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NEPIAHWH

H duvapikr avaAuon Hid KATAoKeUNG anoTeAel £va noAUNAokO kal BgpeAimdec npoBANUA NMONITIKOU
MNXavikou. Zuxva n enilucn Tou NpoBARPAToG IDIOTINWY £VOC GTATIKOU NPOCOUOIWUATOC ANEXEl APKETA
ano TNV NpayuaTikoTnTa yia AOyouc OTATIOTIKAC, EPAPHOYNC OCUVTEAEOT®V aoPaAciag ) aAkaywv KaTd
TNV uAonoinon Tou £pyou. H yvwon Twv nNpayuaTtik®v ISI0TATWV TNG KATACKEUNG Eival anapaitnTn yia
TNV OWOTI NPOCOUOIWAN Kal TNV €KTINGN TNG GUUNEPIPOPAC TOU UNO Wia duvapikn QpopTian (OEIoOC,
a€pag K.Am.)

AuTn n dINAwWATIKN €pyacia npaypaTelUsTal TNV ASITOUPYIKN IDIOMOPQIKN avaAuaon kal anoTiynon Kiag
UNapxouodac KATAOKEUNG ME TNV XPron ouvexwv kupatopoppwv (Wavelets). Méow Tng avaAuong e
Wavelets ival duvatdg o unoAoyiopoc TWV PUOIKOV GUXVOTHTWV TAAAVTWONG, TwV IBI0CXNHATWY, TNG
anooBeonc Kabwg kal Tov evroniopo {NUIOV OE HId KATAOKEUN KATd Tnv OIQpKEId HIAG DUVAMIKNG
QOPTIONG.

AUo TUnol petaoynuartiogoU pe Tnv Xpnon Wavelets peAetriOnkav. O ouvexnc kai o diakpitoc. Ol
HETAOXNMATIONOI auToi EpapPOOTNKAV O NPogopolnpaTa SIodIGoTATwV Kal TPICOIAoTATWV NAQICIwV
Kal KTIpiwv kabw¢ kal 0 PETPROEIG and npayuaTika kTipia. Ta anoteAéopara auta oxohialovTal kai
ouykpivovTal, evw enionuaivovrar méava npoBAfuata nou npokUMNTOUV katd Tnv OIApKEId TwV
avaAUoewv nou ennpealouv Ta anoTeAECPATA Kal yivovTal NPoTACEIG yia TNV AVTIPETWNION TOUG.

>TOXO0G TNG €pyaciacg auTng sival yéoa and Tnv KaTavonan Tou BewpnTIkoU undoBadpou TNG AEITOUPYIKIC
1I010Mop@IKNG avaiuong kai Twv Wavelets va yivel éva Bripa npog Tnv {wvTavr napakoAouBbnon Tng
KATAOTAONG MIa KATAOKEUNG VM €ival g€ AsIToupyia kai n £ykaipn Kal BEATIOTN OIKOVOUIKA avTIMET®MION
BAaBwv.
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ABSTRACT

Dynamic analysis of a structure is complicated and common problem for a civil engineer. Often solving
the eigenvalue problem of a structural model differs from the actual building because of statistics, safety
factors or small changes during the construction phase. Knowing the real structural characteristics is a
necessity to be able to correctly simulate the buildings response under a dynamic load (earthquake,
wind etc.)

The present diploma thesis studies Operational Modal Analysis and evaluation of the damage of an
existing structure with the use of Wavelet analysis. Through wavelet analysis it is possible to calculate
the natural frequencies, mode shapes, damping ratio as well as locate damages on a building during an
excitation from a dynamic load.

2 types of Wavelet transforms were studied. Continuous and Discrete. These transforms were applied
on 2d, 3d models and recordings from real buildings. The results are discussed and compared while
difficulties from applying the methods are highlighted. Few ways to overcome those difficulties are also
suggested.

Goal of this thesis is through the understanding of the theoretical background behind operational modal
analysis and wavelets to move a step closer towards live structural health monitoring of an existing
building as well as monitor system performance and make corresponding maintenance decisions.
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INTRODUCTION 1

1 INTRODUCTION

1.1 Introduction to Structural Health Monitoring

During the lifespan of a building very often damage is observed. The cause might be excessive
earthquake excitation, severe environmental conditions, degradation of the material’s properties, fatigue
and numerous other reasons. This damage usually is observed by visual inspection of the building
elements from experienced civil engineers. Most of the times, if the damage is severe, it is easy to
observe. But there are also cases that the damage cannot be observed.

Structural health monitoring ensures that every bit of damage is located and dealt with so structural
safety can be ensured with the lowest possible maintenance cost. In the latest years structural health
monitoring is becoming more and more popular as an effective way to monitor the health of a building
in real time.

Damage detection includes finding out if damage exists, where, and how severe it is. One of the main
group of methods for damage detection is modal analysis methods. The idea is that damage alters the
modal parameters of the building (natural frequencies, damping ratios and mode shapes).

There are two different types of modal analysis methods.

Experimental modal analysis methods, also going by the name of forced vibration methods, are
conducted with carefully controlled excitations. They are input-output methods which means that both
the system’s input and output are known. This reduces randomness and allows for better understanding
of the structure’s characteristics.

Operational modal analysis methods, also going by the name of ambient vibration methods, on the
other hand, do not control the excitation on the structure. They are output-only methods, since the
system’s input is unknown. These methods do not require extra equipment and can be conducted
without performing an evacuation prior to them. The disadvantage of OMA methods is, since the
ambient vibration is random, there is a chance that some periodicity is present to is, which can produce
false results. Thus, the methods should be able to distinguish the system’s eigenfrequencies from
excitation frequencies through stochastic procedures.

In this thesis only OMA was studied. Specifically, OMA through the use of wavelets. In the last years
wavelets have gained popularity as one of the tools for OMA. Through Discreet and Continuous wavelet
transform buildings’ modal properties are calculated through analysis of recordings from accelerometers
placed in different places around an existing building.
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CHAPTER. 1

1.2 About this Thesis Structure

The thesis contains 8 chapters.

Introduction

Analysis in the Frequency domain: Theoretical basis of Fourier Series, Integral, Series, Continuous
and Discrete Transform.

Time-Frequency Analysis: Short-time Fourier transform, Continuous and Discrete Wavelet transform,
Mother wavelet Choice, MATLAB’s wavelet toolbox.

Dynamic Loads used: Kobe Earthquake — low amplitude ambient vibration, their Fourier transform
and their Welch Power Spectrum.

Discreet Wavelet Transform applications: Single degree of freedom model, multiple degrees of
freedom model, Sherman Oaks — 13 story commercial building.

Continuous Wavelet Transform applications: Single degree of freedom model, multiple degrees of
freedom model, Europroteas, Sherman Oaks — 13 story commercial building, Modal assurance
distribution, Improving the method.

Conclusions

References

AINAQMATIKH EPTAZIA TOY ANASTAZIOY 2ZTAMOY E.M.IN. - 2021



ANALYSIS IN THE FREQUENCY DOMAIN 3

2 ANALYSIS IN THE FREQUENCY DOMAIN

Transforms change one function into another, according to some fixed set of rules. The transformed
function is often easier to handle and provides us with additional information. They are extensively used
in structural dynamics, signal processing and in OMA.

The family of Fourier transforms consists of four transforms. These are shown in Figure 2-1. They all
decompose a function into sinusoids. They are the four possible combinations of continuous/discrete
and periodic/aperiodic. Since we are going to apply the transform on discrete signals, the Fourier
Transform and Fourier series are not usable. Still, since they are the theoretical basis for the discrete
transforms, they will be discussed. Our signals are also finite in length. However, all four transforms are
defined from — to 4+, which means that we would have to act like our signal is infinite in length.
This can be done either by extending the signal with zeros to create an aperiodic discrete signal, or by
duplicates of it to create a periodic discrete signal. In the first case we would use the Discrete Time
Fourier Transform, while in the latter we would use the Discrete Fourier Transform. It turns out that an
infinite number of sinusoids are required to synthesize a signal that is aperiodic, making it impossible to
calculate the Discrete Time Fourier Transform using the computer. We are only left to use the Discrete
Fourier Transform in signal processing.

Twvpe of Transtorm Example Signal

Fouwrier Transform

l.'_l_:.'l'l."\. IRar are Cominiaus :.'l:l'.'.l.].lvlwll..:
Fourier Senes

sigHimls fear ave cowfmions oad perlodly

Dscrere Time Foarier Transfopm .
ngnals ffar are dicerede and aperodie ammasssmsmsnsme iAEmAEE g _-"'In....u-u-u-u
=
. - .
LY LI L)
Diserere Fourigr Transfonu . . .
wgnals that are discrese awd periodic L . I o S ™
=t .. =

Figure 2-1: The Fourier transforms, [12]

2.1 Fourier Series and Fourier Integral

A continuous periodic function x(t) with period T, can be represented as an infinite series of harmonic
(sines and cosines) components of different periods. The variable t can be anything, but since in our
applicactions we use time, it can be assumed that in everything that follows it represents time, while w
the cyclic frequency. The series is called Fourier series and has the form of:
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i 2TKT . 27kt
x(t) =ag+ kzl(ak cos( T ) + bysin ( 7 )) (2-1)
where
1 T/2
G =17 f x(t)dt (2-2)
-T/2
2 (T/2 2mkt
a = —f x(t) cos< )dt,k =1 (2-3)
T 1 T
2 (T/2 . (2mkt
b, = _j x(t) sm( )dt,k 21 (2-4)
T -T/2 T

The cyclic frequency of the k-th harmonics is w, = 2n/T. The increment of cyclic frequency from one
harmonic to the next is constant and equal to Aw = 2n/T. This means that the periodicity of the
continuous signal makes its harmonic series representation discrete. In the case of an aperiodic function
(T -» ), from the last expression we get that Aw — 0, thus the representation tends to become
continuous. Doing so causes the series to become a definite integral with limit w = 0s to w = o allowing
us to represent any continuous function, periodic or aperiodic, in harmonic terms of every real frequency
w. This integral is called Fourier integral and has the form of:

+00 + oo
x(t) = ZJ A(w)coswtdw + Zf B(w)sinwtdw (2-5)
0 0
where
1 [+
Alw) = EJ(; x(t)coswtdt (2-6)
1 [+
B(w) = —f x(t)sinwtdt (2-7)
2m J,

Equation is the representation of the Fourier Transform by the Fourier integral, or the inverse Fourier
Transform. The integral indicates the frequency composition of an aperiodic function.

2.2 Fourier Transform

We can put equations (2-6) and (2-7) together and define a complex function of w (or f = w/2m). This
complex number has a real part of A(w) and an imaginary part of —B(w). as in (2-8). This is how the
Fourier transform X(w) is defined. By using Euler’s formula (2-9), we can bring (2-8) in the form of
(2-10), called the complex form of the Fourier Transform (FT). The functions x(t) and X (w) are called
transform pairs. We write F{x} = X.

X(w) = A(w) — iB(w) (2-8)
e!® = cos@ + isind (2-9)
_ 1 e —iwt
X(w) = Ef_w x(t)e ' tdt (2-10)
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Notice that X (w) is a complex function of w, while x(t) is a real function of t. This is why we say that
the transformation x(¢t) is transferred from the time to the frequency domain. Both x(t) and X (w) are
continuous and describe the same thing, but in a different way. By looking at definitions of mean value,
cross correlation and the real and imaginary part of X(w), (2-6) and (2-7), we conclude that A(w) and
B(w) are the cross correlations of cosines and sines, respectively, of all possible frequencies, scaled
with the factor of 1/2%. The complex form of X(w) just packs these two correlations together in one
function. Also (2-5) states that we need both parts to return to the time domain. In the end, A(w) and
B(w) tell us how close to a cosine or sine of frequency w is our function x(t). This is the in the polar
notation. We graph the magnitude |X(w)| and angle arg(X(w)), to get the Fourier magnitude and
Fourier phase respectively. The magnitude and phase are a pair-to-pair replacement for the real and
imaginary part of X(w). The two notations are equivalent and related by using the property of the
trigonometric functions (2-11) by setting M = X(w) and 8 = arg (X(w)):

Acos(x) + Bsin(x) = Mcos(x + 6) (2-11)
arg(X(w)) = arctan (%) (2-12)
X(@)] = (Re(X(w))" + Im(X(a)))z)l/ i (2-13)
Re(X(a))) = |X(w)|cos (arg(X(w))) (2-14)
Im(X(w)) = |X(w)|sin (arg(X(w))) (2-15)

2.3 Properties of the Fourier Transform

2.3.1 Linearity property of the Fourier Transform

The FT is linear, as it possesses the properties of homogeneity and additivity. Homogeneity means that
scaling a function with a complex number in the time domain will result in an identical scaling in the
frequency domain. Additivity means that adding two functions in the time domain will result in an
addition in the frequency domain. With the FTs X, (t) and X,(¢t) of two functions x,(t) and x,(t) known,
we can directly calculate their linear combination by:

F{e12,(6) + c2x2(1)} = c1X1(w) + ¢2X3(w) (2-16)
Example 1:

F{2e7tu(t) + 3e 2*u(t)} = F{2e tu(t)} + F{8e *u(t)}

= 2F{e " u(t)} + 3F{e **u(t)} = (2-17)

1+iw + 2+iw
2.3.2 Time reversal property of the Fourier Transform

Reversing the time domain of a function x(t) that is replacing t with —¢t, will result in the reversal of
X(w) in the frequency domain, replacing w with —w. It is expressed by:

F{ix(-0)} = X(—w) (2-18)
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2.3.3 Time shift property of the Fourier Transform

Shifting a function x(t) in the time domain by ¢t,, causes its FT to be multiplied by a complex exponential
e—i(;)ktol

F{x(t —ty)} = X(w)e~i@wkto (2-19)

Example 2: g(t) is a pulse of width 2 and we want to calculate the Fourier Transform
_(13<t<5
9(®) = {0 otherwise

5 e _ai A . i .
e S5iw __ e 3iw e 41m(elm —e Lm) ] sinw
= — e—4—1m2 .

w

—iwt

5
G(w) =f le @tdt =
3

—ilw 5 —lw lw
2.3.4 The differentiation and integration properties

The FT of the derivative and integral of x(t) is calculated easily if X(w) is known:

F{x ()} = X(w)iwy (2-20)

F{[ xoar) - X(w) (2-21)

lWg

24 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) takes a periodic discrete function and turns it into a discrete
function in the frequency domain. The discrete nature of both domains makes it the only transform that
can be used with computers and one of the primary tools in signal processing. By transforming a discrete
function x,, with step At = 1/fs between the function’s values, size N, total length T, we end up with
a discrete function X,. Its real part is symmetric while its imaginary party is antisymmetric inside the
frequency domain [-N/2,N/2 — 1], if N is even or [-(N — 1)/2, (N — 1)/2] if N is odd. The frequency
step is Af = f,/N. This means we only need to plot half the frequency domain. The count k of the
frequency step is called bin number. The DFT is performed by using the equation (2-22), which we get
from (2-10) if we discretize both domains:

N-1
2mkni
X, = F{x,) = z Xee N (2-22)
k=0
N-1
2mkni
Re(X,) = X cos( N ) (2-23)
k=0
N-1
ImX,) = — Z ] (2nkni) 924
m(X,) = k_oxksm N (2-24)

The real and imaginary part of X,, are the cross correlation of x, with cosines and sines of discrete
frequencies k/N.
25 The Fast Fourier Transform (FFT)

One of the most useful algorithms to calculate the DFT is the Fast Fourier Transform (FFT). Discovered
by J. W. Cooley and J. W. Tukey in 1965 and since then has been used in most applications. It has high
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computational efficiency. This means it can reduce the computation time by hundreds while producing
the same result as any other algorithm, as even for a small sample size as seen in Figure. The algorithm'’s
code itself is small but understanding the internal workings is much more complicating. It can still be

used to the fullest assuming one has knowledge of the DFT. This algorithm is present in most
programming packages, such as MATLAB and Python.
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3 TIME-FREQUENCY ANALYSIS.

3.1 The Short Time Fourier Transform and the Spectrogram.

The short time Fourier transform and the spectrogram are used to analyse the frequency content of
signals when the frequency content varies with time. This is achieved through the application of DFT.
Segments of the original signal are windowed out from the rest of the signal and then DFT is applied to
each segment. The segments can also be overlapping. We can display the DFT coefficients as a function
of both time and frequency on 2 axis. This way we can have a better insight on the time varying
frequency characteristics of the signal.

+00

X[n,2) = Z x[n + m]w[m]e~im (3-1)
where
21
A = Wk (3'2)

and length of the signal N is bigger than the length of the window L. This gives us the final short time
Fourier transform

L-1
X[n k] = Z x[n + m]w[m]e_jk(%n)m (3-3)

m=0

where n is the reference time, k is the frequency, x(t) is the signal, w[m] is the time window. L trades
temporal resolution for frequency resolution, as L increases details that change in time are lost but
better resolution in the frequency domain is achieved.

The spectrogram is defined as the magnitude squared of the short time Fourier Transform.
X[, k]|? (3-4)

The short time Fourier transform is invertible

N-1

1 2
x[n +m] =Wz X[n,k]e"(i(%) km (3-5)

but once the spectrogram is computed, magnitude squared is throwing away phase or sine information
so the spectrogram is not invertible.
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Spectrogram of the signal
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Figure 3-1: Short-Time Fourier Transform Spectrogram [26]

3.2 Continuous Wavelet Transform (CWT)

Wavelet analysis provides a powerful tool to characterize local features of a signal. Unlike the Fourier
transform, where the function used as the basis of decomposition is always a sinusoidal wave, other
basis functions can be selected for the wavelet shape according to the features of the signal. The basis
function in wavelet analysis is defined by two parameters: scale and translation. These properties lead
to a multi-resolution representation for non-stationary signals.

The Continuous wavelets transform of a signal f(t) is defined as:
ruba) = [ uo? (=2 a
Jd.) == (e (<) de (3-6)

where i(.) is a square integrable and piece-wise continuous function called the mother or analyzing
wavelet, and #(.) is its complex conjugate. The pair (b,a) is called the time-scale variable of the analysis,
where a (a>0) is a scale parameter that plays the role of the inverse of frequency, and b is a translation
parameter related to time. (3-6) can be viewed as either the inner product between the signal u(t) and

the shifted and scaled copies of ¥(t): vy, ,(t) = G) z/;(%), or as the convolution product between wu(t)
and %J)(— Z). The function (t) is an admissible mother wavelet when C,,, defined by

+00 ~ 2 da
Cy = fo [ (aw)|" (), (3-7)

is finite, non-zero and independent of the real number w. In Eq. (3-7), ¥ (w) is the Fourier transform
(FT) of y(©): P(w) = [ p(t)e~“*dt. When admissibility condition is verified, the signal u(t) can be
reconstructed by

s = [ [ e 52) (5) . (39

Moreover, Parseval’s theorem applied to (3-6) gives the following expression in frequency domain:

1 (™ =
Tylul(b,a) = ﬂf Y (aw)e“tdw (3-9)

The local resolution of the CWT in time and in frequency depends on the dilation parameter a and is
determined, respectively, by the duration At,, and bandwidth Aw,, of the mother wavelet:
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Aa}w

At = adty, Aw = (3-10)

a

Here, At,, and dw,, are stated in terms of root mean squares which are equivalent to standard deviation
in statistics

1 +oo
Aty = WJLO (t —t,) [p(0)|2dt. (3-11)
1 + 00 2 2
Awy = 5= w—wy) [Y()| do (3-12)
P ”¢”2\/J-_m( w)| |
where t,, and w,, are the center of y(t) and P(w), respectively,
() o )
= —d = -
o= | e "1l (3-13)

|I. [I,denotes the classical norm in the space of square integrable functions. The function y is said to be
localized about the phase point (tw' ‘“w) with uncertainty u(y) = At Aw,. It can be seen from Equation

(3-10) that u(vy,,q) = Atdw = u(). The Heisenberg uncertainty principle states that p(y) > % thus an
improvement of the time localization (i.e., an increase of Adw). If w,,/a is considered to be the frequency
variable w, then the tw plane can be viewed as the time-frequency plane. The localization domain for
the CWT at point (b, w = “*/4) becomes

w
1l’/a 3 Awy ﬂ+ Awy

b + aty, — adty, b + aty, + aAdt ,
[ Aty = @0ty ahy T w]x 2(dwy/a) a '« a

(3-14)

Referring to the conventional frequency analysis of constant-Q filters, the Q factor is introduced as the
ratio of the centre-frequency to the frequency bandwidth

1)
= w/a = ww
20wy /a) 24wy

Q (3-15)

Q is independent of a. Gram-Hansen and Dorize [24] associate this @ value to the filter bank of a
(1/N)th octave that is a classical notion in acoustics: a (1/N)th octave band of center frequency w,, is

a band [w;, w,] With w, = 2™ /28w, and w, = 2"/2nw,, , hence Q = 1/2/2N — 2-1/2N,

Due to the linearity property of the CWT, the signal of multi-components can be processed as

Ty

Z u; [ (b,a) = Z Ty [uj](b, a). (3-16)
j=1 j=1

Using localization properties of the mother wavelets, in both time and frequency domains a particular
component u; can be extracted from multi-component signals. If ) and u are continuous and piece-

wise differentiable, the integration by parts theorem allows relation (3-6) to be rewritten as
T, [1](b )_1 (t)_(t_b) +oo 1J‘+°° (t)‘i_’(t_b)dt
pllh,0) = S @b (— =) 1FE-g | w@P(—=)dd (3-17)

Moreover, when 1 is square and absolutely integrable and u is of finite energy, the CWT of u with ¢ is
then related to the CWT of u with v:

1
Tylu](b,a) = - 2T [ul(b, @). (3-18)
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This relation can be easily extended to the finite energy signal it when v is square and absolutely
integrable:

1 1
Ty lil] (b, @) = —ETlp[u](b, a) = ;Tip[u](b, a). (3-19)

It should be also noted that for the expression of T[] and of Ty[u] in the frequency domain [see
(3-9)], J) and 1,13 can be substituted by —ianf)(w) and —iwztfj(w) respectively.

3.3 Discrete Wavelet Transform (DWT)

By discrediting the parameters, a and b, a discrete version of the wavelet transform. (DWT) is obtained
(Newland (1993)). The procedure becomes more efficient if dyadic values of a and b are used, i.e.

a=2'b=2/k jkeZ (3-20)
where Z is a set of positive integers. The corresponding discretized wavelets Wjk are defined as
W) = 27w 2Tt — k) (3-21)

where ¥; , forms an orthonormal base. In the discrete wavelet analysis, the signal can be represented
by its approximations and details. The signal is passed through a series of high pass filters, which relate
to details, to analyze the high frequencies and through a series of low-pass filters, which relate to
approximations, in order to analyze the low frequencies. The detail at level j is defined as

bj = z ajc e (6) (3-22)
kez
where q; , is defined as
+0oo
A = J fOP, ©adt (3-23)
and the approximation at level ] is defined as
=)0 (3-24)
i>7

Finally, the signal f(¢t) can be represented by

f©)=4;+ Z b; (3-25)

js]

3.4 Mother Wavelet Choice

3.4.1 Continuous Wavelet Transform.

The optimal mother wavelet W for modal identification purposes using the free responses of a m.d.o.f
system should satisfy the following conditions:
e Y is admissible (3-7)
e Y is progressive.
e Y has good time and frequency localization properties
e The first and the second derivatives of y satisfy the three previous conditions and thus Eq.
(3-19) can be used.
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The first condition is obvious. Several reasons suggest the use of progressive wavelets instead of real
ones for the analysis of real signals: It allows the direct connection between a real signal and its
associated analytic signal. The wavelet transform of real signals using real wavelets yields real wavelet
coefficients and there is no natural way of making a connection with some “local spectrum” which one
would like associate with a given signal. The third condition is very important in the context of time-
frequency analysis and the final condition makes the processing by CWT of displacement, velocity and
acceleration easier without differential and integral operations.

Three complex-valued mother wavelets are compared. One or two parameters appear in the definition
of each mother wavelet and strongly influence the localization properties. The first one is the Morlet
wavelet, Figure 3-2: Real-valued Morlet wavelet [17], Figure 3-3: Complex-Valued Morlet wavelet [17].
The second is the Cauchy wavelet of order n, intensively used in quantum mechanics when n = 1 and
also by Argoul et al when n>1, Figure 3-4: The Cauchy wavelet [18]. Finally, the third one is the
harmonic wavelet recently proposed by Newland, Figure 3-5: The Harmonic wavelet [20].

0.6

0.4

0.2

0.0F

-0.2k

- 041

-0.6F

L L L
-4 -2 0 2 4

Figure 3-2: Real-valued Morlet wavelet [17]

Figure 3-3: Complex-Valued Morlet wavelet [17]
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Figure 3-5: The Harmonic wavelet [20]

The formulae of ¥(t), (@), Cy, ty, wy, Aty, Awy, uy, and Q are given in Table 3-1 for the three wavelets.
The first and the second condition are verified by both Cauchy and harmonic wavelets. The Morlet
wavelet is only numerically admissible and progressive when the product of the two parameters Bo is
large enough ((B6 = 5in practice). According to the third condition the Morlet wavelet has its time-
frequency window with the smallest area allowable (%) by the Heisenberg inequality. The uncertainty
uy of the Cauchy wavelet behaves asymptotically with this threshold when its order parameter n tends
towards infinity. The harmonic wavelet has infinite uncertainty but its support in frequency domain is
compact. This property allows the isolation of components with close frequencies. Newland improves
time localization by windowing the spectrum of wavelets, but it is more complicated. The last condition
is easily verified by the definition of the Cauchy wavelet given in Table 3-1: Definition of the main
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characteristics of the three mother wavelets.. The first and the second derivatives of i, are also the
Cauchy wavelets since

Pn(t) = i+ Dhper(0) and Pn(t) = —(n + D (1 + 2) 142 (t) (3-26)
and the identification procedure with u and ii by the aid of Eq (3-19) is limited.

The properties of the mother wavelet can be referred to the parameter Q defined in relation (3-15).

Table 3-1: Definition of the main characteristics of the three mother wavelets.

Morlet Wavelet Cauchy Wavelet Harmonic Wavelet
i n+1 eianrt _ eiZmrct
Y(t) et*/@8Nglht (t + i) i2n(n —m)t
2nw"e”? 0[(w —m2m)(n21 — w)]
D(w) | 6vV2me(@-B)*8%/2) n 0(w) (n—m)2n
1 2n —1)! 1 n
4-7'[2 (T) ( 2) In (—)
Cy 0 22n) % (n!) An?’(n—m)?  \m
ty 0 0 0
1
Wy B "t2 (n+m)n
1 V2n+1
Awy, V2 2 (n-m)m
5 1
Aty 2 2n—1 o
2
1 - |1+
fy > 2 2n—1 o
1
Bé n+s n+m
Q V2 v2n+1 2(n—m)
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3.4.3 Discrete Wavelet Transform.

A wavelet is virtually any waveform that has limited duration and zero average. It is important to notice
that the results of wavelet transformation depend on the choice of the wavelet selected. There are
several wavelet families that can be selected.
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Figure 3-7: Families of Symlet (Sym) and Biorthogonal (Bior) Wavelets [8]

The results of wavelet transform, both discrete and continuous, strongly depend on the choice of
wavelet selected. In earthquake engineering the most common wavelets are Daubechies and
Biorthogonals. Both bior 6.8 and DB4 were used during this thesis and the results were always similar.
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3.5 MATLAB Wavelet Toolbox Function

MATLAB's CWT toolbox is using a function based on expansion of the integral for a discrete time interval
k and k+1

WT(a, b) :%Z"(")( f kﬂw(#) dt — f ' w(?) dt) (3-27)
- e e

The interval subtraction is calculated through finite differences. In MATLAB the numerical integral of
P (¢) is calculated only once, instead of each dilated and shifted wavelet, and the values of the integral
are dilated to obtain the integral of ;) (t). The discrete number of points of the mother wavelet
integral depends on a precision parameter p, which can take positive integer values, with higher values
meaning better discretization of the wavelet. This procedure is improving the processing time and
memory limits used by the program because the integral of the mother wavelet is computed only once
and has a fixed length of discrete points. This means it doesn’t depend on the length of the signal. This
means that the results obtained from MATLAB are only an approximation of the CWT and considerable
numerical pitfalls can be introduced in some cases.

Another thing that needs to be addressed is the edge effect. While wavelet is shifted along the begging
and the end of the signal, a part of it fails outside the signal. This has a result the generation of useless
coefficients in that region that are causing the edge effect. This means every CWT analysis needs to
start after a certain time period.

_Bflts

where f;, is the bandwidth parameter and f, is the mother wavelet central frequency and 8 equals to 4.

MATLAB is generating a cone of influence that marks the territory on the scalogram affected by the
edge effect automatically. The cwtfilterbank and cwt functions use an approximation to the 1/erule to
delineate the COI. The approximation involves adding one time-domain standard deviation at each scale
to the beginning of the observation interval and subtracting one time-domain standard deviation at each
scale from the end of the interval.
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Figure 3-8: MATLAB generated Cone of influence
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4 DYNAMIC LOADS USED

4.1 Kobe Earthquake

Kobe earthquake, also known as The Great Hanshin earthquake, occurred on January 17, 1995 in Japan.
The tremors lasted approximately 20 seconds. Recordings used are from Fukoshima sensors
downloaded from PeerNGA [21]. Response Spectra and Welch Power Spectrum from SeismolLee.eu
[23].

Response spectra - damping ratio 4%
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Figure 4-1: X Axis Response Spectra
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Figure 4-3: X-Axis Accelerations signal — Welch Power Spectral Density Estimate — Fourier transform
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Acceleration Time Series
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Figure 4-4: Y-Axis Accelerations signal — Welch Power Spectral Density Estimate — Fourier transform
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4.2 MATLAB generated low amplitude ambient vibration (White-Noise)

White noise is a random signal that has equal amplitude at different frequencies. Such signal is easy to
make in MATLAB with the following code.

N=8000
ao = 0.1;
A= ac.Yrandn(l, N} ;
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Figure 4-5: White Noise Accelerations signal — Fourier transform
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5 DISCRETE WAVELET TRANSFORM
(DWT) APPLICATIONS

When a structure is subjected to earthquake excitation, if the excitation is strong enough some of the
structural members will yield. Furthermore, if the excitation is strong enough to push the member deep
into the anelastic section, there will be visible damage that can be observed with visual inspection. If
the excitation is just strong enough to make the member yield without visible damage, there is no way
to visually tell that a member has been damaged. Especially if it's covered. Wavelet analysis can help
detect this kind of damage. When a member vyields, there is degradation of its stiffness which affects
the frequency the building is oscillating. This change is imprinted in the form of spikes in details diagram
of its wavelet transform.

Discrete wavelet analysis was tested on 4 different recordings
1. 1 Story 2D frame simulated with Seismostruct 2020
2. 10 Story 2d frame simulated with Seismostruct 2020
3. 6 Story 3d building simulated with Seismostruct 2020
4. Sherman Oaks — 13 Story Commercial Building (recordings from StrongMotion.org)

5.1 Automatization of the method

The above method is dependent on manual observation on the wavelet detail signal. For this reason,
there is need for a more robust and automated numerical procedure. For this reason, for every details
signal, the absolute maximum value of the signal, maxD, will be calculated. A portion of that value will
be compared to the rest absolute values of the signal. With trial and error, the most efficient value is
p = 0.25 * maxD. After that the parameter R is calculated. R is the percentage of how many times the
absolute values of the details signal exceed p. If the calculated R is small enough, usually < 1%, it is
an indicator that spikes exist in that detail signal. Otherwise, if R > 1% then no spikes exist, and
consequently no damage has occurred.

Detail, D
T
|

' | ' 1
|.)’II]B.\|J e S s -l S

M D fmm b

T'ime

Figure 5-1: Representative picture correlating the limits of R value with spikes of wavelet details signal for R<1%
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Detail, D
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Figure 5-2: Representative picture correlating the limits of R value with spikes of wavelet details signal for R>1%

(1]

5.2 1 Story 2D Seismostruct model.

SeismoStruct is a Finite Elements package capable of predicting the large displacement behavior of
space frames under static or dynamic loading, taking into account both geometric nonlinearities and
material inelasticity.
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Figure 5-3: Seismostruct model.

The present system was modelled as 1 Story single degree of freedom 2D steel frame. The height of
the story is 3m. Mass of 350MGr was concentrated on the middle of the beam. There are 5 columns
with different elastic modulus and yield strength of 270Mpa. The columns and the beam are 0.2x0.2m.
The steel is following the bilinear model. Elastic Modulus of Columnl and Column2 is 1.5 = 108Kpa.
Elastic Modulus of Column 3 and Column 4 is 2 = 108Kpa. Elastic Modulus of Column 5 is 4 = 108Kpa.
Elastic Modulus of the beam is 2 = 101°Kpa and it is behaving only linear elastic. The acting load is Kobe's
earthquake. Newmark’s method was used to solve the differential equation. A scaling factor of 0.1 and
1.5 was applied to the load for the 2 simulations.

For scaling factor of 0.1 maximum displacement of the top was 0.002m.
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Figure 5-4: Accelerations diagram of the first story center of mass.

After applying the first level discreet wavelet transform using Daubechies 4 wavelet we are getting the
following 1% level details diagram.

s x10°
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time(s)

Figure 5-5: 1%t level Details diagram

There are no spikes. The R Value is equal to 4.4% which means that there is no damage present. The
results are confirmed from SeismoStruct where it's observed that all the columns did not reach their
yielding point.

For A scaling factor of 1.5 maximum displacement of the top was 0.034m
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Figure 5-6: Accelerations’ diagram of the first story center of mass

After applying the first level discreet wavelet transform using Daubechies 4 wavelet we are getting the
following details diagram.
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Figure 5-7: 1% level Details Diagram

There are big spikes that match with the yielding moments given from Seismostruct. R value is equal
to 0.43% which confirms that there are spikes and that indicates that there is damage.

This is also confirmed from SeismoStruct that all the columns reached and surpassed their yielding point
multiple times during the excitation as seen on Figure 5-8. Bending Moment and Rotation values for
each spike time moment are marked with orange.
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Figure 5-8: Bending Moment — Rotation Diagrams

5.3 10 Story 2D Seismostruct model.

Figure 5-9: Seismostruct model
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The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of
150MGr was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic
modulus of each column is 1.5*108Kpa and the yield stress oy is 135Mpa, steel is following the bilinear
model.. Elastic modulus for the beams is 2 x 10'°KPa. For this model all elements except the ones
between the 1%t and the 2" story are always moving linearly.

First for A scaling factor of 0.1 there is no damage on any of the elements.
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Figure 5-10:1% level Details diagram

All 15t level details diagrams follow the same pattern.
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Figure 5-11: R Values for each story

From the R values calculated there is no damage indicated which is also confirmed from the results of
the Seismostruct analysis.

For A scaling factor of 2 the columns between the 15t and the 2™ story are past their yielding point.
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Figure 5-12: 1%t level Details diagram of the accelerations of the first 2 floors.

There are obvious spikes which are also confirmed by the R values
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Figure 5-13: R Values

Close to the damage R values are below 1% which is sign of damage. Results are confirmed from
Seismostruct that there is damage between the 15t and the 2" story as shown on Figure 5-14. Bending
Moment and Rotation values for each spike time moment are marked with
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Figure 5-14: Bending Moment — Rotations diagram — 2" story columns

54 6 Story 3D Seismostruct model.
' ' ! ] ﬂ- i ] | i 1l 1 T

Figure 5-15: Seismostruct model

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of
350MGr was concentrated on the middle of each beam. Moment of inertia 3750MGr*m?2. Columns and
beams are 0.3x0.2m. Elastic modulus of every column is 1.5 * 108K Pa. Elastic modulus of every beam
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is 2 * 101°K Pa. For this model all elements except the ones between the 15t and the 2" story are always
moving linearly. Yield stress of the columns between the 1% and the 2™ story is oy is 135Mpa. Steel is
following the bilinear model. For X-Y axis the equivalent Kobe Earthquake excitation were used, both
were adjusted with the same scaling factor A.

First for A scaling factor of 0.10 there is no damage on any of the elements.
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Figure 5-16: 1%t level Details Diagram — X Axis
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Figure 5-17: 1%t level Details Diagram — Y Axis
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Figure 5-18: 1% level Details Diagram — RZ Axis
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Figure 5-19: R values — X Axis
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Figure 5-20: R values — Y Axis
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Figure 5-21: R Values — RZ Axis

The results are confirmed by the results from Seismostruct. There is no damage to the building.

For A scaling factor 1.5 the columns between the first and the second story go past their yielding point.
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Figure 5-23:
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1%t level Details Diagram — RZ Axis
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Figure 5-25: R Values — X Axis
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Figure 5-26: R values —Y Axis
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Figure 5-27: R Values — RZ Axis

R values on all 3 axis are close or lower than 1% which indicates that there are spikes in the details
diagrams. Seismostruct results confirm that there is damage around the 1%t and 2™ story. Bending
Moment and Rotation values for each spike time moment are marked with orange.

Bending Moment - Rotation - X Axis
800

0,03

Bendingd¥oment(KNm)
o
w

-800 "
Rotation

AINAQMATIKH EPTAZIA TOY ANASTAZIOY 2ZTAMOY E.M.IN. - 2021



DiSCRETE WAVELET TRANSFORM (DWT) APPLICATIONS 39

Bending Moment - Rotation - Y Axis
500

BendingdMoment(KNm)
o
ul

Rotatior-l

Figure 5-28: Bending Moment — Rotation Diagrams — 2" story columns

Also, it's good to note that the weak axis is the one dictating when the spikes appear, in our case that’s
X axis.

5.5 10 Story 2D Seismostruct model using Menegotto — Pinto steel model

Figure 5-29: Seismostruct model
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Menegotto — Pinto steel model is a single axis steel model based on a simple but effective formula
proposed by Menegotto and Pinto in 1973 extended by Filippou et al. to include isotropic strain
hardening effects (1983). Over 10 parameters can be changed to optimize the material behavior. [28]
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Figure 5-30: Menegotto — Pinto constitutive model for steel.

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of
150MGr was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic
modulus of each column is 1.5*%108Kpa and the yield stress oy is 135Mpa. Elastic modulus of the beams
is 2 * 101°KPa. For this model all elements except the ones between the 15t and the 2" story are always

moving linearly.

Table 5-1: Menegotto — Pinto steel constitutional model parameters

Material Properties Value Chosen
Modulus of elasticity 1.5 * 108 (kPa)
Yield strength 135000(kPa)
Strain hardening parameter - u 0.005
Transition curve initial shape parameter — RO 20
Transition curve shape calibrating coefficient
18.5
-Al
Transition curve shape calibrating coefficient
0.15
-A2
Isotropic hardening calibrating coefficient - 0
A3
Isotropic hardening calibrating coefficient - 1
A4
Fracture/buckling strain 0.1

First for A scaling factor of 0.4 there is no damage on any of the elements.
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Figure 5-31:1% level Details diagram

All details diagrams follow the same pattern.

10 T T T
| \\ J

2 o
.
® -
50 \k 7
~L
~
\

4t \ 7
3+ > |
2+ . _

1 | | ,,.,,,_,,,_,,_,,,.,,.,,,. | | ‘
2 25 : T | 4.5 |

R(%)

Figure 5-32: R Values for each story

From the R values calculated there is no damage indicated which is also confirmed from the results of
the Seismostruct analysis.

For A scaling factor of 1 the columns between the 1% and the 2™ story are past their yielding point.
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Figure 5-33: 1%t level Details diagram of the accelerations of the first 2 floors.

There are obvious spikes which are also confirmed by the R values
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Figure 5-34: R Values

Close to the damage R values are significantly below 1% which is sign of damage. Results are confirmed
from Seismostruct that there is damage between the 15t and the 2™ story as shown on Figure 5-14.
Bending Moment and Rotation values for each spike time moment are marked with orange.
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Figure 5-35: Bending Moment — Rotations diagram — 2" story columns

5.6 Sherman Oaks — 13 Story commercial building.

Sherman Oaks is an office building designed in 1964 with 13 stories above and two floors below the
ground. The vertical load carrying system consists of 4.5 inches thick one-way concrete slabs supported
by concrete beams, girders and columns. The lateral load resisting system consists of moment resisting
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concrete frames in the upper stories and concrete shear walls in the basements. The foundation system
consists of concrete piles. Sensors were placed in different floors of the building.

Sherman Oaks - 13-story Commercial Bldg
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Figure 5-36: Sensor Locations

The building was moderately damaged during the 1994 Northridge earthquake while it sustained no
damaged during the 1992 Landers Earthquake. Sensor 7 is the one closest to the damaged area.
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Figure 5-37: 1%t level details of DWT applied on acceleration signal — 1992 — Sensor 7
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Figure 5-38: 1%t level details of DWT applied on acceleration signal — 1994 — Sensor 7

There is a big spike on the details diagram from the 1994 recordings. This is indication of damage. This
is also confirmed by the R values calculated for every sensor on both occasions.
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Figure 5-39: R Values - 1992
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Sensor

Figure 5-40: R Values — 1994

On the sensor closest to the damaged area R value is smaller than 1% which indicates that there are
spikes on the details diagram. Results are in line with the performance analysis calculations for the

building.

0.19W maximum base shear experienced by the building in the N-S direction is significantly larger than

Uniform Building Code (UBS) analysis calculated strength design shear of 0.06W.

Table 5-2: Response Summary for Sherman Oaks 13-Story Commercial Building [8]

Response Parameter Direction Time of Maxima Maximum Value
(Seconds)
N-S§ 5.14 1870
Base Shear
E-W 12.72 7.57
(% Total Weight)
Diff 3.24 6.69
N-S§ 322 1304
Overturning Moment
E-W 11.52 771
(% Total Weight x feet)
Diff 322 615
Roof Lateral N-S§ 10.86 24.10 (0.0048) *
Displacement E-w 37.98 33.42 (0.0067) *
Relative to the Base (cm) Diff 11.00 4.30 (0.0009) *

*Qverall drift index values are shown in the brackets
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6 CONTINUOUS WAVELET TRANSFORM
(CWT) APPLICATIONS.

CWT is a tool that when applied to a signal, produces a time-frequency representation. By applying this
transformation on the free response of a linear mechanical system it allows the estimation of the natural
frequencies, viscous damping ratios and mode shapes. In case the free response is not available, then an
approximation needs to be extracted from the signal using the Random Decrement (RD) method. Furthermore,
difficulties appearing during the application of the method will be discussed along with ways to solve them.

Continuous wavelet transform was tested on 5 buildings

1. 1 Story 2D frame simulated with Seismostruct 2020

10 Story 2d frame simulated with Seismostruct 2020

6 Story 3d building simulated with Seismostruct 2020

1 Story 3d building EUROPROTEAS

Sherman Oaks — 13 Story Commercial Building (recordings from StrongMotion.org)

vihwn

6.1 Estimation of Damping Ratio and Mode shapes using wavelet transform.
A single degree of freedom system'’s equilibrium can be expressed as
mi + cx + kx = f(t) (6-1)

where m is the mass, c is the damping and k is the stiffness of the system. From the above equation the
damped free vibration of an underdamped system can be expressed as

x(t) = A(t) * eFlonV1=¢*t = 4(¢) x gl0(® (6-2)
or also as
A(t) = Age~cont (6-3)

where A(t) is the decaying envelope of the free vibration response, c the damping ratio and A4, the initial
amplitude of the response.

Using the Morlet wavelet function, the modulus of CWT coefficients can be approximated as
IW(a,b)| = A(b)IG"(a(¢(b))I (6-4)
by using equation (6-2), (6-3), (6-4) and by knowing the initial amplitude 4,

G*(xagiw,y1 — c2)| (6-5)

W (ag, b)| = Age™c“nb

Applying logarithm to both sides

In(|W (ag, b)]) = —cwpb + In (

G*(xagiw,y1 — c2)|) (6-6)

solving this formula for ¢, the damping ratio of the system can be estimated from the slope of the straight line
of the wavelet modulus cross using
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1 | W (ay, b)
‘T om" |W(a0,b + mT,)

(6-7)

Wavelet coefficients between different Stories for a certain frequency have the same analogy as the mode
shapes. So, mode shapes are estimated through the wavelet output response at point k and a reference point

Wk(ail b)

k _ -
O W (o, ) (&-6)

6.2 Random Decrement (RD) Method

The Random decrement (RD) method is a method used to estimate the damping ratio of a structure. This
method is using the ambient vibration measurement of the structure and is extracting a RD signature which
represents the response equivalent to the damped free vibration response. This method is based on that the
response of a dynamic system is composed of three response components. That is initial displacement, velocity
and the force vibration response.

The intention of using the sampling technique is that averaging time segments of the ambient vibration
measurement of a structure with a common triggering condition is to reduce the initial velocity response and
the forced vibration response to zero. As number of segments increases the ensemble average of the forced
vibration response tends to zero. If all segments in the average begin at the same threshold level and
alternating positive and negative slope, then the response due to initial velocity is averaged out while the
response due to initial displacement remains. Based on this explanation, the RD signature is equivalent to a
damped free vibration response of a structure to an initial displacement equivalent to the selection amplitude.
The RD signature 0 is expressed by

1 N
8 = NZ(xi.(tm)) (6-9)
i=1
Where N is the number of segments used to evaluate the RD signature.

6.3 1 Story 2D Seismostruct model.
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Figure 6-1: Seismostruct model.

The present system was modelled as 1 Story single degree of freedom 2D steel frame. The height of each
story is 3m. Mass of 350MGr was concentrated on the middle of the beam. There are 5 columns with different
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elastic modulus and yield strength of 270Mpa. The columns and the beam are 0.2x0.2m. The steel is following
the bilinear model. Elastic Modulus of Column1 and Column2 is 1.5 = 108Kpa. Elastic Modulus of Column 3 and
Column4 is 2 = 108Kpa. Elastic Modulus of Column 5 is 4 = 108Kpa. Elastic Modulus of the beam is 2 * 10*°Kpa
and it is behaving only linear elastic. The acting load is Kobe's earthquake with 10 seconds of zero load added
in the end so the free decaying response can be extracted without the use of any method. Newmark’s method
was used to solve the differential equation.

A scaling factor of 0.1 was applied to the excitation.

Through Seismostruct the natural frequency f; is calculated to be 2.155HZ so T, = 0.464s. Damping ratio c is
set to be 4%.

CWT is applied on last 10 seconds of the accelerations signal calculated through Seismostruct. This signal
matches the 10 seconds time period of zero load added to the excitation. Morlet mother wavelet was used
through MATLAB's wavelet toolbox.

Magnitude Scalogram %107
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0.5
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Figure 6-2: Magnitude Scalogram of the free decay accelerations signal.

After the time frequency resolution is calculated through CWT a window parallel to the frequency axis is
extracted (Intersection 1).
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Figure 6-3: Extracted window parallel to frequency axis.[1]

The highest number of coefficients is at the frequency f; = 2.176Hz — T; = 0.46s. Error is less than 1%.

After f, is calculated the parallel to frequency axis at the wavelet ridge is extracted.
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Figure 6-4 Extracted window parallel to frequency axis at the wavelet ridge [2]
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Figure 6-5: Comparison of free decay response and the extracted wavelet envelope [2]

After 6 seconds the response is so small that the diagram has no meaning.

From Equation (6-7), damping ratio can be calculated. In this case ¢ = 0.0395. Error of 1.25%.
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6.4 10 Story 2D Seismostruct model.

Figure 6-6: Seismostruct model

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 150MGr
was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic modulus of each
column is 1.5 = 108KPa and the yield stress oy is 135Mpa. Elastic modulus of the beams is 2 « 10'°KPa For this
model all elements are always moving linearly. The acting load is Kobe's earthquake with 10 seconds of zero
load added in the end so the free decaying response can be extracted without the use of any method.
Newmark’s method was used to solve the differential equation.

A scaling factor of 0.1 was applied to the excitation.

Through Seismostruct the natural frequencies and the mode shapes are calculated.
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Table 6-1: Modal characteristics of the model

(/1] 0761
f2 2.52
f3 4.76
fa 6.67
fs 8.33
7| 10 |
fy 11.11
fo 12.5
Frequencies f 13.16
£, 11429
[$1] 4%
$2 6%
G| -
7 -
s || —
Se | | —
AN
fs -
Damping Ratios & -
$10d - —
-1 —0,98; - 0,88 - 0,88 0,73 1
0,92 —0,64 0,3 —-0,13 —-0,51
0,82 —0,21 —0,4 —-0,98 —0,94
0,71 0,22 —-0,88 —-0,86 0,09
o6 _|oe1 _|-0,88 o012 |1
P1= 049?27 | 088 [P T |-0,42]'?*T| 1 |'P5T| 039
0,38 1 0,28 0,91 —-0,81
0,27 0,95 0,85 —0,05 —-0,75
0,17 0,73 1 —-0,96 0,47
Modal Shapes 10,07 L 0,4 L 0,65 [—0,93] L 0,98 |
1101 —0,62 - 0,52 - 0,40 - 0,27 1 —0,141
9 0,81 —0,98 —-0,98 —-0,77 0,43
8 0,5 0,20 0,82 1 —0,68
7 -0,9 0,85 —0,02 —-0,87 0,87
6 —0,39 —0,80 —-0,79 0,44 —0,98
5| P =1 0,93 |'?7 T [-027"?® 7| 0,99 [P T | 0,15 |'P0T| 1
4 0,26 1 —0,44 —-0,69 —0,92
3 —0,98 —0,44 —0,45 0,98 0,78
2 —0,14 —0,67 1 —-0,92 —0,55
L1 L1 [ 0,95 | —0,8 | [ 0,56 | [ 0,28 |

CWT is applied on last 10 seconds of the accelerations signal for each floor calculated through Seismostruct.
This signal matches the 10 seconds time period of zero load added to the excitation. Morlet mother wavelet
was used through MATLAB's wavelet toolbox.

EAErX0z AOMIKHE AKEPAIOTHTAZ KATAZKEYQN YTO ZEISMIKH ®OPTIZH ME THN MEGOAO ZYNEXQN KYMATOMOP®QN



54 CHAPTER. 6

Magnitude Scalogram <107

Magnitude

Frequency (Hz)

Time (secs)

Figure 6-7: Magnitude Scalogram of the free decay accelerations signal — 10t story.
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Figure 6-8: Extracted window parallel to frequency axis. [1]

The highest number of coefficients is at frequency f; = 0.759Hz —» T, = 1.317s, error of 0.25%

To calculated the damping ratio, after f, is calculated the parallel to frequency axis at the wavelet ridge is
extracted.
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Figure 6-9: Comparison of free decay response and the extracted wavelet envelope. [2]

Damping ratio is calculated 3,96%

For T, because excitation is weak, the response is fading too fast for CWT to see. For this reason, CWT is
applied to the signal between 70 and 80 seconds. Following the same procedure f, = 2.46Hz — T, = 0.4s
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Figure 6-10: Magnitude Scalogram — Accelerations signal 10t floor.
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Figure 6-11: Extracted window parallel to frequency axis. [4]

To calculated the damping ratio, after f, is calculated the parallel to frequency axis at the wavelet ridge is
extracted from the CWT transform of the free decaying signal (80-90 seconds).
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Figure 6-12: Extracted wavelet envelope parallel to the frequency at the wavelet ridge. [3]

Damping ratio is calculated 6.21%. 3.4% error

This procedure is applied to every signal acquired for every floor. Through the analogy of the coefficients on a
fixed time moment, mode shapes are calculated.
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First Mode Shape
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Figure 6-13: Figure: First 2 mode shapes as calculated by Seismostruct (blue) and CWT (orange).
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First Mode damping ratio
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Figure 6-14: Figure: First 2 mode damping ratio as calculated by Seismostruct (blue) and CWT (orange).
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6.5 6 Story 3D Seismostruct model.
S S T S T .

Figure 6-15: Seismostruct model

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 350MGr
was concentrated on the middle of each beam. Moment of inertia 3750MGr*m?2. Columns and beams are
0.2x0.3m. Elastic modulus of every column is 1.5 * 108K Pa. Elastic modulus of every beam is 2 = 101°KPa. For
this model all elements are always moving linearly. For X-Y axis the equivalent Kobe Earthquake excitation
were used, both were adjusted with the same scaling factor A.

A scaling factor is equal to 0.10

Through SeismoStruct the natural frequencies and the mode shapes are calculated. Only the first 5 Mode
shapes are listed.
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Table 6-2: Structure Characteristics as calculated on SeismoStruct

(1] 0.7
f2 1.02| [fu] 577
f3 1.28 fiz| 16.06
fa 2.06 fiz| |[6.57
fs 3.03 fia 7.8
= Hz = Hz
fe 3.33 fis 8
f7 3.70 fie 8.62
. fe 4.34 fi7 9.43
Frequencies
7 fol | 5| Lasl f104
Lf104 5.26-
(617 (4%
& 6%
$3 —
¢4 -
$s (| —
$6 -
¢z -
Damping Ratios ?3 :
9
[$10] -
0 1 07 1 0 0
0 0.94 0 0.93 0 0
10 0.82 0 _10.80 0 0
0 0.46 0 0.44 0 0
lo]  lo23l Lol loz2] Lol Lol
0 0 1 0 —0.94 0
0 0 0.94 0 —0.45 0
_10 0 0.83 0 0.26 0
Modal Shapes 0 0 0.47 0 1 0
6 0 0 0.24 0 0.66 0
5
story |+ —0.941 07 [0
3 —0.44 0 0
_10.27 0 0
1 0 0
0.66 0 0

First on X axis, CWT transform is applied on the free decay accelerations signal of every story. The same

procedure is applied. f,, fs and &, are calculated. f, = 1.019Hz - T, = 0.98s f; = 3.037Hz —» Tg = 0.329s ¢,

6,09%. Error of 0.41% ,0.3% and 1.48% respectively. This is calculated for every floor to calculate the mode

shapes.
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Figure 6-16: Magnitude Scalogram — Accelerations signal 6 floor.
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Figure 6-17: Extracted window parallel to frequency axis. [1]
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Figure 6-18: Comparison of free decay response and the extracted wavelet envelope. [2]

On Y Axis following again the same procedure f;, f, and &, are calculated. Because f, is not visible from the
CWT transform of the last 10 seconds, CWT transform is also applied to seconds 70 to 80. From this 2, f; =
0.708Hz —» T, = 1.41s f, = 1.896Hz - T, = 0.52s é; = 3.9%. Error of 1.6% ,6.5% and 2.5% respectively.
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Figure 6-19: Magnitude Scalogram — Accelerations signal 6 floor — 80 to 90s
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Figure 6-20: Extracted window parallel to frequency axis. [1]
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Figure 6-21: Comparison of free decay response and the extracted wavelet envelope. [2]
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Figure 6-22: Magnitude Scalogram — Accelerations signal 6% floor — 70 to 80
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Figure 6-23: Extracted window parallel to frequency axis. [1]

On Rz Axis following again the same procedure f3, is calculated. f; = 1.322Hz —» T, = 0.756s. Error of 3.3%
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Figure 6-24: Magnitude Scalogram — Accelerations signal 6% floor
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Figure 6-25: Extracted window parallel to frequency axis. [1]
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CONTINUOUS WAVELET TRANSFORM (CWT) APPLICATIONS.
After applying CWT to the acceleration signals from every floor, mode shapes are calculated.

First Mode Shape
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Third Mode Shape
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Figure 6-26: Figure: First 5 mode shapes as calculated by Seismostruct (blue) and CWT (orange)
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Figure 6-27: First 2 mode damping ratio as calculated by Seismostruct (blue) and CWT ( ).

6.6 Modal Assurance Distribution (MAD)

As seen from the previous applications, the values of the wavelet components related to a given time instant
and a given frequency subband of each recording channel can be interpreted as the elements of a structural
mode near the resonance peak of the frequency response spectrum. This means that near the natural
frequencies of the building the analogy between the values of the wavelet components are very similar. This
provides another way to monitor a building. By forming a matrix that compares that analogy for every given
time and comparing it to neighbouring subbands it is possible to follow the frequencies that a building is
oscillating. Through Equation (6-8) mode shapes can be calculated and after m,[t] matrix can be calculated

oL (1@l
= 6'10
@L[E10x [ED(@F 11 [E]0sa €] (6-10)

my[t]

where ¢, [t] is the mode shape for the kth subband. This matrix will be filled with values from 0 to 1, subbands
where persistent high values will appear in the time-frequency areas where modal responses are present.
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There are though problems arising because random similarities between noise-frequencies will give rise to
beta-distributed noise so without proper signal processing this matrix is very hard to apply. Table m, was
calculated for the previous studied 10story 2d frame. As it can be seen from the graph, for f = 0.759Hz there
is consinstent values close to 1, with only few time moments out of 1000 that are a slightly lower than 1. For
f2 = 2.5Hz there is bigger fluctuations but mk values are again steadily near 1.
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Figure 6-28: Mk Values for F1=0.759Hz
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Figure 6-29: Mk Values for F2=2.5Hz
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6.7 Europroteas

EuroProteas is a real-scale simplified model structure built in Euroseistest site in the framework of the European
project “Seismic Engineering Research Infrastructures for European Synergies, Series”. It is a project conducted
by Dimitris Pitilakis et al, aiming to identify the soil-foundation system interaction. The structure consists of a
steel frame on a reinforced concrete (RC) of 0.40m thickness. Two similar RC slabs of 9Mg are placed on top
of the frame. It is instrumented with more than 80 instruments (accelerometers, seismometers, MEM sensors).
The whole model is customizable with possibility to change stiffness, damping ratio and the type of the
excitation (Forced-vibration, free-vibration and ambient noise). Resonant frequency is varying between 2.9Hz
and 11.8Hz depending on the configuration. The thesis results are based on a total of 277sec recordings on 6
accelerometers with a sampling rate of 0.005sec.

UPPER SLAB (dinwasions 3 D0x3 00) BOTTOM SLAB (dinwnsions 3 00x3,00)
(5N 33272) {SN &5612) |SN 48813 (SM dB614)
(L TYR 2. T (4. BYR {Sh, BYL
$— 270m- -+ + 2.745m +
EXCITATION
2765m ]" 2815m
- a— | - —
(217X (6}, BX
(SN 42079 (SN 494978)

Figure 6-30: The structure and the 6 accelerometers layout used in this example.

The structure’s modal characteristics were identified by the MACEC software using 2 other methods of modal
analysis (SSI_COV and FDD)
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Table 6-3: Europroteas modal characteristics

Peak picking FDD SST
Mode Frequency Shape Frequency Shape Frequency Shape
(Hz) (Hz) (Hz)

1 4102 Transverse 4102 Transverse 4107 Transverse
2 4.199 Transverse 4.297 Transverse 4.286 Transverse
3 9.668 Torsional 9.668 Torsional 9.603 Torsional
4 21.191 Coupled 21.191 Coupled 21.131 Coupled
5 22.363 Coupled 22.363 Coupled 22419 Coupled

CWT Transform using MATLAB's toolbox is applied to the accelerations signal for each sensor. Free decay
response is not available so the CWT is applied to the response during the excitation of the structure with an
ambient vibration. For this reason, damping ratio cannot be calculated as well.
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Figure 6-31: Magnitude Scalogram — Sensor 1

EAErX0z AOMIKHE AKEPAIOTHTAS KATASKEYQN YNO ZEISMIKH ®OPTIZH ME THN MEOOAO ZYNEXQN KYMATOMOP®QN



72

CHAPTER. 6
0.14 T T T T T
012 |
|
|
o1 ‘| .
g
Fo08F -
g
S
g | [
I 1
E 0.06 | [ 1 4
i
| I‘ |
0.04 Lo
/|
II | |I
| V |
002} | —~—
| Y / \\
| \\ 7 e
| - .
0 ’ 1 1 e T 1
0 10 20 30 40 50 60 70 80
Frequency(HZ)

Figure 6-32: Window Parallel to the frequency axis for t=1.7minutes — Sensor 1 [1]
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Figure 6-33: Magnitude Scalogram — Sensor 2
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Figure 6-34: Window Parallel to the frequency axis for t=1.7minutes — Sensor 2 [1]
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Figure 6-35: Magnitude Scalogram — Sensor 3
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Figure 6-36: Window Parallel to the frequency axis for t=1.7minutes — Sensor 3 [1]

From the diagrams above modal characteristics are calculated.

Table 6-4: Modal characteristics calculated through MATLAB’s CWT — Error compared to FDD Method

Mode Shape Frequency Error Shape
1 4.295 4.5% Transverse
2 4.603 6.65% Transverse
3 9.867 2.01% Torsional
4 21.1522 0.18% Coupled
5 26.0414 14.12% Coupled

To calculate the mode shapes the following formulas were used to calculate the deformation at the center of
mass of the floor using the recordings from the 3 sensors.
A;, A, and A5 are the values of coefficients calculated through MATLAB’s CWT for each of the resonant

frequencies. d,, d,, d; are the distance from the center of mass of each sensor respectively. The response of
the center of mass in the X, y, rz directions are related to 4,, A, and A; with the following equations in matrix

form.

Al

= [‘Iﬂ'
P

dl

Figure 6-37: Formulas to calculate center of mass displacements [8]
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Ay 0|1] di/d | ( Ax Ay ol1| di/d | (4
[Az} = |o|1|-d,/d|{ Ay } > { Ay} =|0|1|-d,/d {Az} (6-11)
Az 1]0 dS/d Ay, Ars 110 d3/d As

Table 6-5: Mode Shapes of Europroteas as Calculated through MATLAB's CWT

0,57 0,61 0,02
Mode Shapes Q= [ 1 ]KPZ = [ 1 lKPg = [ 0,05 ]
0,15 0,16 1
X
[ Y ] 0,72
Rz [0 94] Qs = [0 24]
0,85

First issue appearing is the inability to calculate the damping ratio. For this, Random Decrement method needs
to be used to calculate an approximation of the free decay. Second issue is that there is decent amount of
error. This is because of couple of reasons. First of all, the excitation is influencing the results. If the analyzed
signal is not free decay, which means excitation is zero, the excitation is changing the results, especially if it's
a signal with periodic components like most in Earthquake Engineering. Second of all modes 1 and 2, 4 and 5
are very close to each other. To decouple those frequencies some parameters of the CWT analysis need to be
changed. Last but not least like mentioned on chapter (3.5) MATLAB’s toolbox is calculating an approximation
of the CWT to save time and computing power. These issues need to be addressed to be able to reduce the
error and acquire better results.

To tackle these issues a more advanced toolbox than MATLABs was used. This tool allows us to change different
wavelet properties like ¢, c; and Q. Also it has built in Random Decrement extraction tool that allows us to
calculate also the Damping Ratio. ¢, c, are both chosen to be equal to 5.

First, FFT transform is applied to the signal for an estimation of w; for each Mode.

Table 6-6: Choosing Q Value for CWT analysis

w;j dw; Cr Zd Q=< th Q Chosen
27,1 27,1 25<0<270.80 50
27,33 03 271.875<Q <2733 272
60,9 336 453271 < Q <£609,5 50
143,89 82,9 433<Q <14388 50
1572 133 295 <Q <1572.1 50
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Figure 6-38: Scalogram — Sensor 1 — Q=50
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Figure 6-39: Extracted Window Parallel to Frequency Axis [1]
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Figure 6-40: Scalogram — Sensor 3 — Q=273
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Figure 6-41: Extracted Window Parallel to Frequeny Axis [1]

After all natural frequencies are calculated through this analysis, RD method is used to extract an approximation
for the free decay to be able to estimate the damping ratio. Depending on Q, length of the free decay
approximation needs to be big enough so the maximum Q value is not too small. For Q = 50 —» L = 20s and
for Q = 273 - L = 100s. After free decay is extracted, CWT is applied with same settings as before and for
every natural frequency calculated, the window parallel to time axis is extracted. Comparing the coefficients
and the free decay approximation, area is found where the ratio coefficients are decreased is matching the
response.
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Table 6-7: Calculated modal characteristics — Error Compared to FDD Method

Mode Frequency (Hz) Error Damping Ratio Error
1 4.109 0.17% 2.9% 4.6%
2 4.443 3.29% 3.3% 3.5%
3 9.79 1.25% 0.75% 6.25%
4 21.82 2.88% 1.5% 10%
5 2248 0.52% 0.85% 11.76

We see that the error decreased by a big margin for the frequencies compared to MATLAB's toolbox and an
estimation for the damping ratio is now available. There is some error but it is possible to decrease it further
with experimentation with the RD variables like triggering point or length of the approximation.

6.8 Sherman Oaks — 13 Story commercial building.

Sherman Oaks is an office building designed in 1964 with 13 stories above and two floors below the ground.
The vertical load carrying system consists of 4.5 inches thick one-way concrete slabs supported by concrete
beams, girders and columns. The lateral load resisting system consists of moment resisting concrete frames in
the upper stories and concrete shear walls in the basements. The foundation system consists of concrete piles.
Sensors were placed on different floors of the building.

Sherman Oaks - 13-story Commercial Bldg
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Figure 6-42: Sensor Locations

The building was moderately damaged during the 1994 Northridge earthquake while it sustained no damaged
during the 1992 Landers Earthquake. Sensor 7 is the one closest to the damaged area.

On Chapter 5. DWT transform was used to determine if and where the building sustained any damage. On this
chapter a different approach will be used. Through CWT on different points in time, natural frequencies will be
calculated. If the building sustained damage, there should be decrease of the natural frequencies because of
the softening that is result of the damage on the reinforced concrete.
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First using MATLAB's toolbox while trying to find parts of the signal through the scalogram that are not
influenced too much from the excitation.

Magnitude Scalogram
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Figure 6-43: Magnitude Scalogram — Sensorl - 1994
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Figure 6-44: Window parallel to frequency axis for t; = 2s (red) and t, = 24s (blue) — Sensorl
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Figure 6-45: Magnitude Scalogram — Sensor2 — 1994
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Figure 6-46: Window parallel to frequency axis for t; = 2s (red) and t, = 24s (blue) — Sensor 2
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Figure 6-47: Magnitude Scalogram — Sensor2 — 1994
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Figure 6-48: Window parallel to frequency axis for t; = 2s (red) and t, = 24s (blue) — Sensor 2

From all the sensors appears to be a decrease on the natural frequencies but because of the way MATLAB is
calculating CWT and the nature of the excitation which is periodic since it's an actual earthquake and not some
ambient vibration the results are influenced and they need to be confirmed using more sophisticated ways.

For this the other toolbox will be used. Mother wavelet will be Morlet. Because of the limited signal length
L=60s available, we are choosing ¢; = 1 and ¢, = 2. FFT transform is used to sensor 1,2 and 3 signals from

1994. The following frequencies are appearing.
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Table 6-8: Choosing Q Value
@j wj
Frequency (Hz) wj dw;j f 34 y =Q=<L 2c, Q Chosen
0.26 1.63 1.63 0.5<Q <245 20
0.31 1.95 0.31 31<Q <29.22 20
0.33 2.07 0.125 825<(Q <311 20
0.37 2.3 0.23 508<Q <345 20
0.38 2.39 0.09 13.6 <Q <358 20
0.4 2.5 0.12 105<Q <376 20

CWT is applied with the above settings to the accelerations signal of sensors 1,2 and 3.
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Figure 6-49: Magnitude Scalogram — Sensorl — 1994
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Figure 6-50: Window parallel to frequency axis for t; = 2s (left) and t, = 40s (right) — Sensor 1
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Figure 6-51: Magnitude Scalogram — Sensor2 — 1994
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Figure 6-52: Window parallel to frequency axis for t; = 2s (left) and t, = 55s (right) — Sensor 2
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Figure 6-53: Magnitude Scalogram — Sensor 3 — 1994
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Figure 6-54: Window parallel to frequency axis for t; = 2s (left) and t, = 30s (right) — Sensor 2

Results are confirming what we were expecting, there is a decrease in natural frequency from f; = 0.397 -
T, = 2.52s to f; = 0.331 - T; = 3.02s. The results are in line with [8] where an increase from 2.6 to 2.9 is

calculated.
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Figure 6-55: Moving windows FFT analysis [8]
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7 CONCLUSIONS

Operational Modal Analysis with the use of Wavelets appears to be a very efficient tool for estimating the actual
modal characteristics of a building and live structural health monitoring. Requirements on equipment are
minimal. 3 accelerometers per story if there’s interest in mode shapes, otherwise 3 accelerometers every 2 to
3 floors so both DWT and CWT can be applied. There’s also no need to evacuate the building or make any
other preparations except applying some signal denoising technics when needed.

DWT is the easiest method to apply, through few simple calculations in a generic calculation program
(MATLAB), you can have a quick first estimation if and where damage occurred. The method seems to be very
efficient in both simulations and real case buildings like Sherman Oaks without almost any optimization other
than choosing a proper mother wavelet.

CWT on the other hand is a very optimization and excitation sensitive method. It works best when you have
the free decay available, without the need to use the random decrement method to extract it, so you remove
the excitation from the results. Furthermore, it is very important to calculate correctly the FFT of the signal.
This way w; can be estimated in order proper values of ¢, and c, to be decided, resulting to the range of the

accepted @ values. Choosing the correct Q value is very important so close natural frequencies are decoupled.
If everything is done correctly it is possible to get very good estimations of the Natural frequencies, mode
shapes, damping ratios and detect “softening” of the building caused by damage.

Both methods offer accurate results. DWT though only gives answer to if damage exists and partially to where.
CWT on the other hand gives a variety of information regarding the building but they might be harder to obtain.
Ideally for better results both methods should be applied.

Further work on this subject should be aimed towards ways to

o further decrease the error when the free decay is not available.

e remove noise so Modal Assurance Distribution (MAD) can be applied to detect changes in mode
shapes and natural frequencies as a result of structural damage.

o find the most efficient combination of sensor type and placement to collect signals without noise
and big sampling rate without spending too much on equipment.

e test other available wavelets to see if they increase the quality of the results.

e locate where the damage is with bigger accuracy

e estimate damage severity

e find how different levels of noise change DWT results and ways to improve that.

e recognize false alarm spikes in DWT analysis.
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