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ΠΕΡΙΛΗΨΗ 

Η δυναμική ανάλυση μια κατασκευής αποτελεί ένα πολύπλοκό και θεμελιώδες πρόβλημα πολιτικού 

μηχανικού. Συχνά η επίλυση του προβλήματος ιδιοτιμών ενός στατικού προσομοιώματος απέχει αρκετά 

από την πραγματικότητα για λόγους στατιστικής, εφαρμογής συντελεστών ασφαλείας ή αλλαγών κατά 

την υλοποίηση του έργου. Η γνώση των πραγματικών ιδιοτήτων της κατασκευής είναι απαραίτητη για 

την σωστή προσομοίωση και την εκτίμηση της συμπεριφοράς του υπό μια δυναμική φόρτιση (σεισμός, 

αέρας κ.λπ.) 

 

Αυτή η διπλωματική εργασία πραγματεύεται την λειτουργική ιδιομορφική ανάλυση και αποτίμηση μιας 

υπάρχουσας κατασκευής με την χρήση συνεχών κυματομορφών (Wavelets). Μέσω της ανάλυσης με 

Wavelets είναι δυνατός ο υπολογισμός των φυσικών συχνοτήτων ταλάντωσης, των ιδιοσχημάτων, της 

απόσβεσης καθώς και τον εντοπισμό ζημιών σε μια κατασκευή κατά την διάρκεια μιας δυναμικής 

φόρτισης. 

 

Δύο τύποι μετασχηματισμού με την χρήση Wavelets μελετήθηκαν. Ο συνεχής και ο διακριτός. Οι 

μετασχηματισμοί αυτοί εφαρμόστηκαν σε προσομοιώματα δισδιάστατων και τρισδιάστατων πλαισίων 

και κτιρίων καθώς και σε μετρήσεις από πραγματικά κτίρια. Τα αποτελέσματα αυτά σχολιάζονται και 

συγκρίνονται, ενώ επισημαίνονται πιθανά προβλήματα που προκύπτουν κατά την διάρκεια των 

αναλύσεων που επηρεάζουν τα αποτελέσματα και γίνονται προτάσεις για την αντιμετώπιση τους. 

 

Στόχος της εργασίας αυτής είναι μέσα από την κατανόηση του θεωρητικού υπόβαθρου της λειτουργικής 

ιδιομορφικής ανάλυσης και των Wavelets να γίνει ένα βήμα προς την ζωντανή παρακολούθηση της 

κατάστασης μια κατασκευής ενώ είναι σε λειτουργία και η έγκαιρη και βέλτιστη οικονομικά αντιμετώπιση 

βλαβών. 
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ABSTRACT 

Dynamic analysis of a structure is complicated and common problem for a civil engineer. Often solving 

the eigenvalue problem of a structural model differs from the actual building because of statistics, safety 

factors or small changes during the construction phase. Knowing the real structural characteristics is a 

necessity to be able to correctly simulate the buildings response under a dynamic load (earthquake, 

wind etc.) 

  

The present diploma thesis studies Operational Modal Analysis and evaluation of the damage of an 

existing structure with the use of Wavelet analysis. Through wavelet analysis it is possible to calculate 

the natural frequencies, mode shapes, damping ratio as well as locate damages on a building during an 

excitation from a dynamic load. 

 

2 types of Wavelet transforms were studied. Continuous and Discrete. These transforms were applied 

on 2d, 3d models and recordings from real buildings. The results are discussed and compared while 

difficulties from applying the methods are highlighted. Few ways to overcome those difficulties are also 

suggested. 

 

Goal of this thesis is through the understanding of the theoretical background behind operational modal 

analysis and wavelets to move a step closer towards live structural health monitoring of an existing 

building as well as monitor system performance and make corresponding maintenance decisions. 
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INTRODUCTION 1 

ΕΛΕΓΧΟΣ ΔΟΜΙΚΗΣ ΑΚΕΡΑΙΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΣΥΝΕΧΩΝ ΚΥΜΑΤΟΜΟΡΦΩΝ 

1 INTRODUCTION 

1.1 Introduction to Structural Health Monitoring 

During the lifespan of a building very often damage is observed. The cause might be excessive 

earthquake excitation, severe environmental conditions, degradation of the material’s properties, fatigue 

and numerous other reasons. This damage usually is observed by visual inspection of the building 

elements from experienced civil engineers. Most of the times, if the damage is severe, it is easy to 

observe. But there are also cases that the damage cannot be observed. 

Structural health monitoring ensures that every bit of damage is located and dealt with so structural 

safety can be ensured with the lowest possible maintenance cost. In the latest years structural health 

monitoring is becoming more and more popular as an effective way to monitor the health of a building 

in real time.  

Damage detection includes finding out if damage exists, where, and how severe it is. One of the main 

group of methods for damage detection is modal analysis methods. The idea is that damage alters the 

modal parameters of the building (natural frequencies, damping ratios and mode shapes).  

There are two different types of modal analysis methods.  

Experimental modal analysis methods, also going by the name of forced vibration methods, are 

conducted with carefully controlled excitations. They are input-output methods which means that both 

the system’s input and output are known. This reduces randomness and allows for better understanding 

of the structure’s characteristics.  

Operational modal analysis methods, also going by the name of ambient vibration methods, on the 

other hand, do not control the excitation on the structure. They are output-only methods, since the 

system’s input is unknown. These methods do not require extra equipment and can be conducted 

without performing an evacuation prior to them. The disadvantage of OMA methods is, since the 

ambient vibration is random, there is a chance that some periodicity is present to is, which can produce 

false results. Thus, the methods should be able to distinguish the system’s eigenfrequencies from 

excitation frequencies through stochastic procedures. 

In this thesis only OMA was studied. Specifically, OMA through the use of wavelets. In the last years 

wavelets have gained popularity as one of the tools for OMA. Through Discreet and Continuous wavelet 

transform buildings’ modal properties are calculated through analysis of recordings from accelerometers 

placed in different places around an existing building. 

  



2 CHAPTER. 1 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΑΝΑΣΤΑΣΙΟΥ ΣΤΑΜΟΥ   Ε.Μ.Π. - 2021 

1.2 About this Thesis Structure 

The thesis contains 8 chapters. 

− Introduction 

− Analysis in the Frequency domain: Theoretical basis of Fourier Series, Integral, Series, Continuous 

and Discrete Transform. 

− Time-Frequency Analysis: Short-time Fourier transform, Continuous and Discrete Wavelet transform, 

Mother wavelet Choice, MATLAB’s wavelet toolbox. 

− Dynamic Loads used: Kobe Earthquake – low amplitude ambient vibration, their Fourier transform 

and their Welch Power Spectrum. 

− Discreet Wavelet Transform applications: Single degree of freedom model, multiple degrees of 

freedom model, Sherman Oaks – 13 story commercial building. 

− Continuous Wavelet Transform applications: Single degree of freedom model, multiple degrees of 

freedom model, Europroteas, Sherman Oaks – 13 story commercial building, Modal assurance 

distribution, Improving the method. 

− Conclusions 

− References
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2 ANALYSIS IN THE FREQUENCY DOMAIN 

Transforms change one function into another, according to some fixed set of rules. The transformed 

function is often easier to handle and provides us with additional information. They are extensively used 

in structural dynamics, signal processing and in OMA. 

The family of Fourier transforms consists of four transforms. These are shown in Figure 2-1. They all 

decompose a function into sinusoids. They are the four possible combinations of continuous/discrete 

and periodic/aperiodic. Since we are going to apply the transform on discrete signals, the Fourier 

Transform and Fourier series are not usable. Still, since they are the theoretical basis for the discrete 

transforms, they will be discussed. Our signals are also finite in length. However, all four transforms are 

defined from −∞ to +∞, which means that we would have to act like our signal is infinite in length. 

This can be done either by extending the signal with zeros to create an aperiodic discrete signal, or by 

duplicates of it to create a periodic discrete signal. In the first case we would use the Discrete Time 

Fourier Transform, while in the latter we would use the Discrete Fourier Transform. It turns out that an 

infinite number of sinusoids are required to synthesize a signal that is aperiodic, making it impossible to 

calculate the Discrete Time Fourier Transform using the computer. We are only left to use the Discrete 

Fourier Transform in signal processing. 

 

Figure 2-1: The Fourier transforms, [12] 

 

2.1 Fourier Series and Fourier Integral 

A continuous periodic function 𝑥(𝑡) with period T, can be represented as an infinite series of harmonic 

(sines and cosines) components of different periods. The variable 𝑡 can be anything, but since in our 

applicactions we use time, it can be assumed that in everything that follows it represents time, while 𝜔 

the cyclic frequency. The series is called Fourier series and has the form of:  
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𝑥(𝑡) = 𝑎0 + ∑(𝑎𝑘

∞

𝑘=1

cos (
2𝜋𝜅𝜏

𝛵
) + 𝑏𝑘sin⁡(

2𝜋𝜅𝜏

𝛵
)) (2-1) 

where 

𝑎0 =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇 2⁄

−𝑇/2

 (2-2) 

𝑎𝑘 =
2

𝑇
∫ 𝑥(𝑡) cos (

2𝜋𝑘𝑡

𝑇
) 𝑑𝑡, 𝑘 ≥ 1

𝑇 2⁄

−𝑇 2⁄

 (2-3) 

𝑏𝑘 =
2

𝑇
∫ 𝑥(𝑡) sin (

2𝜋𝑘𝑡

𝑇
) 𝑑𝑡, 𝑘 ≥ 1

𝑇 2⁄

−𝑇 2⁄

 (2-4) 

The cyclic frequency of the k-th harmonics is 𝜔𝑘 = 2𝜋/𝛵. The increment of cyclic frequency from one 

harmonic to the next is constant and equal to 𝛥𝜔 = 2𝜋/𝛵. This means that the periodicity of the 

continuous signal makes its harmonic series representation discrete. In the case of an aperiodic function 

(𝑇 → ∞), from the last expression we get that 𝛥𝜔 → 0, thus the representation tends to become 

continuous. Doing so causes the series to become a definite integral with limit⁡ω = 0s to ω = ∞ allowing 

us to represent any continuous function, periodic or aperiodic, in harmonic terms of every real frequency 

ω. This integral is called Fourier integral and has the form of: 

𝑥(𝑡) = 2∫ 𝐴(𝜔)𝑐𝑜𝑠𝜔𝑡𝑑𝜔 + 2∫ 𝛣(𝜔)𝑠𝑖𝑛𝜔𝑡𝑑𝜔
+∞

0

+∞

0

 (2-5) 

where 

𝐴(𝜔) =
1

2𝜋
∫ 𝑥(𝑡)𝑐𝑜𝑠𝜔𝑡𝑑𝑡

+∞

0

 (2-6) 

𝐵(𝜔) =
1

2𝜋
∫ 𝑥(𝑡)𝑠𝑖𝑛𝜔𝑡𝑑𝑡

+∞

0

 (2-7) 

 

Equation is the representation of the Fourier Transform by the Fourier integral, or the inverse Fourier 

Transform. The integral indicates the frequency composition of an aperiodic function. 

2.2 Fourier Transform 

We can put equations (2-6) and (2-7) together and define a complex function of 𝜔 (or 𝑓 = 𝜔/2𝜋). This 

complex number has a real part of 𝐴(𝜔) and an imaginary part of −𝐵(𝜔). as in (2-8). This is how the 

Fourier transform 𝑋(𝜔) is defined. By using Euler’s formula (2-9), we can bring (2-8) in the form of 

(2-10), called the complex form of the Fourier Transform (FT). The functions 𝑥(𝑡) and 𝛸(𝜔) are called 

transform pairs. We write 𝐹{𝑥} = 𝑋. 

𝑋(𝜔) = 𝛢(𝜔) − 𝑖𝛣(𝜔) (2-8) 

𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 (2-9) 

𝛸(𝜔) =
1

2𝜋
∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

+∞

−∞

 (2-10) 
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Notice that 𝑋(𝜔) is a complex function of ω, while x(t) is a real function of 𝑡. This is why we say that 

the transformation 𝑥(𝑡) is transferred from the time to the frequency domain. Both 𝑥(𝑡) and 𝑋(𝜔) are 

continuous and describe the same thing, but in a different way. By looking at definitions of mean value, 

cross correlation and the real and imaginary part of 𝑋(𝜔), (2-6) and (2-7), we conclude that 𝛢(𝜔) and 

𝐵(𝜔) are the cross correlations of cosines and sines, respectively, of all possible frequencies, scaled 

with the factor of 1/2𝜋. The complex form of 𝑋(𝜔) just packs these two correlations together in one 

function. Also (2-5) states that we need both parts to return to the time domain. In the end, 𝐴(𝜔) and 

𝐵(𝜔) tell us how close to a cosine or sine of frequency 𝜔 is our function 𝑥(𝑡). This is the in the polar 

notation. We graph the magnitude |𝑋(𝜔)| and angle arg(𝑋(𝜔)), to get the Fourier magnitude and 

Fourier phase respectively. The magnitude and phase are a pair-to-pair replacement for the real and 

imaginary part of 𝑋(𝜔). The two notations are equivalent and related by using the property of the 

trigonometric functions (2-11) by setting 𝑀 = 𝑋(𝜔) and 𝜃 = arg⁡(𝑋(𝜔)): 

𝐴𝑐𝑜𝑠(𝑥) + 𝐵𝑠𝑖𝑛(𝑥) = 𝑀𝑐𝑜𝑠(𝑥 + 𝜃) (2-11) 

arg(𝑋(𝜔)) = arctan (
𝐼𝑚𝑋(𝜔)

𝑅𝑒𝑋(𝜔)
) (2-12) 

|𝛸(𝜔)| = (𝑅𝑒(𝑋(𝜔))
2
+ 𝐼𝑚(𝑋(𝜔))

2
)
1/2

 (2-13) 

𝑅𝑒(𝑋(𝜔)) = |𝛸(𝜔)|cos⁡(arg(𝑋(𝜔))) (2-14) 

𝐼𝑚(𝑋(𝜔)) = |𝛸(𝜔)|sin⁡(arg(𝑋(𝜔))) (2-15) 

2.3 Properties of the Fourier Transform 

2.3.1 Linearity property of the Fourier Transform 

The FT is linear, as it possesses the properties of homogeneity and additivity. Homogeneity means that 

scaling a function with a complex number in the time domain will result in an identical scaling in the 

frequency domain. Additivity means that adding two functions in the time domain will result in an 

addition in the frequency domain. With the FTs 𝑋1(𝑡) and 𝑋2(𝑡) of two functions 𝑥1(𝑡) and 𝑥2(𝑡) known, 

we can directly calculate their linear combination by: 

𝐹{𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡)} = 𝑐1𝑋1(𝜔) + 𝑐2𝛸2(𝜔) (2-16) 

Example 1:  

𝐹{2𝑒−𝑡𝑢(𝑡) + 3𝑒−2𝑡𝑢(𝑡)} = 𝐹{2𝑒−𝑡𝑢(𝑡)} + 𝐹{3𝑒−2𝑡𝑢(𝑡)}

= 2𝐹{𝑒−𝑡𝑢(𝑡)} + 3𝐹{𝑒−2𝑡𝑢(𝑡)} =
2

1 + 𝑖𝜔
+

3

2 + 𝑖𝜔
 

(2-17) 

2.3.2 Time reversal property of the Fourier Transform 

Reversing the time domain of a function 𝑥(𝑡) that is replacing 𝑡 with −𝑡, will result in the reversal of 

𝑋(𝜔) in the frequency domain, replacing 𝜔 with −𝜔. It is expressed by: 

𝐹{𝑥(−𝑡)} = 𝑋(−𝜔) (2-18) 
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2.3.3 Time shift property of the Fourier Transform 

Shifting a function 𝑥(𝑡) in the time domain by 𝑡0, causes its FT to be multiplied by a complex exponential 

𝑒−𝑖𝜔𝑘𝑡0. 

𝐹{𝑥(𝑡 − 𝑡0)} = 𝑋(𝜔)𝑒−𝑖𝜔𝑘𝑡0 (2-19) 

Example 2: 𝑔(𝑡) is a pulse of width 2 and we want to calculate the Fourier Transform 

𝑔(𝑡) = {
1⁡⁡3 ≤ 𝑡 ≤ 5
0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐺(𝜔) = ∫ 1𝑒−𝑖𝜔𝑡𝑑𝑡 = [
𝑒−𝑖𝜔𝑡

−𝑖𝜔
]
3

5

=
𝑒−5𝑖𝜔 − 𝑒−3𝑖𝜔

−𝑖𝜔
=

𝑒−4𝑖𝜔(𝑒𝑖𝜔 − 𝑒−𝑖𝜔)

𝜄𝜔
= 𝑒−4𝑖𝜔2 (

𝑠𝑖𝑛𝜔

𝜔
)

5

3

 

2.3.4 The differentiation and integration properties 

The FT of the derivative and integral of 𝑥(𝑡) is calculated easily if 𝑋(𝜔) is known: 

𝐹{𝑥̇(𝑡)} = 𝑋(𝜔)𝑖𝜔𝑘 (2-20) 

𝐹 {∫𝑥(𝑡)𝑑𝑡} =
𝑋(𝜔)

𝑖𝜔𝑘

 (2-21) 

2.4 Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) takes a periodic discrete function and turns it into a discrete 

function in the frequency domain. The discrete nature of both domains makes it the only transform that 

can be used with computers and one of the primary tools in signal processing. By transforming a discrete 

function 𝑥𝑘, with step 𝛥𝑡 = 1/𝑓𝑠 between the function’s values, size 𝑁, total length 𝑇, we end up with 

a discrete function 𝑋𝑘. Its real part is symmetric while its imaginary party is antisymmetric inside the 

frequency domain [−𝑁 2⁄ , 𝑁 2⁄ − 1], if 𝑁 is even or [−(𝑁 − 1)/2, (𝑁 − 1)/2] if 𝑁 is odd. The frequency 

step is 𝛥𝑓 = 𝑓𝑠/𝑁. This means we only need to plot half the frequency domain. The count 𝑘 of the 

frequency step is called bin number. The DFT is performed by using the equation (2-22), which we get 

from (2-10) if we discretize both domains: 

𝑋𝑘 = 𝐹{𝑥𝑘} = ∑ 𝑥𝑘𝑒
−

2𝜋𝑘𝑛𝑖
𝑁

𝑁−1

𝑘=0

 (2-22) 

𝑅𝑒(𝑋𝑘) = ∑ 𝑥𝑘

𝑁−1

𝑘=0

cos (
2𝜋𝑘𝑛𝑖

𝑁
) (2-23) 

𝐼𝑚(𝑋𝑘) = − ∑ 𝑥𝑘 sin (
2𝜋𝑘𝑛𝑖

𝑁
)

𝑁−1

𝑘=0

 (2-24) 

The real and imaginary part of 𝑋𝑘, are the cross correlation of 𝑥𝑘 with cosines and sines of discrete 

frequencies 𝑘/𝑁.  

2.5 The Fast Fourier Transform (FFT) 

One of the most useful algorithms to calculate the DFT is the Fast Fourier Transform (FFT). Discovered 

by J. W. Cooley and J. W. Tukey in 1965 and since then has been used in most applications. It has high 
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computational efficiency. This means it can reduce the computation time by hundreds while producing 

the same result as any other algorithm, as even for a small sample size as seen in Figure. The algorithm’s 

code itself is small but understanding the internal workings is much more complicating. It can still be 

used to the fullest assuming one has knowledge of the DFT. This algorithm is present in most 

programming packages, such as MATLAB and Python. 
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3 TIME-FREQUENCY ANALYSIS. 

3.1 The Short Time Fourier Transform and the Spectrogram. 

The short time Fourier transform and the spectrogram are used to analyse the frequency content of 

signals when the frequency content varies with time. This is achieved through the application of DFT. 

Segments of the original signal are windowed out from the rest of the signal and then DFT is applied to 

each segment. The segments can also be overlapping. We can display the DFT coefficients as a function 

of both time and frequency on 2 axis. This way we can have a better insight on the time varying 

frequency characteristics of the signal. 

𝑋[𝑛, 𝜆) = ∑ 𝑥[𝑛 + 𝑚]𝑤[𝑚]𝑒−𝑗𝑙𝑚

+∞

𝑚=−∞

 (3-1) 

where 

𝜆 =
2𝜋

𝛮
𝑘 (3-2) 

and length of the signal 𝑁 is bigger than the length of the window 𝐿. This gives us the final short time 

Fourier transform 

𝑋[𝑛, 𝑘] = ∑ 𝑥[𝑛 + 𝑚]𝑤[𝑚]𝑒−𝑗𝑘(
2𝜋
𝛮

)𝑚

𝐿−1

𝑚=0

 (3-3) 

where n is the reference time, k is the frequency, x(t) is the signal, w[m] is the time window. L trades 

temporal resolution for frequency resolution, as L increases details that change in time are lost but 

better resolution in the frequency domain is achieved. 

The spectrogram is defined as the magnitude squared of the short time Fourier Transform. 

|𝑋[𝑛, 𝑘]|2 (3-4) 

The short time Fourier transform is invertible 

𝑥[𝑛 + 𝑚] =
1

𝑁𝑤[𝑚]
∑ 𝑋[𝑛, 𝑘]𝑒^(𝑗 (

2𝜋

𝛮
) 𝑘𝑚

𝑁−1

𝑘=0

 (3-5) 

but once the spectrogram is computed, magnitude squared is throwing away phase or sine information 

so the spectrogram is not invertible. 
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Figure 3-1: Short-Time Fourier Transform Spectrogram [26] 

3.2 Continuous Wavelet Transform (CWT) 

Wavelet analysis provides a powerful tool to characterize local features of a signal. Unlike the Fourier 

transform, where the function used as the basis of decomposition is always a sinusoidal wave, other 

basis functions can be selected for the wavelet shape according to the features of the signal. The basis 

function in wavelet analysis is defined by two parameters: scale and translation. These properties lead 

to a multi-resolution representation for non-stationary signals.  

The Continuous wavelets transform of a signal f(t) is defined as: 

𝑇𝜓[𝑢](𝑏, 𝑎) =
1

𝑎
∫ 𝑢(𝑡)𝛹̅

+∞

−∞

(
𝑡 − 𝑏

𝑎
) 𝑑𝑡 (3-6) 

where ψ(. ) is a square integrable and piece-wise continuous function called the mother or analyzing 

wavelet, and 𝛹̅(.) is its complex conjugate. The pair (b,a) is called the time-scale variable of the analysis, 

where a (a>0) is a scale parameter that plays the role of the inverse of frequency, and b is a translation 

parameter related to time. (3-6) can be viewed as either the inner product between the signal 𝑢(𝑡) and 

the shifted and scaled copies of 𝜓(𝑡): 𝜓𝑏,𝑎(𝑡) = (
1

𝑎
)𝜓(

𝑡−𝑏

𝑎
), or as the convolution product between 𝑢(𝑡) 

and⁡
1

𝑎
𝜓̅(−

.

𝛼
). The function 𝜓(𝑡) is an admissible mother wavelet when 𝐶𝜓, defined by 

𝐶𝜓 = ∫ |𝜓̂(𝛼𝜔)|
2
(
𝑑𝑎

𝑎
),

+∞

0

 (3-7) 

is finite, non-zero and independent of the real number ω. In Eq. (3-7), 𝜓̂(𝜔) is the Fourier transform 

(FT) of ψ(t):⁡𝜓̂(𝜔) = ∫ 𝜓(𝑡)𝑒−𝜔𝑡𝑑𝑡
+∞

−∞
. When admissibility condition is verified, the signal 𝑢(𝑡) can be 

reconstructed by  

𝑢(𝑡) =
1

𝐶𝜓

∫ ∫ 𝛵𝜓[𝑢](𝑏, 𝑎)𝜓 (
𝑡 − 𝑏

𝑎
) (

𝑑𝑎

𝑎
) 𝑑𝑏.

+∞

0

+∞

−∞

 (3-8) 

Moreover, Parseval’s theorem applied to (3-6) gives the following expression in frequency domain: 

𝛵𝜓[𝑢](𝑏, 𝑎) =
1

2𝜋
∫ 𝑢̂

+∞

−∞

𝜓̅̂(𝛼𝜔)𝑒𝜄𝜔𝑏𝑑𝜔 (3-9) 

The local resolution of the CWT in time and in frequency depends on the dilation parameter α and is 

determined, respectively, by the duration 𝛥𝑡𝜓 and bandwidth 𝛥𝜔𝜓 of the mother wavelet:  
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𝛥𝑡 = 𝛼𝛥𝑡𝜓, 𝛥𝜔 =
𝛥𝜔𝜓

𝛼
 (3-10) 

Here, 𝛥𝑡𝜓 and 𝛥𝜔𝜓 are stated in terms of root mean squares which are equivalent to standard deviation 

in statistics  

𝛥𝑡𝜓 =
1

‖𝜓‖2

√∫ (𝑡 − 𝑡𝜓)
2
|𝜓(𝑡)|2𝑑𝑡.

+∞

−∞

 (3-11) 

𝛥𝜔𝜓 =
1

‖𝜓̂‖
2

√∫ (𝜔 − 𝜔𝜓)
2
|𝜓̂(𝜔)|

2
𝑑𝜔

+∞

−∞

 (3-12) 

where 𝑡𝜓 and 𝜔𝜓 are the center of ψ(t) and 𝜓̂(𝜔), respectively, 

𝑡𝜓 = ∫ 𝑡
+∞

−∞

|𝜓(𝑡)|2

‖𝜓‖2
2 𝑑𝑡⁡𝜔𝜓 = ∫ 𝜔

|𝜓̂|
2

‖𝜓̂‖
2

2

+∞

−∞

 (3-13) 

‖. ‖2denotes the classical norm in the space of square integrable functions. The function ψ is said to be 

localized about the phase point (𝑡𝜓, 𝜔𝜓) with uncertainty μ(𝜓) = 𝛥𝑡𝜓𝛥𝜔𝜓. It can be seen from Equation 

(3-10) that 𝜇(𝜓𝑏,𝑎) = 𝛥𝑡𝛥𝜔 = 𝜇(𝜓). The Heisenberg uncertainty principle states that μ(ψ) ≥
1

2
, thus an 

improvement of the time localization (i.e., an increase of 𝛥𝜔). If 𝜔𝜓/𝛼 is considered to be the frequency 

variable 𝜔, then the 𝑡𝜔 plane can be viewed as the time-frequency plane. The localization domain for 

the CWT at point (𝑏, 𝜔 =
𝜔𝜓

𝛼⁄ ) becomes 

[𝑏 + 𝑎𝑡𝜓 − 𝛼𝛥𝑡𝜓, 𝑏 + 𝑎𝑡𝜓 + 𝛼𝛥𝑡𝜓]𝑥 [

𝜔𝜓
𝑎⁄

2(𝛥𝜔𝜓 𝛼)⁄
−

𝛥𝜔𝜓

𝛼
,
𝜔𝜓

𝛼
+

𝛥𝜔𝜓

𝛼
]. (3-14) 

Referring to the conventional frequency analysis of constant-Q filters, the Q factor is introduced as the 

ratio of the centre-frequency to the frequency bandwidth 

𝑄 =

𝜔𝜓
𝑎⁄

2(𝛥𝜔𝜓 𝛼)⁄
=

𝜔𝜓

2𝛥𝜔𝜓

 (3-15) 

𝑄 is independent of 𝛼. Gram-Hansen and Dorize [24] associate this 𝑄 value to the filter bank of a 

(1/𝑁)th octave that is a classical notion in acoustics: a (1/𝑁)th octave band of center frequency 𝜔𝜓 is 

a band [𝜔1, 𝜔2] with 𝜔1 = 2
−1

2𝑁⁄ 𝜔𝜓 and 𝜔2 = 2
1

2𝑁⁄ 𝜔𝜓 , hence 𝑄 = 1 2⁄ 1/2𝑁
− 2−1/2𝑁. 

Due to the linearity property of the CWT, the signal of multi-components can be processed as 

𝑇𝜓 [∑ 𝑢𝑗

𝑁

𝑗=1

] (𝑏, 𝑎) = ∑𝑇𝜓

𝑁

𝑗=1

[𝑢𝑗](𝑏, 𝑎). (3-16) 

Using localization properties of the mother wavelets, in both time and frequency domains a particular 

component 𝑢𝑗 can be extracted from multi-component signals. If 𝜓 and 𝑢 are continuous and piece-

wise differentiable, the integration by parts theorem allows relation (3-6) to be rewritten as 

𝑇𝜓[𝑢̇](𝑏, 𝑎) =
1

𝑎
[𝑢(𝑡)𝜓̅ (

𝑡 − 𝑏

𝑎
) |−∞

+∞ −
1

𝑎
∫ 𝑢(𝑡)𝛹̅

+∞

−∞

(
𝑡 − 𝑏

𝑎
)𝑑𝑡]  (3-17) 

Moreover, when 𝜓 is square and absolutely integrable and 𝑢̇ is of finite energy, the CWT of 𝑢̇ with 𝜓 is 

then related to the CWT of 𝑢 with 𝜓̇: 

𝑇𝜓[𝑢̇](𝑏, 𝑎) = −
1

𝑎
𝑇𝜓̇[𝑢](𝑏, 𝑎). (3-18) 
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This relation can be easily extended to the finite energy signal 𝑢̈ when 𝜓̈ is square and absolutely 

integrable: 

𝑇𝜓[𝑢̈](𝑏, 𝑎) = −
1

𝑎
𝑇𝜓̇[𝑢̇](𝑏, 𝑎) =

1

𝑎2
𝑇𝜓̈[𝑢](𝑏, 𝑎). (3-19) 

It should be also noted that for the expression of 𝑇𝜓̇[𝑢̇] and of 𝑇𝜓̈[𝑢] in the frequency domain [see 

(3-9)], 𝜓̂̇ and 𝜓̂̈ can be substituted by −𝑖𝜔𝜓̅̂(𝜔) and −𝑖𝜔2𝜓̅̂(𝜔) respectively. 

3.3 Discrete Wavelet Transform (DWT) 

By discrediting the parameters, a and b, a discrete version of the wavelet transform. (DWT) is obtained 

(Newland (1993)). The procedure becomes more efficient if dyadic values of a and b are used, i.e. 

𝑎 = 2𝑗⁡𝑏 = 2𝑗𝑘⁡⁡⁡𝑗, 𝑘 ∈ 𝑍 (3-20) 

where Z is a set of positive integers. The corresponding discretized wavelets Ψj,k are defined as 

𝛹𝑗,𝑘(𝑡) = 2−
𝑗
2𝛹(2−𝑗𝑡 − 𝑘) (3-21) 

where 𝛹𝑗,𝑘 forms an orthonormal base. In the discrete wavelet analysis, the signal can be represented 

by its approximations and details. The signal is passed through a series of high pass filters, which relate 

to details, to analyze the high frequencies and through a series of low-pass filters, which relate to 

approximations, in order to analyze the low frequencies. The detail at level j is defined as 

𝐷𝑗 = ∑𝑎𝑗,𝑘

𝑘∈𝑍

𝛹𝑗,𝑘(𝑡) (3-22) 

where 𝑎𝑗,𝑘 is defined as 

𝑎𝑗,𝑘 = ∫ 𝑓(𝑡)𝛹̅𝑗,𝑘

+∞

−∞

(𝑡)𝑑𝑡 (3-23) 

and the approximation at level J is defined as 

𝛢𝑗 = ∑𝐷𝑗

𝑗>𝐽

 
(3-24) 

Finally, the signal 𝑓(𝑡) can be represented by 

𝑓(𝑡) = 𝛢𝑗 + ∑𝐷𝑗

𝑗≤𝐽

 
(3-25) 

3.4 Mother Wavelet Choice 

3.4.1 Continuous Wavelet Transform. 

The optimal mother wavelet Ψ for modal identification purposes using the free responses of a m.d.o.f 

system should satisfy the following conditions:  

• ψ is admissible (3-7) 

• ψ is progressive. 

• ψ has good time and frequency localization properties 

• The first and the second derivatives of ψ satisfy the three previous conditions and thus Eq. 

(3-19) can be used. 
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The first condition is obvious. Several reasons suggest the use of progressive wavelets instead of real 

ones for the analysis of real signals: It allows the direct connection between a real signal and its 

associated analytic signal. The wavelet transform of real signals using real wavelets yields real wavelet 

coefficients and there is no natural way of making a connection with some “local spectrum” which one 

would like associate with a given signal. The third condition is very important in the context of time-

frequency analysis and the final condition makes the processing by CWT of displacement, velocity and 

acceleration easier without differential and integral operations.  

Three complex-valued mother wavelets are compared. One or two parameters appear in the definition 

of each mother wavelet and strongly influence the localization properties. The first one is the Morlet 

wavelet, Figure 3-2: Real-valued Morlet wavelet [17], Figure 3-3: Complex-Valued Morlet wavelet [17]. 

The second is the Cauchy wavelet of order n, intensively used in quantum mechanics when n = 1 and 

also by Argoul et al when n>1, Figure 3-4: The Cauchy wavelet [18]. Finally, the third one is the 

harmonic wavelet recently proposed by Newland, Figure 3-5: The Harmonic wavelet [20].  

 

Figure 3-2: Real-valued Morlet wavelet [17] 

 

Figure 3-3: Complex-Valued Morlet wavelet [17] 
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Figure 3-4: The Cauchy wavelet [18] 

 

Figure 3-5: The Harmonic wavelet [20] 

The formulae of 𝜓(𝑡), 𝜓̂(𝜔), 𝐶𝜓, 𝑡𝜓, 𝜔𝜓, 𝛥𝑡𝜓, 𝛥𝜔𝜓, 𝜇𝜓 and Q are given in Table 3-1 for the three wavelets. 

The first and the second condition are verified by both Cauchy and harmonic wavelets. The Morlet 

wavelet is only numerically admissible and progressive when the product of the two parameters βδ is 

large enough ((𝛽𝛿 ≥ 5⁡in practice). According to the third condition the Morlet wavelet has its time-

frequency window with the smallest area allowable (
1

2
) by the Heisenberg inequality. The uncertainty 

𝜇𝜓 of the Cauchy wavelet behaves asymptotically with this threshold when its order parameter 𝑛 tends 

towards infinity. The harmonic wavelet has infinite uncertainty but its support in frequency domain is 

compact. This property allows the isolation of components with close frequencies. Newland improves 

time localization by windowing the spectrum of wavelets, but it is more complicated. The last condition 

is easily verified by the definition of the Cauchy wavelet given in Table 3-1: Definition of the main 
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characteristics of the three mother wavelets.. The first and the second derivatives of 𝜓𝑛 are also the 

Cauchy wavelets since 

𝜓̇n(𝑡) = 𝑖(𝑛 + 1)𝜓𝑛+1(𝑡) and 𝜓̈n(𝑡) = −(𝑛 + 1)(𝑛 + 2)𝜓𝑛+2(𝑡) (3-26) 

and the identification procedure with 𝑢̇ and 𝑢̈ by the aid of Eq (3-19) is limited. 

The properties of the mother wavelet can be referred to the parameter Q defined in relation (3-15).  

 

 

 

  

 

Table 3-1: Definition of the main characteristics of the three mother wavelets. 

 Morlet Wavelet  Cauchy Wavelet Harmonic Wavelet 

𝜓(𝑡) 𝑒−𝑡2 (2𝛿2)⁄ 𝑒𝑖𝛽𝑡 (
𝑖

𝑡 + 𝑖
)
𝑛+1

 
𝑒𝑖2𝑛𝜋𝑡 − 𝑒𝑖2𝑚𝜋𝑡

𝑖2𝜋(𝑛 − 𝑚)𝑡
 

𝜓̂(𝜔) 𝛿√2𝜋𝑒(−(𝜔−𝛽)2𝛿2/2⁡) 
2𝜋𝜔𝑛𝑒−𝜔

𝑛!
𝛩(𝜔) 

𝛩[(𝜔 − 𝑚2𝜋)(𝑛2𝜋 − 𝜔)]

(𝑛 − 𝑚)2𝜋
 

𝐶𝜓 ∞ 
4𝜋2 (

1

22𝑛
) (

(2𝑛 − 1)!

(𝑛!))2
⁡ 

1

4𝜋2(𝑛 − 𝑚)2
𝑙𝑛 (

𝑛

𝑚
) 

𝑡𝜓 0 0 0 

𝜔𝝍 𝛽 𝑛 +
1

2
 (𝑛 + 𝑚)𝜋 

𝛥𝜔𝜓 

1

𝛿√2
 √2𝑛 + 1

2
 (n-m)π 

𝛥𝑡𝜓 
𝛿

√2
  

1

√2𝑛 − 1
 

∞ 

𝜇𝜓 
1

2
 

1

2
√1 +

2

2𝑛 − 1
 

∞ 

𝑄 

𝛽𝛿

√2
 

𝑛 +
1
2

√2𝑛 + 1
 

𝑛 + 𝑚

2(𝑛 − 𝑚)
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3.4.3 Discrete Wavelet Transform. 

A wavelet is virtually any waveform that has limited duration and zero average. It is important to notice 

that the results of wavelet transformation depend on the choice of the wavelet selected. There are 

several wavelet families that can be selected.  

 

Figure 3-6: Families of Daubechie (DB) and Coiflet (Coif) Wavelets [8] 

 

Figure 3-7: Families of Symlet (Sym) and Biorthogonal (Bior) Wavelets [8] 

The results of wavelet transform, both discrete and continuous, strongly depend on the choice of 

wavelet selected. In earthquake engineering the most common wavelets are Daubechies and 

Biorthogonals. Both bior 6.8 and DB4 were used during this thesis and the results were always similar. 
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3.5 MATLAB Wavelet Toolbox Function 

MATLAB’s CWT toolbox is using a function based on expansion of the integral for a discrete time interval 

k and k+1  

𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∑𝑥(𝑘)(∫ 𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡 − ∫ 𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡)

𝑘

−∞

⁡
𝑘+1

−∞𝑘

 

 

 (3-27) 

 

The interval subtraction is calculated through finite differences. In MATLAB the numerical integral of 

𝜓(𝑡) is calculated only once, instead of each dilated and shifted wavelet, and the values of the integral 

are dilated to obtain the integral of 𝜓(𝛼,𝑏)(𝑡). The discrete number of points of the mother wavelet 

integral depends on a precision parameter 𝑝, which can take positive integer values, with higher values 

meaning better discretization of the wavelet. This procedure is improving the processing time and 

memory limits used by the program because the integral of the mother wavelet is computed only once 

and has a fixed length of discrete points. This means it doesn’t depend on the length of the signal. This 

means that the results obtained from MATLAB are only an approximation of the CWT and considerable 

numerical pitfalls can be introduced in some cases. 

Another thing that needs to be addressed is the edge effect. While wavelet is shifted along the begging 

and the end of the signal, a part of it fails outside the signal. This has a result the generation of useless 

coefficients in that region that are causing the edge effect. This means every CWT analysis needs to 

start after a certain time period.  

ΔΤ = β𝛥𝑡𝑓 =
𝛽𝑓𝑐√𝑓𝑏

2𝑓
 

where 𝑓𝑏 is the bandwidth parameter and 𝑓𝑐 is the mother wavelet central frequency and β equals to 4. 

MATLAB is generating a cone of influence that marks the territory on the scalogram affected by the 

edge effect automatically. The cwtfilterbank and cwt functions use an approximation to the 1/e rule to 

delineate the COI. The approximation involves adding one time-domain standard deviation at each scale 

to the beginning of the observation interval and subtracting one time-domain standard deviation at each 

scale from the end of the interval.  

 

Figure 3-8: MATLAB generated Cone of influence 

 

 

https://www.mathworks.com/help/wavelet/ref/cwtfilterbank.html
https://www.mathworks.com/help/wavelet/ref/cwt.html
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4 DYNAMIC LOADS USED 

4.1 Kobe Earthquake 

Kobe earthquake, also known as The Great Hanshin earthquake, occurred on January 17, 1995 in Japan. 

The tremors lasted approximately 20 seconds. Recordings used are from Fukoshima sensors 

downloaded from PeerNGA [21]. Response Spectra and Welch Power Spectrum from SeismoLee.eu 

[23]. 

 

Figure 4-1: X Axis Response Spectra 
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Figure 4-2: X Axis Response Spectra 

 

Figure 4-3: X-Axis Accelerations signal – Welch Power Spectral Density Estimate – Fourier transform  
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Figure 4-4: Y-Axis Accelerations signal – Welch Power Spectral Density Estimate – Fourier transform  
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4.2 MATLAB generated low amplitude ambient vibration (White-Noise) 

White noise is a random signal that has equal amplitude at different frequencies. Such signal is easy to 

make in MATLAB with the following code. 

 

 

 

Figure 4-5: White Noise Accelerations signal –– Fourier transform 
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5 DISCRETE WAVELET TRANSFORM 

(DWT) APPLICATIONS 

When a structure is subjected to earthquake excitation, if the excitation is strong enough some of the 

structural members will yield. Furthermore, if the excitation is strong enough to push the member deep 

into the anelastic section, there will be visible damage that can be observed with visual inspection. If 

the excitation is just strong enough to make the member yield without visible damage, there is no way 

to visually tell that a member has been damaged. Especially if it’s covered. Wavelet analysis can help 

detect this kind of damage. When a member yields, there is degradation of its stiffness which affects 

the frequency the building is oscillating. This change is imprinted in the form of spikes in details diagram 

of its wavelet transform. 

Discrete wavelet analysis was tested on 4 different recordings 

1. 1 Story 2D frame simulated with Seismostruct 2020 

2. 10 Story 2d frame simulated with Seismostruct 2020 

3. 6 Story 3d building simulated with Seismostruct 2020 

4. Sherman Oaks – 13 Story Commercial Building (recordings from StrongMotion.org) 

5.1  Automatization of the method 

The above method is dependent on manual observation on the wavelet detail signal. For this reason, 

there is need for a more robust and automated numerical procedure. For this reason, for every details 

signal, the absolute maximum value of the signal, maxD, will be calculated. A portion of that value will 

be compared to the rest absolute values of the signal. With trial and error, the most efficient value is 

𝑝 = 0.25 ∗ 𝑚𝑎𝑥𝐷. After that the parameter R is calculated. R is the percentage of how many times the 

absolute values of the details signal exceed p. If the calculated R is small enough, usually < 1%, it is 

an indicator that spikes exist in that detail signal. Otherwise, if 𝑅 > 1% then no spikes exist, and 

consequently no damage has occurred. 

 

Figure 5-1: Representative picture correlating the limits of R value with spikes of wavelet details signal for R<1% 
[1]  



24 CHAPTER. 5 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΑΝΑΣΤΑΣΙΟΥ ΣΤΑΜΟΥ   Ε.Μ.Π. - 2021 

 

Figure 5-2: Representative picture correlating the limits of R value with spikes of wavelet details signal for R>1% 
[1] 

5.2 1 Story 2D Seismostruct model. 

SeismoStruct is a Finite Elements package capable of predicting the large displacement behavior of 

space frames under static or dynamic loading, taking into account both geometric nonlinearities and 

material inelasticity. 

 

Figure 5-3: Seismostruct model. 

The present system was modelled as 1 Story single degree of freedom 2D steel frame. The height of 

the story is 3m. Mass of 350MGr was concentrated on the middle of the beam. There are 5 columns 

with different elastic modulus and yield strength of 270Mpa. The columns and the beam are 0.2x0.2m. 

The steel is following the bilinear model. Elastic Modulus of Column1 and Column2 is 1.5 ∗ 108Kpa. 

Elastic Modulus of Column 3 and Column 4 is 2 ∗ 108Kpa. Elastic Modulus of Column 5 is 4 ∗ 108Kpa. 

Elastic Modulus of the beam is 2 ∗ 1010Kpa and it is behaving only linear elastic. The acting load is Kobe’s 

earthquake. Newmark’s method was used to solve the differential equation. λ scaling factor of 0.1 and 

1.5 was applied to the load for the 2 simulations.  

For scaling factor of 0.1 maximum displacement of the top was 0.002m. 



DISCRETE WAVELET TRANSFORM (DWT) APPLICATIONS  25 

ΕΛΕΓΧΟΣ ΔΟΜΙΚΗΣ ΑΚΕΡΑΙΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΣΥΝΕΧΩΝ ΚΥΜΑΤΟΜΟΡΦΩΝ 

 

Figure 5-4: Accelerations diagram of the first story center of mass. 

After applying the first level discreet wavelet transform using Daubechies 4 wavelet we are getting the 

following 1st level details diagram. 

 

Figure 5-5: 1st level Details diagram 

There are no spikes. The R Value is equal to 4.4% which means that there is no damage present. The 

results are confirmed from SeismoStruct where it’s observed that all the columns did not reach their 

yielding point. 

For λ scaling factor of 1.5 maximum displacement of the top was 0.034m 

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0 20 40 60 80 100

A
cc

e
le

ra
ti
o
n
(m

/s
^

2
)

Time(s)

Acceleration 1st Story



26 CHAPTER. 5 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΑΝΑΣΤΑΣΙΟΥ ΣΤΑΜΟΥ   Ε.Μ.Π. - 2021 

 

Figure 5-6: Accelerations’ diagram of the first story center of mass 

After applying the first level discreet wavelet transform using Daubechies 4 wavelet we are getting the 

following details diagram. 

 

Figure 5-7: 1st level Details Diagram 

There are big spikes that match with the yielding moments given from Seismostruct. R value is equal 

to 0.43% which confirms that there are spikes and that indicates that there is damage.  

This is also confirmed from SeismoStruct that all the columns reached and surpassed their yielding point 

multiple times during the excitation as seen on Figure 5-8. Bending Moment and Rotation values for 

each spike time moment are marked with orange. 
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Figure 5-8: Bending Moment – Rotation Diagrams 

5.3 10 Story 2D Seismostruct model. 

 

Figure 5-9: Seismostruct model 
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The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 

150MGr was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic 

modulus of each column is 1.5*108Kpa and the yield stress σy is 135Mpa, steel is following the bilinear 

model.. Elastic modulus for the beams is 2 ∗ 1010KPa. For this model all elements except the ones 

between the 1st and the 2nd story are always moving linearly.  

First for λ scaling factor of 0.1 there is no damage on any of the elements. 

 

Figure 5-10:1st level Details diagram 

All 1st level details diagrams follow the same pattern.  



30 CHAPTER. 5 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΑΝΑΣΤΑΣΙΟΥ ΣΤΑΜΟΥ   Ε.Μ.Π. - 2021 

 

Figure 5-11: R Values for each story 

From the R values calculated there is no damage indicated which is also confirmed from the results of 

the Seismostruct analysis. 

For λ scaling factor of 2 the columns between the 1st and the 2nd story are past their yielding point. 
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Figure 5-12: 1st level Details diagram of the accelerations of the first 2 floors. 

There are obvious spikes which are also confirmed by the R values 

 

Figure 5-13: R Values 

Close to the damage R values are below 1% which is sign of damage. Results are confirmed from 

Seismostruct that there is damage between the 1st and the 2nd story as shown on Figure 5-14. Bending 

Moment and Rotation values for each spike time moment are marked with orange. 
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Figure 5-14: Bending Moment – Rotations diagram – 2nd story columns  

 

5.4 6 Story 3D Seismostruct model. 

 

Figure 5-15: Seismostruct model 

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 

350MGr was concentrated on the middle of each beam. Moment of inertia 3750MGr*m2. Columns and 

beams are 0.3x0.2m. Elastic modulus of every column is 1.5 ∗ 108𝐾𝑃𝑎. Elastic modulus of every beam 
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is 2 ∗ 1010𝐾𝑃𝑎. For this model all elements except the ones between the 1st and the 2nd story are always 

moving linearly. Yield stress of the columns between the 1st and the 2nd story is σy is 135Mpa. Steel is 

following the bilinear model. For X-Y axis the equivalent Kobe Earthquake excitation were used, both 

were adjusted with the same scaling factor λ. 

First for λ scaling factor of 0.10 there is no damage on any of the elements. 

 

Figure 5-16: 1st level Details Diagram – X Axis 

 

Figure 5-17: 1st level Details Diagram – Y Axis 
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Figure 5-18: 1st level Details Diagram – RZ Axis 

 

Figure 5-19: R values – X Axis 
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Figure 5-20: R values – Y Axis 

 

Figure 5-21: R Values – RZ Axis 

The results are confirmed by the results from Seismostruct. There is no damage to the building. 

For λ scaling factor 1.5 the columns between the first and the second story go past their yielding point.  
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Figure 5-22: 1st level Details Diagram – X Axis 

 

Figure 5-23: 1st level Details Diagram – Y Axis 

 

Figure 5-24: 1st level Details Diagram – RZ Axis 
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Figure 5-25: R Values – X Axis 

 

Figure 5-26: R values – Y Axis 
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Figure 5-27: R Values – RZ Axis 

R values on all 3 axis are close or lower than 1% which indicates that there are spikes in the details 

diagrams. Seismostruct results confirm that there is damage around the 1st and 2nd story. Bending 

Moment and Rotation values for each spike time moment are marked with orange. 
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Figure 5-28: Bending Moment – Rotation Diagrams – 2nd story columns 

Also, it’s good to note that the weak axis is the one dictating when the spikes appear, in our case that’s 

x axis. 

5.5 10 Story 2D Seismostruct model using Menegotto – Pinto steel model 

 

Figure 5-29: Seismostruct model 
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Menegotto – Pinto steel model is a single axis steel model based on a simple but effective formula 

proposed by Menegotto and Pinto in 1973 extended by Filippou et al. to include isotropic strain 

hardening effects (1983). Over 10 parameters can be changed to optimize the material behavior. [28] 

 

Figure 5-30: Menegotto – Pinto constitutive model for steel. 

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 

150MGr was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic 

modulus of each column is 1.5*108Kpa and the yield stress σy is 135Mpa. Elastic modulus of the beams 

is 2 ∗ 1010KPa. For this model all elements except the ones between the 1st and the 2nd story are always 

moving linearly.  

Table 5-1: Menegotto – Pinto steel constitutional model parameters 

Material Properties Value Chosen 

Modulus of elasticity 1.5 ∗ 108(𝑘𝑃𝑎) 

Yield strength 135000(𝑘𝑃𝑎) 

Strain hardening parameter - μ 0.005 

Transition curve initial shape parameter – R0 20 

Transition curve shape calibrating coefficient 
– A1 

18.5 

Transition curve shape calibrating coefficient 
– A2 

0.15 

Isotropic hardening calibrating coefficient – 
A3 

0 

Isotropic hardening calibrating coefficient – 
A4 

1 

Fracture/buckling strain 0.1 

First for λ scaling factor of 0.4 there is no damage on any of the elements. 
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Figure 5-31:1st level Details diagram 

All details diagrams follow the same pattern.  

 

Figure 5-32: R Values for each story 

From the R values calculated there is no damage indicated which is also confirmed from the results of 

the Seismostruct analysis. 

For λ scaling factor of 1 the columns between the 1st and the 2nd story are past their yielding point. 
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Figure 5-33: 1st level Details diagram of the accelerations of the first 2 floors. 

There are obvious spikes which are also confirmed by the R values 
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Figure 5-34: R Values 

Close to the damage R values are significantly below 1% which is sign of damage. Results are confirmed 

from Seismostruct that there is damage between the 1st and the 2nd story as shown on Figure 5-14. 

Bending Moment and Rotation values for each spike time moment are marked with orange. 

 

Figure 5-35: Bending Moment – Rotations diagram – 2nd story columns  

5.6  Sherman Oaks – 13 Story commercial building. 

Sherman Oaks is an office building designed in 1964 with 13 stories above and two floors below the 

ground. The vertical load carrying system consists of 4.5 inches thick one-way concrete slabs supported 

by concrete beams, girders and columns. The lateral load resisting system consists of moment resisting 
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concrete frames in the upper stories and concrete shear walls in the basements. The foundation system 

consists of concrete piles. Sensors were placed in different floors of the building. 

 

Figure 5-36: Sensor Locations 

The building was moderately damaged during the 1994 Northridge earthquake while it sustained no 

damaged during the 1992 Landers Earthquake. Sensor 7 is the one closest to the damaged area. 

 

Figure 5-37: 1st level details of DWT applied on acceleration signal – 1992 – Sensor 7 
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Figure 5-38: 1st level details of DWT applied on acceleration signal – 1994 – Sensor 7 

There is a big spike on the details diagram from the 1994 recordings. This is indication of damage. This 

is also confirmed by the R values calculated for every sensor on both occasions. 

 

Figure 5-39: R Values - 1992 
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Figure 5-40: R Values – 1994 

On the sensor closest to the damaged area R value is smaller than 1% which indicates that there are 

spikes on the details diagram. Results are in line with the performance analysis calculations for the 

building. 

0.19W maximum base shear experienced by the building in the N-S direction is significantly larger than 

Uniform Building Code (UBS) analysis calculated strength design shear of 0.06W.  

Table 5-2: Response Summary for Sherman Oaks 13-Story Commercial Building [8] 

Response Parameter Direction 
Time of Maxima 

(Seconds) 
Maximum Value 

Base Shear 

(% Total Weight) 

N-S 

E-W 

Diff 

5.14 

12.72 

3.24 

18.70 

7.57 

6.69 

Overturning Moment 

(% Total Weight x feet) 

N-S 

E-W 

Diff 

3.22 

11.52 

3.22 

1304 

771 

615 

Roof Lateral 
Displacement 

Relative to the Base (cm) 

N-S 

E-W 

Diff 

10.86 

37.98 

11.00 

24.10 (0.0048) * 

33.42 (0.0067) * 

4.30 (0.0009) * 

*Overall drift index values are shown in the brackets 
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6 CONTINUOUS WAVELET TRANSFORM 

(CWT) APPLICATIONS. 

CWT is a tool that when applied to a signal, produces a time-frequency representation. By applying this 

transformation on the free response of a linear mechanical system it allows the estimation of the natural 

frequencies, viscous damping ratios and mode shapes. In case the free response is not available, then an 

approximation needs to be extracted from the signal using the Random Decrement (RD) method. Furthermore, 

difficulties appearing during the application of the method will be discussed along with ways to solve them.  

Continuous wavelet transform was tested on 5 buildings 

1. 1 Story 2D frame simulated with Seismostruct 2020 

2. 10 Story 2d frame simulated with Seismostruct 2020 

3. 6 Story 3d building simulated with Seismostruct 2020 

4. 1 Story 3d building EUROPROTEAS 

5. Sherman Oaks – 13 Story Commercial Building (recordings from StrongMotion.org) 

6.1 Estimation of Damping Ratio and Mode shapes using wavelet transform. 

A single degree of freedom system’s equilibrium can be expressed as 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑓(𝑡) (6-1) 

where m is the mass, c is the damping and k is the stiffness of the system. From the above equation the 

damped free vibration of an underdamped system can be expressed as 

𝑥(𝑡) = 𝐴(𝑡) ∗ 𝑒±𝑖𝜔𝑛√1−𝑐2𝑡 = 𝐴(𝑡) ∗ 𝑒𝑖𝜑(𝑡) (6-2) 

or also as 

𝐴(𝑡) = 𝐴0𝑒
−𝑐𝜔𝑛𝑡 (6-3) 

where 𝐴(𝑡) is the decaying envelope of the free vibration response, c the damping ratio and 𝐴0 the initial 

amplitude of the response. 

Using the Morlet wavelet function, the modulus of CWT coefficients can be approximated as 

|𝑊(𝑎, 𝑏)| ≈ 𝐴(𝑏)|𝐺∗(𝑎(𝜑̇(𝑏))| (6-4) 

by using equation (6-2), (6-3), (6-4) and by knowing the initial amplitude 𝐴0  

|𝑊(𝑎0, 𝑏)| ≈ 𝐴0𝑒
−𝑐𝜔𝑛𝑏 |𝐺∗(±𝑎0𝑖𝜔𝑛√1 − 𝑐2)| (6-5) 

Applying logarithm to both sides 

ln(|𝑊(𝑎0, 𝑏)|) ≈ −𝑐𝜔𝑛𝑏 + ln⁡( |𝐺∗(±𝑎0𝑖𝜔𝑛√1 − 𝑐2)|) (6-6) 

solving this formula for c, the damping ratio of the system can be estimated from the slope of the straight line 

of the wavelet modulus cross using  
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𝑐 =
1

2𝜋𝑚
𝑙𝑛 |

𝑊(𝑎0, 𝑏)

𝑊(𝑎0, 𝑏 + 𝑚𝑇0)
| (6-7) 

Wavelet coefficients between different Stories for a certain frequency have the same analogy as the mode 

shapes. So, mode shapes are estimated through the wavelet output response at point k and a reference point 

𝜑𝑖
𝑘 =

𝑊𝑘(𝑎𝑖 , 𝑏)

𝑊𝑟𝑒𝑓(𝑎𝑖 , 𝑏)
 (6-8) 

6.2 Random Decrement (RD) Method 

The Random decrement (RD) method is a method used to estimate the damping ratio of a structure. This 

method is using the ambient vibration measurement of the structure and is extracting a RD signature which 

represents the response equivalent to the damped free vibration response. This method is based on that the 

response of a dynamic system is composed of three response components. That is initial displacement, velocity 

and the force vibration response.  

The intention of using the sampling technique is that averaging time segments of the ambient vibration 

measurement of a structure with a common triggering condition is to reduce the initial velocity response and 

the forced vibration response to zero. As number of segments increases the ensemble average of the forced 

vibration response tends to zero. If all segments in the average begin at the same threshold level and 

alternating positive and negative slope, then the response due to initial velocity is averaged out while the 

response due to initial displacement remains. Based on this explanation, the RD signature is equivalent to a 

damped free vibration response of a structure to an initial displacement equivalent to the selection amplitude. 

The RD signature δ is expressed by 

𝛿𝑡 =
1

𝑁
∑(𝑥𝑖,(𝑡𝑖+𝑟))

𝑁

𝑖=1

 (6-9) 

Where N is the number of segments used to evaluate the RD signature. 

6.3 1 Story 2D Seismostruct model. 

 

Figure 6-1: Seismostruct model. 

The present system was modelled as 1 Story single degree of freedom 2D steel frame. The height of each 

story is 3m. Mass of 350MGr was concentrated on the middle of the beam. There are 5 columns with different 
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elastic modulus and yield strength of 270Mpa. The columns and the beam are 0.2x0.2m. The steel is following 

the bilinear model. Elastic Modulus of Column1 and Column2 is 1.5 ∗ 108Kpa. Elastic Modulus of Column 3 and 

Column4 is 2 ∗ 108Kpa. Elastic Modulus of Column 5 is 4 ∗ 108Kpa. Elastic Modulus of the beam is 2 ∗ 1010Kpa 

and it is behaving only linear elastic. The acting load is Kobe’s earthquake with 10 seconds of zero load added 

in the end so the free decaying response can be extracted without the use of any method. Newmark’s method 

was used to solve the differential equation.  

λ scaling factor of 0.1 was applied to the excitation. 

Through Seismostruct the natural frequency 𝑓1 is calculated to be 2.155𝐻𝑍 so 𝑇1 ⁡= ⁡0.464𝑠. Damping ratio 𝑐 is 

set to be 4%. 

CWT is applied on last 10 seconds of the accelerations signal calculated through Seismostruct. This signal 

matches the 10 seconds time period of zero load added to the excitation. Morlet mother wavelet was used 

through MATLAB’s wavelet toolbox. 

 

 

Figure 6-2: Magnitude Scalogram of the free decay accelerations signal. 

After the time frequency resolution is calculated through CWT a window parallel to the frequency axis is 

extracted (Intersection 1). 

1 

2 
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Figure 6-3: Extracted window parallel to frequency axis.[1] 

The highest number of coefficients is at the frequency 𝑓1 = 2.176𝐻𝑧 → 𝑇1 = 0.46𝑠. Error is less than 1%. 

After 𝑓1 is calculated the parallel to frequency axis at the wavelet ridge is extracted. 

 

Figure 6-4 Extracted window parallel to frequency axis at the wavelet ridge [2] 
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Figure 6-5: Comparison of free decay response and the extracted wavelet envelope [2] 

After 6 seconds the response is so small that the diagram has no meaning.  

From Equation (6-7), damping ratio can be calculated. In this case 𝑐 = 0.0395. Error of 1.25%. 
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6.4 10 Story 2D Seismostruct model. 

 

Figure 6-6: Seismostruct model 

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 150MGr 

was concentrated on the middle of each beam. Columns and beams are 0.4x0.4m. Elastic modulus of each 

column is 1.5 ∗ 108KPa and the yield stress σy is 135Mpa. Elastic modulus of the beams is 2 ∗ 1010KPa For this 

model all elements are always moving linearly. The acting load is Kobe’s earthquake with 10 seconds of zero 

load added in the end so the free decaying response can be extracted without the use of any method. 

Newmark’s method was used to solve the differential equation.  

λ scaling factor of 0.1 was applied to the excitation. 

Through Seismostruct the natural frequencies and the mode shapes are calculated.  
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Table 6-1: Modal characteristics of the model 

 

 

 

 

Frequencies 

[
 
 
 
 
 
 
 
 
 
 
𝑓1
𝑓2

𝑓3

𝑓4
𝑓5

𝑓6

𝑓7

𝑓8

𝑓9

𝑓10]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0.761
2.52
4.76
6.67
8.33
10

11.11
12.5
13.16
14.29]

 
 
 
 
 
 
 
 
 

𝐻𝑧 

 

 

 

 

Damping Ratios 

[
 
 
 
 
 
 
 
 
 
 
𝜉1

𝜉2

𝜉3

𝜉4

𝜉5

𝜉6

𝜉7

𝜉8

𝜉9

𝜉10]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
4%
6%
−
−
−
−
−
−
−
− ]

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Modal Shapes 

[
 
 
 
 
 
 
 
 
 
10
9
8
7
6
5
4
3
2
1 ]

 
 
 
 
 
 
 
 
 

, 

𝜑1 =

[
 
 
 
 
 
 
 
 
 

1
0,92
0,82
0,71
0,6
0,49
0,38
0,27
0,17
0,07]

 
 
 
 
 
 
 
 
 

, 𝜑2 =⁡

[
 
 
 
 
 
 
 
 
 
−0,98
−0,64
−0,21
0,22
0,61
0,88
1

0,95
0,73
0,4 ]

 
 
 
 
 
 
 
 
 

, 𝜑3 =

[
 
 
 
 
 
 
 
 
 

0,88
0,3

−0,4
−0,88
−0,88
−0,42
0,28
0,85
1

0,65 ]
 
 
 
 
 
 
 
 
 

, 𝜑4 =

[
 
 
 
 
 
 
 
 
 

0,88
−0,13
−0,98
−0,86
0,12
1

0,91
−0,05
−0,96
−0,93]

 
 
 
 
 
 
 
 
 

, 𝜑5 =

[
 
 
 
 
 
 
 
 
 

0,73
−0,51
−0,94
0,09
1

0,39
−0,81
−0,75
0,47
0,98 ]

 
 
 
 
 
 
 
 
 

 

𝜑6 =

[
 
 
 
 
 
 
 
 
 
−0,62
0,81
0,5

−0,9
−0,39
0,93
0,26

−0,98
−0,14

1 ]
 
 
 
 
 
 
 
 
 

, 𝜑7 =

[
 
 
 
 
 
 
 
 
 

0,52
−0,98
0,20
0,85

−0,80
−0,27

1
−0,44
−0,67
0,95 ]

 
 
 
 
 
 
 
 
 

, 𝜑8 =

[
 
 
 
 
 
 
 
 
 

0,40
−0,98
0,82

−0,02
−0,79
0,99

−0,44
−0,45

1
−0,8 ]

 
 
 
 
 
 
 
 
 

, 𝜑9 =

[
 
 
 
 
 
 
 
 
 

0,27
−0,77

1
−0,87
0,44
0,15

−0,69
0,98

−0,92
0,56 ]

 
 
 
 
 
 
 
 
 

, 𝜑10 =

[
 
 
 
 
 
 
 
 
 
−0,14
0,43

−0,68
0,87

−0,98
1

−0,92
0,78

−0,55
0,28 ]

 
 
 
 
 
 
 
 
 

 

CWT is applied on last 10 seconds of the accelerations signal for each floor calculated through Seismostruct. 

This signal matches the 10 seconds time period of zero load added to the excitation. Morlet mother wavelet 

was used through MATLAB’s wavelet toolbox. 
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Figure 6-7: Magnitude Scalogram of the free decay accelerations signal – 10th story. 

 

Figure 6-8: Extracted window parallel to frequency axis. [1] 

The highest number of coefficients is at frequency 𝑓1 = 0.759𝐻𝑧 → 𝑇1 = 1.317𝑠⁡, error of 0.25% 

To calculated the damping ratio, after 𝑓1 is calculated the parallel to frequency axis at the wavelet ridge is 

extracted. 
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Figure 6-9: Comparison of free decay response and the extracted wavelet envelope. [2] 

Damping ratio is calculated 3,96% 

For 𝑇2 because excitation is weak, the response is fading too fast for CWT to see. For this reason, CWT is 

applied to the signal between 70 and 80 seconds. Following the same procedure 𝑓2 = 2.46𝐻𝑧 → 𝑇2 = 0.4s⁡ 

 

Figure 6-10: Magnitude Scalogram – Accelerations signal 10th floor. 
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Figure 6-11: Extracted window parallel to frequency axis. [4] 

To calculated the damping ratio, after 𝑓2 is calculated the parallel to frequency axis at the wavelet ridge is 

extracted from the CWT transform of the free decaying signal (80-90 seconds). 

 

Figure 6-12: Extracted wavelet envelope parallel to the frequency at the wavelet ridge. [3] 

Damping ratio is calculated 6.21%. 3.4% error 

This procedure is applied to every signal acquired for every floor. Through the analogy of the coefficients on a 

fixed time moment, mode shapes are calculated. 
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Figure 6-13: Figure: First 2 mode shapes as calculated by Seismostruct (blue) and CWT (orange). 
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Figure 6-14: Figure: First 2 mode damping ratio as calculated by Seismostruct (blue) and CWT (orange). 
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6.5 6 Story 3D Seismostruct model. 

 

Figure 6-15: Seismostruct model 

The present system was modelled as 10 Story 2D steel frame. The height of each story is 3m. Mass of 350MGr 

was concentrated on the middle of each beam. Moment of inertia 3750MGr*m2. Columns and beams are 

0.2x0.3m. Elastic modulus of every column is 1.5 ∗ 108𝐾𝑃𝑎. Elastic modulus of every beam is 2 ∗ 1010KPa. For 

this model all elements are always moving linearly. For X-Y axis the equivalent Kobe Earthquake excitation 

were used, both were adjusted with the same scaling factor λ. 

λ scaling factor is equal to 0.10  

Through SeismoStruct the natural frequencies and the mode shapes are calculated. Only the first 5 Mode 

shapes are listed. 
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Table 6-2: Structure Characteristics as calculated on SeismoStruct 

 

 

 

 

Frequencies 

[
 
 
 
 
 
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9
𝑓10]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0.7
1.02
1.28
2.06
3.03
3.33
3.70
4.34
5

5.26]
 
 
 
 
 
 
 
 
 

𝐻𝑧⁡

[
 
 
 
 
 
 
 
 
𝑓11

𝑓12

𝑓13

𝑓14

𝑓15

𝑓16

𝑓17

𝑓18]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
5.7
6.06
6.57
7.8
8

8.62
9.43
10.4]

 
 
 
 
 
 
 

𝐻𝑧 

 

 

 

 

Damping Ratios 

[
 
 
 
 
 
 
 
 
 
 
𝜉1

𝜉2

𝜉3

𝜉4

𝜉5

𝜉6

𝜉7

𝜉8

𝜉9

𝜉10]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
4%
6%
−
−
−
−
−
−
−
− ]

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Modal Shapes 

𝑆𝑡𝑜𝑟𝑦⁡

[
 
 
 
 
 
6
5
4
3
2
1]
 
 
 
 
 

 

𝜑1 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑋],

[
 
 
 
 
 

1
0.94
0.82
0.66
0.46
0.23]

 
 
 
 
 

[𝑌],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑅𝑧]⁡𝜑2 =

[
 
 
 
 
 

1
0.93
0.80
0.64
0.44
0.22]

 
 
 
 
 

[𝑋],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑌],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑅𝑧]⁡ 

 

𝜑3 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑋],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑌],

[
 
 
 
 
 

1
0.94
0.83
0.67
0.47
0.24]

 
 
 
 
 

[𝑅𝑧]⁡⁡𝜑4 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑋],

[
 
 
 
 
 
−0.94
−0.45
0.26
0.84
1

0.66 ]
 
 
 
 
 

[𝑌],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑅𝑧] 

 

𝜑5 =

[
 
 
 
 
 
−0.94
−0.44
0.27
0.85
1

0.66 ]
 
 
 
 
 

[𝑋],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑌],

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

[𝑅𝑧] 

First on X axis, CWT transform is applied on the free decay accelerations signal of every story. The same 

procedure is applied. 𝑓2, 𝑓5 and 𝜉2 are calculated. 𝑓2 = 1.019𝐻𝑧 → 𝑇2 = 0.98𝑠⁡𝑓5 = 3.037𝐻𝑧 → 𝑇5 = 0.329𝑠⁡𝜉2 =

6,09%. Error of 0.41% ,0.3% and 1.48% respectively. This is calculated for every floor to calculate the mode 

shapes. 



CONTINUOUS WAVELET TRANSFORM (CWT) APPLICATIONS.  61 

ΕΛΕΓΧΟΣ ΔΟΜΙΚΗΣ ΑΚΕΡΑΙΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΣΥΝΕΧΩΝ ΚΥΜΑΤΟΜΟΡΦΩΝ 

 

Figure 6-16: Magnitude Scalogram – Accelerations signal 6th floor. 

 

Figure 6-17: Extracted window parallel to frequency axis. [1] 
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Figure 6-18: Comparison of free decay response and the extracted wavelet envelope. [2] 

On Y Axis following again the same procedure 𝑓1, 𝑓4 and 𝜉1 are calculated. Because 𝑓4 is not visible from the 

CWT transform of the last 10 seconds, CWT transform is also applied to seconds 70 to 80. From this 2, 𝑓1 =

0.708𝐻𝑧 → 𝑇1 = 1.41𝑠⁡𝑓4 = 1.896𝐻𝑧 → 𝑇4 = 0.52𝑠⁡𝜉1 = 3.9%. Error of 1.6% ,6.5% and 2.5% respectively. 

 

Figure 6-19: Magnitude Scalogram – Accelerations signal 6th floor – 80 to 90s 
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Figure 6-20: Extracted window parallel to frequency axis. [1] 

 

Figure 6-21: Comparison of free decay response and the extracted wavelet envelope. [2] 

 

Figure 6-22: Magnitude Scalogram – Accelerations signal 6th floor – 70 to 80 
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Figure 6-23: Extracted window parallel to frequency axis. [1] 

On Rz Axis following again the same procedure 𝑓3, is calculated. 𝑓3 = 1.322𝐻𝑧 → 𝑇1 = 0.756𝑠. Error of 3.3% 

 

 Figure 6-24: Magnitude Scalogram – Accelerations signal 6th floor  

 

Figure 6-25: Extracted window parallel to frequency axis. [1] 
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After applying CWT to the acceleration signals from every floor, mode shapes are calculated. 
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Figure 6-26: Figure: First 5 mode shapes as calculated by Seismostruct (blue) and CWT (orange). 
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Figure 6-27: First 2 mode damping ratio as calculated by Seismostruct (blue) and CWT (orange). 

6.6 Modal Assurance Distribution (MAD) 

As seen from the previous applications, the values of the wavelet components related to a given time instant 

and a given frequency subband of each recording channel can be interpreted as the elements of a structural 

mode near the resonance peak of the frequency response spectrum. This means that near the natural 

frequencies of the building the analogy between the values of the wavelet components are very similar. This 

provides another way to monitor a building. By forming a matrix that compares that analogy for every given 

time and comparing it to neighbouring subbands it is possible to follow the frequencies that a building is 

oscillating. Through Equation (6-8) mode shapes can be calculated and after 𝑚𝑘[𝑡] matrix can be calculated 

𝑚𝑘[𝑡] =
|𝜑𝑘

𝑇[𝑡]𝜑𝑘+1[𝑡]|
2

(𝜑𝑘
𝑇[𝑡]𝜑𝑘 [𝑡])(𝜑𝑘+1

𝑇 [𝑡]𝜑𝑘+1[𝑡])
 (6-10) 

where 𝜑𝑘 [𝑡] is the mode shape for the kth subband. This matrix will be filled with values from 0 to 1, subbands 

where persistent high values will appear in the time-frequency areas where modal responses are present. 
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There are though problems arising because random similarities between noise-frequencies will give rise to 

beta-distributed noise so without proper signal processing this matrix is very hard to apply. Table 𝑚𝑘 was 

calculated for the previous studied 10story 2d frame. As it can be seen from the graph, for 𝑓 = 0.759𝐻𝑧 there 

is consinstent values close to 1, with only few time moments out of 1000 that are a slightly lower than 1. For 

𝑓2 = 2.5𝐻𝑧 there is bigger fluctuations but mk values are again steadily near 1. 

 

Figure 6-28: Mk Values for F1=0.759Hz 

 

Figure 6-29: Mk Values for F2=2.5Hz 
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6.7 Europroteas  

EuroProteas is a real-scale simplified model structure built in Euroseistest site in the framework of the European 

project “Seismic Engineering Research Infrastructures for European Synergies, Series”. It is a project conducted 

by Dimitris Pitilakis et al, aiming to identify the soil-foundation system interaction. The structure consists of a 

steel frame on a reinforced concrete (RC) of 0.40𝑚 thickness. Two similar RC slabs of 9𝑀𝑔 are placed on top 

of the frame. It is instrumented with more than 80 instruments (accelerometers, seismometers, MEM sensors). 

The whole model is customizable with possibility to change stiffness, damping ratio and the type of the 

excitation (Forced-vibration, free-vibration and ambient noise). Resonant frequency is varying between 2.9𝐻𝑧 

and 11.8𝐻𝑧⁡depending on the configuration. The thesis results are based on a total of 277sec recordings on 6 

accelerometers with a sampling rate of 0.005sec. 

 

Figure 6-30: The structure and the 6 accelerometers layout used in this example. 

The structure’s modal characteristics were identified by the MACEC software using 2 other methods of modal 

analysis (SSI_COV and FDD)  
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Table 6-3: Europroteas modal characteristics 

 Peak picking  FDD  SSI  

Mode 
Frequency 

(Hz) 
Shape 

Frequency 
(Hz) 

Shape 
Frequency 

(Hz) 
Shape 

1 4.102 Transverse 4.102 Transverse 4.107 Transverse 

2 4.199 Transverse 4.297 Transverse 4.286 Transverse 

3 9.668 Torsional 9.668 Torsional 9.603 Torsional 

4 21.191 Coupled 21.191 Coupled 21.131 Coupled 

5 22.363 Coupled 22.363 Coupled 22.419 Coupled 

CWT Transform using MATLAB’s toolbox is applied to the accelerations signal for each sensor. Free decay 

response is not available so the CWT is applied to the response during the excitation of the structure with an 

ambient vibration. For this reason, damping ratio cannot be calculated as well. 

 

 Figure 6-31: Magnitude Scalogram – Sensor 1 

1 
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Figure 6-32: Window Parallel to the frequency axis for t=1.7minutes – Sensor 1 [1] 

 

 

Figure 6-33: Magnitude Scalogram – Sensor 2 

1 
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Figure 6-34: Window Parallel to the frequency axis for t=1.7minutes – Sensor 2 [1] 

 

Figure 6-35: Magnitude Scalogram – Sensor 3 

1 
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Figure 6-36: Window Parallel to the frequency axis for t=1.7minutes – Sensor 3 [1] 

From the diagrams above modal characteristics are calculated. 

Table 6-4: Modal characteristics calculated through MATLAB’s CWT – Error compared to FDD Method 

Mode Shape Frequency Error Shape 

1 4.295 4.5% Transverse 

2 4.603 6.65% Transverse 

3 9.867 2.01% Torsional 

4 21.1522 0.18% Coupled 

5 26.0414 14.12% Coupled 

To calculate the mode shapes the following formulas were used to calculate the deformation at the center of 

mass of the floor using the recordings from the 3 sensors. 

𝐴1, 𝐴2⁡𝑎𝑛𝑑⁡𝐴3 are the values of coefficients calculated through MATLAB’s CWT for each of the resonant 

frequencies. 𝑑1, 𝑑2, 𝑑3 are the distance from the center of mass of each sensor respectively. The response of 

the center of mass in the x, y, rz directions are related to 𝐴1, 𝐴2⁡𝑎𝑛𝑑⁡𝐴3 with the following equations in matrix 

form. 

 

Figure 6-37: Formulas to calculate center of mass displacements [8] 
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{
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} = [
0
0
1
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1
1
0
|

𝑑1 𝑑⁄
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} → {
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1
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1
1
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−𝑑1 𝑑⁄
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]
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} (6-11) 

Table 6-5: Mode Shapes of Europroteas as Calculated through MATLAB’s CWT 

Mode Shapes 

[
𝑋
𝑌
𝑅𝑧

] 

𝜑1 = [
−0,57

1
0,15

] , 𝜑2 = [
−0,61

1
0,16

] , 𝜑3 = [
−0,02
0,05
1

],⁡ 

𝜑4 = [
1

0,94
0,85

] , 𝜑5 = [
0,72
0,24
1

] 

First issue appearing is the inability to calculate the damping ratio. For this, Random Decrement method needs 

to be used to calculate an approximation of the free decay. Second issue is that there is decent amount of 

error. This is because of couple of reasons. First of all, the excitation is influencing the results. If the analyzed 

signal is not free decay, which means excitation is zero, the excitation is changing the results, especially if it’s 

a signal with periodic components like most in Earthquake Engineering. Second of all modes 1 and 2, 4 and 5 

are very close to each other. To decouple those frequencies some parameters of the CWT analysis need to be 

changed. Last but not least like mentioned on chapter (3.5) MATLAB’s toolbox is calculating an approximation 

of the CWT to save time and computing power. These issues need to be addressed to be able to reduce the 

error and acquire better results. 

To tackle these issues a more advanced toolbox than MATLABs was used. This tool allows us to change different 

wavelet properties like 𝑐𝑓 , 𝑐𝑡 ⁡and 𝑄. Also it has built in Random Decrement extraction tool that allows us to 

calculate also the Damping Ratio. 𝑐𝑓 , 𝑐𝑡 are both chosen to be equal to 5. 

First, FFT transform is applied to the signal for an estimation of 𝜔𝑗 for each Mode. 

Table 6-6: Choosing Q Value for CWT analysis 

𝝎𝒋 𝒅𝝎𝒋 𝒄𝒇

𝝎𝒋

𝟐𝒅𝝎𝒋
≤ 𝑸 ≤ 𝑳

𝝎𝒋

𝟐𝒄𝒕
 Q Chosen 

27,1 27,1 2.5 ≤ 𝑄 ≤ 270.80 50 

27,33 0,3 271.875 ≤ 𝑄 ≤ 273.3 272 

60,9 33,6 4.53271 ≤ 𝑄 ≤ 609,5 50 

143,89 82,9 4.33 ≤ 𝑄 ≤ 1438.8 50 

157,2 13,3 29.5 ≤ 𝑄 ≤ 1572.1 50 
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Figure 6-38: Scalogram – Sensor 1 – Q=50 

 

Figure 6-39: Extracted Window Parallel to Frequency Axis [1] 

1 
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Figure 6-40: Scalogram – Sensor 3 – Q=273 

 

Figure 6-41: Extracted Window Parallel to Frequeny Axis [1] 

After all natural frequencies are calculated through this analysis, RD method is used to extract an approximation 

for the free decay to be able to estimate the damping ratio. Depending on Q, length of the free decay 

approximation needs to be big enough so the maximum Q value is not too small. For 𝑄 = 50 → 𝐿 = 20𝑠 and 

for 𝑄 = 273 → 𝐿 = 100𝑠. After free decay is extracted, CWT is applied with same settings as before and for 

every natural frequency calculated, the window parallel to time axis is extracted. Comparing the coefficients 

and the free decay approximation, area is found where the ratio coefficients are decreased is matching the 

response.  

1 
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Table 6-7: Calculated modal characteristics – Error Compared to FDD Method 

Mode Frequency (Hz) Error Damping Ratio Error 

1 4.109 0.17% 2.9% 4.6% 

2 4.443 3.29% 3.3% 3.5% 

3 9.79 1.25% 0.75% 6.25% 

4 21.82 2.88% 1.5% 10% 

5 22.48 0.52% 0.85% 11.76 

We see that the error decreased by a big margin for the frequencies compared to MATLAB’s toolbox and an 

estimation for the damping ratio is now available. There is some error but it is possible to decrease it further 

with experimentation with the RD variables like triggering point or length of the approximation. 

6.8 Sherman Oaks – 13 Story commercial building. 

Sherman Oaks is an office building designed in 1964 with 13 stories above and two floors below the ground. 

The vertical load carrying system consists of 4.5 inches thick one-way concrete slabs supported by concrete 

beams, girders and columns. The lateral load resisting system consists of moment resisting concrete frames in 

the upper stories and concrete shear walls in the basements. The foundation system consists of concrete piles. 

Sensors were placed οn different floors of the building. 

 

Figure 6-42: Sensor Locations 

The building was moderately damaged during the 1994 Northridge earthquake while it sustained no damaged 

during the 1992 Landers Earthquake. Sensor 7 is the one closest to the damaged area. 

On Chapter 5. DWT transform was used to determine if and where the building sustained any damage. On this 

chapter a different approach will be used. Through CWT on different points in time, natural frequencies will be 

calculated. If the building sustained damage, there should be decrease of the natural frequencies because of 

the softening that is result of the damage on the reinforced concrete. 
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First using MATLAB’s toolbox while trying to find parts of the signal through the scalogram that are not 

influenced too much from the excitation. 

 

Figure 6-43: Magnitude Scalogram – Sensor1 - 1994 

 

 

Figure 6-44: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (red) and 𝒕𝟐 = 𝟐𝟒𝒔 (blue) – Sensor1 

1 2 
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Figure 6-45: Magnitude Scalogram – Sensor2 – 1994 

 

Figure 6-46: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (red) and 𝒕𝟐 = 𝟐𝟒𝒔 (blue) – Sensor 2 

 

 

2 
1 
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Figure 6-47: Magnitude Scalogram – Sensor2 – 1994 

 

Figure 6-48: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (red) and 𝒕𝟐 = 𝟐𝟒𝒔 (blue) – Sensor 2 

From all the sensors appears to be a decrease on the natural frequencies but because of the way MATLAB is 

calculating CWT and the nature of the excitation which is periodic since it’s an actual earthquake and not some 

ambient vibration the results are influenced and they need to be confirmed using more sophisticated ways. 

For this the other toolbox will be used. Mother wavelet will be Morlet. Because of the limited signal length 

L=60s available, we are choosing 𝑐𝑓 = 1 and 𝑐𝑡 = 2. FFT transform is used to sensor 1,2 and 3 signals from 

1994. The following frequencies are appearing. 

 

 

2 1 
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Table 6-8: Choosing Q Value 

Frequency (Hz) 𝝎𝒋 𝒅𝝎𝒋 𝒄𝒇

𝝎𝒋

𝟐𝒅𝝎𝒋
≤ 𝑸 ≤ 𝑳

𝝎𝒋

𝟐𝒄𝒕
 Q Chosen 

0.26 1.63 1.63 0.5 ≤ 𝑄 ≤ 24.5 20 

0.31 1.95 0.31 3.1 ≤ 𝑄 ≤ 29.22 20 

0.33 2.07 0.125 8.25 ≤ 𝑄 ≤ 31.1 20 

0.37 2.3 0.23 5.08 ≤ 𝑄 ≤ 34.5 20 

0.38 2.39 0.09 13.6 ≤ 𝑄 ≤ 35.8 20 

0.4 2.5 0.12 10.5 ≤ 𝑄 ≤ 37.6 20 

 

CWT is applied with the above settings to the accelerations signal of sensors 1,2 and 3. 

 

Figure 6-49: Magnitude Scalogram – Sensor1 – 1994  

 

Figure 6-50: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (left) and 𝒕𝟐 = 𝟒𝟎𝒔 (right) – Sensor 1 

1 2 



CONTINUOUS WAVELET TRANSFORM (CWT) APPLICATIONS.  83 

ΕΛΕΓΧΟΣ ΔΟΜΙΚΗΣ ΑΚΕΡΑΙΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΣΥΝΕΧΩΝ ΚΥΜΑΤΟΜΟΡΦΩΝ 

 

Figure 6-51: Magnitude Scalogram – Sensor2 – 1994 

 

Figure 6-52: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (left) and 𝒕𝟐 = 𝟓𝟓𝒔 (right) – Sensor 2 

 

Figure 6-53: Magnitude Scalogram – Sensor 3 – 1994 

2 1 
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Figure 6-54: Window parallel to frequency axis for 𝒕𝟏 = 𝟐𝒔 (left) and 𝒕𝟐 = 𝟑𝟎𝒔 (right) – Sensor 2 

Results are confirming what we were expecting, there is a decrease in natural frequency from 𝑓1 = 0.397 →

𝑇1 = 2.52𝑠 to 𝑓1 = 0.331 → 𝑇1 = 3.02𝑠. The results are in line with [8] where an increase from 2.6 to 2.9 is 

calculated. 

 

Figure 6-55: Moving windows FFT analysis [8] 
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7 CONCLUSIONS 

Operational Modal Analysis with the use of Wavelets appears to be a very efficient tool for estimating the actual 

modal characteristics of a building and live structural health monitoring. Requirements on equipment are 

minimal. 3 accelerometers per story if there’s interest in mode shapes, otherwise 3 accelerometers every 2 to 

3 floors so both DWT and CWT can be applied. There’s also no need to evacuate the building or make any 

other preparations except applying some signal denoising technics when needed. 

DWT is the easiest method to apply, through few simple calculations in a generic calculation program 

(MATLAB), you can have a quick first estimation if and where damage occurred. The method seems to be very 

efficient in both simulations and real case buildings like Sherman Oaks without almost any optimization other 

than choosing a proper mother wavelet. 

CWT on the other hand is a very optimization and excitation sensitive method. It works best when you have 

the free decay available, without the need to use the random decrement method to extract it, so you remove 

the excitation from the results. Furthermore, it is very important to calculate correctly the FFT of the signal. 

This way 𝜔𝑗 can be estimated in order proper values of 𝑐𝑓 and 𝑐𝑡 to be decided, resulting to the range of the 

accepted 𝑄 values. Choosing the correct 𝑄 value is very important so close natural frequencies are decoupled. 

If everything is done correctly it is possible to get very good estimations of the Natural frequencies, mode 

shapes, damping ratios and detect “softening” of the building caused by damage. 

Both methods offer accurate results. DWT though only gives answer to if damage exists and partially to where. 

CWT on the other hand gives a variety of information regarding the building but they might be harder to obtain. 

Ideally for better results both methods should be applied. 

Further work on this subject should be aimed towards ways to 

• further decrease the error when the free decay is not available. 

• remove noise so Modal Assurance Distribution (MAD) can be applied to detect changes in mode 

shapes and natural frequencies as a result of structural damage. 

• find the most efficient combination of sensor type and placement to collect signals without noise 

and big sampling rate without spending too much on equipment. 

• test other available wavelets to see if they increase the quality of the results. 

• locate where the damage is with bigger accuracy 

• estimate damage severity 

• find how different levels of noise change DWT results and ways to improve that. 

• recognize false alarm spikes in DWT analysis. 
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