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YrieuBuvn dnAwan yia AoyokAomn kot yia KAomr mvVeUUATIKNG LOLOKTNolag:

‘EXw SLapAaceL Kot KOATAVONOEL TOUG KAVOVEG yLa T AOYOKAOTIH KOl TOV TPOTIO OWOTAG
avadopdg TWV MNYWV TOU TEPLEXOVTOAL OTOV 08nNyo ouyypadng AUTAWMOTIKWV
Epyacliwv. AnAwvw Ot,, andé O6ca yvwpilw, TO TEPLEXOUEVO TNG TOAPOUCOS
AuAwpatikig Epyaoiag eivat mpoiov S1kn¢ pou epyaciag Kat untapxouv avadopég o
OAEG TLG TINYEG TIOU XPNOLUOToinoa.

OVOMATENWVUHO

lwavvng Panténoulog

March 5, 2021 n



Diploma Thesis — loannis G. Raptopoulos

This page has been intentionally left blank

March 5, 2021



Diploma Thesis — loannis G. Raptopoulos

ABSTRACT ...ttt ettt ettt ettt ettt e st e sttt e e sa b e e e bt e e e baeesbteesabteesaseeesabaeesabaeesabaeenareeas vii
o 1 2 USSR ix
NOMENCLATURE ....oeittieiitieeetieeciteesiee e st e e steeessteesssaeesesaeessaeessseeessseeessseesssseesnsseesns xi
ABBREVIATIONS .....eiiitiie ettt ettt et e stte e e sate e e saaeesstaeesaaeessaeesnsaeesnseeeesseeesnseeesnseeas Xii
1 INTRODUCTION ...utiiiiiiectiee ettt et e sttt e see st e et eesateeesateeeesaeessaeeensaeesnnneesnneeenns 1
1.1 Background on Gas Foil Bearing Development.......ccocccveeeeviiieeiinciieeennns 1

1.2 Gas Foil Bearings and ROtOr DYNamicCS.....ccouvuveeeeriiieeeiniieeessrieeeeesieeeen 6

13 Problem DesCriptioN.......cccueeiiiiiiieeeiiiee et e e e saaeee s 12

1.4 WOIK OULIING et e e e e 13

2 SIMULATION METHOD ...ccciiieeiiieciiee ettt eee e eee e eee e svee e s e e sve e e sveeesaneeens 17
2.1 Model of the gas foil bearing .......cccoevvveei i 17
2.1.1 Reynolds Equation for the compressible flow ..........cccevvvveeinnneennn. 18

2.1.2 Simplified model for the bump foil structure ......cccccevveveeeennneennn. 23

2.2 Model of the flexible rotor.......ccceeeveciiiii e 30

2.3 Composition and solution of the dynamic system.......cccccceeeviiveeeennen. 33

2.4 Quality of Motion and Stability ........cccceoveeeeiiiie e, 37
2.4.1 Study of the quality of motion .........cccocviiiiiiiie e, 37

2.4.2 Stability assessment of fixed-point equilibrium............cccceeeennenen. 43

3 RESULTS FOR UNBALANCE RESPONSE .....cuttiiiiieriieeciiecniiee st siee e svee s 47
3.1 The influence of bump foil compliance in the unbalance response......55

3.2 The influence of bump foil loss factor in the unbalance response........ 60

33 Y=Y =4V 1o 1Y SR 65

A4 CONCLUSIONS ...ttt ettt et ste e st e et e s sbae e sbae e sbseesabeeesabeeenaneeenns 73
5 REFERENCES ...ttt ettt sttt ettt e e st e sbe e e sabe e e nabeeenanaeees 75
6 LISTOF TABLES ...ttt ettt ettt et tae e sbae e saa e e sabe e e sabeeesaneeees 81
7 LISTOF FIGURES .....ovtieiiiieiiee ettt ettt iee s stae e saae e saa e e sabeeesaneeesaneeenes 83

March 5, 2021



Diploma Thesis — loannis G. Raptopoulos

This page has been intentionally left blank

March 5, 2021



Diploma Thesis — loannis G. Raptopoulos

ABSTRACT

The Diploma Thesis presents an investigation on the dynamics of elastic rotors on Gas
Foil Bearings (GFBs) and aims to provide answers regarding the influence of key design
parameters, such as the shaft stiffness, the foil compliance and the foil loss factor, to the
quality of response, the stability of the system, and the energy flow among its main
components. Right after the short presentation of the historical background of GFB
technology in the introduction section, the Reynolds equation for compressible flow (gas
flow) is numerically solved in order to approach the gas pressure distribution inside the
GFB, and the ordinary differential equation for a simplified bump foil structure is
defined. The flexible rotor is implemented in this work with the well-known equations
of motion of the Jeffcott rotor.

A coupled vector including all three aforementioned components consisting of gas
pressure, foil deformation, and rotor’s horizontal and vertical displacements with their
time derivatives is introduced and the respective nonlinear system of ordinary
differential equations is represented in state space. The unique source of nonlinearity in
the system is the strongly nonlinear gas forces resulting in various types of rotor motion
and trajectories which are studied thoroughly in terms of stability and periodicity for
different properties of the design parameters utilizing short-time Fourier transform,
bifurcation diagrams, Poincaré maps and fast Fourier transform. Autonomous and non-
autonomous versions of the system are studied corresponding to perfectly balanced and
unbalanced rotors. The energy flow constitutes the final field of study where the work
portions produced by the gas, foil spring and foil damper forces are evaluated.

Conclusions can be drawn highlighting the role of foil damping (loss factor) and the foil
stiffness in the birth of limit cycle motions and their bifurcations occurring as the
parameter of rotating speed changes. Saddle node (fold), and Neimark-Sacker
bifurcations of limit cycles are found to occur for specific design properties, while limit
cycles are generated always by Hopf-Andronov bifurcation of fixed equilibria; the
corresponding whirl-whip phenomena are discussed. The energy flow between the
components of the system is addressed founding that the work of gas forces along a
closed orbit changes sign when saddle node bifurcations of limit cycles occur. Similar
changes are noticed during bifurcations of fixed equilibria (Hopf-Andronov type).

March 5, 2021

vii



Diploma Thesis — loannis G. Raptopoulos

ABSTRACT (Greek)

H AutAwpatikr Epyacia Stepeuva tnv Suvapiki Twv EAAoTIKWY afoVwy o agpoédpava
pe evkaumnrto kéEAudog (GFBs - Gas Foil Bearings), otoxevovtag va SWOEL AMOVTOELG
OXETIKA UE TNV eMiSpaon BACLKWVY CXESLOOTIKWVY TTAPAUETPWY, OTwE N Suokauio tou
agova, n evéotikotnta kat n anocBeon (loss factor) tng Statagng tou foil, otnv mowotnTA
TNG XPOVLKNG OIMOKPLONG, TNV EVOTABELN TOU CUCTHMOTOG, KL TN PON EVEPYELAG LETAEY
TWV KUPLWV CUVIOTWOWV auTol. EMelta and tn cUVIOUN LOTOPLKN OVACKOTNGN OTnNV
Texvoloykn €€€ALEN Tou GFB oto slocaywylkd kedpdalatlo, n eiowon tou Reynolds yla
ouumieotn pon (pon atpoodalpikol agpa) emAUETOL OPLOUNTIKA TIPOKELUEVOU Vo
EKTLUNBEL N KaTavoun tng mieong Tou aeplov evtog tou GFB, kal emutAéov opiletal n
Sdtadopikn eflowon yla TNV MOPAROPPWON TOU UMOCUCTAHATOG Tou KeAUdoug. O
€EAAOTIKOG Afovag ELOAYETAL OTNV MPOoOoUOoilwaon UE TG eELOWOELG Kivnong Tou agova
Jeffcott.

To Slavuopa 0To XWPO KATAOTAONG OPLIETAL LUE TPELG CUVIOTWOEC: TNV TILECH TOU QEPLOU,
TV nopapdpdwon tou keEAUGouUG, Kal TNV opllOVTLa Kol KATAKOpUdn UETATOTLON TOU
afova pall KE TIG XPOVIKEG TTAPAYWYOUC TOUC. TN CUVEXELX, OKOAOUBEL 0 OpLOUOC TOU
UN-YPOUULIKOU cuoTApato¢ ouvnBwy Stadoplkwyv e€lowoewv. Tnv povadikn mnyn un-
VPOAUULKOTNTOC OTO CUCTN LA ATTOTEAOUV OL LOXUPA KN-YPOUULIKEG SUVAUELC TOU agpiou,
ol omole¢ suBuvovtal yla Vv Snuoupyia KIVACEWV MOKIAWY TUMWV Kal Stadopwy
TPOXLWV KOl LEAETWVTAL EKTEVWE -WCE TIPOG TNV EVOTABDELA KAl TNV TEPLOSIKOTNTA TOUG
yla S1apopeC TIHEG TwV OXESLAOTIKWY TIAPAUETPWV- XPNOLLOTIOLWVTAC LETACKNUATIOUO
Fourier, dtaypappata StakAadwoewv, Kot amelkovioelg Poincaré. H autovoun kat n pn-
outovoun €kéoon TOU CUOTAMATOC MEAETwvTOL KAt avtiotolxia pe dfova Xwpig
aluyootaBuia kat pe aluyootabuia. H pon evEpyelag QVAUESO OTLC CUVIOTWOEG TOU
OUOTNUATOG AmoTeAEL TO TeAeUTAlO PEPOC AUTAG TNC UEAETNG OMou umoAoyilovtal ot
TIOOOTNTEC TWV €pYwV TwV SUVAHEWV Tou aepiou, KABwG Kal Twv SUVAPEWV TOU
e\aTnpilou KoL ToU amooBeoTtrpa cUYKPATNONG Tou KEAUDOUG.

Ta cuunepdopata e€dyovtal umoypappilovtag tov poAo Tng amooBeong Kal tng
Suokauiag TOU UTMOCUCTAMATOC OUYKPATNONG Tou kKeAUdoug otnv dnuloupyia
KWVAoEwV o€ oplako kUKAo (limit cycle motions), kaBw¢ katl ot SlakAadwoelg Toug
(bifurcations), mou ocupBaivouv kaBwg peTaBAAAETOL N TAPAUETPOC TNG YWVLOKAG
Tayvutntag neplotpodng tou afova. AlakAadwoelg avadimiwong (cdyuatog KOUpou —
saddle node) kaL tOmou Neimark-Sacker AouBdvouv Xwpa yld OUYKEKPLUEVEG
OoXEOLAOTIKEG TIOPAUETPOUG, VW PBpEéBnke OTL Ta onueia wooppomiag (fixed points)
Xavouv mavta tnv €uotabeld toug pe SlakAadwoelg tumou Hopf-Andronov. Ta
avtiotolya ¢awvopeva whirl-whip oxoAwdlovtal. H evepyelokr) por] MeTOEL Twv
OUVIOTWOWV TOU CUOTAHATOC eEETATETOL KOL CUUTIEPALVETAL OTL TO £pYO TWV SUVAUEWV
ToU aepiov oe pia kAot tpoxld aAAdlel mpodonuo otav cupPaivouv SLakAadwoELg
avadimlwong (saddle node) otoug oplakoU¢ kKUKAouG. MMapouoleg HETAPOAEG
napouotalovrtal kot katd tn Sidapkela StakAadwoswv Twv onpeiwv Loopporiag TUMou
Hopf-Andronov.
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NOMENCLATURE
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first order time derivatives
second order time derivatives

dimensionless compliance of bump foil

2po (2) (1 -v1) 2

bearing clearance [m]

bearing diameter [m]

unbalance eccentricity [m], € = e/c,

Young's modulus for bump foil [N /m?]

gas force components in x and y directions
[N],

FBx = Fpx/Cr) FBx = Fpy/cr

foil damper force [N]

foil spring force [N]
mean force acting on the top foil [N]

unbalance force components in x and y
directions [N], Fyy = Fyx/Cr Fux = Fux/
CT‘

fluid film thickness [m], h = h/c,

foil stiffness coefficient per area
(Po/(afcr)) [N/m3], Ef = 1/5,‘

shaft stiffness coefficient
(ksmgpgc,*/(36u*R*) [N/m?]

p,p

a.9

tp

We,
We
Wy

% y

Xj» Vs

gas pressure [N/m2],p = p/po

foil deflection [m], g = q/c,
bump foil thickness [m]

work produced by the foil damper forces

Ul
work produced by the foil [/]

work produced by the bearing’s gas forces

Ul

work produced by the foil spring forces [/]

journal displacementsin x and y directions

[m]ryj = Xj/Cr, y]‘ = Yj/cr

disc displacements in x and y directions

[m], Xq = Xa/¢r, Yy = Ya/cr
spatial coordinate in x direction, x = x/R

spatial coordinate in z direction, z = z/R
loss factor for bump foil structure

angular coordinate [rad]

viscosity of gas [Ns/m?]

Poisson's ratio for bump foil
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bump half-length [m]

journal mass [kg]

disc mass [kg]
ambient pressure [N /m?]

mean gas pressure over bearing length
[N/m?],p,, = Pm/(@oL)

ABBREVIATIONS

DL

DM

FDM

Dimensionless

Dimensioned

Finite Difference Method

Pr

GFB

NS

SN

dimensionless parameter of the rotor
model (36u*LR>/(m;pyc,>))

dimensionless parameter of the rotor
model (364*R*g/(po” %))

dimensionless time (poc,2/(61R?)t)

journal’s angle of rotation [rad]
angle of foil fixation point [rad]

angular velocity (6uw/py)(R/c,)? [rad/
s], @ = 6uR?*/(poc,?)

Gas Foil Bearing
Neimark-Sacker

Saddle node
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1 INTRODUCTION

1.1 Background on Gas Foil Bearing Development

Gas foil bearings (GFBs) are an upcoming and promising oil-free technology in modern
high-speed rotating machinery [']. Relying on a thin gas film building up an aerodynamic,
load-carrying lubrication wedge, such bearings are self-acting and do not require any
external pressurization. Most notably, due to the absence of solid-to-solid contact
between the airborne rotor journal and the bearing sleeve, excessively low wear and
power loss can be achieved [?].

During the last few decades, the potential of GFBs has been widely confirmed by a great
number of successful applications in air cycle machines of commercial aircraft [3]. Lately,
in particular as a result of insurmountable speed, temperature, and weight limitations
of conventional rolling-element bearings, novel concepts of oil-free turbochargers [*]
and oil-free rotorcraft propulsion engines [°] are gaining more and more interest.

Foil air bearings are similar to conventional oil-lubricated bearings in size, shape, and in
that the fluid film pressure is developed via the hydrodynamic effect, see Figs. 1.1 and
1.2. Unlike conventional bearings, foil air bearings use air as their working fluid and the
bearing surface is compliant rather than rigid [®]. This compliant inner or top foil surface
is supported by a spring pack or bump foil layer which allows the bearing to
accommodate shaft misalignment, thermal and centrifugal distortion, the presence of

[1] T. Leister, C. Baum, W. Seemann (2017) On the Importance of Frictional Energy Dissipation in the Prevention of
Undesirable Self-Excited Vibrations in Gas Foil Bearing Rotor Systems. TECHNISCHE MECHANIK, 37, 2-5, (2017),
280 —290

[2] Heshmat, H.; Walowit, J. A.; Pinkus, O. (1983) Analysis of gas-lubricated foil journal bearings. Journal of
Lubrication Technology, 105, 4, 647—655.

[3] Howard, S. A.; Bruckner, R. J.; DellaCorte, C.; Radil, K. C. (2007) Gas foil bearing technology advancements for
closed Brayton cycle turbines. Tech. Rep. NASA TM-214470, National Aeronautics and Space Administration, United
States of America.

[4] Howard, S. A. (1999) Rotordynamics and design methods of an oil-free turbocharger. Tech. Rep. NASA CR-
208689, National Aeronautics and Space Administration, United States of America.

[5] Howard, S. A.; Bruckner, R. J.; Radil, K. C. (2010) Advancements toward oil-free rotorcraft propulsion. Tech. Rep.
NASA TM-216094, National Aeronautics and Space Administration, United States of America.

[6] DellaCorte C., Zaldana, A., and Radil, K. (2004) A Systems Approach to the Solid Lubrication of Foil Air Bearings
for Oil-Free Turbomachinery. STLE/ASME Joint International Tribology Conference, FL Oct. 2003.
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wear debris and also allows the designer to tailor the operational foil shape to enhance
film pressure and hence bearing load capacity [].

Fig. 1.1: Photo of an integrated gas foil bearing; ~ Fi9- 1.2: Photo of the inner compounds of a gas
taken from grabcad.com foil bearing; taken from sulzer.com

Fig. 1.3 schematically shows typical foil bearing designs. Micro-sliding, which occurs
between the top foil and its spring support and within the spring foils, contributes
significant coulomb damping properties to the bearing [2].

/— Bearing sleeve Bump foil— — Bearing sleeve

,— Joumal Top foil— ,—Journal

Leaf foil—
|

(@) (b)
Fig. 1.3: Schematic example of typical first-generation foil bearings with axially and circumferentially
uniform elastic support elements: a) leaf-type foil bearing; and b) bump-type foil bearing; taken from

[6]

Since foil bearings do not use oil as their working fluid they can and are routinely used
over an extremely wide temperature range, from cryogenic to over 650°C, not possible
with oil lubrication. Foil air bearings, however, do require solid lubrication to prevent
wear and reduce friction at very low speeds encountered during start-up and shut-down
prior to the development of the hydrodynamic gas film and also during momentary

[] Gross, W. A. (1962) Gas Film Lubrication, John Wiley and Sons, Inc.

[6] Heshmat, H., Shapiro, W., and Gray, S. (1982) Development of Foil Journal Bearings for High Load Capacity and
High Speed Whirl Stability, ASME J. Lubr. Technol., 104, pp. 149-156.
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bearing overloads such as high-speed rubs [°]. Traditionally, this solid lubrication is
provided by applying a thin polymer film or coating to the foil surface, see Fig. 1.4.

Blok and Van Rossum published the first paper on foil bearings in 1953 [°]. Although
they coined the term “foil bearing”’, their work actually concerned an oil lubricated shaft
running against an acetate film or “foil”’. The concept of a flexible bearing surface and
its implications to and potential for improved capabilities was quickly adapted by other
technologists and papers on air lubricated foil bearings began to appear in the open
literature in the following decade [*%,'?]. Foil bearing load capacity is expressed in
relation to a bearing’s load capacity coefficient, D. This coefficient, defined fully in [*3],
is an empirically established performance parameter which relates bearing size and
speed to the load that a bearing can support. Mathematically, it is defined as follows
[6,%3]:
W =D x(Lxd)x(d xkrpm)

where W is the maximum steady load that can be supported, N; D is the bearing load
capacity coefficient, N/mm3krpm; L is the bearing axial length, mm; and d is the shaft
diameter, mm. krpm is the shaft rotational speed in thousands of revolutions per
minute, krpm. This relationship can be remembered easily for advanced technology
bearings, which have load capacity coefficients of around 1.0 when non-SI or English
units are used. The comparable coefficient for SI units is about 175 kPa/mm. An
advanced design, designated Generation Il [6] foil bearing, like the type depicted in Fig.
1.6, will support about “one pound of load per in2 of projected bearing area per inch of
bearing diameter per thousand rpm.” The earliest foil bearing designs, designated
Generation |, had very simple elastic support structures (spring systems) and exhibited
load capacity coefficients of around 0.3. The development of more complex bearing
designs in which the elastic foundation varied circumferentially or axially is defined as
Generation Il and exhibit load capacity coefficients around 0.5. The most recent bearing
designs have elastic structures which tailor the spring foundation both circumferentially
and axially, are designated Generation Ill bearings, and have load capacity coefficients
of about 1.0. Foil bearings used in air cycle machines are Generation | bearings.
Generation |l bearings have been used successfully in turbocompressors and small

[°] DellaCorte, C., and Wood, J. C. (1994) High Temperature Solid Lubricant Materials for Heavy Duty and Advanced
Heat Engines, NASA TM-106570.

[*°] Blok, H., and van Rossum, J. J. (1953) The Foil Bearing-A New Departure in Hydrodynamic Lubrication, ASLE
J. Lubr. Eng., 9, pp. 316-330.

[**] Ma, J. T. S., 1965, “‘An Investigation of Self-Acting Foil Bearings,”” ASME J. Basic Eng., 87, pp. 837-846.

[*?] Barnett, M. A., and Silver, A. (1970) “‘Application of Air Bearings to High Speed Turbomachinery,”” SAE Paper
700720.

[*%] DellaCorte, C., and Valco, M. J. (2000) Load Capacity Estimation of Foil Air Journal Bearings for Qil-Free
Turbomachinery Applications, STLE Tribol. Trans., 43, pp. 795-801.
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microturbines. It is expected that Generation Il bearings with load capacity coefficients
near 1.0 will be used in aircraft engine applications.

Rigid — Copper layer

housin I (heat transfer) Rigid
" N\ | . housing —, ek
Steel sleeve \ " i gglf)tbgalid tube) \\ i (traps air)
X ! Bump foil \ |

(elasticity) . x

Air —
N

\
; — Al-Cu

— Qil (hydrodynamic K
[“ fluid) L_pS304 (wear
L— Chrome plate coating resistance)

or carbonized layer

_~— Hard layer

Shaft #
~— Superalloy
~<.__ Oilfluid ___--—Softbabbit 1Pl =~

_\ Superalloy

elastic J
foundation —

\-_—_-/ \-_—_—/
(a) (b)
Fig. 1.4: Schematic representation of systems approach to bearing lubrication a) conventional oil
lubricated bearing, and b) multilevel solid/gas lubricated foil air bearing [6]

Foil bearings have been successfully used in high-speed turbomachines, and they
present a remarkable reliability. For aircraft turbo-compressors, the mean-time-
between failure is typically over 60000 h [*4,®°]. The operational mechanism of foil
bearings is similar to that of fluid-film bearings. At the start-up stage, the rotor journal
and the bearing bore are contacting each other directly. Once the rotational speed
crosses the lift off speed, the rotor will be suspended by the generated pressure fluid
film. As the stiffness of the foils is much smaller than that of the fluid film, the foil
bearings can adapt to various working conditions through foil deformations. Specially,
the range between the second and third critical speeds of the foil bearing-rotor system

[*41 Y. Hou, Z. H Zhu, C. Z. Chen (2004) Comparative test on two kinds of new compliant foil bearing for small
cryogenic turbo-expander. Cryogenics, 44: 69-72.

[**]1Z. Y. Guo, K. Feng, T. Y. Liu (2018) et al. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings:
effects of gas film and foil structure on subsynchronous vibration. Mechanical Systems and Signal Processing, 107:

549-566.
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is very large, which means that the foil bearings can suspend the rotor at a very high
speed stably. Owing to these advantages, foil bearings are identified as a potential

1600 Bearing

Diameter: d = 51mm
[ | Length: L = 38mm 1990's

1200

Generation |Il
D=08-1

800 Journal

Load Capacity, N

Generation |l
D=03-06

400

Top foil <

0 20000 40000 60000
Shaft Speed, RPM

Fig. 1.5: Bearing Load Capacity, Gen. I, I, 111 [8] Fig. 1.6: Generation 111 foil air bearing [8]

alternative for REBs. If properly designed and operated, foil bearings would incur very
slight wear and have a long service life [1°].

In the 1990s, NASA conducted various tests of foil bearings in LH2 and LO2 environments
[*7,%8]. The material compatibility of three candidate polymer coatings for LH2 lubricated
foil bearings was tested at the NASA White Sands Test Center [*°]. There were no ignition
hazards during the frictional heating tests, which means that these polymer coatings can
be used in the establishment of foil bearing turbopumps. After that, LH2 foil bearing

[*] H Heshmat H. (1991) A feasibility study on the use of foil bearings in cryogenic turbopumps. 27%
AIAA/SAE/ASME/ASEE Joint Conference, California, USA, June 24-26: AIAA-91-2103.

[¥"] M. Saville, A Gu, R Capaldi (1991) Liquid hydrogen turbopump foil bearing. 27" AIAA/SAE/ASME/ASEE Joint
Propulsion Conference and Exhibit, California, USA, June 24-26: AIAA-91-2108.

[*8] J. S. McFarlane, M P Saville, S C Nunez (1995) Testing a 10000 Ibf thrust hybrid motor with a foil bearing LOx
turbopump. 31st Al-AA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, California, USA, July 10-
12: AIAA-95-2941.

[*°] J. M. Stoltzfus, J. Dees, A. Gu, et al. (1992) Material compatibility evaluation for liquid oxygen turbopump fluid
foil bearing. 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, Tennessee, USA, July 6-8:
AIAA-92-3403.
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turbopump and LO2 turbopump demonstrations were conducted subsequently [?°]. In
1992, the LH2 foil bearing turbopump was successfully tested in NASA Stennis Space
Center. The maximum rotational speed was 91000 r/min. After over 100 times of a
frequent start/stop, the foil bearings and rotating assembly were still in excellent
condition. In 1993, a LO2 turbopump demonstration was successfully conducted in NASA
Marshall Space Flight Center. The maximum rotational speed was 25000 r/min and the
total start/stop times were over 100. However, foil bearings have not yet been adopted
in any rocket turbopump in service. In fact, the working principle of foil bearings is
almost identical to that of fluid film bearings, and thus, the start-up problem still exists.
Although bearing coatings were adopted, some debris particles with a size of
approximately 0.51 mm were still found in NASA foil bearing turbopump demonstrations
and the bearing surface was scratched by them to some extent. This is a potential hazard
for a safe service, which cannot be ignored.

1.2 Gas Foil Bearings and Rotor Dynamics

Most of the considered rotating machinery is supposed to reach and to maintain a stable
operating point after completing the run-up. However, as a result of the highly nonlinear
bearing forces induced by the pressurized fluid, the existing equilibrium points of GFB
rotor systems tend to become unstable for higher rotational speeds [!]. Subsequently,
undesirable self-excited vibrations with comparatively large amplitudes may occur
[?1,%2,23]. For this reason, many common bearing designs feature a compliant and slightly
movable multi-part foil structure inside the lubrication gap. By dissipating a certain
amount of energy via dry sliding friction mechanisms [?%], this countermeasure is
supposed to reduce the vibrational amplitudes or, as the ultimate goal, to prevent the
occurrence of self-excited vibrations in the first place.

The gas foil bearing is becoming very popular in oil free turbo-machinery because of its
good dynamic characteristics and environment friendly features. There are different

[°] A. Gu (1994) Cryogenic foil bearing turbopumps, 32nd Aerospace Science Meeting & Exhibit, Nevada, USA,
January 10-13: AIAA-94-0868.

[?*] Bonello, P.; Pham, H. M. (2014) The efficient computation of the nonlinear dynamic response of a foil-air bearing
rotor system. Journal of Sound and Vibration, 333, 15, 3459-3478.

[%] Hoffmann, R.; Pronobis, T.; Liebich, R. (2014) Non-linear stability analysis of a modified gas foil bearing structure.
In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Milan, Italy.

[°] Baum, C.; Hetzler, H.; Seemann, W. (2015) On the stability of balanced rigid rotors in air foil bearings. In:
Proceedings of the SIRM 2015, Magdeburg, Germany(2015a).

[?4] Peng, J.-P.; Carpino, M. (1993) Calculation of stiffness and damping coefficients for elastically supported gas foil
bearings. Journal of Tribology, 115, 1, 20-27.
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types of foil bearings viz. leaftype, bumptype, tapetype, multi-wound and foil bearing
with compression springs [?°] etc. The bump type foil bearing is simple in construction
and more efficient compared to the other types of foil bearing. It is superior to
conventional gas bearing and has higher load capacity, lower power loss, good stability,
and endurance to high temperature, misalighment and foreign particles in the gas [?].
Due to these advantages, it is considered as best candidate for oil free turbo-machinery
and have shown potential for micro/meso- scale gas turbine and its different
applications [%%,%7]. A good amount of research work on bump type foil bearing dynamics
has been carried out in the past three decades. Heshmat et al. [?] presented the first
model of bump type of foil bearing. In this model they considered only elastic effect to
bump foil; whereas damping due to the interaction of bump foil to top foil and bump foil
to bearing housing is not considered. Later, Ku and Heshmat [?®] proposed a more
elaborate model that comprises elastic deformation of bump, interactions between
bumps, Coulomb friction damping between top and bump foils as well as interaction
between bump foil and bearing housing. Peng and Carpino [%*] presented linear stiffness
and damping coefficients of bump foil bearing considering elastic effect of bump foil.
Peng and Carpino [*°] also presented foil bearing dynamic coefficients using finite
element method. lordanoff [3°] proposed rapid design method for foil thrust bearing in
which static stiffness of bump with friction between bump foil and housing is
incorporated.

[?%] J. Song, D. Kim (2007) Foil gas bearing with compression springs: analysis and experiments, Journal of Tribology
129:628-639.

[?6] S.P. Bhore, A.K. Darpe (2013) Investigations of characteristics of micro/meso-scale gas foil journal bearings for
100-200W class micro-power system using first order slip velocity boundary condition and the effective viscosity
model, Journal of Microsystem Technologies 19:509-523, http://dx.doi.org/ 10.1007/s00542-012-1639-1.

[?] S.P. Bhore, A.K. Darpe (2014) Rotordynamics of micro and mesoscopic turbomachinery: a review, Journal of
Advances in Vibration Engineering 13 (1), in press.

[?%] C. P. Ku, H. Heshmat (1992) Compliant foil bearing structural stiffness analysis: part1-theoretical model including
strip and variable bump foil geometry, Journal of Tribology 114 (2): 394-400.

[?°] J. P. Peng, M. Carpino (1997) Finite element approach to the prediction of foil bearing rotor dynamic coefficients,
Journal of Tribology 119 (1): 85-90.

[3° 1. lordanoff (1997) Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design. Journal of
Tribology 121 (4) 1996 816-822
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Kim and San Andres [3!] obtained bearing characteristics for heavily loaded foil bearing
and validated with test results. They also presented frequency dependent dynamic
coefficients. San Andres and Kim [3?] presented nonlinear response of rotor supported
by gas foil bearing. The nonlinear nature of stiffness characteristics of foil bearing is
modelled using experimental data. They have shown that the linear force coefficients
are not reliable to represent the dynamic behavior of rotor supported on gas foil bearing.
Kim [33] conducted a parametric study on the static and dynamic characteristics of bump
type foil bearings with different top foil geometries (circular and three pad
configurations) and bump stiffness distributions. He presented a mathematical model of
the bump foil bearing with equivalent viscous damping. The comparison of the static and
dynamic performance of the bearing with linear perturbation based dynamic
coefficients and a time domain orbit simulation is carried out. He found that there is a
significant difference in the estimated onset speeds of instability from the set of
approaches. A more advanced analytical modelling of foil bearing is reported by Lez et
al [3*]. The bumps and their interaction are modeled by multi-degree freedom system.
The interactions between the top foil and bump foil and between bump foil and housing
are modelled with friction forces. Feng and Kaneko [3°] also presented an analytical
model of the bump type foil bearing using link spring structure and finite element-based
shell model. Lez et al. [3®] have studied the nonlinear behavior of the foil bearing with
stability and unbalance responses. Nonlinear jump phenomena have been observed. The
shaft trajectory analysis and influence of friction on stability are investigated. They have
not explored the bifurcation analysis with different system parameters [37]. As the gas
foil bearing shows nonlinear behavior [3?,33], the analysis of dynamic behavior of rotor

[ T. H. Kim, L. San Andres (2008) Heavily loaded gas foil bearings: a model anchored to test data, Journal
Engineering for Gas Turbines and Power 130 (1) 012504-012508.

[*3] L. San Andres, T. H. Kim (2008) Forced nonlinear response of gas foil bearing supported rotors, Tribology
International 41 704-715.

[*%] D. Kim (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil
geometries and bump stiffness distributions, Journal of Tribology 129 (2) 354-364.

[*1 S. Le Lez, M. Arghir, J. Frene (2007) A new bump-type foil bearing structure analytical model, Journal of
Engineering for Gas Turbines and Power 129 (4) 1047-1057.

[*°] K. Feng, S. Kaneko (2010) An alytical model of bump-type foil bearings using a link spring structure and a finite
element shell model, Journal of Tribology 132 (2) 1-11.

[*%] S. Le Lez, M. Arghir, J. Frene (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced
response, Journal of Engineering for Gas Turbines and Power 131:012503-012512.

[¥]1 S.P.Bhore, A. K. Darpe (2013) Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings.
Journal of Sound and Vibration 332:5135-5150
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supported on gas foil bearing is essential. A detailed nonlinear dynamic analysis using
bifurcation diagrams, Poincaré maps, trajectories and Fast Fourier transforms is hence
needed.

In order to deal with computationally expensive rotor-bearing nonlinear dynamic
analysis in the time domain, linear damping and stiffness coefficients were calculated to
predict rotor-bearing stability [38]. The rapid development of computer science and
increasing computer power later enabled the solution of the mathematical models in
the time domain and allowed for the inclusion of gas compressibility and foil compliance
in the models. Although almost a century has passed since the first publications about
gas bearings, the accurate time simulation of gas bearings with compliant surfaces is still
a challenging and very time-consuming task. Prior to the presented work, different
approaches for solving the compressible Reynolds equation have been investigated.
Among others, Wang and Chen [3°] who used finite difference for the spatial and
temporal dimensions when solving the Reynolds equation. They simulated the steady-
state response of a perfectly balanced rigid rotor supported by two identical bearings.
The spatial discretization was performed with a central-difference scheme, while the
temporal discretization was performed with an implicit-backward-difference scheme.
Arghir et al. [%°] presented a finite volume solution where the pressure was implicitly
integrated for a prescribed gap perturbation to calculate linear stiffness and damping
coefficients dependent on the perturbation amplitude. In the procedure, the rotor was
stationary in one direction, while the other was perturbed by a sinusoidal displacement,
Asin(ot). At each time step, the reaction forces from the air film were calculated and

based on the displacement/velocity and reaction force pairs, the least square method
was used to calculate the linear stiffness and damping for a given amplitude A. This
allowed a linear analysis of a rotor system to take into account the nonlinearities related
to the vibration amplitude of the rotor in the air bearings. A common method to solve
the compressible Reynolds equation in time is to substitute the time derivatives dp/dt
and dh/dt by backward-difference approximations [*1,%?]. In this case, these time

[*®] J. W. Lund (1968) Calculation of stiffness and damping properties of gas bearings, Journal of Lubrication
Technology 793-804.

[*] C.-C. Wang, C.-K. Chen (2001) Bifurcation analysis of self-acting gas journal bearings, Journal of Tribology
123:755.

[*°] M. Arghir, S. LeLez, J. Frene (2006) Finite-volume solution of the compressible Reynolds equation: linear and
non-linear analysis of gas bearings, Proceedings of the Institution of Mechanical Engineers, PartJ: Journal of
Engineering Tribology 220:617-627.

[*1] J.-H. Song, D.Kim (2007) Foil gas bearing with compression springs: analyses and experiments, ASME Journal of
Tribology 129:628-639.

[*] D. Lee, Y.-C. Kim, K.-W. Kim (2009) The dynamic performance analysis of foil journal bearings considering
coulomb friction: rotating unbalance response, Tribology Transactions 52:146-156.
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derivatives will be lagging behind in time, and the time steps need to be very small in
order to preserve the accuracy of the solution. This method was employed by e.g. LeLez
et al. [43] and Kim [44]. The method was also used by Zhang et al. [**] to solve the
transient Reynolds equation, but with four-node planar finite elements for the spatial
discretization of the Reynolds equation and for a rigid gas journal bearing. More
recently, Bonello and Pham [46,47] solved the nonlinear Reynolds equation by using an
alternative state variable ) = ph. Using this alternative state variable, it was possible to
setup a set of ordinary differential equations (ODE) to solve the Reynolds equation and
other state variables simultaneously at each time step. For spatial discretization, a finite
difference and Galerkin reduction method were used. The solution for the transient
compressible Reynolds equation was then coupled to the simple elastic foundation
model (SEFM), and the transient response of a rotor system was presented. In order to
accelerate the time simulations, several authors have consistently and diligently been
working on improving the numerical methods and developing new numerical strategies.
A simplified method for evaluating the nonlinear fluid forces in air bearings was recently
proposed by Hassini and Arghir [48,49,50]. The fundamental idea was based on
approximating the frequency-dependent linearized dynamic coefficients at several
eccentricities by second-order rational functions in the Laplace domain. By applying the
inverse of the Laplace transform to the rational functions, a new set of ordinary
differential equations was obtained, leading to an original way of linking the fluid forces
components to the rotor displacements. The numerical results showed good agreement

[*] S. LeLez, M. Arghir, J. Fréne (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced
response, Journal of Engineering for Gas Turbines and Power 131:012503.

[*] D. Kim (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil
geometries and bump stiffness distributions, Journal of Tribology 129: 354-364.

[*°] J. Zhang, W. Kang, Y. Liu (2009) Numerical method and bifurcation analysis of Jeffcott rotor system supported
in gas journal bearings, Journal of Computational and Nonlinear Dynamics 4 011007.

[*6] P. Bonello, H. M. Pham (2014) The efficient computation of the nonlinear dynamic response of a foil-air bearing
rotor system, Journal of Sound and Vibration 333:3459-3478.

[*']1 H. M. Pham, P. Bonello (2013) Efficient techniques for the computation of the nonlinear dynamics of a foil-air
bearing rotor system, ASME TurboExpo2013: Turbine Technical Conference and Exposition, p.7.

[*®] M. A. Hassini, M. Arghir (2014) A Simplified and Consistent Nonlinear Transient Analysis Method for Gas
Bearing: Extension to Flexible Rotors, Diisseldorf, Germany, June 16-20. GT2014-25955.

[*°] M. A. Hassini, M. Arghir (2013) A new approach for the stability analysis of rotors supported by gas bearings,
Proceedings of ASME Turbo Expo 2013, pp.1-13.

[*°] M. A. Hassini, M. Arghir (2012) A simplified nonlinear transient analysis method for gas bearings, Journal of
Tribology 134:011704.
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with the results obtained solving the full nonlinear transient Reynolds equation coupled
to the equation of motion of a point mass rotor. By ensuring the continuity of the values
of the fluid forces and their first derivatives and imposing the same set of stable poles
to the rational functions, simplified expressions of the fluid forces were found, avoiding
the introduction of false poles into the rotor-bearing system. In [48], the authors showed
that the new formulation may be applied to compute the nonlinear response of systems
with multiple degrees of freedom such as a flexible rotor supported by two air bearings.
On the other hand, working directly with the solution of the Reynolds equation for
compressible fluids and compliant surfaces, Bonello and Pham [46,50] presented a
generic technique for the transient nonlinear dynamic analysis and the static equilibrium
stability analysis of rotating machines, using the finite-difference state equations of the
air films with the state equations of the foil structures and the state equations of the
rotating machine model. To accelerate the time simulations, the state Jacobian matrix
was obtained using symbolic computing, and the equations were solved using a readily
available implicit integrator and a predictor-corrector approach.

In [°Y], an industrial rigid rotor supported by two identical segmented foil bearings is
modelled and the effect of rotor unbalance is theoretically and experimentally
investigated. The main original contribution of the work was related to the accurate, i.e.
guantitatively and qualitatively, prediction of the nonlinear steady-state rotor response.
The modelling of the segmented three pad foil bearings was carried out with high
attention to the actual geometry by including the inlet slope, which has previously been
found to influence both the static and dynamic results [>?]. The foil structural model was
based on the SEFM but with a stiffness k and loss factor n deduced from a previously
described mathematical model [*3]. This model considered the friction forces between
the sliding surfaces and was validated against experiments. Consequently, the bump foil
stiffness k used in [*!] differs significantly from results in the literature, in which the foil
stiffness was based on analytical expressions not accounting for the stiffening effect
generated by the friction forces, e.g. Walowit and Anno [**]. The discretization of the

[11J. S. Larsen, I. F. Santos (2015) On the nonlinear steady-state response of rigid rotors supported by air foil bearings-
Theory and experiments, Journal of Sound and Vibration 346:284-297

[3?] J. S. Larsen, A. J.-T. Hansen, I. F. Santos (2014) Experimental and theoretical analysis of a rigid rotor supported
by air foil bearings, Mechanics &Industry.

[*%] J. S. Larsen, A. C. Varela, 1. F. Santos (2014) Numerical and experimental investigation of bump foil mechanical
behaviour, Tribology International 74:46-56.

[*4 J. A. Walowit, J. N. Anno (1975) Modern Developments in Lubrication Mechanics, Applied Science Publishers,
London.
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Reynolds equation is performed using the finite element method [*°] and the solution of
the mathematical model was based on the strategy suggested in [%6,%7].

Gas bearings have been intensively investigated, theoretically as well as experimentally,
for nearly six decades [°®,°7,°8] although some initial publications are dated already from
the beginning of the last century [*°], and it is rather difficult to cover a representative
part of contributions. However, review papers help to perceive the evolution of gas foil
bearing technology [®°].

In this Master Thesis a rather simplistic model for bump foil properties of linearized
stiffness and damping coefficients is utilized, taken directly from literature [2,%7,%], and
the first two design parameters are introduced as foil compliance a, and foil loss factor

1 . The rotor model follows the Jeffcott rotor model and the third design parameter of

shaft stiffness kg is introduced in the modelling. The nonlinear dynamic characteristics
of the system are investigated evaluating its time domain response for several sets of
as, n, and kg and a study is performed on the quality of stability and of feasible motions
experiencing bifurcations. The study of the work portions dissipated in the damping
sources of gas and bump foil presents a correlation of the energy flow to the respective
bifurcation developed. A real system consisting of a high-speed centrifugal compressor
rotor on gas foil bearings is also included in the simulations. The problem description
and the work outline are described in continue.

1.3 Problem Description

This work aims to give answers on the influence of key design characteristics of the
system (rotor stiffness, bump foil stiffness, bump foil damping) in the quality of response
(stable, unstable, periodic, quasi-periodic, chaotic) and the respective energy flow

[*°]1J. S. Larsen, I. F. Santos (2014) Efficient solution of the non-linear Reynolds equation for compressible fluid using
the finite element method, Journal of the Brazilian Society of Mechanical Sciences and Engineering 1-13.

[*%] B. Sternlicht, R. C. Elwell (1957) Theoretical and experimental analysis of hydrodynamic gas-lubricated journal
bearings, American Society of Mechanical Engineers-Papers.

[>1J. S. Ausman (1961) An improved analytical solution for self-acting, gas-lubricated journal bearings of finite length,
Journal of Basic Engineering 83:188-192.

[%8] V. Stingelin (1963) Theoretische und experimentelle Untersuchungen an Gaslagern, PhDThesis, Eidgendssischen
Technischen Hochschulein Ziirich.

[*°] W. J. Harrison (1913) The hydrodynamical theory of lubrication with special reference to air as a lubricant,
Transactions Cambridge Philosophical Society 22:34-54.

[®°] P. Samanta, N.C. Murmu, M.M. Khonsari (2019) The evolution of foil bearing technology. Tribology International
135:305-323
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among the major components of the system (rotor, gas, bump foil) at stable operation

and at bifurcation points. The questions to be answered are considered as follows:

» What is the relation between rotor stiffness, foil stiffness, and foil damping in order
to achieve asymptotically stable motions of the rotor at a specific rotating speed
range?

» What is the mechanism which triggers self-excited vibrations, and how this can be
prevented?

» What are the portions of energy provided into the system, and dissipated in the
system before and after bifurcations take place?

The answers are not always possible in the sense of existence of analytical formulas that
describe the functions between input design parameters and output response (in terms
of frequency content and quality). However, all answers have been addressed with
respect to the notifications made in the various case studies and concluding remarks
may be considered as design rules for a stable motion with or without sub-harmonic
components.

1.4 Work Outline

The outline of work is described in Fig. 1.7 referring to the major part of the work. This
is included in Chapters 2 and 3.

In Chapter 2 (Simulation Method), the first objective is the modelling of a gas foil bearing
(Section 2.1) where the Reynolds equation for compressible flow is solved and the gas
pressure distribution is defined (Section 2.1.1) in a coupled fluid-structure dynamic
model. The structural model of the bump foil is rather simplified in this work as described
in Section 2.1.2. The model of flexible rotor is following (Section 2.2) using the simple
Jeffcott rotor.

In Section 2.3 the composition of the dynamic system renders the full set of ordinary
differential equations coupling three vectors in the system response: the rotor vibration,
the gas pressure, and the bump foil deformation. The set of equations is nonlinear due
to the nonlinearity introduced by the gas impedance forces. This is the only source of
nonlinearity in the system, and its strong character will render quite different quality of
motion trajectories. The system of differential equations follows two versions: the
autonomous, where no excitation is considered, and the non-autonomous, where
unbalance excitation is introduced. The autonomous system is used for the stability
assessment of the system; this is included in Section 2.4. The non-autonomous system
is used to produce all the rest results presented in Chapter 3.

In Chapter 3, the results are obtained in two operating conditions of the Jeffcott rotor
system, and for various combinations of bump foil stiffness and damping: at the first, the
system performs a run-up with linearly varying rotating speed (constant rotational
acceleration) and the response is transient in the entire time domain, while at the
second case the same system is rotating with different values of rotating speed for
specific time domain (approximately 500 driving periods at each value of rotating speed).

At the second case, steady state response is
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Fig. 1.7: Work flow

obtained at the last 100 driving periods, at most cases (not always). The change of
rotating speed from one constant value to another is performed with a locally smoothing
function. Respective results are generated from each case of operation.
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The transient response is examined with respect to the frequency content applying time-
frequency decomposition (Short Time Fourier Transform). The stability threshold for the
Hopf and for other types of bifurcations is also identified through the transient response.

The steady state response is post-processed to produce Poincaré maps, the respective
bifurcation diagrams, and the frequency content after a Fast Fourier Transform is
applied. Last, but not least there is an extensive treatment of the steady state response
(of all system components) to evaluate the work portions produced by the gas forces,
and the foil spring and damper forces. These work portions are examined to their
relevance for various case studies with emphasis in rotating speeds shortly before and
after a bifurcation occurs.

Chapter 4 concludes on the influence of key design properties of the system in the
quality of each response, and the energy flow between the components of the system
at selected cases.
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2 SIMULATION METHOD

2.1 Model of the gas foil bearing

Fig. 2.1 shows a Gas Foil Bearing consisting of three parts: the rigid part, or housing
(represented in the figure at the bottom of the bearing), the bump foil -explained
thoroughly in section 2.1.2- and the top foil. Due to bump foil’s structure, the top foil
can be deformed as shown. The journal’s and bearing’s rotational axes are considered
parallel, an assumption necessary to neglect any misalignment. The geometrical centers
of the journal and the bearing are denoted by 0; and O}, respectively, while their nominal
radiuses are defined as R, R + ¢, where ¢, is the nominal radial clearance. When no
radial load is applied in the journal, then journal and bearing are concentric.

Eccentricity e = (sz + yj-z)l/z describes the distance between the two centers, with
Xj,y; being the displacements of the journal in x, y axes respectively, and it has a vital
role in the performance of the bearing. The top foil deformation in radial direction is
denoted by g, considered positive when it is developed to the outer side of the bearing,
and is a function of 6 angle and time t (q = q(6,t)) in the dynamic problem.
Coordinate 8 is measured from the horizontal positive semi-axis of the bearing (global
stationary coordinate system). The deflection of the foil is provoked by the pressure
distribution p of the compressible gas flowing in the gap between journal and top foil
and the bearing forces F induced by the latter. The pressure p is dependent on time t
in dynamic problem (whirling motion of the journal) and the spatial coordinates; the
circumferential x = RO and the axial one z, all of them consisting the independent
variables of this problem; thus, p = p(x, z, t). The location of foil starting and ending
angle (which are very similar to each other) is denoted by the angular coordinate y. In
this work y = m/2 and at this point the foil is considered without any deformation q.

bump foil 7 /\

journal Ry

‘\\
= Xj )
/ )
o \
%

b
e

______

Fig. 2.1: Gas foil bearing representation: main components, geometry, operating parameters, and
coordinate system
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2.1.1 Reynolds Equation for the compressible flow

The assumptions introduced in the lubrication problem are quite common: a) Newtonian
lubricating fluid, b) isothermal film, c) laminar flow, d) no-slip boundary conditions, e)
continuum flow, f) negligible fluid inertia, g) ideal isothermal gas law (p/p = const.), h)
negligible entrance and exit effects, i) negligible curvature (R > c,). The Reynolds
equation for compressible fluid and for an unsteady (whirling) motion of the journal is
given in (1) [®'], with respect to the journal and foil kinematics, and it is an implicit
function of time:

d
ax

p(ho + q)3 a_p

d [p(hy +q)3ap
+— | —————
u ax

0z u 0z

(1)

d d
—6QR -~ [p(ho + @] - 122 [p(ho + )] = 0
where p is the unknown gas pressure distribution, u the dynamic viscosity of the fluid.
The foil deflection q is added to hy, see Fig. 2.1, which represents the fluid film height
considered for a rigid wall and -again- can be evaluated as a function of angle 8 and time
t (hg = hy(0,t)). The sum of these two variables represents the total height of the fluid
film, h = hgy + q. Eventually, the film thickness relation can be finally written as:

h(6,t) =h =c, —xjcos0 — y;sinf + q (2)
ho

where ¢, is the nominal clearance, @ is the angular absolute coordinate stating the -
position within the lubricating zone between journal and top foil in circumferential
direction, and x;y; the displacements of the journal. Applying (2) to (1), Reynolds
equation renders:

i) <ph3 ap) N i) (ph3 ap

d ad
— ox T£> — 6QR o (ph) — 1272 (ph) = 0 B)

dax

0z

The Reynolds equation is defined on the domain IT = {(x,z) | YR < x < 2nR + yR,0 <
z < L}, x being the position of the foil fixation, and L the length of the bearing. The
spatial coordinates x = R and z -mentioned in the beginning of this chapter are
considered independent. Due to the very small dimensions of the film height in the radial
direction, in comparison to the circumferential and axial, the fluid pressure p
dependency to any variation on y-axis (p # p(y)) is neglected. No analytical solution for
(3) can be extracted; therefore, an indicated approach to obtain the pressure
distribution is a numerical one. For the numerical solution of (3), the Finite Difference
Method (FDM) is applied. The domain Il is converted intoagridofi = 1, ..., Ny and j =
1,...,N,/2 points, see Fig. 2.2, where i represents each point in the circumferential

[¢*] Baum C., Hetzler H., Schroders S., Leister T., Seemann W. (2020) A computationally efficient nonlinear foil air bearing model
for fully coupled, transient rotor dynamic investigations. Tribol. Int. doi: https://doi.org/10.1016/j.triboint.2020.106434
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direction, while j those in the axial. The chosen grid for the bearing model is (N, N,) =
(29,10).

First order derivatives with respect to the spatial coordinates x, z are approximated by
backward differences:

_Op _Pij—Piij _9p _Pij—Pij1

Px = 55 Ax ’ Pz =5, Az (@)
p O _hi—hiy o 9R_
*“ax- Ax Z 9z
& Ay i=18j=11
L A
}Az
S
I,
=
OR)
=
0 Nyx=17 21R

i=1,j=1
Fig. 2.2: Exemplary discretization grid for the application of Finite Difference Method in the solution of
Reynolds equation for compressible flow
As (4) shows, the dependency of the fluid film height h on the axial direction is neglected.
This can be figured out easily, since - according to (2) - when it comes to the spatial
coordinates, the film height depends only on the foil deflection q. Since the latter is
irrelevant to z-axis variations (q = q(6) = q(i)), the same applies to the former.
Therefore, the film height is dependent only on the angle 6 (h = h(6) = h(6;)) which
explains the chosen discretization concerning h, and h,. The second order derivatives
are approximated by central differences, as shown in Eq. (5):

Py = ’p o Pi+1j — 2p;j+ Pi-1j p,, = d%p o Pij+1~ 2pij + Pij-1 (5)
™oexz T Ax? ’ 9z~ Az?
where
Ax = an, 4z = L (6)
Nx NZ

Backward differences are used for the first order derivatives and central differences are
used for the second order due the greater numerical stability that characterizes the
former, even though it is a less accurate choice. Eventually, the Reynolds equation, after
applying the FDM which led to (4) and (5) discretizations, is transformed into Eq. (7):

2

h
m [A(pZ + p2) + 3ph, Dy + PR(Dyx + D22)] (7)
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—6QR(hp, + ph,) — 12(hp + ph) = 0

B
where p = o and h = e
Eq. (7) can be solved explicitly for the time derivative p of the pressure at each grid point,
while the time derivatives A of the film height can be defined analytically by

differentiating (2):

h=—%jcos6 —y;sin@ + q (8)
where X;,y; the time derivatives of the journal’s displacements, and q the time
derivative of the foil deflection. Thus, after some math, (7) is written in Eq. (9):

. h ) ) QR P p.
pP= ﬁ [h(px + pz) + 3ph,p, + ph(pxx + pzz)] - T (px + ’_lhx) - Eh (9)

Boundary and initial conditions of the problem should be defined. Ambient pressure is
assumed at the starting angle of the foil, Eq. (10).

p(t,x = xR, z) = p(t,x = 2mR + xR, z) = p, (10)

Taking into account the symmetry of the problem, there is another way to express the
rest of the BC than the typical one. According to the latter, the fluid pressure is assumed
to be equal to the ambient p,, at the axial ends, p(z = 0) = p(z = L) = p,. However,
considering the aforementioned symmetry, the initial domain II can be reduced to

domain II"' = {(x,z) | YR < x <2nR+ yR,0< z < %}. In the present problem, the

gap -theoretically mentioned in the beginning of this section and depicted at Fig. 2.1- of
the top foil is positioned at y = 0 angle, which eventually transforms (10) into:

p(t,x =0,z) = p(t,x = 2mR, z) = py (11)

and determines the final domain IT' = {(x,2) | 0 < x < 2nR,0 < z < %}. Having each
necessary modification implemented, the last two BCs will be:

ap(t, x,z) |

p(t: X, Z = 0) = pO: aZ 7=

=0 (12)

Nt~

Regarding the initial conditions for the pressure and the foil deflection, these are
expressed in Eq. (13):

p(t=0,x,2) = p,, qt=0,x)=0 (13)

Assuming that the gas pressure p is determined at all grid points (this is explained in
Section 2.3), the bearing forces Fgy, Fg, evaluation may follow. The bearing forces, as
shown subsequently in Chapter 3, signify an important factor in drawing conclusions for
rotor-dynamic investigations. The GFB’s forces equations are given by:
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2nR (L 2nR %
Fsz—J. J. (p—po)cosedzdxz—f 2[ (p —po) cos O dz dx (14)
0 0 0 0

2nR (L 2nR %
FBy:-f f (p—po)sinedzdx=—f Zf (P —Ppo)sinfdzdx (15)
o Jo 0 0

At this point, it is important to mention that it’s quite common in GFBs for sub-ambient
pressures to arise. These sub-ambient pressures can cause the top foil to separate from
the bumps into a position in which the pressure on both sides of the pad is equalized.
Heshmat et al. [62-3] introduced a set of boundary conditions accounting for this
separation effect. More specifically, a simple Gimbel [®4] boundary condition is imposed,
meaning that sub-ambient pressures are discarded when integrating the pressure in Egs.
(14)-(15) to obtain the bearing force components Fgy, Fg,, essentially leaving the sub-
ambient regions ineffective. In terms of numerical calculations, the assumption made by
Heshmat [2-3] can be simply explained as following: in case fluid pressure p is lower than
the ambient p,, then the former should be considered equal to py. Then, as the train of
thought unfolds, a fluid pressure equal to the ambient one would result to the fact that
the overall bearing force F_B) = F—m;+m should be equal to zero (Fgy = Fg, = 0),
which ultimately means that no foil deformation is going to be observed (g = 0). The
same assumption about sub-ambient pressures applies to the evaluation of the mean
pressure p,, over the length L of the bearing, a term introduced in the next Section of
this Chapter.

In general, solving the dimensional (DM) form of a problem can be computationally
expensive. Thus, a dimensionless (DL) expression of the equations of the model can be
a decisive factor in order to enhance time and memory efficiency, and additionally (and
most significant) a generic approach for the model and the results. The following
transformations take place in order to define the dimensionless equations describing the

problem. Firstly, the independent variables x, z are transformed into:
X z

while the dependent variables of time and pressure into:

[(2] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas lubricated compliant thrust bearings, Journal of
Lubrication Technology 105: 638-646.

[®%] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas-lubricated foil journal bearings, Journal of Lubrication
Technology 10: 647-655.

[®4] B.J. Hamrock (1994) Fundamentals of Fluid Film Lubrication, McGraw-Hill Series in Mechanical Engineering,
McGraw-Hill Inc., NewYork.
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2
PoCr — P
T=2 th t, P - (17)

where p, defines the ambient pressure. Secondly, the DL angular velocity of the journal

is introduced:

5 = A10 (18)

where (1 is the rotational speed of the journal. The fluid height and foil deflection, as
well as the journal (and its eccentricity) and disc displacements, are scaled by the
clearance ¢, which results to their dimensionless form:

— h _ q
h=—, q=— (19)
c, cr
- X — Y e — _ — Xq — Yd
] J 2 2
P =—, , = —, E=—= x5 + :, Xg =—, = —
e, Yj c, c, ity 47 ¢, Ya c, (20)

After applying the appropriate transformations to (3), the DL Reynolds equation is given
by:

0 (_—30p , 0 (_-—30p J ,_— d _—
where
k=R/L
(22)
h = 1-Xxjcos0—Yy;sinb +q (23)

onthe DLdomainII' = {(x,2) | y <X < 2w + x,0 <Z<%}.

The respective line of reasoning, followed in the DM form, will take place regarding the
DL dynamic problem. After applying the transformations (18)-(20) to the first order
derivatives (4), the DL approximation on them is given:

— @ - ﬁi,j - ﬁi—l,j - @ ~ ﬁi,j - 5i,j—1
Px=%%x~" ax ' P:T9z- " a2z
L (24)
— oh h;—h;_4 —
hx —_ ﬁ = AE ) z = 0
while for the second order derivatives (5), approximated by central differences,
B = 625 ~ ﬁi+1,j - Zﬁi,j + 5;‘—1,1'
9% A% (25)
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%P Py 2Pt
pzz - 972 = AEZ

where,

Ax = — Az = — (26)

Therefore, the DL Reynolds equation (21), solved for the time derivative of the fluid

— ap .
pressurep’ = a—z, will be:

P =5 hlh(p; + k) + 3Ph.p, + PA(P,, +,,)]

(27)
QR ,_ e — —
5 (P, + @®/Mh,) — (p/W)h
where h' the DL time derivative of the fluid height defined analytically as:
h' = —x;' cos 0 — i}.’ sinf +q’ (28)

Boundary and initial conditions for the DL form of the problem will be expressed as:

p(t,x=0,z) =p(t,x=2mz)=1 (29)
—( “—1)—1 0 B%z=0)=0 (30)
plnxz=5)=1, 5, P(0xZ=10)=
Pr=0%D =P Gr=02=q (31)

The DL bearing force’s components (F_B) = F_M>+F_By>), after evaluating the DL fluid
pressure p, can be determined by:

_ 21 %
Fp, = —f f 2(p — 1) cosxdz dx (32)
0 0

_ 21 %
Fg, = —f f 2(p —1)sinxdzdx (33)
0 0

where a multiplication of the components fo,fo with poLR provides the respective
DM components Fgy, Fg,,.

2.1.2 Simplified model for the bump foil structure

The simplified model for the bump foil structure is depicted at Fig. 2.3 and Fig. 2.4. The
structure consists of rigid, massless, beam-like elements with one finite dimension in
axial direction and no coupling of the elements in the circumferential one. The top foil
of the bearing is not covering a complete cylinder; a single gap can be found at x = ¥R
angle where foils are clamped to the bearing housing, see Fig. 2.1. Regarding the
modelling of the structure, each element is supported by a nonlinear spring and a linear
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damper in parallel, which are connected with the rigid part of the bearing, the housing.
These elements are assumed to be only a function of the spatial coordinate x and time
t (@ = q(x,t)). The geometry properties of the foil play a crucial role in determining the
foil deflection. More specifically, the pitch s, the half-length [, the thickness t;, (see Fig.
2.3) and Poisson’s ratio v are vital in order to evaluate the dimensionless compliance ay
of the foil.

Xg, R Ya.Va y F Q g
disc mass 4 R 4

b, X
R my 6 T —Fa =
shaft stiffness k‘é X, 3,7, i 0]
i+1
journal masses }* 2m, Fb(i)=z p(ij)RAOAZ
J

gas force (i)

top foil

i A
(;; bump foil

A6

pm(i)=_z (P(’J)'Pu/
/)

i-1

backing steel 7 /
Fig. 2.3: Disc-shaft-journal-gas-top foil-bump foil ~ Fig. 2.4: Depiction of mean pressure p,,, applied
model representation over the bearing length L and bearing force Fg

The algebraic relation between compliance per area a; and the properties of the foil is
given by [®°]:

@ =2 (10)3(1 2) 20 (34)
% = “Po\y, VICE

Therefore, the dimensionless foil stiffness per area can be found:
7 1
f= o (35)
while the dimensional foil stiffness per area can be extracted by multiplying (35) with
the ratio Po/cr’ or -expressed in words- the ratio of the ambient pressure over the

nominal clearance in (36).

_ Po
ky = @, (36)

In addition, the damping coefficient (per area) c; of the bump foil is related to the
stiffness k; (per area) and the loss factor n of the foil structure as:

[®°] Bhore S.P., Darpe A.K. (2013) Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J.
of Sound and Vib. 332:5135-5150
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The ODE connecting the fluid pressure p with the foil deflection q is [®°]:

Crqr + Kqr = Pm (38)

which can be solved explicitly for the time derivatives of the deflection g, as shown
below:
Pm — krqy

qy=—"T—"— (39)
Cy

where

L
Pm = f_i(p —po) dz (40)
2

is the arithmetic mean pressure over the length L of the bearing, or - in other words -
the pressure applied in the axial direction on each element k of the foil. If p,, < 0, which
indicates that a state of sub-pressure prevails (pressure applied on foil elements lower
than the ambient py), p,n, Will be considered equal to zero (p,,, = 0), as explained in the
previous paragraphs. Under these circumstances, (38) will be transformed into:

. . k
Crqr + krqr = 0= q; = —C—;Qk (41)

Due to the symmetry and the domain II’ transformation, the mean pressure over axial
direction can be written as:

L L
2 2
Pm J_%(p Po) dz ZL(p Po) dz (42)

With regard to the DL form, having already introduced the dimensionless Reynolds
equation, the transformed ODE for the bump foil structure model (38) - now on the DL

domainIl' = {(¥,2)| 0 < x < 2,0 < E<%}—wi|l be:

crqy + keqy = P, (43)

[®6] Larsen J.S., Santos I.F. (2015) On the nonlinear steady-state response of rigid rotors supported by air foil bearings-
Theory and experiments. J. of Sound and Vib. 346:284-297
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where ﬁk the DL foil deflection, see (39), Ef the DL foil stiffness coefficient, see (35), ¢f
the DL foil damping coefficient given by:

¢ = nky (44)

and 5m the averaged DL pressure, defined after the transformations (16) and (17)
applied to (42):

p,=2 p—-1)dz =— (45)

Eq. (43) can be solved explicitly for the time derivatives of the deflection ﬁ;{ as shown
below where Ef,Ef,ﬁm given by (35), (44) and (45) respectively.
q, =m K4 (46)
Cr

Having introduced both the DM and the DL form of the Reynolds equation, the method
followed in order to evaluate the fluid pressure and the bearing forces, as well as the
equations describing the foil structure, it would be useful to provide a visualization of
the behavior of this model. A static problem is considered, meaning that the time
derivatives of the fluid pressure p, journal’s displacements x;,y;, and the foil’s
deformation g, will be equal to zero. The DM form of the aforementioned model was
chosen in order to perform several case-studies, and the appropriate transformations
took place after the executions were over so as to introduce the DL version of the
variables, in the figures below. The computation of the results for the static problem was
achieved by a Newton-Raphson method implemented by the ‘fsolve’ solver in Matlab,

on an i7 processor with 8 GB RAM memory.

The main object of these simulations, more specifically, is to observe the bearing’s static
behavior with regard to its foil compliance and the rotational speed of the journal. In
other words, these make up the changing operational parameters of this process. In
Table 2.1, the numeric values of the constant parameters of the static problem are
introduced:

The comparative analysis was executed for three different cases of the DL compliance
Ef; a stiff foil where 5f =0.01, a compliant foil where &f =1, and for the median value
of compliancy where a; = 0.1. For each case, three different values of the rotational
speed were considered, with the first being 0 = 1650 r /s, the second Q0 = 6550 /s and
the last one ) = 13000 r/s. For ease of reference and the sake of uniformity in the final
results, it would be more appropriate to express the three values of the rotational speed
in their DL form. Therefore, for the first case the DL value of the rotational speed would
be Q = 1, for the second Q= 4, and for the third one Q = 8.The position of the foil
fixation was assumed at angle 8 = 90°.
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Table 2.1: Constant parameters for the case-study analysis in the static problem

Parameters Values
Ambient pressure, p, (N/m?) 10°
Viscosity, u (mNs/m?) 0.018
Radius of the journal, R (mm) 19.086
Length of the bearing, L (mm) 38.172
Clearance, ¢, (um) 36
Loss factor, n 0.001
Sommerfeld number S range Smin =0.05  Spin = 1.5

The Sommerfeld number S (range shown in Table 2.1) is defined by the following
equation with Q in (rad/s) and all the rest magnitudes defined also in SI (Pa - s, m):

—_ (47)

T 2m

1 (R)Z uQLD
CT

where W marks the load applied on the bearing. As it can be easily observed, it contains
all the design parameters of the bearing and one may draw several conclusions when it
comes to investigating how the journal and foil respond in case of applying different
loads. Scaling (47) by poLR renders the DL form of the applied load, denoted by W. Fig.
2.5 depicts the influence of load W in journal’s displacement ?J., while Fig. 2.6 the
Sommerfeld’s number S with respect to journal eccentricity €. The process followed for
the extraction of these figures consists of several runs, where the compliance Ef and
rotational speed Q were constant (Ef = {0.01,0.1,1} and Q= {1, 4, 8} respectively)
and S varying in the range S = [0.05, 1.5].

ay = 0.01 af=0.1 ap=1
—0=1] f— ) 5=01 -]
1 e 1 o4 1 e

s =8 ] = 0=8

05 05 5=02

displacement y; /¢,
displacement y; /¢,

displacement y; /¢,
(=3
in

dimensionless load W ) load W load W
() (b) ©
Fig. 2.5: Vertical displacement y}. over load W; (a) ar =0.01, (b) ar =0.1, (c) ar = 1;
x Q=10 QOQ=4,0 Q=8
Eq. (47) demonstrates, the alteration of load W, is solely dependent on the alteration
of the inversely proportional variable S. Starting from S,,,,, = 1.5 in both figures, for
each case of a; and Q, two types of conclusions can be drawn. First, by comparing the
three curves that each subfigure contains, one can clearly observe that for a certain
value of @y and by increasing Q, while S remains constant, W inevitably rises -
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affirming (47) - and € as well. One of the significant observations, though, is that this
increase takes place in a non-linear way, proving the non-linearity of this model,
caused by the induced bearing forces. Second, by examining each one of the three
subfigures with respect to the other, and for the same arithmetic value of QandS, it
can be noticed that when a; increases, the vertical displacement ?J. and eccentricity

& may be also increasing, but the DL load W follows an opposite path. In other words,
as the foil becomes more elastic, the eccentricity of the journal and its components
(horizontal and vertical displacements) increase, while the bearing can take lower
loads. This can be seen clearly in Fig. 2.7c, where S cannot reach lower values than
S = 0.2, in comparison to the other two cases (a), (b), due to the fact that the foil is
too elastic to manage taking higher loads and produce additional results. As the
rotational speed of the journal rises, the foil is deformed even more, deflecting by two
or even three times -witnessed in the first case where Ef = 0.01- the radius clearance
c,-. Regarding the induced pressure, Fig. 2.7 provides visualization of how it is applied
over the journal and foil structure, forcing the top foil to be deformed by this way
averting any undesirable contact between the journal and the bearing. Apparently, it
is maximized at 180° < 8 < 270°in all cases, while it is equal to the ambient pressure
po around the foil fixation point (again at 8 = 90° for the static problem).

ay =001 ay = 0.1 ap =1
[=—0=1 FT, =1 [——0=1
! o f1=4 L1 o 1=4 L1 o—{1=1
= & 0=8 = o s 0=8 = s 0=8
\ . [ 4 [
S s | s
= i) = | b = N
Tk g g R TN
£ 05 i" £ £o0s \ N
g % g g - N
=] ol 33 =}
& 'Y & & .
— R — - B
o - = o
=1 Y =1 =1
<) = = =)
2 e E=3 E=3 ——
e 5 -
0 0.5 1 1.5 0 0.5 1 1.5
Sommerfeld number S Sommerfeld number S Sommerfeld number S
(@) (b) ©

Fig. 2.6: Journal’s eccentricity € over Sommerfeld number S;
(@a; =001, (b)a;=01(c)a =1;%x Q=10 Q=40 Q=8

A representation of the journal’s locus, i.e. the trajectory that the equilibrium points
form after each of the aforementioned runs is executed, the foil deformation and the
pressure distribution, applied between the journal and the top foil, is depicted at Fig.
2.7. As Sommerfeld number S decreases, in all cases, the equilibrium points follow a
linear path in the beginning.

In the figures below, a three-dimensional (3D) representation of the pressure
distribution is given for the three chosen cases of compliance ay, while the

dimensionless rotating speed Q is considered Q = 4, and a sensitivity analysis takes
place so as to examine the influence of the discretization grid (N,, N,) with respect to
the pressure. More specifically, for three different sets of discretization points, the
maximum pressure that prompts each time is being compared to the respective
maximum pressure values that the other two sets give. The line connecting the data
points is almost parallel to the horizontal semi-axis of the figure, meaning that almost
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no difference is detected in the arithmetic values of the maximum pressure of each case.
A discretization grid of (N, N,) = (29,10) is considered reliable and will be applied in the

dynamic problem.

T pressure””

—0. / D
(L’z_(m '

(©

Fig. 2.7: Representation of journal’s locus, foil deformation g and pressure distribution p;
== Clearance circle, --- Foil deformation, — Pressure

(@ ar=001,(b)a;=01,(c)a,=1;x Q=1,0 Q=40 Q=8

ay = 0.01 ay =01 af =
20 2.0 2.0
" T T
a1 2o1s | I
B g B
E 1.0 é 1.0 . Q_‘é 1.0
30 : 30 30
20 : 2 20 - 2 20 2
10 6 10 6 0 6
Grid Points N, " Grid Points N Grid Points N, Grid Points N, Grid Points N, " Grid Points N
() (b) _ (©)
Fig. 2.8: Pressure p with respect to the foil compliance a; for Q = 4; (a) @ = 0.01, (b) a; = 0.1, (c) a;
=1
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ay = 0.01 1.3

125 125

Pressure pq;
Pressure pq,

1.05 :
e N, % N. =29 %10 1.05

N, x N, =45 x 14

¢ Nox N, =60 %20

e N, x N.=29%10
« N, x N, =45x14
o N, x N.=60x20

26 2 5 1 i
’ " Griclﬁ i—?niulw N, x N 200 500 0 290 630 1200 1500
) Corer Grid Points N, x N.
(@) (b)

Fig. 2.9: Sensitivity analysis with regard to maximum applied pressure p, - over different
discretization grids; (a) ar = 0.01, (b) a; =0.1; ® N, X N, =29 x 10, B N, X N, =45 x 14,
¢ N, XN,=60x20

2.2 Model of the flexible rotor

Fig. 2.10 shows a symmetric flexible Jeffcott rotor carrying a disc mass m, at its center
and two journal masses m; at its ends. The rotor’s shaft is considered elastic. The
coordinates O4(x4,Yq) and O; (xj,yj) represent the geometric centers of the disc and
the journal respectively and make up the four degrees of freedom (4-DOF) of the rotor.

: L !
r Ll L ’ * L L L
3 BENNNNNN . . NSO
22y bearing journal 2222020077
centerline yd mass m,
—Yi — —Yi
Q , N I I —r |
< = 43 2R
— ! —
Lb top foil elastic shaft Lb
2R R
SSSY pump ot 2 | disemass m; RSN

Fig. 2.10: Representation of a symmetric flexible Jeffcott rotor mounted on two identical bearings

The equations of the Jeffcott rotor are expressed, based on Fig. 2.3 modelling, and solved
for the second order derivatives of the journal’s and disc’s displacements:
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> Journal
ks(xd - x]') FBx
2m;x; — k —x;) = 2Fg, = X; = 48
m;¥; — ks(xq — x;) Bx = X; 2m, + ™, (48)
ks(yd - y]) FBy
2m;y; — ky(yq — y;) = 2Fpy —2m;g = y; = +——g (49)
j Vi s j y j j 2m, m;
> Disc
k. (x; — x;
mdid + ks(xd — x]-) = mdFUx = 5&,1 = _S('I:l—d] + FUx (50)
.. . k ()’d - 3")
Mgy + ks(ya — y;) = mgFyy —myg = yq = — > — 2+ Fy,—g (51)
where k; is the shaft stiffness coefficient,
Fi=Fi(x, 9, %Xa. Y40, %, Vj, X0, Y0, Q. 1), i=xy (52)

The bearing forces, mentioned in section 2.1.1, and Fyy, Fy, the components of the
unbalance force defined as:
Fy, = e[Q% cos @, + asin¢,]

(53)
Fy, = e[Q%sin ¢, — acos ¢,]

with e being the unbalance eccentricity, g the gravitational constant, ¢, the journal’s
angle of rotation, Q (= ¢,-) the journal’s angular velocity, and @, (= «) the journal’s
angular acceleration. The shaft stiffness coefficient kg has a physical dimension of force
per unit length (N /m), and is given by:

ksmgpic,*
.= sMgPoCr (54)
36u*R*
where k; is the dimensionless shaft stiffness coefficient and its numerical values will be
determined in the case-studies performed in chapter 3.

For the run-up simulations, the angle of rotation -and its derivatives as well- are
expressed by the following relations where a is constant:

1
<pr=§at2=>¢r=ﬂ=at=>¢r=a (55)
Regarding the DL form of the Jeffcott rotor’'s model, the transformation process began
by applying (20) to coordinates x;,y;,xq,¥q and performing the appropriate
differentiations in time 7, as shown below in (56)-(57) group of equations:

= _ X = d (xi> _d ot (x,-> _a (xi) ot _ x; 6uR*
¥i= Xi ¢,/ dtdt\c,) dt\c,/dt c,poc,?

c, T ot
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_, 6uR?* L= ax; L= 36u%R*
Xi=——=X; > X; = Xi =—5——F
"opecd ' ot ' po’c,®

Xi

Similarly, the DL derivatives of y; displacements are defined as:

_, _6uR*  _, 36p’R*
e T T e

¢ pocr3 (57)

i
where i = j,d. Eventually, the DL equations of the motion of the Jeffcott rotor, again

solved for the second order terms after applying the afore written transformations to
(48)-(51), are:

> Journal
% = 2’"—,1‘1’1_%5 (%a — X)) + EFps (58)
¥, = 2'"—"‘:]_%5 (3.-73,) +&Fay—o (59)
» Disc
Xg = —ks(xq—%;) + Fyy (60)
Vo =—ki(¥,~,)+Foy—0 (61)

where k; the DL stiffness coefficient of the shaft, Fj,, Fp, the DL bearing forces given
by (32)-(33), £ and o DL parameters defined as:

36u%LR® 36u%R*

m;poCy Po~Cr
and

Fy, = £[Q? cos @, + a sin p,]

— — (63)
Fy, = €[Q? sin @, — @ cos P, ]
the DL unbalance forces, with & being the DL unbalance eccentricity given by:
€ 6
£=—
- (64)
Q the DL angular velocity, see (18), and
= -2 — 1_,
a=A"“a, ¢, =5 ar (65)

the DL, constant angular acceleration given as a function of the DM angular acceleration
a, and @, the angle of rotation respectively.
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2.3 Composition and solution of the dynamic system

To summarize, the compliant gas foil bearing model is expressed as an Initial Boundary
Value Problem described by two coupled nonlinear differential equations; the Reynolds
equation which is a PDE of the fluid pressure p as a function of three independent
variables -two of them being the spatial coordinates x, z and the third one, the time t-,
and an ODE describing the deflection of the foil g, as a function of time t. The latter has
to be solved multiple times in a gas foil bearing, since it takes into account one beam-
like element each time, located in the circumference of the bearing, see Figs. 2.3 and
2.4,

The collocation points in which the gas pressure p;; and the foil deflection g; are
evaluated (see Figs. 2.2-2.4), can be now introduced as a state-space vector [2]:

N,
Npqi 9N, XpE€ R(Z+DN (66)

—Z
x12

xg = [P11, ---:pN

Eventually, the discretized bearing model is going to be a nonlinear system of coupled
ODEs of 1%t order:

N, N,
kg = f(xp), f: ]R(T“)Nx N ]R(T“)Nx (67)

where (N,, N,) = (29,10) and:
Xp = [P11, ---,PNXJ%, q1, ---'QNx]T (68)

The same process is being followed for the Jeffcott rotor model’s ODEs. A state-space
vector is introduced for the displacements x;,y;, x4, ¥4 of the journal and the disc
respectively, and their time derivatives x;, y;, X4, Y4, Where:

xj=y1), x;=x;,=y(2), y;=y3), yi=y;,=y4)

. . (69)
xq=Y(5), xg=x4,=y(6), ya=Y(7), Ya = yaq, = ¥(8)
Therefore, the state-space vector of the Jeffcott (4-DOF) rotor is:
Xp = [X, %, ¥, j X X0, Ya, Val”
xp € R® (70)

= [y(1),y(2),¥(3),y(4),y(5),y(6),y(7),y(8)]"

Egs. (48)-(51) are now presented -with respect to state-space variables y(n), wheren =
1, ...,8- as first order ODEs. Specifically:

ks(y(s) - y(l)) + FBx

YD =y@), §@) =L L (72)
] ]
. _ . _ ks(y(7) - _’y(3)) FBy _
y3)=y4), y@= 2m, + m, 9 (72)
k(y(5) — y(1)) Fy,
5 =36, ye) = LY T (73
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ks(y(7) - }’(3)) + FUy —g
my, my,

y(7)=y(@®), y@B)=- (74)
The bearing forces Fgy.Fg, are evaluated by applying numerical integration of the
pressure distribution which is defined at all the respective grid points. The (71)-(74)
group of ODEs can be written in matrix form as:

kg =f(xg), f:R®->R® (75)

Eventually, both for the bearing and the rotor model, an overall state-vector can be
introduced:

N,
xpr = (X557, xpp e R(ZHNer (76)

and the overall model can be represented in matrix form as:

Xpr = f(xpR), E R(%H)wa - R(%H)Nﬁs (77)

To conclude, the nodes representing the fluid pressure p; ; and the foil deflection g; can
be introduced as a dimensionless state vector and the bearing model can be written as
a nonlinear system of dimensionless, coupled first order ODEs, shown below:

xg =f(Xp), [ ]R(%“)Nx N ]R(%“)Nx (78)

where, (N,, N,) = (29,10) and

%+1)Nx

Xg = [p1,1’ DN 1 q 4 ...,qu]T' Xp€ R( (79)

Regarding the rotor model, the state vector for the eccentricity of the journal and the
disc, in combination with their time derivatives ( ) (with respect to dimensionless

time), is given by

—_— = —_ =] —_ =] —

—_ _ ! —_ T
X =[X),%, ¥,V Xar Xa, ¥ g ¥ g

= (1), 7(2), 5(3), 5(4), 5(5), 5(6), 7(7), 5(8)] TpeR° @0

Eqgs. (44)-(47) can now be written
YO =32, 3@ = zm—n‘jjﬁs(ﬂm ~F(1)) + £ Fp, (81)
Y3) =y@), @) = Zm—njjﬁswm ~¥(3) +&Fg —0 (82)
¥(5)=5(6),  ¥(6) = —k,(¥(5) — ¥(1)) + Fy, (83)
YD =¥®), ¥® =-k(37)-¥3)+Fy -0 (84)
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The (81)-(84) group of ODEs can be written in matrix form as:
Xp=f(g), f:R®->R® (85)

and the overall state-vector of the dimensionless problem, which combines both
bearing’s and rotor’s state vectors, will be:

N,
XpR = [fg;szz]T; XpR € R(7+1)Nx+8 (86)

The overall model represented by a set of coupled nonlinear first order ODEs is defined
as:

on = FGi),  J:R(EFONS , g(Frijiare (87)

The system in Eq. (87) can be very stiff, depending on the shaft properties and bump foil
properties, and for that reason the MATLAB ode15s solver [®7] is used for the evaluation
of response through time integration. The time response presents interesting features
due to the nonlinearity introduced by the gas forces. The specific system presents similar
response for both low and high bump foil damping, respectively shown in Figs. 2.11 and
2.12. This is discussed in detail in the following Section where the quality of motion is
analyzed. In Figs. 2.11 and 2.12 one may notice that different types of bifurcations occur
as the parameter of rotating speed changes. Applying the specifications of Table 2.2 the
time response of the system in Fig. 2.10 is evaluated and presented in Fig. 2.11 for foil
loss factor n = 0.003, and in Fig. 2.12 for foil loss factorn = 0.1.

["] Mark W. Reichelt and Lawrence F. Shampine, 8-30-94 Copyright 1984-2014 The MathWorks, Inc.
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Fig. 2.11: Time response evaluated during the run-up of the unbalanced system with the specifications of
Table 2.2 and foil loss factor n = 0.003. Respective bifurcation type is shown in the upper left chart; SN:
Saddle Node (fold) bifurcation

Table 2.2: parameters used in the run-up simulation of the system of Figure 2.10. Bearing
specifications are considered as in Table 2.1

Parameter  Value Parameter  Value
Shaft dimensionless stiffness, k, 1 Disc massm, 3 kg
Dimensionless foil compliance, a; 0.01 Journal mass m; 0.3 kg
Rotating acceleration a 20 rad/s? Unbalance my -e  7.5-10°° kgm

Such quality of response is usual for high-speed rotors on gas foil bearings and the
engineer should assess whether the integrity of the system is compromised regarding
the type of instability appearing with the respective motion. A rotating system without
the presence of bifurcation during run-up and run-down would render the optimum
design. However, this is not always possible and many rotating systems have to operate
reliably with the presence of bifurcations, e.g. turbosystems. A large variety of time
response with respect of design properties is discussed in Chapter 3.
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Fig. 2.12: Time response evaluated during the run-up of the unbalanced system with the specifications of
Table 2.2 and foil loss factor n = 0.1. Respective bifurcation type is shown in the upper left chart; SN:
Saddle Node (fold) bifurcation, NS: Neimark Sacker bifurcation

2.4 Quality of Motion and Stability

2.4.1 Study of the quality of motion

The stability of the autonomous system (system with a perfectly balanced rotor) is
studied in this Section. Regarding the rotating speed (bifurcation parameter) and the
design properties (foil properties and shaft properties), the system may develop four
types of motions:

1) Asymptotically stable motion around a fixed-point equilibrium
2) Unstable motion around a fixed-point equilibrium
3) Orbital asymptotically stable motion around a limit cycle (stability envelop)

4) Unstable motion around a limit cycle (stability envelop)
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In this work, the first two cases are studied in regards of stability. However, all cases are
presented in time response evaluated in the next Chapter, and in this Section with
indicative results.

In general, stable motion around fixed-point equilibrium is the desired status for a
rotating system; this is not always achieved, or possible, though. Considering the time
response depicted in Fig. 2.12 the following events are noticed in sequence of increasing
speed regarding stability. The system defined in Table 2.2 with foil loss factor n = 0.1
(see Fig. 2.12 for time response) is examined in continue. Fig. 2.21 at the end of the
Section may be also considered simultaneously with the figures mentioned in continue.

When the system rotates with low speed (0 < 1200 rad/s , the system experiences
stable motions around equilibrium for any initial condition, see Fig. 2.13 (and Fig. 2.21).
The trajectory of the autonomous system will asymptotically converge at a fixed point;
see Fig. 2.13b, while the unbalanced system (non-autonomous) will develop stable orbits
around the equilibrium (fixed point). The higher the unbalance is, the larger the orbital
motion gets, see Fig. 2.13a. Furthermore, the system may experience a resonance due
to the stiffness and mass properties of the shaft which place a critical speed in the
specific speed domain.

clearance circle
et fOIl deformation

unbalance 0.5¢,m

unbalance 1.0¢, m
“0™a

Q = 500rad/s Q = 500rad/s

0.5 0.5 initial conditions

initial condition
\

journal displacement y; /e,
journal displacement y; /c,

-0.5 -0.5

-.1 0‘5 (‘) 0:5 1 -.1 D:G 6 U:S 1
Journal displacement x;/¢, journal displacement x; /¢
(@) (b)
Fig. 2.13: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor n = 0.1 at
Q = 500 rad/s. a) non-autonomous system released from bearing center for two different unbalance
magnitudes. b) autonomous system (perfectly balanced) released from different initial positions.
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Fig. 2.14: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor n = 0.1 at
Q = 1300 rad/s. a) non-autonomous system released from bearing center for two different unbalance
magnitudes. b) autonomous system (perfectly balanced) released from initial position.

As the system increases speed, and approximately after 0 = 1200 rad/s (see Fig. 2.12
and Fig. 2.21), a Hopf-Andronov bifurcation occurs and stable limit cycles are generated,
see Fig. 2.14b for 0 = 1300 rad/s . At this speed, a pair of complex eigenvalues of the
Jacobian matrix of the system crosses the imaginary axis and the fixed-point equilibrium
is not stable anymore. The limit cycles attract the trajectory of the system when released
from different initial positions. However, as in the case of rotating speed Q =
500 rad/s, a stable branch of solutions may appear close to the clearance circle. The
motion of the unbalance system is periodic with period 2T,;, where T; = 2 /1300 is
the driving period of the system (unbalance force period). This is a phase locked motion
as verified from the Poincaré maps in continue. The autonomous system executes stable
limit cycle motions when released from different initial conditions, see Fig. 2.14b. The
period of the limit cycle motions is close to 2T, (higher than), and can be evaluated using
advanced tools for the study of periodic motions, like e.g. shooting method.
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» ) \
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v Q-0 PR PR
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) mitial ) \ N s 9Q=Qp \ condition (I
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\\\ . _ N v N A

. Y locus of unstable x,,
bearing center | Q>0

bearing center { i locus of unstable x,, "‘“ oS J
locus of stable x,,  Q>Qy, \'s. "/ locus of stable x,
Q<Q4 ST <y,
(a) (b)

Fig. 2.15: Representation of a) supercritical, and b) subcritical Hopf bifurcation

It should be mentioned that a Hopf bifurcation does not always generate stable limit
cycles. The case of unstable limit cycles after a Hopf bifurcation is also likely in rotating
systems; this is the case of subcritical Hopf bifurcations. Both cases may be realized with
Fig. 2.15. At the case of subcritical Hopf bifurcation, the system motion is limited only by
physical constraints (rotor stator contact) and its operation cannot be sustained at most
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cases. However, this is not the case here, but it will be included in Chapter 3. In Fig. 2.15
one can see the definition of (;,where the Hopf bifurcation occurs. This is the threshold
speed of instability and in this work it will refer to the rotating speed where the first
Hopf bifurcation occurs.

Increasing speed further, at approximately 0 = 1350 rad/s, see Fig. 2.12 (and Fig.
2.21), another Hopf bifurcation occurs and the system obtains again stable fixed points.
This is not the most common scenario in rotating systems though. Usually, the Hopf
bifurcation is followed by a saddle node bifurcation as described in continue.

Q = 1600rad/s Q = 1600rad/s
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=
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T

journal displacement y;/c,
Jjournal displacement y; /¢,

&
&

-1 -0.5 0 0.5 1 -1 -0.5 0 05 1
journal displacement z; /¢, journal displacement ; /e,

(@) (b)

Fig. 2.16: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor n = 0.1 at

Q = 1600 rad/s. (a) non-autonomous system released from bearing center for two different unbalance
magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions.

Increasing the rotating speed further, at approximately Q) = 1500 rad/s, another Hopf
bifurcation occurs, and like before, stable limit cycles are generated; this is a case of
supercritical Hopf bifurcation. At this case it is clear that the system motion may
attracted either by the stable limit cycle when the initial condition is close to it, e.g. at
the bearing center, see Fig. 2.16b (when the speed is slightly higher 0 = 1600 rad/s),
or by another branch of solutions existing close to clearance circle, when the initial
condition is close to it, see Fig. 2.16b (and Fig. 2.21). The unbalance magnitude will
render the respective motion in the non-autonomous system, see Fig. 2.16a, for the
same initial conditions. Quasi-periodic motions are developed in the non-autonomous
system for both cases of unbalance; this will be shown in continue with the use of
Poincaré maps.

Increasing rotating speed at approximately ) = 1650 rad /s a saddle node bifurcation
occurs and the system will develop only one type of trajectory, regardless the initial
position of the balanced system, see Fig. 2.17b, or the unbalance magnitude, see Fig.
2.17a, for the speed of L = 1800 rad/s (see also Fig. 2.21). The quasi-periodic motion
at this case is close to the clearance circle, see Fig. 2.17, and the system is supposed to
suffer from unstable whirling. This is the quality of motion for every rotating speed lower
than Q = 2100 rad/s, see Fig. 2.12.
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At approximately Q = 2100 rad /s another type of bifurcation, the Neimark-Sacker (NS)
bifurcation occurs. This bifurcation generates limit cycles which are bounded (attracted)
from a torus-like shape of solution branches. Neimark-Sacker bifurcation can be
supercritical or subcritical. Like in Hopf bifurcation, stable limit cycles will be generated
after a supercritical Neimark-Sacker bifurcation, while unstable limit cycles will be
generated after a subcritical Neimark-Sacker bifurcation. The motion is depicted in Fig.
2.18 for Q0 = 2200 rad/s.
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Fig. 2.17: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor n = 0.1 at
Q = 1800 rad/s. (a) non-autonomous system released from bearing center for two different unbalance
magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions.
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Fig. 2.18: Trajectories of the journal for the system defined in Table 2.2 with foil loss factor n = 0.1 at
Q = 2200 rad/s. (a) non-autonomous system released from bearing center for two different unbalance
magnitudes. (b) autonomous system (perfectly balanced) released from different initial positions.

After a Neimark-Sacker bifurcation, the system can hardly retain operation and integrity,
and operation should be tripped. The motion can be described as whip (referring to
respective oil-whip instability in oil film bearings) and the most likely scenario is that
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rotor-stator contact will be taking place as the journal rotates. The motion may become
chaotic as is shown in continue.

The respective Poincaré maps of the trajectories depicted in Figs. 2.13a-2.14a and Figs.
2.16a-2.18a are evaluated and presented in Fig. 2.19 when physical coordinates are
used, and in Fig. 2.20 when state space coordinates are applied. At Q = 500 rad/s
periodic motions of period 1T, are detected and Poincaré maps consist of one point, see
Figs. 2.19a and 2.20a. At 0 = 1300 rad/s periodic motions of period 2T, are detected
and Poincaré maps consist of two points, see Figs. 2.19b and 2.20b. These are examples
of so-called phase-locked motions.
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Fig. 2.19: Poincaré map of physical coordinates of the journal orbits evaluated in Figs. 13-17. (a) Q =
500 rad/s , (b) @ = 1300 rad/s , (c) @ = 1600 rad/s , (d) Q = 1800 rad/s , (€) Q = 2200 rad/s
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0 = 1800rad/s Q0 = 2200rad/s
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Fig. 2.20: Poincaré map of state space coordinates of the journal orbits evaluated in Figs. 13-17. (a) Q =
500 rad/s , (b) @ = 1300 rad/s , (c) @ = 1600 rad/s , (d) Q@ = 1800 rad/s , (€) Q = 2200 rad/s

At Q = 1600 rad /s quasi-periodic motions are detected and Poincaré maps consist of
points (not clearly discretized) in a geometrically defined shape, see Figs. 2.19c and
2.20c. The same quality of quasi-periodic motion is detected also for the motion at Q =
1800 rad/s, see Figs. 2.19d and 2.20d. Chaotic motion is identified at 0 = 2200 rad/s
where Poincaré maps consist of arbitrarily located points in non-geometrically defined
shape, see Figs. 2.19e and 2.20e. This is better realized in Fig. 2.20e where the
characteristic cloud appears. However, chaotic motion may be interpreted also in a

Poincaré map with geometrically defined shape.
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Fig. 2.21: (a) Limit cycles evaluated for the non-autonomous (unbalanced) system; (b) max-min values in

vertical plane and respective type of bifurcation

2.4.2 Stability assessment of fixed-point equilibrium

The system of Eq. (77), is studied on the stability of its fixed-point equilibrium. The size
of the system isnxn, where n=(N,/2+1)N, +8 , and the bifurcation parameter isQ.

Therefore, the system is repeated for convenience as in Eq. (88).
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Xnx1 = fnxl(xnxll 0) (88)

At first, the equilibrium points of the system Xx. (Q) (critical points, or fixed points) have

to be evaluated for the different values of 3, using a numerical method, e.g. Newton-
Raphson. For each fixed point, the Jacobian matrix Jis defined in Eq. (89). The
eigenvalues have to be evaluated simultaneously and then to be ordered as

Re(4,)>Re(4,)>Re(4g)>...>Re(4,4,)-
The interest is to find the Q, for which the eigenvalues of J(€)contain a pair

A :a(Qm)ii.b(Qm)where Re(ﬂlyz) =a(ch)=0-

o o o]
0%, 0OX, OX,
oa oA o
J(Qy)=| 0%, X, OX, (89)
M M K M
of, of, K of,
| 0%, OX, 0oX, Ja-a,

The reader has to check whetherRe(4/(Q,))= Re(i—g

]: a'(Q,)andb(Q,)are non-

Q=Qy,
zero quantities, and Re(ﬂk)<0f0rk =3,4,..n. If the above are satisfied, then the system
undergoes a Hopf-Andronov (or simply Hopf) bifurcation asQ crossesQ,, .

Several systems have been assessed at their fixed-point equilibrium, as described above,
for several design properties of shaft stiffness IES, bump foil stiffness ar, and bump foil
loss factor 17. More specifically, three cases of shaft stiffness are examined: ks = 0.1 for
slender rotor with high elasticity (corresponding to slenderness ratio L/D > 10), kg =
1for intermediate shaft elasticity (corresponding to slenderness ratio 1 < L/D < 10),
and k, = 10 for low shaft elasticity (corresponding to a rigid rotor). Several values for
s at the range 0.01 < ay < 1 (ay = 0.01 corresponds to rigid foil), and for loss factor
n at the range 10™* < 1 < 1 are selected at the case study. The corresponding results
are depicted in Fig. 2.21 where it is depicted that for specific properties of bump foil
properties, the extension of threshold speed of instability to higher values is feasible.
The extension may reach the value of 10 times in the system with I_cs =1, or less for
other cases of shaft stiffness; consider that for the case of k; = 0.1 some numerical
issues were noticed and the graph Fig. 2.21a does not appear correctly. It is valuable to
note that the extension of instability threshold speed appears for similar values of bump
foil stiffness and loss factor at all three shafts checked.
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Fig. 2.22: Instability threshold speed €., as a function of bump foil compliance a, and loss factor 7 for
different shaft stiffness a) k; = 0.1, b) k, = 1, and c¢) k; = 10
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3 RESULTS FOR UNBALANCE RESPONSE

In this chapter, several simulations are performed in order to observe the influence of
the bump foil design parameters in regards to the stability of the non-autonomous
(unbalanced) system. As key parameters for these studies are considered the rotating
speed Q and two of the selected design variables; the dimensionless foil compliance
ar = 1/Ef and the foil structure loss factor 7. The results are obtained in two operating
conditions of the Jeffcott rotor system, as mentioned before; first, for a linearly varying
Q = at -where a = 20 rad/s- and second, for a stepped varying rotating speed for a
specific time domain per step (500 driving periods per each value of rotating speed). In
both cases, the initial rotating speed is assumed at (0 = 500 rad/s while the maximum
speed is supposed to exceed () = 2000 rad /s depending on the two design parameters
ay, and 7, and the respective quality of motion that the solver is able to approach.
Different values of unbalance magnitude are applied in several cases.

Table 3.1: Changing parameters for the simulations executed in chapter 3.

Shaft . .
. . Foil dimensionless . Unbalance
dimensionless Foil loss factor, n .
eccentricity, e

_ compliance, a
stiffness, kq P !

Ak =0.1 1: @ = 0.01 a: n=0.003 1:e=25-10"%m
B: kg = 2: @ =0.1 b: n = 0.01 2:6=25-10"°m
C: ks =10 3:ar=1 cn=0.1

In terms of indication, for two different values of unbalance eccentricity e =
0.5%x 1072 X e;5, and e = 0.5 X e;5, -where e, =5%x107°m- and ks = 1,a; =
0.01,n7 = 0.01, the transient response together with its time-frequency decomposition
diagram is evaluated during the run-up of each unbalanced system. Simultaneously, the
response together with the respective bifurcation diagrams is obtained via the stepped
run-up simulations. Again, it is important to note that the existence of a steady state
response is a necessary condition in order to produce those bifurcation diagrams, hence
the last 100 driving periods per speed step are taken into account. Furthermore, an
additional plot per case will be introduced, containing orbit, Poincaré and FFT diagrams
for different values of rotating speed Q) in order to examine thoroughly the motions that
each case renders. The aforementioned evaluations are depicted in Figs. 3.1-3.4.

As rotating speed increases for the first of the two cases, see Fig. 3.1, where e =
0.5 X ey, and approximately at 0 = 1250 rad/s, a Hopf-Andronov bifurcation takes
place, while by increasing the system’s speed further, around = 1350 rad/s, another
Hopf bifurcation occurs and the system returns to stable fixed points. One may notice
that the system’s behavior is almost identical with the one examined in section 2.4, with
the sole difference between these two systems being the arithmetic value of the foil loss
factor n, currently n = 0.01 and previously n = 0.1. Increasing the rotating speed
further, at approximately 2 = 1550 rad/s, a Hopf bifurcation occurs once again and
stable limit cycles are induced. At Q = 1700 rad/s, a saddle node bifurcation occurs,
resulting to the development of one type of trajectory for every speed value until
approximately Q = 2150 rad/s, as will be shown in continue in Fig. 3.2. Eventually, by
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the time the rotating speed exceeds ( = 2150rad/s, the system experiences a
Neimark-Sacker bifurcation where whip motion is observed, most likely leading to
journal-bearing contact. It is expected that the system will not retain its operation after
a Neimark-Sacker bifurcation due to the violent motions of the journal.

Run-up Stepped run-up
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displacement y/;
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Fig. 3.1: (left) Transient response and time-frequency decomposition of the journal’s vertical
displacement y .. (right) Response of the vertical displacement y ; after a stepped run-up execution and
bifurcation diagram. Parameters: e = 0.5 X e;5, = 2.5 X 107°m, K; = 1,@; = 0.01,7 = 0.01 (case

B1b2)

Fig. 3.2 shows the orbit, Poincaré and FFT diagrams of the vertical displacement of the
journal at various rotating speeds, for the first case of the unbalance eccentricity e =
0.5 X ej5,- At speed Q = 1000 rad/s, the response of the journal is of period 1T,
confirmed by the respective Poincaré map, see Fig. 3.2a, which shows a single point. A
super-synchronous vibration is detected from the FFT plot, which shows two distinct
peaks; one at the synchronous speed and another at a super-synchronous frequency.
These super-synchronous vibrations can be also detected in the STFT diagram, shown in
Fig. 3.1. According to that, super-synchronous vibrations are expected throughout the
whole duration of the executed simulation, while sub-synchronous vibrations should be
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expected too after a certain point in time. At speed (Q = 1250 rad/s, the Hopf
bifurcation mentioned in the previous paragraph occurs and the motion becomes period
2T,. The Poincaré map shows two distinct points, while the FFT plot shows four distinct
peaks; one at the synchronous speed, two at super-synchronous frequencies, and for
first time one major component at a sub-synchronous frequency.

-0.5 -0.5
5
-0.55 -0.55
= .
5 -06 = -06 = 0
(@) =
-0.65 -0.65
-5
-0.7 -0.7
0.3 0.4 0.5 0.3 0.4 0.5 0 1 2 3
z; z;(nT') Q, krad/s
-0.4 -0.4 . 5
05 g 05 . Y
=06 < -06 =
(b) =
-0.7 -0.7 -
-0.8 -0.8
0.2 0.4 0.6 0.2 0.4 0.6 0 1 2 3
T; z;(nT) Q, krad/s
-0.4 -0.4
i 5
-0.45 -0.45
=
= 05 2 05 =0
© -0.55 = -0.55
-0.6 -0.6 -5
0 1 2 3
Q, krad/s

3

o

1 2
Q, krad/s

w

March 5, 2021 H



Diploma Thesis — loannis G. Raptopoulos

™
\
\
)
".\_/
Yj
o wl

()
e 5
f_, -
0 02 04 06 0 02 04 06 0 1 2 3
Z; z;(nT) Q, krad/s
1 1
0.5 0.5 5
| S |
s 0 =0 50
® >
0.5 -0.5 -5
-1 -1 i
-1 0 1 -1 0 1 0 1 2 3
z, z;(nT) Q, krad/s
1 1
05 0.5 ) 5
= ,
= 0 £ 0 = 0
(@) =
-0.5 -0.5 -5
1 -1
-1 0 1 -1 0 1 0 1 2 3
z; z;(nT) Q, krad/s
1 1
0.5 0.5 5 LAL
& |
= 0 s 0 = 0
h =
") -0.5 -0.5 5
0 1 0 1 2 3
z;(nT) Q, krad/s

/

0 1 0 1 2
z;(nT) Q,krad/s

March 5, 2021

w




Diploma Thesis — loannis G. Raptopoulos

Fig. 3.2: Orbit, Poincaré and FFT diagrams for different speed ( at unbalance e = 0.5 X e;5, =
2.5x 107 m: (a) Q = 1000 rad/s, (b) Q = 1250 rad/s, (c) @ = 1350 rad/s, (d) Q = 1550 rad/s, (e)
Q =1650rad/s, (f) @ =1700rad/s, (g) @ = 1900 rad/s, (h) Q = 2100 rad/s, (i) @ = 2150 rad /s

At a slightly higher speed = 1350 rad/s, the motion returns to the period 17, state
(after a 2" Hopf bifurcation has taken place), and a larger orbital motion is detected in
comparison to the previous one at 1 = 1000 rad/s. At the next examined speed 0 =
1550 rad/s, the motion converts to quasi-periodic; a conclusion then can be drawn via
the Poincaré map depicted in Fig. 3.2d where the points form a geometrically defined
shape but the points cannot be distinguished, affirming the quasi-periodic nature of the
motion. The FFT plot shows a multitude of sub-synchronous and super-synchronous
vibrations that arise at this rotating speed.

The same quality of a quasi-periodic motion takes place at speed (0 = 1650 rad/s, see
Fig. 3.2e. With a slight increase in rotating speed, specifically at O = 1700 rad/s, the
system experiences a saddle node bifurcation and a period 2T; motion is observed, with
the orbit extending up to the clearance circle. The same quality of motion applies until
approximately @ = 2150 rad/s. By the time speed exceeds this value, the motion
converts to quasi-periodic and, if further increase of speed takes place, it becomes
chaotic.

1 Run-up 1 Stepped run-up
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Fig. 3.3: (left) Transient response and time-frequency decomposition of the journal’s vertical
displacement y ;; (right) Response of the vertical displacement y ; after a stepped run-up execution and
bifurcation diagram; Parameters: e = 0.5 x 1072 X e;5, = 2.5 X 1078 m,K; = 1, @, = 0.01,1 = 0.01

(case B1b1)

The vertical response of the journal with the corresponding STFT and bifurcation
diagrams, for a lower unbalance eccentricity e = 0.5 X 1072 X e;5, = 2.5 X 1078 is
depicted in Fig. 3.3. Both a run-up and a stepped run-up were executed in order to obtain
them, following the same process as in the previous case. One may claim that there is
no pluralism detected in this case’s motions in comparison to the first one, where the
unbalance eccentricity is a hundred times greater than the current. When the system
rotates with speed lower than () = 1850rad/s, stable motions around specific
equilibrium point/points are observed, with few exceptions breaking this norm, as will
be shown subsequently, where quasi-periodic motions are developed. At ) =
1850 rad/s, a supercritical Hopf-Andronov bifurcation occurs, with stable limit cycles
being generated right after, inducing multi-periodic and quasi-periodic motions that will
be shown and explained subsequently.

The respective orbits, Poincaré maps and FFTs for the second case are depicted below,
in Fig. 3.4. At rotating speed (0 = 1000 rad/s, the response of the journal’s center is
multi-periodic. More accurately, a period 3T; motion is observed from the Poincaré
map, which shows three distinct points. The FFT plot shows that, except for the
synchronous, both subsynchronous and supersynchronous frequency vibrations arise.
At speed Q = 1200 rad/s, the journal’s center vibration is synchronous with period
1T,, as a single point and single peak suggest in Poincaré and FFT maps respectively, see
Fig. 3.4b. As the system increases speed, at approximately 0 = 1500 rad/s, a quasi-
periodic motion is unveiled, while a synchronous and of a higher amplitude
subsynchronous vibrations are noticed from the respective FFT diagram. Right after, the
system obtains again stable fixed points, until the speed of the system reaches Q =
1700 rad/s, where the periodic quality of motion gradually transforms to quasi-
periodic once again. This can be ascertained at a slightly higher speed 0 = 1800 rad/s,
where the quasi-periodic nature of the motion is obvious. Approximately after At =

2.5 s the rotating speed becomes () = 1850 rad/s.
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The Hopf-Andronov bifurcation occurs and the motion becomes multi-periodic as long
as the rotating speed remains lower than 0 = 2150 rad/s. Two peaks are visible in the
FFT plots, meaning that the synchronous and another subsynchronous vibration are
dominating at this range of speed. The subsynchronous one is characterized by higher
amplitudes than the one at the running frequency. The STFT diagram, see Fig. 3.3,
constitutes another tool that proves the presence of these higher amplitude
subsynchronous vibrations and one may observe them at around t = 70 s. Finally, at
approximately Q = 2150 rad/s, the previously multi-periodic motion converts to
quasi-periodic, due to the Neimark-Sacker bifurcation occurrence, and several
subsynchronous vibrations make their appearance, not yet in a way that can be
compared with the two already dominating. The motion is depicted in Fig. 3.4i.
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Fig. 3.4: Orbit, Poincaré and FFT diagrams for different speed Q at unbalance e = 0.5 x 1072 X ¢;, =
2.5x 1078 m: (a) Q = 1000 rad/s, (b) Q@ = 1200 rad/s, (c) Q = 1500 rad/s, (d) Q = 1700 rad/s, (e)
Q =1800rad/s, (f) Q = 1850 rad/s, (g) Q = 2050 rad/s, (h) Q = 2100 rad/s, (i) @ = 2150 rad /s

3.1 The influence of bump foil compliance in the unbalance response

The compliance a; of the bump foil structure constitutes one of the design parameters
of this study, and one of the most influential factors when it comes to the dynamics of
the rotor model. The foil compliance plays a critical role in terms of system’s stability,
which corresponds directly with the bifurcations’ occurrence. Therefore, a series of
diagrams are presented subsequently, where a comparative analysis for three different
cases of foil compliance takes place; a stiff (ay = 0.01), an intermediate (ay = 0.1) and
a compliant (ay = 1) foil. The specifications of Table 3.1 are used during this
investigative process.

Fig. 3.5 shows the STFT plots for each case of the dimensionless foil compliance,
produced during the respective run-up simulations, and the corresponding bifurcation
diagrams evaluated during the stepped run-up simulations. Significant conclusions can
be drawn, especially by the bifurcation diagrams where major differences can be
detected.

Table 3.2: Parameters used in the run-up and stepped run-up simulations of the system. Bearing
specifications are considered as in Table 2.1

Parameter Value Parameter Value
Shaft dimensionless stiffness, kg 1 Disc mass, my 3 kg
Foil loss factor, n 0.1 Journal mass, m; 0.3 kg
Rotating acceleration, a 20 rad/s? Unbalance, m, - e 2.5:10° kgm
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Fig. 3.5: (top) Time-frequency decomposition of the journal’s transient response; (bottom) Bifurcation
diagram obtained after a stepped run-up simulation; Parameters: e = 0.5 X e;;, = 2.5 X 107 m, K, =
1,7 =0.1; (@) ar = 0.01, (b)) ar = 0.1, (c) ap = 1

Starting from left to right, i.e. from the stiff foil to the most compliant, it is important to
mention the different bifurcation types that the three systems experience. Fig. 3.5a
shows the STFT and bifurcation diagrams for the stiff case, which was examined
thoroughly in Section 2.4. In there, as rotating speed increases, at (0 = 1200 rad/s a
Hopf bifurcation takes place generating stable limit cycles, while at ) = 1350 rad/s
another Hopf Bifurcation occurs, and the system returns to obtaining stable fixed points.
At Q = 1500 rad/s, another supercritical Hopf bifurcation occurs, meaning that once
again stable limit cycles are generated. As the system increases speed, at Q =
1650 rad/s, it experiences a saddle node bifurcation until rotating speed exceeds 1 =
2100 rad/s, when the last bifurcation type for this case is detected; the Neimark-Sacker
bifurcation where the whip motion and, as a result, instability prevail.

Regarding the second case, at approximately 0 = 1300 rad/s a Hopf bifurcation takes
place inducing stable limit cycles, while at = 1450 rad /s another one occurs and the
system obtains stable fixed points as it did at speed values lower than 0 = 1300 rad/s.
With a slight speed increase, at L = 1500 rad/s, the system experiences once again a
Hopf-Andronov bifurcation. Even if the first two cases presented many similarities in
their dynamic behavior until a certain arithmetic value of (), the major difference
between them lies ahead; the latest Hopf bifurcation that occurred in the second case is
not followed by any other types of bifurcations. The solver breaks at speed () =
1650 rad/s and the simulation is terminated. This obstacle may have been overcome if
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a different solver was chosen, such as ‘ode45s’ (implementing Runge-Kutta method),
extending in this way the simulation and reaching higher rotating speed ().

Last, the compliant system from the very beginning experiences multi-periodic motions
which generate stable limit cycles. In order to verify this, and rule out the possibility of
an early occurred Hopf bifurcation, the initial rotating speed was considered at Q =
200 rad/s. As it was expected, the system obtained stable fixed points at low speeds,
but, as the speed was increasing, those converted to the afore written multi-periodic
motions. At approximately (0 = 1650 rad/s, a subcritical Hopf bifurcation occurs,
generating unstable limit cycles and chaotic motion. The system can hardly retain
operation and integrity, and probably -with further increase in rotating speed- an
undesirable rotor-stator contact will be taking place.

To summarize, one may notice that the least compliant foil, even if it experiences Hopf
bifurcations slightly earlier than the intermediate one and much earlier than the most
compliant, it can manage reaching higher rotating speeds without risking to compromise
the operation of the system. Additionally, the most compliant foil, under the
specifications given in the beginning of the section, reaches to instability quite early.
With regard to the time-frequency decomposition of the transient response per case, it
is concluded that as foil compliance Ef increases, less and of a lower amplitude self-
excited vibrations are induced. Fig. 3.5a shows the STFT plot for the stiff system. It can
be easily observed that, especially after approximately t = 40 s, subsynchronous
frequency vibrations arise with a higher amplitude than the synchronous one, while in
the other two cases, even if both sub and super-synchronous vibrations may be arising
too, they are not of the same multitude and amplitude with their respective synchronous
ones.

Figs. 3.6-3.8 provide the results of a comparative case-study that is being conducted for
the first design parameter, the dimensionless foil compliance. In each figure, for a certain
speed value, an orbit plot, a Poincaré map, and an FFT diagram are obtained for three
different values of the dimensionless foil compliance (ay = {0.01,0.1,1}), having
secured that in every case steady state prevails. The chosen speeds, for the performed
case-study, are 0 = {1200, 1300,1650} rad/s. Since selecting a higher rotating speed
was not feasible, due to the fact that the solver broke during the second simulation
(ar = 0.1) at speed Q = 1650 rad, this was the best-case scenario for the current
comparative analysis.

Fig. 3.6 shows the results obtained at speed . = 1200 rad/s for each one of the foil
compliance values, providing the reader with the ability to distinguish major differences
when it comes to the behavior among stiff or more compliant foil structures. Starting
from the stiffest foil, see Fig. 3.6a, one may notice a period 2T; motion from the Poincaré
map, due to a Hopf bifurcation that occurs at this speed generating stable limit cycles.
The FFT diagram shows four distinct peaks, with two of them being of a much higher
amplitude explaining the two-periodic motion. Simultaneously, for ay = 0.1, a period
1T,; motion is observed and stable fixed points are obtained by the system, while for the
most compliant foil (ay = 1) the Poincaré map shows a multi-periodic motion. It is of
significant importance to mention that the orbital motions and the points shown in the
Poincaré maps, are detected in lower vertical displacement values, as the foil becomes
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more compliant. As the foil compliance a; increases, the vertical displacement 7}. of the
journal decreases (or the modulus of 7}. increases), and the eccentricity of the journal

increases as well. At speed 0 = 1300 rad/s, the stiff foil still experiences period 2T,
motion.
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Fig. 3.6: Orbit, Poincaré and FFT diagrams at = 1200 rad/s with foil compliance (a) @ = 0.01,

No alteration in terms of the motion’s quality is detected in the most compliant foil (a; =
1), and a multi-periodic motion continues to exist, as Fig. 3.7b depicts. The major
difference is noticed in the second case, where ay = 0.1. At this speed, a Hopf
bifurcation occurs for the first time and periodic motions of period 2T, are detected.
The Poincaré map consists of two points, see Fig. 3.7b. Apparently, the two stiffest
system trajectories geometrically form a similar orbital motion, after both of them
experience Hopf bifurcation for first time. One may observe that as the foil compliance
increases, the eccentricity does too. Specifically, the Poincaré distinct points in Fig. 3.7a
are noticed in the range 7]. = (—0.5,—0.4), while in Fig. 3.7b in the range i}. =

(=0.7,—-0.5) and in Fig. 3.7c, the multi-periodic motion of the system takes place in

the range ij = (—2.25,-2).
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Fig. 3.7: Orbit, Poincaré and FFT diagrams at = 1300 rad/s with foil compliance (a) @ = 0.01,

At approximately Q = 1500 rad/s, the first two systems experience a Hopf bifurcation,
while the third one does not, until further increase of the rotating speed to Q =
1650 rad/s. At the same speed, though, the stiffest system (ay = 0.01) experiences a
saddle node bifurcation. In the following figure, the orbit, Poincaré and FFT diagrams are
presented for the three systems, at speed 2 = 1650 rad/s. The first system, see Fig.
3.8a, develops one type of trajectory close to the clearance circle. The respective
Poincaré map shows two distinct points, unveiling the period 2T; motion of the stiff
model. Regarding the second case, see Fig. 3.8b, multi-periodic motions are detected, as
shown in the Poincaré map which consists of clearly discretized points in a geometrically
defined shape. The corresponding FFT diagrams are characterized by multiple peaks,
representing the several frequency vibrations of this, multi-periodic motion. Last, the
most compliant foil develops unstable limit cycles, as the orbit map indicates in Fig. 3.8c.
This is the result of a subcritical Hopf bifurcation and, according to the Poincaré map,
leads to chaotic motions and several peaks in the FFT diagram.
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0.01,(b)a; =0.1,a,=1

3.2 The influence of bump foil loss factor in the unbalance response

In order to investigate the influence of the loss factor on the dynamics of the rotor, the
STFT and bifurcation plots are investigated with loss factor being the only changing
parameter in this section. Right after, the same process is followed as in section 3.1 in
order to obtain the orbit, Poincaré and FFT diagrams, for three different values of loss
factor n = {0.003,0.01,0.1}. A comparative analysis takes place, where for certain
rotating speeds the behavior of each system is studied and several conclusions can be
drawn.

Fig. 3.9 shows the time-frequency decomposition of the transient response of the
journal and the respective bifurcations plots, obtained via the stepped run-up
simulations. From left to right, the loss factor increases, from its lowest valuen = 0.003
to the highestn = 0.1. Regarding the first case, when the system rotates with low speed
QO <1250 rad/s, it experiences stable motions around equilibrium for any initial
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condition, and the bifurcation plot shows only one distinct point at those speeds. At
speed L = 1250 rad/s, a Hopf bifurcation occurs and stable limit cycles are induced,
until = 1350 rad/s, where another Hopf bifurcation occurs and the system returns
to the previous quality of motion, obtaining stable fixed points. Increasing speed further,
at approximately Q) = 1600 rad /s, a Hopf bifurcation occurs once again and stable limit
cycles are induced. Following this supercritical Hopf bifurcation, at approximately speed
Q = 1700 rad/s, a saddle node bifurcation occurs and the system develops one type of
trajectory, close to the clearance circle regardless the initial position of the unbalance
magnitude. From now on, period 2T; motions are induced, as the respective Poincaré
map indicates, evaluated for a much higher speed 2 = 2050 rad/s, see Fig. 3.12a.
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Fig. 3.9: (top) Time-frequency decomposition of the journal’s transient response. (bottom) Bifurcation
diagram obtained after a stepped run-up simulation; Parameters: e = 0.5 X e;s, = 2.5 X 107 m, K, =
1, @5 = 0.01; (@) n = 0.003, (b) n = 0.01, (c)n = 0,1

The rest of the two cases follow a similar behavior in regards to the quality of motions
with the first one until speed Q = 2050 rad/s. Specifically, for loss factorn = 0.01, the
first Hopf bifurcation occurs at exactly the same speed Q = 1250 rad/s, while the
second one takes place again at the same speed 0 = 1350 rad/s. In between the two
Hopf bifurcations, stable limit cycles are generated. As the system increases speed
further, at approximately Q = 1550 rad/s (50 rad/s earlier than the first case),
another Hopf bifurcation occurs and quasi-periodic motions are developed. At speed
Q = 1700 rad/s, a saddle node bifurcation occurs, until speed Q = 2150 rad/s. At this
point, a Neimark-Sacker bifurcation occurs, and stable limit cycles will be generated. Fig.
3.9b shows that the transition to the next quality of motion is achieved gradually, leading
to the conclusion that the Neimark-Sacker bifurcation is supercritical and explaining the
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aforementioned existence of stable limit cycles. With further increase in speed, the
journal will most likely experience contact with the bearing and the operation trips.

Regarding the last system, where n = 0.1, at speed Q = 1200 rad/s the first Hopf
bifurcation occurs, and period 2T; motion prevails, as the corresponding Poincaré map
shows in continue. At approximately (0 = 1350 rad/s, the second Hopf bifurcation
occurs and the system returns to the previous state, where stable motions around
equilibrium are detected. As speed increases, at approximately 0 = 1500 rad/s, the
system experiences the third Hopf bifurcation, resulting to whirl motion under stable
limit cycles. At (0 = 1650 rad/s, a saddle node bifurcation occurs, approximately
50rad/s earlier than the previous two cases. Finally, at rotating speed Q=
2100 rad/s, a subcritical Neimark-Sacker bifurcation occurs, resulting to unstable limit
cycles. Once again, the bifurcation diagram, see Fig. 3.9¢, proves the unstable nature of
the limit cycles, since the transition to this motion is not gradual. With further increase
at speed, the system will experience rotor-stator contact.

The orbit, Poincaré, and FFT diagrams are evaluated in Figs. 3.10-3.12, for three different
values of rotating speed, so as to investigate the quality of motion per case at the same
time point. Fig. 3.10 shows the results that the simulations extracted for Q =
1200 rad/s. Regarding the first system, where n = 0.003, period 1T; motion is
observed, since the Poincaré map shows a single distinct point, see Fig. 3.10a. The FFT
plot indicates the presence of a subsynchronous and a supersynchronous vibration
frequency in addition, with much lower amplitudes than the synchronous one though.
The STFT diagram, shown in Fig. 3.9a, affirms the presence of these frequencies as well.
The same quality of motion is detected in the second system too. However, this is not
the case in the third one. The system, at this speed, experiences a Hopf bifurcation and
the single period motion converts to period 27T}.

In continue, at approximately 0 = 1650 rad/s, the motion of the first two systems
transforms to quasi-periodic, after both experiencing a Hopf-Andronov bifurcation. The
corresponding FFT plots show several peaks, see Figs. 3.11a-b. The last system (n = 0.1)
renders a period 2T; motion, as a result of the saddle node bifurcation that occurred at
this speed. A close-to-clearance circle trajectory is detected, as it is expected when a
saddle node bifurcation occurs.
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Fig. 3.11: Orbit, Poincaré and FFT diagrams at ) = 1650 rad/s with foil loss factor (a) n = 0.003,
(b)n =0.01,n=0.1

To conclude, Fig. 3.12 renders the respective diagrams for a significantly higher speed.
Exceeding Q = 2000 rad/s, and more precisely at Q = 2150 rad/s, interesting
observations can be made. One may notice different types of bifurcations in this part.
With regard to the first case, where the value of the damping factor is the lowest one,
there is no alteration in the quality of the motion. The period 2T; motion continues to
exist, the trajectory of the journal is still close to the clearance circle and the FFT plot
shows clearly two distinct peaks, which represent the two vibration frequencies of the
motion -- the synchronous and a subsynchronous one. After the saddle node bifurcation
that occurred at approximately 0 = 1650 rad/s, minor alteration took place. With
further speed increase, the solver breaks and the simulation terminate.

The second system, though, experiences a supercritical Neimark-Sacker bifurcation, as
previously mentioned, and quasi-periodic motions are detected. The FFT plot shows
several peaks, not clearly discretized though, see Fig. 3.12b. Last but not least, for the
third system (n = 0.1), the corresponding diagrams represent once again quasi-periodic
motions, which constitute the result of a subcritical Neimark-Sacker bifurcation. The
most remarkable observation that can be made is that for the selected design
parameters (K, = 1, ar =0.01) and an unbalance eccentricity mg-e =7.5X
107® kgm the system shows similar behavior until rotating speed reaches Q =
2150 rad/s, regardless the value of the loss factor. However, by the time () surpasses
this value and as the loss factor 1 of the gas foil bearing increases, the quality of motion
of the system varies decisively. For the lowest value of the loss factor, n = 0.003, the
simulation is terminated at = 2600 rad/s, without any other bifurcation type
occurring, while for the intermediate one, n = 0.01, a supercritical Neimark-Sacker
bifurcation occurs and the simulation is terminated at Q = 2300 rad/s. Last, for the
highest value, n = 0.1, a subcritical Neimark-Sacker occurs and the solver breaks at {1 =
2150 rad/s. Therefore, for the lowest values of loss factor, the system is able to reach
higher amounts of speed without experiencing Neimark-Sacker bifurcations, averting to
get closer to instability.
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Fig. 3.12: Orbit, Poincaré and FFT diagrams at Q = 2150 rad/s with foil loss factor (a) n = 0.003,

3.3 Energy flow

(b)n =0.01,n =0.1

The work of gas forces and of forces acting on the top foil, by foil springs and foil dampers
are evaluated for a closed trajectory of the journal motion during the performed stepped
run-ups for the designated in Table 3.1 cases. The equations utilized for the work
computations are defined in Eq. (90) for the total work of gas forces W,, in Eq. (91) for
the total work of the forces acting on the inner surface of the top foil W}, in Eq. (92) for
the total work of the bump foil spring ka, and in Eq. (93) for the total work of the bump

foil damper chz

Wg =ng+Wgy=ZFBxXAx]-+FByXij

Wf=ZmeAq=Z(pm-R-A0-Az)qu

(90)

(91)
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ka=Zkaqu=Z(kf-R-A0-L-q)><Aq 02)

ch=ZFCfXAq=Z(Fm—ka)XAq (93)

The dimensional bearing forces Fg_, FBy are given by (14)-(15), p,, is the mean pressure
over the length L of the bearing, see (40), and F, is the respective mean force. As Ax;,
Ay; are denoted the difference of horizontal and vertical displacements between two

consecutive points of the orbit, while the same applies to the respective consecutive
orbit points when it comes to the evaluation of the foil displacement difference 4q.

The process followed so as to ensure that the works were evaluated in a closed orbit,
and extract -in this way- valid results, lies ahead: a certain “if statement” is introduced,
where by the time an orbit point surpasses for the second time a vertical axis created by
the first plotted orbit point -meaning that this point belongs to the vertical axis- then the
evaluation has to be terminated. However, having observed several trajectories’
instances in the previous sections, one may claim that the geometry of an orbit is not
always circular or elliptical so as to ensure that a closed loop is achieved. At these cases,
the closed loop process has to implement manually.

The main target of the current evaluations is to provide the reader with conclusions,
regarding the energy flow of the systems studied. Fig. 3.13 shows three different
systems, sharing the same properties in all design parameters, except for the loss factor
which starting from the first system, increases and takes values n = {0.003,0.01,0.1}.
The rest of the design variables are the shaft stiffness and the foil compliance, where
ks =1 and as = 0.01 respectively, while the unbalance eccentricity is given as e =
2.5 x 107° kgm.
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Fig. 3.13: Works W; evaluated for different values of rotating speed €, shaft stiffness k, = 1, foil
compliance a; = 0.01, unbalance eccentricity e = 2.5 X 107¢ kgm, and three different properties of loss
factor n: (a) n = 0.003 (case Bla2) — Q = {500,1300,1600,1800,2100,2150} rad /s, (b) n = 0.01 (case

B1b2) - Q = {500,1300,1600,1800,2100,2150} rad/s, (c) n = 0.1 (case B1c2) - Q =
{500,1300,1600,1800,2050,2150} rad/s.

It should be noted that the evaluation of work is executed for certain rotating speeds
that are chosen deliberately when major incidents occur, i.e. bifurcations, and slightly
earlier before they take place during the stepped run-up of each system. Briefly, the first
system (B1a2) experiences a Hopf bifurcation at speed (0 = 1250 rad/s, and another
one Hopf bifurcation at 0 = 1350 rad/s, where in the first case stable limit cycles are
induced while in the second the system returns to stable fixed points. At speed () =
1600 rad/s, another Hopf bifurcation occurs, leading to whirl motion, right before a
saddle node bifurcation occurs at L = 1700 rad/s and period 2T, is detected. The
second system experiences the first Hopf bifurcation again at speed 0 = 1250 rad/s,
the second at 0 = 1350 rad/s and the third one at () = 1550 rad/s. A saddle node
bifurcation occurs at rotating speed (0 = 1700 rad/s, and last, a supercritical Neimark-
Sacker bifurcation at 0 = 2150 rad/s. The third system experiences the same types of
bifurcations (first Hopfat Q0 = 1250 rad /s, second Hopf at Q = 1350 rad /s, third Hopf
at O = 1500 rad/s and saddle node at Q = 1650 rad/s), as explained thoroughly in
this chapter, except for the Neimark-Sacker bifurcation that occurs in the end which in
this case is subcritical and takes place at = 2100 rad/s.

Regarding the energy flow, Fig. 3.13 shows that in each case great similarities are
observed. The importance of bifurcations is reflected and one may notice that the
energy flow experiences its most significant variations when certain types of bifurcations
occur. Specifically, in all three cases, as speed increases the work of gas forces is positive
and remains positive throughout the three Hopf bifurcations that occur. However, by
the time the saddle node bifurcation occurs, the work renders negative values until the
end of the simulation, meaning that energy consumption exists from this point on. With
regard to the foil damper and the foil in general, from the very beginning energy
consumption exists and a steep descent is detected when the saddle node bifurcation
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occurs, inducing even greater energy consumption. Another noteworthy conclusion is
that, as the foil damping factor (loss factor) increases, the maximum modulus of the
work of gas forces per case increases too, while the respective maximum modulus of the
work value, that the foil damping forces and the forces acting on top foil in general
produce, decreases.

Interesting observations can be also made for another value of shaft stiffness, with the
parameter of loss factor 1 to be retained as the one changing. Specifically, the shaft
stiffness will convert to k; = 10, making the shaft of the new systems ten times stiffer
than the shaft of the previous case-study. The new cases under investigation are now
the (Cla2), (C1b2), and (Clc2).

Before getting into the Fig. 3.14 analysis, it is useful to provide the reader with the
necessary information, regarding the bifurcations occurred in each system. In the first
case, a supercritical Hopf bifurcation occurs at speed = 1300 rad/s, generating
stable limit cycles, while at 0 = 1350 rad /s another Hopf bifurcation occurs and the
system returns to stable fixed points. At speed () = 1600rad/s, the system
experiences a third Hopf bifurcation and presents whirl motion. Last, at Q =
1750 rad/s, a saddle node bifurcation occurs and a two-periodic motion prevails until
the end of the simulation. Concerning the second case, the same bifurcation types are
detected for the largest part of the simulation, although at different values of speed (1.
The first Hopf bifurcation occurs at A = 1250 rad/s, the second at ) = 1400 rad/s,
and the third one at 0 = 1600 rad/s. In continue, at speed ( = 1800 rad/s, the
system experiences a saddle node bifurcation until speed’s increase to Q=
2200 rad/s, where a Neimark-Sacker bifurcation takes place. Last, the third system
shows similar behavior with the previous one, except for the speed values where the
respective bifurcations occur. At speed 1 = 1250 rad/s, the system experiences the
first Hopf bifurcation, while the second occurs at 0 = 1350 rad /s and the third one at
Q = 1500 rad/s. The saddle node bifurcation takes place at 0 = 1750 rad/s, and the
Neimark-Sacker at approximately Q = 2000 rad/s.

Fig. 3.14 shows the evaluated works for several rotating speeds before and after the
bifurcations mentioned earlier occur. Once again, the figure indicates that before the
saddle node bifurcation the work produced by gas forces remains positive. Right after,
the work becomes negative until the simulation is terminated by the solver. The major
arithmetic variations are detected when the saddle node and the Neimark-Sacker
bifurcations occur. In addition, it is indicated that as the property of the loss factor
increases, the maximum modulus of the gas forces work increases as well (or in absolute
numbers decreases and greater energy consumption exists), while the maximum
modulus of the works produced by the forces acting on the top foil and the foil damping
forces follows a declining path.

March 5, 2021 E



Diploma Thesis — loannis G. Raptopoulos

| X107 | x1o 3
Hopf #2 Hopf #2 Hopf #3
) el /4 \T. 8 SN 0t /1-..-* ,_,i Yo S|
Hopf #1 = m
1 op s R H / B
opf #1 i
Hopf #3 ‘|‘ . Al P 40..‘ \
- | . : "‘a \ﬁ"\
. ‘q,v"' Ll SN ‘.“.“ \\\
-2 i %
——W; = W, ——W, =W, ‘
4| [e Wi = W, Brla W, = Wi, VQ&
Wi = W, —W; =W, A
W =W, —W; =W,
-5 : : -4 ‘ ‘ ‘ >
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
. krad/s Q. krad/s
(@) (b)
10-3
1. 10
Hopf #3
0 IRl
[ Mg
; /"' A '
-1 Hopf #1 ; o
B
2l Hopf #2 -
-3
4L
—W; =W,
e Wi = W, ".‘
51 W, =W,, NS\\ |
_VLI/T/: — I’I”’g \"“
-6 . . e
0 0.5 1 1.5 2 2.5
Q, krad/s
(©

Fig. 3.14: Works W; evaluated for different values of rotating speed Q, shaft stiffness k, = 10, foil
compliance a; = 0.01, unbalance eccentricity e = 2.5 X 107% kgm, and three different properties of loss
factor n: () n = 0.003 (case Cla2) — Q = {500,1250,1300,1350,1550,1700,1800,1850} rad/s, (b) n =
0.01 (case C1b2) - @ = {500,1200,1300,1400,1550,1600,1750,1800,2150,2200,2400} rad /s, (c) n =
0.1 (case Clc2) - Q = {500,1150,1250,1400,1500,1700,1750,1900,2150} rad/s.

To conclude, another case-study analysis takes place in Fig. 3.15. In comparison to the
first one, what is modified is the foil compliance, which is equal to a; = 0.1. Therefore,
the under-investigation studies are now encoded as (B2a2), (B2b2), and (B2c2).
Regarding the first case, as the rotating speed increases, period 1T; motion is detected
until approximately speed () = 2450 rad/s. Then, a Hopf bifurcation occurs, whip
motion characterizes the system and with a slight speed increase the simulation is
terminated. The second system experiences single periodic motion until speed Q =
1700 rad/s, when a supercritical Hopf bifurcation occurs and whirl motion is rendered.
The third system, where the highest foil damping is given as a specification, experiences
a Hopf bifurcation at approximately speed Q = 1300 rad/s. Period 1T; motion is
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established, not for long though since another Hopf bifurcation occurs at Q =
1350 rad/s and the system returns to stable motions around fixed equilibrium points.
At approximately Q = 1500 rad/s, another Hopf bifurcation occurs and stable limit
cycles are generated. With further increase of the rotating speed, the solver breaks and
the simulation is terminated.

Similar observations with the previous two analyses can be extracted through Fig. 3.15.
By the time the subcritical Hopf bifurcation occurs in the first system, a significant
change is detected in the work produced by the foil damper forces. The same applies to
the produced by the forces acting on the top foil work in general, since the respective
work of the foil spring forces is experiencing almost negligible variation. The gas forces
work retains its positivity throughout the whole simulation and approaches zero value
when the Hopf bifurcation takes place. This is not the case in the rest of the systems,
though. The second system experiences several Hopf bifurcations, but the major
difference in comparison to the first one is that all of them are supercritical. The gas
forces work remains positive and energy contribution exists, but there is no indication
of following a declining path towards zero value, as in the previous system. Quite the
opposite, one may claim. A remarkable observation is that, after approximately Q =
1700 rad/s, it seems that even the work produced by the foil spring forces begins
rendering values different that zero. Concerning the third case, once again, when the
third bifurcation occurs the gas forces work experiences a steep descent and,
surprisingly enough (in comparison with the previously investigated systems), surpasses
the horizontal axis x, taking a negative value. One may claim that this constitutes an
abnormality in comparison to what has been depicted in the rest of this section’s
diagrams and there is no way to define the reason that induced this sign change. A
different solver’s utilization would be an indicated alternative in order to explain this
observation.

To sum up, a noteworthy conclusion can be drawn from the three executed case-study
analyses in this section; the impact that certain types of bifurcations have in the energy
flow of a system. More specifically, this study supports that Hopf bifurcations may
induce several arithmetic variations when it comes to evaluating the works produced by
the gas and foil damper (and consequently the foil in general) forces. However, none of
them provokes a sign change and, by extensively, alteration in the energy balance. A
saddle node bifurcation, though, constitutes a “balance changer”, if a term like this one
is allowed, since it leads to the aforementioned sign change regarding the gas forces
work. From this point of view energy balance is changed and the gas forces work
introduce energy in to the system, resulting is self-excited vibrations of high amplitude,
close to radial circle.
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Fig. 3.15: Works W; evaluated for different values of rotating speed €, shaft stiffness k, = 1, foil

compliance a = 0.1, unbalance eccentricity e = 2.5 X 107 kgm, and three different properties of loss

factor n: (a) n = 0.003 (case B2a2) — Q = {500,1500,2450,2500} rad /s, (b) n = 0.01 (case B2b2) - Q =
{500,1650,1700,1850} rad /s, (c) n = 0.1 (case B2c2) — Q = {500,1250,1300,1450,1500,1650} rad /s.
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4 CONCLUSIONS

In this thesis, the nonlinear dynamic analysis of a flexible rotor supported on two
identical gas foil bearings is carried out. The Reynolds PDE for compressible flow, an ODE
describing the simplified bump foil structure and the respective second order ODEs for
the rotor model are combined in a coupled vector and solved to acquire the gas
pressure, the foil deformation and the journal’s horizontal and vertical displacements.
An extensive study regarding the quality of motion and stability takes place both for an
autonomous (perfectly balanced rotor) and a non-autonomous system. The investigated
cases (two different unbalance magnitudes were taken into consideration) show several
types of motions, as the rotating speed increases.

In some sets of design parameters investigated, the response starts from stable motions
around fixed-point equilibrium, and the motion converts to two-periodic where stable
limit cycles are induced. Increasing the rotating speed, the system returns to stable fixed
points, until further increase on speed, where quasi-periodic motions and the generation
of stable limit cycles once again are induced. In other sets, eventually, chaotic motions
are detected, the solver breaks and the simulation is terminated. Those changes in terms
of motion’s quality are provoked when several types of bifurcation occur, such as the
Hopf-Andronov, saddle node and Neimark-Sacker bifurcations.

This investigation of non-autonomous (unbalanced) systems gets even more detailed in
chapter 3, where a multitude of case-studies takes place. Firstly, two different systems
are studied with their only difference being the unbalance eccentricity. The response
and STFT diagrams are obtained via a run-up simulation for each case separately, as well
as the bifurcation plots via a stepped run-up simulation. The respective system state
trajectories, Poincaré maps and FFT plots are introduced for several rotating speeds and
used for the dynamic behavior analysis of the rotor-bearing system. Subsequently, by
changing different design variables, the analysis examines how the system motion
corresponds to these variations. For instance, in section 3.1 where the key changing
parameter is the foil compliance, a noteworthy observation is that, as the foil becomes
more elastic (meaning that the foil compliance increases), the system tends to be less
stable at higher rotating speeds, meaning that the motion trajectories extend close to
radial clearance.

In section 3.2, the changing parameter is the foil damping (loss factor). It was observed
that as the loss factor increases, the simulation is being terminated at a lower speed. In
addition, the stiffest foil does not experience a Neimark-Sacker bifurcation, while the
intermediate one experiences a supercritical Neimark-Sacker bifurcation, and the most
compliant a subcritical Neimark-Sacker bifurcation. A common conclusion for both the
foil compliance and the loss factor is that for certain rotating speeds -mainly when
periodic and multi-periodic motions are generated- as they do increase, the eccentricity
of the journal increases too.

The results of the performed analysis indicate highly nonlinear behavior. Periodic, multi-
periodic, quasi-periodic and chaotic motions and respective variation in the nature of
bifurcations are noticed in this work, which can be attributed to the reaction forces of
the GFB. The last objective to investigate is the energy flow of the system where the
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influence of the design variables in terms of works produced by the gas, foil spring and
foil damper forces is examined, and a potential correlation between the energy balance
between components and the quality of bifurcations was sought. In general, it is
expected to notice a change in this balance whenever a bifurcation occurs. The point
though is to observe if a major variation takes place in the energy balance if a certain
bifurcation type occurs. Indeed, what is of significant importance to be mentioned is the
steep variation of the work produced by the gas and foil damper forces when a saddle
node bifurcation occurs. Both of works experience a sign change and convert from
negative quantities to positive ones, meaning that -after the occurrence of a saddle node
bifurcation- energy contribution to the system exists and self-excitation is severely
amplified. Similar trend is noticed during a Hopf bifurcation at lower speeds, with the
respective works to appear with tendency to change sign.

Further work is demanded in future on the objective of limit cycle motion definition with
one of the applicable methods, e.g. shooting method in combination with a continuation
method of limit cycles. This will probably render the correlation of the energy flow in the
system and the respective bifurcations more clearly for the various design sets.
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