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Περίληψη 

Το διάστημα αποτελεί μία εξελισσόμενη και πολλά υποσχόμενη βιομηχανία με χώρες και 

ιδιώτες να επενδύουν τεράστια χρηματικά ποσά κάθε χρόνο. Το 2021 σημειώθηκε ότι πάνω 

από 6000 δορυφόροι βρίσκονταν σε τροχιά γύρω από τη Γη. Η μεγάλη αύξηση του αριθμού 

των δορυφόρων απαιτεί τη διοργάνωση διαστημικών αποστολών οι οποίες θα παρέχουν 

ένα μεγάλο εύρος υπηρεσιών σε τροχιά. Οι πιθανοί κίνδυνοι του διαστήματος καθιστούν τα 

διαστημικά ρομποτικά συστήματα ως τη καταλληλότερη επιλογή για να φέρουν εις πέρας 

αυτές τις εργασίες. 

Σε αυτή τη διπλωματική εργασία, χρησιμοποιείται ένας Προβλεπτικός Έλεγχος (MPC) 

για τον έλεγχο του βραχίονα ενός διαστημικού ρομποτικού συστήματος σε πολλά 

διαφορετικά σενάρια. Ο νόμος ελέγχου συγκρίνεται με έναν συνηθισμένο PID έλεγχο με 

σκοπό να προσδιοριστούν τα πλεονεκτήματα και τα μειονεκτήματά του. Αρχικά, παρατίθεται 

η θεωρία της κινηματικής και της δυναμικής ενός Ελεύθερα Αιωρούμενου Διαστημικού 

Ρομποτικού Συστήματος (ΕΑΔΡΣ) όπως και η θεωρία του σχεδιασμού του MPC -με και 

χωρίς περιορισμούς-. Όταν το σύστημα είναι Ελεύθερα Αιωρούμενο, το σύστημα ελέγχου 

της βάσης είναι απενεργοποιημένο και λειτουργεί μόνο το σύστημα ελέγχου του βραχίονα. 

Διάφορες προσομοιώσεις πραγματοποιούνται χρησιμοποιώντας ένα επίπεδο ΕΑΔΡΣ με 

έναν βραχίονα 3 Βαθμών Ελευθερίας (ΒΕ). Οι προσομοιώσεις γίνονται χρησιμοποιώντας το 

Matlab/Simulink καθώς και το λογισμικό MSC Adams. 

Τα μελετούμενα σενάρια περιέχουν διαφορετικές αποστολές με διάφορους σχεδιασμούς 

τροχιάς και εμπόδια (όπως διαταραχές, παραμετρική αβεβαιότητα και θόρυβο) που ίσως 

αντιμετωπίσει ο νόμος ελέγχου του ΕΑΔΡΣ κατά τις αποστολές του. Το πρώτο σενάριο 

περιέχει τη μελέτη της λειτουργίας ενός MPC όταν εφαρμόζονται σταθερές διαταραχές στους 

επενεργητές του βραχίονα ενός ΕΑΔΡΣ. Αυτές οι διαταραχές μπορεί να προέρχονται από 

πιθανές τριβές που εμφανίζονται λόγω της εκτεταμένης χρήσης του βραχίονα. Ο MPC 

συγκρίνεται με έναν απλό PID έλεγχο με βάση διάφορα κριτήρια όπως το σφάλμα της θέσης 

και του προσανατολισμού του τελικού σημείου δράσης, τις προκύπτουσες ροπές, τη 

σύγκλιση του σφάλματος στη μόνιμη κατάσταση και τον υπολογιστικό χρόνο 

προσομοίωσης. Η κίνηση του ΕΑΔΡΣ, του οποίου ο σκοπός είναι να πιάσει ένα σταθερό 

σώμα-στόχο, σχεδιάζεται στον Καρτεσιανό χώρο. 

Παρόμοιες μελέτες πραγματοποιήθηκαν και για τα υπόλοιπα σενάρια. Το δεύτερο 

σενάριο περιέχει τη σύγκριση των νόμων ελέγχου όταν οι παράμετροι της διάταξης δεν είναι 

γνωστές με ακρίβεια. Πραγματοποιείται μία προσομοίωση Monte-Carlo για 200 

διαφορετικούς συνδυασμούς παραμέτρων και οι έλεγχοι συγκρίνονται με βάση τα σφάλματα 

και τις ροπές. Η κίνηση σχεδιάζεται στον Καρτεσιανό Χώρο για σταθερό στόχο. Στο τρίτο 

σενάριο, παρουσιάζεται η σύγκριση των νόμων ελέγχου, όταν το ΕΑΔΡΣ έχει ήδη πιάσει και 

σταθεροποιήσει έναν στόχο απροσδιόριστης μάζας με σκοπό να τον κινήσει. Η κίνηση του 

ΕΑΔΡΣ για αυτό το σενάριο σχεδιάζεται στο χώρο των αρθρώσεων. 

Τέλος, στο τέταρτο σενάριο, δύο διαφορετικά είδη θορύβου εισέρχονται στις 

μετρούμενες μεταβλητές και η λειτουργία κάθε νόμου ελέγχου ελέγχεται με βάση την 

ικανότητά του να αντισταθμίζει τον θόρυβο. Η κίνηση του ΕΑΔΡΣ σχεδιάζεται στον 

Καρτεσιανό χώρο. Ωστόσο, ο στόχος δεν θεωρείται σταθερός αλλά κινείται με σταθερή 

σχετική ταχύτητα. Επομένως, τα σφάλματα των τελικών ταχυτήτων του τελικού σημείου 

δράσης λαμβάνονται επίσης υπόψη για τη μελέτη.  
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Abstract 

Space constitutes a nascent and promising industry with countries and individuals investing 

a tremendous amount of money every year. By 2021, more than 6000 satellites were 

orbiting Earth. The immense increase in the number of satellites mandates the organization 

of missions which would provide a wide range of on-orbit servicing operations. The potential 

dangers of space render space robotic systems the most appropriate choice for these tasks.  

In this thesis, a Model Predictive Controller (MPC) is used for the control of the 

manipulator of a space robotic system for a variety of different scenarios. The controller is 

compared to a regular PID Controller to manifest its benefits and shortcomings. Firstly, the 

kinematics and dynamics of a Free-Floating Space Robotic System (FFSMS) as well as the 

theory for the design of the MPC -with and without constraints- are presented. When the 

system operates in Free-Floating mode, the controller of the base is turned off and only the 

manipulator’s controller is active. A plethora of simulations is performed using a planar 

FFSMS with a single manipulator of 3 Degrees of Freedom (DoF). The simulations are 

conducted using Matlab/Simulink as well as the Multibody Dynamics software MSC Adams. 

The studied scenarios involve different missions with various path planning techniques 

and impediments (like disturbances, parametric uncertainties and noise) which the controller 

of an FFSMS might face throughout its various missions. The first scenario contains the 

study of the performance of the MPC when constant disturbances are applied to the joints’ 

actuators of an FFSMS. These disturbances can model the friction that might appear due to 

the extensive usage of the manipulator. The MPC is compared to a regular PID using 

various criteria like the error of the end-effector’s position and orientation, the resulted 

torques, the convergence of the errors at the steady-state and the simulation time. The 

motion of the FFSMS, whose purpose is to capture a stationary object-target, is planned in 

the Cartesian space. 

Similar studies were performed for the rest of the scenarios. The second scenario 

includes the comparison of the aforementioned controllers when the plant’s parameters are 

not accurately known but estimated. A Monte-Carlo simulation is performed for 200 different 

combinations of parameters and the controllers’ performance is compared based on the 

resulting errors and torques. The motion is planned in the Cartesian space for a stationary 

target. In the third scenario, the comparison of the controllers, when the FFSMS has already 

captured and stabilized a target of undefined mass with the intention to move it, is 

presented. The motion of the FFSMS for this scenario was planned in the joint space. 

Finally, in the fourth scenario, two different types of noise are inserted in the process 

variables and the performance of each controller is examined based on their ability to 

compensate for the noise. The motion of the FFSMS is planned in the Cartesian space. 

However, the target is not considered stationary but it moves with a constant velocity. 

Therefore, the errors of the final velocities of the end-effector have to be considered too.  

 

 

 



 
 

 
4/93 

Acknowledgments 

 

First, I would like to express my gratitude to my supervisor, Professor Evangelos G. 

Papadopoulos. I was honored to be given the opportunity to be a member of the Controls 

System Laboratory of NTUA and work on a highly interesting topic and in the fascinating 

field of space robotics. I am thankful for his constant guidance and help throughout the 

conduction of this study as well as the commitment that he showed in our slightly prolonged 

meetings to find solutions to the problems that I was facing. His problem-solving experience 

and his advice altered my engineering insight and cultivated my zeal to work in the field of 

space control systems. Secondly, I would also like to thank Dr. Konstantinos Nanos for his 

support and prompt advice, whenever I needed his help. 

Finally, I would like to thank my family for always being there for me, believing in me 

and supporting me, even though they did not realize why and what exactly I was doing. I am 

also thankful to my friends for accompanying me along the journey and always being eager 

to listen to my concerns.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  



 
 

 
5/93 

Contents 

 

Περίληψη ............................................................................................... 2 

Abstract ................................................................................................. 3 

Acknowledgments ................................................................................ 4 

Contents ................................................................................................ 5 

List of Figures ....................................................................................... 7 

List of Tables ....................................................................................... 10 

Nomenclature ...................................................................................... 11 

1 Introduction .................................................................................... 12 

1.1 Objective...................................................................................................... 12 

1.2 Bibliographic Review ................................................................................... 13 

1.2.1 Dynamics & Kinematics of SMS ................................................................... 13 

1.2.2 Model Predictive Control .............................................................................. 14 

1.3 Thesis Outline .............................................................................................. 15 

2 Kinematics & Dynamics of Planar Free-Floating Space 
Manipulator System (FFSMS) ....................................................... 16 

2.1 Introduction .................................................................................................. 16 

2.2 Kinematics ................................................................................................... 17 

2.3 Differential Kinematics ................................................................................. 20 

2.3.1 Conservation of Angular Momentum ............................................................ 21 

2.3.2 Jacobian & Dynamic Singularities ................................................................ 23 

2.4 Dynamics ..................................................................................................... 26 

3 Model Predictive Control (MPC) .................................................... 29 

3.1 Introduction .................................................................................................. 29 

3.2 Design of Model Predictive Controller ......................................................... 31 

3.2.1 Model ........................................................................................................... 32 

3.2.2 Laguerre Functions & Control Signal ............................................................ 33 

3.2.3 Prediction ..................................................................................................... 34 

3.2.4 Optimization ................................................................................................. 35 

3.2.5 Controller & Implementation ......................................................................... 36 

3.3 Constraints .................................................................................................. 37 

3.3.1 Integration of Constraints & Hildreth’s Quadratic Programming 
Procedure .................................................................................................... 37 

3.3.2 Constraints on the Amplitude of the Manipulated Variable............................ 39 

3.3.3 Constraints on the Output or State Variable ................................................. 40 



 
 

 
6/93 

3.4 Example: Design of MPC Controller for a Simple Mass-Damper-Spring 
Model ........................................................................................................... 41 

4 Implementation of Model Predictive Controller (MPC) to Free-
Floating Space Manipulator Systems (FFSMS) ........................... 44 

4.1 Introduction .................................................................................................. 44 

4.2 Design of a Controller in the Joint Space .................................................... 44 

4.2.1 Model Based PD & PID Controller ................................................................ 44 

4.2.2 Model Based PD Controller with an auxiliary MPC Input .............................. 46 

4.3 Design of a Controller in the Cartesian Space ............................................. 48 

4.3.1 Model Based PD & PID Controller ................................................................ 48 

4.3.2 Model Based PD Controller with an auxiliary MPC Input .............................. 50 

4.4 Plant Representation - MSC Adams Simulation .......................................... 51 

4.5 Example: Design of Model Based PD Controller with an auxiliary MPC 
Input for Motion in the Joint Space .............................................................. 53 

4.5.1 Path Planning ............................................................................................... 53 

4.5.2 FFSMS Dynamics & Parameters .................................................................. 54 

4.5.3 Model Based PD Controller with an Auxiliary MPC Input .............................. 55 

4.5.4 Model Based PID Controller ......................................................................... 58 

5 Simulations & Case Studies .......................................................... 61 

5.1 Introduction .................................................................................................. 61 

5.2 Scenario 1: Constant Disturbances ............................................................. 62 

5.2.1 Path Planning ............................................................................................... 62 

5.2.2 Model Based PID Controller vs Model Based PD Controller with an 
Auxiliary MPC Input ...................................................................................... 64 

5.3 Scenario 2: Parametric Uncertainties .......................................................... 71 

5.3.1 Sensitivity Analysis & Monte-Carlo Simulation .............................................. 72 

5.3.2 Model Based PID Controller vs Model Based PD Controller with an 
Auxiliary MPC Input ...................................................................................... 75 

5.4 Scenario 3: Position Captured Object of Unknown Mass ............................ 78 

5.4.1 Path Planning ............................................................................................... 79 

5.4.2 Model Based PID Controller vs Model Based PD Controller with an 
Auxiliary MPC Input ...................................................................................... 79 

5.5 Scenario 4: Noise ........................................................................................ 82 

5.5.1 Path Planning – Moving Target .................................................................... 82 

5.5.2 Model Based PID Controller vs Model Based PD Controller with an 
Auxiliary MPC Input ...................................................................................... 83 

6 Conclusion & Future Work ............................................................ 87 

6.1 Conclusion ................................................................................................... 87 

6.2 Future Work ................................................................................................. 88 

7 Bibliography ................................................................................... 90 

Appendix A – Matlab Algorithms ....................................................... 93 



 
 

 
7/93 

List of Figures 
 

Figure 1-1. Photorealistic Picture of a Typical SMS (the image was rendered using 
Solidworks)................................................................................................... 12 

Figure 2-1. Planar FFSMS with a manipulator of 3 DoF (a) Geometrical & Dynamic 
parameters (b) Parameters of the Barycenters. ............................................ 17 

Figure 2-2. Definition of Barycenter and its parameters. ................................................. 18 

Figure 2-3. (a) Curves of Angles q1 and q2 of a Planar FFSMS with a 3-DoF 
Manipulator that Singularities occur according to Eq. (2-42) (b) Workspace 
of a Planar FFSMS with a 3-DoF Manipulator. ............................................. 25 

Figure 3-1. Example of Model Predictive Control’s strategy. ........................................... 30 

Figure 3-2. (a) Block Diagram (b) General Model Predictive Controller strategy. ............ 31 

Figure 3-3. Dynamic model containing mass, damper and spring. .................................. 41 

Figure 3-4. Position and error of the Constrained and the Unconstrained MPC for the 
mass-damper-spring example. ..................................................................... 42 

Figure 3-5. Control force of the Constrained and the Unconstrained MPC for the 
mass-damper-spring example. ..................................................................... 43 

Figure 4-1. Block Diagram of the Model Based PD Controller applied to a Planar 
FFSMS in Joint Space. ................................................................................. 46 

Figure 4-2. Block Diagram of the Model Based PID Controller applied to a Planar 
FFSMS in Joint Space. ................................................................................. 46 

Figure 4-3. Block Diagram of the Model Based PD Controller with an auxiliary MPC 
Input applied to a Planar FFSMS in Joint Space. ......................................... 47 

Figure 4-4. Block Diagram of the Model Based PD Controller applied to a Planar 
FFSMS in Cartesian Space. ......................................................................... 50 

Figure 4-5. Block Diagram of the Model Based PID Controller applied to a Planar 
FFSMS in Cartesian Space. ......................................................................... 50 

Figure 4-6. Block Diagram of the Model Based PD Controller with an auxiliary MPC 
Input applied to a Planar FFSMS in Cartesian Space. .................................. 51 

Figure 4-7. Picture of the MSC Adams Model used to represent the studied FFSMS 
(a) Top View, (b) Isometric View. .................................................................. 52 

Figure 4-8. Desired Trajectories (a) Angle, (b) Angular Velocity, (c) Angular 
Acceleration. ................................................................................................ 54 

Figure 4-9. Snapshots of the Motion of the FFSMS in the ADAMS environment for 
three different time-points (a) t=0, (b) t=3s, (c) t=6s. ..................................... 56 

Figure 4-10. Motion of the FFSMS in the Joint Space. ..................................................... 57 

Figure 4-11. Actual and Desired Trajectories of the joints (a) Angles, (b) Velocities. ........ 58 

Figure 4-12. (a) Errors of Angles, (b) Applied Torques. .................................................... 58 

Figure 4-13. (a) Errors of Angles, (b) Applied Torques. .................................................... 59 

Figure 4-14. Root Locus for both the Model Based PID Controller and the Model Based 
PD Controller with an Auxiliary MPC Input. .................................................. 60 

Figure 5-1. End-Effector’s Desired Trajectories (a) Horizontal Position, (b) Vertical 
Position, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity (f) 

ZEqnNum553712


 
 

 
8/93 

Angular Velocity, (g) Horizontal Acceleration, (h) Vertical Acceleration, (i) 
Angular Acceleration. ................................................................................... 63 

Figure 5-2. Block Diagram of the 1st Scenario. ............................................................... 64 

Figure 5-3. Snapshots of the Motion of the FFSMS in the ADAMS environment for 
three different time-points and two different views for the 1st Scenario (a) 
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), 
(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6s). ........................ 66 

Figure 5-4. Motion of the FFSMS in the Cartesian Space for the 1st Scenario. ............... 67 

Figure 5-5. Determinant given by Eq. (2-38) for the 1st Scenario. ................................... 67 

Figure 5-6. Actual and Desired Trajectories of the End-Effector (a) x-Coordinate, (b) 
y-Coordinate, (c) Orientation. ....................................................................... 68 

Figure 5-7. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 1st Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. ........ 68 

Figure 5-8. Torques of the Joints of the Manipulator applied in the 1st Scenario (a) 1st 
Joint, (b) 2nd Joint (c) 3rd Joint. ...................................................................... 69 

Figure 5-9. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 1st Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-
Coordinate, (c) Orientation. .......................................................................... 70 

Figure 5-10. Torques of the Joints of the Manipulator applied in the 1st Scenario using 
Constraints on the MPC (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. ..................... 71 

Figure 5-11. Errors of the End-Effector’s Position & Orientation using Monte-Carlo 
Simulation for the 200 Different Random Samples. (a), (b) and (c): Model 
Based PID Controller, (d), (e) and (f): Model Based PD Controller with 
MPC Input. ................................................................................................... 73 

Figure 5-12. Parameter Influence on the Position & Orientation of the End-Effector. ........ 74 

Figure 5-13. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 2nd Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. ....... 75 

Figure 5-14. Torques of the Joints of the Manipulator applied in the 2nd Scenario (a) 1st 
Joint, (b) 2nd Joint (c) 3rd Joint. ...................................................................... 76 

Figure 5-15. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 2nd Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-
Coordinate, (c) Orientation. .......................................................................... 77 

Figure 5-16. Torques of the Joints of the Manipulator applied in the 2nd Scenario using 
Constraints on the MPC (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. ..................... 77 

Figure 5-17. Snapshots of the Motion of the FFSMS in the ADAMS environment for 
three different time-points and two different views for the 3rd Scenario (a) 
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), 
(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6s). ........................ 80 

Figure 5-18. Error of the Actual and the Desired Value of the Joints’ Angles for the 3rd 
Scenario (a) 1st Joint, (b) 2nd Joint, (c) 3rd Joint. ............................................ 81 

Figure 5-19. Torques of the Joints of the Manipulator applied in the 3rd Scenario (a) 1st 
Joint, (b) 2nd Joint (c) 3rd Joint. ...................................................................... 81 

Figure 5-20. Block Diagram of the 4th Scenario. ............................................................... 82 

Figure 5-21. Snapshots of the Motion of the FFSMS in the ADAMS environment for 
three different time-points and two different views for the 4th Scenario (a) 
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), 
(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6s). ........................ 84 



 
 

 
9/93 

Figure 5-22. Actual and Desired Trajectories of the End-Effector (a) Horizontal Velocity, 
(b) Vertical Velocity, (c) Angular Velocity. ..................................................... 84 

Figure 5-23. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 4th Scenario and for Noise with Variance 10-10 (a) x-Coordinate, (b) 
y-Coordinate, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, 
(f) Angular Velocity. ...................................................................................... 85 

Figure 5-24. Torques of the Joints of the Manipulator applied in the 4th Scenario and for 
Noise with Variance 10-10 (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. ................... 85 

Figure 5-25. Error of the Actual and the Desired Value of the End-Effector’s variables 
for the 4th Scenario and for Noise with Variance 10-8 (a) x-Coordinate, (b) 
y-Coordinate, (c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, 
(f) Angular Velocity. ...................................................................................... 86 

Figure 5-26. Torques of the Joints of the Manipulator applied in the 4th Scenario and for 
Noise with Variance 10-8 (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. ..................... 86 

  



 
 

 
10/93 

List of Tables 
Table 4-1. Paremeters of the Desired Trajectories. ....................................................... 54 

Table 4-2. Paremeters of the FFSMS. ........................................................................... 55 

Table 5-1. Paremeters of the FFSMS. ........................................................................... 61 

Table 5-2. Paremeters of the Desired Trajectories. ....................................................... 63 

Table 5-3. Maximum Errors performing Monte-Carlo Simulation and their Model 
Parameters................................................................................................... 74 

Table 5-4. Parameters of the Captured Object. ............................................................. 78 

Table 5-5. Paremeters of the Desired Trajectories for the 3rd Scenario. ........................ 79 

Table 5-6. Parameters of the Moving Target. ................................................................ 82 

Table 5-7. Paremeters of the Desired Trajectories for the 4th Scenario.......................... 83 

 



 
 

 
11/93 

Nomenclature 
English 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Greek 
 
 
 
 
 

    

Space Manipulator System 
Attitude and Orbit Control Systems 
Model Predictive Control 
Free-Floating Space Manipulator Systems 
Dynamic Singularities 
Degrees of Freedom 
Center of Mass 
Path Dependent Workspace 
Path Independent Workspace 
Single-Input Single-Output 
Proportional, Integral, Derivative 
Proportional, Derivative 
 

SMS 
AOCS 
MPC 
FFSMS 
DS 
DoF 
CM 
PDW 
PIW 
SISO 
PID 
PD 
 

ΕΑΔΡΣ 
ΒΕ 

Ελεύθερα Αιωρούμενο Διαστημικό Ρομποτικό Σύστημα 
Βαθμοί Ελευθερίας 



 

 
 

1 Introduction 

1.1 Objective 

The alarmingly emerging problem of the immense increase of space debris as well as the 

wide variety of space operations like catching, refueling, repairing and re-orbiting of satellites 

and objects with unknown parameters in general, mandate the development of space 

systems, capable to cope with these tasks. Considering the fact that space is an 

inhospitable environment to humans, a Space Manipulator System (SMS) is the most 

appropriate choice. 

An SMS consists of the satellite-base and the manipulators. The base transfers and 

orients in space using its Attitude and Orbit Control Systems (AOCS) which controls the 

momentum control devices such as the reaction wheels and the thrusters. Every manipulator 

has its own control system and joint motors to reach the desired position and orientation of 

its end-effector. However, the motion of the end-effector affects the motion of the base and 

vice versa due to the dynamic coupling. If it is considered necessary, the AOCS is used to 

counterbalance this effect. Some notable examples of SMS are the ETS-7 [24] and the 

Orbital-Express [25] . Figure 1-1 presents a photorealistic image of an SMS with three 

manipulators.  

 

Figure 1-1. Photorealistic Picture of a Typical SMS (the image was rendered using 
Solidworks). 

As Rekleitis et al. [31] present, there are seven main operations that are conducted in a 

typical on-orbit servicing mission. These operations are: 

1. Long-Range Rendezvous 

2. Short-Range Rendezvous 

3. Station Keeping 
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4. Capture 

5. Securing the Target Satellite 

6. Service Operations 

7. Release 

In this thesis, the fourth of the aforementioned phases is studied thoroughly. In this 

phase, the SMS operates in a Free-Floating mode, during which the AOCS is turned-off to 

avoid any disturbances from the thrusters of the base and minimize fuel consumption. 

Besides that, an additional post-capture scenario of the fifth phase is also presented. 

According to this, the SMS has already captured the target and stabilized it and it desires to 

change its position and orientation.  

A Model Predictive Control (MPC) algorithm for the actuators of the manipulator is 

suggested to compensate for the effect of external disturbances, noise as well as parametric 

uncertainties that occur during most of these phases. The Controller would be applied in a 

planar SMS with a single manipulator of three joints for both motions in the joint and 

Cartesian space. The results would be compared with a PID Controller to show its 

advantages and disadvantages. 

The main reason behind the parametric uncertainties of an SMS is the variance of the 

mass of the base due to fuel consumption, since the fuel tanks are embedded in the base. 

Some other uncertainties that should be noted are discrepancies in the lengths of the 

manipulator’s components due to the temperature variation as well as small variance of the 

masses of the manipulator’s parts because of inaccuracies between real and simulation 

model. As far as the external disturbances are concerned, these might be the result of 

collisions of the satellite with unidentified small bodies that float into space. 

The preservation of the stability and performance, despite the preceding disturbances, 

requires a robust controller, which ensures an acceptable performance under bounded 

parametric uncertainties. Although proofs about robustness and stability of Model Predictive 

Control are hard to acquire due to the usage of constraints and the finite horizon -a 

characteristic that would be described in Chapter 3, a plethora of applications illustrates its 

robustness. Another alternative for this task would be an Adaptive Controller, which “learns” 

the system parameters on its own and adapts accordingly. However, due to the limited 

number of sensors and consequently the data that today’s SMS obtain, it is a rather 

unrealistic option for the present. 

1.2 Bibliographic Review 

1.2.1 Dynamics & Kinematics of SMS 

The aforementioned dynamic coupling between the base and the manipulators of an SMS 

renders the study of this system significantly different from the one used for a fixed-base 

manipulator. During the past decades, many researchers have studied the dynamics and 

kinematics of an SMS and ample noteworthy papers have been published in this domain. 

Papadopoulos and Dubowsky [27] & [29] described the kinematics and dynamics of 

Free-Floating Space Manipulator Systems (FFSMS) using the Barycentric vector approach 

and proved that any fixed-base control algorithm can be applied to FFSMS under some 

conditions. The same authors introduced the idea of Dynamic Singularities (DS) that occur in 

an FFSMS due to the dependence of the velocity of the end-effector to the motion of the 

manipulator as well as the motion of the base [28] . 
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Umetani and Yoshida [39] presented the Generalized Jacobian Matrix for an FFSMS 

and a control method based on it. Caccavale and Siciliano [2] solved the inverse kinematics 

of an FFSMS using the Generalized Jacobian Matrix. Nanos and Papadopoulos extended 

the study of the dynamics and control of FFSMS with the additional condition of non-zero 

angular momentum [23] as well as flexible joint space manipulators [22] . In this thesis, 

although the results can be generalized by considering the accumulation of the angular 

momentum, a flexible manipulator and three-dimensional space, a rigid planar manipulator 

with three joints and zero angular momentum is studied for the sake of simplicity. 

1.2.2 Model Predictive Control 

While some underlying ideas of MPC were presented in the sixties, a complete idea of MPC 

was introduced in the late seventies with the papers of Richalet et al. [32] & [33] where a 

dynamic model was used to predict the future control input by minimizing the error variance 

and by repeating the optimization after each sampling period, as well as the paper of Cutler 

and Ramaker [5] where a Dynamic Matrix Control was implemented. This engendered the 

alacrity to study and apply this kind of algorithms in a wide variety of domains, mostly in slow 

systems, like the ones appearing in chemical process industries [7] . 

A few decades later, the evolution of computational hardware as well as the simplicity 

and effectiveness of the MPC in handling multi-variable and multi-constrained control 

problems permitted its application to faster systems like robots. Gomez-Ortega and 

Camacho [8] implemented a Model-Based Predictive Controller for path tracking of a mobile 

robot with the use of a neural network. Ullah et al. [38] compared an MPC algorithm with an 

H∞ controller for a robot manipulator. Maasoumy et al. [18] applied a robust MPC to handle 

the parametric uncertainties of a building and maximize its energy efficiency. Dai et al. [6] 

presented a robust model predictive control with joint state constraints and input torque limits 

to deal with the disturbances as well as parametric uncertainties problem and implemented 

the results in a Baxter robot. For further study of MPCs handling parametric uncertainties, 

Camacho and Bordons in their book [3] applied a min-max MPC algorithm to handle the 

parametric uncertainties and improve the robustness of the controller.  

With the start of the new century, MPC algorithms were applied in space systems too. 

Richards and How [34] presented a robust MPC formulation to minimize fuel consumption in 

the performance of spacecraft rendezvous given an unknown but bounded disturbance. 

Kayastha et al. [12] presented a nonlinear MPC for a free-flying planar space manipulator 

with 3 links and compared the results with a Sliding Mode Control. Rybus et al. [36] & [37] 

proposed a Non-Linear Model Predictive Controller for FFSMS and presented simulation 

examples with realistic parameters.  

As it can be concluded from the preceding bibliography, although some MPC algorithms 

have been applied to FFSMS in the past, complete results about its competence to deal with 

disturbances and parametric uncertainties that occur in FFSMS have not been presented. In 

this thesis, an MPC would be implemented in an FFSMS for various scenarios and its 

performance would be compared with a PID Controller. 
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1.3 Thesis Outline 

This thesis consists of six chapters. The first chapter contains the introduction, the 

bibliographic review and the thesis outline. The purpose of the thesis is presented and the 

most important publications about the dynamics and control of FFSMS and the applications 

of MPC are briefly mentioned. 

The second chapter presents the kinematics, inverse kinematics, differential kinematics 

and dynamics of an FFSMS. The equations that relate the angles of the joints to the end-

effector’s position and orientation are presented as well as the equations that relate their 

respective velocities. This leads to the formation of the Jacobian and the finding of the 

positions that dynamic singularities might occur. Furthermore, the equations of motion of the 

FFSMS are derived. These equations are fundamental for the implementation of the 

controller. 

The third chapter contains the theory and methodology of the MPC that is implemented. 

The Laguerre functions that are used for the representation of the control signal are 

presented and the different steps that the MPC follows (prediction, minimization, 

implementation) are described extensively. Moreover, input and output constraints are 

integrated in the design using Hildreth’s quadratic programming procedure. At the end of this 

chapter, a simple example is presented according to which an MPC desires to control the 

motion of a mass-spring-damper model. Constraints are also inserted in the design. 

The fourth chapter contains the implementation of different control laws in an FFSMS. 

The control signal’s equations for a Model Based PD Controller, Model Based PID Controller 

and Model Based PD Controller with an auxiliary MPC input are presented for motion in the 

joint and Cartesian space. The plant that is used in the simulation is also defined using MSC 

Adams. At the end of this chapter, an example of implementing a Model Based PID 

Controller and a Model Based PD Controller with an auxiliary MPC input in an FFSMS for 

motion in the joint space is presented to validate the design of the controllers. 

The fifth chapter contains the simulations and various scenarios that are performed to 

compare the Model Based PID Controller to the Model Based PD Controller with an auxiliary 

MPC input. For the first scenario, the path planning is determined in the Cartesian space 

and the target is considered relatively stationary. Constant disturbances are applied to the 

actuators of the joints. The criteria of the comparison are the errors of the position and 

orientation of the end-effector, the maximum torques that each controller produces as well 

as the duration of the simulation. For the second scenario, the same path planning and 

parameters of controllers are used. However, the parameters of the FFSMS are not 

accurately known but estimated. Therefore, parametric uncertainties occur. A Monte-Carlo 

simulation is performed for 200 different combinations of parameters. A more scrutinous 

study is performed containing the parameters that result in the maximum error of the x-

coordinate of the end-effector. 

For the third scenario, the path planning is determined in the joint space. However, the 

target is considered captured by the FFSMS and it is desired to change its position and 

orientation. The parameters of the target are not accurately known but estimated. Therefore, 

parametric uncertainties occur. For the fourth and final scenario, the path planning is 

determined in the Cartesian space but the target is considered to move with a relatively 

constant velocity. Two different types of noise are also inserted in the study to illustrate the 

performance of the controllers in the presence of noise. 

The sixth chapter presents the conclusions and proposals for future work.  



 

 
 

2 Kinematics & Dynamics of Planar Free-Floating 
Space Manipulator System (FFSMS) 

2.1 Introduction 

There are two main modes that a Space Manipulator System (SMS) -which is regarded as 

the “chaser”- will use to capture a target. The Free-Flying mode and the Free-Floating mode. 

The former mode is being applied when the SMS is considerably distant from the target. 

According to this mode, the Attitude and Orbit Control Systems (AOCS) and its actuators are 

used to reach the target. The control system of the manipulator of the SMS -which is usually 

independent of the AOCS- might also be used, if it is regarded as necessary. However, the 

dynamic coupling between the satellite and the manipulator affects the motion of the end 

effector and the motion of the base. In the case that the base must follow a predetermined 

path, the AOCS is applied to compensate for this effect.  

Nevertheless, when the SMS is significantly close to the target, the AOCS should not be 

used since the base thrusters might disturb the target or the position and/or orientation of the 

manipulator’s end-effector. This is called the Free-Floating mode. The position and 

orientation of the end-effector are determined by the manipulator’s controller as well as the 

path that the end-effector will follow.  

In this chapter, the kinematics and dynamics of a planar Free-Floating Space 

Manipulator System (FFSMS) with a single manipulator consisting of three joints are 

presented. The manipulator is non-redundant to simplify the modelling procedure and to 

minimize the mass of the system. It should be noted that there are three extra Degrees of 

Freedom (DOF) due to the position and the orientation of the base. The manipulator is also 

characterized as open-chain and its three joints are revolute, for the maximization of the 

workspace. 

The study is performed under the assumptions that the forces and torques which are 

produced by the Earth’s gravitational and magnetic field as well as the air’s resistance are 

small enough and therefore negligible. Besides that, the links of the manipulator are 

considered inflexible and the angular momentum of the system equals zero.  

First, the forward and inverse kinematics of the general problem of a spatial FFSMS are 

presented. Then, the results are simplified for the specific case of a planar FFSMS with a 3-

DoF manipulator. Secondly, the differential forward and inverse kinematics are studied to 

elicit the equations of the velocities. From the derived equations, the positions on the 

Cartesian plain where a singularity might occur are presented. Finally, the dynamics of the 

general spatial FFSMS problem as well as the simplified planar problem are presented. 

These equations are of integral importance for the control of an FFSMS which is studied in 

Chapter 4. 
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2.2 Kinematics 

The main goal of the study of the kinematics of an FFSMS is to obtain the equations for the 

position of the end-effector. In contrast to the kinematics of the clasical manipulators with a 

stable base, the aforomentioned dynamic coupling between the manipulator and the base of 

an FFSMS results in the dependence of the position of each joint on the position and the 

mass properties of all the joints and the base. For this reason, the Barycentric Vector 

Approach, presented in [26]  is applied. 

The notation that will be used from now on defines bold lowercase symbols to represent 

column vectors and bold uppercase symbols to represent matrices. 

Considering a planar FFSMS, the rotation of the base is described by the rotation 

matrix: 

 0 0

0

0 0

cos( ) sin( )
( )

sin( ) cos( )

 


 

− 
=  
 

0R  (2-1) 

Assuming a point o on the k-th joint, the position vector with respect to a given inertial 

frame of reference (x, y, z) (Figure 2-1) is described by: 

 
, ,k o cm k k o= + +r r ρ r  (2-2) 

where rcm is the position vector of the Center of Mass (CM) of the whole model with respect 

to the inertial frame, ρk is the position vector of the CM of the k-th joint with respect to the 

CM of the whole model and ,k or is the position vector of the point o with respect to the CM of 

the k-th joint.  

 

Figure 2-1. Planar FFSMS with a manipulator of 3 DoF (a) Geometrical & Dynamic parameters 
(b) Parameters of the Barycenters. 
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As shown in [26] , the position vector ρk can be calculated by finding the barycenter of 

each of the joints and the base. The barycenter of the i-th body is the CM of the augmented 

body which is formed by adding a point mass equal to Mμi to the i-th joint and a point mass 

M(1-μi+1) to the joint i+1 where: 

 
1

0 0

0, 0

, 1, ,

1, 1

N i
i

i i

i j

i

m
M m and i N

M

i N


−

= =

 =



= = =

 = +

   (2-3) 

Then, if the position vectors li and ri of the i-th joint and joint i+1 (respectively) with 

respect to the i-th body CM are known, the position vectors with respect to each barycenter 

can be calculated by (see Figure 2-2): 

 
*

*

*

(1 ), 0, ,i i i i i

i i

i i i

i i i

i N = + − =

= −

= −

= −

c l r

c c

r r c

l l c

 (2-4) 

 

Figure 2-2. Definition of Barycenter and its parameters. 

Finally, the position vector ρk is given by: 

 

*

*

, ,

0 *

iN

k i k i k i

i

i

i k

with i k

i k
=

 


= = =
 



r

ρ v v c

l

 (2-5) 

Substituting Eq. (2-5) into (2-2) it can be derived: 

 
, , , , , , , ,

0

N

k o cm i k o i k o i k i k k o

i

with 
=

= + = +r r v v v r  (2-6) 

where δi,k is the Kronecker delta. 
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Before the preceding methodology is applied to an FFSMS with a 3-DOF manipulator, it 

is of immense importance to point out that if all the external forces are considered negligible, 

therefore equal to zero, it can be derived from the derivative of the linear momentum p that: 

 
( )

0CM
external CM

d Md
const

dt dt
= = =  =

rp
F r  (2-7) 

Assuming that the initial linear momentum is zero, then: 

 0CM CM const=  =r r  (2-8) 

Therefore, from now it will be considered that the origin of the inertial frame is at the 

system’s CM. 

Considering these assumptions, the position and the rotation of the end-effector of an 

FFSMS with a 3-DOF manipulator is given by [21] (see Figure 2-1): 

 
1 1 2 1 2 3

1 1 2 1 2 3

1 2 3

c c c c

s s s s

E q q q q q q

E q q q q q q

E

x a b c d

y a b c d

q q q

   

   

   

   

 

+ + + + + +

+ + + + + +

= + + +

= + + +

= + + +

 (2-9) 

where: 

 

0 0

0 1 0 1 1

0 1 2 0 1 2 2

0 1 2 3
3

0 1 2 3

( )

( ) ( )

( )

m r
a

M

m l m m r
b

M

m m l m m m r
c

M

m m m l
d r

M

M m m m m

=

+ +
=

+ + + +
=

+ +
= +

= + + +

 (2-10) 

For the inverse kinematics problem, it is considered that the base’s orientation θ0, the end-

effector’s coordinates xE and yE as well as the end-effector’s rotation θE are known. By 

raising Eq. (2-9) to the second power and subtract them, it is derived: 
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2
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2
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2
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 (2-11) 

where: 

 2

2

s

c

kin q

kin q

A c

B b c

=

= +
 (2-12) 

Finally, the joint’s angles are given by: 
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2 2 2

1 1 1

3 1 2

atan 2(sin( ),cos( ))

atan 2(sin( ),cos( ))

E

q q q

q q q

q q q

  



  

 

=

= + + −

= − − −

 (2-13) 

where atan2(y,x) is defined as the four-quadrant (-π,π) inverse tangent of the numbers (x,y). 

2.3 Differential Kinematics 

The equations of differential kinematics describe the relation between linear and angular 

velocity of the end-effector to the joints’ angular velocity as well as the angular velocity of the 

base and vice versa. The derivation of these equations requires the equation of the angular 

velocity of the k-th body with respect to the inertial frame of reference. For the general 

problem of spatial FFSMS is given by [26] : 

 
( )0 0 0

0 0 0 0

1

0 0 1 0

1 1 3( )

( )
k

i

k i i i k

i

k

k k k N k

q
=

−

= + = +

 =  

ω ω R R q z R ω F q

F R z R z 0

 (2-14) 

where left superscripts are interpreted as “expressed in frame”. Missing left superscript 

means that it is expressed in the inertial frame. The ω0 is the angular velocity of the base, 
0Ri is the rotation matrix of the frame of reference {i} expressed in the frame of reference {0}. 
izi is the unit vector parallel to the axis of the i-th joint (for the planar case, they are all 

perpendicular to the model) and 03(N-k) is a 3(N-k) zero vector. 

By differentiating Eq. (2-6), the linear velocity of point o on the k-th joint is: 

 
, , , , ,

0 0

N N

k o cm i i k o cm i k o i

i i



= =

= +  = − r r ω v r v ω  (2-15) 

where the cross-product operator is given by: 

 

0 ( ) ( )

( ) ( ) 0 ( )

( ) ( ) 0

z y

z x

y x



 −  
 

 =  −  
 −   

 (2-16) 

According to a property of the cross-product, the following holds: 

 ( )0 0 0 1

, , 0 , , 0 , , 0 0 , , 0

T

i k o i k o i k o i k o


   −= = =v R v R v R R v R  (2-17) 

Substituting Eq. (2-14) and Eq. (2-17) into Eq. (2-15): 

 ( ) ( )0 0 0 0

, 0 , , 0 , ,

0 1

N N
i i

k o cm i i k o i i k o i

i i

 

= =

 
= + − − 

 
 r r R R v ω R v Fq  (2-18) 

To conclude, the angular velocity of the k-th joint and the linear velocity of a point o on 

one of the joints is given by: 
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 (2-19) 
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Considering the assumption of zero linear momentum (and the initial linear momentum 

too), Eq. (2-8) gives that 0CM =r . Consequently, the linear velocity of the end-effector of an 

FFSMS with a 3-DOF manipulator is given by [21] (see Figure 2-1): 
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 (2-20) 

where θ0 is the orientation of the base and q = [q1 q2 q3]
T. 

 

The angular velocity of the end-effector is given by: 

 
( )  

0

0 22

0

22 1 1 1

  = +

=

j q

j q
 (2-21) 

2.3.1 Conservation of Angular Momentum 

The angular momentum with respect to the system’s CM of the general spatial problem is 

given by: 

 ( )
0

N

CM k k k

k

m  
=

= + h I ω ρ ρ  (2-22) 

where Ik is the inertia matrix of the k-th body, ωk is the angular velocity of the k-th body and 

ρk is the position vector of the system’s CM to the k-th body’s CM. The derivative of ρk is 

given by the differentiation of Eq. (2-5): 

 
,

0

N

k i i k

i=

= ρ ω v  (2-23) 

Substituting Eq. (2-5) and Eq. (2-23) into Eq. (2-22): 

 ( ), ,

0 0 0 0 0

N N N N N

CM ij i j k i k j j k

j i j i k

m
= = = = =

= +   h I ω v ω v  (2-24) 

Finally, by using the following property of the cross-product: 

  ( ) ( ) ( )  =  −  =  − a b c b a c c a b c a 1 ca b  (2-25) 

where 1 is the unit dyadic and substituting the angular velocity from Eq. (2-14), Eq. (2-24) 

can be written as: 

 ( )0 0 0

0 0CM q= +h R D ω D q  (2-26) 
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with: 
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Applying the preceding equations into a planar FFSMS with a 3-DOF manipulator, the 

angular momentum is given by [21] : 

 0 0

0CM qh D= + D q  (2-28) 
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where a, b and c are given by Eq. (2-10) and: 
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22 2
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1 0 0 1 1 2 2 3 3 2
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22 2

2 3 2 2 0 1 2 3 0 1 2 2

22 2
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a I

M
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a

M
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a

M
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a I

M
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M

m m r m m m l m m m l r
a I

M

a I

+ +
= +

+ + + +  =

+ +  =

+ + + + +
= +

+ + + +      =

+ + + + +
= +

=
( ) 2

3 0 1 2 3m m m m l

M

+ +
+

 (2-30) 
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2.3.2 Jacobian & Dynamic Singularities 

Eq. (2-20), Eq. (2-21) and Eq. (2-28) form a system of four equations with four unknown 

variables (for the forward or inverse kinematic problem). They can be written in a more 

compact form: 

 

0 0

1 2

0 0 0

2 1 0 2 1 11 12

0

1 2 22

1 0

0 1 1

CM q

E

h D






 

 

    
     

=      
          

0 D

r 0 R 0 j J
q

0 j

 (2-31) 

where 02x1 is a 2x1 column zero vector and 01x2 is a 1x2 row zero vector. Knowing that the 

first matrix on the right side of the equation which contains the rotation matrix is always 

invertible, the second matrix can be characterized as the Jacobian of the problem: 

 

0 0

0 0 0

11 12

0

221

qD 
 

=  
 
 

D

J j J

j

 (2-32) 

It is evident that the Jacobian contains not only kinematic terms like link lengths and 

joint angles, but also dynamic terms like masses and inertias. This characteristic results in 

the existence of dynamic singularities along with kinematic ones. Due to the dynamic 

coupling between the manipulator and the base, a Cartesian point might develop a dynamic 

singularity depending on the attitude of the base. In other words, the manipulator might lose 

a Degree of Freedom, depending on the orientation of the base. This is also one of the 

fundamental discrepancies between FFSMS and manipulators with stable base. The finding 

of the positions that singularities occur requires the study of the Jacobian. 

Since the manipulator of the FFSMS is non-redundant, the solution of the inverse 

kinematic problem requires the Jacobian to be invertible. Therefore, it is required: 

 det( ) 0J  (2-33) 

By using the following property of matrix determinant: 

 
1det det( )det( ) ( : )invertible− 

= − 
 

A B
A D CA B A

C D
 (2-34) 

the determinant of J can be written as: 

 ( ) ( )
0 0

1
0 0 012 11

0

22

det( ) det det
1

qD D
−    

= −     
   

J j
J D

j
 (2-35) 

where 0Dq has dimensions 1x3, 0J12 has dimensions 2x3, 0j22 has dimensions 1x3 and 0j11 

has dimensions 2x1. 

Since 0D is depended on the inertia of the FFSMS in reference to its CM, it is always 

non-zero. Consequently, substituting Eq. (2-35) into Eq. (2-33) it can be concluded that a 

prerequisite of the solution of the inverse kinematic problem is: 

 ( )
0 0

1
0 012 11

0

22

det 0
1

qD
−    

−      
   

J j
D

j
 (2-36) 

The matrix: 
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 ( )
0 0

1
* 0 012 11

0

22 1
qD

−   
= −   

  

J j
J D

j
 (2-37) 

is called the Generalized Jacobian Matrix [39] . The same matrix can also be derived if hCM is 

zero and 
0 ( ) q from Eq. (2-28) is substituted to Eq. (2-20) and Eq. (2-21). 

After substituting 0J12, 
0j22, 

0j11, 
0D and 0Dq from Eq. (2-20), Eq. (2-21) and Eq. (2-29) 

into the determinant of the Generalized Jacobian Matrix, it can be written as [21] : 

 ( ) 1 2 1 2

0 0 0

2 0 1*

0

s s s
det

q q q qab D bc D ac D

D

++ −
=J  (2-38) 

Therefore, the determinant equals zero if and only if the following quantity equals zero: 

 
1 2 1 2

* 0 0 0

2 0 1s s sq q q qj ab D bc D ac D += + −  (2-39) 

After substitution, 
*j  can be written as: 

 *

0 1 1 1 2 2 1 2( ) ( )sin( ) ( ) cos( )j k q k q q k q q= + +  (2-40) 

where: 

 

0 22 02 1

02 01 00 02 01 1
1 11 01 1

02 01 1
2 12 11 1

( )sin( )

2 ( )cos(2 )
( )cos( )

2 2

( )sin(2 )
( )sin( )

2

k b aa ca q

aba aca bca a ba ca q
k c aa ba q

a ba ca q
k a ba ca q

= −

+ − −
= − + − + +

−
= − +

 (2-41) 

Eq. (2-40) can give joint angle q2 with respect to joint angle q1 and 
*j : 

 

( )

( )

*

0

2 1

1

*

0

2 1

1

cos
( ) arcsin

cos
( ) arcsin

j k
q q

k

j k
q q

k





 

 −
 = −
  

 −
 = − −
  

 (2-42) 

where: 

 2

1

arctan
k

k


 
=  

 
 (2-43) 

It is obvious that Eq. (2-42) and Eq. (2-43) that will be used for the finding of the 

dynamic singularities do not depend on the joint angle q3. Therefore, the dynamic 

singularities’ positions will be defined with respect to the barycenter of the 3rd link. 

The distance of the 3rd link’s barycenter and the system CM is defined by the equation:  

 
0 0 0

0 0 3 1 2 0 0 3 1 2 3 1 2( ) ( , ) ( ) ( , ) ( , )R R r q q R r q q r q q = = =  (2-44) 

which is independent of the rotation of the base θ0. Therefore, it can be assumed that θ0 = 0.  
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Thus: 

 
2 2

3 3

2 2 2

1 1 2 22 cos( ) 2 cos( ) 2 cos( )

R x y

R a b c ab q ac q q bc q

= + 

 = + + + + + +

 (2-45) 

where x3 and y3 are the x and y distance of the 3rd link’s barycenter from the system CM 

respectively. 

Eq. (2-42) and Eq. (2-43) should be substituted into Eq. (2-45) to find the positions in the 

Cartesian space that dynamic singularities might occur. This can be done by considering 
*j  

= 0 and vary the joint angle q1 in the interval [0,2π). From each of the Eq. (2-42) a pair of a 

minimum and a maximum distance R is derived. These pairs will demarcate two different 

surfaces in the workspace. These are the surfaces that if the barycenter of the 3rd link 

enters, a dynamic singularity might occur. It is noteworthy to point out again that the same 

position might develop or not a singularity depending on the rotation of the base. The 

subspace of these two surfaces that a dynamic singularity might occur is named Path 

Dependent Workspace (PDW). The rest space is named Path Independent Workspace 

(PIW). Figure 2-3 presents the curves q2 (q1) that singularities occur for a planar FFSMS with 

a 3 DoF manipulator as well as its Workspace. 

 

Figure 2-3. (a) Curves of Angles q1 and q2 of a Planar FFSMS with a 3-DoF Manipulator that 

Singularities occur according to Eq. (2-42) (b) Workspace of a Planar FFSMS with 
a 3-DoF Manipulator. 
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2.4 Dynamics 

The formulation of the equations that describe the dynamics of an FFSMS requires the 

potential and the kinetic energy of the system. Since the system is considered inflexible, the 

potential energy is equal to zero. Hence, only the kinetic energy is required and for the 

general spatial problem it is given by: 

 
0 0

1 1

2 2

N N

k k k k k k

k k

T m
= =

=  +   ρ ρ ω I ω  (2-46) 

where mk is the mass of the k-th body, Ik is the inertia matrix of the k-th body, ωk is the 

angular velocity of the k-th body and ρk is the position vector of the system’s CM to the k-th 

body’s CM. 

After calculations and substitution of the variables [21] , the kinetic energy can be 

written as: 

 
0

0 * 0

0

1
( )

2

T TT
 

 =   
 

ω
ω q H q

q
 (2-47) 

where: 

 

0 0

*

0 0

0 0 0 0

1 1

( )
q

T

q qq

N N
T

qq i ij j

j i= =

 
=  
  

=

D D
H q

D D

D F D F

 (2-48) 

0D, 0Dq are given by Eq. (2-27) and 0F is given by Eq. (2-14). 

The next step to the derivation of the equations of motion is the application of the 

Lagrange method [20] . First, the Lagrangian is found: 

 0 0 0 0 0 0

0 0 0

1 1

2 2

T T T

q qqL T U= − = + +ω D ω ω D q q D q  (2-49) 

where U is the total potential energy of the system. 

The Lagrangian will be used in the Lagrange equations: 

 

0 0
00 0

0 00 0

0 0

0 0

0 0

( , , ) ( , , )

( , , ) ( , , )

T

CM

L Ld

dt

L Ld

dt

  
+ = 

  

  
− = 

  

ω q q ω q q
ω R g

ω ω

ω q q ω q q
τ

q q

 (2-50) 

where gCM is the vector of the external torques that act on the base produced by the 

thrusters and the reaction wheels which for an FFSMS equals zero, (·)x is the cross-product 

operator given by Eq. (2-16) and τ is the vector containing the torques of the manipulator’s 

actuators. It should be noted that for gCM = 0, the first part of Eq. (2-50) is the differentiated 

angular momentum Eq. (2-26). 
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Finding the derivatives of Eq. (2-50), considering gCM = 0 and substituting the velocity 
0ω0 from Eq. (2-26), the equations of motion for a spatial FFSMS are given by [21] : 

 *

h+ + =Hq C q g τ  (2-51) 

where: 

 ( ) ( ) ( ) ( )

( ) ( )

( )
( )

0 0 0 1 0

0 0 0 0
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0 0 1 0 0 0 0 0 1 0
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− −

−

− −

= −

=

= +

   
= + − −

   

 
= −

 


= − −
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

H D D D D

D F D F
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q D D D D q q D D D D q
C

q q q q

D D R h h R D D
C

q q

h R D R
g h D D D R h D q

q
0

T

CM






R h

 (2-52) 

It is obvious that when the angular momentum is equal to zero, the terms gh and Ch are 

also zero. 

The aforementioned methodology and equations can be simplified significantly for the 

problem of a planar FFSMS with a 3-DOF manipulator. For this case, the Lagrangian is 

given by: 

 0 0 0

0 0 0

1 1
( , , )

2 2

T

q qqL   = + +q q D D q q D q  (2-53) 

Because the terms of the Lagrangian are independent of the base’s rotation, θ0 is a 

cyclic coordinate [20] . Therefore, instead of the Lagrangian, the Routhian can be used: 

 
0 0 0 0

0

( , ) ( , , ) ( , , ) CM

L
R L L h   




= − = −


q q q q q q  (2-54) 

Substituting Eq. (2-28) into the Eq. (2-54), the Routhian can be written as: 

 
0 1 0 2 0 1

0 0 0 1 0

1 1
( , ) ( )

2 2

( )

T

CM q CM

T

qq q q

R h D h D

D

− −

−

= + −

= −

q q q H q q D q

H q D D D

 (2-55) 

Finally, by using the Lagrange equation on the Routhian, the equations of motion for a 

planar FFSMS with a 3-DOF manipulator can be written as: 

 *( ) ( , , ) ( , )CM h CMh h+ + =H q q C q q q g q τ  (2-56) 

where: 
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( ) ( )
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=
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   
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   

  
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q q
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 (2-57) 

and 0D, 0Dq are given by Eq. (2-29) and 0F is given by Eq. (2-14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

3 Model Predictive Control (MPC) 

3.1 Introduction 

The term Model Predictive Control (MPC) designates a plethora of advanced control 

methods which use a model to predict the output at future time instants while minimizing an 

objective function to obtain the control sequence. Some other notable characteristics of 

these controllers is the “receding strategy” or “receding horizon” according to which the final 

future time instant is consistently displaced towards the future as well as the fact that only 

the first control signal of the sequence is applied to the plant.  

The vast dissemination of MPC among the industry and the research community can be 

attributed to its simple implementation and its ability to discover the optimum solution based 

on an objective function while it compensates for measurable disturbances and dead times, 

and handles input and output constraints. Another important benefit is the ability to deal with 

multivariable problems easily. Nonetheless, MPC presents also some shortcomings. The 

need for an accurate model of the process and the surge of computational power when 

constraints are considered, are the most important drawbacks. Albeit most MPC algorithms 

are quite robust, the number and significance of discrepancies between the dynamic model 

that MPC uses and the real model is inversely proportional to the successful performance of 

the controller.  

There are ample different categorizations of MPC algorithms. As Camacho and Bordons 

[3] point out, the main criteria to classify the algorithms are the model used to represent the 

process (and the noise) and the cost function which is minimized. The basic types of the first 

category include the Truncated Impulse Response Model, the Step Response Model, the 

Transfer Function Model and the State Space Model. The distilled idea of the first two is the 

measurement of the output when an impulse or step input is used to excite the process. 

Both of these methods are quite simple which is also the reason for the immense usage in 

industrial applications. The third type uses the Transfer Function of the Model to implement 

the MPC algorithm while the fourth uses the State Space representation of the model. As far 

as the second category is concerned, the main representatives are the MPC algorithms that 

use a quadratic cost function which consists of the past inputs and outputs as well as the 

future reference trajectory. However, when constraints are considered, which is one of the 

main advantages of MPC, different numerical algorithms are created. 

Besides the aforementioned categories, some other classes of MPC which are worth 

mentioning too is the Robust MPC which considers the bounded disturbances of the model 

and the constraints. Its most common types are the Min-max MPC [4] , [13] , [1] , the 

Constraint Tightening MPC [9] , [35] , MPC using tubes [15] and Multi-stage MPC [17] . 

Apart from that, Marruedo et al. [19] proved that under certain assumptions, MPC is always 

stable and feasible despite the existence of uncertainties. 

Although there are boundless different MPC algorithms, all of them follow a basic 

strategy which will be briefly presented below. As it was previously stated, MPC requires an 

accurate model of the process to predict the future outputs of the system. In particular, the 

controller predicts the outputs y on a finite horizon of N samples or time T after the present 

output, which is also reffered as the prediction horizon of the MPC: 
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 ( | ) (0, ]y t t for +    (3-1) 

The preceding notation designates the prediction at time instant t+τ computed at time 

instant t. It is evident that the prediction of the outputs depends on the inputs and outputs 

(until the time instant t) as well as the future control sequence: 

 ( | ) [0, ]u t t for +    (3-2) 

In some MPC algorithms, the predicted horizon T which is used for the outputs is larger 

than the one for the control values, which is called the control horizon, to abate the required 

computational power. The control signal after the control horizon is considered constant. 

The control signals result from the optimization of a criterion which includes information 

about the error between the output and the desired trajectory (or just the output) and/or the 

control effort. Most MPC algorithms use quadratic functions for this task which might take 

the form of: 

 
0

( ( | ) ( | ) ( ) ( ))
T

T TJ t t t t d    = + + + y Qy u Ru  (3-3) 

The matrices Q and R are weighting factors and can be used to tune the performance 

index fittingly. In the case the criterion is quadratic, the model is linear, and there is no usage 

of constraints, then an explicit solution can be acquired and, in some cases, it can be 

obtained off-line to save computational power. In all other cases, an iterative optimization 

method is required. 

From the time-set of control signals, only the first one is sent to the process while the 

others are rejected. The above methodology is repeated for its time instant while the 

receding horizon “moves” with every step. 

In Figure 3-1 a qualitative example of the application of an MPC at a time instant is 

presented, while in Figure 3-2 the block diagram of a basic MPC is depicted.  

 

Figure 3-1. Example of Model Predictive Control’s strategy. 
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(a) 

 

(b) 

Figure 3-2. (a) Block Diagram (b) General Model Predictive Controller strategy. 

The MPC algorithm that is implemented in this thesis is a linear MPC with a State Space 

Model due to its simplicity and its ability to deal with bounded disturbances. The technique is 

based on the methodology provided in the book of Wang [40] . An application of non-linear 

MPC was avoided because of its implementation complexity and the increase of 

computational power. The linearization of the model is accomplished through Feedback 

Linearization which is presented thoroughly in Chapter 4. 

3.2 Design of Model Predictive Controller 

In this section, the design of the model Predictive Controller which is used for the control of a 

Free-Floating Space Manipulator System (FFSMS) is presented. Although the 

implementation is performed in a digital environment, the controller is studied in continuous-

time to connect it directly with the requirements that the study of the control of an FFSMS 

sets. First, the studied model is formed. After that, the so-called Laguerre functions which 

MPC requires to approximate the control signal are presented. Finally, the prediction and the 

optimization procedure are showed and the control signal of the plant is acquired. 
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3.2.1 Model 

The model that is used for the process is an augmented model with an embedded integrator 

(but with the same output as the initial model) since the derivative of the control signal is 

required. The reason for that is the fact that the orthonormal function which is used for the 

representation of the control signal and will be presented in the Section 3.2.2 mandates its 

variable’s integral squared value to be bounded (Eq. (3-12)). Consequently, the 

convergence to a set-point input or the counterbalance of constant disturbances require the 

use of the derivative.  

Consider the plant is described by the following state-space model: 

 
( ) ( ) ( )

( ) ( )

t t t

t t

= +

=

m m m m

m m

x A x B u

y C x
 (3-4) 

where xm is the state vector of dimension n1, u is the input with dimension m and y is the 

output with dimension q (q≤m) and the matrices Am, Bm, Cm contain constant values. 

The differentiation of the preceding equation results in the augmented model:  
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 (3-5) 

where x is the state vector of the augmented model with dimensions n = n1 + q, Iqxq is the 

identity matrix with dimensions q x q, 0qxq is a q x q zero matrix, 0qxm is a q x m zero matrix 

and 0m is a q x n1 zero matrix.  

The preceding augmented model is both controllable and observable in the assumption 

that the plant model described in Eq. (3-4) has a minimal realization and no zero at s=0. 

In the case of unmeasured disturbances ω(t), the plant model presented in Eq. (3-4) 

becomes: 

 
( ) ( ) ( ) ( )

( ) ( )

t t t t

t t

= + +

=

mm m m d

m m

x A x B u B ω

y C x
 (3-6) 

When the disturbance is a deterministic constant disturbance or a stochastic integrated 

white noise with the form presented in Eq. (3-7), then the augmented model compensates 

for these disturbances: 

 

   

0
( ) ( ) 1,2,

( )
( ) 0, ( ) ( ) ( )
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t d i d
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   
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      

= =

 
 =  =  = − 
 


 (3-7) 

where ε() is a band-limited, zero-mean, white noise, E{} is the expectation and δ() is the 

Dirac function. 
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3.2.2 Laguerre Functions & Control Signal 

The MPC design that will be presented in this study, requires a set of orthonormal function to 

approximate the trajectory of the desired control signal. For this task, Laguerre functions [16] 

were selected for their efficiency in handling this issue as well as their simplicity. 

To be designated as orthonormal over the interval [0,∞), a set of real functions li(t), i = 

1,2,… should satisfy the properties [40] : 

 2

0 0
( ) 1 ( ) ( ) 0 ( )i i jl t dt and l t l t dt i j

 

= =    (3-8) 

A set of orthonormal functions li(t) is characterized as complete if the relation: 

 
0

( ) ( ) 0if t l t dt


=  (3-9) 

is true for all values of i, only if f(t) satisfies the relation: 

 2

0
( ) 0f t dt



=  (3-10) 

Taking into account the preceding theorem, it can be shown [16] that an arbitrary 

function f(t) has a formal expansion with respect to a set of orthonormal and complete 

functions li(t), i = 1,2,… over the interval [0,∞), which can be described by: 

 
0

1

( ) ( ) ( ) ( 1,2,...)i i i i

i

f t c l t with c l f t dt i
 

=

= = =   (3-11) 

The number of the expansion’s coefficients can become finite due to the completeness 

of the functions since it can be derived [16] that for any piece-wise continuous function f(t) 

with: 

 2

0
( )f t dt



   (3-12) 

and any ε>0, there exists an integer N such that: 

 
2

0
1

( ( ) ( ))
N

i i

i

f t dt c l t dt 


=

−   (3-13) 

A set of Laguerre functions L(t) = [l1(t) l2(t) … lN(t)]T satisfies the properties of 

orthonormality and completeness described in Eq. (3-8) to Eq. (3-11) and is designated as: 

 

( ) (0)

0 0 1

2 0 1
(0) 2

2 2 1

t
t e

p

p p
with and p

p p p

=

−   
   
− −
   = =
   
   
− − −   

pA

p

L L

A L
 (3-14) 

where the parameter p is called the time scaling factor. It is a design requirement (as well as 

the number of Laguerre functions N) and determines the exponential decay rate of the set of 

functions.  

According to Wang [40] , to apply the aforementioned theory about Laguerre functions 

in modelling the control signal, suppose that the augmented model is described by Eq. (3-5), 

ti is the present time instant, Tp the control/prediction horizon, τ the variable within the 
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prediction time window [ti, ti + Tp]  which takes values in [0,Tp] and K the gain matrix of the 

feedback control. By knowing the initial value of the state vector x(ti), the control of the 

augmented model (derivative of the control signal) takes the form: 

 ( ) ( ) 0 pwith T  = −  u Κx  (3-15) 

Substituting it into Eq. (3-5), the closed-loop system is described by: 

 

( )

( )

( ) ( ) 0

( ) ( )

i p

i

e t with T

e t





 



−

−

=  

= −

A BK

A BK

x x

u Κ x
 (3-16) 

Taking into account the requirement that the eigenvalues of the closed-loop system 

should be strictly within the left-half complex plane, the control value decays exponentially to 

zero. A direct result from this fact is that the control signal of the augmented model is 

bounded and satisfies the requirement of Eq. (3-12): 

 
2

0
lim ( )

p

p

T

T
d 

→
  u  (3-17) 

Hence, a set of Laguerre functions can be used to describe each of the i (1≤i≤m) inputs 

of the control signal of the augmented model (derivative of the control signal of the plant 

model): 

 
1

( ) ( ) ( ) 1,2,i j j i i

j

u c l t i m 




=

= = = L η  (3-18) 

Where ηi = [c1  c2  … cN]T is the vector of coefficients and Li is the set of Laguerre function 

given by Eq. (3-14) for a given scaling factor pi>0 and number of functions Ni. 

3.2.3 Prediction 

One of the main characteristics of the MPC is the prediction of the plant response which is 

used in the optimization. Consider that the initial state variable x(ti) is known, the solution of 

the differential Eq. (3-5) yields the predicted state space variable: 

 ( )

0
( | ) ( ) ( )i i it t e t e d


    −+ = + 

A A
x x Bu  (3-19) 

where x has dimensions n and u has dimensions m. 

For each one of the m inputs, there is a set of Laguerre functions L and coefficients η to 

describe their trajectory (see Eq. (3-18)). Therefore, there are m pairs of scaling factors p 

and parameters N, one for each input. These pairs are described as p and N (an exception 

to the classic notation since it is a vector and not a matrix) correspondingly. By substituting 

Eq. (3-18) into Eq. (3-19): 

 

 

( )

0

( | ) ( ) ( )

( ) ( ) ( ) ( )

i i i

T

t t e t

with e d

and




 

 

    



 −   

+ = +

 =  

=



A

A

1 1 2 2 m m

1 2 m

x x Φ η

Φ Β L Β L Β L

η η η η

 (3-20) 

where Bi is the i-th column of the B matrix. 

Taking into account Eq. (3-5) and Eq. (3-20), it is evident that the predicted output is: 
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 ( | ) ( ) ( )i i it t e t  + = +A
y C x CΦ η  (3-21) 

By taking a closer look into Eq. (3-20), it can be concluded that the convolution integral 

Φ(τ) is uniquely determined considering that A, B and L are known. Consequently, the 

coefficients η are the ones to capture the prediction of the state variable.  

It is obvious that the numerical calculation of the integral Φ(τ) will consume an immense 

amount of computational power. For this reason, Wang [40] proved that for a given time τ, 

the i-th sub-matrix (dimensions n x Ni) of the matrix Φ(τ) satisfies the relation: 

 ( ) ( ) ( ) (0) 1,2,
i

T T T T T

i i i i i ie i m  − = − + =A

pAφ Φ A B L B L  (3-22) 

where Li(τ)T, Li(0)T and Api are given by Eq. (3-14) 

The right side of Eq. (3-22) is determined. Hence, a profound abatement of the 

computation power can be achieved by finding the matrix Φ(τ) numerically through the 

solution of this linear algebraic equation. 

3.2.4 Optimization 

As was stated at the beginning of this chapter, the most usual criterion used for optimization 

in MPC algorithms is a quadratic function like the one presented in Eq. (3-3). This is the one 

that will be used for this study too. However, prior to proceeding with the function, it is crucial 

to point out that if the desired trajectory is a constant set-point within the prediction window 

given by yd(ti), then the augmented model of Eq. (3-5) can be converted to: 
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+ +       

+ 
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T
mm mm m
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m

m q×q

Bx xA 0
x u

0e eC 0

x
e 0 I Cx

e

 (3-23) 

since ( | ) ( | ) ( )i i i i d it t t t t + = + −e y y  and ( | ) ( | )i i i it t t t + = +e y . 

 

By using the new variable x of the above equation, the cost function of Eq. (3-3) becomes: 

   
0

( ( | ) ( | ) ( ) ( )) 0
pT

T T

i i i i pJ t t t t d T     = + + +   x Qx u Ru  (3-24) 

where without loss of generality it was considered 
T

old=Q C Q C . The matrices Q≥0 and 

R≥0 are weighting factors and can be used to tune the performance index fittingly.  

Considering R to be diagonal with elements r1, r2,… rm as well as a sufficiently large 

prediction horizon  Tp to assume 0u  for τ≥Tp, then the second term of the cost function 

can be written as: 

   
0 0 0

1 1

1

( ) ( ) ( ) ( ) ( ) ( )
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p p
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T T T T

k k k k

k k

m
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k

J d r u u d r d

r with diag r

        


= =

=

= =  =

= = =

   

 k k

k k k k

k k k L L N ×N

u Ru η L L η

η η η R η R I

 (3-25) 

due to the use of the orthonormality property (Eq. (3-8)). The matrix RL is a block diagonal 

matrix and INkxNk is the identity matrix with dimensions Nk x Nk (number of Laguerre 

functions). 
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By substituting Eq. (3-25) and Eq. (3-20) into Eq. (3-24), the cost function takes the 

form: 

   
0

( ( ) ( ) ) ( ( ) ( ) ) 0
pT

T T

i i pJ e t e t d T     = + + +  
A A

Lx Φ η Q x Φ η η R η  (3-26) 

After calculations, the cost function can be also written in a more convenient form: 

   

1 1 1
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Tp
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T
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L

η Ω Ψx Ω η Ω Ψx x Q x x Ψ Ω Ψx

Ω Φ QΦ R Ψ Φ Q
 (3-27) 

The matrices Ω and Ψ are constant and can be computed off-line.  

Therefore, it is obvious from the preceding equation that the minimization of the cost 

function occurs when: 

   1 ( )it
−= −η Ω Ψx  (3-28) 

and the optimized cost function is: 

   
1

min
0

( ) ( ) 0
TpT

T T

i i pJ t e e d t T   − = −  
  

A A
x Q Ψ Ω Ψ x  (3-29) 

3.2.5 Controller & Implementation 

The substitution of the optimum η from Eq. (3-28) into Eq. (3-18) gives the optimum control 

signal of the augmented model over the prediction horizon considering ti constant. In this 

point, it is crucial to clarify that this control signal is for each prediction horizon only since the 

prediction is based on the variable x(ti + τ | ti) (see Eq. (3-19)). This is the reason why the 

optimum η depends on x(ti) too. 

The control signal of the augmented model for each time step is derived from Eq.  (3-18) 

but considering only the first value of the Laguerre function multiplied by the optimum 

coefficients η from Eq. (3-28) and with a varying ti. This satisfies the principle of the receding 

horizon control that only the control signal at τ=0 is considered and the prediction horizon 

“moves” as the variable ti increases. To describe it mathematically, for an arbitrary time t (t = 

ti), the control for the augmented model is: 
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m1 2 m
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ηL 0 0

η0 L 0
u

η0 0 L

L 0 0

x0 L 0
Ω Ψ

y y

0 0 L

 (3-30) 

It is obvious that the presented MPC is by nature a state feedback control, since it 

depends on the current state variable x(t). Hence, the feedback gain matrix of the controller 

is: 
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   1
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(0)

(0)

T
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MPC
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K −

 
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 =
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  

1 2 m

1 2 m

1 2 m

L 0 0

0 L 0
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0 0 L

 (3-31) 

The ultimate goal is to obtain the control signal for the plant model. This can be done 

through the integration of the control signal of the augmented plant given by Eq. (3-30): 

   
0

( ) ( )
t

t d = u u  (3-32) 

3.3 Constraints 

The effective handling and easy integration of input and/or output constraints is one of the 

main advantages of MPC. The most frequent used types of constraints are three:  

• Constraints on the derivative of the manipulated variable u  

• Constraints on the amplitude of the manipulated variable u  

• Constraints on the output y  or state variable x  

In this thesis, the last two types of constraints are presented considering the 

requirements that the following study of FFSMS sets. The constraints have to become a part 

of the MPC strategy and be embedded in the procedure. Therefore, after taking the form of 

linear inequalities, the constraints use the same orthonormal basis function as the ones 

presented in Section 3.1 and affects the parameter vector η. This task requires the usage of 

a method called Hildreth’s quadratic programming procedure that is presented in Section 

3.2.1. A notable characteristic of MPC with constraints is that the nature of receding horizon 

implies that the constraints may vary with the progression of the horizon. 

3.3.1 Integration of Constraints & Hildreth’s Quadratic Programming Procedure 

In this section, the integration of the constraints into the optimization procedure is studied, a 

prerequisite for the handling of the constraints by an MPC. Some basic quadratic 

programming information is presented to comprehend the distilled idea of Hildreth’s 

quadratic programming procedure. 

After calculations in Eq. (3-27), the cost function can also take the form: 
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η Ωη η Ψx x Q x
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Φ ΒL

 (3-33) 

Let’s also consider that the constraints are in the form of linear inequalities: 

   constr A η b  (3-34) 

Since the last term in Eq. (3-33) is constant and not affected by η, the cost function can 

be written in a more convenient way: 
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= = +

= =


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η Eη η f

E Ω f Ψx

 (3-35) 

If the constraints were equalities only, they could be easily integrated into the cost 

function using some parameters called Lagrange multipliers: 
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T T T
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J

with t

= + + − =

= =

η Eη η f λ A η b A η b

E Ω f Ψx

 (3-36) 

Using this method, from now on the variable of the objective function is not only η but 

also λ. By setting the first derivatives of the cost function of Eq. (3-36) with respect to η and 

λ equal to zero (condition for extremum): 

   

'
0

'
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T
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constr

J

J


= + + =




= − =



Eη f A λ
η

A η b
λ

 (3-37) 

The solution of the linear system yields the optimal η and λ (where the first term of η is 

the global optimal solution of the cost function without constraints): 

   
1 1 1

1 1

( ) ( )T

constr constr constr

T

constr

− − −

− −

= − +

= − −

λ A E A b A E f

η E A λ E f
 (3-38) 

The preceding method which was used for equality constraints can be extended to 

satisfy inequality constraints too, using the Kuhn-Tucker Conditions [14] . In particular, by 

designating an inequality 
,constr i i ibA η  as active condition if  

,constr i i ib=A η  and as inactive if  

,constr i i ibA η , Eq. (3-37) can be used for inequality constraints too if λ=0 for inactive 

conditions( ,constr iA is the ith row of the matrix). The Kuhn-Tucker conditions can be expressed 

in the form: 
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T

constr

constr

T

constr

+ + =

− 
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

Eη f A λ

A η b

λ A η b

λ

 (3-39) 

It is worth to mention that the active constraints need to be linearly independent and the 

number of active constraints needs to be less or equal to that of the decision variables.  

To minimize the computational load, the solution of the aforementioned problem (Eq. 

(3-39)) is not based on the decision variables η (primal variables) but on the Lagrange 

multipliers λ (dual variables)). Consider that there exists a feasible point η, the solution of 

the Eq. (3-36) can be expressed as: 

   
0

1
( )

2

T T T

constrmax min


 
+ + − 

 λ η

η Eη η f λ A η b  (3-40) 

Substituting the optimal η of Eq. (3-38) into the preceding equation: 
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 (3-41) 

The third term of Eq. (3-41) is independent of λ. Therefore, an equivalent cost function 

which minimization results in the same values of λ is: 
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 (3-42) 

which is also the form of the required dual problem. 

Hildreth’s quadratic programming procedure was proposed in [10] to solve the 

aforementioned dual problem. It is a simple iterative algorithm that runs until the 

convergence of the Lagrange multipliers λ is achieved. According to this method, the 

variables λ are given by: 
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 (3-43) 

where on the up-right corner of the variables λ and w, the iteration cycle is denoted and on 

the down-right corner of the variables λ, w, k, and h, the number of the element. The hij is 

the ij-th element of the matrix H, and ki is the i-th element of the vector k. The iteration cycle 

begins by setting λ0 = [0, 0, … 0]. After the convergence is accomplished, the optimal λopt is 

substituting in the second part of Eq. (3-38) to find the optimal decision variables η. It is 

noteworthy to point out that in most cases even if the constraints are ill-defined (linearly 

dependent and/or active constraints are more than decision variables), the algorithm will 

give a near-optimal solution.   

3.3.2 Constraints on the Amplitude of the Manipulated Variable 

As it was stated in the previous section and can be clearly concluded from Eq. (3-34), the 

constraints should take the form of linear inequalities. By setting an upper and lower limit for 

the amplitude of the control signal, the following inequalities are derived: 

   min max( )it u u u  (3-44) 

Assuming adequately small sampling interval Δt and using Eq. (3-30), the constraints 

for the control signal at the first sample time are: 
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 (3-45) 

The previous equation can be written in a more convenient form: 
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u uL
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 (3-46) 

 which is a suitable form for the method presented in Section 3.2.1. 
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3.3.3 Constraints on the Output or State Variable 

To set constraints on the initial state-space problem (Eq. (3-4), an equation that related all 

the derivatives and the values of the constraints has to be found. Introducing an upper and 

lower limit on the j-th element of the state variable xm: 

   
( ) min ( ) ( ) maxm j , m j i m j ,x x (t ) x   (3-47) 

Assuming adequately small sampling interval Δt, Eq. (3-47) can set constraints on the 

first derivative of the variable: 
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x x (t ) x
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 (3-48) 

Following the same procedure, the second derivative can be written as: 
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The same method is used for higher derivatives, if it is required.  

Considering a SISO system, by substituting Eq. (3-47)-(3-49) into the augmented model 

(Eq. (3-5) (the output may contain the error if it is a set-point trajectory), the following is 

obtained:  

   
min min max max( )it−   −x Ax bu x Ax  (3-50) 

where b is the corresponding SISO vector of the matrix B from Eq. (3-5). The xmin and xmax 

contain either the derivatives of the constrained state variable xm(j) taking by Eq. (3-47)-

(3-49) or the past values of the independent state variables. The same applies for minx and 

maxx . 

By considering Eq. (3-30), Eq. (3-50) can be written as: 

   
min min max max(0) ( )T

it−   −x Ax bL η x Ax  (3-51) 

In most cases, the control signal is applied only in one equation of the state space 

model. Therefore, the above methodology is simplified profoundly. 

It is notable to point out that the output constraints may result in severe nonlinearities 

which may lead to close-loop oscillation or instability. Therefore, they should be regarded as 

soft constraints, which means that they have to be “relaxed” in case the performance of the 

model is not the desired one. This problem can also be tackled by setting input constraints 

as a priority. 
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3.4 Example: Design of MPC Controller for a Simple Mass-
Damper-Spring Model 

Consider a body with mass m = 10kg attached to a vertical wall with a spring of spring 

constant k = 5N/m and a damper with damping coefficient b = 5Ns/m. The body can move at 

the horizontal x direction. A force u is applied to the body calculated by an MPC. Assuming 

the body is stable at x = 0, it has to reach the set-point of xd = 1m.  The whole dynamic 

model is depicted in Figure 3-3. 

 

Figure 3-3. Dynamic model containing mass, damper and spring. 

The first step is to find the dynamic equation of the model, using Lagrangian mechanics: 

   ( ) ( ) ( ) ( )mx t bx t kx t u t+ + =  (3-52) 

Then, the state-space model can be formed: 

 

 ,1

,2

( ) ( ) ( )

( ) ( )

0 1 0

, , , 1 01
m

m

t t u t

y t t

x x
with k b

x x
m m m

= +

=

   
       = = = = =       − −  

   

m m m m

m m

m m m m

x A x B

C x

x A B C

 (3-53) 

To implement the MPC algorithm, the augmented model of Eq. (3-5) is formed: 

 

 
,1

,2

( ) ( ) ( )

( ) ( )

0 1 0 0

1
, 0 , , 0 0 1

1 0 0 0

m

m

t t u t

y t t

x
k b

with x
m m m

y

= +

=

   
     
     = = − − = =
     
      

   

x Ax B

Cx

x A B C

 (3-54) 

The next step is to determine the scaling factor p, the number of Laguerre functions N 

as well as the prediction horizon Tp. The last two parameters should be considered as large 

as possible to achieve adequate representation of the control signal using Laguerre 

functions. However, the larger they are, the more computationally demanding the algorithm 

is. After ample tests, they have been chosen as: Tp = 10s and N = 10.  

The scaling factor p is chosen equal to the absolute value of the dominant pole of the 

Linear Quadratic Regulator problem [40] . By using the Matlab function lqr(), the poles are 

determined. Therefore, the scaling factor is chosen as p = 2.3075. 
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Finally, the parameters Q and R are selected to achieve the best performance, without 

any force limit. For this reason, they are chosen as: 

 5

0 0 0

' 0 0 0 & 10

0 0 1

r −

 
 

= = = =
 
  

Q C C R  (3-55) 

Having determined the aforementioned parameters, the methodology which was 

presented in Section 3.2 is followed to apply the unconstrained MPC and the methodology 

presented in Section 3.3 for the constrained MPC. After the implementation, the MPC gains 

and the poles of the augmented controlled system are: 

• Kmpc = [410.07   86.00  960.12] 

• Poles: -2.24 ± 3.97i, -4.61 

Figure 3-4 presents the position and the error of the unconstrained and the constrained 

problem, considering output limit xmax = 1.081m. It is calculated that the maximum position of 

the unconstrained problem is xmax = 1.082m, while in the constrained problem the position 

does not exceed the regarded limit. The output limit could have been set even lower, but it 

would have resulted in an immense surge of the control force at some time points, as it is 

shown by Figure 3-5. 

 

Figure 3-4. Position and error of the Constrained and the Unconstrained MPC for the mass-
damper-spring example. 

Figure 3-5 shows the control force of the unconstrained and the constrained problem. It 

can be clearly realized that at time instant t = 1.033s, when the position tends to exceed the 

output limit, the control force plummets to compensate for it.  If the output limit had been set 

lower, the absolute value of the control force would have been even larger and after a point 

it would have resulted in close-loop oscillation or instability.  
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Figure 3-5. Control force of the Constrained and the Unconstrained MPC for the mass-
damper-spring example. 

In this thesis, two methods are used to tackle the problem of instability of the output 

constraints. According to the first, safety constraints on the controller’s input can be 

considered as a higher priority to the output constraints. Therefore, if the control force 

exceeds the input limit, the input constraints become active and they will be the ones that 

produce the next control signal. According to the other method, the output constraints can 

become active only for a limited time period. Both of these methods are discussed in 

Chapter 4 more thoroughly. Apart from them, the problem of disturbances, model parameter 

uncertainties, as well as noise is presented in Chapter 5 and the performance of the MPC is 

compared to the performance of a PID controller. 

 

 

 

 

 

 

 

 

 



 

 
 

4 Implementation of Model Predictive Controller 
(MPC) to Free-Floating Space Manipulator 
Systems (FFSMS) 

4.1 Introduction 

In this chapter, the MPC presented in Chapter 3 is applied to an FFSMS for both motions in 

the joint and Cartesian space. Evidently, prerequisites for the implementation are the 

equations which describe the MPC and can be found in Chapter 3 as well as the equations 

of the kinematics and dynamics of an FFSMS which can be found in Chapter 2. 

As it was stated in Chapter 2, the dynamics of an FFSMS manifest intense non-

linearities. The implementation of the preceding MPC requires a linear system. 

Consequently, the FFSMS should be linearized. The methodology that was chosen to tackle 

this problem is the Feedback Linearization or, in other words, a Model-Based Controller. 

According to this method, the model of the system is used to compensate for the non-linear 

terms and form a linear system. It is obvious that the method -as well as the MPC- requires 

an accurate model of the system. Any parametric uncertainties would be regarded as non-

constant disturbances. Another profound characteristic of this technique is the de-coupling of 

the manipulator, since the equation that describes the errors of each joint is not affected by 

the other joints. 

First, the Design of a Model Based PD and PID Controller is presented for motion in the 

joint space. Since the scenarios of Chapter 5 contain a planar FFSMS with a 3-DoF 

manipulator, the design is based on these data. After that, the design of a Model Based PD 

Controller with an auxiliary MPC input is presented. Next step is the derivation of the 

aforementioned controllers for motion in the Cartesian space too. The evaluation of the 

controllers requires simulations which are accomplished with the help of Matlab/Simulink 

and MSC Adams for the formation of the plant. The procedure that is followed for the design 

of the plant is also presented. Finally, an example implementing both Model Based PID 

Controller and Model Based PD Controller with MPC input is presented. 

4.2 Design of a Controller in the Joint Space 

There are ample occasions that require the determination of the manipulator’s motion in the 

joint space. Primary examples are the regulation of the manipulator to achieve a desired 

form and the trajectory tracking in the joint space for deployment. As it was mentioned 

Section 4.1, the implementation of an MPC requires the design of Model Based PD 

Controller. 

4.2.1 Model Based PD & PID Controller 

The main requirement for the application of a controller is the equation that describes the 

dynamics of the system. For a planar FFSMS with a 3-DoF manipulator, it is given by Eq. 

(2-56) and it is repeated here for facilitation: 

 *( ) ( , , ) ( , )CM h CMh h+ + =H q q C q q q g q τ  (4-1) 
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where H(q), *( , , )CMhC q q and ( , )h CMhg q are given by Eq. (2-57), hCM is the initial angular 

momentum which is considered as zero, q is the vector containing the manipulators angles 

and τ is the vector containing the torques of the joints of the manipulator: 

 
 

 

1 2 3

1 2 3

T

T

q q q

  

=

=

q

τ
 (4-2) 

The primary purpose of a Model Based Controller is to convert a non-linear system to a 

linear one. This can be accomplished by using the model to compensate for the non-linear 

terms. Considering that the matrices and vector H(q), *( , , )CMhC q q and ( , )h CMhg q can be 

accurately calculated using the model, the desired trajectories of the angles ( )d tq , the 

angular velocities ( )d tq  and the angular accelarations ( )d tq  of the joints are defined and 

sensors are used for the measurement of the manipulator’s joints angles q and angular 

velocities q , the Model Based PD Controller takes the form: 

 ( ) ( ) *ˆˆ ˆ
d D d P d h= + − + − + +  τ H q K q q K q q C q g  (4-3) 

where KD and KP are 3x3 diagonal matrices containing the gains of the PD part of the 

controller which determines the desired dynamic response of the system and the hat (^) 

above H, 
*

C and hg  indicates that they are conjectured and not perfectly known.  

Substituting Eq. (4-3) into Eq. (4-1) the equations of dynamics of the angles’ errors are 

given by: 

 
( ) ( )( )1 * *ˆˆ ˆ ˆ

D P h h

d

−+ + = − + − + −

= −

e K e K e H H H q C C q g g

e q q

 (4-4) 

If the estimations of the matrices are accurate enough, the right part of the preceding 

equation equals zero and the errors’ dynamics are described by: 

 
0D P

d

+ + =

= −

e K e K e

e q q
 (4-5) 

These equations describe a decoupled system of linear equations. If the gains are 

chosen appropriately, the error tends to zero for the steady-state.  

Figure 4-1 presents the block diagram of the Model Based PD Controller. 

The same methodology can be used for the Model Based PID Controller. The torques 

are given by: 

 ( ) ( ) ( ) *

0

ˆˆ ˆ( ) ( )
t

d D d P d I d hx x dx = + − + − + − + +
  τ H q K q q K q q K q q C q g  (4-6) 

where KI is also 3x3 diagonal matrix 

The dynamics of the errors are described by: 

 0
( ) 0

t

D P I

d

x dx+ + + =

= −

e K e K e K e

e q q

 (4-7) 

Figure 4-2 presents the block diagram of the Model Based PID Controller. 
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Figure 4-1. Block Diagram of the Model Based PD Controller applied to a Planar FFSMS in 
Joint Space. 

 

 

Figure 4-2. Block Diagram of the Model Based PID Controller applied to a Planar FFSMS in 
Joint Space. 

4.2.2 Model Based PD Controller with an auxiliary MPC Input 

The effectiveness of the controller presented in Section 4.2.1 depends on the accuracy of 

the system’s parameters and matrices H(q), *( , , )CMhC q q and ( , )h CMhg q . If these 

parameters are not certain, time-varying disturbances occur. These disturbances are 

described by the right part of Eq. (4-4). To compensate for these disturbances, an MPC is 

embedded into the previous Model Based PD Controller via the term MPCu . Therefore, the 

torques of the joints are given by: 

 ( ) ( ) *ˆˆ ˆ
d D d P d MPC h= + − + − + + +  τ H q K q q K q q u C q g  (4-8) 

and the dynamics of the errors are described by: 

 
( ) ( )( )1 * *ˆˆ ˆ ˆ

D P h h MPC

d

−+ + = − + − + − −

= −

e K e K e H H H q C C q g g u

e q q

 (4-9) 

Figure 4-3 presents the block diagram of the Model Based PD Controller with MPC 

compensation. 
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Figure 4-3. Block Diagram of the Model Based PD Controller with an auxiliary MPC Input 
applied to a Planar FFSMS in Joint Space. 

As it was stated in Chapter 3, the application of the MPC mandates the representation 

of the dynamics of the system in state-space form. Considering the fact that the system is 

linear and decoupled and by neglecting to write the disturbances caused by the parametric 

uncertainties for simplification of the representation, the state-space model for each one of 

the three joints can be written as: 
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 (4-10) 

For the rest of this section, the indicator i is neglected for simplification. 

To implement the MPC algorithm, the augmented model of Eq. (4-10) is formed: 
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 (4-11) 

The next step is to determine the scaling factor p, the number of Laguerre functions N, 

the prediction horizon Tp. as well as the parameters Q and R on which the desired 

performance depends. 

Having determined the aforementioned parameters, the methodology which was 

presented in Section 3.2 of Chapter 3 is followed to apply the unconstrained MPC and the 

methodology presented in Section 3.3 of Chapter 3 for the constrained MPC. 

It is important to point out that although the desired angles, angular velocities and 

angular accelerations trajectories are time-dependent, the desired trajectories of the errors 

are constant and equal to zero. Since the equations that are used for implementation of the 

MPC are the equations of the errors, the desired trajectories are constant and therefore the 

methodology of Chapter 3 can be applied. 
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4.3 Design of a Controller in the Cartesian Space 

Probably the most common usage of an FFSMS’ manipulator involves its motion in the 

Cartesian Space. There are boundless occasions that the manipulator’s end-effector might 

need to reach a desired point with a desired orientation in reference to an Inertial Frame of 

Reference. Besides that, in some cases, the end-effector might need to even follow a 

desired trajectory apart from the final position and orientation. The accomplishment of these 

tasks requires the measurement of the position and orientation of the end-effector as well as 

the base. This can be done by either using cameras which are attached to the end-effector 

and measure these variables with respect to another object such as another satellite or by 

estimating them from the equations of kinematics of the FFSMS, if the angles of the 

manipulator’s joints and the link lengths are known. The former method is the most accurate 

one since the latter multiplies the disturbances in case of parametric uncertainties (the 

kinematics uses the parameters of the model which are uncertain). 

The same procedure as the design of controller in the joint space is followed. First a 

Model Based PD Controller is presented and then an MPC is embedded into the controller.  

4.3.1 Model Based PD & PID Controller 

The methodology followed is based on the design of a Transpose Jacobian Controller. 

The main idea of this controller is based on the premise that the end-effector moves 

because a hypothetical force f is applied to it. This force is the result of the joints torques τ 

and it is given by [21] : 

 
T=τ J f  (4-12) 

where J is the Jacobian of the system that relates the end-effector’s velocities to the joints’ 

angular velocities and it is expressed in the inertial frame of reference. It can be extracted by 

solving the first part of Eq. (2-31) considering hCM  equals zero and by substituting 
0  to the 

rest of equations. From now on, it would be considered for simplification hCM = 0, unless 

stated otherwise. The Jacobian is given by: 

 

0 0

* *

0 0 0

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

 

 

− 
 

= =
 
  

J R J J  (4-13) 

and 
*

J is given by Eq. (2-37). By definition, the Jacobian is the matrix that is used to convert 

the velocities of the end effector to the angular velocities of the joints: 

 
 

T
x y   

=

=

x Jq

x
 (4-14) 

The solution of the aforementioned equation yields:  

 1−=q J x  (4-15) 

The differentiation of Eq. (4-14) gives: 

 = +x Jq Jq  (4-16) 

Therefore, 

 1( )−= −q J x Jq  (4-17) 
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Substituting Eq. (4-15) and Eq. (4-17) into the equation of dynamics of an FFSMS (Eq. 

(4-1)) ( ( , ) 0h CMh =g q  because hCM = 0) and multiplying it with the inverse transpose of the 

Jacobian, the equation of dynamics for the Cartesian space is given by: 

 *

0 0 0( , ) ( , , , ) T

x x   −+ = =H q x C q q x f J τ  (4-18) 

where: 

 
( )

1

0

* * 1 1

0 0

( , )

( , , , )

T

x

T

x



 

− −

− − −

=

= −

H q J HJ

C q q J C HJ J J
 (4-19) 

It is pivotal to point out here that the inertia matrix xH is positive definite everywhere but 

at the points where Dynamic Singularities occur, since it depends on the inverse Jacobian. 

Dynamic Singularites have been studied in Section 2.3.2. 

The design of a Model Based Controller in the Cartesian space is quite similar with the 

one presented for joint space. The goal of the controller is to convert the non-linear system 

to a decoupled linear one. This can be accomplished by using the model to compensate for 

the non-linear terms. Considering that the matrices Hx and 
*

xC can be accurately calculated 

by the model, the desired trajectories of the position and orientation of the end-effector 

( )d tx , the velocities ( )d tx  and the accelarations ( )d tx  are defined and sensors are used to 

measure the manipulator’s joints angles q and angular velocities q , the base’s rotation and 

angular velocity 0 0( ), ( )t t  , the end-effector’s position and orientation x and velocities x , 

the Model Based PD Controller takes the form: 

 
( ) ( ) *ˆˆ

x d D d P d x

T

= + − + − +  

=

f H x K x x K x x C x

τ J f

 (4-20) 

where KD and KP are 3x3 diagonal matrices containing the gains of the PD part of the 

controller which determines the desired dynamic response of the system and the hat (^) 

above H and 
*

C  indicates that they are conjectured and not perfectly known. Of course, the 

Jacobian matrix J is also an estimated matrix but the “hat” is neglected for simplification 

purposes.  

Substituting Eq. (4-20) into Eq. (4-18) the equations of dynamics of the errors of the 

position and orientation are given by: 

 
( ) ( )( )1 * *ˆˆ ˆ

x D x P x x x x x x

x d

−+ + = − + −

= −

e K e K e H H H x C C x

e x x

 (4-21) 

If the matrix estimates are accurate enough, the right part of the preceding equation 

equals zero and the errors’ dynamics are described by: 

 
0x D x P x

x d

+ + =

= −

e K e K e

e x x
 (4-22) 

This equation describes a decoupled system of linear equations and if the gains are 

chosen suitably, the tracking error will converge to zero at the steady-state.  

Figure 4-4 presents the block diagram of the Model Based PD Controller. 
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Figure 4-4. Block Diagram of the Model Based PD Controller applied to a Planar FFSMS in 
Cartesian Space. 

The same methodology can be used for the Model Based PID Controller. The 

hypothetical force is given by: 

 
( ) ( ) ( ) *

0

ˆˆ ( ) ( )
t

x d D d P d I d x

T

d   = + − + − + − +
  

=

f H x K x x K x x K x x C x

τ J f

 (4-23) 

and the dynamics of the errors are described by: 

 0
( ) 0

t

x D x P x I x

x d

d + + + =

= −

e K e K e K e

e x x

 (4-24) 

Figure 4-5 presents the block diagram of the Model Based PID Controller. 

 

Figure 4-5. Block Diagram of the Model Based PID Controller applied to a Planar FFSMS in 
Cartesian Space. 

4.3.2 Model Based PD Controller with an auxiliary MPC Input  

Similar to the design of the controller in the joint space, an MPC, denoted by MPCu , is 

embedded into the Model Based PD Controller to compensate for the potential disturbances. 

Therefore, the hypothetical force and the torques of the joints are given by: 

 
( ) ( ) *ˆˆ

x d D d P d MPC x

T

= + − + − + +  

=

f H x K x x K x x u C x

τ J f

 (4-25) 

and the dynamics of the errors are described by: 
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( ) ( )( )1 * *ˆˆ ˆ

x D x P x x x x x x MPC

x d

−+ + = − + − −

= −

e K e K e H H H x C C x u

e x x

 (4-26) 

Figure 4-6 presents the block diagram of the Model Based PD Controller with MPC. 

 

Figure 4-6. Block Diagram of the Model Based PD Controller with an auxiliary MPC Input 
applied to a Planar FFSMS in Cartesian Space. 

As stated in Chapter 3 and presented in the design of the similar controller for motion in 

the joint space, the application of the MPC mandates the representation of the dynamics of 

the system in state-space form. Consequently, the same equations to the preceding 

controller is applied in this case too. Specifically, Eq. (4-10) describes the state-space model 

and Eq. (4-11) describes the augmented model.  

The next step is to determine the scaling factor p, the number of Laguerre functions N, 

the prediction horizon Tp. as well as the parameters Q and R depended on the desired 

performance as before. Having determined the aforementioned parameters, the 

methodology which was presented in Section 3.2 of Chapter 3 is followed to apply the 

unconstrained MPC and the methodology presented in Section 3.3 of Chapter 3 for the 

constrained MPC. 

4.4 Plant Representation - MSC Adams Simulation 

Although a sole application of Matlab/Simulink can be used to simulate the performance of 

the aforementioned controllers implemented in an FFSMS for a plethora of different 

scenarios, more realistic and reliable simulations can be achieved by co-simulation of 

Matlab/Simulink with MSC Adams. Adams is a Multibody Dynamics software that can be 

used for actual representation of both the studied system and the motion that it would have 

depending on the forces and torques applied to it. Adams offers the ability to connect to 

Matlab/Simulink by extracting a “block” which can be used in Simulink which represents the 

plant of the system. After that, the controller is applied to the extracted plant in Simulink, 

offering a real-world representation.  

Adams provides the ability to design the model in its environment or import it from an 

external design software. For the purpose of this thesis, the base and the manipulator of the 

FFSMS were designed in Solidworks and imported into Adams. Figure 4-7 shows the 

FFSMS that would be used for the simulations. The base is depicted with yellow color while 

the manipulator is white. The next step for the creation of the studied plant is the introduction 

of the connectors which describe the planar motion of the system in relation with the 

“ground” and the three joints of the manipulator. After that, the torques of the manipulator 
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are introduced as well as the measures which represent the sensors of the real model. For 

joint space motion, the variables that are measured from the model are the angles and 

angular velocities of the manipulator’s joints as well as the rotation of the base: 

1 2 3 1 2 3 0, , , , , ,q q q q q q  . For Cartesian motion, the angular velocity of the base, the position, 

orientation and velocities of the end-effector are also measured: 

1 2 3 1 2 3 0 0, , , , , , , , , , , , ,q q q q q q x y x y         . At this point, it is important to mention that each 

body’s CM should be positioned manually because the insersion from Solidworks inserts 

some small discrepancies too. Finally, the model is extracted and inserted into 

Matlab/Simulink. 

Adams offers two different modes for simulation when it is connected to 

Matlab/Simulink. The first one is called “Adams Discete Model” or “Co-simulation”. According 

to this option, Matlab solves the Simulink model while Adams uses its own solver to solve 

Adams model. The data are exchanged periodically. The second way is called “Adams 

Continuous Model” or “Function Evaluation”. According to this option, Matlab solves both 

Simulink and Adams models. The solver provided by Adams acts only as a function 

evaluator for Matlab integrator. Althought the former option might be more robust because 

Adams’ solver is claimed to be better at solving complicated Adams models, it creates an 

algebraic loop in simulink, causing small but significant errors in the results. For this reason, 

the latter mode is used. However, since Continuous mode cannot provide graphical 

representation of the simulation, when a video is desired, Discrete mode is used. 

For the following Example as well as the Scenarios presented in Chapter 5, the Adams 

model shown in Figure 4-7 will be used to represent the plant, unless stated otherwise. 

 

Figure 4-7. Picture of the MSC Adams Model used to represent the studied FFSMS (a) Top 
View, (b) Isometric View. 
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4.5 Example: Design of Model Based PD Controller with an 
auxiliary MPC Input for Motion in the Joint Space 

The main purpose of this example is to manifest the co-simulation of Matlab/Simulink and 

MSC Adams by simulating the motion of a planar FFSMS with a 3-DoF manipulator in the 

joint space. Another aim of the example is to validate the application of the presented 

controllers. Although results would be shown for both the Model Based PID Controller and 

the Model Based PD Controller with an auxiliary MPC input, a comparison between these 

two controllers is unnecessary at this point, since disturbances, parametric uncertainties or 

noise is not introduced in this example. Chapter 5 contains case studies with these 

characteristics. Consequently, the comparison is presented there.  

First, the path planning is presented to yield the desired trajectories for each joint. After 

that, the preceding controllers is implemented and the respective gains and poles is shown. 

Finally, diagrams that show the motion of the FFSMS as well as the angles’ errors and 

torques are presented. 

4.5.1 Path Planning 

The control of an FFSMS in the joint space requires the determination of the desired 

trajectories that the manipulator’s joints should follow. The base rotates freely due to the 

dynamic-coupling between the base and the manipulator, thus, no particular trajectory is 

needed for it. In this thesis, fifth power polynomials are used to be able to set the initial and 

the final value of the angle, the angular velocity and the angular acceleration. For each of 

the three joints, the polynomial for the angle is given by: 

 2 3 4 5

0 1 2 3 4 5( )dq t a a t a t a t a t a t= + + + + +  (4-27) 

where the coefficients are given by the solution of the linear system (considering that the 

initial time is t0 = 0): 
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 (4-28) 

The system was solved with the help of Matlab’s command linsolve(). The results are shown 

in Appendix A. The resulted trajectories for determined initial and final angle and for initial 

and final angular velocity and acceleration equal to zero, which is the most usual case and 

the one that is used in this example, are shown in Figure 4-8. 
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Figure 4-8. Desired Trajectories (a) Angle, (b) Angular Velocity, (c) Angular Acceleration. 

In Table 4-1 the values for the initial and final angle, angular velocity and acceleration 

as well as the final time used in the example for each of the three joints are presented. 

Table 4-1. Paremeters of the Desired Trajectories. 

Joint 1st  2nd  3rd  

tf (s) 6 6 6 

Initial Angle qd,0 (deg) 45 110 40 

Final Angle qd,f (deg) 20 70 -60 

Initial Angular Velocity 
,0dq  (deg/s) 0 0 0 

Final Angular Velocity 
,d fq  (deg/s) 0 0 0 

Initial Angular Acceleration 
,0dq  (deg/s2) 0 0 0 

Final Angular Acceleration ,d fq  (deg/s2) 0 0 0 

4.5.2 FFSMS Dynamics & Parameters 

As presented in the previous sections, the effectiveness of a Model Based Controller 

depends mainly on the accuracy of the parameters of the FFSMS as well as the dynamical 

matrices. In this Section, due to the absence of disturbances and noise, the FFSMS’ 

parameters are perfectly known and given in Table 4-2. 
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Table 4-2. Paremeters of the FFSMS. 

Body Mass - mi 

(kg) 

Moment of Inertia - Ii 

(kg·m2) 

Before-CM Length - li 

(m) 

After-CM Length - ri 

(m) 

0 600 500 - 1.4 

1 40 20 1 1 

2 40 20 1 1 

3 20 15 0.25 0.25 

 

Nonetheless, even if the parameters of the FFSMS are known, there are still 

uncertainties that might occur due to the inaccurate modelling of the FFSMS. These 

uncertainties are defined as dynamic uncertainties. For this example as well as the 

scenarios presented in Chapter 5, it is considered that no dynamic uncertainties occurred, 

the angular momentum equals zero and the form of the matrices H(q) and 
*( , )C q q  of the 

equations of dynamics (Eq. (4-1)) is adequately accurate and given by Eq. (2-57). For the 

implementation, Matlab was used to deduce the aforementioned matrices. 

4.5.3 Model Based PD Controller with an Auxiliary MPC Input 

The controller that is applied is given by Eq. (4-8). Considering that the matrices H(q) and 
*( , )C q q  have been determined (see Section 4.5.2) and ( , ) 0h CMh =g q  since 0CMh = , then, 

only matrices KD, KP and the signal from the MPC uMPC have to be defined. 

By neglecting the parametric uncertainties and the MPC signal, for each of the three 

joints (since the system has become decoupled) Eq. (4-9) takes the form: 

 22 0, 1 3i D i P i i n i n ie K e K e e e e i + + = + + = = −  (4-29) 

where ζ is the damping ratio and was defined based on the fact that a commonly used value 

is ζ = 0.7 and considering that the oscillation of the dynamics does not result in any impacts. 

ωn is the natural frequency and was defined as ωn = 7.532rad/s. The value of the natural 

frequency was determined through a trial-error process until the maximum torques of the 

Model Based PD Controller with MPC Input and the Model Based PID Controller were 

adequately close. This is a very important determinant for the comparison of the two 

controllers and it will be analyzed thoroughly in Chapter 5. Of course, the criterion that the 

errors should reach zero steady-state for settling time less than 6s (the final time of the 

trajectory) was also taken into consideration. 

Therefore, the matrices KD and KP are: 

 
(10.54,10.54,10.54)

(56.73,56.73,56.73)

D

P

diag

diag

=

=

K

K
 (4-30) 

As presented in Section 4.2.2, these values will be used in the augmented model of Eq. 

(4-11) to derive the MPC control input. Prerequisites for that is to determine also the scaling 

factor p, the number of Laguerre functions N, the prediction horizon Tp. as well as the 

parameters Q and R. A good selection of the scaling factor is to set it equal to the dominant 

pole of the respective LQR problem [40] . By using the Matlab function lqr() the scaling factor 

was defined as p = 5.5110. Parameters N and Tp were determined through a number of 
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trials until the results were remaining adequately constant. Consequently, N = 10 and Tp = 

6s. Finally, matrix Q was set equal to the transpose of the matrix of the output multiplied by 

the matrix of the output (see Eq. (3-24)) and R was set adequately small since the goal of 

the controller is to lessen the error and not the input signal: 

 

6

0 0 0

0 0 0

0 0 1

10

T

−

 
 

= =
 
  

=

Q C C

R

 (4-31) 

Having determined the aforementioned parameters, the methodology which was 

presented in Section 3.2 of Chapter 3 is followed for applying the unconstrained MPC. The 

matrices Ω, Ψ and L(0)T are calculated and used in the controller. There is no need to apply 

the constrained MPC since no disturbances or parametric uncertainties were introduced in 

this example and it only results in the increase of the computational power.  

It is interesting to present also the produced gain of the MPC for the augmented model. 

The gain is produced by Eq. (3-31) and for this example it equals: 

  153.99 9.97 1000.1MPC = − − −K  (4-32) 

To understand these values and perhaps compare them with the gains from the Model 

Based PID Controller presented in the next section, it has to be kept in mind that these are 

the gains for each joint and for the augmented model of the plant, which is of course a state-

space problem.  

Figure 4-9 includes snapshots of the motion of the FFSMS in the ADAMS environment 

for three different time-points, Figure 4-10 presents the overall motion of the FFSMS as well 

as the Path Independent Workspace (PIW) and the Path Dependent Workspace (PDW). It is 

important to point out that although the FFSMS moves into the PDW, there is no worry for 

dynamic singularity occurrence since the controller has been implemented in the joint space. 

For motion in the Cartesian space, Dynamic Singularities must be considered too. 

 

Figure 4-9. Snapshots of the Motion of the FFSMS in the ADAMS environment for three 
different time-points (a) t=0, (b) t=3s, (c) t=6s. 
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Figure 4-10. Motion of the FFSMS in the Joint Space. 

Figure 4-11 presents the trajectory of the angles and angular velocities of all of three 

joints. It can be concluded easily that the trajectories of the angles fit almost perfectly with 

the desired trajectories. This can be seen also in Figure 4-12 which presents the errors of 

the three joints as well as the torques that have to be applied to their actuators in order the 

FFSMS to follow the desired path. It is obvious that the errors are about 10-8 which is a 

completely rational value since no disturbances, parametric uncertainties or noise were 

introduced and Adams model has an accuracy of around 10-8-10-9 due to the number of 

decimal digits that can be inserted for the dynamic and geometrical parameters. 
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Figure 4-11. Actual and Desired Trajectories of the joints (a) Angles, (b) Velocities. 

 

Figure 4-12. (a) Errors of Angles, (b) Applied Torques. 

4.5.4 Model Based PID Controller 

The controller that is applied is given by Eq. (4-6). Considering that the matrices H(q) and 
*( , )C q q  have been determined (see Section 4.5.2) and ( , ) 0h CMh =g q  since 0CMh = , then, 

only the matrices KD, KP and KI have to be defined. 

The deduction of the respective characteristic equation of Eq. (4-7) for each of the three 

joints (since the system has become decoupled) leads to:  
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where ζ is the damping ratio and was defined based on the fact that a commonly used value 

is ζ = 0.7 and considering that the oscillation of the dynamics does not result in any impacts. 

ωn is the natural frequency and was defined as ωn = 7.532rad/s. The value of the natural 

frequency was determined through a trial-error process until the maximum torques of the 

Model Based PD Controller with MPC Input and the Model Based PID Controller were 

adequately close.  It should be pointed out again that the criterion that the angle errors 

should equal zero at the steady-state for settling time less than 6s was also taken into 

consideration. 

Consequently, the matrices KD, KP and KI are: 

 

(18.08,18.08,18.08)

(136.15,136.15,136.15)
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D

P

I

diag

diag

diag

=

=

=

K

K

K

 (4-34) 

Figure 4-13 presents the errors of the three joints as well as the torques that have to be 

applied to them in order the FFSMS to follow the desired path. It is obvious that the errors 

are about 10-9 which is a reasonable value since no disturbances, parametric uncertainties 

or noise were introduced and Adams model has an accuracy of around 10-8- 10-9 due to the 

number of decimal digits that can be inserted for the dynamic and geometrical parameters. 

Since the errors are adequately low, Figure 4-9 and Figure 4-10 also present the motion 

of the FFSMS for the Model Based PID Controller.  

 

Figure 4-13. (a) Errors of Angles, (b) Applied Torques. 
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Finally, Figure 4-14 presents the root locus of the poles of the closed-loop system 

containing the Model Based PD Controller with an auxiliary MPC input as well as the poles 

of the Model Based PID Controller. For both systems, the absolute value of the real part of 

the poles is not considered high. Therefore, no problems related to noise or high values of 

torques are expected. Note that although someone might argue that the PID Controller was 

designed slower than the PD & MPC, it was observed that a different selection of the poles 

which would result in a faster design would require higher torques. Hence, considering the 

criterion that the two controllers should have the same maximum torque, the comparison 

between the two controllers would not be right. 

 

 

Figure 4-14. Root Locus for both the Model Based PID Controller and the Model Based PD 
Controller with an Auxiliary MPC Input. 



 

 
 

5 Simulations & Case Studies 

5.1 Introduction 

In this Chapter, a Model Based PID Controller and a Model Based PD Controller with an 

auxiliary MPC input are implemented in a Free-Floating Space Manipulator System 

(FFSMS) for a multitude of different scenarios. The performance of the two controllers as 

well as their ability to tackle the various issues are compared to each other for ample 

different characteristics (errors, simulation time, torques). A planar FFSMS with a 

manipulator of 3 Degrees of Freedom (DoF) is employed for this task. For the deduction of 

the results, co-simulation between Matlab/Simulink and MSC Adams is performed.  

The first scenario tests the performance of the two controllers when constant 

disturbances are present. The motion of the FFSMS is determined in the Cartesian Space 

since the position and orientation of the desired captured object are known. The second 

scenario shows the performance of the two controllers when the parameters of the FFSMS 

are not accurately known but estimated. Monte-Carlo simulations were performed in this 

scenario to manifest the behavior of the controllers for a plethora of different parametric 

uncertainties. The combination that resulted in the maximum errors is studied more 

thoroughly. 

The third scenario is similar to the second since it involves parametric uncertainties. 

According to this case study, the object is already captured and stable but its parameters are 

not accurately known. Therefore, the controllers have to compensate for any errors. The 

motion of the FFSMS for this scenario is determined in the Joint Space. Finally, the fourth 

scenario studies the performance of the two controllers when the measurements involve 

noise. Another discrepancy of this scenario in comparison to the previous ones is that the 

object that the FFSMS needs to capture is not stationary but it has a known relative velocity. 

The Adams model which is used as well as the design of the controllers were presented 

in Chapter 4. For facilitation, the data of the FFSMS are repeated in Table 5-1.  

Table 5-1. Paremeters of the FFSMS. 

Body Mass - mi 

(kg) 

Moment of Inertia - Ii 

(kg·m2) 

Before-CM Length - li 

(m) 

After-CM Length - ri 

(m) 

0 600 500 - 1.4 

1 40 20 1 1 

2 40 20 1 1 

3 20 15 0.25 0.25 
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5.2 Scenario 1: Constant Disturbances 

Although the effect of the friction in the FFSMS at the beginning of its lifetime might be small, 

as time goes by and the times that the manipulator is used increase, the friction at the joints 

of the manipulator may increase. This friction could be modeled satisfactorily as constant 

disturbances applied at each of the three joints of the manipulator.  

In this scenario, the manipulator moves in Cartesian space to reach a relatively 

stationary target. First, the path planning is presented to yield the desired trajectories for the 

x and y coordinates as well as the orientation of the end-effector. After that, the Model Based 

PID Controller and the Model Based PD Controller with an auxiliary MPC input is 

implemented and compared to each other. 

5.2.1 Path Planning 

The control of an FFSMS in the Cartesian space requires the determination of the desired 

trajectories for the x and y coordinates as well as the orientation of the end-effector. In this 

thesis, fifth power polynomials are used to determine the initial and final value of the end-

effector’s variables, the velocity of them as well as their acceleration. For the position and 

orientation of the end-effector, the polynomials are described by: 
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 (5-1) 

where the coefficients are given by the solution of the three linear systems (considering that 

the initial time is t0 = 0): 

 

0 ,0 0 ,0

2 3 4 5

, 0 1 2 3 4 5 ,

0 ,0 1 ,0

2 3 4

, 1 2 3 4 5 ,

0 ,0 2 ,0

,

( 0)

( )

( 0)

( ) 2 3 4 5

( 0)

( )

Ed Ed Ed

Ed f Ed f f f f f f Ed f

Ed Ed Ed

Ed f Ed f f f f f Ed f

Ed Ed Ed

Ed f Ed

x t x a x

x t x a a t a t a t a t a t x

x t x a x

x t x a a t a t a t a t x

x t x a x

x t x

= =  =

=  + + + + + =

= =  =

=  + + + + =

= =  =

= 2 3

2 3 4 5 ,2 6 12 20f f f f Ed fa a t a t a t x










 + + + =

 (5-2) 
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The system was solved with the help of Matlab’s command linsolve(). The results are shown 

in Appendix A. The resulted trajectories for preset initial and final coordinates and orientation 

of the end-effector and for initial and final first and second derivatives of them equal to zero, 

which is the most usual case and the one that is used in this scenario, are shown in Figure 

5-1. 

 

Figure 5-1. End-Effector’s Desired Trajectories (a) Horizontal Position, (b) Vertical Position, 
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity (f) Angular Velocity, 
(g) Horizontal Acceleration, (h) Vertical Acceleration, (i) Angular Acceleration. 

In Table 5-2 the values of the initial and final coordinates and orientation of the end-

effector, its velocities and accelerations as well as the final time that is used in the scenario 

are presented. It is pivotal to clarify that the coordinates are measured from the FFSMS’ 

Center of Mass (CM). 

Table 5-2. Paremeters of the Desired Trajectories. 

 xE (m) yE (m)  θE (deg) 

tf (s) 6 6 6 

Initial Value 0.2675 1.9220 195 

Final Value -2 1.8 170 

1st Derivative’s Initial Value 0 0 0 

1st Derivative’s Final Value 0 0 0 

2nd Derivative’s Initial Value 0 0 0 

2nd Derivative’s Final Value 0 0 0 
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5.2.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary 
MPC Input 

For both controllers, the parameters of the FFSMS are given in Table 5-1 and considered 

known with adequate accuracy. The angular momentum is considered zero ( 0)CMh = . As 

presented in Chapter 4, the motion in the Cartesian space and the formation of a Transpose 

Jacobian Controller mandate the value of the matrices Hx(q) and 
* ( , )xC q q . These matrices 

are given by Eq. (4-19) and they depend on the matrices H(q) and 
*( , )C q q  as well as the 

Jacobian matrices J given by Eq. (4-13) and the derivative of the Jacobian J . 

The disturbances act on the actuators of the manipulator. The values of the 

disturbances introduced in this scenario are: 

  12 6 4 ( )
T

Nm=d  (5-5) 

The values of the disturbances might be considered rather high for a realistic scenario. 

These values were chosen primarily to manifest clearly the different performance of the two 

compared controllers. 

Figure 5-2 presents the block diagram of the system for both controllers. 

 

Figure 5-2. Block Diagram of the 1st Scenario. 

The Model Based PID Controller is given by Eq. (4-23) and is repeated here for 

convenience: 
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As it was mentioned earlier, it is considered that the matrices Hx(q) and 
* ( , )xC q q  are known 

and 0CMh = . Therefore, the only matrices that have to be defined are KD, KP and KI. 

The deduction of the respective characteristic equation of Eq. (4-24) for each of the 

three variables of the end-effector (x-coordinate, y-coordinate, orientation) results in:  
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 (5-7) 

where ζ is the damping ratio and was defined based on the fact that a commonly used value 

is ζ = 0.7 and considering that the oscillation of the dynamics does not result in any impacts. 

ωn is the natural frequency and was defined as ωn = 7.532rad/s. The value of the natural 
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frequency was determined through a trial-error process until the maximum torques of the 

Model Based PD Controller with MPC Input and the Model Based PID Controller were 

adequately close and by considering the criterion that the errors of the position and 

orientation of the end-effector compared to the desired trajectories equal approximately zero 

at the desired settling time (6s) (for set-point input). 

Consequently, the matrices KD, KP and KI are: 
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 (5-8) 

It is evident that the integral gain KI is quite larger than the other gains. This is rational 

since it was defined as the third power of the natural frequency (see Eq. (5-7)). Besides that, 

the definition of the integral gain is that it compensates for changing system dynamics, which 

is the main criterion that will be used for the comparison of the two controllers. In other 

words, the PID Controller needs to be designed with large integral gain in order to compete 

with the PD & MPC Controller.  

The Model Based PD Controller with an Auxiliary MPC Input is given by Eq. (4-25) and 

is repeated here for convenience: 
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By neglecting the parametric uncertainties and the MPC signal for now, the 

characteristic equation, that results for each of the end-effector’s variables (since the system 

has become decoupled) from Eq. (4-26), takes the form: 

 
2 2 2

, , 2D MPC P MPC n ns K s K s s + + = + +  (5-10) 

where ζ and ωn have been previously defined for the Model Based PID Controller. 

Therefore, the matrices KD,MPC and KP,MPC are: 

 
,

,

(10.54,10.54,10.54)

(56.73,56.73,56.73)

D MPC

P MPC

K diag

K diag

=

=
 (5-11) 

As presented in Section 4.2.2, these values are used in the augmented model of Eq. 

(4-11) to derive the MPC control input. Prerequisites is to determine the scaling factor p, the 

number of Laguerre functions N, the prediction horizon Tp, and the parameters Q and R.  

 Following the footsteps of Section 4.2.2, a good selection of the scaling factor is to set it 

equal to the dominant pole of the respective LQR problem [40] . By using the Matlab function 

lqr() the scaling factor was defined as p = 5.5110. Parameters N and Tp were determined 

through a number of trials until the results were remaining adequately constant. 

Consequently, N = 10 and Tp = 6s. Finally, matrix Q was set equal to the transpose of the 

matrix of the output multiplied by the matrix of the output and R was set adequately small 

since the goal of the controller is to lessen the error and not the input signal: 
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Having determined the aforementioned parameters, the methodology which was 

presented in Section 3.2 is followed to apply the unconstrained MPC. The matrices Ω, Ψ 

and L(0)T are calculated and used in the controller. For the constrained MPC, the 

methodology presented in Section 3.3 is applied. For this task, the maximum and minimum 

values for the output and/or input should also be given to the controller. Results containing 

the performance of constrained MPC are presented next. 

Figure 5-3 includes snapshots of the motion of the FFSMS in the ADAMS environment 

for three different time-points and for top view and isometric view. The white line depicts the 

trajectory of the end-effector. Although the manipulator seems to pass above the base, this 

is not a problem for our studied model since the base and the manipulator are not on the 

same plane but on parallel ones. However, the case of them being on the same plane 

requires a different path planning method. This does not affect the results of the controllers’ 

comparison.  

Figure 5-4 presents the overall motion of the FFSMS as well as the Path Independent 

Workspace (PIW) and the Path Dependent Workspace (PDW). It is evident that the 

barycenter of the third link is moving in the PIW to avoid Dynamic Singularities (see Section 

2.3.2). For evaluation of the motion, Figure 5-5 presents the determinant of the Jacobian 

(see Eq. (2-38)) which does not take values close to zero, hence, there is no worry for 

Dynamic Singularities. These figures are extracted from the performance of both controllers 

since the errors, that the controllers yield, are quite small (see Figure 5-7). 

 

Figure 5-3. Snapshots of the Motion of the FFSMS in the ADAMS environment for three 
different time-points and two different views for the 1st Scenario (a) Isometric 
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0), 
(e) Top View (t=3s), (c) Top View (t=6s). 
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Figure 5-4. Motion of the FFSMS in the Cartesian Space for the 1st Scenario. 

 

Figure 5-5. Determinant given by Eq. (2-38) for the 1st Scenario. 
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Figure 5-6 presents the end-effector trajectories in the x, y coordinate and its orientation 

trajectory. These diagrams are for both controllers since the errors of these variables are 

small enough for both of them. These errors are presented in Figure 5-7. It is obvious that 

the controller with the auxiliary MPC input has better results than the other controller in all 

three variables. In particular, the controller with the MPC input achieved: 

• 43% reduction of the x-Coordinate error 

• 43% reduction of the y-Coordinate error 

• 43% reduction of the orientation error 

 It should be clarified that the criterion that the two controllers should reach 2% of the 

steady-state at about 6s is also satisfied for both controllers since the errors of the Model 

Based PID Controller are lower than 10-5 which is considered low enough for motion in the 

Cartesian space and the errors of the Model Based PD with an auxiliary MPC input are 

lower than 10-6 at about 6 seconds. 

 

Figure 5-6. Actual and Desired Trajectories of the End-Effector (a) x-Coordinate, (b) y-
Coordinate, (c) Orientation. 

 

Figure 5-7. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
1st Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. 
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Figure 5-8 presents the torques that are applied to the joints of the manipulator. As it 

was mentioned earlier, the torques have to be close enough in order for the comparison of 

them to be considered valid. In other words, this means that the MPC does not require 

additionally control effort to achieve better results but it only distributes the torques better. 

The maximum torque of the first two joints is almost identical while the torque of the third 

joint manifest a 2% increase for the controller with the MPC input, which is considered 

negligible. 

 

Figure 5-8. Torques of the Joints of the Manipulator applied in the 1st Scenario (a) 1st Joint, 
(b) 2nd Joint (c) 3rd Joint. 

No constraints were introduced on the MPC controller presented in the preceding 

diagrams. As mentioned in Chapter 3, better results can be obtained if output constraints are 

inserted in the design of the controller. One of the benefits of MPC is the easy introduction of 

the constraints regardless of the time of the simulation. Since MPC optimizes the 

performance for each time-step, the constraints can be inserted and stopped regardless of 

the time. After a plethora of simulations, it was noticed that the errors are reduced 

significantly if the constraints presented below are inserted from the beginning of the 

simulation until the time-step t = 0.01s. If the constraints were not removed at that time-step, 

they would just slow the algorithm since it would not converge because of the enormous 

torques that it would require or the output constraints would just become inactive. 
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However, because the output constraints contain the risk of rising significantly the joints’ 

torques, input constraints on the MPC signal uMPC were also introduced. So, if the signal 

exceeds these values, they become active: 

 
 max

min max

0.5 0.5 0.5
T

=

= −

u

u u
 (5-14) 
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Figure 5-9 presents the errors when the preceding constraints are inserted in the MPC 

algorithm. It is obvious that the results are significantly better not only from the Model Based 

PID Controller but also from the Model Based PD Controller with unconstrained MPC. In 

particular, the Model Based PD Controller with MPC with output constraints achieves (in 

comparison with the Model Based PID Controller): 

• 90% reduction of the x-Coordinate error 

• 80% reduction of the y-Coordinate error 

• 96% reduction of the orientation error 

Apart from that, the criterion that the two controllers have to reach 2% steady-state at 

about 6s is again satisfied. 

Figure 5-10 depicts the torques of the controllers. Note that this controller mandates the 

torques to achieve a considerably high value in small time duration. This might be a problem 

for the actuators of the manipulator and hence a problem for future examination. It is evident 

that these controllers also satisfied the criterion for equal maximum power that their joints’ 

actuators could provide. 

 

Figure 5-9. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
1st Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-Coordinate, (c) 
Orientation. 
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Figure 5-10. Torques of the Joints of the Manipulator applied in the 1st Scenario using 
Constraints on the MPC (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. 

Finally, the controllers should be compared based on the computational power that they 

require which is proportionate to the duration of the simulation. Considering that the 

unconstrained MPC requires most of its computations to run off-line, its computational power 

should not exceed significantly the simple PID Controller. However, the MPC with 

constraints requires loops of the Hildreth’s algorithm (see Section 3.3.1) to run during the 

simulation. Consequently, it shall require more computational power.  

Through ample simulations using Matlab/Simulink and Adams and on the same 

computer, it was concluded that the average duration of the simulation (including the time 

required to present the results in the environment of Matlab/Simulink) when Model Based 

PID Controller is applied is 79s. The Model Based PD Controller with MPC without 

constraints takes about 82s and the Model Based PD Controller with MPC with constraints 

takes about 82s too. Although, it was expected that the latter would require more time, this 

extra duration is miniscule since the constraints are introduced only for 0.01s. 

5.3 Scenario 2: Parametric Uncertainties 

In this Section, the Scenario of parametric uncertainties is presented. As mentioned in 

Chapter 1, it is very common for the parameters of an FFSMS to deviate from the 

nominal/manufacturing dimensions due to the extreme alterations of temperature throughout 

its lifetime. This can cause significant errors to the lengths of the manipulator as well as the 

base. Besides that, small collisions with other objects that float into space and the reduction 

of the base’s mass due to its fuel consumption can cause divergence of the joints’ mass and 

the mass of the base respectively. It is veritable that the fuel would be consumed at a known 

rate. Nonetheless, an abnormality of the actuators might cause excessive and uncertain fuel 

consumption which would result in significant uncertainty regarding the mass of the base. It 
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is evident that the preceding controllers have to perform successfully and counterbalance 

these errors. 

Firstly, a Monte-Carlo simulation is performed for a wide range of parametric 

uncertainties to investigate the performance of both controllers and to indicate the parameter 

that cause the highest errors of the end-effector’s position and orientation. Secondly, a more 

scrutinous analysis would be performed using the parameters with the highest errors. 

Besides the unconstrained MPC, the case of the Model Based PD Controller with MPC input 

with constraints is presented too. 

5.3.1 Sensitivity Analysis & Monte-Carlo Simulation 

A Monte-Carlo simulation (or Monte-Carlo method) is a simulation that is repeated using a 

wide range of different parameters. The parameters are obtained using random sampling 

and statistical analysis [30] . For this case, the samples are taken based on the following 

parameter variation: 
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The argument behind this selection was presented in Section 5.3. It is also important to 

note that the moment of inertia of each part was chosen to vary proportionally with the 

variance of its respective mass.  

To acquire the samples, the Sensitivity Analysis package of Matlab/Simulink was used. 

The sample of the statistics of each variance of Eq. (5-15) was selected to be uniform (same 

possibility for each value). There were chosen 200 different combinations. 

The model that was used is almost the same with the one studied in Scenario 1. The 

only difference is that an analytical representation of the plant was used, substituting the 

Adams model, to save computational power. The values of the end-effector’s position, 

orientation as well as their velocities were obtained using inverse kinematics. The nominal 

values of these parameters were used for the equations of the inverse kinematics since in 

reality these values would be obtained through sensors and cameras. 

The nominal values of the FFSMS parameters are given in Table 5-1. For the 

determination of the desired trajectory, 5th polynomials were used and their values are 

presented in Table 5-2. The torques of the Model Based PID Controller are given by Eq. 

(5-6) and the gains of each joint are given by Eq. (5-8). The torques of the Model Based PD 

Controller with an auxiliary MPC input are given by Eq. (5-9) and the respective gains are 

given by Eq. (5-11). The rest of the required parameters of the MPC can be found in 

Scenario 1. 

The results of the 200 simulations performed are displayed in Figure 5-11. The errors of 

the position and orientation of the end-effector are shown. Diagrams (a), (b) and (c) depict 

the results when the Model Based PID Controller is implemented while diagrams (d), (e) and 

(f) depict the results when the Model Based PD Controller with an MPC Input is 

implemented. It is clear that the latter improves significantly the results by minimizing the 

error. Table 5-3 shows the maximum errors for each controller as well as the values of the 

FFSMS’ parameters that result in these values. It is obvious that the maximum for each of 
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the three variables is a result of a different combination of the FFSMS’ parameters. 

However, it was observed that the y-coordinate’s error varies almost proportionally with the 

orientation’s error while the x-coordinate error is inversely proportional. Finally, it can be 

concluded that the values do not converge to zero in 6s. Nevertheless, as it would be 

presented in the following Section, the integration of constraints in the MPC can result in a 

partial solution to this problem. 

Figure 5-12 shows which parameter has the most impact for each one of the three 

errors. These results were obtained using the Sensitivity Analysis tool of Matlab/Simulink. It 

can be concluded that for each of the three errors, different parameters are the most 

influential. In these tornado diagrams, correlation indicates how a model parameter and the 

cost function output are correlated, partial correlation shows how these are correlated while 

removing the effects of the rest parameters and finally standardized regressions shows to 

what extent the parameters have a linear influence on the cost function. 

 

 

 

Figure 5-11. Errors of the End-Effector’s Position & Orientation using Monte-Carlo Simulation 
for the 200 Different Random Samples. (a), (b) and (c): Model Based PID 
Controller, (d), (e) and (f): Model Based PD Controller with MPC Input. 
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Table 5-3. Maximum Errors performing Monte-Carlo Simulation and their Model Parameters. 

 xE,d - xd yE,d - yd θE,d - θd 

MaxPID 7.919·10-5 7.176·10-5 18·10-4 

MaxPD-MPC 3.925·10-5 3.645·10-5 8.818·10-4 

m0 (kg) 540.9 595.1 510.7 

(m1, m2, m3) (kg) (39.81, 41.80, 20.98) (38.65, 41.51, 20.77) (38.61, 40.82, 20.93) 

r0 (m) 1.384 1.376 1.364 

(r1, r2, r3) (m) (1.019, 1.046, 0.2576) (0.9631, 1.046, 0.2534) (1.016, 1.042, 0.2511) 

(l1, l2, l3) (m) (1.042, 0.993, 0.244) (0.9611, 1.037, 0.2552) (0.9631, 1.049, 0.2405) 

 

 

 

 

Figure 5-12. Parameter Influence on the Position & Orientation of the End-Effector. 
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5.3.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary 
MPC Input 

It is interesting to investigate more thoroughly the performance of the controllers for the 

model parameters that result in the maximum incongruities. In this section, the parameters 

that result in the maximum error of the end-effector’s x-coordinate are regarded as the 

approximate (known) parameters of the model (see Table 5-3). However, the Adams model 

that is used for the plant contains the nominal values of the parameters (see Table 5-1). 

Figure 5-13 presents the errors of the x-coordinate, the y-coordinate and the orientation 

of the end-effector. It is obvious that the controller with the auxiliary MPC input has better 

results than the simple PID Controller in all three variables. In particular, the controller with 

the MPC input achieved: 

• 50% reduction of the x-Coordinate error 

• 57% reduction of the y-Coordinate error 

• 57% reduction of the orientation error 

 Note that the criterion that the two controllers should reach 2% of the steady-state at 

about 6s is not satisfied for neither of the controllers, despite the fact that MPC has lower 

errors at 6s. The reason behind this phenomenon is the fact that the disturbances, that the 

parametric uncertainties produce, vary with time. 

Figure 5-14 presents the torques that are applied to the actuators of the manipulator. As 

mentioned earlier, the applied torques have to be close enough in order for the comparison 

of them to be considered valid. In other words, this means that the MPC does not require 

additional control effort to achieve better results but it only distributes the torques better. This 

criterion is satisfied perfectly. 

 

Figure 5-13. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
2nd Scenario (a) x-Coordinate, (b) y-Coordinate, (c) Orientation. 
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Figure 5-14. Torques of the Joints of the Manipulator applied in the 2nd Scenario (a) 1st Joint, 
(b) 2nd Joint (c) 3rd Joint. 

To achieve a partial convergence of the errors at the steady-state, constraints were 

integrated on the MPC. In particular, the constraints were inserted after the time-step t = 4.5s 

and until the end of the simulation. These output/error constraints are: 
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However, because the output constraints contain the risk of surge of the joints’ torques, 

input constraints on the MPC signal uMPC were also introduced. So, if the signal exceeds 

these values, they become active: 
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 (5-17) 

Figure 5-15 presents the errors when the preceding constraints are inserted in the MPC 

algorithm. It can be seen that the orientation converges smoothly to zero. However, the error 

of the x-coordinate does not, despite the fact that at some point it tries to. At that point, the 

input constraints become active because it would result in significant increase of the torques 

which would might lead to instability. Finally, the Model Based PD Controller with MPC with 

output constraints achieves (in comparison with the Model Based PID Controller): 

• 50% reduction of the x-Coordinate error 

• 57% reduction of the y-Coordinate error 

• 57% reduction of the orientation error 

Figure 5-16 depicts the torques of the controllers. The two controllers manifest a 4% 

deviation for the first and second joint, a percentage that can be considered negligible. 
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Figure 5-15. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
2nd Scenario using Constraints on the MPC (a) x-Coordinate, (b) y-Coordinate, (c) 
Orientation. 

 

 

Figure 5-16. Torques of the Joints of the Manipulator applied in the 2nd Scenario using 
Constraints on the MPC (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. 
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5.4 Scenario 3: Position Captured Object of Unknown Mass 

The main cause of an FFSMS is to capture and move an object which floats in space. 

Although rough data of the object might be known from the period of time that it was 

functioning or can be acquired through cameras and sensors of the FFSMS, the actual 

values of the object’s parameters would probably have a deviation from the known 

parameters. In this scenario, the position of a captured object with undefined mass, inertia 

as well as position of its Center of Mass (CM) would be presented. The stabilization of the 

object, which is the previous stage of an on-orbit servicing mission (see Chapter 1), is 

considered accomplished. This scenario is expected to show similar behavior with Scenario 

2 since the captured object would be regarded as an extension of the 3rd link. Therefore, the 

parametric uncertainty of the captured object is considered as a parametric uncertainty of 

the 3rd link. In contrast to the preceding scenarios, in this scenario the FFSMS moves in the 

joint space and not in the Cartesian space.  

The variable ms is used for the mass of the captured object, Is for the Inertia of the 

captured object, and rs for the distance between the CM of the 3rd link and the CM of the 

captured object. The mass of the unified 3rd link and captured object is given by: 

 '

3 3 sm m m= +  (5-18) 

The inertia of the unified 3rd link and captured object with respect to the position of its 

CM, by implementing Steiner’s theorem, is given by: 

 ( )
2

' ' '2

3 3 3 3 3 3s sI I I m l l m r= + + − +  (5-19) 

where 
'

3l  is the distance between the 3rd joint and the new CM, 
'

3r is the distance between the 

new CM and the CM of the captured object and they are given by: 

 

( )3 3 3'

3

3

' '

3 3 3

s s

s

s

m l m l r
l

m m

r r l l

+ +
=

+

= + −

 (5-20) 

The values of these variables that will be used in the simulation are presented in Table 

5-4. The rest of the parameters of the FFSMS are presented in Table 5-1. 

Table 5-4. Parameters of the Captured Object. 

Captured Object Nominal Value Estimated Value 

Mass ms (kg) 200 220 

Moment of Inertia Is (kg·m2) 100 110 

Distance rs (m) 0.8 0.76 
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5.4.1 Path Planning 

As previously mentioned, the control of the FFSMS is performed in the joint space. Fifth 

power polynomials are used for the determination of the desired trajectories. They are given 

by Eq. (4-27) - (4-28) and presented in Figure 4-8.  

In Table 5-5 the values of the initial and final angle, angular velocity and acceleration as 

well as the final time that is used in this scenario for each of the three joints are presented. 

Table 5-5. Paremeters of the Desired Trajectories for the 3rd Scenario. 

Joint 1st  2nd  3rd  

tf (s) 6 6 6 

Initial Angle qd,0 (deg) 45 110 -60 

Final Angle qd,f (deg) 20 60 -70 

Initial Angular Velocity 
,0dq  (deg/s) 0 0 0 

Final Angular Velocity 
,d fq  (deg/s) 0 0 0 

Initial Angular Acceleration 
,0dq  (deg/s2) 0 0 0 

Final Angular Acceleration 
,d fq  (deg/s2) 0 0 0 

 

5.4.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary 
MPC Input 

The torques of the Model Based PID Controller are given by Eq. (4-6) (with the assumption 

that the angular momentum is considered zero ( 0)CMh = ) and the gains of each joint are 

given by Eq. (4-34). The torques of the Model Based PD Controller with an auxiliary MPC 

input are given by Eq. (4-8) and the respective gains are given by Eq. (4-30). The argument 

for selecting these gains can be found in Section 4.5. The rest of the required parameters of 

the MPC are: 

 

6

5.5110

10

6

0 0 0

0 0 0

0 0 1

10

p

T

p

N

T s

−

=

=

=

 
 

= =
 
  

=

Q C C

R

 (5-21) 

There are no output constraints integrated in the MPC design since it was observed that 

no particular benefit can be acquired from them. 
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Figure 5-17 contains snapshots of the motion of the FFSMS in the ADAMS environment 

for three different time-points and for top and isometric view. The path planning was 

conducted in the joint space. Hence, there is no concern for Dynamic Singularities. The 

figure presents the motion when either of the controllers is applied since the errors of both 

controllers are quite small (see Figure 5-18). 

 

Figure 5-17. Snapshots of the Motion of the FFSMS in the ADAMS environment for three 
different time-points and two different views for the 3rd Scenario (a) Isometric 
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0), 
(e) Top View (t=3s), (c) Top View (t=6s). 

Figure 5-18 presents the errors of the angles of the manipulator’s joints in comparison 

with the desired trajectory. It is obvious that the controller with the auxiliary MPC input has 

better results than the simple PID Controller in all three variables. In particular, the controller 

with the MPC input achieved: 

• 52% reduction of the error of the 1st joint’s angle 

• 52% reduction of the error of the 2nd joint’s angle 

• 56% reduction of the error of the 3rd joint’s angle 

 Similarly to the 2nd Scenario, the criterion that the two controllers should reach 2% of 

the steady-state at about 6s is not satisfied for neither of the controllers, albeit MPC has 

lower errors at 6s. The reason behind this phenomenon is the fact that the disturbances, that 

the parametric uncertainties produce, vary with time. 
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Figure 5-19 presents the torques that are applied to the manipulator joints. The torques 

that the two controllers produce are almost identical. It is obvious that the values of the 

torques are much higher than the torques of the previous scenarios. This is completely 

reasonable since the manipulator has to move a quite large object.  

 

Figure 5-18. Error of the Actual and the Desired Value of the Joints’ Angles for the 3rd Scenario 
(a) 1st Joint, (b) 2nd Joint, (c) 3rd Joint. 

 

Figure 5-19. Torques of the Joints of the Manipulator applied in the 3rd Scenario (a) 1st Joint, 
(b) 2nd Joint (c) 3rd Joint. 
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5.5 Scenario 4: Noise 

The successful control of an FFSMS requires the accurate measurement of a variety of 

process variables. However, the sensors that are used for this task provide the output with a 

level of sensor noise. Noise consists of arbitrary variations of sensor signal which are 

unrelated to variations in the input. In this Section, the Scenario of noise is presented. 

The primal objective of this scenario is to compare the performance of the Model Based 

PID Controller to the Model Based PD Controller with an auxiliary MPC input. Consequently, 

observers or state estimation filters are not required in the design. A more realistic approach 

needs the insertion of such components. However, they requires the discretization of the 

model as well as the implementation of a non-linear observer or filter (e.g., an Extended 

Kalman Filter [11] ). This deviates from the main focus of this thesis, but it is an interesting 

area for future research. 

The two controllers are compared with respect to the errors of the end-effector’s position 

and orientation, the errors of end-effector’s velocities as well as their torques. As it was 

previously mentioned in this chapter, actuators may not be able to perform sudden changes 

in their torques, which might be needed to compensate for the noise. Therefore, according to 

this criterion, the controller which requires the lower rate of change of torques is the most 

suitable choice. 

The process variables which are regarded as the ones containing noise are:  

1 2 3 1 2 3 0 0, , , , , , , , , , , , ,q q q q q q x y x y         . Figure 5-20 presents the block diagram of the 

system for both controllers. The noise is considered to be normally distributed with a zero 

mean and variance 
2 1010 −= or

2 810 −= (where  is the standard deviation). 

 

Figure 5-20. Block Diagram of the 4th Scenario. 

5.5.1 Path Planning – Moving Target 

In contrast to Scenarios 1 and 2, for this scenario the captured object-target was selected to 

have a constant relative velocity in respect to the FFSMS. The parameters of the moving 

target (specifically for the captured point) are shown in Table 5-6. 

Table 5-6. Parameters of the Moving Target. 

Moving Target Value of Velocity v (m/s) Slope of Velocity (deg) Position (x, y) (m) 

Time t = 0 0.05 -10 (-2.30, 1.85) 

Time t = 6s 0.05 -10 (-2, 1.8) 
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The motion of the target mandates the final velocities of the end-effector to be non-zero 

and equal to the velocity of the target. Although fifth polynomials like the ones presented in 

Scenario 1 were used for the determination of the desired trajectories (see Eq. (5-1)-(5-4)), 

the parameters of the trajectories are different. They are presented in Table 5-7. It can be 

seen that the end-effector’s final position and velocity are equal to the ones of the target. 

Table 5-7. Paremeters of the Desired Trajectories for the 4th Scenario. 

 xE (m) yE (m)  θE (deg) 

tf (s) 6 6 6 

Initial Value 0.2675 1.9220 195 

Final Value -2 1.8 170 

1st Derivative’s Initial Value 0 0 0 

1st Derivative’s Final Value 0.0492 (v·cos(-10)) -0.0087 (v·sin(-10)) 0 

2nd Derivative’s Initial Value 0 0 0 

2nd Derivative’s Final Value 0 0 0 

5.5.2 Model Based PID Controller vs Model Based PD Controller with an Auxiliary 
MPC Input 

For both controllers, the parameters of the FFSMS are given in Table 5-1 and considered 

known with adequate accuracy. The angular momentum is considered zero ( 0)CMh = . The 

torques of the Model Based PID Controller are given by Eq. (5-6) and the gains of each joint 

are given by Eq. (5-8). The torques of the Model Based PD Controller with an auxiliary MPC 

input are given by Eq. (5-9) and the respective gains are given by Eq. (5-11). The rest of the 

required parameters of the MPC can be found in Scenario 1. 

Figure 5-21 includes snapshots of the motion of the FFSMS in the ADAMS environment 

for three different time-points and for top view and isometric view. The white line depicts the 

trajectory of the end-effector. This figure is similar to Figure 5-3 since the velocity of the 

target is quite low. However, the motion of the target can be witnessed through a closer 

observation. Figure 5-4 and Figure 5-5 depict the motion of the FFSMS and the determinant 

for this scenario, since the final position and orientation of the FFSMS remained the same. 

Two different cases are studied to show the performance of the two controllers when 

noise is inserted in the design. Both cases consist of a normally distributed noise with a 

mean value equal to zero. However, the noise in the first case has a variance 
2 1010 −=

while the second has a variance 
2 810 −= . These values were chosen through various trials 

to show the value of noise that starts to affect the controllers. Prior to the comparisson of the 

two controllers, Figure 5-22 presents the trajectories of the end-effector’s velocities for the 

first case and for both controllers (since as it is shown in Figure 5-23 the errors for both 

controllers are quite small). It is evident that the final values of the linear velocity are the 

ones presented in Table 5-7.  
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Figure 5-21. Snapshots of the Motion of the FFSMS in the ADAMS environment for three 
different time-points and two different views for the 4th Scenario (a) Isometric 
View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), (d) Top View (t=0), 
(e) Top View (t=3s), (c) Top View (t=6s). 

 

Figure 5-22. Actual and Desired Trajectories of the End-Effector (a) Horizontal Velocity, (b) 
Vertical Velocity, (c) Angular Velocity. 

Figure 5-23 presents the errors of the end-effector’s position, orientation and velocities 

in comparison with the desired trajectory for the case of noise with variance 
2 1010 −= . 

Figure 5-24 presents the torques that are applied in the joints. It can be concluded that both 
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controllers perform in a similar way for this level of noise. The final errors of the position, 

orientation and velocities of the end-effector are low enough in order for the manipulator to 

capture the target. Besides that, the diagram of the torques proves that this variance of 

noise is the threshold above which the noise starts to have a profound effect on the 

performance. 

 

Figure 5-23. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
4th Scenario and for Noise with Variance 10-10 (a) x-Coordinate, (b) y-Coordinate, 
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, (f) Angular Velocity. 

 

Figure 5-24. Torques of the Joints of the Manipulator applied in the 4th Scenario and for Noise 
with Variance 10-10 (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. 

Figure 5-25 displays the errors of the end-effector’s position, orientation and velocities in 

comparison with the desired trajectory for the case of noise with variance 
2 810 −= . Figure 
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5-26 displays the torques that are applied in the joints. It can be concluded that both 

controllers manifest similar behavior regarding the errors compared with the desired 

trajectory. As expected, the errors are higher by a factor of 10 compared with the previous 

case. The errors can still be considered as low enough for the FFSMS to accomplish each 

goal. However, the Model Based PID Controller requires more sudden changes of the 

torques to achieve the same level of error. This is another benefit of the Model Based PD 

Controller with MPC input. 

 

Figure 5-25. Error of the Actual and the Desired Value of the End-Effector’s variables for the 
4th Scenario and for Noise with Variance 10-8 (a) x-Coordinate, (b) y-Coordinate, 
(c) Orientation, (d) Horizontal Velocity, (e) Vertical Velocity, (f) Angular Velocity. 

 

Figure 5-26. Torques of the Joints of the Manipulator applied in the 4th Scenario and for Noise 
with Variance 10-8 (a) 1st Joint, (b) 2nd Joint (c) 3rd Joint. 



 

 
 

6 Conclusion & Future Work 

The preceding study and comparison of the Model Based PID Controller and the Model 

Based PD Controller with an auxiliary MPC Input has engendered a variety of noteworthy 

results. This chapter contains the major findings that have been deduced throughout the 

thesis as well as proposals for future work.  

6.1 Conclusion 

The main purpose of the thesis was to study the performance of an FFSMS when an MPC is 

implemented for a plethora of different realistic scenarios. This was illustrated through a 

comparison with a regular PID Controller to highlight potential shortcomings or benefits. 

In Chapter 2, the dynamics, kinematics and differential kinematics were described. It 

was shown that an FFSMS contains strong non-linearities. Consequently, a controller needs 

to overcome this impediment. Besides that, it was shown that singularities might occur in 

more positions compared to a manipulator with a fixed base due to the dynamic coupling 

between the base of the FFSMS and the manipulator. This constitutes an extra limit to the 

path planning of the FFSMS. 

In Chapter 3, the MPC was described extensively. The simplicity of its implementation 

as well as the easy incorporation of constraints were shown. Although the input constraints 

are quite safe to activate, immense attention should be given when output constraints are 

active. Output constraints tend to cause severe nonlinearities which lead to close-loop 

oscillation or instability. Therefore, input constraints should be set as a priority, in case the 

output constraints request the control signal to surge. Apart from that, MPC also gives the 

benefit of setting constraints only for a specific duration. This can also constitute a solution 

to the dangers of implementing output constraints. 

In Chapter 4, the implementation of the Model Based PID Controller and the Model 

Based PD Controller with an auxiliary MPC Input for the control of an FFSMS was 

described. A Model Based Controller is required to compensate for the non-linearities of the 

FFSMS. The MSC Adams model that was used as the representation of the simulation’s 

plant was also presented. Although Adams provides a distinct visual representation of the 

model, attention should be given on the model’s parameters and properties, since they might 

cause errors during the simulation (e.g., small discrepancies of Markers’ position or a mode 

which causes algebraic loop in Matlab/Simulink). It was also validated that MSC Adams 

offers an accuracy of 10-8 for the FFSMS’ angles. 

In Chapter 5, different realistic scenarios that might occur through the operations of an 

FFSMS were presented. The two controllers were compared according to their performance 

in these scenarios. The first scenario contained an FFSMS whose actuators were subject to 

constant disturbances. The motion of the FFSMS was designed in the Cartesian space to 

capture a relatively stationary target. The MPC manifested significantly better behavior in 

compensating for the disturbances while the maximum torques of the two controllers were 

equal. Note that a faster design of PID is possible. However, it would result in higher 

maximum torques, hence an invalid comparison. Additionally, constraints were introduced in 

the MPC for a short time interval at the beginning of the simulation which improved the 

results even more. However, the sudden changes, that the satisfaction of the output 
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constraints required, might not be able to be performed by an actuator. Results about the 

computational power of the control laws were also obtained for this scenario. It was shown 

that both control laws require about the same amount of time to perform the task. 

The second scenario presented the problem of parametric uncertainties. A Monte-Carlo 

simulation was performed for 200 different combinations of the FFSMS parameters. In all of 

them, the MPC showed better performance than the PID. However, none of them achieved 

convergence of the errors at the steady-state. This is partially reasonable since the 

disturbances, that the parametric uncertainties cause, vary with time. Nonetheless, by 

integrating output constraints in the MPC, it was shown that the MPC is able to achieve 

sufficient convergence of the orientation of the end-effector. Apart from that, the performed 

sensitivity analysis showed that that the y-coordinate’s error varies almost proportionally with 

the orientation’s error while the x-coordinate error is inversely proportional. The third 

scenario included the position of a captured object with undefined parameters. The path was 

planned in the joint space. This scenario manifested similar behavior to the second scenario, 

since the captured object can be regarded as an extension of the third link.  

The fourth and final scenario presented the performance of the controllers when the 

process variables are measured with a known level of noise. Two different cases were 

studied, one with a noise of variance 10-10 and one with variance 10-8. The former case did 

not affect significantly the performance of the controllers. However, the latter caused 

profound variation of the torques. It was shown that in this scenario too, the MPC has an 

advantage since it produces the same level of errors with the smaller variations of torques. 

Consequently, considering all the previous arguments, one might conclude that a Model 

Based PD Controller with an auxiliary MPC input is better in many respects than a Model 

Based PID Controller. Indubitably, the former manifested better behavior in all the 

aforementioned case studies and it is quite simple to implement. Nonetheless, it is not as 

simple as a PID Controller. Therefore, the selection depends on the criteria set by the 

potential user. 

6.2 Future Work 

This thesis can become the impetus for further research since boundless questions have 

been raised throughout the conduction of the research. 

To begin with, many assumptions have been made for this study. The angular 

momentum was considered zero, the manipulator was considered rigid and the study was 

performed for planar motions. However, in real life, angular momentum might be 

accumulated in an FFSMS and the base’s control system might not be able to 

counterbalance it. Therefore, the FFSMS has to move in the presence of angular 

momentum. Besides that, to capture a target, the manipulator probably has to move in the 

three-dimensional space and its links have to be considered flexible due to their low mass 

and high lengths. 

A realistic scenario also requires Cartesian motion of the FFSMS in the Path Dependent 

Workspace as well as the implementation of observers or state estimation filter to 

compensate for the process variables’ noise. Various techniques have been proposed to 

avoid dynamic singularities which could be integrated in the design of the controllers [21] . 

Keeping also in mind that FFSMS contains severe non-linearities, observers or filters have 

to be competent to perform regardless of them. This task requires the controller to be 



Conclusions & Future Work 

 
89/93 

designed in the discrete time and not in the continuous as it was presented in this thesis. 

Inserting one of these components and discretizing the controller opens the way for 

implementation of the controller on a real robotic simulator like the one that the Control 

Systems Lab of NTUA possess. 

Furthermore, the whole study was performed for Free-Floating robots. It is also 

interesting to study Free-Flying robots. During this phase, the thrusters are on-off, hence, 

they cannot produce continuous control signal. 

Finally, as far as the MPC is concerned, the controller can be compared with other 

controllers to study further its advantages and disadvantages. To adduce a pertinent 

example, it can be compared to an H-infinity controller or even an adaptive controller. 

However, an adaptive controller, although it might prove to be very efficient in compensating 

for parametric uncertainties, it might not be able to be applied in an FFSMS due to the 

number and advanced technology of required sensors. Apart from that, different types of 

MPC can also be studied. For example, robust MPC like the min-max MPC is considered to 

compensate efficiently for bounded disturbances. 
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Appendix A – Matlab Algorithms 

Path Planning (Example pg53) 
    t_vect = [1; t; t^2; t^3; t^4; 

t^5]; 

    t_vectdot = [0; 1; 2*t; 3*t^2; 

4*t^3; 5*t^4]; 

    t_vectdot2 = [0; 0; 2; 6*t; 

12*t^2; 20*t^3]; 

     

    Coeff1 = [qd1_0, qd1dot_0, 

qd1dot2_0/2, -(20*qd1_0 - 20*qd1_f + 

12*qd1dot_0*tf + 8*qd1dot_f*tf - 

qd1dot2_f*tf^2 + 

3*qd1dot2_0*tf^2)/(2*tf^3), (30*qd1_0 

- 30*qd1_f + 16*qd1dot_0*tf + 

14*qd1dot_f*tf - 2*qd1dot2_f*tf^2 + 

3*qd1dot2_0*tf^2)/(2*tf^4), -(12*qd1_0 

- 12*qd1_f + 6*qd1dot_0*tf + 

6*qd1dot_f*tf - qd1dot2_f*tf^2 + 

qd1dot2_0*tf^2)/(2*tf^5)]; 

    qd1 = Coeff1*t_vect; 

    qd1dot = Coeff1*t_vectdot; 

    qd1dot2 = Coeff1*t_vectdot2; 

     

    Coeff2 = [qd2_0, qd2dot_0, 

qd2dot2_0/2, -(20*qd2_0 - 20*qd2_f + 

12*qd2dot_0*tf + 8*qd2dot_f*tf - 

qd2dot2_f*tf^2 + 

3*qd2dot2_0*tf^2)/(2*tf^3), (30*qd2_0 

- 30*qd2_f + 16*qd2dot_0*tf + 

14*qd2dot_f*tf - 2*qd2dot2_f*tf^2 + 

3*qd2dot2_0*tf^2)/(2*tf^4), -(12*qd2_0 

- 12*qd2_f + 6*qd2dot_0*tf + 

6*qd2dot_f*tf - qd2dot2_f*tf^2 + 

qd2dot2_0*tf^2)/(2*tf^5)]; 

    qd2 = Coeff2*t_vect; 

    qd2dot = Coeff2*t_vectdot; 

    qd2dot2 = Coeff2*t_vectdot2; 

     

    Coeff3 = [qd3_0, qd3dot_0, 

qd3dot2_0/2, -(20*qd3_0 - 20*qd3_f + 

12*qd3dot_0*tf + 8*qd3dot_f*tf - 

qd3dot2_f*tf^2 + 

3*qd3dot2_0*tf^2)/(2*tf^3), (30*qd3_0 

- 30*qd3_f + 16*qd3dot_0*tf + 

14*qd3dot_f*tf - 2*qd3dot2_f*tf^2 + 

3*qd3dot2_0*tf^2)/(2*tf^4), -(12*qd3_0 

- 12*qd3_f + 6*qd3dot_0*tf + 

6*qd3dot_f*tf - qd3dot2_f*tf^2 + 

qd3dot2_0*tf^2)/(2*tf^5)]; 

    qd3 = Coeff3*t_vect; 

    qd3dot = Coeff3*t_vectdot; 

    qd3dot2 = Coeff3*t_vectdot2; 

 

 

 

 

 

 

 

 

 

 

Path Planning (Scenario 1 pg62) 
    t_vect = [1; t; t^2; t^3; t^4; 

t^5]; 

    t_vectdot = [0; 1; 2*t; 3*t^2; 

4*t^3; 5*t^4]; 

    t_vectdot2 = [0; 0; 2; 6*t; 

12*t^2; 20*t^3]; 

     

    Coeff1 = [xd_0, xddot_0, 

xddot2_0/2, -(20*xd_0 - 20*xd_f + 

12*xddot_0*tf + 8*xddot_f*tf - 

xddot2_f*tf^2 + 

3*xddot2_0*tf^2)/(2*tf^3), (30*xd_0 - 

30*xd_f + 16*xddot_0*tf + 

14*xddot_f*tf - 2*xddot2_f*tf^2 + 

3*xddot2_0*tf^2)/(2*tf^4), -(12*xd_0 - 

12*xd_f + 6*xddot_0*tf + 6*xddot_f*tf 

- xddot2_f*tf^2 + 

xddot2_0*tf^2)/(2*tf^5)]; 

    xd = Coeff1*t_vect; 

    xddot = Coeff1*t_vectdot; 

    xddot2 = Coeff1*t_vectdot2; 

     

    Coeff2 = [yd_0, yddot_0, 

yddot2_0/2, -(20*yd_0 - 20*yd_f + 

12*yddot_0*tf + 8*yddot_f*tf - 

yddot2_f*tf^2 + 

3*yddot2_0*tf^2)/(2*tf^3), (30*yd_0 - 

30*yd_f + 16*yddot_0*tf + 

14*yddot_f*tf - 2*yddot2_f*tf^2 + 

3*yddot2_0*tf^2)/(2*tf^4), -(12*yd_0 - 

12*yd_f + 6*yddot_0*tf + 6*yddot_f*tf 

- yddot2_f*tf^2 + 

yddot2_0*tf^2)/(2*tf^5)]; 

    yd = Coeff2*t_vect; 

    yddot = Coeff2*t_vectdot; 

    yddot2 = Coeff2*t_vectdot2; 

     

    Coeff3 = [thEd_0, thEddot_0, 

thEddot2_0/2, -(20*thEd_0 - 20*thEd_f 

+ 12*thEddot_0*tf + 8*thEddot_f*tf - 

thEddot2_f*tf^2 + 

3*thEddot2_0*tf^2)/(2*tf^3), 

(30*thEd_0 - 30*thEd_f + 

16*thEddot_0*tf + 14*thEddot_f*tf - 

2*thEddot2_f*tf^2 + 

3*thEddot2_0*tf^2)/(2*tf^4), -

(12*thEd_0 - 12*thEd_f + 

6*thEddot_0*tf + 6*thEddot_f*tf - 

thEddot2_f*tf^2 + 

thEddot2_0*tf^2)/(2*tf^5)]; 

    thEd = Coeff3*t_vect; 

    thEddot = Coeff3*t_vectdot; 

    thEddot2 = Coeff3*t_vectdot2; 
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1 Eισαγωγή 

Η συνεχής και ανησυχητική αύξηση του αριθμού των δορυφόρων εκτός λειτουργίας που 

βρίσκονται σε τροχιά γύρω από τη Γη (τα αποκαλούμενα διαστημικά σκουπίδια) έχει 

αποτελέσει έναυσμα για την οργάνωση αποστολών και την ανάπτυξη συστημάτων τα οποία 

θα είναι ικανά να αντιμετωπίσουν το πρόβλημα. Τα συστήματα αυτά θα πρέπει να είναι σε 

θέση να πιάσουν, να τροφοδοτήσουν με καύσιμο, να επισκευάσουν ή ακόμη και να 

αλλάξουν την ήδη υπάρχουσα τροχιά ενός σώματος (π.χ. δορυφόρος). Δεδομένης της 

επικινδυνότητας μίας επανδρωμένης αποστολής, τα Διαστημικά Ρομποτικά Συστήματα 

(ΔΡΣ) είναι η καταλληλότερη επιλογή. 

Ένα ΔΡΣ αποτελείται από δύο βασικά μέρη, τη βάση και τους ρομποτικούς βραχίονες. 

Κάθε ένα από αυτά έχει τους δικούς του επενεργητές και σύστημα ελέγχου. Λόγω της 

δυναμικής σύζευξης μεταξύ τους, η κίνηση του ενός επηρεάζει την κίνηση του άλλου. Σε 

αυτή τη διπλωματική θα μελετηθεί ένα επίπεδο ρομποτικό σύστημα με ένα βραχίονα τριών 

βαθμών ελευθερίας. Το σύστημα θα είναι ελεύθερα αιωρούμενο, δηλαδή οι επενεργητές της 

βάσης θα βρίσκονται εκτός λειτουργίας έτσι ώστε να μην επηρεάζουν την κίνηση του 

ρομποτικού βραχίονα. Βασικός σκοπός της εργασίας είναι η μελέτη της λειτουργίας ενός 

τέτοιου συστήματος υποκείμενο σε διάφορες διαταραχές με την χρήση Προβλεπτικού 

Ελέγχου (Model Predictive Control). Για τον λόγο αυτό, τα αποτελέσματα θα συγκριθούν με 

τα αντίστοιχα αποτελέσματα ενός κλασικού PID Ελέγχου. 

Η παρούσα διπλωματική εργασία αποτελείται από έξι κεφάλαια. Το πρώτο κεφάλαιο 

αποτελείται από την εισαγωγή και την βιβλιογραφική ανασκόπηση. Μία σύντομη αναφορά 

σε σημαντικές δημοσιεύσεις σχετικές με την δυναμική και τον έλεγχο των ΔΡΣ καθώς και 

των γενικότερων εφαρμογών του Προβλεπτικού Ελέγχου παρατίθεται σε αυτό το κεφάλαιο. 

Το δεύτερο κεφάλαιο περιέχει τη κινηματική, αντίστροφη κινηματική και τη δυναμική μελέτη 

των Ελεύθερων Αιωρούμενων ΔΡΣ. Οι προκύπτουσες εξισώσεις είναι θεμελιώδεις για τον 

έλεγχο του συστήματος. Στο τρίτο κεφάλαιο περιγράφεται ο Προβλεπτικός Έλεγχος που θα 

εφαρμοστεί. Παρατίθεται όλη η θεωρία και η μεθοδολογία που απαιτείται για την εφαρμογή 

του. Ιδιαίτερη προσοχή δίνεται στην εφαρμογή περιορισμών (εισόδων ή/και εξόδων), ένα 

βασικό πλεονέκτημα του Προβλεπτικού Ελέγχου. 

Στο τέταρτο κεφάλαιο παρουσιάζεται η εφαρμογή του Προβλεπτικού Ελέγχου στο 

Ελεύθερα Αιωρούμενο ΔΡΣ. Η μη γραμμικότητα του συστήματος απαιτεί την 

γραμμικοποίηση του μοντέλου πριν την εφαρμογή του. Αυτό επιτυγχάνεται μέσω της χρήση 

Ελέγχου Βασιζόμενου στο Μοντέλο. Μετά τη γραμμικοποίησή του, εφαρμόζεται ο έλεγχος 

και στο χώρο των αρθρώσεων αλλά και στο Καρτεσιανό επίπεδο. Επιπλέον, παρατίθεται ο 

σχεδιασμός του PID Ελέγχου ο οποίος θα είναι χρήσιμος για την σύγκριση. 

Στο πέμπτο κεφάλαιο παρουσιάζονται οι προσομοιώσεις και τα διάφορα σενάρια που 

μελετήθηκαν. Το πρώτο σενάριο περιέχει την σύγκριση των δύο αναφερόμενων ελέγχων για 

κίνηση στον Καρτεσιανό χώρο, όταν ο στόχος είναι σταθερός και ενώ εφαρμόζονται 

σταθερές διαταραχές στους επενεργητές του βραχίονα. Το δεύτερο σενάριο έχει τον ίδιο 

σχεδιασμό τροχιάς με το πρώτο μόνο που σε αυτό οι παράμετροι του μοντέλου (μήκη, μάζες 

και ροπές αδράνειας) δεν είναι ακριβώς γνωστές. Το σενάριο αυτό περιέχει επίσης 

προσομοίωση Monte-Carlo. Στο τρίτο σενάριο το ΔΡΣ έχει πιάσει και σταθεροποιήσει ήδη 

τον στόχο, του οποίου οι παράμετροι δεν είναι ακριβείς, και επιθυμεί να κινηθεί στο χώρο 

των αρθρώσεων. Το πέμπτο σενάριο παρουσιάζει την απόδοση των νόμων ελέγχου όταν 
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εμπεριέχεται θόρυβος στις μετρήσεις. Σε αυτό το σενάριο επίσης, ο στόχος δεν θεωρείται 

σταθερός αλλά κινείται με σταθερή σχετική ταχύτητα. 

Στο έκτο και τελευταίο κεφάλαιο αναφέρονται τα συμπεράσματα της εργασίας καθώς και 

οι προτάσεις για μελλοντική έρευνα.  

2 Κινηματική & Δυναμική Ελεύθερων 
Αιωρούμενων Διαστημικών Ρομποτικών 
Συστημάτων 

Ο έλεγχος και συγκεκριμένα ο Έλεγχος Βασισμένος στο Μοντέλο απαιτεί ακριβή γνώση της 

κινηματικής και δυναμικής του συστήματος. Το σύστημα που μελετάται στη παρούσα 

διπλωματική είναι ένα Ελεύθερα Αιωρούμενο ΔΡΣ με ένα βραχίονα με 3 βαθμούς 

ελευθερίας. Το μελετούμενο σύστημα φαίνεται στο Σχήμα 2-1. Η μελέτη γίνεται με βάση τις 

προϋποθέσεις ότι οι εξωτερικές δυνάμεις που ενεργούν στο ΔΡΣ (π.χ. δύναμη από το 

μαγνητικό και βαρυτικό πεδίο της Γης ή αντίσταση της ατμόσφαιρας) θεωρούνται μηδενικές 

ή αμελητέες. Η γραμμική ορμή και η στροφορμή του ΔΡΣ θεωρούνται επίσης μηδενικές.  

 

Σχήμα 2-1.  Επίπεδο Ελεύθερα Αιωρούμενο ΔΡΣ με Ρομποτικό Βραχίονα 3 Βαθμών 
Ελευθερίας (a) Γεωμετρικές & Δυναμικές Παράμετροι (b) Παράμετροι των 
Βαρύκεντρων. 

Λαμβάνοντας υπόψη αυτές τις προϋποθέσεις, η θέση και η περιστροφή του τελικού 

σημείου δράσης του βραχίονα δίνεται από:  

 

1 1 2 1 2 3

1 1 2 1 2 3

1 2 3

c c c c

s s s s

E q q q q q q

E q q q q q q

E

x a b c d

y a b c d

q q q

   

   

   

   

 

+ + + + + +

+ + + + + +

= + + +

= + + +

= + + +

 (2-1) 

όπου: 
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 (2-2) 

Η αντίστροφη κινηματική προκύπτει με την αντιστροφή των παραπάνω εξισώσεων ως 

προς τις γωνίες των αρθρώσεων. 

Η γραμμική ταχύτητα του τελικού σημείου δράσης δίνεται από: 
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 (2-3) 

όπου θ0 είναι η γωνία περιστροφής της βάσης και q = [q1 q2 q3]
T. 

Η γωνιακή ταχύτητα του τελικού σημείου δράσης δίνεται από: 

 
( )  

0

0 22

0

22 1 1 1

  = +

=

j q

j q
 (2-4) 

Λόγω της ύπαρξης της γωνίας περιστροφής της βάσης ως μεταβλητή, απαιτείται μία 

ακόμη εξίσωση για να επιλυθεί το πρόβλημα. Αυτή η εξίσωση δίνεται από την αρχή 

διατήρηση της στροφορμής σύμφωνα με την οποία: 

 
0 0

0CM qh D= + D q  (2-5) 

με: 
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 (2-6) 
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όπου  a, b και c δίνονται από Εξ. (2-2) και: 
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Το 4x4 σύστημα που προέκυψε εμπεριέχει την Ιακωβιανή του συστήματος, η 

διακρίνουσα της οποίας δίνει τα σημεία στα οποία μπορεί να εμφανιστούν Δυναμικές 

Ιδιομορφίες: 

 ( ) 1 2 1 2

0 0 0

2 0 1*

0

s s s
det

q q q qab D bc D ac D

D

++ −
=J  (2-8) 

Τέλος, η δυναμική του συστήματος, έπειτα από εφαρμογή της μεθόδου Lagrange δίνεται 

από: 
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όπου: 
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3 Προβλεπτικός Έλεγχος (MPC) 

Ο όρος «Προβλεπτικός Έλεγχος» (MPC) αναφέρεται σε μία ομάδα αλγορίθμων ελέγχου με 

διάφορα κοινά χαρακτηριστικά. Όλοι χρησιμοποιούν ένα μοντέλο με σκοπό να προβλέψουν 

την έξοδο του μελετούμενου συστήματος ενώ παράλληλα ελαχιστοποιούν μία συνάρτηση 

κόστους. Επιπλέον, χρησιμοποιούν κινούμενο ορίζοντα πρόβλεψης (receding horizon), 

δηλαδή η τελική χρονική στιγμή της πρόβλεψης συνεχώς αυξάνεται όσο αυξάνεται ο χρόνος 

ενώ παράλληλα εφαρμόζεται μόνο η αρχική τιμή του σήματος ελέγχου στο σύστημα. Ο 

έλεγχος που θα μελετηθεί σε αυτή τη διπλωματική εργασία είναι ένας γραμμικός MPC που 

χρησιμοποιεί state-space μοντέλο. 

Έστω ότι η διάταξη που επιθυμείται να ελεγχθεί περιγράφεται από: 

 
( ) ( ) ( )

( ) ( )

t t t

t t

= +

=

m m m m

m m

x A x B u

y C x
 (3-1) 

όπου xm είναι η μεταβλητή κατάστασης, u είναι η είσοδος και y η έξοδος ενώ οι πίνακες Am, 

Bm, Cm έχουν σταθερές τιμές. 

Το μοντέλο που θα ελεγχθεί προέρχεται από τη διαφοροποίηση της παραπάνω 

εξίσωσης:  
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 (3-2) 

Για την μελέτη του ελέγχου σε συνεχή χρόνο, η παράγωγος του σήματος ελέγχου 

πρέπει να προσεγγισθεί χρησιμοποιώντας ορθοκανονικές συναρτήσεις. Επιλέχθηκαν οι 

Laguerre συναρτήσεις που περιγράφονται από τις εξισώσεις: 
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όπου η παράμετρος p ονομάζεται παράγοντας κλίμακας, είναι προδιαγραφή σχεδιασμού 

(όπως και ο αριθμός των Laguerre συναρτήσεων N) και καθορίζει τον εκθετικό ρυθμό 

μείωσης των συναρτήσεων.  

Χρησιμοποιώντας τις συναρτήσεις αυτές, η παράγωγος του σήματος ελέγχου 

περιγράφεται από: 

 
1

( ) ( ) ( ) 1,2,i j j i i

j

u c l t i m 




=

= = = L η  (3-4) 

όπου ηi = [c1  c2  … cN]T είναι το διάνυσμα των συντελεστών. 

Θεωρώντας ότι η συνάρτηση κόστους δίνεται από την εξίσωση: 
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αποδεικνύεται ότι ελαχιστοποιείται όταν ισχύει: 
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ενώ ο πίνακας Φ(τ) δίνεται από την επίλυση της εξίσωσης:  

 ( ) ( ) ( ) (0) 1,2,
i

T T T T T

i i i i i ie i m  − = − + =A

pAφ Φ A B L B L  (3-7) 

Δεδομένου ότι διατηρείται μόνο η πρώτη τιμή του σήματος ελέγχου κάθε πρόβλεψης, η 

παράγωγος του σήματος ελέγχου τελικά δίνεται από τη σχέση: 

   

2

1

(0)

(0)
( )

(0)

(0)

( )(0)

( ) ( )

(0)

T

T

T
m

T

T

d

T

t

t

t t

−

   
   
   = =
   
   
    

 
 

  = −    − 
 
  

11 2 m

1 2 m

1 2 m

1 2 m

m1 2 m

1 2 m

ηL 0 0

η0 L 0
u

η0 0 L

L 0 0

x0 L 0
Ω Ψ

y y

0 0 L

 (3-8) 

ενώ το σήμα ελέγχου δίνεται από την ολοκλήρωση της παραπάνω εξίσωσης: 

   
0

( ) ( )
t

t d = u u  (3-9) 

Ο MPC έχει το πλεονέκτημα της εύκολης εισαγωγής περιορισμών (εισόδου ή/και 

εξόδου). Για να εισαχθούν πρέπει να έχουν τη μορφή: 

   constr A η b  (3-10) 

Χρησιμοποιώντας τη μέθοδο βελτιστοποίησης «Hildreth’s quadratic programming 

procedure», βρίσκονται οι τιμές του η που ικανοποιούν τους περιορισμούς. 

Οι περιορισμοί εισόδου του σήματος ελέγχου προκύπτουν από τη σχέση: 

   max

min

( )(0)

( ( ))(0)

T
i

T
i

t tt

t tt

− −   
   

− − −−   

u uL
η

u uL
 (3-11) 

ενώ οι περιορισμοί της εξόδους ή της μεταβλητής κατάστασης από την σχέση: 

   min min max max(0) ( )T

it−   −x Ax bL η x Ax  (3-12) 
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4 Εφαρμογή Προβλεπτικού Ελέγχου σε Ελεύθερα 
Αιωρούμενο Διαστημικό Ρομποτικό Σύστημα 

Σε αυτό το κεφάλαιο μελετάται ο σχεδιασμός των νόμων ελέγχου για ένα Ελεύθερα 

Αιωρούμενο ΔΡΣ. Όπως αναφέρθηκε προηγουμένως, η χρήση Ελέγχου Βασιζόμενου στο 

Μοντέλο είναι απαραίτητη για την γραμμικοποίηση του συστήματος. Για το λόγο αυτό, οι 

νόμοι ελέγχου που μελετώνται είναι ο Model Based PD Controller, ο Model Based PID 

Controller και ο Model Based PD Controller with an auxiliary MPC Input. Οι δύο τελευταίοι 

θα συγκριθούν στο επόμενο κεφάλαιο.  

Συγκεκριμένα, για κίνηση στο χώρο των αρθρώσεων, ο Model Based PD Controller 

περιγράφεται από την εξίσωση: 

 ( ) ( ) *

d D d P d h= + − + − + +  τ H q K q q K q q C q g  (4-1) 

όπου KD και KP είναι 3x3 διαγώνιοι πίνακες που περιέχον τα κέρδη του PD κομματιού του 

ελέγχου και καθορίζουν τη δυναμική συμπεριφορά του συστήματος.  

Ο Model Based PID Controller περιγράφεται από: 

 ( ) ( ) ( ) *

0
( ) ( )

t

d D d P d I d hx x dx = + − + − + − + +
  τ H q K q q K q q K q q C q g  (4-2) 

όπου KI είναι επίσης 3x3 διαγώνιος πίνακας. 

Ο Model Based PD Controller with an auxiliary MPC Input περιγράφεται από: 

 ( ) ( ) *

d D d P d MPC h= + − + − + + +  τ H q K q q K q q u C q g  (4-3) 

όπου το σήμα που προέρχεται από τον MPC απαιτεί την εφαρμογή της μεθοδολογίας που 

παρουσιάστηκε στο Κεφάλαιο 3. Το μοντέλο στο οποίο εφαρμόζεται ο MPC δίνεται από: 

 

 ,1

,2 , ,

( ) ( ) ( )

( ) ( )

0 1 0
, , , 1 0 , 1,2,3

1

m i

m P i D ii

t t u t

y t t

x e
with i

x K Ke

= +

=

      
= = = = = =      − − −     

m m m m

m m

m m m m

x A x B

C x

x A B C

 (4-4) 

Για την κίνηση στον Καρτεσιανό χώρο, οι ροπές των επενεργητών δίνονται από τον 

τύπο: 

 T=τ J f  (4-5) 

όπου J η Ιακωβιανή του συστήματος. 

Θεωρώντας μηδενική στροφορμή, οι δυναμικές εξισώσεις του ΔΡΣ για να περιγράψουν 

την κίνηση στον Καρτεσιανό χώρο μετατρέπονται σε: 

 
*

0 0 0( , ) ( , , , ) T

x x   −+ = =H q x C q q x f J τ  (4-6) 

όπου: 

 
( )

1

0

* * 1 1

0 0

( , )

( , , , )

T

x

T

x



 

− −

− − −

=

= −

H q J HJ

C q q J C HJ J J
 (4-7) 
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Αντίστοιχα με τον έλεγχο στον χώρο των αρθρώσεων, στον Καρτεσιανό χώρο ο Model 

Based PD Controller περιγράφεται από την εξίσωση: 

 
( ) ( ) *

x d D d P d x

T

= + − + − +  

=

f H x K x x K x x C x

τ J f

 (4-8) 

Ο Model Based PID Controller περιγράφεται από: 

 
( ) ( ) ( ) *

0
( ) ( )

t

x d D d P d I d x

T

d   = + − + − + − +
  

=

f H x K x x K x x K x x C x

τ J f

 (4-9) 

ενώ ο Model Based PD Controller with an auxiliary MPC Input περιγράφεται από: 

 
( ) ( ) *

x d D d P d MPC x

T

= + − + − + +  

=

f H x K x x K x x u C x

τ J f

 (4-10) 

Οι προσομοιώσεις της παρούσας εργασίας πραγματοποιήθηκαν στο περιβάλλον του 

Matlab/Simulink με την χρήση δυναμικού μοντέλου δημιουργούμενου στο MSC Adams. Στο 

Σχήμα 4-1 φαίνεται το ΔΡΣ έτσι όπως αναπαρίσταται από το Adams. 

 

Σχήμα 4-1.  Εικόνα του μοντέλου που χρησιμοποιείται για την αναπαράσταση του 
μελετούμενου ΔΡΣ στο MSC Adams (a) Κάτοψη, (b) Ισομετρική Όψη. 
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5 Προσομοιώσεις & Περιπτώσεις Μελέτης 

Στο κεφάλαιο αυτό συγκρίνονται ο Model Based PID Controller με το Model Based PD 

Controller with an auxiliary MPC Input με βάση τα σφάλματα, τις ροπές και τον υπολογιστικό 

χρόνο για 4 σενάρια. Ο Πίνακας 5-1 παρουσιάζει τις παραμέτρους του μελετούμενου ΔΡΣ. 

Πίνακας 5-1. Παράμετροι ΔΡΣ. 

Body Mass - mi 

(kg) 

Moment of Inertia - Ii 

(kg·m2) 

Before-CM Length - li 

(m) 

After-CM Length - ri 

(m) 

0 600 500 - 1.4 

1 40 20 1 1 

2 40 20 1 1 

3 20 15 0.25 0.25 

5.1 Σενάριο 1: Σταθερές Διαταραχές 

Για το σενάριο αυτό, πολυώνυμα 5ης τάξης χρησιμοποιήθηκαν για τον σχεδιασμό της τροχιάς 

στον Καρτεσιανό χώρο. Ο στόχος θεωρήθηκε σταθερός. Οι τιμές των διαταραχών που 

εφαρμόστηκαν στις αρθρώσεις του βραχίονα είναι: 

  12 6 4 ( )
T

Nm=d  (5-1) 

Οι εξισώσεις των συγκρινόμενων νόμων ελέγχου παρουσιάζονται στο προηγούμενο 

κεφάλαιο. Τα κέρδη που εφαρμόσθηκαν στον Model Based PID Controller είναι: 

 

(18.0768,18.0768,18.0768)

(136.1545,136.1545,136.1545)

(427.2981,427.2981,427.2981)

D

P

I

K diag

K diag

K diag

=

=

=

 (5-2) 

ενώ τα κέρδη του Model Based PD Controller with an auxiliary MPC Input καθώς και οι 

λοιπές παράμετροι αυτού είναι: 

 
,

,

(10.5448,10.5448,10.5448)

(56.7310,56.7310,56.7310)

D MPC

P MPC

K diag

K diag

=

=
 (5-3) 

 
6

5.5110, 10, 6

0 0 0

0 0 0 , 10

0 0 1

p

T

p N T s

−

= = =

 
 

= = =
 
  

Q C C R
 (5-4) 

Στο Σχήμα 5-1 παρουσιάζονται τα σφάλματα των δύο ελέγχων για MPC χωρίς 

περιορισμούς. Είναι προφανές ότι ο έλεγχος με τον MPC παρουσιάζει καλύτερη 

συμπεριφορά. Συγκεκριμένα, ο MPC επιτυγχάνει: 

• 43% μείωση του σφάλματος της x-Συντεταγμένης 

• 43% μείωση του σφάλματος της y-Συντεταγμένης  

• 43% μείωση του σφάλματος της περιστροφής 
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Σχήμα 5-1.  Σφάλματα Πραγματικής και Επιθυμητής Τιμής των Μεγεθών του Τελικού Σημείου 
Δράσης για το 1ο Σενάριο (a) x-Συντεταγμένη, (b) y-Συντεταγμένη, (c) Περιστροφή.  

Εφαρμόζοντας περιορισμούς στον MPC η απόδοση του ελέγχου μπορεί να βελτιωθεί 

ακόμη περισσότερο. Συγκεκριμένα, εισάγονται οι παρακάτω περιορισμοί μέχρι τη χρονική 

στιγμή t = 0.01s: 

 

6 6 4

max

min max

10 10 10 /180
T

− − − =  

= −

x

x x
 (5-5) 

ενώ για ασφάλεια εισάγονται και περιορισμοί στις εισόδους: 

 
 max

min max

0.5 0.5 0.5
T

=

= −

u

u u
 (5-6) 

Με αυτούς τους περιορισμούς, ο MPC πετυχαίνει: 

• 90% μείωση του σφάλματος της x-Συντεταγμένης 

• 80% μείωση του σφάλματος της y-Συντεταγμένης  

• 96% μείωση του σφάλματος της περιστροφής 

Τέλος, οι μέγιστες απαιτούμενες ροπές και για τις δύο περιπτώσεις είναι ίσες για όλους τους 

ελέγχους ενώ παρατηρήθηκε ότι ο χρόνος προσομοίωσης των νόμων ελέγχου είναι σχετικά 

ίδιος.  

5.2 Σενάριο 2: Παραμετρική Αβεβαιότητα 

Για το σενάριο αυτό, ο σχεδιασμός τροχιάς είναι ίδιος με αυτόν που παρουσιάστηκε στο 

Σενάριο 1. Επιπλέον, οι νόμοι ελέγχου έχουν επίσης τις ίδιες παραμέτρους. Ωστόσο, εδώ 

δεν εφαρμόζονται σταθερές διαταραχές αλλά θεωρείται ότι οι παράμετροι του ΔΡΣ δεν είναι 

ακριβείς. 
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Συγκεκριμένα, πραγματοποιείται μία προσομοίωση Monte-Carlo με 200 κύκλους στους 

οποίους οι παράμετροι του ΔΡΣ λαμβάνουν τυχαίες τιμές σύμφωνα με: 

 

, ,

, ,

, ,

0, 0 0,

0.95 1.05 1 3

0.95 1.05 1 3

0.95 1.05 1 3

0.80 1.05

i nominal i i nominal

i nominal i i nominal

i nominal i i nominal

nominal nominal

l l l i

r r r i

m m m i

m m m

  = −

  = −

  = −

 

 (5-7) 

Ο Πίνακας 5-2 παρουσιάζει τα μέγιστα σφάλματα και των δύο νόμων ελέγχου καθώς και 

τις παραμέτρους του ΔΡΣ για τις οποίες αυτά προκύπτουν. Είναι εμφανές ότι και σε αυτή τη 

περίπτωση ο έλεγχος που περιέχει τον MPC έχει καλύτερη απόδοση. 

Πίνακας 5-2. Μέγιστα Σφάλματα της Προσομοίωσης Monte-Carlo και οι παράμετροι τους. 

 xE,d - xd yE,d - yd θE,d - θd 

MaxPID 7.919·10-5 7.176·10-5 18·10-4 

MaxPD-MPC 3.925·10-5 3.645·10-5 8.818·10-4 

m0 (kg) 540.9 595.1 510.7 

(m1, m2, m3) (kg) (39.81, 41.80, 20.98) (38.65, 41.51, 20.77) (38.61, 40.82, 20.93) 

r0 (m) 1.384 1.376 1.364 

(r1, r2, r3) (m) (1.019, 1.046, 0.2576) (0.9631, 1.046, 0.2534) (1.016, 1.042, 0.2511) 

(l1, l2, l3) (m) (1.042, 0.993, 0.244) (0.9611, 1.037, 0.2552) (0.9631, 1.049, 0.2405) 

 

Στο Σχήμα 5-2 φαίνονται τα σφάλματα όταν εφαρμόζονται οι παράμετροι του ΔΡΣ για τις 

οποίες προκύπτουν τα μέγιστα σφάλματα της x-Συντεταγμένης του τελικού σημείου δράσης. 

Παρατηρείται ότι τα διαγράμματα δεν συγκλίνουν στο μηδέν. Αυτό το πρόβλημα μπορεί να 

αντιμετωπιστεί μερικώς εισάγοντας περιορισμούς στον MPC. Συγκεκριμένα, εφαρμόζονται οι 

παρακάτω περιορισμοί από τη χρονική στιγμή t = 4.5s μέχρι το τέλος της προσομοίωσης: 

 

6 6 6

max

min max

5 10 5 10 5 10 /180
T

− − − =    

= −

x

x x
 (5-8) 

ενώ για ασφάλεια εισάγονται και περιορισμοί στις εισόδους: 

 
 max

min max

2 2 2
T

=

= −

u

u u
 (5-9) 

Το Σχήμα 5-3 παρουσιάζει τα σφάλματα όταν εφαρμόζονται οι παραπάνω περιορισμοί. 

Είναι εμφανές ότι ο MPC επιτυγχάνει τη σύγκλιση του διαγράμματος της περιστροφής. 
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Σχήμα 5-2.  Σφάλματα Πραγματικής και Επιθυμητής Τιμής των Μεγεθών του Τελικού Σημείου 
Δράσης για το 2ο Σενάριο (a) x-Συντεταγμένη, (b) y-Συντεταγμένη, (c) Περιστροφή. 

 

 

Σχήμα 5-3.  Σφάλματα Πραγματικής και Επιθυμητής Τιμής των Μεγεθών του Τελικού Σημείου 
Δράσης για το 2ο Σενάριο και εφαρμόζοντας MPC με περιορισμούς (a) x-
Συντεταγμένη, (b) y-Συντεταγμένη, (c) Περιστροφή. 
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5.3 Σενάριο 3: Μετακίνηση Στόχου Απροσδιόριστης Μάζας 

Στο σενάριο αυτό παρουσιάζεται η μετακίνηση ενός αντικειμένου που έχει πιάσει το ΔΡΣ και 

του οποίου οι παράμετροι δεν είναι ακριβείς. Ο σχεδιασμός τροχιάς πραγματοποιήθηκε στο 

χώρο των αρθρώσεων χρησιμοποιώντας πολυώνυμα 5ης τάξης. Ο Πίνακας 5-3 παρουσιάζει 

τις παραμέτρους του αντικειμένου-στόχου.  

Πίνακας 5-3. Παράμετροι Στόχου. 

Captured Object Nominal Value Estimated Value 

Mass ms (kg) 200 220 

Moment of Inertia Is (kg·m2) 100 110 

Distance rs (m) 0.8 0.76 

 

Στο Σχήμα 5-4 παρουσιάζονται τα σφάλματα των γωνιών των αρθρώσεων. Είναι 

προφανές ότι ο έλεγχος με τον επιπλέον βρόχο MPC έχει καλύτερη απόδοση από τον άλλο 

νόμο ελέγχου. Συγκεκριμένα, ο MPC πετυχαίνει: 

• 52% μείωση του σφάλματος της γωνίας της 1ης Άρθρωσης 

• 52% μείωση του σφάλματος της γωνίας της 2ης Άρθρωσης 

• 56% μείωση του σφάλματος της γωνίας της 3ης Άρθρωσης 

 

Σχήμα 5-4.  Σφάλματα Πραγματικής και Επιθυμητής Τιμής των Γωνιών των Αρθρώσεων για 
το 3ο Σενάριο (a) 1η Άρθρωση, (b) 2η Άρθρωση, (c) 3η Άρθρωση. 
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5.4 Σενάριο 4: Θόρυβος 

Στο σενάριο αυτό μελετάται η απόδοση των νόμων ελέγχου όταν οι μετρήσεις περιέχουν 

θόρυβο. Συγκεκριμένα, οι μεταβλητές που περιέχουν θόρυβο είναι οι:  

1 2 3 1 2 3 0 0, , , , , , , , , , , , ,q q q q q q x y x y          ενώ ο θόρυβος ακολουθεί κανονική κατανομή με 

μηδενική μέση τιμή και μεταβλητότητα ίση με 2 1010 −=  ή 2 810 −= . 

Για το σενάριο αυτό, ο στόχος θεωρείται κινούμενος στο επίπεδο με σταθερή σχετική 

ταχύτητα. Ίδια πολυώνυμα 5ου βαθμού χρησιμοποιούνται για το σχεδιασμό της τροχιάς μόνο 

που οι τελικές επιθυμητές γραμμικές ταχύτητες του τελικού σημείου δράσης είναι μη 

μηδενικές και συμπίπτουν με αυτές του στόχου. 

Παρατηρείται ότι ο θόρυβος με μεταβλητότητα 2 1010 −= επηρεάζει ελάχιστα τη 

λειτουργία και των δύο νόμων ελέγχου. Ωστόσο, ο θόρυβος με μεταβλητότητα 2 810 −=  

προκαλεί αισθητά προβλήματα. Στο Σχήμα φαίνονται οι ροπές των αρθρώσεων. 

Παρατηρείται ότι μεταβάλλονται πολύ απότομα έτσι ώστε να αντισταθμίσουν τον θόρυβο. 

Αυτό μπορεί να αποτελέσει πρόβλημα για τους επενεργητές. Τέλος, πάλι παρατηρείται ότι ο 

νόμος ελέγχου με τον MPC βρόχο έχει καλύτερη απόδοση καθώς οι ροπές του είναι 

μικρότερες ενώ τα σφάλματα της θέσης και της περιστροφής του τελικού σημείου δράσης 

είναι τα ίδια. 

 

Σχήμα 5-5.  Ροπές των Επενεργητών των Αρθρώσεων για το 4ο Σενάριο και για Θόρυβο με 
Μεταβλητότητα  10-8 (a) 1η Άρθρωση, (b) 2η Άρθρωση, (c) 3η Άρθρωση. 
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6 Συμπεράσματα & Μελλοντική Εργασία 

Βασικός σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη της λειτουργίας του 

προβλεπτικού ελέγχου όταν εφαρμόζεται σε ένα Ελεύθερα Αιωρούμενο ΔΡΣ. Ο σκοπός 

αυτός επιτεύχθηκε μέσα από τη σύγκριση του MPC με έναν συνηθισμένο PID έλεγχο. Και 

στα τέσσερα σενάρια που ερευνήθηκαν, ο MPC παρουσίασε σημαντικά καλύτερη 

συμπεριφορά από ότι ο απλός PID. Είτε για κίνηση στον χώρο των αρθρώσεων, είτε στον 

Καρτεσιανό χώρο, ο MPC είχε μικρότερα σφάλματα από τις επιθυμητές τροχιές σε σχέση με 

τον απλό PID ενώ οι μέγιστες ροπές παρέμεναν ίσες. Εξαίρεση αποτελεί το τέταρτο σενάριο 

στο οποίο ενώ τα σφάλματα των δύο ελέγχων ήταν ίδια, ο MPC απαιτούσε μικρότερες 

αλλαγές τροχιών, προσφέροντάς του ένα ακόμα πλεονέκτημα. 

Η μελέτη αυτή μπορεί να αποτελέσει εφαλτήριο για περαιτέρω έρευνα. Καθ’ όλη την 

εργασία, το ΔΡΣ θεωρήθηκε ότι έχει μηδενική στροφορμή, ο βραχίονάς του είναι άκαμπτος 

και ότι κινείται στο επίπεδο. Ένα ρεαλιστικό σενάριο θα λάμβανε υπόψιν αυτές τις υποθέσεις 

ενώ θα περιείχε επίσης και κάποιο παρατηρητή ή φίλτρο εκτίμησης της κατάστασης για τον 

έλεγχο. Επιπρόσθετα, ιδιαίτερο ενδιαφέρον παρουσιάζει και η σύγκριση του MPC με άλλους 

νόμους ελέγχου όπως ο H-infinity ή ο προσαρμοστικός έλεγχος ή ακόμα και με άλλους 

τύπους MPC όπως ο min-max MPC. 
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