Efvixd Metoofio Ilohuteyvelo

2xon) Hxextpondyov Mryovixedv
xo Mnyovixedv TroNoylo oy

OFV
Bl

Toygag Teyvoroylag IIAnpogopixrc
xot TToNOYIoTOY

3
LG
T
NPOMHOEVS . S
-‘ijlﬂ!l’?orm

')

BelTiopevolr alyopiBuol yia mtpoAruato

afpolopatog UTOCUVOALYV

Improved algorithms for subset sum problems

AIITAQMATIKH EPTAYTA

EMMANOYHA BAYIAAKHX

EnBAenwy ¢ Apioteldne Hoyovptlng
Koabnyntic E.ML.IL

Abvva, Todviog 2021

XN

m
(0)

Efvixd Metoofio Ilohuteyvelo

2xon) Hxextpondyov Mryovixedv
xo Mnyovixedv TroNoylo oy

..{:;:D
‘§

| %
:l'l
&'
OEV$
Bl

&',‘a‘\"\
Iya
XL
A Vvp$opos

')

Toygag Teyvoroylag IIAnpogopixrc
xot TToNOYIoTOY

BelTtiopgvolr alyopiBuol yia mtpoAruato
afpolouaTtog UTOCULVOALY

Improved algorithms for subset sum problems

AIITAQMATIKH EPTAYTA

EMMANOYHA BAYIAAKHX

Emiprénoy 1 Apioteldng Hoyovptlhc
Kobnyntic E.M.IL

Eyxplbnxe amd tnv teiwery| e€etactiny| emtpony| tnv 31 louviou 2021.

Apioteidne Hoyouptlhc Anuitelog Putdnme EudryyeNoc Mapxdnng
Kafnyntic E.M.IL Av. Kobnyntic E.M.IL Av. Kobnyntic O.ILA.

Abvva, Todviog 2021

Eppovoud Baocwudxng
Awmhopatolyoc Hhextpohdyoc Mryavixdg xow Mnyovixde YTroroyiotodv E.M.IL

Copyright ©) Eypovoui\ Bao\dxnge, 2021.
Me empONaln mavtog dixoumuatog. All rights reserved.

Anoryopeetan 1 avtrypagy, anobrixeuon xou Siavour| tng mopoloos epyasiag, €€ oNoXNpou Y
TUARATOS AUTAS, Yia EUTopxd oxond. Emitpéneton n avatdnwor, anodixeuorn xan Swovour| yia
OXOTO U1} XEEOOGKOTUXO, EXTUOEUTIXAS 1) EPELYNTIXYC PUOTE, UTO TNV TeolTdBeo Vo avapépeTon
N Ty TEOENEUOTE Xa Vo Satneeitan To ooy urvuua. Epwthuata mou agopolv Tt xehon e
gpyaoiog Yot XEpdOOXOTIXO OXOTO TEENEL Vo AnELBUVOVTOL TEOG TOV CUYYEAUPEA.

O andelg xon oL GUUTERACUATO IOV TEEPLEXOVTAL OE AUTO TO EYYEAPO EXPEALOLY TOV CUYYPAUPEN
xou OV mEENEL var epunveulel Tl avtimpocwrevouy T enlonueg Béoeic Tou Efvixod Metodfiou
[To\uteyveiou.

Mrmoootd oe xtpara dold
Hag notns mov oryofpdie
aiplea, © pas xagrepd
oto téAos avtov tov 8pduov

ITepixndm

Yty napovoa Simhopatixd epyaocto, napouctdlovue téaceplg anyopifuoug PeudomolumvuuL-
%00 xp6VOoL Yia To TeOBANUN EQUAL SUBSET SUM, 0ptllouevo wg e€Xig: SeBOUEVOL EVOC GUVONOU
Betindv axepalov Z mAnbuxdtntac n, vo tpoadloploTel edv UTdEyoLY 800 Eéva LTOGUVONA TOU
Z, ta otoyelo Twv onolwv abpollouv oty (Bl Tiwn. Trobétoviag emniéov OTL Yog TopEyeTal
xan €va dvew 6plo t > 0 doov agopd to dbpotoua Twv BUO UTOCLVONLY, Wi XNACOLXY| TEO-
GEYYLON XAVOVTAC YENOT SUVAULXOU TEOYEoUUATIONO) UTopel Vo ADGEL To TeoPANUa o Ypdvo
O(nt). A&wonoolye Ty tpdogatn npdodo oe oyéon e 10 TpoPANUa SUBSET SUM eEoutiag Twv
Koiliaris ot Xu | | oAX& xou tou Bringmann | | ve otéx0 va oyedidooupe yen-
YopoTEPOUS aNyopifuouc yia To TEdPANUa EQUAL SUBSET SUM, X0l THO GUYXEXQUEVAL Yiol TNV
exdoyn avainrnongs, 6mou {NToLUEVO elval ETITAEOV X0 1) AVUXATAGKELY) TOV CUVOA®V TNS NOOTG.
Avantioooupe tpelc anyopibuoug mou Bacilovton oe auTAY TNV TEO0D0: VOV TUYOLOXEATIXO
yeovixhc Toumhoxdtntac O(n 4 t), évay vietepumioTixd pe ypovxh toumhoxdtyta O(a) xou
évay VIETEPUIVIOTIXG Ypovixfic ToAumhoxdtntac O(y/nt), 6Tou e o cuuBorilouue T0 GUVONXS
dhpoloua Tov cTovxelwv Tou cuvélou elédou. Emniéov, avanticoouue Evay amhd xal arnodo-
X6 VIETEPUMIO T ANy bptBpo Ypovc TouThoxdTrtac O(n 4 t), mou buwe dev @oiveton vor
unopel va enextaldel oe mo yevixd mpofNfuaTa.

Eunvedpevol and autéc TIC ENEXTACELS, EMEXTEVOUUE TEPULTER® TIC TEYVXES HUC UE OXOTO
VO AVTIHETOTIOOVUE Wit o yevix mapaikayr) Tou mpofAfuatoc EQUAL SUBSET SUM, mou
ovoudleton k-SUBSET SUM, 6mou ovoalntolpe edv undpyouv k Eéva UTOGUVON TOU GUVONOU
e €06d0u, Ta otolxela Tou xabevog ex Tov omolwv abpoilouv oe pio cuyxexpwévn dobeloa
Ty t; avtiotowga. Ilpotelvoupe dVo akyoplbuoug v Ty exdoyr andgaong Tou TEoNruo-
t0¢ k-SUBSET SUM: évav tuyaoxpatixd, yeévou O(n + tF) xau évav vietepuviotind, ypbvou
O(nF/FH14R) avtiotora. Téhog, Selyvoupe thE autol oL aNYEEOUOL PTORODY VoL YENOULOTOL-
Bo0v yia Ty enihuom TV exBoYGY AmdPACTS BLAPOEMV TULEUPERWY TEOPANUATOY, OTKG AOYOoU
xdern To tpofAAuata SUBSET SUM RATIO, k-SUBSET SUM RATIO xow MULTIPLE SUBSET SUM.

A€Eeig xAELOLd

subset sum, equal subset sum, k-subset sum, yp¥yopog yetacynuatiopoe fourier, color-coding,
oy opbuol PeudomorumvLULXO) XedVOU.

Abstract

In this diploma dissertation, we present four pseudopolynomial time algorithms for the
EQUAL SUBSET SUM problem, defined as follows: given a set Z of n positive integers, de-
termine whether there exist two disjoint subsets of Z, the elements of which sum up to the
same value. Assuming a given upper bound ¢ > 0 on the sum of the two subsets, a standard
dynamic programming approach can solve the problem in O(nt) time. We build on recent
advances on SUBSET SUM due to Koiliaris and Xu | | and Bringmann | | in order
to provide faster algorithms for EQUAL SUBSET SUM, and in particular for its search version,
where a reconstruction of the solution sets is also sought. We devise three algorithms based
on those advances: a randomised one of time complexity O(n + t), a deterministic one of
O(0) complexity and a deterministic O(y/nt) time one, where ¢ is the total sum of the ele-
ments of the input set. Additionally, we present a simple and efficient @(n +t) deterministic
algorithm, which however does not seem to be able to be extended to more general problems.

Inspired by these extensions, we further extend our techniques in order to cope with a more
general variation of EQUAL SUBSET SuM, called k-SUBSET SUM, which asks for £ disjoint
subsets, whose elements sum up to a certain given value ¢; respectively. We propose two al-
gorithms for the decision version of k-SUBSET SUM: one running in randomised O(n+t*) time
and a deterministic @(nk/ k+1¢k) time respectively. We further demonstrate how these algo-
rithms can be used to solve the decision versions of closely related variations of k-SUBSET SUM,
namely SUBSET SUM RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.

Key words

subset sum, equal subset sum, k-subset sum, fast fourier transform, color-coding, pseudopoly-
nomial time algorithms.

Evyopioticg

Apyixd, opeihw éva yeydho guyaplot® otov emPrénovta xabnynty e mopodoog Bimhw-
nateig epyootag, x. Aptoteldn Ioyouptls, xabde xou oToug SbuxTopoUs QolTNTES AVTmVN
Avtovonouro xou Ntadpo Iletoandxm, yio TNy guydploTn XoL AmEOCXOTTY CUVERYAT(O Mg, Xa-
0dc xan vyl Tig Bdpopeg LTOBELEE xou TNV ToNOTWN BorPeld Tougc. Emmhéov, O HBeka va
euyxoploTHow Bepud Tov x. Anurtelo Pwtdnn yia Tic ToNUTIWES GUUBOUNES Tou, xafHC xan TO
€tepo péNOC TN e€eTao Tt emitponig, x. Eudyyeho Mapxdxm. o tnv cuyypagy, authc g
oM wpatixhc xenowonowibnxe to MTEX template mou avantiybnxe and to epyacthplo softlab
NG OYONTG.

H epyooia aut| onpatodotel 1o téhog plog morbypovng xan xafopioTixic teptodou g Lwihg
nou. Puowxd, tirota dev O yTav To (BLo Kwplc Toug Piloug xou T QINEC HoU, TaAlolg xou VEoUC,
TOU UE CLVTPOYEVOLY GE aUTH TO OUop@o Takidl. Ou makol, TOU CUUTOEELOUACTE amd ULXEd
Toudld xou peyordoaue pall (xon oxoud UEYUNDVOUUE...), Xou oL VéoL, Xwplc Toug omoloug Ta
YEOVIL TV oToudKY pou Ba AToy O To aviapd, xoUPUCcTIXd xaL ddela, wou urevbBuuilouyv
CUVEYWE TOCO TUXEPOS Elpal TOU TOUG €xw BlmAa Hov.

II&ve amd X bpng, Be Umopw Toed Vo Expedon TNy PadiTtatn euyvepochvn xoL oy dny Hou
G TNV OXOYEVELH OV, TOL TOG YpoVLa Ue o TNelletl, pe xabodrnyel xat Lou cuunapac TéxeTa, diywe
TNV onola dev Ho unopoloa TOTE wou va PTdcw péypel 6w. EXnilw va toug xdvew uTeprpavoug.

Eupoavoud\ Baoukdxrng,
Abrva, 31 Touviou 2021

11

Contents

IMepindm . . . o
Abstract L
EuxoeloTieg
Contents
List of Figures e
0. Extetauevn EXAnvixr Ilepidndn00 000000
0.1 Ewooywyh . . o oo e
0.2 TIpOUMOUTOUMEVOL .« v v v v v vt v v e s e e
0.3 Alyopibuot yio To0 mEOPANUA SUBSET SUM . . . v v v v v v e
0.4 Alyépibuot yio To mpoPAnua EQUAL SUBSET SUM
0.5 To mpoPAnua k-SUBSET SUM X0 OYETIXEG EMEXTACELS .« « v v v v v v v v v v v
0.6 Xvunepdopoto & MeXhovtixée Ilpoextdoeic.o Lo
1. Introduction
1.1 Related Work oL
1.2 Research Objectives & Contribution
1.3 Thesis Outline
2. Preliminaries
2.1 Notation L e
2.2 Theoretical Background
2.2.1 NP-completeness, Pseudopolynomial and Randomised Algorithms
2.2.2 Polynomials, FFT and SUBSET SUM
2.2.3 Relationship between SUBSET SUM and EQUAL SUBSET SUM

2.2.4 Congruence Classes
2.3 Techniques
2.4 Observations and Lemmas

3. SUBSET SuUM Algorithms
3.1 A randomised O(n +t) algorithm
3.1.1 SUBSET SUM algorithm for small solution size subsets

3.1.2 SUBSET SUM algorithm for [-layer instances

3.1.3 General case algorithm o Lo

3.2 A deterministic O(o) algorithm
3.3 A deterministic O(y/nt) algorithm

3.3.1 Computation of SC;

(S) o et

3.3.2 Computation of §;(5) for elements in the same congruence class

3.3.3 The main algorithm

11

13

15

17
17
19
22
24
25
27

31
31
32
33

35
35
36
36
36
38
39
39
40

43
43
44
45
47
47
48
48
48
49

13

4. EQUAL SUBSET SuM Algorithms 51
4.1 A randomised O(n + t) algorithm for EQUAL SUBSET SUM 51
4.1.1 Small cardinality solutions oo, 53

4.1.2 Solving EQUAL SUBSET SUM for [-layer instances of Z 54

4.1.3 General Caseo 56

4.1.4 Reconstruction of the solution sets 57

4.1.5 An algorithm without counter and flag table. 58

4.2 A deterministic O(co) algorithm 60
4.3 A deterministic O(y/nt) algorithm for EQUAL SUBSET SUM 61
4.4 A deterministic O(n + t) algorithm for EQUAL SUBSET SUM 62

5. k-SUBSET SuM and Further Applications 65
5.1 Solving k-SUBSET SUM in randomised O(n +t¥) time 66
5.1.1 Small cardinality solutions 0. 67

5.1.2 Solving k-SUBSET SUM for [-layer instances of Z 68

51.3 General Case 69

5.2 Solving k-SUBSET SUM in O(nf/F+14F) time 70
5.3 Faster Algorithms for Multiple Subset Problems 71

6. Conclusions & Future Work 73
6.1 Conclusions 73
6.2 Future Work L 73
Bibliography 75

14

List of Figures

2.1 Recursion tree of function f(n,m). Lo L

3.1 Partition of the input set Z, according to Bringmann’s algorithm.

41

15

Kegpdharo 0

Extetopévn EXAnvixA Tlepiindn

Ye autd T0 xEPENaLo Har TUPOUCIACOUUE GUVOTITIXE TNV ToEoVOoA BIMAOUATIXY Epyacio uéoa
a6 uio extetopévn tepidndn ot EXA\nvixd. Oa anogeuyBolv ol texvixés Aentouépeleg xaL o
anodeléelg, oL onoleg TapouGIAlovTon EVOEAEXMSC GTO oy YA xelyevo, xa. Ba eoTidoouvye oTny
0UG{A TOV ATOTENECUITWY UAC.

0.1 Ewoyoyn

AoBévtoc evog cuvorou S BeTixddv axepalwy xou eVOC 6ToyoL t, eEeTATTE EGY UTAEYEL XETOLO
unocUvoro Z C S, 6mou To dbpoloua Tev ctovxelnv Tou woltar e t. To napandve tedPinua,
Tou ovoudleton SUBSET SUM, anotehel éva and o apyixd NP-mhfen npofAfuata, 6nng tapou-
oo tnxay and tov Karp 67to | |, xon Bewpeiton éva and ta o OepeNLddN oyopBuixd Teo-
BAAuata, pali pe ta tpoPAAuata KNAPSACK, SAT xou diho. IIoANG eloarywyixd mavemio Tnuaxd
uabuortar ohyoplBuwmv topouatdlouy TNy €vvola TG PeUBOTONVWYUXTE TONUTAOXOTNTAS UECK
TOU *NAooIX00 oAyopiBuou Tou Bellman yia to SUBSET SUM, 6nwe napouotdletat oto |].
[Topdt mpdxelton yior Vo EVOENEYWDS UENETNUEVO oNYoEWOUXO TEOBANUa, Tor TeEXeuTAlol EOVIAL
€youv yivel onuavtnég BeATIOOE OGOV aQopd TNV ETAUCLUOTATA TOU G (PEUBOTONUMVUULXO

xpovo. Néol vietepuviotixol | | xou Tuyanoxpatxol | , | a\ybpLbuot éxouv npo-
Tabel, AMOTENMDVTUC TIC TEHOTEC OLUCLOOELS PENTIOCES O OXEON UE TNV XAOLEQOUEVT XNACTIXN
Tpocéyyion tou Bellman | | xabcdc xan v Petiwon tou Pisinger | .

To npéfAnua EQUAL SUBSET SUM eival €vo AlyOTERO UENETNUEVO, EVTOUTOLS a&looTuElnTo
TEOPBANUA TOU €YEL TPOCEAXVCEL TNV TEOCOYXH UEXETWV EPELVNTWY, AOY® TWV EVOLUPEPOUCHV
epopuoymy Tou Peloxel oe ddpopa edia, dtwe Noyou xden 1 utohoyloTixh Bloloyia | ,

|, n utoXoyloTinh xowwvixh emhoyh | | xou 1 xpuntoypapio | |. Emniéov,
oxetiCeton pe onpavtnég Bewpnunés €vvoleg, OMwS TAPAdElYUATOS YdEN TNV TOAUTAOXOTNTA
TV TEoPANUdTOV avalftnone otny x\don TFNP | |. Xe authv v dimhopatixd epyaoia,

Bewpolye TNV mepintwon 6mou pog Sivetar emmAéov €va dve Oplo ¢ xou avalntolue dVo Léva
unocUvola (oou abpolcuatoc, To onolo pedoceton and 1o t.

Mo o yevixr) exdoyn Tou mpofAfuatog, otnv omola Ha avapepduacte wg k-SUBSET SUM,
Untd va Peebel edv undpyouv k Eéva unocivora, ta abpoliopata Twv oTolxElny TV otolwv Loov-
vtan Ye dobeloeg tuég t,1 = 1,..., k avtiotoiyo. Mropel xavels vo Slamio ThHoeL Tog axourn xou
oty neplntworn é6nou k = 2 xou t1 = ta, T0 TEOPANUA yivetan TOND o dUoxolo. To mpdBAnua
autd umopel va Bewpndel wg ula otoyeupévn exdoyr tou EQUAL SUBSET SUM, yia tnv onola
0ev UTOPOLUE Vo a€lOTIOLACOUNE TO OTL Tot cUvoXa NG Abong Ba elvan Eéva puetal toug Adyw
xdmolou emuyelpuatog exaylototnTog. Mio evbilagépovoa x| nepintwor etvon 6tay to dbpol-
OUOL TOY TOY - OTOXV t; looLTal To dhpolopa TV GTOLKEIWY TOU GUVONOU ELGHBOV, ETOUEVWE
avalntolue pio Sluéplon TV OTOLXEIDY TOU GUVONOU ELGOBOU GE UTOGUVONI GUYXEXQUIEVOY
abpoloudtwy. Mia axoun mo ewdur neplntwon elvon auth oty omola BENoupe va dauepicouue
10 6UVONO El06B0L ot k utocvola (oou abpoicuatog. H teleutala nepintwon Beloxel egapuoyéc
O€ TEQPLNTWOELS O{XAUWY XUTAVOUDY.

17

Yxetixr; Bifhioypapia

To npéBAnua EQUAL SUBSET SUM xou 1) exdoyh Beltio tonoincric Tou, tou otn PiNoypapia
xoeltar SUBSET SUM RATIO | |, oxetilovtan pe Sidgpopa mpoPAfuata tou tapovoldlo-
viow og plo TAnBwpa emoTHoviXdY Teploywy. Mepind mopadelyyoto anoteloly 1o mEdPANUa
Partial Digest, mou epgaviletar oty neployh e utohoyloTixhc Ploroyiag | , |,
EXYWOENOT ATOUXOY YoV | |, N xotaoxevy) Toupvoud | |, xou wior mopahhoryfy Tou
SUBSET SUM, to Multiple Integrated Sets SSP, mou Bploxel eqapuoyéc oto nedlo tng xpunto-
vooploc | |. Emunhéov, oyetiovtan xou pe onuavuxéc évvolee e Bewpntinfc emotiuncg
TWV UTONOYLOTWY. ot Topdderyua, pio teploplouévn exdoyy) Tou EQUAL SUBSET SUM avixel o€
o utoxNdon e xAdone ToXuthoxdtntoc TENP, cuyxexpévo otny PPP | |, wlo x\éom
mou amoptileton and mpofAAuaTta avaliTnong mou mdvtote €youv NOon eEoutiag XATOLOU EMLYEL-
PAUATOSC TEPLOTEQWVAL, X0 XAVEVOS TONUWVUUIXOS ONYOELOUOC BEV ElVOL YVOGTOS YLoL QUTHY TNV
TEPLOPLOUEVT] EXDOYN.

To npéPrnua EQUAL SUBSET SUM éyet anodevyel 6ti ebvow NP-hard ané toug Woeginger
xou Yu | | xou apxetéc mapohayéc Tou éxouv anoderyfel otu etvon NP-hard oand toug
Cieliebak et al. oo | , |. "Exer pexetnfel xuploc oe oyéon pe v exdoyr| Perti-
otomolnoc Tou, Tou anoxae(ton SUBSET SUM RATIO, 1 onola {ntd tnv elpeon 800 Eévwv umo-
CUVOA®Y UE OGO TO DLVITOV UxpOTERO NOYO abpotoudtwy. ‘Evag 1.324-tpoceyyio Tindeg aryoptd-
noc €xel tpotabel yio to SUBSET SUM RATIO 670 | | xou apxetd FPTASs epgoviotnxay
ot | , , |, e To YeNyopdTERD €0 TP Va glval aUTH TOL TUEOLCLIC TNXE
oto | | roxumhoxdTnTac O(nt/e).

Ye o, agopd axplfelc akyoplBuoug, mpdopata delydnxe 6TL umopel va Aubel mbavoTixd
ot xpdvo OF(1.7088™) | |, Yenyopdtepa and pio otédvtap ‘meet-in-the-middle’ npoocéy-
yion moAumhoxétntae OF(3M2) < O*(1.7321™). Ltnv nopolon epyoaoia, TEOTelVOUUE TEELS
ayopifuoug (eudomorumVLULXOD XEOVOU, ETMEXTEIVOVTOSC TA TEOCQAUTH ATOTENECUATH YL TO
SUBSET SUM oné touc Koiliaris xou Xu | | xou Bringmann | | v to npdPANnua
EQUAL SUBSET SUM. YnNUEWOOTE TWS, EVE 1) EQUOUOYT AUTWY TOV o\yoplBumy yio Tnv exdoyn
ambé@aong Tou EQUAL SUBSET SUM elvow omh\y|, 1) TROCOQUOY) TOUS Yia TNV eniAuon tng exdo-
whe avalAtnone, N onola TEPNAUBAVEL TNV OVOXATACXELT] TOV CUVONWY NS AUOTG, elvol apXeETH
oUVleTn. Emmiéov, napoucidloupe évay amhd xou anodotixd arydelbuo mou arotehel enéxtoom
ToU a\yop{Buou tou Bellman | |. Hpooé&te bung 6TL OL TEYVIXES TIOU YENOWLOTOLOUVTAL
oTov TeENeuTalo auTOV oNYOElUo BeV Umopolv Vo EQapUocTolY 6To k-SUBSET SUM, xuplwg
enewdn) Oev UmopolUE Vo TEOCOLORIcoLUE EGV Tal EUTAEXOUEVA UTOGUVONA efvan E€var Blywe Vo
YENOWOTOLACOVUE XAmoLo GUVOT XY ENXLOTOTNTOG.

To k-SUBSET SUM efvon €va ToXU mo yewixd mpoPinua, mou unopel vo xenouylonombel yia
TNV eniAUOT BLoPOEOY TAPAANAY WY TOU SUBSET SUM, 0T0¢ €€1NYOUUE AVOAUTIXA GTO oy YAXO
xelyevo (Section 5.3). EE 6owv yvwpiloupe, dev Atav yvwotde xdmoog anyopuoc Peudono-
AVOYLUXOD YeOVOU achNTd O YE1YOROS AmO TNV XAACOXY TEOGEYYLOT BUVOUIXOU TROY pa-
watiopol toxumhoxétntac O(nth) yio to meéPANUa k-SUBSET SUM Tipwv TV topoloa spyacia.

Avtd ta mpoPNrjuorta eivan dppnxta cuvdedeuéva e To SUBSET SUM. To tekeutaio, npdopota
Topouciooe evtunwotaxt tpdodo, eutiuc twv Koiliaris xou Xu | | mou rapouciocay Evay
Ay 6o tolumhoxdtntac O(yv/nt), émou n eivar T0 TBoC Twv GToyEiwY ElG6Boy Xou t &i-
Vo 0 0TO%0C, xou and Tov Bringmann | | mou napovsiooe évay mhavoxpatind alybplbuo
TTONUTIAOXOTNTOG O(n +t). Ou Jin xau Wu TpoTEWVAY Evay amAoloTERo TbavoxpaTiXd oNyo-
etbuo | | meTuyaivovtag Ta (Bl bptar pe To |], o buwe dev delyvel vo enexteiveTon omo-
doTind OO TE VoL yiveTon avoxaTAoXELH ToV oUVONGY Trc NUome.! TTo\) tpdogata, oi Bringmann
xou Nakos | | mapouciacay évav ohydpibpo morumhoxdtntac O(|Si(Z)|*3poly(logt)),

! Tlapatnphiote 61t olte 0 a\ybplduoc Tou Bringmann | | Nover tnv exdoyi avalitnone tou SUBSET SUM,
ouwe o avth Ty epyacio Ba dSelouye THE UTOPOUUE Vo EMEXTEVOUPE XOTIANTAG TOV aAyoelBUo (o TE Vo emi-
OTEEPOVTOL TaL GUVONL NG AUong tou EQUAL SUBSET SUM, ywpic va avénbel moNumhoxdtntd tou (oryvomviag
TONVNOYELOUIXOUC TtapdryOVTES).

18

6mov §(Z) elvan 10 6OVONO OXWY TwV TBOVOY afEOloUdTOV UTOGUVON®Y TOU GUVONOU ELGGB0U
Z mou elvar uxpotepa tou t, Paciloyevol oo top-k convolution.

To np6PAnuo MULTIPLE SUBSET SUM 6TV mpayloTixdTnTo amoteel pio eduxy| tepintomon
Tou mpoPAuatoc MULTIPLE KNAPSACK, 6mou xou Ta 800 €x TV omolwv €xouv TeooeAx)oEL
WOlodtepo evdlapépov. XyxeTixd ye to MULTIPLE SUBSET SUM, ou Caprara et al. mapouciacay
éva PTAS yua v mepintwon 6mou 6Xot ou 6tdyot elvon (Slol oto | |, xou oTn ouvéyela
oo | | ropousidlouvy évav 3/4 npoceyyioTind alyopluo. To MULTIPLE KNAPSACK €yet
e€eTAUOTEL EXTEVECTERO TAL TENELTALO (EOVLAL, POV EQUPUOYES TOU GUVAVTHOVTOL GE SLdpopa Tedla,
OTWS TaL oxovouLxd 1y oL uetaxwvhioels. Mepinég a€loonueinteg épeuveg mdve oe TORUANAYES TOU

TpofNAuartoc napéyovtan and Toug Lahyani et al. | | xou Dell’Amico et al. | |. Edi-
XE€C MEQLMTOOELC XU TopaAAyéC Tou MULTIPLE SUBSET SUM, 6Tw¢ AOYoU xder To TeoAnua
k-SUBSET SuM, éyouv pehetnbel oto | , |, 61ou mpoTtdnxay amhol Peudonoruwvy-

uxol oy opLuot.

Epsuvntixol Xtéxor & Juvelcpopd

Apynd nopovoidloupe téooepic aryopibuouc yio to EQUAL SUBSET SUM: évov Tuyouoxpo-
6 moumhoxdnrac O(n + t), évav vietepumotind mohumhoxdtnrac O(a), évav vietepui-
viotxd moumhoxétrntae O(y/nt) xa téhog évay VieTepuvioTinGd Toumhoxdtntac O(n + t),
omou pe o ouvuforilouye 10 cLVOANXOG dbpoloua TV GToLKElWY TOu GUYONOUL €lG6doL. Evd ol
TpToL TEEC anyoebuol Pacilovton oe TEXVIXES TIOU YEMoyloToloUVTAL O aNyoplBuoug yia To
TeOPANuo SUBSET SUM, xou ot omofol umopolv emniéov vo emextafoly xou yia To meofAnua
kE-SUBSET SUM, 0 TeXeutaiog Umopel uévo va yenowomoindel yio TNy amoTteecuatixy eniAuon
tou EQUAL SUBSET SUM. No onueiwfel nwg dX\ot ol akydetbuol Novouv tnv exdoyn avalnrnons
tou EQUAL SUBSET SUM, dn\ady| xataoxeudlouv ta cUVoAa TNg AUonge.

Emniéov, magoucidlouye 800 aryopifuoug mou Aovouv tnv exdoyy| andpaong Tou TeoPih-
patog k-SUBSET SUM: €vay TUYOLOXQOTIXO TOAUTAOXOTNTOG O(n + tF) xon évav vietepuvi-
otxd moxumhoxdtntac O(n®/FH1tk). Stn cuvéyeia, delyvouue mde autée or Wéec unopolv vo
enextafolv xou va yenowonomnfoly yio TNy enihuon Twv tpofAnudtov SUBSET SUM RATIO,
k-SUBSET SUM RATIO xow MULTIPLE SUBSET SUM.

Ou a\y6pibuol pac Baocilovtar xar enexteivouv Toug alyoplBuous xan Tig TEXVIXES oL TEOo-
tdOnxav and toug Koiliaris xouw Xu | | xou Bringmann | | v to SUBSET Sum. Il
CUYXEXPIIEVA, XAVOUUE YEeNoT Tou anyoplBuou Fast Fourier Transform, apibuntixric modulo xou
e TeX Vg color-coding, avdueco oe dANA.

0.2 IIpoanawtodpevoa

e qUTO TO UTOXEPANOLO, Bal TUPOUGLAGOUUE CUVOTTIXG XATOLO TROUTAULTOUUEVO IOV QEELN-
Covtan yLot TNV copn XaTavonon tou eEXAVoL xewévou. T pio extevéotepn nopousioor Tov
EVVOLOV X0l TV GUUBONOUGY TN Topolous epYuclas, TUPATEUTOUUE TOV VALY VOO TN GTO XE-
(QANO 2 TOU oy YAXOV XEWEVOL.

Yuupoiiouog

Apyd Ba mapouctdoouue Tov GUUPONIGUO TOU XENOWOTOLELTOL GE AUTAY TNV EANNVLXY
nepndm. e peydho Pabud axolovbolue tov cupfolioud mou yenowonoteiton ot | |
xou |].

e O - Eupéoc YPNOYLOTOLOVUEVOS CUUPBONOUOS 0TO XOUUSTL TNS UTOXOYIOTIXHS TONUTNO-
w6tntoe, f(n) € O(g(n)) ebvon ovvtopoypapia v to Ik @ f(n) € O(g(n)logk g(n)),
ONAadT| yenoonoteitan yior TNV andxeLPN TONLAOYUELOUXGOY ToEyOVTKY.

19

o Me [z...y| = {z,xz +1,...,y} ovuPoXifoupe T0 clvVONO TwV axepainy ot €va ddoTnua
[,y]. Ouolwe, [x] =[0...x].

e Acdopévou evoc auvorou Z C N, cupforilouyue

> 1o dBpolopa Twv oToelny Tou pe X(Z) =) ., 2.

> To 6UVONO OA®V TV duvathv abpoloudtoy utocuvolwy tou Z ue S(Z) = {3(X) |
X C 7).

> 70 0OVOAO ONWY TwV duvatdv afpolopdtwy UTOcLYONLY Tou Z uéxel t pue Si(Z) =
S(Z) Nt

> T0 GUVONO OA®V TV BUVATHOVY abpoloUdTmy UTOCUVONWY Tou Z wall Ue TNV eXdcToTe

Tnbuxdéntd toug pe SC(Z) = {(2(X), |X|) | X C Z}.

> T0 GUVONO OAWV TV BuVATOY afpolopdToy UTOGUVONWY Tou Z péypl t pall ue tny
exdotote TANBUXSTNTE Toug pe SC(Z) = SC(Z) N ([t] x N).

o Acdopévou 800 cuvorwy X, Y C N, cuyforiloupe 10 GOVONO TV Suvat®y afpoloudTwy
TOL TPOEEYOVTAL omd oTor el Twv dVo clvooy wc X ®Y ={z+y |z € X U{0},y €
Y U{0}}. Emnhéov, opilovpe X &Y = (X @ Y) N [t].

OcsopnTixd YroPabeo

e auté to onuelo Bu mapoucidooupe xdnoleg Paoixés BewpenTixég €vvoleg mou xplivovto
ATAEALTNTES YLl TNV XATAVONOT TNE TopOVCAS EQYAUTLS.

NP-completeness X1y Ocwplo uTtoXOYIGTIXTC TOAUTANOXOTNTOG, 1) XAdon NP eumepiéyet to
TpoPAARATA amoQACTE YL Tar oTola, Ol ElC0BOL XATAPATIXAC ANdVTNONG €Y0ouV amodelel mou
unopoly vo moTononBolv e TONVWVLIIXO YEdVo amd uia vietepuvioTiny unyavh Turing. Me
AN NOyLat, BEBOUEVOL EVOG GTUYULOTUTIOU ELGOBOU TOU TEOPAAUATOS, UTOPOUUE VO TULO TOTOLH-
couye OTL 1) €£000¢ elval OVTWS XATAPATIXY OE TONUWVUUXO XEOVO.

Edv éva mpéBnua I1; avdyetow oe éva mpdBinua Il oe mokvwvouxd yeévo (I <p 1),
TOTE:

o Yrdpyel uia cuvdptnon R : ¥* — ¥* mou unopel va untoloyiotel o ToALwvVUULXO ¥EbVO,
tétol Wote Vo € XF, woybel 6n x € I} <= R(x) € Ila, 6nou pe X* avanoplo Tolue

T0 GUVONO OAWV TeV ThaveOV e106dwv xau = € II av xou yévo av 1 elcodog x €xel g
anotéreoya xotapatixy €£060 yia to npdBAnua II.

e H cuvdptnon R xohelton molvwvvusn avaywyn.

o Ouoctaotxd, petaoynuotiCoupe (amodotixd) xdbe oTyudTUTO EL06B0U TOU TEOPAAUATOS
IT; oe éva otiypotuno €woddou tou mpofafuatog Iy xav ot cuvéyelor emAdoupe to
oAU 1o,

‘Evo npéBinua anégaone II eivon NP-complete €dv:
1. To II avrixelr otnyv xhdorn NP, xou
2. Kdbe mpoPinua oty xhdon NP umopel va avayBet oto 11 o mtolvwvuuixd yedvo.

Ta NP-complete mpofN\fuata avamaplotody ta Suoxordtepa TpofAfAuata Tne xXdong NP xou
ouvoilouv TNV utoXoylo T BuoxoXlo Tng Blag TG XNdoNS.

20

Peuvdonmolvwvuuixol ANyopBuor Trnoclvoro twv NP-complete anoteholv ta weakly
NP-complete npofifuata. "Eva mpofAnuo artoxoletton weakly NP-complete edv undpyel anyod-
etbuog mou To ETAUEL, TOU OTOlOU O YEOVOC EXTENEOTE EVOL TONUWYUUIXOS WS TR0 TNV apLiun-
T T TG ELo680L (0 HEYONDTEROS axépatog TOU LTIAPYEL 0TV El0080) aANS Oyt amapadTnTa
o710 uAxog NG ewwbdou (tov aplbud Twv bits mou ypeewdlovtal Yl Vo THY oVamoEAo TROOLY),
nou cupfaivel yior Toug alyoplBuoug ToAuwvLUIXOU Ypovou. ‘Evog tétolog anydplfuoc xareiton
Pev6oTOAVWYYIXOS, Aol 1 aelBuNTX) T TNS EloOd0L elvar eXOeTX we TEOC TO P0G TNG
€L0600u.

Tuyowoxpatixol AXyopiBuor 'Evac alyodplfuoc amoxaeiton tvyatoxgarinos edv eumepié-
xet évay PaBud tuxoudtnrog g uépog e Noyixic Tou. Xe avtifeon e évav vretegumotind (1
OO atttoxpatied) aXy6pluo, 1 €€080¢ evdc TUYMOXEATIXOL UTOPEL Vo Blopépel avduesa oe
Eeywplotég xNNoelg 6To (Blo oTiywdTuTo etlobdou. Enopévac, undeyet n mbavotnta noporywyhc
XavBoouévou anoteréopatog 6mou cuvhBwe cupfoXiletoan ye J. Autol ou akyoplfuol amoxa-
NoOvtan enlong mdavotixol Ny miavoxpatixol xon 1 TONUTNOXOTNTE TOUG emneedletar amd TiG
emTEeEn TS TWES TNg mbavotnTag Adboug 6.

Juvdvaouwog uvorev Eva xowd yxopoxtneioixd twv aryopibuov tou eletdlovian o
aUTAY TNV SimAwpaTxr epyactio etvon 1 Sladpeor) Tou apyixo’ GUVONOU EIGOBOL Z GE UTOGUVONA
Z1y. .., XOL O AVOOEOUIXOS UTONOYLOUOS TV ofpoloudToy UTocUVONwY Toug. Meténelta,
autd T afpolopota UTOCUVONWY cuVOLALOVTAL UE OXOTO TOV UTONOYIoUO TV afpoloudtonv
UTTOGUVONWY TOU apyixol cuvolou Z. Emouévwg, elvar ToOND onuavTixd vo meoydatomoleiton
ATOBOTIXY AUTOS O CUYBLACUOG, APOL EXEL XEVTELXO PONO GTOV XaBOPLOUO TNG TONUTAOXOTNTUC
TV onyopibuwy. Autod yivetan ue yerorn tou aryoplBuou FFT, n Noyx xou 1 yenowwdtnto tou
onolou avobetan Slegodixd oto aryyAixd xelpevo. Ipocélte nwg o alydpluoc FFT unopel va
enextolel xou o cUvora k-Bldotatov onuelwy, 6mou unopel va mparyuotoroindel amodotixd To
dfpoloua TwV TWEOV TOV EXACTOTE BLAC TUCEMV.

KX\doelg Iootipniag Aobévtog evdg axepaiov n > 1, 800 axépouot a, b etvou todtiwor modulo
n, oy 10 1 elvol BLUEETNG TNG OLAPORAS TOUG (e NNt NoyLa, udpyet axéponog k € Z téTolog Mo TE
a—b = kn). H wwotpio modulo n eivon oyéon iwooduvoplac xar cupforiletar ye a = b (mod n).

To clhvoro AoV Tov x\doewy tootyiag modulo n cupforileton pe Z, = {0,...,n —1}.
Koféva and ta oTouyelo Tou ¢ avamoploté to ovolo tov axcpaiwy Tou elvar woétyol modulo n
WE TO 4, Ye NN Noywa Vo € Z,z €1 < x =i (mod n).

EbVpeon Moptipwv wéow Peeling Kdbe gopd nou avalnrodue to duvatd abpolopata
TIOU UTOPOLY VoL GYNUATIOTOUY amd ToV cLVOLACUSO dUo GUVONWY, elval xalplog onuaciac o aro-
00TXOC TPOGBloPLoUOS TV eMuépous abpotoudtwy Tou afpolcTnxay yia Tov UToONOYLoUS Xdbe
abpolopatoc. Autd elvan amapalTnTo Yol TV OVIXATACKEUT) TWV GUVOA®Y NOOTE XU ETOUEVOS
e enihvone tne exdoync avalhtnons tou EQUAL SUBSET SuM. Ou Koiliaris xou Xu | |
avéryouv auTd 1o TEOBANUA 6To TR avaxataoxevns, GTWS AUTO AVAPERETAL OTO | |
X0l ETUYEPNUATONOYOUY OYETXA UE TNV TONUTAOXOTNTE TOU, XATUNYYOVIUG GTO CUUTEQUCHUA
HTL UTEPYEL LOVO TONUNOYpLOPLCH ETLBAPUVOT GTOV UTONOYIOWS TV OYETILOUEVOY LapTUPWV .
Auto elvon €vol TOXND ONUAVTIXG ATOTENECUA, TOU UTOBELXVIEL OTL O UTONOYIOUOS TWV UApTURWY
0eV TEOXANEL XATOLO ‘GNUA’ GTNY XEOVIXT] TONUTAOXOTNTA.

? Q¢ pdorvges evoe abpoiouatos s, opiloupe ta emuépouc abpoiopata ' xo s — s, and 1o omola oyNUATicTHXE
T0 dbpoloua s.

21

0.3 AMXyopeBuol yia To mpoBAnue SUBSET SUM

Ye autd To unoxepdlato, Bo ToEOLCLAGOUUE GUVOTITIXE TOUS aNYopifuouc Tou TpoTddnXay
an6 toug Bringmann | | xou Koiliaris xou Xu | |, Touc onoloug Ba tporonoicouue
X0l EMEXTEIVOUUE GTNY CLVEYELL aUTASC NG epyaocioc. Kuplng Oo emxevipwBolue otnv Aoy
xoL oTNV PUNocoPla TwV aNyoplBuwy xaL Bev Do TUPOUCLICOUNE TIC TEXVIXES TOUC NETTOUERELES,
oL omoleg ToEoLCLELOVTAL AVAAUTIXG OTO XEQANUO 3.

I o udroLmo avutol Tou xegahaiou, utobéote 6t Z = {z1,..., 2, } C N eivar t0 ovoro
elo6dou, omov n = |Z|, xou t > 0 eivan o d0bév dvw pedyua. Enopévuc, {ntoluevo tov mo-
poxdTw onyoplbuwy elval 0 TEOGBLOEPIOUOS TOL EQV LUTdEYEL €val UTOGUYONO Tou Z, To dfpotoua
TwV oTolyelwv Tou onolou ot pe t. o var to TeTiyouv autd, oL mapaxdte anyodplduot Pel-
OXOUV OTNY oy LoTXOTNTA T0 00VONO St(Z) OAwv Tov duvatdv afpoloudtonv Tou Unopolhv vo
oxNUATIoTOVY antd UTOGUVONI TOU GUVONOU ELGOB0L Z %ol To dfpolopa Tov onolwy dev Eeepvd
0 t. 'Eneita, yla var anovTAooupE 0To epdTNUd pog, apxel va e€etdooupe edv t € S¢(Z).

Tuyowoxpatixds olyoptBroc tounhoxdtntac O(n + t)

O Bringmann napovciace oo | | Tov npwTo Peudoypopund we TEoc t xat n oy bpiuo
via To TedPANua SUBSET SUM. Tov tuyanoxpatind autd a\yoplbuo neplypdoupe avaNuTixd 0 TO
unoxepdiato 3.1. Xtn cbvtoun auth napouciact Ba teplypddoupe drancbnTixd xou ywelic anodel-
e ta Pruata Tou anyopiBuou. O mbavotixde autdg anydeBuog, €xel mhavoTnT GPINUATOS
0.

1. Apywxd ywellouue o ahvolo elcédou Z ot logn utocUvora Z;, €tol (o Te xdbe npoxintov
UTOGUVONO VoL amoteel éva [-layer GhOvolo®.

2. Kdbe tétoo [-layer unocivolo Z; 1o yweilouye oe m tuyala unocOVora S, ..., Sim,
OTIOU TO M ETUAEYETOUL XUTAANTINL.

3. T xdbe mpoxinTov UTOGHVONO S;j, TEEYOUNE Evay ahyopuo SUBSET SUM nou Beloxel,
e peydhn mbavotnto, to duvatd abpolopora uéyet pla T 29t/1 mov unopolyv vo oy nuo-
TIGTOUV oo To UTOGUVOAA TOU S oL €Y0UV TANIUXSGTNTA TO TOXD 7y, 6ToL To 7y oplleTon
XATENANAOL o To [ebvon Tiur oyetillouevn pe to exdotote Il-layer uncpolvoro Z; amd T
dldonacn Tou onolou mpoéxude to S;;.

4. Yuvdudloupe xatéANNAa owtd Tor Tbavd duvatd abpolopato Tov S;; vy vo feolue ta
mhavd abfpoloyato UTOCUVON®Y TOU EXAGTOTE Z;.

5. Téxog, cuvdudlouye ta mhovd afpolouaTtor UTOGUVORWY TOV BLIUPORETIXWY Z; YLol VO N3
Bouye ta mbavd abpolopata UTOGUVORNWY TOL aEYIXO\ GUVONOU ELGOBOL Z.

Ov tiée 27t /1, m xan y emAEyOVTUL XATINANNAL OO TE 1) THAVOTNTA GPANUATOS TOU oNyopifuou
vau glval To TOND d xou 1) ETNOYY| TOUS auTloNOYElton aTo aryyAxd xelyevo. Ou cuvduacuol Twy
ThavoY abpoloUd TV UTOGUVON®Y YIVOVTAL UE XATINANNES XATioELS Tou anyopiduou yia to FFT,
EVE TO XOGTOC TOV YNNCEWV AUTOV UTONOY(CETan avaAuTIXE UE GXOT6 ToV oxplfn] Tpocdloploud
NG CUVONXAS TONUTAOXOTNTOC Tou alyopifuou. H teuxy momhumhoxdtnta Tou alyoplbuou
etvon O(tlogtlog®(n/d)logn) = O(n +t).

NTeteprivio Tix6g oy oedpog tolumhoxotntag O(0)

O o\yopBuog autde, oe avtiBeon pe Toug dAhoug anyopibuoug mou napoucidlovtol, Sev Exel
XATOLO Ave PEdyUa t we WEpog TG Elcodou. Emouévag, to anotéleopa Tou anyopiduou eivar to
ovvoro S(7Z).

? "Evoc optopée Tov I-layer ouvewy aAN& xo oL YeRoLES WIOTNTES TOUE BiVOVTaL TNV AVEAUTIXH TapoLGLaoT ToU
aNyopiBuou oto ayyAxd xelpevo.

22

OuclaoTixd, TeodxetTon Yl TOV amAo Slalpel xat Baciheuve akyoplluo, Tou ETOVONNTTIXG OTdEL
70 6OVOXO €l6HBoL Z ae 800 LoomAnbY unochvola Z1, Za, unoloyilel avadpouxd ta exdcTote
duvatd afpolopata mou mpoxUnTouv and autd S(Z1),S(Z2), xan oTn cuvéyeio to GUVOUALEL,
Nopfdvovtac 1o olvoro S(Z) = S(Z1) & S(Zz). Me pio npooextinf; avduoT tou 3EvTpou
avoldpoptic, TpoxinTer bl 1 TOAUTNOXSTTAL Tou aAyoplBuou eivar O(alogn) = O(a), 6mou ye
o oupPoriCouye to dhpoloua TwV GTOLXEIWY TOU GUVONOU ELGODOL.

NteTteppvioTix6g oy 6ptBoc toAunkoxotntag O(y/nt)

O Koiliaris xou Xu oto | | avantiooouy évav anh\é, anodotixd alydelbuo Yo o
TeOPBANUA SUBSET SUM, TOU EXUETONNEVETOL TIC WOLOTNTES TOV apLOUMY TOU avAXoLY G TNV (Bla
x\dom wootiiog. ITo cuyxexpiuéva, o anyoplbuoc arotereiton amd Yeptnd omAd Briuoto:

1. Apywd, xwpiloupe ta otoryeia Tou cuvolou elcddoL Z = {z1,. .., z,} Bdoel ToL UTONOI-
mou touc modulo b. Enopévoc, tpoxdntouy ta unocUvora Z;, 6nou i € {0,...,b — 1},
xoféva ex TV omolwv TepEyEL Tor aTolxela Tou €yxouv uTONOLTO ¢ amd TNV Olaipeon e b.

2. T xdbe npoxintov unocivolo Z;, dnuovpyolpe 1o ovvoro Q; = {z div b | z € Z;} tou
TEpLEYEL ToL TNAIXA TV o TolXElwY TOou EXEGTOTE GUVONOL Z; UE TO b.

3. T %&b odvolo Q;, urmoloyilovue 10 oOvoro SCyjp(Q;) Tou mepyel O To Buvatd
abpolopara uéyper t/b mou unopolv Vo oxNUATIOTOVY and UTOoUVONX Tou @ wall pe Ty
TANBUXGTNTA TOL exdoTote UTocuVONou. Tlapatneiote 6t SCy/p(Qs) C Sy /p(Qi) X [n] o
ot eav éva ddpoloyo oyxnuatiletar amd 800 LTOGUVONA BLUPORETIXAC TANBUXOTN TS, TOTE
xou ot 8Vo TpéTOL Ty nuaTiopol Bu tephopBdvovion oto SCyyp(Qi)-

4. Amo xdbe olvoro SCy(Q:), €€&youpe 0 olvoko Si(Z;), Baciluevol otny Tapaxdton
oxgon, omou X elvon utocvolo tou Z; mAnduxdtnTag J xou adpolouatog s.

J J
s€8(Z;) «—= IX C Z;: ¥(X) = s xu szz(ykb""l): (Zy’f)b"‘ji'
k=1

zeX k=1

A6 tov utooyious twv SCy/(Qi) oo mponyoluevo Briua, pac ebvor yvwotol d\ot ol
éyxupol ouvduaouol (D (yk),J), emopévog uropolue vo eEdryouue emtuyme to Si(Z;).

5. TéNog, apxel vo unoloyicovue 10 S (Z) = Si(Z1) @y ... Dt St(Zp—1).

O anodotxds UTONOYIOUOS TWV SCt/b(Qi) x00OC xou oL TEYVIXEC NemToUEpEle TopouatdlovTal
X0l ALTLONOYOUVTAL ETOEXWS GTO UTOXEPIANO 3.3. Xg qUTHY TNV CUVOTTIXY TEpLypapn, o apxe-
OTOUUE OTO VoL avopépoupe 6Tt x8Be unoloyiopde Si(Z;) tehind xootiler O ((t/b)n; logn;logt),
omov n; = |Z;|. Eneldi no+. .. +np_1 = n, €X0UPE OTL T0 X610 OAOV TV LTONOYIOUOY St(Z;)
elvan

Z O((t/b)n;lognylogt) = O((t/b)nlognlogt).
lefb—1]

O ouvbuaoudc Tov Si(Z;) oo tereutaio Phua xootilel xpévo O (bt logt). Emouévag, cuvolxr
TOAUTIAOXOTNTA TOU aNyoplBuou Ba elvon

@ (tlogt (nl(;gn + b)) = O(y/nlogntlogt) = O(v/nt).

23

0.4 AMXyopeBpol yia To mpofAnua EQUAL SUBSET SUM

Y aUTO TO UTOXEPAANUO, Bt TUPOUGIACOUUE CUVOTTIXG TEELS TEOTOTONUEVOUS oY opiduoug
Tou emAUoLY To TEOPANUa EQUAL SUBSET SUM, To onolo yog {NTdel Vo XATACHEVACOVYE, GV
UTdEY 0LV, BUO EEVa UTOGUVONA TOU GUVONOU €LlG6BOU (Blou abpoicuatog, 6Tou To dbpoloua auTd
elvon wxpdtepo 1 (oo evog Bobévtog oplou t. H oelpd pe tnv onola napousidlovton oL Tpononoun-
uévol any6ptbuot axoXoubel TNy celpd pe TNV onola TAEOUGLAC THXAY OL aEXIXOol XY bpLBUoL Yo To
SUBSET SUM G710 TEOTYOUUEVO UTOXEPINALO, TOV OTOlwY anoTeNoLY enéxtact). Eminpocbétwg,
TEPLYPAPOUUE o EVAY TETUPTO, OmAO ol amodoTxd olyoplfuo yia 1o EQUAL SUBSET SUM,
TIOU TOEOTL UTEPTEREL TwV UTONOITWY, OV Uumopel va enextabel o mo yevixd mpofAruata, TS
elva T0 k-SUBSET SUM. ATo@elyoviog TIC TEXVIXEC AETMTOUEQELEG IOV TaPOUGCLAlOVToL GTO XE-
(QAAoLo 4 TOU oy YAXOU XEWEVOU, Bat ECTIACOUUE O TIC TPOTOTOLACELS TTOU XAVOUE X0l G TNV NOYIXN
TV oNyoplfuwy.

Tuyowoxpatixds olyoptduroc tounhoxdtntac O(n + t)

Me pepixéc TpomONOCELS UTOPOVUE VoL ETEXTEIVOUUE TOV apyixd alybdpetbuo tou Bringmann
v to TeoPANue EQUAL SUBSET SUM, yweic va mapatnendel oauonty adénomn tne molunkoxd-
mrag. Kdvouue tic e€ig adharyée:

1. Ewdryoupe pio yetafAnty| ¢ xou 6o nivoxeg t 0éocwv W, F'. O nivoxag W yenoylonoteiton
VIO VO XPOTAUE TOV UGETURA TOU EXACTOTE alflpoloUatog, eV 1) UETABANTY € xon O Tivoxag
F eyyubvton v cuvénela Tou mivaxa W, agol e€acpaniCouv 6tu xdbe dbpoioua avd ndoa
oTUYUN TN eExTéNEONS Tou oyopibuou oynuatileton pe povadued teodTo.

2. IIXéov %o’ OAN 1 Sudpxeia exTéNeong Tou anyopibuou, xdle popd mou xaNoUUE TOV O\-
voéebuo FFT, PBoloxouye pall ue 10 amotéNeopua xou TOUS UEETURES OAMY TV TEOXVTTWY
abpolopdtov. Extoc autol, oe neplntwon mou eite Peebel ocuvteheotric and to FFT ye-
yoUTeEOg Tou 1, elte avtidngbolue 6T évar dBpoioua oynuatileton ye Topandvw Tou evog
TEOTOUC PEar ToL Tivaxa wopTLpny W, teppatiCouue xataoxeudlovtas to oUVoNa E600U
a&tomoldvTog tov Tivaxo W oyia o pixpdtepo tétolo dbpoloua.

3. TéNog, tpononololue XATEAANAA TOV aXyoelluo Tou yenowormownxe yia TNy edpecn TV
afpoloUATWY UTOGUVONDY VLo TEPLOPLOUEVT] TANBUXOTNTA TOY UTOGUVORWY QUTWY, OO TE UE
ueydnn mbovotnta va evionilel Tuyov olyxpouot xou va emihel To EQUAL SUBSET SUM
oe aUTA TNV neplnTon.

H nolumhoxdtnta tou ahyoplBuou emnpedleton wovo amd TNy TeEAeLTHld TPOTOTOMaT), TTOL ACUY-
TTOTIXG OEV AUEAVEL TNV TONUTAOXOTNTA, X0 Ao TO ALENUEVO TAEOV X606 TOC ¥ANoewy tou FFT,
eCautiog Tne evpeong TV LopTlpwy Twv abpotoudtov. H tehinr todunhoxdtnta Tou alyoplBuou
TEUUE VEL @(n +), xotaoxeudLovTog ETUTUYMS Ta UTOCUVONA TNS AUOTC.

NTeTepivio Tix6g a\yoéedpoc tolumhoxotntas O(o)

O tpomonomnuévoc autog anydelbuog yio 1o EQUAL SUBSET SUM agopd Ty Tepintwon mou
OEV TUPEYETAUL XATOLO AV PEAYHA T 1S UEPOS TNG ELOODOU, Aol O BLAPORETIXY| TERINTWOY) BEV
elvan opxeTd amodoTixde.

‘Onog xan otnv mepintoon tou akyopiduou Tou Bringmann, eiodyouue évav mivaxo poptid-
cwv W xou avoropPdvouue Tov UTONOYIOUO TOUC XdbE Popd mou XaAOUUE TOV oNYOElOpo yia
to FFT. Enouévog, xdbe @opd mou exteNolue €vay cUVOLAOUO GUVOAWY Uéow FEFT, apyuxd
UTONOY(COUUE TOUG OYETIXOUS UBPTURES, 0T CUVEXELX avalnToluE edv €xel TpoxVPEL Xdmolog
OUVTENEC TN HEYOAUTEROS TOU 1, xou TENOC eENEYyoupE €dv €xel TpoxPEL GUYXEOUOT HECW TOU
nivaxor W. Xe nepintwon nov oynuatiletar xdnowo dhpolopa pe 800 (A xou mapandvm) SlopopeTi-
%x00¢ TeoToVE, oynuatilovpe to chvora £6B0U YLot TO ENAYIoTO TETOlo dbpoloua a&loTOLOVTOG

24

Tov mivaxar W xan toug epmiexouevoug pdptupes. H avdluor tou dévtpou avadpouhc wog delyvet
OTL 7} TOAUTAOXOTNTA TOU oXyopifuou dev auidveton acOntd, ool o teNixd anydplbuog €xet
roxumhoxétnta O(alogn) = O(c), 6mou e o cuuPorilouye 0 dhpoioua TV GToKElwY TOU
cuvorou eleodou. H eyxupdtnta tou ahyopifuou mnydlel and 1o yeyovog nwe avd Téoo oTiyun
xatd TN Sudpxelo exTENEOTC TOL anyopiBuou, o tivaxag W eEaoganilel Ti omolodrrote dhpoiouo
oynuotileton ye povadixd tpdmo. Le dlopopeTixy| TepinTwon, 1 oUyxpouot evtonileton UEcw TOU
hvoreor xon oxoNOLDEL 1) XATAOKELY| TWV UTOGUVON®Y TNG AUOTG.

Nteteppivio Tix6g oy oebpoc tolurhoxotntag O(y/nt)

INo tov alyoplfuo autdv, ol tpomomolfoelc mou Bo ypelaoTolv elvon eXdylotes. Apyixd,
TOEUTNEOVUE OTL €4V OE XAmola OTLYUT EXTENEONS TOL anyopifuou mpoxilel oe xdmolo TEdEN
FFT ocuvteheotic yeyabtepog tou 1 yia xdmolo dbpotoua, TOTE yior To ENdyLoTo TéTolo dbpotoua
umdpyouy 800 Eéva utochvora Tou to oxnuatilouvy. Emouévac, apxel va evtonicoupe éva tétolo
dBpolopa v To omolo uTdEyoLY Eéva LTOGUVOAX TIOU TO oYNUATILOUV XL GTr CUVEYEL VA
Teé€ouue BUO Qopé €vav anyopluo SUBSET SUM TOU TUTKVEL TO GUVONO €£600U (GTE va
oynuoticovue ta cUVora €£680U, O6TOU GTNY BEUTERET UNN\OT €XOUUE APAULEETEL To GTOLKEl TOU
TEMTOU GLUVONOU e€HBOL antd To cUvolo elebdou. H molumhoxdtnto Tou akyopifuou nopouévet
O(y/nt), apot 1 ubvn adnomn e ToAumoxdTTaC TEoxUTTEL and To emmhéov xbotoc Tou FET
V1oL TOV UTONOYIOUO TOV HopTlpnmv 0TI 800 ¥ANoelc Tou alyoplBuou yia to SUBSET SUM, Tou
ouwe etvan NoyoptBuxne tdEng.

NteTeppivio Tix6g oAy 6ptBoc tolunkoxotntag O(n + t)

O amhog autdg anydplBuog anotelel plo anodoTxy| EMEXTACT) TOU XAAGGLX00 a\yoplBuou Tou
Bellman yia to SUBSET SUM. H avdntuin tou Baciotnxe oe o ONLO AVOVUUOV XPLTEV X0l OTO-
TENEL TOV TLO amodoTX6 oNY6elduo yia To EQUAL SUBSET SUM, e o(€0T) UE TOUS UTONOLTOUS
Tou mopouctdlovtal oTnv napovoa epyactio. H xlpta Swopopd tou duwe, elvar nwg dev urnopel vo
TPOCUPUOOTEL XATENANNA (OO TE VoL ETUAVEL TO TOND To YEVIXG (xou BUoXON0) k-SUBSET SUM.

Ye autév Tov a\yopliuo, N ebpeon TOAVOY CUYXEOUCEWY YIVETOL ATOXNEIC TIXE UECW EVOS
nivaxar poptupwy W, o onolog yenowonoleiton enlong yiot TNV AVOIXATUACKEUT] TOV CUVONWY NG
Noone. H xdpia nopatrienon oty onola Bacileton o alyopbuog, eivan 6t Bo mpoomekdcouue
Tov Tivaxa auUTOV TO TONU t opEég, agol GE BLapopeTiny| teplntwor Bo utdpel olyxpouon. O
aAyOplpoc Nettoupyel emavoAnTTINd, XEaTWVTUC OXa Tar duvatd abpolopato Tou UToEOLY va
OYNUATIOTOOY Ao To TEMTA § GTOLYEl oE Wla devTpixt| dour|. Ye xdbe enavdindr, uropodue va
Beolue anodotxd to véa oToryela Tou tpoxdnTouy e€outiog Tou VEOU GTOLEIOU oL VoL ToL EVTE-
Eoupe o610 8évtpo duvatwy abfpotoudtwy, epodcov BéPata dev mpoxiel xdmolo olyxEoUoT UECW
Tou mivaxa W. 'Eyovtoc dve 6plo t 610 uéyebog Tou BEVIPOU, X0 YENCLLOTOLOVTAS XATIANNAT
Sevtoud| downh, N e\ ToAuThoxdTNTAL Tou aNyopiBuoy eivar O(n + tlogt) = O(n +t).

0.5 To neéfAnua k-SUBSET SUM ol OYETIXEG ENEXTACELS

O ayopibuol mou Tpotdfnxay and toug Bringmann | | xou Koiliaris xon Xu | |
UopolY Vo emextafoly yio Vo NUGouv xot o TeéPANua k-SUBSET SUM®. Axéun, 1 (i Noyuh
unopel vo xenowonowmnbel mepoutépw yior vor emALOoOY xou wlar TANBWea TpofAnudtoy oyETL-
Coueva pe 1o SUBSET SUM. Y10 TopdV UTOXEPENALO Bt TOpOUCLIGOUUE GUVOTTIXG TOV TEOTO
ue tov omolo O emextafolv ot akydpliuot, xabne xon Tor anoTeNéopaTA TOL BivoLV GE Bldopa
oxeTd tpofAAuoTa. Oo toparelpouue TNV AenTOUERY TEXVIXY) AvENLGT), 1 OTolol INNWC TE ROy -

=

UATOTIOLEITOL GTO XEPENALO 5 TOU aryyYAX0oU xeWévou, xou Bo emixevipwbolue oty Noyixh e
enéxtaonc, xafne xar oTo avTixTUTO oL AUTY €XEL.

* Ynpeidote mog enexteivoviog Tov a\y6eidpo tou Bellman, unopolye enione va Nbcoupe to mpdPAnua oe vTe-
TepUMO TG Ypdvo O(nth).

25

Agetnplo pog etvon 1o mpoPAnua k-SUBSET SUM, To onolo {ntd, dedopévou evdg chvorou
€10600U BeTiX®Y axcpalwy Z xau k TV - otV t;, onou ¢ = 1,... k, va Beebel edv undp-
youv k Zéva urtocOvora Z1,..., 2, C Z, ttow wote N(Z;) =t yiwi = 1,..., k. Avtd To
TeoPBANUo Sapépetl oauolntd and to EQUAL SUBSET SUM, ool axdun xai Yo TNy Tepintonom
kE = 2 xou t; = t2, dev punopolue va cuunepdvouue 6T 1 UToEEN LTOCUVOAWY Tou abpollouy
ot {nrodpeveg Tiwég unovoel TNV avedapTnola TwY cLVONWY auTGYV. Etouévag, slvon onuovtind
vo emPBefoudvouue xald’ O Ty Sudpxelor Tou alyoplBuou Ty ave€apTnoio TWV EUTAEXOUEVODV
ouvorwv. T o undhoimo Tou umoxegahaiou, utobéote 6t t = max{ti,...,tx}. Emnkéov,
TNV ACUUTTOTIXY HoS aveAuoT utoféToupe 6Tl To TAHPOC TwV cuVONLY k Oev amoTeel uépog
e €106060L ToL TEOPNAUATOC Xat avTHETOTIETH e oTadERd.

Enextelvovtog o TOAUGVUHA TV TEoTYoUUEVODY aXyoplBuwy xou elodyovtog Véeg UeTafAT-
TéC oL YenotroTololVTL Yot TNV anobrixeucr abpoloudtov LTOCUVONEY Eévev uetadh Toug,
TAEOV €XOUUE VO XEVOUUE UE TONUMYUUAL TNG LOPYHS D G, . s, T7' ... Z}F, OTOU 0 CUVTENEGTAG
%&b bpou avamuploTd 10 TAHHOC TV BLAPORETIXWY TEOTWY TOU UTOROVUY Vo OYXNUATIOTOUY T
abpolopata s1,. .., S omd EEva LTOGUVONL TOU GUVONOU ELGOB0U. AVATUPLo TOVTAS XATINNNNA
%&b oTovxelo Tou apyxol GUVONOL WG TE Vo UTopel va TpocTebel To TOND ot €va and Ta UTOCU-
voa mou oynuatiCouv xdbe cuvduaoud k abpoloudtmy LTOGUVOA®Y, TEOXVOTTOUY UOVO EYXUEOL
ouvduaouol. Tehwd {nroduevo elvor 0 TEOGOLOPIOUOS TNS TWAS Gy, ..¢y - AV auTy ebvan 0, tTe
o anyopbuog teppatilel apynTd, a@ol auTd oNUIlVEL TKG BEV YIvEToL Vo OXNUATIOTOUY Ta k
{nrovpeva abpoioyota and aveldptnta UTOGUVONA. e SLopopeTin TEpinTwon, 0 oa\yoElduog
TeppaTiCel xaTaUPATIXA.

Tuyouwoxpatixds alybplBuoc tolumhoxdtntac O(n + t*)

Boow 18éa e tpomonoinong oty mepintwon tou alyop(Buou tou Bringmann | |
elvol 1) EMEXTAOY) TOU YAEAXTNELO TIXOU TONVWYVUHUOU oL 1) avamapdo taoT xdbe otovxeiov z € Z
amd éve TONUGVULO Y oy 27 6Tou avtamoxpiveta oTic k mepintdoelc”’ Tou va tpootifetar to
octoyelo z 6T0 ahvolo Tou onolou To dbfpoloua avanoploTatol and Tov exBETN TNg YeTABANTAS
x;. Extéc autold xou tou oxeTiXol ®xO00TOUC ToU ETUPEREL AUTH AOYW TV XAAoswy Tou FET
(oL onoleg TAEOV 0POPOUY TONLWVUUL k HETABANTAV), TpoToToLElTon XATENATNY, X 0plc 1o Tdo0
VO TROXONECEL OANXLYT] OTNY TONUTAOXOTNTA, O oNYOplfuog mou unoloyilel to duvatd abpoi-
OUOTA UTOGLVON®Y TiEpLopLoUévne TAnBuxdtntog, khote va unoloy(leton Ye peydnn mbovdtnto
xdbe duvortog cuVBLaoUOS abpolopdTeY EEVwY UTOGUVORWY. O TENXOS alybelBuog €xel xpovixn
roxumhoxétnte O(n + tF).

Ntetepivio Tixog oy opbpoc tolurhoxotntag O(nt/F+1tk)

Baowy| 1déa tou ahyopifuou mapauével 1 eméxtact Tou apyixol anyopibuou tov Koiliaris
xou Xu | | mou expetorNevEToL TIC WOLOTNTES TOV XAJCEWY LWoOTWOG, UE YEHOT ETULTAEOV
HETABANTOV GTO YOPUXTNELC TIXO TOANUMVUUO TWV GUVOALV.

Avomoaplotovtag Théov xdfe otoryelo z VO GUVONOU UE TO TONUGDVLUO Zle x7 nou Eme-
xtelvovtog xatdAAnAa Tov oNyoplbuo tou FET e emnhéov dlaotdoelc yio Tic Véeg YeTafAntéc,
Tpoadlopilovtog TapdANNAa XaL TNV adENCoT 6T0 XOGTOC TOL ETLPEREL AUTY| 1) TPOTOTOINOT), XAUTO-
Miyouue TeAXd o€ évay VIETEPUMOTING a\ybptpo xpovixhc to\umhoxdtrtae O(n®/F+1tk). No
ONUELWCOLYE ETUOMG OTL YLOL TOV TEOGBLOPLOUO TOV EYXURKY CUVBUACU®Y abpoloUdT®wY UTOCUVO-
AWV ylor oTol el TOU aviXoLY GTNV (Blar XAAOT LooTYAS, ELOAYOUUE ETUTAEOV UETUBANTES OTa
TOANUGVUUA, Ol OTOIES XENOWOTOoUVTAL Yia TNV amobrixeuon tng TANBuxdTNTaG Tou EXdcTOTE
UTOGUVONOU TOU GUVOLIGUOU.

? H emniéov neplntwon mouv to otoiyelo 2 dev npootifeton ot xavéva and ta k mbavd utochvola xoNdnTeEToL oo
ToV 0ploUd NS TEdENS .

26

Enéxtaor oc napepypepn tpofAjuata afpoloidtewy UTOCLVOAWY

H ¢Zodoc twv 800 mpoavagpepbéviov olyoplfuwy eivor évor TONUGVULO Y ag, . s 27" ... 2)"
LETOBANTOV 1, ..., Tk, OMOU §; < t, xOU Ay, .5, 7 0 LOOBLUVOEL Ue BUVATOTNTA CYNUATIOUOV
TV afpoloUdTWY S1,. .., Sk and &Eva LTOGUVOAX TOLU GUVONOU elobdou. Ta Ty enihuor Tou
SUBSET SUM RATIO, bev éxouue mapd va Bécouue k = 2, va Bpolue OXat autd tar duvartd {euydipta
€yxupwv obpoloudTov xou 0T cUVEYELX Vo Tar BlatpeEouue xou var Bpolue To {euydipl exOeTdv ue
YXAGoPA 660 TO BuVATOV TO x0oVTd 6To 1. Avdloyo e to molog alyopfuog Ba yenowonoindet,
n moXumhoxdTnTa Ba eivan eite O(n?/3t2) oy nepintoon tou vietepuviotiol, eite O(n + %)
OTNV TEPITTWOT TOU TUYAOXEATLXOV.

XpNOWOTOWMVTAS TOUG Topamdve anyoplbuoug yio to k-SUBSET SUM cav black box, uro-
eolUE oxouT va Abcoupe ula TAndopa tpofAnudtomy mou oxetiovto ye To SUBSET SUM. Avoln-
TWVTOG TOV XAAUTERO NOYO AVAUEGO GTO UEYUNVTERO XAl OTO UxpoTepo oy nuati{ouevo dbpolouo
(evtoc Tov tebévtoy oplov t, . .., tg), emAlouye 0 TEéPANUa k-SUBSET SUM RATIO xofe xou
TNV WY Tep(nToT Tou BENOLYE Vo Blaoledoouue To o Tol ela TNE El06B0L GE k 6G0 TO BUVATOV
mo (oo utooivola xar ovopdlouue k-PARTITION, eved avalntdvioc to péyioto dpoloyo tov
exBeT®V TOV 6peV TOU TEAXO0) TOANUKVOUOU, AUVOUUE TO TeofANua MULTIPLE SUBSET SUM.

0.6 Xvunepdopata & MeXhovTtixeg Ilpoextdoeilg
JupmepdopaTa

Ipbopata éxel undpEel eviunwolaxy TEO0B0S OYETIXG UE TO TEOPANUN SUBSET SUM, xabdg
véol, o anmodotixol Peudomolvwvuxol alydelduol cuvexdhe mpotelvovton. Auth 1 Tedodog
unopel vo emnpedoet évtova dANa oyeTiloueva TeofAAuata. Lty Tapoloa epyacia, e€eTdlouue
xuplwg 000 oyeTxd ahyoplBuxd TeoPAfuata, T EQUAL SUBSET SUM xat k-SUBSET SUM, %o-
0cdc xan g PelTidoEC 6TO SUBSET SUM UNOpOUY EVOEYOUEVOS VO TO ENNEEACOUV.

Aclyvouye 611, oty mepintwon tou EQUAL SUBSET SUM, €V UTOPOUUE VO ETEXTEVOUUE
TpOG(UTOUS aNyopiBuoug yiot To SUBSET SUM, Topdyovtog €Tol TeElC PEUBOTONUMVUIIXOUS ON-
voplBuoug, oe auTh TN cLUYXEXEWEVN TERINTWOY UTEEYEL OTNV TEAYoTiXOTNTA piot amholo Teen
xou amodoTixdTepn Teocéyyior, mou Pocileton €viova GTOUC TEELOPIOHOUS Xou TNV QOGN TOU
TpoPNfjuatoc.

‘Ocov agopd 10 k-SUBSET SUM, Topouctdooye 500 Peudomtorunvuuixols olyoplfuous tou
AUVOLVY amOBOTIXE AUTO TO TOND TLO YEVIXO Xou BUOXONO TEOBANUAL.

Mio mAnfwpa tpofANudToY unopoly va ETNEEac ToUY Xak VoL EXHETUANEUTOVY QUTAHY TNV TEo-
000, UE AMOTENECUA VEOUS, TO AmodOTXOUS aNyopiBuoug yior TONNG oyoplduxd mpoPNruota,
avadevOovTag £ToL TNV GTEVYH O0XEaN o €X0LV UE To SUBSET SUM, xaf¢ Xt To T PeNTio-
oElC aNYoplBU®Y awTO) EVOEYOUEVHS VAL TOL ETNEECCOUY.

MeXhovtixég Ilpoextdoeig

Apyxd, oxomebouye vo BIEEELVHCOUUE TO XATY TOCO TA ATOTENECUATE YA UTOPOVY EVOEYO-
HEVWS VO YEVIXEUTOLY GE Wlol xA> TEoPANUdToY afpolouatog UTOGUVON®Y, T.X. XETOHLOTOLD-

VTS TO TG0 o avartlydnxe oto | |. Emnhéov, evdiogpépov napouctdlouv to Tpooey-
VIO T O AUAT Yia TIC EXBOXES UETENONS TEOPANUdTOY cuxdiou xou abpolopatog UTOGUVONWY
(Beite yro mapdderypo ta | , , | oAN& o Tot | , |). Mepwd and

ouTd Tor TpoPAAuaTa avixouy 6e xXdoelc xdtw and v #P, énwe v x\don TotP |],
YeYOVOC TIOL EVOEYOUEVRS VoL UTTOREL VoL yenatponondel yia TNy anddelln amoTENECUATOY OXETIXG.
HE TNV duvatdTNTa TPOCEYYIONUOTNTAS Toug |].

Ou Jin xaw Wu mpéretvay évav amodotind O(n +t) tuyomoxpatind ahy6peilduo yia ™y exiuon
Tou SUBSET SUM o710 | |. O aXydpbuoc autdc eivon TOND ATAOUCTEROC X IO ATOBOTINOC
ambd auUTOV Tou TeoTdbnxe and Tov Bringmann. Eivou evbiagpépov va e€etactel To Xatd m6GO

27

unopel vo emextobel autdc 0 aydplbuog yio o k-SUBSET SUM, 6Tw¢ cLVEPT o TNy Tep(nTmon Tou
ayopifuou Tou Bringmann, agpol auto Oa elye we anotéNeoya plor amhoDG TERT XU EVOEYOUEVWS
O OTMOBOTIXY) EVAANUXTIXY| TROGEYYLON).

O vteteppviotixdg oNyoplfuog yia to k-SUBSET SUM nepthofdvel Tov UToNOYLoUS ToV Ti-
Bovrv abpotopdtov utoouvOrwy pali e Tic avtio Tolxee TANBUXGTNTES TOV UTOGUVONLDY AUTAY,
Yo oTolyelor Tou aviAxouvy oty (Bla xXdor woTiiag. o vau to methyouue autd, enextelvouue
¢ xafoeic FFT oe noAkég yetafintée, 6mou n xdbe ula avanapiotd eite éva mbavd dbpotoua
uTocLVONOU, elte TNV TANBUXOGTNTE Tou. Enopévae, yia k utochvola xou 1 G ToLyEld, TEoYUATO-
notovpe xX\foelc FFT oe moNuodvupa pe yetafntéc 1, ..., 2k, €1, . . ., Ck, OTOL Ol EXOETEC TOV
x; avixouv oto [t/b] yio xdmolo dobév dvw @pdyua t, eved oL exbétec twv ¢ oo [n]. Tlopatn-
ehoTe OUwe TG xdle oTtouxelo Tou cuvélou pog Ba yenowonondel uévo oe €va uTocihvolo,
emoUéveg 1ol évay 6po it ... ket L. ept tou maparybuevou molvevipou, wylel 6t s; < t/b
xou Y n; < n. Auté Sugpépel aobntd and Ty avdAuoT) TOU TEaYUATOTOOVUE, 6OV TNV oucia
unoBétoupe 6Tl n; < N, ToU elvol oNUAVTIXE AlYdTERO ALGTNEG. Mia aUC TNEOTERT ACUUTTWTIXN
avdauoT evoexouévwe va elvon e@uxth oe autég Tic xAfoeic FFT, ye mbavo amotéeoua v
Betiwomn g cuvolixric ToAuTAOXOTNTAC TOL aNyoplBuou.

O ay6pifuol mou mopousidlovtal 6NV ToEoVod SIMAOUATIXY epyacia eTADOLY TNV exdoyn
andpaons Tou npofAAuatog k-SUBSET SUM. Me dXhat AoyLa, 1 €€086¢ Toug elvan pio xatopotixt)
1) AEVITIXY ATAVTNGT), AVENOYa UE TO €AV efvan SuVaTOY VoL UTdEEoLY k E€va UTOGUVONA TOU GUVO-
Aou ele6dou, to afpolopata Twv onolwy loolvton ue xdroteg dobeloeg TWwée ¢y, . . ., T aviioTouya.
Mio enéxtoom autdv tov oxyopBuny Ba uropolce va GUUTECINOUPEVEL TNV AVIXATUCHELT| TOV
k uroocuvorwv tne Aone. Ou Koiliaris xoau Xu | | emugetenuatoroyoly oxeTd Ye To OTU
yiveton var oavoxataoxevas Tel T0 6UVONO TNg NOomg Tou SUBSET SUM UE UOVO TONUNOYUELOULXO
emnAéov x66T0¢. Autod elvan eQuxtd eZdyovtac TpooexTxd Tous udetves xdbe abpoloyotog
x&be popd mou mpayuatoroteitan pia xhhon FET. Avutol ou ydptupeg elvan otny mporypotixdtnta
ToL UEEWS afpolouaTa TOU YENOWOTOLUVIOL YId TOV UTONOYLOUO Tou véou abpolopatog. 'Etot,
avéryovTog auto T0 TEOPANUN 0To TP avaxataoxevns HTwS AVUPERETOL GTO | |, xo-
TAATYOUY OTL glvol BUVATOV VoL UTONOYLETOLUY ONOL oL pdpTupeg plag xione FET ywelc widtepn
aO&non tng moaumhoxdTNTag. Autd cuufaiver yio xhfoewc FET o mohudvupa piog petafintric,
OTOTE EVOEYOUEVOS VAL UTOPOVY VAL XENOLLOTONBO0Y OVANOY oL ETLYELOLOTA XOL YOl TNV TERITTWOT)
TOAN®Y UETABANTOV.

Mio tekelog Blapopetiny mpocéyyion unopel va Pacileton oTNY X0EIXH TONUTAOXOTNHTA.
O Lokshtanov xou Nederlof npdtol mpdtewvay alydpibuoug molumvuuixol ¥meou yio didgopa
NP-Complete mpofNuata, aviuesd touc ot 1o SUBSET SUM, oto | |. O Bringmann
apy6tepa PeNtiwoe ta Tponyolueva dpla oTo | |. Io\O npbdogata, ou Jin et al. | |
éxovay mpdodo oe auth TNV xatevBuven. Autol ol akyoplBuol etvon mhovd vo urtopolv vo Teo-
copULocTo0V Yo T0 TeoPANua EQUAL SUBSET SUM xou va moparyfel évac olyodpibuog deudormo-
AVOVUUXOU (EOVOU Xl TOAVWYVULKOD Y DEOV.

TéNog, evdagpépov Tapouctdlel 1 oyéon aviueoa ota tpofAAuato ORTHOGONAL VECTOR
xow EQUAL SUBSET SUM. Ectw éva ovolo eo6dou Z = {z1, ..., z,}. Opiloupe to inclusion
vector evoc unoocuvorou V C Z wc to didvuopa n Bécewy v = (v1,...,vy,), 60U v; = 1 av xou
uovo av z; € V, dlagopetnd v; = 0. 'Eneton 611 av 0o vnocivora A, B eivar Eéva petald toug,
t671e To inclusion vectors toug eivon opBoydvia, agol eite a; = 0 eite by = 0, vl xdbe i € [n].
Eniong, dobévtoc evic nivaxa cuvieheotwv C € {0,1}*" nou avomopiotd m Saviopota
n Béoewv (xabéva ex twv onolwv avtiotovxel ot éva mbavéd inclusion vector), éva dhpoloua
s € N, nou avarnaplotd €va mhovo dbpotopa Yo T0 0nolo UTEEYOLY TOANG E€Val UTOGUVONX
nou abpollouv o autd, xou évav mivaxo B € {s}™*) Novovtac v e€lowon C - X = B xo
neplopllovtac tov %hpo tov Nicewv X € N™1 e fetixoic axepaiouc mou dlot dapépouv
petagl toug (Bnhady z; # x; v xdbe 7, j), umopel xavelc vo xaTaoxELAOEL €vol O TLYOTUTIO
Tou TpoPAAuatoc EQUAL SUBSET SUM, 800évtoc evic tétol0u (TEpLOpLoUévou) oTrytdTUTO
Tou TpoPAAuatoc ORTHOGONAL VECTOR. H e&loworn unopel vo Aubel ypnowonoldvtog axéoato

28

mooyoauuatiopd xou, et o mivaxag C' elvon totally unimodular, v touThoxéTnTa TNC Ndong
unopel va elvon wixpdteen an’ 6co Ba mepipeve xavelc. Autéc ol nopatnerioelg yog odnyoly 6To
va Lo TebouUe g pia avarywyh ORTHOGONAL VECTOR < EQUAL SUBSET SUM unopel va efvou
eQuTh, apyxd meplopilovtag éva Tuxalo oTiyutotuTo Tou ORTHOGONAL VECTOR o€ éva mou
IXavoToLel TOUG TEPLOPLOUOUE TOU TERLY PAALE TTEOYYOUUEVMS XU G TN GUVEXELOL TOEAYOVTOC €Val
oTrypotuno Tou EQUAL SUBSET SUM amd auto.

29

Chapter 1

Introduction

Given a set S of positive integers and a target ¢, determine whether there exists a subset
Z C S, such that the sum of its elements equals ¢t. One of Karp’s original NP-complete prob-
lems | |, SUBSET SuM is considered one of the most fundamental algorithmic problems,
along with KNAPSACK, SAT and more. Many university undergraduate classes introduce the
very concept of pseudopolynomial complexity via the classical algorithm of Bellman, as pre-
sented in | |. Despite being an extensively studied algorithmic problem, there have
been many important improvements in the past few years with respect to its pseudopolyno-
mial time solvability. New deterministic | | and randomised | , | algorithms
have been introduced, representing the first substantial improvements over the long-standing
standard approach of Bellman | | and the improvement by Pisinger [|.

EQUAL SUBSET SuM is a less studied, nevertheless noteworthy problem which has at-
tracted the attention of several researchers, as it finds interesting applications in com-
putational biology | , |, computational social choice | | and cryptogra-
phy | |, to name a few. Moreover, it is related to important theoretical concepts such
as the complexity of search problems in the class TFNP | |. In this thesis, we consider
the case where an upper bound ¢ is also given and we seek for two subsets of equal sum that
is bounded by t.

A more general version of the problem is the one that asks for k disjoint subsets the
sums of which are respectively equal to targets ¢;,7 = 1,..., k, henceforth referred to as the
k-SUBSET SUM problem. One can see that even in the case of k = 2 and t; = ts, the problem
becomes much harder; this can be seen as a targeted version of EQUAL SUBSET SUM, for
which the disjointness of minimal sets property does not apply. An interesting special case is
when the sum of targets equals the sum of the elements of the input set, that is, we ask for a
partition of the input set to subsets of particular sums; an even more special case is the one
in which we want to partition the input set to a number of subsets of equal sum. The latter
can find applications in fair allocation situations.

1.1 Related Work

EQUAL SUBSET SUM and its optimisation version called SUBSET SuM RATIO | | are
well studied problems, closely related to problems appearing in many scientific areas. Some
examples are the Partial Digest problem, which comes from computational biology | ,
|, the allocation of individual goods | |, tournament construction | |, and
a variation of SUBSET SUM, namely the Multiple Integrated Sets SSP, which finds applica-
tions in the field of cryptography | |. Moreover, it is related to important concepts in
theoretical computer science; for example, a restricted version of EQUAL SUBSET SUM lies in
a subclass of the complexity class TFNP, namely in PPP | |, a class consisting of search
problems that always have a solution due to some pigeonhole argument, and no polynomial
time algorithm is known for this restricted version.
EQUAL SUBSET SUM has been proven to be NP-hard by Woeginger and Yu in | .
Several variations have also been proven NP-hard by Cieliebak et al. in | , -

31

It has been mostly studied with respect to its optimisation version, also referred to as
SUBSET SUM RATIO, that is, to find two disjoint subsets with minimal ratio of sums. A 1.324-
approximation algorithm has been proposed for SUBSET SUM RATIO in | | and several
FPTASs appeared in | , , |, the fastest so far being the one in | |
of complexity O(n*/e).

Regarding exact algorithms, recent progress has shown that it can be solved proba-
bilistically in O*(1.7088™) time | |, faster than a standard ‘meet-in-the-middle’ ap-
proach yielding a O*(3"/2) < ©*(1.7321") time complexity. In this thesis, we propose
three pseudopolynomial time algorithms by extending the below mentioned recent results for
SUBSET SUuM by Koiliaris and Xu | | and Bringmann | | to EQUAL SUBSET SUM.
Note that, while the application of those algorithms to the decision version of the problem is
rather trivial, their adaptation for solving the search version, which includes the reconstruc-
tion of the solution sets, is quite involved. Additionally, we present a simple and efficient
extension of Bellman’s | | algorithm. Notice however that the techniques involved in
the last algorithm do not seem to apply to k-SUBSET SUM, mainly because we cannot assume
the minimality of the involved subsets.

k-SUBSET SUM is a much more general problem, which can be used to solve multiple vari-
ations of SUBSET SuM, as it is thoroughly explained in Section 5.3. To the best of our knowl-
edge, no pseudopolynomial time algorithm substantially faster than the standard O(nt*)
dynamic programming approach was known for k-SUBSET SUM prior to this work.

These problems are tightly connected to SUBSET SuM, which has seen impressive advances
recently, due to Koiliaris and Xu | |, who introduced a O(y/nt) algorithm, where n is
the number of input elements and ¢ is the target, and Bringmann | |, who introduced a
O(n+t) randomised algorithm. Jin and Wu proposed a simpler randomised algorithm | |
achieving the same bounds as | |, which however does not seem to provide any intuition
on how to reconstruct the solution set.! In a very recent work, Bringmann and Nakos | |
have presented an O(|S;(Z)|*3poly(logt)) algorithm, where S;(Z) is the set of all subset sums
of the input set Z that are smaller than ¢, based on top-k convolution.

MULTIPLE SUBSET SUM is a special case of the MULTIPLE KNAPSACK problem, both of
which have attracted considerable attention. Regarding MULTIPLE SUBSET SUM, Caprara et
al. present a PTAS for the case where all targets are the same | |, and subsequently
in | | they introduce a 3/4 approximation algorithm. The MULTIPLE KNAPSACK prob-
lem has been more intensively studied in recent years as applications for it arise naturally (in
fields such as transportation, industry, and finance, to name a few). Some notable studies on
variations of the problem are given by Lahyani et al. | | and Dell’Amico et al. | -
Special cases and variants of MULTIPLE SUBSET SUM, such as the k-SUBSET SUM problem,
have been studied in | , | where simple pseudopolynomial algorithms were pro-
posed.

1.2 Research Objectives & Contribution

We first present four algorithms for EQUAL SUBSET SUM: a randomised one of complexity
O(n+t), a deterministic one of complexity O(y/nt), a deterministic O(c) algorithm and lastly
a deterministic @(n +1t) one, where o is the total sum of the elements of the input set. While
the first three algorithms are based on techniques used on SUBSET SUM algorithms, which
can be additionally extended to the k-SUBSET SUM problem, the latter is not, thus can only
be used to solve efficiently EQUAL SUBSET SUM. Note that all of the presented algorithms
solve the search version of EQUAL SUBSET SUM, that is, with reconstruction of the solution

! Notice that neither Bringmann’s algorithm [| solves the search version of SUBSET SuM, however we
will show in this thesis that it can be appropriately strengthened in order to also provide the solution sets of
EQUAL SUBSET SUM, retaining the same time complexity (disregarding polylogarithmic factors).

32

sets.

In addition, we present two algorithms to solve the decision version of k-SUBSET SUM: a
randomised one of complexity O(n + t*) and a deterministic one of complexity O(n*/k+1¢k),
We subsequently show how these ideas can be extended to solve the decision versions of
SUBSET SUM RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.

Our algorithms extend and build upon the algorithms and techniques proposed by Koiliaris
and Xu | | and Bringmann | | for SUBSET SUM. In particular, we make use of FFT
computations, modular arithmetic and color-coding, among others.

1.3

Thesis Outline

The thesis is structured as follows:

>

We start by presenting some necessary theoretical background in Chapter 2. Here, we
provide some necessary lemmas used throughout the rest of the thesis. We also explain
the notation used as well as some of the used techniques.

Afterwards, in Chapter 3 we present and thoroughly analyse the original algorithms
for SUBSET SUM, as introduced by Bringmann | | and Koiliaris and Xu | .
These are the algorithms we extend in order to efficiently solve EQUAL SUBSET SUM
and k-SUBSET SUM.

Next, in Chapter 4 we introduce and analyse the modified algorithms that efficiently
solve the search version of EQUAL SUBSET SUM, thus successfully returning the solu-
tion sets. Additionally, we present a more efficient deterministic algorithm that solves
EQUAL SUBSET SUM, which is not based on those presented on Chapter 3.

Subsequently, in Chapter 5 we present the modified algorithms that successfully solve
k-SUBSET SUM, along with some intuition regarding the extension of these algorithms,
in order to cope with multiple variations of the SUBSET SUM problem.

Finally, in Chapter 6 we summarise our results, as well as provide some intuition re-
garding possible extensions and research areas.

33

Chapter 2

Preliminaries

We will firstly present and explain the semantics used throughout the diploma thesis, some
theoretical background, as well as some necessary lemmas and techniques used at the following
algorithms.

2.1 Notation

We largely follow the notation used at | | and | |.

e O — Standard complexity notation, used to ignore polylogarithmic factors. Thus, it
holds that f(n) € O(g(n)) is shorthand for 3k : f(n) € O(g(n)log* g(n)).

o Let [x...y] ={z,z+1,...,y} denote the set of integers in the interval [z, y]. Similarly,

e Given a set Z C N, we denote

> the sum of its elements by ¥(Z) = ., .
> the set of all subset sums of Z by S(Z) = {2(X) | X C Z}.
> the set of all subset sums of Z up to t by Si(Z) = S(Z) N [t].

> the set of all subset sums of Z along with their respective cardinality by SC(Z) =
{EX), X)X <z}

> the set of all subset sums of Z up to t along with their respective cardinality by
SC(Z) =SC(Z) N ([t] x N).

> the characteristic polynomial of Z by fz(x) =) ., 2%

> the k-modified characteristic polynomial of Z by fE(Z) =Y .c, Zle x7, where
= (x1,...,2).

e For two sets X,Y C N, let

> XOY ={z+y|ze XU{0},y € YU{0}} denote the sumset or pairwise sum of
sets X and Y.

> X @Y = (X ®Y)N [t] denote the t-capped sumset or t-capped pairwise sum of
sets X and Y. Note that ¢t > 0.

e The pairwise sum operations can be extended to sets of multiple dimensions. Formally,
let X,Y CNF. Then, X @Y = {(21 +v1,..., 2k +y&)}, where (z1,...,21) € X U{0}*
and (y1,...,y%) € Y U{0}*. Similarly, X @, Y = (X @ Y) N ([t])*.

35

2.2 Theoretical Background

2.2.1 NP-completeness, Pseudopolynomial and Randomised Algorithms

In computational complexity theory, NP is the set of decision problems' for which the problem
instances, where the answer is “yes”, have proofs verifiable in polynomial time by a determin-
istic Turing machine. That is, given an input instance of the problem, we can verify that the
output is indeed “yes” in polynomial time. Obviously, if a problem is solvable in polynomial
time (class P), then it is also verifiable in polynomial time, hence P C NP.

If a problem II; is reducible to a problem IIs in polynomial time (II; <p II3), then:

e There exists a polynomially computable function R : ¥* — ¥* such that Vax € ¥*, it
holds that z € II; <= R(x) € I, where ¥* is the set of all possible inputs and = € II
if and only if input z results in an output “yes” for problem II.

e Function R is called a polynomial reduction.

e Essentially, we (efficiently) transform each input instance of problem II; to an input
instance of problem II; and subsequently solve problem Ils.

A decision problem II is NP-hard if every problem in NP is reducible to II in polynomial time.
Additionally, if II is in NP, then II is NP-complete. The NP-complete problems represent
the hardest problems in class NP. We subsequently define a specific subset of NP-complete
problems: weakly NP-complete problems.

A problem is weakly NP-complete if there is an algorithm for it, whose running time is
polynomial in the numeric value of the input (the largest integer present in the input) but
not necessarily in the length of the input (the number of bits required to represent it), which
is the case for polynomial time algorithms. Such an algorithm is called pseudopolynomial,
since the numeric value of the input is exponential in the input length.

A randomised algorithm is an algorithm that employs a degree of randomness as part of
its logic. In contrast to a deterministic algorithm, the output of a randomised one may be
different among distinct calls with the same input. Hence, there is a chance of producing
an incorrect result (commonly symbolised by ¢). These algorithms are also referred to as
probabilistic and their complexity is affected by the allowed values of error probability ¢.

2.2.2 Polynomials, FFT and SUBSET SUM

In this subsection, we will show the relationship between SUBSET SUM and the Fast Fourier
Transform algorithm.

Let Z = {z1,...,2,n} be a set of positive integers and ¢ > 0 be a given target. We seek
to determine whether there exists a subset S C Z, such that the sum of its elements equals
t. For each z; € Z, we define a polynomial 2° + 2% = 1 + . This polynomial is actually
the characteristic polynomial of a set {0, z;}. In this case, 20 = 1 represents the exclusion of
the element z; in the result of the product, whereas x* represents its inclusion. Then, notice
that by computing the product of all these polynomials, we can solve SUBSET SUM. Indeed,
the product results in a polynomial

AZ(.%'): H(1+xzi) =14z~ +$Z2+...+$Zl+z2+...+le+"'+zn,
2, €Z

which has a nonzero coefficient for every term x* with an exponent s € S(Z) a possible subset
sum of Z.

! Decision problems are those that have as an output either “yes” or “no”.

36

Consequently, if, given two sets A, B C N, we seek their pairwise sum A & B, we can
represent each set by its respective characteristic polynomial f4, fp and subsequently multiply
these polynomials, producing a polynomial consisting of terms 1, 2%, z® and z%+?
coefficient, where a € A and b € B.

Thus, it is very important to seek efficient algorithms regarding polynomial multiplica-
tion. The most efficient such algorithm is called Fast Fourier Transform (or FFT for short).
There are multiple algorithms implementing FFT sharing asymptotically the same complex-
ity of ©(nlogn) for polynomials of degree’ n, although there is no known proof that a lower
complexity score is impossible.

Prior to shortly describing the FFT algorithm, we note the following:

with nonzero

e Any integer strictly greater than the degree of a polynomial is a degree-bound of that
polynomial. Therefore, the degree of a polynomial of degree-bound n may be any integer
between 0 and n — 1, inclusive.

e A polynomial A(z) = > a;z’ of degree n can be described by a vector vy =
(a1,...,ay,). This is called its coefficient representation.

e We can compute the value A(zg) = > i, a;zo’ of a polynomial of degree n at a given
point xg in time O(n), hence producing a point - value pair (zg, A(zg)). This is also
called the evaluation of the polynomial at a given point. A point-value representation
of a polynomial A(x) of degree-bound n is a set of n such point-value pairs.

e It is possible to determine the coefficient form of a polynomial given its point-value
representation. This procedure is called interpolation and it is possible if the desired
interpolating polynomial has a degree-bound equal to the given number of point-value
pairs.

Given two polynomials A(z), B(x) of degree n, FFT includes the following steps:

1. We firstly extend polynomials A(z), B(x) by adding n high-order zero coefficients to
each.

2. Next, we evaluate the polynomials A(x) and B(z) at 2n different points 1, ..., Ta,.

3. Subsequently, we compute a point-value representation for the product polynomial
C(z) = A(x) - B(z) by multiplying these values together pointwise. Note that 2n
is a degree-bound of C(z).

4. Lastly, we interpolate polynomial C'(z) from its point-value representation produced in
the previous step.

Steps 1 and 3 take time O(n). Steps 2 and 4 take time O(nlogn) if we carefully choose
appropriate points x;, as explained in | , Section 30.2|. Thus, the total complexity for
the multiplication of two polynomials of degree n is ©(nlogn).

Note that the algorithm can be extended to multiple dimensions, hence it is possible to

compute the product of polynomials A(zq,...,x) - B(x1,...,xx), where polynomial A is
defined as
A(zy, ... xp) = Z iy iy T xif and R = [n1] x ... X [ng]
(il,...,ik)GR

and polynomial B is defined accordingly. To compute the product in this case, we simply
perform a sequence of k one-dimensional FFTs: firstly we transform along the ny dimension,

2 A polynomial P(z) = >, a;x’ is of degree n if its highest nonzero coefficient is ar,.

37

then along the ny dimension, and so on (or actually, any ordering works). This method has
time complexity O(N log N), where N = nj - ng - - -+ - ng is the total number of data points
transformed. In particular, there are N /n transforms of size ny, N /ng transforms of size ng
and so on, so the complexity of the sequence of FFTs is:

k
N N
—O(nylogni) + ...+ —O(nglogng) = O(NZlogni) = O(NlogN).
m "k i—1

2.2.3 Relationship between SUBSET SUM and EQUAL SUBSET SUM

Mucha et al. present a reduction SUBSET SUM < EQUAL SUBSET SuM in the full version of
their paper | |. This reduction is slightly sharper than the one presented in | |
and shows the intrinsic relationship between the two algorithmic problems.

Theorem. If EQUAL SUBSET SUM can be solved in time O*((2 — £)%25") for some & > 0,
then SUBSET SUM can be solved in time O*((2 — €')%°") for some constant €' > 0.

Proof. Assume that we have a black-box access to the EQUAL SUBSET SUM algorithm running
in time O*((2 — £)%25") for some £ > 0. We will show how to use this algorithm to obtain an
algorithm for SUBSET SUM running in time O*((2 — £)%-5").

Given an instance (5,t) of SUBSET SuM such that S = {s1,...,s,}, we will construct an
equivalent instance Z of EQUAL SUBSET SuM such that Z = {z1,...,29n,41}. The construc-
tion is as follows:

o for 1 <i<n,let z; =s;- 10" +2- 107,
o for 1 <i<n,let 24, =1-10%
o let 29,01 =t 10" 43" 1 1-10%

Now, we will show that if (S,¢) is a YES instance for SUBSET SuM, then Z is a YES instance
for EQUAL SUBSET SUM. Let X C [n], such that),y s; = ¢, be the set of the indexes
of the elements of the solution set. Then, sets A = {z; | i € X} U {zi4n | ¢ ¢ X} and
B = {ziyn | i € X} U {22n41} are a valid solution to EQUAL SUBSET SUM on instance Z,
since X(A) = X(B) and AN B = .

For the other direction, we will prove that if Z is a YES instance of EQUAL SUBSET SuM,
then (5,t) is a YES instance of SUBSET SUM. Assume that Z is a YES instance and sets
A,B C Z is a correct solution pair. Observe that if for some i < n element z; € A, then
zon+1 € B. That is due to the fact that the sets A, B have an equal sum and only the elements
Ziy Zi+n and zs,41 have something nonzero at the ¢-th decimal place. Moreover, all smaller
decimal places of all numbers sum up to something smaller than 10° and therefore cannot
interfere with the i-th decimal.

Finally, observe that numbers z;4y, for ¢ € [n], cannot produce a YES instance on their
own. Hence, sets AU B contain at least one number z; for i € [n]. Without loss of generality,
let A be the set that contains such an z;. Then, set B has to contain the element z5,11. That
means that set B cannot contain any z; for ¢ € [n].

In particular, ¥(A)/10""! = £(B)/10""L. Only numbers z; for i € [n] contribute to
(A)/10"*! and only number 29,41 contributes to ¥(B)/10"*!. Hence, there exists a subset
S’ C S, such that X(5") = t.

O

38

2.2.4 Congruence Classes

Given an integer n > 1, two integers a, b are said to be congruent modulo n, if n is a divisor of
their difference (i.e., there exists an integer k € Z such that a—b = kn). Congruence modulo
n is an equivalence relation® that is compatible with the operations of addition, subtraction,
and multiplication and is denoted by a = b (mod n).

The set of all congruence classes of the integers for a modulus n is called the ring of
integers modulo n and is denoted by Z, = {0,...,n — 1}. Each of its elements 7 represents
the set of integers that are congruent modulo n with i, i.e. Vo € Z,x € i <= z =i (mod n).

2.3 Techniques

Pairwise Sum A common trait of the algorithms studied in this thesis is the partition of
the initial input set Z to subsets Z1, ..., Z; and the recursive computation of the subset sums
of the resulting sets. Afterwards, these subset sums are combined to compute the subset sums
of the original input set Z. Thus, it is of great importance the efficient computation of the
sumset operations, since they have a central role in the definition of the overall complexity
of the algorithm.

Color-coding Color-coding is an algorithmic technique that was first used for the k-PATH
problem: Given a graph G, decide whether it contains a path of length & | |. The idea
is to randomly color the vertices of G with k colors, so that for a fixed path of length & in
G with probability 1/k! it is colored (1,2,...,k), in which case we can find it by a simple
dynamic programming algorithm on the layered graph obtained from keeping only the edges
in G from color class i to i +1 (for each 7). Over O(k!logn) repetitions we find a k-path with
high probability, if one exists. Research on color-coding has led to various improvements and
derandomizations of this technique | , , |.

We make use of color-coding for finding all sums generated by small subsets. More
precisely, given a SUBSET SUM instance (Z,t) and a threshold k, we compute a set S C S;(Z2)
containing any sum generated by a subset Y C Z of size |Y| < k with constant probability.
This can be boosted to any high probability by repeating and taking the union. The main
trick is to randomly partition Z = Z; U ... U Z2 by assigning to any element z € Z a color
in {1,...,k?} independently and uniformly at random.

Layer Splitting Any SUBSET SUM instance (Z,t) can be partitioned into logn layers Z; C
[t/2¢,¢/2¢ 1], plus a set Zy C [0,t/n] that can be treated very similarly to layers and that we
ignore here for simplicity. To obtain the desired set of all subset sums S;(7), it suffices to
firstly compute the respective sets of all subset sums S;(Z;) of the layers and subsequently
combine them using sumset computations.

It remains to compute S;(Z;) for the various layers. Note that by the definition of the
layers, any set Y C Z; with X(Y) < t has size at most |Y| < 2¢. Thus, the color-coding
algorithm with k = 2! successfully computes S;(Z;) in time O(n + tk?). We strive for an
O(n + t) algorithm, hence we need to eliminate the factor k2. We firstly note that all items
in Z; are bounded by O(t/k), which allows us to implement the sumset computations in the
color-coding algorithm more efficiently. To remove the remaining factor k, we implement a
two-stage approach: In the first stage, we partition Z; into roughly k = 2! sets Z; j. This
k is too small to split Y entirely, i.e., to have |Z; ; N Y| < 1 for all j with high probability.
For this property to hold, we would need to partition Z; into k? sets. However, it holds

3 An equivalence relation has the following properties: a) Reflexivity, b) Symmetry and c) Transitivity. In our
case, that translates to a) a = a (mod n), b) a = b (mod n) if b = a (mod n),Va,b,n and ¢) If a = b (mod n)
and b = ¢ (mod n), then a = ¢ (mod n).

39

that |Z; ; N Y| < O(logn) with high probability. Hence, in the second stage we can run the
color-coding algorithm with size bound ¥ = O(logn) on each Z; ;, and then combine their
computed sumsets in a straightforward way. Carefully implementing these ideas yields time

O(n+t).

Finding Witnesses via Peeling FEach time we compute a sumset operation, it is of
utmost importance to be able to efficiently trace the partial sums summed to compute each
sum. This is necessary, in order to reconstruct the solution sets and thus solve the search
version of EQUAL SUBSET SUM. Koiliaris and Xu reduce this problem to the reconstruction
problem, as mentioned in | | and argue about its complexity, concluding that there
is only polylogarithmic overhead to the computation of the sumset operation along with the
associated witnesses, in comparison to the computation of the sumset operation. This is a
very important result, which indicates that the witness computation does not provoke any
complexity ‘leap’. In order to complete their reduction, they provide two procedures that
successfully compute the number of witnesses for each sum resulting from a sumset operation
Y & W, as well as their sum. They note that the number of witnesses is represented by the
coefficients of the sumset operation Y @& W, while an extra FFT operation

>yt)y a"
yey weWw

is sufficient to compute the sum of the respective witnesses of the sums, represented by the
coefficients of this polynomial.

2.4 Observations and Lemmas

The following observation is crucial for the correctness of the presented algorithms, since it
plays a central role in all the divide and conquer approaches.

Observation 1. Let X,Y C N be two disjoint sets. Then, S(X UY) =S(X)® S(Y) and
SC(XUY)=S8C(X)pSC(Y).

The following lemmas will be used throughout the rest of this thesis.

Lemma 2.1. Let g be a positive, superadditive function. Since g is a superadditive function,
it holds that g(x +y) > g(x) + g(y),Va,y. Then, for a function f satisfying

fm) = max {f(Z,mi)+ f(5.ma) +g(m) |,

mi1+ma=m 2

it holds that f(n,m) = O(g(m)logn).

Proof. Figure 2.1 demonstrates the recursion tree of function f. Each level of the recursion
tree has a cost of O(g(m)) and there are O(logn) levels, hence the total complexity of the
function is O(g(m)logn). O

Lemma 2.2. Given two sets X,Y C [t], one can compute X &Y and X &Y in O(tlogt)
time.

Proof. Let fx and fy be the characteristic polynomials of sets X and Y respectively and
let g = fx - fy. Observe that for i < 2t, the coefficient of 2’ in g is nonzero if and only if
i € X ®Y. Using Fast Fourier Transform(FFT) | , Chapter 30|, one can compute the
polynomial g in O(tlogt) time and extract X &Y and X &; Y from it. O

40

A
@ — O(g(m))
@ + @ = O(glm) +g(my)) < O(g(mu +ms)) = O(g(m))
O(logn)

2k 2k

@ + S5 0 (Zg(mg)> <o <g (ZmL)) = 0(g(m))
i=1 i=1

\4

Figure 2.1: Recursion tree of function f(n,m).

Additiona}ly, one can perform the previous computation along with finding the associated
witnesses in O(t), as argued in | |

Lemma 2.3. Given two sets S,T C [u] X [v], one can compute S @ T in O(uvlog(uv)) time.

Proof. Let fs = fs(z,y) = Z(m)es 'y and fr = fr(z,y) = Z(i’j)GT z'y’ be the charac-
teristic polynomials of sets S and T respectively and let ¢ = fg - fr. For i < u and j < v,
the coefficient of 2%y’ is nonzero if and only if (i,7) € S @® T. One can compute the polyno-
mial g by a straightforward reduction to regular FFT (see multidimensional FFT | ,
Chapter 12.8]), in O(uwvlog(uv)) time, and extract S @ T from it. O

Lemmas 2.2 and 2.3 can be extended to multiple dimensions, as we have already argued.
Hence, the following corollary holds true.

Corollary. Given two sets X,Y C [t1] x -+ X [tg], one can compute X @Y in time
Oty ---tylog(ty -+ -ty)) = O(tFlogt), where t = max{ty,..., 1}

41

Chapter 3

SUBSET SUM Algorithms

In this chapter we will present the original algorithms proposed by Bringmann |] and
Koiliaris and Xu | |, which we will modify and rely upon for the rest of this thesis. These
algorithms solve the SUBSET SUM problem, which asks, given a set Z of n positive integers
and a target t > 0, to determine whether there exists a subset of Z whose elements sum up
to t. The first pseudopolynomial time approach was introduced by Bellman in | | with
complexity O(nt) and the algorithm is presented below. The algorithms presented in this
chapter are significantly more efficient and involve modern techniques such as color-coding
and FFT. For the rest of this chapter, suppose that Z = {z1,...,2,} C N is the input set,
where n = |Z|, and ¢ > 0 is the given upper bound.

Algorithm 1: Bellman(Z,t)
Input : A set Z ={z1,...,2,} of positive integers and a target t.
Output: True if there exists a subset S C Z, such that X(S) = t, else false.
1 initialise table T'[n][t] < false everywhere
2 T'[0][0] < true // Initially, only X(0) =0 is valid.
3 fork=1,...,ndo

4 fori=1,...,t do

5 if Tk — 1][i] = true then

6 T[k][i] = true /] zp ¢S
7 T[k][i + z] = true // z €S
8 end

9 end
10 end

11 return T'[n][t]

3.1 A randomised O(n +t) algorithm

In this section we will present the randomised SUBSET SUM algorithm introduced by Bring-
mann of complexity O(n + t), as presented in | |. This algorithm is certainly more
convoluted in comparison to the rest of the presented algorithms, but constitutes the first
pseudolinear (with regards to t) time approach to the SUBSET SUM problem.

The algorithm has the following structure:

1. The input set Z is initially split to logn [-layer subsets.
2. Afterwards, each [-layer subset is split to multiple small solution size subsets.
3. We solve SUBSET SUM for each such occurring small solution size subset.

4. We combine the solutions to solve SUBSET SuM for each I-layer subset.

43

5. We combine the solutions to solve SUBSET SUM for the initial input set Z.

Figure 3.1 depicts the partition of the original input set Z. Notice that all sets in the same
level of the tree are disjoint, since they originate from the partition of a set from the previous
level.

Initial input set

Split initial input set to
disjoint I-layer subsets

I-layer subsets

Split each /-layer subset to m

small solution size subsets
Y

small solution size
subsets

Figure 3.1: Partition of the input set Z, according to Bringmann’s algorithm.

3.1.1 SUBSET SuM algorithm for small solution size subsets

We initially describe an algorithm for solving instances of SUBSET SUM when the solution
size is small, i.e., an algorithm that finds sums 3(Y;) < t generated by sets Y; C Z of size at
most k, for some given (small) k.

We randomly partition our initial set Z to k? subsets Zi,..., Z;2, i.e., we assign each
2 € 7 to a set Z; where i is chosen independently and uniformly at random from {1,..., k?}.
We say that this random partition splits Y C Z if |Y N Z;| < 1,Vi. If such a split occurs,
the set returned by Algorithm 2 will contain 3(Y'). Indeed, by choosing the element of Y
for those Z; that |Y N Z;| = 1 and 0 for the rest, we successfully generate ¥(Y) through the
sumset operations. The algorithm returns only valid sums (i.e. the solution set S is a subset
of §:(Z)), since no element is used more than once in each sum, because each element is
assigned uniquely to a Z; for each distinct partition.

Repeating this procedure sufficiently often with fresh randomness, and taking the union
over all computed sumsets Z1 @y - - - By Zj2 yields a set S C §;(Z) containing any %(Y) <t
with Y C Z and |Y| < k with probability at least 1 — .

For any Y C Z with |Y| < k, observe that the probability that some random partition
splits subset Y is the same as having |Y| different balls in |Y| distinct bins, when throwing
|Y'| balls into k? different bins. This is equivalent to the second ball falling into a different
bin than the first one, the third ball falling into a different bin than the first two, and so on,
which has probability

-1 k-2 kK—(Y|-1) _ (k- (Y|-1\" N1\ 1
T) > = >(1-=) >(=) ==

44

Hence, r = [log,/3(1/0)] repetitions yield the desired success probability of 1 — (1 —1/4)" >
1 —4. In other words, after r random partitions, for any random subset Y, there exists, with
probability at least 1 — §, a partition that splits it.

Complezity. Algorithm 2 performs O(log (1/9)) repetitions. To compute a pairwise sum up
to t, O(tlogt) time is required. In each repetition, k? pairwise sums are computed. Hence,
the total complexity of the algorithm is O(tk? logtlog(1/4)).

Algorithm 2: ColorCoding(Z,t,k,)
Input : A set Z of positive integers, an upper bound ¢, a size bound k£ > 1 and an
error probability § > 0.
Output: A set S C §:(Z) containing any X(Y) < ¢t with probability at least 1 — 4,
where Y C Z and |Y| < k.

1S+ 0

2 for j=1,...,[logy/3(1/6)] do

3 randomly partition Z = Z3 U Zy U -+ - U Zp2
4 Sj<—Z1@t"'@tZk2

5 S+ SU Sj

6 end

7 return S

Lemma 3.1. Algorithm 2 computes in time O(tk*logtlog(1/6)) a set S C S(Z), such that
foranyY C Z with |Y| < k and 3(Y') < t, we have X(Y) € S with probability at least 1 — 0.

3.1.2 SUBSET SuUM algorithm for /-layer instances

In this subsection we will present an efficient randomised algorithm for solving SUBSET SUM
for I-layer instances. Let (Z,t) be a SUBSET SUM instance, where n = |Z|. For [> 1, we call
(Z,t) an [-layer instance if

Z C[t/1,2t]1] or Z C[0,2t/l] and I > n.

In both cases, we have that Z C [0, 2t/l]. Additionally, note that any Y C Z with (YY) <t
has size |Y| <. In the first case, if |Y| > [, then X(Y) > |Y|-¢/l > [-t/l = t. In the second
case, this holds since |Y| < |Z| = n. Thus, the ColorCoding algorithm previously presented,
with size bound k£ = [can be used to solve [-layer instances. We will show that the running
time can be improved for layers, thereby essentially removing the quadratic dependence on [
entirely.

Let m « [/log(l/d) rounded up to the next power of 2. We randomly partition Z into
subsets Z1, ..., Z, and for each such occurring subset run Algorithm ColorCoding with size
bound k = 6log(l/)), target 12log(l/d)t/l and error probability ¢/, yielding sets Sti,...,Sm
respectively. Afterwards, we combine the sets Si,...,.S,, in a natural, binary-tree-like way
by computing S1 @ Ss,. .., Sm_1® Sy, in the first round, (S1 ® S2) ® (S3® S4), ..., (Sm—3®
Sm—2) ® (Sm—1 ® Sy,) in the second round, and so on, until we reach the set S1 @& ... ® Sp,.
Note that in the h-th round of this procedure we combine 2" sets S;, each initially containing
integers bounded by 12log(1/§)t/l. Thus, we may use Gon.1210g(1/6),1 i1t the h-th round. This
explains the following algorithm.

Henceforth, assume that Y C Z is a fixed subset of input set Z, with X(Y") <¢. Also, let
Y; <Y NZ;for1 <j<m,where Z1,...,Zy, are the sets occurring from the partitioning of
set Z to m subsets. We will firstly prove a crucial property for subset Y.

Claim 3.2. [t holds that Pr[|Y;| > 6log(l/0)] < /1.

45

Algorithm 3: ColorCodinglLayer(Z,t,1,d)
Input : An [-layer instance (Z,t) and an error probability ¢ € (0,1/4].
Output: A set S C S;(Z) containing any s € §;(Z) with probability at least 1 — 4.

1 if [<log(l/d) then return ColorCoding(Z,t,1,0)
2 m < [/log(l/9) rounded up to the next power of 2
3 randomly partition Z =2, UZyU---U Z,,

4 v+« 6log(l/))

5 for j=1,...,m do

6 | Sj < ColorCoding(Z;,2vt/l,v,d/1)

7 end

g forh=1,...,logm do // combine S; in a binary-tree-like way
9 for j=1,...,m/2" do

10 ‘ Sj < S2j-1 Don.2vt/1 Sa2;

11 end
12 end
13 return S;N{0,...,t}

Proof. Note that |Y}| is distributed as the sum of |Y| independent Bernoulli random variables
with success probability 1/m. In particular, 4 = E[|Y;|] = |Y|/m. A standard Chernoff bound
yields that Pr[|Y;| > A] < 27 for any A > 2ep. Recall that (Z,t) is an l-layer instance, thus
Y| <, hence p = |[Y|/m < 1/m < log(l/d), by definition of m. Thus, the inequality holds
for A = 6log(l/§), and we obtain Pr[|Y;| > 6log(1/8)] < 27618/9) = (§/1)6 < §/1. O

Lemma 3.3. For an l-layer instance (Z,t) and 6 € (0,1/4], Algorithm 3 computes in time
O(tlogtlog®(1/8)) a set S C Si(Z) containing any s € Sy(Z) with probability at least 1 — 4.

Proof. The case | < log(l/6) follows from Lemma 3.1. Inclusion S C §;(Z) also follows from
Lemma 3.1 and also from the fact that we only compute sumsets over partitionings', hence
(81, (Z1) @y St,(Z2)) N [t] € 8 (Z2) for a partitioning Z = Z; U Zy and any t,t/,t1,t2 > 1.
By Claim 3.2, we may assume that |Y;| < 6log(l/6) holds for each 1 < j < m; this
happens with probability
m m
P A (1] < 6log (1/0)] = 1 - 3 Pr{[¥;] > 61og (1/8)] = 1 — mé/l.
Jj=1 J=1
Since Z C [0,2t/1], any subset of Z; of size at most 6log(l/6) has sum at most 12log(l/d)t/!.
From Lemma 3.1 follows that the call ColorCoding(Z;,12log(l/d) - t/l,61og(l/6),6/1) finds
¥(Y;) with probability at least 1—§/I. Assume that this event holds for each 1 < j < m; this
happens with probability at least 1—m-6/l. Then S; contains ¥(Y;), and the tree-like sumset
computation indeed yields a set containing (Y1) + ... + 2(Y;,) = 2(Y).
The total error probability is 2md/l. Since [> 1 and ¢ < 1/4, we have log(l/d) > 2 and
obtain m < [/2. Hence, the total error probability is bounded by d. O

Complerity. By Lemma 3.1, each call to ColoCoding takes O(t/l - log*(1/6)logt) time.
There are m = O(1/log(l/d)) such calls, thus O(tlog®(1/8)logt) is required for all of them.
To combine the resulting sets costs

logm
m
O | > on 2" log(l/o)t/1 logt | = O(tlogtlogm),
h=1

which is dominated by the total time for calling ColorCoding.

! See Figure 3.1 at the start of the section and also Observation 1 at Chapter 2.

46

3.1.3 General case algorithm

Algorithm 4 demonstrates how we can split a random input set Z to O(logn) I-layer subsets,
yielding layers Z1,..., Z10gp)- On each layer we run algorithm ColorCodinglayer, which
was previously presented, and subsequently combine the resulting sumsets S;. The error
probabilities of the calls to ColorCodingLayer are appropriately chosen in order to sum up
to at most §. Correctness stems from Lemma 3.3.

Complexity. For each call ColorCodingLayer(Z,t,1,6), O(tlogtlog3(1/§)) time is required.
To compute a pairwise sum up to t, O(tlogt) time is required. O(n) time is required for
reading the input set. Hence, Algorithm 4 has total complexity

logn

Oln+ Z <tlogtlog3(2 lggn) +tlogt) = O(n +tlogtlog3(n/d)logn) = O(n +t).
i=1

Algorithm 4: FasterSubsetSum(Z,J,t)
Input : A set of positive integers Z, an upper bound ¢ and an error probability §.
Output: A set S C S;(Z) containing any s € §;(Z) with probability at least 1 — 4.
partition Z into Z; + Z N (t/2%,t/27Y for i = 1,..., [logn] — 1 and

Z]'logn] —ZN [O,t/Ql—lOg"ﬂ_l]
2 S+ 0
3 fori=1,...,[logn] do
4 S; + ColorCodingLayer(Z;,t,2!, 6/ [logn])
5 S+ SP: S;
6
7

[y

end
return S

Theorem 3.4. SUBSET SUM can be solved in time O(n + tlogtlog®(n/d)logn) = O(n + t)

by a randomised, one-sided error algorithm with error probability 6 = (n + t)_Q(l).
3.2 A deterministic O(0) algorithm
Koiliaris and Xu have shown in | , Theorem 3.1] that one can compute all subset sums

of aset Z in O(ologologn), where o = X(Z) and n = |Z|.

Note that this algorithm is incomparable to the other SUBSET SuM algorithms mentioned
in this chapter since we cannot efficiently solve bounded instances by using it. Indeed, for a
given upper bound ¢, its recursion tree yields O(tlogt nyon 21) = O(ntlogt) complexity.
Theorem 3.5. Given a set Z C N, where n = |Z| and 0 = ¥(Z), one can compute the set
of all subset sums S(Z) in O(clogologn) = O(a) time.

Proof. Partition Z into two sets L, R of (roughly) equal cardinality and compute recursively
L’ = 8(L) and R’ = S(R). Then, by Observation 1, compute S(Z) = L' ® R'. The recurrence
for the running time is

f(n,0) = max {f(n/2,01)+ f(n/2,02) + O(clogo)}.

o1+o2=0

Since O(o1logoy) + O(o2logos) < O(ologo), i.e. a superadditive function, we have that
f(n,0) = O(ologologn), since Lemma 2.1 holds. O

47

Algorithm 5: SSNoBoundSum(Z)

Input : A set Z of n positive integers.
Output: The set S(Z) of all subset sums of Z.
if Z = {z} then return {0, z}

o+ 3(2)

L < an arbitrary subset of Z of size |7 |

R+ Z\L

L’ + SSNoBoundSum(L)

R’ + SSNoBoundSum(R)

return L' ©, R’

b B = I, B N I VU

3.3 A deterministic O(y/nt) algorithm

In this section we will present the algorithm of Koiliaris and Xu of complexity @(\/ﬁt), as
presented in | |. This is a simple, yet efficient algorithm, that partitions the input set
by congruence into classes, computes the subset sums of each class recursively, and combines
the results, hence computing the subset sums of the input set Z.

3.3.1 Computation of SC;(S)

An essential component of the algorithm is the efficient computation of SC;(S) for some set
S C N. That is, we need an efficient algorithm to compute the set of all possible subset sums
from the elements of a set .5, along with the cardinality of the corresponding subsets.

Lemma 3.6. Given a set S C [t] of n elements, one can compute, in O(ntlognlogt) time,
the set SC(S), that is, the set of all possible subset sums along with the cardinality of the
corresponding subsets.

Proof. Partition S into two sets S; and Sy of roughly the same size. Compute SC(S7)
and SCy(S2) recursively. Note that SCi(S1),SC¢(S2) € ([t] x [§]). Furthermore, note
that SC(S1) @ SCi(S2) = SCy(S), since Sp, S are disjoint and Observation 1 holds. By
Lemma 2.3, we can compute SC¢(S) in O(ntlog(nt)) = O(ntlogt) time. The running time
follows the recursive formula T'(n) = 2 - T'(n/2) + O(ntlogt), which is O(ntlognlogt), thus

proving the claim. O

The following algorithm successfully computes SC;(S) for a given set S of n integers, with
time complexity O(ntlognlogt).

Algorithm 6: SSCBoundSum(S,t)

Input : A set S of n positive integers and an upper bound integer t.

Output: The set SC,(S) of all subset sums with cardinality information of S up to ¢.
1 if S = {s} then return {(0,0),(s,1)}
2 T < an arbitrary subset of S of size ||

3 return SSCBoundSum(7T',t) ®; SSCBoundSum(S \ 7,)

3.3.2 Computation of S;(5) for elements in the same congruence class

In this subsection, we will show that, if the elements of the input set are in the same congru-
ence class, then it is possible to compute S¢(S) quickly through the use of Algorithm 6.

48

Lemma 3.7. Let [,b € N, with | < b. Given a set S C {x € N |z =1 (mod b)} of size n,
one can compute S;(S) in O((t/b)nlognlogt) time.

Proof. Each element x € S can be written as z = yb+ 1. Let Q = {y | yb+1 € S}. Then, for
any subset X = {y1b+1,...,y;b+ 1} C S of size j, we have that

J

Zx: Z(yib-i-l) = (Zyl> b+ jl.

zeX =1

In particular, a pair (z,7) € SC;/(Q) corresponds to a set Y = {y1,...,y;} C Q of size j,
such that ¥(Y) = z. The set Y in turn corresponds to the set X = {y1b+1{,...,y;b+1} C S,
where X(X) = zb + jl. As such, compute SC,/,(Q) using Algorithm 6 and subsequently
return {zb + jl | (z,7) € SCy/,(Q)} = Si(S) as the desired result. O

3.3.3 The main algorithm

The main algorithm makes use of the previously presented lemmas. First, partition the
input set into subsets by congruence. Then, compute SCy/,(S) for each such set S and lastly
combine the results.

Algorithm 7: SSBoundSum(Z, t)
Input : A set Z of n positive integers and an upper bound integer t.
Output: The set Si(Z) of all subset sums of Z up to ¢.
b« |v/nlogn|
for i e [b—1] do
Si—ZN{reN|z =1 (mod b)}
Qi {lz/b] |z € Si}
SCy/p(Q1) < SSCBoundSum(Q;, [t/b])
Si(S1) « {zb+ 4l | (2,5) € SCyyp(Q1)}
end
return S;(Sp) D¢ -+ Dy St (Sp—1)

® N o ok W N =

Theorem 3.8. Let Z C [t] be a given set of n positive integers. One can compute the set
Si(Z) in O(y/nlogntlogt) = O(y/nt) time, hence solving SUBSET SUM.

Proof. Partition Z into b = |/nlogn] sets S; = ZN{x € N | 2 =1 (mod b)} of size
n; respectively, for [€ [b — 1]. For each S;, compute the set of all subset sums S;(5;) in
O ((t/b)n;logn;logt) time by Lemma 3.7. The time to compute all S;(5;) is

Z O((t/b)n;logn;logt) = O((t/b)nlognlogt).
lefb—1]

Combining the resulting subsets S;(So) @¢ - -+ ¢ S¢(Sp—1) takes time O(btlogt). Thus, the
total running time is

%) (tlogt (nlzgn + b>) —0 <\/mtlogt) =0 (Vnt).

49

Chapter 4

EQUAL SUBSET SUM Algorithms

In this chapter, we present four different algorithms that successfully solve the search version
of EQUAL SUBSET SUM. The first three algorithms are based on those presented in Chapter 3.
The last one is a simple and efficient deterministic approach that solves EQUAL SUBSET SuM,
along with producing the solution sets.

We firstly present a randomised algorithm of time complexity @(n + t), afterwards a
deterministic one of complexity O(c), next a deterministic algorithm of complexity O(y/nt)
and lastly a deterministic @(n+t) one, where n denotes the cardinality of the input set, t > 0
an upper bound and ¢ the sum of the elements of the input set.

The first three algorithms are demonstrating how the techniques presented in the previous
chapter can be extended to EQUAL SUBSET SuM, whereas the last one was developed based
on feedback from anonymous reviewers. It is important to note that, while the first three
algorithms are less efficient than the last one, they demonstrate how SUBSET SUM solutions
can be successfully modified and extended to related algorithmic problems. This idea in-
spired the extensions presented in Chapter 5, where we efficiently solve k-SUBSET SUM using
techniques initially developed for SUBSET SUM.

4.1 A randomised O(n +t) algorithm for
EQUAL SUBSET SUM

In this section, we describe a randomized algorithm which solves EQUAL SUBSET SuM for an
input set Z in O(n + t) time, where n = |Z| and t is an upper bound on the subset sums
sought. Additionally, this algorithm efficiently reconstructs the solution sets.

The decision version of EQUAL SUBSET SUM can be solved in time O(n + t), by the
algorithm of Bringmann | | for SUBSET SuM, simply by checking whether there exists
a coefficient > 2 in the resulting polynomial, and by increasing the number of repetitions at
algorithm ColorCoding. The original algorithm(s) of | | are presented in Section 3.1.
Figure 3.1 on page 44 is very helpful regarding the structure of the modified algorithms. Below
we present only the required modifications for solving the EQUAL SUBSET SuM problem:

e We introduce a witness table W, which holds a witness' for sum t as well as a flag
table F' of integer counters, which will be described below. We assume that W, F' are
global variables and are initialised by 0 everywhere. More specifically, Wt] = x if sum
t occurred by the addition of z and ¢ — x. Recursively, Wz] and W[t — 2] hold one of
the two sums used to compute them respectively. Note that for each element z; of the
initial set Z, we have W{z;] = z;.

e The detection of a collision is primarily done through the computation of the pairwise
sums, i.e. by checking the coefficients of FFT. Apart from the use of FFT, we also take
advantage of tables W and F', as well as of a global counter ¢, that differentiates disjoint

! As we have already described in Chapter 2, it is possible to find the witnesses of a pairwise sum operation
with only polylogarithmic overhead.

ol

subsets examined by the algorithm in various phases, in order to check if there exists a
collision for sum t.

e We change the number of repetitions in Algorithm ColorCoding, so that for each pair

of sums of disjoint subsets, there exists with high probability a repetition in which both
sums are computed.

Before presenting the modified algorithm(s), we will first describe the way the algorithm
detects a collision. After successfully detecting a collision, the algorithm reconstructs the
solution sets as is thoroughly explained at the end of the section. In general, each time a
pairwise sum is computed, we make the following checks:

1. We first check the coefficients of FFT to find if there exists some value greater than

1. If that is the case, we have successfully detected a collision, since each coeflicient
represents the number of ways a sum can be produced.

. In the case where every coefficient is < 1, we find the corresponding witnesses w for

every detected sum s as described in Chapter 2. Then, we check the witness table
W to determine whether we have already computed a witness for the given sum s. If
W {s] = 0 (the initial value), we set W[s] = w, F[s] = c¢. If W[s] # 0, then we compare
the value of counter ¢ with the one that is stored in F[s]. If F[s] = ¢, we proceed as if
W{s] = 0. Otherwise, we have detected a collision and can reconstruct the sets of our
solution from the witness we just computed for s and the stored witness values.

Algorithm 8: X ;Y

Input : X CS(7Z1),Y C S§(Z3), where Z;, Zs are disjoint subsets of initial input set

Z, and an upper bound t.

Output: Two disjoint subsets Si,S2 C Z such that 3(S;) = ¥(S2) and

S1 C(Z1UZy) Vv Sy C (Z1 U Zg) or (if no two such sets are found) X @; Y.

// The witness table W, the flag table F' and the counter c are global

variables defined by the calling procedure

1S+ X& Y // by using FFT with witnesses
2 if ds:cs > 1, where cs is the coefficient of x° in the FFT result then

3

© w N S Ttk

10
11
12
13
14
15
16
17

let s* be the minimum such sum
reconstruct two subsets S7,S2 of sum s* // see Subsection 4.1.4
return Sq, 55
Ise
foreach s € S do
w < the newly computed witness for sum s

if w # 0 and w # s then // s¢ XUY
if Wis] =0 or F[s] = c then // F,W,c global
‘ W(s] « w ; F[s] < ¢
else // see Subsection 4.1.4

S1 < SetConstruction(W,s)
Sy — SetConstruction(WV,w) U SetConstruction(W, s — w)
return Sp, 59

end
end

18 return S

Algorithm 8 presents the process we follow each time we compute a pairwise sum. Note
that if a newly computed witness is the same as the sum itself or 0, the corresponding

52

sum is already present in one of the two initial sets. The complexity of the algorithm is
@(t), since the computation of all pairwise sums up to ¢ along with the witnesses costs @(t)
(Chapter 2). Henceforth, in this section each time we refer to a pairwise sum, we actually
refer to Algorithm 8. Therefore, the possible detection of a collision and the reconstruction
process are implied each time we make a pairwise sum computation. The correctness of
collision detection through the witness table is due to the following lemma which concerns
the main algorithm.

Lemma 4.1. If during the execution of Algorithm 11, W{s] # 0 for some sum s and s € X®Y
while s ¢ X UY and F[s] # ¢, then we have a collision.

The validity of Lemma 4.1 is explained along with the presentation of the modified algo-
rithms.

4.1.1 Small cardinality solutions

We will first describe the procedure ColorCodingMod which can successfully solve instances
of the EQUAL SUBSET SUM problem if the solution size is small, i.e., an algorithm that finds
sums 3(Y;) < t generated by sets Y; C Z of size at most k and determines if there are two
(or more) disjoint subsets with the same sum.

We randomly partition our initial set Z to k? subsets Zi,..., Z;2, i.e., we assign each
2 € Z to a set Z; where i is chosen independently and uniformly at random from {1,...,k?}.
We say that this random partition splits Y C Z if |Y N Z;] < 1,Vi. If such a split occurs,
the set returned by ColorCodingMod will contain ¥(Y'). Indeed, by choosing the element of
Y for those Z; that |Y N Z;| = 1 and 0 for the rest, we successfully generate ¥(Y) through
the pairwise sum. The algorithm returns only valid sums, since no element is used more
than once in each sum, because each element is assigned uniquely to a Z; for each distinct
partition.

Our intended goal is thus, for any random pair of disjoint subsets, to have a partition
that splits them both. Such a partition allows us to detect the collision of the two subsets
through the use of FFT. Hence, the question is, how many random partitions are required to
achieve this with high probability?

The answer is obtained by observing that the probability to split a subset Y is the same
as having |Y| different balls in |Y| distinct bins, when throwing |Y| balls into k? different
bins, as mentioned in | |. Next, we compute the probability to split two random disjoint
subsets Y7 and Y, at the same partition.

The probability that a split occurs at a random partition for two random disjoint subsets
Y1,Yo C 7 is

Pr[Y; and Ys are split] = Pr[Y7 is split] - Pr[Y> is split] =
E2—1 k2—2 E2—(vi|—-1) k2 -1 K2-2 kQ—(yYQ\—1)>
e % R e % >

<l‘32_(|]:;1|_1)>Y1| | (kg_(L?‘_l)yYQ .

R ROROR

Hence, r = [log;g,15(1/0)] repetitions are sufficient to yield the desired success probability
of 1 —(1—-1/16)" > 1 — 4. In other words, after r random partitions, for any two random
disjoint subsets Y7, Ys, there exists, with probability at least 1 — §, a partition that splits
them both.

Due to the multiple random partitions happening at ColorCodingMod, it is possible to
compute the same sum with the same elements in different random partitions. This happens

93

Algorithm 9: ColorCodingMod(Z,t,k,)
Input : A set Z of positive integers, an upper bound ¢, a size bound k > 1 and an
error probability ¢ > 0.
Output: Two disjoint subsets of Z of equal sum or (if no two such sets are found) a
set S C S¢(Z) containing any two (Y1), 3(Y2) < ¢t with probability at
least 1 — §, where Y7,Ys C Z disjoint subsets and |Y7],|Ya| < k.
// The witness table W, the flag table I and the counter ¢ are global
variables defined by the calling procedure
1c+c+1
2 .5+
3 for j=1,...,[logy/15(1/5)] do
4 randomly partition Z = Z1 U Zy U -+ - U Zj2
5 Sj 21O+ O L2
6
7
8

S« SUS,

end
return S

because it is possible for a subset to be split in two (or more) different partitions. We have to
exclude such a “collision” from our solution, hence apart from the witness of a sum, we keep
the associated counter at the flag table. If we have previously computed the same sum s (i.e.
W {s] # 0) and the counter has the same value as the flag table (F[s] = ¢), this means that
there has been an earlier random partition (in the same ColorCodingMod call) that split a
(possibly different) subset with the same sum. We ignore this collision and we just update
the corresponding witness at W{s]. Essentially, we disregard this collision and assume it is
caused by the same subset. This does not affect the correctness of our algorithm, since if we
actually have a collision, with high probability, at some repetition we will have a split for
both the subsets of collision at the same time, hence the collision will be detected through
the FFT operation.

If we have computed the same sum s with F'[s] # ¢, then it means that we have detected
a collision among different calls of ColorCodingMod. As will become evident later?, different
calls of ColorCodingMod process disjoint subsets of our initial input set Z, thus we will have
a collision and Lemma 4.1 holds. If this happens, it is possible to reconstruct the sets of our
solution, since all the associated witnesses are properly kept in the witness table.

Lemma 4.2. Given a set Z of positive integers, a sum bound t, a size bound k > 1, an error
probability § > 0, a counter ¢, a witness table W and a flag table F', ColorCodingMod(Z,t,k,J)
returns two disjoint sets Y1, Yo with X(Y1) = X(Y2) < t and |Y1],|Yz| < k (assuming existence),
in O(tk*1og(1/5)) time with probability at least 1 — 6. If no two such sets exist, the algorithm
returns a set S C Sy(Z) containing any two X(Y7), X(Ys) <t with Y1,Ys C Z disjoint subsets
and |Y1|, |Ya| < k, with probability at least 1 — 4.

Complezity. The algorithm performs O(log (1/6)) repetitions. To compute a pairwise sum up
to t along with its witnesses, O(t) time is required. In each repetition, k? pairwise sums are
computed, along with their associated witnesses. Hence, the total complexity of the algorithm

is O(k?log (1/5)) - O(t) = O (tk*log (1/9)).

4.1.2 Solving EQUAL SUBSET SuM for [-layer instances of Z

In this subsection, we will prove that we can use the algorithm ColorCodingLayer as pre-
sented in | |, to successfully solve EQUAL SUBSET SuM for [-layer instances.

2 Also refer to page 44 and Figure 3.1.

o4

An instance (Z,t) is called an [-layer instance if either Z C [t/1,2t/l] or Z C [0,2t/l] and
[> n. In both cases, Z C [0,2t/l] and for any Y C Z with X(Y) < ¢, we have |Y| < .
The algorithm of | | successfully solves the SUBSET SUM problem for [-layer instances.
We will show that by calling the algorithm ColorCodingMod and, along with a pairwise sum
we compute its witnesses and make the appropriate checks, the algorithm successfully solves
EQUAL SUBSET SUM.

Algorithm 10: ColorCodingLayerMod(Z,t,1,0)

Input : An [l-layer instance (Z,t) and an error probability § € (0,1/8].

Output: Two disjoint subsets of Z of equal sum or (if no two such sets are found) a
set S C S¢(Z) containing any two (Y1), 3(Y2) < ¢ with probability at
least 1 — §, where Y7, Yo C Z disjoint subsets.

// The witness table W, the flag table F' and the counter c are global

variables defined by the calling procedure

if [<log(l/6) then return ColorCodingMod(Z,t,1,J)

m < 1/ log (1/§) rounded up to the next power of 2

randomly partition Z =2, UZyU---U Z),

v+ 6log (1/9)

for j=1,...,mdo

‘ Sj < ColorCodingMod(Z;,2vt/l,,6/1)
end

for h=1,...,logm do

for j=1,...,m/2" do
c—c+1
Sj 4= S2j—1 Oh.ayiy 52
end

© 0 N o Ok W N =

_ e
= o

[y
N

end
return S; N [{]

e
= W

Firstly, we observe that Lemma 4.1 holds. Indeed, as it will become evident later,
different calls of ColorCodingLayerMod process disjoint subsets of the ground set Z and
each such call increases the value of c¢. So, if we have a collision among different calls of
ColorCodingLayerMod it will be successfully detected (as the condition in line 10 of Algo-
rithm 8 will be falsified). Additionally, each call to ColorCodingMod increases ¢ and processes
a subset of Z that is disjoint from subsets processed by any other ColorCodingMod call (no
matter if it is in the same or in different ColorCodingLayerMod calls). Lastly, we increase
the value of ¢ at line 10 in the modified algorithm in order to detect collisions among S;’s.
For example, it is possible to compute the same sum by S1 & S and S,,—1 D Sp,. Without
increasing the counter ¢, we cannot detect such a collision. Instead, we would have to wait
until the corresponding FFT operation is realised, which would result in a coefficient greater
than 1, but the reconstruction of the solution sets in that case would not be possible, since
in such a setting, the sums in the witness table W would not be computed in a unique way.

Next, we will prove the correctness of the algorithm. Suppose that X,Y C Z, and
Y(X) = 3(Y) < t, with X,Y being disjoint sets. By Claim 3.2 as presented on page 45,
we have that Pr[|Y;] > 6log(l/d)] < 0/l, where YV; = Y N Z;, for any ¥ C Z with at
most [elements. Hence, the probability that |X;| < 6log(l/d) and |Y;| < 6log({/) for all

%)

m

Pr[\ (1Xi| < 6log (1/6) A |Y;] < 6log (1/6))] >
=1
1= (Pr[|Xi| > 6log (1/8)]) — Y _ (Pr[|Y;] > 6log (1/5)]) > 1 — 2md /I
i=1 =1

ColorCodingMod computes X (X;) and 3(Y;) with probability at least 1 —d. This happens for
all i with probability at least 1 —md/l. Then, combining the resulting sets indeed yields both
Y(X) and X(Y') and detects the collision by checking the coefficients of FFT. The total error
probability is at most 3md/l. Assume that § € (0,1/8]. Since I > 1 and § < 1/8, we have
log (1/) > 3. Hence, the total error probability is bounded by . This gives the following.

Lemma 4.3. Given an l-layer instance (Z,t), error probability 6 € (0,1/8|, a counter ¢, a
witness table W and a flag table F', ColorCodingLayerMod(Z,t,1,0) returns two disjoint sets
Y1, Yy with £(Y1) = B(Ya) < t (assuming existence), in O(tlog3(1/8) time with probability at
least 1 — 6. If no two such sets exist, the algorithm returns a set S C Sy(Z) containing any
two (Y1), 3(Ya) <t with Y1,Ys C Z disjoint subsets, with probability at least 1 — §.

Complexity. Each call to ColorCodingMod takes time O(log (1/9)) - (’~)(’yt/l)~. There are
m = 0(l/log (1/§)) calls to ColorCodingMod, hence O(Ilog? (1/68)) - O(yt/1) = O(tlog? (1/6))
total time. The combination of the resulting sets takes time

o 1§;’Z 2Mlog (1/8)t/1 | = O(tlogm) = O <tlog (W)) .

h=1

Hence, the algorithm has total running time O(tlog® (1/6)).

4.1.3 General Case

It remains to show that for every SUBSET SUM instance (Z,t), we can construct [-layer in-
stances and take advantage of ColorCodingLayerMod to solve EQUAL SUBSET SUM in pseu-
dolinear time (with regard to t) for the general case. This is possible by partitioning set Z
at t/2! for i = 1,...,[logn] — 1. Thus, we have O(logn) I-layers Z1, .. -+ Zlogn]- On each
layer we run ColorCodingLayerMod, and then we combine the results using pairwise sums.
Lemma 4.1 holds since the different calls to ColorCodingLayerMod process disjoint subsets.

Theorem 4.4. Given a set Z C N of size n, an error margin d and an upper bound t,
Algorithm EqualSubsetSum(Z,d,t) solves EQUAL SUBSET SUM (that is, it outputs two disjoint
sets S1,S2 C Z, with X(S1) = X(S2) < t, if such sets exist), in O(n+t) time, with probability
at least 1 — 9.

Proof. Suppose there exist two disjoint subsets X, Y C Z with ¥(X) = X(Y) < ¢, and
X, =XnNnZ, Y,=YnNZ. Each call to ColorCodingLayerMod returns %(X;) and %(Y;)
with probability at least 1 — ¢/[logn], hence the probability that all calls return ¥(X;) and
5(Y;) i

Pr[ColorCodingLayerMod returns both ¥(X;), X(Y;), Vi] = 1 — Pr[some call fails] >

[logn] 5 5
1- % —1-logn] - =1-—
2 Tiogny — 1081 figgy =1 °

If all calls return the corresponding sums, the algorithm successfully detects the collision
and reconstructs the subsets. Thus, with probability at least 1 — §, the algorithm solves
EQUAL SUBSET SUM.]

56

Algorithm 11: EqualSubsetSum(Z,d,t)

Input : A set of positive integers Z, an upper bound ¢ and an error probability §.

Output: Two disjoint subsets of Z of equal sum or (if no two such sets are found) a
set S C §;(Z) containing any two (Y1), 3(Ya) < ¢ with Y7,Ys C Z disjoint
subsets, with probability at least 1 — 9.

c<+ 0

fori=1,....,t do Wi+ 0; F[i] < 0

foreach z; € Z do Wz]| « z;

partition Z into Z; < Z N (t/2%,t/207] fori =1,...,[logn] — 1 and

Z!’logn] — ZN [O,t/QHOgn]_l]

S0

fori=1,...,[logn| do
S; + ColorCodingLayerMod(Z;,t,2¢, 6/[logn])
S+ S5 5;

end

return S

=W N =

© o 9 o O

-
[e=)

Complezity. Reading the input requires ©(n) time. The initialisation of the witness and flag
tables requires ©(t) time. The algorithm has ©(logn) repetitions, and in each repetition we
make a call to ColorCodinglLayerMod, plus compute a pairwise sum. The computation of
the pairwise sum requires O(t) time (along with the witnesses). For each call to algorithm
ColorCodingLayerMod, we require O(t log® (2//6)) time. Hence the total complexity is © (n)+

o(t) + Zi(fln @(t log® (21/6)) = @(n + tlog? (n/d)logn) = @(n +1).

4.1.4 Reconstruction of the solution sets

The decision version of EQUAL SUBSET SUM actually does not require the use of the counter
c or the tables W and F. It suffices to modify the number of repetitions at Algorithm
ColorCoding and check the coefficients of FFT every time we compute a pairwise sum. In
this section, we will show that using counter c and tables W, F' is essential in order to efficiently
compute the solution sets.

A first approach, that does not make use of the counter or a universal witness table, would
be to store alongside each sum its corresponding elements, i.e. the elements of the subset of
Z that has that subset sum. This solution would require for each detected sum to store up
to n elements. We also note that some sums may be detected multiple times. It is evident
that such a solution is particularly costly as far as space is concerned.

We now show that given a witness table as described above, there is an efficient way to
find the elements that sum up to a specific sum ¢. We call this algorithm SetConstruction.

Algorithm 12: SetConstruction(W,t)
Input : A witness table W and a target t.
Output: A set of numbers that sum up to .
1 if t = 0 then return ()
2 if W[t] = ¢ then return ¢
3 return SetConstruction(W, W(t]) U SetConstruction(W,t — W1t])

The correctness of the algorithm stems from the fact that there is no single element that
is used multiple times, i.e. SetConstruction(W, Wt]) NSetConstruction(W,t— Wt]) = 0.
This is a crucial property that is actually the reason a counter or a slight modification is
necessary. The complexity of the algorithm is O(n).

57

The following section introduces an EQUAL SUBSET SUM algorithm without any additional
space requirements apart from table W. The problem with this approach is that it makes use
of existing SUBSET SUM algorithms in order to reconstruct the solution sets, hence possibly
affecting the complexity of the algorithm (or requiring additional probability guarantees). In
order to avoid the use of a SUBSET SUM algorithm, it is necessary to detect a collision as
soon as it happens. By the use of the counter and the flag table, we manage to ensure that
throughout the execution of our algorithm, each sum is computed in a unique way, thus it is
possible to reconstruct it via the use of the witness table.

If a collision is detected through the use of counter for sum s, then it is possible to
efficiently compute the solution sets Sol; and Sols:

e By calling SetConstruction(W,s), we can reconstruct Sol;.

e By calling SetConstruction(W,s’) USetConstruction(W, s — s'), where s’ is the last
computed witness for sum s, we can reconstruct Sols.

If we detect the collision through the coefficients of FFT (which is done before checking
the witnesses of the sums), then it is also possible to efficiently compute the solution sets.
Suppose that the algorithm detects a collision at X @Y and z1 4+ y1 = x2 + y2 = s, where
x1,22 € X,y1,y2 € Y. The sum s is also the minimum sum for which we have detected a
collision through FFT. We also have that x1 # z2 and y; # y2 since otherwise a collision
would have been detected at a previous pairwise sum. It also holds that at most one among
x1,x2,Y1,y2 is equal to 0 (if not, suppose that 1 = yo = 0, then x9 = y; = s, but then
the collision would have already been detected through the witness table check). We also
have that those four partial sums are all distinct amongst themselves, since if for example
r1 = Y1, this collision would have been already detected through the witness table check.
The counter guarantees that each sum is computed in a unique way, and by the structure of
the algorithm, that no single element retrieved from the witness table is concurrently used
for a sum in both X and Y. Hence, for the reconstruction of the solution sets, it suffices
to find the partial sums x1, x2,y1 and yo and then construct the solution sets by the use of
SetConstruction. When we find a pair of witnesses for the sum, we actually retrieve one
of the solution sets, for example the one composed of x1 + y;. For the other solution set, it
suffices to compute (X \ {z1,y1}) ®s Y and find the other set of witnesses for sum s. This
can be done in O(s) = O(t) so it does not affect the complexity of the algorithm.

4.1.5 An algorithm without counter and flag table.

Firstly, we will justify the need for some minor modifications, in order to completely avoid
the use of the counter and the flag table. This modified version of the algorithm is worse, in
the sense that the reconstruction of one of the two solution sets requires to run an algorithm
for SUBSET SuM, thus possibly increasing the complexity of our algorithm.

Assume that for each possible sum we keep only its partial sum and not any kind of flag.
As shown before, due to the random partitions happening at ColorCoding, the detection of
the collisions is now done exclusively through the coefficients of FFT. Hence, the witness table
actually holds one of the partial sums last used to compute the associated sum. Suppose that
a collision occurs at some point of the execution of our algorithm, i.e. X &;Y has a coefficient
greater than 1 at FFT. Then, there exist z1,z2 € X and y1,y2 € Y with x14+y1 = zo+y2 = s.
We also have that x1 # x9 and y; # ya, since if otherwise, a collision would have been detected
earlier in the execution of our algorithm. Suppose that z1, 2, y; and y2 are known. The next
logical step of our set construction would be to find the elements used to compute those
sums. This would be done through the use of the universal witness table. More specifically,
the elements used to compute z1 and y; constitute the first set Soly of our solution and the
elements used to compute x2 and yo constitute the second set Soly. Let Uy, Uy, , Uy, , Uy, be

o8

the set of elements of our initial set Z used to sum up to x1,x2,y1, y2 respectively. Then,
following the approach described above, we have that Sol; = U, UU,, and Soly = U, UU,,.
The problem is that we can not ensure that U, N"Uy, = 0 and Uy, NU,, = 0. In other words,
by following the values saved at the witness table, it is possible for an element to be used
more than once. For example, at ColorCodingLayerMod line 6, suppose that X = S1,Y = Sy
and also z1,y; € Sp,. The computation of S, is done last, so W{[z1] and W{y;] will have
the partial sums used there to compute them. That means that it is possible for an element
to be added in both the addition for x; and also the addition for y;, resulting in a faulty
construction of the solution set, when the collision is detected at S1 @ Ss.

A way to counter this problem is by modifying the order of the pairwise sums and the
computation of S; at ColorCodingLayerMod:

1. We firstly compute S1 and 5.

2. Then we compute S13 = 51 B2.21/1 So.

3. Then we compute S3 and Sy.

4. Then we compute S34 = 53 Bg.0¢/1 Sa-

5. Then we compute Si234 = S12 Da.2vt/1 S34.
6. We continue accordingly.

By making this modification, we firstly note that we have not changed the complexity of
the algorithm so far. We will now show that this algorithm can successfully reconstruct the
solution sets.

Suppose that the algorithm detects a collision at X @Y and 1 +y; = z2 + y2 = s, where
1,22 € X,y1,y2 € Y. The sum s is also the minimum sum for which we have detected a
collision through FFT. We also have that x1 # z2 and y; # y2 since otherwise a collision
would have been detected at a previous pairwise sum. Now there are three distinct cases :

1. All 21, 22,y1,92 # 0.
2. One of z1,x2,y1,y2 is 0.
3. x1=ya=0o0rz9 =71 =0.

For cases 1 and 2, it holds that x1 # y1,y2 and x2 # y1, y2 since otherwise s would not have
been minimum. We claim that the witness table for y; and y» reconstructs them the way
they are computed in Y. This means that only elements present in Y are used. We also
claim that the witness table for £y and xo reconstructs them the way they are computed in
X, since they are not computed again in Y, hence the value at the witness table remains
unchanged. Thus, we have 4 distinct values, and we can efficiently compute the solution sets
the same way we do as in the case we have a counter and a flag table and we detect the
collision through the FFT.

For case number 3, it means that s € X NY. The reconstructed solution set Sol;
provides us with the elements of Y that add up to s and can be efficiently computed by
SetConstruction. The problem is that we have no knowledge about how sum s came to be
at set X, since the witness table has information about the last way a sum was computed.
Our only option is to run an algorithm for SUBSET SUM with target s on the set Z \ Sol;.
This results in a potential increase of the complexity of the algorithm. By introducing the
use of the counter and the flag table, we can avoid this.

99

4.2 A deterministic O(o) algorithm

As we have already presented in Section 3.2, Koiliaris and Xu have shown in | | that
one can compute all subset sums of a set Z in O(o logologn), where 0 = ¥(Z) and n = |Z|.

We remind the reader that this algorithm is incomparable to the rest of SUBSET SuM algo-
rithms mentioned, since we cannot efficiently solve bounded instances by using it. That is, for
a given upper bound ¢, its recursion tree yields O(tlogt Zi(fél 21) = O(ntlogt) complexity®.
By slightly modifying this algorithm, one can obtain the same results for EQUAL SUBSET SUM.

Algorithm 13: ESSNoBound(Z)
Input : A set Z of n positive integers.
Output: Two disjoint subsets S1, 52 C Z, where 3(S51) = 3(S2) or (if no two such
sets exist) S(Z).
// We assume the witness matrix W is global and initialised to 0

1 if Z = {z} then
2 if W[z] =0 then
3 Wlz] « =
4 return 7
5 else // see Subsection 4.1.4
6 Sl — {Z}
7 Sy < SetConstruction(W, z)
8 return Sq, 5%
9 end
10 L < an arbitrary subset of Z of size | §]
11 R« Z\L
12 0 < X(2)
13 Zj < ESSNoBound(L) ; Z3 < ESSNoBound(R)
14 S« 71 ®y Z2 // by using FFT, also compute the witnesses in O(0)
15 if ds:cs > 1, where cs is the coefficient of x° in the FFT then
16 let s* be the minimum such sum
17 reconstruct two subsets S7,S2 of sum s* // see Subsection 4.1.4
18 return Sq, 55
19 else
20 foreach s € S do
21 w < the newly computed witness for sum s
22 if w#0 and w # s then !/ s¢ Z1UZy
23 if W(s] =0 then
24 ‘ Wis] «+ w
25 else // see Subsection 4.1.4
26 Sy + SetConstruction(W,s)
27 Sy < SetConstruction(WV,w) U SetConstruction(W, s — w)
28 return 51, 59
29 end
30 end

31 return S

Theorem 4.5. Given a set Z C N of size n, one can construct two disjoint sets 51,52 C Z,
where X(S1) = X(S2) (assuming existence), thereby solving EQUAL SUBSET SuM, in O(o)
deterministic time, where o = 3(Z).

3 Refer to Lemma 2.1 and Figure 2.1 on page 41.

60

Algorithm 13 presents the pseudocode for the modified algorithm. We largely follow
the techniques developed in Section 4.1. Namely, we introduce a witness table W which
guarantees the uniqueness of each sum and we update W each time a pairwise sum operation
occurs. The reconstruction phase is exactly the same as in the case of Section 4.1.

The correctness of the algorithm stems directly from the fact that, at any point of ex-
ecution of the algorithm, each sum is uniquely computed (i.e., there is only one way up to
this point to construct each distinct sum). As soon as a sum is computed via two distinct
ways, the algorithm terminates, reconstructing the minimum such sum. Due to the fact that
it is the minimum, it is formulated from disjoint sets, since if otherwise, we could remove the
common elements, hence attaining a lesser sum formulated with two ways.

The complexity of the algorithm is O(logn) - O(c) = O(c), because instead of a simple
FFT, here at the ‘conquer’ step of the algorithm we also compute the witnesses and check for
collisions through the witness table. This can be done with polylogarithmic overhead, hence
costs @(u) for a pairwise sum up to v and by Lemma 2.1 we obtain the complexity of the
algorithm.

4.3 A deterministic O(y/nt) algorithm for
EQUAL SUBSET SUM

In this section, we show that EQUAL SUBSET SuM is solvable in O(y/nt). Specifically, one can
use a slight variation of the algorithm from Section 3.3 in order to reduce EQUAL SUBSET SUM
to SUBSET SUM.

In this modified algorithm, instead of translating each polynomial back into a set of
sums, we keep the representation by polynomials throughout the whole recursion. In order
to improve the complexity, in | | they initially divide the input numbers by b and then
restrict the operations to elements whose original values belong to the same congruence class
(mod b), where b = |\/nlogn], thus reducing the running time of each FFT operation.
Subsequently, they recover the correct sums by adding to each sum the respective residue
multiplied by the cardinality of the subset involved. Finally, they once again use FFT to
combine these sums to find sums that span different congruence classes. This outputs a list
of all realisable sums up to t in time O(y/nt). Observe that all these operations can be done
using the polynomial representation without slowing down the algorithm.

Notice that:

e At the end of the recursion, we end up with a polynomial that contains each realisable
sum represented by the exponent of a term of the polynomial.

e The term coefficients represent the number of different (not necessarily disjoint) subsets
that sum up to the corresponding sum.

e If a sum can be made up from two (or more) different non-disjoint subsets, then there
exists a smaller sum that can be made from two (or more) disjoint sets (by removing
the common elements).

Therefore, the term with the smallest exponent s that has coefficient > 2 corresponds to a
sum that can be made up from two (or more) disjoint sets. Note that if we are interested
only in the sum that can be made up of (at least) two disjoint subsets, we can stop at this
point and output s, thus solving the decision version of EQUAL SUBSET SUM without any
modification.

Reconstruction. In the case of this modified algorithm, we can efficiently recover the
solution sets (given s) by running a subset sum algorithm with target s once, delete the

61

returned subset from the initial set, and run subset sum once again with target s. This can
be seen as an O(y/nt) reduction to subset sum, thereby providing an argument that these
these two problems are of similar complexity. Koiliaris and Xu argue in | , Section 6] that
one can indeed return the solution set of their proposed SUBSET SuM algorithms with only
polylogarithmic overhead. Thus, the overall complexity of the algorithm remains O(y/nt).

4.4 A deterministic O(n + t) algorithm for
EQUAL SUBSET SUM

In this section, we will present a simple extension of Bellman’s algorithm to cope with the
EQUAL SUBSET SuM problem. This efficient extension successfully reconstructs the solution
sets in pseudopolynomial @(n + t) deterministic time, hence is preferred over the rest of the
presented EQUAL SUBSET SUM algorithm of this chapter. Notice however, that while this
approach is the most efficient for the EQUAL SUBSET SuM problem, it cannot be extended to
efficiently solve the k-SUBSET SUM problem, whereas algorithms based on those presented on
Sections 3.1 and 3.3 can. That is due to the fact that it heavily relies on the uniqueness of
the formulation of each sum, a property that does not hold for k-SUBSET SuM.

This algorithm was developed based on feedback from anonymous reviewers, and can
be seen as a simple extension of Bellman’s dynamic programming approach, as presented
in | .

Firstly, we note that table W has two distinct uses:

1. It is used to verify that each sum s is obtained in a unique way. As soon as a sum §
can be obtained with two different ways, the algorithm formulates the solution sets and
returns them, since W{s] # 0.

2. Additionally, it is used to keep the last added element of the corresponding sum, in
order to recursively reconstruct the solution sets.

Thus, we can infer that we will access table W at most ¢ times, since if otherwise, this would
imply a collision has occurred.

If T is a self-balancing binary search tree (e.g. AVL tree) and |T;| denotes the number of
elements in T" at repetition ¢, then we can find the elements e € T', such that e+ z; < t, in time
O(log |T;i|). Subsequently, O(|L;|) time is needed to construct list L; and O(|L;|log |Ti+1]) to
insert its elements in 7', where |L;| denotes the number of elements of list L;. Also notice
that |T;| = > |Ly|, for i < i and the size of tree T is at most ¢, since there are at most ¢
distinct sums, thus Y |L;| < t. Thus, the total complexity of the algorithm is

O <n+ Z]Li\logﬂ’i“]) =0 <n+z |Lilogt> = O(n +tlogt) = O(n +t).

i=1 =1

62

Algorithm 14: Simple(Z,t)

Input

:Aset Z ={z,..

., zn} of n positive integers and an upper bound integer ¢.

Output: Two disjoint subsets S1, 52 C Z, where 3(S51) = 3(S2) < t or (if no two

such sets exist) false.

1 initialise table WI0...t] +- 0

2 tree T' consisting only of sum 0

3 fori=1,...,ndo
a | Li=]]
5 foreach e € T such that e + z; <t do
6 S e+ z;
7 if W{s] =0 then
8 Wis] « z;
9 add s to L;
10 else
11 S1 < S
12 Sp 0
13 while s; # 0 do
14 S+ S U W[Sl]
15 s1 4 s1 — W(si1]
16 end
17 82 < {Zl}
18 So <— €
19 while s # 0 do
20 Sy +— Sy U W[SQ]
21 S9 < S9 — W[SQ]
22 end
23 return 51,5
24 end
25 foreach [€ L; do
26 add [to T
27 end
28 end

29 return false

// T consists of all the realisable sums

// List L; consists of all the newly formed realisable sums

// first appearance of s

// s added to list L;
// s has already appeared

// reconstruction process for S

// reconstruction process for S

// insert newly formed sums to T

63

Chapter 5

k-SUBSET SUM and Further Applications

In this section, we propose extensions of the algorithms of Bringmann | | and Koiliaris
and Xu | |, as presented in Chapter 3, and more specifically Sections 3.1 and 3.3, in
order to solve k-SUBSET SUM which asks, given a set Z of n positive integers and k targets
t1,...,tx > 0, to determine whether there exist k£ disjoint subsets Z1,...,Z;r C Z, such that
¥(Z;) = t;, for t = 1,...,k. One can see that even in the case of k = 2 and t; = t3, the
problem becomes much harder; this can be seen as a targeted version of EQUAL SUBSET SUM,
for which the disjointness of minimal sets property does not apply. We also show how there
ideas influence a multitude of subset problems. For the rest of this chapter, assume that
Z = {z1,...,2,} is the input set, t1,...,t; are the given targets and ¢ = max{ty,...,tx}.
Additionally, the number of subsets k is considered a constant and not part of the input.

This problem differs substantially from EQUAL SUBSET SUM, as we cannot assume that
the existence of subsets summing up to the target numbers (or any other pair of numbers)
implies the existence of corresponding solution(s) consisting of disjoint subsets. In particular,
for EQUAL SUBSET SUM a minimality property holds: for the minimal sum that can be ob-
tained by multiple subsets, these subsets are necessarily disjoint; here, no analogous property
holds. Therefore, we need to take special care in order to verify the disjointness property
throughout the whole process.

Note that one can trivially extend Bellman’s classic dynamic programming algorithm for
SUBSET SUM to solve this problem in O(nt*) time. The extended algorithm for 2-SUBSET SUM
is presented below and can be simply modified to cope with the general case. Suppose that
there exist disjoint subsets Z1, Zo C Z, where 3(Z7) = t1 and X(Z3) = t5. For each element z;
of the input set Z, there are three distinct possibilities: a)z; € Z1, b)z; € Za, ¢)z; ¢ Z1 U Zs.
The algorithm simply iterates through all the possible disjoint subset sum combinations
composed of elements z;, where i’ < 7, until ' = n, hence successfully solving the problem.

In the following sections, we will use the k-modified characteristic polynomial of a set
of integers, as described in Chapter 2. Thus, given a set of integers Z = {z1,...,2,}, the
k-modified characteristic polynomial is defined to be

K
@)= ai=af +. i+ +ap
z€Z i=1

where ¥ = (z1,..., k).

Intuitively, the goal is to obtain sums in k different dimensions, represented by xz;, by
multiplying such polynomials. Then, each term zi'...xz;" obtained will correspond to k
disjoint subsets, each summing up to s;. Each szl used to produce a term consisting of T3
translates to z; € S;.

Additionally, we will use the following lemma, which stems directly from the preliminaries,
and the corollary of Lemmas 2.2 and 2.3.

Lemma 5.1. Given two sets of points S,T C [t]* one can use multidimensional FFT to
compute the set of pairwise sums S ©; T in time O(t* logt).

65

Algorithm 15: Bellman(Z,tq,ts)
Input : Aset Z={z,...,2,} of positive integers and targets t1,ts < 3(2).
Output: True if there are disjoint subsets S1,.S2 C Z, such that ¥(S1) = ¢; and
Y(S2) = to, else false.
1 t < max{ty,ta}
2 initialise table T'[n][t][t] < false everywhere
3 T[0][0][0] <+ true // Initially, only (X(0),X(0)) is valid.
4 fork=1,...,ndo

5 foreach (i, j) € [t] x [t] do
6 if T[k — 1][7][j] = true then
7 T[k][i]]j] = true /] zi ¢ S1U S
8 T[k][i + z][j] = true /] z, €51
9 Tk][i][7 + 2] = true // zp € So
10 end
11 end
12 end

13 return T'[n][t1][t2]

Lastly, notice that, in the following proposed algorithms for k-SUBSET SUM, each combi-
nation of valid sums appears k! times. This means that for every k disjoint subsets Si,..., Sk
of the input set, there are k! different terms in the resulting polynomial of the algorithm rep-
resenting the combination of sums X(S7),...,X(Sk). This massive increase on the number
of terms does not influence the asymptotic analysis of our algorithms, nevertheless can be
restricted for better performance. Additionally, one can limit the FFT operations to different
bounds for each variable, resulting in slightly improved complexity analysis without changing
the algorithms whatsoever. In this thesis, we preferred to analyse the complexity of the algo-
rithms using ¢ = max{t,...,t} for the sake of simplicity, but one can alternatively obtain
time complexities of O(n + T) and O(n*/*#+DT) for the randomised and the deterministic
algorithm respectively, where T' = [] ¢;.

5.1 Solving k-SUBSET SUM in randomised O(n + t*) time

Theorem 5.2. Given a set Z C N of size n and targets ti,. .., t,, one can decide the problem
k-SUBSET SUM in O(n + t*) time, where t = max{ty,..., 1}

We will show this by extending the techniques used in | |, as presented in 3.1. The
presented algorithm successfully detects, with high probability, whether there exist k£ disjoint
subsets each summing up to t; respectively. In comparison to the algorithm of |], a
couple of modifications are required, which we will first briefly summarise prior to presenting
the complete algorithm.

e At algorithm ColorCoding, the number of repetitions is increased, without however
asymptotically affecting the complexity of the algorithm, since it remains O(log(1/9)).

e At algorithm ColorCoding, after each partition of the elements, we execute the FFT
operations on the k-modified characteristic polynomials of the resulting sets. Thus,
for each element s; we introduce k points (s;,0,...,0),...,(0,...,s;), represented by
polynomial zi* + ...+ z;'. Hence ColorCoding returns a set of points, each of which
corresponds to k sums, realisable by disjoint subsets of the initial set.

e Algorithm ColorCodingLayer needs no modification. Note that the FFT operations
concern sets of points and not sets of integers, hence the complexity analysis differs.

66

Additionally, the algorithm returns a set of points, each of which corresponds to some
realisable combination of sums of disjoint subsets of the [-layer input instance.

e The initial partition of the original set to [-layer instances remains as is, and the FFT
operations once more concern sets of points instead of sets of integers.

As was the case for the original algorithm of Bringmann, we will firstly present an algorithm
for small cardinality solutions, subsequently one for [-layer instances and lastly a general case
solution. We refer the reader to page 44, where a relevant diagram regarding the partition of
the input set for the general case is presented.

5.1.1 Small cardinality solutions

We will first describe the modified procedure ColorCoding for solving k-SUBSET SUM if the
solution size is small, i.e., an algorithm that finds k-tuples of sums (3(Y1),...,3(Y%)), where
X(Y;) <t and Y; C Z are disjoint subsets of input set Z of cardinality at most ¢, and
determines whether there exists a tuple (¢1,...,t), for some given values ¢;.

As was the case for the original algorithm proposed by Bringmann, we randomly partition
our initial set Z to c¢? subsets Z1,. .., Z.2, i.e., we assign each z € Z to a set Z; where i is chosen
independently and uniformly at random from {1,...,c?}. We say that this random partition
splits Y C Z if |Y N Z;] < 1,Vi. If such a split occurs, the set returned by ColorCoding will
contain' ¥(Y). Indeed, by choosing the element of Y for those Z; that |Y N Z;| = 1 and
0 for the rest, we successfully generate k-tuples containing 3(Y') through the pairwise sum
operations. The algorithm returns only valid sums, since no element is used more than once
in each sum, because each element is assigned uniquely to a Z; for each distinct partition.

Our intended goal is thus, for any k£ random disjoint subsets, to have a partition that splits
them all. Such a partition allows us to construct a k-tuple consisting of all their respective
sums through the use of FFT. Hence, we have to determine how many random partitions are
required to achieve this with high probability.

The probability that a split occurs at a random partition for £ random disjoint subsets
Yi,..., Y, C Zis

k
Prlall Y; are split] = HPr[Yi is split] =
i=1
-1 -(nnl—-1) -1 E&—(v-1)
5= > g > >

(W)Yﬂ... <Cg_(|§k|_1)>|yk| .

(D=0 () ==

Hence, for B = 4F /(4% — 1), r = [logz(1/6)] repetitions yield the desired success probability
of 1 — (1 —1/4%)" > 1 — 6. In other words, after r random partitions, for any k random

disjoint subsets Y7, ..., Yy, there exists, with probability at least 1 — §, a partition that splits
them all.

Lemma 5.3. Given a set Z of positive integers, a sum bound t, a size bound ¢ > 1 and
an error probability 6 > 0, ColorCoding(Z,t,k,d) returns a set S consisting of any k-tuple
(X(Y1),...,2(Yy)) with probability at least 1 — 6, where Y1,...,Yyx C Z are disjoint subsets
with X(Y1),...,2(Yz) <t and |Yil,...,|Ya| < ¢, in O(c?log(1/6)tFlogt) time.

! In this context, “contain” is used to denote that ¥(Y) = s; for some i in a k-tuple s = (s1,...,5x),5 € S,
where S is the resulting set of ColorCoding.

67

Algorithm 16: ColorCoding(Z,t,c,d)
Input : A set Z of positive integers, an upper bound ¢, a size bound ¢ > 1 and an
error probability ¢ > 0.
Output: A set S C (S;(2))* containing any (X(Y1),...,3(Y:)) with probability at
least 1 — 4, where Y7,...,Y;, C Z disjoint subsets with 3(Y7),...,2(Yy) <t

and |Yi],...,|Yx| <ec
15«0
2 B+ 4k/(4k —1)
3 for j=1,...,[logg(1/0)] do
4 randomly partition Z = Z1 U Z3 U --- U Z2
5 fori=1,...,¢% do
6 ‘ Zl (Z; x {0YFYu...u ({0}t x Z;)
7 end
8 ;Sb(—Zi@t@tZéQ
9 S <+ SuUS;
10 end
11 return S

Proof. As we have already explained, if there exist k disjoint subsets Y7,...,Y; C Z with
X(Y1),...,5(Yr) < tand |Yi|,...,|Yk| < ¢, our algorithm guarantees that with probability
at least 1 — 4, there exists a partition that splits them all. Subsequently, the FFT operations
on the corresponding points produce the k-tuple.

Complexity. The algorithm performs O(log(1/9)) repetitions. To compute a pairwise sum
of k variables up to ¢, (9(15”C logt) time is required. In each repetition, ¢? pairwise sums are
computed. Hence, the total complexity of the algorithm is O(c?log(1/6)t* logt). O

5.1.2 Solving k-SUBSET SuM for [-layer instances of 7

In this part, we will prove that we can use the algorithm ColorCodingLayer from |],
to successfully solve k-SUBSET SUM for [-layer instances. We will show that by calling the
modified ColorCoding algorithm presented previously in this section and modifying the FFT
operations of ColorCodinglayer so they concern sets of points, the algorithm successfully
solves k-SUBSET SUM in such instances. We refer the reader to page 46, where the original
algorithm by Bringmann is presented.

Suppose that X',..., X¥ C Z are disjoint subsets with (X1!),...,%(X*) < t. By
Claim 3.2 on page 45, we have that Pr[|Y;| > 6log(l/d)] < d/l, where Y; = Y N Z;, for
any Y C Z with at most [elements. Hence, the probability that |X}!| < 6log (/) and
|X?| < 6log(l/5) and so on, for alli=1,...,m is

m

Pr[A\ (IX} < 6log (1/5) A ... A |XE| < 6log (1/5))] =
i=1
13" (PeX}] > 6log (1/8)]) —...— 3 (Pr[yxf\ > 6log(l/5)]> >1— kmd/l.
i=1 =1

ColorCoding computes (X(X}),. .., S(XF) with probability at least 1 —&. This happens for
all ¢ with probability at least 1 — md/l. Then, combining the resulting sets indeed yields the
k-tuple (X(X1),...,2(X%)). The total error probability is at most (k+1)md/l. Assume that
§ € (0,1/2F1. Since I > 1 and 6 < 1/2**! we have log(I/6) > (k + 1). Hence, the total

error probability is bounded by é. This gives the following.

68

Lemma 5.4. Given an l-layer instance (Z,t), upper bound t and error probability 6 €
(0,1/2%1], colorCodingLlayer(Z,t,1,5) solves k-SUBSET SUM with sum at most t in time

(@] (tk lo tﬂ) with probability at least 1 — 0.

Complexity. The time to compute the sets of k-tuples 51, ..., S, by calling ColorCoding is

k+2 o k+2
O(m -2 1og(1/8)(vt/1)¥ log(yt /1)) = O <7kj1 tk logt> =0 (lglk(ll/d)tkl gt) .

Combining the resulting sets costs

logm logm h k—1) k logm
m t¥ logt _1\"

O | D2 S5 @t/ 1og(2"t/1) tk ogt | =0 | 223 (24

h=1 h=1

tkl t 1og
= < og > = O(tF logt)

since for ¢ > 1, we have that O (3>;_, c*) = O(c"), which is dominated by the computation
of S1,...,5m.

Hence, ColorCodinglLayer has total complexity O (tk logt (1/5)>

5.1.3 General Case

It remains to show that for every instance (Z,t), we can construct [-layer instances and

take advantage of ColorCodinglayer to solve k-SUBSET SUM for the general case. This is

possible by partitioning set Z at /2 fori = 1, ..., [logn]—1. Thus, we have O(logn) I-layers

Z1, .y Zfogn]- On each layer we run ColorCodinglayer, and then we combine the results

using pairwise sums. The algorithm is presented on page 47 and the only difference is that

the FF'T operations concern sets of points, hence the complexity analysis differs accordingly.
We will now show how Algorithm 4 on page 47 proves Theorem 5.2.

Proof. Suppose there exist k disjoint subsets X1, ..., X*F C Z with 2(X1),...,2(X*) <t
and X! = X9NZ;, forj=1,....,kand i =1,...,[logn]. Each call to ColorCodingLayer
returns a k-tuple (X(X}), ..., X(XF)) with probability at least 1 —6/[logn], hence the prob-
ability that all calls return the corresponding k-tuple is

Pr[ColorCodingLayer returns (X(X}),...,S(XF)),Vi] = 1 — Pr[some call fails] >

1

flogn] 5
1 —1— [logn] - -
2 Tiogn] 1~ 08" g

If all calls return the corresponding k-tuple, the algorithm will successfully construct the
k-tuple (X(X1),...,%(X*)). Thus, with probability at least 1 — §, the algorithm solves
k-SUBSET SUM.

Complezity. Reading the input requires O(n) time. The algorithm has ©(logn) repetitions,
and in each repetition we make a call to ColorCodingLayer, plus compute a pairwise sum.
The computation of the pairwise sum requires O(t*logt) time since it concerns k-tuples.

i
logk+2 2 lggn

Each call to ColorCodingLayer requires time O | t*log t——m—n— |, hence the overall

complexity is

logn logk+2 <2i lggn)
O [n+tFlogtlogn + Y tFlogt ST = O(n+t*).
=1

69

5.2 Solving k-SUBSET SUM in O(n*/#*1t%) time

Theorem 5.5. Given a set ojf positive integers Z C N of size n and targets ty,...,tx, one
can decide k-SUBSET SUM in O(n*/*+1tk) where t = max{t, ... t;}.

In this section we show how to decide k-SUBSET SUM in O(n¥/k+1¢k) time, where ¢ =
max{ty,...,tx}. To this end we extend the algorithm proposed by Koiliaris and Xu [],
as presented in Section 3.3. The extended algorithm determines whether there exist k£ disjoint
subsets each summing up to a given target t; respectively. In comparison to the original
algorithm, a couple of modifications are required, which we will first briefly summarise prior
to presenting the complete algorithm.

Our extension begins by using the k-modified characteristic polynomials previously pro-
posed, thereby representing each z € Z as Zle x7 in the base polynomial at the leaves of
the recursion. Furthermore, we use k additional dimensions c1, ..., ¢ for the cardinality of
the sums represented by the exponents of x;. We then proceed with multiplying each step
using FFT in the same way as in the original algorithm, thereby producing polynomials with
terms that contain k-tuples of sums z* .. LUZk

We now observe that each of the terms of the form zi' mzk was produced at some
point of the recursion via an FFT operation combining two terms that belonged to different
subtrees, ergo containing different elements in each subset involved. As such, si,...,s; are
sums of disjoint subsets of Z. This guarantees the correctness of the algorithm.

It remains to complete the recursion and examine whether the final polynomial contains a
term x? . xZ’“ to answer if there exist k disjoint subsets that sum up to t1, ..., t; respectively.

Algorithm 17: DisjointSC(S,t)
Input : A set S of n positive integers and an upper bound integer t.
Output: The set Z C (S;(S) x [n])* of all k-tuples of subset sums occurring from
disjoint subsets of S up to t, along with their respective cardinality
information.

2(k—1) 2(k—1)
—— ——

1 if S = {s} then return {0}** U {(s,1,0,...,0)}U...U{(0,...,0,s,1)}

2 T < an arbitrary subset of S of size |7]

3 return DisjointSC(7,t) &; DisjointSC(S \ 7\1)

Algorithm 18: DisjointSS(Z,t)
Input : A set Z of n positive integers and an upper bound integer ¢.
Output: The set S C (S;(Z))* of all k-tuples of subset sums up to ¢ occurring from
disjoint subsets of Z.
b+ | "/nklogn]|
for i€ [b—1] do
Si<—ZN{zeN|z=1(mod b)}
Qi + {lz/b) | = € 51}
R(Q;) < DisjointSC(Qy, [t/b])
R; {(Zlb + 0l zeb+gel) | (21,91, -5 2K, k) € 'R(Ql)}
end
return Ry ®; - - ¢ Rp—1

® N o Gk w N

Complexity. The overall complexity of the algorithm results from the computation of the
sums inside the congruence classes and the combination of those sums.

70

The computation of the sums in the congruence classes costs

> O((t/b)*ny lognylogt) = O((t/b)"n*log nlogt),
le[b—1]

and their combination costs O(bt* logt), hence the total running time is

k ~
0 <tk log ¢ (nll)(zg” i b>> — O(n/FH14kY,

which is obtained by setting b = **\/nklogn.

5.3 Faster Algorithms for Multiple Subset Problems

The techniques developed in this chapter can be further applied to give faster pseudopoly-
nomial algorithms for the decision version of SUBSET SUM RATIO, k-SUBSET SUM RATIO and
MULTIPLE SUBSET SUM. In this section we will present how these algorithms can be used to
(efficiently) solve these problems.

The algorithms we previously presented result in a polynomial P(x1, ..., z) consisting of
terms each of which corresponds to a k-tuple of realisable sums by disjoint subsets of the initial
input set Z. In other words, if there exists a term 7, .. xZ’“ in the resulting polynomial,
then there exist disjoint subsets Z1, ..., Z; C Z such that 3(Z;) = s1,...,2(Zk) = sg.

It is important to note that, while the deterministic algorithm of Subsection 5.2 returns
a polynomial consisting of all terms corresponding to such k-tuples of realisable sums by
disjoint subsets, the randomised algorithm of Subsection 5.1 does not. However, that does
not affect the correctness of the following algorithms, since it suffices to guarantee that the
k-tuple corresponding to the optimal solution of the respective (optimisation) problem is
included with high probability. That indeed happens, since the resulting polynomial consists
of any viable term with high probability, as discussed previously.

SUBSET SUM RATIO The first variation we will discuss is the SUBSET SUM RATIO prob-
lem, which is to determine, given a set Z C N of size n and an upper bound ¢, what is the
smallest ratio of sums between any two disjoint subsets S1, 52 C Z, where X(S7), X(S2) < t.
This can be solved in deterministic O(n?/3t?) time using the algorithm proposed in section
5.2 by simply iterating over the terms of the final polynomial that involve both parameters x
and y and checking the ratio of their exponents. SUBSET SUM RATIO can also be solved with
high probability in randomised O(n + t?) time using the algorithm proposed in subsection
5.1 instead.

k-SUBSET SUM RATIO An additional extension is the k-SUBSET SUM RATIO problem,

which asks, given a set Z C N of size n and k bounds ti,...,t, to determine what is
the smallest ratio between the largest and smallest sum of any set of k disjoint subsets
Z1,...,Z C Z such that 3(Z;) < t;. Similar to k-SUBSET SUM, an interesting special case

is when all ¢;’s are equal, in which case we search for k subsets that are as similar as possible
in terms of sum.

Similarly, we can solve this in deterministic O(n*/(*+1) . k) or randomised O(n + t*) time
by using the corresponding algorithm to solve k-SUBSET SUM and subsequently iterating
over the terms of the resulting polynomial that respect the corresponding bounds, and finally
evaluating the ratio of the largest to smallest exponent.

71

k-PARTITION An interesting special case of k-SUBSET SUM RATIO, which finds application
in the field of fair allocation, is the k-PARTITION problem, which asks, given a set Z C N of
size n, to partition its elements into k subsets Z1, ..., Zi, while minimising the ratio among
the sums X(Z;).

Notice that the optimal solution values are ¥(Z;) = o/k, where o = ¥(Z). Furthermore,
suppose that there exists a subset S; C Z such that X(S;) > (0/k) + max, where max is
the max element of Z and max € S;. Then, there exists another subset S; C Z such that
¥(S5;) < (0/k)—max. In this case however, a better solution would consist of the sets S;\max
and S; Umaz. Thus, in order to solve this problem it suffices to solve k-SUBSET SuM RATIO
for t = max + (X(Z)/k), where max is the max element of Z, while only considering the
terms x7' ... x}" of the final polynomial for which) s; = 3(2).

MULTIPLE SUBSET SUM Finally, we consider MULTIPLE SUBSET SUM, which asks, given
a set Z C N of size n and k bounds t1,...,%, to determine what is the maximum sum of
sums of any combination of k disjoint subsets Z1, ..., Z; of Z, such that ¥(Z;) < t;. This
problem is a special case of the MULTIPLE KNAPSACK problem and can also be seen as a
generalisation of k-SUBSET SuM. It should be clear that the same techniques as those e.g.
used for k-SUBSET SUM RATIO apply directly, leading to the same time complexity bounds
of deterministic O(n*/ (1) . t%) and randomised O(n + t*) time.

72

Chapter 6

Conclusions & Future Work

6.1 Conclusions

SUBSET SUM has seen impressive improvements as of recently, as far as pseudopolynomial
time algorithms are concerned. These improvements are able to be extended to other heavily
associated problems. In this diploma thesis, we primarily examined two relevant algorithmic
problems, namely EQUAL SUBSET SUM and k-SUBSET SUM, and how improvements on the
SUBSET SUM problem can possibly affect them.

We demonstrated that, in the case of EQUAL SUBSET SuM, while we can extend recent
SUBSET SUM algorithms, producing three pseudopolynomial algorithms, in this specific case
there is actually a simpler and more efficient approach, heavily based on the restrictions and
the nature of the problem.

As for k-SUBSET SuM, we introduced two pseudopolynomial algorithms which efficiently
solve this much more general case.

A multitude of problems, as presented in Section 5.3, can be influenced by those very
same advances, resulting in new, more efficient algorithms for many algorithmic problems,
based on techniques initially developed for SUBSET SuM, showing their close connection with
the SUBSET SUM problem, and how advances in it can possibly affect them.

6.2 Future Work

Firstly, we plan to investigate whether our results can be generalised to a class of subset
sum problems, e.g. by using the framework developed in | |. We are also interested
in approximation schemes for counting versions of knapsack and subset sum problems (see
e.g. | , , | and also | ,]); some of these problems belong to
classes below #P, like the class TotP | |, which may be employed towards proving
approximability results for them |].

Jin and Wu introduced an efficient @(n+t) randomised algorithm for solving SUBSET Sum
in | |. This algorithm is vastly simpler than Bringmann’s and actually has slightly better
complexity. It is interesting to research whether this algorithm can be extended to cope with
k-SUBSET SUM (and the variations mentioned in Section 5.3), as was the case for Bringmann'’s,
since that would result in a simpler and possibly more efficient alternative approach.

The algorithm of Section 5.2 involves the computation of the possible sums of disjoint
subsets along with their respective cardinality, for elements in the same congruence class. To
do so, we extend the FFT operations to multiple variables, each representing either a possible
subset sum or its cardinality. Hence, for k subsets and n elements, we proceed with FFT
operations on variables z1,...,xg,c1,...,ck, where the exponents of z; are in [t/b] for some
given upper bound ¢, whereas the exponents of ¢; in [n]. Notice however that each element of
our set is used only on a single subset, hence for a term zj* ... xi’“ et ... cF of the produced
polynomial, it holds that s; < ¢/b and) n; < n. This differs substantially from our analysis,
where we essentially only assume that n; < n, which is significantly less strict. Hence, a

73

stricter complexity analysis may be possible on those FFT operations, resulting in a more
efficient overall complexity for this algorithm.

The algorithms introduced in this thesis solve the decision version of the k-SUBSET SuM
problem. In other words, their output is a binary response, indicating whether there exist

k disjoint subsets whose sums are equal to given values t1,...,t; respectively. An extension
of these algorithms could involve the reconstruction of the k solution subsets. Koiliaris
and Xu | | argue that one can reconstruct the solution set of SUBSET SUM with only

polylogarithmic overhead. That is possible by carefully extracting the witnesses of each sum
every time an FFT operation is happening. These witnesses are actually the partial sums
used to compute the new sum. Thus, by reducing this problem to the reconstruction problem
as mentioned in | |, they conclude that it is possible to compute all the witnesses
of an FFT operation without considerably increasing the complexity. That is the case for
one-dimensional FFT operations involving a single variable, so it may be possible to use
analogous arguments for multiple variables.

A completely different approach could be based on improving the space complexity of the
EQuAL SUBSET SUM problem. Lokshtanov and Nederlof first introduced polynomial space
algorithms for SUBSET SUM in | |. Bringmann later improved the previous bounds
in | |. Very recently, Jin et al. | | have made advances in this area. These algo-
rithms are likely to be able to be adapted for the EQUAL SUBSET SUM problem, resulting in
pseudopolynomial time and polynomial space complexity.

Lastly, the relationship between EQUAL SUBSET SUM and ORTHOGONAL VECTOR seems
very interesting and definitely worthy of research. Suppose that we have an input set
Z ={z1,...,2n}. Wedefine the inclusion vector of asubset V' C Z as a vector v = (v1, ..., vp)
of n positions, where v; = 1 if and only if z; € V, else v; = 0. Then, it holds that if two
subsets A, B are disjoint, then their inclusion vectors are orthogonal, since either a; = 0 or
b; = 0, for all i € [n]. Also note, that given a table of coefficients C' € {0, 1}""*", representing
m vectors of dimension n (each of which corresponds to a possible inclusion vector), a sum
s € N, representing a possible sum for which there exist multiple disjoint subsets summing up
to it, and a table B € {s}™*!, by solving the equation C'- X = B and restricting the solution
X € N™*1 to distinct positive integers (i.e., x; # z;, for all i # j), one can construct a
EQUAL SUBSET SUM instance given one such (restricted) instance of ORTHOGONAL VECTOR.
The equation may be solved using integer programming and, since matrix C is totally uni-
modular, the complexity of this solution may be less than expected. These remarks lead us
to believe that a reduction ORTHOGONAL VECTOR < EQUAL SUBSET SUM may be possible,
firstly by restricting a random instance of ORTHOGONAL VECTOR to one satisfying the previ-
ously described requirements and subsequently producing an instance of EQUAL SUBSET SUM
from it.

74

Bibliography

[Alon95|

[Aumall]

[Baka20)

[Bazg02]

[Bell57]
[Blahs5]

[Bren76]

[Brin17|

[Brin20|

[Capr00]

[Capr03]

|Ciel03a]

Noga Alon, Raphael Yuster and Uri Zwick, “Color-Coding”, J. ACM, vol. 42,
no. 4, pp. 844-856, 1995.

Yonatan Aumann, Moshe Lewenstein, Noa Lewenstein and Dekel Tsur, “Finding
witnesses by peeling”, ACM Trans. Algorithms, vol. 7, no. 2, pp. 24:1-24:15, 2011.

Eleni Bakali, Aggeliki Chalki and Aris Pagourtzis, “Characterizations and Approx-
imability of Hard Counting Classes Below #P”, in Jianer Chen, Qilong Feng and
Jinhui Xu, editors, Theory and Applications of Models of Computation, 16th Inter-
national Conference, TAMC 2020, Changsha, China, October 18-20, 2020, Pro-
ceedings, vol. 12337 of Lecture Notes in Computer Science, pp. 251-262, Springer,
2020.

Cristina Bazgan, Miklos Santha and Zsolt Tuza, “Efficient Approximation Al-
gorithms for the SUBSET-SUMS EQUALITY Problem”, J. Comput. Syst. Sci.,
vol. 64, no. 2, pp. 160-170, 2002.

Richard E. Bellman, Dynamic programming, Princeton University Press, 1957.

Richard E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 1985.

Richard P. Brent, “Multiple-precision zero-finding methods and the complexity of
elementary function evaluation”, in J.F. Traub, editor, Analytic Computational
Complexity, pp. 151-176, Academic Press, 1976.

Karl Bringmann, “A Near-Linear Pseudopolynomial Time Algorithm for Subset
Sum”, in Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pp. 1073-1084, SIAM, 2017.

Karl Bringmann and Vasileios Nakos, “Top-k-convolution and the quest for near-
linear output-sensitive subset sum”, in Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath and Julia Chuzhoy, editors, Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, pp. 982-995, ACM, 2020.

Alberto Caprara, Hans Kellerer and Ulrich Pferschy, “A PTAS for the Multi-
ple Subset Sum Problem with different knapsack capacities”, Inf. Process. Lett.,
vol. 73, no. 3-4, pp. 111-118, 2000.

Alberto Caprara, Hans Kellerer and Ulrich Pferschy, “A 3/4-Approximation Al-
gorithm for Multiple Subset Sum”, J. Heuristics, vol. 9, no. 2, pp. 99-111, 2003.

Mark Cieliebak, Stephan J. Eidenbenz and Aris Pagourtzis, “Composing Equipo-
tent Teams”, in Andrzej Lingas and Bengt J. Nilsson, editors, Fundamentals of
Computation Theory, 14th International Symposium, FCT 2003, Malmé, Sweden,

()

[Ciel03b]

[Ciel04]

[Ciel08]

[Corm09]

[Dell19]

[Gawrl8|

[Gopall]

[Jin19]

[Jin21]

[Karp72]

[Khan17]

76

August 12-15, 2003, Proceedings, vol. 2751 of Lecture Notes in Computer Science,
pp- 98-108, Springer, 2003.

Mark Cieliebak, Stephan J. Eidenbenz and Paolo Penna, “Noisy Data Make the
Partial Digest Problem NP-hard”, in Gary Benson and Roderic D. M. Page, ed-
itors, Algorithms in Bioinformatics, Third International Workshop, WABI 2003,
Budapest, Hungary, September 15-20, 2003, Proceedings, vol. 2812 of Lecture Notes
in Computer Science, pp. 111-123, Springer, 2003.

Mark Cieliebak and Stephan J. Eidenbenz, “Measurement Errors Make the Partial
Digest Problem NP-Hard”, in Martin Farach-Colton, editor, LATIN 200/4: The-
oretical Informatics, 6th Latin American Symposium, Buenos Aires, Argentina,
April 5-8, 2004, Proceedings, vol. 2976 of Lecture Notes in Computer Science, pp.
379-390, Springer, 2004.

Mark Cieliebak, Stephan J. Eidenbenz, Aris Pagourtzis and Konrad Schlude, “On
the Complexity of Variations of Equal Sum Subsets”, Nord. J. Comput., vol. 14,
no. 3, pp. 151-172, 2008.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,
Introduction to Algorithms, 8rd Edition, MIT Press, 2009.

Mauro Dell’Amico, Maxence Delorme, Manuel Iori and Silvano Martello, “Math-
ematical models and decomposition methods for the multiple knapsack problem”,
Eur. J. Oper. Res., vol. 274, no. 3, pp. 886-899, 2019.

Pawel Gawrychowski, Liran Markin and Oren Weimann, “A Faster FPTAS for
#Knapsack”, in Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx and
Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, vol.
107 of LIPIcs, pp. 64:1-64:13, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2018.

Parikshit Gopalan, Adam R. Klivans, Raghu Meka, Daniel Stefankovic, Santosh S.
Vempala and Eric Vigoda, “An FPTAS for #Knapsack and Related Counting
Problems”, in Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pp. 817-826, IEEE Computer Society, 2011.

Ce Jin and Hongxun Wu, “A Simple Near-Linear Pseudopolynomial Time Ran-
domized Algorithm for Subset Sum”, in Jeremy T. Fineman and Michael Mitzen-
macher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA@QSODA 2019,
January 8-9, 2019 - San Diego, CA, USA, vol. 69 of OASICS, pp. 17:1-17:6, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

Ce Jin, Nikhil Vyas and Ryan Williams, “Fast Low-Space Algorithms for Subset
Sum”, in Déaniel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pp.
1757-1776, STAM, 2021.

Richard M. Karp, Reducibility among Combinatorial Problems, pp. 85-103,
Springer US, Boston, MA, 1972.

Muhammad Ali Khan, “Some Problems on Graphs and Arrangements of Convex
Bodies”, 2017.

[Koil19]

[Lahy19]

[Lipt04]

|Loks10]

[Melil§]

[Meli20]

[Much19|

[Nano13]

[Naor95|

[Pago06]

[Papa9d4]

Konstantinos Koiliaris and Chao Xu, “Faster Pseudopolynomial Time Algorithms
for Subset Sum”, ACM Trans. Algorithms, vol. 15, no. 3, pp. 40:1-40:20, 2019.

Rahma Lahyani, Khalil Chebil, Mahdi Khemakhem and Leandro C. Coelho,
“Matheuristics for solving the Multiple Knapsack Problem with Setup”, Comput.
Ind. Eng., vol. 129, pp. 76-89, 2019.

Richard J. Lipton, Evangelos Markakis, Elchanan Mossel and Amin Saberi, “On
approximately fair allocations of indivisible goods”, in Jack S. Breese, Joan Feigen-
baum and Margo L. Seltzer, editors, Proceedings 5th ACM Conference on Electronic
Commerce (EC-2004), New York, NY, USA, May 17-20, 2004, pp. 125-131, ACM,
2004.

Daniel Lokshtanov and Jesper Nederlof, “Saving space by algebraization”, in
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pp.
321-330, ACM, 2010.

Nikolaos Melissinos and Aris Pagourtzis, “A Faster FPTAS for the Subset-Sums
Ratio Problem”, in Lusheng Wang and Daming Zhu, editors, Computing and
Combinatorics - 24th International Conference, COCOON 2018, Qing Dao, China,
July 2-4, 2018, Proceedings, vol. 10976 of Lecture Notes in Computer Science, pp.
602614, Springer, 2018.

Nikolaos Melissinos, Aris Pagourtzis and Theofilos Triommatis, “Approximation
Schemes for Subset Sum Ratio Problems”, in Minming Li, editor, Frontiers in
Algorithmics - 14th International Workshop, FAW 2020, Haikou, China, October
19-21, 2020, Proceedings, vol. 12340 of Lecture Notes in Computer Science, pp.
96-107, Springer, 2020.

Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz and Karol Wegrzycki, “Equal-
Subset-Sum Faster Than the Meet-in-the-Middle”, in Michael A. Bender, Ola
Svensson and Grzegorz Herman, editors, 27th Annual Furopean Symposium on
Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, vol.
144 of LIPIcs, pp. 73:1-73:16, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2019.

Danupon Nanongkai, “Simple FPTAS for the subset-sums ratio problem”, Inf.
Process. Lett., vol. 113, no. 19-21, pp. 750-753, 2013.

Moni Naor, Leonard J. Schulman and Aravind Srinivasan, “Splitters and Near-
Optimal Derandomization”, in 36th Annual Symposium on Foundations of Com-
puter Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pp. 182-191,
IEEE Computer Society, 1995.

Aris Pagourtzis and Stathis Zachos, “The Complexity of Counting Functions with
Easy Decision Version”, in Rastislav Kralovic and Pawel Urzyczyn, editors, Math-
ematical Foundations of Computer Science 2006, 31st International Symposium,
MFCS 2006, Stard Lesnd, Slovakia, August 28-September 1, 2006, Proceedings,
vol. 4162 of Lecture Notes in Computer Science, pp. 741-752, Springer, 2006.

Christos H. Papadimitriou, “On the Complexity of the Parity Argument and Other
Inefficient Proofs of Existence”, J. Comput. Syst. Sci., vol. 48, no. 3, pp. 498-532,
1994.

7

[Pisi9)

[Rizz19|

[Schm90]

[Stef12]

[Trio20]

[Volo17]

[Woeg92]

78

David Pisinger, “Linear Time Algorithms for Knapsack Problems with Bounded
Weights”, J. Algorithms, vol. 33, no. 1, pp. 1-14, 1999.

Romeo Rizzi and Alexandru I. Tomescu, “Faster FPTASes for counting and ran-
dom generation of Knapsack solutions”, Inf. Comput., vol. 267, pp. 135-144, 2019.

Jeanette P. Schmidt and Alan Siegel, “The Spatial Complexity of Oblivious k-
Probe Hash Functions”, SIAM J. Comput., vol. 19, no. 5, pp. 775-786, 1990.

Daniel Stefankovic, Santosh S. Vempala and Eric Vigoda, “A Determinis-
tic Polynomial-Time Approximation Scheme for Counting Knapsack Solutions”,
SIAM J. Comput., vol. 41, no. 2, pp. 356-366, 2012.

Theofilos Triommatis and Aris Pagourtzis, “Approximate #Knapsack Computa-
tions to Count Semi-fair Allocations”, in Jianer Chen, Qilong Feng and Jinhui Xu,
editors, Theory and Applications of Models of Computation, 16th International
Conference, TAMC 2020, Changsha, China, October 18-20, 2020, Proceedings,
vol. 12337 of Lecture Notes in Computer Science, pp. 239-250, Springer, 2020.

Nadav Voloch, “MSSP for 2-D sets with unknown parameters and a cryptographic
application”, Contemporary Engineering Sciences, vol. 10, pp. 921-931, 10 2017.

Gerhard J. Woeginger and Zhongliang Yu, “On the Equal-Subset-Sum Problem”,
Inf. Process. Lett., vol. 42, no. 6, pp. 299-302, 1992.

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Προαπαιτούμενα
	Αλγόριθμοι για το πρόβλημα Subset Sum
	Αλγόριθμοι για το πρόβλημα Equal Subset Sum
	Το πρόβλημα k-Subset Sum και σχετικές επεκτάσεις
	Συμπεράσματα & Μελλοντικές Προεκτάσεις

	Introduction
	Related Work
	Research Objectives & Contribution
	Thesis Outline

	Preliminaries
	Notation
	Theoretical Background
	NP-completeness, Pseudopolynomial and Randomised Algorithms
	Polynomials, FFT and Subset Sum
	Relationship between Subset Sum and Equal Subset Sum
	Congruence Classes

	Techniques
	Observations and Lemmas

	Subset Sum Algorithms
	A randomised (n + t) algorithm
	Subset Sum algorithm for small solution size subsets
	Subset Sum algorithm for l-layer instances
	General case algorithm

	A deterministic (σ) algorithm
	A deterministic (nt) algorithm
	Computation of SCt (S)
	Computation of St (S) for elements in the same congruence class
	The main algorithm

	Equal Subset Sum Algorithms
	A randomised (n + t) algorithm for Equal Subset Sum
	Small cardinality solutions
	Solving Equal Subset Sum for l-layer instances of Z
	General Case
	Reconstruction of the solution sets
	An algorithm without counter and flag table.

	A deterministic (σ) algorithm
	A deterministic (nt) algorithm for Equal Subset Sum
	A deterministic (n + t) algorithm for Equal Subset Sum

	k-Subset Sum and Further Applications
	Solving k-Subset Sum in randomised (n + tk) time
	Small cardinality solutions
	Solving k-Subset Sum for l-layer instances of Z
	General Case

	Solving k-Subset Sum in (nk/k+1 tk) time
	Faster Algorithms for Multiple Subset Problems

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

