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HeptAngm

H aviyvevon twv modiv tou avipdrou xou 1 avdiuor tne Badiorc Tou amoTteholy onua-
VIég hettoupyieg yio éva pounot umofBorinone Badlong, 0TS Ol EVQUELS TEPLTATNTHRES.
Tétowou eldoug mepinatntrpes etvar e€omAlouévol ue TAfidog aodnthpwy, Teoxewévou va e€a-
Yayouv TANEo®oplEC TOU YooY GToV AVvllpwTo ToL Toug YeLlleTal Xl Vo TROCUPUOGOUY
TNV AElToupYla TOUC OTIC OVAYXES QUTOU. X auUTH TNV dimhwuatixn epyaocio tapouctdlouue
TNV avdmTudn Tou TeEXVNTOL veupwvixol duxtiou LTGADnet, to onolo aviyvelel xan mopa-
xohoudel Ty Véorn TV TooLOY Tou avlp®Tou xatd TV Sdpxela Tng Bddiong, eve eniong
EXTWE TNV XATAG TUOT) TNG BABLOYIC TOU OE TEAYUATIXG YOV, YPNOWOTOWWVTAS DECOUEVAL ATd
aoUnTipa andctacnc otig dVo BlaoTdoele, TonoVeTnuévo o pounoTixd mepimatntico. To
VEUPWVIXG dixtuo yenotwonotel évor Convolutional Neural Network (CNN) vy tnv eZorywy
TWV XEVTPWY TWV TOOLOY o6 T BEG0UEVA TOU alo¥NTHRN andcTao S, To OTtola SEBOUEVA OvaL-
naplotavian we occupancy maps. To CNN cuvdudletoan ye éva Long Short Term Memory
(LSTM) veupmvixd dixtuo yia tny exudinogn Te:v SUVOUIXMY YUpaXTNELO TGOV TV TOBLOY X0-
Té TV Badion, Bertidvovtog Ty aviyveuon mou mapdyet To CNN, axoua xan o€ TEPITTWOELS
ToL Tar TOOLaL BEV v 0parTd YLl xdmolo Ypovixd didc tnua. Axoua, éva devtepo LSTM extyud
TV xatdoTacT TG Bddiong, deyOUEVO W ElC0BO Tal aviyVELUEVa xEVTea TwY Todwy. To
LTGADnet exnoudettnxe xou doxipdotnxe o dedouéva eCayuévo and mpaypatixols acdeve-
{c xewellouevoug EVPUELS TEPLTATNTHRES, XM X OE TEYVYNTA BEBOUEVI TEOCOUOIWONS NG
Badione. H eniboor| tou elvon onuovtind upnhodtepn o oyéon Ue TNV TEEYOUCA YENOULOTOLO-
Opevn u€dodo, Behtidvovtog T6co TNy axp{Bela Tng aviyveuong, 660 xaL ToV YeOVO TRy WY S
QUTAS, XANOTWVTAC TO CUYXEXPLEVO VEUPWVIXO BIXTUO Wia ovTaywvio Tixr) pédodo aviyveuong

TOOLOY GE TEAYUATIXO YEOVO.

AéCeic KAewdod

Aldnrenidpoon Avipwrov-Poundt, Poundt unoBorinone Bédiong, Aviyveuon xou Iopono-
AoUinom moduoy, Avdhuon Bddiong, Nevpwvixd Alxtua, CNN, LSTM
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Abstract

Online human leg tracking and gait analysis are crucial functionalities for mobility assistant
robots, like intelligent walkers. Usually, such walkers are equipped with various sensors for
the extraction of human-related features for adaptive human-robot interaction and assi-
stance. On this thesis the novel deep neural network LTGADnet is proposed for detecting
and recognizing gait features from 2D range data produced by a laser sensor mounted
on a robotic walker. An effective Convolutional Neural Network (CNN) is proposed as a
powerful feature extractor for detecting the user’s leg centers in range data represented as
occupancy grid maps. The CNN is coupled with a Long Short Term Memory (LSTM) ne-
twork for learning the legs’ motion temporal dynamics while walking, improving the prior
detection, and providing better leg occlusion handling. A gait analysis is also performed by
recognizing gait phases over both legs by feeding the leg tracking output to a subsequent
LSTM. The LTGADnet framework has been trained and tested on data derived from real
patients, as well as computer generated data. The presented experimental results show
the network’s efficiency in providing accurate detections compared to state-of-the-art and
ability to be applied on an online system due to its high frequency, making it a competitive

method for gait detection on robotic mobility assistants.

Keywords

Human-Robot Interaction, Walking Assistive Robots, Leg Detection and Tracking, Gait
Analysis, Neural Networks, CNN, LSTM
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Extevnc llepiindn oto EAAN VI

Ye autd To XEPIAAO TOPOVCLALETAL 1) DITAWUATIXNY EPYAGIA TOU EXTOVAUNXE UECHL ULOC EXTE-

Tauévng mepiAndng oo EAANVIXG.

Yuvelcpopd

Ye auTh] TN BIMAWUTIXY EpYoia TUPOUCIALOVUE EVOL XOUVOTOUO VELPWVIXO dixTuo Barddc ex-
uddnong yua Ty mapaxorovinon Twv TodLWY xo TNV avdiuon tng Bddione Tou avipmrou
péow dedopévev aonthpa anéctaong otic Vo dlaotdoel; (LTGADnet). H npotevéuevn
TPOGEYYLON YeNooTotel €va GUVEMXTIXG veLpwvixd dixtuo (CNN) yia v aviyveuvorn twv
Todwy, axohoutoluevo and éva enavolopBavouevo veupwvixd dixtuo (RNN) yia tny ofomo-
inon e ypovixric mAnpogoplac Tou mepieiel 1 BAdom xan TNV avade®enoT TNg aviyveuong
mou opdyel To CNN o€ anattnTnég XaTao TUoES TOU XImOoLo TOdL amoxpuTteTal. TENog, yen-
owporoteiton €va devtepo RNN yia tnv e€aywyr) Tng ypovixnc oANAETSpaoNS TV TodLDY, EX
e omolag umopel va extiuniel 1 tpé€yovoa xatdotaon Badiong. H ouvelogopd tng epyastag
o ebvor 1 udMARg axpBetag pédodog mapuxohobinone Twv TodLOY, Ydeic atny Borhd e€oryw-
Y1 YOEAUXTNELO TIXAY, XL 1) ELXOAA Yerong Tne Kedodou authg ot xdle poundt utoforinong
e Badlong, Aoyw TNe amoteAecuaTixdTNTOG xou TaryOTntag extéleorc tne. Ilewpopotind Se-
dopéva yerone tne pevoédou e&nyinoay ue ™ yenorn tng Bdone dedouévov LTGAD, nou
ONULOVEYNOOUE ATOXAEIGTIXG Yial TOV EAEYYO %Ou TNV EXTABEVCT) TOU OLXTOOU, Yol TEQLAN-
Bdver dedoueva xou eTixéTeg and aAnvolg aclevels yprotee poundt unoBorinone Pddiong.
Ta mapoyduevo anoteAéopato ETOEVUOUY TNV BehTiwon Tne enidoone Tou TPOCYEREL 1) GU-
YUEXQWEVT, u€V0BOC O GYECT) UE TNV TEEYOLCA YeNoLHoToloLuevY Hédodo ot TéTolou eldoug

epappovee [1].

ivoxag 1: Ow xatactdoeic Bédiong 6nwe opilovta oo [1] xou n one-hot avanapdotacy toue.

Koo Katdotaong ‘ One-Hot ‘ Kooy Ovopacio ‘ Oprouog
s1 [1, 0,0, 0] LDS Apiotepr Aumhf Xthpldn
S2 [0, 1, 0, 0] LS/RW Apiotepn Btdon/Actid Audenon
s3 [0, 0, 1, 0] RDS Ae&id Ay Xthpién
S4 [0, 0,0, 1] RS/LW Ae&id Xtdon/Apoteph Awdpnon
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S,:LS/RW

Eyfuor 1: Awdrypapor pe Tic midavég xataoTdoelg BABIOELS Xou TIC UETAUBAOELS avaUETS TOUG.

BOeswpentixd TroBadpo

Y auTO TO XEPIANLO TUPOUGLALOUUE OPIOUEVES EVVOLES TWV VEUROVIXGDY DIXTUMY amapaiTnTeg

YioL TV XaTovonon oauTHS TS SLTAOUTIXTG epyaciog.

Teyvntd Nevpwvixd Alxtua

‘Eva teyvnto vevpwvixd dixtuo elvar évar abotnua mou yenowlonotel €éva cOVOAo amd xou-
Boug, ovopalduevoug VELE®VES, xal cLVOEoELC peTol Toug, ovoualdueveg cuvdeLg,
TEOXEWEVOL Vo Uddel Twg var emthleL v TpoBinua Ty vntig vonuooivng. Ot veupwveg awtol
AVAXOLY E(TE GTO CTEPWIA ELCOBOL, TOL ATOTEAEL TO TUTUA TOU BixTVOU Tou Aoufdvel TNV
elo0do, clte oc ®dmoL0 AKPLPO CTEWUA, To OTOlA EVOL TPOMPETING KoL CUVELCPEQOUY GTNV
Tepautépw enelepyacio Twv dedouévmy, elte 0T0 OTPWUA EE680V, TO OTOIO AVATAPLGTE TNV
Telxt| €000 Tou dixtou. To oruoto Tou AauBAvovTaL amd TOUS VEURKVES TOU GTROUITOS
€L0600U TEOMVOUVTOL TEWTA OTA XPUPE CTEMUATA Xou ENELTa 0To aTpwua €odou. To mo
amho eldog oTppatog etvar o fully-connected, oo onolo 6AoL oL veuphveS Tou GUVIEOVTOL
ue obvoan ue xdde VEURPWVOL TOU TREOMYOUUEVOL G TEMUATOC.

Kdde vevpwvag tou dthou mou haufdver éva orfjua to eneepydleton oL OTN GUVEYELL TO
UETUBIBEL GTOUC VEUPOVES UE TOUC OToloug cuVOEETAL PEow TwV cuvdhewv. H eneepyacio twv
ONUETOY amoTeéL aTNY ouaia Evay YEoUIXO GLYVBUUCUS AUTAOY, PE Bdem xodoplouéva and Tig
ouvdiele, éva mpogpauTnd TpooTidéuevo bias xal Tépaouo aUTOY TOU AMOTEAEGUATOS OO TNHY
cuvdpetnon activation tou vevpwva. ‘Otav 1 cuYXEXEIEVN CUVAETNON eVl U1 YHEAUULXY),
eEMTEENEL 0TO YoVTéAO var pardaivel var eTAVEL U1 TETEWUEVO TEOBAAUATI, YENOULOTOLWVTAS
AYOTEPOUC VEURWVECS.

[Mo v exnaidevon xdie veupwvixold duxtbou eivon amapaitnTn 1 Onuiovpyia Vo GUVOROU
dedopévwy pe etixéteg (labeled data). O etixéteg v Bedouévwy amoteNOVY TNV EML-
YupnTr €€080 TOL VELEWVIXOV BIXTVOU, GTaY AUTO BEYTEL WS E(COBO Tl GUYXEXEUEVA OEDOUEVAL.
AvuTéc oL ETIXETEC YPNOWOTOLOLYTOL YId TOV UTOAOYLOUO TOU XOCTOVG, TO 0Ttolo UToAoY(leTan
amd TNV CLVAETNOY XOCGTOLG TOU VEURKOVIXOD XAl AVATAPLO TE TO OG0 Xohd TpoceyYIleL 1

€€000¢ Tou VeupwVIxol TNy emiuunth €€060. Autd To GUVOAO Bedouévey umopel va ywplleTto
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oe tpla pépn: (1) to training set, mou yenowonoteiton Yl TV exnaidevon tou dixtdou, (2)
7o validation set, Tou eivor TpoaEETIXG XoU YENOHIOTOLEITOL XoTd TNV BitdpXELa TNG EXTOUSEL-
one y Ty Yedpnon tne enidoone tou povtédou xau (3) To test set, mou ypnowonoteiton yio
TOV TEAXO EAEYYO TOU HOVTENOU, OTAY OAEC OL OPYITEXTOVIXEC AMOQAOELC €youv Angiel xau
0eV avoéveTal var avodewenioly.

H exmaideuor evog veupmvixol dixtbou yivetouw péow tou backpropagation. Me autév tov
olyoerdpo unoroyiletar 1 xAlon OTOV YWEO TWV Bap®V EVOC VEURPMVIXOU GE GYECT| UE TNV

CLUVAETNOT XOGTOUC.

Yuvehutixd Nevpwvixd Aixtuoa (CNN)

To cuvehixtind veupwvixd dixtuo (CNN) emiteloly oo xpupd ToUC GTEOUATH GUVENEELS Xou
Yenowonolotvto xuplwe otny avdhuon exovag. Kdde cuvehxtind otpdua mou Aaufdvel
v €lcod6 Tou amd TO TEONYOUUEVO CTE®UA TNV cLUVEMoGEL Ue éva TARdoc amd pilTea
CLUYXEXPHIEVWY BLUOTACEWY Xal Tapdryel TOMATAS xorvdhio €600, 6oa xou T piATteo. H medén
NS GLVEAENC OVAUEGH OE EVOL PEATEO XL LA ELXOVOL EIVAL O YROUULXOS CUVOUIOUOS TWV XEMWY
e exovog e Bdern oplopéva and to gikteo. To TASOVEXTNUA TWV CUVENXTIXOV OTROUATWY
EVOVTL TV UToAOITwY €lvon 1) TayOTnTa enedepyaoias €l000WY UEYSAWY OLACTACEWY, OTKS
Y10l TIORABELY Ol TRV EXOVOY, ool oL cLVAELS PETHED TWV VEUPWVOY GE oUTA Tol OTEMUAT
elvon TOAD Aydtepeg and 6,1 yio mopdderypo oo fully-connected. Ta cuvehxtixd otpwuaTo
umopel vo €youv x dAAEC TapauéTeous, 6Twe elvon To padding, to stride xou to dilation.
Eniong, ta CNN umopel va cuvodebovton xon amd GARo OTEOUITA TEQUY TWV CUVEAXTIXOY,

onwe otpwuata pooling, normalization ¥ fully-connected.

EnravarapBavopeva Nevpwvixd Aixtua (RNN)

To enavorapBavoueva veupwvixd dixtuo (RNN) arnoteholyv pla ¥Adon VEupmvix®y SixTiwy
6mou ol cuvdelc YeTAE) TV VEUPWVKY oy NUaTilouv Evay LoyUEd CUVEXTIXG YEAWO, TIOU O
podvel OTL uTdpyEL povoTdTL and xdde veupwva ot xdde dhho. Autd onuaivel 6Tt to RNN
UTopEl Vo BLTNENOEL XATOLG HOPPAC VAR XL VoL TN YEVOWOTOLACEL TROXEWEVOL VOl E-
Caydyer ypovixéc mAnpogopieg mvew otny elcodo. H eicodog evog RNN eivon cuvidwg pio
ampocdlopts Tou uixoug axoroudio. Ta RNN yenowonoodvton xuplwe otny avoryviplon oul-
Mog 1 yeapixol yopoxthed, ahhd UTOPOUY VoL QAVOLY YeY oL OE XAVE EQPUPUOYY| UE YPOVIXA
ovoyetloyevee eloddouc. Buyvol tomor RNN eivon to Long Short-Term Memory (LSTM)
[2] xar To Gated Recurrent Unit (GRU) 3], nou anotehel anhovoteuyévn poper tou LSTM.

Xeovixd Yuvehxtixd Aixtua (TCN)

To ypovxd cuvehixtind dixtua (TCN) avomtdydnxay ¢ evoAaxXTXE AVTIXOTAC TUTA TWY
RNN pe oxoné 1 yelowon tou ypdvou exnaldeuone xou Ty abénon Tne dlaTthenong T Lviung.
Anotehotvtan and dilated 1D cuvehixtind otpuata e Blec oo Tdoelc €l06douL xat e€650U.
H eloodog evoc TCON eivon évag 3D mivoxag peyédoue (B, L, Siy), 6mou B 1o batch size, L to
unxog tng oxohoudiag xou Siy T0 Uixog xdde ototyelou Tng axoloudiag. Kdie xpupd otpdua
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evog TCON éyel exdetind avénuévo dilation oe oyéon pe 1o mponyoluevo otpnua. Ilpoxel-
uévou 1 eicodog xou 1 €£080¢ va Eyouy TiC Bleg Blaotdoelc yenodonoteitan zero-padding. To
TCN éyouv amodetytel WInTépwe amodOTIXd O TEPLTTWOELS VoY VwpLong dpdone ot Bivteo
[4] xou yevixdtepa povieromoinong oxohouthadv [5], yia autd xou SoXWEoTNXE 1) YerHon Toug
oto LTGADnet évavtt tou LSTM.

H Bdorn Acdopévwv yia Ilagaxorobdnon I1odiody xow A-
védAvorn Badiong

Ye auth) Ty evotnta topovoidaloupe Ty Bdon LTGAD, wd Bdor dedouévev mou drnutove-
YACOUE YLt TNV EXTUOEUGT), TNV ENOAUEUCT xou TOV €AEYYO TOU BIXTLOU ToEUXOAOLUNOTG
modLv xan avdiuone Badiong LTGADnet. H Bdorn auty| elvon dnuooteupévn xon npocBdot-
un péow autol Tou cuvdéouou. IlepthoufBdver dedopéva pe Tic eTETEC TOoug e€aypéva Yol
10 ox%0T6 TpoNYoLUEVNG epyaoiac [1], Ta ool cUMNEYUMNMaY xou Btapoppinxay €tol HoTE
VoL Uopolv va yenotdoromdoiy amd v teéyovoa epyacia. Axdua, mepthauBdver Sedouéva
XAUTOUGHEVUCUEVOL OO UTOAOYLGTH) TOU <ULUOUYTOLY TOL TEAYUATIXG DEDOUEVA, UE GXOTO TOV

eumAOLTIONG TNE KON uTdpyoucas Bdone.

Aouf Bdong

H Bdon LTGAD ywelletan oe 500 tufuata: tnv Bdorn tapoxohotdnong mtoduwy xar tny Bdon
avdauong Badong. Kdde plo €€ autdv anoteheltan amd dedouéva eCayuéva and 8 SlopopeTind
Telpduato, X xon BeBOUEV EVOC UTOANOYIOTIXE TEOCOUOIWUEVOU TELGUATOC, UE TETOLO
uéyedog WoTE TO TEAXO TOCOCTO TWV TEYVNTWYV OEBOUEVHV GTO GUVOLO OAWY TWV GEOOUEVLV

vor tpoxUnTeL tepinou 50%.

IMepapatinry Avdtadn

To mewpdporta tou nepthaBdvovton otny Bdon LTGAD npoépyovto and mpayuatixois aclevelg
xou Tparypotonotinxay oto mhoioo tne epyaciac [1]. Ou cuUETEYOVTESC GTO TIELRdUATA HTOY
Gvew Twv 65 yeévewy xou mapovcialay and Ao Ewg UETELO XWVNTIXA TeoBAruaTe, €mEito and
xhwixr) aglohoynon. oty tékeon twv tewpoudtowy {nthtdnxe and toug aclevelc va mporyuo-
TOTOLIC0LY GEVApELAL BABlong xat o TEoYHC LToBoNUoUUEVOL Amd EVaY POUTIOTIXG TEPLTATNTHEA.
‘Ola T merpdportar €€y dnooay e amdAuTtn acpdielor xou untd TNV eniBAedr eEeldixeuuévmy
VOGOXOUWY.

O mepinotntipac Rrav eomhiopévog pe éva awotntipa Aéiwlep Hokuyo rapid UBG-04LX-FO01
tonodetnuévo o Uog mepinou 40cm and 1o €8aoc, TEOXEWEVOU Vo GUAAGPBEL TNV xivnom
TV XVNRGY Tou aotevoi. T v extiunon tne xatdotaong Badong yenoylono|inxe éva
cLUvolo ané markers evog cuothuatog VICON Motion Capture totodetnuéveny otic @tépveg

xou ot 8y TUAaL TV TodLOY Tou acvevolc, 6Twe TeptypdpeTar 6To [6].


https://robotics.ntua.gr/ltgad/
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Eyfua 20 Avautiny napousioon tne pedodou Tou yeNCHOTOUNXE Yo TNV ToRUY WY T TwV
TEYVNTOV dedopévey. To uhxog twv axtivoy Aélep avamaploTd TNV anécTacY) Amd TO oVl

YVELUEVO EUTOBL0, OTIS auTH UToAOY(LETon amd Tov oucUnTrea.

Teyxvntd Acdopeva

INo v exntatdevon tou dixtiou LTGADnet elvon onuoavtin n yenorn (o eXTETOHEVNS Xal
oaxpyBolg Bdong dedouévev. To dedouéva and toug mpaypatixolg aoVevelc agevog ydvouv
oe oxplfeia, Aoyw Twv Buoxolwy Tou eugaviCovial oe TEToU ElBoUC TELRAUATA, APETEPOL
amodetyTnxay Teploployéva o mowAia ac¥eEviy yio TNV exTiunon g xatdotaons Badong.
‘Otav tor 6edopéva yior TNV exnaideuon Tou dxtvou TEpLhauBdvouy ToANOUC BLapopETIXOUS
ac¥eveic, ToTe To BixTuo Umopel var pudiel var avory vepetlel potifa oTo TepmdTNU AUTGY, Ywpelc
VO ATOUVNUOVEVEL QUTE TTOL EVTOTUOE X0Td TNV exTTaldeLoY| Tou. Tat Toug Tapamdve AGYoug
amo@acicale Vo BOXLUAGOVUE TNV XATACKEUT) TEYVNTOV OEBOUEVLY.

H xevtpu 0éa elvon 1 mpocopolwsor e O1dtadng Tou TEPLTATNTAEA X0k TWV TOOLOY TOU
ac¥evoie. Oswpeitan Tt évag aointiipag Aélep Beloxetar 610 x€VTEo TwV aOvwy xou BAEneL
Tpo¢ T Mot Tou acevols. O ouyxexpuévog aodIntrpog Yewpeiton 6TL €xel 180° ebpog

EXTOONG COPWUATOC Xt ~ 0.35° avdAuoT ywviag.
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Ta néd Tou acdevoic avamapioTavton and 6L0 (OXAOUC HIVOUUEVOUS TUITOVOELDGMS GTOUG
x, y dovec. To nuitova xivnong twv dVo moduwy otov y dgova €xouv dlapopd Qdong m,
Tpoxelévou va exterolv avtideteg xvioeic. To nuitovo xivnone otov = d&ova etvor apxeTd
UXQEOTEQOL TAGTOUG XUl EANPEWS UXAVOVIOTNG CLYVOTNTAS, TEOXEWEVOU Vo TEOGOUOIWIE! 1|
TEPLOTACLAXT| LETATOTLOT 0AOXANENG TNE Bddlong mpog to Bedid 1) o aploTepd. Axodua, 1 ywvia
e Bddlong aAAGlel UE TO TEEAUOUO TOU YEOVOU, TEOXEWEVOL Vo dnutoupy oy eixovixéc
OoTEOWES xan Vo ooy Yoy dedopéva ue occlusions, ota omoio To €var mOHBL Tou acVEVOUC
%xp0BEL To dAAO, OGOV APoEd TNV OTLTLXY| TOL ucUNTHEL.

[oe v ecovixy| derypotondla and tov aroIntipa Aélep xdde oxtivor Aélep TEOCOUODVE-
Ton ¢ plo evdeto ypopun pe évapén v aeyn Twv aldvwy, 6tou Beioxetou xar o acdnTreag
(Eyfua 2). Ta xovtvotepa oty évopln onueio Touric tne eudeiag pe toug xOxhoug Yewpo-
Ovton Toe onuela ota onola 0 cucUNTAEAS oV VEVEL eumodla.  Xe auTd tar onuelo TpootideTton
I'xaovolavée G6pufog Yo Vo TROCEYYLIOTEL TO OVOUACTIXO GQAAUa Tou aucdnthpo. Axdua,
Tpocopowdvovtal o Aaviacuéva [y vn mou topouctdlovion cuyvd ot dedouéva 2D aucintreo.
Autd ta {yvn ebvan opatd otar Bedouéva 6Tay elvon HEYEAT 1) YoViol TEOCTTOONG TwV axXTivVeRY
Tou A&Wlep OE €val EUTOBIO Xt AOYw BLdyLONS EMOTEEPETOL GTOV AUcUNTAPA CHUL WXEOTEENC
€VTUONG, CUUTEQUVOVTOG ETOL UEYUADTERY) AMOCTACT) OO TO EUTOBL0 AN TNV TEAYUATIX.
Téhog, Lot Tov UTOAOYLOUS TNE XATAoTAOT G BABIONG O X&IE YEOVIXT OTIYWUY), XPNOLOTOLOVUE
uovo tnv xivnorn tou 6elol Tody otov ¥ d&ova. O gdoelc xatd Tic onoleg o avipwtog
oAGler xatdotaon Bédone yenotomotdnxay 6nwe avtés opillovtar ota [7, 8]. Trodétoupe
6Tl %8 OO mapouével o otdon Y 60% evoc xixhou Bddione xou yia 40% oe awdenon,
Tpdypa Tou onuaivel 6Tt xdde xixhog Bédlone amoteheiton and 10% LDS, 40% LS/RW, 10%
RDS and 40% RS/LW (Ilivaxac 1).

To Nevpwvixd Aixtuvo LTGADnet

Ye auTH TNV EVOTNTA TOEOVCLALETAL 1) AEYLTEXTOVIXT] TOU VELUpVIXOU Oixtiou LTGADnet.
AvolbovTon Tar TUAROTE TOU XL O JEYLTEXTOVIXES AmOQAceElS Tou A\@dnxay yio xoéva €&’
AUTOV.

To LTGADnet anotehelton amd dVo dixtuo:

1. éva mapoxohovinong modLhy, Tou elivon LTELYLVO Yior TNV aviyVEUGT XL ToaxoAoUINo

TWV ToBLWY Tou acVeVOlE Tou YElETol TWV POUTOTIXG TEQLTATNTARO Xol

2. éva avdhuong Badlong, To omolo eivon utediuvo yia Ty e€aywyn Tng xatdotaong Badiong

7 14 /’ 7 Vé
Tou aovevole, Omwe autég opllovton otov Ilivoxa 1.

To Aixtuo IMapaxorovinong Ilodiwy

To dixtuvo mopaxololinon nodidy avohoufBdver Ty AN twv Sedouévimv mou napéyel To
Aélep %o TOV EVTOTIOUO TOV XEVIPWY TV TOBLOY TOU aGVEVOUS, OXOUA XUl OF TEQITTMOELS

occlusion. Oewpeiton 6TL dev LTdEYOUY dAAX TOBL 1| avTiXelpEva Tou xEUPBOLY Ta OB TOU
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Yyfua 3: H apyitextoviny Tou veupwvixol dixtiou Yo Topaxohotdnoy TodLoy xal oavdAucT)
Badione. Amnoteheitoan and éva CNN axoroudoluevo and éva LSTM yio tny mopoxohobinon

Twv modwy xou éva LSTM yio tnv extiunon tng xatdotaong Badlong.

acVevolg xou OTL Tor TEAELUTOLA ToEOEVOLY xord” OAT) TNV Bidpxela EVTOS Tou OTTiXoU Tediou
Tou Aéilep.

Apyxd, oL cUVTETAYUEVES TWV EUTODIWY TIOU EMGTEEPEL TO AELLER UETATPENOVTOL OO TOMKES
0 XUPTECLAVES. ATO AUTEC TIC CUVTETAYUEVES XQUTAUE UOVO OPLOUEVES YLol TNV dNuloveyio Tng
TeEAXTC €10600U, e Bdomn éva cuyxexpévo 1m x 1m mhaiolo. O 6x0mdg TOU GUYXEXPIIEVOU
mhauolou elvon var teplopioet TNV Omtapln MUAVOY GAAWY AVTIXEWWEVGDY TEROY TWV TOBLOY OTNV
eloodo. Eueic eméape to mhaloto owtd va Eyet dpta (—1.5m, 1.5m) xou (0.2m,1.2m) otov
x xou y dgova avtioToLya.

X1n ouvéyelo BNUOLEYOUKE TNV EXOVAL El0600U Tou Bixtlou. H exdva auty| éyel péyedog
112 x 112 xou amotehel éva occupancy grid twv Sedouévewy Tou acUNnTApa. LUyXEXQIEVY,
€va occupancy grid ovamoploTd Tov Yoeo Utpootd and 1o Alep xou TEPLEYEL o€ XAUe XEA
Tou TV Wi 1, av oe exetvn ) 9éon €xel eviomioVel eunddio xan Ty Twn 0, av oe exelvn
¥€om dev undpyel eunodlo 1| Bev Eyel eviomolet.

H €Z080¢ tou dxthou €xel daotdoeic 6 x 7 x 7. To 7 X 7 tunua avanaplotd éva grid ue to
omofo téuvouye TNV eyt exova. o xdde xehl autol Tou grid, to dixtuo bivel we é€odo 6

Tée, 3 ya xdde modL:
1. Ty mdavoTnTor 10 *EVTEO TOU TOBLOL VAL UTEEYEL OE AUTO TO XEAL.

2. Av 10 xévtpo undpyel, TNV cuvteTaYUEVn T auToD, 1 omola hauPdvel Tpéc oo [0, 1) xou

AVATOELOTY TN OYETIXT VEOT OTOV T TOU XEVTPOU UECA OTO XEAL.
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3. Av 10 xévtpo umdpyet, TV cuvtetaypévn y owtol, 1 omola haPdver Tpéc oo [0,1) xou

AVOTAPLOTY TN OyeTIXT| V€OT OTOV Y TOU XEVTEOU UEGO GTO XEAL.

To dixtuo anotekeiton omd dVo urodixtua: (1) évar CNN yio tnv aviyvevon todidy xou (2) éva
LSTM vy tnv Stayelpion nepintedoewy occlusion. Ta otpwuata tou anaptilovy 1o CNN eivon
T e€ic: 7x7x32+2 Convolution (uéyedog muprva 7, aptiudc gpiltpwy 32, stride 2), 3x3x 32
Convolution, 2 x 22 Max Pooling, 3 x 3 x 32 Convolution, 3 x 3 x 32 Convolution, 3 x 3 x 32
Convolution, 2 x 2 + 2 Max Pooling, 3 x 3 x 32 Convolution, 3 x 3 x 32 Convolution. ¥t
ouvéyela axolouvdoly dvo otppata fully-connected Swactdoswy 1568 x 500 xar 500 x 294,
omov 294 = 7 x 7 x 6 1o péyedoc tou grid. Auth eivon xou 1 €€odog tou CNN. Téhog, éva
amh6 LSTM evée otpdpatoc houfdvel wq eloodog tnv €080 tou CNN xau bivel ¢ €080 éva
grid {Buwv daotdoewy. Kdde otpdua tou dixtdou €yel wg cuvdptnon activation tnv ReLU
cLVAETNO).

[o v exmaideuon Tou BixTO0U, W CUVAETNOT XOCTOUS YENOWOTOLAUNXE 1) TOEAUXATW:

Detection Loss = Z (z; — )2+ (yi — )*
i=1
2
Association Loss = Z (@ — a2+ (g -9l h)?
=1
Loss = Confidence Loss + 5 - Detection Loss + 0.01 - Association Loss

onou Cjji ebvan 1 emiuunth miovdTnTa EUPAVIONG XEVTEOL TOOLU GTO XEAL 4j YLol TO TOOL
k (1 av to el mepiéyet o ®évtpo tou modol k xar 0 Sopopetind), C’ijk N TavoOTNTL OTNY
€€000 Tou dXTOOL Yiot TO XEAl if xan To TOOL k, x4, y; ) emduunty) Véom Tou x€vTpou Tou
modoL ¢ oto grid, Z;,Y; n Véon otny €€odo Tou BTHoL TOu *EVTEOL Tou TodLY ¢ oTo grid
wou &, gt 2t g o ouvtetaypévee @,y Tou OBy i oTo grid Tic ypoviée oTiyuée ¢ xa

t — 1 avticTouyo.

To Aixtuo Avdiuorng Bddiong

To dixtuo avdhuong Badiong hauPdvel we elco80 Tar XEVTEA TMV TOBLOVY, OTWE AUTY TEOXUTTOUY
am6 v €€0d0 Tou mpekTou LSTM. ()¢ €060 divel Tn one-hot xwodixomoinon TNg eEXTWOUEVNS
xatdotaong Badong, onwe autée opllovtar otov Iivoxa 1. To LSTM éyel 5 otpwuata, ue
nardéva €€ autdv va Stortneet aveldotntn uvAun. Autd ta LSTM axoloudolv to éva to dAlo
xaL 1 ouvohixy| €€odog elvan 1 €€0bog Tou TeEAeuTalou oTpuatoc. ‘Etal, xdlde otpdua Exel

dtootdoelc 4 x 4.
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Moty exntaldevon tou BxTOoU YENCLOTOLAUNXE WE CUVAETNOY XOGTOUG 1) Cross-entropy
loss:

esi

£i(s) = o
) chzlesj

C
loss = — Zti log (fi(s))
=1

émou fi(s) to anotéheoya g cuvdptnong Softmax yia xdie mbavoTnTo ¥Adong i, t; ) endu-
unth miovoTnTa XAdoNg xou [oss To Tehxd x6cTog. Kol to mpoAnua xatdotaong Badiong,
oV avTHETWTLOUEL WG TEOBANUA XATNYOPLOTOMNONG, BLOXATEYETOL OO (L0 EYYEVT] OVIGOPEOTH O
xhdoewv, pe uévo 1o 19% xa 1o 18.6% twv xatactdoewy va avixouy otnyv xatdotacrn LDS
xow RDS avtiotowya, yenowwononooue avahoyxd avticTteogo Bdern 0TV CUVELSQOEE TwV

x\doewv 6To cross entropy loss.

To dixtuo avdiuone Bddlong mapousiace PeYdhn actdlela xotd TNy extaldeuct| Tou. Hrav
GLUY VO TO QPUUVOUEVO TO BixTLO Vo dodafvel ETTUY KOS 6To training xou oto validation set, aAAd
1 enldoot| Tou vo TETeL oE ueYdro Bodud oto test set. Tny cupnepipopd auTr TNV anodidouye
oty Bdor 6ed0PEVLY, GTOV TEQLOPLOUEVO apLIUo AOVEVY XL TNV AVICOPEOTILN TWV XAACEWY,
1 omola 6ev umopel vo avTipeTwmiovel TAfpwe ye Ty edduion Twv Bopny Twv XAACEWY GTO

cross entropy loss.

ITelpapatind AnoteAéopata

Y auTO TO XEPIAMO TOPOUCIALOVUE TO TELRUUATIXG ATOTEAECUATO TOU TEALXOU VEURMVIXOU
OxTO0L, TOGO OTO XOUPATL TNG TUEAXOAOLUTONG TWY TOOLLY, OGO XL O AUTO TNG AVIAUCTC
Bddong. Xenowomololue ¢ UETEXES OTOV EAEYYO TNG TOEUXOAOLUTNOTE TOOLOY TNV HECT) ol
TNV UEYLOTH am6aTAoT), XAHOS oL TNV SLIUECO TWV ATOCTICEWY PETUEY TV TEAYHUTIXWY XKoL
TWV EXTWOUEVDY XEVTEWY TV Todlwv. o tov éheyyo tng avdhuong Bddione e€dyouue tnv

nocooTila oxplBela xou Ti¢ Yeteixég Precision, Recall xou F1-score.

Yrov Ilivaxa 2 gaivetar 6tL 10 8ixtud pog mapouctdler adénon xotd 52% otny axplfBeto tng
EXTIUNONS TWV XEVTPWY MV OBV OE GYEDT UE TNV TEEYOUC YENOLOTOLVUEVT wédodo [1],
n omola, AOyw TNne yerone twv particle filters etvon emnAéov apxetd ypovoPfopa xou dev unopel
g0x0Oha VoL yenoonoinVel 6 OTOLOVOATOTE POUTOTIXG TepLmotnTiea. Axdua, 1 oxplBeta Tou
OuxTOoL avdAuoTg BAdtong etval IXOVOTOLATIXT), GAAS OYL OEXETH VLot TNV YEHOT) TOU BIxTOOU Yo
eZaywYn 8EGOUEVWY TOL AoV oTNY LYEln Tou acdevols. Tliotebouue WS 0 EPTAOUTIOUOC
e Bdone ue emniéov dedopéva Yo Enoule xadoploTind pdho v Bedtivon tne axpelBetag Tou

Otxthou.

Axoua nopouctdloupe yeptnd mopoadelyuoto e£660U TOU VEURKOVIXOD BXTUOU.
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[Tivaxag 2: Anoteréopata Yewpnone Leave-one-out

Iopoxohotinom Iodudy

et
—_ ey 2 3 4 5 6 7 8 | wéon Ty
Metpwn

Méon Ty (cm) | 242 | 2.04 | 328 | 411 | 457 | 246 | 3.26 | 3.68 3.23
Méyiot wd (em) | 9.63 | 9.87 | 22.16 | 58.32 | 14.59 | 7.79 | 30.31 | 42.95 | 24.45

Adpecoc (cm) | 2.21 | 1.81 | 2.60 | 295 | 3.74 | 218 | 2.75 | 3.31 2.69

Avdivorn Bédione

Moo |y 2 3 4 5 6 7 8 | uéon Ty
Metpwn
AxpiBeia (%) 75.60 | 71.56 | 68.85 | 72.74 | 69.27 | 63.17 | 69.36 | 75.89 70.805
Precision (%) 78.88 | 71.36 | 68.87 | 74.80 | 70.76 | 67.85 | 69.38 | 77.50 72.425
Recall (%) 75.60 | 71.57 | 68.85 | 72.74 | 69.27 | 63.17 | 69.37 | 75.89 | 70.8075

F1 score (%) 76.57 | 71.28 | 67.62 | 72.10 | 68.68 | 61.94 | 69.21 | 76.24 70.455

Y10 yua 4 emdeinvieTon 1) GUUTERLPOEE TOL BIxTUOU TapoxohoLUNOTE BAdioNe OE TEPIMTWOT)
occlusion. ITapatneolue 6Tt TO BIXTUO XATAPEPVEL ETUTUY NS VAL TAEAXOAOVINTEL TO XEVTPO TOU
6e€lol TodLoY, axdpo xou dtoy autd Bev elvon opatd (Srorypdupoto #400 — #408). Axdua,

elvon eUPovAC 1 eavoTNTA TOL BIXTOOU Vo e€arydyel Ye oxplBelar T XEVTROL TV TOOLOY.

Y10 Yyfua 5 BAénovye évor mopdderypa e£600U Tou dTUoL avdiuong Badlong. Amo T
60 ypovixéc oTiypéC oL avagépovTol oTo oYY, ot 13 mapatneolue Aavdacuévn extiunon
xotdotoong Padlong, pe anotéheopo va tpoxinTel axpifela tepinou 78.33%, nocooté txavo-

TOTIXO, UE UPXETEC OUMCS TEOOTTIXES BEATione oE TepInTwoT Yeriong woc eupltepns Bdong

OEBOUEVWLV.

398 400 402 406 408 a10 412

® °. .
L ]
*ndoen " v & v v’ 2
L] ) L
- . . .
Sotegll” PO (WP Bpgan gt Soaet 00-- SSoodins® SSooast

00 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 00 01 0.0 ol 0z

Laserpoints v Annotated right center . Detected right center Annotated left center Detected left center

Eyfua 4: Topdderyuo e£660L TOL VEURKVIXOU BIXTUOU TaEAx0A0UUTNONG TOBLOY ot Bedouéva

ue occlusion.
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Yyfuo 5: Topdderyyo e€680u tou Bixtdiou avdhuong Badlong. XTo oy AUa ONUEDVOVTOL Ta

EXTWOUEVA XEVTRO TV TOOLDY, XS XL 1 EXTWOUEVY XoTdoTacT BAdlong oe oyéon ue

v mpaypatxr. Amnewovilovtal uovo oL YpovrES OTIYMES OTIC OTOlEC UTPYEL OANaYT) 0TV

EXTWOUEYT 1) OTNV TEAYHATIXT XATdoTooT BAdlong.






Chapter 1

Introduction

Functional walking is an integral part of every person’s daily life. When mobility disabilities
emerge, usually with age, depriving a human of a vital ability taken for granted, they
affect the individual physically and emotionally [9]. With the constantly increasing life
expectancy arises the need for finding solutions to mobility disabilities, which do not require
invasive methods and are well suited to every individual. A lot of research has been
conducted in this direction, involving conventional wheelchairs, walkers and canes, as well

as intelligent assistive devices.

1.1 Motivation

A mobility-impaired person can be prone to fall incidents, which can easily cause injuries
that could provoke further, often more severe, problems. The need for providing mobil-
ity assistants to people with such disabilities is critical. Conventional walkers and canes
have played a significant role in assisting mobility-impaired humans, without unfortunately
eliminating falling incidents, nor being easily adaptable to every patient’s specific needs
[10, 11]. However, their developmental potential under robotics and computer vision ad-
vancements is massive [12]. A smart, context-aware device can help every individual retain
the normalcy in their everyday life and regain their independence and self-esteem |13, 14,
15, 16].

An intelligent robotic mobility assistant collects information from their environment,
processes them and uses them, in order to help the user carry out everyday activities,
or formally the Activities of Daily Living (ADLs), such as washing, toileting, dressing,
feeding, transferring etc. As the type of assistance an individual needs depends a lot on
the type of pathogenies they present, these assistants can learn these pathogenies while
interacting with the user and adapt their behavior so to suit their specific characteristics
and needs.

Among all different functionalities that can make a robotic assistant intelligent is a leg
tracking and analysis mechanism. Leg tracking refers to the accurate estimation of human

legs’ position throughout time [17], while gait analysis refers to extracting information
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Figure 1.1: Right: A patient using an intelligent robotic walker. Left: Sketch of the walker
design. A Hokuyo laser scans the walking area at a height ~ 35cm above the ground. Middle:
2D range data (blue) from the laser scanner, whose origin is marked by a red circle. Due to the
existence of obstacles other than the patient’s legs, only the laser points lying in the bounding box

(yellow) are considered for leg detection and gait analysis.

about the way a human walks. Insight into the position of a person’s legs and their type of
gait can suggest much about them, such as disabilities [18, 19], an inclination to fall [20],
etc. Therefore, an intelligent robotic walker with efficient tracking and gait analysis system
can also be employed for more sophisticated functionalities that correspond to the user’s
needs. However, the proximity of the user to the robot during the supportive actions
of walking (Fig. 1.1), along with the pathological aspects that alter the gait patterns
and walking frequencies, make the leg tracking very challenging, while the gait analysis
task from partial 2D observations is increasingly demanding: in close proximity depth
cameras are performing poorly, fast 3D range-scanners are prohibitively expensive and
elderly patients are skeptical to wearable sensors. Notably, only a few works in the literature
consider gait tracking using range data for robotic walkers [17, 1]. This work’s motivation
is to equip such a walker with an effective leg tracking and gait analysis mechanism in order
to assess the individual’s needs and adapt to assist as optimally as possible. A context-
aware robotic walker could improve on patient-supporting, guiding, fall prevention, or even
rehabilitation [21, 22].

1.2 Related Work

1.2.1 Robotic mobility assistants

The idea of equipping a mobility assistant with intelligent features already exists in nu-
merous works in literature. Especially in the direction of smart walkers, many intelligent
robotic assistants have been developed aiming to evolve conventional walkers, which can
present numerous complications, such as difficulties in manoeuvring them through con-
gested areas and around obstacles, and lack of stability and break control [23].

The PAM-AID [24] is a smart walker intended for people with visual or mobility impair-

ments. This walker can control the orientation of its front wheel based on a user interface
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on the handlebar, while also detecting obstacles via ultrasonic and laser sensors and provid-
ing voice messages to inform the user. ASBGo [25] uses information provided by sonar and
force sensors in order to assist ataxic people by recognizing their intent and predict falling
incidents. JARoW [26] uses a Kalman filter on laser sensor data to estimate and predict
the locations of the user’s legs and body in real time and adjust the walker’s motions
corresponding to the user’s walking behavior. SYMBIOSIS [27] is equipped with force and
ultrasonic sensors and extracts information about the user’s gait and the human-walker

interaction during gait.

MOBOT [28] is a robotic rollator equipped with LRF sensors used for environment mapping
and obstacle detection, as well as user gait analysis, force/torque handle sensors, two Kinect
sensors that record the user’s movements and an array of microphones for audio capturing.
The goal of this project is to provide adaptive user support and fall prevention exploiting
multimodal information. i-Walk [10] is a current project on a smart walker aiming to
utilize multi-sensory signals to monitor, analyse and predict human gait, while providing

adaptive and autonomous navigation through human-robot vocal communication.

1.2.2 Leg Tracking Algorithms

Human leg tracking has been a popular subject on robotic applications, mostly for human
detection, tracking, and following. Data derived from various sensors, including lasers,
cameras, markers, etc., are used and often fused to estimate the position of human legs in
sequential time frames. A fusion of RGB-marker and IMU data has been proposed for leg
detection, combined with an extended Kalman filter for leg tracking [29]|. Biometric data

have also been used for human detection [30].

As most mobile robots are equipped with a 2D Laser Imaging Detection and Ranging
(LIDAR) sensor, due to their reliability and affordability, there has been plenty of proposed
work on learning algorithms for processing the laser sensor data for human detection and

tracking.

Many of those methods, either used a leg pattern recognition scheme [31][32], boosted
classifiers [33] or clustering methods [34]|35] and Kalman filters for the tracking part.
Leg tracking and gait analysis using two particle filters, one per leg, and probabilistic data
association with an interactive multiple model scheme have also been proposed by [1]. Such
implementations, however, have a high computational cost, and thus the high frequency

of modern laser scanners cannot be fully exploited.

On the other hand, deep learning methods have also been considered in human tracking
due to their scalability and fast inference. The use of CNN is presented in [36] for detecting
people in crowds from range data. A U-Net architecture [37], commonly used for biomedical
image segmentation, has also been proposed in [38]. These methods, though, perform
person detection and do not consider learning the human legs’ dynamic motion that can

be exploited for tracking, which is crucial for further gait analysis.
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1.2.3 Gait Analysis Mechanisms

- Stance Phase - Swing Phase -
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Figure 1.2: Fig. from [39] representing the phases of a single gait cycle, based on [7].

Human gait analysis is a field of research receiving increasing interest over the last decade
and focuses in extracting the parameters involved in human walking. Gait analysis can
be applied to various fields, such as sports, medicine, as well as human identification [40].
Especially in medicine, gait analysis can play a crucial role in monitoring patient health
and deducing conclusions regarding their current health state.

The systems used for gait analysis can be categorized into two subgroups: (1) the wearable
sensors, such as pressure and force sensors, inertial sensors that measure velocity, accelera-
tion, orientation, etc. and (2) the non-wearable sensors. For smart walkers, which need to
be appealing to the user and easy to use, it would be preferable to not involve any wearable
sensors, but rather integrate all smart features in a normal rollator usage. For this reason,
we focus on this section on the non-wearable sensors.

Non-wearable sensors for gait analysis can be divided into two categories: (1) floor sensors,
including force platforms and pressure measurement systems, and (2) image processing
methods. For smart walkers, only image processing methods can be applied. Such methods
process data deriving from various sensors, such as cameras, laser range finder (LRF)
sensors, Kinect or infrared cameras. Most of the developed smart walkers are equipped
with an LRF sensor due to their simple scanning area representation and their affordability.
The most recent and relevant work in literature [1] uses data from an LRF sensor and
Hidden Markov Models (HMM) in order to estimate the patients gait state at each time
frame. This method though has a complexity toll when its accuracy is high and is difficult
to be implemented in an online system.

Scientifically, human gait is perceived as shown in Fig. 1.2, where a single gait cycle consists
of 8 sub-phases: (1) heel strike or initial contact, (2) loading response, (3) mid-stance, (4)
terminal stance, (5) pre-swing, (6) toe-off, (7) mid-swing and (8) terminal swing. This
representation is of high complexity, as it categorizes the position of the legs’ heels and

toes across time. Such a representation seems impossible to be perceived from a simple
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LRF sensor. For this reason, a simpler but still effective gait model is used in this thesis,
where only four gait phases exist: (a) the left double support, which includes the explicit
gait phase (1), (b) the left swing/right stance representing phases (2) - (4), (¢) the right
double support, representing phase (5) and (d) the right stance/left support, representing
phases (6) - (8).

1.2.4 Deep Learning Detection

Deep neural networks have achieved exceptional results in object detection in general. The
widely popular YOLO architecture [41] can detect multiple objects and suggest a bounding
box for every one of them.

For this architecture to be used in our work, a specific and extensive dataset including
bounding boxes would have to be created, which should not be mandatory for leg tracking.
Also, this problem can not be solved by a single frame object detection neural network, as
occlusions can temporarily make a leg invisible. Due to the necessity for an assistive walker
to have constant awareness of the patient’s leg position, a neural network architecture with
temporal awareness is called for. For this purpose, two ways of extending a CNN were
considered.

The first one was the use of a Long Short Term Memory (LSTM). In [42], for the exploita-
tion of the temporal information that a video provides, a neural network with a Single
Shot Multibox Detector (SSD), followed by two LSTM layers for object detection on video
streams, was presented. Similarly, in [43], an LSTM layer was used after a YOLO for
improving detection performance.

The second one was the use of a Temporal Convolutional Network (TCN). As TCNs have
shown promising results and often a better performance than LSTMs, a Dilated TCN
layer, similar to the one proposed in [44] for motion capture, was added after the CNN.
This TCN uses exponentially increasing dilation between consecutive 1D convolutional

layers for associating the features between successive data.

1.3 Contribution

This thesis presents a novel deep learning framework for Leg Tracking by detection and Gait
Analysis from 2D range data (LTGADnet). The proposed approach uses a CNN for leg
detection, followed by an LSTM network for exploiting temporal information in walking and
revising the CNN’s detections in challenging situations like leg occlusions. Finally, a second
LSTM is used to extract the high-level temporal interaction of the legs, which can provide
evidence about the occurring gait phase, resulting in a real-time gait analysis system. Our
key contribution is a highly accurate leg tracking by detection method, thanks to the
deep feature extraction, and an implementation that can be deployed as an off-the-shelf
leg tracking method for any robotic mobility assistant, due to its effectiveness and high-

frequency, without the need for extra calibrations or thresholds. Experimental evidence
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Table 1.1: Gait State representation as in [1] and their one-hot key encoding.

State Code ‘ One-Hot Key ‘ Code Name ‘ Definition
$1 [1, 0, 0, O] LDS Left Double Support
2 [0, 1, 0, O] LS/RW Left Swing/Right Stance
53 [0, 0, 1, O] RDS Right Double Support
S4 [0, 0, 0, 1] RS/LW Right Swing/Left Stance

are provided for this deep learning solution using the Leg Tracking and Gait Analysis from
2D range data (LTGAD) database, which was created explicitly for the training, validation
and testing of the LTGADnet and comprises data and annotations from real patients using
mobility devices. The produced results are compared with the most recent algorithm that
was developed for such applications [1], showcasing the performance increase of this work’s
method.

1.4 Problem Statement

The problem that this thesis aims to solve is to perform accurate, efficient, and robust leg
tracking and gait analysis on a patient using a smart walker equipped with a 2D LIDAR.
Given readings of the laser sensor at each time frame t, i.e., distances from the laser to
detected objects, the goal is twofold: (1) to find the relative coordinates of the centers
(zr[t], yr[t]) and (zq[t], y[t]) of the patient’s right and left leg with respect to the laser’s
position and (2) given these centers, to estimate the patient’s gate state. These states
represent specific phases of walking, as defined in gait analysis literature. The gait states
we are considering in this work are shown in Table 1.1. These gait states are a part of
a Markov chain 1.3, where every state at every time frame can either stay the same or
transition to the next one in the chain. In order to understand what these states actually
represent for a human walking, we can imagine a human that is in stance with both feet on
the ground (DOUBLE SUPPORT) and starts walking. If he lifts the left leg first, then he was
in LEFT DOUBLE SUPPORT before and is now in the LEFT SWING / RIGHT STANCE state.
Then, he will stay for some milliseconds in this state and transition to the only possible
to follow state, which is the RIGHT DOUBLE SUPPORT, as he lands his left leg, in order to
lift at some point his right leg, find himself in the RIGHT SWING / LEFT STANCE state and

continue hence the walking movement.

1.5 Organization of the thesis

In chapter 2 we explain some important topics of the neural network theory, necessary
for achieving a full understanding of our work. In chapter 3 we present the database
used for the training, validation and testing of the network. We describe in detail the data

morphology and the database structure, the data extraction and creation process, as well as
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Figure 1.3: The possible gait states with all the possible transitions between them.

the method used for organizing the data and finally using them on the network. In chapter
4 we present the developed neural network, its components, the architectural decisions
made on the network, but also the ones considered for increasing the network’s efficiency
and accuracy. In chapter 5 we show the performance of the network. We report an ablation
study, showing the accuracy of all network architectures that were tested. A leave-one-
out validation study is also exhibited, in order to prove the network’s ability to learn the
desideratum. We include diagrams indicating the ability of the network to successfully
conduct the leg tracking and gait analysis. Moreover, we compare our framework to the
state-of-the-art method for leg tracking and gait analysis. In chapter 6 we elaborate on

the future work that could be performed to enhance the current thesis.






Chapter 2

Neural Network Preliminaries

In this section, some basic neural network concepts important for the full comprehension
of this thesis’s work are presented. We describe in detail some of the neural network
architectures considered for the LTGADnet and explain the reasons for choosing these in

the final network.

2.1 Artificial Neural Networks

In general, an artificial neural network is a system that uses a set of nodes, the neurons,
and connections between them, the synapses, in order to learn how to solve an artificial
intelligence problem. The neurons could belong to the input layer, which is the one
receiving the network’s input, the hidden layers, which are optional and contribute in
the further processing of the input, or the output layer, which represents the final output
of the network. The signals received from the input layer neurons are forwarded through
the synapses first to the neurons of the hidden layers and finally to the output layer neurons.
A layer where all its neurons are connected to all neurons of the previous layer is called
fully connected.

Each of the neural network neurons that receives signals can process them and then trans-
mit the produced signal to the neurons connected to it by synapses. The processing involves
a linear combination of the received signals, with weights deriving from the synapses, an

optional added bias and the final pass into the neuron’s activation function.

2.1.1 Dataset

For the neural network training, a dataset of labeled data needs to be created. The
labels of the data are the desired output of the neural network, if these data were given as
input. These labels will further be used in calculating the loss, as described in 2.1.3. This
dataset is split into three parts: the training set, the validation set and the test set.

Each set plays a specific role in the neural network’s design process:
e The training set is used for the training of the neural network.

21



22 Chapter 2. Neural Network Preliminaries

e The validation set is used for an impartial examination of the network’s performance
during training and the tweaking of the model’s hyperparameters, such as the

learning rate, the number of neurons and layers, the number of epochs etc.

e The test set is used for the ultimate testing of the neural network, when no fur-
ther changes to the network’s architecture and hyperparameters are intended. The
performance on the test set is the only one that can determine the network’s true

efficiency.

2.1.2 Activation Function

Every neuron in a neural network has an activation function, from which the neuron’s input
is passed and the result becomes the neuron’s output. When this function is nonlinear, it
allows the network to compute nontrivial problems using only a small number of nodes,

and is then called a nonlinearity. Popular activation functions are the following:
e Linear: f(x) ==
e ReLU: maxz(0, x)

e Sigmoid: o(x) =

Tte @
e Tanh: tanhz
Tanh RelLU
+ max(0,z) 4
tanh(z) nax(0, z)
"X
i ¢
Sigmoid Linear
U(I) 1+'I'J_: A A
' Ve fx)=x
'X ’;x

Figure 2.1: Common activation functions and their plots.
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2.1.3 Loss Function

The loss function of the neural network is a function that, given the network’s output,
produces a real number, which represents some "loss". In the neural network’s training,
this loss represents how close the output is to the desired result. We treat the training as

an optimization problem that seeks to minimize the loss function’s result.

2.1.4 Backpropagation

The neural network’s training is achieved through an algorithm called backpropagation.
In this algorithm, the gradient in weight space of a neural network is computed, with
respect to the loss function. Specifically, it creates an expression for the partial derivative
0C /0w of the cost function C' with respect to any weight w (or bias b) in the network.
This expression tells us how quickly the loss produced by the loss function changes when

we change the weights and biases.

2.1.5 Optimizer

An optimizer is a method used during the neural network training to change the network’s
attributes, such as weights and learning rates, in order to reduce the loss. Usually, opti-
mizers analyze the gradients produced by the backpropagation and decide how to tweak
the network’s parameters, based on these gradients. The most popular optimizers used are
Stochastic Gradient Descent (SGD) and Adam.

The learning rate is a hyperparameter that controls how big a change to apply upon the
model in response to the estimated loss, at each step that the model weights are updated.
The choice of the right learning rate is significant for achieving the best possible result
during the training. When the learning rate is too high, gradient descent can inadvertently
increase rather than decrease the training error. On the other hand, as most loss functions
are not convex, too low a learning rate can trap the parameters to a local minimum and

lead to a permanently high training error.

2.1.6 Training

Usually, we begin the neural network training by initializing all weights and biases randomly
(though it has been shown that determining them explicitly may improve results [45]).
Then, the training set is passed through the network. This pass, namely the forward
pass, can be made with one input at a time or a batch of inputs. The number of inputs
that the batch contains is named the batch size. After every forward pass, a backward
pass follows, which applies the backpropagation to calculate all partial derivatives. Then,
the optimizer uses these to update the current weights and biases, a process called a step
of the optimizer. The backward pass is generally the most time consuming process in the

network’s training. Thus, using a batch of inputs for the forward pass can help achieve
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faster training, as backpropagation in batch training is only applied every few inputs, as
opposed to single input training.

This process is realized a number of times called epochs. Each epoch is a single pass of the
whole training set through the network. The number of epochs is another hyperparameter
that needs to be optimized. A training for too many epochs can lead to the overfitting
of the network, meaning that the network does not generalize well the problem, but rather
memorizes the desired output for the training set. Training the network for too few
epochs may cause the network to underfit, meaning that the network has not learned yet
the desired task. A way to determine the number of training epochs is early-stopping.
The idea is to stop the training process when the loss in the training set keeps decreasing,
but the loss in the validation set does not. This is a sign for overfitting, as the neural
network keeps learning, but unfortunately does not generalize.

Except from defining the number of epochs, another way of preventing overfitting is the use
of a dropout layer. With a dropout layer some of the neurons from a layer’s output are
ignored, meaning that they are temporarily removed from the network, along with all the

synapses attached to them. Batch training has also been shown to help avoid overfitting.

2.2 Convolutional Neural Networks (CNIN)

A Convolutional Neural Network (CNN) is a class of neural networks mostly for image
analysis. It consists of an input layer, hidden layers and an output layer, where the hidden
layers perform convolutions. The common activation function for these layers is the
ReLU (2.1.2). More layers of a CNN could be pooling layers, fully connected layers

and normalization layers.

2.2.1 Convolutional Layers

A convolutional layer takes its input from the previous layer, convolves it with a number
of convolutional filters of specific width and height and passes it to the next layer. Each
convolution with a filter produces a different output channel. The advantage of these lay-
ers, as opposed to the fully connected layers, is the practicality in large input data, such
as images, due to the fact that a fully connected layer would need to have the same size as
the image, requiring increased complexity. Convolutional layers may have additional hy-
perparameters except from the kernel width and height, such as the convolution padding,

stride and dilation.

2.2.2 Convolution

The operation of convolution between a filter and an image is the linear combination of
the image’s cells, with weights determined by the filter. An example of convolution with a
3 x 3 filter is shown in Fig. 2.2.
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Input image Filter Output array

Figure 2.2: Example of convolution of an image by a 3 x 3 filter. The algebraic represen-
tation of this convolutionis 9-0+4-2+1-1+1-4+1-1+1-0+1-14+2-04+1-1=16

We can see that, with this convolution some image pixels will not be multiplied by some
filter values. In this way, the convolution is not applied equally to every image cell. When
this is unwanted, padding of any value, mostly zero, is used (Fig. 2.3).

Also, a filter can move a number of image pixels before it is applied. This number is called
the stride (Fig. 2.4). As the stride increases, the forward pass takes less time to finish, but
also less image information is processed.

It is understood that, if the image is of size n x n and the kernel, padding and stride have
size f x f, p and s respectively, then the output of the convolutional layer will be of size:

29 —
nt2p-f
S

Another convolution parameter, commonly used in Temporal Convolutional Networks

Figure 2.3: Example of convolution with kernel size 3 and padding 1
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Figure 2.4: Example of convolution with kernel size 2 and stride 2

(TCN) as described in section 2.4, is the dilation. When a convolution includes dila-
tion d > 1, it means that the filter will be convolved with a grid from the image created
by skipping d pixels at all directions. In Fig. 2.5 we can see an example of a dilated

convolution.

2.2.3 Pooling Layers

Convolutional networks may include pooling layers to reduce the data dimensions. They
combine the outputs of neuron clusters at one layer into a single neuron in the next layer.
Two are the popular types of pooling: max and average pooling. Max pooling returns
the maximum value of each cluster of neurons in the feature map, while average pooling

returns the average value.

2.2.4 Normalization Layers

In layer normalization, inputs belonging to a minibatch are transformed, so that elements
in a single input have zero mean and unit variance. After this transformation, there is
also a scaling and shifting step by learnable parameters. In convolutional layers, normal-
ization is not applied to every input, but rather to every channel of an input. A common
normalization method is batch normalization [46|, where the normalization is done so
that every element in a batch has zero mean and unit variance. With this method, the

normalization of every input depends on the other inputs in the same batch.

Figure 2.5: Example of convolution with kernel size 3 and dilation 2
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2.2.5 CNN Example: You Only Look Once (YOLO)
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Figure 2.6: Architecture of the YOLO neural network

The YOLO neural network [41] performs detection of multiple objects of multiple classes
in an image. Object detection refers to the estimation of both the object class and the
object position in an image. This network consists of convolutional, maxpooling and fully
connected layers. For every object in the input image, YOLO predicts a class and a
bounding box with its center, width and height.

It divides the input image into an S x S grid. If the center of an object falls into a grid cell,
this cell is responsible for detecting the object. Each grid cell predicts B bounding boxes
and confidence scores for those boxes. These confidence scores reflect how confident the
model is that the box contains an object and also how accurate the box is. Each bounding
box consists of 5 predictions: x, y, w, h, and confidence. The z, y correspond to the
coordinates of the center of the bounding box and w, h to its width and height, relative to
the whole image.

For the YOLO training, the loss function is the following:

S? B
bj ~ ~
Lossyolo = Acoord E E 1?]'] [(ZL'@ - l’i)Q + (yz - yz)2:|
i—=0 j=0

] (Ve B (L)

i=0 j=0

52 B 2 S2 B 9
+ Z; ZO 1;,)]1)] <\/a - \/5) + )\noobj ZO ZO 1%OObj <\/a - \/E) (22)
=0 j= i=0 j=

52
+z;1;wobj 3 (\/pi(C)*\/ﬁi(CD2 (2.3)

Céeclasses

where Eq. 2.1 is the bounding box coordinates error, Eq. 2.2 is the confidence error and

Eq. 2.3 is the class estimation error. The 1?bj denotes if object appears in cell 17, 1??



28 Chapter 2. Neural Network Preliminaries

denotes that the jth bounding box predictor in cell ¢ is responsible for that prediction
and 1%00bj denotes the opposite of the latter. The Acoord, Anoobj Parameters are used to
stabilize the model, as the loss of the cells not containing any object tends to overpower
the gradient of the cells that do.

As the YOLO network can be trained to detect objects of any class, it seems possible to
use it for leg detection too. Like all deep neural networks, it would require an extensive
dataset, that would need to contain not only the legs’ centers, but also their bounding
boxes. This is though a very time-consuming task, that could probably be avoided, as leg
detection itself does not require bounding box predictions. That said, the idea was to take

inspiration from the YOLO network and simplify it as much as possible.

2.3 Recurrent Neural Networks (RINN)

A Recurrent Neural Network (RNN) is a class of neural networks where connections be-
tween neurons form a strongly connected graph, meaning that all nodes in the graph can
be reached from all other nodes. This means that the RNN can retain a form of memory
and use it in order to extract temporal information about the input. The input of an RNN
is usually an arbitrarily long sequence. RNNs are mostly used in speech and handwrit-
ing recognition, but can be found useful in any application involving temporal relations
between inputs. Common types of RNNs are the Long Short-Term Memory (LSTM) [2]
and the Gated Recurrent Unit (GRU) [3|, which is a simplified variant of the LSTM.

A problem that RNNs face is that, while training with gradient descent, error gradients
vanish exponentially quickly with the size of the time lag between important events. LSTMs
were developed to deal with the vanishing gradient problem and their architecture will

be explained in the next section.
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2.3.1 RNN Example: Long Short-Term Memory (LSTM)
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Figure 2.7: Architecture of the LSTM unit

The Long Short-Term Memory (LSTM) is a type of RNN and consists of a cell, an input
gate, an output gate and a forget gate. The cell remembers values over arbitrary time
intervals and the three gates regulate the flow of information into and out of the cell. A
network can be composed of many consequent LSTM units, forming a multilayered LSTM.

For every element in the input sequence, each layer computes the following function:
it = o(Wiime + bii + Whihi—1 + bn;)
ft = o(Wipxy + bifWhghi—1 + biy)
g¢ = tanh (Wigzy + big + Whghi—1 + bpg)
ot = 0(Wiot + bio + Whohi—1 4 bpo)
ct=ftOc—1+1it O gt
ht = o ® tanh(c;)

where h; is the hidden state at time £, ¢; is the cell state at time ¢, x; is the input at time ¢,
h¢_1 is the hidden state of the layer at time £ — 1 or the initial hidden state at time 0, #;, f,
gt, oy are the input, forget, cell, and output gates, respectively, o is the sigmoid function,
and ® is the Hadamard product. The hidden and cell state during the RNN’s training
need to be reinitialized every time that a new sequence of data is feeded to the network.
LSTMs can also be bidirectional, meaning that the output of an input belonging to a
sequence depends on both previous and future inputs. It is obvious that a bidirectional
LSTM cannot be used in online applications, where future inputs are unknown.

So, in order to still be able in our task to track human legs in cases of occlusions, we used
an LSTM after a CNN to memorize previous leg positions and correct mistakes that the

CNN could make when a leg is invisible.
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2.4 Temporal Convolutional Networks (TCN)
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Figure 2.8: Architecture of the TCN residual block, as in paper [44].

Temporal Convolutional Networks (TCN) were developed as an alternative to RNNs, in
order to decrease training time and increase memory retention. They consist of dilated
causal 1D convolutional layers with the same input and output size. The input of a TCN
is a 3D vector of size (B, L, Si,), where B the batch size, L the sequence length and S,
the input sequence element length, and produces as output a 3D vector of size (B, L, Spyut)-
The dilated convolution operates as described in section 2.2.2, where each hidden layer has
exponentially increased dilation to the layer preceding. Zero-padding is also applied, to
ensure that every layer input and output sequence are of the same length. Each TCN layer
is in fact a residual block, as in Fig. 2.8. TCNs have been proven to be really effective for
video action segmentation [4] and other sequence modeling tasks [5], so we attempted to

replace the leg tracking LSTM of our network with this architecture.
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The Leg Tracking and Gait Analysis
Database

In this section we present the LTGAD database, a database created and used for the
LTGADnet training, validation and testing. The database is publicly available and can be
accessed online!. Tt consists of labeled data extracted from previous work [1], which were
collected and cleaned, in order to be usable in our work. The real data extraction will be
further explained in section 3.2. It also consists of computer generated data, created to
"imitate" the real dataset and enrich the existing dataset, as an object detection network

needs a large set of data for training.

3.1 Database Structure

3.1.1 General Structure

The LTGAD database is separated into two sub databases: the Leg Tracking database and
the Gait Analysis database. Each one comprises of data from 8 different experiments, as
explained in section 3.1.2, along with their annotations. Overall, these experiments consist
of approximately 33000 frames. Additionally to the real experiments exists one computer
generated experiment, used only for training the neural network and with such size that

the final percentage of the computer generated frames to the real ones is 58%.

3.1.2 Experiment Structure

Each experiment, whether it is a real or an artificial one, consists of three files:

1. laserpoints.csv, which includes per frame (rows) the position of the obstacles provided
by the laser sensor (columns). The position is relative to the position of the laser

sensor, which is assumed to lie on the origin, and is represented as x,y coordinates.

"https://robotics.ntua.gr/ltgad/
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So, every row has columns x1, y1, €2, Y2, .., Tn, Yn, Where n the number of angles that

the laser scans.

. centers.csv, which exists only in the experiments of the Leg Tracking database and

includes per frame (rows) the actual position of the center of both legs (columns).
Similarly to laserpoints.csv, each position is relative to the position of the laser sensor,
which is assumed to lie on the origin, and is represented as z, y coordinates. So, every
row has 4 columns x,, y,, £, y;, which represent the coordinates of the centers of the

right and left leg respectively.

. gait_ states.csv, which exists only in the experiments of the Gait Analysis database

and includes per frame (rows) the annotated gait state. As explained in Table 1.1,
the possible gait states are represented with a number between 1 —4 and correspond
to LEFT DOUBLE SUPPORT, LEFT SWING / RIGHT STANCE, RIGHT DOUBLE SUPPORT
and RIGHT SWING / LEFT STANCE.

. walid.tzt, which includes the frames that where selected from the initial data. Some

data frames included not only the patient’s legs, but also a nurse’s or parts of other
objects, which are not a usage case for our task. For this reason, the initial laserpoints
where cleaned where possible, by removing by hand only the laserpoints that did not
correspond to a patient’s legs. But when this was not possible, due to their complete
invisibility, these frames where omitted. We did not just delete these frames for two
reasons: 1) these frames might not be suitable for our network training, but could be
found useful by someone else for another task and 2) by creating the valid.tzt file we
could know when some frames are omitted, thus creating a discontinuity to the frame
sequence, making it necessary for a reinitialization of the RNN’s memory (section
2.3). So, in wvalid.txt every row has the starting and ending frame, both inclusive, of

a chosen sequence.

3.1.3 Data Handler

The data handler is the package used for loading the data needed for the neural network

and splitting them into the training, validation and test set. For the LTGADnet we needed

to design explicitly the data handler, as the dataset has some peculiarities, with one being

the wvalid.tzt files, which do not allow a simple usage of a common data handler. So, this

data handler needed to perform the following tasks:

e read the experiment data files while taking into consideration the valid.tzt file. We

needed to only keep the chosen data frames and save them as sequences.

e create the bounding box, which is the 1m x 1m area assumed to contain the patient’s

legs, as shown in Fig. 1.1. Only the laser points lying in this bounding box are kept

and transformed into the input image.
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Figure 3.1: Three frames of the dataset, where (a) is the original frame and (b), (c) are the
frames resulting after the data augmentation. With blue points are annotated the points
detected by the laser (laserpoints), while with red and yellow triangles the annotated leg
centers of the right and left leg respectively. In this figure, (b) is the original frame mirrored

and (c) is the original frame shifted, with one of the 6 shifts that were performed.

e prepare one batch of data at a time. Both laser and annotated data are transformed,
in order to be given as input to the network, as explained in section 4.1.1. The data
are being loaded in the RAM one batch at a time for memory saving reasons, at the

cost of a slower training.

e apply data augmentation. The experimental data are augmented, in order to increase
the size of the dataset. This augmentation includes mirroring and extensive shifting
of the data, resulting to a new dataset of size 8 times greater than the previous
one. An example of the data augmentation is presented in Fig. 3.1. The shifts were

carefully picked so that no information of the legs gets past the bounding box.

3.2 Experimental Setup

The experiments included in our dataset are of real patients and were conducted for the
work of [1], where MOBOT 28| was used for the rollator. The participants to the ex-
periments where over 65 years old and presented moderate to mild mobility impairment,
according to clinical evaluation. The patients were wearing their normal clothes. They
were asked to realize a walking scenario having physical support of a rollator and some
turning manoeuvres to avoid obstacles. All patients performed the experimental scenarios
under appropriate carer’s supervision.

The rollator was equipped with a Hokuyo rapid laser sensor UBG-04LX-F01, with mean
sampling period of about 28msec/scan, scanning range of 20 to 5600mm, angle range —120°
to 120° and angular resolution 0.36°, placed at a height of about 40cm from the ground,

in order to capture the motion of the subject’s tibia.
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Figure 3.2: Figure from [1| showing a snapshot from the experimentation scene and a

representation of the visual markers from MOKKA visualization system.

For the gait state extraction, a set of markers from a VICON Motion Capture system was
placed on the heels and toes of the patients’ body, as described in [6]. In this work, an
automatic gait phases detection system was developed, based on the works of [47, 48].
This system uses 1 Heel marker and 3 Toe markers for each foot and considers the impact
of those markers only on the z (vertical) axis. After linear interpolation, resampling and
filtering with a lowpass Butterworth filter, the heel trajectory is extracted, as well as the
toe trajectory by calculating the median of the three toe markers.

With these trajectories, as well as the calculated tow velocity in the vertical direction, cer-
tain gait states can now be detected, specifically the heel strike, loading response, terminal

stance and toe off, as they have already been explained in section 1.2.3.

3.3 Computer Generated Data

For the training of both the convolutional and recurrent neural networks, a fairly large,
but also highly accurate dataset of leg centers and gait states was necessary. As the exper-
imental dataset was retrieved from real patients, there were many difficulties in extracting
with high accuracy their leg centers and gait states. This can be seen in Fig. 3.1, where
one leg’s center in the original frame lacks in accuracy (the right one in this figure), and
which is the case in many other frames. Also, the existing real dataset was of around 33000
frames, which is acceptable for the leg detection training, but seems insufficient for the gait
analysis, not so much because of the number of frames, but rather the number of different
patients realizing the scenarios. A variety of patients can lead to a more accurate gait
analysis, as the transitions between the gait states can appear to follow certain patterns in

an individual’s walk. So, we would need the neural network to learn how to detect these
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Figure 3.3: A detailed presentation of the method used for the data generation. The length
of the laser beams represents the distance of the detected objects, as calculated by the laser

Sensor.

patterns, rather than memorize the ones given in the training input. All the above were
the motivation for creating computer generated data.

The idea was to imitate the walker setup and simulate hypothetical patient’s legs. It
is assumed that there is a laser lying at the origin and has vision of the patient’s legs,
which are facing the rollator. This laser has 180° area scanning range and ~ 0.35° angular
resolution.

First, we designed two circles representing the legs. We assumed that these circles would
move sinusoidally, both on = and y axes. This assumption was made due to the nature
of leg movement, an example of which is demonstrated in Fig. 3.4, where we show the y
coordinate of the center of a patient’s leg in time. In this figure, it is obvious that a sine
is able to represent well the leg movement on the y axis.

We define the center of each leg’s movement as the point with coordinates the equilibrium
points of the sinuses on the x and y axes. We also define the gait center as the midpoint
between the movement centers of the two legs. The amplitudes of the y sinuses of both legs

are almost the same, but have 7 phase difference, so that when the one moves forward, the
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Figure 3.4: Visual indication of the sinusoid behaviour of the legs’ motion. An experiment

is presented including a sine fitted using least square error.

other moves backwards. Notice that the backwards moving leg is in reality stationary, but
the rollator frame is moving away from it. Thus the leg seems to be moving backwards, as
all positions are calculated relatively to the rollator frame. The sinusoid on the z axis is of
a much smaller amplitude and frequency than the one on the y axis, as well as of a slightly
irregular phase increase at each time step, in order to simulate the occasional slight shift
of the whole walking movement to the left or the right.

With the aforementioned setup, the patient has a direction parallel to the y axis, something
that has to change over the course of time. To imitate different gait directions, before we
virtually sample from the laser sensor, we rotate the leg centers around the gait center
by an angle we consider the direction. This direction changes through time smoothly by
picking regularly a new target direction and increasingly approaching it in each time step.
If the direction is above a threshold angle, leg occlusions can occur as one leg completely
blocks the other with respect to the laser sensor. This phenomenon is a rare occasion in
the experimental data and the most difficult situation faced by any leg tracking model.
Therefore we implemented an option in which the direction remains in such high angles
so that occlusions occur in every step. This way the RNN part of the network will have
many instances of occlusions to train on to.

To virtually sample from the laser sensor, we emulate each laser beam as a straight line
passing through the origin, where the sensor is lying (Fig. 3.3). To find the points that

the laser sensor would produce when detecting the legs, we use the distance r of each
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Figure 3.5: Two frames of the dataset, one real and one computer generated. On both
frames are annotated with blue the leg points, with a red triangle the centers of the right
legs and with a yellow one the centers of the left legs. The faulty trails are also marked

with orange on both frames.

laser beam from the leg center and the intersection points of the laser beam and the leg
circle. If this distance is lower than a threshold «, dependent on the leg circle radius,
then the intersection point that lies closer to the sensor is used. In order to create more
realistic data, those intersection points are shifted in the direction of the laser beam using
a Gaussian noise with zero mean and standard deviation 2mm, suitable to simulate the

nominal error of the real sensor.

Next we simulate the faulty trailing patterns, which are often present in 2D laser data.
These patterns are mostly noticeable when laser beams have great incidence angles with
the legs and due to scattering, the laser sensor receives signals of lower intensity, assuming
a greater distance to the obstacle (Fig. 3.5). To calculate those, we select the intersection
points of the laser beams with r greater than « but lower than a second threshold £ and
shift them on the laser beam direction by an amount analogous to the tangent of the
incidence angle (Fig. 3.3). As this tangent grows to infinity when the laser beam becomes
tangent to the circle, we limit this shift and apply a Gaussian noise in order to simulate
the empirically noticed clustering of points at a certain distance.

To calculate the gait state of each time frame, we only used the phase of the right leg’s
sinusoidal motion on the y axis. The phases at which the person changes state were deduced
using the frequency analysis of normal human gait found in |7, 8]. We assume that every
leg stays on stance 60% of each gait cycle and 40% on swing, meaning that every gait cycle

consists of 10% LDS, 40% LS/RW, 10% RDS and 40% RS/LW.
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After a selective choice of the real data, the application of data augmentation and the
creation of the computer generated data, the final dataset consists of around 210000 frames

used for training, validating and testing the neural network.
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Figure 4.1: The architecture of our proposed framework for leg tracking by detection
composed of Convolutional and Linear Layers followed by an LSTM. The output of the
leg detection is fed into an LSTM that estimates the gait state.

In this section we present the neural network architecture. We explain its compartments,
the architectural decisions made for each one of them, but also the attempts made on other
architectures, which were not implemented in the end.

The LTGADnet is a combination of two models:

1. the Leg Tracking one, which is responsible for detecting and tracking the legs of the

patient using a robotic walker and

39
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2. the Gait Analysis one, which is responsible for extracting the gait state of the patient,

as shown in Table 1.1.

4.1 Leg Tracking Network

The Leg Tracking network is the responsible one for the detection and tracking of the
patient’s legs. Its task is to get as input the data provided by the laser and find the centers

of the legs, while handling the occasions of leg occlusions.

4.1.1 Input

The input of the Leg Tracking network are the laser data. We assume that the legs lie in
the laser angle range and that no other objects can obscure the legs. It is also assumed
that no other legs exist in the network input, which is the case of normal usage of a robotic
rollator.

The data provided by the laser sensor are distances and angles of the detected obstacles
to the laser position. These distances are transformed into coordinates of the position of

the obstacles, using equations:

x = dist-sina

y = dist - cosa (4.1)

where dist, a the distance measured by the laser sensor and the beam angle in the laser
data. The laser frame axes system is assumed as in Fig. 1.1.
The neural network is designed to get as input a square image of size 112 x 112. This size
is significantly smaller than the one in YOLO and was found to be more than sufficient for
our task (section 4.1.5). This image accounts for an occupancy grid of the laser data. Such
a grid represents the space in front of the laser and contains a 1 in the cells that contain
an obstacle and a 0 in the cells that no obstacle exists or no obstacle was detected.
As the laser data contain much more information than is actually needed, since the legs
cover only a certain portion of the scanned area, we create a bounding box, in which we
assume that the legs lie on. This bounding box needs to be of size 1m X 1m, in order for
the image to be well proportioned, but its coordinates can be tuned according to the needs
of any rollator setup. So, from the points produced by Eq. 4.1 only the ones lying in the
bounding box are kept. For the LTGAD database, the bounding box was chosen to have
limits (—0.5m,0.5m) and (0.2m, 1.2m) on the x and y axis respectively.
In order to create the image, we need to map the real coordinates into image cells. For
this purpose, the new coordinates become:
xmw:s_l_s.m
hinaz — hmin
T — Win

Ynew = S
Wmazr — Wmin
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where s x s the image size and Anin, Pmaz, Wimin, Wnaee the min and max height and width of
the bounding box respectively. These new coordinates belong to the cells that will contain

a 1 in the image. In this way, we have created the input image of the leg tracking network.

4.1.2 Output

The output of the leg tracking network is of size 6 x 7 x 7. The 7 x 7 grid is similar to the
one in YOLO and represents the grid with which we segment the initial image. For each

cell of this grid, the neural network provides 6 values, 3 for each leg:
1. The probability that the leg’s center exists in that grid cell

2. If the center exists, the x coordinate of the leg center. This coordinate can take a

value in [0,1) and represents the relative position of on the x the center in the cell.

3. If the center exists, the y coordinate of the leg center. Same as with x, this coordinate
can take a value in [0,1) and represents the relative position on the y of the center

in the cell.

The difference with the YOLO architecture is that in our task we know that no more than
two legs will be visible at all times, so we exploit that by forcing the output of each grid
cell to predict two leg centers. For each one of the two legs, the grid cell that outputs the
highest probability will be considered the one containing that leg’s center. From these cells
we calculate the detected leg centers. We first add the grid cell’s coordinates with the x,y

coordinates it contains, and then we map them back to meters.

4.1.3 Architecture

The Leg Tracking network consists of two sub-networks: (1) a CNN for leg detection and
(2) an LSTM for handling occlusions. The CNN takes as input an 112 x 112 image, which
is created as explained in 4.1.1, and gives as output a 6 x 7 x 7 grid, as explained in 4.1.2.
This output is then forwarded to a simple one-layered LSTM, which outputs a revised
version of it.

The CNN has 7 convolutional layers. Each one is followed by a ReLU. Max-pooling layers
intervene, in order to further reduce the data dimensions. More specifically, the layers of
the CNN are: 7 x 7 x 32 + 2 Convolution (e.g. kernel size 7, number of channels 32, stride
2), 3 x 3 x 32 Convolution, 2 x 2 + 2 Max Pooling, 3 x 3 x 32 Convolution, 3 x 3 x 32
Convolution, 3 x 3 x 32 Convolution, 2 x 2 + 2 Max Pooling, 3 x 3 x 32 Convolution,
3 x 3 x 32 Convolution.

Then, two fully-connected layers follow, of size 1568 x 500 and 500 x 294, where 294 =
7xT7x6 the grid size. This is the detection output of the CNN. All layers are followed by the
ReLU activation function. Batch normalization is also used after every convolutional layer,
which significantly increases the network’s accuracy. For training, we applied dropout 0.5

after the first linear layer.
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self.cnn_layers = Sequential(
Conv2d(1, 32, kernel_size=7, stride=2),
BatchNorm2d(32),
ReLU(inplace=True),

Conv2d(32, 32, kernel_size=3, padding = 2),
BatchNorm2d(32),

ReLU(inplace=True),
MaxPool2d(kernel_size=2, stride=2),
Conv2d(32, 32, kernel_size=3, padding = 1),

BatchNorm2d(32),
ReLU(inplace=True),

Conv2d(32, 32, kernel_size=3),
BatchNorm2d(32),
ReLU(inplace=True),

Conv2d(32, 32, kernel_size=3),
BatchNorm2d(32),
ReLU(inplace=True),
MaxPool2d(kernel_size=2, stride=2),
Conv2d(32, 32, kernel_size=3),
BatchNorm2d(32),
ReLU(inplace=True),

Conv2d(32, 32, kernel_size=3),
BatchNorm2d(32),
ReLU(inplace=True),

self.linear_layers = Sequential(
Linear (1568, 512),
Dropout(0.5),
RelLU(inplace=True),
Linear(512, 294),
ReLU(inplace=True)

Figure 4.2: A snippet of the code written in PyTorch for the CNN; for a clear representation
of the layer content and succession. The input image flows from the CNN layers to the

linear layers and so the detection output is produced.

4.1.4 Training

The CNN and LSTM were trained separately. This was necessary for the LSTM training,
so that it would learn how to revise the detections of a well trained CNN. The loss function

used for training is the following:

77 2
Confidence Loss = Z Z Z (Cijk - éijk)Q
i=1 j=1 k=1
2
Detection Loss = Z (zi — @) + (yi — :)*
i=1

Loss = Confidence Loss + o« - Detection Loss (4.2)


https://pytorch.org/
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where Cjj;j, is the expected confidence of the grid cell 75 (1 if the cell contains leg k and
0 for the rest), éijk the output confidence of the grid cell 5 for leg k, x;,y; the expected
position of leg ¢ in the grid and &;,¥; the position of leg i in the grid as a result of the
output.

Note that this loss function is different from the one used in YOLO. Not only is the
bounding boxes’ loss absent, but also the detection loss is unusually defined; in YOLO
the detection loss is calculated between the grid cell actually containing the object and its
corresponding grid cell in the output, whereas we calculate it between the grid cell actually
containing the object and the grid cell that the network considers as the object container.
We tested both losses, with our loss achieving higher accuracy.

In training, o = 5 proved to achieve the best results for both the CNN and LSTM training.
After some experimentation on the batch size with no obvious impact, batch size 32 was
used.

For the CNN, Adam was used as an optimizer, with a learning rate starting at 10~* and
decaying at 107°, 1076 and 10~7 at epochs 15, 30 and 50 respectively. The training ran for
100 epochs. Also, in order to avoid overfitting, a technique similar to early stopping was
applied. Every time the loss at the validation set decreased, we saved the current model.
The last model to be saved was the one to be finally used. In this way, we know that what
the neural network is learning is not a result of memorizing the dataset.

For the LSTM, Adam was used as an optimizer, with a learning rate starting at 10~*
and decaying at 107° and 1076 at epochs 25 and 50 respectively. The training ran for 50
epochs. The same technique used for the CNN for early stopping was applied.

4.1.5 Considered Approaches

Many different architectures and architectural parameters were considered for the leg track-
ing network towards increasing the neural network’s accuracy. The results of these archi-
tectures will be thoroughly presented in section 5.1. In this section we explain all the

considered architectures and the idea behind choosing these.

e Sigmoid activation function after the last fully-connected layer. The first idea was
to apply batch normalization after every convolutional layer. We discovered that,
although the batch normalization helped the training process and the model to
learn more accurately, on the validation or the testing of the model, where we set
model.eval() on PyTorch, batch normalization significantly decreased the accuracy
and the model behaved as if it had not learned. After excessively trying to fix this
problem, we decided to either use batch normalization without model.eval() on test-
ing or replace batch normalization with a Sigmoid as activation function on the last
fully-connected layer, in order to map the output on the [0,1]. The batch normal-
ization still produced better results than the sigmoid, so we finally chose the first

option.

e Input image size 224 x 224 with the corresponding extra CNN layers needed. This
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change though had no effect on the network’s accuracy, which was expected, consid-
ering that image size of 112 already has enough high accuracy, with each image cell

representing a ~ 9mm? of the scanned space.

More or less channels on every convolutional layer with the corresponding changes on
the linear layer size. The number of channels determines the complexity of the CNN
and thus the model’s ability to learn or its tendency to overfit, if the complexity is

too high. The combinations tested were:

1. 16 channels on every convolutional layer with one fully-connected layer 784 x 294
(CNN.16.294)

2. 16 channels on every convolutional layer with the same fully-connected layers
(CNN.16.500)

3. 32 channels on every convolutional layer with one fully-connected layer 1568 x
294 (CNN.32.294)

4. 64 channels on every convolutional layer with the first fully-connected layer

being 3136 x 500 (CNN.64.500)

5. 64 channels on every convolutional layer with the first fully-connected layer
being 3136 x 1500 (CNN.64.1500)

All these different approaches suggested that even 16 channels per layer were enough
on a specific experiment testing, but we decided to choose 32 channels, as the results
could change when validating with leave-one-out. Also, no significant effect on the

frequency was noticed when the channels are doubled.

GRU instead of LSTM. This change was applied in order to check if the model with
the LSTM overfitted and would stop learning slower with the GRU. We discovered
that the GRU did not have any notable impact on the model’s accuracy.

TCN instead of the LSTM. The TCN tested was a Dilated TCN with max dilation
8. The TCN though had lower accuracy than the LSTM and was thus not used in
the final model.

Two layer LSTM. This change did not significantly increase the network’s accuracy,

meaning that the one layer LSTM is already capable of dealing with our problem.

Different loss function for the LSTM training. We considered adding on the CNN’s
loss function another term, the association loss. With this term our goal is for the
LSTM to correlate successive detection frames and produce a revised detection close

to the one on the previous frame. The association loss is defined as:

2
Association Loss = Z (28— 2N+ (gf — gt h)? (4.3)

%
i=1
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where 2!, §! the estimated z, y coordinates of the center of leg i in the grid for time
frame t and xﬁ_l, yf_l the estimated Z, § coordinates of the center of leg i in the
grid for time frame ¢t — 1. This loss did indeed help the LSTM learn to handle leg
occlusions, as a correlative loss function helps towards keeping an estimate of the

center of the temporarily invisible leg. Thus it was finally used in the training.

4.2 Gait Analysis Network

The gait analysis network is the one responsible for estimating the gait state of the patient,

using the leg center prediction from the leg tracking network.

4.2.1 Architecture

The input for this network are the leg centers extracted from the revised detection grid
output of the leg tracking LSTM. The output of the network is the one-hot key encoding
of the estimated gait state, as shown in Table 1.1. The LSTM has five layers, each having
an independent memory. These LSTMs are stacked, with the whole LSTM’s output being
the output of the last LSTM. All LSTM layers have input and hidden size 4.

4.2.2 Training

For the training of the gait analysis network we used cross-entropy loss. Cross-entropy
loss measures the performance of a classification model whose output is a probability value
between 0 and 1. In our case, this loss function takes as input 4 probability values, one
for each gait state. It first applies the Softmax activation function on them and then it

calculates the loss. This process is described below:

esi

fi(s) = ﬂ

4
Loss = — Zti log (fi(s))

=1

where f;(s) the result of the Softmax for every class probability i, t; the true class proba-
bility and loss the final cross-entropy loss.

As the gait state estimation, if treated as a classification problem, has an inherent class
imbalance, with only 19% and 18.6% of the states belonging to LDS and RDS respectively,
we used weighted cross entropy loss for the training, with inversely proportional weights
for every class. Batch size 32 was used for the training. We used Adam as an optimizer,
with a learning rate starting at 10~% and decaying at 10~> and 10~ at epochs 25 and
50 respectively. The training ran for 50 epochs with dropout 0.3 applied between LSTM
layers. The same technique used for the leg tracking network’s training for early stopping

was applied.
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4.2.3 Considered Approaches

Many different approaches were tested on the gait analysis network. A single-layered
LSTM, a bigger hidden size on every LSTM layer with a fully-connected layer in the end
mapping the hidden size to the 4 values of the one-hot encoding, a multi-layered LSTM
with output the sum of every layer’s output, or a bigger input, which could be the whole
detection grid, not only the leg centers. Overall, we concluded that the 5-layered was the
most capable in tackling the gait analysis problem, showing sufficient but still not optimal

accuracy, which will be further discussed in section 5.2.



Chapter 5

Experimental Results

For the leg tracking network, we use as metrics the mean, max, and median euclidean
distance between the detected centers and the annotated ones. The max and median
distances are provided, as rare occasions of one-frame faulty detections from the CNN can
skew the mean distance upwards. For the gait analysis network, we calculated the overall
accuracy of the gait state detection and the Recall, Precision, and F1 scores. For the latter
three metrics, we use the weighted mean over all gait states, due to the inherent class
imbalance in the data, with stance states (s, s3) covering only ~ 38% of the dataset.

We compare our results with the ones in [1], which is the state-of-the-art leg tracking and
gait analysis algorithm and the only one that tackles the same problem as this paper. We
could not compare with other works in the literature, such as |36, 38|, as they perform
person tracking instead of individual leg tracking. At the same time, their need for specific

thresholds and parameterization makes them inapplicable for our study.

5.1 Ablation Study

To justify the architectural design choices for our leg tracking and gait analysis network of
Fig. 4.1, we present an ablation study in Table 5.1. We specifically focus on ablating the
tracking by detection part of the framework, where various design choices had to be made.
We do not refer to the gait analysis one, as its instability would not make an ablation
study valid. The different architectures that we tested are compared based on the mean
and the max euclidean distances between the ground truth leg centers and the produced

ones in the validation set. The different designs that were tested are:

e (a)-(f) multiple variations of the CNN architecture, as described in section 4.1.5,
including the final one CNN.32.500,

e (g) a full network (as in Fig. 4.1) with a one-layer LSTM trained with loss function
(4.2) and a = 5, noted as LSTM1,

e (h) a full network (as in Fig. 4.1), but with a two-layer LSTM trained with loss
function (4.2) and a = 5, noted as LSTM2,

47
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Table 5.1: Ablation Study

Architectures H Mean distance (cm) ‘ Max distance (cm) ‘

CNN.16.294 4.03 60.64
CNN.16.500 3.97 60.61
CNN.32.294 4.17 60.33
CNN.32.500 4.04 60.4
CNN.64.500 4.08 60.93
CNN.64.1500 4.30 68.89
LSTM1 3.16 15.26
LSTM2 3.15 19.21
TCN 3.47 40.10
LSTMlassoc 3.21 13.51
TCNassoc 3.87 48.80
GRU 3.99 58.15

(i) a full network (as in Fig. 4.1) with a Dilated TCN instead of the LSTM with max
dilation 8, trained with loss function (4.2) and a = 5, noted as TCN,

(j) a full network (as in Fig. 4.1) with a one-layer LSTM trained with loss function
(4.2) with @ = 5 plus an additional leg association loss (4.3) with a weight 8 = 0.1,

noted as LSTM1assoc,

(k) a full network with TCN instead of the LSTM, with max dilation 8, trained with
loss function (4.2) plus the leg association loss (4.3) and parameters a = 5,5 = 0.1,

noted as TCNassoc and,

(1) a full network (as in Fig. 4.1) with a GRU instead of the LSTM, trained with
loss function (4.2) and a = 5, noted as TCN.

Inspecting the results in Table 5.1, we can see that all CNN architecture can learn to effi-
ciently solve our problem, even the CNN.16.294 and CNN. 16.500, which only have 16 filters
per layer. In the end, we chose though the CNN.32.500, as it does not enormously increase
the complexity and this way we can ensure that the model would have enough parameters
if in the future was trained with more data. We also notice that overall an architecture
based on LSTMs provides more accurate results than TCNs. TCNs’ performance depends
on the training batch size and has a high memory cost as it needs long sequences of data.
Our dataset of real patient walking instances limits us to short batch training, in which
the LSTM with its efficient memory handling beats TCN’s performance. Moreover, the
2-layer LSTM (LSTM2) does not improve the detection performance considerably. Notably,
we found that the addition of the association error in LSTMassoc, TCNassoc does not seem
to have a great effect on the performance, but in cases of occlusions it has a visible improve-

ment, as it keeps a better track of the occluded leg, something that we cannot see from
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Table 5.2: Leave-one-out validation results

Leg Tracking
Metric Experiment | 2 3 4 5 6 7 8 mean
Mean (cm) 242 | 2.04 | 328 | 411 | 457 | 246 | 326 | 3.68 | 3.23
Max (cm) 9.63 | 9.87 | 22.16 | 58.32 | 14.59 | 7.79 | 30.31 | 42.95 -
Median (cm) 221 | 1.81 | 2.60 | 2.95 | 374 | 218 | 275 | 3.31 | 2.69
Gait Analysis
Experiment | P 3 4 5 6 7 8 mean
Metric
Accuracy (%) 75.60 | 71.56 | 68.85 | 72.74 | 69.27 | 63.17 | 69.36 | 75.89 | 70.805
Precision (%) 78.88 | 71.36 | 68.87 | 74.80 | 70.76 | 67.85 | 69.38 | 77.50 | 72.425
Recall (%) 75.60 | 71.57 | 68.85 | 72.74 | 69.27 | 63.17 | 69.37 | 75.89 | 70.8075
F1 score (%) 76.57 | 71.28 | 67.62 | 72.10 | 68.68 | 61.94 | 69.21 | 76.24 | 70.455

a simple mean and max metric. So, we conclude that the best architecture was the one
with the 1-layer LSTM (LSTMlassoc), as depicted in Fig. 4.1, trained with loss function
(4.2) plus the leg association loss (4.3). This shows that the combination of the superior
feature extraction of CNNs, when combined with the ability of LSTMSs to encode temporal
dynamics and predict the evolution of the targets over time, is an effective method for chal-
lenging dynamic tasks, including the leg tracking by detection from 2D range data. Our
lightweight architecture contains 1703958 parameters, making it very efficient for real-time

performance on any mobile robotic assistant, like the one in Fig.1.1.

5.2 Leave-one-out validation

We further validated our proposed LTGADnet using a leave-one-out cross-validation strat-
egy. In this case, for every training session, we exclude one experiment and use it for
testing, while another one is used for validation. The results of the cross-validation are
shown in Table 5.2. We performed tests both for tracking and gait analysis. Regarding
the leg tracking, our results show the overall good performance of our method across dif-
ferent combinations of train/tests, indicating the generalization ability of LTGADnet in
tracking legs of real patients, who suffer from various pathologies that affect their walking
performance (hence, variable dynamics to be learned by our network).

Moreover, we report our results on the Gait Analysis problem. Here, our results are found
sufficient yet not optimal. Our average accuracy over all gait phases and all tests is ~ 71%
with an Fl-score of ~ 70%. This result stems from two major parameters. (i) Pathological
walking comprises great variability in the different gait phases [7]. The representation
of the gait phases as in Table 1.1, imposes the difficulty of recognizing the joint state
of the legs, needing difficult dynamics to be extracted from 2D data. Note that, for
example, a swing phase initiates when the toe leaves the ground [7], which is very difficult

to be captured by the 2D representation of the leg movement (especially when detecting
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points on the tibia). Moreover, the DS phases are very short subphases, though crucial for
transitioning in walking, but tough to be detected. In our dataset, only 19% of the instances
belong to the LDS and 18.6% to the RDS phase, making our dataset highly imbalanced,
reflected in our results. (ii) Our dataset seems to be small for such a demanding task. To
understand how variable gait dynamics are, we should consider that a normal gait cycle is
usually composed of 60% stance and 40% swing approximately [7], while in our dataset,
subject 1 has on average 62.60% stance and 37.40% swing, while subject 6 has 73.14%
stance and 26.86% swing per gait cycle (subjects picked randomly). Note that we only
trained/tested on instances of walking activity, as such detection is possible in our overall
integrated intelligent system, showcased in [10]. The high variability in the duration of
the phases, together with the high sensitivity over the potentially different pathological
walking dynamics, demands a much broader dataset than the one we are experimenting
with.

5.3 Network Output Examples

In this section we present some plots to demonstrate the results of our method. We exhibit
the behavior of our method in leg tracking and gait analysis on normal cases, cases of
occlusions, as well as on data deriving from a laser sensor with different characteristics.

In Fig. 5.1 we show an example of occlusion handling by the leg tracking network. We can
see that, although the right leg stays almost invisible for 10 frames, the network is able
to keep track of it and smoothly recover when the leg is visible again. In this figure are
very well illustrated the problems existing in the real dataset. The annotated left centers
in frames #400 and #402 seem to be misplaced, as well as the annotated right centers in
frames #408 —#412. This is a result of the inherent difficulties in capturing data from real
elderly patients, where it is important to make the process as easy and straightforward as

possible, with minimal re-calibrations and retakes.
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Figure 5.1: An example of input with occlusion and the output of the leg tracking network.

In-between frames have been omitted for space-saving purposes.



5.3 Network Output Examples 51

We can though also see in the figure the importance of the computer generated data and
their contribution in balancing the inaccurate annotations, as in frames #400, #402 the
detected left center seems to be more accurate than the annotated one. Unfortunately,
the computer generated data are only capable of improving the detection to some extent,
with left leg center detections in frames #406 — #412 drifting from the actual leg centers,
similarly to the annotated ones in frames #400, #402.

In Fig. 5.2 we demonstrate a normal input data case and the output of the leg tracking
network. In this example, it can be seen that due to the use of the computer generated
data, it is common for the output of the neural network to produce more accurate leg
centers than the annotated ones (frames #250, #261 — #267). Generally, the accuracy
and efficiency of the leg tracking network is obvious, with the network always detecting

both legs and keeping track of them, without mixing them up.
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Figure 5.2: An example of the leg tracking output. In-between frames have been omitted

for space-saving purposes.
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Figure 5.3: An example of the gait analysis output. On the figure are annotated the leg

centers produced by the leg tracking network, as well as the estimated gait state versus the

ground truth. Only the frames at which a change at either the estimated or the annotated

gait state occurs are presented.

Faulty trails, as described in section 3.3 are not mistaken for legs, nor influencing the leg
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center detection. Even though the shape of the laser points for each leg changes significantly
through time, the network is capable of recognizing and keeping track of them.

In Fig. 5.3 we present an example of the output of the gait analysis network. The number
of total frames in the example is 95 and the number of the frames with correct gait
estimation are 71, resulting in accuracy ~ 74.74%. The class imbalance of the dataset
is very well illustrated. We can also see how the network in the first frame returns a false
estimation of the gait state, which is understandable, as it is impossible to know from a
single frame the gait state. The network though, seeing the distance increase between the
leg centers immediately in the next frame fixes its first guess. A higher accuracy for the gait
analysis network may be important for using the gait states and making conclusions about
the patient’s health, but its behavior with the current insufficient dataset is promising
and indicates that this network could be capable of solving the problem of gait analysis
efficiently.

In Fig. 5.4 we show the output of the final network, when it receives as input data from
a different laser sensor than the one used for training, validating and testing. We test the
performance of the network on the i-Walk [10], equipped with a Hokuyo LiDAR UST-10LX,
with mean sampling period of about 25msec/scan, scanning range of 0.06 to 10m, angle
range —135° to 135 and angular resolution 0.25°. The leg tracking was for once more able
to track both leg centers. The gait analysis network presents overall good performance,
but seems to predict a premature change on the gait state on frame #127, which though

corrects in the next frames.
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In this input example the leg tracking network was more than capable to deal with the
different input structure, even though it did not conform to the training dataset, whereas
the gait analysis network, considering the difficulties in the dataset, managed to produce

satisfactory gait state estimates.

5.4 Comparison to state-of-the-art

The most relative work on the literature and the one that this thesis aimed to improve is
the one by Chalvatzaki et al. [1]. Their probabilistic approach with Hidden Markov models
and particle filters delivered an average mean distance error of 6.69cm while requiring more
resources, as the particle filter is computationally more expensive, and therefore challenging
to be compatible with the laser scanner’s frame rate (40Hz) for online performance. Our
lightweight deep method achieves an impressive 52% improvement over the state-of-the-art
in tracking accuracy and is able to run real time on any range sensor, as it can predict
the leg centers and the gait state on a single frame in approximately 2ms, using a GeForce
GTX 1060 6GB GPU. All the above make our network an efficient leg tracking method to

be employed in any mobility assistant robot equipped with a 2D range sensor.

5.5 Discussion

It is obvious that the network produces highly accurate leg center detections, even in the
difficult occasions of leg occlusions. We have concluded that the real data augmentation
combined with the computer generated data have played a significant role in the accuracy
of the leg tracking, as the annotated centers were common to diverge from the actual leg
centers, due to the difficulties in extracting data from real elderly patients.

Dealing with the input as an image by turning it into an occupancy map enabled us to
use for the leg detection and center extraction a CNN, which was once more proven to
successfully cope with object detection. The RNN combined with the association loss was
able to track both legs, including situations when one leg is occluded by the other. This
was achieved in fast real time performance, making the leg tracking network more than
suitable for online tracking tasks.

The gait analysis network shows overall good performance and is very lightweight. The
LSTM shows promising results in gait analysis, with its memory mechanism being able
to learn the succession of the states in a gait cycle and the possible transition points
between them. Although, in order for it to be used in real life, for example by doctors or
rehabilitation staff for making conclusions about the patient’s health, a higher produced
accuracy would definitely be required. As we tested many different architectures for the
gait analysis network, we concluded that a higher accuracy calls for an extended collection
of real gait data. The data augmentation and computer generated data, which on the
leg tracking network were immensely helpful, are not that effective on the gait analysis

one. Concerning the computer generated data, we created them following the gait analysis
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statistics, which show that the percentages of swing state and stance state are around 60%
and 40% respectively. In this way, we are lead to the creation of a computer generated
dataset lacking in variety, which could not though get much further improved, as the
imitation of the real gait is a very difficult task. We believe that capturing more gait
analysis data would stabilize the neural network training and enable it to learn a lot more

efficiently.






Chapter 6

Conclusion and Future Work

We proposed LTGADnet, a novel, lightweight deep learning architecture for efficient human
leg tracking and gait analysis from 2D range data. LTGADnet can be employed as an off-
the-shelf method to any mobility assistant robot equipped with a laser sensor that scans the
user’s walking area. The superior feature extraction power of convolutions combined with
the ability of LSTMs in learning temporal dependencies in data offers the possibility to
learn the motion dynamics of walking, tracking both legs, and even dealing with challenging
cases of leg occlusions, e.g. during turning. We also produce gait state estimates with a
simple LSTM that learns a high-level classification of the human gait phases, thanks to
a one-hot key encoding of the walking states. Our experimental results demonstrated the
improved performance of LTGADnet in the tracking by detection problem with respect
to the costly probabilistic state-of-the-art method. While we got sufficient results on the
gait analysis problem, we believe that the lack of a bigger dataset hinders our method’s
performance and that the enhancement of the gait analysis dataset with new data would

help achieve an enormous improvement.

Many ideas for improving the work of this thesis have arised, both on the leg tracking and

the gait analysis network.

Although the leg tracking presents very high accuracy and excellent occlusion handling, it is
unable at the moment to produce the velocities of the leg centers. This could be important
information for someone studying and monitoring the patient using the rollator and would
be a really useful addition to the leg tracking. A way of achieving this is the addition
of a Kalman filter after the leg tracking neural network, which would use the leg centers
produced by the previous network to update its state. Also, even though the network
already proved to be efficient in cases where a laser sensor with different characteristics
was used, it is impossible to be sure of its behavior in any laser sensor. Training on more
data deriving from sensors with various area scanning ranges and angular resolutions would
secure a predictable behavior of the leg tracking network on any rollator setup, or help

achieve an even higher accuracy.

o7
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Concerning the gait analysis network, many are the changes that could be implemented
towards increasing the network’s accuracy and stability. Firstly, capturing more gait anal-
ysis data seems inevitable. A variety of patients should be included in the dataset, in
order for the network to be able to learn how to distinguish the specific gait patterns for
every patient. A different augmentation of the dataset might also help more effectively the
training process. As the class imbalance that the data present leads to an imbalanced clas-
sification, with the network learning better how to recognize the dominant states LS/RW
and RS/LW, it would be useful to break this imbalance by further augmenting only se-
quences containing the less occurring states LDS and RDS. Moreover, for the training of
the gait analysis network the centers produced by the leg tracking network are currently
used. This centers are not that smooth as the annotated centers, which though do not exist
in the gait analysis dataset, as we do not have a combination of both datasets, but rather
separately the annotated centers and gait states. Using as training data annotated centers
for the gait analysis network would definitely improve the learning process, so the creation
of a unified dataset would be critical. Another interesting idea is the use of a bidirectional
LSTM for post-gait analysis, which produces greater accuracy than the simple LSTM, but
is not applicable in an online system.

Finally, self-supervised learning methods for both leg tracking and gait analysis would be
an excellent solution to alleviate the need for annotations that are admittedly difficult to

produce for such a dataset.
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