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MepiAnyn

To didoTnua atroTeAei pia egeAlooouevn Kal TTOAG uTTooXOUEVN BloPnXavia Pe XWPES Kal
IDIWTEG va ETTEVOUOUV TEPAOTIA XPNUATIKG TTOOA K&Be xpovo. To 2021 onueiwbnke o1 TTAVW
atroé 6000 dopudpol Bpiokovtav ae TPOXIA YUpw atrd Tn I'n. H peydAn augnon Tou apiBuou
Twv dopuPbpwV atraitei TN dlopydvwaon SIaCTNUIKWY OTTOCTOAWY Ol OTToiEG Ba TTapéxouV
éva Jeyalo eUpog uTTnpeoiwy oe Tpoxid. O1 meavoi Kivduvol Tou dIacTANATOS KaBioTouv Ta
OIACTNMIKG POPTTOTIKA CUCTHAMATA WG TN KATAAANASTEPN €TTIAOYN VIO VO QEPOUV €IG TTEPAG
QUTEG TIG EPYOOIEG.

e auth Tn SIMMAwMATIKA epyaacia, xpnoigotroieital évag MpoBAeTTTIKOG ‘EAeyxos (MPC)
yla TOV €Aeyx0 TOUu PBpayxiova evog Ola0TNUIKOU POPTTOTIKOU CUCTAUATOG O¢ TTOAAG
olapopeTika oevdpia. O vopog eAéyxou cuykpiveral pe évav ouvnBiouévo PID éAeyxo pe
OKOTTO va TTPoCdIoPIOTOUV TA TTAEOVEKTAUATA KAI TA PEIOVEKTAMATA TOU. ApXIKA, TTapaTiOeTal
n Bewpia TNG KIVAUATIKAG Kal TNG Ouvauiknig evog EAeuBepa Alwpoluevou AlaoTnUIKOU
PopTtroTikoU Zuotiuatog (EAAPZ) 6mmwg kKal n Bewpia Tou oxediaopou Tou MPC -pe Kal
XWpig Treplopiopous-. Otav 10 ocuoTtnua eivar EAcUBepa Alwpoupevo, To aUOTNUG EAEyXOU
NG BAonNG eival atrevepyoTToINUEVO Kal AsIToupyEl JOvo To oUuoTnua eAéyxou Tou Bpaxiova.
AIdQopeC TTPOCOUOIWOEIS TTPAYHATOTTOIOUVTAIl XPNOIMOTTOIWVTAG £va eTTiTTedo EAAPZ e
évav Bpaxiova 3 BaBuwv EAeuBepiag (BE). O1 TTpoCOPOIWGEIG YivOovTal XPNOIUOTTOIWVTAG TO
Matlab/Simulink kaBwg kal To Aoyiopiké MSC Adams.

Ta peAeToUpEVA OEVAPIA TTEPIEXOUV OIOPOPETIKEG ATTOOTOAEG HE DIAPOPOUG OXEDIATOUG
TPOXIAG Kal eUTTOdIa (OTTWG dlIaTAPAXES, TTAPAUETPIKA aBeBaidtnTa Kai 66puBo) TTou iowg
QVTIMETWTTIOEI O VOUOG eAéyxou Tou EAAPZ katd TIG ATTOOTOAEG TOU. TO TTPWTO OEVAPIO
TTEPIEXEI TN MEAETN TNG AeiToupyiag evog MPC oétav e@apuolovTal oTaBepEg dlaTapaxEG 0TOUG
eTTEVEPYNTEG TOU PBpaxiova evoég EAAPE. AuTég or diatapayxég UTTOPEl va TTpoEpyovTal aTrd
mOaveG TPIBEG TTOU eugavifovtal AOyw TnG ekTeTaPEVNG Xpriong tou Bpayxiova. O MPC
ouykpiveral pe évav attAd PID éAeyxo pe Baon didgopa KpITAPIa 6TTwG TO CQAAPa TnG Béong
Kl TOU TTPOOOVATOAIOPOU Tou TeAIKOU onueiou dpdong, TIG TTPOKUTITOUCEG POTTEG, TN
oUyKAION TOU O@AAJaTOg OTn pOvVIUN  KOTAOTAON KAl TOV  UTTOAOYIOTIKG  XPOvo
TTpooopoiwong. H kivnon tou EAAPZ, TOoU otTroiou 0 OKOTTOG gival va Tmdoel éva oTabepo
OWHa-0ToX0, oxedidleTal aTov KapTeaiavo Xwpo.

Mapduoleg peAETEG TTpayuaTOTTOINONKAV Kal yia Ta uttoAoiTta oevapia. To deuTepo
oevaplo TTePIEXE TN OUYKPION TwV VOUWY eAéyxou OTav ol TTapAPEeTPOoI TNG didTagng dev ivai
yvwoTég Pe  akpiBeia.  lMpaypatotroigital  pia  mTpooopoiwon Monte-Carlo  yia 200
OIaQOPETIKOUG CUVOUAOHOUG TTAPAPETPWY Kal 01 €AEYXOI CUYKpivovTal e BAon Ta o@AAuaTa
Kal TIG potréG. H kivnon oxedidletal otov Kapteaiavd Xwpo yia otabepd O0TOX0. 21O TPITO
oevaplo, TTapouaciadeTal N oUYKPIoN TwV VOUWYV eAéyxou, oTtav To EAAPZ éxel Ndn mmacel Kai
oTaBepotroinoel €vav atéxo ammpoodiopioTng PAdag e okoTrd va Tov Kivioel. H kivnon Tou
EAAPZ yia autd 10 oevAapio oxedIAdeTal 0TO XWPO TwV apBpwoewy.

TéNog, oOTO TETAPTO O€tvdplo, OUO OIAPOPETIKA €idn BopUBou eloEPXOvVTal OTIG
MeETpOUUEVEG METABANTEC Kal n AciToupyia KABe vOpou eAéyxou eAéyxetal pe Bdon Tnv
IKAvOTNTA TOu Vva avTioTaBuifel Tov B6puBo. H kivnon tou EAAPY oyxedialetal oTov
Kapteoiavd xwpo. Qotdéo0, 0 oTOX0G Oev Bewpeital o1abepds alNd kiveital pye otaBepn
OXETIKA TaXUTNTA. ETTOpéVWG, Ta 0@AAPATA TwV TEAIKWV TAXUTATWY TOU TEAIKOU onueiou
opdong AauBdvovtai eTTiong uTTOWN yia Tn LEAETN.
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Abstract

Space constitutes a nascent and promising industry with countries and individuals investing
a tremendous amount of money every year. By 2021, more than 6000 satellites were
orbiting Earth. The immense increase in the number of satellites mandates the organization
of missions which would provide a wide range of on-orbit servicing operations. The potential
dangers of space render space robotic systems the most appropriate choice for these tasks.

In this thesis, a Model Predictive Controller (MPC) is used for the control of the
manipulator of a space robotic system for a variety of different scenarios. The controller is
compared to a regular PID Controller to manifest its benefits and shortcomings. Firstly, the
kinematics and dynamics of a Free-Floating Space Robotic System (FFSMS) as well as the
theory for the design of the MPC -with and without constraints- are presented. When the
system operates in Free-Floating mode, the controller of the base is turned off and only the
manipulator’'s controller is active. A plethora of simulations is performed using a planar
FFSMS with a single manipulator of 3 Degrees of Freedom (DoF). The simulations are
conducted using Matlab/Simulink as well as the Multibody Dynamics software MSC Adams.

The studied scenarios involve different missions with various path planning techniques
and impediments (like disturbances, parametric uncertainties and noise) which the controller
of an FFSMS might face throughout its various missions. The first scenario contains the
study of the performance of the MPC when constant disturbances are applied to the joints’
actuators of an FFSMS. These disturbances can model the friction that might appear due to
the extensive usage of the manipulator. The MPC is compared to a regular PID using
various criteria like the error of the end-effector’'s position and orientation, the resulted
torgues, the convergence of the errors at the steady-state and the simulation time. The
motion of the FFSMS, whose purpose is to capture a stationary object-target, is planned in
the Cartesian space.

Similar studies were performed for the rest of the scenarios. The second scenario
includes the comparison of the aforementioned controllers when the plant’s parameters are
not accurately known but estimated. A Monte-Carlo simulation is performed for 200 different
combinations of parameters and the controllers’ performance is compared based on the
resulting errors and torques. The motion is planned in the Cartesian space for a stationary
target. In the third scenario, the comparison of the controllers, when the FFSMS has already
captured and stabilized a target of undefined mass with the intention to move it, is
presented. The motion of the FFSMS for this scenario was planned in the joint space.

Finally, in the fourth scenario, two different types of noise are inserted in the process
variables and the performance of each controller is examined based on their ability to
compensate for the noise. The motion of the FFSMS is planned in the Cartesian space.
However, the target is not considered stationary but it moves with a constant velocity.
Therefore, the errors of the final velocities of the end-effector have to be considered too.

3/93



Acknowledgments

First, 1 would like to express my gratitude to my supervisor, Professor Evangelos G.
Papadopoulos. | was honored to be given the opportunity to be a member of the Controls
System Laboratory of NTUA and work on a highly interesting topic and in the fascinating
field of space robotics. | am thankful for his constant guidance and help throughout the
conduction of this study as well as the commitment that he showed in our slightly prolonged
meetings to find solutions to the problems that | was facing. His problem-solving experience
and his advice altered my engineering insight and cultivated my zeal to work in the field of
space control systems. Secondly, | would also like to thank Dr. Konstantinos Nanos for his
support and prompt advice, whenever | needed his help.

Finally, | would like to thank my family for always being there for me, believing in me
and supporting me, even though they did not realize why and what exactly | was doing. | am
also thankful to my friends for accompanying me along the journey and always being eager
to listen to my concerns.

4/93



Contents

FTEPIANIN oo e ea 2
ADSTIACT ..t 3
ACKNOWIEAGMENTS ...eiiiiiieee e eee 4
0N NS e 5
LISt Of FIQUIES .oueiii e e 7
LISt Of TaBIES..uniee e 10
N[0T g T=T 0 Tod = LA U | S 11
i o1 o Yo [ U] 4 o ] IS 12
1.1 ODJECHIVE. i 12
1.2 BibliographiC REVIEW ..........ccciiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee e 13
1.2.1 Dynamics & Kinematics of SMS .........ccoiiiiiiiiiiic e 13
1.2.2 Model Predictive CONEIOl ..........uuuueieiiriiiiiiiiiiiiieiiiiieinerenennnnnennneeseennneeneeeneeene 14
1.3 TheSIS OULINE......cooeiiiiii e 15
2 Kinematics & Dynamics of Planar Free-Floating Space
Manipulator System (FFSMS) ..., 16
P20 N 1 0 o (3 o3 1o o 1S 16
2.2 KINEMALICS .....cciiiiiiiiii et e e e e e e e e e e e et e e e e e e 17
2.3 Differential Kin€mMatiCS..........oouuuiiiiiiie e 20
2.3.1 Conservation of Angular MOMENTUM ..........uuuuuiuimiiiiiiiiiiiiiiiiiiiiiiieeeeeeieeeeee 21
2.3.2 Jacobian & Dynamic SiNQUIANTIES .............uuuuuumimiiiiiiiiiiiiiiiiiieeeeeee 23
Y/ o= 1 01 SRR 26
3 Model Predictive Control (MPC) .......ooiviiiiiiiiieeee e 29
G 200 1 0 o (3 T3 1o o O RRP 29
3.2 Design of Model Predictive Controller .............ccooooiiviiiiiiiiii e, 31
G J7 I 1Y/ T T = 32
3.2.2 Laguerre Functions & Control Signal.................eueuuiiiiiiiiiiiiiiiiiiiies 33
e B = (= To [Tox 1 o] o [ UU TP P PP UPPPPT 34
I T2 B @ 011101 Z= 11 o] o 35
3.2.5 Controller & Implementation .......... ..o 36
IR T 0 1 151 1 = | 37
3.3.1 Integration of Constraints & Hildreth’s Quadratic Programming
[ (0T =T 0 U] SR 37
3.3.2 Constraints on the Amplitude of the Manipulated Variable............................ 39
3.3.3 Constraints on the Output or State Variable ..............cccccveeeiiiiiiiiieee e, 40

5/93



3.4 Example: Design of MPC Controller for a Simple Mass-Damper-Spring

1Y/ Yo L RPN 41

4 Implementation of Model Predictive Controller (MPC) to Free-
Floating Space Manipulator Systems (FFSMS)..........cccoooevvennnn.. 44
72 0t R [ 0 o To 18 o 1o o I SRRPPPPPRPIN 44
4.2 Design of a Controller in the Joint SPaCe .............cccuiiiiiiiiiiiiiiiies 44
4.2.1 Model Based PD & PID CONIOIEr.......cccoveeiiiiiieee e 44
4.2.2 Model Based PD Controller with an auxiliary MPC Input .............ccccceeeeeene. 46
4.3 Design of a Controller in the Cartesian Space............cccccuvvieiiiiiiiieiiiiniiinnns 48
4.3.1 Model Based PD & PID CONIOIEr.......ccceeeeeiiiieeee e 48
4.3.2 Model Based PD Controller with an auxiliary MPC Input ...............coeeeeeeeennn. 50
4.4 Plant Representation - MSC Adams Simulation ...............cccccvvevimmiiinnnnnnnnnn. 51

4.5 Example: Design of Model Based PD Controller with an auxiliary MPC
Input for Motion in the JOINt SPACE .........ccevvviiiiiiiiiiiiiiieeeeeeeeee 53
4.5.1 Path Planning........ccouuiiiiiii it e et s e e e e e e e r e e e e 53
4.5.2 FFSMS Dynamics & ParameterS........cccoivviiiiiiiii et 54
4.5.3 Model Based PD Controller with an Auxiliary MPC Input............ccccceeeeeneenee. 55
4.5.4 Model Based PID CONLIOIEN .........uiiiii e e e 58
5 Simulations & Case StUIES ........cvevviiiiiiiiiii e 61
00 R 1 1 o o 3 Tox 1 o] o R 61
5.2 Scenario 1: Constant DiSturbanCes ...........cccooeveeeiiiiiiiiiiiii e 62
5.2.1 Path Planning.........ooooiiiiiii et e e 62

5.2.2 Model Based PID Controller vs Model Based PD Controller with an
AUXIlIary MPC INPUL.....cooiiiee e e e e 64
5.3 Scenario 2: Parametric UNCertainties ..........ccovveeeeeveeeiiiiiiiiieeeeeeeeeiiiinn e 71
5.3.1 Sensitivity Analysis & Monte-Carlo Simulation.................cccueveeeiiiiiiiiiiiiiiinn. 72

5.3.2 Model Based PID Controller vs Model Based PD Controller with an
AUXINTAIY MPC INPUL.....cooeeeeeeeeeeeeeeeeeeee e 75
5.4 Scenario 3: Position Captured Object of Unknown Mass ...........ccccceeeeeeee... 78
5.4.1 Path Planning.........ooooiiiiiii et 79

5.4.2 Model Based PID Controller vs Model Based PD Controller with an
AUXINTAIY MPC INPUL.....cooieeeeeceeeeeeeeeeeeeee e 79
T T Tot = o F= o 1R S N o = 82
5.5.1 Path Planning — Moving Target ..........cccooiiiiiiiiiiiie e 82

5.5.2 Model Based PID Controller vs Model Based PD Controller with an
AUXITIANY MPC INPUL. ..o e e e 83
6 Conclusion & Future Work ..........cccccciiiiiiiiiiiie, 87
00 R o T o (1] oI o 87
6.2 FULUIE WOKK ... e e e e e e 88
7 Bibliography ..o 90
Appendix A — Matlab Algorithms .......ccoooviii i, 93

6/93



List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.

Figure 2-3.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Figure 5-1.

Photorealistic Picture of a Typical SMS (the image was rendered using

SONAWOIKS) ... e e e e e 12
Planar FFSMS with a manipulator of 3 DoF (a) Geometrical & Dynamic

parameters (b) Parameters of the BaryCenters. ..........ccccccvvvvvvvviiiiiiiiniiieinnnnn, 17
Definition of Barycenter and its parameters. ...........ccovvvvviieieieeeecceviiiiee e, 18

(@) Curves of Angles q: and g2 of a Planar FFSMS with a 3-DoF
Manipulator that Singularities occur according to Eq. (2-42) (b) Workspace

of a Planar FFSMS with a 3-DoF Manipulator. ...........ccccoooeviiiiiiiiiinieeeeceeinns 25
Example of Model Predictive Control’s strategy..........cccccccvvvviiiiiiiiiiiiininnnnn. 30
(a) Block Diagram (b) General Model Predictive Controller strategy............. 31
Dynamic model containing mass, damper and SPring............ccuevvvveeeeeeeeeeenn. 41
Position and error of the Constrained and the Unconstrained MPC for the
Mass-damper-spring EXample. .. ... 42
Control force of the Constrained and the Unconstrained MPC for the
Mass-damper-spring EXample. .......cciii e 43
Block Diagram of the Model Based PD Controller applied to a Planar
FESMS iN JOINt SPACE. ......ciiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 46
Block Diagram of the Model Based PID Controller applied to a Planar
FESMS iN JOINt SPACE. ......ciiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 46
Block Diagram of the Model Based PD Controller with an auxiliary MPC
Input applied to a Planar FFSMS in Joint Space. .........ccccccvviiieiieeeeeceeeiiinnn, 47
Block Diagram of the Model Based PD Controller applied to a Planar
FFESMS in Cartesian SPacCE. ........cuueeiiiieiiiieicee et 50
Block Diagram of the Model Based PID Controller applied to a Planar
FESMS in CarteSian SPaCE. .......cccuvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee ettt 50
Block Diagram of the Model Based PD Controller with an auxiliary MPC
Input applied to a Planar FFSMS in Cartesian Space............ccccoeeveeeeeeeeeeenn. 51
Picture of the MSC Adams Model used to represent the studied FFSMS
(a) Top View, (B) ISOMELHC VIEW.....ccoiiiiiiieeieee e 52
Desired Trajectories (a) Angle, (b) Angular Velocity, (c) Angular
F oo =] [T = 11T o PP 54
Snapshots of the Motion of the FFSMS in the ADAMS environment for
three different time-points (a) t=0, (b) t=3s, (C) t=6S.......ccceeveveieiiiiii, 56
Motion of the FFSMS in the JOIiNt SPace. ........cooiiiiiiiiiiii e 57
Actual and Desired Trajectories of the joints (a) Angles, (b) Velocities. ........ 58
(a) Errors of Angles, (b) Applied TOIrqUES. ......oii i 58
(a) Errors of Angles, (b) Applied TOIQUES. ..........uuuiimiiiiiiiiiiiiiiiiiiiiiiiiiiiieianaens 59
Root Locus for both the Model Based PID Controller and the Model Based
PD Controller with an Auxiliary MPC INPUL. ........cccovviiiiiiiiiiiiiiiiiiiiiiieeeeeeee 60

End-Effector's Desired Trajectories (a) Horizontal Position, (b) Vertical
Position, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity (f)

7/93


ZEqnNum553712

Figure 5-2.
Figure 5-3.

Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7.
Figure 5-8.

Figure 5-9.

Figure 5-10.

Figure 5-11.

Figure 5-12.
Figure 5-13.

Figure 5-14.

Figure 5-15.

Figure 5-16.

Figure 5-17.

Figure 5-18.
Figure 5-19.

Figure 5-20.
Figure 5-21.

Angular Velocity, (g) Horizontal Acceleration, (h) Vertical Acceleration, (i)
ANgular ACCEIEIatiON. .......vveeii i e 63

Block Diagram of the 15 SCENAIIO. ........cceiiiiiiieiiiiiie et 64

Snapshots of the Motion of the FFSMS in the ADAMS environment for
three different time-points and two different views for the 1% Scenario (a)
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s),

(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6S)........cccccceeereenn.. 66
Motion of the FFSMS in the Cartesian Space for the 1 Scenario. ............... 67
Determinant given by Eq. (2-38) for the 1% Scenario. ..........cccccvveeiiiieneennee 67
Actual and Desired Trajectories of the End-Effector (a) x-Coordinate, (b)
y-Coordinate, (C) OrEeNtatiON. .......coeeeeieeeeeee e 68
Error of the Actual and the Desired Value of the End-Effector’s variables
for the 1%t Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. ........ 68
Torques of the Joints of the Manipulator applied in the 1% Scenario (a) 1
Joint, (b) 2™ J0OINt (C) 3™ JOINT......eeicvieiicriee et e e e eree e 69

Error of the Actual and the Desired Value of the End-Effector’s variables
for the 1% Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-
Coordinate, (C) OrENtatiON. .........uuiiiii e e 70

Torques of the Joints of the Manipulator applied in the 1% Scenario using
Constraints on the MPC (a) 1 Joint, (b) 2" Joint (c) 3 Joint. ............c.c....... 71

Errors of the End-Effector's Position & Orientation using Monte-Carlo
Simulation for the 200 Different Random Samples. (a), (b) and (c): Model
Based PID Controller, (d), (e) and (f): Model Based PD Controller with

1 = O ] o | 73
Parameter Influence on the Position & Orientation of the End-Effector......... 74
Error of the Actual and the Desired Value of the End-Effector’s variables
for the 2" Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. ....... 75
Torques of the Joints of the Manipulator applied in the 2" Scenario (a) 1%
Joint, (b) 2™ J0OINt (C) 3™ JOINT......eeiceiee e e e sree e 76

Error of the Actual and the Desired Value of the End-Effector’s variables
for the 2" Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-
Coordinate, (C) OrENtAtiON. .........uuiiiii e e 77

Torques of the Joints of the Manipulator applied in the 2" Scenario using
Constraints on the MPC (a) 1%t Joint, (b) 2" Joint (c) 3" Joint. ............c......... 77

Snapshots of the Motion of the FFSMS in the ADAMS environment for
three different time-points and two different views for the 3" Scenario (a)
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s),

(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6S)..........cccceeereeren.. 80
Error of the Actual and the Desired Value of the Joints’ Angles for the 3™
Scenario (a) 1%t Joint, (b) 2" Joint, (C) 3™ JOINt.....c.ccovvieeieeeieeie e, 81
Torques of the Joints of the Manipulator applied in the 3™ Scenario (a) 1%
Joint, (b) 2" JOINt (€) 3™ JOINL.....cuvieiiie it 81
Block Diagram of the 4™ SCenario. ............ccoeeeeeeieccie e, 82

Snapshots of the Motion of the FFSMS in the ADAMS environment for
three different time-points and two different views for the 4™ Scenario (a)
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s),
(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6S)..........cccceeereennn.. 84

8/93



Figure 5-22.

Figure 5-23.

Figure 5-24.

Figure 5-25.

Figure 5-26.

Actual and Desired Trajectories of the End-Effector (a) Horizontal Velocity,
(b) Vertical Velocity, (c) Angular VEIOCItY. .......cccoeeevviiiiiiiiiiii e,

Error of the Actual and the Desired Value of the End-Effector’s variables
for the 4" Scenario and for Noise with Variance 101° (a) x-Coordinate, (b)
y-Coordinate, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity,
(F) ANQUIAT VEIOCILY. ..vvvviiieeeeeeeeee e

Torques of the Joints of the Manipulator applied in the 4™ Scenario and for
Noise with Variance 10 (a) 1%t Joint, (b) 2" Joint (c) 3" Joint. ...................

Error of the Actual and the Desired Value of the End-Effector’s variables
for the 4™ Scenario and for Noise with Variance 10® (a) x-Coordinate, (b)
y-Coordinate, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity,
(F) ANQUIAT VEIOCITY. ...ttt

Torques of the Joints of the Manipulator applied in the 4" Scenario and for
Noise with Variance 10 (a) 1% Joint, (b) 2" Joint (c) 3™ JoiNnt...........ccuv.......

9/93

84

85

85

86



List of Tables

Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.

Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.

Paremeters of the Desired TrajeCtories. .........ovvvvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 54
Paremeters of the FESMS. ... e 55
Paremeters of the FESMS. .........oooiiiiiiiiiiii e 61
Paremeters of the Desired TrajeCtories. .........ouvvvviiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeee 63
Maximum Errors performing Monte-Carlo Simulation and their Model

PAraAMELEIS. ... 74
Parameters of the Captured ODJECL. ...........oeviiiiii i, 78
Paremeters of the Desired Trajectories for the 3™ Scenario. ........................ 79
Parameters of the Moving Target. ... 82
Paremeters of the Desired Trajectories for the 4™ Scenario.................c......... 83

10/93
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English
SMS Space Manipulator System
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1 Introduction

1.1 Objective

The alarmingly emerging problem of the immense increase of space debris as well as the
wide variety of space operations like catching, refueling, repairing and re-orbiting of satellites
and objects with unknown parameters in general, mandate the development of space
systems, capable to cope with these tasks. Considering the fact that space is an
inhospitable environment to humans, a Space Manipulator System (SMS) is the most
appropriate choice.

An SMS consists of the satellite-base and the manipulators. The base transfers and
orients in space using its Attitude and Orbit Control Systems (AOCS) which controls the
momentum control devices such as the reaction wheels and the thrusters. Every manipulator
has its own control system and joint motors to reach the desired position and orientation of
its end-effector. However, the motion of the end-effector affects the motion of the base and
vice versa due to the dynamic coupling. If it is considered necessary, the AOCS is used to
counterbalance this effect. Some notable examples of SMS are the ETS-7 [24] and the
Orbital-Express [25] . Figure 1-1 presents a photorealistic image of an SMS with three
manipulators.

Figure 1-1. Photorealistic Picture of a Typical SMS (the image was rendered using
Solidworks).
As Rekleitis et al. [31] present, there are seven main operations that are conducted in a
typical on-orbit servicing mission. These operations are:
1. Long-Range Rendezvous
2. Short-Range Rendezvous
3. Station Keeping
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Capture
Securing the Target Satellite
Service Operations

7. Release

In this thesis, the fourth of the aforementioned phases is studied thoroughly. In this
phase, the SMS operates in a Free-Floating mode, during which the AOCS is turned-off to
avoid any disturbances from the thrusters of the base and minimize fuel consumption.
Besides that, an additional post-capture scenario of the fifth phase is also presented.
According to this, the SMS has already captured the target and stabilized it and it desires to
change its position and orientation.

A Model Predictive Control (MPC) algorithm for the actuators of the manipulator is
suggested to compensate for the effect of external disturbances, noise as well as parametric
uncertainties that occur during most of these phases. The Controller would be applied in a
planar SMS with a single manipulator of three joints for both motions in the joint and
Cartesian space. The results would be compared with a PID Controller to show its
advantages and disadvantages.

The main reason behind the parametric uncertainties of an SMS is the variance of the
mass of the base due to fuel consumption, since the fuel tanks are embedded in the base.
Some other uncertainties that should be noted are discrepancies in the lengths of the
manipulator’'s components due to the temperature variation as well as small variance of the
masses of the manipulator's parts because of inaccuracies between real and simulation
model. As far as the external disturbances are concerned, these might be the result of
collisions of the satellite with unidentified small bodies that float into space.

The preservation of the stability and performance, despite the preceding disturbances,
requires a robust controller, which ensures an acceptable performance under bounded
parametric uncertainties. Although proofs about robustness and stability of Model Predictive
Control are hard to acquire due to the usage of constraints and the finite horizon -a
characteristic that would be described in Chapter 3, a plethora of applications illustrates its
robustness. Another alternative for this task would be an Adaptive Controller, which “learns”
the system parameters on its own and adapts accordingly. However, due to the limited
number of sensors and consequently the data that today’s SMS obtain, it is a rather
unrealistic option for the present.

o 0k

1.2 Bibliographic Review

1.2.1 Dynamics & Kinematics of SMS

The aforementioned dynamic coupling between the base and the manipulators of an SMS
renders the study of this system significantly different from the one used for a fixed-base
manipulator. During the past decades, many researchers have studied the dynamics and
kinematics of an SMS and ample noteworthy papers have been published in this domain.

Papadopoulos and Dubowsky [27] & [29] described the kinematics and dynamics of
Free-Floating Space Manipulator Systems (FFSMS) using the Barycentric vector approach
and proved that any fixed-base control algorithm can be applied to FFSMS under some
conditions. The same authors introduced the idea of Dynamic Singularities (DS) that occur in
an FFSMS due to the dependence of the velocity of the end-effector to the motion of the
manipulator as well as the motion of the base [28] .
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Umetani and Yoshida [39] presented the Generalized Jacobian Matrix for an FFSMS
and a control method based on it. Caccavale and Siciliano [2] solved the inverse kinematics
of an FFSMS using the Generalized Jacobian Matrix. Nanos and Papadopoulos extended
the study of the dynamics and control of FFSMS with the additional condition of non-zero
angular momentum [23] as well as flexible joint space manipulators [22] . In this thesis,
although the results can be generalized by considering the accumulation of the angular
momentum, a flexible manipulator and three-dimensional space, a rigid planar manipulator
with three joints and zero angular momentum is studied for the sake of simplicity.

1.2.2 Model Predictive Control

While some underlying ideas of MPC were presented in the sixties, a complete idea of MPC
was introduced in the late seventies with the papers of Richalet et al. [32] & [33] where a
dynamic model was used to predict the future control input by minimizing the error variance
and by repeating the optimization after each sampling period, as well as the paper of Cutler
and Ramaker [5] where a Dynamic Matrix Control was implemented. This engendered the
alacrity to study and apply this kind of algorithms in a wide variety of domains, mostly in slow
systems, like the ones appearing in chemical process industries [7] .

A few decades later, the evolution of computational hardware as well as the simplicity
and effectiveness of the MPC in handling multi-variable and multi-constrained control
problems permitted its application to faster systems like robots. Gomez-Ortega and
Camacho [8] implemented a Model-Based Predictive Controller for path tracking of a mobile
robot with the use of a neural network. Ullah et al. [38] compared an MPC algorithm with an
H. controller for a robot manipulator. Maasoumy et al. [18] applied a robust MPC to handle
the parametric uncertainties of a building and maximize its energy efficiency. Dai et al. [6]
presented a robust model predictive control with joint state constraints and input torque limits
to deal with the disturbances as well as parametric uncertainties problem and implemented
the results in a Baxter robot. For further study of MPCs handling parametric uncertainties,
Camacho and Bordons in their book [3] applied a min-max MPC algorithm to handle the
parametric uncertainties and improve the robustness of the controller.

With the start of the new century, MPC algorithms were applied in space systems too.
Richards and How [34] presented a robust MPC formulation to minimize fuel consumption in
the performance of spacecraft rendezvous given an unknown but bounded disturbance.
Kayastha et al. [12] presented a nonlinear MPC for a free-flying planar space manipulator
with 3 links and compared the results with a Sliding Mode Control. Rybus et al. [36] & [37]
proposed a Non-Linear Model Predictive Controller for FFSMS and presented simulation
examples with realistic parameters.

As it can be concluded from the preceding bibliography, although some MPC algorithms
have been applied to FFSMS in the past, complete results about its competence to deal with
disturbances and parametric uncertainties that occur in FFSMS have not been presented. In
this thesis, an MPC would be implemented in an FFSMS for various scenarios and its
performance would be compared with a PID Controller.
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1.3 Thesis Outline

This thesis consists of six chapters. The first chapter contains the introduction, the
bibliographic review and the thesis outline. The purpose of the thesis is presented and the
most important publications about the dynamics and control of FFSMS and the applications
of MPC are briefly mentioned.

The second chapter presents the kinematics, inverse kinematics, differential kinematics
and dynamics of an FFSMS. The equations that relate the angles of the joints to the end-
effector’s position and orientation are presented as well as the equations that relate their
respective velocities. This leads to the formation of the Jacobian and the finding of the
positions that dynamic singularities might occur. Furthermore, the equations of motion of the
FFSMS are derived. These equations are fundamental for the implementation of the
controller.

The third chapter contains the theory and methodology of the MPC that is implemented.
The Laguerre functions that are used for the representation of the control signal are
presented and the different steps that the MPC follows (prediction, minimization,
implementation) are described extensively. Moreover, input and output constraints are
integrated in the design using Hildreth’s quadratic programming procedure. At the end of this
chapter, a simple example is presented according to which an MPC desires to control the
motion of a mass-spring-damper model. Constraints are also inserted in the design.

The fourth chapter contains the implementation of different control laws in an FFSMS.
The control signal’s equations for a Model Based PD Controller, Model Based PID Controller
and Model Based PD Controller with an auxiliary MPC input are presented for motion in the
joint and Cartesian space. The plant that is used in the simulation is also defined using MSC
Adams. At the end of this chapter, an example of implementing a Model Based PID
Controller and a Model Based PD Controller with an auxiliary MPC input in an FFSMS for
motion in the joint space is presented to validate the design of the controllers.

The fifth chapter contains the simulations and various scenarios that are performed to
compare the Model Based PID Controller to the Model Based PD Controller with an auxiliary
MPC input. For the first scenario, the path planning is determined in the Cartesian space
and the target is considered relatively stationary. Constant disturbances are applied to the
actuators of the joints. The criteria of the comparison are the errors of the position and
orientation of the end-effector, the maximum torques that each controller produces as well
as the duration of the simulation. For the second scenario, the same path planning and
parameters of controllers are used. However, the parameters of the FFSMS are not
accurately known but estimated. Therefore, parametric uncertainties occur. A Monte-Carlo
simulation is performed for 200 different combinations of parameters. A more scrutinous
study is performed containing the parameters that result in the maximum error of the x-
coordinate of the end-effector.

For the third scenario, the path planning is determined in the joint space. However, the
target is considered captured by the FFSMS and it is desired to change its position and
orientation. The parameters of the target are not accurately known but estimated. Therefore,
parametric uncertainties occur. For the fourth and final scenario, the path planning is
determined in the Cartesian space but the target is considered to move with a relatively
constant velocity. Two different types of noise are also inserted in the study to illustrate the
performance of the controllers in the presence of noise.

The sixth chapter presents the conclusions and proposals for future work.
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2 Kinematics & Dynamics of Planar Free-Floating
Space Manipulator System (FFSMS)

2.1 Introduction

There are two main modes that a Space Manipulator System (SMS) -which is regarded as
the “chaser”- will use to capture a target. The Free-Flying mode and the Free-Floating mode.
The former mode is being applied when the SMS is considerably distant from the target.
According to this mode, the Attitude and Orbit Control Systems (AOCS) and its actuators are
used to reach the target. The control system of the manipulator of the SMS -which is usually
independent of the AOCS- might also be used, if it is regarded as necessary. However, the
dynamic coupling between the satellite and the manipulator affects the motion of the end
effector and the motion of the base. In the case that the base must follow a predetermined
path, the AOCS is applied to compensate for this effect.

Nevertheless, when the SMS is significantly close to the target, the AOCS should not be
used since the base thrusters might disturb the target or the position and/or orientation of the
manipulator’'s end-effector. This is called the Free-Floating mode. The position and
orientation of the end-effector are determined by the manipulator’s controller as well as the
path that the end-effector will follow.

In this chapter, the kinematics and dynamics of a planar Free-Floating Space
Manipulator System (FFSMS) with a single manipulator consisting of three joints are
presented. The manipulator is non-redundant to simplify the modelling procedure and to
minimize the mass of the system. It should be noted that there are three extra Degrees of
Freedom (DOF) due to the position and the orientation of the base. The manipulator is also
characterized as open-chain and its three joints are revolute, for the maximization of the
workspace.

The study is performed under the assumptions that the forces and torques which are
produced by the Earth’s gravitational and magnetic field as well as the air's resistance are
small enough and therefore negligible. Besides that, the links of the manipulator are
considered inflexible and the angular momentum of the system equals zero.

First, the forward and inverse kinematics of the general problem of a spatial FFSMS are
presented. Then, the results are simplified for the specific case of a planar FFSMS with a 3-
DoF manipulator. Secondly, the differential forward and inverse kinematics are studied to
elicit the equations of the velocities. From the derived equations, the positions on the
Cartesian plain where a singularity might occur are presented. Finally, the dynamics of the
general spatial FFSMS problem as well as the simplified planar problem are presented.
These equations are of integral importance for the control of an FFSMS which is studied in
Chapter 4.
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2.2 Kinematics

The main goal of the study of the kinematics of an FFSMS is to obtain the equations for the
position of the end-effector. In contrast to the kinematics of the clasical manipulators with a
stable base, the aforomentioned dynamic coupling between the manipulator and the base of
an FFSMS results in the dependence of the position of each joint on the position and the
mass properties of all the joints and the base. For this reason, the Barycentric Vector
Approach, presented in [26] is applied.

The notation that will be used from now on defines bold lowercase symbols to represent
column vectors and bold uppercase symbols to represent matrices.

Considering a planar FFSMS, the rotation of the base is described by the rotation
matrix:

(2-1)

RO(QO)Z[COS(HO) —sin(eo)}

sin(¢,) cos(6,)

Assuming a point 0 on the k-th joint, the position vector with respect to a given inertial
frame of reference (X, Y, z) (Figure 2-1) is described by:

r..=r_+p +T (2-2)
k,0 cm pk k,0

where remis the position vector of the Center of Mass (CM) of the whole model with respect
to the inertial frame, pk is the position vector of the CM of the k-th joint with respect to the
CM of the whole model and T, ; is the position vector of the point 0 with respect to the CM of
the k-th joint.

O g
Inertial
Frame

& Body CM

@& Body Barycenter
(a) (b)

Figure 2-1. Planar FFSMS with a manipulator of 3 DoF (a) Geometrical & Dynamic parameters
(b) Parameters of the Barycenters.
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As shown in [26] , the position vector pk can be calculated by finding the barycenter of
each of the joints and the base. The barycenter of the i-th body is the CM of the augmented
body which is formed by adding a point mass equal to My; to the i-th joint and a point mass
M(1-ui+1) to the joint i+1 where:

0, i=0
N i-1
M=>m and 4={> 2 i=1..N (2-3)
i—0 oM
1, i=N+1

Then, if the position vectors |i and ri of the i-th joint and joint i+1 (respectively) with
respect to the i-th body CM are known, the position vectors with respect to each barycenter
can be calculated by (see Figure 2-2):

C, =l +r,(1-4), 1=0,...,N

Cc =—C

o i (2-4)
L =r—¢

IF =1, —c

m_trm...+m,

i+l 1+2

Figure 2-2. Definition of Barycenter and its parameters.

Finally, the position vector pk is given by:

. rr i<k
P =D Vi, With v, ={c i=Kk (2-5)
=0 I” i>k

Substituting Eqg. (2-5) into (2-2) it can be derived:
N
Mo =Fem +Zvi,k,o with v, .=V, +36, T, (2-6)
i=0

where 9ik is the Kronecker delta.
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Before the preceding methodology is applied to an FFSMS with a 3-DOF manipulator, it
is of immense importance to point out that if all the external forces are considered negligible,
therefore equal to zero, it can be derived from the derivative of the linear momentum p that:

dp _d(Mig,)

dt dt z Fexternal =0= f = const (2-7)

Assuming that the initial linear momentum is zero, then:
foy =0=1r, =const (2-8)
Therefore, from now it will be considered that the origin of the inertial frame is at the
system’s CM.

Considering these assumptions, the position and the rotation of the end-effector of an
FFSMS with a 3-DOF manipulator is given by [21] (see Figure 2-1):

Xe =aCy + b Co,+q, T CCosqeq, T d Co, +ay+a,+a,
Ye =as, +bS, . +CSy o +dSy oo (2-9)
HE 290+Q1+q2+q3
where:
m,r,
a= 0°'0
M
b= Myl + (M, +my)r
M
c— (mg +m)l, +(my +m, +m,)r, (2-10)
M
m, +m, +m,)l
d= (m, '\1/| 2)ls +1,

M=m,+m +m,+m,

For the inverse kinematics problem, it is considered that the base’s orientation 6o, the end-
effector's coordinates Xe and ye as well as the end-effector’'s rotation 6 are known. By
raising Eqg. (2-9) to the second power and subtract them, it is derived:

cos(q,) = (X - A~ d C‘90+ql+qz+q3)2 +(Ye — as, — d Sao+q1+qz+q3)2 _p?_c?
2 2bc
sin(q,) = i\/l—T;
sin(d, +q,) =— A (XE _ acgv —d C90+q1+q2+q3) - By (yE - aSgn —d 890+q1+q2+Q3) (2-11)
o b?+c?+2bcc,
COS(H +d ) - Akin (yE - asgu -d 390+q1+q2+q3 ) + Bkin (XE —a Cgﬂ —d 000+q1+q2+q3)
C b?+c?+2bcc,,
where:
in=CS
A(In a2 (2-12)
Bkin =b+c qu

Finally, the joint’s angles are given by:
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g, = atan 2(sin(q,), cos(d,))
g, = atan 2(sin(6, +q,),cos(6, +q,)) -6, (2-13)
0;=06-6,-0,-0,

where atan2(y,x) is defined as the four-quadrant (-m,) inverse tangent of the numbers (x,y).

2.3 Differential Kinematics

The equations of differential kinematics describe the relation between linear and angular
velocity of the end-effector to the joints’ angular velocity as well as the angular velocity of the
base and vice versa. The derivation of these equations requires the equation of the angular
velocity of the k-th body with respect to the inertial frame of reference. For the general
problem of spatial FFSMS is given by [26] :

K
o, =0, +R, D "Ri(q)'z,q =R, ("o, + "F4
K 0 0; i (q) Iql 0 ( 0 kq) (2'14)
OFk :[ORllzl ORkak 03(N—k)]

where left superscripts are interpreted as “expressed in frame”. Missing left superscript
means that it is expressed in the inertial frame. The o is the angular velocity of the base,
°Ri is the rotation matrix of the frame of reference {i} expressed in the frame of reference {0}.
'zi is the unit vector parallel to the axis of the i-th joint (for the planar case, they are all
perpendicular to the model) and O3-k) is a 3(N-k) zero vector.

By differentiating Eq. (2-6), the linear velocity of point 0 on the k-th joint is:

N N
I;-k,o = r.-(:m + Zmi X Vi,k,o = l.-cm _Zv:k,o(")i (2-15)
i=0 i=0

where the cross-product operator is given by:

0 -0, 0,
O = (), 0 —(), (2-16)
-()y O O
According to a property of the cross-product, the following holds:
Vix,k,o = (Ro 0Vi,k,o )X =R, Ovix,k,oRg =R, OVT,k,oREl (2-17)

Substituting Eqg. (2-14) and Eq. (2-17) into Eqg. (2-15):
N . X N . X .
Feo =Fom + R {_Z(ORi IVi,k,o) "o, _Z(ORi IVi,k,o) OFiq:| (2-18)
i=0 i=1

To conclude, the angular velocity of the k-th joint and the linear velocity of a point 0 on
one of the joints is given by:

: : 07 0 0 .
Mo =Tem * Ro( Jigy @+ J12,kq)

o, =R, ( ‘@, + OJ22,kq) (2-19)

with o‘]ll,k :_i(OR' iVi,k,o)x’ Ole,k :_i(oRi ivi,k,o)x OFi and O‘]22,k = OFk
i=1

i
i=0
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Considering the assumption of zero linear momentum (and the initial linear momentum
too), Eq. (2-8) gives that I, =0. Consequently, the linear velocity of the end-effector of an
FFSMS with a 3-DOF manipulator is given by [21] (see Figure 2-1):

fe = Ro(ojngo + 0‘]12Q)
c

o =Sy
R 0 — o o
O( O) La Cen }

Ojn(q) :|:

- (b Sq T CSquq, + d Sq1+qz+q3 )

] (2-20)

a+ b C% +C C%*'qz + d C%*'qz‘*'%

0 _ _(bsq1+ CSqtq, T d Sqy+a,+0 ) _(CquZ +d Sqy+ay+0 ) —d Sq+0,+0
12 (q) -

bc, +cc, ., +dc CCy.q, tdC dc

G +0;+03 G +02+03 G t0,+03

where 6 is the orientation of the base and ¢ = [01 02 q3] .

The angular velocity of the end-effector is given by:
éE = 90 + %1,

(2-21)
szz (q) = [1 1 1]

2.3.1 Conservation of Angular Momentum

The angular momentum with respect to the system’s CM of the general spatial problem is
given by:

N
Pew :Z(Ik‘”k +mkpkxp;r) (2-22)
k=0

where i is the inertia matrix of the k-th body, @k is the angular velocity of the k-th body and
pk is the position vector of the system’s CM to the k-th body’s CM. The derivative of pk is
given by the differentiation of Eq. (2-5):

N
P = Zmi X Vik (2-23)
i-0

Substituting Eq. (2-5) and Eg. (2-23) into Eqg. (2-22):

N N N N
hey :Zzé}iliijr. Zka(Vi’kijxvj'k) (2-24)
Finally, by using the following property of the cross-product:
axbxc=Db(a-c)—c(a-b)=[(c-a)l—ca]-b (2-25)

where 1 is the unit dyadic and substituting the angular velocity from Eq. (2-14), Eq. (2-24)
can be written as:

hew =Ry ("D, + Dd) (2-26)
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with:

R, (2-27)

Applying the preceding equations into a planar FFSMS with a 3-DOF manipulator, the
angular momentum is given by [21] :

hew = °D6, + °D, 4 (2-28)
with:
°D="D, +°D, +°D, + °D,
"D, =| ’D,+°D, +°D; °D,+°D, °D;]
°Dy, = 8y, + 8y, Cy + 8, C . + @Myl C

02 ~q;+0, 33 Yoy +0y+03 (2_29)

ony _

D1 - a01 Cq1 + a11 + a12 qu + bm3|3 Cq2+¢13
0N _

D, =8y, Cq g, t 5 Cy + 05 + cm,l, Co,

0
D, =a, +cm,l, Cy bm,l, Copiqy amgl, Corayra,

where a, b and c are given by Eq. (2-10) and:

m, (M, +m, + m,)r?

=
aOO 0+ M
N =m0r0|:ll(ml+m2+m3)+rl(m2+m3):|
! M
o - Mgty [ 1, (M, +m,)+r,m, |
? M
o | +momllf+m1(m2+m3)r12+m0(m2+m3)(ll+r1)2 (2-30)
1 1 M
. :[Ilmo+(mo+m1)r1][lz(m2+m3)+m3r2]
? M
A +m2m3r22+m2(mo+ml)I22+m3(m0+ml)(I2+r2)2
22 2 M
m, (m, +m, +m,)I?
333 — |3+ 3( 0 Ml 2) 3
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2.3.2 Jacobian & Dynamic Singularities

Eq. (2-20), Eg. (2-21) and Eqg. (2-28) form a system of four equations with four unknown
variables (for the forward or inverse kinematic problem). They can be written in a more
compact form:

hew 1 0, 0][°D °D,

0
r'E =10, Ry 0y 0111 ° Ji, [ C;)} (2-31)
O; 0 0, 1 1 szz

where 02x1 is a 2x1 column zero vector and Oix2 is a 1x2 row zero vector. Knowing that the
first matrix on the right side of the equation which contains the rotation matrix is always
invertible, the second matrix can be characterized as the Jacobian of the problem:

0 0
D "D,

EVE R RN (2-32)
1 iy

It is evident that the Jacobian contains not only kinematic terms like link lengths and
joint angles, but also dynamic terms like masses and inertias. This characteristic results in
the existence of dynamic singularities along with kinematic ones. Due to the dynamic
coupling between the manipulator and the base, a Cartesian point might develop a dynamic
singularity depending on the attitude of the base. In other words, the manipulator might lose
a Degree of Freedom, depending on the orientation of the base. This is also one of the
fundamental discrepancies between FFSMS and manipulators with stable base. The finding
of the positions that singularities occur requires the study of the Jacobian.

Since the manipulator of the FFSMS is non-redundant, the solution of the inverse
kinematic problem requires the Jacobian to be invertible. Therefore, it is required:

det(J) =0 (2-33)

By using the following property of matrix determinant:
A B a . .
det c ol det(A)det(D—CAB) (A:invertible) (2-34)

the determinant of J can be written as:

_ 0 °J., _ “Ju [0\ Lo 2-35
det(J) = det( D)de{[o_ } {1 }( D) DqJ (2-35)

)2

where °Dq has dimensions 1x3, %J12 has dimensions 2x3, %22 has dimensions 1x3 and %j1;
has dimensions 2x1.

Since °D is depended on the inertia of the FFSMS in reference to its CM, it is always
non-zero. Consequently, substituting Eq. (2-35) into Eq. (2-33) it can be concluded that a
prerequisite of the solution of the inverse kinematic problem is:

detq?_ﬂ}—[ojﬂ}(‘)D)‘l ODq] #0 (2-36)
J22 1

The matrix:

23/93



Kinematics & Dynamics of Planar Free-Floating Space Manipulator System (FFSMS)

* OJ12 . Ojn oyY o )
J { } {J( D) °D, (2-37)

0j22
is called the Generalized Jacobian Matrix [39] . The same matrix can also be derived if hcwmis
zero and 6,(q) from Eq. (2-28) is substituted to Eq. (2-20) and Eq. (2-21).
After substituting °Ji2, %22, %11, °D and °Dq from Eq. (2-20), Eq. (2-21) and Eq. (2-29)
into the determinant of the Generalized Jacobian Matrix, it can be written as [21] :

ab’D,s, +bc’D,s, —ac’D;s

det(J") o L (2-38)
Therefore, the determinant equals zero if and only if the following quantity equals zero:
j"=ab°D,s, +bc’D,s, —ac’D;s, (2-39)
After substitution, j* can be written as:
i” =k (a) +k; (a,)sin(a,) +k, (q,) cos(q,) (2-40)
where:
k, =b(aa,, —ca,,)sin(q,)
K = aba,, + aca,, —2bca,, +c(~aa, +ba,)cos(q,) + a(ba,, —ca,,) cos(2q,) (2-41)

2 2
a(baoz — Ca01) Sin(qu)
2

Eq. (2-40) can give joint angle g2 with respect to joint angle g1 and j:

i"—k_)cos
0, (qy) = arcsin {w} o

kz = a(ba12 _Can)Sin(ql) +

kl
(2-42)
i"—k, )cos
G, (qy) = 7 —arcsin {w} o
1
where:

k2
@ = arctan T (2-43)

1

It is obvious that Eq. (2-42) and Eq. (2-43) that will be used for the finding of the
dynamic singularities do not depend on the joint angle Qs. Therefore, the dynamic
singularities’ positions will be defined with respect to the barycenter of the 3" link.

The distance of the 3 link’s barycenter and the system CM is defined by the equation:

R= HRO (00) OrS (ql’ %)H = "Ro (‘%)”H Ors (Q1’ qz)” = Hors (q1v qz)” (2-44)

which is independent of the rotation of the base 6o. Therefore, it can be assumed that 6o = 0.
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Thus:

R=yX+Yy: = (2-45)

=R= \/az +b?+c? +2abcos(q,) + 2ac cos(q, +d,) + 2bc cos(d, )

where x3 and y3 are the x and y distance of the 3" link’s barycenter from the system CM
respectively.

Eq. (2-42) and Eq. (2-43) should be substituted into Eq. (2-45) to find the positions in the
Cartesian space that dynamic singularities might occur. This can be done by considering j’
= 0 and vary the joint angle q: in the interval [0,217). From each of the Eq. (2-42) a pair of a
minimum and a maximum distance R is derived. These pairs will demarcate two different
surfaces in the workspace. These are the surfaces that if the barycenter of the 3 link
enters, a dynamic singularity might occur. It is noteworthy to point out again that the same
position might develop or not a singularity depending on the rotation of the base. The
subspace of these two surfaces that a dynamic singularity might occur is named Path
Dependent Workspace (PDW). The rest space is nhamed Path Independent Workspace
(PIW). Figure 2-3 presents the curves (2 (f1) that singularities occur for a planar FFSMS with
a 3 DoF manipulator as well as its Workspace.

Reachable

Workspace Systfm M
200 : ‘ : : . ; 4 limits
/ \—/ N /
150 ‘
2

— 100
= —
< £o
= >
o

o/\_/ *

50 | I ] L -4
0 50 100 150 200 250 300 350
q:1(deg) WPDW (Area A) [PDW (Area B) []PIW
6 . . L . 1
(a) 6 -4 -2 0 2 4 6

x(m)
(b)

Figure 2-3. (a) Curves of Angles (1 and (2 of a Planar FFSMS with a 3-DoF Manipulator that
Singularities occur according to Eq. (2-42) (b) Workspace of a Planar FFSMS with
a 3-DoF Manipulator.
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2.4 Dynamics

The formulation of the equations that describe the dynamics of an FFSMS requires the
potential and the kinetic energy of the system. Since the system is considered inflexible, the
potential energy is equal to zero. Hence, only the kinetic energy is required and for the
general spatial problem it is given by:

R
T== E mP, Py += E o I -0 (2-46)
2% 24

where mg is the mass of the k-th body, Ik is the inertia matrix of the k-th body, ok is the
angular velocity of the k-th body and pk is the position vector of the system’s CM to the k-th
body’s CM.

After calculations and substitution of the variables [21] , the kinetic energy can be
written as:

T-2[’0] qT]H*(q){ ;"} (2-47)

where:

H*(q)—[ D OD“}
OD; Oqu

(2-48)

D, %Dy are given by Eq. (2-27) and °F is given by Eq. (2-14).
The next step to the derivation of the equations of motion is the application of the

Lagrange method [20] . First, the Lagrangian is found:
L=T-U= Lo
2

where U is the total potential energy of the system.
The Lagrangian will be used in the Lagrange equations:

(900 oy 10000 g

.1 .
o, 'D°e, + 0] OquJrEqT ’D,q (2-49)

dt 2’0o, 00—0 08cm 250
d(oLCo,ad)) oL(w.a.d) __
dt oq oq

where gcm is the vector of the external torques that act on the base produced by the
thrusters and the reaction wheels which for an FFSMS equals zero, (-)*is the cross-product
operator given by Eq. (2-16) and T is the vector containing the torques of the manipulator’s
actuators. It should be noted that for gcm = 0, the first part of Eq. (2-50) is the differentiated
angular momentum Eq. (2-26).
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Finding the derivatives of Eq. (2-50), considering gcm = O and substituting the velocity
%m0 from Eq. (2-26), the equations of motion for a spatial FFSMS are given by [21] :

HG+Cq+g,=7 (2-51)
where:
H="°D,-°"D;°D"°D,
N N
Oqu:ZZOFiTODuOFj
j=1 i=1
C =C+C,
c_10(a"°Di"D™D,) (°Dyd) 19(d"°De) 9(°Di°D7°Ded) (252
2 oq oq 2 oq oq
c :a(ODgoD—lehCM)_a(thROOD“Dq)
" oq oq
10(hl,R,°D'R] e .
On :E ( = 80q O)hCM _ODEOD 1[0D l(RghCM _ODqQ)] Rghcvvl

It is obvious that when the angular momentum is equal to zero, the terms gn and Ch are
also zero.

The aforementioned methodology and equations can be simplified significantly for the
problem of a planar FFSMS with a 3-DOF manipulator. For this case, the Lagrangian is
given by:

. . 1 . R .
L(6,,09,9) = > °Do, +6, OquJrEqT D4 (2-53)

Because the terms of the Lagrangian are independent of the base’s rotation, 0o is a
cyclic coordinate [20] . Therefore, instead of the Lagrangian, the Routhian can be used:

. - . oL . . . .
R(@.4) = L(6,,9.0) = >0 = L(05,0.0) ~Neu 6, (2-54)
0
Substituting Eqg. (2-28) into the Eq. (2-54), the Routhian can be written as:
-_l-T < 0-10 -_32071
R(qu) - 2 q H(q)q + hCM D qu 2 hCM D (2_55)
H(q) — Oqu _ OD; OD—lqu
Finally, by using the Lagrange equation on the Routhian, the equations of motion for a
planar FFSMS with a 3-DOF manipulator can be written as:

H(Q)d*‘C*(Qaq'hCM )4+9,(,hyy) =7 (2-56)

where:
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0 0T Oy-10
H(q) = °D,, — °D} °D*°D,

N

0 _
qu - Z
j=1

C'(a.q, hey) =C+C,

N
OTO 0
> "F!°D,°F,

C(q f1)=18(qT 00D10DQ)+8(0quq)_la(qT Dy) 9(°D;’D*°Dd)  (p57)
, 2 oq oq 2 oq aq
a(°D°D’) 4(°D2°D
C (@ ey ) = M ( aq ) ol & )
a ODfl
ghzéhém —(8q )

and °D, °Dy are given by Eq. (2-29) and °F is given by Eq. (2-14).
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3 Model Predictive Control (MPC)

3.1 Introduction

The term Model Predictive Control (MPC) designates a plethora of advanced control
methods which use a model to predict the output at future time instants while minimizing an
objective function to obtain the control sequence. Some other notable characteristics of
these controllers is the “receding strategy” or “receding horizon” according to which the final
future time instant is consistently displaced towards the future as well as the fact that only
the first control signal of the sequence is applied to the plant.

The vast dissemination of MPC among the industry and the research community can be
attributed to its simple implementation and its ability to discover the optimum solution based
on an objective function while it compensates for measurable disturbances and dead times,
and handles input and output constraints. Another important benefit is the ability to deal with
multivariable problems easily. Nonetheless, MPC presents also some shortcomings. The
need for an accurate model of the process and the surge of computational power when
constraints are considered, are the most important drawbacks. Albeit most MPC algorithms
are quite robust, the number and significance of discrepancies between the dynamic model
that MPC uses and the real model is inversely proportional to the successful performance of
the controller.

There are ample different categorizations of MPC algorithms. As Camacho and Bordons
[3] point out, the main criteria to classify the algorithms are the model used to represent the
process (and the noise) and the cost function which is minimized. The basic types of the first
category include the Truncated Impulse Response Model, the Step Response Model, the
Transfer Function Model and the State Space Model. The distilled idea of the first two is the
measurement of the output when an impulse or step input is used to excite the process.
Both of these methods are quite simple which is also the reason for the immense usage in
industrial applications. The third type uses the Transfer Function of the Model to implement
the MPC algorithm while the fourth uses the State Space representation of the model. As far
as the second category is concerned, the main representatives are the MPC algorithms that
use a quadratic cost function which consists of the past inputs and outputs as well as the
future reference trajectory. However, when constraints are considered, which is one of the
main advantages of MPC, different numerical algorithms are created.

Besides the aforementioned categories, some other classes of MPC which are worth
mentioning too is the Robust MPC which considers the bounded disturbances of the model
and the constraints. Its most common types are the Min-max MPC [4] , [13] , [1] , the
Constraint Tightening MPC [9] , [35] , MPC using tubes [15] and Multi-stage MPC [17] .
Apart from that, Marruedo et al. [19] proved that under certain assumptions, MPC is always
stable and feasible despite the existence of uncertainties.

Although there are boundless different MPC algorithms, all of them follow a basic
strategy which will be briefly presented below. As it was previously stated, MPC requires an
accurate model of the process to predict the future outputs of the system. In particular, the
controller predicts the outputs y on a finite horizon of N samples or time T after the present
output, which is also reffered as the prediction horizon of the MPC:



Model Predictive Control (MPC)

y(t+z|t) for 7€(0,T] (3-1)

The preceding notation designates the prediction at time instant t+z computed at time
instant t. It is evident that the prediction of the outputs depends on the inputs and outputs
(until the time instant t) as well as the future control sequence:

ut+z|t) for 7¢€[0,T] (3-2)

In some MPC algorithms, the predicted horizon T which is used for the outputs is larger
than the one for the control values, which is called the control horizon, to abate the required
computational power. The control signal after the control horizon is considered constant.

The control signals result from the optimization of a criterion which includes information
about the error between the output and the desired trajectory (or just the output) and/or the
control effort. Most MPC algorithms use quadratic functions for this task which might take
the form of:

3= [} ((t+7107 Qyt+7 1) +u(@) Ru(@)dr 3.3

The matrices Q and R are weighting factors and can be used to tune the performance
index fittingly. In the case the criterion is quadratic, the model is linear, and there is no usage
of constraints, then an explicit solution can be acquired and, in some cases, it can be
obtained off-line to save computational power. In all other cases, an iterative optimization
method is required.

From the time-set of control signals, only the first one is sent to the process while the
others are rejected. The above methodology is repeated for its time instant while the
receding horizon “moves” with every step.

In Figure 3-1 a qualitative example of the application of an MPC at a time instant is
presented, while in Figure 3-2 the block diagram of a basic MPC is depicted.

u(t)
B e B
| | | | | |

Set-point, : I SE— y(t+t)
| |
|
Ly

Prediction Horizon

Y o _

Figure 3-1. Example of Model Predictive Control’s strategy.
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> Output - Error Control Input
MODEL » OPTIMIZER >
> Predicted
Inputs

A A Control
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[ [
[ [
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Optimized  copstraints

Function

(b)
Figure 3-2. (a) Block Diagram (b) General Model Predictive Controller strategy.

The MPC algorithm that is implemented in this thesis is a linear MPC with a State Space
Model due to its simplicity and its ability to deal with bounded disturbances. The technique is
based on the methodology provided in the book of Wang [40] . An application of non-linear
MPC was avoided because of its implementation complexity and the increase of
computational power. The linearization of the model is accomplished through Feedback
Linearization which is presented thoroughly in Chapter 4.

3.2 Design of Model Predictive Controller

In this section, the design of the model Predictive Controller which is used for the control of a
Free-Floating Space Manipulator System (FFSMS) is presented. Although the
implementation is performed in a digital environment, the controller is studied in continuous-
time to connect it directly with the requirements that the study of the control of an FFSMS
sets. First, the studied model is formed. After that, the so-called Laguerre functions which
MPC requires to approximate the control signal are presented. Finally, the prediction and the
optimization procedure are showed and the control signal of the plant is acquired.
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3.2.1 Model

The model that is used for the process is an augmented model with an embedded integrator
(but with the same output as the initial model) since the derivative of the control signal is
required. The reason for that is the fact that the orthonormal function which is used for the
representation of the control signal and will be presented in the Section 3.2.2 mandates its
variable’s integral squared value to be bounded (Eg. (3-12)). Consequently, the
convergence to a set-point input or the counterbalance of constant disturbances require the
use of the derivative.
Consider the plant is described by the following state-space model:

X (1) = A,y (6) +B,U()
Y(®)=Cox, (V)

where Xm is the state vector of dimension ni, U is the input with dimension m and y is the
output with dimension ¢ (g<m) and the matrices Am, Bm, Cm contain constant values.
The differentiation of the preceding equation results in the augmented model:

X(t) = [Xym(g)} - [2: o(:;q}[x;(g)} + { OBq:“m } a(t) = Ax(t) + Bu(t)

y®)=[0, quq]{x;(g)} —cx()

where X is the state vector of the augmented model with dimensions n = ny + q, lgxq is the
identity matrix with dimensions q X g, Ogxq is @ q X g zero matrix, Ogxm is @ X M zero matrix
and Om is a g X Ny zero matrix.

The preceding augmented model is both controllable and observable in the assumption
that the plant model described in Eq. (3-4) has a minimal realization and no zero at s=0.

In the case of unmeasured disturbances o(t), the plant model presented in Eq. (3-4)
becomes:

(3-4)

(3-5)

Xn () =A X, (t)+B, u(t)+Byo(t)
y(t) =C. X, (t)
When the disturbance is a deterministic constant disturbance or a stochastic integrated

white noise with the form presented in Eq. (3-7), then the augmented model compensates
for these disturbances:

(3-6)

o= e@dr i=12,..d

da (t)

(3-7)
with E{T}zE{g(r)}=O, E{e(t)e(r)} =W, 5(t—7)

where ¢() is a band-limited, zero-mean, white noise, E{} is the expectation and J() is the
Dirac function.
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3.2.2 Laguerre Functions & Control Signal

The MPC design that will be presented in this study, requires a set of orthonormal function to
approximate the trajectory of the desired control signal. For this task, Laguerre functions [16]
were selected for their efficiency in handling this issue as well as their simplicity.

To be designated as orthonormal over the interval [0,0), a set of real functions li(t), i =
1,2,... should satisfy the properties [40] :

[F17@dt=1 and j:li ®1,@®dt=0 (i = j) (3-8)
A set of orthonormal functions li(t) is characterized as complete if the relation:
[7fon®dt=0 (3-9)
is true for all values of i, only if f(t) satisfies the relation:

j: f2(t)dt=0 (3-10)

Taking into account the preceding theorem, it can be shown [16] that an arbitrary
function f(t) has a formal expansion with respect to a set of orthonormal and complete
functions li(t), i = 1,2,... over the interval [0,00), which can be described by:

f(t):icili(t) with ¢, ="} f @t (i=12...) (3-11)

The number of the expansion’s coefficients can become finite due to the completeness
of the functions since it can be derived [16] that for any piece-wise continuous function f(t)
with:

j: f2(t)dt < oo (3-12)

and any >0, there exists an integer N such that:
- N
jo (f@dt—> cl ) dt<e (3-13)
i=1

A set of Laguerre functions L(t) = [li(t) lo2) ... IN(t)]" satisfies the properties of
orthonormality and completeness described in Eq. (3-8) to Eq. (3-11) and is designated as:

L(t) =e™'L(0)

-p 0 .. O 1

-2p - ... 0 1 3-14
with A = :p ..p | and L(0)=42p]" 19

-2p ... -2p -p 1

where the parameter p is called the time scaling factor. It is a design requirement (as well as
the number of Laguerre functions N) and determines the exponential decay rate of the set of
functions.

According to Wang [40] , to apply the aforementioned theory about Laguerre functions
in modelling the control signal, suppose that the augmented model is described by Eq. (3-5),
ti is the present time instant, T, the control/prediction horizon, 7 the variable within the
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prediction time window [tj, ti + Tp] which takes values in [0,Tp] and K the gain matrix of the
feedback control. By knowing the initial value of the state vector X(t), the control of the
augmented model (derivative of the control signal) takes the form:

u(r)=-Kx(r) with 0<z<T, (3-15)
Substituting it into Eq. (3-5), the closed-loop system is described by:
X(r) =" PI%(t) with 0<7<T,

3-16
u(r) =-Ke"*®x(t,) (49

Taking into account the requirement that the eigenvalues of the closed-loop system
should be strictly within the left-half complex plane, the control value decays exponentially to
zero. A direct result from this fact is that the control signal of the augmented model is
bounded and satisfies the requirement of Eq. (3-12):

H TP .
lim | u’(r)dr <o (3-17)
p>®
Hence, a set of Laguerre functions can be used to describe each of the i (1<ism) inputs

of the control signal of the augmented model (derivative of the control signal of the plant
model):

ui(r):icjlj(t):Li(r)Tni i=12,...m (3-18)
j=1

Where ni = [c1 C2 ... en]" is the vector of coefficients and Li is the set of Laguerre function
given by Eq. (3-14) for a given scaling factor pi>0 and number of functions Ni.

3.2.3 Prediction

One of the main characteristics of the MPC is the prediction of the plant response which is
used in the optimization. Consider that the initial state variable X(t;) is known, the solution of
the differential Eq. (3-5) yields the predicted state space variable:

Xt +7t) =erx(t)+ [ eABu(y)dy (3-19)

where X has dimensions n and U has dimensions m.

For each one of the m inputs, there is a set of Laguerre functions L and coefficients i to
describe their trajectory (see Eq. (3-18)). Therefore, there are m pairs of scaling factors p
and parameters N, one for each input. These pairs are described as p and N (an exception
to the classic notation since it is a vector and not a matrix) correspondingly. By substituting
Eqg. (3-18) into Eq. (3-19):

Xt +7|t)= eATX(ti) + (D(T)Tn

with  @(r)"=["e"7[BL,(»)" BL,(»)" ... B,L,(»)"]dy (3-20)
and n=[n, m, ... 0]

where Bi is the i-th column of the B matrix.
Taking into account Eq. (3-5) and Eqg. (3-20), it is evident that the predicted output is:
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y(t +7|t)=Ce " x(t)+Cd(r)"n (3-21)

By taking a closer look into Eqg. (3-20), it can be concluded that the convolution integral
®(t) is uniquely determined considering that A, B and L are known. Consequently, the
coefficients i are the ones to capture the prediction of the state variable.

It is obvious that the numerical calculation of the integral @(t) will consume an immense
amount of computational power. For this reason, Wang [40] proved that for a given time z,
the i-th sub-matrix (dimensions n x N;i) of the matrix ®(t) satisfies the relation:

Ag,(2)" —@,(r)" A, =-BL(r)" +e*"BL,(0)" i=12,...m (3-22)

where Li(7)", Li(0)" and Api are given by Eq. (3-14)

The right side of Eg. (3-22) is determined. Hence, a profound abatement of the
computation power can be achieved by finding the matrix @®(t) numerically through the
solution of this linear algebraic equation.

3.2.4 Optimization

As was stated at the beginning of this chapter, the most usual criterion used for optimization
in MPC algorithms is a quadratic function like the one presented in Eq. (3-3). This is the one
that will be used for this study too. However, prior to proceeding with the function, it is crucial
to point out that if the desired trajectory is a constant set-point within the prediction window
given by yq(ti), then the augmented model of Eq. (3-5) can be converted to:

x(ti+r|ti)=Fm“‘”“‘)}{Am OI"M"‘m“‘”'“)HOBm}u(r) 0<r<T,

&t +7[t) Co Ogq | et +7[1) xm (3-23)
X (t t
et +71t)=[0p loq | {Xem(t(_ I++TT| LS)} = Cx(t +7]t,)

since e(t +7|t)=y(t +7|t)—y,(t) and &t +7|t)=y(t +7|t).

By using the new variable X of the above equation, the cost function of Eq. (3-3) becomes:
J= I()Tp (Xt +7|t)TQx(t, +7|t)+u(r)'Ru(z))dr 0<r <T, (3-24)

where without loss of generality it was considered Q =C'Q,,,C. The matrices Q>0 and
R>0 are weighting factors and can be used to tune the performance index fittingly.

Considering R to be diagonal with elements ry, r2,... rm as well as a sufficiently large
prediction horizon Tp to assume u =0 for >Tp, then the second term of the cost function
can be written as:

Tp . . u To . . u ®
J=["u@ Raz)dr =Y 5 [ "0, ()" U (2)d7 ~ Yk [ ML (D)L () m,d7 =
k=1 k=1
. (3-25)
=Y, =n'R.q with R, =diag{rI, ,\ }
k=1
due to the use of the orthonormality property (Eg. (3-8)). The matrix RL is a block diagonal

matrix and Inxnk is the identity matrix with dimensions Nk X Nk (number of Laguerre
functions).
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By substituting Eqg. (3-25) and Eg. (3-20) into Eq. (3-24), the cost function takes the
form:

J= J‘OT‘] € x(t)+®(r) ') Q™M x(t) +®(r) ' q)dr+n'Rn 0<z< T, (3-26)
After calculations, the cost function can be also written in a more convenient form:
J =[n+Q7x(t)] Qn+QWPx(t)]+x(t)’ _[OT” eATerAfd x(t) —x(t,)" PTQPx(t)

: _ TP T _ TP At
with Q= jo ®(7)Q®(r)'dr +R, & Y= jo ®(7)Qe™dr 0<7<T, (3.27)
The matrices  and ¥ are constant and can be computed off-line.
Therefore, it is obvious from the preceding equation that the minimization of the cost
function occurs when:

n=-Q"¥x(t) (3-28)

and the optimized cost function is:

Juo =XO) | [ Qe dr W [x()  0=r<T, (3-29)

3.2.5 Controller & Implementation

The substitution of the optimum n from Eq. (3-28) into Eq. (3-18) gives the optimum control
signal of the augmented model over the prediction horizon considering ti constant. In this
point, it is crucial to clarify that this control signal is for each prediction horizon only since the
prediction is based on the variable x(ti + 7 | ti) (see Eq. (3-19)). This is the reason why the
optimum 1 depends on X(t;) too.

The control signal of the augmented model for each time step is derived from Eq. (3-18)
but considering only the first value of the Laguerre function multiplied by the optimum
coefficients i from Eq. (3-28) and with a varying ti. This satisfies the principle of the receding
horizon control that only the control signal at 7=0 is considered and the prediction horizon
“moves” as the variable tj increases. To describe it mathematically, for an arbitrary time t (t =
ti), the control for the augmented model is:

L, (0)" 0, 0, n,
0(t) = o:1 |_2(:0) 2 o:m 11:2 _

0 0 .. L_(0)
1 2 m() nm (3_30)

LO" 0, .. 0

| % Lo .o, Qq{ i (1) }

: : g y(t) -y, (®)
0, 0, .. L)

It is obvious that the presented MPC is by nature a state feedback control, since it
depends on the current state variable X(t). Hence, the feedback gain matrix of the controller
is:
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L, (0) 0, .. 0,
T
Kwpe = 0:1 = (0) O:m Q'Y (3-31)
0, 0, . L, 0

The ultimate goal is to obtain the control signal for the plant model. This can be done
through the integration of the control signal of the augmented plant given by Eq. (3-30):

u() = [ u(r)dy (3-32)

3.3 Constraints

The effective handling and easy integration of input and/or output constraints is one of the
main advantages of MPC. The most frequent used types of constraints are three:

¢ Constraints on the derivative of the manipulated variable U

e Constraints on the amplitude of the manipulated variable u

e Constraints on the output y or state variable x

In this thesis, the last two types of constraints are presented considering the

requirements that the following study of FFSMS sets. The constraints have to become a part
of the MPC strategy and be embedded in the procedure. Therefore, after taking the form of
linear inequalities, the constraints use the same orthonormal basis function as the ones
presented in Section 3.1 and affects the parameter vector n. This task requires the usage of
a method called Hildreth’s quadratic programming procedure that is presented in Section
3.2.1. A notable characteristic of MPC with constraints is that the nature of receding horizon
implies that the constraints may vary with the progression of the horizon.

3.3.1 Integration of Constraints & Hildreth’s Quadratic Programming Procedure

In this section, the integration of the constraints into the optimization procedure is studied, a
prerequisite for the handling of the constraints by an MPC. Some basic quadratic
programming information is presented to comprehend the distilled idea of Hildreth’s
guadratic programming procedure.

After calculations in Eq. (3-27), the cost function can also take the form:

J =0 Qn+ 20" Px(t) + x(t )" jOT "' QeMdrx(t)  0<r<T,
- TP TP

with Q= jo ®(7)Qd(r)'dr +R,, ¥= jo ®(r)Qe " dr (3-33)
& ®(z)' =[ e"BL()"dy

Let’s also consider that the constraints are in the form of linear inequalities:
Aconstr" <b (3'34)

Since the last term in Eq. (3-33) is constant and not affected by 1, the cost function can
be written in a more convenient way:
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J—x(t,)" jOT N Qe dux(t) 1 | ]
= 5 =§1| En+n f (3-35)

with E=Q, f=2W¥x(t,)

If the constraints were equalities only, they could be easily integrated into the cost
function using some parameters called Lagrange multipliers:
J'=%nTEn+an+kT(A n-b) & A_ . n=b

constr

(3-36)
with E=Q, f=2Wx(t)

Using this method, from now on the variable of the objective function is not only n but
also A. By setting the first derivatives of the cost function of Eq. (3-36) with respect to n and
A equal to zero (condition for extremum):

8" ;

—=En+f+A_,A=0

2;'. (3-37)
—=A -b=0

a;\’ constrn

The solution of the linear system yields the optimal n and A (where the first term of n is
the global optimal solution of the cost function without constraints):
;\' = _(ACOHSlFE_lAl—OnStI’ )_1 (b + A E_lf)
n=-E*Al A-E'f

constr

constr

(3-38)

The preceding method which was used for equality constraints can be extended to
satisfy inequality constraints too, using the Kuhn-Tucker Conditions [14] . In particular, by
designating an inequality A . .m; <b as active condition if A_ . m;=b and as inactive if
A M <b ., Eqg. (3-37) can be used for inequality constraints too if A=0 for inactive
conditions( A, jis the ith row of the matrix). The Kuhn-Tucker conditions can be expressed
in the form:

En+f+Al _A=0

constr
Aconstrn -b<0 (3-39)
AT (Aconstr“ - b) =0
A=0

It is worth to mention that the active constraints need to be linearly independent and the
number of active constraints needs to be less or equal to that of the decision variables.

To minimize the computational load, the solution of the aforementioned problem (Eq.
(3-39)) is not based on the decision variables n (primal variables) but on the Lagrange
multipliers A (dual variables)). Consider that there exists a feasible point 1, the solution of
the Eq. (3-36) can be expressed as:

1
max min [E N En+n'f +17 (A, M—b) } (3-40)

A>0 n

Substituting the optimal n of Eq. (3-38) into the preceding equation:
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1 1
max[——xTHk—ka——fTE‘lf}
20 | 2 2 (3-41)
Ef

The third term of Eq. (3-41) is independent of A. Therefore, an equivalent cost function
which minimization results in the same values of A is:

E'A,., & k=b+A

constr

Wlth H = ACOHSII‘ constr

min[lkTHk-H»Tk }
220 | 2

(3-42)

E'A,. & k=b+A_ Ef

constr

Wlth H = ACOHSII‘ constr

which is also the form of the required dual problem.

Hildreth’s quadratic programming procedure was proposed in [10] to solve the
aforementioned dual problem. It is a simple iterative algorithm that runs until the
convergence of the Lagrange multipliers A is achieved. According to this method, the
variables A are given by:

A7 = max(0, wP™)

. 1 i-1 . m
wP I—h—"[ki +;hij/1]p Y+ hAP

j=i+l

j (3-43)

where on the up-right corner of the variables 1 and w, the iteration cycle is denoted and on
the down-right corner of the variables 4, w, k, and h, the number of the element. The hj; is
the ij-th element of the matrix H, and kj is the i-th element of the vector k. The iteration cycle
begins by setting A’ = [0, 0, ... 0]. After the convergence is accomplished, the optimal Aopt IS
substituting in the second part of Eqg. (3-38) to find the optimal decision variables n. It is
noteworthy to point out that in most cases even if the constraints are ill-defined (linearly
dependent and/or active constraints are more than decision variables), the algorithm will
give a near-optimal solution.

3.3.2 Constraints on the Amplitude of the Manipulated Variable

As it was stated in the previous section and can be clearly concluded from Eq. (3-34), the
constraints should take the form of linear inequalities. By setting an upper and lower limit for
the amplitude of the control signal, the following inequalities are derived:

Uy, SUt)<u., (3-44)
Assuming adequately small sampling interval At and using Eq. (3-30), the constraints
for the control signal at the first sample time are:

Uny UL ZA8 _u(6) ~u(t 24D _ Ung —UE =AY
A At At (3-45)
Upyp —U(t; = AL < ALLO) n <, —u(t —A)

The previous equation can be written in a more convenient form:

{ ALL(0)" }1{ Uy — U — At) } (3-46)

_AtL(O)T - _(umin _u(ti _At))

which is a suitable form for the method presented in Section 3.2.1.
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3.3.3 Constraints on the Output or State Variable

To set constraints on the initial state-space problem (Eqg. (3-4), an equation that related all
the derivatives and the values of the constraints has to be found. Introducing an upper and
lower limit on the j-th element of the state variable Xm:

Xm(j),min < Xm(j)(ti )S Xm(j),max (3'47)

Assuming adequately small sampling interval At, Eq. (3-47) can set constraints on the
first derivative of the variable:

Xm(j),min - Xm(j)(t At)
At

- Xm(j)(ti _At) —

m(J) max
=)= At (3-48)

Xm(j),min < Xm(J (t )< Xm(J
Following the same procedure, the second derivative can be written as:

Xen(ipamin ~ Xy (G At) — Xy (G =AY ~
At At (3-49)

X
m(J)(t )< m(j).max

5('m(j),min = 5('m(j)(ti )S 5('m(j),malx

The same method is used for higher derivatives, if it is required.

Considering a SISO system, by substituting Eq. (3-47)-(3-49) into the augmented model
(Eq. (3-5) (the output may contain the error if it is a set-point trajectory), the following is
obtained:

X —AX,, <bu(t)<x, —AX (3-50)

min max

where b is the corresponding SISO vector of the matrix B from Eq. (3-5). The Xmin and Xmax
contain either the derivatives of the constrained state variable Xm¢) taking by Eq. (3-47)-

(3-49) or the past values of the independent state variables. The same applies for X, and
Xmax "
By considering Eq. (3-30), Eqg. (3-50) can be written as:
Xmin — AXpin & bL(O) 'l(t ) < Xmax _Axmax (3'51)

In most cases, the control signal is applied only in one equation of the state space
model. Therefore, the above methodology is simplified profoundly.

It is notable to point out that the output constraints may result in severe nonlinearities
which may lead to close-loop oscillation or instability. Therefore, they should be regarded as
soft constraints, which means that they have to be “relaxed” in case the performance of the
model is not the desired one. This problem can also be tackled by setting input constraints
as a priority.
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3.4 Example: Design of MPC Controller for a Simple Mass-
Damper-Spring Model

Consider a body with mass m = 10kg attached to a vertical wall with a spring of spring

constant k = 5N/m and a damper with damping coefficient b = 5Ns/m. The body can move at

the horizontal X direction. A force u is applied to the body calculated by an MPC. Assuming

the body is stable at x = 0, it has to reach the set-point of X4 = 1m. The whole dynamic

model is depicted in Figure 3-3.

/ k

éJ\W\ﬁ "
m

Z : -

7/

T——

Figure 3-3. Dynamic model containing mass, damper and spring.

N

The first step is to find the dynamic equation of the model, using Lagrangian mechanics:
MK (t) +bX(t) + kx(t) =u(t) (3-52)
Then, the state-space model can be formed:

Xy (£) = Aoy () + B 1)

y(t) = Cp X (1) (3-53)
0 1 0
- Xml X
with x, =| ™ |=| [, A,=| k bl B,=[1] C,=[1 0]
Xin,2 X - - —
m m m

To implement the MPC algorithm, the augmented model of Eq. (3-5) is formed:
X(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (3-54)
. 0 1 0 0
Pma kK b 1
with x=|x%,, |, A=|-— —-= 0|, B=[=|, C=[0 0 1]
' m m m
y 1 0 0 0

The next step is to determine the scaling factor p, the number of Laguerre functions N
as well as the prediction horizon T,. The last two parameters should be considered as large
as possible to achieve adequate representation of the control signal using Laguerre
functions. However, the larger they are, the more computationally demanding the algorithm
is. After ample tests, they have been chosen as: Tp = 10s and N = 10.

The scaling factor p is chosen equal to the absolute value of the dominant pole of the
Linear Quadratic Regulator problem [40] . By using the Matlab function Igr(), the poles are
determined. Therefore, the scaling factor is chosen as p = 2.3075.
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Finally, the parameters Q and R are selected to achieve the best performance, without
any force limit. For this reason, they are chosen as:

0 0O
Q=C'C=/0 0 0| & R=r=10" (3-55)
0 01

Having determined the aforementioned parameters, the methodology which was
presented in Section 3.2 is followed to apply the unconstrained MPC and the methodology
presented in Section 3.3 for the constrained MPC. After the implementation, the MPC gains
and the poles of the augmented controlled system are:

e Kmpc =[410.07 86.00 960.12]
e Poles: -2.24 + 3.97i, -4.61

Figure 3-4 presents the position and the error of the unconstrained and the constrained
problem, considering output limit Xmax = 1.081m. It is calculated that the maximum position of
the unconstrained problem is Xmax = 1.082m, while in the constrained problem the position
does not exceed the regarded limit. The output limit could have been set even lower, but it
would have resulted in an immense surge of the control force at some time points, as it is
shown by Figure 3-5.

1.5 T T

Position x (m)

mmmm nconstrained MPC| |
mm Constrained MPC
=== Desired Position
0 I I 1 | I

0 1 2 3 4 5 6

Time t (s)

0.5 T T

-0.5 B
=== Unconstrained MPC
mms Constrained MPC

R \ \ I I I
0 1 2 3 4 5 6

Time t(s)

Error XXy (m)

Figure 3-4. Position and error of the Constrained and the Unconstrained MPC for the mass-
damper-spring example.

Figure 3-5 shows the control force of the unconstrained and the constrained problem. It
can be clearly realized that at time instant t = 1.033s, when the position tends to exceed the
output limit, the control force plummets to compensate for it. If the output limit had been set
lower, the absolute value of the control force would have been even larger and after a point
it would have resulted in close-loop oscillation or instability.

42/93



Model Predictive Control (MPC)

100

50

-50 -
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-100 -

= |nconstrained MPC
mmmm Constrained MPC
150 | I | | |

0 1 2 3 4 5 6

Time t (s)

Figure 3-5. Control force of the Constrained and the Unconstrained MPC for the mass-
damper-spring example.

In this thesis, two methods are used to tackle the problem of instability of the output
constraints. According to the first, safety constraints on the controller's input can be
considered as a higher priority to the output constraints. Therefore, if the control force
exceeds the input limit, the input constraints become active and they will be the ones that
produce the next control signal. According to the other method, the output constraints can
become active only for a limited time period. Both of these methods are discussed in
Chapter 4 more thoroughly. Apart from them, the problem of disturbances, model parameter
uncertainties, as well as noise is presented in Chapter 5 and the performance of the MPC is
compared to the performance of a PID controller.
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4 Implementation of Model Predictive Controller
(MPC) to Free-Floating Space Manipulator
Systems (FFSMS)

4.1 Introduction

In this chapter, the MPC presented in Chapter 3 is applied to an FFSMS for both motions in
the joint and Cartesian space. Evidently, prerequisites for the implementation are the
equations which describe the MPC and can be found in Chapter 3 as well as the equations
of the kinematics and dynamics of an FFSMS which can be found in Chapter 2.

As it was stated in Chapter 2, the dynamics of an FFSMS manifest intense non-
linearities. The implementation of the preceding MPC requires a linear system.
Consequently, the FFSMS should be linearized. The methodology that was chosen to tackle
this problem is the Feedback Linearization or, in other words, a Model-Based Controller.
According to this method, the model of the system is used to compensate for the non-linear
terms and form a linear system. It is obvious that the method -as well as the MPC- requires
an accurate model of the system. Any parametric uncertainties would be regarded as non-
constant disturbances. Another profound characteristic of this technique is the de-coupling of
the manipulator, since the equation that describes the errors of each joint is not affected by
the other joints.

First, the Design of a Model Based PD and PID Controller is presented for motion in the
joint space. Since the scenarios of Chapter 5 contain a planar FFSMS with a 3-DoF
manipulator, the design is based on these data. After that, the design of a Model Based PD
Controller with an auxiliary MPC input is presented. Next step is the derivation of the
aforementioned controllers for motion in the Cartesian space too. The evaluation of the
controllers requires simulations which are accomplished with the help of Matlab/Simulink
and MSC Adams for the formation of the plant. The procedure that is followed for the design
of the plant is also presented. Finally, an example implementing both Model Based PID
Controller and Model Based PD Controller with MPC input is presented.

4.2 Design of a Controller in the Joint Space

There are ample occasions that require the determination of the manipulator’s motion in the
joint space. Primary examples are the regulation of the manipulator to achieve a desired
form and the trajectory tracking in the joint space for deployment. As it was mentioned
Section 4.1, the implementation of an MPC requires the design of Model Based PD
Controller.

4.2.1 Model Based PD & PID Controller

The main requirement for the application of a controller is the equation that describes the
dynamics of the system. For a planar FFSMS with a 3-DoF manipulator, it is given by Eq.
(2-56) and it is repeated here for facilitation:

H(@)d+C (9,9, hey )a+9,(a,hgy ) =7 (4-1)
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where H(g), C'(q,d,h, ) and g,(q,h., ) are given by Eq. (2-57), hewm is the initial angular
momentum which is considered as zero, ( is the vector containing the manipulators angles
and T is the vector containing the torques of the joints of the manipulator:

a=[a, @& a]

(4-2)
T= [Z'l 7, T3 ]T

The primary purpose of a Model Based Controller is to convert a non-linear system to a
linear one. This can be accomplished by using the model to compensate for the non-linear
terms. Considering that the matrices and vector H(q), C'(q,q, h,,) and g,(q,h.,) can be
accurately calculated using the model, the desired trajectories of the angles q,(t), the
angular velocities ¢, (t) and the angular accelarations @, (t) of the joints are defined and
sensors are used for the measurement of the manipulator’s joints angles q and angular
velocities q , the Model Based PD Controller takes the form:

T :I:I[Qd +K; (44 —4)+ Ko (qq —q)}+é*q+§h (4-3)

where Kp and Kp are 3x3 diagonal matrices containing the gains of the PD part of the
controller which determines the desired dynamic response of the system and the hat (")
above H, C and g, indicates that they are conjectured and not perfectly known.
Substituting Eq. (4-3) into Eq. (4-1) the equations of dynamics of the angles’ errors are
given by:
6+ Kpe+Kpe =7 ((H-F)d+(C"-C)a+g, -6, -t
€=0q, ¢

If the estimations of the matrices are accurate enough, the right part of the preceding
equation equals zero and the errors’ dynamics are described by:

E+Koe+K,e=0
€=(, -9

(4-5)

These equations describe a decoupled system of linear equations. If the gains are
chosen appropriately, the error tends to zero for the steady-state.

Figure 4-1 presents the block diagram of the Model Based PD Controller.

The same methodology can be used for the Model Based PID Controller. The torques
are given by:

A

v H| 4, + Ko (4, -0) + Ko (4, -0) +K, [} (6, (00-a(0)0x [+ €+, (@0)

where K| is also 3x3 diagonal matrix
The dynamics of the errors are described by:

€+ KDé+KPe+K,I;e(x)dx=O
€=0, —¢

(4-7)

Figure 4-2 presents the block diagram of the Model Based PID Controller.
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(FFSMS)
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Figure 4-1. Block Diagram of the Model Based PD Controller applied to a Planar FFSMS in
Joint Space.
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Figure 4-2. Block Diagram of the Model Based PID Controller applied to a Planar FFSMS in
Joint Space.

4.2.2 Model Based PD Controller with an auxiliary MPC Input

The effectiveness of the controller presented in Section 4.2.1 depends on the accuracy of
the system’s parameters and matrices H(q), C'(q,9,h,) and g,(a.hy,) . If these
parameters are not certain, time-varying disturbances occur. These disturbances are
described by the right part of Eq. (4-4). To compensate for these disturbances, an MPC is
embedded into the previous Model Based PD Controller via the term U, . Therefore, the
torques of the joints are given by:

t=H[{j, +K; (4, -4)+ K, (9 —q) +uyee | +CG+8, (4-8)
and the dynamics of the errors are described by:
6+ Kpe+Kpe = ((H-F)a+(C"~C7)a+9, -8, ) ~Uype (4-9)
e=0q,-q

Figure 4-3 presents the block diagram of the Model Based PD Controller with MPC
compensation.
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(FFSMS)
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Figure 4-3. Block Diagram of the Model Based PD Controller with an auxiliary MPC Input
applied to a Planar FFSMS in Joint Space.

As it was stated in Chapter 3, the application of the MPC mandates the representation
of the dynamics of the system in state-space form. Considering the fact that the system is
linear and decoupled and by neglecting to write the disturbances caused by the parametric
uncertainties for simplification of the representation, the state-space model for each one of
the three joints can be written as:

X, (t)=A_x,({t)+B,u(t)
y(t) =Cx (1) (4-10)

. X1 € 0 1 0 )
with x_=| ™ |=| '], A, = , B, = , C,=[1 0], i=123
Xm,z €; _KP,i _KD,i -1

For the rest of this section, the indicator i is neglected for simplification.
To implement the MPC algorithm, the augmented model of Eq. (4-10) is formed:

X(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (4-11)
X1 o 1 0 0
with x=| %,, |, A=|-K, -K, 0], B=|-1|, C=[0 0 1]
y 1 0 o0 0

The next step is to determine the scaling factor p, the number of Laguerre functions N,
the prediction horizon Tp. as well as the parameters Q and R on which the desired
performance depends.

Having determined the aforementioned parameters, the methodology which was
presented in Section 3.2 of Chapter 3 is followed to apply the unconstrained MPC and the
methodology presented in Section 3.3 of Chapter 3 for the constrained MPC.

It is important to point out that although the desired angles, angular velocities and
angular accelerations trajectories are time-dependent, the desired trajectories of the errors
are constant and equal to zero. Since the equations that are used for implementation of the
MPC are the equations of the errors, the desired trajectories are constant and therefore the
methodology of Chapter 3 can be applied.
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4.3 Design of a Controller in the Cartesian Space

Probably the most common usage of an FFSMS’ manipulator involves its motion in the
Cartesian Space. There are boundless occasions that the manipulator’s end-effector might
need to reach a desired point with a desired orientation in reference to an Inertial Frame of
Reference. Besides that, in some cases, the end-effector might need to even follow a
desired trajectory apart from the final position and orientation. The accomplishment of these
tasks requires the measurement of the position and orientation of the end-effector as well as
the base. This can be done by either using cameras which are attached to the end-effector
and measure these variables with respect to another object such as another satellite or by
estimating them from the equations of kinematics of the FFSMS, if the angles of the
manipulator’s joints and the link lengths are known. The former method is the most accurate
one since the latter multiplies the disturbances in case of parametric uncertainties (the
kinematics uses the parameters of the model which are uncertain).

The same procedure as the design of controller in the joint space is followed. First a
Model Based PD Controller is presented and then an MPC is embedded into the controller.

4.3.1 Model Based PD & PID Controller

The methodology followed is based on the design of a Transpose Jacobian Controller.
The main idea of this controller is based on the premise that the end-effector moves
because a hypothetical force f is applied to it. This force is the result of the joints torques
and it is given by [21] :

=J'f (4-12)

where J is the Jacobian of the system that relates the end-effector’s velocities to the joints’
angular velocities and it is expressed in the inertial frame of reference. It can be extracted by
solving the first part of Eq. (2-31) considering hcm equals zero and by substituting 90 to the
rest of equations. From now on, it would be considered for simplification hcm = 0, unless
stated otherwise. The Jacobian is given by:

cos(g,) -—sin(g,) O
J=R,J" =|sin(@,) cos(g,) 0|J" (4-13)
0 0 1

and J'is given by Eqg. (2-37). By definition, the Jacobian is the matrix that is used to convert
the velocities of the end effector to the angular velocities of the joints:

x =Jg
. (4-14)
x=[x ¥p 6]
The solution of the aforementioned equation yields:
q=J"x (4-15)
The differentiation of Eq. (4-14) gives:
% =Jq+J§ (4-16)
Therefore,
g =J"(x-Jqg) (4-17)
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Substituting Eq. (4-15) and Eq. (4-17) into the equation of dynamics of an FFSMS (Eq.
(4-1)) (9,(q9,h., ) =0 because hcm = 0) and multiplying it with the inverse transpose of the
Jacobian, the equation of dynamics for the Cartesian space is given by:

H, (9,6,)%+C.(q,9,6,,6,)x=Ff=J"1 (4-18)
where:
-T -1
HX(.q,GO) =J HJ . (4-19)
C,(0.9.6,,6,)=3" (C -HI"J)J™

It is pivotal to point out here that the inertia matrix H, is positive definite everywhere but
at the points where Dynamic Singularities occur, since it depends on the inverse Jacobian.
Dynamic Singularites have been studied in Section 2.3.2.

The design of a Model Based Controller in the Cartesian space is quite similar with the
one presented for joint space. The goal of the controller is to convert the non-linear system
to a decoupled linear one. This can be accomplished by using the model to compensate for
the non-linear terms. Considering that the matrices Hx and C’; can be accurately calculated
by the model, the desired trajectories of the position and orientation of the end-effector
X, (t), the velocities X, (t) and the accelarations X, (t) are defined and sensors are used to
measure the manipulator’s joints angles q and angular velocities ¢, the base’s rotation and
angular velocity 6,(t), 6,(t), the end-effector’s position and orientation X and velocities x,
the Model Based PD Controller takes the form:

f= HX[Xd + Ky (%g —X) + K, (Xq —x)]+éi>'<
t=J'f

(4-20)

where Kp and Kp are 3x3 diagonal matrices containing the gains of the PD part of the
controller which determines the desired dynamic response of the system and the hat (®)
above H and C indicates that they are conjectured and not perfectly known. Of course, the
Jacobian matrix J is also an estimated matrix but the “hat” is neglected for simplification
purposes.

Substituting Eq. (4-20) into Eq. (4-18) the equations of dynamics of the errors of the
position and orientation are given by:

(4-21)

If the matrix estimates are accurate enough, the right part of the preceding equation
equals zero and the errors’ dynamics are described by:
g +K e, +Kge, =0
X D™ x P~x (4_22)
e, =X, —X
This equation describes a decoupled system of linear equations and if the gains are
chosen suitably, the tracking error will converge to zero at the steady-state.
Figure 4-4 presents the block diagram of the Model Based PD Controller.
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Figure 4-4. Block Diagram of the Model Based PD Controller applied to a Planar FFSMS in
Cartesian Space.

The same methodology can be used for the Model Based PID Controller. The
hypothetical force is given by:

~ e . - t A* -
f=H, [xd +Kp (% =%)+ K, (x4 —x)+K, jo(xd (A) —x(z))dA}ch (4-23)
t=J'f
and the dynamics of the errors are described by:
. . t
eX+KDeX+KPeX+K,'|'Oex(i)d/1=0 (4-24)

e, =Xy —X

X

Figure 4-5 presents the block diagram of the Model Based PID Controller.
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Figure 4-5. Block Diagram of the Model Based PID Controller applied to a Planar FFSMS in
Cartesian Space.

4.3.2 Model Based PD Controller with an auxiliary MPC Input

Similar to the design of the controller in the joint space, an MPC, denoted by U, is
embedded into the Model Based PD Controller to compensate for the potential disturbances.
Therefore, the hypothetical force and the torques of the joints are given by:

f:I:IXI:Xd+KD(Xd—X)+Kp(xd_x)+uMPc:|+é:X (4-25)
t=J'f

and the dynamics of the errors are described by:
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Figure 4-6. Block Diagram of the Model Based PD Controller with an auxiliary MPC Input
applied to a Planar FFSMS in Cartesian Space.

As stated in Chapter 3 and presented in the design of the similar controller for motion in
the joint space, the application of the MPC mandates the representation of the dynamics of
the system in state-space form. Consequently, the same equations to the preceding
controller is applied in this case too. Specifically, Eq. (4-10) describes the state-space model
and Eq. (4-11) describes the augmented model.

The next step is to determine the scaling factor p, the number of Laguerre functions N,
the prediction horizon Tp. as well as the parameters Q and R depended on the desired
performance as before. Having determined the aforementioned parameters, the
methodology which was presented in Section 3.2 of Chapter 3 is followed to apply the
unconstrained MPC and the methodology presented in Section 3.3 of Chapter 3 for the
constrained MPC.

4.4 Plant Representation - MSC Adams Simulation

Although a sole application of Matlab/Simulink can be used to simulate the performance of
the aforementioned controllers implemented in an FFSMS for a plethora of different
scenarios, more realistic and reliable simulations can be achieved by co-simulation of
Matlab/Simulink with MSC Adams. Adams is a Multibody Dynamics software that can be
used for actual representation of both the studied system and the motion that it would have
depending on the forces and torques applied to it. Adams offers the ability to connect to
Matlab/Simulink by extracting a “block” which can be used in Simulink which represents the
plant of the system. After that, the controller is applied to the extracted plant in Simulink,
offering a real-world representation.

Adams provides the ability to design the model in its environment or import it from an
external design software. For the purpose of this thesis, the base and the manipulator of the
FFSMS were designed in Solidworks and imported into Adams. Figure 4-7 shows the
FFSMS that would be used for the simulations. The base is depicted with yellow color while
the manipulator is white. The next step for the creation of the studied plant is the introduction
of the connectors which describe the planar motion of the system in relation with the
“ground” and the three joints of the manipulator. After that, the torques of the manipulator
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are introduced as well as the measures which represent the sensors of the real model. For
joint space motion, the variables that are measured from the model are the angles and
angular velocities of the manipulator's joints as well as the rotation of the base:
0,9, 0,0;,0,,0,, 6,. For Cartesian motion, the angular velocity of the base, the position,
orientation  and  velocites of the end-effector are also  measured:
0;,0,: 05, Gy, G5, 05,605,605, X Vi, Oy Xi o Vi, O . At this point, it is important to mention that each
body’s CM should be positioned manually because the insersion from Solidworks inserts
some small discrepancies too. Finally, the model is extracted and inserted into
Matlab/Simulink.

Adams offers two different modes for simulation when it is connected to
Matlab/Simulink. The first one is called “Adams Discete Model” or “Co-simulation”. According
to this option, Matlab solves the Simulink model while Adams uses its own solver to solve
Adams model. The data are exchanged periodically. The second way is called “Adams
Continuous Model” or “Function Evaluation”. According to this option, Matlab solves both
Simulink and Adams models. The solver provided by Adams acts only as a function
evaluator for Matlab integrator. Althought the former option might be more robust because
Adams’ solver is claimed to be better at solving complicated Adams models, it creates an
algebraic loop in simulink, causing small but significant errors in the results. For this reason,
the latter mode is used. However, since Continuous mode cannot provide graphical
representation of the simulation, when a video is desired, Discrete mode is used.

For the following Example as well as the Scenarios presented in Chapter 5, the Adams
model shown in Figure 4-7 will be used to represent the plant, unless stated otherwise.

(a) (b)

Figure 4-7. Picture of the MSC Adams Model used to represent the studied FFSMS (a) Top
View, (b) Isometric View.
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45 Example: Design of Model Based PD Controller with an
auxiliary MPC Input for Motion in the Joint Space

The main purpose of this example is to manifest the co-simulation of Matlab/Simulink and
MSC Adams by simulating the motion of a planar FFSMS with a 3-DoF manipulator in the
joint space. Another aim of the example is to validate the application of the presented
controllers. Although results would be shown for both the Model Based PID Controller and
the Model Based PD Controller with an auxiliary MPC input, a comparison between these
two controllers is unnecessary at this point, since disturbances, parametric uncertainties or
noise is not introduced in this example. Chapter 5 contains case studies with these
characteristics. Consequently, the comparison is presented there.

First, the path planning is presented to yield the desired trajectories for each joint. After
that, the preceding controllers is implemented and the respective gains and poles is shown.
Finally, diagrams that show the motion of the FFSMS as well as the angles’ errors and
torques are presented.

4.5.1 Path Planning

The control of an FFSMS in the joint space requires the determination of the desired
trajectories that the manipulator’s joints should follow. The base rotates freely due to the
dynamic-coupling between the base and the manipulator, thus, no particular trajectory is
needed for it. In this thesis, fifth power polynomials are used to be able to set the initial and
the final value of the angle, the angular velocity and the angular acceleration. For each of
the three joints, the polynomial for the angle is given by:

q, (t) =a, +at+a,t’ +a,t’ +a,t* +a;t’ (4-27)
where the coefficients are given by the solution of the linear system (considering that the
initial time is to = 0):

Qg (t, =0) =0y o =8 =0y,

qe(t;) =0, ; = a +at, +at? +at] +a,t; +at] =q,
4y (t, =0) =0y, = a =0y,

dq(t;) =0, ; = a +2at, +3a;t] +4a,t] +5a.t; =d,
by (t, =0) =G40 = a, =0,

Gy (t,) =0, , = 2a, +6a,t, +12a,t7 +20a,t? =g, ,

(4-28)

The system was solved with the help of Matlab’s command linsolve(). The results are shown
in Appendix A. The resulted trajectories for determined initial and final angle and for initial
and final angular velocity and acceleration equal to zero, which is the most usual case and
the one that is used in this example, are shown in Figure 4-8.
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Figure 4-8. Desired Trajectories (a) Angle, (b) Angular Velocity, (¢) Angular Acceleration.

In Table 4-1 the values for the initial and final angle, angular velocity and acceleration
as well as the final time used in the example for each of the three joints are presented.

Table 4-1. Paremeters of the Desired Trajectories.

Joint 1t 2nd 3

ts () 6 6 6

Initial Angle gq,0 (deg) 45 110 40

Final Angle qqd.f (deg) 20 70 -60

Initial Angular Velocity ¢, , (deg/s) 0 0 0
Final Angular Velocity g, ; (deg/s) 0 0 0
Initial Angular Acceleration ¢, , (deg/s?) 0 0 0
Final Angular Acceleration ¢, ; (deg/s?) 0 0 0

4.5.2 FFSMS Dynamics & Parameters

As presented in the previous sections, the effectiveness of a Model Based Controller
depends mainly on the accuracy of the parameters of the FFSMS as well as the dynamical
matrices. In this Section, due to the absence of disturbances and noise, the FFSMS’

parameters are perfectly known and given in Table 4-2.
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Table 4-2. Paremeters of the FFSMS.
Body Mass-mi Momentof Inertia-li Before-CM Length-li  After-CM Length - r;
(kg) (kg-m?) (m) (m)

0 600 500 - 14

1 40 20 1 1

2 40 20 1 1

3 20 15 0.25 0.25

Nonetheless, even if the parameters of the FFSMS are known, there are still
uncertainties that might occur due to the inaccurate modelling of the FFSMS. These
uncertainties are defined as dynamic uncertainties. For this example as well as the
scenarios presented in Chapter 5, it is considered that no dynamic uncertainties occurred,
the angular momentum equals zero and the form of the matrices H(q) and C*(q,Q) of the
equations of dynamics (Eq. (4-1)) is adequately accurate and given by Eq. (2-57). For the
implementation, Matlab was used to deduce the aforementioned matrices.

4.5.3 Model Based PD Controller with an Auxiliary MPC Input

The controller that is applied is given by Eq. (4-8). Considering that the matrices H(q) and
C'(9,9) have been determined (see Section 4.5.2) and g, (d,h, ) =0 since h,, =0, then,
only matrices Kp, Kp and the signal from the MPC umpc have to be defined.

By neglecting the parametric uncertainties and the MPC signal, for each of the three
joints (since the system has become decoupled) Eq. (4-9) takes the form:

& +Ko6 +Koe =6 +2(w 6 +w’e, =0, i=1-3 (4-29)

where ('is the damping ratio and was defined based on the fact that a commonly used value
is { = 0.7 and considering that the oscillation of the dynamics does not result in any impacts.
wn is the natural frequency and was defined as wn = 7.532rad/s. The value of the natural
frequency was determined through a trial-error process until the maximum torques of the
Model Based PD Controller with MPC Input and the Model Based PID Controller were
adequately close. This is a very important determinant for the comparison of the two
controllers and it will be analyzed thoroughly in Chapter 5. Of course, the criterion that the
errors should reach zero steady-state for settling time less than 6s (the final time of the
trajectory) was also taken into consideration.

Therefore, the matrices Kp and Kp are:

K, = diag(10.54,10.54,10.54)

_ (4-30)
K, = diag(56.73,56.73,56.73)

As presented in Section 4.2.2, these values will be used in the augmented model of Eg.
(4-11) to derive the MPC control input. Prerequisites for that is to determine also the scaling
factor p, the number of Laguerre functions N, the prediction horizon Tp. as well as the
parameters Q and R. A good selection of the scaling factor is to set it equal to the dominant
pole of the respective LQR problem [40] . By using the Matlab function Igr() the scaling factor
was defined as p = 5.5110. Parameters N and T, were determined through a number of
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trials until the results were remaining adequately constant. Consequently, N = 10 and T, =
6s. Finally, matrix Q was set equal to the transpose of the matrix of the output multiplied by
the matrix of the output (see Eq. (3-24)) and R was set adequately small since the goal of
the controller is to lessen the error and not the input signal:

000
—C'C=
Q=C'C=[0 0 0 (4-31)
001
R=10"

Having determined the aforementioned parameters, the methodology which was
presented in Section 3.2 of Chapter 3 is followed for applying the unconstrained MPC. The
matrices ©, ¥ and L(0)" are calculated and used in the controller. There is no need to apply
the constrained MPC since no disturbances or parametric uncertainties were introduced in
this example and it only results in the increase of the computational power.

It is interesting to present also the produced gain of the MPC for the augmented model.
The gain is produced by Eq. (3-31) and for this example it equals:

Kypc =[-153.99 -9.97 —1000.1] (4-32)

To understand these values and perhaps compare them with the gains from the Model
Based PID Controller presented in the next section, it has to be kept in mind that these are
the gains for each joint and for the augmented model of the plant, which is of course a state-
space problem.

Figure 4-9 includes snapshots of the motion of the FFSMS in the ADAMS environment
for three different time-points, Figure 4-10 presents the overall motion of the FFSMS as well
as the Path Independent Workspace (PIW) and the Path Dependent Workspace (PDW). It is
important to point out that although the FFSMS moves into the PDW, there is no worry for
dynamic singularity occurrence since the controller has been implemented in the joint space.
For motion in the Cartesian space, Dynamic Singularities must be considered too.

(a) (b) (c)

Figure 4-9. Snapshots of the Motion of the FFSMS in the ADAMS environment for three
different time-points (a) t=0, (b) t=3s, (c) t=6s.
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Figure 4-10. Motion of the FFSMS in the Joint Space.

Figure 4-11 presents the trajectory of the angles and angular velocities of all of three
joints. It can be concluded easily that the trajectories of the angles fit almost perfectly with
the desired trajectories. This can be seen also in Figure 4-12 which presents the errors of
the three joints as well as the torques that have to be applied to their actuators in order the
FFSMS to follow the desired path. It is obvious that the errors are about 10® which is a
completely rational value since no disturbances, parametric uncertainties or noise were
introduced and Adams model has an accuracy of around 10%-10° due to the number of
decimal digits that can be inserted for the dynamic and geometrical parameters.
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Figure 4-11. Actual and Desired Trajectories of the joints (a) Angles, (b) Velocities.

3
t(s)

(a)

3 %108
s 1S Joint Error
s 279 Joint Error
25 3" Joint Error | |
5 2f
<
=
o
|
- 15
(=]
B
D
< 1
R
o
A 05 :
0 v‘ \v/
-0.5 p ; g
0 1 2 3 4 5 6
t(s)

q(deg)

Torque (Nm)

25 [ 15! Joint Velocity

s 204 Joint Velocity
3" Joint Velocity /
== 115 Joint Desired Velocity hu "
== 12" Joint Desired Velocity,
== 13" Joint Desired Velocity

0 1 2 :": ;1
t(s)
(b

-30

-35

(FFSMS)

40

s 15! Joint |1
s 204 J0int
3 Joint

-40

Figure 4-12. (a) Errors of Angles, (b) Applied Torques.

45.4 Model Based PID Controller

The controller that is applied is given by Eq. (4-6). Considering that the matrices H(Q) and
C’(d,4) have been determined (see Section 4.5.2) and g, (q, h, ) =0 since h,, =0, then,
only the matrices Kp, Kp and K| have to be defined.

The deduction of the respective characteristic equation of Eq. (4-7) for each of the three
joints (since the system has become decoupled) leads to:
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$°+Kps® +Kos+K, =(s+a,) (s’ + 2o,5+ ) ) =
Ky =2dw, + o, (4-33)
=K, =& +2{a)
K, = r?

where (' is the damping ratio and was defined based on the fact that a commonly used value
is = 0.7 and considering that the oscillation of the dynamics does not result in any impacts.
wn is the natural frequency and was defined as wn = 7.532rad/s. The value of the natural
frequency was determined through a trial-error process until the maximum torques of the
Model Based PD Controller with MPC Input and the Model Based PID Controller were
adequately close. It should be pointed out again that the criterion that the angle errors
should equal zero at the steady-state for settling time less than 6s was also taken into
consideration.
Consequently, the matrices Kp, Kp and K are:

K, = diag(18.08,18.08,18.08)
K, =diag(136.15,136.15,136.15) (4-34)
K, =diag(427.30,427.30,427.30)

Figure 4-13 presents the errors of the three joints as well as the torques that have to be
applied to them in order the FFSMS to follow the desired path. It is obvious that the errors
are about 10° which is a reasonable value since no disturbances, parametric uncertainties
or noise were introduced and Adams model has an accuracy of around 10%- 10° due to the
number of decimal digits that can be inserted for the dynamic and geometrical parameters.

Since the errors are adequately low, Figure 4-9 and Figure 4-10 also present the motion
of the FFSMS for the Model Based PID Controller.
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Figure 4-13. (a) Errors of Angles, (b) Applied Torques.
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Finally, Figure 4-14 presents the root locus of the poles of the closed-loop system
containing the Model Based PD Controller with an auxiliary MPC input as well as the poles
of the Model Based PID Controller. For both systems, the absolute value of the real part of
the poles is not considered high. Therefore, no problems related to noise or high values of
torques are expected. Note that although someone might argue that the PID Controller was
designed slower than the PD & MPC, it was observed that a different selection of the poles
which would result in a faster design would require higher torques. Hence, considering the
criterion that the two controllers should have the same maximum torque, the comparison
between the two controllers would not be right.
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8 8
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Figure 4-14. Root Locus for both the Model Based PID Controller and the Model Based PD
Controller with an Auxiliary MPC Input.
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5 Simulations & Case Studies

5.1 Introduction

In this Chapter, a Model Based PID Controller and a Model Based PD Controller with an
auxiliary MPC input are implemented in a Free-Floating Space Manipulator System
(FFSMS) for a multitude of different scenarios. The performance of the two controllers as
well as their ability to tackle the various issues are compared to each other for ample
different characteristics (errors, simulation time, torques). A planar FFSMS with a
manipulator of 3 Degrees of Freedom (DoF) is employed for this task. For the deduction of
the results, co-simulation between Matlab/Simulink and MSC Adams is performed.

The first scenario tests the performance of the two controllers when constant
disturbances are present. The motion of the FFSMS is determined in the Cartesian Space
since the position and orientation of the desired captured object are known. The second
scenario shows the performance of the two controllers when the parameters of the FFSMS
are not accurately known but estimated. Monte-Carlo simulations were performed in this
scenario to manifest the behavior of the controllers for a plethora of different parametric
uncertainties. The combination that resulted in the maximum errors is studied more
thoroughly.

The third scenario is similar to the second since it involves parametric uncertainties.
According to this case study, the object is already captured and stable but its parameters are
not accurately known. Therefore, the controllers have to compensate for any errors. The
motion of the FFSMS for this scenario is determined in the Joint Space. Finally, the fourth
scenario studies the performance of the two controllers when the measurements involve
noise. Another discrepancy of this scenario in comparison to the previous ones is that the
object that the FFSMS needs to capture is not stationary but it has a known relative velocity.

The Adams model which is used as well as the design of the controllers were presented
in Chapter 4. For facilitation, the data of the FFSMS are repeated in Table 5-1.

Table 5-1. Paremeters of the FFSMS.

Body Mass-mi Momentof Inertia-l; Before-CM Length-l;  After-CM Length - r;
(kg) (kg'm?) (m) (m)
0 600 500 - 1.4
1 40 20 1 1
2 40 20 1 1
3 20 15 0.25 0.25
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5.2 Scenario 1: Constant Disturbances

Although the effect of the friction in the FFSMS at the beginning of its lifetime might be small,
as time goes by and the times that the manipulator is used increase, the friction at the joints
of the manipulator may increase. This friction could be modeled satisfactorily as constant
disturbances applied at each of the three joints of the manipulator.

In this scenario, the manipulator moves in Cartesian space to reach a relatively
stationary target. First, the path planning is presented to yield the desired trajectories for the
X and y coordinates as well as the orientation of the end-effector. After that, the Model Based
PID Controller and the Model Based PD Controller with an auxiliary MPC input is
implemented and compared to each other.

5.2.1 Path Planning

The control of an FFSMS in the Cartesian space requires the determination of the desired
trajectories for the X and y coordinates as well as the orientation of the end-effector. In this
thesis, fifth power polynomials are used to determine the initial and final value of the end-
effector’s variables, the velocity of them as well as their acceleration. For the position and
orientation of the end-effector, the polynomials are described by:

X., (1) =a, +at+at® +at’ +a,t* +at’
Ve () =b, + bt +bt* +bt® +bt* +bt° (5-1)
O, (1) =c, +Ct+ct’ +ct’ +ct* +c.t’

where the coefficients are given by the solution of the three linear systems (considering that
the initial time is to = 0):
Xeg (tp =0) = Xgq 0 = 8 = Xea 0
Xeq (tf )= Xea,f = Qo+ at; + aztf + ast? + a4t? + asti = Xgq,
Xeq (to = 0) = Xgq o = & = Xeq (5-2)
Xeq (ty) = Xeq ¢ = & +2a,t, + 3t +4a,t? +5agt] = Xg ,
Xeg (ty = 0) = Xey o = @, = Xeq
Xeq () = Xeq ¢ = 28, +6a,t, +12a,t] +20at? = Xy

Yed (to =0)= Yedo = bo = Yedo0
Yed (tf )= Yea,r = bo +b1tf +b2t$ +b3t? +b4t? +b5t? = Ve,
yEd (to = 0) = yEd,O = b1 = yEd,O (5_3)
Ve (tf) = yEd,f = b1 +2b2tf +3b3t$ +4b4t? +5b5t? = yEd,f
Ve (to =0)= yEd,O =b, = yEd,O
Vea (te) = Yea,r = 2b, +6bt, +12b4t$ +20b5t? = Vea s

O (t, =0) =0y o = €, = Oy
Ocq (t;) = Oy ¢ = Cp +C; +Czt$ +Cst? +C4t? +C5t? = Oy ¢
O (t, =0) =gy o = €, =gy
Oy (t;) = Ory ¢ = €, +2C,t, +3C,t7 +4C,t7 +5C5t7 =60,
Oy (t, =0) =0y o = €, = Oy
Ocq (t;) =g ; = 2C, +6Ct, +12¢,t7 +20C,t} = by

(5-4)
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The system was solved with the help of Matlab’s command linsolve(). The results are shown
in Appendix A. The resulted trajectories for preset initial and final coordinates and orientation
of the end-effector and for initial and final first and second derivatives of them equal to zero,
which is the most usual case and the one that is used in this scenario, are shown in Figure

5-1.
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Table 5-2. Paremeters of the Desired Trajectories.
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End-Effector’s Desired Trajectories (a) Horizontal Position, (b) Vertical Position,
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity (f) Angular Velocity,

(g) Horizontal Acceleration, (h) Vertical Acceleration, (i) Angular Acceleration.

In Table 5-2 the values of the initial and final coordinates and orientation of the end-
effector, its velocities and accelerations as well as the final time that is used in the scenario
are presented. It is pivotal to clarify that the coordinates are measured from the FFSMS’

Center of Mass (CM).

Xe (M) Ye (M) Oe (deg)

tr (s) 6 6 6

Initial Value 0.2675 1.9220 195

Final Value -2 1.8 170
1t Derivative’s Initial Value 0 0 0
1t Derivative’s Final Value 0 0 0
2" Derivative’s Initial Value 0 0 0
2" Derivative’s Final Value 0 0 0
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5.2.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary
MPC Input

For both controllers, the parameters of the FFSMS are given in Table 5-1 and considered
known with adequate accuracy. The angular momentum is considered zero (h,, =0). As
presented in Chapter 4, the motion in the Cartesian space and the formation of a Transpose
Jacobian Controller mandate the value of the matrices Hx(q) and C: (0,9) . These matrices
are given by Eqg. (4-19) and they depend on the matrices H(q) and C*(q,Q) as well as the
Jacobian matrices J given by Eq. (4-13) and the derivative of the Jacobian J .

The disturbances act on the actuators of the manipulator. The values of the
disturbances introduced in this scenario are:

d=[12 6 4] (Nm) (5-5)

The values of the disturbances might be considered rather high for a realistic scenario.
These values were chosen primarily to manifest clearly the different performance of the two
compared controllers.

Figure 5-2 presents the block diagram of the system for both controllers.
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Figure 5-2. Block Diagram of the 1%t Scenario.

The Model Based PID Controller is given by Eq. (4-23) and is repeated here for
convenience:

f=H, [Xd +Kp (X =%)+ Ky (X =X) + K, j;(xd (1) —x(/l))di}LCiX (5-6)
t=J'f
As it was mentioned earlier, it is considered that the matrices Hx(q) and C; (9,9) are known
and hCM =0. Therefore, the only matrices that have to be defined are Kp, Kp and K.
The deduction of the respective characteristic equation of Eq. (4-24) for each of the
three variables of the end-effector (x-coordinate, y-coordinate, orientation) results in:

$*+Kps® +Kos+K, =(s+a,)(s* + 2o,5+ ) ) =

KD = 2§’a)n +w, (5_7)
=K, =& + 2l
K, = r?

where (' is the damping ratio and was defined based on the fact that a commonly used value
is { = 0.7 and considering that the oscillation of the dynamics does not result in any impacts.
wn is the natural frequency and was defined as wn = 7.532rad/s. The value of the natural
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frequency was determined through a trial-error process until the maximum torques of the
Model Based PD Controller with MPC Input and the Model Based PID Controller were
adequately close and by considering the criterion that the errors of the position and
orientation of the end-effector compared to the desired trajectories equal approximately zero
at the desired settling time (6s) (for set-point input).

Consequently, the matrices Kp, Kp and K| are:

K, = diag(18.08,18.08,18.08)
K, =diag(136.15,136.15,136.15) (5-8)
K, = diag(427.30,427.30,427.30)

It is evident that the integral gain K, is quite larger than the other gains. This is rational
since it was defined as the third power of the natural frequency (see Eg. (5-7)). Besides that,
the definition of the integral gain is that it compensates for changing system dynamics, which
is the main criterion that will be used for the comparison of the two controllers. In other
words, the PID Controller needs to be designed with large integral gain in order to compete
with the PD & MPC Controller.

The Model Based PD Controller with an Auxiliary MPC Input is given by Eq. (4-25) and
is repeated here for convenience:

fMPc = Hx [Xd + KD,MPC (Xd _X)+ KP,MPC (Xd _X)+ uMPC:|+C:X (5_9)

4T
Twrc =J Fupc

By neglecting the parametric uncertainties and the MPC signal for now, the
characteristic equation, that results for each of the end-effector’s variables (since the system
has become decoupled) from Eq. (4-26), takes the form:

$* + Kp ypcS + Kp ype =° +2{w, 5 + o} (5-10)

where {"and wn have been previously defined for the Model Based PID Controller.
Therefore, the matrices Kp,mpc and Kp mpc are:

Ko wee = diag(10.54,10.54,10.54)

_ (5-11)
Kp wee = diag(56.73,56.73,56.73)

As presented in Section 4.2.2, these values are used in the augmented model of Eg.
(4-11) to derive the MPC control input. Prerequisites is to determine the scaling factor p, the
number of Laguerre functions N, the prediction horizon T, and the parameters Q and R.

Following the footsteps of Section 4.2.2, a good selection of the scaling factor is to set it
equal to the dominant pole of the respective LQR problem [40] . By using the Matlab function
Igr() the scaling factor was defined as p = 5.5110. Parameters N and Tp were determined
through a number of trials until the results were remaining adequately constant.
Consequently, N = 10 and Tp = 6s. Finally, matrix Q was set equal to the transpose of the
matrix of the output multiplied by the matrix of the output and R was set adequately small
since the goal of the controller is to lessen the error and not the input signal:
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000
—C'C=
Q=C'C=[0 0 0 (5.12)
001
R=10"

Having determined the aforementioned parameters, the methodology which was
presented in Section 3.2 is followed to apply the unconstrained MPC. The matrices Q, ¥
and L(0)" are calculated and used in the controller. For the constrained MPC, the
methodology presented in Section 3.3 is applied. For this task, the maximum and minimum
values for the output and/or input should also be given to the controller. Results containing
the performance of constrained MPC are presented next.

Figure 5-3 includes snapshots of the motion of the FFSMS in the ADAMS environment
for three different time-points and for top view and isometric view. The white line depicts the
trajectory of the end-effector. Although the manipulator seems to pass above the base, this
is not a problem for our studied model since the base and the manipulator are not on the
same plane but on parallel ones. However, the case of them being on the same plane
requires a different path planning method. This does not affect the results of the controllers’
comparison.

Figure 5-4 presents the overall motion of the FFSMS as well as the Path Independent
Workspace (PIW) and the Path Dependent Workspace (PDW). It is evident that the
barycenter of the third link is moving in the PIW to avoid Dynamic Singularities (see Section
2.3.2). For evaluation of the motion, Figure 5-5 presents the determinant of the Jacobian
(see Eqg. (2-38)) which does not take values close to zero, hence, there is no worry for
Dynamic Singularities. These figures are extracted from the performance of both controllers
since the errors, that the controllers yield, are quite small (see Figure 5-7).

(d) (f)

Figure 5-3. Snapshots of the Motion of the FFSMS in the ADAMS environment for three
different time-points and two different views for the 15 Scenario (a) Isometric
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0),
(e) Top View (t=3s), (c) Top View (t=6s).
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Figure 5-4. Motion of the FFSMS in the Cartesian Space for the 15t Scenario.
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Figure 5-5. Determinant given by Eq. (2-38) for the 1% Scenario.

67/93



Simulations & Case Studies

Figure 5-6 presents the end-effector trajectories in the x, y coordinate and its orientation
trajectory. These diagrams are for both controllers since the errors of these variables are
small enough for both of them. These errors are presented in Figure 5-7. It is obvious that
the controller with the auxiliary MPC input has better results than the other controller in all
three variables. In particular, the controller with the MPC input achieved:

e 43% reduction of the x-Coordinate error
e 43% reduction of the y-Coordinate error
e 43% reduction of the orientation error

It should be clarified that the criterion that the two controllers should reach 2% of the
steady-state at about 6s is also satisfied for both controllers since the errors of the Model
Based PID Controller are lower than 10° which is considered low enough for motion in the
Cartesian space and the errors of the Model Based PD with an auxiliary MPC input are
lower than 10 at about 6 seconds.
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Figure 5-6. Actual and Desired Trajectories of the End-Effector (a) x-Coordinate, (b) y-
Coordinate, (c) Orientation.
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Figure 5-7. Error of the Actual and the Desired Value of the End-Effector’s variables for the
15t Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation.
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Figure 5-8 presents the torques that are applied to the joints of the manipulator. As it
was mentioned earlier, the torques have to be close enough in order for the comparison of
them to be considered valid. In other words, this means that the MPC does not require
additionally control effort to achieve better results but it only distributes the torques better.
The maximum torque of the first two joints is almost identical while the torque of the third
joint manifest a 2% increase for the controller with the MPC input, which is considered
negligible.

40

—)
----- PD-MPC
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20t
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Figure 5-8. Torqgues of the Joints of the Manipulator applied in the 15t Scenario (a) 1%t Joint,
(b) 2" Joint (c) 3" Joint.

No constraints were introduced on the MPC controller presented in the preceding
diagrams. As mentioned in Chapter 3, better results can be obtained if output constraints are
inserted in the design of the controller. One of the benefits of MPC is the easy introduction of
the constraints regardless of the time of the simulation. Since MPC optimizes the
performance for each time-step, the constraints can be inserted and stopped regardless of
the time. After a plethora of simulations, it was noticed that the errors are reduced
significantly if the constraints presented below are inserted from the beginning of the
simulation until the time-step t = 0.01s. If the constraints were not removed at that time-step,
they would just slow the algorithm since it would not converge because of the enormous
torques that it would require or the output constraints would just become inactive.

Xpee =[10° 10° 1077/180]

X . =—X

min max

(5-13)

However, because the output constraints contain the risk of rising significantly the joints’
torques, input constraints on the MPC signal umpc were also introduced. So, if the signal
exceeds these values, they become active:

U =[05 05 0.5]

u. =-u

min max

(5-14)
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Figure 5-9 presents the errors when the preceding constraints are inserted in the MPC
algorithm. It is obvious that the results are significantly better not only from the Model Based
PID Controller but also from the Model Based PD Controller with unconstrained MPC. In
particular, the Model Based PD Controller with MPC with output constraints achieves (in
comparison with the Model Based PID Controller):

e 90% reduction of the x-Coordinate error
e 80% reduction of the y-Coordinate error
e 96% reduction of the orientation error

Apart from that, the criterion that the two controllers have to reach 2% steady-state at
about 6s is again satisfied.

Figure 5-10 depicts the torques of the controllers. Note that this controller mandates the
torgues to achieve a considerably high value in small time duration. This might be a problem
for the actuators of the manipulator and hence a problem for future examination. It is evident
that these controllers also satisfied the criterion for equal maximum power that their joints’
actuators could provide.
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Figure 5-9. Error of the Actual and the Desired Value of the End-Effector’s variables for the
15t Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-Coordinate, (c)
Orientation.
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Figure 5-10. Torques of the Joints of the Manipulator applied in the 1St Scenario using
Constraints on the MPC (a) 15t Joint, (b) 2" Joint (c) 3 Joint.

Finally, the controllers should be compared based on the computational power that they
require which is proportionate to the duration of the simulation. Considering that the
unconstrained MPC requires most of its computations to run off-line, its computational power
should not exceed significantly the simple PID Controller. However, the MPC with
constraints requires loops of the Hildreth’s algorithm (see Section 3.3.1) to run during the
simulation. Consequently, it shall require more computational power.

Through ample simulations using Matlab/Simulink and Adams and on the same
computer, it was concluded that the average duration of the simulation (including the time
required to present the results in the environment of Matlab/Simulink) when Model Based
PID Controller is applied is 79s. The Model Based PD Controller with MPC without
constraints takes about 82s and the Model Based PD Controller with MPC with constraints
takes about 82s too. Although, it was expected that the latter would require more time, this
extra duration is miniscule since the constraints are introduced only for 0.01s.

5.3 Scenario 2;: Parametric Uncertainties

In this Section, the Scenario of parametric uncertainties is presented. As mentioned in
Chapter 1, it is very common for the parameters of an FFSMS to deviate from the
nominal/manufacturing dimensions due to the extreme alterations of temperature throughout
its lifetime. This can cause significant errors to the lengths of the manipulator as well as the
base. Besides that, small collisions with other objects that float into space and the reduction
of the base’s mass due to its fuel consumption can cause divergence of the joints’ mass and
the mass of the base respectively. It is veritable that the fuel would be consumed at a known
rate. Nonetheless, an abnormality of the actuators might cause excessive and uncertain fuel
consumption which would result in significant uncertainty regarding the mass of the base. It
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is evident that the preceding controllers have to perform successfully and counterbalance
these errors.

Firstly, a Monte-Carlo simulation is performed for a wide range of parametric
uncertainties to investigate the performance of both controllers and to indicate the parameter
that cause the highest errors of the end-effector’s position and orientation. Secondly, a more
scrutinous analysis would be performed using the parameters with the highest errors.
Besides the unconstrained MPC, the case of the Model Based PD Controller with MPC input
with constraints is presented too.

5.3.1 Sensitivity Analysis & Monte-Carlo Simulation

A Monte-Carlo simulation (or Monte-Carlo method) is a simulation that is repeated using a
wide range of different parameters. The parameters are obtained using random sampling
and statistical analysis [30] . For this case, the samples are taken based on the following
parameter variation:

0'95|i,nominal < Ii Sl'05|i,nominal i=1-3
95r . <r <1.05r i=1-
0 95 i,nominal i 05 i,nominal 3 (5_15)
0'95mi,nominal < m Sl'Osmi,nominal i=1-3
0'80m0,n0minal < mO S:I"Osmo,nominal

The argument behind this selection was presented in Section 5.3. It is also important to
note that the moment of inertia of each part was chosen to vary proportionally with the
variance of its respective mass.

To acquire the samples, the Sensitivity Analysis package of Matlab/Simulink was used.
The sample of the statistics of each variance of Eqg. (5-15) was selected to be uniform (same
possibility for each value). There were chosen 200 different combinations.

The model that was used is almost the same with the one studied in Scenario 1. The
only difference is that an analytical representation of the plant was used, substituting the
Adams model, to save computational power. The values of the end-effector’'s position,
orientation as well as their velocities were obtained using inverse kinematics. The nominal
values of these parameters were used for the equations of the inverse kinematics since in
reality these values would be obtained through sensors and cameras.

The nominal values of the FFSMS parameters are given in Table 5-1. For the
determination of the desired trajectory, 5" polynomials were used and their values are
presented in Table 5-2. The torques of the Model Based PID Controller are given by Eq.
(5-6) and the gains of each joint are given by Eq. (5-8). The torques of the Model Based PD
Controller with an auxiliary MPC input are given by Eq. (5-9) and the respective gains are
given by Eqg. (5-11). The rest of the required parameters of the MPC can be found in
Scenario 1.

The results of the 200 simulations performed are displayed in Figure 5-11. The errors of
the position and orientation of the end-effector are shown. Diagrams (a), (b) and (c) depict
the results when the Model Based PID Controller is implemented while diagrams (d), (e) and
() depict the results when the Model Based PD Controller with an MPC Input is
implemented. It is clear that the latter improves significantly the results by minimizing the
error. Table 5-3 shows the maximum errors for each controller as well as the values of the
FFSMS’ parameters that result in these values. It is obvious that the maximum for each of
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the three variables is a result of a different combination of the FFSMS’ parameters.
However, it was observed that the y-coordinate’s error varies almost proportionally with the
orientation’s error while the x-coordinate error is inversely proportional. Finally, it can be
concluded that the values do not converge to zero in 6s. Nevertheless, as it would be
presented in the following Section, the integration of constraints in the MPC can result in a
partial solution to this problem.

Figure 5-12 shows which parameter has the most impact for each one of the three
errors. These results were obtained using the Sensitivity Analysis tool of Matlab/Simulink. It
can be concluded that for each of the three errors, different parameters are the most
influential. In these tornado diagrams, correlation indicates how a model parameter and the
cost function output are correlated, partial correlation shows how these are correlated while
removing the effects of the rest parameters and finally standardized regressions shows to
what extent the parameters have a linear influence on the cost function.

PID Controller ) PD-MPC Controller

Figure 5-11. Errors of the End-Effector’s Position & Orientation using Monte-Carlo Simulation
for the 200 Different Random Samples. (a), (b) and (c): Model Based PID
Controller, (d), (e) and (f): Model Based PD Controller with MPC Input.
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Table 5-3. Maximum Errors performing Monte-Carlo Simulation and their Model Parameters.

XE,d - Xd YEd - Yd Ok.d - Od
Maxpip 7.919-10° 7.176-10° 18-10%
MaXpp-mpc 3.925-10° 3.645-10° 8.818:10*
mo (kg) 540.9 595.1 510.7

(m1, mz, m3) (kg)  (39.81,41.80,20.98)  (38.65,41.51,20.77)  (38.61, 40.82, 20.93)

ro (M) 1.384 1.376 1.364

(r, 12, rs) (m)  (1.019, 1.046, 0.2576) (0.9631, 1.046, 0.2534)  (1.016, 1.042, 0.2511)

(Ig, I2, I3) (m) (1.042, 0.993, 0.244)  (0.9611, 1.037, 0.2552) (0.9631, 1.049, 0.2405)

Error of x-Coordinate xp; — xg Error of y-Coordinate ypq — yg
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Figure 5-12. Parameter Influence on the Position & Orientation of the End-Effector.
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5.3.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary
MPC Input

It is interesting to investigate more thoroughly the performance of the controllers for the
model parameters that result in the maximum incongruities. In this section, the parameters
that result in the maximum error of the end-effector’'s x-coordinate are regarded as the
approximate (known) parameters of the model (see Table 5-3). However, the Adams model
that is used for the plant contains the nominal values of the parameters (see Table 5-1).

Figure 5-13 presents the errors of the x-coordinate, the y-coordinate and the orientation
of the end-effector. It is obvious that the controller with the auxiliary MPC input has better
results than the simple PID Controller in all three variables. In particular, the controller with
the MPC input achieved:

e 50% reduction of the x-Coordinate error
¢ 57% reduction of the y-Coordinate error
e 57% reduction of the orientation error

Note that the criterion that the two controllers should reach 2% of the steady-state at
about 6s is not satisfied for neither of the controllers, despite the fact that MPC has lower
errors at 6s. The reason behind this phenomenon is the fact that the disturbances, that the
parametric uncertainties produce, vary with time.

Figure 5-14 presents the torques that are applied to the actuators of the manipulator. As
mentioned earlier, the applied torques have to be close enough in order for the comparison
of them to be considered valid. In other words, this means that the MPC does not require
additional control effort to achieve better results but it only distributes the torques better. This
criterion is satisfied perfectly.
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Figure 5-13. Error of the Actual and the Desired Value of the End-Effector’s variables for the
2" Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation.
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Figure 5-14. Torques of the Joints of the Manipulator applied in the 2"¥ Scenario (a) 1% Joint,
(b) 2" Joint (c) 3" Joint.
To achieve a partial convergence of the errors at the steady-state, constraints were
integrated on the MPC. In particular, the constraints were inserted after the time-step t = 4.5s
and until the end of the simulation. These output/error constraints are:

Xy =[5-10° 510° 5.10°7/180] (5-16)

Xpin = —X

min max

However, because the output constraints contain the risk of surge of the joints’ torques,
input constraints on the MPC signal umpc were also introduced. So, if the signal exceeds
these values, they become active:

U =[2 2 2] (5.17)

Figure 5-15 presents the errors when the preceding constraints are inserted in the MPC
algorithm. It can be seen that the orientation converges smoothly to zero. However, the error
of the x-coordinate does not, despite the fact that at some point it tries to. At that point, the
input constraints become active because it would result in significant increase of the torques
which would might lead to instability. Finally, the Model Based PD Controller with MPC with
output constraints achieves (in comparison with the Model Based PID Controller):

e 50% reduction of the x-Coordinate error
e 57% reduction of the y-Coordinate error
e 57% reduction of the orientation error

Figure 5-16 depicts the torques of the controllers. The two controllers manifest a 4%

deviation for the first and second joint, a percentage that can be considered negligible.
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Figure 5-15. Error of the Actual and the Desired Value of the End-Effector’s variables for the
2"d Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-Coordinate, (c)
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Figure 5-16. Torques of the Joints of the Manipulator applied in the 2" Scenario using
Constraints on the MPC (a) 1%t Joint, (b) 2" Joint (c) 3 Joint.
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5.4 Scenario 3: Position Captured Object of Unknown Mass

The main cause of an FFSMS is to capture and move an object which floats in space.
Although rough data of the object might be known from the period of time that it was
functioning or can be acquired through cameras and sensors of the FFSMS, the actual
values of the object’'s parameters would probably have a deviation from the known
parameters. In this scenario, the position of a captured object with undefined mass, inertia
as well as position of its Center of Mass (CM) would be presented. The stabilization of the
object, which is the previous stage of an on-orbit servicing mission (see Chapter 1), is
considered accomplished. This scenario is expected to show similar behavior with Scenario
2 since the captured object would be regarded as an extension of the 3" link. Therefore, the
parametric uncertainty of the captured object is considered as a parametric uncertainty of
the 3 link. In contrast to the preceding scenarios, in this scenario the FFSMS moves in the
joint space and not in the Cartesian space.

The variable ms is used for the mass of the captured object, Is for the Inertia of the
captured object, and rs for the distance between the CM of the 3" link and the CM of the
captured object. The mass of the unified 3" link and captured object is given by:

m, =m, +m, (5-18)
The inertia of the unified 3" link and captured object with respect to the position of its
CM, by implementing Steiner’s theorem, is given by:
L=+ 1 +m, (1 -1,) +m,r? (5-19)
where |, is the distance between the 3 joint and the new CM, T is the distance between the
new CM and the CM of the captured object and they are given by:

I myly +m (I, +1,)
T my+m, (5-20)

L=r+l,—-1,

The values of these variables that will be used in the simulation are presented in Table
5-4. The rest of the parameters of the FFSMS are presented in Table 5-1.

Table 5-4. Parameters of the Captured Object.

Captured Object Nominal Value Estimated Value
Mass ms (kg) 200 220
Moment of Inertia s (kg-m?) 100 110
Distance rs (m) 0.8 0.76
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5.4.1 Path Planning

As previously mentioned, the control of the FFSMS is performed in the joint space. Fifth
power polynomials are used for the determination of the desired trajectories. They are given
by Eq. (4-27) - (4-28) and presented in Figure 4-8.

In Table 5-5 the values of the initial and final angle, angular velocity and acceleration as
well as the final time that is used in this scenario for each of the three joints are presented.

Table 5-5. Paremeters of the Desired Trajectories for the 3™ Scenario.

Joint 18t 2nd 3

tr (s) 6 6 6

Initial Angle gd,0 (deg) 45 110 -60

Final Angle qqd.f (deg) 20 60 -70

Initial Angular Velocity ¢, , (deg/s) 0 0 0
Final Angular Velocity q, ; (deg/s) 0 0 0
Initial Angular Acceleration ¢, , (deg/s?) 0 0 0
Final Angular Acceleration ¢, , (deg/s?®) 0 0 0

5.4.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary
MPC Input

The torques of the Model Based PID Controller are given by Eq. (4-6) (with the assumption
that the angular momentum is considered zero (h.,, =0)) and the gains of each joint are
given by Eq. (4-34). The torques of the Model Based PD Controller with an auxiliary MPC
input are given by Eq. (4-8) and the respective gains are given by Eq. (4-30). The argument
for selecting these gains can be found in Section 4.5. The rest of the required parameters of
the MPC are:

p=5.5110
N =10
T, =6s (5-21)
000
Q=C'C=/0 0 0
00 1
R=10"°

There are no output constraints integrated in the MPC design since it was observed that
no particular benefit can be acquired from them.
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Figure 5-17 contains snapshots of the motion of the FFSMS in the ADAMS environment
for three different time-points and for top and isometric view. The path planning was
conducted in the joint space. Hence, there is no concern for Dynamic Singularities. The
figure presents the motion when either of the controllers is applied since the errors of both
controllers are quite small (see Figure 5-18).

(d) (f)

Figure 5-17. Snapshots of the Motion of the FFSMS in the ADAMS environment for three
different time-points and two different views for the 3@ Scenario (a) Isometric
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0),
(e) Top View (t=3s), (c) Top View (t=6s).

Figure 5-18 presents the errors of the angles of the manipulator’s joints in comparison
with the desired trajectory. It is obvious that the controller with the auxiliary MPC input has
better results than the simple PID Controller in all three variables. In particular, the controller
with the MPC input achieved:

e 52% reduction of the error of the 1% joint’s angle
e 52% reduction of the error of the 2" joint’s angle
e 56% reduction of the error of the 3™ joint’s angle

Similarly to the 2" Scenario, the criterion that the two controllers should reach 2% of
the steady-state at about 6s is not satisfied for neither of the controllers, albeit MPC has
lower errors at 6s. The reason behind this phenomenon is the fact that the disturbances, that
the parametric uncertainties produce, vary with time.
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Figure 5-19 presents the torques that are applied to the manipulator joints. The torques
that the two controllers produce are almost identical. It is obvious that the values of the
torqgues are much higher than the torques of the previous scenarios. This is completely
reasonable since the manipulator has to move a quite large object.

-4 =) 3
g X10 05 X10 1510
6 2t
1+t
4t 15}
= 27 == =
o o =
| | |
< S 05 s 0
(= (] o
2 2 2
&0 0 20
- ™ « 9 < 057
3 3 3
§ 4r § -0.5 §
= = S
6t At
45}
8+ 151
-10 ‘ 2 : : ©) : :
0 2 4 6 0 2 4 6 0 2 4 6
t(s) t(s) t(s)
(@) (b) (c

Figure 5-18. Error of the Actual and the Desired Value of the Joints’ Angles for the 3@ Scenario
(a) 1%t Joint, (b) 2" Joint, (c) 3 Joint.
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Figure 5-19. Torques of the Joints of the Manipulator applied in the 3@ Scenario (a) 1% Joint,

(b) 2" Joint (c) 3" Joint.
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5.5 Scenario 4: Noise

The successful control of an FFSMS requires the accurate measurement of a variety of
process variables. However, the sensors that are used for this task provide the output with a
level of sensor noise. Noise consists of arbitrary variations of sensor signal which are
unrelated to variations in the input. In this Section, the Scenario of noise is presented.

The primal objective of this scenario is to compare the performance of the Model Based
PID Controller to the Model Based PD Controller with an auxiliary MPC input. Consequently,
observers or state estimation filters are not required in the design. A more realistic approach
needs the insertion of such components. However, they requires the discretization of the
model as well as the implementation of a non-linear observer or filter (e.g., an Extended
Kalman Filter [11] ). This deviates from the main focus of this thesis, but it is an interesting
area for future research.

The two controllers are compared with respect to the errors of the end-effector’s position
and orientation, the errors of end-effector’s velocities as well as their torques. As it was
previously mentioned in this chapter, actuators may not be able to perform sudden changes
in their torques, which might be needed to compensate for the noise. Therefore, according to
this criterion, the controller which requires the lower rate of change of torques is the most
suitable choice.

The process variables which are regarded as the ones containing noise are:

0;,0,: 05,6y, 65,65, 6,, 605, X Vi, Oy Xe o Vi, O . Figure 5-20 presents the block diagram of the
system for both controllers. The noise is considered to be normally distributed with a zero
mean and variance o° =10"oro? =10 (where o is the standard deviation).

n
+
X4 n
9+n 6 q_ Y+
| |
;X v o RAN
CONTROLLER » J(q,0) » PLANARFFSMS- |
PLANT &;’?—,
+
N
q +
LI Y I T »
.| | o n
Gn gq+n 0,0 /n i

Figure 5-20. Block Diagram of the 4" Scenario.

5.5.1 Path Planning — Moving Target

In contrast to Scenarios 1 and 2, for this scenario the captured object-target was selected to
have a constant relative velocity in respect to the FFSMS. The parameters of the moving
target (specifically for the captured point) are shown in Table 5-6.

Table 5-6. Parameters of the Moving Target.

Moving Target Value of Velocity v (m/s)  Slope of Velocity (deg)  Position (X, ) (m)

Timet=0 0.05 -10 (-2.30, 1.85)

Time t =6s 0.05 -10 (-2, 1.8)
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The motion of the target mandates the final velocities of the end-effector to be non-zero
and equal to the velocity of the target. Although fifth polynomials like the ones presented in
Scenario 1 were used for the determination of the desired trajectories (see Eq. (5-1)-(5-4)),
the parameters of the trajectories are different. They are presented in Table 5-7. It can be
seen that the end-effector’s final position and velocity are equal to the ones of the target.

Table 5-7. Paremeters of the Desired Trajectories for the 4" Scenario.

Xe (M) ye (M) O (deg)

tr () 6 6 6

Initial Value 0.2675 1.9220 195

Final Value -2 1.8 170
1t Derivative’s Initial Value 0 0 0
1t Derivative’s Final Value 0.0492 (v-cos(-10)) -0.0087 (v-sin(-10)) 0
2" Derivative’s Initial Value 0 0 0
2" Derivative’s Final Value 0 0 0

5.5.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary
MPC Input

For both controllers, the parameters of the FFSMS are given in Table 5-1 and considered
known with adequate accuracy. The angular momentum is considered zero (h., =0). The
torques of the Model Based PID Controller are given by Eqg. (5-6) and the gains of each joint
are given by Eqg. (5-8). The torques of the Model Based PD Controller with an auxiliary MPC
input are given by Eq. (5-9) and the respective gains are given by Eq. (5-11). The rest of the
required parameters of the MPC can be found in Scenario 1.

Figure 5-21 includes snapshots of the motion of the FFSMS in the ADAMS environment
for three different time-points and for top view and isometric view. The white line depicts the
trajectory of the end-effector. This figure is similar to Figure 5-3 since the velocity of the
target is quite low. However, the motion of the target can be witnessed through a closer
observation. Figure 5-4 and Figure 5-5 depict the motion of the FFSMS and the determinant
for this scenario, since the final position and orientation of the FFSMS remained the same.

Two different cases are studied to show the performance of the two controllers when
noise is inserted in the design. Both cases consist of a normally distributed noise with a
mean value equal to zero. However, the noise in the first case has a variance o’ =10"
while the second has a variance 6 =10"°. These values were chosen through various trials
to show the value of noise that starts to affect the controllers. Prior to the comparisson of the
two controllers, Figure 5-22 presents the trajectories of the end-effector’s velocities for the
first case and for both controllers (since as it is shown in Figure 5-23 the errors for both
controllers are quite small). It is evident that the final values of the linear velocity are the
ones presented in Table 5-7.
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(e)

Figure 5-21. Snapshots of the Motion of the FFSMS in the ADAMS environment for three
different time-points and two different views for the 4" Scenario (a) Isometric
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0),
(e) Top View (t=3s), (c) Top View (t=6s).
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Figure 5-22. Actual and Desired Trajectories of the End-Effector (a) Horizontal Velocity, (b)
Vertical Velocity, (c) Angular Velocity.

Figure 5-23 presents the errors of the end-effector’s position, orientation and velocities
in comparison with the desired trajectory for the case of noise with variance o’ =10".
Figure 5-24 presents the torques that are applied in the joints. It can be concluded that both
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controllers perform in a similar way for this level of noise. The final errors of the position,
orientation and velocities of the end-effector are low enough in order for the manipulator to
capture the target. Besides that, the diagram of the torques proves that this variance of
noise is the threshold above which the noise starts to have a profound effect on the

performance.
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Figure 5-23. Error of the Actual and the Desired Value of the End-Effector’s variables for the
4 Scenario and for Noise with Variance 107° (a) x-Coordinate, (b) y-Coordinate,
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, (f) Angular Velocity.
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Figure 5-24. Torques of the Joints of the Manipulator applied in the 4" Scenario and for Noise
with Variance 10 (a) 15t Joint, (b) 2" Joint (c) 3 Joint.

Figure 5-25 displays the errors of the end-effector’s position, orientation and velocities in
comparison with the desired trajectory for the case of noise with variance o’ =107, Figure
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5-26 displays the torques that are applied in the joints. It can be concluded that both
controllers manifest similar behavior regarding the errors compared with the desired
trajectory. As expected, the errors are higher by a factor of 10 compared with the previous
case. The errors can still be considered as low enough for the FFSMS to accomplish each
goal. However, the Model Based PID Controller requires more sudden changes of the
torgues to achieve the same level of error. This is another benefit of the Model Based PD
Controller with MPC input.
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Figure 5-25. Error of the Actual and the Desired Value of the End-Effector’s variables for the
4™ Scenario and for Noise with Variance 10® (a) x-Coordinate, (b) y-Coordinate,
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, (f) Angular Velocity.
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Figure 5-26. Torques of the Joints of the Manipulator applied in the 4" Scenario and for Noise
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6 Conclusion & Future Work

The preceding study and comparison of the Model Based PID Controller and the Model
Based PD Controller with an auxiliary MPC Input has engendered a variety of noteworthy
results. This chapter contains the major findings that have been deduced throughout the
thesis as well as proposals for future work.

6.1 Conclusion

The main purpose of the thesis was to study the performance of an FFSMS when an MPC is
implemented for a plethora of different realistic scenarios. This was illustrated through a
comparison with a regular PID Controller to highlight potential shortcomings or benefits.

In Chapter 2, the dynamics, kinematics and differential kinematics were described. It
was shown that an FFSMS contains strong non-linearities. Consequently, a controller needs
to overcome this impediment. Besides that, it was shown that singularities might occur in
more positions compared to a manipulator with a fixed base due to the dynamic coupling
between the base of the FFSMS and the manipulator. This constitutes an extra limit to the
path planning of the FFSMS.

In Chapter 3, the MPC was described extensively. The simplicity of its implementation
as well as the easy incorporation of constraints were shown. Although the input constraints
are quite safe to activate, immense attention should be given when output constraints are
active. Output constraints tend to cause severe nonlinearities which lead to close-loop
oscillation or instability. Therefore, input constraints should be set as a priority, in case the
output constraints request the control signal to surge. Apart from that, MPC also gives the
benefit of setting constraints only for a specific duration. This can also constitute a solution
to the dangers of implementing output constraints.

In Chapter 4, the implementation of the Model Based PID Controller and the Model
Based PD Controller with an auxiliary MPC Input for the control of an FFSMS was
described. A Model Based Controller is required to compensate for the non-linearities of the
FFSMS. The MSC Adams model that was used as the representation of the simulation’s
plant was also presented. Although Adams provides a distinct visual representation of the
model, attention should be given on the model’s parameters and properties, since they might
cause errors during the simulation (e.g., small discrepancies of Markers’ position or a mode
which causes algebraic loop in Matlab/Simulink). It was also validated that MSC Adams
offers an accuracy of 10® for the FFSMS’ angles.

In Chapter 5, different realistic scenarios that might occur through the operations of an
FFSMS were presented. The two controllers were compared according to their performance
in these scenarios. The first scenario contained an FFSMS whose actuators were subject to
constant disturbances. The motion of the FFSMS was designed in the Cartesian space to
capture a relatively stationary target. The MPC manifested significantly better behavior in
compensating for the disturbances while the maximum torques of the two controllers were
equal. Note that a faster design of PID is possible. However, it would result in higher
maximum torques, hence an invalid comparison. Additionally, constraints were introduced in
the MPC for a short time interval at the beginning of the simulation which improved the
results even more. However, the sudden changes, that the satisfaction of the output
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constraints required, might not be able to be performed by an actuator. Results about the
computational power of the control laws were also obtained for this scenario. It was shown
that both control laws require about the same amount of time to perform the task.

The second scenario presented the problem of parametric uncertainties. A Monte-Carlo
simulation was performed for 200 different combinations of the FFSMS parameters. In all of
them, the MPC showed better performance than the PID. However, none of them achieved
convergence of the errors at the steady-state. This is partially reasonable since the
disturbances, that the parametric uncertainties cause, vary with time. Nonetheless, by
integrating output constraints in the MPC, it was shown that the MPC is able to achieve
sufficient convergence of the orientation of the end-effector. Apart from that, the performed
sensitivity analysis showed that that the y-coordinate’s error varies almost proportionally with
the orientation’s error while the x-coordinate error is inversely proportional. The third
scenario included the position of a captured object with undefined parameters. The path was
planned in the joint space. This scenario manifested similar behavior to the second scenario,
since the captured object can be regarded as an extension of the third link.

The fourth and final scenario presented the performance of the controllers when the
process variables are measured with a known level of noise. Two different cases were
studied, one with a noise of variance 101° and one with variance 108. The former case did
not affect significantly the performance of the controllers. However, the latter caused
profound variation of the torques. It was shown that in this scenario too, the MPC has an
advantage since it produces the same level of errors with the smaller variations of torques.

Consequently, considering all the previous arguments, one might conclude that a Model
Based PD Controller with an auxiliary MPC input is better in many respects than a Model
Based PID Controller. Indubitably, the former manifested better behavior in all the
aforementioned case studies and it is quite simple to implement. Nonetheless, it is not as
simple as a PID Controller. Therefore, the selection depends on the criteria set by the
potential user.

6.2 Future Work

This thesis can become the impetus for further research since boundless questions have
been raised throughout the conduction of the research.

To begin with, many assumptions have been made for this study. The angular
momentum was considered zero, the manipulator was considered rigid and the study was
performed for planar motions. However, in real life, angular momentum might be
accumulated in an FFSMS and the base’s control system might not be able to
counterbalance it. Therefore, the FFSMS has to move in the presence of angular
momentum. Besides that, to capture a target, the manipulator probably has to move in the
three-dimensional space and its links have to be considered flexible due to their low mass
and high lengths.

A realistic scenario also requires Cartesian motion of the FFSMS in the Path Dependent
Workspace as well as the implementation of observers or state estimation filter to
compensate for the process variables’ noise. Various techniques have been proposed to
avoid dynamic singularities which could be integrated in the design of the controllers [21] .
Keeping also in mind that FFSMS contains severe non-linearities, observers or filters have
to be competent to perform regardless of them. This task requires the controller to be
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designed in the discrete time and not in the continuous as it was presented in this thesis.
Inserting one of these components and discretizing the controller opens the way for
implementation of the controller on a real robotic simulator like the one that the Control
Systems Lab of NTUA possess.

Furthermore, the whole study was performed for Free-Floating robots. It is also
interesting to study Free-Flying robots. During this phase, the thrusters are on-off, hence,
they cannot produce continuous control signal.

Finally, as far as the MPC is concerned, the controller can be compared with other
controllers to study further its advantages and disadvantages. To adduce a pertinent
example, it can be compared to an H-infinity controller or even an adaptive controller.
However, an adaptive controller, although it might prove to be very efficient in compensating
for parametric uncertainties, it might not be able to be applied in an FFSMS due to the
number and advanced technology of required sensors. Apart from that, different types of
MPC can also be studied. For example, robust MPC like the min-max MPC is considered to
compensate efficiently for bounded disturbances.
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Appendix A — Matlab Algorithms

Path Planning (Example pg53)

t vect = [1; t; t72; t73; t*4;
t~517

t vectdot = [0; 1; 2*t; 3*t"2;
4*t"3; 5*t"4];

t vectdot2 = [0; 0; 2; 6*t;

12*t~2; 20*t73];

Coeffl = [gdl 0, gdldot O,
gdldot2 0/2, -(20*gdl 0 - 20*gdl f +
12*gdldot 0*tf + 8*gdldot f*tf -
gdldot2 f*tf"2 +
3*gdldot2 0*tf~2)/(2*t£73), (30*qdl 0
- 30*gdl f + 16*gdldot O*tf +
l4*gdldot f*tf - 2*gdldot2 f*tf" 2 +
3*gdldot2 0*tf"~2)/(2*tf"4), -(12*qgdl 0
- 12*gdl f + 6*gdldot O*tf +
6*qdldot f*tf - gdldot2 f*tf"2 +
gdldot2 O*tf~2)/(2*tf£"5)1]1;

qdl = Coeffl*t vect;

gdldot = Coeffl*t vectdot;

gdldot2 = Coeffl*t vectdot2;

Coeff2 = [qgd2 0, gd2dot O,
qd2dot2 0/2, -(20*qd2 0 - 20*qd2 f +
12*gd2dot O0*tf + 8*gd2dot f*tf -
gd2dot2 f*tf"2 +
3*gd2dot2 0*tf~2)/(2*tf"3), (30*qgd2 0
- 30*qd2_f + 16*gd2dot O*tf +
14*gd2dot f*tf - 2*gd2dot2 f*tf" 2 +
3*gd2dot2 0*tf"~2)/(2*tf~4), -(12*qgd2 0
- 12*qd2 f + 6*gd2dot O*tf +
6*qgd2dot f*tf - gd2dot2 f*tf"2 +
gd2dot2 0*tf~2)/(2*t£"5)1];

qd2 = Coeff2*t vect;

gd2dot = Coeff2*t vectdot;

gqd2dot2 = Coeff2*t vectdot2;

Coeff3 = [gd3 0, gd3dot O,
gd3dot2 0/2, -(20*qd3 0 - 20*qgd3_f +
12*gd3dot 0*tf + 8*gd3dot f*tf -
qd3dot2 frtfr2 +
3*gd3dot2 0*tf”~2)/(2*t£73), (30*qd3 0
- 30*%qd3_f + 16*gd3dot O*tf +
14*gd3dot f*tf - 2*gd3dot2 f*tf"2 +
3*qd3dot2 0*tf~2)/(2*tf~4), -(12*gqd3 0
- 12*gd3_f + 6*gd3dot O0*tf +
6*qd3dot f*tf - gd3dot2 f*tf"2 +
gd3dot2 0*tf~2)/(2*tf"5)1]1;

qd3 = Coeff3*t vect;

gd3dot = Coeff3*t vectdot;

gd3dot2 = Coeff3*t vectdot2;

Path Planning (Scenario 1 pg62)

t vect = [1; t; t72; t73; t*4;
t*5];

t vectdot = [0; 1; 2*t; 3*t"2;
4*t"3; 5*tnd];

t vectdot2 = [0; 0; 2; 6*t;
12*t~2; 20*t"3];

Coeffl = [xd 0, xddot O,
xddot2 0/2, -(20*xd 0 - 20*xd f +
12*xddot 0*tf + 8*xddot f*tf -
xddot2 f*tf"2 +
3*xddot2 0*tf~2)/(2*tf"3), (30*xd 0 -
30*xd f + 16*xddot O*tf +
l4*xddot f*tf - 2*xddot2 f*tf~2 +
3*xddot2 0*tf”~2)/(2*tf~4), -(12*xd 0 -
12*xd f + 6*xddot O0*tf + 6*xddot f*tf
- xddot2 f*tf"2 +
xddot2 0*tf~2)/(2*tf"5)];

xd = Coeffl*t vect;

xddot = Coeffl*t vectdot;

xddot2 = Coeffl*t vectdot2;

Coeff2 = [yd 0, yddot O,
yddot2 0/2, -(20*yd 0 - 20*yd f +
12*yddot O0*tf + 8*yddot f*tf -
yddot2 f*tf"2 +
3*yddot2 0*tf~2)/(2*tf"3), (30*yd 0 -
30*yd f + 1l6*yddot O*tf +
l4*yddot f*tf - 2*yddot2 f*tf"2 +
3*yddot2 0*tf~2)/(2*tf"4), -(12*yd 0 -
12*yd f + 6*yddot 0*tf + 6*yddot f*tf
- yddot2 f*tf*2 +
yddot2 0*tf~2)/(2*tf"5)1];

yd = Coeff2*t vect;

yddot = Coeff2*t vectdot;

yddot2 = Coeff2*t vectdot2;

Coeff3 = [thEd 0, thEddot 0,
thEddot2 0/2, -(20*thEd 0 - 20*thEd f
+ 12*thEddot O0*tf + 8*thEddot f*tf -
thEddot2 f*tf~ 2 +
3*thEddot2 0*tf~2)/(2*tf"3),
(30*thEd 0 - 30*thEd f +
l16*thEddot 0*tf + 14*thEddot f*tf -
2*thEddot2 f*tf"2 +
3*thEddot2 0*tf~2)/(2*tf"4), -
(12*thEd_0 - 12*thEd f +
6*thEddot 0*tf + 6*thEddot f*tf -
thEddot2 f*tf~ 2 +
thEddot2 0*tf~2)/(2*tf"5)1;
thEd = Coeff3*t vect;
thEddot = Coeff3*t vectdot;
thEddot2 = Coeff3*t vectdot2;
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1 Eilcaywyn

H ouvexng kai avnouxnTiki aug¢non Tou apiBuou Twv dopuPdpwVv €KTOG AEITOUpyiag TTou
BpiokovTtal oe Tpoxid yUpw amd TN 'n (Ta amokaAoUpeva dlacTnIKG oKouTTidla) £xeEl
QATTOTEAECEI EVAUOHA YIA TNV OpYAvwWwOon aTTOCTOAWY KAl TAV AvATITUEN CUCTARGTWY TA OTToid
Ba cival Ikava va avTigeTwTrioouv 1o TTPORANUA. Ta cuoTAPOTA autd Ba TTPETTEN va gival o€
Béon va mmdoouv, va TPo@POdOTHCOOUV HE KAUOIMO, va ETTIOKEUACOOUV 1 akOun Kai va
aAANdgouv Tnv AdN uttdpxouca Tpoxid evog cwuatog (T1.X. dopuPodpog). Aedouévng NG
EMKIVOUVOTNTOG Hiog €TTavOpwUéVNG ATTOOTOANG, Ta AlAOTNUIKG PouTroTikd ZuoTAuaTa
(APZ) gival n kataAAnAGTEPN €TTIAOYA.

‘Eva APZ atroteAcital atmd dUo Bacikd pépn, Tn BAoN KAl TOUG POPTTOTIKOUG Bpaxioved.
KaBe éva ammd autd €xel Toug OIKOUG TOU ETTEVEPYNTEG KAl oUaTnua eAéyxou. Adyw Tng
OUVAMIKNAG oUleuéng PETOEU TOUG, N Kivnon Tou evdg €TTnNEEACEl TNV Kivon Tou GAAou. ¢
auTh TN SITAWMATIKN Ba YeAETNOEi £va eTTiTTedO POUTTOTIKO cUCTNUA PE £va Bpayxiova Tpiwv
BaBuwv gAeubepiag. To cuoTnua Ba cival eEAcUBEPA AIWPOUPEVO, BNAADK 01 ETTEVEQYNTEG TNG
Baong Ba Bpiokovtal €KTOC AcIToupyiag €101 WOTE va unv €mnpeedlouv Tnv Kivnon Tou
pouTToTIKOU Bpayiova. Baoikdg okotrdg NG epyaciag cival n HEAETN TNG AsiToupyiag evog
TETOIOU OUCTAMNOTOG UTTOKEINEVO o€ Ol1agopeg dlatapaxeég Me Tnv xpnon lMpoBAeTTikou
EAéyxou (Model Predictive Control). INa tov Adyo auTtd, Ta atroteAéopaTa Ba ouykpiBouv Je
Ta avTioTolxa atroteAéouaTa evog KAaaikou PID EAEyxou.

H tmrapouca dImMAwWATIKA epyaoia atroTeAeital amo £ ke@dAaia. To TTPWTO KEPAAQIO
atroTeAgital amrd Tnv elcaywyn kal Tnv BiBAloypa@ik avackétnon. Mia cuvroun avagopd
0€ ONPAVTIKEG ONUOCIEUCEIG OXETIKEG PE TV OUVOUIKN Kal Tov €Aeyxo Twv APZ KaBwg Kai
TWV YEVIKOTEPWY £@appoywv Tou MpoBAeTTTIkoU EAEyxou TTapatiBetal og autd 1O Ke@AAailo.
To de0TEPO KEQPAAQIO TTEPIEXEI TN KIVIUATIKEA, AVTIOTPO@N KIVNKATIKA Kal TN QUVAUIKT JEAETN
Twv EAeUBepwv Alwpoupevwy APZ. O1 TTpoKUTITOUCEG EEI0WOEIG gival BEPENIWBEIS yIa TOV
E€AEYXO TOU CUCTANATOG. 2TO TPITO KEPAAAIO TTEPIYPAPETAl O MPoBAeTTTIKOG ‘EAgyx0g TTOU B0
epapuooTei. MapatiBeTal 6AN n Bewpia Kai n peBodoAoyia TTou aATTaAITEITAl yIA TNV EQAPUOYN
Tou. Idlaitepn TTpoocoxr SiveTal OTNV £QPAPUOYR TTEPIOPICUWY (£100dWV ri/kal eE0dwV), éva
Baoikd TAeovékTnua Tou MpoBAeTTiKOU EAEyxou.

270 TETOPTO KEPAAQIO TTAPOUCIACeTal N e@appoyry Tou [lMpoBAeTtTikou EAéyxou oTO
EAelBepa Aiwpolpevo APZ. H un  ypauuiKOTATG TOU CUCTAMOTOC QTTAITEl TNV
YPOUMIKOTTOINGN TOU POVTEAOU TTPIV TNV €@appoyn Tou. Autd emmiTuyXavetal yéow NG Xprion
EAéyxou Baoi{opevou oto Movtého. MeTd Tn YPAPUIKOTTOINGT TOU, £QPOPUOZETAl O EAEYXOG
KOl OTO XWPO TwV apBpwoewv aAAd kai oto Kapteolavé emmitredo. EmimmAéov, TTapartiBetal o
oxedlaopog Tou PID EAEyyou o otroiog Ba gival Xprio1og yia TRV oUyKpIion.

2T0 TTEPTITO KEQAAQIO TTOPOUCIAOoVTal OI TIPOCOUOIWCEIG Kal Ta didgopa oevapia TTouU
MEAETABONKav. To TTPWTO CEVAPIO TTEPIEXEI TNV CUYKPION TwV OUO avaPEPOUEVWV EAEYXWV YIA
Kivnon otov Kapteoiavd xwpo, O0tav 0 oTOXOG eival oTaBepdG Kal evwy €@appolovTal
oT0BePEG DlATAPAXEG OTOUG ETTEVEPYNTEG TOU PBpaxiova. To deUTepo oevdaplo €xel TOV idIO
oXeOIOONO TPOXIAG WE TO TTPWTO JOVO TTOU G€ AUTO Of TTAPAPETPOI TOU MOVTEAOU (UAKN, HACES
Kal potrég adpdvelag) dev gival akpIBwg yvwoTéG. To oevdplo autd TTEPIEXEl €TTIONG
Tpocopoiwon Monte-Carlo. 210 TpiTo oevapio 10 AP éxel mdaoel kai otabepoTtroifoel AdN
TOV OTOXO, TOU OTTOioU O TTapAUETPOI Bev gival akpIBeig, Kal emOuUUEl va KivnBei oTo XWpo
TWV apBpwaocwyv. To TEUTITO CEVAPIO TTAPOUCIALEl TNV ATTOdOCN TWV VOPWY eAEyxou OTav
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eUTTEPIEXETAI BOPUBOG OTIG PETPNOEIC. € AUTO TO OEVAPIO ETTIONG, O OTOXOG dev Bewpeital
o1a0epd¢ alNG KiveiTal e oTaBePr) OXETIKA TaxUTNTA.

270 €KTO KOl TEAEUTAIO KEPAAQIO QVAPEPOVTAI TA CUUTTEPACHATA TNG £PYOCiag KaBWG Kal
Ol TTPOTACEIS yIa JEANOVTIKN €PEUVA.

2  KivnuaTtiki & Auvapiki EAeUBepwv
Alwpoupuevwy AlaoTnHIKWYV Poutrotikwyv
2UCTNHATWYV

O €éAeyxog kal ouykekpipéva o ‘EAeyxog Baoiopévog oto MovTélo atraitei akpifr] yvwaon 1ng
KIVNUATIKAG Kal OUVAMUIKAG TOU OUOTAUATOG. To oUoTnPa TTou HeAETdTal OTn TTapoucd
oImAwpaTik eival éva EAelBepa Alwpouuevo APZ pe éva Bpoaxiova pe 3 Pabuoug
eAeuBepiag. To peAeToupevo cuoTnUa @aiveTal oTo ZXAMA 2-1. H peAéTn yiveTal pe Baon Tig
TTPOUTTOBETEIG OTI O €€WTEPIKEC OUVAMEIC TTOU evepyoUv oTto APZ (1m.X. Ouvaun atmd To
HayvnTIKO Kal BapuTiko 1Tedio TG NG A avtioTaon Tng atnéo@aipag) Bswpouvtal INOEVIKES
N apeAnTéec. H ypauuikh opun kai n otpopopun Tou APZ BswpoulvTal eTTiong MNOEVIKEG.

Body 3

O e
Inertial
Frame

& Body CM
@& Body Barycenter

ZxAua 2-1. Emimedo EAelBepa Aiwpoupevo APX pe Popmoriké Bpayxiova 3 Babuwv
EAeuBepiag (a) Mewperpikég & Auvapikég Mapduerpor (b) Mapdperpol Twv
BapUkevTpwyv.

Aaupdavovtag uttown auTég TIG TTPOUTTOBECEIG, N BE€0N Kal N TTEPIOTPOPr) TOU TEAIKOU
onpeiou dpdong Tou Bpayxiova divetal aTro:

Xe =aC, + b Co,+0, T CCo, 4000, T d Co, +ap+a,+,

Ye =88, +DSy o +CS; g0, 1050 10,0 (2-1)

0. =60,+0,+0,+0,

OT1TO0U:

3/16



ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

rnOrO
M
— m0|l+(m0 +m1)rl
- M
co (my +m)L, +(my +m, +m,)r,
M
_ (my +m, +m,)l, .,
M
M=m,+m +m,+m,

a=

b

(2-2)

d

H avtioTpo@n KIivnuaTiK TTPOKUTITEl JE TNV AVTICTPOPN TWV TTAPATTAVW E£CICWOEWY WG
TTPOG TIG YWVIEC TV apBpWOoEWV.
H ypaupikh Taxutnta Tou TeEAIKOU onueiou dpdong divetal atro:

e =R, (Ojngo + 0‘]12Q)
Cc

0 =S,
R 0 — o [
]

0

—(b Sg T CSqq, TS (2-3)

0= %*’%‘*’%)
ju(a)= ) ;
a+bc,+cc, ., +dc,

h+02+03

ds

_(bsfh + CSQN‘QZ + d S%‘*’Qz‘*’% ) _(Csoa‘*'% + d S%‘*’Qz*‘% ) - G +0z+03

0‘]12 (Q):

bc, +cc, ., +dcC CCy.qtdC dc

G +0z+03 G +0z+03 Gy +0z+03

&1Tou o €ival N ywvia TEPIGTPOPAS TS BAoNng kai g = [01 02 gs]".
H ywviakn Tax0utnTa Tou TeAIKoU onueiou dpaong divetal atro:

9E290+0j22q
szz(q):[l 1 1]

A6yw TnG UTTapéng TNG ywviag TTEPIOTPOPAS TNG BAoNG wg PETABRANTA, atraiteital pia
aKOPn €giowon yia va emAuBei 10 TTPOPANUa. Auti n egiowon divetar amd TNV apxn
dlaTrpnNaon TG OTPOPOPHAG CUPGWVA PE TNV OTToIA:

(2-4)

hey = D6, +°D,g (2-5)

ME:
°‘D="D,+°D,+°D, +°D,
"D, =| °D,+°D,+°D, °D,+°D, °D,]

onN _

Dy =8y +84; C, + 85 C i, + aml, Coprap+as (2-6)
0
D, =a, oty +35,C, + bm,|, Copra,

0
D, =8y, Cq.q,+ &, Cy +8p HCMylyC

0
D, =a, +cm,l, Co, T bm,l, Coprg, T am,l, Copraiay

4/16



ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

otou a, b kai ¢ divovral atd EE. (2-2) kai:

My (M, +m, +m, ) ry

=1
aOO 0+ M
" :moro[ll(m1+m2+m3)+r1(m2+m3)]
' M
a, = m0r0[|2(m2+m3)+r2m3:|
? M
a1+ momyl7 +m, (m, +m3)rl|\2/|+ m, (m, +my)(l, +1,)° o
. :[Ilmo+(m0+m1)r1][lz(m2+m3)+m3r2]
’ M
— +m2m3r22+m2(m0+m1)I§+m3(m0+m1)(|2+r2)2
22 2 M
m,(m, +m, +m,)I1?
3.33=|3+ 3(0 Ml 2)3

To 4x4 olUoTnua TToU TTPOEKUWE euTTepIEXEl TNV lakwflavh Tou CuoTAUATOG, N
dlakpivouoa Tng otoiag divel Ta onueiad oTa OTToia YTTOPEI va EPQAVICTOUV AUVAUIKEG
IdlopopeicEG:

_ ab"D,s, +bc’Dys, —ac’D;s, ., -
- D (2-8)

TéAoG, n dUVAUIKN) TOU CUCTANOTOG, £TTEITA aTTd £Qapuoyr Tng HeEBSdou Lagrange diveral
aTro:

det(J7)

H(@)G+C (0,6, hey )d+9, (@, hey ) =T (2-9)
OTTOoU:
H(g) =°D,, - °D; °D™*°D,

Oqu :iio':: ODij OFj

j=1 i=1
C(9,4,hey)=C+C,
G(QTOOD1°Dq)+6(°quq)_la(qT°qu)_6(°D;°D“’qu)
aq aq 2 0q aq
a(onloD;) 6(0D710Dq)

C,(d,hey ) =hgy, aq - o9

a(°Dt
O :%hczM %

OFk:[ORl ORk 03(N—k)]

(2-10)

C(q,q)%
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3 [lpoBAetrTik6g EAgyyxog (MPC)

O 6pog «MpoPAettTikdg ‘EAeyxos» (MPC) avagépetal o€ pia opdda aAyopiBpwy eAéyxou pe
O1d@popa Kolva XapaktnpioTiKa. OAol XpnoIKoTTolouy éva JOVTEAO PE OKOTTO Vo TTPORAEWOoUY
TNV €6000 TOU WPEAETOUNEVOU CUCTHHOTOG evw TTAPAAANAG eAAXIOTOTTOIOUV Wia ouvdaptnon
kéoToug. EmimmAéov, xpnoigotrololv Kivouuevo opifovia mpoRAewng (receding horizon),
OnAadn n TeAIKN XPOVIKNA OTIYUA TNG TTPORAEYNG CUVEXWGS AUEAVETAI 000 AUEAVETAI O XPOVOG
EVW TTaPAGAANAa e@apudletal POvo n apxIKA TIMA Tou CAPAOTOC gAéyxou oTo cuoTtnua. O
€Aeyxog TTou Ba peAeTnBei o€ auTh TN DITTAWUATIKA £pyaoia gival £évag ypapuikog MPC TTou
XPNOoIUoTToIEi State-space PovTéAo.
‘E0TW 6T n d1aTagn mmou €mOupeiTal va eAeyxBei TTeplypd@eTal atro:

Xy (1) = ApX, (1) + B u(t)
y(t) =Cpx, (1)

OTTOU Xm €ival n HETABANTA KATAOTAONG, U €ival n €icodog Kal Y n £€€000G evw o1 TTivaKeG Am,
Bm, Cm éxouv oTaBepég TIPEG.
To povtého TTou Ba eAeyxBei TTpoépxeTar amd Tn dlAQoOPOTToiNcN TNG TTAPATTAVW

egiowong:
%07 [A oL ®] Bl |
X(t) :{ 710 }_[Cm quj{ " }{qum}u(t) = Ax(t) + Bu(t)

yt)=[o, quq]{xym(g)} _ ox(t)

MNa tnv PEAETN TOUu eAEyxou o€ Ouvexn XPOvo, N TTaPAywyoG TOU OHUOTOG €AEYXOU
TPETTEI VA TTPOCEYYIOBEI XpNOIMOTTOIWVTAG OpBOKAVOVIKEG ouvapTioelg. ETmAEXBnkav ol
Laguerre cuvapTrOEIG TTOU TTEPIYPAPOVTAI ATTO TIG EEICWOEIG:

L(t) =e™'L(0)

(3-1)

(3-2)

-p O ... O 1

=2p - 0 1 3-3
pue A=l . ..p . .| Ko L(0)=«/2p: (3-9)

=-2p ... -2p -p 1

OTTOU N TTAPAPETPOG P ovopdadeTal TTapdyovTag KAigokag, €ival TTpodiaypa®ry oxediaouou
(6w ka1 o apiBuds Twv Laguerre ouvaptoewv N) kal kaBopilel Tov ekOETIKO pubuod
MEIWONG TWV CUVAPTHOEWV.

XpNOIYOTTOIWVTAG TIG OUVAPTACEIG QUTEG, 1N TTApAywyog Tou ORUatog eAEyyou
mTepIypaQeTal aTTo:

Ui(T)Zith(t):Li(T)Tni i=12,...m (3-4)
j=t

6trou i = [C1 C2 ... Cn]T €ival TO DIAVUOUG TWV GUVTEAETTWOV.
Oewpwvtag 0TI N oUVAPTNON KOOTOUG diveTal atrd Tnv egiowon;:
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T . .
J= jop (X(t +7]t) Qx(t +7]t) +u(r) Ru(z))dr 0<7<T, (3-5)
atrodelkvueTal OTI EAayioToTTOIEITAI OTAV I0XUEL
n=-Q7"¥x(t)
T, T T A (3'6)
s Q= jo ®(7)Q®(r)"dr +R, & V= jo ®(r)Qe™dr 0<7<T,
evw o Trivakag @ (t) divetan atrd TNV €TmiAucon TNG £gicwong:
Ag;()" —®,(r)' A, =-BL,(z)" +e*BL,(0)" i=12...m (3-7)

Aedopévou 611 dlatnpeital JGvVo N TTPWTN TIKF Tou ONUATog eAéyXou KABe TTpOBAEWNG, N
TTAPAYWYOGS TOU OANATOG EAEYXOU TEAIKA diveTal ATTO TN OXEON:

Ll(O)T 0, 0, n,
T
ay=| O RO O
0, 0, N @ || n,
(3-8)
Ll(O)T 0, 0,
: : " : y(t)—yq(t)
0, 0, N ()’
EVW TO Orpa eAEyxou diveTal atrd TNV OAOKARPWON TNG TTapaTTdvw £&iocwaong:
t .
u(®) = [ u()dy (3-9)

O MPC éxel 10 TTAEOVEKTNUA TNG €UKOANG €1I0QYWYNG TTEPIOPIOPWY (€10680u A/Kal
€€000U). MNa va eicaxBouv TTPETTEl va £XOUV Tn HOPYNA:

Aconstrn <b (3-10)

XpnoiyotroiwvTtag Tn péEBodo BeAtioTotroinong «Hildreth’s quadratic programming
procedurey, BpiokovTal Ol TIUEG TOU 1] TTOU IKAVOTTOIOUV TOUG TTEPIOPICUOUG.
O1 replopiopoi 10600V TOU OAPATOG EAEYXOU TTPOKUTITOUV aTTé TN OX£0N:

{ AtL(0)" }1 { U, —u(t —At) } 311)
_AtL(O)T _(umin - u(ti - At))

EVW Ol TTEPIOPICHOI TNG £E6B0UG 1 TNG METABANTAG KATAOTAONG ATTO TNV OXEON:

X —AX_ <bL(0)'n(t)<x,, —Ax, (3-12)

min
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4 Eo@appoyn MNpoBAetrTikou EAfyxou og EAsuBepa
Alwpoupevo AlacTnHIKG POUTTOTIKO ZUOTNHHO

2€ auTO TO KEPAAQIO MEAETATAI O OXEDIAOMUOG Twv VOUWY eAéyxou yia éva EAe0Bepa
Alwpoupevo APZ. Ottwg avagépBnke Tponyoupévwg, n Xpnon EAéyxou Baoilousvou oto
MovTéAo gival atrapaitntn yia TNV ypauuiKoTroinon tou cuotAuartog. MNa 1o Adyo autod, ol
vouol eAéyxou TTou peAeTwvTal gival o Model Based PD Controller, o Model Based PID
Controller kai o Model Based PD Controller with an auxiliary MPC Input. O1 dUo TeAeuTaiol
Ba ouykpIBOUV OTO ETTOPEVO KEPAAQIO.

ZUYKEKPIYEVa, yia Kivnon oTo Xwpo Twv apbpwoewv, o Model Based PD Controller
Teplypd@eTal amod Thv e€icwon;:

T=H|:iid +Kp (qd _q)+KP (Qd _Q)]+C*q+gh (4-1)

otmou Kb kai Kp gival 3x3 diaywviol TTivaKEG TTou TTEPIEXOV Ta KEPDN Tou PD KoppatioU Tou
eAéyxou Kal kaBopifouv TN SUVAUIKF CUPTTEPIPOPA TOU CUCTHHATOG.
O Model Based PID Controller repiypdgetar amo:

T= H[qd +KD (qd _q)+KP (qd _q)+K| Lt(qd (X) —q(x))dx}+C*q+gh (4'2)

otrou K gival emmiong 3x3 diaywviog TTivakag.
O Model Based PD Controller with an auxiliary MPC Input repiypdgeTal amo:

r:H[ijd +Kp (4, —4)+ K (qq —q)+uMF,C:|+C*(1+gh (4-3)
OTTOU TO OAua TToU TTPOEPXETAl aTTd Tov MPC atraitei TNV epapuoyn Tng peBodoAoyiag 1Tou
TTapouoidoTnke o1o KegdaAaio 3. To povréAo oTo o1Toio e@apuodetal o MPC divetal arro:
X, () =A,X,({t)+B, u(t)
y(t) = C.x, (1) (4-4)

B Xml ei 0 1 0 .
with x,_ = ™ |=|'|, A, = , B, = , C,=[1 0], i=1,23
Xm,2 € _KP,i _KD,i -1

MNa tnv kivnon otov Kapteolavd Xwpo, O POTTEG TwV ETTEVEPYNTWY OivovTal atmd Tov
TUTTO:

t=J'f (4-5)

otou J n lakwpiavi Tou CUCTAPATOG.
Oewpwvtag INOEVIKA OTPOPOPUN], O BUVAUIKEG e€lowatlg Tou APZ yia va Trepiypdyouv
TNV Kivnon otov KapTteoiavd XWpo PETATPETTOVTAI O€:

H (9,6,)%+C.(q,6,6,,6,)x=f=J"1 (4-6)
OTTOoU:
H (q,6,)=J"HJ™"

. ' 4-7
C;(0,6,6,,6,) =37 (C =HI™3) 3" (4-7)
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ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

AvTioTOIXO HE TOV EAEYXO OTOV XWPO TwV apBpwoewyv, otov KapTteoiavo Xxwpo o Model
Based PD Controller repiypd@etal ammo tnyv e€iowon;:

f=H, [, +K, (X, —%)+K, (X, —x) ]|+ Cx

(4-8)

t=J'f
O Model Based PID Controller trepiypd@etal amo:
s O . t * .

f=H, [xd + K, (% — %)+ K, (x4 —x)+K, _[O(xd (4) —x(l))dﬂ}rcxx (4-9)

t=J'f
evw o Model Based PD Controller with an auxiliary MPC Input Trepiypdagetal ato:
f=H [%, +Kp (X =X)+Kp (Xg =X) +Uype |+CiX (4-10)

t=J'f

O1 TTpocouoIWCEIG TNG TTAPOUCAG £PYACiag TTPAYUATOTTOINONKAV OTO TTEPIBAAAOV TOU
Matlab/Simulink pe Tnv xprion duvauikoU povTéAou dnuioupyouuevou oto MSC Adams. ZT10
2xAua 4-1 gaivetal To APZ £101 OTTWG avatrapioTartal ammd 1o Adams.

(a) (b)

ZxAua 4-1. Eikéva TOU pPOVTEAOU TIOU XPNOIMOTIOIEITAI YIO TRV AVATTAPAoTACn TOU
HeAeToUpevou AP oto MSC Adams (a) Kdtown, (b) loopeTpiky Own,.
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ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

5 nMpooopoiwosig & Mepimrrwoeig MeAéTng

210 Ke@AAalo autd ouykpivovtal o Model Based PID Controller ye to Model Based PD
Controller with an auxiliary MPC Input pe Bdon ta o@daAuaTta, TIS POTTEG KAl TOV UTTOAOYIOTIKO
XpPovo yia 4 oevdpia. O Mivakag 5-1 TTapouciadel TIG TTApaUETPOUG Tou JeAeToupevou AP,

Mivakag 5-1. Mapduerpor APE.

Body Mass-mi Momentof Inertia-li Before-CM Length-li  After-CM Length - r;
(kg) (kg'm?) (m) (m)
0 600 500 - 1.4
1 40 20 1 1
2 40 20 1 1
3 20 15 0.25 0.25

5.1 Zevapio 1: Ztafepég AlaTapaxEg

MNa 1o oevdpio autd, TTOAUWVUHA 5" TAENG xpnaiyoTroindnkav yia Tov oxediacud TnNG TPOXIAg
otov Kapteolavd xwpo. O o1éxog Bewpribnke oTtaBepds. O TINEG Twv dIATAPAXWY TTOU
eQpapuéoTNKAV OTIC apBpwaelg Tou Bpaxiova givai:

d=[12 6 4] (Nm) (5-1)

O1 €CloWwoeIg TWV CUYKPIVOUEVWY VOUWV eAéyxou TTapoucidlovtal OTO TTPOoNyoUHEVO
KepdaAaio. Ta kEpdn TTou epapudéoBnkav atov Model Based PID Controller €ivai:

K, =diag(18.0768,18.0768,18.0768)
K, =diag(136.1545,136.1545,136.1545) (5-2)
K, =diag(427.2981,427.2981,427.2981)
evw Ta kEPON Tou Model Based PD Controller with an auxiliary MPC Input kaBwg kai ol
AoITrég TTapdpeTpol auTtou eival:
Ko wee = diag(10.5448,10.5448,10.5448)

5-3
Ky wee = diag(56.7310,56.7310,56.7310) -3)
p=55110, N =10, T, =6s
000 54
Q=C'C=|0 0 0|, R=10"°
00 1

210 2ZXAMa 5-1 Trapoucidalovial Ta OQAAPaTa Twv OUO eAéyxwv yia MPC  xwpig
TeplopIopoug. Eival mpogavég OTl 0o €Aeyxog pe TOov MPC  TTapouciddel  KaAUTEPN
OUMTTEPIPOPA. ZUyKeKpIPEVA, 0 MPC emmituyXAvel:

o  43% peiwon Tou COAAPATOG TNG X-ZUVTETAYHEVNG

o  43% peiwon Tou EAAUATOG TNG Y-ZUVTETAYHEVNG

o 43% pegiwon Tou cOAAPATOG TNG TTEPICTPOPNAG
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ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

<10°° ] _ x10™* ] ) )
[ PID - —)
------ PD-MPC o |===PD-MPC|

----- PD-MPC| L S

12} | Of & [
51 - :
-0.01) &

01 (deg)

Error of x-Coordinate xpy — xp(m)
Error of y-Coordinate yzy — yp(m)

Error of Orientation 65y
S
o
&

IxAupa 5-1. Ze@dAparta Mpaypatikng kai EmBupuntAg TipAg Twv Meyebwv Tou TeAIKoU Znpeiou
Apdong yia 1o 1° Zevdpio (a) x-Zuvtetaypévn, (b) y-Zuvrtetaypévn, (c) MepioTpoen.

Eg@apudlovrag trepiopiopgous otov MPC n atrdédoon tou eAéyxou PTTopei va BeATIWOEI
OKOUN TTEPICOOTEPO. ZUYKEKPIMEVA, EI0AYOVTAI Ol TTAPAKATW TTEPIOPICHOI PEXPI TN XPOVIKA
otiyury t = 0.01s:

Xpe =[10° 10° 1077/180]

(5-5)
Ximin = ~Xnax
EVW YIa ao@AAgIa eI0AyOvVTal KOl TTEPIOPITHOI OTIG £10000UG:
T
u_=(05 05 05
o= ] (5-6)
Unin = ~Upax

Me autoUg Toug TTEpIOPIoUOUG, 0 MPC TreTuxaivel:
e  90% peiwon Tou COAAPATOG TNG X-ZUVTETAYHEVNG
o 80% peiwon Tou EAAUATOG TNG Y-ZUVTETAYHEVNG
e  96% peiwon Tou OAAPATOG TNG TTEPICTPOPNG
TENOG, o1 PEYIOTEG ATTAITOUPEVEG POTTEG KAl YIa TIG OUO TTEPITITWOEIS Eival ioeg yia GAOUg TOUg
eAEyXoug evwd TTapatnPEnRBnke 6T 0 XpOVOG TTPOCOMNOIWONG TWV VOPWY EAEYXOU €ival OXETIKA
id10G.

5.2 Zevapio 2: Mapaperpik ABeaidéTnTa

MNa 10 ogvaplo autd, O OXeDIAOPOG TPOXIAG €ival iDIOG PE QUTOV TTOU TTAPOUCIACTNKE OTO
2evapio 1. EmimAéov, o1 vépol ehéyxou éxouv etmiong TIG idieg TTapapéTpousg. QoToC0, 6w
oev epapudlovtal oTaBepEg diatapaxég aAAd Bewpeital 0TI o1 TTapaueTpol Tou APX dev gival

OKpIBEIG.
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ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

2UYKEKPIYEVA, TTPaYHaTOTTOIEITAI Hia TTpocopoiwon Monte-Carlo pe 200 KUKAoug oTOUG
oTToioug ol TTapdueTpol Tou APZ AauBdvouv Tuxaieg TINEG GUPQWVA WE:

0'95Ii,nominal < Ii S:l"05|i,nominal i=1-3
0'95ri,nominal < r| Sl'osri,nominal 1=1-3
i (5-7)
0'95mi,nominal < m; S:l"OSmi,nominal 1=1-3
0'80m0,nominal S mO S:I"OSmO,nominal

O Mivakag 5-2 TTapouaciadel Ta PEYIOTA COAAPATA KAl TWV OUO VOPWY EAEyXOU KABWG Kal
TIG TTapapéTpoug Tou APZ yia TIG OTToieg auTd TTPOoKUTITOUV. Eival eppavég 0TI Kal o€ auTr Tn
TTEPITITWON 0 éAeyX0G TTou TTEPIEXEI TOV MPC €x€1l KaAUTEPN aTTOdOoon.

Mivakag 5-2. Méyiota Z@dAuata Tng NMpooopoiwong Monte-Carlo kal ol TTapAUETPOI TOUG.

XE,d - Xd YEd - Yd Ok.d - 04
Maxpip 7.919-10° 7.176-10° 18-10%
MaXpp-mpc 3.925-10° 3.645-10° 8.818:10*
mo (kg) 540.9 595.1 510.7

(m1, mz, m3) (kg)  (39.81,41.80,20.98)  (38.65,41.51,20.77)  (38.61, 40.82, 20.93)
ro (M) 1.384 1.376 1.364
(r, 1z, rs) (m)  (1.019, 1.046, 0.2576) (0.9631, 1.046, 0.2534)  (1.016, 1.042, 0.2511)

(Ig, I2, I3) (m) (1.042, 0.993, 0.244) (0.9611, 1.037, 0.2552) (0.9631, 1.049, 0.2405)

2710 ZxNua 5-2 gaivovtal Ta o@AApata oTav epapudlovTal ol TTapAaueTpol Tou AP yia Tig
OTTOIEG TTPOKUTITOUV TA PEYIOTA OQPAAUATA TNG X-ZUVTETAYHEVNG TOU TEAIKOU onpeiou dpdong.
Mapatnpeital 6T Ta diaypduuata dev ouykAivouv oT1o pundév. Autd To TTPORANUG UTTOPE va
QVTIMETWTTIOTE HEPIKWG EI0AYOVTOG TTEPIOPIOHOUG aTov MPC. Zuykekpipéva, epapudlovTal ol
TTAPAKATW TTEPIOPIOUOI aTTO TN XPOVIKA OTIyuA t = 4.55 péxpl 10 TEA0G TNG TTPOCONOIWONG:

Xpe =[5-10° 5:10° 5.10°7/180]

(5-8)
Xiin = ~Xinax
EVW YIa ao@AAgia el0&yovTal Kal TTEPIOPITHOI OTIG £10600UG:
T
u. =[2 2 2
| ] (5-9)
Unin = U

To ZxApa 5-3 Tapouciddel Ta oeaAuara otav e@apuolovTal ol TTAPATTAvW TTEPIOPICOI.
Eivai eppavég 611 0 MPC emmituyxdvel Tn oUykAion Tou diaypduuaTog TNG TTEPIOTPOPNG.
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ExTevAg MepiAnwn AimAwpatikAg Epyaaiag

%107

8 T

##n%PD-MPC

'S
=

o N
o

'
-

)
Error of Orientation 6y, — 0 (deg)

Error of x-Coordinate zpy — zp(m)
Error of y-Coordinate ypys — yg(m)

A
)

6 " L 3 L L

(a) (b) (c)
ZxAua 5-2. Z@dApata MpaypartikAg kal EmlupuntAg TipRg Twv MeyeBwv Tou TeAikoU Znueiou
Apdong yia 1o 2° Xevdpio (a) Xx-ZuvTeTayuévn, (b) y-Zuvrtetaypévn, (c) MepioTpoen.

-5 -5 -4
8 ‘x 10 : . 3 %10 ‘ g X 10 ‘
w— P|D ‘ s P|D ‘ w—P|D
ss==iPD-MPC/| ssu=PD-MPC| s=auiPD-MPC

(=) =Y

'
-

Error of y-Coordinate ypy — yr(m)
Error of Orientation 0, — 0x(deg)

Error of x-Coordinate xp; — xp(m)

'
N

6 . . 3

t(s) t(s)
(@) (b)

ZxAua 5-3. Z@dAparta Mpaypatikng kai EmBupnTtAg TipAg Twv MeyeOwv Tou TeAIKOU Znpeiou
Apdong yia 10 2° Zevdplo Kal g@appofovrag MPC pe treplopiopoug (a) x-
TuvrteTaypévn, (b) y-Zuvrerayuévn, (c) MepioTpoen.
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Exteviig MepiAnwn AimmAwpatikng Epyaciag

5.3 Zevdpio 3: Metakivnon Ztéxou Atrpoodidpiotng Madag

2T0 0evdApIO AUTO TTAPOUCIAETal N HETAKIVNON €VOG AvTIKEIMEVOU TTou €xel Tdoel To AP kai
TOU OTTOIoU Ol TTapPdpETPOI dev gival akpIBeic. O oxedIaoudg TPOXIAG TTPAYUATOTTOINONKE OTO
XWPO TwV apBpwoewv XpnoihotToiwvTag TToAuwvupa 5" 1déng. O lMivakag 5-3 Tapouaiadel
TIG TTOPAPETPOUG TOU QVTIKEINEVOU-OTOXOU.

Mivakag 5-3. MapdueTpol £T6X0U.

Captured Object Nominal Value Estimated Value
Mass ms (kg) 200 220
Moment of Inertia s (kg-m?) 100 110
Distance rs (m) 0.8 0.76

2170 ZXAHa 5-4 TTapouciddovTal T OQAAMOTA TWV YWVIWV Twv apbpwocwyv. Eivai
TTPOQavES OTI 0 EAeyx0G HE ToV eTTITTAEOV Bpoxo MPC éxel kaAUTepn amddoon atmd Tov GAAo
VOUO €AEYXOU. ZUYKeEKPIUEVA, 0 MPC TTeTUXQIVEL:

o 52% peiwon Tou o@AAuaTog TNG ywviag g 1" ApBpwong
o 52% peiwon Tou c@AAPATOG TNG Ywviag NG 2" ApBpwong
o 56% peiwon Tou o@AAUaTog TNG ywviag Tng 3" ApBpwong

-4 -3 103
g 210 - : ] pg 200 r : | F L T -
w— P|D | e P| D s P| D
[smen PD-MPC| [smmn PO-mMPC| | |emem PD-MPC
<4 2
’
15}
$ $ S 05y
S S 1 =
i T
3 g 05 g’
< < 9 < 057
= o =
5 505} 8
-1
51
15F
10 2 ; 2
0 2 4 6 0 2 4 6 0 2 4 6
t(s) t(s) t(s)
(a) (b (c)

ZxAua 5-4. Ze@dAparta Mpaypatikig kai EmOupntig TipAg Twv MNuviwv Twv ApBpwoewv yia
10 3° Zevdpio (a) 1" ApBpwan, (b) 2" ApBpwon, (c) 3" Apbpwon,.
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Exteviig MepiAnwn AimmAwpatikng Epyaciag

5.4 Zevapio 4: O6pupog

270 0evApPIO QUTO HPEAETATAI N ATTOO00N TWV VOPWY €AéyXou OTav Ol PETPAOEIS TTEPIEXOUV
B0puBo.  2uykekpiyéva, o peTaBAnNTEG  TTou  TrepiExouv  B6puPBo  eivalr ol
0,,0,,05,0,,0,,05,6,, 605, Xz, Y, Ocs Xg, Vi, 6 v 0 ©6pUBOC akoAOUBET KAVOVIKH] KATAVOUR HE
UNOEVIKA pEON TIUA Kal HETABANTOTNTA ion pe o> =10 A o2 =10%.

MNa 10 oevdpio autd, 0 oTOXOG BewpeiTal KIVOUUEVOG OTO €TTITTEDO PE OTABEPN OXETIKN
TaxuTtnTa. 1810 TToAuwvupa 5% BaBuou XpnoIPOoTTOIoOUVTal YIa TO OXESIOONO TNG TPOXIAG UOVO
TTOU Ol TEAIKEG ETTIBUUNTEG YPOUMIKEG TaxUTNTEG Tou TeAIKOU onueiou dpdong eivalr un
MNOEVIKEG KAl CUUTTITITOUV JE AUTEG TOU OTOXOU.

Mapatnpeital 611 0 BO6puBog pe PETABANTOTNTA o2 =10"° emnpeddel eAdxioTa Tn
AeiToupyia kal Twv dUo vOpwv gAéyxou. QoTO00, 0 BOpUBOG pe PeTABANTOTNTA o2 =108
TpokaAei aioBntd TPOBAAMOTA. ZTO ZXNUaA @aivovial Ol POTTEC Twv apBpwoewv.
Mapatnpeital 011 peTaBAAAoOvVTal TTOAU aTTOTOMA £TOI WOTE va avTioTaBuioouv Tov B6pufo.
AuTo utTopei va atroteAéoel TTPORANUA yia Toug eTTevepynTéG. TEAOG, TGN TTapaTtnpeital 6T 0
VOPOG eAéyxou pe Tov MPC Bpdxo €xel KaAUTepn ammodoon KABWE oI poTTEG Tou Egival
MIKPOTEPEG eV T OQAAPATA TNG BEoNG Kal TNG TTEPIOTPOYPNS Tou TEAIKOU onueiou dpdong
gival Ta idia.

1.5

60

40t
20}
0.5
= D — —_
g 207 2 g
g = g
-40 |
X |
-60 |
80 1.5
-100 : ‘ 25 : : 2
0 2 4 6 0 2 4 6 0 2 4 6

t(s) t(s) t(s)
(@) (b (c)

ZxAMa 5-5. Pomég Twv EmevepynTtwyv Twv Apfpwoewy yia 1o 4° Zevdpio Kal yia O6pufo pe
MetaBAnToTnTa 108 (a) 1" ApBpwon, (b) 2" ApBpwon, (c) 3" ApBpwon.
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ExTevng MepiAnwn AimAwpaTikAg Epyaaciog

6 Zupmrepdaopara & MeAAovTikn Epyacia

BaolkGG OKOTTOG auTtrig TNG OITTAWUATIKAG epyaciag €ival n PEAETN TNG A€iIToupyiag Tou
TTPORAETITIKOU eAéyxou o6Tav e@apuoletal o éva EAelBepa Aiwpoupevo APZ. O okotrdg
auTdg emTEUXONKE péoa atrd Tn ouykpion Tou MPC pe évav ouvnBiopévo PID éAeyxo. Kai
oTa TEOOEpa aevapia TTou epeuvhbnkav, o MPC Ttrapoucioce OnuUavTiKa KaAUTEPN
OUPTTEPIPOPA aTTO OTI 0 aTTAGG PID. EiTe yia Kivnon oTov XWpo Twv apBpwocwy, €iTe aTov
Kapteoiavé xwpo, o MPC gixe MIKpOTEPQ OQAAPATA aTTO TIG ETTIOUNNTEG TPOXIEG OE OXEON UE
Tov atrAd PID evw o1 YéyioTeg pOTTEG TTapEPEVAY ioeg. EEaipeon atroTeAei TO TETAPTO OEVAPIO
OTO OTI0i0 evW) Ta C@AAPATa Twv U0 eAéyxwv ATav idla, o MPC atmaitouoe UIKPOTEPES
aAANaYEG TPOXIWY, TTPOCPEPOVTAG TOU £VA OKOPA TTAEOVEKTNUA.

H peAéTN auth uTTopEl va atmoTeAéoEl EQAATAPIO yia TTEpaITEpw £peuva. KaB’ 6An tnv
epyaocia, To APZ BewprBnke 6T €XEl INOEVIKI OTPOPOPHN], 0 BPaxiovdg Tou gival AKAPTITOG
Kal 611 Kiveital oTo eTTiredo. ‘Eva pealioTiké oevdpio Ba AduBave utroyIv auTéG TIG UTTOBETEIG
EVW Ba TTEPIEIXE ETTIONG KAl KATTOIO TTAPATNENTA 1 QIATPO EKTINNONG TNG KATAOTACNG YIO TOV
éAeyxo. EmmrpooBeta, 181aitepo evdlapépov TTapouaidlel kal n ouykpion Tou MPC pe dAAoug
VOPOUG eAéyxou OTTwG 0 H-infinity 1 o TTPOCAPUOCTIKOG €AEYXOG 1 aKOUa Kol pe GAAoug
TUTTOUG MPC 61TWwg 0 min-max MPC.
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