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Summary 

Systems pharmacology methods aim to prioritize compounds that not only exhibit maximal binding 

affinity to the specified target, but also cause the desirable biological effect.  One specific approach 

that has gained considerable attraction is modeling the cellular system as a complex network of 

molecular interactions, in order to identify changes in the signaling mechanism that best explain the 

experimental response data. In this thesis, we first present a concise review of omics repositories and 

knowledge bases of molecular interactions, along with network-based methods for their analysis. 

Furthermore, we present two novel deep learning pipelines, called deepSNEM and deepSIBA, which 

can be used to investigate the connection of a compound’s signaling network and chemical structure 

to its mechanism of action (MoA) and biological effect.  

DeepSNEM is a novel unsupervised graph deep learning pipeline that is trained to encode the 

information in the compound-induced signaling networks into fixed length high-dimensional 

representations. DeepSNEM is a graph transformer network, trained to maximize the mutual 

information between whole-graph and sub-graph representations that belong to similar 

perturbations. By clustering the deepSNEM representations, we were able to identify distinct clusters 

that are significantly enriched for specific MoAs. In order to increase the interpretability of deepSNEM, 

we developed a subgraph importance method to elucidate the important subgraphs that cause the 

signaling networks to cluster together. As a case study, deepSNEM was applied to cluster the 

representations of signaling networks created from gene expression profiles of various experimental 

platforms (MicroArrays and RNA sequencing). In order to take into account the structural attributes 

of compound perturbations, alongside deepSNEM, we developed the deepSIBA pipeline to investigate 

the connection between a compound’s chemical structure and its biological effect. 

DeepSIBA is a supervised Siamese graph convolutional model that is trained to predict the biological 

effect distance between a pair of compounds, using their molecular graphs as input. The proposed 

model was able to encode molecular graph pairs and identify structurally dissimilar compounds that 

affect similar biological processes, with high precision. Additionally, by utilizing deep ensembles to 

estimate uncertainty, we were able to provide reliable and accurate predictions for chemical 

structures that are very different from the ones used during training. Finally, we present a novel 

inference approach, where the trained deepSIBA models are used to estimate the signaling pathway 

signature of a compound perturbation, using only its chemical structure as input, and subsequently 

identify which substructures influenced the predicted pathways. As a use case, deepSIBA was used to 

infer important substructures and affected signaling pathways of FDA-approved anticancer drugs. 
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Extended summary 

Introduction 

Drug discovery is a complex and time consuming process that aims to identify the right compound for 

the right disease and target. Despite the development of many successful drugs, the attrition rates 

still remain high. Recent advances in systems-pharmacology and omics technologies have led to the 

development of computational tools that aim to model the biological effect of the compound 

perturbation in the cellular system. These tools, based on biological pathways and signaling networks, 

offer a systematic approach to unravel a compound’s Mechanism of Action (MoA) and prioritize 

compounds that have the desired effect for further experimental validation. In this thesis, we first 

provide a thorough review of omics databases and knowledge bases of molecular interactions, along 

with network-based modeling tools that can be applied across all stages of the drug discovery pipeline 

to elucidate the compound’s MoA. Furthermore, we provide a concise list of studies that have 

successfully implemented these network-based approaches for various drug discovery projects. 

However, due to their complex structure, large scale datasets of compound-induced signaling 

networks and methods specifically tailored to their comparison are still very limited. One approach 

that holds promise to overcome these limitations is the use of graph deep learning models to 

transform signaling networks into high-dimensional representations. On this front, we proposed the 

deepSNEM pipeline that uses an unsupervised graph transformer network to encode a compound’s 

signaling network and investigate its relationship with the compounds’ MoA. However, systems 

pharmacology approaches that rely on cellular response data are limited in their application to 

compounds with available data and most importantly do not take into account the compounds’ 

structural attributes that are closely related to their efficacy, effect and toxicity profiles. To this end, 

we aimed to use graph deep learning to match the chemical structure of compound perturbations to 

their biological effect on specific cellular models. Thus, we proposed the deepSIBA pipeline that can 

be used to infer a compound’s signaling pathway signatures, without available expression data, using 

only its structure as input. 

 

DeepSNEM: Deep Signaling Network Embeddings for compound mechanism of 

action identification using deep learning 

DeepSNEM methods 

Transcriptomic signatures following compound treatment were retrieved from the CMap dataset. 

After assigning a quality score to its experiment, the highest quality data were selected and 

transformed into compound-induced signaling networks using the CARNIVAL pipeline. CARNIVAL 

solves an ILP optimization problem to infer a family of highest scoring subgraphs, from a prior 

knowledge network of signed and directed protein-protein interactions, which best explain the 

experimental data, subject to specific constraints. In total, more than 700000 networks were created 

from 7781 transcriptomic signatures of 3005 compounds across 70 cell lines. Afterwards, an 
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unsupervised deep learning model that takes as input a compound-induced signaling network and 

outputs a fixed-length high dimensional representation was developed. The signaling networks were 

represented as input to the model using three matrices that contain information regarding the nodes 

of each network, their activity and the network’s connectivity (sign and direction). The core of 

deepSNEM is a graph transformer network that pays specific attention to each node’s neighborhood, 

when extracting the important features that describe the signaling mechanism. Finally, a whole-graph 

representation is created by summarizing the node embeddings, using a 2-layer Long Short Term 

Memory network. The model was trained by maximizing the mutual information between the nodes 

and subgraphs that belong to the same or duplicate experiments. Thus, the deepSNEM model creates 

similar representations for similar compound-induced signaling networks. The resulting 256-

dimensional embeddings of the compounds’ signaling networks were clustered using the k-means 

algorithm, into 200 unique clusters. These clusters were then analyzed based on their MoA 

composition, using labels provided by the Drug Repurposing Hub dataset. Furthermore, we developed 

a node importance pipeline, using the saliency approach, to identify the nodes that the model pays 

attention to, when creating the network representations. Finally, this node importance score was 

integrated with each node’s frequency in a cluster to extract important subgraphs, in the original 

networks, that cause the representations to cluster together. 

DeepSNEM results 

The deepSNEM approach was evaluated based on the validity of the resulting embeddings on two 

separate tasks. The first task examines the models’ ability to produce similar embeddings from 

signaling networks that are created from the same differential gene expression signature, while the 

second task evaluates the similarity of graph embeddings created from duplicate gene signatures, as 

compared to the similarity of embeddings from random gene signatures. On this front, the 

embeddings produced by the graph transformer architecture, termed deepSNEM-GT-MI, were 

compared to embeddings created from three additional models. These models include, a graph 

transformer trained to predict the edge presence between nodes (termed deepSNEM-GT-LP), a 

siamese GCN model to predict the graph edit distance between signaling networks (termed 

deepSNEM-GED) and the widely used graph2vec model (termed deepSNEM-G2V). Across both tasks, 

all deepSNEM model variations were able to identify embeddings produced from similar signaling 

networks, with the deepSNEM-GT-MI variation showing the best performance. The embeddings of the 

deepSNEM-GT-MI model were clustered, and the resulting clusters were analyzed based on their MoA 

composition. On this front, we were able to identify distinct clusters that are significantly enriched for 

mTOR, topoisomerase, HDAC and protein synthesis inhibitors respectively. Additionally, by applying 

the importance pipeline, on the clusters enriched for mTOR inhibitors, we were able to identify 

important nodes and subgraphs that are directly related to the mTOR/PI3K signaling mechanism. As a 

case study, deepSNEM was used to assign clusters to signaling networks created from compounds’ 

gene expression profiles from various experimental platforms (MicroArrays and RNA sequencing). The 

results show that the majority of the compounds’ signaling networks were correctly assigned to 

clusters that were enriched for their respective MoA. For the compounds in the use case, we also 

compared the cluster assignment of deepSNEM to a clustering of the compounds’ differential 

expression gene measurements into the same number of clusters (k=200). Comparing the two 

approaches, 3/8 compounds were assigned to clusters composed of similar mechanisms. However, 
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the remaining compounds were assigned to clusters not enriched for any particular MoA, when the 

gene-clustering pipeline is used. Finally, for each compound of the use case, we calculated the Jaccard 

similarity index between the perturbations of the identified clusters using the two methods 

(deepSNEM and gene-based clustering). The similarity between the clusters was very low, with only 

two clusters showing a similarity higher than 0.1. 

DeepSNEM discussion 

DeepSNEM was not only able to identify clusters of network representations that were enriched for 

specific MoAs, but also identify important subgraphs that are related to them. However, the majority 

of the compounds’ MoA labels are still unknown, which can result in a different MoA composition for 

the identified clusters, when they are taken into account. By comparing the deepSNEM pipeline to a 

simple gene-based clustering approach, we showed that the two approaches result in a different 

clustering of the perturbations. We argue that is due to the different biological hierarchy of 

information provided by the compound-induced signaling networks and differential gene expression 

signatures. Thus, the deepSNEM pipeline, by using the knowledge of molecular interactions, can 

identify similarities and differences in the compounds’ signaling networks that are hidden in their 

transcriptomic signatures.  

 

DeepSIBA: Chemical Structure-based Inference of Biological Alterations using 

deep learning 

DeepSIBA methods 

Gene expression profiles following compound treatment were collected from the L1000 Connectivity 

Map resource (GSE92742). For this study, only level 5 expression data (z-scores) of the landmark genes 

were considered. For each compound perturbation, enrichment scores (ES) of GO terms related to 

biological processes were calculated using Gene Set Enrichment Analysis. Afterwards, a Kolmogorov-

Smirnov based distance function was used to calculate the pairwise distance at the GO-term level. For 

each pair in the dataset, the distance was calculated using 5 different thresholds for up-regulated and 

down-regulated GO-terms. Finally, the distances were averaged. This pairwise GO-term distance score 

was then used as the target variable for the learning model. The learning model takes as input the 

chemical structures of compound pairs, represented as undirected graphs, with nodes being the 

atoms and edges the bonds between them. The architecture consists of two Siamese (identical) graph 

convolutional and convolutional encoders, one for each compound, that embed the chemical 

structure into a high dimensional latent space. The absolute difference of the embeddings is then fed 

through 2 convolutional layers followed by 2 fully connected layers. The final layer is a Gaussian 

regression layer that outputs a mean and standard deviation of the biological effect distance between 

the pair. By treating the distance as a sample from a Gaussian distribution with the predicted mean 

and variance, the model is trained by minimizing the Negative Log Likelihood. Model ensembles are 

created by taking the uniformly-weighted mixture of each model’s Gaussian. Furthermore, we 

developed a novel inference approach method, similar to k-NN that can be used to infer a signaling 

pathway signature from a compound’s chemical structure. To this end, the trained deepSIBA ensemble 
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is used to predict the biological effect distances between the target compound and all the compounds 

in the dataset. Then, training compounds with the lowest distance are selected as neighbors and a 

target signature is inferred by using a voting scheme between the neighbors’ pathway signatures. 

Finally, in order to increase the interpretability of our approach, we developed an importance pipeline, 

based on graph gradients, to identify the important substructures that deepSIBA pays attention to, 

when inferring the signaling pathway signature of a compound. 

DeepSIBA results 

The performance of deepSIBA was evaluated with a realistic drug discovery scenario in mind, where 

gene expression data are available for only one compound per pair. Additionally, deepSIBA’s 

performance was compared to machine learning models for pairwise distance learning tasks. Across 

all cell lines, deepSIBA was able to outperform the machine learning models and exhibited a very high 

precision and low MSE. By utilizing a transfer learning method, we were able to expand the coverage 

of our approach to 7 additional cell lines, with fewer data points, but with similar performance. 

Furthermore, deepSIBA was able to maintain high precision and low MSE, regardless of the chemical 

similarity of the input compounds. We also evaluated the performance of our approach in a scenario, 

where the test compounds are completely different, in terms of chemical structure, to the ones used 

in training. We showed that in this case the precision of the model decreases, while the MSE remains 

comparable. However, by utilizing deepSIBA’s uncertainty estimate, we were able to focus on a 

specific subset of samples that the model was more certain, which led to a dramatic increase in 

performance. As a case study, deepSIBA was tasked to infer the signaling pathway signature of FDA 

approved anticancer drugs that were not present in our dataset, using only their structure as input. 

For the drugs of the use case, deepSIBA was able to infer a signaling pathway signature that is directly 

related to the compounds’ MoA and subsequently identify the correct chemical substructures as 

important for the inference. 

DeepSIBA discussion 

DeepSIBA was able to encode molecular graph pairs and identify structurally dissimilar compounds 

that affect similar biological processes with high precision. Additionally, by utilizing deep ensembles 

to estimate uncertainty, we were able to provide reliable and accurate predictions for chemical 

structures that are very different from the ones used during training. However, there were many 

compound pairs with similar biological effect that were missed by the model. We argue that this 

happens due to the limited chemical coverage of the CMap dataset and we believe that as more data 

become available, the performance of our approach will increase as well. 

 

Conclusion 

We believe that deepSNEM and deepSIBA have the potential to augment in-silico drug discovery, 

either by identifying a compound’s MoA, using its signaling network effect, or by exploring on a 

massive scale the biological effect of compounds/libraries without available GEx data and suggesting 

new chemical structures with desired biological effect. 
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Περίληψη 

Οι μέθοδοι που εφαρμόζονται στη φαρμακολογία συστημάτων βασίζονται στην επιλογή φαρμάκων 

που επιδεικνύουν τη μέγιστη δύναμη πρόσδεσης στην πρωτεϊνη-στόχο και συνάμα οδηγούν στο 

επιθυμητό βιολογικό αποτέλεσμα. Μια συγκεκριμένη τεχνική, η οποία έχει συγκεντρώσει υψηλό 

ενδιαφέρον, είναι η μοντελοποίηση του κυττάρου ως ένα δίκτυο μοριακών αλληλεπιδράσεων, με 

στόχο την ανακάλυψη του σηματοδοτικού μηχανισμού, που περιγράφει με βέλτιστο τρόπο τα 

πειραματικά δεδομένα. Στην παρούσα διατριβή, πρώτα παρουσιάζουμε μια εκτενή συλλογή τόσο 

βάσεων δεδομένων τύπου omics  όσο και μοριακών αλληεπιδράσεων, συνοδευόμενες από τις 

αντίστοιχες μεθόδους δικτύων για την ανάλυση αυτών. Περαιτέρω, παρουσιάζουμε δύο νέες 

μεθόδους deep learning, που ονομάζονται deepSNEM και deepSIBA, οι οποίες έχουν ως στόχο να 

ερευνήσουν τον τρόπο με τον οποίο τόσο το σηματοδοτικό δίκτυο όσο και η χημική δομή ενός 

φαρμάκου συσχετίζονται με το μηχανισμό δράσης και το βιολογικό αποτέλεσμα του φαρμάκου σε 

κυτταρικά μοντέλα. 

Το μοντέλο deepSNEM είναι ένα unsupervised deep learning δίκτυο το οποίο εκπαιδεύεται 

προκειμένου να κωδικοποιήσει και να οριοθετήσει το σηματοδοτικό δίκτυο ενός φαρμάκου σε 

σταθερού μεγέθους πολυδιάστατες αναπαραστάσεις. Το μοντέλο εκπαιδεύεται ώστε να 

μεγιστοποιήσει την αμοιβαία πληροφορία μεταξύ αναπαραστάσεων δικτύων και υποδικτύων, που 

προκύπτουν από παρόμοια πειράματα. Ομαδοποιώντας τις αναπαραστάσεις, καταφέραμε να 

ανακαλύψουμε συγκεκριμένες ομάδες, οι οποίες είναι εμπλουτισμένες σημαντικά με φάρμακα, που 

μοιράζονται ένα συγκεκριμένο μηχανισμό δράσης. Με στόχο την καλύτερη επεξήγηση των 

αποτελεσμάτων αναπτύχθηκε μια μέθοδος ανάδειξης των σημαντικών υποδικτύων, τα οποία 

οδηγούν στην εκάστοτε ομαδοποίηση των αναπαραστάσεων. Η μέθοδος deepSNEM εφαρμόστηκε 

για την ομαδοποίηση των αναπαραστάσεων που προκύπτουν από σηματοδοτικά δίκτυα φαρμάκων, 

τα οποία βασίζονται σε δεδομένα γονιδιακής έκφρασης από διάφορες πειραματικές πλατφόρμες 

(Microarrays and RNA-sequencing). Θέλοντας να λάβουμε υπόψην και τη χημική δομή των ουσιών, 

παράλληλα με το deepSNEM αναπτύχθηκε και το μοντέλο deepSIBA, με στόχο τη διερεύνηση της 

συσχέτισης τους με το βιολογικό αποτέλεσμα των φαρμάκων. 

Το μοντέλο deepSIBA είναι ένα supervised deep learning μοντέλο το οποίο εκπαιδεύεται για την 

πρόβλεψη της απόστασης μεταξύ των βιολογικών διεργασιών ενός ζεύγους φαρμάκων, 

χρησιμοποιώντας τα μοριακά τους δίκτυα ως είσοδο. Το μοντέλο κωδικοποίησε και ανακάλυψε 

ζεύγη φαρμάκων με διαφορετική χημική δομή, τα οποία επηρεάζουν παρόμοιες βιολογικές 

διεργασίες, με υψηλή ευστοχία και ακρίβεια. Εν συνεχεία, χρησιμοποιώντας πλήθος μοντέλων, 

προκειμένου να εκτιμήσουμε την αβεβαιότητα των προβλέψεων, καταφέραμε να έχουμε εύστοχες 

προβλέψεις για φάρμακα, τα οποία έχουν εντελώς διαφορετική δομή από εκείνα που 

χρησιμοποιήθηκαν κατά τη διάρκεια της εκπαίδευσης. Εν κατακλείδι, παρουσιάζουμε μια νέα 

μέθοδο για την εξαγωγή χαρακτηριστικών σηματοδοτικών μονοπατιών, χρησιμοποιώντας ως είσοδο 

μόνο τη χημική δομή των φαρμάκων. Σαν εφαρμογή, το μοντέλο χρησιμοποιήθηκε για την 

ανακάλυψη σημαντικών σηματοδοτικών μονοπατιών και χαρακτηριστικών χημικών δομών σε ένα 

σύνολο εγκεκριμένων αντικαρκινικών φαρμάκων. 
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Εκτενής περίληψη 

Εισαγωγή 

Η ανακάλυψη νέων φαρμάκων είναι μια πολύπλοκη και χρονοβόρα διαδικασία, η οποία αποσκοπεί 

στην εύρεση νέων χημικών δομών, με σκοπό να προσδέσουν στον κατάλληλο στόχο και να 

καταπολεμήσουν την εκάστοτε ασθένεια. Η ανάπτυξη της φαρμακολογίας συστημάτων και των 

τεχνολογιών τύπου omics, έχει οδηγήσει στην δημιουργία υπολογιστικών εργαλείων, που έχουν ως 

στόχο τη μοντελοποίηση της βιολογικής επίδρασης ενός φαρμάκου στο κυτταρικό σύστημα. Οι 

μέθοδοι βασίζονται σε σηματοδοτικά μονοπάτια και δίκτυα και προσφέρουν μια ολιστική 

αντιμετώπιση του προβλήματος της διερεύνησης του μηχανισμού δράσης των φαρμάκων. Στην 

παρούσα διατριβή, πρώτα παρουσιάζουμε μια εκτενή συλλογή τόσο βάσεων δεδομένων τύπου 

omics  όσο και μοριακών αλληεπιδράσεων, συνοδευόμενες από τις αντίστοιχες μεθόδους δικτύων 

για την ανάλυση αυτών. Αρχικά, αναλύονται οι μέθοδοι και εν συνεχεία παρουσιάζονται 

παραδείγματα εφαρμογής αυτών, στην ανακάλυψη του μηχανισμού δράσης φαρμάκων. Παρά την 

πληθώρα των πλεονεκτημάτων τους, τα σηματοδοτικά δίκτυα εξακολουθούν να αποτελούν 

πολύπλοκες αναπαραστάσεις κι ως εκ τούτου, μεγάλες βάσεις δεδομένων καθώς και μέθοδοι για τη 

σύγκριση αυτών είναι περιορισμένες. Μια μέθοδος για την αντιμετώπιση αυτών των περιορισμών, 

είναι η χρήση μοντέλων deep learning, εφαρμοσμένα σε δίκτυα, που αποσκοπούν στη μετατροπή 

τους σε διαχειρίσιμες αναπαραστάσεις. Για αυτό το λόγο, δημιουργήθηκε το μοντέλο deepSNEM, 

ώστε να κωδικοποίησει σηματοδοτικά δίκτυα φαρμάκων και να τα συσχετίσει με το μηχανισμό 

δράσης τους. Στη συνέχεια, με γνώμονα τη σημασία της χημικής δομής των φαρμάκων, 

δημιουργήθηκε το μοντέλο deepSIBA, με στόχο τη διερεύνηση της σχέσης μεταξύ της χημικής δομής 

ενός φαρμάκου και της βιολογικής του επίδρασης στο κυτταρικό σύστημα. 

DeepSNEM: Deep Signaling Network Embeddings for compound mechanism of 

action identification using deep learning 

DeepSNEM μέθοδοι 

Μέσω της βάσης δεδομένων CMap λήφθησαν δεδομένα γονιδιακής έκφρασης, τα οποία εκφράζουν 

την κατάσταση κυτταρικών μοντέλων μετά τη χρήση διαφόρων φαρμάκων. Στη συνέχεια, τα 

πειράματα γονιδιακής έκφρασης με την υψηλότερη ποιότητα μετατράπηκαν σε χαρακτηριστικά 

σηματοδοτικά δίκτυα, χρησιμοποιώντας τη μέθοδο CARNIVAL. Η μέθοδος CARNIVAL λύνει ένα 

πρόβλημα βελτιστοποίησης με τη μέθοδο του ακέραιου προγραμματισμού, ώστε να εξάγει ένα 

χαρακτηριστικό σηματοδοτικό δίκτυο που εκφράζει στο μεγαλύτερο βαθμό τα πειραματικά 

δεδομένα. Συνολικά δημιουργήθηκε μια βάση δεδομένων με περισσότερα από 70000 δίκτυα, τα 

οποία αντιστοιχούν σε 7781 πειράματα γονιδιακής έκφρασης μεταξύ 3005 φαρμάκων και 70 

κυτταρικών μοντέλων. Για την ανάλυση τους δημιουργήθηκε ένα unsupervised deep learning 

μοντέλο, το οποίο δέχεται ως είσοδο τα σηματοδοτικά μονοπάτια και τα αναπαραστεί σε ένα 

πολυδιαστάτο χώρο. Για την είσοδο τους στο μοντέλο τα σηματοδοτικά δίκτυα κωδικοποιήθηκαν 

χρησιμοποιώντας τρεις πίνακες που περιγράφουν έκαστος, τους κόμβους, την κατάσταση του κάθε 

κόμβου και τη συνδεσμολογία του δικτύου. Το μοντέλο είναι ένας transformer δικτύων που δίνει 

ιδιαίτερη προσοχή σε κάθε γειτονιά του δικτύου, προκειμένου να δημιουργεί τις αναπαραστάσεις 
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των κόμβων. Η τελική αναπαράσταση του δικτύου δημιουργείται χρησιμοποιώντας ένα μοντέλο Long 

Short Term Memory προορισμένο για την κωδικοποίηση των αναπαραστάσεων των κόμβων. Το 

μοντέλο εκπαιδεύεται ώστε να μεγιστοποιεί την αμοιβαία πληροφορία μεταξύ δικτύων και υπο-

δικτύων που προκύπτουν από παρόμοια πειράματα γονιδιακής έκφρασης. Τοιουτοτρόπως, η 

ομοιότητα των αναπαραστάσεων μαρτυρά και συνάμα την ομοιότητα των σηματοδοτικών δικτύων. 

Οι τελικές αναπαραστάσεις στις 256 διαστάσεις ομαδοποιήθηκαν με τον αλγόριθμο k-means, και οι 

ομάδες που προέκυψαν αναλύθηκαν ως προς τη σύσταση τους σε μηχανισμούς δράσης φαρμάκων. 

Ομοίως, δημιούργηθηκε μια νέα μέθοδος για την ανακάλυψη σημαντικών υποδικτύων που οδηγούν 

στην εκάστοτε ομαδοποίηση, χρησιμοποιώντας τη μέθοδο saliency. 

DeepSNEM αποτελέσματα 

Οι αναπαραστάσεις των σηματοδοτικών δικτύων που δημιουργήθηκαν επαληθεύθηκαν ως προς τη 

δυνατότητα διαχωρισμού αυτών σε δίκτυα που προέρχονται από το ίδιο πείραμα και από παρόμοια 

πειράματα. Σε αυτό το στάδιο, η μέθοδος deepSNEM transformer συγκρίθηκε με άλλες 3 μεθόδους 

deep learning για δίκτυα. Όλες οι μέθοδοι κατάφεραν να διαχωρίσουν τα σηματοδοτικά δίκτυα που 

προέρχονται από παρόμοια πειράματα, με τη μέθοδο deepSNEM transformer να παρουσιάζει τον 

καλύτερο διαχωρισμό. Κατά την ομαδοποίηση των αναπαραστάσεων και την ανάλυση των ομάδων, 

ανακαλύφθηκαν συγκεκριμένες ομάδες, οι οποίες ήταν εμπλουτισμένες με αναστολείς mTOR, 

topoisomerase, HDAC και protein synthesis. Επιπλέον, χρησιμοποιώντας τη μέθοδο σημαντικών υπο-

δικτύων, καταφέραμε να ανακαλύψουμε σημαντικά υποδίκτυα για τις ομάδες των αναστολέων 

mTOR, τα οποία είναι άμεσα συσχετισμένα με το σηματοδοτικό μονοπάτι mTOR/PI3K. Η μέθοδος 

deepSNEM εφαρμόστηκε για το χαρακτηρισμό του μηχανισμού δράσης νέων φαρμάκων με 

δεδομένα γονιδιακής έκφρασης από διάφορες πειραματικές διαδικασίες. Τα αποτελέσματα δείχνουν 

ότι τα νέα φάρμακα εντάχθηκαν σε ομάδες οι οποίες είναι εμπλουτισμένες με φάρμακα, τα οποία 

μοιράζονται το μηχανισμό δράσης των νέων φαρμάκων. Επίσης, η εφαρμογή της μεθόδου deepSNEM 

συγκρίθηκε με μια μέθοδο ανάθεσης ομάδων χρησιμοποιώντας τα δεδομένα γονιδιακής έκφρασης 

των νέων φαρμάκων. Κατά τη σύγκριση αυτών, παρατηρήθηκε ότι 3/8 φάρμακα, ανατέθηκαν σε 

ομάδες με παρόμοια σύσταση μηχανισμών δράσης, ενώ τα υπόλοιπα σε ομάδες με διαφορετική 

σύσταση. Εν τέλει, υπολογίστηκε η ομοιότητα Jaccard μεταξύ των ομάδων που δημιουργούνται 

χρησιμοποιώντας τις δύο διαφορετικές τεχνικές ομαδοποίησης και βρέθηκε ότι είναι πολύ χαμηλή, 

με μόνο δύο ομάδες να έχουν ομοιότητα μεγαλύτερη από 0.1. 

DeepSNEM συζήτηση 

Το μοντέλο deepSNEM κατάφερε να αναγνωρίσει ομάδες αναπαραστάσεων, οι οποίες είναι 

εμπλουτισμένες με φάρμακα συγκεκριμένου μηχανισμού δράσης καθώς και να χαρακτηρίσει 

σημαντικά υπο-δίκτυα, τα οποία οδηγούν στη συγκεκριμένη ομαδοποίηση. Παρόλα αυτά, το μεγάλο 

πλήθος φαρμάκων, τα οποία έχουν άγνωστο μηχανισμό δράσης μπορεί να οδηγήσει σε διαφορετική 

σύσταση των ομάδων που αναγνωρίστηκαν. Επιπλέον, συγκρίνοντας την ανάθεση ομάδων στα 

φάρμακα της εφαρμογής μεταξύ των μεθόδων deepSNEM και γονιδιακής έκφρασης, γίνεται εμφανές 

ότι αυτές καταλλήγουν σε διαφορεική ομαδοποίηση των πειραμάτων. Συνεπώς, η μέθοδος 

deepSNEM, χρησιμοποιώντας την πληροφορία των σηματοδοτικών δικτύων, δύναται να ανακαλύψει 

ομοιότητες και διαφορές, οι οποίες είναι κρυμμένες στα αρχικά δεδομένα έκφρασης των γονιδίων. 
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DeepSIBA: Chemical Structure-based Inference of Biological Alterations using 

deep learning 

DeepSIBA μέθοδοι 

Δεδομένα γονιδιακής έκφρασης, προερχόμενα από πειράματα χρήσης φαρμάκων, λήφθησαν από 

την πλατφόρμα L1000 της βάσης δεδομένων CMap. Για κάθε πείραμα, υπολογίστηκαν τα enrichment 

scores (ES) σημαντικών βιολογικών διεργασιών με τη μέθοδο Gene Set Enrichment Analysis. Εν 

συνεχεία, η απόσταση μεταξύ των χαρακτηριστικών βιολογικών διεργασιών για ένα ζεύγος 

φαρμάκων υπολογίστηκε χρησιμοποιώντας μια συνάρτηση βασισμένη στα στατιστικα στοιχεία 

Kolmogorov-Smirnov. Για κάθε ζέυγος φαρμάκων, η απόσταση υπολογίστηκε για 5 διαφορετικά όρια 

σημαντικών βιολογικών διεργασιών και ο μέσος όρος τους χρησιμοποιήθηκε ως η μεταβλητή 

πρόβλεψης ενός μοντέλου deep learning. Το μοντέλο δέχεται σαν είσοδο τις χημικές δομές ενός 

ζεύγους φαρμάκων και προβλέπει την απόσταση μεταξύ των βιολογικων τους διεργασιών. Οι χημικές 

δομές ως είσοδοι στο μοντέλο κωδικοποιούνται από τρεις πίνακες που έκαστος περιγράφει τα άτομα, 

τον τύπο των δεσμών και τη συνδεσμολογία του μοριακού γράφου. Η αρχιτεκτονική του μοντέλου 

αποτελείται από δύο πανομοιότυπους encoders οι οποίοι χρησιμοποιούν δύο layers graph 

convolution και ένα layer convolution. Η απόσταση μεταξύ των διεργασιών προβλέπεται 

χρησιμοποιώντας convolution και fully connected deep learning layers. Η τελική έξοδος του μοντέλου 

αποτελείται από τη μέση τιμή και τυπική απόκλιση της πρόβλεψης, χρησιμοποιώντας ένα Gaussian 

regression layer. Θεορώντας ότι η τελική τιμή πρόβλεψης αποτελείται απο μία κατανομή, το μοντέλο 

εκπαιδεύεται ώστε να ελαχιστοποίησει τη Negative Log-Likelihood. Εν τέλει, εκπαιδεύοντας πολλά 

μοντέλα, δημιουργείται ένα μοντέλο τύπου ensemble λαμβάνοντας το μείγμα των κατανομών 

πρόβλεψης. Επίσης, αναπτύχθηκε μία νέα μέθοδος πρόβλεψης των σηματοδοτικών μονοπατιών ενός 

φαρμάκου, βασιζόμενη στη μέθοδο kNN, χρησιμοποιώντας μόνο τη χημική τους δομή ως είσοδο. Σε 

αυτή τη μέθοδο, το μοντέλο deepSIBA, χρησιμοποιείται για την ανακάλυψη γειτονικών φαρμάκων τα 

οποία επηρεάζουν παρόμοιες βιολογικές διαδικασίες με το φάρμακο προς ανάλυση. Στη συνέχεια, 

χρησιμοποιώντας μία μέθοδο ψηφοφορίας μεταξύ των γειτόνων, δημιουργείται μια πρόβλεψη 

σηματοδοτικών μονοπατιών για το αρχικό φάρμακο. Τέλος με σκοπό την καλύτερη ερμηνέια των 

αποτελεσμάτων, δημιουργήθηκε μία μέθοδος βασιζόμενη στις παραγώγους του μοντέλου ώς προς 

την είσοδο του, η οποία μπορεί να ανακαλύψει ποιες χημικές υποδομές συνεισφέρουν περισσότερο 

στη δεδομένη πρόβλεψη σηματοδοτικών μονοπατιών. 

DeepSIBA αποτελέσματα 

Οι επιδόσεις του μοντέλου εξετάστηκαν σε ζεύγη γνωστών και άγνωστων φαρμάκων. Τα άγνωστα 

φάρμακα αποτελούν χημικές ενώσεις οι οποίες δεν χρησιμοποιήθηκαν κατά τη διαδικασία 

εκπαίδευσης του μοντέλου. Επιπλέον, οι επιδόσεις του μοντέλου deepSIBA συγκρίθηκαν με τις 

επιδόσεις τριών μοντέλων machine learning, που είναι ειδικά σχεδιασμένα για προβλήματα 

πρόβλεψης αποστάσεων. Σε όλους τους ελέγχους, το μοντέλο deepSIBA παρουσίασε καλύτερα 

αποτελέσματα σε σύγκριση με τις υπόλοιπες τεχνικές. Με σκοπό την αύξηση του εύρους εφαρμογής 

της μεθόδου, χρησιμοποιήθηκε μια τεχνική transfer learning, και εφαρμόστηκε με επιτυχία σε 

κυτταρικές σειρές με λιγότερα δεδομένα. Εν συνεχεία, εξετάστηκαν οι επιδόσεις του μοντέλου σε 

ένα ειδικό σενάριο που τα φάρμακα-είσοδοι είναι εντελώς διαφορετικά σε σχέση με αυτά που 
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χρησιμοποιήθηκαν κατά τη διάρκεια της εκπαίδευσης. Σε αυτή την ειδική περίπτωση, δείξαμε ότι 

χρησιμοποιώντας την πρόβλεψη της αβεβαιότητας, μπορούμε να επικεντρωθούμε σε προβλέψεις 

που το μοντέλο δείχνει μεγαλύτερη σιγουρία και οι οποίες έχουν μεγαλύτερη πιθανότητα να είναι 

εύστοχες. Τέλος, κατά την εφαρμογή του deepSIBA στις χημικές δομές εγκεκριμένων αντικαρκινικών 

φαρμάκων, ανακαλύφθηκαν χαρακτηριστικά σηματοδοτικά μονοπάτια και χημικές υποδομές οι 

οποίες είναι άμεσα συνδεδεμένες με το μηχανισμό δράσης των φαρμάκων. 

DeepSIBA συζήτηση 

Το μοντέλο κατάφερε με επιτυχία και ακρίβεια να ανακαλύψει διαφορετικές χημικές δομές, οι οποίες 

παρουσιάζουν παρόμοια βιολογική επίδραση σε συγκεκριμένα κυτταρικά μοντέλα. Επιπλέον, 

χρησιμοποιώντας την πρόβλεψη της αβεβαιότητας, το μοντέλο κατάφερε να διατηρήσει υψηλές 

επιδόσεις σε ζεύγη φαρμάκων τα οποία διαφέρουν πολύ απο τα παραδείγματα κατά τη διαδικασία 

της εκπαίδευσης. Παρόλα αυτά, υπήρχαν αρκετά ζεύγη φαρμάκων με παρόμοια βιολογική επίδραση 

τα οποία δεν ανακαλύφθηκαν από το μοντέλο. Πιστεύουμε πως αυτό οφείλεται στην σχετικά χαμηλή 

κάλυψη του χώρου των δυνατών χημικών ουσιών που προσφέρουν τα διαθέσιμα δεδομένα της 

βάσης  CMap. Τέλος, πιστεύουμε πως η χρήση περισσότερων δεδομένων γονιδιακής έκφρασης θα 

οδηγήσει στην άμεση βελτίωση των αποτελεσμάτων του μοντέλου.  

 

Συμπεράσματα 

Τα μοντέλα που παρουσιάστηκαν έχουν τη δυνατότητα να βοηθήσουν τη διαδικασία υπολογιστικής 

ανακάλυψης φαρμάκων είτε συσχετίζοντας τα σηματοδοτικά δίκτυα με το μηχανισμό δράσης των 

φαρμάκων, είτε ανακαλύπτοντας νέες χημικές δομές που επηρεάζουν επιθυμητές βιολογικές 

διεργασίες. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

Drug discovery is a complex and time-consuming process that aims to identify the right drug, 

for the right target and disease. The drug discovery pipeline stretches from target 

identification to hit discovery and lead optimization up to preclinical and clinical trials [1]. The 

first step of the pipeline is the target identification, where a disease is studied in order to 

understand its mechanism and identify key molecules that act as drivers of the disease. These 

key molecules have the potential to act as targets for small molecule perturbations in order 

to stop the disease progression or reverse its state [2]. After a potential set of targets has been 

identified, they have to be prioritized based on their ability to inhibit the disease mechanism(s) 

and to eliminate targets that are associated with adverse effects. This step of the pipeline, 

called target validation, is performed experimentally using small interfering RNA (siRNA) or 

CRISPR-cas9 editing to specifically silence or catalyze the specified targets [3]. The next step 

of the pipeline is the hit identification phase, where a small molecule that inhibits the 

identified target(s) has to be discovered. The goal of this process is to discover chemical 

compounds that exhibit strong binding affinity to the selected targets. Traditionally, the most 

widely employed method for in-vitro hit identification is High Throughput Screening (HTS). In-

vitro HTS can produce hits with strong binding affinity that may later be developed into lead 

compounds through lead optimization [4]. However, due to the vast chemical space of 

possible chemical structures, even large scale in-vitro HTS offers limited chemical coverage 

and does not guarantee the biological efficacy and low toxicity of the identified hit 

compounds. During lead optimization the chemical compounds are optimized in order to 

improve their chemical properties and study their off-target effects, which could potentially 

cause adverse reactions, such as unwanted side effects and toxicity. In order to improve the 

success rate of the drug discovery pipeline, computational methods have been developed that 

aim to prioritize compounds in the hit identification and lead optimization phases.  

The development of Computer Aided Drug Design (CADD) methods allows the virtual High 

Throughput Screening (vHTS) of large compound datasets, thus effectively increasing the 

search space of hit identification. CADD methods for vHTS prioritize compounds, which are 

likely to have activity against the target, for further experiments and are broadly categorized 

into structure-based and ligand-based [5]. Structure-based CADD approaches require the 

solved 3D structure of the target protein, either through X-ray crystallography or NMR 

spectroscopy and focus on docking simulations to assess protein-ligand complexes. On the 
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other hand, ligand-based virtual screening is used when the 3D structure of the target is 

unknown and involves the calculation of 2D or 3D structural similarities between a known 

active ligand and a virtual library. Structural similarity screening is based on the hypothesis 

that similar chemical structures will cause similar response. Even though CADD methods have 

revolutionized the drug development pipeline, the attrition rates of the process still remain 

high. The majority of the newly identified compounds fail at the preclinical trial stages due to 

poor efficacy or unfavorable side effects and toxicity profiles [6]. This happens in part, due to 

the nature of CADD methods, where efforts are focused on identifying compounds with 

maximal binding affinity to the target protein, often disregarding the effect that the 

compound will have on a biological system. A field that holds promise to improve the attrition 

rates of drug discovery, by understanding the compound’s effect on the biological system, is 

systems pharmacology. 

Systems pharmacology utilizes omics data coupled with computational methods in order to 

study the mechanism of action (MoA) of a chemical perturbation in a biological system. One 

specific omics approach that has gained considerable attraction is the analysis of gene 

expression data (transcriptomics) following treatment with a compound. Analyzing the post 

transcriptional state of a cellular system after a chemical perturbation has the potential to 

elucidate the compound’s effect in term of which key genes are over- or under-expressed 

compared to the normal state. On this front, a large number of public gene expression data 

repositories have been developed, such as the Gene Expression Omnibus (GEO) from NCBI 

and ArrayExpress [7,8]. These repositories can be accessed to retrieve gene expression data 

from various cellular models following compound treatment that can then be analyzed using 

computational tools. For their analysis the Bioconductor library in R offers a large collection 

of packages for preprocessing and differential expression that can be applied on gene 

expression data from various platforms [9]. The output of the differential expression analysis 

is a set of genes that are over- or under-expressed in the condition under study. However, a 

compound’s effect in a cellular system is rarely the effect of the change in expression of 

specific genes, rather the compound’s effect is caused by changes in the expression of genes 

that interact with each other to form specific biological processes [10]. Additionally, since the 

analysis focuses on the most over- or under-expressed genes, the smaller but significant 

change in expression of genes that belong to the same biological pathways are often 

disregarded. For these reasons, a majority of computational methods that aim to identify 

enriched biological processes affected by a compound, using gene expression data, have been 

developed [11]. 

Pathway analysis methods utilize the results of the differential expression analysis, coupled 

with a form of prior knowledge of molecular interactions, in order to identify which pathways 

are affected by a compound. Today there exist several knowledge bases of pathway 

interactions, such as the KEGG database, Reactome, MsigDB, etc [12-14]. Computational 

methods that aim to identify enriched pathways are based on the assumption that the change 

in a gene’s expression is translated to changes in the proteins’ that are encoded by it. The 

majority of computational tools for pathway analysis aim to extract a score statistic for each 

pathway that signifies its enrichment, accompanied by a p-value that compares the 
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enrichment score to chance. One of the most widely used methods for pathway analysis is 

Gene Set Enrichment Analysis (GSEA). In GSEA the list of differentially expressed genes is 

ordered based on their expression and a statistic based on the Kolmogorov-Smirnoff test is 

calculated for pathway enrichment [15]. Additionally the VIPER algorithm utilizes the mean of 

ranks of genes’ expression values with an analytic Rank-based Enrichment Analysis method to 

compute the enrichment of proteins from gene expression data. VIPER has been utilized to 

infer Transcription Factor (TF) activity scores using gene expression data and the appropriate 

Regulons, which are networks that show the relationship between the TFs and the genes’ 

expression [16]. In order to overcome the limitations of pathway analysis, regarding the 

hypothesis of the connection between gene and protein expression, a new class of methods 

that model the compound’s effect as a network of protein-protein interactions (PPI), has been 

developed [10]. These methods couple gene expression data with prior knowledge networks 

in a causal reasoning scheme to identify which sub-networks better explain the observed 

experimental data. Initially network creation methods have utilized phosphoproteomic data 

to describe the compound’s effect [17]. Since large scale phosphoproteomic datasets 

following compound treatment are very rare, there has been a concentrated effort to develop 

methods for signaling network creation based on transcriptomics [18-20]. On this front, the 

CARNIVAL method is a causal reasoning framework to identify signaling networks that best 

explain a set of transcription factor (TF) activity scores, calculated from differential GEx data 

using VIPER [21]. The resulting networks are complex representations of the compounds’ 

effect, since they incorporate the prior knowledge of molecular interactions in the form of a 

PPI network.  

There have been many studies that utilize gene expression data along with pathway and 

network analysis methods to investigate the compounds’ MoA in biological systems. One of 

the most influential approaches that have been widely used in this field is the Connectivity 

Map (CMap) approach [22]. CMap (CMap) and the LINCS project have been a cornerstone of 

transcriptomic-based approaches by providing a large scale database of transcriptomic 

signatures from compound perturbations along with essential signature matching algorithms. 

CMap can be accessed to query a large database of transcriptomic signatures in order to find 

compounds that have similar gene expression profiles. CMap’s approach is based on the 

hypothesis that compounds with similar transcriptomic signatures will cause similar 

physiological effects on the cell and has been widely adopted by the field of drug repurposing. 

The original Microarray CMap dataset along with the more recent L1000 dataset have been 

used by many systems pharmacology studies to investigate the effect of compounds on the 

biological system. On this front, Iorio et al. analyzed similarities between drugs’ transcriptional 

responses from CMap to create a drug network and identified the mechanism of action of new 

drugs based on their position in the network [23]. Furthermore, Verbist et al. showed how 

GEx data were able to influence decision making in eight drug discovery projects by 

uncovering potential adverse effects of the lead compounds [24]. Although, systems 

pharmacology approaches can be used to identify a compound’s MoA at the later stages of 

the drug development pipeline, they don’t take into account the structural elements of the 

chemical compound, which are crucial during the hit identification phase. Given the large 
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datasets generated by vHTS and chemical libraries, as well as the rise in computing power, 

machine learning and especially deep learning methods have been developed and applied 

across all stages of drug discovery. Deep learning models have the potential to incorporate 

both systems-based and structural-based approaches in order to identify drugs with optimal 

binding affinity and effect on the biological system. 

Machine learning (ML) models are trained on data in order to improve their predictions for a 

specific task. The rise of big data and computing power has led to the development of a special 

class of ML models, called deep learning (DL). DL models offer the advantage of automatic 

feature extraction in order to learn the important features that are associated with the specific 

task. This advantage has important applications in the field of drug discovery, where the 

complexity of the problem is very high and pre-computed features are usually associated with 

a specific task. There have been many studies for the development and application of deep 

learning models in drug discovery. The majority of these approaches utilize the compound’s 

chemical structure as input and have been developed for various tasks, including binding 

affinity, toxicity, side effect and chemical property prediction. In this regard, the DeepChem 

library along with MoleculeNet have been a cornerstone of DL approaches in drug discovery 

by providing a plethora of architectures along with benchmark datasets for their comparison 

[25]. For example, Ozturk et al. developed a deep learning model that encodes a compound’s 

SMILE representation and a protein’s amino acid sequence in order to predict the binding 

affinity, in terms of the dissociation constant Kd, of the drug-target pair [26]. For the binding 

affinity and property prediction task, deep learning models have achieved state of the art 

results and have outperformed traditional ML methods like random forests and support 

vector machines [27]. Despite their improved performance, DL models are still very sensitive 

to the training dataset and have shown generalization errors, when tested on chemical 

structures that are very different from the ones used to train them. This effect is mostly caused 

by the vast size of the chemical space and its small coverage by the training datasets. In order 

to address this issue, methods like one-shot learning and uncertainty estimation are crucial. 

One-shot learning techniques, such as Siamese and Matching networks, aim to learn a 

meaningful distance function between related inputs and have shown increased performance 

over traditional methods in tasks with few data points [28-31]. Furthermore, uncertainty 

estimation methods can be used in order to quantify the model’s confidence in the predictions 

and avoid unnecessary experimental testing of new compounds. Methods that quantify 

uncertainty in deep learning models include test-time Dropout, deep ensembles and Bayesian 

NNs [32-35]. One particular deep learning approach that has achieved state of the art results 

in structure-based tasks is the representation of the chemical structure as a molecular graph 

and the use of graph deep learning models to encode them. 

Graph deep learning models operate on graph structured data and aim to extract features 

that are representative of the graph’s nodes and connectivity. One of the most widely used 

graph DL models is the graph convolutional neural network (GCNN).  GCNNs apply filters on 

the neighborhoods of the graph and utilize a message passing algorithm to aggregate this 

information into representations of the graph’s node attributes and connectivity [36]. GCNNs 

have been successfully applied to various drug discovery tasks, achieving state of the art 
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results. The input to molecular GCNNs is a compound undirected graph, with atoms being the 

nodes of the graph and bonds being the edges. As an example, Torng et al. applied GCNNs to 

encode both the compound’s structure and the protein’s binding pocket to predict the 

protein-ligand binding strength, outperforming traditional DL approaches [37]. Furthermore, 

Kearnes et al. developed the Weave graph convolution module, which encodes both atom and 

bond representations and combines them using fuzzy histograms to extract meaningful 

molecule-level representations [38]. GCNNs can be combined with one-shot learning 

methodologies in order to learn representations and distance functions between compound 

graphs, aiming to improve their generalization capabilities on new chemical structures that 

are very different from the ones used to train them. Altae-Tran et al. implemented one-shot 

learning for drug discovery by combining graph convolutions and Long Short Term Memory 

(LSTM) networks with attention and achieved better results than traditional GCNNs [39].  

Recently, DL models that had been originally developed for Natural Language Processing (NLP) 

tasks have been modified and applied on graphs. These models encode the nodes of the graph 

as words in a sentence and their positioning based on the graph’s connectivity. For example, 

the graph2vec model was inspired by the doc2vec approach for NLP tasks. Graph2vec treats 

the entire graph as a document and each node’s neighborhood as a word and aims to learn a 

fixed-length representation of the entire graph in a fully unsupervised task [40]. Furthermore, 

the graph transformer model was developed that utilizes an attention mechanism for each 

node that is a function of the neighborhood’s connectivity, rather than a message passing 

algorithm [41]. Although deep learning models have been applied in various structure-based 

learning tasks, their application in systems-based approaches is still very limited. DL and graph 

DL models can be applied for various systems pharmacology tasks in order to investigate the 

relationship between omics data following compound treatment and the compound’s MoA. 

Recently, there has been increased interest in the application of deep learning models for 

systems pharmacology approaches that utilize cellular response data. This is evident by the 

recent release of the CTD2 Pancancer Drug Activity DREAM Challenge, which tasked the 

community to predict a compound’s MoA based on post-transcriptional and cell viability data 

[42]. Additionally, deep learning models have been applied to predict the IC50 of compounds 

on specific cellular models by using transcriptomic data along with structural data [43]. Deep 

learning models present an interesting modeling opportunity for interdisciplinary drug 

discovery problems, by being able to incorporate information both from the structural and 

cellular domain. On this front, Jeon et al. developed the ReSimNet model to predict the 

transcriptional similarity score between compound perturbations using their molecular 

fingerprints as input [44].  

The aim of this thesis is to investigate the ability of graph deep learning models to model a 

compound’s MoA in terms of affected biological processes and molecular targets, by 

combining information from both the structural and systems domain. The thesis is organized 

into three distinct but complementary chapters. In the first chapter of the thesis we present 

a concise review of network pharmacology approaches for early drug discovery, while in the 

second and third chapters we present two novel graph deep learning approaches, called 

deepSIBA and deepSNEM. More specifically, the first chapter contains a thorough review of 



Chapter 1 Introduction 
 

6 
 

available omics databases and knowledge bases of molecular interactions, along with 

network-based methods for their analysis. In the first chapter we also review a large number 

of network pharmacology studies ranging across all stages of the drug development pipeline.  

In the second chapter we employ graph deep learning to develop a pipeline that can assess a 

compound’s affected biological processes based on its chemical structure (deepSIBA). 

DeepSIBA is a Siamese GCNN that takes as input pairs of compound structures, represented 

as graphs and outputs their biological effect distance, in terms of enriched biological processes 

(BPs) along with an estimated uncertainty. The performance of DeepSIBA is evaluated in 

realistic drug development scenario, where GEx data are available for only one compound in 

a pair. Additionally, we present a novel inference pipeline to identify the affected signaling 

pathways of a chemical compound along with the important substructures that cause the 

effect. As a use case, DeepSIBA was used to successfully infer the signaling pathway signature 

of FDA approved anticancer drugs. DeepSIBA can be used in combination with existing in-silico 

drug discovery pipelines to identify structures that not only exhibit maximal binding affinity 

but also cause a desired biological effect. 

In the third chapter of the thesis we employ graph deep learning to investigate the 

relationship between compound-induced signaling networks and the compounds’ MoA. We 

present deepSNEM, a novel pipeline that encodes a compound’s signaling network into a 

unique representation and assesses its relationship with the compound’s MoA. The core of 

deepSNEM is an unsupervised graph transformer trained to maximize the mutual information 

between representations of graphs’ substructures that belong to signaling networks created 

from similar perturbations. The network embeddings were clustered with the k-means 

algorithm and the resulting clusters were analyzed and characterized based on their MoA 

composition. Furthermore, a subgraph importance method was developed in order to identify 

which nodes and subgraphs in the original signaling networks cause the embeddings to cluster 

this way. As a use case, deepSNEM was used to assign clusters and assess the MoA of 

compounds with Gene expression data collected from various experimental platforms. 

DeepSNEM can be applied to generate hypotheses regarding the MoA of new lead compounds 

or suggest new potential mechanisms for already existing drugs. 
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Chapter 2 

 

Network-based technologies for early 

drug discovery 

 

 

 

2.1 Chapter abstract 

Although the traditional drug discovery approach has led to the development of many 

successful drugs, the attrition rates remain high. Recent advances in systems-oriented 

approaches (systems-biology and/ or pharmacology) and ‘omics technologies has led to a 

plethora of new computational tools that promise to enable a more-informed and successful 

implementation of the reductionist, one drug for one target for one disease, approach. These 

tools, based on biomolecular pathways and interaction networks, offer a systematic approach 

to unravel the mechanism(s) of a disease and link them to the chemical space and network 

footprint of a drug. Drug discovery can draw upon this holistic approach to identify the most- 

promising targets and compounds during the early phases of development.
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2.2 Introduction 

Drug discovery is a complex and time-consuming process that stretches from target selection 

and validation, through preclinical screening, to clinical trials and regulatory agency approval 

[1]. Traditionally, pharmaceutical companies have adopted a reductionist approach regarding 

the discovery of a new drug, which focuses on identifying one drug for one target for one 

disease. Although this approach has led to the development of many successful drugs, the 

attrition rates associated with this pipeline remain high [2]. In a recent study of the cause of 

attrition of drug candidates from four major pharmaceutical companies by Waring et al., the 

authors highlighted that efficacy issues accounted for 9% and 35% of overall terminated 

compounds during Phases I and II, respectively, whereas clinical safety problems accounted 

for 25% of terminated compounds across both Phases [3]. During the early phases of clinical 

trials, efficacy and clinical safety issues arise mostly because of the inherent complexity of the 

biological system and partly because of a lack of in-depth knowledge of the mechanism(s) of 

disease or the mode of action (MoA) of a drug [4]. Breakthroughs in systems-approaches 

(systems biology and systems pharmacology), driven by the latest technological 

advancements both in experimental technologies and computational methods, allow  

researchers to consider the system as a whole, with individual biomolecules interacting with 

each other and, thus, permitting their integration into classes of higher order. These classes, 

called pathways, are sets of molecules acting in concert, usually involved in a particular 

function or process [5]. Currently, there are several computational methods for the analysis 

of biological data at the pathway and network level  that connect molecular data from a 

variety of ‘omics databases (genomics, transcriptomics, proteomics, and metabolomics) to 

their biological functions using knowledge bases as templates to build associations between 

them. These methods can help decipher the mechanism(s) of disease or the MoA of a drug by 

offering a more- holistic view of the whole system and should enable one to pick the most-

promising targets and model the effect of their modulation during the early phases of drug 

discovery. On this front, the focus on pathways as functional units rather than on individual 

biomolecules also increases explanatory power and eases result interpretation [6]. 

In this review, we focus on the combination of ‘omics experiments and pathway- and network-

based approaches for early drug discovery, to connect basic research on pathway models to 

the actual needs of the early drug discovery pipeline. We explore the plethora of tools that 

can be used to unravel the signaling mechanism(s) of a disease, tools that can decipher the 

signaling footprint of a target or a drug and how these can be used together for: (i) target 

identification; (ii) target verification and validation; and (iii) hit discovery and validation (Fig. 

2.1). Three main elements are common to all these tools: molecular data related to the 

condition under study (in-house data and public/private repositories), knowledge bases 

(functional annotation of molecules and information about drugs, clinical trials, and biological 

pathways), and the appropriate computational method to analyze this complex combination. 
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Figure 2.1. Schematic overview of the drug discovery pipeline (a) depicting the area of application of 

pathway-and network-based technologies (b). By using pathway technologies, the decision from target 

to hit to lead is based on network footprints. From target identification and validation, to hit discovery 

and lead selection, pathway- and network-based tools can help elucidate the disease mechanism, 

prioritize targets belonging to identified deregulated pathways, assess the importance of those targets, 

and unravel the MoA of a hit compound to predict adverse effects and efficacy. 

2.3 Data gathering and integration 

A drug discovery project usually starts with a focus on a disease that requires a new or a better 

therapeutic intervention. In the era of systems approaches, this can be achieved by identifying 

the diverse mechanisms that lead to disease as well as the optimal targets and/or drugs that 

can eradicate those mechanisms. The first step in building a quantitative representation of 

the biological processes of a cell and its alterations in the disease is data gathering. The 

different types of ‘omics data (DNA, RNA, proteins, and metabolites) [7, 8] report on different 

levels of cell or organismal function. ‘Omics data can be generated in-house or gathered from 

many publicly available repositories, such as the Gene Expression Omnibus (GEO; 

www.ncbi.nlm.nih.gov/geo/), the Proteomics IDEntifications (PRIDE; 

www.ebi.ac.uk/pride/archive/) or ArrayExpress (www.ebi.ac.uk/arrayexpress/) or mined 

from the literature by using text-mining methods [9,10] (Table 2.1). The different technologies 

used to generate these types of data result in a diverse set of quantitative data that makes 

their normalization and integration a daunting task [i.e., picks on liquid chromatography–mass 

spectrometry data (LC–MS), fluorescent intensity of affinity multiplexed assays and expression 

microarrays, copy number on next-generation sequencing, etc.]. 

The analysis of a single type of data (e.g. gene expression) is relatively easy and might provide 

useful information on its own. However, successful integration and modeling of different 

types of biomolecule together in healthy and disease states is a major endeavor of many 

computational efforts and can enhance the knowledge of the mechanism of a disease or the 

MoA of a drug [9]. In a recent review, Cisek et al. highlighted that, although genomics attempts 

to map phenotypic features to genetic background with genome-wide association studies 

(GWAS), it is only able to identify single nucleotide polymorphisms (SNPs),  but  not risk  genes 

[11,12]; and, although transcriptomics can identify risk genes, it does not include information 

on protein expression, interaction, and post-translational modification [13]. By contrast, 
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proteomics can provide information about protein interactions, but cannot capture the 

function of a protein in its metabolic pathway [14]. Metabolomics is the final missing link that 

completes the circle of ‘omics, providing functional information about proteins when 

influenced by their cellular environment [15]. System-based approaches require functional 

annotation of the molecules participating in biological processes, but such annotation can be 

challenging even for biomolecules belonging to the same ‘omic domain. To facilitate data 

integration, a large number of public databases (also known as knowledge bases) exist, whose 

aim is to collect causal, correlational, functional, and contextual information about 

biomolecules and serve as templates for the association of individual biological entities into 

the aforementioned classes of higher order (pathways) [8]. 

Table 2.1. List of public omics repositories. 1 

Name Link Brief description Category 2 

GEO https://www.ncbi.nlm.

nih.gov/geo/  

Gene Expression 

Omnibus 

gene expression 

    

ArrayExpress https://www.ebi.ac.uk

/arrayexpress/  

Archive of Functional 

Genomics Data 

gene expression 

    

GeneSigDB https://www.genesigd

b.org/genesigdb/index

.jsp 

Gene Signature 

DataBase 

gene expression 

    

Oncomine https://www.oncomin

e.org/resource/login.h

tml  

Cancer microarray 

data by gene or cancer 

type 

gene expression 

    

Expression Atlas https://www.ebi.ac.uk

/gxa/home  

Gene expression 

across species and 

biological conditions 

gene expression 

    

miRGator http://mirgator.kobic.r

e.kr/  

microRNA target 

prediction, functional 

analysis and gene 

expression data 

gene expression 

    

PRIDE https://www.ebi.ac.uk

/pride/archive/  

Proteomics peptide 

identification database 

proteomics 

    

PaxDB https://pax-db.org/  Protein Abundance 

Database 

proteomics 

    

The Human Protein 

Atlas 

https://www.proteinat

las.org/  

MS-based proteomics, 

transcriptomics and 

antibody-based 

imaging 

proteomics 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.genesigdb.org/genesigdb/index.jsp
https://www.genesigdb.org/genesigdb/index.jsp
https://www.genesigdb.org/genesigdb/index.jsp
https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
https://www.ebi.ac.uk/gxa/home
https://www.ebi.ac.uk/gxa/home
http://mirgator.kobic.re.kr/
http://mirgator.kobic.re.kr/
https://www.ebi.ac.uk/pride/archive/
https://www.ebi.ac.uk/pride/archive/
https://pax-db.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Open Proteomics 

Database 

https://www.hsls.pitt.

edu/obrc/index.php?p

age=URL1152112355  

MS-based proteomics proteomics 

    

ProteomeXchange http://www.proteome

xchange.org/  

Proteomics resources 

portal 

proteomics 

    

HMDB http://www.hmdb.ca/  Curated human 

metabolism and 

metabolite data 

metabolomics 

    

BiGG Models http://bigg.ucsd.edu/  Biochemically, 

Genetically and 

Genomically 

structured metabolic 

networks 

metabolomics 

    

MetaboLights https://www.ebi.ac.uk

/metabolights/  

A database for 

metabolomics 

experiments and the 

associated metadata 

metabolomics 

    

Metabolomics 

Workbench 

http://www.metabolo

micsworkbench.org/  

Data repository for 

metabolomics data 

and metadata 

metabolomics 

    

GenBank https://www.ncbi.nlm.

nih.gov/genbank/  

An annotated 

collection of all 

publicly available 

nucleotide and protein 

sequences 

DNA 

    

dbSNP https://www.ncbi.nlm.

nih.gov/SNP/  

Database of single 

nucleotide 

polymorphisms 

DNA 

    

Ensembl https://www.ensembl.

org/index.html  

Annotated 

information on 

eukaryotic genomes 

DNA 

    

ENA https://www.ebi.ac.uk

/ena  

European Nucleotide 

Archive 

DNA 

    

UniProt http://www.uniprot.or

g/ 

All known protein 

sequences 

Protein 

    

https://www.hsls.pitt.edu/obrc/index.php?page=URL1152112355
https://www.hsls.pitt.edu/obrc/index.php?page=URL1152112355
https://www.hsls.pitt.edu/obrc/index.php?page=URL1152112355
http://www.proteomexchange.org/
http://www.proteomexchange.org/
http://www.hmdb.ca/
http://bigg.ucsd.edu/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
http://www.metabolomicsworkbench.org/
http://www.metabolomicsworkbench.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/SNP/
https://www.ncbi.nlm.nih.gov/SNP/
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
http://www.uniprot.org/
http://www.uniprot.org/
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PDB https://www.rcsb.org/

pdb/home/home.do  

Protein structures Protein 

    

PDBe https://www.ebi.ac.uk

/pdbe/ 

European resource for 

protein structures 

Protein 

1Indicative list of open-access databases. For a full list of databases see Nucleic Acids Research Database 

Summary (http://www.oxfordjournals.org/nar/database/a/). 

2A database may correspond to more than one categories but only the major one is shown here 

2.4 Knowledge bases 

Knowledge bases can associate the data gathered during the drug discovery and development 

pipeline and include clinical outcomes, drug information (i.e., chemical structure, adverse 

effects, etc.) or biological knowhow of drugs. Here, we focus on pathway and interactome 

databases that aim to capture the biological knowledge of molecular interactions and have 

been assembled from experimental data or through text mining followed by manual curation 

(Table 2.2). The result is an interaction model, either represented as a biological network or a 

bipartite graph [16]. There are different types of interaction models depending on the 

relationships that they represent. Signaling networks account for cellular processes, whereas 

metabolic networks represent the bio- chemical reactions of metabolism as well as the 

regulatory interactions that guide these reactions. For example, the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) is a collection of databases (www.genome.jp/kegg/) providing 

systems, chemical, and health information that serves as a computer representation of the 

biological system. Most notably, the KEGG Pathway database contains manually drawn 

pathway maps in the form of directed graphs representing the interactions between genes 

and proteins. By contrast, Protein–Protein Interaction (PPI) maps represent physical 

interactions on a molecular level. As an example, InWeb_IM 

(www.intomics.com/inbio/map/#home) is a recently proposed interactome resource in the 

form of a human PPI network that can be used for accurate and costefficient functional 

interpretation of massive genomic datasets. IntAct is another manually curated open-access 

database focusing on PPIs (www. ebi.ac.uk/intact/), which was recently merged with the 

Molecular INTeraction (MINT) database (http://mint.bio.uniroma2.it/) and now includes 

more than 700000 binary protein interactions. In addition, the Reactome [17] Functional 

Interaction network (Reactome FI) is a manually curated protein functional interaction 

network organized in pathways covering over 60% of human proteins. The connection 

between two disjoint sets of nodes is considered In bipartite graphs, such as between genes 

and diseases or between drugs and their targets. As an example, the connectivity map (Cmap) 

is a widely used database (https://portals. broadinstitute.org/cmap/) connecting drugs and 

gene expression profiles that allows researchers to identify connections between drug  

candidates, and changes in gene expression profiles and diseases by using the similarity 

detection tool that the database offers. The Biological General Repository for Interaction 

Datasets (BioGRID) is a public database dedicated to manually curated functional interactions 

between genes and physical interactions between proteins, reported in biomedical 

publications (https://thebiogrid.org/). Recently, BioGRID expanded its coverage to 

https://www.rcsb.org/pdb/home/home.do
https://www.rcsb.org/pdb/home/home.do
https://www.ebi.ac.uk/pdbe/
https://www.ebi.ac.uk/pdbe/
http://www.oxfordjournals.org/nar/database/a/
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incorporate chemical–protein interactions and established themed curation projects based 

on particular biological processes and diseases to further facilitate early drug discovery. 

Besides open-source initiatives and free web-based tools, several commercial providers also 

focus on pathways relevant to human disease. Companies such as Ingenuity Systems (IPA), 

GeneGo, Ariadne Genomics, and Cambridge Cell Networks provide manually curated and 

usually high-quality pathway databases and analysis tools. 

Those knowledge bases are the cornerstone of many computational tools that aim to extract 

the most-valuable information and deliver it to the end user. 

Table 2.2. List of widely used knowledge bases.1 

KEGG PATHWAY 
http://www.genome.jp/ke

gg/pathway.html 

Wiring diagrams of 

molecular interactions, 

reactions and relations 

Metabolic and signaling 

pathways 

    

Reactome https://reactome.org/  

Manually curated and peer 

reviewed pathway database 

Metabolic and signaling 

pathways 

    

Pathway Commons 
http://www.pathwaycomm

ons.org/ 

A web resource for 

biological pathway data 

Metabolic and signaling 

pathways 

    

NetPath http://www.netpath.org/ 

A curated resource of signal 

transduction pathways 
Signaling pathways 

    

OmniPath http://omnipathdb.org/ 

A collection of curated 

signaling pathways 
Signaling pathways 

    

BioCyc https://biocyc.org/  

Pathway/Genome 

database collection 2 

Genome and metabolic 

pathways 

    

InWeb_IM 
https://www.intomics.com/i

nbio/map/#home 

A human protein-protein 

interaction network to 

catalyze genomic 

interpretation 

PPI 

    

IntAct 
https://www.ebi.ac.uk/intac

t/ 

Molecular interaction 

database 
PPI 

    

BioGRID https://thebiogrid.org/  

Biological General 

Repository for Interaction 

Datasets 

PPI, functional gene 

interactions 

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
https://reactome.org/
http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
http://www.netpath.org/
http://omnipathdb.org/
https://biocyc.org/
https://www.intomics.com/inbio/map/#home
https://www.intomics.com/inbio/map/#home
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://thebiogrid.org/
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Pathguide http://www.pathguide.org/ 

Collection of biological 

pathway resources 
PPI, pathways 

    

UniHI http://www.unihi.org/ 

Collection of PPI and 

regulatory transcriptional 

interactions 

PPI 

    

ConsensusPathDB 
http://cpdb.molgen.mpg.de

/ 

Protein-protein, genetic, 

metabolic, signaling, gene 

regulatory and drug-target 

interactions 

Collection of interaction 

networks 

    

TTD https://db.idrblab.org/ttd/  

Therapeutic Target 

Database 

Therapeutic target 

information 

    

DisGeNET 
http://www.disgenet.org/w

eb/DisGeNET/menu/home 

A collection of gene and 

variants associated to 

human disease 

Gene-disease associations 

    

Open Targets 
https://www.opentargets.or

g/ 

Platform for Target 

identification and 

prioritisation 

Target-disease associations 

    

PHAROS 
https://pharos.nih.gov/idg/i

ndex 

Knowledge base for the 

Druggable Genome (DG) 
Target-disease associations 

    

SuperTarget 
http://insilico.charite.de/su

pertarget/index.php  

Relations between 

drugs,proteins and side 

effects 

Drug-target associations 

    

Drug2gene 
http://www.drug2gene.com

/ 

A resource to explore the 

drug-target relation 

network 

Drug-target associations 

    

cmap 
https://portals.broadinstitut

e.org/cmap/ 

Collection of gene 

expression profiles 

following drug perturbation 

Drug-gene expression 

associations 

    

PharmGKB 
https://www.pharmgkb.org

/ 

Knowledge base about 

clinically actionable gene-

drug and genotype-

phenotype relationships 

Drug-gene associations 

http://www.pathguide.org/
http://www.unihi.org/
http://cpdb.molgen.mpg.de/
http://cpdb.molgen.mpg.de/
https://db.idrblab.org/ttd/
http://www.disgenet.org/web/DisGeNET/menu/home
http://www.disgenet.org/web/DisGeNET/menu/home
https://www.opentargets.org/
https://www.opentargets.org/
https://pharos.nih.gov/idg/index
https://pharos.nih.gov/idg/index
http://insilico.charite.de/supertarget/index.php
http://insilico.charite.de/supertarget/index.php
http://www.drug2gene.com/
http://www.drug2gene.com/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
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DGIdb 
http://www.dgidb.org/searc

h_interactions  

The Drug Gene Interaction 

Database 
Drug-gene associations 

    

DrugBank https://www.drugbank.ca/ 

A bioinformatics and 

chemoinformatics resource 

that combines drug and 

drug-target information 

Drugs and targets 

information 

    

CTD http://ctdbase.org/ 

A database to advance 

understanding about 

environmentally influenced 

diseases 

Chemical-gene-disease 

interactions 

    

STITCH http://stitch.embl.de/  

Known and predicted 

interactions between 

chemicals and proteins 

Chemical-protein 

interactions 

    

SIDER http://sideeffects.embl.de/  

Information on marketed 

medicine and their recorded 

adverse drug reactions 

Drug-side effect interactions 

    

IntSide 
https://intside.irbbarcelona.

org/ 

A web server to elucidate 

the molecular processes 

involved in drug side effects 

Drug-side effect interactions 

1 All knowledge bases listed are open-access or part open-access. This collection, however, by no means 

pictures the whole range of knowledge bases regarding pathways and drug-target-disease    

Interactions that are currently available. The above knowledge bases were selected based on their 

relevance to the content of the review. For a full list please refer to Nucleic Acids Research Database 

Summary (http://www.oxfordjournals.org/nar/database/a/). 

2 BioCyc has now moved to a subscription based access plan. 

 

2.5 Computational tools for target identification 

The target identification is the first step of the drug discovery pipeline and aims to identify the 

magic molecular target that ideally cures or stops the progression of a disease. For a more 

informed implementation of the target identification process, a detailed disease mechanism 

becomes essential and network- and pathway-based approaches can be of great use in that 

regard [18]. Computational tools for the analysis of disease-specific ‘omics data, at the 

pathway and network level rather than the molecular profile level, can identify ill-functioning 

cellular routes and altered biological functions and, thus, help draw  potential targets for 

therapeutic intervention that will reverse those deregulated processes (Fig. 2.2) [19]. 

http://www.dgidb.org/search_interactions
http://www.dgidb.org/search_interactions
https://www.drugbank.ca/
http://ctdbase.org/
http://stitch.embl.de/
http://sideeffects.embl.de/
https://intside.irbbarcelona.org/
https://intside.irbbarcelona.org/
http://www.oxfordjournals.org/nar/database/a/
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Figure 2.2. (a) The topology-based target identification process. Topology-based pathway analysis 

deciphers the disease mechanism(s) and identifies molecular pathways characteristic of the disease. 

Then, candidate targets are selected belonging to those pathways that, when perturbed, have the 

ability to reverse the disease state. (b) Verification and validation of proposed targets based on 

topological analysis. Targeting nodes with high degrees (representing hubs), although efficacious, can 

be linked to adverse effects. By contrast, targets with very few connections are not preferred because 

their perturbation usually will not reverse the disease state (low efficacy). Finally, candidate targets 

proximal to known toxicity pathways should not be selected. Based on those principles, machine- 

learning computational tools can prioritize candidate targets before their experimental validation. 

There are several publicly available pathway and network analysis tools that can be applied 

for target identification (Table 2.3). NetworkAnalyst [20] is a web-based tool for the 

visualization, meta-analysis, and interpretation of gene expression data, and can be used to 

elucidate the disease mechanism. In NetworkAnalyst, genes of interest are identified from the 

user’s submitted data, through differential expression analysis. Then, the identified genes are 

mapped to a PPI database to construct the whole network. Finally, hub or module analysis 

followed by topology-based pathway analysis can identify pathways characteristic of the 

disease. A similar web-based tool that allows users to integrate data from two commonly 

performed ‘omics experiments (i.e., gene expression and metabolomics) is MetaboAnalyst. By 

combining the evidence based on changes in both gene expression and metabolite 
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concentrations, one is more likely to pinpoint the pathways involved in the underlying 

biological process [21]. MetaboAnalyst maps the user-submitted data to KEGG metabolic 

pathways for over-representation analysis and pathway topology analysis. The Database for 

Annotation, Visualization for Integrated Discovery (DAVID) is a tool that uses the KEGG 

pathway database as a knowledge base for functional interpretation of large set of genes 

derived from different genomic studies [22]. Another widely used open-source package to 

interpret genomic data and study the disease mechanism is PANTHER’s analysis software [23]. 

Using PANTHER’s gene list analysis software, users can analyze gene list expression data files 

and map them to multiple annotation data sources from the Gene Ontology Consortium, as 

well as biological pathways [24].  

Table 2.3. Classification of computational tools to help decipher the disease mechanism and 

the drug MoA. 

Name Method 
1 

Reasoni

ng 

Data 

input 

Knowle

dge 

base 

Use 

topolog

y 

Approa

ch 

Key 

points 

Main 

applicat

ion 

Availabi

lity 

Ref. 

Networ

kAnalys

t 

ORA 2, 

Networ

k 

analysis 

Forwar

d 

Gene/p

rotein 

list 

Gene 

expressi

on 

InnateD

B(PPI) 

KEGG 

Reacto

me 

Yes Mechan

istic 

Interact

ive 

visualiz

ation, 

easy to 

use 

Disease 

mechan

ism 

Web-

based 

[20] 

Metabo

Analyst 

MSEA3 

Topolog

y-based 

pathwa

y 

analysis 

Forwar

d 

Metabo

lite 

concent

rations 

/lists 

,gene 

list 

HMDB, 

KEGG 

Yes Mechan

istic 

Integrat

ive 

pathwa

y 

analysis

, 

biomark

er 

analysis 

Disease 

mechan

ism 

Web-

based 

[21] 

PANTH

ER 

ORA, 

GSEA 

Forwar

d 

gene 

list 

PANTHE

R, 

Reacto

me 

No Mechan

istic 

Phyloge

netic 

trees of 

protein 

coding 

genes 

Disease 

mechan

ism 

Web-

based 

[23] 

Whistle Causal 

reasoni

ng 

Backwa

rd 

Gene 

expressi

on 

Causal 

networ

k  in 

BEL4 

Yes Mechan

istic 

Qualitat

ive 

mechan

istic 

hypoth

eses 

Disease 

mechan

ism 

Drug 

MoA 

Local 

Installat

ion 

[28] 

CRE Causal 

reasoni

ng 

Backwa

rd 

Gene 

expressi

on 

Causal 

networ

k in 

BEL4 

Yes Mechan

istic 

Qualitat

ive 

molecul

ar 

hypoth

eses, 

improv

ed 

robustn

ess 

Disease 

mechan

ism 

Local 

Installat

ion 

[27] 
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towards 

noise 

TopoNP

A 

Causal 

reasoni

ng 

Backwa

rd 

Gene 

expressi

on 

Causal 

networ

k in 

BEL4 

Yes Mechan

istic 

Quantit

ative 

perturb

ation 

assessm

ent, 

diagnos

tic 

signatur

e 

extracti

on 

Systems 

toxicolo

gy, 

disease 

mechan

ism, 

drug 

MoA 

Local 

Installat

ion* 

[43] 

FS-

MLKNN 

Multi-

label K 

nearest 

neighbo

rs 

Predicti

ve 

Benchm

ark data 

sets5 

KEGG, 

SIDER, 

DrugBa

nk 

No Data 

driven 

Multi-

label 

learning 

Side 

effect 

predicti

on 

Local 

Installat

ion 

[46] 

DrugClu

st 

Clusteri

ng, 

GSEA 

Predicti

ve 

Benchm

ark data 

sets5 

KEGG, 

SIDER, 

Matado

r, 

DrugBa

nk 

No Data 

driven6 

Novel 

clusteri

ng 

algorith

m, 

adoptio

n of 

Bayesia

n score, 

easily 

modifie

d, 

mechan

istic 

insight 

Side 

effect 

predicti

on 

Local 

Installat

ion 

[49] 

1Although a computational tool may utilize more methods than the ones listed we chose to include 

those highly relevant to the contents of the article (pathway and network based). 

2Extended Over Representation Analysis using topology. 

3Metabolite Set Enrichment Analysis is similar to Gene Set Enrichment Analysis (2nd generation 

pathway analysis method). 

4A cause-effect network model is used as a knowledge base in the form of Biological Expression 

Language (BEL) statements (see: causalbionet.com for a database of cause-effect biological networks). 

5For training, validation and testing of the side effect prediction algorithms the data sets of Mizutani et 

al. [47], Liu et al. [48], Zhang et al. [46]. 

6Can also provide mechanistic insight utilizing GSEA on genes most prevalent in a cluster of drugs. 

The merits of the pathway- and network-based approach are also prominent when analyzing 

‘omics data belonging to different domains. As an example, in a recent study by Perco et al. 

[25], several of the aforementioned tools were combined for the integrated analysis of three 

transcriptomics and a proteomics data set for chronic kidney disease (CKD) (Fig. 2.3). Whereas 

separate gene and protein profile analysis identified only a limited number of features altered 

in both data sets, cojoint pathway and network analysis using KEGG PATHWAY, DAVID, and 
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omicsNET served in the functional interpretation of the data and identified a significant 

overlap of enriched biological functions (pathways) between both data sets, thus providing 

mechanistic insights into CKD. 

 

Figure 2.3. Schematic overview of the computational framework developed by Perco et al. [25] for the 

integrated analysis of four chronic kidney disease (CKD)-relevant data sets. Cojoint analysis at the 

pathway and network level revealed cell structure, cell adhesion, as well as immunity and defense 

mechanisms as jointly populated with deregulated features from both the proteomics and 

transcriptomics data sets 

Another possible avenue for understanding the mechanism(s) of disease, based on molecular 

profiling data and interactome networks, is the Causal Reasoning (CR) method. Although CR 

is distinct from pathway analysis, in the sense that it does not rely on the assumption that 

differential RNA expression equates to differential protein activity (forward reasoning), the 

two methods can be applied in complementary fashion. CR is used to infer hypotheses mostly 

from gene expression data by detecting upstream regulators that could have led to the 

observed changes in gene expression between two states (backward reasoning). CR methods 

require as input a knowledge base of cause–effect relationships along with the gene 

expression data and can output a ranked list of causal drivers, called hypotheses [26]. Some 

notable examples of open-or part-open access computational tools utilizing CR are the Whistle 

algorithm (https://github.com/Selventa/whistle) by Selventa and the Causal Reasoning Engine 

(CRE) by Chindelevitch et al. (R source code available upon request to the original authors) 

[27,28]. The main characteristic of Whistle is that it infers mechanistic hypotheses in a 

qualitative manner as activated or inhibited and produces statistical metrics to evaluate their 

significance. By contrast, CRE infers molecular hypotheses from the data and offers a unique 

way to calculate the significance of the identified molecular drivers, with improved robustness 

towards noise. In addition, several commercial providers, such IPA and Thomson Reuters, also 

offer CR-based analysis tools [29]. 

In a different category, more recently, organizations have established open web-based 

platforms specifically tailored towards target identification, following a different pipeline than 

the above pathway topology-based and network analysis tools. This pipeline is more 

investigative than analytical, focusing on the integration and visualization of evidence 

gathered from available knowledge bases to score the association between biological targets 

and diseases. Based on the score provided, novel biological targets can be identified and 

prioritized for follow-up. For example, the Open Targets partnership established the Target 
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Validation Platform, which allows investigation and visualization of the evidence that 

associates targets and diseases [30]. The evidence that is integrated into the platform comes 

from public knowledge bases and includes rare and common disease genetics, 

transcriptomics, approved drugs and clinical candidates, animal models, Reactome 

biochemical pathways, and text mining from the medical literature. Similar to Open Targets, 

the NIH has launched the PHAROS platform to identify potential new drug targets within the 

four most-commonly drug-targeted protein families (G-protein- coupled receptors, nuclear 

receptors, ion channels, and protein kinases). PHAROS follows a similar approach to Open 

Targets by integrating multiple sources of biomedical data, albeit concentrating on these four 

protein families [31]. 

 

2.6 Target verification and validation 

Following the identification of disease-specific mechanisms, a set of targets representative of 

those mechanisms can be selected. However, not all of those targets are equally potent and 

safe points of therapeutic intervention and their prioritization is the next logical step of the 

drug discovery process [1]. On that front, considering the position of the target node(s) inside 

the network along with the global properties of biological networks, arising from graph theory, 

can provide an early estimation of their safety and implication in potential adverse effects [32] 

(Fig. 2.2). Biological networks are usually scale free, which means that, although many nodes 

have a small degree, there are nodes, called hubs that have a great number of connections 

and have a key role in the information flow of the system [33]. Given that hubs drive the 

network traffic, targeting them has a significant impact on the cell behavior, including not only 

the increased chance of lethality, but also adverse effects [34]. That is why we need to be 

aware of the degree and betweenness of the target (i.e., the number of shortest paths 

traversing a node) and select between influential high-degree nodes (with potential adverse 

effects) versus nodes with middle to low degrees [35]. For example, NetworkAnalyst [20] 

estimates target importance using the network metrics of degree centrality and betweenness 

centrality. Furthermore, inside the network, pathway modules are connected to each other 

via bridging nodes indicating that, in the same way that the expression of each gene (node) is 

not independent from each other, the activity of each pathway is not independent from each 

other (a phenomenon known as cross-talk). Thus, even though a candidate target could 

belong to a non-vital and/or secondary pathway, because of cross-talk, alterations could be 

caused in another interlinked pathway, which could, in turn, cause adverse effects. In a recent 

study, Donato et al. developed a method to detect and quantify the crosstalk effect and 

identify novel functional sub-pathways involved in the condition under study [36]. 

Several studies have used network models to identify the optimal set of targets that affect 

specific disease mechanisms while minimizing adverse effects [37–39]. Ruths et al. used graph 

theory algorithms on signaling networks to identify sets of nodes that, when targeted, 

inhibited the function of a subnetwork while preserving signal flow to a different subnetwork 

[37]. Similarly, Dasika et al. proposed an optimization framework for signaling networks to 
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identify targets that block a specific mechanism while minimizing adverse effects [38]. Lu et 

al. developed an integer linear programming (ILP)-based method for multiple metabolic 

networks to identify the minimum set of reactions whose removal would block the production 

of a target in one network but not in the others [39]. 

Finally, the resulting set of targets that has been identified to inhibit the disease-specific 

mechanism(s), following the in-silico network-based target prioritization, needs to be verified 

and validated in the lab. Experimentally, this can be done with small interfering RNA (siRNA) 

or CRISPR-cas9 gene editing, specifically designed to silence and/or catalyze the specified 

target(s). 

 

2.7 Hit and lead selection 

Once the target(s) have been set, specific chemical or biological molecules need to be found 

that either catalyze or inhibit such target(s) [1]. This hit discovery phase is traditionally 

addressed by high- throughput screening (binding and phenotypic assays) where compounds 

(known as hits) with the desired effect over the targets are selected. For small molecules, 

many cheminformatics tools have been developed [18], with the aim to identify the best 

chemical structure. Experimentally, the Innovative Medicines Initiative (IMI) has established 

the European Lead Factory (ELF), offering a large collection of compounds and a state-of-the-

art screening center to connect innovative drug targets to high-quality compounds (www. 

imi.europa.eu/content/european-lead-factory). Despite their importance, in-depth analysis 

of experimental and chemical optimization tools is out of the scope of this review. Instead, 

here we focus on the step after hit identification, where the most promising candidates should 

be selected from the identified hit compounds. In this step, biological networks and pathways 

can again serve as a link between the chemical space and the biological space to elucidate 

how hit compounds affect pathways and how those pathways can be associated with adverse 

effects and efficacy. On this front, multiomic experimental data of the hit compounds are 

essential for use with several pathway-based methods and to infer potential adverse effects 

and efficacy predictions [40–42]. 

Adverse effects of drugs are common and are either caused by off-target effects, (i.e., 

unforeseen direct physical drug–protein interactions because of drug and/or protein 

promiscuity), or indirect effects because of signal propagation after the direct interaction [4]. 

On this front, a study by Mitsos et al. identified via ILP how drugs or compounds alter the 

signaling pathways [40]. During the hit to lead stage, pathway effects (not just targets) can be 

used to predict efficacy and toxicity and enhance the drug discovery pipeline by providing 

better compounds to the optimization stage. Current efforts are focusing in relating drug 

effects to perturbed biological pathways. Biological annotation of adverse effects with 

associated pathways is a key step that allows one to predict the adverse effects of a 

compound. To provide biological insight into the generation process of adverse effects, 

several methods have been proposed utilizing molecular interaction data gathered from 

various knowledge bases, such as DrugBank (https://www. drugbank.ca/) and KEGG  Drug  
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(www.genome.jp/kegg/drug/) for drug-affected pathway(s) interactions, the Therapeutic 

Target Database (TTD; http://bidd.nus.edu.sg/group/cjttd/) for target– pathway(s)–disease 

interactions, SIDER (http://sideeffects.embl. de/) and IntSide (source: 

https://intside.irbbarcelona.org/) for drug–adverse effect interactions, and Cmap for drug-

transcriptional profile associations. Lee et al. used gene set enrichment analysis (GSEA), a 

second-generation pathway analysis tool, to reveal enriched pathways from the Cmap drug-

induced transcriptional profiles and utilized Gene Ontology ontologies to connect them to 

biological processes [41]. The authors then built a tripartite net- work of biological processes–

drugs–adverse effects by using SIDER to discover connections between biological processes 

and adverse effects. In another study by Bauer-Mehren et al., the authors gathered drug–

target associations from DrugBank and protein– adverse effect associations from DisGeNET 

and, by intersecting them, were able to identify pathways from Reactome-containing proteins 

present in both sets as the links explaining the adverse effect generation mechanisms [42] 

(Fig. 2.4). 

Another possible avenue for mechanistic toxicology, besides pathway analysis, is the usage of 

cause–effect network models to identify and quantify characteristic network signatures 

following perturbation by a drug. The quantification of the perturbation of a network is 

important in toxicology and pharmacology, where dose and time response are studied. In a 

recent study by Martin et al., the authors established a computational method, TopoNPA, for 

the analysis of gene expression data using cause-and-effect net- works as prior knowledge to 

identify, interpret, and quantify the perturbation of the network [43]. TopoNPA was 

successfully applied to infer a mechanistic hypothesis for the unequal efficacy of an anti-

inflammatory drug and to generate a robust network signature for predicting individual 

patient responses. 

Based on key insights generated into adverse effects, several machine-learning (ML) tools 

have been developed to predict the adverse effects of a hit compound based on the affected 

pathway(s) in conjunction with its chemical information (i.e., chemical structure) gathered 

from databases such as PubChem (https:// pubchem.ncbi.nlm.nih.gov/) (Fig. 2.4) [44,45]. As 

an example, Zhang et al. proposed a method named ‘feature selection-based multi-label k-

nearest neighbor method’ (FS-MLKNN) for adverse effect predictions [46]. In this study, a 

feature selection approach identified predictors based on pathways, targets, enzyme, 

transporters, and chemical structure that were later combined in a weighted scoring system 

to predict adverse effects. In terms of area under the precision-recall curve (AUPR) and other 

ML performance metrics, FS-MLKNN performed better on benchmark data sets than did other 

similar ML methods [44, 47, 48]. Zhang et al. also tested FS-MLKNN on a new data set from 

SIDER and reported that the average of recall scores for the test-set drugs was 0.463, which 

means that, on average, 46.3% of the adverse effects of a candidate drug could be predicted 

in-silico. Recently, DrugClust [49], a new ML tool for adverse effect prediction with a similar 

hybrid approach, albeit only using drug–target and chemical substructure as features for the 

prediction, was developed and is freely available as an R package (https://cran.r-

project.org/web/packages/DrugClust/ index.html). Comparing DrugClust and FS-MLKNN, 

Dimitri et al. reported that DrugClust produced a slightly higher AUPR for the Zhang data set, 
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when all respective features were considered, and a slightly lower AUPR for the Liu data set. 

Additionally, DrugClust can provide mechanistic insight into the drug adverse effect(s) 

generation process by performing pathway analysis on proteins that more frequently appear 

in a certain cluster of drugs. 

Computational tools and algorithms based on pathway networks can similarly be used to 

evaluate the efficacy of hit compounds and prioritize them before experimental validation 

[50]. In a recent study by Gu et al., the authors proved that the degrees of the decrease of 

network efficiency and network flux, which are both measures of the connectivity of a 

pathway network, could evaluate the efficacy of a compound. The authors followed this 

approach to predict the drug–response curves of drugs on the pathway network of LPS-

induced PGE2 production and their prediction agreed with the experimental results [50]. In 

another study by Guney et al., a disease–gene network was built and a drug– disease proximity 

measure was introduced using various distance metrics between the target of 238 drugs and 

78 disease modules. The study concluded that proximity is a good measure to assess drug 

efficacy and that drug to pathway proximity, calculated from the distance of drug targets to 

proteins belonging in a pathway, can elucidate the drug MoA. [51]. 

 

 

Figure 2.4. The hit–effect association and prediction process. Adverse effects of hit compounds are 

either caused by off-target effects or indirect effects because of signal propagation after the direct 

interaction. Thus, biological annotation of hit effects with associated pathways is a key step to predict 

the adverse effects and efficacy of a compound based on the affected pathway(s) 
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2.8 Conclusion 

Drug discovery is a complex and time-consuming process that involves several steps, ranging 

from target discovery to clinical trials. In this review, we have shown that pathway- and 

network- based technologies help foster the conception of mechanism-based drug discovery 

and enhance the early stages of the drug discovery pipeline by shedding light on the 

underlying biology of drugs and diseases. On this front, topology-based pathway analysis tools 

can help decrease the number of false positives in the target identification step, prioritize 

target validation, select optimal hits, and help the hit to lead step. 

Although the incorporation of pathway- and network-based drug discovery can improve the 

hit success rate, there are still limitations and challenges that need to be addressed. On the 

one hand, network topology databases have many conflicting reports and, in several 

instances, their quality is also debatable. On the other hand, computational tools that extract 

information from knowledge bases might have a bias towards pathways or molecules that are 

better studied and more present in the data and knowledge bases. On the data front, rapid 

changes on experimental technologies, lack of data formats, and lack of standardizations of 

experimental designs, influence the overall data quality. Finally, the simplistic static approach 

that most computational methods adopt, overlooks the dynamic behavior of biological 

systems, which limits the capability to model in detail the disease or drug state. We need to 

keep an eye on both technological and methodological advancements because they can help 

bridge the gap between in-silico verification and experimental validation. We anticipate that, 

as more disease- and drug-specific ‘omics  data are generated and shared, and as biological 

information is better annotated, knowledge bases will keep expanding their coverage and 

pathway- and network-based computational methods will capitalize on those advancements, 

paving a new path towards an evolved drug discovery pipeline with lower attrition rates. 
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Chapter 3 

 

DeepSNEM: Deep Signaling Network 

Embeddings for compound 

mechanism of action identification 
 

 

 

3.1 Chapter abstract 

Motivation 

The analysis and comparison of compounds’ transcriptomic signatures can help elucidate a 

compound’s Mechanism of Action (MoA) in a biological system. In order to take into account 

the complexity of the biological system, several computational methods have been developed 

that utilize prior knowledge of molecular interactions to create a signaling network 

representation that best explains the compound’s effect. However, due to their complex 

structure, large scale datasets of compound-induced signaling networks and methods 

specifically tailored to their analysis and comparison are very limited. Our goal is to develop 

graph deep learning models that are optimized to transform compound-induced signaling 

networks into high-dimensional representations and investigate their relationship with their 

respective MoAs. 

Results 

We created a new dataset of compound-induced signaling networks by applying the 

CARNIVAL network creation pipeline on the gene expression profiles of the CMap dataset. 

Furthermore, we developed a novel unsupervised graph deep learning pipeline, called 

deepSNEM, to encode the information in the compound-induced signaling networks in fixed-

length high-dimensional representations. The core of deepSNEM is a graph transformer 

network, trained to maximize the mutual information between whole-graph and sub-graph 

representations that belong to similar perturbations. By clustering the deepSNEM 

embeddings, using the k-means algorithm, we were able to identify distinct clusters that are 

significantly enriched for mTOR, topoisomerase, HDAC and protein synthesis inhibitors 
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respectively. Additionally, we developed a subgraph importance pipeline and identified 

important nodes and subgraphs that were found to be directly related to the most prevalent 

MoA of the assigned cluster. As a use case, deepSNEM was applied on compounds’ gene 

expression profiles from various experimental platforms (MicroArrays and RNA sequencing) 

and the results indicate that correct hypotheses can be generated regarding their MoA.  

Availability and Implementation 

The source code and pre-trained deepSNEM models are available at 

https://github.com/BioSysLab/deepSNEM.  

 

3.2 Introduction 

Characterizing a compound’s Mechanism of Action (MoA) in a cellular system is a very 

important step in the development of new drugs or the repurposing of existing ones. On this 

front, several systems-based computational methods that utilize omics data, following 

treatment with a compound, have been developed [1]. One approach that has gained 

considerable attraction for the MoA identification task is the analysis of post-transcriptional 

data from compound perturbations [2]. These approaches analyze compounds’ 

transcriptomic signatures in order to identify key genes and signaling mechanisms that either 

cause the compound’s therapeutic effect or are associated with specific adverse effects [3]. 

Furthermore, the comparison of transcriptomic signatures can be used to elucidate the MoA 

of new compounds, by associating them with compounds of known MoA, or propose new 

indications for already existing drugs. 

There have been many studies that utilize differential gene expression (GEx) data to 

characterize a compound’s MoA [4]. The Connectivity Map (CMap) and the LINCS project have 

played a pivotal role in this field, by providing large datasets of compounds’ transcriptomic 

signatures and methods for their analysis, comparison and interpretation [5,6]. As an 

example, Iorio et al. utilized compounds’ transcriptomic signatures from the CMap dataset to 

build a network, where perturbations are connected if they have similar transcriptional 

profiles [7]. This network was then analyzed to find communities and clusters that consisted 

of perturbations with similar MoA. Since a compound’s phenotypic effect is usually caused by 

changes in the expression of interacting genes/proteins, combining transcriptomic data with 

a prior knowledge-base of molecular interactions, e.g. signaling pathways, can result in a more 

mechanistic explanation of a compound’s MoA [1]. On this front, a promising modeling 

technique is the representation of a compound’s effect as a network of signaling proteins 

(nodes), showing their activity and how these interact with each other to transfer the signal 

of the perturbation in the system [8]. 

Signaling network creation methods combine omics data with a prior knowledge network of 

protein-protein interactions (PPI) in order to extract a graph that best explains the 

experimental data. Mitsos et al. developed an Integer Linear Programing (ILP) optimization 

task to identify the signaling network that characterizes a compound’s effect based on 

https://github.com/BioSysLab/deepSNEM
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phosphoproteomic data [9]. Since large scale phosphoproteomic datasets following 

compound treatment are very rare, there has been a concentrated effort to develop methods 

for signaling network creation based on transcriptomics [10-12]. Liu et al. developed 

CARNIVAL, a causal reasoning framework to identify signaling networks that best explain a set 

of transcription factor (TF) activity scores, calculated from differential GEx data [13]. 

Compound-induced signaling networks are information-rich and complex representations of 

the compounds’ effect, since they incorporate the prior knowledge of molecular interactions 

in the form of a PPI network. However, this complexity poses limitations for their large scale 

analysis and comparison of networks from different compounds using traditional network 

similarity algorithms, i.e. graph kernels. More specifically, graph similarity algorithms, such as 

the Graph Edit Distance (GED), graphlet-based methods or graph kernels, utilize hand crafted 

features and are not optimized for signaling networks, which can result in reduced 

generalization performance and reduced scalability [14-16]. An interesting approach is to 

employ deep learning models for graphs in order to encode the complete information of the 

signaling network into high dimensional fixed-length representations [17]. These 

representations can then be compared using traditional algorithms in order to identify 

similarities between compound-induced signaling networks that could translate to similarities 

in the compounds’ MoA. 

There have been many studies for the development of deep learning models for graph data 

in a variety of fields. These models are usually neural networks that aim to learn new task-

specific node and graph representations by using the graph’s connectivity [18]. For example, 

the graph convolutional model utilizes a message passing algorithm to learn neighborhood-

level representations of the input graph. Recently, the successful transformer architecture for 

natural language processing (NLP) problems has been modified and applied on graph data 

[19,20]. Graph transformers utilize an attention mechanism for each node that is a function 

of the neighborhood’s connectivity, rather than a message passing algorithm. Similarly, the 

graph2vec model was inspired by the doc2vec approach for NLP tasks. Graph2vec treats the 

entire graph as a document and each node’s neighborhood as a word and aims to learn a 

fixed-length representation of the entire graph in a fully unsupervised task [21]. Another 

important unsupervised approach for graph representation learning is the InfoGraph model 

[22,23]. InfoGraph aims to maximize the mutual information between graph-level 

representations and representations of the graph’s substructures at different levels, e.g. 

nodes, edges and triangles. These unsupervised graph representation learning methods can 

be modified for compound-induced signaling networks in order to extract fixed-length feature 

vectors that can then be associated with the compound’s MoA. 

In this paper, we developed a novel deep learning framework, called deepSNEM, to learn new 

representations (embeddings) of signaling networks and investigate their relationship with 

the compound’s MoA. Compounds’ signaling networks were created using the CARNIVAL 

pipeline and the transcriptomic signatures of the CMap dataset, resulting in a large scale 

dataset of signaling networks that can aid future studies. The core of deepSNEM is an 

unsupervised graph transformer trained to maximize the mutual information between 

representations of graphs’ substructures that belong to signaling networks created from 
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similar perturbations. The resulting embeddings were evaluated based on their ability to 

identify similar signaling networks and compared with representations created by different 

graph-based models. Subsequently, the embeddings were clustered with the k-means 

algorithm and the resulting clusters were analyzed based on their MoA composition. 

Furthermore, a subgraph importance method was developed to identify the most important 

nodes for each graph-level representation and the subgraphs that cause the signaling 

networks to cluster together. As a use case, deepSNEM was tasked to assign clusters to 

compounds’ signaling networks generated using gene expression profiles from various 

experimental platforms. Analyzing the MoA composition of a compound’s assigned cluster, 

deepSNEM can generate hypotheses regarding the MoA of new lead compounds or suggest 

new potential mechanisms for already existing drugs. 

 

 

3.3 Results 

3.3.1 The deepSNEM approach 

The overview of our approach is presented in Figure 3.1. Differential gene expression 

signatures following compound treatment across cell lines were retrieved from the L1000 

dataset (GSE92742) [6]. In total, 7722 signatures from 3005 compounds across 70 cell lines 

were utilized. The first step of the deepSNEM pipeline is the creation of signature specific 

signaling networks following the CARNIVAL framework [13]. In this framework, the gene 

expression signatures are first transformed into transcription factor activity scores and then 

an ILP model is tasked to extract the optimal subgraph from a global PPI network that best fits 

the calculated activity scores (see Methods 3.5.1). The created network is a labeled (protein 

activity), signed (edge activation or inhibition) and directed PPI graph that captures the 

signaling network effect of the drug-induced transcriptomic signature. The core of deepSNEM 

is a DL model, trained in an unsupervised setting, which takes as input the drug-induced 

signaling networks, created with CARNIVAL, and outputs a high dimensional embedding that 

best captures the information contained in the input graph. Regarding the DL models, we 

evaluated the use of a graph transformer trained to either maximize the mutual information 

of nodes belonging to the same signature (termed deepSNEM-GT-MI) or predict the edge 

presence between nodes (termed deepSNEM-GT-LP), a siamese GCN model to predict the 

graph edit distance between signaling networks (termed deepSNEM-GED) and the widely 

used graph2vec model (termed deepSNEM-G2V) (see Methods 3.5.2). 
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Figure 3.1. Schematic overview of deepSNEM. For each compound-induced differential expression 

signature, a signaling network is created using the CARNIVAL framework. Then an unsupervised DL 

model is tasked to encode the created signaling network in a high dimensional embedding that best 

captures the input graph information. 

 

3.3.2 Model-embedding evaluation 

The different deepSNEM model variations were evaluated based on the validity of the 

produced embeddings on two separate tasks. The first task examines the models’ ability to 

produce similar embeddings from signaling networks that are created from the same 

differential gene expression signature. On this front, we utilized the slightly different but 

feasible network solutions of CARNIVAL’s ILP model for the same signature and investigated 

the distributions of Euclidian distances between embeddings belonging to the same signature 

and between embeddings from different signatures (Figure 3.2A). As it can be seen in Figure 

3.2A, there is a clear distinction between the distance distributions of embeddings from the 

same and different signatures. Thus, all models are able to produce embeddings that are 

significantly more similar for graphs created from the same measurements of differential 

expression.  In the second task, we evaluated the similarity of graph embeddings created from 

duplicate gene signatures as compared to the similarity of embeddings from random gene 

signatures. Duplicate signatures indicate transcriptomic signatures from the same compound 

perturbation, cell line, dose and time point that were assayed on different L1000 plates [24]. 

Figure 3.2B shows the distributions of Euclidian distances between embeddings belonging to 

duplicate signatures and between embeddings of random signatures. For all models, the 

difference between the distributions is significant, as indicated by a two sample t-test (p-

values < 0.001). Thus, all models are able to produce similar graph embeddings for gene 

signatures that share the same experimental conditions. Based on these results, we chose to 

perform a clustering analysis on the embeddings produced by the deepSNEM-GT-MI 

architecture, in order to examine the connection between a drug’s induced signaling network 

and its reported MoA. 
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Figure 3.2.Model-embedding evaluation tasks. (A) Normalized Euclidian distances between 

embeddings from the same signature and different signatures for all deepSNEM model variations. (B) 

Normalized Euclidian distances between embeddings duplicate and random gene expression signatures 

for all model variations. 
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3.3.3 Clustering analysis for MoA identification 

The signaling network effect of a compound perturbation in a cellular model presents a 

systematic view into the compound’s MoA. In order to investigate this relationship, we first 

identified groups of perturbations with similar network effect, by clustering the deepSNEM 

network embeddings, and then analyzed the resulting clusters based on the reported MoA of 

the compounds. On this front, the 256-dimensional deepSNEM-GT-MI embeddings were 

clustered using the k-means algorithm. The optimal number of clusters was found to be 200, 

according to the k-means elbow plot (see Supplementary Material (SM) 6). Additionally, in 

order to analyze and characterize the resulting clusters, we utilized the MoA labels provided 

by the Broad’s Institute Repurposing Hub [25]. Out of the 3005 unique compounds, 912 were 

mapped to 261 unique MoA labels using the Repurposing Hub dataset (see SM 1). Figure 3.3A 

shows the 2-dimensional t-SNE projections of all available signaling network embeddings. 

Additionally, the signaling network embeddings that belong to the top 9 most prevalent MoA 

labels in the dataset are presented with different colors (Figure 3.3A).  In order to characterize 

the identified clusters, we focused on the subset of clusters that are significantly enriched for 

at least one mechanism (Figure 3.3B). The selected clusters have at least 25% of their 

compound perturbations belonging to the same MoA, with a p-value lower than 10-6 

compared to a random selection. Figure 3.3B shows the breakdown of the available MoA in 

the selected clusters. As it can be seen, the identified clusters are enriched for the same 

mechanisms that are most prevalent in the labeled dataset. As a result, DeepSNEM was able 

to identify 11 clusters that are significantly enriched for specific mechanisms, i.e.  mTOR, 

HDAC, topoisomerase, protein and ATP synthesis inhibitors. We have to note that clusters that 

are enriched for MTOR inhibitors are also enriched for PI3K inhibitors, which is expected due 

to the PI3K/mTOR signaling pathway.  However, the majority of the compounds in each cluster 

still do not have available labels regarding their MoA (represented with grey color in Figure 

3.3B). Thus, due to the unknown labels, the distribution of MoA between clusters that are 

enriched for the same MoA can still be quite different. 
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Figure 3.3. Clustering analysis. (A) T-SNE projection of the 256-dimensional signaling network 

embeddings of deepSNEM-GT-MI. Different colors represent the 9 most prevalent MoA in the dataset, 

while the grey color represents perturbations with either unknown or other MoA. Additionally, the 

centers of the identified clusters are represented with circles (CL: cluster). (B) MoA composition of the 
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analyzed clusters. The Y axis represents the frequency, as a percentage, of each MoA in the cluster (CL: 

cluster). 

 

3.3.4 Subgraph importance 

The analysis of compound-induced signaling networks for MoA identification offers the 

benefit of easier result interpretation. In order to utilize this benefit and increase the 

interpretability and explainability of deepSNEM, we created a framework to identify the 

important subgraphs for the subset of clusters analyzed in the previous section. For each 

cluster, important nodes were identified using an aggregate score based on their importance 

to the embedding model and the nodes’ prevalence in the cluster’s graphs (see Methods 

3.5.3). Figure 3.4A shows the overlap, as a percentage, between the 20 most important nodes 

of the analyzed clusters. As it can be seen, clusters that are enriched for the same MoA, have 

a higher similarity between their most important nodes. Thus, the proposed importance 

framework can identify nodes of high importance in each cluster that show a connection to 

the cluster’s most prevalent mechanism of action. For visualization purposes, the most 

important nodes in each cluster were connected by selecting the shortest paths between 

them, from the Omnipath PPI that also maximize the overall sum of importance scores in the 

path. Figure 3.4B shows an example of the important subgraphs for the clusters that are 

enriched for mTOR and PI3K inhibitors. The common most important nodes across the 

presented networks include the mTOR regulated transcription factors NRF1 and TFDP1 and 

the CSKNK2A1, RHOA, PRKACA and LCK proteins, which are involved in the PI3K-Akt-mTOR 

signaling pathway [26-30].  Finally, across all clusters, AKT1 and MAPK1 serve as central nodes 

that connect the most important nodes (Figure 3.4B). The important subgraphs for all 

analyzed clusters are presented in SM 7. 
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Figure 3.4. Cluster subgraph importance. (A) Heatmap showing the similarity, as percentage overlap, 

between the 20 most important nodes of each cluster. (B) Important subgraphs identified for the 

clusters enriched for mTOR and PI3K inhibitors (Clusters 8, 112 and 200). The average activity of each 

node in the cluster is color coded from blue to red. Blue nodes are inhibited, while red are activated. 

Each node’s importance score, ranging from 0 to 1, is represented by the size of the node’s circle. 
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3.3.5 Use case: cluster assignment  

Gene expression data from 7 additional compounds with known mechanism of action were 

retrieved from the GEO database. The details regarding the experimental data used in the use 

case are presented in Table 3.1. Overall, the data were collected from 6 different studies, 4 

cell lines and 3 different experimental platforms, i.e. Affymetrix/Agilent Microarrays and 

Illumina next generation sequencing. Following the deepSNEM pipeline, each differential gene 

expression signature was transformed into a compound induced signaling network with 

CARNIVAL and embedded using the deepSNEM-GT-MI model. Finally, each embedding was 

assigned to one of the already identified clusters (Table 3.1). Figure 3.5A shows the assigned 

clusters and the distribution of each cluster’s available MoA. The topoisomerase inhibitor 

SN38 and the HDAC inhibitors Sodium-Butyrate, Panobinostat and Belinostat were assigned 

to clusters significantly enriched for topoisomerase and HDAC inhibitors respectively. 

Furthermore, the topoisomerase inhibitor Doxorubicin and the mTOR inhibitor Sirolimus were 

assigned to clusters enriched for their respective MoA, albeit having a large number of 

compounds with unknown MoA. Finally, the compound CDK-887 was assigned to a cluster 

that was not enriched for any particular MoA.  Thus, the deepSNEM pipeline can be used to 

assign a cluster to a compound-induced gene expression signature, independent of the 

experimental platform, and provide insight into the compound’s potential MoA. For the 

compounds in the use case, we also compared the cluster assignment of deepSNEM to a 

clustering of the compounds’ differential expression gene measurements into the same 

number of clusters (k=200) (see SM 8) (Figure 3.5B). Comparing the two approaches, SN38, 

Belinostat and Panobinostat were assigned to clusters composed of similar mechanisms. 

However, this is not the case for Sirolimus, Doxorubicin and Sodium Butyrate, which are 

assigned to clusters not enriched for any particular MoA, when the gene-clustering pipeline is 

used. Finally, for each compound of the use case, we calculated the Jaccard similarity index 

between the perturbations of the identified clusters using the two methods (deepSNEM and 

gene-based clustering) (Table 3.2). As it can be seen in Table 3.2, across all compounds the 

similarity of the clusters is very low, with only the clusters assigned to the SN38 having a 

slightly higher Jaccard index. Thus, the deepSNEM and gene-based pipeline result in a 

different clustering of the perturbations, due to the different biological hierarchy of 

information provided by the compound-induced signaling networks and differential gene 

expression signatures. 

Table 3.1. Information regarding the perturbations used in the use case and their assigned 

clusters. 

Compound MoA Cell line GSE Platform Cluster (CL) 

Sirolimus 
mTOR 

inhibitor 
MCF7 GSE116447 

Affymetrix 

Microarray 
53 

CDK-887 
CDK 

inhibitor 
MCF7 GSE19638 

Affymetrix 

Microarray 
163 



Chapter 3 DeepSNEM 
 

42 
 

Panobinosta

t 

HDAC 

inhibitor 
A375 GSE145447 

Illumina 

NextSeq 
22 

Sodium-

Butyrate 

HDAC 

inhibitor 
HT29 GSE61429 

Agilent 

Microarray 
22 

Belinostat 
HDAC 

inhibitor 
A549 GSE96649 

Illumina 

NextSeq 
188 

SN38 

Topoisomer

ase I 

inhibitor 

MCF7 GSE18552 
Affymetrix 

Microarray 
158 

Doxorubicin 

Topoisomer

ase II 

inhibitor 

MCF7 GSE19638 
Affymetrix 

Microarray 
33 

 

Table 3.2. Jaccard similarity index between the clusters that the use case compounds were 

assigned to, using the gene-based and deepSNEM pipelines. 

Sirolimus 0.004 

CDK-887 0 

Panobinostat 0 

Sodium-Butyrate 0.006 

Belinostat 0.029 

SN38 0.162 

Doxorubicin 0.012 
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Figure 3.5. MoA composition of the compounds’ clusters. (A) Bar plot of mechanism of action 

prevalence for the clusters that were assigned to the use case perturbations using the deepSNEM 

pipeline. (B) Similar bar plot for the assigned clusters using the gene-based clustering pipeline. 
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3.4 Discussion 

The changes in the protein signaling network caused by a compound perturbation can aid in 

studying the compound’s mechanism of action in the cellular system. However, analyzing 

compound-induced signaling networks on a massive scale is a very complex problem, not only 

due to the limited availability of large datasets containing such networks but also due to the 

complex structure of the data. This complex structure of signaling networks limits their 

representation abilities and poses a challenge in identifying similarities or differences 

between them.  In this study, we created a large dataset of compound-induced signaling 

networks from the CMap dataset, using the CARNIVAL network creation pipeline and 

developed an unsupervised deep learning model to transform them into high-dimensional and 

information-rich representations. This novel approach, called deepSNEM was used to identify 

clusters of perturbations with similar network representations and offer insight into the 

compounds’ MoA by analyzing the distribution of MoA in the clusters. 

The prediction of a compound’s MoA from biological response data has gained considerable 

attraction in the machine learning community [31,32]. This is evident by the recent release of 

the CTD2 Pancancer Drug Activity DREAM Challenge, which tasked the community to predict 

a compound’s MoA based on post-transcriptional and cell viability data [32]. Even though the 

learning task of MoA prediction is frequently modeled as supervised, in our approach we 

decided to develop deepSNEM in a fully unsupervised fashion. This decision was based on the 

nature of the learning task and the compounds’ MoA, wherein if a compound has a reported 

MoA based on binding affinity data, we can’t know with absolute certainty that it doesn’t have 

additional MoA labels due to other binding targets or interactions between the proteins in a 

pathway. Thus, for some compounds the negative labels for all possible MoA indications might 

not be truly negative, rather they might be simply unknown. Additionally, another important 

benefit of using an unsupervised approach, is that we can greatly increase the amount of 

available data by including transcriptomic signatures following treatment with compounds 

that have no reported MoA. In deepSNEM the learning model is tasked to produce meaningful 

representations that capture the information included solely in the compound-induced 

signaling networks without taking into account the compounds’ reported MoA. However, this 

unsupervised task makes the evaluation of the different models and the resulting embeddings 

quite challenging.  

The evaluation of the validity of the resulting embeddings was based upon two tasks that test 

if the models can produce embeddings that capture the similarities of the input perturbation. 

Those tasks however, more closely resembling pass/fail tasks, rather than quantitative metrics 

(Figure 3.2). Thus, we cannot know with certainty which deepSNEM model variation, i.e. graph 

transformers, graph convolutions or graph2vec is better in terms of the resulting embeddings. 

For the downstream task of mechanism of action identification, we decided to use the 

embeddings of the graph transformed trained to maximize the mutual information between 

nodes that belong to networks created from the same or duplicate gene expression 

signatures. We argue that this deepSNEM variation is better suited to capture the information 

of the signaling networks, due to the graph transformer architecture and due to the mutual 
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information task that forces networks created from the same perturbation to have similar 

embeddings (see Methods 3.2). Finally, we have to note that the resulting 256-dimensional 

graph embeddings contain all the information of the input signaling networks, which makes it 

difficult for the t-SNE algorithm to project them in 2 dimensions, as it can be seen in Figure 

3.3A.  

The clustering analysis and MoA identification using the deepSNEM-GT-MI embeddings was 

performed by analyzing the MoA labels provided by the Broad Institute in the drug 

repurposing hub. Using this dataset, 912 out of the 3005 total compounds were mapped to 

261 unique labels. We argue that this diversity of mechanisms and large number of 

compounds with unknown MoA in the dataset resulted in the large number k (k = 200) of 

clusters that were identified using the elbow plot of the k-means algorithm. Additionally, due 

to the large number of unlabeled compounds, in order to analyze the resulting clusters, we 

focused on a specific subset that is significantly enriched for at least one specific MoA (Figure 

3.3B). Using this approach, we identified 11 clusters that each were enriched for the most 

prevalent mechanisms in the dataset. However, even for the clusters enriched for the same 

MoA, the large number of unknown compounds could result in different cluster compositions, 

which potentially further signifies the importance of analyzing biological response from 

different points of view, e.g. genes, pathways, signaling networks. 

There have been many studies for the identification of a compound’s MoA using biological 

response data. The majority of these approaches utilize post-transcriptional data and have 

been utilized successfully in the fields of systems pharmacology and drug repurposing [34,35]. 

Since the initial part of deepSNEM relies on transcriptomic data, similarities between the 

results and clustering of gene signatures and signaling networks are expected. This effect is 

evident in the presented use case, where some of the compounds were assigned to clusters 

with similar MoA composition between the gene-based and network-based pipeline. 

However, some compounds were assigned to clusters enriched for different MoA between 

the two approaches (Figure 3.5). Most importantly, between the two methods, each 

compound was assigned to clusters that had a very low Jaccard similarity index, meaning that 

the transcriptomic signatures and signaling network embeddings of deepSNEM cluster in a 

different way (Table 3.2). Thus, even though transcriptomic signatures do provide meaningful 

insight into a compound’s MoA, there are cases, where analyzing the signaling networks can 

reveal complex relationships that are hidden in the original expression data. We argue that 

this is because a compound’s effect on a biological system is usually caused by changes in the 

expression of genes that interact with each other to form specific biological processes. By 

supplying deepSNEM with this required prior knowledge of interactions in the form of the 

Omnipath PPI, the compound-specific signaling networks can provide a mechanistic view of 

the compound’s effect and translate to the identification of its MoA [36]. Additionally, 

deepSNEM’s signaling network creation via the CARNIVAL pipeline can provide a robust 

normalization factor to analyze and incorporate data from different experimental platforms 

(Table 3.1). Finally, the analysis of compound-induced signaling networks has the inherent 

benefit of increasing the interpretability of results. 
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The interpretability and explainability of machine learning models is a concept that has gained 

considerable attraction since the creation and application of powerful and complex deep 

learning models in various fields [37]. This is especially true in the fields of drug discovery and 

systems pharmacology, where understanding why the model made specific decisions and 

predictions can not only validate and help interpret the results, but also generate new 

knowledge and hypotheses regarding the complex systems under study [38]. Here, we 

developed a node and subgraph importance method to identify which nodes the model pays 

attention to when creating the embeddings and which nodes in the original networks cause 

the embeddings to cluster together. This resulted in the better understanding and 

interpretation of the novel representations that were extracted from the DL model. Using this 

approach, we showed that the models pay attention to similar nodes in order to cluster 

together compounds with similar MoA and were able to identify important signaling 

subgraphs that are characteristic of each cluster (Figure 3.4). For example, in the clusters 

enriched for mTOR inhibitors, even though mTOR as a node was not present in the input 

signaling networks of the cluster, deepSNEM was able to extract important subgraphs that are 

related to the mTOR signaling pathway. 

The deepSNEM pipeline serves as proof of concept that compound-induced signaling 

networks can be analyzed on a massive scale, using deep learning and provide insight into the 

compound’s effect. In a real-world application, deepSNEM would be used in combination with 

existing methods, utilizing transcriptomic data or pathway signatures, for a consensus-based 

assignment of compound perturbations into clusters that are enriched for specific MoA. 

Subsequently, deepSNEM could be used to identify which nodes and subgraphs mostly 

influenced the proposed cluster assignment, thus increasing its interpretability and help 

generate new hypotheses. We believe that our signaling network dataset and the proposed 

pipeline can help pave the way towards more studies that utilize the inherent knowledge of 

the changes in the signaling cascade of a system to better elucidate a compound’s mechanism 

of action. 

 

3.5 Methods 

3.5.1 Signaling network creation 

Gene expression profiles (level-5 z-score transformed) of compound perturbations were 

downloaded from the L1000 CMap dataset [6]. In the current study, only measurements of 

the relative gene expression of the 978 landmark genes in the L1000 assay were used 

(GSE92742). For each gene expression signature, a quality score was derived, based on its 

transcriptional activity score (TAS), the number of biological replicates and whether the 

signature is considered an exemplar, similar to the deepSIBA approach [24]. Based on this 

quality score, only the signatures with the highest quality score were selected. An overview of 

the transcriptomic signatures used in this study can be found in SM 1. For each signature, 

transcription factor (TF) activity scores were inferred using the DoRothEA R package [39]. This 

method utilizes a knowledge base of signed TF-target interactions called Regulons and the 
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VIPER enrichment algorithm to calculate TF activity scores [40]. For each compound 

perturbation, the discretized TF activities of DoRothEA were transformed into signaling 

networks using the CARNIVAL pipeline [13]. CARNIVAL solves an ILP optimization problem to 

infer a family of highest scoring subgraphs, from a prior knowledge network of signed and 

directed protein-protein interactions, which best explain the TF activities, subject to specific 

constraints. In our approach the OmniPath network was used as the global prior knowledge 

network [36]. Furthermore, the CARNIVAL pipeline without using the perturbation targets as 

input was utilized (InvCARNIVAL method). Finally, the ILP formulation of the problem was 

solved using the IBM ILOG CPLEX solver, which is freely available through the Academic 

Initiative (https://www.ibm.com/products/ilog-cplex-optimization-studio). Details regarding 

the parameters of CARNIVAL can found in SM 2. 

3.5.2 DeepSNEM model 

3.5.2.1 DeepSNEM-GT-MI 

Each compound-induced signaling network is represented as a labeled, signed and directed 

graph 𝐺 = (𝑉, 𝐸), with nodes (V) being the proteins and edges (E) denoting the directed 

physical interaction between them. Additionally, the activity of each protein is represented as 

a node attribute, while the inhibition or activation of each edge is represented as an edge 

attribute. Each input graph to the deepSNEM-GT-MI consists of a node feature matrix (Xprot), 

a node activity embedding (Xact) and a node proximity embedding (Xdist). The node feature 

matrix contains the initial protein features of each graph, which were created using the 

SeqVeq protein sequence model [41]. For each protein, the node activity embedding is a 

projection of the node’s activity to the dimensions of the SeqVeq features, using a single 

embedding layer. The node feature and node activity matrices are added before being 

processed by the graph transformer. Finally, the node proximity embedding is a relative 

positional embedding, where each shortest path distance between nodes is calculated using 

the Floyd Warshall Algorithm [42]. Thus, the proximity embedding contains information about 

the relative distance of each node to all other nodes in the graph. The input matrices are then 

passed through the self-attention mechanism of the graph transformer, resulting in a final 

feature matrix X [19,20]. Finally, this feature matrix is summarized using the Set2Set global 

pooling method into a trainable whole-graph representation [43]. The model is trained fully 

unsupervised by maximizing the mutual information between node and whole-graph 

embeddings that are created from the same or duplicate transcriptomic signatures, using the 

CARNIVAL pipeline, thus resulting in similar graph representations for the same perturbation. 

Similar to the InfoGraph approach, the Jensen-Shannon Mutual Information estimator was 

used, while an additional term was added to the total loss function in order to force the 

embeddings to be uniformly distributed [22]. More details regarding the deepSNEM-GT-MI 

model can be found in SM 5. 

3.5.2.2 DeepSNEM model variations 

The DeepSNEM-GED variation is a Siamese graph convolutional model that is trained to 

minimize the error between the predicted and calculated graph edit distance for a pair of 

https://www.ibm.com/products/ilog-cplex-optimization-studio
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compound-induced signaling networks. Furthermore, the deepSNEM-GT-LP variation is a 

transformer model similar to deepSNEM-GT-MI, albeit trained to predict the presence of an 

edge between two proteins (nodes).  Finally, the deepSNEM-G2V model is an application of 

the widely used graph2vec model for whole-graph representations [21]. Details regarding 

these model variations can be found in SM 3 and 4. 

 

3.5.3 Node and subgraph importance 

The average attribution of each node (protein) to the resulting signaling network embedding 

was calculated using the saliency map approach of the Captum library [44]. With the saliency 

approach the attributions are calculated based on the gradient with respect to the input [45]. 

This approach results in an attribution score for each node that shows the importance of the 

node to the model, when calculating the network embedding. Subsequently, a scoring 

function was designed in order to identify the important nodes in a specific cluster of signaling 

network embeddings. For each node, this scoring function calculates the product of the 

median rank of the node’s attribution score in the cluster and the frequency that the node 

appears in the signaling networks of the cluster. Finally, this score is normalized between 0 

and 1. For visualization purposes, the 20 most important nodes of each cluster were 

connected using the shortest paths from the OmniPath PPI network that maximize the overall 

sum of importance scores in the connected graph. 
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3.7 Supplementary Material 

 

1 Data preprocessing and quality control 

The filtered CMap dataset contains 7722 transcriptomic signatures from 3005 compounds 

tested across 70 cell lines. During the filtering process, for each compound per cell line, its 

signature with the highest quality across different dosages and time points was selected. The 

assigned quality score based on TAS, number of replicates and whether the signature is 

considered an exemplar is presented in Table S3.1. Only signatures with Quality score of 1 

were used. 

Table S3.1 Signature quality score 

Quality score TAS 
Number of 

replicates 
Exemplar 

Q1 > 0.4 > 2 True 

Q2 0.2 – 0.4 > 2 True 

Q3 0.2 – 0.4 ≤ 2 True 

Q4 0.2 – 0.4 > 2 True 

Q5 0.2 – 0.4 ≤ 2 True 

Q6 < 0.1 > 2 True 

Q7 < 0.1 ≤ 2 True 

Q8 < 0.1 < 2 False 

 

2 CARNIVAL parameters 

The CARNIVAL pipeline was ran in parallel and without using the perturbation’s known targets 

as input (InvCARNIVAL). The signaling network dataset was created with an older version of 

CARNIVAL in R version 3.6, but the same parameters can be used in the latest version of 

CARNIVAL.  
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The main parameters, which can be found in Table S3.2, are the time limit until the 

optimization terminates (timelimit), the allowed number of solutions to be generated 

(limitPop), the allowed number of solution to be kept in the pool of solution (poolCap) and 

the external ILP Solver used. The rest parameters can be set to the default of each CARNIVAL 

version [1]. 

 

Table S3.2 CARNIVAL pipeline parameters 

Execution mode parallel 

inverseCR TRUE 

ILP Solver Cplex 

timelimit (in minutes) 1800 

limitPop 500 

poolCap 100 

 

3 Graph2vec 

Our approach was compared with a well-known and well-established model for the 

generation of graph embeddings, called graph2vec [2]. Graph2vec works like doc2vec by 

assuming that a graph is a document and the rooted subgraphs around every node in the 

graph are words that compose the document. Like two documents in doc2vec have similar 

embeddings if they consist of similar words, two graphs in graph2vec have similar embeddings 

if they consist of similar subgraphs, meaning that embeddings are generated in a way, both 

unsupervised and domain-agnostic, in which similar graphs would have similar embeddings. 

In the current study, signaling networks were considered undirected, so that they can be fed 

to the graph2vec model, and node labels are assigned as concatenated strings of the node 

name and the sign of the activity of each node so that the important feature of activity in a 

signaling network can be considered. We reason that the transformation of the graph from 

directed to undirected would not undermine the quality of the resulting embeddings 

completely, as in the case of signaling networks every connection encountered is unique for 

all graphs, meaning that every unique pair of nodes that exists in the dataset can have only 

one unique direction and sign. The graph2vec model was trained for 1 epoch and the 

embedding size was set to 128.  

 

4 GED model 

One approach to embed graphs into a high dimensional space, while maintaining the original 

graph-graph similarity in the high dimensional space too, is the utilization of a distance 

learning approach that employs Siamese encoders (shared weights) to construct graph 

embeddings. As proposed in the UGraphEmb framework by Bai et al., similarity or dissimilarity 

between graphs can be defined by domain-agnostic and unbiased distance metrics, such as 
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Graph Edit Distance (GED), which can be used to train the model in an supervised manner [3]. 

One definition of GED is that of the number of operations, such as node or edge insertions 

and deletions, needed in order to transform one graph G1 into another graph G2 [4]. To this 

end, a distance learning model consisting of siamese graph convolutional encoders is trained 

to minimize the Mean Squared Error (MSE) between the predicted cosine distance of paired 

graph embeddings and the GED of the pair of input graphs. The input representation and the 

architecture of the encoder is similar to the one used in the deepSIBA framework [5]. The 

encoder consists of three graph convolutional layers, as proposed by Duvenaud et al., 

followed by one convolutional layer, one pooling layer and one fully connected layer, while 

the final graph embeddings are L2-normalized. The graphs are represented by a node matrix, 

containing information about the nodes’ features, and edge attribute matrix, containing 

information about the edges’ features and a connectivity matrix. 

 

5 DeepSNEM-GT-MI 

The deepSNEM-GT-MI model encodes the input matrices of each signaling network using two 

multi-head attention layers. Each multi-head attention layer computes the attention score 

using the key, query and value matrices, which are later combined using a simple feed forward 

network. The output of this network is used to produce the whole-graph representations 

using the Set2Set LSTM model. The mutual information is approximated using simple 

discriminators in order to train the model. The final node embedding size is set to 128, while 

the whole-graph representation embedding size is set to 256. 

 

6 Clustering with k-means 

The deepSNEM-GT-MI embeddings were clustered using the k-means algorithm. The optimal 

number of clusters were selected using the elbow method. The elbow plot of the clustering is 

presented in Figure S3.1. Figure S3.1 shows the total within sum of squared distances between 

the centroids and the points of each cluster, for different values of k. We can see that the 

elbow starts to form around k=200. This comes in agreement with the internal diversity of the 

dataset, where we have 261 unique MoA labels assigned to 912 compounds. Based on the 

results of Figure S3.1, the number of clusters was set to 200. 
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Figure S3.1. Elbow plot of the k-means clustering of the deepSNEM-GT-MI embeddings. 

 

7 Subgraph importance 

The important subgraphs for all analyzed clusters that were significantly enriched for a specific 

MoA are presented in Figure S3.2. 
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Figure S3.2. Important subgraphs identified for the clusters enriched for topoisomerase (Clusters 97, 

125 and 158), HDAC (Clusters 142, 147 and 179), protein synthesis (Cluster 72) and ATP synthesis 

(Cluster 120) inhibitors. The average activity of each node in the cluster is color coded from blue to red. 

Blue nodes are inhibited, while red are activated. Each node’s importance score, ranging from 0 to 1, is 

represented by the size of the node’s circle. 

 

8 Use case and gene-level clustering 

The MicroArray gene expression profiles following compound treatment were preprocessed 

with the RMA algorithm, while the RNAseq data with the edgeR algorithm. The transcriptomic 

signatures of the CMap dataset were clustered with the k-means algorithm, similar to the 

signaling network embeddings. The elbow plot of the gene expression clustering is shown in 

Figure S3.3. Similar to the clustering of the deepSNEM embeddings, the number of clusters k 
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was set to 200. Furthermore, Figure S3.4 shows the t-SNE projections of the gene expression 

profiles, where the most prevalent MoA labels in the datasets are coded with different colors. 

 

Figure S3.3. Elbow plot of the k-means clustering of the differential gene expression profiles. 
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Figure S3.4. T-SNE projection of the gene expression profiles. Different colors represent the 9 most 

prevalent MoA in the dataset, while the grey color represents perturbations with either unknown or 

other MoA 
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Chapter 4 

 

DeepSIBA: Chemical Structure-based 

Inference of Biological Alterations using 

deep learning 

 

 

 

4.1 Chapter abstract 

Predicting whether a chemical structure leads to a desired or adverse biological effect can 

have a significant impact for in-silico drug discovery.  In this study, we developed a deep 

learning model where compound structures are represented as graphs and then linked to 

their biological footprint. To make this complex problem computationally tractable, 

compound differences were mapped to biological effect alterations using Siamese Graph 

Convolutional Neural Networks. The proposed model was able to encode molecular graph 

pairs and identify structurally dissimilar compounds that affect similar biological processes 

with high precision. Additionally, by utilizing deep ensembles to estimate uncertainty, we 

were able to provide reliable and accurate predictions for chemical structures that are very 

different from the ones used during training. Finally, we present a novel inference approach, 

where the trained models are used to estimate the signaling pathway signature of a 
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compound perturbation, using only its chemical structure as input, and subsequently identify 

which substructures influenced the predicted pathways. As a use case, this approach was used 

to infer important substructures and affected signaling pathways of FDA-approved anticancer 

drugs. 

 

4.2 Introduction 

Early stage drug discovery aims to identify the right compound for the right target, for the 

right disease. A very important step in this process is hit identification, in which compounds 

that exhibit strong binding affinity to the target protein are prioritized. Traditionally, the most 

widely employed method for in-vitro hit identification is High Throughput Screening (HTS). In-

vitro HTS can produce hits with strong binding affinity that may later be developed into lead 

compounds through lead optimization. However, due to the vast chemical space, even large 

scale in-vitro HTS offers limited chemical coverage. On this front, the development of 

Computer Aided Drug Design (CADD) methods has enabled the virtual High Throughput 

Screening (vHTS) of vast compound libraries, thus effectively increasing the search space of 

hit identification. CADD methods for vHTS focus on compounds’ chemical structures and 

prioritize those that are likely to have activity against the target, for further experiments.1  

More specifically, ligand-based approaches are based on the hypothesis that similar chemical 

structures will cause similar biological response, by binding to the same protein.2 However, 

there are many cases of compounds and drugs, which although structurally dissimilar, cause 

similar biological effect, either because of off-target effects or by targeting proteins in the 

same pathway.3 As a whole, CADD approaches focus on optimal binding affinity, by assessing 

a compound’s structural attributes, often disregarding the effect of the perturbation on the 

biological system, which is closely related to clinical efficacy and toxicity.4 

Advances in systems-based approaches and ‘omics technologies have led to the development 

of systems pharmacology methods that aim to lower the attrition rates of early stage drug 

discovery. Systems pharmacology approaches couple ‘omics data with knowledge bases of 

molecular interactions and network analysis methods in order to assess compounds based on 

their biological effect.5 One approach that has gained considerable attraction is the use of 

gene expression (GEx) profiling to characterize the systematic effects of compounds. On this 

front, Verbist et al. showed how GEx data were able to influence decision making in eight drug 

discovery projects by uncovering potential adverse effects of the lead compounds.6 

Additionally, Iorio et al. utilized similarities between drugs’ transcriptional responses to create 

a drug network and identified the mechanism of action of new drugs based on their position 

in the network.7 Since its release, the Connectivity Map (CMap) and the LINCS project have 

been a cornerstone of transcriptomic-based approaches by providing a large scale database 

of transcriptomic signatures from compound perturbations along with essential signature 

matching algorithms.8,9 CMap’s approach is based on the hypothesis that compounds with 

similar transcriptomic signatures will cause similar physiological effects on the cell and has 

been widely adopted by the field of drug repurposing.10 However, signature-based 
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approaches are not only limited in the search space of compounds with available GEx data but 

are also missing key structural information that is pivotal for drug design. Thus, an 

interdisciplinary framework that translates a compound’s structural attributes to its biological 

effect holds promise in augmenting the application of both CADD and systems-based 

approaches for drug discovery. A computational approach that meets the requirements of 

such an interdisciplinary framework is Machine Learning (ML) and especially Deep Learning 

(DL) 

The recent increase in available data and computing power has given rise to Deep Learning 

(DL) methods for various drug discovery tasks, including bioactivity and toxicity prediction as 

well as de-novo molecular design.11–15 DL methods offer the advantage of flexible end-to-end 

architectures that learn task specific representations of chemical structures, without the need 

for precomputed features.16 One particular DL architecture that has achieved state of the art 

results in several drug discovery benchmark datasets is the Graph Convolutional Neural 

Network (GCNN).17,18 Molecular GCNNs operate on chemical structures represented as 

undirected graphs, with nodes being the atoms and edges the bonds between them. Kearnes 

et al. developed the Weave graph convolution module, which encodes both atom and bond 

representations and combines them using fuzzy histograms to extract meaningful molecule-

level representations.19 Despite their improved performance over traditional ML methods, 

end-to-end models including GCNNs are still prone to generalization errors on new chemical 

scaffolds. This is mainly because of the limited coverage of the chemical space by the training 

data.20 In order to tackle this limited chemical coverage, methods like one-shot learning are 

promising candidates for drug discovery applications. One-shot learning techniques, such as 

Siamese networks, aim to learn a meaningful distance function between related inputs and 

have shown increased performance over traditional methods in tasks with few data points.21–

24 Altae-Tran et al. implemented one-shot learning for drug discovery by combining graph 

convolutions and Long Short Term Memory (LSTM) networks with attention and achieved 

better results than traditional GCNNs.25 Furthermore, for drug discovery applications, 

uncertainty estimation is crucial, since incorrect predictions e.g. regarding toxicity can lead to 

incorrect prioritization of compounds for further experimental testing. 26–29 On this front, Ryu 

et al. developed Bayesian GCNNs for molecular property, bioactivity and toxicity predictions 

and showed that quantifying predictive uncertainty can lead to more accurate virtual 

screening results.30 The flexibility provided by GCNN architectures along with one-shot 

learning and uncertainty estimation approaches can combine aspects from both systems and 

ligand-based methods into an interdisciplinary framework for early stage drug discovery. 

In this paper, we employ deep learning to decipher the complex relationship between a 

compound’s chemical structure and its biological effect. To make this complex problem 

computationally tractable, we focus on learning a combined representation and distance 

function that maps structural differences to biological effect alterations. For this task, we 

propose a deep Siamese GCNN model called deepSIBA. DeepSIBA takes as input pairs of 

compound structures, represented as graphs and outputs their biological effect distance, in 

terms of enriched biological processes (BPs) along with an estimated uncertainty. DeepSIBA 

is trained to minimize the loss between predicted and calculated distances of enriched BPs for 
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compound pairs with available GEx data. In order to account for the biological factors that 

influence the learning task, we train cell line-specific deep ensembles only on carefully 

selected chemical structures, for which high quality GEx data are available. The performance 

of our approach was evaluated with a realistic drug discovery scenario in mind, where gene 

expression data are available for only one compound per pair and compared with ML methods 

for pairwise (dyadic) data.31,32 Finally, we present a novel inference approach, in which the 

trained models can be used to infer the signaling pathway signature of a target compound, 

without available GEx data. This inference approach is coupled with a novel method, based 

on graph saliency maps33, which can identify substructures that are responsible for a 

compound’s inferred biological footprint. As a use case, this approach was tasked to infer the 

signaling pathway signature and important substructures of approved anticancer drugs for 

which no transcriptomic signatures are available in our data sets, using only their chemical 

structure as input.  DeepSIBA can be used in combination with existing in-silico drug discovery 

pipelines to identify structures that not only exhibit maximal binding affinity but also cause a 

desired biological effect. Thus, by incorporating deepSIBA’s interdisciplinary approach, the 

drug discovery process can produce candidates with improved clinical efficacy and toxicity. 

 

4.3 Material and methods 

4.3.1 The deepSIBA approach 

The overview of our approach is presented in Figure 4.1. Transcriptomic signatures from 

compound perturbations along with their respective chemical structures were retrieved from 

the CMap dataset.9 For each compound perturbation, normalized enrichment scores (NES) of 

GO terms related to BPs were calculated using Gene Set Enrichment Analysis (GSEA). 

Afterwards, the lists of enriched BPs were ranked based on NES and a Kolmogorov-Smirnov 

based distance function, similar to GSEA, was used to calculate their pairwise distance (Figure 

4.1A). During the learning phase, the proposed model is trained to predict the pairwise 

distance between compounds’ affected BPs using only their chemical structure as input. The 

input chemical structures are represented as undirected graphs, with nodes being the atoms 

and edges the bonds between them and encoded using a Siamese GCNN architecture (Figure 

4.1B). In our approach, compounds with available GEx data, representing a small portion of 

the chemical space, serve as reference for the inference phase. During inference, the model 

is tasked to predict the biological effect distance between reference and unknown compounds 

(without available GEx data).  
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Figure 4.1 Schematic overview of deepSIBA. (A) Pairs of transcriptomic signatures following 

compound treatment are retrieved and enriched GO terms for BPs are calculated. The 

pairwise distance between enriched BPs is calculated using a Kolmogorov-Smirnov based 

function (Y). (B) Pairs of chemical structures are represented as molecular graphs and encoded 

by a deep learning model using Siamese graph convolutions. Compounds’ feature maps are 

then subtracted and a score, which represents their distance between enriched BPs, is 

predicted (𝑌̂). The deep learning model is trained by minimizing the loss between predicted 

(𝑌̂) and calculated distance (Y). 

 

4.3.2 Data preprocessing and quality control 

Transcriptomic signatures (level 5 z-score transformed) following compound treatment were 

downloaded from the L1000 CMap resource.34 In this project, only the differential expression 

of the 978 landmark genes in the L1000 assay was considered. For each signature, a quality 

score was derived, based on its transcriptional activity score (TAS), the number of biological 

replicates and whether the signature is considered an exemplar. This quality score ranges 

from Q1 to Q8, with Q1 representing the highest quality. TAS is a metric that measures a 

signature’s strength and reproducibility and is calculated as the geometric mean of the 

number of differentially expressed (DEx) transcripts and the 75th quantile of pairwise replicate 

correlations. Furthermore, exemplar signatures are specifically designated for further analysis 

in the CLUE platform.35 For each compound per cell line, among signatures from different 

dosages and time points, the signature with the highest quality was selected. An overview of 

the processed dataset is presented in Supplementary Information (SI) 1.1. 
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4.3.3 Biological process enrichment and pairwise distance calculation 

Gene Ontology (GO) terms for biological processes (BP) involving the landmark genes of the 

L1000 assay were retrieved using the topGO R package in Bioconductor.36 Only GO terms with 

at least 10 genes were considered. For each signature, GO term enrichment was calculated 

using the R package FGSEA in Bioconductor.37 Thus, the gene-level feature vector of each 

perturbation was transformed to a BP-level feature vector of Normalized Enrichment Scores 

(NES). Pairwise distances between BP-level feature vectors were calculated similar to Iorio et 

al.7, using the R package Gene Expression Signature in Bioconductor.38 Given two feature 

vectors ranked by NES, A and B, GSEA is used to calculate the ES of the top and bottom GO 

terms of A in B and vice versa. The distance between the vectors is computed as               𝟏 −
𝑬𝑺𝑨 𝒊𝒏 𝑩+𝑬𝑺𝑩 𝒊𝒏 𝑨

𝟐
  and ranges from 0 to 2. An important parameter that can introduce bias in the 

distance calculation is the number of top and bottom GO terms to consider during GSEA. On 

this front, an ensemble approach was developed, by calculating pairwise distances between 

BP-level feature vectors for 5 different numbers of top and bottom GO terms. The numbers 

we considered were selected based on the average number of significantly enriched GO terms 

across all perturbations in the dataset (see SI 1.3 for details). The distance scores were finally 

averaged and normalized between 0 and 1. 

 

 

4.3.4 Siamese GCNN architecture 

 

Figure 4.2 Schematic representation of the model’s architecture. (A) Siamese graph 

convolutional encoders; compounds’ molecular graphs are encoded using 2 encoders with 

shared weights (Siamese). Each encoder consists of 3 graph convolution and 1 convolution 

layers. (B) Architecture of the distance module; the distance module consists of 2 convolution, 

3 fully connected and 1 Gaussian regression layers. 

A schematic representation of our model’s architecture is presented in Figure 4.2. The learning 

model takes as input the chemical structures of compound pairs and predicts their biological 
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distance, at the level of affected biological processes (GO terms). Regarding the input, 

chemical structures are represented as undirected graphs, with nodes being the atoms and 

edges the bonds between them. Each input is encoded using 3 matrices: the atom array, which 

contains atom-level features, the bond array, which contains bond-level features and the edge 

array, which describes the connectivity of the compound (see SI 2.1 for details). The learning 

model consists of two Siamese encoders (shared weights) that embed the input graphs into a 

high dimensional latent space and a trainable distance module that outputs the final distance 

prediction. The Siamese encoders consist of 3 graph convolutional layers that learn 

neighborhood-level representations, followed by a convolutional layer that extracts 

compound-level features (Figure 4.2A). Graph convolutions were implemented similar to 

Duvenaud et al.17 (see SI 2.2 for details). The overall goal of the Siamese encoder is to learn 

task-specific compound representations. The feature maps of the last Siamese layer are then 

subtracted and their absolute difference is passed to the distance module. The distance 

module consists of 2 convolutional layers, which extract important features from the 

difference of the feature maps and 3 fully connected layers that aim to combine those 

features, while progressively reducing the dimensions (Figure 4.2B). Finally, a Gaussian 

regression layer outputs a mean and variance of the biological effect distance between the 

compound pair. By treating the distance as a sample from a Gaussian distribution with the 

predicted mean and variance, the model is trained end-to-end by minimizing the negative log-

likelihood criterion27 given by 

−𝑙𝑜𝑔𝑝𝜃(𝑦𝑛|𝑋𝑛) = −
1

2
𝑙𝑜𝑔𝜎𝜃

2(𝑥) −
1

2𝜎𝜃
2(𝑥)

(𝑦 − 𝜇𝜃(𝑥))
2

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

For each cell line, an ensemble model combining 50 models was created. The ensemble’s 

output is also a Gaussian, with mean and variance calculated from the uniformly weighted 

mixture of each model. The coefficient of variation (CV) of the Gaussian mixture is used as the 

model’s estimate of predictive uncertainty. The model’s hyperparameters, along with the 

equations for the Gaussian mixture’s mean and variance are presented in SI 2.3 and 2.4. 

 

4.3.5 Dataset splitting and evaluation metrics 

For each cell line, available compounds were split into training and test. Each cell line specific 

training set consists of the pairwise distances between training compounds’ affected BPs, 

while each test set contains distances between test and training compounds. Additionally, the 

Tanimoto similarity between the ECFP4 fingerprints of all training and test compounds was 

calculated and test compounds that exhibited a similarity higher than 0.85 to any training 

compound were excluded. An overview of the training and test sets is presented in SI 4.1. 

Across all test scenarios, model performance was evaluated in terms of Mean Squared Error 

(MSE), Pearson’s r and precision. MSE and Pearson’s r were calculated between the predicted 

and computed distance values. In order to calculate precision, the continuous distance values 

were transformed to binary form by comparing them with an appropriate distance threshold.  

Even though the learning task is a regression problem, given its nature and potential 
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applications, high precision (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) is important in order to avoid false positive hits for 

validation experiments. The appropriate distance threshold for precision was set at 0.2, based 

on the distance distribution of duplicate compound signatures, the threshold equivalent to a 

90% Connectivity Score and the relationship between the threshold and the actual average 

number of common enriched BPs. Duplicate signatures indicate transcriptomic signatures 

from the same compound perturbation, cell line, dose and time point that were assayed on 

different L1000 plates. Thus, the distribution of distances between duplicate signatures most 

closely approximates the reference distribution of truly similar biological effect.  A thorough 

investigation of the distance threshold to distinguish compounds with similar biological effect 

is presented in SI 5.1. 

 

4.3.6 Signaling pathway inference for target structure 

The predictions of a trained deepSIBA model can be used to infer a pathway signature for a 

target structure without the need for GEx data, in terms of the most upregulated and 

downregulated signaling pathways. The inference approach is similar to the k-Nearest 

Neighbor algorithm (KNN). Given a target structure, a trained ensemble model for the cell line 

of choice is used to predict all pairwise distances between target and training compounds. The 

predicted distance represents the difference between compounds’ enriched BPs (GO terms). 

Training set compounds with predicted distance less than a specified threshold 𝑑𝑡ℎ are 

selected as the target’s neighbors. If a target structure has more than 𝑘 neighbors, a signaling 

pathway signature can be inferred in the following way. For each neighbor 𝑁𝑖, the lists of the 

top 10 most upregulated and most downregulated pathways, based on NES, are constructed. 

Pathway enrichment is calculated using FGSEA with KEGG as a knowledge base.39 KEGG 

signaling pathways were chosen for inference due to their interpretability. Signaling pathways 

that appear in the neighbors’ lists with a frequency score higher than a threshold 𝑓𝑡ℎ are 

selected. Additionally, to account for signaling pathways that are frequently upregulated or 

downregulated in the set of training compounds, a p-value for each inferred pathway is also 

calculated. On this front, sets of 𝑘 neighbors are randomly sampled 5000 times from the 

training set and a Null distribution of frequency scores for each pathway is derived. A p-value 

is computed as the sum of the probabilities of observing equally high or higher frequency 

scores. Finally, only pathways with p-value lower than a threshold 𝑝𝑡ℎ are inferred. Thus, for 

each chemical structure, our approach infers two signatures of variable length (up to 10 each) 

of potentially downregulated and upregulated pathways respectively. For the MCF7 cell line, 

the aforementioned thresholds and parameters of the inference approach were selected by 

evaluating the results, in terms of precision and number of inferred pathways, on its 

respective test set (see SI 6.1 for details). 
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4.3.7 Substructure importance using graph-based gradients 

A graph-based gradient approach, similar to saliency maps, was developed to identify 

important substructures that influence the biological effect similarity of chemical structure 

pairs. First, the derivative of deepSIBA’s output w.r.t the input matrices that contain the atom 

features of each compound, in the input pair, is calculated using Tensorflow ([
𝜕𝐹

𝜕𝑋𝑎𝑡𝑜𝑚𝑠
]). 

Subsequently, for each compound atom importance is scored, using a directional derivative 

approach. Thus, similar to vector calculus, the directional derivative of a scalar f(X), with X 

being a matrix, in the direction of a matrix Y is  

∇𝑌𝑓(𝑋) = 𝑡𝑟 (
𝜕𝑓

𝜕𝑋
∗ 𝑌), 

where, 
𝜕𝑓

𝜕𝑋
 is the gradient matrix, or in our case  

𝜕𝐹

𝜕𝑋𝑎𝑡𝑜𝑚𝑠
, while 𝑌 can be considered a matrix 

with zeros everywhere, except the row containing the specific atom’s feature. Thus, an 

importance score for each atom of a compound can be calculated as  

𝑆𝑎 = 𝑡𝑟 (
𝜕𝐹

𝜕𝑋𝑎𝑡𝑜𝑚𝑠
∗ 𝑌𝑎), 

where the only non-zero part of 𝑌𝑎 is the one-hot encoded feature vector of atom 𝑎. For each 

atom the importance score 𝑆𝑎 was transformed to a count score 𝐶𝑎, based on how many times 

each atom was in the top 20% most important atoms for each model in a deepSIBA ensemble. 

When scoring atom importance during the pathway inference approach, a similar score was 

calculated based on the times an atom was present in the top 20% for each target-reference 

pair. Finally, due to the GCNN core module of deepSIBA, important substructures are formed 

by important atoms that are neighbors in the compound’s molecular graph. Atom importance 

is visualized using the RDKit library.40 

 

4.4 Results and discussion 

4.4.1 Biological factors influence the model’s learning task 

The presented model is tasked to predict the biological effect distance between compounds, 

using their molecular graphs as input. Considering that this distance is calculated from 

experimental GEx data following compound treatment, there are specific biological factors 

that can influence the learning task. The CMap dataset contains over 110K transcriptomic 

signatures from over 20K compounds assayed across 70 cell lines. By carefully analyzing these 

signatures and their pairwise distances, we were able to pinpoint the most influential factors 

and identify their effect on the model’s target value. 

4.4.1.1 The variation in quality of GEx data is reflected on the calculated distance value. The 

quality of gene expression data, from which transcriptomic signatures in the Connectivity map 

were derived, varies across compound perturbations. In our case, this variation in data quality 

is especially important. On this front, a categorical quality score, ranging from Q1 to Q8, was 
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assigned to each signature, with a score of Q1 representing the highest quality (see SI 1.1). In 

order to assess the effect of signature quality, distributions of distances between duplicate 

transcriptomic signatures (same compound, cell line, dose, time) for different quality scores 

were examined and are presented in Figure 4.3A. As expected, Q1 duplicate signatures are 

very similar and their distances are centered near a small value. However, this is not the case 

for Q2 duplicate signatures, where differences in differentially expressed genes are prominent 

even when all the perturbation parameters are kept constant. It is clear that signature quality 

significantly affects the distribution of the model’s target variable. 

4.4.1.2 Distances between transcriptomic signatures vary across cell lines. Compound 

response, in terms of DEx genes, is highly dependent on the cellular model. Due to different 

genetic backgrounds and gene expression patterns the same compound perturbation will 

have different transcriptomic signatures across cell lines.41 This dependence, directly affects 

the distance between compounds’ transcriptomic signatures for different cell lines. The 

relationship between gene-level distances of compound pairs present in both the MCF7 and 

VCAP cell lines, with Q1 signatures, is shown in Figure 4.3B. In general, Q1 transcriptomic 

distances of the same compound pair in the 2 examined cell lines are moderately correlated 

(Pearson’s r = 0.469). However, there is a significant number of compound pairs which have 

similar transcriptomic signatures in one cell line but not in the other (lower right and upper 

right quadrants of Figure 4.3B). Such cases are even more prominent for compound pairs with 

Q2 signatures (see SI 1.2). Thus, the cell line effect poses a problem for the proposed learning 

task by providing a one-to-many mapping between input (pair of chemical structures) and 

output (distance between signatures).  
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Figure 4.3 Influence of biological factors on the learning task. (A) Evaluation of data quality 

based on the gene-level distance between duplicate compound perturbations (same 

compounds) for the MCF7 cell line. (B) Scatterplot of distances between transcriptomic 

signatures (Quality 1) of compound pairs present in both the MCF7 and VCAP cell lines. The 

red lines, at 0.2 for MCF7 and 0.19 for VCAP indicate the mean + standard deviation of the 

distribution of distances between Q1 duplicate signatures for each respective cell line; (Ci & 

Cii) Heatmaps of gene and BP-level distances between cell lines for the knockdown of the MYC 

gene. 

 

4.4.1.3 Compounds’ biological effects are better represented on a functional level. A 

distance function that operates directly on transcriptomic signatures does not account for 

smaller differences in the DEx of genes that belong to the same biological pathway. Thus, the 

similar effect between perturbations, in terms of enriched BPs, might not be clearly reflected 

on their gene-level distance.  On this front, a comparison of BP and gene-level distances 

between cell lines for the knockdown of the MYC gene (Q1 signatures) with shRNA is 

presented in Figure 4.3C. MYC is an oncogene that plays a key role in cell cycle, transformation 

and proliferation and was selected because its knockdown is expected to cause similar 

response across cancer cell lines. The smaller overall distance between cell lines in Figure 4.3Cii 
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indicates that the expected similar effect of MYC knockdown is better highlighted on a 

functional level between enriched biological processes rather than between transcriptomic 

signatures (Figure 4.3Ci). Furthermore, we evaluated which distance metric, either between 

BPs or DEx genes, can better highlight the expected similar biological effect of structurally 

similar compounds.42 In the CMap dataset, we identified pairs of similar chemical structure 

using the traditional Tanimoto coefficient between ECFP4 fingerprints and then calculated 

what percentage of those cause similar biological response at the BP and gene-level (Table 

4.1). As it can be seen in Table 4.1, across all structural distance thresholds the percentage of 

structurally similar compounds with similar biological effect is significantly higher when 

distance is calculated between signatures of enriched BPs. A detailed comparison between 

structural and biological effect distances for all examined cell lines is presented in SI 1.4. 

Table 4.1 Percentage of structurally similar compounds that cause similar biological effect, 

either at the gene or BP-level, in the MCF7 cell line  

Structural distance 

threshold 

Pairs with similar 

chemical structure 

Pairs affecting 

similar BPs (%)* 

Pairs affecting 

similar genes (%)** 

0.10 91 76.9 68.1 

0.15 114 75.4 65.7 

0.20 200 74.0 61.0 

0.25 316 69.9 57.6 

0.30 494 65.3 51.0 

* BP distance threshold to consider compounds similar = 0.2 

** Gene distance threshold to consider compounds similar = 0.19 

 

Through the careful analysis of the processed data sets, we showed that raw data quality 

greatly affects the distribution of distance values and that lower quality transcriptomic 

signatures of the same compound, with the same perturbation parameters (duplicates), often 

exhibit large differences in terms of DEx genes (Figure 4.3A). Based on these findings, we 

chose to develop deepSIBA using only compounds with available Q1 transcriptomic 

signatures. Furthermore, we showed that the transcriptomic distance of a compound pair can 

vary depending on the choice of cellular model (Figure 4.3B). One common approach to 

address this issue is to aggregate either transcriptomic signatures or distance values across 

cell lines. While aggregating enables the training of a general model on all available compound 

pairs, it can often produce misleading results and cause information loss. Thus, we decided to 

make our approach cell line specific and develop our models for cell lines that have the highest 

number of Q1 transcriptomic signatures following compound treatment. Finally, we 

highlighted that a distance function operating on enriched BPs, rather than genes, can better 

capture the expected biological effect similarities of perturbations with similar structure or 

biological nature (Table 4.1, Figure 4.3C). We reason that this is the case due to the BP 

enrichment analysis that precedes the distance calculation, which can capture smaller 

changes in the expression of genes that interact with each other to form a biological process. 

By analyzing the relationship between the aforementioned experimental factors and our 

target variable, we were able to make data-driven decisions to propose a learning task that 

minimizes their effect. In the following sections we evaluate the ability of deepSIBA to learn 
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the proposed task and test whether our approach can identify dissimilar structures that affect 

similar BPs in a meaningful way. 

 

4.4.2 Performance evaluation 

Model performance was evaluated on pairs of reference and test compounds. Test 

compounds were removed from the training sets and thus represent new chemical structures 

without available experimental GEx data. Additionally, the effect of the structural similarity 

between input compounds on performance, along with the utility of the model’s estimate for 

uncertainty, were investigated. Finally, we evaluated the performance of our approach on test 

chemical structures that are very different from the ones used in training. 

4.4.2.1 Test set performance. In each cell line specific test set, the performance of deepSIBA 

was compared to the performance of ReSimNet and TwoStepRLS. ReSimNet is a recently 

proposed deep Siamese MLP model, while TwoStepRLS is a regularized kernel-based 

regression method. Both methods are suitable for distance/similarity learning for pairwise 

(dyadic) data and were implemented using compounds’ ECFP4 fingerprints as input (see SI 3.1 

and 3.2 for details). As shown in Table 4.2, across all cell lines, deepSIBA achieved the lowest 

overall MSE and in the 1% of test samples with the lowest predicted values. The ReSimNet 

models for the A375 and MCF7 cell lines achieved the highest Pearson’s r, while deepSIBA and 

TwoStepRLS had the highest Pearson’s r, for the PC3 and VCAP cell lines respectively. In terms 

of precision, the deepSIBA models heavily outperformed the other methods across all cell 

lines. In order to calculate precision, an appropriate distance threshold of 0.2 was used for all 

approaches (see section 4.3.5 for details) While ReSimNet and TwoStepRLS exhibited low 

precision, they predicted that many more compound pairs will have similar biological effect. 

When examining the lowest 1% of predicted distances, their precision improves and in the 

MCF7 cell line TwoStepRLS’ precision surpasses deepSIBA’s. Additional 5-fold cross validation 

results for each cell line are presented in SI 5.2. 

Table 4.2 Cell line specific test set performance 

Cell line Model MSE 
MSE 

@1%* 

Pearson’s 

r 

Precision 

(%) 

Precision 

@1% 

(%)* 

Predicted 

similar 

pairs 

A375 

DeepSIBA 0.008 0.006 0.59 98.22 98.22 169 

ReSimNet 0.012 0.022 0.60 32.23 56.80 18243 

TwoStepRLS 

 
0.010 0.008 0.51 44.61 78.68 4024 

PC3 DeepSIBA 0.011 0.007 0.53 89.29 89.29 28 
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ReSimNet  0.017 0.032 0.49 25.02 46.89 14195 

TwoStepRLS 

 
0.013 0.041 0.44 29.98 38.96 1758 

VCAP 

DeepSIBA 0.033 0.026 0.41 71.63 71.63 141 

ReSimNet 0.039 0.105 0.38 32.69 52.97 9245 

TwoStepRLS 

 
0.034 0.049 0.43 32.34 31.12 3120 

MCF7 

DeepSIBA 0.012 0.007 0.56 61.03 61.03 195 

ReSimNet  0.015 0.029 0.59 26.93 51.20 13420 

TwoStepRLS 

 
0.015 0.010 0.47 33.55 70.14 4322 

 

4.4.2.2 Transferring knowledge to other cellular models. Initially deepSIBA was trained and 

evaluated in the four cell lines that have the highest number of Q1 transcriptomic signatures 

following compound treatment. In order to expand the biological coverage of deepSIBA we 

utilized transfer learning to train our models on six additional cell lines which have the next 

highest number of Q1 signatures. On this front, we pre-trained a deepSIBA model on the 

entirety of the A375 cell line dataset and then applied it on additional cell lines by resuming 

training for 6 epochs. The performance of the transfer learning approach on each cell line 

specific test set is presented in Table 4.3. Across all additional cell lines deepSIBA was able to 

achieve similar performance to that of the A375, PC3, MCF7 and VCAP cell lines.  

Table 4.3. Test set performance of the transfer learning approach 

Cell-line MSE MSE @1% Pearson’s r Precision (%) 

HT29 0.010 0.013 0.60 84.88 

A549 0.013 0.012 0.62 83.00 

HA1E 0.015 0.009 0.58 100 

HEPG2 0.013 0.014 0.61 99.10 

HCC515 0.014 0.010 0.52 97.92 
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NPC 0.006 0.005 0.67 73.64 

 

4.4.2.3 Performance as a function of the structural distance between input compounds. As 

shown previously, similar chemical structures have similar signatures of enriched BPs. 

However, there are many cases of structurally dissimilar compounds that cause similar 

biological response. It is therefore important to evaluate the ability of deepSIBA to identify 

such cases, by calculating its performance for test pairs of varying structural distance. On this 

front, each cell line specific test set was split into parts based on the structural distance 

between compounds and in each part MSE and precision were calculated (Figures 4A and 4B). 

As a measure of structural distance/similarity, the traditional Tanimoto coefficient between 

ECFP4 fingerprints was utilized. The PC3, A375 and VCAP deepSIBA models maintain a high 

precision across all different structural distance ranges (Figure 4.4B). The exception is the 

MCF7 model, for which precision slightly decreases for structural distance higher than 0.7. 

Regarding MSE, only the VCAP model exhibits a slightly higher MSE as structural distance 

increases (Figure 4.4A). As a whole, the models’ performance seems unaffected by the 

distance between the ECFP4 fingerprints of the input pairs. 
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Figure 4.4 Performance as a function of structural distance and predictive uncertainty; (A) MSE 

for different ranges of structural distance between compound pairs; (B) Precision for different 

ranges of structural distance between compound pairs. (C) Percentage of total test MSE, 

calculated in samples with increasing CV; (D) Precision calculated in test samples with 

increasing CV. 

4.4.2.4 Performance as a function of predictive uncertainty. It has been shown that 

quantifying predictive uncertainty can lead to more accurate results in virtual screening 

applications.30 In this context, the relationship between the predictive uncertainty estimate 

and performance was investigated. In DeepSIBA we estimate predictive uncertainty as the 

coefficient of variation (CV) of the mixture of each model’s Gaussian in the ensemble. MSE 

and precision were calculated for specific samples in the test set, which have CV lower than 

an increasing threshold and are presented in Figures 4C and 4D. As the CV threshold increases 

and more samples with higher CV are included in the evaluation, the MSE of the models 
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increases as well and eventually becomes the MSE of the entire test set (Figure 4.4C). On the 

other hand, due to the low number of false positives, for all the models, precision seems 

unaffected by the CV threshold. Only the MCF7 model, which has the lowest overall precision, 

exhibits a higher precision for samples with lower CV (Figure 4.4D). Overall, the results 

indicate that point predictions with lower uncertainty are closer to the true value, or that 

when the model is certain, it’s usually not wrong. 

4.4.2.5 Generalization on different chemical structures. End-to-end deep learning models for 

drug discovery have trouble generalizing on new compounds that are structurally very 

different from the ones used to train them. In order to evaluate the ability of our approach to 

generalize on different chemical structures, the performance of the A375 model was 

evaluated on 2 extra test sets and is presented in Table 4. These test sets were created by 

restricting the maximum allowed structural similarity between selected test compounds and 

all remaining training compounds and thus represent test scenarios of increasing difficulty 

(Figure 4.5A). As the minimum distance between test and training compounds increases, the 

performance of the model becomes worse. However, the performance decrease in terms of 

MSE and Pearson’s r is smaller than the decrease in precision. In this case, the distance 

threshold to calculate precision was set to 0.22, because in the hardest test set (#3) there 

were no samples with predicted value lower than 0.2. Thus, even though the model’s 

performance is comparable across test sets in terms of regression metrics, its ability to identify 

compounds with similar biological effect is hindered. In this case, it is important to estimate 

predictive uncertainty and evaluate its utility, by focusing on predictions with smaller CV 

(Figure 4.5B).  In the third test set, which only contains compounds with maximum similarity 

to the training compounds less than 0.3, the model’s precision is significantly higher for test 

predictions with low CV. More specifically, in test samples with CV lower than 0.16, the 

model’s precision is upwards of 80%. 

 

Table 4.4 Generalization performance on different chemical structures for A375  

Test set 

Max 

similarity to 

training set 

MSE Pearson’s r Precision (%) 
Predicted 

Similar Pairs 

#1 [0-0.85] 0.0083 0.59 97.26 876 

#2 [0.35-0.65] 0.0092 0.52 76.48 330 

#3 [0-0.3] 0.0107 0.44 50.37 135 
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Figure 4.5 Precision and uncertainty estimation for test set number 3. (A) Histogram of 

maximum structural similarity between test and training compounds for test set number 3; 

structural similarity is calculated between compounds’ ECFP4 fingerprints. (B) Precision 

calculated in test samples with CV lower than an increasing threshold. 

 

Across all examined cell lines, deepSIBA was able to identify chemical structures that affect 

similar BPs, outperforming, especially in terms of precision, the distance learning methods 

that utilize compounds’ ECFP4 fingerprints as input (Table 4.2). Even though the learning task 

is regression, we reason that precision is a crucial metric, considering the potential screening 

applications of deepSIBA in order to identify compounds that exhibit similar biological effect 

to a query. In this scenario, high precision, rather than a large number of identified hits, is 

required to correctly prioritize compounds for downstream experimental validation. We 

chose not to compare our approach with traditional machine learning methods, e.g. Random 

Forests and SVMs, because we argue that these are not optimal for a distance/similarity 

learning task. Furthermore, deepSIBA was able to maintain its high performance regardless of 

the structural similarity between input compounds and identify cases of structurally dissimilar 

compounds that affect similar BPs (Figure 4.4A and 4.4B). Thus, the employed GCNN 

architecture shows promise towards this highly interdisciplinary task. However, there were 

some cases of compounds affecting similar BPs that were missed by the model. These cases, 

in combination with the decrease in performance as the minimum structural distance 

between test and training compounds increases highlight key limitations in our approach 

(Table 4.4). On this front, limited coverage of the chemical space by compounds with available 

GEx data is a major issue that limits our ability to model in its entirety the complex function 

that translates changes in chemical structure to BP alterations. Even though each training set 

for each cell line contains on average around 320K samples, these are comprised from the 

pairing of around 800 compounds. The limitations that arise from this low coverage of the 

chemical space can’t be solved by changes in deep learning architecture and require more 
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training compounds and/or extra input information. On this front, we applied a data 

augmentation technique, where each training set was augmented with randomly sampled 

pairs between Q1 and Q2 compound signatures (see SI 4.2). However, due to conflicting 

evidence between Q1 and Q2 transcriptomic signatures the performance of the models varied 

significantly across cell lines (see SI 5.3). A rather efficient workaround that we utilized in our 

approach is to quantify predictive uncertainty using deep ensembles. We showed that the 

model’s performance, even when tested on compounds that are structurally different from 

the ones used in training, is higher for samples with lower uncertainty (Figure 4.5). Thus, the 

model’s estimate of predictive uncertainty can be used to provide more reliable and accurate 

results. For instance, if an application imposes a constraint on the maximum allowed error, 

the appropriate uncertainty threshold can be identified and only point predictions with 

uncertainty lower than this threshold can be considered. Finally, we showed that transfer 

learning is a suitable approach to expand the biological coverage of deepSIBA to additional 

cellular models with fewer available data points (Table 4.3). For example, in the NPC cell line, 

which has approximately 50% fewer compound signatures than A375, deepSIBA was still able 

to achieve reasonable performance.  

 

4.4.3 Signaling pathway inference for target structure 

The predictions of deepSIBA can be used to infer a signaling pathway signature, in terms of 

the most upregulated and downregulated pathways, for a target chemical structure without 

available GEx data. The inference is performed following a KNN-like approach, in which 

reference compounds with the smallest distance to the target, as predicted by the model, are 

selected as its neighbors and their pathway signatures are retrieved. Then, pathways that 

frequently belong in the 10 most upregulated or downregulated pathways of the neighbors 

are inferred as the target’s signature. The performance of the approach was evaluated on the 

test compounds of the MCF7 model and then, as a use case, it was tasked to infer the signaling 

pathways affected by FDA approved anticancer drugs, for which no GEx data are available in 

our dataset. Additionally, the chemical substructures that mostly influence the inferred 

pathways were identified and visualized using a graph gradient-based approach. 

4.4.3.1 Performance evaluation in the test set of MCF7. For the test set of the MCF7 cell line, 

the average performance of the inference approach is presented in Table 4.5. On average 5 

pathways per test compound were inferred to belong in its 10 most downregulated pathways 

with a precision of 73.3%. Regarding upregulation, an average of 2.5 pathways per compound 

with a precision of 69.7% were inferred. We have to note that the statistical significance of 

the inferred pathways is ensured by comparing the neighbor selection process using the 

trained model to a random selection. 

 

Table 4.5 Pathway inference results for the test compounds of MCF7 
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Number of inferred 

pathways 
Precision (%) 

Downregulated 5 73.3 

Upregulated 2.5 69.7 

 

4.4.3.2 Use case: signaling pathway inference of FDA approved anticancer drugs. Out of the 

59 FDA-approved cytotoxic drugs presented by Sun et al., 18 were present or had a structural 

analogue in the MCF7 training set (Tanimoto ECFP4 similarity > 0.85).43 In order to simulate a 

realistic application for the signaling pathway inference, these 18 drugs were excluded from 

the use-case. From the remaining 39 drugs, only 3 had more than 5 neighbors each in the 

training set, as predicted by the model and the inferred pathways are presented in Table 4.6. 

Fludarabine and Clofarabine are direct nucleic acid synthesis inhibitors, while Pralatrexate is 

an indirect inhibitor of nucleotide synthesis through inhibition of the folate cycle.44 In our use 

case, the inferred downregulated signaling pathways include cell cycle, purine and pyrimidine 

metabolism, RNA transport and spliceosome, which are closely related to the drugs’ 

mechanism of action. Furthermore, because of the MCF7 cell line, pathways such as oocyte 

meiosis and progesterone-mediated oocyte maturation, that have been associated with the 

pathogenesis of breast cancer, were inferred as downregulated.45 Regarding upregulation, 

pathways such as NF-kappa B signaling, natural killer cell mediated cytotoxicity, leukocyte 

transendothelial migration and TNF signaling, that are closely related to inflammation and 

apoptosis, were inferred. 

 

Table 4.6 Pathway inference results for FDA approved anticancer drugs 

Drug Mechanism of Action 
Inferred Downregulated 

KEGG Signaling Pathways 

Inferred Upregulated 

KEGG  

Signaling Pathways 

Fludarabine 

 

Nucleic Acid Synthesis 

Inhibitor 

Purine metabolism, 

Pyrimidine metabolism,  

RNA transport,  

Spliceosome,  Cell cycle, 

Oocyte meiosis, 

Progesterone-mediated 

oocyte maturation, 

MicroRNAs in cancer 

Leukocyte 

transendothelial 

migration, Oxytocin 

signaling pathway, 

Alzheimer's disease, 

Pertussis, Rheumatoid 

arthritis 

Clofarabine 

 

Nucleic Acid Synthesis 

Inhibitor 

RNA transport,  

Spliceosome, Cell cycle, 

Ubiquitin mediated 

proteolysis, 

Progesterone-mediated 

oocyte maturation, 

MicroRNAs in cancer 

Natural killer cell 

mediated cytotoxicity, 

Leukocyte 

transendothelial 

migration, Oxytocin 

signaling pathway, 

Pertussis, Rheumatoid 

arthritis 
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Pralatrexate 

 

Inhibits dihydrofolate 

reductase (DHFR) and 

thymidylate synthase 

Purine metabolism, 

Pyrimidine metabolism, 

Metabolic pathways, 

RNA transport, 

Spliceosome 

NF-kappa B signaling 

pathway, Natural killer 

cell mediated 

cytotoxicity, TNF 

signaling pathway, 

Leukocyte 

transendothelial 

migration 

 

4.4.3.3 Substructure importance. The method described in section 2.7 was used to highlight 

important substructures that deepSIBA pays attention to when inferring the pathway 

signature of each anticancer compound presented in the use case (Table 4.6) (Figure 4.6). In 

Figure 4.6, red colored atoms represent atoms for which the model exhibits large directional 

derivatives across all pairs of target and neighbor compounds. Such atoms that are closely 

connected in the target compound’s molecular graph are identified as influential to the 

inferred pathway signature. As shown in Figure 4.6, for Fludarabine and Clofarabine, deepSIBA 

highlights the 2-Fluoroadenine and 2-Chloroadenine substructures as important respectively, 

while the model mostly focuses on the Pteridine structure when inferring the pathways 

affected by Pralatrexate. 

 

Figure 4.6 Important atoms related to the inferred biological footprint of the compounds of 

the use case, as identified by the deep learning model (the red color signifies the most 

important atoms) 

In the presented use case, we demonstrated that by utilizing the training compounds as 

reference, the inferred signaling pathway signatures for each of the anticancer drugs were 

found to be closely connected to their respective MoA (Table 4.6). Thus, our inference method 

has the potential to provide an early estimate regarding the pathways affected by a 

compound, using only its chemical structure as input. Additionally, we showed that for each 

compound the highlighted substructures are also directly related to their respective MoA 

(Figure 4.6). This fact not only increases the interpretability of the model’s predictions, which 

is a crucial topic of DL methods for drug discovery, but also shows that a GCNN model trained 

end-to-end on molecular graphs is able to learn meaningful structural representations that 



Chapter 4 DeepSIBA 
 

79 
 

are related to compounds’ biological effects.46–48 To the best of our knowledge, this is the first 

time a DL model was used to identify important substructures and infer the signaling pathway 

signature of a target compound without available experimental GEx data. A possible limitation 

of our approach might be its resolution capabilities in specific use-cases of compounds with 

similar chemical structure but different MoA. Although the comparison of the Fludarabine and 

Clofarabine use-cases suggests that our approach might be able to identify small structural 

differences between drugs with similar MoA (Figure 4.6), we haven’t systematically compared 

use-cases of structurally similar compounds that affect different BPs. From the analysis of the 

CMap dataset we have showed that compounds with high structural similarity tend to have 

similar biological effect (see SI Figure S4.6). This lack of data regarding compounds that are 

derivatives but affect different BPs limits our ability to systematically perform the 

aforementioned comparison and pinpoint the maximum resolution of our approach. 

Furthermore, due to the nature of the inference method, limiting factors may also arise from 

the lack of diversity in affected BPs by the training compounds. This lack of diversity can 

influence the signaling pathway inference for an unknown target structure, when its true 

biological footprint is not represented in the reference compounds. In such cases, the 

inference of incorrect signatures can be avoided by focusing on target compounds with at 

least k reference neighbors (here k = 5) and only infer statistically significant pathways, using 

our method’s calculated p-value. 

 

4.5 Conclusion and availability 

In this paper, we developed a deep learning framework to match the chemical structure of 

compound perturbations to their biological effect on specific cellular models. We showed, 

that the careful formulation of the learning problem and the flexibility of the Siamese GCNN 

architecture enabled our models to achieve high performance across all test scenarios. 

Additionally, we highlighted the utility of the uncertainty estimate, provided by deep 

ensembles, in test cases where the unknown chemical structures are very different from the 

structures used to train the models. Finally, we presented a novel inference pipeline, which 

can infer a signaling pathway signature for a target compound and subsequently identify 

which substructures mostly influenced the prediction. The novelty, performance and 

interpretability of our methods paves the way for further investigation in order to expand 

their coverage and utility.  

Possible efforts for further investigation can be concentrated on the input representation, the 

biological response distance and the model’s uncertainty estimate. Regarding the input, one 

interesting idea is to include binding information in order to capture the potential protein 

target of the input molecules. This extra information can be passed to the model either in the 

form of latent space embeddings from a trained binding affinity prediction model or in the 

form of predictions against a panel of protein kinases.49 Regarding the biological distance 

between compound perturbations, this can be augmented by calculating the compound’s 

effect on different levels of biological hierarchy, i.e. GEx, signaling pathways, transcription 
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factors and signaling networks.50,51 Afterwards, these distances could be combined or 

separate models could be trained in order to better capture the similar effect of compounds. 

Additionally, instead of using a distance metric between all affected BPs, specific biological 

processes could be selected and application specific models could be developed to identify 

compounds that affect these biological processes. Regarding the model’s uncertainty 

estimate, an interesting avenue for investigation is to take into account the transcriptomic 

signatures of replicates from the CMap dataset and calculate distributions of pairwise 

distances between compounds. Then, models could be trained on these distributions to better 

capture the variation of the experimental ground truth. Finally, collecting more data regarding 

derivative compounds with different MoA is an interesting avenue for further investigation in 

order to identify the resolution capabilities of the substructure importance approach. 

The highly interdisciplinary framework of deepSIBA combines aspects from both the CADD 

and ‘omics domains in order to incorporate the structural and systematic effects of small 

molecule perturbations, which are closely related to their efficacy and toxicity profiles. We 

believe that our methods have the potential to augment in-silico drug discovery, either by 

exploring on a massive scale the biological effect of compounds/libraries without available 

GEx data, or by suggesting new chemical structures with desired biological effect. 

All analyzed data that were used to train our models and produce all tables and figures are 

available at https://github.com/BioSysLab/deepSIBA. Furthermore, the R source code to 

analyze the CMap dataset and create the training, validation and test sets is available at 

https://github.com/BioSysLab/deepSIBA/preprocessing. Finally, the Keras/TensorFlow 

implementation of our deep learning models, alongside trained ensemble models for each cell 

line are available at https://github.com/BioSysLab/deepSIBA/learning. 
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4.7 Supplementary Information (SI) 

 

1 Data preprocessing and quality control 

1.1 Dataset and quality overview. The filtered CMap dataset contains 112994 transcriptomic 

signatures from 20254 compounds tested across 70 cell lines. During the filtering process, for 

each compound per cell line, its signature with the highest quality across different dosages 

and time points was selected. The assigned quality score based on TAS, number of replicates 

and whether the signature is considered an exemplar is presented in Table S4.1. The 

distribution of signature quality across cell lines is presented in Figure S4.1. Deep learning 

models were developed for the MCF7, PC3, VCAP and A375 cell lines, which have the highest 

number of compounds with Q1 signatures. 

Table S4.1 Signature quality score 

Quality score TAS 
Number of 

replicates 
Exemplar 

Q1 > 0.4 > 2 True 

Q2 0.2 – 0.4 > 2 True 

Q3 0.2 – 0.4 ≤ 2 True 

Q4 0.2 – 0.4 > 2 True 

Q5 0.2 – 0.4 ≤ 2 True 

Q6 < 0.1 > 2 True 

Q7 < 0.1 ≤ 2 True 

Q8 < 0.1 < 2 False 
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Figure S4.1 Distribution of signature quality scores across cell lines. The “other” cell line 

category is formed by grouping together 63 cell lines with smaller number of available 

transcriptomic signatures.  

1.2 Distances between Q2 transcriptomic signatures across cell lines. 

As already discussed on the main paper, there is a significant number of compound pairs 

which have similar transcriptomic signatures in one cell line but not in the other (Figure S4.2). 

As it can be seen in Figure S4.2, this effect is much more prominent in the case of quality 2 

(Q2) signatures. 
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Figure S4.2 Scatterplot of distances between Q2 transcriptomic signatures for the same 

compound pairs in the MCF7 and VCAP cell lines. Each point in the plot represents a pair of 

compounds with available transcriptomic signatures in both cell lines. The red lines, at 0.39 

for MCF7 and 0.4 for VCAP indicate the mean + standard deviation of the distribution of 

distances between Q2 duplicate signatures for each respective cell line 

1.3 GO term enrichment and distance calculation. For the MCF7, A375, VCAP and PC3 cell 

lines, the average number of significantly enriched GO terms in quality 1 signatures is 

presented in Table S4.2. Enrichment p-values were calculated with GSEA and adjusted using 

the Benjamini-Hochberg procedure. GO terms with an adjusted p-value less than 0.05 were 

considered significantly enriched. Based on Table S4.2 the number of top and bottom GO 

terms to consider during the ensemble distance calculation was selected (10, 20, 30, 40 and 

50 GO terms). The ensemble distance approach outputs 5 distance scores for each signature 

pair, one for each of the numbers of top and bottom GO terms considered. The histogram of 

standard deviations of the calculated distances for each cell line is presented in Figure S4.3. 

The effect of the number of GO terms to consider during distance calculation is small, but not 

negligible. Furthermore, the relationship between pairwise distances between compounds at 

the GO term-level and at the gene-level was examined (Figure S4.4). Although distances are 

significantly correlated, the similar biological effect of chemical structures is better 

represented on a functional level between enriched GO terms. Finally, the ensemble distance 

approach of the GO term feature vectors was validated computationally. For the MCF7 cell 
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line, where enough quality 1 duplicate signatures are available (n = 20), their distance 

distribution was compared to a randomly selected subset of pairwise distances between 

different compound perturbations (Figure S4.5). It is clear that the proposed ensemble 

distance metric can easily separate duplicate compound perturbation pairs from random 

pairs. 

 

Table S4.2 Average number of significantly enriched GO terms following compound treatment 

Cell line 
Average number of significant GO terms  

(p.adj < 0.05) 

MCF7 20.1 

A375 29.8 

VCAP 11.2 

PC3 30.0 

  

 

Figure S4.3 Histograms of standard deviations of distances calculated between enriched GO 

terms for 5 different numbers of top and bottom GO terms (10, 20, 30, 40 and 50) for each 

cell line. Distances were calculated between compounds with Q1 signatures only. 
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Figure S4.4 Scatter plot of pairwise distances between compounds calculated at the gene and 

GO term-level for each cell line. Distances were calculated between compounds with Q1 

signatures only. 

 

Figure S4.5 Distribution of distances calculated with the ensemble GSEA score approach 

between compounds’ affected BPs for the MCF7 cell line. The black line represents the 

distribution of pairwise distances between duplicate signatures, while the red line represents 
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the distances between signatures of random compound pairs. The separation between the 

two distributions indicates that the ensemble distance function can distinguish compounds 

that affect similar BPs (duplicates) from random compound pairs. 

1.4 Comparing structural and biological effect distance. For each compound pair, Morgan 

circular fingerprints with radius 2 were generated using RDkit and their pairwise Tanimoto 

coefficient (Tc) was computed.1 During fingerprint generation, the default atom invariants 

were used, making them similar to the widely used ECFP4.2 Finally, pairwise compound 

distances were calculated, as 1 − 𝑇𝑐. The relationship between pairwise compound structural 

distances and their distance in terms of affected biological processes (GO terms) in each cell 

line, was examined (Figure S4.6). We report similar results to Sirci et al.3 and their analysis of 

transcriptomic and structural distances in the original CMAP dataset.4 Indeed, compounds 

with similar ECFP4 fingerprints, tend to affect similar biological processes (lower left quadrant 

of Figure S4.6). However, there are many structurally dissimilar compounds that have similar 

biological footprint (upper left quadrant of Figure S4.6). Finally, the majority of compounds 

are structurally dissimilar and affect different biological processes (upper right quadrant of 

Figure S4.6).  

 

Figure S4.6 Scatterplot of pairwise distances between compounds’ ECFP4 fingerprints and 

between compounds’ enriched BPs. The red lines represent reasonable thresholds to consider 

compounds similar in structure and similar in effect (0.3 for ECFP4 and 0.2 for BPs). Even 

though there is no correlation between compounds’ structural and biological effect distances, 

the majority of structurally similar compounds tend to affect similar BPs (lower left quadrant 

of the plot). 
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2 Deep learning model 

2.1 Input representation. Molecular graphs are presented to the model using the Atom array, 

the Edge array and the Bond array. The Atom array has as many rows as the max number of 

atoms across all compounds and each column represents an atom feature. In total, 62 atom 

features are utilized. The atom features consist of the concatenated vectors of 4 one hot 

encoded features and 1 binary feature, which describe: 

 The symbol of the atom (one-hot). 

 The degree of the atom (one-hot). 

 The number of attached hydrogen atoms (one-hot). 

 The valence of the atom (one-hot). 

 If the atom is aromatic (binary). 

 

The Edge array describes the connectivity of the graph representing the molecule. The Edge 

array consists of as many rows as the max number of atoms. Each row contains the atom’s 

neighbors. The Bond array is 3-dimensional and contains the features of each bond. Each row 

represents an atom, while each column represents a neighbor, up to 5 for each atom. A bond 

is described by 6 binary features contained in the Bond array, which describe whether the 

bond is: 

 Single 

 Double 

 Triple 

 Aromatic 

 Conjugated 

 In a Ring 

The Atom, Bond and Edge arrays were created using RDKit in python. 

2.2 Graph convolutions. Graph convolutions were implemented in Keras as described by 

Duvenaud et al.5 A graph convolutional layer aggregates information from the neighboring 

nodes of a node/atom in the molecular graph. For every atom, its bond features are summed 

and concatenated with its atom feature vector. The resulting feature vector of each atom is 

summed with the feature vectors of its neighbors, using the connectivity information of the 

Edge array, creating in this way a new feature vector for every atom with aggregated 

information from the atom’s neighborhood. Then, every feature vector passes through a fully 

connected layer, based on the atom’s degree, and a non-linear activation function. Typically, 

following a graph convolution layer, a function, such as sum, is used to aggregate node 

embeddings into whole graph embeddings. In our implementation we omitted the use of an 

aggregation function and instead utilized 1D convolutions to gather information across 

neighborhoods and produce a graph feature map. 

Graph Convolutional Layer Pseudocode: 

1: Input: Atom array 𝑋𝐴, Bond array 𝑋𝐵, Edge array D 
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2: for each atom ai in a molecule  

3: 𝑆𝑋𝐵𝑖
=∑ 𝑋𝐵𝑖

 

4: 𝑋𝐴𝑖

′ = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐴𝑖
, 𝑆𝑋𝐵𝑖

)  

5: for each neighbor j from N neighbors 

6:  𝑆𝑋𝐵𝑗
=∑ 𝑋𝐵𝑗

 

7:  𝑋𝐴𝑗

′ = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐴𝑗
, 𝑆𝑋𝐵𝑗

) 

8: 𝑋𝐴𝑖

′′ =  𝑋𝐴𝑖

′ +  ∑ 𝑋𝐴𝑗

′𝑁
𝑗=1     

9: 𝑋𝐴𝑖

𝑛𝑒𝑤 = 𝑟𝑒𝑙𝑢(𝑊𝑑𝑒𝑔𝑟𝑒𝑒 ∗ 𝑋𝐴𝑖

′′ + 𝑏𝑑𝑒𝑔𝑟𝑒𝑒) #is the new concatenated atom and bond 

matrix 

 

2.3 Model hyperparameters. The hyperparameters used to train the models are presented in 

Table S4.3. In our approach we utilized widely accepted hyperparameter values without 

performing hyperparameter optimization.  

Table S4.3 Model hyperparameters 

Optimizer Adam 

Learning Rate 0.001 

Epochs 20 

Batch size 128 

Regularization Dropout (rate = 0.3) 

Batch Normalization Momentum 0.6 

Weight Initializer Glorot Normal 

Activation Function ReLu 

 

2.4 Gaussian mixture. By using a Gaussian regression layer, each model outputs a mean and 

variance of the biological effect distance between pairs of molecular graphs. The ensemble’s 

output is also a Gaussian, with mean and variance calculated from the uniformly weighted 

mixture of each model. The mean and variance of the mixture are defined as 

𝑚𝑢 =
1

𝑁
∑ 𝑦̅𝑖

𝑁

𝑖=1

 

𝑠𝑖𝑔𝑚𝑎 = √
1

𝑁
∑(𝑠𝑑𝑖 + 𝑦̅𝑖

2)

𝑁

𝑖=1

− 𝑚𝑢
2 

where, 

 𝑦̅𝑖  is the output mean value of the biological effect distance of each model. 
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 𝑁 is the number of models. 

 𝑚𝑢 is the final mean value of the uniformly weighted mixture. 

 𝑠𝑖𝑔𝑚𝑎 is the standard deviation of the uniformly weighted mixture. 

  𝑠𝑑𝑖 is the output variance of the biological effect distance of each model. 

 

Finally, the coefficient of variation of the Gaussian mixture is used as the model’s estimate of 

predictive uncertainty and is defined as 

𝐶𝑉 =
𝑠𝑖𝑔𝑚𝑎

𝑚𝑢
 . 

3 Other similarity/distance learning methods 

3.1 ReSimNet. Our approach was compared with a recently proposed architecture called 

ReSimNet.6 ReSimNet takes as input the 2048-bit ECFP4 fingerprints of two chemical 

compounds and predicts their CMap score, which corresponds to the transcriptional response 

similarity of their GEx signatures. ReSimNet encodes the ECFP4 input to embedding vectors in 

the latent space using Siamese MLPs and predicts their CMap score as the cosine similarity of 

their embeddings. In our implementation, ReSimNet was trained to predict the similarity 

between compounds’ affected BPs and afterwards the output similarity was transformed to a 

distance value for evaluation. The performance of randomly initialized ReSimNet ensemble 

models was evaluated for each cell line, on its respective test set (Table 4.2 of the main paper). 

3.2 TwoStepRLS. In this study, TwoStepRLS, a Kronecker product kernel that utilizes a 

regularized least-squares (RLS) method, was used to predict the GO-term similarity of pairs of 

compounds, using as input the Tanimoto similarity between compounds’ ECFP4 fingerprints. 

The regularization parameter was set to the proposed value of 2-15. This method was 

implemented using RLscore7, an open-source python package for kernel-based machine 

learning, which includes implementations of RLS machine learning methods. 

4 Dataset splitting and augmentation 

4.1 Dataset splitting. An overview of the training and test sets for each cell line is presented 

in Table S4.4 and S4.5, while the distribution of the target variable is presented in Figure S4.7. 

For the proposed learning task, random splitting of compound pairs between training and test 

has no benefit, since if a compound is present on the training set its affected BPs are known 

and distances to other compounds can be calculated instead of predicted.  

Table S4.4 Cell line specific training sets 

Cell line Number of Compounds Number of Pairs 

MCF7 713 253828 

PC3 608 184528 

A375 592 174936 

VCAP 934 435711 
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Table S4.5 Cell line specific test sets 

Cell line Number of Compounds Number of Pairs 

MCF7 70 49910 

PC3 74 44992 

A375 77 45584 

VCAP 63 58842 

 

 

Figure S4.7 Histogram of the model’s target variable for each cell line. 

4.2 Data Augmentation. When training augmented ensemble models, the original training set 

of each model, consisting of Q1 signature pairs, was augmented with randomly sampled pairs 

between Q1 and Q2 signatures. This technique was utilized in order to increase the number 

of compounds and the diversity of chemical structures available during training. Although this 

approach resulted in better performance for the MCF7 cell line compared to random 

initialization ensembles in terms of precision, it wasn’t pursued further due to reliability issues 

of Q2 transcriptomic signatures. We observed many cases where the distance between Q1 

signatures of compounds A and B was very small, e.g. 0.1, while the distance between 

signatures of compounds A and C, where C is a structural analogue of B (Tanimoto similarity > 

0.85) and has a Q2 signature was high, e.g. 0.8. This kind of discrepancy between Q1 and Q2 

signatures poses a problem for the learning model that only uses chemical structures as input. 

5 Performance evaluation 
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5.1 Distance threshold for precision. The model outputs a continuous value between 0 and 1 

for the distance between compounds’ affected biological processes (GO terms). In order to 

evaluate the model’s precision, a reasonable distance threshold has to be specified. 

Compounds with predicted distances below this threshold are considered similar in terms of 

affected biological processes. First, the connection between the distance threshold and the 

average number of common GO terms in the most upregulated and downregulated GO terms, 

respectively, for all compound pairs in the dataset was examined and is presented in Figure 

S4.8. The average number of common GO terms decreases linearly as the distance threshold 

increases (Figure S4.8). Additionally, for each compound per cell line, the distance threshold 

equivalent of a 90% Connectivity score was calculated (Figure S4.9). For a specific compound 

X, a threshold equivalent of a 90% score indicates that only 10% of other Touchstone 

compounds have a distance from X smaller that this threshold. The 90% CMAP score is a 

widely accepted threshold to identify compounds with similar transcriptomic signatures. 

Finally, for MCF7, for which enough quality 1 duplicate compound signatures are available, 

the distribution of pairwise distances between duplicate signatures is presented in Figure S4.5 

(black line). Based on the information provided in Supplementary figures 8, 9 and 5, a 

threshold of 0.2 was selected when evaluating the models’ precision across all cell lines. When 

calculating the model’s precision on test compounds that exhibit maximum structural 

similarity to all training compounds less than 0.3, this threshold was adjusted to 0.22, because 

in this case no samples had a predicted distance less than 0.2. 

 

Figure S4.8 The relationship between the biological effect distance threshold and the average 

number of common enriched BPs. In order to produce the above plot, signature pairs with 

GSEA distance below each threshold (x axis) are selected and the average number of common 

GO terms (BPs) in the 20 most upregulated and downregulated terms of all pairs is calculated 

(y axis). 
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Figure S4.9 Histogram of the threshold, which is equivalent to a 90% CMAP score, for all 

Touchstone compounds per cell line. The red vertical lines at 0.2 and 0.22 indicate the 

thresholds that were used to evaluate the models’ precision. Across all Touchstone 

compounds, in all cell lines, the utilized thresholds are close to the mean of the threshold 

equivalent to a 90% CMAP score. 

 

5.2 Cross validation performance. For each cell line, we evaluated the performance of a 10 

model ensemble in a 5-fold cross validation split. Each validation set contains pairwise 

distances between BPs of non-overlapping sets of 80 validation compounds and all remaining 

training compounds. When extracting validation compounds, the maximum allowed 

Tanimoto similarity between ECFP4 fingerprints of validation and training compounds was set 

to 0.85. The results of the 5-fold cross validation are presented in Table S4.6. In all tested cell 

lines, our approach was able to produce consistently good results.  

 

 

 

 

 

 

 

 

 

 



Chapter 4 DeepSIBA 
 

95 
 

Table S4.6 Cross validation performance of deepSIBA  

Cell-line MSE MSE @1% 
Pearson’s 

r 
Precision (%) 

A375 0.008 0.005 0.56 92.11 

VCAP 0.025 0.005 0.54 64.28 

PC3 0.011 0.009 0.54 96.47 

MCF7 0.013 0.009 0.52 58.94 

 

5.3 Augmented deepSIBA performance evaluation. 

Table S4.7 Cell line specific test set performance of augmented deepSIBA 

Cell-line MSE Pearson’s r Precision (%) 
Predicted similar 

pairs 

A375 0.009 0.61 91.54 272 

VCAP 0.030 0.42 84.78 46 

PC3 0.011 0.54 25.97 77 

MCF7 0.015 0.45 88.00 25 

 

6 Signaling pathway inference for target structure  

6.1 Parameter selection. The most important parameters of the signaling pathway inference 

are the distance threshold 𝑑𝑡ℎ and the frequency threshold 𝑓𝑡ℎ. Training set compounds with 

predicted distances from the target less than 𝑑𝑡ℎ are selected as its neighbors, while pathways 

that appear in the neighbors’ signatures with frequency higher than𝑓𝑡ℎ are inferred as the 

target’s signature. The performance of the inference method was evaluated for different 

values of 𝑑𝑡ℎ and 𝑓𝑡ℎ in the test set of MCF7 (Figure S4.10). The average precision of the 

inferred pathway signatures as well as their length were chosen as evaluation metrics. The 

performance of the method decreases as 𝑑𝑡ℎ increases and 𝑓𝑡ℎ is kept constant at 0.65 for 

both the upregulated and downregulated signatures. In terms of precision, as 𝑑𝑡ℎ increases 

the precision of the approach decreases, and for 𝑑𝑡ℎ > 0.4 it becomes 0 (Figure S4.10A and 

S4.10B). In terms of the length (average number) of the inferred signatures, for 𝑑𝑡ℎ higher 

than 0.4, the length of inferred signatures becomes 0, as more distant compounds are 

considered neighbors (Figure S4.10C and S4.10D). After selecting 0.65 as a reasonable 
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threshold for 𝑑𝑡ℎ, we evaluated the performance of the approach for different frequency 

thresholds 𝑓𝑡ℎ, the results are presented in Figure S11. As 𝑓𝑡ℎ increases, while 𝑑𝑡ℎ is kept 

constant at 0.2 the inference becomes more strict. This results in increased precision (Figure 

S4.11A and S4.11B), but shorter in length inferred pathway signatures (Figure S4.11C and 

S4.11D). Based on these results, the selected parameters of the pathway inference for the 

MCF7 cell line and the respective use case, are presented in Table S4.8. 

 

 

Figure S4.10 Performance evaluation of the signaling pathway inference for different distance 

thresholds for the test compounds of the MCF7 cell line. Reference compounds (training) with 

predicted distance lower than the threshold are selected as the target’s neighbors. The rest 

of the inference parameters are kept constant and their values are presented in the legend. 

(A) The average precision of the downregulated pathway signature as a function of the 

distance threshold; (B) The average precision of the upregulated pathway signature as a 

function of the distance threshold; (C) The average length of the inferred downregulated 

pathway signature; (D) The average length of the inferred upregulated pathway signature. 

 



Chapter 4 DeepSIBA 
 

97 
 

 

Figure S4.11 Performance evaluation of the signaling pathway inference for different 

frequency thresholds for the test compounds of the MCF7 cell line. Signaling pathways that 

appear in the neighbors’ signatures with frequency higher than 𝑓𝑡ℎ are inferred as the target’s 

signature. The rest of the inference parameters are kept constant and their values are 

presented in the legend. (A) The average precision of the downregulated pathway signature 

as a function of the distance threshold; (B) The average precision of the upregulated pathway 

signature as a function of the distance threshold; (C) The average length of the inferred 

downregulated pathway signature; (D) The average length of the inferred upregulated 

pathway signature. 

 

Table S4.8 Parameter values for the signaling pathway inference approach 

Parameter Value 

Distance threshold 𝑑𝑡ℎ 0.2 

Number of neighbors 𝑘 5 

Frequency threshold 𝑓𝑡ℎ 0.65 

P-value threshold 𝑝𝑡ℎ 0.01 
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Chapter 5 

 

Concluding remarks 

 
 

5.1 Conclusion 

In this thesis I developed and tested deep learning models for the field of systems 

pharmacology. The deepSIBA and deepSNEM pipelines serve as proof of concept that deep 

learning can provide a framework to successfully incorporate elements from both the 

structural and systems domain of drug discovery in order to reduce its attrition rates. I hope 

that the created datasets and methods can pave the way for more research in the field of 

deep learning for systems pharmacology. I also believe that as more data become available, 

the deep learning applications for systems pharmacology will become increasingly useful and 

find real world applications in the field of drug discovery. However, we have to be mindful 

regarding where further research in the field should be focused to. From my experience, the 

most important aspect of any developed pipeline is the problem statement, along with the 

data/features and preprocessing steps, rather than the deep learning method. During my 

research, most of my time was spent on developing the learning problem that can test the 

hypothesis, along with finding the right data to train the system. Building a deep learning 

pipeline based on experimental data, for tasks that cannot be solved by humans is a very 

complex problem. Given the complexity of the problem, I believe that the collaborative effort 

of machine learning scientists, systems scientists and biologists is paramount for the success 

of the field. 

 

5.2 Data and code availability 

All the datasets and code that were created as part of my research is available at the github 

page of the lab https://github.com/biosyslab.  

 

 

 


