
(GSE92742). For each gene expression sighature, a quality score was derived, based on its
transcriptional activity score (TAS), the number of biological replicates and whether the
signature is considered an exemplar, similar to the deepSIBA approach [24]. Based on this
quality score, only the signatures with the highest quality score were selected. An overview of
the transcriptomic signatures used in this study can be found in SM 1. For each signature,
transcription factor (TF) activity scores were inferred using the DoRothEA R package [39]. This
method utilizes a knowledge base of sighed TF-target interactions called Regulons and the
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VIPER enrichment algorithm to calculate TF activity scores [40]. For each compound
perturbation, the discretized TF activities of DoRothEA were transformed into signaling
networks using the CARNIVAL pipeline [13]. CARNIVAL solves an ILP optimization problem to
infer a family of highest scoring subgraphs, from a prior knowledge network of signed and
directed protein-protein interactions, which best explain the TF activities, subject to specific
constraints. In our approach the OmniPath network was used as the global prior knowledge
network [36]. Furthermore, the CARNIVAL pipeline without using the perturbation targets as
input was utilized (InvCARNIVAL method). Finally, the ILP formulation of the problem was
solved using the IBM ILOG CPLEX solver, which is freely available through the Academic
Initiative (https://www.ibm.com/products/ilog-cplex-optimization-studio). Details regarding
the parameters of CARNIVAL can found in SM 2.

3.5.2 DeepSNEM model

3.5.2.1 DeepSNEM-GT-MI

Each compound-induced signaling network is represented as a labeled, sighed and directed
graph G = (V,E), with nodes (V) being the proteins and edges (E) denoting the directed
physical interaction between them. Additionally, the activity of each protein is represented as
a node attribute, while the inhibition or activation of each edge is represented as an edge
attribute. Each input graph to the deepSNEM-GT-MI consists of a node feature matrix (Xprot),
a node activity embedding (Xat) and a node proximity embedding (Xaist). The node feature
matrix contains the initial protein features of each graph, which were created using the
SegVeq protein sequence model [41]. For each protein, the node activity embedding is a
projection of the node’s activity to the dimensions of the SeqVeq features, using a single
embedding layer. The node feature and node activity matrices are added before being
processed by the graph transformer. Finally, the node proximity embedding is a relative
positional embedding, where each shortest path distance between nodes is calculated using
the Floyd Warshall Algorithm [42]. Thus, the proximity embedding contains information about
the relative distance of each node to all other nodes in the graph. The input matrices are then
passed through the self-attention mechanism of the graph transformer, resulting in a final
feature matrix X [19,20]. Finally, this feature matrix is summarized using the Set2Set global
pooling method into a trainable whole-graph representation [43]. The model is trained fully
unsupervised by maximizing the mutual information between node and whole-graph
embeddings that are created from the same or duplicate transcriptomic signatures, using the
CARNIVAL pipeline, thus resulting in similar graph representations for the same perturbation.
Similar to the InfoGraph approach, the Jensen-Shannon Mutual Information estimator was
used, while an additional term was added to the total loss function in order to force the
embeddings to be uniformly distributed [22]. More details regarding the deepSNEM-GT-MI
model can be found in SM 5.

3.5.2.2 DeepSNEM model variations

The DeepSNEM-GED variation is a Siamese graph convolutional model that is trained to
minimize the error between the predicted and calculated graph edit distance for a pair of
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compound-induced signaling networks. Furthermore, the deepSNEM-GT-LP variation is a
transformer model similar to deepSNEM-GT-MI, albeit trained to predict the presence of an
edge between two proteins (nodes). Finally, the deepSNEM-G2V model is an application of
the widely used graph2vec model for whole-graph representations [21]. Details regarding
these model variations can be found in SM 3 and 4.

3.5.3 Node and subgraph importance

The average attribution of each node (protein) to the resulting signaling network embedding
was calculated using the saliency map approach of the Captum library [44]. With the saliency
approach the attributions are calculated based on the gradient with respect to the input [45].
This approach results in an attribution score for each node that shows the importance of the
node to the model, when calculating the network embedding. Subsequently, a scoring
function was designed in order to identify the important nodes in a specific cluster of signaling
network embeddings. For each node, this scoring function calculates the product of the
median rank of the node’s attribution score in the cluster and the frequency that the node
appears in the signaling networks of the cluster. Finally, this score is normalized between 0
and 1. For visualization purposes, the 20 most important nodes of each cluster were
connected using the shortest paths from the OmniPath PPl network that maximize the overall
sum of importance scores in the connected graph.
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3.7 Supplementary Material

1 Data preprocessing and quality control

The filtered CMap dataset contains 7722 transcriptomic signatures from 3005 compounds
tested across 70 cell lines. During the filtering process, for each compound per cell line, its
signature with the highest quality across different dosages and time points was selected. The
assigned quality score based on TAS, number of replicates and whether the signature is
considered an exemplar is presented in Table S3.1. Only signatures with Quality score of 1
were used.

Table S3.1 Signature quality score

) Number of
Quality score TAS . Exemplar

replicates

Q1 >0.4 >2 True

Q2 0.2-04 >2 True

Q3 0.2-04 <2 True

Q4 0.2-04 >2 True

Q5 0.2-04 <2 True

Q6 <0.1 >2 True

Q7 <0.1 <2 True

Q8 <0.1 <2 False

2 CARNIVAL parameters

The CARNIVAL pipeline was ran in parallel and without using the perturbation’s known targets
as input (InvCARNIVAL). The signaling network dataset was created with an older version of
CARNIVAL in R version 3.6, but the same parameters can be used in the latest version of
CARNIVAL.
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The main parameters, which can be found in Table S3.2, are the time limit until the
optimization terminates (timelimit), the allowed number of solutions to be generated
(limitPop), the allowed number of solution to be kept in the pool of solution (poolCap) and
the external ILP Solver used. The rest parameters can be set to the default of each CARNIVAL
version [1].

Table $3.2 CARNIVAL pipeline parameters

Execution mode parallel
inverseCR TRUE
ILP Solver Cplex
timelimit (in minutes) 1800
limitPop 500
poolCap 100
3 Graph2vec

Our approach was compared with a well-known and well-established model for the
generation of graph embeddings, called graph2vec [2]. Graph2vec works like doc2vec by
assuming that a graph is a document and the rooted subgraphs around every node in the
graph are words that compose the document. Like two documents in doc2vec have similar
embeddings if they consist of similar words, two graphs in graph2vec have similar embeddings
if they consist of similar subgraphs, meaning that embeddings are generated in a way, both
unsupervised and domain-agnostic, in which similar graphs would have similar embeddings.
In the current study, signaling networks were considered undirected, so that they can be fed
to the graph2vec model, and node labels are assigned as concatenated strings of the node
name and the sign of the activity of each node so that the important feature of activity in a
signaling network can be considered. We reason that the transformation of the graph from
directed to undirected would not undermine the quality of the resulting embeddings
completely, as in the case of signaling networks every connection encountered is unique for
all graphs, meaning that every unique pair of nodes that exists in the dataset can have only
one unique direction and sign. The graph2vec model was trained for 1 epoch and the
embedding size was set to 128.

4 GED model

One approach to embed graphs into a high dimensional space, while maintaining the original
graph-graph similarity in the high dimensional space too, is the utilization of a distance
learning approach that employs Siamese encoders (shared weights) to construct graph
embeddings. As proposed in the UGraphEmb framework by Bai et al., similarity or dissimilarity
between graphs can be defined by domain-agnostic and unbiased distance metrics, such as
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Graph Edit Distance (GED), which can be used to train the model in an supervised manner [3].
One definition of GED is that of the number of operations, such as node or edge insertions
and deletions, needed in order to transform one graph G1 into another graph G2 [4]. To this
end, a distance learning model consisting of siamese graph convolutional encoders is trained
to minimize the Mean Squared Error (MSE) between the predicted cosine distance of paired
graph embeddings and the GED of the pair of input graphs. The input representation and the
architecture of the encoder is similar to the one used in the deepSIBA framework [5]. The
encoder consists of three graph convolutional layers, as proposed by Duvenaud et al.,
followed by one convolutional layer, one pooling layer and one fully connected layer, while
the final graph embeddings are L2-normalized. The graphs are represented by a node matrix,
containing information about the nodes’ features, and edge attribute matrix, containing
information about the edges’ features and a connectivity matrix.

5 DeepSNEM-GT-MI

The deepSNEM-GT-MI model encodes the input matrices of each signaling network using two
multi-head attention layers. Each multi-head attention layer computes the attention score
using the key, query and value matrices, which are later combined using a simple feed forward
network. The output of this network is used to produce the whole-graph representations
using the Set2Set LSTM model. The mutual information is approximated using simple
discriminators in order to train the model. The final node embedding size is set to 128, while
the whole-graph representation embedding size is set to 256.

6 Clustering with k-means

The deepSNEM-GT-MI embeddings were clustered using the k-means algorithm. The optimal
number of clusters were selected using the elbow method. The elbow plot of the clustering is
presented in Figure S3.1. Figure S3.1 shows the total within sum of squared distances between
the centroids and the points of each cluster, for different values of k. We can see that the
elbow starts to form around k=200. This comes in agreement with the internal diversity of the
dataset, where we have 261 unique MoA labels assigned to 912 compounds. Based on the
results of Figure S3.1, the number of clusters was set to 200.
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Figure S3.1. Elbow plot of the k-means clustering of the deepSNEM-GT-MI embeddings.

7 Subgraph importance

The important subgraphs for all analyzed clusters that were significantly enriched for a specific
MoA are presented in Figure S3.2.
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Figure S3.2. Important subgraphs identified for the clusters enriched for topoisomerase (Clusters 97,
125 and 158), HDAC (Clusters 142, 147 and 179), protein synthesis (Cluster 72) and ATP synthesis
(Cluster 120) inhibitors. The average activity of each node in the cluster is color coded from blue to red.
Blue nodes are inhibited, while red are activated. Each node’s importance score, ranging from 0 to 1, is
represented by the size of the node’s circle.

8 Use case and gene-level clustering

The MicroArray gene expression profiles following compound treatment were preprocessed
with the RMA algorithm, while the RNAseq data with the edgeR algorithm. The transcriptomic
signatures of the CMap dataset were clustered with the k-means algorithm, similar to the
signaling network embeddings. The elbow plot of the gene expression clustering is shown in
Figure S3.3. Similar to the clustering of the deepSNEM embeddings, the number of clusters k
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was set to 200. Furthermore, Figure S3.4 shows the t-SNE projections of the gene expression
profiles, where the most prevalent MoA labels in the datasets are coded with different colors.
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Figure S3.3. Elbow plot of the k-means clustering of the differential gene expression profiles.
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Figure S3.4. T-SNE projection of the gene expression profiles. Different colors represent the 9 most
prevalent MoA in the dataset, while the grey color represents perturbations with either unknown or
other MoA
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4.1 Chapter abstract

Predicting whether a chemical structure leads to a desired or adverse biological effect can
have a significant impact for in-silico drug discovery. In this study, we developed a deep
learning model where compound structures are represented as graphs and then linked to
their biological footprint. To make this complex problem computationally tractable,
compound differences were mapped to biological effect alterations using Siamese Graph
Convolutional Neural Networks. The proposed model was able to encode molecular graph
pairs and identify structurally dissimilar compounds that affect similar biological processes
with high precision. Additionally, by utilizing deep ensembles to estimate uncertainty, we
were able to provide reliable and accurate predictions for chemical structures that are very
different from the ones used during training. Finally, we present a novel inference approach,
where the trained models are used to estimate the signaling pathway signature of a
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compound perturbation, using only its chemical structure as input, and subsequently identify
which substructures influenced the predicted pathways. As a use case, this approach was used
to infer important substructures and affected signaling pathways of FDA-approved anticancer
drugs.

4.2 Introduction

Early stage drug discovery aims to identify the right compound for the right target, for the
right disease. A very important step in this process is hit identification, in which compounds
that exhibit strong binding affinity to the target protein are prioritized. Traditionally, the most
widely employed method for in-vitro hit identification is High Throughput Screening (HTS). In-
vitro HTS can produce hits with strong binding affinity that may later be developed into lead
compounds through lead optimization. However, due to the vast chemical space, even large
scale in-vitro HTS offers limited chemical coverage. On this front, the development of
Computer Aided Drug Design (CADD) methods has enabled the virtual High Throughput
Screening (VHTS) of vast compound libraries, thus effectively increasing the search space of
hit identification. CADD methods for vHTS focus on compounds’ chemical structures and
prioritize those that are likely to have activity against the target, for further experiments.!
More specifically, ligand-based approaches are based on the hypothesis that similar chemical
structures will cause similar biological response, by binding to the same protein.? However,
there are many cases of compounds and drugs, which although structurally dissimilar, cause
similar biological effect, either because of off-target effects or by targeting proteins in the
same pathway.® As a whole, CADD approaches focus on optimal binding affinity, by assessing
a compound’s structural attributes, often disregarding the effect of the perturbation on the
biological system, which is closely related to clinical efficacy and toxicity.*

Advances in systems-based approaches and ‘omics technologies have led to the development
of systems pharmacology methods that aim to lower the attrition rates of early stage drug
discovery. Systems pharmacology approaches couple ‘omics data with knowledge bases of
molecular interactions and network analysis methods in order to assess compounds based on
their biological effect.> One approach that has gained considerable attraction is the use of
gene expression (GEx) profiling to characterize the systematic effects of compounds. On this
front, Verbist et al. showed how GEx data were able to influence decision making in eight drug
discovery projects by uncovering potential adverse effects of the lead compounds.®
Additionally, lorio et al. utilized similarities between drugs’ transcriptional responses to create
a drug network and identified the mechanism of action of new drugs based on their position
in the network.” Since its release, the Connectivity Map (CMap) and the LINCS project have
been a cornerstone of transcriptomic-based approaches by providing a large scale database
of transcriptomic signatures from compound perturbations along with essential signature
matching algorithms.#® CMap’s approach is based on the hypothesis that compounds with
similar transcriptomic signatures will cause similar physiological effects on the cell and has
been widely adopted by the field of drug repurposing.’® However, signature-based
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approaches are not only limited in the search space of compounds with available GEx data but
are also missing key structural information that is pivotal for drug design. Thus, an
interdisciplinary framework that translates a compound’s structural attributes to its biological
effect holds promise in augmenting the application of both CADD and systems-based
approaches for drug discovery. A computational approach that meets the requirements of
such an interdisciplinary framework is Machine Learning (ML) and especially Deep Learning
(DL)

The recent increase in available data and computing power has given rise to Deep Learning
(DL) methods for various drug discovery tasks, including bioactivity and toxicity prediction as
well as de-novo molecular design.*"** DL methods offer the advantage of flexible end-to-end
architectures that learn task specific representations of chemical structures, without the need
for precomputed features.!® One particular DL architecture that has achieved state of the art
results in several drug discovery benchmark datasets is the Graph Convolutional Neural
Network (GCNN).Y*® Molecular GCNNs operate on chemical structures represented as
undirected graphs, with nodes being the atoms and edges the bonds between them. Kearnes
et al. developed the Weave graph convolution module, which encodes both atom and bond
representations and combines them using fuzzy histograms to extract meaningful molecule-
level representations.'® Despite their improved performance over traditional ML methods,
end-to-end models including GCNNs are still prone to generalization errors on new chemical
scaffolds. This is mainly because of the limited coverage of the chemical space by the training
data.? In order to tackle this limited chemical coverage, methods like one-shot learning are
promising candidates for drug discovery applications. One-shot learning techniques, such as
Siamese networks, aim to learn a meaningful distance function between related inputs and
have shown increased performance over traditional methods in tasks with few data points.?*
24 Altae-Tran et al. implemented one-shot learning for drug discovery by combining graph
convolutions and Long Short Term Memory (LSTM) networks with attention and achieved
better results than traditional GCNNs.?®> Furthermore, for drug discovery applications,
uncertainty estimation is crucial, since incorrect predictions e.g. regarding toxicity can lead to
incorrect prioritization of compounds for further experimental testing. 2672° On this front, Ryu
et al. developed Bayesian GCNNs for molecular property, bioactivity and toxicity predictions
and showed that quantifying predictive uncertainty can lead to more accurate virtual
screening results.®® The flexibility provided by GCNN architectures along with one-shot
learning and uncertainty estimation approaches can combine aspects from both systems and
ligand-based methods into an interdisciplinary framework for early stage drug discovery.

In this paper, we employ deep learning to decipher the complex relationship between a
compound’s chemical structure and its biological effect. To make this complex problem
computationally tractable, we focus on learning a combined representation and distance
function that maps structural differences to biological effect alterations. For this task, we
propose a deep Siamese GCNN model called deepSIBA. DeepSIBA takes as input pairs of
compound structures, represented as graphs and outputs their biological effect distance, in
terms of enriched biological processes (BPs) along with an estimated uncertainty. DeepSIBA
is trained to minimize the loss between predicted and calculated distances of enriched BPs for
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compound pairs with available GEx data. In order to account for the biological factors that
influence the learning task, we train cell line-specific deep ensembles only on carefully
selected chemical structures, for which high quality GEx data are available. The performance
of our approach was evaluated with a realistic drug discovery scenario in mind, where gene
expression data are available for only one compound per pair and compared with ML methods
for pairwise (dyadic) data.3? Finally, we present a novel inference approach, in which the
trained models can be used to infer the signaling pathway signature of a target compound,
without available GEx data. This inference approach is coupled with a novel method, based
on graph saliency maps®, which can identify substructures that are responsible for a
compound’s inferred biological footprint. As a use case, this approach was tasked to infer the
signaling pathway signature and important substructures of approved anticancer drugs for
which no transcriptomic signatures are available in our data sets, using only their chemical
structure as input. DeepSIBA can be used in combination with existing in-silico drug discovery
pipelines to identify structures that not only exhibit maximal binding affinity but also cause a
desired biological effect. Thus, by incorporating deepSIBA’s interdisciplinary approach, the
drug discovery process can produce candidates with improved clinical efficacy and toxicity.

4.3 Material and methods

4.3.1 The deepSIBA approach

The overview of our approach is presented in Figure 4.1. Transcriptomic signatures from
compound perturbations along with their respective chemical structures were retrieved from
the CMap dataset.’ For each compound perturbation, normalized enrichment scores (NES) of
GO terms related to BPs were calculated using Gene Set Enrichment Analysis (GSEA).
Afterwards, the lists of enriched BPs were ranked based on NES and a Kolmogorov-Smirnov
based distance function, similar to GSEA, was used to calculate their pairwise distance (Figure
4.1A). During the learning phase, the proposed model is trained to predict the pairwise
distance between compounds’ affected BPs using only their chemical structure as input. The
input chemical structures are represented as undirected graphs, with nodes being the atoms
and edges the bonds between them and encoded using a Siamese GCNN architecture (Figure
4.1B). In our approach, compounds with available GEx data, representing a small portion of
the chemical space, serve as reference for the inference phase. During inference, the model
is tasked to predict the biological effect distance between reference and unknown compounds
(without available GEx data).
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Figure 4.1 Schematic overview of deepSIBA. (A) Pairs of transcriptomic signatures following
compound treatment are retrieved and enriched GO terms for BPs are calculated. The
pairwise distance between enriched BPs is calculated using a Kolmogorov-Smirnov based
function (Y). (B) Pairs of chemical structures are represented as molecular graphs and encoded
by a deep learning model using Siamese graph convolutions. Compounds’ feature maps are
then subtracted and a score, which represents their distance between enriched BPs, is
predicted (). The deep learning model is trained by minimizing the loss between predicted
(Y) and calculated distance (Y).

4.3.2 Data preprocessing and quality control

Transcriptomic signatures (level 5 z-score transformed) following compound treatment were
downloaded from the L1000 CMap resource.3* In this project, only the differential expression
of the 978 landmark genes in the L1000 assay was considered. For each signature, a quality
score was derived, based on its transcriptional activity score (TAS), the number of biological
replicates and whether the signature is considered an exemplar. This quality score ranges
from Q1 to Q8, with Q1 representing the highest quality. TAS is a metric that measures a
signature’s strength and reproducibility and is calculated as the geometric mean of the
number of differentially expressed (DEx) transcripts and the 75" quantile of pairwise replicate
correlations. Furthermore, exemplar signatures are specifically designated for further analysis
in the CLUE platform.® For each compound per cell line, among signatures from different
dosages and time points, the signature with the highest quality was selected. An overview of
the processed dataset is presented in Supplementary Information (SI) 1.1.
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4.3.3 Biological process enrichment and pairwise distance calculation

Gene Ontology (GO) terms for biological processes (BP) involving the landmark genes of the
L1000 assay were retrieved using the topGO R package in Bioconductor.3® Only GO terms with
at least 10 genes were considered. For each signature, GO term enrichment was calculated
using the R package FGSEA in Bioconductor.?” Thus, the gene-level feature vector of each
perturbation was transformed to a BP-level feature vector of Normalized Enrichment Scores
(NES). Pairwise distances between BP-level feature vectors were calculated similar to lorio et
al.’, using the R package Gene Expression Signature in Bioconductor.®® Given two feature
vectors ranked by NES, A and B, GSEA is used to calculate the ES of the top and bottom GO

terms of A in B and vice versa. The distance between the vectors is computed as 1-
ESpinB+ESpina
2
distance calculation is the number of top and bottom GO terms to consider during GSEA. On
this front, an ensemble approach was developed, by calculating pairwise distances between

BP-level feature vectors for 5 different numbers of top and bottom GO terms. The numbers

and ranges from 0 to 2. An important parameter that can introduce bias in the

we considered were selected based on the average number of significantly enriched GO terms
across all perturbations in the dataset (see Sl 1.3 for details). The distance scores were finally

averaged and normalized between 0 and 1.

4.3.4 Siamese GCNN architecture
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Figure 4.2 Schematic representation of the model’s architecture. (A) Siamese graph
convolutional encoders; compounds’ molecular graphs are encoded using 2 encoders with
shared weights (Siamese). Each encoder consists of 3 graph convolution and 1 convolution
layers. (B) Architecture of the distance module; the distance module consists of 2 convolution,

3 fully connected and 1 Gaussian regression layers.

A schematic representation of our model’s architecture is presented in Figure 4.2. The learning
model takes as input the chemical structures of compound pairs and predicts their biological
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distance, at the level of affected biological processes (GO terms). Regarding the input,
chemical structures are represented as undirected graphs, with nodes being the atoms and
edges the bonds between them. Each input is encoded using 3 matrices: the atom array, which
contains atom-level features, the bond array, which contains bond-level features and the edge
array, which describes the connectivity of the compound (see Sl 2.1 for details). The learning
model consists of two Siamese encoders (shared weights) that embed the input graphs into a
high dimensional latent space and a trainable distance module that outputs the final distance
prediction. The Siamese encoders consist of 3 graph convolutional layers that learn
neighborhood-level representations, followed by a convolutional layer that extracts
compound-level features (Figure 4.2A). Graph convolutions were implemented similar to
Duvenaud et al.'” (see SI 2.2 for details). The overall goal of the Siamese encoder is to learn
task-specific compound representations. The feature maps of the last Siamese layer are then
subtracted and their absolute difference is passed to the distance module. The distance
module consists of 2 convolutional layers, which extract important features from the
difference of the feature maps and 3 fully connected layers that aim to combine those
features, while progressively reducing the dimensions (Figure 4.2B). Finally, a Gaussian
regression layer outputs a mean and variance of the biological effect distance between the
compound pair. By treating the distance as a sample from a Gaussian distribution with the
predicted mean and variance, the model is trained end-to-end by minimizing the negative log-
likelihood criterion?” given by

1 2
—logpg(yn|Xn) = —510903 (x) — (y — Ug (x)) + constant.

1
204 (x)
For each cell line, an ensemble model combining 50 models was created. The ensemble’s
output is also a Gaussian, with mean and variance calculated from the uniformly weighted
mixture of each model. The coefficient of variation (CV) of the Gaussian mixture is used as the
model’s estimate of predictive uncertainty. The model’s hyperparameters, along with the
equations for the Gaussian mixture’s mean and variance are presented in Sl 2.3 and 2.4.

4.3.5 Dataset splitting and evaluation metrics

For each cell line, available compounds were split into training and test. Each cell line specific
training set consists of the pairwise distances between training compounds’ affected BPs,
while each test set contains distances between test and training compounds. Additionally, the
Tanimoto similarity between the ECFP4 fingerprints of all training and test compounds was
calculated and test compounds that exhibited a similarity higher than 0.85 to any training
compound were excluded. An overview of the training and test sets is presented in Sl 4.1.
Across all test scenarios, model performance was evaluated in terms of Mean Squared Error
(MSE), Pearson’s r and precision. MSE and Pearson’s r were calculated between the predicted
and computed distance values. In order to calculate precision, the continuous distance values
were transformed to binary form by comparing them with an appropriate distance threshold.
Even though the learning task is a regression problem, given its nature and potential
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true positives

applications, high precision ( ) is important in order to avoid false positive hits for

positives
validation experiments. The appropriate distance threshold for precision was set at 0.2, based
on the distance distribution of duplicate compound signatures, the threshold equivalent to a
90% Connectivity Score and the relationship between the threshold and the actual average
number of common enriched BPs. Duplicate signatures indicate transcriptomic signatures
from the same compound perturbation, cell line, dose and time point that were assayed on
different L1000 plates. Thus, the distribution of distances between duplicate signatures most
closely approximates the reference distribution of truly similar biological effect. A thorough
investigation of the distance threshold to distinguish compounds with similar biological effect
is presented in SI 5.1.

4.3.6 Signaling pathway inference for target structure

The predictions of a trained deepSIBA model can be used to infer a pathway signature for a
target structure without the need for GEx data, in terms of the most upregulated and
downregulated signaling pathways. The inference approach is similar to the k-Nearest
Neighbor algorithm (KNN). Given a target structure, a trained ensemble model for the cell line
of choice is used to predict all pairwise distances between target and training compounds. The
predicted distance represents the difference between compounds’ enriched BPs (GO terms).
Training set compounds with predicted distance less than a specified threshold d;; are
selected as the target’s neighbors. If a target structure has more than k neighbors, a signaling
pathway signature can be inferred in the following way. For each neighbor N;, the lists of the
top 10 most upregulated and most downregulated pathways, based on NES, are constructed.
Pathway enrichment is calculated using FGSEA with KEGG as a knowledge base.®* KEGG
signaling pathways were chosen for inference due to their interpretability. Signaling pathways
that appear in the neighbors’ lists with a frequency score higher than a threshold f;; are
selected. Additionally, to account for signaling pathways that are frequently upregulated or
downregulated in the set of training compounds, a p-value for each inferred pathway is also
calculated. On this front, sets of k neighbors are randomly sampled 5000 times from the
training set and a Null distribution of frequency scores for each pathway is derived. A p-value
is computed as the sum of the probabilities of observing equally high or higher frequency
scores. Finally, only pathways with p-value lower than a threshold p;; are inferred. Thus, for
each chemical structure, our approach infers two signatures of variable length (up to 10 each)
of potentially downregulated and upregulated pathways respectively. For the MCF7 cell line,
the aforementioned thresholds and parameters of the inference approach were selected by
evaluating the results, in terms of precision and number of inferred pathways, on its
respective test set (see Sl 6.1 for details).
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4.3.7 Substructure importance using graph-based gradients

A graph-based gradient approach, similar to saliency maps, was developed to identify
important substructures that influence the biological effect similarity of chemical structure
pairs. First, the derivative of deepSIBA’s output w.r.t the input matrices that contain the atom

. . - . d
features of each compound, in the input pair, is calculated using Tensorflow ([ dl ]).

0 atoms

Subsequently, for each compound atom importance is scored, using a directional derivative
approach. Thus, similar to vector calculus, the directional derivative of a scalar f(X), with X
being a matrix, in the direction of a matrix Y is

Vo f(O) =tr(Lxy),

af . . . . oF . . .
where, é is the gradient matrix, or in our case ———, while Y can be considered a matrix

atoms

with zeros everywhere, except the row containing the specific atom’s feature. Thus, an
importance score for each atom of a compound can be calculated as

OF

Sy = tr( * Ya),

aXatoms

where the only non-zero part of Y, is the one-hot encoded feature vector of atom a. For each
atom the importance score S, was transformed to a count score C,, based on how many times
each atom was in the top 20% most important atoms for each model in a deepSIBA ensemble.
When scoring atom importance during the pathway inference approach, a similar score was
calculated based on the times an atom was present in the top 20% for each target-reference
pair. Finally, due to the GCNN core module of deepSIBA, important substructures are formed
by important atoms that are neighbors in the compound’s molecular graph. Atom importance
is visualized using the RDKit library.*

4.4 Results and discussion

4.4.1 Biological factors influence the model’s learning task

The presented model is tasked to predict the biological effect distance between compounds,
using their molecular graphs as input. Considering that this distance is calculated from
experimental GEx data following compound treatment, there are specific biological factors
that can influence the learning task. The CMap dataset contains over 110K transcriptomic
signatures from over 20K compounds assayed across 70 cell lines. By carefully analyzing these
signatures and their pairwise distances, we were able to pinpoint the most influential factors
and identify their effect on the model’s target value.

4.4.1.1 The variation in quality of GEx data is reflected on the calculated distance value. The
quality of gene expression data, from which transcriptomic signatures in the Connectivity map
were derived, varies across compound perturbations. In our case, this variation in data quality
is especially important. On this front, a categorical quality score, ranging from Q1 to Q8, was
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assigned to each signature, with a score of Q1 representing the highest quality (see SI 1.1). In
order to assess the effect of signature quality, distributions of distances between duplicate
transcriptomic signatures (same compound, cell line, dose, time) for different quality scores
were examined and are presented in Figure 4.3A. As expected, Q1 duplicate signatures are
very similar and their distances are centered near a small value. However, this is not the case
for Q2 duplicate signatures, where differences in differentially expressed genes are prominent
even when all the perturbation parameters are kept constant. It is clear that signature quality
significantly affects the distribution of the model’s target variable.

4.4.1.2 Distances between transcriptomic signatures vary across cell lines. Compound
response, in terms of DEx genes, is highly dependent on the cellular model. Due to different
genetic backgrounds and gene expression patterns the same compound perturbation will
have different transcriptomic signatures across cell lines.*! This dependence, directly affects
the distance between compounds’ transcriptomic signatures for different cell lines. The
relationship between gene-level distances of compound pairs present in both the MCF7 and
VCAP cell lines, with Q1 signatures, is shown in Figure 4.3B. In general, Q1 transcriptomic
distances of the same compound pair in the 2 examined cell lines are moderately correlated
(Pearson’s r = 0.469). However, there is a significant number of compound pairs which have
similar transcriptomic signatures in one cell line but not in the other (lower right and upper
right quadrants of Figure 4.3B). Such cases are even more prominent for compound pairs with
Q2 signatures (see Sl 1.2). Thus, the cell line effect poses a problem for the proposed learning
task by providing a one-to-many mapping between input (pair of chemical structures) and
output (distance between signatures).
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Figure 4.3 Influence of biological factors on the learning task. (A) Evaluation of data quality
based on the gene-level distance between duplicate compound perturbations (same
compounds) for the MCF7 cell line. (B) Scatterplot of distances between transcriptomic
signatures (Quality 1) of compound pairs present in both the MCF7 and VCAP cell lines. The
red lines, at 0.2 for MCF7 and 0.19 for VCAP indicate the mean + standard deviation of the
distribution of distances between Q1 duplicate signatures for each respective cell line; (C; &
Ci) Heatmaps of gene and BP-level distances between cell lines for the knockdown of the MYC

gene.

4.4.1.3 Compounds’ biological effects are better represented on a functional level. A
distance function that operates directly on transcriptomic signatures does not account for
smaller differences in the DEx of genes that belong to the same biological pathway. Thus, the
similar effect between perturbations, in terms of enriched BPs, might not be clearly reflected
on their gene-level distance. On this front, a comparison of BP and gene-level distances
between cell lines for the knockdown of the MYC gene (Q1 signatures) with shRNA is
presented in Figure 4.3C. MYC is an oncogene that plays a key role in cell cycle, transformation
and proliferation and was selected because its knockdown is expected to cause similar
response across cancer cell lines. The smaller overall distance between cell lines in Figure 4.3C;
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indicates that the expected similar effect of MYC knockdown is better highlighted on a
functional level between enriched biological processes rather than between transcriptomic
signatures (Figure 4.3C;). Furthermore, we evaluated which distance metric, either between
BPs or DEx genes, can better highlight the expected similar biological effect of structurally
similar compounds.*? In the CMap dataset, we identified pairs of similar chemical structure
using the traditional Tanimoto coefficient between ECFP4 fingerprints and then calculated
what percentage of those cause similar biological response at the BP and gene-level (Table
4.1). As it can be seen in Table 4.1, across all structural distance thresholds the percentage of
structurally similar compounds with similar biological effect is significantly higher when
distance is calculated between signatures of enriched BPs. A detailed comparison between
structural and biological effect distances for all examined cell lines is presented in Sl 1.4.

Table 4.1 Percentage of structurally similar compounds that cause similar biological effect,
either at the gene or BP-level, in the MCF7 cell line

Structural distance Pairs with similar Pairs affecting Pairs affecting
threshold chemical structure similar BPs (%)* similar genes (%)**
0.10 91 76.9 68.1
0.15 114 75.4 65.7
0.20 200 74.0 61.0
0.25 316 69.9 57.6
0.30 494 65.3 51.0

* BP distance threshold to consider compounds similar = 0.2
** Gene distance threshold to consider compounds similar = 0.19

Through the careful analysis of the processed data sets, we showed that raw data quality
greatly affects the distribution of distance values and that lower quality transcriptomic
signatures of the same compound, with the same perturbation parameters (duplicates), often
exhibit large differences in terms of DEx genes (Figure 4.3A). Based on these findings, we
chose to develop deepSIBA using only compounds with available Q1 transcriptomic
signatures. Furthermore, we showed that the transcriptomic distance of a compound pair can
vary depending on the choice of cellular model (Figure 4.3B). One common approach to
address this issue is to aggregate either transcriptomic signatures or distance values across
cell lines. While aggregating enables the training of a general model on all available compound
pairs, it can often produce misleading results and cause information loss. Thus, we decided to
make our approach cell line specific and develop our models for cell lines that have the highest
number of Q1 transcriptomic signatures following compound treatment. Finally, we
highlighted that a distance function operating on enriched BPs, rather than genes, can better
capture the expected biological effect similarities of perturbations with similar structure or
biological nature (Table 4.1, Figure 4.3C). We reason that this is the case due to the BP
enrichment analysis that precedes the distance calculation, which can capture smaller
changes in the expression of genes that interact with each other to form a biological process.
By analyzing the relationship between the aforementioned experimental factors and our
target variable, we were able to make data-driven decisions to propose a learning task that
minimizes their effect. In the following sections we evaluate the ability of deepSIBA to learn
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the proposed task and test whether our approach can identify dissimilar structures that affect
similar BPs in a meaningful way.

4.4.2 Performance evaluation

Model performance was evaluated on pairs of reference and test compounds. Test
compounds were removed from the training sets and thus represent new chemical structures
without available experimental GEx data. Additionally, the effect of the structural similarity
between input compounds on performance, along with the utility of the model’s estimate for
uncertainty, were investigated. Finally, we evaluated the performance of our approach on test
chemical structures that are very different from the ones used in training.

4.4.2.1 Test set performance. In each cell line specific test set, the performance of deepSIBA
was compared to the performance of ReSimNet and TwoStepRLS. ReSimNet is a recently
proposed deep Siamese MLP model, while TwoStepRLS is a regularized kernel-based
regression method. Both methods are suitable for distance/similarity learning for pairwise
(dyadic) data and were implemented using compounds’ ECFP4 fingerprints as input (see Sl 3.1
and 3.2 for details). As shown in Table 4.2, across all cell lines, deepSIBA achieved the lowest
overall MSE and in the 1% of test samples with the lowest predicted values. The ReSimNet
models for the A375 and MCF7 cell lines achieved the highest Pearson’s r, while deepSIBA and
TwoStepRLS had the highest Pearson’s r, for the PC3 and VCAP cell lines respectively. In terms
of precision, the deepSIBA models heavily outperformed the other methods across all cell
lines. In order to calculate precision, an appropriate distance threshold of 0.2 was used for all
approaches (see section 4.3.5 for details) While ReSimNet and TwoStepRLS exhibited low
precision, they predicted that many more compound pairs will have similar biological effect.
When examining the lowest 1% of predicted distances, their precision improves and in the
MCF7 cell line TwoStepRLS’ precision surpasses deepSIBA’s. Additional 5-fold cross validation
results for each cell line are presented in SI 5.2.

Table 4.2 Cell line specific test set performance

o Precision Predicted
MSE Pearson’s Precision

Cell line Model MSE @1% similar
@1%* r (%) .
(%)* pairs
DeepSIBA  0.008  0.006 0.59 98.22 98.22 169
A375 ReSimNet  0.012  0.022 0.60 32.23 56.80 18243
TwostepRLS 4 519 0.008 0.51 44.61 78.68 4024
PC3 DeepSIBA  0.011  0.007 0.53 89.29 89.29 28
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ReSimNet ~ 0.017 0.032  0.49 2502  46.89 14195
TWoStepRLS 5013 0.041 0.44 29.98 38.96 1758
DeepSIBA  0.033  0.026  0.41 71.63  71.63 141

VCAP  ReSimNet 0039 0105  0.38 3269  52.97 9245
TwoStepRLS 034 0.049 0.43 3234 31.12 3120
DeepSIBA  0.012 0.007  0.56 61.03  61.03 195

MCF7  ReSimNet  0.015 0.029  0.59 2693  51.20 13420
TwoStepRLS 515 0.010 0.47 3355  70.14 4322

4.4.2.2 Transferring knowledge to other cellular models. Initially deepSIBA was trained and
evaluated in the four cell lines that have the highest number of Q1 transcriptomic signatures
following compound treatment. In order to expand the biological coverage of deepSIBA we
utilized transfer learning to train our models on six additional cell lines which have the next
highest number of Q1 signatures. On this front, we pre-trained a deepSIBA model on the
entirety of the A375 cell line dataset and then applied it on additional cell lines by resuming
training for 6 epochs. The performance of the transfer learning approach on each cell line
specific test set is presented in Table 4.3. Across all additional cell lines deepSIBA was able to
achieve similar performance to that of the A375, PC3, MCF7 and VCAP cell lines.

Table 4.3. Test set performance of the transfer learning approach

Cell-line MSE MSE @1% Pearson’sr Precision (%)
HT29 0.010 0.013 0.60 84.88
A549 0.013 0.012 0.62 83.00
HA1E 0.015 0.009 0.58 100

HEPG2 0.013 0.014 0.61 99.10

HCC515 0.014 0.010 0.52 97.92
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NPC 0.006 0.005 0.67 73.64

4.4.2.3 Performance as a function of the structural distance between input compounds. As
shown previously, similar chemical structures have similar signatures of enriched BPs.
However, there are many cases of structurally dissimilar compounds that cause similar
biological response. It is therefore important to evaluate the ability of deepSIBA to identify
such cases, by calculating its performance for test pairs of varying structural distance. On this
front, each cell line specific test set was split into parts based on the structural distance
between compounds and in each part MSE and precision were calculated (Figures 4A and 4B).
As a measure of structural distance/similarity, the traditional Tanimoto coefficient between
ECFP4 fingerprints was utilized. The PC3, A375 and VCAP deepSIBA models maintain a high
precision across all different structural distance ranges (Figure 4.4B). The exception is the
MCF7 model, for which precision slightly decreases for structural distance higher than 0.7.
Regarding MSE, only the VCAP model exhibits a slightly higher MSE as structural distance
increases (Figure 4.4A). As a whole, the models’ performance seems unaffected by the
distance between the ECFP4 fingerprints of the input pairs.
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Figure 4.4 Performance as a function of structural distance and predictive uncertainty; (A) MSE
for different ranges of structural distance between compound pairs; (B) Precision for different
ranges of structural distance between compound pairs. (C) Percentage of total test MSE,
calculated in samples with increasing CV; (D) Precision calculated in test samples with

increasing CV.

4.4.2.4 Performance as a function of predictive uncertainty. It has been shown that
quantifying predictive uncertainty can lead to more accurate results in virtual screening
applications.?® In this context, the relationship between the predictive uncertainty estimate
and performance was investigated. In DeepSIBA we estimate predictive uncertainty as the
coefficient of variation (CV) of the mixture of each model’s Gaussian in the ensemble. MSE
and precision were calculated for specific samples in the test set, which have CV lower than
an increasing threshold and are presented in Figures 4C and 4D. As the CV threshold increases

and more samples with higher CV are included in the evaluation, the MSE of the models
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increases as well and eventually becomes the MSE of the entire test set (Figure 4.4C). On the
other hand, due to the low number of false positives, for all the models, precision seems
unaffected by the CV threshold. Only the MCF7 model, which has the lowest overall precision,
exhibits a higher precision for samples with lower CV (Figure 4.4D). Overall, the results
indicate that point predictions with lower uncertainty are closer to the true value, or that
when the model is certain, it’s usually not wrong.

4.4.2.5 Generalization on different chemical structures. End-to-end deep learning models for
drug discovery have trouble generalizing on new compounds that are structurally very
different from the ones used to train them. In order to evaluate the ability of our approach to
generalize on different chemical structures, the performance of the A375 model was
evaluated on 2 extra test sets and is presented in Table 4. These test sets were created by
restricting the maximum allowed structural similarity between selected test compounds and
all remaining training compounds and thus represent test scenarios of increasing difficulty
(Figure 4.5A). As the minimum distance between test and training compounds increases, the
performance of the model becomes worse. However, the performance decrease in terms of
MSE and Pearson’s r is smaller than the decrease in precision. In this case, the distance
threshold to calculate precision was set to 0.22, because in the hardest test set (#3) there
were no samples with predicted value lower than 0.2. Thus, even though the model’s
performance is comparable across test sets in terms of regression metrics, its ability to identify
compounds with similar biological effect is hindered. In this case, it is important to estimate
predictive uncertainty and evaluate its utility, by focusing on predictions with smaller CV
(Figure 4.5B). In the third test set, which only contains compounds with maximum similarity
to the training compounds less than 0.3, the model’s precision is significantly higher for test
predictions with low CV. More specifically, in test samples with CV lower than 0.16, the
model’s precision is upwards of 80%.

Table 4.4 Generalization performance on different chemical structures for A375

Max
S . Predicted
Test set similarity to MSE Pearson’sr  Precision (%) L )
- Similar Pairs
training set
#1 [0-0.85] 0.0083 0.59 97.26 876
#2 [0.35-0.65] 0.0092 0.52 76.48 330
#3 [0-0.3] 0.0107 0.44 50.37 135
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Figure 4.5 Precision and uncertainty estimation for test set number 3. (A) Histogram of
maximum structural similarity between test and training compounds for test set number 3;
structural similarity is calculated between compounds’ ECFP4 fingerprints. (B) Precision
calculated in test samples with CV lower than an increasing threshold.

Across all examined cell lines, deepSIBA was able to identify chemical structures that affect
similar BPs, outperforming, especially in terms of precision, the distance learning methods
that utilize compounds’ ECFP4 fingerprints as input (Table 4.2). Even though the learning task
is regression, we reason that precision is a crucial metric, considering the potential screening
applications of deepSIBA in order to identify compounds that exhibit similar biological effect
to a query. In this scenario, high precision, rather than a large number of identified hits, is
required to correctly prioritize compounds for downstream experimental validation. We
chose not to compare our approach with traditional machine learning methods, e.g. Random
Forests and SVMs, because we argue that these are not optimal for a distance/similarity
learning task. Furthermore, deepSIBA was able to maintain its high performance regardless of
the structural similarity between input compounds and identify cases of structurally dissimilar
compounds that affect similar BPs (Figure 4.4A and 4.4B). Thus, the employed GCNN
architecture shows promise towards this highly interdisciplinary task. However, there were
some cases of compounds affecting similar BPs that were missed by the model. These cases,
in combination with the decrease in performance as the minimum structural distance
between test and training compounds increases highlight key limitations in our approach
(Table 4.4). On this front, limited coverage of the chemical space by compounds with available
GEx data is a major issue that limits our ability to model in its entirety the complex function
that translates changes in chemical structure to BP alterations. Even though each training set
for each cell line contains on average around 320K samples, these are comprised from the
pairing of around 800 compounds. The limitations that arise from this low coverage of the
chemical space can’t be solved by changes in deep learning architecture and require more
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training compounds and/or extra input information. On this front, we applied a data
augmentation technique, where each training set was augmented with randomly sampled
pairs between Q1 and Q2 compound signatures (see Sl 4.2). However, due to conflicting
evidence between Q1 and Q2 transcriptomic signatures the performance of the models varied
significantly across cell lines (see Sl 5.3). A rather efficient workaround that we utilized in our
approach is to quantify predictive uncertainty using deep ensembles. We showed that the
model’s performance, even when tested on compounds that are structurally different from
the ones used in training, is higher for samples with lower uncertainty (Figure 4.5). Thus, the
model’s estimate of predictive uncertainty can be used to provide more reliable and accurate
results. For instance, if an application imposes a constraint on the maximum allowed error,
the appropriate uncertainty threshold can be identified and only point predictions with
uncertainty lower than this threshold can be considered. Finally, we showed that transfer
learning is a suitable approach to expand the biological coverage of deepSIBA to additional
cellular models with fewer available data points (Table 4.3). For example, in the NPC cell line,
which has approximately 50% fewer compound signatures than A375, deepSIBA was still able
to achieve reasonable performance.

4.4.3 Signaling pathway inference for target structure

The predictions of deepSIBA can be used to infer a signaling pathway signature, in terms of
the most upregulated and downregulated pathways, for a target chemical structure without
available GEx data. The inference is performed following a KNN-like approach, in which
reference compounds with the smallest distance to the target, as predicted by the model, are
selected as its neighbors and their pathway signatures are retrieved. Then, pathways that
frequently belong in the 10 most upregulated or downregulated pathways of the neighbors
are inferred as the target’s signature. The performance of the approach was evaluated on the
test compounds of the MCF7 model and then, as a use case, it was tasked to infer the signaling
pathways affected by FDA approved anticancer drugs, for which no GEx data are available in
our dataset. Additionally, the chemical substructures that mostly influence the inferred
pathways were identified and visualized using a graph gradient-based approach.

4.4.3.1 Performance evaluation in the test set of MCF7. For the test set of the MCF7 cell line,
the average performance of the inference approach is presented in Table 4.5. On average 5
pathways per test compound were inferred to belong in its 10 most downregulated pathways
with a precision of 73.3%. Regarding upregulation, an average of 2.5 pathways per compound
with a precision of 69.7% were inferred. We have to note that the statistical significance of
the inferred pathways is ensured by comparing the neighbor selection process using the
trained model to a random selection.

Table 4.5 Pathway inference results for the test compounds of MCF7
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Number of inferred .
Precision (%)

pathways
Downregulated 5 733
Upregulated 2.5 69.7

4.4.3.2 Use case: signaling pathway inference of FDA approved anticancer drugs. Out of the
59 FDA-approved cytotoxic drugs presented by Sun et al., 18 were present or had a structural
analogue in the MCF7 training set (Tanimoto ECFP4 similarity > 0.85).*® In order to simulate a
realistic application for the signaling pathway inference, these 18 drugs were excluded from
the use-case. From the remaining 39 drugs, only 3 had more than 5 neighbors each in the
training set, as predicted by the model and the inferred pathways are presented in Table 4.6.
Fludarabine and Clofarabine are direct nucleic acid synthesis inhibitors, while Pralatrexate is
an indirect inhibitor of nucleotide synthesis through inhibition of the folate cycle.* In our use
case, the inferred downregulated signaling pathways include cell cycle, purine and pyrimidine
metabolism, RNA transport and spliceosome, which are closely related to the drugs’
mechanism of action. Furthermore, because of the MCF7 cell line, pathways such as oocyte
meiosis and progesterone-mediated oocyte maturation, that have been associated with the
pathogenesis of breast cancer, were inferred as downregulated.*> Regarding upregulation,
pathways such as NF-kappa B signaling, natural killer cell mediated cytotoxicity, leukocyte
transendothelial migration and TNF signaling, that are closely related to inflammation and
apoptosis, were inferred.

Table 4.6 Pathway inference results for FDA approved anticancer drugs

Inferred Upregulated
. . Inferred Downregulated
Drug Mechanism of Action . . KEGG
KEGG Signaling Pathways . .
Signaling Pathways

Purine metabolism,
L. 3 Leukocyte
Pyrimidine metabolism, .
transendothelial

RNA transport, . . .
. L . . migration, Oxytocin
Fludarabine Nucleic Acid Synthesis Spliceosome, Cell cycle, . .
o L. signaling pathway,
Inhibitor Oocyte meiosis,

. Alzheimer's disease,
Progesterone-mediated . )
. Pertussis, Rheumatoid
oocyte maturation, o
. . arthritis
MicroRNAs in cancer

Natural killer cell
RNA transport, . .
. mediated cytotoxicity,
Spliceosome, Cell cycle,

o . Leukocyte
. . . . Ubiquitin mediated .
Clofarabine Nucleic Acid Synthesis . transendothelial
o proteolysis, . ) )
Inhibitor migration, Oxytocin

Progesterone-mediated . ]
. signaling pathway,
oocyte maturation, . .
. . Pertussis, Rheumatoid
MicroRNAs in cancer .
arthritis
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NF-kappa B signaling

. X pathway, Natural killer
Purine metabolism, i
cell mediated

Inhibits dihydrofolate Pyrimidine metabolism, .
Pralatrexate . cytotoxicity, TNF
reductase (DHFR) and Metabolic pathways, . .
. signaling pathway,
thymidylate synthase RNA transport,

. Leukocyte
Spliceosome .
transendothelial

migration

4.4.3.3 Substructure importance. The method described in section 2.7 was used to highlight
important substructures that deepSIBA pays attention to when inferring the pathway
signature of each anticancer compound presented in the use case (Table 4.6) (Figure 4.6). In
Figure 4.6, red colored atoms represent atoms for which the model exhibits large directional
derivatives across all pairs of target and neighbor compounds. Such atoms that are closely
connected in the target compound’s molecular graph are identified as influential to the
inferred pathway signature. As shown in Figure 4.6, for Fludarabine and Clofarabine, deepSIBA
highlights the 2-Fluoroadenine and 2-Chloroadenine substructures as important respectively,
while the model mostly focuses on the Pteridine structure when inferring the pathways

affected by Pralatrexate.

A. Fludarabine B. Clofarabine C. Pralatrexate

2-Fluoroadenine

Atom importance +

Figure 4.6 Important atoms related to the inferred biological footprint of the compounds of
the use case, as identified by the deep learning model (the red color signifies the most

important atoms)

In the presented use case, we demonstrated that by utilizing the training compounds as
reference, the inferred signaling pathway signatures for each of the anticancer drugs were
found to be closely connected to their respective MoA (Table 4.6). Thus, our inference method
has the potential to provide an early estimate regarding the pathways affected by a
compound, using only its chemical structure as input. Additionally, we showed that for each
compound the highlighted substructures are also directly related to their respective MoA
(Figure 4.6). This fact not only increases the interpretability of the model’s predictions, which
is a crucial topic of DL methods for drug discovery, but also shows that a GCNN model trained
end-to-end on molecular graphs is able to learn meaningful structural representations that
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are related to compounds’ biological effects.***8 To the best of our knowledge, this is the first
time a DL model was used to identify important substructures and infer the signaling pathway
signature of a target compound without available experimental GEx data. A possible limitation
of our approach might be its resolution capabilities in specific use-cases of compounds with
similar chemical structure but different MoA. Although the comparison of the Fludarabine and
Clofarabine use-cases suggests that our approach might be able to identify small structural
differences between drugs with similar MoA (Figure 4.6), we haven’t systematically compared
use-cases of structurally similar compounds that affect different BPs. From the analysis of the
CMap dataset we have showed that compounds with high structural similarity tend to have
similar biological effect (see SI Figure S4.6). This lack of data regarding compounds that are
derivatives but affect different BPs limits our ability to systematically perform the
aforementioned comparison and pinpoint the maximum resolution of our approach.
Furthermore, due to the nature of the inference method, limiting factors may also arise from
the lack of diversity in affected BPs by the training compounds. This lack of diversity can
influence the signaling pathway inference for an unknown target structure, when its true
biological footprint is not represented in the reference compounds. In such cases, the
inference of incorrect signatures can be avoided by focusing on target compounds with at
least k reference neighbors (here k = 5) and only infer statistically significant pathways, using
our method’s calculated p-value.

4.5 Conclusion and availability

In this paper, we developed a deep learning framework to match the chemical structure of
compound perturbations to their biological effect on specific cellular models. We showed,
that the careful formulation of the learning problem and the flexibility of the Siamese GCNN
architecture enabled our models to achieve high performance across all test scenarios.
Additionally, we highlighted the utility of the uncertainty estimate, provided by deep
ensembles, in test cases where the unknown chemical structures are very different from the
structures used to train the models. Finally, we presented a novel inference pipeline, which
can infer a signaling pathway signature for a target compound and subsequently identify
which substructures mostly influenced the prediction. The novelty, performance and
interpretability of our methods paves the way for further investigation in order to expand
their coverage and utility.

Possible efforts for further investigation can be concentrated on the input representation, the
biological response distance and the model’s uncertainty estimate. Regarding the input, one
interesting idea is to include binding information in order to capture the potential protein
target of the input molecules. This extra information can be passed to the model either in the
form of latent space embeddings from a trained binding affinity prediction model or in the
form of predictions against a panel of protein kinases.* Regarding the biological distance
between compound perturbations, this can be augmented by calculating the compound’s
effect on different levels of biological hierarchy, i.e. GEx, signaling pathways, transcription
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factors and signaling networks.”>*! Afterwards, these distances could be combined or
separate models could be trained in order to better capture the similar effect of compounds.
Additionally, instead of using a distance metric between all affected BPs, specific biological
processes could be selected and application specific models could be developed to identify
compounds that affect these biological processes. Regarding the model’s uncertainty
estimate, an interesting avenue for investigation is to take into account the transcriptomic
signatures of replicates from the CMap dataset and calculate distributions of pairwise
distances between compounds. Then, models could be trained on these distributions to better
capture the variation of the experimental ground truth. Finally, collecting more data regarding
derivative compounds with different MoA is an interesting avenue for further investigation in
order to identify the resolution capabilities of the substructure importance approach.

The highly interdisciplinary framework of deepSIBA combines aspects from both the CADD
and ‘omics domains in order to incorporate the structural and systematic effects of small
molecule perturbations, which are closely related to their efficacy and toxicity profiles. We
believe that our methods have the potential to augment in-silico drug discovery, either by
exploring on a massive scale the biological effect of compounds/libraries without available
GEx data, or by suggesting new chemical structures with desired biological effect.

All analyzed data that were used to train our models and produce all tables and figures are
available at https://github.com/BioSysLab/deepSIBA. Furthermore, the R source code to

analyze the CMap dataset and create the training, validation and test sets is available at
https://github.com/BioSysLab/deepSIBA/preprocessing.  Finally, the Keras/TensorFlow

implementation of our deep learning models, alongside trained ensemble models for each cell
line are available at https://github.com/BioSysLab/deepSIBA/learning.
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4.7 Supplementary Information (SI)

1 Data preprocessing and quality control

1.1 Dataset and quality overview. The filtered CMap dataset contains 112994 transcriptomic
signatures from 20254 compounds tested across 70 cell lines. During the filtering process, for
each compound per cell line, its signature with the highest quality across different dosages
and time points was selected. The assigned quality score based on TAS, number of replicates
and whether the signature is considered an exemplar is presented in Table S4.1. The
distribution of signature quality across cell lines is presented in Figure S4.1. Deep learning
models were developed for the MCF7, PC3, VCAP and A375 cell lines, which have the highest
number of compounds with Q1 signatures.

Table S4.1 Signature quality score

) Number of
Quality score TAS . Exemplar

replicates

Q1 >04 >2 True

Q2 0.2-04 >2 True

Q3 0.2-0.4 <2 True

Q4 0.2-04 >2 True

Q5 0.2-04 <2 True

Q6 <0.1 >2 True

Q7 <0.1 <2 True

Q8 <0.1 <2 False
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Figure S4.1 Distribution of signature quality scores across cell lines. The “other” cell line
category is formed by grouping together 63 cell lines with smaller number of available
transcriptomic signatures.

1.2 Distances between Q2 transcriptomic signatures across cell lines.

As already discussed on the main paper, there is a significant number of compound pairs
which have similar transcriptomic signatures in one cell line but not in the other (Figure S4.2).
As it can be seen in Figure S4.2, this effect is much more prominent in the case of quality 2
(Q2) signatures.
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Figure S4.2 Scatterplot of distances between Q2 transcriptomic signatures for the same
compound pairs in the MCF7 and VCAP cell lines. Each point in the plot represents a pair of
compounds with available transcriptomic signatures in both cell lines. The red lines, at 0.39
for MCF7 and 0.4 for VCAP indicate the mean + standard deviation of the distribution of
distances between Q2 duplicate signatures for each respective cell line

1.3 GO term enrichment and distance calculation. For the MCF7, A375, VCAP and PC3 cell
lines, the average number of significantly enriched GO terms in quality 1 signatures is
presented in Table S4.2. Enrichment p-values were calculated with GSEA and adjusted using
the Benjamini-Hochberg procedure. GO terms with an adjusted p-value less than 0.05 were
considered significantly enriched. Based on Table S4.2 the number of top and bottom GO
terms to consider during the ensemble distance calculation was selected (10, 20, 30, 40 and
50 GO terms). The ensemble distance approach outputs 5 distance scores for each signature
pair, one for each of the numbers of top and bottom GO terms considered. The histogram of
standard deviations of the calculated distances for each cell line is presented in Figure S4.3.
The effect of the number of GO terms to consider during distance calculation is small, but not
negligible. Furthermore, the relationship between pairwise distances between compounds at
the GO term-level and at the gene-level was examined (Figure S4.4). Although distances are
significantly correlated, the similar biological effect of chemical structures is better
represented on a functional level between enriched GO terms. Finally, the ensemble distance
approach of the GO term feature vectors was validated computationally. For the MCF7 cell
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line, where enough quality 1 duplicate signatures are available (n

20), their distance

distribution was compared to a randomly selected subset of pairwise distances between

different compound perturbations (Figure S4.5). It is clear that the proposed ensemble

distance metric can easily separate duplicate compound perturbation pairs from random

pairs.

Table S4.2 Average number of significantly enriched GO terms following compound treatment

Average number of significant GO terms

Cell line .
(p.adj < 0.05)
MCF7 20.1
A375 29.8
VCAP 11.2
PC3 30.0
A375 MCF7
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Figure S4.3 Histograms of standard deviations of distances calculated between enriched GO
terms for 5 different numbers of top and bottom GO terms (10, 20, 30, 40 and 50) for each
cell line. Distances were calculated between compounds with Q1 signatures only.
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Figure S4.4 Scatter plot of pairwise distances between compounds calculated at the gene and
GO term-level for each cell line. Distances were calculated between compounds with Q1

signatures only.
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Figure S4.5 Distribution of distances calculated with the ensemble GSEA score approach
between compounds’ affected BPs for the MCF7 cell line. The black line represents the
distribution of pairwise distances between duplicate signatures, while the red line represents
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the distances between signatures of random compound pairs. The separation between the
two distributions indicates that the ensemble distance function can distinguish compounds
that affect similar BPs (duplicates) from random compound pairs.

1.4 Comparing structural and biological effect distance. For each compound pair, Morgan
circular fingerprints with radius 2 were generated using RDkit and their pairwise Tanimoto
coefficient (Tc) was computed.! During fingerprint generation, the default atom invariants
were used, making them similar to the widely used ECFP4.2 Finally, pairwise compound
distances were calculated, as 1 — Tc. The relationship between pairwise compound structural
distances and their distance in terms of affected biological processes (GO terms) in each cell
line, was examined (Figure S4.6). We report similar results to Sirci et al.®> and their analysis of
transcriptomic and structural distances in the original CMAP dataset.? Indeed, compounds
with similar ECFP4 fingerprints, tend to affect similar biological processes (lower left quadrant
of Figure S4.6). However, there are many structurally dissimilar compounds that have similar
biological footprint (upper left quadrant of Figure S4.6). Finally, the majority of compounds
are structurally dissimilar and affect different biological processes (upper right quadrant of
Figure 54.6).

A375 MCF7
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ECFP4 distance
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Figure S4.6 Scatterplot of pairwise distances between compounds’ ECFP4 fingerprints and
between compounds’ enriched BPs. The red lines represent reasonable thresholds to consider
compounds similar in structure and similar in effect (0.3 for ECFP4 and 0.2 for BPs). Even
though there is no correlation between compounds’ structural and biological effect distances,
the majority of structurally similar compounds tend to affect similar BPs (lower left quadrant
of the plot).
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2 Deep learning model

2.1 Input representation. Molecular graphs are presented to the model using the Atom array,
the Edge array and the Bond array. The Atom array has as many rows as the max number of
atoms across all compounds and each column represents an atom feature. In total, 62 atom
features are utilized. The atom features consist of the concatenated vectors of 4 one hot
encoded features and 1 binary feature, which describe:

e The symbol of the atom (one-hot).
e The degree of the atom (one-hot).
e The number of attached hydrogen atoms (one-hot).
e The valence of the atom (one-hot).

e If the atom is aromatic (binary).

The Edge array describes the connectivity of the graph representing the molecule. The Edge
array consists of as many rows as the max number of atoms. Each row contains the atom’s
neighbors. The Bond array is 3-dimensional and contains the features of each bond. Each row
represents an atom, while each column represents a neighbor, up to 5 for each atom. A bond
is described by 6 binary features contained in the Bond array, which describe whether the
bond is:

e Single
e Double
e Triple

e Aromatic
e Conjugated
e InaRing
The Atom, Bond and Edge arrays were created using RDKit in python.

2.2 Graph convolutions. Graph convolutions were implemented in Keras as described by
Duvenaud et al.> A graph convolutional layer aggregates information from the neighboring
nodes of a node/atom in the molecular graph. For every atom, its bond features are summed
and concatenated with its atom feature vector. The resulting feature vector of each atom is
summed with the feature vectors of its neighbors, using the connectivity information of the
Edge array, creating in this way a new feature vector for every atom with aggregated
information from the atom’s neighborhood. Then, every feature vector passes through a fully
connected layer, based on the atom’s degree, and a non-linear activation function. Typically,
following a graph convolution layer, a function, such as sum, is used to aggregate node
embeddings into whole graph embeddings. In our implementation we omitted the use of an
aggregation function and instead utilized 1D convolutions to gather information across
neighborhoods and produce a graph feature map.

Graph Convolutional Layer Pseudocode:

1: Input: Atom array X4, Bond array X, Edge array D
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2: for each atom a; in a molecule

3 SXp=Y X,

4: Xy, = concatenate(X,,, SXg,)

5: for each neighbor j from N neighbors

6: SXp,=Y Xp,

7: X A}. = concatenate(X,;, SXg,)

8: X4 = Xa + Ti1Xa,

9: X3 =relu(Wgegree * X4, + baegree) #is the new concatenated atom and bond
matrix

2.3 Model hyperparameters. The hyperparameters used to train the models are presented in

Table S4.3. In our approach we utilized widely accepted hyperparameter values without
performing hyperparameter optimization.

Table S4.3 Model hyperparameters

Optimizer Adam
Learning Rate 0.001

Epochs 20

Batch size 128

Regularization Dropout (rate = 0.3)
Batch Normalization Momentum 0.6
Weight Initializer Glorot Normal

Activation Function Relu

2.4 Gaussian mixture. By using a Gaussian regression layer, each model outputs a mean and

variance of the biological effect distance between pairs of molecular graphs. The ensemble’s
output is also a Gaussian, with mean and variance calculated from the uniformly weighted
mixture of each model. The mean and variance of the mixture are defined as

where,

eV, isthe output mean value of the biological effect distance of each model.
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N is the number of models.

m,, is the final mean value of the uniformly weighted mixture.

e sigma is the standard deviation of the uniformly weighted mixture.

sd; is the output variance of the biological effect distance of each model.

Finally, the coefficient of variation of the Gaussian mixture is used as the model’s estimate of
predictive uncertainty and is defined as

sigma
CV = g .

my
3 Other similarity/distance learning methods

3.1 ReSimNet. Our approach was compared with a recently proposed architecture called
ReSimNet.® ReSimNet takes as input the 2048-bit ECFP4 fingerprints of two chemical
compounds and predicts their CMap score, which corresponds to the transcriptional response
similarity of their GEx signatures. ReSimNet encodes the ECFP4 input to embedding vectors in
the latent space using Siamese MLPs and predicts their CMap score as the cosine similarity of
their embeddings. In our implementation, ReSimNet was trained to predict the similarity
between compounds’ affected BPs and afterwards the output similarity was transformed to a
distance value for evaluation. The performance of randomly initialized ReSimNet ensemble
models was evaluated for each cell line, on its respective test set (Table 4.2 of the main paper).

3.2 TwoStepRLS. In this study, TwoStepRLS, a Kronecker product kernel that utilizes a

regularized least-squares (RLS) method, was used to predict the GO-term similarity of pairs of
compounds, using as input the Tanimoto similarity between compounds’ ECFP4 fingerprints.
The regularization parameter was set to the proposed value of 2. This method was
implemented using RLscore’, an open-source python package for kernel-based machine
learning, which includes implementations of RLS machine learning methods.

4 Dataset splitting and augmentation

4.1 Dataset splitting. An overview of the training and test sets for each cell line is presented

in Table S4.4 and S4.5, while the distribution of the target variable is presented in Figure S4.7.
For the proposed learning task, random splitting of compound pairs between training and test
has no benefit, since if a compound is present on the training set its affected BPs are known
and distances to other compounds can be calculated instead of predicted.

Table S4.4 Cell line specific training sets

Cell line Number of Compounds Number of Pairs
MCF7 713 253828
PC3 608 184528
A375 592 174936
VCAP 934 435711
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Table S4.5 Cell line specific test sets

Cell line Number of Compounds Number of Pairs
MCF7 70 49910
PC3 74 44992
A375 77 45584
VCAP 63 58842
A375 MCF7
PC32 VCAP
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Figure S4.7 Histogram of the model’s target variable for each cell line.

4.2 Data Augmentation. When training augmented ensemble models, the original training set

of each model, consisting of Q1 signature pairs, was augmented with randomly sampled pairs
between Q1 and Q2 signatures. This technique was utilized in order to increase the number
of compounds and the diversity of chemical structures available during training. Although this
approach resulted in better performance for the MCF7 cell line compared to random
initialization ensembles in terms of precision, it wasn’t pursued further due to reliability issues
of Q2 transcriptomic signatures. We observed many cases where the distance between Q1
signatures of compounds A and B was very small, e.g. 0.1, while the distance between
signatures of compounds A and C, where C s a structural analogue of B (Tanimoto similarity >
0.85) and has a Q2 signature was high, e.g. 0.8. This kind of discrepancy between Q1 and Q2
signatures poses a problem for the learning model that only uses chemical structures as input.

5 Performance evaluation
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5.1 Distance threshold for precision. The model outputs a continuous value between 0 and 1

for the distance between compounds’ affected biological processes (GO terms). In order to
evaluate the model’s precision, a reasonable distance threshold has to be specified.
Compounds with predicted distances below this threshold are considered similar in terms of
affected biological processes. First, the connection between the distance threshold and the
average number of common GO terms in the most upregulated and downregulated GO terms,
respectively, for all compound pairs in the dataset was examined and is presented in Figure
S4.8. The average number of common GO terms decreases linearly as the distance threshold
increases (Figure S4.8). Additionally, for each compound per cell line, the distance threshold
equivalent of a 90% Connectivity score was calculated (Figure S4.9). For a specific compound
X, a threshold equivalent of a 90% score indicates that only 10% of other Touchstone
compounds have a distance from X smaller that this threshold. The 90% CMAP score is a
widely accepted threshold to identify compounds with similar transcriptomic signatures.
Finally, for MCF7, for which enough quality 1 duplicate compound signatures are available,
the distribution of pairwise distances between duplicate signatures is presented in Figure S4.5
(black line). Based on the information provided in Supplementary figures 8, 9 and 5, a
threshold of 0.2 was selected when evaluating the models’ precision across all cell lines. When
calculating the model’s precision on test compounds that exhibit maximum structural
similarity to all training compounds less than 0.3, this threshold was adjusted to 0.22, because
in this case no samples had a predicted distance less than 0.2.

12

11
/

Number of common GO terms
/

© T | T T

0.14 0.16 0.18 0.20 0.22

Threshold

Figure S4.8 The relationship between the biological effect distance threshold and the average
number of common enriched BPs. In order to produce the above plot, signature pairs with
GSEA distance below each threshold (x axis) are selected and the average number of common
GO terms (BPs) in the 20 most upregulated and downregulated terms of all pairs is calculated

(y axis).
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Figure S4.9 Histogram of the threshold, which is equivalent to a 90% CMAP score, for all
Touchstone compounds per cell line. The red vertical lines at 0.2 and 0.22 indicate the
thresholds that were used to evaluate the models’ precision. Across all Touchstone
compounds, in all cell lines, the utilized thresholds are close to the mean of the threshold
equivalent to a 90% CMAP score.

5.2 Cross validation performance. For each cell line, we evaluated the performance of a 10

model ensemble in a 5-fold cross validation split. Each validation set contains pairwise
distances between BPs of non-overlapping sets of 80 validation compounds and all remaining
training compounds. When extracting validation compounds, the maximum allowed
Tanimoto similarity between ECFP4 fingerprints of validation and training compounds was set
to 0.85. The results of the 5-fold cross validation are presented in Table S4.6. In all tested cell
lines, our approach was able to produce consistently good results.
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Table S4.6 Cross validation performance of deepSIBA

Cell-line MSE MSE @1% Pear:on’s Precision (%)
A375 0.008 0.005 0.56 92.11
VCAP 0.025 0.005 0.54 64.28

PC3 0.011 0.009 0.54 96.47
MCF7 0.013 0.009 0.52 58.94

5.3 Augmented deepSIBA performance evaluation.

Table S4.7 Cell line specific test set performance of augmented deepSIBA

Predicted similar

Cell-line MSE Pearson’sr Precision (%) .
pairs
A375 0.009 0.61 91.54 272
VCAP 0.030 0.42 84.78 46
PC3 0.011 0.54 25.97 77
MCF7 0.015 0.45 88.00 25

6 Signaling pathway inference for target structure

6.1 Parameter selection. The most important parameters of the signaling pathway inference

are the distance threshold d;j and the frequency threshold f;,. Training set compounds with
predicted distances from the target less than d;, are selected as its neighbors, while pathways
that appear in the neighbors’ signatures with frequency higher thanf;;, are inferred as the
target’s signature. The performance of the inference method was evaluated for different
values of d;, and f;, in the test set of MCF7 (Figure S4.10). The average precision of the
inferred pathway signatures as well as their length were chosen as evaluation metrics. The
performance of the method decreases as d;;, increases and f; is kept constant at 0.65 for
both the upregulated and downregulated signatures. In terms of precision, as d;; increases
the precision of the approach decreases, and for d;;, > 0.4 it becomes 0 (Figure S4.10A and
S4.10B). In terms of the length (average number) of the inferred signatures, for d;, higher
than 0.4, the length of inferred signatures becomes 0, as more distant compounds are
considered neighbors (Figure S4.10C and S4.10D). After selecting 0.65 as a reasonable
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threshold for d;;,, we evaluated the performance of the approach for different frequency
thresholds f;, the results are presented in Figure S11. As f;; increases, while d, is kept
constant at 0.2 the inference becomes more strict. This results in increased precision (Figure
S4.11A and S4.11B), but shorter in length inferred pathway signatures (Figure S4.11C and
S4.11D). Based on these results, the selected parameters of the pathway inference for the
MCF7 cell line and the respective use case, are presented in Table S4.8.
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Figure S4.10 Performance evaluation of the signaling pathway inference for different distance
thresholds for the test compounds of the MCF7 cell line. Reference compounds (training) with
predicted distance lower than the threshold are selected as the target’s neighbors. The rest
of the inference parameters are kept constant and their values are presented in the legend.
(A) The average precision of the downregulated pathway signature as a function of the
distance threshold; (B) The average precision of the upregulated pathway signature as a
function of the distance threshold; (C) The average length of the inferred downregulated

pathway signature; (D) The average length of the inferred upregulated pathway signature.
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Figure S4.11 Performance evaluation of the signaling pathway inference for different
frequency thresholds for the test compounds of the MCF7 cell line. Signaling pathways that
appear in the neighbors’ signatures with frequency higher than f;; are inferred as the target’s
signature. The rest of the inference parameters are kept constant and their values are
presented in the legend. (A) The average precision of the downregulated pathway signature
as a function of the distance threshold; (B) The average precision of the upregulated pathway
signature as a function of the distance threshold; (C) The average length of the inferred
downregulated pathway signature; (D) The average length of the inferred upregulated
pathway signature.

Table S4.8 Parameter values for the signaling pathway inference approach

Parameter Value
Distance threshold d;j, 0.2
Number of neighbors k 5
Frequency threshold f;p, 0.65
P-value threshold p;j 0.01
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Chapter 5 Conclusion

Chapter 5

Concluding remarks

5.1 Conclusion

In this thesis | developed and tested deep learning models for the field of systems
pharmacology. The deepSIBA and deepSNEM pipelines serve as proof of concept that deep
learning can provide a framework to successfully incorporate elements from both the
structural and systems domain of drug discovery in order to reduce its attrition rates. | hope
that the created datasets and methods can pave the way for more research in the field of
deep learning for systems pharmacology. | also believe that as more data become available,
the deep learning applications for systems pharmacology will become increasingly useful and
find real world applications in the field of drug discovery. However, we have to be mindful
regarding where further research in the field should be focused to. From my experience, the
most important aspect of any developed pipeline is the problem statement, along with the
data/features and preprocessing steps, rather than the deep learning method. During my
research, most of my time was spent on developing the learning problem that can test the
hypothesis, along with finding the right data to train the system. Building a deep learning
pipeline based on experimental data, for tasks that cannot be solved by humans is a very
complex problem. Given the complexity of the problem, | believe that the collaborative effort
of machine learning scientists, systems scientists and biologists is paramount for the success
of the field.

5.2 Data and code availability

All the datasets and code that were created as part of my research is available at the github
page of the lab https://github.com/biosyslab.
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