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Abstract

Although Model Predictive Control (MPC) has prominent advantages pertaining to nonlinear
systems under state and actuator constraints, the high-resource consumption of the algorithm
due to the constant requirement of state feedback and the high computational cost of the
optimization at each time step limits the spectrum of possible applications. This drawback of
MPC is amplified when combined with Image-Based Visual Servoing and quadrotors due to
the high computational cost of the Visual Tracking Algorithm (VTA) and the limited battery
life of the vehicles. Hence, applications such as coastline surveillance using Unmanned
Aerial Vehicles (UAV) pose challenges related to the low autonomy of the vehicles and the
disturbances due to the VTA noise from the vision system. In this thesis, a Event-Triggered
IBVS-NMPC scheme for coastline tracking using a quadrotor is proposed which aims at
updating the optimal control signal sequence as sparsely as possible. Additionally, a fast
C++ code is developed and implemented in realistic simulations, in which the efficacy and
performance of the control scheme is demonstrated.



Περίληψη

Παρόλο που ο προβλεπτικός έλεγχος παρουσιάζει σημαντικα πλεονεκτήματα σε περι-

πτώσεις μη-γραμμικών συστημάτων υπο περιορισμούς κατάστασης και εισόδου, η υψηλή

κατανάλωση πόρων του αλγορίθμου λόγω της συνεχής ανάγκης ανανέωσης της κατάστα-

σης και του υψηλού υπολογιστικού κόστους που επιφέρει η επίλυση του προβλήματος του

βέλτιστου ελέγχου σε κάθε χρονική στιμή, περιορίζει το φάσμα των πιθανών εφαρμογών

του. Το μειονέκτημα αυτό γίνεται περισσότερο εμφανές σε εφαρμογές οπτικής ανατρο-

φοδότησης με quadrotors λόγω του υψηλού υπολογιστικού κόστους και των χαμηλής
διάρκειας μπαταριών. Επομένως οι εφαρμογές παρακολούθησης ακτογραμμής δυσχαι-

ρένονται λόγω του θορύβου απο το σύστημα όρασης και της χαμηλής αυτονομίας του

ιπτάμενου οχήματος. Σκοπός της εργασίας είναι ο σχεδιασμός ενός προβλεπτικού νόμου

ελέγχου βασισμένου σε διεγέρσεις απο συμβάντα μέσω οπτικής ανατροφοδότησης που θα

λύνει το πρόβλημα του βέλτιστου ελέγχου μόνο όταν είναι απαραίτητο. Επιπλέον παρου-

σιάζουμε έναν κώδικα σε C++ που εφαρμόστηκε σε ρεαλιστικό περιβάλλον προσομοίωσης
για να αποδειχθεί η αποτελεσματικότητα του νόμου ελέγχου.
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Chapter 1

Introduction

1.1 Problem Definition

The tracking of coastlines by Unmanned Aerial Vehicles (UAV) under an EventTriggered-
Image Based Visual Servoing-Model Predictive Control (ET-IBVS-MPC) policy constitutes
the main topic of this thesis.
The coastline tracking problem consists of a UAV equipped with on-board sensors and a
stereo vision camera, which allow it to perceive the surrounding environment that it navigates
in, traversing a coastline in order to precisely track it. The coastline detection is achieved
on-line through a trained Convolutional Neural Network (CNN) running on a GPU. Once
the coastline is detected, an irregular rectangular region of interest (ROI) is formed which
encompasses the coastline in the image frame. The four corners of the ROI are used in the
Image-Based Visual Servoing scheme as features whose desired positions are required to be
tracked as the UAV moves along the coastline. In our studied case, our UAV is a quadrotor
employing autopilot software to handle the low-level control of the vehicle. Furthermore,
we have assumed that accurate localization throughout the tracking task is achieved. Once
the coastline has been detected and the IBVS features are defined, the ET-MPC framework
is triggered and the Optimal Control Problem (OCP) is solved based on the current state of
the system in order to generate the control signal sequence over the receding horizon in the
frame of the camera. This output is sent to the autopilot which generates the required torques
and thrusts, which are transformed into voltages for each of the four individual rotors, in
order to position the UAV to the desired state.
The part of the computed control signal sequence which is applied is defined by the event-
triggering rule and depends on the error between the current and the predicted nominal
state of the system. The main idea is that the control sequence provided by the controller is
applied to the system in an open-loop fashion between actuator updates. Once the triggering

1



1.2 Motivation

condition is violated, feedback from the Visual Tracking Algorithm (VTA) is obtained and
the OCP is solved again in order to calculate the subsequent control signal sequence over
the receding horizon. Flight in a real-time complex environment, such as the one in coastal
areas, demands high computational cost in order to accurately and robustly execute the Visual
Tracking Algorithm (VTA) and calculate the solution of the OCP at each time step. It is thus
imperative to dictate an increase in the intervals between two triggers in order to achieve
success in coastline surveillance missions. which in many cases occur in remote areas from
UAVs with battery limitations.
Ultimately, the aim of the thesis is to propose an Event-Triggered NMPC algorithm that
can significantly reduce energy consumption while guaranteeing feasibility from a variety
of challenging initial configurations, stability and converge, and satisfying performance
characteristics.

1.2 Motivation

Rapid advancements in sensor technologies, communication systems and computation have
enabled the use of UAVs in a broad range of applications such as mapping, surveillance,
environmental surveying and search and rescue missions. However, battery limitations
can make long missions particularly challenging and operation in uncertain or dynamic
environments requires resilience to disturbances and parameter uncertainty. As previously
mentioned, despite the effectiveness and robustness of MPC schemes in tracking problems,
the resource demands make such schemes difficult to apply. This issue becomes more
apparent in long inspection and surveillance missions in complex environments that require
both accurate VTA and a strong 8 autonomy rate. Furthermore, it can also deteriorate
the accuracy and performance of the scheme by dictating increased sampling periods. An
available solution entails recharging trips for the UAV from the location where the battery
is compromised back to the Ground Control Station (GCS). However, this makes missions
time-consuming and can be forbidden in challenging environments. Therefore, an alternative
approach to reduce resource consumption becomes imperative.
Event-based MPC policies have been proven effective in causing significant reductions in
energy usage while concurrently maintaining the stability and performance of the system.
Hence, the question of how often do we need to trigger the MPC algorithm arises. This thesis
aims to provide an answer to this question by generating an algorithm that can satisfy the
aforementioned stability and performance characteristics, and trigger the VTA as well as the
solution of the OCP as sparsely as possible.

2
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1.3 Literature Review

1.3.1 Image-Based Visual Servoing

Accurate visual data are crucial for robots to safely navigate in unknown, dynamic environ-
ments. Vision systems allow robots to obtain three-dimensional geometric and qualitative
image data of their surrounding environment that allow them to operate in it and execute
tasks [1]. Some of the first studies for robots used in manipulation tasks for objects based on
visual data were presented both in theory and experimentally in [2], [3], and [4]. In order
to compensate for error between the real and the desired state of the system, the author in
[5], employed a visual feedback loop in order to adjust the position of robotic manipulators
and therefore increase the accuracy of the task to the level of the resolution for both the
visual and mechanical system. This closed-loop feedback policy came to become known
as visual servoing. Visual servoing consists of three main types: (i) Position-Based Visual
Servoing (PBVS), (ii) Image-Based Visual Servoing (IBVS) and (iii) 2-1/2 Visual Servoing.
Despite the potential visibility constraints, convergence and stability problems, which are
investigated extensively in [6], IBVS does not suffer from the potential calibration and
robustness problems of PBVS that are presented in [7]. Furthermore, methods for global path
planning of the image features in accordance with the movement of the camera for robust
IBVS, as the ones presented in [8] and [9], allow for Field Of View (FOV) constraints to be
satisfied. A comprehensive study on visual servoing and its characteristics are presented in
[10] and [11] by Chaumette and Hutchinson.
The aforementioned attributes of IBVS make it more appropriate for stabilization and tracking
problems for UAVs as it was investigated by Kanellakis and Nikolakopoulos in [12]. A wide
variety of IBVS algorithms pertaining to the projection of the image features and the control
design type, for the stabilization problem of a quadrotor was successfully implemented
experimentally in [13] and demonstrated exceptional performance. IBVS for UAVs using
a single camera is proposed in [14] for the detection and navigation in an initially known
environment in order to achieve a safe landing. A novel two-camera scheme with an onboard
and a ground-located camera is used to estimate the pose of the quadrotor in [15]. The
authors ensure autonomy for the quadrotor by implementing a feedback linearizing controller
as well as a backstepping control scheme in experimental flights. Other control designs have
been studied in the literature. For instance, in [16] and [17], the authors employed a PID
control law for the tracking of angular momentum and thrust. Similar to [16] and [17], the
authors in [18] utilize a low-level feedback controller without considering input constraints
in the control scheme. However, they proposed a control scheme for a small lightweight
quadrotor using only a single camera and an Inertial Measurement Unit (IMU) to achieve
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a robust state estimation and, plan and execute dynamic trajectories in an obstacle-filled
environment. Contrary to [18], high-level minimum-time trajectory planning which accounts
for state uncertainty, collision probability, and visibility constraints was presented in [19] and
[20]. In the [21] paper, a dynamic IBVS approach for the under-actuation problem of UAVs
was presented. The aforementioned approach designed an IBVS controller considering the
dynamics of the UAV as well as a combination of the inertial data of the robot orientation
and the visual data from the vision system. Lastly, appropriate perspective image moments
are employed in order to guarantee satisfying trajectories.
Model Predictive Control has been successfully applied in combination with visual servoing
in a multitude of studies and experiments. In [22], the authors proposed an MPC-IBVS
control scheme for a 6 DOF mechanical system in which great robustness to modeling
uncertainty was achieved by incorporating a terminal cost into the OCP of the MPC prob-
lem. Furthermore, the scheme performed well against camera calibration error and image
measurement noise. Similar to [22], the authors in [23] and [24] developed an MPC-IBVS
control scheme that accounted for mechanical and FOV constraints while in parallel reduced
the computational time of the constrained optimization problem by employing the concept
of differential flatness. In the Visual Servoing via Nonlinear Predictive Control chapter
of Chesi’s and Hashimoto’s book on Visual Servoing via Advanced Numerical Methods
[25], the advantages and drawbacks of both global and local approaches are discussed. It is
shown that the approximated local model lacks efficiency in comparison to the global one for
challenging configurations but without the need for three-dimensional visual information.
On the contrary, if such data is available, the global method is superior for any initial pose
and trajectory to achieve. The authors expanded their work in [26], where input constraints
were also considered and the choice between a local and a global model for the image
prediction is made depending on the constraints that are imposed on the NMPC scheme. The
under-actuation issue found in 6 DOF quadrotors under IBVS schemes is solved in [27] by
employing a linearized MPC scheme to relax the issue while in parallel guaranteeing stability,
actuator saturation, and FOV constraints. An IBVS-NMPC strategy was also proposed in [28]
for a fixed-wing UAV, in which tracking of the desired trajectory was achieved while the UAV
performed visual data-based-obstacle-avoidance maneuvers in an unknown environment
under visibility and actuator constraints.

4
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1.3.2 Coastline Surveillance

Coastline detection has been a well-studied topic in the existing literature. However, little
research has into surveillance and tracking been conducted. On the contrary, there has been a
multitude of papers on tracking and surveillance of curvilinear structures such as roads using
both mobile and aerial robots. In [29], a method for outdoor guidance of an autonomous land
vehicle (ALV) based on road following and color data clustering was proposed. Road-based
guidance was also investigated for UAVs in [30], in which the authors proposed a road
tracking scheme employing an RGB camera and a hyperspectral sensor. In [31], the authors
proposed described a vision-based detection and control strategy for road following using a
small autonomous aircraft. By employing a computer vision system to detect the road, the
relative yaw and lateral displacements between the aircraft and the road were calculated and
used to stabilize the aircraft. The success of the road-following scheme was verified for large
distances as well as under a multitude of lighting and wind conditions.
Likewise in [32], a fixed-wing UAV was used for searching and mapping of structures such as
rivers and coastlines. Onboard sensors, vision or near-infrared, were used to detect and track
the structure. In order to generate the turn rate signals to track the curve of the structure, the
control law was computed in a moving reference frame based on the dynamic shape alteration
of the curve as observed by the onboard sensors. This online path planning strategy and
predictive control scheme for the tracking of the curve is investigated in [33]. Near-infrared
sensors were also used in [34] to detect coastlines or riverbanks using a low-flying UAV.
The authors warped the image into the control coordinate space, in which the path planning
problem is transformed into an image processing one. The followed path is controlled by
determining and sending the desired roll angles to the autopilot of the UAV which leads to
the UAV moving in a circular trajectory in order for the UAV to intercept the coastline on a
tangent. In [35], a framework for UAVs employing computer vision strategies to track the
boundary of various regions such as coastlines and roads is presented and verified through
automated, in-field flights over a 1km coastline. A similar approach to [35] to detect and
identify the coastline based on classical computer vision techniques was employed in [36]
and an automatic flight controller was used to track the desired path.

5
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1.3.3 Model Predictive Control

Model Predictive Control is an optimization-based control scheme, which guarantees state
and input constraint satisfaction at every time step of a receding finite horizon for a dynamical
system. MPC has been extensively employed in the field of control engineering, both in
academic research as well as the industry, as it provides the possibility of formulating
the problem in both the continuous and discrete-time domains while dealing with non-
linearities and satisfying a set of hard and soft constraints in a multivariable framework.
It also provides the ability to conduct online optimization which is crucial for real-time
applications in which disturbances are present and the model of the nominal system used for
the optimization scheme is an only approximation of the real system. Thus the MPC scheme
encompasses robustness due to the state update at each time step. Furthermore, the overall
design formulation of the scheme enables simple tuning of the model parameters which
directly affect the performance characteristics of the system. However, Model Predictive
Control is resource-intensive due to the constant requirement of state feedback and the high
computational cost of the optimization at each time step. The literature on MPC is extensive
with important mentions being [37], [38], [39], [40], [41], [42]. Nonlinear MPC is also
extensively studied in [43], [44].

1.3.4 Event-Based Control

Hence there is a necessity to reduce the high computational cost of NMPC schemes in order
to exploit its benefits in real-life robotic applications in which battery life, memory, and CPU
capability are limited.

In recent decades, a new approach of MPC has presented research interest, as it entails
computing the control law as infrequent as possible. More specifically, the decision for the
computation of the new control law depends on a specific condition of the system of the
state. Hence there is less frequent sampling as well as triggering of the optimization that
produces the control law while crucial system properties such as feasibility, stability, and
convergence are guaranteed. This leads to a sparse sampling and update of the control signal
while crucial system properties such as feasibility, stability, and convergence are guaranteed,
and subsequently to a significant reduction of system resource usage.

One of the most prevalent classes of this approach is the time-triggered control scheme
which involves constant periodic sampling. The sampling rate is determined empirically and
is usually as frequent as possible in order to ensure stability and performance characteristics
in the worst-case scenario. Self and event-based comprise the other main classes of control
policies in which an aperiodic sampling and control signal update takes place based on

6
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the condition of the state of the system. In papers [45], [46], [47], first-order systems
under the time and event-triggered policies are examined. The policy of the control scheme
is to sample and compute the control law when the measurements become larger than
certain limits. By comparing their closed-loop variance and sampling rate with results
from equidistant sampling, it is proved that the event-based scheme results in improved
performance. The concept of event-based feedback was also investigated under the name
of interrupt-based feedback in the paper [48]. In paper [49], a heuristic event-based PID
controller is investigated for a double-tank process application. The results showed similar
control performance with the regular PID policy while significantly reducing CPU usage.
Similarly, in paper [50] the author examines a triggering policy based on the norm of the
measurement error, which is the difference between the current and the last updated state of
the system, which ensures considerable performance and asymptotic stability of the system
while reducing the number of the execution of the optimization. Specifically, whenever this
norm surpasses a limit, which is a function of the current state, the control signal is updated
by solving the optimization problem. In the [51], [52] papers, the authors are establishing a
system theory for event-based control systems by investigating such a policy for perturbed
linear systems in stabilization and tracking applications. Ultimate boundedness is used in
order to examine the stability of the system in a practical fashion while the control signal is
updated whenever the measurement error becomes significantly large.

Along with event-driven control, in paper [52] the authors introduce a self-trigger control
framework, in which the sampling and control signal update instance are determined on the
last available instance. A comparison between the reactive and proactive natures of the event
and self-triggered policies respectively is presented alongside a comparison between state and
output feedback on event-based schemes. Considerable research in event-triggered control
for nonlinear state feedback systems was done in the paper [53], in which asymptotic stability
is ensured as long as the continuous system is stabilizable. Additionally, input-to-state
stability to measurement errors is employed to prove that task periods are bounded away from
zero. The authors also proved thought simulations that the proposed event-based strategy
produced much longer average task periods, due to the adoption of a flexible condition for
the Lyapunov function, which requires only a sequence of the Lyapunov function to be
monotone decreasing instead of it being monotone decreasing throughout the entire time as
it was assumed in previous works such as [52], [54] and [55]. Event control frameworks for
continuous-time systems are investigated in the papers [56], [57]. Event-based schemes have
also been formulated in the discrete-time domain as investigated in papers [58], [59], [60].
In the paper [61], the authors have formulated an event-based control scheme for an intricate
class of continuous-time hybrid dynamical systems, called integral continuous-time hybrid
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automata (icHA), for which no assumptions for any prior information about the timing and
order of the events are made. Considerable research in event-based control has been made in
the context of network and multi-agent systems. More specifically, Miskowicz in [62] showed
that event-based policies performed better than periodic ones in samples per time in wireless
sensor networks, thus proving event-based triggering as an effective tool in reducing energy
consumption. This concept was further studied by Mazo and Cao in [63] over wireless sensor
and actuator networks, in which decentralized nonlinear event-control was applied without
the need to synchronize the measurement updates or employ a central broadcasting node.
Similarly, in [64], Mazo and Tabuada showcased a decentralized event-based application of
centralized nonlinear controllers over wireless sensor and actuator networks. Research in
event-based control for networked control systems was continued by Wang and Lemmon in
[65] and [66] and expanded in cooperative control for multi-agent systems by Dimarogonas,
Johansson, Frazzoli and Seyboth in [67], [68], [69] and [70].

1.3.5 Event-Based Model Predictive Control

Event-based policies have also found success in combination with model predictive control
frameworks. As a continuation of their previous work in [61], the authors in [71] expanded
their research into integral continuous-time hybrid automata (icHA) systems by creating a
corresponding event-driven model for them that was used to formulate the optimal control
problem. It was shown that the model was characterized by event and time-asymptotic
convergence and proved to be effective in the verification of hybrid systems. In [72], Grunze
and Muller followed an event-based approach for global optimal control of nonlinear systems
in order to achieve a stabilizing feedback control law, in which the state measurements
were available only when certain events of the state surpassing specific thresholds occurred.
Event-based model predictive control schemes were also investigated for wireless network
systems. In [73], an efficient trade-off between energy usage of sensors and performance
decay was achieved while in [74] the event-based control policy dealt effectively with
feedback delays and information loss. Similarly, such a distributed model approach was
used in [75] to regulate the voltage magnitude of every distributed generator in an islanded
microgrid network system to obtain a good trade-off between the control performance and
communication and computation burdens. Marruedo, Alamo and Camacho in [76] presented
a Robust Nonlinear Model Predictive Control scheme, in which the terminal region and state
constraints are calculated to prove closed-loop robust feasibility given that the uncertainties
are below a certain threshold. Furthermore, it is proved that the input-to-state stability, as
well as the convergence of the closed-loop plant, is ensured despite the suboptimality of the
optimal control problem solution of the NMPC framework. A comprehensive event-based
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Robust Nonlinear Model Predictive Control framework for both continuous and discrete-
time systems was presented in [77]. The presented approach examined the feasibility and
input-to-state stability of uncertain systems with additive disturbances and provided sufficient
triggering conditions for the event-based scheme. Research on both linear and nonlinear
discrete-time systems is presented in [78]. A similar event-based NMPC approach to [77],
[78] for discrete-time systems was followed in [79], in which the authors presented two
triggering conditions depending on whether or not the state of the system was within the
terminal region. Discrete-time LTI under stochastic disturbances was investigated under
Robust event-triggered MPC was presented in [80]. A robust tube MPC approach was
employed to ensure constraint satisfaction and asymptotic stability while the triggering
conditions were designed in order to attain a specific average frequency between the controller
and actuator given specific probability distributions for the additive disturbances. Robust
tube event-based MPC was also implemented in [81] to guarantee recursive feasibility and
input-to-state stability in unicycle robot applications under additive uncertainty. Event-based
MPC has also found application in Unmanned Aerial Vehicles (UAV) and especially in multi-
agent scenarios. In [82], the authors proposed a distributed ET-MPC policy was employed
for formation control of UAV swarms, in which a collision avoidance strategy for a no-fly
zone is incorporated into the cost function of the local OCP problem of each agent. A
major drawback of Networked Control Systems (NCS) in UAV applications is the issue of
information loss and time delays which deteriorate the individual performance of each agent.
Even though delay compensation algorithms can mitigate these effects, they considerably
increase the resource usage of the network and may lead to congestion. The authors of [83]
proposed an event-based hierarchical MPC policy for network control of UAVs which omits
the calculation of less important control signals and accounts for network delays in the event
generator in order to utilize the network in a more efficient manner. An event-based scheme
for networked control was also presented in [84] for VTOL-UAVs (Vertical Take-off and
Landing-Unmanned Aerial Vehicles), in which each an event generator based on the error
between the current and last broadcasted state of each agent dictated when to provide state
feedback to the network. The scheme significantly reduced the network transmission rate
while maintaining satisfying performance for the altitude and formation control of the UAVs.
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1.4 Thesis Contribution

In this thesis, we propose an event-triggered policy for Image-Based Visual Servoing-
Nonlinear Model Predictive Control for a quadrotor UAV in a coastline tracking mission
under additive noise disturbance. Our approach includes:

1. The computation of the terminal region under the state and input constraints in order
to achieve robust feasibility of the closed-loop system given a specific bound on the
additive noise.

2. Sufficient conditions to ensure input-to-state (ISS) stability, under state and input
constraints, in relation to the additive disturbance in order to ensure that the state
progresses towards an ultimately bounded compact set.

3. A triggering condition for the events which is based on the error between the current
and the nominal prediction of the state.

4. An efficient, fast ET-IBVS-NMPC code developed in C++ and integrated into the
Robot Operating System (ROS) framework for coastline tracking for a UAV.

We wish to declare that to the best of our knowledge, this is the first time that an Event-
Based NMPC scheme has been designed and implemented in conjunction with Image-Based
Visual Servoing in a coastline tracking scenario using an UAV.
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1.5 Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 contains a description of Image-
Based Visual Servo Control (IBVS) in which the design and stability of the control scheme
are discussed, and the problem formulation for the IBVS for coastline tracking of Unmanned
Aerial Vehicles (UAV) is presented. In Chapter 3, we present the feasibility and input-to-state
(ISS) stability analysis of the Nonlinear Model Predictive Control (NMPC) scheme under the
event-based policy as well as the event triggering condition. In Chapter 4, we demonstrate
the performance of the proposed Event-Triggered-Image Based Visual Servoing-Model
Predictive Control (ET-IBVS-MPC) scheme in a coastline tracking scenario. Chapter 5
accommodates the conclusion of the thesis and includes the challenges in the design and
implementation of the control scheme. Furthermore, recommendations and proposals for
further research are given. Lastly, Appendix A contains proofs for the calculation of the
various Lipschitz constants that were mentioned throughout the feasibility and stability
analysis of the ET-IBVS-MPC scheme.
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Chapter 2

Image Based Visual Servo Control

2.1 Introduction to Visual Servo Control

Visual Servoing refers to a control approach that is based on computer vision, image pro-
cessing and control theory, and utilizes computer vision data in the closed loop to control
the movement of a robot. There are various configurations for the placement of the camera
sensor relative to the position of the robot, with the main ones being the eye-in-hand and eye-
to-hand configurations. In the eye-in-hand case the camera is mounted on the end-effector
of a robotic manipulator and records the position of the target relatively to the robot, while
in the eye-to-hand case the camera is statically fixed and observes the target as well as the
robot. The visual servoing controller aims to minimize an positional error between a number
of features and their desired position, which is defined by:

e(t) = s(m(t),a)− s∗ (2.1)

The vector m(t) is a set of image measurements which are utilized to calculate a vector of
a k number of features, with a being a set of intrinsic parameters than encompasses important
information about the system. The vector s∗ represents the desired positions of the features.
The construction of the s vector defines the type of the visual servoing approach, with the
image-based visual servo control IBVS and position-based visual servo control PBVS being
the two main schemes. In the case of the IBVS, the feature vector is computed based on
visual data that are can be immediately extracted from the camera sensor, while in the PBVS
case, s comprises of a set of 3-D parameters that are calculated based on image measurements.
In our case we are considering a stationary desired pose of the features in the frame of the
camera sensor. Therefore the vector s solely depends on the movement of the camera. Hence,
a velocity controller is an ideal approach to minimize the aforementioned error. To achieve
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this, the expression between the camera velocity and the time derivative of the feature vector
is defined by:

ṡ = LsVc (2.2)

The vector Vc = (T,Ω) = (Tx,Ty,Tz,Ωx,Ωy,Ωz) represents the camera velocity, with T and Ω

being the instantaneous linear and angular velocoties of the origin of the camera frame. Also,
the matrix Ls ∈ IR k×6 represents the interaction matrix or feature Jacobian and k the number
of features. Combining expressions 2.1 and 2.2, we can obtain the relationship between the
camera velocity and the feature error time derivative:

ė = LeVc (2.3)

Where Le = Ls. In order to ensure an exponential decrease of the error, as defined by:

ė =−λe (2.4)

we can express the velocity input of the robot as follows:

Vc =−λL+
e e (2.5)

The matrix L+
e is chosen to be the Moore-Penrose pseudo-inverse of the interaction matrix Le,

and is L+
e = (LT

e Le)
−1LT

e when the interaction matrix is of full rank 6. However, in real visual
servoing applications, it is impossible to determine the exact values of Le and L+

e . Thus, an
estimation L̂e of the interaction matrix and its pseudo-inverse should be used. Substituting
the L̂+

e matrix notation in the control law expression 2.5, we can obtain the interaction matrix
Ls for our system:

Vc =−λ L̂+
e e (2.6)

2.2 Quadrotor Dynamics

Quadrotor dynamics have been extensively studied in the existing literature. Thrust and
torque generated by each propeller motor drives the movement of the quadrotor and thus
the roll, pitch and yaw of the UAV as well as their rates. Let Ci and Cq be the inertial and
fixed-body coordinate frames respectively. Without loss of generality, we choose the inertial
frame as the North-East-Down (NED) coordinate frame which is commonly used in UAV
applications. As presented by the authors in [85], Using the Newton-Euler equations of
motion for a six degrees-of-freedom (DOF) for a rigid body, we can derive the following
model that describes the dynamics of the quadrotor.
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i ṗq =
iTq (2.7)

mq
iṪq =

iRqFq (2.8)

JqΩ̇q = τq (2.9)

where i pq = [ixq,
iyq,

izq] is the position and iTq = [iTxq,
iTyq,

iTzq] the velocity vectors of
the quadrotor with relation to the inertial coordinate frame. The mass as well as the inertia
matrix of the quadrotor are denoted as mq and Jq respectively, while its angular velocity
w.r.t the fixed-body frame is denoted as Ωq = [Ωxq,Ωyq,Ωzq]. The matrix iRq is used for the
transformation from the fixed-body frame to the inertial frame. The forces and torques acting
on the quadrotor are defined by the following expressions:

Fq = Fg +Fp +Fd (2.10)

τq = τp + τd (2.11)

where Fg is the gravitational force vector, Fp is thrust vector from the quadrotor’s pro-
pellers and Fd is the drag force vector. As far as the torques are concerned, we denote as
τp the torque vector from the propellers and τd as the drag moments vector. In our case,
an autopilot is used for the low-level control of the quadrotor. Specifically, PID controllers
following an inner and outer loop control architecture are used to handle the low-level control.
The inner loop receives throttle, roll, pitch and yaw reference values to achieve attitude
control while the outer loop receives velocity reference values to realize translation control.
This architecture enables an IBVS approach, as the outer loop is able to receive velocity
inputs w.r.t to the fixed-body coordinate frame. These velocities are generated by the IBVS
algorithm after they have been transformed from the image frame, denoted here as Cc, to the
fixed-body coordinate frame of the quadrotor using the rotation and translation matrices qRc

and qtc. A schematic of the image and body-fixed coordinate frames are presented in Figure
2.1.
The output of the low-level controller are the thrust and torque values that are used as
voltage input to the motors of the propellers. Furthermore, this autopilot low-level control
architecture is able to handle the under-actuation problem of the quadrotor. The generated
camera velocities from the IBVS scheme consist of six control inputs, three translational and
three angular. However, this is not a suitable approach for the control of the under-actuated
dynamics of the UAV. Therefore, the autopilot system is able to handle this under-actuation
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issue by accepting velocity reference values solely for the three translational velocities and
the yaw rate.

Figure 2.1 The image coordinate frame w.r.t the body-fixed quadrotor coordinate frame
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2.3 Basic Components of IBVS

Here we consider the IBVS scheme where the image measurements m consist of the pixel
coordinates of the points and the a parameter set includes the camera characteristics that
transform the pixel coordinates to image-plane features. Therefore, the feature vector s is
defined as the set of the coordinates in the image plane. More specifically, a 3-D point X
with X = (X ,Y,Z) camera frame coordinates is projected in the image frame as a 2-D point
with coordinates s = (x,γ) which are defined by:

x =
X
Z
=

u− cu

f

γ =
Y
Z
=

v− cv

f
(2.12)

A schematic representation of the camera coordinate frame in a typical IBVS scheme is
presented in Figure 2.2. The image measurement set is defined as m = (u,v) and provides
the pixel coordinates of each point. Also, a = (cu,cv, f ,a) includes the camera intrinsic
parameters , with cu and cv being the principal point coordinates and f the focal length of the
camera. Therefore, the feature set s = s(x,γ) includes the points in the image-plane. Taking
the time derivative of the image plane coordinates of 2.12, we get:

ẋ =
Ẋ
Z
−X

Ż
Z2 =

Ẋ− xŻ
Z

γ̇ =
Ẏ
Z
−Y

Ż
Z2 =

Ẏ − γŻ
Z

(2.13)

We can connect the velocity of the 3-D points in the camera frame to the velocity of the
camera through the ˙̄X =−T −Ω× X̄ expression:

Ẋ =−Tx +ΩzY

Ẏ =−Tγ −ΩzX (2.14)

Ż =−Tz
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Combining equations 2.13 and 2.14, we can express the time derivatives of the image
plane coordinates as:

ẋ =−Tx

Z
+

xTz

Z
+ xγΩx− (1+ x2)Ωy + γΩz

(2.15)

γ̇ =−
Tγ

Z
+

γTz

Z
+(1+ γ

2)Ωx + xγΩy− xΩz

Therefore, the interaction matrix Ls is defined by:

Ls =

[
−1
Z 0 x

Z xγ −(1+ x2) γ

0 −1
Z

γ

Z (1+ γ2) xγ −x

]
(2.16)

where Z is the depth of the point relative to the camera frame. In case where the exact value
of the depth Z is unknown, an approximation must be estimated in order to compute the
interaction matrix. Subsequently, an approximation of the interaction matrix L̂x should also
be used in this case.
Taking into account the under-actuation nature of quadrotor, the interaction matrix Ls can be
revised as:

Ls =

[
−1
Z 0 x

Z γ

0 −1
Z

γ

Z −x

]
(2.17)

In general, in order to be able to control a 6 DOF robot, at least 3 points are necessary.
In our case, four points are used to define the region of interest ROI that encompasses the
coastline. Thus, by stacking 4 interaction Ls,i matrices, one for each feature si = (xi,γi) with
depth Zi for i = (1,2,3,4) , we obtain:

Ls =


Ls1

Ls2

Ls3

Ls4

 (2.18)

In our case the depth Z is equal to the altitude of the UAV, which is known since it can
be measured in each iteration of the control scheme. Hence, we can assume that Le = Lx

and subsequently L̂+
e = L+

e . In expression Vc = (T,Ω) = cVc = (cTc,
c
Ωc) we have used the
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Figure 2.2 The coordinate frame of a camera system in an IBVS scheme

IBVS scheme to define the velocity screw of the camera with respect to the camera frame.
However, the UAV frame does not coincide with the camera frame. Thus, the velocity screw
of the camera needs to be expressed with respect to the UAV frame as qVc = (qTc,

q
Ωc). The

translation qtc and rotation qRc matrices between the two aforementioned frames are used for
the transform.
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2.4 Stability

In order to examine the stability of the closed loop visual servo system, we utilize Lyapunov
analysis. More specifically, we can use the candidate Lyapunov function defined by the
squared norm of the feature error:

L =
1
2
∥e(t)2∥ (2.19)

Thus, the time derivative of the Lyapunov function can be obtained:

L̇ = eT ė =−λeT LeL̂+
e e (2.20)

Thus, we can guarantee global asymptotic stability if the following condition is guaranteed:

LeL̂+
e > 0 (2.21)

Since the number of features is equal to the number of the camera degrees of freedom and
the matrices Le and L+

e are of full rank 4, then the Lyapunov global asymptotic stability
condition is ensured since the depth Z can be measured and therefore no approximation
for the pseudo-inverse of the feature Jacobian is needed. Note that for IBVS only local
asymptotic stability around a small neighbourhood of the desired position is ensured, even
with perfect knowledge of the interaction matrix. Moreover, the four selected features, which
are the corners of the the Region of Interest (ROI) that encompasses the detected coastline,
ensure the non-singularity of the Interaction matrix as these four points can never be collinear.
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2.5 IBVS for NMPC of Quadrotors - Problem Formula-
tion

In equation ?? we have expressed the time derivative of the feature vector in the continuous
time frame. However, in our case we have to express the system in the discrete-time frame.
By applying the Newton-Euler method, the discrete-time expression of the system at time
step k+1 with k = {1, . . . ,N}, for a sampling time dt, is:

sk+1− sk

dt
= LkVk

sk+1 = sk +LkVkdt (2.22)

sk+1 = f (sk,Vk)

where sk is the state of the nominal system at time step k:

sk =


s1

k

s2
k

s3
k

s4
k

=



x1
k

γ1
k

x2
k

γ2
k

x3
k

γ3
k

x4
k

γ4
k


(2.23)

Also, we use the notations Lk and Vk for the interaction matrix and camera velocity at
sampling time k, respectively. More specifically, at time step k the camera velocity vector is:

Vk =


Tx,k

Ty,k

Tz,k

Ωz,k

 (2.24)

The discrete-time system 2.22 can be expressed in a more general form as:

sk+1 = f (sk,Vk)+ξk (2.25)

However, in real systems, uncertainties and disturbances need to be included in the model
that describes the system in order to ensure accuracy. In our case, we are assuming that the
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IBVS system is affected by an external disturbance. Therefore, an ξ vector representing
these disturbances can be expressed at each time step as:

ξk =


ξ 1

k

ξ 2
k

ξ 3
k

ξ 4
k

=



ξ 1
x,k

ξ 1
γ,k

ξ 2
x,k

ξ 2
γ,k

ξ 3
x,k

ξ 3
γ,k

ξ 4
x,k

ξ 4
γ,k


(2.26)

These disturbances are considered to belong to the set Ξset where:

Ξ = {ξk ∈ Ξ⊆ IR8, ∥ξk∥s ≤ ξ̄ = ξmax ∀ξk ∈ Ξset} (2.27)

where ∥ξk∥s is the s-norm of the disturbances.
Similarly, the control inputs of the camera are bounded with Vk forming a velocity constraint
set Vset :

Vb = {Vk ∈V ⊆ IR4 , ∥Vk∥ ≤ V̄k =Vmax ∀ Vk ∈Vset} (2.28)

∥Vk∥ ≤ V̄k =Vmax ⇐⇒


∥Tx,k∥ ≤ T̄x = Tx,max ∀ Tx,k ∈Vset

∥Ty,k∥ ≤ T̄y = Ty,max ∀ Ty,k ∈Vset

∥Tz,k∥ ≤ T̄z = Tz,max ∀ Tz,k ∈Vset

∥Ωz,k∥ ≤ Ω̄z = Ωz,max ∀ Ωz,k ∈Vset

Lastly, the system is also subject state constraints due to the limits of the camera field of
view. Hence, the state constraint set Sset is defined as:

S = {sk ∈ S⊆ IR8 , s≤ sk ≤ s̄ ∀ sk ∈ Sset} (2.29)

smin = s≤ sk ≤ s̄ = smax ⇐⇒

xmin = x≤ xk ≤ x̄ = xmax ∀ xk ∈ Sset

γmin = γ ≤ γk ≤ γ̄ = γmax ∀ γk ∈ Sset
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where the upper and lower bounds for the features in the camera frame are defined by 2.12
for the maximum and minimum pixel values of umax,umin and vmax,vmin that define the limits
of the camera field of view. The classic IBVS control scheme is presented schematically in
Figure 2.3.

Figure 2.3 Image-Based Visual Servoing Scheme

We have now formulated the model of our system 2.25 and defined the input 2.28 and
state constraints 2.29 that it subjects to. The nominal model along with the aforementioned
constraints will be used to formulate the NMPC problem in Chapter 3.
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Chapter 3

Event-Triggered Nonlinear Model
Predictive Control

3.1 ET-NMPC-IBVS Problem Formulation

The aim of the discrete-time NMPC controller is to drive the system 2.25 to a desired state
sdes ∈ Sset by solving an Optimal Control Problem over a receding finite horizon of size N.
The OCP is solved on-line and is based on the measurement of the state at timestep k. The
solution provides an N-sized control sequence VF(k) = [V (k|k),V (k+1|k), . . . ,V (k+N−
1|k)] that minimizes a specific cost function JN , while satisfying the set state and control
constraints defined in 2.28 and 2.29. The desired state vector for each feature is defined as:

sdes =


sdes,1

sdes,2

sdes,3

sdes,4

 (3.1)

where

sdes,i =

[
xdes,i

γdes,i

]
=

[udes,i−cu
f

vdes,i−cv
f

]
(3.2)

In order to track the coastline, the velocity of the desired v image feature coordinates of
the ROI are described by a linear increase of rate α as described in 3.3, which is a constant
representing the velocity of the desired features on the v direction of the image coordinate
frame. This approach ensures that the camera will traverse along the coastline with a velocity
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that depends on the value of the α constant. Hence, the following expression for the desired
state of the features can be derived:

v̇des,i = α (3.3)
vdes,k+1− vdes,k

dt
= α

vdes,k+1 = vdes,k +αdt (3.4)

On the contrary, the desired udes image feature coordinates are considered to be constant.
The nominal system 2.22 is used for the formulation of the IBVS-NMPC problem. The
notation ŝ(k+ i|k) = f (ŝ(k+ i−1|k),V (k+ i−1|k) is used to express the predicted state of
the system at time step k+ i based on the measurement of the real state sk = ŝ(k|k) at time
step k and by applying the part of the control sequence from time step k until k+ i−1. On
the other hand, the notation sk is used to denote the real state of the system at timestep k that
is affected by additive disturbance ξ , namely the VTA noise. The IBVS-NMPC scheme for
the quadrotor UAV is presented in Figure 3.1

Figure 3.1 IBVS-NMPC scheme using a quadrotor UAV

The disturbance term uncertainty term of the real system can cause discrepancies between
the predicted state, given from the nominal model 2.22 subject to a specific sequence of
inputs, and the actual state given from 2.25 for the same sequence of inputs. In order to
account for this mismatch the error e is introduced in the analysis. The error e is defined as
the norm of the difference between the predicted and the real evolution of the state. In the
sequel, the double subscript notation will be reserved for the error, too. The NMPC apporach
is presented in Figure 3.2
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3.1 ET-NMPC-IBVS Problem Formulation

Figure 3.2 Nonlinear Model Predictive Control: The colored dotted trajectories represent the
predicted trajectories ŝk based on the state at each time step. The blue trajectory depicts the
real state of the system. The black trajectory represents the control input.

The open-loop Optimal Control Problem (OCP) of the discrete-time IBVS-NMPC is
given by:

min
VF (k)

JN(sk,VF(k)) = min
VF (k)

N−1

∑
i=0

F(ŝ(k+ i|k),V (k+ i|k))+E(ŝ(k+N|k))

subject to:

ŝ(k+ i|k) ∈ Sset ∀ i = {1, . . . ,N−1}
V (k+ i|k) ∈Vset ∀ i = {1, . . . ,N−1}
ŝ(k+N|k) ∈ E f

(3.5)

min
VF (k)

JN(sk,VF(k)) = min
VF (k)

N−1

∑
i=0

F(ŝ(k+ i|k),V (k+ i|k))+E(ŝ(k+N|k)) = (3.6)

min
VF (k)

N−1

∑
i=0

ŝ(k+ i|k)T Q ŝ(k+ i|k)+V (k+ i|k))T R V (k+ i|k))+ ŝ(k+N|k)T P ŝ(k+N|k)
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where F and E are the stage and terminal costs respectively defined as the following quadratic
functions:

F(ŝ,V ) = ŝT Q ŝ+V T R V (3.7)

E(ŝ) = ŝT P ŝ (3.8)

where Q,R and P are the following diagonal matrices:

Q = diag(q1, . . . ,q8) (3.9)

R = diag(r1, . . . ,r4) (3.10)

P = diag(p1, . . . , p8) (3.11)

The discrete-time NMPC algorithm is presented in Algorithm 1.

Algorithm 1 NMPC
1: Time step equals to k
2: while xk ∈ Sset do
3: Update the state measurement of system sk
4: Solve the OCP and generate the open-loop input sequence V ∗k = [Vk, . . . ,Vk+N ]
5: Apply the first control input Vk to the system
6: Update the time-step: k← k+1
7: end while
8: go to 3

The additive disturbance from the noise of the VTA algorithm that affects the system
causes a difference between the predicted and the real state of the system. We denote this
disparity as e, which expresses the error between the predicted and real state of the system at
time step k+ i given the input sequence from k−1 until k+ j−1. The error e(k+ i|k−1) is
defined by:

e(k+ i|k−1) = ∥sk+i− ŝ(k+ i|k−1)∥ (3.12)

It is trivial to prove that, at time step k−1 when the NMPC is triggered, e(k−1|k−1) = 0
because sk−1 = ŝ(k−1|k−1). As discussed previously, the main idea behind the event-based
policy is the triggering of the optimisation algorithm whenever the norm of the error exceeds a
certain threshold. While the error norm remains below this bound, the control input sequence
calculated based on the real state of the system at time step k is applied to the quadrotor in an
open-loop fashion. The ET-NMPC strategy is presented in Figure 3.3
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3.1 ET-NMPC-IBVS Problem Formulation

Figure 3.3 Event-Triggered NMPC: The dotted trajectory depicts the predicted trajectory ŝk
based on the state at each time step k. The blue trajectory depicts the real state of the system.
The black trajectory represents the control input. Only the control input sequence dictated by
the event occurring at time step k+ i is applied.

In order to prove the feasibility and input-to-state stability of the scheme, we consider the
following Assumptions and Lemmas.

Assumption 1 The nominal model is such that the origin is a steady state and f (s,V ) is
locally Lipschitz in s in the domain Sset×Vset , where there is a 0 < L f < ∞ such that for all
s1,s2 ∈ Sset for all V ∈Vset ,

∥ f (x1,V )− f (x2,V )∥s = L f ∥s1− s2∥s (3.13)

where the L f constant denotes the Lipschitz constant in some s norm, i.e. s = 1,2, . . .∞.

In order to consider the mismatch effect between the evolution of the predicted and the
real state, we have to set a bound for the disturbance ξ that causes the error.
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3.1 ET-NMPC-IBVS Problem Formulation

Lemma 1 Consider the nominal system 2.25, which for Assumption 1 is satisfied and the
disturbances affecting the system belong to the Ξset from 2.27 and are bounded by ξ ≤ ξ̄ .
Then the error between the predicted and real state of the system at time step k+ i, given an
input sequence, is bounded by:

e(k+ i|k−1) = ∥sk+i− ŝ(k+ i|k−1)∥ ≤
Li

f −1

L f −1
ξ̄ (3.14)

where L f is the Lipschitz constant of the system in the s norm.
Proof
We can employ the triangle inequality and the Lipschitz constant L f of the system 2.22 to
derive that:

∥sk− ŝ(k|k−1)∥= ξk ≤ ξ̄

∥sk+1− ŝ(k+1|k−1)∥ ≤ L f ∥sk+1− ŝ(k+1|k−1)∥+ξk+1

= (L f +1) ξ̄

...

∥sk+i− ŝ(k+ i|k−1)∥ ≤ L f ∥sk+i−1− ŝ(k+ i−1|k−1)∥+ξk+i−1

≤
i−1

∑
j=0

L j
f ξ̄

=
Li

f −1

L f −1
ξ̄

Lemma 2 Based on Assumption 1, the nominal system 2.22 subject to the input 2.28 and
FOV constraints 2.29 is Lipschitz continuous in Sset with a Lipschitz constant 0 < L f < ∞

that is defined by:

L f = [2max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}]

1
2 (3.15)

Proof Appendix A.
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3.1 ET-NMPC-IBVS Problem Formulation

The following assumptions are stated:

Lemma 3 The stage cost F(s,V ) is Lipschitz continuous in Sset×Vset with a Lipschitz
constant in the s-norm LF for all s1,s2 ∈ Sset and a Lipschitz constant in the s-norm LFV for
all V1,V2 ∈Vset . The Lipschitz constant LF is defined by:

∥F(s1,V )−F(s2,V )∥= ∥sT
1 Qs1− sT

2 Qs2∥=
∥sT

1 Qs1− sT
1 Qs2 + sT

1 Qs2− sT
2 Qs2∥=

∥sT
1 Q(s1− s2)+(sT

1 − sT
2 )Qs2∥=

∥sT
1 Q(s1− s2)+ sT

2 Q(s1− s2)∥=
∥(sT

1 + sT
2 )Q(s1− s2)∥ ⇐⇒

∥F(s1,V )−F(s2,V )∥ ≤ (∥s1∥+∥s2∥)σmax(Q)∥s1− s2∥

It is true that ∀s ∈ Sset : ∥s∥= (∥x1∥2 +∥γ1∥2 + · · ·+∥x4∥2 +∥γ4∥2)
1
2 . Thus, we can derive

that:

∥s∥= (
i=n

∑
i=1
∥xi∥2 +∥γi∥2)

1
2

∥s∥ ≤ (n(∥x̄i∥2 +∥γ̄i∥2))
1
2

Therefore the Lipschitz constant is equal to LF = 2(n(∥x̄i∥2 +∥γ̄i∥2))
1
2 σmax(Q)

Lemma 4 The stage cost F(s,V ) is such that F(0,0) = 0 and there are some positive
constants a > 0 and σ ≥ 1 such that ∀s ∈ Sset and ∀ V ∈ Vset it is true that F(s,V ) ≥
F (s,V ) = a∥(s,V )∥σ , where F (s,V ) is a K∞ - function. More specifically, it is true that:

F(s,V )≥ min(q1, . . . ,q8,r1, . . . ,r4)∥s∥2 (3.16)
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3.1 ET-NMPC-IBVS Problem Formulation

Proof

F(s,V ) = sT Qs+V T RV

= sT diag(q1, . . . ,q8)s+V T diag(r1, . . . ,r4)V

≥ [s,V ]T diag(q1, . . . ,q8,rq, . . . ,r4)[s,V ]

≥ min{q1, . . . ,q8,rq, . . . ,r4}∥[s,V ]∥2 ⇐⇒
F(s,V ) ≥ min{q1, . . . ,q8,rq, . . . ,r4}∥s∥2

The terminal region E f in 3.5 is calculated as a subset of an admissible positively invariant
set En for the system described in 2.22. Therefore, we can make the following assumptions
for the terminal region:

Assumption 2 For the system described by 2.22, there is an admissible positively invari-
ant set En ⊂ Sset such that E f ⊂ En, where En = {s ∈ Sset : ∥s∥ ≤ ε0} with ε0 being a positive
parameter.

Assumption 3 There is a local controller Vk = h(sk)∈Vset for the set En, which stabilizes
the system, and an associated Lyapunov function E such that:

E( f (sk,h(sk)))−E(sk)≤−F(sk,h(sk)) (3.17)

∀ s ∈ En

Assumption 4 The terminal region associated Lyapunov function E(s) is Lipschitz
continuous in En with a Lipschitz constant LE in the s-norm that is given by:

∥E(s1)−E(s2)∥s ≤ LE∥s1− s2∥s (3.18)

where LE = 2ε0σmax(P) ∀ s ∈ En
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3.1 ET-NMPC-IBVS Problem Formulation

Proof

∥E(s1)−E(s2)∥= ∥sT
1 Ps1− sT

2 Ps2∥=
∥sT

1 Ps1− sT
1 Ps2 + sT

1 Ps2− sT
2 Ps2∥=

∥sT
1 P(s1− s2)+(sT

1 − sT
2 )Ps2∥=

∥sT
1 P(s1− s2)+ sT

2 P(s1− s2)∥=
∥(sT

1 + sT
2 )P(s1− s2)∥ ⇐⇒

∥E(s1)−E(s2)∥ ≤ (∥s1∥+∥s2∥)σmax(P)∥s1− s2∥

It is true that from Assumption 2: ∀s∈En : ∥s∥=(∥x1∥2+∥γ1∥2+ · · ·+∥x4∥2+∥γ4∥2)
1
2 ≤ ε0.

Therefore the Lipschitz constant is equal to LE = 2ε0σmax(P)

For the local stabilizing controller hk we can make the following assumptions:

Assumption 5 There is a local stabilizing controller h(s) ∈Vset for which there exists a
Lh > 0, ∀s ∈ En such that ∥h(s)∥ ≤ Lh∥s∥. Thus, it is also true that for L fh > 0, ∀s ∈ En we
have ∥ f (s,h(s))∥ ≤ L fh∥s∥.

Assumption 6 For the set En, the associated Lyapunov function is bounded as described
by: E(s) = sT Ps ≤ αε with αε = max{p1, . . . , p8}ε2

0 > 0. Also, assuming that En = {s ∈
Sset(N−1) : h(s)∈Vset} and for taking a positive parameter αε f for which αε f ∈ (0,αε), we can
assume that the termianl set E f = {s ∈ IR8 : E(s)≤ αε} is such that ∀s ∈ En, f (s,h(s)) ∈ E f .
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3.2 Feasibility

Firstly, we are interested in proving that feasibility initially at time step k−1 when the first
event is triggered, implies feasibility afterwards at any time step m when the next event
is triggered. To achieve the aforementioned goal, we state the following definitions about
feasibility:

Definition 1: Feasible Set The feasible set SF is defined as the set of initial states s for
which the NMPC problem with horizon N is feasible, i.e.

SF = {s | ∃ [V0, . . . ,VN−1] such that the set state and input constraints are satisfied.}
(3.19)

Definition 2: Recursive Feasibility The NMPC problem is called recursively feasible,
if for all feasible initial states feasibility is guaranteed at every state along the closed-loop
trajectory.

Definition 3: Invariant Set A set SF is positively invariant for the system sk+1 = f (sk),
if:

sk ∈ SF ⇒ f (sk) ∈ SF , ∀k ∈ N. (3.20)

For our EB-NMPC case, we can assume that at time step k− 1 an event is triggered
and the OCP of the NMPC is solved, thus producing an optimal control sequence of the
form V ∗F (k−1) ∆

= [V ∗F (k−1|k−1), . . . ,V ∗F (k+N−2|k−1)], for which the ∗ notation is used.
Using Definition 1, let SF be the set containing all the state vectors for which a feasible
control sequence of the form exists that satisfies the constraints of the OCP 3.5. Then,
any control sequence VF(k+m) at a subsequent time step k+m with m = 0, . . . ,N− 1 is
described by:

VF(k+m) =V (k+ i|k+m) =

V ∗(k+ i|k−1) for i = m, . . . ,N−2

h(x̂(k+ i|k+m)) for i = N−1, . . . ,N +m−1
(3.21)
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3.2 Feasibility

where V ∗(k+ i|k−1) for i = m, . . . ,N−2 is part of the optimal control sequence computer
at time step k−1.

We can derive from the feasibility of the optimal control sequence V ∗F (k−1) computer
at the initial triggering instance k−1 and Assumption 5, that the feasible control sequence
computed at all subsequent time steps m = {0, . . . ,N − 1} also belongs to the Vset , i.e.
V (k+ i|k+m) ∈Vset .

In order to prove recursive feasibility, it is necessary to prove that ŝ(k+N−1|k+m)∈ E f

for all time steps m = {0, . . . ,N − 1} when an event can be triggered. Using the error
expression from 3.12 and its bound 3.15 from Lemma 1, we can derive:

∥ŝ(k+N−1|k)− ŝ(k+N−1|k−1)∥ ≤ LN−1
f e(k|k−1)

∥ŝ(k+N−1|k+1)− ŝ(k+N−1|k−1)∥ ≤ LN−2
f e(k+1|k−1)

...

∥ŝ(k+N−1|k+m)− ŝ(k+N−1|k−1)∥ ≤ L(N−1)−m
f e(k+m|k−1) (3.22)

Using the Lipschitz constant LE for the terminal cost from Lemma 4, we can derive that:

E(ŝ(k+N−1|k+m))−E(ŝ(k+N−1|k−1))≤ (3.23)

LE∥ŝ(k+N−1|k+m)− ŝ(k+N−1|k−1)∥ ≤

LEL(N−1)−m
f e(k+m|k−1)

From Assumption 6 and considering that initial feasibility is guaranteed with ŝ(k+N−1|k−
1) ∈ E f , we can prove that:

V (ŝ(k+N−1|k+m))≤ αV +LV L(N−1)−m
f e(k+m|k−1) (3.24)

Since we want to show that ŝ(k+N−1|k+m) ∈ E f it should hold that V (ŝ(k+N−1|k+
m))≤ α and thus:

αV +LV L(N−1)−m
f e(k+m|k−1)≤ α ⇒

e(k+m|k−1)≤ α−αV

LV L(N−1)−m
f

(3.25)

which states that as long as the disturbances are bounded by 3.25 then SF is a robust
positively invariant set and thus there is a local stabilizing controller h(s) which ensures that
ŝ(k+N−1|k+m) ∈ E f for all m = {0, . . . ,N−1}.
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3.3 Input-to-State (ISS) Stability

For the ISS Stability we can use the following Lemma, which was stated by Lazar, Heemels
and Teer in their paper [86].

Lemma 4 Let X,E,D⊆Rn and let α1,α2,α3 ∈K∞, σ1,σ2 ∈K ,X⊆Rn with 0∈ int(X).
Let J : X→ R+ be a function with J(0) = 0 and consider the following equations:

α1(∥x∥)≤ J(x)≤ α2(∥x∥) (3.26)

J(Ψ(x,e,d))− J(x)≤−α3(∥x∥)+σ1(∥e∥)+σ2(∥d∥) (3.27)

(i) Assume that X is a robustly positively invariant set for the perturbed system x(k+1) =
Ψ(x(k),e(k),d(k)) for all e(k) ∈ E and d(k) ∈ D and (ii) assume that the two aforemen-
tioned inequalities hold for all x ∈ X, e ∈ E and all d ∈ D. Then, the system x(k+ 1) =
Ψ(x(k),e(k),d(k)) is ISS in X for inputs in E and D.

In order to prove the Input-to-State Stability of the system in the Event-Based NMPC
framework, the cost function of the OCP problem 3.5 under the optimal control sequence V ∗F
is chosen as a Lyapunov function. We denote the optimal cost at some time step k+m as
J∗(k+m) = J(xk+m,VF(k+m)). We define the optimal cost difference between the initial
triggering instant k−1 and the subsequent time steps k+m, with m = {0, . . . ,N−1} as:

∆J∗m = J∗N(k+m)− J∗N(k−1) (3.28)

We can use the aforementioned difference, to derive the following lemma:

Lemma 5 For the system of 2.22 under the constraints stated in 3.5 that satisfies the As-
sumptions (2-6), the difference between the optimal cost at time step k−1 and all subsequent
time steps k+m, with m = {0, . . . ,N−1}, is bounded as described by:

∆J∗m ≤ Lzme(k+m|k−1)−
m

∑
i=0

F(∥xk−1−i+m∥) (3.29)

where the Lzm is defined by: Lzm = LEL(N−1)−m
f +LF

L(N−1)−m
f −1

L f−1 .

34



3.3 Input-to-State (ISS) Stability

Proof In order to prove the boundedness of the optimal cost difference, we will employ
the feasible cost at time step k+m in a similar way to the one proposed in [87], which we
denote as J̄N(k+m)

∆
= JN(sk+m,V̄F(k+m)). The feasible cost is the cost function under the

feasible control sequence 3.21, and thus the difference between the feasible cost at time step
k+m and the optimal cost at time step k−1 is given by:

∆Jm = J̄N(k+m)− J∗N(k−1) (3.30)

By starting with m = 0 we can derive that:

∆J0 = J̄N(k)− J∗N(k−1) =
N−1

∑
i=0
{ F(s̄(k+ i|k),V̄ (k+ i|k))−F(ŝ(k+ i−1|k−1),V ∗(k+ i−1|k−1)) }

+E(s̄(k+N|k))−E(ŝ(k+N−1|k−1)) =
N−2

∑
i=0
{ F(s̄(k+ i|k),V̄ (k+ i|k))−F(ŝ(k+ i|k−1),V ∗(k+ i|k−1)) }

−F(sk−1,Vk−1)+F(s̄(k+N−1|k),h(s̄(k+N−1|k)))
+E(s̄(k+N|k))−E(ŝ(k+N−1|k−1)) (3.31)

where x̄(k+ i+1|k+m) is state of the system under the feasible control sequence from
time step k+m until time step k+ i.

From the feasible control sequence of 3.21, it is evident that:

V (k+ i|k) =V ∗(k+ i|k−1) ∀i = {0, . . . ,N−2} (3.32)

It is simple to derive:

∥ŝ(k+ i|k)− ŝ(k+ i|k−1)∥ ≤ Li
f e(k|k−1) (3.33)

Then using the Lipschitz property of the stage cost LF and the expression from 3.33, it holds
that:

F(s̄(k+ i|k),V̄ (k+ i|k))−F(ŝ(k+ i|k−1),V ∗(k+ i|k))≤ LFLi
f e(k|k−1) (3.34)

Since we proved that initial feasibility implies feasibility afterwards, then ŝ(k+N−1|k+m)∈
E f for all m = {0, . . . ,N− 1}. Thus for m = 0 it holds that ŝ(k+N− 1|k) ∈ E f . Utilising
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3.3 Input-to-State (ISS) Stability

Assumption 3 we get:

E(s̄(k+N|k))−E(ŝ(k+N−1|k))+F(s̄(k+N−1|k),h(s̄(k+N−1|k)))≤ 0 (3.35)

Therefore, using the Lipschitz constant of the terminal cost and the expression from 3.23 we
derive:

∆J0 ≤ Lz0 e(k|k−1)−F(∥xk−1∥) (3.36)

where Lz0 = LELN−1
f +LF

LN−1
f −1
L f−1 .

In a similar fashion we can prove that for m = 1:

∆J1 = J̄N(k+1)− J∗N(k−1) =
N−1

∑
i=0
{ F(s̄(k+ i+1|k+1),V̄ (k+ i+1|k+1))−F(ŝ(k+ i−1|k−1),V ∗(k+ i−1|k−1)) }

+E(s̄(k+N +1|k+1))−E(ŝ(k+N−1|k−1)) =

N−3

∑
i=0
{ F(s̄(k+ i+1|k+1),V̄ (k+ i+1|k+1))−F(ŝ(k+ i+1|k−1),V ∗(k+ i+1|k−1)) }

−F(sk−1,Vk−1)−F(sk,Vk)

+F(s̄(k+N−1|k+1),h(s̄(k+N−1|k+1)))+E(s̄(k+N +1|k+1))

+F(s̄(k+N|k+1),h(s̄(k+N|k+1)))−E(ŝ(k+N−1|k−1)) (3.37)

Since s(k+N|k+1) ∈ E f ⊆ En and s(k+N−1|k+1) ∈ En, we can use Assumption 3
to derive:

E(s̄(k+N +1|k+1))−E(s̄(k+N|k+1))+F(s̄(k+N|k+1),h(s̄(k+N|k+1)))≤ 0
(3.38)

E(s̄(k+N|k+1))−E(s̄(k+N−1|k+1))+F(s̄(k+N−1|k+1),h(s̄(k+N|k+1)))≤ 0
(3.39)
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3.3 Input-to-State (ISS) Stability

Also, using the Lipschitz constant for the terminal cost as well as the expression 3.23 for
m = 1:

E(s̄(k+N−1|k+1))−E(s̄(k+N−1|k−1))≤ LELN−2
f e(k+1|k−1) (3.40)

Hence, for m = 1 the bound for the difference is given by:

∆J1 ≤ Lz1 e(k+1|k−1)−F(∥xk−1∥)−F(∥xk∥) (3.41)

where Lz1 = LELN−2
f +LF

LN−2
f −1
L f−1

Therefore, using a similar approach we can derive that for all m = {0, . . . ,N−1} it holds
that:

∆Jm ≤ Lzme(k+m|k−1)−
m

∑
i=0

F(∥xk−1−i+m∥)

From the optimality of the solution it holds that for all m:

J∗N(k+m)≤ J̄N(k+m) ⇐⇒
J∗N(k+m)− J∗N(k−1)≤ J̄N(k+m)− J∗N(k−1) ⇐⇒

∆J∗m ≤ ∆Jm ≤ Lzme(k+m|k−1)−
m

∑
i=0

F(∥xk−1−i+m∥) (3.42)

which concludes the proof.
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We have now proved the first inequality condition of 3.26 from Lemma 4 taking into
account solely outer perturbations. Hence, it is evident that:

σ1(∥e∥) = Lzme(k+m|k−1) (3.43)

α3(∥s∥) =
m

∑
i=0

F(∥xk−1−i+m∥) (3.44)

In order to determine the lower and upper bounds of the Lyapunov function, as indicated
in 3.42, we can use the optimality of the solution to derive that:

F(∥xk∥)≤ J∗N(k)≤ J̄N(k)≤ (LE +LFV Lh)
LN

fh
−1

L fh−1
∥xk∥+LEL fh∥xk∥ ⇐⇒ (3.45)

α1(∥x∥)≤ J∗N(k)≤ α2(∥x∥) (3.46)

where α1(∥x∥) = F(∥xk∥) and α2(∥x∥) = (LE +LFV Lh)
LN

fh
−1

L fh−1∥xk∥+LEL fh∥xk∥
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3.4 Event-triggering Condition

Now that we have proved the feasibility and input-to-state stability of the event-based NMPC
scheme, we are going to provide the triggering rule. By taking into account only outer
perturbations, the expression 3.26 for the Input-to-State stability becomes :

J(sk+1)− J(sk)≤−α3(∥s∥)+σ1(∥e∥) (3.47)

Therefore, the system remains ISS stable under the event-based NMPC scheme as long
as:

σ1(∥e∥)≤ σα3(∥s∥) (3.48)

where σ is a positive constant 0 < σ < 1.

Therefore, combining 3.29 with 3.47 and 3.48 we can derive the triggering condition as:

Lzme(k+m|k−1)≤ σ

m

∑
i=0

F(∥xk−1−i+m∥) (3.49)

Additionally, the stability of the event-base scheme needs to be guaranteed for all sub-
sequent m = {0, . . . ,N−1}. The optimal cost difference between all two subsequent time
steps needs to be decreasing and thus it should hold that:

∆J∗m+1 ≤ ∆J∗m ⇐⇒

Lzm+1e(k+m+1|k−1)−Lzme(k+m|k−1)≤ F(∥xk−1+m∥) (3.50)

Therefore, the OCP problem of the NMPC will be solved again if the triggering condition
3.49 is violated. The ET-IBVS-NMPC algorithm is presented schematically in Algorithm 2
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Algorithm 2 Event-Triggered NMPC
1: Time step equals to k
2: while xk ∈ Sset do
3: Update the state measurement of system sk
4: Solve the OCP for the open-loop input sequence V ∗k = [V (k|k), . . . ,V (k+N−1|k)]
5: Calculate the predicted state sequence ŝk = [ŝ(k|k), . . . , ŝ(k+N−1|k)]
6: Set k← k0 ▷ e(k|k0) = ∥sk− ŝ(k|k0)∥= 0
7: while State error does not violate the event-triggering condition do
8: Apply the control input V (k|k0) to the system
9: Update the time-step: k← k+1

10: Update the state measurement sk
11: Calculate the state error e(k|k0)
12: end while
13: go to 3
14: end while

The ET-IBVS-NMPC scheme is presented in Figure 3.4

Figure 3.4 ET-IBVS-NMPC scheme using a quadrotor UAV
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Chapter 4

Simulations

To verify the efficiency and performance of our proposed ET-IBVS-NMPC scheme, simu-
lations in a realistic coastline environment were conducted. The Robot Operating System
(ROS) in conjunction with the Gazebo simulator was employed to act as the Software In The
Loop (SITL) on a computer running Ubuntu 20.04 LTS. The ArduPilot firmware was used as
the autopilot simulated controller while the MAVROS ROS package was utilized to establish
the communication between the Ardupilot and ROS under the MAVLink protocol.

4.1 Simulation Setup

The performance and efficiency of the ET-IBVS-NMPC scheme for the coastline tracking
using a quadrotor UAV were demonstrated in simulations. Specifically, the Gazebo frame-
work was employed in order to create a realistic version of an outdoor coastline environment.
Gazebo is an open-source 3D robotics simulator supporting the development of terrestrial,
aerial, space, and underwater robots for indoor and outdoor environments which integrates
the ODE physics engine, OpenGL rendering, as well as support code for sensor simulation
and actuator control. Gazebo is an open-source software developed by Open Source Robotics
Foundation (OSRF) and maintained by the robotics community and has emerged as the de
facto standard environment for prototyping and simulating robots. The software follows a
modular approach which supports the following characteristics:

1. Gazebo integrates a multitude of physics engines to simulate dynamics and resolve the
collision, reaction, and contact force among rigid bodies.

2. Gazebo includes a vast module library that facilitates the employment of robotic
sensors such as GPS, cameras, lasers, IMUs, etc.
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4.2 Software Architecture

3. Gazebo supports a Graphical User Interface (GUI) that allows the visualization and
exploration of various environments and robotic systems as well as the interaction
between them using high-quality graphics.

4. Gazebo supports the creation of user-defined plugs using the Robot Operating System
(ROS) in different programming languages such as C++ and Python.

More information on the Gazebo simulator can be found in [88].
The coastline environment used in our simulations features a model for the ocean-

based on realistic oceanographic statistical descriptions which are computationally complex,
realistically looking, and is characterized by high fidelity. The waves of the ocean are
modeled based on Gerstner Waves [89] as well as the approach followed in [90], which
are used often for ocean representation in computer graphics as shown in [91], depict the
ocean surface using a trochoidal shape. In order to achieve higher visual realism, Gerstner
waves are characterized by larger amplitude, edgy crests, and wider troughs thus exhibiting
strong real world-resemblance. In addition, this wave model offers high flexibility within
the Gazebo framework as its parameters (period, gain, direction, amplitude) can be easily
configurable through a plugin integrated into Gazebo. The coastline representation in our
simulation is complemented by the use of an island model to represent the shore. The
quadrotor UAV model is based on the IRIS 3DR quadrotor [92] in which a downward-facing
ZED Stereo-vision RGB-D camera that records data of the surrounding environment and
detects the coastline is added.

4.2 Software Architecture

In our simulations, the coastline tracking approach was implemented through the Robot
Operating System (ROS) middleware suite. ROS consists of a collection of software frame-
works for robotic applications and is the de-facto standard for programming in the robotics
community. ROS was originally developed in 2007 at the Artificial Intelligence Laboratory at
Stanford University and has been managed by the Open Source Robotics Foundation (OSRF)
since 2013. ROS follows a peer-to-peer approach with individual programs communicating
over a specific Application Programming Interface (API), which allows them to communicate
over a standard protocol. Each script containing functional code is called a node and is
capable of sending and receiving information from and to any other node through publishing
or subscribing to a topic. Topics are named buses that allow communication between nodes
through messages containing information such as data, video, or images. This enables multi-
ple nodes to communicate with each other, resulting in a streamlined path of information
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exchange that can include various types of information such as sensor data and actuator
commands. Programs following the ROS architecture include ROS nodes and a ROS master.
The ROS master is a node in itself that handles the communication between the other nodes,
which are executables running in order to achieve a desired function of the robotic system.
Examples include nodes that can handle processes such as low-level device control, reading
and processing of sensor data, actuator handling, hardware abstraction, and communication
between processes. Given the open-source nature of ROS, there is an extensive collection
of libraries, packages, and nodes that are written in a variety of programming languages,
with the most popular being C++, Python, and Matlab. Lastly, since ROS follows a graph
architecture of nodes, programs can be run in different computers communicating over a
network in a distributed fashion, thus offering great flexibility in various situations such as
experimental setups. More information on ROS can be found in [93]. In our simulation,
the Melodic version of ROS 2 [94] running on Ubuntu 20.04 LTS [95] was used in order to
develop the program architecture for the implementation. Our software cluster consists of
the following programs :

4.2.1 Gazebo Environment

The Gazebo program that encompasses the simulation environment including the ocean,
shore, IRIS 3DR quadrotor, and ZED stereo-vision camera. It also includes a node for the
Graphical User Interface (GUI) that allows us to explore and manipulate the environment
and its objects. The IRIS quadrotor is depicted inside the coastline environment of Gazebo in
Figure 4.1

4.2.2 MAVROS Package

MAVROS is the package that provides communication drivers between ROS and the ArduPi-
lot autopilot software under the MAVLink communication protocol [96][97]. The MAVLink
communication protocol is a lightweight messaging protocol for communication with drones
and between onboard drone components. It was released by Lorenz Meier in 2009 and is
maintained by hundreders of contributors of the open-source robotics community. Regardless
of the deployed platform, MAVLink utilized a binary format after it serializes and performs
checksum verification on the messages and commands it handles. As a result of this binary
serialization nature, the communication protocol is lightweight and therefore provides accu-
racy and reliability in experimental applications in which small information parcels can be
transmitted bidirectionally between the Ground Control Station (GCS) and the UAV over
wireless communication networks [98] [99]. Hence, it acts as the middleware communication

43



4.2 Software Architecture

Figure 4.1 Iris quadrotor inside the Gazebo coastline environment

layer between the GCS and the ArduPilot of the UAV, or in our case between the SITL and
the Ardupilot.

4.2.3 ET-IBVS-NMPC Algorithm

This node contains the ET-IBVS-NMPC algorithm which is used for the coastline tracking
task. The module was developed in C++ in order to generate fast efficient code which is
crucial for this type of application. The numerical computations were done using the Eigen
Libary [100] while the Optimal Control Problem of the NMPC was solved using the NLopt
Library. NLopt is an open-source library of various routines for nonlinear optimization [101].
For our study, the BOBYQA algorithm was employed which is a derivative-free algorithm
for constrained nonlinear optimization originally developed by M.J.D. Powell [102] and
converted to C++.

4.2.4 Coastline Detection CNN

This module is utilized for image extract from the camera topic as well as for the detection
of the coastline. The coastline detection is achieved online through a trained Convolutional
Neural Network (CNN) running on a GPU. Once the coastline is detected, the Region of
Interest (ROS) is created through the four points that were detected from the CNN. The four
corners of the ROI are used in the IBVS problem formulation to track the coastline. This
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node has been developed using Python, OpenCV [103], and the Keras framework [104] by
members of the Control System Laboratory (CSL) at the National Technical University of
Athens (NTUA). The detected coastline is presented in Figure 4.2

Figure 4.2 Coastline Detection using a CNN

4.2.5 ArduPilot Flight Controller

The flight controller used in our simulations utilized the ArduPilot autopilot software. ArduPi-
lot is an open-source node-based autopilot that enables direct communication with ROS
through the MAVROS package and benefits from interfaces that enable the use of a broad
variety of sensors, computational units and communication systems. The system offers high
flexibility as it allows the integration of both low and high-level controllers, and supports
user-defined software packages. Another characteristic of this software suite is the provision
of hardware safety guarantees which can reduce the accident occurrence in experimental
scenarios. More information on Ardupilot can be seen in [105]. In our simulations, the
ArduPilot ensures the low-level control that handles the achievement of the four desired
velocities that are generated from the ET-IBVS-NMPC scheme, which include the three
translational velocities in the x,y, z-axis as well as the yaw rate, in the North-East-Down
(NED) body coordinate frame of the quadrotor.
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4.3 Simulation Results

In our study, two simulation scenarios were investigated in order to prove the efficiency and
performance of the ET-NMPC by comparing it to the classic NMPC scheme. Specifically, the
algorithm was tested in simulations, in which the quadrotor started from challenging initial
configuration w.r.t the desired pose of the camera starting from positions with relatively low
altitudes (below 10 meters). In both scenarios the coastline was initially within the field of
view of the camera and never violated any of the imposed FOV constraints. For comparison
purposes, each scenario was investigated under both the NMPC and the ET-NMPC with the
quadrotor approximately the same initial configuration and altitude.

The Field Of View constraints, due to the 720x480 resolution of the ZED Stereo Vision
Camera are described in pixels below. They are based on the coordinate frame depicted in
4.2 whose center is located on the top left corner.

[
u = 0
v = 0

]
≤

[
u(t)
v(t)

]
≤

[
ū =+720
v̄ =+480

]
(4.1)

Furthermore, the focal length of the camera is equal to f = 252.07 and the principal point
has the following coordinates (cu,cv) = (360,240).

The input constraints describing the camera translation and angular velocity bounds are
described in m/sec and rad/sec respectively below:


Tx = −0.5
Ty = −3
Tz = −0.1
Ωz = −1

≤


Tx(t)
Ty(t)
Tz(t)
Ωz(t)

≤


T̄x = +0.5
T̄y = +3
T̄z = +0.1
Ω̄z = +1

 (4.2)

In order to ensure convergence and stability of the algorithm a relatively large prediction
horizon is advised. However, an increase to the size of the prediction horizon consequently
causes an increase of the computational time of the OCP problem at each iteration. Further-
more, as seen in the Lzm constant of the triggering condition, a very large horizon can cause
an increase of events even in cases in which the error between the predicted and real state
of the system is small, and can thus lead to higher energy consumption and less autonomy.
Therefore, a trade-off between performance and computational efficiency has to occur, in
which a large enough prediction horizon which ensures both efficiency and does not harm
the efficiency of the scheme should be chosen. For these reasons, the size of the receding
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prediction horizon is chosen equal to N = 6. The sampling time in all simulation scenarios is
chosen equal to dt = 0.1 seconds. The parameters for the waves of the ocean based on the
Gerstner Wave model are presented in the following Table. In both cases the motion of the
waves is only considered in the direction vertical to the coastline.

Gazebo Wave Parameters
Wave
Period

Wave Scale Wave
Angle

Wave Gain

Simulation 1 2.5 1.4 0.4 1.6
Simulation 2 2.5 2 0.4 2.2

In the following simulations scenarios, the results demonstrating the efficacy and perfor-
mance of the ET-NMPC are presented. Comparisons are made to the classic NMPC approach.
Video recordings of the simulation flights can be seen in [106].

4.3.1 Simulation 1

For simulation 1, the initial configuration, denoted as pi,1, is shown in Figure 4.3 and
described below:

pi,1 = [u1,v1,u2,v2,u3,v3,u4,v4] = [21,370,682,310,684,332,23,393] (4.3)

The coastline detection is shown on the window on the top left corner of the image. The α

constant for the IBVS-NMPC and ET-IBVS-NMPC cases is presented below:

v̇des(t) = αIBV S−NMPC = 30 pixels/sec

v̇des(t) = αET−IBV S−NMPC = 50 pixels/sec (4.4)

The desired configuration pi,des is presented below. The desired v coordinate values
presented below are the values for the time step k = 0, the start of the prediction horizon, and
progress in the horizon based on the vdes,k+1 = vdes,k +αdt expression.

pi,des =[u1,des,v1,des,u2,des,v2,des,u3,des,v3,des,u4,des,v4,des]

=[340,480,340,0,380,0,380,480] (4.5)
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Figure 4.3 Simulation 1: Quadrotor Initial Configuration

In Figures 4.4, 4.5, 4.6 and 4.7, the image error evolution for feature 1,2,3 and 4 respec-
tively is depicted under both the NMPC and ET-NMPC schemes.
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Figure 4.4 Simulation 1-Feature 1: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.5 Simulation 1-Feature 2: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.6 Simulation 1-Feature 3: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.7 Simulation 1-Feature 4: The feature coordination errors under the NMPC and
ET-NMPC
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For the ET-NMPC case, as it can be clearly seen, the feature error on the v direction of
the image frame converges to 0 for all four image features.For the u direction of the image
frame, the coordination error converges to 0 following an sinusoidal fashion, which can be
attributed to the motion of the waves in the u direction. The absolute value of the steady
state error for features 1 and 4 is bounded by approximately 40 pixels while features 2 and 3
remain below 80 pixels. The steady state is achieved at approximately 55 seconds. Under the
classic NMPC scheme, the errors follow a similar behaviour but converge close to 0 faster
and are smaller in the steady state, which is reached at approximately 35 seconds.

Figure 4.8 Simulation 1: The U and V Translational Camera Velocities under the NMPC and
ET-NMPC
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Figure 4.9 Simulation 1: The Z Translational and Ωz Angular Camera Velocities under the
NMPC and ET-NMPC

The velocities of the camera are presented in Figure 4.8. As we can seen, the velocities
satisfy the input constraints throughout the flight. The camera translational velocity in the V
direction is equal to the velocity with which the quadrotor traverses along the coastline. This
velocity is larger in the ET-NMPC scenario, as expected due to the higher value of the α

desired feature velocity in the v direction of the image frame. The translational and angular
velocities of the camera in the z direction are presented in Figure 4.9.
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Figure 4.10 Simulation 1: The evolution of the Cost Function under the NMPC and ET-
NMPC

The evolution of the cost function is presented in Figure 4.10. We can see that the cost
function converges fast to a minimum value. In both cases, the cost function is lower bounded
by a non-zero minimum value, which larger in the ET-NMPC case. The minimum value is not
zero because the desired values of the v feature coordinates is larger the upper FOV bound,
which can obviously never be reached. Furthermore, the minimum value in the ET-NMPC
case is larger than in the classic NMPC due to the larger α desired velocity of the v feature
coordinates. Small differences between the two schemes are also seen in the evolution of the
quadrotor altitude, which remains in relatively low values and is presented in Figure 4.11.
Moreover, the optimisation loop execution duration presented in Figure 4.12 proves the high
speed of the C++ algorithm. As we can see, the execution duration for the optimisation loops
are below 25 milliseconds which makes the algorithm viable for real-time applications.
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Figure 4.11 Simulation 1: The altitude of the quadrotor under the NMPC and ET-NMPC

Figure 4.12 Simulation 1: Optimisation Loop Execution Duration under the NMPC and
ET-NMPC
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Lastly, in Figure 4.13 the triggering instances of the optimisation algorithm are depicted.
As expected, as the camera moves closer to the desired state, the frequency of the events
increases due to the higher accuracy that the system demands in order to stay close to the
target in the presence of the additive noise and the field of view constraints. Hence, the
system requires new measurements in order to generate a new control sequence that will
stabilize the system to the desired state. In this scenario, the triggering of the MPC scheme is
reduced by 28% with 468 triggering instances occuring instead of 600, as it happens in the
classic NMPC scenario.

Figure 4.13 Simulation 1: Triggering Instances under the ET-NMPC scheme
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4.3.2 Simulation 2

For simulation 2, the initial configuration, denoted as pi,2, is shown in Figure 4.14 and
described below:

pi,2 = [u1,v1,u2,v2,u3,v3,u4,v4] = [524,465,681,267,711,291,554,480] (4.6)

In this scenario, the α constant for the IBVS-NMPC and ET-IBVS-NMPC cases is considered
equal and is presented below:

v̇des(t) = αIBV S−NMPC = 30 pixels/sec

v̇des(t) = αET−IBV S−NMPC = 30 pixels/sec (4.7)

Figure 4.14 Simulation 2: Quadrotor Initial Configuration

The desired configuration pi,des is the same as in Simulation 1 and is presented below.
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pi,des =[u1,des,v1,des,u2,des,v2,des,u3,des,v3,des,u4,des,v4,des]

=[340,480,340,0,380,0,380,480] (4.8)

In Figures 4.15, 4.16, 4.17 and 4.18, the image error evolution for feature 1,2,3 and 4
respectively is depicted under both the NMPC and ET-NMPC schemes.

Figure 4.15 Simulation 2-Feature 1: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.16 Simulation 2-Feature 2: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.17 Simulation 2-Feature 3: The feature coordination errors under the NMPC and
ET-NMPC
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Figure 4.18 Simulation 2-Feature 4: The feature coordination errors under the NMPC and
ET-NMPC
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The v feature coordination error converges to 0 for all the features and under both control
schemes. For the ET-NMPC, the u feature coordination error for features 1 and 4 also
converges to 0 in a sinusoidal fashion and its steady state absolute value is bounded by
approximately 20 pixels. Features 2 and 3 follow a similar converging trajectory and their
steady state oscillates between approximately 0 and 50 pixels. Similarly, the u feature
coordination errors for features 1 and 4 under the NMPC approach follow a similar trajectory
to those under the ET-NMPC scheme. On the other hand, features 2 and 3 converge to the
steady state at a significantly slower rate and are characterized by larger steady state errors.
Specifically, the steady state for the NMPC approach is reached at approximately 45 seconds,
while under the ET-NMPC scheme the system stabilized at the steady state at 65 seconds.

Figure 4.19 Simulation 2: The U and V Translational Camera Velocities under the NMPC
and ET-NMPC
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Figure 4.20 Simulation 2: The Z Translational and Ωz Angular Camera Velocities under the
NMPC and ET-NMPC

The velocities of the camera are presented in Figures 4.19 and 4.20. As we can see, the
velocities satisfy the input constraints throughout the flight in this simulation as well. In both
approaches, the velocities are characterized by similar oscillatory fashioned trajectories with
differences in the amplitude. More specifically, in the ET-NMPC approach, the velocities
showcase oscillations with larger amplitude and reach the steady state at a slower rate.
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Figure 4.21 Simulation 2: The evolution of the Cost Function under the NMPC and ET-
NMPC

The evolution of the cost function is presented in Figure 4.21. We can see that the cost
function in the NMPC case converges to its minimum value at approximately 20 seconds
while in the ET-NMPC case, it takes approximately 60 seconds to reach the steady-state. The
steady-state value of the Cost Function is the same for both the ET-NMPC and NMPC case
due to the same α desired velocity of the v feature coordinates. Similar to Simulation 1, very
small differences between the two schemes are also seen in the evolution of the quadrotor
altitude, which is presented in Figure 4.22. In the ET-NMPC approach a total increase of
about 1.5 meters is seen while the altitude in the NMPC scheme remains almost stagnant.
Similarity to Simulation 1 is also noticed in the optimisation loop execution duration, which
is presented in Figure 4.23 and remains below 25 milliseconds.
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Figure 4.22 Simulation 2: The altitude of the quadrotor under the NMPC and ET-NMPC

Figure 4.23 Simulation 2: Optimisation Loop Execution Duration under the NMPC and
ET-NMPC
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To conclude, in Figure 4.24 the triggering of the optimisation algorithm in Simulation
2 are depicted. Similarly to Simulation 1, events become more frequent near the desired
states. The triggering of the MPC scheme is reduced by 28.6% with 607 triggering instances
occuring instead of 850, as it happens in the classic NMPC scenario.

Figure 4.24 Simulation 2: Triggering Instances under the ET-NMPC scheme
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Chapter 5

Conclusions

5.1 Assessment

In this thesis, we presented an Event-Triggered-IBVS-NMPC strategy for coastline tracking
using a quadrotor. At first, a CNN was employed to detect the coastline and generate the
ROI which encompasses it. The four corners of the detected ROI were used as image
features to be used in the IBVS scheme. The IBVS framework was incorporated within an
MPC problem in order to track the coastline under the effect of waves while ensuring the
satisfaction of input and FOV constraints. A C++ code , incorporating the aforementioned
parts of the control scheme, was developed and tested in a synthetic simulation environment.
The simulations comparing the Event-Triggered NMPC scheme to the Classic MPC were
conducted using ROS and Gazebo, in which the efficiency and performance of the scheme was
demonstrated. It was shown that under the ET-NMPC formulation, the scheme showcased
similar performance with relation to the image feature coordination errors while triggering
the solution of the OCP less frequently. As a result, less energy and computational effort
was required. Furthermore, relatively small changes in the parameter values of the waves in
the Gazebo environment did not cause considerable difference in the u feature coordination
errors.
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5.2 Future Work

The ET-IBVS-NMPC for coastline tracking is an interesting research topic with many possible
experimental applications. An interesting future direction includes the investigation of the
robustness of the scheme to different levels of disturbances and uncertainty. Furthermore,
it would be interesting to explore scenarios in more challenging environmental conditions
where the effect of wind, low visibility due to fog and waves of higher magnitude are
considered. At last, an interesting future research option includes the experimental validation
of this approach in a real-coastline environment using an on-board computational unit, in
which the autonomy of the quadrotor under the ET-IBVS-NMPC scheme can be tested by
measuring the maximum possible flight duration of the quadrotor.
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Appendix A

Lipschitz Constants

For the Lipschitz constant, we need to express our system function as:

f (sk,V ) =

[
xk

γk

]
+

[
−1
Z 0 xk

Z γk

0 −1
Z

γk
Z −xk

]
Tx

Ty

Tz

Ωz

dt =

[
xk

γk

]
+

[
−Tx

Z dt + xkTz
Z dt + γkΩzdt

−Ty
Z dt + γkTz

Z dt− xkΩzdt

]
=

[
xk− Tx

Z dt + xkTz
Z dt + γkΩzdt

γk−
Ty
Z dt + γkTz

Z dt− xkΩzdt

]
⇐⇒

f (sk,V ) =

[
xk(1+

Tz
Z dt)− Tx

Z dt + γkΩzdt
γk(1+

Tz
Z dt)− Ty

Z dt− xkΩzdt

]

For the euclidean norm, we can express the difference as:

|| f (s1,V )− f (s2,V )||2 =

∥∥∥∥∥(x1− x2)(1+
Tz
Z dt)+(γ1− γ2)Ωzdt

(γ1− γ2)(1+
Tz
Z dt)− (x1− x2)Ωzdt

∥∥∥∥∥
2

=

|(x1− x2)(1+
Tz

Z
dt)+(γ1− γ2)Ωzdt|2 + |(γ1− γ2)(1+

Tz

Z
dt)− (x1− x2)Ωzdt|2
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From the first part we can derive:

|(x1− x2)(1+
Tz

Z
dt)+(γ1− γ2)Ωzdt|2 ≤

[2max{(1+ Tz

Z
dt)|x1− x2|,Ωzdt|γ1− γ2|}]2 ≤

4max{(1+ Tz

Z
dt)2(x1− x2)

2,(Ωzdt)2(γ1− γ2)
2} ≤

max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}max{(x1− x2)

2,(γ1− γ2)
2} ≤

max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}[(x1− x2)

2 +(γ1− γ2)
2]

Similarly, we can derive:

|(γ1− γ2)(1+
Tz

Z
dt)− (x1− x2)Ωzdt|2 =

|(γ1− γ2)(1+
Tz

Z
dt)+(x2− x1)Ωzdt|2 ≤

[2max{(1+ Tz

Z
dt)|γ1− γ2|,Ωzdt|x2− x1|}]2 ≤

4max{(1+ Tz

Z
dt)2(γ1− γ2)

2,(Ωzdt)2(x2− x1)
2} ≤

max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}max{(γ1− γ2)

2,(x2− x1)
2} ≤

max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}[(γ1− γ2)

2 +(x2− x1)
2] =
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max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}[(x1− x2)

2 +(γ1− γ2)
2]

Therefore, we end up with the following expression for the Lipschitz constant:

|| f (s1,V )− f (s2,V )||2 ≤ 2max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}[(x1− x2)

2 +(γ1− γ2)
2] ⇐⇒

|| f (s1,V )− f (s2,V )|| ≤ [2max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}]

1
2 [(x1− x2)

2 +(γ1− γ2)
2]

1
2

|| f (s1,V )− f (s2,V )|| ≤ [2max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}]

1
2 ||s1− s2||

|| f (s1,V )− f (s2,V )|| ≤C f ||s1− s2||

L f = [2max{4(1+ Tz

Z
dt)2,4(Ωzdt)2}]

1
2
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