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Extended Greek Summary 

Εισαγωγικό σημείωμα 

Σε αυτή τη διδακτορική διατριβή, έχει εφαρμοστεί ένα ευρύ φάσμα προσεγγίσεων Μηχανικής Μάθησης 

(ΜΜ) σε πειράματα που σχετίζονται με τον εγκέφαλο, παρέχοντας τη βάση για αλληλεπιδράσεις 

Διεπαφών Ανθρώπου-Μηχανής (ΔΑΜ) και Διεπαφών Εγκεφάλου-Υπολογιστή (ΔΕΥ) ρίχνοντας φως σε 

υποκείμενες γνωστικές πτυχές διαφορετικών καταστάσεων όσον αφορά τη νευροεπιστήμη. Υπό αυτό το 

πρίσμα, πρέπει να σημειωθεί ότι η εφαρμογή ΔΕΥ απαιτεί τη συνεχή μέτρηση των εγκεφαλικών 

σημάτων τα οποία να μπορούν να μεταφραστούν και να εισάγουν πληροφορίες στη συνδεδεμένη 

συσκευή για την εκτέλεση της κάθε εργασίας. Κατ' επέκταση, μη σχετιζόμενα νευρικά ερεθίσματα 

ενδέχεται να συγχέουν την εσωτερική διαδικασία ταξινόμησης, επομένως είναι εξαιρετικά σημαντικό να 

ανιχνεύονται συγκεκριμένες νευρικές ιδιότητες με τρόπο που να είναι όσο το δυνατόν πιο διακριτές και 

με καθολικό τρόπο. Ο στόχος της διατριβής αυτής είναι να θέσει τα θεμέλια για την εφαρμογή ΔΕΥ 

αξιολογώντας τα καθολικά χαρακτηριστικά διαφορετικών γνωστικών καταστάσεων και συνθηκών στα 

πλαίσια ΜΜ, ενώ παράλληλα να λαμβάνει υπόψη τις εξελίξεις στις αλγοριθμικές εφαρμογές και των 

εφαρμογών των υπαρχόντων συστημάτων στην ανάλυση ηλεκτροεγκεφαλογραφικών (ΗΕΓ) 

καταγραφών. 

Περίληψη 

Σε αυτήν τη διδακτορική διατριβή, προτείνονται προηγμένες προσεγγίσεις Μηχανικής Μάθησης για την 

επεξεργασία και την ανάλυση των ηλεκτροεγκεφαλογραφικών σημάτων, αξιοποιώντας ιδιότητες σήματος 

στο πεδίο του χρόνου και / ή συχνότητας. Προς αυτήν την κατεύθυνση, χρησιμοποιήθηκαν τρία 

πειράματα ηλεκτροεγκεφαλογραφικών καταγραφών υψηλής πυκνότητας προκειμένου να μελετηθούν 

γνωστικές λειτουργίες υψηλότερης τάξης, αποτελώντας τη βάση για εφαρμογές πραγματικού κόσμου 

ειδικά στον τομέα των Διεπαφών Εγκεφάλου-Υπολογιστή.  

Σε αυτήν τη διδακτορική διατριβή, προτείνονται προηγμένες προσεγγίσεις Μηχανικής Μάθησης για την 

επεξεργασία και την ανάλυση των ηλεκτροεγκεφαλογραφικών σημάτων, αξιοποιώντας ιδιότητες σήματος 

στο πεδίο του χρόνου και / ή συχνότητας. Προς αυτήν την κατεύθυνση, χρησιμοποιήθηκαν τρία 

πειράματα ηλεκτροεγκεφαλογραφικών καταγραφών υψηλής πυκνότητας προκειμένου να μελετηθούν 

γνωστικές λειτουργίες υψηλότερης τάξης, αποτελώντας τη βάση για εφαρμογές πραγματικού κόσμου 

ειδικά στον τομέα των Διεπαφών Εγκεφάλου-Υπολογιστή. Τα καταγεγραμμένα δεδομένα διερευνήθηκαν 

χρησιμοποιώντας δυναμικά που σχετίζονται με συμβάντα (Βιωματικά Δυναμικά, ΒΔ), φασματική 

αποσύνθεση και δίκτυα εγκεφάλου, ενώ αναπτύχθηκαν νέες μεθοδολογίες για τη μοντελοποίηση και 

ανάλυση των νευρολογικών δομών παρέχοντας έγκυρα αποτελέσματα. Επιπλέον, τα χαρακτηριστικά που 

εξήχθησαν από κάθε πείραμα συνδυάστηκαν με διαφορετικές τεχνικές ταξινόμησης και επιλογής 

χαρακτηριστικών (απομονώνοντας ένα μικρό υποσύνολο σημαντικών αλληλεπιδράσεων) και 

πετυχαίνοντας  υψηλή ακρίβεια στη διάκριση μεταξύ των διαφόρων καταστάσεων. Αξίζει να σημειωθεί 

ότι η αποκρυπτογράφηση της ηλεκτρικής δραστηριότητας του εγκεφάλου με γενικευμένο τρόπο (άσχετο 

με τη μεταβλητότητα των εργασιών και των θεμάτων) είναι μια σημαντική απαίτηση για την προσαρμογή 

ενός κοινού πλαισίου σε πραγματικές εφαρμογές Διεπαφών Εγκεφάλου Υπολογιστή. Σε αυτό 
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επικεντρώνεται αυτή η διδακτορική διατριβή, μέσω της επέκτασης της τρέχουσας τεχνολογίας σε 

νευρογνωστικές προσαρμογές της Μηχανικής Μάθησης. 

 Πιο συγκεκριμένα, το πείραμα 1 (Κεφάλαιο 3) διερευνά τον αντίκτυπο διαφορετικών χρονικών 

παραθύρων σε ΒΔ μετά το σφάλμα σε ακουστική δοκιμασία με διαφορετικές συνθήκες πολυπλοκότητας. 

Ως εκ τούτου, χαρακτηριστικά σήματος (όπως πλάτος, λανθάνουσα κατάσταση κ.λπ.) που είναι 

αντιπροσωπευτικά των συστατικών ΒΔ που προκαλούνται από σφάλματα, χρησιμοποιήθηκαν σε ένα 

πλαίσιο επιλογής χαρακτηριστικών και ταξινόμησης που εξετάζει την επίδραση των διαμορφώσεων 

σήματος με την πάροδο του χρόνου. Το πείραμα 2 (Κεφάλαιο 4) αφορά την ανεξάρτητη (από το είδος 

διαδικασίας) εκτίμηση του υψηλού έναντι του χαμηλού νοητικού φόρτου εργασίας σε δύο διαφορετικά 

παραδείγματα μνήμης εργασίας. Στο πλαίσιο αυτό, ένα δικτύου εγκεφάλου συνδυάστηκε με φασματικά 

χαρακτηριστικά εγκαφαλογραφήματος για την εξαγωγή των γενικευμένων χαρακτηριστικών που είναι 

αντιπροσωπευτικά του νοητικού φόρτου, ενώ διαφορετικοί μέθοδοι ταξινόμησης συνδυάστηκαν με έναν 

αλγόριθμο επιλογής χαρακτηριστικών για την αξιολόγηση των ιδιοτήτων διακριτότητας των υποσύνολων 

λειτουργιών. Η περαιτέρω εξέταση των επιλεγμένων χαρακτηριστικών αποκάλυψε κοινά πρότυπα 

ανεξάρτητα από την εργασία σχετικά με τις φασματικές και τοπολογικές τους ιδιότητες. Τέλος, το 

πείραμα 3 (Κεφάλαιο 5) διερευνά τους νευρικούς μηχανισμούς του νοητικού φόρτου εργασίας και τη 

διαμόρφωσή τους σε συνθήκες που προσομοιώνουν σενάρια πραγματικού κόσμου. Σε αυτήν την 

περίπτωση, πραγματοποιήθηκε ένα καλά ελεγχόμενο πείραμα προσομοίωσης πτήσης σε περιβάλλοντα 

οθόνης υπολογιστή (2D) και εικονικής πραγματικότητας (3D) με πολλαπλά επίπεδα δυσκολίας. Τα 

προκύπτοντα δεδομένα στη συνέχεια υποβλήθηκαν σε επεξεργασία χρησιμοποιώντας εύρεση 

νευρολογικών πηγών και συσσωματώθηκαν σε φλοιώδεις περιοχές κατασκευάζοντας φασματικά 

διαστημικά δικτύων πηγής. Στη συνέχεια εφαρμόστηκαν αλγόριθμοι μηχανικής μάθησης για να 

συγκριθούν οι μεταβολές της συνδεσιμότητας και να εντοπιστούν τα πρότυπα αναδιοργάνωσης των 

εγκεφαλικών δικτύων σε σχέση με κάθε επίπεδο και κατάσταση φόρτου εργασίας. 

Τα αποτελέσματα παρέχουν νέες γνώσεις στους υποκείμενους γνωστικούς μηχανισμούς, ενώ παρέχουν 

υποστήριξη σε ειδικούς στους σχετικούς ιατρικούς τομείς, επιτρέποντας στη συνέχεια την 

αποτελεσματική παρακολούθηση της εγκεφαλικής δραστηριότητας. Επιπλέον, ο συνδυασμός της 

ανάλυσης που παρέχεται μέσω της Μηχανικής Μάθησης με τη νευροεπιστήμη ανοίγει το δρόμο για 

εφαρμογές διεπαφής ανθρώπου/εγκεφάλου-μηχανής τόσο σε επιστημονικούς όσο και σε ιατρικούς 

τομείς. Τα πειραματικά έργα και η ανάλυση στα προαναφερθέντα πειράματα αποτελούν τη θεωρητική 

βάση για τέτοιες διεπαφές, των οποίων οι επιπτώσεις και η ταξινόμηση συζητούνται επίσης σε αυτό το 

διδακτορικό (Κεφάλαιο 6). 

Κεφάλαιο 1 

Στο πρώτο κεφάλαιο εισάγονται οι βασικές έννοιες και οι τεχνικές για την παρακολούθηση του 

εγκεφάλου, καθώς και οι ιδιότητες των νευρικών ταλαντώσεων όσον αφορά στην αναπαράσταση της 

φλοιώδους δραστηριότητας σε γνωστικές λειτουργίες ανώτερης τάξης. Πιο συγκεκριμένα, περιγράφονται 

οι τρόποι καταγραφής της δραστηριότητας του ανθρώπινου εγκεφάλου, οι τρόποι τοποθέτησης των 

ηλεκτροδίων, οι εγκεφαλικοί ρυθμοί, τα δυναμικά που σχετίζονται με συγκεκριμένα ερεθίσματα 

(Βιωματικά Δυναμικά, ΒΔ) και τα εγκεφαλικά δίκτυα (θεωρία γράφων) αναφορικά με την κατασκευή 

τους και τις μετρικές τους. Αναλυτικότερα, περιγράφεται το ΗΕΓ αναφορικά με τον τρόπο που λαμβάνει 

τις καταγραφές και η εφαρμογή του τόσο αναφορικά με τις τεχνικές όσο και με τις νευροφυσιολογικές 
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λεπτομέρειες. Επίσης, παρουσιάζεται η τοποθεσία των συγκεκριμένων ΗΕΓ καναλιών κατά το διεθνές 

σύστημα 10-20, το όποιο και χρησιμοποιήθηκε στα πειράματα που πραγματοποιήθηκαν σε αυτή τη 

διδακτορική διατριβή. Επιπρόσθετα, γίνεται αναφορά στα επιμέρους χαρακτηριστικά των ΗΕΓ 

καταγραφών με έμφαση στους διαφορετικούς εγκεφαλικούς ρυθμούς (δ, α, θ, β, γ) σχετικά με την 

συχνότητα που παρουσιάζονται, καθώς και στα ΒΔ και την ανάλυση τους σε περαιτέρω συνιστώσες 

(πλάτος και χρόνος εμφάνισής τους). Τέλος, αναλύονται τα εγκεφαλικά δίκτυα και πιο συγκεκριμένα η 

κατασκευή του δικτύου Δεικτών Καθυστέρησης Φάσης (PLI), η σημασία του και οι μετρικές που 

χρησιμοποιήθηκαν στην ανάλυση των δεδομένων στα πλαίσια αυτής της διδακτορικής διατριβής. 

Κεφάλαιο 2 

Το δεύτερο κεφάλαιο παρουσιάζει μια βιβλιογραφική επισκόπηση των υπολογιστικών εργαλείων, 

αλγορίθμων και των εφαρμογών στον προσδιορισμό προγνωστικών δεικτών για την ταξινόμηση 

διαφορετικών γνωστικών καταστάσεων και συνθηκών. Αναλυτικότερα, παρουσιάζεται λεπτομερώς η 

προεπεξεργασία του ΗΕΓ σήματος και οι τεχνικές αποθορυβοποίησής του με τη χρήση φίλτρων 

πεπερασμένης και άπειρης κρουστικής απόκρισης (FIR, IΙR), Ανάλυσης Ανεξάρτητων Συστατικών (ICA) 

και διόρθωσης γραμμής βάσης. Επίσης αναλύεται ο τρόπος με τον οποίο γίνεται ο εντοπισμός 

εγκεφαλικής πηγής με την μέθοδο που χρησιμοποιείται στις αναλύσεις των παρακάτω κεφαλαίων 

(ηλεκτρομαγνητική τομογραφία εγκεφάλου χαμηλής ανάλυσης, LORETA) και ο τρόπος υπολογισμού 

των πηγών. Τέλος, παρουσιάζονται τα εργαλεία ΜΜ αναφορικά με τους αλγορίθμους ταξινόμησης και 

πιο συγκεκριμένα αναφέρονται οι μεθοδολογίες των ταξινομητών, οι τρόποι εξαγωγής χαρακτηριστικών, 

η επιλογή τους και οι μετρικές για την αξιολόγηση των αποτελεσμάτων που προκύπτουν. 

Κεφάλαιο 3 

Το Κεφάλαιο 3 αφορά στην ταξινόμηση του γνωσιακού εγκεφαλικού μηχανισμού σφάλματος σε σχέση 

με εξαγόμενα χαρακτηριστικά ΒΔ, εστιάζοντας σε γενικευμένες νευροφυσιολογικές πτυχές που δεν 

λαμβάνουν υπόψη την πολυπλοκότητα των εργασιών. Πιο συγκεκριμένα, βάση της υπόθεσης ότι οι 

εγκεφαλικοί μηχανισμοί επεξεργασίας σφαλμάτων περιέχουν υψηλή μορφολογική ευαισθησία, οι 

μέθοδοι ΜΜ είναι ιδανικοί για να αποκαλύψουν τα κρυμμένα χαρακτηριστικά που αντικατοπτρίζουν την 

επεξεργασία τους, οδηγώντας στον εντοπισμό των χαρακτηριστικών αυτών που δεν εξαρτώνται από την 

τη δυσκολία μιας εργασίας. Ως εκ τούτου, εφαρμόστηκε ένα πείραμα ακουστικής αναγνώρισης ΗΕΓ με 

δύο συνθήκες πολυπλοκότητας με τα προκύπτοντα δεδομένα να αναλύονται υπό την προϋπόθεση ότι η 

επεξεργασία σφαλμάτων είναι ένα δυναμικό φαινόμενο, με διακριτά μορφολογικά χαρακτηριστικά ΒΔ. Η 

ανάλυση χωρίστηκε σε δύο διακριτές φάσεις, συμπεριλαμβανομένων των προσεγγίσεων ΜΜ σε 

μορφολογικά χαρακτηριστικά με διαφορετικά ή συνδυασμένα χρονικά παράθυρα. Η πρώτη προσέγγιση 

έλαβε υπόψη το σύνολο των καναλιών και αφορούσε δράστες και παρατηρητές χρησιμοποιώντας μια 

τροποποιημένη έκδοση επιλογής χαρακτηριστικών (ΕΧ), ενώ η δεύτερη χρησιμοποίησε ένα πλαίσιο ΕΧ 

σε συγκεκριμένα κανάλια των δραστών για τις ταξινομήσεις των σημάτων ξεχωριστών και από κοινού 

καταστάσεων πολυπλοκότητας. Και οι δύο αναλύσεις ήταν σε θέση να παρέχουν υψηλή απόδοση 

ταξινόμησης, και παρουσιάζονται παρακάτω. 

Τα δεδομένα ΗΕΓ συλλέχθηκαν από δώδεκα άτομα τα οποία συμμετείχαν σε ένα ακουστικό πείραμα 

αναγνώρισης με δύο επίπεδα πολυπλοκότητας. Τα δεδομένα πάρθηκαν από 32 κανάλια ΗΕΓ σύμφωνα με 

το διεθνές σύστημα 10-20. Οι συμμετέχοντες χωρίστηκαν σε 6 δυάδες, όπου τόσο ο δράστης όσο και ο 
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παρατηρητής άκουγαν τον ίδιο τόνο από μια προεπιλεγμένη ζώνη συχνοτήτων. Στη συνέχεια, ζητήθηκε 

από τον δράστη να τοποθετήσει έναν κέρσορα σε μια μπάρα η οποία αντιστοιχούσε στο εύρος ζώνης 

συχνοτήτων, έτσι ώστε η επιλεγμένη θέση να ταιριάζει με το ακουστικό ερέθισμα. Μετά την τοποθέτηση 

του κέρσορα παρουσιαζόταν ο τόνος που αντιστοιχεί στη θέση της μπάρας καθιστώντας προφανές εάν η 

επιλογή ήταν σωστή ή εσφαλμένη. Κάθε εργασία περιελάμβανε 80 δοκιμές με τους συμμετέχοντες να 

εναλλάσσουν τη θέση τους ως δράστες και παρατηρητές. Στην πρώτη κατάσταση πολυπλοκότητας οι 

συμμετέχοντες άκουγαν ήχους από το ίδιο εύρος συχνοτήτων και έτσι η μπάρα θα ήταν πανομοιότυπη 

και για τους δύο, ενώ στη δεύτερη κάθε συμμετέχων θα λάμβανε διαφορετικά ακουστικά ερεθίσματα 

εύρους συχνοτήτων ενώ ήταν δράστης. Με αυτόν τον τρόπο θα ήταν πιο δύσκολο να χαρτογραφηθεί 

διανοητικά η διαφορετική μπάρα στην δεύτερη κατάσταση. Τα ληφθέντα δεδομένα ΗΕΓ 

τμηματοποιήθηκαν σε σχέση με τον τόνο ανάδρασης και υποβλήθηκαν σε προ-επεξεργασία με φίλτρο 

άπειρης κρουστικής απόκρισης Chebyshev και σε διόρθωσης γραμμής βάσης 100 ms πριν από τη 

διέγερση. Στη συνέχεια, υπολογίστηκε ο μέσος όρος του ΗΕΓ σήματος για κάθε συμμετέχοντα και για 

κάθε ηλεκτρόδιο, καταχωρώντας την απάντηση ως σωστή ή εσφαλμένη με βάση το Ισοδύναμο 

Ορθογώνιο Εύρος Ζώνης σύμφωνα με τη θεωρία της ψυχοακουστικής. 

Για να εκτελεστεί η ταξινόμηση στις δύο κλάσεις πραγματοποιήθηκε μια σειρά εξαγωγής 

χαρακτηριστικών για καθεμία από τις δύο προσεγγίσεις. Και στις δύο τα χαρακτηριστικά υπολογίστηκαν 

με βάση την οπτική παρατήρηση των μέσων καμπυλών ΒΔ των διαφορετικών ηλεκτροδίων για 

διαφορετικά χρονικά παράθυρα, όπου τα σχετιζόμενα με σφάλμα ΒΔ, σύμφωνα με την βιβλιογραφία, 

εμφανίζουν ξεχωριστή μορφολογία και σαφή διαφοροποίηση μεταξύ των 2 κλάσεων (σωστών και 

λανθασμένων). Ως εκ τούτου, τα σωστά και λανθασμένα ΒΔ χωρίστηκαν περαιτέρω σε 5 χρονικά 

παράθυρα (0-125 ms, 125-220 ms, 220-300 ms, 300-400 ms και 0-600 ms), ενώ τα χαρακτηριστικά 

εξήχθησαν για τα χρονικά παράθυρα και για ανά δύο συνδυασμούς τους για κάθε θέση ηλεκτροδίου ως: 

μέγιστη και ελάχιστη τιμή πλάτους του σήματος ΒΔ, λανθάνων χρόνος της μέγιστης και ελάχιστης τιμής 

και το εμβαδό της περιοχής κάτω από την καμπύλη ΒΔ. 

1η Προσέγγιση: Ανάλυση σχετιζομένων με σφάλμα ΒΔ δραστών και παρατηρητών 

Όπως αναφέρθηκε και προηγουμένως τα πειραματικά δεδομένα αναλύθηκαν στην πρώτη προσέγγιση 

χρησιμοποιώντας ένα πλήρες σύνολο καναλιών σε δράστες και παρατηρητές σε ένα πλαίσιο ΜΜ που 

ενσωμάτωνε την ΕΧ και τις διαδικασίες ταξινόμησης. Πιο συγκεκριμένα εφαρμόστηκε η διαδοχική 

πρόσθια επιλογή (SFS) για να εντοπιστούν τα πιο ενδεικτικά χαρακτηριστικά, όσον αφορά στην ακρίβεια 

της ταξινόμησης. 

Γενικά, η SFS ξεκινά με ένα κενό σύνολο χαρακτηριστικών και προσθέτει ένα προς ένα το 

χαρακτηριστικό με την μεγαλύτερη σημασία (ακρίβεια ταξινόμησης) έως ότου δεν μπορεί να υπάρξει 

περαιτέρω βελτίωση. Ωστόσο, το γεγονός ότι σε κάθε βήμα το SFS πρέπει να εκτιμήσει την ακρίβεια 

ταξινόμησης όλων των χαρακτηριστικών, έχει ως αποτέλεσμα μεγάλο υπολογιστικό κόστος, ενώ η φύση 

του αλγορίθμου τον παγιδεύει σε τοπικά μέγιστα. Για το λόγο αυτό, ένας τροποποιημένος αλγόριθμος 

SFS χρησιμοποιήθηκε, όπου τα χαρακτηριστικά ταξινομούνται με βάση τη συνολική τους σημασία στην 

ταξινόμηση. Στη συνέχεια, μια διαδικασία βαθμολόγησης εντοπίζει το βασικό υποσύνολο (αντί για το 

μηδενικό) ως αυτό που παρουσιάζει την καλύτερη απόδοση μέσω της εξαντλητικής αναζήτησης των 

δέκα πιο σημαντικών χαρακτηριστικών. Τέλος, ο αλγόριθμος πραγματοποιεί μια επαναληπτική δομή 

κατά την οποία ενσωματώνει το επόμενο πιο σημαντικό χαρακτηριστικό στο υποσύνολο μόνο αν αυξηθεί 

η απόδοση (χωρίς να ληφθεί υπόψη το ποσό αύξησης), ενώ εάν η συνολική απόδοση επιδεινωθεί ή δεν 
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αλλάξει παραλείπεται για να προστεθεί το επόμενο. Για να αξιολογηθεί η ακρίβεια της ταξινόμησης σε 

κάθε επανάληψη, εφαρμόστηκε μια διαδικασία διασταυρούμενης επικύρωσης, που συνεπάγει τη χρήση 

όλων των δεδομένων με εξαίρεση ενός, τα οποία και χρησιμοποιούνται ως σύνολο εκπαίδευσης με το 

αποκλειόμενο να αποτελεί το σύνολο δοκιμών. Οι ταξινομητές που χρησιμοποιήθηκαν ήταν γραμμικές 

Μηχανές Διανυσμάτων Υποστήριξης (SVM), SVM με συνάρτηση ακτινικής βάσης και με τετραγωνικό 

πυρήνα, σε συνδυασμό με τις μεθόδους εκμάθησης Διαδοχικής Ελάχιστης Βελτιστοποίησης και 

Ελαχίστων Τετραγώνων.  

Τα αποτελέσματα την γενικής μορφής του SFS και της τροποποιημένης έκδοσης παρουσιάζονται στο 

Κεφάλαιο 3, Πίνακες 3.1, 3.2, 3.3 και 3.4. Συνοπτικά, τα χαρακτηριστικά που περιέχονταν στο πρώτο 

χρονικό παράθυρο ήταν επιλεγμένα με μεγαλύτερη συχνότητα, με το ηλεκτρόδιο P8 να επιλέγεται από 

τους δύο SFS αλγορίθμους πιο συχνά. Η γενική μορφή του SFS έφτασε σε αποτελέσματα υψηλής 

ακρίβειας με μικρά βήματα, παρόλα αυτά παγιδεύτηκε σε τοπικά μέγιστα (επιβεβαιώνοντας την αρχική 

υπόθεση), ενώ η τροποποιημένη έκδοση βελτίωσε την ακρίβεια ταξινόμησης (με περισσότερα βήματα 

όμως) και παρουσίασε σημαντική μείωση του υπολογιστικού φορτίου. Τέλος, φάνηκε ότι τα 

χαρακτηριστικά (όπως το πλάτος και ο χρόνος εμφάνισης) εμφανίζουν μορφολογικές διαφορές σε κάθε 

κατάσταση πολυπλοκότητας, καλύπτοντας συγκεκριμένα συστατικά ΒΔ. Αυτό το γεγονός αποτέλεσε το 

βασικό κίνητρο για περαιτέρω διερεύνηση της επίδρασης της δυσκολίας της αιτούμενης από τον δράστη 

εργασίας, υιοθετώντας μια νέα προσέγγιση που περιγράφεται παρακάτω. 

2η Προσέγγιση: Ανάλυση σχετιζομένων με σφάλμα ΒΔ διαφορετικών καταστάσεων 

πολυπλοκότητας 

Σε αυτή την προσέγγιση, χρησιμοποιήθηκε μια στρατηγική αναζήτησης χαρακτηριστικών που 

ενσωμάτωσε έναν συνδυασμό διαδοχικής κυμαινόμενης επιλογής προς τα εμπρός (SFFS) και διαδοχικής 

επιλογής προς τα εμπρός (SFS), επιτρέποντας την ανίχνευση των μεμονωμένων χαρακτηριστικών που 

παρέχουν υψηλή ακρίβεια ταξινόμησης. Επίσης, η προσέγγιση διαφοροποιήθηκε σχετικά με τους 

συμμετέχοντες και τα χαρακτηριστικά που χρησιμοποιήθηκαν. Ως εκ τούτου, η μεθοδολογική 

στρατηγική περιλάμβανε μόνο ΗΕΓ δραστών στις δύο συνθήκες πολυπλοκότητας και μια υποομάδα 

ηλεκτροδίων (τα 7 πιο ενδεικτικά σύμφωνα με την βιβλιογραφία που βρίσκονται στην κεντρική περιοχή 

του τριχωτού της κεφαλής). 

Η διάκριση μεταξύ των απαντήσεων ως σωστών ή εσφαλμένων πραγματοποιήθηκε με ταξινομητή SVM 

με Διαδοχική Ελάχιστη Βελτιστοποίηση, Ελάχιστα Τετράγωνα και Τετραγωνικό Προγραμματισμό, ενώ 

δοκιμάστηκαν λειτουργίες πυρήνων SVM γραμμικοί, συναρτήσεων ακτινικής βάσης, τετραγωνικοί, 

πολυστρωματικών perceptron και πολυωνυμικοί. Δυο διαδικασίες έλαβαν χώρα. Στην πρώτη 

εφαρμόστηκε μια τυπική SFFS, η οποία περιλαμβάνει πανομοιότυπη λειτουργία με την SFS (αρχίζοντας 

από ένα κενό σύνολο χαρακτηριστικών), αλλά μετά από κάθε βήμα προς τα εμπρός μπορεί να εκτελεί 

βήματα προς τα πίσω, δεδομένου της αύξησης της τιμής της αντικειμενικής συνάρτησης (αφαιρώντας 

χαρακτηριστικά που προστέθηκαν σε προηγούμενα βήματα). Ως αντικειμενική συνάρτηση θεωρήθηκε η 

ακρίβεια του ταξινομητή χρησιμοποιώντας δεδομένα από τις δυο καταστάσεις πολυπλοκότητας 

ταυτόχρονα. Στην δεύτερη διαδικασία η ακρίβεια λαμβάνεται χρησιμοποιώντας τη μέση τιμή της 

ακρίβειας της πρώτης και δεύτερης κατάστασης ταυτόχρονα, καθώς και ξεχωριστά της πρώτης και της 

δεύτερης. Μετά την επιλογή του βέλτιστου υποσυνόλου χαρακτηριστικών, εφαρμόστηκε η SFS 

ξεχωριστά στα δεδομένα κάθε κατάστασης πολυπλοκότητας ξεκινώντας από ένα αρχικό σύνολο 
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χαρακτηριστικών επιλεγμένο από την SFFS. Η εκπαίδευση και δοκιμή του κάθε αλγορίθμου ταξινόμησης 

υλοποιήθηκε με τη χρήση της ίδιας διαδικασίας διασταυρούμενης επικύρωσης σε κάθε βήμα των 

μεθόδων SFFS και SFS όπως στην προηγούμενη προσέγγιση. Επιπλέον, οι διαδικασίες ΕΧ και 

ταξινόμησης δεν εφαρμόστηκαν μόνο για τα πέντε χρονικά παράθυρα, αλλά και για συνδυασμούς τους 

ανά δύο. 

Τα αποτελέσματα των δυο διαδικασιών παρουσιάζονται στο Κεφάλαιο 3, Πίνακες 3.5-3.10. Η σύγκριση 

μεταξύ των δυο διαδικασιών δείχνει ότι η δεύτερη παρείχε καλύτερα αποτελέσματα, τόσο όσον αφορά 

στην ακρίβεια του ταξινομητή, όσο και σχετικά με το πλήθος των χαρακτηριστικών που επελέγησαν 

(σημαντικά μικρότερος). Η υψηλή ακρίβεια ταξινόμησης που επιτεύχθηκε για την ταξινόμηση μεταξύ 

των διαφορετικών καταστάσεων πολυπλοκότητας αλλά και στην κάθε μια κατάσταση ξεχωριστά 

επιβεβαιώνει την αρχική μας υπόθεση ότι, οι διαδικασίες ΜΜ μπορούν να ανιχνεύσουν επιτυχώς 

κρυμμένα μοτίβα σε χαρακτηριστικά ΒΔ και έτσι να εντοπιστούν οι λανθασμένες αποφάσεις, ανεξάρτητα 

από τη δυσκολία της κάθε εργασίας. Επίσης ο συνδυασμός χρονικών παραθύρων στηρίζει την υπόθεση 

ότι τα διαφορετικά συστατικά των ΒΔ προσφέρουν μεγαλύτερη ευελιξία στις διαδικασίες ταξινόμησης. 

Συμπερασματικά, οι διαφορετικές προσεγγίσεις έδειξαν ότι η ταξινόμηση σε διαφορετικές συνθήκες 

δυσκολίας μπορεί να επιτευχθεί, ωστόσο, λόγω της μεταβλητότητας των χαρακτηριστικών, η εκτίμηση 

των καθολικών χαρακτηριστικών αποτελεί σημαντικό εμπόδιο. Ως εκ τούτου, συνδυάζοντας 

χαρακτηριστικά διαφορετικών χρονικών παραθύρων μπόρεσαν να εντοπιστούν δείκτες ενός πιθανώς 

γενικευμένου γνωσιακού μηχανισμού σφάλματος ανεξάρτητου από την πολυπλοκότητα των εργασιών. 

Κεφάλαιο 4 

Στο Κεφάλαιο 4, εφαρμόστηκε ανίχνευση του νοητικού φόρτου εργασίας, ανεξάρτητη από την εργασία 

που πραγματοποιήθηκε, χρησιμοποιώντας την συγχώνευση διαφορετικών φασματικών χαρακτηριστικών 

ΗΕΓ. Η ανάλυση που προτείνεται σε αυτό το Κεφάλαιο περιλαμβάνει ένα πλαίσιο ΜΜ για την 

αντιμετώπιση των εμποδίων που προκύπτουν συχνά από την ταξινόμηση φόρτου εργασίας μεταξύ 

εργασιών, χρησιμοποιώντας φασματικά χαρακτηριστικά ΗΕΓ για να αποκαλυφθούν οι γενικευμένοι 

μηχανισμοί που ρυθμίζουν τον νοητικό φόρτο εργασίας. Αναλυτικότερα, υπολογίστηκαν η λειτουργική 

συνδεσιμότητα και τα χαρακτηριστικά ισχύος φασματικής πυκνότητας από διαφορετικές ζώνες 

συχνοτήτων σε ένα πειραματικό πρωτόκολλο που αποτελούσε δύο εργασίες με διαφοροποιημένα επίπεδα 

δυσκολίας. Τα χαρακτηριστικά στη συνέχεια τροφοδοτήθηκαν σε ένα πλαίσιο ΕΧ και ταξινόμησης για να 

εκτιμηθεί η ποιότητα των χαρακτηριστικών και στη συνέχεια να εκτιμηθεί η απόδοση ταξινόμησης. 

Πιο συγκεκριμένα, στο πείραμα συμμετείχαν 40 άτομα από τους οποίους ζητήθηκε η εκτέλεση δυο 

εργασιών λειτουργικής μνήμης (n-Back και Mental Arithmetic) σε διαφορετικά επίπεδα δυσκολίας. 

Σχετικά με την n-Back, χρησιμοποιήθηκε η 0-back και 2-back για χαμηλά και υψηλά επίπεδα φόρτου 

εργασίας αντίστοιχα, με την 0-Back να ζητείται τους συμμετέχοντες να απαντήσουν εάν βλέπουν το 

γράμμα «Χ» και τη 2-Back το κεφαλαίο γράμμα που αντιστοιχούσε στο γράμμα που παρουσιάστηκε δύο 

δοκιμές νωρίτερα. Στην εργασία Mental Arithmetic, τα δύο επίπεδα φόρτου εργασίας περιλαμβάνουν 

προσθέσεις με μονοψήφιους και με τριψήφιους αριθμούς. Σε κάθε δοκιμή παρουσιάστηκε μια πρόσθεση 

και στη συνέχεια το άθροισμα ή ένας αριθμός με παρόμοια τιμή. Οι συμμετέχοντες έπρεπε να κρίνουν 

εάν η απάντηση που δόθηκε ήταν σωστή. 
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Η κάθε καταγραφή ΗΕΓ περιελάμβανε 64 ηλεκτρόδια σύμφωνα με το διεθνές σύστημα 10-20, με τα 

ακατέργαστα σήματα να ψηφιοποιούνται σε συχνότητα δειγματοληψίας 256 Hz, να φιλτράρονται με 

φίλτρο πεπερασμένης κρουστικής απόκρισης (FIR 1 - 40 Hz), να αποθορυβοποιούνται με χρήση ICA και 

στη συνέχεια να πραγματοποιείται διόρθωσης γραμμής βάσης, 100ms πριν από την έναρξη του 

ερεθίσματος. Στη συνέχεια, τα ΗΕΓ σήματα χωρίστηκαν σε επιμέρους τμήματα όπου υπολογίστηκε η 

σχετική φασματική πυκνότητα ισχύος (PSD) και ο δείκτης υστέρησης φάσης (PLI) για ζώνες συχνοτήτων 

δέλτα, θήτα, άλφα και βήτα. 

Προκειμένου να εκτιμηθεί η προγνωστική ισχύς των PSD και PLI χαρακτηριστικών, η ΕΧ 

χρησιμοποιήθηκε σε ολόκληρο το σύνολο χαρακτηριστικών ανεξάρτητα από την κάθε εργασία. Ο 

αλγόριθμος ΕΧ που χρησιμοποιήθηκε ήταν μια αναδρομική μέθοδος εξάλειψης χαρακτηριστικών με τη 

μέθοδο μείωσης συσχέτισης μεροληψίας (RFE-CBR) που εκτιμά τη σημασία κάθε χαρακτηριστικού (και 

κατά συνέπεια την κατάταξή της σημαντικότητάς του) βάσει ενός εσωτερικού γραμμικού SVM. Όπως 

και στο προηγούμενο Κεφάλαιο χρησιμοποιήθηκε διασταυρούμενη επικύρωση χρησιμοποιώντας κάθε 

φορά ένα σετ εκπαίδευσης εξαιρουμένων των δεδομένων ενός συμμετέχοντα. Η ταξινόμηση 

εφαρμόστηκε με την ίδια διασταυρούμενη επικύρωση με έναν γραμμικό ταξινομητή SVM. Ως βέλτιστο 

υποσύνολο χαρακτηριστικών θεωρήθηκε αυτό με την υψηλότερη μέση ακρίβεια στην ταξινόμηση μεταξύ 

των επιπέδων δυσκολίας και των δύο εργασιών ταυτόχρονα, ξεκινώντας με ένα κενό σύνολο 

χαρακτηριστικών και προσθέτοντας κατά σειρά ένα προς ένα τα καταταγμένα χαρακτηριστικά από τη 

ΕΧ. Τα αποτελέσματα της προτεινόμενης προσέγγισης βρίσκονται στον Πίνακα 4.1 του Κεφαλαίου 4. 

Από τα χαρακτηριστικά που επελέγησαν περίπου το 10% αφορούσαν PSD με τα υπόλοιπα ήταν PLI. 

Η προσέγγιση ΜΜ που προτείνεται, έδωσε 94% ακρίβεια ταξινόμησης (την μεγαλύτερη ως τώρα στην 

σύγχρονη βιβλιογραφία σύμφωνα με την αναζήτηση των συγγραφέων της σχετικής εργασίας) στις 

διακρίσεις του νοητικού φορτίου, ενώ η ανάλυση των επιλεγμένων χαρακτηριστικών έδειξε κοινές τάσεις 

ανεξάρτητες από την εργασία σε ιδιότητες φασματικής ισχύος και λειτουργικής συνδεσιμότητας. 

Συγκεκριμένα, ανιχνεύθηκε αυξημένη ισχύς σε δ και θ ρυθμό με την αύξηση του επιπέδου του φόρτου 

εργασίας, ενώ εντοπίστηκαν διαφοροποιήσεις της λειτουργικής συνδεσιμότητας όσον αφορά στη 

συχνότητα και στις θέσεις των ηλεκτροδίων στην επιφάνεια της κεφαλής. Τέλος, τα χαρακτηριστικά που 

εντοπίστηκαν παρείχαν δείκτες της προγνωστικής τους ποιότητας, αλλά και επέδειξαν τον γνωστικό 

έλεγχο των ανασταλτικών λειτουργιών ως τον κύριο παράγοντα ενός γενικευμένου (universal)  

μηχανισμού φόρτου εργασίας. Ως εκ τούτου, αποδεικνύεται ότι η συνεχής νοητική ενημέρωση με κάθε 

νέα δοκιμή απαιτεί επιπλέον πόρους χωρητικότητας μνήμης, ενώ αγνοεί άσχετα ερεθίσματα 

προηγούμενων δοκιμών. Η συνολική προσέγγιση απεικονίζει την αποτελεσματικότητα του συνδυασμού 

των χαρακτηριστικών στην προσπάθεια ανίχνευσης ενδεικτικών βιοδεικτών νοητικού φορτίου 

ανεξάρτητα από την εφαρμοζόμενη εργασία. 

Κεφάλαιο 5 

Στο Κεφάλαιο 5, λαμβάνονται υπόψη τα αποτελέσματα και τα συμπεράσματα των προηγούμενων 

Κεφαλαίων και εφαρμόζεται αξιολόγηση του φόρτου εργασίας σε μια προσέγγιση πραγματικού κόσμου. 

Πιο συγκεκριμένα, πραγματοποιήθηκε πείραμα προσομοίωσης πτήσης σε περιβάλλον 2 και 3 

διαστάσεων με προσέγγιση ΜΜ πολλαπλών επιπέδων φόρτου εργασίας, χρησιμοποιώντας λειτουργικές 

διαφορές εγκεφαλικών δικτύων των εγκεφαλικών δομών. Αναλυτικότερα, η λειτουργική συνδεσιμότητα 

από τις εγκεφαλικές πηγές υπολογίστηκε και χρησιμοποιήθηκε ως χαρακτηριστικό ταξινόμησης 
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δείχνοντας κοινά και μεμονωμένα χαρακτηριστικά και στα δύο περιβάλλοντα σε συγκεκριμένες 

συχνότητες εγκεφάλου. 

Το πειραματικό πρωτόκολλο περιελάμβανε 33 άτομα τα οποία πήραν μέρος σε δύο συνεδρίες 

προσομοίωσης πτήσης χρησιμοποιώντας δύο περιβάλλοντα: α) μια συνεδρία χρησιμοποιώντας μια οθόνη 

υπολογιστή και β) μια συνεδρία εικονικής πραγματικότητας. Κάθε συνεδρία προσομοίωσης πτήσης 

αποτελούταν από τρία στάδια με αυξανόμενη δυσκολία, σχεδιασμένα να προκαλούν διαφορετικά επίπεδα 

νοητικού φόρτου εργασίας. Τα τρία στάδια περιλάμβαναν: την κατάσταση αυτόματου πιλότου, στην 

οποία δεν απαιτούνταν λειτουργία αεροσκάφους (ελάχιστο επίπεδο φόρτου εργασίας), την κατάσταση 

χειροκίνητης λειτουργίας, στην οποία ζητήθηκε από τα άτομα να χειριστούν το αεροσκάφος και την 

χειροκίνητη λειτουργία αεροσκάφους με ταυτόχρονα κενά αέρος και προβλήματα κατά την πτήση. Τα 

συνεχή δεδομένα ΗΕΓ καταγράφηκαν σε υψηλή ανάλυση από 64 ηλεκτρόδια, ενώ ψηφιοποιήθηκαν με 

ρυθμό δειγματοληψίας 256 Hz και εφαρμόστηκε ένα φίλτρο πεπερασμένης κρουστικής απόκρισης FIR 

διέλευσης ζώνης 0,5 - 40 Hz. Για την αποθορυβοποίηση χρησιμοποιήθηκε ανάλυση ανεξάρτητων 

συστατικών και τα συστατικά που έδειξαν υψηλή συσχέτιση με τα σήματα από τα ηλεκτρόδια στα μάτια 

απορρίφθηκαν. 

Για τον εντοπισμό των επιπτώσεων του νοητικού φόρτου εργασίας και την αξιολόγηση των 

αποτελεσμάτων, χρησιμοποιήθηκε ο εντοπισμός εγκεφαλικών πηγών στις χρονικές σειρές ΗΕΓ για κάθε 

περίοδο λειτουργίας και επίπεδο φόρτου εργασίας στις δ, θ, α, β και γ ζώνες συχνοτήτων. Οι εγκεφαλικές 

πηγές που αντιστοιχούν στα επιφανειακά ΗΕΓ σήματα προσεγγίστηκαν με εφαρμογή ηλεκτρομαγνητικής 

τομογραφίας χαμηλής ανάλυσης (eLORETA) σε πρότυπο MNI152, όπου το αποτέλεσμα 

τμηματοποιήθηκε σε 80 περιοχές ενδιαφέροντος και υπολογίστηκε η λειτουργική συνδεσιμότητα μεταξύ 

κάθε ζεύγους περιοχών με PLI. Επίσης εκτιμήθηκε η τυπολογική γενικευμένη απόδοση και η τοπική 

απόδοση των εγκεφαλικών δικτύων. 

Για την ΕΧ χρησιμοποιήθηκε ο αλγόριθμος RFE-CBR όπως και στο προηγούμενο Κεφάλαιο, ενώ η 

ταξινόμηση έγινε με μέθοδο τυχαίου υποδιαστημικού συνόλου με Ανάλυση Γραμμικής Διάκρισης (LDA) 

ως βασικούς ταξινομητές. Η μέθοδος τυχαίου υποδιαστημικού συνόλου αποσυνθέτει τα δεδομένα 

εισόδου σε τυχαία υποσύνολα χώρου δυνατοτήτων για την εφαρμογή μεμονωμένων ταξινομήσεων LDA 

οι οποίες εκπαιδεύονται ξεχωριστά και στη συνέχεια λαμβάνεται συλλογική απόφαση με πλειοψηφία. Το 

υποσύνολο χαρακτηριστικών με την υψηλότερη συνολική ακρίβεια ταξινόμησης καθορίστηκε ως το 

βέλτιστο για την διάκριση επιπέδου φόρτου εργασίας. Τα αποτελέσματα την προτεινόμενης προσέγγισης 

παρουσιάζονται στους πίνακες 5.2, 5.3 και στην εικόνα 5.4 του Κεφαλαίου 5. 

Η προτεινόμενη μεθοδολογία ήταν επιτυχής στον εντοπισμό των κοινών και διακριτών εγκεφαλικών 

χαρακτηριστικών του νοητικού φορτίου μεταξύ των δύο περιβαλλόντων προσομοίωσης, παρουσιάζοντας 

υψηλή ικανότητα διάκρισης στη διαδικασία ταξινόμησης, ενώ χρησιμοποίησε μόνο ένα μικρό μέρος του 

πλήρους συνόλου χαρακτηριστικών. Βάσει των παραγόμενων αποτελεσμάτων εντοπίστηκε εντονότερη 

λειτουργία στις μετωπιαίες περιοχές στον ρυθμό α και στα δυο περιβάλλοντα προσομοίωσης με κοινές 

συνδέσεις που υπάρχουν σε όλα τα επίπεδα πολυπλοκότητας. Αντίθετα, οι ζώνες θ και β παρουσίασαν 

τυπολογικές ανισότητες στην τοπική και γενικευμένη απόδοση μεταξύ των δύο περιβαλλόντων. Αυτά τα 

αποτελέσματα επιτρέπουν μια αποτελεσματική αξιολόγηση των γνωστικών υποστρωμάτων που διέπουν 

τον φόρτο εργασίας σε ρεαλιστικά σενάρια. Τέλος, το περιβάλλον εικονικής πραγματικότητας εκτιμάται 

ότι προκάλεσε υψηλότερο νοητικό φόρτο εργασίας στους συμμετέχοντες σε σύγκριση με το περιβάλλον 

δισδιάστατης απεικόνισης. Σε αυτό δεν συνέβαλαν μόνο οι πιο απαιτητικές οπτικά γνωστικές 
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διαδικασίες, αλλά και τα επίπεδα άγχους όταν οι συμμετέχοντες είχαν περιορισμένο έλεγχο, καθώς οι 

περιοχές της αμυγδαλής του εγκεφάλου ήταν περισσότερο ενεργές στη διεπαφή τεχνητής 

πραγματικότητας, ενισχύοντας την ψυχική πίεση που προκαλείται από μια πιο ρεαλιστική κατάσταση που 

προσομοιώνει καταστάσεις σε σενάρια πραγματικού κόσμου. 

Κεφάλαιο 6 

Λαμβάνοντας υπόψη τα παραπάνω Κεφάλαια, στο Κεφάλαιο 6 παρουσιάζεται η βάση των 

βιοηλεκτρικών σημάτων και οι συνδυασμοί με τους σχετικούς αλγόριθμους ΜΜ σε σχέση με τις 

τεχνολογικές και μεθοδολογικές εξελίξεις του ΔΑΜ/ΔΕΥ. Αναλυτικότερα περιγράφεται η 

αποκωδικοποίηση της ανθρώπινης πρόθεσης και η μετάφρασή της σε πραγματικό χρόνο με μια εντολή 

ελέγχου για την καθοδήγηση υλικού και/ή λογισμικού, η οποία με τη σειρά της ενοποιείται ως μια 

αλληλεπίδραση μεταξύ ενός ατόμου και μηχανής. Στη συνέχεια αναλύονται τα δεδομένα ως 

βιοηλεκτρικά σήματα που αντανακλούν τη βιολογική δραστηριότητα (όπως μυϊκά ή ΗΕΓ σήματα) και 

συστατικά της εγκεφαλικής δραστηριότητας (όπως ΒΔ, αποσυγχρονισμού ή συγχρονισμού ΗΕΓ κ.ά.) 

Μεταξύ άλλων αναφέρονται μη βιολογικά δεδομένα κίνησης, τα οποία μπορούν να εξαχθούν μέσω μη 

επεμβατικών κινητών αισθητήρων, αναλύοντας τις παραμέτρους που περιλαμβάνουν μετατόπιση / 

περιστροφή των άκρων καθώς και τις δυνάμεις αντίδρασης. 

Στην βάση της δημιουργίας ενός συστήματος ΔΕΥ το σύνολο των διαθέσιμων μεθοδολογιών συνήθως 

επηρεάζει την απόδοση της ταξινόμησης, την υπολογιστική πολυπλοκότητα και τον χρόνο απόκρισης, 

ενώ ο ρόλος των χρησιμοποιούμενων χαρακτηριστικών είναι ζωτικής σημασίας, καθώς αντιπροσωπεύουν 

την κατανόηση των διαδικασιών κίνησης. Σε αυτό το πλαίσιο, παρουσιάζεται ένα πλήθος αλγορίθμων 

που περιλαμβάνουν ΕΧ και ταξινομητές και έχουν χρησιμοποιηθεί για να αποκαλύψουν γραμμικές και 

μη γραμμικές εξαρτήσεις των χαρακτηριστικών. 

Τέλος προτείνονται υβριδικά πλαίσια, μέσω της ενσωμάτωσης πολλαπλών φυσιολογικών και μη 

φυσιολογικών δεδομένων προσφέροντας μια ολιστική ανάλυση κίνησης σε πραγματικό χρόνο και τρόποι 

αντιμετώπισης των μελλοντικών προκλήσεων του πεδίου εφαρμογής ΔΕΥ. 

Κεφάλαιο 7 

Στο Κεφάλαιο 7 συνοψίζονται τα συμπεράσματα των προηγούμενων Κεφαλαίων και προτείνονται 

κάποιες κατευθύνσεις για μελλοντική εργασία. Πιο συγκεκριμένα, αναφέρονται οι κυριότερες 

συνεισφορές των εργασιών που πραγματοποιήθηκαν και επισημαίνονται τα πιο σημαντικά ευρήματα ανά 

Κεφάλαιο.
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Abstract 

Cognition refers to all conscious mental activity, involved in thinking, remembering, and reasoning. As 

such, the different brain functions range from volitional movement to language, imagination and 

planning. Conventionally, brain research focuses on the perception of the external world by examining 

how information is processed by analyzing biomedical records based on statistical or quantitative 

characteristics. However, the complex attributes and interactions in the human brain pose several 

challenges in order to effectively elucidate the underlying neural substrates that govern higher-order 

cerebral functions. To address this, recent studies have suggested the inclusion of machine learning 

designs as a way for an effective and accurate analysis of the complicated properties of brain signals, 

unveiling (hidden) cognitive associations and characteristics.  

In this PhD dissertation, advanced machine learning approaches for processing and analysis of 

electroencephalographic (EEG) signals are proposed, exploiting the signal properties in the time and/or 

frequency domains. Towards this direction, three high-density EEG experiments were employed in order 

to study higher-order cognitive functions, forming the basis for real-world applications especially in the 

field of Brain-Computer Interfaces (BCI). The recorded EEG data were investigated using event-related 

potentials (ERPs), spectral decomposition and brain networks, while new methodologies were developed 

for the modeling, reconstruction and analysis of neurological structures providing valid results. Moreover, 

the features extracted from each experiment (representing different properties of the various brain 

structures) were combined with different classification and feature selection techniques, isolating a small 

subset of important interactions which achieved high accuracy in the discrimination between the different 

conditions. Of note is that the deciphering of the brain electrical activity in a global manner (irrelevant of 

task and subject variability) is a major requirement for the adaptation of a common framework to real 

world BCI applications. As such, this Doctoral Thesis focuses on addressing this through expanding the 

current state-of-the art in neurocognitive adaptations of Machine Learning. 

Specifically, experiment 1 (Chapter 3) investigates the impact of different time windows in time-locked 

ERP components after an error was committed, in an auditory task with varying complexity conditions. 

As such, signal characteristics (like amplitude, latency etc.) that are representative of error-elicited ERP 

components were utilized in a feature selection and classification framework examining the effect of EEG 

signal modulations through time. Experiment 2 (Chapter 4) regards the task-independent assessment of 

high vs low mental workload in two different working memory paradigms. Within this scope, a brain 

network design was combined with EEG spectral characteristics to extract the global traits that are 

representative of mental load, while different classification schemes were paired with a feature selection 

algorithm to evaluate the distinguishability properties of the fused feature subsets. Further examination of 

the selected features revealed common task-independent patterns regarding their spectral and localization 

properties. Lastly, experiment 3 (Chapter 5) investigates the neural mechanisms of mental workload and 

their modulation in conditions simulating real-world scenarios. On this premise, a well-controlled EEG 

flight simulation experiment was conducted in computer screen (2D) and virtual reality (3D) conditions 

with multiple levels of difficulty. The resulting data were subsequently processed using electrical source 

imaging (ESI) and parcellated into cortical regions constructing spectral source space networks. Machine 

learning algorithms were then applied to compare the connectivity alterations and identify the brain 

networks reorganization patterns in regard to each workload level and condition. 
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The outcomes provide new insights in the underlying cognitive mechanisms, while provide support to 

experts in the relevant medical fields, subsequently allowing effective monitoring of brain activity. In 

addition, the combination of machine learning analysis and processing with neuroscience pave the way 

for Human-Machine Interface (HMI) and BCI applications in both scientific and medical fields. The 

experimental works and analysis in the aforementioned experiments form the theoretical basis for 

HMI/BCI, the implications and taxonomy of which is also discussed in this PhD (Chapter 6). 

Aims and Objectives 

This Doctoral Thesis presents new techniques for the effective analysis of higher-order cognitive 

functions, employing Machine Learning methods. The applications of such methods in Neurosciences 

provides a unified approach that incorporates biomarker extraction and data-driven approaches in the 

detection of (otherwise hidden) cognitive operations. To that end, this Thesis’s aim was to build the 

groundwork for BCI frameworks by carrying out multifactorial analysis of the characteristics of the 

signals at multiple levels giving information on neurological structures and revealing global neural 

substrates utilizing Machine Learning schemes. Specifically, given the tendency to consolidate available 

information from different sources and modes of analysis, Machine Learning techniques offer a unique 

opportunity to study, predict and monitor the progression of various conditions, diseases and states 

providing valid answers to various scientific questions. In this regard, electroencephalography 

experiments were performed to study complex states of the brain, such as mental load and error-related 

cognition. Data were analyzed using standard approaches, such as ERP analysis, power density analysis 

in the field of frequency and topological analysis of functional brain networks in source and sensor space. 

Subsequently, the above-mentioned analyses were combined with machine learning and classification 

algorithms to categorize the various brain states effectively and by extension find links and differences 

between the employed biomarkers. 

The main objectives of this Thesis include – yet are not limited to – the following: 

• dynamic study of the neurophysiological mechanisms underlying higher order cognitive states, 

• identification of cognitive indicators related to brain mechanisms, 

• development of advanced computational tools for automated effective classification, 

• applicability of system transfer to real-life conditions. 

PhD Structure 

In a nutshell, Chapters 1 and 2 are introductory regarding the brain recordings, structures, measured 

cortical responses and computational tools with emphasis on characteristic indicators of 

electroencephalographic recordings. Chapter 3, 4 and 5 refer to the experiments employed for the 

implementation of this Thesis, their analyses and the implications of the results from a neuroscience and 

engineering perspective. Chapter 6 takes into account the research analysis in cognitive conditions and 

states and implements them into a theoretical and experimental approach of Machine Learning in Brain-

Computer Interface scenarios. 

The first chapter introduces the basic concepts and techniques for brain monitoring as well as the 

properties of neural oscillations in terms of the representation of the cortical activity and especially in 

higher-order cognitive functions. 
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The second chapter presents a bibliographic overview of the computational tools and algorithms and its 

applications in the identification of predictive indicators for the classification of different cognitive states 

and conditions. 

The third chapter concerns the study of error-related brain activity, relevant to different complexity 

conditions of an auditory identification task. As such, the cognitive properties of Event Related Potentials 

are analyzed and a novel method for subsequent classification is proposed based on different time-

windows resulting high condition-independent performance and efficient evaluation of the employed 

cognitive attributes. 

The fourth chapter analyzes the cross-task workload discrimination limitations and introduces an efficient 

framework to alleviate them. Specifically, encephalographic data in two different working memory tasks, 

a numeric and an n-Back task, in two difficulty levels each were employed fusing sensor derived 

networks and spectral power density features for the machine learning application. The aforementioned 

analysis succeeded in high classification accuracy results (the highest so far in the literature, to the 

knowledge of the authors of the related study), while minimizing the number of electrodes required. 

The fifth chapter focuses on multi-level workload classification in flight simulation employed in 

computer screen and virtual reality, approaching real-world scenarios. For the purpose of workload 

assessment, brain networks were constructed in source space, while the introduced feature selection and 

classification framework was able to detect the common and separate brain structures governing pilot 

mental load. 

The sixth chapter takes into account the experiments conducted as well as the current state–of –the-art in 

Brain-Computer Interfaces and suggests advances in algorithmic applications and system implementation, 

while incorporating basic analysis in real and imaginary motion recordings. 

Finally, the seventh chapter summarizes the main contributions and conclusions of the dissertation and 

lists some ideas for future extensions. 



CHAPTER 1 - BASIC CONCEPTS AND TECHNIQUES FOR BRAIN MONITORING 

Ioannis Kakkos – Doctoral Thesis  1 | P a g e  

Chapter 1 

1.1  Recording the Activity of the Human Brain 

The human brain is the main organ of the human nervous system consisting of several structures, each 

responsible for specific processing, integration and coordination of the received information. The main 

taxonomy of the brain include the cerebrum, the brainstem and the cerebellum, the later further divided 

into two hemispheres which are connected through a mass of nerve cells (neurons). There are 

approximately 86 billion neurons in the human brain, carrying out the vast majority of communication 

through electric impulses (resulting in neurotransmitters’ release between cells), forming complex neural 

pathways and circuits [1]. These subtle electrical fields generated (called post-synaptic potentials) -when 

averaged through thousands of neurons- represent the synchronous activity of larger brain areas and thus 

result in a significant reflection of electrical activity generated by the brain. Accordingly, electrodes 

placed on the skin (scalp) surface are able to monitor the brain activity as propagated through the different 

anatomical head layers (meninges, skull, skin, hair) [2]. 

One of the most common monitoring methods is the electroencephalogram (EEG), a typically non-

invasive recording technique that can measure the voltage fluctuations of the ion flows of oriented neuron 

populations near the surface of the cerebrum. EEG presents several advantages over other brain imaging 

methods with excellent time resolution (allowing thousands of “snapshots” of electrical activity from 

multiple electrodes within a single second), minimal cost and the fact that recordings are passive being 

the predominant ones. An EEG device contains electrodes that record the brain wave patterns and the 

EEG machine sends the data to a computer. There are 2 types of electrodes, wet and dry. Wet electrodes 

are small trays made of stainless steel, tin, gold or silver coated with silver chloride while utilizing 

electrolytic gel as a conductor between the scalp and electrodes [3]. Dry electrodes, on the other hand, 

depend on mechanical contact [4]. They are significantly smaller from wet electrodes and no electrolyte 

is used and no skin preparation is required. However, the number of daisy chained dry EEG devices is so 

far significantly limited in comparison to wet EEG systems (up to 30 channels). In this Thesis we will 

focus on high-density wet electrode EEG (32-64 channels), although dry EEG is proposed for real-world 

practical applications (e.g. wearable EEG). 

1.2  EEG Electrode Placement and Montages 

In order to acquire a generalized interpretation of the EEG recordings, internationally recognized methods 

to describe and apply the location of scalp electrodes in the context of an EEG examination have been 

proposed. These are the “10-10” and more often “10–20” systems which are based on the relationship 

between the location of the electrodes and the underlying area of the brain. As such, the "10" and "20" 

refer to the fact that the actual distances between adjacent electrodes are either 10% or 20% of the total 

front–back or right–left distance of the skull [5]. The experiments employed in this Thesis (Chapters 3, 4, 

5) utilize the 10-20 system with each electrode placement denoting the lobe and area of the brain. In this 

regard, even-numbered electrodes indicate right side locations, while odd numbers refer to areas on the 

left side of the scalp (Figure 1.1). Moreover, the pre-frontal (Fp), frontal (F), temporal (T), parietal (P), 

occipital (O), and central (C) denote the main recording areas with (z) sites electrodes indicating the 

midline sagittal plane of the skull, (Fpz, Fz, Cz, Oz). Several combinations of the aforementioned letters 
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designate intermediate scalp locations like AF (between Fp and F), FC (between F and C), FT (between F 

and T), CP (between C and P), TP (between T and P) and PO (between P and O). Moreover the “M” 

electrodes usually mark mastoid areas (i.e., found just behind the outer ear) and Iz placed over the inion 

which are commonly recorded, although they are fiducial positions they usually don’t represent higher-

order cognitive processes [6]. 

 
Figure 1.1 Electrode locations of 64 EEG channel according to the International 10-20 system. 

1.3 EEG Rhythms and Oscillations 

EEG signals can be described in terms of rhythmic activity based on signal morphologies of specific 

oscillations being the frequencies of the harmonics of which they are composed (spectral components). 

These are subdivided into bandwidths that correlate to brain functioning or condition. There are 5 main 

sub-bands: delta (δ, 0.5 – 3.5 Hz), theta (θ, 3.5-7 Hz), alpha (α, 7-15 Hz), beta (β, 15-30 Hz) and gamma 

(γ, 30-70Hz) [7] (Figure 1.2). Of note is that the range of the above sub-bands is not precisely defined 

leading to small variations between studies, while there are various scientific works that focus on lower or 

higher frequencies, although activity below or above these frequencies could prove to be artifactual, under 

standard clinical recording techniques. Other spectral components include power characteristics (i.e., the 

amount of energy in a frequency band, typically expressed as squared amplitude) and phase 

characteristics (i.e., the synchronization across several generators), while several theories have been 

proposed on how illness, age and external stimuli cause changes in the internal amplitude and 

synchronization patterns [8], [9]. 
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Figure 1.2. The usual frequency bands for EEG signal analysis 

1.4  Event-related Potentials (ERPs) 

In the EEG analysis of the diverse brain signals, a stereotyped electrophysiological response to a stimulus 

(whether it may result from a sensory, cognitive, or motor event) provide a robust measurement of 

cognitive processing between a stimulus and a response and the way brain functions might be affected by 

specific experimental manipulations [10], [11]. As such, these event-related potentials (ERPs) include 

time-locked voltage deflections of either positive or negative signal deviations, indicating so called 

“components” (Figure 1.3). Although commonly ERP components are denoted by a letter indicating 

polarity (N, negative / P, positive) followed by a number referring to the latency or their position in the 

waveform, several components (as those analyzed in this Thesis are referred to with an acronym (e.g. 

Error-related Negativity, ERN) [12]. 

 
Figure 1.3. A sample ERP waveform  

Due to the fact that ERPs are significantly small-sized (tens of microvolts), it usually takes a large number 

of trials to accurately measure it correctly. Since EEG recorded signal looks different each time (because 

or random variation) averaging across many trials cancels out the random variation leaving only the 

unchanging task-related components shown. As such, the interpretation of ERPs takes into account the 

assumption that the components of interest result from event-locked ERPs with invariable latency and 

shape and can be averaged as: 
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�̅�(𝑡) =
1

𝑁
∑ 𝑥𝑘(𝑡)

𝑁

𝑘=1

 (1.1) 

where �̅� and 𝑥𝑘 denote the average and single (trial) ERP, 𝑁 is the number of trials, 𝑘 the trial number, 

and 𝑡 is the time elapsed after the 𝑘𝑡ℎ event. 

1.5 Brain Networks (Graph Theory) 

1.5.1 Network Construction 

Another type of brain activity related signals is related to the relationships between signals recorded by 

sensors in different regions (or brain areas in source space) and to construct brain networks in order to 

understand various cognitive mechanisms [13], [14]. In this Thesis weighted brain networks were 

estimated via Phase Lag Index (PLI) in sensor (Chapter 4) and source space (Chapter 5) [15]. 

Specifically, PLI is a two-dimensional approach to calculate the functional connectivity in terms of phase 

synchronization while alleviating the volume conduction limitations of other phase locking connectivity 

methods [16]. In detail, for a pair of channels, channel A, and channel B, where 𝑥𝐴(𝑡𝑛) and 𝑥𝐵(𝑡𝑛) denote 

signals in an n epoch that have been band-pass filtered to a predefined frequency range, let 𝑧𝐴(𝑡𝑛) and 

𝑧𝐵(𝑡𝑛) be the Hilbert transform of 𝑥𝐴(𝑡𝑛) and 𝑥𝐵(𝑡), respectively: 

    𝑧𝐴(𝑡𝑛) = 𝑍𝐴(𝑡𝑛)𝑒
𝑖𝜑𝐴(𝑡𝑛) (1.2) 

    𝑧𝐵(𝑡𝑛) = 𝑍𝐵(𝑡𝑛)𝑒
𝑖𝜑𝐵(𝑡𝑛)  (1.3) 

where 𝑍𝐴(𝑡𝑛) and 𝑍𝐵(𝑡𝑛) indicate amplitude and 𝜑𝐴(𝑡𝑛) and 𝜑𝐵(𝑡𝑛) designate phases at time point 𝑡𝑛 

derived through the Hilbert transform. Then PLI for N epochs can be estimated as: 

𝑃𝐿𝐼𝐴→𝐵 =
1

𝑁
∑ 𝑒𝑠𝑖𝑔𝑛(𝜑𝐵(𝑡𝑛)−𝜑𝐵(𝑡𝑛))

𝑁

𝑛=1

  (1.4) 

PLI ranges in the interval [0, 1], with 0 indicates either no coupling or coupling with a phase difference at 

0 or π and a value of 1 indicates exact phase locking with a consistent phase difference other than 0 or π. 

Furthermore, the PLI graphs generated are non-directional, meaning that connections between nodes are 

symmetrical (i.e., 𝑃𝐿𝐼𝐴→𝐵 =  𝑃𝐿𝐼𝐵→𝐴). 

1.5.2 Network Metrics 

A network has the "small world" property if its structure is characterized by a high clustering factor and a 

similar characteristic path length compared to random networks [17] (Figure 1.4). Qualitatively, in a 

small world network, the majority of nodes are directly connected to most of their neighbors as well as to 

a few remote nodes, so that any pair of nodes is connected with a relatively short path length. There is 

convergent evidence that brain connectivity is characterized by a small world topology as a result of local 

specialization and universal integration, while disruption of its optimal topology may present signs of 

illness or burdened mental state [14], [18]. Therefore, in this Thesis we examined the evolution of 
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network topology over time through the metrics of characteristic path length (L) and its derivatives, i.e., 

global (𝐸𝐺) and local (𝐸𝐿) efficiency [19]. 

 
Figure 1.4. In the left corner a Schematic of a brain network modeled as a collection of nodes-

representing regions of interest and interactions between brain regions. The topological properties of the 

different metric are presented in the right corner. 

The path length of an edge in a weighted graph is defined as the reciprocal of the edge weight. The 

shortest path length 𝐿𝐴𝐵 between two nodes A, B is the minimum sum of the edge weights of all possible 

paths between the two nodes. Characteristic path length L is defined as the average of the minimum path 

lengths of all N nodes: 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝐿𝐴𝐵

𝐴≠𝐵
 (1.5) 

The global efficiency (𝐸𝐺) of a network represents how efficiently the information is exchanged across 

the whole network where information is concurrently exchanged. (𝐸𝐺) is the average inverse shortest path 

length in the network, inversely associated to the characteristic path length (𝐿). 

For a weighted brain network G(V, E, W) with a set of V nodes and E edges with W weights, where 

N=|V|, the global efficiency EG of a graph is defined as: 

𝐸𝐺 =
1

𝑁(𝑁 − 1)
∑

1

𝐿𝐴𝐵𝐴,𝐵∈𝑉,𝐴≠𝐵
 (1.6) 

where 𝐿𝐴𝐵 denotes the shortest path length between nodes A and B.  

 

The local efficiency (𝐸𝐿) determines the network's resistance to failure on a small scale, quantifying how 

efficiently information is exchanged by its neighboring nodes when it is removed. The 𝐸𝐿 is calculated on 

the neighborhood of each node without including it: 

 

𝐸𝐿 =
1

𝑁(𝑁 − 1)
∑ ∑

1

𝐿𝐴𝐵
𝐴,𝐵 ∈ 𝑛𝑒𝑖𝑏𝑜𝑟𝑠(𝑘),𝐴≠𝐵𝑘∈𝑉

  (1.7) 
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Chapter 2 

2.1 EEG Artifacts and Noise 

The brain dynamics in the EEG recordings are highly susceptible to various forms and sources of noise 

presenting several challenges in the effort of analyzing and interpreting signal properties, especially when 

the signal is a combination of desired brain dynamics and noise. These signal contaminations (artifacts) 

generally originate from non-cerebral functions and may be the result of environmental factors, 

equipment or biological sources [20]. As such, AC power lines, lighting and a large array of electronic 

equipment (from computers, mobile phones etc.) usually present a systematic noise in the EEG signals, 

which subsequently is amplified along with cortical signals and thus is embedded in the recorded  data 

[21]. Physiological artifacts generated from cardiac signals, muscle contraction and eye blinks are non-

systematic and therefore they cannot be predicted or prevented [22]. 

2.2 Artifact Correction - Preprocessing 

To address the artificial signal contamination issue and subsequently provide a robust EEG analysis, 

certain measures can be employed during recording procedures and, following the recording, as 

preprocessing steps. In that scope, the use of a Faraday cage, conductive housing on cables, use of 

fluorescent lamps and correctly grounded instruments insulate the recording room from most 

environmental noise, while subjects participating in EEG experiments are usually required to minimize 

their movements/talking and keep an optimal distance from electronic equipment while the recordings 

take place [23]. The foregoing actions were taken into consideration in the conduction of the experiments 

described in this Thesis. In addition, to effectively deal with non-systematic artifacts, a number of 

preprocessing strategies was utilized involving the following steps for removing irrelevant noise and 

facilitate subsequent analysis: 

• Resampling: Although high temporal resolution is generally desirable, it has the disadvantage of 

delivering a large amount of data, which in turn is much slower in the subsequent processing. In 

this Thesis, data were downsampled by applying an anti-aliasing filter, taking into account the 

Nyquist rule to determine the extent to which the sampling frequency can be reduced (i.e., the 

sampling frequency must be at least twice the highest frequency of the analysis) [24]. 

• Re-referencing: To determine that electrical activity is not dependent on reference, a re-

calculation of sensor values took place in the analysis of this Thesis’ data, using average 

reference or unipolar reference based on mastoid electrodes [25]. As such, the signal of the new 

reference was subtracted from each EEG channel, leading the voltage at these channels to reflect 

the difference to the new reference, reducing systematic signal noise. 

• Filtering: Each signal consists of sine waves and cosine waves with different frequencies. A 

digital filter is a signal processor that selectively attenuates a signal for each of its frequencies. 

The pass-band frequencies of the signal will pass unchanged from input to output, while the cut-

off band frequencies will be completely attenuated at the filter output. In the preprocessing 

filtering procedures of the EEG data utilized in this Thesis, Finite Impulse Response (FIR) band-

pass and Infinite Impulse Response (IRR) Chebyshev low- and high-pass filters were employed 

[26]. 
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For FIR filter of N order, the output sequence is calculated as: 

𝑦[𝑛] = ∑𝑏𝑖𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 (2.1) 

where N is the filter order, 𝑏𝑖 is the impulse response of the filter, x[n] is the input signal, and 

y[n] is the output signal. 

For IIR filter the output signal is computed as: 

𝑦[𝑛] =
1

𝑎0
(∑𝑏𝑖𝑥[𝑛 − 𝑖]

𝑃

𝑖=0

− ∑𝑎𝑗𝑦[𝑛 − 𝑗]

𝑄

𝑗=1

) (2.2) 

where 𝑃 is the feedforward filter order, 𝑄 is the feedback filter order, 𝑏𝑖 are the feedforward 

filter coefficients, 𝑎𝑖 are the feedback filter coefficients, x[n] is the input signal, and y[n] is 

the output signal. 

The transfer function of the Chebyshev filter is defined as: 

𝐻(𝑧) =  
𝑏1 + 𝑏2𝑧

−1 + ⋯+ 𝑏𝑁+1𝑧
−𝑁

𝑎1 + 𝑎2𝑧
−1 + ⋯+ 𝑎𝑁+1𝑧

−𝑁
 (2.3) 

where z is the z-transformation of the discrete signal and N is filter order, 

• De-trending: Trends can cause distortion during analysis in the domains of time and frequency. 

As such linear trends can be calculated (e.g. via least squares method) and subtracted from the 

data. In this Thesis the EEG signals were de-trended by estimating the least-squares line 

(considered as the best fitted) and subtracting it from the data [27]. 

• Independent Component Analysis (ICA): ICA involves the separation of a multi-dimensional 

signal into components, assuming that the signals are statistically independent of each other. In 

this context unwanted components that correspond to artifacts based on signal characteristics can 

be removed (e.g. components that are highly correlated with EOG signals) [28].  

As such, ICA can separate different signal sources (such as artifacts) hypothesizing a linear 

mix between independent random variables. Specifically, let 𝑆1, 𝑆2 …𝑆𝑛 be the independent 

signals and noise with unknown distribution then 𝐒 = (𝑆1, 𝑆2 …𝑆𝑛)
𝑇 and a 𝑛 × 𝑛 non-

singular matrix W (unmixing matrix, where 𝐖−1 is a mixing one), then the recorded EEG 

signal (X) would be: 

𝐗 = 𝐖−1𝐒  (2.4) 

However, in order to apply the ICA algorithm, the signal has to be transformed in such a way 

that the covariance is equal to 0 and thus there is no correlation between its components (i.e., 

to whiten the signal). To do so, the eigenvalue decomposition (�̃�) of its covariance matrix has 

to be calculated as: 
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�̃� = 𝐄𝐃−
1
2𝐄𝑇𝐗  (2.5) 

where E is an orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues 

(𝜆1, 𝜆2, … , 𝜆𝑛) of the covariance matrix: 

𝐃 = [

𝜆1 0 … 0
0 𝜆2 … 0
… … … 0
0 0 0 𝜆𝑛

] (2.6) 

Once the processing of signal is finished, for each component w, the values of the de-mixing 

matrix are updated until the algorithm has converged (i.e., product of 𝑤 and its transpose is 

roughly equal to 1) or the maximum number of iterations has been reached. Therefore, each 

IC (𝑤𝑘) is calculated (starting from 𝑘 = 0) as: 

  

𝑟𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙 𝑤𝑘
𝑇𝑤𝑘+1 ≈ 1: 

𝑤𝑘 =
1

𝑛
∑𝐗𝑔(𝐖𝑇𝐗

𝑛

𝑖

) −
1

𝑛
∑𝑔′(𝐖𝑇)𝐗𝐖)

𝑛

𝑖

 

 

(2.7) 

𝑤𝑘 = 𝑤𝑘 − ∑(𝑤𝑘
𝑇𝑤𝑗)𝑤𝑗

𝑘−1

𝑗=1

  (2.8) 

𝑤𝑘 =
𝑤𝑘

‖𝑤𝑘‖
  (2.9) 

𝐖 = [𝑤1, 𝑤2, … ], 𝑔(𝑢) = tanh (𝑢), 𝑔′(𝑢) = 1 − tanh2 (𝑢) 

 

In brief, ICA can be described as following: 

 

 

 

 

 

 

 

Finally, the ICs that have properties related to noise are rejected (using visual inspection or 

more automated procedures), and the “cleared” signal is computed using the mixing matrix 

and the S matrix that has a zero column for each rejected IC.  

• Baseline correction: Baseline correction is a linear operation which is employed to eliminate 

very low frequency voltage (quasi-DC) amplitude EEG shifts that for some reasons might occur 

after the stimulating event has occurred and is typically applied when the data are divided into 

different event-related epochs. In this context, in each EEG data segmentation the 

computation of the average of the points from the so-called “baseline” period (varying in 

each experiment in this Thesis) is subtracted from each point in the waveform [29]. 

Although baseline correction is not considered an explicit artifact correction procedure, it is 

1. Step 1: Center X by subtracting the mean 
2. Step 2: Whiten X  
3. Step 3: Choose a random initial value for the de-mixing matrix W 
4. Step 4: Calculate new value for W 
5. Step 5: Normalize W 
6. Step 5: Check if algorithm has converged; if not go to step 4 
7. Step 6: Take the product of W and X to get the ICs 
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regarded as an essential pre-processing step to alleviate the offset influences, which are not 

expected to be related to the brain mechanisms under investigation, for subsequent analysis. 

2.3 Source Localization 

One of the major issues in neuroscience and clinical neurology is the identification of the active region 

sites in the human brain. However, high spatial resolution methods (such as functional Magnetic 

Resonance Imaging, fMRI and Positron Emission Tomography, PET) present difficulties in locating the 

functional activity due to the time duration and the nature of their implementation [30]. In contrast, EEG 

can be employed to identify the unknown distribution of the brain's electrical sources, at the time 

resolution of the voltage sampling process, given the potential values as measured on the surface of the 

head (the so-called “inverse problem”). As such, solving the inverse problem allows the direct correlation 

of the brain anatomy to the dynamics measured at the surface of the head, providing valuable knowledge 

about brain functions [31].  

Solving the inverse problem is a complex process as there is no single solution, since different source 

distributions can cause the same surface dynamics. Therefore, the inverse problem cannot have a finite 

number of solutions [32]. Moreover, due to the fact that the function that describes the potential 

distribution is unknown and discrete values are only recorded by few electrodes (relative to the number of 

brain sources) the problem becomes even more ill-posed, requiring often unrealistic assumptions and 

constraints about the distribution of sources, their locations and their type [33]. Virtually all source 

localization methods require a model (volume conductor) which is the "key" to solving the direct (and 

inverse) problem. This model determines how the sources located in different parts of the brain cause the 

dynamics on the surface of the head by corresponding multiple dipoles to fixed position, variable size and 

orientation [34]. Different models have been proposed over the years to describe the distribution of 

monopolar or bipolar sources. These include head geometry to be considered as a set of spherical or 

elliptical cortices or based on a realistic model reconstructed from anatomical information [35]. In this 

Thesis a realistic model that utilizes the “low resolution brain electromagnetic tomography, LORETA” 

method [36] in order to simulate the electrical activities of the head to provide more accurate and reliable 

results. 

2.3.1 Solving the Inverse Problem 

To solve the inverse problem several approaches have been developed requiring no prior knowledge of 

the sources of electrical activity [37]. As such, the relationship between the distribution of sources in the 

brain and the discrete potentials presented and recorded on the scalp surface is a linear relationship 

expressed as: 

𝐝 = 𝐋𝐬 (2.10) 

where d is an one-dimensional vector array (with size m×1) of the potentials presented at each specific 

position of the m electrodes, s is an one-dimensional vector (with size n×1) of the n sources with defined 

direction and orientation and L is the dimension array (m×n) known as the lead-field matrix which 

contains information about the geometry and conductivity of the head [38].  
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Each column of the lead-field matric contains information about how the potentials generated by this 

source are distributed to the electrodes on the surface of the head individually (forward problem) 

determined by the geometry of the head. The solution to the inverse problem lies in solving equation 2.10 

for the unknown source distribution s. 

Since the source distribution s contains more independent variables than the unknown EEG variables (i.e., 

n>m), it is not possible to exactly determine the source distribution. However, due to specific 

mathematical properties regarding non-zero sources and their relationship with the lead-field matrix, 

several solutions of the inverse problem (that satisfy the equation 2.10) can be extracted resulting in: 

{𝐬 =  𝐬𝟏 + 𝐬𝟐 + ⋯+ 𝐬𝐧 ; 𝐩 =  𝐋𝐬}  ⇒ { 𝐋𝐬𝟏 = 𝐩, 𝐋𝐬𝟐 =  0,… , 𝐋𝐬𝐧 =  0 }  (2.11) 

where p stands for each specific point in solution space (d in equation 2.10), which refers to a vector in 

the lead field matrix. Of note however is that sometimes the algorithm converges to single solution (with 

only one 𝐬𝐧 ≠ 0), omitting other important sources. 

A unique solution can be determined by combining constraints on both the solution and the data as a 

linear framework: 

      (�̂� − 𝐬�̂�)
T𝐂𝐬(�̂� − 𝐬�̂�) = 𝑚𝑖𝑛  (2.12) 

                              and                  (𝐋�̂� − 𝐝)T(𝐋�̂� − 𝐝) = 𝑚𝑖𝑛 (2.13) 

where �̂� the estimated solution, 𝐬�̂� is an a-priori approach to the solution and 𝐂𝐬 is a matrix representing 

the metrics associated with the source space; 𝐋�̂� are the predicted and d the measured data. 

If 𝐂𝐬 is positively defined the solution becomes: 

      �̂� = 𝐬�̂� + 𝐂𝐬
−1𝐋𝐓(𝐋𝐂𝐬

−1𝐋T)
−1

(𝐝 − 𝐋𝐬�̂�)   (2.14) 

The matrix 𝑪𝒔 can also be used to incorporate prior information about the areas of the brain where active 

sources are expected (i.e., where fMRI data is also available). However, if sources are expected at any 

location in the source space, each location is treated with the same gravity.  

  �̂� = 𝐋T(𝐋𝐂𝐬
−1𝐋T)

−1
𝐝 (2.15) 

In this Thesis the “exact Low Resolution Electromagnetic Tomography Activity” (eLORETA) was 

employed in Chapter 5, estimating the current density given by the minimum norm solution with a 

sophisticated regularization, which is utilizing a discrete Laplace operator that selects preferentially 

spread source distributions. 

2.4 Machine Learning Tools 

In this PhD dissertation, the focus relies on the application of advanced machine learning approaches for 

the processing and analysis of EEG signals, thus exploiting the signal properties in the time and/or 

frequency domains. In this regard, Machine Learning (ML) offers the unique advantage to produce 

models that can adapt to different conditions and tasks, uncovering hidden characteristics of cognitive 

processes, while improving the model automatically through experience and data-driven approaches [39]. 
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Typically, ML dictates a model to be trained by the input data, while distinct separation of the non-trained 

data (testing data) into classes are given, based on the extracted characteristics. As a general rule ML 

integrates specific procedures that can be outlined as: a) feature extraction, b) feature selection and c) 

classification, each including multiple steps and internal algorithmic processes. Specifically:  

• Feature extraction: Regarding the input characteristics (features), the data are processed in 

accordance to detailed rules so that representations of them can be quantitatively calculated, 

expressing their properties as vector values. As such, the features extracted are expected to 

contain relevant information in regard to the tasks/conditions applied, while illuminating the 

differentiation in such a manner that could lead to better human interpretations. In this context, 

the analysis performed in this Thesis contains features deriving from ERP signal morphological 

characteristics, network related analysis (in sensor and source space), and spectral density of 

different frequency bands. Each feature extraction procedure utilized for the experiments 

employed is detailed in the corresponding chapters. 

• Feature selection: Feature selection is related to reducing the input data due to their large size 

(thus making the model susceptible to overfitting, while also augmenting computational cost), 

their inherited small informative nature, or if they are suspected to be redundant and therefore 

result in subsequent classification bias. On this premise, the full feature set can be transformed 

into a reduced subset [2], so that the succeeding tasks can be performed with reduced 

representation instead of the complete initial data. More importantly, a small feature set can 

facilitate in model simplification, highlighting the informative feature vectors and thus provide 

effective identification, generalization and interpretation of the employed attributes, relative to 

the task/condition applied. In this Thesis various feature selection methods were incorporated in 

the ML frameworks, fully described in the related chapters. 

• Classification: The classification procedure refers to the training of models based on the feature 

set employed, so that new data can be separated into classes. Although a vast number of different 

classification algorithms exist, in this Thesis supervised learning algorithms were used building 

the corresponding models from a set of data that contains both the inputs and the desired outputs 

[40]. These data comprise of feature vectors (instances) and typically consist of a training set (i.e., 

the data utilized to build the mathematical model) and a training set (i.e., the data utilized to test 

the model efficiency). Supervised learning methods commonly map the training data (features) as 

points in a multi-dimensional space separating the different categories (labels) by a set of rules 

(forming a gap between them) and then predict the testing data labels on their assigned allocation. 

In this Thesis several classification algorithms were employed such as Support Vector Machines 

(SVM) with multiple kernels, k-Nearest Neighbor (k-NN), Linear Discriminant Analysis (LDA) 

and Random Forests (RF). In addition, ensemble classification was applied (Chapter 5), which 

incorporates a set of classifiers, combining their predictions for the classification of unseen 

instances in the form of majority voting. Of note is that although more recent approaches (such as 

deep learning classifiers and feature learning operators) may present higher performance than the 

more conventional methods applied here, these methods diffuse the information in a way that is 

exceedingly difficult to decipher [41]. As such, the objective of this Thesis was not only to obtain 

high accuracy classification, but also interpret the features and models applied as part of the 

underlying mechanisms that govern higher order cognitive functions and states. 
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2.4.1 Classification Evaluation Metrics 

In order to assess the performance of the ML frameworks included in this Thesis the 

classification accuracy, sensitivity and sensitivity were calculated with regard to the true vs the 

predicted labels [42]. Accordingly: 

o Classification accuracy is defined as the ratio of the number of correctly classified 

instances, i.e., the number of true positives plus the number of the true negatives, to the 

total number of instances. 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+∑𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

∑𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
   (2.16) 

o Sensitivity is the ratio of the number of true positives, to the total number of relevant 

positive elements. 

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

∑𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (2.17) 

o Specificity is the ratio of the number of true negatives, to the total number of relevant 

negative elements. 

     𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
∑𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (2.18) 

In addition, the area under the curve of the receiver operating characteristic (ROC) curves have 

been utilized to further evaluate the trade-off between classification true- and false-positive rates 

[43]. 
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Chapter 3 

3.1 Error-related Cognitive Monitoring 

The cognitive processing of error detection is extremely important in the adaptation of the behavioral and 

learning processes, resulting from the cognitive evaluation of an outcome that is considered undesired or 

mismatches an expected response. This brain activity during correct and incorrect responses is often 

reflected as distinct patterns of specific ERPs that elucidate the complex cerebral responses to deviant 

sensory stimuli. As such, the development of accurate error detection systems can facilitate in the 

detection and interpretation of the cerebral responses to erroneous stimuli both regarding the complex 

neural mechanisms of decision making and the utilization of the resulted outputs for practical 

applications. In this thesis, an audio identification experiment was implemented with two levels of 

complexity to investigate the neurophysiological error processing mechanisms. As such, an analysis of 

the variations of the erroneous processing was carried out via ML procedures for each level of 

complexity. For a more thorough examination of the error processing on error-related components, two 

scientific approaches were implemented on different time windows. The first incorporating a full channel 

analysis in actors and observers, utilized to illuminate the different properties of the error-related ERPs, 

whereas the second approach, building upon the firsts results and conclusions, used specific (theoretically 

established by international literature) electrode positions to facilitate a cross-condition evaluation of the 

variations of error-related ERP components. 

3.2 Introduction 

Decision making is an everyday procedure, where the ability of the brain to recognize the errors that 

occur during the various mental operations is the key for the optimization of human behavior. 

Noninvasive electroencephalography (EEG) and in particular the study of the event-related potentials 

(ERPs) triggered when an individual performs an incorrect action or observes errors committed by others, 

is considered ideal to decode the complex neural mechanisms since it employs brain activity 

measurements with very high temporal resolution [44]. These ERPs consist of several components, 

elicited when correct or erroneous choices of individuals are made based on with external stimuli.  

Falkestein at al. and Gehring et al. [45], [46] were the first to report a negative deflection of a response-

locked ERP peaking around 100 ms after the commission of an error (error-related negativity, Ne, ERN). 

This has become evident as other studies [47]–[49] also presented an ERN component, peaking around 

40-150 ms after the erroneous response onset. Following the ERN, a positive ERP component (error-

positivity, PE), with amplitude maximum typically appearing 200-500 ms after erroneous responses, has 

been reported to reflect error awareness [50]–[54], while a time-locked negative ERP have been detected 

peaking approximately 250-300 ms when feedback is provided on erroneous actions (feedback related 

negativity, fERN) [55]–[60]. The components related to error monitoring are not limited only with regard 

to deviant outcomes. Several studies have identified a component (similar to ERN in terms of latency and 

morphology), elicited after correct trials (correct-related negativity, CRN), theorized as a possible 

cognitive mechanism to prevent errors from happening [61]–[64]. As a means to unveil the underlying 

processes of error cognition, ample evidence suggest that the various ERPs stated above (a term that will 
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subsequently be utilized as error-related ERPs, ErrPs), are similar in term of topology and present mostly 

central, centro-parietal and fronto-central distributions [65]–[69]. Furthermore, functional Magnetic 

Resonance Imaging (fMRI) and source localization studies have identified the anterior cingulate cortex as 

the generator of error processing, thus making the ErrPs’ negative and positive deflections be more 

apparent in midline scalp positions [70]–[73]. 

The robustness of the ErrPs has been significant factor for the effective analysis of the error-related EEG 

signals providing the basis for the theoretical background utilized in numerous multivariate studies. Most 

of these studies incorporate ML methods to recognize distinguishable patterns in the recorded EEG 

signals, applying algorithmic models to represent signal features as points in space, mapping and 

classifying the error-related brain activity as correct or incorrect [74]–[77]. The ML models can thus 

enable the complete parameterization of the signal characteristics, allowing for future real life purposes. 

For instance, Ventouras et. al., [78] achieved high classification accuracy by comparing different feature 

selection methods, while utilizing 2nd-order-statistical features and various time windows in an SVM and 

a k-NN ML framework. Plewan et. al., 2016 [79] successfully classified ERPs between subjects by 

employing Independent Components as features and a radial basis function SVM, on a modified flanker 

and a mental rotation task. Nevertheless, when they applied the same method in cross-task classification, 

accuracy result deteriorated. Moreover, Spüler et. al. 2015 [77] performed continuous feedback EEG 

classification on different type of severity errors, utilizing frequency and time- locked ERP features, 

suggesting that difference in classification performance can be attributed to the task complexity. This 

suggestion is in line with research indicating that error cognition is a multifactorial neurological process 

which depends on a large number of conditions such as workload, psychological/ emotional status, 

attention, etc. As such, ErrPs can present large fluctuations in terms of amplitude and latency between 

different individuals, tasks and difficulty levels [80]–[83]. More importantly, the morphology and other 

ErrPs characteristics exhibit significant variations as a result of a wide range of conditions including 

intent, motivation, substance abuse and age [84]–[86], while psychological conditions and anxiety have 

also been reported as a major influence affecting ErrP attribute [87]–[93]. Iturrate et al. [94] investigated 

the task condition effect in ErrPs by classification training and testing under different task conditions, 

reporting reduced classification accuracy due to signification variations on the extracted EEG features. 

Furthermore, Van der Borght et al. [95] found significant decrements in different ErrPs (ERN, CRN and 

in the early PE), due to complexity increments of a 2-condition flanker task. In a similar manner, Endrass 

et al. [96] found decreased ERN and CRN in the highest level of difficulty of a visual size discrimination 

task with three difficulty conditions, applying Principal Component Analysis. 

Taking the above into consideration, it can be inferred that due to high morphological sensitivity of the 

ErrPs, the error processing mechanisms might be masked by the complexity of the task employed. As 

such, ML methods can unveil the hidden attributes reflecting error processing, leading to the 

identification of global condition-independent ErrPs characteristics and thus allowing the detection of 

incorrect decisions, irrespective of the difficulty of a task. This in turn will enable to improve the 

classification performance for the different levels of complexity and provide indications for condition-

adjusted cognitive mechanisms. To address this, an EEG auditory identification experiment with two 

conditions of complexity was implemented with the resulting data analyzed under the premise that error 

processing is a dynamic phenomenon, with distinct ErrP morphological attributes. 

The analysis was divided in two discrete phases including ML approaches on time-windowed 

morphological features. The first approach took into account a full channel feature set in actors and 
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observers along with a modified Sequential Forward Selection (scoring SFS) to minimize the frequently 

occurring nesting effects, while the second utilized a feature selection framework (in the significant 

channels in terms of ErrPs) based on the combination of Sequential Forward Floating Selection (SFFS) 

and Sequential Forward Selection (SFS) to facilitate cross-condition and within-condition classifications 

in actor responses. Both analyses were able to provide high classification performance, whereas the 

implications of each are discussed in detail below. 

3.3 Materials and Methods 

3.3.1 Participants 

The EEG data were collected from 14 healthy individuals (8/6 male/female) with average age 26.6 ± 2.9 

years and high level of education (17.7 ± 2.3 years). All participants were right-handed and reported no 

history of any neurological diseases or drug intake. Furthermore, prior to the recordings the subjects’ 

normal hearing ability was estimated by a pure-tone audiogram (thresholds <15 dB HL), while informed 

consent was obtained from all participants. The present study was conducted according to the declaration 

of Helsinki and approved by the university’s ethics committee. 

3.3.2 Experimental Design 

The participants were requested to undertake an auditory identification experiments in two conditions of 

complexity as actor or observers as detailed below (Figure 3.1). Both sessions were performed on the 

same date and required the determination of the specific frequencies corresponding to the acoustic 

stimuli. Initially, subjects were divided into 7 dyads, sat opposite from each other and had computer 

screens in front of them, displaying a slider and a cursor, effectively screening them. Each condition 

consisted of 80 trials for each dyad, whereas dyad members alternated roles as actor or observer from one 

trial to the next (resulting in 40 trials for each subject when participating as an actor). 

At the beginning of each trial (operating phase), both individuals were presented a stimulus tone of 1 sec 

duration through headphones. The tone of the stimulus was randomly selected from a fixed frequency 

range with a bandwidth of 400 Hz (within a block of trials) represented by the slider bar, while the 

position of the slider corresponded to a specific tone. Four frequency ranges were used for the auditory 

stimuli, specifically 200-600 Hz, 620-1020 Hz, 1040-1440 Hz and 1460-1860 Hz. Then, the actor was 

asked to match the frequency of the stimulus tone by positioning a cursor in a slider, appearing in both 

participants’ computer screen, with the use of a gamepad. The slider represented the fixed frequency 

range within a block of trials, with the position of the cursor corresponding to a specific tone within this 

range. Individuals were unaware of the frequency range scale in which they had to place the cursor, while 

during the handling of the gamepad neither the actor nor the observer could hear the sound corresponding 

to the position chosen. The non-movement of the gamepad for 0.5 sec signaled the end of the operating 

phase. Following the operating phase, both dyad members were asked to assess the correctness of the 

position chosen by the actor participant utilizing a two-button controller corresponding to correct or 

incorrect estimation. After the first judgment, the tone corresponding to the position chosen by the actor 

was presented to dyad members (feedback tone, FBT), who were requested to evaluate if the FBT was the 

same as the primary tone. The FBT judgment was then followed by a knowledge-of-results (KOR) tone, 
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for each individual indicating, whether the position chosen was correct (as a 500 Hz tone) or erroneous 

(as a 3 kHz tone) along with the announcement of the words “correct” or “incorrect” respectively. 

The difference of the complexity of the conditions was based on whether the frequency ranges of the 

acoustic stimuli were the same (“easy” condition, Joint1) or different (“difficult” condition, Joint2) as the 

participants switched roles as actors and observers between trials. Specifically, in the first condition 

(Joint1) acoustic stimuli of the same frequency range were presented to both dyad members, whereas in 

the second condition (Joint2) the stimulus presented to each participant as an actor differed from the 

stimulus presented to his/her partner (when the partner was the actor) in terms of the fixed frequency 

range. On this premise, it might be assumed that actors in Joint1 condition could match the stimulus 

sound more easily than in the Joint2 condition, since they could effectively map the frequency range of 

the slider bar mentally by observing their partner being actor in the previous trial. In contrast, in Joint2 

condition, participants could not use the mental map of the slider frequency range bar by observing the 

actor in previous trials, while this procedure could mentally disorient them when they were requested to 

assign the cursor to the stimulus tone as actors on the next trial. As such, the Joint2 condition would be 

significantly more to challenging in the designation of the correct position (within the frequency range 

employed) hindering the identification process. 

 

Figure 3.1. The experimental design. In each trial both subjects heard the same auditory tone. A) In 

Joint1 condition the stimuli was presented from the same frequency range in all trials. B) In Joint2 

condition the stimuli presented were of different frequency ranges in successive trials. 

Based on existing literature, the aforementioned experimental protocol included two feedback responses, 

the FBT and KOR. As such, the FBT can be regarded as a first-level feedback with indirect information 

being provided to the individual after each response, while the second-level feedback, i.e., the KOR, 

allows clear evidence concerning the correctness of the auditory identification. Taking this into account, 

only the FBT ERPs were investigated in the following analysis, since the first feedback should trigger a 

cognitive response closer in terms of temporal proximity than the second feedback. 

Prior to the experiment each subject performed an acoustic pre-test to assess his/her hearing ability in the 

four frequency ranges used. This included identifying the higher of two tones. The frequencies of the two 

tones were set to the 25% and the 75% of each range of 400 Hz bandwidth employed. All participants 

were able to successfully discriminate between the tones presented 
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3.3.3 Data Acquisition and pre-processing 

The experimental setup involved a Faraday room, optical receiver for trigger inputs and electrode bundled 

cables to eliminate potential electric and magnetic interference. The bioelectrical brain activity 

recording via EEG occurred simultaneously for both participants of each dyad (actor and observer), using 

two different recording systems, daisy-chained in a master-slave relationship. Specifically, each system 

included a 32-channel electrode cap (Biosemi, Activetwo System) according to the International 10–20 

EEG system, with Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, 

P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz and Cz (Figure 3.2) electrode positions. 

Horizontal and vertical electrooculograms were recorded from electrodes placed above and below the 

eyes and at the outer canthi of the eyes. EEG data were digitized at 256 Hz, re-referenced to the average 

of the electrode recordings and filtered off-line by applying an IIR low-pass and a high-pass Chebyshev 

filter with cut-off frequencies 35 Hz and 0.05 Hz respectively. Subsequently, the EEG signals were de-

trended and segmented into 2.5 sec ERP epochs (0.5 sec before and 2 sec after the FBT), resulting in 40 × 

14 × 2 = 1,120 trials acquired from the total of 40 trials for the 2 complexity conditions of the 14 

participants and for actors and observers. After segmentation, each ERP was baseline-corrected relative to 

a 100 ms pre-stimulus baseline, while the trials contaminated with artificial ocular noise were manually 

removed. The EEG data of each trial were baseline-adjusted relative to a 100 ms pre-stimulus baseline. 

Due to significant artifact contamination, data from one dyad were excluded leaving 12 subjects for 

subsequent processing. More details for each of the pre-processing steps employed can be found in 

Chapter 2. 

 

 
Figure 3.2. The electrode locations for the EEG acquisition according to the International 10–20 system. 
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3.3.4 Definition of the Correctness of Participants’ Responses 

To determine the ability of each participant to differentiate tones and his/her auditory frequency 

perception resolution, the psychoacoustic theory was taken into account. Specifically, due to the fact that 

two tones can be misinterpreted as the same sound if they are close in terms of frequency, similar stimuli 

tone and FBT may not trigger error-related cognitive reaction. As such the proximity of the FBT and 

stimuli tones was utilized as an indicator for correct or incorrect responses, quantified via the 

psychoacoustic function of Equivalent Rectangular Bandwidth (ERB) [97]. This function cites that the 

ability of each individual to perceive and distinguish different tones, is determined by a function of a 

central frequency by modeling the human hearing filters as rectangular band-pass filters, thus 

approximating the frequency range in which the auditory stimuli are considered the same. As such, 

whether individual responses were considered correct or erroneous was calculated according to the 

following formula:  

  𝐵𝑒 = 6.23 10−6𝑓2 + 9.339 10−2𝑓 + 28.52 3.1 

where 𝐵𝑒 is the bandwidth of the filter in Hz and 𝑓 is the central frequency (presented as the stimulus 

tone) of the filter in Hz. 

Despite the fact that the ERB appears to be linear in low frequencies, the function is of non-linear nature 

(Figure 3.3B). As such, a pre-define criterion (e.g. such as the ratio f/Be) to denote the correct or 

erroneous responses could in fact render the distinction between them. In this regard, the participant’s 

response was compared to the stimulus tone plus/minus the ERB bandwidth in each trial, estimating if the 

position selected in the operating phase was within this range to be considered correct or erroneous 

(Fig.3.3A). Although, no participant was recorded as having all-correct or all-incorrect responses, due to 

the sensitivity of ErrPs in terms of subject variability, as well as the dissimilarity of the number of correct 

and incorrect ERPs responses (per participant and condition), the resulting ERPs were averaged in each 

condition per subject and class (correct/incorrect). In detail, the mean ERPs were calculated for the two 

conditions for each of the 32 electrode positions and each participant on the basis of his/her response 

(with the classes being correct or incorrect). In this regard, the classes for the subsequent feature 

calculation and classification processes would be balanced alleviating classification bias. From the 

available recordings of each Joint condition, 12 × 32 × 2 = 768 ERP recordings corresponded to correct 

responses and the rest 12 × 32 × 2 = 768 recordings corresponded to incorrect responses for actors and 

observers. 
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Figure 3.3. Definition of responses using the Equivalent Rectangular Bandwidth (ERB) with regard to 

the stimulus tone. In A) the solid line arrow represent the stimulus on each trial the stimulus randomly 

selected from the fixed band frequency (gradient bar). The response is indicated by a dashed line arrow, 

denoted as correct or erroneous based on whether or not within the ERB range (solid filled bar). In B) the 

ERB function as a result of stimulus frequency. 

3.3.5 Feature Calculation 

To perform the classification in the two conditions a series of feature extraction, combination and 

selection processes took place for each of the two discrete approaches. In both frameworks, features were 

calculated based on the visual observation of the averaged ERP curves of the different electrodes for 

different time windows, where the ErrP components show distinct morphology and clear differentiation 

between the two groups of correct and incorrect answers (as indicated by the literature presented in the 

introduction section). 

As such, the correct and incorrect ERPs were further segmented into 5 time windows, starting after the 

presentation of the FBT (0ms). Specifically:  

• time window 1 (𝑡𝑤1) starting at 0 ms and ending at 125 ms after response 

• time window 2 (𝑡𝑤2) starting at 125 ms and ending at 220 ms after response 

• time window 3 (𝑡𝑤3) starting at 22 0ms and ending at 300 ms after response 

• time window 4 (𝑡𝑤4) starting at 300 ms and ending at 400 ms after response and  

• time window 5 (𝑡𝑤5) which included the previous as well as an additional 200 ms, starting at 0 

ms and ending at 600 ms 

Each time window was considered to be indicative of specific ErrP component, while the inclusion of the 

after-FBT stimulus ERP (𝑡𝑤5) could further demonstrate useful information that might could be masked 

when calculating the separate (small-duration) time windows features. 

The features were extracted for of the time windows and each electrode position, based on latency and 

shape characteristics describing ErrPs [98], [99] (Figure 3.4) calculated as: 

• MaxA: the maximum amplitude value of the ERP signal for each time window 
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• MinA: the minimum amplitude value of the ERP signal for each time window 

• MaxT: the latency of the maximum time windowed signal value, corresponding to the time MaxA 

occurred 

• MinT: the latency of the minimum time windowed signal value, corresponding to the time MinA 

occurred 

• AUC: the area under the ERP curve, representing the overall signal energy, estimated by 

calculating the corresponding time window ERP integral. 

Of note is that no normalization took place despite the different type and value range of features. This was 

due to the fact that further BCI expansion could not (in effect) perform normalization online and thus the 

results of this study would not be applicable. Hence, from each averaged ERP 5 features were calculated 

for each of the 5 time windows and each of the 32 electrode positions, resulting in 32 × 5 × 5 = 800 

features in total for each individual. This process was done for actors and observers, for Joint1 and Joint 

2. 

 
Figure 3.4. The features extracted for the different time windows of electrode CP2. For each time 

window the latency and amplitude of the minimum and maximum values as well as the area under the 

ERP curve were estimated. Time window 5 includes all time windows with global latency and amplitude 

while the stripped pattern denotes the area under the ERP curve. 

3.4 Behavioral Results 

As mentioned before, in Joint1 condition participants received tones from the same frequency range and 

thus the slider bar represented an identical range in both of them. On the other hand in Joint2 condition 

each participant was designated to a different frequency range and so the auditory stimuli while being 

actor was alternating between them. As such, the dissimilarity of the frequency tone presented in each 

condition (Joint1 and Joint2) would increase the complexity of the task making it more challenging to 

identify the correct position of the slider bar. This was due to confusion created by difficulty to mentally 

map the different slider bars in Joint2 condition, while confusing orientation of the individual frequency 

range slider when each subject would operate again as an actor. To estimate whether this was the case a 
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behavioral analysis took place by implementing a one-way Analysis of Variance (ANOVA) on the 

number of the correct responses of the participants. 

 
Figure 3.5. Accuracy of the actors’ responses given for Joint1 and Joint2 condition. 

The responses given in each trial was assessed by the correctness of the position of the slider bar via ERB 

calculation. In this regard, the KOR was deemed irrelevant and thus since the actors were solely able to 

manipulate the slider, observers behavioral results could not be recorded. In Figure 3.5 the accuracy of 

the responses given by the actors for the two Joint conditions is presented. The ANOVA results indicated 

that individuals’ performance was significantly (𝑝 <  0.01) affected by the complexity of the tasks. As 

such, the behavioral results verify that Joint2 condition was considered more difficult than Joint1 

condition. 
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3.5 Full Channel ML Analysis in Actor and Observer ErrPs 

As mentioned in the previous sections the experimental data were analyzed in two distinct approaches. In 

the first approach a full channel feature set in actors and observers was utilized in a ML framework that 

incorporated Feature Selection (FS) and classification procedures. The rationale behind this was the 

consideration that the classification performance is not only prone to the distinctness (and reliability) of 

the features extracted, but also affected by redundant or irrelevant features (in terms of classification) 

generally included in large feature sets). On this premise, the FS method applied would facilitate in 

problem optimization by reducing variance and thus improve the performance of the classifiers. 

Specifically we employed a modified Sequential Forward Selection (scoring SFS) and Support Vector 

Machines (SVM) classifiers with different kernels to detect the most prominent features/electrode 

channels with regard to the time windows and morphological features of the ErrPs. 

3.5.1 Feature Selection and Classification 

Since the number of features was very large (5 × 5 × 32 = 800, 5 features for each of the 5 time windows 

and each of the 32 electrode positions) in comparison to the instances for the subsequent classification (24 

instances, 12 correct and 12 incorrect), the Sequential Forward Selection (SFS) was applied [7]. By doing 

so, non-useful information would be removed from the classification processes while the most indicative 

features, in terms of classification accuracy, would be detected. 

In general, SFS starts with an empty feature set and adds one-by-one the feature with the highest 

significance (i.e., classification accuracy) until there can be no further improvement. In detail, the features 

included in the full feature set are estimated based on their individual accuracy by implementing 

classification on each. Next, the SFS algorithm adds another feature in the subset and estimates the 

classification performance. Subsequently all the features are used and the algorithm stores the subset 

(now including 2 features) with the highest accuracy, provided it is higher than the 1-feature subset 

accuracy. This step is repeated until no accuracy increment can be made. However, the fact that in each 

step the SFS has to estimate the classification accuracy of all features, results in large computational cost, 

while the greedy nature of the algorithm make it prone to nesting effects. This means that due to the 

algorithm including the most significant feature irrespective of other combinations, it is often trapped in 

local maxima. For this reason, we modified the standard SFS (indicated as scoring SFS, in the present 

thesis) as follows (Figure 3.6). Specifically, all features are sorted by their overall significance by the 

resulting classification accuracy. Then, our method results to a scoring process, setting the base subset 

instead of empty to the one that present the best performance through the exhaustive search combination 

of the 10 most significant features (arbitrarily selected for optimal computational cost). The second phase 

incorporates the next most significant feature to the subset if performance increases (disregarding the 

increment amount), while if the added feature deteriorates or didn’t change overall performance it would 

be skipped and the next one would be added. When no further progress in the classification accuracy 

could be made the algorithm would stop.  

In this approach, the FS and the classification accuracy results are entangled and thus optimal 

classification entails the feature subset resulted from the SFS method. To evaluate the classification 

accuracy in each iteration, a leave-one-out cross-validation procedure was implemented due to the limited 

data available, involving the employment of a single instance as the testing set, while considering the 
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training set to be the remaining data. The classifiers employed were SVM with linear (K(x⃗ , z ) = (x⃗ Tz )), 

radial basis function (RBF) (K(x⃗ , z ) = e−γ‖x⃗ −z⃗ ‖2
, γ = 0.5) and quadratic kernels (K(x⃗ , z ) = (c + x⃗ Tz )d,

c = 1, d = 2), paired to Sequential Minimal Optimization (SMO) and Least Squares (LS) learning 

methods, while the soft margin regularization parameter 𝐶 was set to 1 for all ML procedures [100].  

Due to the limited number of instances available for classification, further cross-validation evaluation 

splitting of the data or bootstrapping was considered impractical and thus 1,000 runs of permutation tests 

on random labels were performed to ensure no selection bias or overfitting existed in the FS and 

classification processes. Permutation p-value was calculated as the ratio of classifiers trained on the 

randomized labels that outperformed the classifiers trained on the original samples to the number of total 

permutations and is presented in a parenthesis in the results tables. All algorithms were implemented to 

discriminate between correct and incorrect responses for actors and observer in MATLAB R2015b 

(MathWorks Inc., USA). 

Figure 3.6. The flowchart of the scoring SFS method 
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3.5.2 Results and Implications 

The classification results from the standard and the scoring SFS are presented in TABLES 3.1 and 3.2 

accordingly.  

 

TABLE 3.1. STANDARD SFS CLASSIFCATION RESULTS 

 Kernel SMO Accuracy LS Accuracy 

Joint1 Actor linear 

RBF 

quadratic 

0.85 (p<0.01) 

0.91 (p<0.001) 

0.83 (p<0.001) 

0.90 (p<0.001) 

0.87 (p<0.001) 

0.92 (p<0.001) 

Joint2 Actor linear 

RBF 

quadratic 

0.87 (p<0.010) 

0.94 (p<0.001) 

0.97 (p<0.001) 

0.85 (p<0.01) 

0.96 (p<0.001) 

1 (p<0.001) 

Mean Actor Accuracy  0.91 

Joint1 Observer linear 

RBF 

quadratic 

0.83 (p<0.001) 

0.85 (p<0.001) 

0.97 (p<0.001) 

0.75 (p=0.002) 

0.86 (p<0.001) 

1 (p<0.001) 

Joint2 Observer 

 
linear 

RBF 

quadratic 

0.87 (p<0.001) 

0.91 (p<0.001) 

0.95 (p<0.001) 

0.82 (p<0.001) 

0.87 (p<0.001) 

1 (p<0.001) 

Mean Observer Accuracy  0.89 

Note: Permutation p-values are presented in the parenthesis after classification  

accuracy. 
. 

TABLE 3.2. SCORING SFS CLASSIFICATION RESUTLS 

 Kernel SMO Accuracy LS Accuracy 

Joint1 Actor linear 

RBF 

quadratic 

0.88 (p<0.001) 

0.88 (p<0.001) 

0.92 (p<0.001) 

0.96 (p<0.001) 

0.88 (p<0.001) 

1 (p<0.001) 

Joint2 Actor linear 

RBF 

quadratic 

0.88 (p=0.001) 

0.96 (p<0.001) 

1 (p<0.001) 

0.92 (p<0.001) 

0.96 (p<0.001) 

1 (p<0.001) 

Mean Actor Accuracy  0.93 

Joint1 Observer linear 

RBF 

quadratic 

0.83 (p<0.001) 

0.92 (p<0.001) 

0.92 (p<0.001) 

0.79 (p <0.01) 

0.92 (p<0.001) 

1 (p<0.001) 

Joint2 Observer 

 
linear 

RBF 

quadratic 

0.96 (p<0.001) 

0.92 (p<0.001) 

1 (p<0.001) 

0.92 (p<0.001) 

0.92 (p<0.001) 

0.88 (p<0.001) 

Mean Observer Accuracy  0.91 

Note: Permutation p-values are presented in the parenthesis after classification  

accuracy 
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In general, both FS methods achieved high overall performance with the mean classification accuracy of 

the standard SFS being 0.91 for actors and 0.89 for observers, while the scoring SFS marginally exceeded 

that with mean accuracy 0.93 for actors and 0.91 for observers. In addition, the low p-values of the 

permutation tests employed indicate that both FS methods successfully selected discriminative features 

with no over-fitting. Of note is that the best overall accuracy was obtained with the quadratic SVM kernel 

despite the FS method employed, for actors and observers of both Joint conditions. 

 

Concerning the features selected the standard and scoring SFS method feature subsets that provide the 

overall highest accuracy are presented below (TABLES 3.3 and 3.4). 

 

 

TABLE 3.3. STANDARD SFS FEATURES SELECTED 

 Kernel SMO Accuracy LS Accuracy 

Joint1 Actor 

linear CP5_ MaxT_tw2, FC1_ MaxA_tw5 CP5_ MaxT_tw2,  FC2_MaxA_tw2 

RBF 
C3_ MaxA_tw2, C3_ MaxA_tw1, 

C4_MinT_tw1, CP1 _MinT_tw3 
FC5_AUC_tw5, FC1_ MaxT_tw5 

quadratic C3_MaxA_ tw2, Fp2 _ AUC_tw1 
Cz_AUC_tw3, Fp2_MinA_tw5,  

CP2_ AUC_tw1 

Joint2 Actor 

linear P8_AUC_tw5, Fp2_ MinT_tw1 T7_MaxT_tw1 

RBF P3_MaxA_tw1, CP1 _AUC_tw3 
P3_MaxA_tw1, FC1 _AUC_tw1, 

PO3_MinA_tw1 

quadratic P3_MaxA_tw1, T7_AUC_tw1 
P3_MaxA_tw1, F8_MaxA_tw1, 

O2_MinT_tw4 

Joint1 

Observer 

linear 
CP5 _MinA_tw1, C3_MaxT_tw1, 

CP1 _MinT_tw5 
Fp1_MaxT_tw1, P8_MinT_tw 

RBF FC5_MinA_tw1, FC5_AUC_tw1 P3_AUC_tw, T7_MaxT_tw1 

quadratic 
FC5_MinA_tw1, Fp2 _AUC_tw1, 

FC1_MaxT_tw1 

P3_MaxA_tw4, P4_MaxT_tw4, 

C4_MaxA_tw1, CP5_MinA_tw1 

Joint2 

Observer 

linear Cz_AUC_tw3, PO4_MaxT_tw2 PO4_MaxT_tw1, F3_MinA_tw1 

RBF C3_MinT_tw1, Cz_MaxT_tw4 C3_MinT_tw1, Oz_MaxT_tw1 

quadratic 
C3_MinT_tw1, O2_MaxT_tw2,  

Oz_MinA_tw3 

C3_MinT_tw1, F7_MinT_tw1,  

P8_MaxA_tw1, C3_AUC_tw1 

Note: Each feature is denoted including the electrode from which the feature was extracted, followed by the 

feature itself and the time window employed, i.e. “electrode_feature_time-window”.  
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TABLE 3.4. SCORING SFS FEATURES SELECTED 

 Kernel SMO Accuracy LS Accuracy 

Joint1 Actor 

linear 

Fz_MaxT_tw2, PO3_MaxA_tw4, 

F8_MinT_tw4, CP5_MaxT_tw2, 

Fp1_MinT_tw4 

P3_MaxT_tw2, FC6_MinT_tw2, 

F4_MaxT_tw2, Fz_MaxT_tw2 

Fz_MinT_tw3, Fp1_MaxT_tw1, 

O1_MinA_tw5, P4_MaxT_tw1,  

F7_MinA_tw2 

RBF 

F8_MaxT_tw1, FC1_MaxA_tw2, 

P3_MinT_tw2, T8_MaxT_tw4, 

CP5_MinT_tw1, CP2_MaxT_tw1 

Oz_MinT_tw4, FC6_MinT_tw3, 

F8_AUC_tw5 

quadratic 

F8_MaxT_tw1,   F4_MaxT_tw2,  

Fz_MaxT_tw2 

P8_MaxA_tw1, FC1_MinT_tw3 

F8_MaxT_tw1, CP1_MinA_tw3, 

Fp1_MaxT_tw4, Cz_AUC_tw3, 

CP6_MaxT_tw4 

Joint2 Actor 

linear 
P8_MinA_tw4, FC6_MinT_tw3, 

P4_AUC_tw4 

P8_AUC_tw5, AF4_AUC_tw1, 

F3_MinT_tw2, PO3_MinT_tw3, 

FC5_MinT_tw2, Cz_MaxA_tw2 

RBF 
CP6_MinT_tw4, P8_AUC_tw5, 

T7_MaxT_tw1, C3_AUC_tw5 

FC1_MinT_tw2, CP6_MinT_tw4, 

P8_AUC_tw5, FC1_MinT_tw3 

quadratic 

P8_AUC_tw4, FC1_MinT_tw2, 

FC6_MinT_tw3, P3_MaxA_tw1, 

CP5_AUC_tw3 

FC1_MinT_tw2, P8_MinA_tw4, 

CP6_MinT_tw4, P8_AUC_tw5 

Joint1 

Observer 

linear 
CP2_MinT_tw1, FC6_MaxA_tw1, 

FC2_MaxA_tw4, 
P7_AUC_tw3, P8_MinT_tw5 

RBF 
Fp1_MaxA_tw1, FC6_AUC_tw1, 

P8_MinT_tw1, P8_AUC_tw2 

CP1_AUC_tw1, CP1_MinA_tw4,  

T7_MaxT_tw1, C3_MaxT_tw1, 

CP6_MaxT_tw5 

quadratic 
Fp2_AUC_tw1, AF3_MaxA_tw2,  

C3_MinA_tw2, F8_AUC_tw4 

Pz_AUC_tw1, CP2_MinT_tw1, 

C3_MinA_tw2, O2_MinT_tw2,  

FC6_AUC_tw1, C4_MinT_tw3, 

F4_MinT_tw2 

Joint2 

Observer 

linear 

CP6_MaxA_tw1, T8_MinA_tw1,  

FC5_MinA_tw2, O1_MinT_tw2, 

Fz_AUC_tw1 

P8_MaxT_tw1, T8_MAX_tw1, 

T8_MaxT_tw1, F7_AUC_tw4 

RBF 
FC1_MinT_tw1, P8_MaxT_tw1, 

F8_MaxT_tw1 

P8_MaxT_tw1, Cz_MinT_tw1, 

C3_MinT_tw1, FC2_MinT_tw1, 

O2_MaxT_tw3_ 

quadratic 

F8_MaxT_tw1, F7_MinT_tw4, 

CP5_MaxA_tw4, P4_AUC_tw4, 

C3_MinT_tw2 

FC1_MinT_tw1, P8_MaxT_tw1, 

Cz_MaxT_tw4 

Note: Each feature is denoted including the electrode from which the feature was extracted, followed by the 

feature itself and the time window employed, i.e. “electrode_feature_time-window”. 
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In the standard SFS algorithm (although no clear trend can be detected from specific electrodes) positions 

central and frontocentral locations were the most prominent, with tw1 being the most frequent utilized. 

Similarly, tw1 was the most common in the scoring FS with P8 electrode position to be the most 

prominent. However, subsequent analysis in the P8 electrode position exhibited little similarity between 

Joint1 and Joint2 conditions (Figure 3.7). 

 

 
Figure 3.7. Grand averages of the P8 electrode 

Next, a comparison between the complexities of the two FS methods took place estimating the overall 

performance in relation to the computational cost. As such, the standard SFS achieved high accuracy with 

small steps (including less features), although it reaches local maxima (nesting effects) and thus it cannot 

add more features. In comparison the scoring SFS surpassed the standard in terms of classification 

accuracy, while facilitating the nesting effects of the standard SFS greedy nature (Figure 3.8). Moreover, 

due to the scoring process (adding the next feature on the subset based on its significance without 

comparing all features) it presents an important decrement in the FS computational burden emerging from 

large feature sets. 
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Figure 3.8. Accuracy per SFS step for standard and scoring SFS. 

The results of this analysis don’t only illustrate the importance of the FS methods in ML frameworks, but 

also highlight neural substrates that may be masked, especially in complex higher order cognitive 

functions. For instance, the tw selection of both FS methods applied, implying that ErrPs of consistently 

reported error related ERPs, such as the ERN [101], were detected although in different areas than 

expected. Furthermore, the utilization of ERP signal representation as features (such as the peak 

amplitude and time of appearance) in various time windows demonstrated their potential as biomarkers 

for ML applications. Interestingly, the small similarity between the different task-complexity ErrP signals 

could also infer that the difficulty in the tasks employed could exhibit morphological differences in the 

elicited ErrPs, masking specific components, while the use of ML could help in reveal their hidden neural 

substrates. 

These facts taken together have been the key motivation for further investigation on the influence of 

different brain areas and task difficulty in the cognitive functions of error recognition. As such, a new 

approach was adopted described in the following section. 
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3.6 Cross-condition and Within-condition ML Analysis in Actor ErrPs 

As previously mentioned the results and implications of the full channel analysis indicated the 

effectiveness of the time windows and waveform characteristics of ErrPs as features. In addition, the 

complexity conditions demonstrated potential modulations of the signal properties with regard to specific 

condition and time window. Taking the above into account, the subsequent analysis investigates the 

hypothesis of a small feature subset being able to provide high cross-condition classification performance, 

while detecting features specific for each condition to further increase within-condition accuracy.  

In this context, a feature search strategy was utilized that incorporated a Sequential Forward Floating 

Selection (SFFS) and a Sequential Forward Selection (SFS) combination, allowing the detection of the 

individual features that provide high classification accuracy both in relation to task complexity and 

complexity-independent. The prominence of selected features where also assessed as being common to 

the two conditions and specific to each condition separately, successfully discriminating between correct 

and erroneous responses. The results of this analysis indicated the effectiveness of ML in the effort to 

detect distinct ErrP differentiations between correct and incorrect decisions, despite ErrP characteristics 

being affected due to task difficulty. Furthermore, they highlighted the linear nature of the ErrP signal 

attributes and the latency distortion of the typical ErrP time windows as a result of condition complexity 

manipulation. More importantly, they suggested a common underlying error detection cognitive 

mechanism and also modifications of that mechanism depending on the complexity of a task. This study 

was the first (to the best of our knowledge) to implement cross-condition ML approaches with regard to 

error-related responses.  

3.6.1 Dissimilarities with the Full Channel ML Approach 

Despite FS and classification differences, this approach also diversified in the participants and features 

employed. As such, the methodological strategy only included actors EEG recordings (as ErrPs in actors 

would theoretically include larger modulations due to complexity manipulation) in the two Joint 

conditions and a subgroup of electrode locations. 

Specifically, based on the previous approach findings as well as on evidence from literature (please refer 

to “Full Channel ML Analysis in Actor and Observer ErrPs” and “Introduction” sections), central 

electrode locations are more indicative to error-related cognitive processes (despite temporal scalp regions 

being more relevant regarding auditory cognition). As such, in this approach only regions strongly related 

to error cognition were taken into account, with the remaining electrode position exploded from the 

subsequent analysis [79], [102]. To that end, the electrode selection (and by extension the features 

incorporated in this analysis) was decided relative to their position in the central scalp region (Figure 

3.9). There were 7 electrodes included: Cz, Fz and Pz (as the midline electrodes adjacent to Cz) and FC1, 

CP1, CP2, FC2 (as the non-midline electrodes closer to Cz). Hence, from each averaged ERPs (please 

refer to “Feature Calculation” section), 5 features for each of the 5 time windows and each of the 7 

electrode positions were incorporated in the subsequent analysis, resulting in 7 × 5 × 5 = 175 features. 
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Figure 3.9. A) The electrodes position used in the EEG recordings. The ellipse includes the positions 

employed in the feature extraction processes. B) The average ERPs across all subjects (both conditions 

merged) for correct and incorrect responses 

3.6.2 Feature Selection and Classification 

In this approach, in order to discriminate between actors’ responses as correct or erroneous, SVM 

classification was adopted with various learning methods and kernel functions [100], [103]. In detail, 

learning methods included sequential minimal optimization (SMO), least squares (LS) and quadratic 

programming (QP), while SVM kernels functions incorporated linear (K(x⃗ , z ) = (x⃗ Tz )), radial basis 

function (RBF) (K(x⃗ , z ) = e−γ‖x⃗ −z⃗ ‖2
, γ = 0.055, 0.08, 0.125, 0.22, 0.5), quadratic (K(x⃗ , z ) =

(c + x⃗ Tz )d, c = 1, d = 2), multi-layer perceptron (mlp) (K(x⃗ , z ) = tanh(kx⃗ Tz + d),  k = 1, d = −1) 

and polynomial (K(x⃗ , z ) = (c + x⃗ Tz )d, c = 1, d = 3) kernel designs. For each learning method and kernel 

function combination, the overall classification accuracy, sensitivity and specificity were computed (for 

more details please refer to Chapter 2). 

As mentioned in the previous sections, the aim of this approach was to identify condition-independent 

feature subsets that provide high classification performance and then detect condition-specific features 

that would enhance classification accuracy of the individual complexity levels. In this regard, FS and 
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classification was implemented concurrently for both complexity conditions and responses (i.e., classes) 

resulting in 12 × 2 × 2 = 48 instances (subjects × conditions × classes) to identify the optimal condition-

independent feature subset and then, on top of that add condition-specific features to increase the 

performance on each individual condition (12 × 2 = 24 instances). Moreover, to provide a robust output 

on the specific features subsets that would provide the optimal classification performance and at the same 

time eliminate redundant and/or unnecessary features, two FS modification procedures were applied, as 

described in the following. 

In the first procedure (FS1), a standard Sequential Forward Floating Search (SFFS) [104] was applied to 

the features that were computed, utilizing data from both conditions concurrently. In this manner, the final 

set of features (cross-condition) produced by the SFFS is deemed to represent the feature subset that best 

classifies correct or incorrect responses, irrespective of the difficulty of the task involved. SFFS alleviates 

the nesting problem occurring in other FS methods by including conditional repetitions containing three 3 

steps: inclusion, conditional exclusion and sequential conditional exclusion. Firstly, starting from an 

empty set the most significant feature in terms of classification accuracy is selected thought exhaustive 

search. Then, a new feature is included based on its significance with respect to the existing feature 

subset. The next step is the evaluation of the new subset by excluding the least significant feature, 

provided that the resulting subset will include at least two features. If the removed feature was the one 

added in the subset in the proceeding step, the exclusion step is skipped and a new inclusion is made. 

Alternatively, a new conditional exclusion is made, provided that the new subset’s accuracy is higher than 

the one currently found. When these conditions cease to be satisfied, the overall classification accuracy is 

computed, a new inclusion is conducted and the 3-step procedure is repeated. The algorithm stops when 

no further improvement can be made to the classification accuracy by modifications of the feature set.  

Since SFFS is a sub-optimal technique, accepting the features from both conditions concurrently might ( 

in some cases), result to over-fitting and thus make the subsequent condition-specific SFS procedure less 

effective (in providing features that would both improve the classification accuracy and be representative 

of the condition-specific mechanisms). Therefore, a second feature selection procedure (FS2) was also 

implemented. 

In FS2, for each step of the SFFS method, the interim feature set computed by the SFFS was also used for 

the classification of the ERPs of actors, using data from the Joint1 condition only and, separately, data 

from Joint2 condition only. As a result, for each SFFS step and corresponding interim feature set, three 

overall classification accuracy values were available: the accuracy reached when both conditions were 

used concurrently, the accuracy when only Joint1 condition data were used and the accuracy when only 

Joint2 condition data were used. Then the average of these three accuracy values (cross-condition) was 

calculated. The average value (task-specific average) was calculated as the mean value of the task-

specific accuracies of Joint1 and Joint2. This procedure was repeated until SFFS concluded. Then the 

feature set that was selected for the application of the SFS method for data from each condition separately 

was the feature set for which cross-condition accuracy was highest. Another way of expressing the 

rationale for applying FS2, is that: although the features that will be finally selected might not provide the 

best classification for the combined data of the two conditions, stopping SFFS at an intermediate step, 

enables SFS to add features that are important for the classification of task difficulty-specific ErrPs (but 

would have been excluded by overly “fine-tuning” the classification, when both conditions were used 

concurrently). The workflow of the proposed FS methodology is presented in Figure 3.10. 
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Subsequent to the selection of the optimal feature subset, Sequential Forward Search (SFS) [105] was 

applied for the data of the two conditions separately based on the features selected by the SFFS. To that 

end, the SFS employed utilizes the SFFS output feature subset and iteratively includes the most 

significant feature (with respect to classification accuracy) through exhaustive search, until the classifier 

performance can no further improve. To alleviate the SFS nesting problems, the implemented algorithm 

would consider adding a second feature (as a two-feature addition) to the feature subset if a single feature 

addition did not improve classification performance as long as modified feature subset did not deteriorate 

in accuracy by each of the two single features added. When SFS concluded, the added features were 

expected to provide additional condition related information in the classification processes, enhancing the 

ML performance concerning individual complexity levels. 

 
Figure 3.10. The workflow of the FS framework employed. 

In this analysis, FS was done concurrently with the evaluation of the various classification algorithms, 

since the classification accuracies used for applying FS1 and FS2 were those provided by the respective 

classification algorithm, whose performance was evaluated. The training and testing of each classification 

algorithm was implemented using a leave-one-out cross-validation (LOOCV) procedure in every step of 

the SFFS and SFS methods. This procedure involves the exclusion of a single instance in the training data 

set, which will be utilized as the testing data set. This process is repeated for a different instance each 

time, until all data are employed as a testing set once. Accuracy, sensitivity and specificity are calculated 

as the average of each LOOCV fold. LOOCV procedures provide a reliable generalization and 

approximate better the actual performance of the classifiers than other cross-validation approaches, while 

facilitate in the prevention of over-training [106], [107].  

Τhe above procedures were repeated for each classifier configuration (i.e, learning method and kernel 

function) with classification accuracy being set as the objective function, allowing for FS and 

classification methods to be evaluated concurrently. In addition, the FS and classification processes were 

not only implemented for the five time windows, but also for combinations of two of them, to further 

investigate discriminative characteristics of the ErrPs and determine whether using features from 
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components belonging to adjacent time windows might improve classification. Specifically the time 

window combinations were: 𝑡𝑤1 and 𝑡𝑤2 (𝑡𝑤1,2), 𝑡𝑤2 and 𝑡𝑤3 (𝑡𝑤2,3), and 𝑡𝑤3 and 𝑡𝑤4 (𝑡𝑤3,4). To 

avoid the inclusion of multiple components of ErrPs (which might mask the individual ErrP contribution 

to the classification procedures), overlapping windows were not included. This would also facilitate the 

effective detection of discriminative ErrP characteristics, while providing indication as to if adjacent tw 

ERP components might improve performance. Moreover, 1,000 runs of permutation tests on randomized 

class labels were carried out to verify that FS and classification introduced no overfitting or bias and to 

assess the statistical significance of the estimated performance. As in the previous approach (please refer 

to “full channel ML analysis in actor and observer ErrPs” section, “feature selection and classification 

subsection”) p-values were calculated as the ratio of classifiers trained on the randomized labels that 

outperformed the classifiers trained on the original samples to the number of total permutations and is 

presented in a parenthesis in the results tables. 

3.6.3 Results and Implications 

The overall classification accuracy results applying the FS1 method are presented below. The 

performance on which the evaluation of the classifiers was assessed were the overall classification 

accuracy achieved by SFFS (cross-condition), the task-specific classification accuracy where SFS applied 

to the data of the two conditions separately (Joint1 and Joint2), and the mean value of the task-specific 

accuracies of Joint1 and Joint as their average value (task-specific average). Since the different methods 

and kernels employed resulted in a very large number of methodological combinations, a performance 

evaluation criterion was arbitrarily determined, including accuracy values higher than 0.8 for cross-

condition accuracy and task-specific average larger than 0.9. As such, only the corresponding results for 

these cases are given in TABLE 3.5, while in TABLE 3.6 the results for sensitivity and specificity are 

given. The features selected, presented in TABLE 3.7, are given for the cases where task-specific 

accuracy of Joint1 or Joint2 equals to 1. 
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TABLE 3.5. OVEARALL CLASSIFICATION ACCURACY RESULTS OF FS1 METHOD 

 Overall classification accuracy Number of features 
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𝑡𝑤1,2 SMO-quadratic 0.96** 0.88** 0.96** 0.92  9 9+4 9+11 

𝑡𝑤1,2 SMO-mlp 0.96** 0.88* 1.00** 0.94 35 35+8 35+3 

𝑡𝑤2,3 SMO-mlp 0.92** 0.92* 0.96** 0.94 8 8+4 8+6 

𝑡𝑤3,4 QP-quadratic 0.98** 0.92** 0.92** 0.92 20 20+3 20+6 

𝑡𝑤3,4 SMO-quadratic 0.98** 0.96** 0.92** 0.94 17 17+9 17+9 

Note: The cases presented are those that exceeded the performance evaluation criterion. Asterisks mark the level of permutation 

p-values significance. *: p < 0.01; **: p < 0.001. 

 

TABLE 3.6. SENSITIVITY AND SPECIFICITY RESULTS OF FS1 METHOD  

 Sensitivity Specificity 
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𝑡𝑤1,2 SMO-quadratic 1 0.91 0.92 0.92 0.85 1 

𝑡𝑤1,2 SMO-mlp 1 0.91 1 0.92 0.85 1 

𝑡𝑤2,3 SMO-mlp 0.88 1 0.92 0.95 0.86 1 

𝑡𝑤3,4 SMO-quadratic 0.96 0.92 1 1 1 0.86 

𝑡𝑤3,4 QP-quadratic 1 1 1 0.96 0.86 0.86 
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TABLE 3.7. FEATURES SELECTED IN THE FS1 METHOD 
ti
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Classifier Cross-Condition 
Features added for 

Joint1 

Features added 

for Joint2 

𝑡𝑤1,2 SMO-mlp 

 

𝑡𝑤1:Fz_MinA, Fz_MinT, FC1_MinA, 

FC1_MaxA, FC1_AUC, FC2_MinA, 

FC2_MinT, FC2_MaxT, Cz_MinA, 

Cz_MinT, Cz_MaxA, Cz_MaxT, 

CP1_MinT, CP1_MaxA, CP1_AUC, 

CP2_MinT, CP2_MaxT, CP2_AUC, 

Pz_MinA, Pz_MinT, Pz_MaxT, 

Pz_AUC 

𝑡𝑤2:Fz_MinA, Fz_MaxT, FC1_MinT, 

FC2_MinT, FC2_MaxT, FC2_MinA, 

Cz_MinA, Cz_MaxA, CP1_MinA, 

CP1_AUC, CP2_MaxA, CP2_AUC, 

Pz_MaxA 

 

𝑡𝑤1:Fz_MaxA, Fz_AUC, 

CP2_MaxA 

𝑡𝑤2:Fz_MinT,FC1_MaxT, 

FC2_AUC, Cz_AUC, 

CP2_MinA 

𝑡𝑤1:FC1_MinT, 

FC1_MaxT,  

CP1_MaxT 

Note: Features are given for the case in TABLE 3.5, where accuracy of Joint2 equals to 1. Each feature is denoted 

including the electrode from which the feature was extracted, followed by the feature itself, i.e. “electrode_feature”. 

The overall classification accuracy results reached following FS2 method are presented in TABLE 3.8. 

The overall classification accuracy values on which the classifiers were evaluated were the cross-

condition classification accuracy, achieved by the SFFS at the step that was selected for starting SFS, the 

task-specific classification accuracy achieved by SFS applied to the data of the two conditions separately 

(Joint1 and Joint) and the task-specific average. Again, the performance evaluation criterion was set as 

larger than 0.8 for cross-condition accuracy and higher than 0.9 for task-specific average, with the cases 

presented in TABLE 3.4 to be the ones that exceeded it. In Figure 3.11 and Figure 3.12.the overall 

classification accuracy results (and performance evaluation criterion) of the FS2 method are presented. 

TABLE 3.9 displays the corresponding results for sensitivity and specificity, while the features selected 

for the cases where classification results were best (i.e., Joint1 accuracy = 1 or Joint2 accuracy = 1) are 

given in TABLE 3.10.  
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Figure 3.11. Cross-condition classification accuracy for all methods employed. In (A) for the individual 

time windows and in (B) for the time windows combinations. The elevated plane represents the threshold 

of the performance evaluation criteria of cross-condition accuracy larger than 0.8. 

 

 

Figure 3.12. Mean classification accuracy of Joint1 and Joint2 for all the methods employed. In (A) for 

the individual time windows and in (B) for the time windows combinations. The elevated plane represents 

the threshold of the performance evaluation criterion of task-specific average accuracy larger than 0.9. 
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TABLE 3.8. OVEARALL CLASSIFICATION ACCURACY RESULTS OF FS2 METHOD 

 Overall classification accuracy Number of features 
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𝑡𝑤2 LS-quadratic 0.83** 0.88* 0.96** 0.92 5 5+2 5+3 

𝑡𝑤3 SMO-mlp 0.85** 0.96** 0.92* 0.94 5 5+5 5+4 

𝑡𝑤1,2 SMO-quadratic 0.88** 0.92** 1.00** 0.96 7 7+1 7+5 

𝑡𝑤2,3 LS-quadratic 0.90 ** 1.00** 0.83* 0.92 9 9+10 9+8 

𝑡𝑤2,3 QP-quadratic 0.85** 0.92** 0.92** 0.92 9 9+3 9+8 

𝑡𝑤2,3 SMO-mlp 0.90** 0.92** 0.92* 0.92 9 9+6 9+7 

𝑡𝑤3,4 QP-linear 0.90** 0.92** 0.92** 0.92 12 12+5 12+10 

𝑡𝑤3,4 SMO-quadratic 0.85** 1.00** 0.83* 0.92 6 6+3 6+1 

𝑡𝑤3,4 LS-quadratic 0.83** 0.92** 1.00** 0.96 2 2+4 2+3 

𝑡𝑤3,4 QP-quadratic 0.90** 0.96** 0.92** 0.94 7 7+16 7+2 

Note: The cases presented are those that exceeded the performance evaluation criterion. Asterisks mark the level of 

permutation p-values significance. *: p < 0.01; **: p < 0.001 

TABLE 3.9. SENSITIVITY AND SPECIFICITY RESULTS OF FS2 METHOD  

 Sensitivity Specificity 
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𝑡𝑤2 LS-quadratic 0.86 0.91 1 0.81 0.85 0.92 

𝑡𝑤3 SMO-mlp 0.87 1 0.92 0.84 0.92 0.92 

𝑡𝑤1,2 SMO-quadratic 0.85 0.92 1 0.91 0.92 1 

𝑡𝑤2,3 LS-quadratic 0.91 1 1 0.88 1 0.75 

𝑡𝑤2,3 QP-quadratic 0.90 0.92 0.92 0.81 0.92 0.86 

𝑡𝑤2,3 SMO-mlp 0.95 0.86 0.92 0.85 1 0.91 

𝑡𝑤3,4 QP-linear 0.88 0.92 1 0.91 0.92 0.86 

𝑡𝑤3,4 SMO-quadratic 0.87 1 0.9 0.84 1 0.79 

𝑡𝑤3,4 LS-quadratic 0.86 0.86 1 0.81 1 1 

𝑡𝑤3,4 QP-quadratic 0.88 1 1 0.91 0.92 0.86 

 

From the above TABLES it is indicated that both FS1 and FS2 did not produce results that passed the 

performance evaluation criterion when employing the RBF kernel. On the other hand, SVM classifier 

with linear, quadratic and mlp kernels presented higher results (passing the evaluation criterion) despite 
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different learning methods. Furthermore, in all cases for FS1 and in most cases for FS2, the performance 

evaluation criterion was met for features extracted from combination of 2 time windows. In contrast, the 

utilization of 𝑡𝑤5 (denoting the extended time window which included 0ms to 600ms ERP recordings) 

failed to meet the criterion threshold. 

TABLE 3.10. FEATURES SELECTED IN THE FS2 METHOD 
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Classifier Cross-Condition 
Features added for 

Joint1 

Features added for 

Joint2 

𝑡𝑤2,3 LS-quadratic 

𝑡𝑤2: FC2_MinA, 

Cz_MinT, Cz_MaxA,  

CP1_MaxT, CP2_MinA 

𝑡𝑤3: Fz_MinT, Cz_MinT, 

Cz_AUC, CP1_MinA 

 

𝑡𝑤2: FC1_MinA, 

FC2_MaxT, P1_AUC, 

CP2_MinT, CP2_MaxA, 

Pz_MinT, Pz_MaxA 

𝑡𝑤3: FC2_MinA, 

Cz_MaxT, CP2_MaxA 

 

𝑡𝑤2: FC1_MinT, 

FC1_MaxA, FC2_MinT, 

Cz_MaxT, CP1_MinA 

𝑡𝑤3: FC1_AUC, 

CP2_MinA, CP2_MaxT 

𝑡𝑤3,4 SMO-quadratic 

 

𝑡𝑤3: Fz_MinT, 

FC2_MinA, CP1_MaxA, 

CP1_AUC, Pz_MinA, 

Pz_AUC 

 

 

𝑡𝑤3: FC2_AUC 

𝑡𝑤4: CP2_MaxA, 

Pz_MinT 

 

𝑡𝑤3: CP2_MaxT 

𝑡𝑤1,2 SMO-quadratic 

 

𝑡𝑤1: FC1_MaxA, 

FC2_MinT, CP1_MinT 

𝑡𝑤2:  Fz_MaxA, 

Fz_MaxT, Cz_MaxA, 

CP1_MaxT 

 

𝑡𝑤2: Pz_MinT 

𝑡𝑤1: FC2_MinA, 

CP1_AUC, CP2_AUC, 

Pz_MaxA 

𝑡𝑤2: Pz_MinT 

𝑡𝑤3,4 LS-quadratic 
𝑡𝑤3: CP1_AUC 

𝑡𝑤4:FC2_MaxA 

 

𝑡𝑤3: FC1_MaxT 

 𝑡𝑤4: CP2_MinA, 

Pz_MinA, Pz_MinT 

 

𝑡𝑤3: CP1_MinA, 

CP2_MinA 

𝑡𝑤4: CP1_MaxT 

Note: The first two cases correspond to the cases in TABLE 3.8, where Joint1 classification accuracy reached 1, 

while the last two cases correspond to the cases in TABLE 3.8 where Joint2 classification accuracy reached 1. Each 

feature is denoted including the electrode from which the feature was extracted, followed by the feature itself, i.e. 

“electrode_feature”. 

 

The comparison between FS1 and FS2, based on the number of cases that exceeded the criterion 

boundary, indicates that FS2 provided more cases. Specifically, classification accuracy equal to 1 was 

reached for SFS using FS1 only in one case, while in FS2 for 4 cases, using quadratic kernels. As the 

optimal performance attained in these cases, two of them resulted in 0.96 task-specific average accuracy. 

In addition, the permutation tests low p-values, infer that the combinations of the SVM classifiers 

employed were successful in detecting significant features and class labels associations, thus resulting in 
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high classification accuracy while avoiding overfitting. Furthermore, the high specificity and sensitivity 

values, as illustrated in TABLE 3.9, further corroborate the validity of the classifiers employed. The high 

specificity and sensitivity values in both FS methods, as illustrated in TABLES 3.6 and 3.9, further assess 

the effectiveness of the ML methods utilized since the small numbers of false positives and negatives 

indicate there was no bias included in the classification of one class over the other. 

Concerning the number of features that were selected, after both SFFS and SFS were applied, it was 

observed that the total number of features selected from FS1, for each condition, is higher than the 

number of features selected from FS2, as represented by the mean of features selected by FS1 (24.2 for 

Joint1 and 25.2 for Joint2 condition) versus the mean of features selected by FS2 (12.6 and 12.8 features 

per condition, respectively), the mean being in each case computed from the number of cases presented in 

TABLES 3.5 and 3.8, respectively. A similar trend showed up in the fact that the number of features (17 

and 20) selected from SFFS in FS1, in the cases that resulted in the highest cross-condition accuracy 

(0.98) were higher than the number of features (7, 9, 9 and 12) selected from SFFS in the FS2 cases that 

resulted in the highest cross-condition accuracy (0.9). Despite that however, no overall clear trend could 

be discerned among the selected features as for specific features of electrode positions. 

Nevertheless, for the 2 cases in FS2 that task -specific average was higher than 0.9, while additionally 

Joint1 accuracy reached 1, the features added by the SFS presented a central/centro-parietal majority (9 of 

the 13 selected features). In a similar way, for the 2 cases that the classification accuracy of Joint2 was 1 

with a task-specific average exceeding 0.9, the features selected to be added for Joint2 demonstrated 

overall parietal/centro-parietal predominance (7 of the 8 selected features). Of note is that the two 

condition-specific subsets were different in the aforementioned cases. Specifically, inspecting the cases 

where Joint1 reached 1, the features added were different from the features added for Joint2, starting from 

the same cross-condition SFFS feature set. The same held for the cases where Joint2 reached 1, with the 

exception of 𝑡𝑤1, MinT for electrode Pz, In Figure 3.13 the mean values and the distributions of the 

selected features are presented for the two cases corresponding to the optimal classification results 

(highest task-specific average and Joint1 or Joint2 accuracy equal to 1). 
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Figure 3.13. Feature values and distribution for cases (A) 𝑡𝑤1,2, method: SMO quadratic and (B)  

𝑡𝑤3,4, method: LS quadratic. In each box, the mean value is indicated by the horizontal line, while the 

box edges denote the 25th and 75th percentile. The whiskers extend to the most extreme values and 

the '+' symbol marks the outlier data points. 

 

3.6.4 Validation of Results using Additional Classifiers 

To further assess the nature of the features extracted and compare the adopted framework with other ML 

designs, classification of different methods was also conducted (in addition to the SVM methods). As 

such the most commonly used methods in the classification of error-related potentials [78], [98], [108] 

were employed, namely k-Nearest Neighbors (k-NN) and Linear Discriminant Analysis (LDA), using the 

FS2 framework proposed as it was indicated to have the higher overall results.  

In general, the classification performance of the classifiers tested was inferior to the SVM-based ML 

approach, demonstrated the effectiveness of the condition-independent and condition-specific SVM 

methods regarding error-related classification. The results for both methods are presented below in 

TABLES 3.11 and 3.12). 

  



CHAPTER 3 - ERROR-RELATED COGNITIVE MONITORING 

Ioannis Kakkos – Doctoral Thesis  41 | P a g e  

TABLE 3.11. OVERALL CLASSIFICATION ACCURACY RESULTS FOR THE DIFFERENT TIME 

WINDOWS (ADDITIONAL EVALUATION) 

 Overall classification accuracy Number of features 

ti
m

e 
w

in
d

o
w

 

Classifier 

C
ro

ss
-C

o
n

d
it

io
n
 

Jo
in

t1
 

Jo
in

t2
  

T
as

k
 –

S
p
ec

if
ic

 

A
v

er
ag

e 

C
o

m
m

o
n
 

Jo
in

t1
 

Jo
in

t2
 

𝑡𝑤1 k-NN 0.69 0.71 0.75 0.73 3 3+7 3+13 

𝑡𝑤1 LDA 0.85 0.79 0.88 0.84 7 7+2 7+3 

𝑡𝑤2 k-NN 0.69 0.54 0.71 0.63 24 24+2 24+5 

𝑡𝑤2 LDA 0.71 0.61 0.71 0.66 3 3+2 3+1 

𝑡𝑤3 k-NN 0.73 0.71 0.67 0.69 22 22+5 22+9 

𝑡𝑤3 LDA 0.79 0.63 0.92 0.78 22 22+1 22+3 

𝑡𝑤4 k-NN 0.71 0.67 0.75 0.71 2 2+11 2+14 

𝑡𝑤4 LDA 0.71 0.91 0.87 0.89 22 22+4 22+2 

𝑡𝑤5 k-NN 0.87 0.59 0.70 0.65 31 31+1 31+2 

𝑡𝑤5 LDA 0.85 0.67 0.71 0.69 30 30+3 30+2 

 

TABLE 3.12. OVERALL CLASSIFICATION ACCURACY RESULTS FOR THE TIME-WINDOW 

COMBINATIONS (ADDITIONAL EVALUATION) 

 Overall classification accuracy Number of features 
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𝑡𝑤1,2 k-NN 0.67 0.70 0.79 0.75 37 37+6 37+6 

𝑡𝑤1,2 LDA 0.88 0.92 0.95 0.94 10 10+6 10+2 

𝑡𝑤2,3 k-NN 0.75 0.75 0.79 0.77 3 3+43 3+32 

𝑡𝑤2,3 LDA 0.81 0.83 0.82 0.83 8 8+2 8+1 

𝑡𝑤3,4 k-NN 0.77 0.75 0.75 0.75 21 21+26 21+34 

𝑡𝑤3,4 LDA 0.87 0.92 0.79 0.86 12 12+2 12+2 

 

In spite of the lower performance (relative to the SVM framework), the performance evaluation criterion 

of cross-condition accuracy larger than 0.8 and a task-specific average larger than 0.9 was reached in one 

case by an LDA classifier for 𝑡𝑤1,2 (Figure 3.14). Taking the overall results into consideration it can be 

inferred that linear modeling ML methods and time-window combinations are more efficient in error-

related discrimination utilizing signal-based features. 
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Figure 3.14. The performance of LDA classifier. In A) The classification accuracy for the different time 

windows and their combinations and in B) The classification performance for the case that reached the 

performance evaluation criterion (𝒕𝒘𝟏,𝟐). The line graphs demonstrate the classification accuracy as a 

step wise approach (inclusion of the different features), while the bottom right figures indicate the number 

of features for the different scalp areas. 

3.6.5 Evaluation and Implications of the ML Approaches Employed with regard to ErrP 

Analysis 

In this approach, we employed a cross-condition and within-condition ML framework in EEG recorded 

from an auditory task with two levels of complexity utilizing indicative ERP signal characteristics. Two 

feature selection methods were used to effectively identify the ErrP properties that are common to the two 

conditions and specific for each one resulting in effective classification between correct or incorrect ErrPs 

responses. The high classification accuracy reached, for cross-condition and within-condition 

classification for both feature selection methods, corroborates our initial hypothesis that, ML procedures 

can successfully detect hidden patterns in ErrP attributes and thus incorrect decisions can be detected, 

irrespective of the task difficulty, extracting condition specific features to improve the classification 

accuracy for each difficulty level. 
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While in practice the correct and incorrect EEG responses (when averaged across all subjects and 

conditions) demonstrated small distinguishable regarding error-related differentiation (indicated by 

previous research on the same data [109]) , the condition specific characteristics might provide 

indications for error processing mechanisms adjusted to task difficulty [110], [111]. 

Regarding the classification accuracy results, quadratic kernels demonstrated the overall best 

performance. Within the ML models adopted in this approach, in both FS methods RBF kernels failed to 

meet the performance evaluation criterion, while linear kernels presented the higher performance (despite 

the fact that SVM classifiers paired with the kernel trick can theoretically classify non-linear data 

adequately) indicated the linear nature of the features extracted [100]. This is also supported by other 

SVM studies that also exhibit higher classification accuracy in non-RBF kernels [112]–[114]. Additional 

evidence of the linearity of the features in this dataset was evident in the LDA comparison (please refer to 

the “validation of results using additional classifiers” section), demonstrating higher accuracy with linear 

modeling.  

The response-related EEG signals analyzed in this chapter are those produced after the first feedback tone 

provided to the subjects (i.e., FBT) and as a consequence a signal similar to FRN would be expected to be 

generated. In this context a pre-defined time window could, in principle, be able to effectively analyze 

error-related components (as indicated by the majority of error-related studies) [74], [115]. However, 

because of the FBT nature and the variations of ErrPs amplitude and latency, due to individual subject 

differences and task condition manipulations [53], [102], [116] the timing and duration of the error-

related ERPs could not be determined beforehand. From this standpoint, different consecutive non-

overlapping time windows were investigated to refrain from excluding of latencies that provided useful 

information. The results suggested that relevant insight as to the time windows used, was especially 

extracted from combinations of adjacent instead of the shorter duration single time windows, i.e., 𝑡𝑤1,2 

(0-220ms), 𝑡𝑤2,3 (125-300ms) and 𝑡𝑤3,4 (220-400ms). This could be attributed due to a latency extension 

of ErrPs present in feedback tone processing, causing error related attributes to manifest over the 200 ms 

time windows [117]. Task complexity could also be taken on account for distortions or masking of the 

multiple error-related components [118], supporting the assumption that the time windows combination 

could facilitate in the conditional inclusion of different ErrPs in the classification processes. In contrast, 

the extended 𝑡𝑤5 (0 ms to 600 ms) might incorporate unrelated error processing information (since large 

ERP peaks in auditory tasks generally appear after 400 ms [119]), thus resulting in a limited number of 

predictive features confounding the FS algorithms. To that end, feedback-related ErrP signals can exhibit 

high variability and may not be apparent to EEG recordings in view of experimental conditions and 

feedback relative concealment [120]–[122]. Furthermore, modulations of ErrPs attributes (even in correct 

trials) are consistently reported as a result of reinforced learning effects and reward expectancy [123], 

[124]. In the current approach the ERPs investigated and analyzed were generated from the FBT 

(therefore FBT originated from indirect information of the actors’ responses), hence providing error-

related features less clear in morphology as those that could be estimated after the presentation of a sole 

feedback tone (as unambiguous information on the correctness of the participants’ responses). 

Regarding the condition-specific features selected by the SFS when Joint1 or Joint2 reached accuracy 

equal to 1, single features added were different in the two conditions, initiating from the same SFFS set. 

This validates the hypothesis of the existence of ErrPs features corresponding specifically to each 

condition separately, eventuating divergent feature subsets for the two conditions for the cases that 
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provide the optimal discrimination between correct and incorrect responses. This is also supported by 

other recent ML studies that display discrepancies in ErrP classification performance with regards to 

cross-condition manipulations [94], [96], [125]. In this regard, however, conventional methods of training 

on one task and testing on another are likely to include condition-salient features, impairing the overall 

accuracy and, in some cases, making the classifier to be unreliable in cross-task classification [79], [94], 

[126], [127]. The adopted approach, achieves in disentangling condition-specific and condition-

independent from the overall classification processes by selecting features irrespective of task complexity 

and complexity-related error processing variations. 

Additionally, the fact that in FS2 more cases meet the performance evaluation criterion set and present 

task-specific accuracy equal to 1, suggest that FS2 processes provide more flexibility to the method 

employed, resulting in high classification performance between to correct and incorrect responses from 

each condition. On the other hand, the value of cross-condition accuracy reached by FS2 was in many 

cases lower than the value of cross-condition accuracy reached by FS1. This is to be expected, since in 

FS2, the feature set provided by SFFS, and used as a basis for SFS, takes also into account condition-

specific classification accuracy. As such in FS1 the output SFFS set provides, by definition of the FS 

method, equal or greater accuracy than any other set, albeit selection bias might be included towards 

Joint1 or Joint2 classification. In addition, FS2 resulted, on average, in smaller feature subsets than FS1. 

This might have been anticipated considering that SFFS completes its feature inclusion cycles in FS2 

taking into account the average value of three accuracies (which is lower than the optimal FS1 set) . It can 

also be regarded as the advantage of FS2, since in general classification systems based on fewer features 

are expected to perform faster in real-time systems. 

Some considerations need to be taken into account in the interpretation of the results described above. 

Firstly, the ERP signals were average of each participant to address the unbalanced labels implications 

that usually reside with SVM algorithms [128], while also enhancing generalizability in the assessment of 

error related processes. This lead to a limited small number of instances to be classified, while since only 

SVM classifiers were evaluated (with the subsequent addition of k-NN and LDA for results validation), 

more classification methods could have led to diverse feature subsets and different performance (even 

surpassing the proposed ones). Moreover, despite the high overall accuracy reached by the selection of 

specific features for each method employed, the affinity of their correlation to the underlying error related 

cognitive mechanisms also raises concerns [129]. This is attributable to lack of consistency in the features 

subsets with regards to the different methods (TABLES 3.7 and 3.10 ). From this standpoint, the features 

that comprise the SFFS and SFS feature subsets might be unaffiliated to the error-related processes and 

therefore could be selected due to their ability to reduce unrelated noise. However, the potential of 

detecting condition-independent and condition-specific ErrP-based feature subsets for correct and 

incorrect classification purposes, provides indications task difficulty adjusted error-processing [110], 

[111].  

Taking all the above into account, it can be assumed that ErrPs manifest as a global error-processing 

cognitive mechanism with common error-monitoring elements and salient feature alterations depending 

on task complexity. Towards this direction, future research could extend to explore a universal error-

processing mechanism irrespective of task and/or complexity conditions, illustrating the underlying brain 

mechanisms that regulate the neural substrates of cognitive error responses.
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Chapter 4 

4.1 Task-Independent Workload Assessment  

The evaluation of mental workload is a significant issue not only in the emerging field of 

neuroergonomics but also in real-world applications. Previous research works have attained high 

performance regarding efficient single-task classification, however expansion to cross-task mental 

workload assessment usually results in controversial results. In the work described below, an EEG 

experiment is adopted that incorporates two distinct tasks in two levels of task complexity. The data-

driven analysis proposed in this Chapter, encompasses a ML framework to address the barriers frequently 

arising from cross-task workload classification, by utilizing EEG spectral attributes to uncover the global 

brain mechanisms regulating mental workload. In detail, functional connectivity and spectral density 

power features were calculated from different frequency bands in an experimental protocol that 

constituted two working-memory tasks of differentiated level of difficulty. The features were then fed to a 

feature selection and classification framework to assess the prominence of the features and subsequently 

estimate the task-independent classification performance. The ML approach obtained 0.94 classification 

accuracy in cross-task mental load discrimination, while additional analysis of the appointed features 

demonstrated common task-independent workload trends in spectral power and localization properties. 

Specifically, increased frontal, delta and theta power was detected with workload increments, while load-

related differentiations of functional connectivity were also identified in terms of frequency and scalp 

locations. The overall approach illustrates the effectiveness of feature fusion in the endeavor of detecting 

indicative mental load biomarkers for the workload assessment irrelevant of the applied task. 

4.2 Introduction 

4.2.1 Background 

Mental tasks involve various cognitive operations and processes of an individual, including storage, 

processing, transfer and retrieval of information, especially in strenuous task execution, deteriorating 

performance [130]. Nevertheless, the prolonged mental high-efficiency effort, especially in demanding 

tasks, necessitates more cognitive resources to be reallocated consequential leading to an increment of 

mental workload [131]. Recent studies report that increments in work engagement/intensity can result to 

mental overload, reducing operational performance and subsequently induce health conditions and  

burnout syndrome [132], [133]. In this regard, efficient estimation of workload-related mental states 

offers the opportunity for real-world assessment of cognitive burden with implication in clinical 

conditions as well [134], [135]. However, despite cognitive workload being consistently researched from 

various studies [133], the brain functions and mechanism that regulate it encounter several task-related 

challenges, whereas methodological implementations for real-world scenarios EEG workload detection 

are still nowhere near practical applications. 

4.2.2 Machine Learning in EEG Workload Monitoring 

As a means to evaluate the alterations of the various mental processes, electroencephalogram (EEG) has 

proven to be effective and practical as a means to provide low-cost, non-invasive electrophysiological 
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brain activity measurements with high temporal resolution [136]. Several studies have demonstrated EEG 

brain rhythms being associated to cognitive load, highlighting the neuronal processes, while functioning 

as effective indicators for workload estimation [137], [138]. In fact, load effects due to task difficulty 

have been observed in several brain wave aspects [139], [140]. Specifically, pronounced alterations have 

been evident in parieto-occipital alpha and temporal beta power with regards to complexity/workload 

increments [141], while significant relationships between alpha/theta band power and mental load have 

been consistently demonstrated in frontal and posterior areas [142], [143].  

Taking into account the large volume of complex associations between the spectral oscillatory neural 

activities of the different brain regions, machine learning techniques allow for a robust monitoring and a 

comprehensive interpretation of the mechanisms that constitute mental workload. Although most of 

machine learning approaches focus on classification performance without considering possible 

physiological representation influences (i.e. data quality, unrelated noise etc.), by their very nature the 

distinctiveness between the different cognitive states of the features included can facilitate in the effective 

creation of a transparent and vigorous classification model with high prediction ability. With this in view, 

the utilization of EEG-based features in combination with machine learning methods can not only achieve 

high discrimination validity between the workload-related cognitive states, but also identify hidden 

patterns and unveil the underlying mental load cognitive processes, specifically in relation to the 

properties of brain wave frequencies and scalp locations [144]–[147]. For instance, Wang et al.  [145], 

using a proximal support vector machine (SVM) method in a 4-level working memory (WM) task 

obtained high overall performance, utilizing EEG statistical, structural and power related characteristics.  

In their work alpha, frontal theta and posterior high beta and low gamma bands were indicated to have a 

significant effect in mental load. Similarly, linear discriminant analysis (LDA) exhibited a reduction in 

brain wave frequency power values, predominantly in centroparietal alpha and midline beta regions [144], 

whereas in [146] different entropy-related elements demonstrated the relevance of  delta band in workload 

assessment particularly in frontal cortical areas. 

Although the EEG ML applications have attained high discrimination between, uncovering important 

associations of the encompassed attributes with the cognitive states governing mental load, features 

generalizability in diverse tasks is still limited. On this premise, despite several studies indicating the 

successful detection of distinguishable patterns in single-task workload classification, the expansion to 

cross-task workload classification demonstrate significant obstacles that usually present deterioration in 

performance. A major factor for this could be the fact that most of the ML approaches include feature 

calculation and model generation within-task, while classification testing is performed in the other(s). As 

such, task-dependent characteristics that correspond to specific task, while being irrelevant to the other(s) 

might exclude global workload traits thus resulting in small classification efficiency. Intrinsically, 

workload-related cross-task efforts usually exhibit classification accuracy barely over chance level [148]–

[150], with only a only few exceptions demonstrating reliable prediction results [151]. To enhance ML 

performance, relative studies include the combination of diverse cognitive attributes involving spatial, 

spectral and temporal EEG features [152] or features extracted from different types of 

electrophysiological signal modalities [153]. Taking the above into account it can be inferred that 

introduction of new features might increase cross-task classification modeling efficacy and therefore 

resulting accuracy [152], [154]. 
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4.2.3 Brain Networks in Machine Learning Modeling 

Most recently, accumulating studies have shown that the human brain forms a large-scale network of 

interconnected regions within the human connectome and such structure provides an anatomical substrate 

for neural communication, functional processing and information integration in the brain [155]. In 

consequence, functional connectivity (FC) utilization can contribute to a better perception of the 

complicated brain functions in diverse workload conditions, as indicative pairwise connection between 

the various brain areas. In that scope, alterations of FC and its corresponding network architectural 

aspects can expose segregated or integrated processing both locally and globally, as well as reveal the 

modulation of the topological properties of the brain’s cognitive structures due to task load effects [155], 

[156].  

From this standpoint, it can be presumed that FC features incorporation in ML frameworks can not only 

provide a higher level of interpretability regarding the brain’s functional reorganization, but also 

contribute to the recognition of the hidden layers of constituting cognitive mental load, thus resulting in 

high classification performance [157]–[159]. Regardless, only a limited number of related research works 

integrate brain network FC in ML approaches either with regard to investigate the brain functions 

alterations in different tasks [160] or to illustrate brain regions communication in respect to the different 

frequencies and different workload levels in simulated environments [161]. In view of this, only our 

previous work [162] (to the best of our knowledge) employs FC as distinct workload related features to 

explore cross-task load discrimination. The resulted findings illustrated frontal theta and beta frequency 

bands power value modifications subsequently leading to 0.87 task-independent classification accuracy. 

4.2.4 Current work 

In light of all the above, it can be hypothesized that the already established univariate features such as 

spectral power with the addition of novel FC ones could improve task-independent discrimination, while 

providing indication of the brain related mechanisms governing mental load, promoting effective analysis. 

Consequently, the absence of extensive work on workload related classification in cross-task designs 

combining multi-variant features has been the principal motivation in this study. On this premise, in this 

Chapter a workload analysis framework is proposed, incorporating univariate power with multivariate FC 

features to improve the state-of-the arts performance regarding task-independent workload monitoring. As 

such, an EEG experiment incorporating two cognitive WM tasks (an n-Back and a Mental Arithmetic) in 

Low and High complexity conditions, assessing the different spectral attributes in terms of power and 

functional connectivity. Specifically, the Phase Lag Index (PLI) of pairwise electrode connections was 

estimated in 4 frequency bands to illuminate the FC structures and the reorganization of the mental load 

brain network, paired with the relative power spectral density (PSD) to identify prominent features for 

cross- task discrimination. This fusion feature set was then fed into a ML approach (including FS and 

classification), to calculate task-independent and task-dependent classification performance, while 

additionally providing indices in terms of their significance to the neural mental load processes. 
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4.3 Materials and Methods 

4.3.1 Participants 

In the EEG experiment, 40 individuals participated (males / females = 17 / 23) with a mean age of 21.6 ± 

1.6 years. All individuals were right-hand dominant and reported normal or corrected-to-normal vision. 

Before the EEG experiments a phone interview screening took place, making sure that participant did not 

have any history of mental disease, Attention-deficit/hyperactivity disorder, sleep disorder and long-term 

medication intake. Individuals who were unable to obtain a full night of sleep (i.e., more than 7 hours / 

night) for two consequent nights prior the experiment were re-scheduled. Refraining from caffeine or 

alcohol consumption for at least 2 hours before recordings took place was also requested from the 

participants. Written informed consent was obtained from all subjects and experimental protocol was 

established in accordance to the Declaration of Helsinki. 

4.3.2 Experimental Design 

Cognitive task execution, in general, requires storage, retrieval, processing and transfer of information, 

with various brain function governing strategical planning, learning and WM [143]. In fact, WM is 

consistently reported to affect executive attention, inhibitory control, and cognitive flexibility, aspects 

particularly important in mental load processes synergetic with the way information is manipulated in 

mental workspace [163], [164]. In the experimental design presented in this Chapter, two cognitive tasks 

(n-Back and Mental Arithmetic) related to WM were employed in low and high-workload levels (Figure 

4.1) 

The n-Back task utilizes 0-back and 2-back for low and high workload levels requiring subjects to 

identify target stimuli. Specifically, in 0-Back participants had to respond to the fixed target Letter 

‘X’(target), whereas in the 2-Back to the uppercase letter that corresponded to the one presented two trials 

earlier (target). All other stimuli were considered non-target and no response was requested, while in 

addition in all trials no feedback was given to the subjects in regards to the correctness of their responses. 

Both n-Back designs comprised 150 trials of which 45 (30%) were target stimuli. Each letter was 

displayed for 0.5 sec following a 1.5 sec fixation cross. 

In the Mental Arithmetic task, the two workload levels are handled under 1-digit numbers and two 3-digit 

numbers addition. As such, in each trial an addition was presented and next the sum (target) or a close 

number in terms of value (non-target). Participants had to judge if the answer provided was correct. In 

both 1-digit and 3-digit additions, there were 25 overall trials, 12 of which were target. Carrier influence 

was kept to a minimum with each addition concerning only one carry in both levels. Display of additions 

lasted 5 sec after a fixation cross for 4 sec, with answer presented for 2 sec followed by a 2 sec fixation 

cross.  

The stimulus and interim fixation cross in each trial were presented in white fonts on a black background 

with each level lasting approximately 5 min.  Each task was employed twice with counter-balanced order 

for each individual, who were requested to provide a response to both target and non-target stimuli. 

Preceding the EEG recordings practice n-Back and the Mental Arithmetic tasks were implemented with 

an arbitrary threshold of 80% for correct responses ensuring subjects understood each of the tasks 
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employed. Both tasks were conducted under E-Prime 2.0 software client (Psychology Software Tools, 

Inc.), while no feedback was provided regardless of the response accuracy.  

 
Figure 4.1. The experimental design for the high and low workload levels of the n-Back task (A) and the 

Mental Arithmetic task (B). Specifically, low workload level is marked as green color while high 

workload level is shown in light red in both tasks. Target stimuli are indicated with arrows and red color. 

The behavioral performance in terms of accuracy and reaction time are also presented (C). A clear 

workload-dependent effect on behavioral performance was revealed as reduced accuracy and increased 

reaction time with the increase of workload in both tasks (asterisks mark the level of significant difference 

between the workload levels as p <0.001). 

4.3.3 Data Acquisition and Preprocessing 

EEG recording included 64 Ag/AgCl scalp electrodes (model: ASA Lab, ANT B. V., Netherlands), with 

positions corresponding to the international 10-20 system. Raw signals were digitized at a sampling 

frequency of 256 Hz, while electrode impedance was kept below 10 kΩ throughout the recordings, while 

electrooculograms were additionally measured by vertical (above and below the right eye) and horizontal 

electrodes (placed at the outer canthi). Preprocessing involved band-pass filtering (FIR 1 – 40 Hz), 

average re-referencing in relation to all electrodes, and artifact removal was performed by ICA, removing 
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the components highly correlated to ocular signals [165]. Subsequently, EEG data were de-trended, 

segmented to (stimulus-locked) epochs and baseline corrected relative to 100 ms before stimulus onset. 

More details of each preprocessing step can be found in Chapter 2. From the resulting data, only correct 

target epochs were incorporated for further analysis. Preprocessing was implemented with custom codes 

in the EEGLAB toolbox [166] in MATLAB R2019b (The MathWorks Inc., U.S.). 

4.3.4 Feature Estimation and Fusion 

In the approach presented in this Chapter, the detection of important mental load properties of EEG 

spectral characteristics were examined as well as their fusion in cross-task workload classification. On 

this premise, relative power spectral density (PSD) and phase-lag index (PLI) FC were calculated and 

employed as features for the subsequent classification. In detail, PSD was estimated for each channel 

using Welch's method with 50% overlap and 256 points on a 0.5 s window, in each trial. The resulting 

power values were then averaged for delta (δ, 1 – 4 Hz), theta (θ, 4 – 7 Hz), alpha (α, 8 – 12 Hz) and beta 

(β, 13 – 30 Hz) frequency bands. Moreover, to ensure a balanced dataset (since the number of correct 

target responses varied between tasks and subjects), the mean PSD was calculated for each subject, task 

and frequency band for all electrode locations. In a similar manner, PLI FC [15] was assessed for each of 

the aforementioned frequency bands, by calculating the average PLI network between all electrodes for 

each subject and task.  Therefore, the final dataset included 40 × 2 × 2 × 2 = 320 instances (40 subjects 

completed two tasks twice for two workload levels) using 4 frequency bands and 62 electrodes, thus 

ending up with 4 × 62 = 248 power features and 4 × 62 × (62 – 1) / 2 = 7,564 connectivity features, with 

the full fusion dataset comprising of 7,812 features (248 PSD + 7,564 PLI). The mathematical definition 

of PLI is provided in Chapter 1. For the purpose of the features (PSD and PLI) to display similar range in 

values, so that FS and classification can have a stable convergence (in terms of feature bias and weight) 

the relative PSD was calculated and incorporated in the final feature set. Thus, relative PSD is measured 

as the ratio of the band power to the total power ranging in the [0,1] interval (the same range as PLI 

values). 

4.3.5 Feature Selection and Classification 

In order to assess the predictive power of the features, and at the same time reduce variance based on the 

premise that high data dimensionality can hinder effective classification (since the fusion of PLI and PSD 

set involves a very large number of features), a feature selection (FS) framework was employed on the 

whole feature set. As such, the FS procedure was utilized to detect workload-related attributes 

incorporating them into an optimal feature subset with high predictive ability, while remove redundant or 

non-informational features, thus facilitation overfitting bias. In contrast to other cross-task classification 

studies (which generally train the classification model on one task ant test on the other), the FS and 

classification procedure adopted here was task-independent meaning that train and test was done while 

using global data from both tasks (maximizing generalizing). The algorithmic FS and classification 

framework is shown in Figure 4.2. As such, a recursive feature elimination method with correlation bias 

reduction (RFE-CBR) FS method was utilized that estimates the significance of each feature 

(consequently ranking them) on the basis of an internal linear SVM [167].  
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Figure 4.2. The algorithm for the optimal feature subset estimation  

Briefly, the RFE-CBR assesses each feature importance (as a product of the SVM weight) excluding the 

feature that presents the lowest significance starting with a full set. In the same manner, the whole process 

is repeated in succession, until no feature is left in the complete set.  The RFE-CBR ranked set is then 

created by the opposite order of the removed features. In addition to the internal SVM evaluation, the 

correlation between the different features is estimated (successively removing additional features), thus 

providing a more stable, while facilitating possible cases where features might be wrongly estimated. In 

order for the FS (and the subsequent classification) procedure to be able to identify subject-invariant 

attributes that encode global mental load information, leave-one (subject)-out cross-validation (LOOCV) 

was adopted. Specifically, the each LOOCV iteration allocated whole subjects to training or test sets, 

excluding one participant’s data (both workload levels/tasks), with the RFE-CBR FS being fed the 

remaining data (training dataset), thus generating 40 feature rankings. Contrary to the FS (were only 
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training set data were employed), in the classification processes utilized the training set to create a 

mathematical model to distinguish between the low and high workload levels evaluating models 

performance on the testing set. Classification was implemented with the same LOOCV with a Linear 

SVM classifier [168] determining each set accuracy as objective function for subset estimation. A 

schematic of the FS and classification procedures utilized in this Chapter is presented in Figure 4.3. The 

feature subset with the highest average accuracy across folds was selected as optimal, calculated by 

adding the most frequently shared feature (on the ranked RFE-CBR sets) of all folds in succession, 

starting with an empty feature set. For example, the 1st feature subset included the most common RFE-

CBR feature; the 2nd, the two most common features in the ranked RFE-CBR feature and so on.  

To further ensure overtraining/overfitting was avoided, in addition to the classification accuracy 

estimation an additional 1,000 permutation tests with class labels was employed, under the same LOOCV 

procedure. The permutation test were able to provide an empirical distribution of the classification 

accuracy calculating the p-value as the probability of a random permutation to obtain higher performance 

than the one obtained by the SMV classifier [169]. 

 

Figure 4.3. The workflow of the proposed approach 
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4.3.6 Validation 

4.3.6.1 Comparison of Additional Classification methods  

Additional validation of the selected features in terms of global predictive power (i.e. attaining of high 

classification accuracy utilizing the same feature subset irrelevant of the classifier), was performed by 

incorporating the RFE-CBR subset with different ML methods in addition to the primary approach 

presented above. As such, SVM with a Gaussian kernel, Linear Discriminant Analysis (LDA) and 

Random Forest (RF) classifiers were included, with the corresponding performance presented in the 

results section. To test the differentiations of the classification performance and further evaluate if the 

performance of the proposed approach was significantly higher from the additional classification methods 

used for validation, the McNemar test [170] was performed. 

4.3.6.2 Leave-one-task-out Workload Classification 

In general, most previous workload-related works [152], [153] implement cross-task classification by 

training on one task and test on the other(s). However, this approach is prone to incorporate task-specific 

features deterring the classifier of an overall task-independent model. In order to evaluate how the RFE-

CBR ranked set affects the classification performance due to task-specific training; the selected features 

were further validated by including the linear SVM design in training and testing on different tasks. This 

approach is subsequently denoted leave-one-task-out for the remainder of this Chapter. 

4.4 Results 

4.4.1 Behavioral Results 

As anticipated, the behavioral data (including reaction time and accuracy) presented statistically 

significant differences between the low and high workload levels in both tasks (Figure 4.1C). 

Specifically, the two-way ANOVA for task accuracy showed significant main task effect (F1, 316 = 9.35. p 

= 0.002) and main workload effect (F1, 316 = 105.07, p < 0.001), whereas effect for their interaction was 

not found (F1, 316 = 0.005, p = 0.816). In a similar way, the reaction time presented statistically significant 

main task effect (F1, 316 = 199.01, p < 0.001) and main workload effect (F1, 316 = 52.49, p < 0.001) with 

task-by-workload interaction failed to pass the significance threshold (F1, 316 = 0.33, p = 0.569). In 

particular, a pronounced decline was observed in the response accuracy, in conjunction with a reaction 

time increase for both tasks (absent of significant interaction effects), indicate the effectiveness of mental 

workload increments due to the task-related complexity manipulation. 

4.4.2 Classification Performance Results 

As mentioned in the previous section, cross-task classifications was implemented by applying PSD and 

PLI FC features from both tasks and differentiate between the two workload levels (low vs. high). In this 

regard, the overall highest accuracy was 0.94 (p < 0.001, 1,000 permutations) with 0.93 sensitivity and 

0.94 specificity), including 166 features of which 18 (11%) were PSD and 148 (89%) were FC (TABLE 

4.1). Moreover, the workload classification performance of each feature set (PLI and PDC) was evaluated 

separately. In detail, utilizing only the 18 PSD features the obtained performance was much lower, 
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namely 0.59 (p < 0.01, 1000 permutations) for n-Back, 0.63 (p < 0.001, 1000 permutations) for Mental 

Arithmetic and 0.61 (p < 0.001, 1000 permutations) for cross-task classification. On the other hand, 

workload classification employing the 148 PLI features resulted in high (although inferior to the PSD and 

PLI fusion sets) with n-Back, Mental Arithmetic and cross-task attaining 0.95 (p < 0.001, 1000 

permutations), 0.82 (p < 0.001, 1000 permutations) 0.93 (p < 0.001, 1000 permutations) classification 

accuracy respectively. 

 

         TABLE 4.1. CROSS-TASK CLASSIFICATION PERFORMANCE RESULTS 

Feature set 
Classification Accuracy (Standard Error) 

# of feature 
n-Back Arithmetic Task-independent 

PSD 0.59(0.02)** 0.63(0.03)*** 0.61(0.02)*** 18 

PLI 0.95(0.02)*** 0.82(0.02)*** 0.90(0.01)*** 123 

Fusion 0.97(0.01)*** 0.83(0.03)*** 0.94(0.01)*** 141 

           Note: Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p < 0.001, 1000 permutations  

4.4.3 Relative PSD Features 

Subsequent investigation of the PSD features revealed difference in the topographic properties and their 

distribution (in low and high workload) as presented in Figure 4.4. Interestingly, the PDS feature values 

in both tasks displayed comparable patterns in all frequency bands employed, further denoting the 

classification viability for mental load cross-task classification. Specifically, from the 18 PSD features 

selected, 5 were in δ, 10 in θ and 3 in α frequency bands. Notably, no PSD features were selected from β 

band. In detail, concerning δ features 3 were included in frontal electrode positions, with 1 in central and 

1 in parietal electrode sites. In the same manner, a frontal predominance in θ frequency band was found (8 

out of 10) with the rest PSD features in central areas (2 out of 10). On the contrary, a parietal-occipital 

majority was detected in α band, with all features being selected from parietal/parieto-occipital positions. 

Although no clear trend could be discerned about the δ frequency band (with 3 out of 5 PSD features 

decreasing indicating a complex parietal-increment-fronto-decrement pattern), θ PSD features 

demonstrated an overall increase from low to high workload, whereas α, an overall decrement. 

Interestingly, regardless of the task employed (i.e., whether it was n-Back or Mental Arithmetic), the 

same increasing or decreasing trends were observed in all frequency bands. 

 

 



CHAPTER 4 - TASK-INDEPENDENT WORKLOAD ASSESSMENT 

Ioannis Kakkos – Doctoral Thesis  55 | P a g e  

 
Figure 4.4. The PSD distribution in terms of topography relative to low and high workload for the n-Back 

(upper part) and the Mental Arithmetic (lower part) task. PSD between both tasks present similar patterns 

across the four frequency bands with the color bar below indicating the relative PSD mean value for each 

frequency band. The differences of PSD between low and high workload levels are provided in the right 

panel. The color of the bar indicates the absolute value of relative PSD differences. 

4.4.4 Functional Connectivity Features 

The FC features of the different frequency bands are presented in Figure 4.5. From the 148 features 

corresponding to PLI FC, the majority of connections included θ (n = 56) and β frequency bands (n = 54), 

with a smaller feature number pertaining to δ (n = 20) and α (n = 18) bands. In particular, most of the θ 

band connections involved frontal electrode positions; however an overall increasing or decreasing trend 

regarding connectivity strength could not be discerned.  In contrast, 63% of the θ connections in parietal 

locations presented connectivity strength decrement in the high load level. At the same time, in β 

frequency band frontal FC strength reduction (from low to high workload) was observed in most cases 

(30 out of 54 features), whereas δ frequency band showed an 80% (16 out of 20) FC deterioration in all 

scalp locations. Quite the reverse was shown in α frequency band connections, with an overall 

augmentation of the FC strength (14 out of 18) in high workload in all but occipital areas where the 

opposite was noted. Of note is that 141 out of 148 of the PLI features presented similar trend in terms of 
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increases or decreases in both tasks. Nonetheless, 7 FC exhibited opposite fashion regarding connectivity 

strength increments in n-Back and Mental Arithmetic tasks. These included 5 θ band connections, 2 of 

which concerned central locations, 1 frontal/fronto-central, 1 temporal and 1 frontal/parietal locations; 

and two α band FC in frontal/fronto-central and parietal/occipital locations. Despite that, the discrepancy 

of the FC strength displayed no significant alteration in the overall position percentage. 

 
Figure 4.5. The selected PLI features for cross-task mental workload classification. To better reveal the 

alterations of FC with mental workload, the distribution is presented in each task (n-Back for upper panel, 

Mental Arithmetic for lower panel) across the four frequency bands. The color of the edges shows the 

mean value difference of the connectivity strength. The color bar on the top right corner represents the FC 

variation. The FC features are grouped according to their scalp location (frontal, central, temporal, 

parietal and occipital), while ration of increments and decrements in FC (relative to mental workload for 

each frequency band) is displayed in the bar plots below the FC features distribution. Particularly, a 

unilateral decreased FC pattern was revealed in δ band, while most FC features in α band exhibited an 

increased pattern. FC features in θ and β bands comprised over 70% of the selected FC features and 

showed a location-dependent complex alteration pattern. The overall distribution of FC across the four 

frequency bands is depicted in the pie chart, whereas the distribution per electrode position is presented in 

the radar plot. 
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4.4.5 Statistical Evaluation of Features 

The variable values differences between the two workload levels were additionally explored by statistical 

evaluation on the selected RFE-CBR features. As such, an one-way ANOVA was implemented on each 

of the 166 features individually, presenting statistical significance at p-values <0.05 (95% confidence 

interval). Notably only 5 of the total features displayed significant p-values, none of which represented 

PLI features and were all related to relative PSD (Figure 4.6). Remarkably, all significant features 

presented θ band increasing values form low to high workload, with additional frontal majority (4 out of 

5) and left hemispheric predominance. This is in line with several studies providing indications of frontal 

θ band power increments in high mental load (further details are presented in the Discussion section), 

nevertheless due to classification and statistical testing approaches different processing procedures, 

feature importance is indicated differently in each approach. For instance statistical ANOVA procedures 

estimate the mean value variance of low vs high workload by terms of variance of the confidence interval, 

while the FS scheme implemented determines features’ prominence by the weights deriving from the 

internal SVM classifier mapping feature vectors in multi-dimensional space and estimating maximum 

hyperplane deviations. From this standpoint, statistically significant attributes might not be effective in 

ML methodological differentiations or in the identification of the predictive power of each feature. 

 
Figure 4.6. The significant feature value variations between low and high mental workload. Every box 

represents the feature variance  (Above them is the electrode position and the ANOVA p- and F-values), 

with the whiskers extending to the most extreme points, the red cross (‘+’) displaying the data outliers 

and the red line denoting the median value. 

4.4.6 Validation Results 

The feature subset validation included four additional classifiers, namely Gaussian SVM, k-NN, LDA and 

RF, the performance of each is displayed in TABLE 4.2. From the table it can be indicated that all 

classifiers obtained high performance, in some cases comparable to the proposed approach described in 

this chapter (as suggested by the receiving operator characteristic, ROC provided in Figure 4.7), although 

none surpassed it in terms of classification accuracy. McNemar’s test was also implemented to indicate 

that the classifiers where indeed different, resulting in all comparisons attaining a McNemar’s p-value 
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<0.05. On this premise, it can be suggested that the features selected present high cross-task predictive 

ability in a global scale, irrespective to the classifiers employed or to algorithmic variations. 

 In addition to the cross-task workload classification, a leave-one-task-out scheme was employed to 

further estimate the universal nature of the feature. In this paradigm classification training was used on 

one task, while testing was done on the other providing two ML comparative results; i.e., train on n-Back 

/ test on Mental Arithmetic, and train on Mental Arithmetic / test on n-Back (TABLE 4.3). Notably, the 

performance of the leave-one-task-out approach was lower than the one proposed in the cross-task 

approach proposed in this chapter, although it was comparable in terms of accuracy with the work in 

[152] (the highest so far) implementing a similar framework. 

TABLE 4.2 CROSS-TASK CLASSIFICATION RESUTLS USING ADDITIONAL METHODS 

Feature set 
Classification accuracy (Standard Error) 

k-NN Gaussian SVM LDA Random Forest 

PSD 0.57*(0.03) 0.63**(0.02) 0.59**(0.02) 0.58*(0.03) 

PLI 0.71***(0.02) 0.90***(0.01) 0.86***(0.02) 0.73***(0.02) 

Fusion 0.76***(0.02) 0.91***(0.02) 0.91***(0.02) 0.78***(0.02) 

Note: Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p < 0.001, 1000 permutations.  

 
Figure 4.7.  The receiving operator characteristic (ROC) curves for the methods implemented in (a) 

feature fusion, (b) using only PLI features and (c) using only PSD features 

 

TABLE 4.3 LEAVE-ONE-TASK-OUT CLASSIFICATION PERFORMANCE RESULTS 

Approach 
Classification accuracy (Standard Error) 

PSD PLI Fusion 

Train on NB, Test on MA 0.61**(0.03) 0.64**(0.02) 0.90*(0.02) 

Train on MA, Test on NB 0.59**(0.02) 0.78***(0.03) 0.81***(0.04) 

Note: NB = N-Back, MA = Mental Arithmetic; Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p 

< 0.001, 1000 permutations.  

4.5 Discussion 

In this chapter, an analysis framework is presented regarding cross-task workload classification in two 

different WM mental tasks, utilizing spectral EEG characteristics. As such, a fusion of different frequency 
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bands relative PSD and PLI FC features was implemented, employing a ML framework incorporating FS 

and classification to identify the feature subset attaining the overall optimal performance. The selected 

features encompassing the optimal set were further analyzed in terms of frequency and scalp positions, 

providing indices of common (to both tasks) properties in workload underlying functions. The provided 

results affirm the efficiency of the approach proposed, verifying that feature fusion of power and FC 

attributes can obtain high classification performance, while effectively identify the hidden neural 

substrates governing mental workload in a global manner. Taken all of the above into account, the 

significance of this work does not only concern academic brain-related research, but also provide social- 

and health-related indices resulting from workload monitoring. For instance, besides the evident 

importance of mental fatigue evaluation (and by extension the decrement in individuals’ performance) 

generated from sustaining high mental load, workload effects have been associated with various health 

conditions such as mental burnout, increased risk of physical, mental and emotional diseases, reduced 

immune system, depression etc. [171]. 

 

4.5.1 Workload-related Classification Performance 

As far as the classification performance is concerned, the framework proposed in this Chapter obtained by 

far the highest cross-task classification accuracy, while utilizing only a small number of highly predictive 

features. The very low permutation tests p-value also demonstrate the fact that universal workload-related 

features were successfully identified, while overfitting bias was avoided. This fact, paired to McNemar’s 

test additional evaluation, further demonstrated the efficacy of the proposed approach (with significant 

higher performance than the validation comparisons). 

Regarding the overall performance results, the framework proposed attained cross-task accuracy of 0.94, 

with single task classification of 0.83 for Mental Arithmetic and 0.97 for n-Back task. The deviations in 

performance could be related to the fact that the selection of the features employed was based on the 

cross-task classification accuracy and thus the degree to which they relate to the mental load cognitive 

functions of individual tasks is not clear. In this regard, adding individual task-related features might 

enhance within-task performance [162], however we opted for the identification of workload related 

features that present high accuracy with global properties (i.e., independent of the task employed), thereby 

avoiding (task-related) selection bias. From this standpoint, cross-task classification is not a finite 

solvable problem with satisfactory accuracy eluding the majority of studies (TABLE 4.4). Although the 

tasks in the studies presented were not identical, WM manipulations as a result of mental load were 

reported in all of them suggesting a vague comparison. As such, the overall highest cross-task accuracy in 

workload classification was obtained in our previous work [162] demonstrated 0.87 accuracy, with [152] 

marginally improving performance (0.89). Furthermore, FC-based attributes were only employed in our 

previous study as distinctive features, whereas most cross-task research analyses utilize the power 

estimated from each frequency band. Nevertheless, in that work the brain activation in source space was 

evaluated by calculating the Pearson Correlation between the different brain regions, thus providing 

comparisons with other widely adopted fMRI studies. Alternatively, in this Chapter the FC in time-

domain is estimated by implementing a more effective brain network providing insights as to relationship 

between the different brain locations information is transmitted. More importantly, the fusion of relative 

PSD and FC features not only displays the highest (so far) cross-task classification performance, but also 
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illustrates the capability of the proposed framework for extensive interpretation of the selected brain 

signal characteristics and their implications in neuroscience. 

TABLE 4.4. COMPARISON WITH CROSS-TASK WORKLOAD CLASSIFICATION STUDIES 

Study Features Method Tasks Accuracy 

(Gevins et al., 1998) 

[151] 
PSD ANN 

Verbal n-Back, spatial n-

Back 
0.83 

(Baldwin and 

Penaranda, 2012) 

[148] 

PSD ANN 
Reading span, spatial n-

Back, Sternberg 
0.45 

(Walter et al., 2013) 

[149] 
ERS/ERD SVM 

Go/no-go, verbal n-Back, 

reading span, algebra 
0.54 

(Ke et al., 2015) 

[150] 
PSD SVM 

verbal n-Back, spatial n-

Back 
0.29 (†) 

(Dimitrakopoulos et 

al., 2017) [162] 
FC SVM 

Spatial-temporal n-Back, 

Arithmetic 
0.87 

(Zhao et al., 2018) 

[153] 

Electrophysiological signals 

(ECG, EOG, RSP, GSR, PPG) 
SVM 

Anomaly detection in 

images 
0.54 (†)  

(Zhang et al., 2019) 

[152] 
Spatial, spectral, temporal EEG 

R3DCN

N 

Spatial n-Back, 

Arithmetic 
0.89 

The proposed 

framework [172] 
PSD and FC SVM 

Spatial-temporal n-Back, 

Arithmetic 
0.95 

Note: (†) indicates non-binary classification (i.e. more than 2 classes). 

Although, most cross-task mental load ML research works implement classification training on one task 

and then test on the other(s) [150], [152], [153], conversely in the proposed approach the FS and 

classification procedures utilized data from the two tasks concurrently. The motive behind this was to 

illustrate a universal (common to the two tasks) workload related brain mechanism, since task-specific 

attributes might be present if FS and classification were implemented separately in each task), thus 

providing unsatisfactory performance. This is supported by evidence that suggest high variability of the 

feature values when training and testing was done under different tasks/conditions [148], [149], [153], 

[173]. However, to assess the task-independent nature of the features subset employed, additional 

validation was performed by utilizing data only from one task for training and then estimate the 

classification accuracy by testing on the other. Notably, the obtain validation accuracy exceeded the  

performance of most previous studies (TABLE 4.4), being comparable to [152], although significantly 

reduced as against the proposed framework (0.86 vs 0.94). 

As far as the features that comprised the optimal subset are concerned, FC features attained high 

classification performance excluding relative PSD ones, while when the opposite was examined 

(employing only PSD features) classification performance significantly declined. This manifested in both 

cross- and within-task classification displaying analogous (low) performance to the majority of cross-task 

ML studies that only employ spectral power attributes. From this standpoint, it can be inferred that by 

excluding PSD from the overall FS and classification a better interpretation could be achieved as only the 

most predictive characteristics would be considered. Nevertheless, the fusion of spectral power with FC 
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improved the classifier’s performance indicating that feature combination acts as an efficient separator 

when mapping the characteristics employed in higher dimensions. Alternately, implementing FS 

separately in PSD and PLI and then comprise a new ranked set by their combination, could in theory 

improve performance. However, the RFE-CBR calculates the correlation bias as a secondary step in each 

repetition, thus by removing part of the full set the resulting subset might incorporate highly correlated 

variables rendering classification unreliable and feature interpretation questionable [174].  It is worth 

noting that, despite the fact that PSD attributes presented similar workload-related trends across tasks, 7 

out of 148 connectivity features exhibited discrepancies from low to high workload in the two tasks (i.e., 

increasing in PLI value in one task, while decreasing in the other). As such, to evaluate whether these 

connections were related to task-specific information, the proposed framework was also utilized 

excluding these features. In this respect, the classification accuracy results presented an insignificant 

decrease (less than 1%), therefore indicating that divergence between the two tasks might be due to PLI 

subject variability. 

4.5.2 Task-independent Spectral Features 

The cognitive aspects involved in the n-Back and Mental Arithmetic tasks have been consistently reported 

to entail equivalent neural processes with regard to mental load  [164], [175]–[177]. Specifically, WM 

overall capacity governs the cognitive functions of storage and retrieval of information, which in the tasks 

employed relate to the Mental Arithmetic additions (in respect of the carries involved) and the letters 

presented in the n-Back task previous trials. As such, in the high workload level the memory maintenance 

requirements were higher due to the sustained attention for longer periods, rendering individuals to be 

more focused, while ignoring previous trials cues as irrelevant (inhibitory mechanisms). In that scope, the 

optimal feature subset selected could identify the distinctive underlying WM cognitive processes 

regulated by mental workload and thus provide high discrimination between the different levels. From 

this standpoint, the suspected affiliation between the indicative features and mental load levels are 

elaborated below. 

First and foremost, θ frequency frontal majority implies divergences in the WM mental load requirements 

related to the task difficulty. This is in line with previous research works reporting frontal θ alterations in 

high workload levels [138], [148], [162]. In this regard, the increment in frontal θ power is systematically 

described in workload-related studies, especially in WM cognitive processing in memory/arithmetic 

related tasks [138], [148], [177], [178], which is also present in the relative PSD features selected. On the 

contrary, PLI FC features did not display a clear trend with 61% of the edges involving frontal sites (14 

out of 23) declining. In this context, it should be noted that PSD and PLI are not affiliated in terms of 

value or nature, as PLI calculated the phase synchronization between the different electrode locations 

which can intensify in spite of power-related decrements. On this premise, the overall results 

demonstrated a consistent reduction in most parietal θ band connections. These limited θ band 

synchronization could be suggested to be a result of task-dependent reactive control [179] and WM load 

manipulations due to elongated memory periods [180], [181]. In a similar fashion, α band features 

implicated in posterior locations display values inversely correlated to workload level. These results are 

corroborated by relevant studies reporting parietal and occipital α power to be reducing in high 

demanding tasks [138], [144], [148], [177]. This was also observed in FC features, although only in 

occipital locations. While α decrements have being associated to WM and visual attention elements [144], 

[182], [183], synchronization augmentation in α band has been related to cognitive inhibition in mental 
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load information handling  [142], [183], [184]. This is further supported by the fact that increases in 

connectivity due to high workload was noted for all locations, with the exception of occipital sites. With 

regard to the δ band, a frontal predominance was observed in both PLI and PSD features as one might 

expect due to the workload-related memory and attention demands in both tasks [185], [186]. Even 

though, the small number of discriminative PSD features cannot definitely provide indications of an 

absolute decline (3 out of 5), FC values displayed a high workload decrease in PLI strength in all scalp 

locations. This is supported by recent studies that also report δ band decrements in memory-related and 

cognitive control characteristics attributed to mental load [187]–[189]. Last but not least, although β 

connections were the second most frequent in the optimal subset, no PSD feature was included by the 

RFE-CBR FS. In this regard however it should be noted that β band power values frequently illustrate 

little to no significant differences between different task complexity [190], [191]. On the contrary, the 

decreased β band FC consistent in most PLI connections has been suggested as workload indicator in 

relevant studies [161], [162]. Moreover, β desynchronization in frontal regions is also reported to be 

implicated in memory and attention demands [139], [192], [193], with β reduction related to task-related 

inhibition as a product of mental load [194], [195]. 

4.5.3 Theoretical Implications and Future Work 

Even though the features selected by the proposed framework exhibit high classification performance, 

their interpretation should be taken with a grain of salt. The reason being that the FS process illustrates 

features’ significance (in terms of classification accuracy) and not the degree in which they relate to the 

workload cognition. As such it is not clear if the features incorporated in the optimal set reflect underlying 

mental workload neural substrates or are included to minimize data unrelated noise and thus enhance 

performance [196]. From this perspective, only a small number of PSD features presented statistically 

significant differences (as presented in the validation results section), while FC displayed no significant 

value deviations with regard to the workload levels. This could be due to the variability between 

individuals as mental load frequency-related attributes can present a large deviation between subjects 

because of differences is attention, effort or task expertise [177], [186], [197].Despite that however, the 

optimal subset generated by the FS process illustrated high accuracy regardless of the classifier utilized 

(as indicated in Validation results TABLE 4.3), underlying the features quality as robust indicators of 

elicited high workload in a task-irrelevant manner. In addition, the combination of spectral power and FC 

(even though differ in both nature and behavioral motifs), present the opportunity to confirm the 

associations between the different cognitive functions affiliated with mental workload. 

In light of all the above, the FC features included in the optimal subset present a common pattern that 

links cognitive control of inhibitory functions and mental load irrespective of the task employed [142], 

[179], [182], [183], [189], [194], [195]. In fact, the global mechanism common to both tasks indicated by 

the selected features of the adopted framework is mental inhibition, as individuals prolonged mental high-

efficiency effort is made not to remember previous cues (i.e., such as carriers or n-Back objects), but 

tuning out irrelevant or distracting stimuli. In practice, the tasks implemented in this Chapter demand high 

WM resources, since in the high workload level involve continuous mental updating remembering 

previous trials stimuli and excluding others prior to them. This could also explain the universal 

perspective of induced mental fatigue from long periods of multi-tasking, as individuals are required to 

focus on each task, while at the same time disregarding all others in a constant manner.  
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Despite the fact that the experimental design employed here did not consider irrelevant or distraction trial 

effects since inhibitory control was not in particular under investigation, evidence from previous studies 

indicate the interference effects of mental load and its relevance to WM [198]–[201]. Consequently, it can 

be presumed that FC constitutes a vigorous approach for information relationship assessment between 

different scalp locations, while effectively providing workload-related cognitive aspects. Nevertheless, 

the number of relevant works that include FC analysis is very limited and thus verification of this premise 

is extremely difficult. Future works that incorporate features of different modalities and multivariate 

characteristics, as well as their fusion would provide convincing proof of global neural substrates that 

regulate cognitive workload. 

4.6 Conclusion 

In this Chapter, the fusion of EEG diverse EEG spectral characteristics has been implemented to classify 

between two distinct workload levels in a cross-task cognitive load classification scheme. In detail, the 

PLI FC and the relative PSD were calculated in four EEG frequency bands, while being incorporated a 

multi-dimensional feature set and then the discriminative power of each feature was assessed in regard to 

mental workload discrimination. To that end, a FS and classification utilized demonstrated high overall 

performance, being able to detect a small subset of highly discriminative attributes. Additional analysis 

highlighted further the robustness of this approach indicating global characteristics (common to both 

tasks) and deciphering the degree on how they relate to mental workload. The produced results promote 

the efficiency of feature fusion on cross-task workload classification, while assessing the underlying 

mental load neural substrates.  
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Chapter 5 

5.1 Multi-Level Workload Classification in Real-World Scenarios 

To date, mental load assessment –although well established in controlled cognitive tasks– is not 

considered suitable for real world implementation due to diverse neuronal information present in 

continuous cognitive processing. In this regard, interfaces that incorporate virtual reality provide realistic 

environments for lifelike interactions, offering immersive experience and perception. In this Chapter, an 

analysis of the modifications of pilots’ brain networks has been done, with regard to three different 

workload levels in computer screen (2D) and virtual reality (3D) environments. In detail, the FC in EEG 

source space of different brain waves has been employed to assess the reorganization of the brain 

networks in terms of topology and efficiency. Moreover, the individual FC features has been utilized in a 

FS and classification scheme to detect the mental load topological differences between the two 

environments. The framework presented here, identified a frontal alpha band majority in both simulation 

interfaces with common connections existing in all complexity levels. On the contrary, theta and beta 

bands displayed dissimilarities in the local and global efficiency between the two environments. These 

results allow for an efficient evaluation of the cognitive substrates that govern workload in real-world 

scenarios. 

5.2 Introduction 

Cognitive processing refers to the individual's ability to complete mental tasks by the assimilation of 

information gained through experience and perception. The increasing demands of a task (which can 

contribute to poor performance), known in the literature as high mental workload, necessitate additional 

brain resources and in combination with an individual’s limited mental capacity lead to deteriorated 

performance [202], [203].  In fact, prolonged task with a high workload has been identified as the primary 

cause of mental fatigue [204]. Continuous workload monitoring, for example, would greatly benefit 

operations such as aircraft piloting and air traffic control, with the goal of enhancing the efficiency and 

safety of everyone involved [204]–[206]. Monitoring mental stress with the ultimate goal of maximizing 

human performance and reducing human errors in real-world settings is consequently of great interest in 

the nascent field of neuroergonomics [207], [208]. The electroencephalogram (EEG), a non-invasive 

measurement of electrical activity generated by the brain, has been routinely used in mental workload 

research with promising results [209], [210]. As a result, convergent data demonstrate considerable 

changes in alpha and theta band power, which may serve as the most important indications for workload 

estimate [211]–[213], while numerous research indicate links between delta, beta, and gamma band 

oscillations and mental load [214]–[216]. In fact, Spüler et al. [217] demonstrated workload-related 

effects in the theta, alpha, and lower beta frequency bands at the parieto-occipital electrode locations by 

varying the difficulty of arithmetic addition tasks. In a relevant working memory paradigm [218], 

increased cognitive load was linked to lower alpha and beta band power at all midline electrodes, with 

extra alpha decrements in centroparietal sites. Borghini et al. [219] also developed a workload index of 

difficulty level in a driving exercise based on theta and alpha power spectra. In more demanding 

situations (equivalent to higher workload), theta band increments over prefrontal areas and alpha band 

decrements in parietal areas were found. Given that a wide range of brain areas have been linked to 

mental workload, it's plausible to assume that the neural mechanisms underlying workload involve 
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connection alterations, in line with the recent conceptualization of the human brain as a large-scale 

network of interconnected regions [220]. 

To explicate the complicated interactions between numerous cerebral regions involved in human 

cognition, as well as to understand the functional architecture and reconfiguration of the brain, an 

increasing number of research works are using network modeling and graph theory methodologies [14], 

[221], [222]. In this regard, network metrics such as global and local efficiency (measures of a network's 

information transfer efficiency) have been shown to be strongly affected by varying workload levels 

[223]–[225]. Based on phase coherence networks in an n-Back task, Kitzbichler et al. [223] showed a 

constant increase in global efficiency and a decrease in local efficiency in the alpha, beta, and gamma 

frequency regions. Increased local and global efficiency in brain networks of the delta, theta, alpha, and 

beta bands was found under high workload condition in another study comparing network reorganizations 

between low and high load conditions [224]. Furthermore, Klados et al. [225] found increased local and 

global efficiency during arithmetic tasks with increasing difficulty in the delta, theta, and alpha bands, 

with the frontal and fronto-parietal regions showing the most evident connections. Functional brain 

networks have also been utilized in conjunction with classification algorithms to distinguish between 

various cognitive states [226]–[228]. Indeed, classification may not only give more comprehensive 

knowledge of the global input data by finding hidden paths of network reorganizations under varied 

workload levels, but it can also achieve high performance in workload monitoring for possible real-world 

applications. In this scope, previous research proved the viability of using cross-frequency coupling 

between high alpha and theta bands to classify a 5-level mental arithmetic task's mental effort [221]. 

Moreover, extension of this work on single-task workload classification to cross-task mental workload 

evaluation using multi-band EEG functional connectivity achieved satisfactory classification accuracy 

[229]. Further examination revealed that the most discriminative connectivity patterns were found in the 

frontal lobe of the theta band, but beta-band connections weakened as task demands increased. Although 

the concept of mental workload is widely recognized in the neuroergonomics community, real-world 

applications are still a long way off. This is largely due to the fact that most relevant studies use well-

controlled cognitive tasks, with only a small number of them using virtual reality (VR)-based simulation 

experiments [230], [231].  

Given the documented differences in neurological foundation between 2D and 3D presentations [232], 

[233], it's possible that functional brain connection reorganizes differently in the two simulated settings. 

Using a combination of brain network analysis and connectivity-based workload classification, this 

chapter aims to: a) reveal the neural basis of mental workload in a flight simulation experiment; and b) 

delineate the convergent and divergent network changes induced by various workload levels between 

standard computer screen (2D) and virtual reality (3D) environments. To that end, in this chapter, the 

effects of the two simulated environments in multi-level workload circumstances were analyzed using 

cortical connections and ML. Specifically, a thorough investigation on changes in functional brain 

networks using graph theoretical metrics and the brain connectome was made, in a FS and classification 

framework, while at the same time the relationship and consequences of spatial and frequency network 

characteristics on pilot mental strain was assessed. 
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5.3 Materials & Methods  

5.3.1 Subjects  

In this work, 33 male students and staff members from the National University of Singapore (NUS) were 

recruited (mean age = 23.2 ± 2.2 years). All participants had normal or corrected-to-normal vision and no 

previous experience in simulated aircraft operation. Participants were excluded if they met the criteria: 

history of psychiatric, neurological or cognitive impairment, sleep disorder or childhood history of 

ADHD and long-term medication intake. Participants who did not have a full night of sleep (> 7 h) for 

two nights before the experiment were re-scheduled. In addition, on the day of the experiment, 

participants were asked to avoid strenuous exercise 2 h prior to the recordings as well as consumption of 

caffeine or alcohol. Signed written consent form was obtained from all participants after the description of 

the experimental protocol. The study was approved by the Institutional Review Board and was conducted 

in accordance with the Declaration of Helsinki. 

5.3.2 Experimental Design 

All subjects performed two flight simulation sessions using two interfaces: a) a standard session using a 

24-inch LED computer screen (CS) (Model: U2412Mb, Dell Inc., Texas, USA), and b) a virtual reality 

session (VR) via the Oculus Rift headset (Model: Development Kit 2, Oculus VR, California, USA) 

(Figure 5.1), both depicting the view in the aircraft cockpit. The flight simulation software was the 

Microsoft Flight Simulator X using a joystick (Model: Extreme 3D Pro, Logitech, Switzerland). Before 

the EEG recordings, a training session was performed in both environments until satisfying operational 

control of the aircraft was accomplished. Each flight simulation session consisted of three stages with 

increasing task difficulty (Stage 1, Stage 2 and Stage 3, abbreviated to S1, S2 and S3), designed to induce 

different levels of mental workload (Figure 5.1 (b)). Subjects were instructed to fly the aircraft following 

a predefined flight route for each stage (green dashed line in Figure 5.1 (b)), which lasted 4 min with an 

inter-stage interval of 1 min for experiment reconfiguration (Figure 5.1 (c)). In detail, the three stages 

included: S1, autopilot state, in which no aircraft operations was required (minimum workload level); S2, 

manual operation state, in which subjects were required to manually operate the aircraft to complete seven 

consecutive turns while maintaining an altitude of 3,000 feet (medium workload level); and S3, manual 

operation with aircraft failure, in which S2 was performed while additionally the aircraft was under the 

influence of aileron and rudder failures, increasing control complexity (maximum workload level). The 

order of the sessions and stages were counterbalanced across the subjects.   

To confirm that the task difficulty manipulation was effective, participates were also requested at the end 

of each session to rate the perceived task difficulty of each stage in a scale of 1 – 7 with higher scores 

indicating more difficult conditions. Moreover, to examine the users’ experience differences, each subject 

was asked to fill a short questionnaire at the end of each task. The questionnaire comprised 10 questions 

about system usability, 6 questions about perceived usefulness, 6 questions about perceived user-

friendliness, 7 questions about satisfaction and 6 questions about overall reaction. All answers were 

provided in a scale of 1 – 5, with higher score indicating better user experience at each category. 
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Figure 5.1. The experimental protocol employed. (a) The view of the cockpit as shown in Computer 

Screen (CS) and Virtual Reality (VR). (b) The flight route of three workload stages (S1, S2, and S3) in 

green. The predefined flight route is shown in red (c) Each participant was required to complete one 

session of each simulation tasks (i.e., VR and CS) for the three stages. 

5.3.3 Data acquisition and preprocessing 

Continuous EEG data were recorded in high-resolution from 64 Ag/AgCl scalp electrodes using the 

international standard 10-20 system (ASA Lab, ANT B.V., Netherlands). Bipolar electrooculogram 

(EOG) signals were also acquired from electrodes placed above and below the right eye (VEOG) and at 

the outer canthi of both eyes (HEOG). Impedance of electrodes was kept below 10 kΩ throughout the 

duration of the experiment. A band-pass filer (0.5 – 70 Hz) was applied for anti-aliasing and additionally 

a 50 Hz notch filter was used to remove main interferences. Raw EEG signals were digitized at a 

sampling rate of 256 Hz, filtered applying a 0.5 – 40 Hz FIR band-pass filter and referenced to the 

average of both mastoids (M1 and M2). Data were then de-trended and baseline adjusted. To exclude eye-

blink artifacts, independent components analysis was employed and the components showing high 

correlation to the HEOG and VEOG were discarded [226]. More details about EEG pre-processing can be 

found in Chapter 2. Data from four subjects were removed due to high noise contamination or error 

recordings, thus data from 29 participants remained for further analysis. All preprocessing steps were 

implemented in EEGLAB 13.6.5 [234] in MATLAB R2017b (The MathWorks Inc, Massachusetts, 

USA). A flowchart of the data analysis framework is shown in Figure 5.2. 
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Figure 5.2. A schematic of the workflow of the proposed framework 

5.3.4 Cortical connectivity  

Aiming to localize mental workload effects and evaluate the reproducibility of the main results, source 

localization was employed to reconstruct the cortical signals. In detail, the EEG time series for each 

session and workload level were divided into delta (δ, 0.5–4 Hz), theta (θ, 4–7 Hz), alpha (α, 8–12 Hz), 

beta (β, 13–30 Hz) and gamma (γ, 30–45 Hz) frequency bands and then the intracerebral electrical 

sources corresponding to the recorded surface signals were approximated by applying exact low-

resolution electromagnetic tomography (eLORETA) [235]. eLORETA utilizes the MNI152 template 

[236] to calculate the source space current density (A/m2) in 6239 voxels at 5 mm spatial resolution with 

the 3-D solution space restricted to cortical gray matter (more details about source localization can be 

found in Chapter 2). Then, the solution space calculated was parcellated into 116 regions of interest 

(ROIs) according to the previously validated Automatic Anatomical Labelling atlas AAL-116 [237]. 

From the 116 ROIs, 36 corresponding to cerebellum and sub-cortical regions were removed to avoid 

possible depth bias [238], with 80 brain regions remaining for further analysis (TABLE 5.1). Source 

localization was carried out with the LORETA-Key software (http://www.uzh.ch/keyinst/loreta.htm). To 

calculate the functional connectivity between each pair of ROIs the Phase Locking Index (PLI) [239] was 

employed (please refer to Chapter 1).  

Data were divided into epochs of 60 sec with 50% overlap and one PLI network was estimated for each 

epoch and frequency band (more details about PLI calculation can be found in Chapter 1).  

 

http://www.uzh.ch/keyinst/loreta.htm
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TABLE 5.1. THE NAMES AND THEIR CORRESPONDING ABBREVIATIONS FOR 

THE AAL ROIS 

Region name Abbreviation Classes 

amygdala AMYG Paralimbic 

orbitofrontal cortex (superior) ORBsup Paralimbic 

angular gyrus ANG Association 

orbitofrontal cortex (inferior) ORBinf Paralimbic 

anterior cingulate gyrus ACG Paralimbic 

orbitofrontal cortex (medial) ORBmed Paralimbic 

calcarine fissure CAL Primary 

orbitofrontal cortex (middle) ORBmid Paralimbic 

cuneus CUN Association 

lobule PCL Association 

fusiform gyrus FFG Association 

parahippocampal gyrus PHG Paralimbic 

gyrus rectus REC Paralimbic 

postcentral gyrus PoCG Primary 

heschl gyrus HES Primary 

posterior cingulate gyrus PCG Paralimbic 

inferior frontal gyrus (opercular) IFGoperc Association 

precentral gyrus PreCG Primary 

inferior frontal gyrus (triangular) IFGtriang Association 

precuneus PCUN Association 

inferior occipital gyrus IOG Association 

rolandic operculum ROL Association 

inferior parietal lobule IPL Association 

superior frontal gyrus (dorsal) SFGdor Association 

inferior temporal gyrus ITG Association 

superior frontal gyrus (medial) SFGmed Association 

insula INS Paralimbic 

superior occipital gyrus SOG Association 

lingual gyrus LING Association 

superior parietal gyrus SPG Association 

middle cingulate gyrus MCG Paralimbic 

superior temporal gyrus STG Association 

middle frontal gyrus MFG Association 

supplementary motor area SMA Association 

middle occipital gyrus MOG Association 

supramarginal gyrus SMG Association 

middle temporal gyrus MTG Association 

temporal pole (middle) TPOmid Paralimbic 

olfactory OLF Paralimbic 

temporal pole (superior) TPOsup Paralimbic 
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5.3.5 Network Topology Analysis 

Before the network analysis, a threshold was applied to each network matrix to convert it to a fixed 

sparsity level to ensure the equivalent wiring cost of each subject. The sparsity value represents the ratio 

of the actual edges to all possible network edges. A sparsity range (10% - 40%) was applied to both keep 

the reachability of the network and allow prominent small-world characteristics. Aiming to offer a clear 

and direct physical meaning to the concept of small-word properties in terms of information flow [19], 

[240], global efficiency (EG) and local efficiency (EL) of brain networks were estimated (more details 

about networks metrics calculation can be found in Chapter 1).  

The graph theoretical analysis was implemented with the Brain Connectivity Toolbox [14]. To avoid 

multiple comparisons at each individual sparsity threshold and to reduce the dependency of the significant 

alterations on the arbitrary selection of a single threshold, integrated network metrics were calculated over 

the predefined sparsity range (corresponding to the area under the curve measurement) [19]. Then, 

statistical analyses were performed on the integrated network metrics as described below.  

5.3.6 Network-based Feature Selection and Classification 

On the basis that variability in cognitive states display specific discriminative aspects in functional brain 

networks, the subsequent workload level classification was employed by considering the network edge 

weights as feature vectors. For this purpose, the PLI values were averaged for each participant and 

workload condition (80 × (80-1) / 2 = 3160 unique values) across each of the five frequency bands epochs 

resulting in 5 × 3160 = 15800 features per workload level for each participant. Subsequently, FS was 

utilized to exclude redundant features and enhance the performance of the classifiers, while avoiding 

possible overfitting due to the large number of features compared to the number of samples. Hence, 

Recursive Feature Elimination with Correlation Bias Reduction (RFE-CBR) [241] based on linear support 

vector machines (SVM) was used to calculate the dependencies among features and recursively reject 

minimal evaluated features. Specifically, RFE-CBR is a backward elimination method that evaluates the 

features’ influence and removes them in succession from the feature space using the coefficients obtained 

from the SVM models. Moreover, it detects the highly correlated features to mitigate correlation bias 

[242], subsequently creating a ranked feature space based on the features’ significance (more details 

regarding RFE-CBR can be found in Chapter 4 where it was also implemented). Here, RFE-CBR feature 

selection was applied on each workload level as a binary process, resulting in three feature ranked sets.  

Classification was performed by a random subspace ensemble method with Linear Discriminant Analysis 

(LDA) as the base classifiers [243]. The random subspace ensemble method deconstructs the input data 

into random subsets of feature space to implement individual LDA classifications which are trained 

separately and then a collective decision is made by majority vote. To identify the number of features to 

be included in the multi-class feature set, binary classification was performed utilizing the one-vs-all 

strategy for each workload level (FS1: S1 vs S2, S3; FS2: S2 vs S1, S3; FS3: S3 vs S1, S2). The feature 

subset with the highest overall classification accuracy was determined as the optimal for workload level 

discrimination, estimated by including one-by-one the ranked RFE-CBR features in succession starting 

with a null feature set. The multi-class classification feature set was then generated by merging the 

individual workload level feature subsets. In order to attain maximum performance, the number of 

classification learners and subspace dimensions were tested with different configurations. Final results 
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were estimated by conducting 100 repetitions of 10-fold cross validation in binary and multi-class 

classification, thus minimizing the possible effect of the training set variability. 

Additionally, permutation tests was performed to examine the classification accuracy significance (as 

different from random level), which is appropriate for small sample data with unknown population 

distribution [244]. Thus, classification was executed 1000 times with random class labels permutations to 

calculate the distribution of classification accuracy. Probability p was estimated as the number of 

classifiers trained on the randomized samples that outperformed the classifiers trained on the original 

samples divided by the number of total permutations.  

5.3.7 Statistical Analysis 

To examine the workload effect on the perceived task difficulty, repeated-measures two-way ANOVA 

was used with #1 factor being workload (comparing the task difficulty across the three workload levels), 

and #2 factor being task (comparing VR and CS environments). Moreover, subjective user experiences 

reported in the questionnaire (referring to system usability, perceived usefulness, perceived user-

friendliness, satisfaction, and overall reaction) between the two interfaces were compared using one-way 

ANOVA. To evaluate the mental load effects on the network properties between the two tasks, repeated-

measures two-way ANOVA was applied on the integrated network metrics, with workload and task being 

the main factors, and workload-by-task considered as interaction. Significance value was set as p < 0.05. 

Then, post-hoc analysis was carried out for the significant (p<0.05) interactions using a paired t-test. All 

statistical analyses were implemented in SPSS 21 (IBM, New York, USA). 

5.4 Results 

5.4.1 Behavioral Results 

A significant workload effect was observed in the perceived task difficulty in the two-way repeated 

measures ANOVA test (F2,56 = 259.993, p < 0.001), confirming the efficacy of the experimental design in 

inducing different levels of mental workload. However, main task effect (F1, 28 = 3.045, p = 0.092) and 

interaction (F2, 56 = 0.877, p = 0.422) did not show any Significant result. Moreover, regarding the user 

experience, the system usability measure had a significantly higher score in CS compared to VR (F1,28 = 

4.409, p = 0.045), but no significant task effect was found in the other four measures of user experience (p 

> 0.05).  

5.4.2 Network Topology 

A two-way repeated measures ANOVA was additionally employed to examine the topological properties 

between both groups across the different workload levels (TABLE 5.2 and Figure 5.3). In detail, 

significant main workload effects were detected for EG in δ (F2,56 = 3.397, p = 0.041), α (F2,56 = 7.708, p = 

0.001), and β (F2, 56 = 4.712, p = 0.013) frequency bands, as well as for EL in α (F2,56 = 20.773, p < 0.001) 

and β (F2,56 = 11.175, p < 0.001) frequency bands. Moreover, EG showed significant main task effects in β 

band (F1, 28 = 7.895, p = 0.009), while EL in θ (F1,28 = 8.098, p = 0.008) and β (F1,28 = 6.394, p = 0.017) 

bands. Remarkably, a significant interaction effect was found for EG in β band (F2,56 = 4.886, p = 0.011). 

The post-hoc analysis showed that the significant interaction was based on a significant decreasing trend 
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of EG (F2,56 = 7.512, p = 0.001) with increasing workload levels in the CS environment compared to a 

non-significant alteration in the VR environment (F2,56 = 1.563, p = 0.218).  

 

TABLE 5.2. RESULTS OF THE STATISTICAL ANALYSIS OF THE NETWORK METRICS FOR 

EACH FREQUENCY BAND 

Frequency band Metrics 
Workload 

F2,56 (p-value) 

Task 

F1,28 (p-value) 

Interaction 

F2,56 (p-value) 

δ 
EG 3.397(0.041) 0.000(0.987) 0.653(0.524) 

EL 2.496(0.092) 0.467(0.500) 1.301(0.280) 

θ 
EG 1.919(0.156) 0.385(0.540) 0.694(0.471) 

EL 0.091(0.913) 8.098(0.008) 0.257(0.775) 

α 
EG 7.708(0.001) 1.733(0.199) 0.425(0.616) 

EL 20.773(< 0.001) 1.252(0.273) 0.084(0.919) 

β 
EG 4.712(0.013) 7.895(0.009) 4.886(0.011) 

EL 11.175(< 0.001) 6.394(0.017) 1.757(0.182) 

γ 
EG 0.948(0.394) 1.606(0.216) 0.948(0.393) 

EL 0.369(0.693) 0.418(0.523) 0.025(0.975) 

Note: EG indicates global efficiency, EL indicates local efficiency. Bold fonts indicate significant effects. 
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Figure 5.3. Post-hoc analysis with regard to global and local efficiency with Bonferroni correction for 

multiple comparisons. Each bar represents the mean± the standard error. * p < 0.05; ** p < 0.01. 

5.4.3 Classification Performance 

The classification on workload level was performed based on the features extracted from the PLI 

connectivity. The workload level feature subsets that provided the highest individual level accuracy were 

included in multi-class classification (TABLE 5.3). In detail, regarding the CS environment the best 

accuracy was 0.73, 0.87 and 0.85 using 20, 22 and 12 features for FS1, FS2 and FS3 levels respectively. 

Moreover, the multi-class feature set comprising their combination, incorporated 53 features (1 common) 

among 55 unique ROIs and achieved 0.82 (p < 0.001) accuracy (sensitivity = 0.82, specificity = 0.91), 

while 26 subspace dimensions and 30 learners were estimated as optimal parameters. Utilizing the same 

method in the VR environment, 0.78, 0.87 and 0.89 classification accuracy was obtained for FS1, FS2 

and FS3 using 12, 21 and 19 features, whereas the multi-class feature subset comprising 50 features (2 

common) among 55 unique ROIs provided 0.82  (p < 0.001) multi-class accuracy (sensitivity = 0.91, 

specificity = 0.82) using 25 subspace dimensions and 30 learners.  
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TABLE 5.3. CLASSIFICATION PERFORMANC RESULTS 

Interface Workload Level Features Num. Accuracy (p-value) Sensitivity Specificity 

CS 

FS1 20 0.73 (p = 0.004) 0.76 0.63 

FS2 22 0.87 (p < 0.001) 0.90 0.82 

FS3 12 0.85 (p < 0.001) 0.86 0.82 

All 53 0.82 (p < 0.001) 0.82 0.91 

VR 

FS1 12 0.78 (p < 0.001) 0.79 0.78 

FS2 21 0.87 (p < 0.001) 0.85 0.92 

FS3 19 0.89 (p < 0.001) 0.88 0.94 

All 50 0.82 (p < 0.001) 0.91 0.82 

 

5.4.4 Functional Connectivity Characteristics 

The selected functional connectivity features on both CS and VR interfaces are presented in Figure 5.4, 

with each feature’s color corresponding to a specific frequency band. The majority of the network edges 

in both environments belong to α frequency band and include frontal regions. In detail, in the CS interface 

59% (31 out of 53) connections are detected in α, 19% (10 out of 53) in β, 9% (5 out of 53) in δ and θ and 

4% (2 out of 53) in γ bands. Moreover, 53% (28 out of 53) of the connections involve frontal areas ROIs, 

while 42% of them include ROIs in temporal areas (22 of 53). Moreover, 20 out of 53 features are intra-

hemisphere connections and the rest 33 out of 53 are inter-hemispheric. 

Likewise, in the VR environment, 62% (31 out of 50) of the connectivity edges are observed in α band, 

while 16% (8 out of 50), 8% (4 out of 50) and 14% (7 out of 50) of the connections are detected in θ, β 

and γ bands, respectively. Remarkably, no connections from δ frequency band were chosen by the FS. 

Most of these edges (52%, 26 out of 50) connect ROIs in frontal areas and 46% (23 out of 50) in temporal 

ones. In contrast to the CS environment where a predominant inter-hemispheric pattern was distinguished, 

only 16 out of 50 edges include inter-hemispheric areas, while most connections are linking areas in the 

same hemisphere (34 out of 50). 

The multi-class feature sets for the classification between the different workload levels contained one 

common feature in the CS and two in the VR environments. In detail, the SMA.R to STG.R connection in 

α band was considered important by the RFE-CBR FS procedure both in the FS1 and FS2 in the CS 

environment. Moreover, the bilateral connections of PoCG.L and PoCG.R to PCUN.L in α band were 

also selected for both FS1 and FS2 in the VR environment. Notably, SMA.R to STG.R and PoCG.L to 

PCUN.L were selected in both environments. 
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Figure 5.4. The features selected are presented in circular diagrams in the upper part of the figure for (a) 

CS and (b) VR environments; corresponding brain areas are displayed in the bottom part of the figure for 

(c) CS and (d) VR per frequency. The frequency band distribution is shown in the pie charts. Each 

interaction is color coded for each frequency band, with the width corresponding to the PLI connectivity 

strength. 

To examine in depth the workload effect on individual features, one-way ANOVA was employed to 

obtain indications of the significance of the connectivity changes in the multi-task classification. Thus, 34 

out of 53 (among 38 unique ROIS) and 29 out of 50 (among 37 unique ROIS) connections displayed a 

significant effect (p < 0.05) for CS and VR environments respectively (Figure 5.5). Specifically, the 

significant connections in the CS environment were found mainly in α and β frequency bands (23 α, 10 β 

and 1 δ), contrary to the VR environment, where the significant features contained θ (5), α (17), β (2) and 

γ (5) band connections. Additionally, mainly frontal (19 in CS, 13 in VR) and parietal (11 in CS, 13 in 

VR) ROIs were detected for both environments. Despite that for α band edges an overall clear trend could 

not be determined, all β band connections showed reduced strength with higher workload in both 

environments as well as frontal areas involvement, while θ band VR edges presented overall increments. 

Remarkably, γ band connections were only selected in the VR environment, while 4 out of 5 of them 

included the amygdalae nuclei (AMYG).  
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Figure 5.5. The PLI connectivity strength for the significant features selected for (a) CS and (b) VR 

environment for each workload level. The interaction name color indicates each frequency band. 

Common FC of each condition are presented via the feature overlapping. 

5.5 Discussion 

In this Chapter cortical connectivity and network characteristics were analyzed to examine the neural 

basis of pilot mental workload in 2D and 3D simulated environments. It was found that the different 

environments led to distinct network reorganizations in the various workload levels, attributed to the 

variations of the information flow between less-realistic (CS) and close-to-real-world interfaces (VR). 

Moreover, the connectivity features were utilized in a FS and classification scheme achieving effective 

discrimination among the three workload levels making possible a consistent analysis of the results to 

understand their role from Neuroscience point of view. Based on the significant workload effect in the 

behavioral results regarding the perceived task difficulty, it was confirmed that each session could induce 

a different mental load level, i.e., the increasing effort needed to fly the aircraft would result in higher 

workload, since higher attentional and cognitive control were required. Thus, the behavioral results 

confirm the effectiveness of the experimental design with regard to workload induction, thus providing 

the basis for the following steps of the methodology proposed to analyze the spatial and frequency 

characteristics of the functional connections.  

With regard to classification, high accuracy was achieved in both environments, which was validated by 

the very low p-values of the permutation test. Moreover, effective classification was achieved utilizing 

only a very small number of the available features. These facts combined with the training of classifiers 

across subjects, the high performance shows the generalization ability of the employed framework, 

indicating that no overfitting had occurred. Remarkably, the FS and classification procedures use different 

machine learning algorithms. Taking into account that the aim of this Chapter was to examine the 
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functional connections and considering the binary nature of SVM, an independent classifier for an 

unbiased validation of the FS was employed.  

5.5.1 Network Topology 

As indicated by the network metrics examination, significant differences were found in global and local 

efficiency. As efficiency is inversely related to path length, the detected increments show an enhanced 

connectivity between nodes that is shorter path lengths, hence showing a larger degree of information 

transfer between brain areas. Therefore, increments of global efficiency in δ and α bands along with 

increment of local efficiency in α and β bands support that brain regions are interacting and cooperating to 

a larger extent with higher mental workload. The increments of local or global efficiency in various 

frequency bands are consistent with workload-related literature [223]–[225], as aforementioned in the 

introduction section, supporting that the brain reorganizes and employs more resources to effectively 

respond to higher task difficulty [202], [245]. Additionally, differences between the two environments 

were detected, with CS displaying significantly lower local efficiency in θ and β bands. Moreover, 

contrary to other frequency bands, global efficiency in β band had a significantly decreasing trend in CS, 

as well as larger values were observed for CS compared to VR. Thus, the majority of these  findings 

indicate that the VR environment seems to evoke higher mental workload to the participants compared to 

the CS environment, probably due to the more visually demanding cognitive processes [246], [247]. 

5.5.2 Workload Dependent Functional Characteristics 

The selected features in both CS and VR environments contain functional connections from different 

frequency bands. Specifically, most of the features correspond to α frequency band and are mainly located 

in frontal and parietal areas. The ANOVA test further confirmed the prevalence of α band among the 

significant workload-related features. These observations are to be expected as α band variations in 

frontal and parietal regions has been associated with workload by numerous related studies [205], [248], 

[249], although no consistent trend regarding the connectivity PLI values could be detected between the 

different workload levels. Furthermore, β features displayed reduced functional connectivity strength with 

higher workload involving frontal areas, in accordance with previous workload-related studies [172], 

[229]. Moreover, the β band suppression can be attributed to the increment of cognitive control and 

attention demands imposed by increasing task demands [250], [251].  

The brain regions corresponding to the common selected connections between the two environments 

(SMA.R - STG.R, PoCG.L - PCUN.L) have been related with the mental workload. Specifically, higher 

task demands have displayed SMA activation [252], [253], indicating visuomotor leaning [254] and 

attention mediating time-on-task processing [255]. Taking into account that SMA was selected for FS1 in 

both interfaces also highlights its role in the discrimination between the different cognitive workload 

levels. Moreover, the right STG activation has been associated with higher workload levels, regulating 

attention, spatial perception and visual recognition [256], [257]. Similar findings have been reported for 

PoCG engagement as a result of visual and sustained attention mental load [258], [259]. Additionally, 

cognitive workload in visuospatial mental operations and task-related attentional demands has been 

consistently associated with PCUN activation alterations [260], [261]. 
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5.5.3 Environment Dependent Functional Connectivity Reorganization 

Despite the similarities regarding the mental workload characteristics in the two environments, clear 

distinctions in both frequency and spatial aspects were observed. For example, the significant θ band 

connections showed higher connectivity values with increasing cognitive load in the VR interface, which 

was frequently displayed in various workload-related works [205], [229], [262]. Still, θ band edges 

displayed no significant variations between the different workload levels in the CS. This observation 

could be explained by the higher sense of the subjects’ presence and a more active task-related processing 

in the VR compared to the CS environment that has been shown to significantly affect θ band activity 

[247], [263]. Moreover, the ANOVA test displayed significant γ edges in the VR interface, mainly 

containing the AMYG. Despite that this accounts for the spatial navigation and visual representation 

differences between the two environments [264], the additional stress evoked by the higher workload 

sessions when subjects were attempting to control the aircraft should also be taken into account. It has 

been observed that the difficulty in the aircraft maneuvering increases the anxiety and stress levels 

particularly for novice pilots [245], [265]. This could specifically apply in the VR environment as a more 

realistic condition and especially during the periods when participants had limited control (S3). In 

addition, since no subject had previous experience in the simulated flying operation, the VR stronger 

presence environment could enhance the mental pressure evoked by the ever-increasing cognitive 

workload [266], [267], resulting in the elevated connectivity between these areas. 

5.5.4 Limitations and Future Considerations 

Some points of this work should be considered when interpreting the findings. The eLORETA source 

localization procedure uses a standard MRI image, hence not taking into consideration the individual 

brain anatomy of the subjects. Also, we employed large areas for the cortical parcellation in order to 

minimize the estimation error and avoid possible mislocalization. Moreover, only cortical brain areas 

were utilized in this Chapter and excluded sub-cortical and cerebellum brain regions, due to the frequent 

depth bias of source localization approaches. Hence, brain regions with known role in spatial memory and 

navigation, e.g. the hippocampus [268], were excluded from the functional connectivity calculation. 

Future studies could include individual fMRI images aiming to improve source localization calculation in 

order to confirm our observations and clarify subject specific workload influences. In addition, 

participants with no previous experience in flight simulation were recruited, thus further investigations 

could illuminate potential differences and training effects concerning not only novice but also 

experienced pilots. 

5.6 Conclusion 

In this Chapter, an EEG experiment of 2D and 3D flight simulation was utilized to detect the of functional 

brain networks differences in source space with regard to three distinct levels of complexity. In this 

regard, the FC of cortical regions was utilized as a means to provide discriminative features for mental 

load classification and thus compare the various workload stages. The proposed methodology was 

successful in identifying the common and distinct brain characteristics of mental load between the two 

simulation environments, thus illustrating high discriminative ability in classification procedure while 

utilizing only a small portion of the full feature set. The produced results indicate the robustness of the 
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proposed framework unveiling the underlying workload functions and their implications to real-world 

scenarios. 
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Chapter 6 

6.1 Human-Machine Interfaces for Motor Rehabilitation 

Motor-related conditions may involve significant implications for the afflicted individuals, concerning 

various aspects of mental and physical processes. On top of the prescribed medication, the use of non-

pharmacological interventions has been added to the available arsenal towards the facilitation of everyday 

activities as well as the potential rehabilitation of patients. In this regard, researchers have pursued the 

path of establishing an alternative connection between human intent - as expressed through cognitive 

processing and overt residual motor activity - and software/hardware receptors that decode the desired 

user actions. This notion represents a Human-Machine Interface (HMI), where this Chapter focuses in 

analyzing the theoretical basis and implementation concerns of non-invasive applications that exploit 

multimodal real-time data recording. As such, using the groundwork from the experimental designs and 

analysis presented in previous Chapters and the recent state of the art literature, the available modalities 

are presented on the grounds of bioelectrical and movement phenotype signals and in conjunction with 

the related algorithms and clinical practice demands. 

6.2 Background 

Reports from WHO have demonstrated the wide impact of neurological conditions such as strokes and 

spinal cord injuries to the global population [269]. The high annual incidence rates are associated with a 

conjointly high prevalence of lingering health issues that include movement disturbance by means of 

interfering with the communication channel responsible for transmitting the motor command among the 

various nodes including the encephalon (source node), the spinal cord (intermediate node) and the 

muscular system (end node). If any of the aforementioned nodes is affected, the result may translate to 

motor disability, even if all the remaining structures remain fully unharmed. As such, the conditions 

mentioned above may induce implications regarding the source and intermediate nodes respectively, 

without diminishing movement capacity [270], [271]. In this regard, the limits imposed to the expressed 

movement are attributed to the deficient information transmission to the end node, itself retaining its full 

potential. However, the incomplete activation induced might eventually lead to perpetual motor problems 

such as atrophy, general ADL (activities of daily living) impotence and frailty [272], [273]. 

Based on the assumption of the unaffected muscular potential and the remaining brain/spinal cord 

functionality, specialists seek to promptly conduct restoration protocols in order to prevent or alleviate 

atrophy, permanent motor impairments and negative neuroplasticity, by promoting efficient neural 

processing during cognitive compensation [274], [275]. Significant rehabilitation attainment is not 

implausible, albeit the path is particularly challenging for the individuals with respect to the time, cost and 

commitment required [276]. Combined with slow progress, potential setbacks, limited financial resources 

and the often inadequate adjustment of global protocol parameters in a subject-specific manner [277], 

[278], adherence concerns have arisen [279]. Under these circumstances, the need for personalized 

frameworks targeting function execution assistance and restoration has yet to be fulfilled, although the 

existing groundwork on software and hardware tools has been laid towards affordable rehabilitation 

systems and functional modeling on subject level. 
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6.3 Human-Machine Motor Rehabilitation Interfaces 

The decoding of human intent and its real-time translation to a control command for guiding hardware 

and/or software, which in turn orchestrates an interplay between an individual and their external 

environment, corresponds to the implementation of a Human Machine Interface (HMI) [280]. The basic 

concepts and components of a HMI system implementation are shown in Figure 6.1. A subclass of HMI 

is the Brain Computer Interface (BCI) which as the name suggests only utilizes brain signals for the 

individual-to-device path (computer module). These traits combined with the adjustability offered by such 

systems allows HMI application to motor-related disorders, where the decoded user intent corresponds to 

a desired movement which the receiver module aims to augment or even fully execute [280]. 

Interpretation of a planned movement may utilize locomotion phenotype data such as limb displacement 

or ground forces, as well as bioelectrical signals reflecting biological activity such as 

electroencephalography (EEG) or electromyography (EMG) recordings [281], [282]. The latter are 

commonly labeled as physiological data, which can be captured via non-invasive sensors and conjointly 

analyzed for correlating cortical activity with its muscle counterpart [282]. However, such modeling 

requires the accurate extraction of movement biosignals while dismissing uncorrelated activity. This 

procedure is achieved through data recording during rigorously designed protocols, where execution of 

real or imagined movements is guided by sensory cues (usually visual or acoustic) [283]. 

Data analysis may be based either on a single modality (e.g. EEG, EMG, locomotion phenotype) or on a 

combination of the available modalities, feeding the descriptive motor-related features into a machine 

learning scheme which in turn generates a command that echoes the initial intent onto the receiver module 

(e.g. a computer or an actuator) [280] that can support a function and bolster rehabilitation mechanisms. 

Moreover, the real-time nature of this functionality necessitates the concurrent analysis of the HMI 

system response and its kinematic reflection for evaluating the HMI’s performance and adjusting output 

signals accordingly [284], [285]. In this scope, interfaces are implemented within a closed-loop design 

that utilizes real-time feedback signals that mirror the system’s output and are used for comparing the 

intended action (as interpreted by the classifier) with the eventual movement. The corresponding goal is 

to match the two states (HMI-interpreted vs HMI-induced) for achieving a high degree of subject-level 

adaptation [284]. 

In the field of clinically applied rehabilitation for motor-impaired individuals, the receiver modules are 

classified to specific movement actuator classes [286]–[288]. Orthotic and exoskeleton devices represent 

the first two classes [289], bearing a resistive, assistive or passive role during movement, in reference to 

whether the desired function is partially inhibited (for muscle strengthening), amplified or fully performed 

by the hardware [288], [290]. The third receiver class refers to stimulation devices that implement 

Functional Electrical Stimulation (FES) [291] by administering electrical pulses that induce muscle 

contraction. This process basically aims to stand in for the impaired biological processes (implicating the 

brain and the spinal cord) that fail to provoke a full natural contraction. On this premise, FES application 

may concurrently enhance a specific movement, as well as trigger neurorehabilitation operations within 

the cortical activity [292]. The fundamental prerequisite for the related treatment is the existence of 

residual motor capabilities [287], that the stimulation taps into for augmenting muscle activation and 

aiding patients to reprogram their cortical kinetic patterns. However, researchers should consider the key 

differences distinguishing the stimulation-triggered muscle activation from a natural contraction, mainly 

its irregular structure that resembles a step function following the “all-or-none” law [293], as well as the 
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external parameter dependability. Namely, application parameters such as electrode placement and 

stimulation waveform properties introduce a substantial variability [293], [294] that requires rigorous 

testing for maximum adaptability on subject-level [294]. 

 

Figure 6.1. A schematic design for HMI rehabilitation 

6.4 Computational Intelligence Tools 

The aforementioned interpretation of a user’s intended action through the explanatory features within the 

input motion data implies the definition of distinct output classes, denoting the different motion states that 

can be inferred by a pattern recognition paradigm [280], [295]. Such paradigms aim to optimally discern 

the HMI response motion states based on the annotated data, recorded during experimental protocols 

implicating real or imaginary motion execution. In this context, a multitude of algorithms including k-

NN, SVM, LDA, soft labeling techniques [296]–[298], and network-based implementations [295], [299] 

have been utilized to unveil linear and non-linear dependencies, either individually or within ensemble 

classification schemes [300]. 

In this perspective, choosing an HMI scheme from the pool of available methodologies is not a 

straightforward task, usually bearing a tradeoff among classification performance, computational 

complexity and response time [301]. Regarding performance, the role of the employed features is vital, 

since they effectively represent our comprehension concerning motion processes. For this reason, motion 
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conditions incorporated within experimental designs must be as realistic as possible (accounting for 

environmental constraints [302] and participant safety), while considering all parameters involved, for 

successfully determining explanatory motor features [303]. Each parameter contribution can be studied 

through multi-level modeling entailing biological and locomotion processes in conjunction with data 

recording. The latter refers to the interactions among the studied functions and the measuring equipment, 

as well as the properties of the recorded signals. For example, the phenomena taking place regarding 

bioelectrical/kinematic sensor placement and continuous function such as skin contact [304], muscle 

contraction and joint movement [305] can be modeled towards a holistic analysis. Indicatively, this data 

should be utilized to fully represent all aspects of a gait cycle [306] or grasping actions [281], allowing 

the testing of multiple scenarios [307] (e.g. walking, stair climbing, falling, finger movements). The study 

of kinematic patterns involves the application of differential equations under simulated locomotion task 

conditions, implicating antagonistic muscle pairs [305], [308]. 

Within this abundance of available variables and under the requirement for real-time motion 

interpretation, computational speed becomes a priority that limits the “allowed” computational cost [309]. 

In this regard, the vast feature pool must be reduced to a small number of discriminative features that 

offer high classification performance within a “reasonable” time frame for real-time HMI response (in the 

order of ms) [310], [311]. This feature selection yields simpler and more reliable models that depend on 

critical motor-related markers rather than a huge number of non-interpretable feature combinations that 

mostly correspond to overtraining bias [229], [310]. The above background is summarized in Figure 6.2, 

illustrating a typical workflow towards the design and implementation of an HMI: 

 

Figure 6.2. Optimal HMI implementation model design 
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6.5 Movement Phenotype Modalities 

As presented above, data exploitation for motor-related HMIs may incorporate biosignals and/or non-

biological locomotion data, extractable via non-invasive mobile sensors. The latter modality serves the 

evaluation of locomotion mechanics concerning parameters that include displacement/rotation of limbs 

and joints, as well as reaction forces (e.g. ground). In relation to upper-limb support and rehabilitation, 

typical measurements include elbow, forearm and wrist angles [312], while setups for lower limbs 

analyze knee/hip joint angles [313] for computing gait activity variables [299], [306]. In both cases 

flexion data and resistance forces provide additional information on motion range and extension [314], 

[315], contributing to a holistic rehabilitation progress evaluation. Overall, force sensors, inertia 

measurement units (IMUs) [299], e-textiles [316], bio-impedance sensors [317], and visual motion 

capture technology [318] constitute eligible hardware for unobtrusive data collection, either in laboratory 

or everyday settings. Moreover, part of the equipment is often incorporated in specialized wearable 

modules such as smart clothing [319]. 

By implementing dedicated classification algorithms that utilize multiple trials of fundamental movement 

patterns [320], sensor data are used to guide orthotic/prosthetic/exoskeleton [285], [299] equipment or 

even FES devices. Notably, sensor-guided stimulation constitutes a viable and more adaptable alternative 

to traditional paradigms that require continuous manual adjustments by supervising experts [303]. In this 

fashion, adaptive user training based on objective quantitative metrics has the potential to limit 

rehabilitation setbacks [321] and enhance protocol adherence and self-perceived progress. Furthermore, 

the availability of such recordings provides networking capabilities through bidirectional data exchange 

with cloud infrastructure and mobile applications [322], enabling remote rehabilitation monitoring.  

6.6 Bioelectrical Modalities 

In unveiling the complex biological processes governing motor functions, research focuses on 

neurological cognitive functions and electromyographic activity, both separately and in conjunction with 

each other. Notably, the relative interactions during motor planning, preparation and execution have been 

studied [323] in pursuance of objective metrics describing the neuromuscular functional associations. 

Such metrics bear the added value of providing evaluation capabilities regarding neurorehabilitation 

protocols, where the localization and quantitative estimation of electrophysiological activity are critical 

for assessing patient progress. In the context of evaluating interactions engaging brain and muscle 

activity, corticomuscular coherence is an established metric that seeks associations in the frequency 

domain [324], showcasing specific bands where cortical activity is related to muscle contraction [325]. 

Another technique with very significant contribution to cognitive function study through electrical 

activity is event-related analysis that has revealed a number of critical components of brain activity during 

the various motion stages [326]. Especially concerning the time window corresponding to motion 

planning and preparation (about 0.5-2 sec prior to execution) [326], [327], the MRCP (Movement-Related 

Cortical Potential) comprises a low-frequency (<5Hz) EEG component that has been verified under 

imaginary motion experiments, thus being suitable for support and rehabilitation applications where a 

patient exhibits limited motion [326]. Additional components occurring over the timespan preceding 

kinematic manifestation (mostly 1.0-1.5 sec before onset) comprise the Contingent Negative Variation 
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(CNV) [328] and the Bereitschaftspotential (BP) [329], appearing mainly over the premotor cortex and 

the primary motor cortex respectively. 

On top of the individual components, event-related analysis also involves the study of synchronization / 

desynchronization (ERS/ERD) within EEG activity. More specifically, alpha (8-12 Hz) and central beta 

frequency bands (16-24 Hz) display evident ERD during both real and imaginary movement preparation 

[326], [327]. Namely, motor imagery and real motion employ common neural pathways, thus the former 

is considered a sufficient substitute for experimental designs where participants display severely limited 

motor abilities [283]. 

Generally, the advances in EEG analysis and its ascertained contribution to the study of motor functions 

have rendered electroencephalography as a key modality in HMI rehabilitation designs [301], [330]. The 

main idea in such implementations is the establishment of a real-time information bus engaging brain 

activity and a receiver module, trained via motor imagery data. Both exoskeletons [331]–[333] and 

functional electrical stimulation devices [67,68] have served as the receiver device responsible for motion 

execution, implicating upper and lower limbs in applications such as generalized movement support and 

foot drop treatment. Stroke, spinal cord injury and spastic cerebral palsy [336] are a few indicative 

examples where the EEG-FES combination has been successfully employed, having shown greater and 

more persistent benefits compared to traditional FES treatment [337], [338]. In an analogous manner, the 

control of these receiver modules has also exploited non-invasive electromyography signals reflecting 

contraction intensity, related both to extended muscle groups (e.g. leg extension) and to more complex 

detailed movements (e.g. fingers). Such data bear the potential to accurately characterize specific 

movement patterns that may not be discerned via EEG [295], [339], [340]. Particularly, EMG produced 

by residual muscular activity can be used as a regulator for FES treatment and exoskeletons, aiming to 

support motion and trigger existing kinematic capacity, thus assisting in repossession of sufficient 

muscular activation [341], [342]. Over the course of rehabilitation, training protocols often exploit 

recordings derived from a non-afflicted limb for target feedback, contralateral control and progress 

evaluation [343], [344]. 

By combining the different modalities into hybrid frameworks, a wide variety of additional support and 

therapeutic options arises through the incorporation of the assets of each modality. The use of multiple 

physiological modalities or mixtures of physiological and non-physiological data offers enhanced 

computational validity since different information sources [345]–[348] (angle, force, biological activity, 

etc.) can be exploited concurrently for motion decoding and support [286], [324] using the 

aforementioned receiver modules. Such holistic real-time movement analysis constitutes substantial 

groundwork for strengthening the functional connections between cognitive processing and kinematic 

phenotype, seeking to promote convergence of muscular and cortical electrical activity in the context of 

rehabilitation [349]. The former (muscular activity) represents the motion execution aspect while the 

latter (cortical activity) also contains the motion intention aspect, thus hybrid protocols utilizing both 

EEG and EMG aim at restoring – at the highest degree possible – their natural correlation, accounting for 

side events including non-voluntary motions such as spasms and tremors [350]. 

6.7 Future Challenges 

Although technological and methodological advances have given a great boost to HMI research, 

accessible use in clinical and everyday practice is still not a reality. The lack of widely available 
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commercial end-products that can provide adaptable real-time support and rehabilitation services at an 

affordable price is yet to be fulfilled by the large-scale research frameworks currently studied [288], 

[330]. Implementation challenges include reliable EMG-based motion analysis, specifically with regard to 

joint displacement and electrode alterations as well as algorithm personalization and accounting for 

workload and floor/ceiling effects [351], [352].   

An additional research question yet to be addressed is related to neurorehabilitation mechanisms triggered 

during training [353]. The human brain bears the ability to constantly adapt to new conditions via 

plasticity, with the use of HMIs being no exception. Type of impairment along with general patient status 

and specific protocol parameters may dictate the course of neuroplasticity, while it has been suggested 

that not all plasticity is beneficial [354]. Compensatory mechanisms are not always optimal, a critical 

factor being the temporal window of their development [276], also related to the timing of the 

rehabilitation training. 

From a data analysis and interpretation standpoint, novel methods such as brain connectivity are 

progressively employed for studying corticomuscular interactions [220], [226], albeit there is still a lot to 

be done on deciphering brain electrical activity during motor-related processes. Moreover, the highly 

subject-specific nature of HMI training poses additional challenges regarding the adaptation of a common 

framework to every individual user through parameter adjustments. Customization is further complicated 

by the variable phenotype of motor impairments for each subject, necessitating comprehensive and user-

tailored training [278]. Finally, in pursuance of optimal standards and methodological potency, tools and 

models should be validated using third-party (including open access) data [355], so that the scientific 

community is able to refine the results and filter best practices on rehabilitation and interpretation of 

biological and non-biological activity describing human motion.  

 



CHAPTER 7 - MAIN CONTRIBUTIONS AND FUTURE WORK 

Ioannis Kakkos – Doctoral Thesis  87 | P a g e  

Chapter 7 

Main Contributions and Future Work 

This Chapter summarizes the conclusions of previous Chapters and suggests guidelines for future work. 

In this Doctoral Thesis, a wide array of ML approaches have been implemented in different brain related 

experiments providing the basis for applicable HMI/BCI interactions and shedding light to underlying 

cognitive aspects of different states in terms of neuroscience. In this regard, it should be noted that BCI 

implementation requires the continuous measurement of the brain signals translating them to input 

information for the connected device to execute each task at hand. By extension, irrelevant neural stimuli 

might confound the internal classification processing, thus it is of outmost importance to detect specific 

neural attributes in a way that they are as discriminative as possible in the most universal way. This 

Thesis’ aim was to establish the groundwork for BCI application by assessing universal characteristics of 

different cognitive states and conditions in ML frameworks, putting forward and exploring advances in 

algorithmic applications and system implementation, while incorporating basic analysis in real and 

imaginary motion recordings. 

In detail, Chapters 3,4,5 refer to ML approaches in cognitive EEG experiments, each one addressing a 

different aspect of HMI implementation. First and foremost, Chapter 3 regards the classification of error 

cognition in regard to ERP-related features, focusing on global mental aspects irrespective of task 

complexity. The results produced indicated that classification across different difficulty conditions can be 

achieved, however due to subject variability estimating universal condition-specific characteristics could 

be problematic. Advancing contemporary research a thorough analysis has been made, not only including 

the typical ERN, but the entirety of ErrPs reported in previous studies by concatenating time-window 

features, each corresponding to specific ERPs. This allowed for efficient ML procedures in full and 

reduced channel analysis, providing indices of a global mechanism and efficient cross-condition 

evaluation. 

Chapters 4 and 5 focused on the classification of mental load using frequency related attributes, such as 

PSD and FC networks as feature sets. In both cases satisfactory classification accuracy was achieved 

using FS and classification methods, while identifying a small set of relationships between different brain 

regions in different frequency bands, which might contribute to the understanding of the various related 

neural mechanisms. Task engagement is an important aspect when applying brain signals to a HMI, 

however prolonged task execution (especially in mentally demanding tasks) results into deteriorated 

performance and masks the useful BCI-relevant characteristics due to workload. Accordingly, in Chapter 

4, a task-independent mental workload ML approach was implemented, taking into account a fusion of 

different EEG spectral characteristics (i.e., the PSD and FC) resulting in the highest (so far) cross-task 

workload classification. More importantly, the task-independent features identified did not only provide 

rigorous indicators of their inherent predictive quality, but also demonstrated cognitive control of 

inhibitory functions as the main factor of a global workload mechanism. This outcome can be explained 

as “forgetting” is more mentally exhausting than “remembering”, especially in prolonged WM tasks, 

since continuous cognitive updating with each new trial necessitates additional memory capacity 

resources, while disregarding irrelevant stimuli of previous trials. Within this context, these results 

provide some of the first quantitative confirmation of the prevalent workload-related neural mechanisms 

aiming to provide significant improvements in cognitive load assessment. 
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In Chapter 5, building upon the previous experiments results and conclusions, workload assessment has 

been employed in an approximation of real-world applications. Specifically, flight simulation was utilized 

in a 2D and 3D environment in a multi-workload levels ML approach utilizing functional brain networks 

differences in source space. High classification performance was attained detecting specific ROIs in 

specific brain frequencies, indicating common and unique characteristics in both environments. More 

importantly, each environment indicated differentiation with regards to network metrics (local and global 

efficiency) and FC. As such, VR environment was estimated to evoke higher mental workload to the 

participants compared to the CS environment. Interestingly, this was not only contributed due to the more 

visually demanding cognitive processes, but also in relation to the anxiety and stress levels when 

participants had limited control, since the amygdala brain areas were only indicated as significant in the 

VR interface. Thus the VR stronger presence environment could enhance the mental pressure evoked by a 

more realistic condition simulating real-world situations. 

Taking all the above into account, Chapter 6 presents the basis of bioelectrical phenotype signals and in 

conjunction with the related ML algorithms and clinical practice demands. As such, the technological and 

methodological advances of BCI/HMI are discussed, as well as the implementation challenges and the 

need for adaptable, real-time and personalized support accounting for workload and floor/ceiling effects. 

Finally, the importance of deciphering brain electrical activity in a global manner (irrelevant of task and 

subject variability) is presented, which is a major requirement for the adaptation of a common framework 

to every individual user through parameter adjustments and user-tailored training. 

In future works the proposed methods can be applied to more data to verify their effectiveness and 

especially to extract new knowledge. The new relationships that emerge from computational analysis shed 

light on the functioning of the brain mechanisms involved and may suggest directions for future cognitive 

experiments to validate them. In addition, the ML methods can be further tested to confirm their 

performance, as well as to extend the classification to multiple and much more complex levels. In 

addition, deep learning neural networks can be tested, which have recently shown excellent performance 

in image classification, however, appropriate data transformation is required to be able to utilize them. 

Especially in the case of BCI, a progressive step is the employment of portable dry-electrode EEG 

devices to make predictions in real time. For this to be possible, a small number of sensors are required, 

which is supported by the results of the FS performed in the experimental Chapter in this Doctoral Thesis. 

 



PROCESSING AND ANALYSIS OF EEG DATA RECORDINGS WITH THE APPLICATION OF MACHINE LEARNING METHODS 

Ioannis Kakkos – Doctoral Thesis  89 | P a g e  

List of Publications  

Published work included in this Doctoral Thesis dissertation:  

Kakkos, I., K. Gkiatis, K. Bromis, P. A. Asvestas, I. S. Karanasiou, E. M. Ventouras, and G. K. 

Matsopoulos. “Classification of Error Related Brain Activity in an Auditory Identification Task with 

Conditions of Varying Complexity.” Journal of Physics: Conference Series 931, no. 1 (2017): 012017. 

https://doi.org/10.1088/1742-6596/931/1/012017. 

Kakkos, I., E. M. Ventouras, P. A. Asvestas, I. S. Karanasiou, and G. K. Matsopoulos. “A Condition-

Independent Framework for the Classification of Error-Related Brain Activity.” Medical & Biological 

Engineering & Computing 58, no. 3 (March 2020): 573–87. https://doi.org/10.1007/s11517-019-02116-5. 

Kakkos, I., G. N. Dimitrakopoulos, L. Gao, Y. Zhang, P. Qi, G. K. Matsopoulos, N. Thakor, A. 

Bezerianos, and Y. Sun. “Mental Workload Drives Different Reorganizations of Functional Cortical 

Connectivity Between 2D and 3D Simulated Flight Experiments.” IEEE Transactions on Neural Systems 

and Rehabilitation Engineering 27, no. 9 (September 2019): 1704–13. 

https://doi.org/10.1109/TNSRE.2019.2930082. 

Kakkos I., G. N. Dimitrakopoulos, Yi Sun, G. K. Matsopoulos, A. Bezerianos, and Yu Sun, “EEG 

Fingerprints of Task-independent Mental Workload Discrimination IEEE J Biomed Health Inform, vol. 

PP, Jun. 2021, https://doi.org/10.1109/JBHI.2021.3085131. 

Kakkos, I, S. T. Miloulis, K. Gkiatis, G. N. Dimitrakopoulos, and G. K. Matsopoulos. “Human–Machine 

Interfaces for Motor Rehabilitation.” In Advanced Computational Intelligence in Healthcare-7: 

Biomedical Informatics, edited by Ilias Maglogiannis, Sheryl Brahnam, and Lakhmi C. Jain, 1–16. 

Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2020. https://doi.org/10.1007/978-3-

662-61114-2_1. 

Published work carried out alongside (but not included) in this Doctoral Thesis:  

K. Gkiatis, A. Karampasi, I. Kakkos, S.T. Miloulis, G.K. Matsopoulos, Ch. Benjamin, and K. Garganis, 

“Presurgical mapping of language network with fMRI: Greek evaluation”, Poster in 13th Panhellenic 

Epilepsy Conference, 7-9 June 2019, Athens, 2nd Prize Award for best poster presented. 

A. Karampasi, I. Kakkos, S.-T. Miloulis, I. Zorzos, G.N. Dimitrakopoulos, K. Gkiatis, P. Asvestas, G. 

Matsopoulos, A Machine Learning fMRI Approach in the Diagnosis of Autism, in: 2020 IEEE Int. Conf. 

Big Data Big Data, 2020: pp. 3628–3631. https://doi.org/10.1109/BigData50022.2020.9378453. 

Bromis, K., I. Kakkos, K. Gkiatis, I. S. Karanasiou, and G. K. Matsopoulos. “Brain Functional 

Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: An ICA FMRI 

Study.” Journal of Physics: Conference Series 931, no. 1 (2017): 012041. https://doi.org/10.1088/1742-

6596/931/1/012041. 

Gkiatis, K., K. Bromis, I. Kakkos, I. S. Karanasiou, G. K. Matsopoulos, and K. Garganis. “Effects of 

Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-FMRI.” Journal of 

Physics: Conference Series 931, no. 1 (2017): 012042. https://doi.org/10.1088/1742-6596/931/1/012042. 

https://doi.org/10.1088/1742-6596/931/1/012017
https://doi.org/10.1007/s11517-019-02116-5
https://doi.org/10.1109/TNSRE.2019.2930082
https://doi.org/10.1109/JBHI.2021.3085131
https://doi.org/10.1007/978-3-662-61114-2_1
https://doi.org/10.1007/978-3-662-61114-2_1
https://doi.org/10.1109/BigData50022.2020.9378453
https://doi.org/10.1088/1742-6596/931/1/012041
https://doi.org/10.1088/1742-6596/931/1/012041
https://doi.org/10.1088/1742-6596/931/1/012042


PROCESSING AND ANALYSIS OF EEG DATA RECORDINGS WITH THE APPLICATION OF MACHINE LEARNING METHODS 

Ioannis Kakkos – Doctoral Thesis  90 | P a g e  

Miloulis, S. T., I. Kakkos, G. Ν. Dimitrakopoulos, Y. Sun, I. S. Karanasiou, P. A. Asvestas, E. M. 

Ventouras, and G. K. Matsopoulos. “Evaluating Memory and Cognition via a Wearable EEG System: A 

Preliminary Study.” In Wireless Mobile Communication and Healthcare, edited by Juan Ye, Michael J. 

O’Grady, Gabriele Civitarese, and Kristina Yordanova, 52–66. Lecture Notes of the Institute for 

Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer 

International Publishing, 2021. https://doi.org/10.1007/978-3-030-70569-5_4. 

Zorzos I., I. Kakkos, E. M. Ventouras, and G. K. Matsopoulos. “Advances in Electrical Source Imaging: 

Current Approaches, Applications and Challenges”, Signals 2, no. 3: 378-391. 

https://doi.org/10.3390/signals2030024. 

Karampasi A. S., A. D. Savva, V. C. Korfiatis, I. Kakkos, and G. K. Matsopoulos. “Informative 

Biomarkers for Autism Spectrum Disorder Diagnosis in functional Magnetic Resonance Imaging Data on 

the Default Mode Network”, Applied Sciences 11, no. 13: 6216. https://doi.org/10.3390/app11136216. 

 

 

https://doi.org/10.1007/978-3-030-70569-5_4
https://doi.org/10.3390/signals2030024
https://doi.org/10.3390/app11136216


PROCESSING AND ANALYSIS OF EEG DATA RECORDINGS WITH THE APPLICATION OF MACHINE LEARNING METHODS 

Ioannis Kakkos – Doctoral Thesis  91 | P a g e  

Appendix A 

Glossary of Terms Utilized in the Extended Greek Summary 

ΒΔ βιωματικά δυναμικά 

ΔΑΜ διεπαφή ανθρώπου-μηχανής  

ΔΕΥ διεπαφή εγκεφάλου-υπολογιστή  

ΕΧ επιλογή χαρακτηριστικών  

ΗΕΓ ηλεκτροεγκεφαλογράφημα 

ΜΜ μηχανική μάθηση  

FIR πεπερασμένη κρουστική απόκριση 

IIR άπειρη κρουστική απόκριση  

ICA  ανάλυση ανεξάρτητων συστατικών  

LDA ανάλυση γραμμικής διάκρισης 

LORETA ηλεκτρομαγνητική τομογραφία εγκεφάλου χαμηλής ανάλυσης 

PLI δείκτης καθυστέρησης φάσης  

PSD φασματική πυκνότητα ισχύος  

RFE-CBR 
αναδρομική μέθοδος εξάλειψης χαρακτηριστικών με τη μέθοδο μείωσης 

συσχέτισης μεροληψίας 

SFFS διαδοχική κυμαινόμενη πρόσθια επιλογή 

SFS διαδοχική πρόσθια επιλογή 

SVM  μηχανές διανυσμάτων υποστήριξης  
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Appendix B 

Glossary of Terms Utilized in this Doctoral Thesis 

AAL automatic anatomical labelling 

ADL  activities of daily living 

ANOVA analysis of variance 

BCI brain computer interface 

CNV contingent negative variation 

CRN correct-related negativity 

CS computer screen 

EEG electroengephalography 

EG  global efficiency 

EL  local efficiency 

eLORETA exact low resolution electromagnetic tomography 

EMG electromyography 

EOG electrooculogram 

ERB equivalent rectangular bandwidth 

ERD/ERS event-related (de)synchronization 

ERN error-related negativity 

ERP event-related Potential 

ErrPs error-related ERPs 

ESI electrical source imaging 

FBT feedback tone 

FC functional connectivity 

fERN feedback related negativity 

FES functional electrical stimulation 

FIR finite impulse response 

fMRI  functional magnetic resonance imaging 

FS feature selection 

HEOG  horizontal electrooculogram 

HMI human-machine interface 

ICA independent component analysis 

IRR infinite impulse response 

k-NN k-nearest neighbor 

KOR knowledge-of-results 

LDA linear discriminant analysis 

LOOCV leave-one-out cross-validation 

LORETA low resolution brain electromagnetic tomography 

LS least squares 
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ML machine learning 

MRCP  movement-related cortical potential 

PE error-positivity 

PET positron emission tomography 

PLI phase lag index 

PSD power spectral density 

QP quadratic programming 

RBF radial basis function 

RF random forests 

RFE recursive feature elimination 

RFE-CBR  recursive feature elimination method with correlation bias reduction 

ROC receiver operating characteristic 

ROI regions of interest 

S1,..2,..3 stage 1,..2,..3 

SFFS sequential forward selection 

SFS sequential forward floating selection 

SMO sequential minimal optimization 

SVM support vector machines 

tw time window 

VEOG  vertical electrooculogram 

VR virtual reality 

WHO  world health organization 

WM working memory 
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