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ABSTRACT

The subject of this thesis is the modelling and control of a quadrotor slung-load system.
The purpose of this system is to gather samples from bodies of water. A small cannister
is slung by a cable onto the quadrotor’s frame. Then, the quadrotor flies over the point
of interest and immerses the cannister in the water. When it fills up, the quadrotor
returns to its take-off point to bring the sample back. While the cannister is in the water,
it is subjected to forces from various currents. These forces can draw the quadrotor
away from the initial point of interest. A control law based on the Active Disturbance
Rejection Control methodology will be developed, to mitigate the influence of the current
disturbances on the system. The performance of this controller will be compared to the
normal PID and the advantages and disadvantages of each controller will be evaluated.
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INTRODUCTION

A quadrotor belongs to the family of multirotor Unmaned Aerial Vehicles. By strapping
multiple motors symmetrically on a frame and by equipping these motors with propellers,
we can have a flying platform. But the system is not a hundred per cent symmetrical
like anything in the real world cannot ever be the exact copy of something else. There
might be minor differences in the motors, or the propellers, or small differentiations in
the moments of inertia of its principal axes. So, an open loop system with diametrically
opposed spinning propellers will never truly fly stably. Even if they were exactly the
same a gust of wind would immediately destabilise it. There must be a way to ensure
balance. With developments in material technologies, computers and electronic sensors
begun to shrink. Their installation became possible on small vehicle frames. This is
where the multirotor UAV was born. The basic idea is that by sensing the frame’s
angle with a gyroscopic sensor the onboard computer can calculate the frame’s derivation
from its wanted attitude and through a control algorithm (most frequently proportional-
integral-derivative or PID) send signals to the motors to correct the attitude and bring
balance to the vehicle. A simple but powerful idea that enables these machines to fly
with immaculate precision.

Precision is the key word, explaining the popularity of multirotors. Helicopter and
multirotor advantages over fixed wing aircraft is their ability of Vertical Take Off and
Landing (VTOL), as well as the ability to occupy an airborne position with zero spatial
velocity. In contrast, a fixed wing aircraft has to move in order to generate lift and keep
flying. Thus, multirotors and helicopters are ideal for tasks requiring precise manoeuvring
such as photography, acrobatic movements, picking or dropping payloads, and more.
When compared to helicopters, multirotors come out on top in terms of precision. Their
structure is ”more” symmetrical, granting them additional agility. When a multirotor
needs to move towards a direction it simply tilts towards that direction, in contrast
to a helicopter which first needs to turn, face the direction, and then tilt towards it.
The reason multirotors have not replaced helicopters heavier than 25 kilograms is that,
at those weights, one big internal combustion motor is much more efficient than many
electrical motors, or many smaller internal combustion motors. Currently multirotors
are dominating the market of small UAVs and find diverse applications across multiple
projects. Among its many uses, the multirotor can also be used for water sampling. Its
agility, ease of deployment and small size allow it to sample from water bodies that are
difficult to reach, relieve the person from gathering the sample himself/herself and, in
any case, facilitate the whole process.

The contribution of this thesis regarding this water sampling application is the fol-
lowing:

Chapter 1 describes the modelling of a simple quadrotor starting from basic La-
grangian mechanics, then explains using the Intermediate Axis Theorem that it is inher-



ently unstable, and finally describes the cascade PID controller that stabilises it.
Chapter 2 deals thoroughly with the modelling of the quadrotor slung-load system.
Chapter 3 gives examples of the methodology behind the ADRC, then describes the

control scheme to be used for the slung-load system, a PD-ADRC cascade controller that
is system agnostic and simple to tune.

Chapter 4 analyses the results of simulations using both the PID and the PD-ADRC,
while subjecting the slung-load system to various disturbances from wind gusts, and
water currents. The results are compared and conclusions are extracted. All simulations
are done in the Matlab/Simulink environment.

Chapter 5, the Appendix, contains various proofs and concepts that while necessary to
understand the subject of the thesis, their inclusion in the main text would be disruptive
to the flow of explanation going on in each chapter. Thus to have more clear reasoning
in each chapter, some information was moved in the Appendix.
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1. DYNAMIC MODEL AND CONTROL OF A QUADROTOR UAV

This section is devoted to a quadrotor’s general working principles, it’s mechanical mod-
elling and the control schemes that enable it to fly. At this point, we proceed to analyse
how the dynamic model of a quadrotor is derived and, subsequently, how it is controlled
with a cascade PID structure. This analysis will put to scope the changes we’ll perform
on both the model and the control scheme, when we change over to a slung-load system
controlled by a PD-ADRC controller.

We define two inertial coordinate systems, one fixed on the earth called the earth
inertial frame, and one fixed on the body, always having the same orientation as the
body, called the body-fixed frame. The following figure exhibits these two frames:

Fig. 1.1: Earth Frame(red) and Body-Fixed Frame(green)

.
Why define two coordinate systems instead of just the earth inertial frame?
Because we can take the best of both worlds. The earth frame is best for expressing the
translational movement of the vehicle, while the body-fixed frame is best for expressing
the rotational movement.
Why so?
Being stranded on the vehicle, always with the same orientation(as shown in Figure 1) the
body-fixed frame always sees the same moment of inertia for the quadrotor, in contrast
with the earth frame which, as the quadrotor rotates, sees the moment of inertia vary as
time goes on. Therefore it is much simpler to calculate angular accelerations on the body
fixed frame. In subsection 5.1 of the Appendix, a brief review of Euler angles, Rotation



Matrices and Matrix TΘ can be found. Moving forward, it is taken as granted that those
concepts are well known.

It is possible to pick a hybrid vector of coordinates, with which to describe transla-
tional and angular velocity for the quadrotor. Define vector ξ as:

ξ =


X
Υ
Z
φ
θ
ψ


where X,Y,Z are the coordinates of the vehicle’s Center of Mass (abbreviated as CM) and
φ, θ, ψ are the Euler angles of the vehicle’s current attitude. Vector ξ gives a full picture
of the quadrotor’s posture and position in space. The vector of the quadrotor’s velocities
in the body-frame will be:

v =


u
v
w
p
q
r


The two are connected with the following equation:

ξ̇ =

[
RΘ 0
0 TΘ

]
u

As we’ve seen earlier, in order to describe the dynamics of the quadrotor it is preferable
to analyse the rotational dynamics in the body-fixed frame instead of the earth inertial
frame. Thus, we denote a hybrid system H, one that combines the translational velocities
of the earth frame with the rotational velocities of the body-fixed frame. The velocities
in this hybrid system are neatly contained in vector ζ:

ζ =


Ẋ

Υ̇

Ż
p
q
r


The first three elements of the vector are the spatial velocities expressed in E-frame,
while the last three elements are the rotational velocities in B-frame. Now on to derive
the dynamics of the vehicle. According to Mechanics, the Lagrangian of a rigid body is
the sum of the translational kinetic energy of its center mass plus its rotational kinetic
energy. Translational kinetic energy of CM would be:

1

2

 Ẋ

Ẏ

Ż

T  Mq 0 0
0 Mq 0
0 0 Mq

 Ẋ

Ẏ

Ż

 =
1

2
uE

T

 Mq 0 0
0 Mq 0
0 0 Mq

uE
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while rotational K.E. would be, in the earth inertial frame :

1

2
ωE

T IEωE

where ωE denotes the vehicle’s angular velocity in E-frame and IE is the moment of
inertia matrix in the same frame. Therefore Kinetic Energy total is:

KE = L = KEq,tr,E +KEq,rot,E (1.1)

It’s high time to apply the Euler-Lagrange equations to the current Lagrangian to find
the quadrotor’s dynamics:

d

dt

 d

duE
d

dωE

L+

 d

dxE
d

dθE

L =

[
FE
PE

]

where uE =
[
Ẋ Ẏ Ż

]T
is the vector of translational velocity, ωE =

[
ωx ωy ωz

]T
is the vector of rotational velocity, xE =

[
X Y Z

]T
is the spatial coordinates vec-

tor, and θE =
[
anglex angley anglez

]T
are the angles around axis x,y,z , FE =[

Fx Fy Fz
]T

are any outside forces (gravity,wind, propellers) acting on the quadro-

tor and PE =
[
Px Py Pz

]T
are any outside torques (propellers, gyroscopic effect,wind

turbulence) acting on the quadrotor. All these vectors are expressed in the E-frame.
The translational part gives us simply:

Mq

 Ẍ

Ÿ

Z̈

 = FE

while the rotational part will be:

d

dt

d

dωE
L+

d

dθE
L = PE

Since L has no dependence on θE and since
d

dωE
L = IEωE we get:

d

dt
(IEωE) = PE ⇒

d

dt
(HE) = PE (1.2)

where HE = IEωE is the vehicle’s angular momentum in E-frame. We’ll move to B-frame.
First the following equation needs to be mentioned:

dRΘ

dt
= S(ωE)RΘ (1.3)

, where S(ωE) is the skew-symmetric matrix of ωE. The skew symmetric matrix of a
vector A has the following property when multiplied with vector B :

S(A)B = A× B
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Now, it’s mandatory to find the relationship between the moment of inertia tensor
in the E-frame, IE , and the moment of inertia tensor in the B-frame IB. The rotating
body’s angular momentum expressions in the E-frame and B-frame are connected, as
usual, by the rotation matrix RΘ:

HE = RΘHB ⇒ IEωE = RΘIBωB

by using the property of rotation matrices, RΘ
−1RΘ = 1, we get:

IEωE = RΘIB(RΘ
−1RΘ)ωB ⇒ IERΘωB = (RΘIBRΘ

−1)RΘωB ⇒ IE = RΘIBRΘ
−1 (1.4)

A third equation that will be of use is:

dHB

dt
= IBω̇B (1.5)

which is true since IB is a constant matrix.
Expanding on from relation (1.2) and using (1.3),(1.4),(1.5) we get:

d

dt
(HE) = PE ⇒

⇒ dRΘ

dt
HB +RΘ

dHB

dt
= PE ⇒

⇒ S(ωE)RΘHB +RΘIBω̇B = PE ⇒
⇒ ωE × (RΘIBωB) +RΘIBω̇B = RΘPB ⇒
⇒ RΘ(ωB × (IBωB)) +RΘIBω̇B = RΘPB ⇒
⇒ (ωB × (IBωB)) + IBω̇B = PB ⇒
⇒ −S(IBωB)ωB + IBω̇B = PB

Therefore we have an expression for rotational dynamics in the B-frame. To summarize,
the dynamics are enclosed in these two equations:

MqxE = FE

− S(IBωB)ωB + IBω̇B = PB

or, written in the H-frame, they can be summed up in one equation:

MH ζ̇ + CH(ζ)ζ =

[
FE
PB

]
(1.6)

where MH =


Mq 0 0 0 0 0
0 Mq 0 0 0 0
0 0 Mq 0 0 0
0 0 0 IXX 0 0
0 0 0 0 IY Y 0
0 0 0 0 0 IZZ

 is the inertia matrix,

CH(ζ) =

[
03x3 03x3

03x3 −S(IBωB)

]
is the centrifugal-coriolis matrix,

and FE and PB are outside forces and outside torques respectively. FE is given by the
sum of three terms, FE = GE + ThE + wFE:
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• GE is gravity:

GE =

 0
0

−Mqg


• ThE is propeller thrust:

ThE = RΘU1 =

 (sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(θ))U1

(− cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ))U1

cos(θ) cos(ϕ)U1


( U1 is an input signal discussed in detail in the Appendix 5.2)

• wFE any outside disturbances, like wind gusts:

wFE =
[
wFE,X wFE,Y wFE,Z

]T
While PB is given by the sum PB = GEB(ωB) + PTB + wTB where:

• The Gyroscopic Effect matrix (extensive explanation for the gyroscopic effect in
subsection 5.3 of the Appendix)is:

GEB(ωB) = JTP

 q −q q −q
−p p −p p
0 0 0 0




Ω1

Ω2

Ω3

Ω4



• PTB =
[
U2 U3 U4

]T
is the matrix containing the Propeller Torques ( U2, U3, U4

are the inputs discussed in detail in the Appendix 5.2) and

• wTB =
[
wTB,p wTB,q wTB,r

]T
are any outside torques caused by disturbances

like wind perturbations.

By expanding equation (1.6) for each coordinate we finally get the following dynamics
for a quadrotor UAV:
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Ẍ = (sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ))
U1

Mq

+
wFE,x
Mq

(1.7)

Ÿ = (− cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ))
U1

Mq

+
wFE,y
Mq

(1.8)

Z̈ = −g + (cos(θ) cos(ϕ))
U1

Mq

+
wFE,z
Mq

(1.9)

ṗ =
IY Y − IZZ

IXX
qr − JTP

IXX
qΩ +

U2

IXX
+
wTB,p
IXX

(1.10)

q̇ =
IZZ − IXX

IY Y
pr +

JTP
IY Y

pΩ +
U3

IY Y
+
wTB,q
IY Y

(1.11)

ṙ =
IXX − IY Y

IZZ
pq +

U4

IZZ
+
wTB,r
IZZ

(1.12)

But we are not done yet. There is a second factor, that plays an important role in a
quadrotor’s flight, and that is its motors’ dynamics. The motors, being electrical circuits
with inductive properties, have a complicated response to stimulating signals, that goes
beyond a simple linear relationship between input and output. Their inductive properties
factor in to their behaviour, but two other terms play the most prominent role. First is
the Back EMF, a voltage created by the rotor’s spinning, and second is the aerodynamic
drag force exerted on the propellers. Back EMF voltage is proportional to the angular
speed of the rotor and its polarity opposes that of the input voltage. Aerodynamic drag
is proportional to rotational speed squared. All those factors summed together give us
the following equation for the DC motors:

(JP + ηN2JM)Ω̇ = −KEKM

R
ηN2Ω− dΩ2 +

KM

R
ηNu (1.13)

where:
Ω: 4x1 vector containing angular speeds of the four motors.
u: 4x1 vector of voltages for the four motors
KE, KM : Motor specific constants.
R: Electrical Resistance
η: conversion efficiency
N : reduction ratio
d: air drag coefficient
JP : moment of inertia about the propeller axis.
JM : moment of inertia about the rotor axis.

Exactly how the previous equation is derived, can be found in [1].
Finally we can see a diagram of how the whole dynamics, rigid body and motors are

interconnected to form the final Quadrotor Dynamics Block:
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Fig. 1.2: Quadrotor Dynamics Diagram

.
We have managed to array a detailed, complete layout of a quadrotor’s dynamics

and their exact derivation starting from basic lagrangian mechanics. Before describing
the control system used to stabilise the quadrotor, an analysis of why the quadrotor
system is inherently unstable needs to be presented first. Such an analysis can convince
that a control loop is essential for flying the vehicle stably, without having it perform
uncontrollable and unpredictable movements. The theorem we’ll be basing our analysis
on is called the Intermediate Axis Theorem or, more recently, the Dzhanibekov Effect
(named after a Russian astronaut who thought of a disturbing potential application of
this theorem). As we’ve seen, the quadrotor has three principal axes , where moments
of inertia around those form the diagonal elements of the moment of inertia matrix IB
when rotation is viewed in the B-frame. As we’ve seen this matrix is given as:

IB =

 IXX 0 0
0 IY Y 0
0 0 IZZ


The geometry of the quadrotor dictates that IZZ is the largest of the three moments

of inertia. Then for IY Y and IXX , we theoretically consider them equal, but in practice
true symmetry is impossible and many quadrotors have asymmetrical bodies, therefore
we can assume that IY Y 6= IXX . Because the quadcopter is a flying vehicle the slightest
difference between IY Y and IXX can have a huge impact on its stability. We now take
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equations (1.10),(1.11),(1.12)

ṗ =
IY Y − IZZ

IXX
qr − JTP

IXX
qΩ +

U2

IXX
+
wTB,p
IXX

q̇ =
IZZ − IXX

IY Y
pr +

JTP
IY Y

pΩ +
U3

IY Y
+
wTB,q
IY Y

ṙ =
IXX − IY Y

IZZ
pq +

U4

IZZ
+
wTB,r
IZZ

For the sake of simplicity we consider any disturbance equal to zero ( wTB,p = 0, wTB,q =
0, wTB,r = 0). Moreover, we consider any inputs equal to zero: U2 = 0, U3 = 0, U4 = 0
and the Gyroscopic Effect’s influence equal to zero (without loss of generality): Ω =

Ω1 − Ω2 + Ω3 − Ω4 = 0 Therefore equations (1.10),(1.11),(1.12) become:

ṗ =
IY Y − IZZ

IXX
qr

q̇ =
IZZ − IXX

IY Y
pr

ṙ =
IXX − IY Y

IZZ
pq

or written in Newton-Euler form:

IBω̇B + ωB × (IBωB) = 0 (1.14)

. Our strategy will be to linearise the previous equation around ωB = ωs + a with

ωs =

 0
qs
0



and a =

 ap
aq
ar

 being a divergence from ωs. Thus equation (1.14) becomes:

ȧ = −IB−1 ((ωs + a)× (IBωs + IBa)) =
= −IB−1 ((ωs × (IBωs) + ωs × (IBa) + a× (IBωs + IBa)) =
= −IB−1 ((ωs × (IBa) + a× (IBωs) + a× (IBa))

We throw away the second order term a× (IBa), therefore getting the following linearised
dynamics:

ȧ = −IB−1 ((ωs × (IBa) + a× (IBωs)) = −IB−1Aa

By doing the calculations matrix A equals:

A =

 0 0 (IZZ − IY Y )qs
0 0 0

(IY Y − IXX)qs 0 0
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We need to determine the eigenvalues of matrix −IB−1A to elaborate on the stability of
the linear system:

ȧ = −IB−1Aa

The eigenvalue equation will be:

det(λI − (−IB−1Aa)) = det


λ 0

IZZ − IY Y
IXX

qs

0 λ 0
IY Y − IXX

IZZ
qs 0 λ

⇒
⇒ λ

(
λ2 − qs

2

IZZIXX
(IY Y − IXX)(IZZ − IY Y )

)
which give 3 different eigenvalues:

λ1 = 0

λ2 =

√
qs

2

IZZIXX
(IY Y − IXX)(IZZ − IY Y )

λ3 = −
√

qs
2

IZZIXX
(IY Y − IXX)(IZZ − IY Y )

(1.15)

For IXX < IY Y < IZZ we get three real eigenvalues with λ2 > 0 and λ3 < 0. Therefore ro-
tation around the intermediate axis, Y-axis in our example, is a saddle point and, as such,
it is unstable since any minor divergence( vector a in our example) causes exponential
growth in the vehicle’s angular velocity. More information can be found in [2].

How to control this heavily nonlinear system of intermingled states? Thankfully, there
is a way and it’s really simple. Just a PID controller. While the quadrotor has 6 degrees
of freedom, the available input signals are four. The quadrotor is an underactuated
system. We’ll choose to control the three attitude coordinates as well as the altitude.
By controlling the attitude, we’ll form a second PID loop that controls the spatial X,Y
coordinates by transforming desired X,Y to desired values for the Euler angles. Now
let’s analyse the first level of PID control, for attitude and altitude. By supposing that
the quadrotor is always functioning close to being parallel with the ground, we take that
TΘ ' I and therefore these assumptions can be made:

p ' φ̇

q ' θ̇

r ' ψ̇

ṗ ' φ̈

q̇ ' θ̈

ṙ ' ψ̈

(1.16)
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By these assumptions equations (1.10),(1.11),(1.12) become:

φ̈ =
IY Y − IZZ

IXX
θ̇ψ̇ − JTP

IXX
θ̇ · Ω +

U2

IXX
+
wTB,p
IXX

θ̈ =
IZZ − IXX

IY Y
φ̇ψ̇ +

JTP
IY Y

ϕ̇ · Ω +
U3

IY Y
+
wTB,q
IY Y

ψ̈ =
IXX − IY Y

IZZ
φ̇θ̇ +

U4

IZZ
+
wTB,r
IZZ

(1.17)

These equations are of the following form:

ẋ1 = x2

ẋ2 = f(x1, x2) + u
(1.18)

where:

f(x1, x2) =


IY Y − IZZ

IXX
θ̇ψ̇ − JTP

IXX
θ̇ · Ω +

wTB,p
IXX

IZZ − IXX
IY Y

φ̇ψ̇ +
JTP
IY Y

φ̇ · Ω +
wTB,q
IY Y

IXX − IY Y
IZZ

φ̇θ̇ +
wTB,r
IZZ

 (1.19)

and

x1 =

 φ
θ
ψ


. According to paper [3] a PID controller of general form:

u = kp(x1 − y∗) + kd
d(x1 − y∗)

dt
+ ki

t∫
0

(x1 − y∗)dt

with y∗ =
[
φd θd ψd

]T
being the vector of desired values, and kp, ki, kd the gains

multiplying the proportional, integral and derivative terms, can control this system and
send x1 to a desired value y∗ if and only if:∥∥∥∥ dfdx1

∥∥∥∥ < L1

∥∥∥∥ dfdx2

∥∥∥∥ < L2

df

du
> bI

where L1, L2, b some arbitrary positive constants. Since disturbances wT have bounded
derivatives with respect to x1, x2 ( they are wind gusts after all), then the prerequisites
of the theorem are fulfilled and thus PID control is enough to stabilise the system and
drive its x1 states to y∗. The four equations that will be controlled with PIDs will be:
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Z̈ = −g +
U1

Mq

φ̈ =
IY Y − IZZ

IXX
θ̇ψ̇ −

JTP

IXX
θ̇ · Ω +

U2

IXX
+
wTB,p
IXX

θ̈ =
IZZ − IXX

IY Y
φ̇ψ̇ +

JTP
IY Y

ϕ̇ · Ω +
U3

IY Y
+
wTB,q
IY Y

ψ̈ =
IXX − IY Y

IZZ
φ̇θ̇ +

U4

IZZ
+
wTB,r
IZZ

(1.20)

where the PID controllers are given by:

U1 = kp,Z(Z − Zd) + kd,Z
d(Z − Zd)

dt
+ ki,Z

t∫
0

(Z − Zd)dt

U2 = kp,ϕ(ϕ− ϕd) + kd,ϕ
d(ϕ− ϕd)

dt
+ ki,ϕ

t∫
0

(ϕ− ϕd)dt

U3 = kp,θ(θ − θd) + kd,θ
d(θ − θd)

dt
+ ki,θ

t∫
0

(θ − θd)dt

U4 = kp,ψ(ψ − ψd) + kd,ψ
d(ψ − ψd)

dt
+ ki,ψ

t∫
0

(ψ − ψd)dt

Now in order to complete the control loop we need to translate the inputs from torques
to voltages, so we can feed them back to the quadrotor’s motors. As explained in the
Appendix subsection 5.2 of this thesis, the inputs as a function of motor speeds are given
by:

U1 = b(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)
U2 = lb(−Ω2

2 + Ω4
2)

U3 = lb(−Ω1
2 + Ω3

2)
U4 = d(−Ω1

2 + Ω2
2 − Ω3

2 + Ω4
2)

Solving those four equations for the motor speeds we get:

Ω1
2 =

1

4b
U1 −

1

2bl
U3 −

1

4d
U4

Ω2
2 =

1

4b
U1 −

1

2bl
U2 +

1

4d
U4

Ω3
2 =

1

4b
U1 +

1

2bl
U3 −

1

4d
U4

Ω4
2 =

1

4b
U1 +

1

2bl
U2 +

1

4d
U4

(1.21)

Now those motor speeds need to be assigned each to a voltage value through the motor’s
equation (1.13). But as is, that equation is too complicated, therefore we’ll simplify it
by linearising it using first order Taylor expansion for a multiple variables function. This
expansion is given by:
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f(x, y) = f(x0, y0) +
df

dx

∣∣∣∣
x0,y0

(x− x0) +
df

dy

∣∣∣∣
x0,y0

(y − y0)

Therefore the equation will become:

Ω̇ΩΩ = ApΩΩΩ +Bpv + Cp (1.22)

where:

ΩΩΩ =


Ω1

Ω2

Ω3

Ω4


Ap =

dω̇p

dωp

∣∣∣∣∣
ωp=ωH ,v=0

= −KEKMη
N

JTPR

2

− 2d

JTP
ωH

Bp =
dω̇p
dv

∣∣∣∣
ωp=ωH ,v=0

=
KMηN

JTPR

Cp =
d

JTP
ωH

2

Solving for the voltages v we finally get:

v =


V1

V2

V3

V4

 = (1/Bp)(


Ω̇1

Ω̇2

Ω̇3

Ω̇4

− Ap


Ω1

Ω2

Ω3

Ω4

− Cp)
In figure 1.3 we see the whole altitude and attitude control loop:

Fig. 1.3: Altitude and Attitude PID Control Scheme

Now it’s time to address the second PID loop, for controlling the X,Y coordinates.
This loop takes the X,Y desired feeds them to a PID loop and solves equations (1.7),(1.8)
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with respect to φ, θ to determine desired angle values. Equations (1.7),(1.8) are:

Ẍ = (sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(ϕ))
U1

Mq

+
wFE,x
Mq

(1.7)

Ÿ = (− cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(φ))
U1

Mq

+
wFE,y
Mq

(1.8)

We want the accelerations of X,Y to follow a PID controller’s commands, therefore:

Ẍ = kp,X(X −Xd) + kd,X
d(X −Xd)

dt
+ ki,X

t∫
0

(X −Xd)dt = PIDX (1.23)

Ÿ = kp,Y (Y − Yd) + kd,Y
d(Y − Yd)

dt
+ ki,Y

t∫
0

(Y − Yd)dt = PIDY (1.24)

Thus, from equating (1.7),(1.8) and (1.23),(1.24) we get:

PIDX = (sin(ψd) sin(φd) + cos(ψd) sin(θd) cos(φd))
U1

Mq

+
wFE,x
Mq

= ux

PIDY = (− cos(ψd) sin(φd) + sin(ψd) sin(θd) cos(φd))
U1

Mq

+
wFE,y
Mq

= uy

and solving for φd, θd we finally have:

φd = asin(
ux sin(ψd)− uy cos(ψd)

U1

) (1.25)

θd = asin(
ux cos(ψd) + uy sin(ψd)

U1 cos(φd)
) (1.26)

The desired values Xd, Yd, Zd, ψd are generated by a trajectory block, that calculates and
determines a trajectory for the vehicle, and gives out the trajectory’s spatial coordinates
X,Y,Z as the desired values for the quadrotor. Also the trajectory block generates the
desired value for ψ, for the yaw of the quadrotor, thus we are able to control where the
camera points at, for example.

The whole PID cascade control schematic can be seen in Figure 1.4
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Fig. 1.4: PID-Cascade Schematic
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2. DYNAMIC MODEL OF A QUADROTOR SLUNG-LOAD SYSTEM

In this section a detailed description will be given, of how the model of the quadrotor
slung-load system was derived. There exists a thorough inspection of slung-load systems
in reference [4]. In this thesis, the particular system of a quadrotor with a slung-load
will be investigated, having followed the train of thought presented in the aforementioned
paper. Problems of the slung-load type are mainly tackled in two different ways. Firstly,
by considering the cable that holds the load as elastic, therefore that it has the properties
of a spring, and secondly, by considering the cable to be rigid as a massless rod, therefore
unchanging in length. The first approach consumes much less processing power during
simulation, because the system’s equations of motion are simpler than the equations
derived through the second approach. Still, the first approach is not preferable as it inserts
oscillations along the length of the cable which are not close to reality as a phenomenon.
Therefore, this thesis proceeds with the second approach, theorising that the cable is a
rigid massless rod that connects two bodies. So the cable acts as a holonomic constraint,
restricting the movements of the second body, the load. This constraint will be taken
account of during the planning of the systems generalised coordinates.

So, in order to derive the model the Lagrangian of the system needs to be determined.
The system is made out of a rigid body, the quadrotor, which has 6 degrees of freedom,
the load which is taken as a point mass thus having three degrees of freedom, and the
cable which introduces the holonomic constraint.

As we’ve seen, the quadrotor’s position of its centre-mass in the E-frame is given by
vector

Xcm =

 X
Y
Z


From Figure 2.1, the pendulum’s position in the E-frame is given by vector Xpen :

Xpen = Xcm +RΘ

 a
b

ζ + rpen

 (2.1)

where RΘ =

 cψcφ −sψcφ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ sφcθ cφcθ


is the rotation matrix resulting from the sequence of Euler angle rotations. a, b, ζ are
the coordinates of the pendulum expressed in the body-fixed frame of reference and[

0 0 rpen
]T

is the position of the point from which the pendulum is fixed on the
quadrotor, again expressed in B-frame. Two assumptions are made at this moment. First,



Fig. 2.1: Schematic of the Quadrotor Slung-Load System

the pendulum can never have a positive ζ and second the cable has a constant length,
which is the holonomic constraint. These two assumptions give us: ζ = −

√
L2 − a2 − b2

and substituting it in (2.1) we finally get:

Xpen = Xcm +RΘ

 a
b

−
√
L2 − a2 − b2 + rpen


The vector of velocities expressed in the E-frame is then defined as:

u =



Ẋ

Ẏ

Ż
ẋpen
ẏpen
żpen
p
q
r
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and the vector of generalised coordinates is defined as :

q =



X
Y
Z
a
b
φ
θ
ψ


We’ll draw a connection between the vectors q and u. The time derivative of the pendu-
lum’s position is given as:

Ẋpen =

 ẋpen
ẏpen
żpen

 = Ẋcm + ṘΘ

 a
b

−
√
L2 − a2 − b2

+RΘ


ȧ

ḃ

aȧ+ bḃ√
L2 − a2 − b2


As we’ve seen angular speed in the body frame is:

ωB =

 p
q
r


We can define the following relationship between the time derivatives of Euler angles

Θ̇I =
[
φ̇ θ̇ ψ̇

]T
and ωB : ωB = T−1

Θ
Θ̇I

with T−1
Θ

=

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cosφ cos θ


The two vectors u and q are connected by matrix A according to the relation:

u = Aq̇

where matrix A is the Jacobian of vector u with respect to q̇, therefore having the following
form:
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A =
du

dq̇
=



dẊ

dẊ

dẊ

dẎ

dẊ

dŻ

dẊ

dα̇

dẊ

dβ̇

dẊ

dφ̇

dẊ

dθ̇

dẊ

dψ̇
dΥ̇

dẊ

dΥ̇

dẎ

dΥ̇

dŻ

dΥ̇

dα̇

dΥ̇

dβ̇

dΥ̇

dφ̇

dΥ̇

dθ̇

dΥ̇

dψ̇
dŻ

dẊ

dŻ

dẎ

dŻ

dŻ

dŻ

dα̇

dŻ

dβ̇

dŻ

dφ̇

dŻ

dθ̇

dŻ

dψ̇
dẋpen

dẊ

dẋpen

dẎ

dẋpen

dŻ

dẋpen
dα̇

dẋpen

dβ̇

dẋpen

dφ̇

dẋpen

dθ̇

dẋpen

dψ̇
dẏpen

dẊ

dẏpen

dẎ

dẏpen

dŻ

dẏpen
dα̇

dẏpen

dβ̇

dẏpen

dφ̇

dẏpen

dθ̇

dẏpen

dψ̇
dżpen

dẊ

dżpen

dẎ

dżpen

dŻ

dżpen
dα̇

dżpen

dβ̇

dżpen

dφ̇

dżpen

dθ̇

dżpen

dψ̇
dp

dẊ

dp

dẎ

dp

dŻ

dp

dα̇

dp

dβ̇

dp

dφ̇

dp

dθ̇

dp

dψ̇
dq

dẊ

dq

dẎ

dq

dŻ

dq

dα̇

dq

dβ̇

dq

dφ̇

dq

dθ̇

dq

dψ̇
dr

dẊ

dr

dẎ

dr

dŻ

dr

dα̇

dr

dβ̇

dr

dφ̇

dr

dθ̇

dr

dψ̇



=

=



1 0 0

0 1 0 03x5

0 0 1
dẋpen

dẊ

dẋpen

dẎ

dẋpen

dŻ

dẋpen
dα̇

dẋpen

dβ̇

dẋpen

dφ̇

dẋpen

dθ̇

dẋpen

dψ̇
dẏpen

dẊ

dẏpen

dẎ

dẏpen

dŻ

dẏpen
dα̇

dẏpen

dβ̇

dẏpen

dφ̇

dẏpen

dθ̇

dẏpen

dψ̇
dżpen

dẊ

dżpen

dẎ

dżpen

dŻ

dżpen
dα̇

dżpen

dβ̇

dżpen

dφ̇

dżpen

dθ̇

dżpen

dψ̇

03x5 TΘ
−1



Now we define vector fg, which contains the forces of gravity and vector fa which con-
tains the forces of thrust and of the gyroscopic effect acting on the quadrotor as well
as any outside forces acting on the system such as wind and water drag. The sum of
all outside forces acting on the quadrotor including thrust U1, wind gusts on the X,Y,Z
axis are denoted as Fx, Fy, Fz accordingly. Similarly, the sum of all outside forces act-
ing on the pendulum including wind or water drag on the X,Y,Z axis are denoted as
Fx,pen, Fy,pen, Fz,pen .The sum of torques around X axis of the B-frame including input
torques U2, U3, U4, gyroscopic effect and wind turbulations are denoted as PB

x and so on
for y and z.
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fg =



0
0

−Mqg
0
0

−mpeng
0
0
0


fa =



Fx
Fy
Fz

Fx,pen
Fy,pen
Fz,pen
PB
x

PB
y

PB
z


Moreover, we define the inertia matrix D, a diagonal matrix containing the quadrotor
mass (Mq) , the pendulum mass (mpen) and the moments of inertia for XB,YB,ZB axis of
the body frame:

D =



Mq 0 0 0 0 0 0 0 0
0 Mq 0 0 0 0 0 0 0
0 0 Mq 0 0 0 0 0 0
0 0 0 mpen 0 0 0 0 0
0 0 0 0 mpen 0 0 0 0
0 0 0 0 0 mpen 0 0 0
0 0 0 0 0 0 Ixx 0 0
0 0 0 0 0 0 0 Iyy 0
0 0 0 0 0 0 0 0 Izz


The translational kinetic energy of the quadrotor’s center of mass will be:

KEq,tr =
1

2

 Ẋ

Ẏ

Ż

T  Mq 0 0
0 Mq 0
0 0 Mq

 Ẋ

Ẏ

Ż


As for the quadrotor rotational kinetic energy we can use relation (1.4) to express E-frame
kinetic energy to B-frame kinetic energy:

KEq,rot,E =
1

2
ωE

T IEωE =
1

2
(RΘωB)T IE(RΘωB) =

=
1

2
(RΘωB)T IE(RΘωB) =

1

2
ωB

T (RΘ
T IERΘ)ωB =

=
1

2
ωB

T IBωB

While the kinetic energy of the pendulum with respect to the inertial frame is:

KEpen,tr =
1

2

 ẋpen
ẏpen
żpen

T  Mq 0 0
0 Mq 0
0 0 Mq

 ẋpen
ẏpen
żpen


By summing up all the kinetic energies together we get the kinetic energy of the system:

KE = KEq,tr +KEpen,tr +KEq,rot = = (1/2)uTDu = (1/2)q̇TATDAq̇ (2.2)
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Applying the Euler-Lagrange equation to (2.2) for every generalized coordinate gives us
the following equation:

M(q)q̈ + k(q, q̇) = Q (2.3)

where:

M = ATDA (2.4)

k = ATDȦq̇ + (Ȧ−G)TDAq̇ (2.5)

Q = AT (fa + fg) (2.6)

with G being the Jacobian of vector A(q)q̇ with respect to q, given as G = ∇q
T (A(q)q̇)

and Q the vector of generalised forces. (Detailed proof of (2.3) in Appendix 5.4)
To make apparent the influence of the inputs on our system we analyse fa as follows:

fa =



Fx
Fy
Fz

Fx,pen
Fy,pen
Fz,pen
PB
x

PB
y

PB
z


=



0
0
0

Fx,pen
Fy,pen
Fz,pen
PB
x,gyro

PB
y,gyro

PB
z,gyro


+



(sinψ sinφ+ cosψ sin θ cosφ) 0 0 0
(− cosψ sinφ+ sinψ sin θ cosφ) 0 0 0

cos θ cosφ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




U1

U2

U3

U4

 = S+W ·U

(2.7)

From relation (2.7) we can substitute the new expression for fa to derive following result
for the second time derivative of q:

q̈ = (ATDA)−1(Q− ATDȦq̇ − (Ȧ−G)TDAq̇)

= (ATDA)−1(AT (fg + S)− ATDȦq̇ − (Ȧ−G)TDAq̇) + (ATDA)−1ATW · U (2.8)

To bring the system in the familiar form of a system with some unknown nonlinear
dynamics f(q, q̇) and some input U multiplied by a known nonlinear function g(q, q̇) we
define the following equations:

f(q, q̇) = (ATDA)−1(AT (fg + S)− ATDȦq̇ − (Ȧ−G)TDAq̇)
g(q, q̇) = (ATDA)−1ATW

Note that the unknown vector S ( because it contains the outside disturbances of wind
and water stream) is part of f(q, q̇). That’s why f(q, q̇) is the unknown factor.
and substituting to equation (2.8) we have the final form for our system:

q̈ = f(q, q̇) + g(q, q̇)U (2.9)
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3. ACTIVE DISTURBANCE REJECTION CONTROL: THEORY
AND APPLICATION

For almost a century proportional-integral-derivative(PID) has been the primary control
law used in industry and all sorts of applications. Its first important advantage is being
simple to tune, the technician only having to experiment with three different parameters,
the gains that multiply the proportional, the integral and the derivative terms. Its second
advantage is its robustness. As a control law that does not rely on the mathematical
model of the plant but instead on its error output to act, PID can be applied to almost
every control problem, and react to all sorts of uncertainties in contrast to a model based
approach which is computationally intensive and has little room to account for uncertain
terms in the dynamics. Moreover with PID being system agnostic we do not need to
measure any parameter of the system such as mass or moment of inertia, in order to
derive the control law. Control engineers have been looking to dethrone PID for a long
time. Numerous ways have been devised to control systems that usually do a much better
job than PID in terms of performance, but they lack its simplicity and its robustness. A
new method was proposed by Han [7] that would supposedly revolutionise the industry,
by replacing PID with a better, more robust overall controller, the Active Disturbance
Rejection Controller. The idea of this new method was to measure the output of a
system and with these measurements, using an observer to estimate its states, cancel the
disturbances of the system and turn it into a cascade integrator form.In theory, ADRC
offers all that PID offers, with the cost of being slightly more computation intensive. An
example of this methodology follows.

Suppose we have the n-th order system of form:

ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x1, ..., xn) + w + g(x1, ..., xn)u

(3.1)

where f(x1, ..., xn) are the dynamics, w is an unknown disturbance, g(x1, ..., xn) a function
of the states and u the scalar input. We rewrite (3.1) as:

ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x1, ..., xn) + w + (g(x1, ..., xn)− b0)u+ b0u

(3.2)

where b0 is a tunable constant.



Then, denoting

f(x1, ..., xn) + w + (g(x1, ..., xn)− b0)u = xn+1

ẋn+1 = h(x1, ..., xn)
b = g(x1, ..., xn)

the system (3.2) can be transformed to an extended system of n-th-plus-one order:

ẋ1 = x2

ẋ2 = x3
...

ẋn = ẋn+1 + b0u
ẋn+1 = h(x1, ..., xn)

(3.3)

We define the Extended State Observer of the system as

˙̂x1 = x2

˙̂x2 = x̂3 −G1(x̂1 − x1)
...

˙̂xn = x̂n+1 −Gn−1(x̂1 − x1) + b0u
˙̂xn+1 = −Gn(x̂1 − x1)

where x̂1, x̂2, ..., x̂n+1 are the observed values by the ESO for states x1, x2, ..., xn+1 ,
G1, G2, ..., Gn are linear or nonlinear functions of the difference x1 − x̂1.
By choosing as input:

u =
u0 − x̂n+1

b0

where u0 = k1(r − x̂1) + k2(r − x̂2) + ... + kn(r(n) − x̂n) the extended system from form
(3.3) becomes:

x1 = x2
...

ẋn = xn − x̂n + k1(r − x̂1) + k2(ṙ − x̂2) + ....+ kn(r(n) − x̂n)

Taking for the extended state observer values that x1 ≈ x̂1, x2 ≈ x̂2, ..., xn ≈ x̂n the initial
system takes the following form:
ẋ1

ẋ2
...
ẋn

 =


0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1
−k1 −k2 −k3 . . . −kn



x1

x2
...
xn

+

 0 0 . . . 0
...

−k1 −k2 . . . −kn




r
ṙ
...
r(n)


For x1 to tend to r, k1, k2, ..., kn need to be chosen so that matrix

0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1
−k1 −k2 −k3 . . . −kn
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is Hurwitz.
What the previous small application of ADRC shows, is that by measuring just the

output x1 we can form an observer dubbed the Extended State Observer (ESO) that
estimates every state of the system even providing an estimation for unknown dynamics
and disturbances (x̂3 in our example). By subtracting this estimation in our control law
we can ”cancel” the unknown terms and transform the system into the canonical cascade
integrator form. The ”” around cancel are there because an estimation cannot really
cancel the disturbances it estimates, but it can severely mitigate their influence on the
dynamics. Explicit theoretical proof for ADRC stability is hard to come by. In paper
[8] we find the proof of stability for ADRCs using Linear Extended State Observers.
That means there is proof of stability if the functions G1, G2, ..., Gn we saw earlier in
the example are linear functions of the error (x1 − x̂1) e.g. G1 = β1(x1 − x̂1),G2 =
β2(x1−x̂1),...,Gn = βn(x1−x̂1). Unfortunately, when these G functions become nonlinear,
proving the stability of the ESO is much more difficult. These papers have proven it for
a specific class of MIMO uncertain nonlinear systems([9],[10])

So the advantages of ADRC are:

1) Small to no reliance on the mathematical model of the plant, meaning the scheme of
the controller is simpler and the transient response is satisfactory.
2) Can deal with almost every kind of uncertainty, meaning it’s more robust.
3) Small number of parameters to tune.

3.1 Application on the Quadrotor Slung-Load System

As we saw earlier the quadrotor slung-load system dynamics are given by:

q̈ =



Ẍ

Ÿ

Z̈
ä

b̈

φ̈

θ̈

ψ̈


= f(q, q̇) + g(q, q̇)U

where
f(q, q̇) = (ATDA)−1(AT (fg + S)− ATDȦq̇ − (Ȧ−G)TDAq̇)
g(q, q̇) = (ATDA)−1ATW

Second derivatives of Euler angle coordinates φ, θ, ψ and altitude Z can be written as:
φ̈

θ̈

ψ̈

Z̈

 =


f1

f2

f3

f4

+


g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4



U2

U3

U4

U1


where f1, f2, f3, f4 are unknown nonlinear functions and g1, g2, g3, g4 are the unknown
nonlinear factors that multiply U2, U3, U4, U1 respectively.
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An ADRC can be created for each coordinate. Each coordinate is described by a
second order system of form:

ẋ1 = x2

ẋ2 = f(x1, x2) + w + g(x1, x2)u
(3.4)

where x1, x2 are the states with x1 representing any of the four coordinates φ, θ, ψ, Z and
x2 the coordinate’s time derivative. f(x1, x2) represent the unknown nonlinear dynamics,
w an unknown disturbance, and g(x1, x2) the unknown nonlinear term that multiplies
the input u. Paper [11] proves that a system like (3.4) can have its second state x2 follow
a desired value x2,d, using an ADRC controller. By taking the second equation of (3.4)
and rebranding terms:

f(x1, x2) + w + (g(x1, x2)u− b0u) = x3

b = g(x1, x2)
ẋ3 = h(t)

we have the extended system for state x2 :

ẋ2 = x3 + b0u
ẋ3 = h(t)

(3.5)

For this new system (3.5) we can build an Extended State Observer with the following
form:

˙̂x2 = x̂3 − β1(x̂2 − x2) + b0u
˙̂x3 = −β2(x̂2 − x2)

where x̂2, x̂3 are the estimations for states x2, x3, and β1, β2, b0 positive tunable constants.
Then according to paper [11] it can be proven that this Extended State Observer or ESO,
can ensure the convergence of x̂2, x̂3 to x2, x3. Now, by choosing a control law u as:

u = (−k1(x̂2 − x2)− x̂3)/b0

with k1 being another tunable positive constant system (3.5) becomes:

ẋ2 = x3 − x̂3 − k1(x̂2 − x2)
ẋ3 = h(t)

In the same paper, it is proven that this control law forces x2 to x2,d. We can see
intuitively how that might be by considering that x3 ' x̂3. Then x3 is ”cancelled” and
all that remains from the system is:

ẋ2 = −k1(x̂2 − x2)

which stabilises x2 and forces it to converge to x2,d

In this way the velocity of the system converges to a desired velocity. But we want
to control position x1, not velocity. To achieve position control we build an outside loop
PD such as the desired velocity x2,d is determined by the desired position x1,d as:

x2,d = k2

[
(x1 − x1,d) + Td

d

dt
(x1 − x1,d)

]
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where k2 and Td are positive tunable constants. Again in paper [11] it is proven that
putting this outside PD loop just before the inner ADRC loop any system similar to a
quadrotor (therefore even a quadrotor slung-load system) can have its state x1 converge
to a desired value x1,d.

In the following figure we can see the dual loop PD-ADRC for angle control.

Fig. 3.1: PD-ADRC Scheme

• PD=Proportional Derivatve: Takes the difference x1 − x1,d as input and gives as
output the desired velocity according to equation:

x2,d = k2

[
(x1 − x1,d) + Td

d

dt
(x1 − x1,d)

]
• LESO=Linear Extended State Observer: The observer that generates the estimated

states as
˙̂x2 = x̂3 − β1(x̂2 − x2) + b0u
˙̂x3 = −β2(x̂2 − x2)

• LSEF=Linear State Error Feedback: Generates the control law as following:

u0 = −k1(x̂2 − x2)/b0

.

• System Dynamics: Self-explanatory!

As is, the PD-ADRC controller we have proposed has six gains in need of tuning:
k1, k2, Td, b0, β1, β2 in contrast with a normal PID which has three. But, as seen in refer-
ence [8], ESO gains β1, β2 can be set equal to [β1, β2] = [2ω0, ω0

2] where ω0 is called the ob-
server bandwidth. This transforms the characteristic polynomial of the ESO s2 +β1s+β2

as follows:
s2 + β1s+ β2 = s2 + 2ω0s+ ω0

2 = (s+ ω0)2
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, therefore to a polynomial with only a double pole at position −ω0. The convergence
rate of the whole ESO can now be controlled just by tuning ω0. So we have managed
to reduce the tunable constants of the PD-ADRC from six to five: k1, Td, k2, b0, ω0 , two
more than the normal PID controller.

In figure 12 we can see the whole scheme of the Quadrotor Slung Load System using
the dual loop PD-ADRC controller described previously.

Fig. 3.2: Complete Scheme

Box Descriptions:

• Trajectory: Generates xtr, ytr, ztr, ψtr that we want the quadrotor to follow.

• PIDx,PIDy: They generate the ux, uy as:

ux = kp1(xtr − x)− kd1ẋ+ kI1
t∫

0

(xtr − x)

uy = kp1(ytr − y)− kd1ẏ + kI1
t∫

0

(ytr − y)

• Transforming ux, uy to φd.θd according to equations:

φd = a sin(ux sin(ψtr)− uy cos(ψtr))

θd = a sin(
ux cos(ψd) + uy sin(ψd)

cosφd
)

• PD-ADRCϕ,PD-ADRCθ,PD-ADRCψ,PD-ADRCz: The PD-ADRC scheme as it
was described previously, for each of the three angles and the altitude Z.

• Dynamics: The dynamics of the quadrotor slung-load system.
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4. SIMULATION RESULTS

In this section an extended analysis of the results of the simulations will be given. The
proposed PD-ADRC controller will be tested and have its performance compared with
the normal PID controller. At first stage, the performance of the two controllers will be
evaluated at the level of angles, by turning off the PIDx and PIDy and setting a target
angle for the controllers to reach. At second stage the PIDx, PIDy will be turned back
on and two types of tests will be made to judge the performance of the complete system.
The first will be a set-point test, in which the quadrotor slung-load system will be asked
to stabilise on a position in 3D space some centimeters away from its initial position.
The second test will be trajectory tracking, with increasing levels of noise applied to the
euler angles equations. The w in system (3.4) will be the band limited white noise signal.
Therefore a different white noise signal will be applied to each euler angle. The idea
here is that the noise signal can model any noise inherent in the system’s sensors or any
wind gust turbulations. Moreover in all tests, aerodynamic drag will be exerted on the
quadrotor’s frame and we will consider that the load is submerged in water, thus having
hydrostatic drag exerted on it from the water’s current. As figure 4.1 demonstrates, there
are forces acting on the load that need to be determined, namely the buoyancy and the
hydrodynamic drag, as both weight and tension are known and considered in the system’s
modelling. By considering the load as a smooth sphere of radius of 5 cm ,for the sake of
simplicity, then buoyancy is given by equation:

B = V ρg

where V = 4
3
πr3 = 5, 23 · 10−4m3 is the volume of the sphere, ρ = 987 kg/m3 is the

water’s density, and g = 9.8 m/s2 gravitational acceleration. While hydrodynamic drag

is given by:

Dwater =
1

2
CdρA|ufluid − ubody|(ufluid − ubody) (4.1)

where the drag coefficient is Cd = 0.4 because of the consideration that the load is a
smooth sphere, ρ = 987, kg/m3 is the water’s density, and A = πr2 = 3.14 · 0.0025 m2 is
the projection of the sphere on the surface perpendicular to the current flow of the fluid.
Correspondingly, the expression giving the aerodynamic drag on the quadrotor body is:

Dair = K|ufluid − ubody|(ufluid − ubody) (4.2)

where aerodynamic drag coefficient for a quadrotor, K ,is equal to 0.01 as per reference
[11].

The quadrotor’s mass, principal moments of inertia as well as all aerodynamic and
propeller constants, are the same as those in [1], and are arrayed in detail in Appendix
subsection 5.6. For the following tests the wind gust has a velocity of uwind = 3.5 +



Fig. 4.1: Forces acting on Load

0.01sin(0.04t) + 0.08sin(0.1t) m/s and direction (in spherical coordinates) ϕwind = 30o +
5o ·sin(t)+3o ·sin(0.03t), θwind = 45o while the water current has a speed of uwater = 0.7+
0.01sin(3t) + 0.08sin(0.1t) m/s and direction (again in spherical coordinates) ϕwater =
30o + 5o · sin(0.05t) + 3o · sin(0.1t), θwater = 90o.

4.1 Angle Set-point Test

By turning off control in the X,Y coordinates we can evaluate the performance of the
PD-ADRC in terms of how fast it reaches the desired angle, and how well it eliminates
disturbances. Considering that the load is dipped in the water at the 10 second time
point, these are the produced graphs for the target angles of φ = 0.04 rad , θ = 0 rad
and ψ = 0 rad:

Fig. 4.2: phi for 0.04 rad setpoint
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Fig. 4.3: theta for 0.04 rad setpoint

Fig. 4.4: psi for 0.04 rad setpoint
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Fig. 4.5: Z for 0.04 rad setpoint

Changing the desired φ angle to 0.4 rad , produces the following graphs:

Fig. 4.6: phi for 0.4 rad setpoint
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Fig. 4.7: theta for 0.4 rad setpoint

Fig. 4.8: psi for 0.4 rad setpoint
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Fig. 4.9: Z for 0.4 rad setpoint

From the previous results, we can safely reach the conclusion that the PD-ADRC does
a better job at following the desired φ angle, but is somewhat weaker in following the
desired value (0 rad) for θ and ψ. In addition, it is much better at rejecting the water
current disturbance on every coordinate except psi. In the following section we’ll test the
complete system, by turning on the PIDx, and PIDy controllers.

4.2 Spatial Set-point Test

This test involves setting a point in 3D space for the quadrotor slung-load system to go
to and evaluating the resulting coordinate graphs. Aerodynamic drag and hydrodynamic
drag start to affect the system at the 12 seconds time point. The test was made for
the set-point of (Xtr, Ytr, Ztr) = (0.1 m, 0 m, 0 m) initially, then for (Xtr, Ytr, Ztr) =
(0.3 m, 0 m, 0 m) and finally for (Xtr, Ytr, Ztr) = (0.4 m, 0 m, 0 m) The resulting graphs
are arrayed below:
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Fig. 4.10: Y for 0.1 setpoint Fig. 4.11: Z for 0.1 setpoint

Fig. 4.12: X for 0.1 setpoint
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Fig. 4.13: Y for 0.3 setpoint

Fig. 4.14: Z for 0.3 setpoint
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Fig. 4.15: X for 0.3 setpoint

Fig. 4.16: Y for 0.4 setpoint Fig. 4.17: Z for 0.4 setpoint
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Fig. 4.18: X for 0.4 setpoint

The preceding graphs, reveal the following results: In setpoints 0.1 and 0.3 , the PID does
worse on the X coordinate, and better on the Y and Z coordinates than the PD-ADRC,
but in general their performance is on par. Beyond the 0.4 setpoint the PID fails, while
the PD-ADRC can still balance the system albeit with big amplitude oscillations. The
effect of the wind gust and water current on the system, are not visible in the graphs.

4.3 White Noise Test

In this test, the quadrotor will follow a trajectory while being subjected to white noise
as discussed before. Two tests will be made with the noise sample time being 0.1 s in the
first, and 0.005 s in the second. Wind gusts will be affecting the system from the start,
and the water current will start to affect the load when Z equals -0.3, as the quadrotor
will lower to an altitude of Z=-0.5 in order to dip the load in the body of water. The first
test will have band-limited white noise( of power 0.005 and sample time 0.1 s) added to
all three euler angle acceleration equations. The results are:
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Fig. 4.19: X for 0.1 sample time Fig. 4.20: Y for 0.1 sample time

Fig. 4.21: Z for 0.1 sample time

The PID and PD-ADRC have almost the same performance at sample time 0.1s . We
also see that the water current is not a fast or strong enough disturbance to differentiate
the PD-ADRC from the PID controller.

By lowering the sample time of the noise to 0.005 we get the following graphs:
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Fig. 4.22: X for 0.005 sample time Fig. 4.23: Y for 0.005 sample time

Fig. 4.24: Z for 0.005 sample time

This time the PID’s performance is noticeably worse. Small oscillations can be seen in
the PID lines, which are not visible in the PD-ADRC ones. Again, as in the setpoint test,
we notice that the water current force does not play a deciding role, rather the addition
of the white noise brings forth the differences between the two controllers. Lowering even
more the sample time or increasing the noise power, further ameliorates the performance
of PD-ADRC in comparison with the PID.

Summarising, the previous graphs show that the PD-ADRC scheme is more robust,
as it can balance the system at further away setpoints, and has better noise rejection
than the normal PID. But the PD-ADRC is as effective at mitigating disturbance in X,Y
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as the PIDx and PIDy let it be. In other words, the disturbance rejection efficiency of
the PD-ADRC is limited by how fast the PIDx and PIDy controllers are. But making
those controllers very fast to stamp out disturbance in X and Y coordinates, can result
in a faulty behaviour of the system.

4.4 Concluding Remarks and Improvement Suggestions

What the Results section has shown us so far, is that PD-ADRC is a faster and overall
more robust controller than PID when it comes down to following a set angle. These
differences though are nullified when the system is asked to follow desired X,Y spatial
coordinates, as the speed of convergence of the X,Y coordinates is primarily governed by
the PIDx and PIDy and secondarily by the angle controllers. A faster angle controller
does not make a big difference when the disturbance is not strong enough, like the water
current. To nullify the water currents, stronger PIDx and PIDy controllers are needed.The
faster the angle controllers, the faster they’ll allow the PIDx and PIDy to be in turn. But
when the PIDx , PIDy gains are too high, they tend to destabilise the system and cause
unwanted behaviour especially when the setpoint for X and Y is much further away. If
the PD-ADRC scheme is to work against tame disturbances like the wind gust and the
water current, the controllers of X,Y need to be more sophisticated than simple PIDs. An
example of a more sophisticated position controller, based on backstepping sliding-mode
control can be found working in tandem with an ADRC angle controller in [16]. [17][18]
are further works in a similar direction. All in all, the PD-ADRC with its faster tracking
of the desired angles and ability to negate more sudden and powerful disturbances, while
retaining the model agnosticism, could prove to be a valid alternative to the standard PID
controllers for quadrotors. The cost of two extra tuning parameters and more calculations
for the onboard computer, is relatively small when measured against the advantages of
the proposed method.
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5. APPENDIX

5.1 Euler Angles, Rotation Matrix, and Matrix TΘ

Euler angles are called the angles of a series of subsequent rotations that bring the earth
inertial frame to the attitude of the body-fixed frame. These rotations are as follows:

First a rotation around the Z-axis by a ψ angle. This rotation is expressed by matrix:

Rz(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


Then a rotation around the Y-axis by a θ angle done by matrix:

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


Finally a rotation around the X-axis by a φ angle done by matrix:

Rx(φ) =

 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)


Taken together and multiplied in sequence these three give us the following rotation

matrix:

RΘ = Rz(θ)Ry(φ)Rx(θ) =

=

 cos(ψ) cos(θ) − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ) sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ)
sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(ψ) sin(θ) sin(φ) − cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(φ)
− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)


This matrix transforms vectors expressed in the inertial frame to their equivalent

in the body frame and vice versa. Say a vector in the inertial frame is defined as

vI =
[
vI,1 vI,2 vI,3

]T
and the same vector is defined in the body-frame as: vB =[

vB,1 vB,2 vB,3
]T

. The rotation matrix connects them as follows:

vI = RΘvB

To transform angular velocity from body frame coordinates to Euler angle rates(the
derivatives of Euler angles with respect to time) we need a matrix Tθ. Let’s say the

vehicle’s angular velocity in B-frame is given by vector ωB =
[
p q r

]T
. We want



Fig. 5.1: Sequence of Rotations Leading From E-frame(red) to B-frame(green)

to convert this vector to Euler angle rates that is: ΘI =
[
φ̇ θ̇ ψ̇

]T
. The following

equation gives us this conversion:

 p
q
r

 =

 φ̇
0
0

+R(φ, x)−1

 0

θ̇
0

+R(φ, x)−1R(θ, y)−1

 0
0

ψ̇

 = (5.1)

=

 1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) − cos(θ) cos(φ)

 φ̇

θ̇

ψ̇

 = TΘ
−1

 φ̇

θ̇

ψ̇

 (5.2)

We’ll explain how it is derived. Since roll (φ) is the final rotation we perform to get
the body-frame any additional roll rotation will happen around the XB axis , naturally.

So angle rate φ̇ is expressed directly in the body frame with vector
[
φ̇ 0 0

]T
. Any

additional pitch rotation (θ̇) will happen in the YELLOW frame of Figure 5.1. So to
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convert it to body-frame coordinates we have to premultiply it with R(φ, x)−1. Therefore

we get the second term of equation (5.1) : R(φ, x)−1
[

0 θ̇ 0
]T

. Finally, by the same
logic any yaw rotation happens in the purple frame of reference in figure 5.1, thus we

need to premultiply a yaw rotation given by vector
[

0 0 ψ̇
]T

with R(φ, x)−1R(θ, y)−1

to express it in the body-fixed reference frame. This gives us the third and final term of
equation (5.1).

5.2 Deriving the Inputs U1, U2, U3, U4

A quadrotor, the particular type of multirotor with four motors, can be approximated
quite well by a cross frame with two diametrically opposed motors attached at the end
of each bar (Figure 5.2).

Fig. 5.2: Simplified Quadrotor Structure

Motors 1 and 3 rotate counter-clockwise while motors 2 and 4 rotate clockwise. This
difference in rotational direction between the pair of motors guarantees a stable yaw for
the vehicle and nullifies the need for a rear propeller like those attached on helicopters.
In figure 1 the curved arrows show the direction of rotation of each motor. This configu-
ration permits us to give to the vehicle four independent commands (or inputs in control
science terms):

1) Throttle or U1: This command is the total sum of the thrust force produced by each
motor-propeller pair. If the quadrotor’s attitude is level with the ground, this command
governs the acceleration of the vehicle on Z frame. If the quadrotor is slightly tilted to
a side, then this command will also dictate the acceleration on the X and Y axis, as the
thrust force is always perpendicular to the quadrotor’s frame. Therefore, to move the
quadrotor on X and Y axis we tilt it to a side and slightly adjust the throttle so that it
uses some upward thrust to hover and some sideways thrust to move around. Considering
that the thrust of a propeller equals b · Ω2 where b is the thrust factor and depends on
the propeller, and Ω its rotational speed according to blade element theory (more in [1]),
then:

U1 = b(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)

2) Roll or U2: This command is achieved by lowering the thrust of motor 2 and raising
the thrust of motor 4 or the opposite. This results in the quadrotor tilting around the bar
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Fig. 5.3: Throttle Showcase

that connect motors 1 and 3. When viewing the movement from the body-fixed frame
of the quadrotor, this alters the ”roll” angle of the vehicle since the rotation happens
around X axis. The total thrust must remain the same so the sum of thrusts of these two
motors is kept constant. In other words we lower the speed of one motor as much as we
raise the speed of the other. U2 will be given by:

U2 = lb(−Ω2
2 + Ω4

2)

Fig. 5.4: Roll Showcase

3) Pitch or U3: Similarly, by altering how thrust is partitioned between motors 1 and
3 , it is possible to achieve a tilt around the Y body-frame axis. As is the case with roll,
the sum of thrust of the two motors is kept constant so this command leads only to pitch
acceleration. U3 will be given by:

U3 = lb(−Ω1
2 + Ω3

2)

4) Yaw or U4: This command lets us rotate the quadrotor around the Z body-frame
axis.
Torque around the Z axis is achieved by lowering or raising the thrust of the 1-3 motor
pair while simultaneously raising or lowering the thrust of pair 2-4 accordingly so that
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Fig. 5.5: Pitch Showcase

Fig. 5.6: Yaw Showcase

the total thrust remains the same, and no torque is created about X or Y body-frame
axis.
This speed imbalance between the motor pairs creates torque about the Z axis.As one
pair is pushing the air harder than the other, according to Newton’s third law the air’s
reaction is harder on the faster pair, therefore more force acting on the ends of the bar
that connect the two faster motors. The result is torque around the Z axis, its direction
opposite to the angular speeds of the fast pair. Finally U4 equation will be:

U4 = d(−Ω1
2 + Ω2

2 − Ω3
2 + Ω4

2)

where d is the drag factor [1] .

5.3 Gyroscopic effect Torque calculation

As the quadrotor rotates around its center mass, its spinning propellers rotate with it.
Because of their spinning they have angular momentums of their own. The four angular
momentums of the four propellers need to be rotated with the rest of the quadrotor as
they always are perpendicular to the chassis. In order for the rotation of the angular
momentum vectors to happen a torque needs to be exercised on the propellers. By
Newton’s third law the propellers will exercise an opposite torque of equal magnitude on
the chassis of the quadrotor, this opposite torque is called the gyroscopic effect and is
derived as follows:
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Let’s say a propeller’s angular momentum is symbolised with Hpr,E in E-frame and Hpr,B

in B-frame. Then the rotation matrix connects them as:

Hpr,E = RΘHpr,B (5.3)

where
Hpr,B = ΩΩΩ · JTP

with ΩΩΩ being the rotational speed of the propeller in B-frame and JTP its moment of
inertia. By derivation with respect to time (5.3) becomes:

d

dt
Hpr,E =

d

dt
(RΘ)Hpr,B +RΘ

d

dt
(ΩΩΩ)JTP (5.4)

By considering that
d

dt
(ΩΩΩ) = 0

and that the time derivative of the angular momentum equals torque:

d

dt
Hpr,E = GyroTorqueE

equation (5.4) expands as follows:

GyroTorqueE = S(ωE)RΘHpr,B ⇒
GyroTorqueE = ωE ×RΘHpr,B ⇒
GyroTorqueE = (RΘωB)× (RΘHpr,B)⇒
RΘGyroTorqueB = RΘ(ωB ×Hpr,B)⇒
GyroTorqueB = (ωB ×ΩΩΩJTP )

Therefore, we have an expression for the gyroscopic effect of one propeller. To find the
combined effect of the four propellers on the quadrotor we sum each torque:

GEB = −(GyroTorqueB,1 +GyroTorqueB,2 +GyroTorqueB,3 +GyroTorqueB,4)⇒
GEB = −(ωB ×ΩΩΩ1JTP + ωB ×ΩΩΩ2JTP + ωB ×ΩΩΩ3JTP + ωB ×ΩΩΩ4JTP )⇒
GEB = −JTPωB × (ΩΩΩ1 −ΩΩΩ2 + ΩΩΩ3 −ΩΩΩ4)

By plugging in the following expressions:

ωB =

 p
q
r



ΩΩΩk =

 0
0

(−1)kΩk

 , k = 1, 2, 3, 4

we finally get:

51



GEB = −JTP

 p
q
r

×
 0

0
−1

 (Ω1 − Ω2 + Ω3 − Ω4)⇒

⇒ GEB = JTP


0 0 0 0
0 0 0 0
0 0 0 0
q −q q −q
−p p −p p
0 0 0 0




Ω1

Ω2

Ω3

Ω4



5.4 Proof of equation: M(q)q̈ + k(q, q̇) = Q

In this part, proof of equation (2.3) will be given for reasons of integrity of this thesis.
Suppose we have a system of n generalised coordinates included in vector q:

q =

 q1
...
qn


And A the matrix

A =

 a11 . . . a1n
... . . .

...
ak1 . . . akn


that connects the time derivatives of these coordinates with the velocity vector as u = Aq̇.
Suppose also that each generalised coordinate has an inertia associated with it , and the
inertia matrix D, containing all the inertias is diagonal:

D =


M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mk


We denote that the Lagrangian of the system is equal to the kinetic energy of the body
and is given by equation:

L = KE = (1/2)uTDu = (1/2)q̇TATDAq̇

By D’Alembert’s principle [5], for a rigid body like the quadrotor, we have:∑
i

(
~Fi −mi~̇vi

)
δ~ri = 0

This sum over all point masses mi that comprise it must be zero. Virtual work is defined
as:

δW =
∑
i

~Fiδ~ri
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and, as proven in the Appendix’s section 5.5, it holds that:∑
i

mi~̇viδ~ri =
∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj

therefore: ∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj + δW = 0

or written as a matrix multiplication:

δqT
[
dL

dq
− d

dt

dL

dq̇

]
+ δW = 0 (5.5)

We need to define δW to proceed. Virtual work for a point ~ri on the quadrotor is:
δWi = ~Fiδ~ri where ~Fi is the total vector of forces acting on the point. We can express ~ri as
an addition between vector ~RCM , which expresses the position of the quadrotor’s center
of mass in the inertial frame, and vector RΘ~ri,B which expresses, again in the inertial
frame, the vector that connects the center of mass with the point we are analysing(the
same vector in B-frame is just ~ri,B) :

~ri = ~RCM +RΘ~ri,B

Here RΘ is the rotation matrix to transform vector ~ri,B from body to inertial frame.
Thus, the variance of ~ri will be:

δ~ri = δ ~RCM + δ(RΘ~ri,B)⇒ δ~ri = δ ~RCM + (δRΘ)~ri,B

with δ~ri,B being zero because the point on the quadrotor does not change position in the
body frame. For the rotation matrix this equation holds:

δRΘ = S(δ~Θ)RΘ

where S(δ~Θ) is the skew-symmetric matrix of δ~Θ, the vector which describes the variance
of orientation in the earth frame . Thus using the properties of skew-symmetric matrices
we get:

δ~ri = δ ~RCM + (δ~Θ)× (RΘ~ri,B)

and finally the virtual work becomes:

δWi = ~Fiδ ~RCM + ~Fi(δ~Θ× (RΘ~ri,B)) = ~Fiδ ~RCM + δ~Θ(~Fi × (RΘ~ri,B))

We can then break up ~Fi in two different forces. Forces acting from the outside, and
forces acting from the inside between the quadrotor’s molecules:

~Fi = ~Fi,out + ~Fi,in

Thus, virtual work is rewritten as the sum over all points N of the quadrotor plus the
work of forces acting on the pendulum:
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δW =
N∑
i

δWi + δWpen ⇒

⇒δW =
N∑
i

[
(~Fi,out + ~Fi,in)δ ~RCM + ((~Fi,out + ~Fi,in)×RΘ~ri,B)δ~Θ

]
+ ~Fpen,outδ~rpen

(5.6)

By the properties of a rigid body we have that work attributed to inside forces and inside
torques must be equal to zero. That is:

N∑
i

~Fi,inδ ~RCM = 0

N∑
i

(
~Fi,in × (RΘ~ri,B)

)
δ~Θ = 0

Therefore we can write the sum of forces on the body as the total force ~Fout :

N∑
i

~Fi,outδ ~RCM = ~Foutδ ~RCM

Now, moving on to torque we have:

N∑
i

[
(~Fi,out × (RΘ~ri,B))δ~Θ

]
= ~Toutδ~Θ

We write the inner product of the two vectors in matrix form as:

~Toutδ~Θ = T T outδΘ

But T T out = (RΘTout,B)T with RΘ being the rotation matrix. So:

(RΘTout,B)T δΘ = T T out,BR
T
ΘδΘ

but RT
Θ = R−1

Θ thus getting both torque and variation of orientation expressed in body-
frame coordinates:

T T out,BR
T
ΘδΘ = T T out,BR

−1
Θ δΘ = T T out,BδΘB = ~Tout,Bδ~ΘB

Now that everything is in the shape we want, we can write relation (5.6) as:

δW = ~Foutδ ~RCM + ~Tout,Bδ~ΘB + ~Fpen,outδ~rpen

or in matrix form:

δW =
[
δX δY δZ

]  Fxout
Fyout
Fzout

+
[
δangleXB

δangleYB δangleZB

]  Txout
Tyout
Tzout

+

+
[
δxpen δypen δzpen

]  Fxpen,out
Fypen,out
Fzpen,out
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Note: δangleXB
denotes the variation of angle of rotation around axis XB of the body

frame. Accordingly δangleYB and δangleZB
for variation of angles around axis YB and

ZB. We can define vector δξ as

δξ =



δX
δY
δZ

δangleXB

δangleYB
δangleYB
δxpen
δypen
δzpen


Therefore δW can be rewritten:

δW = δξT



Fxout
Fyout
Fzout

Fxpen,out
Fypen,out
Fzpen,out
TxB,out
TyB,out
TzB,out


= δξT [fa + fg]

with fa and fg being the vectors that we saw earlier.
Now we’ll finally connect the work of the generalised forces with the Euler-Lagrange

equation (5.5). As we have seen this equation holds:

dξ

dt
= u = A

dq

dt

therefore:

δξ = Aδq ⇒ δξT = δqTAT ⇒ δξT [fa + fg] = δqTAT [fa + fg]

so finally: δW = δξT [fa + fg] = δqTAT [fa + fg] and substituting in relation (5.5) we get

δqT
[
dL

dq
− d

dt

dL

dq̇

]
+ δqTAT [fa + fg] = 0

which leads us to the final expression for the Euler-Lagrange equations:

d

dt

dL

dq̇
− dL

dq
= AT [fa + fg] (5.7)

Having proven equation (5.7) we move on to prove equations (2.4) and (2.5). We need
to prove:

M(q)q̈ + k(q, q̇) =
dL

dq
− d

dt

dL

dq̇
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Since L =
1

2
q̇TATDAq̇ we can write the Lagrangian in the following form utilising sum

symbols:

q̇TATDAq̇ =

j=k∑
j=1

Mj

(
i=n∑
i=1

ajiq̇i

)2


Next we find the derivative of this quantity with respect to vector q:

d

dq
(q̇TATDAq̇) =



d

dq1
d

dq2
...
d

dqn


j=k∑
j=1

Mj

(
i=n∑
i=1

ajiq̇i

)2
 =



j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dq1

ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]
j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dq2

ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]
...

j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dqn
ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]



It is easy to see that DAq̇ =



M1

i=n∑
i=1

a1iq̇i

M2

i=n∑
i=1

a2iq̇i

...

Mk

i=n∑
i=1

akiq̇i


The Jacobian of vector Aq̇ with respect to q is:

∇q
T (Aq̇) =



i=n∑
i=1

d

dq1

a1iq̇i
i=n∑
i=1

d

dq2

a1iq̇i . . .
i=n∑
i=1

d

dqn
a1iq̇i

i=n∑
i=1

d

dq1

a2iq̇i
i=n∑
i=1

d

dq2

a2iq̇i . . .
i=n∑
i=1

d

dqn
a2iq̇i

...
...

...
...

i=n∑
i=1

d

dq1

akiq̇i
i=n∑
i=1

d

dq2

akiq̇i . . .
i=n∑
i=1

d

dqn
akiq̇i


= G

Now we move on to expand the Euler-Lagrange equation. For the first term
d

dt

dL

dq̇
we

have:
d

dt

[
dL

dq̇

]
=

d

dt

[
ATDAq̇

]
= ATDAq̈ + ATDȦq̇ + ȦTDAq̇

and for the second
dL

dq
:
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dL

dq
=

d

dq
(q̇TATDAq̇) =



j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dq1

ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]
j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dq2

ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]
...

j=k∑
j=1

Mj

[(
i=n∑
i=1

d

dqn
ajiq̇i

)(
i=n∑
i=1

ajiq̇i

)]


= GTDAq̇

Putting these two together we get:

d

dt

dL

dq̇
− dL

dq
= AT [fa + fg]⇒ ATDAq̈ + ATDȦq̇ + (Ȧ−G)TDAq̇ = AT [fa + fg]

Thus we have successfully proven that:

M(q)q̈ + k(q, q̇) = Q

where
M = ATDA

k = ATDȦq̇ + (Ȧ−G)TDAq̇
Q = AT (fa + fg)

Form M(q)q̈ + k(q, q̇) = Q is really handy because it enables us to have all the
dynamics of the system in a compact form expressed by matrices. Easily, we can solve
for q̈ as we saw earlier: q̈ = (ATDA)−1(Q − ATDȦq̇ − (Ȧ−G)TDAq̇). This final form
enables us to simulate the system much faster as we can calculate numerically each
matrix separately and then perform inversions and multiplication of numerical matrices,
which is easy on the processor. The alternative would be to have explicit symbolical
expressions for each element of q̈ , but that would mean someone would have to calculate
matrix (ATDA)−1 symbolically, and then multiply it with all these symbolical terms in
(Q− ATDȦq̇ − (Ȧ−G)TDAq̇). Suffice to say that the expression for each element of q̈
can fill by itself a small handbook! It could be possible to manipulate the matrix with
Gauss-Jordan elimination procedure to simplify it considerably, and then find the inverse
but this is an intensive exercise in linear algebra and that’s outside the scope of this
thesis.

5.5 Proof of equation:
∑
i

mi~̇viδ~ri =
∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj

Proving this relation requires proving first two other equations. We’ll show for every
vector ~r and vector ~q , that these two following relations are in effect:

∂~r

∂q
=
∂~̇r

∂q̇
(5.8)

d

dt

∂~r

∂qj
=
∂~̇r

∂q
(5.9)
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Relation (5.8) is proven by remembering that from the theory of variances we have:

δ~r =
∑
j

∂~r

∂qj
δqj +

∂~r

∂t
δt

By dividing with δt and then differentiating by q̇k where k denotes one of the components
of vector q we get:

δ~r

δt
= ~v =

∑
j

∂~r

∂qj
q̇j +

∂~r

∂t
⇒ ∂v

∂q̇k
=

∂~r

∂qk

For relation (5.9) we notice that:

∂~v

∂qk
=
∑
j

∂2~r

∂qk∂qj
q̇j +

∂2

∂qk∂t
~r

and:
d

dt

(
d~r

dqk

)
=
∑
j

∂2~r

∂qj∂qk
q̇j +

∂2

∂t∂qk
~r

Since the sequence of derivation does not matter we can equate them, thus getting the
equation we wanted:

d

dt

∂~r

∂qj
=
∂̇~r

∂q

Moving onward to prove relation:
∑
i

mi~̇viδ~ri =
∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj, we have:

∑
i

mi~̇viδ~ri =
∑
i

mi~̇vi

(∑
j

∂~ri
∂qj

δqj

)
=

=
∑
j

∑
i

mi~̇vi
∂~ri
∂qj

δqj =
∑
j

d

dt

(∑
i

mi~vi
∂~ri
∂qj

δqj

)
−
∑
j

∑
i

mi~vi
d

dt

(
∂~ri
∂qj

)
δqj =

=
∑
j

d

dt

(∑
i

mi~vi
∂~vi
∂q̇j

δqj

)
−
∑
j

∑
i

mi~vi

(
∂~vi
∂qj

)
δqj =

∑
j

(
d

dt

(∑
i

mi~vi
∂~vi
∂q̇j

)
−
∑
i

mi~vi

(
∂~vi
∂qj

))
δqj =

=
∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj

5.6 Constants

• Motor Dynamics Constants:

N = 5.6 gear box reduction ratio

KM = 6.3 · 10−3 mechanic motor constant

KE = 6.3 · 10−3 electric motor constant

JP = 72.8 · 10−6 rotational moment of inertia around the propeller axis

JM = 1.1 · 10−6 rotational moment of inertia around the motor axis

η = 0.9 gear box efficiency

R = 0.6 Ω motor resistance
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• Linearised Motor Dynamics Constants:

AP = −22.7 linearised propeller’s speed coefficient

BP = 514 linearised constant coefficient

CP = 494 linearised input voltage coefficient

• Aerodynamic Constants:

d = 1.1 · 10−6 drag factor

b = 54.2 · 10−6 thrust factor

• Quadrotor Characteristics Constants:

m = 1 kg mass of quadrotor

g = 9.8 m/s2 gravitational acceleration

l = 0.24 m length of a quadrotor ”arm”, from motor to CM.

IXX = 8.1 · 10−3 kg ·m2 body moment of inertia around the x-axis

IY Y = 8.101 · 10−3 kg ·m2 body moment of inertia around the y-axis

IZZ = 14.2 · 10−3 kg ·m2 body moment of inertia around the z-axis

JTP = 104 · 10−6 kg ·m2 total rotational moment of inertia around the motor axis

rpen = 0.05 m distance from quadrotor’s CM to attachment point of cable

• Slung-load Constants:

mpen = 0.1 kg mass of load

L = 0.25 m length of cable.
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