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ATayopevETAL 1 AVTIYPOQT, OTOONKEVGN KOl S10VOUN TNG TTOPovcag epyociag, €6 oAoKANpoL 7
TUAIOTOG OVTNG, Y10 EUTOPIKO okomd. Emtpémetar 1 avatummon, amofnkevon Kot Slovoun yio
OKOTO U1 KEPOOGKOMIKO, EKTOOEVTIKNG 1) EPEVVNTIKNG VOGS, VIO TNV TPOHTODEST VAL avaPEPETAL
N Ty Tpoérevong Kat va dtatnpeital To Tapdv ppvope. Epotipata mov agopovv n xpron g
gpyaciog yuo KepOOOKOTIKO GKOTO TPEMEL VAL AeLOHVOVTAL TPOG TOV GLYYPUPED.
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Kot Ogv TTpémel va epunvevdel OtL avtimpocwnevovy TI¢ emionueg Béoeic Tov EOvikod Metcdpiov
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Evyoprotieg

Me v olokAnpmon g Tapovoos epyaciag, Ba nBsha va guyoplotiom 6Alovg 66ovg Le Bondnoay otnv
ekmovnon e. Apyikd, 0EAm va guyapiotiow Tov emPAémovta kadnynt K. Anuntplo Zodvtpn, yuo Ty Sevpuven
Kol TpomOnNon TV eVOIPEPOVI®OV LoV KaB’ OAN TN O1GPKELD TOV GTOVIMY HOV HE TNV EEPETIKY] OOVAELNL TOV
KAVEL GTO EPYACTNPIO IMKPOETEEEPYASTAOV KOL YNOLOK®DV GUGTNUATOV, Y10, TV EUTLGTOCHV TOL LoV £d€1&e e TV
avéBeon ¢ SIMAGUOTIKNG EPYACTOg Kot YioL TNV VTOGTAPIEN TOV o€ OAN TN d1dpKELD TG GLVEPYATTIAG LOG, KOOMG
KoL Tov voyn oo dddktopa Anpocshévn Macolpo, o omoiog cuppeteiye otnv enifreyn, Nrav mévra S1béoipog yio
VoL OTaVTaEL 6€ amopieg Ko va Avel Tpoaktikd {nriuata kot forifnoe molv e To 06TOY0 GXOALN KO TIC GUUBOVAES
Tov. Akoua, 0EA® va evyaploTom Tov K. ['edpylo Xtapatdro, dievbuvtr epevvav oto Epguvntikod [ovemotniokd
Ivotitovto Xvomudtov Etkoveavidv kot YToAoYIoTOV, TOL oL HETEOMGE TOV EVOOLGLUGUO Kol TIG YVAGELS TOL
v otov Topéa TG in silico wTptkng, mov pe evétace otnv Ayoyn S0VAELL TOV KAVEL GE QLTO TO YMPO KOl TOV
CUMETELYE TNV EMIPAEYN TNG EPYACIOG LUE 1OEES, ONUOVPYIKE GYOALO KOl TOPOTNPNOELS, KAOMG KOt TOVG GUVEPYATEG
tov otV In Silico Oncology and In Silico Medicine Group, EAévn 'ewpyiddon, EAévn Kolokotpdvn kot NikoAao
Xp1ot0d0HA0oL, TOV NTOV TAVTO S100£010l Vo, dDGOoVY GUUPBOVAEG Yo TpakTikd {nthpata Tov OYKOTPOGOUOL®TY.
Eniong, moAdtiun tav n copforn tov kabnynti Norbert Graf kot tov Marcel Meyerheim, ot omoiot eToipacoy Kot
potpdotnkav pali pog to wrpd dedopéva Tmv acdevav amd To TavemoTntakd vosokopeio tov Saarland, ympig
ta omoia dev Ba Tav duvarh n oAokApwon g epyaciag. TELOG, EvYAPLOTH OTEPIOPIOTA TIV OIKOYEVELD KOl TOVG
¢@ihovg Hov, oV pe VTooTNPilovV TAVTA, TOL TOTEVOVV GTLG SLVANELS LoV Kal Lov divouv Bappog.



IHeptinyn

O OyxompocopolmTng gival £vo dtakpttd top-down HovTéELO Yo TNV TOADKALLOK®TH TPOGONOImoN TG ac0é-
VEWOG TOV KaPKivov, mov anewkovilel Tov dyko in silico o €va Tpiodidotato TAEYHa omd voxels kot ypnoiponolel
TN oTPATNYIKY “summarize and jump” yio TNV TPOGOUOIMGN TNG Y¥POVIKNG TOV ££EMENG OTO KLTTUPIKO Kol 1GTIKO
eminedo Promorvniokotnras. O Oykompocopointig Neppofaostdpatog eivor pa ekdoyr Tov OyKoTpOoGOUoL®TY,
€101KN Yo TV in silico amewkdvion Tov 6ykov Tov Wilms, o omoiog ivar o cuyvdtePog vePpikdg OYKOS GTIV TALOIKY
niwio. Avontoydnke amd péin g Opadog yo v In Silico OykoAoyia kot v In Silico latpwn Tov EITXZEY,
YHMMY, EMII, vt v emotnpovikn kabodiynon tov I. Zrapotdrkov kot v kKAvikn eronteio tov N. Graf, [o-
vemotio tov Saarland, and 10 2006 £w¢ 10 2019. O anmtePog 6100 TOL OYKOTPOGOUOIMTN KOl TV ELOIKMV 0V
ac0éveln eKO0YMV TOL Eival Vo AELITOVPYODV MG LTPTKol GOUPOVAOL Y10 EEUTOMKEVUEVT] LLTPIKT OTLLLOVPYDVTOG EVOL
digital twin yio Tov dyKO KOl TOV PUGIOAOYIKO 16TO TToL ToV TEPPdALel. QQoTOGO, Yo T0 6KOTO AVTd YPpeldleTon N
LETAPPACT] GTOV VTOAOYIOTI] TOV WUTPIKMY EGOUEVMV Y10 TO GLYKEKPLUEVO aGBeVN Kat, TAPOAO TTOV OLTO YiveTol
€0UKOAOL Y10 TO OTTEIKOVIOTIKG Oedopéva Kot To HEYEDOG Kal TO GYNIO TOV OYKOV, Ol TYHEG TMV TOPAUETPMYV €GOS0V
™G Tpooopoimang mov kabopilovv Tig TPOcOUOI0VUEVESG floAoYIKES diepyacieg dev opilovTot povooruavTo amd Ta
0TPIKE dedopéva. O oKOTOS TS TOPOVOAG EPYACING EIVAL VO OVTILETOTIGEL AVTO TO (TN A SlEPELVAOVTAG HEBOIOVE
high performance computing yia T BeAti®on ¢ andO00Tg NG LELOVOUEVIC TPOCOHOIMONG KOl TNV OTOd0TIKN
EKTEAEOT TOAMATADY TPOGOUOIDCEWDY EIKOVIKAV acBeEVOV avd euo1kd acBevn, pe Kabe eicovikd acbevi va €xet Ee-
YOPLOTY TN Y10 TNV 0O KOWOD KATAVOUT TV TOPOUETp®V €16000v. H opdda tpocopoidoemv eikovikmv acbevav
EKTEAETTIKE Y10 TPELG 0oBeveilG Tov €xouv 1OT dexbel Bepameia Kot TOL EKTPOGHOTOVY SAKPITA IGTOAOYIKE TPOPIA
KOl QVTIOTOLYEG OLASEC KIVOVVOD, TO. LATPIKG OEOOLEVO TMV OTOLMV TOPEYOVTOL OO TO TUVETIGTILOKO VOGOKOELD
tov Saarland, pe ka0g eucovikd achevn va Exel o EEY®PLOT TN Y10 TV 0O KOOV KOTUVOUT TV TUPOUUETPOV
€16600V TOV HOVTEAOL Kot TNV Tn vy v mopapetpo CKR, mov ek@ppdlel To amoTEAEGUAT TG XOPNYOVLEVIG
Oepoameiog, va Tpocappoletal yio o kabéva elkovikd actevn PEYPL TO OTOTEAEGLOTA TNG TPOGOUOIMGNG VO TOPLG-
Couv pe Ta TPUYUOTIKG amoTEAEGILOTA TOV PLGIKOD acBevn. TIpv amd TV eKTEAEGT) TV TPOCOUOIDCEDMY EIKOVIKMV
acBevav Tov vAoTolovy TV in silico KAk Tpocsappoyn g mapoapétpov CKR, to péyebog tov voxel tov Tpiodid-
OTOTOV TAEYHOTOC TPOGUPLOGTNKE Y10l TIG ELGOI0VE OV AVTLOTOLOVV o€ KABE a0evi TOV GLVOAOL JESOUEV®Y GTO
mhaiclo evog Prpatog poenetepyaciog dedopévav Tov drayepiletar to tradeoff avdivong kot K6GTOVG TG TPOGO-
poimong, EPapUOcTNKAY BEATICTONOMCELS GTOV KMOOWKA V1oL TNV 0&10moinon BEATIOUEVOY TOPWV KAl TNV TAVTOYPOVN
EKTEAEOT] VTOAOYICUAOV OTOL 01 EEQPTNHOELG OESOUEVOV TO EMITPETOVY Kol TPOYHLaTonotOnke aviilvon svactnaciog
Yo TOV EAEYYO TNG TPOETEEEPYAUTIAG TOV OEOOUEVDV E1GOO0V KOl TOL PEATIGTOTOMNUEVOL TTNYOioL KOSIKO HECH TNG
oVYKPLONG LE Tponyovueveg verified extedécelg Tpocopoidcsewy. To Bpa ntpoeneéepyaciog dedouEvaov ElGAYEL OT)-
povtucd speedup 6o ¥povo eKTELECT|G TNE TPOocopoimang (mepimov 37— 688%) kot peimon 6to memory footprint tng
ektéleong (mepimov 87 — 94%), evad éppeca Pertidvel TIg Tpoomtikég o speedup omd to frpa fertiotonoinong tov
nnyoiov Kaduka, cOUE®VO e To VOO0 Tov Amdhal, KabieT@VTEg TV IG0PPOTIN POPTOV EPYAGING TG TPOSOUOIMCNG
7o dikatn Kot AyotePo €VTovn GTO TULOTO TOV dEV OPEAOVVTAL Ao Tovg Bertiopuévoug Topovg. H Pedtiotonoin-
o1 TOV TNY0iov KOJKe eledyel speedup mepinov 16 — 24% eoTidlovTog 6TV EKTELECT] TAPIAANA®Y VTOAOYIGUDV
Y To Ywpic e€uptnoelg OedOUEVMVY TPITO CKAVAPICO TOV OAOKANPAOVEL TNV TPOGOUOIMGT GTO KVTTAPIKS EMINESO
Bromoivmhokdtrag. To televtaio Pripa g KAvikng mpocappoyng viomombnke yio 20 kot 200 ewovikodg acbe-
VELG avd PLGIKO acBEVT] TOV GUVOAOV HESOUEVAV, TOPAYOVTOC Lid SLOKPLTH KATOVOUN, ONAGOT LEGT TN KoL TUTKN
amorhion, ywo v mapdpetpo CKR yia kdOe Egympioth opdda KivdHvov Tov GuvOLoL deSOUEVMV.

AéEarg kKhewowa:  Oykompoocopolwtg, Oykonpocopoiwtg Neppopracstaopatog, Oykog tov Wilms, In silico 1o-
tpin, [HoAvkApokmt) Tpocopoioor, Digital twin, High performance computing, Valgrind, OpenMP, Ewkovucoi
acBevelg, Khvikn Tpocappoyn






Acknowledgements

With the completion of my diploma thesis, I would like to thank all the people that helped in preparing it.
First, I would like to thank the supervising professor Mr. Dimitrios Soudris, for promoting my interests throughout
my studies with the excellent work that he does in the Microprocessors and Digital Systems Lab, for trusting me
with the thesis assignment and for his support throughout our collaboration, as well as PhD candidate Dimosthenis
Masouros, who participated in the supervision, was always available to answer questions and address practical issues
and contributed with his apt observations and suggestions. Moreover, [ would like to thank Mr. Georgios Stamatakos,
research professor at the Institute of Communication and Computer Systems, who shared with me his knowledge and
enthusiasm for in silico medicine, who included me in the impeccable work he does in this field and who participated
in the thesis supervision with creative ideas and suggestions, as well as his collaborators in the In Silico Oncology
and In Silico Medicine Group, Eleni Georgiadi, Eleni Kolokotroni and Nikolaos Christodoulou, who were always
available to give advice on practical matters concerning the Oncosimulator. I would also like to thank professor
Norbert Graf and Marcel Meyerheim for their valuable contribution in preparing and sharing the patient medical
data from Saarland University Hospital, without which it would be impossible to complete this work. Finally, I
would like to thank my family and friends for always supporting me, believing in me and giving me courage.



Abstract

The Oncosimulator is a top-down discrete entity-discrete event model for multiscale cancer modeling, that
represents the tumor in silico as a 3D matrix of voxels and utilizes the «summarize and jump» strategy for the
simulation of its evolution on the cellular and tissue level of biocomplexity. The Nephroblastoma Oncosimulator
is a version of the Oncosimulator software that is specific to the Wilms’ tumor, which is the most common kidney
tumor in childhood. It was developed by members of the In Silico Oncology and In Silico Medicine Group, ICCS,
ECE, National Technical University of Athens, under the lead of G. Stamatakos and the clinical advisorship of N.
Graf, University of Saarland, from 2006 to 2019. The ultimate goal of the Oncosimulator and its neoplastic disease
specific versions is to act as medical advisors for personalized medicine by creating a digital twin for the tumor
and its normal tissue microenvironment. However, for that purpose the patient-specific medical data need to be
translated in silico and, even though this is a trivial task when the imaging data and the size and shape of the tumor
are considered, the values for the simulation input parameters that define the simulated biologic processes are not
unambiguously derived. The purpose of the present work is to address this issue by exploring high performance
computing methods for the performance enhancement of a single simulation and the efficient performance of a
multitude of virtual patient simulations for each physical patient, with each virtual patient having a distinct value
for the joint distribution of the simulation input parameters. The cluster of virtual patient simulations were executed
for three already treated patients of distinct histologic profiles and corresponding risk groups, whose medical data
were provided by the Saarland University Hospital, with each virtual patient being assigned a distinct value for the
joint distribution of the simulation input parameters and the cell kill ratio parameter, which expresses the effects of
the administered therapy, being explored for each virtual patient until the simulation outcomes matched the actual
patient outcomes. Prior to the execution of the cluster of virtual patient executions that implement the in silico
clinical adaptation of the C'K R parameter, the size of the voxel in the 3D tumor matrix was adjusted for the inputs
that correspond to each dataset patient in the context of a data preprocessing step that addresses the simulation
resolution and costs tradeoff problem, code optimizations were applied for the utilization of improved resources
and the concurrent execution of computations when the data dependencies allow it and sensitivity analysis was
performed for the verification of the preprocessed input data and the optimized source code via the comparison
to predecessor verified simulation executions. The data preprocessing step introduces significant speedup in the
simulation execution time (approximately 37 — 688%) and memory footprint reduction of the simulation execution
(approximately 87—94%), while indirectly improving the speedup potential of the code optimization step according to
Amdhal’s law by rendering the simulation workload balance more fair and less intense on the parts that do not benefit
from the improved resources. The source code optimization introduces a speedup of approximately 16 — 24% by
focusing on performing concurrent computations for the data dependencies free third simulation scan that concludes
the simulation on the cellular level of biocomplexity. The final clinical adaptation step was perfomed for 20 and 200
virtual patients for each dataset patient, producing a distinct distribution, i.e. mean value and standard deviation, for
the C'K R parameter for each distinct risk group of the patient dataset.

Keywords: Oncosimulator, Nephroblastoma Oncosimulator, Wilms’ tumor, In silico medicine, Multiscale cancer
modeling, Digital twin, High performance computing, Valgrind, OpenMP, Virtual patients, Clinical adaptation






Extevig Ilepiinyn

Ewayoym

Ti gival N TOMKMPOK®OTY] TPOGOROIMGT TS 060EVELNS TOV KOPKIVO;

O kapkivog givat pio VEOTAOGUATIKT 0oOEVELD, e TNV £VVOLa OTL GUVOOEVETAL OO TOV OVMLOAO KOl OVEEEAEY-
KTO TOAAOTAQGIOGUO TOV KLTTAPWYV, 0 000G Eival YvmGTOg e TV ovopacio veomiacpa. To vedmiaoua givat to
OTOTEAEGLOL TNG VEOTANGIOG, SNAAST| TNE At KOVoD dpAcTC PLOAOYIKMOVY SlEPYAGLOY TOV 081 YOVV GTOV aVEEELEYKTO
TOAATAOGIOG O TV KVTTApV. Ta veorAdopoto cuvifmg dnpovpyody 6yKovg, ot omoiot ivar gite kalonbeig eite
KaKoN0€1g. XtV TEPITTOOT TOV KAPKIVOL, 01 OYKOL Elval KAKONOELS Kot vTapyEL KIivouvog Y10, LETAGTUCT, ONACOT] Yo
N dNpovpyio OYKOV KoL 6€ GAAN GMUELD TOV OPYOVIGUOD TEPA OO TNV £0TIO EPPAVIOT|G TOV TPMTOTAHOVG OYKOV.

O1 TapdyovTeg TOL TPOKOAOVV THV EUPAVIOT TOV KAPKIVOD ival TOGO YEVETIKOL 0G0 Kol TEPIPBUAAOVTIKOL Kot
eMOPOHY GTOVG PLOAOYIKOVG PNYAVIGLOVG TOV OPYAVIGHOD 00NYMVTOS OTH VEOTAAGCIM, OTOV aveEEAEYKTO TOAAM-
TAOGLOOUO TOV KVTTAP®V Kol 6T SNpovpyia OyK®v. X pio TpMTN EXPAVEINKT TPOGEYYICT, TO PULVOLEVO TOV
KOPKivoy apopd oTa, KOTTOPO Kol ToVg 16TovG oL ToArlaniacidalovtotl aveééleykta. [Moapodia avtd, o kapKivog &i-
vat €vo TEPITAOKO PALVOLEVO, TO OTTOI0 APOPA GTN] GUVOAIKT AELTOVPYIO TOV OPYOVIGLOV, GTO. LOKPOLOPLOL KoL GTO,
OTLLOTOL TTOV LETOPEPOVTOL GE OLTOV, KAOMG KOl GTO GOVOAD TMV YUPOUKTNPICTIKOV KOl JUVOTOTHTM®V TOV OTOKTOHV
01 OYKOL Y10l TO GLVEYT KOl SUVOLUKO TOALATAOGIOOUO TOVG, To omoia eivat yvwotd ot BipAoypagio wg hallmarks
of cancer.

SOUTEPUCUATIKA, O KOpKIvog glvat £va TEPITAOKO QALVOLEVO KOL T YOPUKTPLOTIKA TOV, TO 001l 0dNyovv G
duvapkn veomhaoia, EmdpovV 6Tovg fLOA0YIKODS UNYAVIGHOVS TOV OPYOVIGUOD GE JLOPOPETIKG eminedo, Plomolv-
TAoKOTNTOG. Ta d1apopeTIKG aVTd eninedo PLomMOAVTAOKOTNTOG OTO OTOl0, ELPAVILETOL TO PALVOUEVO TOV KOPKIVOD
aPOPOVY TOGO GTI YMPIKN OG0 Kot 6T Xpovikn kKAipoko. Kabe eninedo g kAipakag cuvtiBetor amd povadeg mov
VKoLV 6TO YopmAdTEPO eminedo. o mapddetypa, n xopikn KApoka Eekvaetl amod ta dTopa, Tpoympdel ot Lopia,
070, KOTTOPW, GTOVG IGTOVS KOl TEAKA 6T0L Opyava. AKOHa, 1) 00ENGT TOL EMITESOL OTT Y®PIKN KAILOKE, GUVOSEVETOL
Katd Kavovo amd adHENCT) TOV ETUTEIOV KAl TN XPOVIKN KAILOKA, OO nsec Kol msec 6 dEVTEPOAENTA, AENTE, MPES,
UEPES, UNVEG K.0.K., KaBdG 0 puOpOg e Tov omoio eEgAicoovTal Ta floAoykd @awvopeve peidvetat. [ mapaderyuo,
T KOTTAPO TOAAATAOGIALOVTOL EKTEADVTOAG TOV KVTTAPIKO KUKAO, 0 0T010¢ KOTAANYEL 6T Sl0ipEST TOV KLTTAPOL
o€ Vo BuyaTpikd KOTTOPO KOl ¥PEIALEToL KATOIEG MPES Y0 VO OAOKANPwOEL, Evid €vag 0yKog pmopel va ypetdleTon
HéPEG N KoL LVeES Yo va SimAaciaotel o€ péyebog, avdioya e Tov TOTO Kot TNV 16TOA0YIO TOL.

O pOAOG TNG TOAVKALOK®THG TPOCOUOIMOTS TG aoBEveilag Tov Kapkivov gival o ET0pKNg cuVOLAGUOS TOV
YOPOYPOVIKOV KAMUAK®V KOl 1 KATAAANAT EVEOUATOON TOV EMTEOOV TOVG TOL YopakTNPilovy ta Ploloyikd ¢ot-
VOLEVO IOV OLPOPOVV GTO POLVOUEVO TNG ACHEVELNG TOV KAPKIVOL, Ie OKOTO TNV HOONUATIKY LOVIEAOTOINGT TOV
QoVOLEVOL Kat TeEMKE TV in silico Tpocopoimon Tov, SNAadt TNV TPOGOLOIMGT| TOV GTOV VITOAOYLoTY. Ta pLovTEéAQ
NG TOAVKALOK®OTNG TPOCOOIMONG TOV KOPKIVOL dlakpivovTal 6 cuveyn Kal O10KpLTd Le BAcT To Lobnuoatikd ep-
YOAEIQ TOL YPNGILOTOLOVV Y10 T HoVTEAOTOINGT, KAO®DC Kot 6€ bottom-up Kot top-down avaroya pe to av EeKvovy
TNV TPOGOWOI®ON 0d TO YAUNAOTEPO 1) TO YNADTEPO EMIMEDO TG WPOYPOVIKNG KATLOKOC.

Toa cuveyn povtéda ypnoiponolovy peboddovg amod T LoBNUATIKY 0VIAVGT|, £TCL OCTE VO LLOVTEAOTOLGOVV TO
Broroykd patvopevo Le Eva GUOTILO A0 S10POPIKES 1] OLOKAN POTIKEG EEIOMOELG, EVD T S10KPITA LOVTEAD EKUETOA-
AevdovTal To YeYovog 0Tt o1 frodoyikéc ovtdtnteg peaviloviot oe dtaxpltd kBavta (.. KOTTOPa) Kot YP1GLLOTOOVV



dtakpitd epyaieio kot amevdeiog adyopiOuikn Aoy yio ™ podnpatiky povtehonoinon. ‘Etot, ta dtokpitd poviéla
glval KaAOTEPO TPOGUPLOGHEVE GTT SLAKPLTH VO™ TOL £XOLV 01 TPAEEIS GTOV VTTOAOYIOTH, EVM TA. GLVEYT] LOVTEAQ
TPETMEL VO LETAPPUOTOVV pe aptBuntikég pebddovg yo tnv vAomoinom trg in silico Tpocopoimong.

To bottom-up povtéha xpNOLLOTOOVY TNV 101 VTAPYOLGA a Priori VMG TOL VIAPYEL GYETIKA e TO fLoA0-
YK QAIVOLEVO IOV TTPOCOHOLOVOVTAL, LE GKOTTO T1| OMUtovpyio VOGS TAPOVS LOVIELOL TO 0010 amoTeLEiTAL OO
eMPUEPOVG components, kaBéva and to omoia ival VTELOLVO YO TN HOVTIEAOTOINOT HiOG CLYKEKPIULEVIC KOl KOAL
optouévng depyaociag. ‘Etot, n mpoopoioon oe éva cuykekpipévo eninedo Promolvmhokdrag covvtifetal and to
YOULMAOTEPO. EMITES QL TG YOPOYPOVIKNG KApoKoC. Avtifeta, Ta top-down POVTELD XPTGLLOTOLOVV TNV 151 VITAPYOV-
00, YVOOT LOVo og KouPukd onpeia yio tn Oepedimon toug, eved aglomotodv katd facn Ty KAk eumepia. ['a to
OKOTO AVTO, dEXOVTOL G EIGOS0 ITPIKA dESOUEVA, EEKIVOVV TIV TPOCOUOI®MAN 0t TO YNAOTEPO EMimedo Promoiv-
TAOKOTNTOG KOl GLYVA YPTCLLOTOLOVY T GTPOTNYIKH «summarize and jumpy, pe fAcn TV omoia yiveTot Evo « AL
OTO EMOUEVO EMIMEDO TNG TPOGOUOIMONG APOV TPATO YIVEL 1] «GOVOYN» GTO TPEYOV EMIMEDO, Y1 TIG LETAPACEIG OTN
YDOPOYPOVIKY KAILOKO BLOTOAVTAOKOTITOG.

Ti eivan 0 Oykomrpocopor®tic Ne@poPfracTORATOC;

O Oykompocopolmtig eivar £va d1akpttd top-down LOVTELO Y10 TOAMDKALLOK®TY TPOCOLOIMON TNG 0oOEVELNG
Tov kapkivov. [To cuykekpyéva, a&lonolel To 1Tpikd dedopéva o ameikovilouy Tov 0YKo gvOg achevn Tov TacyEL
OO KATO10 VEOTTANGLLOTIKT 0GOEVEL, £TGL DOTE VO OVTIGTOLYIGEL TO PUGIKO OYKO G £va TPLOOAGTOTO TAEYILO OO
voxels kot va Tpocopoldoet T xpovikn tov e£EMEN aTov VTOAOYIGTH G€ i GEPA 0o SLKPLTE XPOVIKE PrpaTa.
O Oykompoocopotwtg yapoktnpiletor og discrete entity-discrete event povtélo, agol anekovilel T0 PVOIKO OYKO
o€ éva Tp1odldoTato MAEYHa amd dtokpitd voxels kot Tpocopoidvel T ypovikn Tov e£EMEN oe drokpitd frpata.
Axdpo, amoteret éva top-down povtéro, aol a&lomotel TV KAVIKY EUmELpio Y1 CILOTOLDVTOG T, IATPIKA Oedopéva
ToV acbevi), evd ypnoyomotel T «summarize and jump» GTPOTNYIKY Yot TNV TPOGOUOIMOT) GTO KLTTOUPIKO KOl IGTIKO
eNinedo PromoAvTAOKOTNTOG.

To veppoPrdotopa, To yvaotd og dykog Tov Wilms, anotelel Tov mo cuviin tpotonadn veppikd 6yKo g
ootk g nAkiag. H eppdvion tov opeiletor kupimg o€ yeEVETIKOUE TAPAYOVTESG, OTTMG LETAALAEELS ota yoviola WTI,
WT2, WTX, FWT-1. 'Etot, cuyva o dykoc tov Wilms epgavileton pali pe kdmoto yevetikd cuvopopo, m.y. WAGR
1 Denys-Drash, gvé 1 omopadikn eppdvion tng vocou gival o orndvia. Axodpa, o 6ykog tov Wilms wpokadeiton
OO TNV AVOUOAN AVATTLUEN TOL LETOVEPPOYOVOL PBAOGTALATOSG, TO 0TOi0 d€xeTALl EMONAOKY], PAOCTLOTIKY Kot
oTpouatikn dtapoporoinon. 'Etot, o mpokimtov 0yKog Pmopel va EYEL LIKTH TPIOOCIKT 1 S1QUCIKY 16TOAOYIN, 1] KOt
HOVOQUGIKT 1otoAoyio. H mo emkivouvn amd Tig Tpelg Katnyopieg 16to0 eivar  PAACTNHOTIKY, EVO pio EEQPETIKA
duopevig 1otoAoyia givar 1 avamAaoTikn, 1 omoio yopakTnpiletor amd SlevPLVOT| Kol VIEPYPOUATIOHO TOV TUPTIVOV
TOV KUTTAPOV. AKOLA, 1| TPOSPOAN Kot TV 600 vepp®dV yopaktnpiletal g dipepng EUTAOKT, Evd dtav eppavifovtat
€0TIEG OYKMV KOl GE AN OTUEID TOL CAOUATOG TEPO TOV VEPPDV 1) VOGOG Yopaktnpiletar g petactatikny. H vocog
KOTOTAGGETOL KOTA T 01dyvmon o€ éva amd mévie oTdold, avaloya TG TPosPaALOUEVES OVATOUIKES TEPLOYEG, OV
elvar povopepnc M dipepns Kot av ivan LETACTATIKN 1) O)L.

O Oykomnpocopotwtg Neppofractdpotoc eival n ekdoyn Tov OyKOTpoGopHolmT oL ivart eEE10KELIEVN Y10
v in silico anewdvion Tov dykov Tov Wilms. Avoantoydnke amd péin g Opddag yio v In Silico Oykoloyia kot
v In Silico latpun tov EINEEY, SHMMY, EMII, vt6 v entotnpovikn kabodnynon tov I Zropatdiov kot v
Khvikn emonteio Tov N. Graf, [Tavemotipio tov Saarland, amd to 2006 £émg to 2019. ITo cvykekpuéva, ¥p1oIuLo-
TOLEL TOL LULTPIKA OTMEIKOVIOTIKA OEG0UEVE EVOG GLYKEKPIUEVOL aiaBevn, dnpovpyel éva digital twin yio Tov 6yko oTov
VTOAOYIGTY] KOl TPOCOLOIMVEL T Xpovikn Tov eEEMEN in silico o€ dtakprtd ypovikd Prpata. Eedcov a&lomoiet ta
TP dESOUEVH EVOG GUYKEKPLUEVOD aGBeVT, pmopel va mpoPAéyel Ty e£EMEN g acBévelag yio avutdv Tov aobevn
KoL £T01 VO TPOSOEPEL TEMKA LN PETieg eEatopkevévng tTptkns. [lapdio mov to veppoPrdotmpa yopaktnpileton
amod eV YEVEL ELVOTKN TPOYVWOT, 1 eEEMEN NG VOGOUL givar o emkivouvn dtav 1) 1oToloyia ival SLCUEVS Kot OGO
TO 6TAO10 TG VOGOV ovEAveTOL. AKOUM, 1 ETAOYY TOL GYESIOL YOl TNV OVTILETOMION TNG VOGOL givol kpioyun, Oyt
povo yia tnv emPimon tov achevn, 0AAG Kol Y10 T0 GUVOAKA TOV KAWVIKE amoTteAéspaTa, TNV ThavOTNTo VTOTPOTNG
KoL TIG TOPEVEPYELES, BpoyvmpdOeses Kot LoKpOTpOOEGLES.



"Eto1, 0 porog tov Oykompocopoint Ne@poPAactdpatog yio Tnv TpoPAieyn g e£EMENG TG VOGO Yo TO
GLYKEKPIUEVO aGBEVT] Kol GTO TAAIGIO SLOPOPETIKMY BepAmELTIKOY TAAV®VY givorl eEalpeTiKd oNUOVTIKOS, £TCL M-
OTE VO EKTILATOL TO TAGVO TTOL gival T OEEALO 68 KABE KAVIKN Tepint@on yoptotd. [a mapdderypo, Evo omAd
KAMVIKS epdtnpa wov Ba propovase va anavincel o Oykorpocopolowtg NeppoPAactdpotog sivot av ival yxpnotpo
Y0 TO GLYKEKPIUEVO acBevn vo dexBel TpoeyyelpntTikn ynuetodepomneio Tpv TV eXEUPAOT] APAIPESNS TOV OYKOV.
H zmpoeyyeipnrtikn ynpeobepaneio ivar 6nwg opiletar amd to kabiepopévo SIOP tpwtdrkorro kot mepthapPdvet
YOopNyNo™ dVO YNUEWOEPUTEVTIKOV QAPUAK®OV, TNG AKTIVOLVKIVNG Kat TS Bivkpiotivig, og éva didotna 1€660-
pov gfdopadmv. Av 1 TpoeyyelpNTIKN ynueobepaneio Tpokaiel EXOPKN GUikpVVOT TOV OYKOL, TOTE £XEL VOTLLOL 1)
EPUPLOYN TNG, AAMMG LOVO TPOKULEl TapevEPYELEG Kot KaBvoTepel TV mpdodo g Bepamneiag.

H avaykn ya yp1o1 ToALATADV ELKOVIK®OV 0.60EVAOY avd puo1ko a.60gvi}, 0 pdrog Tov high performance
computing Kol 0 6KOTOS VTG TNG EPYOTiog

Yvumepoacpatikd, o OyKorpocopolotng dnuovpyet éva digital twin yio Tov 0yKo Kot TOV KOVOVIKO 16TO TOL
tov tepIPaALeL, €101 MGTE va pmopel vo Tpocopolwdel in silico 1 ypovikni Tov eEEMEN, 010 TAMIG10 dLopdpwV Bepa-
TEVTIKOV TAAV®V 1 0KOUa, Kot Yio eAevBepn avamtuén. o 1o okomd avtd, alomolovvTal To ITPLKA dEGOUEVA TOV
GLYKEKPLEVOL aGBEVT| TOL TAGKEL OO KATO0, VEOTAAGLOTIKY VOGO Kot TEMKA 0 OYKOTPOGOHOIWTHG LTOPEL VAL Y pT-
oomoinfel og epyaieio yio e£ATOUIKELIEVT LOTPIKN KoL VO AELITOVPYEL WG GOUPOVAOG TOV TPOTEIVEL TNV KOADTEPN
OepOmELTIKY AVTIUETMMION Y10, TOV EKAGTOTE 0obevn.

INo va etvat OU®¢ anTd duvatod, TPEMEL VAL YIVEL ATOTELECUATIKT KOl AKPING LETAPPOAOT TOV LATPIKMDY 0£00-
UEV@V TOv 0.60gVH 6TOV VTOAOYIGT Kot G€ popen TTov propel vo aloronbel and tov Oykompocopuolmth. Avti M
dtodikacio eivat g0KoAN OGOV 0POpPA 6T LOPPOAOYID TOL GYKOV KOl OTO AEIKOVIOTIKG dEJ0UEVE, Ta omoin kafo-
pilovv Vv apyKomoinoT ToV TPIoOIACTATOV TAEYUATOG TOL TUPLGTAVEL in silico To PLOKO YKo KOl TOV KOVOVIKO
1016 oV TOV MEPPAAAEL. Q0TOGO, 1 TPOOJOG TG TPOCOOIwONS e€apTaTal amd TiG PLOAOYIKES dlepyacieg TOL TPO-
COLOLOVOVTAL, 01 0Ttoieg eEeMiooovtal Pe BAoT TiG TIHEG TOV TAPAUETPOV LGOS0V TOL LOVTEAOV, Ol 0Toieg GuVNBmG
dev KaBopilovtar dpeca amd ta wtpkd dedopéva. I'ia mapddetypio, ot YPoVIKEG GTIYLES XOPNYNONG TOV QUPUAK®V
TOV TPOGOUOLOVUEVOL YT LE0BEpanEVTIKOD TAGVOL KoBopilovTal €0KOAN, OAAG TO TOGOOTO TOV KLTTUPMY TOL YTL-
néiel 1 Bepameio, TO TOGOGTO TOV KLTTAP®Y OV EKTEAOVY GUUUETPIKY] S10{PECT] KOl TO TOGOGTO TMV KLTTAPWOV TOV
ELGEPYOVTOL OTIV KOUMUEVT PACT EKTOC TOV KUTTAPLKOV KOKAOL, Ta omtoia ekppalovral amo tig mapapétpovs C K R,
Py kot Pyjeep avtioToryo, dev kabopifovron povoonpavta amd to 1tpikd dedopévae Tov acbevn.

H avabeon Tindv oTig TapapéTpoug Tov LOVTEAOD E1GAYEL, AOTOV, Lo, afefatdtnta OGOV aQopa 6TV EKTE-
AEGT TTPOGOLOIDCEMYV TOV TOPLGTAVOLY Kol TPOPAETOVV KATAAANAL TNV KAWVIKN Topeia Tov exdotote achevr. Ta
VO OVTILETOTLOTEL 0VTO TO TPOPANLE, Eivol avoyKaio 1 (PO TOAATADY EIKOVIKOV acHEVOV avd Quoikd oobe-
v1i. TTo cvykekpipéva, ekteLoOVTOL TOALOTAEG TTPOGOUOIDGELS Yo KabE puoikd acbevn, pe kGOe Tpocopoimon va
OVTIOTOLYEL 0€ SL0KPLTH TN YL TV OO KOO KOTOVOUN TOV TAPUUETPOV E16OO0V TOV LOVTEAOV oV dev kabo-
pilovtol povooruovto amd To 1Tpikd dedopéva tov acbevi. ‘Etol, dnuovpyodvrol moAroi gucovikoi acheveic yio
KdBe uoko acBevr, KaBEVOC amd TOVG 0TOI0VE EKTPOCHOTEL Lia SPOPETIKN EKGOYT TOL PLOAOYIKOD GLGTAOTOC
KOl €V YEVEL S10POPETIKEG TPOPAEYELG Kot OTOTELEGHOTO. AELOAOYDVOTS TO OMOTEAEGUATO TOV EIKOVIKOV 0.60gvHV
oo KOO, EKTEAMVTAG Y10 TAPASELY LA KATAAANAN GTATIGTIKY AVAALGT TAV® GE OVTA, EMTVYXAVETOL L0l OVTITPO-
oOTELTIKY in silico avamapdotacn Tov PLGIKOD Achevi Kot TG KAVIKNG TOL EIKOVOG Kot Topeiog. Ao, EpOcGOV
VILAPYEL GTOYOG Yol ¥p1ioN Tov OYKOTPOGOUOIMTH GTNV KAWVIKT TPAKTIKY, TPETEL TO GUGTNO, T®V TPOGOLUOLDCEMY
EIKOVIK®OV ac0EVAOY VO, IKAVOTOIEL KATOL0. 0VGTNPA KPLTHPLOL 0mOS06NC, £TGL MOTE VO TAPEXOVTOL TO, ATOTEAEGLOTO
0€ TPAYRATIKO POV, YEYOVOG oV LIToYpoupilel To poro tov high performance computing.

e avt TV epyacia, Eywve egpevvnon high performance computing pebddmv yio tov Oykompocopolwtn Ne-
@poPracTdpaTog, Yio T PeAtion g anddoomng TG ekTELEON S HiOG LELOVOUEVIC TPOCOUOIMONG, GAAG KO Yo TNV
OTOOOTIKT) EKTELECT] TOALUTAMY TPOGOUOIDGEMY EKOVIKMOV acBevmv avd guoikd acbevi. 'Encita, 1 apyltektovikn
ekTéLEOTG LOJIKOY TPOGOUOIDGEMY A&10TOTONKE Y10, TNV KAVIKT TPOGOPLOYN TOV TAPAUETPOV ELGOSOV TOV HOVTE-
A0V, £T01 OoTE VO BpeBohv ot TYEC TAPUUETPOV TOV TOPLOTAVOLV TTLO KATAAANAN TNV KAWVIKY| EIKOVO TOV QUCIK®OV
ac0evdv 6ToV VTOAOYIOTY.



[To ouykexpipéva, To cuVOLo dedopévev amoteleital amd Tpelg acbeveis, ol omoiot Exovv 1101 deyOel ynpetoe-
POTTELN KO (ELPOVPYIKT QPAIPEST] TOV OYKOV KOl T LOTPIKE OEGOUEVO TV OTOLDV, TOV TEPIAUUPAVOLV TANPOPOPIES
OYETIKA LLE TO TPOEYYELPTTIKO XNUELODEPUTEVLTIKO TAGVO OV EPAPUOCTNKE, OMEIKOVIOTIKA dESOUEVO TPV KOl LETA
TNV EQUPLOYY| TOV Kol 16TOTOO0A0YIKA dedopéva OIS TPOKVTTOVY HETA OO T XEPOVPYIKT apaipeon Kot Proyio
TOV OYKOV, TPOGPEPOVTAL GO TO TUVETIGTNUIAKO VOGOKOUEL0 Tov Saarland. Akoua, kabévag amd Toug Tpel; aobe-
VELG TOL GLVOAOL JESOUEV®V EKTTPOCMOTEL £val d10KPITO 16TOTABOAOYIKO TPOPIA KAl avTIGTOLYN OHASH KIVOUVOL Kot
1N KAMVIKY Ttpocsappoyn éywe yio v moapdpetpo CKR, n omoia kabopilel 10 T0G0GTO TOV KVTTAP®Y TOV XTLIAEL
N Oepomeio Kol ekPpAlel £TG1 TNV ATOTEAEGUATIKOTNTO TNG, UE GTOYO TO OMOTEAEGIOTO TG TTPOGOLOIMOTG VO TPO-
o€YYilovv ETOPKMG TO TPAYUOTIKG KAVIKA amoteléopato. 'ETol, ekTeAdvVTog KATAAANAN OTOTIGTIKY AVAALGT GTO
oUVOLO TMV TPOGOUOIDGEDY EIKOVIKOV 0GOEVOY TNG KAWVIKNG TPOGUPLOYNS, TPOKVITEL 1 KOTOVOUN THOvVOTN TG
¢ mopapétpov CKR yia kébe pia amd Tig Tpelg opddeg Kivdhvou Tov EKTPOSHOTOVVINL GTO GUVOAO dES0UEVMV, G
Cevydpt péong TIUNG Ko TUTIKNAG OmOKAIoNG.

Ocopntikd Yropabdpo

O KuTTOPIKOS KOKAOS OG TO BLOL0YIKO GUIVOPEVO TOV TPOGOUOLMDVETUL GTO KVTTUPIKO EMITESO

Ka0e gukapomtikod KOTTapo eKTELE] TOV KLTTAPIKO KOKAO Y10, TOV TOAAATANGIAGHO TOV. O KuTTapikdg KOKAOG
amoteleitan amd téocepig acels, T G, S, Ga xar M. O edoelg G1 kot Ga, Yvootég g gap phases, yopoKtn-
pilovtat amd éviovn Proynkn dpacTtnpldTNTO Kot TPOETOUALOVV TO KUTTAPO Yia Tig pdoels S kot M avtictouyo.
H @don S eivar n pdon cvvBeong tov DNA, 60v 00G106TIKAE YIVETOL 1) AVTLYPOPT TOV YPOUOCOUATOV TOV, WE
OTOTELEG L0 KAOE YpOUOGOUA VO 0mtoTeEAEITAL ad 000 adep@ic ypopatidec. H pdon M eivar n edon g pitwong,
Kot TNV omoia yiveTal 1 Tupnvikn StipeoT, 0 Sla®PIoUOS TV YPOUOCOUAT®V TOL KLTTAPOL GE VO TOVOLOIOTLTA
GUVOAQ KO TEAIKA 1 S10{pEST] TOL KVTTAPOL Ge VO TavopoldTLTTA, KOTTUPA TTOVL popdlovtal IGO0V To GLGTATIKA
TOL YOVIKOU KLTTApov. 'ETol, 0AokAnpdvovtag Tov KUTTaptkod KUKAO, TO EVKOPVMOTIKO KUTTAPO TOAAUTANGIA ETON
pécm g dwaipeong tov ag dvo wavopoldtuma BuyaTpikd KOTTOPO.

O xvtTop1Kog KOKAOG givar pio 6e1pd and avotnpd eleyyoLeves PloroyikeS dlepyaocies kot YEyovoTa, To 0ol
pvOuilovtor pe Paon éva dSvvapikd dIKTLO OO LOKPOUOPLO KO CLOTO OV HETOPEPOVTAL GTOV OpYuviopo. o
napdderypa, N HeTdPacn and T pio AcN TOV KLTTUPIKOD KOKAOL 6TV endpevn yivetar pe Paorn t dnpovpyia
deopdv omd e101kég mpwteiveg mov ovoudlovtal cyclins, ot onoieg gvepyomolovy €10tk Evlvpa mov ovopdaloviot
CDKs (cyclin-dependent kinases). Avtdg 0 avotnpog EAEYYO0G TG OMOTNG OEE0Y®YNE TOV KLTTOPIKOD KOKAOL givat
eEaPETIKA oNUAVTIKOS, KOOMG 1 dtotapayr] TOL KLTTOPUKOD KOKAOL propel va TpokaAEcel TaBOAOYIKES KOTAGTAGELS,
Om®G gival  veomAaoia, 0 aveEEAEYKTOC KUTTAPIKOC TOAAUTAAGIOGIOC KOt 1) ELGAVICT) TG AGOEVELNG TOL KOPKivoL.

[No avt6 10 AdY0, VIEdpPYOVY Kamowa checkpoints, éva cHvodo KplTnpiY TOL APOPOVV GE GUYKEKPIUEVE OTLLELN
™G €EEMENG TOV KLTTOPLKOD KUKAOL Kot BePatdvouy 6Tt avt ovvtoviletal cmotd. ‘Eva moAd onuavtikd checkpoint
a@opd otn edon G otV apyn TOL KLTTUPIKOD KOKAOL Kot EAEYYEL OTL LTTAPYOLY O KATAAANAEG GLUVONKES YO0 TNV
avAmTuEN TOL KLTTAPOL, T.Y. OPEMTIKA CLOTATIKA Kol KATUAANAOL TAPAYOVTEG AVATTVENG. AV TANPOOVTAL OVTEG
ot ovvOnkeg, 10 KOTTAPO cuveyilel 6T PAoN .S Kot dEGUELETAL VO TOALOTANGLOGTEL OAOKANPMVOVTOG TOV KUTTO-
pkd KOKL0. AAMDC, eloépyeTal otV Koluduevn edon Gg eKTtdC TOL KLTTUPIKOD KOKAOV, 01ov dtatnpel To poOAO
oV OAAG dev moAAaTAaGIALETAL, EVD EVOEXETOL VO E1GENDEL EOVE GTOV KUTTOPIKO KOKAO and T @dorn G1, EpOGOV
OTOKOTAGTOOOVV 01 amapaiTnTEG CLVONKES KOt TAPAYOVTEG AVATTVUENC.

O OyKompocoUoITHG EKTEAEL TNV TPOCOLOIMON GTO KLTTAPIKO EMINESO e PAOT TO KLTTAPOKIVITIKO S1iypoLpL-
pa, o omoio mepthapPavel Eva GOVOLO amd TEMEPUCUEVES KATAGTACELS, Ol 0moieg ek@pAlovV BroAoyikés KATOoTA-
oe1g/depyacieg Tov kKutTapov. [To cuykekpyéva, vAomotel Tig peTafAcels LeTaED AVTMV TV KATAGTAGE®V e Baon
TIG TIHEG TOV TAPOUETPAOV E1GAOS0V TOV LOVTEAOL KOl LE AVTO TOV TPOTO TPOGOUOLOVEL TNV eEEMEN TV Blodoyik®dv
QUVOUEVOV GTO KLTTOPLKO Minedo. Ol KATUGTAGELS TOV KUTTOPOKIVITIKOD SLOYPAULOTOC APpOpOvV OTIC PACELS €-
VTOG KOl EKTOC TOV KLTTOPIKOD KOKAOV, TNV avBOpUnT amOTT®GN 1] VEKPOGCT TOL EVOEXETAL VO, DTTOGTEL KATO10
KOTTOPO, oTNV €E0AO0PEVOT TOV KLTTAP®Y amd TN YOPNYoOUEVT| Oepameio, 6TV AGVUUETPN SL0HPEST] TOV TPOKAAEL
TN OMLOVPYIO KUTTAP®V TTOV EKTEAOVV TOV KVTTOPIKO KUKAO Kol TOAAATAAGIALOVTOL TTETEPUCUEVO TANDOC POpHV



(LIMP cells), k.Am. Ot mapdperpotl Tov poviélov kabopilovv v vAomoinon Tv peTafAcey Tov Staypapulatoc,
OOV OVTEG O€ YIVOVTOL LLE VTIETEPLUVIGTIKO TPOTO.

H oporoyia Tov vrepmivaka kot 0 aryopiOpog Tov Oykompocopormt

Onwg avapépOnke mponyovpévag, o OyKoTpocoUoI®TS OVTIGTOLYILEL TO PLGIKO GYKO KOl TOV KAVOVIKO 1GTO
7ov ToV TEPIPAAAEL oe Eva TpiodidioTato ALy o omd voxels. Kdbe voxel tov tpiodidotaton mAéypotog katalappfdver
pio SaKplTh TEPLOYN OTO TPLEOIAGTATO YMPO, Yid avTd T voxels ovopdlovtal aAM®MS Kol YEOUETPIKA KOTTAPA.
Kabe yeopetpkd xotTopo mepikieict va nAndog omd Proroykd kottapa. Oco peyoddtepo gival to péyebog tov
YEDOUETPIKOD KLTTAPOV, TOGO LEYOAVTEPN E€IVOL KOL 1] YEMUETPIKT TEPLOYT] TOV KOTAAQLUPAVEL KAl GUVETMG KOl TO
TA00¢ TV PLOAOYIKOV KUTTAP®V OV TEPIEXEL, LTOBETOVTAG OTL 1] TVKVOTNTO TV PLOAOYIKGOV KVTTAP®V GTO YHPO
elvar otafepn. Méoa og KB YemUeTPIKd KOTTOPO, TO PLOAOYIKA KOTTOPO EIVOL TEPAUTEP® OPYOVOUEVEH OE KAAGELG
eodvvapiog, pe Kabe KAAoM va avTioTolyEl og pio amd TIG KOTOOTACELS TOV KUTTOPOKIVITIKOD SorypaLpLLoToS.

"Eto1, o1 petaPaoelg Tov KuTTopoKivnTikoy S10ypapatog oV LAOTOlEL 0 OYKOTPOGOUOIMTHG Y10 TV TPOGO-
LOi®moT 0TO KLTTOPIKO EMIMEDO, EKTEAOVVTOL OO KAAGELS IGOSVVOING KVTTAP®VY Kot OYL O HELOVOLEVO PLOAOYIKA
kotTopa. H poviehonoinon g mopdotacng Tov 0YKOL ®¢ £Va TPIGOLAGTATO TAEYLLO A0 YEOMUETPIKO KOTTOPA, KAOE
éva 0o 10, 0moio TEPLEYEL EVa, TAN00G 0o Plodoyikd KOHTTOPE TO 07010 EIVOL 0PYAVOUEVE GE KAUGELS IGOSVVOUING, Yi-
vetat pe ) Pondeta tng oporoyiag tov vaepmivaxo. H avapopd og kdbe kKAAGT 100dvvaiog, OnAadT G GTOLYELDON
LOVAO TOL GUGTHUATOG, YivETaL e PACT) TO YEOUETPIKO KOTTAPO GTO OTOI0 OVTH AVAKEL, ONAOOT TIG GUVTETAYUEVES
x, Y, z, he Pdomn ™ ypovikn oTiyun t, KM Kol TNV EAoT/KOTAGTACT TOV KLTTOUPOKIVITIKOD dL0YPALILOTOC P TOL
EKTTPOCOTEL.

O OyKoTpoGOUOI®TH TPOGOUOUDVEL TN XPOVIKT EEEMEN TOV YKoV o€ drakpiTd ypovikd Prpata. I'a avtd to
oKomd, epappolel pia cepd omd dradoyKd oKOVOPIGUATA GTO TPIGOAGTATO TALYLLO TOV TOPLOTAVEL TOV OYKO in
silico. AVTA TO GKOVOPIGLOTO AEITOVPYOVV MG TEAEGTES TTOL OPOVV TAV® GTO TPLOIAGTUTO TivaKa amd voxels Kot
étol tov petaoynuotilovv. To mpdTO GKOVAPIGUE TOL AAYOPIOUOL aPOPE GTNV OPYIKOTOINGN TOV TPIGOIIGTUTOV
TAEYUATOG e BAON T ATEIKOVIOTIKG, OEGOUEVO TOV EKACTOTE 0l0OEVT Kol EKTEAEITOL LOVO [ pOpd GTNV apyn TNG
npocopoimong. To dedtepo okavdapiopa kabopilel o Proloykd kvTTOpa OV YTUmdel 1 Bepameia pe Paon v
napapetpo CKR, evd o Tpito oKavAPIGHO VAOTTOLEL TIC VTOAOITES LETAPAGEIC TOV KVTTUPOKIVI|TIKOD 10y PAMUILOTOC
pe Paon g TopapéTpouvg €16680v Tov poviélov. 'Etot, 1o debtepo Kot Tpito okavAPIGHO EKTEAOVVTOL GE KAOE
YPOVIKO Prina Tov adyopiBlov yio TV VAOTOIN GO TG TPOCOUOIMONE GTO KVTTUPIKO EMIMEDO.

To 1é€t0pT0 oKOVApIoUA EPOVTILEL Y10 TNV ATAALOYT] TOV YEOUETPIKMOV KLTTAP®V amd Tepicoelo PLoAoyikdv
KUTTAPMOV KOl Yio TNV aOENGT] TOV GYKOV, EVE TO TEUTTO GKAVAPIGUE QPOVTILEL VIO TV OTAAOLPT) TOV YEOUETPIKMV
KUTTAP®V 1OV TEPIEXOLV TOAD Alya Blodoyikd KOTTOPA KOl Y10, T GUiIKpLVGET) TOL OYKov. To £KTO GKAVAPIGHA EQOp-
puoleton yuo T S10T)PNOT THG OLOLOYEVELNS TOV GUUTAYOVS OYKOV LETA Ao TIG TOPEUPACELS TV dVDO TPONYOVUEVEOV
okovapopdtov. ‘Etol, to tétapto, TEUTTO Kot EKTO GKOVAPIGHO EKTEAOVVTAL GE KAOE ypovikd Prita Tov alyopi-
LLOV Y10 TV DAOTOINGT TNG TPOGOLOIMGNG OTO 10TIKO EMIMEDO, OTOV 0 OYKOG evOEYETAL VO avENOEL ) va GLukpLVvOEt
TOPAUEVOVTOG OUMG TAVTO GVUTHYNS. Apa, o€ KAOE ypoviko frina o OyKoTpocoUoI®TAG EKTEAEL Pl «GUVOYT» GTO
KUTTOPIKO €Mimedo kal Eva «IALO» GTO 10TIKO eminedo, epapudlovtag €161 T oTpaTNYIKY «summarize and jumpy.
Avt 1 Sodkacio ETavolapBAvETOL LEYPL TIV OAOKAT) MG TNG TPOCOUOIMANG, OTTOL EPapUOLeTaL TO TEAKO £Bd0L0
GKOVAPIOLA, Y10 TNV TEAKY] GO UAKPVUVOT TV YEMUETPIKDOV KUTTAP®V TOL TEPLEYOLV TOAD Alya Brodoyukd KOTTOPOL.

Me0Oodoroyia

Data preprocessing

To mpwTto Pripa Tov VAOTOWONKE GE VTN TNV EPYUCIO APOPA GTNV TPOETOLAGIN TG ELGOJOV, LE GTOHYO TN
OMOTN KOl OTOTELECUATIKY EKTELECT] TOV TPOGOUOIDGEWMV, Y10 KAOe puoiKd acbevi) Tov Guvolov dedopévav. o
oVTO TO GKOTO, EYIVE 1] TPOEMEEEPYAGIO TOV 1ATPIKAV OEOOUEVOV TOV TOPEXOVTOL OO TO TOVETIGTILIOKO VOGOKO-
peio tov Saarland, Tl ®OTE VO AMOKTNGOVY TNV KATAAANAT LOPON Yo va xpnoipomombodv og eicodog tov Oyko-
TPocopol®T) Ne@poPAUGTOUATOG, VO YIVEL ATOSOTIKA 1 EKTEAECT] TNG TPOCOUOIMGNE Kol Vo OAOKANp®Oel cwoTd



napdyovtog ta entBountd amoteAéopata. To frpa g Tpoemelepyociog dedouévav eEac@orilel 6TL 1 ekTELEOT] TG
pocopoimong Ba orokAnpwbel cwotd, aAld kot 6Tt Ba yivel e 1o pkpdTepPO duvatd k6oTos. ETot, sival onpovtucd
va gkteAeitat Tpv Egkvioet 1 avaltnon Tpomev BeATIOoNG TG 0Tdd0oNS TOV HOVTELOL HE OAAOYEG GTOV TN YOi0
KOO KOl GTOV TPOTO LE TOV OTOT0 EKTELOVVTAL O VTOAOYIGHOL.

O Oykompocopolmtig Ne@poPAASTOUATOS dEXETAL MG EIGOS0 TO OMEIKOVIGTIKA O£OOUEVA TOV TEPTYPAPOVY
T0 Héyeog, To GYNILO Kot T GUVOAMKT HopPOoAoYia TOv Oykov, HEcm dV0 apyeiny e10600v. To TpdTo apyeio 16600V,
LE EMEKTAON .raw, omoTeAEl éva byte stream oV TEPLEYEL TNV OKATEPYOUOTN TANPOPOPIN CYETIKA LLE TNV KOTNYOpia
16TOV OTNV OToi0 AVAKEL KAOE YEMUETPIKO KOTTAPO TOV TPLGOAGTOTOV TAEYLOTOC, EVM TO dEVTEPO apyeio 1060V, LE
enéktoon .mhd, amoteAet évo metaheader apygio oL GLVOSEVEL TO .raw aPYELD KO TEPTYPAPEL TA, YOUPUKTIPIGTIKA TOV
TPIOOIAGTATOV TAEYUATOG, OTTMG TG SIUGTAGELS TOV Kol T0 Héyebog Tov yempetpkod kuttdpov. o cvykexpipéva,
av to péyebog g ke didotaong opiletar wg = dim, y_dim Ko z_dim oto .mhd apyeio, tote TO0 UEYEDOG TOL
.raw apyeiov og bytes eivar x_dim - y_dim - z_dim Kol 1) IGTOAOYIKT KATNYOPi0l GTNV OTOi0 OVIKEL TO YEDUETPIKO
KUTTOPO 1 cuvtetaypéves (i, 7, k) kabopileton and o byte ot 0éon i +x_dim - j+ x_dim -y_dim - k (tywr 0x00
avtioTolyel og Kovoviko 1616, eved T OxFF avtictoyel o€ 16T6 T0U 6YKOUL).

Axoépo, oto .mhd apyeio kabBopiletar 10 péyedog TOV YEOUETPIKOD KLTTAPOV TOV TPIGOIAGTATOL TAEYLLOTOG
7oL TopoTavel in silico To PUoKO OYKO Kot ToV Kavovikd 10td Tov tov mepifariel. Oco peyoldvel To péyedog
TOV YEOUETPIKOV KLTTAPOV, AVEAVETAL 1) YEOUETPIKY] TEPLOYY| TOV AVTO KAADTTEL GTOV TPLGOIAGTATO YMPO KOl GLVE-
TAOG LELOVETOL TO TANDOG TOV YEOUETPIKMY KLTTAP®OV TOV YPTGLULOTOLEITOL (VA S1AGTACN Y10 VAL KAADYEL T QLGIKT|
TEPLOYY| TTOL AVTIGTOLYEL GTOV OYKO KOl GTOV KAVOVIKO 16TO TTov Tov tepiPdAdet. 'Etot, peiwveton 1o péyebog €1606-
dov, dnAadn to péEyeBog Tov TPLEOIAGTATOV TAEYLOTOC TOL GYKOV, LE OMOTEAECIO, VO LLELMVETOL KO TO KOGTOG TNG
TPOGOUOIMONG, TOGO OGOV APOPE GTIG OMOLTHGEL Y0 YDPO GTN UVIUN 0G0 KOl OVOPOPIKA LLE TO GUVOMKO XPOVO
extéreons. Toavtdypova, OLmG, 660 1o PEYEBOg TOV YEMUETPIKOD KVTTAPOL KOL 1 TEPLOYN OV KUAVTTEL GTO YDPO
av&avovral, avEAVETOL Kot To TANH0C TV PLOAOYIKOY KUTTAP®Y OV 0VTO TEPIKAEIEL, [IE OTOTELEGA VO TEPIAAUPE-
VOVTOL TEPLEGOTEPQ BLoAoYIKd KOTTOPO G€ KABE KAAGT 1000VVOLING TOV YEMUETPIKOD KVTTAPOL, VO EKTEAOVVTOL Ol
UETAPAGELS TOV KVTTOPOKIVITIKOD S1OYPAUUOTOS atd TOAAG PloAoyikd KOTTOPA Otd KOVOD Kol TEAKA VO LEWDVETOL
N avaivon g tpocopoinong. ‘Etot, to péyebog tov yemutepikov kuttdpov cvvdéeton pe éva tradeoff avapeoa oto
KOGTOG KOl OTIV 0VAALGT| TG TPOCOUOIMGNG.

10 mhaicto ¢ mpoemeEepyaciag TV d0edopEvav £16600v Tov OyKoTPocopolnT Ne@poPAUGTOUATOS, VAO-
nomOnke évag akyoplBuog ya tn pvduion tov pey€Boug Tov YEOUETPIKOD KUTTAPOL TOL TPLGIUCTUTOV TAEYLOTOG
OV TTOPIGTAVEL TOV OYKO GTOV VIOAOYIOTN, LLE OKOTO TN BEATIOTY avTipeTtdmion Tov tradeoff kdoTovg Kot avdAvong
NG TPOGOUOIMONG Yo KABe PuoIKO 0oBev] Tov cLVOAOL dedopuévav. TTo ocvykekpiéva, to péyebog Tov yewle-
TpKov KutTdpov pubuileton pe Paomn €va scale factor, to omolo eivar apywcd ico pe 1 kot oLEAVETOL GLVEXDG, LIE
OTOTEAEGLOL VO, AVEAVETOL GTASIOKA Kot TO HEYEDOC TOL YemueTpkov Kuttdpov. 'Etot, ektelobvtar dtadoyikég Tpo-
GOHOIMGELS LLE TO PEYEDOC TOV YEMUETPIKOD KVTTAPOL Vo avEAVETAL, YEYOVOS TTOV £XEL OC OTOTELEG LA TIV TAVTOYPOVN
UEL®MOT TOV KOGTOLS Kal TNG avaAvong TG Tpocopoimong. Avti 1 dadikacio cuveyiletot HEYPL TO COAALLO TOV E1-
olryeL 1 EKTTOGT GTNV OVOAVGT GTO AMOTEAEGUOTA TNG TPOCOLOIMONG G GYECT] LE AVTH TOV KOTOYPAPOVTOL Y10, TNV
apykn avaivon pe scale factor ico pe 1, To omoio vwoAoyiletot pe Péor TO TPOGOUOIOVUEVO TOGOGTO LUEIMOTG TOVL
OYKOL, Vo EEMEPAGEL £VO GUYKEKPIUEVO KOTOPAL. MEeTA amd TV eKTELEST] TOV alyopibpov yia kabe puokd acbevn
TOV CLVOAOL dedouévary, Yivetal a&loAdynon TV amoTelecUdToV, £T61 MOTE Vo, KaBopiotel 1 Tiun Tov scale factor
OV HEIDVEL EMOUPKADG TO YPOVO EKTEAEGTG OPIC VO, EIGAYEL GONTO GRAAL GTO ATOTEAEGUATA.

Profiling & Code optimization

Epocov &xet ohokinpmbei to 6Tdd10 TG Tpoenetepyaciog TV deSOUEVAOV £160S0V ToL OYKOTPOGOUOIMTY Ko
&yovv kaBopiotel To LeYEDT TOL YEOUETPIKOV KLTTAPOL TTOL avTipeTonilovv BéATioTa To tradeoff peTta&d Kd6oTOLE Kot
avAaALoNG TG TPocopoinong yia Kabe puokd acshevi Tov GUVOAOL dedOUEV@YV, HTOPOVV va eEgpeuvnBoiv pédodot
v T Bertioon g amddooNs TG EKTEAEOTG TG TPOGOUOIMONG OV APOPOVV GTOV TPOTO e TOV omoio yivovtal
0l VTOAOYIGHOT KOl 6TOV Ttryaio K®dwka Tov povtédov. [a autd 1o okomo, Eywve profiling yio Tov kabopiopd Tov
KOGTOVG TNG EKTEAECTG TG TPOGOUOIWGN S, TOGO OGOV QPOPE OTIG ATALTI|GELS OE YMPO GTT| VNI OGO KOl AVAQOPIKE
LLE TO XPOVO EKTEAEONC, KAOMDC KOL Y10 TV KOTAVOLT TOL KOGTOVE GTO CTUELN TOL TTNYOIOV KMITKO TTOV GULUETEYOVY



oe auto. ‘Emerta, pe Paon tic mAnpogopieg mov mpoékvyayv and avtd to profiling, £ywve n Pektiotomoinon Tov
HOVTEAOV, £TOL DOTE VO EKTEAOVVTOL TAPAAANAO 01 VTTOAOYIGHOT GTOL KOoTOPOpa onpeia Tov Tyaiov kmdKa, 6oV
o1 eE0PTNOELG SESOUEVMV TO EMTPETOVV.

To profiling £yive pe ) BonBeia tov valgrind framework, To onoio amoteieitan amd pia cepd epyareimv wov
GULVOOEVOVV TNV EKTEAECT], TAPUKOAOVHOVV KOl KaTaypdpovv tnv e£EMEN NG Kol TPOCPEPOVY KATOEG EKTIUNGELG
oxetikd pe avth. Ilo cvykekpéva, ylo TV EKTIUNOT TOV OTOLTHCEOV TNG TPOGOUOIMONG O YMPO GTI UVNUN
ypMnoonombnke to epyaireio massif, To omwoio TopakoAovOEL T YP1HOT TOL COPOV KAUTA TN SIEPKELN TNG EKTEAECT|G.
O Oykompocopol®wtg Ne@poPAACT®UATOG OEGUEVEL T LV TTOV XPEELETOL Y10, TNV TOPAGTOGCT) TOL PLGIKOV OYKOL
o€ éva TPLodldoTaTo TAEY U amd voxels kKatd 1o 6Tad10 TG apyLKomoinong, To HEYeoc Tov TPLodidoTaTov TivaKa
dev aAAGCEL kAT TN O1EPKELN TG TPOGOUOIMOTNG KOl 0 YDPOG TOV KATOAUUPAVEL GTN UVALN OTOOEGUEDETAL UE TNV
oAoKMpwon ¢ Tpocopoimonc. ‘Etot, to epyaieio massif deiyvel v a&lomoinom tov cmpol KT T SLAPKELD TNG
TPOGOUOImONG, 1) omoia givar katd BacT otabdept), TPOCEEPOVTAG Lo EKTIUNOT Y10l TIG ATOLTHOEL TG TPOGOUOIMONG
0€ YMPO OTN VNN, Ot omoieg aAlalovv avdroya pe To péyebog e e106d0v.

Axopa, yio tov kafopiopud TV To KOGTOROP®V TUNUAT®V TNG EKTEAESNC YpTclomomOnke to callgrind epya-
Aglo, To omoio mopakoAovBel TNV ekTéEAEST TNG TPOGOUOimoN G Kot Tapdyet To callgraph mwov meptypdeet Tig KANGES
LeTa&D TV GLUVOPTHCEDY TOL TNYOIOV KMOOIKO KoL TO TOGOGTO LLE TO OTO10 1) KAOE GLVAPTNOT CLUUETEYEL GTO GUVOAL-
K6 KOGTOG TG EKTEAEDOTG, OT®G 0vTO VIToAoYileTan pe faon to CPU cycles count. To gpyaieio callgrind ekteléotnke
LLE EVEPYOTIOLLEVT] TNV EMAOYN Y10, TPOGOUOIMOT] TNG lEPAPYING KPLONG LVIAUNG. AVTO onpaivel 0Tt katd to profiling
TPOGOLLOIMVETOL TO TPMTO KO TO TEAELTAIO EMIMEDO TNG KPLONG UVALNG, Ltopel va ekTyunBel ) aAAnAenidopacn g
EKTEAEONG LLE TNV KPLOT LVIAUN KoL TNV KOpLa v, Kabdg Kot To katd mOco 1o Hotifo e 1o omoio yivoviat ot
npocPdoeig otn pvipn avéhvet o kK66tog g ektédeons. To CPU cycles count vroloyiletar vmoBétovtag 0T 1 ekTé-
Aeom kdBe evtovig amartel Evav KOKAO, 1) TPOGPOOT 6TO TEAEVTAIO EMIMEDO TNG KPLENG LvAUNG amottel 10 kdrhovg,
evo N TpdcPacn atny kHpla pvriun amaitel 100 kdkiovg.

Metd tov kaBopIopd TOV o KOGTOROP®V Y10 TNV EKTEAECT TUNUAT®V TOV TNYAIOV KOSIKA, UTOPOVY VO GYE-
dtaoTovV Kot vo, vAoromBovv péBodot yia T peimon Tov KOGTOVS Kol TN PeATion TG 0mdd0doNg TG EKTEAEGTG.
Av10 €yve ypnoomoldvtag to OpenMP API, to omoio gival éva povtédo yia ypion moArlanimv threads oe apyite-
KTovikég kowvng pvAung. Tho cvykekpipéva, ta moddamid threads ypnoipomomdniay yio Ty TovTOYpOVN EKTELEGN
TOV VTOAOYIGH®Y TOV 0AY0piBLOoV, OTTOV 01 EENPTNOELG SEQOUEV®V TO EMTPETOLY. LIV TEPITT®ON ToL OYKOTPOGO-
LOI®TY, 01 EEUPTHOELG OEGOUEVOV ETTPETOVV TIV TOVTOYPOVT] EKTELECT] VTOAOYIGHMV LOVO Y10l TO TPITO GKOVAPLIGHLOL
TOV aAYopiBLLOV TOV OAOKANPDVEL TIV TPOGOUOIMOT) GTO KVTTAPIKS EMIMEDO Yo KAOE Ypovikd PriLa Tng TPOCcOouoi-
®OMG. ZT0 TPiTO OKAVAPIoUA TNG TPOGOUOIMOTS VAOTOLOVVTAL Ol LETAUPACELS TOV KVTTOAPOKIVITIKOD 1oy paLILULOTOC,
01 0Toleg EKTEAOVVTOL OO KAAGELS 1000VVAING KUTTAP®V LEGH og KABe voxel Tov TploditdoToTon TALYUATOS TOL O-
ykov. 'Etot, ot vmoroyiopol mov yivovtat yia kaOe voxel gival aveEApTnToL Kot LropodV va EKTEAEGTOVV TOPAAANAL.
Avtifeta, To T€TOPTO, TEUTTO KO EKTO GKOVAPIGUM, TTOV OAOKATPMVOLV TNV TPOGOLOINOT| GTO 1GTIKO ERITESO Yia
KaOe ypovikd Prpa TG TPOGONOIMANG, VAOTOOVV T por} BLoAoYIK®V KUTTAp®mY LETOED YeITOVIKMV voxel yia tnv
avEnon 1 GUIKPLVGT TOV OYKOV, LLE OTOTEAEGLO VO, EKTEAOVV VDITOAOYIGUOVG TTOV TEPIAAUPAVOLY TOAAEG e€apToELg
kot race conditions.

H mpocouowmoelg extedéotnkav og €va linux server mov ypnoionolel 2 eneepyaotéc, kabévog omd Toug
omoiovg amoteieitol amd 12 puoikoe mupnves. Akdpo, kabe Topnvog Ttpéyet 2 threads, |e AmTOTELEGO TO GOVOAO
TV SIBESI®V AOYIK®V TUp VeV va givar 1o pe 48. Akopa, kabe puoikdg Tupnvag (24 oto cvvoro) Exet Eexmplotd
T 2 mpdta emineda g epapyiog kpoeng pviung (L1d kot L1 32K n kabe pia kot L2 256 K), evd to Tpito Ko
televtoio eminedo (L3 30720K) popdleton Leta&d TmV QUOIKAOV TUPNVOV IOV OVIKOUV GTOV 1610 eneepyaotn (2
670 60voA0). H petpikn mov ypnoiponombnke yio v agloddynon mg Peitioong g amddoong Le TiG dALAYEG GTOV
NYoio KOO Y10 TOPAAANAN EKTEAECT VITOAOYIGUMV pe Ypon moAlamA®V threads eivol to oyetikd speedup, to
omoio vroloyiletatl ¢ To KAAGLA TOV apykov xpdvov ekTéLeTg dia To ypdvo extéleong petd T Pertictomoinon
Tov Tnyoiov KOdka. To péyioto gpktd speedup mepropileton pe Paon 1o vopo tov Amdahl, o omoiog Aéel Ot1,
vroBéTovtag OTL p eival To TN TOV POPTOV Epyaciag wov a&lomolel TOVG PEATIOUEVOVG TTOPOVC, EV TPOKEIUEVD TO.



nohldamAd threads, kot s To oyeTiko speedup avTod TOL TUARATOC, TOTE TO GUVOAIKO speedup eivar ico pe m
S
Kot Ogv pmopet va givar peyolutepo omd 1—ip.

Sensitivity analysis

"Emeito amd v mpoenebepyacio dedopévav Kot Tr PEATIOTONOINON TOV TNYAIOL KOJIKA, TPOKVTLTEL £VO VEO
Kot BeATiopévo povtédo Tov OyKompocopolwt Ne@poPAdcT®HATOS, TOGO OGOV apopd 6TV £16000 Kot 6T PEYEDOS
NG OGO KOl OVALPOPLK(L LLE TOV TPOTO LE TOV 0010 VAOTOIEITAL O 0AYOPLOLOG, 01 VTOAOYIGHOT TOL 0TTOioV EKTEAODVTOL
amd woAlamAd threads. Ze avtd to onpeio, gival onuaviikd va PePformbel 6TL 1 Aettovpyia TS KOvoHpYLag oLTHG
€KO0YNG TOV LOVTELOL EIVOL 1] AVOUEVAOUEVT] KO OTL 1] GUVOALKT] GUUTEPLPOPE TOV LLOVTEAOD TTAPAUEVEL M 1010 LLE VTN
Tov apykov verified povtélov, Tpwv TV €QAPUOYN TOV OALAYDOV 6T EGOUEVO EIGOOOVL KOL GTOV TTNYOio KMOOIKA.
[No avtd 10 cKOMO, £merta 0md TO GTAd0 TG TpoeneLepyaciog 6edoUévav Kol TS PEATIoTOTOINGONG TOV NYAiov
KOOKO, EQapuoéoTKe €va Prpa Yo oviivon gvaicnciog Tov véou PeATIOUEVOL HOVTEAOD TOV TTPOKVUTTEL, £TG1
wote va PeParwbdei 6TL 1 GLUTEPLPOPA TOL EIVAL M AVALEVAOLEVT KoL OLOL0L LLE 0VTH TOL apykov verified povtédov.

H avélvon gvaicOnoiog eivar n dadikacio eEgpedvnong TV TapapéTp®V 16060V TOV HOVTEAOD, KOTA TV
01010 EKTEAOVVTOL TPOGOUOIMGELS LE OIUPOPETIKEG TLESG Y10, TNV OO KOOV KOTAVOUTY TOVG Kol AEL0A0YOUVTAL TO
SLLPOPETIKA amoteAEopaTa TG Tpooopoinons. Etot, mpokinter pio diaichnon oyetikd pe Tov TpOTO TOL EMNPE-
aletar n £€000G TOL HOVTEAOL KOl TO OTOTEAEGLLOL TNG TPOGOUOIMGONG AMd TIG SOPOPETIKEG EIGOOOVE KOl TIUES Y10l
TIG TOPAUETPOVS TOV HovTEAOV. To amotédesio TG TPOGOUOIMGONG KOTAYPAPETAUL OO TIG TAPAUETPOVG EEOG0L TOV
HOVTEAOV, Ol 0Ttoieg eKEPALOLY TO TOGOGTO LEIMONG TOV OYKOL, KOOMG KOl TO IGTOAOYIKO TOV TPOQIA, OTMG VT
TEPLYPAPETOL 0O TO TOGOGTO LE TO 0TOI0 KAOE Kot yopia kuttdpwv, proliferative, dormant, differentiated kou dead,
GUUUETEYEL OTNV aPYIKN Kol TNV TEMKT cvuotacth tov. Ot mapapeTpotl €£600V TG TPOCOUOIWONE TAiPVOLY &V Yé-
VEL OLOPOPETIKES TILES OVOAOYOL LLE TIG TIUEG TOV TAPOUETPOV EIGOOOV TOV LOVIELOV, EKPPALOVTOC £TGL SLOPOPETIKO
OTOTEAEG L0, TNG TPOGOUOIMGOTG Y10 SL0QOPETIKES €10000V¢. TeAkd, 1 a&loAOYNCT TOV ATOTEAEGUATMY TV TPOGO-
LOLMGEMVY TNE AVAADOTNG EvacOnoiog TpoceEpet Lia daichnon oYETIKA [LE TOV TPOTO TTOV 1) £160J0G TOV LOVTEAOD
emnpedlel mv €£0606 tov, cupPaAiel 6TV KaTavonomn TG AEITovpYiog ToL Kol omoTeELE] Eva epyaAeio yio Tov EAeyy0
TNG GLUVOALKTG TOV GUUTEPLPOPUIC.

Ye aut TV gpyacia, 1 avaivor gvaicnciog ypnoyomombnke yio Tov EAEYX0 TG CLUTEPIPOPAS TNG VENS
Beltiopévng 660V 0Qopd 6Ty amdd0ooN TG EKTEAEONS €KO0YNG ToL OYKOTPOoGOoUoIWT] NeQPOPAUGTMOIOTOC, OTMG
QT TPOKVTTEL EMELTAL OO TNV TpoemeEepyacia TG 16000V kot PeATioTONOM|GELS 0TOV TTNyaio Kddwka. o avtd
TO oKOTO, KPpinke Mo KatdAAnin n xpnon piog ypaeikng peboddov yuo avaivon gvaiodnciog, n onoio ameuovilet
v €£APTNON TOV TOPAUETPOV EEGG0V TOV LOVTELOL OO TIG TAPAUETPOVG ELGOSOV TOV HOVTEAOL G€ pin GEpd amd
scatter plots, mpocpépovtag £Tot o AUEST) OTTIKOTOINOT TG ENLOPACTC TNG E16OO0V TNG TPOCSOLOI®ONG TNV ££000
™G, Ke Pdom v omoia pmopel va yivel edkoda 1 aEl0AGYNON TS GVUTEPLPOPAC TOV HovTéEAoV. TTio cuykekpiuéva,
eKTEAETTIKE PO OEPA TPOCOHOIDGEWY Y10 KAOE TAPAUETPO €GOS0V, SOTNPADVTAS TIG TYHES TOV VTOLOITMOV TOPOL-
UETPOV €16000V GTOOEPES TNV TN AvaPOpds Kot GAAGLOVTAG TNV TN HOVO TNG EEEPEVVOVLEVIC TTOPALETPOV GE
éva Topabupo yOp® amd TV TN avaeopdg TG, Ot TapapUeTpot Tov emAEXONKAY Y10 TV OTTIKOTOINGT T@V OTOTE-
AEGLATOV TNG ovaAvoNg o€ scatter plots givatl To T0c0oTd dlopopoToinoNg Tov peyEBOLE TOV OYKOV, TO TOGOGTO LIE
10 onoio kabe KoTnyopia kKutTtdpwv, proliferative, dormant, differentiated kot dead, cvppetéyel oTnv apyikn cvcto-
o1 ToL GYKOL, KOBMG Kot TO TOGOGTO dloPOPOTOINCTG TNG CLHUETOYNG KAOE KOTYOopilog OTNV TEAMKT GUGTACT) TOL
OYKOL GE Gyéon LE TNV apyLKT.

Av and vt T Ypaeikn pEBodo yia avaivor evacnciog TpokvmTel 0TL N PeATiOUEVT EKdOYN ToL OyKOTPO-
copoloT Ne@pofAacTOUATOC EYEL TNV AVOUEVOUEVT] GUUTEPLPOPD, 1) OTToia Eval 10100 GUYKPITIKG LE TI CLUTEPL-
@opa Tov apykov verified poviéAov, TPV TNV TPOENEEEPYOTIN TV OEOOUEVDV E1GOO0V KOt TIG OAAXYES GTOV TINyaiio
KOJIKO, TOTE 1] OGTN AELTOLPYiR TOL VEOL PeATIOpUEVOD LOVTELOL emPBePardveTaL Kot EIVOL EPIKTN 1 ACQOANG TOL
yxpNon. Ze avtiBetn mepintwon, Tpénet va yivel EAeyyog yio Aabn ota tponyodueva Prpata tov workflow, m.y. otov
TPOTO |LE TOV OTOIO0 YIVETOL ] TAPUAANAOTOINGN TOV VTOAOYICUMY TOV 0AY0PifLOV OOV TO EMLTPETOVY 01 EEUPTNHGELS
dedopévov, Kobmg Kot evépyeleg yia T dopbwon Tov Aabmv Tov evtomilovtol Kot ETaVAANYN NG avaAvong eval-
oOnciog LEYPL N GLUTEPLPOPA TOV LOVTEAOV TTOV TPOKVTTEL VO, EIVUL 1 AVOUEVOUEVT. EvOeIKTIKA, avapépetal 0Tt



Ol TOPAUETPOL E1GOS0L TOL EMNPEGLOVY TEPIGGOTEPO TNV £E050 TNG Tpocouoimong eivar ot tapdpetpor CK R, Py,
Kot Pyjeep, 01 0MOIEG EKPPALOVY TO TOGOGTO TOV KLTTAP®OV TTOV YTLTAEL 1| OEpaneia, TO TOGOGTO TOV KLTTAP®OV TOV
EKTEAODV GUUUETPIKT] O10ipesT] Kol TOAALUTANGIALOVTOL E AMELPOV KOl TO TOGOOTO TMV KVUTTAP®V TOV EIGEPYOVTOL
oV kowdpevn Gy Ao €KTOG TOV KUTTAPIKOD KOKAOVL, 6oV Ta KOTTAPO 08V TOAAATANGLALOVTOL, OVTIGTOTYO.

Clinical adaptation

Epdocov éxet emPePaindei n cootn Aettovpyia Tov Bertiopévon poviélov Tov Oykonpocsopolmt) Neppofia-
GTMUOTOG, OTMG AVTO TPOKLATEL ETELTA OO TNV TPOENEEEPYAGIN TOV SESOUEVEOV E1GOOOV Kol TN PEATIGTOTOINGT TOV
TMYoiov K®JKA, TO VEO HovTEho pmopel va aglomombel pe ac@AAELD Yo TN (PO TOALATADY EIKOVIKOV 06OEVDV
Y kaBe puoKo acBevn, étol dote N in silico avamapdotacn tov acbevn vo gival mo akpiPng Kot ot TPoPAEYELS
TOV HOVTEAOV OYETIKA pe TNV €EEMEN TG 0oBEvelag o a&OmoTeS. AVTH 1) GTPATNYIKN TOV TOAAATANDY EKOVIKMOV
acBevav ava guokd acBevr a&lomomOnke 6to TeAKo Prpa Tov workflow mov vAomombnke og vt TV epyaci-
0, K0T T0 o7oio onpovpyndnke éva chvoro elkovik®v acbevayv, nAadn Eva cOVOAO ard SoPOPETIKEG TIUEG Yo
TNV 0d KOOV KATOVOU| TMV TAPUUETPOV EIGOI0V TOL LOVTEAOD, Yo KAOE Evav amd Tovg TPES PLOIKODS 0obe-
veig Tov GLVOLOV dedOUEVMV, [IE GKOTTO TNV EKTEAEOT P0G GELPAG TTPOGOUOIDCEMV Y10l TNV KALVIKT TPOGAPOYT TNG
CKR mapapéTpov yio kKabe gikovikd achevr], £T01L MOTE TO ATOTEAEGLO TG TPOGOUOIMOTG Yl KAOE ekovikd acBevn
VO EKTPOCOTEL PEATIOTA TO TPAYHOTIKA KAVIKG ATOTEAEGHATO TOV OVTIGTOLXOL PLGLKoV acbevn. 'Etot, mpokdntel
teAKd pio Kotavoun mbavotntag yuo v mopapetpo CKR, wg {evyog péonc Tiung Kot Tumikng amoKAong, yio K-
Og S10kp1Tod 16TOAOYIKO TPOPIA KOl OVTIGTOYT OLAdO KIVOUVOL TOV EKTPOCMTOVV Ol TPELS 0obeveilg Tov GuVOLOL
dedopévav.

Y10 Tp®TO Ppa Tov alyopiBuov g KAMVIKNG Tpocapoyng dSnuovpyodvat IV gikovikoi acBeveic pe fdon ta
OTEIKOVIGTIKA OEJOUEVA TOV PUGIKOD 060gVT Yio TOV 0moio yiveTot 11 KAVIKN Tpocappoy”. AkOpo, KOs EIKOVIKOG
acBevnc maipvel pio Stokpith TR Yot TNV 0O KOWOU KOTOVOUN TOV TUPAUETPOV 16000V TOV LOVTEAOL TTOL dgv
kaBopilovtar povoonpavta pe fdomn To wtpikd dedopuéva Tov puotkol acbevn. o cuykekpéva, kKdbe TaPALETPOG
€16600V Taipvel Eex0PIoTd 0md TIG VITOAOITES TAPUUETPOVG Lo TUYOLN TN He BAoT pia TPOoKAOOPIGHEVT] KATOVOUT
mOavOTTOC. L€ QVTH TNV EPYOCIO YPNCILOTOMONKE 1] OLOIOLOPPEN KOTOVOUN GE Eva Tapdbdvpo YOp® omd TNV TN
avaQeopdc g ekdotote mapouétpov. ‘Etot, dnuovpyovvror N in silico ekdoyég Tov euotkov acbevn, kdbe pio
O7T0 TIG OT01EC EKTPOCMTEL Pia €V YEVEL SLOPOPETIKT EKOOYT TOL TPOGOUOIOVUEVOD BLOAOYIKOD GUGTAKATOC, 1 07Ol
Aettovpyel Kot EKTEAEL TIC TPOCOOIOVUEVEG PLOAOYIKES dlepyacieg Le BAoT) SOLAPOPETIKEG TILEC TOPAUETP®V. METE T
ONUIOVPYIO TOV EIKOVIKOV 0.60eVHV, ELTEAODVTOL S1000YIKEG TPOGOUOIDGELS Y10 KAOE Evay amd avTovg, Le GKOTTO TNV
e€epevivnon TG TOPUUETPOV TTPOGUPUOYNC, | OTtoia 6 ot TNV epyacia emhéyOnke va eivor 1 C K R mopauetpog,
N omoia kKabopilel To T0GOGTO TOV KLTTAP®V TOL YTLTAEL 1) Oepaneia, exEPAlOVTUG £TOL TNV OMOTEAECUATIKOTITA
™g. ITo ovykekpuéva, yio ke eucovikd acbevi EKTEAOVVTOL TPOGOUOIDGELG E SaPOPETIKEG TIUEG Yoo Ty C K R
TOPAPETPO, LEYPL TO. OMOTELEGHLOTO TNG TPOGOUOIMONG VO, TALPLALOVY LUE TO TPAYUATIKE KAVIKE OTOTEAEGLOTO TOV
avtioTooL PLGIKOV 060evT], omdTe N Ty TG C' K R mopaléTpov yio TNV 07oio TpOKHTTOVY GUTA T ATOTEAEGLLOTO
TPOCOLOIMONG EMAEYETAL MG 1) TIUN BEATIOTNG TPOCAPLLOYNG Y10 TOV OVTIGTOLYO EIKOVIKO AGOEVT|.

To kprrfpto pe faon 1o omoio a&loAoyelTol 1 KATOAANAOTITOG TG TPOGAPLOYNG AVAPEPETAL GTO TOCOGTO PEL-
®ONG TOV PeYEB0VE TOV OYKOV KOl GTO KATH TOGO OUTO OVTITPOSMOTEVEL TNV TPUAYUOTIKY KAMVIKY HelmoT Tov dyKov.
Bewpovpe OTL 1] OVEKTH OTOKAIGT TOL TOGOGTOV HEIMONG TOL OYKOV, OO TPOKVTTEL OO TNV TPOCOUOIWGT), CE
OYE0T LE TO TOGOGTO TNG TPUYUATIKNG KAVIKNG pelmwong Tov dykov, eitvar 5%. Tlapdia avtd, 1 duvatdtnTo Aoyl
6T0T0INGNG AVTOD TOL CPAAUATOG EENPTATOL OO TNV ETAOYT TOV TIUAV Y10 TIG VITOAOUTEG TAPAUUETPOVS EIGOJ0V, 1)
omoio dtapépet Hetaéd TV eikovik®mv acbevav. H tpocappoyn g C K R mapapétpov yivetar ue avoeopd 6to d16-
ot EEEPEVVIONG TNG TTAPOUETPOL, TO 0T0T0 apytkd eivar o [0, 1], apod n C' K R nopapetpog ekppalet mbavotnta.
ITo ovykexpéva, ektedeiton pia Tpocopoimon pe tyun yio t C K R mapduetpo m péon T Tov SloTHOTOC &-
Eepevvnong (opyka CK R = 0.5). Av 10 m0606T0 Lelmong TOL YKoV gival LIKPOTEPO OO TO TPAYHOTIKO, TOTE
pEneL va. yivel eEgpebhivnon LEYOATEP®V TILADV, EVD OV TO TOc0oTO Helwong Tov dykov glval peyaAdtepo amd To
TpoypatiKo, ToTe TPEMeL va yivel e€epebivion pkpotepmv Tindv. 'Etot, 1o dibdotnpa eEepedvnong tng TopapuéTpou
wpocappoletar cuveydc, uExpt va Ppedei n T mov tkavomolel BEATIGTO TO KPLTHPLO TPOGOPLOYNS Y10 TOV EKAGTOTE
EIKOVIKO asOevn.



'Eto1, Y10 k60e gucovikd acbevn, o omoiog amoterel pio povadikn in silico ekdoyn Tov LGIKOV AGOEVT LE eV
YEVEL SOKPLT TIUR Y10 TNV 0TO KOVOO KATOVOLLT TMV TOPAUETP®V ELGOS0V TOV LOVTEAOD, EMAEYETOL L0l TLULT Y10l TV
C K R mapbpetpo, n omoia neptypdeet BEATIOTA TO TPy LOTIKE KAVIKG amoTeAES AT TOV UGTKOV acbevi|. Evoéye-
TOL KATTO101 EIKOVIKOL aG0eVEIC Vo Y01V TILES Y10 TIG VTTOAOITEG TAPAUETPOVG EIGAG0V OV OEV EXLTPEMOVY TV EMAPKN
KAWVIKT] TPOGOPUOYN LE CPAALN G GYECT LE TO TPOYUOTIKG KAVIKG OTOTEAEGHOT HKPOTEPO Ao 5%. AvTol ot
ewovikol acBeveic e€apobvral amd T 6TaTIoTIKY avdAvon mov akolovOnoe. Telkd, Eyovpe Eva derypaTikd ydpo
0o EMAPKDC KAVIKA TPOCUPLOCUEVEC TPOCOLOIDGELS, LE LEYIoTO TANO1KS ap1Bpd ico pe To TAN00G TV EIKOVIKMDV
acBevav N. Mg Bdorn ovtd 10 SEyUATIKO YDPO TPOKHTTEL 1] KOTOVOUN TOOVOTNTAG Yi0 TNV TOPAUETPO TPOCAPLO-
e, onAadn v C'K R Topauetpo, yio. Kabe évav omd Toug TpEIC pLOIKong aoBeveic TOV GUVOAOD SEOUEVOV KOt TIC
avtioTol EC OUAOEG KIVODVOD TTOL EKTPOCOTOVV, G (VYOG HEGNG TIUNAG Kot Tk G amdkAiong. Emiong, n iotoloyia
TOV OYKOL dEV TEPIAAUPAVETOL GTO KPLTHPLO TPOGUPLOYNS TOV ahyopifuov, duwme propel va aglohoynel oto teAcd
QTOTELEGLOL, Y10 VO TPOCPEPEL [iol OO TTLO TPOGAPLOGUEVT] OTA KAVIKA S€d0UEVA TOV EKAGTOTE PLOIKOD 0ioBevn
katavour mhavotntog yo t C'K R TopauUeETpo, LEDOVOVTOS TEPULTEP® TO OELYUATIKO YDPO TMV TPOGOUOIDGEWDV.

AmoteléopaTa

Data preprocessing

210 otddwo G mpoenelepyaciog dedopévmv dokipdlovtol dtapopeg TYES Yo to scale factor, oniadn tov
ToALOTAC100TIKO TopdyovTa Tov pubuilel To péyebog Tov YEOUETPIKOD KVTTAPOL TOL TPIGIAGTATOV TAEYLOTOC
7OV TOPLGTAVEL in Silico T0 PLGTKO GYKO KOl TOV KAVOVIKO 16TO Tov Tov TepIPaiiet. [T1o ouykekpipéva, SOKIUAGTNKOY
TipéG Tov scale factor amd 1 uéypt ko 10 yia kéBe puoikd aobevi) Tov GLVOLOL dedoUEVOV.

Me v avénon tov scale factor, av&dvetar 1o péyebog Tov YEMUETPIKOD KLTTAPOV Kol LELDVETOL £TGL TO UEYE-
00¢ TG €16650V KOl TO GLVOAKS KOGTOC TG Tpocopoimonc. TIpdyuatt, n advénon Tov scale factor peimoe 10 GuVOAKO
YPOVO EKTEAEGTG KOl Y10 TOV TPELS PLOIKOVG acbeveig Tov Guvolov dedopévav. o cuykekpiéva, yio dvénon tov
scale factor am6 1 o€ 2 0 GUVOAIKOG YPOVOC EKTELEGTC TNG TPOGOUOIMOTG LEMVETOL CTLLOVTIKA, Yo vEnon tov scale
factor and 2 og 3 1 pelmON TOV GUVOALKOV YPOVOL EKTEAEST|G £lvar LKPOTEPT, EVA V1oL avEno Tov scale factor and
3 ka1l TV 1 Pelmor Tov GLVOAKOV ¥pOVoL EKTEAESTG OeV gival auaOnTi.

Tavtoypova, 1 avEnon Tov peyEBovg ToL YEMUETPIKOD KLTTAPOL pe TNV adénon tov scale factor peidver v
avaAvoN NG TPOGOOIMONG, YEYOVOS TOV EIGAYEL COUALN OTO ATOTEAECUATA TG To GAANN avTd VTOAOYIoTN-
KE OVOLPOPIKA L€ TO TOGOGTO UEiONG TOL peYEBOVG Tov GYKOoL Kot apatnprOnke Tog 660 1 T Tov scale factor
av&hvetal To GEAALN TOL Toc0GTOD HeElMONG TOL HEYEBOVG TOL OYKOL GE GYECT OVTO TOL TPOKVTTEL OO T TPOGO-
poimon pe scale factor 1 kot tnv apyikn HEYIOTN avAAvoT €ival dLAPOPO TOL UNdEVOGS, QAAG Kal TAAL TOAD Lukpo.
[Mopdra avtd, n peimon g avdAvong e TPOCOUOI®MONG LE TV adENCT TOV HEYEBOVG TOL YEDUETPLIKOD KVTTAPOU
yivetar aicOn Kot awd ™ 3D avakaTaoKET Kol ATEIKOVIOT) TOV OYKOL KOTA T S18pKELN TN TPOGOUOIMONC Y1d TIG
drpopeg Tipég Tov scale factor, omd v omoia pavnke 6t TYES ToL scale factor mive amd 3 gival omoyopeVTIKEC,

O TomiKég TIHéG Yo To uéyefog Tov YemUETPLIKOD KUTTAPOL, ivar and 1mm péypt ko 3mm. To apyiko péyebog
TOV YEMUETPIKOV KLTTAPOV gival ico pe 1mm yia Kabe pio amnd TIC 16030V TOV AVTIGTOLYOVY GTOVS TPELS PLGIKOVG
aoBevelg Tov cuvoroL dedopévav. T d00 amd Tovg acbeveig emA&yOnke scale factor ico pe 2, pe amotéAeopo ™
peimon tov peyébovug 16000V katd 78%. I'a tov Ao acBevi emdéyOnke scale factor ico pe 3, pe amotéAeoua T
peimon Tov peyéboug £10600v katd 93%. e kdbe Tepintwon, 0 GUVOMKOG YPOVOG EKTEAEOTC LELDONKE TEPLGGOTEPO
and 97%.

Profiling & Code optimization

‘Emtetta oo tn Pedtioon g amddoomg TG EKTEAECT|G HECM TNG TPOETEEEPYACIOG TV OEGOUEVMY E1GOS0V Kot
N pOOon tov peyébovg e, Eyve mpoondbeia yia ™ Bertioon TG anddoomng e aALAYEG GTOV TTNYOi0 KMOKA, £TGL
MoTE va EKTELOVVTOL TOPAAANAL 01 LTTOAOYIGHOT TOV akyopifLov, 6oV To emTpémovy o1 eEapThoElg dedopEVMV. X
owtd T0 oTddo Eyve Kot To profiling g ektédeong g Tpoocopoiwong pe to massif epyaieio, 1o omolo £dmoe pia



EKTIUNOT OYETIKG UE TIC AMOLTHOELS OE YMPO GTN Uviun, kabdg kot pe to callgrind epyaieio, to omoio édmoe pia
EKTIUNOM GYETIKE [LE TNV KATAVOLUT TOV KOGTOVG TNG TPOCOLOIMGNG 6Ta d18popa TUNUATO TNG EKTELECTG.

To profiling pe to massif epyaieio £€0e1&e O6TL T0 0TAdI0 TG TPoemeEepyaciag TV dedOUEVOV E16O00V TOV
LOVTEAOL LELMVEL TIG OTOLTHOELS OE YOPO 6T Wi katd 90% mepinov. AkOpa, 1) KATOYPOPT) TOV GUVOALKOD XpOVOUL
eKTéAEONC, KAODE Kot TG avAAVGNC TOL OTO ETUEPOVS TUNHOTO/ CKAVAPIGHOTH TOL aAyopiBuov, emPePaince 0Tt
N mpoenesepyacia TV dESOUEVOV IGO0V TOV LOVTEAOL TPOKOAEL TN LEI®ON TOV YPOVOL EKTEAECTG Kol LAAIGTOL
QAavnke OTL TEPLOCOTEPO EVVOEITAL TO KOUUATL TG TPOGOLOIMOTG GTO LOTIKO ENIMEDO, ONANOT TO TETOPTO, TEUTTO KO
€KTO GKOVAPIGLLO TG TPOGOUOImONG. AVTO SIKOLOAOYEITAL A0 TO YEYOVOS OTL 1| TPOGOLOIMGT GTO LGTIKO EMITEDO
exterel T pon PoAOYIK®OV KLTTAP®OV HETAED YEITOVIKOV YEMUETPIKMOV KLTTAPWOV Yio TNV avénon 1 m ouikpuven
TOV OYKOV, dL0dIKAGIO TOV ATALTEL TOAAUTAEG TPOOTEAAGELS TOV TPLGOAGTATOL TAEYUATOC TOV OYKoL. 'Etot, glvan
Aoycd 1 peimon tov peyéfovug trng £16660V OV TPoKaAEiTaL amd TNV TPOENEEEPYAGIO TV SESOUEVOV €160V Va
€VVOEL TEPLGGOTEPO AVTO TO KOUUATL TNG TPOGOUOIWONG,.

O1 e&apTthoelc 0edOUEVOV ETLTPEMOVY TNV EKTEAECT] TAPAAANADY VTOAOYIGLLMOV LLOVO Y10 TO TPITO GKAVAPIGLLOL
7OV OAOKANPOVEL TNV TPOGOLOIMGT] 6TO KVTTAPLKO EMimedo yia kabe ypovikd frina Tov aiyopibuov. ‘Etct, péovo to
TPito oKOVAPIGHO guvoeital amd Tovg PeEATIOUEVOVS TOPOLS, dNAadT| T ToAlanAd threads mov exteAoVV VITOAOYI-
oLOVG ove&apTnTa Kol ToPAAANAL. AVTd onUaivel 0TL TO GTAS10 TNG TPOENEEEPYAGIOG TV OEO0UEVMV ELGOSOV, TEPOL
amd to speedup mov e1odyel dpesa AOYm TG pelmong Tov peyéBoug tng €16000v, e£lGOPPOTEL TO POPTO EPYUTING
KOl TO KOVEL Aly0TEPO Papld 6TO KOUUATL TNG TPOGOUOIMOTG TOV APOPE GTO 1GTIKO EMINEDO, PEATIOVOVTOG £TCL TIG
TPoonTIKES Yo speedup and tn PertioTomoinom tov tnyaiov kddka yio a&lomoinorn moAlanimy threads, copemva
pe 1o vopo tov Amdahl.

To profiling pe to callgrind epyaieio £€6e1&e OTL TO TPiTO CKOVAPIOUO GUUUETEXEL OTO GLUVOAIKO KOGTOG TNG
eKTELEOTG TG Tpocopoimong oe mocootd 0.6% — 4% mpv v npoenelepyacio TV dedOUEVOV Kol GE TOGOGTO
13% — 20% petd v mpoenetepyacio tav dedopévov. 'Etot, ot adlayég mov €yvav oTov TNyaio KOOI LE TN
BonBeia tov OpenMP API, yio tnv mopdAANAN EKTEAECT TV VTOAOYIGUMV TOL TPITOV GKAVOPICUATOG 0d TOAAATAN
threads, elodryovv speedup mepimov 16% —24%, evd ympig To 6Tad10 TG TPoEneEEPYaTiog TV 0eS0UEVMVY E1GOO0L TO
speedup a6 ) PertioTonoinon Tov mnyaiov kddike O tepropildtay oto 4%. X kdbe mepinT®o, TO TO CNUAVTIKO
speedup giodyetat AUeESA 0md TO OTASIO TNG TPOETEEEPYUTIAG TV SESOUEVMV E1GOS0V.

Sensitivity analysis

‘Entetta and to otddo g mpoenelepyaciog Tmv 0edopévav 16000V TG TPOCOUOI®MONG Kol TO GTASO TNG
BeltioTonoinong Tov TNYaiov KMIKO, TPOKVTTEL Eva VEO BEATIOUEVO LOVTELD, TOGO OGOV 0pOopd 6To UEYEDOC TNG
€16600V 0G0 KOl OVOPOPIK( LLE TOV TPOTO LE TOV OTTOT0 EKTEAOVVTOL O1 VITOAOYIGHOT TapdAANAa. "ETol, mpokvmtet
éva PEATIOIEVO OGOV 0POPE GTNV OO0 TNG EKTEAECT|C LOVTELD, TOV OO0V OUMG 1 CWGTH AELTOVPYio TPEMEL VOl
eleyyOel ko va emPePfoindel. T avtd 0 oKOTd, 68 AVTO TO onpeio Tov workflow £ywve 1 avdivon evacOnciog
TOV LOVTEAOV, OTTMOG TPOKVTTEL EMELTA, OO TIG TOPEUPACELS TOV TPONYOVUEVOV PLLATOV.

ITo cvykekpiéva, eKTEAESTNKE 1) €PN ON KAOE TAPAUETPOV €GOS0V TG TPOGOUOIMONG Kol TOV TPOTOV
ue Tov omoio emnpedlel v €060 Tov poviédov Eeympiotd. o v a&loAdynon TV OTOTELEGUATOVY PN CUYLOTOW -
Onke pia ypagikn péBodog, mov ontikomolel Ta amoteléouato o€ scatter plots, avoa@opikd He T0 Toc0GTO d10PpOopo-
noinomg Tov peyEBovg Tov OYKOV, TNV APYIKT IGTOAOYIO TOV GYKOV, OTMS EKPPALETOL ad TO TOGOGTO LE TO OTOI0
KkdOe katnyopio Kuttdpwv, proliferative, dormant, differentiated xat dead, cvppetéyet 6t 6VGTOGH TOL, KAOOS Kot
N JPOPOTOINGT| TNG IGTOAOYING TOV OYKOV, OTMG EKPALETAL OO TO TOGOCTO dLPOPOTOiNcNg Tov TANBoVG TV
KUTTAPOV TOV SPOPETIKOV KATIYOPLDV TOL TOV OTOTEAOVV.

Ooov agpopd otn dtapoponoincn Tov peyéboug tov dykov, eavnkKe 0Tl ovth ennpedletar katd Pdorn and v
) g CK R napapétpov, n onoia kabopilel 10 m0000TO TV KLTTAP®V 1oL YTumdet | Oepomeia. ITo cuyke-
kpéva, N avénon g tung ™me C K R mopouétpov mpokalel peyoldtepn peiowon tov peyébovg tov dykov. Avtd
etvar Aoykd, epdcov 660 peyardtepn eivor n Tipn g C K R mapopétpov 1060 meptocdtepa Proroykd kdtrapo
eEoloBpevovral and T Bepameio Kol TOCO O OmMOTEAEGLATIKN elvar 1 Bepameio GuvoAMKAL.



Ocov apopd otV apytkn 6VGTAGT TOL OYKOV, PAVNKE OTL aTY| ennpedletal KoTd Pdon omd TG THES TV
TOPAUETPOV Py, KO Pyjeep, 0L 0moleg k000pilovv 10 T0GOCTO TV KLTTAP®OV IOV EKTEAODV GUUUETPIKY dlaipe-
o1 K01 TO TOGOGTO TV KLTTAP®V OV EIGEPYXOVTOL OTNV Koludpuevn Go @aon €KTog Tov Kuttaptkoy KokAov. ITwo
oVYKeEKPIHEVa, avénon TG TUNG TG Py, TApOPETPOL avTIoTOLEL o embeTik avamnTuén Tov OyKov pe 16TOAOYIN
7oV amotereital and mepiocdTepa proliferative kot Aryotepa differentiated kottapa. AvtiBeta, adEnon g TWNE TS
Pyjeep mopapétpov avtiotoryel o€ mo guvoikn 1otohoyio pe Aydtepa proliferative kot mepiocotepa differentiated
KOTTOPO. AVTA TO amoTEAEGLATO, EIVOL AOYIKE, KOOMG TO KOTTOPO TOV EKTELOVV GUUUETPIKT dlaipesn) TOALATANGL-
fovtal en’ Amelpov, eV Ta KOHTTAPO, TTOV EIGEPYOVTIOL GTNV KOUDUEVN ¢dor G dgv moAloamAactalovTal.

Oocov agopd 6Ty TEMKT 6VGTAGT TOL dYKOV, PAvNKE OTL AV emnpealetot omd Tig TiéG TV C K R, Py, Ko
Pyjeep mapop€Tpmv, pe TpOTo TOL GUVASEL LLE TOV TPOTO LLE TOV OTTOT0 GVTEG O1 TAPAHETPOL EMIPOVV GTH S10POPOTOT-
101 TOL UEYEBOVG TOL OYKOV KOl GTNV aPYIKN TOV 6VoTaoT. [1o cuykekpiéva, avEnoT oTIG TYES TOV TOPAUETPOV
CK R xou Pyjeep 0vTIGTO00V GE O £VVOIKT 16TOAOYI0L Ko 0vamTuEn tov 6yKkov, evad avénon g tung mg Peym
TAPOUETPOV AVTIGTOLYEL OE MO EMBETIKY 10TOAOYIA KOl avATTLEN TOV GyKov. AKOpE, 1) 1GTOAOYIO TOV OYKOV, TOGO
apyIKn 060 Kot TEAMKN, ennpedletar Ko and dAleg TapapéTpous, Onme N ddpkela Tapapovig ot eaon Go (Lqo),
ot vekpotikn eaon (1) ko oy arontotikn eaon (14), av Kot 0yl 6€ T0c0 peydio adpo.

OAec avTég 01 TOPUTNPNOELS AVOPOPIKE LLE T CUUTEPLPOPA TOV VEOL BEATIOLEVOD LOVIELOV GUVASOLV LIE TN
dtaicOnon Tov vITdpyEL OYETIKA e TNV EEEMEN T®V TPOGOUOLOVUEVDV BLOAOYIKMV dlepyacidv. AKOLA, GUYKPIVOVTOG
NG GLUTEPUPOPA TOL VEOL LOVTEAOV LIE QLTI TOV EYEL KaTarypapel yio To apyiko verified povtédo, PAémovpe OTL aVTEG
elvar ovotlaotikd opotes. 'Etot, emPefaidveror 1 cmot) Asttovpyio 1oV VEOU LOVTEAOL, OTTMG OVTO TPOKLITEL UTTO
TIG BerTIDOELS TV TTpoTyouEV®Y Prudtoy Tov workflow, kot umopei va yivel | a&lomoinon tov 610 TeAkd Priua,
Yo TNV KAVIKY] TPOGOPHOYT TOV TOPOUUETPOV.

Clinical adaptation

210 TeEMKO Prina Tov vAomomONKe o aVTH TV gpyacia, aSlomomOnke 1 PeAtiopévn 66ov apopd otV ond-
doon g extédeong ko verified péow avérvong svairoOnoiog exdoyn tov Oykonpocsopotwt NeppoPractdpotog
Y0 TNV EKTEAECT TOAMAATADY TPOGOUOIDGENDY EIKOVIKMV A0HEVAV avd puGKd acBevr| Kat TV KAVIKT TPOGUPLOYN
TOV HOVTEAOV pE BAom Ta TPoyUaTIKE KAVIKG Sed0pEVA TOV EKACTOTE PUOIKOD ACOEVT.

[T cvykekpléva, o aAyOPIBOC TNG KAVIKNG TPOGAPUOYNG EKTEAEGTNKE Y10 KAOE LOIKO asBevn e TANB0g
ewovikdv aofevov N = 20 xan N = 200, ywo v mpocappoyn g C'K R mapapétpov, 1 onoio ekppalel tnv
amoterecpoTIKOTNTA TNG Oepameiag. H avdbeon tov TiHdVY Yo TG VTOAOITES TAPAUETPOVG EIGOOOL YiveTar pe Pdon
TNV OHOIOHOPON KOTAVOUN O€ éva mapabupo yop® amd TNV ovtictoyn Tl avagopds. H kAvikni mpocappoyn
Bewpeitor emopkng 6TAV T0 TOGOGTO pelmONS Tov peYEBoVg Tov YKoV, OTMS TPOKVTTEL OO TNV TPOGOUHOimoT, O
SPPEPEL TEPLGFOTEPO A0 H% MO TO TPAYUATIKO TOGOGTO LEIMONG TOVL HEYEBOLE TOV VKOV, OTWS TPOKVTTEL Uld
ToL KAVIKG 5£S0pEVE TOV PUOIKOV a.eBevT).

H «hvikn Tpocappoyn yivetar aveEdptnra yio Kabe EIKoviKO acoBev Kat, £TG1, EKTEAECTNKE TOPAAANAQ YO
TO GUVOAO TV EIKOVIKOV acBevav. o v kKhvikn npocapuoyr g C'K R Tapapétpov ava eioviko acdev v-
AomomOnke Evag alyoplBpog eEgpebvnong TOL SUGTILATOG TILMV TG TOPAUETPOV, 0 0TOT0G ekTEAEL pial oelpd amd
100y IKES TPOSOUOIDGELS. 'ETol, 0 cuvoAKOg ypdvog EKTELEONG, Y1l TIG TAPAAANAEG EKTELEGEIG KAVIKMV TPOGOP-
LOY(®MV GTO GUVOAO TMV EKOVIKAOV acBevav, eEaptdrtal amd to ¥pdvo ekTédeon pHiog Tpocopoinwong, Kabmg Kot and
TO LEYIGTO TANOOC GEIPLOKDY EKTEAEGEMV HETAED TV EIKOVIKMDY 0GO0EVDV.

[Mopatnpnbnke 6TL N avEnomn tov TANBoLE ToV elkovikKdY acBevav and 20 og 200 avénoe kot T péon Tn
TOV TANBOVE AVTAOV TOV GEIPLOKDOV EKTEAEGEDV. AVTO SIKOIOAOYEITAL OO TO YEYOVOG OTL OGO LEYOADTEPO Eival TO
TAN00¢ TOV EIKOVIKOV 060eVAV TOGO M0 TOAAEG EKOOYEC TOL LOVTELOL KOl TOV in silico PloloyikoV GLGTALOTOG
EKTPOCOMTOVVTOL OGOV 0POPE GTNV TIUY Y0 TNV OO KOOV KOTOVOUN TOV TUPUUETPOV €GOS0V Kal, £TCL, sivat
710 OV KAmoleg amd aVTEG TIG EKOOYES, ONANOT KATO101 0O TOVG EIKOVIKOVG AGOEVEIG, VO OmOITObV O EKTEVN
avalitmon tov dactiuatog e&gpebivinong yio TNy kKAvikn tpocappoyn g C K R mapouétpov.



Axopa, mapatnpndnke 6t avénon tov TANBovg TV sikovikemv acbevav amd 20 og 200 Tpokdiece avEnomn
GTO GLUVOALKO YPOVO EKTEAEGTC TNG KAVIKNG TPOCAPLOYNG. AVTo €lval TO LGIKO EMOLEVO TG AOENONG TOL TA00VG
TOV TPOGOUOIDGEWDY TOV EKTEAOVVTUL GELPLOKA, OPEIAETAL OUMG KOl GTO YEYOVOS OTL 01 SLOEGLOL TVPTVESG TNG AL~
TEKTOVIKTG €lvail 48 6T0 GUVOAO KO OV APKOVV Y10, TNV TAPAAANAN EKTEAEGT TG KMVIKNE TPOGAPLOYNG GTO GOVOAO
v 200 eKovik®v acevov.

Me Vv oAoKAMp®oT TG KAVIKNG TPOGAPUOYNG, £xel emAeyDel Yo kB ewkovikd acBevr| pio Tiun yuo v
CK R napdypetpo, n onoia amoteAel T PEATIOT TPOGAPLOYN TOV TAPIGTAVEL TO KATAAANAO T TPOLYUATIKG KAVIKA
OMOTEAEGLOTOL TOV AVTIOTOLYOV PLOIKOV 0GBevn Y10 TO cLYKEKPIEVO €KoVIKO aoBevr|. 'Etot, dnpiovpyovvrat dvo
JEIYUATIKOL YDPOL TPOGOLOLDGEMY, EVOG TOV AVAPEPETOL GTO GOVOAO TMV EKTEAEGEMV KAl EVOG TOV AVAPEPETUL LLOVO
OTIC TPOGOUOIDGELG PEATIOTNG KAVIKNG TPOGAPUOYNG OVA EIKOVIKO 0oOEV.

Me Bdiorn avtovg Tov SELyOTIKOVE YMPOLS, EYIVE 1| OMTIKOTOINGN T®V KOTAVOUDV TMV TOPUUETP®Y TOV LO-
VIEAOV GE HOPPT] KOVOVIKOTOUUEVDV IGTOYPOUUATOV Kol 000NKe pio TPAOTN EKTIUNOT] OYETIKA UE TIG TIUES TOV
TAPLOTAVOVY EMAPKDS TO TPAYUATIKA KAVIKE dedopéva Tov puotkov acBevn. IMoapartnpnbnke 6t n avénon tov
TAN00VG TOV EIKOVIKOV 060EVAV £0MGE O YOPUKTPIGTIKY KOTAUVOUT Y10, TIG TOPAUETPOVG TOV LOVTELOV, EUTAOD-
tiCovtag kot Bertidvovtag £T61 TV in silico amekdvIon Tov PLGIKOV acBevn. Avtd eivar Aoykd, epdcov 1 avENoN
oL TANB0VG TV EKOVIK®OV aG0eVOV £xel G AUEST GLVERELN TNV AOENOT TOV TANOUKOD APl TOV JELYHOTIKOD
YDPOV TV TPOGOUOIDGEMV, TOGO GUVOAIKA OGO KOl Yl TN PEATIOTN TPOGAPUOYN OV EIKOVIKO acBev].

H el a&oddynon Tov amoTeAeSHAT®V TNG KAVIKNAG TPOCHPUOYNG EYIVE LE TN GTATICTIKY AVAAVCT| TV
Ti®v g C' K R mopopétpou 610 SEIyUATIKO YDPO TMV TPOCOUOIDGEMV PEATIOTNG KAIVIKNAG TPOGUPUOYNC, alolo-
YOVTOS TOVTOYPOVA TV THPNGCT) TOL Kprtnpiov tpocappoyns. 1o cvykekpipéva, 1 Tin yio Ty oo KovoL KOToVoL
TOV TOPAUETPOV ELGOSOV TOV EKTPOSMTEL KATO10¢ EIKOVIKOG 0GOEVIIC EVOEYETAL VO UMV TOV EMITPEMEL TNV EMAPKN
KAVIKT] TPOGOPUOYN OTA KAIVIKO OTOTEAEGLLOTO TOV PLGIKOD 0oOEVH] TOV TaPLoTAvEL in silico, 660 kal av e&epev-
vnbei ko Tpocappootel 1 C K R mapdpetpog. Ot emeypéveg yuoo avtohs Tov gkovikovg aobeveic tipnéc g CK R
TapoUETPOV e&alpEONKAY 0O TN GTATIOTIKY OVAAVGT] Y1 TNV EE0Y®YN TOV TEAIKOD OMOTEAEGLOTOC.

To telKd amotéheospa TG KAMVIKNG Tpocapoyng ival 1 katavoun mbavotntog tg C' K R mapapétpov, Omme
ot ekepdleton omd to {e0yog HEoNG TWNG KOl TUTIKNG OTOKAIONG, Yo KAOE pio amd TIG TPELS IOTOAOYIKES OUAOEG
KOl AVTIGTOLYEG OUADES KIVODVOL TTOL EKTPOGOTOVVTAL GTO GUVOAO SESOUEVOV. AKOUM, TTOPOLO TTOL 1) IGTOAOYIO TOL
OYKOVL 0€ GUUTEPIAAUPAVETOL GLEGO GTO KPLTHPLO TPOGOPLOYNG TOL alyopiBpov, avtr a&loloynnke oty eoymyn
TOV TEMKOV anoTELESHATOC, e AOT TO TOGOGTO e TO OTO10 Ol SIPOPETIKES KUTNYOPiEg KuTTAp®™V, proliferative,
dormant, differentiated kou dead, coppetéyovv otnv apyikn Kot TeEAK cvotact oV dykov. H péon yun g CK R
TOPAULETPOV Y10 TNV OULAdA EVVOIKNG 1GTOAOYING KOl YOUNA0D Kivdhvov vroloyiotnke ion pe 0.9 mepinov, yo v
OUad0 UIKTNG 10TOAOYIOG Kol pesaiov Kivdhvov vmoroyiotnke iorn pe 0.8 mepinov, evd yia v opdda SVGUEVODG
16ToA0Yi0G Kot VYNAOD Kvdvvov voloyictnke ior pe 0.5 Tepimov.

Yvounepdopoato & Enopeva Bijpoata

Avtipetomon Tov bottleneck wov gwodyel 6NV 063001 TG EKTELEGS 1] TPOGOUOIMGT) GTO LGTIKO
EMIMED0 KO OAAOYES GTOV T YAI0 KOOIKO

To KOUWATL TNG EKTEAEONC TTOVL EMTAYVVONKE GE QLTI TNV EPYUGIO, LE TNV TAVTOYPOVN TAPUAANAY EKTELEGT
TOV VTOAOYIGUAV TOV 0td ToALaTAG threads, apopd 670 TPito oKAVAPIGHE TOV 0AYOPiOLOL Kol GTNV TPOCOoHOimon
070 KLTTOPIKO eninedo Promorvmiokdtntoc. [Tapdia avtd, TO KOUUATL TNG EKTEAEGTC TOV CUUUETEYEL TEPLGGATEPO
GTO GUVOAMKO KOGTOG QPOPE GTO TETAPTO, TEUTTO KOl EKTO GKOVAPIGLO TOV AAYOPIOOL KOl GTHV TPOGOUOI®GT) GTO
1oTIKO €Minedo PromorvmiokotnTag. I10 cuykekpipéva, KOO Kot LETE TV TPOETEEEPYUTIH TOV OESOUEVMOV TOV
HEL®VEL TO PEYENOG TNG 16050V, EVVOEL TEPIGGATEPO TNV TPOCOUOIMGT GTO 10TIKO EMinEdO Ko EEIGOPPOTEL TO POPTO
gpyociag, 1 TPOGOUOIMON GTO 10TIKO EMIMEDO GLUUETEYEL TEPLOTOTEPO amd 80% GTO GUVOAIKO YPOVO EKTEAECTC.



"Eto1, 1 mpocopoinon 610 16Tikd eninedo Promoivmiokdtnrag slodyst éva bottleneck 6Gov apopd oty amo-
doom ¢ EKTEAEDTG TNG TPOGOLoimoNg Kot 61N Pertioon e, H mnyn avtod tov mpofAnuatoc ivat ot eEaptnoetg
O€00UEVOV IOV XOPaKTNPIloVV TOVG VTTOAOYIGHOVG TOV EKTEAOVVTOL GTO TETOPTO, TEUTTO KOL EKTO OKAVAPLGLLO. TOV
aiyopiBpov. ITo cuykekpyéva, 6€ aVTA T0 GKOVAPIGHOTO VAOTOLEITAL 1] pOT] PLOAOYIKAV KVTTAP®V PETAED YEITOVI-
KOV YEQUETPIKMDY KLTTAP®V TOV TPIGILAGTATOV TAEYUATOG IOV TUPLGTAVEL in silico TO PLGIKO OYKO KL TOV KOVOVIKO
16td oV TOV TTEPIPAALEL, Yo TNV TPpOoGOUOimoT TS avénong 1 TG oikpvuvong Tov dykov. Avti 1 por| floloyikmv
KUTTAPOV TPOKaAEL TOAAEG eEapTioelg dedopuévav kat race conditions Kol Yio Vo, OVTILETOTIOTEL TPETEL VO YivOLV
Baoikéc aAloyég oTn AOYIKY Kl 6TV VAOTOINGT TOL aAyopifuov.

AAlec alAayég TOL Ba LITOPOVGAV TPOULPETIKA VA, YIVOUV GTOV aAYOPIOLO TOV LOVTEAOD aPOPOVY GTO GLVL-
TOAOYIGLO TNG IGTOAOYING TOL OYKOL KaTd TN SidpKeLn TG Tpocopoinong. Onmg eival tdpa To povtédo, 1 1IoToAoYid
TOV OYKOL GLUTEPIAAUPAVETAL EUUIETO GTNY TPOCOLOIMOT, LE TNV OVOPOPE GTO TOGOGTO LLE TO 0Moio KO KaTN-
yopia kvttdpwv, proliferative, dormant, differentiated won dead, coppetéyetl otnv apyikn kot TEAK 6OGTOGT TOL
oykov. ITapdra avtd, dev aglomotobvtal To 16TOTAO0A0YIKE SES0UEVE TOVL GUYKEKPILEVOD UOIKOD 0G0eVT, KOOMG
Ta voxels Tov Tp1ediioToTon TAEYLOTOG TOV GYKOL 0PYIKOTOI0VVTOL EITE MG KOVOVIKOG 10TOG E1TE G 1GTOG TOV AVIKEL
oToV OYKO.

Oa MTav evAPEPOV VoL SOKLUACTOVV ETEKTACELG 01 OTOIEG KOIKOTOLOVV GTO TPIGIAGTUTO TAEYLLO TAT|POPO-
pilo oYETIKA e TNV 10TOAOYIO TOV OYKOV, Y10l TOPASELYLOL VO VITAPYOVV PAACTNUATIKEG, CTPMUATIKES Ko EMONALOKEG
TePLoYEG Kot o€ KABe pia amd avtég va papuolovTot S1POPETIKES TIEG Y10 TIG TAPOUETPOVS TOV LOVTEAOV. AKOL,
avti va puBpiletor otatikd 1o pEyehog Tov YEMUETPIKOV KVTTAPOL 6TO 6TAO0 TNG Ttpoenelepyaciog dedopévav, Ba
UTOPOVGE OVTO VO YIVETOUL OVUVOUIKA KATA TNV EKTEAECT] TNG TPOCOUOIMONC, OVAAOYA, LLE TIG VITOAOYIOTIKEG AVAYKEG
KoL Y100 KGOE 1GTOAOYIKN TTEPLOYT| TOVL TPLOOIAGTATOV TAEYLUTOC YOPLOTA.

Emtéayvvon tov povréiov kot dSnuiovpyio piog apyiTEKTOVIKIG EKTELECS TOALATAMY TPOGOUOLM-
GEMV Y10, TN}V KAVIKI] TPOGUPUOYT] TOV GLUVOLOV TMV TUPUUETPMOV TOV HOVTELOV

‘Enterta and ) Stopdop@mon tov adyopiBpov kat Ty VAOTOINGT TOL LE YVMLIOVO TOV TEPLOPIGUO TV eE0PTN-
cEMV SESOUEVAOV KOl TN PLEYIOTOTOINGT) TOV TPOOTTIKMV Y10l ENLTAYVLVOT, UTOopel va dnpovpyndei pio apyltekToviKn
Y10 TNV ATOJOTIKY] EKTEAECT] TOALOTADV TPOCOUOIDGEWV EIKOVIKMOV AoOEVAV avd puotkd acbevr|. I'ia avtd To oKO-
16, etvar ypnotpo va egpevvnBov ot TapAapUeTPoL TOL odyopiBuov TG KAVIKAG TPOGAPUOYNGS, Y0 TOPASELY L TOV
TANB0VG TV EIKOVIKOV acBevav N, €161 O0TE v, TPOGOI0PIGTOHV 01 TIHEG TOVG TTOL HIVOUV KOAVTEPO ATOTEAEGLO-
ta. ‘Eto, pmopel va Eekviioel 0 TPOGIIOPIGHOG TMV TPOSAYPUP®OY TOV VITOAOYIOTIKOV GUGTNUATOC KOl TNG Opyl-
TEKTOVIKT|G Y10 EKTEAECT TOALATAMY TPOGOUOIDGEWDY, £TGL MOTE VO TANPOLVTOL KATolo Tpokabopiopéva KpiTnpio
amddoomG.

E@ocov éyel dnuiovpyn0ei n apyrtektovikn ektédeons LOJIKOV TPOCOUOIDGE®Y, aVTH propel va a&lomom el
Y10 TNV EKTELECT] TOAAATAMY TPOCOLOIDGEDMY EIKOVIKMOV AGHEVOV ava pUOIKO 0cOeV, Y10l TNV KAVIKT TPOGUPLOYN
KOl T@V VTOAOT®V TOPUUETP®V ELGOS0V TOL HOVTEAOV, UE AVTIOTOO TPOTO OTMG £YIVE GE QLT TNV EPYUCia Yia
™ CK R mopduetpo. Xe autd to onpeio, tifetat 1o (htnpa mov aeopd otny afefatdmia Tmv ovImposOTELTIKOV
TILAV OVOQOPAS Y1 TIG TAPAUETPOVS TOV LOVIEAOL KOl OTLG EENPTIOELS OV LIAPYOLV LETAED Tovs. 1o va avtipe-
TOTIOTEL AVTO TO TPOPAN LA, TPOTEIVETOL VA EEKIVIGEL 1] KAVIKT TPOGOPLOYT OO TIG TOPAUETPOVS TOL ENNPEALOVLV
nEPIGGOTEPO TNV £€0080 NG Tpocopoinong, oniadn tig CK R, Psy,, kot Pyjeep KoL £TEITO VO TPOGOPUOGTOVY O1
VEOAOUTEG TOPALETPOL, [LE BACT KOl TN GYECT TOVG UE TO YPOHVO IMIMAAGLAGLOV TOV dyKov Ty.

Avt 1 ddkacio pmopel vo emavoineOel moALEG Popég, HEXPL TO OTOTEAEGUATO TNG KAIVIKAG TPOGAPLLO-
NG v GLYKAIVOLV KavomomTiKd Yo KOs mapapetpo. 'Etot, mpokimtovy telMkd Kotavopés Thoavotntog yio kdbe
TAPAPETPO TOV HOVTEAOV, Ol 0Toieg yapakTnpilovy Tig dlakpités opddes acbevdv Tov cuvorov dedopévav. Télog,
elvar okomipo va avéndet 1o péyebog Tov GLVOLOL dedOUEVOV, £TGL MGTE VO EKTPOCHOTOVVTIOL GE QVTO TEPICCOTEPEG
Katnyopieg acBevav kat Le meptocoTepa delyparta 1 ke pia. ‘Etot, ot katavopéc mbavotnTtog Tov TpoKHTTOUV Yo
TIG TOPOUETPOVS TOL LOVTEAOL PEGM TNG KAVIKNG TPocappoyng Oa ivat o a&lomioTes Kol aVTITPOCOTEVTIKEC.



Xpion ™G UPYLTEKTOVIKNG TOLAUTAMV TPOGOPUOLADGEMV EIKOVIKAV 060EvVOV Y0 TN HETAPOPE TOV
Oykonpocopormt) Ne@pofraoTdRaTog 6TV KAVIKN TPUKTIKY] OS GUUPOVAEVTIKOD £pYOAEiov TOV
TIPOCPEPEL VAN PEGLES EEATOUIKEVPUEVIS LOTPIKIG

E@ocov éxouv TpocdlocTioTel 01 KOTOVOUEG TMV TAPAUETPOV EIGOO0L TOL LOVTEAOL Y10 TIG OLOPOPETIKES KO-
Tnyopieg acBevav, pumopel va yivel 1 a&l0moinon g apyLITEKTOVIKNG EKTEAEOTG LOLIKOV TPOGOUOIDCEMY LE GKOTO
N XPNOMN TOALOTADY EIKOVIKOV 0GOEVAV Y10, TNV TPOPAEYT TOV KAVIK®V ATOTEAEGUATMV GTNV EPAPUOYT TOIKIA®Y
BEPATEVTIKMY GEVOPIOV Y10 TNV AVTILETOTIOT TOL OYKkov Tov Wilms og tpéyovteg puoikohs acbeveic, ol omoiot dev
&yovv axopa dexBel Oepancio. [Tio cuykekpyéva, avarloya Le TNV IGTOAOYIKT KoTyopio Kot avtictolyn opdda Kiv-
dUVOV GTNV Ooia AVIKEL 0 PUGIKOG AGOEVNG, LTOPEl VO EKTEAESTEL [0l GELPA 0O TPOGOUOUDGELS EIKOVIKDV 0GOEVDV
pe PAon To OTEKOVIGTIKA TOL OEGOUEVE KOL TIUT Y10 TV od KOWOU KOTOVOUY TV TAPOUETP®V 16050V LE o
TIG KATAVOUEG TTOV £Y0VV TTPOKVYEL LEGM TNG KAVIKTG TPOGAPLOYNG Yo dLTY| TNV Katnyopio acOevdv.

A&oAoydVTOG TO OTOTEAECUO TOV LOJIKOV TPOCOUOIDCEMY GUVLTOAOYILOVTOG T AMOTEAECUOTA TOV EMUE-
POVG EIKOVIKAOV 060EVDV, Y10 TOPASELY L0 EKTEADVTOG GTATIOTIKY OVIAVGT] GTO GUVOAD TOVG, UTOPEL VAL ATEIKOVIGTEL
aOmoTO 0 PLGIKOG acHeVig GTOV VITOAOYIOTH Kot Vo Yivel pia akpiPng extipunon g KMVIKNG Tov mopeiog. E-
KTEADVTOG aUTH TN Sodkacia yio TV TPOGOHOImoT SPOPETIKAOV BEPATEVTIKOV TPOsEYYicE®V, Pmopel va yivel 1
GUYKPLOT TOV OTOTEAEGLLATOV Y10, TO SLOLPOPETIKA A TA BepamevTiKG cEVAPLO Kot va EEKvIioeL ) petapopd tov OyKo-
npocopol®t] Ne@poPfAaoTdpHTOq 6TV KAVIKT TPUKTIKY, O EPYOAEIOD Y10 eE0TOUIKEDUEVT] LOTPIKT] TTOV TPOGPEPEL
GUUPBOVAEG YO TV ETIAOYN TOL 0G0V BEPATEVTIKNG OVTILETATIONG TG VOGOL LE TO TTLO VITOGYOUEVO. OTOTELEC LA
ta. o Tapdderypa, ekteldvtag TV KAVIKN TpdPreyn yio tnv eAevBepn avamtuén Tov 6yKov, kabdg Kot yio
YOPNYNON TNG TPOEYYEPNTIKNG YNHe0bepaneiag Tov kabiepwpévov SIOP tpmtokdAhov, propel va aravtndel to o-
TAO EPATNUO TOL OPOPE GTOV OV TPENEL TEAKE Vo Tponyn0el ynuelobepomeio TPV omd TN XEPOLPYIKN APaipESN
TOV OYKOV.

H petagopd tov Oykonpocopotwt Ne@poPAasTOUATOS GTNY KAWVIKH TPOKTIKY TPETEL Va. YiVEL GTO TAAIGLO
KAMVIKOV S0KILdV Tov Bo fEfatdcovy T 6mMOTH Kol ATOTEAECUATIKY TOV AEITOLPYIX 0TO 1WTPIKO TTePPaAloy. Té-
TOEG KAVIKES OOKIUEG TIPETEL VAL OYXESOGTOVY KOl VO EPUPLOCTOVV ald EUTELPOVG YLOTPOVG GE EVOL EMAPKMG LEYAAO
KO OVTUTPOCMTEVTIKO KAVIKO SeiypLa, TvTa pe oeBacUO Kot THPNON TOV WTPIKOV TpOTOKOAA®VY. [0 avtd T0 6KO-
7o, €ival amopaitnn 1 S1dbeoT Tov LOVTELOL 6TO TANIGLO UiCG OAOKANPOUEVIG EPUPLOYNAG, ) OOl TEPLAAUPAVEL
KGO0, POGTKE SOLUKE GTOLYEL KO YOpaKTNPLOTIKG Kot olatifetal pe BaoT Tig KablepmUEVEG TPAKTIKES, £TCL DOTE
Vo WITOPEL Vo, YpNOLOTOLEITAL EDKOAN OO YIUTPOVG OE SLAPOPETIKG €V YEVEL KAMVIKA kévipa. H epappoyn avth Oa
npénel olyovpa va meptrapfavel évo DBMS (Database Management System) yio TV KatGAANAN KOl 0TOTEAEG O
TIKN amoBnkevon Kot TPOGROCT GTa 1TPIKA SESOUEVE, LE THPNON TOV Kavoévev mpootaciog dedopévav (GDPR
requirements), kafdc kot pio demaen ypnotn (user interface) mov Ba emttpémel v TpaAyHOTOTOiNGoN TV EMOL-
untov cevopiov ypriong e epappoyng (use case scenarios), eE0c@aAilovtog pio OUAKY TPog TO ¥PNOTH EUTEPIN
(user-friendly experience).






Contents

List of Figures

List of Tables

1 Introduction

2 Theoretical Framework

2.1 Multiscale Cancer Modeling . . . . . .. ... ... ... .. .....

2.2

2.3

2.1.1

2.1.2

Cancer as a multiscale phenomenon and the different scales of
biocomplexity that describe it . . . . . . . ... ... ... ..
A comparison of the techniques that are employed for modeling

and integrating the various scales of cancer biocomplexity . . .

The Eukaryotic Cell Cycle . . . . . . .. .. ... . . ...

2.2.1

2.2.2

2.2.3

2.3.1

2.3.2

The sequence and the role of the four phases that compose the
eukaryotic cell cycle . . . . . . . . .. ... ...
The dynamic transcriptional network of macromolecules that
regulates the evolution of the eukaryotic cell cycle . . . . . . .

The major chekpoints of the eukaryotic cell cycle and the resting

The outline of the clinical environment and workflow within
which the Oncosimulator is utilized as a discrete top-down ap-
proach for cancer modeling . . . . . . ... ... L.
The "summarize and jump" Oncosimulator algorithm, which
represents the solid tumor as a 3D matrix and simulates its

evolution in discrete time steps . . . . . . ... ... L.

11

13
16

16

18

19

20

20



2.4

2.3.3 The hypermatrix notation that is employed for the implemen-
tation of the Oncosimulator algorithm . . . . .. .. .. ...
2.3.4 The simulation input and output parameters, the natural pro-
cesses that they describe and their role in the Oncosimulator
algorithm . . . . . ..o
The Nephroblastoma Oncosimulator . . . . . . . . ... ... .. ...
2.4.1 A summary of the Wilms’ tumor disease, with focus to its
histopathology, etiology, prognosis within the standard staging
system and epidemiology . . . . . . . ... ... ... ...
2.4.2  'The treatment plan specific parameters and the reference values
for the complete set of simulation input parameters . . . . . .
2.4.3 A brief presentation of the dataset patients, with concern to the
plan with which they were treated, their medical imaging data,

their histologic profile and the risk group that they represent .

3 Methodology

3.1
3.2

3.3

Workflow Outline . . . . .. . ... ... ... ... ... ... ...,
Data Preprocessing . . . . . . . . . . . . .o
3.2.1 The input files of the Nephroblastoma Oncosimulator, which
define the properties of the 3D matrix that represents the solid
tumor insilico. . . . .. ... Lo
3.2.2 A data preprocessing algorithm that explores the geometrical
cell size for the optimal adaptation of the simulation resolution
Sensitivity Analysis . . . . . . . ..o o
3.3.1 The role of sensitivity analysis as a method that is dynamically
employed for the exploration of the Nephroblastoma Oncosim-
ulator functionality under different parametric scenarios . . . .
3.3.2 Sensitivity analysis as a parametric exploration for each simu-
lation input parameter separately and the parameters that are

used for quantifying its results . . . . . . . ... ... ... ..

28

32

40

40

45

47

53

53

o6

o6

57

61

61



3.3.3  The graphical method for sensitivity analysis and its results for

the original verified version of the model . . . . . . . ... ..

3.4 Application Profiling & Code Optimization . . . . . . . . .. .. ...
3.4.1 The specifications of the architecture for the computing envi-
ronment that was utilized . . . . .. .. ... ...
3.4.2  Valgrind as the profiling tool that was used for the estimation
of the memory footprint per simulation execution and of the
costs per simulation scan with concern to the CPU cycles and
the memory accesses . . . . . . . . ... ... ..
3.4.3 The plan for the optimization of the third scan of the Nephrob-
lastoma Oncosimulator algorithm and its implementation using
the OpenMP APL . . . . . .. .. ... ... ... ... ....
3.4.4  Speedup as the metric for the performance enhancement out-

comes and the limitations introduced by Amdahl’s law
3.5 Clinical Adaptation . . . . . . . ... ... ... .. .. .. ... ...
3.5.1 The concept of virtual patients for the in silico representation
of a single physical patient with a variety of values for the joint
distribution of the simulation input parameters . . . . . . ..
3.5.2  The clinical adaptation algorithm that explores the CKR pa-
rameter for each virtual patient with the goal of the optimal
adaptation to the medical data of the physical patient . . . . .

4 Results

4.1 Data Preprocessing . . . . . . . . . ..o

4.1.1 The original values for the parameters that are inherent to the
simulation input files for each dataset patient . . . . . . . ..
4.1.2 The results of the simulation resolution adaptation with respect
to the execution time and error that corresponds to each scale

and padding factor set for each dataset patient . . . . . . . ..



4.1.3 A comparison of the simulation evolution for the varying resolu-
tion versions that correspond to the distinct scale and padding
factor sets for each dataset patient . . . . ... ... ... .. 91
4.1.4 The chosen optimal resolution adaptation and the correspond-
ing value for the scale and padding factor set for each dataset
patient . . . . ... 98
4.2 Sensitivity Analysis . . . . . ... L 99
4.2.1 The evaluated with respect to the initial tumor composition
results of the graphical method for sensitivity analysis. . . . . 99
4.2.2 The evaluated with respect to the tumor volume variation re-
sults of the graphical method for sensitivity analysis . . . . . . 102
4.2.3 The evaluated with respect to the tumor volume variation re-
sults of the graphical method for sensitivity analysis . . . . . . 104
4.3 Application Profiling & Code Optimization . . . . . . ... ... ... 107
4.3.1 A summary of the effects of the data preprocessing step, the
speedup, the memory footprint reduction and the overall im-
proved potential for the code optimization step it introduces . 107
4.3.2 The simulation execution callgraph and the costs per function,
with respect to the memory accesses and to the CPU cycles count112
4.4 Clinical Adaptation . . . . . . . ... ... ... ... 121
4.4.1 A summary of the clinical adaptation executions . . . . . . . . 121
4.4.2 The distribution of the simulation input parameters for each
clinical adaptation execution . . . . . . . . . .. ... ... .. 124

4.4.3 The evaluation of the clinical adaptation criterion for each vir-

tual patient . . . . . ... 139
4.4.4  The resulting CKR distribution for each dataset patient . . . 143
5 Conclusion & Future Work 147

Bibliography 150



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9

2.10

2.11

2.12

2.13

2.14

3.1

3.2

3.3

3.4

3.5

3.6

The six major hallmarks of cancer. . . . . . ... ... ... .....
The scales of biocomplexity in cancer modeling. . . . . . .. .. ...
The four phases that compose the eukaryotic cell cycle. . . . . . . ..
The distinct steps of the mitotic phase, which distribute the contents
of the parent cell to two equal shares and lead to the physical division
to two idential daughter cells. . . . . . . . . .. ... ... ... ...
The regulation of the eukaryotic cell cycle by couples of cyclins and
CDKs. . . . e
The diagram that describes the workflow within which the Oncosimu-
lator is employed as a clinical assistant and advisor. . . . . . . . . ..

The flowchart of the "summarize and jump" Oncosimulator algorithm.

The cytokinetic diagram that visualizes the transitions between the
phases inside and out of the cell cycle and the effects of therapy. . . .
The hypermatrix data structure organized in geometrical cells and
equivalence classes. . . . . . . ...
A demonstration of the manner in which the simulation input param-
eters that are referenced in the second and third scan of the Oncosim-

ulator algorithm implement the transitions of the cytokinetic diagram.

A demonstration of different histopathologic scenarios for WT. . . . .
The chromosomal locations and the corresponding genes that are as-
sociated with the WT phenotype. . . . . . . ... ... ... .. ...
The mixed chemotherapeutic scheme of the standard SIOP protocol,
that is applied for the preoperative treatment of Wilms’ tumor.

The visualized with ImageJ 3D reconstruction images of the tumors
before and after the preoperative treatment application for each dataset
patient. . . ... oL

The diagram of the outline of the workflow that was implemented in
the context of the present work. . . . . . . . .. ... .. ... .. ..
A standard format for the .mhd files that are given as input to the
Nephroblastoma Oncosimulator. . . . . . .. ... ... ... .....
The flowchart of the data preprocessing algorithm that explores the
geometrical cell size for the optimal adaptation of the simulation reso-
lution. . . . . . . .
A visualization of the effect that the variation of the values for each
input parameter has on the tumor volume variation, as it is derived
via the graphical method for sensitivity analysis. . . . . . . ... ...
A visualization of the effect that the variation of the values for each
input parameter has on the initial composition of the tumor, as it is
derived via the graphical method for sensitivity analysis. . . .. . ..
A visualization of the effect that the variation of the values for each
input parameter has on the composition variation of the tumor, as it
is derived via the graphical method for sensitivity analysis. . . . . . .

17

19

21
24

25

30

36

41

42

45

02

23

57

60

65

65



3.7

3.8
3.9
3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

A visualization of the speedup of a workload as the number of utilized
processors increases, according to Amdahl’'s law. . . . . . . . ... ..
The flowchart of the clinical adaptation algorithm. . . . . . . . . . ..
The probability density function for the uniform distribution.. . . . .
The flowchart of the algorithm that explores the C'K R parameter value
range for the optimal clinical adaptation. . . . . . . .. ... .. ...

The scatter plots that express the relationship between the scale factor
value, the simulation times and the tumor volume reduction error for
Patient 15. . . . . . .. .o
The scatter plots that express the relationship between the scale factor
value, the simulation times and the tumor volume reduction error for
Patient 16. . . . . . . . ..
The scatter plots that express the relationship between the scale factor
value, the simulation times and the tumor volume reduction error for
Patient 17. . . . . . . . o e
The 3D tumor reconstruction for varying scale factor values at day 5
of the simulation for Patient 15. . . . . .. ... ... ... .. ...
The 3D tumor reconstruction for varying scale factor values at day 20
of the simulation for Patient 15. . . . . .. .. ... ... ... ...
The 3D tumor reconstruction for varying scale factor values at day 5
of the simulation for Patient 16. . . . . .. .. ... ... ... ...
The 3D tumor reconstruction for varying scale factor values at day 20
of the simulation for Patient 16. . . . . .. .. .. .. .. ... ...
The 3D tumor reconstruction for varying scale factor values at day 5
of the simulation for Patient 17. . . . . .. .. ... .. ... .. ..
The 3D tumor reconstruction for varying scale factor values at day 20
of the simulation for Patient 17. . . . . .. ... ... ... ... ..
The graphical method sensitivity analysis results for the optimized
version of the Nephroblastoma Oncosimulator and with respect to the
initial tumor composition. . . . . .. ..o Lo
The graphical method sensitivity analysis results for the optimized
version of the Nephroblastoma Oncosimulator and with respect to the
tumor volume variation. . . . . . . ... .. ...
The graphical method sensitivity analysis results for the optimized
version of the Nephroblastoma Oncosimulator and with respect to the
final tumor composition. . . . . . .. ..o
The bar plots that visualize the simulation execution times, both over-
all and analyzed in the individual simulation scans, before and after
the data preprocessing step is applied for each dataset patient. . . . .
The bar plots that visualize the speedup for the simulation execution
when data preprocessing is performed compared to the simulation ex-
ecution when no data preprocessing is performed, both overall and for
each individual simulation scan, for each dataset patient. . . . . . . .
The bar plots that visualize the memory footprint of the simulation
executions for each dataset patient, before and after the data prepro-
cessing step is applied. . . . . . ..o Lo
The bar plots that visualize the data preprocessing induced relative
memory footprint reduction percentage for each dataset patient.



4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

The percentages of execution time that are attributed to each individ-
ual simulation scan for each dataset patient, before and after the data
preprocessing step is applied, which indicate the indirect effect of the
data preprocessing step to the maximum speedup allowed according to
Amdahl'slaw. . . . . . . .. . ..
The callgraph derived for the execution of the Nephroblastoma On-
cosimulator for the data preprocessed input for Patient 15, as it was
profiled with the callgrind tool and visualized with the KCachegrind
tool. . .
The callgraph derived for the execution of the Nephroblastoma On-
cosimulator for the data preprocessed input for Patient 16, as it was
profiled with the callgrind tool and visualized with the KCachegrind
tool. . . e
The callgraph derived for the execution of the Nephroblastoma On-
cosimulator for the data preprocessed input for Patient 17, as it was
profiled with the callgrind tool and visualized with the KCachegrind
tool. . .o
The CPU cycles count and memory percentages per source code func-
tion for the execution of the Nephroblastoma Oncosimulator with the
data preprocessed inputs for Patient 15, as they were calculated using
the callgrind profiler with the cache hierarchy simulation activated.

The CPU cycles count and memory percentages per source code func-
tion for the execution of the Nephroblastoma Oncosimulator with the
data preprocessed inputs for Patient 16, as they were calculated using
the callgrind profiler with the cache hierarchy simulation activated.

The CPU cycles count and memory percentages per source code func-
tion for the execution of the Nephroblastoma Oncosimulator with the
data preprocessed inputs for Patient 17, as they were calculated using
the callgrind profiler with the cache hierarchy simulation activated.

The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical
adaptation algorithm for Patient 15 and number of virtual patients
N=20. . . . e
The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical
adaptation algorithm for Patient 15 and number of virtual patients
N=200. . . . . e
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 15 and number of virtual patients N=20. . . . . . . . ..
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 15 and number of virtual patients N=200. . .. .. . ..
The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical

adaptation algorithm for Patient 16 and number of virtual patients
N=20. . . . e

112

115

116

116

118

119

120

127

128

129

130



4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical
adaptation algorithm for Patient 16 and number of virtual patients
N=200. . . . . e e
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 16 and number of virtual patients N=20. . . . . . . . ..
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 16 and number of virtual patients N=200. . .. .. . ..
The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical
adaptation algorithm for Patient 17 and number of virtual patients
N=20. . . . . e
The normalized histograms that visualize the probability distribution
of the simulation parameter values for the execution of the clinical
adaptation algorithm for Patient 17 and number of virtual patients
N=200. . . . . e
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 17 and number of virtual patients N=20. . . . . . . . ..
The pairplot that visualizes the joint distribution for the simulation
parameter pairs for the execution of the clinical adaptation algorithm
for Patient 17 and number of virtual patients N=200. . .. ... ..
The histograms that visualize the relationship between the optimally
adapted C KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 15 and number of virtual patients N=20. .
The histograms that visualize the relationship between the optimally
adapted C KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 15 and number of virtual patients N=200.
The histograms that visualize the relationship between the optimally
adapted C' KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 16 and number of virtual patients N=20. .
The histograms that visualize the relationship between the optimally
adapted C KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 16 and number of virtual patients N=200.
The histograms that visualize the relationship between the optimally
adapted C KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 17 and number of virtual patients N=20. .

132

133

134

135

136

137

138

140

141

141

142

142



4.41 The histograms that visualize the relationship between the optimally
adapted C KR values and the in silico tumor volume reduction, the
corresponding clinical adaptation error and the in silico composition of
the initial and the final tumor for the execution of the clinical adapta-
tion algorithm for Patient 17 and number of virtual patients N=200. 143



List of Tables

2.1

2.2

2.3
2.4

2.5

2.6

2.7

2.8
2.9

2.10

2.11

3.1

3.2

3.3

4.1

4.2
4.3
4.4
4.5

4.6

4.7
4.8

The simulation input parameters, which fully define the distinct scans
of the Oncosimulator algorithm and describe the natural processes and
quantities that are represented in silico. . . . . . . . . . ... ... ..
The simulation output parameters, which quantify the outcomes of the
Oncosimulator algorithm. . . . ... .. .. ... ... ... ... ..
The staging system for WT. . . . ... ... ... 000
The 10 year outcomes for the W'T patients treated on NWTS-4, along
with the corresponding histology and disease stage. . . . . . ... ..
The overgrowth syndromes that are related to the occurence of WT,
along with the corresponding risk factors and the median ages of oc-
CUTEIICE. . v v v v v e e e e e e e e e e e e e e e
The parameters that define the key time points of the simulation and
that, along with the parameters of Table 2.1, complete the set of
input parameter for the Nephroblastoma Oncosimulator. . . . . . ..
The reference values for the set of simulation input parameters of the
Nephroblastoma Oncosimulator. . . . . . . . . ... ... .. .....
The histopathology data for each dataset patient. . . . . .. .. ...
The treatment plan for each dataset patient, along with the dates of
the MRT acquisition and the operation date. . . . . . . . .. .. ...
The values for the input parameters of the Nephroblastoma Oncosim-
ulator that define the treatment plan for each dataset patient.

33

38
43

44

44

46

47
48

49

20

The response of the dataset patients to the applied preoperative therapy ol

The parameters that are utilized for the assessment of the sensitivity
analysis results. . . . . . . . .. L
The specification of the architecture of the linux server that was used
for the simulation executions. . . . . .. .. .. ... . 0L
The mapping of the utilized architecture’s logical CPUs to the physical
cores, NUMA nodes and cache hierarchy. . . . . . ... ... .. ...

The values of the primary input file inherent parameters for the original
input files for each of the dataset patients. . . . . ... ... .. ...
The results of the resolution adaptation algorithm for Patient 15. . .
The results of the resolution adaptation algorithm for Patient 16. . .
The results of the resolution adaptation algorithm for Patient 17. . .
The chosen set of values for the scale factor and the padding factor per
dataset patient. . . . . . . .. ..o
The primary Nephroblastoma Oncosimulator source code functions and
the corresponding simulation scans that they are referenced in. . . . .
The summary of the clinical adaptation executions. . . . . . .. . ..
The resulting distribution of the C K R parameter for Patient 15, as
it is defined by the set of corresponding mean and standard deviation
values that are represented in the sample space of the simulations that
were executed during the clinical adaptation. . . . . . . . .. ... ..



4.9

4.10

The resulting distribution of the C K R parameter for Patient 16, as
it is defined by the set of corresponding mean and standard deviation
values that are represented in the sample space of the simulations that
were executed during the clinical adaptation. . . . . . . . .. ... ..
The resulting distribution of the C K R parameter for Patient 17, as
it is defined by the set of corresponding mean and standard deviation
values that are represented in the sample space of the simulations that
were executed during the clinical adaptation. . . . . . . . .. ... ..



Introduction

The Oncosimulator is a tool for in silico medicine, and more specifically for in
silico oncology. Tt utilizes the medical data of the physical patient that suffers from a
neoplastic disease, in order to represent the solid tumor in silico, i.e. on the computer,
as a 3D matrix of voxels and simulate its development in time, either as the tumor
grows freely or within the context of a therapeutic scheme. Moreover, the progression
of the simulation is governed by a set of simulation input parameters that define
the biologic processes at play and the overall attributes of the system that is being
simulated, while the outcome of the simulation is expressed by the final size and shape
of the tumor, the tumor volume variation and the final composition of the tumor by
the different cell type populations, which indicates the tumor’s histology.

The simulation of the evolution of the tumor growth is performed in discrete time
steps. In that respect, the Oncosimulator falls in the category of discrete entity-
discrete event agent-based models for multiscale cancer modeling. Within each time
step, a series of consecutive scans of the 3D tumor matrix is performed, for the
simulation on the cellular and on the tissue level of biocomplexity. In that respect,
the Oncosimulator utilizes the "summarize and jump" technique, which "summarizes"
the simulation results on one level of biocomplexity before a "jump" is made to
another level of biocomplexity, for each discrete time step of the simulation. Here,
the "summarize and jump" process is made between the cellular and tissue levels for
each discrete time step of the simulation. Finally, the Oncosimulator is a top-down
model, in that it is mainly data-driven rather than based solely on a network of
complex components that strictly describe the simulated processes.

The Nephroblastoma Oncosimulator is a version of the Oncosimulator software that
is used for the execution of simulations that are specific to Wilms’ tumor, also known
as nephroblastoma, which is the most common kidney tumor in childhood. It was
developed by members of the In Silico Oncology and In Silico Medicine Group, ICCS,
ECE, National Technical University of Athens, under the lead of G. Stamatakos and
the clinical advisorship of N. Graf, University of Saarland from 2006 to 2019. It
simulates the tumor evolution when the standard SIOP protocol management of the
disease is applied. The simulated therapeutic scheme consists of a 4-week mixed
chemotherapeutic regimen, which includes Vincristine and Actinomycin administra-
tion. The parameter that expresses the effects of the administered therapy is the
cell kill ration (C'K R) parameter, which determines the ratio of cells that are hit by
therapy. For the Nephroblastoma Oncosimulator, the C'K R parameter is analyzed
in two parameters, one that corresponds to the effects of the Vincristine drug dose
(CKR_VCR) and one that corresponds to the effects of the Actinomycin drug dose
(CKR_ACT).

The main goal of the Oncosimulator, for the nephroblastoma paradigm and for
every other neoplastic disease specific version, is to represent the tumor along with
its normal tissue microenvironment in silico, so that the behavior of the neoplasm



can be predicted and recorded for different conditions, e.g. for free growth or for
therapy administration within different therapeutic schemes. In that respect, the
Oncosimulator acts as a digital twin for the physical tumor and the biologic processes
that cause its development in time. That way, it can be utilized for the patient specific
study of the tumor and its normal tissue microenvironment and ultimately used as
an advisor for personalized medicine, offering guidelines for the best course of the
disease management to the medical doctors.

The digital twin terminology refers to the in silico representation of a physical sys-
tem. It is a popular method in engineering for product design and development and
for the monitoring and study of physical systems on the computer. The main charac-
teristic that differentiates the digital twin method from a classical simulation is that
it offers an accurate representation of the physical system environment that can be
used for the execution of a set of simulations and evaluations of the system’s state,
via the constant flow of data between the physical system and its digital represen-
tation. The Oncosimulator has the features of a digital twin model, since it utilizes
the medical data of the patient for the accurate patient-specific representation of the
tumor in silico. Even though the patient-specific medical imaging data are easily
translated in silico with respect to the size and shape of the tumor, the translation of
the characteristics of the tumor histology and of the regulation of the other biologic
processes at play is more complex, but crucial for the function of the Oncosimulator
as a digital twin for the tumor and its normal tissue microenvironment.

The evolution of the simulation is determined by a set of input parameters that
define the biologic processes that occur as the simulation progresses, one of them being
the C'K R parameter which represents the ratio of cells that are hit by the administered
therapy and thus expresses the effects of the therapy. The patient-specific values for
these parameters are not unambiguously derived from the medical data of the patient,
but are crucial for the accurate patient-specific in silico representation of the tumor.
In the past, the values for the simulation input parameters have been determined via
sensitivity analysis, i.e. the process of exploring the values for the simulation input
parameters, executing the corresponding simulations and evaluating the simulation
outcomes and the manner in which they are affected by the variation of the values
for the simulation input parameters. However, a more thorough and methodical
technique for the determination of the values for the simulation input parameters is
required, so that the derived values accurately describe the specific patient, a digital
twin for the patient-specific tumor and normal tissue microenvironment is created
and, finally, the Oncosimulator acts as a medical advisor for personalized medicine.

The purpose of the present work is to explore high performance computing meth-
ods for the Nephroblastoma Oncosimulator, both for the performance enhancement
of a single simualtion execution and for the efficient execution of a multitude of
simulations for a specific physical patient. The uncertainty that the assignment of
values for the simulation input parameters encompasses renders the execution of the
Nephroblastoma Oncosimulator multiple times and for different values for the joint
distribution of the simulation input parameters essential. That way, a mutlitude of
virtual patients is created in silico for each actual physical patient and, executing
a simulation for each virtual patient and coevaluating the simulation outcomes, the
ambiguousness that accompanies the assignment of values for the simulation input



parameters is addressed and a more accurate digital representation of the physical
patient and prediction of the actual results of the administered therapy can be pro-
vided. Tf the Nephroblastoma Oncosimulator is to be used as an on-line digital twin
model that produces real-time outputs, the satisfaction of carefully designed and
strict performance goals along this process, both for a single simulation execution
and for the overall execution of a cluster of virtual patient simulations, is crucial,
which underlines the role of high performance computing.

Here, the execution of multiple simulations in the context of matching a single
physical patient to many in silico virtual patients, each one with a distinct value for
the joint distribution of the simulation input parameters, is utilized for the determi-
nation of the value for the C' KR parameter, which expresses the effectiveness of the
administered therapy, for the specific physical patient, a task which has already been
performed in the past via sensitivity analysis, but inadequately. More specifically, a
set of virtual patients is created for each physical patient from a set of three already
treated patients and the C'KK R parameter is explored for each virtual patient, so that
the simulation outcomes match the actual outcomes of the corresponding physical
patient. The three patients, whose medical data, including the applied therapeutic
scheme, the medical imaging data before and after the therapeutic scheme was ap-
plied and the histologic data, as they were determined via the post-operative bioptic
check, were provided by the Saarland University Hospital, represent three distinct
histologic profiles and corresponding risk groups; low, intermediate and high risk.

The derived values for the C K R parameter for each physical patient indicate the
distibution for the value of the C K R parameter for the distinct histologic profiles and
corresponding risk groups that are represented in the patient dataset. As the patient
dataset grows, this distribution for the value of the C K R parameter becomes richer
and more accurate, since more patient groups are present in the dataset and each
group is represented by a bigger number of samples. Moreover, the same process can
be followed for the determination of the distribution for the values of the rest of the
simulation input parameters, with a focus on the parameters that significantly affect
the outcome of the simulation and are not referenced adequately in the bibliography,
such as the ratio of cells that perform symmetric division Py, and the ratio of cells
that enter the quiescent Gy phase Pjype,. Once the distributions for the values of
the simulation input parameters are adequately defined, a complete and integrated
application can be designed for the execution of multiple virtual patient simulations
for current patients that have not yet been treated, with the values for the simulation
input parameters being derived by the corresponding distributions according to the
patient group that the current physical patient belongs to. That way, the Nephrob-
lastoma Oncosimulator can be utilized in clinical trials and eventually be used as an
advisor for personalized medicine in a clinical setting.
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Theoretical Framework

2.1 Multiscale Cancer Modeling

2.1.1 Cancer as a multiscale phenomenon and the different
scales of biocomplexity that describe it

Cancer is a complex biological phenomenon that is expressed as the manifestation
of abnormal cell and tissue behavior, which comes as the result of processes and events
that incorporate mutliple levels of biocomplexity.

The basis of cancer is the accumulation of mutations in cells, which results in them
becoming cancerous and behaving abnormaly. These mutations are the result of a
number of genetic and environmental factors that act on a variety of biological entities
and mechanisms inside the organism. There exists a set of rules, known as hallmarks
of cancer, that govern the transformation of normal cells into malignant cancers [1].
The major hallmarks of cancer are depicted in Figure 2.1. They form the set of
traits that all cancerous cells have acquired through a variety of mechanisms, in order
to keep proliferating and urging the dynamic growth of the neoplasm.

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Figure 2.1: The six major hallmarks of cancer, which summarize the distinct and cople-
mentary capabilities that all cancerous tissue possesses. These capabilities constitute the
set of properties that are characteristic to the neoplastic disease and aid its development [1].

The hallmarks of cancer don’t concern only the cancerous cells, but all the mech-
anisms of the organism that take part in the development of the cancer. These
mechanisms refer not only to the cancerous neoplasm, but also to its microenviron-
ment of normal and necrotic cells, as well as to biological procedures that happen or
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are orchestrated in different tissues of the organism. The challenge that the cancer
modeling is facing is the adequate modeling of the hallmarks of cancer, combining
the biological entities and mechanisms that take part in the cancer growth and in the
proper scale of biocomplexity [2].

These different scales of biocomplexity are shown in Figure 2.2. The major bio-
complexity scales refer to space and time.

The spatial scales axis depicts the biocomplexity scaling in space. If the target
process that is being modelled refers to interactions between atoms then the scale
in space is low. The spatial scale increases sequentially from the atomic level, to
the molecular, organelle, cellular, tissue, organ, system, organism and finally to the
highest spatial scale, the population. Every scale element has as its structural element
the scale element that is one step lower.

The temporal scales axis depicts the biocomplexity scaling in time. The chosen
time scale depends on the rate of the process that is being modelled. If the process
progresses very slowly then the suitable temporal scale is high. In the case of high
frequency processes, the chosen temporal scale should be low, in order for the progress
to be recorded adequately.

The rest of the axes, bioprocesses, cancer types and treatment modalities,
do not refer to the scales of the biocomplexity. They are included for the sake of
completeness and to showcase some typical biological processes, cancer types and
treatment modalities that are modeled and simulated in silico, using the spatiotem-
poral scales.

Typically, as the biocomplexity scale in space increases so does the temporal bio-
complexity scale. The examples of the atomic scale, the molecular scale, the micro-
scopic scale and the macroscopic scale are presented briefly [3], in order to verify the
relationship between spatial and temporal scales and also to familiarize the reader
with the notion of biocomplexity scales in cancer modeling.

The atomic scale incorporates interactions between atoms and molecules, which
are primarily modeled using molecular dynamics (MDs), in order to study the struc-
ture and dynamic properties of various macromolecules, such as proteins, peptides
and lipids. The spatial scale is in the order of nm, while the temporal scale is in the
order of ns.

The molecular scale is primarily used in the simulation of the cell signaling
mechanisms by investigating the average of the properties of a population of proteins,
rather than the properties of individual proteins, which is investigated in the atomic
scale. To this end, ordinary differential equations (ODEs) are used for the modeling
(more on modeling techniques in the next paragraph) and the spatial scale is in the
order of nm ~ um, while the temporal scale is in the order of us ~ s.
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The microscopic scale describes the malignant transformation of normal cells, as-
sociated alterations of cell-cell and cell-matrix interactions, the heterogeneous tumor
environment and the element of tumor heterogeneity. This is achieved by investigating
cell and tissue properties, using partial differential equations (PDEs) and agent based
modeling (ABM). The spatial scale is in the order of um ~ mm and the temporal
scale is in the order of min ~ hour.

Finally, the macroscopic scale studies the gross tumor behavior including mor-
phology, shape, extent of vascularization, and invasion, under different environmental
conditions. This is achieved by treating some or all of the cells of the microscopic scale
as a continuum, in order for cell and substrate transport to be modeled with conser-
vation laws for spatiotemporally-varying densities (i.e., PDEs), rather than keeping
track of individual cell activities. The spatial scale is in the order of mm ~ c¢m and
the temporal scale is in the order of day ~ year.
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Figure 2.2: The scales of biocomplexity in cancer modeling [4]. The callenge that cancer
modeling is facing is to represent cancer as a multiscale phenomenon, by modeling the
processes that describe it, as defined by the major hallmarks, combining adequately the
different spatiotemporal scales of biocomplexity.
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2.1.2 A comparison of the techniques that are employed for
modeling and integrating the various scales of cancer
biocomplexity

The existing cancer modeling techniques mainly use mathematical methods that
are derived from continuous and discrete mathematics. These mathematical methods
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aim to put the empirical medical and scientific knowledge on predictably regulated
biological processes and events in the exact and strict mathematical context. The
prefered major mathematical method, continuous or discrete, depends on the appli-
cation profile, i.e. the target processes that the application aims to simulate and
explore in silico and the spatiotemporal scales that are inherent to these processes.

The continuous method utilizes techniques that come from the fields of mathe-
matical analysis and differential equations, in order to express the biological problems
in terms of systems of equations and conditions of continuous variables. This method
has been used in many applications, such as the description of molecular dynamics in
the context of cancer mutations within the epidermal growth factor receptor (EGFR)
[5], the description of tumor growth in the form of the universal law in the context
of radiotherapeutic schemes [6] and the description of tumor growth using the dif-
fusion differential equation [7, 8, 9], among others. The challege that this method
introduces is the adequate trasnlation of the continuous analytical models to their
equivalent arithmetic approximates that can be ran in silico, i.e. on the discrete com-
puting system. The verification of the final resulting model, in order to ensure that it
implements an arithmetic method that converges and has results that are adequately
similar to the ones that the analytical model produces, is crucial and necessary before
the use of the model with medical data as its input [10].

The discrete method takes advantage of the discrete nature of the various bio-
logical entities, which are organized in discrete quanta, as shown in the spatial scales
axis in Figure 2.2. This method aims to simulate these discrete biological phenom-
ena using discrete techniques that are inspired by algorithmic logic, such as cellular
automata [11, 12, 13] and agent-based modeling [14, 15, 16, 17]. As opposed to the
continuous method, the discrete method has the advantage that the final model can
easily and in a straightforward manner be traslated to computer code and be realized
as an in silico application. The Oncosimulator is a typical example of a model that
uses the discrete method, implementing the cellular automata and agent-based mod-
eling concepts using the hypermatrix notation, in order to simulate the processes and
events that take place at the cellular spatial scale of biocomplexity. The hypermatrix
notation and the Oncosimulator as a discrete model are presented in detail in the
Oncosimulator dedicated chapter (Chapter 2.3), where they can be put in better
context.

There also exist hybrid models that use both the continuous method and the
discrete method, in order to integrate the different biocomplexity scales for the sim-
ulation of a range of bioprocesses. That way, the complex phenomenon of cancer can
be better simulated and explored, via the simulation of the various hallmarks of can-
cer (Figure 2.1), of the mechanisms that are behind them and of the way that they
interact. A typical example of a hybrid model is the Oncosimulator of the Contra
Cancrum project, which, in the context of glioblastoma and lung cancer paradigms,
uses the hypermatrix notation in order to implement the neoplasm in a discrete 3D
mesh, but also uses the continuous diffusion equation with the appropriate boundary
conditions for the spatial growth of the tumor [18, 19, 20, 21, 7, §|.

There exist two primary approaches for the integration of the different biocomplex-
ity scales, the bottom-up approach and the top-down approach [22].
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The integration of the different biocomplexity scales has typically been performed
using the so called bottom-up approach. This approach aims to study and explore
the target system via the methodical simulation of its core components moving from
the lowest to the highest spatial biocomplexity scales that exist in it. The target
system can in that way be assembled from its known core parts, e.g. proteins and
other macromolecules, which in turn form the spatial scale that is one step higher
in the spatial scale axis, e.g. cells, until the target system, e.g tissues or organs, is
implemented. The bottom-up approach is a scientific method that models the target
biological system in a manner that is exact and methodical, in order to explore,
record and ultimately understand the bioprocesses that take place in it. However,
this method presupposes that the core components of the target biological system to
be modeled, as well as the way that they interact and the biological processed at play
are already known and well-defined, which is often not the case in systems hiology,
especially when studying the complex human organism and more so when studying
the complex phenomenon of cancer. As a result, a disadvantage that is inherent to
the bottom-up approach is the fact that its time a new component is discovered and
added to the model, the whole model needs to be reconfigured.

In order to overcome the limitations that the bottom-up approach introduces, an
alternative approach was devised, the top-down approach. The top-down approach
is in many ways the opposite of the bottom-up approach. It uses medical data, in
order to enrich the model with the empirical clinical observation. These data are
used along with the general medical knowledge in a dynamic iterative process that
aims to find the highest granularity of the system that will make the in silico model
as accurate as possible in reflecting reality. As a result, the model is not solely
dependent on the existing scientific knowledge, but can also take advantage of the
dynamic acquisition of a wealth of biomedical data. These data are inherent to real
patients, which makes the top-down approach ideal for applications of personalized
medicine. A typical example of a such application is the Oncosimulator, which is
presented in detail in Chapter 2.3, where it can be put in better context. As
opposed to the bottom-up approcah, the top-down approach structures the model
so that the highest spatial scale is implemented first with reference to the medical
data of the model and the lower scales follow. The transition from one scale to the
other is performed using the summarize and jump strategy [23, 24|. As its name
indicates, this strategy is based on the idea of summarizing the events that take place
in one scale of biocomplexity before jumping to the next scale, which makes use of
the summary produced by the previous scale.

The top-down approach overcomes the limitations and disadvantages of the bottom-
up approach primarily by making use of data instead of multiple components that
form a hypercomplex network. The prefered approach depends on the target applica-
tion. The top-down approach is more fit for personalized medicine applications and
for practical clinical applications in general, while the bottom-up approach is more
fit for the simulation of well-defined and idealy simplistic bioprocesses, in order to
validate the existing scientific knowledge on them or to be used as components of
more complex models.
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2.2 The Eukaryotic Cell Cycle

2.2.1 The sequence and the role of the four phases that com-
pose the eukaryotic cell cycle

The cell cycle is the process that every eukaryotic cell follows in order to proliferate,
i.e. in order to duplicate its DNA and be divided into two daughter cells. This prolif-
eration is achieved via two major phases, the S phase and the M phase, respectively.
These phases are separated by two gap phases, the G; phase and the G5 phase, which
ensure the necessary cell growth, in order for the cell to duplicate its DNA and be
divided. In this context, the cell cycle is reduced to the ordered sequence of these
four phases, G1SGo M, which is summarized in Figure 2.3.

Figure 2.3: The four phases that compose the eukaryotic cell cycle [25]. The DNA of the
cell is replicated in the S phase, while the division of the cell in two clone daughter cells takes
place in the M phase. The cell cycle starts at the G phase, which is responsible for the
growth of the cell and its preparation for the DNA replication. After the DNA replication
of the S phase, the G5 phase follows, in order to prepare the cell for its division during the
M phase. After the division of the M phase, the two resulting daughter cells enter the G
phase and commence their own cell cycle. If the available nutrients and/or the cell size are
not adequate, the cell cycle is arrested in the G1/S checkpoint (i.e. the restriction point)
and the cell exits the cell cycle and enters the quiescent Gy phase, in which it maintains its
metabolic activities, but does not proliferate |26].

The first three phases of the cell cycle, Gy, S and G4, constitute the interphase
(shown with orange color in Figure 2.3), the part of the cell cycle that is responsible
for the growth and adaptation of the cell in preparation for its division. Typically
interphase lasts for at least 91% of the total time required for the cell cycle.

The G; phase (First growth phase or Post mitotic gap phase) is the phase that
follows the M phase and precedes the S phase. It is very active in the biochemical
level, since it is characterized by a high rate of biosynthetic activities that increase
the supply of proteins and the number of organelles in the cell and cause its overall
growth in size. This is the phase that prepares the cell for its DNA replication in the
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S phase, through the acquisition of the required energy and macromolecules. The
duration of the Gy phase is variable, even concerning cells of the same species |27].

The S phase (DNA synthesis) is the phase that follows the G; phase. This is
the phase in which the DNA is synthesized via the replication of its chromosomes.
After the completion of the DNA synthesis, each chromosome consists of two sister
chromatids and the amount of the DNA in the cell has doubled, but the ploidy and
number of chromosomes are unchanged. The S phase is characterized by significantly
lower biochemical and biosynthetic activity compared to the GG; phase, since it mainly
utilizes the tools and energy that were obtained in the GG; phase. This means that
RNA trasncription and protein synthesis are rare in the S phase. An exception is
histone proteins, which are produced and utilized in the S phase for the packing and
ordering of the DNA [28, 29, 30].

The G5 phase (Second growth phase or Pro mitotic gap phase) is the phase that
follows the S phase and precedes the M phase. Its role is to prepare the cell for its
division in the M phase, mainly via the reorganization of the cell’s microtubules in
a spindle form. This process, as well as the cell division to follow in the M phase,
require a special set of proteins and macromolecules. As a result, the G5 phase is
characterized by a high rate of biochemical and biosynthetic activity, similar to the
(G phase.

The interphase is followed by the mitotic phase, which includes the events that
lead to the division of the cell, which has passed through the interphase, into two
identical daughter cells (clones). The mitotic phase is a very brief part of the cell
cycle and consists only of the M phase.

The M phase (Mitosis) is the phase that follows the interphase. It is a brief and
highly regulated set of events that lead to the nuclear division (karyokinesis) through
the separation of the chromosomes of the cell into two identical sets and finally to
the division of the cell into two identical cells (cytokinesis) that equally share the
nuclei, cytoplasm, organelles and cell membrane of the parent cell [31]. The steps
that encompass the equal sharing of the contents of the parent cell and lead to its
division into two identical daughter cells are summarized in Figure 2.4.

Interphase (G,) Prophase Prometaphase Metaphase Anaphase

Figure 2.4: The distinct steps of the mitotic phase, which distribute the contents of the
parent cell to two equal shares and lead to its physical division to two idential daughter cells
[32].
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2.2.2 The dynamic transcriptional network of macromolecules
that regulates the evolution of the eukaryotic cell cycle

The cell cycle is a regulated sequence of events that realizes cell proliferation
through the duplication of the parent cell’s DNA, which is followed by the division of
the parent cell into two identical daughter cells. The regulation of the ordered events
of the phases of the cell cycle is ensured by a set of macromolecules within the context
of a dynamically evolving transcriptional network [33, 34, 35].

The major regulators are couples of cyclins and cyclin-dependent kinases (CDKs).
Cyclins are proteins that are synthesized at specific stages of the cell cycle. Their
role is to activate the CDKs, which are constitutively expressed in cells. With their
activation, the CDKs catalyze a common biochemical reaction called phosphorylation
that activates or inactivates target proteins to orchestrate coordinated entry into the
next phase of the cell cycle 36, 37]. In the case of the G phase the cyclin-CDK
complexes also determine the timing of the phase events.

The regulation of the cell cycle is also governed by a number of endogenous in-
hibitors that terminate the cell cycle in the case something goes wrong, e.g. in the
case of genetic damage or uncontrolled division. These inhibitors consist of two ma-
jor families of genes, the cip/kip (CDK interacting protein/Kinase inhibitory protein)
family and the IN K4a/ARF (Inhibitor of Kinase 4/Alternative Reading Frame) fam-
ily. The cip/kip family includes the genes p21, p27 and p57. They halt the cell cycle in
(G1 phase by binding to and deactivating cyclin-CDK complexes. The INK4a/ARF
family includes p167VE4e which binds to CDK4 and arrests the cell cycle in G
phase, and p144%F which prevents p53 degradation. The cell cycle inhibitors regulate
the cell cycle in the case that the sequence of processes of its four distinct phases
is not being realized properly, which aids the prevention and the management of
cancerous tissue development. In that respect, these endogenous inhibitors are also
characterized as tumor supressors and there have been attempts to replicate them
synthetically. For instance, synthetic inhibitors for the C'dk4/6 activities, which are
prevalent in human cancers, have been developed, with promising results in treating
breast cancer |38, 39).

The effect that the couples of cyclins and CDKSs have on the regulation and evolu-
tion of the cell cycle is demonstrated in Figure 2.5. The CDKs are present inside the
cell at all times, while the cyclins are dynamically produced during the progression of
the cell cycle. Depending on the dynamic state of the transcriptional network, which
includes both internal and extracellular signals, the cyclin production and presence
inside the cell changes also dynamically. The cyclins footprint inside the cell defines
the existing cyclin-CDK pairs, which regulate the events of the current phase of the
cycle and drive the progression to the following phase. Moreover, the presence of
endogenous and synthetic inhibitors halts the evolution of the cell cycle in the case
that its progression is defective, mainly by bonding with the CDKs that exist in
the cells and deactivatng the cyclin-CDK complexes. Cyclins and inhibitors have
opposite roles, in that the cyclins regulate the progress of the cell cycle, while the
inhibitors regulate the suspension of the cell cycle. The balance between the effects
of cyclins and inhibitors comes in the form of the internal and extracellular signals of
the transcriptional network.
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Figure 2.5: The regulation of the eukaryotic cell cycle by couples of cyclins and CDKs [40].
The couples of cycling and CDKs drive the cell cycle to progress through the consecutive
phases. The CDKs already exist in the cell, while the cyclins are produced according to
the current phase and the existing conditions. If the cell cycle evolution becomes defective,
the endogenous and synthetic inhibitors are bonded to the CDKs deactivating the cyclin-
CDK pairs and halting the cell cycle progression. The countervailing effects of cyclins and
inhibitors are regulated by a dynamic transcriptional network, which employs both internal
and extracellular signals [26].

2.2.3 The major chekpoints of the eukaryotic cell cycle and
the resting Gy phase

As mentioned in the previous paragraph, the evolution of the cell cycle progression
is highly regulated, using a set of macromolecules (cyclins, CDKs, inhibitors) within
the context of a dynamic transcriptional network of signals. The regulation of the
cell cycle evolution also encompasses a set of checkpoints, i.e. a set of standards and
requirements that are inherent to specific points in its progression, in order to ensure
that its events occur properly and within the right schedule.

The first major cell cycle chekpoint is the G1/S checkpoint and refers to the Gy
phase. More specifically, according to the extracellular growth factor and if the nu-
trients are not adequate and the cell is malnourished, then it is considered to be unfit
for proliferation. As a result, it leaves the cell cycle and enters the quiescent Gy phase
(see Figure 2.3). The cells that reside in the Gy phase stay metabolically active,
but they do not grow or proliferate and their rates of the biochemical processes and
protein synthesis are reduced. If extracellular signals and suitable growth factors
apply, the cell may reenter the cell cycle and start proliferating.

The cells that pass the G /S checkpoint progress to the S phase and are committed
to performing cell division. This is why the G1/S checkpoint is also called restriction
point, since it determines which cells will be restricted to the quiescent GGy phase and
will not perform cell division.
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The next major cell cycle checkpoint is the G5/M checkpoint, which refers to the
G5 phase. More specifically, it ensures that the cell is equiped with enough cytoplasm
and phospholipids for the two daughter cells that will result from the mitosis. Once
the cell has reached this checkpoint, it is already committed to undergoing mitosis
and, contrary to the G;/S restriction checkpoint, the Gy/M checkpoint acts as a
regulator for the timing that the cell is ready to enter the mitotic phase, rather than
a judge for whether the cell will finally divide or not.

In the same way as the Go/M checkpoint, the final major cell cycle checkpoint, the
metaphase checkpoint, is responsible for scheduling the timing of the events of the cell
cycle, in that it ensures that the spindle has formed and that all of the chromosomes
are aligned at the spindle equator before anaphase begins.

The proper evolution of the cell cycle requires that all the checkpoints are taken
into consideration and are satisfied before the progression of the events of the cycle
for each cell. However, this is not always the case. Defects in the complex network
of macromolecules and signals that regulate the cell cycle progression may cause the
cells to speed from one phase to the next with no consideration for the aforemen-
tioned checkpoints. This causes the accumulation of mutations in the cells and the
manifestation of cancerous tissue, which, due to this property of speeding and even
skipping through phases, often grows rapidly.

2.3 The Oncosimulator

2.3.1 The outline of the clinical environment and workflow
within which the Oncosimulator is utilized as a discrete
top-down approach for cancer modeling

The Oncosimulator is a typical example of an application for personalized medicine
in cancer. It is designed to receive as input patient-specific medical data (imaging,
histopathological, etc.), to perform a series of simulations on the evolution of the
neoplasm and finally to produce the results of the simulations in the form of the
growth percentage of the tumor, as well as the change of its composition concerning
the various cell categories, e.g. proliferative, dormant, differentiated. As such, it is
by definition built for clinical practice, to be used as a clinical assistant and advisor
to medical practicioners. However, its nature as a cancer evolution simulator also
renders it an intersting tool for medical training and research.

The Oncosimulator comes in different versions that are customized for the differ-
ent types of cancer, e.g. lung cancer, breast cancer, glioblastoma, nephroblastoma.
However, each version of the Oncosimulator has a similar structure and is used in the
context of a common workflow, as shown in Figure 2.6.
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Figure 2.6: The diagram that describes the workflow within which the Oncosimulator
is employed as a clinical assistant and advisor [41]. The patient specific medical data,
containing imaging data, clinical data and data concerning the previous treatment history,
are preprocessed and given as direct input to the simulation. Moreover, the biopsy and
body fluid data pass through a molecular network and a radiobiological/pharmacodynamic
cell survival parameter generator, providing the simulation with the parameter values that
describe the simulated biological processes. Finally, the simulation is provided with the
treatment schedule to be simulated (the simulation of the free growth of the tumor is also
an option). The results of the simulation are expressed as the volume growth/shrinkage
percentage of the tumor and as its final composition, with concern to the percentage of
each cell population, e.g. proliferative, differentiated, dead, dormant. The medical doctor
assesses the results of the simulation and chooses the optimal treatment plan for the patient.
After the treatment has been completed and its outcomes recorded, they are compared to
the ones that the simulation predicted. This comparison is utilized in a closed feedback loop
that is responsible for the optimization of the simulation, so that it approximates better the

phenomena that it represents in silico.

As a first step, the patient-specific biomedical data are collected. These involve
the clinical data and the previous treatment history of the patient, the imaging data,
the body fluid samples and the biopsy material. These data are then given as input
to the model, along with the treatment modality to be simulated. The body fluid
samples and the biopsy material data pass first through a molecular network and a
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radiobiological /pharmacodynamic cell survival parameter generator. After the model
is provided with the raw biomedical data of the patient and the parameters that are
derived from them, as well as the therapeutic scheme to be simulated (notice how no
treatment can also be simulated in the so called free growth mode simulation), the
simulation is performed and then its results are produced in the form of predictions.
These predictions include the growth percentage of the tumor, as well as its final com-
position concerning the various cell categories. After, the predictions are evaluated
by the medical doctor and the optimal therapeutic scheme is applied to the patient.
Finally, the results of the actual therapy applied to the patient are given as feedback
to the model, where they can be compared to the model’s predictions and urge the
process of the model optimization via the adjustment of the granularity of the model
in order for it to better capture the reality of the biomedical processes at play.

Observing Figure 2.6, which shows the common workflow that all the versions of
the Oncosimulator follow, it becomes clear that the Oncosimulator is a data driven
model. As such, it is a typical example of the top-down modeling approach that
integrates clinical observation with scientific medical knowledge (see Chapter 2.1.2).
Indeed, the Oncosimulator combines the clinical observation in the form of the wealth
of patient medical data with the existing biomedical knowledge that is implemented
in hypomodel components (e.g. the molecular network) and is dynamically adjusted
in order to better fit reality via the continuous optimization feedback loop, as is
typically done in the top-down approach.

As a model that follows the top-down approach, the Oncosimulator implements
the core biological system that it models, i.e. the cancerous neoplasm and its mi-
croenvironment of normal and necrotic cells, starting from the highest spatial scale
and moving to the lowest, using the summarize and jump strategy. In a first primary
level, this is achieved by superimposing a 3D mesh of discrete voxels on the area of
interest, i.e. on the tumor. Each voxel represents a cell, which ideally corresponds to
a biological cell, though in reality the actual biological cells are way more than can
be practically implemented in a data structure and simulated in silico. This means
that the voxels of the 3D mesh actually correspond to geometrical cells, which are
filled with a number of biological cells that form equivalence classes, in which cells
are simulated as one.

The cells are simulated via the simulation of their transitions between the different
phases inside and out of the cell cycle. These transitions are implemented in dicrete
time steps. In this context, the Oncosimulator can be characterized as a discrete
entity-discrete event model, which falls under the broad category of dicrete models.
After the transitions between the various cell phases is completed, the results of
the simulation in the cellular scale, which involve cell extermination and generation,
among others, are "summarized" and then a "jump" is made into the tissue level,
where biomechanical simulations are performed for the adjustment of the volume of
the tumor.

Even though the Oncosimulator is a primarily discrete model, it also has auxiliary
continuous and stochastic modules. For example, the continuous method is intro-
duced in the form of an equation that expresses the condition for the free growth of
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the tumor, while the stochastic method is introduced for the selection of a random
direction for the shrinkage or the growth of the 3D mesh tumor.

2.3.2 The "summarize and jump" Oncosimulator algorithm,
which represents the solid tumor as a 3D matrix and
simulates its evolution in discrete time steps

As described in the previous paragraph, the Oncosimulator represents the solid
tumor in silico as a 3D matrix. Each item of the 3D matrix corresponds to a geo-
metrical cell, i.e. to a voxel in the medical image of the cancerous region of interest
that contains the solid tumor. Moreover, the simulation is performed in the 4D space,
since the tumor evolution is simulated in discrete time steps, which characterizes the
Oncosimulator as a discrete entity-dicrete event model. The "summarize and jump"
algorithm, which was briefly outlined in the previous paragraph, is described in full
detail in the flowchart of Figure 2.7.

Observing Figure 2.7, it becomes clear that the algorithm for the Oncosimulator
consists of seven consecutive scans of the 3D mesh of geometrical cells that covers the
area of interest, i.e. the tumor and its normal and necrotic microenvironment.

The first scan (Tumor initialization) takes care of the initialization of the
tumor in silico in the form of a 3D mesh of geometrical cells. This initialization
is based on the patient-specific input data and the input parameters of the model.
Notice how these inputs may lead to an unacceptable tumor, if the condition for
free growth (Equation 2.1) is not met, in which case the simulation is terminated
and no results are produced. The variables that are present in Equation 2.1 form
a subset of the parameters of the simulation, which are presented in detail later on
(Chapter 2.3.4). If the initialization of the 3D mesh of cells is completed successfully,
the geometrical cells of the 3D mesh and their variables are set for the start of the
simulation, which commences from time ¢t = 0. This first scan is performed only once
and is not repeated for any time ¢ > 0.
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Then follows the second scan (Therapy), which is responsible for the compu-
tation of the percentage of the cells that are affected by therapy, as well as the
implementations of these effects of therapy on all the cells of the 3D mesh. The ef-
fects of therapy roughly consist of a number of biological cells inside the geometrical
cells of the 3D mesh being exterminated and, as a result, the population of the cells
that reside in the various cell phases inside the equivalence classes being adjusted ap-
propriately, along with the other variables that accompany them, e.g. the time that
the cell is destined to reside in the current cell phase. This scan is applied only for
the time points that fall in the time duration that the therapeutic scheme is actively
applied, i.e. for time 0 < t < t4st admin, Where tj,st aamin 1S the time point when the
last administration of therapy is applied. -

The second scan is followed by the third scan (Growth), which is responsible for
the transitions that happen physiologically and dynamically between the cell phases
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for the biological cells that are organized in equivalence classes in the geometrical cells
of the 3D mesh. First, spontaneous apoptosis is implemented similar to the way that
the effects of therapy are implemented in the second scan. The percentage of the cells
to apoptose is computed and then the apoptosis is implemented via the adjustment
of the populations and the other variables of the cells that reside in the various states
or equivalence classes. Then, the cell cycle transitions are applied for the cells that
have completed their time in their current phase and, again, the populations and the
times are redefined.

Tumor_initialization Therapy Grow Tentative_Reconstruction() Center_of mass()

’

¥
{e
|

‘Monotonic
-

[}
0
%
3
: *

— Tre

TE] Tod

isolated ?

> <GC inthe tumor mass Tume ofcels>3/2NEC o o el <UD GCisolated?
? 2

<t (last administration) 7 8
%
‘ Find appropriate 2
neighbour to upload
] excess cells
Tryto upload cells in

the nelboring GCs

¢
i

U=1_adniristraion ?

if
}

less scan end?

Visualizing ?

Next GC

Redeine population and
time (weighted median) .
of cell and neighbour cell

— GC in the tumor mass ?

o

lean()

Total numboer

number of cells>3/2NBC’
2 of cells=0 ?

L
H-

in the tumor mass’

TGC popuation <<7 l

No

Remove the GC
fess scan end?

Xt GC

"

Delete current GC from
the tumor. Perform
shifing of GCs

fess scan end?

Redefine poplation
andtime (veighted

fess scan end? >« median)

4

ess scan end?~><——
=T (estadrinisraion)

4

——— False

!

Figure 2.7: The flowchart of the "summarize and jump" Oncosimulator algorithm. The
solid tumor is represented in silico as a 3D matrix of geometrical cells, each one containing
a multitude of biological cells. Moreover, the evolution of the tumor is simulated in discrete
time steps (4D simulation), which characterizes the Oncosimulator as a discrete entity-
discrete event model. The 3D matrix is processed in seven consecutive scans for each discrete
time step. The first scan is responsible for the initialization of the 3D matrix according to
the provided medical imaging data (applied only once at the start of the simulation). If
the free growth condition is not satisfied (see Equation 2.1), the simulation is terminated
prematurely. The second scan is responsible for the simulation of the effects of therapy
and the third scan is responsible for the simulation of the cell cycle transitions. Combined
they implement the cytokinetic diagram of Figure 2.8 and complete the simulation in the
cellular level. With the simulation "summarized" in the cellular level, a "jump" is made in
the tissue level, where the fourth, fifth and sixth scan collaborate for the completion of the
biomechanical part of the simulation. More specifically, the fourth scan is responsible for
managing the excess of biological cells inside the geometrical cells and growing the tumor, the
fifth scan is responsible for managing the shortage of biological cells inside the geometrical
cells and shrinking the tumor and the sixth scan is responsible for maintaining the solid
shape of the tumor tissue in the 3D matrix. The process is repeated for each time step and
for the second up to the sixth scan, the simulation continuously "jumping" from cellular to
tissue level and vice versa. Finally, the seventh scan categorizes the geometrical cells with
too few biological cells as necrotic (useful for the 3D image reconstruction of the tumor).
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The combination of the second with the third scan implements the simulation
in the cellular level, i.e. the transitions between the different cell phases for each
equivalence class in the geometrical cells of the 3D mesh of the tumor (third scan),
as well as the effects that the chosen therapeutic scheme has on these transitions and
the composition of the tumor in general (second scan). The part of the simulation
that is implemented via these two scans is summarized in the cytokinetic diagram of
Figure 2.8.
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Figure 2.8: The cytokinetic diagram that visualizes the transitions between the phases
inside and out of the cell cycle and the effects of therapy [42]. The cells transition consecu-
tively between the G1, S, G2 and M phases, inside the cell cycle. A portion of the cells that
are produced in the M phase reenter the cell cycle in the G phase, while the rest leave the
cell cycle and enter the quiescent G phase. Some of the cells that reside in the Go phase
reenter the cell cycle in the G phase, while some die via necrosis. If the division of the
M phase is symmetric, its products are STEM cells (left side of the diagram), while if it is
asymmetric LIMP cells are produced (right side of the diagram), which differ in that they
can repeat the cell cycle a limited amount of time n, before they are differentiated termi-
nally. A portion of cells, no matter if STEM or LIMP and no matter the phase inside the
cell cycle, disappear via spontaneous apoptosis. The cells that are hit by therapy perform
one more cell cycle before they apoptose.

A first observation of Figure 2.8 demonstrates the cycling of the cells through the
various cell phases inside the cell cycle, starting from the first gap phase G, going
on to the DNA synthesis phase S, then to the second gap phase GG, and finally to the
mitotic phase M. From the mitotic phase, two daughter cells are produced, which
have the option of going on to phase GGy and starting the cell cycle from scratch or
going into the resting G phase, out of the cell cycle. In the first case, the newborn
cell immediately starts the cell cycle, while in the second case it goes into a quiescent
state, e.g. due to a lack of nutrients like oxygen, where it keeps serving its purpose,
but not proliferating, until it either dies via necrosis or reenters the cell cycle from the
(G phase, e.g. due to reoxygenation. Moreover, at any time and in any cell phase,
inside or out of the cell cycle, a percentage of cells is going through spontaneous
apoptosis, which, in the long run, leads to cell disappearance, same as necrosis.
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A similar route is followed by the cells that are hit by therapy, e.g. chemotherapy,
with the difference that they first pass through an intermediate stage, where they
keep transitioning through the cell phases and can even die via necrosis, e.g. in the
case that they reside in the G phase. In that way, the delay of the effects of therapy
is included in the simulation and, as a result, a more realistic model for therapy is
acquired.

One last very important feature of the cytokinetic diagram is the fact that it models
the behavior of two distinct big categories of cells, the STEM cells and the LIMP cells.
The STEM cells, which are modeled with reference to the left side of the diagram,
are the cells that keep proliferating following the various mechanisms as they were
described before, while the LIMP cells, which are modeled with reference to the
right side of the diagram, are the cells that have limited mitotic potential (LImited
Mitotic Potential), which means that they also proliferate and follow the mechanisms
that were presented before, but only for a limited amount of time. A LIMP cell is
produced as the effluent of the asymmetric division of a STEM cell during mitosis,
while a symmetric division causes two STEM daughter cells. The model for a LIMP
cell (right side of the diagram) is a mirror of the model for a STEM cell (left side of
the diagram), with the only difference that after n repetitions of the cell cycle the
LIMP cell is terminally differentiated and finally disappears either via necrosis or via
apoptosis.

The implementation of the cytokinetic diagram of Figure 2.8 via the second scan
and the third scan of the Oncosimulator algorithm ensures the simulation of the
events and bioprocesses that take place in the cellular scale in the form of the cell
cycle, the transitions between the various cell phases, inside and out of the cell cycle,
the disappearance of the cells via apoptosis, necrosis and differentiation, as well as
the manner in which cancer therapy interacts with these processes, as they were
presented in previous chapters. The evolution of these processes and the transition
of the cytokinetic diagram are dictated by a set of parameters, which are part of the
input of the model. These parameters are presented in detail in the dedicated chapter
(Chapter 2.3.4), where they can be put in better context.

With the simulation in the cellular scale "summarized" via the redefinition of the
populations of cells in the equivalence classes in the geometrical cells of the 3D mesh
tumor, along with other variables, such as the time that remains before the cell equiv-
alence class transitions to another phase, a "jump" is made in the tissue scale, where
the biomechanical simulation takes place, for the spatial shrinkage or the expansion
of the tumor. This biomechanical simulation is performed via the next three scans,
the fourth scan, the fifth scan and the sixth scan.

The fourth scan (Tentative Reconstruction) is responsible for the expansion
of the tumor. More specifically, it scans the 3D mesh and for the geometrical cells
that contain an excess of biological cells, first an attempt is made to unload some on
neighbor cells and then, in case the excess is still present, a new geometrical cell is
created, in order to sustain the extra biological cells. In that way, the accumulated
excess of cells that was acquired via the simulation on the cellular scale is equally
distributed to the entire tumor and ultimately leads to the growth of the tumor and
its spatial expansion. The excess of biological cells in a gemotetrical cell is considered
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as the concentration of more than % - NBC biological cells in one geometrical cell,
where N B(C'is the default number of biological cells per geometrical cell.

The fifth scan (Corrective Reconstruction) is responsible for the shrinkage
of the tumor. More specifically, it scans the 3D mesh and for the geometrical cells
that have a lack of biological cells, first an attempt is made to unload them on the
neighbor geometrical cells and then, if there are no biological cells remaining in the
geometrical cell, the geometrical cell is removed from the 3D mesh tumor. In that
way the accumulation of lack of cells that is the result of the simulation on the cellular
scale is equally distributed to the entire tumor and ultimately leads to the reduction
of the tumor and its spatial shrinkage. The lack of biological cells in a gemotetrical
cell is considered as the concentration of less than % - NBC biological cells in one
geometrical cell, where N BC' is the default number of biological cells per geometrical
cell.

Finally, the sixth scan (Center of mass) completes the biomechanical simula-
tion on the tissue scale by making sure that the creation and destruction of geometrical
cells that is the result of the fourth scan and the fifth scan, respectively, does not leave
the tumor with an unnatural geometry, e.g. with isolated geometrical cells. This is
ensured by discovering the isolated geometrical cells of the 3D mesh, calculating their
distance from the center of mass of the tumor and moving them toward it by the
closest, axis until they are no more isolated.

Thus, the biomechanical part of the simulation is completed via the fourth scan,
the fifth scan and the sixth scan of the Oncosimulator algorithm. Notice that the
biomechanical simulation contains stochastic processes for the generation of the di-
rection in which the target biological cells will be unloaded, as well as the direction
that the tumor will grow or shrink.

With the completion of the biomechanical part of the simulation at the tissue scale
and its results "summarized" in the form of the distribution of the biological cells
on the entire 3D mesh of geometrical cells, as well as the appropriate expansion or
shrinkage of the 3D mesh tumor, a "jump" is made back to the cellular scale to start
the scans again from the second scan and for the next time step (t = ¢+ 1). The
scans of the 3D mesh of geometrical cells, from the second scan up to the sixth scan,
are repeated for the consecutive time steps, until ¢ = ¢,,,,, i.e. until the time point
set as the end of the simulation. That way, a 4D simulation of the evolution of the
tumor and its response to therapy is performed, in the 3D geometrical space and in
the 1D temporal space.

Finally, the simulation is completed with the seventh scan (Clean), which cleans
the geometrical cells which contain too few biological cells off the tumor by charac-
terizing them as necrotic tissue. This is an important step for the reconstruction of
the tumor, especially when it is being illustrated in image.
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2.3.3 The hypermatrix notation that is employed for the im-
plementation of the Oncosimulator algorithm

The hypermatrix notation was introduced in the context of the Oncosimulator, in
order to implement the algorithm that was presented previously. This is achieved by
translating the tumor to a 3D mesh data structure with voxels that correspond to
geometrical cells that contain a number of biological cells along with a set of variables
that define the transitions of the cells between the various cell phases and states that
are summarized in the cytokinetic diagram of Figure 2.8 [23].

From the mathematical and algorithmic data structure point of view, the hyperma-
trix @ is a matrix of [a matrix of [... of [matrices (or vectors)|...|| that is created by
the superposition of a discretization mesh on the anatomic region of interest, i.e. the
cancerous neoplasm and its necrotic and normal tissue microenvironment, using the
patient-specific medical data and especially the medical imaging data of the patient
(e.g. MRI, CT/PET). That way, with appropriate reconstruction techniques and
using the rest of the patient biomedical data (e.g. fluid samples, histopathological
data), the current state of the tumor can be represented in silico in a discrete 3D
mesh of geometrical cells, i.e. voxels, that has a shape that fits the one of the specific
imageable tumor. The hypermatrix @ also has a fourth dimension that corresponds
to the temporal evolution of the tumor.

As has been mentioned already, a geometrical cell is basically a voxel of the 3D
mesh of the hypermatrix that discretizes the area of interest, or the basic component
of the 4D mesh of the hypermatrix, if the dimension of time is also considered. The
geometrical cell, if it is adequately small, corresponds ideally to one sole biological cell.
However, this is computation-wise impracticable as far as the in silico implementation
is considered. This means that, practically, the geometrical cell contains a number of
actual biological cells and that with the increase of the size of the geometrical cell,
this number also increases, while with the decrease of the size of the geometrical cell,
the number of biological cells it contains also decreases.

The biological cells are further organized in the so called equivalence classes
inside the geometrical cells. An equivalence class consists of the biological cells that
reside inside a geometrical cell and that are in the same phase inside or out of the cell
cycle. In fact, the cells that form an equivalence class are simulated as one cell and
carry out the transitions of the cytokinetic diagram as one. This means that they
share a number of variables, e.g. the time that remains before they perform the next
transition on the cytokinetic diagram. This also means that, with the number of the
equivalence classes inside each geometrical cell constant, the more biological cells a
geometrical cell contains, i.e. the bigger the geometrical cell is, the more biological
cells reside in the same equivalence class, which naturally reduces the resolution of the
simulation. More specifically, bigger geometrical cell means lighter computations but
reduced resolution, while smaller geometrical cell means heavier computations but
higher resolution. In theory, the simulation with the perfect resolution occurs when
the geometrical cell is so small that the concepts of geometrical cell, equivalence class
and biological cell are reduced to the same concept.
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With concern to symbolism, @ stands for the hypermatrix and an element of the
hypermatrix is symbolized as follows:

— __ (. ijkin ijkln jijkln 1ijkin 7 ijkin
Q(xiayj7zk7pl7tn) - (g 7Np Jtp 7hp 7hp )

(2.2)

a(tp) = ap initial state of the tumor

where:

Z; S [xmm; xmax]
yj S [yminu ymam]
FNS [Zmina Zmaa:]

tn € [07 tmam]

JURS {Gl,S,Gg,M,Go,A,N,D} .

: the x coordinate in the 3D mesh

Tmin aNd Tee denote the boundaries on the x axis

: the y coordinate in the 3D mesh

Ymin and Ymq, denote the boundaries on the y axis

: the z coordinate in the 3D mesh

Zmin aNd zZmqe denote the boundaries on the z axis

: the time point coordinate in the 3D mesh

tmaz denotes the last time point of the simulation
the cell phase of the element

G1, S, G, M, Gy denote the known cell phases
A denotes the apoptotic cell phase

N denotes the necrotic cell phase

D denotes the remnants of dead cells

: phase within or out of the cell cycle

: oxygen and nutrient provision

s stands for sufficient nutrient provision

s stands for insufficient nutrient provision

: number of biological cells in phase p

Ny the set of non negative integers

: mean time spent in phase p

tp.maz Max time spent in phase p

: number of therapy hit cells residing in phase p

: number of non therapy hit cells residing in phase p

The spatial coordinates x;, y; and 2, along with the time point coordinate ¢,, define
one specific geometrical cell of the 3D mesh tumor. The definition of the remaining
variable, the cell phase p;, defines an equivalence class within this geometrical cell.
Notice how the full set of these variables, x;, y;, 2k, t, and p;, describe a fully defined
element of the 3D mesh tumor, with known properties, g, N,, t,, h, and h~p, as
indicated by the ijkin exponent in Equation 2.2. This means that an equivalence
class within a geometrical cell is a fully defined component element of the 3D mesh

tumor.

The process of parsing the geometrical cells of the 3D mesh tumor and accessing
the properties of the fully defined equivalence class components inside of them, is
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visualized in Figure 2.9. The set of z;, y;, 2, and ¢, variables define the different
geometrical cells, while the p; variable defines the equivalence class inside them. With
the definition of all five variables, access to a fully defined element of the 3D mesh
tumor and to its five properties, g, N,, t,, h, and hjp, is provided.
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Figure 2.9: The hypermatrix data structure organized in geometrical cells and equivalence
classes [23|. The set of z;, y;, 2, and t,, variables (spatiotemporal coordinates) define the
different geometrical cells. The p; variable (phase inside or out of the cell cycle) further
defines an equivalence class inside each geometrical cell. Each equivalence class inside a
specific geometrical cell, specified by the values for x;, y;, 2x, t,, and p;, is characterized by
the values for g, N, t,, h, and h~p (see Equation 2.2).

The simulation is performed by accessing and modifying the hypermatrix in discrete
time steps. The evolution of the hypermatrix in time is achieved via the application
of an operator f on it for each discrete time step, as expressed in Equation 2.3.

(tn)) (2.3)

—
2]

@(tn—i—l) =f

The operator f is applied on all the element of the hypermatrix for each discrete
time step. It summarizes all the bioprocesses that happen dynamically and that have
an effect on the evolution of the tumor. In that way, the simulation is performed
properly and the appropriate results are accomplished. In order for the operator f to
contain the information for all the bioprocesses that happen in each time step, it is
decomposed into a series of partial operators that are applied sequentially, as shown
in Equation 2.4. The operators are applied with order from right to left. The order
in which the partial operators are applied is crucial for the outcome of the simulation,
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since the operators are not commutative (i.e. interchangeable).
F=r0rrrcrtrert (2.4)

The first partial operator that is applied is the operator fT. This is the operator
that increases the time by one time step. The typical size of a time step is 1h, the
approximate duration of mitosis, the shortest cell phase.

The next partial operator that is applied is the operator f©. This operator takes
into account the nutrient and oxygen provision status of the geometrical cells, based
primarily on the medical imaging data, in order to determine the necrotic, normal
and proliferative regions of the anatomical area of interest and, going into further
detail, to approximate the distribution of the cells in the various cell phases, inside
or out of the cell cycle, for the various regions of the anatomical area of interest.

Then follows the application of the operator fH, which is responsible for the
implementation of the effects of therapy. The effect of this operator depends on the
therapeutic scheme that is simulated. However, this is the operator that incorporates
any eventual molecular perturbators of the cell surviving fraction and its results are
typically summarized in the form of cell survival ratios.

After the operator f, the operator f€ is applied. This is the operator that
implements the physiological bioprocesses and events that take place in the lifespan
of a cell, i.e. the cell cycle and cell deactivation or death through the resting G
phase, necrosis, apoptosis or differentiation. This operator basically implements the
cytokinetic diagram of Figure 2.8. The transitions between the cell phases happen
when the maximum time of the current phase has been fulfilled. These times are
incorporated in the model as part of the input parameters, that are presented in
Chapter 2.3.4.

Then follows the biomechanical simulation via the application of the operator
fE. This operator is responsible for the spatial expansion or shrinkage of the tumor.
It has been implemented using various techniques and methods. The naive method
chooses a random direction from the 6 possible for the expansion or shrinkage of the
tumor. This method causes a premature atypical fragmentation of the tumor in the
context of radiotherapeutic schemes. A more refined approach chooses the direction
of expansion or shrinkage of the tumor based on the tumor’s current shape, so that,
e.g. in the case of shrinkage, the direction that is chosen is the one with the more
geometrical cells inside the tumors. That way, the excessive fragmentation of the first
approach is avoided.

Finally, the evolution of the tumor for one time step is completed with the ap-
plication of the operator fU. This operator recalculates the nutrient and oxygen
provision, after the biomechanical simulation, in order to take into account any even-
tual expansion or shrinkage of the tumor that would lead to a perturbation of the
previous metabolic potential field.

31



This is an indicative only decomposition of the operator f into partial operators.
This decomposition can be enriched with more partial operators and appropriately
adjusted, in order for the simulation to better represent reality for the selected model,
e.g. depending on the type of cancer and the treatment modality.

Notice how the partial operators correspond to the consecutive scans of the algo-
rithm, as they were presented previously. This means that the addition of a partial
operator in the model typically means that a scan is added in the algorithm. More-
over, the scans of the algorithm occur sequentially and in a strict order, in order for
the various dependencies, which are inherent to the summarize and jump strategy,
to be satisfied. For instance, the biomechanical simulation in the tissue scale follows
the cellular simulation, since the implementation of the cytokinetic diagram changes
the cell populations in the various cell phases and in each geometrical cell, in general,
which in turn dictates the expansion or the shrinkage of the tumor.

In that way, the application of the composite operator f, as a conceptual cluster of
partial operators, which are applied sequentially and in an order that is strict (non
commutative), corresponds to the application of a full set of scans for one time step
of the algorithm.

2.3.4 The simulation input and output parameters, the nat-
ural processes that they describe and their role in the
Oncosimulator algorithm

As mentioned various times before (Figure 2.6, Figure 2.7, Figure 2.8 and Fig-
ure 2.9), the Oncosimulator operates with reference to a set of parameters, which
have the purpose of fully defining the components of the simulation, as well as quan-
tifying and expressing the outcome of the simulation. In that way, the Oncosimulator
parameters can be grouped into two categories, the input parameters and the output
parameters, respectively.

The input parameters of the Oncosimulator are shown in Table 2.1, along with
the primary scans of the algorithm they are referenced in and a brief description.
Their role is to fully define the various stages of the model, so that the simulation can
be practically performed with actual patient data. The set of input parameters that
is presented here is common for all the versions of the Oncosimulator, since it contains
all the necessary input parameter that are needed for the Oncosimulator to function,
but this set can be enriched with more parameters in the various versions of the
Oncosimulator, depending on the demands of the model, in order for the simulation
to be performed as wanted.
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] Symbol ‘ Scan ‘ Definition

Ty 1 doubling time of the tumor
CKR 2 percentage of fatally hit by therapy cells
T 3 cell cycle duration
Teo 3 time required for a dormant cell to die through necrosis
time required to complete necrosis and remove its prod-
Tn 3
ucts from the tumor
T, 3 time required to complete apoptosis and remove its
products from the tumor
T 3 (1 phase duration
Ts 3 S phase duration
Teo 3 (G5 phase duration
T 3 M phase duration
Ra 3 percentage of undifferentiated cells that die by apoptosis
per hour (applicable for both STEM and LIMP cells)
percentage of differentiated cells that die by apoptosis
Rapigy 3
per hour
percentage of differentiated cells that die by necrosis per
Bwpigy 3 hour
percentage of undifferentiated cells that leave the Gq
Pootoct 3 phase and re-enter the cell cycle (applicable for both
STEM and LIMP cells)
Nyjarp 3 maximum number of mitoses that a LIMP cell can per-
form before its terminal differentiation
Py 3 percentage of STEM cells divided symmetrically
Peep 3 percentage of cells entering the Gy phase after mitosis
NBC 4 — 5 | default number of biological cells in a geometrical cell
margin_ factor | 4—5 ficceptable percentage of temporary overload or unload-
ing of each geometrical cell
L minimum fraction of dead cells in a geometrical cell to
color _criterion 7 e .
- classify it as necrotic
Iac N/A | geometrical cell dimension size
Tdim N/A | length of the geometrical mesh
Ydim N/A | height of the geometrical mesh
Zdim N/A | width of the geometrical mesh

Table 2.1: The simulation input parameters, which fully define the distinct scans of the On-
cosimulator algorithm and describe the natural processes and quantities that are represented
in silico. The doubling time parameter T'd expresses the time that is required for the tumor
to double in size and cell population. The CK R parameter expresses the effects of therapy
that are simulated in the second scan of the algorithm. Together with the parameters that
are referenced in the third scan of the algorithm, which determine the time duration of the
phases inside and out of the cell cycle and the rates with which the cells apoptose, transition
to and from the resting G phase and divide symmetrically, they fully define the transitions
of the cytokinetic diagram of Figure 2.10 and complete the simulation in the cellular level.
The NBC parameter defines the default number of biological cells inside each geometrical
cell. Together with the margin_factor parameter, they determine the minimum and the
maximum number of biological cells inside each geometrical cell, according to Equations
2.6, 2.7, which are referenced in the fourth and the fifth scan of the algorithm. The Iq¢
parameter defines the size of the geometrical cells, while the z g, Ygim and zgi, parameters
define the size of the 3D mesh along each axis.
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The first parameter, the doubling time T} of the tumor, i.e. the time that is needed
for the tumor to double in size, spatially and with concern to its cell population, is
an input parameter that highly depends on the cancer type that the model simulates.
It is used in the first scan of the algorithm, where the tumor is initialized in the
3D discretization mesh using the hypermatrix notation, in order to check if the set
of input parameters that are given for the simulation is valid, i.e. is referencing a
realizable tumor, with the appropriate doubling time that is given for the specific
cancer type to be simulated. More specifically, the doubling time is correlated with
five input parameters that are involved in the cellular simulation via the third scan,
Tqo, Ra, Paotoc1, Psym and Pyeep, according to Equation 2.5.

_ Peotoc1/Teo
“P Ra+1/Tao + (2.5)

6(a+RA).TC = (1 + Psym) ' (1 - Psleep + Ps

Ty-a=1In(2)
where « is the growth rate of the tumor.

Equation 2.5 is the summary of the conditions for the balanced exponential
growth of the tumor with growth rate a (or equivalently doubling time T,). By
setting the condition that o > 0, the resulting condition is Equation 2.1, which is
the condition for the free growth of the tumor, i.e. for a tumor that does not natu-
rally shrink with time. In the first scan of the algorithm, which is responsible for the
initialization of the tumor, the free growth condition must be met, but more strictly,
if a specific type of cancer is simulated and its doubling time is known, the condition
for balanced exponential growth (Equation 2.5), with the specific growth rate « or
doubling time Ty, is used to check the validity of the input.

The C K R input parameter, i.e. the cell kill ratio, defines the percentage of cells
that are hit by therapy. It is used in the second scan, which implements the effects
of therapy by hitting the appropriate percentage of cells, according to the CKR
parameter, and adjusting the populations of biological cells inside the geometrical
cells of the 3D mesh tumor, along with other variables, e.g. the remaining time
before each equivalence class of biological cells inside the geometrical cell transitions
to the next phase. The CK R parameter depends on the treatment modality that
is being simulated and can be further analyzed into component C'K R parameters,
in cases when mixed therapeutic schemes are simulated, e.g. chemotherapy with
radiotherapy.

The following fifteen input parameters are involved in the third scan of the algo-
rithm and, along with the C K R parameter of the second scan, they fully define the
transitions of the cytokinetic diagram, as shown in Figure 2.10.

The T, parameter, i.e. the cell cycle duration, is the parameter that defines the
time duration that is required for the completion of one full cell cycle, including the
completion of all its phases, G, S, Go, M. The time duration for each separate phase
inside the cell cycle, Tg1, Ts, T2, T, is usually expressed as a ratio of the cell
cycle duration 7., which means that the actual input parameter between these 5 is
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typically T.. The time duration of the cell cycle, as well as the time duration of each
separate phase inside it, are typically measured in hours (h).

Every time an adjustment is made to the population of cells inside the equivalence
classes of the geometrical cells of the 3D mesh tumor, due to the various transi-
tions of the cytokinetic diagram, the remaining time that has to be completed before
the equivalence class transitions to another state of the cytokinetic diagram is also
readjusted appropriately using the weighted median, where the cells that enter the
current state have the maximum time of the current state, e.g. T, T, Tge, Ths for
the phases inside the cell cycle.

Moreover, whenever the time of the simulation is incremented by one time step, e.g.
1h, this remaining time is decremented also by one time step. When the remaining
time is 0, the equivalence class performs the appropriate transitions, according to the
cytokinetic diagram. That way, T, Ts, Tae, Th, which are typically expressed as a
ratio of T,, are the parameters that define the transitions of the cytokinetic diagram,
with concern to the cell cycle phases, G, S, G, M, for the STEM and the LIMP
cells alike.

The Psy,, parameter, i.e. the percentage of cells that are divided symmetrically, is
the parameter that defines the portion of biological cells of the M phase that are di-
vided symmetrically, producing two daughter cells that are in the STEM cell category
and can keep proliferating for an unlimited amount of times. The remaining percent-
age, 1 — Psym, corresponds to asymmetric division, which results in one daughter
cell in the STEM cell category and one daughter cell in the LIMP cell category, which
will complete the cell cycle for a specific amount of times before its terminal differ-
entiation and ultimate death. This amount of times is specified with the Nprap
parameter, i.e. the maximum number of mitoses that a LIMP cell can perform before
its terminal differentiation. Obviously, the P, parameter refers only to the STEM
cell category, while the N7y p refers only to the LIMP cell category.

The Pgeep parameter defines the percentage of cells that enter the resting Gy phase
after mitosis, e.g. due to lack of nutrients or oxygen. The remaining percentage,
1 — Pjeep corresponds to the cells that reenter the cell cycle from the first gap phase,
G1. The Pye., parameter refers to STEM and LIMP cells alike.

The R4 parameter, i.e. the percentage of undifferentiated cells that die by apopto-
sis per hour, defines the portion of cells in the cell phases, inside or out of the cell cycle,
that die via spontaneous apoptosis. This rate is typically measured in A~ and applies
to both STEM and LIMP cells. The R4 parameter, along with the C K R parameter,
defines the transitions towards the apoptosis state in the cytokinetic diagram.

The Py, Nrivip, Psieep and R4 parameters define the transitions in the cytokinetic
diagram that start from the M cell cycle phase. More specifically, for a STEM cell,
first spontaneous apoptosis is applied according to R4. The percentage of cells that
does not apoptose performs symmetric or asymmetric division according to Pyy,.
The LIMP cells that are created enter the cell cycle in the Gy, but as LIMP cells
now (right side of the diagram). The STEM cells that are created either reenter the
cell cycle in the G phase, as STEM cells again (left side of the diagram), or enter
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the resting Gy phase according to Pjep. For a LIMP cell, again apoptosis is applied
first, then if Np;)/p mitoses have been completed, the cell does not perform mitosis,
but is terminally differentiated instead. Else the division is perfromed, but with both
resulting cells being LIMP cells now and finally the daughter cells reenter the cell
cycle or enter the resting Gy phase according to Pyecp.
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Figure 2.10: A demonstration of the manner in which the simulation input parameters
that are referenced in the second and third scan of the Oncosimulator algorithm implement
the transitions of the cytokinetic diagram [43]|. The timing parameters, T, Tg1, Ts, Tgo,
Ty, Tgo, Ta and Ty, describe the maximum time that each cell spends in the corresponding
state of the cytokinetic diagram. The Py, parameter defines the ratio of cells that enter the
dormant G phase, while the Pgoioq1 parameter defines the ratio of cells that reenter the cell
cycle in the G phase. The Py, parameter defines the ratio of cells that perform symmetric
division. The Nyrap parameter defines the maximum number of full cell cycle transitions
that each LIMP cell performs. The R4 parameter defines the ratio of cells that apoptose
spontaneously. The Rap;rr and Ryp;ry parameters define the ratio of differentiated cells
that die via apoptosis and necrosis respectively. The CKR parameter defines the ratio
of cells that are hit by therapy. The implementation of the cytokinetic diagram with the
aid of the aforementioned parameters concludes the simulation in the cellular level, via the
completion of the second and third scan of the algorithm for the current time step.

The Rapiry and Rnpifs parameters define the percentage of differentiated cells
that die by apoptosis and by necrosis, respectively, per hour. As the R, parameter,
they are typically measured in h~!. These two parameters define the transitions from
differentiation to apoptosis and necrosis, respectively, in the cytokinetic diagram.

The remaining transitions to be defined in the cytokinetic diagram are the ones
that start from the resting Gy phase. Except for the spontaneous apoptosis, which
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is governed by the R, parameter, there are two other option for the transitions that
start from the G phase, both for STEM and for LIMP cells. The first option is to
reenter the cell cycle in the (G; phase and the second option is to die via necrosis.
These two transitions are governed by the Pgotog1 parameter and the Tgo parameter.
More specifically, the Pgoiog1 parameter defines the percentage of cells in the resting
Gy phase that reenter the cell cycle in the G phase, while the Ty parameter defines
the maximum time that a cell can reside in the resting Gy phase before its death via
necrosis. This means that the G cells that are not chosen to reenter the cell cycle
by the Paotog1 percentage and that have remained in the GGy phase for a time that
exceeds the Tgo time die via necrosis.

The T4 and T parameters define the times that are required for the completion
of apoptosis and necrosis, respectively, and the removal of their products from the
tumor. As opposed to Ty, Ts, Tge and Ty, the times Ty, T4 and T are input
parameters independent from the 7T, parameter.

The N BC parameter, i.e. the number of biological cells, defines the default num-
ber of biological cells inside each geometrical cell of the 3D mesh tumor. During the
simulation, the actual number of biological cells inside each geometrical cell changes
dynamically, but the minimum and maximum number of biological cells inside the
geometrical cells are constant. More specifically, they are defined by the NBC' pa-
rameter and the margin_factor parameter, i.e. the acceptable percentage of
temporary overload or unloading of each geometrical cell, as shown in Equation 2.6
and Equation 2.7. These two parameters are referenced in the biomechanical part of
the simulation, in the fourth and the fifth scan, which are responsible for the spatial
expansion and shrinkage of the tumor.

NBC,,;, = margin_factor - NBC (2.6)

NBCiur = (1 +margin_ factor) - NBC (2.7)

The color criterion parameter, i.e. the minimum fraction of dead cells in a
geometrical cell to classify it as necrotic, is used in the seventh and final scan of
the Oncosimulator algorithm, which is responsible for cleaning the tumor from the
geometrical cells that contain too few biological cells by categorizing those geometrical
cells as necrotic tissue. This is an important step for the 3D reconstrucion of the tumor
and the results of the simulation and their illustration in image. More specifically, the
color _criterion parameter defines the threshold of Equation 2.8. The geometrical
cells that complete the simulation time steps containing a number of biological cells
that is below that threshold are categorized as necrotic tissue in the seventh scan.

N BCihreshoa = color _criterion - N BC (2.8)

The final four parameters of Table 2.1 do not apply to a specific scan of the
Oncosimulator algorithm. They are inherent to the patient specific input of the
simulation and characterize the simulation as a whole. More specifically, the Ig¢ pa-
rameter refers to the size (in mm) of the edge of the geometrical cell. In that way, the
Iqc parameter defines the resolution of the simulation, since, as mentioned previously
(see Chapter 2.3.3), increase in the size of the geometrical cell causes decrease in
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the resolution of the simulation. Finally, the g, Ydim and 24, parameters define
the size (in geometrical cells) of the 3D tumor along each axis.

The output parameters of the simulation are presented in Table 2.2, along
with a brief description of the quantity that they express. Their role is to quantify
the output of the simulation in a simple and exact manner, so that the results of
the simulation are expressed clearly and can consequently be assessed effectively and
accurately.

Note that there is an interdependence between the input and output parameters
of the Oncosimulator. More specifically, the outcome of the simulation and thus the
values for its output parameters depend on the values of the input parameters. In
the same way, specific goals for the simulation are expressed in specific values for
the output parameters, which in turn affect the values of the input parameters of
the simulation. This method is utilized in the clinical adaptation process. All in all,
the input and output parameters of the Oncosimulator define a set of interdependent
variables and the input parameters should not be superficially considered the free
variables of this set. The free variables of the simulation parameter set rather depend
on the exploration method that is being performed.

‘ Symbol Definition ‘

PROLIF,itim initial percentage of proliferative cells
DORMANT,, ;i | initial percentage of dormant cells
DIFF;tial initial percentage of differentiated cells
DEAD:;,itial initial percentage of dead cells
PROLIFyina final percentage of proliferative cells
DORMANTYipnq | final percentage of dormant cells

DIF Ffina final percentage of differentiated cells
DEAD fina final percentage of dead cells
—-DV relative volume reduction percentage

Table 2.2: The simulation output parameters, which quantify the outcomes of the On-
cosimulator algorithm. These outcomes are described by the relative tumor volume reduc-
tion percentage —DYV, as well as by the composition of the initial and the final tumor with
respect to the percentage of cell populations, proliferative, dormant, differentiated and dead,
that characterize it. The values for these output parameters are dependent on the values for
the input parameters. For instance, a high value for the Py, parameter causes more cells
to enter the G phase, resulting in more proliferative and less dormant cells. The simulation
input and output parameters constitute a set of interdependent variables. The free variables
of this set depend on the exploration method that is being performed. For instance, in the
clinical adaptation, a goal is set concerning the outcome of the simulation defining the value
of some output parameter, e.g. of the —DV parameter, while a number of input parameters,
e.g. the CK R parameter, are adjusted in order to satisfy it.

The first four parameters of Table 2.2 refer to the composition of the initial
tumor, i.e. the tumor of the first time step of the simulation that is the product
of the initialization step of the simulation algorithm, with respect to the types of
cells, proliferative, dormant, differentiated and dead, that it contains and at what
percentage each. More specifically, the PRO LI F};,,;;;; parameter expresses the per-
centage of proliferative cells in the initial tumor, the DORM ANT;,,;tia1 parameter
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expresses the percentage of dormant cells in the initial tumor, the DIF F;, ;1501 pa-
rameter expresses the percentage of differentiated cells in the initial tumor and the
DFEAD;, ;i1 parameter expresses the percentage of dead cells in the initial tumor.
These percentages depend on:

e the value for the Py, parameter, whose increase causes more cells to enter the
dormant Gy phase, resulting in more dormant and less proliferative cells

e the value for the Py, parameter, whose increase causes a decrease to the pro-
duction of LIMP cells and consequently less differentiated and more proliferative
and dormant cells

e the values for the T4 and Ty parameters, whose increase means the apoptotic
and necrotic cells respectively stay longer in the tumor area before they termi-
nally die and exit from it, which in turn causes increase in the differentiated
cell population and decrease in the dead cell population

e the value for the T parameter, whose increase means that the cells that enter
the dormant G, phase stay there longer, which in turn causes increase in the
dormant cell population and decrease in the differentiated cell population

e the values for the Rupirs and Rypirs parameters, whose increase means the
differentiated cells become apoptotic and necrotic respectively with a higher
rate, which in turn causes decrease in the differentiated cell population and
increase in the dead cell population

The following four parameters of Table 2.2 refer to the composition of the final
tumor, i.e. the tumor of the last time step of the simulation after therapy has taken
effect and some time steps of free growth have been completed, with respect to the
types of cells, proliferative, dormant, differentiated and dead, that it contains and
at what percentage each. More specifically, the PROLI F;,, parameter expresses
the percentage of proliferative cells in the final tumor, the DORM ANT};na pa-
rameter expresses the percentage of dormant cells in the final tumor, the DIF Fy;q
parameter expresses the percentage of differentiated cells in the final tumor and the
DFEADyg;pq parameter expresses the percentage of dead cells in the final tumor.
These percentages depend on the initial composition of the tumor, as well as on
the input parameters that affect the initial composition of the tumor, Pgcep, Poym,
T4, T'n, To, Rapifr and Rypisy, as they were described in the previous paragraph.
Moreover, the final composition of the tumor is significantly affected by the value for
the CK R parameter, since greater value for the C K R parameter causes more cells
to apoptose and finally disappear, which in turn leads to the decrease of the prolif-
erative and dormant cell population and the increase of the differnetiated and dead
cell population.

The final output parameter, — DV, expresses the relative tumor volume reduction,
i.e. the percentage by which the volume of the final tumor has shrinked compared to
that of the initial tumor. The minus sign is used in the —DV notation to indicate
that the value for the relative tumor volume reduction percentage is the opposite
number of the value for the relative tumor volume variation DV (Equation 2.9).
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final tumor volume — initial tumor volume

DV = 100

initial tumor volume

DV — initial tum(.)r.VF)lume — final tumor volume 100 (2.9)
initial tumor volume
DV =—(=DV)

2.4 The Nephroblastoma Oncosimulator

2.4.1 A summary of the Wilms’ tumor disease, with focus to
its histopathology, etiology, prognosis within the stan-
dard staging system and epidemiology

Wilms’ tumor (WT), also known as nephroblastoma, is a cancer that manifests with
the appearance of one or multiple malignant tumors on the kidneys, the organs that
are responsible for managing the waste products of metabolism throught the process
of receiving blood by the renal arteries, filtering it and returning the clear blood to
the circulation via the renal veins and expelling the waste products in the form of
urine into the bladder via the ureter. This type of tumor, named after the German
surgeon Max Wilms who first described it, occurs more often in childer and rarely
in adults, with early symptoms being fever, blood in the urine and abdominal pain.
The causes behind the occurence of nephroblastoma are, as with most types of cancer,
complex and can be attributed to an interplay of genetic and environmental factors.
These causes can be categorized as syndromic, when nephroblastoma co-occurs with
a genetic syndrome, or as non-syndromic, when tumor appearance is separate from an
existing syndrome. WT is highly treatable with a very good prognosis in most cases.
However, the patient has to deal with the short-term and long-term side effects of
the administered therapy and the risk of relapse is always present, which leaves great
room for progress when it comes to the way that WT is treated, so that the survival
rate becomes even higher and the life expectancy and the quality of the patient lives
better.

Pathology /Histopathology WT usually manifests as one monocentric neoplasm
in one of the two kidneys. However, there exists a significant percentage of cases when
one or more tumors develop in one or both of the kidneys. When only one kidney
is afflicted, either with a monocentric tumor or with multifocal neoplasms, then the
disease is characterized as unilateral, while if both the kidneys are afflicted the disease
is characterized as bilateral. Most cases of WT develop from nephrogenic rests, which
are benign foci of embryonal kidney cells that abnormally persist into postnatal life
[44]. Nephrogenic rests have been located in many unilateral tumors (35%) and in
significantly more bilater tumors (nearly 100%) [45, 46]. The incidence of nephrogenic
rests is associated with mutations in the WT'1 gene, which is associated with genetic
syndromes that are accompanied by a great risk of multifocal WT occurence. As for
the histopathology, WT is a complex embryonal neoplasm arising from metanephric
blastema, which typically exhibits triphasic epithelial, blastemal, and stromal differ-
entiation [47]. The proportion and the degree of maturation of the different types
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of WT tissue, epithelial, blastemal and stromal, vary significantly among the patient
population, making the histological appearance of each tumor unique. A single tu-
mor can be monophasic, biphasic ot triphasic, meaning that it can contain one, two
or three types of tissue, respectively [47]. The cases of monophasic WT, especially
in small specimen, complicate the diagnosis and can lead to a misdiagnosis of a dif-
ferential diagnosis condition [48]. Blastema represents the least differentiated, and
presumed most malignant, component [48] and depending on the evolution of the
tumor and its histologic profile, its histology can become anaplastic, in the case of
extreme cellular pleomorphism (anaplasia) [47]. Anaplasia is characterized by:

e marked enlargement of nuclei within the stromal, epithelial, or blastemal cell
lines (excepting skeletal muscle cells) to at least three times the diameter of
adjacent nuclei of the same cell type,

e obvious hyperchromatism of the enlarged nuclei

e and multipolar mitotic figures [47]

Moreover, anaplasia can be categorized as focal, when it is found in foci inside
the tumor, or as diffusive, when it also affects the tumor microenvironment [47, 48|.
Anaplasia is considered a high risk histology and the tumors that do not develop
anaplasia are chategorized as favorable histology tumors.
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Figure 2.11: A demonstration of different histopathologic scenarios for WT [48].
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Etiology The incidence of WT can be attributed to a variety of gene mutations
that are often associated with the manifestation of further anomalies of the genitouri-
nary system. The primary gene that is linked to the WT phenotype is the WT1 gene,
which encodes a zinc finger DNA-binding protein that acts as a transcriptional activa-
tor or repressor depending on the cellular or chromosomal context [49]. WT1, which
is required for normal formation of the genitourinary system and mesothelial tissues
[50], has been mapped to the 11p13 chromosomal location, whose hemizygous dele-
tion has been associated with W'T, aniridia, genitourinary abnormalities, and mental
retardation (WAGR syndrome) [51]. Mutations and deletion in the WT1 gene have
also been found in sporadic non-syndromic W cases, as well as in blastemal cells of
patients with Denys-Drash syndrome [52]. Other gene mutations that are linked to
the WT phenotype include:

e mutations in the 11p15 chromosomal location, which contains genes that are
expressed by one distinct parent allele and the WT2 gene, whose mutation is
associated with Beckwith-Wiedemann syndrome (BWS) and the corresponding
occurence of embryonic neoplasms, such as WT [53]

e mutations in the Xq26.2 chromosomal location and the WTX gene, which is
mutated somatically in approximately 30% of WT incidences [54]

e mutations in the 17q12-q21 chromosomal location and the FWT-1 gene, which
is associated with familial WT

e mutations in the 7pl4.1, 13q13.1, 4q12, 16q chromosomal locations

A brief presentation of the locations and the corresponding genes whose mutations
are associated with WT occurence is demonstrated in Figure 2.12. More information
can be found on https://omim.org/.

Phenotype Phenotype Gene/Locus
Location Phenotype Inheritance mapping key MIM number  Gene/Locus MIM number
4q12 {Wilms tumor 6, susceptibility to} 3 616806 REST 600571
7pldl {Wilms tumor susceptibility-5} 3 601583 POUGE2 609062
11p155 Wilms tumeor 2 3 194071 ICR1 616186
11p13 Wilms tumor, type 1 3 194070 WT1 607102
13q13.1 Wilms tumor 3 194070 BRCA2 600185
16g Wilms tumor, type 3 2 194090 WT3 194090
17q12-q21 Wilms tumeor, type 4 2 601363 WT4 601363
Xq26.2 Wilms tumeor, somatic 3 194070 GPC3 300037

Figure 2.12: The chromosomal locations and the corresponding genes that are associated
with the WT phenotype [55]. Mutations in the WT1 gene cause sporadic non-syndromic
WT cases, as well as syndromic disease in the context of the WAGR and Denys-Drash
syndromes. Mutations in the WT2 gene are linked with the syndromic occurence of WT
within the Beckwith-Wiedemann syndrome. Mutations in the FWT-1 gene are linked with
familial WT.

Prognosis The prognosis is fairly good for most of nephroblastoma cases, with the
overall survival being approximately 90% [56, 57]. The patient specific prognosis
depends greatly on the histology of the neoplasm (favorable or anaplastic), as well as
on the stage of the disease, which is defined by the microenvironment of the primary
neoplasm in the kidney and the general abdomenopelvic region, the metastasis status
of the disease, as well as its status as unilateral or bilateral. Staging, i.e the process of
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determining the WT stage at the time of diagnosis, is a very important step towards
a more approriate and subsequently more effective management that grants the best
survival rate with the least possible complications. The WT stages are five and are
summarized in Table 2.3. The stages are ranked from least to most severe, with
the first stage describing the unilateral disease with no metastasis scenario with a
tumor that is confined inside the kidney and has not ruptured or afflicted the renal
capsule. The second stage is more severe in that it includes affliction of the perirenal
soft tissues. Still, the tumor is fully excised in the second stage, which is not the case
in the third stage, where remnants of the tumor exist after surgery, either because
the tumor ruptured or it has afflicted or penetrated through the peritoneal surface
or it extends to vital structures or over the surgical margins and is not resectable.
The fourth stage describes a metastatic disease, where cancer has reached lung, liver,
bone and/or brain and finally the fifth stage descibes the bilateral disease scenario.

‘ Stage Characteristics

Tumor limited to kidney and completely excised. The surface of the renal
Stage I | capsule is intact. Tumor was not ruptured before or during removal.
There is no residual tumor apparent beyond the margins of excision.

Tumor extends beyond the kidney, but is completely excised. There
is regional extension of the tumor, i.e. penetration through the outer
Stage IT | surface of the renal capsule into perirenal soft tissues. Vessels outside
the kidney substance are infiltrated or contain tumor thrombus. There
is no residual tumor apparent at or beyond the margins of excision.

Residual nonhematogenous tumor confined to abdomen. Any one or
more of the following occur: (a) lymph nodes on biopsy are found to be
involved in the hilus, the periaortic chains or beyond, (b) there has been
peritoneal contamination by tumor such as by biopsy or rupture of the
Stage IIT | tumor before or during surgery, or by tumor growth that has penetrated
through the peritoneal surface, (c) implants are found on the peritoneal
surfaces, (d) the tumor extends beyond the surgical margins either micro-
scopically or grossly, (e) the tumor is not completely resectable because
of local infiltration into vital structures

Hematogenous metastases. Deposits beyond Stage III, i.e. lung, liver,

Stage IV bone and brain.

Bilateral renal involvement at diagnosis. An attempt should be made to
Stage V | stage each side according to the above criteria on the basis of extent of
disease prior to biopsy.

Table 2.3: The staging system for WT [57]. The stage of the disease is defined at the time
of diagnosis. The stages are listed from least to most severe. The fifth stage describes the
bilateral disease scenario. The fourth stage describes the metastatic disease scenario. The
first three stages refer to a unilateral non-metastatic disease. At third stage tumor tissue
remains after surgery, while in the first two stages the tumor is fully excised. At first stage
only the kidney is afflicted, while at second stage the neoplasm extends to the perirenal soft
tissue.

The effect that the histology of the neoplasm and the stage of the disease have on
the outcomes of the treatement for W'T patients is expressed in Table 2.4, which
displays the 10 year outcomes of the W'T patients treated on the National Wilms
Tumor Study (NWTS) trials, with respect to the Relapse Free Survival (RFS) rates
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and to the Overall Survival (OS) rates. Indeed, as the stage of the disease increases
the survival rates decrease. Even more dramatic is the effect of the histology, with
the anaplastic histology reducing the survival rates by a factor of more than four
compared to the favorable histology corresponding rates, when combined with an
increased disease stage.

| Histology | Stage | 10 year RFS% | 10 year OS% |
Favorable Stage 1 91 96
Favorable Stage 11 85 93
Favorable Stage I11 84 89
Favorable Stage IV 75 81
Favorable Stage V 65 78
Anaplastic Stage 1 69 82
Anaplastic | Stage II-111 43 49
Anaplastic | Stage IV 18 18

Table 2.4: The 10 year outcomes for the WT patients treated on NWTS-4, along with the
corresponding histology and disease stage [57|. Increase in the disease stage causes decrease
in the survival rates. The anaplastic histology causes even more dramatic decrease in the

rates compared to the corresponding favorable histology ones.
RFS: Relapse Free Survival, OS: Overall Survival

‘ Syndrome ‘ Risk factor for WT ‘ Median ages of WT occurence
Beckwith-Wiedemann 41% 94 months
Syndrome
Hemihypertrophy 3—4% 37 months
Bohring-Optiz 6.9% 24 months
Mulibrey 6.7% 30 months
Perlman 75% < 24 months
Simpson-Golabi Behmel 8% Undefined
Trisomy 18 > 1% 68 months Most 5 — 9 years
WAGR 50% 22 months Most < 8 years
Denys-Drash > 90% 12 months Most < 3 years
Frasier Several cases Undefined

Table 2.5: The overgrowth syndromes that are related to the occurence of WT, along
with the corresponding risk factors and the median ages of occurence [58]. Many of these
syndromes have the same genetic cause as WT, e.g. WT1 for WAGR and Denys-Drash and
WT?2 for Beckwith-Wiedemann.

Epidemiology WT'T is more prevalent in children. From the 2342 cases that were
identified in the U.S. between 1973 and 2005, only 152 were adult with the 2190 rest
being paediatric. The female patients are slightly more frequent in the adult cases
(60.5% vs 39.5%), while the prevalence does not seem to be affected by the sex in the
paediatric cases. The disease is in most cases (92.6%) unilateral, with the right and
the left kidney being afflicted with the same frequence [59]. Moreover, as mentioned
previously, the cause for the insidence of WT can be syndromic, meaning that the
tumor can result from an existing genetic syndrome. A set of overgrowth syndromes
that are linked to the occurence of WT are presented in Table 2.5, along with the
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corresponding risk factor for developing WT and the median age of WT occurence.
The etiology of many syndromes of Table 2.5 are associated with the gene mutations
that have been found to cause WT (e.g. WT1 for WAGR and Denys-Drash and WT2
for Beckwith-Wiedemann).

2.4.2 The treatment plan specific parameters and the refer-
ence values for the complete set of simulation input pa-
rameters

The Nephroblastoma Oncosimulator is a particular version of the generic Oncosim-
ulator schema, as it was presented in the dedicated chapter, which is enhanced in order
to simulate the Wilms’ tumor disease in silico. More specifically, the Nephroblastoma
Oncosimulator represents the solid kidney tumor in silico as a 3D matrix of discrete
geometrical cells. Each geometrical cell is composed of a multitude of biological cells
that perform the transitions of the cytokinetic diagram (see Figure 2.8) organized
in equivalence classes, according to the hypermatrix notation (see Figure 2.9). The
evolution of the solid tumor in time is simulated according to the "summarize and
jump" algorithm of Figure 2.7, which is fully defined by the set of input parameters
of Table 2.1.

In order for the Nephroblastoma Oncosimulator model and algorithm to be fully
defined, they need to be enriched with the parameters that describe the disease spe-
cific treatment plan. The treatment plan that is simulated in the context of the
Nephroblastoma Oncosimulator is the standard 4-week chemotherapy treatment plan
of the SIOP protocol, as it is summarized in Figure 2.13. The regimen consists
of the administration of two chemotherapeutic drugs, Actinomycin (ACT) and Vin-
cristine (VCR), at 4 time points that are evenly distributed over the course of four
weeks. More specifically, at the time points of the first and third week, both drugs
are administered, while at the time points of the second and fourth week, only Vin-
cristine is administered. The dose of each drug is predetermined, but they can change
depending on patient’s weight and therapy response. This treatment plan is applied
preoperatively and is followed by the surgical removal of the remaining shrinked tu-
mor.

ACT v v
VCR § + |
Weeks 1 2 3 4 Surgery

ACT: Actinomycin-D. 45pg/kg i.v. bolus injection (max 2000pg)
VCR: Vincristine. 1.5mg/mZi.v. bolus injection (max 2.0mg)

If body weight < 12kg: dose reduction to 2/3 for each drug
Major intolerance: doses on the next course should be reduced to 2/3

Figure 2.13: The mixed chemotherapeutic scheme of the standard SIOP protocol, that is
applied for the preoperative treatment of Wilms’ tumor [43]. The two drugs, Actinomycin
(ACT) and Vincristine (VCR), are applied at four time points that are evenly distributed
along a period of four weeks. At the first and third week both drugs are administered, while
at the second and fourth week only Vincristine is administered. The doses may be changed,
according to the patient’s weight and therapy response.

Since the simulated therapeutic scheme encompasses the administration of two
distinct drugs, the C K R parameter that expresses the effects of therapy (see Table
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2.1) can be analyzed into two components, one for each drug. The relationship
between the cell kill ratio for the Vincristine drug (CKR_VCR), the cell kill ratio
for the Actinomycin drug (CKR__ACT) and the total cell kill ratio (CKR_TOTAL)
is described in Equation 2.10 and is indicative of the percentage with which each
drug participates in the total effects of the therapy.

CKR _TOTAL =CKR_ACT + CKR_VCR

3

CKR_ACT =°.CKR_TOTAL (2.10)

CKR VOR==.CKR_TOTAL

ot Do Ot

The set of simulation input parameters for the Nephroblastoma Oncosimulator is
completed with the parameters that define the key time points of the simulation, as
they are summarized in Table 2.6. These parameters define the time points of drug
administration in the simulation, with compliance to the standard SIOP protocol
treatment plan of Figure 2.13, as well as the time point at which the simulation is
completed.

] Symbol \ Definition ‘

The first time point of Vincristine administration within
the standard SIOP chemotherapeutic scheme

The second time point of Vincristine administration
within the standard SIOP chemotherapeutic scheme
The third time point of Vincristine administration
within the standard SIOP chemotherapeutic scheme
The fourth time point of Vincristine administration
within the standard SIOP chemotherapeutic scheme
The first time point of Actinomycin administration
within the standard SIOP chemotherapeutic scheme
The second time point of Actinomycin administration
within the standard SIOP chemotherapeutic scheme
The time duration between the last drug administration
time point and the simulation completion time point

VCR_ADMIN A

VCR_ADMIN B

VCR_ADMIN C

VCR ADMIN D

ACT ADMIN A

ACT ADMIN B

DT post_treat

Table 2.6: The parameters that define the key time points of the simulation and that, along
with the parameters of Table 2.1, complete the set of input parameter for the Nephrob-
lastoma Oncosimulator. The time points of drug administration, as well as the duration
between the last drug administration time point and the simulation completion time point
are defined.

The reference values for the set of simulation input parameters of the Nephroblas-
toma Oncosimulator are displayed in Table 2.7. These reference values are assumed
by the relevant bibliography, while the values for the parameters of Table 2.6 are
assigned the values that strictly implement the treatment plan of Figure 2.13. In
the case that the treatment schedule slightly differs, e.g. the patient missed an ap-
pointment and the corresponding drug administration was shifted a few days, the
values for the simulation time point parameters are adjusted accordingly.
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Parameter ‘ Refrence Value ‘ Bibliography ‘

T, 29 [43]
T, 23 |60]
Tao 96 |61]
Tn 20 |62] [63] [64]
Ta 6 |65] [66]
R4 0.001 |65] [66]
Rapisy 0.003 |65] [66]
Rnpifs 0.001 |62] [63] [64]
Paotoa1 0.01

Nrivp 3

Py, 0.45

Pyeep 0.28

CKR _VCR 0.3 [67] [68]
CKR_ACT 0.2 |69] [70]
CKR _TOTAL 0.5

VCR_ADMIN A 4

VCR_ADMIN B 11

VCR_ADMIN C 18

VCR_ADMIN D 25

ACT ADMIN A 4

ACT ADMIN B 18

DT post_treat 3

Table 2.7: The reference values for the set of simulation input parameters of the Nephrob-
lastoma Oncosimulator.

2.4.3 A brief presentation of the dataset patients, with con-
cern to the plan with which they were treated, their
medical imaging data, their histologic profile and the
risk group that they represent

The patient data that were utilized in the present work correspond to actual patient
cases and were provided by the University Hospital of the Saarland. More specifically,
the patient dataset consists of three distinct patients, each one representing a unique
patient group, with concern to the histological subtype and the overall prognosis
and risks. FEach dataset patient is matched to a unique /D number, so that the
corresponding data can be referenced and analyzed with compliance to the General
Data Protection Regulation (GDPR). Moreover, each dataset patient is given a unique
pseudonym, for the purposes of enhancing the simplicity of the simulation executions
and of the evaluation of the subsequent simulation outcomes.

After being diagnosed with WT, the three dataset patients underwent the preopera-
tive treatment of the STOP protocol, according to the standard one-month Vincristine
and Actinomycin regimen. After the chemotherapy treatment, the tumor was surgi-
cally removed and its histology was analyzed. Moreover, medical imaging data in the
form of Magnetic Resonance Tomography (MRT) were acquired for each patient, both
before and after the preoperative treatment, so that the response to the chemotherapy
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and the subsequent overall risk could be evaluated.

The histopathology data for each dataset patient, as they were specified postopera-
tively via the examination of the neoplasm tissue that was acquired during the tumor
removal surgery, are displayed in Table 2.8.

Patient 15 corresponds to a monophasic tumor case that is comprised solely by ep-
ithelium tissue. This is considered to be a favorable histology, a fact that is mirrored
in the percentage of regressive changes in the tumor, which was evaluated macroscop-
ically at the very high value of 98%.

On the other hand, Patient 16 corresponds to a triphasic tumor case that is mainly
blastemal. This is considered to be an unfavorable histology that leads to a low
percentage of macroscopic regressive changes in the tumor, equal to 5%.

Finally, Patient 17 corresponds to a medium risk histology tumor, that is biphasic
comprising primarily by stromal tissue (80%) and at a lower percentage by blastemal
tissue (20%). The macroscopic regressive changes in the tumor are evaluated at 70%,
which is a satisfying percentage, but not as impressive as the one for Patient 15.

According to the histology data presented in Table 2.8, each patient of the dataset
represents a distinct patient group with respect to the histopathology of the neoplasm
and the subsequent risks. More specifically, Patient 15 represents the low risk favor-
able histology patient cases, Patient 16 represents the high risk unfavorable histology
patient cases and Patient 17 represents the medium risk patient cases that have a
mixed histology.

Pseudonym Patient 15 | Patient 16 | Patient 17
ID 12180 12358 12794
Necrosis / regressive changes 08% 5% 0%
(macroscopic)

Necrosis / regressive changes

(histological) i i i
vitale blastema 0% 70% 20%
vitale epithelium 100% 5% 0%
vitale stroma 0% 25% 80%

Table 2.8: The histopathology data for each dataset patient. Patient 15 corresponds to a
favorable monophasic histology tumor that shows high regressive changes. Patient 16 cor-
responds to an unfavorable triphasic histology tumor that shows low regressive changes. Pa-
tient 17 corresponds to a biphasic histology tumor that shows satisfying regressive changes.
Each of the three patients represents a distinct patient group, Patient 15 the low risk pa-
tients, Patient 16 the high risk patients and Patient 17 the medium risk patients.

A brief presentation of the treatment plan that was fulfilled for each patient of the
dataset, containing the dates of the preoperative treatment plan, the MRT acquisition
dates and the date of the tumor operation, is displayed in Table 2.9.
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Both Patient 16 and Patient 17 were treated with the standard preoperative reg-
imen of the SIOP protocol, which requires the administration of Vincristine and
Actinomycin in four time points during the period of one month. More specifically,
at the first and third time point both Actinomycin and Vincristine are administered,
while at the second and the fourth time point only Vincristine is administered. The
four time points are separated by seven days (roughly) from one another, placing the
first time point in the first week, the second time point in the second week and so on,
causing the preoperative treatment to last one month (roughly).

Unlike Patient 16 and Patient 17, Patient 15 represents the metastatic disease
scenario. As a result, the applied preoperative regimen for Patient 15 differs from
the one applied for Patient 16 and Patient 17, in order to address the metastasis.
More specifically, Patient 15 is treated with a 6-week variation of the standard 4-
week preoperative regimen that includes the drug Doxorubicin. At the first and fifth
week all three drugs are administered, at the second, fourth and sixth week only
Vincristine is administered and at the third week both Actinomycin and Vincristine
are administered.

Pseudonym Patient 15 Patient 16 Patient 17
1D 12180 12358 12794
Image Pre-Chemo 07.09.2011 04.02.2013 99.08.2016
Start of Chemo 13.09.2011 06.02.2013 01.09.2016
Image Post Chemo 96.10.2011 08.03.2013 93.09.2016
Operation 02.11.2011 19.03.2013 97.09.2016
13.9.11:AVD,
20.9.11:V, 6.2.13:AV, 1.9.16:AV,
Treatment Plan 29.9.11:AV, 13.2.13:V, 8.9.16:V,
6.10.11:V, 92.2.13:AV, 15.9.16:AV,
13.10.11:AVD, 1.3.13:V 92.9.16:V
20.10.11:V

Table 2.9: The treatment plan for each dataset patient, along with the dates of the MRT
acquisition and the operation date. Patient 16 and Patient 17 are treated with Actino-
mycin and Vincristine within the standard 4-week regimen of the SIOP protocol. Patient 15
represents the metastatic disease scenario and, as a result, is treated with Actinomycin, Vin-
cristine and Doxorubicin within the 6-week regimen of the SIOP protocol that is specific to
metastatic disease cases. The simulation of the different preoperative treatment regimens
is performed by setting the appropriate values to the Nephroblastoma Oncosimulator input
parameters that define the treatment plan.

The preoperative treatment regimens differ between patients, even within the SIOP
protocol, in order to properly address the various disease scenarios and unique pa-
tient needs. For instance, here the regimen for Patient 15 differs from the regimen
for Patient 16 and Patient 17, because Patient 15 corresponds to the metastatic
disease scenario. Even within the same regimen, the regimen realization may differ
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between patients, in order to accomodate the patient specific needs, e.g. the patient
response to the administered drug (side effects etc.). For instance, here the third time
point of the preoperative treatment regimen for Patient 16 was shifted two days after
the one described in the protocol (22.2.13 instead of 20.2.13). The patient specific
regimen realization is simulated in the Nephroblastoma Oncosimulator by setting the
appropriate values for the input parameters that define the treatment plan, which
enhances the patient specific nature of the simulation (see Table 2.10).

Pseudonym Patient 15 | Patient 16 | Patient 17
ID 12180 12358 12794
VCR-ADMIN-A 4 4 4
VCR-ADMIN-B 12 11 11
VCR-ADMIN-C 19 20 18
VCR-ADMIN-D 26 27 25
ACT-ADMIN-A 4 4 4
ACT-ADMIN-B 19 20 18
DT-post-treat 6 7 1

Table 2.10: The values for the input parameters of the Nephroblastoma Oncosimulator
that define the treatment plan for each dataset patient. The first dose of Actinomycin is
administered at the fourth day of the simulation, allowing the free growth of the tumor for
the first three days of the simulation. The dates of the drug admnistation correspond to the
actual treatment plan, as it is described in Table 2.9. The treatment plan for Patient 15
is simulated starting from the drug administration of 29.9.11 and the Doxorubicin drug is
not taken into consideration.

The response to the preoperative treatment that was applied for each dataset pa-
tient is summarized in Table 2.11. The tumor reduces in size as a result of the
preoperatively administered chemotherapy for all three patients and, in that respect,
all three patients are considered good responders to the administered chemotherapy
regimen.

However, their unfavorable tumor histology limits the tumor shrinkage for Pa-

tient 16 (tumor volume reduced by Emil2ml:100% o 55 7895%) compared to the

285ml
. : 144ml—11ml)-100%
tumor volume reduction for Patient 15 (tumor volume reduced by (14dm = 4;”1) S

92.3612%). The tumor volume reduction percentage for Patient 17 (tumor volume

reduced by (536mlg§gn”:ll)'100% ~ 83.2090%) lies between the tumor volume reduction

percentages for Patient 16 and Patient 15.

In any case, the tumor is reduced to more than half its initial size for all three
dataset patients, which classifies them as good responders to the preoperative chemother-
apy regimen. Patient 16 differs from Patient 15 and Patient 17 in that they have
an unfavorable tumor histology, which classifies them as high risk, despite their good
response to the preoperative therapy.
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Pseudonym

Patient 15 Patient 16 Patient 17

ID 12180 12358 12794

Ldml = 1l ogq 01 s 196mi:
Good / Bad goi(i;esi(t)zlse, good responder, | 536ml — 90ml:
R((e)sopor/l dei remissﬁon of but high risk good response

lung metastasis, tumor (regressive

(regressive (blastemal subtype)
subtype) subtype)

Image Pre-
Chemo
(Database 143987.13mm3 | 306985.833mm? | 536733.98mm3
MRT)
Image Pre-
Chemo
(Segmenta- 130556.25mm?3 | 247489.53mm? | 554914.55mm3
tion MRT)
Image Post-
Chemo
(Database 10616.9mm3 126287.764mm? | 89487.915mm?
MRT)
Image Post-
Chemo
(Segmenta- 10451.07mm? 108919.51mm3 70812.7mm3
tion MRT)

Table 2.11: The response of the dataset patients to the applied preoperative therapy.
The preoperatively applied chemotherapy regimen reduces the tumor volume for all three
patients of the dataset. The tumor volume reduction percentage is greater for Patient 15,
lower for Patient 17 and minimum for Patient 16, a response that is in accordance with the
tumor histology profile for each patient. In any case, the tumor shrinks to more than half its
initial size for all three patients, which classifies them as good responders to the preoperative
treatment. Patient 16 differs from the other two in that they have an unfavorable tumor

histology that classifies them also as high risk.

The 3D images of the initial tumor (Image Pre-Chemo) and the final tumor (Image
Post-Chemo) for each dataset patient, as they were captured in MRT at the cor-
responding dates of Table 2.9, are displayed in Figure 2.14. The 3D tumors of

Figure 2.14 were constructed using the ImageJ software.
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(a) Initial tumor for Patient_15. ) Final tumor for Patient_ 15.
) Initial tumor for Patient_ ) Final tumor for Patient_

(e) Initial tumor for Patient_17. (f) Final tumor for Patient_17.

Figure 2.14: The visualized with ImageJ 3D reconstruction images of the tumors before
and after the preoperative treatment application for each dataset patient.

52



Methodology

3.1 Workflow Outline

The purpose of the current chapter is to demonstrate the workflow that was imple-
mented in the context of the present work. This workflow is briefly outlined in the
form of a series of well-defined discrete steps in the diagram of Figure 3.1.
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Figure 3.1: The diagram of the outline of the workflow that was implemented in the context
of the present work. The final desired result of the workflow is the clinical adaptation of the
patient parameters. The clinical adaptation step defines the performance standards that the
Oncosimulator application should meet. The versions of the source code are continuously
optimized in the loop that profiles the performance of the current version and that adjusts
it into a new optimized version. Each source code version that is produced also passes
through the sensitivity analysis step, in order for its functionality to be verified. At first,
the patient data are preprocessed and transformed into a shape that is appropriate to be
given as input to the Oncosimulator. Then, the optimized versions of the source code are
produced, verified and profiled in the loop of the sensitivity analysis, application profiling
and code optimization steps, until the performance standards are met. When the loop is
broken, the final clinical adaptation step is executed using the optimal source code version.
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The continuous arrows in Figure 3.1 indicate the sequence of the steps of the
workflow, while the dashed arrows indicate the flow of data. As shown in Figure
3.1, the workflow utilizes two types of stored data, the input data of the simula-
tion (red DB), which reference the patient specific medical data, and the source code
of the simulation (blue DB). The source code is expressed in various versions, each
one referencing a specific adjustment and improvement in performance that has been
achieved as an intermediate result of the workflow. The final result of the workflow is
the clinical adaptation, which is stored in the form of the adjusted simulation param-
eters for each patient (green DB). It should be noted that no Database Management
System (DBMS) has been used and that here the database (DB) diagram symbol is
used abusively to suggest that the referenced data are stored data.

Data Preprocessing The first step of the workflow is the preprocessing of the
patient data. The patient specific medical data that are provided are often given in a
complex form that cannot be immediately and efficiently used by the Oncosimulator.
This step of the workflow is responsible for the filtering, enrichment, modification
and overall transformation of the patient data, so that it can be given as input to
the simulation, with the goal of an efficient execution. It is important that this step
precedes the rest, so that the performance enhancement needs and prospects of the
simulator are evaluated with the optimal performance data-wise ensured. With focus
on the performance enhancement, an error window with respect to the results that
the simulation with the original input patient data produces may be allowed. That
is why the source code is provided in the inputs of the data preprocessing step, in
order to compare the simulation results of the modified input data with the original
input data and control the consequent error. Also, note that the data preprocessing
step both inputs the original patient data from the patient data DB and outputs the
modified input data to the patient data DB, thus the bidirectional arrows in Figure
3.1. The data preprocessing step is performed only once at the start of the workflow.

Sensitivity Analysis The data preprocessing step is followed by the sensitivity
analysis step, i.e. the step that examines the sensitivity of the output of the simulation
with regard to the variation of the values of the input parameters. As a parameter
exploration method, sensitivity analysis has great value with regard to the evaluation
of a parametric application, such as the Oncosimulator. In the context of the present
work, the sensitivity analysis step is utilized to ensure that the modified patient input
data (produced by the data preprocessing step) and the various versions of the source
code of the Oncosimulator (produced by the code optimization step) work together as
expected. That is why it is crucial that this step follows the data preprocessing step
and is repeated for every new version of the source code that is produced by the code
optimization step. If the behavior of the simulation for the exploration of the values
for the input parameters stays true to that of the original verified version, then the
data and code modifications are safe. However, if the parametric behavior deviates
from the expected one, then some error that needs to be addressed has occured in
the latest modifications.

Application Profiling The next step of the workflow is responsible for the pro-
filing of the application, with concern to the performance of the application as well
as to the patient dataset that acts as input for the application. The evaluation of
the application’s performance is crucial before the optimization goals can be revisited
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and the corresponding optimization techniques considered and explored. More specif-
ically, the process of the performance profiling of the application can determine if the
performance standards that have been set are met and if not, if they are achievable
or if they should be redefined in order to pursue more plausible goals (bidirectional
arrow in Figure 3.1). Once the performance goals have been defined accurately, the
performance profiling can indicate the performance-wise poor parts of the application,
which can then be optimized through various techniques devised and implemented
in the next step of the workflow. To that end, it is important that the performance
profiling is based on various executions with different inputs, so that it is more fit to
represent a diverse set of execution scenarios and so that it is more reliable in general.
In this context, it’s also useful to profile the patient dataset that is used as input for
the application and to observe the correlation of the patient input attributes with the
application’s execution behavior and its performance attributes, if any correlation
exists. The same can be argued for the application’s input parameters, which have
been adequately profiled in the sensitivity analysis step. However, if a more detailed
exploration of the input parameter space is required, it can be incorporated in the
profiling step.

Code Optimization If the performance standards are not met, then the source
code needs to be adjusted in order to better accommodate them. With the information
provided via the application profiling that preceded, an optimization plan can be
devised with the goal of acomplishing those standards. The role of this step is to
plan the code adjustments, as well as to implement them. More specifically, the
code optimization step accepts as input an inadequate version of the source code,
applies a series of optimizations on it and outputs an optimized version, which is
then stored as an intermediate result of the workflow in the source code DB. At a
later time, this version is taken from the source code DB and given as input to the
sensitivity analysis step where it can be verified with concern to its functionality
and to the application profiling step where it can be evaluated with concern to its
performance. This loop in the workflow ensures that the original source code is
continuously adjusted into discrete versions that funtion appropriately and with each
version being the optimization product of the previous version.

Clinical Adaptation Once the performance goals have been achieved, the loop
that produces optimized source code versions can be broken and the optimal ver-
sion can be utilized in the final step of the workflow, the clinical adaptation step,
which produces the final desired result, the clinical adaptation data per patient. The
Oncosimulator simulates the evolution of a tumor given the patient specific medical
data and the values for the input parameters (Table 2.1). However, the values for
the input parameters cannot be accurately derived from the patient specific medical
data and given the deviation that characterizes them, which underlines the biological
diversity of the patient population, a set of simulations for each patient needs to be
performed and the outputs coevaluated using statistical and/or artificial intelligence
techniques, in order to find the appropriate set of parameter values for each patient.
In order for this process to be performed, the actual clinical results of the patient’s
tumor evolution are necessary. By performing simulations for a set of virtual pa-
tients with each one corresponding to a specific actual patient and to a discrete set
of values for the input parameters of the simulation and by combining the outputs of
the simulations that produce results that match the actual evolution of the patient
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image within a minimal supported error window, a window of acceptable values can
be derived for each input parameter and for the specific patient. Since the clinical
adaptation step is the final desired step of the workflow that uses the intermediate
results of the preceded workflow loop, i.e. the optimized versions of the source code,
it is also the step that is crucial to the definition of the performance standards that
a single simulation, i.e. a single execution of the Oncosimulator, should meet.

In the following sections of this chapter, each discrete step of the workflow of
Figure 3.1 is presented in further detail, along with the techniques and tools that
were utilized for their implementation.

3.2 Data Preprocessing

3.2.1 The input files of the Nephroblastoma Oncosimulator,
which define the properties of the 3D matrix that rep-
resents the solid tumor in silico

In order for the tumor of a particular patient to be simulated, the patient specific
medical imaging data need to be provided. These data are given as direct input to
the Nephroblastoma Oncosimulator executable in the form of two files. The role of
these files is to describe the morphology of the initial tumor, i.e. of the tumor at the
start of the simulation, with respect to its physical size and shape.

The primary input file is a binary file with .raw extension. It contains the raw
information about the positions of the 3D discretization mesh that correspond to
tumor tissue. More specifically, each byte of the .raw file is matched to a geometrical
cell, i.e. an element of the 3D matrix. If the byte is equal to 0xFF (white color),
then the corresponding geometrical cell is considered to be part of the tumor tissue.
On the other hand, if the byte is equal to 0x00 (black color), then the corresponding
geometrical cell is considered to be part of the tumor microenvironment normal tissue.
The size of the .raw file depends on the size of the 3D discretization mesh, since it
contains one byte per matrix item.

The .raw file is accompanied by a Metalmage MetaHeader file with the character-
istic .mhd extension. This file is responsible for providing the header information for
the .raw image, such as the size of each dimension of the 3D discretization mesh and
the physical size of each geometrical cell. This information is imperative for the in-
terpretation of the .raw file, the accurate description of the initial tumor morphology
and its transformation in a 3D matrix for the purposes of the simulation. A standard
format for the .mhd file is presented in Figure 3.2.

The last row of the .mhd file, with ElementDataFile as tag, points out the cor-
responding .raw file which it acts as header for. The .mhd and .raw files have to be
stored under the same directory for the correlation between them to be succesful.

The first two rows, with ObjectType and NDims as tags, expresse the fact that
the .mhd file acts as a header for a 3D image. The third row, with BinaryData as
key, characterizes the type of the .raw file as binary. By defining the ElementType
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as M ETyCHAR, each item of the 3D tumor matrix is matched to a byte in the .raw
file.

The BinaryDataByteOrderMSB and CompressedData tags define the endi-
anness of the .raw file as little and its compression status as not compressed, respec-
tively.

The AnatomicalOrientation tag describes the coordinate system as RATI and the
TransformMatrix, Offset and CenterOfRotation tags describe the transforma-
tion that needs to be applied in order for the IJK coordinate system to be tranformed
into the RAI coordinate system.

ObjectType
NDims = 3
BinaryData = True

BinaryDataByteOrderMSB = False

CompressedData = False

TransformMatrix = <a> <b> <c> <d> <e> <f> <g> <h> <i>
Offset = <x_offset> <y_offset> <z_offset>
CenterOfRotation = <c_x> <c_y> <c_z
AnatomicalOrientation = RAI

ElementSpacing = <x_spacing> <y_spacing> <z_spacing>
DimSize = <x_dim> <y_dim> <z_dim>

ElementType = MET_UCHAR

ElementDataFile = data_file.raw

Image

Figure 3.2: A standard format for the .mhd files that are given as input to the Nephrob-
lastoma Oncosimulator. This format refers to a 3D image in the RAI coordinate system,
which is described in a .raw binary file. Each element of the 3D image is matched to one
byte of the .raw file. The .raw file is not compressed and is expressed in little endian.

Finally, the ElementSpacing tag describes the physical size of each item, i.e. of
each geometrical cell or voxel of the 3D matrix tumor, in mm and for each dimension
(x__spacing for the x dimension, y_spacing for the y dimension and z spacing
for the z dimension), while the DimSize tag describes the size of each dimension
in geometrical cells, i.e. the number of items in each dimension (x dim for the x
dimension, y_dim for the y dimension and z_dim for the z dimension). The two
subsequent reasonable conclusions are that:

e the physical size of the tumor region along each dimension is given as ¢ _dim -
1__spacing, where 1 = x,y, 2

e and the size of the .raw file in bytes is x _dim -y _dim - z__dim.

3.2.2 A data preprocessing algorithm that explores the geo-
metrical cell size for the optimal adaptation of the sim-
ulation resolution

As explained in Chapter 2.3.3, the size of the geometrical cell defines the resolu-
tion of the simulation. More specifically, as the size of the geometrical cell increases

the simulation resolution decreases, since each geometrical cell carries a bigger number
of actual biological cells and, as a result, each equivalence class inside each geometrical
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cell also carries an increased cell population. This means that more actual biological
cells are simulated as one, i.e. they execute the same cell cycle transitions (see Fig-
ure 2.8) and at the same time points. Ideally, all the actual biological cells would
be simulated separately from one another, i.e. they would be matched to a unique
voxel of the 3D tumor matrix, which of course is not feasible or practical. However,
despite the decrease in resolution, the increase of the geometrical cell dimension size
reduces the cost of the simulation, with respect to the execution time, as well as to the
required machine space. In fact, a certain decrease in the simulation resolution could
be characterized as tolerable if the error that it causes is minimal and comparable
to other errors that the deviation of the simulation from the actual physical phemo-
menon inevitably introduces. At the same time, the corresponding cost minimization
could be benefactory for the execution.

This tradeoff between the simulation resolution and the simulation cost, which is
tied to the value for the size of the geometrical cell, i.e. to the ¢ spacing values of
Figure 3.2 (i = xz,y, z), raises the question of how to compute the optimal value
for the geometrical cell size, so that the cost is minimized while the resolution is
adequately maintained. This problem is addressed in the data preprocessing step of
the workflow, since it can be solved independently for each patient input, in order
to prepare them for the next steps of the workflow (see Figure 3.1). The simplistic
algorithm that was implemented in order to explore this tradeoff problem is briefly
presented in the flowchart of Figure 3.3.

The idea behind the algorithm of Figure 3.3 is to explore the increase of the
geometrical cell size for a specific input patient and within a tolerable error window.
In order to do that, at first, the simulation is executed with the default patient specific
size for the geometrical cell, as it is defined in the corresponding .mhd file, and the
resulting outputs are recorded. Subsequently, the simulation is re-executed multiple
times with a continuously growing scale factor for the geometrical cell size. The
scale factor is incremented by a constant step, until the recorded outputs produce an
error that exceeds the defined tolerable error window when compared to the outputs
of the first default execution. Moreover, the algorithm takes into consideration the
fact that if the input tumor files do not describe a tumor region with abundant
normal tissue surrounding the tumor tissue, then, during the simulation and if the
tumor tissue grows dramatically, it may hit the boundaries of the 3D matrix, which
is defined statically and in turn causes the execution to error out with a suitable
explanatory message. In order to address this issue, the algorithm uses one more
input modifying parameter, a padding factor, which expresses the percentage by
which the 3D matrix tumor should be padded with normal tissue, i.e. with zeros.
This padding factor is also continuously incremented by a constant step until an
errorless simulation execution for the currently explored scale factor is achieved.

The effect of the two input modifying factors, the scale and the padding factor, is
formally and mathematically expressed in Equation 3.1. The scale factor defines
the factor by which the geometrical cell size is to be multiplied, while the padding
factor defines the percentage by which the 3D matrix tumor should be padded with
normal tissue. The padding is performed first, increasing the size of the 3D tumor
matrix, and then the scaling is performed, increasing the size of the geometrical cell
and reducing the size of the 3D tumor matrix respectively. The new values for the

o8



geometrical cell size and the 3D matrix size are computed according to Equation
3.1.

i_dimpad = (1 + pad) . i_dimold

1 SPaCiNgnew = Scale -1 Spacingorq

 dimy, 3.1
i iy, = = pad (8.1)
- scale
1=, 2

At first, the scale step and pad_step constant values are defined, expressing the
loop incrementing step for each corresponding factor. The default value for the
scale _step is 1, while the default value for the pad step is 0.1. The error_criterion
and the error _window constants are also defined at this time. The error_criterion
expresses the standard by which the simulation error is computed. The default cri-
terion is the relative tumor volume reduction, but any other simulation output pa-
rameter or a combination of a set of them can be utilized (see Table 2.2). The
error__window expresses the tolerable error window and its default value is 0.1, mean-
ing that the result of the simulation execution is allowed to deviate from that of the
original simulation execution by 10%.

Then, after pad and error are initialized to 0 and scale is initialized to 1, the
first and standard simulation is executed using the original provided patient specific
input. If the execution errors out due to the 3D matrix boundaries being hit by
the tumor, then the pad is incremented by pad_step and a new padded version of
the patient input is created, with the appropriate modifications in the .raw file and
the .mhd file according to Equation 3.1. This process is repeated until the pad is
sufficient for the boundaries to not be hit and the patient input versions that are
produced during this process are stored in the patient input DB. After the input
has been padded sufficiently, the error is computed according to Equation 3.2 and
compared to error _window. If the error is greater than the error _window, then the
algorithm terminates, while if it is lower than the error window, then the scale is
incremented by scale step and a new scaled version of the patient input is created,
with the appropriate modifications in the .raw file and the .mhd file according to
Equation 3.1. The pad and scale variables act cooperatively as global variables in
the double nested loop process that was described. During the first outer loop, with
scale = 1, the error is equal to 0 and the scale is incremented to 2. The outer loop
is repeated until the scale becomes so big that the resolution decreases to the point
where the error becomes too big for the tolerable error window. The inner loop is
responsible for fitting the tumor in the 3D matrix for the entirety of the simulation
and is repeated until the pad is big enough for the current scaled patient input to
accomplish this goal.

(tumor volume reduction).,,,,, — (tumor volume reduction) ,,; ;..
error = . (3.2)
(tumor volume reduction)

original

The creation of the padded version of the input is trivial. However, there exists
a variety of methods to scale the input, in order to produce a version with bigger
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geometrical cell size. These methods are based on combining the neighbor voxels of
the 3D tumor, but they differ in the way that they decide the value of the resulting
voxel. A simple approach is to use the mean or the median value of the neighboring
voxels that are combined into the new voxel and if it surpasses a certain threshold,
then the new voxel is categorized as tumor tissue (0xF'F), else it is categorized as
normal tissue (0x00). For instance, if the mean value is chosen with a threshold of
0.5, then the resulting voxel is considered as part of the tumor tissue only if at least
half of the neighbor voxels that compose it belonged to the tumor tissue. The method
that was finally utilized here is that of the spline interpolation.

Define:

(i) the pad_step and the scale_step
(i) the error_criterion and the error_window

Initialize:

(i) pad=0
(i) scale=1
(iii) error=0

_ patient . . Greate padded and
patients|. - - _ / specific - --- - - - -- - - 5|[Execute simulation |, (s:(::z:: g:g::?ii:ﬂt<—
input data e —

ﬂ
(o]

the tumor hit
the border of Yes. pad += pad_step
the 3D mesh

No

v

Compute error

error >
error_window

No. scale += scale_step

Figure 3.3: The flowchart of the data preprocessing algorithm that explores the geometrical
cell size for the optimal adaptation of the simulation resolution. The algorithm is comprised
by a double nested loop. The inner loop determines the padding factor that ensures that
the tumor will not hit the boundaries of the 3D matrix. The outer loop is responsible for
increasing the scale of the geometrical cell, until the tolerable error window is transgressed.
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3.3 Sensitivity Analysis

3.3.1 The role of sensitivity analysis as a method that is dy-
namically employed for the exploration of the Nephrob-
lastoma Oncosimulator functionality under different para-
metric scenarios

Sensitivity analysis is a very useful tool for reviewing the funtionality of a given
application, especially when its operations depend on a number of input parameters.
The examination of the manner in which these parameters affect the output of the
application, which is achieved via the sensitivity analysis, i.e. the process of exploring
the range of values for the input parameter space and studying the variation that
each change to the values for one or a combination of input parameters causes to
the values for a set of output parameters, which are chosen to quantify the output of
the application, is very useful in determining the behavior of the application under
different parametric scenarios. In this context, sensitivity analysis is very helpful not
only for gaining an insight on the application’s functionality, but also in understanding
the role and importance of each of the application’s parameters. In this context,
sensitivity analysis can be a strict, exact and well-defined tool for the verification of
the application’s robustness concerning the limitations that the range of values for
its input parameters introduce and for extending and optimizing the application’s
results through the study and adaptation of its input parameters.

In the case of the Nephroblastoma Oncosimulator, sensitivity analysis is a very
important tool with constant presence through many steps of the development and
deployment of the model, from the definition, implementation and verification of
its mechanisms to its clinical adaptation and clearance for clinical practice. The
nature of the Oncosimulator software as a model that simulates the complex and
multi-parametric phenomenon of cancer, renders it very fit for examinations and
explorations that are subject to sensitivity analysis, not only during the early stages
of its development, but also in the context of a continuous and dynamic process.
The software’s purpose, to offer personalized insight and feedback on the therapeutic
scheme for a specific patient case, highlights the need for a constant exploration of
the parameter space of the model, which is a process equivalent to the sensitivity
analysis method, so that the optimal predictive results are ensured through the most
fit adaptation of the parameters to the patient’s image. Considering the possible
impact of the Nephroblastoma Oncosimulator, beyond its immediate purpose as a
medical advisor that suggests the optimal patient-specific therapeutic scheme, the
exploration of its parameter space and the study of the corresponding effects on
its outputs, along and during the process of its development, via dynamic sensitivity
analysis, could have significant research value in the study of the complex phenomenon
of cancer as a whole.

Here, the sensitivity analysis process is repeatedly employed, since it is applied for
each optimized version of the Nephroblastoma Oncosimulator source code, according
to the workflow outline of Figure 3.1. More specifically, the optimized versions of
the model are compared to an original verified version, with concern to their behav-
ior under various parametric scenarios. That way, any deviation in the behavior of
the new optimized version from the behavior of the verified version is detected and
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handled. If no deviation is registered, then the new optimized version can be safely
verified. Considering the importance of sensitivity analysis for the Nephroblastoma
Oncosimulator, it has already been adequately performed for predecessor models in
previous work. Different methods with varying foundation were utilized for the al-
ready performed sensitivity analysis, in order to ensure the validity of their results and
the conclusive classification of the model parameters. The methods that stand out are
three, a graphical method, a mathematical method and a statistical method. Here,
only the graphical method was repeated and its results compared for each optimized
versions to the ones for the original verified version.

3.3.2 Sensitivity analysis as a parametric exploration for each
simulation input parameter separately and the parame-
ters that are used for quantifying its results

The sensitivity analysis process, which is performed for the verification of each new
optimized version of the Nephroblastoma Oncosimulator source code that is produced
as an intermediate output of the workflow shown in Figure 3.1, is implemented via
the exploration of the range of values for each input parameter separately. More
specifically, a set of simulations is performed for each simulation input parameter,
using the current source code version and with the parameter getting values from a
predetermined exploration range, while the rest of the input parameters maintain a
constant value that is equal to their reference value, as defined in Table 2.7.

The results of the sensitivity analysis are studied with respect to each input pa-
rameter separately via the comparison of the simulation outcomes for each set of
simulations that are performed with the parameter getting values from a predeter-
mined range while the rest maintain their values equal to their corresponding reference
value. The outcomes of a single simulation are qunatified, with respect to the tumor
volume reduction and the tumor’s initial and final composition of the distinct cell
type populations, using the simulation output parameters of Table 2.2.

These parameters are also utilized in order to express the outcomes of the set of
simulations performed during the sensitivity analysis process. More specifically, the
tumor size outcome of each simulation is quantified using the relative tumor volume
variation percentage DV, computed according to Equation 2.9. The initial compo-
sition of the tumor is expressed according to the four initial population percentages
of Table 2.2, one for each cell type, proliferative, dormant, differentiated and dead.
For the final compostion of the tumor the relative population variation percentage
for each distinct cell type is utilized, rather than the absolute value for the popula-
tion percentages, as is the case for the initial composition. The relative population
variation is computed for each cell type as the percentage of Equation 3.3. The
set of parameters that are used in order to study the sensitivity analysis results are
summarized in Table 3.1.

Cfinal Cinitiul

> Crinat o0 Cinitial

Deo = .

c Cinitial (3 3)
> ¢ Cinitial

C =PROLIF, DORMANT DIFF, DEAD
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] Symbol ‘ Definition

DV relative volume variation percentage
PROLIF;,tia initial percentage of proliferative cells
DORMANT,,i;ia | initial percentage of dormant cells

DIFF;itial initial percentage of differentiated cells
DEAD;itial initial percentage of dead cells

Dprorir relative variation of the percentage of proliferative cells
DporyaNT relative variation of the percentage of dormant cells

Dprrr relative variation of the percentage of differentiated cells
Dprap relative variation of the percentage of dead cells

Table 3.1: The parameters that are utilized for the assessment of the sensitivity analysis
results. They are derived from the simulation output parameters of Table 2.2 and are used
in order to monitor the effect that the variation in the values for a single input parameter
has on the outcomes of the simulation, with respect to the tumor volume variation, the
initial composition of the tumor and the corresponding relative cell population variation
percentages for each distinct cell type, proliferative, dormant, differentiated and dead.

3.3.3 The graphical method for sensitivity analysis and its re-
sults for the original verified version of the model

The graphical method for sensitivity analysis is a simplistic, but accurate and thor-
ough method that visualizes the relationship between the input and output parame-
ters of the model in the form of scatter plots. More specifically, after the execution
of the simulation with a range of values for each input parameter, the results are
recorded in the form of the output parameters and the inferred relationship between
them is visualized in the form of scatter plots.

This is a straightforward way to perform sensitivity analysis and express the results
in a manner that highlights the intuition behind their understanding. This is the
reason why this method was chosen to be explored and its results to be recreated
here, since, due to its visual and intuitive nature, it enables the assessment of its
results and their comparison to the ones acquired by previous work for the verified
predecessor model in an easy and immediate manner.

The results of the graphical method for sensitivity analysis, as they are derived
for the original verified version of the model and the corresponding source code, are
displayed in Figure 3.4 with respect to the effects of the variation of the values for
each separate input parameter on the volume variation, in Figure 3.5 with respect
to the effects of the variation of the values for each separate input parameter on the
initial composition of the tumor and in Figure 3.6 with respect to the effects of
the variation of the values for each separate input parameter on the variation of the
tumor’s composition.

Only the exploration of the input parameters that have a noticeable effect on the
simulation outcomes are included. The tumor volume is affected by the T, Pjeep,
Poym, Ra, Pcootoc1, Tao and CK Rype parameters. The tumor’s initial composition is
affected by the Pgeep, Poym, Ta, Tn, To, Rapifs and Rypisy parameters. Finally,
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the tumor’s composition variation is affected by the Pyeep, Psym, Tco, Rapiff, Rnpify
and C'K Ry, parameters.

Increase in the cell cycle duration 7. causes the cell cycle to progress slower, which
results in less mitoses and a bigger negative volume variation (volume reduction) for
the constant time window of the simulation. However, no effects are recorded with
respect to the tumor composition, both initial and final.

Increase in the ratio of cell that enter the dormant G phase (i.e. increase in the
value for the Py, parameter) causes decrease in the percentage of proliferative cells
in the initial tumor composition. The variation of the dead cells inside the tumor
decreases, since the increased dormant cells in the initial tumor compositions do not
perform many transitions in the cytokinetic diagram, which prevents the absolute
number of cells from changing noticeably. This is also the reason why as the value
for Pgeep increases the tumor volume variation decreases and approximates zero.

Increase in the ratio of cells that divide symmetrically (i.e. increase in the value
for the P, parameter) causes decrease in the differentiated cell population of the
initial tumor, since LIMP cells are produced with less frequence. As a result, a bigger
number of divisions is performed, the absolute number of cells in the tumor increases
and so does the tumor volume variation and the population of all the cell types except
for the differentiated.

Increase in the maximum time spent in the Gy phase befor the cell dies via necrosis
(i.e. increase in the value for the T parameter) causes increase in the dormant cell
population in the initial tumor, which in turn causes the tumor volume variation to
approximate zero, since the dormant cells do not perform many transitions in the
cytokinetic diagram and do not proliferate.

The cell kill ratio represents the effetcs of therpay and does not affect the initial
composition of the tumor. Increase in the value for the C K Ry, parameter causes
the therapy to hit more cells. As a result, the absolute number of cells in the tumor
decreases and the tumor volume reduction increases.

Reviweing Figures 3.4-3.6, similar observations can be made for the rest of the
input parameters that are explored via the graphical method sensitivity analysis. The
main parameters that significantly affect the outcome of the simulation are the Pjep,
P,y and CK Ry, parameters. By performing the same method sensitivity analysis
for each new version of the model and by comparing the results with the ones of
Figures 3.4-3.6, any deviance of the new model behavior from the original model
behavior can be monitored. That way, the new model can be corrected if needed and
finally safely verified.
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Figure 3.4: A visualization of the effect that the variation of the values for each input
parameter has on the tumor volume variation, as it is derived via the graphical method
for sensitivity analysis [71]. The tumor volume variation is measured by the relative tumor
volume variation percentage (see Equation 2.9).
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Figure 3.5: A visualization of the effect that the variation of the values for each input
parameter has on the initial composition of the tumor, as it is derived via the graphical
method for sensitivity analysis [71]. The initial tumor composition is measured according
to the percentages of Table 2.2.
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Figure 3.6: A visualization of the effect that the variation of the values for each input
parameter has on the composition variation of the tumor, as it is derived via the graphical
method for sensitivity analysis [71]. The tumor composition variation is measured by the
relative population variation percentage, computed according to Equation 3.3.

3.4 Application Profiling & Code Optimization

3.4.1 The specifications of the architecture for the computing
environment that was utilized

The series of simulations that were performed for the implementation of the work-
flow of Figure 3.1 were executed on a linux server with a total of 48 CPUs. The
detailed specifications of the computing environment were acquired using the lscpu
linux command, whose output is displayed in Table 3.2.

The hardware of the computing environment includes two Intel(R) Xeon(R) CPU
E5-2658A processors. This means that the architecture consists of 2 physical central
processing units, each one encompassing 12 cores [72]. This can be also verified
by checking the number of sockets and the number of cores per socket, as they are
summarized in Table 3.2. The total number of physical cores is equal to the product
of the number of physical CPUs with the number of cores per CPU, 2 x 12 = 24.
Moreover, each core is matched to two threads (threads per core in Table 3.2), which
doubles the 24 physical cores to 48 virtual cores. As a result, the server is assumed
to operate using a total of 48 logical CPUs, which are numbered from 0 to 47. The
matching of these logical CPUs to the physical cores of the harware is displayed in
Table 3.3.

As for the memory architecture, the computing environment is equipped with a 3
level cache hierarchy. The first level of cache consists of 32 K Bytes of memory for
instruction storage and 32 K Bytes of memory for general data storage. The second
level of cache consists of 256 K Bytes of memory and the third and final level consists
of 30720 K Bytes of memory.
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The memory access is based on a NUMA (Non-Uniform Memory Access) architec-
ture, which matches the 48 logical CPUs to 2 NUMA nodes, numbered from 0 to 1.
The NUMA node 0 contains the 0 — 11 and 24 — 35 logical CPUs, while the NUMA
node 1 contains the 12 — 23 and 36 — 47 logical CPUs. This matching is also evident
in Table 3.3.

The information provided by the lscpu command are completed by some general
data concerning the supported architecture (x86 64), CPU op-modes (32-bit and
64-bit) and byte order system (little endian), as well as the CPU model (63), family
(6) and minimum and maximum frequency (1200,0000 M Hz and 2900, 0000 M H =
respectively).

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48

On-line CPU(s) 1list: 0-47
Thread(s) per core: 2

Core(s) per socket: 12

Socket (s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel
CPU family: 6

Model: 63

Model name: Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz
Stepping: 2

CPU MHz: 1200.375

CPU max MHz: 2900,0000

CPU min MHz: 1200,0000
BogoMIPS: 4401 .42
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 30720K

NUMA nodeO CPU(s): 0-11,24-35
NUMA nodel CPU(s): 12-23,36-47

Table 3.2: The specification of the architecture of the linux server that was used for
the simulation executions. These specifications were provided as the output of the lscpu
command. The server consists of 2 processors, each one containing 12 physical cores (total
number of physical cores equal to 24). Each core runs 2 threads (total number of virtual
cores equal to 48). Moreover, the computing environment is equipped with a 3 level cache
hierarchy. The memory access is based on a NUMA architecture, which consists of two
nodes, one for each processor. Each one of the 24 physical cores is equipped with its own
set of caches for the first two levels of cache hierarchy, while the last level of cache is shared
between the physical cores that belong to the same processor (see Table 3.3).
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Logical CPU ‘ Physical Core ‘ Socket ‘ NUMA Node ‘ L1i ‘ Lid ‘ L2 ‘ L3 ‘

0 0 0 0 0 0 0] 0
1 1 0 0 1 1 110
2 2 0 0 2 2 210
3 3 0 0 3 3 310
4 4 0 0 4 4 410
5 3 0 0 5 5 5| 0
6 6 0 0 6 6 6 | 0
7 7 0 0 7 7 710
8 8 0 0 8 8 81 0
9 9 0 0 9 9 910
10 10 0 0 10 | 10 |10 | O
11 11 0 0 11 | 11 |11} 0
12 12 1 1 12112 12| 1
13 13 1 1 13 113 |13 ] 1
14 14 1 1 14114 141
15 15 1 1 15115 |15 1
16 16 1 1 16 | 16 |16 | 1
17 17 1 1 17 | 17 |17 ] 1
18 18 1 1 18 | 18 | 18| 1
19 19 1 1 19119 |19 1
20 20 1 1 201 20 | 20| 1
21 21 1 1 21 1 21 | 21| 1
22 22 1 1 22 122 |22 |1
23 23 1 1 23 1 23 |23 |1
24 0 0 0 0 0 0] 0
25 1 0 0 1 1 110
26 2 0 0 2 2 210
27 3 0 0 3 3 310
28 4 0 0 4 4 410
29 S 0 0 Y Y 510
30 6 0 0 6 6 6 | 0
31 7 0 0 7 7 710
32 8 0 0 8 8 810
33 9 0 0 9 9 910
34 10 0 0 10 | 10 |10 | O
35 11 0 0 11 |11 |11} 0
36 12 1 1 12 112 |12 | 1
37 13 1 1 1313 |13 1
38 14 1 1 14114 |14 1
39 15 1 1 15 ] 15 |15 ] 1
40 16 1 1 16 | 16 |16 | 1
41 17 1 1 17 | 17 |17 ] 1
42 18 1 1 18 | 18 | 18| 1
43 19 1 1 19 119 |19 ] 1
44 20 1 1 201 20 | 20| 1
45 21 1 1 21 121 | 21| 1
46 22 1 1 22 122 | 22| 1
47 23 1 1 23 023 | 23] 1

Table 3.3: The mapping of the utilized architecture’s logical CPUs (48) to the physical
cores (24), NUMA nodes (2) and cache hierarchy (24 cache sets for the first and second level
and 2 caches for the last level).
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Reviewing the mappings of Table 3.3, it is evident that each one of the 24 physical
cores that belong to the 2 distinct hardware processors of the architecture is equipped
with its own set of caches for the first two levels of the cache hierarchy, while the last
level of the cache hierarchy is shared between the cores that belong to the same
NUMA node (and processor).

3.4.2 Valgrind as the profiling tool that was used for the es-
timation of the memory footprint per simulation execu-
tion and of the costs per simulation scan with concern
to the CPU cycles and the memory accesses

Valgrind is an opensource software that is employed for the profiling of program
executions on platforms that use unix-based operating systems [73]. The profiling of
a program’s execution proves useful in multiple scenarios, such as:

e in order to ensure that the program is free of bugs and that its behavior is the
expected one

e in order to find where a suspected bug occurs and take action to eliminate it

e in order to check if the memory is managed properly or if memory leakage issues
should be addressed

e in order to check the communication and synchronization between the various
running threads in the case that multithreading is employed

e in order to study the program’s performance, with respect to the costs that each
distinct section of it introduces, in the attempt to optimize it

The valgrind framework includes a number of built-in tools that are used with the
executable program to be profiled, regardless of the programming language of the
corresponding source code. The suitable tool is chosen depending on the purpose of
the profiling. Moreover, profiling tools can be custom-built on the valgrind framework,
so that the purposes of the desired analysis are better accommodated.

Here, the massif tool was employed for the estimation of the memory footprint of
each simulation execution and the callgrind tool was employed for the estimation
of the cost of each simulation scan, with respect to the CPU cycles and the memory
accesses.

The massif tool is a heap profiler that is provided by the valgrind framework [74].
It is used for the determination of the memory usage of the profiled program during its
execution. More specifically, it periodically takes snapshots of the program’s heap and
it produces a graph showing the heap usage over the time duration of the program’s
execution. The snapshots are taken for every heap allocation/deallocation and when
the maximum number of supported snapshots is reached, which is by default equal to
100 but can be adjusted via the --max-snapshots option, half of them are deleted.
Most of the snapshots are normal, meaning that they are only depicted on the heap
usage graph, but some are detailed, in that information concerning the program
sections that allocated the heap memory is also provided for them. The detailed

69



snapshots where the maximum heap memory is allocated are characterized as peak
snapshots. Moreover, stack memory usage can be profiled too by setting the option
--stacks=yes .

When programs are executed with the massif tool, they run about 20x slower
than normal. In order for the time of the program execution with the massif profiler
to be limited, the following methods can be employed:

e set --stack=no (default)

e reduce the frequency of detailed snapshots ( --detailed-freq option, default
value equal to 10)

e reduce the number of maximum snapshots ( --max-snapshots option, default
value equal to 100)

e reduce the maximum depth of the allocation trees recorded for detailed snap-
shots ( --depth option, default value equal to 30)

e reduce the accuracy with which the peak snapshots are measured
( --peak-inaccuracy , default value equal to 1.0)

Here, the massif heap profiler is utilized for the estimation of the memory foot-
print for each simulation execution. This is very important information, since it
describes the memory needs of the execution, which in turn determines the number
of executions than can be performed concurrently depending on the total available
memory of the computing environment. The supported number of parallel simulation
executions is a crucial information for the clinical adaptation step of the workflow,
which is based on the execution of a number of independent simulations with varying
values for the simulation input parameters.

The Nephroblastoma Oncosimulator executable allocates the memory that is nec-
essary for the representation of the solid tumor in silico as a 3D matrix of geometrical
cells, with each geometrical cell encompassing a number of equivalence classes, one for
each phase of the cytokinetic diagram (see Figure 2.9). Assuming that the number
and the types of the variables that describe the equivalence classes and the transitions
between them for each geometrical cell are constant, then the memory required for
each geometrical cell of the 3D matrix is alsoa known constant. This means that the
total memory required by the executable depends on the number of geometrical cells
in the 3D matrix, i.e. on the size of the 3D matrix, which is described in the files
that summarize the medical imaging data of the patient and that are given as input
to the executable.

The allocation of the memory for the 3D matrix happens during the first scan of
the algorithm, which is responsible for the initialization of the 3D tumor mesh (see
Figure 2.7). No major allocations and deallocations happen during the simulation
evolution and the final memory deallocation happens with the completion of the
execution. This means that the image of the heap usage graph does not change
drastically during the simulation execution and that the desired memory footprint
can be acquired using a minimal number of snapshots. Moreover, the memory is
allocated on heap, which eliminates the need for the inclusion of stack profiling.

70



All in all, the massif tool was used for the estimation of the memory footprint of
each simulation execution, which depends on the size of the patient-specific medical
imaging input. For most inputs, the default tool options were used. For bigger inputs
where the execution was too slow, the maximum number of snapshots was reduced,
which is allowed due to the simple allocation pattern of the executable.

The callgrind toolis a profiler, provided by the valgrind framework and built on
top of the cachegrind cache profiler, which documents the series of the events of the
program’s execution in the form of a call-graph [75]. More specifically, it records the
number of instructions executed, their relationship to source lines, the caller/callee
relationship between functions and the numbers of such calls.

The callgrind profiler can also optionally simulate a cache hierarchy and record
the cache runtime behavior, counting the cache hit and miss events and attributing
them appropriately to the responsible program source lines. This optional function-
ality is activated by setting the corresponding tool option ( --cache-sim=yes ). A
similar option exists for the inclusion of branch prediction simulation and profiling
( --branch-sim=yes ).

Here, the callgrind profiler is employed for the atribution of the execution costs
to the corresponding sections of the program’s source code, with respect to both the
CPU cycles and the memory accesses. This information is crucial for the process
of locating the major cost inducing sections of the Nephroblastoma Oncosimulator
source code. That way, the cost inducing factors can be studied and plans for their
elimination and overall code optimization can be devised and implemented.

The simulation of the cache hierarchy, when the --cahce-sim option is set, is
performed in the same manner as when the cachegrind tool is used [76]. Only the
firt-level and last-level caches are simulated. The first level consists of two indepen-
dent caches, one instruction cache (/1) and one data cache (D1). Its simulation is
important since it masks the immediate interaction of the processor with the cache
hierarchy. The last-level cache (LL) is unified and its simulation is important since it
masks the immediate interaction of the cache hierarchy with the main memory. The
recorded events include:

e instruction reads (Ir)

e instruction read misses (/1mr for access to the first-level cache and ILmr for
access to the last-level cache)

e data reads (Dr)

e data read misses (D1mr for access to the first-level cache and D Lmr for access
to the last-level cache)

e data writes (Dw)

e data write misses (D1muw for access to the first-level cache and D Lmw for access
to the last-level cache)
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The estimation of the total number of CPU cycles is performed according to Equa-
tion 3.4. The total number of misses is computed as the sum of instruction read
misses, data read misses and data write misses, for the first-level cache (L1m) and
the last-level cache (LLm) respectively. For the estimation of the total number CPU
cycles, each instruction execution (Ir) is assumed to require one cycle, each access to
the last-level cache (counted by the misses to the first-level cache Llm) is assumed
to require 10 cycles and each access to the main memory (counted by the misses to
the last-level cache L1m) is assumed to require 100 cycles.

Cycles = Ir +10- L1m + 100 - LLm
Llm = Ilmr + D1mr + Dlmw (3.4)
LLm = I1Lmr + DLmr + DLmuw

3.4.3 The plan for the optimization of the third scan of the
Nephroblastoma Oncosimulator algorithm and its im-
plementation using the OpenMP API

As described in detail in the dedicated chapters of the Theoretical Framework,
the Nephroblastoma Oncosimulator algorithm uses the hypermatrix notation in order
to represent the solid tumor in silico as a 3D matrix of geometrical cells. More
specifically, the 3D matrix matches the physical size and shape of the tumor, as they
are determined via medical imaging techniques, along the 3 spatial axes. Each item
of the 3D matrix corresponds to a voxel of the image of the tumor, which is also
referenced as geometrical cell, since it corresponds to a quantum in the 3D physical
space. The bigger the size of the geometrical cell, the greater the physical space that
it encompasses, which in turn reduces the size of the 3D matrix, i.e. the size of the
simulation input.

Each geometrical cell encompasses a number of biological cells, which reside in
the physical space that corresponds to it. Moreover, the biological cells inside each
geometrical cell are further categorized in equivalence classes, according to the phase
of the cytokinetic diagram in which they currently reside (see Figure 2.9). Each
geometrical cell is fully described by the x, y, z coordinates that define its position on
the 3D physical space, while each equivalence class is fully defined by the geometrical
cell in which it resides (i.e. by the z, y, z coordinates in the 3D space) and the
phase p of the cytokinetic diagram that it represents (see Equation 2.2). Moreover,
the time ¢ defines the time point of the simulation evolution, which corresponds to a
unique image of the 3D matrix that represents the solid tumor in silico.

During the simulation evolution, the biological cells constantly transition between
the equivalence classes inside the geometrical cell that they belong to, performing
the transitions of the cytokinetic diagram Figure 2.8 according to the values for
the parameters of Table 2.1 (see Figure 2.10). The role of the third scan of the
algorithm is to implement these transitions. More specifically, each equivalence class
is matched to a timer which decrements as the simulation time increments. When
the timer reaches zero, the biological cells that reside in the equivalence class are
moved to the other equivalence classes of the same geometrical cell, performing the
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transitions of the cytokinetic diagram with respect to the provided input parameter
values.

As the biological cells transition between equivalence classes, the timers of the
equivalence classes that accept new cells are adjusted. More specifically, since the
biological cells of each equivalence class are simulated as one with respect to the
transitions of the cytokinetic diagram, the timer that determines when the transi-
tions starting from the equivalence class specific phase will take place is computed as
the median value of the time remaining in that phase for each biological cell. The
remaining time for the biological cells that were already in the equivalence class is
equal to the continuously decrementing timer, while the remaining time for the bio-
logical cells that just entered the equivalence class is equal to the time duration of
the equivalence class specific phase, as it is determined by the corresponding input
parameters.

The third scan of the algorithm, which is preceded by the second scan that deter-
mines the percentage of cells that are hit by therapy according to the value for the
C K R parameter, concludes the simulation in the cellular level of biocomplexity for
the current time point of the simulation by performing the transitions of the cytoki-
netic diagram. The computations that are performed during the third scan of the
algorithm concern transitions between equivalence classes of the same geometrical
cell. This means that the data dependencies are contained within the geometrical
cells and that the computations for each item of the 3D matrix can be performed
independently and, as a result, concurrently.

After the simulation is "summarized" on the cellular level, a "jump" is made to
the tissue level, where the simulation for the current time steps continues with the
fourth, fifth and sixth scan. These scans use the monte carlo modeling technique
for the implementation of the exchange of biological cells between the geometrical
cells with the goal of restoring the cell density distribution along the tumor and
adjusting the tumor size and shape. As a result, the simulation on the tissue level of
biocomplexity entails data dependencies between the geometrical cells that compose
the 3D tumor. Moreover, the probabilistic nature of the modeling techniques that are
employed for the simulation on the tissue level renders the management of the data
dependencies complex and unpredictable. Here, the dependencies for the simulation
on the tissue level are assumed to affect all the geometrical cells and, as a result, the
simulation for the fourth, fifth and sixth scan of the algorithm is performed serially
for all the items of the 3D matrix that represents the solid tumor in silico.

The "summarize and jump" method is repeated for each time step until the simu-
lation is terminated. At each time step, the the second and the third scan (simulation
on the cellular level) can be computed concurrently for each geometrical cell, while
the following three scans (simulation on the tissue level) is computed serially for the
set of geometrical cells. The evolution of the tumor in time is also computed serially,
since the computations of a given time point require the results of the simulation in
the previous time point, both for the cellular and for the tissue level.

The concurrent execution of the third scan of the algorithm for each item of the 3D
matrix that represents the solid tumor in silico (i.e. for each geometrical cell of the
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simulation) is implemented using the OpenMP API, which is a portable and scalable
model that provides a simple and flexible interface for developing parallel applications
on platforms ranging from embedded systems and accelerator devices to multicore sys-
tems and shared-memory systems [77]. More specifically, the OpenMP API offers a
set of compiler directives, runtime routines and environemt variables for the creation,
synchronization and communication of multiple threads on a shared-memory environ-
ment. Here, the #pragma omp parallel for collapse(3) directive was utilized
for the execution of the third scan of the algorithm with concurrent threads for the
independent geometrical cell computations. The number of threads to be executed in
parallel is specified by setting OMP_NUM_THREADS to the appropriate value.

3.4.4 Speedup as the metric for the performance enhancement
outcomes and the limitations introduced by Amdahl’s
law

In the context of the present work, the performance of the simulation executions
for the Nephroblastoma Oncosimulator algorithm is enhanced using the following two
methods:

e decreasing the input size and the simulation resolution by increasing the size
of the geometrical cell, according to the data preprocessing algorithm that ad-
dresses the simulation resolution and costs tradeoff problem (see Figure 3.3)

e using multiple threads and the OpenMP API to execute the third scan of the
algorithm concurrently for the geometrical cells of the 3D matrix that represents
the solid tumor in silico

The first data preprocessing method for performance enhancement adjusts the input
of the simulation and, as a result, reduces both the termination time and the memory
needs of the simulation execution. On the other hand, the second method, which
runs the computations for the third scan of the algorithm for each element of the 3D
matrix concurrently in multiple threads, focuses on the optimization of the source
code of the Nephroblastoma Oncosimulator and aims to reduce the execution time of
the simulation.

The metric that is used for the evaluation of the performance enhancement for the
two methods that were employed, with respect to the execution time reduction, is
the relative speedup. Typically, speedup compares the performance of two systems
processing the same problem by measuring the improvement in speed of execution of
a task on two similar architectures with different resources. Here, it is used in order
to measure the factor by which the simulation execution time is reduced for each per-
formance enhancement method. Practically, if the original execution time is T5,ginai
and the execution time after the performance enhancement is 1., panced, the relative
speedup of the performance enhanced execution compared to the original execution is
given by Equation 3.5. That way ,the speedup metric expresses the factor by which
the execution is accelerated by the corresponding enhancement method. For instance,
if S = 2 for an increased geometrical cell size, then the corresponding reduction to
the simulation input size made the simulation execution two times faster.

Tori ina
§ = —original (3.5)

Tenhcmced
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In the case that the performance enhancement method refers to code optimization
using improved resources, e.g. by performing parallel computations when the data
dependencies allow it, the theoretical speedup is given by Amdahl’s law.

Amdahl’s law is based on the premise that each task can be slit in two parts, a part
(1 —p) that does not benefit from the improved resources and a part p that does, and
that the theoretical speedup for the workload that uses improved resources compared
to the initial workload is limited by the task portion that does not benefit from them.

Amdahl's Law
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Figure 3.7: A visualization of the speedup of a workload as the number of utilized pro-
cessors increases, according to Amdahl’s law [78]. As the number of processors increases, so
does the speedup, until it reaches the maximum speedup, as it is estimated in Equation 3.7.
The maximum speedup is determined by the portion p of the workload that benefits from
the improved resources (parallel portion). As p increases, so does the maximum speedup.

More specifically, if the total time for the original execution of the task, with no
improved resources, is equal to 7', then the task portion that does not benefit from
the improved resources requires (1 — p) - T' time, while the task portion that benefits
from the improved resources requires p - T time. When the improved resources are
introduced, the part that benefits from them is accelerated with speedup s, while the
part that does not benefit from them is not accelerated. Thus, the total execution
time for the workload that uses the improved resources is:

T<s):(1—p)-T+§-T
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The formula that expresses Amdahl’s law is given in Equation 3.6 and is derived
using Equation 3.5 with Tiigima = T and T.ppanced = T(5).

1

S(s) = (1-p) +2

(3.6)

Indeed, the maximum speedup is limited according to Equation 3.7. As the
portion (1—p) of the task that does not benefit from the improved resources increases,
the maximum theoretical speedup is decreased. This is in comliance with the intuition
and understanding of the problem, since the part that does not utilize the improved
resources is not accelerated. Consequently, when it takes up a big part of the execution
time in the original system, the speedup potential is limited.

S(s) < — (3.7)

3.5 Clinical Adaptation

3.5.1 The concept of virtual patients for the in silico repre-
sentation of a single physical patient with a variety of
values for the joint distribution of the simulation input
parameters

The term virtual patient or avatar refers to the digitized simulated version of the
image of an actual physical patient in silico. A virtual patient basically encompasses
all the information of one distinct and full simulation, its input files and parameters,
its evolution and its outcome and output parameters. Since the input files of the
Oncosimulator are patient specific, it is obvious that each virtual patient is matched
to one unique physical patient. However, the opposite is not true. A single physical
patient can be matched to a multitude of virtual patients. That is because a virtual
patient is defined, among others, by the values for the parameters of the simulation,
input and output, as they are defined in Tables 2.1 and 2.2.

The input and output parameters of the simulation define a set of variables that,
even though they have a degree of interdependence, create a joint parameter explo-
ration space, which is immediately linked with the number of virtual patients for
each physical patient. More specifically, each unique joint value distribution that is
assigned to the parameters set corresponds to one unique virtual patient. Despite
the interdependence between the simulation parameters and the limitations that the
allowed values domain for each parameter introduces, it is clear that the combinations
of values for the various parameters are so many that each physical patient can be
matched to a practically indefinitely large set of virtual patients.

This property that matches one single physical patient to a multitude of virtual
patients compliments the intuition behind the role of the simulation parameters and
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the function of the Oncosimulator as a patient specific application. Most of the
simulation parameters define and drive the evolution of a series of biological processes.
These processes, despite being determined by a set of natural and physical rules,
are characterized by a significant heterogeneity among the patient population. For
instance, the C K R input parameter determines the effects of therapy, which can vary
significantly between patients. Moreover, the histologic profile of the patient may
categorize the neoplasm as aggressive or regressive, which is mirrored in the values
for the symmetric division rate of the tumor cells and for the rate with which the
tumor cells enter the dormant GO phase, Psym and Psleep respectively.

This means that not all patients are succesfully simulated in silico and subsequently
characterized by the same set of values for the simulation parameters. Moreover, the
values for the simulation parameters cannot be inferred unambiguously and accurately
from the patient specific medical data. Subsequently, the nature of the Oncosimula-
tor as a patient specific application requires the study of the patients in the general
context of virtual patients. By simulating the patient in silico for a multitude of joint
distribution values assigned to the set of simulation parameters, i.e. matching the
actual patient with multiple virtual patients, the adequate exploration of the param-
eter space is ensured. This principle is utilized in the clinical adaptation algorithm
that is presented in the following section.

3.5.2 The clinical adaptation algorithm that explores the CKR
parameter for each virtual patient with the goal of the
optimal adaptation to the medical data of the physical
patient

The matching of distinct physical patients to a multitude of virtual patients is
utilized in the clinical adaptation process, in order to manipulate the simulation
parameters in a manner that will lead the simulation towards a direction that is closer
to the real evolution and outcome of the actual physical phenomenon. In this section,
the clinical adaptation process refers to the execution of multiple simulations for
patients that have already been treated and their outcomes and therapy results have
been studied and recorded thoroughly, with the goal of determining the parameter
value distribution that better aligns the simulation results with the actual recorded
results. The flowchart of the implemented algorithm is shown in Figure 3.8.
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Define:

(i)  the number of virtual patients N

(i) the probability distribution of the parameters pdf

(iii) the set of parameters to be explored adaptation_params
(iv) the adaptation_criterion

Create the virtual patients (VPs) according to the pdf

- patient
patients |5/ specific [-------- e R B EETTREE :
DB input data

‘ VP{1} ] [ VP{2} I o P{N-1, [W{N_}] ( Parallel execution of the VPs
clinically —
Combine the VP results in order to determine the distribution adapted C/InICéfl
for each parameter of the adaptation_params set simulation adaptation
parameters DB

End

Figure 3.8: The flowchart of the clinical adaptation algorithm. Each actual physical patient
is matched to N virtual patients, i.e. N distinct joint distribution values for the simulation
parameters set. Here, N = 20 and the parameters are assigned their values from the uniform
distribution with mean value the corresponding parameter reference value and a deviation of
50% (default pdf). The set of adaptation parameters (adaptation params) is adjusted for
each virtual patient, via a dedicated exploration algorithm, so that the parameter values that
optimze the outcome of the simulation with respect to the degree that it approximates the
medical outcome of the actual patient are determined. This adaptation is performed with
respect to the adaptation criterion (here the percentage of the therapy induced tumor
volume reduction) and is independent for each distinct virtual patient, which allows the
parallel execution of the virtual patients. Finally, the virtual patient execution results are
evaluated and combined to produce the distribution of the adaptation parameters that is fit
for the in silico patient representation.

At first, the total number of virtual patients N for each physical patient is defined.
The default value for N was chosen to be 20. Moreover, the simulation parameters are
separated into the set of parameters to be explored, whose distribution is determined
as the output of the clinical adaptation, and the set of parameters whose distribution
is predetermined. The parameters to be explored are kept in the adaptation params
set, while the probability distribution of the rest of the parameters is defined by pdf.
The default adaptation params set contains only the CK R input parameter, but
more complex explorations can be performed at a later time. The rest of the parame-
ters are described by the uniform distribution (see Figure 3.9), which is the default
value for the pdf. A more appropriate distribution could be the gaussian. However,
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the mean value and the standard deviation of the simulation parameters are not repre-
sented concisely in the bibliography. As a result, the unifrom distribution was utilized,
with mean value the reference value for each parameter and the values for a and b as
computed in Equation 3.8. The default value for the window ratio was chosen to
be 0.5, meaning that each parameter (except for the ones in the adaptation params
set) takes uniformly random values that are at most 50% higher or lower from the cor-
responding reference value. Finally, the adaptation criterion with respect to which
the exploration of the adaptation params is performed for each virtual patient is
defined. Here, the exploration of the adaptation params is performed with respect
to the therapy induced tumor volume reduction, until the in silico tumor volume re-
duction deviates from the actual tumor volume reduction by a percentage lower than

5%.

F(X)

0 a b X

Figure 3.9: The probability density function for the uniform distribution [79]

= (1 — window ratio) - mean
( - ) (3.8)

a
b = (1 + window _ratio) - mean

After those necessary definitions, N distinct virtual patients are created with pa-
rameter values that are chosen according to the pdf that was defined, here according
to the uniform distribution. Then, each virtual patient is simulated multiple times
with a variety of values for the adaptation params, which are methodically explored,
in order for the optimal parameter adjustment to be accomplished, with respect to
the adaptation criterion. Note that the virtual patients are being executed in par-
allel, but the exploration of the values for the adaptation parameters for each virtual
patient may be serial, depending on the implemented exploration algorithm. Here,
only the C K R parameter is explored, with the algorithm of Figure 3.10, which is
by definition serial.

The implemented exploration of the C K R parameter for each virtual patient, as
it is described in the algorithm of Figure 3.10, is based on the fact that if the
in silico tumor volume reduction is greater than the expected one, then the effects
of the therapy are overestimated in the executed simulation and the value for the
CK R parameter needs to be decreased. On the other hand, if the in silico tumor
volume reduction is lower than the expected one, then the effects of the therapy are
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underestimated in the executed simulation and the value for the C KR parameter
needs to be increased.

Start

CKR = 0.5 * (CKR.max + CKR.min) |

- / patient
patients >/ specific > Execute simulation
DB input dat:
J

res = | (simulated tumor volume reduction - actual tumor volume reduction) / actual tumor volume reduction |

in silico tumor velume

e " res N " reduction
< <= No——C > ——Yes—|CKR.max = CKR
adaptation_criterion.€rror actual tumor volumé

“reduction”

T

No

l

Yes
CKR.min = CKR

End

Figure 3.10: The flowchart of the algorithm that explores the C K R parameter value range
for the optimal clinical adaptation. A simulation is executed with the CK R parameter
value equal to the median of the currently explored value range, which is defined by the
corresponding minimum and maximum values (CKR.min and CK R.maz respectively).
The simulation error is estimated and compared to the tolerable error, with respect to the
adaptation_criterion. If the effects of the therapy are overestimated, then the desired
value for the C'K R parameter is lower than the value that was just tested and CK R.max
is adjusted accordingly. If the effects of the therapy are underestimated, then the desired
value for the C K R parameter is greater than the value that was just tested and CK R.min
is adjusted accordingly. This process is repeated and the explored range is continuously
shrinked until a sufficient value for the C K R parameter is found. Since the CK R parameter
represents a probability, its initial minimum and maximum values are equal to 0 and 1
respectively.

The algorithm explores the value range for the C'K R parameter by referencing and
altering its minimum and maximum value (C'K R.min and C' K R.max respectively).
More specifically, a simulation is executed with the C K R parameter value equal to
the median of the value range that is being currently explored (CKR'mmJgCKR'mM).
Then, the error of the simulation is evaluated and compared to the tolerable er-
ror with respect to the adaptation criterion. Here, the error metric is the devia-

tion percentage of the in silico tumor volume reduction from the actual tumor vol-

30



ume reduction and the allowed error is 5%. If the simulation error is lower than
this percentage, then the optimal C'K R has been found. However, if the simula-
tion error surpasses the allowed percentage, the C'K R exploration value range needs
to be adjusted. More specifically, if the tumor volume reduction is overestimated
(in silico tumor volume reduction > actual tumor volume reduction), then the opti-
mal value for the C'K R parameter is lower than the one that was just tested and the
CK R.mazx is set to that value. On the other hand, if the tumor volume reduction is
underestimated (in silico tumor volume reduction < actual tumor volume reduction),
then the optimal value for the C' K R parameter is greater than the one that was just
tested and the C'K R.min is set to that value. That way, the explored value range for
the C KR parameter is dynamically adjusted and shrinked, until an adequate value
for the parameter is found. Since the C KR parameter represents a probability, its
initial minimum and maximum values are equal to 0 and 1 respectively.

After the set of adaptation params has been explored for each virtual patient,
each parameter that belongs to it (only the C KR parameter here) is assigned a value
that corresponds to an optimal simulation that leads to a minimal error with respect
to the adaptation criterion for each virtual patient. As the final step, the results for
each virtual patient, including the values for the adaptation params and the value
for the joint distribution of the rest of the simulation parameters, are co-evaluated,
in order for the probability distribution of the adaptation params that corresponds
to the actual patient to be determined.
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Results

4.1 Data Preprocessing

4.1.1 The original values for the parameters that are inherent
to the simulation input files for each dataset patient

The primary parameters that are inherent to the input files of the simulation are
responsible for describing the morphology and the size of the initial tumor, i.e. of the
tumor before the preoperative chemotherapy treatment is applied, as it is depicted
in the MRT that was acquired at the dates specified in Table 2.9. More specifically,
these parameters consist of:

e the x-dim, y-dim and z-dim parameters, which specify the size of the 3D
matrix that represents the initial tumor in silico, along each of the three axes,

e the GC-dimension, which specifies the physical size (in mm) that corresponds
to the edge of each item (geometrical cell) of the 3D matrix that represents the
initial tumor in silico,

e the scale and the padding factors, which are referenced in the resolution adap-
tation algorithm of Figure 3.3 and represent the factor by which the geomet-
rical cell size is multiplied and the percentage by which the tumor is padded
with normal tissue (i.e. with zeros) along each axis.

In order to properly process the results of the resolution adaptation algorithm
of Figure 3.3, it is essential that the values for these input file inherent primary
parameters that describe the morphology and size of the initial tumor are known for
each dataset patient. These parameter values for each set of original input files of the
three dataset patients are summarized in Table 4.1.

The scale and padding factors are set to the identity element for their correspond-
ing function, 1 and 0 respectively, since in the original input files no scaling of the
geometrical cell dimension or padding of the 3D tumor is applied.

The GC-dimension is equal to 1 for all three of the dataset patients, which
corresponds to the highest simulation resolution. The x-dim, y-dim and z-dim
parameters are linked to the size of the tumor and get higher as the tumor volume
increases.

The 3D Tumor Volume expresses the physical volume that corresponds to the
area of the 3D matrix that represents in silico the tumor along with its normal tissue
microenvironment. Tt is computed (in mm) as (x-dim-y-dim-z-dim)-(GC-dimension)?
and its difference percentage from the actual tumor volume, as estimated before the
preoperative therapy via MRT (see Tables 2.9 and 2.11), expresses the Padded
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Space, i.e. a rough estimate of the percentage by which the 3D tumor matrix is
alraedy padded with normal tissue geometrical cells.

Pseudonym Patient 15 Patient_ 16 Patient 17
scale 1 1 1
padding 0 0 0
GC-dimension 1 1 1
x-dim 87 88 118
y-dim 68 94 123
z-dim 75 98 132
3D Tumor Volume

(mm?) 443700 810656 1915848
Image Pre-Chemo

(Database MRT) 143987.13 306985.833 536733.98
(mm?)

Padded Space

(percentage) 208.15 164.07 256.95

Table 4.1: The values of the primary input file inherent parameters for the original input
files for each of the dataset patients. The scale and padding factors are set to the identity
element for their corresponding function. The simulation is executed in the highest possible
resolution (GC-dimension=1). The volume of the 3D tumor matrix ((x-dim - y-dim - z-dim) -
(GC-dimension)® - mm?) is bigger than the actual physical tumor volume, indicating the
percentage by which the 3D tumor matrix is already padded with normal tissue geometrical
cells (highest for Patient 17, medium for Patient 15 and lowest for Patient 16).

4.1.2 The results of the simulation resolution adaptation with
respect to the execution time and error that corresponds
to each scale and padding factor set for each dataset
patient

The tolerable error window that was used during the execution of the resolution
adaptation algorithm of Figure 3.3, which allows for the tumor volume reduction of
the simulation to deviate from the one estimated by the original simulation with the
parameters of Table 4.1 by a percentage of 10%, leads to the exploration of a great
range of values for the scale parameter of the algorithm, which exceeded the value of
50.

However, the typical values for the GC-dimension parameter do not surpass the
value of 4, since the morphology of the tumor may be distorted for greater values,
even if the tumor volume reduction criterion of the resolution adaptation algorithm
indicates a good adaptation with a minor error percentage. That is why here only
the exploration of scale and padding factor values that lead to simulations with GC-
dimension values that do not surpass the threshold of 10 were taken into account.
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The results of the simulation resolution adaptation algorithm for each dataset pa-
tient are presented in Tables 4.2, 4.3 and 4.4. Only the simulation executions that
were completed without error are recorded. Each recorded execution corresponds to
a distinct scale factor, along with the padding factor that ensures that the tumor will
not hit the boundaries of the 3D matrix during the simulation evolution and that
the simulation will not error out. The corresponding GC-dimension, x-dim, y-dim
and z-dim parameter values are in comliance with Equation 3.1. Note that as the
scale factor increases, the padded space of the 3D tumor decreases, which may cause
the simulation to error out due to the trasgression of the 3D matrix boundaries. In
that case, the padding factor is appropriately adjusted by the inner loop of the algo-
rithm and the padded space becomes fit for the normal execution of the simulation
again. The corresponding total simulation execution time, as well as the tumor vol-
ume reduction error, are also recorded. As the scale factor increases, the execution
time of the simulation decreases, as expected, since the input size is reduced. On
the other hand, the tumor volume reduction error fluctuates with the increase of the
scale factor, a fact that expresses the tradeoff that was explained in Chapter 3.2.2.

The relationship between the scale factor, the simulation execution time and the
tumor volume reduction error is visualized for each dataset patient in Figures 4.1,
4.2 and 4.3, in the form of scatter plots. The execution time of the simulation,
which is measured in sec, is also analyzed with respect to the distinct scans of the
simulation (see Figure 2.7), according to the time that each scan occupies. These
times, as well as the tumor volume reduction error, are represented on the y axis
of the scatter plots, while the scale factor is represented in the x axis of the scatter
plots. Moreover, the padding factor value that corresponds to each scale factor value
is denoted by the color of the scatter points, according to the depicted colorscale.

The most dramatic decrease in the simulation times, regarding both the total exe-
cution time, as well as the time that each separate scan occupies, is recorded for the
increase of the scale factor value from 1 to 2. With the increase of the scale factor
value from 2 to 3, only the first three simulation scans become noticeably faster, while
for further increase of the scale factor value, the decrease in the simulation times is
insignificant.

Moreover, the scans that occupy most of the execution time are the three last scans
(fourth, fifth and sixth), which comprise the biomechanical part of the simulation.
These are the scans that cause an increase of the total simulation execution time
that can be problematic, since it cannot be easily addressed due to the existing data
dependencies. That is why the data preprocessing step should be focused in decreasing
the time that these scans require. Reviewing Figures 4.1-4.3, it becomes evident
that the a scale factor of 2 adequately reduces the times of these scans, as well as the
total simulation execution time. In any case, a scale factor greater than 3 does not
need to be considered.

84



<
[
—_ S
— S
o — —~
.g \% mg %}
o0 o bt < N
£ g S o S
o | T 8 = K QE') 5
= | T 4 = g Y
o | % o g g g o .S = ~
3| A A= A= = i S o
E 5 7 & 3 2 > 2
o M > N o = o 8
O 2 = g 0
U = <
= o = L
g =
£ =2 Q S
?3 >
o 5
T
L 105 82 91 | y77756| 0.00 | 783510 | 444.15
2 101 9 52 41 46 A777 | 0.04 | 784576 | 444.89
31011 4 35 97 30 790 | -0.02 | 765450 | 431.61
4102
4 31 24 26 4.48 0.00 1238016 759.81
5102
5 25 19 21 2.06 0.20 1246875 765.96
6 | 0.2
6 20 16 18 1.25 0.04 1244160 764.08
7 102
7 18 14 15 0.89 -0.04 1296540 800.46
8 0.2
8 15 12 13 0.60 -0.04 1198080 732.07
9 0.2
9 14 11 12 0.43 0.07 1347192| 835.63
101031 1 14 11 12 041 | 0.09 | 1848000 1183.45

Table 4.2: The results of the resolution adaptation algorithm for Patient 15.
The recorded scale factor values range from 1 to 10. Each scale factor value corresponds
to a padding factor value that ensures the normal simulation execution. The tumor volume
reduction error fluctuates with the scale factor value increase, while the total simulation
execution time decreases.
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Figure 4.1: The scatter plots that express the relationship between the scale factor value,
the simulation times and the tumor volume reduction error for Patient 15. The tumor
volume reduction error and the simulation times, both the total execution time, as well as
the times that are occupied by the distinct simulation scans, are represented in the y axis.
The x axis represents the scale factor values. The corresponding padding factor values are
represented by the color of the scatter points and according to the depicted colorscale.
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Table 4.3: The results of the resolution adaptation algorithm for Patient 16.
The recorded scale factor values range from 1 to 10. Each scale factor value corresponds
to a padding factor value that ensures the normal simulation execution. The tumor volume
reduction error fluctuates with the scale factor value increase, while the total simulation
execution time decreases.
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Figure 4.2: The scatter plots that express the relationship between the scale factor value,
the simulation times and the tumor volume reduction error for Patient 16. The tumor
volume reduction error and the simulation times, both the total execution time, as well as
the times that are occupied by the distinct simulation scans, are represented in the y axis.
The x axis represents the scale factor values. The corresponding padding factor values are
represented by the color of the scatter points and according to the depicted colorscale.
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Table 4.4: The results of the resolution adaptation algorithm for Patient 17.
The recorded scale factor values range from 1 to 10. Each scale factor value corresponds
to a padding factor value that ensures the normal simulation execution. The tumor volume
reduction error fluctuates with the scale factor value increase, while the total simulation
execution time decreases.
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Figure 4.3: The scatter plots that express the relationship between the scale factor value,
the simulation times and the tumor volume reduction error for Patient 17. The tumor
volume reduction error and the simulation times, both the total execution time, as well as
the times that are occupied by the distinct simulation scans, are represented in the y axis.
The x axis represents the scale factor values. The corresponding padding factor values are
represented by the color of the scatter points and according to the depicted colorscale.
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4.1.3 A comparison of the simulation evolution for the varying
resolution versions that correspond to the distinct scale
and padding factor sets for each dataset patient

The 3D reconstruction of the simulated tumor, along with the corresponding 2D
plane views, the initial tumor reconstruction and the final tumor reconstruction,
is displayed for the execution of the simulation for each dataset patient, with four
distinct values for the input file scale factor (scale = 1, scale = 3, scale = 6 and
scale = 10) and for two distinct time points of the simualtion (day 5 and day 20), in
Figures 4.4-4.9.

Reviewing the 2D plane views for each dataset patient and for a specific simulation
time point (day 5 and day 20 respectively), the effects of the increase of the scale
factor of the geometrical cell size are evident. As the scale factor increases, the size
of the input (i.e. the size of the 3D matrix along each axis) decreases and each
geometrical cell spans a bigger region. This means that a distinct value (0xFF for
tumor tissue and 0x00 for normal tissue) is assigned to a bigger region, which causes
the image resolution to decrease. Moreover, the increase of the scale factor causes a
potential increase in the padding factor, which is also observed in the 2D plane views,
especially for padding along the x axis (YZ view).

The image resolution is indicative of the effects of the scale factor to the simulation
execution. However, it should not be confused for the simulation resolution, which
aside from the size and shape of the tumor also refers to the histology of the tumor.
In that respect, the simulation resolution encompasses the image resolution and the
scale factor values that correspond to bad image resolution are safely assumed to
correspond to inadequate simulation resolution too.

Reviewing Figures 4.4-4.9, the values for the scale factor that are greater than 3
are rejected as unsuitable, since they correspond to bad image resolution and subse-
quently inadequate simulation resolution. That fact is not mirrored in the recorded
tumor volume reduciton percentage that is used as the criterion of the resolution
adaptation algorithm and stays mainly unaffected by the increase of the scale factor
value, when it is limited to small values (here up to 10). This means that the recon-
structions of Figures 4.4-4.9 should also be taken into account, along with the error
of Figures 4.1-4.3, when the optimal scale factor for each dataset patient is chosen.
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(a) Patient 15, Day 5: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient_15, Day 5: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 15, Day 5: The 3D tumor reconstruction for scale factor value equal to 6.
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(d) Patient_ 15, Day 5: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.4: The 3D tumor reconstruction for varying scale factor values at day 5 of the
simulation for Patient 15.
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(a) Patient_ 15, Day 20: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient_ 15, Day 20: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 15, Day 20: The 3D tumor reconstruction for scale factor value equal to 6.

YZ View XZ View XY View Initial Tumor

3D Tumor

Final Tumor
Volume

64000.0mm?®

Volume Reduction Toe ®
35.35353535353536% : E - ‘

s

(d) Patient_ 15, Day 20: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.5: The 3D tumor reconstruction for varying scale factor values at day 20 of the
simulation for Patient 15.
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(a) Patient 16, Day 5: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient_ 16, Day 5: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 16, Day 5: The 3D tumor reconstruction for scale factor value equal to 6.
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(d) Patient_ 16, Day 5: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.6: The 3D tumor reconstruction for varying scale factor values at day 5 of the
simulation for Patient 16.
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(a) Patient_ 16, Day 20: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient_ 16, Day 20: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 16, Day 20: The 3D tumor reconstruction for scale factor value equal to 6.
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(d) Patient_ 16, Day 20: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.7: The 3D tumor reconstruction for varying scale factor values at day 20 of the
simulation for Patient 16.
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(a) Patient 17, Day 5: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient 17, Day 5: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 17, Day 5: The 3D tumor reconstruction for scale factor value equal to 6.
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(d) Patient_ 17, Day 5: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.8: The 3D tumor reconstruction for varying scale factor values at day 5 of the
simulation for Patient 17.
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(a) Patient_ 17, Day 20: The 3D tumor reconstruction for scale factor value equal to 1.
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(b) Patient_ 17, Day 20: The 3D tumor reconstruction for scale factor value equal to 3.
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(c) Patient 17, Day 20: The 3D tumor reconstruction for scale factor value equal to 6.
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(d) Patient_ 17, Day 20: The 3D tumor reconstruction for scale factor value equal to 10.

Figure 4.9: The 3D tumor reconstruction for varying scale factor values at day 20 of the
simulation for Patient 17.
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4.1.4 The chosen optimal resolution adaptation and the cor-
responding value for the scale and padding factor set for
each dataset patient

Reviewing the results of the execution of the simulation resolution adaptation al-
gorithm of Figure 3.3 for each dataset patient, the scale factor and padding factor
values that optimally address the tradeoff between the simulation resolution and the
simulation cost (execution time) were chosen as shown in Table 4.5.

The set of values for the scale and padding factors was chosen for each dataset
patient according to the following criteria:

e The tumor volume reduciton error that is introduced by the decrease of the
simulation resolution is not greater than the algorithm specified tolerable error
(10%). Reviewing Figures 4.1-4.3, it becomes evident that all the recorded
scale factor values satisfy that standard.

e The image resolution is not greatly affected. Reviewing Figures 4.4-4.9, the
values for the scale factor that are greater than 3 are rejected.

e The simulation execution time is not greater than a few minutes.

Pseudonym || p,pione 15 Patient 16 Patient 17
scale 9 9 3
padding 0.1 0.1 0.1
GC-

dimension 2 2 3
x-dim 52 53 A7
y-dim A1 57 50
z-dim 16 59 53
Tumor Vol-

ume Reduc-

tion Error 0.04 0.02 -0.02
(percentage)

Total simu-

lation exe-

cution time 47.77 103.09 66.03
(sec)

Table 4.5: The chosen set of values for the scale factor and the padding factor per dataset
patient. These values define the input files that are used for the simulation of the patients
in the following steps of the workflow. They were chosen to optimally address the tradeoff
of the simulation resolution and the simualtion cost. The tolerable error that the decrease
in the simulation resolution introduces is limited to 10%. The image resolution is also
evaluated, which liimits the greatest allowed value for the scale factor to 3. The target
maximum execution time for a single simulation is a few minutes.
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The set of values for the scale factor and the padding factor, as shown in Table 4.5,
define unambiguously the input files that are used for the simulation of the dataset
patients in the following steps of the workflow.

4.2 Sensitivity Analysis

4.2.1 The evaluated with respect to the initial tumor com-
position results of the graphical method for sensitivity
analysis

The sensitivity analysis process was performed for all the versions of the source
code for the Nephroblastoma Oncosimulator, using the graphical method that was
presented in detail in the dedicated chapter of Methodology. The results presented
here refer to the analysis that was performed for the performance enhanced version of
the Nephroblastoma Oncosimulator, i.e. the version for which at each simulation time
step the computations for the third scan of the algorithm are performed concurrently
for the geometrical cells of the 3D matrix that represents the solid tumor in silico.
Moreover, the presented results refer to Patient 15 and the corresponding input files
that optimally address the simulation resolution and costs tradeoff, as they were
determined in the previous data preprocessing step.

The results of the graphical method for sensitivity analysis that was performed
for the performance enhanced version of the Nephroblastoma Oncosimulator are dis-
played in Figures 4.10 with respect to the initial tumor composition, as measured by
the percentage of each cell category, proliferative, dormant, differentiated and dead,
inside the initial tumor (see Table 3.1).

The scatter plots displayed in Figure 4.10 express the dependence of the initial
composition of the tumor, before the effects of therapy, from the values of the various
simulation input parameters. This is achieved by plotting the initial cell categories
population percentages against the values for the various simulation input parameters.
These plots also offer an insight on the effect of the simulation input parameters on
the free growth of the tumor, since the cell population percentages of the different
cell categories are stabilized inside the tumor after a relatively short time when no
external stimulus (e.g. therapy) is applied.

The plots shown in Figure 4.10 are compliant with the ones produced in previous
work for the predecessor verified model (see Figure 3.5). A brief examination of the
plots in Figure 4.10 highlights the effect of some key parameters to the initial com-
position of the tumor and leads to intuitively logical conclusions. More specifically:

e Increase in the value of the cell cycle duration (7,) causes increase in the initial
population percentage of the proliferative cells of the tumor and decrease in the
initial population percentage of the differentiated cells of the tumor. This is an
expected outcome, since in the cases where the cell cycle lasts longer, for the
same amount of time more STEM cells are concentrated in the G4, S, G5 and
M phases and less complete the mitosis that could produce LIMP cells with
assymetric division and in the long run more differentiated cells.
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e Increase in the value of the maximum duration of the Gy phase (Tgo) causes
increase in the initial population percentage of the dormant cells of the tumor
and decrease in the initial population percentage of the differentiated cells of the
tumor. This is also an expected outcome, since the longer the time that STEM
cells spend in the GO phase the more the concentration of the cells in this phase
(population percentage of the dormant cells) increases. At the same time, an
indirect impact of the increase of the T time is the decrease of differentiated
cells in the tumor, since when more cells are concentrated in the GO phase, less
cells are going through the mitosis process that could in the long run produce
LIMP and differentiated cells.

e Increase in the values of the time duration for the completion of apoptosis
and necrosis (T and T4 respectively) causes increase in the initial population
percentage of the dead cells of the tumor and decrease in the initial population
percentage of the differentiated cells of the tumor. This is an intuitively logical
outcome, since the Ty and T4 times practically express the time needed for the
products of necrosis and apoptosis respectively to exit the tumor.

e Increase in the values of the necrosis and apoptosis rates of the differentiated
cells (Rypifs and Rapifs respectively) causes decrease in the initial population
percentage of the differentiated cells of the tumor, which is accompanied by
increase in the initial population percentage of the rest cell categories. This is
once again an intuitive outcome, since Ryp; sy and Rap;rs express the speed in
which the differentiated cells are subject to necrosis and apoptosis respectively,
which indicates that higher values for these parameters cause the differentiated
cells to die more frequently and as a result their population percentage to de-
crease and the dead population percentage to increase, as well as the population
percentage for the remaining two cell categories to also increase, since there is
more free space for them.

e Increase in the value of the percentage of symmetric divisions (Pisym,) causes
increase in the initial population percentage of the proliferative cells of the
tumor and decrease in the initial population percentage of the differentiated
cells of the tumor. This is due to the increase of the STEM cells and the
dicrease of the LIMP cells that the increase of the percentage of symmetric
divisions causes, since proliferative cells are a subset of the STEM cell category
and differentiated cells are the main product of the LIMP cell category. This
means that higher values for P, correspond to more aggresive tumors, which
is also intuitively inferred.

e Increase in the value of the percentage of the STEM cells that enter the G,
phase (Pseep) causes increase in the initial population percentage of the differ-
entiated cells of the tumor and decrease in the initial population percentage of
the proliferative cells of the tumor. This is the expected outcome, since Py
expresses the probability with which STEM cells enter the dormant G0 phase
and as a result increase in the value of Py, causes more STEM cells to enter
the GO phase and an increase in the concentration of the cells that reside in
it. This also means that higher values for Py, correspond to less aggresive
tumors, which is also intuitively inferred.

e The rest of the simulation input parameters do not have a considerable impact
on the initial composition of the tumor.

100



~
o

/

70 —~=Prolif

60 Dgrmant
—Diff

50

—Dead

o
)

40
30

20
— . .
10

w
=}

|

|

Initial cell population %
8
Initial cell population %

10 15 20 25 30 35 40 45 50 100 150 200 250 300
Tc TGOmax
R R
< c
S \ 5 o
® 50 B 50
S S
2 40 o 40
<] 1]
Qo 30 2 30
@ ]
o 20 o 20
E 10 E 10
= =
c 0 c
= 20 40 60 80 100 = 0 50 100 150 200
TN TA
8 70 X
< c
O 60 .,,,”/,,/L/// o 7
8 50 5
2 2 ®
S0 o 40
23 i,
© ]
Q2 T/ o 20
8 10 \I\~ 8 10
k= — b=
c c o0
= 0 0.0005 0.001 0.0015 0.002 = 0 0.01 0.02 0.03 0.04 0.05
RA RA_diff
3 X
£ 60 c .
S s
® 50 ® 50
S S
2 40 2 40
o o
2 30 2 30
8 20 8 20 I
— — ,Mr—/’_"’.,_”—”
8 10 8 10
k= =
< c
= 0 0.01 0.02 0.03 0.04 0.05 = 0 0.02 0.04 0.06 0.08 0.1
RN_diff PGOtoG1
R R &
< c
S o0 6 70
® 50 ® o0
S S
2 40 2 s
<] 9 40
2 5 o
3 3
o 20 o 20
810 ® 10
k= b=
c c 0
= 3 4 5 6 7 8 9 10 = 0.5 0.6 0.7 0.8 0.9
NLIMP Psym
3 X
< 60 £ 60
2 2
® 50 ® 50
S S
2 40 2 4
o o
2 30 2 30
T 20 ]
o ~ o 20
s T 10
k= b=
c 0 c
= 012 014 016 018 02 022 024 026 028 = 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Psleep CKR_TOTAL

Figure 4.10: The graphical method sensitivity analysis results for the optimized version
of the Nephroblastoma Oncosimulator and with respect to the initial tumor composition.
The simulations were executed with the resolution adapted for Patient 15 and with the
computations for the third scan of the algorithm performed concurrently for the geometrical
cells. The results are compliant with the ones for the verified predecessor model (Figure
3.5), which allows the safe verification of the current model.
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4.2.2 The evaluated with respect to the tumor volume varia-
tion results of the graphical method for sensitivity anal-
ysis

The sensitivity analysis process was performed for all the versions of the source
code for the Nephroblastoma Oncosimulator, using the graphical method that was
presented in detail in the dedicated chapter of Methodology. The results presented
here refer to the analysis that was performed for the performance enhanced version of
the Nephroblastoma Oncosimulator, i.e. the version for which at each simulation time
step the computations for the third scan of the algorithm are performed concurrently
for the geometrical cells of the 3D matrix that represents the solid tumor in silico.
Moreover, the presented results refer to Patient 15 and the corresponding input files
that optimally address the simulation resolution and costs tradeoff, as they were
determined in the previous data preprocessing step.

The results of the graphical method for sensitivity analysis that was performed
for the performance enhanced version of the Nephroblastoma Oncosimulator are dis-
played in Figures 4.11 with respect to the tumor volume variation, as measured by
the relative tumor volume variation percentage (see Table 3.1 and Equation 2.9).

The scatter plots displayed in Figure 4.11 express the dependence of the volume
reduction of the tumor, after the effects of therapy and the completion of the simu-
lation, from the values of the various simulation input parameters. This is achieved
by plotting the relative volume variation of the tumor compared to its volume at the
start of the simulation against the values for the various simulation input parameters.

The plots shown in Figure 4.11 are compliant with the ones produced in previous
work for the verified predecessor model only for a subset of the simulation input
parameters. More specifically, T, T, Nrramp, Rapifs, Rypirs and CK Rrorar, have
an effect in the volume reduction of the tumor that is similar to the one the predecessor
model has (see Figure 3.4). The change of the values of the first five parameters
does not affect the therapy induced volume variation percentage of the tumor, which
retains a constant value of —60% approximately. The CK Rrora;, parameter is the
main parameter that greatly affects the outcome of the simulation in the means of
tumor volume reduction. As the value for C K Rrorar, increases the relative variation
percentage of the tumor decreases in the negative, which is interpreted as an increase
of the volume reduction percentage. This observation is also intuitively inferred,
since increase of the cell kill ratio results in more tumor cells to be targeted, hit and
exterminated by therapy.

The rest of the simulation input parameters behave in the same manner as Ty,
Ta, Nrrvp, Rapirs, Rnpifs, with the relative variation percentage of the volume
remaining consant at —60% approximately for their whole range of values. How-
ever, increase in the values of T, Paowg1 and Py, has been observed, in previous
sensitivity analysis with the graphical method, to cause increase in the value of the
relative volume variation percentage of the tumor, while increase in the values of T,
R4 and Pge.p has been observed to cause decrease in the value of the relative volume
variation percentage of the tumor.
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Figure 4.11: The graphical method sensitivity analysis results for the optimized version
of the Nephroblastoma Oncosimulator and with respect to the tumor volume variation.
The simulations were executed with the resolution adapted for Patient 15 and with the
computations for the third scan of the algorithm performed concurrently for the geometrical
cells. The results are compliant with the ones for the verified predecessor model (Figure
3.4), which allows the safe verification of the current model.
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However, this divergence from the typical behavior for some of the input parameters
with concern to the manner in which their values affect the volume reduction of the
tumor should not be immediately interpreted as a problem in the functionality of
the current version of the model. The sensitivity analysis that was performed for the
current model does not lead to counterintuitive observations and conclusions. The
one parameter that intuitively has the greatest impact on the volume reduction of the
tumor, CK Rrorar, retains the behavior observed in the previous sensitivity analysis
performed with the graphical method. The rest of the parameters seem to have no
impact on the volume reduction of the tumor, which is intuitively logical, since they
do not have a role in the therapeutic scheme. There exists the possibility that their
effect has been overshadowed by the impact of C K Rrorar.

4.2.3 The evaluated with respect to the tumor volume varia-
tion results of the graphical method for sensitivity anal-
ysis

The sensitivity analysis process was performed for all the versions of the source
code for the Nephroblastoma Oncosimulator, using the graphical method that was
presented in detail in the dedicated chapter of Methodology. The results presented
here refer to the analysis that was performed for the performance enhanced version of
the Nephroblastoma Oncosimulator, i.e. the version for which at each simulation time
step the computations for the third scan of the algorithm are performed concurrently
for the geometrical cells of the 3D matrix that represents the solid tumor in silico.
Moreover, the presented results refer to Patient 15 and the corresponding input files
that optimally address the simulation resolution and costs tradeoff, as they were
determined in the previous data preprocessing step.

The results of the graphical method for sensitivity analysis that was performed
for the performance enhanced version of the Nephroblastoma Oncosimulator are dis-
played in Figures 4.12 with respect to the final tumor composition, as measured
by the relative population variation percentages for each cell category, proliferative,
dormant, differentiated and dead, in the final tumor (see Table 3.1 and Equation
3.3).

The scatter plots displayed in Figure 4.12 express the dependence of the final
composition of the tumor, after the effects of therapy and the completion of the sim-
ulation, from the values of the various simulation input parameters. This is achieved
by plotting the therapy induced relative variation percentage for each cell category
against the values for the various simulation input parameters.

The plots shown in Figure 4.12 are overall compliant with the ones produced for
the verified predecessor model (see Figure 3.6). More specifically, the behavior of
the simulation for the range of values of the Ty, T4, R4, Npiyp and CK Rrorar
parameters is identical to the one observed for the verified predecessor model. The
behavior for the range of values of the T¢, To, Rapiff, Rnpiffs Psym and Pgeep 1 also
similar, in the means that the variation of the values for each one of these parameters
affects the population variation percentage of the different cell categories in the man-
ner that has been previously observed for the predecessor model. The difference lies
in the absolute values for the percentages for the various cell categories, especially

104



concerning the category of the dead cells, whose population variation percentage has
lower values (its plot is moved downwards on the vertical axis by a constant) than the
ones observed in the past. This agrees with the unexpected behavior for the volume
reduction of the tumor that was observed in the current sensitivity analysis for these
parameters. That fact highlights the consistent manner in which the current model
behaves.

A brief examination of the plots in Figure 4.12 highlights the effect of some key
parameters to the final composition of the tumor and leads to intuitively logical
conclusions. More specifically:

Increase in the value of the maximum duration of the Gy phase (Tgo) causes
increase in the final population percentage of the dormant and dead cells of
the tumor. This is due to the fact that increase in the T time causes more
STEM cells to be concentrated in this phase, which is only hit by therapy with
Vinctristine.

Increase in the values of the time duration for the completion of apoptosis
and necrosis (T and T4 respectively) causes increase in the final population
percentage of the dead cells of the tumor. This is an intuitively logical outcome,
since the T and T4 times practically express the time needed for the products
of necrosis and apoptosis respectively to exit the tumor.

Increase in the value of the percentage of symmetric divisions (Pj,,) causes
increase in the final population percentage of all the cell categories. This is an
intuitive outcome, since higher values for P;,,, correspond to more aggresive
tumors with cells that keep multiplying with time.

Increase in the value of the percentage of the STEM cells that enter the G
phase (Pyep) causes increase in the final population percentage of all the cell
categories, except for the category of the dead cells, which decreases. This
is due to the fact that higher values for Py, lead to higher concentration of
cells in the Gy, which can die through necrosis or apoptosis. This also is an
intuitive outcome, since Pje, correspond to less aggresive tumors., which is
also intuitively inferred.

Increase in the value of the total cell kill ratio of the therapy (CK Rrorar)
causes decrease in the final population percentage of all the cell categories,
except for the category of the differentiated cells, which increases. This is an
intuitively logical outcome, since the cell kill ratio expresses the percentage of
cells that the therapy targets, hits and exterminates and as a result, higher
values for the CK Rrorar, parameter causes the cells of the tumor to decrease
in total. The differentiated cell category is the only one that is not affected,
since it is not targeted by the therapy.

The rest of the simulation input parameters do not have a considerable impact
on the final composition of the tumor.
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Figure 4.12: The graphical method sensitivity analysis results for the optimized version
of the Nephroblastoma Oncosimulator and with respect to the final tumor composition.
The simulations were executed with the resolution adapted for Patient 15 and with the
computations for the third scan of the algorithm performed concurrently for the geometrical
cells. The results are compliant with the ones for the verified predecessor model (Figure
3.6), which allows the safe verification of the current model.
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4.3 Application Profiling & Code Optimization

4.3.1 A summary of the effects of the data preprocessing step,
the speedup, the memory footprint reduction and the
overall improved potential for the code optimization step
it introduces

The data preprocessing step addresses the simulation resolution and costs tradeoff
problem according to the algorithm of Figure 3.3. The data preprocessing algorithm
adjusts the size of the geometrical cell so that the size of the 3D matrix that represents
the solid tumor in silico is reduced while the corresponding simulation error that
is introduced compared to the simulation execution for the original input size is
maintained within a minimal tolerable window.

More specifically, as the size of the geometrical cell increases, each voxel of the 3D
matrix that represents the solid tumor in silico encompasses a greater physical area
and, as a result, the size of the 3D matrix and the simulation input size are reduced.
However, as the size of the geometrical cell and the area that is encompassed in each
voxel of the 3D tumor are increased, the number of biological cells that reside in
each geometrical cell and in each equivalence class inside each geometrical cell are
also increased (see Figure 2.9), which causes the simulation resolution to decrease
and introduces an error to the outcomes of the simulation compared to those of the
simulation execution for the original resolution and size for the geometrical cell.

The data preprocessing step was performed for each dataset patient and the cor-
responding set of simulation input files (.mhd and .raw). The results, with respect
to the chosen scale factor for the size of the geometrical cell (i.e. GC scale factor)
that optimally addresses the simulation resolution and costs tradeoff problem for
each dataset patient, are summarized in Tablre 4.5. The chosen GC scale factor
for Patient 15 and Patient 16 is equal to 2, while the chosen GC scale factor for
Patient 17 is equal to 3.

The simulation input size reduction, caused by the data preprocessing induced
increase of the geometrical cell size, results in the performance enhancement of the
simulation execution, with respect both to the simulation execution time and to the
memory footprint of the simulation execution.

The simulation execution time, analyzed in the times occupied by each scan of the
oncosimulator algorithm (see Figure 2.7), is presented in the bar plots of Figure
4.13 for each dataset patient and for GC scale factor values that correspond to the
original input size (equal to 1) and to the optimal resolution adaptation of the data
preprocessing step (equal to 2 for Patient 15 and Patient 16 and equal to 3 for
Patient_ 17).

Reviewing Figure 4.13, the speedup of the simualtion execution for the input with
increased geometrical cell size compared to the simualtion execution for the original
input is evident, both in the total simulation execution time and in each individual
simulation scans. The fourth, fifth and sixth scan that compose the simulation in the
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tissue level of biocomplexity take up most of the simulation execution time before
the data preprocessing step. However, they are more favored by the input size re-
duction that the data preprocessing step introduces compared to the rest simulation
scans, which causes a more fair workload balance in the simulation execution with the
preprocessed inputs. This renders the data preprocessing step a crucial preparatory
step before the code optimization with improved resources is performed, since a fair
workload reduces the speedup limitations enforced by Amdahl’s law (see Equation
3.7).

* First scan (Tumor_initialization)
* Second scan (Therapy)
* Third scan (Grow)
Fourth scan (Tentative_reconstruction)
Fifth scan (Corrective_reconstruction)
= Sixth scan (Center_of_mass)
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Figure 4.13: The bar plots that visualize the simulation execution times, both overall and
analyzed in the individual simulation scans, before and after the data preprocessing step is
applied for each dataset patient. The GC scale factor that is equal to 1 corresponds to the
original input before the data preprocessing step is applied. The GC scale factor after the
data preprocessing step is applied is equal to 2 for Patient 15 and Patient 16 and equal to
3 for Patient 17. As the size of the geometrical cell increases, the size of the 3D matrix that
represents the solid tumor in silico, i.e. the simulation input size, decreases. As a result, the
simulation execution time is also decreased. The corresponding speedup of the simulation
execution is present in all of the individual simulation scans, but it is more noticeable in the
simulation on the tissue level of biocomplexity (fourth, fifth and sixth scan), which renders
the simulation workload balance more fair and improves the code optimization induced
speedup prospects, which are limited according to Amdahl’s law.

The data preprocessing induced speedup, both overall and for each individual
simualtion scan, is displayed in detail for each dataset patient in the bar plot of
Figure 4.14. The speedup is greater for the fourth, fifth and sixth scans, which
compose the simulation on the tissue level of the biocomplexity. This is attributed to
the fact that these scans simulate the biomechanical processes that adjust the shape
and size of the tumor by performing many passes of the 3D matrix that represents
the tumor in silico. As a result, they encompass more data dependencies and are
greatly affected by the simulation input size reduction that the data preprocessing
step introduces. More specifically, the greatest speedup is reported for the fourth scan
and the fifth scan. The value of the speedup for the sixth scan is approximately half
the value of the speedup for the fourth scan. The values of the speedup for the second
scan and the third scan are approximately the same and noticeably lower than the
values of the speedup for the simulation on the tissue level of biocomplexity (roughly
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by a factor of 106~ where s is the GC scale factor). The value of the speedup for
the first scan is the lowest, approximately half the value of the speedup for the third
scan. The overall speedup is greater for Patient 17 that has a GC scale factor equal
to 3. The overall speedups for Patient 15 and Patient 16, that have a GC scale
factor equal to 2, are approximating, with the speedup for Patient 16 that has the
greater original input size being higher.

Data preprocessing induced speedup per dataset patient
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Figure 4.14: The bar plots that visualize the speedup for the simulation execution when
data preprocessing is performed compared to the simulation execution when no data prepro-
cessing is performed, both overall and for each individual simulation scan, for each dataset
patient. The overall speedup is greater for Patient 17 that has a GC scale factor of 3.
The overall speedups for Patient 15 and Patient 16, that have a GC scale factor of 2, are
approximating, with the speedup for Patient 16 that has the greater original input size
being higher. The simulation on the tissue level of biocomplexity performs multiple passes
of the 3D matrix that represent the tumor in silico and, as a result, is the most favored by
the data preprocessing induced simulation input size reduction. That fact is mirrored in the
speedup values for the corresponding scans (fourth, fifth and sixth), which are noticeably
greater compared to the speedup values for the rest of the scans.

The memory footprint of the simulation execution is presented in the bar plots of
Figure 4.13 for each dataset patient and for GC size scale factor values that corre-
spond to the original input size (equal to 1) and to the optimal resolution adaptation
of the data preprocessing step (equal to 2 for Patient 15 and Patient 16 and equal
to 3 for Patient_17).

Reviewing Figure 4.13, the memory footprint reduction for the simulation exe-
cution for the input with increased geometrical cell size compared to the simualtion
execution for the original input is evident. The memory footprint is determined by
the simulation input size, which is reduced as the size of the geometrical cell is in-
creased in the data preprocessing step. The memory footprint is recorded for the
simulation execution, both before and after the data preprocessing is performed, us-
ing the valgrind massif heap profiler. The factor by which the memory footprint is
reduced by the data preprocessing step is estimated as the division of the the size
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of the 3D matrix that represents the tumor in silico before the data preprocessing is
performed (see Table 4.1) by the size of the 3D matrix that represents the tumor in
silico after the data preprocessing is performed (see Table 4.5). This factor is equal
to 4.5 for Patient 15 and Patient 16 and equal to 15.4 for Patient 17. Indeed, the
greatest memory footprint reduction is recorded for Patient 17 that corresponds to
a GC scale factor of 3, which is greater than the ones assigned for Patient 15 and
Patient 16. Moreover, the expected reduction factors, as they are estimated accord-
ing to the data of Tables 4.1 and 4.5, are approximately equal to the ones derived
for the actual memory footprints that were recorded for each dataset patient using
the massif tool.

Memory footprint
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(in bytes and in logarithmic scale)

100M 96MB 174MB 122MB

' GC scale factor ’ ' GC scale factor ’ ’ ' GC scalze factor ’
Figure 4.15: The bar plots that visualize the memory footprint of the simulation executions
for each dataset patient, before and after the data preprocessing step is applied. The GC
scale factor that is equal to 1 corresponds to the original input before the data preprocessing
step is applied. The GC scale factor after the data preprocessing step is applied is equal
to 2 for Patient 15 and Patient 16 and equal to 3 for Patient 17. As the size of the
geometrical cell increases, the size of the 3D matrix that represents the solid tumor in silico,
i.e. the simulation input size, decreases. As a result, the memory footprint of the simulation
execution is also decreased. The memory footprint of the simulation executions is recorded
using the valgrind massif heap profiler. The expected factor by which the memory footprint
is reduced is estimated for each dataset patient as the division of the original input size by
the input size after data preprocessing is applied. This factor is equal to 4.5 for Patient 15
and Patient 16 and equal to 15.4 for Patient 17. The massif recorded memory footprints
are in compliance with these factors. The memory footprint of the simulation execution
for Patient 17 is reduced more compared to the simulation executions for the rest of the
dataset patients, since the GC scale factor has a greater value (equal to 3) for Patient 17.

The data preprocessing induced relative memory footprint reduction percentage is
displayed in detail for each dataset patient in the bar plot of Figure 4.16. The
memory footprint is reduced for each dataset patient by a percentage approximately
equal to 90%. The relative memory footprint reduciton percentage is slightly higher
(approximately 94%) for Patient 17, since the corresponding GC scale factor is equal
to 3 and greater than the one for Patient 15 and Patient 16 (GC scale factor equal
to 2). The relative memory footprint reduciton percentage is slightly lower (approxi-
mately 87%) for Patient 15 and Patient 16.
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Data preprocessing induced relative memory footprint reduction % per dataset patient
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Figure 4.16: The bar plots that visualize the data preprocessing induced relative memory
footprint reduction percentage for each dataset patient. The relative memory footprint
reduction percentage is approximately equal to 87% for Patient 15 and Patient 16, that are
characterized by a GC scale factor of 2. The relative memory footprint reduction percentage
is slightly higher (approximately equal to 94%) for Patient 17, that is characterized by a
greater GC scale factor value (equal to 3).

As mentioned previously, the data preprocessing step favors more the fourth, fifth
and sixth scan that compose the simulation in the tissue level of biocomplexity, since
it reduces the simulation input size and these scans require more passes of the 3D
matrix that represents the tumor in silico. As a result, the execution time required by
these scans is reduced more by the data preprocessing step, compared to the execution
time reduction that refers to the rest of the scans (see Figures 4.13 and 4.14).

Consequently, the percentage of the execution time that the biomechanical simula-
tion part of scans four, five and six represents is limited after the data preprocessing
step is performed, rendering the workload balance more fair. More importantly, the
speedup prospects of the code optimization that follows, which focuses on the con-
current execution of the third scan for the geometrical cells of the 3D tumor, are
improved, since the maximum speedup is limited according to Amdahl’s law by the
part of the task that does not benefit from the improved resources (see Equation
3.7), here the fourth, fifth and sixth scans.

All in all, except for the speedup and the memory footprint reduction that the
data preprocessing step immediately introduces, it also indirectly helps the speedup
prospects that the code optimization that follows introduces by reducing the per-
centage of the workload that does not benefit from the improved resources, i.e. the
multiple threads that execute computations concurrently. This indirect effetc of the
data preprocessing step is presented in Figure 4.17, which displays the percentage of
execution time that is attributed to each individual simulation scan for each dataset
patient, before and after the data preprocessing step is applied. The part p that
benefits from the improved resources of the code optimization to follow corresponds
to the third scan of the simulation and the maximum speedup S allowed according to
Amdahl’s law is given by Equation 3.7. After the data preprocessing step is applied,
p is increased, which causes S to be increased too.
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Figure 4.17: The percentages of execution time that are attributed to each individual
simulation scan for each dataset patient, before and after the data preprocessing step is
applied, which indicate the indirect effect of the data preprocessing step to the maximum
speedup allowed according to Amdahl’s law. After the data preprocessing step is applied,
the part p of the simulation that benefits from the improved resources introduced in the
code optimization step that follows is increased, which causes the maximum speedup S,

according to Amdahl’s law and Equation 3.7, to be increased too.

4.3.2 The simulation execution callgraph and the costs per
function, with respect to the memory accesses and to

the CPU cycles count

The distribution of the program execution cost to the various parts of the source
code is an important step before any code optimization attempt, with ultimate goal
the execution acceleration, is made. This type of profiling for the program execution,
with respect to the costs that each major part of the source code introduces and to
the percentage of the overall execution cost it represents, provides crucial information
concerning the structure of the execution and the source code parts that pose the
greater performance inhibitors and that need to be addressed within an optimization
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plan context, so that the performance is enhanced, both for the respective source
code part and consequently for the overall execution.

Here, this type of source code sections analytical cost profiling is performed for
the executions of the Nephroblastoma Oncosimulator for each dataset patient, after
the data preprocessing step is performed (i.e. with the inputs of Tabel 4.5), using
the callgrind tool that is provided by the valgrind framework. The profiling results,
which include the structure of the execution in the form of the hierarchy of source
code function calls and the execution costs per function, are visualized in the call-
graphs of Figures 4.18, 4.19 and 4.20 for Patient 15, Patient 16 and Patient 17,
respectively. These callgraphs were produced by the KCachegrind tool, which is used
for the visualization of the ouputs of the callgrind profiler [80].

Each callgraph is a directed acyclic graph, with each node corresponding to a
source code function and the directed edges corresponding to function calls. More
specifically, the parent function calls the child function and the number of calls is
recorded as the label of the corresponding edge. Moreover, each node has a label
that expresses the percentage of the execution cost that corresponds to the specific
source code function, with respect to the CPU cycles count. These cost percentages
are inclusive, meaning that the recorded cost for each function includes the cost of
the functions called by it. This is why the parent nodes/functions have a greater cost
pecentage compared to their corresponding child nodes/functions.

The callgraphs of Figures 4.18-4.20 have a similar structure, with only the func-
tions that have a considerable contribution to the execution cost being included, in
order for the graphs to be more sparse and readable. The main function, which cor-
responds to the total execution cost, calls the _therapy_combi_drug_admin_points
function, which performs the simulation evolution with a loop of discrete time steps.
Within each time step, the consecutive scans of the 3D matrix that represents the
tumor in silico are performed with consecutive calls of the corresponding functions,
advance_cycle, tentative_reconstruction, corrective_reconstruction and

center_of_mass , within three nested loops.

The _therapy_combi_drug_admin_points function is the wrapper function that
coordinates the calls to the major simulation components for the evolution of the
simulation. As such, it encompasses most of the execution cost, approximately 99.9%
of the total cost.

The advance_cycle function performs the second and third scan for the cur-
rent time step and geometrical cell of the 3D tumor matrix. It is called by the
_therapy_combi_drug_admin_points function for each simulation time step and
for each geometrical cell of the 3D tumor matrix. It is responsible for approximately
12 — 18 % of the total simulation execution cost, which is in compliance with the
percentages of Figure 4.13 (slightly underestimated).

The tentative_reconstruction function performs the fourth scan for the cur-
rent time step and geometrical cell of the 3D tumor matrix. It is called by the
_therapy_combi_drug_admin_points function for each simulation time step and
for each geometrical cell of the 3D tumor matrix that corresponds to tumor tissue
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and has an excess of biological cells. It is responsible for approximately 10 — 13 % of
the total simulation execution cost, which is in compliance with the percentages of
Figure 4.13 (slightly overestimated).

The tentative_reconstruction function calls the sumd and
find_appropriate_neighbour functions, in order to count the excess of biological
cells and find a neighboring geometrical cell that can support an income of biological
cells. The createPos and move_to_neighb functions are called so that the part
of the excess of biological cells that can be supported by the chosen neighbor is
unloaded. The process is repeated until the excess of biological cells is unloaded
to the neighboring geometrical cells or until no more income of biological cells can
be supported by the neighboring geometrical cells. If the excess remains and no
neighboring geometrical cell that can support an income of biological cells exists, a
new geometrical cell is created and incorporated in the 3D tumor matrix using the
push_expand function.

The corrective_reconstruction function performs the fifth scan for the cur-
rent time step and geometrical cell of the 3D tumor matrix. It is called by the
_therapy_combi_drug_admin_points function for each simulation time step and
for each geometrical cell of the 3D tumor matrix that corresponds to tumor tissue
and has a lack of biological cells. It is responsible for approximately 46 — 53 % of
the total simulation execution cost, which is in compliance with the percentages of
Figure 4.13 (slightly overestimated).

The corrective_reconstruction function calls the total_population and

find_appropriate_neighbour functions, in order to count the total number of
biological cells and find a neighboring geometrical cell that can support an income
of biological cells. The createPos and move_to_neighb functions are called so
that the part of the biological cells that can be supported by the chosen neighbor is
unloaded. The process is repeated until all the biological cells are unloaded and the
current geometrical cell is deleted from the 3D tumor matrix using the push_shrink
function.

The center_of_mass function performs the sixth scan for the current time step
and geometrical cell of the 3D tumor matrix. It is called by the
_therapy_combi_drug_admin_points function for each simulation time step and
for each geometrical cell of the 3D tumor matrix that corresponds to tumor tissue. It
is responsible for approximately 13—14 % of the total simulation execution cost, which
is in compliance with the percentages of Figure 4.13 (slightly underestimated).

The center_of_mass function ensures that th area of the 3D tumor matrix that
corresponds to tumor tissue is maintained compact after the changes introduced
by the tentative_reconstruction and corrective_reconstruction functions.
More specifically, if a lone tumor tissue geometrical cell exists, it is shifted toward
the center of mass of the 3D tumor matrix. One the other hand, if a hole in the
tumor tissue of the 3D matrix exists, then it is deleted from the tumor by calling the
push_shrink function for it (see callgraphs of Figures 4.19 and 4.20).
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Finally, the find_appropriate_neighbour function, which is called both by the

tentative_reconstruction function and by the corrective_reconstruction
function, calls the total_population function, in order to count the number of
biological cells in each neighbor geometrical cell for the current geometrical cell.

‘ Source code function ‘ Scan ‘
therapy combi_drug admin_points N/A
advance cycle 3
tentative reconstruction 4
corrective reconstruction 5)
center of mass 6
sumd 4
find _appropriate neighbour 4,5
createPos 4,5
move_to_neighb 4,5
push expand 4
push shrink 5,6
total population 4,5,6

Table 4.6: The primary Nephroblastoma Oncosimulator source code functions and the
corresponding simulation scans that they are referenced in.

main
= 100.00 %
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Figure 4.18: The callgraph derived for the execution of the Nephroblastoma Oncosimulator
for the data preprocessed input for Patient 15, as it was profiled with the callgrind tool and
visualized with the KCachegrind tool. Each node corresponds to a source code function,
while the directed edges correspond to function calls from the parent function to the child
function. The edge labels indicate the number of calls, while the node labels indicate the
constribution of the corresponding function to the overall execution cost. These costs are
inclusive, meaning that the parent nodes encompass the cost of their corresponding child
nodes.
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Figure 4.19: The callgraph derived for the execution of the Nephroblastoma Oncosimulator
for the data preprocessed input for Patient 16, as it was profiled with the callgrind tool and
visualized with the KCachegrind tool. Each node corresponds to a source code function,
while the directed edges correspond to function calls from the parent function to the child
function. The edge labels indicate the number of calls, while the node labels indicate the
constribution of the corresponding function to the overall execution cost. These costs are
inclusive, meaning that the parent nodes encompass the cost of their corresponding child
nodes.
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Figure 4.20: The callgraph derived for the execution of the Nephroblastoma Oncosimulator
for the data preprocessed input for Patient 17, as it was profiled with the callgrind tool and
visualized with the KCachegrind tool. Each node corresponds to a source code function,
while the directed edges correspond to function calls from the parent function to the child
function. The edge labels indicate the number of calls, while the node labels indicate the
constribution of the corresponding function to the overall execution cost. These costs are
inclusive, meaning that the parent nodes encompass the cost of their corresponding child
nodes.
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The callgrind tool was executed with the Nephroblastoma Oncosimulator for each
dataset patient with the --caches-sim option activated. This means that a two
level cache hierarchy was simulated during the profiling and the memory accesses per
function, to the first and last level of the cache hierarchy, as well as to the main
memory, were calculated. That way, the distribution of the memory access induced
costs to the source code functions is calculated. The percentage of hits and misses
to the cache hierarchy per source code function, as well as the CPU cycles count
percentage of the overall cycles per source code function, are visualized in Figures
4.21-4.23 for the three dataset patients.

The Ir, Dr and Dw percentages refer to the hits to the first level cache, with
respect to instruction reads, data reads and data writes, respectively. The I1mr,
D1mr and D1mw percentages refer to the misses to the first level cache, with respect
to instruction reads, data reads and data writes, respectively. The I Lmr, DLmr and
D Lmuw percentages refer to the misses to the last level cache, which correspond to
accesses to the main memory, with respect to instruction reads, data reads and data
writes, respectively. Each instruction read hit corresponds to one CPU cycle, for the
execution of the instruction. Each access to the last level cache corresponds to 10
CPU cycles, while each access to the main memory corresponds to 100 CPU cycles.
That way, the CPU cycles count is estimated according to Equation 3.4.

The memory accesses and CPU cycles count percentages per function that are dis-
played in Figures 4.21-4.23 for the three dataset patients are not inclusive, meaning
that, unlike the costs of the functions of nodes of the callgraphs of Figures 4.18-
4.18, they fully refer to the corresponding function and the calls to other functions are
not taken into consideration. That way, the exact source code lines that contribute
to the CPU cycle count and memory accesses costs become clear.

The advance_cycle function contributes to the total number of CPU cycles by a
percentage of approximately 10 — 15 %, which is in compliance with the third scan
induced costs in the callgraphs of Figures 4.18-4.18.

The contribution of the fourth and fifth scans to the CPU cycles count, via the
tentative_reconstruction and the corrective_reconstruction function calls,
is distributed to the functions that are called within these scans (see Table 4.6),
find_appropriate_neighbour , sumd, move_to_neighb, createPos and espe-

cially to total_population. The corrective_reconstruction function is called
many times, since the simulation is performed for therapy application that shrinks the
tumor, which results in a noticeable CPU cycles count direct cost for this function,
while the tentative_reconstruction function is not called many times and as a
result the corresponding CPU cycles count direct cost for this function is minimal.

The center_of_mass function that is called in the sixth scan has a noticeable di-
rect contribution to the total CPU cycles count. It also calls the total_population
function, which explains the great constribution that this function has to the total
number of CPU cycles, since it is constantly present throughout the simulation on
the tissue level of biocomplexity (fourth, fifth and sixth scans).
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Figure 4.21: The CPU cycles count and memory percentages per source code function for
the execution of the Nephroblastoma Oncosimulator with the data preprocessed inputs for
Patient 15, as they were calculated using the callgrind profiler with the cache hierarchy
simulation activated. The advance_cycle function (third scan) contributes to the total
number of CPU cycles by a percentage of 14.6%. The total_population function, which
is called by the tentative_reconstruction (fourth scan), corrective_reconstruction
(fifth scan) and center_of_mass (sixth scan) has the second biggest cost, with a contri-
bution of 13.2% to the CPU cycles count. The _therapy_combi_drug_admin_points and
the center_of_mass functions follow with a contribution percentage of 9.12% and 8.29%,
respectively. The rest of the functions do not contribute greatly to the execution cost.
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Figure 4.22: The CPU cycles count and memory percentages per source code function for
the execution of the Nephroblastoma Oncosimulator with the data preprocessed inputs for
Patient 16, as they were calculated using the callgrind profiler with the cache hierarchy
simulation activated. The advance_cycle function (third scan) contributes to the total
number of CPU cycles by a percentage of 9.58%. The total_population function, which
is called by the tentative_reconstruction (fourth scan), corrective_reconstruction
(fifth scan) and center_of_mass (sixth scan) has the second biggest cost, with a contri-
bution of 8.32% to the CPU cycles count. The _therapy_combi_drug_admin_points and
the center_of_mass functions follow with a contribution percentage of 5.99% and 5.42%,
respectively. The rest of the functions do not contribute greatly to the execution cost.
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Figure 4.23: The CPU cycles count and memory percentages per source code function for
the execution of the Nephroblastoma Oncosimulator with the data preprocessed inputs for
Patient 17, as they were calculated using the callgrind profiler with the cache hierarchy
simulation activated. The advance_cycle function (third scan) contributes to the total

number of CPU cycles by a percentage of 12.1%. The total_population function, which

is called by the tentative_reconstruction

(fourth scan), corrective_reconstruction

(fifth scan) and center_of_mass (sixth scan) has the second biggest cost, with a contri-
bution of 11.3% to the CPU cycles count. The _therapy_combi_drug_admin_points and

the center_of_mass functions follow with a contribution percentage of 7.48% and 6.61%,
respectively. The rest of the functions do not contribute greatly to the execution cost.

120



4.4 Clinical Adaptation

4.4.1 A summary of the clinical adaptation executions

A series of executions of the clinical adaptation algorithm of Figure 3.8 was per-
formed, for each dataset patient and with varying values for the N parameter, i.e. the
parameter that defines the number of virtual patients (VPs) to be executed in paral-
lel. The patient input files that were used are the ones that correspond to the optimal
simulation resolution adaptation, as they were estimated in the data preprocessing
step (see Table 4.5).

The parameter that was adapted for each VP, according to the serial exploration
algorithm of Figure 3.10, was the total C K R parameter, i.e. the parameter that ex-
presses the total cell kill ratio of the administered therapy. The total C'K R parameter
is analyzed into two distinct C' K R parameters, the cell kill ratio for the Actinomycin
drug (CKR_ACT) and the cell kill ratio for the Vincristine drug (CKR_VCR),
according to the following equations.

CKR_ACT ==>.CKR

CKR VOR=Z=.CKR

ol Do ot W

The rest of the Nephroblastoma Oncosimulator input parameters were assigned
values from the uniform distribution and within a window that allowed a deviation
of up to 50% from their corresponding reference value.

The tolerable error window for the serial exploration of the total C'’K R parameter
value for each VP was set to 5% and was considered with respect to the tumor
volume reduction, meaning that, for each VP, the value for the total C' K R parameter
was adjusted so that the simulated tumor volume reduction deviates from the actual
physical tumor volume reduction by a percentage of up to 5%.

The results that are presented here correspond to two distinct executions of the
clinical adaptation algorithm of Figure 3.8 for each dataset patient, one for 20
virtual patients (N = 20) and one for 200 virtual patients (N = 200). The attributes
of the six clinical adaptation algorithm executions, two for each of the three dataset
patients, are summarized in Table 4.7.

The first three rows of Table 4.7 refer to the input files of the simulations that
are executed for the clinical adaptation realization for each corresponding dataset
patient. These input files are defined unambiguously by the dataset patient to be
simulated, accompanied by a scale factor and padding factor set that determines the
simulation resolution as described in the data preprocessing step. Here, the scale
factor and padding factor set that is utilized for each dataset patient is the one that
leads to the optimal resolution and error tradeoff for the simulation. Subsequently,
the dataset patient that is simulated, characterized by the set of the scale factor and
the padding factor, defines the execution time required by a single simulation (see
the results of the data preprocessing step in Table 4.5).
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The fourth row of Table 4.7 defines the number of virtual patients that were
executed for the realization of the corresponding clinical adaptation, which here is
either 20 or 200. The definition of the clinical adaptation algorithm execution is
completed by the definition of the distribution of the input parameters (the uniform
distribution with a deviation window of 50% here), the parameter to be explored
serially for each virtual patient (the total C' K R parameter here) and the criterion by
which the adaptation is evaluated (the tumor volume reduction here). The tolerable
adaptation error is documented in the fifth row of Table 4.7 and here it is equal to
5% for all the clinical adaptation executions.

The first six rows of Table 4.7 refer to the definition of the algorithm execution,
while the remaining four rows summarize the characteristics of the outcome of the
execution.

The eighth row of Table 4.7 records the total number of executed simulations for
each clinical adaptation execution, i.e. the sum of the number of serial simulation
executions per virtual patient within the context of the clinical adaptation execution.

The seventh row of Table 4.7 documents the total execution time for each clinical
adaptation execution, which depends on the maximum time between the virtual pa-
tient executions, assuming that all the virtual patients are executed in parallel. More
specifically, since the virtual patients are being executed in parallel, the total clinical
adaptation execution time is approximately equal to the maximum number of serial
simulation executions between the virtual patients, mutliplied by the execution time
of a single simulation.

The number of serial simulation executions, i.e. the number of values that are
explored for the adaptation parameter (i.e. the total C K R parameter) before its value
is adjusted so that the adaptation criterion is satisfied, differs between the virtual
patients, depending on the values for the rest of the simulation input parameters.
However, when the input parameters get their values from the uniform distribution,
there is no reason to assume big deviation of this number between the distinct virtual
patients.

Assuming that all the virtual patients are executed in parallel, the maximum num-
ber of serial simulation executions between the virtual patients of a clinical adaptation
execution can be roughly estimated as the integer part of the division of the total clin-
ical adaptation execution time by the time required for a single simulation execution.
This estimate is diplayed in the ninth row of Table 4.7. When the computational
cores are limited and as the number of the virtual patients N increases, not all virtual
patients are executed in parallel and the same metric provides an overestimated value
for the maximum number of serial simulation executions between the virtual patients.

Finally, the average number of serial simulation executions between the virtual
patients of the clinical adaptation execution is estimated as the integer part of the
division of the total number of executed simulations by the number of virtual patients
N. This estimate is documented in the tenth row of Table 4.7. It can be safely
assumed that the displayed values are fairly accurate, since the simulation input
parameters are assigned values from the uniform distribution, meaning that there are
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not many outliers in the set of numbers of serial simulation executions per virtual
patient.

Reviewing the summary of the series of clinical adaptation executions that were
performed for each dataset patient and with a varying value for the number of virtual
patients N, as it is displayed in Table 4.7, the following key observations are made:

e For the executions with N = 200, the estimated value for the maximum number
of serial executions is way higher than the estimated value for the average
number of serial executions, indicating that the maximum value is overestimated
and that the computational cores are not enough for the parallel execution of
all the virtual patients.

e As the number of virtual patients N increases, so does the estimated value
for the average number of serial executions. This is indicative of the fact that
clinical adaptation executions with more virtual patients are more probable to
contain serial simulation executions that require an exploration of more values
for the adaptation parameter until the adaptation criterion is met. This can
be attributed to the fact that more virtual patient executions correspond to
a potentially wider range of values for the joint distribution of the simulation
input parameters.

e As the number of virtual patients N increases, so does the total number of
executed simulations, which is a characteristic that is inherent to the clinical
adaptation algorithm, but is also attributed to the corresponding increase in the
estimated value for the average number of serial executions, which is indicative
of the number of values explored for the adaptation parameter.

e As the number of virtual patients IV increases, so does the total clinical adap-
tation execution time. That is mainly because the number of computational
cores is not adequate for the parallel execution of all the virtual patients, but
can also be attributed to the corresponding increase in the estimated value for
the average number of serial executions.
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Patient 15 15 16 16 17 17
scale 2 2 2 2 3 3
padding 0.1 0.1 0.1 0.1 0.1 0.1
N 20 200 20 200 20 200
Tolerable error 5% 5% 5% 5% 5% 5%
Single simulation exe- || 7 27 | 4727 | 10309 | 103.09 | 66.03 | 66.03
cution time (sec)

Clinical — adaptation ||, o- | 3979 g9 | 1185.96 | 6028.76 | 280.9 | 4719.75
execution time (sec)

Total number of exe- | 5, | 44 72 822 | 51 | 1193
cuted simulations

Maximum number of

simulations per VP 4 83 11 58 4 71
(rough estimate)

Average number of

simulations per VP 2 5 3 4 2 5
(rough estimate)

Table 4.7: The summary of the clinical adaptation executions. The executions were per-
formed for each dataset patient with a varying value for the number of virtual patients NV
(N =20and N = 200). The simulation input files that were utilized are the ones that ensure
the optimal resolution error tradeoff, unambiguously defined by the set of scale and padding
factors (see the data preprocessing step). The adaptation parameter is the total CKR,
while the rest of the simulation input parameters get values from the uniform distribution
with a deviation window of 50%. The tolerable error is 5% and is computed with respect
to the tumor volume reduction. The maximum number of serially executed simulations is
estimated as the integer part of the division of the clinical adaptation execution time by
the execution time of a single simulation (overestimated when not all virtual patients are
executed in parallel). The average number of serially executed simulations is estimated as
the integer part of the division of the total executed simulations by N. As N increases so
does the number of executed simulations, both total and serial within the context of each
virtual patient, as well as the overall clinical adaptation execution time.

4.4.2 The distribution of the simulation input parameters for
each clinical adaptation execution

The clinical adaptation algorithm of Figure 3.8 is based on the concept of creating
a series of virtual patients for each individual actual patient. Each virtual patient
corresponds to a distinct representation of the actual physical patient in silico, which
is unique with respect to the joint distribution of the values for the simulation input
parameters. Here each input parameter gets its value from the uniform distribution.
The set of adaptation parameters (here the total C KR parameter, which is analyzed
in the CKR_ACT and CKR_VCR parameters) is adjusted for each virtual pa-
tient, so that the actual medical outcome of the actual physical patient is optimally
approximated in silico.

In order to properly assess the outcome of each execution of the clinical adaptation
algorithm, it is essential to have good knowledge and understanding of the explored
distribution for the values of the simulation input parameters, with respect to all the
executed simulations, as well as with respect to the optimal adaptation simulations
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per virtual patient.

The probability distribution for each distinct simulation input parameter is visual-
ized in the form of a normalized histogram. More specifically, the parameter values
of the executed simulations (x axis) are matched to the number of their occurence di-
vided by the total number of executed simulations (y axis), which corresponds to the
probability with which each parameter value is represented in the simulation execution
sample space. The normalized histograms that express the probability distribution
of the input parameter values for each clinical adaptation execution of Table 4.7 are
depicted in Figures 4.24, 4.25, 4.28, 4.29, 4.32, 4.33.

The probability distribution for each parameter is visualized with respect to the
sample space of all the simulation executions (red color), as well as with respect to
the sample space that includes only the simulation executions that correspond to
the optimal parameter adaptation per virtual patient (blue color). Since the clinical
adaptation algorithm finds an optimal parameter adaptation for each virtual patient,
the optimal adaptation sample space is a subspace of the overall execution sample
space and the red and blue traces of the normalized histogram probability distribution
figures mainly coincide.

The regions where the prevalent hue is blue correspond to the parameter values
of the optimal adaptation simulations, which are thus considered to take part in a
succesful patient representation in silico. This phenomenon is mainly observed for the
set of adaptation parameters (CKR_ACT and CKR_VCR) indicating the outcome
of the clinical adaptation in the form of the desired distribution for the adaptation
parameters that leads to the most fit representation of the patient in silico.

A variance between the red and blue hue histograms is also observed to a limited
extent for the rest of the simulation parameters, indicating their corresponding values
that were part of an optimal adaptation more frequently during the clinical adaptation
execution. However, this variance is so minor that it does not lead to justifiable
conclusions considering the optimal distribution for these parameters with respect to
the optimal patient representation in silico.

The probability distribution for the parameters that do not belong to the set of
adaptation parameters is displayed for the purpose of evaluating the degree in which
the parameter values domain is properly represented in the clinical adaptation. Ob-
serving the normalized histogram figures and comparing their content for the varying
number of virtual patients (N = 20 and N = 200), it becomes clear that as the
number of virtual patients increases, the value domain of the uniform distribution is
better represented.

The probability distribution of the values for each simulation parameter separately
is not enough to fully describe the clinical adaptation algorithm execution. Each
virtual patient of the clinical adaptation is characterized by a unique value for the
joint distribution of the simulation parameters. However, the number of simulation
parameters is too big for their joint distribution to be assessed effectively.
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In order for the joint distribution for the pairs of a subset of selected simulation
parameters to be evaluated, the pairplots of Figures 4.26, 4.27, 4.30, 4.31, 4.34,
4.35 are provided. These plots express the probability distribution of the values for
each parameter separately, as well as the joint distribution for each pair of parameters.

The pairplots consist of a series of subplots, which provide information concerning
the probability distribution of the values for each parameter separately, as well as for
the joint distribution of each pair of parameters. More specifically, each row and each
column of subplots corresponds to a distinct parameter. The subplots that are located
in the positions that correspond to row and column parameters that are the same
(i.e. the subplots that are located in the diagonal) depict the probability distribution
for the respective parameter as it is represented in the clinical adaptation execution,
using the same methods as the ones that were employed for the construction of the
normalized histograms. The probability distributions for the simulation parameters
are evaluated within the sample space of all the simulation executions of the clinical
adaptation (red trace), as well as within the sample space that contains the optimal
with respect to the adaptation criterion simulations (blue trace).

The rest of the subplots are matched to positions that correspond to distinct row
and column parameters and express the joint distribution of the respective pair of
parameters in the form of a scatter plot of the cllinical adaptation execution simu-
lation samples. The parameter that corresponds to the row position of the subplot
defines the y coordinates of the simulation sample points in the scatter plot, while the
parameter that corresponds to the column position of the subplot defines the x coor-
dinates of the simulation sample points in the scatter plot. That way, the joint values
that were represented in the clinical adaptation for the parameter pair are visualized.
Moreover, the clinical adaptation error, with respect to the adaptation criterion (here
the in silico tumor volume reduction and its deviation from the actual tumor volume
reduction), is denoted by the color of the scatter points with reference to the depicted
colorscale. The red scatter points correspond to simulation samples with high clinical
adaptation error, while the blue scatter points correspond to simulation samples with
low clinical adaptation error.

The subset of parameters for which the pairplots are provided includes the Psym
and Psleep parameters, which express the rate of symmetric division of the cells that
are in the mitotic phase and the rate with which the cells enter the dormant GO
phase respectively. These parameters have been proven, via the process of sensitivity
analysis, to greatly affect the outcome of the simulation. Moreover, the adaptation
parameters, CKR_VCR and CKR_ACT, as well as the T'd parameter that ex-
presses the doubling time of the tumor, are also included. The Psym, Psleep and T'd
parameters are assigned distinct joint values for each virtual patient. As a result, the
number of simulation sample points of the pairplot scatter plots for these parameters
is equal to the number of virtual patients N. On the other hand, a set of values is ex-
plored for the C'K R parameters for each virtual patient and the number of simulation
sample points of the pairplot scatter plots for these parameters is equal to the total
number of executed simulations within the clinical adaptation execution. The scatter
plot between the CKR_VCR and the CKR_ACT parameters contains a limited
number of point samples, since these parameters are expressed as a percentage of the
total C K R and subsequently are not independent.

126



= All VP executions = Only optimal adaptation executions (one per VP)

01 0.8

0.16

0.08 0.14

0.12

0.06 o1

0.04 0.08

0.06

0.02 0.04

0.02

0 0
Tc

100 150 200 60 80 100 120 140 12 14 16 18 20 22 24 26
TGOmax TN

0.25 05
02 0.4
0.15 0.3
0.1 0.2
0.05 I 0.1
0 0
3 4 5 6 7 8 0.002 0.0025 0.003 0.0035 0.004
TA RA_diff
! 0.25 035
0.3
08 02
0.25
0.6 0.15 0.2
04 o1 0.15
0.1
0.2 0.05
I I 0.05
0 0 0
-0.4 -0.2 0 0.2 0.4 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 1 15 2 25 3 35 4
RN_diff PGOtoG1 NLIMP
0.1 0.5
0.14
0.08 0.12 0.4
0.1
0.06 0.3
0.08
0.04 0.06 0.2
0.04
0.02 0.1
0.02
0 0 0
03 035 04 045 05 055 06 065 0.15 0.2 0.25 0.3 0.35 02 022 024 026 028 03 032 034
Psym Psleep CKR_VCR
0.5
0.14
0.4 0.12
0.1
03
0.08
0.2 0.06
0.04
0.1
0.02
0 0
03 0.35 0.4 0.45 05 20 25 30 35 40
CKR_ACT Td

Figure 4.24: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 15 and number of virtual patients N=20. The red hue histograms refer to the sample
space of all the executed simulations (see the eighth row of Table 4.7 for the corresponding
cardinality), while the blue hue histograms refer to the sample space that includes only the
optimal adaptation simulations (one per VP, cardinality equal to N = 20). The optimal
value range for each adaptation parameter is denoted by the regions of prevalence of the
blue hue histogram as follows:

CKR VCR=10.3,0.35] CKR_ACT =10.45,0.525] CKR =[0.75,0.875]
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Figure 4.25: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 15 and number of virtual patients N=200. The red hue histograms refer to the
sample space of all the executed simulations (see the eighth row of Table 4.7 for the
corresponding cardinality), while the blue hue histograms refer to the sample space that
includes only the optimal adaptation simulations (one per VP, cardinality equal to N =
200). The optimal value range for each adaptation parameter is denoted by the regions of
prevalence of the blue hue histogram as follows:

CKR VCR=10.3,04 CKR_ACT =1[0.45,0.6) CKR =10.75,1.0]

Compared to the corresponding clinical adaptation execution for N = 20, the value range
for the simulation parameters is better represented and the optimally adapted CKR gets
slightly higher values. 198
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Figure 4.26: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 15 and number
of virtual patients N=20. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:
Td=31

CKR_VCR=0.325

CKR_ACT = 0.4875
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Figure 4.27: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 15 and number
of virtual patients N=200. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:

CKR_VCR=0.3732

CKR_ACT = 0.56
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Figure 4.28: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 16 and number of virtual patients N=20. The red hue histograms refer to the sample
space of all the executed simulations (see the eighth row of Table 4.7 for the corresponding
cardinality), while the blue hue histograms refer to the sample space that includes only the
optimal adaptation simulations (one per VP, cardinality equal to N = 20). The optimal
value range for each adaptation parameter is denoted by the regions of prevalence of the

blue hue histogram as follows:

CKR_VCR=[0.175,0275] CKR_ACT =[0.263,0.412] CKR = [0.4375,0.6875]
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Figure 4.29: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 16 and number of virtual patients N=200. The red hue histograms refer to the
sample space of all the executed simulations (see the eighth row of Table 4.7 for the
corresponding cardinality), while the blue hue histograms refer to the sample space that
includes only the optimal adaptation simulations (one per VP, cardinality equal to N =
200). The optimal value range for each adaptation parameter is denoted by the regions of
prevalence of the blue hue histogram as follows:

CKR VCR=10.15,0.288) CKR_ ACT =[0.225,0.431] CKR =[0.375,0.72]
Compared to the corresponding clinical adaptation execution for N = 20, the value range
for the simulation parameters is better represented and the optimally adapted CKR gets
values from a slightly higher range. 139
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Figure 4.30: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 16 and number
of virtual patients N=20. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:
CKR VCR=02143 CKR ACT=0.3212 CKR=0.5358 Td =28
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Figure 4.31: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 16 and number
of virtual patients N=200. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:
CKR=0.521

CKR_VCR =0.2084

CKR_ACT =0.3123
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Figure 4.32: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 17 and number of virtual patients N=20. The red hue histograms refer to the sample
space of all the executed simulations (see the eighth row of Table 4.7 for the corresponding
cardinality), while the blue hue histograms refer to the sample space that includes only the
optimal adaptation simulations (one per VP, cardinality equal to N = 20). The optimal
value range for each adaptation parameter is denoted by the regions of prevalence of the
blue hue histogram as follows:

CKR VCR=10.3,0.375] CKR_ACT =10.45,0.562] CKR =[0.75,0.9375]
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Figure 4.33: The normalized histograms that visualize the probability distribution of
the simulation parameter values for the execution of the clinical adaptation algorithm for
Patient 17 and number of virtual patients N=200. The red hue histograms refer to the
sample space of all the executed simulations (see the eighth row of Table 4.7 for the
corresponding cardinality), while the blue hue histograms refer to the sample space that
includes only the optimal adaptation simulations (one per VP, cardinality equal to N =
200). The optimal value range for each adaptation parameter is denoted by the regions of
prevalence of the blue hue histogram as follows:

CKR VCR=10.3,04 CKR_ACT =1[0.45,0.6) CKR =10.75,1.0]

Compared to the corresponding clinical adaptation execution for N = 20, the value range
for the simulation parameters is better represented and the optimally adapted CKR gets
values from a slightly higher range. 136
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Figure 4.34: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 17 and number
of virtual patients N=20. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:
CKR VCR=0325 C(CKR ACT=04875 CKR=038125 Td=29
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Figure 4.35: The pairplot that visualizes the joint distribution for the simulation parame-
ter pairs for the execution of the clinical adaptation algorithm for Patient 17 and number
of virtual patients N=200. The joint distribution for the pairs of the Psym, Psleep and T'd
parameters is random. The clinical adaptation error of the scatter point simulation samples
is denoted by their color, with respect to the depicted colorscale. The distribution of the
CK R parameters is indicative of the exploration that was performed for their adjustment,
while their joint distribution contains limited simulation sample scatter points, since their
values are not independent. The mean values for the distribution of the CK'R and T'd pa-
rameters with respect to the optimal adaptation sample space (blue trace) are the following:
CKR=10.933

CKR_VCR=0.3732

CKR_ACT = 0.5598
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4.4.3 The evaluation of the clinical adaptation criterion for
each virtual patient

The completion of the clinical adaptation algorithm requires the completion of the
exploration of the set of adaptation parameters for each virtual patient. Here the
set of adaptation parameters contains the total C'K R parameter, which is further
analyzed into the CKR_VCR and the CKR__ACT components. The exploration of
the C'K R parameter is performed for each virtual patient according to the algorithm
of Figure 3.10. The value range that is explored is continuously adjusted, until
a value that corresponds to a simulation with outcomes that satisfy the adaptation
criterion is found.

Here the adaptation criterion refers to the in silico tumor volume reduction and
the percentage by which it deviates from the actual tumor volume reduction. More
specifically, the allowed deviation is limited to 5%. This means that for each virtual
patient a value for the CKR is determined (N values in total), so that the in silico
tumor volume reduction deviates from the actual tumor volume reduction by less

than 5%.

The distribution of the optimal with respect to the clinical adaptation criterion
C K R values per virtual patient along the corresponding values for the in silico tumor
volume reduction and the respective clinical adaptation error is displayed for each
dataset patient and for the two distinct clinical adaptation executions with varying
number of virtual patients (N = 20 and N = 200), in the histograms of Figures
4.36-4.41.

The displayed values for the CKR parameter are indeed the ones that are part of
the optimal adaptation distribution that is visualized in the normalized histograms
of the previous section. For the most part the adaptation criterion is satisfied for all
the optimal adaptation values for the C' KR parameter. However, there exist some
values where the clinical adaptation error threshold is transgressed. This indicates
that for some virtual patients, their corresponding joint distribution value for the
input parameters did not allow for the exploration of the C'K R parameter to find
a value that approximates adequately in silico the actual tumor volume reduction.
These cases should be noted so that they can be excluded from the final estimation
of the C K R distribution per dataset patient.

Moreover, even though they are not included in the adaptation criterion, the distri-
bution along the in silico composition of the initial and the final tumor, as described
by the percentages of the population for each cell type, are also displayed. These dis-
tributions can be taken into consideration when the risk profile of the patient, defined
by the histologic profile and the macroscopic regressive changes, is known, as is the
case here.

Patient 15 is characterized as low risk with a favorable monophasic histology and a
high percentage of regressive changes, which means that an accurate in silico represen-
tation entails high percentages of differentiated and dead cells and limited percentages
of dormant and especially proliferative cells.
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Patient 16 is characterized as high risk with an unfavorable triphasic blastemal
histology and a low percentage of regressive changes, which means that an accurate
in silico representation entails low percentages of differentiated and dead cells and
high percentages of dormant and especially proliferative cells.

Patient 17 is characterized as medium risk with a mixed biphasic histology and
a medium percentage of regressive changes, which means that an accurate in silico
representation entails mixed percentages for the various cell populations.
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Figure 4.36: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of
the clinical adaptation algorithm for Patient 15 and number of virtual patients N=20. The
clinical adaptation criterion is not transgressed. Reviewing the in silico tumor composition,
CKR = 0.75 is a more appropriate value for the in silico representation of the patient, since
the corresponding histology is unfavorable.
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Figure 4.37: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of the
clinical adaptation algorithm for Patient 15 and number of virtual patients N=200. The
clinical adaptation criterion is transgressed for CKR = 0.5 and CKR = 1.0. Reviewing
the in silico tumor composition, CKR = 0.75 is a more appropriate value for the in silico
representation of the patient, since the corresponding histology is unfavorable.
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Figure 4.38: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of
the clinical adaptation algorithm for Patient 16 and number of virtual patients N=20. The
clinical adaptation criterion is not transgressed. Reviewing the in silico tumor composition,
CKR = 0.6[0.66,0.69] is a more appropriate value range for the in silico representation
of the patient, since the corresponding histology is favorable.
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Figure 4.39: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of
the clinical adaptation algorithm for Patient 16 and number of virtual patients N=200.
The clinical adaptation criterion is not transgressed. Reviewing the in silico tumor compo-
sition, CKR = 0.45(J0.6J[0.66,0.69] is a more appropriate value range for the in silico
representation of the patient, since the corresponding histology is favorable.
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Figure 4.40: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of
the clinical adaptation algorithm for Patient 17 and number of virtual patients N=20. The
clinical adaptation criterion is not transgressed. Reviewing the in silico tumor composition,
CKR = 0.875 is a more appropriate value for the in silico representation of the patient,

since the corresponding histology is mixed.

142



90target volume reduction = Prolif

= Diff

Tumor Volume Reduction (%)
Clinical Adaptation Error (%)

0.9 X 3 0.85 o.
Total CKR Total CKR

Initial Tumor Composition (%)
Final Tumor Composition (%)

‘ ‘ ‘ ‘ )
‘ MM o | I
s 085 0o 0.95 1 .75 o8 085

Total CKR Total CKR

Figure 4.41: The histograms that visualize the relationship between the optimally adapted
CK R values and the in silico tumor volume reduction, the corresponding clinical adaptation
error and the in silico composition of the initial and the final tumor for the execution of the
clinical adaptation algorithm for Patient 17 and number of virtual patients N=200. The
clinical adaptation criterion is transgressed for CK R = 1.0. Reviewing the in silico tumor
composition, CKR = [0.8125,0.9724] is a more appropriate value range for the in silico
representation of the patient, since the corresponding histology is mixed.

4.4.4 The resulting CKR distribution for each dataset patient

Reviewing the results of the clinical adaptation executions that were performed for
each dataset patient (see Table 4.7), as they were presented in the previous sections
with respect to the distributions for the values of the simulation input parameters
both for the sample space of all the simulation executions and the sample space of
the optimally adapted simulations per virtual patients, as well as with respect to the
degree in which the adaptation criterion is satisfied for each virtual patient and the
corresponding in silico tumor composition, the resulting distributions for the value
of the CK R parameter are presented in Tables 4.8, 4.9 and 4.10 for each dataset
patient.

The C'K R distributions are defined by the mean value and the standard deviation
value of the execution samples that correspond to the optimally adapted simulations
per virtual patient. Two versions of this set of values is provided, one considering
only the tumor volume and one taking into consideration both the tumor volume and
the tumor histology.

When only the tumor volume in considered, the number of samples that define
the C' KR distribution are approximately equal to the number of virtual patients N,
since each virtual patient explores the C'K R parameter values until a suitable value
for the in silico representation of the patient is found. However, in some cases the
valid samples are slightly lower than the number of virtual patients N, especially
as NN increases, since not all distinct values for the joint distribution of the rest of
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the simulation parameters that the virtual patients represent are adequate for the
simulation of the actual patient, no matter the value for the C K R parameter.

When both the tumor volume and the tumor histology are taken into account, the
number of samples that define the C KR distribution drop dramatically, since only
the virtual patient optimally adapted simulations that match the histology of the
corresponding actual patient are considered. However, the tumor histology is not
part of the adaptation criterion of the implemented clinical adaptation algorithm. As
a result, only a percentage of the virtual patients with adapted values for the CK R
parameter are included in the distribution.

Number Mean Std
¢ value value
© 1 for the for the
SApIes CKR CKR

N=20 | N=200| N=20 | N=200| N=20 | N=200

Only the
tumor
volume is
considered

20 189 0.8125 0.83619 || 0.064124 | 0.067726

Both the
tumor
volume and
the tumor 3 46 0.875 0.87875 0 0.054272
histology
are
considered

Table 4.8: The resulting distribution of the C K R parameter for Patient 15, as it is defined
by the set of corresponding mean and standard deviation values that are represented in the
sample space of the simulations that were executed during the clinical adaptation. When
only the tumor volume is considered, the number of samples is approximating the number
of virtual patients that are matched to the actual patient, since the clinical adaptation
algorithm is designed to find a suitable value for the CK R parameter per virtual patient.
However, in some cases the value of the joint distribution for the rest of the simulation
input parameters that a virtual patient represents is not suitable for the simulation of the
actual patient with minimal error, no matter the value for the CK R parameter. That is
why the number of samples that define the CK R distribution may be slightly lower that the
number of virtual patients N (here 189 instead of 200, see also Figure 4.37). When both
the tumor volume and the tumor histology are considered, the number of samples drops
even more, since the tumor histology is not part of the adaptation criterion and as a result
only a percentage of adapted virtual patients defines the distribution. Here, only the virtual
patient simulations that correspond to an in silico tumor that is comprised by differentiated
cells by at least 60% were considered, since the patient histology is favorable, reducing the
number of samples to 3 for V = 20 and to 46 for N = 200. When only the tumor volume
is considered, the value for the C K R parameter is slightly overestimated. In any case, the
mean value is safely assumed to lie in the following window: CKRy;pan € [0.81,0.88].
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Mean Std

Number
¢ value value
0 1 for the for the
SApIes CKR CKR

N=20 | N=200|| N=20 | N=200| N=20 | N =200

Only the
tumor
volume is
considered

20 200 0.535625 | 0.521037 || 0.075236 | 0.067967

Both the
tumor
volume and
the tumor 4 7 0.555 | 0.48526 || .089652 | 0.054546
histology
are
considered

Table 4.9: The resulting distribution of the C K R parameter for Patient 16, as it is de-
fined by the set of corresponding mean and standard deviation values that are represented
in the sample space of the simulations that were executed during the clinical adaptation.
When only the tumor volume is considered, the number of samples is equal to the number
of virtual patients, which indicates that all the values of the joint distribution for the rest of
the simulation input parameters that the virtual patients represent are suitable for the simu-
lation of the actual patient with minimal error, when the C K R parameter value is adjusted
appropriately. When both the tumor volume and the tumor histology are considered, the
number of samples drops, since, in order to represent the unfavorable histology of the actual
patient, only the virtual patient simulations that correspond to an in silico tumor that is
comprised by proliferative cells by at least 40% were considered, reducing the number of
samples to 4 for N = 20 and to 77 for N = 200. When only the tumor volume is considered,
the value for the C K R parameter is slightly underestimated. In any case, the mean value
is safely assumed to lie in the following window: CKRypan € [0.49,0.56].
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Mean Std

Number
¢ value value
0 1 for the for the
SApIes CKR CKR

N=20 | N=200|| N=20 | N=200| N=20 | N =200

Only the
tumor
volume is
considered

20 188 0.8125 | 0.838537 || 0.073112 | 0.074602

Both the
tumor
volume and
the tumor 5 76 0.8625 0.86477 || 0.068465 | 0.06589
histology
are
considered

Table 4.10: The resulting distribution of the C K R parameter for Patient 17, as it is de-
fined by the set of corresponding mean and standard deviation values that are represented in
the sample space of the simulations that were executed during the clinical adaptation. When
only the tumor volume is considered, the number of samples is approximating the number
of virtual patients that are matched to the actual patient, since the clinical adaptation al-
gorithm is designed to find a suitable value for the CK R parameter per virtual patient.
However, in some cases the value of the joint distribution for the rest of the simulation input
parameters that a virtual patient represents is not suitable for the simulation of the actual
patient with minimal error, no matter the value for the CK R parameter. That is why the
number of samples that define the C K R distribution may be slightly lower that the number
of virtual patients N (here 188 instead of 200, see also Figure 4.41). When both the tumor
volume and the tumor histology are considered, the number of samples drops, since, in order
to represent the mixed histology of the actual patient, only the virtual patient simulations
that correspond to an in silico tumor that is composed by a percentage of differentiated
cells that lies between 45% and 65% were considered, reducing the number of samples to 5
for N = 20 and to 76 for N = 200. When only the tumor volume is considered, the value
for the CK R parameter is slightly underestimated. In any case, the mean value is safely
assumed to lie in the following window: CK Ry pan € [0.81,0.86].
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Conclusion & Future Work

The Nephroblastoma Oncosimulator is a discrete top-down model for multiscale
cancer modeling that uses the patient-specific medical imaging data for the in silico
representation of Wilms’ tumor, which is the most common renal tumor in childhood,
as a 3D matrix of voxels and the simulation of its temporal evolution in discrete time
steps. The goal of the Nephroblastoma Oncosimulator is to predict the disease pro-
gression for a nephroblastoma patient and ultimately act as a medical advisor that
offers insight on the best course of treatment for the specific patient. In order for that
to be possible, the patient-specific medical data need to be translated in silico. How-
ever, the values for the simulation input parameters are not defined unambiguously
by the patient-specific medical data, which renders the execution of multiple virtual
patient simulations necessary for the adequate in silico representation of the physi-
cal patient. More specifically, each virtual patient is assigned a distinct value for the
joint distribution of the simulation input parameters and the simulation outcomes are
statistically coevaluated for the optimal in silico representation of the actual physical
patient.

In order for the Oncosimulator to be used in clinical practice as a medical advisor
application, it needs to meet the specifications of an on-line model that produces
results in real time. In the present work, high performance computing methods were
explored, for the optimization of the execution of a single simulation, as well as for
the efficient execution of multiple virtual patient simulations. The performance opti-
mization was achieved via the preprocessing of the simulation inputs and via source
code modifications. That way, an optimized version of the model is emerged, whose
functionality was verified via sensitivity analysis. After its verification, the optimized
Oncosimulator model was utilized for the clinical adaptation of the simulation input
parameters via the execution of multiple virtual patient simulations. More specifically,
the CKR parameter, which defines the ratio of cells that are hit by therapy and thus
expresses the treatment effectiveness, was adapted for each one of the three dataset
patients that represent distinct histologic profiles and corresponding risk groups. That
way, the probability distribution of the CKR parameter is defined for each disctinct
patient group that is represented in the dataset.

The simulation execution profiling, which was perfomed using the valgrind frame-
work, provided an estimate of the percentage with which each simulation scan con-
tributes to the total cost of the simulation. Before the data preprocessing step, the
third simulation scan, which implements the simulation on the cellular biocomplexity
scale, takes up 0.6% — 4% of the total simulation execution time, while after data
preprocessing is performed, it takes up 13% — 20% of the total simulation execution
time. Moreover, the data preprocessing causes a dicrease of the memory footprint
of the simulation execution by approximately 90%, as well as a dicrease of the total
simulation execution time by more than 97%.
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The OpenMP API was utilized for the modification of the source code, so that the
performance of the computations is done concurrently and in parallel when the data
dependencies allow it, i.e. for the third scan and the simulation on the cellular level of
biocomplexity. Allin all, the data preprocessing step, which adjusts the resolution and
the cost of the simulation via the adjustment of the size of the voxel in the 3D matrix
that represents the tumor in silico, reduces the simulation input size, introduces
the greatest speedup for the simulation execution time and at the same time alters
the workload balance between the simulation scans, rendering it more fair and less
intense on the parts that do not benefit from the optimized resources, i.e. the multiple
threads, and indirectly improving the speedup potential of the code optimization step
according to Amdahl’s law. Finally, after data preprocessing is performed, the code
optimization step that accelerates the third simulation scan introduces a speedup
of approximately 16% — 24%, which is still minor compared to the speedup that is
introduced by the data preprocessing step.

Before the clinical adaptation is performed, the functionality of the Oncosimulator
optimized version, as it is derived after the data preprocessing and the code opti-
mization modifications, is verified via sensitivity analysis, i.e. via the exploration
of the simulation input parameter values and the manner in which they affect the
simulation outcomes. Indeed, the model behavior is the expected one. For instance,
as the C K R parameter is increased so is the tumor volume reduction, as the P,
parameter is increased the tumor growth is more aggressive, while as the Py, pa-
rameter is increased the tumor growth is inhibited. The clinical adaptation step is
performed using the new optimized and verified model for the execution of multiple
virtual patient simulations per physical patient that represents a distinct histologic
and risk group in the dataset. That way, the probability distribution of the CKR
parameter for each distinct patient group of the dataset is derived as a set of mean
and standard deviation values. The low risk group corresponds to a mean value of
0.9 for the CKR parameter, the high risk group corresponds to a mean value of 0.5,
while the medium risk group corresponds to a mean value of 0.8.

The following steps to be implemented in the future work can focus on the refine-
ment and enrichment of the algorithms and methods that are utilized in the already
implemented steps, as well as on taking further action toward the utilization of the
Nephroblastoma Oncosimulator in clinical practice. With concern to the efficient ex-
ecution of a single simulation, the performed profiling records the simulation scans
on the tissue biocomplexity level as the most costly part of the simulation, taking up
to 80% of the total simulation execution time, even after the data preprocessing step
is performed. The bottleneck that this part of the simulation introduces needs to be
addressed by altering the source code, so that the data dependencies are eliminated
as much as possible. Moreover, the source code can be enriched so that the tumor
histology is also represented in the 3D tumor matrix. In that context, the adjust-
ment of the geometrical cell size that addresses the simulation resolution and cost
tradeoff can be performed dynamically during the simulation execution, depending
on the computational needs and separately for each histologic region of the 3D tumor
matrix. In any case, the source code modifications should be done so that the data
dependencies are kept limited, the workload is fairly balanced between the simulation
scans and the conditions for the productive utilization of mutlithreading according to
Amdahl’s law are retained.

148



After the source code is modified and prepared for the code optimization step, the
performance goals for a single simulation execution can be set and an optimization
plan can be devised and implemented, in order to better accommodate these goals.
More specifically, the performance goals for a single simulation execution depend on
the performance standards that are required by the clinical adaptation step that uses
multiple simulation executions for the in silico representation of the physical patient
using multiple virtual patients. In order to evaluate the performance goals for a single
simulation execution, the parameters of the clinical adaptation algorithm, e.g. the
number of virtual patients N, need to be explored and their optimal values deter-
mined. Then, the code optimization can take place and the architecture that better
accommodates the performance goals can be implemented. This architecture can be
heterogeneous. For instance, the third simulation scan includes independent compu-
tations for the voxels of the 3D tumor matrix, that can be performed concurrently
and in parallel using a GPU architecture.

Then, the architecture for the execution of multiple virtual patient simulations
per physical patient can be implemented and utilized for the determination of the
probability distribution of the simulation input parameters, the same way that was
done in the present work for the CKR parameter. For that purpose, the enrichment of
the patient dataset is crucial, so that more histologic and risk groups are represented in
it and with more samples each. After the distribution of the simulation parameters is
determined for the distinct patient groups of the dataset, the multiple virtual patient
simulation executions can be utilized for the in silico representation of patients that
have not yet been treated, in order to predict their clinical outcomes and suggest the
best treatment course. More specifically, after the patient group of the dataset to
which the current patient belongs is determined, multiple virtual patient executions
are performed, with each virtual patient being assigned values for the simulation
input parameters according to the parameter distributions for the specific patient
group, and the simulation outcomes are statistically coevaluated for the prediction of
the actual clinical outcomes of the physical patient. That way, the Nephroblastoma
Oncosimulator can start to be used and tested in clinical practice and clinical trials,
delivered as an integrated application, with a proper DBMS and user interface.

149



Bibliography

1]

2]

3]

|4

[5]

6]

17l

8]

19]

[10]

[11]

C. Sonnenschein and A. Soto, “The aging of the 2000 and 2011 hallmarks
of cancer reviews: A critique,” Journal of biosciences, vol. 38, pp. 651-63,
09 2013. Retrieved 20 January 2021 from https://www.cell.com/fulltext/
S0092-8674(11)00127-9.

T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini, “Multiscale cancer mod-
eling,” Annual review of biomedical engineering, vol. 13, pp. 127-155, Aug 2011.

T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini, “Multiscale cancer mod-
eling,” Annual Review of Biomedical Engineering, vol. 13, no. 1, pp. 127-155,
2011. PMID: 21529163.

Retrieved 20 January 2021 from http://mycourses.ntua.gr/courses/
ECE1406/document/01_%D0%D0%CA%CISY%CI_-705-_%CC%C5%D4%C1%D0%D4_%D3%
C7%CC%CCD5_%C5%CChDO_%CF%CBY%C5%D3_%CF%C9_%C4%C9%C1%CB%CH4LCE%CEY
C9%D3_%D4%C5%D4%C17D1%D4%C7 _%C5%CA%C4%CFD3%C7_%C3%D3%D3_2020_NOE_
20_Y%D4_18_53_EST.pdf.

S. Wan and P. V. Coveney, “Molecular dynamics simulation reveals structural
and thermodynamic features of kinase activation by cancer mutations within the
epidermal growth factor receptor,” Journal of Computational Chemistry, vol. 32,
no. 13, pp. 2843-2852, 2011.

P. Castorina, T. Deisboeck, P. Gabriele, and C. Guiot, “Growth laws in cancer:
Implications for radiotherapy,” Radiation research, vol. 168, pp. 349-56, 10 2007.

G. Stamatakos, D. Dionysiou, S. Giatili, E. Kolokotroni, E. Georgiadi, A. Ronio-
tis, V. Sakkalis, S. Wan, S. Manos, S. Zasada, A. Folarin, P. Biichler, T. Bardyn,
S. Bauer, M. Reyes, T. Bily, V. Bednar, M. Karasek, N. Graf, and K. Marias,
“The contracancrum oncosimulator: Integrating biomechanisms across scales in
the clinical context,” 09 2010.

A. Roniotis, K. Panourgias, J. Ekaterinaris, K. Marias, and V. Sakkalis, “Ap-
proximating the diffusion—reaction equation for developing glioma models for
the contracancrum project: a showcase,” 09 2010.

S. Giatili, N. Uzunoglu, and G. Stamatakos, “An explicit boundary condition
treatment of a diffusion — based glioblastoma tumor growth model,” 09 2010.

S. Giatili and G. Stamatakos, “A detailed numerical treatment of the boundary
conditions imposed by the skull on a diffusion-reaction model of glioma tu-
mor growth. clinical validation aspects,” Applied Mathematics and Computation,
vol. 218, pp. 8779-8799, 05 2012.

M. S. Alber, M. A. Kiskowski, J. A. Glazier, and Y. Jiang, “On cellular automaton
approaches to modeling biological cells,” pp. 1-39, 2003.

150


https://www.cell.com/fulltext/S0092-8674(11)00127-9
https://www.cell.com/fulltext/S0092-8674(11)00127-9
http://mycourses.ntua.gr/courses/ECE1406/document/01_%D0%D0%CA%C9S%C9_-705-_%CC%C5%D4%C1%D0%D4_%D3%C7%CC%CC%D5_%C5%CC%D0_%CF%CB%C5%D3_%CF%C9_%C4%C9%C1%CB%C5%CE%C5%C9%D3_%D4%C5%D4%C1%D1%D4%C7_%C5%CA%C4%CF%D3%C7_%C3%D3%D3_2020_NOE_20_%D4_18_53_EST.pdf
http://mycourses.ntua.gr/courses/ECE1406/document/01_%D0%D0%CA%C9S%C9_-705-_%CC%C5%D4%C1%D0%D4_%D3%C7%CC%CC%D5_%C5%CC%D0_%CF%CB%C5%D3_%CF%C9_%C4%C9%C1%CB%C5%CE%C5%C9%D3_%D4%C5%D4%C1%D1%D4%C7_%C5%CA%C4%CF%D3%C7_%C3%D3%D3_2020_NOE_20_%D4_18_53_EST.pdf
http://mycourses.ntua.gr/courses/ECE1406/document/01_%D0%D0%CA%C9S%C9_-705-_%CC%C5%D4%C1%D0%D4_%D3%C7%CC%CC%D5_%C5%CC%D0_%CF%CB%C5%D3_%CF%C9_%C4%C9%C1%CB%C5%CE%C5%C9%D3_%D4%C5%D4%C1%D1%D4%C7_%C5%CA%C4%CF%D3%C7_%C3%D3%D3_2020_NOE_20_%D4_18_53_EST.pdf
http://mycourses.ntua.gr/courses/ECE1406/document/01_%D0%D0%CA%C9S%C9_-705-_%CC%C5%D4%C1%D0%D4_%D3%C7%CC%CC%D5_%C5%CC%D0_%CF%CB%C5%D3_%CF%C9_%C4%C9%C1%CB%C5%CE%C5%C9%D3_%D4%C5%D4%C1%D1%D4%C7_%C5%CA%C4%CF%D3%C7_%C3%D3%D3_2020_NOE_20_%D4_18_53_EST.pdf
http://mycourses.ntua.gr/courses/ECE1406/document/01_%D0%D0%CA%C9S%C9_-705-_%CC%C5%D4%C1%D0%D4_%D3%C7%CC%CC%D5_%C5%CC%D0_%CF%CB%C5%D3_%CF%C9_%C4%C9%C1%CB%C5%CE%C5%C9%D3_%D4%C5%D4%C1%D1%D4%C7_%C5%CA%C4%CF%D3%C7_%C3%D3%D3_2020_NOE_20_%D4_18_53_EST.pdf

[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

G. Ermentrout and L. Edelstein-Keshet, “Cellular automata approaches to bio-
logical modeling,” Journal of Theoretical Biology, vol. 160, no. 1, pp. 97 — 133,
1993.

M. Amos, Cellular computing. Oxford University Press, 2020.

Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck, “Simulat-
ing cancer growth with multiscale agent-based modeling,” Seminars in Cancer
Biology, vol. 30, pp. 70 — 78, 2015. Cancer modeling and network biology.

G. An, Q. Mi, J. Dutta-Moscato, and Y. Vodovotz, “Agent-based models in
translational systems biology,” WIREs Systems Biology and Medicine, vol. 1,
no. 2, pp. 159-171, 2009.

M. Soheilypour and M. R. K. Mofrad, “Agent-based modeling in molecular sys-
tems biology,” BioFEssays, vol. 40, no. 7, p. 1800020, 2018.

M. Hwang, M. Garbey, S. A. Berceli, and R. Tran-Son-Tay, “Rule-based sim-
ulation of multi-cellular biological systems—a review of modeling techniques,”
Cellular and Molecular Bioengineering, vol. 2, pp. 285—-294, Sep 2009.

K. Marias, V. Sakkalis, A. Roniotis, C. Farmaki, G. Stamatakos, D. Dionysiou,
S. Giatili, N. Uzunoglou, N. Graf, R. Bohle, E. Messe, P. V. Coveney, S. Manos,
S. Wan, A. Folarin, S. Nagl, P. Biichler, T. Bardyn, M. Reyes, G. Clapworthy,
N. Mcfarlane, E. Liu, T. Bily, M. Balek, M. Karasek, V. Bednar, J. Sabczynski,
R. Opfer, S. Renisch, and I. C. Carlsen, “Clinically oriented translational cancer
multilevel modeling: The contracancrum project,” pp. 2124-2127, 2010.

A. Roniotis, K. Marias, V. Sakkalis, I. Karatzanis, and M. Zervakis, “The math-
ematical path to develop a heterogeneous, anisotropic and 3-dimensional glioma
model using finite differences,” pp. 1-4, 2009.

V. Sakkalis, A. Roniotis, C. Farmaki, I. Karatzanis, and K. Marias, “Evaluation
framework for the multilevel macroscopic models of solid tumor growth in the
glioma case,” pp. 6809-6812, 2010.

A. Roniotis, K. Marias, V. Sakkalis, G. Stamatakos, and M. Zervakis, “Compar-
ing finite elements and finite differences for developing diffusive models of glioma
growth,” pp. 6797-6800, 2010.

T. S. Deisboeck and G. Stamatakos, In Silico Oncology Part II - Clinical Re-
quirements Regarding In Silico Oncology. CRC Press, 2011.

G. S. Stamatakos and D. D. Dionysiou, “Introduction of hypermatrix and opera-
tor notation into a discrete mathematics simulation model of malignant tumour

response to therapeutic schemes in vivo. some operator properties,” Cancer In-
formatics, vol. 7, p. CIN.S2712, 2009. PMID: 20011462.

G. S. Stamatakos, E. Kolokotroni, D. Dionysiou, E. Georgiadi, and S. Giatili, “In
silico oncology: a top-down multiscale simulator of cancer dynamics. studying the

effect of symmetric stem cell division on the cellular constitution of a tumour,”
pp. 18301833, 2010.

151



[25] Retrieved 20 January 2021 from https://commons.wikimedia.org/wiki/
File:Cell_Cycle_2-2.svg.

[26] G. M. Cooper, The cell : a molecular approach. ASM Press, 2 ed., 2000.

[27] J. A. Smith and L. Martin, “Do cells cycle?,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 70, pp. 1263-1267, Apr 1973.
4515625[pmid|.

[28] R. S. Wu and W. M. Bonner, “Separation of basal histone synthesis from s-phase
histone synthesis in dividing cells,” Cell, vol. 27, pp. 321-330, Dec 1981.

[29] D. M. Nelson, X. Ye, C. Hall, H. Santos, T. Ma, G. D. Kao, T. J. Yen, J. W.
Harper, and P. D. Adams, “Coupling of dna synthesis and histone synthesis
in s phase independent of cyclin/cdk2 activity,” Molecular and cellular biology,
vol. 22, pp. 7459-7472, Nov 2002.

[30] I. L. CAMERON and R. C. GREULICH, “Evidence for an essentially constant
duration of dna synthesis in renewing epithelia of the adult mouse,” The Journal
of cell biology, vol. 18, pp. 31-40, Jul 1963.

[31] A. Maton, Cells: Building Blocks of Life. Prentice-Hall, 1997.

[32] Retrieved 20 January 2021 from https://commons.wikimedia.org/wiki/
File:Mitosis_Stages.svg.

[33] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Tyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher, “Comprehensive identification of cell

cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hy-
bridization,” Molecular biology of the cell, vol. 9, pp. 32733297, Dec 1998.

[34] T. Pramila, W. Wu, S. Miles, W. S. Noble, and L. L. Breeden, “The forkhead
transcription factor heml regulates chromosome segregation genes and fills the s-
phase gap in the transcriptional circuitry of the cell cycle,” Genes € development,
vol. 20, pp. 22662278, Aug 2006.

[35] D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. S. Socolar, E. S. Iversen,
A. J. Hartemink, and S. B. Haase, “Global control of cell-cycle transcription by
coupled cdk and network oscillators,” Nature, vol. 453, pp. 944-947, Jun 2008.

[36] E. A. Nigg, “Cyclin-dependent protein kinases: Key regulators of the eukaryotic
cell cycle,” BioEssays, vol. 17, no. 6, pp. 471-480, 1995.

[37] V. Kumar, N. Fausto, A. K. Abbas, R. S. Cotran, and S. L. Robbins, Pathological
Basis of Disease. Elsevier Saunders, 2004.

[38] B. O’Leary, R. S. Finn, and N. C. Turner, “Treating cancer with selective cdk4/6
inhibitors,” Nature Reviews Clinical Oncology, vol. 13, pp. 417430, Jul 2016.

[39] B. Bilgin, M. A. Sendur, D. Sener Dede, M. B. Akinci, and B. Yalgin, “A current
and comprehensive review of cyclin-dependent kinase inhibitors for the treatment
of metastatic breast cancer,” Current Medical Research and Opinion, vol. 33,
no. 9, pp. 1559-1569, 2017. PMID: 28657360.

152


https://commons.wikimedia.org/wiki/File:Cell_Cycle_2-2.svg
https://commons.wikimedia.org/wiki/File:Cell_Cycle_2-2.svg
https://commons.wikimedia.org/wiki/File:Mitosis_Stages.svg
https://commons.wikimedia.org/wiki/File:Mitosis_Stages.svg

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

Press release. NobelPrize.org. Nobel Prize Outreach AB 2021. Thu. 16 Sep 2021.
https://www.nobelprize.org/prizes/medicine/2001/press-release.

G. Stamatakos, “Top-down multilevel simulation of tumor response to treatment
in the context of in silico oncology,” 09 2010.

G. Stamatakos, E. Kolokotroni, D. Dionysiou, E. Georgiadi, and C. Desmedst,
“An advanced discrete state—discrete event multiscale simulation model of the
response of a solid tumor to chemotherapy: Mimicking a clinical study,” Jour-
nal of Theoretical Biology, vol. 266, no. 1, pp. 124 — 139, 2010. Retrieved 20
January 2021 from https://www.sciencedirect.com/science/article/abs/
pii/S0022519310002547.

G. Stamatakos, E. Georgiadi, N. Graf, E. Kolokotroni, and D. Dionysiou, “Ex-
ploiting clinical trial data drastically narrows the window of possible solutions
to the problem of clinical adaptation of a multiscale cancer model,” PloS one,
vol. 6, p. e17594, 03 2011. Retrieved 20 January 2021 from https://www.
researchgate.net/publication/50399814_Exploiting_Clinical_Trial_
Data_Drastically_Narrows_the_Window_of_Possible_Solutions_to_the_
Problem_of_Clinical_Adaptation_of_a_Multiscale_Cancer_Model.

G. M. Vujanié¢, J. R. Apps, V. Moroz, F. Ceroni, R. D. Williams, N. J. Sebire,
and K. Pritchard-Jones, “Nephrogenic rests in Wilms tumors treated with pre-
operative chemotherapy: The UK SIOP Wilms Tumor 2001 Trial experience,”
Pediatric Blood & Cancer, vol. 64, Nov. 2017.

J. B. Beckwith, “New developments in the pathology of Wilms tumor,” Cancer
Investigation, vol. 15, no. 2, pp. 153-162, 1997.

J. B. Beckwith, “Precursor lesions of Wilms tumor: clinical and biological impli-
cations,” Medical and Pediatric Oncology, vol. 21, no. 3, pp. 158-168, 1993.

J. B. Beckwith, “Wilms’ tumor and other renal tumors of childhood: A selective
review from the national wilms’ tumor study pathology center,” Human Pathol-
ogy, vol. 14, no. 6, pp. 481-492, 1983.

S. D. Popov, N. J. Sebire, and G. M. Vujanic, “Wilms’ Tumour — Histology and
Differential Diagnosis,” in Wilms Tumor (M. M. van den Heuvel-Eibrink, ed.),
Brisbane (AU): Codon Publications, 2016.

A. Hossain and G. F. Saunders, “The human sex-determining gene
<em>sry< /em> is a direct target of <em>wtl</em> *” Journal of Biological
Chemustry, vol. 276, pp. 16817-16823, May 2001.

K.-D. Wagner, N. Wagner, G. Schley, H. Theres, and H. Scholz, “The wilms’
tumor suppressor wtl encodes a transcriptional activator of the class iv pou-
domain factor poudf2 (brn-3b),” Gene, vol. 305, no. 2, pp. 217-223, 2003.

E. A. Rose, T. Glaser, C. Jones, C. L. Smith, W. H. Lewis, K. M. Call, M. Min-
den, E. Champagne, L. Bonetta, H. Yeger, and D. E. Housman, “Complete phys-
ical map of the wagr region of 11p13 localizes a candidate wilms’ tumor gene,”
Cell, vol. 60, pp. 495-508, Feb 1990.

153


https://www.nobelprize.org/prizes/medicine/2001/press-release
https://www.sciencedirect.com/science/article/abs/pii/S0022519310002547
https://www.sciencedirect.com/science/article/abs/pii/S0022519310002547
https://www.researchgate.net/publication/50399814_Exploiting_Clinical_Trial_Data_Drastically_Narrows_the_Window_of_Possible_Solutions_to_the_Problem_of_Clinical_Adaptation_of_a_Multiscale_Cancer_Model
https://www.researchgate.net/publication/50399814_Exploiting_Clinical_Trial_Data_Drastically_Narrows_the_Window_of_Possible_Solutions_to_the_Problem_of_Clinical_Adaptation_of_a_Multiscale_Cancer_Model
https://www.researchgate.net/publication/50399814_Exploiting_Clinical_Trial_Data_Drastically_Narrows_the_Window_of_Possible_Solutions_to_the_Problem_of_Clinical_Adaptation_of_a_Multiscale_Cancer_Model
https://www.researchgate.net/publication/50399814_Exploiting_Clinical_Trial_Data_Drastically_Narrows_the_Window_of_Possible_Solutions_to_the_Problem_of_Clinical_Adaptation_of_a_Multiscale_Cancer_Model

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

M. J. COPPES, V. HUFF, and J. PELLETIER, “Denys-drash syndrome : relat-
ing a clinical disorder to genetic alterations in the tumor suppressor gene wtl1,”
The Journal of pediatrics, 1993.

C. Schwienbacher, A. Angioni, R. Scelfo, A. Veronese, G. A. Calin, G. Massazza,
I. Hatada, G. Barbanti-Brodano, and M. Negrini, “Abnormal rna expression of
11p15 imprinted genes and kidney developmental genes in wilms tumor,” Cancer
Research, vol. 60, no. 6, pp. 15211525, 2000.

V. Huff, “Wilms tumor genetics: A new, unx-pected twist to the story,” Cancer
Cell, vol. 11, no. 2, pp. 105-107, 2007.

Retrieved 30 August 2021 from https://omim.org/phenotypicSeries/
PS1940707sort=inheritance&order=desc.

G. Sonn and L. M. Shortliffe, “Management of wilms tumor: current standard of
care,” Nature Clinical Practice Urology, vol. 5, pp. 551-560, Oct 2008.

A. M. Davidoff, “Wilms’ tumor,” Current opinion in pediatrics, vol. 21, pp. 357—
364, Jun 2009. 19417665|pmid].

J. M. Kalish, L. Doros, L. J. Helman, R. C. Hennekam, R. P. Kuiper, S. M.
Maas, E. R. Maher, K. E. Nichols, S. E. Plon, C. C. Porter, S. Rednam, K. A. P.
Schultz, L. J. States, G. E. Tomlinson, K. Zelley, and T. E. Druley, “Surveillance
recommendations for children with overgrowth syndromes and predisposition to
wilms tumors and hepatoblastoma,” Clinical cancer research : an official journal
of the American Association for Cancer Research, vol. 23, pp. ell15—122, Jul
2017.

A. N. Ali, R. Diaz, H.-K. Shu, A. C. Paulino, and N. Esiashvili, “A surveillance,
epidemiology and end results (seer) program comparison of adult and pediatric
wilms’ tumor,” Cancer, vol. 118, no. 9, pp. 2541-2551, 2012.

E. Revazova and A. Petrova, “[cell cycle and proliferative pool of human tumor
strains transplanted into athymic mice|,” Biulleten’ eksperimental’noi biologii i
meditsiny, vol. 92, p. 335—337, September 1981.

K. Maseide and E. K. Rofstad, “Mathematical modeling of chronical hypoxia in
tumors considering potential doubling time and hypoxic cell lifetime,” Radiother-
apy and Oncology, vol. 54, no. 2, pp. 171-177, 2000.

W. Diichting, W. Ulmer, R. Lehrig, T. Ginsberg, and E. Dedeleit, “Computer
simulation and modelling of tumor spheroid growth and their relevance for opti-
mization of fractionated radiotherapy,” Strahlentherapie und Onkologie : Organ
der Deutschen Rontgengesellschaft ... [et al], vol. 168, p. 354—360, June 1992.

A. R. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, “Tumor
morphology and phenotypic evolution driven by selective pressure from the mi-
croenvironment,” Cell, vol. 127, no. 5, pp. 905-915, 2006.

L. M. Wein, J. E. Cohen, and J. T. Wu, “Dynamic optimization of
a linear—quadratic model with incomplete repair and volume-dependent

sensitivity and repopulation,” International Journal of Radiation Oncol-
ogy *Biology*Physics, vol. 47, no. 4, pp. 1073-1083, 2000.

154


https://omim.org/phenotypicSeries/PS194070?sort=inheritance&order=desc
https://omim.org/phenotypicSeries/PS194070?sort=inheritance&order=desc

[65]

[66]

67]

[68]

[69]

[70]

[71]

[72]

73]
[74]
[75]
[76]
[77]
78]

[79]

[80]

B. Ribba, T. Colin, and S. Schnell, “A multiscale mathematical model of cancer,
and its use in analyzing irradiation therapies,” Theoretical Biology and Medical
Modelling, vol. 3, p. 7, Feb 2006.

W. C. Dewey, C. C. Ling, and R. E. Meyn, “Radiation-induced apopto-
sis: Relevance to radiotherapy,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 33, no. 4, pp. 781-796, 1995.

E. Groninger, T. Meeuwsen-de Boer, P. Koopmans, D. Uges, W. Sluiter, A. Veer-
man, W. Kamps, and S. de Graaf, “Pharmacokinetics of vincristine monotherapy
in childhood acute lymphoblastic leukemia,” Pediatric Research, vol. 52, pp. 113—
118, Jul 2002.

W. N. Dahl, R. Oftebro, E. O. Pettersen, and T. Brustad, “Inhibitory and cy-
totoxic effects of oncovin (vincristine sulfate) on cells of human line nhik 3025,”
Cancer Research, vol. 36, no. 9 Part 1, pp. 3101-3105, 1976.

K. Sawada, K. Noda, H. Nakajima, N. Shimbara, Y. Furuichi, and M. Sugi-
moto, “Differential cytotoxicity of anticancer agents in pre- and post-immortal
lymphoblastoid cell lines,” Biological and Pharmaceutical Bulletin, vol. 28, no. 7,
pp. 1202-1207, 2005.

G. J. Veal, M. Cole, J. Errington, A. Parry, J. Hale, A. D. Pearson, K. Howe, J. C.
Chisholm, C. Beane, B. Brennan, F. Waters, A. Glaser, S. Hemsworth, H. Mc-
Dowell, Y. Wright, K. Pritchard-Jones, R. Pinkerton, G. Jenner, J. Nicholson,
A. M. Elsworth, A. V. Boddy, and U. P. W. Group, “Pharmacokinetics of dacti-
nomycin in a pediatric patient population: a united kingdom children’s cancer
study group study,” Clinical Cancer Research, vol. 11, no. 16, pp. 5893-5899,
2005.

E. C. Georgiadi, D. D. Dionysiou, N. Graf, and G. S. Stamatakos, “Towards in
silico oncology: Adapting a four dimensional nephroblastoma treatment model
to a clinical trial case based on multi-method sensitivity analysis,” Computers in
Biology and Medicine, vol. 42, no. 11, pp. 1064-1078, 2012.

https://ark.intel.com/content /www /us/en/ark /products/86067 /intel-xeon-
processor-e5-2658a-v3-30m-cache-2-20-ghz.html.

https://www.valgrind.org/.
https://valgrind.org/docs/manual /ms-manual.html.
https://valgrind.org/docs/manual /cl-manual.html.
https:/ /valgrind.org/docs/manual /cg-manual.html.
https://www.openmp.org/.

Retrieved 20 September 2021 from https://commons.wikimedia.org/wiki/
File:AmdahlsLaw.svg.

Retrieved 2 September 2021 from https://commons.wikimedia.org/w/index.
php?curid=27378784.

https://kcachegrind.github.io/html/Home.html.

155


https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg
https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg
https://commons.wikimedia.org/w/index.php?curid=27378784
https://commons.wikimedia.org/w/index.php?curid=27378784

	List of Figures
	List of Tables
	Introduction
	Theoretical Framework
	Multiscale Cancer Modeling
	Cancer as a multiscale phenomenon and the different scales of biocomplexity that describe it
	A comparison of the techniques that are employed for modeling and integrating the various scales of cancer biocomplexity

	The Eukaryotic Cell Cycle
	The sequence and the role of the four phases that compose the eukaryotic cell cycle
	The dynamic transcriptional network of macromolecules that regulates the evolution of the eukaryotic cell cycle
	The major chekpoints of the eukaryotic cell cycle and the resting bold0mu mumu G0G0G0G0G0G0 phase

	The Oncosimulator
	The outline of the clinical environment and workflow within which the Oncosimulator is utilized as a discrete top-down approach for cancer modeling
	The "summarize and jump" Oncosimulator algorithm, which represents the solid tumor as a 3D matrix and simulates its evolution in discrete time steps
	The hypermatrix notation that is employed for the implementation of the Oncosimulator algorithm
	The simulation input and output parameters, the natural processes that they describe and their role in the Oncosimulator algorithm

	The Nephroblastoma Oncosimulator
	A summary of the Wilms' tumor disease, with focus to its histopathology, etiology, prognosis within the standard staging system and epidemiology
	The treatment plan specific parameters and the reference values for the complete set of simulation input parameters
	A brief presentation of the dataset patients, with concern to the plan with which they were treated, their medical imaging data, their histologic profile and the risk group that they represent


	Methodology
	Workflow Outline
	Data Preprocessing
	The input files of the Nephroblastoma Oncosimulator, which define the properties of the 3D matrix that represents the solid tumor in silico
	A data preprocessing algorithm that explores the geometrical cell size for the optimal adaptation of the simulation resolution

	Sensitivity Analysis
	The role of sensitivity analysis as a method that is dynamically employed for the exploration of the Nephroblastoma Oncosimulator functionality under different parametric scenarios
	Sensitivity analysis as a parametric exploration for each simulation input parameter separately and the parameters that are used for quantifying its results
	The graphical method for sensitivity analysis and its results for the original verified version of the model

	Application Profiling & Code Optimization
	The specifications of the architecture for the computing environment that was utilized
	Valgrind as the profiling tool that was used for the estimation of the memory footprint per simulation execution and of the costs per simulation scan with concern to the CPU cycles and the memory accesses
	The plan for the optimization of the third scan of the Nephroblastoma Oncosimulator algorithm and its implementation using the OpenMP API
	Speedup as the metric for the performance enhancement outcomes and the limitations introduced by Amdahl's law

	Clinical Adaptation
	The concept of virtual patients for the in silico representation of a single physical patient with a variety of values for the joint distribution of the simulation input parameters
	The clinical adaptation algorithm that explores the CKR parameter for each virtual patient with the goal of the optimal adaptation to the medical data of the physical patient


	Results
	Data Preprocessing
	The original values for the parameters that are inherent to the simulation input files for each dataset patient
	The results of the simulation resolution adaptation with respect to the execution time and error that corresponds to each scale and padding factor set for each dataset patient
	A comparison of the simulation evolution for the varying resolution versions that correspond to the distinct scale and padding factor sets for each dataset patient
	The chosen optimal resolution adaptation and the corresponding value for the scale and padding factor set for each dataset patient

	Sensitivity Analysis
	The evaluated with respect to the initial tumor composition results of the graphical method for sensitivity analysis
	The evaluated with respect to the tumor volume variation results of the graphical method for sensitivity analysis
	The evaluated with respect to the tumor volume variation results of the graphical method for sensitivity analysis

	Application Profiling & Code Optimization
	A summary of the effects of the data preprocessing step, the speedup, the memory footprint reduction and the overall improved potential for the code optimization step it introduces
	The simulation execution callgraph and the costs per function, with respect to the memory accesses and to the CPU cycles count

	Clinical Adaptation
	A summary of the clinical adaptation executions
	The distribution of the simulation input parameters for each clinical adaptation execution
	The evaluation of the clinical adaptation criterion for each virtual patient
	The resulting CKR distribution for each dataset patient


	Conclusion & Future Work
	Bibliography

