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Inspiration 

Optimization is the heart of many natural processes, to name a few: the natural selection phenomenon in the 

biological evolution theory that is based on the survival-of-the-fittest principle, the social swarming behavior 

of birds or the foraging strategies of ants. Hence, the concept of simulating such natural phenomena into 

computational mechanics in form of computer algorithms may offer a very promising approach in the 

nowadays computer-aided engineering designs. 

 

 

 

Preface 

This Pharaonic-Grecian work aims to frame the art of the evolutionary and swarm based structural 

optimization. That is through five chapters. At the first chapter, the structural optimization problem is 

properly defined as well to elaborating its basic components. Then, an intensive review of the literature is 

introduced, through screening the most recent and most cited scientific articles in the topic during the first 

two decades of the 21st century. Afterwards, a set of the most promising and trending state-of-the-art 

algorithms is introduced through descriptive paragraphs that elaborate how each algorithm works. Following 

such elaboration of the literature and the state of the art, numerical tests assessing the performance of these 

most promising algorithms have been done in order to identify the capability of each algorithm, and 

eventually estimating the future trends in Structural Optimization. 
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Ch 1 Introduction to Optimization 

 

 

1.1 Definition and Problem Formulation 

 

“Optimization” term refers to obtaining the best fit (maximum/minimum) value of a certain single or multi-

objective function (e.g., safety, cost or time, in structural optimization), corresponding to pre-defined 

variables within a feasible space that is bounded with some pre-defined constraints (e.g., stresses, 

displacements or frequencies, in structural optimization). Considering the computational cost and the 

consumed time as key performance indicators (KPIs) of the optimization process. 
 

The general mathematical formulation of an optimization problem can be described as follow: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) 

𝑔𝑖(𝑋) ≤ 0                    ,                  𝑖 = 1, 2, …𝑘  

ℎ𝑖(𝑋) = 0                    ,                  𝑖 = 1, 2, …𝑝  

𝑥𝑖̇
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖̇

𝑈             ,                  𝑖 = 1, 2,… 𝑛  

Where 𝑓(𝑋) is the objective function, 𝑋 = 𝑥1, 𝑥2, … 𝑥𝑛 (design variables), 𝑔𝑖(𝑋) is an inequality constraint, 

ℎ𝑖(𝑋) is an equality constraint, 𝑥𝑖̇
𝐿 and 𝑥𝑖̇

𝑈 are the lower and upper bounds of the ith design variable. 𝑘, 𝑝 

and 𝑛 are the numbers of the inequality constraints, equality constraints and design variables, respectively. 
 

The engineering optimization has conquered variant engineering fields and has witnessed a hot pace of 

scientific research. In contrast with the so-common manual (trial and error) approach in the engineering 

design, optimization techniques are employed to obtain optimal solutions faster and in high accuracy, as well 

to saving huge human efforts. Recently, equipping these optimization techniques with the trending AI features 

(e.g., Fuzzy Logic) gets the process done even faster and more open to handle general families of optimization 

problems. 

The main two classes of the optimization approaches are the derivative-based and the derivative-free. The 

former one tends to find the exact optimal solution, by definition, it uses information from the objective 

and/or constraints functions and derivates to proceed forward. Which requires continuous and differentiable 

functions. Although, this derivative-based class of approaches is generally faster and more capable to handle 

large number of design variables than that other class. However, it is competent in finding a local optimal, but 

not the global optimal. And also, it requires more mathematics as mentioned, which leads to prohibitive 

computational burdens consumption in case of high complexity problems. By time, many optimization 

problems have been issued as being non-deterministic polynomial-time hardness (NP-hardness) problems, 

that hold too much complexity in case of being handled by the derivative-based approaches. Basically, due to 

getting stuck in local optimum, discontinuity of the objective function or when the constraints and/or 

objective functions require complex simulations. Therefore, the so-called Heuristic approaches (derivative-

free) has come to play thanks to its ease of implementation and light consumption of the computational 

burdens in handling high complexity real-world problems, but with relatively low number of design variables. 

But it worth mentioning that these derivative-free approaches tend to find a near-to-optimum solution, not 

the exact one. 
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The heuristic approaches were developed each-for-each problem. That is why, the theory behind this kind of 

approaches should had been promoted to introduce the nowadays called Metaheuristic approaches, as 

general frameworks that handle general families of problems. The population-based metaheuristic 

approaches in structural optimization is the main topic to be elaborated through this thesis. 

 

 

1.2 Classification of The Optimization Approaches 
 

The optimization approaches are either derivative-based or derivative-free approaches. The former class 

includes techniques of nonlinear, linear, geometric, quadratic, or integer programming. The other class 

includes the metaheuristic techniques, which are divided into two subcategories, defined as deterministic and 

probabilistic. The deterministic algorithms do not use any kind of randomness operators, it is more useful in 

searching for local optimal. On the other side, the probabilistic algorithms employ randomness operators 

either in the initialization phase or in setting some design parameters during the optimization process. The 

probabilistic approaches are either single-point-based or population-based approaches. The single-point-

based could be either trajectory or discontinuous approaches. The population-based could be evolutionary 

computation, swarm intelligence or other nature-inspired algorithms. 

 

The following figure illustrates the above-mentioned classification of the optimization approaches 
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1.3 Metaheuristic Algorithms 

 

This kind of optimizers deals with discontinuous and non-differentiable functions, holds randomness in the 

initialization operator and in some internal operators (e.g., crossover and mutation operators in GA), as well to 

being highly efficient and dedicated to find near to global optimum in high complex real-world optimization 

problems. The two fundamental components of any metaheuristic optimizer are the exploration and 

exploitation, in another words, diversification and intensification. In the exploration phase, the optimizer 

diverges the search to scan and explore the entire search domain, this behavior is considered as an abrupt but 

produces a progressive movement of the candidate solutions. While in the exploitation phase, the optimizer 

scans certain promising regions in the explored domain, the regions that hold the best found solutions in the 

exploration phase. Enabling a suitable balance between exploration and exploitation highly increases the 

efficiency of the optimizer. As a result of this fact, many techniques are developed and equipped into the 

algorithms to maintain a proper balance. The most efficient and trending metaheuristic algorithms are 

population-based that follow either evolutionary computation or swarm intelligence techniques. 

Most of the metaheuristic algorithms are basically inspired by the nature. Since the base of any natural 

process is indeed based on the optimization definition. To name but a few of these natural processes: the 

natural selection phenomenon in the biological evolution theory that is based on the survival -of-the-fittest 

principle, the social swarming behavior of birds or the foraging strategies of ants.  

 

1.4 Constraint Handling Approaches 

 

The optimization processes have been successfully applied to various optimization problems. However, they 

are not able to handle constrained optimization problems directly. In the past few decades, much work has 

been done to enhance the optimization algorithms performance in order to be able to deal with constrained 

optimization problems. Hence, many approaches are developed in order to ensure the feasibility of the 

provided optimum solution. 

Following are presented a couple of words for some of the state-of-the-art most commonly used constraint 

handling approaches: 

 

Static Penalty Function 

The most common approach among the researchers. Where all the constraints of a problem are 

incorporated into its objective function, introducing the so-called fitness function. By changing the value 

of the penalty parameter, different solution could be achieved. Also, inappropriate values of that penalty 

factor may lead the search away from the global optimum. 

 

Dynamic Penalty Function 

The same as the Static Penalty Function, but in the Dynamic Penalty Function, the penalty factor is 

automatically updated during the optimization process according to the behavior of the swarm. 
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Fly-Back method 

A trending constraint handling method, which considers the type of the violated constraints. In contrast 

with the Penalty Function approach. The main advantage of the Fly-Back technique is that it does not have 

any tunning parameters. 

 

Improved Fly-Back method 

The standard Fly-Back, but considering the type of the violated constraints. It works in three main steps: (i) 

determining whether the updated individual violates the constraints or not, (ii) for violation, finding which 

components cause the violation. Then, replacing them with corresponding components, and (iii) 

determining before updating the individual’s current position if the new position is within the feasible 

space and provides better fitness function value than old particle. 

 

Feasibility Criteria 

Proposed by Deb [1], a constraint handling method that uses three feasible criteria as selection 

mechanisms: (i) Any feasible individual is chosen over any infeasible one. (ii) For two feasible individuals, 

the individual with the better objective function value is chosen. (iii) For two infeasible individuals, the 

individual with smaller constraint violation is chosen. 

 

Stochastic Ranking 

Proposed by Runarsson and Yao in 2000 [2], a constraint handling method where a pre-defined parameter 

controls the balance between the feasibility and infeasibility, as no penalty parameter is used. The 

preference between two individuals is based on both the objective function value and the value of the 

constraint violations. 

 

The є-Constrained approach 

In the є-constrained method, the comparison between two individuals at a time is based on the objective 

function value and the constraint violation value as well. The parameter є controls the level of 

comparison. As in case of є is very large, the comparison is highly considering the objective function value 

rather than the constraint violation value. While if є = 0, the ordering rule is supposed to precede the 

constraint violation value on the objective function value. 
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1.5 Structural Optimization 

 

Structural Optimization can be traced back to 1904, when Michell [3] has derived formulae for weight 

minimizing of structures subjected to stress constraints. Afterwards during the era of the computational 

mechanics, the Architectural, Engineering and Construction (AEC) industry has experienced a hot pace of 

intensive developments in the structural optimization area. Where the designer’s day-to-day issue of selecting 

proper systems that provide good distribution of the material over the design space, in a way that offers 

economical and stable structures, is never been handled before in a way like such nowadays computer-aided 

designs. Hence, the structural optimization current-state technology is an important output of the 

computational mechanics advances. 

 

There are three aspects that could be structurally optimized in any structure: size, topology or shape. 

 

 

 

 

 

 

 

 

 

 

 

 

- Topology Optimization 

This is the most general type of structural optimization, where the optimizer deals with the 

configuration of the members (placing and number of members) as the design variables. 

In another word, the topology optimization is the removal/placing material only where effective. 

“Topology” word is originated from the Greek word “τόπος (topos)” that means locus. 

 

The best examples of the topology optimization are the truss 

beam and also the so-called perforated beam, where the material 

is only placed where they perform optimally, instead of filling the 

whole design space with material, such like a solid beam.  

 

 

 

 

The most common approach for the truss structures topology optimization is the “ground structure 

approach”, which was first introduced by Dorn et al. (1964) and is now widely used in all kinds of truss 

topology optimization. In this approach, the nodal locations are fixed and the ground structure is 

created by connecting any two nodes. 
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There are two kinds of the ground structure approach, either to be Partly Ground Structure where the 

members length is restricted to a certain value, or to be Fully Ground Structure where no length 

restriction is applied. Although in the Partly Ground the computational effort is reduced, but it may 

lead to an optimal solution which is not the global one. 

 

 

 

 

In the structural topology optimization, to achieve a feasible solution, the stability of the structure 

should be ensured during the optimization process. In this respect, several methods based on graph 

theory and algebraic approaches were provided to check this criterion (e.g., Geometrical Consistency 

Check [36], Evaluation of the condition number of the stiffness matrix [39]) 

 

- Shape Optimization 

This is the most complex type of structural optimization, where the main task is to minimize the 

effective stresses at some local within the general layout of the structure. There are two approaches 

of the shape structural optimization. Either to be based on FE models where the optimizer deals with 

the nodes’ coordinates of the structure’s boundaries as the design variables, which usually leads to an 

enormous number of design variables and accordingly causing prohibitive computational burdens. Or 

to be based on geometrics models where the optimizer deals with the parameters of the geometry 

model as the design variables. So that, a link between the structural analysis (FE) model and the 

geometry model is maintained, as the modifications in the geometry model parameters lead to 

changes in the FE model. In another word, besides the structural analysis and the optimization 

algorithms modules, the shape optimization that is based on the geometric models operates also a 

third module that models the variant possible shapes, which is called the geometrical representation 

module [4]. The shape optimization is applied at the end of the design process when the general 

layout is determined through a topology optimization, where minor modifications are applicable on 

the design variables (nodes’ coordinates). 

 

- Size optimization 

This is the easiest type of structural optimization, where the optimizer deals with the dimensions of 

the cross sections as the design variables. Consequently, any modifications in the section properties 

during the optimization results in changes in the structural analysis (FE) model. The size optimization is 

usually a discrete optimization where the design space consists of specific values of the design 

variables (e.g., standard cross sections of I-section steel member), however it could also be a 

continuous optimization where the section area of the members are limited within a continuous range 

(e.g., 1 < section area < 3 in2). Similar to the shape optimization, the size optimization is applied at the 

end of the design process when the general layout is determined through a topology optimization, 

where minor modifications are applicable on the design variables (cross sections dimensions). 
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Ch 2 Literature Review of the PB-MOAs in Structural Optimization 

 

The PB-MOAs are usually built based on evolutionary computations (e.g., GA), swarm intelligence (e.g., PSO) 

or based on other nature-inspired concepts (e.g., TLBO). In this chapter a review of the literature is introduced 

where 28 of the most recent and most cited scientific articles are reviewed and presented. These articles are 

presented in three sub-sections: Evolutionary Computation Metaheuristics, Swarm Intelligence Metaheuristics 

and Other Nature-Inspired Metaheuristics. 

 

A. Evolutionary Computation Metaheuristics 

 

1) Design optimization of 3D steel structures: Genetic algorithms vs. classical techniques [5] 

 

In this paper an elitist Genetic Algorithm (GA) developed by the authors is compared with a common 

commercial structural analysis program in a size optimization of spatial structures. The main 

implemented modifications in the standard GA to introduce the proposed algorithm are: phenotype 

crossover operator to select real commercial sections, new selection operator that removes the worst 

individuals from the population and new codification of the design variables that lets them all have 

the same initial probability of being selected. This paper does not consider any limitations for the 

displacements of the nodes. The tested benchmarks are discrete variables problems (2835 sections 

from the Spanish Basic Building Code). In order to represent the 2835 sections in binary form, a 12-bit 

chains are used. For the structural analysis, ESCAL3D software is used. 

The optimization Process starts by assigning randomly initial sections to the members, a text file is 

generated called “start.exit”, which together with the file (“optimum.in”), enables the optimization 

module to run. The “start.exit” file contains the data needed to calculate the structure. The 

“optimum.in” file contains the code to apply. In this study, five complete evolutions were carried out, 

producing five solutions for each benchmark structure. 

Two benchmark structural problems are tested in order to investigate the capability of the proposed 

algorithm: industrial portal frame and three-floors steel building. For the portal frame, the weight 

obtained by the proposed GA is 1507 kg, while the commercial software’s solution is 2160 kg. Also, in 

the steel building design the proposed GA shown better capability, where the obtained weight is 

17910 kg, while being 19668 kg by the commercial software. Basically, this superiority of the proposed 

GA is due to the random nature of the section assignment process. However, that was at higher 

computational cost. 
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2) Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis 

function neural network [6] 

 

By combining Genetic Algorithm (GA) and Neural Networks (NN), this article is presented to find 

optimal weights of structures subjected to multiple natural frequency constraints. 

The GA in the form of the Virtual Sub-Populations (VSP) method is employed to find the optimal 

weight of a structure. Using the VSP method is mainly to reduce the consumed computational efforts. 

As comparatively to the standard GA, the initial randomly selected population in VSP is much smaller, 

on which the GA operators are subsequently applied, then the best-found individuals in that initial 

small population are passed to the next same-size populations, iteratively. The remaining individuals 

of each new population are randomly selected. In another word, instead of implementing the 

mathematical models of the GA’s natural selection operators on a relatively big population in one 

shot, like in the standard GA, these mathematical models are implemented on a randomly selected 

initial small population, which is iteratively upgraded to better consecutive populations. This is called 

virtual sup-population approach, which saves huge computational efforts. 

In order to reduce the computational time and efforts that are consumed in evaluating the structures’ 

natural frequencies using the common FE methods, a properly trained radial basis function neural 

network that called wavelet radial basis function (WRBF) is employed to predict these natural 

frequencies. In the WRBF, the activation function of the hidden layer neurons is substituted with the 

Cosine-Gaussian Morlet daughter wavelet function. 

By this article, the WRBF has been used for the first time in the literature in evaluating the natural 

frequencies, as previously it was used commonly in setting up structural systems. The employed 

constraints handling approach in this study is the Penalty Function method. 

Two benchmark structural problems are tested: 10-bar aluminium truss and 200-bar steel double 

layer grid. Both are discrete problems where the design variables are selected from a list of standard 

cross sections. The size optimization is performed combing the VSP-GA and WRBF, giving optimum 

weights 538 and 1483 kg for the 10-bar and 200-bar structures, respectively. While the VSP-GA and 

the standard RBF provided 548 and 1492 kg. And the optimum weights by the standard GA and WRBF 

are 550 and 1530 kg. While the standard GA with the standard RBF provided 556 and 1543 kg. As 

shown, the minimum obtained weight is by VSP-GA with WRBF. 

 

3) Optimum design of shallow foundation using evolutionary algorithms [7] 

 

This investigation article is proposed to implement a performance assessment of three famous 

evolutionary algorithms (Differential Evolution DE, Evolutionary Strategy ES and Biogeography-Based 

Optimization Algorithm BBO, in addition to four recent variations of that former-mentioned three ( 

biogeography-based optimization with covariance matrix-based migration CMM-BBO, linear 

population size reduction success-history-based adaptive differential evolution algorithm L-SHADE, 

weighted differential evolution algorithm WDE and improved differential evolution IDE). This 

assessment is done on an optimization problem of RC foundation cost minimization. The assessment is 

done comparatively with the most famous evolutionary algorithm: Genetic Algorithm GA. The 

problem is optimized under three different cases: shallow footing design subjected to uniaxial load at 
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the center (case-1), effective moment is added to case-1 (case-2) and the impact of relocating the 

column is considered in case-2 (case-3). 

This above-mentioned benchmark problem has both discrete and continuous design variable domains, 

for the number of steel bars variable (integer number) and for the concrete dimension variables, 

respectively. The Penalty Function approach is employed for constraint handling. 

The results shown that: none of the assessed algorithm shows the best efficiency for the three cases, 

where L-SHADE algorithms provided the best optimum for case-1, WDE for case-2, and BBO 

for case-3. Also, BBO & WDE algorithms are able to deal successfully with the three cases. 

 

4) Progressive collapse design of seismic steel frames using structural optimization [8] 

 

This work uses the GA to cost-effectively design of steel moment frames against the possible 

progressive collapse modes, which is caused by a sudden removal of critical columns. The design 

satisfies both AISC seismic provisions and UFC progressive collapse requirements. It is not a goal of 

this study to obtain global optimal-weight design. This study aims to show the capability of 

optimization in obtaining cost-effective designs against the possible progressive collapse modes, 

especially within few GA generations. 

The tested benchmark structural problem is a 2D nine-story three-bay immediate moment steel frame 

with a fixed base. It is a discrete problem, where the design variables are selected from a list of 

standard cross sections. The structural analysis is performed using the alternate path method 

provided in the 2009 edition of the United States Department of Defense United Facilities Criteria 

(UFC 4-023-03), considering each of the three analysis options: linear static, nonlinear static, and 

nonlinear dynamic. For the linear static procedure, an in-house linear elastic program is used. For the 

nonlinear static and nonlinear dynamic procedures, the DRAIN-2DX program is used to create a planar 

analytical structural model that accounts for both material and geometrical nonlinearities. 

The results came that the steel weight provided by optimizing the frame considering progressive 

collapse modes is 476 kN in case of non-linear dynamic analysis, 498 kN in case of non-linear static 

analysis and 611 kN in case of linear static analysis. While in case of not considering the progressive 

collapse is 440 kN, which is less but as mentioned it was not a goal of this study to obtain global 

optimal-weight design but to show the capability of optimization in obtaining cost-effective designs 

against the possible progressive collapse modes. 
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5) Two-phase genetic algorithm for size optimization of free-form steel space-frame roof structures [9] 

 

In this investigation work, an actual design of two free-form steel space-frame roof structures that is 

performed in a design office by one of the authors (over a period of days), is used as an initial design 

in a size optimization using the investigated the two-phase GA. In phase one, an initial population of 

solutions is generated around that initial design for each design variable (depth, width and thickness 

of rectangular hollow sections), using a normal probability distribution. Then the GA’s operators are 

applied producing a near-global but slightly infeasible optimal solution. Then after in phase two, that 

found solution by phase one is considered as an initial design for phase two, but after increasing the 

thickness dimension of the overstressed members by one increment at a time until all constraints are 

met and the solution is a feasible one. Afterwards, similar to phase one, an initial population is created 

around that initial design of phase two using a normal probability distribution, but with a smaller 

range of design variables. That created initial population in phase two is used as the initial population 

in phase one, repeatedly till one of the stopping criterions is met. 

 

The investigated algorithm is developed through this article in seek of better convergence, less 

computational time and practical optimum weight (size optimization). 

The tested benchmark structures are two free-form steel space-frame roof structures (Two of the 

thirteen train stations making up the Ottawa Light Rail Transit (OLRT) system in Ottawa, Canada, in 

2018.). They are discrete problems, as the sections are selected from a list that holds commercially 

available rectangular hollow sections. For the structural analysis, SAP2000 is employed, considering 

snow, dead, wind, and earthquake loads assuming linearly elastic behavior. 

The investigated two-phase GA provided solutions less than the actual design of the author’s design 

office, by 12% and 7% for station 1 and station 2, respectively. 
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6) Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof [10] 

 

This article is an extension of article 5 [9], where a topology optimization features are equipped to the 

two-phase GA that performs size optimization for two free-form steel space-frame roof structures. 

Topology optimization is performed in phase one through randomly adding cross member in some of 

the grid’s diamond panels, splitting the diamond into two triangles in shape. This is mainly to add 

resistance to the members against the in-plane buckling, and accordingly increasing the section 

capacity. 

The results shown that for station 1, the optimum weight is 220 kips, 

while the design office weight is 214 kips. And for station 2, the 

optimum weight is 252 kips, while the design office weight is 275 kips. 

Which means that the design office weight is lighter that of the 

investigated algorithm for station 1, while the opposite happens for 

station 2. Which leads to a conclusion that: in less complexity of such 

roof structures (like station 1), the diamond pattern is recommended 

than using cross members. 

 

 

7) Shape optimization of free-form steel space-frame roof structures with complex geometries using 

evolutionary computing [11] 

 

This article is an extension of articles 5 and 6 [9] [10], where extra features are equipped to perform 

shape optimization as well to the already existing features of the size and topology optimization. So, 

presented in this article a new methodology which handles all of sizing, topology, and shape 

optimization of free-form steel space-frame roof structures with complex geometries using the two-

phase GA. Both topology and shape optimization are performed during phase one, in phase two the 

unfeasible solution of phase one is just moved towards the feasible search space. 

The shape optimization is achieved through randomly changing only the vertical coordinates of the 

roof joints. 

As deduced from article 5) that no topology optimization is recommended for such roof structures 

with simple geometrics, so station 1 in this article has no cross members added, only size and shape 

optimization are applied. While by performing the shape optimization, it comes out with better 

solution for both stations. 

The final optimal solutions by the two-phase GA optimization are less than the design office solution 

by 25% for both stations. 
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8) Dynamic Optimization of Structures Subjected to Earthquake [12] 

 

Employing Genetic Algorithm (GA) and Neural Networks (NN), this article is proposed to reduce the 

computational time of structural weight optimization of a space truss structure subjected to the El 

Centro (S-E 1940) earthquake loads, that occurred in California. This investigated algorithm seeks 

reducing the computational time of the optimization process through using: 

• Self-Organizing Neural System (SONS), in the approximate predictions of the time history 

responses. Which is an improved version by this work’s authors of the Intelligent Neural System 

INS [13], through substituting the original classification neural networks of the INS by a self-

organizing map (SOM). (SOM is developed by Kohonen [14]). This improvement resulted in a new 

neural system that consists of two main components: a smart classification component (SOM) that 

classifies the input space data (natural frequencies) into subspaces, as each subspace have similar 

natural frequencies. And a prediction component which is a set of some parallel RBF networks, 

each of them is trained to cover one of the classified subspaces to accordingly predict its 

corresponding time history responses in terms of node displacements and element stresses, which 

is the target space of the SONS, and the optimization constraints as well. 

• The GA in the form of the Virtual Sub-Populations (VSP) method is employed to find an optimal 

weight. Which is comparatively less consumer of both computational efforts and time than the 

standard GA, due to the less number of the implemented mathematical models. As in the VSP, 

instead of implementing the mathematical models of the GA’s natural selection operators on one 

relatively big population in one shot, like in the standard GA, these mathematical models are 

implemented on a randomly selected initial small population, which is iteratively upgraded to 

better consecutive populations till reaching an optimal solution. 

The tested benchmark is a 72-bar space truss structure, subjected 

to the El Centro (S-E 1940) earthquake. It is a discrete variables 

problem (specific cross sections). ANSYS is employed to provide the 

training data after performing the time history analyses. While 

MATLAB is employed to design the neural networks. As the 

structure is subjected to dynamic loads, then the stress and 

displacement constraints are functions of time. So that, the 

constrains are transformed from time-dependent to time-

independent through the conventional method of dynamic 

constraints [15]. The structural analysis is performed three times 

with three different methods: exact analysis (EA) -FE analysis-, 

approximate analysis by a single RBF neural network and 

approximate analysis by SONS neural network. 

The optimum design weight obtained using SONS is better than that obtained using RBF network 

(without SOM). However, SONS’s solution not better than the exact analysis solution. But as the 

objective of this article is to reduce the computational time, so that is fulfilled already as the 

computational time consumed by SONS and EA are 7 and 2538 min, respectively. 
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9) Sizing and topology optimization of truss structures using genetic programming [16] 

 

This paper presents a structural optimization genetic programming (SOGP) approach for simultaneous 

sizing and topology optimization of truss structures. Genetic Programming is a prominent stochastic 

evolutionary algorithm. 

In contrast with the GA that utilizes fixed-length representation of 

the population, the GP adopts variable-length computer programs 

in the form of binary trees. Which empowers GP to identify 

redundant truss members in complex problems. Each GP individual 

represents a truss. GP is more efficient in exploring the search 

space than other EAs. As well to simultaneously synthesizing its 

structure and tuning its parameters, which makes it capable of 

simultaneously performing size and topology optimization. 

The three tested benchmark structural problems are: 10-element 

6-joint truss, 17-element 9-joint truss and 39-element 12-joint 

truss. They have a continuous domain for the design variables. The 

penalty function is employed for the constraint handling. 

 

The results shown that the investigated approach SOGP shown higher capability in optimizing the 

three benchmarks structures, comparatively to eight famous optimization algorithms in the literature: 

Conventional methods [17,18,19], Genetic algorithm (GA) [20], Harmony Search algorithm (HS) [21], 

Heuristic Particle Swarm Optimization (HPSO) [22], Ant Algorithm [23], Adaptive Multi-Population 

Differential Evolution (AMPDE) [24], Grammatical Evolution (GE) and Dual-Optimization in 

Grammatical Evolution (DO-GE) [25], Hybrid Particle Swarm and Swallow Optimization algorithm 

(HPSSO) [26] and Water Evaporation Optimization (WEO) [27]. 

 

10) Guided genetic algorithm for dome optimization against instability with discrete variables [28] 

 

As the “stability” is a decisive factor in the design of domes, this article is presented in order to 

enhance the stability and accordingly to improve the buckling capacity of space domes. Through a 

guided genetic algorithm GGA. This article considers the joints as rigid. 

As an index to represent the stability of a dome from the perspective of joint well-formedness, the 

relative gradient of joint well-formedness (gra_r) is defined: the gra_r is a simple scalar that indicates 

the tendency to lose stability quantitatively rather than the ability to keep stable (gra_r is identified 

from the structural response). The lowest value of gra_r (gra_rmin) is considered as an indication of the 

buckling capacity (Pcr). The higher the value of gra_rmin, the greater the Pcr that the dome provides. 

Accordingly, the optimization objective is set as the maximization of (gra_rmin), in order to get an 

optimum (maximum) buckling capacity of the domes. 

The GGA works on guided mutation rather than stochastic mutation of the standard genetic 

algorithm, to realize oriented evolution for rapid search, as follow: 
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• In the random mutation, the members to be altered are randomly selects. While in the guided 

mutation, only the critical members are altered. 

• In the random mutation, the sections may be strengthened or weakened. While in the guided 

mutation, the risky members are strengthened and the stiffness-redundant members are 

weakened. 

• In the random mutation, section’s size may be changed greatly. While in the guided mutation, a 

critical section’s size is just slightly changed. Thus, the guided mutation guarantees the continuity 

in terms of both chromosome and phenotype, which leads to a robust optimization algorithm. 

Two benchmark structures are optimized in order to investigate the capability of the GGA, which are 

two space domes: dome-1 (22m span) and dome-2 (50m span). The two size optimization problems 

are discrete variables problems (specific cross sections).  

The results shown that the GGA optimum buckling capacity is 94.36 and 32.55 kN/m2, while by the 

standard GA is 93.84 and 28.44 kN/ m2 for dome-1 and dome-2, respectively. In addition to that the 

solutions by the GGA are obtained in less computational time and number of generations. 

 

11) Design optimization of domes against instability considering joint stiffness [29] 

 

This article is an extension of articles 10 [28], where a single-layer space dome is optimized to improve 

the buckling capacity of the dome by a guided Genetic Algorithms (GGA), while joint flexibility is 

further considered in this article in the optimization process. Thus, in this paper the instability 

mechanism could be caused by the failure of members or joints as well. 

The relative gradient of the well-formedness of flexible joints, denoted as gra_r, is defined as an index 

that represents the stability of the dome from the perspective of joint well-formedness that is 

achieved from both members and joints stability, as joints are not considered rigid as in article 10 [28]. 

The objective function is still to maximize the minimum gra_r, in order to get an optimum (maximum) 

buckling capacity of the dome. The benchmark structures are the same two space dome as in articles 

10 [28]. They are size optimization discrete problems (section variables: specific cross sections, joint 

variables: diameter and stiffness of the joints). 

The results shown that the buckling capacity obtained by the GGA while considering the joints as 

flexible is 92.55 and 32.11 kN/m2, while being 94.22 and 32.55 kN/m2 when the joints are considered 

rigid, for dome-1 and dome-2, respectively. 
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12) Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints 

[30] 

 

This study aims to present a practical method for optimization of symmetric cold-formed steel (CFS) 

beam-column members using Genetic Algorithm (GA). A framework that aims to maximize the 

ultimate capacity of the CFS beam-columns under the combined effects of axial and bending stresses. 

The used CFS beam-column members are: short, intermediate and long in lengths (1000, 2000, and 

3000 mm). Which are subjected to axial compressive loads with eccentricities that vary from e = 0, 10, 

20 and 30 mm, in order to create different levels of bending moment about the X-axis. The cross-

sectional shapes were based on using variations number of rollers (4, 6, 8, 10 or 12) and lips (1, 2 or 3). 

A roller is a joint between two segments. One lip is considered for the 4 rollers sections, up to two lips 

for the 6 and 8 rollers sections, up to three lips for the 10 and 12 rollers sections. This forms eleven 

cross-sectional shapes, which can be identified by a two-digit numbers standing for the number of 

rollers and the lip strips, e.g. 4-1 shape: 4 rollers and one lip. 

132 different cases of beam-column member are shape-optimized (different in shape (11 shapes), 

length (1000, 2000 and 3000 mm) and load eccentricities (0, 10, 20 and 30mm)). The design variables 

domain is continuous, for the variables: the angles between the segments and the lengths of the 

segments. 

Based on the results, sections with shape 10-2, 12-3 and 10-3 (as shown in [30]) are the optimum 

design solutions for the 1000, 2000 and 3000mm beam-column members, respectively, under the four 

eccentricities. The results shown also that as the load eccentricity increases, the shape of the 

optimized beam-column members changes from lumped to more spread shapes. 

 

13) Coupled element and structural level optimisation framework for cold-formed steel frames [31] 

 

In this article, a coupled framework is presented for both size optimization and structural-

performance optimization of CFS portal frames. 

A Real-Coded Genetic Algorithm (RC-GA) was programmed to solve the objective functions. The main 

advantage of RC-GA compared to conventional binary GA methods is that the genetic operators are 

directly applied to the design variables without coding and decoding. 

At first, a size optimization is performed for the standard CFS lipped-channel beam sections with 

respect to their flexural capacity. Where the design variables domain is continuous for each of the 

height, width and lip length. Then, structural-performance optimization is performed to find the best 

configuration of a pitched-frame with knee braces, in terms of the weight per unit area. This 

structural-performance optimization is performed twice, once using the standard CFS lipped-channel 

beam sections, and once else using the size-optimized sections. Where the design variables domains 

are discrete and continuous among the variables: knee depth, knee angel, frame spacing (2 to 20 m) 

and frame pitch (6° to 30°). A MATLAB code was developed to provide a link between ANSYS and the 

RC-GA optimization code. 

For the size optimization, a simply-supported beam subjected to three different uniform distributed 

load (UDL) cases: 4, 6 and 8 kN/m, and in three different spans: 4, 6 and 8 m, and for the structural-
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performance optimization, a pitched-frame with 13.6m span and 5.4m eave height, are considered as 

the benchmark problems in investigating the proposed algorithm. 

The results shown that the optimum weight per unit area of the frame after implementing the two 

optimization kinds is 10.19 kg/m2, while being 11.85 kg/m2 when only size optimization is considered, 

and 12.75 kg/m2 when neither considering size nor structural-performance optimization (using 

standard CFS sections and reference frame geometry and knee brace configuration). 

 

 

 

 

 

 

 

14) Multi-Objective Optimization of Spatially Truss Structures Based on Node Movement [32] 

 

This article introduces and improved Multi-objective Evolutionary Algorithm (MOEA) method in 

topology optimization of spatially discrete structures. The innovation of this study is that it uses the 

coordinate of the nodes as the optimization variable. Considering the weight of the structure in 

addition to the displacement of the nodes as the objective functions, producing not a single solution, 

but a pareto frontier [33]. 

During the very few steps of the optimization, relatively few Pareto front points are existing, and often 

obvious inflection points. As the number of the iterations increase, the points on the pareto frontier 

line become evenly more distributed, and then inflection points become more blurred. As the process 

further continue, the pareto frontier does not stop heading forward until a convergence criterion is 

met. 

Two benchmark structures are used in order to investigate the capability of the introduced method, 

which are: space truss and space tower. 

The proposed algorithm in this article is tested and the results shown the MOEA’s relatively fast rate 

of convergence and good diversity. 
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15) Optimizing the steel girders in a high strength steel composite bridge [34] 

 

Using the Genetic Algorithm (GA), this study aimed at identifying the potential benefits of hybridizing 

a steel girder with different steel grades within its two flanges and web. These benefits considered as 

the weight, the material cost and the environmental impact (CO2 emission). Eighteen different 

combinations of different steel grades considered to perform size optimization of the girder. The size 

optimization was performed on a continuous domain of the variables: thickness, width and height of 

the I-section girder. 

10 ⩽ tuf ⩽ 60, 10 ⩽ tlf ⩽ 60, 10 ⩽ tw  ⩽ 40, 200 ⩽ buf ⩽ 100, 200 ⩽ blf ⩽ 1000 and 1000 ⩽ hw ⩽ 2800 

The considered benchmark structural problem in this study is an I-section steel bridge’s girder with 

32.1 m length. The results are analyzed as normalized values against the homogeneous S355 solution. 

The optimum solution with respect to the weight and CO2 is achieved by the solution of a 

homogeneous combination of S690 grade for the web and both flanges. And the optimum solution 

with respect to the cost is achieved by the solution of a hybrid combination of S460/S460/S690 

grades, for the web, upper flange and lower flange, respectively. By comparing these solutions with 

the solution of the conventional homogeneous combination of S355 grade, this proposed method 

offers 33% less in weight, 28.3% less in CO2 and 16.4% less in cost. As a result’s notice, the highest 

steel grade in such cases should be placed in the lower flange. Furthermore, the steel grade of the 

web and upper flange seems to be of equal importance. 
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B. Swarm Intelligence Metaheuristics 

 

1) Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method [35] 

Employing each of swarm-based search technique (binary particle swarm optimization BPSO) and 

Neural System (RBF NN), this article is proposed to reduce the computational time of structural weight 

optimization of space truss and steel shear frame. This investigated algorithm seeks reducing the 

computational time of the optimization process through using: 

• Radial Basis Function neural network (RBF) in the approximate predictions of the time history 

responses in terms of inter-story drifts as the target space of the RBF, which is also the 

optimization constraints. While the input space of the RBF-NN is the design variables (cross-

sectional properties of the columns). 

• Binary Particle Swarm Optimization (BPSO) for finding an optimal weight.  

The tested benchmarks are 72-bar space truss structure subjected to the Californian El Centro (S-E 

1940) earthquake loads and a 5-story steel shear frame structure subjected to the Chile (N10E-1985) 

earthquake loads. Both are discrete variables problems (specific cross sections). ANSYS is employed to 

provide the training data after performing the time history analyses. While MATLAB is employed to 

design the neural networks. As the structure is subjected to dynamic loads, then the stress and 

displacement constraints are functions of time. So that, the constrains are transformed from time-

dependent to time-independent through the conventional method of dynamic constraints [15]. The 

structural analysis is performed two times with two different methods: exact analysis (EA) -FE 

Analysis-, 

approximate analysis by the RBF neural network. 

The optimum design weight obtained using RBF-BPSO is not better than that obtained by the exact 

analysis. But as the objective of this article is to reduce the computational time, so that is met already 

as the consumed computational time by RBF and EA in the optimization process of the 72-bar space 

truss are 6.4 and 2538 min, respectively. While for the 5-story steel shear frame, the consumed 

computational time by RBF and EA are 5.3 and 1342 min, respectively. 
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2) Solving Truss Topological Optimization with Discrete Design Variables via Swarm Intelligence [36] 

 

The main purpose of this article is to display the potential of a modified Lbest-based PSO (MLPSO), 

while being employed to perform topology optimization, in cooperation with a geometrical 

consistency check that is tightly connected to the ground structure approach of topology optimization. 

By this work, the proposed method is investigated in finding the optimum layout of a truss structure 

with minimization of compliance (maximization of stiffness). 

The proposed method employs the ground structure approach for constituting the design domain, 

then when the optimization algorithm (MLPSO) is applied, which searches at random for possible 

solutions within that design space, and before the structural analysis operator runs, a geometrical 

consistency check is applied in order to avoid computing any proposed non-realistic solutions 

(solutions with a mechanism or with redundant members), thereby reducing the computational effort 

and time. 

 

The L-best model of PSO is a ring-topology model of PSO, 

where each individual is not influenced by all the neighbor 

individuals but only the best-performance ones, in contrast 

with the other G-best model of PSO. 

Three cases of a benchmark truss structure are considered: 

single-load wheel, single-load cantilever and single-load 

Michell beam. All are discrete-design-variable problems. 

The benchmark structures are optimized two times with two 

different ring topologies of the L-best model (k=2 and k=3), 

with two different domains for the design variable (member 

volume) as well: [0,1] or [0,5]. So, four times in total for each 

structure. 

 

The displacement is considered during the optimization as a state variable. The Quadratic Penalty 

Function is employed for the constraints handling. And for the discrete variable handling, the 

Rounding-Off strategy is employed. 

The obtained results are not better than but same as the best-found solution in the literature of the 

same structures, in (Achtziger and Stolpe, 2007) [37]. For the above-mentioned four times 

optimization of each structure. 
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3) An integrated particle swarm optimizer for optimization of truss structures with discrete variables [38] 
 

This study presents an integrated particle swarm optimization (iPSO) algorithm, through integrating 

the weighted particle concept to enhance the search capability overriding the local optimal traps 

within the search space. As in the standard PSO algorithm, when a particle stands very close to its own 

previous best position and/or to the global best particle, the role of one of this two guidance particles 

can be highly reduced or even be vanished. So that, the iPSO uses the weighted particle which is 

indeed a particle at the gravity center of the Pbest’s swarm, in order to improve the flight path of 

these particles that are flying excessively close to either their own prior best point, that is stored in 

Pbest, or close to the global best point, that is stored in Gbest. The iPSO also integrates the Fly-Back 

technique to handle the optimization constraints. The constrained handling approach that is followed 

in this article in an improved version of the Fly-Back technique (He et al. 2004), which considers the 

type of the violated constraints. In contrast with the well-known Penalty Function approach, this Fly-

Back technique does not have any tunning parameters. This Fly-Back technique guarantees the 

feasibility of the final solution as well, as it keeps all the particle in the feasible region during the 

optimization. 

Four benchmarks truss structures are optimized in order to investigate the potential of the proposed 

iPSO in the size optimization of truss structures: 10-bar planar truss, 25-bar space truss, 72-bar space 

truss and 244-bar space-truss tower. All of them are discrete problems (standard cross sections). The 

results are compared with corresponding optimum solutions by other different algorithms in the 

literature, and the obtained weights by the proposed iPSO after size optimization show the best 

capability among the solutions of the other algorithms, for the four benchmark structures except only 

for the 25-bar truss structure where the iPSO’s solution came as secondly-rated after an obtained 

solution by the well-known Genetic Algorithm.  

 

4) Weight minimization of truss structures with sizing and layout variables using integrated particle 

swarm optimizer [39] 
 

This article is an extension the done work in article 3 [38], where additional features are added to 

implement topology optimization as well to the size optimization. Which required also to add a 

stability check to the iPSO algorithm, as the topology optimization process sometimes leads to 

unstable systems due to the nature of randomly picking possible solutions. So that, an evaluation 

technique of the condition number of the stiffness matrix is equipped into the algorithm. Such that, if 

the condition number of the stiffness matrix is greater than a predefined large number, system is 

determined as unstable and accordingly ignored, saving computer’s effort and time. 

Five benchmarks truss structures are optimized in order to investigate the potential of the proposed 

iPSO in the size and topology optimization of truss structures: 15-bar planar truss, 18-bar planar truss, 

25-bar space truss, 39-bar space truss and 47-bar space-truss tower. All of them are discrete problems 

(standard cross sections). The results are compared with corresponding optimum solutions by other 

different algorithms in the literature, and the obtained weights by the proposed iPSO algorithm after 

size and topology optimization came as secondly-rated solutions after the obtained solutions by the 

sequential cellular particle swarm optimization (SCPSO) algorithm (Gholizadeh 2013), for the first four 

benchmark structures. While the best weight for the fifth benchmark structure is obtained by the 

proposed iPSO algorithm. 
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5) Comparison of Two Metaheuristic Algorithms on Sizing and Topology Optimization of Trusses and 

Mathematical Functions [40] 

 

The current study intends to compare the performances of two different metaheuristic algorithms in 

size-topology optimization, the Integrated Particle Swarm Optimizer (iPSO) (article 4 [39]) and the 

Teaching-Learning Based Optimizer (TLBO). It worthy to mention that in the TLBO, the objective 

function evaluations (OFEs) is the most time-consuming process. As the TLBO is a two-phase 

algorithm, so the objective function is evaluated twice in each iteration, once in the teaching phase 

and another in the learning phase. 

Two truss structures are considered to demonstrate the feasibility and validity of the iPSO and the 

TLBO in handling the size and topology optimization of trusses: 11-bar and 39-bar truss structures. The 

two problems have continuous domain for the design variables (cross sections and nodes’ 

coordinates). The iPSO provided a slightly better solutions than the TLBO, as the obtained weight of 

the 11-bar truss by the iPSO is 21709 N, while being 21784 N by the TLBO. And for the 39-bar truss, 

867 N by the iPSO, and 877 by the TLBO. Furthermore, the superiority of the iPSO (single-phase: one 

OFE/iteration) over the TLBO (double-phase: two OFEs/iteration) is obviously determined regards the 

consumption of the computer burdens, in terms of the consumed time and the number of the 

objective function evaluations. As shown in the following table. 

 

 

 

 

 

6) Interactive fuzzy search algorithm: A new self-adaptive hybrid optimization algorithm [41] 

 

The proposed method combines the affirmative features of the Integrated Particle Swarm Optimizer 

(iPSO) (article 4 [39]) and the Teaching and Learning Based Optimizer (TLBO) with a nine-rule fuzzy 

decision mechanism. Named as Interactive Fuzzy Search Algorithm (IFSA). The proposed algorithm 

utilizes two main navigation models to search the domain: tracking, which is a feature of iPSO, and 

interacting, which is a feature of TLBO. The balance between these two navigation models is achieved 

through a factor called “tendency factor”, as a tuning parameter. IFSA also utilizes the inertia weight 

also as a tuning parameter, which is a feature of iPSO to adjust the exploration level of the tracking 

model. Both tendency factor and inertia weight are adaptively determined thanks to an employed 

fuzzy module. In addition to that, the IFSA provides a self-adaptive synchronization between local and 

global search strategies by achieving a balance on the rate of exploration and exploitation behaviors. 

Both of these tuning parameters should be adjusted via implementing a series of sensitivity analyses if 

there is no such fuzzy module. So, to avoid such time-consuming sensitivity analyses, the fuzzy module 

is equipped to the ISA, introducing through this paper the proposed IFSA. Such fuzzy module does 

permanently monitor the search process and automatically designate the proper values for the tuning 

parameters through employing linguistic terms. 

11-bar Truss Time (s) OFEs Weight (N) 

iPSO 210.22 780 21708.91 

TLBO 552.91 1100 21784.36 

39-bar Truss Time (s)  OFEs Weight (N) 

iPSO 640.55 16000 867.35 

TLBO 3025.59 60000 1089.05 
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Two size optimization problems are considered to assess the search capability of the proposed IFSA: 

72-bar truss structure and 160-bar pyramid space truss, both are discrete problems (standard cross 

sections). 

The results shown that the proposed IFSA provided fair optimum weights comparatively to solutions 

of other algorithms found in the literature. But in so much less number of objective function 

evaluations (OFEs). 

 

7) Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm [42] 

 

This article displays an assessment of the search performance of the interactive fuzzy search 

algorithm IFSA (article 6 [41]) in the size optimization of large-scale structures, comparatively to 

different techniques (Stochastic: PSO, TLBO, iPSO, ISA) and (deterministic gradient-based: 

simultaneous analysis and design SAND). 

Three benchmark structures are considered in the investigation of the IFSA’s capability: 582-

bar, 1262-bar and 4666-bar truss towers. The first-mentioned one is a discrete problem, 

where the design variables (cross sections area) are selected randomly from the standard list 

of AISC code. While the second and third problems are continuous, as the cross sections are 

selected randomly from the range [1,100] and [1,300] in2, respectively. 

Among the results of the different deterministic and stochastic techniques, IFSA provided the 

best solutions for all the benchmark structures, in terms of the weight and the computational 

cost (number of objective function evaluations). 
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8) Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy 

search algorithm [43] 

 

This investigation article assesses the potential of the interactive fuzzy search algorithm IFSA (article 6 

[41]), throughout a size and layout optimization of trusses while considering the natural frequency as 

a problem constraint, which are very sensitive to any configuration changes in the system. The Penalty 

Function method is used in this work for the constraint handling. Five benchmark structural problems 

are optimized in order to investigate the IFSA’s performance: 37-bar truss bridge, 52-bar dome, 72-bar 

space truss, 120-bar dome and 200-bar truss structure. For the first-two-mentioned problems, size 

and topology optimization is considered. While only size optimization is performed for the other three 

problems. 

The results shown that the IFSA provided fair optimum weights comparatively to solutions of other 

algorithms found in the literature. But in so-much less number of objective function evaluations 

(OFEs), thanks to the fuzzy logic which leads the algorithm to ignore the useless iterations that has no 

progress throughout the optimization process. 

 

 

 

 

 

 

9) Optimum performance-based design of eccentrically braced frames [44] 

 

This article introduces a weight minimization of an eccentrically braced frame (EBF) while following 

the performance-based design (PBD) method. As an objective function, both structural weight and 

structural damage are considered to be minimized. Four metaheuristic optimization algorithms are 

employed in this investigation work: accelerated water evaporation optimization (AWEO) [45], particle 

swarm optimization PSO [46], colliding bodies optimization (CBO) [47] and enhanced colliding bodies 

optimization ECBO [48]. All are population-based algorithms that are swarm-intelligence based. Two 

benchmark structures are optimized in order to assess the above-mentioned four algorithms in the 

EBF weight optimization using the PBD method, these two structures are 2D steel EBFs: four-span 

three-story frame and five-span six-story frame. Both problems have a discrete domain for the design 

variables. The Penalty Function method is used for the constraint handling. The structural analysis is 

performed using the nonlinear static pushover analysis. 

The results shown that among the four mentioned metaheuristics, the ECBO offered the best optimal, 

followed by the CBO’s solutions, for both benchmark structures. 
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10) Optimum design of buckling-restrained braced frames [49] 

 

This article is presented in order to introduce an approach of minimizing the weight and maximizing 

the dissipated energy (that results in greater ductility) of the buckling-restrained braced frames (BRBF) 

under seismic excitation, through performing each of SSA and ECBO, separately. The optimization is 

implemented using two different metaheuristic algorithms: Enhanced Colliding Body Optimization 

(ECBO) [48] and Salp Swarm Algorithm (SSA) [50]. Both algorithms are swarm-based. Two benchmark 

structures are optimized to investigate the proposed method: 3-stories and 6-stories BRBFs. Both have 

discrete and continuous spaces for the design variables. The Penalty Function method is used for the 

constraint handling. 

The results shown that the ECBO outperformed the SSA for the optimization of the BRBF structures. 

Also, it is observed that the Buckling-Restrained Braces (BRBs) effectively reduce the weight of the 

structure by minimizing the base shear. 

 

 

 

 

 

 

 

 

 

 

 

11) A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete 

Variables [51] 

 

In this article a new method is introduced where the GA algorithm is merged with PSO in one 

algorithm called Hybrid Particle Swarm Optimization and Genetic Algorithm (PSOGA), not only to 

enhance the global exploration by overriding the local optimal traps which is a shortcoming of the 

standard PSO, but also to help in achieving better optimal design. This proposed algorithm is 

investigated on a discrete size optimization problems of truss structures. Using some benchmarks 

truss problems found in the literature: 25-bar spatial truss, 10-bar truss, 52-bar truss, 72-bar spatial 

truss. The result from the proposed method PSOGA are compared to those of several popular 

metaheuristic algorithms in the literature. The results came to outperform the proposed algorithm in 

this article (PSOGA) on the rest algorithms in the comparison, where the obtained weight by the 

PSOGA is the minimum among the weights by the rest algorithms. 
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12)  Multi-objective optimization of inter-story isolated buildings using metaheuristic and derivative-free 

algorithms [52] 

 

This article assesses the performance of six multi-objective optimization (MOO) algorithms in selecting 

the optimum configuration of which specific stories should host the seismic isolation devices, and in 

finding the effective stiffness and damping properties of the isolation layers, in the Inter-Story 

Isolation (ISI) technique. The considered objective functions are the maximum standard deviations of: 

the inter-story drift ratio and the isolation drift. The above-mentioned six MOO algorithms are: four 

metaheuristic algorithms (Multi-objective genetic algorithm (MOGA), non-dominated sorting genetic 

Algorithm-III (NSGA-III), multi-objective particle swarm optimization (MOPSO), multi-objective 

dragonfly algorithm (MODA)), one derivative-free deterministic algorithm (bi-objective Mesh Adaptive 

Direct Search (BiMADS)) and a random search algorithm. In this investigation work, a six-story building 

is considered as a benchmark structure. Where a single, 2 or 3 isolation layers are considered as 

different configurations of the ISI. It is observed that by increasing the number of the isolation layers, 

the results from the different algorithms become less consistent. So that, the 3 layers configuration is 

followed in the comparison between the algorithms, where the isolation layers applied at the base, 

the 2nd story and the 4th story of the building. The comparison result referred to the superiority of 

the deterministic derivative-free BiMADS in such kind of MOO over the rest algorithms, followed by 

MODA and MOPSO. 
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C. Other Nature-Inspired Metaheuristics 

 

1) Interactive autodidactic school: A new metaheuristic optimization algorithm for solving mathematical 

and structural design optimization problems [53] 

 

This article introduces to the literature a new algorithm called Interactive autodidactic School (IAS), 

which based on similar concepts of the well-known Teaching-Learning Based Optimization (TLBO) [54] 

that holds two main stages of improving each student’s capability: once through direct guide by the 

best student in the class (the candidate with the best fitness), and another through interacting with 

the other students, but with an additional third stage that helps in overriding the optimal traps, which 

is called “the challenge of the new student” (CNS). Instead of the “teacher phase” and “learner phase” 

in the TLBO, these two stages are called in this proposed algorithm “individual training session” (ITS) 

and “collective training session” (CTS), respectively. Hence, the proposed algorithm process follows 

three consecutive stages: ITS, CTS, then CNS. First of all, the best-fitness candidate is determined and 

positioned as the leading student. Then the ITS stage starts through randomly splits the population 

into sub-groups, each group holds two candidates. Each candidate goes into a learning-directed 

interaction session with the leading student, then through the CTS stage these two members meet 

and review the information they had received in their peer-to-peer sessions with the leading student 

during the ITS stage. Then they gather with the leading student in order to discuss any 

misunderstandings. Through such behaviors, it is obvious that not only the knowledge status of each 

candidate determines his capability, but also the candidate’s social interaction does so, e.g. 

communication skills, team work skills, and cooperation. Which definitely affects the learning process 

efficiency of the group. Eventually, the CNS stages comes to play in order to emphasize the 

exploration capability of the algorithm. As when the best-found candidate so far (which may be a local 

optimal in fact) is highly affecting and pulling the rest candidates, that may lead the entire population 

to exploit just the area around this best-found candidate, while missing exploring other promising 

spots within the search space. So that, the CNS mechanism is equipped into the IAS algorithm in order 

for a new randomly-positioned student to encourage the population to revolt against the temporary 

leader from time to time, pulling the population to explore more spots within the search space. As if 

that new candidate shows higher capability (fitness function value) than the current-state leader, it 

takes over the lead onwards. It worthy here to mention that the IAS outperforms the other well-

known metaheuristic optimization algorithms for being a parameter-free algorithm. 

This proposed IAS algorithm is investigated in this article through twenty mathematical and seven 

structural benchmark optimization problems. Comparing the results with some of the most-known 

metaheuristic optimization algorithms. The comparison is presented with respect to the optimal 

solution (e.g., structural weight) and the computational cost (number of the objective function 

evaluations). The results of the twenty mathematical benchmarks shown that among seven used 

optimizers, the IAS was the only optimizer that succeeded to get the exact optimal for all the twenty 

functions. 

The seven structural benchmark problems are: 25-bar spatial truss, 72-bar spatial truss, 200-bar 

planar truss, stepped cantilever beam, reinforced concrete beam, welded beam and cylindrical 

pressure vessel. The first-mentioned three problems are discrete (specific cross section areas) size 
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optimization, the fourth is continuous (cross section height and width design variables) size 

optimization, the fifth is discrete (cross section height, steel bars sectional area) and continuous (cross 

section width) size optimization, the sixth is continuous (weld’s thickness and height, member width 

and height) size optimization, and the seventh problem is continuous (thicknesses of the shell and the 

head plate, inner diameter and length of the cylinder) size optimization. The results shown that for the 

first-mentioned three truss optimization, the proposed IAS outperformed six metaheuristics: GA, HS, 

HPSO, HPASCO, DE and DAJA in the obtained optimal weight, however the IAS was not the best in 

terms of the computational cost (number of objective function evaluations). For the stepped 

cantilever beam, the IAS got the same optimal weight of further five optimization algorithms: MMA, 

GCA(I), GCA(II), CS and SOS. For the reinforced concrete beam, the IAS obtained the best solution 

among other six optimization algorithms: SDRC, GHNALM, GHNEP, GA, FLCAHGA, CS. For the welded 

beam, the IAS got the same optimal weight of further eight optimization algorithms: GA4, CPSO, CAEP, 

HPSO, NMPSO, TLBO, MBA, CSA, however in mush less computational cost (number of objective 

function evaluations) than the other eight algorithms. And for the cylindrical pressure vessel, the IAS 

obtained the best optimal solution among other ten algorithms: GA3, GA4, CPSO, CAEP, HPSO, 

NMPSO, TLBO, MBA, CSA, GQPSO and CDE, in the least computation cost (number of objective 

function evaluations) as well. 
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Ch 3 State-of-the-Art MOAs in Structural Optimization 

In this section, some of the most promising and trending MOAs in structural optimization are introduced in 

short but descriptive paragraphs, each is presented in the form of: inspiration, mathematical modelling and 

how-it-works. These algorithms are classified into three categories: Evolutionary Computation, Swarm 

Intelligence and other Nature-Inspired algorithms. 

 

A. Evolutionary Computation Metaheuristics 
 

1) Differential Evolution [55] 

In 1995, Storn and Price [13] proposed a new floating-point evolutionary algorithm for global 

optimization and named it differential evolution (DE), by implementing a special kind operator which 

sought to create new offsprings from parent chromosomes. DE generates new vectors by adding the 

weighted difference vector between two population members to a third member. If the resulting 

vector corresponds to a better objective function value than a population member, the newly 

generated vector replaces this member. The comparison is performed between the newly generated 

vector and all the members of the population excluding the three ones used for its generation. 

Furthermore, the best parameter vector is evaluated in every generation in order to keep track of the 

progress achieved during the optimization process. Several variants of DE have been proposed so far, 

but the two most widely used are the following. 

According to the variant implemented, a donor vector 𝑣𝑖,𝑔+1 is generated first according to: 

𝑣𝑖,𝑔+1 = 𝑠𝑟1,𝑔 + 𝐹 ⋅ (𝑠𝑟2,𝑔 − 𝑠𝑟3,𝑔)  

before the computation of the ith parameter vector 𝑠𝑖,𝑔+1. This step is equivalent to the mutation 

operator step of genetic algorithms or evolution strategies. Integers r1, r2 and r3 are chosen randomly 

from the interval [1,NP] while i r1, r2 and r3. F is a real constant value, called mutation factor, which 

controls the amplification of the differential variation (𝑠𝑟2,𝑔 − 𝑠𝑟3,𝑔) and is defined in the range [0,2]. In 

the next step the crossover operator is applied by generating the trial vector 𝑢𝑖,𝑔+1= 

[𝑢1,𝑖,𝑔+1, 𝑢2,𝑖,𝑔+1,…, 𝑢𝐷,𝑖,𝑔+1]T which is defined from the elements of the vector 𝑠𝑖,𝑔 and the elements of 

the donor vector 𝑣𝑖,𝑔+1whose elements enter the trial vector with probability CR as follows: 

𝑢𝑗,𝑖,𝑔+1 = {
𝑣𝑗,𝑖,𝑔+1 𝑖𝑓 rand𝑗,𝑖 ≤ 𝐶𝑅 or 𝑗 = 𝐼𝑟𝑎𝑛𝑑

𝑠𝑗,𝑖,𝑔 𝑖𝑓 rand𝑗,𝑖 > 𝐶𝑅 or 𝑗 ≠ 𝐼𝑟𝑎𝑛𝑑
 

𝑖 = 1,2, . . . , 𝑁𝑃 and 𝑗 = 1,2, . . . , 𝑛 

 

where 𝑟𝑎𝑛𝑑𝑗,𝑖 ∼ 𝑈[0,1], 𝐼𝑟𝑎𝑛𝑑 is a random integer from [1,2,...,n] that ensures that 𝑣𝑖,𝑔+1 ≠ 𝑠𝑖,𝑔. The 

last step of the generation procedure is the implementation of the selection operator where the vector 

𝑠𝑖,𝑔, is compared to the trial vector 𝑢𝑖,𝑔+1: 

𝑠𝑖,𝑔+1 = {
𝑢𝑖,𝑔+1 if 𝑓(u𝑖,𝑔+1) ≤ 𝑓(𝑠𝑖,𝑔)

𝑠𝑖,𝑔 otherwise
             𝑖 = 1,2, . . . , 𝑁𝑃  
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2) Multi-Trial vector-based Differential Evolution MTDE [56] 

Differential Evolution algorithms’ performance is highly affected by the employed search strategy and 

the parameter settings. As per the no-free-lunch theorem, a combination of search strategies can be 

an effective way to cover a variety of problems using multiple search strategies instead of only one 

search strategy. Hence, this algorithm (MTDE) is proposed, enriched by an efficient combination of 

three different search strategies, producing a new approach called Multi-Trial Vector MTV. These 

three different search strategies are Trial Vector Procedures (TVP): Representative based (R-TVP) 

which maintains the diversity, Local Random based (L-TVP) that ensures a proper balance between 

exploration and exploitation, and Global Best History based (G-TVP) that enhances the exploitation 

ability of the algorithm. In contrast with the previous DEs works which distribute the main population 

into smaller subpopulations with same sizes, the MTV employs a winner-based distribution policy, that 

distributes the subpopulation between the TVPs not in equal manner, but the better search strategy 

will be, the larger subpopulation it will handle. The MTV approach introduces adaptive movement 

steps thanks to using a life-time archive that preserves and shares the information of the restored 

promising solutions. This life-time archive also maintains the population diversities in the MTV 

approach. In another words, the MTV approach consists of four phases: winner-based distributing, 

multi-trial vector producing, evaluating and population updating, and life-time archiving. 
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B. Swarm Intelligence Metaheuristics 

 

1) Grey Wolf Optimizer [57] 

GWO is a swarm-based Metaheuristic which is inspired by the grey wolves (Canis lupus). It mimics the 

leadership hierarchy and hunting mechanism of grey wolves in nature. To model this social behavior 

mathematically, a random population of grey wolves (candidate solutions) is firstly generated, then 

over course of iterations, the population candidates are defined within 4 classes: alpha, beta, delta 

and omega -the 4 types of grey wolves-. The fittest solution is alpha, the second and third best 

solutions are beta and delta, respectively. The rest of the candidates are omega. The hunting 

(optimization) is guided by alpha, beta, and delta, mega candidates follow them. The three steps of 

getting the prey (optimization) are encircling prey, hunting and attacking prey. 

To mathematically model these three behaviors, the following equations are employed: 

- The distance of the ith wolf (search agent) to the prey: 

𝐷 = |𝐶 · 𝑋𝑝(𝑡) − 𝑋(𝑡)|  

where t indicates the current iteration, C is a coefficient vector (𝐶 = 2 · 𝑟2). X is the current 

position vector of the ith search agent. Xp is the position vector of the prey. 

- The next position vector: 

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 · 𝐷  

where A is a coefficient vector (𝐴 = 2𝑎 · 𝑟1 − 𝑎, 𝑟1 & 𝑟2 are two random vectors in [0,1], 𝑎 is 

linearly decreased from 2 to 0 to switch the value of A outside & inside the range of [-1,1]), when 

|A| > 1 (exploration), while if |A| < 1 (exploitation). (·) is an element-by-element multiplication. 

- Since the alpha, beta, and delta are the agents who lead the search, omega is a follower. This 

hunting is mathematically described through the following equations: 

𝐷𝛼 = |𝐶1 · 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 · 𝑋𝛽 − 𝑋|, 𝐷𝛿 = |𝐶3 · 𝑋𝛿 − 𝑋| 

𝑋1 = 𝑋𝛼 − 𝐴1 · 𝐷𝛼, 𝑋2 = 𝑋𝛽 − 𝐴2 · 𝐷𝛽 , 𝑋3 = 𝑋𝛿 − 𝐴3 · 𝐷𝛿  

𝑋(𝑡 + 1) = (𝑋1 + 𝑋2 + 𝑋3)/3  

The GWO algorithm starts with a set of random solutions. Then, iteratively, the search agents update 

their positions with respect to the prey, the prey may be either a randomly chosen solution or the 

best obtained solution so far, in case of exploration or exploitation, respectively. The switch between 

the exploration and exploitation components is controlled by linear reduction of the parameter “𝑎” 

from 2 to 0. As, when 0 < 𝑎 < 1, the value of |A| < 1 which activates the exploitation mechanism, and 

the opposite occurs when 1 < 𝑎 <2. The WOA has only two adaptive parameters: “a” and “C”, “a” 

guarantees the exploration-exploitation balance, while “C” emphasizes the random behavior during 

the exploration. Although, this GWO is considered as an efficient metaheuristic for the optimization 

problems in some fields such as engineering, machine learning, medical, and bioinformatics, it suffers 

from insufficient diversity of the population, inefficient -exploration-exploitation balance, and 

premature convergence. 
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2) Improved Grey Wolf Optimizer [58] 

I-GWO holds an important improvement of the GWO [57], That enhances the exploration-exploitation 

balance and also maintains the population diversity. That is done through developing a new search 

strategy called “dimension learning-based hunting” (DLH), through which, neighboring information 

can be shared between the candidates. DLH search strategy is inspired by the individual hunting 

behavior of wolves in nature, and it increases the domain of global search by multi neighbors learning. 

Then, in each iteration, the I-GWO selects the candidate either from the GWO or the DLH search 

strategies based on the quality of their new positions. 

The mathematical description of this selection either from GWO or DLH candidates, is as follow: 

𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝑛,𝑑(𝑡) − 𝑋𝑟,𝑑(𝑡)) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖−𝐺𝑊𝑂) < 𝑓(𝑋𝑖−𝐷𝐿𝐻), 𝑜𝑟 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖−𝐺𝑊𝑂) > 𝑓(𝑋𝑖−𝐷𝐿𝐻) 

The I-GWO is a single-objective algorithm for optimization problems with continuous search space. 

 

3) Whale Optimization Algorithm [59] 

WOA is a swarm-based metaheuristic optimization approach. It is inspired by the spiral bubble-net 

hunting strategy of the humpback whales. This hunting (optimization) technique consists of three 

phases; Search for Prey (exploration phase), Encircling Prey, and the Bubble-Net Attacking method 

(exploitation phase). The Bubble-Net attacking is when the whales swim around the prey in two 

simultaneous movements: in a shrinking circle as well to in a spiral-shaped path, towards the sea 

surface. The combination between these two movements is done with a probability of 50% for each. 

The mathematical modelling of these phases is as follow: 

- The distance of the ith whale (search agent) to the prey: 

𝐷 = |𝐶 · 𝑋∗(𝑡) − 𝑋(𝑡)| 

where t indicates the current iteration, C is a coefficient vector (𝐶 = 2 · r, r is a random vector in 

[0,1]). X is the current position vector of the ith search agent. 𝑋∗ is the position vector of the prey. 

- The next position vector: 

[𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 · 𝐷, 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑝 < 0.5], or [ 𝑋(𝑡 + 1) = 𝐷′ · 𝑒𝑏𝑙 · cos(2𝜋𝑙) + 𝑋(𝑡),

𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑝 ≥ 0.5], for the simultaneous encircling and spiral upward movements, respectively. 

where A is a coefficient vector (𝐴 = 2𝑎 · r − 𝑎, 𝑎 is linearly decreased from 2 to 0). (·) is an 

element-by-element multiplication. 𝐷′ is the same as 𝐷 (𝐷′ = |𝑋∗(𝑡) − 𝑋(𝑡)|), which is the 

distance of the ith whale to the prey, but without considering the random-behavior component “C” 

(𝐷′ is used in computing the spiral movement -exploitation-). 𝑏 is a constant for defining the 

shape of the logarithmic spiral, 𝑙 is a random number in [−1,1]. 

The WOA algorithm starts with a set of random solutions. Then, iteratively, the search agents update 

their positions with respect to the prey, the prey may be either a randomly chosen solution or the 

best obtained solution so far, in case of exploration or exploitation, respectively. The switch between 

the exploration and exploitation components is controlled by linear reduction of the parameter “𝑎” 
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from 2 to 0. As, when 0 < 𝑎 < 1, the value of |A| < 1 which activates the exploitation mechanism, and 

the opposite occurs when 1 < 𝑎 <2. The WOA has only two adaptive parameters: “a” and “C”, “a” 

guarantees the exploration-exploitation balance, while “C” emphasizes the random behavior during 

the exploration. 

 

4) Dragonfly Algorithm [60] 

This is a swarm-intelligence metaheuristic technique. Which mimics the surviving swarm behavior of 

the dragonflies. The algorithm is equipped by five parameters to control the five behaviors of any 

swarm movement; separation, alignment, cohesion, attraction towards food, and distraction 

outwards enemies. The dragonflies follow this scheme either in the static swarming (hunting), or in 

the dynamic swarming (migration). The former swarming is simulated during the exploration phase of 

the optimization, in which the dragonflies create sub-swarms and fly back and forth over different 

areas. While the dynamic swarming is simulated during the exploitation phase, where the dragonflies 

fly in bigger swarms and along one direction. 

To mathematically model this scheme, the following equations are used: 

- The step vector: 𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖̇ + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤𝛥𝑋𝑡 

where 𝑆𝑖, 𝐴𝑖̇, 𝐶𝑖, 𝐹𝑖, 𝐸𝑖  are the five parameters of the swarm behavior: 

- Separation: 𝑆𝑖 = −∑ 𝑋𝑁
𝑗=1 − 𝑋𝑗 (maintains avoidance of individuals collision in a 

neighborhood) 

- Alignment: 𝐴𝑖 =
∑ 𝑉𝑗

𝑁

1=𝑗

𝑁
 (indicates the velocity matching between the neighborhood 

individuals) 

- Cohesion: 𝐶𝑖 =
∑ 𝛸𝑗

𝑁

1=𝑗

𝑁
− 𝑋 (refers to the individuals’ tendency to the neighborhood 

center of mass) 

- Attraction to food: 𝐹𝑖 = 𝑋+ − 𝑋 

- Distraction from enemies: 𝐸𝑖 = 𝑋− + 𝑋 

s, a, c, f and e, are weighting factors, each for each corresponding parameter. w is an inertia 

weight. 

- The position vector: 𝑋𝑡+1 = 𝑋𝑡 + 𝛥𝑋𝑡+1 

 

- When there is no neighbors around, a random walk (Lѐvy flight) equation is followed: 𝑋𝑡+1 =

𝑋𝑡 + Lѐvy(d) ∗ 𝑋𝑡 

where Lѐvy(x) = 0.01 * 
𝑟1×𝜎

|𝑟2|
1
𝛽

  (r1, r2 are random numbers [0:1], β is a constant, σ is a f(β) ) 

In the DA, to ensure the switch and balance between exploration and exploitation modes, there are 

two approaches: Either by tuning the neighborhood’s radius around each artificial dragonfly. As a 

reasonably large radius refers to low swarm’s alignment but high swarm’s cohesion (exploitation), 

while a small radius refers to high alignment but low cohesion (exploration). Or by tuning the 

swarming factors: s, a, c, f and e. 
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5) Grasshopper Optimization Algorithm [61] 

This algorithm mathematically modelled and mimicked the swarming behavior of grasshoppers in 

nature for solving optimization problems. Proposed to solve single-objective problems with 

continuous variables. The grasshoppers have swarming behavior in both nymph and adulthood phases 

of their life cycle. The nymph grasshopper’s behavior is slow and small movements (exploitation), 

while the adult’s behavior is long and abrupt steps (exploration). The grasshopper movement is based 

mainly on the social interaction with its neighbors. Which is described in terms of attraction, 

repulsion, or comfort zone state. In order to lead the entire swarm to converge at one point (global 

optimal), two mathematical terms are added to let the best-found solution at each iteration affect the 

swarm direction, and also to shrink the 3 zones the controls each grasshopper movement; attraction, 

repulsion or comfort zone. As without this shrinking term, the grasshopper may be stuck at the 

comfort zone so early with no more movements (trapped in local optima). 

To model such behavior mathematically, these equations are equipped into the algorithm:  

- The position of ith grasshopper: 𝑋𝑖
𝑑 = 𝑐 (∑ 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠

𝑁

𝑗=1
(|𝑥𝑗̇

𝑑 − 𝑥𝑖
𝑑|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + 𝑇̂𝑑 

where c is a shrinking coefficient (c≤1), ubd and lbd are the upper and lower bounds, 𝑇̂𝑑 is the 

target (best found solution), and the expression “ 𝑠(|𝑥𝑗̇
𝑑 − 𝑥𝑖

𝑑|)
𝑥𝑗̇

𝑑−𝑥𝑖
𝑑

𝑑𝑖𝑗
 ” defines the social 

interaction of the grasshopper with the neighbors, where s represents the social force, either 

attraction (exploitation) or repulsion (exploration), and calculated as follow: 𝑠(𝑟) = 𝑓ⅇ
−𝑟

𝑙 − ⅇ−𝑟. 

where f is the intensity of attraction and l is an attractive length scale. by f and l, the size of the 

attraction, repulsion and comfort zones could be set. 

 

- The shrinking coefficient is calculated as follow: 𝑐 = 𝑐𝑀𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥−𝑐𝑀𝑖𝑛

𝐿
, L is the max number of 

iterations, l is the number of the current iteration, and cmax & cmin are two bounds lower than 1. 

 

The gradual convergence of grasshoppers towards the target over the course of iteration, is actually 

due to decreasing the factor c, and the target effect of pulling the swarm. 

The next position of a grasshopper is defined based on the factors; the current position, the position 

of the target, and the position of all other grasshoppers. In contrast to the well-known PSO, in which 

the swarm particles positions don’t play any role in defining the next movement of a particle. For a 

balance between exploration and exploitation, the parameter c is required to be decreased 

proportional to the number of the iteration. 
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6) Salp Swarm Algorithm [62] 

This simple and easy to implement metaheuristic optimization algorithm mimics the swarming 

behavior of the ocean salps travelling in form of a salp chain. This salp chain consists of a leader and 

followers. The leader goes towards an artificial source of food, and the followers just enjoy the ride 

behind the leader. In the optimization process, a set of salps (solutions) are initialized with random 

positions and stored in a two-dimensional matrix, then these solutions are evaluated through a fitness 

function, assigning the best-found solution as a target to be chased by the salps afterwards iteratively. 

The algorithm is equipped by two movement equations for both leader and followers, separately. The 

leader walk is a random movement actually, but towards the source of food (best-found solution so 

far), which maintains investigating the most promising regions in the search space during the 

optimization process. On the other hand, the followers walk with respect to each other following the 

leader in a gradual movement based on Newton’s law of motion. SSA has only one controlling 

parameter, which is updated adaptively as the number of the iteration goes higher, in order to 

maintain the balance between the exploration and exploitation phases. 

 

7) Particle Swarm Optimization [55] 

In particle swarm optimization, multiple candidate solutions coexist and collaborate simultaneously. 

Each solution is called “a particle” having a position and a velocity in the multidimensional design 

space while a population of particles is called a swarm. A particle “flies” in the problem search space 

looking for the optimal position. As “time” passes through its quest, a particle adjusts its velocity and 

position according to its own “experience” as well as the experience of other neighboring particles. A 

particle's experience is built by tracking and memorizing the best position encountered. A PSO system 

combines local search (through self-experience) with global search (through neighboring experience), 

attempting to balance exploration and exploitation. Each particle maintains its two basic 

characteristics, velocity and position, in the multi-dimensional search space that are updated as 

follows: 

𝒗𝑗(𝑡 + 1) = 𝑤𝒗𝑗(𝑡) + 𝑐1𝑟1 ∘ (𝑠Pb,j − 𝑠𝑗(𝑡)) + 𝑐2𝑟2 ∘ (𝑠Gb − 𝑠𝑗(𝑡))  

𝑠𝑗(𝑡 + 1) = 𝑠𝑗(𝑡) + 𝒗𝑗(𝑡 + 1)  

where 𝒗𝑗(𝑡) denotes the velocity vector of jth particle at time t, 𝑠𝑗(𝑡) represents the position vector of 

jth particle at time t, vector 𝑠Pb,j is the personal best ever position of the jth particle, and vector 𝑠Gb is 

the global best location found by the entire swarm. The acceleration coefficients c1 and c2 indicate the 

degree of confidence in the best solution found by the individual particle (c1 - cognitive parameter) and 

by the whole swarm (c2 - social parameter), respectively, while r1 and r2 are two random vectors 

uniformly distributed in the interval [0,1]. 
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8)  Krill Herd Algorithm [63] 

KH is a biologically-inspired metaheuristic algorithm, that handles optimization problems in a 

stochastic way. The mechanism of the algorithm is inspired by the krill herding, in which the 

movement of each individual of the swarm has three main pillars to determine its time-dependent 

position: the whole swarm movement, seeking food and random spread. The objective function in the 

algorithm is attained simulating the objective of the krill herd in nature, which is the minimum 

distances of both the center of the herd density and from the food location as well. In seek of higher 

efficiency, two genetic reproduction mechanism of the well-known GA are equipped into the KH 

algorithm: crossover and mutation. 

For modelling the motion of the individuals mathematically, this motion formula is defined into the 

algorithm: 
ⅆ𝑋𝑖

ⅆ𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖 

where 𝑁𝑖  is the motion induced by the swarm movement, 𝐹𝑖 is the motion in seek of food, and 𝐷𝑖 is 

the random spread motion. 

- 𝑁𝑖
𝑛𝑒𝑤 = 𝑁𝑚𝑎𝑥𝛼𝑖 + 𝑤𝑛 𝑁𝑖

𝑜𝑙𝑑 

where 𝑁𝑚𝑎𝑥 is the max induced speed, which is experimentally measured and taken as 0.01 m/s. 

𝛼𝑖 is the effect of the swarm motion, it combines the effect of both neighbors and the best krill. 

𝑤𝑛 is an inertia weight, in the range [0,1].  𝑁𝑖
𝑜𝑙𝑑  is the previous motion of that individual. 

- 𝐹𝑖 = 𝑉𝑓 𝛽𝑖 + 𝑤𝑓 𝐹𝑖
𝑜𝑙𝑑 

where 𝑉𝑓 is the speed towards the food, 𝛽𝑖 is the attraction effect on the ith individual, it combines 

the effect of the best fitness of that ith individual so far, besides the effect of the food. 

- 𝐷𝑖 = 𝐷𝑚𝑎𝑥 δ 

where 𝐷𝑚𝑎𝑥 is the maximum speed of the random motion. δ is a random directional vector. 

The interesting fact about KH algorithm is that it gets the values it its coefficients from real world 

empirical studies, then only one parameter is to be tuned. However, the coefficients could be 

determined through an outsourcing metaheuristic algorithm instead of these mentioned real-world 

empirical studies. 

 

9) Pity Beetle Algorithm [64] 

PBA is a nature-inspired metaheuristic optimization algorithm based on the swarm intelligence. PBA is 

a single-objective optimization algorithm for the unconstrained problems, inspired by the searching 

for food behavior of the six-toothed bark beetle (pityogenes chalcographus beetle). This beetle feeds 

on the bark of the trees. The PBA simulates the searching for food behavior of this bark beetle, in a 

way consists of three main stages: initialization of a population consists of males and females, 

regeneration of new populations, and location update stage. In the first stage, an initial population 

consists of males and females is randomly located within the search space, some males act as 

pioneers as they search for the most suitable host, aggregating into it by producing pheromone that 

attracts the other males and females. The initial population in PBA, should be well diversified in order 

to avoid the premature convergences. To ensure the diversification, the initial population in PBA is 

generated by means of a random sampling technique (RST). In the second stage, after the initial 

populations are formed, each single particle will look for better position in the search space to create 

his own population. This is done in PBA through five types of hypervolume selection pattern; 

neighboring search volume, global-scale search volume, large-scale search volume, mid-scale search 

volume and memory consideration search volume. In the last type, the best-found positions are saved 

and used. In the third stage, the position of each mating male and female is updated, removing the 

previous positions except those that kept in the memory for the memory consideration search 

volume. 
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C. Other Nature-Inspired Metaheuristics 

 

1) Ant Lion Optimizer [65] 

ALO is a nature-inspired metaheuristic that mimics the smart hunting mechanism of antlions in nature, 

in which the antlion digs a cone-shaped pit in sand by moving along a circular path and throwing out 

sands, then it hides underneath the bottom of the cone waiting an ant to fall down into the cone to 

catch it. The ALO algorithm mimics the interaction between antlions and ants during the hunting 

process, that is done in three phases (A, B, and C). 

At (A), the ALO algorithm builds four matrices: two position matrices of the ants and antlions 

separately, and two fitness function matrices also one for ants and another for antlions. 

At (B), the position of the ants and antlions are updated through implementing five operators: random 

walk of ants (which maintains the exploration capability), building traps by antlions (a roulette wheel 

operator is utilized to select antlions based on the fitness function of each, that also maintains the 

exploration capability), entrapment of ants in traps (this occurs through an adaptive shrinking 

mechanism of the radius of an ant’s next random walks, which guarantees the exploitation), catching 

preys (if an ant is fitter than its corresponding antlion, then the antlion updates its position to the 

latest position of this hunted ant, that leads to investigation of the most promising areas in the search 

space, which maintains also the exploration), and re-building traps for another prey. 

At (C), the algorithm returns the elite antlion when the end criterion is satisfied, the best antlion 

obtained so far in each iteration is saved and considered as an elite. 

For the mathematical modelling of phase (B) operators, the following equations are employed: 

- For the ants’ random walk: 

𝑋(t) =  [0, cumsum(2r(𝑡1) –  1);  cumsum(2r(𝑡2) –  1), … . cumsum(2r(𝑡𝑛) –  1)] 

where n is the maximum number of iterations, r(t) is a stochastic function= ( 1 if rand>0.5, else if, 

equals zero. “rand” is a random number generated with uniform distribution in the interval of 

[0,1] ). 

In order to keep the random walks within the search space’s boundaries, the following min–max 

normalization function is employed: 

𝑋𝑖
𝑡 = [(𝑋𝑖

𝑡 − 𝑎𝑖) ∗
𝑑𝑖

𝑡 − 𝑐𝑖
𝑡

𝑏𝑖 − 𝑎𝑖
] + 𝑐𝑖

𝑡 

where 𝑎𝑖  and 𝑏𝑖 are the minimum and maximum of the random walk of ith variable, respectively. 

𝑐𝑖
𝑡 and 𝑑𝑖

𝑡 are the minimum and maximum of all variables of the ith ant at tth iteration, respectively. 

Since the ants’ random walk should be affected by the antlions’ trap, the 𝑐𝑖
𝑡 and 𝑑𝑖

𝑡 are computed 

as follow: 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡, 𝑑𝑗
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑑𝑡, 

where 𝑐𝑡and 𝑑𝑡is the minimum and maximum of all the variables among all the ants at tth 

iteration, respectively. 
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- Every random walk of each ant is affected simultaneously by two antlions: one selected by the 

roulette wheel and another which is saved in the memory as the elite antlion. In this regard, the 

following equation is employed: 

𝐴𝑛𝑡𝑖
𝑡 = (𝑅𝐴

𝑡 + 𝑅𝐸
𝑡 )/2 

where 𝐴𝑛𝑡𝑖
𝑡 indicates the position of ith ant at tth iteration. 𝑅𝑡 is the ant’s random walk, equals 𝑋𝑖

𝑡,  

𝑅𝐴
𝑡  is the random walk around the antlion selected by the roulette wheel at tth iteration, 𝑅𝐸

𝑡  is the 

random walk around the elite antlion at tth iteration. 

- For the entrapment of ants: to mimic the sliding of the ants down towards the antlion, by 

shrinking the radius of the ants’ random walk, these equations are used: 

𝑐𝑡 = 𝑐𝑡/𝐼, 𝑑𝑡 = 𝑑𝑡/𝐼 

where I is a ratio: 𝐼 = 10𝑤 ∗ 𝑡/𝑇, t is the current iteration number, T is the total number of 

iterations, w is a constant ranges from 2 to 6 depending on the current iteration number (the 

higher t, the higher w). Basically, w can adjust the accuracy level of the exploitation. 

- By catching a fitter prey, the antlion reposition itself to the latest position of that prey through the 

following equation: 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡, if 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) 

The exploitation phase of the ALO is guaranteed thanks to the adaptive boundary shrinking 

mechanism and the elitism. While the exploration is guaranteed thanks to the random walk and 

roulette wheel selection operators. 

 

2) Moth-Flame Optimization [66] 

This another recent population-based metaheuristic, which is inspired by the Transverse Orientation 

navigation method of moths. Accurately, the spiral movement of moths towards artificial lights is the 

part in the transverse orientation method that is simulated in the MFO’s movement operator. In the 

transverse orientation method, a moth flies by fixing a certain angle with respect to the light source, 

forming a spiral fly path, which ensures a convergence. To maintain investigating the most promising 

areas of the search space, moths (search agents) takes flames (best-found solutions) as the source of 

light and fly spirally around them. And to maintain a well exploration and local optimum avoidance, 

each moth is allowed to update its position using only one specific flame. This behavior is equipped is 

a three-tuple algorithm; MFO = (I,P,T). In MFO, two matrices are formulated to define moths and 

flames; M and F. Then consequently, two fitness function matrices are formulated; OM and OF. I is the 

initial population generator, I:ø → {M,OM}. T is the termination criterion, T: M→ {true, false}. P is the 

position updating function, P: Mi→Mi+1, by which a moth updates its position around a flame through 

a spiral motion, Mi+1= S(Mi, Fj). S is the spiral function, which is chosen as a logarithmic spiral function 

in this investigation work. 𝑆(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 ⋅ ⅇ𝑏𝑡 ⋅ 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑗, 𝐷𝑖 indicates the distance between Mi 

and Fj, b is a constant for defining the shape of the logarithmic spiral, and t is a random number in [r, 

1], r is linearly decreased from -1 to -2 over the course of iterations to promote the exploitation 

proportional to the number of iterations (the lower t, the closer distance to the flame). For further 

promotion of the exploitation proportional to the number of iterations, the number of flames is 

decreased gradually over the course of iterations, till it ends that all the moths at the final step update 

their positions with respect to only one flame. 
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3) Multi-Verse Optimizer [67] 

This population-based metaheuristic is inspired by the multi-verse theory in physics. In designing this 

algorithm, every universe (solution) owns objects (variables). Three concepts of multi-universe are 

simulated; white, black and wormholes, by which how the multiple universes interact. The white holes 

in nature are where the so called big-bang occurs. The blackholes are where things are attracted 

inside. The wormholes are considered as tunnels through which the objects of a universe are able to 

travel between any corners of the same or different universes. Objects (variables) travel from white 

holes (solution with high fitness function value) to black holes (solutions with low fitness function 

value), in seek of better fitness values, the white holes are selected using a roulette wheel mechanism, 

this exchange of variables through white and black holes maintains the exploration of the search 

space. While the wormholes exist randomly in any universe (regardless of its fitness function value) to 

assist the MVO in exploiting the search space, through transporting a universe’s objects withing its 

space randomly. The optimization process starts with creating a set of random solutions. At each 

iteration, variables in the solution agents with high fitness values tend to move to others with low 

fitness values via white and black holes (exploration). Meanwhile, all the universes variables are 

moved towards the best solution randomly regardless its solution fitness value, which maintains the 

diversity. 

 

4) Sine Cosine Algorithm [68] 

The SCA is a metaheuristic optimization algorithm that initialize random solution agents, then push 

them to fluctuate either towards or outwards the best-found solution, in a sin-cosine behavior. This 

positioning of the agents iteratively is guided by random-walk function: 

𝑋𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟1 × 𝑠𝑖𝑛/𝑐𝑜𝑠(𝑟2)  × |𝑟3𝑝ⅈ−
𝑡 𝑥𝑖

𝑡| , sin: if 𝑟4 < 0.5 , cos: if 𝑟4 ≥ 0.5 

where 𝑟1, 𝑟2, 𝑟3, 𝑟4 are random numbers, 𝑟1 indicates the next position’s region, which could be inside 

or outside the space between the solution and its destination, 𝑟2 defines how far the movement will 

be, 𝑟3 gives a random weight to control the effect of destination in defining the distance. 𝑟4 switches 

between the sine and cosine. 

The cyclic pattern of sine and cosine function guarantee a well exploitation of the space. On the other 

side, the exploration is achieved by changing the range 𝑟1 of the sin-cosine function, where a solution 

will be able to move outwards its destination point. In order to promote the exploitation over 

exploration as the iteration number goes higher, an equation for adaptively decreasing the range 𝑟1 is 

employed: 𝑟1 = 𝑎 − 𝑡
𝑎

𝑇
, where t and T are the number of the current iteration and the maximum 

number of iterations, respectively, a is a constant. 
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5) Harmony Search [55] 

The harmony search algorithm was originally inspired by the improvisation process of Jazz musicians. 

According to the analogy between improvisation and optimization, each musician (saxophonist, 

bassist, guitarist etc.) corresponds to each decision variable; each musical instrument’s pitch range 

corresponds to a decision variable’s value range. Musical harmony at certain times corresponds to a 

solution vector at certain iterations, and audience’s aesthetics corresponds to the objective function. 

According to the above algorithmic concept, the HS algorithm consists of the following five steps: 

parameter initialization; harmony memory initialization; new harmony improvisation; harmony 

memory update; and termination criterion check. Different from those population-based approaches, 

it only utilizes a single search memory to evolve. Therefore, the HS method has the distinguishing 

feature of computational simplicity. 

In the first step, the optimization problem is specified where n is the number of decision variables 

(equivalent to the number of music instruments), while 𝑠𝑖
𝐿 ≤ 𝑠𝑖 ≤ 𝑠𝑖

𝑈 , 𝑖 = 1,2, . . . , 𝑛 determines the 

range of the ith decision variable’s value. The HS algorithm parameters are also specified in this step: 

HMS is the harmony memory size that corresponds to the number of simultaneous solution vectors 

stored in harmony memory, HMCR defines the harmony memory considering rate, while PAR is the 

pitch adjusting rate. In the second step, the harmony memory (HM) is initialized with HMS randomly 

generated solution vectors defining the musician’s harmony memory matrix: 

𝐻𝑀 =

[
 
 
 

𝑠1
1 𝑠2

1 𝑠3
1. . . 𝑠𝑛

1

𝑠1
2 𝑠2

2 𝑠3
2. . . 𝑠𝑛

2

. . . . . . . . . . . .
𝑠1
𝐻𝑀𝑆 𝑠2

𝐻𝑀𝑆 𝑠3
𝐻𝑀𝑆. . . 𝑠𝑛

𝐻𝑀𝑆]
 
 
 

  

In the third step, a new harmony vector is improvised following three rules: random selection, memory 

consideration and pitch adjustment. According to the random selection, the value of the decision 

variable 𝑠𝑖  is chosen randomly from the pitches stored in 𝐻𝑀 = [𝑠𝑖
1, 𝑠𝑖

2, ⋯ , 𝑠𝑖
𝐻𝑀𝑆] with probability of 

HMCR (0≤ HMCR≤1) or according to the memory consideration it is randomly chosen with a probability 

of (1-HMCR) within its value range, as a musician plays any pitch within the instrument’s pitch range: 

𝑠𝑖 = {
𝑠𝑖 ∈ [𝑠𝑖

1, 𝑠𝑖
2, ⋯ , 𝑠𝑖

𝐻𝑀𝑆] with probability HMCR

𝑠𝑖
𝐿 ≤ 𝑠𝑖 ≤ 𝑠𝑖

𝑈with probability (1-HMCR)
  

After the value 𝑠𝑖  is randomly picked according to the above memory consideration process, it can be 

further adjusted into neighboring values by adding certain amount to the value, with probability of 

HMCR × PAR (0≤ PAR ≤1) while the original pitch obtained in HM consideration is just kept with a 

probability of HMCR × (1-PAR): 

𝑠𝑖 = {
𝑠𝑖(𝑘 + 𝑚) with probability 𝐻𝑀𝐶𝑅 × 𝑃𝐴𝑅 
𝑠𝑖  with probability 𝐻𝑀𝐶𝑅 × (1 − 𝑃𝐴𝑅)

  

If the new generated harmony vector is better than the worst harmony vector of the HM, with reference 

to the objective function value, the worst harmony is replaced by the new harmony vector. 
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6) Imperialist Competitive Algorithm [69] 

ICA is an evolutionary sociopolitical inspired metaheuristic optimization algorithm. Introduced to the 

literature back at 2007, to deal with continuous optimization problems. Then, many versions have 

been developed later to handle discrete problems as well. The idea behind this algorithm is 

considering all the possible solutions as countries, the best set of them are considered as imperialists, 

and the rest are colonies. Each imperialist is supposed to possess portion of the colonies, forming an 

empire. The evolutionary improvement of the candidate solutions during the optimization process is 

implemented through six main operators: initialization, assimilation, revolution, title exchange, 

empires survival/collapse and convergence. 

Initial population is generated at first (Npop). Then, some promising candidates based on their objective 

function values (OFs) are selected as imperialists (Nimp), the rest candidates are colonies (Ncol = Npop - 

Nimp). Each imperialist takes over a portion of the colonies according to its power, forming an empire. 

An imperialist’s power is defined based on its normalized OF, as follow: 

Imperialist’s normalized OF: 𝐶𝑛 = 𝑚𝑎𝑥{𝑐𝑖} − 𝑐𝑛 

Imperialist’s power: 𝑃𝑛 = |
𝐶𝑛

∑ 𝐶𝑖
𝑖=1
𝑁𝑖𝑚𝑝

| 

Therefore, the number of colonies that taken over by each imperialist: NCn = Pn x Ncol . 

Assimilation process is then performed, in which the power of each colony approaches gradually that 

of its respective imperialist. For real-life example of the assimilation process, both the British and 

French Empires attempted assimilation by constructing New England and New France within their 

respective colonies, imposing their own characteristics (social, cultural, economic, political, ..etc) 

within their colonies. These characteristics are considered as the problem variables. In the assimilation 

process within the ICA, the colonies’ move in random distances (x), along with (d) direction towards 

their respective imperialist, but with random variation in the direction, maintaining both exploration 

and exploitation phases in cases of high and low variations, respectively. At some point consequently, 

a colony’s power is upgraded to reach out that of its respective imperialist, or to become even higher. 

Revolution operator is another aspect of ICA that maintains better exploration, in which some colonies 

resist to be realized by the imperialists. So, they suddenly jump outside the empire. Which emphasizes 

exploring new promising areas within the search space but don’t host any imperialist. That 

consequently may lead to a promotion of a colony’s power even higher than an existing imperialist’s. 

Title Exchange operator is performed to promote a colony to be an imperialist in the following 

iterations, and vice versa. The promoted colony is a colony that got higher power than an existing 

imperialist’s, either through the assimilation or the revolution operators. 

Empires survival/collapse occurs after performing assimilation, revolution and title exchanging 

processes, when the empires get either weaker or more powerful. The weak empires collapse leaving 

behind its colonies that will be taken over by survived ones. 

Convergence in ICA occurs when just one empire is survived (called grand empire) and all the rest are 

collapsed. Or when any other set criterion is met, like specific number of iteration or specific 

processing time. 
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7) Teaching–Learning-Based Optimization [54] 

This population-based metaheuristic optimization algorithm is inspired by the human teaching & 

learning behavior. The idea behind it is considering the possible solutions as a set of students in a 

classroom, the teacher is a candidate as well but holds the most knowledge (best fitness). Throughout 

two main operators: Teacher Phase and Learner Phase, the students (solutions) are improved in terms 

of their grades (fitness function value). The taught subjects in the class are represented into the 

algorithm as the design variables. The algorithm is also following the fact of the higher capability of 

the teacher is, the more promising the students will be. The indication of the students’ level of 

knowledge in a specific subject, is the mean value of their grades in this subject. 

The algorithm starts by initializing a set of random solutions: 

𝑃 = [
𝑋(1,1) ⋯ 𝑋(1, 𝐷)

⋮ ⋱ ⋮
𝑋(𝑃, 1) ⋯ 𝑋(𝑃, 𝐷)

] , in which each candidate is represented by the design variables from 1 

to D. 

The best candidate (best fitness) is set as a teacher, then for all the rest candidates, the mean grade 

for each subject is calculated, producing the mean solution: 𝑀,𝐷 = [𝑚1,𝑚2,⋯𝑚𝐷]. 

Then the Teacher Phase starts by enhancing the students’ level of knowledge, through pulling the 

mean value of each design variable to the corresponding one in the teacher’s solution (Xteacher,D). This is 

done in the algorithm through considering the teacher solution as a new artificial mean: M_new,D = 

Xteacher,D = Xf(x)=min . Then the difference between both the original and the artificial means is calculated: 

Difference,D = r (M_new,D – TF · 𝑀,𝐷), where r is a random number in the range [0,1], TF is randomly set 

1 or 2 with equal probability. Then after, each candidate (solution) moves by this difference, 

producing new generation: Xnew,D = Xold,D + Difference,D , Xnew,D is accepted if it has better fitness. 

The Learner Phase also provides an improvement for the solutions through the interaction between 

the candidates themselves, based on the fact of “A learner learns something new if the partner has 

more knowledge (better fitness)”. So, if f(Xi) < f(Xj), Xnew,i = Xold,i + ri (Xi – Xj), else, Xnew,i = Xold,i + ri (Xj – Xi), 

Xnew,i is accepted if it has better fitness. 
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8) Interior Search Algorithm [70] 

This ISA is inspired from the architectural process of the interior design and decoration. The interior 

design and decoration process, there are two main concepts in order to find the best view and 

decoration; Composition and Mirror concepts. The Composition concept refers to the process of 

replacing the items position till it gives the best view, while the Mirror concept refers to placing 

mirrors near to the most beautiful items in order to emphasize their beauty. These concepts are 

followed in the ISA, where the candidates (except the fittest candidate) are randomly grouped into 

two parts: Composition group in which the candidates change their position only when it gives fitter 

values, and Mirror group in which some mirrors are placed near to the fittest candidates giving them 

higher weights among the swarm. For that, α parameter is defined and tuned, where the candidates 

are grouped based on the following role: if r1 < α, the corresponding candidate goes to Mirror group, 

else, it goes to Composition group. where r1 is a random value between 0 and 1. In the Composition 

group, the position of each candidate follows this formula: 𝑥𝑖
𝑗
= 𝐿𝐵𝑗 + (𝑈𝐵𝑗 −  𝐿𝐵𝑗) 𝑟2. While in the 

Mirror group, a mirror is placed randomly somewhere between each candidate and the fittest 

candidate so far. The location of these mirrors follows this formula: 𝑥𝑚,𝑖
𝑗

= 𝑟3 𝑥𝑖
𝑗−1

+ (1 − 𝑟3 )𝑥𝑔𝑏
𝑗

 

where r2, r3 are random value between 0 and 1. 

The ISA has only one tuned parameter (α). 

 

9) Slime Mould Algorithm [71] 

In nature, the slime mold of the Physarum polycephalum forages in a way that leads to the food 

through optimal paths, this occurs using a bio-oscillator that produces a propagating wave, where the 

cytoplasmic flow indicates the thickness of the veins in a slime mold, The faster the flow, the thicker 

the vein. Hence, the optimal path is determined. SMA is stochastic optimizer that uses adaptive 

weights as well in order to simulate this process of producing the positive and negative indications out 

of the propagation wave that is resulted from the bio-oscillator. The slim mold grows in a venous 

shape, that allows it to use multi food sources in the same time. The main mechanisms of such 

behavior of slime mold foraging that are mathematically modelled in the SMA: approaching food, 

wrap food and oscillation. The balance between the exploration and exploitation phases in SMA is 

maintained mainly through the adaptive weight, vibration parameter, utilization of the fitness values 

and the decision parameter of the location updating. 
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10) The Arithmetic Optimization Algorithm [72] 

AOA is a very recent however promising population-based metaheuristic optimization algorithm. 

Inspired by the main arithmetic operators in mathematics: addition (A), subtraction (S), multiplication 

(M) and division (D). Like any other metaheuristic algorithm, the optimization process consists of two 

main phases: exploration and exploitation. The exploration phase in AOA is implemented employing 

the D and M operators, due to their high dispersion, which indicates exploration in the optimization 

dictionary. On the other side, A and S are employed when the exploitation phase is activated during 

the optimization process, due to their low dispersion. In order to switch between exploration and 

exploitation phases during the optimization process: if 𝑟1 > 𝑀𝑂𝐴, activate the exploration phase, 

otherwise, activate the exploitation. 

where MOA (Math Optimizer Accelerated function) linearly increases from 0.2 to 0.9: 

𝑀𝑂𝐴(𝐶−𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶−𝐼𝑡𝑒𝑟  
𝑀𝑎𝑥 − 𝑀𝑖𝑛 

𝑀−𝐼𝑡𝑒𝑟
 

For the exploration phase, the algorithm is equipped by this random walk formula: 

𝑥𝑖,𝑗(𝐶−𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

While for exploitation: 

𝑥𝑖,𝑗(𝐶−𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗),        𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + (𝑀𝑂𝑃) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑀𝑂𝑃(𝐶−𝐼𝑡𝑒𝑟) = 1 − 
𝐶−𝐼𝑡𝑒𝑟

1/𝛼 

𝛭−𝐼𝑡𝑒𝑟
1/𝛼 

 

where 𝐶−𝐼𝑡𝑒𝑟 abbreviates the current iteration, 𝑀−𝐼𝑡𝑒𝑟 abbreviates the maximum number of 

iterations, Max and Min denote maximum and minimum of MOA, (𝑟1, 𝑟2, 𝑟3) are random values in 

[0,1], 𝜖 is a small integer number, MOP (Match Optimizer Probability) is a coefficient, μ is a control 

parameter that emphasize exploration not only at the first iterations but also during the last 

iterations, α is second parameter that emphasize exploitation accuracy during the optimization. 

The AOA has only two tunning parameters: μ and α, alongside with the standard parameters: the 

population size and the stopping criterion. 
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Ch 4 Numerical Tests 

 

4.1.   Introduction 

Six well-known benchmark problems: 10-bar truss, 25-bar truss, 72-bar truss, welded beam, pressure vessel 

and tension-compression string, were used in order to test the capability of four Metaheuristic Optimization 

Algorithms, selected from the introduced state-of-the-art algorithms in chapter (3): Grey Wolf Optimizer 

(GWO), Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO) and Differential 

Evolution (DE). 

The scope of this chapter is to investigate the capability of these four algorithms, by being assessed on the 

same benchmark problems. The algorithms are implemented through MATLAB codes. In addition, the same 

stopping criterion corresponding to specific number of function evaluations (n*10,000 function evaluations) is 

used for all the algorithms. The population size parameter is set to 100 agents for each of GWO, GOA and DE, 

and 30 particles for the PSO. Furthermore, a common technique for dealing with the problem constraints 

were used. Lastly, implementing a common procedure for the discrete and integer design variables. 

Regarding the constraints handling different approaches, in penalty methods, users usually try different values 

of the penalty factor to reach the optimum solution. To overcome this problem, Deb (2000) [1] originally 

proposed the Feasibility Criteria method, where the employed selection operator that compares and chooses 

between two solutions at a time, is based on the following rules: 

- Any feasible individual is chosen over any infeasible one. 

- For two feasible individuals, the individual with the better objective function value is chosen. 

- For two infeasible individuals, the individual with smaller constraint violation is chosen. 

 

In the implemented tests, a similar approach is employed, but with small modifications. The following fitness 

function is implemented: 

 

𝐹(𝒙) = {
𝑓(𝒙)  if 𝑔𝑗(𝒙) ≥ 0∀𝑗 = 1,2,… ,𝑚

𝑓max + ∑𝑗=1
𝑚  ⟨𝑔𝑗(𝒙)⟩  otherwise 

 

Where 𝑓max is the worst objective function value among the feasible solutions. In case of no feasible solution 

exists within the entire population, 𝑓max is set to zero. In this method, Deb sums all the constraint violations 

and compares a single value, while the infeasible solutions are compared based only on their constraint 

violation. 

In the followed approach in this thesis, some modifications are added to the mentioned-above selection 

operator’s rules is order to emphasize the global exploration, as well to better catching of more promising 

feasible solutions. 
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In order to compute the fitness function value of the infeasible individuals, the 𝑝violation factor is introduced. 

𝑝violation is the individual's normalized maximum constraint violation multiplied by a term that considers the 

number of the violated constraints by that individual. 

𝑝violation = ∥
∥max {max{0, 𝑔𝑗(𝒙)}}∥

∥ × (1 +
𝑛constviol 

𝑛const 
) > 1 

Where 𝑛const is the total number of constraints and 𝑛constviol is the number of the violated constraints. 

To compute the individual's fitness function, the 𝑝violation  factor is multiplied with the maximum objective 

function value of both the best-found feasible individual so far and that individual itself. 

𝐹(𝒙) = {
𝑓(𝒙)  if 𝑔𝑗(𝒙) ≤ 0∀𝑗 = 1,2,… ,𝑚

max(𝑓best feasible , 𝑓(𝒙)) × 𝑝violation  otherwise 
 

According to the above, the selection operator’s rules, in order choose between two solutions at a time, are 

modified as follow: 

- Among a feasible individual and another infeasible, the selection of the feasible one depends on the 

objective function value, the constraint violation value and the number of violated constraints of the 

infeasible individual. 

- For two feasible individuals, the individual with the better objective function value is chosen. 

- For two infeasible individuals, the individual with smaller objective function value, constraint violation 

value and number of violated constraints is chosen. 

 

The considered constraints are indeed two types: functions and bounds. The former holds the inequality and 

equality constraints, which hold more complexity. The latter holds the variables’ upper and lower limits. 
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4.2.   Benchmark Structural Optimization Problems 

The four optimization algorithms are applied at first on three well-known truss structures' problems. Then 

they are applied on three other famous structural optimization problems. Each optimization problem was 

solved through 20 independent runs by each algorithm, in order to obtain the probabilistic characteristics of 

the results obtained by every algorithm. The mathematical formulations of these problems are further 

elaborated.  

The three employed trusses for this investigation work are: 10-bar, 25-bar and 72-bar truss structures. They 

are all steel structures, employed for a size optimization, where the design variables range from 8 to 16 

variables. The design variables spaces are continuous for each element’s cross-section area. The objective 

function for the three structures is considered as the weight to be minimized. 

 

4.1.1     10-bar truss 

An independent design variable considered for each bar, resulting in a total of 10 design variables. The 

material density is 0.1 lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are 

considered as ±25 ksi, and the displacement limitation of all nodes is ±2 in. The applied load is F= 100 kips. The 

length: L = D = 360 in. 

The minimum-found value of weight in the literature is equal to 

5057.88 lb. 

 

 

 

4.1.2     25-bar truss 

The structural elements are grouped, resulting in a total of 8 design variables. The material density is 0.1 

lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are considered as 35 ksi for 

tension while in case of compression, the stress is limited according to the AISC code. The displacement 

limitation of all nodes is ±0.35 in. The applied loads (kips) and dimensions of the structure are shown in the 

following figures. 

The minimum-found value of weight in the literature is equal 

to 545.175 lb. 
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4.1.3     72-bar truss 

The structural elements are grouped, resulting in a total of 16 design variables. The material density is 0.1 

lb/in3, and Young’s modulus is 10000 ksi. The stress limitations of the members are considered as 25 ksi for 

tension while in case of compression, the stress is limited according to the AISC code. The displacement 

limitation of all nodes is ±0.25 in. The applied loads are at node (17): 5, 5 and -5 in directions x, y and z, 

respectively. The dimensions of the structure are shown in the following figures. 

The minimum-found value of weight in the literature is equal to 379.66 lb. 

 

 

 

 

 

 

 

 

 

 

4.1.4     Welded Beam 

The well-known welded beam design problem holds 4 design variables: height and length of the weld and 

height and width of the beam section. Where 𝑃 = 6000 l𝑏, 𝐿 = 14 𝑖𝑛, 𝐸 = 30 × 106 𝑝𝑠𝑖, 𝐺 =

12 × 106 𝑝𝑠𝑖, 𝜏max = 13600 𝑝𝑠𝑖, 𝜎max = 30000 𝑝𝑠𝑖, 𝛿max = 0.25 𝑖𝑛. 

The minimum-found value of weight in the literature is equal to 1.72485084 lb. 

The mathematical expressions for this optimization problem are as follow: 

𝑓(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2) 

Subject to: 

𝑔1(𝑥)  = 𝜏(𝑥) − 𝜏max ≤ 0
𝑔2(𝑥)  = 𝜎(𝑥) − 𝜎max ≤ 0
𝑔3(𝑥)  = 𝑥1 − 𝑥4 ≤ 0

𝑔4(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2) − 5.0 ≤ 0

𝑔5(𝑥)  = 0.125 − 𝑥1 ≤ 0

𝑔6(𝑥)  = 𝛿(𝑥) − 𝛿max ≤ 0
𝑔7(𝑥)  = 𝑃 − 𝑃𝑐(𝑥) ≤ 0

 

0.1 ≤ 𝑥1 ≤ 2 

0.1 ≤ 𝑥2 ≤ 10 

0.1 ≤ 𝑥3 ≤ 10 

0.1 ≤ 𝑥4 ≤ 2 



52 
 

Where: 

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′)2

𝜏′ =
𝑃

√2𝑥1𝑥2

𝜏′′ =
𝑀𝑅

𝐽

𝑀 = 𝑃 (𝐿 +
𝑥2

2
)

𝑅 =
𝑥2

2

4
+ (

𝑥1 + 𝑥2

2
)
2

𝐽 = 2 [√2𝑥1𝑥2 [
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)
2

]]

𝜎(𝑥) =
6𝑃𝐿

𝑥4𝑥3
2

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥4𝑥3 
3

𝑃𝑐(𝑥) =
4,013𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)

 

 

4.1.5     Pressure Vessel 

The well-known pressure vessel design problem holds 4 design variables: 𝑥1,   𝑥2,   𝑥3 𝑎𝑛𝑑 𝑥4. The thickness of 

the vessel, thickness of the head, inner radius of the vessel and the length of the vessel, respectively. 

The minimum-found value of weight in the literature is equal to 5885.3328 lb. 

 

 

 

The mathematical expressions are as follow: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3 

𝑔1(𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0 

𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3 ≤ 0 

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0 

𝑔4(𝑥) = 𝑥4 − 240 ≤ 0 

𝑥1 ≥ 0.0625 

𝑥2 ≤ 99 × 0.0625 

10 ≤ 𝑥3, 𝑥4 ≤ 200 
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4.1.6     Tension-Compression String 

The well-known tension-compression string design problem holds 3 design variables: 𝑥1,   𝑥2 𝑎𝑛𝑑 𝑥3. The wire 

diameter (𝑑), coil diameter (𝐷) and the number of the active coils (𝑁), respectively. 

The minimum-found value of weight in the literature is equal to 0.012665 lb. 

 

 

 

 

The mathematical expressions for this optimization problem are as follow: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋⃗) = (𝑥3 + 2)𝑥2𝑥1
2 

𝑋⃗ = [𝑥1, 𝑥2, 𝑥3] = [𝑑, 𝐷,𝑁] 

𝑔1(𝑥⃗) = 1 −
𝑥2

3

71785𝑥1
4 ≤ 0 

𝑔2(𝑥⃗) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0 

𝑔3(𝑥⃗) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(𝑥⃗) =
𝑥2 + 𝑥1

1.5
− 1 ≤ 0 

0.05 ≤ 𝑥1 ≤ 2 

0.25 ≤ 𝑥2 ≤ 1.30 

2 ≤ 𝑥3 ≤ 15 
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4.3.   Results 

Following is presented the obtained result for each of the used benchmarks, in form of comparisons between 

the investigated algorithm with respect to the optimal weight, standard deviation and the coefficient of 

variation. 

 

4.3.1   Optimal Weight Comparison 

 

4.3.1.1   10-bar truss 

 

As shown, the obtained optimal weights by the four 

algorithms are approximately the same (with 

differences less than 4 lb), PSO= 5061.27, DE= 5062.10, 

GWO= 5062.28, GOA= 5065.29. While the least-found 

weight in the literature was 5057.88 lb. 

 

 

4.3.1.2     25-bar truss 

 

For the 25-bar truss, the obtained optimal weights are 

also almost identical (with differences less than 0.5 

lb), PSO= 545.18, DE= 545.33, GWO= 545.58, GOA= 

545.44. While being the least-found weight in the 

literature: 545.175 lb.  

 

 

4.3.1.3     72-bar truss 

  

The obtained optimal weights of the 72-bar truss by the 

four algorithms are as well approximately the same (with 

differences less than 1.5 lb), PSO= 379.62, DE= 379.66, 

GWO= 379.69, GOA= 380.86. While the least-found weight 

in the literature: 379.66 lb. 

Although with small difference, but it is worthy to mention 

that the implemented test throughout this thesis brought 

optimal weight by the PSO even lower than the least-

found in the literature weight. 

10-bar truss
5058.00

5060.00

5062.00

5064.00

5066.00

GWO GOA PSO DE

Optimal Weight

10-bar truss

25-bar truss
544.80

545.00

545.20

545.40

545.60

GWO GOA PSO DE

Optimal Weight

25-bar truss

72-bar truss
378.50

379.00

379.50

380.00

380.50

381.00

GWO GOA PSO DE

Optimal Weight

72-bar truss
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4.3.1.4     Welded Beam 

 

For the welded beam, the optimal weights by the four 

algorithms are similar (with differences less than 4 lb), 

PSO= 1.7249, DE= 1.7615, GWO= 1.7258, GOA= 1.7585. 

While the least-found weight in the literature: 1.7249 lb 

 

 

 

 

4.3.1.5     Pressure Vessel 

 

The obtained optimal weights for the pressure vessel by 

the four algorithms are similar (with differences less 

than 4 lb), PSO= 5937.14, DE= 5937.14, GWO= 5944.53, 

GOA= 6835.21. While the least-found weight in the 

literature: 5885.33 lb. 

 

 

 

 

4.3.1.6     Tension-Compression String 

 

For the tension-compression string, the optimal weights 

by the four algorithms are almost identical, PSO= 

0.012685, DE= 0.012680, GWO= 0.012694, GOA= 

0.012706. While the least-found weight in the literature: 

0.012665 lb. 

 

 

 

 

 

 

Welded Beam
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1.720000

1.740000
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1.780000

GWO GOA PSO DE

Optimal Weight
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T-C String
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T-C String
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4.3.2   Other Comparisons 

 

Following are presented infographic comparisons between the four algorithms, among the 6 benchmark 

optimization problems, with respect to: the coefficient of variation, standard deviation and the ratio between 

the optimum obtained weight by each algorithm to the target weight (least-found in the literature). 

 

 

The GWO has shown the best coefficient of 

variation among the six benchmark problems. 

 

 

 

 

 

 

The DE has shown the best standard deviation 

among the six benchmark problems. 

 

 

 

 

 

 

 

 

The four MOAs have shown good capability 

through obtaining optimal weights that are 

almost the same as the least-found weight in 

the literature for the three truss structures. 

However, it is obvious that the GOA has 

performed not in good manner in the pressure 

vessel optimization problem.  
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Ch 5 Conclusion 

- In the current era of structural optimization, neural networks are broadly utilized instead of the 

accurate, but complex, FE methods in evaluating and predicting different aspects (e.g., structural time 

history responses). 

- The combination between MOAs and NN is a trending direction in the modern literature that shows 

high capability in reducing the computational time and efforts. 

- Equipping AI features (e.g., Fuzzy Logic) within an optimization technique, is observed through the 

literature review as a trending approach in the field, that gets the process done faster and more open 

to handle general families of optimization problems. 

- Penalty function is the most used approach for handling the constraints. 

- It is trending recently to use a random-search optimization algorithm during the exploration phase to 

spot just the promising areas within the search space, then to employ a deterministic or derivative-

based optimization algorithm in order to exploit that promising areas, in seek of finding the exact 

optimal solution. 
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