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ABSTRACT 

The Diploma Thesis presents an investigation on the dynamics of elastic rotors on Gas 
Foil Bearings (GFBs) and aims to provide answers regarding the influence of key design 
parameters, such as the shaft stiffness, the foil compliance and the foil loss factor, to the 
quality of response, the stability of the system, and the energy flow among its main 
components. Right after the short presentation of the historical background of GFB 
technology in the introduction section, the Reynolds equation for compressible flow (gas 
flow) is numerically solved in order to approach the gas pressure distribution inside the 
GFB, and the ordinary differential equation for a simplified bump foil structure is 
defined. The flexible rotor is implemented in this work with the well-known equations 
of motion of the Jeffcott rotor.  

A coupled vector including all three aforementioned components consisting of gas 
pressure, foil deformation, and rotor’s horizontal and vertical displacements with their 
time derivatives is introduced and the respective nonlinear system of ordinary 
differential equations is represented in state space. The unique source of nonlinearity in 
the system is the strongly nonlinear gas forces resulting in various types of rotor motion 
and trajectories which are studied thoroughly in terms of stability and periodicity for 
different properties of the design parameters utilizing short-time Fourier transform, 
bifurcation diagrams, Poincaré maps and fast Fourier transform. Autonomous and non-
autonomous versions of the system are studied corresponding to perfectly balanced and 
unbalanced rotors. The energy flow constitutes the final field of study where the work 
portions produced by the gas, foil spring and foil damper forces are evaluated. 

Conclusions can be drawn highlighting the role of foil damping (loss factor) and the foil 
stiffness in the birth of limit cycle motions and their bifurcations occurring as the 
parameter of rotating speed changes. Saddle node (fold), and Neimark-Sacker 
bifurcations of limit cycles are found to occur for specific design properties, while limit 
cycles are generated always by Hopf-Andronov bifurcation of fixed equilibria; the 
corresponding whirl-whip phenomena are discussed. The energy flow between the 
components of the system is addressed founding that the work of gas forces along a 
closed orbit changes sign when saddle node bifurcations of limit cycles occur. Similar 
changes are noticed during bifurcations of fixed equilibria (Hopf-Andronov type).  
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ABSTRACT (Greek) 

Η Διπλωματική Εργασία διερευνά την δυναμική των ελαστικών αξόνων σε αεροέδρανα 
με εύκαμπτο κέλυφος (GFBs - Gas Foil Bearings), στοχεύοντας να δώσει απαντήσεις 
σχετικά με την επίδραση βασικών σχεδιαστικών παραμέτρων, όπως η δυσκαμψία του 
άξονα, η ενδοτικότητα και η απόσβεση (loss factor) της διάταξης του foil, στην ποιότητα 
της χρονικής απόκρισης, την ευστάθεια του συστήματος, και τη ροή ενέργειας μεταξύ 
των κύριων συνιστωσών αυτού. Έπειτα από τη σύντομη ιστορική ανασκόπηση στην 
τεχνολογική εξέλιξη του GFB στο εισαγωγικό κεφάλαιο, η εξίσωση του Reynolds για 
συμπιεστή ροή (ροή ατμοσφαιρικού αέρα) επιλύεται αριθμητικά προκειμένου να 
εκτιμηθεί η κατανομή της πίεσης του αερίου εντός του GFB, και επιπλέον ορίζεται η 
διαφορική εξίσωση για την παραμόρφωση του υποσυστήματος του κελύφους. Ο 
ελαστικός άξονας εισάγεται στην προσομοίωση με τις εξισώσεις κίνησης του άξονα 
Jeffcott.  

Το διάνυσμα στο χώρο κατάστασης ορίζεται με τρεις συνιστώσες: την πίεση του αερίου, 
την παραμόρφωση του κελύφους, και την οριζόντια και κατακόρυφη μετατόπιση του 
άξονα μαζί με τις χρονικές παραγώγους τους. Στη συνέχεια, ακολουθεί ο ορισμός του 
μη-γραμμικού συστήματος συνήθων διαφορικών εξισώσεων. Την μοναδική πηγή μη-
γραμμικότητας στο σύστημα αποτελούν οι ισχυρά μη-γραμμικές δυνάμεις του αερίου, 
οι οποίες ευθύνονται για την δημιουργία κινήσεων ποικίλων τύπων και διαφόρων 
τροχιών και μελετώνται εκτενώς -ως προς την ευστάθεια και την περιοδικότητά τους 
για διάφορες τιμές των σχεδιαστικών παραμέτρων- χρησιμοποιώντας μετασχηματισμό 
Fourier, διαγράμματα διακλαδώσεων, και απεικονίσεις Poincaré. Η αυτόνομη και η μη-
αυτόνομη έκδοση του συστήματος μελετώνται κατ’ αντιστοιχία με άξονα χωρίς 
αζυγοσταθμία και με αζυγοσταθμία. Η ροή ενέργειας ανάμεσα στις συνιστώσες του 
συστήματος αποτελεί το τελευταίο μέρος αυτής της μελέτης όπου υπολογίζονται οι 
ποσότητες των έργων των δυνάμεων του αερίου, καθώς και των δυνάμεων του 
ελατηρίου και του αποσβεστήρα συγκράτησης του κελύφους.  

Τα συμπεράσματα εξάγονται υπογραμμίζοντας τον ρόλο της απόσβεσης και της 
δυσκαμψίας του υποσυστήματος συγκράτησης του κελύφους στην δημιουργία 
κινήσεων σε οριακό κύκλο (limit cycle motions), καθώς και στις διακλαδώσεις τους 
(bifurcations), που συμβαίνουν καθώς μεταβάλλεται η παράμετρος της γωνιακής 
ταχύτητας περιστροφής του άξονα. Διακλαδώσεις αναδίπλωσης (σάγματος κόμβου – 
saddle node) και τύπου Neimark-Sacker λαμβάνουν χώρα για συγκεκριμένες 
σχεδιαστικές παραμέτρους, ενώ βρέθηκε ότι τα σημεία ισορροπίας (fixed points) 
χάνουν πάντα την ευστάθειά τους με διακλαδώσεις τύπου Hopf-Andronov. Τα 
αντίστοιχα φαινόμενα whirl-whip σχολιάζονται. Η ενεργειακή ροή μεταξύ των 
συνιστωσών του συστήματος εξετάζεται και συμπεραίνεται ότι το έργο των δυνάμεων 
του αερίου σε μία κλειστή τροχιά αλλάζει πρόσημο όταν συμβαίνουν διακλαδώσεις 
αναδίπλωσης (saddle node) στους οριακούς κύκλους. Παρόμοιες μεταβολές 
παρουσιάζονται και κατά τη διάρκεια διακλαδώσεων των σημείων ισορροπίας τύπου 
Hopf-Andronov. 
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NOMENCLATURE 

(□),̇  (□)′ first order time derivatives 𝑝, 𝑝  gas pressure [𝑁/𝑚2], 𝑝 = 𝑝/𝑝0 

(□̈), (□)′′ second order time derivatives  𝑞, 𝑞̅ foil deflection [𝑚], 𝑞̅ = 𝑞/𝑐𝑟 

𝑎𝑓 
dimensionless compliance of bump foil 

(2𝑝0 (
𝑙0

𝑡𝑏
)
3
(1 − 𝑣2)

𝑠0

𝑐𝑟𝐸
) 

𝑡𝑏 bump foil thickness [𝑚] 

𝑐𝑟 bearing clearance [𝑚] 𝑊𝑐𝑓 
work produced by the foil damper forces 

[𝐽] 

𝐷 bearing diameter [𝑚] 𝑊𝑓 work produced by the foil [𝐽] 

𝑒, 𝜀 unbalance eccentricity [𝑚], 𝜀 = 𝑒/𝑐𝑟 𝑊𝑔 
work produced by the bearing’s gas forces 

[𝐽] 

𝐸 Young's modulus for bump foil [𝑁/𝑚2] 𝑊𝑘𝑓  work produced by the foil spring forces [𝐽] 

𝐹𝐵𝑥, 𝐹𝐵𝑦, 

𝐹𝐵𝑥 , 𝐹𝐵𝑦 

gas force components in 𝑥 and 𝑦 directions 

[𝑁], 

𝐹𝐵𝑥 = 𝐹𝐵𝑥/𝑐𝑟 , 𝐹𝐵𝑥 = 𝐹𝐵𝑥/𝑐𝑟 

𝑥𝑗 , 𝑦𝑗 , 

𝑥𝑗 , 𝑦𝑗 

journal displacements in 𝑥 and 𝑦 directions 

[𝑚], 𝑥𝑗 = 𝑥𝑗/𝑐𝑟, 𝑦
𝑗
= 𝑦𝑗/𝑐𝑟 

𝐹𝑐𝑓 foil damper force [𝑁] 
𝑥𝑑 , 𝑦𝑑 ,  

𝑥𝑑 , 𝑦𝑑 

disc displacements in 𝑥 and 𝑦 directions 

[𝑚], 𝑥𝑑 = 𝑥𝑑/𝑐𝑟, 𝑦
𝑑
= 𝑦𝑑/𝑐𝑟 

𝐹𝑘𝑓  foil spring force [𝑁] 𝑥, 𝑥 spatial coordinate in 𝑥 direction, 𝑥 = 𝑥/𝑅 

𝐹𝑚 mean force acting on the top foil [𝑁] 𝑧, 𝑧 spatial coordinate in 𝑧 direction, 𝑧 = 𝑧/𝑅 

𝐹𝑈𝑥, 𝐹𝑈𝑦 , 

𝐹𝑈𝑥 , 𝐹𝑈𝑦 

unbalance force components in 𝑥 and 𝑦 

directions [𝑁], 𝐹𝑈𝑥 = 𝐹𝑈𝑥/𝑐𝑟 , 𝐹𝑈𝑥 = 𝐹𝑈𝑥/

𝑐𝑟 

𝜂 loss factor for bump foil structure 

ℎ, ℎ̅ fluid film thickness [𝑚], ℎ̅ = ℎ/𝑐𝑟 𝜃 angular coordinate [𝑟𝑎𝑑] 

𝑘𝑓 , 𝑘𝑓 
foil stiffness coefficient per area 

(𝑝0 (𝛼𝑓𝑐𝑟))⁄  [𝑁/𝑚3],  𝑘𝑓 = 1 𝛼𝑓⁄  
𝜇 viscosity of gas [𝑁𝑠/𝑚2] 

𝑘𝑠, 𝑘𝑠 
shaft stiffness coefficient 

(𝑘̅𝑠𝑚𝑑𝑝0
2𝑐𝑟

4 (36𝜇2𝑅4)⁄  [𝑁/𝑚2] 
𝑣 Poisson's ratio for bump foil 
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𝑙0 bump half-length [𝑚] 𝜉 
dimensionless parameter of the rotor 

model (36𝜇2𝐿𝑅5 (𝑚𝑗𝑝0𝑐𝑟
5))⁄  

𝑚𝑗 journal mass [𝑘𝑔] 𝜎 
dimensionless parameter of the rotor 

model (36𝜇2𝑅4𝑔 (𝑝0
2𝑐𝑟

5))⁄  

𝑚𝑑 disc mass [𝑘𝑔] τ dimensionless time (𝑝0𝑐𝑟
2 (6𝜇𝑅2⁄ )𝑡) 

𝑝0 ambient pressure [𝑁/𝑚2] 𝜑𝑟 journal’s angle of rotation [𝑟𝑎𝑑] 

𝑝𝑚, 𝑝𝑚 
mean gas pressure over bearing length 

[𝑁/𝑚2], 𝑝
𝑚
= 𝑝𝑚 (𝑝0𝐿)⁄  

𝜒 angle of foil fixation point [𝑟𝑎𝑑] 

  Ω, Ω̅ 
angular velocity (6𝜇𝜔/𝑝0)(𝑅 𝑐𝑟⁄ )2 [𝑟𝑎𝑑/

𝑠], Ω̅ = 6𝜇𝑅2/(𝑝0𝑐𝑟
2) 

 

ABBREVIATIONS 

DL Dimensionless GFB Gas Foil Bearing 

DM Dimensioned NS Neimark-Sacker 

FDM Finite Difference Method SN Saddle node 
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1 INTRODUCTION 

1.1 Background on Gas Foil Bearing Development 

Gas foil bearings (GFBs) are an upcoming and promising oil-free technology in modern 
high-speed rotating machinery [1]. Relying on a thin gas film building up an aerodynamic, 
load-carrying lubrication wedge, such bearings are self-acting and do not require any 
external pressurization. Most notably, due to the absence of solid-to-solid contact 
between the airborne rotor journal and the bearing sleeve, excessively low wear and 
power loss can be achieved [2]. 

During the last few decades, the potential of GFBs has been widely confirmed by a great 
number of successful applications in air cycle machines of commercial aircraft [3]. Lately, 
in particular as a result of insurmountable speed, temperature, and weight limitations 
of conventional rolling-element bearings, novel concepts of oil-free turbochargers [4] 
and oil-free rotorcraft propulsion engines [5] are gaining more and more interest. 

Foil air bearings are similar to conventional oil-lubricated bearings in size, shape, and in 
that the fluid film pressure is developed via the hydrodynamic effect, see Figs. 1.1 and 
1.2. Unlike conventional bearings, foil air bearings use air as their working fluid and the 
bearing surface is compliant rather than rigid [6]. This compliant inner or top foil surface 
is supported by a spring pack or bump foil layer which allows the bearing to 
accommodate shaft misalignment, thermal and centrifugal distortion, the presence of 

 

[1] T. Leister, C. Baum, W. Seemann (2017) On the Importance of Frictional Energy Dissipation in the Prevention of 

Undesirable Self-Excited Vibrations in Gas Foil Bearing Rotor Systems. TECHNISCHE MECHANIK, 37, 2-5, (2017), 

280 – 290 

[2] Heshmat, H.; Walowit, J. A.; Pinkus, O. (1983) Analysis of gas-lubricated foil journal bearings. Journal of 

Lubrication Technology, 105, 4, 647–655. 

[3] Howard, S. A.; Bruckner, R. J.; DellaCorte, C.; Radil, K. C. (2007) Gas foil bearing technology advancements for 

closed Brayton cycle turbines. Tech. Rep. NASA TM-214470, National Aeronautics and Space Administration, United 

States of America. 

[4] Howard, S. A. (1999) Rotordynamics and design methods of an oil-free turbocharger. Tech. Rep. NASA CR-

208689, National Aeronautics and Space Administration, United States of America. 

[5] Howard, S. A.; Bruckner, R. J.; Radil, K. C. (2010) Advancements toward oil-free rotorcraft propulsion. Tech. Rep. 

NASA TM-216094, National Aeronautics and Space Administration, United States of America. 

[6] DellaCorte C., Zaldana, A., and Radil, K. (2004) A Systems Approach to the Solid Lubrication of Foil Air Bearings 

for Oil-Free Turbomachinery. STLE/ASME Joint International Tribology Conference, FL Oct. 2003. 
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wear debris and also allows the designer to tailor the operational foil shape to enhance 
film pressure and hence bearing load capacity [7].  

  

Fig. 1.1: Photo of an integrated gas foil bearing; 

taken from grabcad.com 

Fig. 1.2: Photo of the inner compounds of a gas 

foil bearing; taken from sulzer.com  

Fig. 1.3 schematically shows typical foil bearing designs. Micro-sliding, which occurs 
between the top foil and its spring support and within the spring foils, contributes 
significant coulomb damping properties to the bearing [8].  

 
(a)  (b) 

Fig. 1.3: Schematic example of typical first-generation foil bearings with axially and circumferentially 

uniform elastic support elements: a) leaf-type foil bearing; and b) bump-type foil bearing; taken from 

[6] 

Since foil bearings do not use oil as their working fluid they can and are routinely used 
over an extremely wide temperature range, from cryogenic to over 650°C, not possible 
with oil lubrication. Foil air bearings, however, do require solid lubrication to prevent 
wear and reduce friction at very low speeds encountered during start-up and shut-down 
prior to the development of the hydrodynamic gas film and also during momentary 

 

[7] Gross, W. A. (1962) Gas Film Lubrication, John Wiley and Sons, Inc. 

[8] Heshmat, H., Shapiro, W., and Gray, S. (1982) Development of Foil Journal Bearings for High Load Capacity and 

High Speed Whirl Stability, ASME J. Lubr. Technol., 104, pp. 149–156. 
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bearing overloads such as high-speed rubs [9]. Traditionally, this solid lubrication is 
provided by applying a thin polymer film or coating to the foil surface, see Fig. 1.4. 

Blok and Van Rossum published the first paper on foil bearings in 1953 [10]. Although 
they coined the term ‘‘foil bearing’’, their work actually concerned an oil lubricated shaft 
running against an acetate film or ‘‘foil’’. The concept of a flexible bearing surface and 
its implications to and potential for improved capabilities was quickly adapted by other 
technologists and papers on air lubricated foil bearings began to appear in the open 
literature in the following decade [11,12]. Foil bearing load capacity is expressed in 
relation to a bearing’s load capacity coefficient, D. This coefficient, defined fully in [13], 
is an empirically established performance parameter which relates bearing size and 
speed to the load that a bearing can support. Mathematically, it is defined as follows 
[6,13]:  

( ) ( )krpmW D L d d=      

where W is the maximum steady load that can be supported, N; D is the bearing load 
capacity coefficient, N/mm3krpm; L is the bearing axial length, mm; and d is the shaft 
diameter, mm. krpm is the shaft rotational speed in thousands of revolutions per 
minute, krpm. This relationship can be remembered easily for advanced technology 
bearings, which have load capacity coefficients of around 1.0 when non-SI or English 
units are used. The comparable coefficient for SI units is about 175 kPa/mm. An 
advanced design, designated Generation III [6] foil bearing, like the type depicted in Fig. 
1.6, will support about ‘‘one pound of load per in2 of projected bearing area per inch of 
bearing diameter per thousand rpm.’’ The earliest foil bearing designs, designated 
Generation I, had very simple elastic support structures (spring systems) and exhibited 
load capacity coefficients of around 0.3. The development of more complex bearing 
designs in which the elastic foundation varied circumferentially or axially is defined as 
Generation II and exhibit load capacity coefficients around 0.5. The most recent bearing 
designs have elastic structures which tailor the spring foundation both circumferentially 
and axially, are designated Generation III bearings, and have load capacity coefficients 
of about 1.0. Foil bearings used in air cycle machines are Generation I bearings. 
Generation II bearings have been used successfully in turbocompressors and small 

 

[9] DellaCorte, C., and Wood, J. C. (1994) High Temperature Solid Lubricant Materials for Heavy Duty and Advanced 

Heat Engines, NASA TM-106570. 

[10] Blok, H., and van Rossum, J. J. (1953) The Foil Bearing-A New Departure in Hydrodynamic Lubrication, ASLE 

J. Lubr. Eng., 9, pp. 316–330. 

[11] Ma, J. T. S., 1965, ‘‘An Investigation of Self-Acting Foil Bearings,’’ASME J. Basic Eng., 87, pp. 837–846. 

[12] Barnett, M. A., and Silver, A. (1970) ‘‘Application of Air Bearings to High Speed Turbomachinery,’’ SAE Paper 

700720. 

[13] DellaCorte, C., and Valco, M. J. (2000) Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free 

Turbomachinery Applications, STLE Tribol. Trans., 43, pp. 795–801. 
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microturbines. It is expected that Generation III bearings with load capacity coefficients 
near 1.0 will be used in aircraft engine applications. 

 
(a) (b) 

Fig. 1.4: Schematic representation of systems approach to bearing lubrication a) conventional oil 

lubricated bearing, and b) multilevel solid/gas lubricated foil air bearing [6] 

Foil bearings have been successfully used in high-speed turbomachines, and they 
present a remarkable reliability. For aircraft turbo-compressors, the mean-time-
between failure is typically over 60000 h [14,15]. The operational mechanism of foil 
bearings is similar to that of fluid-film bearings. At the start-up stage, the rotor journal 
and the bearing bore are contacting each other directly. Once the rotational speed 
crosses the lift off speed, the rotor will be suspended by the generated pressure fluid 
film. As the stiffness of the foils is much smaller than that of the fluid film, the foil 
bearings can adapt to various working conditions through foil deformations. Specially, 
the range between the second and third critical speeds of the foil bearing-rotor system 

 

[14] Y. Hou, Z. H Zhu, C. Z. Chen (2004) Comparative test on two kinds of new compliant foil bearing for small 

cryogenic turbo-expander. Cryogenics, 44: 69-72. 

[15] Z. Y. Guo, K. Feng, T. Y. Liu (2018) et al. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: 

effects of gas film and foil structure on subsynchronous vibration. Mechanical Systems and Signal Processing, 107: 

549-566. 
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is very large, which means that the foil bearings can suspend the rotor at a very high 
speed stably. Owing to these advantages, foil bearings are identified as a potential  

 

alternative for REBs. If properly designed and operated, foil bearings would incur very 
slight wear and have a long service life [16]. 

In the 1990s, NASA conducted various tests of foil bearings in LH2 and LO2 environments 
[17,18]. Τhe material compatibility of three candidate polymer coatings for LH2 lubricated 
foil bearings was tested at the NASA White Sands Test Center [19]. There were no ignition 
hazards during the frictional heating tests, which means that these polymer coatings can 
be used in the establishment of foil bearing turbopumps. After that, LH2 foil bearing 

 

[16] H Heshmat H. (1991) A feasibility study on the use of foil bearings in cryogenic turbopumps. 27th 

AIAA/SAE/ASME/ASEE Joint Conference, California, USA, June 24-26: AIAA-91-2103. 

[17] M. Saville, A Gu, R Capaldi (1991) Liquid hydrogen turbopump foil bearing. 27th AIAA/SAE/ASME/ASEE Joint 

Propulsion Conference and Exhibit, California, USA, June 24-26: AIAA-91-2108. 

[18] J. S. McFarlane, M P Saville, S C Nunez (1995) Testing a 10000 lbf thrust hybrid motor with a foil bearing LOx 

turbopump. 31st AI-AA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, California, USA, July 10-

12: AIAA-95-2941. 

[19] J. M. Stoltzfus, J. Dees, A. Gu, et al. (1992) Material compatibility evaluation for liquid oxygen turbopump fluid 

foil bearing. 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, Tennessee, USA, July 6-8: 

AIAA-92-3403. 
 

 
 

Fig. 1.5: Bearing Load Capacity, Gen. I, II, III [8] Fig. 1.6: Generation III foil air bearing [8] 
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turbopump and LO2 turbopump demonstrations were conducted subsequently [20]. In 
1992, the LH2 foil bearing turbopump was successfully tested in NASA Stennis Space 
Center. The maximum rotational speed was 91000 r/min. After over 100 times of a 
frequent start/stop, the foil bearings and rotating assembly were still in excellent 
condition. In 1993, a LO2 turbopump demonstration was successfully conducted in NASA 
Marshall Space Flight Center. The maximum rotational speed was 25000 r/min and the 
total start/stop times were over 100. However, foil bearings have not yet been adopted 
in any rocket turbopump in service. In fact, the working principle of foil bearings is 
almost identical to that of fluid film bearings, and thus, the start-up problem still exists. 
Although bearing coatings were adopted, some debris particles with a size of 
approximately 0.51 mm were still found in NASA foil bearing turbopump demonstrations 
and the bearing surface was scratched by them to some extent. This is a potential hazard 
for a safe service, which cannot be ignored. 

1.2 Gas Foil Bearings and Rotor Dynamics 

Most of the considered rotating machinery is supposed to reach and to maintain a stable 
operating point after completing the run-up. However, as a result of the highly nonlinear 
bearing forces induced by the pressurized fluid, the existing equilibrium points of GFB 
rotor systems tend to become unstable for higher rotational speeds [1]. Subsequently, 
undesirable self-excited vibrations with comparatively large amplitudes may occur 
[21,22,23]. For this reason, many common bearing designs feature a compliant and slightly 
movable multi-part foil structure inside the lubrication gap. By dissipating a certain 
amount of energy via dry sliding friction mechanisms [24], this countermeasure is 
supposed to reduce the vibrational amplitudes or, as the ultimate goal, to prevent the 
occurrence of self-excited vibrations in the first place. 

The gas foil bearing is becoming very popular in oil free turbo-machinery because of its 
good dynamic characteristics and environment friendly features. There are different 

 

[20] A. Gu (1994) Cryogenic foil bearing turbopumps, 32nd Aerospace Science Meeting & Exhibit, Nevada, USA, 

January 10-13: AIAA-94-0868. 

[21] Bonello, P.; Pham, H. M. (2014) The efficient computation of the nonlinear dynamic response of a foil-air bearing 

rotor system. Journal of Sound and Vibration, 333, 15, 3459–3478. 

[22] Hoffmann, R.; Pronobis, T.; Liebich, R. (2014) Non-linear stability analysis of a modified gas foil bearing structure. 

In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Milan, Italy. 

[23] Baum, C.; Hetzler, H.; Seemann, W. (2015) On the stability of balanced rigid rotors in air foil bearings. In: 

Proceedings of the SIRM 2015, Magdeburg, Germany(2015a). 

[24] Peng, J.-P.; Carpino, M. (1993) Calculation of stiffness and damping coefficients for elastically supported gas foil 

bearings. Journal of Tribology, 115, 1, 20–27. 
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types of foil bearings viz. leaftype, bumptype, tapetype, multi-wound and foil bearing 
with compression springs [25] etc. The bump type foil bearing is simple in construction 
and more efficient compared to the other types of foil bearing. It is superior to 
conventional gas bearing and has higher load capacity, lower power loss, good stability, 
and endurance to high temperature, misalignment and foreign particles in the gas [2]. 
Due to these advantages, it is considered as best candidate for oil free turbo-machinery 
and have shown potential for micro/meso- scale gas turbine and its different 
applications [26,27]. A good amount of research work on bump type foil bearing dynamics 
has been carried out in the past three decades. Heshmat et al. [2] presented the first 
model of bump type of foil bearing. In this model they considered only elastic effect to 
bump foil; whereas damping due to the interaction of bump foil to top foil and bump foil 
to bearing housing is not considered. Later, Ku and Heshmat [28] proposed a more 
elaborate model that comprises elastic deformation of bump, interactions between 
bumps, Coulomb friction damping between top and bump foils as well as interaction 
between bump foil and bearing housing. Peng and Carpino [24] presented linear stiffness 
and damping coefficients of bump foil bearing considering elastic effect of bump foil. 
Peng and Carpino [29] also presented foil bearing dynamic coefficients using finite 
element method. Iordanoff [30] proposed rapid design method for foil thrust bearing in 
which static stiffness of bump with friction between bump foil and housing is 
incorporated.  

 

[25] J. Song, D. Kim (2007) Foil gas bearing with compression springs: analysis and experiments, Journal of Tribology 

129:628–639. 

[26] S.P. Bhore, A.K. Darpe (2013) Investigations of characteristics of micro/meso-scale gas foil journal bearings for 

100-200W class micro-power system using first order slip velocity boundary condition and the effective viscosity 

model,  Journal of Microsystem Technologies 19:509–523, http://dx.doi.org/ 10.1007/s00542-012-1639-1. 

[27] S.P. Bhore, A.K. Darpe (2014) Rotordynamics of micro and mesoscopic turbomachinery: a review, Journal of 

Advances in Vibration Engineering 13 (1), in press. 

[28] C. P. Ku, H. Heshmat (1992) Compliant foil bearing structural stiffness analysis: part1-theoretical model including 

strip and variable bump foil geometry, Journal of Tribology 114 (2): 394–400. 

[29] J. P. Peng, M. Carpino (1997) Finite element approach to the prediction of foil bearing rotor dynamic coefficients, 

Journal of Tribology 119 (1): 85–90. 

[30] I. Iordanoff (1997) Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design. Journal of 

Tribology 121 (4) 1996 816-822 
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Kim and San Andres [31] obtained bearing characteristics for heavily loaded foil bearing 
and validated with test results. They also presented frequency dependent dynamic 
coefficients. San Andres and Kim [32] presented nonlinear response of rotor supported 
by gas foil bearing. The nonlinear nature of stiffness characteristics of foil bearing is 
modelled using experimental data. They have shown that the linear force coefficients 
are not reliable to represent the dynamic behavior of rotor supported on gas foil bearing. 
Kim [33] conducted a parametric study on the static and dynamic characteristics of bump 
type foil bearings with different top foil geometries (circular and three pad 
configurations) and bump stiffness distributions. He presented a mathematical model of 
the bump foil bearing with equivalent viscous damping. The comparison of the static and 
dynamic performance of the bearing with linear perturbation based dynamic 
coefficients and a time domain orbit simulation is carried out. He found that there is a 
significant difference in the estimated onset speeds of instability from the set of 
approaches. A more advanced analytical modelling of foil bearing is reported by Lez et 
al [34]. The bumps and their interaction are modeled by multi-degree freedom system. 
The interactions between the top foil and bump foil and between bump foil and housing 
are modelled with friction forces. Feng and Kaneko [35] also presented an analytical 
model of the bump type foil bearing using link spring structure and finite element-based 
shell model. Lez et al. [36] have studied the nonlinear behavior of the foil bearing with 
stability and unbalance responses. Nonlinear jump phenomena have been observed. The 
shaft trajectory analysis and influence of friction on stability are investigated. They have 
not explored the bifurcation analysis with different system parameters [37]. As the gas 
foil bearing shows nonlinear behavior [32,33], the analysis of dynamic behavior of rotor 

 

[31] T. H. Kim, L. San Andres (2008) Heavily loaded gas foil bearings: a model anchored to test data, Journal 

Engineering for Gas Turbines and Power 130 (1) 012504–012508. 

[32] L. San Andres, T. H. Kim (2008) Forced nonlinear response of gas foil bearing supported rotors, Tribology 

International 41 704–715. 

[33] D. Kim (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil 

geometries and bump stiffness distributions, Journal of Tribology 129 (2) 354–364. 

[34] S. Le Lez, M. Arghir, J. Frene (2007) A new bump-type foil bearing structure analytical model, Journal of 

Engineering for Gas Turbines and Power 129 (4) 1047–1057. 

[35] K. Feng, S. Kaneko (2010) An alytical model of bump-type foil bearings using a link spring structure and a finite 

element shell model, Journal of Tribology 132 (2) 1–11. 

[36] S. Le Lez, M. Arghir, J. Frene (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced 

response, Journal of Engineering for Gas Turbines and Power 131:012503–012512. 

[37]  S. P. Bhore , A. K. Darpe (2013) Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. 

Journal of Sound and Vibration 332:5135–5150 
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supported on gas foil bearing is essential. A detailed nonlinear dynamic analysis using 
bifurcation diagrams, Poincaré maps, trajectories and Fast Fourier transforms is hence 
needed.  

In order to deal with computationally expensive rotor-bearing nonlinear dynamic 
analysis in the time domain, linear damping and stiffness coefficients were calculated to 
predict rotor-bearing stability [38].  The rapid development of computer science and 
increasing computer power later enabled the solution of the mathematical models in 
the time domain and allowed for the inclusion of gas compressibility and foil compliance 
in the models. Although almost a century has passed since the first publications about 
gas bearings, the accurate time simulation of gas bearings with compliant surfaces is still 
a challenging and very time-consuming task.  Prior to the presented work, different 
approaches for solving the compressible Reynolds equation have been investigated. 
Among others, Wang and Chen [39] who used finite difference for the spatial and 
temporal dimensions when solving the Reynolds equation. They simulated the steady-
state response of a perfectly balanced rigid rotor supported by two identical bearings.  
The spatial discretization was performed with a central-difference scheme, while the 
temporal discretization was performed with an implicit-backward-difference scheme. 
Arghir et al. [40] presented a finite volume solution where the pressure was implicitly 
integrated for a prescribed gap perturbation to calculate linear stiffness and damping 
coefficients dependent on the perturbation amplitude. In the procedure, the rotor was 
stationary in one direction, while the other was perturbed by a sinusoidal displacement, 

( )Asin t . At each time step, the reaction forces from the air film were calculated and 

based on the displacement/velocity and reaction force pairs, the least square method 
was used to calculate the linear stiffness and damping for a given amplitude A. This 
allowed a linear analysis of a rotor system to take into account the nonlinearities related 
to the vibration amplitude of the rotor in the air bearings. A common method to solve 
the compressible Reynolds equation in time is to substitute the time derivatives dp/dt 
and dh/dt by backward-difference approximations [41,42]. In this case, these time 

 

[38] J. W. Lund (1968) Calculation of stiffness and damping properties of gas bearings, Journal of Lubrication 

Technology 793–804. 

[39] C.-C. Wang, C.-K. Chen (2001) Bifurcation analysis of self-acting gas journal bearings, Journal of Tribology 

123:755. 
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coulomb friction: rotating unbalance response, Tribology Transactions 52:146–156. 
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derivatives will be lagging behind in time, and the time steps need to be very small in 
order to preserve the accuracy of the solution. This method was employed by e.g. LeLez 
et al. [43] and Kim [44]. The method was also used by Zhang et al. [45] to solve the 
transient Reynolds equation, but with four-node planar finite elements for the spatial 
discretization of the Reynolds equation and for a rigid gas journal bearing. More 
recently, Bonello and Pham [46,47] solved the nonlinear Reynolds equation by using an 
alternative state variable 𝜓 = 𝑝ℎ. Using this alternative state variable, it was possible to 
setup a set of ordinary differential equations (ODE) to solve the Reynolds equation and 
other state variables simultaneously at each time step. For spatial discretization, a finite 
difference and Galerkin reduction method were used. The solution for the transient 
compressible Reynolds equation was then coupled to the simple elastic foundation 
model (SEFM), and the transient response of a rotor system was presented. In order to 
accelerate the time simulations, several authors have consistently and diligently been 
working on improving the numerical methods and developing new numerical strategies. 
A simplified method for evaluating the nonlinear fluid forces in air bearings was recently 
proposed by Hassini and Arghir [48,49,50].  The fundamental idea was based on 
approximating the frequency-dependent linearized dynamic coefficients at several 
eccentricities by second-order rational functions in the Laplace domain. By applying the 
inverse of the Laplace transform to the rational functions, a new set of ordinary 
differential equations was obtained, leading to an original way of linking the fluid forces 
components to the rotor displacements.  The numerical results showed good agreement 

 

[43] S. LeLez, M. Arghir, J. Frêne (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced 

response, Journal of Engineering for Gas Turbines and Power 131:012503. 
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in gas journal bearings, Journal of Computational and Nonlinear Dynamics 4 011007. 
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rotor system, Journal of Sound and Vibration 333:3459–3478. 
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bearing rotor system, ASME TurboExpo2013: Turbine Technical Conference and Exposition, p.7. 
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with the results obtained solving the full nonlinear transient Reynolds equation coupled 
to the equation of motion of a point mass rotor. By ensuring the continuity of the values 
of the fluid forces and their first derivatives and imposing the same set of stable poles 
to the rational functions, simplified expressions of the fluid forces were found, avoiding 
the introduction of false poles into the rotor-bearing system. In [48], the authors showed 
that the new formulation may be applied to compute the nonlinear response of systems 
with multiple degrees of freedom such as a flexible rotor supported by two air bearings. 
On the other hand, working directly with the solution of the Reynolds equation for 
compressible fluids and compliant surfaces, Bonello and Pham [46,50] presented a 
generic technique for the transient nonlinear dynamic analysis and the static equilibrium 
stability analysis of rotating machines, using the finite-difference state equations of the 
air films with the state equations of the foil structures and the state equations of the 
rotating machine model. To accelerate the time simulations, the state Jacobian matrix 
was obtained using symbolic computing, and the equations were solved using a readily 
available implicit integrator and a predictor-corrector approach. 

In [51], an industrial rigid rotor supported by two identical segmented foil bearings is 
modelled and the effect of rotor unbalance is theoretically and experimentally 
investigated. The main original contribution of the work was related to the accurate, i.e. 
quantitatively and qualitatively, prediction of the nonlinear steady-state rotor response. 
The modelling of the segmented three pad foil bearings was carried out with high 
attention to the actual geometry by including the inlet slope, which has previously been 
found to influence both the static and dynamic results [52]. The foil structural model was 
based on the SEFM but with a stiffness k and loss factor η deduced from a previously 
described mathematical model [53]. This model considered the friction forces between 
the sliding surfaces and was validated against experiments. Consequently, the bump foil 
stiffness k used in [51] differs significantly from results in the literature, in which the foil 
stiffness was based on analytical expressions not accounting for the stiffening effect 
generated by the friction forces, e.g. Walowit and Anno [54]. The discretization of the 
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Theory and experiments, Journal of Sound and Vibration 346:284–297 
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by air foil bearings, Mechanics &Industry. 
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behaviour, Tribology International 74:46–56. 
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Reynolds equation is performed using the finite element method [55] and the solution of 
the mathematical model was based on the strategy suggested in [46,47]. 

Gas bearings have been intensively investigated, theoretically as well as experimentally, 
for nearly six decades [56,57,58] although some initial publications are dated already from 
the beginning of the last century [59], and it is rather difficult to cover a representative 
part of contributions. However, review papers help to perceive the evolution of gas foil 
bearing technology [60]. 

In this Master Thesis a rather simplistic model for bump foil properties of linearized 
stiffness and damping coefficients is utilized, taken directly from literature [2,37,44], and 
the first two design parameters are introduced as foil compliance 

fa  and foil loss factor

  . The rotor model follows the Jeffcott rotor model and the third design parameter of 

shaft stiffness 𝑘𝑠 is introduced in the modelling. The nonlinear dynamic characteristics 
of the system are investigated evaluating its time domain response for several sets of  
𝑎𝑓, 𝜂, and 𝑘𝑠 and a study is performed on the quality of stability and of feasible motions 

experiencing bifurcations. The study of the work portions dissipated in the damping 
sources of gas and bump foil presents a correlation of the energy flow to the respective 
bifurcation developed. A real system consisting of a high-speed centrifugal compressor 
rotor on gas foil bearings is also included in the simulations. The problem description 
and the work outline are described in continue. 

1.3 Problem Description 

This work aims to give answers on the influence of key design characteristics of the 
system (rotor stiffness, bump foil stiffness, bump foil damping) in the quality of response 
(stable, unstable, periodic, quasi-periodic, chaotic) and the respective energy flow 
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among the major components of the system (rotor, gas, bump foil) at stable operation 
and at bifurcation points. The questions to be answered are considered as follows: 

➢ What is the relation between rotor stiffness, foil stiffness, and foil damping in order 

to achieve asymptotically stable motions of the rotor at a specific rotating speed 

range? 

➢ What is the mechanism which triggers self-excited vibrations, and how this can be 

prevented? 

➢ What are the portions of energy provided into the system, and dissipated in the 

system before and after bifurcations take place? 

The answers are not always possible in the sense of existence of analytical formulas that 
describe the functions between input design parameters and output response (in terms 
of frequency content and quality). However, all answers have been addressed with 
respect to the notifications made in the various case studies and concluding remarks 
may be considered as design rules for a stable motion with or without sub-harmonic 
components. 

1.4 Work Outline 

The outline of work is described in Fig. 1.7 referring to the major part of the work. This 
is included in Chapters 2 and 3. 

In Chapter 2 (Simulation Method), the first objective is the modelling of a gas foil bearing 
(Section 2.1) where the Reynolds equation for compressible flow is solved and the gas 
pressure distribution is defined (Section 2.1.1) in a coupled fluid-structure dynamic 
model. The structural model of the bump foil is rather simplified in this work as described 
in Section 2.1.2. The model of flexible rotor is following (Section 2.2) using the simple 
Jeffcott rotor.  

In Section 2.3 the composition of the dynamic system renders the full set of ordinary 
differential equations coupling three vectors in the system response: the rotor vibration, 
the gas pressure, and the bump foil deformation. The set of equations is nonlinear due 
to the nonlinearity introduced by the gas impedance forces. This is the only source of 
nonlinearity in the system, and its strong character will render quite different quality of 
motion trajectories. The system of differential equations follows two versions: the 
autonomous, where no excitation is considered, and the non-autonomous, where 
unbalance excitation is introduced. The autonomous system is used for the stability 
assessment of the system; this is included in Section 2.4. The non-autonomous system 
is used to produce all the rest results presented in Chapter 3. 

In Chapter 3, the results are obtained in two operating conditions of the Jeffcott rotor 
system, and for various combinations of bump foil stiffness and damping: at the first, the 
system performs a run-up with linearly varying rotating speed (constant rotational 
acceleration) and the response is transient in the entire time domain, while at the 
second case the same system is rotating with different values of rotating speed for 
specific time domain (approximately 500 driving periods at each value of rotating speed). 
At the second case, steady state response is  
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Fig. 1.7: Work flow 

obtained at the last 100 driving periods, at most cases (not always). The change of 
rotating speed from one constant value to another is performed with a locally smoothing 
function. Respective results are generated from each case of operation.  
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The transient response is examined with respect to the frequency content applying time-
frequency decomposition (Short Time Fourier Transform). The stability threshold for the 
Hopf and for other types of bifurcations is also identified through the transient response.  

The steady state response is post-processed to produce Poincaré maps, the respective 
bifurcation diagrams, and the frequency content after a Fast Fourier Transform is 
applied. Last, but not least there is an extensive treatment of the steady state response 
(of all system components) to evaluate the work portions produced by the gas forces, 
and the foil spring and damper forces. These work portions are examined to their 
relevance for various case studies with emphasis in rotating speeds shortly before and 
after a bifurcation occurs. 

Chapter 4 concludes on the influence of key design properties of the system in the 
quality of each response, and the energy flow between the components of the system 
at selected cases. 
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2 SIMULATION METHOD 

2.1  Model of the gas foil bearing 

Fig. 2.1 shows a Gas Foil Bearing consisting of three parts: the rigid part, or housing 
(represented in the figure at the bottom of the bearing), the bump foil -explained 
thoroughly in section 2.1.2- and the top foil. Due to bump foil’s structure, the top foil 
can be deformed as shown. The journal’s and bearing’s rotational axes are considered 
parallel, an assumption necessary to neglect any misalignment. The geometrical centers 
of the journal and the bearing are denoted by 𝑂𝑗 and 𝑂𝑏 respectively, while their nominal 

radiuses are defined as 𝑅, 𝑅 + 𝑐𝑟, where 𝑐𝑟 is the nominal radial clearance. When no 
radial load is applied in the journal, then journal and bearing are concentric. 

Εccentricity 𝑒 = (𝑥𝑗
2 + 𝑦𝑗

2)
1/2

 describes the distance between the two centers, with 

𝑥𝑗 , 𝑦𝑗 being the displacements of the journal in 𝑥, 𝑦 axes respectively, and it has a vital 

role in the performance of the bearing. The top foil deformation in radial direction is 
denoted by 𝑞, considered positive when it is developed to the outer side of the bearing, 
and is a function of 𝜃 angle and time 𝑡 (𝑞 = 𝑞(𝜃, 𝑡)) in the dynamic problem. 
Coordinate 𝜃 is measured from the horizontal positive semi-axis of the bearing (global 
stationary coordinate system). The deflection of the foil is provoked by the pressure 
distribution 𝑝 of the compressible gas flowing in the gap between journal and top foil 
and the bearing forces 𝐹𝐵 induced by the latter. The pressure 𝑝 is dependent on time 𝑡 
in dynamic problem (whirling motion of the journal) and the spatial coordinates; the 
circumferential 𝑥 = 𝑅𝜃 and the axial one 𝑧, all of them consisting the independent 
variables of this problem; thus, 𝑝 = 𝑝(𝑥, 𝑧, 𝑡). The location of foil starting and ending 
angle (which are very similar to each other) is denoted by the angular coordinate 𝜒. In 
this work 𝜒 = 𝜋/2 and at this point the foil is considered without any deformation 𝑞. 

 

Fig. 2.1: Gas foil bearing representation: main components, geometry, operating parameters, and 

coordinate system 
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2.1.1 Reynolds Equation for the compressible flow  

The assumptions introduced in the lubrication problem are quite common: a) Newtonian 
lubricating fluid, b) isothermal film, c) laminar flow, d) no-slip boundary conditions, e) 
continuum flow, f) negligible fluid inertia, g) ideal isothermal gas law (𝑝/𝜌 = 𝑐𝑜𝑛𝑠𝑡.), h) 
negligible entrance and exit effects, i) negligible curvature (𝑅 ≫ 𝑐𝑟). The Reynolds 
equation for compressible fluid and for an unsteady (whirling) motion of the journal is 
given in (1) [61], with respect to the journal and foil kinematics, and it is an implicit 
function of time: 

𝝏

𝝏𝒙
[
𝒑(𝒉𝟎 + 𝒒)

𝟑

𝝁

𝝏𝒑

𝝏𝒙
] +

𝝏

𝝏𝒛
[
𝒑(𝒉𝟎 + 𝒒)

𝟑

𝝁

𝝏𝒑

𝝏𝒛
] 

(1) 

−𝟔𝛀𝑹
𝝏

𝝏𝒙
[𝒑(𝒉𝟎 + 𝒒)] − 𝟏𝟐

𝝏

𝝏𝒕
[𝒑(𝒉𝟎 + 𝒒)] = 𝟎 

where 𝑝 is the unknown gas pressure distribution, 𝜇 the dynamic viscosity of the fluid. 
The foil deflection 𝑞 is added to ℎ0, see Fig. 2.1, which represents the fluid film height 
considered for a rigid wall and -again- can be evaluated as a function of angle 𝜃 and time 
𝑡 (ℎ0 = ℎ0(𝜃, 𝑡)). The sum of these two variables represents the total height of the fluid 
film, ℎ = ℎ0 + 𝑞. Eventually, the film thickness relation can be finally written as: 

𝒉(𝜽, 𝒕) = 𝒉 = 𝒄𝒓 − 𝒙𝒋 𝐜𝐨𝐬𝜽 − 𝒚𝒋 𝐬𝐢𝐧 𝜽⏟              
𝒉𝟎

+ 𝒒 (2) 

where 𝑐𝑟 is the nominal clearance, 𝜃 is the angular absolute coordinate stating the -
position within the lubricating zone between journal and top foil in circumferential 
direction, and 𝑥𝑗,𝑦𝑗 the displacements of the journal. Applying (2) to (1), Reynolds 

equation renders: 

𝝏

𝝏𝒙
(
𝒑𝒉𝟑

𝝁

𝝏𝒑

𝝏𝒙
) +

𝝏

𝝏𝒛
(
𝒑𝒉𝟑

𝝁

𝝏𝒑

𝝏𝒛
) − 𝟔𝛀𝑹

𝝏

𝝏𝒙
(𝒑𝒉) − 𝟏𝟐

𝝏

𝝏𝒕
(𝒑𝒉) = 𝟎 (3) 

The Reynolds equation is defined on the domain Π = {(𝑥, 𝑧) | 𝜒𝑅 < 𝑥 < 2𝜋𝑅 + 𝜒𝑅, 0 <
𝑧 < 𝐿 }, 𝜒 being the position of the foil fixation, and 𝐿 the length of the bearing. The 
spatial coordinates 𝑥 = 𝑅𝜃 and 𝑧 -mentioned in the beginning of this chapter are 
considered independent. Due to the very small dimensions of the film height in the radial 
direction, in comparison to the circumferential and axial, the fluid pressure 𝑝 
dependency to any variation on y-axis (𝑝 ≠ 𝑝(𝑦)) is neglected. No analytical solution for 
(3) can be extracted; therefore, an indicated approach to obtain the pressure 
distribution is a numerical one. For the numerical solution of (3), the Finite Difference 
Method (FDM) is applied. The domain Π is converted into a grid of 𝑖 = 1,… ,𝑁𝑥 and  𝑗 =
1, … , 𝑁𝑧/2 points, see Fig. 2.2, where 𝑖 represents each point in the circumferential 

 

[61] Baum C., Hetzler H., Schröders S., Leister T., Seemann W. (2020) A computationally efficient nonlinear foil air bearing model 

for fully coupled, transient rotor dynamic investigations. Tribol. Int. doi: https://doi.org/10.1016/j.triboint.2020.106434 
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direction, while 𝑗 those in the axial. The chosen grid for the bearing model is (𝑁𝑥, 𝑁𝑧) =
(29,10). 

First order derivatives with respect to the spatial coordinates 𝑥, 𝑧 are approximated by 
backward differences: 

𝒑𝒙 =
𝝏𝒑

𝝏𝒙
≅
𝒑𝒊,𝒋 − 𝒑𝒊−𝟏,𝒋

𝜟𝒙
, 𝒑𝒛 =

𝝏𝒑

𝝏𝒛
≅
𝒑𝒊,𝒋 − 𝒑𝒊,𝒋−𝟏

𝜟𝒛
 

(4) 

𝒉𝒙 =
𝝏𝒉

𝝏𝒙
≅
𝒉𝒊 − 𝒉𝒊−𝟏
𝜟𝒙

, 𝒉𝒛 =
𝝏𝒉

𝝏𝒛
≅ 𝟎 

 

 
Fig. 2.2: Exemplary discretization grid for the application of Finite Difference Method in the solution of 

Reynolds equation for compressible flow 

As (4) shows, the dependency of the fluid film height ℎ on the axial direction is neglected. 
This can be figured out easily, since - according to (2) - when it comes to the spatial 
coordinates, the film height depends only on the foil deflection 𝑞. Since the latter is 
irrelevant to z-axis variations (𝑞 = 𝑞(𝜃) = 𝑞(𝑖)), the same applies to the former. 
Therefore, the film height is dependent only on the angle 𝜃 (ℎ = ℎ(𝜃) = ℎ(𝜃𝑖)) which 
explains the chosen discretization concerning ℎ𝑥 and ℎ𝑧. The second order derivatives 
are approximated by central differences, as shown in Eq. (5): 

𝒑𝒙𝒙 =
𝝏𝟐𝒑

𝝏𝒙𝟐
≅
𝒑𝒊+𝟏,𝒋 − 𝟐𝒑𝒊,𝒋 + 𝒑𝒊−𝟏,𝒋

𝜟𝒙𝟐
, 𝒑𝒛𝒛 =

𝝏𝟐𝒑

𝝏𝒛𝟐
≅
𝒑𝒊,𝒋+𝟏 − 𝟐𝒑𝒊,𝒋 + 𝒑𝒊,𝒋−𝟏

𝜟𝒛𝟐
 (5) 

where 

𝜟𝒙 =
𝟐𝝅𝑹

𝑵𝒙
, 𝜟𝒛 =

𝑳

𝑵𝒁
 (6) 

Backward differences are used for the first order derivatives and central differences are 
used for the second order due the greater numerical stability that characterizes the 
former, even though it is a less accurate choice. Eventually, the Reynolds equation, after 
applying the FDM which led to (4) and (5) discretizations, is transformed into Eq. (7): 

𝒉𝟐

𝝁
[𝒉(𝒑𝒙

𝟐 + 𝒑𝒛
𝟐) + 𝟑𝒑𝒉𝒙𝒑𝒙 + 𝒑𝒉(𝒑𝒙𝒙 + 𝒑𝒛𝒛)] (7) 
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−𝟔𝛀𝑹(𝒉𝒑𝒙 + 𝒑𝒉𝒙) − 𝟏𝟐(𝒉𝒑̇ + 𝒑𝒉̇) = 𝟎 

where 𝑝̇ =
𝜕𝑝

𝜕𝑡
 and ℎ̇ =

𝜕ℎ

𝜕𝑡
. 

Eq. (7) can be solved explicitly for the time derivative 𝑝̇ of the pressure at each grid point, 

while the time derivatives ℎ̇ of the film height can be defined analytically by 
differentiating (2): 

𝒉̇ = −𝒙̇𝒋 𝐜𝐨𝐬 𝜽 − 𝒚̇𝒋 𝐬𝐢𝐧 𝜽 + 𝒒̇ (8) 

where 𝑥̇𝑗,𝑦̇𝑗 the time derivatives of the journal’s displacements, and 𝑞̇ the time 

derivative of the foil deflection. Thus, after some math, (7) is written in Eq. (9): 

𝒑̇ =
𝒉

𝟏𝟐𝝁
[𝒉(𝒑𝒙

𝟐 + 𝒑𝒛
𝟐) + 𝟑𝒑𝒉𝒙𝒑𝒙 + 𝒑𝒉(𝒑𝒙𝒙 + 𝒑𝒛𝒛)]  −

𝛀𝑹

𝟐
(𝒑𝒙 +

𝒑

𝒉
𝒉𝒙) −

𝒑

𝒉
𝒉̇ (9) 

Boundary and initial conditions of the problem should be defined. Ambient pressure is 
assumed at the starting angle of the foil, Eq. (10). 

𝒑(𝒕, 𝒙 = 𝝌𝑹, 𝒛) = 𝒑(𝒕, 𝒙 = 𝟐𝝅𝑹 + 𝝌𝑹, 𝒛) = 𝒑𝟎 (10) 

Taking into account the symmetry of the problem, there is another way to express the 
rest of the BC than the typical one. According to the latter, the fluid pressure is assumed 
to be equal to the ambient 𝑝0 at the axial ends, 𝑝(𝑧 = 0) = 𝑝(𝑧 = 𝐿) = 𝑝0. However, 
considering the aforementioned symmetry, the initial domain Π can be reduced to 

domain Π′ = {(𝑥, 𝑧) | 𝜒𝑅 < 𝑥 < 2𝜋𝑅 + 𝜒𝑅, 0 < 𝑧 <
𝐿

2
 }. In the present problem, the 

gap -theoretically mentioned in the beginning of this section and depicted at Fig. 2.1- of 
the top foil is positioned at 𝜒 = 0 angle, which eventually transforms (10) into: 

𝒑(𝒕, 𝒙 = 𝟎, 𝒛) = 𝒑(𝒕, 𝒙 = 𝟐𝝅𝑹, 𝒛) = 𝒑𝟎 (11) 

and determines the final domain Π′ = {(𝑥, 𝑧) | 0 < 𝑥 < 2𝜋𝑅, 0 < 𝑧 <
𝐿

2
 }. Having each 

necessary modification implemented, the last two BCs will be: 

𝒑(𝒕, 𝒙, 𝒛 = 𝟎) = 𝒑𝟎,
𝝏𝒑(𝒕, 𝒙, 𝒛)

𝝏𝒛
|
𝒛=
𝑳
𝟐
= 𝟎 (12) 

Regarding the initial conditions for the pressure and the foil deflection, these are 
expressed in Eq. (13): 

𝒑(𝒕 = 𝟎, 𝒙, 𝒛) = 𝒑𝟎, 𝒒(𝒕 = 𝟎, 𝒙) = 𝟎 (13) 

Assuming that the gas pressure 𝑝 is determined at all grid points (this is explained in 
Section 2.3), the bearing forces 𝐹𝐵𝑥, 𝐹𝐵𝑦 evaluation may follow. The bearing forces, as 

shown subsequently in Chapter 3, signify an important factor in drawing conclusions for 
rotor-dynamic investigations. The GFB’s forces equations are given by: 
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𝑭𝑩𝒙 = −∫ ∫ (𝒑 − 𝒑𝟎) 𝐜𝐨𝐬 𝜽ⅆ𝒛
𝑳

𝟎

ⅆ𝒙
𝟐𝝅𝑹

𝟎

= −∫ 𝟐∫ (𝒑 − 𝒑𝟎) 𝐜𝐨𝐬𝜽ⅆ𝒛

𝑳
𝟐

𝟎

ⅆ𝒙
𝟐𝝅𝑹

𝟎

 (14) 

𝑭𝑩𝒚 = −∫ ∫ (𝒑 − 𝒑𝟎) 𝐬𝐢𝐧 𝜽ⅆ𝒛
𝑳

𝟎

ⅆ𝒙
𝟐𝝅𝑹

𝟎

= −∫ 𝟐∫ (𝒑 − 𝒑𝟎) 𝐬𝐢𝐧 𝜽ⅆ𝒛

𝑳
𝟐

𝟎

ⅆ𝒙
𝟐𝝅𝑹

𝟎

 (15) 

At this point, it is important to mention that it’s quite common in GFBs for sub-ambient 
pressures to arise. These sub-ambient pressures can cause the top foil to separate from 
the bumps into a position in which the pressure on both sides of the pad is equalized. 
Heshmat et al. [62-63] introduced a set of boundary conditions accounting for this 
separation effect. More specifically, a simple Gümbel [64] boundary condition is imposed, 
meaning that sub-ambient pressures are discarded when integrating the pressure in Eqs. 
(14)-(15) to obtain the bearing force components 𝐹𝐵𝑥 , 𝐹𝐵𝑦, essentially leaving the sub-

ambient regions ineffective. In terms of numerical calculations, the assumption made by 
Heshmat [2-3] can be simply explained as following: in case fluid pressure 𝑝 is lower than 
the ambient 𝑝0, then the former should be considered equal to 𝑝0. Then, as the train of 
thought unfolds, a fluid pressure equal to the ambient one would result to the fact that 

the overall bearing force 𝐹𝐵⃗⃗⃗⃗ = 𝐹𝐵𝑥⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝐵𝑦⃗⃗ ⃗⃗ ⃗⃗   should be equal to zero (𝐹𝐵𝑥 = 𝐹𝐵𝑦 = 0), 

which ultimately means that no foil deformation is going to be observed (𝑞 = 0). The 
same assumption about sub-ambient pressures applies to the evaluation of the mean 
pressure 𝑝𝒎 over the length 𝐿 of the bearing, a term introduced in the next Section of 
this Chapter. 

In general, solving the dimensional (DM) form of a problem can be computationally 
expensive. Thus, a dimensionless (DL) expression of the equations of the model can be 
a decisive factor in order to enhance time and memory efficiency, and additionally (and 
most significant) a generic approach for the model and the results. The following 
transformations take place in order to define the dimensionless equations describing the 
problem. Firstly, the independent variables 𝑥, 𝑧 are transformed into: 

𝒙 = 𝜽 =  
𝒙

𝑹
, 𝒛 =

𝒛

𝑳
 (16) 

while the dependent variables of time and pressure into: 

 

[62] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas lubricated compliant thrust bearings, Journal of 

Lubrication Technology 105: 638–646. 

[63] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas-lubricated foil journal bearings, Journal of Lubrication 

Technology 10: 647–655. 

[64] B.J. Hamrock (1994) Fundamentals of Fluid Film Lubrication, McGraw-Hill Series in Mechanical Engineering, 

McGraw-Hill Inc., NewYork. 
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𝝉 =
𝒑𝟎𝒄𝒓

𝟐

𝟔𝝁𝑹𝟐
𝒕 =  𝚲𝒕, 𝒑 =

𝒑

𝒑𝟎
 (17) 

where 𝑝0 defines the ambient pressure. Secondly, the DL angular velocity of the journal 
is introduced: 

𝛀 = 𝚲−𝟏𝛀 (18) 

where Ω is the rotational speed of the journal. The fluid height and foil deflection, as 
well as the journal (and its eccentricity) and disc displacements, are scaled by the 
clearance 𝑐𝑟 which results to their dimensionless form: 

𝒉 =
𝒉

𝒄𝒓
 , 𝒒 =

𝒒

𝒄𝒓
 (19) 

𝒙𝒋 =
𝒙𝒋

𝒄𝒓
, 𝒚

𝒋
=
𝒚𝒋

𝒄𝒓
, 𝜺 =

𝒆

𝒄𝒓
= √𝒙̅𝒋

𝟐 + 𝒚̅𝒋
𝟐, 𝒙𝒅 =

𝒙𝒅
𝒄𝒓
, 𝒚

𝒅
=
𝒚𝒅
𝒄𝒓

 (20) 

After applying the appropriate transformations to (3), the DL Reynolds equation is given 
by: 

𝝏

𝝏𝒙
(𝒑𝒉

𝟑 𝝏𝒑

𝝏𝒙
) + 𝜿𝟐

𝝏

𝝏𝒛
(𝒑𝒉

𝟑 𝝏𝒑

𝝏𝒛
) − 𝛀

𝝏

𝝏𝒙
(𝒑𝒉) − 𝟐

𝝏

𝝏𝝉
(𝒑𝒉) = 𝟎 (21) 

where 

𝜿 = 𝑹/𝑳 

 
(22) 

𝒉  =  𝟏 − 𝒙𝒋 𝐜𝐨𝐬 𝜽 − 𝒚𝒋 𝐬𝐢𝐧 𝜽 + 𝒒 (23) 

on the DL domain Π′ = {(𝑥, 𝑧) | 𝜒 < 𝑥 < 2𝜋 + 𝜒, 0 < 𝑧 <
1

2
 }. 

The respective line of reasoning, followed in the DM form, will take place regarding the 
DL dynamic problem. After applying the transformations (18)-(20) to the first order 
derivatives (4), the DL approximation on them is given: 

𝒑
𝒙
=
𝝏𝒑

𝝏𝒙
≅
𝒑
𝒊,𝒋
− 𝒑

𝒊−𝟏,𝒋

𝜟𝒙
, 𝒑

𝒛
=
𝝏𝒑

𝝏𝒛
≅
𝒑
𝒊,𝒋
− 𝒑

𝒊,𝒋−𝟏

𝜟𝒛
 

(24) 

𝒉𝒙 =
𝝏𝒉

𝝏𝒙
≅
𝒉𝒊 − 𝒉𝒊−𝟏
𝜟𝒙

, 𝒉𝒛 ≅ 𝟎 

while for the second order derivatives (5), approximated by central differences,  

𝒑
𝒙𝒙
=
𝝏𝟐𝒑

𝝏𝒙
𝟐 ≅

𝒑
𝒊+𝟏,𝒋

− 𝟐𝒑
𝒊,𝒋
+ 𝒑

𝒊−𝟏,𝒋

𝜟𝒙
𝟐  

 

(25) 
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𝒑
𝒛𝒛
=
𝝏𝟐𝒑

𝝏𝒛𝟐
≅
𝒑
𝒊,𝒋+𝟏

− 𝟐𝒑
𝒊,𝒋
+ 𝒑

𝒊,𝒋−𝟏

𝜟𝒛
𝟐

 

where, 

𝜟𝒙 =
𝟐𝝅

𝑵𝒙
, 𝜟𝒛 =

𝟏

𝑵𝒛
 (26) 

Therefore, the DL Reynolds equation (21), solved for the time derivative of the fluid 

pressure 𝑝′ =
𝜕𝑝

𝜕𝜏
, will be: 

𝒑′ =
𝟏

𝟐
𝒉[𝒉 (𝒑

𝒙

𝟐
+ 𝒌𝟐𝒑

𝒛

𝟐
) + 𝟑𝒑𝒉𝒙𝒑𝒙 + 𝒑𝒉(𝒑𝒙𝒙 + 𝒑𝒛𝒛)] 

(27) 

−
𝛀𝑹

𝟐
(𝒑

𝒙
+ (𝒑 𝒉⁄ )𝒉𝒙) − (𝒑 𝒉)⁄ 𝒉′ 

where  ℎ′ the DL time derivative of the fluid height defined analytically as: 

𝒉′ = −𝒙𝒋′ 𝐜𝐨𝐬 𝜽 − 𝒚𝒋′ 𝐬𝐢𝐧 𝜽 + 𝒒′ (28) 

Βοundary and initial conditions for the DL form of the problem will be expressed as: 

𝒑(𝝉, 𝒙 = 𝟎, 𝒛) = 𝒑(𝝉, 𝒙 = 𝟐𝝅, 𝒛) = 𝟏 (29) 

𝒑 (𝝉, 𝒙, 𝒛 =
𝟏

𝟐
) = 𝟏,

𝝏

𝝏𝒛
𝒑(𝝉, 𝒙, 𝒛 = 𝟎) = 𝟎 (30) 

𝒑(𝝉 = 𝟎, 𝒙, 𝒛) = 𝒑𝟎′, 𝒒(𝝉 = 𝟎, 𝒛) = 𝒒𝟎′ (31) 

The DL bearing force’s components (𝐹𝐵⃗⃗⃗⃗ = 𝐹𝐵𝑥⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝐵𝑦⃗⃗ ⃗⃗ ⃗⃗  ), after evaluating the DL fluid 

pressure 𝑝, can be determined by: 

𝑭𝑩𝒙 = −∫ ∫ 𝟐(𝒑 − 𝟏) 𝐜𝐨𝐬 𝒙ⅆ𝒛

𝟏
𝟐

𝟎

ⅆ𝒙
𝟐𝝅

𝟎

 (32) 

𝑭𝑩𝒚 = −∫ ∫ 𝟐(𝒑 − 𝟏) 𝐬𝐢𝐧 𝒙ⅆ𝒛

𝟏
𝟐

𝟎

ⅆ𝒙
𝟐𝝅

𝟎

 (33) 

where a multiplication of the components 𝐹𝐵𝑥, 𝐹𝐵𝑦 with 𝑝0𝐿𝑅 provides the respective 

DM components 𝐹𝐵𝑥, 𝐹𝐵𝑦.  

2.1.2 Simplified model for the bump foil structure 

The simplified model for the bump foil structure is depicted at Fig. 2.3 and Fig. 2.4. The 
structure consists of rigid, massless, beam-like elements with one finite dimension in 
axial direction and no coupling of the elements in the circumferential one. The top foil 
of the bearing is not covering a complete cylinder; a single gap can be found at 𝑥 =  𝜒𝑅 
angle where foils are clamped to the bearing housing, see Fig. 2.1. Regarding the 
modelling of the structure, each element is supported by a nonlinear spring and a linear 
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damper in parallel, which are connected with the rigid part of the bearing, the housing. 
These elements are assumed to be only a function of the spatial coordinate 𝑥 and time 
𝑡 (𝑞 = 𝑞(𝑥, 𝑡)). The geometry properties of the foil play a crucial role in determining the 
foil deflection. More specifically, the pitch 𝑠0, the half-length 𝑙0, the thickness 𝑡𝑏 (see Fig. 
2.3) and Poisson’s ratio 𝑣 are vital in order to evaluate the dimensionless compliance 𝛼𝑓 

of the foil.  

 
 

Fig. 2.3: Disc-shaft-journal-gas-top foil-bump foil 

model representation 

Fig. 2.4: Depiction of mean pressure 𝑝𝑚 applied 

over the bearing length 𝐿 and bearing force 𝐹𝐵 

The algebraic relation between compliance per area 𝛼𝑓 and the properties of the foil is 

given by [65]: 

𝜶𝒇 = 𝟐𝒑𝟎 (
𝒍𝟎
𝒕𝒃
)
𝟑

(𝟏 − 𝒗𝟐)
𝒔𝟎
𝒄𝒓𝑬

 (34) 

Therefore, the dimensionless foil stiffness per area can be found: 

𝒌𝒇 =
𝟏

𝜶𝒇
 (35) 

while the dimensional foil stiffness per area can be extracted by multiplying (35) with 

the ratio 
𝑝0
𝑐𝑟⁄ , or -expressed in words- the ratio of the ambient pressure over the 

nominal clearance in (36). 

𝒌𝒇 =
𝒑𝟎
𝜶𝒇𝒄𝒓

 (36) 

In addition, the damping coefficient (per area) 𝑐𝑓 of the bump foil is related to the 

stiffness 𝑘𝑓 (per area) and the loss factor 𝜂 of the foil structure as: 

 

[65]  Bhore S.P., Darpe A.K. (2013) Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J. 

of Sound and Vib. 332:5135-5150 
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𝒄𝒇 = 𝜼𝒌𝒇 (37) 

The ODE connecting the fluid pressure 𝑝 with the foil deflection 𝑞 is [66]: 

𝒄𝒇𝒒̇𝒌 + 𝒌𝒇𝒒𝒌 = 𝒑𝒎 (38) 

which can be solved explicitly for the time derivatives of the deflection 𝑞̇𝑘 as shown 
below: 

𝒒̇𝒌 =
𝒑𝒎 − 𝒌𝒇𝒒𝒌

𝒄𝒇
 (39) 

where 

𝒑𝒎 = ∫ (𝒑 − 𝒑𝟎) ⅆ𝒛

𝑳
𝟐

−
𝑳
𝟐

 (40) 

is the arithmetic mean pressure over the length 𝐿 of the bearing, or - in other words - 
the pressure applied in the axial direction on each element 𝑘 of the foil. If 𝑝𝑚 < 0, which 
indicates that a state of sub-pressure prevails (pressure applied on foil elements lower 
than the ambient 𝑝0), 𝑝𝑚 will be considered equal to zero (𝑝𝑚 = 0), as explained in the 
previous paragraphs. Under these circumstances, (38) will be transformed into: 

𝒄𝒇𝒒̇𝒌 + 𝒌𝒇𝒒𝒌 = 𝟎⟹ 𝒒̇𝒌 = −
𝒌𝒇

𝒄𝒇
𝒒𝒌 (41) 

Due to the symmetry and the domain Π′ transformation, the mean pressure over axial 
direction can be written as: 

𝒑𝒎 = ∫ (𝒑 − 𝒑𝟎) ⅆ𝒛

𝑳
𝟐

−
𝑳
𝟐

= 𝟐∫ (𝒑 − 𝒑𝟎) ⅆ𝒛

𝑳
𝟐

𝟎

 (42) 

With regard to the DL form, having already introduced the dimensionless Reynolds 
equation, the transformed ODE for the bump foil structure model (38) - now on the DL 

domain Π′ = {(𝑥, 𝑧)| 0 < 𝑥 < 2𝜋, 0 < 𝑧 <
1

2
 } - will be: 

𝒄𝒇𝒒𝒌
′
+ 𝒌𝒇𝒒𝒌 = 𝒑𝒎 (43) 

 

[66] Larsen J.S., Santos I.F. (2015) On the nonlinear steady-state response of rigid rotors supported by air foil bearings-

Theory and experiments. J. of Sound and Vib. 346:284-297 
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where 𝑞
𝑘

 the DL foil deflection, see (39), 𝑘𝑓 the DL foil stiffness coefficient, see (35), 𝑐𝑓 

the DL foil damping coefficient given by: 

𝒄𝒇 = 𝜼𝒌𝒇 (44) 

and 𝑝
𝑚

 the averaged DL pressure, defined after the transformations (16) and (17) 

applied to (42): 

𝒑
𝒎
= 𝟐∫ (𝒑 − 𝟏)ⅆ𝒛 =

𝒑𝒎
𝒑𝟎𝑳

𝟏
𝟐

𝟎

 (45) 

Eq. (43) can be solved explicitly for the time derivatives of the deflection 𝑞
𝑘

′
 as shown 

below where 𝑘𝑓 , 𝑐𝑓 , 𝑝𝑚 given by (35), (44) and (45) respectively. 

𝒒
𝒌

′
=
𝒑
𝒎
− 𝒌𝒇𝒒𝒌
𝒄𝒇

 (46) 

Having introduced both the DM and the DL form of the Reynolds equation, the method 
followed in order to evaluate the fluid pressure and the bearing forces, as well as the 
equations describing the foil structure, it would be useful to provide a visualization of 
the behavior of this model. A static problem is considered, meaning that the time 
derivatives of the fluid pressure 𝑝̇, journal’s displacements 𝑥̇𝑗 , 𝑦̇𝑗 , and the foil’s 

deformation 𝑞̇𝑘 will be equal to zero. The DM form of the aforementioned model was 
chosen in order to perform several case-studies, and the appropriate transformations 
took place after the executions were over so as to introduce the DL version of the 
variables, in the figures below. The computation of the results for the static problem was 
achieved by a Newton-Raphson method implemented by the ’fsolve’ solver in Matlab, 
on an i7 processor with 8 GB RAM memory. 

The main object of these simulations, more specifically, is to observe the bearing’s static 
behavior with regard to its foil compliance and the rotational speed of the journal. In 
other words, these make up the changing operational parameters of this process. In 
Table 2.1, the numeric values of the constant parameters of the static problem are 
introduced:  

The comparative analysis was executed for three different cases of the DL compliance 
𝛼𝑓; a stiff foil where 𝛼𝑓 = 0.01, a compliant foil where 𝛼𝑓 = 1, and for the median value 

of compliancy where 𝛼𝑓 = 0.1. For each case, three different values of the rotational 

speed were considered, with the first being Ω = 1650 𝑟/𝑠, the second Ω = 6550 𝑟/𝑠 and 
the last one Ω = 13000 𝑟/𝑠. For ease of reference and the sake of uniformity in the final 
results, it would be more appropriate to express the three values of the rotational speed 
in their DL form. Therefore, for the first case the DL value of the rotational speed would 

be Ω = 1, for the second Ω =  4, and for the third one Ω  =  8. The position of the foil 
fixation was assumed at angle 𝜃 = 90°.  
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Table 2.1: Constant parameters for the case-study analysis in the static problem 

Parameters Values 

Ambient pressure, 𝑝0 (𝑁 𝑚2)⁄  105 

Viscosity, 𝜇 (𝑚𝑁𝑠/𝑚2) 0.018 

Radius of the journal, 𝑅 (𝑚𝑚) 19.086 

Length of the bearing, 𝐿 (𝑚𝑚) 38.172 

Clearance, 𝑐𝑟 (𝜇𝑚) 36 

Loss factor, 𝜂 0.001 

Sommerfeld number 𝑆 range 𝑆𝑚𝑖𝑛  = 0.05    𝑆𝑚𝑖𝑛  = 1.5 

 

The Sommerfeld number 𝑆 (range shown in Table 2.1) is defined by the following 
equation with Ω in (𝑟𝑎𝑑/𝑠) and all the rest magnitudes defined also in SI (𝑃𝑎 ∙ 𝑠,𝑚): 

𝑺 =
𝟏

𝟐𝝅
(
𝑹

𝒄𝒓
)
𝟐 𝝁𝛀𝐋𝐃

𝐖
 (47) 

where W marks the load applied on the bearing. As it can be easily observed, it contains 
all the design parameters of the bearing and one may draw several conclusions when it 
comes to investigating how the journal and foil respond in case of applying different 

loads. Scaling (47) by 𝑝0𝐿𝑅 renders the DL form of the applied load, denoted by 𝑊. Fig. 

2.5 depicts the influence of load 𝑊 in journal’s displacement 𝑦
𝑗
, while Fig. 2.6 the 

Sommerfeld’s number 𝑆 with respect to journal eccentricity 𝜀. The process followed for 
the extraction of these figures consists of several runs, where the compliance 𝛼𝑓 and 

rotational speed Ω were constant (𝛼𝑓 = {0.01, 0.1, 1} and Ω = {1, 4, 8} respectively) 

and 𝑆 varying in the range 𝑆 = [0.05, 1.5].  

   

(a) (b) (c) 

Fig. 2.5: Vertical displacement 𝑦
𝑗
 over load 𝑊; (a) 𝑎𝑓 = 0.01, (b) 𝑎𝑓 = 0.1, (c) 𝑎𝑓 = 1;  

×  Ω = 1,  □   Ω = 4,  ○  Ω = 8 

Eq. (47) demonstrates, the alteration of load 𝑊, is solely dependent on the alteration 
of the inversely proportional variable 𝑆. Starting from 𝑆𝑚𝑎𝑥 = 1.5 in both figures, for 

each case of 𝛼𝑓 and Ω, two types of conclusions can be drawn. First, by comparing the 

three curves that each subfigure contains, one can clearly observe that for a certain 

value of 𝛼𝑓 and by increasing Ω, while 𝑆 remains constant, 𝑊 inevitably rises - 
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affirming (47) - and 𝜀 as well. One of the significant observations, though, is that this 
increase takes place in a non-linear way, proving the non-linearity of this model, 
caused by the induced bearing forces. Second, by examining each one of the three 

subfigures with respect to the other, and for the same arithmetic value of Ω and 𝑆, it 
can be noticed that when 𝛼𝑓 increases, the vertical displacement 𝑦

𝑗
 and eccentricity 

𝜀 may be also increasing, but the DL load 𝑊 follows an opposite path. In other words, 
as the foil becomes more elastic, the eccentricity of the journal and its components 
(horizontal and vertical displacements) increase, while the bearing can take lower 
loads. This can be seen clearly in Fig. 2.7c, where 𝑆 cannot reach lower values than 
𝑆 = 0.2, in comparison to the other two cases (a), (b), due to the fact that the foil is 
too elastic to manage taking higher loads and produce additional results. As the 
rotational speed of the journal rises, the foil is deformed even more, deflecting by two 
or even three times -witnessed in the first case where 𝛼𝑓 = 0.01- the radius clearance 

𝑐𝑟. Regarding the induced pressure, Fig. 2.7 provides visualization of how it is applied 
over the journal and foil structure, forcing the top foil to be deformed by this way 
averting any undesirable contact between the journal and the bearing. Apparently, it 
is maximized at 180° ≤ 𝜃 ≤ 270° in all cases, while it is equal to the ambient pressure 
𝑝0 around the foil fixation point (again at 𝜃 = 90° for the static problem). 

   

(a) (b) (c) 

Fig. 2.6: Journal’s eccentricity 𝜀 over Sommerfeld number 𝑆;                                                                              

(a) 𝑎𝑓 = 0.01, (b) 𝑎𝑓 = 0.1, (c) 𝑎𝑓 = 1; ×  Ω = 1,  □   Ω = 4,  ○  Ω = 8 

A representation of the journal’s locus, i.e. the trajectory that the equilibrium points 
form after each of the aforementioned runs is executed, the foil deformation and the 
pressure distribution, applied between the journal and the top foil, is depicted at Fig. 
2.7. As Sommerfeld number 𝑆 decreases, in all cases, the equilibrium points follow a 
linear path in the beginning.  

In the figures below, a three-dimensional (3D) representation of the pressure 
distribution is given for the three chosen cases of compliance 𝛼𝑓, while the 

dimensionless rotating speed Ω is considered Ω = 4, and a sensitivity analysis takes 
place so as to examine the influence of the discretization grid (𝑁𝑥, 𝑁𝑧) with respect to 
the pressure. More specifically, for three different sets of discretization points, the 
maximum pressure that prompts each time is being compared to the respective 
maximum pressure values that the other two sets give. The line connecting the data 
points is almost parallel to the horizontal semi-axis of the figure, meaning that almost 
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no difference is detected in the arithmetic values of the maximum pressure of each case. 
A discretization grid of (𝑁𝑥, 𝑁𝑧) = (29,10) is considered reliable and will be applied in the 
dynamic problem. 

  

(a) (b) 

 
(c) 

Fig. 2.7: Representation of journal’s locus, foil deformation 𝑞̅ and pressure distribution 𝑝;                                

▬ Clearance circle, --- Foil deformation, ⸺ Pressure                                                                                 

(a) 𝑎𝑓 = 0.01, (b) 𝑎𝑓 = 0.1, (c) 𝑎𝑓 = 1; ×  Ω = 1,  □   Ω = 4,  ○  Ω = 8 

   

(a) (b) (c) 

Fig. 2.8: Pressure 𝑝 with respect to the foil compliance 𝑎𝑓 for Ω = 4; (a) 𝛼𝑓 = 0.01, (b) 𝛼𝑓 = 0.1, (c) 𝛼𝑓 

= 1 
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(a) (b) 

Fig. 2.9: Sensitivity analysis with regard to maximum applied pressure 𝑝
𝑚𝑎𝑥

 over different 

discretization grids; (a) 𝑎𝑓 = 0.01, (b) 𝑎𝑓 = 0.1;  ●  𝑁𝑥 × 𝑁𝑧 = 29 × 10,  ◼   𝑁𝑥 × 𝑁𝑧 = 45 × 14,  

♦  𝑁𝑥 × 𝑁𝑧 = 60 × 20 

2.2 Model of the flexible rotor 

Fig. 2.10 shows a symmetric flexible Jeffcott rotor carrying a disc mass 𝑚𝑑 at its center 
and two journal masses 𝑚𝑗 at its ends. The rotor’s shaft is considered elastic. The 

coordinates 𝑂𝑑(𝑥𝑑, 𝑦𝑑) and 𝑂𝑗(𝑥𝑗 , 𝑦𝑗) represent the geometric centers of the disc and 

the journal respectively and make up the four degrees of freedom (4-DOF) of the rotor.  

 
Fig. 2.10: Representation of a symmetric flexible Jeffcott rotor mounted on two identical bearings 

The equations of the Jeffcott rotor are expressed, based on Fig. 2.3 modelling, and solved 
for the second order derivatives of the journal’s and disc’s displacements: 
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➢ Journal 

𝟐𝒎𝒋𝒙̈𝒋 − 𝒌𝒔(𝒙𝒅 − 𝒙𝒋) =  𝟐𝑭𝑩𝒙 ⇒ 𝒙̈𝒋 =
𝒌𝒔(𝒙𝒅 − 𝒙𝒋)

𝟐𝒎𝒋
+
𝑭𝑩𝒙
𝒎𝒋

 (48) 

𝟐𝒎𝒋𝒚̈𝒋 − 𝒌𝒔(𝒚𝒅 − 𝒚𝒋) =  𝟐𝑭𝑩𝒚 − 𝟐𝒎𝒋𝒈 ⇒ 𝒚̈𝒋 =
𝒌𝒔(𝒚𝒅 − 𝒚𝒋)

𝟐𝒎𝒋
+
𝑭𝑩𝒚

𝒎𝒋
−𝒈 (49) 

➢ Disc 

𝒎𝒅𝒙̈𝒅 + 𝒌𝒔(𝒙𝒅 − 𝒙𝒋) =  𝒎𝒅𝑭𝑼𝒙 ⇒ 𝒙̈𝒅 = −
𝒌𝒔(𝒙𝒅 − 𝒙𝒋)

𝒎𝒅
+ 𝑭𝑼𝒙 (50) 

𝒎𝒅𝒚̈𝒅 + 𝒌𝒔(𝒚𝒅 − 𝒚𝒋) =  𝒎𝒅𝑭𝑼𝒚 −𝒎𝒅𝒈 ⇒ 𝒚̈𝒅 = −
𝒌𝒔(𝒚𝒅 − 𝒚𝒋)

𝒎𝒅
+ 𝑭𝑼𝒚 − 𝒈 (51) 

where 𝑘𝑠 is the shaft stiffness coefficient, 

𝑭𝒊 = 𝑭𝒊(𝒙𝒋, 𝒚𝒋, 𝒙𝒅, 𝒚𝒅, 𝒙̇𝒋, 𝒚̇𝒋, 𝒙̇𝒅, 𝒚̇𝒅, 𝛀, 𝒕), 𝒊 = 𝒙, 𝒚 (52) 

The bearing forces, mentioned in section 2.1.1, and 𝐹𝑈𝑥, 𝐹𝑈𝑦  the components of the 

unbalance force defined as: 

𝑭𝑼𝒙 = 𝐞[𝛀
𝟐 𝒄𝒐𝒔𝝋𝒓 + 𝜶𝒔𝒊𝒏𝝋𝒓] 

(53) 
𝑭𝑼𝒚 = 𝐞[𝛀

𝟐 𝒔𝒊𝒏𝝋𝒓 − 𝜶𝒄𝒐𝒔𝝋𝒓] 

 

with e being the unbalance eccentricity, 𝑔 the gravitational constant, 𝜑𝑟 the journal’s 
angle of rotation, Ω (= 𝜑̇𝑟) the journal’s angular velocity, and 𝜑̈𝑟 (= 𝛼) the journal’s 
angular acceleration. The shaft stiffness coefficient 𝑘𝑠 has a physical dimension of force 
per unit length (𝑁/𝑚), and is given by: 

𝒌𝒔 =
𝒌̅𝒔𝒎𝒅𝒑𝟎

𝟐𝒄𝒓
𝟒

𝟑𝟔𝝁𝟐𝑹𝟒
 (54) 

where 𝑘̅𝑠 is the dimensionless shaft stiffness coefficient and its numerical values will be 
determined in the case-studies performed in chapter 3. 

For the run-up simulations, the angle of rotation -and its derivatives as well- are 
expressed by the following relations where 𝛼 is constant: 

𝝋𝒓 =
𝟏

𝟐
𝜶𝒕𝟐 ⇒ 𝝋̇𝒓 = 𝛀 = 𝜶𝒕 ⇒ 𝝋̈𝒓 = 𝜶 (55) 

Regarding the DL form of the Jeffcott rotor’s model, the transformation process began 
by applying (20) to coordinates 𝑥𝑗 , 𝑦𝑗 , 𝑥𝑑 , 𝑦𝑑 and performing the appropriate 

differentiations in time 𝜏, as shown below in (56)-(57) group of equations: 

𝒙𝒊 =
𝒙𝒊
𝒄𝒓
⇒ 𝒙𝒊

′
=
𝝏

𝝏𝝉
(
𝒙𝒊
𝒄𝒓
) =

𝝏

𝝏𝒕

𝝏𝒕

𝝏𝝉
(
𝒙𝒊
𝒄𝒓
) =

𝝏

𝝏𝒕
(
𝒙𝒊
𝒄𝒓
)
𝝏𝒕

𝝏𝝉
=
𝒙̇𝒊
𝒄𝒓

𝟔𝝁𝑹𝟐

𝒑𝟎𝒄𝒓𝟐
 (56) 
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⇒ 𝒙𝒊
′
=
𝟔𝝁𝑹𝟐

𝒑𝟎𝒄𝒓𝟑
𝒙̇𝒊 ⇒ 𝒙𝒊

′′
=
𝝏𝒙𝒊

′

𝝏𝝉
⇒ 𝒙𝒊

′′
=
𝟑𝟔𝝁𝟐𝑹𝟒

𝒑𝟎𝟐𝒄𝒓𝟓
𝒙̈𝒊 

Similarly, the DL derivatives of 𝑦𝑖 displacements are defined as: 

𝒚
𝒊

′
=
𝟔𝝁𝑹𝟐

𝒑𝟎𝒄𝒓𝟑
𝒚̇𝒊 ⇒ 𝒚

𝒊

′′
=
𝟑𝟔𝝁𝟐𝑹𝟒

𝒑𝟎𝟐𝒄𝒓𝟓
𝒚̈𝒊 (57) 

where 𝑖 = 𝑗, 𝑑. Eventually, the DL equations of the motion of the Jeffcott rotor, again 
solved for the second order terms after applying the afore written transformations to 
(48)-(51), are: 

➢ Journal 

𝒙𝒋
′′
=
𝒎𝒅

𝟐𝒎𝒋
𝒌̅𝒔(𝒙𝒅 − 𝒙𝒋) + 𝝃𝑭𝑩𝒙 (58) 

𝒚
𝒋

′′
=
𝒎𝒅

𝟐𝒎𝒋
𝒌̅𝒔 (𝒚𝒅 − 𝒚𝒋) + 𝝃𝑭𝑩𝒚 − 𝝈 (59) 

➢ Disc 

𝒙𝒅
′′
= −𝒌̅𝒔(𝒙𝒅 − 𝒙𝒋) + 𝑭𝑼𝒙 (60) 

𝒚
𝒅

′′
= −𝒌̅𝒔 (𝒚𝒅 − 𝒚𝒋) + 𝑭𝑼𝒚 − 𝝈 (61) 

where 𝑘̅𝑠 the DL stiffness coefficient of the shaft, 𝐹𝐵𝑥, 𝐹𝐵𝑦 the DL bearing forces given 

by (32)-(33), 𝜉 and 𝜎 DL parameters defined as: 

𝝃 =
𝟑𝟔𝝁𝟐𝑳𝑹𝟓

𝒎𝒋𝒑𝟎𝒄𝒓𝟓
, 𝝈 =

𝟑𝟔𝝁𝟐𝑹𝟒𝒈

𝒑𝟎𝟐𝒄𝒓𝟓
 (62) 

and 

𝑭𝑼𝒙 = 𝛆[𝛀̅
𝟐 𝐜𝐨𝐬 𝝋̅𝒓 + 𝜶̅ 𝐬𝐢𝐧 𝝋̅𝒓] 

(63) 
𝑭𝑼𝒚 = 𝛆[𝛀̅

𝟐 𝐬𝐢𝐧 𝝋̅𝒓 − 𝜶̅ 𝐜𝐨𝐬 𝝋̅𝒓] 

 

the DL unbalance forces, with 𝜀 being the DL unbalance eccentricity given by: 

𝜺 =
𝒆

𝒄𝒓
 (64) 

Ω̅ the DL angular velocity, see (18), and 

𝜶̅ = 𝚲−𝟐𝜶, 𝝋̅𝒓 =
𝟏

𝟐
𝜶̅𝝉𝟐 (65) 

the DL, constant angular acceleration given as a function of the DM angular acceleration 
𝛼, and 𝜑̅𝑟 the angle of rotation respectively. 
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2.3 Composition and solution of the dynamic system 

To summarize, the compliant gas foil bearing model is expressed as an Initial Boundary 
Value Problem described by two coupled nonlinear differential equations; the Reynolds 
equation which is a PDE of the fluid pressure 𝑝 as a function of three independent 
variables -two of them being the spatial coordinates 𝑥, 𝑧 and the third one, the time 𝑡-, 
and an ODE describing the deflection of the foil 𝑞, as a function of time 𝑡. The latter has 
to be solved multiple times in a gas foil bearing, since it takes into account one beam-
like element each time, located in the circumference of the bearing, see Figs. 2.3 and 
2.4. 

The collocation points in which the gas pressure 𝑝𝑖,𝑗 and the foil deflection 𝑞𝑖 are 

evaluated (see Figs. 2.2-2.4), can be now introduced as a state-space vector [2]: 

𝒙𝑩 = [𝒑𝟏,𝟏, … , 𝒑𝑵𝒙,
𝑵𝒛
𝟐
, 𝒒𝟏, … , 𝒒𝑵𝒙]

𝑻, 𝒙𝑩 𝝐 ℝ
(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙 (66) 

Eventually, the discretized bearing model is going to be a nonlinear system of coupled 
ODEs of 1st order: 

𝒙̇𝑩 = 𝒇(𝒙𝑩), 𝒇: ℝ(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙 → ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙 (67) 

where (𝑁𝑥, 𝑁𝑧) = (29,10) and: 

𝒙̇𝑩 = [𝒑̇𝟏,𝟏, … , 𝒑̇𝑵𝒙,
𝑵𝒛
𝟐
, 𝒒̇𝟏, … , 𝒒̇𝑵𝒙]

𝑻 (68) 

The same process is being followed for the Jeffcott rotor model’s ODEs. A state-space 
vector is introduced for the displacements 𝑥𝑗 , 𝑦𝑗 , 𝑥𝑑 , 𝑦𝑑 of the journal and the disc 

respectively, and their time derivatives 𝑥̇𝑗 , 𝑦̇𝑗 , 𝑥̇𝑑 , 𝑦̇𝑑, where: 

 𝒙𝒋 = 𝒚(𝟏), 𝒙̇𝒋 = 𝒙𝒋𝒕 = 𝒚(𝟐),    𝒚𝒋 = 𝒚(𝟑), 𝒚̇𝒋 = 𝒚𝒋𝒕 = 𝒚(𝟒) 
(69) 

 𝒙𝒅 = 𝒚(𝟓),   𝒙̇𝒅 = 𝒙𝒅𝒕 = 𝒚(𝟔),   𝒚𝒅 = 𝒚(𝟕), 𝒚̇𝒅 = 𝒚𝒅𝒕 = 𝒚(𝟖) 

Therefore, the state-space vector of the Jeffcott (4-DOF) rotor is: 

𝒙𝑹 = [𝒙𝒋, 𝒙̇𝒋, 𝒚𝒋, 𝒚̇𝒋, 𝒙𝒅, 𝒙̇𝒅, 𝒚𝒅, 𝒚̇𝒅]
𝑻 

𝒙𝑹 𝝐 ℝ
𝟖 (70) 

= [𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), 𝒚(𝟒), 𝒚(𝟓), 𝒚(𝟔), 𝒚(𝟕), 𝒚(𝟖)]𝑻 

Eqs. (48)-(51) are now presented -with respect to state-space variables 𝑦(𝑛), where 𝑛 =
1, … ,8- as first order ODEs. Specifically: 

𝒚̇(𝟏) = 𝒚(𝟐), 𝒚̇(𝟐) =
𝒌𝒔(𝒚(𝟓) − 𝒚(𝟏))

𝟐𝒎𝒋
+
𝑭𝑩𝒙
𝒎𝒋

 (71) 

𝒚̇(𝟑) = 𝒚(𝟒), 𝒚̇(𝟒) =
𝒌𝒔(𝒚(𝟕) − 𝒚(𝟑))

𝟐𝒎𝒋
+
𝑭𝑩𝒚

𝒎𝒋
− 𝒈 (72) 

𝒚̇(𝟓) = 𝒚(𝟔), 𝒚̇(𝟔) = −
𝒌𝒔(𝒚(𝟓) − 𝒚(𝟏))

𝒎𝒅
+
𝑭𝑼𝒙
𝒎𝒅

 (73) 
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𝒚̇(𝟕) = 𝒚(𝟖), 𝒚̇(𝟖) = −
𝒌𝒔(𝒚(𝟕) − 𝒚(𝟑))

𝒎𝒅
+
𝑭𝑼𝒚

𝒎𝒅
− 𝒈 (74) 

The bearing forces 𝐹𝐵𝑥. 𝐹𝐵𝑦 are evaluated by applying numerical integration of the 

pressure distribution which is defined at all the respective grid points. The (71)-(74) 
group of ODEs can be written in matrix form as: 

𝒙̇𝑹 = 𝒇(𝒙𝑹), 𝒇: ℝ𝟖 → ℝ𝟖 (75) 

Eventually, both for the bearing and the rotor model, an overall state-vector can be 
introduced: 

𝒙𝑩𝑹 = [𝒙𝑩
𝑻 , 𝒙𝑹

𝑻]𝑻, 𝒙𝑩𝑹 𝝐 ℝ
(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 (76) 

and the overall model can be represented in matrix form as: 

𝒙̇𝑩𝑹 = 𝒇(𝒙𝑩𝑹), 𝒇: ℝ(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 → ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 (77) 

To conclude, the nodes representing the fluid pressure 𝑝𝑖,𝑗 and the foil deflection 𝑞𝑖 can 

be introduced as a dimensionless state vector and the bearing model can be written as 
a nonlinear system of dimensionless, coupled first order ODEs, shown below: 

𝒙𝑩
′
= 𝒇(𝒙𝑩), 𝒇: ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙 → ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙 (78) 

where, (𝑁𝑥, 𝑁𝑧) = (29,10) and 

𝒙𝑩 = [𝒑𝟏,𝟏, … , 𝒑𝑵𝒙,
𝑵𝒛
𝟐
, 𝒒
𝟏
, … , 𝒒

𝑵𝒙
]𝑻, 𝒙𝑩 𝝐 ℝ

(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙 (79) 

Regarding the rotor model, the state vector for the eccentricity of the journal and the 

disc, in combination with their time derivatives ( ́ ) (with respect to dimensionless 

time), is given by 

𝒙𝑹 = [𝒙𝒋, 𝒙𝒋
′
, 𝒚
𝒋
, 𝒚
𝒋

′
, 𝒙𝒅, 𝒙𝒅

′
, 𝒚
𝒅
, 𝒚
𝒅

′
]𝑻 

𝒙𝑹 𝝐 ℝ
𝟖 (80) 

= [𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), 𝒚(𝟒), 𝒚(𝟓), 𝒚(𝟔), 𝒚(𝟕), 𝒚(𝟖)]𝑻 

Eqs. (44)-(47) can now be written 

𝒚́(𝟏) = 𝒚(𝟐), 𝒚́(𝟐) =
𝒎𝒅

𝟐𝒎𝒋
𝒌̅𝒔(𝒚(𝟓) − 𝒚(𝟏)) + 𝛏 𝑭𝑩𝒙 (81) 

𝒚́(𝟑) = 𝒚(𝟒), 𝒚́(𝟒) =
𝒎𝒅

𝟐𝒎𝒋
𝒌̅𝒔(𝒚(𝟕) − 𝒚(𝟑)) + 𝛏 𝑭𝑩𝒚 − 𝛔 (82) 

𝒚́(𝟓) = 𝒚(𝟔), 𝒚́(𝟔) = −𝒌̅𝒔(𝒚(𝟓) − 𝒚(𝟏)) + 𝑭𝑼𝒙 (83) 

𝒚́(𝟕) = 𝒚(𝟖), 𝒚́(𝟖) = −𝒌̅𝒔(𝒚(𝟕) − 𝒚(𝟑)) + 𝑭𝑼𝒚 − 𝝈 (84) 



Diploma Thesis – Ioannis G. Raptopoulos 

 
35 

 

 

March 5, 2021 

The (81)-(84) group of ODEs can be written in matrix form as: 

𝒙𝑹
′
= 𝒇(𝒙𝑹), 𝒇: ℝ𝟖 → ℝ𝟖 (85) 

and the overall state-vector of the dimensionless problem, which combines both 
bearing’s and rotor’s state vectors, will be: 

𝒙𝑩𝑹 = [𝒙𝑩
𝑻
, 𝒙𝑹
𝑻
]𝑻, 𝒙𝑩𝑹 𝝐 ℝ

(
𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 (86) 

The overall model represented by a set of coupled nonlinear first order ODEs is defined 
as: 

𝒙𝑩𝑹
′
= 𝒇(𝒙𝑩𝑹), 𝒇: ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 → ℝ(

𝑵𝒛
𝟐
+𝟏)𝑵𝒙+𝟖 (87) 

The system in Eq. (87) can be very stiff, depending on the shaft properties and bump foil 
properties, and for that reason the MATLAB ode15s solver [67] is used for the evaluation 
of response through time integration. The time response presents interesting features 
due to the nonlinearity introduced by the gas forces. The specific system presents similar 
response for both low and high bump foil damping, respectively shown in Figs. 2.11 and 
2.12. This is discussed in detail in the following Section where the quality of motion is 
analyzed. In Figs. 2.11 and 2.12 one may notice that different types of bifurcations occur 
as the parameter of rotating speed changes.  Applying the specifications of Table 2.2 the 
time response of the system in Fig. 2.10 is evaluated and presented in Fig. 2.11 for foil 
loss factor 𝜂 = 0.003, and in Fig. 2.12 for foil loss factor 𝜂 = 0.1. 

 

[67] Mark W. Reichelt and Lawrence F. Shampine, 8-30-94 Copyright 1984-2014 The MathWorks, Inc. 

 



Diploma Thesis – Ioannis G. Raptopoulos 

 
36 

 

 

March 5, 2021 

 
Fig. 2.11: Time response evaluated during the run-up of the unbalanced system with the specifications of 

Table 2.2 and foil loss factor 𝜂 = 0.003. Respective bifurcation type is shown in the upper left chart; SN: 

Saddle Node (fold) bifurcation 

 

Table 2.2: parameters used in the run-up simulation of the system of Figure 2.10. Bearing 

specifications are considered as in Table 2.1 

Parameter Value Parameter Value 

Shaft dimensionless stiffness, 𝑘̅𝑠 1 Disc mass 𝑚𝑑 3 kg 

Dimensionless foil compliance, 𝑎̅𝑓 0.01 Journal mass  𝑚𝑗 0.3 kg 

Rotating acceleration 𝑎 20 rad/s2 Unbalance 𝑚𝑑 ∙ e 7.5∙10-6 kgm 

Such quality of response is usual for high-speed rotors on gas foil bearings and the 
engineer should assess whether the integrity of the system is compromised regarding 
the type of instability appearing with the respective motion. A rotating system without 
the presence of bifurcation during run-up and run-down would render the optimum 
design. However, this is not always possible and many rotating systems have to operate 
reliably with the presence of bifurcations, e.g. turbosystems. A large variety of time 
response with respect of design properties is discussed in Chapter 3. 
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Fig. 2.12: Time response evaluated during the run-up of the unbalanced system with the specifications of 

Table 2.2 and foil loss factor 𝜂 = 0.1. Respective bifurcation type is shown in the upper left chart; SN: 

Saddle Node (fold) bifurcation, NS: Neimark Sacker bifurcation 

 

 

2.4 Quality of Motion and Stability  

2.4.1 Study of the quality of motion 

The stability of the autonomous system (system with a perfectly balanced rotor) is 
studied in this Section. Regarding the rotating speed (bifurcation parameter) and the 
design properties (foil properties and shaft properties), the system may develop four 
types of motions: 

1) Asymptotically stable motion around a fixed-point equilibrium 

2) Unstable motion around a fixed-point equilibrium 

3) Orbital asymptotically stable motion around a limit cycle (stability envelop) 

4) Unstable motion around a limit cycle (stability envelop) 
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In this work, the first two cases are studied in regards of stability. However, all cases are 
presented in time response evaluated in the next Chapter, and in this Section with 
indicative results.  

In general, stable motion around fixed-point equilibrium is the desired status for a 
rotating system; this is not always achieved, or possible, though. Considering the time 
response depicted in Fig. 2.12 the following events are noticed in sequence of increasing 
speed regarding stability. The system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 
(see Fig. 2.12 for time response) is examined in continue. Fig. 2.21 at the end of the 
Section may be also considered simultaneously with the figures mentioned in continue. 

When the system rotates with low speed Ω < 1200 𝑟𝑎𝑑/𝑠 , the system experiences 
stable motions around equilibrium for any initial condition, see Fig. 2.13 (and Fig. 2.21). 
The trajectory of the autonomous system will asymptotically converge at a fixed point; 
see Fig. 2.13b, while the unbalanced system (non-autonomous) will develop stable orbits 
around the equilibrium (fixed point). The higher the unbalance is, the larger the orbital 
motion gets, see Fig. 2.13a. Furthermore, the system may experience a resonance due 
to the stiffness and mass properties of the shaft which place a critical speed in the 
specific speed domain. 

  
(a) (b) 

Fig. 2.13: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 at 

Ω = 500 𝑟𝑎𝑑/𝑠. a) non-autonomous system released from bearing center for two different unbalance 

magnitudes. b) autonomous system (perfectly balanced) released from different initial positions. 
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(a) (b) 

Fig. 2.14: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 at 

Ω = 1300 𝑟𝑎𝑑/𝑠. a) non-autonomous system released from bearing center for two different unbalance 

magnitudes. b) autonomous system (perfectly balanced) released from initial position.  

As the system increases speed, and approximately after Ω = 1200 𝑟𝑎𝑑/𝑠 (see Fig. 2.12 
and Fig. 2.21), a Hopf-Andronov bifurcation occurs and stable limit cycles are generated, 
see Fig. 2.14b for Ω = 1300 𝑟𝑎𝑑/𝑠 . At this speed, a pair of complex eigenvalues of the 
Jacobian matrix of the system crosses the imaginary axis and the fixed-point equilibrium 
is not stable anymore. The limit cycles attract the trajectory of the system when released 
from different initial positions. However, as in the case of rotating speed Ω =
500 𝑟𝑎𝑑/𝑠, a stable branch of solutions may appear close to the clearance circle. The 
motion of the unbalance system is periodic with period 2𝑇𝑑, where 𝑇𝑑 = 2𝜋/1300 is 
the driving period of the system (unbalance force period). This is a phase locked motion 
as verified from the Poincaré maps in continue. The autonomous system executes stable 
limit cycle motions when released from different initial conditions, see Fig. 2.14b. The 
period of the limit cycle motions is close to 2𝑇𝑑 (higher than), and can be evaluated using 
advanced tools for the study of periodic motions, like e.g. shooting method.  

  
(a) (b) 

Fig. 2.15: Representation of a) supercritical, and b) subcritical Hopf bifurcation 

It should be mentioned that a Hopf bifurcation does not always generate stable limit 
cycles. The case of unstable limit cycles after a Hopf bifurcation is also likely in rotating 
systems; this is the case of subcritical Hopf bifurcations. Both cases may be realized with 
Fig. 2.15. At the case of subcritical Hopf bifurcation, the system motion is limited only by 
physical constraints (rotor stator contact) and its operation cannot be sustained at most 
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cases. However, this is not the case here, but it will be included in Chapter 3. In Fig. 2.15 
one can see the definition of Ω𝑡ℎwhere the Hopf bifurcation occurs. This is the threshold 
speed of instability and in this work it will refer to the rotating speed where the first 
Hopf bifurcation occurs. 

Increasing speed further, at approximately Ω = 1350 𝑟𝑎𝑑/𝑠, see Fig. 2.12 (and Fig. 
2.21), another Hopf bifurcation occurs and the system obtains again stable fixed points. 
This is not the most common scenario in rotating systems though. Usually, the Hopf 
bifurcation is followed by a saddle node bifurcation as described in continue. 

  
(a) (b) 

Fig. 2.16: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 at 

Ω = 1600 𝑟𝑎𝑑/𝑠. (a) non-autonomous system released from bearing center for two different unbalance 

magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions. 

Increasing the rotating speed further, at approximately Ω = 1500 𝑟𝑎𝑑/𝑠, another Hopf 
bifurcation occurs, and like before, stable limit cycles are generated; this is a case of 
supercritical Hopf bifurcation. At this case it is clear that the system motion may 
attracted either by the stable limit cycle when the initial condition is close to it, e.g. at 
the bearing center, see Fig. 2.16b (when the speed is slightly higher Ω = 1600 𝑟𝑎𝑑/𝑠), 
or by another branch of solutions existing close to clearance circle, when the initial 
condition is close to it, see Fig. 2.16b (and Fig. 2.21). The unbalance magnitude will 
render the respective motion in the non-autonomous system, see Fig. 2.16a, for the 
same initial conditions. Quasi-periodic motions are developed in the non-autonomous 
system for both cases of unbalance; this will be shown in continue with the use of 
Poincaré maps. 

Increasing rotating speed at approximately Ω = 1650 𝑟𝑎𝑑/𝑠 a saddle node bifurcation 
occurs and the system will develop only one type of trajectory, regardless the initial 
position of the balanced system, see Fig. 2.17b, or the unbalance magnitude, see Fig. 
2.17a, for the speed of Ω = 1800 𝑟𝑎𝑑/𝑠 (see also Fig. 2.21). The quasi-periodic motion 
at this case is close to the clearance circle, see Fig. 2.17, and the system is supposed to 
suffer from unstable whirling. This is the quality of motion for every rotating speed lower 
than Ω = 2100 𝑟𝑎𝑑/𝑠, see Fig. 2.12.  
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At approximately Ω = 2100 𝑟𝑎𝑑/𝑠 another type of bifurcation, the Neimark-Sacker (NS) 
bifurcation occurs. This bifurcation generates limit cycles which are bounded (attracted) 
from a torus-like shape of solution branches. Neimark-Sacker bifurcation can be 
supercritical or subcritical. Like in Hopf bifurcation, stable limit cycles will be generated 
after a supercritical Neimark-Sacker bifurcation, while unstable limit cycles will be 
generated after a subcritical Neimark-Sacker bifurcation. The motion is depicted in Fig. 
2.18 for Ω = 2200 𝑟𝑎𝑑/𝑠. 

 

  
(a) (b) 

Fig. 2.17: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 at 

Ω = 1800 𝑟𝑎𝑑/𝑠. (a) non-autonomous system released from bearing center for two different unbalance 

magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions. 

  
(a) (b) 

Fig. 2.18: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor 𝜂 = 0.1 at 

Ω = 2200 𝑟𝑎𝑑/𝑠. (a) non-autonomous system released from bearing center for two different unbalance 

magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions. 

After a Neimark-Sacker bifurcation, the system can hardly retain operation and integrity, 
and operation should be tripped. The motion can be described as whip (referring to 
respective oil-whip instability in oil film bearings) and the most likely scenario is that 
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rotor-stator contact will be taking place as the journal rotates. The motion may become 
chaotic as is shown in continue. 

The respective Poincaré maps of the trajectories depicted in Figs. 2.13a-2.14a and Figs. 
2.16a-2.18a are evaluated and presented in Fig. 2.19 when physical coordinates are 
used, and in Fig. 2.20 when state space coordinates are applied. At Ω = 500 𝑟𝑎𝑑/𝑠 
periodic motions of period 1𝑇𝑑 are detected and Poincaré maps consist of one point, see 
Figs. 2.19a and 2.20a. At Ω = 1300 𝑟𝑎𝑑/𝑠 periodic motions of period 2𝑇𝑑 are detected 
and Poincaré maps consist of two points, see Figs. 2.19b and 2.20b. These are examples 
of so-called phase-locked motions. 

   

(a) (b) (c) 

 

  

 

 (d) (e)  

Fig. 2.19: Poincaré map of physical coordinates of the journal orbits evaluated in Figs. 13-17. (a) Ω =
500 𝑟𝑎𝑑/𝑠 , (b) Ω = 1300 𝑟𝑎𝑑/𝑠 , (c) Ω = 1600 𝑟𝑎𝑑/𝑠 , (d) Ω = 1800 𝑟𝑎𝑑/𝑠 , (e) Ω = 2200 𝑟𝑎𝑑/𝑠 

   

(a) (b) (c) 
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 (d) (e)  

Fig. 2.20: Poincaré map of state space coordinates of the journal orbits evaluated in Figs. 13-17. (a) Ω =
500 𝑟𝑎𝑑/𝑠 , (b) Ω = 1300 𝑟𝑎𝑑/𝑠 , (c) Ω = 1600 𝑟𝑎𝑑/𝑠 , (d) Ω = 1800 𝑟𝑎𝑑/𝑠 , (e) Ω = 2200 𝑟𝑎𝑑/𝑠 

At Ω = 1600 𝑟𝑎𝑑/𝑠 quasi-periodic motions are detected and Poincaré maps consist of 
points (not clearly discretized) in a geometrically defined shape, see Figs. 2.19c and 
2.20c. The same quality of quasi-periodic motion is detected also for the motion at Ω =
1800 𝑟𝑎𝑑/𝑠, see Figs. 2.19d and 2.20d. Chaotic motion is identified at Ω = 2200 𝑟𝑎𝑑/𝑠 
where Poincaré maps consist of arbitrarily located points in non-geometrically defined 
shape, see Figs. 2.19e and 2.20e. This is better realized in Fig. 2.20e where the 
characteristic cloud appears. However, chaotic motion may be interpreted also in a 
Poincaré map with geometrically defined shape. 

  

(a) (b) 

Fig. 2.21: (a) Limit cycles evaluated for the non-autonomous (unbalanced) system; (b) max-min values in 

vertical plane and respective type of bifurcation 

 

2.4.2 Stability assessment of fixed-point equilibrium 

The system of Eq. (77), is studied on the stability of its fixed-point equilibrium. The size 

of the system is n n , where ( )/ 1 82z xNn N+ +=  , and the bifurcation parameter is . 

Therefore, the system is repeated for convenience as in Eq. (88). 
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𝒙̇𝒏×𝟏 = 𝒇𝒏×𝟏(𝒙𝒏×𝟏, 𝜴)      (88) 

At first, the equilibrium points of the system ( )*x  (critical points, or fixed points) have 

to be evaluated for the different values of , using a numerical method, e.g. Newton-
Raphson. For each fixed point, the Jacobian matrix J is defined in Eq. (89). The 
eigenvalues have to be evaluated simultaneously and then to be ordered as 

( ) ( ) ( ) ( )1,2 3,4 5,6 1,n nRe Re Re Re    −   . 

The interest is to find the th  for which the eigenvalues of ( )thJ contain a pair

( ) ( )1,2 a i bth th =     where ( ) ( )1,2 a Ω 0thRe  = = . 
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    (89) 

 

The reader has to check whether ( )( ) ( )1

1

Ω Ω

  a

th

th thRe Re



=

 
  = =  

  

and ( )b th are non-

zero quantities, and ( ) 0kRe   for 3,4,...k n= . If the above are satisfied, then the system 

undergoes a Hopf-Andronov (or simply Hopf) bifurcation as  crosses th . 

Several systems have been assessed at their fixed-point equilibrium, as described above, 

for several design properties of shaft stiffness 𝑘̄𝑠, bump foil stiffness 𝑎̄𝑓, and bump foil 

loss factor 𝜂. More specifically, three cases of shaft stiffness are examined: 𝑘̄𝑠 = 0.1 for 

slender rotor with high elasticity (corresponding to slenderness ratio 𝐿/𝐷 > 10), 𝑘̄𝑠 =
1for intermediate shaft elasticity (corresponding to slenderness ratio 1 < 𝐿/𝐷 < 10), 

and 𝑘̄𝑠 = 10 for low shaft elasticity (corresponding to a rigid rotor). Several values for 
𝑎̄𝑓 at the range 0.01 < 𝑎̄𝑓 < 1 (𝑎̄𝑓 = 0.01 corresponds to rigid foil), and for loss factor 

𝜂 at the range 10−4 < 𝜂 < 1 are selected at the case study. The corresponding results 
are depicted in Fig. 2.21 where it is depicted that for specific properties of bump foil 
properties, the extension of threshold speed of instability to higher values is feasible. 

The extension may reach the value of 10 times in the system with 𝑘̄𝑠 = 1, or less for 

other cases of shaft stiffness; consider that for the case of 𝑘̄𝑠 = 0.1 some numerical 
issues were noticed and the graph Fig. 2.21a does not appear correctly. It is valuable to 
note that the extension of instability threshold speed appears for similar values of bump 
foil stiffness and loss factor at all three shafts checked. 
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(a) (b) (c) 

Fig. 2.22: Instability threshold speed Ω̅𝑡ℎ as a function of bump foil compliance 𝑎̅𝑓 and loss factor 𝜂 for 

different shaft stiffness a) 𝑘̅𝑠 = 0.1 , b) 𝑘̅𝑠 = 1 , and c) 𝑘̅𝑠 = 10 
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3 RESULTS FOR UNBALANCE RESPONSE 

In this chapter, several simulations are performed in order to observe the influence of 
the bump foil design parameters in regards to the stability of the non-autonomous 
(unbalanced) system. As key parameters for these studies are considered the rotating 
speed Ω and two of the selected design variables; the dimensionless foil compliance 

𝛼𝑓 = 1/𝑘̅𝑓 and the foil structure loss factor 𝜂. The results are obtained in two operating 

conditions of the Jeffcott rotor system, as mentioned before; first, for a linearly varying 
Ω =  𝑎𝑡 -where 𝑎 = 20 𝑟𝑎𝑑/𝑠- and second, for a stepped varying rotating speed for a 
specific time domain per step (500 driving periods per each value of rotating speed). In 
both cases, the initial rotating speed is assumed at Ω = 500 𝑟𝑎𝑑/𝑠 while the maximum 
speed is supposed to exceed Ω = 2000 𝑟𝑎𝑑/𝑠 depending on the two design parameters 
𝛼𝑓 , and 𝜂, and the respective quality of motion that the solver is able to approach. 

Different values of unbalance magnitude are applied in several cases. 

Table 3.1: Changing parameters for the simulations executed in chapter 3. 

Shaft 
dimensionless 

stiffness, 𝑘̅𝑠 

Foil dimensionless 
compliance, 𝛼𝑓 

Foil loss factor, 𝜂 
Unbalance 

eccentricity, 𝑒 

  A: 𝑘̅𝑠 = 0.1   1:  𝛼𝑓 = 0.01     a:  𝜂 = 0.003 1: 𝑒 = 2.5 ∙ 10−8 m 

  B: 𝑘̅𝑠 = 1   2:  𝛼𝑓 = 0.1     b:  𝜂 = 0.01 2: 𝑒 = 2.5 ∙ 10−6 m 

  C: 𝑘̅𝑠 = 10   3:  𝛼𝑓 = 1     c:  𝜂 = 0.1  

In terms of indication, for two different values of unbalance eccentricity 𝑒 =

0.5 × 10−2 × 𝑒𝑖𝑠𝑜 and 𝑒 = 0.5 × 𝑒𝑖𝑠𝑜 -where 𝑒𝑖𝑠𝑜 = 5 × 10
−6 𝑚- and 𝑘̅𝑠 = 1, 𝛼𝑓 =

0.01, 𝜂 = 0.01, the transient response together with its time-frequency decomposition 
diagram is evaluated during the run-up of each unbalanced system. Simultaneously, the 
response together with the respective bifurcation diagrams is obtained via the stepped 
run-up simulations. Again, it is important to note that the existence of a steady state 
response is a necessary condition in order to produce those bifurcation diagrams, hence 
the last 100 driving periods per speed step are taken into account. Furthermore, an 
additional plot per case will be introduced, containing orbit, Poincaré and FFT diagrams 
for different values of rotating speed Ω in order to examine thoroughly the motions that 
each case renders. The aforementioned evaluations are depicted in Figs. 3.1-3.4. 

As rotating speed increases for the first of the two cases, see Fig. 3.1, where 𝑒 =
0.5 × 𝑒𝑖𝑠𝑜, and approximately at Ω = 1250 rad/s, a Hopf-Andronov bifurcation takes 
place, while by increasing the system’s speed further, around Ω = 1350 rad/s, another 
Hopf bifurcation occurs and the system returns to stable fixed points. One may notice 
that the system’s behavior is almost identical with the one examined in section 2.4, with 
the sole difference between these two systems being the arithmetic value of the foil loss 
factor 𝜂, currently 𝜂 = 0.01 and previously 𝜂 = 0.1. Increasing the rotating speed 
further, at approximately Ω = 1550 rad/s, a Hopf bifurcation occurs once again and 
stable limit cycles are induced. At  Ω = 1700 rad/s, a saddle node bifurcation occurs, 
resulting to the development of one type of trajectory for every speed value until 
approximately Ω = 2150 rad/s, as will be shown in continue in Fig. 3.2. Eventually, by 
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the time the rotating speed exceeds Ω = 2150 rad/s, the system experiences a 
Neimark-Sacker bifurcation where whip motion is observed, most likely leading to 
journal-bearing contact. It is expected that the system will not retain its operation after 
a Neimark-Sacker bifurcation due to the violent motions of the journal. 

  

  

Fig. 3.1: (left) Transient response and time-frequency decomposition of the journal’s vertical 

displacement 𝑦
𝑗
. (right) Response of the vertical displacement 𝑦

𝑗
 after a stepped run-up execution and 

bifurcation diagram. Parameters: 𝑒 = 0.5 × 𝑒𝑖𝑠𝑜 = 2.5 × 10
−6 𝑚, 𝐾𝑠 = 1, 𝛼𝑓 = 0.01, 𝜂 = 0.01 (case 

B1b2) 

Fig. 3.2 shows the orbit, Poincaré and FFT diagrams of the vertical displacement of the 
journal at various rotating speeds, for the first case of the unbalance eccentricity 𝑒 =
0.5 × 𝑒𝑖𝑠𝑜. At speed Ω = 1000 rad/s, the response of the journal is of period 1𝑇𝑑, 
confirmed by the respective Poincaré map, see Fig. 3.2a, which shows a single point. A 
super-synchronous vibration is detected from the FFT plot, which shows two distinct 
peaks; one at the synchronous speed and another at a super-synchronous frequency. 
These super-synchronous vibrations can be also detected in the STFT diagram, shown in 
Fig. 3.1. According to that, super-synchronous vibrations are expected throughout the 
whole duration of the executed simulation, while sub-synchronous vibrations should be 
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expected too after a certain point in time. At speed Ω = 1250 rad/s, the Hopf 
bifurcation mentioned in the previous paragraph occurs and the motion becomes period 
2𝑇𝑑. The Poincaré map shows two distinct points, while the FFT plot shows four distinct 
peaks; one at the synchronous speed, two at super-synchronous frequencies, and for 
first time one major component at a sub-synchronous frequency.  

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 
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Fig. 3.2: Orbit, Poincaré and FFT diagrams for different speed Ω at unbalance 𝑒 = 0.5 × 𝑒𝑖𝑠𝑜 =

2.5 × 10−6 𝑚: (a) Ω = 1000 𝑟𝑎𝑑/𝑠, (b) Ω = 1250 𝑟𝑎𝑑/𝑠, (c) Ω = 1350 𝑟𝑎𝑑/𝑠, (d) Ω = 1550 𝑟𝑎𝑑/𝑠, (e) 

Ω = 1650 𝑟𝑎𝑑/𝑠, (f) Ω = 1700 𝑟𝑎𝑑/𝑠, (g) Ω = 1900 𝑟𝑎𝑑/𝑠, (h) Ω = 2100 𝑟𝑎𝑑/𝑠, (i) Ω = 2150 𝑟𝑎𝑑/𝑠 

At a slightly higher speed  Ω = 1350 rad/s, the motion returns to the period 1𝑇𝑑 state 
(after a 2nd Hopf bifurcation has taken place), and a larger orbital motion is detected in 
comparison to the previous one at Ω = 1000 rad/s. At the next examined speed Ω =
1550 rad/s, the motion converts to quasi-periodic; a conclusion then can be drawn via 
the Poincaré map depicted in Fig. 3.2d where the points form a geometrically defined 
shape but the points cannot be distinguished, affirming the quasi-periodic nature of the 
motion. The FFT plot shows a multitude of sub-synchronous and super-synchronous 
vibrations that arise at this rotating speed. 

The same quality of a quasi-periodic motion takes place at speed Ω = 1650 rad/s, see 
Fig. 3.2e. With a slight increase in rotating speed, specifically at Ω = 1700 rad/s, the 
system experiences a saddle node bifurcation and a period 2𝑇𝑑 motion is observed, with 
the orbit extending up to the clearance circle. The same quality of motion applies until 
approximately Ω = 2150 rad/s. By the time speed exceeds this value, the motion 
converts to quasi-periodic and, if further increase of speed takes place, it becomes 
chaotic. 
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Fig. 3.3: (left) Transient response and time-frequency decomposition of the journal’s vertical 

displacement 𝑦
𝑗
; (right) Response of the vertical displacement 𝑦

𝑗
 after a stepped run-up execution and 

bifurcation diagram; Parameters: 𝑒 = 0.5 × 10−2 × 𝑒𝑖𝑠𝑜 = 2.5 × 10
−8 𝑚, 𝐾𝑠 = 1, 𝛼𝑓 = 0.01, 𝜂 = 0.01 

(case B1b1) 

The vertical response of the journal with the corresponding STFT and bifurcation 
diagrams, for a lower unbalance eccentricity 𝑒 = 0.5 × 10−2 × 𝑒𝑖𝑠𝑜 = 2.5 × 10

−8 is 
depicted in Fig. 3.3. Both a run-up and a stepped run-up were executed in order to obtain 
them, following the same process as in the previous case. One may claim that there is 
no pluralism detected in this case’s motions in comparison to the first one, where the 
unbalance eccentricity is a hundred times greater than the current. When the system 
rotates with speed lower than  Ω = 1850 rad/s, stable motions around specific 
equilibrium point/points are observed, with few exceptions breaking this norm, as will 
be shown subsequently, where quasi-periodic motions are developed. At Ω =
1850 rad/s, a supercritical Hopf-Andronov bifurcation occurs, with stable limit cycles 
being generated right after, inducing multi-periodic and quasi-periodic motions that will 
be shown and explained subsequently. 

The respective orbits, Poincaré maps and FFTs for the second case are depicted below, 
in Fig. 3.4. At rotating speed Ω = 1000 𝑟𝑎𝑑/𝑠, the response of the journal’s center is 
multi-periodic. More accurately, a period 3𝑇𝑑 motion is observed from the Poincaré 
map, which shows three distinct points. The FFT plot shows that, except for the 
synchronous, both subsynchronous and supersynchronous frequency vibrations arise. 
At speed Ω = 1200 𝑟𝑎𝑑/𝑠, the journal’s center vibration is synchronous with period 
1𝑇𝑑, as a single point and single peak suggest in Poincaré and FFT maps respectively, see 
Fig. 3.4b. As the system increases speed, at approximately Ω = 1500 𝑟𝑎𝑑/𝑠, a quasi-
periodic motion is unveiled, while a synchronous and of a higher amplitude 
subsynchronous vibrations are noticed from the respective FFT diagram. Right after, the 
system obtains again stable fixed points, until the speed of the system reaches Ω =
1700 𝑟𝑎𝑑/𝑠, where the periodic quality of motion gradually transforms to quasi-
periodic once again. This can be ascertained at a slightly higher speed Ω = 1800 𝑟𝑎𝑑/𝑠, 
where the quasi-periodic nature of the motion is obvious. Approximately after 𝛥𝑡 =
2.5 𝑠 the rotating speed becomes Ω = 1850 𝑟𝑎𝑑/𝑠. 
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The Hopf-Andronov bifurcation occurs and the motion becomes multi-periodic as long 
as the rotating speed remains lower than Ω = 2150 𝑟𝑎𝑑/𝑠. Two peaks are visible in the 
FFT plots, meaning that the synchronous and another subsynchronous vibration are 
dominating at this range of speed. The subsynchronous one is characterized by higher 
amplitudes than the one at the running frequency. The STFT diagram, see Fig. 3.3, 
constitutes another tool that proves the presence of these higher amplitude 
subsynchronous vibrations and one may observe them at around 𝑡 = 70 𝑠. Finally, at 
approximately Ω = 2150 𝑟𝑎𝑑/𝑠, the previously multi-periodic motion converts to 
quasi-periodic, due to the Neimark-Sacker bifurcation occurrence, and several 
subsynchronous vibrations make their appearance, not yet in a way that can be 
compared with the two already dominating. The motion is depicted in Fig. 3.4i. 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 
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(i) 

 
Fig. 3.4: Orbit, Poincaré and FFT diagrams for different speed Ω at unbalance 𝑒 = 0.5 × 10−2 × 𝑒𝑖𝑠𝑜 =

2.5 × 10−8 𝑚: (a) Ω = 1000 𝑟𝑎𝑑/𝑠, (b) Ω = 1200 𝑟𝑎𝑑/𝑠, (c) Ω = 1500 𝑟𝑎𝑑/𝑠, (d) Ω = 1700 𝑟𝑎𝑑/𝑠, (e) 

Ω = 1800 𝑟𝑎𝑑/𝑠, (f) Ω = 1850 𝑟𝑎𝑑/𝑠, (g) Ω = 2050 𝑟𝑎𝑑/𝑠, (h) Ω = 2100 𝑟𝑎𝑑/𝑠, (i) Ω = 2150 𝑟𝑎𝑑/𝑠 

3.1 The influence of bump foil compliance in the unbalance response 

The compliance 𝛼𝑓 of the bump foil structure constitutes one of the design parameters 

of this study, and one of the most influential factors when it comes to the dynamics of 
the rotor model. The foil compliance plays a critical role in terms of system’s stability, 
which corresponds directly with the bifurcations’ occurrence. Therefore, a series of 
diagrams are presented subsequently, where a comparative analysis for three different 
cases of foil compliance takes place; a stiff (𝛼𝑓 = 0.01), an intermediate (𝛼𝑓 = 0.1) and 

a compliant (𝛼𝑓 = 1) foil. The specifications of Table 3.1 are used during this 

investigative process. 

Fig. 3.5 shows the STFT plots for each case of the dimensionless foil compliance, 
produced during the respective run-up simulations, and the corresponding bifurcation 
diagrams evaluated during the stepped run-up simulations. Significant conclusions can 
be drawn, especially by the bifurcation diagrams where major differences can be 
detected. 

 

Table 3.2: Parameters used in the run-up and stepped run-up simulations of the system. Bearing 

specifications are considered as in Table 2.1 

Parameter Value Parameter Value 

Shaft dimensionless stiffness, 𝑘̅𝑠 1 Disc mass, 𝑚𝑑 3 kg 

Foil loss factor, 𝜂 0.1 Journal mass,  𝑚𝑗 0.3 kg 

Rotating acceleration, 𝑎 20 rad/s2 Unbalance, 𝑚𝑑 ∙ e 2.5∙10-6 kgm 
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(a) (b) (c) 

Fig. 3.5: (top) Time-frequency decomposition of the journal’s transient response; (bottom) Bifurcation 

diagram obtained after a stepped run-up simulation; Parameters: 𝑒 = 0.5 × 𝑒𝑖𝑠𝑜 = 2.5 × 10
−6 𝑚, 𝐾𝑠 =

1, 𝜂 = 0.1; (a) 𝛼𝑓 = 0.01, (b) 𝛼𝑓 = 0.1, (c) 𝛼𝑓 = 1 

Starting from left to right, i.e. from the stiff foil to the most compliant, it is important to 
mention the different bifurcation types that the three systems experience. Fig. 3.5a 
shows the STFT and bifurcation diagrams for the stiff case, which was examined 
thoroughly in Section 2.4. In there, as rotating speed increases, at Ω = 1200 𝑟𝑎𝑑/𝑠 a 
Hopf bifurcation takes place generating stable limit cycles, while at Ω = 1350 𝑟𝑎𝑑/𝑠 
another Hopf Bifurcation occurs, and the system returns to obtaining stable fixed points. 
At Ω = 1500 𝑟𝑎𝑑/𝑠, another supercritical Hopf bifurcation occurs, meaning that once 
again stable limit cycles are generated. As the system increases speed, at Ω =
1650 𝑟𝑎𝑑/𝑠, it experiences a saddle node bifurcation until rotating speed exceeds Ω =
2100 𝑟𝑎𝑑/𝑠, when the last bifurcation type for this case is detected; the Neimark-Sacker 
bifurcation where the whip motion and, as a result, instability prevail. 

Regarding the second case, at approximately Ω = 1300 𝑟𝑎𝑑/𝑠 a Hopf bifurcation takes 
place inducing stable limit cycles, while at Ω = 1450 𝑟𝑎𝑑/𝑠 another one occurs and the 
system obtains stable fixed points as it did at speed values lower than Ω = 1300 𝑟𝑎𝑑/𝑠. 
With a slight speed increase, at Ω = 1500 𝑟𝑎𝑑/𝑠, the system experiences once again a 
Hopf-Andronov bifurcation. Even if the first two cases presented many similarities in 
their dynamic behavior until a certain arithmetic value of Ω, the major difference 
between them lies ahead; the latest Hopf bifurcation that occurred in the second case is 
not followed by any other types of bifurcations. The solver breaks at speed Ω =
1650 𝑟𝑎𝑑/𝑠 and the simulation is terminated. This obstacle may have been overcome if 
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a different solver was chosen, such as ‘ode45s’ (implementing Runge-Kutta method), 
extending in this way the simulation and reaching higher rotating speed Ω. 

Last, the compliant system from the very beginning experiences multi-periodic motions 
which generate stable limit cycles. In order to verify this, and rule out the possibility of 
an early occurred Hopf bifurcation, the initial rotating speed was considered at Ω =
200 𝑟𝑎𝑑/𝑠. As it was expected, the system obtained stable fixed points at low speeds, 
but, as the speed was increasing, those converted to the afore written multi-periodic 
motions. At approximately Ω = 1650 𝑟𝑎𝑑/𝑠, a subcritical Hopf bifurcation occurs, 
generating unstable limit cycles and chaotic motion. The system can hardly retain 
operation and integrity, and probably -with further increase in rotating speed- an 
undesirable rotor-stator contact will be taking place. 

To summarize, one may notice that the least compliant foil, even if it experiences Hopf 
bifurcations slightly earlier than the intermediate one and much earlier than the most 
compliant, it can manage reaching higher rotating speeds without risking to compromise 
the operation of the system. Additionally, the most compliant foil, under the 
specifications given in the beginning of the section, reaches to instability quite early. 
With regard to the time-frequency decomposition of the transient response per case, it 
is concluded that as foil compliance 𝛼𝑓 increases, less and of a lower amplitude self-

excited vibrations are induced. Fig. 3.5a shows the STFT plot for the stiff system. It can 
be easily observed that, especially after approximately 𝑡 = 40 𝑠, subsynchronous 
frequency vibrations arise with a higher amplitude than the synchronous one, while in 
the other two cases, even if both sub and super-synchronous vibrations may be arising 
too, they are not of the same multitude and amplitude with their respective synchronous 
ones. 

Figs. 3.6-3.8 provide the results of a comparative case-study that is being conducted for 
the first design parameter, the dimensionless foil compliance. In each figure, for a certain 
speed value, an orbit plot, a Poincaré map, and an FFT diagram are obtained for three 
different values of the dimensionless foil compliance (𝛼𝑓 = {0.01,0.1,1}), having 

secured that in every case steady state prevails. The chosen speeds, for the performed 
case-study, are Ω = {1200, 1300,1650} 𝑟𝑎𝑑/𝑠. Since selecting a higher rotating speed 
was not feasible, due to the fact that the solver broke during the second simulation 
(𝛼𝑓 = 0.1) at speed Ω = 1650 𝑟𝑎𝑑, this was the best-case scenario for the current 

comparative analysis. 

Fig. 3.6 shows the results obtained at speed Ω = 1200 𝑟𝑎𝑑/𝑠 for each one of the foil 
compliance values, providing the reader with the ability to distinguish major differences 
when it comes to the behavior among stiff or more compliant foil structures. Starting 
from the stiffest foil, see Fig. 3.6a, one may notice a period 2𝑇𝑑 motion from the Poincaré 
map, due to a Hopf bifurcation that occurs at this speed generating stable limit cycles. 
The FFT diagram shows four distinct peaks, with two of them being of a much higher 
amplitude explaining the two-periodic motion. Simultaneously, for 𝛼𝑓 = 0.1, a period 

1𝑇𝑑 motion is observed and stable fixed points are obtained by the system, while for the 
most compliant foil (𝛼𝑓 = 1) the Poincaré map shows a multi-periodic motion. It is of 

significant importance to mention that the orbital motions and the points shown in the 
Poincaré maps, are detected in lower vertical displacement values, as the foil becomes 
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more compliant. As the foil compliance 𝛼𝑓 increases, the vertical displacement 𝑦
𝑗
 of the 

journal decreases (or the modulus of 𝑦
𝑗
 increases), and the eccentricity of the journal 

increases as well. At speed Ω = 1300 𝑟𝑎𝑑/𝑠, the stiff foil still experiences period 2𝑇𝑑  
motion.  

(a) 

   

(b) 

   

(c) 

   

 Fig. 3.6: Orbit, Poincaré and FFT diagrams at Ω = 1200 rad s⁄  with foil compliance (a) 𝛼𝑓 = 0.01, 

(b) 𝛼𝑓 = 0.1, 𝛼𝑓 = 1 

No alteration in terms of the motion’s quality is detected in the most compliant foil (𝛼𝑓 =

1), and a multi-periodic motion continues to exist, as Fig. 3.7b depicts. The major 
difference is noticed in the second case, where 𝛼𝑓 = 0.1. At this speed, a Hopf 

bifurcation occurs for the first time and periodic motions of period 2𝑇𝑑 are detected. 
The Poincaré map consists of two points, see Fig. 3.7b. Apparently, the two stiffest 
system trajectories geometrically form a similar orbital motion, after both of them 
experience Hopf bifurcation for first time. One may observe that as the foil compliance 
increases, the eccentricity does too. Specifically, the Poincaré distinct points in Fig. 3.7a 
are noticed in the range 𝒚

𝒋
= (−𝟎. 𝟓,−𝟎. 𝟒), while in Fig. 3.7b in the range 𝒚

𝒋
=

(−𝟎. 𝟕,−𝟎. 𝟓) and in Fig. 3.7c, the multi-periodic motion of the system takes place in 
the range 𝒚

𝒋
= (−𝟐. 𝟐𝟓,−𝟐). 
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(a) 

   

(b) 

   

(c) 

   

 Fig. 3.7: Orbit, Poincaré and FFT diagrams at Ω = 1300 rad s⁄  with foil compliance (a) 𝛼𝑓 = 0.01, 

(b) 𝛼𝑓 = 0.1, 𝛼𝑓 = 1 

At approximately Ω = 1500 rad s⁄ , the first two systems experience a Hopf bifurcation, 
while the third one does not, until further increase of the rotating speed to Ω =
1650 rad s⁄ . At the same speed, though, the stiffest system (𝛼𝑓 = 0.01) experiences a 

saddle node bifurcation. In the following figure, the orbit, Poincaré and FFT diagrams are 
presented for the three systems, at speed Ω = 1650 𝑟𝑎𝑑/𝑠. The first system, see Fig. 
3.8a, develops one type of trajectory close to the clearance circle. The respective 
Poincaré map shows two distinct points, unveiling the period 2𝑇𝑑 motion of the stiff 
model. Regarding the second case, see Fig. 3.8b, multi-periodic motions are detected, as 
shown in the Poincaré map which consists of clearly discretized points in a geometrically 
defined shape. The corresponding FFT diagrams are characterized by multiple peaks, 
representing the several frequency vibrations of this, multi-periodic motion. Last, the 
most compliant foil develops unstable limit cycles, as the orbit map indicates in Fig. 3.8c. 
This is the result of a subcritical Hopf bifurcation and, according to the Poincaré map, 
leads to chaotic motions and several peaks in the FFT diagram. 
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(a) 

   

(b) 

   

(c) 

   

 Fig. 3.8: Orbit, Poincaré and FFT diagrams at Ω = 1650 rad s⁄  with foil compliance (a) 𝛼𝑓 =

0.01, (b) 𝛼𝑓 = 0.1, 𝛼𝑓 = 1 

3.2 The influence of bump foil loss factor in the unbalance response 

In order to investigate the influence of the loss factor on the dynamics of the rotor, the 
STFT and bifurcation plots are investigated with loss factor being the only changing 
parameter in this section. Right after, the same process is followed as in section 3.1 in 
order to obtain the orbit, Poincaré and FFT diagrams, for three different values of loss 
factor 𝜂 = {0.003,0.01,0.1}. A comparative analysis takes place, where for certain 
rotating speeds the behavior of each system is studied and several conclusions can be 
drawn. 

Fig. 3.9 shows the time-frequency decomposition of the transient response of the 
journal and the respective bifurcations plots, obtained via the stepped run-up 
simulations. From left to right, the loss factor increases, from its lowest value 𝜂 = 0.003 
to the highest 𝜂 = 0.1. Regarding the first case, when the system rotates with low speed 
Ω < 1250 𝑟𝑎𝑑/𝑠, it experiences stable motions around equilibrium for any initial 
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condition, and the bifurcation plot shows only one distinct point at those speeds. At 
speed Ω = 1250 𝑟𝑎𝑑/𝑠, a Hopf bifurcation occurs and stable limit cycles are induced, 
until Ω = 1350 𝑟𝑎𝑑/𝑠, where another Hopf bifurcation occurs and the system returns 
to the previous quality of motion, obtaining stable fixed points. Increasing speed further, 
at approximately Ω = 1600 𝑟𝑎𝑑/𝑠, a Hopf bifurcation occurs once again and stable limit 
cycles are induced. Following this supercritical Hopf bifurcation, at approximately speed 
Ω = 1700 𝑟𝑎𝑑/𝑠, a saddle node bifurcation occurs and the system develops one type of 
trajectory, close to the clearance circle regardless the initial position of the unbalance 
magnitude. From now on, period 2𝑇𝑑 motions are induced, as the respective Poincaré 
map indicates, evaluated for a much higher speed Ω = 2050 𝑟𝑎𝑑/𝑠, see Fig. 3.12a. 

   

   

(a) (b) (c) 

Fig. 3.9: (top) Time-frequency decomposition of the journal’s transient response. (bottom) Bifurcation 

diagram obtained after a stepped run-up simulation; Parameters: 𝑒 = 0.5 × 𝑒𝑖𝑠𝑜 = 2.5 × 10
−6 𝑚, 𝐾𝑠 =

1, 𝛼𝑓 = 0.01; (a) 𝜂 = 0.003, (b) 𝜂 = 0.01, (c) 𝜂 = 0,1 

The rest of the two cases follow a similar behavior in regards to the quality of motions 
with the first one until speed Ω = 2050 𝑟𝑎𝑑/𝑠. Specifically, for loss factor 𝜂 = 0.01, the 
first Hopf bifurcation occurs at exactly the same speed Ω = 1250 𝑟𝑎𝑑/𝑠, while the 
second one takes place again at the same speed Ω = 1350 𝑟𝑎𝑑/𝑠. In between the two 
Hopf bifurcations, stable limit cycles are generated. As the system increases speed 
further, at approximately Ω = 1550 𝑟𝑎𝑑/𝑠 (50 𝑟𝑎𝑑/𝑠 earlier than the first case), 
another Hopf bifurcation occurs and quasi-periodic motions are developed. At speed 
Ω = 1700 𝑟𝑎𝑑/𝑠, a saddle node bifurcation occurs, until speed Ω = 2150 𝑟𝑎𝑑/𝑠. At this 
point, a Neimark-Sacker bifurcation occurs, and stable limit cycles will be generated. Fig. 
3.9b shows that the transition to the next quality of motion is achieved gradually, leading 
to the conclusion that the Neimark-Sacker bifurcation is supercritical and explaining the 
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aforementioned existence of stable limit cycles. With further increase in speed, the 
journal will most likely experience contact with the bearing and the operation trips. 

Regarding the last system, where 𝜂 = 0.1, at speed Ω = 1200 𝑟𝑎𝑑/𝑠 the first Hopf 
bifurcation occurs, and period 2𝑇𝑑 motion prevails, as the corresponding Poincaré map 
shows in continue. At approximately Ω = 1350 𝑟𝑎𝑑/𝑠, the second Hopf bifurcation 
occurs and the system returns to the previous state, where stable motions around 
equilibrium are detected. As speed increases, at approximately Ω = 1500 𝑟𝑎𝑑/𝑠, the 
system experiences the third Hopf bifurcation, resulting to whirl motion under stable 
limit cycles. At Ω = 1650 𝑟𝑎𝑑/𝑠, a saddle node bifurcation occurs, approximately 
50 𝑟𝑎𝑑/𝑠 earlier than the previous two cases. Finally, at rotating speed Ω =
2100 𝑟𝑎𝑑/𝑠, a subcritical Neimark-Sacker bifurcation occurs, resulting to unstable limit 
cycles. Once again, the bifurcation diagram, see Fig. 3.9c, proves the unstable nature of 
the limit cycles, since the transition to this motion is not gradual. With further increase 
at speed, the system will experience rotor-stator contact. 

The orbit, Poincaré, and FFT diagrams are evaluated in Figs. 3.10-3.12, for three different 
values of rotating speed, so as to investigate the quality of motion per case at the same 
time point. Fig. 3.10 shows the results that the simulations extracted for Ω =
1200 𝑟𝑎𝑑/𝑠. Regarding the first system, where 𝜂 = 0.003, period 1𝑇𝑑 motion is 
observed, since the Poincaré map shows a single distinct point, see Fig. 3.10a. The FFT 
plot indicates the presence of a subsynchronous and a supersynchronous vibration 
frequency in addition, with much lower amplitudes than the synchronous one though. 
The STFT diagram, shown in Fig. 3.9a, affirms the presence of these frequencies as well. 
The same quality of motion is detected in the second system too. However, this is not 
the case in the third one. The system, at this speed, experiences a Hopf bifurcation and 
the single period motion converts to period 2𝑇𝑑. 

In continue, at approximately Ω = 1650 𝑟𝑎𝑑/𝑠, the motion of the first two systems 
transforms to quasi-periodic, after both experiencing a Hopf-Andronov bifurcation. The 
corresponding FFT plots show several peaks, see Figs. 3.11a-b. The last system (𝜂 = 0.1) 
renders a period 2𝑇𝑑 motion, as a result of the saddle node bifurcation that occurred at 
this speed. A close-to-clearance circle trajectory is detected, as it is expected when a 
saddle node bifurcation occurs. 

(a) 
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(b) 

   

(c) 

   

 Fig. 3.10: Orbit, Poincaré and FFT diagrams at Ω = 1200 rad s⁄  with foil loss factor (a) 𝜂 =

0.003, (b) 𝜂 = 0.01, 𝜂 = 0.1 

(a) 

   

(b) 
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(c) 

   

 Fig. 3.11: Orbit, Poincaré and FFT diagrams at Ω = 1650 rad s⁄  with foil loss factor (a) 𝜂 = 0.003, 

(b) 𝜂 = 0.01, 𝜂 = 0.1 

To conclude, Fig. 3.12 renders the respective diagrams for a significantly higher speed. 
Exceeding Ω = 2000 𝑟𝑎𝑑/𝑠, and more precisely at Ω = 2150 𝑟𝑎𝑑/𝑠, interesting 
observations can be made. One may notice different types of bifurcations in this part. 
With regard to the first case, where the value of the damping factor is the lowest one, 
there is no alteration in the quality of the motion. The period 2𝑇𝑑 motion continues to 
exist, the trajectory of the journal is still close to the clearance circle and the FFT plot 
shows clearly two distinct peaks, which represent the two vibration frequencies of the 
motion -- the synchronous and a subsynchronous one. After the saddle node bifurcation 
that occurred at approximately Ω = 1650 𝑟𝑎𝑑/𝑠, minor alteration took place. With 
further speed increase, the solver breaks and the simulation terminate. 

The second system, though, experiences a supercritical Neimark-Sacker bifurcation, as 
previously mentioned, and quasi-periodic motions are detected. The FFT plot shows 
several peaks, not clearly discretized though, see Fig. 3.12b. Last but not least, for the 
third system (𝜂 = 0.1), the corresponding diagrams represent once again quasi-periodic 
motions, which constitute the result of a subcritical Neimark-Sacker bifurcation. The 
most remarkable observation that can be made is that for the selected design 
parameters (𝐾̅𝑠 = 1, 𝑎̅𝑓 = 0.01) and an unbalance eccentricity 𝑚𝑑 ∙ e = 7.5 ×

10−6 kgm the system shows similar behavior until rotating speed reaches Ω =
2150 𝑟𝑎𝑑/𝑠, regardless the value of the loss factor. However, by the time Ω surpasses 
this value and as the loss factor 𝜂 of the gas foil bearing increases, the quality of motion 
of the system varies decisively. For the lowest value of the loss factor, 𝜂 = 0.003, the 
simulation is terminated at Ω = 2600 𝑟𝑎𝑑/𝑠, without any other bifurcation type 
occurring, while for the intermediate one, 𝜂 = 0.01, a supercritical Neimark-Sacker 
bifurcation occurs and the simulation is terminated at Ω = 2300 rad/s. Last, for the 
highest value, 𝜂 = 0.1, a subcritical Neimark-Sacker occurs and the solver breaks at Ω =
2150 rad/s. Therefore, for the lowest values of loss factor, the system is able to reach 
higher amounts of speed without experiencing Neimark-Sacker bifurcations, averting to 
get closer to instability. 
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(a) 

   

(b) 

   

(c) 

   

 Fig. 3.12: Orbit, Poincaré and FFT diagrams at Ω = 2150 rad s⁄  with foil loss factor (a) 𝜂 = 0.003, 

(b) 𝜂 = 0.01, 𝜂 = 0.1 

3.3 Energy flow 

The work of gas forces and of forces acting on the top foil, by foil springs and foil dampers 
are evaluated for a closed trajectory of the journal motion during the performed stepped 
run-ups for the designated in Table 3.1 cases. The equations utilized for the work 
computations are defined in Eq. (90) for the total work of gas forces 𝑊𝑔, in Eq. (91) for 

the total work of the forces acting on the inner surface of the top foil 𝑊𝑓, in Eq. (92) for 

the total work of the bump foil spring 𝑊𝑘𝑓, and in Eq. (93) for the total work of the bump 

foil damper 𝑊𝑐𝑓: 

𝑾𝒈 = 𝑾𝒈𝒙 +𝑾𝒈𝒚 =∑𝑭𝑩𝒙 × 𝜟𝒙𝒋 + 𝑭𝑩𝒚 × 𝜟𝒚𝒋 (90) 

𝑾𝒇 =∑𝑭𝒎 × 𝜟𝒒 =∑(𝒑𝒎 ∙ 𝑹 ∙ 𝜟𝜽 ∙ 𝜟𝒛) × 𝜟𝒒 
(91) 
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𝑾𝒌𝒇 =∑𝑭𝒌𝒇 × 𝜟𝒒 =∑(𝒌𝒇 ∙ 𝑹 ∙ 𝜟𝜽 ∙ 𝑳 ∙ 𝒒) × 𝜟𝒒 
(92) 

𝑾𝒄𝒇 =∑𝑭𝒄𝒇 × 𝜟𝒒 =∑(𝑭𝒎 − 𝑭𝒌𝒇) × 𝜟𝒒 
(93) 

Τhe dimensional bearing forces 𝐹𝐵𝑥, 𝐹𝐵𝑦  are given by (14)-(15), 𝑝𝑚 is the mean pressure 

over the length 𝐿 of the bearing, see (40), and 𝐹𝑚 is the respective mean force. As 𝛥𝑥𝑗 , 

𝛥𝑦𝑗 are denoted the difference of horizontal and vertical displacements between two 

consecutive points of the orbit, while the same applies to the respective consecutive 
orbit points when it comes to the evaluation of the foil displacement difference 𝛥𝑞. 

The process followed so as to ensure that the works were evaluated in a closed orbit, 
and extract -in this way- valid results, lies ahead: a certain “if statement” is introduced, 
where by the time an orbit point surpasses for the second time a vertical axis created by 
the first plotted orbit point -meaning that this point belongs to the vertical axis- then the 
evaluation has to be terminated. However, having observed several trajectories’ 
instances in the previous sections, one may claim that the geometry of an orbit is not 
always circular or elliptical so as to ensure that a closed loop is achieved. At these cases, 
the closed loop process has to implement manually. 

The main target of the current evaluations is to provide the reader with conclusions, 
regarding the energy flow of the systems studied. Fig. 3.13 shows three different 
systems, sharing the same properties in all design parameters, except for the loss factor 
which starting from the first system, increases and takes values 𝜂 = {0.003,0.01,0.1}. 
The rest of the design variables are the shaft stiffness and the foil compliance, where 

𝑘̅𝑠 = 1 and 𝑎̅𝑓 = 0.01 respectively, while the unbalance eccentricity is given as 𝑒 =

2.5 × 10−6 kgm. 

  

(a) (b) 
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(c) 

Fig. 3.13: Works 𝑊𝑖 evaluated for different values of rotating speed Ω, shaft stiffness 𝑘̅𝑠 = 1, foil 

compliance 𝑎̅𝑓 = 0.01, unbalance eccentricity 𝑒 = 2.5 × 10−6 kgm, and three different properties of loss 

factor 𝜂: (a) 𝜂 = 0.003 (case B1a2) – Ω = {500,1300,1600,1800,2100,2150} 𝑟𝑎𝑑/𝑠, (b) 𝜂 = 0.01 (case 

B1b2) - Ω = {500,1300,1600,1800,2100,2150} 𝑟𝑎𝑑/𝑠, (c) 𝜂 = 0.1 (case B1c2) – Ω =

{500,1300,1600,1800,2050,2150} 𝑟𝑎𝑑/𝑠. 

It should be noted that the evaluation of work is executed for certain rotating speeds 
that are chosen deliberately when major incidents occur, i.e. bifurcations, and slightly 
earlier before they take place during the stepped run-up of each system. Briefly, the first 
system (B1a2) experiences a Hopf bifurcation at speed Ω = 1250 𝑟𝑎𝑑/𝑠, and another 
one Hopf bifurcation at Ω = 1350 𝑟𝑎𝑑/𝑠, where in the first case stable limit cycles are 
induced while in the second the system returns to stable fixed points. At speed Ω =
1600 𝑟𝑎𝑑/𝑠, another Hopf bifurcation occurs, leading to whirl motion, right before a 
saddle node bifurcation occurs at Ω = 1700 𝑟𝑎𝑑/𝑠 and period 2𝑇𝑑 is detected. The 
second system experiences the first Hopf bifurcation again at speed Ω = 1250 𝑟𝑎𝑑/𝑠, 
the second at Ω = 1350 𝑟𝑎𝑑/𝑠 and the third one at Ω = 1550 𝑟𝑎𝑑/𝑠. A saddle node 
bifurcation occurs at rotating speed Ω = 1700 𝑟𝑎𝑑/𝑠, and last, a supercritical Neimark-
Sacker bifurcation at  Ω = 2150 𝑟𝑎𝑑/𝑠. The third system experiences the same types of 
bifurcations (first Hopf at Ω = 1250 𝑟𝑎𝑑/𝑠, second Hopf at Ω = 1350 𝑟𝑎𝑑/𝑠, third Hopf 
at Ω = 1500 𝑟𝑎𝑑/𝑠 and saddle node at Ω = 1650 𝑟𝑎𝑑/𝑠), as explained thoroughly in 
this chapter, except for the Neimark-Sacker bifurcation that occurs in the end which in 
this case is subcritical and takes place at Ω = 2100 𝑟𝑎𝑑/𝑠. 

Regarding the energy flow, Fig. 3.13 shows that in each case great similarities are 
observed. The importance of bifurcations is reflected and one may notice that the 
energy flow experiences its most significant variations when certain types of bifurcations 
occur. Specifically, in all three cases, as speed increases the work of gas forces is positive 
and remains positive throughout the three Hopf bifurcations that occur. However, by 
the time the saddle node bifurcation occurs, the work renders negative values until the 
end of the simulation, meaning that energy consumption exists from this point on. With 
regard to the foil damper and the foil in general, from the very beginning energy 
consumption exists and a steep descent is detected when the saddle node bifurcation 
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occurs, inducing even greater energy consumption. Another noteworthy conclusion is 
that, as the foil damping factor (loss factor) increases, the maximum modulus of the 
work of gas forces per case increases too, while the respective maximum modulus of the 
work value, that the foil damping forces and the forces acting on top foil in general 
produce, decreases. 

Interesting observations can be also made for another value of shaft stiffness, with the 
parameter of loss factor 𝜂 to be retained as the one changing. Specifically, the shaft 

stiffness will convert to 𝑘̅𝑠 = 10, making the shaft of the new systems ten times stiffer 
than the shaft of the previous case-study. The new cases under investigation are now 
the (C1a2), (C1b2), and (C1c2). 

Before getting into the Fig. 3.14 analysis, it is useful to provide the reader with the 
necessary information, regarding the bifurcations occurred in each system. In the first 
case, a supercritical Hopf bifurcation occurs at speed Ω = 1300 𝑟𝑎𝑑/𝑠, generating 
stable limit cycles, while at Ω = 1350 𝑟𝑎𝑑/𝑠 another Hopf bifurcation occurs and the 
system returns to stable fixed points. At speed Ω = 1600 𝑟𝑎𝑑/𝑠, the system 
experiences a third Hopf bifurcation and presents whirl motion. Last, at Ω =
1750 𝑟𝑎𝑑/𝑠, a saddle node bifurcation occurs and a two-periodic motion prevails until 
the end of the simulation. Concerning the second case, the same bifurcation types are 
detected for the largest part of the simulation, although at different values of speed Ω. 
The first Hopf bifurcation occurs at Ω = 1250 𝑟𝑎𝑑/𝑠, the second at Ω = 1400 𝑟𝑎𝑑/𝑠, 
and the third one at Ω = 1600 𝑟𝑎𝑑/𝑠. In continue, at speed Ω = 1800 𝑟𝑎𝑑/𝑠, the 
system experiences a saddle node bifurcation until speed’s increase to Ω =
2200 𝑟𝑎𝑑/𝑠, where a Neimark-Sacker bifurcation takes place. Last, the third system 
shows similar behavior with the previous one, except for the speed values where the 
respective bifurcations occur. At speed Ω = 1250 𝑟𝑎𝑑/𝑠, the system experiences the 
first Hopf bifurcation, while the second occurs at Ω = 1350 𝑟𝑎𝑑/𝑠 and the third one at 
Ω = 1500 𝑟𝑎𝑑/𝑠. The saddle node bifurcation takes place at Ω = 1750 𝑟𝑎𝑑/𝑠, and the 
Neimark-Sacker at approximately Ω = 2000 𝑟𝑎𝑑/𝑠. 

Fig. 3.14 shows the evaluated works for several rotating speeds before and after the 
bifurcations mentioned earlier occur. Once again, the figure indicates that before the 
saddle node bifurcation the work produced by gas forces remains positive. Right after, 
the work becomes negative until the simulation is terminated by the solver. The major 
arithmetic variations are detected when the saddle node and the Neimark-Sacker 
bifurcations occur. In addition, it is indicated that as the property of the loss factor 
increases, the maximum modulus of the gas forces work increases as well (or in absolute 
numbers decreases and greater energy consumption exists), while the maximum 
modulus of the works produced by the forces acting on the top foil and the foil damping 
forces follows a declining path. 
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(a) (b) 

 

(c) 

Fig. 3.14: Works 𝑊𝑖 evaluated for different values of rotating speed Ω, shaft stiffness 𝑘̅𝑠 = 10, foil 

compliance 𝑎̅𝑓 = 0.01, unbalance eccentricity 𝑒 = 2.5 × 10−6 kgm, and three different properties of loss 

factor 𝜂: (a) 𝜂 = 0.003 (case C1a2) – Ω = {500,1250,1300,1350,1550,1700,1800,1850} 𝑟𝑎𝑑/𝑠, (b) 𝜂 =

0.01 (case C1b2) - Ω = {500,1200,1300,1400,1550,1600,1750,1800,2150,2200,2400} 𝑟𝑎𝑑/𝑠, (c) 𝜂 =

0.1 (case C1c2) – Ω = {500,1150,1250,1400,1500,1700,1750,1900,2150} 𝑟𝑎𝑑/𝑠. 

To conclude, another case-study analysis takes place in Fig. 3.15. In comparison to the 
first one, what is modified is the foil compliance, which is equal to 𝑎̅𝑓 = 0.1. Therefore, 

the under-investigation studies are now encoded as (B2a2), (B2b2), and (B2c2). 
Regarding the first case, as the rotating speed increases, period 1𝑇𝑑 motion is detected 
until approximately speed Ω = 2450 𝑟𝑎𝑑/𝑠. Then, a Hopf bifurcation occurs, whip 
motion characterizes the system and with a slight speed increase the simulation is 
terminated. The second system experiences single periodic motion until speed Ω =
1700 𝑟𝑎𝑑/𝑠, when a supercritical Hopf bifurcation occurs and whirl motion is rendered. 
The third system, where the highest foil damping is given as a specification, experiences 
a Hopf bifurcation at approximately speed Ω = 1300 𝑟𝑎𝑑/𝑠. Period 1𝑇𝑑 motion is 
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established, not for long though since another Hopf bifurcation occurs at Ω =
1350 𝑟𝑎𝑑/𝑠 and the system returns to stable motions around fixed equilibrium points. 
At approximately Ω = 1500 𝑟𝑎𝑑/𝑠, another Hopf bifurcation occurs and stable limit 
cycles are generated. With further increase of the rotating speed, the solver breaks and 
the simulation is terminated. 

Similar observations with the previous two analyses can be extracted through Fig. 3.15. 
By the time the subcritical Hopf bifurcation occurs in the first system, a significant 
change is detected in the work produced by the foil damper forces. The same applies to 
the produced by the forces acting on the top foil work in general, since the respective 
work of the foil spring forces is experiencing almost negligible variation. The gas forces 
work retains its positivity throughout the whole simulation and approaches zero value 
when the Hopf bifurcation takes place. This is not the case in the rest of the systems, 
though. The second system experiences several Hopf bifurcations, but the major 
difference in comparison to the first one is that all of them are supercritical. The gas 
forces work remains positive and energy contribution exists, but there is no indication 
of following a declining path towards zero value, as in the previous system. Quite the 
opposite, one may claim. A remarkable observation is that, after approximately Ω =
1700 𝑟𝑎𝑑/𝑠, it seems that even the work produced by the foil spring forces begins 
rendering values different that zero. Concerning the third case, once again, when the 
third bifurcation occurs the gas forces work experiences a steep descent and, 
surprisingly enough (in comparison with the previously investigated systems), surpasses 
the horizontal axis 𝑥, taking a negative value. One may claim that this constitutes an 
abnormality in comparison to what has been depicted in the rest of this section’s 
diagrams and there is no way to define the reason that induced this sign change. A 
different solver’s utilization would be an indicated alternative in order to explain this 
observation. 

To sum up, a noteworthy conclusion can be drawn from the three executed case-study 
analyses in this section; the impact that certain types of bifurcations have in the energy 
flow of a system. More specifically, this study supports that Hopf bifurcations may 
induce several arithmetic variations when it comes to evaluating the works produced by 
the gas and foil damper (and consequently the foil in general) forces. However, none of 
them provokes a sign change and, by extensively, alteration in the energy balance. A 
saddle node bifurcation, though, constitutes a “balance changer”, if a term like this one 
is allowed, since it leads to the aforementioned sign change regarding the gas forces 
work. From this point of view energy balance is changed and the gas forces work 
introduce energy in to the system, resulting is self-excited vibrations of high amplitude, 
close to radial circle. 
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Fig. 3.15: Works 𝑊𝑖 evaluated for different values of rotating speed Ω, shaft stiffness 𝑘̅𝑠 = 1, foil 

compliance 𝑎̅𝑓 = 0.1, unbalance eccentricity 𝑒 = 2.5 × 10−6 kgm, and three different properties of loss 

factor 𝜂: (a) 𝜂 = 0.003 (case B2a2) – Ω = {500,1500,2450,2500} 𝑟𝑎𝑑/𝑠, (b) 𝜂 = 0.01 (case B2b2) - Ω =

{500,1650,1700,1850} 𝑟𝑎𝑑/𝑠, (c) 𝜂 = 0.1 (case B2c2) – Ω = {500,1250,1300,1450,1500,1650} 𝑟𝑎𝑑/𝑠. 

 

  



Diploma Thesis – Ioannis G. Raptopoulos 

 
72 

 

 

March 5, 2021 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

  

This page has been intentionally left blank 

 



Diploma Thesis – Ioannis G. Raptopoulos 

 
73 

 

 

March 5, 2021 

4 CONCLUSIONS 

In this thesis, the nonlinear dynamic analysis of a flexible rotor supported on two 
identical gas foil bearings is carried out. The Reynolds PDE for compressible flow, an ODE 
describing the simplified bump foil structure and the respective second order ODEs for 
the rotor model are combined in a coupled vector and solved to acquire the gas 
pressure, the foil deformation and the journal’s horizontal and vertical displacements. 
An extensive study regarding the quality of motion and stability takes place both for an 
autonomous (perfectly balanced rotor) and a non-autonomous system. The investigated 
cases (two different unbalance magnitudes were taken into consideration) show several 
types of motions, as the rotating speed increases.  

In some sets of design parameters investigated, the response starts from stable motions 
around fixed-point equilibrium, and the motion converts to two-periodic where stable 
limit cycles are induced. Increasing the rotating speed, the system returns to stable fixed 
points, until further increase on speed, where quasi-periodic motions and the generation 
of stable limit cycles once again are induced. In other sets, eventually, chaotic motions 
are detected, the solver breaks and the simulation is terminated. Those changes in terms 
of motion’s quality are provoked when several types of bifurcation occur, such as the 
Hopf-Andronov, saddle node and Neimark-Sacker bifurcations.  

This investigation of non-autonomous (unbalanced) systems gets even more detailed in 
chapter 3, where a multitude of case-studies takes place. Firstly, two different systems 
are studied with their only difference being the unbalance eccentricity. The response 
and STFT diagrams are obtained via a run-up simulation for each case separately, as well 
as the bifurcation plots via a stepped run-up simulation. The respective system state 
trajectories, Poincaré maps and FFT plots are introduced for several rotating speeds and 
used for the dynamic behavior analysis of the rotor-bearing system. Subsequently, by 
changing different design variables, the analysis examines how the system motion 
corresponds to these variations. For instance, in section 3.1 where the key changing 
parameter is the foil compliance, a noteworthy observation is that, as the foil becomes 
more elastic (meaning that the foil compliance increases), the system tends to be less 
stable at higher rotating speeds, meaning that the motion trajectories extend close to 
radial clearance.  

In section 3.2, the changing parameter is the foil damping (loss factor). It was observed 
that as the loss factor increases, the simulation is being terminated at a lower speed. In 
addition, the stiffest foil does not experience a Neimark-Sacker bifurcation, while the 
intermediate one experiences a supercritical Neimark-Sacker bifurcation, and the most 
compliant a subcritical Neimark-Sacker bifurcation. A common conclusion for both the 
foil compliance and the loss factor is that for certain rotating speeds -mainly when 
periodic and multi-periodic motions are generated- as they do increase, the eccentricity 
of the journal increases too. 

The results of the performed analysis indicate highly nonlinear behavior. Periodic, multi-
periodic, quasi-periodic and chaotic motions and respective variation in the nature of 
bifurcations are noticed in this work, which can be attributed to the reaction forces of 
the GFB. The last objective to investigate is the energy flow of the system where the 
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influence of the design variables in terms of works produced by the gas, foil spring and 
foil damper forces is examined, and a potential correlation between the energy balance 
between components and the quality of bifurcations was sought. In general, it is 
expected to notice a change in this balance whenever a bifurcation occurs. The point 
though is to observe if a major variation takes place in the energy balance if a certain 
bifurcation type occurs. Indeed, what is of significant importance to be mentioned is the 
steep variation of the work produced by the gas and foil damper forces when a saddle 
node bifurcation occurs. Both of works experience a sign change and convert from 
negative quantities to positive ones, meaning that -after the occurrence of a saddle node 
bifurcation- energy contribution to the system exists and self-excitation is severely 
amplified. Similar trend is noticed during a Hopf bifurcation at lower speeds, with the 
respective works to appear with tendency to change sign. 

Further work is demanded in future on the objective of limit cycle motion definition with 
one of the applicable methods, e.g. shooting method in combination with a continuation 
method of limit cycles. This will probably render the correlation of the energy flow in the 
system and the respective bifurcations more clearly for the various design sets. 
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