

National Technical University of Athens

School of Civil Engineering

Laboratory of Structural Analysis and Antiseismic Research

Master of Science Thesis

Evolutionary Computation and Swarm Intelligence Algorithms

in Structural Optimization

By: Postgraduate Student/ Emad Abdalghaffar

Supervisor: Prof./ Nikos D. Lagaros

July 2021

2

Inspiration

Optimization is the heart of many natural processes, to name a few: the natural selection phenomenon in the

biological evolution theory that is based on the survival-of-the-fittest principle, the social swarming behavior

of birds or the foraging strategies of ants. Hence, the concept of simulating such natural phenomena into

computational mechanics in form of computer algorithms may offer a very promising approach in the

nowadays computer-aided engineering designs.

Preface

This Pharaonic-Grecian work aims to frame the art of the evolutionary and swarm based structural

optimization. That is through five chapters. At the first chapter, the structural optimization problem is

properly defined as well to elaborating its basic components. Then, an intensive review of the literature is

introduced, through screening the most recent and most cited scientific articles in the topic during the first

two decades of the 21st century. Afterwards, a set of the most promising and trending state-of-the-art

algorithms is introduced through descriptive paragraphs that elaborate how each algorithm works. Following

such elaboration of the literature and the state of the art, numerical tests assessing the performance of these

most promising algorithms have been done in order to identify the capability of each algorithm, and

eventually estimating the future trends in Structural Optimization.

3

Dedicated to dad.

Acknowledgement

Thanks to Professor Nikos Lagaros, the supervisor of this work, for the generous way to start it all up with me

from scratch at the optimization topic, also for the valuable comments and feedback throughout this work.

Thanks to Mr. Lagaros too for the indirect inspiration through his dedication and superiority in the field.

Thanks to Professor Vlasis Koumousis, who credited the very early interest sparks for me towards the topic.

Mr. Koumousis smoothly managed to grab our attention towards the topic during that light Wednesday

classes, back in 2019, in that coldish but stunning weather of Zografou’s afternoon.

Thanks

To mama for the midnight juice and light sandwiches (sometimes Mahshi and Pastitsio nearly at 2 a.m.), as

well to the cooking classes via video calls while being abroad. To brother and sisters who were/are/will always

be a robust backbone all the way. Thanks a million to Amina Ramadan, the funniest and prettiest partner,

literally nothing passed during these last two years, amongst homesick moments and stressful exam days,

without her own unique way to help me healing such feelings. No one can bear what she does.

I must also thank Mr. Souvlaki (κοτόπουλο κοντοσούβλι) for the great company in Athens.

4

Content

1 Introduction to Optimization

1.1 Definition and Problem Formulation .. 5

1.2 Classification of The Optimization Approaches .. 6

1.3 Metaheuristic Algorithms ... 7

1.4 Constraints Handling Approaches ... 7

1.5 Structural Optimization... 9

2 Literature Review of the Population-Based Metaheuristic

 Optimization Algorithms in Structural Optimization

2.1 Evolutionary Computation .. 11

2.2 Swarm Intelligence .. 22

2.3 Other Nature-Inspired .. 30

3 State-of-The-Art Metaheuristic Optimization Algorithms

3.1 Evolutionary Computation .. 32

3.2 Swarm Intelligence .. 34

3.3 Other Nature-Inspired .. 40

4 Numerical Tests

4.1 Introduction .. 48

4.2 Benchmark Structural Optimization Problems ... 50

4.2.1 10-bar Truss .. 50

4.2.1 25-bar Truss .. 50

4.2.1 72-bar Truss .. 51

4.2.1 Welded Beam .. 51

4.2.1 Pressure Vessel ... 52

4.2.1 Tension-Compression String ... 53

4.3 Results ... 54

4.3.1 Optimal Weight Comparison .. 54

4.3.1.1 10-bar Truss .. 54

4.3.1.2 25-bar Truss .. 54

4.3.1.3 72-bar Truss .. 54

4.3.1.4 Welded Beam .. 55

4.3.1.5 Pressure Vessel ... 55

4.3.1.6 Tension-Compression String ... 55

4.3.1 Other Comparisons ... 56

5 Conclusion .. 57

6 References ... 58

5

Ch 1 Introduction to Optimization

1.1 Definition and Problem Formulation

“Optimization” term refers to obtaining the best fit (maximum/minimum) value of a certain single or multi-

objective function (e.g., safety, cost or time, in structural optimization), corresponding to pre-defined

variables within a feasible space that is bounded with some pre-defined constraints (e.g., stresses,

displacements or frequencies, in structural optimization). Considering the computational cost and the

consumed time as key performance indicators (KPIs) of the optimization process.

The general mathematical formulation of an optimization problem can be described as follow:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋)

𝑔𝑖(𝑋) ≤ 0 , 𝑖 = 1, 2, …𝑘

ℎ𝑖(𝑋) = 0 , 𝑖 = 1, 2, …𝑝

𝑥�̇�
𝐿 ≤ 𝑥𝑖 ≤ 𝑥�̇�

𝑈 , 𝑖 = 1, 2,… 𝑛

Where 𝑓(𝑋) is the objective function, 𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛 (design variables), 𝑔𝑖(𝑋) is an inequality constraint,

ℎ𝑖(𝑋) is an equality constraint, 𝑥�̇�
𝐿 and 𝑥�̇�

𝑈 are the lower and upper bounds of the ith design variable. 𝑘, 𝑝

and 𝑛 are the numbers of the inequality constraints, equality constraints and design variables, respectively.

The engineering optimization has conquered variant engineering fields and has witnessed a hot pace of

scientific research. In contrast with the so-common manual (trial and error) approach in the engineering

design, optimization techniques are employed to obtain optimal solutions faster and in high accuracy, as well

to saving huge human efforts. Recently, equipping these optimization techniques with the trending AI features

(e.g., Fuzzy Logic) gets the process done even faster and more open to handle general families of optimization

problems.

The main two classes of the optimization approaches are the derivative-based and the derivative-free. The

former one tends to find the exact optimal solution, by definition, it uses information from the objective

and/or constraints functions and derivates to proceed forward. Which requires continuous and differentiable

functions. Although, this derivative-based class of approaches is generally faster and more capable to handle

large number of design variables than that other class. However, it is competent in finding a local optimal, but

not the global optimal. And also, it requires more mathematics as mentioned, which leads to prohibitive

computational burdens consumption in case of high complexity problems. By time, many optimization

problems have been issued as being non-deterministic polynomial-time hardness (NP-hardness) problems,

that hold too much complexity in case of being handled by the derivative-based approaches. Basically, due to

getting stuck in local optimum, discontinuity of the objective function or when the constraints and/or

objective functions require complex simulations. Therefore, the so-called Heuristic approaches (derivative-

free) has come to play thanks to its ease of implementation and light consumption of the computational

burdens in handling high complexity real-world problems, but with relatively low number of design variables.

But it worth mentioning that these derivative-free approaches tend to find a near-to-optimum solution, not

the exact one.

6

The heuristic approaches were developed each-for-each problem. That is why, the theory behind this kind of

approaches should had been promoted to introduce the nowadays called Metaheuristic approaches, as

general frameworks that handle general families of problems. The population-based metaheuristic

approaches in structural optimization is the main topic to be elaborated through this thesis.

1.2 Classification of The Optimization Approaches

The optimization approaches are either derivative-based or derivative-free approaches. The former class

includes techniques of nonlinear, linear, geometric, quadratic, or integer programming. The other class

includes the metaheuristic techniques, which are divided into two subcategories, defined as deterministic and

probabilistic. The deterministic algorithms do not use any kind of randomness operators, it is more useful in

searching for local optimal. On the other side, the probabilistic algorithms employ randomness operators

either in the initialization phase or in setting some design parameters during the optimization process. The

probabilistic approaches are either single-point-based or population-based approaches. The single-point-

based could be either trajectory or discontinuous approaches. The population-based could be evolutionary

computation, swarm intelligence or other nature-inspired algorithms.

The following figure illustrates the above-mentioned classification of the optimization approaches

7

1.3 Metaheuristic Algorithms

This kind of optimizers deals with discontinuous and non-differentiable functions, holds randomness in the

initialization operator and in some internal operators (e.g., crossover and mutation operators in GA), as well to

being highly efficient and dedicated to find near to global optimum in high complex real-world optimization

problems. The two fundamental components of any metaheuristic optimizer are the exploration and

exploitation, in another words, diversification and intensification. In the exploration phase, the optimizer

diverges the search to scan and explore the entire search domain, this behavior is considered as an abrupt but

produces a progressive movement of the candidate solutions. While in the exploitation phase, the optimizer

scans certain promising regions in the explored domain, the regions that hold the best found solutions in the

exploration phase. Enabling a suitable balance between exploration and exploitation highly increases the

efficiency of the optimizer. As a result of this fact, many techniques are developed and equipped into the

algorithms to maintain a proper balance. The most efficient and trending metaheuristic algorithms are

population-based that follow either evolutionary computation or swarm intelligence techniques.

Most of the metaheuristic algorithms are basically inspired by the nature. Since the base of any natural

process is indeed based on the optimization definition. To name but a few of these natural processes: the

natural selection phenomenon in the biological evolution theory that is based on the survival -of-the-fittest

principle, the social swarming behavior of birds or the foraging strategies of ants.

1.4 Constraint Handling Approaches

The optimization processes have been successfully applied to various optimization problems. However, they

are not able to handle constrained optimization problems directly. In the past few decades, much work has

been done to enhance the optimization algorithms performance in order to be able to deal with constrained

optimization problems. Hence, many approaches are developed in order to ensure the feasibility of the

provided optimum solution.

Following are presented a couple of words for some of the state-of-the-art most commonly used constraint

handling approaches:

Static Penalty Function

The most common approach among the researchers. Where all the constraints of a problem are

incorporated into its objective function, introducing the so-called fitness function. By changing the value

of the penalty parameter, different solution could be achieved. Also, inappropriate values of that penalty

factor may lead the search away from the global optimum.

Dynamic Penalty Function

The same as the Static Penalty Function, but in the Dynamic Penalty Function, the penalty factor is

automatically updated during the optimization process according to the behavior of the swarm.

8

Fly-Back method

A trending constraint handling method, which considers the type of the violated constraints. In contrast

with the Penalty Function approach. The main advantage of the Fly-Back technique is that it does not have

any tunning parameters.

Improved Fly-Back method

The standard Fly-Back, but considering the type of the violated constraints. It works in three main steps: (i)

determining whether the updated individual violates the constraints or not, (ii) for violation, finding which

components cause the violation. Then, replacing them with corresponding components, and (iii)

determining before updating the individual’s current position if the new position is within the feasible

space and provides better fitness function value than old particle.

Feasibility Criteria

Proposed by Deb [1], a constraint handling method that uses three feasible criteria as selection

mechanisms: (i) Any feasible individual is chosen over any infeasible one. (ii) For two feasible individuals,

the individual with the better objective function value is chosen. (iii) For two infeasible individuals, the

individual with smaller constraint violation is chosen.

Stochastic Ranking

Proposed by Runarsson and Yao in 2000 [2], a constraint handling method where a pre-defined parameter

controls the balance between the feasibility and infeasibility, as no penalty parameter is used. The

preference between two individuals is based on both the objective function value and the value of the

constraint violations.

The є-Constrained approach

In the є-constrained method, the comparison between two individuals at a time is based on the objective

function value and the constraint violation value as well. The parameter є controls the level of

comparison. As in case of є is very large, the comparison is highly considering the objective function value

rather than the constraint violation value. While if є = 0, the ordering rule is supposed to precede the

constraint violation value on the objective function value.

9

1.5 Structural Optimization

Structural Optimization can be traced back to 1904, when Michell [3] has derived formulae for weight

minimizing of structures subjected to stress constraints. Afterwards during the era of the computational

mechanics, the Architectural, Engineering and Construction (AEC) industry has experienced a hot pace of

intensive developments in the structural optimization area. Where the designer’s day-to-day issue of selecting

proper systems that provide good distribution of the material over the design space, in a way that offers

economical and stable structures, is never been handled before in a way like such nowadays computer-aided

designs. Hence, the structural optimization current-state technology is an important output of the

computational mechanics advances.

There are three aspects that could be structurally optimized in any structure: size, topology or shape.

- Topology Optimization

This is the most general type of structural optimization, where the optimizer deals with the

configuration of the members (placing and number of members) as the design variables.

In another word, the topology optimization is the removal/placing material only where effective.

“Topology” word is originated from the Greek word “τόπος (topos)” that means locus.

The best examples of the topology optimization are the truss

beam and also the so-called perforated beam, where the material

is only placed where they perform optimally, instead of filling the

whole design space with material, such like a solid beam.

The most common approach for the truss structures topology optimization is the “ground structure

approach”, which was first introduced by Dorn et al. (1964) and is now widely used in all kinds of truss

topology optimization. In this approach, the nodal locations are fixed and the ground structure is

created by connecting any two nodes.

10

There are two kinds of the ground structure approach, either to be Partly Ground Structure where the

members length is restricted to a certain value, or to be Fully Ground Structure where no length

restriction is applied. Although in the Partly Ground the computational effort is reduced, but it may

lead to an optimal solution which is not the global one.

In the structural topology optimization, to achieve a feasible solution, the stability of the structure

should be ensured during the optimization process. In this respect, several methods based on graph

theory and algebraic approaches were provided to check this criterion (e.g., Geometrical Consistency

Check [36], Evaluation of the condition number of the stiffness matrix [39])

- Shape Optimization

This is the most complex type of structural optimization, where the main task is to minimize the

effective stresses at some local within the general layout of the structure. There are two approaches

of the shape structural optimization. Either to be based on FE models where the optimizer deals with

the nodes’ coordinates of the structure’s boundaries as the design variables, which usually leads to an

enormous number of design variables and accordingly causing prohibitive computational burdens. Or

to be based on geometrics models where the optimizer deals with the parameters of the geometry

model as the design variables. So that, a link between the structural analysis (FE) model and the

geometry model is maintained, as the modifications in the geometry model parameters lead to

changes in the FE model. In another word, besides the structural analysis and the optimization

algorithms modules, the shape optimization that is based on the geometric models operates also a

third module that models the variant possible shapes, which is called the geometrical representation

module [4]. The shape optimization is applied at the end of the design process when the general

layout is determined through a topology optimization, where minor modifications are applicable on

the design variables (nodes’ coordinates).

- Size optimization

This is the easiest type of structural optimization, where the optimizer deals with the dimensions of

the cross sections as the design variables. Consequently, any modifications in the section properties

during the optimization results in changes in the structural analysis (FE) model. The size optimization is

usually a discrete optimization where the design space consists of specific values of the design

variables (e.g., standard cross sections of I-section steel member), however it could also be a

continuous optimization where the section area of the members are limited within a continuous range

(e.g., 1 < section area < 3 in2). Similar to the shape optimization, the size optimization is applied at the

end of the design process when the general layout is determined through a topology optimization,

where minor modifications are applicable on the design variables (cross sections dimensions).

11

Ch 2 Literature Review of the PB-MOAs in Structural Optimization

The PB-MOAs are usually built based on evolutionary computations (e.g., GA), swarm intelligence (e.g., PSO)

or based on other nature-inspired concepts (e.g., TLBO). In this chapter a review of the literature is introduced

where 28 of the most recent and most cited scientific articles are reviewed and presented. These articles are

presented in three sub-sections: Evolutionary Computation Metaheuristics, Swarm Intelligence Metaheuristics

and Other Nature-Inspired Metaheuristics.

A. Evolutionary Computation Metaheuristics

1) Design optimization of 3D steel structures: Genetic algorithms vs. classical techniques [5]

In this paper an elitist Genetic Algorithm (GA) developed by the authors is compared with a common

commercial structural analysis program in a size optimization of spatial structures. The main

implemented modifications in the standard GA to introduce the proposed algorithm are: phenotype

crossover operator to select real commercial sections, new selection operator that removes the worst

individuals from the population and new codification of the design variables that lets them all have

the same initial probability of being selected. This paper does not consider any limitations for the

displacements of the nodes. The tested benchmarks are discrete variables problems (2835 sections

from the Spanish Basic Building Code). In order to represent the 2835 sections in binary form, a 12-bit

chains are used. For the structural analysis, ESCAL3D software is used.

The optimization Process starts by assigning randomly initial sections to the members, a text file is

generated called “start.exit”, which together with the file (“optimum.in”), enables the optimization

module to run. The “start.exit” file contains the data needed to calculate the structure. The

“optimum.in” file contains the code to apply. In this study, five complete evolutions were carried out,

producing five solutions for each benchmark structure.

Two benchmark structural problems are tested in order to investigate the capability of the proposed

algorithm: industrial portal frame and three-floors steel building. For the portal frame, the weight

obtained by the proposed GA is 1507 kg, while the commercial software’s solution is 2160 kg. Also, in

the steel building design the proposed GA shown better capability, where the obtained weight is

17910 kg, while being 19668 kg by the commercial software. Basically, this superiority of the proposed

GA is due to the random nature of the section assignment process. However, that was at higher

computational cost.

12

2) Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis

function neural network [6]

By combining Genetic Algorithm (GA) and Neural Networks (NN), this article is presented to find

optimal weights of structures subjected to multiple natural frequency constraints.

The GA in the form of the Virtual Sub-Populations (VSP) method is employed to find the optimal

weight of a structure. Using the VSP method is mainly to reduce the consumed computational efforts.

As comparatively to the standard GA, the initial randomly selected population in VSP is much smaller,

on which the GA operators are subsequently applied, then the best-found individuals in that initial

small population are passed to the next same-size populations, iteratively. The remaining individuals

of each new population are randomly selected. In another word, instead of implementing the

mathematical models of the GA’s natural selection operators on a relatively big population in one

shot, like in the standard GA, these mathematical models are implemented on a randomly selected

initial small population, which is iteratively upgraded to better consecutive populations. This is called

virtual sup-population approach, which saves huge computational efforts.

In order to reduce the computational time and efforts that are consumed in evaluating the structures’

natural frequencies using the common FE methods, a properly trained radial basis function neural

network that called wavelet radial basis function (WRBF) is employed to predict these natural

frequencies. In the WRBF, the activation function of the hidden layer neurons is substituted with the

Cosine-Gaussian Morlet daughter wavelet function.

By this article, the WRBF has been used for the first time in the literature in evaluating the natural

frequencies, as previously it was used commonly in setting up structural systems. The employed

constraints handling approach in this study is the Penalty Function method.

Two benchmark structural problems are tested: 10-bar aluminium truss and 200-bar steel double

layer grid. Both are discrete problems where the design variables are selected from a list of standard

cross sections. The size optimization is performed combing the VSP-GA and WRBF, giving optimum

weights 538 and 1483 kg for the 10-bar and 200-bar structures, respectively. While the VSP-GA and

the standard RBF provided 548 and 1492 kg. And the optimum weights by the standard GA and WRBF

are 550 and 1530 kg. While the standard GA with the standard RBF provided 556 and 1543 kg. As

shown, the minimum obtained weight is by VSP-GA with WRBF.

3) Optimum design of shallow foundation using evolutionary algorithms [7]

This investigation article is proposed to implement a performance assessment of three famous

evolutionary algorithms (Differential Evolution DE, Evolutionary Strategy ES and Biogeography-Based

Optimization Algorithm BBO, in addition to four recent variations of that former-mentioned three (

biogeography-based optimization with covariance matrix-based migration CMM-BBO, linear

population size reduction success-history-based adaptive differential evolution algorithm L-SHADE,

weighted differential evolution algorithm WDE and improved differential evolution IDE). This

assessment is done on an optimization problem of RC foundation cost minimization. The assessment is

done comparatively with the most famous evolutionary algorithm: Genetic Algorithm GA. The

problem is optimized under three different cases: shallow footing design subjected to uniaxial load at

13

the center (case-1), effective moment is added to case-1 (case-2) and the impact of relocating the

column is considered in case-2 (case-3).

This above-mentioned benchmark problem has both discrete and continuous design variable domains,

for the number of steel bars variable (integer number) and for the concrete dimension variables,

respectively. The Penalty Function approach is employed for constraint handling.

The results shown that: none of the assessed algorithm shows the best efficiency for the three cases,

where L-SHADE algorithms provided the best optimum for case-1, WDE for case-2, and BBO

for case-3. Also, BBO & WDE algorithms are able to deal successfully with the three cases.

4) Progressive collapse design of seismic steel frames using structural optimization [8]

This work uses the GA to cost-effectively design of steel moment frames against the possible

progressive collapse modes, which is caused by a sudden removal of critical columns. The design

satisfies both AISC seismic provisions and UFC progressive collapse requirements. It is not a goal of

this study to obtain global optimal-weight design. This study aims to show the capability of

optimization in obtaining cost-effective designs against the possible progressive collapse modes,

especially within few GA generations.

The tested benchmark structural problem is a 2D nine-story three-bay immediate moment steel frame

with a fixed base. It is a discrete problem, where the design variables are selected from a list of

standard cross sections. The structural analysis is performed using the alternate path method

provided in the 2009 edition of the United States Department of Defense United Facilities Criteria

(UFC 4-023-03), considering each of the three analysis options: linear static, nonlinear static, and

nonlinear dynamic. For the linear static procedure, an in-house linear elastic program is used. For the

nonlinear static and nonlinear dynamic procedures, the DRAIN-2DX program is used to create a planar

analytical structural model that accounts for both material and geometrical nonlinearities.

The results came that the steel weight provided by optimizing the frame considering progressive

collapse modes is 476 kN in case of non-linear dynamic analysis, 498 kN in case of non-linear static

analysis and 611 kN in case of linear static analysis. While in case of not considering the progressive

collapse is 440 kN, which is less but as mentioned it was not a goal of this study to obtain global

optimal-weight design but to show the capability of optimization in obtaining cost-effective designs

against the possible progressive collapse modes.

14

5) Two-phase genetic algorithm for size optimization of free-form steel space-frame roof structures [9]

In this investigation work, an actual design of two free-form steel space-frame roof structures that is

performed in a design office by one of the authors (over a period of days), is used as an initial design

in a size optimization using the investigated the two-phase GA. In phase one, an initial population of

solutions is generated around that initial design for each design variable (depth, width and thickness

of rectangular hollow sections), using a normal probability distribution. Then the GA’s operators are

applied producing a near-global but slightly infeasible optimal solution. Then after in phase two, that

found solution by phase one is considered as an initial design for phase two, but after increasing the

thickness dimension of the overstressed members by one increment at a time until all constraints are

met and the solution is a feasible one. Afterwards, similar to phase one, an initial population is created

around that initial design of phase two using a normal probability distribution, but with a smaller

range of design variables. That created initial population in phase two is used as the initial population

in phase one, repeatedly till one of the stopping criterions is met.

The investigated algorithm is developed through this article in seek of better convergence, less

computational time and practical optimum weight (size optimization).

The tested benchmark structures are two free-form steel space-frame roof structures (Two of the

thirteen train stations making up the Ottawa Light Rail Transit (OLRT) system in Ottawa, Canada, in

2018.). They are discrete problems, as the sections are selected from a list that holds commercially

available rectangular hollow sections. For the structural analysis, SAP2000 is employed, considering

snow, dead, wind, and earthquake loads assuming linearly elastic behavior.

The investigated two-phase GA provided solutions less than the actual design of the author’s design

office, by 12% and 7% for station 1 and station 2, respectively.

15

6) Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof [10]

This article is an extension of article 5 [9], where a topology optimization features are equipped to the

two-phase GA that performs size optimization for two free-form steel space-frame roof structures.

Topology optimization is performed in phase one through randomly adding cross member in some of

the grid’s diamond panels, splitting the diamond into two triangles in shape. This is mainly to add

resistance to the members against the in-plane buckling, and accordingly increasing the section

capacity.

The results shown that for station 1, the optimum weight is 220 kips,

while the design office weight is 214 kips. And for station 2, the

optimum weight is 252 kips, while the design office weight is 275 kips.

Which means that the design office weight is lighter that of the

investigated algorithm for station 1, while the opposite happens for

station 2. Which leads to a conclusion that: in less complexity of such

roof structures (like station 1), the diamond pattern is recommended

than using cross members.

7) Shape optimization of free-form steel space-frame roof structures with complex geometries using

evolutionary computing [11]

This article is an extension of articles 5 and 6 [9] [10], where extra features are equipped to perform

shape optimization as well to the already existing features of the size and topology optimization. So,

presented in this article a new methodology which handles all of sizing, topology, and shape

optimization of free-form steel space-frame roof structures with complex geometries using the two-

phase GA. Both topology and shape optimization are performed during phase one, in phase two the

unfeasible solution of phase one is just moved towards the feasible search space.

The shape optimization is achieved through randomly changing only the vertical coordinates of the

roof joints.

As deduced from article 5) that no topology optimization is recommended for such roof structures

with simple geometrics, so station 1 in this article has no cross members added, only size and shape

optimization are applied. While by performing the shape optimization, it comes out with better

solution for both stations.

The final optimal solutions by the two-phase GA optimization are less than the design office solution

by 25% for both stations.

16

8) Dynamic Optimization of Structures Subjected to Earthquake [12]

Employing Genetic Algorithm (GA) and Neural Networks (NN), this article is proposed to reduce the

computational time of structural weight optimization of a space truss structure subjected to the El

Centro (S-E 1940) earthquake loads, that occurred in California. This investigated algorithm seeks

reducing the computational time of the optimization process through using:

• Self-Organizing Neural System (SONS), in the approximate predictions of the time history

responses. Which is an improved version by this work’s authors of the Intelligent Neural System

INS [13], through substituting the original classification neural networks of the INS by a self-

organizing map (SOM). (SOM is developed by Kohonen [14]). This improvement resulted in a new

neural system that consists of two main components: a smart classification component (SOM) that

classifies the input space data (natural frequencies) into subspaces, as each subspace have similar

natural frequencies. And a prediction component which is a set of some parallel RBF networks,

each of them is trained to cover one of the classified subspaces to accordingly predict its

corresponding time history responses in terms of node displacements and element stresses, which

is the target space of the SONS, and the optimization constraints as well.

• The GA in the form of the Virtual Sub-Populations (VSP) method is employed to find an optimal

weight. Which is comparatively less consumer of both computational efforts and time than the

standard GA, due to the less number of the implemented mathematical models. As in the VSP,

instead of implementing the mathematical models of the GA’s natural selection operators on one

relatively big population in one shot, like in the standard GA, these mathematical models are

implemented on a randomly selected initial small population, which is iteratively upgraded to

better consecutive populations till reaching an optimal solution.

The tested benchmark is a 72-bar space truss structure, subjected

to the El Centro (S-E 1940) earthquake. It is a discrete variables

problem (specific cross sections). ANSYS is employed to provide the

training data after performing the time history analyses. While

MATLAB is employed to design the neural networks. As the

structure is subjected to dynamic loads, then the stress and

displacement constraints are functions of time. So that, the

constrains are transformed from time-dependent to time-

independent through the conventional method of dynamic

constraints [15]. The structural analysis is performed three times

with three different methods: exact analysis (EA) -FE analysis-,

approximate analysis by a single RBF neural network and

approximate analysis by SONS neural network.

The optimum design weight obtained using SONS is better than that obtained using RBF network

(without SOM). However, SONS’s solution not better than the exact analysis solution. But as the

objective of this article is to reduce the computational time, so that is fulfilled already as the

computational time consumed by SONS and EA are 7 and 2538 min, respectively.

17

9) Sizing and topology optimization of truss structures using genetic programming [16]

This paper presents a structural optimization genetic programming (SOGP) approach for simultaneous

sizing and topology optimization of truss structures. Genetic Programming is a prominent stochastic

evolutionary algorithm.

In contrast with the GA that utilizes fixed-length representation of

the population, the GP adopts variable-length computer programs

in the form of binary trees. Which empowers GP to identify

redundant truss members in complex problems. Each GP individual

represents a truss. GP is more efficient in exploring the search

space than other EAs. As well to simultaneously synthesizing its

structure and tuning its parameters, which makes it capable of

simultaneously performing size and topology optimization.

The three tested benchmark structural problems are: 10-element

6-joint truss, 17-element 9-joint truss and 39-element 12-joint

truss. They have a continuous domain for the design variables. The

penalty function is employed for the constraint handling.

The results shown that the investigated approach SOGP shown higher capability in optimizing the

three benchmarks structures, comparatively to eight famous optimization algorithms in the literature:

Conventional methods [17,18,19], Genetic algorithm (GA) [20], Harmony Search algorithm (HS) [21],

Heuristic Particle Swarm Optimization (HPSO) [22], Ant Algorithm [23], Adaptive Multi-Population

Differential Evolution (AMPDE) [24], Grammatical Evolution (GE) and Dual-Optimization in

Grammatical Evolution (DO-GE) [25], Hybrid Particle Swarm and Swallow Optimization algorithm

(HPSSO) [26] and Water Evaporation Optimization (WEO) [27].

10) Guided genetic algorithm for dome optimization against instability with discrete variables [28]

As the “stability” is a decisive factor in the design of domes, this article is presented in order to

enhance the stability and accordingly to improve the buckling capacity of space domes. Through a

guided genetic algorithm GGA. This article considers the joints as rigid.

As an index to represent the stability of a dome from the perspective of joint well-formedness, the

relative gradient of joint well-formedness (gra_r) is defined: the gra_r is a simple scalar that indicates

the tendency to lose stability quantitatively rather than the ability to keep stable (gra_r is identified

from the structural response). The lowest value of gra_r (gra_rmin) is considered as an indication of the

buckling capacity (Pcr). The higher the value of gra_rmin, the greater the Pcr that the dome provides.

Accordingly, the optimization objective is set as the maximization of (gra_rmin), in order to get an

optimum (maximum) buckling capacity of the domes.

The GGA works on guided mutation rather than stochastic mutation of the standard genetic

algorithm, to realize oriented evolution for rapid search, as follow:

18

• In the random mutation, the members to be altered are randomly selects. While in the guided

mutation, only the critical members are altered.

• In the random mutation, the sections may be strengthened or weakened. While in the guided

mutation, the risky members are strengthened and the stiffness-redundant members are

weakened.

• In the random mutation, section’s size may be changed greatly. While in the guided mutation, a

critical section’s size is just slightly changed. Thus, the guided mutation guarantees the continuity

in terms of both chromosome and phenotype, which leads to a robust optimization algorithm.

Two benchmark structures are optimized in order to investigate the capability of the GGA, which are

two space domes: dome-1 (22m span) and dome-2 (50m span). The two size optimization problems

are discrete variables problems (specific cross sections).

The results shown that the GGA optimum buckling capacity is 94.36 and 32.55 kN/m2, while by the

standard GA is 93.84 and 28.44 kN/ m2 for dome-1 and dome-2, respectively. In addition to that the

solutions by the GGA are obtained in less computational time and number of generations.

11) Design optimization of domes against instability considering joint stiffness [29]

This article is an extension of articles 10 [28], where a single-layer space dome is optimized to improve

the buckling capacity of the dome by a guided Genetic Algorithms (GGA), while joint flexibility is

further considered in this article in the optimization process. Thus, in this paper the instability

mechanism could be caused by the failure of members or joints as well.

The relative gradient of the well-formedness of flexible joints, denoted as gra_r, is defined as an index

that represents the stability of the dome from the perspective of joint well-formedness that is

achieved from both members and joints stability, as joints are not considered rigid as in article 10 [28].

The objective function is still to maximize the minimum gra_r, in order to get an optimum (maximum)

buckling capacity of the dome. The benchmark structures are the same two space dome as in articles

10 [28]. They are size optimization discrete problems (section variables: specific cross sections, joint

variables: diameter and stiffness of the joints).

The results shown that the buckling capacity obtained by the GGA while considering the joints as

flexible is 92.55 and 32.11 kN/m2, while being 94.22 and 32.55 kN/m2 when the joints are considered

rigid, for dome-1 and dome-2, respectively.

19

12) Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints

[30]

This study aims to present a practical method for optimization of symmetric cold-formed steel (CFS)

beam-column members using Genetic Algorithm (GA). A framework that aims to maximize the

ultimate capacity of the CFS beam-columns under the combined effects of axial and bending stresses.

The used CFS beam-column members are: short, intermediate and long in lengths (1000, 2000, and

3000 mm). Which are subjected to axial compressive loads with eccentricities that vary from e = 0, 10,

20 and 30 mm, in order to create different levels of bending moment about the X-axis. The cross-

sectional shapes were based on using variations number of rollers (4, 6, 8, 10 or 12) and lips (1, 2 or 3).

A roller is a joint between two segments. One lip is considered for the 4 rollers sections, up to two lips

for the 6 and 8 rollers sections, up to three lips for the 10 and 12 rollers sections. This forms eleven

cross-sectional shapes, which can be identified by a two-digit numbers standing for the number of

rollers and the lip strips, e.g. 4-1 shape: 4 rollers and one lip.

132 different cases of beam-column member are shape-optimized (different in shape (11 shapes),

length (1000, 2000 and 3000 mm) and load eccentricities (0, 10, 20 and 30mm)). The design variables

domain is continuous, for the variables: the angles between the segments and the lengths of the

segments.

Based on the results, sections with shape 10-2, 12-3 and 10-3 (as shown in [30]) are the optimum

design solutions for the 1000, 2000 and 3000mm beam-column members, respectively, under the four

eccentricities. The results shown also that as the load eccentricity increases, the shape of the

optimized beam-column members changes from lumped to more spread shapes.

13) Coupled element and structural level optimisation framework for cold-formed steel frames [31]

In this article, a coupled framework is presented for both size optimization and structural-

performance optimization of CFS portal frames.

A Real-Coded Genetic Algorithm (RC-GA) was programmed to solve the objective functions. The main

advantage of RC-GA compared to conventional binary GA methods is that the genetic operators are

directly applied to the design variables without coding and decoding.

At first, a size optimization is performed for the standard CFS lipped-channel beam sections with

respect to their flexural capacity. Where the design variables domain is continuous for each of the

height, width and lip length. Then, structural-performance optimization is performed to find the best

configuration of a pitched-frame with knee braces, in terms of the weight per unit area. This

structural-performance optimization is performed twice, once using the standard CFS lipped-channel

beam sections, and once else using the size-optimized sections. Where the design variables domains

are discrete and continuous among the variables: knee depth, knee angel, frame spacing (2 to 20 m)

and frame pitch (6° to 30°). A MATLAB code was developed to provide a link between ANSYS and the

RC-GA optimization code.

For the size optimization, a simply-supported beam subjected to three different uniform distributed

load (UDL) cases: 4, 6 and 8 kN/m, and in three different spans: 4, 6 and 8 m, and for the structural-

20

performance optimization, a pitched-frame with 13.6m span and 5.4m eave height, are considered as

the benchmark problems in investigating the proposed algorithm.

The results shown that the optimum weight per unit area of the frame after implementing the two

optimization kinds is 10.19 kg/m2, while being 11.85 kg/m2 when only size optimization is considered,

and 12.75 kg/m2 when neither considering size nor structural-performance optimization (using

standard CFS sections and reference frame geometry and knee brace configuration).

14) Multi-Objective Optimization of Spatially Truss Structures Based on Node Movement [32]

This article introduces and improved Multi-objective Evolutionary Algorithm (MOEA) method in

topology optimization of spatially discrete structures. The innovation of this study is that it uses the

coordinate of the nodes as the optimization variable. Considering the weight of the structure in

addition to the displacement of the nodes as the objective functions, producing not a single solution,

but a pareto frontier [33].

During the very few steps of the optimization, relatively few Pareto front points are existing, and often

obvious inflection points. As the number of the iterations increase, the points on the pareto frontier

line become evenly more distributed, and then inflection points become more blurred. As the process

further continue, the pareto frontier does not stop heading forward until a convergence criterion is

met.

Two benchmark structures are used in order to investigate the capability of the introduced method,

which are: space truss and space tower.

The proposed algorithm in this article is tested and the results shown the MOEA’s relatively fast rate

of convergence and good diversity.

21

15) Optimizing the steel girders in a high strength steel composite bridge [34]

Using the Genetic Algorithm (GA), this study aimed at identifying the potential benefits of hybridizing

a steel girder with different steel grades within its two flanges and web. These benefits considered as

the weight, the material cost and the environmental impact (CO2 emission). Eighteen different

combinations of different steel grades considered to perform size optimization of the girder. The size

optimization was performed on a continuous domain of the variables: thickness, width and height of

the I-section girder.

10 ⩽ tuf ⩽ 60, 10 ⩽ tlf ⩽ 60, 10 ⩽ tw ⩽ 40, 200 ⩽ buf ⩽ 100, 200 ⩽ blf ⩽ 1000 and 1000 ⩽ hw ⩽ 2800

The considered benchmark structural problem in this study is an I-section steel bridge’s girder with

32.1 m length. The results are analyzed as normalized values against the homogeneous S355 solution.

The optimum solution with respect to the weight and CO2 is achieved by the solution of a

homogeneous combination of S690 grade for the web and both flanges. And the optimum solution

with respect to the cost is achieved by the solution of a hybrid combination of S460/S460/S690

grades, for the web, upper flange and lower flange, respectively. By comparing these solutions with

the solution of the conventional homogeneous combination of S355 grade, this proposed method

offers 33% less in weight, 28.3% less in CO2 and 16.4% less in cost. As a result’s notice, the highest

steel grade in such cases should be placed in the lower flange. Furthermore, the steel grade of the

web and upper flange seems to be of equal importance.

22

B. Swarm Intelligence Metaheuristics

1) Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method [35]

Employing each of swarm-based search technique (binary particle swarm optimization BPSO) and

Neural System (RBF NN), this article is proposed to reduce the computational time of structural weight

optimization of space truss and steel shear frame. This investigated algorithm seeks reducing the

computational time of the optimization process through using:

• Radial Basis Function neural network (RBF) in the approximate predictions of the time history

responses in terms of inter-story drifts as the target space of the RBF, which is also the

optimization constraints. While the input space of the RBF-NN is the design variables (cross-

sectional properties of the columns).

• Binary Particle Swarm Optimization (BPSO) for finding an optimal weight.

The tested benchmarks are 72-bar space truss structure subjected to the Californian El Centro (S-E

1940) earthquake loads and a 5-story steel shear frame structure subjected to the Chile (N10E-1985)

earthquake loads. Both are discrete variables problems (specific cross sections). ANSYS is employed to

provide the training data after performing the time history analyses. While MATLAB is employed to

design the neural networks. As the structure is subjected to dynamic loads, then the stress and

displacement constraints are functions of time. So that, the constrains are transformed from time-

dependent to time-independent through the conventional method of dynamic constraints [15]. The

structural analysis is performed two times with two different methods: exact analysis (EA) -FE

Analysis-,

approximate analysis by the RBF neural network.

The optimum design weight obtained using RBF-BPSO is not better than that obtained by the exact

analysis. But as the objective of this article is to reduce the computational time, so that is met already

as the consumed computational time by RBF and EA in the optimization process of the 72-bar space

truss are 6.4 and 2538 min, respectively. While for the 5-story steel shear frame, the consumed

computational time by RBF and EA are 5.3 and 1342 min, respectively.

23

2) Solving Truss Topological Optimization with Discrete Design Variables via Swarm Intelligence [36]

The main purpose of this article is to display the potential of a modified Lbest-based PSO (MLPSO),

while being employed to perform topology optimization, in cooperation with a geometrical

consistency check that is tightly connected to the ground structure approach of topology optimization.

By this work, the proposed method is investigated in finding the optimum layout of a truss structure

with minimization of compliance (maximization of stiffness).

The proposed method employs the ground structure approach for constituting the design domain,

then when the optimization algorithm (MLPSO) is applied, which searches at random for possible

solutions within that design space, and before the structural analysis operator runs, a geometrical

consistency check is applied in order to avoid computing any proposed non-realistic solutions

(solutions with a mechanism or with redundant members), thereby reducing the computational effort

and time.

The L-best model of PSO is a ring-topology model of PSO,

where each individual is not influenced by all the neighbor

individuals but only the best-performance ones, in contrast

with the other G-best model of PSO.

Three cases of a benchmark truss structure are considered:

single-load wheel, single-load cantilever and single-load

Michell beam. All are discrete-design-variable problems.

The benchmark structures are optimized two times with two

different ring topologies of the L-best model (k=2 and k=3),

with two different domains for the design variable (member

volume) as well: [0,1] or [0,5]. So, four times in total for each

structure.

The displacement is considered during the optimization as a state variable. The Quadratic Penalty

Function is employed for the constraints handling. And for the discrete variable handling, the

Rounding-Off strategy is employed.

The obtained results are not better than but same as the best-found solution in the literature of the

same structures, in (Achtziger and Stolpe, 2007) [37]. For the above-mentioned four times

optimization of each structure.

24

3) An integrated particle swarm optimizer for optimization of truss structures with discrete variables [38]

This study presents an integrated particle swarm optimization (iPSO) algorithm, through integrating

the weighted particle concept to enhance the search capability overriding the local optimal traps

within the search space. As in the standard PSO algorithm, when a particle stands very close to its own

previous best position and/or to the global best particle, the role of one of this two guidance particles

can be highly reduced or even be vanished. So that, the iPSO uses the weighted particle which is

indeed a particle at the gravity center of the Pbest’s swarm, in order to improve the flight path of

these particles that are flying excessively close to either their own prior best point, that is stored in

Pbest, or close to the global best point, that is stored in Gbest. The iPSO also integrates the Fly-Back

technique to handle the optimization constraints. The constrained handling approach that is followed

in this article in an improved version of the Fly-Back technique (He et al. 2004), which considers the

type of the violated constraints. In contrast with the well-known Penalty Function approach, this Fly-

Back technique does not have any tunning parameters. This Fly-Back technique guarantees the

feasibility of the final solution as well, as it keeps all the particle in the feasible region during the

optimization.

Four benchmarks truss structures are optimized in order to investigate the potential of the proposed

iPSO in the size optimization of truss structures: 10-bar planar truss, 25-bar space truss, 72-bar space

truss and 244-bar space-truss tower. All of them are discrete problems (standard cross sections). The

results are compared with corresponding optimum solutions by other different algorithms in the

literature, and the obtained weights by the proposed iPSO after size optimization show the best

capability among the solutions of the other algorithms, for the four benchmark structures except only

for the 25-bar truss structure where the iPSO’s solution came as secondly-rated after an obtained

solution by the well-known Genetic Algorithm.

4) Weight minimization of truss structures with sizing and layout variables using integrated particle

swarm optimizer [39]

This article is an extension the done work in article 3 [38], where additional features are added to

implement topology optimization as well to the size optimization. Which required also to add a

stability check to the iPSO algorithm, as the topology optimization process sometimes leads to

unstable systems due to the nature of randomly picking possible solutions. So that, an evaluation

technique of the condition number of the stiffness matrix is equipped into the algorithm. Such that, if

the condition number of the stiffness matrix is greater than a predefined large number, system is

determined as unstable and accordingly ignored, saving computer’s effort and time.

Five benchmarks truss structures are optimized in order to investigate the potential of the proposed

iPSO in the size and topology optimization of truss structures: 15-bar planar truss, 18-bar planar truss,

25-bar space truss, 39-bar space truss and 47-bar space-truss tower. All of them are discrete problems

(standard cross sections). The results are compared with corresponding optimum solutions by other

different algorithms in the literature, and the obtained weights by the proposed iPSO algorithm after

size and topology optimization came as secondly-rated solutions after the obtained solutions by the

sequential cellular particle swarm optimization (SCPSO) algorithm (Gholizadeh 2013), for the first four

benchmark structures. While the best weight for the fifth benchmark structure is obtained by the

proposed iPSO algorithm.

25

5) Comparison of Two Metaheuristic Algorithms on Sizing and Topology Optimization of Trusses and

Mathematical Functions [40]

The current study intends to compare the performances of two different metaheuristic algorithms in

size-topology optimization, the Integrated Particle Swarm Optimizer (iPSO) (article 4 [39]) and the

Teaching-Learning Based Optimizer (TLBO). It worthy to mention that in the TLBO, the objective

function evaluations (OFEs) is the most time-consuming process. As the TLBO is a two-phase

algorithm, so the objective function is evaluated twice in each iteration, once in the teaching phase

and another in the learning phase.

Two truss structures are considered to demonstrate the feasibility and validity of the iPSO and the

TLBO in handling the size and topology optimization of trusses: 11-bar and 39-bar truss structures. The

two problems have continuous domain for the design variables (cross sections and nodes’

coordinates). The iPSO provided a slightly better solutions than the TLBO, as the obtained weight of

the 11-bar truss by the iPSO is 21709 N, while being 21784 N by the TLBO. And for the 39-bar truss,

867 N by the iPSO, and 877 by the TLBO. Furthermore, the superiority of the iPSO (single-phase: one

OFE/iteration) over the TLBO (double-phase: two OFEs/iteration) is obviously determined regards the

consumption of the computer burdens, in terms of the consumed time and the number of the

objective function evaluations. As shown in the following table.

6) Interactive fuzzy search algorithm: A new self-adaptive hybrid optimization algorithm [41]

The proposed method combines the affirmative features of the Integrated Particle Swarm Optimizer

(iPSO) (article 4 [39]) and the Teaching and Learning Based Optimizer (TLBO) with a nine-rule fuzzy

decision mechanism. Named as Interactive Fuzzy Search Algorithm (IFSA). The proposed algorithm

utilizes two main navigation models to search the domain: tracking, which is a feature of iPSO, and

interacting, which is a feature of TLBO. The balance between these two navigation models is achieved

through a factor called “tendency factor”, as a tuning parameter. IFSA also utilizes the inertia weight

also as a tuning parameter, which is a feature of iPSO to adjust the exploration level of the tracking

model. Both tendency factor and inertia weight are adaptively determined thanks to an employed

fuzzy module. In addition to that, the IFSA provides a self-adaptive synchronization between local and

global search strategies by achieving a balance on the rate of exploration and exploitation behaviors.

Both of these tuning parameters should be adjusted via implementing a series of sensitivity analyses if

there is no such fuzzy module. So, to avoid such time-consuming sensitivity analyses, the fuzzy module

is equipped to the ISA, introducing through this paper the proposed IFSA. Such fuzzy module does

permanently monitor the search process and automatically designate the proper values for the tuning

parameters through employing linguistic terms.

11-bar Truss Time (s) OFEs Weight (N)

iPSO 210.22 780 21708.91

TLBO 552.91 1100 21784.36

39-bar Truss Time (s) OFEs Weight (N)

iPSO 640.55 16000 867.35

TLBO 3025.59 60000 1089.05

26

Two size optimization problems are considered to assess the search capability of the proposed IFSA:

72-bar truss structure and 160-bar pyramid space truss, both are discrete problems (standard cross

sections).

The results shown that the proposed IFSA provided fair optimum weights comparatively to solutions

of other algorithms found in the literature. But in so much less number of objective function

evaluations (OFEs).

7) Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm [42]

This article displays an assessment of the search performance of the interactive fuzzy search

algorithm IFSA (article 6 [41]) in the size optimization of large-scale structures, comparatively to

different techniques (Stochastic: PSO, TLBO, iPSO, ISA) and (deterministic gradient-based:

simultaneous analysis and design SAND).

Three benchmark structures are considered in the investigation of the IFSA’s capability: 582-

bar, 1262-bar and 4666-bar truss towers. The first-mentioned one is a discrete problem,

where the design variables (cross sections area) are selected randomly from the standard list

of AISC code. While the second and third problems are continuous, as the cross sections are

selected randomly from the range [1,100] and [1,300] in2, respectively.

Among the results of the different deterministic and stochastic techniques, IFSA provided the

best solutions for all the benchmark structures, in terms of the weight and the computational

cost (number of objective function evaluations).

27

8) Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy

search algorithm [43]

This investigation article assesses the potential of the interactive fuzzy search algorithm IFSA (article 6

[41]), throughout a size and layout optimization of trusses while considering the natural frequency as

a problem constraint, which are very sensitive to any configuration changes in the system. The Penalty

Function method is used in this work for the constraint handling. Five benchmark structural problems

are optimized in order to investigate the IFSA’s performance: 37-bar truss bridge, 52-bar dome, 72-bar

space truss, 120-bar dome and 200-bar truss structure. For the first-two-mentioned problems, size

and topology optimization is considered. While only size optimization is performed for the other three

problems.

The results shown that the IFSA provided fair optimum weights comparatively to solutions of other

algorithms found in the literature. But in so-much less number of objective function evaluations

(OFEs), thanks to the fuzzy logic which leads the algorithm to ignore the useless iterations that has no

progress throughout the optimization process.

9) Optimum performance-based design of eccentrically braced frames [44]

This article introduces a weight minimization of an eccentrically braced frame (EBF) while following

the performance-based design (PBD) method. As an objective function, both structural weight and

structural damage are considered to be minimized. Four metaheuristic optimization algorithms are

employed in this investigation work: accelerated water evaporation optimization (AWEO) [45], particle

swarm optimization PSO [46], colliding bodies optimization (CBO) [47] and enhanced colliding bodies

optimization ECBO [48]. All are population-based algorithms that are swarm-intelligence based. Two

benchmark structures are optimized in order to assess the above-mentioned four algorithms in the

EBF weight optimization using the PBD method, these two structures are 2D steel EBFs: four-span

three-story frame and five-span six-story frame. Both problems have a discrete domain for the design

variables. The Penalty Function method is used for the constraint handling. The structural analysis is

performed using the nonlinear static pushover analysis.

The results shown that among the four mentioned metaheuristics, the ECBO offered the best optimal,

followed by the CBO’s solutions, for both benchmark structures.

28

10) Optimum design of buckling-restrained braced frames [49]

This article is presented in order to introduce an approach of minimizing the weight and maximizing

the dissipated energy (that results in greater ductility) of the buckling-restrained braced frames (BRBF)

under seismic excitation, through performing each of SSA and ECBO, separately. The optimization is

implemented using two different metaheuristic algorithms: Enhanced Colliding Body Optimization

(ECBO) [48] and Salp Swarm Algorithm (SSA) [50]. Both algorithms are swarm-based. Two benchmark

structures are optimized to investigate the proposed method: 3-stories and 6-stories BRBFs. Both have

discrete and continuous spaces for the design variables. The Penalty Function method is used for the

constraint handling.

The results shown that the ECBO outperformed the SSA for the optimization of the BRBF structures.

Also, it is observed that the Buckling-Restrained Braces (BRBs) effectively reduce the weight of the

structure by minimizing the base shear.

11) A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete

Variables [51]

In this article a new method is introduced where the GA algorithm is merged with PSO in one

algorithm called Hybrid Particle Swarm Optimization and Genetic Algorithm (PSOGA), not only to

enhance the global exploration by overriding the local optimal traps which is a shortcoming of the

standard PSO, but also to help in achieving better optimal design. This proposed algorithm is

investigated on a discrete size optimization problems of truss structures. Using some benchmarks

truss problems found in the literature: 25-bar spatial truss, 10-bar truss, 52-bar truss, 72-bar spatial

truss. The result from the proposed method PSOGA are compared to those of several popular

metaheuristic algorithms in the literature. The results came to outperform the proposed algorithm in

this article (PSOGA) on the rest algorithms in the comparison, where the obtained weight by the

PSOGA is the minimum among the weights by the rest algorithms.

29

12) Multi-objective optimization of inter-story isolated buildings using metaheuristic and derivative-free

algorithms [52]

This article assesses the performance of six multi-objective optimization (MOO) algorithms in selecting

the optimum configuration of which specific stories should host the seismic isolation devices, and in

finding the effective stiffness and damping properties of the isolation layers, in the Inter-Story

Isolation (ISI) technique. The considered objective functions are the maximum standard deviations of:

the inter-story drift ratio and the isolation drift. The above-mentioned six MOO algorithms are: four

metaheuristic algorithms (Multi-objective genetic algorithm (MOGA), non-dominated sorting genetic

Algorithm-III (NSGA-III), multi-objective particle swarm optimization (MOPSO), multi-objective

dragonfly algorithm (MODA)), one derivative-free deterministic algorithm (bi-objective Mesh Adaptive

Direct Search (BiMADS)) and a random search algorithm. In this investigation work, a six-story building

is considered as a benchmark structure. Where a single, 2 or 3 isolation layers are considered as

different configurations of the ISI. It is observed that by increasing the number of the isolation layers,

the results from the different algorithms become less consistent. So that, the 3 layers configuration is

followed in the comparison between the algorithms, where the isolation layers applied at the base,

the 2nd story and the 4th story of the building. The comparison result referred to the superiority of

the deterministic derivative-free BiMADS in such kind of MOO over the rest algorithms, followed by

MODA and MOPSO.

30

C. Other Nature-Inspired Metaheuristics

1) Interactive autodidactic school: A new metaheuristic optimization algorithm for solving mathematical

and structural design optimization problems [53]

This article introduces to the literature a new algorithm called Interactive autodidactic School (IAS),

which based on similar concepts of the well-known Teaching-Learning Based Optimization (TLBO) [54]

that holds two main stages of improving each student’s capability: once through direct guide by the

best student in the class (the candidate with the best fitness), and another through interacting with

the other students, but with an additional third stage that helps in overriding the optimal traps, which

is called “the challenge of the new student” (CNS). Instead of the “teacher phase” and “learner phase”

in the TLBO, these two stages are called in this proposed algorithm “individual training session” (ITS)

and “collective training session” (CTS), respectively. Hence, the proposed algorithm process follows

three consecutive stages: ITS, CTS, then CNS. First of all, the best-fitness candidate is determined and

positioned as the leading student. Then the ITS stage starts through randomly splits the population

into sub-groups, each group holds two candidates. Each candidate goes into a learning-directed

interaction session with the leading student, then through the CTS stage these two members meet

and review the information they had received in their peer-to-peer sessions with the leading student

during the ITS stage. Then they gather with the leading student in order to discuss any

misunderstandings. Through such behaviors, it is obvious that not only the knowledge status of each

candidate determines his capability, but also the candidate’s social interaction does so, e.g.

communication skills, team work skills, and cooperation. Which definitely affects the learning process

efficiency of the group. Eventually, the CNS stages comes to play in order to emphasize the

exploration capability of the algorithm. As when the best-found candidate so far (which may be a local

optimal in fact) is highly affecting and pulling the rest candidates, that may lead the entire population

to exploit just the area around this best-found candidate, while missing exploring other promising

spots within the search space. So that, the CNS mechanism is equipped into the IAS algorithm in order

for a new randomly-positioned student to encourage the population to revolt against the temporary

leader from time to time, pulling the population to explore more spots within the search space. As if

that new candidate shows higher capability (fitness function value) than the current-state leader, it

takes over the lead onwards. It worthy here to mention that the IAS outperforms the other well-

known metaheuristic optimization algorithms for being a parameter-free algorithm.

This proposed IAS algorithm is investigated in this article through twenty mathematical and seven

structural benchmark optimization problems. Comparing the results with some of the most-known

metaheuristic optimization algorithms. The comparison is presented with respect to the optimal

solution (e.g., structural weight) and the computational cost (number of the objective function

evaluations). The results of the twenty mathematical benchmarks shown that among seven used

optimizers, the IAS was the only optimizer that succeeded to get the exact optimal for all the twenty

functions.

The seven structural benchmark problems are: 25-bar spatial truss, 72-bar spatial truss, 200-bar

planar truss, stepped cantilever beam, reinforced concrete beam, welded beam and cylindrical

pressure vessel. The first-mentioned three problems are discrete (specific cross section areas) size

31

optimization, the fourth is continuous (cross section height and width design variables) size

optimization, the fifth is discrete (cross section height, steel bars sectional area) and continuous (cross

section width) size optimization, the sixth is continuous (weld’s thickness and height, member width

and height) size optimization, and the seventh problem is continuous (thicknesses of the shell and the

head plate, inner diameter and length of the cylinder) size optimization. The results shown that for the

first-mentioned three truss optimization, the proposed IAS outperformed six metaheuristics: GA, HS,

HPSO, HPASCO, DE and DAJA in the obtained optimal weight, however the IAS was not the best in

terms of the computational cost (number of objective function evaluations). For the stepped

cantilever beam, the IAS got the same optimal weight of further five optimization algorithms: MMA,

GCA(I), GCA(II), CS and SOS. For the reinforced concrete beam, the IAS obtained the best solution

among other six optimization algorithms: SDRC, GHNALM, GHNEP, GA, FLCAHGA, CS. For the welded

beam, the IAS got the same optimal weight of further eight optimization algorithms: GA4, CPSO, CAEP,

HPSO, NMPSO, TLBO, MBA, CSA, however in mush less computational cost (number of objective

function evaluations) than the other eight algorithms. And for the cylindrical pressure vessel, the IAS

obtained the best optimal solution among other ten algorithms: GA3, GA4, CPSO, CAEP, HPSO,

NMPSO, TLBO, MBA, CSA, GQPSO and CDE, in the least computation cost (number of objective

function evaluations) as well.

32

Ch 3 State-of-the-Art MOAs in Structural Optimization

In this section, some of the most promising and trending MOAs in structural optimization are introduced in

short but descriptive paragraphs, each is presented in the form of: inspiration, mathematical modelling and

how-it-works. These algorithms are classified into three categories: Evolutionary Computation, Swarm

Intelligence and other Nature-Inspired algorithms.

A. Evolutionary Computation Metaheuristics

1) Differential Evolution [55]

In 1995, Storn and Price [13] proposed a new floating-point evolutionary algorithm for global

optimization and named it differential evolution (DE), by implementing a special kind operator which

sought to create new offsprings from parent chromosomes. DE generates new vectors by adding the

weighted difference vector between two population members to a third member. If the resulting

vector corresponds to a better objective function value than a population member, the newly

generated vector replaces this member. The comparison is performed between the newly generated

vector and all the members of the population excluding the three ones used for its generation.

Furthermore, the best parameter vector is evaluated in every generation in order to keep track of the

progress achieved during the optimization process. Several variants of DE have been proposed so far,

but the two most widely used are the following.

According to the variant implemented, a donor vector 𝑣𝑖,𝑔+1 is generated first according to:

𝑣𝑖,𝑔+1 = 𝑠𝑟1,𝑔 + 𝐹 ⋅ (𝑠𝑟2,𝑔 − 𝑠𝑟3,𝑔)

before the computation of the ith parameter vector 𝑠𝑖,𝑔+1. This step is equivalent to the mutation

operator step of genetic algorithms or evolution strategies. Integers r1, r2 and r3 are chosen randomly

from the interval [1,NP] while i r1, r2 and r3. F is a real constant value, called mutation factor, which

controls the amplification of the differential variation (𝑠𝑟2,𝑔 − 𝑠𝑟3,𝑔) and is defined in the range [0,2]. In

the next step the crossover operator is applied by generating the trial vector 𝑢𝑖,𝑔+1=

[𝑢1,𝑖,𝑔+1, 𝑢2,𝑖,𝑔+1,…, 𝑢𝐷,𝑖,𝑔+1]T which is defined from the elements of the vector 𝑠𝑖,𝑔 and the elements of

the donor vector 𝑣𝑖,𝑔+1whose elements enter the trial vector with probability CR as follows:

𝑢𝑗,𝑖,𝑔+1 = {
𝑣𝑗,𝑖,𝑔+1 𝑖𝑓 rand𝑗,𝑖 ≤ 𝐶𝑅 or 𝑗 = 𝐼𝑟𝑎𝑛𝑑

𝑠𝑗,𝑖,𝑔 𝑖𝑓 rand𝑗,𝑖 > 𝐶𝑅 or 𝑗 ≠ 𝐼𝑟𝑎𝑛𝑑

𝑖 = 1,2, . . . , 𝑁𝑃 and 𝑗 = 1,2, . . . , 𝑛

where 𝑟𝑎𝑛𝑑𝑗,𝑖 ∼ 𝑈[0,1], 𝐼𝑟𝑎𝑛𝑑 is a random integer from [1,2,...,n] that ensures that 𝑣𝑖,𝑔+1 ≠ 𝑠𝑖,𝑔. The

last step of the generation procedure is the implementation of the selection operator where the vector

𝑠𝑖,𝑔, is compared to the trial vector 𝑢𝑖,𝑔+1:

𝑠𝑖,𝑔+1 = {
𝑢𝑖,𝑔+1 if 𝑓(u𝑖,𝑔+1) ≤ 𝑓(𝑠𝑖,𝑔)

𝑠𝑖,𝑔 otherwise
 𝑖 = 1,2, . . . , 𝑁𝑃

33

2) Multi-Trial vector-based Differential Evolution MTDE [56]

Differential Evolution algorithms’ performance is highly affected by the employed search strategy and

the parameter settings. As per the no-free-lunch theorem, a combination of search strategies can be

an effective way to cover a variety of problems using multiple search strategies instead of only one

search strategy. Hence, this algorithm (MTDE) is proposed, enriched by an efficient combination of

three different search strategies, producing a new approach called Multi-Trial Vector MTV. These

three different search strategies are Trial Vector Procedures (TVP): Representative based (R-TVP)

which maintains the diversity, Local Random based (L-TVP) that ensures a proper balance between

exploration and exploitation, and Global Best History based (G-TVP) that enhances the exploitation

ability of the algorithm. In contrast with the previous DEs works which distribute the main population

into smaller subpopulations with same sizes, the MTV employs a winner-based distribution policy, that

distributes the subpopulation between the TVPs not in equal manner, but the better search strategy

will be, the larger subpopulation it will handle. The MTV approach introduces adaptive movement

steps thanks to using a life-time archive that preserves and shares the information of the restored

promising solutions. This life-time archive also maintains the population diversities in the MTV

approach. In another words, the MTV approach consists of four phases: winner-based distributing,

multi-trial vector producing, evaluating and population updating, and life-time archiving.

34

B. Swarm Intelligence Metaheuristics

1) Grey Wolf Optimizer [57]

GWO is a swarm-based Metaheuristic which is inspired by the grey wolves (Canis lupus). It mimics the

leadership hierarchy and hunting mechanism of grey wolves in nature. To model this social behavior

mathematically, a random population of grey wolves (candidate solutions) is firstly generated, then

over course of iterations, the population candidates are defined within 4 classes: alpha, beta, delta

and omega -the 4 types of grey wolves-. The fittest solution is alpha, the second and third best

solutions are beta and delta, respectively. The rest of the candidates are omega. The hunting

(optimization) is guided by alpha, beta, and delta, mega candidates follow them. The three steps of

getting the prey (optimization) are encircling prey, hunting and attacking prey.

To mathematically model these three behaviors, the following equations are employed:

- The distance of the ith wolf (search agent) to the prey:

𝐷 = |𝐶 · 𝑋𝑝(𝑡) − 𝑋(𝑡)|

where t indicates the current iteration, C is a coefficient vector (𝐶 = 2 · 𝑟2). X is the current

position vector of the ith search agent. Xp is the position vector of the prey.

- The next position vector:

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 · 𝐷

where A is a coefficient vector (𝐴 = 2𝑎 · 𝑟1 − 𝑎, 𝑟1 & 𝑟2 are two random vectors in [0,1], 𝑎 is

linearly decreased from 2 to 0 to switch the value of A outside & inside the range of [-1,1]), when

|A| > 1 (exploration), while if |A| < 1 (exploitation). (·) is an element-by-element multiplication.

- Since the alpha, beta, and delta are the agents who lead the search, omega is a follower. This

hunting is mathematically described through the following equations:

𝐷𝛼 = |𝐶1 · 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 · 𝑋𝛽 − 𝑋|, 𝐷𝛿 = |𝐶3 · 𝑋𝛿 − 𝑋|

𝑋1 = 𝑋𝛼 − 𝐴1 · 𝐷𝛼, 𝑋2 = 𝑋𝛽 − 𝐴2 · 𝐷𝛽 , 𝑋3 = 𝑋𝛿 − 𝐴3 · 𝐷𝛿

𝑋(𝑡 + 1) = (𝑋1 + 𝑋2 + 𝑋3)/3

The GWO algorithm starts with a set of random solutions. Then, iteratively, the search agents update

their positions with respect to the prey, the prey may be either a randomly chosen solution or the

best obtained solution so far, in case of exploration or exploitation, respectively. The switch between

the exploration and exploitation components is controlled by linear reduction of the parameter “𝑎”

from 2 to 0. As, when 0 < 𝑎 < 1, the value of |A| < 1 which activates the exploitation mechanism, and

the opposite occurs when 1 < 𝑎 <2. The WOA has only two adaptive parameters: “a” and “C”, “a”

guarantees the exploration-exploitation balance, while “C” emphasizes the random behavior during

the exploration. Although, this GWO is considered as an efficient metaheuristic for the optimization

problems in some fields such as engineering, machine learning, medical, and bioinformatics, it suffers

from insufficient diversity of the population, inefficient -exploration-exploitation balance, and

premature convergence.

35

2) Improved Grey Wolf Optimizer [58]

I-GWO holds an important improvement of the GWO [57], That enhances the exploration-exploitation

balance and also maintains the population diversity. That is done through developing a new search

strategy called “dimension learning-based hunting” (DLH), through which, neighboring information

can be shared between the candidates. DLH search strategy is inspired by the individual hunting

behavior of wolves in nature, and it increases the domain of global search by multi neighbors learning.

Then, in each iteration, the I-GWO selects the candidate either from the GWO or the DLH search

strategies based on the quality of their new positions.

The mathematical description of this selection either from GWO or DLH candidates, is as follow:

𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝑛,𝑑(𝑡) − 𝑋𝑟,𝑑(𝑡))

𝑋𝑖(𝑡 + 1) = 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖−𝐺𝑊𝑂) < 𝑓(𝑋𝑖−𝐷𝐿𝐻), 𝑜𝑟

𝑋𝑖(𝑡 + 1) = 𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖−𝐺𝑊𝑂) > 𝑓(𝑋𝑖−𝐷𝐿𝐻)

The I-GWO is a single-objective algorithm for optimization problems with continuous search space.

3) Whale Optimization Algorithm [59]

WOA is a swarm-based metaheuristic optimization approach. It is inspired by the spiral bubble-net

hunting strategy of the humpback whales. This hunting (optimization) technique consists of three

phases; Search for Prey (exploration phase), Encircling Prey, and the Bubble-Net Attacking method

(exploitation phase). The Bubble-Net attacking is when the whales swim around the prey in two

simultaneous movements: in a shrinking circle as well to in a spiral-shaped path, towards the sea

surface. The combination between these two movements is done with a probability of 50% for each.

The mathematical modelling of these phases is as follow:

- The distance of the ith whale (search agent) to the prey:

𝐷 = |𝐶 · 𝑋∗(𝑡) − 𝑋(𝑡)|

where t indicates the current iteration, C is a coefficient vector (𝐶 = 2 · r, r is a random vector in

[0,1]). X is the current position vector of the ith search agent. 𝑋∗ is the position vector of the prey.

- The next position vector:

[𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 · 𝐷, 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑝 < 0.5], or [𝑋(𝑡 + 1) = 𝐷′ · 𝑒𝑏𝑙 · cos(2𝜋𝑙) + 𝑋(𝑡),

𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑝 ≥ 0.5], for the simultaneous encircling and spiral upward movements, respectively.

where A is a coefficient vector (𝐴 = 2𝑎 · r − 𝑎, 𝑎 is linearly decreased from 2 to 0). (·) is an

element-by-element multiplication. 𝐷′ is the same as 𝐷 (𝐷′ = |𝑋∗(𝑡) − 𝑋(𝑡)|), which is the

distance of the ith whale to the prey, but without considering the random-behavior component “C”

(𝐷′ is used in computing the spiral movement -exploitation-). 𝑏 is a constant for defining the

shape of the logarithmic spiral, 𝑙 is a random number in [−1,1].

The WOA algorithm starts with a set of random solutions. Then, iteratively, the search agents update

their positions with respect to the prey, the prey may be either a randomly chosen solution or the

best obtained solution so far, in case of exploration or exploitation, respectively. The switch between

the exploration and exploitation components is controlled by linear reduction of the parameter “𝑎”

36

from 2 to 0. As, when 0 < 𝑎 < 1, the value of |A| < 1 which activates the exploitation mechanism, and

the opposite occurs when 1 < 𝑎 <2. The WOA has only two adaptive parameters: “a” and “C”, “a”

guarantees the exploration-exploitation balance, while “C” emphasizes the random behavior during

the exploration.

4) Dragonfly Algorithm [60]

This is a swarm-intelligence metaheuristic technique. Which mimics the surviving swarm behavior of

the dragonflies. The algorithm is equipped by five parameters to control the five behaviors of any

swarm movement; separation, alignment, cohesion, attraction towards food, and distraction

outwards enemies. The dragonflies follow this scheme either in the static swarming (hunting), or in

the dynamic swarming (migration). The former swarming is simulated during the exploration phase of

the optimization, in which the dragonflies create sub-swarms and fly back and forth over different

areas. While the dynamic swarming is simulated during the exploitation phase, where the dragonflies

fly in bigger swarms and along one direction.

To mathematically model this scheme, the following equations are used:

- The step vector: 𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴�̇� + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤𝛥𝑋𝑡

where 𝑆𝑖, 𝐴�̇�, 𝐶𝑖, 𝐹𝑖, 𝐸𝑖 are the five parameters of the swarm behavior:

- Separation: 𝑆𝑖 = −∑ 𝑋𝑁
𝑗=1 − 𝑋𝑗 (maintains avoidance of individuals collision in a

neighborhood)

- Alignment: 𝐴𝑖 =
∑ 𝑉𝑗

𝑁

1=𝑗

𝑁
 (indicates the velocity matching between the neighborhood

individuals)

- Cohesion: 𝐶𝑖 =
∑ 𝛸𝑗

𝑁

1=𝑗

𝑁
− 𝑋 (refers to the individuals’ tendency to the neighborhood

center of mass)

- Attraction to food: 𝐹𝑖 = 𝑋+ − 𝑋

- Distraction from enemies: 𝐸𝑖 = 𝑋− + 𝑋

s, a, c, f and e, are weighting factors, each for each corresponding parameter. w is an inertia

weight.

- The position vector: 𝑋𝑡+1 = 𝑋𝑡 + 𝛥𝑋𝑡+1

- When there is no neighbors around, a random walk (Lѐvy flight) equation is followed: 𝑋𝑡+1 =

𝑋𝑡 + Lѐvy(d) ∗ 𝑋𝑡

where Lѐvy(x) = 0.01 *
𝑟1×𝜎

|𝑟2|
1
𝛽

 (r1, r2 are random numbers [0:1], β is a constant, σ is a f(β))

In the DA, to ensure the switch and balance between exploration and exploitation modes, there are

two approaches: Either by tuning the neighborhood’s radius around each artificial dragonfly. As a

reasonably large radius refers to low swarm’s alignment but high swarm’s cohesion (exploitation),

while a small radius refers to high alignment but low cohesion (exploration). Or by tuning the

swarming factors: s, a, c, f and e.

37

5) Grasshopper Optimization Algorithm [61]

This algorithm mathematically modelled and mimicked the swarming behavior of grasshoppers in

nature for solving optimization problems. Proposed to solve single-objective problems with

continuous variables. The grasshoppers have swarming behavior in both nymph and adulthood phases

of their life cycle. The nymph grasshopper’s behavior is slow and small movements (exploitation),

while the adult’s behavior is long and abrupt steps (exploration). The grasshopper movement is based

mainly on the social interaction with its neighbors. Which is described in terms of attraction,

repulsion, or comfort zone state. In order to lead the entire swarm to converge at one point (global

optimal), two mathematical terms are added to let the best-found solution at each iteration affect the

swarm direction, and also to shrink the 3 zones the controls each grasshopper movement; attraction,

repulsion or comfort zone. As without this shrinking term, the grasshopper may be stuck at the

comfort zone so early with no more movements (trapped in local optima).

To model such behavior mathematically, these equations are equipped into the algorithm:

- The position of ith grasshopper: 𝑋𝑖
𝑑 = 𝑐 (∑ 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠

𝑁

𝑗=1
(|𝑥�̇�

𝑑 − 𝑥𝑖
𝑑|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + �̂�𝑑

where c is a shrinking coefficient (c≤1), ubd and lbd are the upper and lower bounds, �̂�𝑑 is the

target (best found solution), and the expression “ 𝑠(|𝑥�̇�
𝑑 − 𝑥𝑖

𝑑|)
𝑥�̇�

𝑑−𝑥𝑖
𝑑

𝑑𝑖𝑗
 ” defines the social

interaction of the grasshopper with the neighbors, where s represents the social force, either

attraction (exploitation) or repulsion (exploration), and calculated as follow: 𝑠(𝑟) = 𝑓ⅇ
−𝑟

𝑙 − ⅇ−𝑟.

where f is the intensity of attraction and l is an attractive length scale. by f and l, the size of the

attraction, repulsion and comfort zones could be set.

- The shrinking coefficient is calculated as follow: 𝑐 = 𝑐𝑀𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥−𝑐𝑀𝑖𝑛

𝐿
, L is the max number of

iterations, l is the number of the current iteration, and cmax & cmin are two bounds lower than 1.

The gradual convergence of grasshoppers towards the target over the course of iteration, is actually

due to decreasing the factor c, and the target effect of pulling the swarm.

The next position of a grasshopper is defined based on the factors; the current position, the position

of the target, and the position of all other grasshoppers. In contrast to the well-known PSO, in which

the swarm particles positions don’t play any role in defining the next movement of a particle. For a

balance between exploration and exploitation, the parameter c is required to be decreased

proportional to the number of the iteration.

38

6) Salp Swarm Algorithm [62]

This simple and easy to implement metaheuristic optimization algorithm mimics the swarming

behavior of the ocean salps travelling in form of a salp chain. This salp chain consists of a leader and

followers. The leader goes towards an artificial source of food, and the followers just enjoy the ride

behind the leader. In the optimization process, a set of salps (solutions) are initialized with random

positions and stored in a two-dimensional matrix, then these solutions are evaluated through a fitness

function, assigning the best-found solution as a target to be chased by the salps afterwards iteratively.

The algorithm is equipped by two movement equations for both leader and followers, separately. The

leader walk is a random movement actually, but towards the source of food (best-found solution so

far), which maintains investigating the most promising regions in the search space during the

optimization process. On the other hand, the followers walk with respect to each other following the

leader in a gradual movement based on Newton’s law of motion. SSA has only one controlling

parameter, which is updated adaptively as the number of the iteration goes higher, in order to

maintain the balance between the exploration and exploitation phases.

7) Particle Swarm Optimization [55]

In particle swarm optimization, multiple candidate solutions coexist and collaborate simultaneously.

Each solution is called “a particle” having a position and a velocity in the multidimensional design

space while a population of particles is called a swarm. A particle “flies” in the problem search space

looking for the optimal position. As “time” passes through its quest, a particle adjusts its velocity and

position according to its own “experience” as well as the experience of other neighboring particles. A

particle's experience is built by tracking and memorizing the best position encountered. A PSO system

combines local search (through self-experience) with global search (through neighboring experience),

attempting to balance exploration and exploitation. Each particle maintains its two basic

characteristics, velocity and position, in the multi-dimensional search space that are updated as

follows:

𝒗𝑗(𝑡 + 1) = 𝑤𝒗𝑗(𝑡) + 𝑐1𝑟1 ∘ (𝑠Pb,j − 𝑠𝑗(𝑡)) + 𝑐2𝑟2 ∘ (𝑠Gb − 𝑠𝑗(𝑡))

𝑠𝑗(𝑡 + 1) = 𝑠𝑗(𝑡) + 𝒗𝑗(𝑡 + 1)

where 𝒗𝑗(𝑡) denotes the velocity vector of jth particle at time t, 𝑠𝑗(𝑡) represents the position vector of

jth particle at time t, vector 𝑠Pb,j is the personal best ever position of the jth particle, and vector 𝑠Gb is

the global best location found by the entire swarm. The acceleration coefficients c1 and c2 indicate the

degree of confidence in the best solution found by the individual particle (c1 - cognitive parameter) and

by the whole swarm (c2 - social parameter), respectively, while r1 and r2 are two random vectors

uniformly distributed in the interval [0,1].

39

8) Krill Herd Algorithm [63]

KH is a biologically-inspired metaheuristic algorithm, that handles optimization problems in a

stochastic way. The mechanism of the algorithm is inspired by the krill herding, in which the

movement of each individual of the swarm has three main pillars to determine its time-dependent

position: the whole swarm movement, seeking food and random spread. The objective function in the

algorithm is attained simulating the objective of the krill herd in nature, which is the minimum

distances of both the center of the herd density and from the food location as well. In seek of higher

efficiency, two genetic reproduction mechanism of the well-known GA are equipped into the KH

algorithm: crossover and mutation.

For modelling the motion of the individuals mathematically, this motion formula is defined into the

algorithm:
ⅆ𝑋𝑖

ⅆ𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖

where 𝑁𝑖 is the motion induced by the swarm movement, 𝐹𝑖 is the motion in seek of food, and 𝐷𝑖 is

the random spread motion.

- 𝑁𝑖
𝑛𝑒𝑤 = 𝑁𝑚𝑎𝑥𝛼𝑖 + 𝑤𝑛 𝑁𝑖

𝑜𝑙𝑑

where 𝑁𝑚𝑎𝑥 is the max induced speed, which is experimentally measured and taken as 0.01 m/s.

𝛼𝑖 is the effect of the swarm motion, it combines the effect of both neighbors and the best krill.

𝑤𝑛 is an inertia weight, in the range [0,1]. 𝑁𝑖
𝑜𝑙𝑑 is the previous motion of that individual.

- 𝐹𝑖 = 𝑉𝑓 𝛽𝑖 + 𝑤𝑓 𝐹𝑖
𝑜𝑙𝑑

where 𝑉𝑓 is the speed towards the food, 𝛽𝑖 is the attraction effect on the ith individual, it combines

the effect of the best fitness of that ith individual so far, besides the effect of the food.

- 𝐷𝑖 = 𝐷𝑚𝑎𝑥 δ

where 𝐷𝑚𝑎𝑥 is the maximum speed of the random motion. δ is a random directional vector.

The interesting fact about KH algorithm is that it gets the values it its coefficients from real world

empirical studies, then only one parameter is to be tuned. However, the coefficients could be

determined through an outsourcing metaheuristic algorithm instead of these mentioned real-world

empirical studies.

9) Pity Beetle Algorithm [64]

PBA is a nature-inspired metaheuristic optimization algorithm based on the swarm intelligence. PBA is

a single-objective optimization algorithm for the unconstrained problems, inspired by the searching

for food behavior of the six-toothed bark beetle (pityogenes chalcographus beetle). This beetle feeds

on the bark of the trees. The PBA simulates the searching for food behavior of this bark beetle, in a

way consists of three main stages: initialization of a population consists of males and females,

regeneration of new populations, and location update stage. In the first stage, an initial population

consists of males and females is randomly located within the search space, some males act as

pioneers as they search for the most suitable host, aggregating into it by producing pheromone that

attracts the other males and females. The initial population in PBA, should be well diversified in order

to avoid the premature convergences. To ensure the diversification, the initial population in PBA is

generated by means of a random sampling technique (RST). In the second stage, after the initial

populations are formed, each single particle will look for better position in the search space to create

his own population. This is done in PBA through five types of hypervolume selection pattern;

neighboring search volume, global-scale search volume, large-scale search volume, mid-scale search

volume and memory consideration search volume. In the last type, the best-found positions are saved

and used. In the third stage, the position of each mating male and female is updated, removing the

previous positions except those that kept in the memory for the memory consideration search

volume.

40

C. Other Nature-Inspired Metaheuristics

1) Ant Lion Optimizer [65]

ALO is a nature-inspired metaheuristic that mimics the smart hunting mechanism of antlions in nature,

in which the antlion digs a cone-shaped pit in sand by moving along a circular path and throwing out

sands, then it hides underneath the bottom of the cone waiting an ant to fall down into the cone to

catch it. The ALO algorithm mimics the interaction between antlions and ants during the hunting

process, that is done in three phases (A, B, and C).

At (A), the ALO algorithm builds four matrices: two position matrices of the ants and antlions

separately, and two fitness function matrices also one for ants and another for antlions.

At (B), the position of the ants and antlions are updated through implementing five operators: random

walk of ants (which maintains the exploration capability), building traps by antlions (a roulette wheel

operator is utilized to select antlions based on the fitness function of each, that also maintains the

exploration capability), entrapment of ants in traps (this occurs through an adaptive shrinking

mechanism of the radius of an ant’s next random walks, which guarantees the exploitation), catching

preys (if an ant is fitter than its corresponding antlion, then the antlion updates its position to the

latest position of this hunted ant, that leads to investigation of the most promising areas in the search

space, which maintains also the exploration), and re-building traps for another prey.

At (C), the algorithm returns the elite antlion when the end criterion is satisfied, the best antlion

obtained so far in each iteration is saved and considered as an elite.

For the mathematical modelling of phase (B) operators, the following equations are employed:

- For the ants’ random walk:

𝑋(t) = [0, cumsum(2r(𝑡1) – 1); cumsum(2r(𝑡2) – 1), … . cumsum(2r(𝑡𝑛) – 1)]

where n is the maximum number of iterations, r(t) is a stochastic function= (1 if rand>0.5, else if,

equals zero. “rand” is a random number generated with uniform distribution in the interval of

[0,1]).

In order to keep the random walks within the search space’s boundaries, the following min–max

normalization function is employed:

𝑋𝑖
𝑡 = [(𝑋𝑖

𝑡 − 𝑎𝑖) ∗
𝑑𝑖

𝑡 − 𝑐𝑖
𝑡

𝑏𝑖 − 𝑎𝑖
] + 𝑐𝑖

𝑡

where 𝑎𝑖 and 𝑏𝑖 are the minimum and maximum of the random walk of ith variable, respectively.

𝑐𝑖
𝑡 and 𝑑𝑖

𝑡 are the minimum and maximum of all variables of the ith ant at tth iteration, respectively.

Since the ants’ random walk should be affected by the antlions’ trap, the 𝑐𝑖
𝑡 and 𝑑𝑖

𝑡 are computed

as follow:

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡, 𝑑𝑗
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑑𝑡,

where 𝑐𝑡and 𝑑𝑡is the minimum and maximum of all the variables among all the ants at tth

iteration, respectively.

41

- Every random walk of each ant is affected simultaneously by two antlions: one selected by the

roulette wheel and another which is saved in the memory as the elite antlion. In this regard, the

following equation is employed:

𝐴𝑛𝑡𝑖
𝑡 = (𝑅𝐴

𝑡 + 𝑅𝐸
𝑡)/2

where 𝐴𝑛𝑡𝑖
𝑡 indicates the position of ith ant at tth iteration. 𝑅𝑡 is the ant’s random walk, equals 𝑋𝑖

𝑡,

𝑅𝐴
𝑡 is the random walk around the antlion selected by the roulette wheel at tth iteration, 𝑅𝐸

𝑡 is the

random walk around the elite antlion at tth iteration.

- For the entrapment of ants: to mimic the sliding of the ants down towards the antlion, by

shrinking the radius of the ants’ random walk, these equations are used:

𝑐𝑡 = 𝑐𝑡/𝐼, 𝑑𝑡 = 𝑑𝑡/𝐼

where I is a ratio: 𝐼 = 10𝑤 ∗ 𝑡/𝑇, t is the current iteration number, T is the total number of

iterations, w is a constant ranges from 2 to 6 depending on the current iteration number (the

higher t, the higher w). Basically, w can adjust the accuracy level of the exploitation.

- By catching a fitter prey, the antlion reposition itself to the latest position of that prey through the

following equation:

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡, if 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)

The exploitation phase of the ALO is guaranteed thanks to the adaptive boundary shrinking

mechanism and the elitism. While the exploration is guaranteed thanks to the random walk and

roulette wheel selection operators.

2) Moth-Flame Optimization [66]

This another recent population-based metaheuristic, which is inspired by the Transverse Orientation

navigation method of moths. Accurately, the spiral movement of moths towards artificial lights is the

part in the transverse orientation method that is simulated in the MFO’s movement operator. In the

transverse orientation method, a moth flies by fixing a certain angle with respect to the light source,

forming a spiral fly path, which ensures a convergence. To maintain investigating the most promising

areas of the search space, moths (search agents) takes flames (best-found solutions) as the source of

light and fly spirally around them. And to maintain a well exploration and local optimum avoidance,

each moth is allowed to update its position using only one specific flame. This behavior is equipped is

a three-tuple algorithm; MFO = (I,P,T). In MFO, two matrices are formulated to define moths and

flames; M and F. Then consequently, two fitness function matrices are formulated; OM and OF. I is the

initial population generator, I:ø → {M,OM}. T is the termination criterion, T: M→ {true, false}. P is the

position updating function, P: Mi→Mi+1, by which a moth updates its position around a flame through

a spiral motion, Mi+1= S(Mi, Fj). S is the spiral function, which is chosen as a logarithmic spiral function

in this investigation work. 𝑆(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 ⋅ ⅇ𝑏𝑡 ⋅ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑗, 𝐷𝑖 indicates the distance between Mi

and Fj, b is a constant for defining the shape of the logarithmic spiral, and t is a random number in [r,

1], r is linearly decreased from -1 to -2 over the course of iterations to promote the exploitation

proportional to the number of iterations (the lower t, the closer distance to the flame). For further

promotion of the exploitation proportional to the number of iterations, the number of flames is

decreased gradually over the course of iterations, till it ends that all the moths at the final step update

their positions with respect to only one flame.

42

3) Multi-Verse Optimizer [67]

This population-based metaheuristic is inspired by the multi-verse theory in physics. In designing this

algorithm, every universe (solution) owns objects (variables). Three concepts of multi-universe are

simulated; white, black and wormholes, by which how the multiple universes interact. The white holes

in nature are where the so called big-bang occurs. The blackholes are where things are attracted

inside. The wormholes are considered as tunnels through which the objects of a universe are able to

travel between any corners of the same or different universes. Objects (variables) travel from white

holes (solution with high fitness function value) to black holes (solutions with low fitness function

value), in seek of better fitness values, the white holes are selected using a roulette wheel mechanism,

this exchange of variables through white and black holes maintains the exploration of the search

space. While the wormholes exist randomly in any universe (regardless of its fitness function value) to

assist the MVO in exploiting the search space, through transporting a universe’s objects withing its

space randomly. The optimization process starts with creating a set of random solutions. At each

iteration, variables in the solution agents with high fitness values tend to move to others with low

fitness values via white and black holes (exploration). Meanwhile, all the universes variables are

moved towards the best solution randomly regardless its solution fitness value, which maintains the

diversity.

4) Sine Cosine Algorithm [68]

The SCA is a metaheuristic optimization algorithm that initialize random solution agents, then push

them to fluctuate either towards or outwards the best-found solution, in a sin-cosine behavior. This

positioning of the agents iteratively is guided by random-walk function:

𝑋𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟1 × 𝑠𝑖𝑛/𝑐𝑜𝑠(𝑟2) × |𝑟3𝑝ⅈ−
𝑡 𝑥𝑖

𝑡| , sin: if 𝑟4 < 0.5 , cos: if 𝑟4 ≥ 0.5

where 𝑟1, 𝑟2, 𝑟3, 𝑟4 are random numbers, 𝑟1 indicates the next position’s region, which could be inside

or outside the space between the solution and its destination, 𝑟2 defines how far the movement will

be, 𝑟3 gives a random weight to control the effect of destination in defining the distance. 𝑟4 switches

between the sine and cosine.

The cyclic pattern of sine and cosine function guarantee a well exploitation of the space. On the other

side, the exploration is achieved by changing the range 𝑟1 of the sin-cosine function, where a solution

will be able to move outwards its destination point. In order to promote the exploitation over

exploration as the iteration number goes higher, an equation for adaptively decreasing the range 𝑟1 is

employed: 𝑟1 = 𝑎 − 𝑡
𝑎

𝑇
, where t and T are the number of the current iteration and the maximum

number of iterations, respectively, a is a constant.

43

5) Harmony Search [55]

The harmony search algorithm was originally inspired by the improvisation process of Jazz musicians.

According to the analogy between improvisation and optimization, each musician (saxophonist,

bassist, guitarist etc.) corresponds to each decision variable; each musical instrument’s pitch range

corresponds to a decision variable’s value range. Musical harmony at certain times corresponds to a

solution vector at certain iterations, and audience’s aesthetics corresponds to the objective function.

According to the above algorithmic concept, the HS algorithm consists of the following five steps:

parameter initialization; harmony memory initialization; new harmony improvisation; harmony

memory update; and termination criterion check. Different from those population-based approaches,

it only utilizes a single search memory to evolve. Therefore, the HS method has the distinguishing

feature of computational simplicity.

In the first step, the optimization problem is specified where n is the number of decision variables

(equivalent to the number of music instruments), while 𝑠𝑖
𝐿 ≤ 𝑠𝑖 ≤ 𝑠𝑖

𝑈 , 𝑖 = 1,2, . . . , 𝑛 determines the

range of the ith decision variable’s value. The HS algorithm parameters are also specified in this step:

HMS is the harmony memory size that corresponds to the number of simultaneous solution vectors

stored in harmony memory, HMCR defines the harmony memory considering rate, while PAR is the

pitch adjusting rate. In the second step, the harmony memory (HM) is initialized with HMS randomly

generated solution vectors defining the musician’s harmony memory matrix:

𝐻𝑀 =

[

𝑠1
1 𝑠2

1 𝑠3
1. . . 𝑠𝑛

1

𝑠1
2 𝑠2

2 𝑠3
2. . . 𝑠𝑛

2

.
𝑠1
𝐻𝑀𝑆 𝑠2

𝐻𝑀𝑆 𝑠3
𝐻𝑀𝑆. . . 𝑠𝑛

𝐻𝑀𝑆]

In the third step, a new harmony vector is improvised following three rules: random selection, memory

consideration and pitch adjustment. According to the random selection, the value of the decision

variable 𝑠𝑖 is chosen randomly from the pitches stored in 𝐻𝑀 = [𝑠𝑖
1, 𝑠𝑖

2, ⋯ , 𝑠𝑖
𝐻𝑀𝑆] with probability of

HMCR (0≤ HMCR≤1) or according to the memory consideration it is randomly chosen with a probability

of (1-HMCR) within its value range, as a musician plays any pitch within the instrument’s pitch range:

𝑠𝑖 = {
𝑠𝑖 ∈ [𝑠𝑖

1, 𝑠𝑖
2, ⋯ , 𝑠𝑖

𝐻𝑀𝑆] with probability HMCR

𝑠𝑖
𝐿 ≤ 𝑠𝑖 ≤ 𝑠𝑖

𝑈with probability (1-HMCR)

After the value 𝑠𝑖 is randomly picked according to the above memory consideration process, it can be

further adjusted into neighboring values by adding certain amount to the value, with probability of

HMCR × PAR (0≤ PAR ≤1) while the original pitch obtained in HM consideration is just kept with a

probability of HMCR × (1-PAR):

𝑠𝑖 = {
𝑠𝑖(𝑘 + 𝑚) with probability 𝐻𝑀𝐶𝑅 × 𝑃𝐴𝑅
𝑠𝑖 with probability 𝐻𝑀𝐶𝑅 × (1 − 𝑃𝐴𝑅)

If the new generated harmony vector is better than the worst harmony vector of the HM, with reference

to the objective function value, the worst harmony is replaced by the new harmony vector.

44

6) Imperialist Competitive Algorithm [69]

ICA is an evolutionary sociopolitical inspired metaheuristic optimization algorithm. Introduced to the

literature back at 2007, to deal with continuous optimization problems. Then, many versions have

been developed later to handle discrete problems as well. The idea behind this algorithm is

considering all the possible solutions as countries, the best set of them are considered as imperialists,

and the rest are colonies. Each imperialist is supposed to possess portion of the colonies, forming an

empire. The evolutionary improvement of the candidate solutions during the optimization process is

implemented through six main operators: initialization, assimilation, revolution, title exchange,

empires survival/collapse and convergence.

Initial population is generated at first (Npop). Then, some promising candidates based on their objective

function values (OFs) are selected as imperialists (Nimp), the rest candidates are colonies (Ncol = Npop -

Nimp). Each imperialist takes over a portion of the colonies according to its power, forming an empire.

An imperialist’s power is defined based on its normalized OF, as follow:

Imperialist’s normalized OF: 𝐶𝑛 = 𝑚𝑎𝑥{𝑐𝑖} − 𝑐𝑛

Imperialist’s power: 𝑃𝑛 = |
𝐶𝑛

∑ 𝐶𝑖
𝑖=1
𝑁𝑖𝑚𝑝

|

Therefore, the number of colonies that taken over by each imperialist: NCn = Pn x Ncol .

Assimilation process is then performed, in which the power of each colony approaches gradually that

of its respective imperialist. For real-life example of the assimilation process, both the British and

French Empires attempted assimilation by constructing New England and New France within their

respective colonies, imposing their own characteristics (social, cultural, economic, political, ..etc)

within their colonies. These characteristics are considered as the problem variables. In the assimilation

process within the ICA, the colonies’ move in random distances (x), along with (d) direction towards

their respective imperialist, but with random variation in the direction, maintaining both exploration

and exploitation phases in cases of high and low variations, respectively. At some point consequently,

a colony’s power is upgraded to reach out that of its respective imperialist, or to become even higher.

Revolution operator is another aspect of ICA that maintains better exploration, in which some colonies

resist to be realized by the imperialists. So, they suddenly jump outside the empire. Which emphasizes

exploring new promising areas within the search space but don’t host any imperialist. That

consequently may lead to a promotion of a colony’s power even higher than an existing imperialist’s.

Title Exchange operator is performed to promote a colony to be an imperialist in the following

iterations, and vice versa. The promoted colony is a colony that got higher power than an existing

imperialist’s, either through the assimilation or the revolution operators.

Empires survival/collapse occurs after performing assimilation, revolution and title exchanging

processes, when the empires get either weaker or more powerful. The weak empires collapse leaving

behind its colonies that will be taken over by survived ones.

Convergence in ICA occurs when just one empire is survived (called grand empire) and all the rest are

collapsed. Or when any other set criterion is met, like specific number of iteration or specific

processing time.

45

7) Teaching–Learning-Based Optimization [54]

This population-based metaheuristic optimization algorithm is inspired by the human teaching &

learning behavior. The idea behind it is considering the possible solutions as a set of students in a

classroom, the teacher is a candidate as well but holds the most knowledge (best fitness). Throughout

two main operators: Teacher Phase and Learner Phase, the students (solutions) are improved in terms

of their grades (fitness function value). The taught subjects in the class are represented into the

algorithm as the design variables. The algorithm is also following the fact of the higher capability of

the teacher is, the more promising the students will be. The indication of the students’ level of

knowledge in a specific subject, is the mean value of their grades in this subject.

The algorithm starts by initializing a set of random solutions:

𝑃 = [
𝑋(1,1) ⋯ 𝑋(1, 𝐷)

⋮ ⋱ ⋮
𝑋(𝑃, 1) ⋯ 𝑋(𝑃, 𝐷)

] , in which each candidate is represented by the design variables from 1

to D.

The best candidate (best fitness) is set as a teacher, then for all the rest candidates, the mean grade

for each subject is calculated, producing the mean solution: 𝑀,𝐷 = [𝑚1,𝑚2,⋯𝑚𝐷].

Then the Teacher Phase starts by enhancing the students’ level of knowledge, through pulling the

mean value of each design variable to the corresponding one in the teacher’s solution (Xteacher,D). This is

done in the algorithm through considering the teacher solution as a new artificial mean: M_new,D =

Xteacher,D = Xf(x)=min . Then the difference between both the original and the artificial means is calculated:

Difference,D = r (M_new,D – TF · 𝑀,𝐷), where r is a random number in the range [0,1], TF is randomly set

1 or 2 with equal probability. Then after, each candidate (solution) moves by this difference,

producing new generation: Xnew,D = Xold,D + Difference,D , Xnew,D is accepted if it has better fitness.

The Learner Phase also provides an improvement for the solutions through the interaction between

the candidates themselves, based on the fact of “A learner learns something new if the partner has

more knowledge (better fitness)”. So, if f(Xi) < f(Xj), Xnew,i = Xold,i + ri (Xi – Xj), else, Xnew,i = Xold,i + ri (Xj – Xi),

Xnew,i is accepted if it has better fitness.

46

8) Interior Search Algorithm [70]

This ISA is inspired from the architectural process of the interior design and decoration. The interior

design and decoration process, there are two main concepts in order to find the best view and

decoration; Composition and Mirror concepts. The Composition concept refers to the process of

replacing the items position till it gives the best view, while the Mirror concept refers to placing

mirrors near to the most beautiful items in order to emphasize their beauty. These concepts are

followed in the ISA, where the candidates (except the fittest candidate) are randomly grouped into

two parts: Composition group in which the candidates change their position only when it gives fitter

values, and Mirror group in which some mirrors are placed near to the fittest candidates giving them

higher weights among the swarm. For that, α parameter is defined and tuned, where the candidates

are grouped based on the following role: if r1 < α, the corresponding candidate goes to Mirror group,

else, it goes to Composition group. where r1 is a random value between 0 and 1. In the Composition

group, the position of each candidate follows this formula: 𝑥𝑖
𝑗
= 𝐿𝐵𝑗 + (𝑈𝐵𝑗 − 𝐿𝐵𝑗) 𝑟2. While in the

Mirror group, a mirror is placed randomly somewhere between each candidate and the fittest

candidate so far. The location of these mirrors follows this formula: 𝑥𝑚,𝑖
𝑗

= 𝑟3 𝑥𝑖
𝑗−1

+ (1 − 𝑟3)𝑥𝑔𝑏
𝑗

where r2, r3 are random value between 0 and 1.

The ISA has only one tuned parameter (α).

9) Slime Mould Algorithm [71]

In nature, the slime mold of the Physarum polycephalum forages in a way that leads to the food

through optimal paths, this occurs using a bio-oscillator that produces a propagating wave, where the

cytoplasmic flow indicates the thickness of the veins in a slime mold, The faster the flow, the thicker

the vein. Hence, the optimal path is determined. SMA is stochastic optimizer that uses adaptive

weights as well in order to simulate this process of producing the positive and negative indications out

of the propagation wave that is resulted from the bio-oscillator. The slim mold grows in a venous

shape, that allows it to use multi food sources in the same time. The main mechanisms of such

behavior of slime mold foraging that are mathematically modelled in the SMA: approaching food,

wrap food and oscillation. The balance between the exploration and exploitation phases in SMA is

maintained mainly through the adaptive weight, vibration parameter, utilization of the fitness values

and the decision parameter of the location updating.

47

10) The Arithmetic Optimization Algorithm [72]

AOA is a very recent however promising population-based metaheuristic optimization algorithm.

Inspired by the main arithmetic operators in mathematics: addition (A), subtraction (S), multiplication

(M) and division (D). Like any other metaheuristic algorithm, the optimization process consists of two

main phases: exploration and exploitation. The exploration phase in AOA is implemented employing

the D and M operators, due to their high dispersion, which indicates exploration in the optimization

dictionary. On the other side, A and S are employed when the exploitation phase is activated during

the optimization process, due to their low dispersion. In order to switch between exploration and

exploitation phases during the optimization process: if 𝑟1 > 𝑀𝑂𝐴, activate the exploration phase,

otherwise, activate the exploitation.

where MOA (Math Optimizer Accelerated function) linearly increases from 0.2 to 0.9:

𝑀𝑂𝐴(𝐶−𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶−𝐼𝑡𝑒𝑟
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀−𝐼𝑡𝑒𝑟

For the exploration phase, the algorithm is equipped by this random walk formula:

𝑥𝑖,𝑗(𝐶−𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

While for exploitation:

𝑥𝑖,𝑗(𝐶−𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗), 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑀𝑂𝑃(𝐶−𝐼𝑡𝑒𝑟) = 1 −
𝐶−𝐼𝑡𝑒𝑟

1/𝛼

𝛭−𝐼𝑡𝑒𝑟
1/𝛼

where 𝐶−𝐼𝑡𝑒𝑟 abbreviates the current iteration, 𝑀−𝐼𝑡𝑒𝑟 abbreviates the maximum number of

iterations, Max and Min denote maximum and minimum of MOA, (𝑟1, 𝑟2, 𝑟3) are random values in

[0,1], 𝜖 is a small integer number, MOP (Match Optimizer Probability) is a coefficient, μ is a control

parameter that emphasize exploration not only at the first iterations but also during the last

iterations, α is second parameter that emphasize exploitation accuracy during the optimization.

The AOA has only two tunning parameters: μ and α, alongside with the standard parameters: the

population size and the stopping criterion.

48

Ch 4 Numerical Tests

4.1. Introduction

Six well-known benchmark problems: 10-bar truss, 25-bar truss, 72-bar truss, welded beam, pressure vessel

and tension-compression string, were used in order to test the capability of four Metaheuristic Optimization

Algorithms, selected from the introduced state-of-the-art algorithms in chapter (3): Grey Wolf Optimizer

(GWO), Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO) and Differential

Evolution (DE).

The scope of this chapter is to investigate the capability of these four algorithms, by being assessed on the

same benchmark problems. The algorithms are implemented through MATLAB codes. In addition, the same

stopping criterion corresponding to specific number of function evaluations (n*10,000 function evaluations) is

used for all the algorithms. The population size parameter is set to 100 agents for each of GWO, GOA and DE,

and 30 particles for the PSO. Furthermore, a common technique for dealing with the problem constraints

were used. Lastly, implementing a common procedure for the discrete and integer design variables.

Regarding the constraints handling different approaches, in penalty methods, users usually try different values

of the penalty factor to reach the optimum solution. To overcome this problem, Deb (2000) [1] originally

proposed the Feasibility Criteria method, where the employed selection operator that compares and chooses

between two solutions at a time, is based on the following rules:

- Any feasible individual is chosen over any infeasible one.

- For two feasible individuals, the individual with the better objective function value is chosen.

- For two infeasible individuals, the individual with smaller constraint violation is chosen.

In the implemented tests, a similar approach is employed, but with small modifications. The following fitness

function is implemented:

𝐹(𝒙) = {
𝑓(𝒙) if 𝑔𝑗(𝒙) ≥ 0∀𝑗 = 1,2,… ,𝑚

𝑓max + ∑𝑗=1
𝑚  ⟨𝑔𝑗(𝒙)⟩ otherwise

Where 𝑓max is the worst objective function value among the feasible solutions. In case of no feasible solution

exists within the entire population, 𝑓max is set to zero. In this method, Deb sums all the constraint violations

and compares a single value, while the infeasible solutions are compared based only on their constraint

violation.

In the followed approach in this thesis, some modifications are added to the mentioned-above selection

operator’s rules is order to emphasize the global exploration, as well to better catching of more promising

feasible solutions.

49

In order to compute the fitness function value of the infeasible individuals, the 𝑝violation factor is introduced.

𝑝violation is the individual's normalized maximum constraint violation multiplied by a term that considers the

number of the violated constraints by that individual.

𝑝violation = ∥
∥max {max{0, 𝑔𝑗(𝒙)}}∥

∥ × (1 +
𝑛constviol

𝑛const
) > 1

Where 𝑛const is the total number of constraints and 𝑛constviol is the number of the violated constraints.

To compute the individual's fitness function, the 𝑝violation factor is multiplied with the maximum objective

function value of both the best-found feasible individual so far and that individual itself.

𝐹(𝒙) = {
𝑓(𝒙) if 𝑔𝑗(𝒙) ≤ 0∀𝑗 = 1,2,… ,𝑚

max(𝑓best feasible , 𝑓(𝒙)) × 𝑝violation otherwise

According to the above, the selection operator’s rules, in order choose between two solutions at a time, are

modified as follow:

- Among a feasible individual and another infeasible, the selection of the feasible one depends on the

objective function value, the constraint violation value and the number of violated constraints of the

infeasible individual.

- For two feasible individuals, the individual with the better objective function value is chosen.

- For two infeasible individuals, the individual with smaller objective function value, constraint violation

value and number of violated constraints is chosen.

The considered constraints are indeed two types: functions and bounds. The former holds the inequality and

equality constraints, which hold more complexity. The latter holds the variables’ upper and lower limits.

50

4.2. Benchmark Structural Optimization Problems

The four optimization algorithms are applied at first on three well-known truss structures' problems. Then

they are applied on three other famous structural optimization problems. Each optimization problem was

solved through 20 independent runs by each algorithm, in order to obtain the probabilistic characteristics of

the results obtained by every algorithm. The mathematical formulations of these problems are further

elaborated.

The three employed trusses for this investigation work are: 10-bar, 25-bar and 72-bar truss structures. They

are all steel structures, employed for a size optimization, where the design variables range from 8 to 16

variables. The design variables spaces are continuous for each element’s cross-section area. The objective

function for the three structures is considered as the weight to be minimized.

4.1.1 10-bar truss

An independent design variable considered for each bar, resulting in a total of 10 design variables. The

material density is 0.1 lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are

considered as ±25 ksi, and the displacement limitation of all nodes is ±2 in. The applied load is F= 100 kips. The

length: L = D = 360 in.

The minimum-found value of weight in the literature is equal to

5057.88 lb.

4.1.2 25-bar truss

The structural elements are grouped, resulting in a total of 8 design variables. The material density is 0.1

lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are considered as 35 ksi for

tension while in case of compression, the stress is limited according to the AISC code. The displacement

limitation of all nodes is ±0.35 in. The applied loads (kips) and dimensions of the structure are shown in the

following figures.

The minimum-found value of weight in the literature is equal

to 545.175 lb.

51

4.1.3 72-bar truss

The structural elements are grouped, resulting in a total of 16 design variables. The material density is 0.1

lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are considered as 25 ksi for

tension while in case of compression, the stress is limited according to the AISC code. The displacement

limitation of all nodes is ±0.25 in. The applied loads are at node (17): 5, 5 and -5 in directions x, y and z,

respectively. The dimensions of the structure are shown in the following figures.

The minimum-found value of weight in the literature is equal to 379.66 lb.

4.1.4 Welded Beam

The well-known welded beam design problem holds 4 design variables: height and length of the weld and

height and width of the beam section. Where 𝑃 = 6000 l𝑏, 𝐿 = 14 𝑖𝑛, 𝐸 = 30 × 106 𝑝𝑠𝑖, 𝐺 =

12 × 106 𝑝𝑠𝑖, 𝜏max = 13600 𝑝𝑠𝑖, 𝜎max = 30000 𝑝𝑠𝑖, 𝛿max = 0.25 𝑖𝑛.

The minimum-found value of weight in the literature is equal to 1.72485084 lb.

The mathematical expressions for this optimization problem are as follow:

𝑓(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2)

Subject to:

𝑔1(𝑥) = 𝜏(𝑥) − 𝜏max ≤ 0
𝑔2(𝑥) = 𝜎(𝑥) − 𝜎max ≤ 0
𝑔3(𝑥) = 𝑥1 − 𝑥4 ≤ 0

𝑔4(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2) − 5.0 ≤ 0

𝑔5(𝑥) = 0.125 − 𝑥1 ≤ 0

𝑔6(𝑥) = 𝛿(𝑥) − 𝛿max ≤ 0
𝑔7(𝑥) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0

0.1 ≤ 𝑥1 ≤ 2

0.1 ≤ 𝑥2 ≤ 10

0.1 ≤ 𝑥3 ≤ 10

0.1 ≤ 𝑥4 ≤ 2

52

Where:

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′)2

𝜏′ =
𝑃

√2𝑥1𝑥2

𝜏′′ =
𝑀𝑅

𝐽

𝑀 = 𝑃 (𝐿 +
𝑥2

2
)

𝑅 =
𝑥2

2

4
+ (

𝑥1 + 𝑥2

2
)
2

𝐽 = 2 [√2𝑥1𝑥2 [
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)
2

]]

𝜎(𝑥) =
6𝑃𝐿

𝑥4𝑥3
2

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥4𝑥3
3

𝑃𝑐(𝑥) =
4,013𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)

4.1.5 Pressure Vessel

The well-known pressure vessel design problem holds 4 design variables: 𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4. The thickness of

the vessel, thickness of the head, inner radius of the vessel and the length of the vessel, respectively.

The minimum-found value of weight in the literature is equal to 5885.3328 lb.

The mathematical expressions are as follow:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3

𝑔1(𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0

𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3 ≤ 0

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0

𝑔4(𝑥) = 𝑥4 − 240 ≤ 0

𝑥1 ≥ 0.0625

𝑥2 ≤ 99 × 0.0625

10 ≤ 𝑥3, 𝑥4 ≤ 200

53

4.1.6 Tension-Compression String

The well-known tension-compression string design problem holds 3 design variables: 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3. The wire

diameter (𝑑), coil diameter (𝐷) and the number of the active coils (𝑁), respectively.

The minimum-found value of weight in the literature is equal to 0.012665 lb.

The mathematical expressions for this optimization problem are as follow:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(�⃗�) = (𝑥3 + 2)𝑥2𝑥1
2

�⃗� = [𝑥1, 𝑥2, 𝑥3] = [𝑑, 𝐷,𝑁]

𝑔1(�⃗�) = 1 −
𝑥2

3

71785𝑥1
4 ≤ 0

𝑔2(�⃗�) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0

𝑔3(�⃗�) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0

𝑔4(�⃗�) =
𝑥2 + 𝑥1

1.5
− 1 ≤ 0

0.05 ≤ 𝑥1 ≤ 2

0.25 ≤ 𝑥2 ≤ 1.30

2 ≤ 𝑥3 ≤ 15

54

4.3. Results

Following is presented the obtained result for each of the used benchmarks, in form of comparisons between

the investigated algorithm with respect to the optimal weight, standard deviation and the coefficient of

variation.

4.3.1 Optimal Weight Comparison

4.3.1.1 10-bar truss

As shown, the obtained optimal weights by the four

algorithms are approximately the same (with

differences less than 4 lb), PSO= 5061.27, DE= 5062.10,

GWO= 5062.28, GOA= 5065.29. While the least-found

weight in the literature was 5057.88 lb.

4.3.1.2 25-bar truss

For the 25-bar truss, the obtained optimal weights are

also almost identical (with differences less than 0.5

lb), PSO= 545.18, DE= 545.33, GWO= 545.58, GOA=

545.44. While being the least-found weight in the

literature: 545.175 lb.

4.3.1.3 72-bar truss

The obtained optimal weights of the 72-bar truss by the

four algorithms are as well approximately the same (with

differences less than 1.5 lb), PSO= 379.62, DE= 379.66,

GWO= 379.69, GOA= 380.86. While the least-found weight

in the literature: 379.66 lb.

Although with small difference, but it is worthy to mention

that the implemented test throughout this thesis brought

optimal weight by the PSO even lower than the least-

found in the literature weight.

10-bar truss
5058.00

5060.00

5062.00

5064.00

5066.00

GWO GOA PSO DE

Optimal Weight

10-bar truss

25-bar truss
544.80

545.00

545.20

545.40

545.60

GWO GOA PSO DE

Optimal Weight

25-bar truss

72-bar truss
378.50

379.00

379.50

380.00

380.50

381.00

GWO GOA PSO DE

Optimal Weight

72-bar truss

55

4.3.1.4 Welded Beam

For the welded beam, the optimal weights by the four

algorithms are similar (with differences less than 4 lb),

PSO= 1.7249, DE= 1.7615, GWO= 1.7258, GOA= 1.7585.

While the least-found weight in the literature: 1.7249 lb

4.3.1.5 Pressure Vessel

The obtained optimal weights for the pressure vessel by

the four algorithms are similar (with differences less

than 4 lb), PSO= 5937.14, DE= 5937.14, GWO= 5944.53,

GOA= 6835.21. While the least-found weight in the

literature: 5885.33 lb.

4.3.1.6 Tension-Compression String

For the tension-compression string, the optimal weights

by the four algorithms are almost identical, PSO=

0.012685, DE= 0.012680, GWO= 0.012694, GOA=

0.012706. While the least-found weight in the literature:

0.012665 lb.

Welded Beam
1.700000

1.720000

1.740000

1.760000

1.780000

GWO GOA PSO DE

Optimal Weight

Welded Beam

Pressure Vessel
5000.00

5500.00

6000.00

6500.00

7000.00

GWO GOA PSO DE

Optimal Weight

Pressure Vessel

T-C String
0.012660

0.012670

0.012680

0.012690

0.012700

0.012710

GWO GOA PSO DE

Optimal Weight

T-C String

56

4.3.2 Other Comparisons

Following are presented infographic comparisons between the four algorithms, among the 6 benchmark

optimization problems, with respect to: the coefficient of variation, standard deviation and the ratio between

the optimum obtained weight by each algorithm to the target weight (least-found in the literature).

The GWO has shown the best coefficient of

variation among the six benchmark problems.

The DE has shown the best standard deviation

among the six benchmark problems.

The four MOAs have shown good capability

through obtaining optimal weights that are

almost the same as the least-found weight in

the literature for the three truss structures.

However, it is obvious that the GOA has

performed not in good manner in the pressure

vessel optimization problem.

10-bar truss
25-bar truss

72-bar truss
Welded Beam

Pressure Vessel
T-C String

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

GWO GOA PSO DE

Coefficient of Variation

10-bar truss 25-bar truss

72-bar truss Welded Beam

Pressure Vessel T-C String

10-bar truss
25-bar truss

72-bar truss
Welded Beam

Pressure Vessel
T-C String

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

GWO GOA PSO DE

Standard Deviation

10-bar truss 25-bar truss

72-bar truss Welded Beam

Pressure Vessel T-C String

10-bar truss
25-bar truss

72-bar truss
Welded Beam

Pressure Vessel
T-C String

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

GWO GOA PSO DE

Optimum to Target

10-bar truss 25-bar truss

72-bar truss Welded Beam

Pressure Vessel T-C String

57

Ch 5 Conclusion

- In the current era of structural optimization, neural networks are broadly utilized instead of the

accurate, but complex, FE methods in evaluating and predicting different aspects (e.g., structural time

history responses).

- The combination between MOAs and NN is a trending direction in the modern literature that shows

high capability in reducing the computational time and efforts.

- Equipping AI features (e.g., Fuzzy Logic) within an optimization technique, is observed through the

literature review as a trending approach in the field, that gets the process done faster and more open

to handle general families of optimization problems.

- Penalty function is the most used approach for handling the constraints.

- It is trending recently to use a random-search optimization algorithm during the exploration phase to

spot just the promising areas within the search space, then to employ a deterministic or derivative-

based optimization algorithm in order to exploit that promising areas, in seek of finding the exact

optimal solution.

58

References

[1] Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech.

Eng. 186(2–4), 311–338 (2000).

[2] Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol.

Comput. 4(3), 284–294 (2000).

[3] A.G.M. Michell. LVIII. The limits of economy of material in frame structures. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 1904.

[4] Guoyong Cuia, Changyu Cuia,b,Shape Optimization Based on ANSYS, Journal of Information &

Computational Science–4297 July 20, 2015.

[5] Prendes Gero, M., García, A., & del Coz Díaz, J. (2006, 12). Design optimization of 3D steel structures:

Genetic algorithms vs. classical techniques. Journal of Constructional Steel Research, 62(12), 1303-1309.

[6] Gholizadeh, S., Salajegheh, E., & Torkzadeh, P. (2008, 4). Structural optimization with frequency constraints

by genetic algorithm using wavelet radial basis function neural network. Journal of Sound and Vibration,

312(1-2), 316-331.

[7] Kashani, A., Gandomi, M., Camp, C., & Gandomi, A. (2020, 5). Optimum design of shallow foundation using

evolutionary algorithms. Soft Computing, 24(9), 6809-6833.

[8] Liu, M. (2011, 3). Progressive collapse design of seismic steel frames using structural optimization. Journal

of Constructional Steel Research, 67(3), 322-332.

[9] & Adeli, H. (2013). Two-phase genetic algorithm for size optimization of free-form steel space-frame roof

structures. Journal of Constructional Steel Research, 90, 283-296.

[10] Kociecki, M., & Adeli, H. (2014). Two-phase genetic algorithm for topology optimization of free-form steel

space-frame roof structures with complex curvatures. Engineering Applications of Artificial Intelligence, 32,

218-227.

[11] Kociecki, M., & Adeli, H. (2015, 2). Shape optimization of free-form steel space-frame roof structures with

complex geometries using evolutionary computing. Engineering Applications of Artificial Intelligence, 38, 168-

182.

[12] Lavaei, A., & Lohrasbi, A. (2015). Dynamic optimization of structures subjected to earthquakes. Civil-Comp

Proceedings, 109.

[13] S. Gholizadeh and E. Salajegheh, “An intelligent neural system for predicting structural response subject

to earthquakes,” in Proc. the Fifth International Conference on Engineering Computational Technology, 2006,

p. 63.

[14] T. Kohonen, Self-Organization and Associative Memory, 2nd edition, Springer-Verlag, Berlin, 1987.

[15] J. S. Arora, Optimization of Structures Subjected to Dynamic Loads, Structural dynamic systems

computational techniques and optimization, Gordon and Breach Science Publishers, 1999.

59

[16] Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017, 12). Sizing and topology optimization of truss structures

using genetic programming. Swarm and Evolutionary Computation, 37, 90-103.

[17] P. Hajela, E. Lee, C.-Y. Lin, Genetic algorithms in structural topology optimization, in: Martin Philip

Bendsøe, Carlos A. Mota Soares (Eds.), Topology Design of Structures, Springer, 1993, pp. 117–133.

[18] H. Adeli, S. Kumar, Distributed genetic algorithm for structural optimization, J. Aerosp. Eng. 8 (3) (1995)

156–163.

[19] J. Yang, C.K. Soh, An integrated shape optimization approach using genetic algorithms and fuzzy rule-

based system, in: Proceedings of the Developments in Neural Networks and Evolutionary Computing for Civil

and Structural Engineering, 1995, pp. 171–177.

[20] K. Deb, Design of truss-structures for minimum weight using genetic algorithms, Finite Elem. Anal. Des. 37

(2001) 447–465.

[21] K.S. Lee, Z.W. Geem, A new structural optimization method based on the harmony search algorithm,

Comput. Struct. 82 (2004) 781–798.

[22] L.J. Li, Z.B. Huang, F. Liu, Q.H. Wu, A heuristic particle swarm optimizer for optimization of pin connected

structures, Comput. Struct. 85 (2007) 340–349.

[23] G.-C. Luh, C.-Y. Lin, Optimal design of truss structures using ant algorithm, Struct. Multidiscip. Optim. 36

(2007) 365–379.

[24] C.-Y. Wu, K.-Y. Tseng, Truss structure optimization using adaptive multi-population differential evolution,

Struct. Multidiscip. Optim. 42 (2010) 575–590.

[25] M. Fenton, C. McNally, J. Byrne, E. Hemberg, J. McDermott, M. O'Neill, Automatic innovative truss design

using grammatical evolution, Autom. Constr. 39 (2014) 59–69.

[26] A. Kaveh, T. Bakhshpoori, E. Afshari, An efficient hybrid particle swarm and swallow swarm optimization

algorithm, Comput. Struct. 143 (2014) 40–59.

[27] A. Kaveh, T. Bakhshpoori, A new metaheuristic for continuous structural optimization: water evaporation

optimization, Struct. Multidiscip. Optim. 54 (2016) 23–43.

[28] Ye, J., & Lu, M. (2020, 6). Guided genetic algorithm for dome optimization against instability with discrete

variables. Journal of Constructional Steel Research, 139.

[29] Ye, J., & Lu, M. (2020, 6). Design optimization of domes against instability considering joint stiffness.

Journal of Constructional Steel Research, 169.

[30] Parastesh, H., Hajirasouliha, I., Taji, H., & Bagheri Sabbagh, A. (2019, 4). Shape optimization of cold-

formed steel beam-columns with practical and manufacturing constraints. Journal of Constructional Steel

Research, 155, 249-259.

[31] Mojtabaei, S., Hajirasouliha, I., Ye, J., & Lim, J. (2020, 5). Coupled element and structural level

optimisation framework for cold-formed steel frames. Journal of Constructional Steel Research, 168.

[32] Nan, B., Bai, Y., & Wu, Y. (2020, 3). Multi-objective optimization of spatially truss structures based on

node movement. Applied Sciences (Switzerland), 10(6).

60

[33] Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley: Chichester, UK, 2001.

[34] Skoglund, O., Leander, J., & Karoumi, R. (2020, 10). Optimizing the steel girders in a high strength steel

composite bridge. Engineering Structures, 221.

[35] Salajegheh, E., Gholizadeh, S., & Khatibinia, M. (2008, 3). Optimal design of structures for earthquake

loads by a hybrid RBF-BPSO method. Earthquake Engineering and Engineering Vibration, 7(1), 13-24.

[36] Yang, B., Zhang, Q., & Li, H. (2015, 4). Solving truss topological optimization with discrete design variables

via swarm intelligence. KSCE Journal of Civil Engineering, 19(4), 952-963.

[37] Achtziger, W. and Stolpe, M. (2007). “Truss topology optimization with discrete design variables-

guaranteed global optimality and benchmark examples.” Structural and Multidisciplinary Optimization, Vol.

34, No. 1, pp. 1-20.

[38] Mortazavi, A., Toǧan, V., & Nuhoǧlu, A. (2017, 2). An integrated particle swarm optimizer for optimization

of truss structures with discrete variables. Structural Engineering and Mechanics, 61(3), 359-370.

[39] Mortazavi, A., Toğan, V., & Nuhoğlu, A. (2017, 11). Weight minimization of truss structures with sizing and

layout variables using integrated particle swarm optimizer. Journal of Civil Engineering and Management,

23(8), 985-1001.

[40] Mortazavi, A., Toğan, V., Daloğlu, A., & Nuhoğlu, A. (2018). Comparison of Two Metaheuristic Algorithms

on Sizing and Topology Optimization of Trusses and Mathematical Functions.

[41] Mortazavi, A. (2019, 5). Interactive fuzzy search algorithm: A new self-adaptive hybrid optimization

algorithm. Engineering Applications of Artificial Intelligence, 81, 270-282.

[42] Mortazavi, A. (2020, 4). Large-scale structural optimization using a fuzzy reinforced swarm intelligence

algorithm. Advances in Engineering Software, 142.

[43] Mortazavi, A. (2021). Size and layout optimization of truss structures with dynamic constraints using the

interactive fuzzy search algorithm. Engineering Optimization, 53(3), 369-391.

[44] Fathali, M., & Hoseini Vaez, S. (2020, 1). Optimum performance-based design of eccentrically braced

[45] Kaveh A, Bakhshpoori T. An accelerated water evaporation optimization formulation for discrete

optimization of skeletal structures. Comput Struct 2016, 177:218–28.

[46] Kennedy J, Eberhart R. Particle swarm optimization. Neural Networks, 1995 Proceedings, IEEE

International Conference on1995. p. 1942-8 vol.4.

[47] Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 2014,

139:18–27.

[48] Kaveh A, Ilchi Ghazaan M. Enhanced colliding bodies optimization for design problems with continuous

and discrete variables. Adv Eng Softw 2014, 77:66–75.

[49] Abedini, H., Hoseini Vaez, S., & Zarrineghbal, A. (2020, 6). Optimum design of buckling-restrained braced

frames. Structures, 25, 99-112.

61

[50] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: a bio-inspired

optimizer for engineering design problems. Adv Eng Softw 2017, 114:163–91.

[51] Omidinasab, F., & Goodarzimehr, V. (2020). A hybrid particle swarm optimization and genetic algorithm

for truss structures with discrete variables. Journal of Applied and Computational Mechanics, 6(3), 593-604.

[52] Skandalos, K., Afshari, H., Hare, W., & Tesfamariam, S. (2020, 5). Multi-objective optimization of inter-

story isolated buildings using metaheuristic and derivative-free algorithms. Soil Dynamics and Earthquake

Engineering, 132.

[53] Jahangiri, M., Hadianfard, M., Najafgholipour, M., Jahangiri, M., & Gerami, M. (2020, 7). Interactive

autodidactic school: A new metaheuristic optimization algorithm for solving mathematical and structural

design optimization problems. Computers and Structures, 235.

[54] Rao, R., Savsani, V., & Vakharia, D. (2011, 3). Teaching-learning-based optimization: A novel method for

constrained mechanical design optimization problems. CAD Computer Aided Design, 43(3), 303-315.

[55] Piliounis, G., & Lagaros, N. (2014). Reliability analysis of geostructures based on metaheuristic

optimization. Applied Soft Computing Journal, 22, 544-565.

[56] Nadimi-Shahraki, M., Taghian, S., Mirjalili, S., & Faris, H. (2020, 12). MTDE: An effective multi-trial vector-

based differential evolution algorithm and its applications for engineering design problems. Applied Soft

Computing Journal, 97.

[57] Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69,

46-61.

[58] Nadimi-Shahraki, M., Taghian, S., & Mirjalili, S. (2021, 3). An improved grey wolf optimizer for solving

engineering problems. Expert Systems with Applications, 166.

[59] Mirjalili, S., & Lewis, A. (2016, 5). The Whale Optimization Algorithm. Advances in Engineering Software,

95, 51-67.

[60] Mirjalili, S. (2016, 5). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-

objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.

[61] Saremi, S., Mirjalili, S., & Lewis, A. (2017, 3). Grasshopper Optimisation Algorithm: Theory and application.

Advances in Engineering Software, 105, 30-47.

[62] Mirjalili, S., Gandomi, A., Mirjalili, S., Saremi, S., Faris, H., & Mirjalili, S. (2017, 12). Salp Swarm Algorithm:

A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.

[63] Gandomi, A., & Alavi, A. (2012, 12). Krill herd: A new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845.

[64] Kallioras, N., Lagaros, N., & Avtzis, D. (2018, 7). Pity beetle algorithm – A new metaheuristic inspired by

the behavior of bark beetles. Advances in Engineering Software, 121, 147-166.

[65] Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80-98.

[66] Mirjalili, S. (2015, 11). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.

Knowledge-Based Systems, 89, 228-249.

62

[67] Mirjalili, S., Mirjalili, S., & Hatamlou, A. (2016, 2). Multi-Verse Optimizer: a nature-inspired algorithm for

global optimization. Neural Computing and Applications, 27(2), 495-513.

[68] Mirjalili, S. (2016, 3). SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based

Systems, 96, 120-133.

[69] Hosseini, S., & Al Khaled, A. (2014). A survey on the Imperialist Competitive Algorithm metaheuristic:

Implementation in engineering domain and directions for future research. Applied Soft Computing, 24, 1078-

1094.

[70] Gandomi, A. (2014). Interior search algorithm (ISA): A novel approach for global optimization. ISA

Transactions, 53(4), 1168-1183.

[71] Li, S., Chen, H., Wang, M., Heidari, A., & Mirjalili, S. (2020, 10). Slime mould algorithm: A new method for

stochastic optimization. Future Generation Computer Systems, 111, 300-323.

[72] Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. (2021, 4). The Arithmetic Optimization

Algorithm. Computer Methods in Applied Mechanics and Engineering, 376.

