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Extended Greek Summary
Elcaywyko onuelwpa

e avtn TN d1daKToptKn JaTPP, EXEL EPUPLOCTEL £va Vpv PAGO Tpooeyyicenmv Mnyavikng Mdadnong
(MM) oe mepduato mov oyetilovtar pe tov eyképoro, mopéyovtag T Pdon yu oAAnAemdpdoelg
Aerapov AvBpomov-Mnyavig (AAM) kot Atenagav Eykepdiov-Yroloyiom (AEY) piyvoviag omg og
VTOKEIUEVES YVOOTIKEG TTVYES SLUPOPETIKAOV KATUCTACEMY OGOV QPOPA T1) VEVPOETIOTHUN. YO avTd TO
npiopo, mpémel va onuewbel 0t 1 epoappoyr] AEY amortel t ocvveyn pétpnon toV €YKEQUMK®OV
onudtov to omoict vo UTOopPovV Vo HETOPPOCTOVV KOl VO €IGOYOVV TANPOQOpPle ot cLVOEdEUEVN
ovoKeLN Yoo TNV ektéleon g kabe epyaciog. Kot eméktaom, pun oyetildueva vevpud epediocpato
EVOEYETAL VO GLYYEOLV TNV EGMTEPIKT] OLAOKOGIN TAEWVOUNGNG, ETOUEVMS Elvat eE0PETIKG GILLOVTIKO VoL
OVIVEDOVTOL CUYKEKPIUEVES VEVPIKEC IOIOTNTEG LIE TPOTO OV VoL Eval OGO TO SLVATOV TO JSLUKPITEC Kot
pe xkoBolkd tpomo. O otdyog ™G datpPng avtng eivor va Béoel ta Bepéhia yio v gpappoyn AEY
a&lohoydVTag To KABOAIKA YOPUKTNPIOTIKA OLUPOPETIKAOV YVOOTIKOV KATAGTACE®V Kol cuvONKdV ot
maiol MM, eved mapdAinia va AouPavel ooy Tig eEeMEEIC oTIC aAYOPIOUIKES EQAPUOYEC KOl TOV
EPOUPLOYOV TOV VIOPYOVI®V CUGTNUATOV oIV  aviivorn mniektpogykeparoypapikov (HED)
KOTOYPAQ®OV.

[Mepnym

Y& avtv T ddakTopiky dtaTpiPn, Tpoteivovtar Tponyuéveg Tpooeyyicelc Mnyoavikig Mdadnong v myv
eneepyacio Kot TV avaAvcT TOV NAEKTPOEYKEPUAOYPAPIKMV GNUATOV, AElOTOIOVTOG IO10TNTES GNLOTOS
o010 7medio Tov Ypovov kot / M ovyvotnrag. Ilpog avtpv v katedbvveon, ypnoipomomdnkay Tpio
TEPAUATA NAEKTPOEYKEPUAOYPAPIKMDY KATAYPAPDOV LYNANG TUKVOTNTOG TPOKEWEVOL Vo, HEAETNOOOV
YVOOTIKEG Aettovpyieg vYNAOTEPNG TAENG, OMOTEADVTOG TN PAon Yot EQOPUOYES TPAYUATIKOV KOGLOL
€101KA oToV Topén TV Alemapdv Eykepdlov-Ymoloyioty.

Y& avtv T dbaktopikn dtTpiPn, Tpoteivovtal Tponyuévee Tpoceyyicelc Mnyoavikig Mdadnong v myv
eneepyaoio Kot TNV avaAvoT) TOV NAEKTPOEYKEPUAOYPAPIKMY CNUATOV, AElOTOIDOVTOG IO10TNTES GNLOTOG
o010 7medio Tov Ypovov kot / M ovyvotnrag. Ilpog avtpv v xotevbuvveon, ypnoipormomdnkay tpio
TEPAUATA NAEKTPOEYKEPUAOYPUPIKMDY KATAYPAPDOV LYNANG TLUKVOTNTOG TPOKEWEVOL Vo, HEAETNOOOV
YVOGTIKEC AerTovpyieg vYNAOTEPNG TAENG, OMOTEADVTOC TN PAON Yo EQOPUOYES TPAYUOTIKOD KOGLOL
€101KA 6TOV Topén TV Alemapdv Eykepdiov-Ymoroyiot). Ta kotayeypappévo dedopuéva. otepevvidnkoy
YPNOWOTOIOVTOG Svvapukd mov oyetilovrar pe ovuPavia (Biwopotwkd Avvapkd, BA), eoouatikn
amoovvleon kot diktva gykePdAov, evd avomtiydnkav véeg uebodoroyieg ylo T povtedomoinon Kot
avAALGT TOV VEVPOLOYIKGV SOUDV TOPEXOVTOS £YKVPO amoTeEAéopata. EmmAéoy, Ta yopaktnpioTikd mov
e&nybnoov amd kdabe meipopo cLVOVACTNKOY LE OLPOPETIKES TEYVIKES TASIVOUNONG Kol ETAOYNG
YOPOKTNPIOTIKOV  (amopovavovtog &va  WKPO  DITOCOVOAD  GNUAVIIKOV — OAANAETIOPAoE®V) Kot
netuyoivovtag vynin axpifela otn didkpion petaly tov dapdpov katactdoemv. A&ilel va onueiwbel
OTL 1 OTTOKPLITOYPAPNGT TNG NAEKTPIKNG dPAGTNPIOTITAG TOV EYKEPAAOV LE YEVIKEVUEVO TPOTO (GoYETO
LE TN UETAPANTOTNTO TOV EPYACIOV KOl TOV OEUAT®V) EIVOL [0l GNUAVTIKY OTOiTnoN Yo TV TPOGAPUOYH
evOg KOOV TANIGIOL Of TPUYUOTIKEG ePapuoyés Aemapov Eykepdiov Ymoloyiot). Xe ovtd
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EXTENDED GREEK SUMMARY

EMKEVIPMVETOL OOTA 1 OOOKTOPIKN OoTtpiPr], HEC® TNG EMEKTAONG TNG TPEXOVOOG TEYVOAOYIOG GE
VELPOYVMOTIKES TPOGAPLOYEG TS Mnyavikng Mdabnong.

ITwo ovykekpyéva, 1o meipapa 1 (Kepdrowo 3) diepguvd 1oV avtikTuomo SOQOPETIKAOV YPOVIKMDV
mopabvpwv oe BA petd to QAL GE 0KOVGTIKY JOKIUAGIO LUE SLOPOPETIKEG GLVOTKEG TOAVTAOKOTITAG.
Q¢ ek T00TOV, YOPUKTINPLOTIKG ONUOTOS (OT®G TAGTOC, AavOAvVOLGO KOTAGTOON K.AT.) TOL Eival
OVIUTPOCGOTEVTIKA TOV GLOTATIKOV BA mov mpokaiodvion amd codipata, ypnoipomombnkav ce éva
TAQIG10 EMAOYNG YOPOKTNPIOTIK®OV Kot Tavounong mov e&etalel v emidpoon ToV SOUOPPDOCEDY
oNuatog pe Ty mapodo tov xpdvov. To weipapo 2 (Kepdiato 4) apopd v aveEapm (amd 10 €id0g
dtod1Kaciog) exTiunon Tov VYNAoD Evavtl Tov YoUnAod vontikod (Optov epyaciog oe 600 SlopopeTIKd
TOPOdElYIOTA UVAUNG EPYOGIOC. XTO TANIGIO OVTO, £Va SIKTVOV EYKEPAAOV GUVOVAGTNKE HE (POCUATIKA
YOPOUKTNPLOTIKA EYKAPOAOYPOAPTLOTOS Yot TNV EE0YOYN TOV YEVIKELUEVOV YOPOKTNPIOTIKOV OV gival
OVTUTPOGMOTEVTIKG TOV VONTIKOD POPTOL, VM SAPOPETIKOL LEHOJOL TOEIVOUN GG GUVILAGTNKAY UE EVOV
aAyOopOLo ETAOYNG YOPOKTNPLOTIK®Y Y10 TNV AS10AOYNON TOV O10THTOV SOKPLTOTNTOS TOV VITOGVVOAWDY
Aewtovpyidv. H mepoutépo eEétoom TV EMAEYUEVOV YOPOKTNPIOTIKOV OTOKAALYE KOWE TPOTLTO
avelaptnto omd TNV EPYNcio OXETIKO HE TIG QUCUOTIKEG KOl TOTOAOYIKEG TOLG WO10TNTEC. TEAOG, TO
neipapa 3 (Kepdroo 5) digpguvd TOVG VELPIKOVG UNYAVIGLOVS TOL VONTIKOD GOPTOV £PYOciog Kol 1
SloUOPE®ON TOVE G GLVONKEC TOL TPOGOUOLDVOLY GCEVAPLO TPAYLOTIKOD KOGHOVL. XE OLTHV TNV
TEPIMTOOT, TPAYHATOTOMONKE €vol KOAG ELEYXOUEVO TEIPALO TPOGOUOIMONG TTHONG 08 TEPIPAAAOVTOL
006vnc vmoAoyiot (2D) ko ewovikng mpaypatikdmrag (3D) pe molhamid enimeda dvokoriog. Ta
TPOKVTTTOVTO.  OdOMEVO OTN  GLVEXEW VTOPANONKaY ot emelepyoacia.  YPNOILOTOIDOVING EVPECT
VELPOAOYIKAV TNYDOV KOl CLGCOUUTOOMKOV O (QAOUDOELS TEPLOYES KOTACKELALOVTIOS (OCUOTIKA
SIOTNUIKA OIKTO®V TNYNG. XTI GLVEXEW EPOPUOCTNKOV OAYOPlOpOl unyovikng pabnong yw vo
oLYKPLOOLY Ol PETOPOAEC TNG GLVOEGIUOTNTAS KOl VO EVIOTIGTOVV TO TPOTLTO OVOSIOPYAvVEOONG TV
EYKEPOAMKDV SIKTO®V G GY€om [e KOOE eMIMEDO Kol KATAGTOCT POPTOL EPYAGINGC.

To amoteléopato TapEYOVV VEEG YVAGELS OTOVG VITOKEILEVOLS YVMOOTIKOVG UNYOVIGUOVS, EVAD TOPEYOVY
VTooTNPIEN O€  EWOIKOVG OTOVG GYETIKODG LOTPIKOVG TOMEIC, EMITPEMOVIOG OTN  OCULVEXEWDL TNV
OTTOTEAECUOATIKY] TOPOKOAOVONGOT NG €YKEPOAKTG dpactnpotntag. EmmAéov, o cuvdvaopog tng
avéAvong mov mopéyetal péow ™S Mnyavikng Mdbnong pe ™ vevpoemioTun avoiyel 1o dpouo yio
EPUPHOYES JETOPNG avVOPDOTOV/EYKEPAAOV-UNYOVIG TOGO G EMGTNUOVIKOVS OGO KOl GE 10TPIKOVG
topels. Ta mepopatikd £pyo Kot 1 ovéAvon ota mpoavagepBivia melpdpata amoteAovy T Bewpntikn
Baon yio T€T01Eg OIEMAPES, TOV OTOIMV O EMATMGELS Kot 1) Ta&vouncn cvlntodvial exiong 6 avTod T0
ddaktopkd (Kepdrato 6).

Ke@daAaio 1

310 TPOTO KEPAAOIO €160YOVTOL Ol PUCIKEG EVVOIEG KOl Ol TEYVIKEC Yo TNV TOPAKOA0VONGN TOL
EYKEPAAOV, KaOMDC Kol Ot 1O0TNTEG TOV VEVPIKADV TUAAVIDMGEDV OGOV 0POPd, GTNV OVATUPAGTACT] TNG
(PAOLDO0VG dPACTNPLOTNTAG O YVMOTIKEG Agttovpyieg avatepng taéng. ITio cuykekpiéva, meptypaeovat
ol TPOTOL KOTAYPAPNS TNG OPASTNPIOTNTUC TOV ovOpdTIVOL £ykePdAov, ol Tpdmol TomobETnong TV
NAektpodiov, ot gykepaiikoi pvluoi, Ta dSvvapkd mov oyetilovior pe ovykekpyéva epebicpota
(Biopotikd Avvapukd, BA) kor to eykepaiikd diktva (Bempio ypaemv) ovapopikd He TV KOUTOUCKELN
TOVG KOl TIG LETPIKEC TOVG. AvaivTtikdtepa, meptypdpetal To HED avagopikd pe tov tpomo mov AapuPdvet
TIG KOTOYPOPEG KOL 1] EPOPHOYN TOL TOGO OVUPOPIKE HE TIC TEYVIKEG OCO KOl UE TIG VEVPOPVOIOAOYIKES
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Aemtopépetec. Emiong, mapovoidleton 1 tomobecia tov ovykekpiuévov HED kavalidv katd 1o debvég
cvotnua 10-20, 10 6010 KOl YPNCUOTOMONKE OTO TEWPAUATO TOV TPAYUATOTOWONKAV GE 0T TN
dwaktopkn] Oatpipr). Emimpdcbeta, yivetor avapopd oto empépovg yopoaktnpiotikd tov HED
KOTOYPOQ®V UE EUPOCT) GTOLG SLOPOPETIKOVG €YKEQPUALKOVS pulBuovg (J, a, 6, S, y) oxetikd pe v
cuyvoTNTa TOL Tapovcidlovtal, kKabdc Kot oo BA Kot v avdAvcn Tovg 6e TEPAITEP® GUVIGTAGCES
(mhatog Kot ypdvog epedviong tovg). TéAog, avaAbovTal To, EYKEPUAIKA STKTLO KOl TTO GUYKEKPIUEVA 1)
Kotaokev] tov dktvov Agiktdv Kabvotépnong ®@dong (PLI), n onuocioc tov kot ot pETPIKEG TOV
xpNooTodnkay oty aviivon Tov dedopévev ota TAaIce VTG TS SIOAKTOPIKNG Statpipns.

KegaAaio 2

To debtepo Kepdhato mopovctdlel o PPAMOYPAPIKT ETGKOMNON TOV VTOAOYICTIKOV EPYOUAEI®V,
olyoplfpmv Kol TOV EQOPUOYDYV GTOV TPOGOIOPIGUO TPOYVAOOTIKMOV OEIKTMOV Yoo TNV TaSvOunom
SLOPOPETIKAOV YVOOTIKOY KOUTOOTAGEDY Kol GLUVONKOV. AVOALTIKOTEPQ, TOPOVCIALETOL AETTOUEPDOC M
npoenelepyasio tov HED onuotog kot ot teyvikég amoBopvfomoinong tov pe ) yprion o¢iltpov
TEMEPAGHUEVNG Kat Gmelpng kpovotikng andkpiong (FIR, 1IR), Avédivong AveEdptntov Zvototikomv (ICA)
kot 010pbwong ypouung Paong. Emiong avaivetor o tpdmog pe T0v 0moio yiveETOl O EVIOMIGUOG
EYKEPOMKNG TYNG He TV PEBOSO OV YPNCUOMOLEITOL GTIS OVOAVGELS TOV TOPOKAT® KEQUAXi®Y
(mAexTpopoyvnTiky Topoypagio eyke@dlov younAng avaivong, LORETA) kot o tpdmog vmoloylouov
tov myodv. Téhog, mapovoidlovtar ta epyaieioc MM avagopikd pe toug adyopifuovg tagvounong kot
O GLYKEKPLUEVA ovapEPovTal ot LeBodoA0Yieg TOV TAEVOUNT®OV, Ol TPOTOL EE0YOYNG YOPUKTIPIOTIKMV,
1M EMAOYT TOVG KO O1 LETPIKES Y1 TNV AELOAOYNON T®V OTOTEAECUATOV TTOL TPOKVITTOVV.

KegpdAaio 3

To Kepdrato 3 apopd otnv Ta&vOUNoT TOV YVOGLOKOD EYKEQOAKOD UNYAVIGUOD GOAALATOS GE GYEOT)
pe e&ayopevo yopoktnplotikd BA, eotidloviag o€ YEVIKELHEVEG VELPOPUGIOAOYIKEG TTVYEG OV OgV
Aappdvoov vadyn v molvmAokoTTe TV gpyacimv. [o cvykekpiyéva, Pdon g vrobeong OtL oL
EYKEPOAKOL punyovicpol emefepyociog CEUAUATOV TEPLEXOLY LYNAN HOPQOAOYIKY €voicOnoia, ot
uébodot MM egivar 18avikol Yo, Vo, aroKoADYOLV To, KPLUUEVO YUPUKTNPLGTIKG TTOL avTikaTomtpilovy v
eneepyacio Tovg, 0dNYDOVTOS GTOV EVIOMICUO TOV YOPIKTNPIOTIKOV QUTAV IOV Ogv e£0pTdvVTaL Omd TNV
N duoKOoAia oG epyaciog. ¢ ek TOVTOV, EPAPUOCTNKE £va Telpapa aKovoTikng avayvapiong HEL pe
00 oLVONKEG TOAVTAOKOTNTOC LUE TO TPOKVTTTOVTA Oed0UEVA Vo avoldovTal VT TV Tpobmdbeon 6Tl N
eneepyacio cOOANATOV gival £vo SUVOULKO PALVOLEVO, IE SOKPLTA pLoppoloyikd yapaktnpiotikd BA. H
avéivon yopiotnke ce V0 Olokpltég Qdoelc, cvumeptrapupavouéveav tov mpoceyyicemv MM og
LOPPOAOYIKE YOPUKTNPIOTIKG LE SUPOPETIKA 1] cLVIVAGUEVA Ypovikd apdBupa. H tpdtn mpocéyyion
élofe VTOYTN TO GUVOAO TOV KOVOAIDV KOl 0pOopodcE dPAOoTEG Kol TOPATNPNTEG XPTCLUOTOLDVTAG Lol
TpOTOTOINLEVT £Kd00T EMA0YNG Yapaktplotikdv (EX), evd 1 dgdtepn ypnowonoince éva miaicio EX
0€ GUYKEKPIUEVO KOVOALD TOV SpOoT®V Yo TIS TAEIVOUNGELS TV CNUATOV EEXMPICTMV KAl amd KOWoD
Kataotdoemy moAvmlokotntoc. Kot ot dVvo avardoelg nrav o 0éon va mapéyovv vynmin omoédoon
Ta&vouUNoNg, Kol TopovctdlovTol TopPaKiTo.

Ta dedopéva HED culdéyBnkoav and dddeKa ATOMO To OOiol GUUUETEYOV OE Vo OKOLOTIKO TEipaLa
avayvoplong e 6vo enimeda moAvmiokotntac. Ta dedopéva mapdnkav anod 32 kavaiie HEL copewova pe
10 d1ebvég suatnua 10-20. Ot cvppetéyovieg yopiotray 6€ 6 SVAdES, OTOL TOGO 0 dPAOTNG OGO Kal O

loannis Kakkos — Doctoral Thesis iiijPage



EXTENDED GREEK SUMMARY

TOPOTNPNTAG GKOVYAV TOV 1010 TOVO amtd [io TPOEMAEYUEVT] LDV GLYVOTNT®V. X1 GUVEKELD, (NTHonke
a6 Tov dpdotn vo TonofeTnoel évav kKEpoopa e o Umdpo 1) 0moio avTIGTOLOVGE GTO gVpog Ldvng
CLYVOTNT®YV, £TGL MOTE M eMAeYUEVN BEom va Tanplalel pe To akovaTtiko epédicpa. Metd tnv TomoBétnon
TOV KEPGOPU TOPOLGLALOTOV O TOVOG TTOV AVTIoTOLXEL 6T BEom TG Undpoag KafoT®VTAG TPOPUVEG EGV 1
emhoyn Ntav oot 1 eopaipévn. Kabe epyacia mepreddpfove 80 dokipég e TOVG GLUUETEYOVTEG VOl
evaAldocovy TN B€om Tovg MG dPACTEG KOl TOPATNPNTEG. TNV TPMT KATACTOOT], TOAVTAOKOTNTAG Ol
GUUUETEXOVTES AKOVYOAV NYOVS OO TO 1010 €VPOG GLYVOTHTOV Kot £TGL 1 Urdpa Bo Tav TOVOUOLOTLT
Kot Yot Tovg dVo, evad ot devTepn KABe cuppetéywv Ba AdpPave dopopeTikd axovoTikd gpedicpata
€0povg GLYVOTATOV VM NTav dpdotng. Me avtdv tov Tpdmo Ba MoV To dSVGKOAO va XapToypoenOel
dlvonTikd M OlapopeTiky pmdpo oty devtepn  kotdotacn. Ta  AneBévta  dedopéva HED
TUNHOTOTTOONKOV GE GYXECT LE TOV TOVO avadpacng kal vroPfAndnkav oe wpo-eneéepyacia pe @iltpo
arepng kpovotikng andkpiong Chebyshev kot oe d10pbwong ypapung Paong 100 ms wpv and ™
O€yepon. X1 ovvéyeld, vroloyiotnke o pécog 6pog tov HED onpatog yio kaBe coppetéyovta kot yuo
KGOe MAEKTPOSI0, KATAYMPDOVTAG TNV OMAVINGT ®G COOTN N €0QOAUEVN pe Pacn 1o looddvopo
OpBoymvio Evpog Zodvng cdpemva pe tn Bempia Tng yuyoaKousTiKng.

INo va extedeotel n tagwdunon otig ovo KAdoelg mpoypatomombnke o oepd  eEaymync
YOPOUKTNPLOTIKOV Y10 Kabepio amd Tig dvo tpooeyyioels. Kot atic 600 T0 apaKTnpioTikd VIToAoyicTnKOY
pe Paon v ONTIKY TOPATAPNON TOV HECOV KOUTLAOV BA tov dopopetikdv nAiektpodiov yuo
SLPOPETIKE Ypovika mapdabupa, 6mov to oyetiopeva pe opdipo BA, cdpemva pe v Bifioypaeia,
eupaviCouv Eeywplot popeoroyio kot coen dlapopomoinon petaéd tov 2 KAAcE®V (COOTOV Kot
AavBaopévav). Qg ex tovToL, T0 coTd kKot AavBaopéva BA yopiotnkov mepaitépm oe 5 ypovikd
napdbvpo (0-125 ms, 125-220 ms, 220-300 ms, 300-400 ms xai 0-600 mMSs), evd TO. YOPAKTNPIOTIKA
e&Nybnoav yo Ta ypovikd Tapdupa Kot yio avé 600 GLVIVAGHODS TOVS Yo Kabe BEon NiekTpodiov mg:
LEYIOTN Kol EAdyIoTn TIUN TAGTOVG TOv ofuatoc BA, AavBdavav ypdvog tng LEYIoTNG Kot EAAYIOTNG TIUNG
Kot To EUPadd TG TEPLOYNG KAT® 0md TNV KoumoAn BA.

1n [Ipocéyyion: AvdAvon oxeTW{opEVWY e o@AANa BA §pactwv Kat TapatnpnTwyv

Onwc avaeépnke Kol TPoNyoLUEVOS TO, TEWPAUOTIKA dedoUEVA ovaADONKOY GTNV TPMOTN TPOGEYYIoN
YPNOUYLOTOLDOVTOG EVOL TANPEC GUVOAO KOVOAIDV GE dpAoTeg Kot mapotnpntég o€ Eva mAaicto MM mov
evoopdtove v EX kot t1g dwdwkacieg ta&ivounong. Ilo cvykekpyéva epappuootnke 1 Sodoykn
np6cOa emdoyn (SFS) yio vo eviomoTouy To Mo EVOEIKTIKA YapaKINPIGTIKE, OG0V apopd otnv akpifela

g ta&vounong.

l'evikd, n SFS Eexwvd pe €va kevd GOVOAO YOPOKTNPICTIKOV Kol 7pochétel éva mpog £€vo To
YOPOUKTNPLOTIKO U TNV peYaAdTepT onpacio (axpifeia ta&vounong) éog 6tov dev pmopei va vapéet
nepaltépm Pertioon. Qotdco, T0 yeyovoc 0t o€ kabe Prua to SFS mpémel va extiunost v okpifeia
Ta&voUNoNGg OAMV TV YOPUKTNPIOTIKAOV, EYEL MG ATOTELEGHO LEYAAO VTOAOYIGTIKO KOGTOG, VM 1 @HON
oV aAyopiBuov Tov Taydevel o Tomikd péytota. o to Adyo avtd, évag TPOTOTONUEVOG ahyOplOpOGC
SFS ypnoipomomdnke, 6mov o yopaKINPIoTIKA TAEIVOUOVVTOL UE BAGT TN GUVOAIKT TOVG GNUAGI0 GTNV
ta&wvopunon. Xtn cuvéyxelwn, o dwadikacio fabpordynong evionilel to Pacikd vrooHvoro (avti yio to
undevikd) g avtd mov moapovoldlel v kaAdTEPN amddoon péowm g eEaviAntikig avolimmong tov
O£KOL IO GNUAVTIK®DY YOPOKTNPIOTIKOV. TELOG, 0 olyOplOUog TPOyUOTOTOlED Ui0, EMOVOANTTIKY SO
K0T TNV 0T0{0 EVOMUATAOVEL TO ETOUEVO MO CTUAVTIKO YOPOKTNPIGTIKO GTO VITOGVVOAO OVO o avéndet
N amdoocn (yopic va Anedei vwdyn 10 1ocd aHENCNG), EVED €0V 1] GLVOAIKT amOd0oT emdevmbel 1| dgv
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oAaEel mapodeineton Yo vo mpootebel to emouevo. [a va a&loroynbei n axpifeia g ta&ivounong oe
Ké0e emavaAnyT, QUPUOCTNKE Lia d10O1KOGI0 SLLGTOVPOVUEVIG EMKUPWOOTG, TOV GUVETAYEL TN XPNON
oAV TV dedopuévav e e€aipeon evog, To 0TOio KOt YPTCILOTOIOVVTIOL MG CUVOAD EKTOUOELONG LE TO
OTOKAEIOUEVO VO amoTeAEL TO GUVOLO dokIu®V. Ot TavounTég TOL YPTGILOTOONKAY NTOV YPORUKEG
Mnyavéc Awvoopdtov YrootpiEng (SVM), SVM pe cuvaptnon oktvikng Péong kot e TeETpaymvikd
mopnva, o€ cuvovooud pe Tig ueBodovg exuddnong Awdoyikng Eldyiomng Bektiotomoinong kot
Elayiotov Tetpaydvov.

Ta amotehéopata TV YeVIKNG Hopeng Tov SFS kot tng Tpomomompévng €kdoong Topovstdfovial 6To
Kepdrawo 3, IMivaxeg 3.1, 3.2, 3.3 kot 3.4. ZuvorTikd, TO, YOPOKTNPIOTIKA TOV TEPLEYOVIOY GTO TPDTO
YPOVIKO TTapdBupo NTOV eMAEYUEVA e HEYAADTEPT] LY VOTNTA, LE TO NAEKTPOSI0 P8 vo emléyetan and
tovg dvo SFS odyopiBpovg mo ocvyvd. H yevikny popen tov SFS éptace oe amotelécpoto vyming
axpifelag pe pikpd Prpota, TopoAn ovTd TaydeNTNKE e TOMIKG HEYIoTo (EmPefaidvovtag TV apyiky
vdbeon), evd N Tpomomopuévn ékdoon Pektimoe v axpifeia ta&vounong (ue meprocdTEpL PrpoTa
OUMG) Kol Tapovcioce oNUOVTIIKY pelmon Tov vmoAoyloTikoy @optiov. Téhog, @dvnke Ot TO
YOPOUKTNPLOTIKG (OTTMG TO TAUTOG KOl O ¥POVOG EUPAVIOTG) EUQOVILOVY HLOPPOAOYIKEG dlaPOpPEG GE KAbE
KOTAGTOOT TOAVTAOKOTNTOG, KAAVTTOVTOG GLYKEKPIUEVE cuotatikd BA. Avtd 1o yeyovog anotéhece to
Boactkd kivnTpo Yo TEPAITEP® SlEPEVYTION TG EMIOPACTG TNG OVGKOAING TNG ALTOOUEVTG OO TOV OpaoTn
gpyooiag, V100eTOVTOS Lia VEQ TPOGEYYLOT] TTOL TEPLYPAPETOL TOPAKATO.

2" Ilpocéyylon: AvaAvon oxetllopévwy UE O@AARX BA SL@OPETIKWOV KATACTACEWV
TIOAUTIAOKO TN TG

Yg ouT TNV TPOCEYYION, YPNOWOTOMONKeE o oTpaTNyKy ovaliTnong YOpOKTNPIOTIKOV TOL
EVOOUATOCE VOV GUVILOGUO SLAO0YIKNG KOUOVOUEVNG EMAOYNG TTpog Ta untpog (SFFS) kat dradoyikng
emAoyng mpog ta eunpds (SES), emrpémovtag v aviyveuon Tov UELOVOUEVOV XOPUKTNPIOTIKOV TOV
napéyovv vymin axpifela ta&vounong. Emiong, m mpocéyyion diopopomomOnke OYETIKO LE TOVG
CUUUETEYOVTEG KOL TO YOPOKTNPIOTIKG TOL ypnoiwomomndnkoyv. Q¢ ek tovtov, 1M uebodoroywkn
otpatnyikn mepiidpPfove povo HEIDT dpactdv otic 600 cvvOnkes moALmAOKOTNTOGC KOl U0 DTOOUAS
NAekTpodimv (to 7 7o EVOEIKTIKA GUUPOVE LE TNV PiPAtoypagia Tov PpiockovTol 6TV KEVIPIKT TEPLOYN
TOV TPLYMTOV TNG KEPAANC).

H S16xpion peta&d TV anavinceny og cmoTOV 1 ECOUAUEVOV TpaypaTorodnke pe tasvounty SVM
pe Awdoywn EAdyiotn Beitiotomoinon, EAdyiota Tetpdymva ko Tetpaywvikd Ipoypappatiopd, evod
doxudotnKay Aettovpyieg mupveov SVM ypappikoi, Guvaptnoemy okTviKNG Pdong, TeETpay®vikot,
TOAVGTPOUOTIKOV perceptron kol ToAVOVLUHIkol. Avo dwdwkaocieg Ehafav ydpo. Xtnv Tpd™
epapudotnke wia tomiky SFFS, 1 onoia meptlaufaverl mavopotdtumn Astrovpyia pe v SFS (apyilovtog
oo éva KEVO GUVOAO YOPOUKTNPLOTIKMVY), OAAG LETO amd kabe Prino Tpog o eUmpOg Umopel vo exTelEl
pruoto Tpog o Tom, dedopUEVoy TNG avENoNG TS TWNG TNG OVTIKELUEVIKNG GLuVAPTNOTG (ApalpmdVTag
YOPOUKTNPLOTIKG TOV TPOoTEM KAV Gg mponyovueva Pripata). ¢ avTIKEEVIKT cuvaptnon empnOnke n
axpifeia Tov TOEWOUNTH YPNOUOTODVTOG OEOOUEVE OO TIG OLO KOTOOGTACES TOAVTAOKOTNTOG
TAVTOYPOVE. XNV Og0TEPN dwdikacion M akpifelo AapuPdvetol ypPNCIUOTOWDVTAG TN UEGM T TNG
akpifelag e Tp®MTNG Kot dEHLTEPTG KOTAGTAGNC TAVTOYPOVE, KAODC Kot EEYMPIOTA TNG TPOTNG KOl TNG
ogvtepng. Metd v emAoyn TOL PEATIOTOL VTOCLVOAOL YOPOKINPIOTIK®OV, gpapudéotnke mn SFS
Eexmplotd ota dedouéva kabe KOTAOTOONG TOATAOKOTNTOG EEKIVOVTAG 00 &val OpyIKO GUVOAO
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YOPOUKTNPLOTIKOV EMAeYUEVO amo v SFFS. H exmaidoevon kot dokiun tov kébe adyopibpov ta&vounong
vAomomnke pe N ypnon g idwg Sdikaciog S106TAVPOVUEVNG eMKUpOOoNG o Kibe Pruo Tov
uebddwv SFFS wor SFS o6mwg oty mponyovpevn mpocéyyion. EmmAiéov, ot dwdikacieg EX ot
Tagvounong 6gv EQUPUOGTIKAY LOVO Y10, TO, TEVTE YPOVIKG Tapabupa, aAAd Kol Y10, CUVOVAGHOVS TOVC
avé 6v0.

Ta amotedéopata v dvo dadikacidv Tapovoldlovioal 6to Kepdiawo 3, IMivakeg 3.5-3.10. H obykpion
petalld TV 6o SludIKACIOV dElyVEL OTL 1 OgVTEPT TTOPEiYE KOAVTEPH AMOTEAEGLOTA, TOCO OGOV OPOPd
omv axpifela Tov TaEvountn, 660 Kol GYETIKA Ue TO MANOOG TV YOPUKTNPIGTIKAOV TOL EMEAEYNCAV
(onuovtikd pikpotepog). H vymin axpifeia tagvopunone mov emredydnke yo v ta&ivounon petalo
TOV OPOPETIKOY KATUCTACEMY TOALTAOKOTNTOG OAAG Kol otnv kdbe o xotdotaon Eeyopiotd
emPePordvel v apyikn pog vedBeon OtL, ot dwdikaciec MM umopodv va aviyvedoOoLV ETITLYMOG
Kpoppéva potifa og yapaktnpiotikd BA kot €161 va evTomiotovy ot AavBooUéve amopdoels, aveédptnta
amo TN dvokolio g Kabe epyacioc. Emiong o ocuvdvacudc ypovikdv mapabopwv otnpilel v vmodeon
OTL TOL SLLPOPETIKA cLGTATIKA TV BA mpocpépouvv peyadivtepn evel&la oTig dtadikacieg ToEvOUNomnG.

SOUTEPACLOTIKG, Ol Ol0pOpeTIKEG TTpooeyyioelg £deiéav 0Tt M Ta&vouncn o€ SlQOPETIKEG GLVONKEG
duokoAiag umopei vo. emitevydel, ©oT0G0, AOY® TG UETAPANTOTNTOG TOV XOPAKTNPIOTIKAOV, 1| EKTIUNON
TOV  KABOAIKOV YOPAKTNPIOTIKOV OnoTEAEl onuavTikd eumddo. Q¢ ek TovuTov, cLVOLALOVTOG
YOPOUKTNPLOTIKG OLUPOPETIKMOV YPOVIKGOV TOpabipmV UTOPECHY VO EVTOTIOTOOV OEIKTEC €VOG TOUVAC
YEVIKELUEVOD YVOGLOKOD UNYOVICLOD GOAALATOS aveEEAPTNTOL ad TNV TOAVTAOKOTITA TV EPYUCIDV.

Kegpdlaio 4

Y10 Kepdrao 4, epoplocTnKE aViXVELGT TOV VONTIKOD POPTOL gpyaciag, aveEaptntn amd TV gpyacia
OV TTPOYUATOTOMONKE, YPNCILOTOIDVTOS TV CLYYDVELGT] OLUPOPETIKMOV PUCUATIKDY YAPOKTNPICTIKOV
HEI'. H avélvon mov mpoteivetar oe avtd 1o Kepdiaio mepilopfaverl éva miaicto MM yuo v
OVTIUETOTION TOV EUTOOIMV TOV TPOKLITOLV GLYVA OO TNV TOEWOUNCT POPTOL Epyaciag UeTaly
EPYOCIOV, YPNOWOTOIOVTOG Paouatikd yopaktnpotikd HED ywo va amokaiveBovv ot yevikevpévol
unyoviopoi wov puduifovv Tov vontikd eopTo gpyaciog. AvAALTIKOTEPQ, VIOAOYICTNKAV 1 AEITOLPYIKY
OUVOEGIUOTNTO KOl TO YOPOUKTNPLOTIKG 10Y00¢ QOCUOTIKAG TUKVOTNTAS omd dlapopetikég (dveg
CUYVOTNT®V G £VO TEPAPATIKO TPOTOKOALO TOL OMOTEAOVGE dVO EPYACIES LUE SLULPOPOTONUEV D ETITTES QL
dvuokoAiag. To yapakTnploTikd 6T GuVEKELN TPoPodoTnONnKay o€ éva TAaicto EX kot ta&vouneong ya va
ekt Ol 1 TOWOTNTU TOV YOPUKTNPIOTIKMY Kol GTI GUVEXELN VO, eKTIUN Ol | amddoon Ta&vouncnge.

[T ovykekpyiéva, oto meipapa cvppeteiyav 40 dropo omd Tovg omoiovg nbnke m ektéheomn Svo
gpyociov Agrtovpyikng uvnung (n-Back kor Mental Arithmetic) o dwapopetikd eninedo dvokoAiog.
Yyetka pe v n-Back, ypnowonomOnke n 0-back kot 2-back yio yaunAd xor vynAd exinedo EOPTOL
gpyaciog avtiotorya, pe v 0-Back va {nreiton tovg cvppetéyovieg vo amavtiicovy dv PAEmovy T0
ypauua «X» kot ™ 2-Back to kepolaio ypdupa mov aviiotoodoe 6To YPALLO TOV TOPOVGLAGTNKE 00
doxiuég vopitepa. Xtnv epyocio Mental Arithmetic, o dVo enimeda @opTov gpyaciog meptiaufdavovy
TPOcHEGEIS e LOVOYNPLOVG KOl E TPIYNPLOLS apBpods. e Kabe S0k TapovcstioTnKE Lo Tpdcheon
Kot 6T GUVEYELN TOo dBpotopa 1 €Evag apBuog ue mapodpota tiur. Ot GCUUUETEXOVTEG ETPETE VO KPIVOLV
€av 1 amdvrnon mov 360nKe IOV COOTN.
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H xa0e xatoaypoaen HET mepieddpfove 64 niektpddio coppmva pe 1o debvég ovomua 10-20, pe ta
OKOTEPYOOTO GNUATO VO YNOLOTOVVTIOL 6€ cuyvdtta dstypatoanyiog 256 Hz, va ¢iitpdpovtal pe
¢iktpo memepacuévne kpovotikng amokpiong (FIR 1 - 40 Hz), va amoBopvPomotodvton pe ypion ICA kot
oTN OLVEXEWL Vo Tpaypatomoteitar dopbwong ypopung Pdong, 100ms mpwv amd v évopén Tov
epebioparog. Xt ovvéyewn, ta HEDN onpata yopiotkav ce empépouvs Tunpote 6mov VToloyioTnke n
OYETIKN POoUATIKT TUKvOTTA 1Yvo¢ (PSD) kot o delktng votépnong edong (PLI) yio {dveg cuyvotitaov
délta, OnTa, dAea kot frta.

Ipoxeévor va ektiunbei m mpoyvootiky wyds tov PSD xar PLI yapaxmmpiotikév, n EX
YPNOWOTOONKE G OAOKANPO TO GOVOAO YOPOKTINPIOTIK®V aveEdptnta and v kdbe epyoacia. O
alyoppog EX mov ypnoyomombnke ftav o avadpoutkn uéBodog eEGAenymg XOpaKTPICTIKOV UE TN
pébodo peimong ovoyétiong pepoinyiog (RFE-CBR) mov extipd ™ onpacio kde xopaxtnplotikov (Kot
KOTO CUVETEWD TNV KATATAEN TG CNUAVTIKOTNTAS TOV) PAGEL vOG €00TEPIKOD Ypaputkod SVM. Onwg
Kot 6T0 mponyovuevo Kepdiato ypnoyomodnie S106TavpodHEVT] ETKOPOOT YPNCILOTOIOVTAS KO
eopa éva oet ekmaidevong efoupovpévov Tov Osdopévev  evog ovuppetéyovta. H  tagwvounom
EPUPUOCTNKE LE TNV 1010 SIUCTOVPOVUEVT] EXKVPOGN e Evav Ypouuko tasvounti SVM. Qg Bértioto
VTOGUVOLO YOPAKTNPLOTIKOV BempnOnke avtd pe v vynAdtepn péon akpifeta onv TaEvounon pnetaly
TOV eMTEO®Y OVOKOAOG KoL TOV OV0 EPYACIOV TOVTOXPOVA, EEKIVAOVTOG HE €vo KEVO oOVOAO
YOPOUKTNPLOTIKOV KOl TPOcHETOVTAG KATA GEPE €va TPOG EVAL TOL KOTATAYUEVA YOPOUKTNPICTIKG 0o TN
EX. Ta amoteAéopota g mpotevopevns mpocéyyiong Ppiokovrar otov Ilivaka 4.1 tov Kepaiaiov 4.
A7d T0 YopoKTNPIoTIKG OV emeAéynoay mepinov to 10% agopovoav PSD pe to vroroira ftav PLI.

H mpocéyyion MM mov mpoteivetat, édmae 94% axpifeia ta&ivounong (tnv HeEYoAdTEP ®OC TOPOL GTNV
ocvyypovn PProypapio cOpemva pe v ovalntnon TV GLYYPOPEMY TNG CYETIKNG EPYACING) OTIG
dtokpioelg Tov vonTikoD QopTiov, VA 1 avIADGT| TOV ETAEYUEVOV YOPUKTNPLOTIKOV £J€1EE KOWVEG TACELG
avegaptnteg amd TNV epyocio. og 1010TNTEG PACUATIKNG 10Y00G Kol AETOLPYIKNG GLVOEGIUOTNTOG.
Yvuykekpyéva, aviyvevdnike avénuévn woyvg og J kot € puBud pe v adENor Tov ETTESOV TOV POPTOL
€PYOOIOG, VM EVTOTIOTNKOV OSlOPOPOTOGES TNG AELTOVPYIKNG GLVOECIUOTTAS OGOV aQOpd G
oLYVOTNTA Kol OTIS BEGEIC TV NAEKTPOSI®V GtV EMEAVELD TNG KEPAANG. TEAOG, Ta XOPAKTNPIOTIKE TOV
EVTOTIOTNKAY TOPElYAY OEIKTEC TNG TPOYVMOOTIKNG TOLEC TOOTNTAS, OAAG Kol €XESEIENV TOV YVOOTIKO
EAEYXO TOV OVOOTOATIKOV AETOLPYIOV ®C TOV KOPLO Topdyovio, €vog yevikevpévov (universal)
UNYOVICHOU POPTOL gpyaciag. g €K TOVTOV, OmOOEIKVOETOL OTL 1] CLUVEXNG VONTIKN evnuépmon pe ke
véo doKln amoltel EMMAEOV TOPOLG YOPNTIKOTNTAG UVAUNG, €VO oyvoel doyeto epebiouara
TPONYOLLEVAOV dOKIUADV. H Guvolikh Tpocéyylon amekovilel TNV ATOTELEGUOATIKOTITO TOV GLVOVAGHOD
TOV  YOPOKTNPICTIKOV OTNV TPOoTAdslo. aviyvevong evOSIKTIKOV PlOodEIKTOV  VONTIKOD  QOopPTiov
ave&aptnto amd v epopprolouevn epyacio.

KepdaAaio 5

Y10 Kepdhoto 5, AapPdvovior vwoyn To OTOTEAECUATO KOL TO CUUTEPACUATO TMV TPOTYOLUEVAOV
Keparaiov kot epappoletar aEloAdyNnon T0v pOPTOL £PYACING GE LU TPOGEYYLOT TPOYUATIKOD KOGLOV.
o ovykekpyiéva, mpaypotomomdnke meipapo TPocopoiwong mMong o€ mepipaiiov 2 ko 3
dloTdcemV e TPoctyyion MM moAlaTAGV emMTEd®V POPTOV €PYOGING, YPNOLOTOLDOVTOG AEITOVPYIKEG
SLOPOPEC EYKEPUAIKDY SIKTVMOV TOV EYKEPUAIKDY SOUMY. AVOAVLTIKOTEPQ, 1| AEITOVPYIKT GLUVOEGILOTNTO
OO TIG EYKEQPUAIKEG TNYEG LTOAOYIOTNKE KOl YPNOCIUOTOMNONKE G YOPOKTNPIOTIKO TOEWOUNONG
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OelyvovTag KOWG KOl UEUOVOUEVO YOPOKTNPIOTIKG Kol 6To 000 TEPPAAAOVIO GE GLYKEKPIUEVEG
GUYVOTNTES EYKEPAAOV.

To mepapotikd mpotoOKOALO mepleAduPave 33 dropo ta omoion mipov pEPOG o€ OV0 GLVESPIES
TPOCOLOIMGCTG TTHOTG YPNOLOTOIDVTAG dVO TEPIPAAAOVTA: ) L0 GLVESPIO YPTCLUOTOLDVTAG Hict 000V
VTOAOYIOTH Kot B) pio cuvedpia ewovikng mpaypoatikotntoc. Kabe cvvedpio mpocopoimong mtiong
arotelovtav omd Tpia oTdda pe avEavopevn SVGKOAIN, GYESIIGUEVO VI TTPOKAAOVY JOPOPETIKA EMIMESQL
vonTikov @optov gpyaciog. Ta tpio 6Tadr TEPIAGUPOVAY: TNV KOTAGTOCT OLTOUOTOL TAOTOV, TNV
omoia dev amartoLvVTay AglTovpyio aepockdeovg (EAdyioto eminedo POPTOL epyaciag), TV Katdotoon
YeWPoxivng Aettovpyiag, oty omoia {ntnOnKe amd Ta ATOUA VO XEPIGTOVV TO OEPOCKAPOS Kol TNV
YEWPOKIVNTN Aettovpyia depOCKAPOVG LE TAVTOXPOVE KEVA 0£POG Kol TPOPARpaTa KoTd TV mthon. Ta
ocuveyn oedopéva HED kataypdonkav o vymin avdivon amd 64 niektpodia, evd yneromodnkay e
pLOUO derypotonyiag 256 Hz kot epoppootnke Eva @iltpo memepacuévng Kpovatikng andkpiong FIR
oékevong {ovng 0,5 - 40 Hz. T'w v omoBopufomoinon ypnoomomdnike avaivon avesdptnrov
GULGTATIK®V KOl TO. GUGTOTIKA TTOV £J€1EAV VYNAT CLGYETION LE TO GNUATO A0 TO MAEKTPOdIO OTOL LATLOL
amoppipOnkay.

Mo tovV &VIOMGUO TOV EMATOCE®Y TOL VONTIKOD @OpTOL gpyaciag kot v o&loAdynon Twov
OTOTELECUATOV, YPNOLOTOMONKE O EVIOTIGUOG EYKEPAAIKMY TNYDV oTIG Xpovikég oelpéc HEL yia kabe
nepiodo Asrtovpyiag kot eminedo PoOpToL epyaciag oTig d, 0, a, B kat y {dveg cuyvotNT®V. Ol EYKEPAAKES
My£EC Tov avtioTolyovy ota empavelnkd HED onpata mpoceyyiotnkoy pe epopproyr NAEKTPOUOYVITIKNG
topoypapiog  youning ovéivong (eLORETA) oe mpotvmo MNILS2, 6mov 710  amotélecpa
TunuoatonomOnke og 80 mEPLOYEC EVOLPEPOVTOC KOl DTTOAOYIGTNKE 1) AELTOVPYIKT GUVIEGIUOTNTO METAED
ké0e Cevyovg meproydv pe PLI. Emiong extyumbnke n tomoAoyikn| yevikevpévn amdo0cn Kol 1 TOTIKY|
0TOd00N TV EYKEQPUAMK®DV SIKTOMV.

Mo mv EX ypnowonomdnke o aiyopidpog RFE-CBR 6mmg kot oto mponyovuevo Kepdloto, evad 1
to&vounon éywe pe péBodo Toyaiov VTodaoTNIIKOD GuVOLoL pe Avaivon I'pappikng Atdkpiong (LDA)
®¢ Pacwkovg taivountés. H pébodog tuyaiov vmodoomuikod cuvolov oamocuviétel to dedouévol
€16000V G€ TLYAIC VTOGVVOLN YMPOL SLVUTOTHTMV Y10 TNV EQOPLOYT UEpOVOUEVeOVY Tadvouncemv LDA
ot ozoieg exmandevovtot Egxmplotd Kot ot cuvEyeld Aappdvetal cuALOYIKN ardpaot pe TAsoyneio. To
VTOGUVOLO YOPUKTNPICTIKOV UE TNV DYNAGTEPT GLVOAIKT okpifelo tagvounong kabopictmke ¢ TO
BéATioTo Yo TV d1dKpilon emumédon eoOptov epyaciag. Ta amoTeAéopATo TNV TPOTEWVOUEVNG TPOGEYYIONG
napovcidovrol otovg Tivakeg 5.2, 5.3 kai oty gwkova 5.4 tov Kepaiaiov 5.

H mpotewvouevn pebodoroyio NTav EMTUYNG GTOV EVIOTMICUO TOV KOOV KOl SUKPITOV EYKEQUAK®OV
YOPUKTNPLOTIKOV TOV VONTIKOV (optiov uetal&d tomv 600 Tepifolidviov Tpocouoimcnc, TapovctilovTog
VYNAN KavOTNTO S13KPIoNG OTY| dladtkacio Ta&vounong, VA Yp1NOLOTOINGE HOVO £va, LIKPO LEPOG TOL
TANPOVE GLVOLOL YOPOKTNPICTIK®Y. Blcel twv mapaydlevemv omoTteAeGUATOV EVTOTIGTNKE EVTOVATEPT
Aertovpyio oTIG pETOTIOIES TEPLOYES GTOV PpLOUO o Kot 6T dvO TEPIPAAAOVTO TPOCOUOIGONG LE KOWVES
OULVOEGELG TOL VLAPYOLY GE OAN Ta emimedo moALVTAOKOTNTOG. AvTifeta, o1 {dveg 6 kot f Tapovoiacay
TUTOAOYIKEC OVIGOTNTEC GTIV TOTIKT] KO YEVIKELUEVT] atO006T LETOED TV 600 TEPIPoilovimy. Avtd Ta
OTOTEAECLOTO EMTPENTOVY UI0L OTOTEAECUATIKY] OELOAOYNON TOV YVOCTIKOV VTOCTPMOUATOV OV JETOVY
TOV POPTO £pyNciag o€ peoMoTiKG oevapta. TELOC, TO TEPIPAAAOV EIKOVIKNG TPOYLOTIKOTNTOC EKTILOTOL
OTL TPOKALEGE VYNAOTEPO VONTIKO POPTO EPYOCING GTOVG GUUUETEYOVTEG GE GUYKPLON U TO TEPPiAiov
Olod1IoTOTNG OMEIKOVIONG. X& aLTO dev ouvEPoAavy HOVO Ol MO OMOUTNTIKEG OMTIKG YVEOOTIKEG
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dtodtkaoiec, oAAG Kol To EXITESD AYYOVG OTOV Ol GUUUETEXOVTESG ELYOV TEPIOPIOUEVO EAEYYO, KAOMOG Ot
MEPLOYES TNG OULYOOANG TOL EYKEPAAOL MNTOV TEPIGCOTEPO EVEPYEC OTN  OEMOPT,  TEXVNTNG
TPAYUOTIKOTNTOAG, EVICYDOVTOC TNV WLYIKT TEGT TOL TPOKOAEITOL GO L0 TTLO PECAICTIKY KATAGTOGT TOV
TPOGOUOIDVEL KATAGTAGELS GE GEVAPLO TPOYLATIKOD KOGHLOV.

KepdAaio 6

AopPavovtog vmoyn ta maponave Keedhowo, oto Kepdhowo 6 mapovoidletor m Pdaon tov
BroniekTptkdV oNUAT®V Kol Ol GLVOLAGCUOL HE TOVG OYETIKOVS ahydpiBpovg MM ce oyéon pe Tig
Teyvoloyikég kot pebodoroyikég  efeliCelc tov AAM/AEY. AvolutikOtepa  meptyplgetor M
OTOK®MOKOTOINGT TG avOpdTIvNg TPdOeong Kot 1 LETAPPACT| TNG OE TPAYUOATIKO ¥POVO UE [0 EVTOAN
eAEYYOoL Yoo TNV KaBOSNyNoT LVAIKOV KOV AOYIGUIKOD, 1 OToie WE TN GEPA TNG EVOTOIEITOL MC Mo
oAniemiopaon peTaED €VOG OTOUOV KOL PNYOVAG. XTI GULVEXEI OVOADOVTOL TO OgdOoUEVO ™G
Broniextpikd onpato mov aviavakAovv T Prodoyikr| dpactnpotnta (0mmg pvikd 1 HED onpata) kot
oVOTATIKG NG £YKEPOAKNG dpactnpromrog (0mwg BA, amocvyypoviopod 1 cvyypoviopod HET k.d.)
Meto&h dAov avapépoviar pn Proloyucd dedopéva kivnong, ta onoio pmopodv va e&oybodv péom pn
EMEUPATIKOV KVNTOV o1cONTAp®V, avaADovTag TG TOPAUETPOVS Tov mepAapfdvovy petatomon /
TEPLOTPOPT] TOV AKP®V KAOMDE Kot TIG OUVAUELS OVTIOPOOTG.

2mv Paon g dnuovpyiag evog cvotiuatog AEY 1o civolo tov dabéciumv pebodoroyidv cuvimg
emnpedlel v amddoon ¢ TaSvounong, TV VITOAOYIGTIKT TOAVTAOKOTNTO Kol TOV XPOVO OTOKPIoTG,
EVD 0 POAOG TMV YPTCLOTOLOVUEVOV YOPUKTNPLOTIKGV glvar {OTIKNG onpaciog, Kadmg avTimposmrehovy
TNV KOTOVONGoN TV dodtkactdv Kiviong. Xe owtd to miaiclo, mopovstalietor £va TAnbog alyopiBuwv
nov mepthapPdvouy EX kot tagvountég kot Exouv ypnoipomondel yio vo omoKaAOWouy YPOUMIKEG Kot
UM YPOUUKES EEAPTIGELS TV YOPOKTNPLOTIKMV.

Téhog mpoteivovtor vPpdKd mAaiclo, HECE® TNG EVOMUATMOONG TOAAUTADV (UOIOAOYIK®Y KOl UN
(QUOLOAOYIKMY SEO0UEVOV TPOGPEPOVTAG ULK OAMGTIKT OVAALGN KIvoNG 6€ TPAUYUATIKO YPOVO Kol TPOTTOL
OVTIHETOTIONG TOV LEALOVTIKGOV TPOKANGE®VY TOV TEdiov epapuoyng AEY.

Ke@dAaio 7

Y10 Kepdiao 7 ovvoyilovior ta cvumepdopota Tov mponyovueveov Kepoioiov kot mpoteivovtol
Kdmoleg katevboivoelg ywoo peldovtikn epyoacio. Mo cuykekpiuévo, ovoaeépovioal Ol KUPLOTEPEG
GUVEICPOPES TOV EPYACLOV TOL TPOYUATOTOMONKAY KOl EMCTLOIVOVTOL TO O CTUOVTIKG EVPTLLATO OV
Kepdrato.
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Abstract

Cognition refers to all conscious mental activity, involved in thinking, remembering, and reasoning. As
such, the different brain functions range from volitional movement to language, imagination and
planning. Conventionally, brain research focuses on the perception of the external world by examining
how information is processed by analyzing biomedical records based on statistical or quantitative
characteristics. However, the complex attributes and interactions in the human brain pose several
challenges in order to effectively elucidate the underlying neural substrates that govern higher-order
cerebral functions. To address this, recent studies have suggested the inclusion of machine learning
designs as a way for an effective and accurate analysis of the complicated properties of brain signals,
unveiling (hidden) cognitive associations and characteristics.

In this PhD dissertation, advanced machine learning approaches for processing and analysis of
electroencephalographic (EEG) signals are proposed, exploiting the signal properties in the time and/or
frequency domains. Towards this direction, three high-density EEG experiments were employed in order
to study higher-order cognitive functions, forming the basis for real-world applications especially in the
field of Brain-Computer Interfaces (BCI). The recorded EEG data were investigated using event-related
potentials (ERPS), spectral decomposition and brain networks, while new methodologies were developed
for the modeling, reconstruction and analysis of neurological structures providing valid results. Moreover,
the features extracted from each experiment (representing different properties of the various brain
structures) were combined with different classification and feature selection techniques, isolating a small
subset of important interactions which achieved high accuracy in the discrimination between the different
conditions. Of note is that the deciphering of the brain electrical activity in a global manner (irrelevant of
task and subject variability) is a major requirement for the adaptation of a common framework to real
world BCI applications. As such, this Doctoral Thesis focuses on addressing this through expanding the
current state-of-the art in neurocognitive adaptations of Machine Learning.

Specifically, experiment 1 (Chapter 3) investigates the impact of different time windows in time-locked
ERP components after an error was committed, in an auditory task with varying complexity conditions.
As such, signal characteristics (like amplitude, latency etc.) that are representative of error-elicited ERP
components were utilized in a feature selection and classification framework examining the effect of EEG
signal modulations through time. Experiment 2 (Chapter 4) regards the task-independent assessment of
high vs low mental workload in two different working memory paradigms. Within this scope, a brain
network design was combined with EEG spectral characteristics to extract the global traits that are
representative of mental load, while different classification schemes were paired with a feature selection
algorithm to evaluate the distinguishability properties of the fused feature subsets. Further examination of
the selected features revealed common task-independent patterns regarding their spectral and localization
properties. Lastly, experiment 3 (Chapter 5) investigates the neural mechanisms of mental workload and
their modulation in conditions simulating real-world scenarios. On this premise, a well-controlled EEG
flight simulation experiment was conducted in computer screen (2D) and virtual reality (3D) conditions
with multiple levels of difficulty. The resulting data were subsequently processed using electrical source
imaging (ESI) and parcellated into cortical regions constructing spectral source space networks. Machine
learning algorithms were then applied to compare the connectivity alterations and identify the brain
networks reorganization patterns in regard to each workload level and condition.
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The outcomes provide new insights in the underlying cognitive mechanisms, while provide support to
experts in the relevant medical fields, subsequently allowing effective monitoring of brain activity. In
addition, the combination of machine learning analysis and processing with neuroscience pave the way
for Human-Machine Interface (HMI) and BCI applications in both scientific and medical fields. The
experimental works and analysis in the aforementioned experiments form the theoretical basis for
HMI/BCI, the implications and taxonomy of which is also discussed in this PhD (Chapter 6).

Aims and Objectives

This Doctoral Thesis presents new techniques for the effective analysis of higher-order cognitive
functions, employing Machine Learning methods. The applications of such methods in Neurosciences
provides a unified approach that incorporates biomarker extraction and data-driven approaches in the
detection of (otherwise hidden) cognitive operations. To that end, this Thesis’s aim was to build the
groundwork for BCI frameworks by carrying out multifactorial analysis of the characteristics of the
signals at multiple levels giving information on neurological structures and revealing global neural
substrates utilizing Machine Learning schemes. Specifically, given the tendency to consolidate available
information from different sources and modes of analysis, Machine Learning technigques offer a unique
opportunity to study, predict and monitor the progression of various conditions, diseases and states
providing valid answers to various scientific questions. In this regard, electroencephalography
experiments were performed to study complex states of the brain, such as mental load and error-related
cognition. Data were analyzed using standard approaches, such as ERP analysis, power density analysis
in the field of frequency and topological analysis of functional brain networks in source and sensor space.
Subsequently, the above-mentioned analyses were combined with machine learning and classification
algorithms to categorize the various brain states effectively and by extension find links and differences
between the employed biomarkers.

The main objectives of this Thesis include — yet are not limited to — the following:

e dynamic study of the neurophysiological mechanisms underlying higher order cognitive states,
o identification of cognitive indicators related to brain mechanisms,

o development of advanced computational tools for automated effective classification,

o applicability of system transfer to real-life conditions.

PhD Structure

In a nutshell, Chapters 1 and 2 are introductory regarding the brain recordings, structures, measured
cortical responses and computational tools with emphasis on characteristic indicators of
electroencephalographic recordings. Chapter 3, 4 and 5 refer to the experiments employed for the
implementation of this Thesis, their analyses and the implications of the results from a neuroscience and
engineering perspective. Chapter 6 takes into account the research analysis in cognitive conditions and
states and implements them into a theoretical and experimental approach of Machine Learning in Brain-
Computer Interface scenarios.

The first chapter introduces the basic concepts and techniques for brain monitoring as well as the
properties of neural oscillations in terms of the representation of the cortical activity and especially in
higher-order cognitive functions.
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The second chapter presents a bibliographic overview of the computational tools and algorithms and its
applications in the identification of predictive indicators for the classification of different cognitive states
and conditions.

The third chapter concerns the study of error-related brain activity, relevant to different complexity
conditions of an auditory identification task. As such, the cognitive properties of Event Related Potentials
are analyzed and a novel method for subsequent classification is proposed based on different time-
windows resulting high condition-independent performance and efficient evaluation of the employed
cognitive attributes.

The fourth chapter analyzes the cross-task workload discrimination limitations and introduces an efficient
framework to alleviate them. Specifically, encephalographic data in two different working memory tasks,
a numeric and an n-Back task, in two difficulty levels each were employed fusing sensor derived
networks and spectral power density features for the machine learning application. The aforementioned
analysis succeeded in high classification accuracy results (the highest so far in the literature, to the
knowledge of the authors of the related study), while minimizing the number of electrodes required.

The fifth chapter focuses on multi-level workload classification in flight simulation employed in
computer screen and virtual reality, approaching real-world scenarios. For the purpose of workload
assessment, brain networks were constructed in source space, while the introduced feature selection and
classification framework was able to detect the common and separate brain structures governing pilot
mental load.

The sixth chapter takes into account the experiments conducted as well as the current state—of —the-art in
Brain-Computer Interfaces and suggests advances in algorithmic applications and system implementation,
while incorporating basic analysis in real and imaginary motion recordings.

Finally, the seventh chapter summarizes the main contributions and conclusions of the dissertation and
lists some ideas for future extensions.
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Chapter 1

1.1  Recording the Activity of the Human Brain

The human brain is the main organ of the human nervous system consisting of several structures, each
responsible for specific processing, integration and coordination of the received information. The main
taxonomy of the brain include the cerebrum, the brainstem and the cerebellum, the later further divided
into two hemispheres which are connected through a mass of nerve cells (neurons). There are
approximately 86 billion neurons in the human brain, carrying out the vast majority of communication
through electric impulses (resulting in neurotransmitters’ release between cells), forming complex neural
pathways and circuits [1]. These subtle electrical fields generated (called post-synaptic potentials) -when
averaged through thousands of neurons- represent the synchronous activity of larger brain areas and thus
result in a significant reflection of electrical activity generated by the brain. Accordingly, electrodes
placed on the skin (scalp) surface are able to monitor the brain activity as propagated through the different
anatomical head layers (meninges, skull, skin, hair) [2].

One of the most common monitoring methods is the electroencephalogram (EEG), a typically non-
invasive recording technique that can measure the voltage fluctuations of the ion flows of oriented neuron
populations near the surface of the cerebrum. EEG presents several advantages over other brain imaging
methods with excellent time resolution (allowing thousands of “snapshots™ of electrical activity from
multiple electrodes within a single second), minimal cost and the fact that recordings are passive being
the predominant ones. An EEG device contains electrodes that record the brain wave patterns and the
EEG machine sends the data to a computer. There are 2 types of electrodes, wet and dry. Wet electrodes
are small trays made of stainless steel, tin, gold or silver coated with silver chloride while utilizing
electrolytic gel as a conductor between the scalp and electrodes [3]. Dry electrodes, on the other hand,
depend on mechanical contact [4]. They are significantly smaller from wet electrodes and no electrolyte
is used and no skin preparation is required. However, the number of daisy chained dry EEG devices is so
far significantly limited in comparison to wet EEG systems (up to 30 channels). In this Thesis we will
focus on high-density wet electrode EEG (32-64 channels), although dry EEG is proposed for real-world
practical applications (e.g. wearable EEG).

1.2 EEG Electrode Placement and Montages

In order to acquire a generalized interpretation of the EEG recordings, internationally recognized methods
to describe and apply the location of scalp electrodes in the context of an EEG examination have been
proposed. These are the “10-10” and more often “10-20" systems which are based on the relationship
between the location of the electrodes and the underlying area of the brain. As such, the "10" and "20"
refer to the fact that the actual distances between adjacent electrodes are either 10% or 20% of the total
front—back or right—left distance of the skull [5]. The experiments employed in this Thesis (Chapters 3, 4,
5) utilize the 10-20 system with each electrode placement denoting the lobe and area of the brain. In this
regard, even-numbered electrodes indicate right side locations, while odd numbers refer to areas on the
left side of the scalp (Figure 1.1). Moreover, the pre-frontal (Fp), frontal (F), temporal (T), parietal (P),
occipital (O), and central (C) denote the main recording areas with (z) sites electrodes indicating the
midline sagittal plane of the skull, (Fpz, Fz, Cz, Oz). Several combinations of the aforementioned letters
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designate intermediate scalp locations like AF (between Fp and F), FC (between F and C), FT (between F
and T), CP (between C and P), TP (between T and P) and PO (between P and O). Moreover the “M”
electrodes usually mark mastoid areas (i.e., found just behind the outer ear) and Iz placed over the inion
which are commonly recorded, although they are fiducial positions they usually don’t represent higher-
order cognitive processes [6].

AF7

I | Frontal
B | Central

B | Temporal

B | Parietal
I | Occipital

01 Oz 02
Figure 1.1 Electrode locations of 64 EEG channel according to the International 10-20 system.

1.3  EEG Rhythms and Oscillations

EEG signals can be described in terms of rhythmic activity based on signal morphologies of specific
oscillations being the frequencies of the harmonics of which they are composed (spectral components).
These are subdivided into bandwidths that correlate to brain functioning or condition. There are 5 main
sub-bands: delta (9, 0.5 — 3.5 Hz), theta (6, 3.5-7 Hz), alpha (a, 7-15 Hz), beta (5, 15-30 Hz) and gamma
(y, 30-70Hz) [7] (Figure 1.2). Of note is that the range of the above sub-bands is not precisely defined
leading to small variations between studies, while there are various scientific works that focus on lower or
higher frequencies, although activity below or above these frequencies could prove to be artifactual, under
standard clinical recording techniques. Other spectral components include power characteristics (i.e., the
amount of energy in a frequency band, typically expressed as squared amplitude) and phase
characteristics (i.e., the synchronization across several generators), while several theories have been
proposed on how illness, age and external stimuli cause changes in the internal amplitude and
synchronization patterns [8], [9].
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Figure 1.2. The usual frequency bands for EEG signal analysis
1.4  Event-related Potentials (ERPs)

In the EEG analysis of the diverse brain signals, a stereotyped electrophysiological response to a stimulus
(whether it may result from a sensory, cognitive, or motor event) provide a robust measurement of
cognitive processing between a stimulus and a response and the way brain functions might be affected by
specific experimental manipulations [10], [11]. As such, these event-related potentials (ERPS) include
time-locked voltage deflections of either positive or negative signal deviations, indicating so called
“components” (Figure 1.3). Although commonly ERP components are denoted by a letter indicating
polarity (N, negative / P, positive) followed by a number referring to the latency or their position in the
waveform, several components (as those analyzed in this Thesis are referred to with an acronym (e.g.
Error-related Negativity, ERN) [12].

=

=2

()

©

=

= | _ad —\
2 7 \/V\_A
<

Time (ms)
Figure 1.3. A sample ERP waveform

Due to the fact that ERPs are significantly small-sized (tens of microvolts), it usually takes a large number
of trials to accurately measure it correctly. Since EEG recorded signal looks different each time (because
or random variation) averaging across many trials cancels out the random variation leaving only the
unchanging task-related components shown. As such, the interpretation of ERPs takes into account the
assumption that the components of interest result from event-locked ERPs with invariable latency and
shape and can be averaged as:
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N

£ =2 ) 50 (L1)

k=1

where X and x;, denote the average and single (trial) ERP, N is the number of trials, k the trial number,
and t is the time elapsed after the k" event.

1.5 Brain Networks (Graph Theory)

1.5.1 Network Construction

Another type of brain activity related signals is related to the relationships between signals recorded by
sensors in different regions (or brain areas in source space) and to construct brain networks in order to
understand various cognitive mechanisms [13], [14]. In this Thesis weighted brain networks were
estimated via Phase Lag Index (PLI) in sensor (Chapter 4) and source space (Chapter 5) [15].
Specifically, PLI is a two-dimensional approach to calculate the functional connectivity in terms of phase
synchronization while alleviating the volume conduction limitations of other phase locking connectivity
methods [16]. In detail, for a pair of channels, channel A, and channel B, where x4 (t,,) and xz(t,,) denote
signals in an n epoch that have been band-pass filtered to a predefined frequency range, let z,(t,) and
zg(t,,) be the Hilbert transform of x,(t,,) and xz(t), respectively:

74(tn) = ZA(tn)ei(pA(tn) (1.2)
ZB(tn) =Zp (tn)ei(pB(tn) (1.3)

where Z,(t,) and Zg(t,) indicate amplitude and ¢4(t,) and @g(t,) designate phases at time point t,,
derived through the Hilbert transform. Then PLI for N epochs can be estimated as:

N
PLL, 5 = %Z e Sign(es(tn)~¢p(tn)) (1.4)

n=1

PLI ranges in the interval [0, 1], with O indicates either no coupling or coupling with a phase difference at
0 or w and a value of 1 indicates exact phase locking with a consistent phase difference other than 0 or .
Furthermore, the PLI graphs generated are non-directional, meaning that connections between nodes are
symmetrical (i.e., PLl,_,g = PLIg_,,).

1.5.2 Network Metrics

A network has the "small world" property if its structure is characterized by a high clustering factor and a
similar characteristic path length compared to random networks [17] (Figure 1.4). Qualitatively, in a
small world network, the majority of nodes are directly connected to most of their neighbors as well as to
a few remote nodes, so that any pair of nodes is connected with a relatively short path length. There is
convergent evidence that brain connectivity is characterized by a small world topology as a result of local
specialization and universal integration, while disruption of its optimal topology may present signs of
illness or burdened mental state [14], [18]. Therefore, in this Thesis we examined the evolution of
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network topology over time through the metrics of characteristic path length (L) and its derivatives, i.e.,
global (E;) and local (E}) efficiency [19].

Modularity

—0, - = # Clustering
I' Betweenness  Coefficient

Characteristic ~ Centrality

Path Length

Figure 1.4. In the left corner a Schematic of a brain network modeled as a collection of nodes-
representing regions of interest and interactions between brain regions. The topological properties of the
different metric are presented in the right corner.

The path length of an edge in a weighted graph is defined as the reciprocal of the edge weight. The
shortest path length L,z between two nodes A, B is the minimum sum of the edge weights of all possible
paths between the two nodes. Characteristic path length L is defined as the average of the minimum path
lengths of all N nodes:

1
eI @9

The global efficiency (E;) of a network represents how efficiently the information is exchanged across
the whole network where information is concurrently exchanged. (E;) is the average inverse shortest path
length in the network, inversely associated to the characteristic path length (L).

For a weighted brain network G(V, E, W) with a set of V nodes and E edges with W weights, where
N=|V|, the global efficiency Eg of a graph is defined as:

1

1
E =—Z —
¢ 7 N(N —1) Lugpev.azpLap

(1.6)
where L,z denotes the shortest path length between nodes A and B.

The local efficiency (E}) determines the network's resistance to failure on a small scale, quantifying how
efficiently information is exchanged by its neighboring nodes when it is removed. The E; is calculated on
the neighborhood of each node without including it:

E, = mz Z i (1.7)

K€V A,B € neibors(k),A+B
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Chapter 2

2.1  EEG Artifacts and Noise

The brain dynamics in the EEG recordings are highly susceptible to various forms and sources of noise
presenting several challenges in the effort of analyzing and interpreting signal properties, especially when
the signal is a combination of desired brain dynamics and noise. These signal contaminations (artifacts)
generally originate from non-cerebral functions and may be the result of environmental factors,
equipment or biological sources [20]. As such, AC power lines, lighting and a large array of electronic
equipment (from computers, mobile phones etc.) usually present a systematic noise in the EEG signals,
which subsequently is amplified along with cortical signals and thus is embedded in the recorded data
[21]. Physiological artifacts generated from cardiac signals, muscle contraction and eye blinks are non-
systematic and therefore they cannot be predicted or prevented [22].

2.2 Artifact Correction - Preprocessing

To address the artificial signal contamination issue and subsequently provide a robust EEG analysis,
certain measures can be employed during recording procedures and, following the recording, as
preprocessing steps. In that scope, the use of a Faraday cage, conductive housing on cables, use of
fluorescent lamps and correctly grounded instruments insulate the recording room from most
environmental noise, while subjects participating in EEG experiments are usually required to minimize
their movements/talking and keep an optimal distance from electronic equipment while the recordings
take place [23]. The foregoing actions were taken into consideration in the conduction of the experiments
described in this Thesis. In addition, to effectively deal with non-systematic artifacts, a number of
preprocessing strategies was utilized involving the following steps for removing irrelevant noise and
facilitate subsequent analysis:

¢ Resampling: Although high temporal resolution is generally desirable, it has the disadvantage of
delivering a large amount of data, which in turn is much slower in the subsequent processing. In
this Thesis, data were downsampled by applying an anti-aliasing filter, taking into account the
Nyquist rule to determine the extent to which the sampling frequency can be reduced (i.e., the
sampling frequency must be at least twice the highest frequency of the analysis) [24].

o Re-referencing: To determine that electrical activity is not dependent on reference, a re-
calculation of sensor values took place in the analysis of this Thesis’ data, using average
reference or unipolar reference based on mastoid electrodes [25]. As such, the signal of the new
reference was subtracted from each EEG channel, leading the voltage at these channels to reflect
the difference to the new reference, reducing systematic signal noise.

e Filtering: Each signal consists of sine waves and cosine waves with different frequencies. A
digital filter is a signal processor that selectively attenuates a signal for each of its frequencies.
The pass-band frequencies of the signal will pass unchanged from input to output, while the cut-
off band frequencies will be completely attenuated at the filter output. In the preprocessing
filtering procedures of the EEG data utilized in this Thesis, Finite Impulse Response (FIR) band-
pass and Infinite Impulse Response (IRR) Chebyshev low- and high-pass filters were employed
[26].
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For FIR filter of N order, the output sequence is calculated as:

N
yln] = > bixln — i} 2.1)

i=0

where N is the filter order, b; is the impulse response of the filter, x[n] is the input signal, and
y[n] is the output signal.

For IIR filter the output signal is computed as:
1 P Q
yinl = —( > bialn =il = Y apyln -] (22)
0\i=o =

where P is the feedforward filter order, Q is the feedback filter order, b; are the feedforward
filter coefficients, a; are the feedback filter coefficients, x[n] is the input signal, and y[n] is
the output signal.

The transfer function of the Chebyshev filter is defined as:

b1 + sz_l + A + bN+1Z_N
a; +az7t+ -+ ayqz7N

H(z) = (2.3)

where z is the z-transformation of the discrete signal and N is filter order,

De-trending: Trends can cause distortion during analysis in the domains of time and frequency.
As such linear trends can be calculated (e.g. via least squares method) and subtracted from the
data. In this Thesis the EEG signals were de-trended by estimating the least-squares line
(considered as the best fitted) and subtracting it from the data [27].

Independent Component Analysis (ICA): ICA involves the separation of a multi-dimensional
signal into components, assuming that the signals are statistically independent of each other. In
this context unwanted components that correspond to artifacts based on signal characteristics can
be removed (e.g. components that are highly correlated with EOG signals) [28].

As such, ICA can separate different signal sources (such as artifacts) hypothesizing a linear
mix between independent random variables. Specifically, let S;,S, ... S,, be the independent
signals and noise with unknown distribution then S = (S;,S,...5,)T and a n xn non-
singular matrix W (unmixing matrix, where W~1 is a mixing one), then the recorded EEG
signal (X) would be:

X=W"1§ (2.9)

However, in order to apply the ICA algorithm, the signal has to be transformed in such a way
that the covariance is equal to 0 and thus there is no correlation between its components (i.e.,
to whiten the signal). To do so, the eigenvalue decomposition (X) of its covariance matrix has
to be calculated as:
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1
X = ED ZETX (2.5)

where E is an orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues
(41,43, ..., 44,) of the covariance matrix:

A 0 0
p=|9 % 8 (2.6)
0 0 0 2

n

Once the processing of signal is finished, for each component w, the values of the de-mixing
matrix are updated until the algorithm has converged (i.e., product of w and its transpose is
roughly equal to 1) or the maximum number of iterations has been reached. Therefore, each
IC (wy) is calculated (starting from k = Q) as:

repeat until wlwy,, = 1:

1% 1%
Wi == ) XgWTX) == > g'(WXW) @7
i i
k—1
Wy = Wy — Z(W,fwj)wj (2.8)
j=1
Wy
Wy = 2.9
k= Tl (2:9)

W = [wy, Wy, ... ], g(u) = tanh (u), g’ (1) = 1 — tanh? (u)

In brief, ICA can be described as following:

Step 1: Center X by subtracting the mean

Step 2: Whiten X

Step 3: Choose a random initial value for the de-mixing matrix W
Step 4: Calculate new value for W

Step 5: Normalize W

Step 5: Check if algorithm has converged; if not go to step 4
Step 6: Take the product of W and X to get the ICs

Finally, the ICs that have properties related to noise are rejected (using visual inspection or
more automated procedures), and the “cleared” signal is computed using the mixing matrix
and the S matrix that has a zero column for each rejected IC.

Baseline correction: Baseline correction is a linear operation which is employed to eliminate
very low frequency voltage (quasi-DC) amplitude EEG shifts that for some reasons might occur
after the stimulating event has occurred and is typically applied when the data are divided into
different event-related epochs. In this context, in each EEG data segmentation the
computation of the average of the points from the so-called “baseline” period (varying in
each experiment in this Thesis) is subtracted from each point in the waveform [29].
Although baseline correction is not considered an explicit artifact correction procedure, it is

loannis Kakkos — Doctoral Thesis 8|Page



CHAPTER 2 - COMPUTATIONAL TOOLS, ALGORITHMS AND APPLICATIONS

regarded as an essential pre-processing step to alleviate the offset influences, which are not
expected to be related to the brain mechanisms under investigation, for subsequent analysis.

2.3  Source Localization

One of the major issues in neuroscience and clinical neurology is the identification of the active region
sites in the human brain. However, high spatial resolution methods (such as functional Magnetic
Resonance Imaging, fMRI and Positron Emission Tomography, PET) present difficulties in locating the
functional activity due to the time duration and the nature of their implementation [30]. In contrast, EEG
can be employed to identify the unknown distribution of the brain's electrical sources, at the time
resolution of the voltage sampling process, given the potential values as measured on the surface of the
head (the so-called “inverse problem”). As such, solving the inverse problem allows the direct correlation
of the brain anatomy to the dynamics measured at the surface of the head, providing valuable knowledge
about brain functions [31].

Solving the inverse problem is a complex process as there is no single solution, since different source
distributions can cause the same surface dynamics. Therefore, the inverse problem cannot have a finite
number of solutions [32]. Moreover, due to the fact that the function that describes the potential
distribution is unknown and discrete values are only recorded by few electrodes (relative to the number of
brain sources) the problem becomes even more ill-posed, requiring often unrealistic assumptions and
constraints about the distribution of sources, their locations and their type [33]. Virtually all source
localization methods require a model (volume conductor) which is the "key" to solving the direct (and
inverse) problem. This model determines how the sources located in different parts of the brain cause the
dynamics on the surface of the head by corresponding multiple dipoles to fixed position, variable size and
orientation [34]. Different models have been proposed over the years to describe the distribution of
monopolar or bipolar sources. These include head geometry to be considered as a set of spherical or
elliptical cortices or based on a realistic model reconstructed from anatomical information [35]. In this
Thesis a realistic model that utilizes the “low resolution brain electromagnetic tomography, LORETA”
method [36] in order to simulate the electrical activities of the head to provide more accurate and reliable
results.

2.3.1 Solving the Inverse Problem

To solve the inverse problem several approaches have been developed requiring no prior knowledge of
the sources of electrical activity [37]. As such, the relationship between the distribution of sources in the
brain and the discrete potentials presented and recorded on the scalp surface is a linear relationship
expressed as:

d=Ls (2.10)

where d is an one-dimensional vector array (with size mx1) of the potentials presented at each specific
position of the m electrodes, s is an one-dimensional vector (with size nx1) of the n sources with defined
direction and orientation and L is the dimension array (mxn) known as the lead-field matrix which
contains information about the geometry and conductivity of the head [38].
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Each column of the lead-field matric contains information about how the potentials generated by this
source are distributed to the electrodes on the surface of the head individually (forward problem)
determined by the geometry of the head. The solution to the inverse problem lies in solving equation 2.10
for the unknown source distribution s.

Since the source distribution s contains more independent variables than the unknown EEG variables (i.e.,
n>m), it is not possible to exactly determine the source distribution. However, due to specific
mathematical properties regarding non-zero sources and their relationship with the lead-field matrix,
several solutions of the inverse problem (that satisfy the equation 2.10) can be extracted resulting in:

{s=s1+ s+ -+ s,;p=Ls} =>{Ls;=p, Ls; =0,.., Ls, = 0} (2.11)

where p stands for each specific point in solution space (d in equation 2.10), which refers to a vector in
the lead field matrix. Of note however is that sometimes the algorithm converges to single solution (with
only one s, # 0), omitting other important sources.

A unique solution can be determined by combining constraints on both the solution and the data as a
linear framework:

(8 —55)TC4(8 — $p) = min (2.12)
and (Ls§—d)T(L§ — d) = min (2.13)

where § the estimated solution, Sy is an a-priori approach to the solution and Cg is a matrix representing
the metrics associated with the source space; LS are the predicted and d the measured data.

If Cg is positively defined the solution becomes:
§ =55+ G LT (LCSILT) 7 (d — Lsp) (2.14)

The matrix €4 can also be used to incorporate prior information about the areas of the brain where active
sources are expected (i.e., where fMRI data is also available). However, if sources are expected at any
location in the source space, each location is treated with the same gravity.

§=LT(LC;'L) 'd (2.15)

In this Thesis the “exact Low Resolution Electromagnetic Tomography Activity” (eLORETA) was
employed in Chapter 5, estimating the current density given by the minimum norm solution with a
sophisticated regularization, which is utilizing a discrete Laplace operator that selects preferentially
spread source distributions.

2.4  Machine Learning Tools

In this PhD dissertation, the focus relies on the application of advanced machine learning approaches for
the processing and analysis of EEG signals, thus exploiting the signal properties in the time and/or
frequency domains. In this regard, Machine Learning (ML) offers the unique advantage to produce
models that can adapt to different conditions and tasks, uncovering hidden characteristics of cognitive
processes, while improving the model automatically through experience and data-driven approaches [39].
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Typically, ML dictates a model to be trained by the input data, while distinct separation of the non-trained
data (testing data) into classes are given, based on the extracted characteristics. As a general rule ML
integrates specific procedures that can be outlined as: a) feature extraction, b) feature selection and c)
classification, each including multiple steps and internal algorithmic processes. Specifically:

Feature extraction: Regarding the input characteristics (features), the data are processed in
accordance to detailed rules so that representations of them can be quantitatively calculated,
expressing their properties as vector values. As such, the features extracted are expected to
contain relevant information in regard to the tasks/conditions applied, while illuminating the
differentiation in such a manner that could lead to better human interpretations. In this context,
the analysis performed in this Thesis contains features deriving from ERP signal morphological
characteristics, network related analysis (in sensor and source space), and spectral density of
different frequency bands. Each feature extraction procedure utilized for the experiments
employed is detailed in the corresponding chapters.

Feature selection: Feature selection is related to reducing the input data due to their large size
(thus making the model susceptible to overfitting, while also augmenting computational cost),
their inherited small informative nature, or if they are suspected to be redundant and therefore
result in subsequent classification bias. On this premise, the full feature set can be transformed
into a reduced subset [2], so that the succeeding tasks can be performed with reduced
representation instead of the complete initial data. More importantly, a small feature set can
facilitate in model simplification, highlighting the informative feature vectors and thus provide
effective identification, generalization and interpretation of the employed attributes, relative to
the task/condition applied. In this Thesis various feature selection methods were incorporated in
the ML frameworks, fully described in the related chapters.

Classification: The classification procedure refers to the training of models based on the feature
set employed, so that new data can be separated into classes. Although a vast number of different
classification algorithms exist, in this Thesis supervised learning algorithms were used building
the corresponding models from a set of data that contains both the inputs and the desired outputs
[40]. These data comprise of feature vectors (instances) and typically consist of a training set (i.e.,
the data utilized to build the mathematical model) and a training set (i.e., the data utilized to test
the model efficiency). Supervised learning methods commonly map the training data (features) as
points in a multi-dimensional space separating the different categories (labels) by a set of rules
(forming a gap between them) and then predict the testing data labels on their assigned allocation.
In this Thesis several classification algorithms were employed such as Support Vector Machines
(SVM) with multiple kernels, k-Nearest Neighbor (k-NN), Linear Discriminant Analysis (LDA)
and Random Forests (RF). In addition, ensemble classification was applied (Chapter 5), which
incorporates a set of classifiers, combining their predictions for the classification of unseen
instances in the form of majority voting. Of note is that although more recent approaches (such as
deep learning classifiers and feature learning operators) may present higher performance than the
more conventional methods applied here, these methods diffuse the information in a way that is
exceedingly difficult to decipher [41]. As such, the objective of this Thesis was not only to obtain
high accuracy classification, but also interpret the features and models applied as part of the
underlying mechanisms that govern higher order cognitive functions and states.
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2.4.1 Classification Evaluation Metrics

In order to assess the performance of the ML frameworks included in this Thesis the
classification accuracy, sensitivity and sensitivity were calculated with regard to the true vs the
predicted labels [42]. Accordingly:

o Classification accuracy is defined as the ratio of the number of correctly classified
instances, i.e., the number of true positives plus the number of the true negatives, to the
total number of instances.

__ X True Positives+), True Negatives

Accuracy = (2.16)

Y. Total number of cases

o Sensitivity is the ratio of the number of true positives, to the total number of relevant
positive elements.

> True Positives

Sensitivity = STot (2.17)

al number of Positives

o Specificity is the ratio of the number of true negatives, to the total number of relevant
negative elements.

Y. True Negative

Speaflczty = Y. Total number of Negatives (2'18)
In addition, the area under the curve of the receiver operating characteristic (ROC) curves have
been utilized to further evaluate the trade-off between classification true- and false-positive rates

[43].
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Chapter 3

3.1  Error-related Cognitive Monitoring

The cognitive processing of error detection is extremely important in the adaptation of the behavioral and
learning processes, resulting from the cognitive evaluation of an outcome that is considered undesired or
mismatches an expected response. This brain activity during correct and incorrect responses is often
reflected as distinct patterns of specific ERPs that elucidate the complex cerebral responses to deviant
sensory stimuli. As such, the development of accurate error detection systems can facilitate in the
detection and interpretation of the cerebral responses to erroneous stimuli both regarding the complex
neural mechanisms of decision making and the utilization of the resulted outputs for practical
applications. In this thesis, an audio identification experiment was implemented with two levels of
complexity to investigate the neurophysiological error processing mechanisms. As such, an analysis of
the variations of the erroneous processing was carried out via ML procedures for each level of
complexity. For a more thorough examination of the error processing on error-related components, two
scientific approaches were implemented on different time windows. The first incorporating a full channel
analysis in actors and observers, utilized to illuminate the different properties of the error-related ERPs,
whereas the second approach, building upon the firsts results and conclusions, used specific (theoretically
established by international literature) electrode positions to facilitate a cross-condition evaluation of the
variations of error-related ERP components.

3.2 Introduction

Decision making is an everyday procedure, where the ability of the brain to recognize the errors that
occur during the various mental operations is the key for the optimization of human behavior.
Noninvasive electroencephalography (EEG) and in particular the study of the event-related potentials
(ERPs) triggered when an individual performs an incorrect action or observes errors committed by others,
is considered ideal to decode the complex neural mechanisms since it employs brain activity
measurements with very high temporal resolution [44]. These ERPs consist of several components,
elicited when correct or erroneous choices of individuals are made based on with external stimuli.

Falkestein at al. and Gehring et al. [45], [46] were the first to report a negative deflection of a response-
locked ERP peaking around 100 ms after the commission of an error (error-related negativity, Ne, ERN).
This has become evident as other studies [47]-[49] also presented an ERN component, peaking around
40-150 ms after the erroneous response onset. Following the ERN, a positive ERP component (error-
positivity, PE), with amplitude maximum typically appearing 200-500 ms after erroneous responses, has
been reported to reflect error awareness [50]-[54], while a time-locked negative ERP have been detected
peaking approximately 250-300 ms when feedback is provided on erroneous actions (feedback related
negativity, fERN) [55]-[60]. The components related to error monitoring are not limited only with regard
to deviant outcomes. Several studies have identified a component (similar to ERN in terms of latency and
morphology), elicited after correct trials (correct-related negativity, CRN), theorized as a possible
cognitive mechanism to prevent errors from happening [61]-[64]. As a means to unveil the underlying
processes of error cognition, ample evidence suggest that the various ERPs stated above (a term that will
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subsequently be utilized as error-related ERPs, ErrPs), are similar in term of topology and present mostly
central, centro-parietal and fronto-central distributions [65]-[69]. Furthermore, functional Magnetic
Resonance Imaging (fMRI) and source localization studies have identified the anterior cingulate cortex as
the generator of error processing, thus making the ErrPs’ negative and positive deflections be more
apparent in midline scalp positions [70]-[73].

The robustness of the ErrPs has been significant factor for the effective analysis of the error-related EEG
signals providing the basis for the theoretical background utilized in numerous multivariate studies. Most
of these studies incorporate ML methods to recognize distinguishable patterns in the recorded EEG
signals, applying algorithmic models to represent signal features as points in space, mapping and
classifying the error-related brain activity as correct or incorrect [74]-[77]. The ML models can thus
enable the complete parameterization of the signal characteristics, allowing for future real life purposes.
For instance, Ventouras et. al., [78] achieved high classification accuracy by comparing different feature
selection methods, while utilizing 2"-order-statistical features and various time windows in an SVM and
a k-NN ML framework. Plewan et. al., 2016 [79] successfully classified ERPs between subjects by
employing Independent Components as features and a radial basis function SVM, on a modified flanker
and a mental rotation task. Nevertheless, when they applied the same method in cross-task classification,
accuracy result deteriorated. Moreover, Spiiler et. al. 2015 [77] performed continuous feedback EEG
classification on different type of severity errors, utilizing frequency and time- locked ERP features,
suggesting that difference in classification performance can be attributed to the task complexity. This
suggestion is in line with research indicating that error cognition is a multifactorial neurological process
which depends on a large number of conditions such as workload, psychological/ emotional status,
attention, etc. As such, ErrPs can present large fluctuations in terms of amplitude and latency between
different individuals, tasks and difficulty levels [80]-[83]. More importantly, the morphology and other
ErrPs characteristics exhibit significant variations as a result of a wide range of conditions including
intent, motivation, substance abuse and age [84]-[86], while psychological conditions and anxiety have
also been reported as a major influence affecting ErrP attribute [87]-[93]. Iturrate et al. [94] investigated
the task condition effect in ErrPs by classification training and testing under different task conditions,
reporting reduced classification accuracy due to signification variations on the extracted EEG features.
Furthermore, Van der Borght et al. [95] found significant decrements in different ErrPs (ERN, CRN and
in the early PE), due to complexity increments of a 2-condition flanker task. In a similar manner, Endrass
et al. [96] found decreased ERN and CRN in the highest level of difficulty of a visual size discrimination
task with three difficulty conditions, applying Principal Component Analysis.

Taking the above into consideration, it can be inferred that due to high morphological sensitivity of the
ErrPs, the error processing mechanisms might be masked by the complexity of the task employed. As
such, ML methods can unveil the hidden attributes reflecting error processing, leading to the
identification of global condition-independent ErrPs characteristics and thus allowing the detection of
incorrect decisions, irrespective of the difficulty of a task. This in turn will enable to improve the
classification performance for the different levels of complexity and provide indications for condition-
adjusted cognitive mechanisms. To address this, an EEG auditory identification experiment with two
conditions of complexity was implemented with the resulting data analyzed under the premise that error
processing is a dynamic phenomenon, with distinct ErrP morphological attributes.

The analysis was divided in two discrete phases including ML approaches on time-windowed
morphological features. The first approach took into account a full channel feature set in actors and
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observers along with a modified Sequential Forward Selection (scoring SFS) to minimize the frequently
occurring nesting effects, while the second utilized a feature selection framework (in the significant
channels in terms of ErrPs) based on the combination of Sequential Forward Floating Selection (SFFS)
and Sequential Forward Selection (SFS) to facilitate cross-condition and within-condition classifications
in actor responses. Both analyses were able to provide high classification performance, whereas the
implications of each are discussed in detail below.

3.3  Materials and Methods

3.3.1 Participants

The EEG data were collected from 14 healthy individuals (8/6 male/female) with average age 26.6 + 2.9
years and high level of education (17.7 £ 2.3 years). All participants were right-handed and reported no
history of any neurological diseases or drug intake. Furthermore, prior to the recordings the subjects’
normal hearing ability was estimated by a pure-tone audiogram (thresholds <15 dB HL), while informed
consent was obtained from all participants. The present study was conducted according to the declaration
of Helsinki and approved by the university’s ethics committee.

3.3.2 Experimental Design

The participants were requested to undertake an auditory identification experiments in two conditions of
complexity as actor or observers as detailed below (Figure 3.1). Both sessions were performed on the
same date and required the determination of the specific frequencies corresponding to the acoustic
stimuli. Initially, subjects were divided into 7 dyads, sat opposite from each other and had computer
screens in front of them, displaying a slider and a cursor, effectively screening them. Each condition
consisted of 80 trials for each dyad, whereas dyad members alternated roles as actor or observer from one
trial to the next (resulting in 40 trials for each subject when participating as an actor).

At the beginning of each trial (operating phase), both individuals were presented a stimulus tone of 1 sec
duration through headphones. The tone of the stimulus was randomly selected from a fixed frequency
range with a bandwidth of 400 Hz (within a block of trials) represented by the slider bar, while the
position of the slider corresponded to a specific tone. Four frequency ranges were used for the auditory
stimuli, specifically 200-600 Hz, 620-1020 Hz, 1040-1440 Hz and 1460-1860 Hz. Then, the actor was
asked to match the frequency of the stimulus tone by positioning a cursor in a slider, appearing in both
participants’ computer screen, with the use of a gamepad. The slider represented the fixed frequency
range within a block of trials, with the position of the cursor corresponding to a specific tone within this
range. Individuals were unaware of the frequency range scale in which they had to place the cursor, while
during the handling of the gamepad neither the actor nor the observer could hear the sound corresponding
to the position chosen. The non-movement of the gamepad for 0.5 sec signaled the end of the operating
phase. Following the operating phase, both dyad members were asked to assess the correctness of the
position chosen by the actor participant utilizing a two-button controller corresponding to correct or
incorrect estimation. After the first judgment, the tone corresponding to the position chosen by the actor
was presented to dyad members (feedback tone, FBT), who were requested to evaluate if the FBT was the
same as the primary tone. The FBT judgment was then followed by a knowledge-of-results (KOR) tone,
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for each individual indicating, whether the position chosen was correct (as a 500 Hz tone) or erroneous
(as a 3 kHz tone) along with the announcement of the words “correct” or “incorrect” respectively.

The difference of the complexity of the conditions was based on whether the frequency ranges of the
acoustic stimuli were the same (“easy” condition, Jointl) or different (“difficult” condition, Joint2) as the
participants switched roles as actors and observers between trials. Specifically, in the first condition
(Joint1) acoustic stimuli of the same frequency range were presented to both dyad members, whereas in
the second condition (Joint2) the stimulus presented to each participant as an actor differed from the
stimulus presented to his/her partner (when the partner was the actor) in terms of the fixed frequency
range. On this premise, it might be assumed that actors in Jointl condition could match the stimulus
sound more easily than in the Joint2 condition, since they could effectively map the frequency range of
the slider bar mentally by observing their partner being actor in the previous trial. In contrast, in Joint2
condition, participants could not use the mental map of the slider frequency range bar by observing the
actor in previous trials, while this procedure could mentally disorient them when they were requested to
assign the cursor to the stimulus tone as actors on the next trial. As such, the Joint2 condition would be
significantly more to challenging in the designation of the correct position (within the frequency range
employed) hindering the identification process.

—————1sttrial ———— ——2nd trial —
Response
¥ FBT
) | )
80 trials
Auditory E,udgemem] KOR Auditory
Stimulus Stimulus
——— Fixed Bandwidth Slider —— Sub1 Actor ‘)
C O Sub2 Observer

Figure 3.1. The experimental design. In each trial both subjects heard the same auditory tone. A) In
Jointl condition the stimuli was presented from the same frequency range in all trials. B) In Joint2
condition the stimuli presented were of different frequency ranges in successive trials.

Based on existing literature, the aforementioned experimental protocol included two feedback responses,
the FBT and KOR. As such, the FBT can be regarded as a first-level feedback with indirect information
being provided to the individual after each response, while the second-level feedback, i.e., the KOR,
allows clear evidence concerning the correctness of the auditory identification. Taking this into account,
only the FBT ERPs were investigated in the following analysis, since the first feedback should trigger a
cognitive response closer in terms of temporal proximity than the second feedback.

Prior to the experiment each subject performed an acoustic pre-test to assess his/her hearing ability in the
four frequency ranges used. This included identifying the higher of two tones. The frequencies of the two
tones were set to the 25% and the 75% of each range of 400 Hz bandwidth employed. All participants
were able to successfully discriminate between the tones presented
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3.3.3 Data Acquisition and pre-processing

The experimental setup involved a Faraday room, optical receiver for trigger inputs and electrode bundled
cables to eliminate potential electric and magnetic interference. The bioelectrical brain activity
recording via EEG occurred simultaneously for both participants of each dyad (actor and observer), using
two different recording systems, daisy-chained in a master-slave relationship. Specifically, each system
included a 32-channel electrode cap (Biosemi, Activetwo System) according to the International 10-20
EEG system, with Fpl, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, 02, PO4,
P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz and Cz (Figure 3.2) electrode positions.
Horizontal and vertical electrooculograms were recorded from electrodes placed above and below the
eyes and at the outer canthi of the eyes. EEG data were digitized at 256 Hz, re-referenced to the average
of the electrode recordings and filtered off-line by applying an IIR low-pass and a high-pass Chebyshev
filter with cut-off frequencies 35 Hz and 0.05 Hz respectively. Subsequently, the EEG signals were de-
trended and segmented into 2.5 sec ERP epochs (0.5 sec before and 2 sec after the FBT), resulting in 40 x
14 x 2 = 1,120 trials acquired from the total of 40 trials for the 2 complexity conditions of the 14
participants and for actors and observers. After segmentation, each ERP was baseline-corrected relative to
a 100 ms pre-stimulus baseline, while the trials contaminated with artificial ocular noise were manually
removed. The EEG data of each trial were baseline-adjusted relative to a 100 ms pre-stimulus baseline.
Due to significant artifact contamination, data from one dyad were excluded leaving 12 subjects for
subsequent processing. More details for each of the pre-processing steps employed can be found in
Chapter 2.

Figure 3.2. The electrode locations for the EEG acquisition according to the International 10-20 system.
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3.3.4 Definition of the Correctness of Participants’ Responses

To determine the ability of each participant to differentiate tones and his/her auditory frequency
perception resolution, the psychoacoustic theory was taken into account. Specifically, due to the fact that
two tones can be misinterpreted as the same sound if they are close in terms of frequency, similar stimuli
tone and FBT may not trigger error-related cognitive reaction. As such the proximity of the FBT and
stimuli tones was utilized as an indicator for correct or incorrect responses, quantified via the
psychoacoustic function of Equivalent Rectangular Bandwidth (ERB) [97]. This function cites that the
ability of each individual to perceive and distinguish different tones, is determined by a function of a
central frequency by modeling the human hearing filters as rectangular band-pass filters, thus
approximating the frequency range in which the auditory stimuli are considered the same. As such,
whether individual responses were considered correct or erroneous was calculated according to the
following formula:

B, = 6.231076f2 4+ 9.339 1072 + 28.52 3.1

where B, is the bandwidth of the filter in Hz and f is the central frequency (presented as the stimulus
tone) of the filter in Hz.

Despite the fact that the ERB appears to be linear in low frequencies, the function is of non-linear nature
(Figure 3.3B). As such, a pre-define criterion (e.g. such as the ratio f/Be) to denote the correct or
erroneous responses could in fact render the distinction between them. In this regard, the participant’s
response was compared to the stimulus tone plus/minus the ERB bandwidth in each trial, estimating if the
position selected in the operating phase was within this range to be considered correct or erroneous
(Fig.3.3A). Although, no participant was recorded as having all-correct or all-incorrect responses, due to
the sensitivity of ErrPs in terms of subject variability, as well as the dissimilarity of the number of correct
and incorrect ERPs responses (per participant and condition), the resulting ERPs were averaged in each
condition per subject and class (correct/incorrect). In detail, the mean ERPs were calculated for the two
conditions for each of the 32 electrode positions and each participant on the basis of his/her response
(with the classes being correct or incorrect). In this regard, the classes for the subsequent feature
calculation and classification processes would be balanced alleviating classification bias. From the
available recordings of each Joint condition, 12 x 32 x 2 = 768 ERP recordings corresponded to correct
responses and the rest 12 x 32 x 2 = 768 recordings corresponded to incorrect responses for actors and
observers.
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Figure 3.3. Definition of responses using the Equivalent Rectangular Bandwidth (ERB) with regard to
the stimulus tone. In A) the solid line arrow represent the stimulus on each trial the stimulus randomly
selected from the fixed band frequency (gradient bar). The response is indicated by a dashed line arrow,
denoted as correct or erroneous based on whether or not within the ERB range (solid filled bar). In B) the
ERB function as a result of stimulus frequency.

3.3.5 Feature Calculation

To perform the classification in the two conditions a series of feature extraction, combination and
selection processes took place for each of the two discrete approaches. In both frameworks, features were
calculated based on the visual observation of the averaged ERP curves of the different electrodes for
different time windows, where the ErrP components show distinct morphology and clear differentiation
between the two groups of correct and incorrect answers (as indicated by the literature presented in the
introduction section).

As such, the correct and incorrect ERPs were further segmented into 5 time windows, starting after the
presentation of the FBT (Oms). Specifically:

e time window 1 (tw,) starting at 0 ms and ending at 125 ms after response

e time window 2 (tw,) starting at 125 ms and ending at 220 ms after response

e time window 3 (tws) starting at 22 Oms and ending at 300 ms after response

e time window 4 (tw,) starting at 300 ms and ending at 400 ms after response and

e time window 5 (tws) which included the previous as well as an additional 200 ms, starting at 0
ms and ending at 600 ms

Each time window was considered to be indicative of specific ErrP component, while the inclusion of the
after-FBT stimulus ERP (tws) could further demonstrate useful information that might could be masked
when calculating the separate (small-duration) time windows features.

The features were extracted for of the time windows and each electrode position, based on latency and
shape characteristics describing ErrPs [98], [99] (Figure 3.4) calculated as:

e MaxA: the maximum amplitude value of the ERP signal for each time window
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e MinA: the minimum amplitude value of the ERP signal for each time window

e MaxT: the latency of the maximum time windowed signal value, corresponding to the time MaxA
occurred

e  MinT: the latency of the minimum time windowed signal value, corresponding to the time MinA
occurred

e AUC: the area under the ERP curve, representing the overall signal energy, estimated by
calculating the corresponding time window ERP integral.

Of note is that no normalization took place despite the different type and value range of features. This was
due to the fact that further BCI expansion could not (in effect) perform normalization online and thus the
results of this study would not be applicable. Hence, from each averaged ERP 5 features were calculated
for each of the 5 time windows and each of the 32 electrode positions, resulting in 32 x 5 x 5 = 800
features in total for each individual. This process was done for actors and observers, for Jointl and Joint
2.
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Figure 3.4. The features extracted for the different time windows of electrode CP2. For each time
window the latency and amplitude of the minimum and maximum values as well as the area under the
ERP curve were estimated. Time window 5 includes all time windows with global latency and amplitude
while the stripped pattern denotes the area under the ERP curve.

3.4 Behavioral Results

As mentioned before, in Jointl condition participants received tones from the same frequency range and
thus the slider bar represented an identical range in both of them. On the other hand in Joint2 condition
each participant was designated to a different frequency range and so the auditory stimuli while being
actor was alternating between them. As such, the dissimilarity of the frequency tone presented in each
condition (Jointl and Joint2) would increase the complexity of the task making it more challenging to
identify the correct position of the slider bar. This was due to confusion created by difficulty to mentally
map the different slider bars in Joint2 condition, while confusing orientation of the individual frequency
range slider when each subject would operate again as an actor. To estimate whether this was the case a
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behavioral analysis took place by implementing a one-way Analysis of Variance (ANOVA) on the
number of the correct responses of the participants.
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Figure 3.5. Accuracy of the actors’ responses given for Jointl and Joint2 condition.

The responses given in each trial was assessed by the correctness of the position of the slider bar via ERB
calculation. In this regard, the KOR was deemed irrelevant and thus since the actors were solely able to
manipulate the slider, observers behavioral results could not be recorded. In Figure 3.5 the accuracy of
the responses given by the actors for the two Joint conditions is presented. The ANOVA results indicated
that individuals’ performance was significantly (p < 0.01) affected by the complexity of the tasks. As
such, the behavioral results verify that Joint2 condition was considered more difficult than Jointl
condition.
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3.5  Full Channel ML Analysis in Actor and Observer ErrPs

As mentioned in the previous sections the experimental data were analyzed in two distinct approaches. In
the first approach a full channel feature set in actors and observers was utilized in a ML framework that
incorporated Feature Selection (FS) and classification procedures. The rationale behind this was the
consideration that the classification performance is not only prone to the distinctness (and reliability) of
the features extracted, but also affected by redundant or irrelevant features (in terms of classification)
generally included in large feature sets). On this premise, the FS method applied would facilitate in
problem optimization by reducing variance and thus improve the performance of the classifiers.
Specifically we employed a modified Sequential Forward Selection (scoring SFS) and Support Vector
Machines (SVM) classifiers with different kernels to detect the most prominent features/electrode
channels with regard to the time windows and morphological features of the ErrPs.

3.5.1 Feature Selection and Classification

Since the number of features was very large (5 x 5 x 32 = 800, 5 features for each of the 5 time windows
and each of the 32 electrode positions) in comparison to the instances for the subsequent classification (24
instances, 12 correct and 12 incorrect), the Sequential Forward Selection (SFS) was applied [7]. By doing
so, non-useful information would be removed from the classification processes while the most indicative
features, in terms of classification accuracy, would be detected.

In general, SFS starts with an empty feature set and adds one-by-one the feature with the highest
significance (i.e., classification accuracy) until there can be no further improvement. In detail, the features
included in the full feature set are estimated based on their individual accuracy by implementing
classification on each. Next, the SFS algorithm adds another feature in the subset and estimates the
classification performance. Subsequently all the features are used and the algorithm stores the subset
(now including 2 features) with the highest accuracy, provided it is higher than the 1-feature subset
accuracy. This step is repeated until no accuracy increment can be made. However, the fact that in each
step the SFS has to estimate the classification accuracy of all features, results in large computational cost,
while the greedy nature of the algorithm make it prone to nesting effects. This means that due to the
algorithm including the most significant feature irrespective of other combinations, it is often trapped in
local maxima. For this reason, we modified the standard SFS (indicated as scoring SFS, in the present
thesis) as follows (Figure 3.6). Specifically, all features are sorted by their overall significance by the
resulting classification accuracy. Then, our method results to a scoring process, setting the base subset
instead of empty to the one that present the best performance through the exhaustive search combination
of the 10 most significant features (arbitrarily selected for optimal computational cost). The second phase
incorporates the next most significant feature to the subset if performance increases (disregarding the
increment amount), while if the added feature deteriorates or didn’t change overall performance it would
be skipped and the next one would be added. When no further progress in the classification accuracy
could be made the algorithm would stop.

In this approach, the FS and the classification accuracy results are entangled and thus optimal
classification entails the feature subset resulted from the SFS method. To evaluate the classification
accuracy in each iteration, a leave-one-out cross-validation procedure was implemented due to the limited
data available, involving the employment of a single instance as the testing set, while considering the
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training set to be the remaining data. The classifiers employed were SVM with linear (K(%,Z) = (X'2)),
radial basis function (RBF) (K(%,2) = e YIX-ZI*, y = 0.5) and quadratic kernels (K(%,Z) = (c + XT2)4,
c=1, d =2), paired to Sequential Minimal Optimization (SMO) and Least Squares (LS) learning
methods, while the soft margin regularization parameter C was set to 1 for all ML procedures [100].

Due to the limited number of instances available for classification, further cross-validation evaluation
splitting of the data or bootstrapping was considered impractical and thus 1,000 runs of permutation tests
on random labels were performed to ensure no selection bias or overfitting existed in the FS and
classification processes. Permutation p-value was calculated as the ratio of classifiers trained on the
randomized labels that outperformed the classifiers trained on the original samples to the number of total
permutations and is presented in a parenthesis in the results tables. All algorithms were implemented to
discriminate between correct and incorrect responses for actors and observer in MATLAB R2015b
(MathWorks Inc., USA).

Remove
Featurg Scoring Feature from
Calculation Subset

Exhaustive
Search

Base
Add Feature
Subset | > 10 Subeet —}CIassificationr}

Figure 3.6. The flowchart of the scoring SFS method
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3.5.2 Results and Implications

The classification results from the standard and the scoring SFS are presented in TABLES 3.1 and 3.2

accordingly.

TABLE 3.1. STANDARD SFS CLASSIFCATION RESULTS

Kernel SMO Accuracy LS Accuracy
Jointl Actor linear 0.85 (p<0.01) 0.90 (p<0.001)
RBF 0.91 (p<0.001) 0.87 (p<0.001)
quadratic  0.83 (p<0.001) 0.92 (p<0.001)
Joint2 Actor linear 0.87 (p<0.010)  0.85 (p<0.01)
RBF 0.94 (p<0.001) 0.96 (p<0.001)
quadratic ~ 0.97 (p<0.001) 1 (p<0.001)
Mean Actor Accuracy 0.91
Jointl Observer linear 0.83 (p<0.001) 0.75 (p=0.002)
RBF 0.85 (p<0.001) 0.86 (p<0.001)
quadratic  0.97 (p<0.001) 1 (p<0.001)
Joint2 Observer linear 0.87 (p<0.001) 0.82 (p<0.001)
RBF 0.91 (p<0.001) 0.87 (p<0.001)
quadratic  0.95 (p<0.001) 1 (p<0.001)
Mean Observer Accuracy 0.89

Note: Permutation p-values are presented in the parenthesis after classification

accuracy.

TABLE 3.2. SCORING SFS CLASSIFICATION RESUTLS

Kernel SMO Accuracy LS Accuracy
Jointl Actor linear 0.88 (p<0.001) 0.96 (p<0.001)
RBF 0.88 (p<0.001) 0.88 (p<0.001)
quadratic  0.92 (p<0.001) 1 (p<0.001)
Joint2 Actor linear 0.88 (p=0.001) 0.92 (p<0.001)
RBF 0.96 (p<0.001) 0.96 (p<0.001)
guadratic 1 (p<0.001) 1 (p<0.001)
Mean Actor Accuracy 0.93
Jointl Observer linear 0.83 (p<0.001) 0.79 (p<0.01)
RBF 0.92 (p<0.001)  0.92 (p<0.001)
quadratic  0.92 (p<0.001) 1 (p<0.001)
Joint2 Observer linear 0.96 (p<0.001) 0.92 (p<0.001)
RBF 0.92 (p<0.001)  0.92 (p<0.001)
quadratic 1 (p<0.001) 0.88 (p<0.001)
Mean Observer Accuracy 0.91

Note: Permutation p-values are presented in the parenthesis after classification

accuracy
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In general, both FS methods achieved high overall performance with the mean classification accuracy of
the standard SFS being 0.91 for actors and 0.89 for observers, while the scoring SFS marginally exceeded
that with mean accuracy 0.93 for actors and 0.91 for observers. In addition, the low p-values of the
permutation tests employed indicate that both FS methods successfully selected discriminative features
with no over-fitting. Of note is that the best overall accuracy was obtained with the quadratic SVM kernel

despite the FS method employed, for actors and observers of both Joint conditions.

Concerning the features selected the standard and scoring SFS method feature subsets that provide the

overall highest accuracy are presented below (TABLES 3.3 and 3.4).

TABLE 3.3. STANDARD SFS FEATURES SELECTED

Kernel

SMO Accuracy

LS Accuracy

linear

Jointl Actor RBF

C3_MaxA tw2, C3_ MaxA twl,
C4_MinT_twl, CP1_MinT_tw3

CP5_ MaxT_tw2, FC1_MaxA_tw5 CP5_MaxT_tw2, FC2_MaxA_tw2

FC5_AUC_tw5, FC1_ MaxT_tw5

Cz_AUC tw3, Fp2_MinA_tw5,

quadratic C3_MaxA_tw2, Fp2 _ AUC_twl CP2_ AUC twl
linear P8 AUC tw5, Fp2_ MinT _twl T7 _MaxT_twl
P3_MaxA twl, FC1 _AUC twl,
Joint2 Actor RBF P3_MaxA_twl, CP1_AUC_tw3 PO3_MinA._twl
. P3_MaxA_twl, F8_MaxA twl,
guadratic ~ P3_MaxA twl, T7_AUC twl 02_MinT tw4
. CP5 _MinA_twl, C3_MaxT_twl, .
linear CP1_MinT tw5 Fpl MaxT twl, P8 MinT tw
Jointl RBF FC5_MinA_twl, FC5_AUC_twl P3_AUC_tw, T7_MaxT_twl
Observer
uadratic FC5_MinA_twl, Fp2 AUC_twl, P3_MaxA _tw4, P4 MaxT_tw4,
g FC1_MaxT_twl C4_MaxA_twl, CP5_MinA_twl
linear Cz_AUC tw3, PO4_MaxT _tw2 PO4 MaxT_twl, F3_MinA twl
Joint2 RBF C3_MinT_twl, Cz_MaxT_tw4 C3_MinT_twl, Oz_MaxT_twl
Observer . C3_MinT_twl, O2_MaxT_tw2, C3_MinT_twl, F7_MinT_twl1,
quadratic

Oz_MinA_tw3

P8 MaxA twl, C3_AUC_twl

Note: Each feature is denoted including the electrode from which the feature was extracted, followed by the
feature itself and the time window employed, i.e. “electrode_feature_time-window”.
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TABLE 3.4. SCORING SFS FEATURES SELECTED
Kernel SMO Accuracy LS Accuracy

P3_MaxT_tw2, FC6_MinT_tw2,
Fz_MaxT_tw2, PO3_MaxA_tw4, F4_ MaxT_tw2, Fz_MaxT_tw2
linear F8 MinT _tw4, CP5 MaxT _tw2, Fz_MinT tw3, Fpl MaxT_twl,
Fpl MinT _tw4 01 MinA_tw5, P4 MaxT_twl,
F7_MinA_tw2

Jointl Actor F8 MaxT twl, FC1 MaxA tw2,
RBF P3_MinT_tw2, T8 _MaxT_tw4,
CP5_MinT_twl, CP2_MaxT_twl

F8 MaxT_twl, F4 MaxT_tw2, F8 MaxT_twl, CP1_MinA_tw3,
quadratic Fz_MaxT_tw2 Fpl_MaxT_tw4, Cz_AUC_tw3,
P8 MaxA twl, FC1 MinT tw3 CP6_MaxT_tw4
P8_AUC_tw5, AF4_AUC _twl,
F3_MinT_tw2, PO3_MinT_tw3,
FC5 MinT _tw2, Cz_MaxA_tw2
CP6_MinT_tw4, P8_AUC_tws, FC1_MinT_tw2, CP6_MinT_tw4,
T7_MaxT_twl, C3_AUC_tw5 P8 _AUC_tw5, FC1_MinT_tw3
P8_AUC _tw4, FC1_MinT_tw2,
guadratic FC6_MinT _tw3, P3_MaxA twl,
CP5_AUC_tw3

CP2_MinT _twl, FC6_MaxA_twl,

Oz_MinT_tw4, FC6_MinT_tw3,
F8_AUC_tw5

linear P8 MinA_tw4, FC6_MinT_tw3,
P4 AUC tw4
Joint2 Actor RBF

FC1_MinT_tw2, P8_MinA_tw4,
CP6_MinT_tw4, P8_AUC_tw5

linear FC2 MaxA_twé, P7_AUC_tw3, P8_MinT_tw5
Jointl P8_MinT_twl, P8_AUC_tw2 - — N -

CP6_MaxT_tw5

Observer - -

Pz_AUC_twl, CP2_MinT_twl,
uadratic Fp2_AUC twl, AF3 MaxA tw2, C3_MinA tw2, O2_MinT_tw2,
g C3_MinA_ tw2, F8_AUC tw4  FC6 AUC twl, C4 MinT tw3,

F4 MinT_tw2

CP6_MaxA_twl, T8 MinA_twl
inear  FCS_Mina w2, 01 MinT twp,  PE-MAXT i, T8 MAX_tud,
Fz_AUC_twl - - = -

. . P8 MaxT _twl, Cz_MinT_twl
Joint2 FC1 MinT _twl, P8 MaxT_twl, T i e
Observer RBF F8_MaxT twl C3_MinT_twl, FC2_MinT_tw1,

02_MaxT _tw3_
F8 MaxT_twl, F7_MinT_tw4,
quadratic CP5_MaxA_tw4, P4_AUC_tw4,
C3_MinT_tw2
Note: Each feature is denoted including the electrode from which the feature was extracted, followed by the
feature itself and the time window employed, i.e. “electrode feature time-window”.

FC1 MinT twl, P8 MaxT_twl,
Cz_MaxT_tw4
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In the standard SFS algorithm (although no clear trend can be detected from specific electrodes) positions
central and frontocentral locations were the most prominent, with twl being the most frequent utilized.
Similarly, twl was the most common in the scoring FS with P8 electrode position to be the most
prominent. However, subsequent analysis in the P8 electrode position exhibited little similarity between
Jointl and Joint2 conditions (Figure 3.7).
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Figure 3.7. Grand averages of the P8 electrode

Next, a comparison between the complexities of the two FS methods took place estimating the overall
performance in relation to the computational cost. As such, the standard SFS achieved high accuracy with
small steps (including less features), although it reaches local maxima (nesting effects) and thus it cannot
add more features. In comparison the scoring SFS surpassed the standard in terms of classification
accuracy, while facilitating the nesting effects of the standard SFS greedy nature (Figure 3.8). Moreover,
due to the scoring process (adding the next feature on the subset based on its significance without
comparing all features) it presents an important decrement in the FS computational burden emerging from
large feature sets.
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Figure 3.8. Accuracy per SFS step for standard and scoring SFS.

The results of this analysis don’t only illustrate the importance of the FS methods in ML frameworks, but
also highlight neural substrates that may be masked, especially in complex higher order cognitive
functions. For instance, the tw selection of both FS methods applied, implying that ErrPs of consistently
reported error related ERPs, such as the ERN [101], were detected although in different areas than
expected. Furthermore, the utilization of ERP signal representation as features (such as the peak
amplitude and time of appearance) in various time windows demonstrated their potential as biomarkers
for ML applications. Interestingly, the small similarity between the different task-complexity ErrP signals
could also infer that the difficulty in the tasks employed could exhibit morphological differences in the
elicited ErrPs, masking specific components, while the use of ML could help in reveal their hidden neural
substrates.

These facts taken together have been the key motivation for further investigation on the influence of
different brain areas and task difficulty in the cognitive functions of error recognition. As such, a new
approach was adopted described in the following section.
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3.6  Cross-condition and Within-condition ML Analysis in Actor ErrPs

As previously mentioned the results and implications of the full channel analysis indicated the
effectiveness of the time windows and waveform characteristics of ErrPs as features. In addition, the
complexity conditions demonstrated potential modulations of the signal properties with regard to specific
condition and time window. Taking the above into account, the subsequent analysis investigates the
hypothesis of a small feature subset being able to provide high cross-condition classification performance,
while detecting features specific for each condition to further increase within-condition accuracy.

In this context, a feature search strategy was utilized that incorporated a Sequential Forward Floating
Selection (SFFS) and a Sequential Forward Selection (SFS) combination, allowing the detection of the
individual features that provide high classification accuracy both in relation to task complexity and
complexity-independent. The prominence of selected features where also assessed as being common to
the two conditions and specific to each condition separately, successfully discriminating between correct
and erroneous responses. The results of this analysis indicated the effectiveness of ML in the effort to
detect distinct ErrP differentiations between correct and incorrect decisions, despite ErrP characteristics
being affected due to task difficulty. Furthermore, they highlighted the linear nature of the ErrP signal
attributes and the latency distortion of the typical ErrP time windows as a result of condition complexity
manipulation. More importantly, they suggested a common underlying error detection cognitive
mechanism and also modifications of that mechanism depending on the complexity of a task. This study
was the first (to the best of our knowledge) to implement cross-condition ML approaches with regard to
error-related responses.

3.6.1 Dissimilarities with the Full Channel ML Approach

Despite FS and classification differences, this approach also diversified in the participants and features
employed. As such, the methodological strategy only included actors EEG recordings (as ErrPs in actors
would theoretically include larger modulations due to complexity manipulation) in the two Joint
conditions and a subgroup of electrode locations.

Specifically, based on the previous approach findings as well as on evidence from literature (please refer
to “Full Channel ML Analysis in Actor and Observer ErrPs” and “Introduction” sections), central
electrode locations are more indicative to error-related cognitive processes (despite temporal scalp regions
being more relevant regarding auditory cognition). As such, in this approach only regions strongly related
to error cognition were taken into account, with the remaining electrode position exploded from the
subsequent analysis [79], [102]. To that end, the electrode selection (and by extension the features
incorporated in this analysis) was decided relative to their position in the central scalp region (Figure
3.9). There were 7 electrodes included: Cz, Fz and Pz (as the midline electrodes adjacent to Cz) and FC1,
CP1, CP2, FC2 (as the non-midline electrodes closer to Cz). Hence, from each averaged ERPs (please
refer to “Feature Calculation” section), 5 features for each of the 5 time windows and each of the 7
electrode positions were incorporated in the subsequent analysis, resulting in 7 x 5 x 5 = 175 features.
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Figure 3.9. A) The electrodes position used in the EEG recordings. The ellipse includes the positions
employed in the feature extraction processes. B) The average ERPs across all subjects (both conditions
merged) for correct and incorrect responses

3.6.2 Feature Selection and Classification

In this approach, in order to discriminate between actors’ responses as correct or erroneous, SVM
classification was adopted with various learning methods and kernel functions [100], [103]. In detail,
learning methods included sequential minimal optimization (SMO), least squares (LS) and quadratic
programming (QP), while SVM kernels functions incorporated linear (K(X,Z) = (X'Z)), radial basis
function (RBF) (K(%Z) = e YIZ-ZI* y = 0.055, 0.08, 0.125, 0.22, 0.5), quadratic (K(% Z) =
(c+XT2)4, ¢ =1, d =2), multi-layer perceptron (mlp) (K(XZ) = tanh(kxTZ+d), k=1, d = —1)
and polynomial (K(%,Z) = (c +XT2)9,c = 1,d = 3) kernel designs. For each learning method and kernel
function combination, the overall classification accuracy, sensitivity and specificity were computed (for
more details please refer to Chapter 2).

As mentioned in the previous sections, the aim of this approach was to identify condition-independent
feature subsets that provide high classification performance and then detect condition-specific features
that would enhance classification accuracy of the individual complexity levels. In this regard, FS and
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classification was implemented concurrently for both complexity conditions and responses (i.e., classes)
resulting in 12 x 2 x 2 = 48 instances (subjects x conditions x classes) to identify the optimal condition-
independent feature subset and then, on top of that add condition-specific features to increase the
performance on each individual condition (12 x 2 = 24 instances). Moreover, to provide a robust output
on the specific features subsets that would provide the optimal classification performance and at the same
time eliminate redundant and/or unnecessary features, two FS modification procedures were applied, as
described in the following.

In the first procedure (FS1), a standard Sequential Forward Floating Search (SFFS) [104] was applied to
the features that were computed, utilizing data from both conditions concurrently. In this manner, the final
set of features (cross-condition) produced by the SFFS is deemed to represent the feature subset that best
classifies correct or incorrect responses, irrespective of the difficulty of the task involved. SFFS alleviates
the nesting problem occurring in other FS methods by including conditional repetitions containing three 3
steps: inclusion, conditional exclusion and sequential conditional exclusion. Firstly, starting from an
empty set the most significant feature in terms of classification accuracy is selected thought exhaustive
search. Then, a new feature is included based on its significance with respect to the existing feature
subset. The next step is the evaluation of the new subset by excluding the least significant feature,
provided that the resulting subset will include at least two features. If the removed feature was the one
added in the subset in the proceeding step, the exclusion step is skipped and a new inclusion is made.
Alternatively, a new conditional exclusion is made, provided that the new subset’s accuracy is higher than
the one currently found. When these conditions cease to be satisfied, the overall classification accuracy is
computed, a new inclusion is conducted and the 3-step procedure is repeated. The algorithm stops when
no further improvement can be made to the classification accuracy by modifications of the feature set.

Since SFFS is a sub-optimal technique, accepting the features from both conditions concurrently might (
in some cases), result to over-fitting and thus make the subsequent condition-specific SFS procedure less
effective (in providing features that would both improve the classification accuracy and be representative
of the condition-specific mechanisms). Therefore, a second feature selection procedure (FS2) was also
implemented.

In FS2, for each step of the SFFS method, the interim feature set computed by the SFFS was also used for
the classification of the ERPs of actors, using data from the Jointl condition only and, separately, data
from Joint2 condition only. As a result, for each SFFS step and corresponding interim feature set, three
overall classification accuracy values were available: the accuracy reached when both conditions were
used concurrently, the accuracy when only Jointl condition data were used and the accuracy when only
Joint2 condition data were used. Then the average of these three accuracy values (cross-condition) was
calculated. The average value (task-specific average) was calculated as the mean value of the task-
specific accuracies of Jointl and Joint2. This procedure was repeated until SFFS concluded. Then the
feature set that was selected for the application of the SFS method for data from each condition separately
was the feature set for which cross-condition accuracy was highest. Another way of expressing the
rationale for applying FS2, is that: although the features that will be finally selected might not provide the
best classification for the combined data of the two conditions, stopping SFFS at an intermediate step,
enables SFS to add features that are important for the classification of task difficulty-specific ErrPs (but
would have been excluded by overly “fine-tuning” the classification, when both conditions were used
concurrently). The workflow of the proposed FS methodology is presented in Figure 3.10.

loannis Kakkos — Doctoral Thesis 31|Page



PROCESSING AND ANALYSIS OF EEG DATA RECORDINGS WITH THE APPLICATION OF MACHINE LEARNING METHODS

Subsequent to the selection of the optimal feature subset, Sequential Forward Search (SFS) [105] was
applied for the data of the two conditions separately based on the features selected by the SFFS. To that
end, the SFS employed utilizes the SFFS output feature subset and iteratively includes the most
significant feature (with respect to classification accuracy) through exhaustive search, until the classifier
performance can no further improve. To alleviate the SFS nesting problems, the implemented algorithm
would consider adding a second feature (as a two-feature addition) to the feature subset if a single feature
addition did not improve classification performance as long as modified feature subset did not deteriorate
in accuracy by each of the two single features added. When SFS concluded, the added features were
expected to provide additional condition related information in the classification processes, enhancing the
ML performance concerning individual complexity levels.

Classification
Condition-Indepentent Condition-Specific
EECb Feature Selection Feature Addition
Sequential Sequential
Forward Floating Forward
Selection Selection
Feature Feature
* / Inclusion '\ Inclusion
Pre- >
Processing F
eature :
Subset Evaluation Fsiabts ;3 Evaluation
\Conditional/ /
i Feature
Exclusion
Feature : :
Extraction v
Overall Classification Performance

Figure 3.10. The workflow of the FS framework employed.

In this analysis, FS was done concurrently with the evaluation of the various classification algorithms,
since the classification accuracies used for applying FS1 and FS2 were those provided by the respective
classification algorithm, whose performance was evaluated. The training and testing of each classification
algorithm was implemented using a leave-one-out cross-validation (LOOCV) procedure in every step of
the SFFS and SFS methods. This procedure involves the exclusion of a single instance in the training data
set, which will be utilized as the testing data set. This process is repeated for a different instance each
time, until all data are employed as a testing set once. Accuracy, sensitivity and specificity are calculated
as the average of each LOOCV fold. LOOCV procedures provide a reliable generalization and
approximate better the actual performance of the classifiers than other cross-validation approaches, while
facilitate in the prevention of over-training [106], [107].

The above procedures were repeated for each classifier configuration (i.e, learning method and kernel
function) with classification accuracy being set as the objective function, allowing for FS and
classification methods to be evaluated concurrently. In addition, the FS and classification processes were
not only implemented for the five time windows, but also for combinations of two of them, to further
investigate discriminative characteristics of the ErrPs and determine whether using features from
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components belonging to adjacent time windows might improve classification. Specifically the time
window combinations were: tw; and tw, (twy,), twp and tws (tw,3), and tws and tw, (twsz4). TO
avoid the inclusion of multiple components of ErrPs (which might mask the individual ErrP contribution
to the classification procedures), overlapping windows were not included. This would also facilitate the
effective detection of discriminative ErrP characteristics, while providing indication as to if adjacent tw
ERP components might improve performance. Moreover, 1,000 runs of permutation tests on randomized
class labels were carried out to verify that FS and classification introduced no overfitting or bias and to
assess the statistical significance of the estimated performance. As in the previous approach (please refer
to “full channel ML analysis in actor and observer ErrPs” section, “feature selection and classification
subsection™) p-values were calculated as the ratio of classifiers trained on the randomized labels that
outperformed the classifiers trained on the original samples to the number of total permutations and is
presented in a parenthesis in the results tables.

3.6.3 Results and Implications

The overall classification accuracy results applying the FS1 method are presented below. The
performance on which the evaluation of the classifiers was assessed were the overall classification
accuracy achieved by SFFS (cross-condition), the task-specific classification accuracy where SFS applied
to the data of the two conditions separately (Jointl and Joint2), and the mean value of the task-specific
accuracies of Jointl and Joint as their average value (task-specific average). Since the different methods
and kernels employed resulted in a very large number of methodological combinations, a performance
evaluation criterion was arbitrarily determined, including accuracy values higher than 0.8 for cross-
condition accuracy and task-specific average larger than 0.9. As such, only the corresponding results for
these cases are given in TABLE 3.5, while in TABLE 3.6 the results for sensitivity and specificity are
given. The features selected, presented in TABLE 3.7, are given for the cases where task-specific
accuracy of Jointl or Joint2 equals to 1.
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TABLE 3.5. OVEARALL CLASSIFICATION ACCURACY RESULTS OF FS1 METHOD

Overall classification accuracy

Number of features

c

% :g “LE’ =

£ . g gz g 28 g 2 ¢

= Classifier S = = P g g = =

— o 3+
twy » SMO-quadratic 0.96** 0.88** 0.96** 0.92 9 9+4 9+11
twy » SMO-mlp 0.96** 0.88* 1.00** 0.94 35 35+8 35+3
twy 3 SMO-mlp 0.92** 0.92* 0.96** 0.94 8 8+4 8+6
tws 4 QP-quadratic 0.98** 0.92** 0.92** 0.92 20 20+3 20+6
tws 4 SMO-quadratic 0.98** 0.96** 0.92** 0.94 17 17+9 17+9

Note: The cases presented are those that exceeded the performance evaluation criterion. Asterisks mark the level of permutation
p-values significance. *: p < 0.01; **: p < 0.001.

TABLE 3.6. SENSITIVITY AND SPECIFICITY RESULTS OF FS1 METHOD

Sensitivity Specificity
c c
= = 2
g = o N S o o
g Classifier S = S S £ =
> i S S < S IS
E g
o o
twy 5 SMO-quadratic 1 0.91 0.92 0.92 0.85 1
twy - SMO-mlp 1 0.91 1 0.92 0.85 1
tw, 3 SMO-mlp 0.88 1 0.92 0.95 0.86 1
tws 4 SMO-quadratic 0.96 0.92 1 1 1 0.86
tws 4 QP-quadratic 1 1 1 0.96 0.86 0.86
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TABLE 3.7. FEATURES SELECTED IN THE FS1 METHOD

=
o
2 . . Features added for Features added
q;) Classifier Cross-Condition Joint1 for Joint2
1=
tw;:Fz_MinA, Fz_MinT, FC1_MinA,
FC1 MaxA, FC1 AUC, FC2_MinA,
FC2_MinT, FC2_MaxT, Cz_MinA,
Cz_MinT, Cz_MaxA, Cz_MaxT,
CP1_MinT, CP1_MaxA, CP1_AUC, tw,:Fz MaxA, Fz_AUC,
CP2_MinT, CP2_MaxT, CP2_AUC, CP2_MaxA tw;:FC1_MinT,
twy, SMO-mlp Pz_MinA, Pz_MinT, Pz_MaxT, tw,:Fz_MinT,FC1_MaxT, FC1_MaxT,
Pz_AUC FC2_AUC, Cz_AUC, CP1_MaxT
tw,:Fz_MinA, Fz_MaxT, FC1 MinT, CP2_MinA

FC2_MinT, FC2_MaxT, FC2_MinA,
Cz_MinA, Cz_MaxA, CP1_MinA,
CP1_AUC, CP2_MaxA, CP2_AUC,
Pz_MaxA

Note: Features are given for the case in TABLE 3.5, where accuracy of Joint2 equals to 1. Each feature is denoted
including the electrode from which the feature was extracted, followed by the feature itself, i.e. “electrode_feature”.

The overall classification accuracy results reached following FS2 method are presented in TABLE 3.8.
The overall classification accuracy values on which the classifiers were evaluated were the cross-
condition classification accuracy, achieved by the SFFS at the step that was selected for starting SFS, the
task-specific classification accuracy achieved by SFS applied to the data of the two conditions separately
(Jointl and Joint) and the task-specific average. Again, the performance evaluation criterion was set as
larger than 0.8 for cross-condition accuracy and higher than 0.9 for task-specific average, with the cases
presented in TABLE 3.4 to be the ones that exceeded it. In Figure 3.11 and Figure 3.12.the overall
classification accuracy results (and performance evaluation criterion) of the FS2 method are presented.
TABLE 3.9 displays the corresponding results for sensitivity and specificity, while the features selected
for the cases where classification results were best (i.e., Jointl accuracy = 1 or Joint2 accuracy = 1) are
given in TABLE 3.10.

loannis Kakkos — Doctoral Thesis 35|Page



PROCESSING AND ANALYSIS OF EEG DATA RECORDINGS WITH THE APPLICATION OF MACHINE LEARNING METHODS

Accuracy
. 0.65 0.75 0.85 0.95
T

Figure 3.11. Cross-condition classification accuracy for all methods employed. In (A) for the individual
time windows and in (B) for the time windows combinations. The elevated plane represents the threshold
of the performance evaluation criteria of cross-condition accuracy larger than 0.8.
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Figure 3.12. Mean classification accuracy of Jointl and Joint2 for all the methods employed. In (A) for
the individual time windows and in (B) for the time windows combinations. The elevated plane represents
the threshold of the performance evaluation criterion of task-specific average accuracy larger than 0.9.
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TABLE 3.8. OVEARALL CLASSIFICATION ACCURACY RESULTS OF FS2 METHOD

Overall classification accuracy Number of features

z S g

i Classifier S = S 2 T = S 3

£ 2 < ©

= S -
tw, LS-quadratic 0.83** 0.88* 0.96** 0.92 5 5+2 5+3
tws SMO-mlp 0.85** 0.96** 0.92* 094 5 5+5 5+4
tw;,  SMO-quadratic 0.88** 0.92** 1.00**  0.96 7 7+1 7+5
twy 3 LS-quadratic 0.90 ** 1.00** 0.83*  0.92 9 9+10 9+8
twy 3 QP-quadratic 0.85** 0.92** 0.92** 0.92 9 9+3 9+8
twy 3 SMO-mlp 0.90** 0.92**  0.92* 092 9 9+6 9+7
tws 4 QP-linear 0.90** 0.92** 0.92** 0.92 12 12+5 12+10
twz,  SMO-quadratic 0.85** 1.00** 0.83*  0.92 6 6+3 6+1
tws 4 LS-quadratic 0.83** 0.92** 1.00** 0.96 2 2+4 2+3
tws 4 QP-quadratic 0.90** 0.96** 0.92** 094 7 7+16 7+2

Note: The cases presented are those that exceeded the performance evaluation criterion. Asterisks mark the level of
permutation p-values significance. *: p < 0.01; **: p < 0.001

TABLE 3.9. SENSITIVITY AND SPECIFICITY RESULTS OF FS2 METHOD

Sensitivity Specificity
c c
= 2 2
g = s
c c s N c = N
g Classifier 5 = £ 3 S 5
[ N ] ] N ] )
E 3 3
= G G
tw, LS-quadratic 0.86 0.91 1 0.81 0.85 0.92
tws SMO-mlp 0.87 1 0.92 0.84 0.92 0.92
twy 5 SMO-quadratic 0.85 0.92 1 0.91 0.92 1
twy 3 LS-quadratic 0.91 1 1 0.88 1 0.75
tw 3 QP-quadratic 0.90 0.92 0.92 0.81 0.92 0.86
tw, 3 SMO-mlip 0.95 0.86 0.92 0.85 1 0.91
tws 4 QP-linear 0.88 0.92 1 0.91 0.92 0.86
tws 4 SMO-quadratic 0.87 1 0.9 0.84 1 0.79
tws 4 LS-quadratic 0.86 0.86 1 0.81 1 1
tws 4 QP-quadratic 0.88 1 1 0.91 0.92 0.86

From the above TABLES it is indicated that both FS1 and FS2 did not produce results that passed the
performance evaluation criterion when employing the RBF kernel. On the other hand, SVM classifier
with linear, quadratic and mlp kernels presented higher results (passing the evaluation criterion) despite
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different learning methods. Furthermore, in all cases for FS1 and in most cases for FS2, the performance
evaluation criterion was met for features extracted from combination of 2 time windows. In contrast, the
utilization of tws (denoting the extended time window which included Oms to 600ms ERP recordings)
failed to meet the criterion threshold.

TABLE 3.10. FEATURES SELECTED IN THE FS2 METHOD

2
(@)
e
§ Classifier Cross-Condition Featur;es_added for Features_added for
> ointl Joint2
£
tw,: FC2_MinA, owz: FOL_MInA, tw,: FC1_MinT,

FC2_MaxT, P1_AUC,
CP2_MinT, CP2_MaxA,
Pz_MinT, Pz_MaxA
tws: FC2_MinA,
Cz_MaxT, CP2_MaxA

Cz_MinT, Cz_MaxA,
tw, 3 LS-quadratic CP1_MaxT, CP2_MinA
tws: Fz_MinT, Cz_MinT,

Cz_AUC, CP1_MinA

FC1_MaxA, FC2_MinT,
Cz_MaxT, CP1_MinA
tws: FC1_AUC,
CP2_MinA, CP2_MaxT

tws: Fz_MinT,
) . FC2_MinA, CP1 MaxA, twsz: FC2_AUC
tws,e SMO-quadratic = =777 4 b7 MinA, tw,: CP2_MaxA, tws: CP2_MaxT
Pz_AUC Pz MinT

tw,: FC1_MaxA,

FC2_MinT, CP1_MinT CPEWXUFCCZZZC_:I';/;mAAU c
tw; , SMO-quadratic tw,: Fz_MaxA, tw,: Pz MinT - X = '
Pz_MaxA
Fz_MaxT, Cz_MaxA, fwo: Pz MinT
CP1_MaxT Wa- T2
i twy: FC1_MaxT twsz: CP1_MinA,
tws 4 LS-quadratic §W3'.F(C::F;1_|\)/|A\alii tw,: CP2_MinA, CP2_MinA
Wa-Fhl Pz_MinA, Pz_MinT tw,: CP1_MaxT

Note: The first two cases correspond to the cases in TABLE 3.8, where Jointl classification accuracy reached 1,
while the last two cases correspond to the cases in TABLE 3.8 where Joint2 classification accuracy reached 1. Each
feature is denoted including the electrode from which the feature was extracted, followed by the feature itself, i.e.
“electrode feature”.

The comparison between FS1 and FS2, based on the number of cases that exceeded the criterion
boundary, indicates that FS2 provided more cases. Specifically, classification accuracy equal to 1 was
reached for SFS using FS1 only in one case, while in FS2 for 4 cases, using quadratic kernels. As the
optimal performance attained in these cases, two of them resulted in 0.96 task-specific average accuracy.
In addition, the permutation tests low p-values, infer that the combinations of the SVM classifiers
employed were successful in detecting significant features and class labels associations, thus resulting in
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high classification accuracy while avoiding overfitting. Furthermore, the high specificity and sensitivity
values, as illustrated in TABLE 3.9, further corroborate the validity of the classifiers employed. The high
specificity and sensitivity values in both FS methods, as illustrated in TABLES 3.6 and 3.9, further assess
the effectiveness of the ML methods utilized since the small numbers of false positives and negatives
indicate there was no bias included in the classification of one class over the other.

Concerning the number of features that were selected, after both SFFS and SFS were applied, it was
observed that the total number of features selected from FS1, for each condition, is higher than the
number of features selected from FS2, as represented by the mean of features selected by FS1 (24.2 for
Jointl and 25.2 for Joint2 condition) versus the mean of features selected by FS2 (12.6 and 12.8 features
per condition, respectively), the mean being in each case computed from the number of cases presented in
TABLES 3.5 and 3.8, respectively. A similar trend showed up in the fact that the number of features (17
and 20) selected from SFFS in FS1, in the cases that resulted in the highest cross-condition accuracy
(0.98) were higher than the number of features (7, 9, 9 and 12) selected from SFFS in the FS2 cases that
resulted in the highest cross-condition accuracy (0.9). Despite that however, no overall clear trend could
be discerned among the selected features as for specific features of electrode positions.

Nevertheless, for the 2 cases in FS2 that task -specific average was higher than 0.9, while additionally
Jointl accuracy reached 1, the features added by the SFS presented a central/centro-parietal majority (9 of
the 13 selected features). In a similar way, for the 2 cases that the classification accuracy of Joint2 was 1
with a task-specific average exceeding 0.9, the features selected to be added for Joint2 demonstrated
overall parietal/centro-parietal predominance (7 of the 8 selected features). Of note is that the two
condition-specific subsets were different in the aforementioned cases. Specifically, inspecting the cases
where Jointl reached 1, the features added were different from the features added for Joint2, starting from
the same cross-condition SFFS feature set. The same held for the cases where Joint2 reached 1, with the
exception of tw;, MinT for electrode Pz, In Figure 3.13 the mean values and the distributions of the
selected features are presented for the two cases corresponding to the optimal classification results
(highest task-specific average and Jointl or Joint2 accuracy equal to 1).
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Figure 3.13. Feature values and distribution for cases (A) tw;,, method: SMO quadratic and (B)
tws 4, method: LS quadratic. In each box, the mean value is indicated by the horizontal line, while the
box edges denote the 25th and 75th percentile. The whiskers extend to the most extreme values and
the '+' symbol marks the outlier data points.

3.6.4 Validation of Results using Additional Classifiers

To further assess the nature of the features extracted and compare the adopted framework with other ML
designs, classification of different methods was also conducted (in addition to the SVM methods). As
such the most commonly used methods in the classification of error-related potentials [78], [98], [108]
were employed, namely k-Nearest Neighbors (k-NN) and Linear Discriminant Analysis (LDA), using the
FS2 framework proposed as it was indicated to have the higher overall results.

In general, the classification performance of the classifiers tested was inferior to the SVM-based ML
approach, demonstrated the effectiveness of the condition-independent and condition-specific SVM
methods regarding error-related classification. The results for both methods are presented below in
TABLES 3.11 and 3.12).
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TABLE 3.11. OVERALL CLASSIFICATION ACCURACY RESULTS FOR THE DIFFERENT TIME
WINDOWS (ADDITIONAL EVALUATION)

Overall classification accuracy Number of features

2 S =

g 3 S o o 8% 8 o N

= Classifier 8 5 S D E £ S =

E ‘S L R

= 5 <
tw, k-NN 0.69 0.71 0.75 0.73 3 3+7 3+13
twy LDA 0.85 0.79 0.88 0.84 7 7+2 7+3
tw, k-NN 0.69 0.54 0.71 0.63 24 24+2  24+5
tw, LDA 0.71 0.61 0.71 0.66 3 3+2 3+1
tws k-NN 0.73 0.71 0.67 0.69 22 22+5 2249
tws LDA 0.79 0.63 0.92 0.78 22 22+1  22+3
twy k-NN 0.71 0.67 0.75 0.71 2 2+11  2+14
twy LDA 0.71 0.91 0.87 0.89 22 22+4  22+2
twe k-NN 0.87 0.59 0.70 0.65 31 31+1  31+2
twe LDA 0.85 0.67 0.71 0.69 30 30+3  30+2

TABLE 3.12. OVERALL CLASSIFICATION ACCURACY RESULTS FOR THE TIME-WINDOW
COMBINATIONS (ADDITIONAL EVALUATION)

Overall classification accuracy Number of features
2 S =
g - E 2 ¢ 8% & z 9
= Classifier S = = D5 = = £
: o o s 5 o o
= E 3]
S [
twy 5 k-NN 0.67 0.70 0.79 0.75 37 37+6  37+6
twy » LDA 0.88 0.92 0.95 0.94 10 10+6  10+2
tw, 3 k-NN 0.75 0.75 0.79 0.77 3 3+43  3+32
twy 3 LDA 0.81 0.83 0.82 0.83 8 8+2 8+1
tws 4 k-NN 0.77 0.75 0.75 0.75 21 21+26 21+34
tws 4 LDA 0.87 0.92 0.79 0.86 12 12+2 12+2

In spite of the lower performance (relative to the SVM framework), the performance evaluation criterion
of cross-condition accuracy larger than 0.8 and a task-specific average larger than 0.9 was reached in one
case by an LDA classifier for tw, , (Figure 3.14). Taking the overall results into consideration it can be
inferred that linear modeling ML methods and time-window combinations are more efficient in error-
related discrimination utilizing signal-based features.
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Figure 3.14. The performance of LDA classifier. In A) The classification accuracy for the different time
windows and their combinations and in B) The classification performance for the case that reached the
performance evaluation criterion (twq ;). The line graphs demonstrate the classification accuracy as a
step wise approach (inclusion of the different features), while the bottom right figures indicate the number
of features for the different scalp areas.

3.6.5 Evaluation and Implications of the ML Approaches Employed with regard to ErrP
Analysis

In this approach, we employed a cross-condition and within-condition ML framework in EEG recorded
from an auditory task with two levels of complexity utilizing indicative ERP signal characteristics. Two
feature selection methods were used to effectively identify the ErrP properties that are common to the two
conditions and specific for each one resulting in effective classification between correct or incorrect ErrPs
responses. The high classification accuracy reached, for cross-condition and within-condition
classification for both feature selection methods, corroborates our initial hypothesis that, ML procedures
can successfully detect hidden patterns in ErrP attributes and thus incorrect decisions can be detected,
irrespective of the task difficulty, extracting condition specific features to improve the classification
accuracy for each difficulty level.
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While in practice the correct and incorrect EEG responses (when averaged across all subjects and
conditions) demonstrated small distinguishable regarding error-related differentiation (indicated by
previous research on the same data [109]) , the condition specific characteristics might provide
indications for error processing mechanisms adjusted to task difficulty [110], [111].

Regarding the classification accuracy results, quadratic kernels demonstrated the overall best
performance. Within the ML models adopted in this approach, in both FS methods RBF kernels failed to
meet the performance evaluation criterion, while linear kernels presented the higher performance (despite
the fact that SVM classifiers paired with the kernel trick can theoretically classify non-linear data
adequately) indicated the linear nature of the features extracted [100]. This is also supported by other
SVM studies that also exhibit higher classification accuracy in non-RBF kernels [112]-[114]. Additional
evidence of the linearity of the features in this dataset was evident in the LDA comparison (please refer to
the “validation of results using additional classifiers” section), demonstrating higher accuracy with linear
modeling.

The response-related EEG signals analyzed in this chapter are those produced after the first feedback tone
provided to the subjects (i.e., FBT) and as a consequence a signal similar to FRN would be expected to be
generated. In this context a pre-defined time window could, in principle, be able to effectively analyze
error-related components (as indicated by the majority of error-related studies) [74], [115]. However,
because of the FBT nature and the variations of ErrPs amplitude and latency, due to individual subject
differences and task condition manipulations [53], [102], [116] the timing and duration of the error-
related ERPs could not be determined beforehand. From this standpoint, different consecutive non-
overlapping time windows were investigated to refrain from excluding of latencies that provided useful
information. The results suggested that relevant insight as to the time windows used, was especially
extracted from combinations of adjacent instead of the shorter duration single time windows, i.e., twy
(0-220ms), tw, 3 (125-300ms) and tws 4 (220-400ms). This could be attributed due to a latency extension
of ErrPs present in feedback tone processing, causing error related attributes to manifest over the 200 ms
time windows [117]. Task complexity could also be taken on account for distortions or masking of the
multiple error-related components [118], supporting the assumption that the time windows combination
could facilitate in the conditional inclusion of different ErrPs in the classification processes. In contrast,
the extended tws (0 ms to 600 ms) might incorporate unrelated error processing information (since large
ERP peaks in auditory tasks generally appear after 400 ms [119]), thus resulting in a limited number of
predictive features confounding the FS algorithms. To that end, feedback-related ErrP signals can exhibit
high variability and may not be apparent to EEG recordings in view of experimental conditions and
feedback relative concealment [120]-[122]. Furthermore, modulations of ErrPs attributes (even in correct
trials) are consistently reported as a result of reinforced learning effects and reward expectancy [123],
[124]. In the current approach the ERPs investigated and analyzed were generated from the FBT
(therefore FBT originated from indirect information of the actors’ responses), hence providing error-
related features less clear in morphology as those that could be estimated after the presentation of a sole
feedback tone (as unambiguous information on the correctness of the participants’ responses).

Regarding the condition-specific features selected by the SFS when Jointl or Joint2 reached accuracy
equal to 1, single features added were different in the two conditions, initiating from the same SFFS set.
This validates the hypothesis of the existence of ErrPs features corresponding specifically to each
condition separately, eventuating divergent feature subsets for the two conditions for the cases that
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provide the optimal discrimination between correct and incorrect responses. This is also supported by
other recent ML studies that display discrepancies in ErrP classification performance with regards to
cross-condition manipulations [94], [96], [125]. In this regard, however, conventional methods of training
on one task and testing on another are likely to include condition-salient features, impairing the overall
accuracy and, in some cases, making the classifier to be unreliable in cross-task classification [79], [94],
[126], [127]. The adopted approach, achieves in disentangling condition-specific and condition-
independent from the overall classification processes by selecting features irrespective of task complexity
and complexity-related error processing variations.

Additionally, the fact that in FS2 more cases meet the performance evaluation criterion set and present
task-specific accuracy equal to 1, suggest that FS2 processes provide more flexibility to the method
employed, resulting in high classification performance between to correct and incorrect responses from
each condition. On the other hand, the value of cross-condition accuracy reached by FS2 was in many
cases lower than the value of cross-condition accuracy reached by FS1. This is to be expected, since in
FS2, the feature set provided by SFFS, and used as a basis for SFS, takes also into account condition-
specific classification accuracy. As such in FS1 the output SFFS set provides, by definition of the FS
method, equal or greater accuracy than any other set, albeit selection bias might be included towards
Jointl or Joint2 classification. In addition, FS2 resulted, on average, in smaller feature subsets than FS1.
This might have been anticipated considering that SFFS completes its feature inclusion cycles in FS2
taking into account the average value of three accuracies (which is lower than the optimal FS1 set) . It can
also be regarded as the advantage of FS2, since in general classification systems based on fewer features
are expected to perform faster in real-time systems.

Some considerations need to be taken into account in the interpretation of the results described above.
Firstly, the ERP signals were average of each participant to address the unbalanced labels implications
that usually reside with SVM algorithms [128], while also enhancing generalizability in the assessment of
error related processes. This lead to a limited small number of instances to be classified, while since only
SVM classifiers were evaluated (with the subsequent addition of k-NN and LDA for results validation),
more classification methods could have led to diverse feature subsets and different performance (even
surpassing the proposed ones). Moreover, despite the high overall accuracy reached by the selection of
specific features for each method employed, the affinity of their correlation to the underlying error related
cognitive mechanisms also raises concerns [129]. This is attributable to lack of consistency in the features
subsets with regards to the different methods (TABLES 3.7 and 3.10 ). From this standpoint, the features
that comprise the SFFS and SFS feature subsets might be unaffiliated to the error-related processes and
therefore could be selected due to their ability to reduce unrelated noise. However, the potential of
detecting condition-independent and condition-specific ErrP-based feature subsets for correct and
incorrect classification purposes, provides indications task difficulty adjusted error-processing [110],
[111].

Taking all the above into account, it can be assumed that ErrPs manifest as a global error-processing
cognitive mechanism with common error-monitoring elements and salient feature alterations depending
on task complexity. Towards this direction, future research could extend to explore a universal error-
processing mechanism irrespective of task and/or complexity conditions, illustrating the underlying brain
mechanisms  that regulate the neural substrates of cognitive error  responses.
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Chapter 4

4.1 Task-Independent Workload Assessment

The evaluation of mental workload is a significant issue not only in the emerging field of
neuroergonomics but also in real-world applications. Previous research works have attained high
performance regarding efficient single-task classification, however expansion to cross-task mental
workload assessment usually results in controversial results. In the work described below, an EEG
experiment is adopted that incorporates two distinct tasks in two levels of task complexity. The data-
driven analysis proposed in this Chapter, encompasses a ML framework to address the barriers frequently
arising from cross-task workload classification, by utilizing EEG spectral attributes to uncover the global
brain mechanisms regulating mental workload. In detail, functional connectivity and spectral density
power features were calculated from different frequency bands in an experimental protocol that
constituted two working-memory tasks of differentiated level of difficulty. The features were then fed to a
feature selection and classification framework to assess the prominence of the features and subsequently
estimate the task-independent classification performance. The ML approach obtained 0.94 classification
accuracy in cross-task mental load discrimination, while additional analysis of the appointed features
demonstrated common task-independent workload trends in spectral power and localization properties.
Specifically, increased frontal, delta and theta power was detected with workload increments, while load-
related differentiations of functional connectivity were also identified in terms of frequency and scalp
locations. The overall approach illustrates the effectiveness of feature fusion in the endeavor of detecting
indicative mental load biomarkers for the workload assessment irrelevant of the applied task.

4.2  Introduction

4.2.1 Background

Mental tasks involve various cognitive operations and processes of an individual, including storage,
processing, transfer and retrieval of information, especially in strenuous task execution, deteriorating
performance [130]. Nevertheless, the prolonged mental high-efficiency effort, especially in demanding
tasks, necessitates more cognitive resources to be reallocated consequential leading to an increment of
mental workload [131]. Recent studies report that increments in work engagement/intensity can result to
mental overload, reducing operational performance and subsequently induce health conditions and
burnout syndrome [132], [133]. In this regard, efficient estimation of workload-related mental states
offers the opportunity for real-world assessment of cognitive burden with implication in clinical
conditions as well [134], [135]. However, despite cognitive workload being consistently researched from
various studies [133], the brain functions and mechanism that regulate it encounter several task-related
challenges, whereas methodological implementations for real-world scenarios EEG workload detection
are still nowhere near practical applications.

4.2.2 Machine Learning in EEG Workload Monitoring

As a means to evaluate the alterations of the various mental processes, electroencephalogram (EEG) has
proven to be effective and practical as a means to provide low-cost, non-invasive electrophysiological
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brain activity measurements with high temporal resolution [136]. Several studies have demonstrated EEG
brain rhythms being associated to cognitive load, highlighting the neuronal processes, while functioning
as effective indicators for workload estimation [137], [138]. In fact, load effects due to task difficulty
have been observed in several brain wave aspects [139], [140]. Specifically, pronounced alterations have
been evident in parieto-occipital alpha and temporal beta power with regards to complexity/workload
increments [141], while significant relationships between alpha/theta band power and mental load have
been consistently demonstrated in frontal and posterior areas [142], [143].

Taking into account the large volume of complex associations between the spectral oscillatory neural
activities of the different brain regions, machine learning techniques allow for a robust monitoring and a
comprehensive interpretation of the mechanisms that constitute mental workload. Although most of
machine learning approaches focus on classification performance without considering possible
physiological representation influences (i.e. data quality, unrelated noise etc.), by their very nature the
distinctiveness between the different cognitive states of the features included can facilitate in the effective
creation of a transparent and vigorous classification model with high prediction ability. With this in view,
the utilization of EEG-based features in combination with machine learning methods can not only achieve
high discrimination validity between the workload-related cognitive states, but also identify hidden
patterns and unveil the underlying mental load cognitive processes, specifically in relation to the
properties of brain wave frequencies and scalp locations [144]-[147]. For instance, Wang et al. [145],
using a proximal support vector machine (SVM) method in a 4-level working memory (WM) task
obtained high overall performance, utilizing EEG statistical, structural and power related characteristics.
In their work alpha, frontal theta and posterior high beta and low gamma bands were indicated to have a
significant effect in mental load. Similarly, linear discriminant analysis (LDA) exhibited a reduction in
brain wave frequency power values, predominantly in centroparietal alpha and midline beta regions [144],
whereas in [146] different entropy-related elements demonstrated the relevance of delta band in workload
assessment particularly in frontal cortical areas.

Although the EEG ML applications have attained high discrimination between, uncovering important
associations of the encompassed attributes with the cognitive states governing mental load, features
generalizability in diverse tasks is still limited. On this premise, despite several studies indicating the
successful detection of distinguishable patterns in single-task workload classification, the expansion to
cross-task workload classification demonstrate significant obstacles that usually present deterioration in
performance. A major factor for this could be the fact that most of the ML approaches include feature
calculation and model generation within-task, while classification testing is performed in the other(s). As
such, task-dependent characteristics that correspond to specific task, while being irrelevant to the other(s)
might exclude global workload traits thus resulting in small classification efficiency. Intrinsically,
workload-related cross-task efforts usually exhibit classification accuracy barely over chance level [148]-
[150], with only a only few exceptions demonstrating reliable prediction results [151]. To enhance ML
performance, relative studies include the combination of diverse cognitive attributes involving spatial,
spectral and temporal EEG features [152] or features extracted from different types of
electrophysiological signal modalities [153]. Taking the above into account it can be inferred that
introduction of new features might increase cross-task classification modeling efficacy and therefore
resulting accuracy [152], [154].
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4.2.3 Brain Networks in Machine Learning Modeling

Most recently, accumulating studies have shown that the human brain forms a large-scale network of
interconnected regions within the human connectome and such structure provides an anatomical substrate
for neural communication, functional processing and information integration in the brain [155]. In
consequence, functional connectivity (FC) utilization can contribute to a better perception of the
complicated brain functions in diverse workload conditions, as indicative pairwise connection between
the various brain areas. In that scope, alterations of FC and its corresponding network architectural
aspects can expose segregated or integrated processing both locally and globally, as well as reveal the
modulation of the topological properties of the brain’s cognitive structures due to task load effects [155],
[156].

From this standpoint, it can be presumed that FC features incorporation in ML frameworks can not only
provide a higher level of interpretability regarding the brain’s functional reorganization, but also
contribute to the recognition of the hidden layers of constituting cognitive mental load, thus resulting in
high classification performance [157]-[159]. Regardless, only a limited number of related research works
integrate brain network FC in ML approaches either with regard to investigate the brain functions
alterations in different tasks [160] or to illustrate brain regions communication in respect to the different
frequencies and different workload levels in simulated environments [161]. In view of this, only our
previous work [162] (to the best of our knowledge) employs FC as distinct workload related features to
explore cross-task load discrimination. The resulted findings illustrated frontal theta and beta frequency
bands power value modifications subsequently leading to 0.87 task-independent classification accuracy.

4.2.4 Current work

In light of all the above, it can be hypothesized that the already established univariate features such as
spectral power with the addition of novel FC ones could improve task-independent discrimination, while
providing indication of the brain related mechanisms governing mental load, promoting effective analysis.
Consequently, the absence of extensive work on workload related classification in cross-task designs
combining multi-variant features has been the principal motivation in this study. On this premise, in this
Chapter a workload analysis framework is proposed, incorporating univariate power with multivariate FC
features to improve the state-of-the arts performance regarding task-independent workload monitoring. As
such, an EEG experiment incorporating two cognitive WM tasks (an n-Back and a Mental Arithmetic) in
Low and High complexity conditions, assessing the different spectral attributes in terms of power and
functional connectivity. Specifically, the Phase Lag Index (PLI) of pairwise electrode connections was
estimated in 4 frequency bands to illuminate the FC structures and the reorganization of the mental load
brain network, paired with the relative power spectral density (PSD) to identify prominent features for
cross- task discrimination. This fusion feature set was then fed into a ML approach (including FS and
classification), to calculate task-independent and task-dependent classification performance, while
additionally providing indices in terms of their significance to the neural mental load processes.
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4.3 Materials and Methods

4.3.1 Participants

In the EEG experiment, 40 individuals participated (males / females = 17 / 23) with a mean age of 21.6 +
1.6 years. All individuals were right-hand dominant and reported normal or corrected-to-normal vision.
Before the EEG experiments a phone interview screening took place, making sure that participant did not
have any history of mental disease, Attention-deficit/hyperactivity disorder, sleep disorder and long-term
medication intake. Individuals who were unable to obtain a full night of sleep (i.e., more than 7 hours /
night) for two consequent nights prior the experiment were re-scheduled. Refraining from caffeine or
alcohol consumption for at least 2 hours before recordings took place was also requested from the
participants. Written informed consent was obtained from all subjects and experimental protocol was
established in accordance to the Declaration of Helsinki.

4.3.2 Experimental Design

Cognitive task execution, in general, requires storage, retrieval, processing and transfer of information,
with various brain function governing strategical planning, learning and WM [143]. In fact, WM s
consistently reported to affect executive attention, inhibitory control, and cognitive flexibility, aspects
particularly important in mental load processes synergetic with the way information is manipulated in
mental workspace [163], [164]. In the experimental design presented in this Chapter, two cognitive tasks
(n-Back and Mental Arithmetic) related to WM were employed in low and high-workload levels (Figure
4.1)

The n-Back task utilizes 0-back and 2-back for low and high workload levels requiring subjects to
identify target stimuli. Specifically, in 0-Back participants had to respond to the fixed target Letter
<X’ (target), whereas in the 2-Back to the uppercase letter that corresponded to the one presented two trials
earlier (target). All other stimuli were considered non-target and no response was requested, while in
addition in all trials no feedback was given to the subjects in regards to the correctness of their responses.
Both n-Back designs comprised 150 trials of which 45 (30%) were target stimuli. Each letter was
displayed for 0.5 sec following a 1.5 sec fixation cross.

In the Mental Arithmetic task, the two workload levels are handled under 1-digit numbers and two 3-digit
numbers addition. As such, in each trial an addition was presented and next the sum (target) or a close
number in terms of value (non-target). Participants had to judge if the answer provided was correct. In
both 1-digit and 3-digit additions, there were 25 overall trials, 12 of which were target. Carrier influence
was kept to a minimum with each addition concerning only one carry in both levels. Display of additions
lasted 5 sec after a fixation cross for 4 sec, with answer presented for 2 sec followed by a 2 sec fixation
Cross.

The stimulus and interim fixation cross in each trial were presented in white fonts on a black background
with each level lasting approximately 5 min. Each task was employed twice with counter-balanced order
for each individual, who were requested to provide a response to both target and non-target stimuli.
Preceding the EEG recordings practice n-Back and the Mental Arithmetic tasks were implemented with
an arbitrary threshold of 80% for correct responses ensuring subjects understood each of the tasks
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employed. Both tasks were conducted under E-Prime 2.0 software client (Psychology Software Tools,
Inc.), while no feedback was provided regardless of the response accuracy.

A N-Back Task B Mental Arithmetic Task
150 Trials 25 Trials
45 Target Stimuli 12 Target Stimuli
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0-back 2-back 1-digit 3-digit 0-back 2-back 1-digit 3-digit

Figure 4.1. The experimental design for the high and low workload levels of the n-Back task (A) and the
Mental Arithmetic task (B). Specifically, low workload level is marked as green color while high
workload level is shown in light red in both tasks. Target stimuli are indicated with arrows and red color.
The behavioral performance in terms of accuracy and reaction time are also presented (C). A clear
workload-dependent effect on behavioral performance was revealed as reduced accuracy and increased
reaction time with the increase of workload in both tasks (asterisks mark the level of significant difference
between the workload levels as p <0.001).

4.3.3 Data Acquisition and Preprocessing

EEG recording included 64 Ag/AgCI scalp electrodes (model: ASA Lab, ANT B. V., Netherlands), with
positions corresponding to the international 10-20 system. Raw signals were digitized at a sampling
frequency of 256 Hz, while electrode impedance was kept below 10 kQ throughout the recordings, while
electrooculograms were additionally measured by vertical (above and below the right eye) and horizontal
electrodes (placed at the outer canthi). Preprocessing involved band-pass filtering (FIR 1 — 40 Hz),
average re-referencing in relation to all electrodes, and artifact removal was performed by ICA, removing
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the components highly correlated to ocular signals [165]. Subsequently, EEG data were de-trended,
segmented to (stimulus-locked) epochs and baseline corrected relative to 100 ms before stimulus onset.
More details of each preprocessing step can be found in Chapter 2. From the resulting data, only correct
target epochs were incorporated for further analysis. Preprocessing was implemented with custom codes
in the EEGLAB toolbox [166] in MATLAB R2019b (The MathWorks Inc., U.S.).

4.3.4 Feature Estimation and Fusion

In the approach presented in this Chapter, the detection of important mental load properties of EEG
spectral characteristics were examined as well as their fusion in cross-task workload classification. On
this premise, relative power spectral density (PSD) and phase-lag index (PLI) FC were calculated and
employed as features for the subsequent classification. In detail, PSD was estimated for each channel
using Welch's method with 50% overlap and 256 points on a 0.5 s window, in each trial. The resulting
power values were then averaged for delta (5, 1 — 4 Hz), theta (6, 4 — 7 Hz), alpha (a, 8 — 12 Hz) and beta
(B, 13 — 30 Hz) frequency bands. Moreover, to ensure a balanced dataset (since the number of correct
target responses varied between tasks and subjects), the mean PSD was calculated for each subject, task
and frequency band for all electrode locations. In a similar manner, PLI FC [15] was assessed for each of
the aforementioned frequency bands, by calculating the average PLI network between all electrodes for
each subject and task. Therefore, the final dataset included 40 x 2 x 2 x 2 = 320 instances (40 subjects
completed two tasks twice for two workload levels) using 4 frequency bands and 62 electrodes, thus
ending up with 4 x 62 = 248 power features and 4 x 62 x (62 — 1) / 2 = 7,564 connectivity features, with
the full fusion dataset comprising of 7,812 features (248 PSD + 7,564 PLI). The mathematical definition
of PL1 is provided in Chapter 1. For the purpose of the features (PSD and PLI) to display similar range in
values, so that FS and classification can have a stable convergence (in terms of feature bias and weight)
the relative PSD was calculated and incorporated in the final feature set. Thus, relative PSD is measured
as the ratio of the band power to the total power ranging in the [0,1] interval (the same range as PLI
values).

4.3.5 Feature Selection and Classification

In order to assess the predictive power of the features, and at the same time reduce variance based on the
premise that high data dimensionality can hinder effective classification (since the fusion of PLI and PSD
set involves a very large number of features), a feature selection (FS) framework was employed on the
whole feature set. As such, the FS procedure was utilized to detect workload-related attributes
incorporating them into an optimal feature subset with high predictive ability, while remove redundant or
non-informational features, thus facilitation overfitting bias. In contrast to other cross-task classification
studies (which generally train the classification model on one task ant test on the other), the FS and
classification procedure adopted here was task-independent meaning that train and test was done while
using global data from both tasks (maximizing generalizing). The algorithmic FS and classification
framework is shown in Figure 4.2. As such, a recursive feature elimination method with correlation bias
reduction (RFE-CBR) FS method was utilized that estimates the significance of each feature
(consequently ranking them) on the basis of an internal linear SVM [167].
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Algorithm 1 Feature selection

Input:
D e RVN=F: data
subject € BRV: subject labels, subject; € {1,2,...5}
workload € B™: workload labels, workload; € {0,1}

Output:
Optimal Features: set of selected features
Begin:
for i in 1:5 do © Leave-one-subject-out cross-validation
Di{.-::! = Dl’
Dyyain = D = D
rank; = &
for j in 1:F do = SVM-RFE-CBR

weights = SV M( Dyrain, workload)
ranki.m,, = sort(weights)
rankie,, = CBR(rankiemp, Dirain)
f= hma‘rjm[?'ank:m,u}j
Dyvain = Dipgin — Di . b remove f™ feature
push(rank;, f) &> update the rank

for 7 n I:F do

selected = top-j( frequency(rank'7))

for i in 1:5 do i+ Leave-one-subject-out CV
_ pselected
Dtest = DI eeted lected
-lecte selecte
D!rajn — DH!’ ected D:’-"e’ SCLE

model = SVM (Dirain, workload)
prediction; = predict(model, Dy, )
ace; = evaluate(prediction;, workload)
acc; = mean|acc;)
K = argmazx(ace;) = optimal number of features
optimalF eatures = top-K | frequency(rank' )
return optimalF eatures

Figure 4.2. The algorithm for the optimal feature subset estimation

Briefly, the RFE-CBR assesses each feature importance (as a product of the SVM weight) excluding the
feature that presents the lowest significance starting with a full set. In the same manner, the whole process
is repeated in succession, until no feature is left in the complete set. The RFE-CBR ranked set is then
created by the opposite order of the removed features. In addition to the internal SVM evaluation, the
correlation between the different features is estimated (successively removing additional features), thus
providing a more stable, while facilitating possible cases where features might be wrongly estimated. In
order for the FS (and the subsequent classification) procedure to be able to identify subject-invariant
attributes that encode global mental load information, leave-one (subject)-out cross-validation (LOOCV)
was adopted. Specifically, the each LOOCYV iteration allocated whole subjects to training or test sets,
excluding one participant’s data (both workload levels/tasks), with the RFE-CBR FS being fed the
remaining data (training dataset), thus generating 40 feature rankings. Contrary to the FS (were only
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training set data were employed), in the classification processes utilized the training set to create a
mathematical model to distinguish between the low and high workload levels evaluating models
performance on the testing set. Classification was implemented with the same LOOCV with a Linear
SVM classifier [168] determining each set accuracy as objective function for subset estimation. A
schematic of the FS and classification procedures utilized in this Chapter is presented in Figure 4.3. The
feature subset with the highest average accuracy across folds was selected as optimal, calculated by
adding the most frequently shared feature (on the ranked RFE-CBR sets) of all folds in succession,
starting with an empty feature set. For example, the 1st feature subset included the most common RFE-
CBR feature; the 2™, the two most common features in the ranked RFE-CBR feature and so on.

To further ensure overtraining/overfitting was avoided, in addition to the classification accuracy
estimation an additional 1,000 permutation tests with class labels was employed, under the same LOOCV
procedure. The permutation test were able to provide an empirical distribution of the classification
accuracy calculating the p-value as the probability of a random permutation to obtain higher performance
than the one obtained by the SMV classifier [169].
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Figure 4.3. The workflow of the proposed approach
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4.3.6 Validation
4.3.6.1 Comparison of Additional Classification methods

Additional validation of the selected features in terms of global predictive power (i.e. attaining of high
classification accuracy utilizing the same feature subset irrelevant of the classifier), was performed by
incorporating the RFE-CBR subset with different ML methods in addition to the primary approach
presented above. As such, SVM with a Gaussian kernel, Linear Discriminant Analysis (LDA) and
Random Forest (RF) classifiers were included, with the corresponding performance presented in the
results section. To test the differentiations of the classification performance and further evaluate if the
performance of the proposed approach was significantly higher from the additional classification methods
used for validation, the McNemar test [170] was performed.

4.3.6.2 Leave-one-task-out Workload Classification

In general, most previous workload-related works [152], [153] implement cross-task classification by
training on one task and test on the other(s). However, this approach is prone to incorporate task-specific
features deterring the classifier of an overall task-independent model. In order to evaluate how the RFE-
CBR ranked set affects the classification performance due to task-specific training; the selected features
were further validated by including the linear SVM design in training and testing on different tasks. This
approach is subsequently denoted leave-one-task-out for the remainder of this Chapter.

4.4  Results

4.4.1 Behavioral Results

As anticipated, the behavioral data (including reaction time and accuracy) presented statistically
significant differences between the low and high workload levels in both tasks (Figure 4.1C).
Specifically, the two-way ANOVA for task accuracy showed significant main task effect (F1, 316 = 9.35. p
= 0.002) and main workload effect (F1, 316 = 105.07, p < 0.001), whereas effect for their interaction was
not found (F1, 316 = 0.005, p = 0.816). In a similar way, the reaction time presented statistically significant
main task effect (F1, 316 = 199.01, p < 0.001) and main workload effect (F1, 316 = 52.49, p < 0.001) with
task-by-workload interaction failed to pass the significance threshold (Fi, 316 = 0.33, p = 0.569). In
particular, a pronounced decline was observed in the response accuracy, in conjunction with a reaction
time increase for both tasks (absent of significant interaction effects), indicate the effectiveness of mental
workload increments due to the task-related complexity manipulation.

4.4.2 Classification Performance Results

As mentioned in the previous section, cross-task classifications was implemented by applying PSD and
PLI FC features from both tasks and differentiate between the two workload levels (low vs. high). In this
regard, the overall highest accuracy was 0.94 (p < 0.001, 1,000 permutations) with 0.93 sensitivity and
0.94 specificity), including 166 features of which 18 (11%) were PSD and 148 (89%) were FC (TABLE
4.1). Moreover, the workload classification performance of each feature set (PLI and PDC) was evaluated
separately. In detail, utilizing only the 18 PSD features the obtained performance was much lower,
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namely 0.59 (p < 0.01, 1000 permutations) for n-Back, 0.63 (p < 0.001, 1000 permutations) for Mental
Arithmetic and 0.61 (p < 0.001, 1000 permutations) for cross-task classification. On the other hand,
workload classification employing the 148 PLI features resulted in high (although inferior to the PSD and
PLI fusion sets) with n-Back, Mental Arithmetic and cross-task attaining 0.95 (p < 0.001, 1000
permutations), 0.82 (p < 0.001, 1000 permutations) 0.93 (p < 0.001, 1000 permutations) classification
accuracy respectively.

TABLE 4.1. CROSS-TASK CLASSIFICATION PERFORMANCE RESULTS
Classification Accuracy (Standard Error)

Feature set # of feature

n-Back Arithmetic Task-independent
PSD 0.59(0.02)**  0.63(0.03)*** 0.61(0.02)*** 18
PLI 0.95(0.02)***  0.82(0.02)*** 0.90(0.01)*** 123
Fusion 0.97(0.01)***  0.83(0.03)*** 0.94(0.01)*** 141

Note: Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p < 0.001, 1000 permutations

4.4.3 Relative PSD Features

Subsequent investigation of the PSD features revealed difference in the topographic properties and their
distribution (in low and high workload) as presented in Figure 4.4. Interestingly, the PDS feature values
in both tasks displayed comparable patterns in all frequency bands employed, further denoting the
classification viability for mental load cross-task classification. Specifically, from the 18 PSD features
selected, 5 were in 9, 10 in 8 and 3 in « frequency bands. Notably, no PSD features were selected from S
band. In detail, concerning ¢ features 3 were included in frontal electrode positions, with 1 in central and
1 in parietal electrode sites. In the same manner, a frontal predominance in ¢ frequency band was found (8
out of 10) with the rest PSD features in central areas (2 out of 10). On the contrary, a parietal-occipital
majority was detected in a band, with all features being selected from parietal/parieto-occipital positions.
Although no clear trend could be discerned about the ¢ frequency band (with 3 out of 5 PSD features
decreasing indicating a complex parietal-increment-fronto-decrement pattern), 6 PSD features
demonstrated an overall increase from low to high workload, whereas o, an overall decrement.
Interestingly, regardless of the task employed (i.e., whether it was n-Back or Mental Arithmetic), the
same increasing or decreasing trends were observed in all frequency bands.

loannis Kakkos — Doctoral Thesis 54|Page



CHAPTER 4 - TASK-INDEPENDENT WORKLOAD ASSESSMENT

Low Workload High Workload Difference

N-Back

Arithmetic

6 @

-:-

a -:-
0.15 .

Figure 4.4. The PSD dlstrlbutlon in terms of topography relative to Iow and high workload for the n-Back
(upper part) and the Mental Arithmetic (lower part) task. PSD between both tasks present similar patterns
across the four frequency bands with the color bar below indicating the relative PSD mean value for each
frequency band. The differences of PSD between low and high workload levels are provided in the right
panel. The color of the bar indicates the absolute value of relative PSD differences.
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4.4.4 Functional Connectivity Features

The FC features of the different frequency bands are presented in Figure 4.5. From the 148 features
corresponding to PLI FC, the majority of connections included 6 (n = 56) and B frequency bands (n = 54),
with a smaller feature number pertaining to 6 (n = 20) and a (n = 18) bands. In particular, most of the 0
band connections involved frontal electrode positions; however an overall increasing or decreasing trend
regarding connectivity strength could not be discerned. In contrast, 63% of the 6 connections in parietal
locations presented connectivity strength decrement in the high load level. At the same time, in f
frequency band frontal FC strength reduction (from low to high workload) was observed in most cases
(30 out of 54 features), whereas & frequency band showed an 80% (16 out of 20) FC deterioration in all
scalp locations. Quite the reverse was shown in a frequency band connections, with an overall
augmentation of the FC strength (14 out of 18) in high workload in all but occipital areas where the
opposite was noted. Of note is that 141 out of 148 of the PLI features presented similar trend in terms of
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increases or decreases in both tasks. Nonetheless, 7 FC exhibited opposite fashion regarding connectivity
strength increments in n-Back and Mental Arithmetic tasks. These included 5 6 band connections, 2 of
which concerned central locations, 1 frontal/fronto-central, 1 temporal and 1 frontal/parietal locations;
and two o band FC in frontal/fronto-central and parietal/occipital locations. Despite that, the discrepancy
of the FC strength displayed no significant alteration in the overall position percentage.

PLI Connectivity
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Figure 4.5. The selected PLI features for cross-task mental workload classification. To better reveal the
alterations of FC with mental workload, the distribution is presented in each task (n-Back for upper panel,
Mental Arithmetic for lower panel) across the four frequency bands. The color of the edges shows the
mean value difference of the connectivity strength. The color bar on the top right corner represents the FC
variation. The FC features are grouped according to their scalp location (frontal, central, temporal,
parietal and occipital), while ration of increments and decrements in FC (relative to mental workload for
each frequency band) is displayed in the bar plots below the FC features distribution. Particularly, a
unilateral decreased FC pattern was revealed in & band, while most FC features in o band exhibited an
increased pattern. FC features in 6 and B bands comprised over 70% of the selected FC features and
showed a location-dependent complex alteration pattern. The overall distribution of FC across the four
frequency bands is depicted in the pie chart, whereas the distribution per electrode position is presented in
the radar plot.
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4.4.5 Statistical Evaluation of Features

The variable values differences between the two workload levels were additionally explored by statistical
evaluation on the selected RFE-CBR features. As such, an one-way ANOVA was implemented on each
of the 166 features individually, presenting statistical significance at p-values <0.05 (95% confidence
interval). Notably only 5 of the total features displayed significant p-values, none of which represented
PLI features and were all related to relative PSD (Figure 4.6). Remarkably, all significant features
presented 0 band increasing values form low to high workload, with additional frontal majority (4 out of
5) and left hemispheric predominance. This is in line with several studies providing indications of frontal
0 band power increments in high mental load (further details are presented in the Discussion section),
nevertheless due to classification and statistical testing approaches different processing procedures,
feature importance is indicated differently in each approach. For instance statistical ANOVA procedures
estimate the mean value variance of low vs high workload by terms of variance of the confidence interval,
while the FS scheme implemented determines features’ prominence by the weights deriving from the
internal SVM classifier mapping feature vectors in multi-dimensional space and estimating maximum
hyperplane deviations. From this standpoint, statistically significant attributes might not be effective in
ML methodological differentiations or in the identification of the predictive power of each feature.
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Figure 4.6. The significant feature value variations between low and high mental workload. Every box
represents the feature variance (Above them is the electrode position and the ANOVA p- and F-values),
with the whiskers extending to the most extreme points, the red cross (‘+’) displaying the data outliers
and the red line denoting the median value.

4.4.6 Validation Results

The feature subset validation included four additional classifiers, namely Gaussian SVM, k-NN, LDA and
RF, the performance of each is displayed in TABLE 4.2. From the table it can be indicated that all
classifiers obtained high performance, in some cases comparable to the proposed approach described in
this chapter (as suggested by the receiving operator characteristic, ROC provided in Figure 4.7), although
none surpassed it in terms of classification accuracy. McNemar’s test was also implemented to indicate
that the classifiers where indeed different, resulting in all comparisons attaining a McNemar’s p-value
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<0.05. On this premise, it can be suggested that the features selected present high cross-task predictive
ability in a global scale, irrespective to the classifiers employed or to algorithmic variations.

In addition to the cross-task workload classification, a leave-one-task-out scheme was employed to
further estimate the universal nature of the feature. In this paradigm classification training was used on
one task, while testing was done on the other providing two ML comparative results; i.e., train on n-Back
/ test on Mental Arithmetic, and train on Mental Arithmetic / test on n-Back (TABLE 4.3). Notably, the
performance of the leave-one-task-out approach was lower than the one proposed in the cross-task
approach proposed in this chapter, although it was comparable in terms of accuracy with the work in
[152] (the highest so far) implementing a similar framework.

TABLE 4.2 CROSS-TASK CLASSIFICATION RESUTLS USING ADDITIONAL METHODS

Feature set

Classification accuracy (Standard Error)

k-NN Gaussian SVM LDA Random Forest
PSD 0.57*(0.03) 0.63**(0.02) 0.59**(0.02) 0.58*(0.03)
PLI 0.71***(0.02) 0.90***(0.01) 0.86***(0.02) 0.73***(0.02)
Fusion 0.76***(0.02) 0.91***(0.02) 0.91***(0.02) 0.78***(0.02)

Note: Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p < 0.001, 1000 permutations.
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Figure 4.7. The receiving operator characteristic (ROC) curves for the methods implemented in (a)
feature fusion, (b) using only PLI features and (c) using only PSD features

TABLE 4.3 LEAVE-ONE-TASK-OUT CLASSIFICATION PERFORMANCE RESULTS

Classification accuracy (Standard Error)

Approach PSD PLI Fusion
Train on NB, Test on MA 0.61**(0.03) 0.64**(0.02) 0.90*(0.02)
Train on MA, Test on NB 0.59**(0.02) 0.78***(0.03) 0.81***(0.04)

Note: NB = N-Back, MA = Mental Arithmetic; Asterisks mark the level of significance *p < 0.05; **p < 0.01, ***p

< 0.001, 1000 permutations.

4.5 Discussion

In this chapter, an analysis framework is presented regarding cross-task workload classification in two
different WM mental tasks, utilizing spectral EEG characteristics. As such, a fusion of different frequency
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bands relative PSD and PLI FC features was implemented, employing a ML framework incorporating FS
and classification to identify the feature subset attaining the overall optimal performance. The selected
features encompassing the optimal set were further analyzed in terms of frequency and scalp positions,
providing indices of common (to both tasks) properties in workload underlying functions. The provided
results affirm the efficiency of the approach proposed, verifying that feature fusion of power and FC
attributes can obtain high classification performance, while effectively identify the hidden neural
substrates governing mental workload in a global manner. Taken all of the above into account, the
significance of this work does not only concern academic brain-related research, but also provide social-
and health-related indices resulting from workload monitoring. For instance, besides the evident
importance of mental fatigue evaluation (and by extension the decrement in individuals’ performance)
generated from sustaining high mental load, workload effects have been associated with various health
conditions such as mental burnout, increased risk of physical, mental and emotional diseases, reduced
immune system, depression etc. [171].

4.5.1 Workload-related Classification Performance

As far as the classification performance is concerned, the framework proposed in this Chapter obtained by
far the highest cross-task classification accuracy, while utilizing only a small number of highly predictive
features. The very low permutation tests p-value also demonstrate the fact that universal workload-related
features were successfully identified, while overfitting bias was avoided. This fact, paired to McNemar’s
test additional evaluation, further demonstrated the efficacy of the proposed approach (with significant
higher performance than the validation comparisons).

Regarding the overall performance results, the framework proposed attained cross-task accuracy of 0.94,
with single task classification of 0.83 for Mental Arithmetic and 0.97 for n-Back task. The deviations in
performance could be related to the fact that the selection of the features employed was based on the
cross-task classification accuracy and thus the degree to which they relate to the mental load cognitive
functions of individual tasks is not clear. In this regard, adding individual task-related features might
enhance within-task performance [162], however we opted for the identification of workload related
features that present high accuracy with global properties (i.e., independent of the task employed), thereby
avoiding (task-related) selection bias. From this standpoint, cross-task classification is not a finite
solvable problem with satisfactory accuracy eluding the majority of studies (TABLE 4.4). Although the
tasks in the studies presented were not identical, WM manipulations as a result of mental load were
reported in all of them suggesting a vague comparison. As such, the overall highest cross-task accuracy in
workload classification was obtained in our previous work [162] demonstrated 0.87 accuracy, with [152]
marginally improving performance (0.89). Furthermore, FC-based attributes were only employed in our
previous study as distinctive features, whereas most cross-task research analyses utilize the power
estimated from each frequency band. Nevertheless, in that work the brain activation in source space was
evaluated by calculating the Pearson Correlation between the different brain regions, thus providing
comparisons with other widely adopted fMRI studies. Alternatively, in this Chapter the FC in time-
domain is estimated by implementing a more effective brain network providing insights as to relationship
between the different brain locations information is transmitted. More importantly, the fusion of relative
PSD and FC features not only displays the highest (so far) cross-task classification performance, but also
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illustrates the capability of the proposed framework for extensive interpretation of the selected brain
signal characteristics and their implications in neuroscience.

TABLE 4.4. COMPARISON WITH CROSS-TASK WORKLOAD CLASSIFICATION STUDIES

Study Features Method Tasks Accuracy
(Gevins et al., 1998) Verbal n-Back, spatial n-
[151] PSD ANN Back 0.83
(Baldwin and Reading span, spatial n-
Penaranda, 2012) PSD ANN Bacgk F;te’mger 0.45
[148] ! g
(Walter et al., 2013) ERS/ERD SUM Go/no—_go, verbal n-Back, 0.54
[149] reading span, algebra
(Keetal., 2015) verbal n-Back, spatial n-
[150] PSD SVM Back 0.29 (1)
(Dimitrakopoulos et Spatial-temporal n-Back,
al., 2017) [162] FC SVM Arithmetic 0.87
(Zhao et al., 2018) Electrophysiological signals SUM Anoma!y detection in 054 (+)
[153] (ECG, EOG, RSP, GSR, PPG) images
(Zhang et al., 2019) . R3DCN Spatial n-Back,
[152] Spatial, spectral, temporal EEG N Arithmetic 0.89
The proposed Spatial-temporal n-Back,
framework [172] PSD and FC SVM Arithmetic 0.95

Note: (1) indicates non-binary classification (i.e. more than 2 classes).

Although, most cross-task mental load ML research works implement classification training on one task
and then test on the other(s) [150], [152], [153], conversely in the proposed approach the FS and
classification procedures utilized data from the two tasks concurrently. The motive behind this was to
illustrate a universal (common to the two tasks) workload related brain mechanism, since task-specific
attributes might be present if FS and classification were implemented separately in each task), thus
providing unsatisfactory performance. This is supported by evidence that suggest high variability of the
feature values when training and testing was done under different tasks/conditions [148], [149], [153],
[173]. However, to assess the task-independent nature of the features subset employed, additional
validation was performed by utilizing data only from one task for training and then estimate the
classification accuracy by testing on the other. Notably, the obtain validation accuracy exceeded the
performance of most previous studies (TABLE 4.4), being comparable to [152], although significantly
reduced as against the proposed framework (0.86 vs 0.94).

As far as the features that comprised the optimal subset are concerned, FC features attained high
classification performance excluding relative PSD ones, while when the opposite was examined
(employing only PSD features) classification performance significantly declined. This manifested in both
cross- and within-task classification displaying analogous (low) performance to the majority of cross-task
ML studies that only employ spectral power attributes. From this standpoint, it can be inferred that by
excluding PSD from the overall FS and classification a better interpretation could be achieved as only the
most predictive characteristics would be considered. Nevertheless, the fusion of spectral power with FC
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improved the classifier’s performance indicating that feature combination acts as an efficient separator
when mapping the characteristics employed in higher dimensions. Alternately, implementing FS
separately in PSD and PLI and then comprise a new ranked set by their combination, could in theory
improve performance. However, the RFE-CBR calculates the correlation bias as a secondary step in each
repetition, thus by removing part of the full set the resulting subset might incorporate highly correlated
variables rendering classification unreliable and feature interpretation questionable [174]. It is worth
noting that, despite the fact that PSD attributes presented similar workload-related trends across tasks, 7
out of 148 connectivity features exhibited discrepancies from low to high workload in the two tasks (i.e.,
increasing in PLI value in one task, while decreasing in the other). As such, to evaluate whether these
connections were related to task-specific information, the proposed framework was also utilized
excluding these features. In this respect, the classification accuracy results presented an insignificant
decrease (less than 1%), therefore indicating that divergence between the two tasks might be due to PLI
subject variability.

4.5.2 Task-independent Spectral Features

The cognitive aspects involved in the n-Back and Mental Arithmetic tasks have been consistently reported
to entail equivalent neural processes with regard to mental load [164], [175]-[177]. Specifically, WM
overall capacity governs the cognitive functions of storage and retrieval of information, which in the tasks
employed relate to the Mental Arithmetic additions (in respect of the carries involved) and the letters
presented in the n-Back task previous trials. As such, in the high workload level the memory maintenance
requirements were higher due to the sustained attention for longer periods, rendering individuals to be
more focused, while ignoring previous trials cues as irrelevant (inhibitory mechanisms). In that scope, the
optimal feature subset selected could identify the distinctive underlying WM cognitive processes
regulated by mental workload and thus provide high discrimination between the different levels. From
this standpoint, the suspected affiliation between the indicative features and mental load levels are
elaborated below.

First and foremost, & frequency frontal majority implies divergences in the WM mental load requirements
related to the task difficulty. This is in line with previous research works reporting frontal € alterations in
high workload levels [138], [148], [162]. In this regard, the increment in frontal & power is systematically
described in workload-related studies, especially in WM cognitive processing in memory/arithmetic
related tasks [138], [148], [177], [178], which is also present in the relative PSD features selected. On the
contrary, PLI FC features did not display a clear trend with 61% of the edges involving frontal sites (14
out of 23) declining. In this context, it should be noted that PSD and PLI are not affiliated in terms of
value or nature, as PLI calculated the phase synchronization between the different electrode locations
which can intensify in spite of power-related decrements. On this premise, the overall results
demonstrated a consistent reduction in most parietal 8 band connections. These limited & band
synchronization could be suggested to be a result of task-dependent reactive control [179] and WM load
manipulations due to elongated memory periods [180], [181]. In a similar fashion, a band features
implicated in posterior locations display values inversely correlated to workload level. These results are
corroborated by relevant studies reporting parietal and occipital a power to be reducing in high
demanding tasks [138], [144], [148], [177]. This was also observed in FC features, although only in
occipital locations. While « decrements have being associated to WM and visual attention elements [144],
[182], [183], synchronization augmentation in « band has been related to cognitive inhibition in mental
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load information handling [142], [183], [184]. This is further supported by the fact that increases in
connectivity due to high workload was noted for all locations, with the exception of occipital sites. With
regard to the ¢ band, a frontal predominance was observed in both PLI and PSD features as one might
expect due to the workload-related memory and attention demands in both tasks [185], [186]. Even
though, the small number of discriminative PSD features cannot definitely provide indications of an
absolute decline (3 out of 5), FC values displayed a high workload decrease in PLI strength in all scalp
locations. This is supported by recent studies that also report 6 band decrements in memory-related and
cognitive control characteristics attributed to mental load [187]-[189]. Last but not least, although g
connections were the second most frequent in the optimal subset, no PSD feature was included by the
RFE-CBR FS. In this regard however it should be noted that 5 band power values frequently illustrate
little to no significant differences between different task complexity [190], [191]. On the contrary, the
decreased S band FC consistent in most PLI connections has been suggested as workload indicator in
relevant studies [161], [162]. Moreover, f desynchronization in frontal regions is also reported to be
implicated in memory and attention demands [139], [192], [193], with § reduction related to task-related
inhibition as a product of mental load [194], [195].

4.5.3 Theoretical Implications and Future Work

Even though the features selected by the proposed framework exhibit high classification performance,
their interpretation should be taken with a grain of salt. The reason being that the FS process illustrates
features’ significance (in terms of classification accuracy) and not the degree in which they relate to the
workload cognition. As such it is not clear if the features incorporated in the optimal set reflect underlying
mental workload neural substrates or are included to minimize data unrelated noise and thus enhance
performance [196]. From this perspective, only a small number of PSD features presented statistically
significant differences (as presented in the validation results section), while FC displayed no significant
value deviations with regard to the workload levels. This could be due to the variability between
individuals as mental load frequency-related attributes can present a large deviation between subjects
because of differences is attention, effort or task expertise [177], [186], [197].Despite that however, the
optimal subset generated by the FS process illustrated high accuracy regardless of the classifier utilized
(as indicated in Validation results TABLE 4.3), underlying the features quality as robust indicators of
elicited high workload in a task-irrelevant manner. In addition, the combination of spectral power and FC
(even though differ in both nature and behavioral motifs), present the opportunity to confirm the
associations between the different cognitive functions affiliated with mental workload.

In light of all the above, the FC features included in the optimal subset present a common pattern that
links cognitive control of inhibitory functions and mental load irrespective of the task employed [142],
[179], [182], [183], [189], [194], [195]. In fact, the global mechanism common to both tasks indicated by
the selected features of the adopted framework is mental inhibition, as individuals prolonged mental high-
efficiency effort is made not to remember previous cues (i.e., such as carriers or n-Back objects), but
tuning out irrelevant or distracting stimuli. In practice, the tasks implemented in this Chapter demand high
WM resources, since in the high workload level involve continuous mental updating remembering
previous trials stimuli and excluding others prior to them. This could also explain the universal
perspective of induced mental fatigue from long periods of multi-tasking, as individuals are required to
focus on each task, while at the same time disregarding all others in a constant manner.
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Despite the fact that the experimental design employed here did not consider irrelevant or distraction trial
effects since inhibitory control was not in particular under investigation, evidence from previous studies
indicate the interference effects of mental load and its relevance to WM [198]-[201]. Consequently, it can
be presumed that FC constitutes a vigorous approach for information relationship assessment between
different scalp locations, while effectively providing workload-related cognitive aspects. Nevertheless,
the number of relevant works that include FC analysis is very limited and thus verification of this premise
is extremely difficult. Future works that incorporate features of different modalities and multivariate
characteristics, as well as their fusion would provide convincing proof of global neural substrates that
regulate cognitive workload.

4.6 Conclusion

In this Chapter, the fusion of EEG diverse EEG spectral characteristics has been implemented to classify
between two distinct workload levels in a cross-task cognitive load classification scheme. In detail, the
PLI FC and the relative PSD were calculated in four EEG frequency bands, while being incorporated a
multi-dimensional feature set and then the discriminative power of each feature was assessed in regard to
mental workload discrimination. To that end, a FS and classification utilized demonstrated high overall
performance, being able to detect a small subset of highly discriminative attributes. Additional analysis
highlighted further the robustness of this approach indicating global characteristics (common to both
tasks) and deciphering the degree on how they relate to mental workload. The produced results promote
the efficiency of feature fusion on cross-task workload classification, while assessing the underlying
mental load neural substrates.
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Chapter 5

5.1 Multi-Level Workload Classification in Real-World Scenarios

To date, mental load assessment —although well established in controlled cognitive tasks— is not
considered suitable for real world implementation due to diverse neuronal information present in
continuous cognitive processing. In this regard, interfaces that incorporate virtual reality provide realistic
environments for lifelike interactions, offering immersive experience and perception. In this Chapter, an
analysis of the modifications of pilots’ brain networks has been done, with regard to three different
workload levels in computer screen (2D) and virtual reality (3D) environments. In detail, the FC in EEG
source space of different brain waves has been employed to assess the reorganization of the brain
networks in terms of topology and efficiency. Moreover, the individual FC features has been utilized in a
FS and classification scheme to detect the mental load topological differences between the two
environments. The framework presented here, identified a frontal alpha band majority in both simulation
interfaces with common connections existing in all complexity levels. On the contrary, theta and beta
bands displayed dissimilarities in the local and global efficiency between the two environments. These
results allow for an efficient evaluation of the cognitive substrates that govern workload in real-world
scenarios.

5.2  Introduction

Cognitive processing refers to the individual's ability to complete mental tasks by the assimilation of
information gained through experience and perception. The increasing demands of a task (which can
contribute to poor performance), known in the literature as high mental workload, necessitate additional
brain resources and in combination with an individual’s limited mental capacity lead to deteriorated
performance [202], [203]. In fact, prolonged task with a high workload has been identified as the primary
cause of mental fatigue [204]. Continuous workload monitoring, for example, would greatly benefit
operations such as aircraft piloting and air traffic control, with the goal of enhancing the efficiency and
safety of everyone involved [204]-[206]. Monitoring mental stress with the ultimate goal of maximizing
human performance and reducing human errors in real-world settings is consequently of great interest in
the nascent field of neuroergonomics [207], [208]. The electroencephalogram (EEG), a non-invasive
measurement of electrical activity generated by the brain, has been routinely used in mental workload
research with promising results [209], [210]. As a result, convergent data demonstrate considerable
changes in alpha and theta band power, which may serve as the most important indications for workload
estimate [211]-[213], while numerous research indicate links between delta, beta, and gamma band
oscillations and mental load [214]-[216]. In fact, Spiler et al. [217] demonstrated workload-related
effects in the theta, alpha, and lower beta frequency bands at the parieto-occipital electrode locations by
varying the difficulty of arithmetic addition tasks. In a relevant working memory paradigm [218],
increased cognitive load was linked to lower alpha and beta band power at all midline electrodes, with
extra alpha decrements in centroparietal sites. Borghini et al. [219] also developed a workload index of
difficulty level in a driving exercise based on theta and alpha power spectra. In more demanding
situations (equivalent to higher workload), theta band increments over prefrontal areas and alpha band
decrements in parietal areas were found. Given that a wide range of brain areas have been linked to
mental workload, it's plausible to assume that the neural mechanisms underlying workload involve
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connection alterations, in line with the recent conceptualization of the human brain as a large-scale
network of interconnected regions [220].

To explicate the complicated interactions between numerous cerebral regions involved in human
cognition, as well as to understand the functional architecture and reconfiguration of the brain, an
increasing number of research works are using network modeling and graph theory methodologies [14],
[221], [222]. In this regard, network metrics such as global and local efficiency (measures of a network's
information transfer efficiency) have been shown to be strongly affected by varying workload levels
[223]-[225]. Based on phase coherence networks in an n-Back task, Kitzbichler et al. [223] showed a
constant increase in global efficiency and a decrease in local efficiency in the alpha, beta, and gamma
frequency regions. Increased local and global efficiency in brain networks of the delta, theta, alpha, and
beta bands was found under high workload condition in another study comparing network reorganizations
between low and high load conditions [224]. Furthermore, Klados et al. [225] found increased local and
global efficiency during arithmetic tasks with increasing difficulty in the delta, theta, and alpha bands,
with the frontal and fronto-parietal regions showing the most evident connections. Functional brain
networks have also been utilized in conjunction with classification algorithms to distinguish between
various cognitive states [226]-[228]. Indeed, classification may not only give more comprehensive
knowledge of the global input data by finding hidden paths of network reorganizations under varied
workload levels, but it can also achieve high performance in workload monitoring for possible real-world
applications. In this scope, previous research proved the viability of using cross-frequency coupling
between high alpha and theta bands to classify a 5-level mental arithmetic task's mental effort [221].
Moreover, extension of this work on single-task workload classification to cross-task mental workload
evaluation using multi-band EEG functional connectivity achieved satisfactory classification accuracy
[229]. Further examination revealed that the most discriminative connectivity patterns were found in the
frontal lobe of the theta band, but beta-band connections weakened as task demands increased. Although
the concept of mental workload is widely recognized in the neuroergonomics community, real-world
applications are still a long way off. This is largely due to the fact that most relevant studies use well-
controlled cognitive tasks, with only a small number of them using virtual reality (VR)-based simulation
experiments [230], [231].

Given the documented differences in neurological foundation between 2D and 3D presentations [232],
[233], it's possible that functional brain connection reorganizes differently in the two simulated settings.
Using a combination of brain network analysis and connectivity-based workload classification, this
chapter aims to: a) reveal the neural basis of mental workload in a flight simulation experiment; and b)
delineate the convergent and divergent network changes induced by various workload levels between
standard computer screen (2D) and virtual reality (3D) environments. To that end, in this chapter, the
effects of the two simulated environments in multi-level workload circumstances were analyzed using
cortical connections and ML. Specifically, a thorough investigation on changes in functional brain
networks using graph theoretical metrics and the brain connectome was made, in a FS and classification
framework, while at the same time the relationship and consequences of spatial and frequency network
characteristics on pilot mental strain was assessed.
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5.3  Materials & Methods

5.3.1 Subjects

In this work, 33 male students and staff members from the National University of Singapore (NUS) were
recruited (mean age = 23.2 + 2.2 years). All participants had normal or corrected-to-normal vision and no
previous experience in simulated aircraft operation. Participants were excluded if they met the criteria:
history of psychiatric, neurological or cognitive impairment, sleep disorder or childhood history of
ADHD and long-term medication intake. Participants who did not have a full night of sleep (> 7 h) for
two nights before the experiment were re-scheduled. In addition, on the day of the experiment,
participants were asked to avoid strenuous exercise 2 h prior to the recordings as well as consumption of
caffeine or alcohol. Signed written consent form was obtained from all participants after the description of
the experimental protocol. The study was approved by the Institutional Review Board and was conducted
in accordance with the Declaration of Helsinki.

5.3.2 Experimental Design

All subjects performed two flight simulation sessions using two interfaces: a) a standard session using a
24-inch LED computer screen (CS) (Model: U2412Mb, Dell Inc., Texas, USA), and b) a virtual reality
session (VR) via the Oculus Rift headset (Model: Development Kit 2, Oculus VR, California, USA)
(Figure 5.1), both depicting the view in the aircraft cockpit. The flight simulation software was the
Microsoft Flight Simulator X using a joystick (Model: Extreme 3D Pro, Logitech, Switzerland). Before
the EEG recordings, a training session was performed in both environments until satisfying operational
control of the aircraft was accomplished. Each flight simulation session consisted of three stages with
increasing task difficulty (Stage 1, Stage 2 and Stage 3, abbreviated to S1, S2 and S3), designed to induce
different levels of mental workload (Figure 5.1 (b)). Subjects were instructed to fly the aircraft following
a predefined flight route for each stage (green dashed line in Figure 5.1 (b)), which lasted 4 min with an
inter-stage interval of 1 min for experiment reconfiguration (Figure 5.1 (c)). In detail, the three stages
included: S1, autopilot state, in which no aircraft operations was required (minimum workload level); S2,
manual operation state, in which subjects were required to manually operate the aircraft to complete seven
consecutive turns while maintaining an altitude of 3,000 feet (medium workload level); and S3, manual
operation with aircraft failure, in which S2 was performed while additionally the aircraft was under the
influence of aileron and rudder failures, increasing control complexity (maximum workload level). The
order of the sessions and stages were counterbalanced across the subjects.

To confirm that the task difficulty manipulation was effective, participates were also requested at the end
of each session to rate the perceived task difficulty of each stage in a scale of 1 — 7 with higher scores
indicating more difficult conditions. Moreover, to examine the users’ experience differences, each subject
was asked to fill a short questionnaire at the end of each task. The questionnaire comprised 10 questions
about system usability, 6 questions about perceived usefulness, 6 questions about perceived user-
friendliness, 7 questions about satisfaction and 6 questions about overall reaction. All answers were
provided in a scale of 1 — 5, with higher score indicating better user experience at each category.
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Figure 5.1. The experimental protocol employed. (a) The view of the cockpit as shown in Computer
Screen (CS) and Virtual Reality (VR). (b) The flight route of three workload stages (S1, S2, and S3) in
green. The predefined flight route is shown in red (c) Each participant was required to complete one
session of each simulation tasks (i.e., VR and CS) for the three stages.

5.3.3 Data acquisition and preprocessing

Continuous EEG data were recorded in high-resolution from 64 Ag/AgCl scalp electrodes using the
international standard 10-20 system (ASA Lab, ANT B.V., Netherlands). Bipolar electrooculogram
(EOG) signals were also acquired from electrodes placed above and below the right eye (VEOG) and at
the outer canthi of both eyes (HEOG). Impedance of electrodes was kept below 10 kQ throughout the
duration of the experiment. A band-pass filer (0.5 — 70 Hz) was applied for anti-aliasing and additionally
a 50 Hz notch filter was used to remove main interferences. Raw EEG signals were digitized at a
sampling rate of 256 Hz, filtered applying a 0.5 — 40 Hz FIR band-pass filter and referenced to the
average of both mastoids (M1 and M2). Data were then de-trended and baseline adjusted. To exclude eye-
blink artifacts, independent components analysis was employed and the components showing high
correlation to the HEOG and VEOG were discarded [226]. More details about EEG pre-processing can be
found in Chapter 2. Data from four subjects were removed due to high noise contamination or error
recordings, thus data from 29 participants remained for further analysis. All preprocessing steps were
implemented in EEGLAB 13.6.5 [234] in MATLAB R2017b (The MathWorks Inc, Massachusetts,
USA). A flowchart of the data analysis framework is shown in Figure 5.2.
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Figure 5.2. A schematic of the workflow of the proposed framework
5.3.4 Cortical connectivity

Aiming to localize mental workload effects and evaluate the reproducibility of the main results, source
localization was employed to reconstruct the cortical signals. In detail, the EEG time series for each
session and workload level were divided into delta (d, 0.5-4 Hz), theta (6, 4-7 Hz), alpha (a, 8-12 Hz),
beta (8, 13-30 Hz) and gamma (y, 30—45 Hz) frequency bands and then the intracerebral electrical
sources corresponding to the recorded surface signals were approximated by applying exact low-
resolution electromagnetic tomography (eLORETA) [235]. eLORETA utilizes the MNI152 template
[236] to calculate the source space current density (A/m?) in 6239 voxels at 5 mm spatial resolution with
the 3-D solution space restricted to cortical gray matter (more details about source localization can be
found in Chapter 2). Then, the solution space calculated was parcellated into 116 regions of interest
(ROIs) according to the previously validated Automatic Anatomical Labelling atlas AAL-116 [237].
From the 116 ROIs, 36 corresponding to cerebellum and sub-cortical regions were removed to avoid
possible depth bias [238], with 80 brain regions remaining for further analysis (TABLE 5.1). Source
localization was carried out with the LORETA-Key software (http://www.uzh.ch/keyinst/loreta.htm). To
calculate the functional connectivity between each pair of ROIs the Phase Locking Index (PLI) [239] was
employed (please refer to Chapter 1).

Data were divided into epochs of 60 sec with 50% overlap and one PLI network was estimated for each
epoch and frequency band (more details about PLI calculation can be found in Chapter 1).
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TABLE 5.1. THE NAMES AND THEIR CORRESPONDING ABBREVIATIONS FOR

THE AAL ROIS
Region name Abbreviation Classes
amygdala AMYG Paralimbic
orbitofrontal cortex (superior) ORBsup Paralimbic
angular gyrus ANG Association
orbitofrontal cortex (inferior) ORBiInf Paralimbic
anterior cingulate gyrus ACG Paralimbic
orbitofrontal cortex (medial) ORBmed Paralimbic
calcarine fissure CAL Primary
orbitofrontal cortex (middle) ORBmid Paralimbic
cuneus CUN Association
lobule PCL Association
fusiform gyrus FFG Association
parahippocampal gyrus PHG Paralimbic
gyrus rectus REC Paralimbic
postcentral gyrus PoCG Primary
heschl gyrus HES Primary
posterior cingulate gyrus PCG Paralimbic
inferior frontal gyrus (opercular) IFGoperc Association
precentral gyrus PreCG Primary
inferior frontal gyrus (triangular) IFGtriang Association
precuneus PCUN Association
inferior occipital gyrus 10G Association
rolandic operculum ROL Association
inferior parietal lobule IPL Association
superior frontal gyrus (dorsal) SFGdor Association
inferior temporal gyrus ITG Association
superior frontal gyrus (medial) SFGmed Association
insula INS Paralimbic
superior occipital gyrus SOG Association
lingual gyrus LING Association
superior parietal gyrus SPG Association
middle cingulate gyrus MCG Paralimbic
superior temporal gyrus STG Association
middle frontal gyrus MFG Association
supplementary motor area SMA Association
middle occipital gyrus MOG Association
supramarginal gyrus SMG Association
middle temporal gyrus MTG Association
temporal pole (middle) TPOmid Paralimbic
olfactory OLF Paralimbic
temporal pole (superior) TPOsup Paralimbic
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5.3.5 Network Topology Analysis

Before the network analysis, a threshold was applied to each network matrix to convert it to a fixed
sparsity level to ensure the equivalent wiring cost of each subject. The sparsity value represents the ratio
of the actual edges to all possible network edges. A sparsity range (10% - 40%) was applied to both keep
the reachability of the network and allow prominent small-world characteristics. Aiming to offer a clear
and direct physical meaning to the concept of small-word properties in terms of information flow [19],
[240], global efficiency (Eg) and local efficiency (EL) of brain networks were estimated (more details
about networks metrics calculation can be found in Chapter 1).

The graph theoretical analysis was implemented with the Brain Connectivity Toolbox [14]. To avoid
multiple comparisons at each individual sparsity threshold and to reduce the dependency of the significant
alterations on the arbitrary selection of a single threshold, integrated network metrics were calculated over
the predefined sparsity range (corresponding to the area under the curve measurement) [19]. Then,
statistical analyses were performed on the integrated network metrics as described below.

5.3.6 Network-based Feature Selection and Classification

On the basis that variability in cognitive states display specific discriminative aspects in functional brain
networks, the subsequent workload level classification was employed by considering the network edge
weights as feature vectors. For this purpose, the PLI values were averaged for each participant and
workload condition (80 x (80-1) / 2 = 3160 unique values) across each of the five frequency bands epochs
resulting in 5 x 3160 = 15800 features per workload level for each participant. Subsequently, FS was
utilized to exclude redundant features and enhance the performance of the classifiers, while avoiding
possible overfitting due to the large number of features compared to the number of samples. Hence,
Recursive Feature Elimination with Correlation Bias Reduction (RFE-CBR) [241] based on linear support
vector machines (SVM) was used to calculate the dependencies among features and recursively reject
minimal evaluated features. Specifically, RFE-CBR is a backward elimination method that evaluates the
features’ influence and removes them in succession from the feature space using the coefficients obtained
from the SVM models. Moreover, it detects the highly correlated features to mitigate correlation bias
[242], subsequently creating a ranked feature space based on the features’ significance (more details
regarding RFE-CBR can be found in Chapter 4 where it was also implemented). Here, RFE-CBR feature
selection was applied on each workload level as a binary process, resulting in three feature ranked sets.

Classification was performed by a random subspace ensemble method with Linear Discriminant Analysis
(LDA) as the base classifiers [243]. The random subspace ensemble method deconstructs the input data
into random subsets of feature space to implement individual LDA classifications which are trained
separately and then a collective decision is made by majority vote. To identify the number of features to
be included in the multi-class feature set, binary classification was performed utilizing the one-vs-all
strategy for each workload level (FS1: S1 vs S2, S3; FS2: S2 vs S1, S3; FS3: S3 vs S1, S2). The feature
subset with the highest overall classification accuracy was determined as the optimal for workload level
discrimination, estimated by including one-by-one the ranked RFE-CBR features in succession starting
with a null feature set. The multi-class classification feature set was then generated by merging the
individual workload level feature subsets. In order to attain maximum performance, the number of
classification learners and subspace dimensions were tested with different configurations. Final results
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were estimated by conducting 100 repetitions of 10-fold cross validation in binary and multi-class
classification, thus minimizing the possible effect of the training set variability.

Additionally, permutation tests was performed to examine the classification accuracy significance (as
different from random level), which is appropriate for small sample data with unknown population
distribution [244]. Thus, classification was executed 1000 times with random class labels permutations to
calculate the distribution of classification accuracy. Probability p was estimated as the number of
classifiers trained on the randomized samples that outperformed the classifiers trained on the original
samples divided by the number of total permutations.

5.3.7 Statistical Analysis

To examine the workload effect on the perceived task difficulty, repeated-measures two-way ANOVA
was used with #1 factor being workload (comparing the task difficulty across the three workload levels),
and #2 factor being task (comparing VR and CS environments). Moreover, subjective user experiences
reported in the questionnaire (referring to system usability, perceived usefulness, perceived user-
friendliness, satisfaction, and overall reaction) between the two interfaces were compared using one-way
ANOVA. To evaluate the mental load effects on the network properties between the two tasks, repeated-
measures two-way ANOVA was applied on the integrated network metrics, with workload and task being
the main factors, and workload-by-task considered as interaction. Significance value was set as p < 0.05.
Then, post-hoc analysis was carried out for the significant (p<0.05) interactions using a paired t-test. All
statistical analyses were implemented in SPSS 21 (IBM, New York, USA).

5.4 Results
5.4.1 Behavioral Results

A significant workload effect was observed in the perceived task difficulty in the two-way repeated
measures ANOVA test (F2s56 = 259.993, p < 0.001), confirming the efficacy of the experimental design in
inducing different levels of mental workload. However, main task effect (F1, 25 = 3.045, p = 0.092) and
interaction (F2, s¢ = 0.877, p = 0.422) did not show any Significant result. Moreover, regarding the user
experience, the system usability measure had a significantly higher score in CS compared to VR (F12s =
4.409, p = 0.045), but no significant task effect was found in the other four measures of user experience (p
> 0.05).

5.4.2 Network Topology

A two-way repeated measures ANOVA was additionally employed to examine the topological properties
between both groups across the different workload levels (TABLE 5.2 and Figure 5.3). In detail,
significant main workload effects were detected for Eg in d (F2s6 = 3.397, p = 0.041), a (F256 = 7.708, p =
0.001), and g (F2,56 = 4.712, p = 0.013) frequency bands, as well as for E_ in a (F2s6 = 20.773, p < 0.001)
and f (F2s6 = 11.175, p < 0.001) frequency bands. Moreover, E¢ showed significant main task effects in g
band (F1, 28 = 7.895, p = 0.009), while E_ in & (F12s = 8.098, p = 0.008) and f (F1.28 = 6.394, p = 0.017)
bands. Remarkably, a significant interaction effect was found for Eg in  band (F.ss = 4.886, p = 0.011).
The post-hoc analysis showed that the significant interaction was based on a significant decreasing trend
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of Ec (F2s6 = 7.512, p = 0.001) with increasing workload levels in the CS environment compared to a

non-significant alteration in the VR environment (F2s6= 1.563, p = 0.218).

TABLE 5.2. RESULTS OF THE STATISTICAL ANALYSIS OF THE NETWORK METRICS FOR

EACH FREQUENCY BAND

Frequency band Metrics

Workload
Fa2s6 (p-value)

Task
F128 (p-value)

Interaction
F2s6 (p-value)

5 Ec 3.397(0.041) 0.000(0.987) 0.653(0.524)
EL 2.496(0.092) 0.467(0.500) 1.301(0.280)
] Ec 1.919(0.156) 0.385(0.540) 0.694(0.471)
EL 0.091(0.913) 8.098(0.008) 0.257(0.775)
Ec 7.708(0.001) 1.733(0.199) 0.425(0.616)
* EL 20.773(< 0.001) 1.252(0.273) 0.084(0.919)
= 4.712(0.013) 7.895(0.009) 4.886(0.011)
P EL 11.175(< 0.001) 6.394(0.017) 1.757(0.182)
Ec 0.948(0.394) 1.606(0.216) 0.948(0.393)
v EL 0.369(0.693) 0.418(0.523) 0.025(0.975)

Note: Eg indicates global efficiency, E, indicates local efficiency. Bold fonts indicate significant effects.
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Figure 5.3. Post-hoc analysis with regard to global and local efficiency with Bonferroni correction for
multiple comparisons. Each bar represents the meanz the standard error. * p < 0.05; ** p < 0.01.

5.4.3 Classification Performance

The classification on workload level was performed based on the features extracted from the PLI
connectivity. The workload level feature subsets that provided the highest individual level accuracy were
included in multi-class classification (TABLE 5.3). In detail, regarding the CS environment the best
accuracy was 0.73, 0.87 and 0.85 using 20, 22 and 12 features for FS1, FS2 and FS3 levels respectively.
Moreover, the multi-class feature set comprising their combination, incorporated 53 features (1 common)
among 55 unique ROIs and achieved 0.82 (p < 0.001) accuracy (sensitivity = 0.82, specificity = 0.91),
while 26 subspace dimensions and 30 learners were estimated as optimal parameters. Utilizing the same
method in the VR environment, 0.78, 0.87 and 0.89 classification accuracy was obtained for FS1, FS2
and FS3 using 12, 21 and 19 features, whereas the multi-class feature subset comprising 50 features (2
common) among 55 unique ROIs provided 0.82 (p < 0.001) multi-class accuracy (sensitivity = 0.91,
specificity = 0.82) using 25 subspace dimensions and 30 learners.
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TABLE 5.3. CLASSIFICATION PERFORMANC RESULTS

Interface Workload Level Features Num.  Accuracy (p-value)  Sensitivity Specificity
FS1 20 0.73 (p = 0.004) 0.76 0.63
cs FS2 22 0.87 (p <0.001) 0.90 0.82
FS3 12 0.85 (p < 0.001) 0.86 0.82
All 53 0.82 (p < 0.001) 0.82 0.91
FS1 12 0.78 (p < 0.001) 0.79 0.78
VR FS2 21 0.87 (p < 0.001) 0.85 0.92
FS3 19 0.89 (p < 0.001) 0.88 0.94
All 50 0.82 (p <0.001) 0.91 0.82

5.4.4 Functional Connectivity Characteristics

The selected functional connectivity features on both CS and VR interfaces are presented in Figure 5.4,
with each feature’s color corresponding to a specific frequency band. The majority of the network edges
in both environments belong to o frequency band and include frontal regions. In detail, in the CS interface
59% (31 out of 53) connections are detected in o, 19% (10 out of 53) in B, 9% (5 out of 53) in d and 4 and
4% (2 out of 53) in y bands. Moreover, 53% (28 out of 53) of the connections involve frontal areas ROIs,
while 42% of them include ROIs in temporal areas (22 of 53). Moreover, 20 out of 53 features are intra-
hemisphere connections and the rest 33 out of 53 are inter-hemispheric.

Likewise, in the VR environment, 62% (31 out of 50) of the connectivity edges are observed in « band,
while 16% (8 out of 50), 8% (4 out of 50) and 14% (7 out of 50) of the connections are detected in 6, S
and y bands, respectively. Remarkably, no connections from ¢ frequency band were chosen by the FS.
Most of these edges (52%, 26 out of 50) connect ROIs in frontal areas and 46% (23 out of 50) in temporal
ones. In contrast to the CS environment where a predominant inter-hemispheric pattern was distinguished,
only 16 out of 50 edges include inter-hemispheric areas, while most connections are linking areas in the
same hemisphere (34 out of 50).

The multi-class feature sets for the classification between the different workload levels contained one
common feature in the CS and two in the VR environments. In detail, the SMA.R to STG.R connection in
o band was considered important by the RFE-CBR FS procedure both in the FS1 and FS2 in the CS
environment. Moreover, the bilateral connections of PoCG.L and PoCG.R to PCUN.L in « band were
also selected for both FS1 and FS2 in the VR environment. Notably, SMA.R to STG.R and PoCG.L to
PCUN.L were selected in both environments.
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Figure 5.4. The features selected are presented in circular diagrams in the upper part of the figure for (a)
CS and (b) VR environments; corresponding brain areas are displayed in the bottom part of the figure for
(c) CS and (d) VR per frequency. The frequency band distribution is shown in the pie charts. Each
interaction is color coded for each frequency band, with the width corresponding to the PLI connectivity
strength.

To examine in depth the workload effect on individual features, one-way ANOVA was employed to
obtain indications of the significance of the connectivity changes in the multi-task classification. Thus, 34
out of 53 (among 38 unique ROIS) and 29 out of 50 (among 37 unique ROIS) connections displayed a
significant effect (p < 0.05) for CS and VR environments respectively (Figure 5.5). Specifically, the
significant connections in the CS environment were found mainly in o and g frequency bands (23 «, 10
and 1 o), contrary to the VR environment, where the significant features contained & (5), a (17), p (2) and
y (5) band connections. Additionally, mainly frontal (19 in CS, 13 in VR) and parietal (11 in CS, 13 in
VR) ROIs were detected for both environments. Despite that for o band edges an overall clear trend could
not be determined, all £ band connections showed reduced strength with higher workload in both
environments as well as frontal areas involvement, while 8 band VR edges presented overall increments.
Remarkably, y band connections were only selected in the VR environment, while 4 out of 5 of them
included the amygdalae nuclei (AMYG).
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Figure 5.5. The PLI connectivity strength for the significant features selected for (a) CS and (b) VR
environment for each workload level. The interaction name color indicates each frequency band.
Common FC of each condition are presented via the feature overlapping.

5.5 Discussion

In this Chapter cortical connectivity and network characteristics were analyzed to examine the neural
basis of pilot mental workload in 2D and 3D simulated environments. It was found that the different
environments led to distinct network reorganizations in the various workload levels, attributed to the
variations of the information flow between less-realistic (CS) and close-to-real-world interfaces (VR).
Moreover, the connectivity features were utilized in a FS and classification scheme achieving effective
discrimination among the three workload levels making possible a consistent analysis of the results to
understand their role from Neuroscience point of view. Based on the significant workload effect in the
behavioral results regarding the perceived task difficulty, it was confirmed that each session could induce
a different mental load level, i.e., the increasing effort needed to fly the aircraft would result in higher
workload, since higher attentional and cognitive control were required. Thus, the behavioral results
confirm the effectiveness of the experimental design with regard to workload induction, thus providing
the basis for the following steps of the methodology proposed to analyze the spatial and frequency
characteristics of the functional connections.

With regard to classification, high accuracy was achieved in both environments, which was validated by
the very low p-values of the permutation test. Moreover, effective classification was achieved utilizing
only a very small number of the available features. These facts combined with the training of classifiers
across subjects, the high performance shows the generalization ability of the employed framework,
indicating that no overfitting had occurred. Remarkably, the FS and classification procedures use different
machine learning algorithms. Taking into account that the aim of this Chapter was to examine the
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functional connections and considering the binary nature of SVM, an independent classifier for an
unbiased validation of the FS was employed.

5.5.1 Network Topology

As indicated by the network metrics examination, significant differences were found in global and local
efficiency. As efficiency is inversely related to path length, the detected increments show an enhanced
connectivity between nodes that is shorter path lengths, hence showing a larger degree of information
transfer between brain areas. Therefore, increments of global efficiency in ¢ and o bands along with
increment of local efficiency in « and $ bands support that brain regions are interacting and cooperating to
a larger extent with higher mental workload. The increments of local or global efficiency in various
frequency bands are consistent with workload-related literature [223]-[225], as aforementioned in the
introduction section, supporting that the brain reorganizes and employs more resources to effectively
respond to higher task difficulty [202], [245]. Additionally, differences between the two environments
were detected, with CS displaying significantly lower local efficiency in 8 and g bands. Moreover,
contrary to other frequency bands, global efficiency in £ band had a significantly decreasing trend in CS,
as well as larger values were observed for CS compared to VR. Thus, the majority of these findings
indicate that the VR environment seems to evoke higher mental workload to the participants compared to
the CS environment, probably due to the more visually demanding cognitive processes [246], [247].

5.5.2 Workload Dependent Functional Characteristics

The selected features in both CS and VR environments contain functional connections from different
frequency bands. Specifically, most of the features correspond to « frequency band and are mainly located
in frontal and parietal areas. The ANOVA test further confirmed the prevalence of a band among the
significant workload-related features. These observations are to be expected as o band variations in
frontal and parietal regions has been associated with workload by numerous related studies [205], [248],
[249], although no consistent trend regarding the connectivity PLI values could be detected between the
different workload levels. Furthermore, £ features displayed reduced functional connectivity strength with
higher workload involving frontal areas, in accordance with previous workload-related studies [172],
[229]. Moreover, the £ band suppression can be attributed to the increment of cognitive control and
attention demands imposed by increasing task demands [250], [251].

The brain regions corresponding to the common selected connections between the two environments
(SMAR - STG.R, PoCG.L - PCUN.L) have been related with the mental workload. Specifically, higher
task demands have displayed SMA activation [252], [253], indicating visuomotor leaning [254] and
attention mediating time-on-task processing [255]. Taking into account that SMA was selected for FS1 in
both interfaces also highlights its role in the discrimination between the different cognitive workload
levels. Moreover, the right STG activation has been associated with higher workload levels, regulating
attention, spatial perception and visual recognition [256], [257]. Similar findings have been reported for
PoCG engagement as a result of visual and sustained attention mental load [258], [259]. Additionally,
cognitive workload in visuospatial mental operations and task-related attentional demands has been
consistently associated with PCUN activation alterations [260], [261].
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5.5.3 Environment Dependent Functional Connectivity Reorganization

Despite the similarities regarding the mental workload characteristics in the two environments, clear
distinctions in both frequency and spatial aspects were observed. For example, the significant ¢ band
connections showed higher connectivity values with increasing cognitive load in the VR interface, which
was frequently displayed in various workload-related works [205], [229], [262]. Still, & band edges
displayed no significant variations between the different workload levels in the CS. This observation
could be explained by the higher sense of the subjects’ presence and a more active task-related processing
in the VR compared to the CS environment that has been shown to significantly affect 8 band activity
[247], [263]. Moreover, the ANOVA test displayed significant y edges in the VR interface, mainly
containing the AMYG. Despite that this accounts for the spatial navigation and visual representation
differences between the two environments [264], the additional stress evoked by the higher workload
sessions when subjects were attempting to control the aircraft should also be taken into account. It has
been observed that the difficulty in the aircraft maneuvering increases the anxiety and stress levels
particularly for novice pilots [245], [265]. This could specifically apply in the VR environment as a more
realistic condition and especially during the periods when participants had limited control (S3). In
addition, since no subject had previous experience in the simulated flying operation, the VR stronger
presence environment could enhance the mental pressure evoked by the ever-increasing cognitive
workload [266], [267], resulting in the elevated connectivity between these areas.

5.5.4 Limitations and Future Considerations

Some points of this work should be considered when interpreting the findings. The eLORETA source
localization procedure uses a standard MRI image, hence not taking into consideration the individual
brain anatomy of the subjects. Also, we employed large areas for the cortical parcellation in order to
minimize the estimation error and avoid possible mislocalization. Moreover, only cortical brain areas
were utilized in this Chapter and excluded sub-cortical and cerebellum brain regions, due to the frequent
depth bias of source localization approaches. Hence, brain regions with known role in spatial memory and
navigation, e.g. the hippocampus [268], were excluded from the functional connectivity calculation.
Future studies could include individual fMRI images aiming to improve source localization calculation in
order to confirm our observations and clarify subject specific workload influences. In addition,
participants with no previous experience in flight simulation were recruited, thus further investigations
could illuminate potential differences and training effects concerning not only novice but also
experienced pilots.

5.6 Conclusion

In this Chapter, an EEG experiment of 2D and 3D flight simulation was utilized to detect the of functional
brain networks differences in source space with regard to three distinct levels of complexity. In this
regard, the FC of cortical regions was utilized as a means to provide discriminative features for mental
load classification and thus compare the various workload stages. The proposed methodology was
successful in identifying the common and distinct brain characteristics of mental load between the two
simulation environments, thus illustrating high discriminative ability in classification procedure while
utilizing only a small portion of the full feature set. The produced results indicate the robustness of the
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proposed framework unveiling the underlying workload functions and their implications to real-world
scenarios.
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Chapter 6

6.1 Human-Machine Interfaces for Motor Rehabilitation

Motor-related conditions may involve significant implications for the afflicted individuals, concerning
various aspects of mental and physical processes. On top of the prescribed medication, the use of non-
pharmacological interventions has been added to the available arsenal towards the facilitation of everyday
activities as well as the potential rehabilitation of patients. In this regard, researchers have pursued the
path of establishing an alternative connection between human intent - as expressed through cognitive
processing and overt residual motor activity - and software/hardware receptors that decode the desired
user actions. This notion represents a Human-Machine Interface (HMI), where this Chapter focuses in
analyzing the theoretical basis and implementation concerns of non-invasive applications that exploit
multimodal real-time data recording. As such, using the groundwork from the experimental designs and
analysis presented in previous Chapters and the recent state of the art literature, the available modalities
are presented on the grounds of bioelectrical and movement phenotype signals and in conjunction with
the related algorithms and clinical practice demands.

6.2  Background

Reports from WHO have demonstrated the wide impact of neurological conditions such as strokes and
spinal cord injuries to the global population [269]. The high annual incidence rates are associated with a
conjointly high prevalence of lingering health issues that include movement disturbance by means of
interfering with the communication channel responsible for transmitting the motor command among the
various nodes including the encephalon (source node), the spinal cord (intermediate node) and the
muscular system (end node). If any of the aforementioned nodes is affected, the result may translate to
motor disability, even if all the remaining structures remain fully unharmed. As such, the conditions
mentioned above may induce implications regarding the source and intermediate nodes respectively,
without diminishing movement capacity [270], [271]. In this regard, the limits imposed to the expressed
movement are attributed to the deficient information transmission to the end node, itself retaining its full
potential. However, the incomplete activation induced might eventually lead to perpetual motor problems
such as atrophy, general ADL (activities of daily living) impotence and frailty [272], [273].

Based on the assumption of the unaffected muscular potential and the remaining brain/spinal cord
functionality, specialists seek to promptly conduct restoration protocols in order to prevent or alleviate
atrophy, permanent motor impairments and negative neuroplasticity, by promoting efficient neural
processing during cognitive compensation [274], [275]. Significant rehabilitation attainment is not
implausible, albeit the path is particularly challenging for the individuals with respect to the time, cost and
commitment required [276]. Combined with slow progress, potential setbacks, limited financial resources
and the often inadequate adjustment of global protocol parameters in a subject-specific manner [277],
[278], adherence concerns have arisen [279]. Under these circumstances, the need for personalized
frameworks targeting function execution assistance and restoration has yet to be fulfilled, although the
existing groundwork on software and hardware tools has been laid towards affordable rehabilitation
systems and functional modeling on subject level.
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6.3 Human-Machine Motor Rehabilitation Interfaces

The decoding of human intent and its real-time translation to a control command for guiding hardware
and/or software, which in turn orchestrates an interplay between an individual and their external
environment, corresponds to the implementation of a Human Machine Interface (HMI) [280]. The basic
concepts and components of a HMI system implementation are shown in Figure 6.1. A subclass of HMI
is the Brain Computer Interface (BCI) which as the name suggests only utilizes brain signals for the
individual-to-device path (computer module). These traits combined with the adjustability offered by such
systems allows HMI application to motor-related disorders, where the decoded user intent corresponds to
a desired movement which the receiver module aims to augment or even fully execute [280].
Interpretation of a planned movement may utilize locomotion phenotype data such as limb displacement
or ground forces, as well as bioelectrical signals reflecting biological activity such as
electroencephalography (EEG) or electromyography (EMG) recordings [281], [282]. The latter are
commonly labeled as physiological data, which can be captured via non-invasive sensors and conjointly
analyzed for correlating cortical activity with its muscle counterpart [282]. However, such modeling
requires the accurate extraction of movement biosignals while dismissing uncorrelated activity. This
procedure is achieved through data recording during rigorously designed protocols, where execution of
real or imagined movements is guided by sensory cues (usually visual or acoustic) [283].

Data analysis may be based either on a single modality (e.g. EEG, EMG, locomotion phenotype) or on a
combination of the available modalities, feeding the descriptive motor-related features into a machine
learning scheme which in turn generates a command that echoes the initial intent onto the receiver module
(e.g. a computer or an actuator) [280] that can support a function and bolster rehabilitation mechanisms.
Moreover, the real-time nature of this functionality necessitates the concurrent analysis of the HMI
system response and its kinematic reflection for evaluating the HMI’s performance and adjusting output
signals accordingly [284], [285]. In this scope, interfaces are implemented within a closed-loop design
that utilizes real-time feedback signals that mirror the system’s output and are used for comparing the
intended action (as interpreted by the classifier) with the eventual movement. The corresponding goal is
to match the two states (HMI-interpreted vs HMI-induced) for achieving a high degree of subject-level
adaptation [284].

In the field of clinically applied rehabilitation for motor-impaired individuals, the receiver modules are
classified to specific movement actuator classes [286]-[288]. Orthotic and exoskeleton devices represent
the first two classes [289], bearing a resistive, assistive or passive role during movement, in reference to
whether the desired function is partially inhibited (for muscle strengthening), amplified or fully performed
by the hardware [288], [290]. The third receiver class refers to stimulation devices that implement
Functional Electrical Stimulation (FES) [291] by administering electrical pulses that induce muscle
contraction. This process basically aims to stand in for the impaired biological processes (implicating the
brain and the spinal cord) that fail to provoke a full natural contraction. On this premise, FES application
may concurrently enhance a specific movement, as well as trigger neurorehabilitation operations within
the cortical activity [292]. The fundamental prerequisite for the related treatment is the existence of
residual motor capabilities [287], that the stimulation taps into for augmenting muscle activation and
aiding patients to reprogram their cortical kinetic patterns. However, researchers should consider the key
differences distinguishing the stimulation-triggered muscle activation from a natural contraction, mainly
its irregular structure that resembles a step function following the “all-or-none” law [293], as well as the
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external parameter dependability. Namely, application parameters such as electrode placement and
stimulation waveform properties introduce a substantial variability [293], [294] that requires rigorous
testing for maximum adaptability on subject-level [294].

Data Transmission

Control Signal

Feedback

Figure 6.1. A schematic design for HMI rehabilitation
6.4 Computational Intelligence Tools

The aforementioned interpretation of a user’s intended action through the explanatory features within the
input motion data implies the definition of distinct output classes, denoting the different motion states that
can be inferred by a pattern recognition paradigm [280], [295]. Such paradigms aim to optimally discern
the HMI response motion states based on the annotated data, recorded during experimental protocols
implicating real or imaginary motion execution. In this context, a multitude of algorithms including k-
NN, SVM, LDA, soft labeling techniques [296]-[298], and network-based implementations [295], [299]
have been utilized to unveil linear and non-linear dependencies, either individually or within ensemble
classification schemes [300].

In this perspective, choosing an HMI scheme from the pool of available methodologies is not a
straightforward task, usually bearing a tradeoff among classification performance, computational
complexity and response time [301]. Regarding performance, the role of the employed features is vital,
since they effectively represent our comprehension concerning motion processes. For this reason, motion
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conditions incorporated within experimental designs must be as realistic as possible (accounting for
environmental constraints [302] and participant safety), while considering all parameters involved, for
successfully determining explanatory motor features [303]. Each parameter contribution can be studied
through multi-level modeling entailing biological and locomotion processes in conjunction with data
recording. The latter refers to the interactions among the studied functions and the measuring equipment,
as well as the properties of the recorded signals. For example, the phenomena taking place regarding
bioelectrical/kinematic sensor placement and continuous function such as skin contact [304], muscle
contraction and joint movement [305] can be modeled towards a holistic analysis. Indicatively, this data
should be utilized to fully represent all aspects of a gait cycle [306] or grasping actions [281], allowing
the testing of multiple scenarios [307] (e.g. walking, stair climbing, falling, finger movements). The study
of kinematic patterns involves the application of differential equations under simulated locomotion task
conditions, implicating antagonistic muscle pairs [305], [308].

Within this abundance of available variables and under the requirement for real-time motion
interpretation, computational speed becomes a priority that limits the “allowed” computational cost [309].
In this regard, the vast feature pool must be reduced to a small number of discriminative features that
offer high classification performance within a “reasonable” time frame for real-time HMI response (in the
order of ms) [310], [311]. This feature selection yields simpler and more reliable models that depend on
critical motor-related markers rather than a huge number of non-interpretable feature combinations that
mostly correspond to overtraining bias [229], [310]. The above background is summarized in Figure 6.2,
illustrating a typical workflow towards the design and implementation of an HMI:

Physiological Non-Physiological
Measurements Measurements

v

Simulation Kinematic
Variables | Feature Vectors

Feature Vector
Space

v
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|

Pattern Recognition Feature Selection

T

v

HMI Implementation

Figure 6.2. Optimal HMI implementation model design
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6.5 Movement Phenotype Modalities

As presented above, data exploitation for motor-related HMIs may incorporate biosignals and/or non-
biological locomotion data, extractable via non-invasive mobile sensors. The latter modality serves the
evaluation of locomotion mechanics concerning parameters that include displacement/rotation of limbs
and joints, as well as reaction forces (e.g. ground). In relation to upper-limb support and rehabilitation,
typical measurements include elbow, forearm and wrist angles [312], while setups for lower limbs
analyze knee/hip joint angles [313] for computing gait activity variables [299], [306]. In both cases
flexion data and resistance forces provide additional information on motion range and extension [314],
[315], contributing to a holistic rehabilitation progress evaluation. Overall, force sensors, inertia
measurement units (IMUs) [299], e-textiles [316], bio-impedance sensors [317], and visual motion
capture technology [318] constitute eligible hardware for unobtrusive data collection, either in laboratory
or everyday settings. Moreover, part of the equipment is often incorporated in specialized wearable
modules such as smart clothing [319].

By implementing dedicated classification algorithms that utilize multiple trials of fundamental movement
patterns [320], sensor data are used to guide orthotic/prosthetic/exoskeleton [285], [299] equipment or
even FES devices. Notably, sensor-guided stimulation constitutes a viable and more adaptable alternative
to traditional paradigms that require continuous manual adjustments by supervising experts [303]. In this
fashion, adaptive user training based on objective quantitative metrics has the potential to limit
rehabilitation setbacks [321] and enhance protocol adherence and self-perceived progress. Furthermore,
the availability of such recordings provides networking capabilities through bidirectional data exchange
with cloud infrastructure and mobile applications [322], enabling remote rehabilitation monitoring.

6.6  Bioelectrical Modalities

In unveiling the complex biological processes governing motor functions, research focuses on
neurological cognitive functions and electromyographic activity, both separately and in conjunction with
each other. Notably, the relative interactions during motor planning, preparation and execution have been
studied [323] in pursuance of objective metrics describing the neuromuscular functional associations.
Such metrics bear the added value of providing evaluation capabilities regarding neurorehabilitation
protocols, where the localization and quantitative estimation of electrophysiological activity are critical
for assessing patient progress. In the context of evaluating interactions engaging brain and muscle
activity, corticomuscular coherence is an established metric that seeks associations in the frequency
domain [324], showcasing specific bands where cortical activity is related to muscle contraction [325].

Another technique with very significant contribution to cognitive function study through electrical
activity is event-related analysis that has revealed a number of critical components of brain activity during
the various motion stages [326]. Especially concerning the time window corresponding to motion
planning and preparation (about 0.5-2 sec prior to execution) [326], [327], the MRCP (Movement-Related
Cortical Potential) comprises a low-frequency (<5Hz) EEG component that has been verified under
imaginary motion experiments, thus being suitable for support and rehabilitation applications where a
patient exhibits limited motion [326]. Additional components occurring over the timespan preceding
kinematic manifestation (mostly 1.0-1.5 sec before onset) comprise the Contingent Negative Variation
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(CNV) [328] and the Bereitschaftspotential (BP) [329], appearing mainly over the premotor cortex and
the primary motor cortex respectively.

On top of the individual components, event-related analysis also involves the study of synchronization /
desynchronization (ERS/ERD) within EEG activity. More specifically, alpha (8-12 Hz) and central beta
frequency bands (16-24 Hz) display evident ERD during both real and imaginary movement preparation
[326], [327]. Namely, motor imagery and real motion employ common neural pathways, thus the former
is considered a sufficient substitute for experimental designs where participants display severely limited
motor abilities [283].

Generally, the advances in EEG analysis and its ascertained contribution to the study of motor functions
have rendered electroencephalography as a key modality in HMI rehabilitation designs [301], [330]. The
main idea in such implementations is the establishment of a real-time information bus engaging brain
activity and a receiver module, trained via motor imagery data. Both exoskeletons [331]-[333] and
functional electrical stimulation devices [67,68] have served as the receiver device responsible for motion
execution, implicating upper and lower limbs in applications such as generalized movement support and
foot drop treatment. Stroke, spinal cord injury and spastic cerebral palsy [336] are a few indicative
examples where the EEG-FES combination has been successfully employed, having shown greater and
more persistent benefits compared to traditional FES treatment [337], [338]. In an analogous manner, the
control of these receiver modules has also exploited non-invasive electromyography signals reflecting
contraction intensity, related both to extended muscle groups (e.g. leg extension) and to more complex
detailed movements (e.g. fingers). Such data bear the potential to accurately characterize specific
movement patterns that may not be discerned via EEG [295], [339], [340]. Particularly, EMG produced
by residual muscular activity can be used as a regulator for FES treatment and exoskeletons, aiming to
support motion and trigger existing kinematic capacity, thus assisting in repossession of sufficient
muscular activation [341], [342]. Over the course of rehabilitation, training protocols often exploit
recordings derived from a non-afflicted limb for target feedback, contralateral control and progress
evaluation [343], [344].

By combining the different modalities into hybrid frameworks, a wide variety of additional support and
therapeutic options arises through the incorporation of the assets of each modality. The use of multiple
physiological modalities or mixtures of physiological and non-physiological data offers enhanced
computational validity since different information sources [345]-[348] (angle, force, biological activity,
etc.) can be exploited concurrently for motion decoding and support [286], [324] using the
aforementioned receiver modules. Such holistic real-time movement analysis constitutes substantial
groundwork for strengthening the functional connections between cognitive processing and kinematic
phenotype, seeking to promote convergence of muscular and cortical electrical activity in the context of
rehabilitation [349]. The former (muscular activity) represents the motion execution aspect while the
latter (cortical activity) also contains the motion intention aspect, thus hybrid protocols utilizing both
EEG and EMG aim at restoring — at the highest degree possible — their natural correlation, accounting for
side events including non-voluntary motions such as spasms and tremors [350].

6.7  Future Challenges

Although technological and methodological advances have given a great boost to HMI research,
accessible use in clinical and everyday practice is still not a reality. The lack of widely available
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commercial end-products that can provide adaptable real-time support and rehabilitation services at an
affordable price is yet to be fulfilled by the large-scale research frameworks currently studied [288],
[330]. Implementation challenges include reliable EMG-based motion analysis, specifically with regard to
joint displacement and electrode alterations as well as algorithm personalization and accounting for
workload and floor/ceiling effects [351], [352].

An additional research question yet to be addressed is related to neurorehabilitation mechanisms triggered
during training [353]. The human brain bears the ability to constantly adapt to new conditions via
plasticity, with the use of HMIs being no exception. Type of impairment along with general patient status
and specific protocol parameters may dictate the course of neuroplasticity, while it has been suggested
that not all plasticity is beneficial [354]. Compensatory mechanisms are not always optimal, a critical
factor being the temporal window of their development [276], also related to the timing of the
rehabilitation training.

From a data analysis and interpretation standpoint, novel methods such as brain connectivity are
progressively employed for studying corticomuscular interactions [220], [226], albeit there is still a lot to
be done on deciphering brain electrical activity during motor-related processes. Moreover, the highly
subject-specific nature of HMI training poses additional challenges regarding the adaptation of a common
framework to every individual user through parameter adjustments. Customization is further complicated
by the variable phenotype of motor impairments for each subject, necessitating comprehensive and user-
tailored training [278]. Finally, in pursuance of optimal standards and methodological potency, tools and
models should be validated using third-party (including open access) data [355], so that the scientific
community is able to refine the results and filter best practices on rehabilitation and interpretation of
biological and non-biological activity describing human motion.
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Chapter 7

Main Contributions and Future Work

This Chapter summarizes the conclusions of previous Chapters and suggests guidelines for future work.
In this Doctoral Thesis, a wide array of ML approaches have been implemented in different brain related
experiments providing the basis for applicable HMI/BCI interactions and shedding light to underlying
cognitive aspects of different states in terms of neuroscience. In this regard, it should be noted that BCI
implementation requires the continuous measurement of the brain signals translating them to input
information for the connected device to execute each task at hand. By extension, irrelevant neural stimuli
might confound the internal classification processing, thus it is of outmost importance to detect specific
neural attributes in a way that they are as discriminative as possible in the most universal way. This
Thesis’ aim was to establish the groundwork for BCI application by assessing universal characteristics of
different cognitive states and conditions in ML frameworks, putting forward and exploring advances in
algorithmic applications and system implementation, while incorporating basic analysis in real and
imaginary motion recordings.

In detail, Chapters 3,4,5 refer to ML approaches in cognitive EEG experiments, each one addressing a
different aspect of HMI implementation. First and foremost, Chapter 3 regards the classification of error
cognition in regard to ERP-related features, focusing on global mental aspects irrespective of task
complexity. The results produced indicated that classification across different difficulty conditions can be
achieved, however due to subject variability estimating universal condition-specific characteristics could
be problematic. Advancing contemporary research a thorough analysis has been made, not only including
the typical ERN, but the entirety of ErrPs reported in previous studies by concatenating time-window
features, each corresponding to specific ERPs. This allowed for efficient ML procedures in full and
reduced channel analysis, providing indices of a global mechanism and efficient cross-condition
evaluation.

Chapters 4 and 5 focused on the classification of mental load using frequency related attributes, such as
PSD and FC networks as feature sets. In both cases satisfactory classification accuracy was achieved
using FS and classification methods, while identifying a small set of relationships between different brain
regions in different frequency bands, which might contribute to the understanding of the various related
neural mechanisms. Task engagement is an important aspect when applying brain signals to a HMI,
however prolonged task execution (especially in mentally demanding tasks) results into deteriorated
performance and masks the useful BCl-relevant characteristics due to workload. Accordingly, in Chapter
4, a task-independent mental workload ML approach was implemented, taking into account a fusion of
different EEG spectral characteristics (i.e., the PSD and FC) resulting in the highest (so far) cross-task
workload classification. More importantly, the task-independent features identified did not only provide
rigorous indicators of their inherent predictive quality, but also demonstrated cognitive control of
inhibitory functions as the main factor of a global workload mechanism. This outcome can be explained
as “forgetting” is more mentally exhausting than “remembering”, especially in prolonged WM tasks,
since continuous cognitive updating with each new trial necessitates additional memory capacity
resources, while disregarding irrelevant stimuli of previous trials. Within this context, these results
provide some of the first quantitative confirmation of the prevalent workload-related neural mechanisms
aiming to provide significant improvements in cognitive load assessment.
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In Chapter 5, building upon the previous experiments results and conclusions, workload assessment has
been employed in an approximation of real-world applications. Specifically, flight simulation was utilized
in a 2D and 3D environment in a multi-workload levels ML approach utilizing functional brain networks
differences in source space. High classification performance was attained detecting specific ROIs in
specific brain frequencies, indicating common and unique characteristics in both environments. More
importantly, each environment indicated differentiation with regards to network metrics (local and global
efficiency) and FC. As such, VR environment was estimated to evoke higher mental workload to the
participants compared to the CS environment. Interestingly, this was not only contributed due to the more
visually demanding cognitive processes, but also in relation to the anxiety and stress levels when
participants had limited control, since the amygdala brain areas were only indicated as significant in the
VR interface. Thus the VR stronger presence environment could enhance the mental pressure evoked by a
more realistic condition simulating real-world situations.

Taking all the above into account, Chapter 6 presents the basis of bioelectrical phenotype signals and in
conjunction with the related ML algorithms and clinical practice demands. As such, the technological and
methodological advances of BCI/HMI are discussed, as well as the implementation challenges and the
need for adaptable, real-time and personalized support accounting for workload and floor/ceiling effects.
Finally, the importance of deciphering brain electrical activity in a global manner (irrelevant of task and
subject variability) is presented, which is a major requirement for the adaptation of a common framework
to every individual user through parameter adjustments and user-tailored training.

In future works the proposed methods can be applied to more data to verify their effectiveness and
especially to extract new knowledge. The new relationships that emerge from computational analysis shed
light on the functioning of the brain mechanisms involved and may suggest directions for future cognitive
experiments to validate them. In addition, the ML methods can be further tested to confirm their
performance, as well as to extend the classification to multiple and much more complex levels. In
addition, deep learning neural networks can be tested, which have recently shown excellent performance
in image classification, however, appropriate data transformation is required to be able to utilize them.
Especially in the case of BCI, a progressive step is the employment of portable dry-electrode EEG
devices to make predictions in real time. For this to be possible, a small number of sensors are required,
which is supported by the results of the FS performed in the experimental Chapter in this Doctoral Thesis.
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Appendix A

Glossary of Terms Utilized in the Extended Greek Summary

BA
AAM
AEY
EX
HET
MM
FIR
IR
ICA
LDA
LORETA
PLI
PSD

RFE-CBR

SFFS
SFS
SVM
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Propatikd duvopkd
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Appendix B

Glossary of Terms Utilized in this Doctoral Thesis

AAL
ADL
ANOVA
BCI
CNV
CRN

CSs

EEG

EG

EL
eLORETA
EMG
EOG
ERB
ERD/ERS
ERN
ERP
ErrPs
ESI

FBT

FC
fERN
FES

FIR
fMRI

FS
HEOG
HMI
ICA

IRR
k-NN
KOR
LDA
LoOoCcVv
LORETA
LS
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automatic anatomical labelling
activities of daily living

analysis of variance

brain computer interface
contingent negative variation
correct-related negativity
computer screen
electroengephalography

global efficiency

local efficiency

exact low resolution electromagnetic tomography
electromyography
electrooculogram

equivalent rectangular bandwidth
event-related (de)synchronization
error-related negativity
event-related Potential
error-related ERPs

electrical source imaging
feedback tone

functional connectivity

feedback related negativity
functional electrical stimulation
finite impulse response
functional magnetic resonance imaging
feature selection

horizontal electrooculogram
human-machine interface
independent component analysis
infinite impulse response
k-nearest neighbor
knowledge-of-results

linear discriminant analysis
leave-one-out cross-validation
low resolution brain electromagnetic tomography
least squares
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ML machine learning

MRCP movement-related cortical potential
PE error-positivity

PET positron emission tomography

PLI phase lag index

PSD power spectral density

QP quadratic programming

RBF radial basis function

RF random forests

RFE recursive feature elimination
RFE-CBR recursive feature elimination method with correlation bias reduction
ROC receiver operating characteristic
ROI regions of interest

s1,.2,.3 stage 1,..2,..3

SFFS sequential forward selection

SFS sequential forward floating selection
SMO sequential minimal optimization
SVM support vector machines

tw time window

VEOG vertical electrooculogram

VR virtual reality

WHO world health organization

WM working memory
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