
Development of Turbocharger Speed Recognition Application
via Sound Classification using Neural Networks

Loukas Arvanitis

Diploma Thesis

School of Naval Architecture and Marine Engineering
National Technical University of Athens

Supervisor: Assistant Prof. G. Papalambrou

Committee Members:

Prof. L. Kaiktsis
Associate Prof. C. Papadopoulos

November 2021

i

This page is intentionally left blank.

Acknowledgements

This thesis concludes my years of studies at the School of Naval Architecture and Marine
Engineering of the National Technical University of Athens. It has been, without a doubt,
a great academic journey, where I gained great knowledge in multiple engineering fields
and broadened my scientific and academic horizons.

A great opportunity was presented to me through this thesis project. Machine Learning
and Computer Programming were two fields that I haven’t had the chance to work with.
It is of great importance for each and everyone of us, to challenge ourselves daily, overcome
obstacles and strive for progress. Throughout this year, I had the chance to familiarize
myself with a new programming language and develop several machine learning skills,
which I am sure will a valuable asset for my feature engineering career.

I owe my sincere gratitude to my thesis advisor, As. Professor George Papalambrou. A
friend, a mentor, providing me in every phase of this project with tireless advice and
guidance. I would like to thank him for giving me the opportunity to work on such an
interesting project and I wish him all the best on his academic career.

Finally, I am also sincerely grateful to my parents Kostas and Popi, my sister Sophia and
my close people, family and friends for their unceasing support, patience and encourage-
ment throughout my studies. Last but not at least, I would like to thank Polyxeni, as I
feel extremely grateful for having her beside me, for believing in me and supporting me
through this process. This thesis is dedicated to all of you. Thank you!

ii

Abstract

This thesis investigates the implementation of an audio classification application with the
use of neural networks to monitor the changes in the ICE’s turbocharger speed in the
HIPPO-2 testbed in LME. Our study’s goal is to provide a monitoring system cheaper,
but as robust as the traditional solutions applied in such cases without jeopardizing the
structural integrity of the turbocharger.

The web application created would be responsible for the detection of changes in the T/C
speed, by analysing the sound produced by it. Two plots are presented, one depicting
a visual implementation of the Fast Fourier Transformation and one presenting a Spec-
trogram, depicting the sound that the algorithm is trying to classify. Machine learning
techniques were implemented in order to create a fast and efficient model, able to perform
this tasks simply in a browser tab.

For the creation of the model, Google’s Teachable Machine module was used. After taking
recordings from different locations around the experimental facility, for five different torque
demands, we created five different labels in the module, each representing the speeds that
the T/C achieved. An estimation of the speeds, was provided by a thermodynamic model
of the HIPPO-2 testbed in order to assist us in the classification process.

Furthermore, we examined 4 different combinations of number of epochs and audio samples
inputted at each category, as it was the only available option provided by the Teachable
Machine module, in order to achieve the best performance possible. After the completion
of training for each of the above mentioned cases, the model was inputted in our web
application created for our research. Snapshots from the produced results are presented
in order to help the reader get a better understanding on how the application works. A
conclusion on which is the best performing model is presented, along with a few suggestions
on how we could enhance the application features and ways to improve the dataset.

iii

Περίληψη

Στην παρούσα διπλωματική εργασία διερευνήθηκε η ανάπτυξη μιας εφαρμογής Αναγνώρισης

΄Ηχων, μέσω της χρήσης Νευρονικών Δικτύων, ώστε να ελέγχονται οι αλλαγές στις ταχύτητες

που αναπτύσσει ο στροβιλοϋπερπληρωτής στην κλίνη δοκιμών HIPPO-2 του εργαστηρίου
Ναυτικής Μηχανολογίας. Βασικός στόχος της έρευνας αποτελεί η εύρεση ενός εναλλακτικού

συστήματος που είναι ταυτόχρονα οικονομικό αλλά και εξίσου αξιόπιστο με τα παραδοσιακά

συστήματα παρακολούθησης, χωρίς να διακινδυνεύει η δομική ακεραιότητα του στροβιλοϋπερ-

πληρωτή.

Η διαδικτυακή εφαρμογή που δημιουργήθηκε, έχει ως στόχο την αναγνώριση των διαφορε-

τικών στροφών που αναπτύσσονται στον στροβιλοϋπερπληρωτή, μέσω ανάλυσης των διαφορε-

τικών παραγόμενων ήχων. Στην εφαρμογή συναντώνται δύο γραφήματα, ένα που παρουσιάζει

τον Ταχύ Μετασχηματισμό Φουριέ και ένα Φασματογράφημα, του προς ανάλυση ηχητικού

αποσπάσματος που προσπαθεί να αναγνωρίσει ο αλγόριθμος. Με χρήση τεχνικών Μηχανικής

Μάθησης, πραγματοποείται μια προσπάθεια δημιουργίας ενός γρήγορου και αποτελεσματικού

μοντέλου, ικανού να εκτελέσει όλες τις παραπάνω λειτουργίες μόλις σε ένα παράθυρο φυ-

λομετρητή.

Για την δημιουργία του μοντέλου χρησιμοποιήθηκε η εφαρμογή Teachable Machine της
Google. Αφού πραγματοποιήθηκαν ηχογραφήσεις σε διάφορες θέσεις στην κλίνη δοκιμών
του εργαστηρίου, για τις πέντε διαφορετικές απαιτήσεις ροπής που τέθηκαν, δημιουργήθηκαν

πέντε κατηγορίες εντός της εφαρμογής, μια για κάθε διαφορετική ταχύτητα στροφων στρο-

βιλοϋπερπληρωτή που επιτεύχθηκε. Μια αρχική εκτίμηση των στροφών δόθηκε μέσω θερ-

μοδυναμικού μοντέλου που εφαρμόστηκε στην πειραματική κλίνη, για να μας βοηθήσει να

κατηγοριοποίησουμε τα διάφορα ηχητικά αποσπάσματα που προέκυπταν.

Επιπρόσθετα, ελέχθηκαν τέσσερις διαφορετικοί συνδιασμοί αριθμού κύκλων εκπαίδευσης (επο-

χές ή epochs) και αριθμού ηχητικών αποσπασμάτων που τροφοδοτούνται σε κάθε κατηγορία,
καθώς η πλατφόρμα της Google δεν παρείχε άλλες δυνατότηες παραμετροποίησης του παραγό-
μενου μοντέλου. Με την ολοκλήρωση της εκπαίδευσης της εκάστοτε κατηγορίας, τα εξαγό-

μενα μοντέλα εισήχθησαν στην διαδικτυακή εφαρμογή που δημιουργήθηκε στα πλαίσια της

έρευνας. Εξήχθησαν στιγμιότυπα με τα παραγόμενα αποτελέσματα από τις διάφορες φάσεις

εκτέλεσης για την καλύτερη κατανοήση της λειτουργίας της εφαρμογής από πλευράς αναγ-

νώστη. Τέλός παρατέθηκαν συμπεράσματα ως προς την ακρίβεια των παραγόμενων μοντέλων,

μαζί με μερικές προτάσεις για περαιτέρω βελτίωση της εφαρμογής και την δημιουργία καλύτερης

βάσης δεδομένων.

iv

Abbreviations

AI Artificial Intelligence.

CNN Convolutional Neural Network.

CONV Convolutional Layer.

CV Computer Vision.

DFT Discrete Fourier Transform.

DL Deep Learning.

EB Electric Brake.

EM Electric Motor.

FC Fully-Connected Layer.

FFT Fast Fourier Transformation.

ICE Inter Combustion Engine.

LME Laboratory of Marine Engineering.

ML Machine Learning.

NN Neural Network.

OS Operating System.

POOL Pooling Layer.

ReLU Rectified Linear Unit.

RGB Red Green Blue.

SGD Stochastic Gradient Descent.

T/C Turbocharger.

TM Teachable Machine.

v

Contents

Acknowledgements . iii
Abstract . v
Abbreviations . v
List of Figures . x
List of Tables . xi

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Hybrid Integrated Propulsion Powertrain- HIPPO II 2
1.3 Contributions and Engineering Challenges 4
1.4 Thesis Outline . 4

2 Theoretical Background 5
2.1 The AI Roadmap . 5

2.1.1 Artificial Intelligence . 5
2.1.2 Machine Learning . 6
2.1.3 Neural Networks . 7
2.1.4 Anatomy of Neural Networks . 7
2.1.5 Deep Learning . 12
2.1.6 Sound Classification and Convolutional Neural Networks 13

2.2 Training Neural Networks . 18
2.2.1 Transfer Learning . 19
2.2.2 Overfitting and Underfitting . 22

3 Tools and Model Selection 23
3.1 Software and Hardware . 23
3.2 Model Selection . 26

3.2.1 Teachable Machine . 26
3.2.2 Web Environment . 30

3.3 Model Architecture . 38

4 Model Simulation and Results 40
4.1 Transfer Learning on Teachable Machine: Dataset Creation 40

4.1.1 Data Selection . 40
4.1.2 Data Labelling . 43

4.2 Transfer Learning on Teachable Machine: Model Training 44
4.2.1 Training Case No1 . 45
4.2.2 Training Case No2 . 49
4.2.3 Training Case No3 . 52
4.2.4 Training Case No4 . 56

vi

CONTENTS vii

5 Conclusions and Future Work 60
5.1 Conclusions . 60
5.2 Future Work . 61

Appendices 63

A Model Creation Pipeline 64

Bibliography 68

List of Figures

1.1 Cross section from a rotational speed sensor. 1
1.2 3-D representation of the units of the hybrid testbed placed on the bedplate. 2
1.3 Placement of all units on the common bedplate. 3
1.4 Location of the HIPPO-2 testbed in the existing experimental facility at

the LME. 3

2.1 Relations between AI, machine learning, neural networks, and deep learning.[1] 6
2.2 Comparison between the classical programming and machine learning paradigm.[2] 6
2.3 Detailed view of the machine learning paradigm. [2] 7
2.4 Portrayal of a neural networks nodes and weight parameters. [3] 8
2.5 Representation of a neural network node.[4] 8
2.6 Sigmoid Activation Function.[5] . 9
2.7 ReLU Activation Function.[5] . 9
2.8 Convergence of the gradient descent method.[6] 11
2.9 Neural Network model.[7] . 12
2.10 Deep Learning Model illustration.[8] . 13
2.11 Main differences between regular NN (left) and CNN (right).[5] 14
2.12 ConvNet architecture in an Audio Classification problem.[9] 14
2.13 Convolution process of a one-dimensional kernel.[10] 15
2.14 In depth view of a ConvNet.[2] . 16
2.15 Pooling layer operation.[11] . 16
2.16 Spectrograms of the isolated spoken words ”zero” and ”yes”.[2] 18
2.17 Schematic presentation Transfer learning.[2] 18
2.18 De-noising process depicted on spectrograms.[12] 19
2.19 The Freezing Layers technique.[2] . 20
2.20 The Two Models technique.[2] . 21
2.21 Illustration of the Fine-tuning phase.[2] . 21
2.22 Neural Network structure after applying the Dropout technique.[13] 22

3.1 The benefits of doing deep learning in JavaScript.[2] 25
3.2 Creating a new Audio Classification project in Teachable Machine[14] . . . 27
3.3 Training of an audio project in Teachable Machine[14] 28
3.4 Learning Curves provided by Teachable Machine. The Accuracy per epoch

trend presented on the left and Loss per epoch trend on the right 29
3.5 Trained TM audio project with ”under the hood” parameters shown [14] . . 29
3.6 Discrete data sampled for the discrete Fourier Transform [15] 32
3.7 DFT calculation via matrix multiplication [15] 33
3.8 Visual Implementation of the FFT Transformation in the Frequency domain 35
3.9 Windowed FFT helping to localize the frequency content 35
3.10 Visual Representation of the Short-Fourier Transform 36

viii

LIST OF FIGURES ix

3.11 Mel Scale Explained . 37
3.12 Custom Spectrogram with Hanning window created for our website. 38
3.13 Model Architecture . 39

4.1 Indicated Torque Output Steps . 41
4.2 Experimental facility in LME showing the first sampling position (near the

T/C) . 41
4.3 Experimental facility in LME showing the second sampling position. 42
4.4 HIPPO-2 testbed at the experimental facility of LME 42
4.5 Selection of duration and delay(left) and Recording procedure followed in

TM web environment (right) . 43
4.6 Actual Sampling Positions . 43
4.7 Accuracy per epoch (left) and Loss per epoch (right) diagrams as produced

from Teachable Machine web environment 45
4.8 Highest prediction result achieved in 200 Nm required torque output. Screen-

shot taken from the created application web interface 46
4.9 Low predicting results achieved at approximately 124.309 rpm (3rd Step).

Screenshot taken from the created application web interface. 47
4.10 Model’s predicting accuracy rose up to 97% for high T/C speeds (4th Step). 48
4.11 Similar behaviour for demanded torque output of 1000 Nm. Accurate pre-

diction of around 91%. 48
4.12 Accuracy per epoch (left) and Loss per epoch (right) diagrams as produced

from Teachable Machine web environment for the 2nd training case 49
4.13 Model’s predicting accuracy rose up to 78% for low T/C speeds (1st Step). 50
4.14 High predicting scores of around 84% at 124.309 rpm (3rd step) were

achieved. 51
4.15 Snapshot from the created web application, classifying 129.439 rpm with

scores up to 97%. 51
4.16 Snapshot from the created web application, classifying 133.261 rpm with

scores up to 97%. 52
4.17 Accuracy per epoch (left) and Loss per epoch (right) diagrams for the 3rd

training case . 53
4.18 At around 104.631 rpm the model produced consistent and efficient results. 54
4.19 For T/C speeds up to 116.905 rpm, the model prediction scores reached

up to 98%. 54
4.20 For T/C speeds up to 124.309 rpm, the model prediction scores reached

only up to 62%. 55
4.21 The model produced really accurate results for high T/C speeds. Snapshot

from classification of 133.261 rpm. 55
4.22 Accuracy per epoch (left) and Loss per epoch (right) diagrams for the 4th

training case . 56
4.23 As expected, for low T/C speed, approx. 104.631 rpm, the model is unable

to predict correctly. 57
4.24 A much more stable behaviour was recorded while the model was classifying

T/C of approx. 116.905 rpm. 58
4.25 High predicting scores up to 87% were produced while the T/C speed’s were

around 124.309 rpm. 59
4.26 High predicting scores up to 85% were produced while the T/C speed’s were

around 129.439 rpm. 59

LIST OF FIGURES x

5.1 Best prediction scores achieved in all training cases performed, for different
T/C Speeds. 61

A.1 Code pipeline presenting the creation of the model up until inputing it in
our developed web application. 64

List of Tables

3.1 Hardware Specifications . 24
3.2 FFT algorithm Parameters . 34

4.1 Estimated T/C speed for various Torque Outputs 44
4.2 Training Cases . 45
4.3 Training with 100 epochs . 45
4.4 Training with 120 epochs . 49
4.5 Training with 100 epochs . 52
4.6 Training with 50 epochs . 57

xi

Chapter 1

Introduction

This chapter describes briefly the scope of the investigation. It also provides useful infor-
mation about the HIPPO II testbed, in Laboratory of Marine Engineering at the School
of Naval Architecture and Marine Engineering, of the National Technical University of
Athens (NTUA), stating the absence of a monitoring system, that would provide the user
with the necessary information regarding the changes in the Internal Combustion Engine’s
turbocharger speed. It was our belief that the right fit for the experimental facility, would
be the creation an audio classification model by implementing machine learning techniques,
providing an accurate, reliable and maintenance free tool, that would classify the different
sounds produced from the engine’s T/C while at various speeds. The advantages of our
selected method are described briefly in the thesis outline.

1.1 Problem Description and Motivation

The main objective of this thesis is development of an easy to use, cheap but reliable
monitoring system able to detect the changes in the ICE’s T/C speed in the experimental
facility at LME.

The conduction of periodic operational checks of the technical condition of an ICE’s tur-
bocharger in operation, is of great necessity. As a common practice, rotational speed
sensors are used to monitor the T/C speed. The working principal of the rotational sen-
sors, is the transformation of mechanical rotary positions into electric signals that are then
inputted in the engine’s control unit.

Figure 1.1: Cross section from a rotational speed sensor.

1

CHAPTER 1. INTRODUCTION 2

Unfortunately, during the installation of the HIPPO-2 powertrain, the ICE had no such
equipment preinstalled. As we can see in Figure 1.1, in order to fit the T/C with an
aftermarket solution, the structural integrity of the T/C could be severely affected, as we
would need to penetrate the housing in order to fit the sensor.

A 2021 research named Acoustic Method for Estimation of Marine Low-Speed Engine
Turbocharger Parameters describes a diagnostic method on the determination of the blade
harmonics in the turbocharger, while also calculating the main rotor speed by analyzing
the produced acoustic signals.[17] It was very interesting to see that machine learning
techniques were used to classify environmental sounds, in order to track and monitor the
behaviour of various species. A research named Bat detective—Deep learning tools for
bat acoustic signal detection, proposed that state-of-the-art deep learning techniques can
provide really accurate data for automatic detection and monitoring of bat population,
by analysing the various sounds that bats produced while travelling, mating etc. All the
above lead us in the conclusion that it would be a perfect fit for our problem, to devise a
method able to estimate T/C speeds, by analysing the sounds produced by it at various
speeds by implementing deep learning techniques.

1.2 Hybrid Integrated Propulsion Powertrain- HIPPO II

Figure 1.2: 3-D representation of the units of the hybrid testbed placed on the bedplate.

The HIPPO-2 hybrid diesel-electric power plan, comprises of an internal combustion engine
(ICE) in a serial connection to an electric motor (EM). In such configuration as presented
in Figure 1.2, the rotational speed of the ICE and EM are identical and the supplied
torques add together in order to maintain the total torque demand applied by an electric
motor brake (EB).[18] Based on the large experience gained from it’s predecessor the
HIPPO-1 testbed, this next generation testbed comprises of some state-of-art components
aiming for increased flexibility in operation and more accurate control and measurement

CHAPTER 1. INTRODUCTION 3

capability. A list of it’s main components is presented below,

• ICE: CATERPILLAR® 6-cylinder 9.3 liter 4-stroke industrial diesel engine, model
C9.3, producing 261 kW at 1800-2000 rpm, with max torque 1596 Nm at 1400 rpm.

• EM: ABB®, AC induction 3-phase motor with rated power of 90 kW at 1483 rpm.

• EB: ABB®, AC induction 3-phase motor with 315 kW load capacity at 1488 rpm .

Figure 1.3: Placement of all units on the common bedplate.

The monitoring and control room is overviewing the installation as shown in Figure 1.4.
The monitoring and high-level control of thermal engine and electric motors of the HIPPO-
2 testbed are implemented based on the dSPACE MicroAutobox II platform, in real time
operation with MatLab/Simulink, using industrial Ethernet and CAN-bus networks.

Figure 1.4: Location of the HIPPO-2 testbed in the existing experimental facility at the
LME.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions and Engineering Challenges

According to the predefined project goal, the contributions and Engineering Challenges of
this thesis are presented in the following list:

• Choose the most convenient tools for developing the application.

• Perform a comparison experiment and create an efficient and fast audio classification
model.

• Develop a user friendly application that performs audio detection on the audio sam-
ples captured from the ICE’s T/C inside the experimental facility.

• Test the limits of the selected model.

• Train the new model.

1.4 Thesis Outline

• Chapter 2 introduces the basic principles of artificial intelligence, machine learning,
deep learning and computer vision, analyzes the NN and CNN architectures and
explains the model training phase.

• Chapter 3 lists the tools used for the development of this thesis and presents the
basic module used to develop our neural network. A brief analysis of the tools
depicted in our web application is provided to the reader for a better understanding

• Chapter 4 lists the several training cases performed, while providing snapshots
taken from the web application user interface were prediction scores achieved are
depicted. It also presents plots recording the loss of each model leading ultimately
in important conclusion.

• Chapter 5 presents the concluding thoughts about this thesis’s targets based on
the extracted results and suggests future work for the next steps of the project.

Chapter 2

Theoretical Background

This chapter contains the theoretical background this thesis is based upon. It’s main pur-
pose would be to familiarize the reader with the tools and methods implemented through-
out this project. The listed citations in the last chapter, can provide a better insight to
the concepts presented in this study. In detail this chapter introduces the basic principles
of artificial intelligence, machine learning, deep learning, speech recognition and sound
classification, analyzes the NN and CNN architectures and explains the model training
procedure.

2.1 The AI Roadmap

Oftentimes, the terms machine learning, artificial intelligence and neural networks (NN)
are used interchangeably. In fact, machine learning is actually a branch of AI whereas
neural networks consist of an assortment of algorithms used in machine learning for data
modelling using graphs of neurons.In this section we will explain briefly the above terms,
as well as, analyse the Neural Network and Convolutional Neural Network structure.

2.1.1 Artificial Intelligence

Artificial Intelligence (AI) is often perceived as an extremely complicated term that is
only related to computers and robots, but nothing could be further from the truth. As
an umbrella term it describes a concept in machines that are able to be intelligent and
complete “smart” tasks, those that were originally thought to require human intelligence.
As the field matured from its beginning in the 1950s thanks to our own understanding
of how the brain works and the growth of technology, computers began to mimic human
decision-making processes. Perhaps the easiest way to understand about artificial intel-
ligence, machine learning, neural networks, and deep learning is to think of them like
Russian nesting dolls as shown in Fig. 2.1. Each is essentially a component of the prior
term[1].

5

CHAPTER 2. THEORETICAL BACKGROUND 6

Figure 2.1: Relations between AI, machine learning, neural networks, and deep learning.[1]

Regarding the last two, it is the number of hidden layers, or depth of neural networks that
distinguishes a single neural network from a deep learning algorithm, where the former
usually comprises of no more than three layers, while the later can have from five up to
150.

2.1.2 Machine Learning

Machine Learning (ML) is a sub-field of AI. It is based on the idea that systems can
learn from data, identify patterns and make decisions with minimal human intervention.
It enables us to tackle tasks that are too difficult to solve with fixed programs written and
designed by human beings helping us overcome the difficulties faced by systems created
with the classical programming philosophy.[19] The main differences between classical
programming and machine learning are schematically depicted in Fig. 2.2

Figure 2.2: Comparison between the classical programming and machine learning
paradigm.[2]

In order to acquire a better understanding of the machine learning concept, a brief analysis
of the steps involved is presented. We can distinguish two main phases: the training and
inference phase as shown in Fig. 2.3. The first one, processes data and answers together
reffered to as training data. Each pair of data with the expected answers is called an
example. Through the use of the examples, the training process produces the discovered
rules. An appropriate blueprint provided by human engineers at the beggining of the

CHAPTER 2. THEORETICAL BACKGROUND 7

training, is actually assisting and directing the machine learning algorithms in their rule
generating task. This blueprint is wrapped in the concept of a model which forms a
hypothesis space for the rules the machine may possibly learn.[2] The results of the training
process are called labels and they are used as reference point for the machine learning
algorithm to calculate and gradually reduce the error in a model’s output. The above
mentioned method describes a style of Machine Learning called supervised learning which
is the one used in this thesis. Besides that, there are other types of ML not implemented in
this thesis such as, unsupervised learning, reinforcement learning, self-supervised learning
etc.

Once the trained model is ready, the learned rules are applied on new data, never before
presented during the training process. In more detail when we are referring to this new
set of learnt rules, we are actually implying that the above methods contributed in finding
a way to effectively transform data into another form, assisting us on solving the task at
hand. This would be the second phase, known as inference phase.

Figure 2.3: Detailed view of the machine learning paradigm. [2]

2.1.3 Neural Networks

Neural Networks (NN) are the heart of deep learing algorithms. They are a subset of
machine learning. Their name and architecture derives from the human brain, mimicking
the way that biological neurons signal to one another. Succesful applications of neural
networks are classifications of handwritten digits, speech recognision, prediction of stock
prices, medical applications etc. Our focus is on neural networks as efficient models for
statistical pattern recognition. Our main concern will be directed to a specific class of
neural networks, namely multilayer perceptron (MLP) in which the input units and output
layer are interconnected with an intermediate hidden layer.[20]

2.1.4 Anatomy of Neural Networks

The basic building block of a neural network would be the neuron reffered also as node
where all mathematical computations take place. One can compare the layers that where
mentinoned above as a mathematical function, mappping an input value to an output
value. However a distinguishing feature between a pure mathematical function and the
NN layers, would be the fact that they are stateful, meaning that internal memory is held.
A layer’s memory is encapsulated by its weights. Simply, weights are a set of numerical
learnable parameters helping with the transformation of input data within the network’s
hidden layers. Figure 2.4 depicts a simple neural network with three hidden layers. The

CHAPTER 2. THEORETICAL BACKGROUND 8

input, hidden and output variables are presented by nodes and weights by links between
the nodes. Arrows denote the direction of information flow through the network.[21]

Figure 2.4: Portrayal of a neural networks nodes and weight parameters. [3]

Activation Function

Activation Functions are specially used in artificial neural networks to transform an input
signal into an output signal which in turn is fed as input to the next layer in the stack.The
accuracy of the prediction produced by our network is contingent upon various factors with
some of the most important being the number of layers used and the type of the activation
function used.[22] As shown in Fig. 2.5, the weighted sum of inputs is nothing more than a
linear transformation. The linear value z is then passed through a non-linear function f(z)
which produces the input for the next layer. There is wide variety of activation functions,
some of them will be briefly analysed in the following chapters.

Figure 2.5: Representation of a neural network node.[4]

CHAPTER 2. THEORETICAL BACKGROUND 9

One of the most widely used activation functions in NN’s is the sigmoid function. This
function takes as input any real value and outputs values in the range between 0 and 1 as
it’s mathematical equation 2.1 suggests. As seen in Fig. 2.6, negative numbers become 0
and possitive numbers transform into 1. A major drawback of the sigmoid function would
be the fact that sigmoids saturate and significantly minimize gradients. Moreover sigmoid
outputs are not zero centered.[5]

σ(x) =
1

1 + e−x
(2.1)

Figure 2.6: Sigmoid Activation Function.[5]

The rectified linear activation function or ReLU for short, solves the problem of saturation
unfortunately only in the positive region meaning that all positive numbers stay uncon-
verted and negative numbers are transformed to zeros. It is one of the most preferable
activation functions due to its computational simpicity and the fact that it functions equiv-
alently to a linear function. Knowing that a neural network is easier to optimize when its
behaviour is linear or close to linear, this property of the activation function assists in al-
most completely avoiding the problem of vanishing gradients. The above implementation
can be seen in the Figure 2.7.[23]

f(x) = max(0, x) (2.2)

Figure 2.7: ReLU Activation Function.[5]

CHAPTER 2. THEORETICAL BACKGROUND 10

The ReLU does have some limitations. In case there are large weight updates, the summed
input of the activation function would always be negative, disregarding the input resulting
that the node will forever output an activation value of zero. This special case of ReLU
function is reffered to as a dying ReLU.[23] Some popular extensions to the ReLU relax
the non-linear output of the function to allow small negative values in some way. The
Leaky ReLU (LReLU or LReL) modifies the function to allow small negative values when
the input is less than zero meaning that this particular function computes:

f(x) = 1(x < 0)(αx) + 1(x > 0)(x) (2.3)

where α is a small constant.

In general this form of activation function is reported as rather successive, however the
results are not always consistent.

The above mentioned functions presented in this thesis are obviously not the only ones.
There are several others used by the machine learning community, such as Tanh, Softmax,
Swish etc.

Loss Function

The nodes, assisted by the aforementioned activation functions aim in transforming the
input throughout the layers to a desired output. It is of great importance to evaluate
how close the produced output is to the expected. For this purpose we are introducing a
rather crucial tool for the functionality of a neural network. The loss function, essentially
computes how poorly our model is performing by comparing what the model is predicting
with the actual value supposed to output. Usually the preferred loss function is defined
by the objective of the model.

It is of great importance for the model to function correctly, the selection of an appropriate
loss function. In every other case, if the calculated results do not express the properties of
true values, the model will be trained on doing the wrong things. Fortunately, there are
simple guidelines that can be followed.[24]

For regression problems where the model has to predict certain values, the loss function
commonly used is Mean Squared Error (MSE).[4]

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.4)

For classification problems where the model has to classify between two classes, the loss
function commonly used is Binary Cross-entropy.[4]

BCE = −(y log(ŷ) + (1− y) log(1− ŷ)) (2.5)

For multi-class classification problems where the model has to classify between more than
two classes, the loss function commonly used is Cross-entropy.[4]

CE = −
k∑
i=1

log(ŷ) (2.6)

CHAPTER 2. THEORETICAL BACKGROUND 11

Optimizer

As mentioned in the previous paragraph, the loss function quantifies how well or poor the
model is performing. The objective would be to minimize the loss, implying that the model
is performing as needed. Generally optimization means, minimizing (or maximizing) any
mathematical expression. That being said, optimizers are algorithms used to update the
parameters of the network such as weghts and biases resulting on minimization of loss.
In order to define the way that weight parameters are being updated, optimizer shall
calculate the gradient (∇) of the loss function. It is clear that many iterations will be
needed in order to evaluate the gradient and the performance of each and everyone of
the updated parameters, not to mention that it would require a lot of time. There is a
better mechanism, frequently used for machine learing namely the gradient descent.[25].
The main idea would be, talking repeated steps in the opposite direction of the gradient,
in search for the direction of the steepest descent and ultimately to the global minimum
of the loss function as shown in Fig. 2.8. Choosing the step size (usually refered to as
learning rate) is one of the most important hyperparameter settings in the training process
of a neural network.[5] Some of the most commonly preferred optimization algorithms are
shortly presented in the following paragraphs.

Figure 2.8: Convergence of the gradient descent method.[6]

To sum up, the goal of any machine learning algorithm would be to minimize loss function
with optimum learning rate to lower error between actual and the predicted values.[25]
Depending on the amount of data used for the gradient descent computation, we differ-
entiate three variants: Batch gradient descent, Stochastic gradient descent and Mini-batch
gradient descent.
Batch gradient descent computes the gradient of the loss function for the entire training
dataset. In order to update one parameter, it would have to calculate the whole dataset
as we can see in equation 2.7, resulting into really slow performance.[26]

θ = θ − η∇θ ∗ J(θ) (2.7)

CHAPTER 2. THEORETICAL BACKGROUND 12

On the other hand, Stochastic Gradient Descent (SGD) performs a parameter update
for each training example x(i) and label y(i) overcoming the obstacle that batch gradient
descent faces, resulting in really fast performed calculation. It should be stated that due
to the frequent updates of the parameters, SGD can create cause the function to fluctuate
heavily and with high variance.

w = w − η∇wL(w;x(i); y(i)) (2.8)

On one hand, SGD’s fluctuation enables it to find potentially a better local minima. On
the other hand this results in a much more difficult convergence to the exact minimum as
SGD will keep overshooting. However, it has been shown that when the learning rate is
slowly decreased, SGD presents similar behaviour to the batch gradient descent.
Having addressed all the above problems, Mini-batch gradient descent takes the best of
both worlds and as it name states, performs an update for every mini-batch of n training
examples. This way, the variance of the parameters update is reduced leading to more
stable convergence. The following equation 2.9 describes the mathematical form of this
type of gradient descent

θ = θ − η∇θJ(θ;x(i:i+n); y(i:i+n)) (2.9)

There are a lot of gradient descent optimization algorithms that are widely used by the ma-
chine learning community to deal with the afformentioned challenges such as ADAM, Mo-
mentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, AdaMax, Nadam,
AMSGrad etc.[26]

Lastly, the schematic representation of the way a Neural Network operates is presented in
Figure 2.9.

Figure 2.9: Neural Network model.[7]

2.1.5 Deep Learning

As mentioned before in this thesis, Deep Learning is subfield of machine learning concerned
with algorithms processing vast amount of data. Deep learning algorithms are based on
learning and improving on their own, mimicking the way human brain operates and gains
certain type of knowledge. While machine learning uses simpler concepts, deep learning

CHAPTER 2. THEORETICAL BACKGROUND 13

algorithms are stacked in a hierarchy of increasing complexity and abstraction.[19] To
be more accurate, deep neural networks are neural networks with a notably number of
layers each responsible for the completion of a certain task, as shown in Fig. 2.10. The
actual number of layers in a deep neural network is referred to as the model’s depth.
While a neural network with a only a few layers can still make approximate predictions,
the additional hidden layers found in the deep neural network models contribute in the
models ability on learning, only be exposure to training data.

Figure 2.10: Deep Learning Model illustration.[8]

2.1.6 Sound Classification and Convolutional Neural Networks

Convolutional Neural Networks (CNN)

The main principles which Convolutional Neural Networks operate, are similar to the
above mentioned neural networks. Actually a CNN is a multilayered neural network with
a special architecture to detect complex features in data (Image recognition, audio classi-
fication etc.).[27] They comprise of nodes with learnable weights and biases. Every node
receives inputs and performs a dot product and optionally follows it with non-linearity.[5]
A loss function is being used to evaluate the performance of the network, triggering an
optimizer in order for the weight parameters to be updated.

Having mentioned the above, it can be easilly stated that these two machine learning
algorithms operate and behave the same way. The main difference between them, is the
way the nodes are arranged throughout the layers. Hidden layers are layers between the
input and output layer. In a typical NN, each hidden layer is connected to all nodes in
the previous layer. Nodes in a single layer function completely independently and do not
share any connections resulting in the creation of large numbers of weight parameters as
the size of input data increases. As stated in section 2.1.6, sound can be interpreted as

CHAPTER 2. THEORETICAL BACKGROUND 14

an image, which proves to be really helpful when working with CNN’s. Contrary to a
regular NN, the layers of a CNN have nodes arranged in three dimensions: widht, height,
depth.[5] Figure 2.11 visualizes the above mentioned differences between the two types of
architecture.

Figure 2.11: Main differences between regular NN (left) and CNN (right).[5]

Anatomy of a Convolutional Neural Network

By taking a closer look at the anatomy of CNN’s, we can distinguish three main types
of layers: Convolutional Layers (CONV), Pooling Layers (POOL) and Fully-Connected
Layers (FC). All together stacked, form the ConvNet architecture.[5] A typical CNN
performing an Audio Classification task is structured by:

• An INPUT layer that holds the raw pixel values of the spectrogram image (for more
details see subsection 2.1.6), with shape [imageWidth, imageHeight, 3]. The number
3 represents the RGB (red, green, blue) color values of a pixel at given coordinates.

• A repeated pattern of CONV, RELU, FLATTEN, DENSE layers. ReLU layers (not
depicted in Figure 2.12) apply the element-wise activation ReLU function described
in the subsection 2.1.4.

• An FC layer. Nodes in a fully connected layer have full connections to all activations
in the previous layer, as seen in regular Neural Networks. Their activations can hence
be computed with a matrix multiplication followed by a bias offset.

Figure 2.12: ConvNet architecture in an Audio Classification problem.[9]

As depicted in Figure 2.12, the Convolutional Layer is the first layer we come across in
a CNN and is liable for the most demanding computational tasks. It comprises a set of
learnable filters called convolutional kernels, or simply kernels. Every kernel is responsible
for filtering through the full depth of the input layer as shown in Fig. 2.13. Simply to be
put, kernel is a matrix that moves over the input data, performs the dot product with the
sub-region of input data and gets the output as the matrix of dot products.

CHAPTER 2. THEORETICAL BACKGROUND 15

Figure 2.13: Convolution process of a one-dimensional kernel.[10]

For example a typical kernel size on a first layer of a ConvNet would be 5x5x3. The first
digit stands for the width, the second for the height and the third presents the colour
channel RGB short for Red, Green and Blue. As the kernel slides over the width and
and height of the input volume, a 2-dimensional activation map is produced giving the
response of that kernel at every position.[24] After going throughout the whole dataset,
an entire set of activation maps will be created, enabling the network to intuitively learn
which kernels activate resulting in the recognition of a specific pattern of a visual feature.
Bundling all activation maps along the depth dimension, the output volume is produced.[5]
In more detail, a convolution layer consists of:[2]

• Kernel size: e.g. 3x3, 5x5

• Depth: number of filters used, each learning to look for something different in the
input. (Unlike the input image, the depth in the output tensor doesn’t actually have
to do with colors.)

• Stride: the size of the kernel’s step.

• Zero-padding : the amount of zeros padded around the output volume.

As mentioned before, in audio classification problems the audio is depicted as a spectro-
gram (see paragraph 3.2.2 for more), a visual interpretation of the signal strength, helping
CNN’s to classify input data in a way similar to image classification. For a better under-
standing of a ConvNet’s architecture Fig. 2.14 is presented. The input image, for the sake
of simplicity, is of shape [width: 5, height: 3, color channels: 2]. The convolutional layer
is defined by kernel size: 3x3, depth: 3, stride: [1, 1] and zero-padding: 0.

CHAPTER 2. THEORETICAL BACKGROUND 16

Figure 2.14: In depth view of a ConvNet.[2]

Another building block of a CNN is the pooling layer. Its function is to progressively reduce
the amount of parameters (meaning the filters that where created in the convolution layer)
and computation in the network. Pooling layer operates in each activation map separately.
The most frequent approach used in pooling is max pooling. A pooling layer is also defined
by:

• Pool Size

• Stride

In Fig. 2.15 we can see a Pooling layer performing max pooling operation with poolSize:
2x2 and stride: [2,2] [11]

Figure 2.15: Pooling layer operation.[11]

CHAPTER 2. THEORETICAL BACKGROUND 17

Sound Classification tasks performed by ConvNets

Sound Classification is probably one of the most broadly used applications in Audio Deep
Learning. The scope of the problem, would be to classify accordingly all the sounds
presented and successfully predict the category of that sound. This type of problem can
be applied to many different type of scenarios such as:

• Music Clip Classification to identify the genre

• Speech Recognition

• Signal Processing

• Environmental Sound Classification

Both image and audio classification were challenging tasks for a machine to do until Arti-
ficial Intelligence and neural networks came to the scene. At the beginning, Image Clas-
sification Models such as EfficientNet, MobileNet, VGG etc. where producing sufficient
results and became more popular in the machine learning community. All the aforemen-
tioned ConvNets are able to perform computer vision tasks. As mentioned in this thesis,
neural networks and machine learning tend to mimic and interpret in computer language,
human perception. Surely, it there is not just vision but also audio. The question that
rose was, if it were possible to used the so far established knowledge on ConvNets and
Image processing, in audio classification.

As in any deep learning application, in order to understand how the model works we need
to understand the data. In this particular case, a sound signal is produced by variations in
air pressure. A microphone pick’s up the changes and converts them into electrical signals
which then are digitalized by a compute’s sound card.[2]

Key layers of a convnet, exploit spatial relations in 2D spaces resulting in a compatibility
problem, regarding the fact that sound data are presented in 1D arrays. It turns out,
that sounds can be represented as special types of images called spectrograms. Spectro-
grams not only make it possible to apply convnets on sounds but also have theoretical
justifications beyond deep learning. A spectrogram of a signal can be characterized as
a ”photograph” of it. They are produced using Fourier Transform (see subsection 3.2.2)
to decompose any signal into its constituent frequencies.[2] They possess some rather in-
teresting properties. Firstly, they save space, meaning the the number of float numbers
in a spectrogram is usually a few times less than the number of float values in the raw
waveform. They are corresponding to how hearing works in biology. A structure inside
our ear called cochlea essentially performs the biological version of the Fourier transform,
by decomposing different frequencies which are then picked up by different set of audi-
tory neurons. Lastly, as shown in Fig. 2.16 the spectrogram representation makes speech
sounds much different. In this thesis, spectrograms played a crucial role not only in help-
ing the ConvNet perform all the above mentioned tasks, but also helped us understand
the way the T/C performed throughout the sampling process.

CHAPTER 2. THEORETICAL BACKGROUND 18

Figure 2.16: Spectrograms of the isolated spoken words ”zero” and ”yes”.[2]

2.2 Training Neural Networks

The accuracy of a neural network is increased when many examples are fed to it during the
training phase. As mentioned before, the input data goes through the layers, producing
an output. Then, the loss function is calculated and compared with the actual values.
The results are then fed to the optimizer, so that the weights are parameterized in a way
to minimize the loss function until the desired accuracy of the model is achieved. Some
worth mentioning parameters of the models training phase are the following:

• Input Data: data fed into the model. In this thesis, input data is raw audio, depicted
as an image-like state (spectrogram) compatible with the CNN architecture.

• Labels: desired output of the model for each input data, created by a time-consuming
procedure called labeling [24]

• Batch Size: number of input processed data by the model. A bigger batch size is
prefered to a smaller one in order to avoid gradient variation, resulting in increased
weight updates of the model. It should also be taken into consideration that the
larger the batch size the more memory would be required while training.[2]

• An Epoch describes the number of iterations performed on every batch

• Validation Split depicts the percentage of data used while evaluating the model,
about 15% of the initial data. In order to avoid overfitting problems (see subsection
2.2.2), validation loss and accuracy should be closely monitored, while training.

Figure 2.17: Schematic presentation Transfer learning.[2]

CHAPTER 2. THEORETICAL BACKGROUND 19

2.2.1 Transfer Learning

In Fig. 2.17, the workflow of a rather useful and time-saving technique used in machine
learning called Transfer Learning is described. The better the training data, the better
the performance of the model. Oftentimes, there are cases in which, the available data
proposed for the model’s training are inadequate and the task to be accomplished is rather
complicating i.e object detection, sound classification etc. There are a few proposed ways
to tackle this problem. Firstly, data augmentation is a technique where sound for example,
is manipulated in such way that the new dataset created would result in better training
results. Applying low-pass or high-pass filters would allow frequencies bellow (or above)
a certain threshold to pass in our signal, resulting in the creation of spectrogram with
less interference and finally a new dataset which would benefit the model’s training phase.
De-noising methods usually prove to be helpful be filtering out background noise resulting
in spectrograms with less data thus creating a new dataset way more friendly during the
training phase. An example of the above mentioned method is presented in Fig. 2.18.

Figure 2.18: De-noising process depicted on spectrograms.[12]

Transfer Learning, could be defined as the reapplication of a pre-trained model used to
speed up a new learning task by reusing the results of previous learning. This technique
is proven to work along with data augmentation. The general idea would be to use
the knowledge a model has gained from a previews training process to a different but
at the same time related problem.[28] This design methology was also implemented in
this particular thesis project by using Google’s Techable Machine to perform a sound
classification task. Mostly transfer learning is applied in computer vision and natural
language processing tasks due to the huge amount of computational power required. The
already trained model is reffered to as the base model. Transfer learning sometimes involves
retraining the base model and sometimes involves creating a new model on top of the base
model. We refer to the new model as the transfer model.[2] Some of the most common
approaches for transfer learning are briefly analysed in the following paragraphs.

CHAPTER 2. THEORETICAL BACKGROUND 20

Freezing Layers

Figure 2.19: The Freezing Layers technique.[2]

There are plenty of ways to achive greaters speed in the training phase of the model. One
technique assisting us accomplish the above is the Freezing Layers technique. Freezing a
layer in context of neural networks is about controlling the update of the weights.[29] One
way to implement this technique, would be to restrict the update of the weight parameters
during training phase, resulting in a significant reduction of the time need for the model
to train. It should be stated that before the new dataset is fed to the network, all layers
except the last ones (known as head of the model), should ”freeze”. This technique is
frequently used when the desired shape of the output is congruent with the base model.[2]
All the above, are explained in Figure 2.19.

Two Models

Contrary to the freezing layers technique, Two Models technique apply in cases that the
output shape differs from the input. The head and base model are removed resulting in
the creation of a new modified model, namely truncated model. The output of this model
is then used as an input to a much smaller model which operates as a new independent
head model producing the desired output shape.[24] A major advantage of this technique
would be the fact that the outputs of the truncated model (known as embedding tensors)
are directly accessible, making the ability to perform classification tasks way easier. One
the other hand complexity increases, having to deal with two models.[2] In Figure 2.20 a
schematic presentation of the two model technique, implemented on a webcam controlled
model, using MobileNet as the base model.

Single Model

In order for this technique to be implemented, a different shape in the output and input
layer is required. In this case, a new model is created, containing the feature extracting
layers of the original model and those of the new head. To accomplish that, an extra
step between the truncated model and the new head is needed, so to combine them into
a single one, defined by the input and output of the two models respectively.[24]

CHAPTER 2. THEORETICAL BACKGROUND 21

Figure 2.20: The Two Models technique.[2]

Fine Tuning

As last, optional step is Fine-Tuning, which consists of unfreezing the entire model ob-
tained (or even a part of it) and re-training it on the new data with the lowest learning rate
possible. This can potentially achieve meaningful improvements, by incrementally adapt-
ing the pretrained features to the new data.[30] Fine-tuning achieves a robust connection
between the truncated model and the new head, resulting in an increase in accuracy. The
layer’s unfreezing process is depicted in the Fig. 2.21.

Figure 2.21: Illustration of the Fine-tuning phase.[2]

CHAPTER 2. THEORETICAL BACKGROUND 22

2.2.2 Overfitting and Underfitting

The main cause of poor performance in machine learning is either caused due to overfitting
or underfitting the data. A model that doesn’t classify well the sounds presented is said
to be underfit. whereas the model that classifies paterns to well, to the extent that what
it learns generalizes poorly to new datais said to be overfit.[2]

Underfitting

Usually an underfitted model is the one that can neither model the training data nor
generalize to new ones. To overcome underfitting, we usually tend to create a more
powerful model by making it bigger, meaning that some more layers are added with an
increased size.[2]

Overfitting

Overfitting in general refers to a model that is training data to well. This occurs when
noise or random fluctuations in the training data is picked up and learned as concepts by
the model. The problem is that these concepts do not apply to new data and negatively
impact the models ability to generalize.[31] A few good ways to limit overfitting are the
following:

• L2 regularizer : Also called regularization for simplicity.A positive loss is assigned to
the weight by calculating the summed squares of parameter values of the weight. L2
regularization forces weights toward zero without giving them exactly that value.

• L1 regularizer : Like L2 regularization, L1 regularization gives output in binary
weights from 0 to 1 for the model’s features and is adopted for decreasing the number
of features in a huge dimensional dataset. L2 regularization disperse the error terms
in all the weights that leads to more accurate customized final models.

• Combined L1-L2 regularizer : A weighted sum of L1 and L2 regularization losses.

• Dropout : The key idea is to randomly drop out units (along with their connections)
from the neural network during training, preventing them from co-adapting to much
as shown in Fig. 2.22. [13]

• Batch normalization: Learns the mean and standard deviation of its input values
during training and uses the learned statistics to normalize the inputs to zero mean
and unit standard deviation as its output.

• Early stopping of training based on validation-set loss: Stops model training as soon
as the epoch-end loss value on the validation set stops decreasing.

Figure 2.22: Neural Network structure after applying the Dropout technique.[13]

Chapter 3

Tools and Model Selection

Sound classification with the use of neural networks can be without a doubt a really
demanding task. In order to achieve the goals of this thesis the most appropriate tools
were chosen. This chapter presents the hardware and software setup that covered the needs
of this project. A short introduction in Signal Processing and Fast Fourier Transform is
presented. In addition, Google’s Teachable Machine, the basic tool of this thesis is
introduced to the reader.

3.1 Software and Hardware

Few years ago, deep learning tasks such as image and audio classification were inconceiv-
able for individual researchers and developers, requiring extreme amounts of computational
power and in detail knowledge of neural networks architecure and principles. Leading
corporations in this field, such as Google, would use TPUs short for Tensor Process-
ing Units a custom developed application-specific intergrated circuits used to accelerate
machine learning workloads, allowing them to perform deep learning computations with
huge dataset.[32] GPUs (Graphics Processing Units) and CPUs (Central Processing Units)
found in personal computers couldn’t handle the vast amount of calculations performed
during the training process. However, nowadays with the advance in material technologies,
high performance personal computers are available in more affordable prices resulting in
an increase in the number of individual researchers and developers getting involved with
deep learning tasks. Cloud computing, the enormous amount of available data and the
development of more advanced algorithms has led to the rise of deep learning.

Hardware

All data collected and augmented for this thesis, front-end and back-end development,
training and testing of the neural network were performed in a laptop. A quick review of
its specifications is presented in Table 3.1 bellow:

23

CHAPTER 3. TOOLS AND MODEL SELECTION 24

Table 3.1: Hardware Specifications

Specification Value

Laptop Model Lenovo ThinkPad E450

CPU Intel® Core™ i7-5500U CPU @ 2.40GHz × 4 threads

GPU AMD® Radeon R7 M260 / Intel® HD Graphics 5500 (GT2)

RAM Memory 8 GB

Disk Capacity 500 GB SSD

Operating System

The choice of a suitable operating system (OS), would benefit our project in many ways.
An OS easy to program on, with simple configuration and high processing speeds would
make our task, much easier. As the main operating system was the pre-installed Windows
10, we decided to convert the computer to a dual boot system. We choose to work with
Ubuntu 18.04.05 LTS and not with the latest version of Ubuntu distributors available,
due to some errors presented during the installation phase. In any case, Ubuntu is the most
preferred Linux based OS when one wants to perform Machine Learning tasks. Being the
most popular distributor, results in having a great online community with users presenting
their problems and suggesting solutions which proved to be really helpful throughout the
whole project. The vast community in sites such as GitHub, AskUbuntu, Stack Overflow
etc. with questions and solution in almost every problem that came across our project,
endorsed our decision to run with the above mentioned OS.

Programming Language

While most machine learning tasks, are performed with more ”traditional” backend-
focused languages like Python and R, our goal was to create a web based user friendly
environment, were everyone would be able to understand and interact with. We choose
Javascript as the project’s main development language, obviously along with CSS and
HTML for the frontend part of the application. As stated before in this thesis, the train-
ing of deep neural networks requires high computational power, not always available at
the browser tab. Mostly due to the extensive amount of data processed, back-end based
programming language would help significally reduce the time required for the training
process.[2] However, with the release of TensorFlow.js library for machine learning (be-
fore, it was only available as TensorFlow, working with Python and C++) and Node.js
for backend-development and the latest updates in Google’s Teachable Machine in Au-
dio models, training an audio model in the browser seem to be a feasible task. A few
advantages of deploying deep learning in JavaScript are presented in Figure 3.1 below.

CHAPTER 3. TOOLS AND MODEL SELECTION 25

Figure 3.1: The benefits of doing deep learning in JavaScript.[2]

Deep Learning Libraries

The most appropriate library for our project, was TensorFlow.js. Being totally compat-
ible with its predecessor TensorFlow, the Python framework for deep learning, one can
imagine that this library would assist us, in the best way possible. After researching on-
line, we found a wide variety of machine learning libraries available to fit each developers
needs such as brain.js, ConvNetJS, Deeplearn.js etc. Firstly, due to the fact that Google’s
Teachable Machine, uses TensorFlow.js as its basic library for performing audio classifi-
cation tasks was one of the key parameters, assisting us in choosing the most appropriate
library for our prpject. Another great aspect of this library is its comprehensiveness. Some
key parts are presented below: [2]

• Supports both inference and training.

• Supports web browsers and Node.js.

• Leverages GPU acceleration (WebGL in browsers and CUDA kernels in Node.js).

• Supports definition of neural network model architectures in JavaScript.

• Supports serialization and de-serialization of models.

• Supports conversions to and from Python deep-learning frameworks.

• Compatible in API with Python deep-learning frameworks.

• Equipped with built-in support for data ingestion and with an API for visualization.

CHAPTER 3. TOOLS AND MODEL SELECTION 26

The second reason is the ecosystem. Most JavaScript deep-learning libraries define their
own unique API, whereas TensorFlow.js is tightly integrated with TensorFlow and Keras.[2]
Furthermore, the fact that most applications nowadays are programmed in JavaScript, a
great online community has formed, with users from all over the world posting their
problems and possible solutions, helping in the improvement of the language and the
enhancement of its libraries (i.e TensorFlow.js)

3.2 Model Selection

The inspiration for this thesis, derives from the need of monitoring the Turbocharger’s
speed in the Hybrid Integrated Propulsion Powertrain (HIPPO-2) of NTUA’s Laboratory
of Marine Engineering. Until now monitoring and controlling of the testbed was accom-
plished through DSpace Microautobox II with the use of MATLAB/Simulink via Ethernet
and CAN-bus. A general mapping with the use of the above mentioned software has been
performed, providing us with the appropriate data needed to perform the classification
task.

Many studies have been conducted, focusing on environmental sound classification as it
is proven to be a very accurate way to monitor various ecosystems health. Birds sound
classification[33], bat detection[34] are some really interesting projects, inspiring us to
tackle our task in a similar way. It is of great interest in the machine learning community,
how would image classification models perform sound classification tasks. It turns out that
spectrograms can be treated as images, meaning that they can be used in standard neural
networks architectures such as AlexNet or ImageNet producing state of the art results.
To be precise, AlexNet model achived 78% on the GTZAN music genre classification
dataset.[35] Our major concern was the fact that, all the above mentioned researches,
have a few problems presented bellow:

• The tests were performed neither in JavaScript or Node.js

• The machine learning library used was not TensorFlow.js

• The tests were not executed in browser, but instead in powerful computer systems.

The question that rose was, if it would be possible to perform audio classification tasks with
relevant accuracy in a browser tab. Surely, in order to conclude if the above mentioned is
feasible we had to conduct an experiment, by creating a small audio dataset, thoroughly
selected in order to cover some cases regarding the distance from the source of the sound,
background noise etc.

3.2.1 Teachable Machine

Google’s Teachable Machine is a web-based tool that makes creating machine learning
models fast, easy, and accessible to everyone. It’s main goal would be to help individuals
with low or even no expertise in the field, to perform machine learning tasks in a browser
tab. It performs three main operations:

• Image Recognition

• Audio Classification

• Video/Pose recognition

CHAPTER 3. TOOLS AND MODEL SELECTION 27

This web-based application, combines all stages of creating a machine learning model
meaning that it allows the user to create the desired dataset, train the model and finally
test it. With the use of Transfer Learning technique (see subsection 2.2.1) allows the user
to create and even export a machine learning model without having to code anything. The
Audio Classification tasks performed by TM assisted us for the completion of this project.
A brief analysis of the basic working principals for the Audio Classifications operations,
are presented in the following paragraphs.

Teachable Machine User Interface

Figure 3.2: Creating a new Audio Classification project in Teachable Machine[14]

Google’s Teachable Machine main focus as a project, would be to get more people in-
volved in Machine Learning tasks, without any specific coding knowledge, just by using
their webcamera, built-in microphone, or sounds. The complexity of this tasks, is hidden
from users, who simply benefit by needing less data and training time to create useful
and accurate ML models. Since launch, people have trained over 125,000 classification
models. It provides an approachable yet well-featured interface for children and adults to
create their own ML classification models through its website. It enables users to train
classifiers for an arbitrary number of classes, provides data collection and classification,
model training, and model evaluation in the same interface, and trains on-device (which
results in faster performance and enables training to be free).[36]

Creating and Exporting a Model

The same procedure followed while creating a ML classification model is also followed
when the user initiates the creation of a new project in the TM environment. All common
steps i.e model-data collection and classification, training and evaluation are performed by
Teachable Machine and are presenter to the user only if decided so. This technique assists
novice users experiment with this platform without getting into more confusing details,
allowing at the same time researchers and in general more advanced users to make the
most of this powerful tool.

CHAPTER 3. TOOLS AND MODEL SELECTION 28

To begin with, user first selects whether the model should classify images, sounds or poses
as input (see Fig 3.2). For the purposes of this thesis project only sound classification
operations were performed. Secondly, according to users preferences, classes are created,
for the model to learn to classify. As Figure 3.3 shows, for variable engine outputs measured
in the dynamometer, different sound snippets were recorded and classified in order to help
the model in training and classification process. After having all required sound data
gathered, by clicking the Train Model button, TM training is initiated. In the meantime,
some messages pop up in the browser tab, notifying the user to stay in the tab until
the training process is completed. For a more experienced user who requires more control
during training, TM provides an ”advanced” training section for hyperparameter tweaking
(i.e epochs, batch size, learning rate) and an ”under the hood” panel for model evaluation
visualizations. Unfortunately, for audio classification projects, only epochs and overlapping
can be parameterized by the user. More will be discussed in the following subsection.

Figure 3.3: Training of an audio project in Teachable Machine[14]

Advanced Options and Model Evaluation

Despite being an easy to operate web tool enabling novice users to get involved with ML
tasks, Teachable Machine has offers a few advanced options for those who want to have a
closer look during the training process. As pictured in Figure 3.3 while TM is training the
model, by clicking the Advanced button, the user is able to select the preferred number of
epochs. Furthermore another option namely ”Under the Hood” is presented to the user.
By enabling it, a new section is displayed were a few model evaluation visualizations are
shown. In detail, the user comes across two plots depicting the accuracy of the model per
epoch and the loss per epoch. As epochs, we encounter the number of iterations which
the model has gone through the entire dataset. If for example the model has been set
for 60 epochs, this means that the model trained, will work through the entire dataset 60
times.[14] It should be stated that in both diagrams two different curves are presented.
The one with the blue colour monitors the test set, created by the user while entering data
in the classification process and orange which monitors the trained models correspondence
to the new data given through the microphone. The Accuracy per epoch plot provides some
useful information regarding the model’s performance. The higher the curves rise, as we
go through the epochs, the better it performs. The Loss per epoch provides the user with

CHAPTER 3. TOOLS AND MODEL SELECTION 29

some really significant intel, regarding the model’s overfitting or underfitting behaviour.
The training loss(blue colour) indicates how well the model is fitting the training data,
while the validation loss(orange colour) indicates how well the model fits new data. The
above trends observed in Figure 3.4 are also known as Learning Curves.

(a) (b)

Figure 3.4: Learning Curves provided by Teachable Machine. The Accuracy per epoch
trend presented on the left and Loss per epoch trend on the right

Teachable Machine allows the user to interfere with the Overlap Factor. Simply to be put,
the overlap factor determines how frequently the last second of audio is tested against the
created model. For example in an model with overlap rate of 0, audio will be classified
every second, whereas with 0.5 overlap audio will be classified every half a second and so
on. All the above mentioned, are shown in Figure 3.5 as depicted in Teachable Machine’s
UI.

Figure 3.5: Trained TM audio project with ”under the hood” parameters shown [14]

CHAPTER 3. TOOLS AND MODEL SELECTION 30

Speech Commands Recognizer

Teachable Machine, performs all this various tasks, by implementing the technique of
Transfer Learning. In detail, a base model called Speech Commands Recogniser is already
pretained with the Speech Commands 18w dataset.[37] Speech Command Recognizer is
a JavaScript module that enables recognition of spoken commands comprised of simple
isolated English words from a small vocabulary. The default vocabulary trained with
Speech Commands 18w dataset includes the following words: the ten digits from ”zero”
to ”nine”, ”up”, ”down”, ”left”, ”right”, ”go”, ”stop”, ”yes”, ”no”, as well as the addi-
tional categories of ”unknown word” and ”background noise”. It uses the web browser’s
WebAudio API. It is built on top of TensorFlow.js and can perform inference and transfer
learning entirely in the browser, using WebGL GPU acceleration.[38] In detail, the end
user in Teachable Machine web interface interacts only with the classification layer, which
is actually the only layer trained with our new dataset. While creating a new project, the
above mentioned layer is depicted in the webpage as shown in Figure 3.2.

3.2.2 Web Environment

Since, the preferred language for this project is JavaScript, it was decided to take advantage
of it by creating a custom web page to present our audio classification model. However,
it was necessary to provide the reader with a deep analysis of how sound is processed in
a way that allows the model to understand it. Taking into consideration that the tools
presented in the webpage, assisted us in preprocessing and labelling the audio samples, a
brief analysis in Fast Fourier Transformation, spectrograms and the bar graphs is offered
in the following paragraphs.

Fast Fourier Transformation - FFT

The Fast Fourier transform (FFT) is an efficient algorithm used for converting a time-
domain signal into an equivalent frequency-domain signal, based on the discrete Fourier
transform (DFT).[39] The Fourier transform can be powerful in understanding and also
troubleshooting errors in everyday signals. Although the Fourier transform is a compli-
cated mathematical function, it isn’t a perplexing concept to understand and relate to
your measured signals. Essentially, it takes a signal and breaks it down into sine waves
of different amplitudes and frequencies.[40] The FFT is one of the most commonly used
operations in digital signal processing to provide a frequency spectrum analysis.

In general, Fourier transformation allows us to describe a complicated function as an
infinite summation of sines and cosines. With the use of DFT, we try to approximate the
Fourier Series on a finite interval were the function is periodic. The Fast Fourier Transform
algorith, could be described as computational efficient way for calculating the DFT. For
the sake of completeness, in the following paragraphs short mathematical analysis of the
above mentioned concepts is presented.[15] Firstly, we come across the Fourier Series. A
fundamental result of Fourier Analysis in general, is that if a f(x) is periodic and piecewise
smooth, it could be written in terms of a Fourier Series as described in equation 3.1 below:

f(x) =
a0

2
+
∞∑
k=1

(akcos(kx) + bksin(kx)) (3.1)

CHAPTER 3. TOOLS AND MODEL SELECTION 31

The Fourier series for an L-periodic function on [0,L] is given by the following equation

f(x) =
a0

2
+

∞∑
k=1

(akcos(
2πkx

L
) + bksin(

2πkx

L
)) (3.2)

Due to the fact, that we are expanding functions in terms of cosine and sine, Euler’s
Formula is implemented in order to describe the Fourier Series in a complex form as
shown below,

eikx = cos(kx) + i sin(kx) (3.3)

and finally by combining all the above, Fourier Series is produced:

f(x) =
∞∑

k=−∞
Cke

ikπx/L (3.4)

with Ck the complex coefficient being equal to:

Ck =
1

2L

∫ L

−L
f(x)e−ikπx/Ldx (3.5)

Restating all the above, as shown in equation 3.2, f(x) is now presented by a sum of sines
and cosines with a discrete set of frequencies given by ωk = kπ/L. Taking the limit as
L→∞, these discrete frequencies become a continuous range of frequencies. By defining
ω = kπ/L, ∆ω = π/L and by taking the limits accordingly meaning that L→∞, ∆→∞,
the Fourier Transform is presented:

f(x) = lim
∆ω→0

∞∑
k=−∞

∆ω

2π

∫ π
∆ω

− π
∆ω

f(ξ) e−ik∆ωdξ eik∆ωx (3.6)

By further analysing equation 3.6 one can observe that, while ∆→∞ the sum presented
in the equation becomes a Riemann integral as listed below,

f(x) =

∫ ∞
−∞

1

2π

∫ ∞
−∞

f(ξ)e−iωξ dξ eiωx dx (3.7)

with f̂(ω) representing the Fourier Coefficients:

f̂(ω) =

∫ ∞
−∞

e−iωξdξ (3.8)

CHAPTER 3. TOOLS AND MODEL SELECTION 32

For the sake of completeness, the following integrals known as the Fourier Transform
Pair are presented. These two integrals, assist us in calculating the Fourier Transform
given the f(x) function and the so called Inverse Fourier Transform given the Fourier
Coefficients f̂(x),

f(x) = F−1(f̂(ω)) =
1

2π

∫ ∞
−∞

f̂(ω)eiωxdω

f(x) = F(f(x)) =
1

2π

∫ ∞
−∞

f(x)e−iωxdx,

(3.9)

When computing and working with real-data (i.e sound), it is necessary to approximate
the Fourier transform on discrete vectors of data. Simply to be put, lets think of the way
that sound is transformed from analogue to digital form, so that it can be understood
from computers. Like all physical phenomena sound is considered analogue or continuous.
By going through the process of sampling we can convert analogue sound to digital with
the use of an ADC short for Analogue to Digital Converter device, by reading and storing
the instantaneous amplitude of the analogue sound wave at regular intervals of time. Lets
think of each individual point presented in Figure 3.7 as these readings mentioned before.

Figure 3.6: Discrete data sampled for the discrete Fourier Transform [15]

As its name suggests, a vector of data f is created by discretizing the function f(x), were
discretizing in our case is the process of sampling. For each of this individual data points
in the above mentioned vector, its Fourier Coefficient f̂k shall be calculated. The simplest
formulation of the DFT is as follows:

f̂k =
n−1∑
j=0

fje
−i2πjk/n (3.10)

Essentially, the DFT is a matrix that maps data points f to the frequency domain f̂ :

{f1, f2, · · · , fn} ⇒
{
f̂1, f̂2, · · · , f̂n

}
(3.11)

CHAPTER 3. TOOLS AND MODEL SELECTION 33

For a given number of points n, the DFT represents the data using sine and cosine

functions with integer multiples of a fundamental frequency, ωn = e−2πi/n. DFT is finally
calculated by matrix multiplication as follows: [15]

Figure 3.7: DFT calculation via matrix multiplication [15]

Surely a major drawback of DFT, is the fact that a tremendous amount of computation is
needed, as it involves a dense n x n matrix, requiring N2 operations. The Fast Fourier
Transform is closely connected to the DFT, by assisting us to calculate it faster requiring
only N log(N). As N becomes very large, the log(N) component grows slowly and the
algorithm aproaches a linear scaling[15]. This algorithm was developed by James W.
Cooley and John W. Turkey in 1965 and its since used in a vast amount of applications.
The main concept behind this algorithm is the fact that, when number of data points is
a power of 2, the DFT can be implemented way faster and more efficiently. For example
lets take n = 1024 = 210 points. The same steps followed while implementing the DFT
algorithm will be made.

f̂ = F1024f =

[
I512 −D512

I512 −D512

][
F512 0

0 F512

][
feven
fodd

]
(3.12)

As shown in equation 3.12, while implementing the DFT, the matrix F1024 was written as
a product of two other matrices and the entries of f were a bit reorganised depending if
they were odd, or even. Now we have created diagonal matrices resulting in much lower
computational costs. To conclude, the FFT is based in the observation that the Fourier
Coefficient matrix of the DFT algorithm possesses susch symetry, that with only a minor
rearrangements the computational cost, could be significantly reduced. Even in cases,
that the number of entry points is not a power of 2, just by padding a few zeros in our
produced matrices, a much smaller computational cost would be achived compared to the
DFT algorithm.[15]

Finally as presented in the web page created for the need of this thesis, we implemented
p5.js library for the creation of the graph visualizing the FFT. The above library is an open-
source Javascript library for creative coding, providing the user with the essential tools to
fulfill a variety of different tasks such as 2D and 3D rendering content on the HTML canvas
element.[41] It was first introduced to the community as Processing.js a discontinued
JavaScript port of Processing, a framework designed to produce visualizations, images
and interactive content. The development of Processing.js was started by John Resig
(RIT), known for the creation and development of the jQuery JavaScript library. In the
following years, Lauren Lee McCarthy (MIT) created the p5.js library, an open-source and
web based version of the above mentioned software.

CHAPTER 3. TOOLS AND MODEL SELECTION 34

For the sake of good order, it was deemed necessary to provide the reader with the basic
parameters of the Fast Fourier Transform algorithm, implemented in our code.

• Sampling Rate (SR): is the number of times a signal is read in a second. In our case
the SR would be 44100 times. In some cases it is also presented as sample frequency,
or 44.1 kHz

• Bins (n): The number of ”horizontal” strips that the window is divided. The num-
ber of bins determines how accurate the analysis would be in terms of frequency
detection. The number of bins must be a power of 2 as mentioned before, so in our
case we choose 1024 bins

• fmax : The highest possible frequency that can be possibly analysed convention-
ally called the Nyquist limit frequency, exactly equal to one-half the sampling rate,
meaning that the algorithm created can represent frequencies up to 22050 Hz.

• FFT Size: The number of samples taken for the FFT algorithm to be performed.It
defines the number of bins used for dividing the window into equal strips, namely
the bins. The FFT Size is always twice of the number of bins, in our case 2048.

• Frequency Resolution (FR): The frequency band of a bin, the ”energy” or amplitude
collected around its individual bin. It can be calculated either by dividing the
Nyquist limit frequency by the number of bins, or by dividing the sampling rate by
the FFT Size

All the exact values used in our algorithm are presented in Table 3.2 and the output
presented in our web page is depicted in Figure 3.8.

Table 3.2: FFT algorithm Parameters

Parameter Value

Sampling Rate (SR) 44100 Hz

fmax 22050 Hz

FFT Size 2048

Bins 1024

Frequency Resolution 43.066 Hz

CHAPTER 3. TOOLS AND MODEL SELECTION 35

Figure 3.8: Visual Implementation of the FFT Transformation in the Frequency domain

Spectrograms

A spectrogram is a visual depiction of a signal’s frequency composition over time.[42] In
the previews subsection, the visual implementation of the Fast Fourier Transform was
presented, a very useful tool that allowed us to describe an audio signal in the frequency
domain. The only drawback was that we weren’t able to store information regarding the
time domain, meaning when the specific frequencies depicted in the graph occured.[15]
Teachable machine implemented in this thesis and in general most audio classification
machine learning algorithms, use spectrograms, to represent raw audio in an image like
form. By deciding to work with 2D ConvNets, we should come up with a way to preserve
both time and frequency domain of the sound recordings. The most efficient way to do that
is by using spectrograms. A few basic properties are presented in the following paragraphs.

Firstly, a brief analysis on how a spectrogram is created. It appears that another form of
the Fourier transform is used, namely the Short Fourier transform. A windowed FFT is
computed as shown in Figure 3.9 helping to localize the frequency content in time.

Figure 3.9: Windowed FFT helping to localize the frequency content
[43]

CHAPTER 3. TOOLS AND MODEL SELECTION 36

Figure 3.10: Visual Representation of the Short-Fourier Transform
[43]

Simply to be put, we can think of a spectrogram as a representation of FFT’s stacked
on top of each other. There are a few other details worth mentioning. Taking into
concideration that humans can only percive a really small and concentrated range of
frequencies and amplitudes, an appropriate scaling in the frequency axis (y-axis) should
be applied. Studies have shown that humans do not perceive frequencies on a linear scale.
For example, it is thought to be easier to tell the difference between 500 and 1000 Hz
rather than 10,000 and 10,500 Hz.[44] To solve this issue a mathematical operation were
a a unit of pitch such that equal distances in pitch sounded equally distant to the listener
was proposed, namely the mel scale.[45]

CHAPTER 3. TOOLS AND MODEL SELECTION 37

Figure 3.11: Mel Scale Explained
[45]

All the above operations, result finally in the creation of the so-called Mel Spectrograms.
As the name suggests, these are spectrogram representations where the frequencies are
converted to mel frequencies. Another really important mathematical process applied in
spectrograms is windowing. The mathematical process of analyzing a frequency presumes
that every sound ”snapshot” taken will immediately repeat. It is often the case, that at
the end of the first snapshot taken, doesn’t smoothly mesh with the start of the next one.
This phenomena occurs due to the fact that signal are not repetitve. If we were to assume
that they actually were, a small discontinuity should appear at the edge of the recording
period. The only way to produce a repeating signal with a discontinuity is to add a high
frequency component to the signal to resemble the ”jump” created by the discontinuity.
This process/mathematical operation is called windowing and is actually a way to reduce
those small errors mentioned before when the frequency content of a signal is computed.
[46]

At this point, it should be stated that Teachable Machine, the platform responsible for
producing the audio classification model implemented in this thesis, doesn’t allow the user
to control features like windowing, thus a further analysis was deemed unnecessary. For
the sake of good order we state same of the most common windowing operatos used while
creating spectrograms. The spectrogram created for our webpage as depicted in Fig. 3.12,
uses a Hanning Window.[46]

• Hanning Window

• Hamming Window

• Blackman Window

• Kaiser Window

• Kaiser-Bessel Window

CHAPTER 3. TOOLS AND MODEL SELECTION 38

Figure 3.12: Custom Spectrogram with Hanning window created for our website.

3.3 Model Architecture

As mentioned in the first chapter, the main goal of this thesis would be the use of an audio
classification model to monitor the changes of the Main Engine’s turbocharger speed of
the HIPPO II testbed. The main purpose of this project, is not the development and
training of a sound classification model from the very beginning. Instead, we decided to
implement a pre-developed state-of-art audio classification model that would allow us a
few modifications according to the project’s needs. We wanted to adopt all the above
stated tools and in the mean time perform all machine learning tasks in JavaScript and
engage them in a web environment. Google’s Teachable Machine assisted us in creating
a whole new audio classification model trained on our very own dataset. As mentioned
in subsection 3.2.1 the model powering our application is based on Tensorflow.js Speech
Commands module.[37] We decided to work with Tensorflow.js framework due to the fact
that it supports the use in web browsers. The above stated library provides a Javascript
implementation of the Fast Fourier Transform (see more in subsection 3.2.2) allowing us
straight forward preprocessing of the recorder audio files. Combined with the WebAudio
API supported by all major browsers, FFT produces a spectrogram which serves as a 2D
image representation.[47]

As shown in Figure 3.13, the model consists of 13 layers with four pairs of Conv2D to
Max Pooling layers, a Flatten and a Dropout layer and finally two Dense layers.

CHAPTER 3. TOOLS AND MODEL SELECTION 39

Figure 3.13: Model Architecture

Chapter 4

Model Simulation and Results

This chapter explains in depth the simulation process of our model, on detecting the
various changes of Internal Combustion Engine’s (ICE) T/C speed and the various obsta-
cles faced during development. Extracted images from our web application interface are
presented, in order to assist the reader in understanding the performance of our neural
network, the techniques implemented to maximize it, as well as the conclusions that we
reached by evaluating the results.

4.1 Transfer Learning on Teachable Machine: Dataset Cre-
ation

One really important step to train an audio classification model with success is to posses
accurate input data. This section presents all steps followed in order to create a small yet
efficient sound dataset.

4.1.1 Data Selection

The first step one has to follow in order to create an audio classification model is to
determine in which form will the sound data be captured. Most projects published suggest
that sound data should be captured in mono, .wav format with a sample rate of 44,1 kHz
so, we decided to do so also. As it turned out, it wouldn’t matter a lot for Teachable
Machine module, due to the fact that while creating our dataset, Teachable Machine
performs its own recording. Unfortunately,the properties of the captured sound are not
available. Our best guess would be, that in order to be compatible with WebAudio API
and the Fast Fourier Transformation performed by TensorFlow.js it has to follow the above
mentioned values.

We decided that, in order to have a really accurate model, the sound recordings would have
to be performed at different locations. As shown in Figures 4.2 and 4.3, the recordings
took place in two different locations. One would be in an approximate distance of 0,5 m
between the laptop and the T/C and the second one was performed about 6,0 m away from
the ICE. The main idea was to perform recordings also in various distances around the
experimental facilty, but after inspecting the spectrograms of each recording, we discovered
that there were no major differencies when comparing them in mid range distances. The
ICE is electronically controlled either in speed control mode or by demanding the desired
indicated torque output which leads to injection of a certain amount of fuel by the engine
ECU using an internal mapping.[16] We decided that the ICE would operate in continuous
range of approximately 1800 rpm and with proper control and the dynamometer (EB)
would demand a final indicated torque output of 1000 Nm. Starting from 200 Nm which

40

CHAPTER 4. MODEL SIMULATION AND RESULTS 41

was indicated as IDLE in the labelling process, we took a total of four(4) steps of 200 Nm
each as seen in Fig. 4.1.

Figure 4.1: Indicated Torque Output Steps

Figure 4.2: Experimental facility in LME showing the first sampling position (near the
T/C)

CHAPTER 4. MODEL SIMULATION AND RESULTS 42

Figure 4.3: Experimental facility in LME showing the second sampling position.

Figure 4.4: HIPPO-2 testbed at the experimental facility of LME

CHAPTER 4. MODEL SIMULATION AND RESULTS 43

4.1.2 Data Labelling

Having performed all the above mentioned sound recordings, we started the creation of our
dataset. Out of all the different recordings performed, we decided to work with two record-
ings with a total time of 180 seconds each, one for every position listed above. Teachable
Machine allows the user to choose the duration of the sound recordings performed in the
web browser as shown in Figure 4.5.

(a) (b)

Figure 4.5: Selection of duration and delay(left) and Recording procedure followed in TM
web environment (right)

(a) (b)

Figure 4.6: Actual Sampling Positions

Regardless the users preference on recording duration, Teachable Machine ”breaks” the
sound in small audio snippets in a total extent of one(1) second. In order for TM to
perform the above mentioned tasks, an internet connection is required. The recordings
were performed as stated in the experimental facility area, were no internet connection

CHAPTER 4. MODEL SIMULATION AND RESULTS 44

could be established. Thus, having the sound recorded as shown in Figure 4.6, we played
the recordings through the computers speakers, outside the facility grounds, were a stable
internet connection was available.

The control and data acquisition system of the testbed, combined with the desired torque
outputs as presented in Figure 4.1 played a key role in the labelling process. In fact, for
every step performed, with the use of a thermodynamic model of the HIPPO-2 that was
supplied to us by the LME staff, we were able to estimate the turbocharger speed for
every recording that was taken, allowing us to classify the sound recordings accordingly.
All different T/C speeds for every step performed with a +/- 10% variation are presented
in the Table 4.1.

Table 4.1: Estimated T/C speed for various Torque Outputs

Step Torque Output (Nm) Estimated Turbocharger Speed(rpm)

1st 200 104.500

2nd 400 117.000

3rd 600 124.500

4th 800 129.500

5th 1000 133.000

Oftentimes, while creating a dataset it is very common to prepare the data before inputting
them in the neural network. The creation of an audio dataset requires actions like filtering,
denoising etc. In our case, Teachable Machine module, does not offer such operations. A
way to tackle this problem was to apply a High Pass filter module, provided by p5.js
library to our recorded sound before the classification procedure in Teachable Machine.
However this action was finally removed from our project, due to the fact that it required
the user to record the audio and then play each individual sound clip with the applied
filter, making the final application a bit more difficult to handle. Simply to be put, we
aimed to develop an application working in a web browser tab, that would only ”listen”
to whatever audio is presented by the user and immediately classify it accordingly.

4.2 Transfer Learning on Teachable Machine: Model Train-
ing

Having created our dataset, the next step would be to train our model. Considering the
small size of our dataset, we decided to tweak Teachable Machine’s parameters in order
to get the best results. The basic differences between the cases we decided to test, were
the number of epochs (see subsection 3.2.1) and the number of samples provided in each
category. In the following paragraphs we present the training results, our web application
final output and we conclude on the best fit for our project.

CHAPTER 4. MODEL SIMULATION AND RESULTS 45

As presented in Table 4.2, we decided to present four(4) different training cases, with an
alternating number of audio samples inputted during classification and number of epochs
performed from every individual case. In the following sections, the results produced in
every case are commented and presented.

Table 4.2: Training Cases

n/n Audio Samples Epochs

Case 1 50 100

Case 2 46 120

Case 3 20 100

Case 4 16 50

4.2.1 Training Case N o1

For the first training case we decided to set the model for 100 epochs, which generally can
be described as a big number for such tasks. However we wanted to try to understand the
models performance after having processed the dataset for so many times.

(a) (b)

Figure 4.7: Accuracy per epoch (left) and Loss per epoch (right) diagrams as produced
from Teachable Machine web environment

Table 4.3: Training with 100 epochs

Epoch loss acc val loss val acc

1/100 2.6134 0.2088 2.0730 0.4390

2/100 1.7161 0.4217 1.0997 0.6098

3/100 1.3355 0.4779 1.3626 0.4634

...

97/100 0.3717 0.8514 0.6597 0.7805

98/100 0.4191 0.8394 0.6765 0.7805

99/100 0.4151 0.8635 0.6283 0.7561

100/100 0.3554 0.8755 0.5391 0.7317

CHAPTER 4. MODEL SIMULATION AND RESULTS 46

In Figure 4.7, Accuracy per epochs and Loss per epochs plots are presented. While observ-
ing the second diagram, combined with the results provided by Table 4.3, the model’s loss
appears to be decreasing after each epoch, suggesting that the model is ”learning”. By
taking a closer look we can see that the validation function moves rather noisily around
the training curve. One interpretation would be that validation data is scarce and not
very representative of the training data, so the model struggles in evaluating these exam-
ples. In order to reach a conclusion, we would have to assess the performance and the
behaviour of the curves produced in the other training cases. After the model has reached
approximately 80 epochs, we can see that there is a relative rise of the validation function
whereas the training function descends. This observation is really insightful, because it
points us that after 80 epochs the model starts to overfit a little bit meaning that the
algorithm captures well training data, but it performs poorly on new, so it’s not able
to generalize. In our case the extent of this phenomena is not concerning regarding the
model’s performance. In fact it only points us into the right direction for choosing the
optimal number of iterations the model has to go through so to achieve high predicting
scores.

Figure 4.8: Highest prediction result achieved in 200 Nm required torque output. Screen-
shot taken from the created application web interface

Despite the promising results presented in the above mentioned diagrams, we had to
provide a few snapshots from the actual web application. In Figure 4.8 we can see that
the model can predict accurate results up to 96% while the demanded torque was 200
Nm. Actually when the required torque output is low, it is rather difficult for the model
to predict correctly. By observing the spectrogram created in our website we can see
that there is a concentration of frequencies of high energy below 2kHz, making the model
classification task quite difficult. Also in such low torque demands, the ICE’s T/C is in low
speeds, thus the sound produced by it requires much more accurate tools to capture. As
mentioned before, the FFT Diagram and the Spectrogram were used in our web application
as evaluation tools helping us comment on the integrity of our model’s predicted results.

CHAPTER 4. MODEL SIMULATION AND RESULTS 47

Moving on to higher torque demands, our model faced difficulties in some steps. To be
more precise, in the process of classifying T/C speeds from 116.905 rpm to 124.309
rpm (2nd and 3rd step as per Table 4.1) our model had a really unstable behaviour pro-
viding poor results with a prediction accuracy ranging from 50% to 65% while sometimes
mistakenly classifying the provided sound as a lower T/C speed. Especially when speeds
around 124.309 rpm are achieved, the only way to understand these changes is by closely
observing the FFT diagram and the Spectrum as shown in Figure 4.9, were we can see a
small peak in the FFT and light green line at around 9 kHz in both plots.

Figure 4.9: Low predicting results achieved at approximately 124.309 rpm (3rd Step).
Screenshot taken from the created application web interface.

The predicting results of our model became more promising while the T/C’s speed started
to rise. The best model performance was achieved for speeds around 129.439 rpm (4th
Step). While observing the model behaviour in our web developed app, 97% prediction
accuracy was achieved. When operating in such high speeds, as one can clearly observe
in both plots, a distinctive high pitched sound is produced. To be precise, as depicted
both in the FFT diagram and the spectrogram in Figure 4.10 this sound has a frequency
of approximately 10 kHz. Finally, when the T/C reaches speeds up to 133.261 rpm,
our model performing very well, achieving predicting scores of around 91%. One main
problem that we faced was the fact that the predictions appeared to have a few variations.
In Figure 4.11, we present the best prediction achieved, while our model was listening to
the sounds produced while executing the last step of the experiment. While observing the
model’s performance from our web application, we observed that sometimes the model
falsely predicted that the T/C speed was at 129.439 rpm instead of the actual 133.261
rpm. Unfortunately we couldn’t understand why this phenomenon occurred, presenting
us with a challenge as discussed in the paragraph 5.2.

CHAPTER 4. MODEL SIMULATION AND RESULTS 48

Figure 4.10: Model’s predicting accuracy rose up to 97% for high T/C speeds (4th Step).

Figure 4.11: Similar behaviour for demanded torque output of 1000 Nm. Accurate pre-
diction of around 91%.

CHAPTER 4. MODEL SIMULATION AND RESULTS 49

4.2.2 Training Case N o2

As for the second training case, given the good results produced from Training Case
No1 we decided to slightly increase the number of epochs while decreasing the number of
samples used for each individual class. So we decided to set the model for 120 epochs,
with 46 samples for each one of the five(5) labels.

Table 4.4: Training with 120 epochs

Epoch loss acc val loss val acc

1/120 2.3456 0.2651 1.8131 0.3171

2/120 1.9442 0.3855 1.8641 0.3902

3/120 1.3606 0.5422 1.1164 0.4878

...

117/120 0.3302 0.8876 0.5303 0.8049

118/120 0.3438 0.8876 0.4492 0.8049

119/120 0.3458 0.8554 0.5176 0.7805

120/120 0.3260 0.8795 0.4319 0.8293

(a) (b)

Figure 4.12: Accuracy per epoch (left) and Loss per epoch (right) diagrams as produced
from Teachable Machine web environment for the 2nd training case

One major concern, while increasing the number of epochs was if the model would start to
overfit. In the first training case, we mentioned that around 80 epochs the model started
to overfit a little bit. However in this case, not only better performance is achieved,
but also the model seems to have minimized its overfitting behaviour as one can clearly
observe in the Loss per Epoch plot presented in Figure 4.12. Also the validation function
appears to move less noisily around our training curve meaning that the model produces
more accurate predictions and it is able to generalize all examples given. Regarding the

CHAPTER 4. MODEL SIMULATION AND RESULTS 50

model’s performance, as seen clearly in Table 4.4 we have reached an even smaller loss
value compared to the first case resulting in an increased performance. Due to the fact
that we don’t have a better insight on how Google’s Teachable Machine module operates,
the only way to try and understand how it is functioning, is by trying many different
training cases. In the context of this thesis, only a few cases out of all the different epoch
and number of samples combinations performed are presented.

While the T/C was at low speeds around 104.631 rpm (1st step), the maximum pre-
diction achieved by the model was around 78% which overall can be described as an
adequate prediction score for such low speeds considering that in the previous training
case the equivalent score achieved was 98%. As mentioned in the previews paragraphs,
in such operational circumstances, it is rather difficult for the model to produce not only
accurate but also consistent results, due to the fact that there is significant concentration
of frequencies in this specific area, as shown in Figure 4.13.

It was rather interesting to see, that while the T/C speed increased in order to achieve
higher torque demands (2nd and 3rd step as per Figure 4.1) the model produced even
better results, compared to the previews training case in the above mentioned steps. To
be accurate, while the trying to classify T/C speeds from 116.905 rpm and 124.309
rpm the model produced some very promising results, reaching prediction scores up to
84% for the 3rd step and 98% for the 2nd step. It should be stated that in equivalent steps
performed in Training Case No1 we had some really poor results, with a lot fluctuations
in the models behaviour and scores varying from 50% to 65% for the 2nd step. To our
surprise, while observing Figure 4.14, both the FFT and Spectrogram plots still produce
some unclear for the naked eye results while classifying T/C speeds of 124.309 rpm
compared to the first training case, were we could at least see a small peak in the FFT
and a light green line at around 9 kHz in both plots (see Figure 4.9). Our best guess
would be that, due to the lowering of the number of samples provided at the classification
stage and with the increase in the number of epochs, our model could fit the data better,
resulting in more precise results.

Figure 4.13: Model’s predicting accuracy rose up to 78% for low T/C speeds (1st Step).

CHAPTER 4. MODEL SIMULATION AND RESULTS 51

Figure 4.14: High predicting scores of around 84% at 124.309 rpm (3rd step) were
achieved.

Figure 4.15: Snapshot from the created web application, classifying 129.439 rpm with
scores up to 97%.

As we can clearly see in Figure 4.15 above, for higher torque demands around 800 Nm with
an achieved T/C speed of 129.439 rpm the model classifies the sound presented with ease,
with predicting scores reaching up to 97%. Having performed two different training cases
so far, we can say that generally the model produced from Teachable Machine performs
better in such operational circumstances, due to the fact that the ICE’s turbocharger
produces unique high pitched sounds, easily recognised not only from the model but also
from the human ear. Finally, when the T/C reaches speeds up to 133.261 rpm, as we
can clearly see in Figure 4.16 presented above, the model provides us with some really

CHAPTER 4. MODEL SIMULATION AND RESULTS 52

accurate predicting scores. Both FFT and Spectrogram plots converge on the fact, that
the T/C produces a continuous high pitched sound of 11 kHz. As mentioned before such
high frequency sounds seem to be a very simple classification task for our model.

Figure 4.16: Snapshot from the created web application, classifying 133.261 rpm with
scores up to 97%.

4.2.3 Training Case N o3

Having performed the above mentioned training cases, we though it would be of great
interest to see how would the model respond with the same number of epochs, but with
a significantly lower number of audio samples during the classification. To our surprise,
by providing each label with just twenty(20) audio samples, high prediction scores were
achieved for almost every different class of our model.

Table 4.5: Training with 100 epochs

Epoch loss acc val loss val acc

1/100 1.9525 0.2941 1.7935 0.4286

2/100 1.6885 0.4034 1.4772 0.5714

3/100 1.5589 0.4790 1.3201 0.5714

...

97/100 0.1795 0.9412 0.4890 0.8095

98/100 0.2910 0.8992 0.7664 0.6667

99/100 0.3358 0.8908 0.5520 0.7619

100/100 0.1864 0.9412 0.5840 0.7619

CHAPTER 4. MODEL SIMULATION AND RESULTS 53

(a) (b)

Figure 4.17: Accuracy per epoch (left) and Loss per epoch (right) diagrams for the 3rd

training case

Compared to the other two training cases performed, here we achieved the lowest so far
value for our loss function as shown in Table 4.5. In this case, we expect to get some really
accurate prediction results from our model. Despite the really promising values produced
for our loss function, while observing Figure 4.17 and especially the Loss per Epoch plot
on the right, we can see that the model tends to overfit a little bit, as there seems to be
a significant gap between the trends of the loss and the validation function. Actually, it
is the biggest yet presented in the context of this thesis. In all three different training
cases performed the validation function tends to move quite noisily. Our best guess would
be that the dataset provided during the training in TM environment, needs to be a bit
more representative for each and every different torque demand (see Figure 4.1) in order
to help the model generalise its results more efficiently. However, to reach a conclusion
for the overall performance of the model produced for this case, we should see how well
the model predicts the changes in T/C speed, for each of the 5 different classes provided
in the TM web interface, by providing to reader with a few snapshots from the created
web application.

As per Figure 4.1, while the demanded torque is around 200 Nm, the model’s prediction
scores were varying from 45% to 70%. At this stage, were the T/C has reached speeds
up to 104.631 rpm, our model predicts the lowest scores so far compared to the other
training case, were the prediction scores reached up to 98%. However in this case, the
results produced were very consistent, meaning that while the model was classifying the
sound that the T/C made at such speeds, as we can see in Figure 4.18 below, the bar
graph responsible for depicting the first step, was the only one to provide results. Given
the fact that, at such low speeds it is rather difficult for our model to predict efficiently
due to the high concentration of low frequency sounds (as depicted from the FFT and
Spectrogram plot presented), we could say that this predicting results, are the best yet
presented in this thesis, for such T/C speed/demanded torque.

CHAPTER 4. MODEL SIMULATION AND RESULTS 54

Figure 4.18: At around 104.631 rpm the model produced consistent and efficient results.

Figure 4.19: For T/C speeds up to 116.905 rpm, the model prediction scores reached up
to 98%.

During the 2nd step as Figure 4.1 suggest, having reached T/C speeds up to 116.905 rpm
the model predicts scores with an accuracy over 64%. The highest predicted score was
around 98%. Following the same strategy as in the second training case, with reduced
number of samples and a relatively higher number of epochs, our model seems to perform
quite well in these low T/C speed’s. It appears that when there are less samples the model
fits training data way more efficiently providing very good and consistent results.

CHAPTER 4. MODEL SIMULATION AND RESULTS 55

Unfortunately moving on to higher torque demands, for T/C speed’s of approximately
124.309 rpm our model struggles to predict correctly the sounds produced by the ICE’s
turbocharger. The provided results were really poor and unstable, with the highest predict-
ing score being around only 62% while sometimes providing us with mistaken classifications
of higher T/C speeds. As mentioned before, during this step the depicted spectrogram as
seen in Figure 4.20 does not have enough ”information” to provide the model, making the
process of classifying quite difficult.

Figure 4.20: For T/C speeds up to 124.309 rpm, the model prediction scores reached
only up to 62%.

Figure 4.21: The model produced really accurate results for high T/C speeds. Snapshot
from classification of 133.261 rpm.

CHAPTER 4. MODEL SIMULATION AND RESULTS 56

The model produced some very accurate results for the last two steps performed (4th

and 5th step. To be precise, while the T/C speed was about 129.439 rpm prediction
scores up to 95% were achieved. As we observed in the previews training cases, while
the demanded torque output is either 800 Nm or 1000 Nm the results produced were
really accurate. As we can see from the produced spectrogram in Figure 4.21, this distinct
high pitched noises allow the model to classify the sound easily producing efficient and
consistent results.

4.2.4 Training Case N o4

The results produced from performing the above mentioned training cases, gave us some
insight on how one can create an efficient audio classification model with Google’s Teach-
able Machine module. We tried different combinations of chosen number of epochs and
audio samples provided in each category, with the ultimate goal being the creation of a
model producing accurate and high predicting scores. We decided that our last attempt
should follow the minimum requirements proposed from TM module so to create an audio
model, meaning that we lowered the number of epochs to 50 and provided only sixteen(16)
audio samples, only eight(8) above the minimum required to train the model. The results
are presented and discussed in this section.

(a) (b)

Figure 4.22: Accuracy per epoch (left) and Loss per epoch (right) diagrams for the 4th

training case

By taking a closer look in the plots provided by Teachable Machine in Figure 4.22, the
validation trends both in Accuracy per epoch and Loss per epoch plot move noisily around
the training trend. We believe that this phenomenon occurs due to the fact that, we
provided our model with a small number of samples deeming the dataset unrepresentative
for the task performed. Moreover we can see that the model performance is growing
over time, which means the model despite the poor dataset provided is improving with
experience (it’s learning). We also see it grows at the beginning, but over time around
35th epoch it reaches a plateau, meaning it’s not able to learn any more. Compared to
the preview training case, the one examined here has produced the highest loss function
values. We would expect the model produced would perform poorly while trying to classify
new audio samples presented.

CHAPTER 4. MODEL SIMULATION AND RESULTS 57

Table 4.6: Training with 50 epochs

Epoch loss acc val loss val acc

1/50 2.0698 0.2115 1.6668 0.5000

2/50 1.9605 0.3942 1.7160 0.5625

3/50 1.4859 0.5481 2.6770 0.5000

...

47/50 0.4960 0.7885 0.7865 0.8750

48/50 0.4819 0.7981 1.3392 0.6250

49/50 0.5945 0.7692 0.7861 0.6875

50/50 0.4292 0.8654 0.6730 0.6250

Figure 4.23: As expected, for low T/C speed, approx. 104.631 rpm, the model is unable
to predict correctly.

As expected from the above listed readings from Table 4.6 and the above presented figures,
the model is struggling to classify correctly sound produced when the ICE’s T/C is at
low speeds (approx. 104.631 rpm). In all training cases we observed that the model
produced poor results in these stages, so we can expect that in a such poorly trained
model the results would be uncertain. As shown in Figure 4.23, it is rather difficult for the
model to produce correct predictions and even sometimes it classifies mistakenly wrong
labels. For the record the best achieved performance was about 78% but since the model’s
behaviour during this step is unstable, therefore we decided it should not be included in
our analysis.

Moving on to torque demands up to 400 Nm (2nd Step as per Figure 4.1) the model
surprisingly presented a really stable behaviour, producing very accurate and consistent
results. The predicting scores achieved were ranging from 54% up to 85% with the best
recorded predicting score reaching 91% as seen in the snapshot provided from our web
application in Figure 4.24.

CHAPTER 4. MODEL SIMULATION AND RESULTS 58

Unfortunately, due to the lack of information on how Teachable Machine operates, we can’t
be sure why the model appears to have a more stable behaviour for such small changes of
T/C speeds (In the 1st Step the speed is at approx 104.631 rpm whereas in the 2nd Step
is at about 116.905 rpm).

Figure 4.24: A much more stable behaviour was recorded while the model was classifying
T/C of approx. 116.905 rpm.

The model predicted some really accurate results while trying to classify T/C speeds up
to 124.309 rpm. Interestingly, the scores varied from 54% reaching up to 85% with the
highest recorded value being equal to 87%. In order to understand the reason why the
model predicts such results, we should at least take a closer look at the tools presented
in the created web interface in Figure 4.25. Having performed all the above mentioned
training cases, we can conclude that generally the model created in the Teachable Machine
web environment, seems to classify really well sounds produced while the demanded torque
is about 600 Nm, despite the fact the two plots presented in our webpage seem to struggle
in depicting the frequency changes. The only thing we can see is a barely distinguishable
line at around 9 kHz in the spectrogram plot, whereas in the FFT diagram the results
depicted are uncertain.

The same observation made while commenting on the results produced from the previews
training case, applies also in this final training case studied. While the T/C operates
under heavy loads, reaching speeds from 129.439 rpm up to 133.261 rpm the model
has a very stable behaviour, producing really consistent and high predicting scores up to
98%, as depicted in Figure 4.26 below, were we can also see that all tools presented in our
webpage seem to converge on the results produced by the model.

CHAPTER 4. MODEL SIMULATION AND RESULTS 59

Figure 4.25: High predicting scores up to 87% were produced while the T/C speed’s were
around 124.309 rpm.

Figure 4.26: High predicting scores up to 85% were produced while the T/C speed’s were
around 129.439 rpm.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the implementation of an audio classification application using neural net-
works to monitor the changes in T/C speed of the HIPPO II testbed was investigated.
Having performed a detailed research regarding similar projects, a very convenient and
user friendly module was selected for the development state and by creating several dif-
ferent training scenarios, a comparing experiment was conducted to find out, the most
suitable combination of parameters in order to perform our task in the most efficient way
possible. We choose as the most appropriate technique for our experiment to be con-
ducted, the Transfer Learning method, in which we used Google’s Teachable Machine to
create an audio recognition model with our own custom dataset.

JavaScript and Teachable Machine

Research on similar projects like the one presented in our thesis, shows that JavaScript
is the less preferred programming language to implement machine learning tasks, as also
mentioned in the previews chapters. We had the privilege to use Google’s Teachable
Machine module, which allowed us to perform some computationally intensive model
training simply on our browser tab. Surely, if we were to perform such tasks on a personal
laptop, we would have to use some backend programming language like Python and C++.
Unfortunately, TM didn’t allow the user to interfere with the model architecture, the
activation functions used and all other hyper parameters that we could probably tweak
in order to produce even better results. However, we can confirm that it is plausible to
recognise with significant accuracy the changes in the T/C speed of a ship’s Main Engine,
with the assistance of an audio classification model.

Results regarding the model’s performance

To sum up, for the needs of this project, by simply controlling the demanded torque with
the help of the Electric Motor of the HIPPO II testbed, we compartmentalized five(5)
different steps in order to investigate how accurately would our audio classification model
recognise the changes in the ICE’s T/C speed. The results are provided in Figure 5.1
below.

60

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 61

Figure 5.1: Best prediction scores achieved in all training cases performed, for different
T/C Speeds.

From the above plot provided, we can conclude that the 2nd training case, has provided us
with the highest predicting scores out of all different cases performed during this thesis.
Thus, the model provided from this case will be used for our final web application.

Performing transfer learning in Teachable Machine, proved to be a simple task. The fact
that this module is directly connected with TensorFlow.js, allows the user to perform
machine learning tasks efficiently and with almost no programming expertise required. At
this point is should be stated that we encountered a few difficulties due to the nature
of our task. Teachable Machine does not allow the user, modify the produced model’s
architecture or the hyperparameters of it, making it really difficult for us to interfere with it
and possibly provide some solutions on how to get more efficient results. Certainly a more
efficient method would be to create our own custom model, even in another programming
language i.e Python, based on TM produced audio model architecture.

5.2 Future Work

The inspiration for this thesis project, was the lack of tool to provide us with live and
accurate data on the current speed of the ICE’s turbocharger in the HIPPO II testbed. We
believe that, the results presented in this thesis prove that it is plausible to create such
a tool by implementing machine learning techniques. Moreover, several improvements
can be made to further enhance the next steps and ultimately to achieve this project’s
goals. Machine Learning and especially deep neural networks, have proven to be really
promising fields with limitless capabilities. In the next paragraphs, the suggested future
work is presented.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 62

Data Augmentation

The dataset used to train our model in Teachable Machine UI, consisted of only two
sound recording of 180 seconds each, at two different location in the experimental facility.
It should be stated that some of the most commonly used datasets for audio classifica-
tion tasks like the Urban8k dataset, contain more than 8700 labeled sound snippets with
a duration around 4 seconds each.[48] In order to solve problems such as overfitting and
improve generalization, would be to create an efficient audio dataset, comprising of several
sound snippets gathered from several T/C at various speeds, allowing our model to recog-
nise the changes in T/C speeds in all types of engines. A key concept of data augmentation
is that the deformations applied to the labelled data do not change the semantic meaning
of the labels. By training the network on the additional deformed data, the hope is that
the network becomes invariant to these deformations and generalizes better to unseen
data.[49] Some of the most common data augmentation techniques applied in raw audio
are time stretching, pitch sifting, background noise addition etc.[50]

Enhanced equipment and User Interface

For the creation of our dataset as mentioned in subsection 4.1.2, all audio was captured by
the computer’s built in microphone, meaning that there is a lot of room for improvement
in ways of recording the sound. With the use of an LDC short for Large Diaphragm
Condenser microphone, which are very sensitive making them ideal for extremely dynamic
sources. Probably by using also a windscreen, we can even reduce the background noise,
resulting in a much more accurate recording.

A few enhancements can also be made in the UI of our web application. A more meticulous
presentation of our tools could be provided, giving the user the opportunity to zoom in the
plots and take a closer looks to the results provided. It would be really useful to provide
the user with the option, to record himself an audio sample, that would be then processed
from us, helping us to create an even better dataset.

Possible Applications

The main concept of this thesis would be to monitor the changes in the T/C speed of
the HIPPO II testbed. Granted that the model is able to produce accurate results, the
application could be used for monitoring the main engine’s health and detect problems like
T/C surging in low loads. Moving on into a more complete application even a mobile app
could be provided, were the user only with the use the device’s microphone, would record
a sound snippet and the app would classify accordingly providing results on the current
T/C speed, abnormal operating behaviour like surging, worn bearings causing irregular
sounds etc.

Appendices

63

Appendix A

Model Creation Pipeline

Figure A.1: Code pipeline presenting the creation of the model up until inputing it in our
developed web application.

64

Bibliography

[1] IBM Cloud Education. AI vs. Machine Learning vs. Deep Learning vs. Neu-
ral Networks: What’s the Difference? https://www.ibm.com/cloud/blog/

ai-vs-machine-learning-vs-deep-learning-vs-neural-networks, 2020.

[2] Shanqing Cai, Stanley Bileschi, Eric D. Nielsen, and François Chollet. Deep Learning
with JavaScript: Neural Networks in Tensorflow.js. Manning Publications Co., 2020.

[3] Pedro Fernández-Cabán, Forrest Masters, and Brian Phillips. Predicting roof pres-
sures on a low-rise structure from freestream turbulence using artificial neural net-
works. Frontiers in Built Environment, 2018.

[4] Devraj Agarwal. A Review of the Math Used in Train-
ing a Neural Network. https://levelup.gitconnected.com/

a-review-of-the-math-used-in-training-a-neural-network-9b9d5838f272,
2020.

[5] Fei-Fei Li, Ranjay Krishna, and Danfei Xu. CS231n: Convolutional Neural Networks
for Visual Recognition. http://cs231n.stanford.edu/, 2021.

[6] Olive Zhao. Machine learning training method: Gradient de-
scent method. https://forum.huawei.com/enterprise/en/

machine-learning-training-method-gradient-descent-method/thread/

708303-895?page=1&authorid=2976461, 2021.

[7] Stefanos Georgis. Position estimation of multiple sea vessels using a stereo-based
camera system and neural networks. Master’s thesis, NTUA, 2020.

[8] Sachdeva Aashay. Deep Learning for Computer Vision for the
average person. https://medium.com/diaryofawannapreneur/

deep-learning-for-computer-vision-for-the-average-person-861661d8aa61,
2017.

[9] Phillip Scholze. Complete Guide to Gradient-Based Opti-
mizers in Deep Learning. https://cyanite.ai/2020/09/30/

the-4-essential-steps-for-analyzing-music-with-neural-networks/, 2020.

[10] Zhao Guyu, Guoyan Huang, Hongdou He, Haitao He, and Jiadong Ren. Regional
spatiotemporal collaborative prediction model for air quality. IEEE Access, 2018.

[11] Sinam Ajitkumar Singh and Swanirbhar Majumder. Chapter one - short and noisy
electrocardiogram classification based on deep learning. In Himansu Das, Chittaran-
jan Pradhan, and Nilanjan Dey, editors, Deep Learning for Data Analytics, pages
1–19. Academic Press, 2020.

65

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://levelup.gitconnected.com/a-review-of-the-math-used-in-training-a-neural-network-9b9d5838f272
https://levelup.gitconnected.com/a-review-of-the-math-used-in-training-a-neural-network-9b9d5838f272
http://cs231n.stanford.edu/
https://forum.huawei.com/enterprise/en/machine-learning-training-method-gradient-descent-method/thread/708303-895?page=1&authorid=2976461
https://forum.huawei.com/enterprise/en/machine-learning-training-method-gradient-descent-method/thread/708303-895?page=1&authorid=2976461
https://forum.huawei.com/enterprise/en/machine-learning-training-method-gradient-descent-method/thread/708303-895?page=1&authorid=2976461
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61
https://cyanite.ai/2020/09/30/the-4-essential-steps-for-analyzing-music-with-neural-networks/
https://cyanite.ai/2020/09/30/the-4-essential-steps-for-analyzing-music-with-neural-networks/

BIBLIOGRAPHY 66

[12] Oisin Mac Aodha, Rory Gibb, Kate E. Barlow, Ella Browning, Michael Firman,
Robin Freeman, Briana Harder, Libby Kinsey, Gary R. Mead, Stuart E. Newson, Ivan
Pandourski, Stuart Parsons, Jon Russ, Abigel Szodoray-Paradi, Farkas Szodoray-
Paradi, Elena Tilova, Mark Girolami, Gabriel Brostow, and Kate E. Jones. Bat
detective—deep learning tools for bat acoustic signal detection. PLOS Computational
Biology, 2018.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 2014.

[14] Teachable Machine Audio Project. https://teachablemachine.withgoogle.com/

train/audio.

[15] Steven L. Brunton and J. Nathan Kutz. Fourier and Wavelet Transforms. Cambridge
University Press, 2019.

[16] Nikolaos Planakis, George Papalambrou, and Nikolaos Kyrtatos. Predictive power-
split system of hybrid ship propulsion for energy management and emissions reduc-
tion. Control Engineering Practice, 111:104795, 06 2021.

[17] Roman Varbanets, Oleksij Fomin, Václav Ṕı̌stěk, Valentyn Klymenko, Dmytro
Minchev, Alexander Khrulev, Vitalii Zalozh, and Pavel Kučera. Acoustic method
for estimation of marine low-speed engine turbocharger parameters. Journal of Ma-
rine Science and Engineering, 9(3), 2021.

[18] Nikolaos Planakis, Vasileios Karystinos, George Papalambrou, and Nikolaos Kyrtatos.
Nonlinear model predictive control for the transient load share management of a
hybrid diesel-electric marine propulsion plant. In 2020 American Control Conference
(ACC), pages 1955–1960, 2020.

[19] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep Learning. MIT Press,
2016.

[20] Matthieu Sainlez and Georges Heyen. Recurrent neural network prediction of steam
production in a kraft recovery boiler. https://www.sciencedirect.com/science/

article/pii/B9780444542984501355, 2011.

[21] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer Sci-
ence+Business Media, LLC, 2006.

[22] Anidhya Athaiya Siddharth Sharma, Simone Sharma. Activation Functions in Neural
Networks. International Journal of Engineering Applied Sciences and Technology,
Vol.4, 2020.

[23] J. Brownlee. Better Deep Learning: Train Faster, Reduce Overfitting, and Make
Better Predictions. Machine Learning Mastery, 2018.

[24] Nikolaos Chatzistamatiou. Development of an object detection application that mon-
itors vessel traffic, using neural networks. Master’s thesis, NTUA, 2021.

[25] Chirag Goyal. The 4 essential steps for analyzing music with neu-
ral networks. https://www.analyticsvidhya.com/blog/2021/06/

complete-guide-to-gradient-based-optimizers/, 2021.

https://teachablemachine.withgoogle.com/train/audio
https://teachablemachine.withgoogle.com/train/audio
https://www.sciencedirect.com/science/article/pii/B9780444542984501355
https://www.sciencedirect.com/science/article/pii/B9780444542984501355
https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-gradient-based-optimizers/
https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-gradient-based-optimizers/

BIBLIOGRAPHY 67

[26] Sebastian Ruder. An overview of gradient descent optimization algorithms. https:

//ruder.io/optimizing-gradient-descent/, 2016.

[27] Derrick Mwiti. Convolutional neural networks:
An intro tutorial. https://heartbeat.comet.ml/

a-beginners-guide-to-convolutional-neural-networks-cnn-cf26c5ee17ed,
2018.

[28] Donges Niklas. What Is Transfer Learning? Exploring the Popular Deep Learning
Approach. https://builtin.com/data-science/transfer-learning, 2021.

[29] Sagar Ram. What Does Freezing A Layer Mean And How Does It
Help In Fine Tuning Neural Networks. https://analyticsindiamag.com/

what-does-freezing-a-layer-mean-and-how-does-it-help-in-fine-tuning-neural-networks/,
2019.

[30] Chollet Francois. Complete guide to transfer learning fine-tuning in Keras. https:

//keras.io/guides/transfer_learning/, 2020.

[31] Jason Brownlee. Overfitting and Underfitting With Machine
Learning Algorithms. https://machinelearningmastery.com/

overfitting-and-underfitting-with-machine-learning-algorithms/, 2016.

[32] Google Cloud Team. Cloud Tensor Processing Units (TPUs). https://cloud.

google.com/tpu/docs/tpus, 2021.

[33] Ágnes Incze, Henrietta-Bernadett Jancsó, Zoltán Szilágyi, Attila Farkas, and Csaba
Sulyok. Bird sound recognition using a convolutional neural network. In 2018 IEEE
16th International Symposium on Intelligent Systems and Informatics (SISY), pages
000295–000300, 2018.

[34] Oisin Mac Aodha, Rory Gibb, Kate E. Barlow, Ella Browning, Michael Firman,
Robin Freeman, Briana Harder, Libby Kinsey, Gary R. Mead, Stuart E. Newson, Ivan
Pandourski, Stuart Parsons, Jon Russ, Abigel Szodoray-Paradi, Farkas Szodoray-
Paradi, Elena Tilova, Mark Girolami, Gabriel Brostow, and Kate E. Jones. Bat
detective—deep learning tools for bat acoustic signal detection. PLOS Computational
Biology, 14:1–19, 03 2018.

[35] Kamalesh Palanisamy, Dipika Singhania, and Angela Yao. Rethinking CNN models
for audio classification. CoRR, abs/2007.11154, 2020.

[36] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell, Jor-
dan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. Teachable machine:
Approachable web-based tool for exploring machine learning classification. CHI EA
’20, page 1–8, New York, NY, USA, 2020. Association for Computing Machinery.

[37] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recogni-
tion. CoRR, 2018.

[38] Speech Commands Recognizer. https://github.com/tensorflow/tfjs-models/

tree/master/speech-commands.

[39] Rulph Chassaing and Donald Reay. Digital Signal Processing and Applications with
the TMS320C6713 and TMS320C6416 DSK (Topics in Digital Signal Processing).
Wiley-Interscience, 2008.

https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/
https://heartbeat.comet.ml/a-beginners-guide-to-convolutional-neural-networks-cnn-cf26c5ee17ed
https://heartbeat.comet.ml/a-beginners-guide-to-convolutional-neural-networks-cnn-cf26c5ee17ed
https://builtin.com/data-science/transfer-learning
https://analyticsindiamag.com/what-does-freezing-a-layer-mean-and-how-does-it-help-in-fine-tuning-neural-networks/
https://analyticsindiamag.com/what-does-freezing-a-layer-mean-and-how-does-it-help-in-fine-tuning-neural-networks/
https://keras.io/guides/transfer_learning/
https://keras.io/guides/transfer_learning/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
https://github.com/tensorflow/tfjs-models/tree/master/speech-commands

BIBLIOGRAPHY 68

[40] National Instruments. Understanding ffts and windowing. 2019.

[41] p5 Javascript Library. https://p5js.org/.

[42] Sam Thornton Boyang Zhang, Jared Leitner. Audio recognition using mel spectro-
grams and convolution neural networks. 2018.

[43] J.B. Allen and L.R. Rabiner. A unified approach to short-time fourier analysis and
synthesis. Proceedings of the IEEE, 65(11):1558–1564, 1977.

[44] Leland Roberts. Understanding the mel spectrogram. https://medium.com/

analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53, 2020.

[45] Donald Funes. The development and practice of electronic music: Edited by jon
appleton and ronald perera. englewood cliffs, new jersey: Prentice-hall, inc., 1975.
400 pp. photographs, illustrations, music examples. hard cover. Music Educators
Journal, 62(5):90–93, 1976.

[46] William Rose University of Delaware. Hesc686:mathematics and signal processing for
biomechanics. https://www1.udel.edu/biology/rosewc/kaap686/notes/windowing.html,
2016.

[47] Solomon Kim, Vivian Chen, Daniel Tan, and Amil Khanzanda. Virufy on-
Device Detection for COVID-19. https://stanford-cs329s.github.io/reports/

virufy-on-device-detection-for-covid-19/, 2021.

[48] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound
research. In 22nd ACM International Conference on Multimedia (ACM-MM’14),
pages 1041–1044, Orlando, FL, USA, Nov. 2014.

[49] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data
augmentation for environmental sound classification. CoRR, abs/1608.04363, 2016.

[50] Augustin Arnault, Baptiste Hanssens, and Nicolas Riche. Urban sound classification
: striving towards a fair comparison. CoRR, abs/2010.11805, 2020.

[51] David Flanagan. JavaScript The Definitive Guide. O’Reilly, 2011.

[52] Douglas Crockford. JavaScript: The Good Parts. O’Reilly, 2008.

[53] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1997.

[54] Daniel Smilkov and Nikhil Thorat. Tensorflow.js: Machine learning for the web and
beyond. arXiv, 2019.

[55] Hugo Zanini. Custom object detection in the browser using TensorFlow.js. https:

//blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html.

[56] TensorFlow Core v2.5.0. https://www.tensorflow.org/api_docs/python/tf/

all_symbols.

[57] Shanqing Cai. TensorFlow.js: Custom Loss. https://codepen.io/caisq/pen/

QZYZEZ?editors=1111g.

[58] Vincent Mühler. 18 Tips for Training your own Ten-
sorflow.js Models in the Browser. https://itnext.io/

18-tips-for-training-your-own-tensorflow-js-models-in-the-browser-3e40141c9091,
2018.

https://p5js.org/
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://stanford-cs329s.github.io/reports/virufy-on-device-detection-for-covid-19/
https://stanford-cs329s.github.io/reports/virufy-on-device-detection-for-covid-19/
https://blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html
https://blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html
https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://codepen.io/caisq/pen/QZYZEZ?editors=1111g
https://codepen.io/caisq/pen/QZYZEZ?editors=1111g
https://itnext.io/18-tips-for-training-your-own-tensorflow-js-models-in-the-browser-3e40141c9091
https://itnext.io/18-tips-for-training-your-own-tensorflow-js-models-in-the-browser-3e40141c9091

	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem Description and Motivation
	Hybrid Integrated Propulsion Powertrain- HIPPO II
	Contributions and Engineering Challenges
	Thesis Outline

	Theoretical Background
	The AI Roadmap
	Artificial Intelligence
	Machine Learning
	Neural Networks
	Anatomy of Neural Networks
	Deep Learning
	Sound Classification and Convolutional Neural Networks

	Training Neural Networks
	Transfer Learning
	Overfitting and Underfitting

	Tools and Model Selection
	Software and Hardware
	Model Selection
	Teachable Machine
	Web Environment

	Model Architecture

	Model Simulation and Results
	Transfer Learning on Teachable Machine: Dataset Creation
	Data Selection
	Data Labelling

	Transfer Learning on Teachable Machine: Model Training
	Training Case No1
	Training Case No2
	Training Case No3
	Training Case No4

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Model Creation Pipeline
	Bibliography

