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Περίληψη 

Οι εξελίξεις των τελευταίων ετών έχουν ως αποτέλεσμα οι διαστημικές αποστολές να γίνονται ολοένα 

και περισσότερο φιλόδοξες. Τυπικές σενάρια αποτελούν αυτά επισκευής ήδη ενεργών δορυφόρων με 

στόχο την αύξηση του προσδόκιμου ζωής τους ή αποστολές κατάρριψης διαστημικών σκουπιδιών τα 

οποία καταλαμβάνουν χαμηλές τροχιές γύρω από τη γη και αποτελούν κίνδυνο σύγκρουσης για 

αστροναύτες και ενεργούς δορυφόρους. Τέτοιου είδους αποστολές απαιτούν δορυφορικά ρομποτικά 

συστήματα ικανά να εκτελούν κινήσεις υψηλής επιδεξιότητας, ταχύτητας και ακρίβειας που ήταν μέχρι 

στιγμής αδύνατον να επιτευχθούν με τους κλασσικούς ελεγκτές βασισμένους σε απλά μοντέλα του 

συστήματος. Ακόμα και στα καλύτερα συστήματα ελέγχου βέβαια, η απόδοση εξαρτάται σε μεγάλο 

βαθμό από την ακριβής γνώση των παραμέτρων του συστήματος, η οποία δε μπορεί να προέρχεται 

μόνο προσομοιώσεις και πειράματα σε επίγεια εργαστήρια, αλλά από πιστοποίηση των υπολογισμών 

με πειράματα σε στο πραγματικό περιβάλλον λειτουργείας του ρομπότ. Έχοντας αυτό υπόψη, ο κλάδος 

την εκτίμησης παραμέτρων αποτελεί μείζον θέμα για την επίτευξη του στόχου των υψηλών απαιτήσεων  

ενός σύγχρονου διαστημικού ρομπότ.  

Η παρούσα εργασία εστιάζει στο πρόβλημα της εκτίμησης παραμέτρων σε μη γραμμικά 

συστήματα στα οποία υπάρχουν μη μετρήσιμες μεταβλητές κατάστασης. Αυτή η συγκεκριμένη 

κατηγορία συστημάτων κάνει την διαδικασία εκτίμησης παραμέτρων να πρέπει να επιτευχθεί βάση 

γνώσης μόνο δεδομένων εισόδου εξόδου του συστήματος, σε αντίθεση με τα κλασσικά ρομποτικά 

συστήματα ρομποτικών βραχιόνων στα οποία υπάρχει γνώση του πλήρους διανύσματος κατάστασης. 

Το πρόβλημα διατυπώνεται στην μορφή ενός προβλήματος διπλής εκτίμησης και αντιμετωπίζεται με 

κυρίως με χρήση του Unscented Kalman Filter διατυπωμένου για μια επέκταση του συστήματος που 

περιέχει στο διάνυσμα κατάστασης τις παραμέτρους προς αναγνώριση. Το γενικό αυτό πρόβλημα 

εξετάζεται μέσω δύο ειδικών περιπτώσεων σχετικών με εφαρμογές διαστημικής. Η πρώτη περίπτωση 

που εξετάζεται είναι αυτή ενός δορυφόρου με παφλασμό καυσίμου, ενώ η δεύτερη ενός δορυφόρου με 

εύκαμπτους ηλιακούς φορείς. Σε κάθε περίπτωση, οι παράμετροι των υποσυστημάτων αναγνωρίζονται 

θεωρώντας γνωστές τις βάσης του δορυφόρου, η οποία μοντελοποιείται σαν στερεό σώμα.  

Συγκεκριμένα, για τη αρχική μελέτη του φαινομένου του παφλασμού καυσίμου παρατίθεται μια 

σειρά από προσομοιώσεις υπολογιστικής ρευστομηχανικής. Αυτές πιστοποιούν ότι τα μηχανικά 

ανάλογα που χρησιμοποιούνται για την μοντελοποίηση του φαινομένου σε δυναμικά μοντέλα 

κατάλληλα για έλεγχο έχουν την απαιτούμενη ακρίβεια δεδομένων του μικρού πεδίου επιτάχυνσης στο 

οποίο εκτίθεται η δεξαμενή καυσίμου σε διαστημικές εφαρμογές σε σχέση με επίγειες αντίστοιχες 

περιπτώσεις. Επίσης, περιγράφεται μια διαδικασία τόσο για εκτέλεση συζευγμένων και μη 

συζευγμένων προσομοιώσεων υπολογιστικής ρευστομηχανικής του φαινομένου με τις δυναμικές 

εξισώσεις του δορυφόρου. Το αποτέλεσμα είναι ότι οι  αλγόριθμοι που επιλέχθηκαν από την 

βιβλιογραφία για την ταυτόχρονη αναγνώριση κατάστασης και παραμέτρων τροφοδοτούνται από 

ρεαλιστικά δεδομένα εισόδου εξόδου αντί για εξιδανικευμένες μετρήσεις που προέρχονται από τις 

αναλυτικές εξισώσεις με  προσθήκη θορύβου. Με βάση αυτά, βρέθηκε ότι ο αλγόριθμος βασισμένος 

στο Unscented Kalman Filter είναι ικανός να κάνει εκτίμηση του υποσυστήματος του παφλασμού 

καυσίμου με σχετικό σφάλμα 15% παρουσία θορύβου στην χειρότερη περίπτωση, υπολογισμένο από 

κατάλληλες προσομοιώσεις Monte Carlo.  

Για την περίπτωση του δορυφόρου με εύκαμπτους ηλιακούς φορείς, μελετώνται δύο 

υποπεριπτώσεις. Αρχικά η εκτίμηση παραμέτρων γίνεται θεωρώντας γνωστές τις διαστάσεις και την 
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μάζα των δύο φορέων και άγνωστη μόνο την καμπτική δυσκαμψία των φορέων στην διεύθυνση 

ταλάντωσης. Αυτό είναι μια λογική υπόθεση, δεδομένου ότι οι παραπάνω παράμετροι μπορούν να 

μετρηθούν με ακρίβεια πριν ο δορυφόρος τεθεί σε τροχιά. Σε αυτή την περίπτωση το μέγιστο σχετικό 

σφάλμα παρουσία θορύβου δε ξεπερνά το 4%. Επίσης μελετάται η περίπτωση στην οποία και η μάζα 

του κάθε εύκαμπτου φορέα είναι άγνωστη. Σε αυτή την περίπτωση το μέγιστο σφάλμα εκτίμησης 

φτάνει το 15%. Σημειώνεται επίσης ότι η μέθοδος που προτείνεται, η οποία λειτουργεί στο πεδίου του 

χρόνου έναντι κλασσικών μεθόδων αναγνώρισης παραμέτρων που λειτουργούν στο πεδίο της 

συχνότητας, δεν έχει δυσκολία στην αναγνώριση ιδιοσυχνοτήτων από πολλούς φορείς στην ίδια 

κατασκευή οι οποίοι έχουν συχνότητες κοντά ο ένας στον άλλο. Αυτό είναι σε αντίθεση με μεθόδους 

βασισμένες στην αναγνώριση ιδιοσυχνοτήτων από διαγράμματα φάσματος απόκρισης, στα οποία οι 

κορυφές που αντιστοιχούν σε ιδιοσυχνότητες πρέπει να αντιστοιχηθούν με τον φορέα ο οποίος τις 

παράγει.  
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Abstract 

With current advances in space technology, modern space missions are becoming increasingly more 

ambitious. Typical scenarios including servicing missions for extending the life of already operating 

satellites, or deorbiting of debris that occupy lower earth orbits posing collision risks for currently active 

satellites. These missions require space robots with highly precise and agile motion capabilities that 

were previously impossible using conventional models and control schemes. As with even the best 

control algorithms though, the performance is highly dependent on accurate knowledge of the various 

system parameters calculated not only theoretically using simulations or in terrestrial laboratory 

conditions, but also validated in the actual working environment of the space robot. To this end, 

parameter estimation algorithms are a pertinent issue in achieving the strict tolerances required in 

modern space missions. 

This thesis focuses on the parameter estimation of nonlinear systems with unmeasurable state 

variables. This specific branch of systems requires the identification process to use only input-output 

data rather than the complete state measurements that are typically available in robotic systems like 

rigid manipulators. The problem is posed as a dual estimation problem tackled mainly using the 

Unscented Kalman Filter in a joint state-parameter configuration. This general problem is thoroughly 

studied in the context of two specific scenarios related to space applications. The first is a satellite 

exhibiting fuel sloshing, while the second is a satellite with two flexible solar arrays. In each case the 

model parameters of each subsystem are identified, considering the inertial parameters of the rest of the 

spacecraft, modeled as a rigid body, known.  

Specifically for studying the phenomenon of fuel sloshing in satellites, a set of CFD simulations is 

conducted first. These certify that the mechanical equivalent models used to consider the sloshing 

dynamics are appropriate in the context in which they are used, given the weak acceleration fields 

created by small satellite thrusters in the specific scenario under consideration. Furthermore, a 

procedure is described and implemented to create realistic input-output data for the complete spacecraft 

– sloshing tank system, simulated both in a coupled and decoupled form with respect to the rest of the 

spacecraft dynamics. The result is that the algorithms selected for parameter estimation from the 

literature can be tested not only with respect to whether they can be utilized in the ideal scenario, where 

the structure of the model coincides perfectly with the structure of the true plant but also in the more 

realistic case where model mismatch exists between them. Using those data, it is found that the 

algorithm can be utilized for identifying a pendulum mechanical equivalent model with a worst-case 

relative estimation error of 15% under noise, estimated by Monte Carlo simulations.  

For the case of flexible solar arrays, two scenarios are presented. The first assumes all parameters 

known except from the flexural rigidity in the bending direction. This is a reasonable assumption since 

all other quantities can be measured directly while the satellite is still in the testing stage. Under those 

conditions the worst-case relative error in each parameter is less 4% under noise. In a scenario where 

both the array’s flexural stiffness and mass are unknown, the algorithm produces worst-case errors of 

about 15%. It is also noted that the time domain approach adopted here for identifying the flexible 

effects can handle multiple structures having natural frequency in the same frequency range, without 

having the issue of matching each frequency with its source as would be the case in a frequency domain 

peak-picking method.  
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1 Introduction 

1.1 Motivation  

 

Space exploration is a field that met incredible advances during the past years. Modern space missions 

are facing tasks requiring increased dexterity and a high level of autonomy. A particularly interesting 

mission scenario that has been gaining increased attention over the last years is that of repairing or 

deorbiting inactive, possibly non-cooperative, satellites. This is a very important issue in an overall 

effort to impede a phenomenon called “Kessler syndrome”, a naturally occurring chain of events that 

will exponentially increase space junk due to collisions and will ultimately render earth’s lower orbits 

uninhabitable not only for astronauts but for future satellites as well. Multiple approaches have been 

proposed over the last decade, ranging from spacecrafts with manipulators for grasping and handling 

the target satellite to launchable nets for capturing a tumbling debris. The common aspect of all such 

missions is their increased demands for agile, precise, and highly coordinated motions capabilities. 

These in generally require the inclusion of a variety of effects in the spacecraft’s control models that 

were previously ignored because of their minor importance in older missions. These effects include 

flexibilities of large solar arrays or antenna structures, fuel sloshing and gravity gradient related 

disturbances among others. 

 Such phenomena can be predicted through highly complex simulations allowing for a rough 

tuning of the various parameters participating in the control models. Experimental validation and fine 

tuning though are difficult, if not impossible, to take place in terrestrial laboratories. The main issue is 

the emulation of the zero-g environment, playing a key role in almost all of the previously mentioned 

effects. Two main different approaches are usually adopted in such scenarios. On the one hand, one can 

design controllers with robustness in mind, acknowledging the inherent uncertainty of the parameters 

of the system and design them to optimally perform in the presence of it. The other end of the spectrum 

is adaptive controllers, that actively try to adjust the model parameters and control gains to more 

accurately describe the actual plant, providing increased performance.  

The difficulty of the experimental tuning and testing of space systems can be addressed through 

the field of system identification. The general concept of identification is to build a dynamic model of 

a system based on observed data. Although general formulations exist that can identify system dynamics 

without any prior knowledge of the system, these are generally employed for linear time invariant 

systems and are of little use in highly non-linear robotic application. A more specific task is the 

estimation of model parameters, given the structure of the dynamic equations which are generally non-

linear. This thesis will focus on a branch of nonlinear models characterized by having state variables 

that can’t be measured directly.  

1.2 Literature review 

To give some more context, consider the general classifications made in Figure 1-1. For a linear system, 

the parameter estimation problem can be tackled in general only from input output data, assuming full 

state observability [21]. Indeed, a fully observable, discrete time, state-space model can be transformed 

into an input-output equation fully relating its output with its input eliminating the unmeasurable state 
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variables. From there, the parameter estimation problem can be solved using linear regression via least 

squares. On the other hand, in the nonlinear model of a rigid manipulator, where all state variables are 

directly measurable, the system equations can be transformed into the famous Y-π form, enabling again 

the employment of least squares algorithms. Linear regression is a convex optimization problem and 

can be very solved quickly and globally, without the need for an accurate initialization or the 

convergence issues that are usually pertinent to numerical optimization methods for attacking non-

convex problems. 

 

Figure 1-1. Problem definition in the broader context of parameter estimation. 

 

In the case of non-linear systems with unmeasurable state variables, the problem cannot be 

formulated in a general way as a linear regression problem inheriting all the advantageous attributes of 

convex problems. The algorithms that are employed in such scenarios are usually iterative, of much 

higher computational complexity, and sometimes prone to convergence issues. An important distinction 

one can do to select an appropriate method in these cases is whether the algorithm will be used online 

or offline. Offline methods are usually posed as nonlinear optimizations problems and are solved 

iteratively using numerical optimization schemes. They offer the best possible solution in terms of a 

selected cost function and are usually employed in scenarios when experimental data has been 

previously gathered and the a best-fit parameter vector is sought. On the other hand, online methods 

sacrifice some accuracy for computational speed and are typically used when tracking of specific model 

parameters is required to take place in real-time. The uses for these are abundant, ranging from adaptive 

control schemes, fault detection or disturbance rejection among others.  

Focusing on online methods, a typical one employed in the literature is based on state estimation. 

To provide some context, consider a system described by some dynamic model which has a known 

structure however unknown values in some of its parameters. Given only input-output data, one possible 

approach to reconstruct the full state vector in order to proceed with classic parameter estimation 

algorithms would through Luenberger observers, Kalman Filters or a similar method. These methods 

however require knowledge of the system’s dynamic equations which are unknown. This problem, also 

known as a dual estimation problem, was originally posed as a nonlinear estimation problem by 

augmenting the state vector with the unknown parameters of the state space equations. Kopp and Orford 

[19] proposed the Extended Kalman Filter (EKF) to solve the resulting nonlinear filtering problem. In 

this thesis, a similar method is used based on the Unscented Kalman Filter (UKF), an improvement of 

the EKF based on the Unscented Transformation (UT). The specific formulation used can be found in 

detail in [13],[41][42].  

In this thesis the problem is not considered in the general case of non-linear systems but in a more 

case specific context related to space missions. Two systems are thoroughly studied, the case of a 
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satellite with a sloshing fuel tank and that of a satellite with flexible solar arrays. These problems, 

although seem unrelated in terms of structure of dynamic equations, they have one key attribute in 

common: both have state variables that are either fundamentally impossible to measure, or would 

require very intricate hardware that is not typically found in a space mission.  

 

 

Figure 1-2. Typical cases of space systems with unmeasurable state variables.  

         

The inclusion of sloshing in models appropriate for control usually takes place using the so called 

simplified mechanical equivalent models [9]. These replace the Navier-Stokes equations that govern 

the liquid motion with an abstract mechanism that if designed correctly, will reasonably and accurately 

capture the force interaction between the sloshing tank and the satellite. It becomes quickly obvious 

that the state variables representing those models do not correspond to a physically measurable quantity 

and is therefore fundamentally unmeasurable. On the other hand, the case of flexible solar arrays is 

usually accounted for using a modelling technique called the Assumed Mode Method (AMM). This is 

typically employed for creating low order models of flexible structures appropriate for control. In the 

context of AMM, the degrees of freedom of the flexible structured are assumed to be the oscillation 

amplitudes of a limited number of modes. In this scenario, the amplitude of each mode could be 

extracted if knowledge of its deformed shape is available, either visually from cameras, from strain 

sensors on the structure or from accelerometers distributed along it. These sensors add complexity, 

consume power, and might not be available in already operating spacecrafts. The state variables 

corresponding to the flexible degrees of freedom are therefore also unmeasurable.  

1.3 Thesis organization 

This thesis is organized in 4 sections. The 1st chapter is concerned with the derivation of the equations 

of motion for all the system studied. This includes modelling of a rigid spacecraft with mechanical 

equivalent models for sloshing and multiple flexible arrays. The 2nd chapter is dedicated to studying the 

sloshing phenomenon with CFD. This serves the 3 purposes. First, it certifies the validity of the 

mechanical equivalent models that have been previously employed. Second, a procedure is described 

for creating realistic data used to evaluate the parameter estimation algorithms that are the main focus 

of the thesis. Third, a brief literature review is included, along with some simulations conducted 

exclusively in this thesis, for studying various fuel sloshing scenarios relative to space applications. The 

3rd chapter starts with a literature review of the concurrent state-parameter estimation problem in general 

and then focuses on the space applications presented earlier. Tabulated results regarding the 

performance of the methods studied are presented for all scenarios studied. In the 4th and final chapter, 

the outcomes and contributions are summarized along with recommendations for future work.   
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2 System modelling 

2.1 The General formulation for multibody vehicles 

The analytic formulation of the equations of motion for the system is the first step towards parameter 

estimation. It is important that the employed method will yield closed form differential equations with 

analytic expressions of the systems parameters. There are multiple ways to tackle this problem including 

the classic Lagrangian approach, Newton – Euler equations, or hybrid methods using quasi-coordinates 

as in [13][21-22][28]. The main idea of the later, usually applicable to flying robots, is instead of using 

a global inertial frame to describe the motion of the system, to write the equations of motion in the non-

inertial frame of the robot’s first link usually called base link or simply base. The orientation and 

position of the base no longer participate in the equations of motion this way. Furthermore, the inertia 

of the base link is constant in its own frame. The end result of the method is simpler and more compact 

equations of motion. In the case where the orientation of the system is not of interest this formulation 

is clearly beneficial. Given the assumption that the space systems studied here are essentially free of 

external disturbances like gravity gradient and aerodynamic drag among others, the orientation of the 

experiment is indeed not relevant and can be excluded from the analysis.  

For a general description of the modelling process consider the case of a tree type system that is 

composed of a rigid base, described by its linear and angular velocity, 
0v and 

0ω  respectively, 

expressed in the body-fixed frame of the base. Multiple appendages are connected to it, with their 

configuration being described by a vector of generalized coordinates 
aq . The appendages might be 

flexible solar panels, lumped parameter systems etc. The Kinetic energy of the system is  

 0 0 0

1

1 1 1
( )

2 2 2

n
T T

i i i

i

T
=

= + t t t t  (2-1) 

where 0/ 0/ 0/

T
T T

i i i
 =  t v ω represents the twist vector of the rigid base and of all other lumped elements 

respectively. The inertial parameters of each body are concatenated in the generalized mass matrix  

according to the usual convention  

 
3 3 0

0 cm

m  
=  
 

I

I
 (2-2) 

To formulate the system’s Lagrangian, further assume that the various appendages connected to 

the base can store energy in terms of some quadratic potential energy function ( )aV q , while they 

dissipate energy via a Rayleigh energy dissipation function ( )aR q . The Lagrangian under this notation 

is 

 L T V= −  (2-3) 

To continue with the derivation of the equations of motion, the standard Lagrangian approach 

would dictate to express the linear and angular velocity of each link in terms of a set of generalized 

coordinates. For the appendages usually the degrees of freedom of the various joints are used while for 

the rigid base the inertial position and Euler angles. In the special case the Lagrangian in (2-1) is 
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orientation and position invariant1 in the sense that the orientation and position of the system with 

respect to an inertial frame play no direct role in the its evolution, we would like to avoid adding those 

to the generalized coordinate vector. Instead, one can use 
0v and 

0ω  as quasi-coordinates for directly 

describing the motion of the base, while expressing 
iv and 

iω  in terms of 
aq . For a brief description 

of how this can be is done, consider the generalized coordinate vector corresponding to the degrees of 

freedom of the base 1 2 3b x y zp p p   


 =  q . This could be composed from the position of the base 

resolved in an inertial frame and some Euler angle parametrization of its attitude. The relations between 

the generalized speeds 
bq  and the quasicoordinates 

0v and 
0ω  is given by  

 
0 0

0

0

0

T

b

  
=   

   

v R
q

ω S
 (2-4) 

where  0

T
R  is the rotation matrix simply transforming the velocity vector from the inertial to the body 

fixed frame and S  is the matrix converting Euler angle rates to body fixed rotational velocity.  

The classic Lagrangian formulation expressed in terms of 
T

T T

b a
 =  q q q  using matrix calculus notation 

is 
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Q
q

 (2-5) 

Notice that the term 
bL q in the first equation is omitted because the kinetic energy in (2-1), the 

potential energy function ( )aV q  and by extension the Lagrangian do not depend explicitly on 
bq . The 

term should only be included if the change of variables of (2-4) is performed on the Lagrangian, which 

is exactly what we want to avoid. The objective now is using the chain rule, to convert the differentiation 

with respect to 
bq  in the first 6 equations of (2-5) using (2-4). This process can be found in detail in 

[24] for the general case while for a system similar to this one in [23]. The resulting the equations in 

vector form will be used here directly. These are  
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 (2-6) 

Where the skew symmetric matrix of a 3-element vector a  denoted by 


a is defined as  

 

 

1 The Lagrangian is considered invariant with respect to some degree of freedom iq when 0
i

L

q


=


. In this case, 

iq is also referred to as a cyclic variable.  
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a x



− 
 

= −
 
 − 

a  

 

fulfilling the property 
 =a b a b . 

Although the formulation of (2-6) is typically used among roboticists to eliminate the Euler angles 

vector from the equations of motion in order to use some more powerful attitude representation like 

quaternions, the motive here is to write the equations of motion without using a global reference frame, 

eliminating therefore the need for orientation measurements.   

2.2 Modelling of a 1D fuel sloshing tank 

Forgetting for the moment the powerful tools presented above for studying dynamics in 3D, the first 

model developed in this thesis is a simple one. Because of its extensive use in the following chapters 

though, it will be developed here explicitly. The model represents the dynamics of a fuel tank exhibiting 

fuel sloshing. Typically, when this phenomenon has to be taken into consideration in the control system 

model some mechanical equivalent model is used. In this one-dimensional case the mass spring damper 

(MSD) equivalent model will be considered.   

A schematic of the model can be viewed in Figure 2.1. It is composed of a massless structure 

representing the tank, constrained to move in one axis only. Two point masses are attached to it, one 

rigidly and one via a spring and a damper.  The fixed mass, denoted by fm , has the same velocity as the 

container, denoted by 
tv . The second mass, denoted by 

sm is the sloshing mass. The spring and damper 

have parameters k and b respectively. The velocity of the sloshing mass with respect to the inertial 

frame is denoted by 
sv .  

 

 

Figure 2-1. Mechanical equivalent model of container with sloshing using a mass, spring and damper 

The correlation of each lumped element with the real plant parameters will be explained in detail 

in Chapter 3.1. Here we are only interested in deriving the equations of motion. Instead of using the 

deflection of the spring 
sx as a state variable, the force stored in it will be used. This is related linearly 

with its deformation 
sx  according to   

 s sf k x=  (2-7) 

By differentiating (2-7) one gets  

 ( )s s s tf kx k v v= = −  (2-8) 

Using (2-7) and Newton’s second law expressed for each point mass one gets the complete system 

equations  

fm

sm

b
k

extF

tv

sx
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( )( )

( )( )
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1

1

t ext s t s

f

s s t s

s

s t s

v F f b v v
m

v f b v v
m

f k v v

= − − −

= + −

= −

 (2-9) 

The output of system (2-9) is the tank’s velocity 
tv .  

In the CFD simulations, the motion of the tank is sometimes prescribed and the system’s output is 

the sloshing force exerted to the container walls. To this end, the acceleration of the tank 
tv  might be 

directly controlled. In such scenario the system equations in (2-9) can be altered to  

 ( )( )

( )

1

t

s s t s

s

s t s

v u

v f b v v
m

f k v v

=

= + −

= −

 (2-10) 

Usually in such a scenario the system’s output is the force  

 ( )s f s fF f b v v m u= + − +  (2-11) 

Which is the essentially the first equation in (2-9) solved for 
extF F=  and is the required force need to 

produce the prescribed acceleration, or simply minus the sloshing force.  

2.3 Spacecraft with fuel sloshing using a mechanical equivalent model 

2.3.1 Mass spring damper equivalent model  

Returning to the 3D models, the equations of motion for a satellite with a mass spring damper (MSD) 

mechanical equivalent sloshing model will be presented, as shown in Figure 2-2. It is composed of a 

rigid base representing the satellite and a mechanical equivalent model representing the sloshing 

dynamics. Much like the previous case, the sloshing model consists of a fixed mass fm  rigidly 

connected to the spacecraft in the location 
0p  with respect to its center of mass and a sloshing mass  

sm , constrained to move on a plane perpendicular to the main engine’s thrust vector, connected to the 

fixed mass with a spring and a damper. The position of the sloshing mass with respect to the fixed mass 

expressed in the body frame is denoted by  1 2 0
T

s q q=r and corresponds to the generalized 

coordinates of the sloshing subsystem. 

To use the Lagrangian approach discussed earlier the kinetic energy of the sloshing subsystem 

needs to be calculated. The contribution of the rigid base is trivial. The velocities of the two point 

masses of the MSD sloshing model are  

 
( )

0 0 0

0 0 0

f

s s s





= +

= + + +

v v ω p

v v r ω p r
 (2-12) 

The kinetic energy of the complete system is  
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where
0

, 
0t  are the generalized mass matrix and twist vector of the rigid base as defined in Chapter 

2.1. 

 

Figure 2-2. Satellite with mass spring damper mechanical equivalent model 

 

If the term T

s sv v is analyzed it decomposes to   
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while the term T

f fv v equals 

 ( ) ( )
2

0 0 0 0 0 0 0 02T T

f f

   = + −v v v v ω p v ω p ω  (2-15) 

 

Using (2-14) - (2-15) one can write the system’s kinetic energy in matric form as  
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where the matrix  2 2 2 1

T

x x=D I 0  essentially selects the first two columns from 0( )s

+p r .  The *’s 

represent symmetry. The potential energy stored in the springs is  
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 (2-18) 

The equations of motion can be easily computed at this point simply by employing (2-3) and (2-6). The 

resulting equations will be of the form  

sm
fm

0

, cmm I

0p

x̂ ŷ

ẑ
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q 0

H

v

q ω c v ω q q  (2-19) 

where f , τ are the external forces and torques acting on the spacecraft’s Center of Mass by means of 

thrusters and c  is the vector of non-linear Coriolis terms, containing the potential energy terms as well.  

Looking at the inertia matrix of the system in (2-17) the advantages of using this mixed generalized 

– quasicoordinates formulation are obvious. Indeed, the matrix has much fewer terms compared to how 

it would be if a classic generalized coordinate formulation based on Euler angles was used, while it is 

also free of highly nonlinear trigonometric terms coming from the attitude transformation. The vector 

of nonlinear terms c  is not presented here analytically however it is much more compact when 

compared to the classic Lagrangian formulation.  

2.3.2 Pendulum equivalent model 

The procedure followed to model the spacecraft with a pendulum mechanical equivalent sloshing model 

doesn’t differ much from the MSD case. The structure of the model can be viewed in Figure 2-3. The 

sloshing dynamics are now represented using a 2-DOF pendulum and a fixed mass. The pendulum joint 

is used parametrized using ZYX Euler angles.  

 

 

Figure 2-3. Satellite with pendulum mechanical equivalent sloshing model  

 

As with the previous case the objective is to calculate the velocity of the sloshing mass and the 

fixed mass. Because the mechanism is more complex than in the MSD model, it’s kinematics will be 

derived first. The position of the fixed and the sloshing mass with respect to the spacecraft’s center of 

mass are   
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where 
sR is the transformation from the spacecraft frame to the pendulum rod frame and is equal to 

2 1( ) ( )s Z Yq q=R R R . The equations won’t be computed analytically from this point and forward as with 

the MSD model given that a symbolic math software can be employed. All operations are done using 

Matlab’s symbolic math toolbox. Differentiating (2-20) to find the velocity of the two masses, taking 

into consideration that the operation takes place in the rotating reference frame of the spacecraft one 

gets the desired expressions:  
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=

 = + − 

v ω p

v ω p R
 (2-21) 

The system Lagrangian can be easily computed taking into account that the system doesn’t store 

potential energy. Its expression is   
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As with the MSD model, the equations of motion of the system can be computed using (2-6) and are of 

standard form  
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2.4 Satellite with flexible appendages 

Apart from the case of fuel sloshing using a mechanical equivalent model, we are also interested in the 

case of a spacecraft with flexible appendages. The later could be solar panels, an antenna, or some other 

beam like structure protruding from the main body and being prone to vibrations. In general, a flexible 

structure is a continuous system described by PDEs. To avoid infinite dimensional spaces some 

approximation is needed. One could discretize the system using finite elements and use order reduction 

to compute a model appropriate for control. This however is not suited for parameter estimation because 

the model parameters are no longer in an explicit form in the system equations. Another alternative is 

to use the Assumed Mode Method (AMM) in combination with the assumption of the Euler-Bernoulli 

beam equations describing the flexible member. The idea of the AMM is to use a finite number of 

modes of the beam as degrees of freedom and use the amplitude of each one as generalized coordinates. 

The later will be referred to as modal coordinates. The advantage of this formulation is that reasonably 

high accuracy can be accomplished by only adding a few modes. The validity of the Euler Bernoulli 

beam hypothesis is restricting though, especially in the case of solar panels however it has been used 

extensively in the literature [10] so it will be adopted here as well. Including 2D plate equations in the 

system would be prohibitive in terms of complexity anyway.  

Under these assumptions, the modelling strategy used here is comprised of first building a segment 

Lagrangian containing the kinetic and potential energy of a single flexible appendage calculated in the 

floating reference frame attached to its one end and then appending it to the system Lagrangian with an 

appropriate transformation for every flexible member. Before calculating the segment Lagrangian, 

some preliminaries regarding Euler Bernoulli theory will be presented.  
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Consider the beam of Figure 2-4 with constant cross-section, clamped in one end and free to vibrate 

on the other.  Under small deformations, assume that every cross-section in the beam remains planar, 

normal to the beam’s centroidal axis and undeformed.  

 

 

Figure 2-4. One-dimensional Euler-Bernoulli beam. 

The PDE describing the motion of the centroidal axis in this case is 
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 (2-24) 

 

where ( , )u x t is the deformation in the bending direction, E is the material’s young modulus, I the 

second moment of area in the direction of bending and   is the mass per unit length of the beam. If the 

member deforms in more than one bending directions, equation (2-24) will be written for each one, 

assuming no coupling between them. Given separability in time and space a general solution for (2-24) 

of the form   

 ( , ) ( ) ( )u t x x t =  (2-25) 

is sought. Plugging harmonically time varying amplitudes ( ) Re( )ii t

i t e
 −

=  in (2-25) and substituting 

in (2-24) yields a 4th order ODE with only the spatial variable into play. The general solution is  

 ˆ( ) cosh( ) sinh( ) cos( ) sin( )x A x B x C x D x = + + +  (2-26) 

The beam is clamp-loaded in one end and free to vibrate in the other. These boundary conditions are 

translated into ˆ ˆ ˆ ˆ(0) 0, (0) 0, ( ) 0, ( ) 0L L     = = = =  and if imposed in (2-26) yield:  
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 +
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+ 
 (2-27) 

where L is the beam’s length and
n are solutions to the algebraic equation 

 cosh( )cos( ) 1 0n nL L  − =  (2-28)  

The spatial function ˆ( )s is called eigenfunction or mode and satisfies (2-27) as well as the boundary 

conditions. Because (2-24) is linear, solutions of the form of (2-27) can be superimposed. The first few 

modes can be viewed in Figure 2-5.  

 

ẑ
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( ),u x t
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Figure 2-5. First 3 eigenfunctions of an Euler-Bernoulli beam with clamped/free boundary conditions. 

 

The general solution for the beam’s centerline is given by an infinite sum of modes 

 ˆ( , ) ( ) ( ) ( ) ( )T

i iu t x x t x t = = φ δ  (2-29) 

where all the modes are placed in the vector ( )xφ  and all the mode amplitudes in ( )tδ . Furthermore, 

note that in (2-27) the parameter A in the mode shape undetermined. In the AMM the objective is to 

use the modes shapes as degrees of freedom for the system and modal amplitudes as generalized 

coordinates. To this end, there is a freedom for choosing A since it can be absorbed by the corresponding 

modal amplitude. For practical applications a mode normalization was proposed in [7] that considerably 

simplifies the equations of motion and therefore will be adopted here as well. According to it one selects 

A in order to simplify the integral  

 ( )
0

ˆ
L

x dx  (2-30) 

to unity for each mode.  

2.4.1 Kinetic energy of a single segment 

To formulate the segment Lagrangian, assume the beam of Figure 2-6 with a reference frame rigidly 

attached to its one end. This frame will be called floating frame and denoted by 
a
 . The left superscript 

a  will denote that a vector is resolved in 
a
. The velocity of each point in the beam relative to the 

floating frame is only due to the beam’s deflection. The floating frame is considered moving in inertial 

space with linear and angular velocities resolved in 
a
 

 

a

a a

a a



 
=  
 

v
t

ω
 (2-31) 

Before proceeding with the differential kinematics of each point in the beam, the kinematics will be 

analyzed first. The goal is to express the position of each point mass in the beam with respect to its 

generalized modal coordinates.  

 

Figure 2-6. Single flexible segment modelled in its own floating frame. 
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Starting with the undeformed position of each point in the segment’s domain, it is split into two 

components, a centroidal one along the main axis of the beam and a transverse one.  

 ( ) ( , )a a a

c x y z= +p p p  (2-32) 

The deflection vector corresponding to that point is also split in a similar manner.  

 ( , ) ( , ) ( , )a a a

ct x t t= +u p u u p  (2-33) 

According to the above, the deformed position of point p is 

 ( )( , ) ,a a a a

d c x t t= + +p p u u p  (2-34) 

Notice that according to the Euler-Bernoulli hypothesis all cross-sections of the beam must remain 

planar and undeformed. Therefore, the transverse component of the deflection ( , )p tu  is only due to 

the cross-section’s rotation. This rotation transforms the local frame p in the barycenter of each cross-

section, to the floating frame in the clamped origin
a
. The corresponding rotation matrix is ( )a

pR ψ

and is parametrized using the ZYX Euler angles.  

 

Figure 2-7. Kinematics of the flexible segment. 

 

To continue with the AMM theory, (2-34) needs to be expressed in terms of the modal coordinates. 

Taking into account bending in two axes, torsion and compression the modal amplitudes or generalized 

degrees of freedom of the system are 

 
T

T T T T

x y z a
 =  δ δ δ δ δ  (2-35) 

where T

xδ accounts for compression, T

yδ , T

zδ for bending and T

aδ for torsion. The mode shapes 

corresponding to each flexible coordinate are stored in the vectors ( )x sφ , ( )y sφ , ( )z sφ , ( )a sφ . The 

size of each vector depends on the selected number of modes in each direction. The total number of 

modes is fn  being composed of xn , yn , zn , an  entries in each flexible direction. Each point’s 

centroidal deformation can be expressed in terms of the flexible coordinates as:  

 ( )
T

a T T T

c x x y y z zx  =  u φ δ φ δ φ δ  (2-36) 

Using the small angle approximation, the Euler angles vector in ( )a

pR ψ is  

 [ ]T T T T

a a z z y y
 = −ψ φ δ φ δ φ δ  (2-37) 

a

p

dp

pp

 +p u

cp
cu
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For small angles, the rotation matrix can by approximated by 
3 3( )a

p



= +R ψ I ψ and the matrix relating 

Euler angle rates to rotational velocities becomes unity [14]. The transverse part of the deflection u

is only due to the frame’s rotation and under the above assumption becomes 

 

 ( )3 3( , ) ( , )a a ay z t  

+ = + p u p I ψ p  

 ( )( , )a a at  


= = −u p ψ p p ψ  (2-38) 

Substituting (2-36) - (2-38) in (2-34) one gets the final expression for the position of each point in the 

beam with respect to the modal coordinates. Differentiating (2-34) and taking into consideration the 

that it takes place on a rotating frame the velocity of each point in the beam is  

 ( ) ( )a a a a

d d

d

dt


= +v p ω p p  (2-39) 

Given the velocity of each point, its corresponding infinitesimal kinetic energy is  

 
1

( )
2

a a T adT dm=p v v  (2-40) 

In order to find the total kinetic energy of the segment, one needs to integrate over its hole domain. 

Given its constant cross-section the calculation reduces to a single integral along the x axis. Substituting 

(2-39) in (2-40) and integrating directly though, is found to be a cumbersome process, even when 

utilizing a symbolic computation tool. One way of simplifying the process is to omit the second order 

modal terms in (2-39) sacrificing some accuracy under the assumptions that the modal DOFs will 

remain small. In [10] each term in the infinitesimal kinetic energy is calculated and integrated explicitly 

while identifying common terms and calculating them only once, massively reducing the computational 

cost of the process and allowing for the exact computation of the integral of (2-40). This method is 

followed here as well. The end result is that the inertia matrix is expressed analytically in vector notation 

and sorted with respect to zero order, linear and quadratic dependence with the flexible coordinates. 

The resulting kinetic energy is  

 

 
1

2

a T a

a f a fT = t t  (2-41) 

 

were  

 
T

a a T a T T

f a a
 =  t v ω δ  

 

Because of the detailed analysis in [10] one can easily choose which terms to include in the 

appendage’s generalized mass matrix a in (2-41). Including all terms adds computational complexity 

and is not necessary in the case of small deflections. In this thesis, only the terms with up to linear 

dependance are included. Finally, note that for a single flexible segment, the twist of its floating frame 

will be augmented with its modal DOFs, completely describing its form. The new twist vector will be 

referred to as augmented twist and denoted by a

ft .  
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2.4.2 Potential Energy of a single segment  

Calculating the potential energy of the segment is simpler. According to the Euler-Bernoulli theory the 

potential energy stored in the beam due to strain is  

 

 ( ) ( ) ( ) ( )( )2 22 21

2
x y y y y p aU ES u EI u EI u GI u ds   = + + +  (2-42) 

 

where E is the material’s Young modulus, G is the Poisson modulus, S the area, yI and 
zI the second 

moments of area and pI the second polar moment of area of the cross-section. In terms of the flexible 

coordinates vector in (2-30), it can be expressed as  

 

  

 
0

0 0 0

* 0 01

2 * * 0
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y z y a

z a

T
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T
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T
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T

p a a
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U dx
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=  

  
   



φ φ

φ φ
δ δ

φ φ

φ φ

 (2-43) 

  

giving rise to the segment’s stiffness matrix pK . Notice that this approach results in a linear model of 

elasticity with the stiffness matrix having a zero-order dependence with the flexible coordinates. The 

products yEI  and 
zEI  can be combined into one parameter called the beams flexural rigidity in the y 

and z direction. The new parameter denoted /y z  will be the parameter towards estimation in the 

following chapters.  

2.4.3 The complete satellite model  

 

 

Figure 2-8. Spacecraft with multiple flexible appendages. 

 

Up to this point, the Lagrangian of a single segment can be formulated from (2-41) and (2-43) as  

 

 a a aL T V= −  (2-44) 

 

and is a function of the it’s augmented twist vector a

ft  resolved in its own floating frame and the 

various model parameters like panel dimensions, material density etc.  

For an appendage that is rigidly fixed in the spacecraft, adding its contribution to the system’s 

Lagrangian is simple. One only has to express the twist vector of the appendage’s frame as a function 

, cmm I
0

, , , ,l w t 

a

/0ap

,a

p pK
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of the spacecraft’s twist. The attachment point of the ith appendage in the spacecraft’s frame is denoted 

by /0iap . The twist vector of the attachment point in the spacecraft frame can be found by the twist 

propagation matrix [10] as 

 
( )0 0/3 3

0
3 3 3 3

i
a

a

a





 

    −
 =   
     

v I p v

ω ω0 I
 (2-45) 

The twist now needs to be transformed into the appendage’s floating frame under the following 

transformation 

 0 3 3

3 3 0

a a
aa

a a
aa





     
=     

    

vv R 0

ωω 0 R
 (2-46) 

where 0

a
R  is the transformation from the spacecraft’s frame to each flexible’s member floating frame. 

Using (2-45) and (2-46) one can define the transformation  

 

 

( )3 3 30 3 3 3

0 3 3 0 3 3 3 3 3 3

3 3 3 3

/0 ff

f f

f f f f f

i

f f f

a

nn

a a

n n

n n n n n

a

n n n



  

    

     

   −
  
  =
  
     

I 0R 0 0

0 R 0 0 I 0

0 0 I I

p

0 0

 (2-47) 

 

and noting that  

 0 0 0

T
a a T T T

f
 =  t v ω δ  (2-48) 

one can directly transform the mass matrix in (2-41) to the equivalent mass matrix of the appendage in 

its attached point, expressed for the spacecraft’s twist vector, augmented with the flexible coordinates 

of the segment. 

 ( )0 0

T
a a a

a a=  (2-49) 

The system’s Lagrangian can now be calculated as  

 

 ( )0 0 0 0 0

1 1 1

2 2 2
i i i

i i i

a a aT T T T

f a f i a iT K
 

= + − 
 

t t t t δ δ  (2-50) 

summing to include the contributions from all the appendages. The augmented twist 
if

t for each flexible 

appendage in (2-50) is composed of 
0v , 0ω  and the its modal coordinates. Notice that the stiffness 

matrix doesn’t require a transformation. Given (2-50) one can calculate analytically the systems inertia 

matrix or employ (2-6) to get the system’s equations of motion.  

2.5 Discretization and conversion to state space 

All equations presented up to now are first order continuous-time differential equations for the linear 

and angular velocity of the rigid base and second order for the rest of the generalized coordinates. Their 

general form is  
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0

0 0 0( ) ( , , , )

   
   

+ =
   
      

f

τ

q 0

H

v

q ω c v ω q q  (2-51) 

They can be easily converted a non-linear state space system of the form  

 ( , )f=x x u  (2-52) 

where 

 0 0

T
T T =  x v ω q q  (2-53) 

 


   =  u f τ 0  (2-54) 

 
( )1

0 0( ) ( , , , )
( , )f

− −
=  
 

H q u c v ω q q
x u

q
 (2-55) 

Kalman Filtering techniques require discrete time equations. To this end (2-55) is linearized using 

a first order discretization. The discrete form of (2-52) is  

 

 
1 ( , )k k s k kT f+ = +x x x u  (2-56) 

2.6 Validation of equations in simscape  

Simscape is an environment for building physical systems in Simulink. It allows to construct lumped 

element multidomain models using fundamental building blocks while maintaining full compatibility 

with the rest of Simulink’s functionalities. It will be used in this thesis to validate the analytic equations 

of motion that were previously created. Only the rigid body dynamics toolbox of simscape will be 

utilized. The model for the 3D fuel sloshing case will be used for the following discussion. The plant’s 

can be viewed in Figure 2-9. 

 

Figure 2-9. Simscape plant for a satellite with a mass spring damper equivalent sloshing model. 
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The models starts from an inertial “world” frame connected via a 6 DOF joint to the satellite’s 

body center of mass. There, through a planar joint with stiffness and damping, the sloshing mass is 

connected. Detailed thruster and reaction wheels modelling is omitted for simplicity and is replaced 

with a force and torque block connected to the satellite’s center of mass. Measurements are extracted 

from the model using a transformation sensor which is set to output linear acceleration and angular 

velocity measurements from the satellite’s CM as if it were an ideal Inertial Measurement Unit (IMU). 

To make this as realistic as possible Gaussian white noise is added to the IMU signals based on the 

ADIS16490 sensor datasheet. The noise in the datasheet is given as noise amplitude density which is 

the square root of noise power spectral density (PSD). To convert this to standard deviation one simply 

multiplies with the sampling frequency. The dependence of the noise’s standard deviation on the 

sampling frequency essentially corresponds to the fact that the noise contained in the spectrum above 

the sampling frequency is filtered off. The noise levels in terms of standard deviation will be calculated 

for sampling frequencies of 100 and 1000 Hz.  

 

Table 2-1. Noise characteristics based on the ADIS16490 

Sensor 

Noise 

Amplitude 

Density 

[Custom Units] 

Power Spectral 

Density  [SI] 
2

100  2

1000  

Accelerometer 16 μg/ Hz   8 2 410  m /s /Hz2.46 −  
6 2 42 s.46 10 m /−  

5 2 42 s.46 10 m /−  

Gyroscope 0.002  /s/ Hz  
9 2 21.22 10  rad /s /Hz −  

7 2 21.22 10  rad /s−  
6 2 21.22 10  rad /s−  

 

Finally, it is noted that more uncertainty sources could be modelled to capture the actual noise 

distribution more accurately like bias instability, cross-correlation due to poor axis orthogonality or 

even temperature dependance with the above parameters, however these are assumed ideal for 

simplification and based on the fact that real space missions have extremely precise and well calibrated 

instruments.  

In order for the identification algorithm to operate correctly, velocity and angular velocity 

measurements resolved in the local frame of the satellite should be provided. The angular velocity 

vector is directly available from the gyroscope. To construct the linear velocity vector, an integration 

process must take place to avoid the need for more sensors like GPS. The IMU outputs inertial 

acceleration data resolved in the local frame of the satellite. This signal can’t be integrated directly 

because while the orientation of the measurement frame is changing the past measurement’s frame is 

no longer aligned with the present one. One way to overcome the issue would be to resolve all 

measurements, provided attitude knowledge, to a common frame for the integration process to take 

place and then project the integrated acceleration back to the body frame. Attitude measurements 

however are hard to obtain in space and would introduce a new source of noise. A better alternative is 

to use the angular velocity vector from the gyroscope to convert the inertial acceleration measurement 

to the rate of change of the velocity vector in the spacecraft reference frame. This can be done by relating 

the inertial and relative rates of change of a vector in a rotating and a non-rotating frame. The required 

formula is  

 



System modelling 

 

33/83 

 0 0
0 0

relative rateIMU meas.

i r

d d

dt dt

= +
v v

ω v  (2-57) 

By solving for the relative rate, one gets  

 0 0
0 0

relative rate IMU meas.

r i

d d

dt dt

= −
v v

ω v  (2-58) 

witch essentially removes the centrifugal component from the acceleration measurements since those 

are due to rotation and not actual velocity changes in the body frame.  In order to calculate the velocity 

in the body frame (2-58) must be integrated in time as new measurements arrive. To make the case 

realistic, this will be done in a discrete manner just as it would be done in a real scenario. To this end a 

recursive relation is formulated, based on a first order difference scheme, linking the present velocity 

estimations with the past ones and the signals from the IMU. The formula is 

 

 

1 1 1 1 1 1

1 1 1 2 3 3 2

1 1 1 1 1 1

2 2 2 1 3 3 1

1 1 1 1 1 1

3 3 3 1 2 2 1

k k k k k k k

k k k k k k k

k k k k k k k

v v

v

v a

v v T a

v v

v

a

v

v v

 

 

 

− − − − − −

− − − − − −

− − − − − −

     − +
     

= + − +     
     − +     

 (2-59) 

 

where k

ia  and k

i are the components of the accelerometer and gyroscope vector measurements 

respectively and k

iv the components of the linear velocity vector 
0v . The exponent k denotes the time 

instance of the measurement. The initialization of the recursive relation is zero initial velocity and 

corresponds to the known initial condition for the integration process. Coming back to the simscape 

model, all above is encapsulated in the IMU data processing block (see Figure 2-9).  

 

The purpose of all the above is to feed the identification algorithm with as much realistic data as 

possible. A result of this approach is that the noise in the velocity measurements is not Gaussian because 

of the integration process, the nonlinear combination of variables and the inexact integration scheme in 

(2-59). This introduces higher errors in the Kalman Filter based identification algorithms developed in 

the next chapters, however it is adopted since it makes the scenario more realistic. A clear picture of 

the noise levels, depicted as absolute errors between the true and the noise corrupted signal, can be seen 

in Figure 2-10 for a sample simulation. Given an average velocity RMS of 1m/s and an average 

rotational velocity RMS of 0.01 rad/s, the signal to noise ratio is about 1000 for the velocity and 10 for 

the rotational velocity. Notice however that the velocity error deviates significantly from the Gaussian 

assumption.  
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Figure 2-10. Absolute errors due to noise in the linear and angular velocities calculated from the IMU. 

 

Finally, some details will be discussed with regards to the flexible appendage modelling in 

Simscape. Two alternative methods can be implemented. The simplest way is to use Simscape’s built 

in block for flexible slender beams. According to Matlab’s documentation the equations behind this 

block are finite beam elements based on Euler-Bernoulli theory as well. This is convenient since the 

analytic equations are also based on the later assumption as well, however it doesn’t allow for testing 

the hypothesis of whether the Euler-Bernoulli approximation is indeed sufficient for representing the 

arguably more complex dynamics of the 2D shell-like structure of the actual solar panel. Overcoming 

this problem pushes the capabilities of Simscape in the current (2020b) Matlab version to its boundaries. 

Although plug and play blocks for more complex flexible structures are not available, Simscape offers 

the capability to insert custom, constant, reduced order system M,C,K2 matrices for a general dynamic 

system and couple it with the rest of the model. Exporting those matrices for a flexible panel structure 

is possible using ANSYS® or some other custom Finite Element Analysis (FEA) code. Due to the 

complexity of this approach, it has not been tried in this thesis. It is suggested though as future work, 

given the concerns that exist in the literature that an Euler-Bernoulli beam model might not be adequate 

for high accuracy simulation of flexible solar panels.  

 

 
2 Mass [M],  Damping[C], Stiffness[K] matrices resulting from order reduction of a linear finite element analysis 

system.  
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3 Sloshing model validation using CFD 

In fluid dynamics slosh refers to the movement of liquids inside a container. Even using advanced CFD 

models, the prediction of the phenomenon is not easy, while their inclusion in real time control systems 

is practically impossible due to their immense computational cost compared to typical lumped element 

models. To overcome this issue, mechanical equivalent models are usually employed in missions where 

sloshing poses a potentially critical disturbance [4][11][33]. The most typical ones are the pendulum 

and mass spring damper equivalent models. It is important to note that these models do not describe the 

satellite – liquid force interaction in general, they are only valid under certain conditions. Το use these 

models correctly, their origins must be briefly discussed.  

3.1 Lateral sloshing overview 

The most common type of fuel sloshing is the lateral sloshing. Consider the partially filled tank of 

Figure 3-1 under some uniform acceleration field, either caused by gravity or by the acceleration of the 

thrusters on a satellite. The tank oscillates laterally with respect to that acceleration field and an 

oscillating force is generated in this lateral direction. Further assume that the excitation is small enough 

in order for the free surface not to have extreme distortions. This type of sloshing force can be predicted 

accurately by the mechanical equivalent models in Figure 3-1. Although rigorous methods exist to 

analytically derive these models in the case of simple container shapes based on the linearization of the 

flow equations and modal analysis, they are beyond the scope of this thesis. The interested reader is 

referenced to [9]. Qualitatively though, it should be expected that a mass spring damper can capture the 

basic phenomenon happening here. The sloshing tank can store potential energy due to the gravitational 

or acceleration field in terms of liquid level and kinetic energy due to the motion of the liquid. The 

linear oscillator therefore seems like a reasonable mechanism to capture the basic physics of the 

phenomenon.  

 

Figure 3-1.  (a) actual sloshing plant (b) to proposed mechanical equivalents (c) sloshing model used in 

Cassini spacecraft [11]. 

 

While in laboratory conditions and in terrestrial applications the gravitational acceleration is large 

enough to dominate all other forces in the flow, this is not always the case in space applications [9][20]. 

In satellites or rockets the vertical acceleration field generated by the main engine or some other smaller 

thruster will be significantly weaker than the gravitational field force. In such scenarios surface tension 

forces in the liquid-gas interface, that are neglected by the linearized flow models, might have a large 
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impact in the sloshing force response. The number that quantifies their importance is called the Bond 

number. It is defined as the ratio between acceleration related to surface tension forces. Its formula is  

 

2 ρaR
Bo


=

 (3-1) 

where ρ  is the fluid density, a the vertical acceleration the container is subjected to, R a characteristic 

dimension of the container and   the surface tension in the interface separating the fluid and gas phase. 

When the Bond number is well above 1 the flow is dominated by the acceleration while when its value 

is below 1 the flow is capillary dominated. The mechanical equivalent models work better for large 

bond numbers or high-g sloshing as it is usually referred to while ad-hock modifications exist to extend 

their use in low-g scenarios [11].  

3.1.1 Lateral sloshing benchmark  

All the above can be viewed in a simple benchmark case, that will also work for validating the CFD 

code that will be later used to generate realistic sloshing force data. The objective will be to see how 

well a mass spring damper model agrees with the CFD data. Consider a simple 3D rectangular container 

like the one in Figure 3-2. The gravity field is aligned with the z axis, while the container is constrained 

to move only in the x axis. To simplify the CFD simulation by eliminating the coupling with the rigid 

body dynamics governing its container, the motion of the later will be prescribed. The solver used is 

openFOAM’s interFOAM solver implementing the Volume of Fluid (VOF) method. Details regarding 

the exact setup and parameters of the simulation can be found on Appendix A.  

 

Figure 3-2. Sloshing benchmark for evaluating the CFD simulation. 

 

 

Table 3-1.  Lateral sloshing benchmark case parameters.   

Variable description Symbol [Units] Value 

Container x length b [m] 0.25 

Container y length a [m] 0.25 

Liquid level height  h [m] 0.7 

Gravitational acceleration g [m/s2] 9.81 

Liquid(water)density  ρw [kg/m3] 998.2 

Liquid kinematic viscosity νw[m2/s] 1e-06 

Total liquid mass  mw [kg] 0.98 

Air density  ρa [kg/m3] 1 

Air viscosity νa [m
2/s] 1.48e-5 

Bond number Bo [-] 8000 
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Liquid surface tension  σ [N/m] Neglected (0) 

Flow type  -  Laminar  

 

Analytic formulas exist for determining the parameters for the mechanical equivalent model based on 

the solutions of the linearized flow equations. These relate the sloshing mass and the natural frequencies 

of the mechanical equivalent model with the size of the container. According to [9] the formulas are: 

 

 ( )2 (2 1) ( / ) tanh (2 1)( / )      1,2...n n g a n h a n  = − − =  (3-2) 

 
( )

3 3

8 tanh (2 1) /
     1,2...

(2 1)
i liq

a n h a
m m n

h n





 − 
= = 

− 
 (3-3) 

where liqm  is the total liquid mass, a, b are the container’s dimensions as noted in Table 3-1, h is the 

liquid level height in rest, g is the acceleration field intensity the container is subjected to, in this case 

gravity, and n the mode number.  

Note that based on (3-2) there is a linear relation between the acceleration the container is subjected 

to and the square of the natural frequency of the sloshing force. Using a pendulum model has the benefit 

that this adjustment happens automatically as its natural frequency is given by 2

, /n pend g L = while in 

the mass spring damper model one has to tune the spring constant accordingly. Furthermore, to preserve 

the static properties of the liquid [9], the sum of all masses must equal the total liquid mass. This 

condition yield:  

 
0 i liqm m m+ =  (3-4) 

 

If one in is interested in the pitching moment created by the sloshing liquid, the vertical position of the 

oscillating and fixed masses can be adjusted as well, but this will be neglected in this case for simplicity. 

Equations (3-2) - (3-4) are enough for evaluating all the mechanical equivalent model parameters except 

from damping. This can easily be set empirically or in a case-specific manner to match the CFD 

response.  

In order to validate the CFD solver, one would be also interested in a “best-fit” model calculated 

by minimizing the error between the mass spring damper predicted and the CFD response. This will be 

done here using nonlinear numerical optimization methods in Matlab. To this end, consider the 

simplified mechanical equivalent system model in (2-9), (2-10). The equations are in state space form 

and can easily be integrated numerically. Then, the difference between the mass spring damper and the 

CFD response will be calculated. The optimization cost function will be  

 
2

0

( )

ft

CFD MSDJ F F dt= −  (3-5) 

The MSDF  will be calculated using (2-10), (2-11), with an input u = 0.1 m/s2 representing the lateral 

acceleration of the container. For the CFD simulation an appropriate motion profile is used to describe 

the motion of the container walls. The optimization results can be viewed in Figure 3-3 and Table 3-2.    
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Figure 3-3. CFD force response vs best-fit MSD model. 

 

Table 3-2. Analytic model parameters vs CFD best-fit for the sloshing benchmark case. 

Parameter [Units] Analytic formulas Best fit model 

sm [kg] 0.79 0.76 

fm [kg] 0.21 0.2 

k [N/m] 39 38.8 

b [Ns/m] - 0.24 

 

Concluding remarks:  

First of all, indeed the best-fit mechanical equivalent model predicts the true plant, assumed here to be 

the CFD response, quite well. This is expected since the mechanical equivalent models for lateral 

sloshing are well established, while the rest parameters of the simulation like the rectangular container 

shape, the high bond number and the relatively small excitation make the case almost ideal. As seen 

later in the thesis, the case of fuel sloshing in the spherical container of a satellite in low-g conditions 

will not be predicted as well.   

Furthermore, the analytic formulas and the best fit model seem to closely agree. This is expected 

as well since the simulation performed is well within the vicinity of the accuracy of the equivalent 

model in all aspects mentioned earlier. Apart from the parameters of Table 3-2, the 1st natural frequency 

of the sloshing agrees to a relative error of less than 0.01% with the analytically calculated one from 

(3-2). These results of course are not expected to be as good for the low-g cases in spacecrafts, however 

validating the solver for such scenarios goes beyond the scope of the thesis. To this end, the bond 

numbers selected to be studied here are in generally in the high-g regime.   

3.1.2 Satellite lateral sloshing data generation 

The inclusion of the CFD analysis in this thesis serves two purposes. The first is to validate the 

mechanical equivalent sloshing models while making sure they are used in the right context and the 

second is to generate realistic sloshing force data to test the onboard identification algorithm.  The 

sloshing data generated will be exclusively for lateral sloshing since this is the only case where validated 

models exist that can capture the physics of the problem. Consider a case where a satellite, as in Figure 

3-4, is accelerating in the thrust direction by its main engine or some orbital maneuvering thruster. A 

lateral force is applied either to chance attitude or to change trajectory. This excites the partially full 

fuel tank and causes the liquid to slosh. This scenario corresponds to a Bond number much lower that 

the terrestrial application presented in the benchmark above. For a satellite of mass in the vicinity of 
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1000 kg and a thrust force of 100N the resulting bond number is 64, still placing it in the high-g regime, 

although significantly closer a low-g scenario.  

 

Figure 3-4.  Left: Cassini Huygens probe. Right: Spherical liquid fuel tank modelled using the volume 

of fluid method in interFOAM.  

Studying the motion of the spacecraft in the presence of sloshing is a coupled fluid-structure 

interaction problem since the sloshing forces generated by the fluid interact with the rigid body 

dynamics affecting its trajectory and vice-versa. To address the problem in a coupled way multiple 

algorithms have been developed that solve the fluid and rigid body dynamics problem concurrently like 

the Newmark scheme for integrating the rigid body dynamic equations. This is implemented in the 

openFOAM environment however it has limited capabilities mainly because it doesn’t allow for time 

varying excitation forces. Even in the case of a constant thrust force, this would be applied in the moving 

reference frame of the container and therefore would be time varying and dependent on the evolution 

of the attitude, if expressed in the inertial frame. This essentially restricts the use of coupled simulations 

with the existing Neumark scheme for very simple scenarios like the 1D sloshing described above where 

since the orientation remains constant the lateral excitation force doesn’t depend on time. To this end, 

a simulation of such scenario will be performed since it is the simplest possible sloshing experiment 

perceivable. Note that compared to the benchmark case, apart from the simulation here being coupled, 

the container is spherical and the conditions are much closer to fuel sloshing in space applications. The 

thrust wise force though is still replaced with a global acceleration field of appropriate magnitude.  

The tank is constrained to move in the x axis only, excited by a 30N lateral disturbance. The initial 

configuration of the fluid will be assumed to be the steady state, having settled in the rear side of the 

container due to the thrust force. The complete parameters of the problem can be viewed in Table 3-3.  

Table 3-3. Parameters of the spherical sloshing tank used in CFD simulations. 

Variable description Symbol [Units] Value 

Container radius R [m] 0.5 

Liquid(water)density  ρw [kg/m3] 998.2 

Liquid kinematic viscosity νw[m2/s] 1e-06 

Total liquid mass  mw [kg] 264 

Total container mass (inc. spacecraft) mc [kg] 800 

Air density  ρa [kg/m3] 1 

Air viscosity νa [m
2/s] 1.48e-5 

Thrust-wise acceleration field  a [m/s2] 0.1 m/s2 

Bond number Bo [-] 64 

Liquid surface tension  σ [N/m] 7e-3 

Flow type  -  Laminar  
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As it can be seen clearly in Figure 3-5, the acceleration calculated from the CFD differs slightly 

from the ideal sinusoidal response of the lumped parameter system, however the results are still close. 

It has an average value of approximately 0.029 m/s2 which is reasonable since the container’s combined 

liquid/rigid mass is approximately 1000 kg and the lateral excitation force 30N.  

 

 

Figure 3-5. Container’s lateral acceleration calculated using a coupled CFD/rigid body dynamics 

solver for a Bond number of 63. 

A case similar to the one described above that is also tested is a scenario resulting from a smaller 

thrust force coming from a cold gas thruster rather than the main engine. Changing the thrust force from 

100 to 10 results in an thrust-wise acceleration field of 0.01m/s2 and a bond number of 6.3. The lateral 

excitation in this case is set to 5N. 

 

Figure 3-6. Container’s lateral acceleration calculated using a coupled CFD/rigid body dynamics 

solver for a Bond number of 6.3. 

By examining the resulting response, one can see that it is qualitatively different from the high-g 

case. More modes are excited and the non-linear effects of the phenomenon due to surface tension have 

increased.  

The two problems described above are useful in identifying the parameters of a mechanical 

equivalent models as presented in Chapter 2.2, but are of little use in studying the 3D dynamics systems 

like those in Chapters 2.3. An interesting point made in this thesis is that the coupled nature of the 

sloshing satellite problem can be circumvented if one is only interested in creating realistic input-output 

data for identification purposes. In the true plant, the input is usually the external forces and torques 

applied on the satellite’s rigid body while the output is the readings from an IMU, which is only 

dependent of the resulting trajectory. Even in the absence of coupled simulation capabilities such an 

input-output pair could still be generated using prescribed motion, the causality however will have to 

be reversed. Instead of selecting an input force and find the resulting trajectory we can choose the 

satellite’s trajectory and then calculate the sloshing forces using CFD. By adding the contribution of 

the satellite’s rigid body using its inverse dynamic model one can find the total input forces and torques 
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that should be applied in order to achieve the prescribed trajectory. A high-level description of the 

process can be viewed in Figure 3-7. 

 

 

Figure 3-7. Top: Coupled approach in calculating an input-output force-trajectory pair.               

Lower: Decoupled workaround using prescribed motion. 

 

Although this approach indeed bypasses the coupling problem, caution is advised regarding two 

thigs. First of all, the prescribed trajectory must be chosen carefully in order for the resulting required 

inputs to respect the limits of satellite’s actuators like thrusters or reaction wheels. Secondly, the 

resulting input, i.e. the required forces to produce the trajectory, must be sufficiently exciting for the 

identification algorithm to perform accurately. In parameter estimation experiments, usually step input 

signals are used that excite all modes or other dynamic properties of the system towards identification. 

However, since in manner described above, we are only able to choose the output and then find the 

corresponding input this is not an available option. To address these problems, a rigid body simulation 

can be performed first with the sloshing replaced with only a rigid equivalent mass for the fuel. A force 

input can be selected and the resulting trajectory can be used for the process described above.  

To complete the above discussion, the equations used in all calculations will be presented. Assume 

an appropriate trajectory is selected in the manner described above and expressed in terms of, velocity, 

acceleration, attitude etc. in the spacecraft CoM frame. These will be denoted with the subscript “p” 

from prescribed. The resulting forces and torques will be denoted using “r”. Using the Newton-Euler 

equations for a rigid body one can calculate the required by the spacecraft forces and torques needed to 

execute this trajectory as  

 
, /

, / 0 0

r s c p

r s c p p p

m



=

= +

f a

τ I ω ω I ω
 (3-6) 

where , /r s cf  and , /r s cτ are the rigid spacecraft’s contributions to the required forces and torques. To add 

the contribution of the sloshing tank, one only needs to take into consideration that the CFD package 

resolves torques and forces in the inertial frame. These can be easily converted to a frame attached to 

the tank’s center since the trajectory is known. The result is ,

t

r sf and ,

t

r sτ . The left superscript t denotes 

the calculations of forces and torques in the tank’s reference frame. Then, considering Figure 3-8, the 

sloshing force can be translated to the spacecraft’s CoM using 
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f f

τ τ p f
 (3-7) 

 

where 
/0tp is the position of the sloshing tank in the spacecraft CoM reference frame. These two frames 

are considered aligned.  

 

Figure 3-8. Sloshing force transformation from container's frame to Spacecraft's frame 

3.2 Other types of fuel sloshing  

Apart from the typical case of lateral sloshing, there are different scenarios where a partially full fuel 

tank in a spacecraft might cause disturbances that the control systems would need to compensate for. 

Famous cases where these disturbances had a near fatal impact are that of ATS-5 in 1969[35][36], 

NEAR in 1998 [33] and Falcon 1 in 2007 [3] among others. Due to the complexity of the fluid 

mechanics equations, it is hard to formulate a simple model that will capture the response of a sloshing 

tank in the general case. To address this problem sloshing models are created with a specific scenario 

in mind. When there is a dominating force field like in the case of lateral sloshing the typical mechanical 

equivalent models already presented can be used.  

In the absence of such force, the phenomenon is described as zero-g sloshing and has been an 

active research field in the last two decades. Dedicated experiments have been launched like the ESA’s 

SLOSHSAT-FLEVO in 2005, a dedicated satellite for gathering experimental data from a container 

with fluid in zero-g environment and NASA’s SPHERES or ESA’s Fluidics inside the International 

Space Station. This data, apart from being useful in studying the phenomenon has been used to fine 

tune CFD simulators in order to allow for high accuracy virtual experiments that were previously 

impossible. The outcome of these efforts is the formulation of novel sloshing models that expand the 

capabilities of the traditional mechanical equivalent models. Some of the resulting models will be 

presented below. 

3.2.1 Zero-g sloshing for spacecraft attitude maneuvers  

In the case where the motion of the satellite is only controlled via reaction wheels or disturbed by some 

appendage like a manipulator the mass spring damper fails to predict the satellite-fuel interaction [29] 

A series of papers have been published by the French Aerospace Lab [3][4] regarding the formulation 

and potential applications of a novel sloshing model based on a generalized non-linear second order 
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system. The model refers to a scenario where the satellite is only attitude-controlled via reaction wheel 

torques. The researchers used the structure of a typical second order dynamic system to describe the 

sloshing interaction with the satellite. They assumed a general relation between the inertia, coriolis-

centrifugal and stiffness matrices with the spacecraft angular velocity and acceleration variables and 

using optimization methods they matched the predicted and true sloshing force response.  In order 

generate realistic sloshing force data a CFD solver previously developed by the IMFT in particular for 

this type of multiphase flows was validated first.  

Using this model, they created the Robust H-infinity observer-based control system of Figure 3-9 

that suppress the sloshing modes and works independently of the main control system of the satellite. 

Although their approach worked and the sloshing disturbances were mitigated while their model 

retained a relatively low complexity the method has not been tested neither in a coupled CFD simulation 

nor in a in a real mission yet.  

 

Figure 3-9. Control Scheme proposed by [3] based on a robust observer used to cancel out the sloshing 

effects 

3.2.2 Pulsating ball sloshing model  

Using the outcomes of SLOSHSAT-FLEVO the NRL formulated the Sloshsat Motion Simulator, a 22-

component state model to allow for a more general sloshing force prediction [35][36]. The liquid was 

modelled as a spherical slug with variable size but constant density, with its size being controlled by 

the contact force from the container walls. The model although is stated to be an improvement with 

regards to the classic mechanical equivalent models has not, to the authors knowledge been used in a 

real space mission yet.  

 

Figure 3-10. Sloshsat Motion Simulator, according to [35],[36]. 
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3.2.3 Sloshing in the direction of acceleration  

A case of sloshing that is explored in this thesis is the one of sloshing in the direction of motion. Assume 

that a satellite is at rest and all liquid in the sloshing tank has obtained a steady state configuration. 

Assume that the tank starts to accelerate by means of small thrusters in one direction to perform a 

translational motion. This might be the during a docking maneuver or in a debris capture scenario. The 

problem investigated here is whether a mass spring damper model can capture the basic physics of the 

phenomenon.  

The parameters for the problem are a spherical container of 0.5 m radius filled with 50% water and 

50% air. A reasonable starting configuration for the fluid and water phase can be seen in Figure 3-11.  

It minimizes the energy stored in surface tension and results in minimum free surface area of the liquid 

fuel. The liquid phase is concentrated in the outer walls of the container and the gas phase forms a 

bubble in the center of the container [29].  

 

Figure 3-11. Steady state configuration of partially full container. The scalar variable alpha.water 

represents the fluid phase: 1 translates to 100% liquid and 0 to 100% gas.  

The simulation performed here is coupled. The Fluid dynamics solver interacts with the rigid body 

dynamics and the motion of the tank is affected by the sloshing force. The tank is considered a rigid 

body with a mass of 800 kg to include the mass of the satellite. The total liquid mass is 261 kg. The 

tank is constrained to move in one axis and is excited by a constant 50N force. The resulting average 

acceleration of the system under these conditions is 0.047 m/s2 and the Bond number is 32, which places 

the simulation in the high-g regime.  

The resulting sloshing force calculated from the simulation can be viewed in Figure 3-13. On a first 

look the response resembles one from a linear oscillator like the mass spring damper model. On a closer 

examination however, two issues arise.  

Figure 3-12. Evolution of sloshing in the direction of motion. Acceleration is from left to right. Color 

represents phase 
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Figure 3-13. Sloshing force in the direction of acceleration 

 

First, the oscillation period in Figure 3-13 is not constant. The first 2 oscillations have a period of 

about 8.8 s while the lower amplitude oscillations after t = 30 s have a period of 5.3 s. This could be 

resolved by expanding the mechanical equivalent model to a dual mode system (see Figure 3-14). The 

equations for the 2-mode lumped parameter system in state space form are   

 

Figure 3-14. Dual mode MSD model for capturing sloshing in the direction of motion 
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Where 1 2,v v  and 1 2,x x are the velocities and positions of the 2 sloshing masses ,1 ,2,s sm m with respect 

to the fixed mass fm , 
1 2,k k and 

1 2,b b are the spring and damping constants respectively, and ,t tv x the 

velocity and position of the tank relative to an inertial frame. Under this notation the sloshing force is 

equal to 
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Using optimization methods similarly to Section 3.1.1 and a cost function like (3-5) one can find 

the best fit model parameters of (3-8) to match the data of Figure 3-13. It was observed however that in 

order for the response of the mechanical equivalent model to match the CFD response the initial 

conditions of the lumped parameter system should be included in the optimization variables. This was 

in order for the phase of the oscillations in the two simulations to match the CFD data. Although the 

results (see Figure 3-15) look promising, on a close examination in the start of the simulation the effects 

of non-zero initial conditions in terms of sloshing masses velocities and spring compressions can be 

seen clearly. The downside of this is that there is no known way to systematically determine the initial 

conditions of (3-8) the in the mechanical equivalent model, as well as anything other than zero lacks a 

good physical interpretation given the steady state initial conditions of the CFD, while it also breaks 

the symmetry of the problem. 

 

Figure 3-15. Best fit model for the sloshing in direction of acceleration modelled by a 2-mode MSD. 

For realizing the second issue of this approach, the simulation must be extended to include the 

phase where the thruster force stops. Unfortunately, as already mentioned, currently there is no way to 

have time varying forces in the coupled CFD simulation. This scenario will therefore be studied using 

prescribed motion. The motion of the tank will be split into an accelerating phase in the beginning 

corresponding to the thrusters being turned on followed by a constant velocity phase. The question 

investigated is whether the model identified previously will capture, even roughly, the CFD response.  

The issue can be viewed clearly in Figure 3-16. As mentioned earlier, sloshing occurs only in the 

presence of an acceleration field from thrusters or gravity. In the case of lateral sloshing the thrust force 

remains activated so the system can store potential energy even if the lateral excitation force stops. In 

the above case though, the excitation force in the direction of motion is the only one creating the 

acceleration field, so when it is turned off the system cannot store potential energy and won’t oscillate. 

This is a fundamental difference between the two models and this is why the mass spring damper 

mechanical equivalent model cannot be used in for describing the phenomenon in a general enough 

manner.  

 

Figure 3-16. Issue with the MSD model for describing sloshing in the direction of acceleration 
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4 Concurrent state-parameter estimation  

4.1 Problem statement and literature review  

The combined parameter and state estimation is far from a trivial problem. To provide some context, 

consider a system described by some dynamic model which has a known structure however unknown 

values in some of its parameters. If all system state variables are measurable, methods based on linear 

regression can usually be utilized. In the absence of full state measurements these methods can’t be 

employed directly. If the system is linear, one can transform the state equations into an input-output 

form, eliminating the unmeasurable state variables. In the case of non-linear state equations though this 

is not applicable. One possible approach to overcome the issue of unmeasurable state variables is by 

employing state estimation algorithms like Luenberger observers, Kalman Filters or a similar method. 

These methods however require knowledge of the system’s dynamic equations which are unknown. 

This problem, also known as a dual estimation problem, was originally posed as a nonlinear estimation 

problem by augmenting the state vector with the unknown parameters of the state space equations. 

Kopp and Orford [18] proposed the extended Kalman filter to solve the resulting nonlinear filtering 

problem. 

In general, the algorithms used to solve such problems rely on alternating between using the model 

to estimate the state, and using the state to estimate the model. According to [12], this process may be 

either iterative or sequential. Iterative schemes work by repeatedly estimating the state using the current 

model and all available data, and then estimating the model using the state estimates and all the data. 

Iterative schemes are necessarily restricted to off-line applications, where a batch of data has been 

previously collected for processing. In contrast, sequential approaches use each individual measurement 

as soon as it becomes available to update both the signal and model estimates. This characteristic makes 

these algorithms useful in either on line or off-line applications. 

 

 

Figure 4-1. Iterative vs Sequential methods for solving the dual estimation problem, taken from [12]. 

 

4.2 The unscented Kalman filter  

The Kalman Filter is a well-known algorithm for optimal state estimation in discrete time linear systems 

in the presence of measurements corrupted by Gaussian white noise. Ever since its inception by Rudolf 

Kalman, it has highly influenced many areas ranging from the aerospace industry to economics. As 

with all state estimators, it is used to recreate the full state vector of a system based on its input-output 

data and knowledge of its dynamics. Having met an unprecedented success [20], many researchers have 

proposed extensions to the classic algorithm to generalize it to nonlinear systems. The unscented 
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Kalman Filter was originally proposed by Simon J. Julier and Jeffrey K. Uhlmann [16] as an 

improvement to the widely used Extended Kalman Filter (EKF). The EKF is based on a local 

linearization of the nonlinear system dynamics in order to propagate the noise covariance matrices and 

extend the classic linear Kalman Filter equations to nonlinear systems. The unscented Kalman filter is 

based on the Unscented Transformation (UT), which is founded on the intuition that “it is easier to 

approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function or 

transformation” (see Figure 4-2). In practice, the algorithm uses an appropriately chosen weighted 

number of points, called sigma points, to parametrize the probability distribution. Instead of analytically 

propagating the covariance matrix through the nonlinear system, the sigma points are propagated 

directly and then their statistical properties are calculated. This prevents the need for analytically 

calculating Jacobians for linearization, making this technique appropriate for black box models as well. 

It also yields superior performance of up to third order compared to the first order approximation of the 

EKF, while maintaining a similar computational burden. This approach was later adopted by Wan and 

Van der Merwe who greatly expanded its applications to neural network training and dual estimation 

problems [34][37][38].  

 

Figure 4-2. Unscented transformation based covariance estimation vs linearized approach [38].  

To sum up the process, the Unscented Kalman Filter is composed of a number of discrete steps. 

Consider a discrete non-linear dynamical system described by  

 
1 ( , )

( )

k k k k

k k k

F

H

+ = +

= +

x x u w

y x v
 (4-1) 

where 
kx is the state vector of dimension n , u the system’s input, ( )F   the state transition function and 

w  the noise input of the system, in this case -however not necessarily- additive. The second equation 

in (4-1) is usually referred to as the measurement model and extracts the measurements y from the state, 

while accounting for measurement noise v . In the general case it is nonlinear, however in the typical 

case where some of the states are directly observable the linear 
kCx  can be considered. The objective 

is to progressively construct an estimate of the system’s state ˆ
kx  from the available measurements.  

Before proceeding to the main equations of the filter, some preliminaries are defined:  

• w  and v are Gaussian random variables with constant covariances Q  and R respectively.  

• 
k

 is a matrix containing the sigma points for propagating the state vector’s covariance.  

https://www.spiedigitallibrary.org/profile/Simon.Julier-18213
https://www.spiedigitallibrary.org/profile/Jeffrey.Uhlmann-18174
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• | 1k k−x is the a priori prediction of the state in instance k using the model and measurements up 

to 1k −  

• ( )| 1k k i− represents the ith column of the matrix | 1k k−  

• ,  are scaling parameters for the UT. They control the spread of the sigma points and are set 

to values 10-3 and 2 respectively while rarely require tuning.  

• The weights for the UT are given by  
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The complete UKF can now be presented, as given in [38]: 
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1. Calculate sigma points3  
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Calculate the a priori state estimation and its covariance   
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2. Use the measurement function to translate the state prediction and covariance to measurement. 

If the measurement function is linear the original analytic Kalman Filter equations can be used. 

In the general case the UT can be employed in the same fashion as in (4-3) - (4-5).  

 ( )| 1 | 1k k k kH− −=  (4-7)
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3. Calculate the Kalman Gain and the a posteriori optimal state prediction  

 
3 The square root matrix in (4-3) is usually calculated using the Cholesky factorization. If the calculation is not 

accurate though, divergence might occur due to the covariance matrix becoming non symmetric. For increased 

efficiency and accuracy, the reader is referred to the Square Root Unscented Kalman Filter [34]. 
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 ( )
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4. Calculate the covariance for the a posteriori state prediction  

 ( )k k kC+ −= −P I P  (4-12) 

4.3 The Unscented Kalman Filter for concurrent state and parameter 

estimation  

Two separate methods exist to attack the problem of concurrent state and parameter estimation using 

the UKF, the joint and the dual approach. In the joint approach, one appends the parameters that require 

identification to the state vector and treats them as state variables with zero dynamics. In the dual 

approach two separate filters are set, one estimating the state using the best currently available value of 

the parameters and another estimating the parameters based on the current best estimation of the state. 

Both approaches have been widely used by the research community with common joint cases being 

[13][42] and dual approaches [31][41]. 

According to the literature, it is hard to make general conclusions about which performs better in 

the general case. The Dual approach provides more flexibility because the state and parameters 

estimation processes are decoupled. Furthermore, the parameter estimation can be switched off after 

convergence, increasing the accuracy of the state estimation [31]. While sources exist that suggest that 

the dual configuration yields better results, according to [28] the joint configuration can outperform the 

dual if tuned properly. 

4.3.1 Joint approach  

For the general case, consider the discrete system of (4-1) where the dependence of the model with a 

vector of parameters   is explicitly stated 
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The concept of the joint approach is to augment the parameter vector in the state vector and assume 

zero dynamics in the appended state variables. This translates to the system  
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 (4-14) 

 

Assuming that the augmented system has full state observability the classic UKF equations presented 

in Chapter 4.2 can be directly used to reconstruct the system’s state. To present the strength of this 

approach, one can refer to [13] where an adaptive control system based on the joint-UKF is proposed 

for stabilizing an inverted double pendulum with unknown model parameters.   

Seeing Figure 4-3, the results are indeed very impressive given the complex and highly non-linear 

dynamics governing the double pendulum model, however it is noted that this benchmark is a case 

where the dynamics of the system are indeed very close to the analytic model running in the Kalman 

Filter equations, unlike the fuel sloshing models that are of interest here, where considerable model 
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mismatch might be present. Furthermore, it should be noted that all states of the inverted pendulum 

system are measured, and the UKF is used for denoising, rather that estimating the pendulum angles 

states.   

 

Figure 4-3. Joint state-parameter estimation and adaptive control of a double inverted pendulum using 

a joint UKF [12]. 

4.3.2 Dual approach  

In the dual approach, two separate, interconnected filters are created. Before presenting the full 

algorithm, some comments regarding the parameter estimation part are interesting. The algorithm uses 

the Kalman filter for estimating the parameters of a nonlinear mapping ( , )kG x π from clean data 
kx . 

Provided a training set of input output data  ,k kx d , one wishes to minimize the error 

( , )k k kG= −e d x π . Note that ( )G   might be any nonlinear function, ranging from a neural network to 

a parametrized dynamic system. If it is a dynamic model then 
kx  and 

kd are essentially the state at an 

instant k and the prediction of the state according to ( )G   at instant k+1 respectively. Reframing the 

problem in the Kalman Filter framework the equations are  
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where a stationary process model along with a nonlinear measurement model is used. The 
kr  and 

ke

are the process and measurement noise respectively, with covariances r

kR  and e

kR . If the Kalman filter 

is employed in this scenario it can be shown that it minimizes the mean square error  
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According to [12], if the “noise” covariance e
R  is a constant diagonal matrix it cancels out of the 

algorithm and hence can be set arbitrarily. The innovations covariance r

kR  does not represent noise but 

instead works as the driving component for the parameter estimation, affecting its convergence rate and 

tracking performance. The larger the value of the r

kR , the faster old data get discarder. Multiple 

approaches exist for setting r

kR . Some of the most common are to set it to an arbitrary value, reducing 

in to zero as training continues or setting 1( 1)
k

r

k −= −R P where (0,1]  is referred to as the 
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forgetting factor. More advanced methods exist as well but won’t be examined here. It is interesting to 

comment that the EKF in this case is equivalent to a modified Newton method, reducing the cost 

function (4-16) in every iteration.  

Although using the Kalman Filter in this fashion might seem unorthodox at first, it has been used 

successfully for Neural Network training and model parameter estimation among others. In order to 

formulate the concurrent state-parameter estimation problem according to (4-15) all that remains is to 

somehow obtain the training set  ,k kx d  which would require full state measurements. To this end, a 

second filter is implemented solely for computing a noise-free estimation of the full state vector from 

the noisy measurements available and the current best guess of the model parameters. The hole process 

can be summarized as follows:  

 

Parameter UKF equations State UKF equations 

1

( , )

k k k

k k k kF

+ = +

= +

π π r

d x π e
 (4-17) 

1 ( , , )

( , )

k k k k k

k k k

F

H

+ = +

=

x x π u w

y x v
 (4-18) 

 

1. Initialize both filters with  

State estimation Parameter estimation 

( ) ( )0 0 0 0 0 0
ˆ ˆ ˆ[ ],

T
E E  = = − −

 
x x P x x x x    ( ) ( )0 0 0 0 0 0 0

ˆ ˆ ˆ,
T

E P E  = = − −
 

π π π π π π  

 

Iterate for all data available for 1,2..k =  

2. Use the UKF equations on the state model (4-18) to calculate the a priori state estimation and 

covariance 1
ˆ

k

−

+x 1k

−

+P  based on the current value of the system parameters 1
ˆ ˆ

k k

+

− =π π  

3. Calculate the Kalman Gain and correct the a priori prediction based on the current measurement 

ky  yielding the a posteriori estimation ˆ
k

+
x . 

4. Substituting ˆ
k k

+ →x d  and 1
ˆ

k k

+

− →x x , calculate the optimal Kalman gain and correct the a priori 

ˆ
k

−
π to the a posteriori ˆ

k

+
π  

4.4 Other methods for parameter estimation in the presence of 

unmeasurable states  

Two other methods can be found in the literature that are applicable in the case of parameter 

identification in the presence of unmeasurable state variables. The first is based on the ubiquitous 

particle filters and can be considered as an extension of the methods already discussed while the second 

is nonlinear numerical optimization methods.  

4.4.1 Particle filters  

Particle filters are a more general approach to dealing with the propagation of a random variable through 

a nonlinear system. Having their roots in the Monte Carlo technique, instead of using a small number 

of points to approximate the random variable they use exhaustive sampling. This highly increases the 

computational burden, however the Gaussian distribution hypothesis for the random variables is 

eliminated, giving the method much higher performance. Multiple papers exist in the literature where 

the method has been used for concurrent state and parameter estimation, with famous examples being 
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from chemistry, where state variables, usually being concentration of substances in solutions, might be 

hard to measure while the computational load in laboratory conditions does not pose a problem [6]. A 

benefit of this approach is that the result of the parameter estimation is a probability distribution function 

representing the probability distribution of the actual parameter [32].  

4.4.2 Nonlinear numerical optimization methods  

Another popular alternative used in the literature is none other than numerical optimization techniques 

[15]. These methods are almost exclusively used offline both due to their high computational 

requirements but also because they process the data as a hole, after the identification experiment data 

gathering has been completed. This is in contrast with the recursive methods presented so far where the 

estimation happens in real-time while the data is still being gathered. The formulation of the problem 

in this case is simple and can be summarized as follows. Consider a continuous time dynamic model of 

known structure in the form  

 
( , , )

( , )

f

g

=

=

x x π u

y x π
 (4-19) 

where the parameter vector πwill be used as the variables for optimization. From some identification 

experiment we have gathered data exp ( )ty where [0, ]endt t  and we wish to find the parameters of the 

model in (4-19) in order for the model predicted response to match the experimental one. This can be 

expressed in the following cost function  

 ( ) ( )exp exp
0

( ) ( ) ( ) ( )
T T

J t t t t dt= − − y y y y  (4-20) 

Assuming some gradient based numerical optimization method is selected like the Gradient 

Descent method, or a quasi-Newton method like the BFGS, the problem reduces to the calculation of 

the sensitivity derivatives /J π . Note that if the initial conditions in (4-19) are unknown they can be 

appended to the optimization variables as well. The procedure, described in Figure 4-4, needs to be 

initialized from some initial guess of the optimization variables 
0π  and using an iterative algorithm, 

converge to a local minimum of the cost function. A disadvantage of the method is that convergence 

cannot be guaranteed nor can one know whether the algorithm has reached the global or a local 

minimum of the cost function.  

 

Figure 4-4. Numerical optimization scheme for solving parameter estimation problem with 

unmeasurable state variables. 

The most computationally expensive part of the procedure is the calculation of the sensitivity 

derivatives /J π . In order to calculate in using finite differences for a parameter vector of size n, the 

ODE in (4-19) needs to be integrated n+1 times and given the iterative nature of the algorithm, the 

process might be slow. Current advances in optimization methods [25] have replaced this burdensome 

calculation with the adjoint method, that requires only a single integration of the dynamic system 
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equations and one integration of the adjoint equations that are of similar complexity. This might allow 

for future potential uses of these methods in online parameter estimation scenarios.  

In this thesis the numerical optimization method is used for comparison against the Kalman Filter 

based methods when the true model parameters are unknown. These are for example scenarios where 

the measurements fed to the estimator come from CFD simulations of the sloshing plant. The 

optimization method used will be the Matlab’s integrated fminunc() and fmincon() or even genetic 

algorithms like ga() which are less prone to converging to local minima. 

4.5 Tuning methods  

As previously mentioned, the performance of the UKF based identification is very highly dependent on 

the tuning of the filter. Although guidelines exist for this process, it still remains a arduous task that 

requires a lot of trial and error. More sophisticated automatic tuning methods based on grid search or 

other numerical optimization methods exist as well, however they lack the intuition that is gained on 

the effect of each tuning variable while hand tuning the filter, so it is advised that they are used for final 

fine-tuning rather that from the beginning of the procedure.  

In the joint configuration tuning the filter is similar to tuning a classic UKF for state estimation. 

The most important tuning parameters are the process noise and measurement noise covariances. These 

essentially control how new uncertainty enters the system with each measurement and every time the 

system state equations are used. Starting with the simpler case of measurement noise a first approach is 

to turn to the sensor’s noise characteristics. However, at least in this study, the measurements fed to the 

UKF are not directly measured since an integration process is taking place to compute velocities from 

accelerations. This is therefore not an option so the covariance will be set empirically. Figure 2-6 helps 

visualizing the magnitude of the measurement error and set this variable accordingly. It is advised one 

can start with a diagonal matrix with values being set in a ±3σ fashion in the sense that the error between 

the measured and true value of the input signal always lies within the assumed error distribution.  

Setting the process noise is a more challenging task. For one thing, the uncertainty that is linked 

with this variable is much more complex. In general, process noise covers errors from the following 

cases:   

1. Errors due to the inexact first order discretization of the continuous time state equations. This 

is one of the biggest sources of uncertainty contained in process noise. Quantifying it is not 

easy in the general case, although one could get an estimate of its magnitude by looking at the 

differences of the first order scheme with the Runge Kutta based numerical integration of the 

equations of motion.  

2. Errors due to intentional system model simplifications. This could be the linearization of the 

plant equations or the deliberated negligence of some terms, like in the higher order terms in 

the flexible panel kinetic energy, to make the equations simpler.  

3. Errors due to unmodelled dynamics.  

Kalman filter-based algorithms are in general not tolerant to modelling inaccuracies because they 

assume the process noise is gaussian and uncorrelated with the system’s state. It is clear that trying to 

analytically estimate the values of the individual sources of uncertainty is not a practical solution for 

setting the process noise covariance matrix. A helpful alternative is using a simple visual guideline to 

access the filter’s performance and tune it accordingly. One of the Kalman filter’s assumptions is that 

the state vector is a Gaussian Random Variable (GRV) with a mean equal to its true value and a 
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corresponding covariance. In each iteration of the filter, a realization of the GRV is used, which in order 

for the above assumption to hold, should lie within the assumed distribution. Exploiting access to the 

state’s covariance matrix in each iteration, one could export each state variable’s variance 2

i  from the 

diagonal elements of the covariance matrix for plotting. The plotted variables are the state’s posterior 

prediction ˆ
ix+ along with the true value of the state plus minus three 

i .  

In the case of a system parameter, and when tuning the filter in laboratory conditions or using 

artificially generated data, its true value is constant and known. As seen in Figure 4-5 the 3-sigma bound 

is constantly decreasing but the parameter estimation always falls inside it. This should be the case for 

a well-tuned filter. Checking the errors in the state variable predictions in a real scenario is important 

as well, but harder to be done since the true value of the system’s state is neither known nor constant 

so one can only retrieve it from simulations.  

 

Figure 4-5. Typical convergence plot for a parameter when the joint - UKF algorithm is used. 

One more important consideration is looking at the steady state estimation error distribution after 

convergence. Apart from being within the limits of the 3-sigma rule, it should have a zero mean in order 

for the estimator to be unbiased and resemble a gaussian distribution. These two conditions are hardly 

ever met even in ideal scenarios where the estimator is fed with noisy simulation data, much more in 

real experimental ones. Figure 4-6 contains the absolute error corresponding to Figure 4-5 with an 

appropriate zoom. One can see the error never converges to zero possibly due to the non-Gaussian errors 

contained in the process noise described in Chapter 2-5. This could be a potential disadvantage of the 

joint UKF approach, however not much can be done about it. It is worth noting that for this particular 

case the true value of the parameter seen in Figure 4-5 is 30 and the “steady state” absolute error is 

about 0.2, so the relative accuracy of the prediction is about 0.7%, which is considered rather good 

given the presence of noise.  

 

 

Figure 4-6. Absolute estimation error of Figure 4-5. 

4.5.1 Automated Methods  

As already mentioned, automated methods exist for Kalman Filter tuning. These could be distinguished 

into online and offline methods. Online methods run in parallel with the filter and adapt its parameters 
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to the possibly time varying statistical parameters of the real plant. Offline approaches are used to find 

the filter parameters in order for the filter to perform best under a given set of conditions. In this thesis, 

only offline methods will be considered for tuning. These usually work by defining a cost function that 

represents the filter’s consistency and then maximizing it using classic optimization methods. One 

difficulty in this approach is that the performance of the UKF is stochastic since it is dependent on the 

RNG seed that represents noise and other parameters like the initial error in the state estimates. In order 

to accurately calculate its performance for a given set of tunings averaging multiple simulations is 

required rather than a single experiment. This highly increases the computational cost of this procedure 

making the use of surrogate model optimization techniques more appropriate. The optimization 

procedure can be summarized as follows:  

 

 

The algorithm used for solving the optimization problem is the Matlab’s surrogate optimization 

algorithm as implemented in surrogateopt(). Surrogate optimization is particularly efficient for 

optimization problems where the objective function calculation is time consuming and classic gradient-

based methods or genetic algorithms would be too time consuming to implement. The algorithm works 

by initially searching the optimization variables domain at random. When the objective function has 

been calculated in enough random points it uses radial basis functions (RBFs) to interpolate the 

objective function and find promising search areas for continuing the search. The more points evaluated 

the better the accuracy of the predictions of the surrogate model become, finally converging to the local 

minima or maxima of the actual function. 

4.6 Input Design  

Finally, one last parameter affecting the performance of the estimation is the input design. In order for 

the estimation process to be accurate, especially in the presence of noise, the input applied should be 

strong enough to excite all system dynamics in a way that their effect in the measurable output is 

significantly larger than noise. Although systematic methods exist for designing such inputs, while 

trying to also minimize the total energy spent, they are usually hard to implement for UKF based 

algorithms. One way of doing this is computing the local observability matrix for the augmented system 

and design trajectories that maximize its rank condition, as proposed in [35]. In high dimensional 

nonlinear systems this can be particularly challenging to do in real-time and computing them offline 

might be unavoidable, but the results are superior mainly in the time needed for the parameters to 

converge and in the accuracy of the estimation.  

In all models considered in this thesis the input, the input variables are the torques and forces 

excreted at the satellite base from the AOCS of the satellite. The profile of the input is chosen 

empirically, by trying a series of different signals and selecting the one that performs best. In most 

identification experiments a sequence of successive rectangular pulses in each input variable, like in 

Figure 4-7, seems to provide satisfactory results. Care is also taken to assure that the required input 
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would be within the limits of the AOCS of a typical satellite. For forces, this means that they should 

not exceed 20 N while for torques they should not exceed 10 Nm, if they are coming from thrusters, or 

1 Nm if they are from reaction wheels. Among other input profiles tested, exciting all inputs 

simultaneously or using sinusoidal profiles resulted in worse estimates with the identified parameters 

converging to their true values with worse accuracy or not converging at all.  

 

 

Figure 4-7. Typical input shape 

 

An exception to the inputs described above is the case of the models containing fuel sloshing, where as 

previously mentioned can’t be selected explicitly due to the limitations of CFD simulations. In such 

scenarios, the inputs calculated from the procedure described in Section 3.1.2 are used.  

4.7 Parameter estimation case 1 – Sloshing tank  

The first parameter estimation problem studied in this thesis is that of the 1D sloshing tank, as presented 

in Chapter 2.2, using data from CFD created in Section 3.1.2. The parameters contained in the dynamic 

model can be found in Table 4-1. Before proceeding to the presentation of the results based on the joint-

UKF algorithm, the identification problem will be tackled with the numerical optimization methods 

presented in chapter 4.4.2. This serves two purposes. First, given the iterative nature of algorithm 

according to the distinction made earlier, along with an appropriate selection of an optimizer, an 

informal guarantee can be given about finding global best-fit model to the CFD data. This gives a sense 

of how well can the model can capture the actual effect, rather than how well the identification algorithm 

works. Furthermore, the global best-fit model parameters, can be used as a ground truth to evaluate the 

performance of the joint-UKF algorithm. Two different algorithms will be used for solving the 

numerical optimization problem, Matlab’s ga() and fminunc().  

Table 4-1. Model parameters for 1D spacecraft with fuel sloshing. 

Parameter Description  Symbol Assumption Units Value 

Fixed mass (spacecraft +non-sloshing fuel) fm  Unknown Kg - 

Sloshing mass   sm  Unknown Kg  - 

Sloshing spring constant  k  Unknown N/m - 

Sloshing damping constant  b  Neglected Ns/m 0 

 

Proceeding with the results, the values presented in Table 4-2, are the results of two totally different 

optimization schemes that have converged to the same values, that being a strong indicator that this a 
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global minimum of the cost function. Also, focusing on Figure 4-8, because the identification results 

can’t be evaluated on sight by looking at the velocity response of the container, which is the actual 

optimized response, its acceleration is provided as well, as predicted by the CFD model and the best-fit 

MSD model.  

 

Figure 4-8. Results for 1D sloshing parameter estimation based on numerical methods 

 

Table 4-2. Results for the parameter estimation of 1D sloshing tank using optimization methods used 

Parameter Units Best-fit value 

(fminunc) 

Best-fit value   

(ga) 

fm  Kg 922.3956 922.3768 

sm  Kg 136.2134 136.2326 

k  N/m 43.1204 43.1257 

b  Ns/m 0.6576 0.6583 

 

As for the equations used in the joint-UKF algorithm they are the discretized version of the model 

(2-6) appended with a vector of parameters  
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 (4-21) 

where 
T

f sm k m =  π . The sampling time given the sloshing frequency is not very high is set to 

0.01sT = s in order to keep the first order approximate discretization errors small, while attenuating the 

high frequency noise. 

Given that in this scenario the algorithm only receives one measurement and tries to estimate 3 

state variables and 3 parameters, the UKF-based algorithm struggles. Also, looking at the first plot of 

Figure 4-8 one gest an idea of how small effect the sloshing phenomenon has on the velocity of the 

spacecraft, which resembles a rigid body motion. The results will be presented in detail though, along 

with possible solutions and suggestions for future work for increasing its performance. Finally, it is 

noted that the sloshing damping is neglected since it has not been appended to the sate vector as a 

parameter towards estimation. This is because the model is observed to have very small sensitivity to 

this parameter and the damping can be safely excluded from the analytic model contained in the UKF 

estimator without seriously affecting its performance. Appending it to the state would increase the 

                      

        

 

 

 

 
  
  
 
  
 
  
 
  
 

                    

   

            

                      

        

     

    

     

 
 
 
 
  
  
  
 
 
  
 
  

 
 

                        

   

            

                                    



Concurrent state-parameter estimation 

 

59/83 

number of unknowns in the estimation and possibly make the results worse. Regarding the 

measurements fed to the UKF estimator, the integrated acceleration response of the container as 

calculated from the CFD with added white noise corresponding to the IMU characteristics were used. 

The Unscented Kalman Filter block will be used from the Control System Toolbox. Its exact parameters 

can be viewed in Table 4-3. 

Table 4-3. UKF parameters for 1D sloshing parameter estimation. 

Parameter Symbol Nominal noise level 

Measurement 

Noise 
R  43.13 10−  

Process 

Noise 
Q  6(31.25, 4.06, 9.06, 9.06, 2.19, 7.81) 10diag −  

Initial 

Covariance 0P  (0.01, 0.01, 0.01, 30, 40, 200)diag  

 

The values of the for the measurement noise and process noise have been optimized to yield the 

best estimation results using the scheme presented in Section 4.5.1. To give a sense of the time required 

for this optimization problem to be solved, each call of the objective function contains 50 joint-UKF 

estimations and takes around 50 seconds to execute. In order for the surrogate optimization to yield 

accurate results, about 500 evaluations are needed, resulting in a total run time of about 7 hours in a 

desktop computer. The search domains for the diagonal elements of the parameters Q  and R  were 
5 12 8 210 ,10 , 10 ,10iiQ R− − − −        . Given that the search domain ranges in multiple orders of 

magnitude a logarithmic transformation was used for faster searching, using log( ),log( )iiQ R as 

optimization variables.  

Given than the above simulation includes stochastic variables like the artificially generated white 

noise, one simulation is not enough for evaluating the performance of the algorithm. It is observed that 

changing even the random number generator seed that produces the white noise affects the final results. 

To this end, a 250 Monte Carlo simulation is conducted, initializing the filter randomly in the range of 

±50% relative error with respect to the estimation variables, while changing the RNG seed as well.  

Even using the optimized tunings described by the process above, the filter still doesn’t perform 

particularly well. As depicted in Figure 4-9 showing the relative error histogram of the final estimation, 

the worst-case estimate reaches up to 40% while being in the vicinity of 10% for most simulations. This 

is partially expected though, given that the joint-UKF algorithm employed is typically used in scenarios 

where there are multiple measured quantities and few parameters for estimation. Here, we are trying to 

estimate all the model parameters and unmeasurable state variables just from a single measured 

quantity.  
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Figure 4-9. Monte Carlo simulation results for 1D fuel sloshing parameter estimation using joint-UKF. 

4.8 Identification case 2 – Satellite with sloshing  

4.8.1 Pendulum model with CFD data 

Although the UKF based algorithm in Chapter 4.7 didn’t yield satisfactory results for the 1D sloshing 

plant, this was mainly due to the small number of measurements compared to the large number of 

estimated quantities. In a 3D scenario, the measurement vector is expanded since 3 linear and 3 angular 

velocities can be measured instead of a single velocity measurement in the 1D case, while the sloshing 

plant retains the same number of parameters. Instead of using an MSD equivalent model though, the 

the pendulum model of  (2-23) is tested here since it is found to be able to predict the CFD results better. 

The parameters in the analytic model are the pendulum length as well as the fixed and sloshing fuel 

masses. The inertial parameters of the spacecraft and the position of the tank are considered known. 

The complete parameters entering the system model equations can be found in Table 4-4. 

Table 4-4. Model parameters for spacecraft with sloshing using a pendulum model. 

Parameter Description  Symbol Assumption Units Value 

Satellite rigid mass  m  Known Kg 800 

Satellite inertia around y axis  
bΙ  Known Kg m2 

3600I  

Sloshing tank center position 
0p  Known m [0 0 0.2] 

Sloshing mass 
sm  Unknown Kg - 

Body fixed mass  fm  Unknown Kg - 

Pendulum length    pl  Unknown m - 

Sloshing damping  b  Neglected Ns/m 0 

 

As for the equations used in the joint-UKF algorithm they are the discretized state-space version of 

model in (2-23) appended with a vector of parameters 
T

s p sm l m =  π . The sampling is set to 

0.01sT =  seconds for the same reasons as in the previous case.  
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In order to evaluate the performance of the joint-UKF algorithm as well as tuning it correctly, the 

best-fit sloshing parameters need to be calculated first in the same sense as in Chapter 4.6. These are 

calculated using the numerical optimization methods presented in Section 4.4.2. Because these process 

the data as a hole rather than sequentially they are more accurate and reliable than the UKF algorithm 

in the expense of computational load as discussed earlier. The best estimates are used as ground truth 

for plotting the 3 sigma bounds used for tuning as well as for calculating the final estimation error. 

Using Matlab’s fmincon() and minimizing the squared difference of the CFD and analytical response 

for this system one gets. 

Table 4-5. Best-fit parameters for the pendulum sloshing subsystem calculated from a CFD response. 

Parameter Best-fit value 

sm  151.1724 

fm  108.7225 

pl  0.3122 

b  2.5910 

 

It is worth noting that the best fit pendulum model captures the CFD data reasonably well, as can 

be seen in Figure 4-10. The success of the UKF algorithm highly depends on that since as discussed 

earlier Kalman Filters are generally not tolerant to unmodelled dynamics. The fact that the lumped 

parameter system has the ability to capture the phenomenon for some value of its parameters is therefore 

crucial. Also note that as in the 1D case the damping constant is neglected.  

 

Figure 4-10. CFD vs mechanical equivalent model response. 

Proceeding with presenting the results for the joint-UKF algorithm, the input-output data from the 

CFD are first corrupted by noise according to Chapter 2.5. The filter is initialized with a relative error 

within a ±70% range for the best fit estimates parameters. The results are based on a 250 simulation 

Monte Carlo analysis in order to make sure the filter performs well under all possible initializations. 

The results will be presented for actual CFD data, as well as for the case where the estimator is fed with 

noisy data coming the analytic equations of the plant. This way, we can see how the performance of the 

algorithm is affected from the model mismatch between the CFD and the model response. The results 
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based on data from the analytic equations serve the purpose of a providing an upper limit of how the 

filter could perform in the ideal case where the analytic model could describe the phenomenon perfectly. 

In both cases the estimator is tuned with the same parameters. Those are  

 

Table 4-6. Joint-UKF Parameters for pendulum sloshing model. 

Parameter Symbol Case 1 

Measurement Noise R  

5

3 3

4

3 3

10 0

0 10

x

x

I

I

−

−

 
 
 

 

Process Noise Q  9

8 810 xI−  

Initial Covariance 0P  

10 100.01 0 0 0

0 70 0 0

0 0 0.2 0

0 0 0 70

xI 
 
 
 
 
 

 

 

 

The results are presented into two forms. On Figure 4-11 one can see the time domain diagrams of the 

evolution of the parameter estimation as well as the histograms of the final relative error. The 3-sigma 

bounds of the estimations are plotted as well (for only the first of the 250 runs) in order to verify that 

all estimations fall inside it, as described in the tuning section. The histograms on the other hand are 

useful for evaluating the worst-case estimation error the filter might produce. To this end, Table 4-7 is 

constructed. Looking at the results, one can see that in estimation based on the CFD data the errors are 

quite large, while in the estimation from the analytic model data they are in acceptable limits. This 

illustrates the main disadvantage of the method: it’s very high dependance in the knowledge of model’s 

structure. Furthermore, looking closely at the estimation from CFD data one can even see that in a 

couple of the 250 runs the simulation has not even converged to the correct region of values of the 

parameter. This can be depicted in the extremes of the error histograms as well as the time evolution of 

the prediction.  

Table 4-7.  Worst-case relative estimation error of pendulum sloshing subsystem from CFD data using 

joint-UKF. 

Parameter 
Relative error 

CFD data 

Relative error 

analytic model data 

sm  12% 8% 

fm  15% 5% 

pl  15% 10% 

  



Concurrent state-parameter estimation 

 

63/83 

 

4.8.2 MSD model - 3D motion 

Apart from the pendulum model the MSD model of (2-19) will be tested as well. The joint UKF 

approach will be considered for the estimation. The overall scenario is similar with the previous case. 

The complete set of parameters in the dynamic equations in can be viewed in Table.   

 

Table 4-8. Model parameters for a spacecraft with an MSD sloshing model.  

Parameter Description  Symbol  Assumption  Units  Value  

Satellite total mass  m  Known Kg  800 

Satellite Inertia Tensor  
bI  Known  Kg m2 

3 3600I   

Sloshing tank center position with respect 

to satellite CM 
0p  Known  m [0;0;0.2] 

Sloshing mass 
sm  Unknown  Kg 40 

Sloshing mass 
fm  Unknown  Kg 40 

Sloshing stiffness   ,x yk k  Unknown  N/m 30 

Sloshing damping (common in all axes)  b  Neglected   Ns/m 0.5 

Figure 4-11. Pendulum sloshing subsystem parameter estimation results using a joint-UKF. 
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The main difference with the pendulum model presented earlier is that the MSD mechanical equivalent 

is not found to be able to predict the CFD data as well. As with the pendulum model, the MSD model 

response was optimized to match the data from the CFD. As seen in Figure 4-12 the main difference 

lies in the failure to predict the rotational velocity. The problem arises from the fact that the pendulum 

model, due to the rotational joint transfers only a very small torque to the spacecraft though the 

attachment point, only due to the damping coefficient. This is in accordance with the true plant, which 

in general doesn’t transmit torques either4. On the MSD model however because the mass is constrained 

to move on the plane, torques are generated when the sloshing mass is off the equilibrium point. 

 

Figure 4-12. Model mismatch between the MSD model and the CFD data 

This structural difference with the actual plant causes the MSD best fit model to “significantly” disagree 

with the CFD data, at least in the sense of what the UKF based algorithm can tolerate.  To this end, this 

case won’t be studied using data from CFD but rather from a simscape model, using practically the 

same equations as the analytic model running in the Kalman Filter. This only serves the purpose to 

check if the structure of the model allows for identification based on this technique, without addressing 

the problem of model mismatch between the actual and the mechanical equivalent plants.  

 

 
4 In an actual sloshing container, forces are transferred to from the liquid to the walls though pressure and shear 

stresses. The shear stress force is in generally much smaller that pressure related force. For a given point in a 

spherical tank, the direction of the pressure related forces, being vertical to the local surface, pass from the tanks 

center resulting in zero moments with respect to it. The moments from shear stresses are related to damping.    
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Figure 4-13. Simscape model for simulating the Spacecraft’s under in the presence of sloshing.  

To this end, the equations presented in (2-19) are brought into a discrete-time state space form. They 

are also augmented by a vector of parameters. The final system is  

 

( )

 

1

1

6 6 8 6

( ,k k s k k

k k

k k

T f+

+

 

 +  
=   

   

=

x x x u

π π

y I 0 x

 (4-23) 

 

Where s x ym k k m =  π . The sampling frequency is the same as with the other experiments. The 

results will be presented for two levels of noise as described in chapter 2.5, the nominal and a higher 

one. Regarding the inputs, the axial thrust force is considered to be 100N while the lateral force is two 

consecutive pulses as shown in Figure 4-7 in the X and Y direction only. No moment input is used. The 

UKF filter settings used were:   

 

Parameter Symbol Case 1 Case 2 

Measurement 

Noise 
R  

4

3 3

2

3 3

10 0

0 10

x

x

−

−

 
 
 

Ι

Ι
 

4

3 3

2

3 3

25 10 0

0 25 10

x

x

−

−

 
 

 

Ι

Ι
 

Process Noise Q  10

14 143 10 x

− Ι  10

14 1475 10 x

− Ι  

Initial 

Covariance 0P  

10 10

2

2

2

2

0.1 0 0 0 0

0 50 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 200

x 
 
 
 
 
 
  

Ι

 

10 10

2

2

2

2

0.1 0 0 0 0

0 50 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 200

x 
 
 
 
 
 
  

Ι

 

 

The above parameters conclude all preliminaries required for the analysis and one can proceed 

with presenting the results. As seen in Figure 4-14 indeed the parameters converge to their true values 

very well as expected, since no modelling inaccuracies are present. As with the previous cases, a Monte 

Carlo simulation is performed for both noise levels, consisting of 250 runs in which the initial values 
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of the estimated variables are picked from a constant distribution in a ± 70% relative error with respect 

to their ground truth value. The RNG seed is also changed randomly in each run.  

 

Figure 4-14. Convergence of parameters for spacecraft with MSD sloshing model.   

Looking at the histograms of the relative error in each variable in Figures 4-9 and 4-10, one can deduce 

several conclusions. The most obvious one is that none of the distributions presented are centered at 

zero. As mentioned previously, it is rarely the case that a joint configuration UKF algorithm will have 

zero bias even under the assumption of no modelling inaccuracies. Certainly, the biased velocity 

measurements resulting from the integrated IMU data worsen this effect. Finally, one can estimate the 

worst-case relative accuracy of the estimator in both noise levels by looking at the histogram graphs.   

 

Parameter 
Relative error 

Nominal noise 

Relative error 

High noise 

sm  7% 15% 

xk  5% 10% 

xk  5% 10% 

m  1.5% 4% 

Table 4-9. 3D sloshing parameter estimation results depicted as worst-case errors 
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Table 4-10. 3D sloshing parameter estimation results based on MSD model – Nominal Noise levels 

 

 

 

Table 4-11. 3D sloshing parameter estimation results based on MSD model – High Noise levels 
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4.9 Identification case 3 – Satellite with flexible appendage  

Apart from the case of satellite with sloshing, the scenario of a spacecraft with a flexible appendage 

will be studied as well, given its wide used in modern satellites. The joint approach will be used here 

too. The specific model used consists of a rigid spacecraft with two adjacent solar arrays modelled as 

Euler Bernoulli beams. Given the material properties and the size of each array, all their properties can 

be calculated analytically. The motive of using this time domain approach in the case flexible panels, 

is that even if the two panels are identical, their contribution in the dynamic equations differs because 

they are attached to different points and with different orientations allowing for the UKF based 

algorithm to estimate the flexible parameters of one separately. This would not be possible in a 

frequency domain-based method, since it would be hard, if not impossible, to match an identified natural 

frequency with its corresponding appendage. To stress the value of the approach the two panels are 

considered identical in all properties. The complete set of parameters contained in the dynamic model 

equations can be found in Table 4-12. 

Table 4-12. Model parameters for spacecraft with 2 flexible solar arrays. 

Parameter Description  Symbol Assumption Value Units 

Spacecraft mass  m  Known 800 kg 

Spacecraft Inertia Tensor  
bΙ  Known 

3 3600 Ι  kg m2 

Panel 1 attachment point 
01p  Known [0;0;0.5] m 

Panel 2 attachment point 
01p  Known [0;0;-0.5] m 

Material’s density   Known/Unknown  3000 kg/m3 

Panel 1,2 width  
1 2,w w  Known 1 m 

Panel 1,2 thickness  
1 2,h h  Known 0.02 m 

Panel 1,2 length  
1 2,L L  Known 4 m 

Panel 1,2 flexural stiffness 
1 2,   Unknown 1333 Pa m4 

Panel’s modal damping - Neglected 0 s  

 

Compared to the fuel sloshing cases, one needs to carefully consider which variables need to be 

estimated and which are derived. The desired tradeoff is to give the algorithm enough “degrees of 

freedom” to be able to adjust the analytic model to fit the data but not include variables that are enter 

the equations in the same manner and therefore destroy the observability of the joint system. 

Considering Table 4-12, the parameters can be split into two categories. The dimensional characteristics 

of the panel, and the dynamic ones. The dimensional characteristics can be easily measured on earth. 

The dynamic properties of the array on the other hand, consisting of its flexural rigidity and material 

density are harder to estimate since simulating the zero g environment in terrestrial laboratories is an 

extremely challenging task. To this end, two experiments will be conducted only estimating the panel’s 

dynamic properties. In the first, only each panel’s flexural rigidity will be estimated, considering the 

material’s density known. In the second, the material’s density will be estimated as well. Note that 

according to the Euler Bernoulli hypothesis, estimating all the natural frequencies of a beam separately 

is not possible. Once the parameters ,  and the cross-sectional area of the beam S , or equivalently 

the first natural frequency, are selected the rest natural frequencies are derived according to  
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i i

S
 




=  (4-24) 

In order to ensure the model’s potential to capture the response of the actual plant, one has to include 

enough flexible modes in the equations of motion in all directions prone to oscillations. In this study, 

only two modes are added in y-bending, given that with the above dimensions and parameters of the 

system, all other modes had only a minor influence on the system dynamics and in the case of a control 

system model they would most likely be treated as white noise, rather than modelled analytically. 

Finally, note that in contrast with the sloshing scenarios presented earlier, the estimation algorithm is 

fed with data from simscape rather that a more sophisticated simulation environment. As briefly 

mentioned in Chapter 2-5, Simscape also uses the Euler-Bernoulli simplification for modelling flexible 

members. The testing of the algorithm against actual experimental data, or data from a completely 

coupled FEA system is suggested as future work. For small deflections of the panel however, the Euler-

Bernoulli assumption is expected to work reasonably well, especially for the y-wise bending that is the 

main focus here.  

4.9.1 Identification of flexural stiffness only  

First, the case of known panel densities will be presented. The parameters being augmented in the state 

vector in this case are only  1 2

T
=  π . The sampling time is reduced to 0.001sT =  seconds 

considering the higher natural frequency of the vibrating panels.  As with the sloshing case, the results 

will be presented for the two levels of noise of the end of 2.5.  

The UKF filter settings used are shown in Table 4-13.  

Table 4-13. joint-UKF parameters for spacecraft with flexible solar arrays.  

Parameter Symbol Nominal noise level High noise level  

Measurement Noise R  

5

3 3

4

3 3

10 0

0 10

x

x

−

−

 
 
 

I

I
 

5

3 3

4

3 3

25 10 0

0 25 10

x

x

−

−

 
 

 

I

I
 

Process Noise Q  12

16 1610 xI−  12

16 1610 xI−  

Initial Covariance 0P  

2

10 1010 0 0

0 500 0

0 0 500

x

− 
 
 
 
 

I

 

10 100.1 0 0

0 500 0

0 0 500

x 
 
 
  

I

 

 

The estimation results, shown in Figures 4-15 and 1-16 for the two noise levels are presented in a similar 

fashion to the previous cases. The worst-case estimation errors can be found in Table 4-14. 
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Figure 4-15. Flexural rigidity estimation of solar panels - Nominal Noise 

 

Figure 4-16. Flexural rigidity estimation of solar panels - High Noise 
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Table 4-14. Worst-case relative estimation error of Flexural rigidity of the solar panels. 

Parameter 
Relative error  

Nominal noise 

Relative error  

High noise 

Σ1 4% 15% 

Σ2 4% 15% 

4.9.2 Identification of flexural stiffness and density  

This scenario concerns the case of identifying both the material’s density and the flexural stiffness of 

each solar array. Based on the empirical rule discussed earlier regarding the joint-UKF algorithm, the 

more variables are appended to the state the worse the identification accuracy gets, the results are 

expected to be somewhat worse here. The case of both unknown material density and flexural stiffness 

might be of interest though because it allows more degrees of freedom for the identification algorithm 

to match the experimental data and might be useful for fault detection or estimating cracks. The 

estimation process behaves reasonably well under nominal noise conditions, but produces large errors 

in the increased noise scenario. To this end, only the nominal noise case is presented.  

 

 

 

 

               

                             

 

  

  

 
 
 
 
 
  
  
 
  

 
  
  
 
 
 

 
 

                 

                             

 

  

  

 
 
 
 
 
  
  
 
  

 
  
  
 
 
 

 
 

               

                             

 

  

  

 
 
 
 
 
  
  
 
  

 
  
  
 
 
 

 
 

              

                             

 

  

  

 
 
 
 
 
  
  
 
  

 
  
  
 
 
 

 
 

Figure 4-17. Flexural rigidity and density estimation of solar panels - Nominal Noise 



Concurrent state-parameter estimation 

 

72/83 

 

Table 4-15. Worst-case estimation errors of flexural rigidity and density of flexible solar arrays.  

Parameter 
Relative error  

Nominal noise 

1  15% 

2  15% 

1  15% 

2  15% 

Possible room for improvement might exist if batch tuning methods are employed in order to optimize 

the process noise and initial covariance matrix to have possibly non diagonal matrices, or at least 

diagonal matrices with different elements for each state variable. The computational cost of this 

procedure though renders it infeasibly to be implemented in a local computer in the context of this 

thesis, given that each Monte Carlo simulation needed to estimate the performance of a give set of 

tunings takes at least 30 minutes to run. Considering that an optimization scheme would require 

hundreds of iterations, this option could be further explored only by utilizing cluster computing 

techniques.  
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5 Outcomes and future work 

5.1 Conclusions 

To conclude this work, the outcomes are summarized. The main focus of this thesis was the concurrent 

state and parameter estimation of non-linear dynamic systems using mainly the Unscented Kalman 

Filter in a joint state-parameter configuration. This method was tested in the cases of a satellite with 

fuel sloshing represented using both a pendulum and a mass spring damper equivalent model, and a 

satellite with two flexible solar arrays modelled as Euler-Bernoulli beams using the assumed mode 

method.  

In the case of sloshing, the UKF-based algorithm is shown to be capable of estimating the dynamics 

of the system, in 3D motion scenarios but seems to be fundamentally lacking in the 1D motion scenario, 

giving poor estimates under noise, because of the very small ratio of measured to estimated number of 

parameters and states. To this end, in the 1D motion a more powerful offline method is used. Apart 

from the question of whether the UKF estimator is applicable it this particular system as far as the 

structure of the dynamic equations, i.e. observability of the system, the more pertinent issue of the 

model mismatch between the mechanical equivalent models and the actual plant is studied using CFD. 

It is observed that in 1D motion scenarios the mass spring damper can faithfully represent sloshing. In 

more general 3D motions however there are small differences in the dynamic response of this model 

with the CFD data. The pendulum model is found to be more potent to represent sloshing in a satellite 

systems in a high-g scenario, a result that can be confirmed in the literature as well. Using the CFD 

simulation, a pair of input-output data was generated to test the UKF algorithm with regards to its ability 

to handle modelling errors existing because of this model mismatch. In the case of the pendulum model, 

the algorithm is shown to have a reasonable performance being sensitive however to the initialization 

of the sloshing model parameters. In the mass spring damper model, the error produced by the UKF 

algorithms were larger given that the model showed small inconsistencies with respect to the CFD data 

even using the best-fit parameters calculated by the more powerful numerical methods presented.  

In the case of a satellite with flexible solar panels, the UKF estimator worked accurately. An 

advantage of the time domain methods used in this work to evaluate the flexible parameters and by 

extension the natural frequencies of each array from only data gathered form the IMU of the satellite 

have the advantage of being able correctly identify the parameters of multiple arrays, even when these 

are similar or even identical. This is in contradiction with a frequency domain method where it would 

be hard to match the eigenfrequency captured in the spectrum of the output signal with its corresponding 

array.  The parameter estimation scenario that performed best was that where the panel’s mass, and 

therefore density is known, and only the flexural stiffness must be computed. A scenario where the 

array’s material density is also estimated is tested and found to have reduced performance because of 

the greater ratio of estimated to measured quantities. Finally, it is noted that the modelling assumption 

of the Euler-Bernoulli equations in each bending direction is not tested here since the model developed 

in Matlab’s Simscape that is used for data generation is also based on Euler-Bernoulli beam finite 

elements. The only modelling inconsistencies that are tested are those of the contribution of higher 

frequency modes and higher order terms in the dynamic equations, while also the assumption of the 

clamped end and the analytic mode shapes that were used in the dynamic equation derivation.  
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5.2 Recommendations for future work 

As usually in research, there is always room for improvement, and this thesis is no exception. To this 

end, three main areas are recommended for further investigation. The first is with regards to the joint-

UKF estimator algorithm, which was the main tool used throughout this thesis for online parameter 

estimation in non-linear systems with unmeasurable state variables. Although this tool has an elegant 

formulation, as with all Kalman Filter methods it is very sensitive to modelling errors such as 

unmodelled dynamics or model mismatch as in the case of sloshing. This is indeed a very important 

drawback since in most realistic scenarios these issues exist to different degrees, smaller like in the case 

of flexible solar arrays, or more serious like in the case of sloshing. An effective parameter estimation 

algorithm should be tolerant to these issues, being still able to provide estimates close to the global best-

fit, with the ultimate goal to maximize controller performance. To this end, especially for non-linear 

systems with unmeasurable state variables, two methods could be investigated. The first could be to 

replace the Unscented Kalman Filter with Particle Filters, eliminating the Gaussian assumption in the 

statistics of the random variables representing the state and parameters. This will certainly increase 

performance, of course with in the expense of computational power required, and possibly robustness 

in the sense of the model mismatch errors discussed above. A second solution might be to further 

develop the numerical optimization method presented in [25] to decrease their computational cost while 

feed them with data from a small time window, rather that the hole experiment at once.  

One more very promising area of research would be unlocked by the ability to perform coupled 

CFD simulations with the dynamics of a general dynamic system, ranging from the closed loop 

equations of a satellite with controllers and stochastic feedback to open-loop models including the 

dynamics of various appendages like solar arrays or manipulators. While it is true that under free 

floating conditions the sloshing phenomenon is extremely hard to reproduce with simple mechanical 

equivalent models, it might be the case that it can be safely ignored if proper, robust control algorithms 

are employed. To this end, a completely coupled CFD simulator, something that to the authors 

knowledge is almost non-existent among published papers, would allow to study this issue. Of course, 

this assumes that CFD is indeed an accurate tool to describe sloshing in zero-g, something that few 

CFD solvers are actually validated to be capable of doing so. 
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Appendix A  

In this appendix two openFOAM case files will be presented, for the coupled and prescribed motion 

simulations. Only the dynamic mesh dictionaries will be provided. OpenFOAM-v2012 was used. The 

rest files can be retrieved from  …\tutorials\multiphase\interFoam\laminar\sloshingCylinder. 

Coupled rigid body motion – interFOAM simulation using a Newmark scheme  

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v2012                                 | 

|   \\  /    A nd           | Website:  www.openfoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      dynamicMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dynamicFvMesh       dynamicMotionSolverFvMesh; 

 

motionSolverLibs   (rigidBodyMeshMotion); 

 

motionSolver       rigidBodyMotion; 

 

rigidBodyMotionCoeffs 

{ 

    report          on; 

 

    solver 

    { 

        type Newmark; 

    } 

 

    accelerationRelaxation 0.7; 

 

    bodies 

    { 

        sloshingCylinder 

        { 

            type            cuboid; 

            parent          root; 

 

            // Cuboid dimensions 

            Lx              0.3; 

            Ly              0.2; 

            Lz              0.5; 

 

            // Density of the cuboid 

            rho             500; 

 

            // Cuboid mass 

            mass             400; 

            L               ($Lx $Ly $Lz); 

            centreOfMass    (0 0 0); 

            transform       (1 0 0 0 1 0 0 0 1) (0.5 0.45 0.1); 

 

            joint 

            { 

                type            composite; 
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                joints 

                ( 

                    { 

                        type Px; 

                    } 

                ); 

            } 

    

            patches         (sloshingCylinder); 

            innerDistance   999; 

            outerDistance   1000; 

        } 

    } 

 

 restraints 

 { 

  

  force 

  { 

   body  sloshingCylinder; 

   type        externalForce; 

   location    (0 0 0); 

   force       (1 0 0); 

  } 

 } 

} 

 

 

Prescribed 3D motion 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v2012                                 | 

|   \\  /    A nd           | Website:  www.openfoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      dynamicMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dynamicFvMesh   dynamicMotionSolverFvMesh; 

 

motionSolver    solidBody; 

 

solidBodyMotionFunction tabulated6DoFMotion; 

 

tabulated6DoFMotionCoeffs 

{ 

    CofG            ( 0 0 0 ); 

    timeDataFileName    "$FOAM_CASE/constant/motionProfile.dat"; 

} 

 

 

 

 

 

// ************************************************************************* // 
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Structure of “motionProfile.dat” is also provided below. Rotations are according to the XYZ euler angle 

sequence.  

 
#number_of_points 

( 

(time_1  ((x_1 y_1 z_1) (roll_1 pitch_1 yaw_1)))  

(time_2  ((x_2 y_2 z_2) (roll_2 pitch_2 yaw_2)))  

. 

. 

. 

) 
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Appendix B  

The matlab code for deriving the symbolic equations using the mixed quasi-coordinates formulation 

used in this thesis will be presented. 

 
%* 

Code for symbolic computation of equations of motion for a mixed generanlized-

quasicoordinate formulation.  

Each degree of freedom is declared as a variable i.e. q1,q1_d,q1_dd named holder 

variable, and as a function i.e. x(t), called actual variable, to facilitate symbolic 

differentiation with respect to time, i.e. diff(x,t) or with respect to the variable 

itself i.e. diff(L_holder, q1).   

The output is the generalized inertia matrix “H” with respect to second_order_terms 

and a vector of nonlinear terms contained in “c”.  

 

Author: George Rapakoulias – 1/10/2021 

 

*% 

 

clear; 

clc; 

% usefull functions  

crossMat = @(x) [0 -x(3) x(2); x(3) 0 -x(1); -x(2) x(1) 0]; 

 

syms t x_s(t) y_s(t) z_s(t) theta_s(t) vx(t) vy(t) vz(t) omega_x(t) omega_y(t) 

omega_z(t)  

syms r v rd vd [3,1] 

syms q qd qdd    [3,1] 

syms M m x0 y0 z0 Ibxx Ibyy Ibzz Kx Ky Kz bz bx by real  

 

Ib = diag([Ibxx, Ibyy, Ibzz]);  

 

v_b = [vx; vy; vz];  

omega_b = [omega_x; omega_y; omega_z];  

 

p_s = [x0; y0; z0] + [x_s; y_s; z_s];  

 

v_s = v_b + diff(p_s) + crossMat(formula(omega_b))*p_s;  

 

K = 1/2*M*(v_b.'*v_b) + 1/2*m*(v_s.'*v_s)+ 1/2*omega_b.'*Ib*omega_b; %system kinetic 

energy  

 

T = 1/2*Kx*x_s^2 + 1/2*Ky*y_s^2 + 1/2*Kz*z_s^2;  

 

L = K - T; %system Lagrangian in terms of function symbols  

 

Rayleigh  = 1/2*bx*diff(x_s)^2 + 1/2*by*diff(y_s)^2 + 1/2*bz*diff(z_s)^2; 

 

actual_gc_list = formula([x_s y_s z_s]); % theta_s]); 

holder_gc_list = q.' ; 

 

actual_gc_list_d = diff(actual_gc_list, t); 

holder_gc_list_d = qd.'; 

 

actual_gc_list_dd = diff(actual_gc_list_d, t); 

holder_gc_list_dd = qdd.'; 

 

actual_symbols = [actual_gc_list actual_gc_list_d actual_gc_list_dd ... 

                  vx, vy, vz, diff(vx), diff(vy), diff(vz), ... 

                  omega_x, omega_y,omega_z, diff(omega_x), diff(omega_y), 

diff(omega_z)]; 

               

holder_symbols = [holder_gc_list holder_gc_list_d holder_gc_list_dd v.' vd.' r.' rd.' 

]; 

 

L_q = subs(L, formula(actual_symbols), holder_symbols); 
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Rayleigh_q = subs(Rayleigh, formula(actual_symbols), holder_symbols); 

 

n_gen_dofs = length(actual_gc_list); 

n_dofs = 6 + n_gen_dofs;  

 

dLdV_act     = sym(zeros(3,1)); 

dLdV_act_dt  = sym(zeros(3,1)); 

 

for kk = 1:3 

    dLdV = diff(L_q, v(kk)); 

    dLdV_act(kk) = subs(dLdV, holder_symbols, actual_symbols);  

    dLdV_act_dt(kk) = diff(dLdV_act(kk), t); 

end 

 

LHS_V = simplify(dLdV_act_dt + crossMat(formula(omega_b))*dLdV_act); 

 

dLdomega_act     = sym(zeros(3,1)); 

dLdomega_act_dt  = sym(zeros(3,1)); 

 

for kk = 1:3 

    dLdomega = diff(L_q, r(kk)); 

    dLdomega_act(kk) = subs(dLdomega, holder_symbols, actual_symbols);  

    dLdomega_act_dt(kk) = diff(dLdomega_act(kk), t); 

end 

 

LHS_omega = simplify(dLdomega_act_dt + crossMat(formula(omega_b))*dLdomega_act + 

crossMat(formula(v_b))*dLdV_act); 

 

 

dLdq_act    = sym(zeros(n_gen_dofs,1)); 

dRdq_act    = sym(zeros(n_gen_dofs,1));  

dLdqd_act_dt = sym(zeros(n_gen_dofs,1)); 

 

for kk = 1:n_gen_dofs 

    dLdqd = diff(L_q, holder_gc_list_d(kk)); 

    dLdqd_act = subs(dLdqd, holder_symbols, actual_symbols);  

    dLdqd_act_dt(kk) = diff(dLdqd_act, t); 

    dLdq = diff(L_q, holder_gc_list(kk)); 

    dRdq = diff(Rayleigh_q, holder_gc_list_d(kk));  

    dLdq_act(kk) = subs(dLdq, holder_symbols, actual_symbols);  

    dRdq_act(kk) = subs(dRdq, holder_symbols, actual_symbols);  

end 

 

LHS_g = dLdqd_act_dt - dLdq_act + dRdq_act; 

 

LHS = [LHS_V; LHS_omega; LHS_g]; 

 

LHS_holder = subs(LHS, actual_symbols, holder_symbols); 

 

second_order_terms = [vd.' rd.' holder_gc_list_dd]; 

 

H_calc = sym(zeros(n_dofs,n_dofs)); 

c = sym(zeros(n_dofs,1)); 

c_flag = zeros(n_dofs,1); 

  

for i = 1:n_dofs 

    currentLine = LHS_holder(i); 

    terms = children(expand(currentLine)); 

    n_terms = length(terms); 

    disp(n_terms); 

    for kk = 1:n_terms 

        c_flag = zeros(n_dofs,1); 

        for j = 1:n_dofs 

            [C,~] = coeffs(terms(kk), second_order_terms(j), 'All'); 

            if(length(C) == 2) 

                H_calc(i,j) = H_calc(i,j) + C(1); 

            else 

                c_flag(j) = 1;  
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            end 

        end 

        if(min(c_flag) == 1) 

            c(i) = c(i)+ terms(kk); 

        end 

    end 

end 

 

H = simplify(H_calc); 

c = simplify(c); 

if(simplify(LHS_holder-(H_calc*second_order_terms.'+c)) == zeros(n_dofs,1)) 

    disp("It looks like we made it!"); 

end 
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