§

2
J

National Technical University of Athens

BIE=

ApPOMHOEY
Avpeopo

N

Msc in Data Science and Machine Learning

Evaluating Strategies
for the Exploitation of Multi-node HPC Clusters

in Computation Intensive Remote Sensing Tasks

Master Thesis

Konstantinos Kyriakopoulos

Supervisor: Konstantinos Karantzalos
Associate Prof., NTUA

Athens, November 2021

§

2
J

Edvixé Metoofio HoAuteyvelo
AIIMY Emotiun Asdopévov xou Mnyavix Mdidnon

BIE=

NPOMHEEY
nvpeobo

N

A&LoANOYNoN XTeATNYIXOVY YL TNV
Expetdiievorn YT repunoloyiotody [ToAAamAoY
KéuBwv os TroloyioTixd AmotnTixeg

Egapuoyvec Tnienioxonnong

Mezantuyloxr, Egyaoia

Kwvotavtivog Kupltaxdrnouviog

ETELQ)\E’TCO)V: Kovotavtivoc Kapdvtlahog
Avam. Kodnynthc EMII

Adva, NocuPploc 2021

Evyxpitnxe and tnv teiues| e€etaotiny emtpony| Ty 11 Noeufplou 2021.

Kovotavtivog Kapdvtlahog Moplo Boacahomoviou Lwdvvng Iamoutorc
Avarmh. Kadnyntric En. Kodnyrteia Evtetaipévog Egeuvntiig
EMII CentraleSupélec Edvixé Actepooxoneio
Univ. of Paris-Saclay Adnvedrv
| KPNNL

Copyright (© All rights reserved Kyriakopoulos Konstantinos, 2021.

It is forbidden to copy, store and distribute this work, all or part of it, for
commercial purposes. Reprinting storage and distribution is allowed, for non -
profit, educational or of a research nature, provided that the source is indicated
and that this message is retained. Questions regarding the use of work for profit
should be addressed to the author. The aspects and the conclusions contained in
this document are those of the author and should not be construed as representing
the official positions National Technical University of Athens.

Me empOialn Tovtog dixa®uatos. Amoyopeleton 1 avTlypodt|, anodixeucT xau
dtavouy| TNg mapoloag epyaciog, €€ OAOXATIPOU 1) TUAUUTOS QUTHC, VLol EUTOPIXO OXOTO.
Emtpéneton 1 ovatinwot), anoUxeucn ot SLvouT] YLot GXOTO (1) XEPOOOXOTUXO, EXTIA-
OEUTIXC 1) EPELYNTXAC POOTG, UTO TNV TEoUTOVEST) VoL avapepETaL 1) TNYT) TROEAEUOTC
xou vou dratneettar To Topdy uRvupa. Eponthuata mou agopoly T yeron tne epyaciog
YLoL XEEO0OXOTING GXOTO TEETEL Vo ameudivovton Teog Tov ouyypagéa. Ot amddelc
X0 T CUUTIEQACUOTA TTOU TEQLEYOVTAL OE AUTO TO £YYEUPO eXPEALOLY TO CUYYEUPEN
xaL OEV TEETEL var epunveudel 6Tl avTimpoownelouy Ti¢ enlonueg Veoelc Tou Edvixol
Meto6Bou Iloduteyvelou.

Abstract

Over the recent years, the fast growth and evolution in the fields of Big Data,
Geoinformatics and Machine Learning, is posing great challenges in terms of ro-
bustness, scalability, complexity and computational speed. More specifically, the
big size of the datasets, especially in the case of geospatial data, along with the
complex calculations that need to be performed when applying ML models, require
resources which are not available in common infrastructure. However, this problem
can be tackled by massive parallel processing in big hyper computer clusters.

This master thesis focuses on presenting and exploring the capabilities of the
ARIS (Advanced Research Information System) cluster while performing complex
computations and applying machine learning techniques in parallel scale. For the
purpose of this experiment, data from the Sentinel 2 program is used. The dataset
consists of 53 tiles which are satellite images that represent the geographical space
of Greece.

As part of the experiment, the tile is broken down into smaller parts and each
part is processed while applying ML methods for specific versions of the tile(10m
and 20m). Once, the process of each part is over, the images that derived from each
part are merged into the final image which is the final processed result. During the
initial implementation, the process of each part is performed serially, resulting in a
lengthy task.

In our approach, each part is being processed in a different node of the cluster
as a separate process, resulting in a significant decrease in the overall time that
is needed for the experiment. Apart from the gain in time that derives from the
parallel processing, we examine the limitations that parallel processing is facing in
this experiment along with how the subprocesses are affected by the terrain in the
images.

Overally, this thesis provides a very good insight into parallel processing of large
geospatial data while applying machine learning methods and presents the chal-
lenges, the limitations that exist in the relevant data and infrastructure and how
they interact with each other.

ITepiindn

To teheutaio ypodvia, 1 ueYdAn avdmtuln xou e€€METN oToug Touelc Twv Meydhwy Ae-
dopévwy, g Iew-IIAnpogopinric xou tng Mnyavixfic Mdidnong, mpoBdhhouy ueydheg
TEOXAY|OELS UTO 6p0UC aVUETIXOTNTUG, EMEXTACHIOTNTAS, TOANUTAOXOTNTOG XOl UTOAOYI-
ot toyOtnTag. Iho ocuyxexpyéva, to yeydho uéyedog TV GUVOALY BEBOUEVLY,
€W OTNV TERITTWOTN TOV YEOYWELXWY BedoUEVLY, uall ue Toug cbvietoug uToloyi-
oUoU¢ TToU TEETEL VoL YIVOUY XaTd TNV E@apuoYT woviéhwy ML, omoutodyv népoug mou
oev elvon dodeotuot oe Wia xowt| utodour|. 201600, auTd To TEOBATUL uToEEL VoL v TL-
petwmoTel ue palixn napdhhnin enelepyacio o UEYAAES XUPEAEC UTEQUTOAOYLIOTOV.

Auth n petamtuytaxy| Slotedh ecTidlel TNV TaEoLSIaoT XaL TN BlEpElVNON TGV
duvatotitwy tou oucthdatoc ARIS (Advanced Research Information System) eve
extehel olvileToug uTohoYIOUOUS Xot EQUEUOCEL TEYVIXES Uny Vi Uddnong ot TapdA-
Anhn xhipoxa. ot Toug o%0T00¢ AUTOY TOU TELPAUATOS, YENOWOTOLOVTAL BEBOUEVL
and 1o mpdypauue Sentinel 2. To clvolo dedouévev amotehelton and 53 mhaxidw
Tor omola elvor BOPUPOEIXES EXOVES TTOU AVTITPOCKWTEDOLY TOV YEWYQRUPIXO YWEO NG
EMddoc.

Qdc Yépog ToL TEWAUATOS, TO TAUXIBLO AVOAVETAL GE UixpOTEQA €PN o xdUE UEPOC
umofdihetar oe eneepyaoia eve e@apuolovton pédodor ML yio ouyxexpuéveg ex-
66aelg Tou mhaxtdiou (10U xon 20u). MdAic ohoxhnpwiel 1 Swadacia xdde pépoue, ot
EIXOVES TIOL TPOEPYOVTUL Ao XGVE PEPOS CUYYWVEDOVTAL GTNY TEALXY| EXXOVO TOU Elvol
10 TEAXO enelepyaouévo anotéheoua. Katd tny apyr) uhonolnom, n dwdixacio xdie
TUAURTOC EXTEAEITOL GELPLOXE, UE AMOTEAEGUO Lot LOLUTEPX Y POVOPBopa EpyaaioL.

Yy mpocéyyior| pag, xdde tuiuo utoBdiieTton o emelepyaoia o BLUPOPETIXG
%0UBO TOU CUGTAUATOS WG EEYWELOTY BLABIXACTA, UE ATOTEAEGUO TN ONUAVTIXY Ueiwon
TOU GUVOAXOU Ypebdvou mou amonteiton yio To melpopa. Extdc and 1o x€pdoc ypdvou
TOL TEOXUTTEL and TNV Tapdhhnin enelepyaocio, €£eTdlOUUE TOUC TEQLOPLOUOUS TOU
avTipeTonilel 1 tapdhinin eneéepyaoia oe autd To elpoua pall Ye To Tog enneedlovion
oL uTodLEpYaoieg Ao TO EDUPOC OTIC EXOVEC.

Yuvolxd, auth 1 dltelry Tapeyel wor TOAD XaAY) avdhuoT GYETIXE PE TNV TO-
EGAANAY eMeepyacior UEYOAWY YEWYWEIXWY DEDOUEVWV XATA TNV EQUOUOYT HEVODWY
unyavxhc pdinone xodog eniong mopouctdlel TIC TEOXAHOELS, TOUC TEPLOPLOHOUE TOU
UTIEEY 0LV OTOL BEBOPEVA X0 OTIC UTOBOUES %ol TS oUTOL AANAETLOP0VY PETAEY TOUC.

Acknowledgments

First and foremost, i would like to express my gratitude towards Professor Kon-
stantinos Karantzalos who supervised this thesis. His unconditional support during
my studies helped me carry out this task and this work wouldn’t have been com-
pleted without his contribution.

Furthermore, I would like to thank Zacharias Kandylakis and Christina Karakizi
who supported me throughout the whole process of writing this thesis. It was their
work about applying machine learning techniques in geospatial data which was used
as the basis of our experiments in order to dive deeply into the world of parallel
processing.

Of course, many thanks to Dr. Maria Vakalopoulou and Dr. Ioannis Papoutsis
for the time they spent to review this thesis.

Last but not least, i need to express my thanks towards my family which has
always been by my side during my studies. Their love and support played a vital
role in completing my postgraduate studies.

You measure the size of the accomplishment
by the obstacles you have to overcome to reach your goals.
Booker T. Washington

Contents

[2

Theoretical and Experimental Background|

2.1 GIS and Remote Sensing|
211 GIS
[2.1.2 Remote sensing|
[2.1.3 Experimental Background|

[3

Methodology and Implementation|

B.1 Overviewl.

3.3 ARIS.
3.3.1 Overview of HPC}
[3.3.2 Description of ARIS|
[3.3.3 System Architecture]
[3.3.4 Storage System|
[3.3.5 Data storage|.

[3.4 Profiles of applications running on ARIS| .

[3.5 Operating system|
[3.5.1 Connection to the system|

(3.6 File Transfer].

[3.7 Application development|

[3.8 Pre-installed applications|.

[3.9 Running applications|

Experimental Assessment|

[4.1 Utilization of a singlenode|
[4.2 Re-Designing the iitial pipelinef
[4.3 Parallel Processing in multiple nodes|
[4.4 Multiple Parts - Tile Comparison|
[4.5 Effect of the terrain on multiprocessing|
[4.6 'The effect of chunksize on multiprocessingl

6.1

Execution time per chunksize| L.

5 Conclusion|
0.1 Future Workl.

List of Figures

B.2 ARIS Architecture Lo

[4.5 Graph comparing duration per number of processes for each tile| . . .
4.6 Distribution of Sea and Land for each tile — Execution timel.
[4.7 Execution time per process tor specific tiles|.

.8 les 3 , 3 , 3 3dokG|l .o
[4.9 Splitting the tile 345DJ in 9 partsf
[4.10 Execution time by Chunksize for the 10m band|
[4.11 Execution time by Chunksize for the 20m band|

List of Tables

[4.2 Execution of 18 parts in 18 nodes for the SCJ tile]
[4.3 Execution of 18 parts in 9 nodes for the SCJ tile|.
[4.4 Execution of multiple parts tor difterent tiles|
[4.5 Execution of multiple parts for different tiles and analysis on the terrain|
[4.6 Execution time per process for the 10m band in selected tiles|
[4.7 Chunksize per process for the 10m band in selected tiles|
[4.8 Execution time per process for the 20m band in selected tileg|.
[4.9 Chunksize per process for the 20m band in selected tiles|

Chapter 1

Introduction

The rapid growth of Big Data over the past years combined with the evolution of
Machine Learning have altered radically the field of computational complexity and
data processing. Whereas, in the past a single node was sufficient enough to perform
experiments, nowadays the size of the datasets grows exponentially while the new
machine learning techniques and libraries require a significant amount of processing
power.

Parallel processing has emerged as a revolutionary technique of processing big
chunks of data while applying the state of the art ML models and methods. Ex-
perimental implementations which normaly require multiple hours or even days of
processing in a single node, are tested within minutes in big clusters as the job is
broken down into multiple parallel tasks.

Of course, even in parallel processing, there are specific limitations especially
in terms of memory and resource handling. Particularly, in the case of Geospatial
data it is very important to discover and assess the limitations and the bottlenecks
that specific factors like the nature of the terrain create. Such an approach helps
towards tuning the testing environment and utilizing the maximum of the cluster’s
capabilities.

1.1 Thesis Contribution

The objective of this work is to migrate an experimental implementation which ap-
plies machine learning methods on Geospatial data from running in a single node
as one process into a hypercomputer cluster where each task will run as a parallel
process. Moreover, this thesis not only exploits the advantages of parallel multipro-
cessing in a hypercomputer environment while tackling several technical challenges
but also evaluates the correlation between specific features of Geospatial data and
the behaviour of multiprocessing in terms of resource allocation and time. The fol-
lowing chapters include all the necessary,theoretical and practical,information about
the functionality of the hypercomputer cluster, the background of the ML techniques

which are used on the Geospatial data and the assessment of the experiments in
terms of parallel processing.

1.2 Thesis Outline

The thesis is organized in the following chapters:

Chapter 2 describes the concept behind the machine learning methods and the
nature of the geospatial data that are used in the experiments.

Chapter 3 presents the architecture, the capabilities, the components and the
functionality of the Advanced Research Information System (ARIS) .

Chapter 4 contains all the details, results and the observations of the experi-
mental implementation.

Chapter 5 concludes the thesis.

Chapter 2

Theoretical and Experimental
Background

2.1 GIS and Remote Sensing

2.1.1 GIS

The acronym GIS stands for Geographic Information Systems. A geographic infor-
mation system (GIS) is a system which aims to create, manage, analyze, and map
all kinds of data. Its functionality is to map location data with different types of ex-
planatory metadata. GIS systems find appliance in many industries and provide an
excellent foundation for performing analysis and mapping. Moreover, their function-
alities allow users to detect patterns, correlations and trends, observe and monitor
changes, apply forecasting, identify problems and manage events. The positives that
derive from their usage are many:

e Greater efficiency which results to cost saving. For example GIS can be used
in order to optimize routes and this results in reduced costs.

e Improved communication. One of the major advantage of these systems, is
that they are able to map the data, both the raw and the metadata into a new
language. The users who use GIS are able to understand the data and the
results which derive from them and can communicate their findings to other
users who use the same systems efficiently and faster.

e Improved decision making. Users and especially professionals have understood
how their decision making is enhanced by the numerous and valuable infor-
mation that the geographic information system (GIS) have to offer.

e Enhanced and robust storage. These systems allow organizations, companies
and even individuals to store any kind of geographical data in a robust, scal-
able and efficient way. Moreover, they allow and even promote the usage of
the frameworks between them thus promoting information exchange. It is im-
portant to note that very often clever tools and frameworks sit on top of the
GIS systems giving enhanced capabilities to their users.

Of course the benefits of the Geographic Information Systems are not limited to the
above but we covered the most important of them which have brought GIS being
on the edge of technology, machine learning and big data.

2.1.2 Remote sensing

Remote sensing is a type of geospatial technology that samples emitted and re-
flected electromagnetic (EM) radiation from the Earth’s terrestrial, atmospheric,
and aquatic ecosystems in order to detect and monitor the physical characteristics
of an area without making physical contact. It is one of the methods commonly used
for collecting physical data to be integrated into GIS. Remote sensors collect data
from objects on the earth without any direct contact. Remote sensing technology
has become much more prevalent, accurate and accessible in recent years, and a big
range of applications is covered by it. This technique of data collection commonly
includes aircraft-based and satellite-based sensor technologies. These technologies
are categorized as either passive or active sensors.

On the one hand, passive sensors respond to external stimuli by collecting the
radiation that is emitted or reflected by an object or the surrounding area. Reflected
sunlight is the most usual source of radiation which is measured by passive remote
sensors. Radiometers, Charge-coupled devices, film photography and infrared are
popular examples of passive remote sensors.

On the other hand, active sensors use internal stimuli to collect data, emitting
energy in order to scan objects and areas whereupon a sensor measures the energy
reflected from the target. Typical active remote sensing tools are RADAR and
LiDAR. Time delay between emission and return in order to establish the location,
direction, and speed of an object are calculated by these sensors. Once the data
is gathered, it is afterwards processed and analyzed with hardware and software
which are specifically used for remote sensing purposes and are available in both
proprietary and open source applications. The sources for the above information
regarding remote sensing can be found in references [1], |2] and [3].

2.1.3 Experimental Background

The long term goal of the implementation on which this work is based is to create
a common system for image classification regarding satellite images of earth. For
the purpose of our experiments we used data from the Sentinel 2 Program and more
specifically satellite images from the geographic are of Greece. Further analysis on
the dataset will be presented in the next chapter about the actual implementation
and the methodology.

One of the big challenges towards the goal of creating the common system is the
fact that, due to the orbit of the satellite, there is no consistency between geographic
locations and the dates for which we 1l have data. There can be data for a specific
geographic location for a specific date while there wont be for another location on
the same date. In our work, we are aiming to have data for all the geographic regions
of Greece on the same dates over a period of 1 year. In that direction, the relevant
data can be created through interpolation. We are collecting the data about a geo-
graphic location before and after the specific date where we are missing them and
through interpolation the data is created on that date.

It is important to note that the images, since they come from a satellite may
have clouds. In that case, it is important that atmospheric cleaning takes place.
During that process, the necessary corrections are conducted in order to eradicate
the alteration of the radiation between the sender and the receiver which occurs due
to the atmosphere. The effect of the atmosphere on the sun radiation which reflects
on a surface is that one part of the radiation is scattered, another part is absorbed
by the surface and the rest finally reaches the sensor of the satellite.

However, not only the direct sun radiation but also the sparse sun radiation
which derives from the scattering of the direct sun radiation in the atmosphere
before that reaches the ground, reflect on the surface of the ground. The sparse
radiation reaches the satellite sensor either directly by the atmosphere or by being
reflected on the surface of the ground or on clouds as a routing radiation. The ra-
diation which reaches the sensor is the sum of all the aforementioned components.

In order to perform the atmospheric correction of these images, the MAJA frame-
work is used.Practically what the framework is doing is that it performs the cloud
cleaning to the highest possible degree and also creates cloudmasks for the processed
image: the cloudmask defines which pixel is ”"cloudy” by flagging it so that when
the interpolation is performed, the value of the ”cloudy” pixel wont be picked but
instead the neighboring pixels which are not ”cloudy” will be used. In our case, the
atmospheric cleaning has been performed at the preprocessing stage, outside of our
implementation. We will use the ”corrected images” and the relevant cloudmasks.

Chapter 3

Methodology and Implementation

3.1 Overview

In our implementation, we are processing satelite images of a specific geographic
region for a specific timeline in order to generate images for the dates within the
timeline where we dont have available satelite data. As part of our setup, we have
performed a pre-processing and the atmosphere of the satelite images has been cor-
rected by removing the clouds.

Initially, we define the time range for which we will provide input data meaning
the satelite images. We also define the time window for which we would like to have
output data as well as the relevant interval based on which,within the actual dates
where we have data, we will get synthetic dates. Obviously, the time window of the
output data has to be within the time range of the input data. Also, we define the
masks, both the sea and the cloud mask, for the relevant tiles(satelite images) which
will be used in the machine learning part. Note that the sea masks are applied only
into the tiles which have sea in them.

Once the pipeline has initialized, the necessary time space to be used by the in-
terpolation functions will be created and the synthetic dates will be calculated.
After this part, the function which performs the interpolation process is called. In
this part, we initially define the number of available cores which will be used in
multiprocessing. Note that here we also define the number of parts into which the
image will be split. It is important to mention that the number of parts has to
be a divident of 5490: 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45 etc. and this is related
to the dimensions and the pixels of the image. As we will see in the experimental
assessment section, the number of parts will be a factor which will determine the
number or processes that will run in parallel.

Moving forward, in case the pipeline has water, the pipeline loads the seawater
masks and the cloud masks which we defined earlier. Once the masks are loaded,
the synthetic dates and the relevant data are calculated: in case the part of the
image contain only sea no multiprocessing takes place as the process is not compu-
tationally expensive whereas if the part of the image contains land or both land and
sea, multiprocessing is performed to accelerate the process.

Of course, in case of multiprocessing factors like the optimal chunksize are calcu-
late in order to ensure an efficient multiprocessing procedure. Note that the process
from loading the masks to performing the multiprocessing part, is performed twice:
once for the R1 band which are the 10m of the image and once for the R2 band
which are the 20m of the image.

Every time the relevant image is created for the synthetic dates in each band
for every part these are saved and once the aforementioned process is finished for
all the dates and the bands, the images are merged accordingly to create the final
images for the synthetic dates.

In this implementation the most important python libraries which are used are
multiprocessing, OpenCV, numpy and GDAL:

e The multiprocessing library as the name indicates is used to perform the actual
parallel processing by utilizing the available cores in the nodes.

e The OpenCV is used mostly for some resizing functionalities.

e The numpy library is one of the fundamental libraries which is used for scien-
tific computing with Python and is the basis of the code(arrays etc.).

e GDAL is a translator library for raster and vector geospatial data formats that
is released under an X/MIT style Open Source License by the Open Source
Geospatial Foundation. As a library, it presents a single raster abstract data
model and single vector abstract data model to the calling application for
all supported formats. It also comes with a variety of useful command line
utilities for data translation and processing. The source of the information
about GDAL can be found in reference [4]

3.2 The Dataset

For the purpose of our experiments we used data from the Sentinel 2 program. The
Sentinel 2 program, launched as part of the European Commission’s Copernicus
program on June 23, 2015 and was designed specifically to deliver a wealth of data
and imagery. The satellite is equipped with an opto-electronic multispectral sensor
for surveying with a sentinel-2 resolution of 10 to 60 m in the visible, near infrared
(VNIR), and short-wave infrared (SWIR) spectral zones, including 13 spectral chan-
nels, which ensures the capture of differences in vegetation state, including temporal
changes, and also minimizes impact on the quality of atmospheric photography.

The orbit is an average height of 785 km and the presence of two satellites in
the mission allow repeated surveys every 5 days at the equator and every 2-3 days
at middle latitudes. The Sentinel-2 data provides GMES (Global Monitoring for
Environment and Security) program, jointly implemented by the EC (European
Commission) and ESA (European Space Agency) services related, for example, to
land management, agricultural production and forestry, and monitoring of natural
disasters and humanitarian operations. The source of the information in this section
regarding the Sentinel 2 program can be found in reference [5]

We tested our implementation with tiles that cover the geographical area of
Greece: 53 tiles of size xxx both for the 10 meter and the 20 meter spatial resolution.
The size of each tile varies from 200 GBs to 350 GBs and is dependent to the ratio
between sea and land that each tile has. Overally, the 53 tiles have a size of 17 TBs.
Also, it important to take into consideration the relevant masks which will be used
for each tile that has sea. There are 49 masks, each mask has a size of 117 MBs
and overally the masks have a size of 5.5 GBs. As it can be seen in the picture
below, the aforementioned tiles have 34 or 35 prefix for the specific are and there is
an alphabetic correlation between neighboring tiles.

34TCL

o\
34TCK 34TFK
v
bl
i
-y
'b
250 N,
1 1.4 _2 -
o5,
#
R .
-
ﬁ =
b B
- 2 /)
345CG -;34 -
“Sh %,
T4 .
345CF 345DF 34SEF)3 3asFr
rGe e
J.
b6 " O
> Vi ealt
345CE 34SDE {

Figure 3.1: Greece - Data from Sentinel 2

3.3 ARIS

3.3.1 Overview of HPC

”Supercomputers” are computer systems used in scientific applications which de-
mand the processing of large volumes of data and the processing of big and ex-
tremely complex mathematical operations. Such problems create big obstacles in
terms of memory and storage use and consequently demand huge amounts of time
to be resolved or cannot be solved at all through normal systems. Hypercomputers
overcome these limitations by the utilization of specialized state-of-the-art hardware
while exploiting the computing power of multiple units.

A hypercomputer is a powerful computation and research tool. Nowadays, the
most complex problems and scientific challenges that humanity is facing like research
on climate change, the discovery of new drugs, the origin of the universe and others
are being solved by hypercomputers. For instance, the ARIS supercomputer system
has been developed and operated in Greece by EDYTE in a very wide range of
applications such as:

e The biochemistry for studying biological processes and possible modes of in-
tervention (e.g., drug discovery)

e The chemistry for the study of properties atoms, compounds, e.g. design of
new materials.

e The physical simulating phenomena at different levels from the sub-atomic
particles to the stars and the universe, helping e.g. astrophysicists interpret
observations about our universe.

e Climatology for the study of climate change in the region of Greece and the
factors that affect it.

e Meteorology to improve the forecasting models used in Greece.

e Engineering for fluid flow simulation

3.3.2 Description of ARIS

ARIS (Advanced Research Information System) is the most powerful computing
system in Greece for scientific applications. It was put into operation in July 2015
by GRNET offering a powerful research tool to the Greek scientific community.

The system at the beginning of its operation was included in the list of the 500
most powerful computers in the world (top500.org) and put Greece on the world
map of high performance systems. The ARIS computer system today has a maxi-
mum theoretical computing power of 535 TFlop / s (ie it can perform 535 trillion
mathematical operations per second) and offers multiple data processing capabili-
ties. [0

3.3.3 System Architecture

ARIS combines 5 different architectures divided into respective ”node islands”
In detail, the infrastructure consists of [6]:

e An islet which has 426 thin nodes.

Each node has two processors and each processor contains 10 processing cores,
thus offering a total of 8,520 cores (CPU cores). These nodes are suitable for
high-parallel applications that can break their data into many small pieces
before processing them.

e An island of large memory nodes (fat nodes) consisting of 44 nodes.

Each node offers 4 processors, 40 cores and 512 GB of central memory per
node. These nodes are suitable for applications that need very large central
memory and not so much for high scaling.

e An island of GPU accelerator nodes consisting of 44 nodes.

Each node contains 2 processors with 10 cores per processor, 64 GB of memory
and 2 NVidia K40 GPU graphics cards. These nodes are suitable for applica-
tions that implement computing operations that can utilize graphics cards as
co-processors to speed up computing.

e An island of Xeon Phi accelerator nodes (phi nodes) consisting of
18 nodes.

Each node contains 2 processors with 10 cores, 64 GB of memory and 2 co-
processors Intel Xeon Phi 7120P. It is suitable for parallel applications that
utilize Intel Xeon Phi co-processor technology.

e A machine learning node island (ml node) consisting of 1 server

It contains 2 Intel E5-2698v4 processors, 512 GB of central memory and 8
NVIDIA V100 GPU cards.

i
Xeon Phi Nodes E
[Képpor Alaoivdeang | i
Gpu Nodes Fat Nodes

YTmoAoyiotikoi Koppot

2 o

Tape Library GPFS

TuoTtipota ATIoBRKELG NG

Figure 3.2: ARIS Architecture

3.3.4 Storage System

Programs running on supercomputers potentially generate a huge amount of data,
which can be very difficult for standard filesystems and storage infrastructures to
manage. Conventional data file systems may have a cap on file size, number of
files, or total storage space. File systems used in supercomputers have the ability
to expand, quickly transfer large volumes of data, and be accessible simultaneously
from all node islands. ARIS for its file system implements IBM General Parallel File
System (GPFS) technology by offering 2 PetaBytes of storage space to its users.

In addition to the data used directly, researchers often retain historical data for
comparison or as a starting point for future work. Older data is stored in archival
storage systems. An example of archiving is the magnetic tape storage system,
which can store several petabytes (millions of gigabytes) of data. The ARIS infras-
tructure has such an IBM TS3500 movie library with a maximum storage capacity
of more than 2 PetaByte. The library is used by researchers to archive data over
long periods of time (several years) [6].

3.3.5 Data storage

The results of the work are stored in the common GPF'S file system which is accessi-
ble from all ARIS island nodes and the interface node. A simple approach is to think
of GPFS as a very large hard drive that stores all the data and applications in ARIS.

In particular, the ARIS file system offers two storage spaces depending on the
data stored and their use:

¢ SHOME where emphasis is placed on reliability versus performance.

Suitable for storing source code files, compiling applications and temporarily
storing data files.

e SWORKDIR with emphasis on performance (speed).

Suitable for storing large files, performing tasks and exporting results.

Users are restricted by file system usage limits. The limits are set according to the
project requirements for storage resources.

After the completion of each project, the files corresponding to it are retained
in the system for a period of about six months. Each user must ensure that their
files are transferred back to their personal computer. The files are transferred to
the computer according to the scp, sftp commands. Obviously, if at the request of
the project the ARIS library has been requested to be used for data archiving, the
appropriate procedures are performed for their preservation for the required period
of time [6].

3.4 Profiles of applications running on ARIS

Suitable applications for the ARIS system are those that can be implemented by
adopting a parallel processing model. A parallel application during its execution
is divided into hundreds or even thousands of individual processes, which are per-
formed simultaneously and collaboratively solve a common problem. To solve the
problem, these processes must have access to the same data and communicate with
each other by exchanging results. Depending on how this communication is achieved
we can differentiate the way these applications are designed and developed and the
programming tools to be used.

There are two common models of parallel application development: the shared
memory model and the distributed memory model. In a shared memory system, the
main memory can be accessed by all processes, while in a distributed memory sys-
tem, the memory is not accessible between different processes and communication
between processes is done by exchanging messages. In this type of applications, the
network that connects the computing nodes through which the exchange of messages
between processes takes place is very important.

The development of applications in shared memory systems is done with the help
of the OpenMP standard, while in distributed memory systems the MPI (Message
Passing Interface) standard is applied. In many cases the applications are developed
in such a way as to combine both of the above communication models.

In recent years, the use of the Graphical Processing Unit (GPU) for the calcula-
tion of numerically demanding algorithms has been observed. The GPU’s primary
goal is to process two-dimensional and three-dimensional graphics that appear on the
screen, which requires the simultaneous execution of commands in a large volume of
data. This is achieved through the parallel processing, on which the construction of
the GPU was based. ARIS has NVIDIA GPU processing units. To perform general
operations on graphics cards, NVIDIA provides the API: CUDA (Compute Unified
Device Architecture) programming interface.

The programming languages used to develop parallel applications are in most
cases the usual general-purpose languages, such as C / C ++ or Fortran, which are
extended with specialized libraries to support MPI, OpenMP, CUDA parallelism.
Developers need to design their application in such a way that they run in the form
of parallel collaborative processes using the capabilities offered by the MPI and
OpenMP libraries [6].

3.5 Operating system

ARIS uses the Linux operating system in RedHat 6.9 and Centos 6.9 distributions.
The interaction with the system is done through a command line and not from a
graphical environment (as is typically done, for example, in an MS Windows sys-
tem). The Linux command line is a powerful tool, with significantly more features
than the graphical user interface. To use the system, it is necessary to know the
basic commands that will be used during the connection, the transfer of files, the
compilation of applications and the execution of tasks in the system.

3.5.1 Connection to the system

The only way to connect to the system is using the ssh (secure shell) protocol. Ssh
allows a user to connect to the Internet from their own computer and use a remote
computer from the command line, just as it would on its own local system. The
connection to the system is not made with a password (password) but public key
technology (public key cryptography) is used. Each user has a unique key that ssh
uses along with the username, instead of a login password.

Access to ARIS login nodes from the user’s computer. Interface nodes are the
only ARIS nodes that have an Internet connection. From there, the work is sent for
execution on one of the islands of computer nodes [6].

3.6 File Transfer

Any file to be used in ARIS, whether it is the application itself or the application
data files, must be transferred from the user’s computer to the interface nodes using
the corresponding scp or sftp file transfer protocols [6].

3.7 Application development

ARIS has all the necessary tools for application development such as compilers,
debugging software and profiling software that help optimize applications for the
system.

Three different compiler suites are provided for compiling source code in C / C
++ and Fortran languages:

GNU (gcc, g++, gfortran) Intel® Parallel Studio XE Cluster Edition for Linux
PGI Cluster Development Kit for Linux The corresponding OpenMPI and IntelMPI
software versions are available for MPI parallel libraries. The NVIDIA compiler
version for the CUDA nvcce developer model is available for code compression to run
on graphics cards [6].

3.8 Pre-installed applications

ARIS offers a large number of pre-installed popular scientific applications and li-
braries, which are optimized and configured to make efficient use of the system.
The best approach suggested to ARIS users is to use the pre-installed applications.
Additional applications can be installed with the help of the support team. Finally,
for new applications being developed, the appropriate parameters can be compiled
by the users themselves using the compilation tools mentioned above [6].

3.9 Running applications

ARIS, like all major systems of its kind, follows the logic of batch job execution.
To run an application it must first be described as a task and sent to a scheduler
that runs it to run on the computing nodes. ARIS uses the SLURM program to
distribute tasks on the supercomputer. SLURM has three basic functions. First, it
has exclusive or non-exclusive access to the resources (computing nodes) to the users
for a certain period of time, so that they can perform work. Second, it provides a
framework for starting, executing, and monitoring tasks. End, ensures that com-
puter nodes are shared across multiple users while avoiding competition issues. This
is achieved with a task queue for each node island, in which fair and equal priority
is applied to each user depending on the resources required by the application.

The user can route tasks from the interface node to the system via an appropri-
ate SLURM (sbatch) command. In order for any task to be accepted and routed,
it must specify some minimum specifications: the preferred island to execute, the
number of nodes required, the number of cores per node, the maximum execution
time and the program command to be executed . These specifications must be set
in a text file called a batch script. For the creation of the specification file for ARIS
there is the tool http://doc.aris.grnet.gr/scripttemplate/ which easily exports it.

A task when it is launched may not be executed immediately if the necessary
resources are not available. In this case, it enters the appropriate priority queue
and waits until the resources needed (eg the number of nodes required to execute it)
are released, at which point SLURM will automatically start. The waiting time de-
pends on the requirements of the job and ranges from a few minutes to several hours.

As can be seen from the above, ARIS is suitable for applications that are parallel,
run autonomously within a task, with a specific execution time and do not commu-
nicate with the user or other applications. It is important to emphasize that it is
not possible for the application to communicate via the Internet with external users
in the system or to provide it in the form of a web service (web service) which runs
in persistent services. The source about ARIS and the information in this chapter
can be found in reference [6].

Chapter 4

Experimental Assessment

4.1 Utilization of a single node

In our initial testing, we utilized one of the THIN nodes from Aris: a single node
with 64 GBs of memory and a CPU with 20 cores@2.8GHz. Of course, we wont
be able to utilise the whole 64 GBs of the memory but instead werequested 56GBs
which was still sufficient. We used the original code implementation where the image
is split in 18 parts. Each part is processed serially, one after the other and once each
processing is completed, the results are temporarily saved as images. Once the whole
processing is over, all the images are merged to produce the final result. For this
part of testing, the 34SCJ from the Sentinel 2 dataset was used. The results are
shown in Table 4.1.

Number of Used Cores | Execution Time(mins)

5 236.19
10 171.88
20 167.82

Table 4.1: Execution in 1 node for different number of cores

We performed the tests for a different number of used cores to observe the impact
of multiprocessing at the individual node level. At this point we tested only for 18
parts and didnt test the implementation for a different number of parts as because
of the nature of the processing which is performed serially, the behaviour would
be the same. In the above table we observe a 28% decrease in the execution time
when the number of used cores is increased from 5 to 10 cores. However, increasing
the number of used cores beyond the number of 10 used cores doesn’t reduce the
execution time significantly. Obviously, since each part is processed serially, this is
a time consuming process. Later we expanded multiprocessing by utilizing a big
number of nodes so that we observe the effects of multiprocessing in the parts level.

4.2 Re-Designing the initial pipeline

As mentioned before, our goal was to parallelize the iteration over the different
parts and take advantage of the hardware to the maximum extent. We created
a single process for each part: each process calls the virtual dates function for a
each individual part. Accordingly the virtual dates function spawns subprocesses
in order to perform the calculations on the pixel level. Also, taking into account
the hardware capabilities of the THIN nodes in Aris we utilized up to 20 cores on
each node - a maximum number of 18 cores was utilised by multiprocessing. We
performed testing for 9, 15, 18, 30, 45 parts and also tested parallel processing of
parts at the same node. Unfortunately, due to limitations with the memory on each
node, we couldnt go to a smaller number of parts as this would require more memory
which wasnt available on the THIN nodes of ARIS.

Start

Part 1

Part 2

Part 9

-

End

Figure 4.1: Serial Execution in 1 node

As it is seen in in Figure 4.2, in the initial implementation where 1 node is utilized,
every part is executed one after the other. However, in the next figure, Figure 4.3
we have parallelized the tasks and each part was processed in parallel with the other
parts.

Figure 4.2: Parallel Execution in multiple nodes

It is important to note that the capabilities of the nodes and their technical charac-
teristics allowed us to process more than one part in each node. That was dependent
on the size of the memory and the size of each part: each node was able to process
as many parts as they could fit in its memory.

4.3 Parallel Processing in multiple nodes

In order to make a comparison between serial execution and parallel processing, we
used the 34SCJ tile for parallel processing as in the serial processing of section 4.2.
We selected to process 18 parts which corresponds to 18 processes. Initially, we
selected to run each process in each individual node so we utilized 18 nodes as it is
shown in Figure 4.4:

Figure 4.3: Parallel Execution for 34SCJ for 18 nodes

Below, in table 4.2, are the results(execution time in minutes) for the execution of
each process:

ProcessOl Process 1 | Process 2 ‘l Process 3 ‘l Process 4 ‘l Process 5 ‘l Process 6 ‘l Process 7 | Process 8 |

o 7 - qer | 6o | 6or | 5s | 5@ | 5o |

Process 9 | Process 10 | Process 11 | Process 12 | Process 13 | Process 14 || Process 15 | Process 16 | Process 17 |

Table 4.2: Execution of 18 parts in 18 nodes for the SCJ tile

We observe that the process with the maximum execution time is process 3 which
lasted 7.67 minutes. Practically, this is the required amount of time to process tile
345CJ through parallel processing. If we compare this value with the relevant time
from Table 4.1 for the serial execution in 1 node while using 20 cores, we observe
that the execution time dropped from 167.82 mins to 7.67 mins. This is a significant
decrease in the execution time which pinpoints the tremendous effect of parallel pro-
cessing on execution time.

As noted before, the technical characteristics of the nodes in terms of memory
able to process more than one part in each node. Since the tiles have a size of approx
200-300 GBs, then in case of 18 parts, each part will have a size that ranges from
11.1 to 16.7 GBs. Therefore, we were able to process 2 parts with an overall size
of maximum 33.4 GBs in one node since the node has 56GBs of memory. However,
reducing the number of parts meant that the size of each part increased and that
put a limit in processing more than 1 part in each node for a smaller number of
parts. In our implementation, we used 18 parts and 9 nodes: 2 processes/parts per
node, as it is shown in Figure:

Figure 4.4: Serial Execution in 1 node

Below are the results(execution time in minutes) of the above implementation
where we processed 18 parts by utilizing 9 nodes:

ProcessOl Process 1 | Process 2 ‘l Process 3 ‘l Process 4 ‘l Process 5 ‘l Process 6 ‘l Process 7 | Process 8

[76 | ssr oo | rur | gsr | 1x | 7] 73l |

Process 9 | Process 10 | Process 11 | Process 12 | Process 13 | Process 14 | Process 15 | Process 16 | Process 17 |

Table 4.3: Execution of 18 parts in 9 nodes for the SCJ tile

We observe that in this case, the maximum execution time was in process 4 which
lasted 9.27 minutes and that is then the execution time for this implementation. If
we compare the results from Table 4.2 with the results from Table 4.3, we observe
that in the latter case, processing the same parts in 9 nodes instead of 18 nodes,
lasted longer. That is explained by the fact that, since 2 processes run in 1 node,
they had to both share the 18 cores, out of the overall 20 cores on each node, for

the multiprocessing part. Therefore, each process had a smaller number of cores to
utilize compared to the first implementation where each process run autonomously
on each node.

4.4 Multiple Parts - Tile Comparison

In order to broaden our analysis, we proceeded with comparing the execution time
and behaviour for a different number of parts-processes. as a baseline in this imple-
mentation, we decided that each process will run in a its own node. We performed
tests for 9, 15, 18, 30 and 45 parts. Moreover, we decided not to limit our analysis
in 1 tile, but rather expand it to several tiles from the dataset which covers the
greek geographical area. It was important for us to detect patterns, behaviours and
understand how the type of the terrain, sea or land, affects the overall execution and
the multiprocessing part. Table 4.4 contains the results for the different number of
parts(processes) for each of the 8 tiles that we decided to work with.

Tile ‘l Time for 9 Parts | Time for 15 Parts | Time for 18 Parts | Time for 30 Parts ‘l Time for 45 Parts
34SCJ 9.72 7.45 7.53 6.24 6.16
34SEG 16.88 10.31 8.63 7.31 7.22
34SEJ 16.88 10.31 8.63 7.34 7.22
34TEK 24.62 15.29 12.21 10.93 9.48
34TEL 22.33 13.06 11.43 10.23 9.72
34TDL 21.95 13.47 12.02 10.48 9.47
34TGM 21.27 13.08 11.46 10.14 9.58
34TMG 20.85 12.45 10.85 9.84 9.17

Table 4.4: Execution of multiple parts for different tiles

The results from Table 4.4 are presented in the below Figure:

Duration per number of processes(parts)

25 — 345()
MSEG
20.0 3 5E]
— MTEK
E 17.5 WTEL
E 50 — HMTDL
= B
: i
2125
5 — -
2 w0 ——
75 =
5.0

9 15 18 0 45
Number of Processes|parts)

Figure 4.5: Graph comparing duration per number of pro-
cesses for each tile

We observe that, as expected, the execution time is reduced as the number of
processes increases. More specifically, during the transition from 9 to 18 processes,
the duration drops approx. 40% to 50%. However, during the transition from 18 to
30 and 45 processes respectively, the decrease is smaller (20%). That implies that
the number of 18 processes is the threshold after which multiprocessing doesn’t offer
a significant gain. In other words, the overhead and the cost in time of the other
processes in the pipeline are much bigger than the gain which the multiprocessing
part has. This is something that we explored further in later sections.

4.5 Effect of the terrain on multiprocessing

As a next step in our work, we decided to investigate how the terrain affects multi-
processing. More specifically, we wanted to understand how the different percentage
of sea and land in each tile, relates to the execution time.

Tile | Percentage of Land | Percentage of Sea | Time for 9 Parts | Time for 15 Parts | Time for 18 Parts
34SCJ 1% 96% 9.72 7.45 7.53
34SEG 61% 39% 16.88 10.31 8.63
34SEJ 99% 1% 24.62 15.29 12.21
34TEK 100% 0% 22.02 13.18 11.23
34TEL 100% 0% 22.33 13.06 11.43
34TDL 100% 0% 21.95 13.47 12.02
34TGM 100% 0% 21.27 13.08 11.46
35TMG 100% 0% 20.85 12.45 10.85
34SDJ 57% 43% 20.89 12.92 11.83
34SEF 9% 91% 13.47 10.18 9.81
34SEH 83% 17% 23.36 14.09 11.77
34SFF 33% 67% 22.33 13.06 11.43
34SFG 78% 22% 22.19 13.82 12.69
34SFH 7% 23% 23.81 13.42 13.43
34SFJ 76% 24% 22.14 14.58 11.78
34SFJ 62% 38% 16.86 11.84 7.6

Table 4.5: Execution of multiple parts for different tiles and
analysis on the terrain

Firstly we calculated the percentage of sea and land in each tile. We did this
for the tiles from our previous testing which was demonstrated in Table 4.4 and
also included new tiles: 34SDJ,34SEF,34SEH,34SFF ,34SFG,34SFH,34SF J,34SEG.
We did that in order to have a big variety of tiles with different percentages of sea
and land. As in the previous testing for the other tiles, we performed tests for 9,
15, 18, 30 and 45 parts for these tiles as well. In Table 4.5, we have gathered the
results for all the tiles: tile name, percentage of sea and land, execution duration in
minutes for each process.

We used the above data to create graphs which demonstrate the correlation
between the terrain and the execution duration for different number of processes.

Execution time by Sea percentage

2.0 —— 9 processes

—4— 15 processes
—4— 15 processes

22.5 1

2000 1

17.5 1

15.0 1

Duration in mins

125 1

10.0 4

7.5 1

o 20 a0 B0 80 100
Percentage of Sea

Figure 4.6: Distribution of Sea and Land for each tile — Exe-
cution time

We observe that, overally, as the percentage of Sea in the graph increases, the
execution time is decreased, especially for the smaller number of processes. This
is in accordance with the increase of the relevant processes. However, there are a
few exceptions, specifically in the area of 40%, where although the percentage of
sea increases, the execution time increases as well. This is also more evident in the
bigger number of processes and implies that the execution time is dependent on
the distribution of sea in the parts(processes) and there is no guarantee that the
percentage of sea is equally distributed between the processes. In other words, the
execution time is not only affected by the distribution of land and sea in the tile but
also by how the this distribution differs within the subprocesses.

Moreover, we observe that, in some cases, as the percentage of sea increases, the
execution time also increases which is not expected. This is evident in the execu-
tion time of the 34SEG and 34SDJ tiles which have 38% and 43% of sea respectively.

In that direction it is worth investigating the execution time of each process and
the relevant distribution for each of these tiles as well as with the tiles that have 0
and almost 100% sea(tiles 34TEK and 34SEF).

Below, in Figure 4.8 we demonstrate the execution time by process for each of
the aforementioned tiles: 34TEK, 34SEF, 34SEG, 34SDJ. We chose to work with 9
parts(processes).

Execution time by Process —— 3I4TEK (0% sea)
22 ._____*_____‘_‘_____‘,_.--#-.ﬂ_.‘____" —#— 345EF (91% sea)
=¥ 345EG (38% sea)
20 3450) (43% sea)
w 18
E
E
= 16
5
= 14 4
m
5
[] 12 A
10 4
B -
1 2 3 4 5 5 7 8 9
Process

Figure 4.7: Execution time per process for specific tiles

We observe that the execution time is equally distributed for each process at the
34TEK tile which consists of 0% sea and deviates significantly at the 34SDJ tile
which consists of 43% sea.

If we analyze further the execution time for the 34SDJ tile we observe that the
1st process lasted 20.89 minutes while the 9th process lasted 12.24 minutes. After
reviewing the logs, it appears that the multiprocessing stage for the 10m band in the
1st case lasted 11 mins while the same stage in the 2nd case lasted 4.36 mins. The
relevant chink size was 160570 for the 1st process and 65641 for the latter. That
explains the fference for the execution time during multiprocessing. The iterable is
split into bigger pieces, and each piece is submitted as a separate task which results
into a bigger execution time

Figure 4.8: Tiles 34TEK, 34SEF, 34SDJ, 34SEG

In the above figrure 4.9 we can see the actual image of each tile. We can see that the
34TEK consists of only land. That explains the consistency in the execution time of
each process: every process will process only land so practically the execution time
remains almost the same. The other 3 tiles, though, contain both sea and land. It
is important to observe how the sea and land is distributed between the different
parts that the image is cut into in order to be processed.

Process 1 k!!‘u . r&;ﬂ‘\

Process 2 [AR
Process 3 (Wp ~ SRSIMEINIE
Process 4 = W. .
Process 5 L Y T%Am .
Process 6 T “ J!)
Process 7 w .
Process 8 w .
Process 9 ! m .

Figure 4.9: Splitting the tile 34SDJ in 9 parts

In Figure 4.10 we observe that the process 1 contains the most land terrain
compared to the rest of the processes. Also, it is evident that as we move from the
top to the bottom of the tile the percentage of sea in each part/process increases
compared to the percentage of land. These observations justify completely the
results in Figure 4.8 where the execution time decreases significantly moving
from process 1 up to process 9. Accordingly, if we split the the tiles 34SEF and
34SEG into 9 parts as above, we will observe the relevant behaviour in the distri-
bution between land and see in the processes which justifies the results of Figure 4.8.

In order to broaden our analysis, we worked towards the direction of identifying the
root cause at the technical level which causes the difference of th execution time
between processes. More specifically, in the next section we investigated how the
chunksize affects multiprocessing and how the terrain affects the chunksize.

4.6 The effect of chunksize on multiprocessing

The chunksize is a parameter in multiprocessing which defines the size of the
pieces into which the iterable will be split. Each of these pieces is submitted as a
different task. In multiprocessing, each task is submitted to a core, so practically
the chunksize determines how big the task which is submitted to a processor will
be. The default value of the chunksize is 1. This means that each worker-core
received a new tasks only after it has processed the last received one. However,
if the chunksize is set to a value higher than 1, then the worker receives a batch
of tasks a the same time and will receive the next batch if it exists, only if it has
processed the previous one.

The big challenge here is to determine a good value of the chunksize. Distributing
items one-by-one with chunksize=1 increases flexibility of scheduling while it
decreases overall throughput, because drip feeding requires more inter-process
communication (IPC). A task (as unit of work) consists of chunksize ”minitasks”.
The term "minitasks” is used to differentiate the tasks in each chunksize from the
actual tasks as defined in multiprocessing. In case we would be unable to predict
how long a minitask would need to be completed e.g. in an optimization problem,
where the processing time greatly varies across minitasks.

In this implementation, the minitasks based on our tests, take approximately the
same time to finish. So we set the chunksize equal to the result of the division
of the iterable and the number of the processes. In case there is a remainder in
the division, 1 is added to the chunksize. This means that if a remainder exists,
one extra task will be created. Potentially that could severely impact the overall
computation time. However, we didnt observe such an issue in our experiments.

As part of our analysis, we extracted the relevant chunksizes in each part(process)
of every tile. Since the multiprocessing takes place for every single band, we covered
both bands: 10m and 20m. Initially, we related the chunksize to the number of
processes as well as to the different bands. From that point, we worked on correlating
the execution time with the chunksize and the nature of the terrain. This allowed
us to determine how the percentage of land and sea in the tiles affects the chunksize
and consequently the execution time of the multiprocessing. We created the relevant
diagrams to demonstrate the observations and extract conclusions based on them.

4.6.1 Execution time per chunksize

First of all, it is important to note that multiprocessing takes place only in parts of
the tiles where there is land or a mixture of land and sea. In parts of the tiles where
there is only sea, multiprocessing is not used as the computational complexity is
low. For our tests, we selected a few datasets: 34SCJ , 34SEG, 34TEK and 34SDJ.
We performed the tests separately for 10m and 20m bands. That allowed us to get
a broad variety of different chunksizes and the relevant execution times. In order to
perform the tests, since we used 9 parts(processes) per band, we utilised 18 nodes
from Aris. In the following tables we have summoned the relevant results for the
10m band.

Tile

Table 4.6: Execution time per process for the 10m band in
selected tiles

Tile ‘l Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 ‘l Process 7 ‘l Process 8 | Process 9
31817 19486 11883 219

34SEG 161306 142598 130762 103085 87152 79760 90708 96309 76668

34TEK 176258 176258 176258 176258 176258 176258 176258 176258 176258

34SDJ 160570 147251 146713 127312 101071 81626 45268 36484 65641

Table 4.7: Chunksize per process for the 10m band in selected
tiles

Although, we had the option to perform the tests either by using 15 or 18 parts per
band, there would be no value as the chunksizes and the execution times from the
testing in 9 parts cover the necessary range.

Below are the relevant results for the 20m band in the selected tiles:

Tile ‘l Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 ‘l Process 7 ‘l Process 8 | Process 9 |
0.59 0.42 0.32 0.16

34SEG 1.93 1.73 1.6 1.27 1.12

34TEK 2.27 2.28 2.26 2.25 2.26 2.26 2.25 2.26 2.26

34SDJ 2.29 2.09 2.07 1.8 1.44 H 1.18 % 0.74 % 0.63 H 1.00 H

Table 4.8: Execution time per process for the 20m band in
selected tiles

Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7 | Process 8 | Process 9
345CJ 7956 4874 2971 56
34SEG 40324 35651 32691 25772 21788 19938 22675 24075
34TEK 44065 44065 44065 44065 44065 44065 44065 44065 44065
34SDJ 40145 36813 36677 31830 25268 20408 11321 9118 16407

Table 4.9: Chunksize per process for the 20m band in selected
tiles

After combining the results from the tables 4.6, 4.7, 4.8 and 4.9 we created a diagram
which demonstrates the correlation between the chunksize and the execution time
for the specific bands.

Execution time by Chunksize for the 10m band
—4— 10m

Execution time in mins
(=]
i

T T T T T T T T
0 25000 50000 7SO000 100000 125000 150000 175000
Chunksize

Figure 4.10: Execution time by Chunksize for the 10m band

Execution time by Chunksize for the 20m band

—— 20m
210 A
Wi
E
£
£ 15 4
a4
E
g
E 10 A
Y
b
L
05 1
0 10000 20000 30000 40000

Chunksize

Figure 4.11: Execution time by Chunksize for the 20m band

In both cases, we observe that as the chunksize inceases so does the execution time.
There a few exeptions between neighboring observations regarding the chunksize
but the difference in the execution time is negligible. In any case, it can be justified
in terms of computational complexity and hardware characteristics at the time of
the execution.

Another observation that we make is that the chunksize is considerably bigger in
the processes of the 10m band than the chunksize in the processes of the 20m band.
That is justified by the fact that number of pixels that are processed is smaller:
the iterable is smaller and, based on the algorithm that we use to compute it, the
chunksize is smaller.

Last but not least, similarly to the previous observation about the difference in the
bands regarding the chunksize, we can correlate the chunksie to the percentage of
land and sea in the tiles. Taking into consideration the percentage of land sea in the
relevant tiles from Table 4.5, combined with the results in Tables 4.6-4.9, we observe
that as the percentage of land increases so does the chunksize and the execution time.
Same way, as the percentage of sea in the tile increases, the chunksize is reduced
as well as the execution time. However, note that this is the general observation
as the distribution of land and sea within the processes is also very important: a
tile may have a relatively small percentage of land but the vast majority of it is
collected by one process. That process will have a considerably bigger chunksize
in multiprocessing compared to the others, and that can lead to a significantly
increased execution time.

Chapter 5

Conclusion

In this work, the main idea was to exploit and define strategies to perform remote
sensing tasks which are computationally intensive while utilizing the cluster of
a HPC. Our first goal, of fully taking advantage the capabilities of the cluster
and the nodes in terms of parallel computing was achieved: we managed to drop
dramatically the execution time as the execution which used to take around 3 hours
for each tile was performed in a few minutes. Based on the limitations in terms of
memory in the THIN nodes of Aris, we run 2 processes per node in parallel, fully
utilizing the resources.

Moreover, we identified the threshold where further parallelization doesnt offer a
significant gain: based on the technical specifications of our implementation(size of
data, memory availability on the nodes etc.) that occurred beyond the 18 processes.
Before reaching that threshold we analyzed the behaviour of the processes while
increasing the number of them.

It is important to note that we gained very useful insights about the effect of
the terrain on multiprocessing for our implementation: as a general rule, as the
percentage of sea in the tiles increases, the execution time is reduced. Vice versa,
the more land a tile has, the more time it will take to be processed. In order to
undesrstand fully this behavior, we broke down our analysis to the process level.

We came to the conclusion that the distribution of land and sea within the processes
plays a significant role in the execution time. Since the overall execution time of a
tile is determined by the last process to finish, the percentage of land or sea in that
particular process will affect the overall distribution time. A tile with a relatively
small percentage of land may still a considerable amount of time, compared to
other tiles, simply because a single process may possess the biggest part of that land.

Last but not least, we determined the correlation between the chunksize which
is the most important factor of multiprocessing, the terrain in the tile and the
execution time. The chunksize increases as the process which corresponds to a part
of the tile, contains more land and accordingly so does the execution time. On the
other hand, more sea in the tile means a smaller chunksize resulting in a faster
execution.

Overally, through this work, we determined some very useful strategies not only
to fully take advantage of the capabilities of a hypercomputer cluster like Aris and
optimize our implementation in terms of parallel processing but also make useful
observations about how this process is affected by certain characteristics of remote
sensing tasks.

5.1 Future Work

The vast capabilities of the ARIS HPC definitely provide room for expansion of
the current work. First of all, it would be really interesting to utilize the FAT
nodes in ARIS. The enhanced capabilities of these nodes in terms of memory, cpu
etc. would be really useful tools in the quest to optimize the parallel processing of
our implementation. Furthermore, the core multiprocessing process could become
more efficient by exploiting the CUDA library that ARIS offers: by having the
option to run the multiprocessing part in graphic cards, the execution time of that
step would be significantly decreased. It is also worth noting that optimization
could also take at the code level to make the whole process more efficient. Last
but not least, one topic for future work would be to apply the aforementioned
techniques and implementation in a different dataset: different pictures with other
terrain characteristics could potentially pose new challenges in terms of complexity
and optimization of the parallelization process.

Bibliography

1]

https://www.omnisci.com
https://https://www.esri.com
https://https://gisandscience.com
https://gdal.org/about.html
https://eos.com/find-satellite/sentinel-2/
https://hpc.grnet.gr

Thomas Sterling, Maciej Brodowicz, Matthew Anderson High Performance
Computing Modern Systems and Practices 2017.

Bertil Schmidt, Jorge Gonzalez-Dominguez, Christian Hundt, Moritz Schlarb
Parallel Programming Concepts and Practice 2017.

Jim Jeffers, James Reinders High Performance Parallelism Pearls Volume Two
Multicore and Many-core Programming Approaches 2015.

[10] Gerhard Joubert, Wolfgang Nagel, Frans Peters, Wolfgang Walter Paral-

lel Computing: Software Technology, Algorithms, Architectures € Applications
2004.

[11] Senapathi Venkatramanan, Prasanna Mohan Viswanathan, Sang Yong Chung

GIS and Geostatistical Techniques for Groundwater Science 2019.

[12] Seonmyeong Bak, Colleen Bertoni, Swen Boehm, Reuben Budiardja, Barbara

M.Chapman, Johannes Doerfert, Markus Eisenbach, Hal Finkel, Oscar Hernan-
dez, Joseph Huber, Shintaro Iwasaki, Vivek Kaleb, Paul R.C. Kent, JaeHyuk
Kwack, Meifeng Lin, Piotr Luszczek, Ye Luo, Buu Pham, Swaroop Pophale,
Kiran Ravikumar, Vivek Sarkar, Thomas Scogland, Shilei Tian, P.K.Yeung
OpenMP application experiences: Porting to accelerated nodes 2021.

[13] Mehmet Deveci, Christian Trott, Sivasankaran, Rajamanickam Multithreaded

sparse matriz-matrix multiplication for many-core and GPU architectures 2019.

[14] Vasco Amaral, Beatriz Norberto, Miguel Goulao, Marco Aldinucci, Siegfried
Benkner, Andrea Bracciali, Paulo Carreira, Edgars Celms, Luis Correia, Clemens
Grelck, Helen Karatza, Christoph Kessler, Peter Kilpatrick, Hugo Martiniano,
Ilias Mavridis, Sabri Pllana, Ana Respicio, José Simao, Luis Veiga, Ari Visa Pro-
gramming languages for data-Intensive HPC applications: A systematic mapping
study 2019.

[15] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, J.
Dongarra Algorithms and optimization techniques for high-performance matrix-
matriz multiplications of very small matrices 2018.

[16] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Jeffrey S.Vetter, Pietro Cicotti,
Erwin Laure, Stefano Markidis Characterizing the performance benefit of hybrid
memory system for HPC applications 2018.

[17] Kurt B.Ferreira, Scott Levy Evaluating MPI resource usage summary statistics
2021.

[18] Craig A. Lee, Samuel D. Gasster, Antonio Plaza, Chein-1 Chang, Bormin Huang
Recent Developments in High Performance Computing for Remote Sensing: A
Review 2011.

[19] Ujwala M. Bhangale, Kuldeep R. Kurte, Surya S. Durbha, Roger L. King,
Nicolas H. Younan Big data processing using hpc for remote sensing disaster
data 2016.

[20] Mingmin Chi, Antonio Plaza, Jon Atli Benediktsson, Zhongyi Sun, Jinsheng
Shen, Yangyong Zhu Big Data for Remote Sensing: Challenges and Opportuni-
ties 2016.

[21] Yan Ma, Haiping Wub, Lizh Wang, Bormin Huang, Rajiv Ranjan, Albert
Zomaya, Wei Jie Remote sensing big data computing: Challenges and oppor-
tunities 2016.

[22] S.N.V.Kalluri, J.Jaja, D.A.Bader, Z.Zhang , J.R.G.Townshend, H.Fallah-Ad]l
High performance computing algorithms for land cover dynamics using remote
sensing data 2010.

[23] Antonio J. Plaza, Chein-I1 ChangHigh performance computing in Remote Sens-
1ng 2008.

[24] Emmanuel Christophe, Julien Michel, Jordi IngladaRemote Sensing Processing:
From Multicore to GPU 2011

[25] Emmanuel Christophe, Julien Michel, Jordi IngladaA Hadoop-based distributed
framework for efficient managing and processing big remote sensing images. 2015

[26] Jinwei Dong, Graciela Metternicht, Patrick Hostert, Rasmus Fensholt, Rinku
Roy Chowdhury Remote sensing and geospatial technologies in support of a nor-
mative land system science: status and prospects 2019

[27] Jianting A ZhangTowards personal high-performance geospatial computing
(HPC-G): perspectives and a case study 2010

[28] Natalija Stojanovic, Dragan StojanovicHigh—performance computing in GIS:
techniques and applications 2013

[29] Kenneth A Hawick, P.D Coddington, H.A JamesDistributed frameworks and
parallel algorithms for processing large-scale geographic data 2003

[30] M.Drusch, U.Del Bello, S.Carlier, O.Colin, V.Fernandez, F.Gascon, B.Hoersch,
C.Isola, P.Laberinti, P.Martimort, A.Meygret, F.Spoto, O.Sy, F.Marchese,
P.BargelliniSentinel-2: ESA’s Optical High-Resolution Mission for GMES Op-

erational Services 2012

[31] Jie Yang, Anmol Paudel, Satish PuriSpatial Data Decomposition and Load Bal-
ancing on HPC' Platforms 2019

[32] Karantzalos K., Bliziotis D., Karmas A.A Scalable Geospatial Service for Near
Real-Time, High-Resolution Land Cover Mapping 2015

[33] Karmas A., Tzotsos A., Karantzalos K.Big Geospatial Data for Environmental
and Agricultural Applications, Yu and Guo (eds.), Big Data Concepts, Theories
and Applications 2016

[34] Karakizi C., Karantzalos K., Vakalopoulou M., Antoniou G.Detailed Land
Cover Mapping from Multitemporal Landsat-8 Data of Different Cloud Cowver,
Remote Sensing 2018

	Introduction
	Thesis Contribution
	Thesis Outline

	Theoretical and Experimental Background
	GIS and Remote Sensing
	GIS
	Remote sensing
	Experimental Background

	Methodology and Implementation
	Overview
	The Dataset
	ARIS
	Overview of HPC
	Description of ARIS
	System Architecture
	Storage System
	Data storage

	Profiles of applications running on ARIS
	Operating system
	Connection to the system

	File Transfer
	Application development
	Pre-installed applications
	Running applications

	Experimental Assessment
	Utilization of a single node
	Re-Designing the initial pipeline
	Parallel Processing in multiple nodes
	Multiple Parts - Tile Comparison
	Effect of the terrain on multiprocessing
	The effect of chunksize on multiprocessing
	Execution time per chunksize

	Conclusion
	Future Work

