
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

CoReLab

Αποδοτική Χωροθέτηση Σημείων Συγκέντρωσης

σε Δίκτυα Ιδιοτελούς Δρομολόγησης

Facility Location in Selfish Routing Networks

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Μάριου Ν. Μερτζανίδη

Marios N. Mertzanidis

Επιβλέπων: Δημήτριος Φωτάκης Συνεπιβλέπων: Θανάσης Λιανέας

Αν. Καθηγητής ΕΜΠ Λέκτορας ΕΜΠ

Αθήνα, Νοέμβριος 2021





ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

Αποδοτική Χωροθέτηση Σημείων Συγκέντρωσης

σε Δίκτυα Ιδιοτελούς Δρομολόγησης

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Μάριου Ν. Μερτζανίδη

Επιβλέπων: Δημήτριος Φωτάκης Συνεπιβλέπων: Θανάσης Λιανέας

Αν. Καθηγητής ΕΜΠ Λέκτορας ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 11 Νοεμβρίου 2021.

........................................

Δημήτριος Φωτάκης

Αν. Καθηγητής ΕΜΠ

........................................

Αριστείδης Παγουρτζής

Καθηγητής ΕΜΠ

........................................

Ευάγγελος Μαρκάκης

Αν. Καθηγητής ΟΠΑ

Αθήνα, Νοέμβριος 2021.



Copyright ©- All rights reserved Μάριος Ν. Μερτζανίδης, 2021.
Με επιφύλαξη κάθε δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργα-

σίας, εξ΄ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανα-

τύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής

ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης

και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της ερ-

γασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

...................................

Μάριος Ν. Μερτζανίδης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

© 2021 Εθνικό Μετσόβιο Πολυτεχνείο. All rights reserved.



Περίληψη

Σε αυτή την διπλωματική θα μας απασχολήσει ένα καινούργιο πρόβλημα που συν-

δυάζει τους τομείς της Χωροθέτησης Εγκαταστάσεων και των Παιγνίων Συμφόρη-

σης. Ονομάζουμε το πρόβλημα Χωροθέτηση Εγκαταστάσεων για Ιδιοτελής Χρήστες

και το εξετάζουμε τόσο από την σκοπιά της βελτιστοποίησης όσο και από την σκο-

πιά της Θεωρίας Παιγνίων. ΄Εχοντας εξετάσει την υπάρχουσα διεθνή βιβλιογραφία

πάνω στα προβλήματα Χωροθέτησης Εγκαταστάσεων, Σχεδίασης Δικτύων και Παι-

γνίων Συμφόρησης, εφαρμόζουμε την γνώση αυτή πάνω σε διαφορετικές εκδοχές του

προβλήματος μας. Η συνεισφορά της παρούσας εργασίας είναι πολυεπίπεδη. Μέσω

αντιπαραδειγμάτων δείχνουμε πως και γιατί οι γνωστές τεχνικές τοπικής αναζήτησης

και γραμμικού προγραμματισμού αποτυγχάνουν να μας δώσουν καλές προσεγγιστι-

κές λύσεις. Μελετώντας την δομή της βέλτιστης λύσης περιορίζουμε τον χώρο α-

ναζήτησης βέλτιστων λύσεων. Παρουσιάζουμε έναν αλγόριθμο με λογαριθμικό λόγο

προσέγγισης για μια εκδοχή του γενικού προβλήματος. Στρεφόμενοι στην παιγνιο-

θεωρητική όψη, βρίσκουμε προσεγγιστικές ισορροπίες και φράσσουμε το τίμημα της

αναρχίας. Τέλος, εφαρμόζοντας τεχνικές αραίωσης δίνουμε μια προσεγγιστική λύση

για μια απλή εκδοχή του προβλήματος δείχνοντας παράλληλα γιατί η εφαρμογή τέτοιων

τεχνικών αποτυγχάνει στο γενικό πρόβλημα.

Λέξεις Κλειδιά: Χωροθέτηση Εγκαταστάσεων, Σχεδίαση Δικτύων, Παίγνια

Συμφόρησης, Προσεγγιστικοί Αλγόριθμοι, Τοπική Αναζήτηση, Γραμμικός Προγραμ-

ματισμός, Πιθανοτικοί Αλγόριθμοι, Τεχνικές Αραίωσης, Προσεγγιστική Ισορροπία

Νας, Τίμημα της Αναρχίας.

ii



Abstract

In this thesis, we are preoccupied with solving a novel problem that combines
the well-studied fields of Facility Location and Congestion Games. We call this
problem Facility Location for Selfish Commuters and we examine it both from
an optimization and a game-theoretic point of view. After examining the exist-
ing techniques for solving, facility location, network design and congestion game
problems we provide insights and algorithms for different variants of the general
problem. Our contribution in this thesis is manifold. Using counter-examples we
show how and why the established techniques of local search and linear program-
ming fail in giving us good approximation algorithms. By examining the structure
of the optimal solution, we restrict the search space of optimal solutions. Also, we
present a logarithmic approximation algorithm for a variant of the general prob-
lem. From a game-theoretic standpoint we find approximate Nash equilibria and
we bound the Price of Anarchy. Finally, by applying sparsification techniques, we
propose an approximate solution to a simpler variant of the problem, while at the
same time we demonstrate why the use of such techniques fails in the more general
setting.

Key Words: Facility Location, Network Design, Congestion Games, Approx-
imate Algorithms, Local Search, Linear Programming, Probabilistic Algorithms,
Sparsification Techniques, Approximate Nash Equilibria, Price of Anarchy

iii



Ευχαριστίες

Καταρχάς θα ήθελα να ευχαριστήσω τον κ. Φωτάκη. Η διορατικότητα και η

εμπειρία του ήταν καθοριστικοί παράγοντες για την επιτυχή ολοκλήρωση της διπλω-

ματικής αυτής. Θα ήθελα επίσης να τον ευχαριστήσω θερμά για την βοήθεια και την

καθοδήγηση του σε αυτά τα πρώτα βήματα της ερευνητικής μου καριέρας.

Επίσης θα ήθελα να ευχαριστήσω πάρα πολύ τον Θανάση Λιανέα. Η υπομονή του

να ακούει και να αναλύει κάθε εβδομάδα ότι μπορεί να είχα σκεφτεί και οι στοχευμένες

του παρατηρήσεις έχουν παίξει αδιαμφισβήτητα καθοριστικό ρόλο στον όγκο και την

ποιότητα της διπλωματικής αυτής.

Θα ήθελα να ευχαριστήσω τους Γονείς και τους Συγγενείς μου που ήταν εκεί να

με στηρίζουν σε κάθε βήμα και επιλογή μου. Είναι δεδομένο ότι χωρίς αυτούς δεν θα

είχα φτάσει ως εδώ και δεν θα είχα τους υψηλούς στόχους για το μέλλον που έχω

τώρα.

Τέλος θα ήθελα να ευχαριστήσω τους φίλους μου οι οποίοι είναι μία πηγή δύναμης

που με εμπνέει και με παρακινεί να εξελίσσομαι διαρκώς. Χωρίς αυτούς δεν θα ήμουν

το άτομο που είμαι σήμερα και δεν θα ήμουν τόσο γεμάτος από χαρούμενες εμπειρίες

και αναμνήσεις ζωής.

Σας ευχαριστώ.

iv



Contents

Περίληψη ii

Abstract iii

Ευχαριστίες iv

1 Εκτεταμένη Ελληνική Περίληψη 1

1.1 Εισαγωγή . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Η συνεισφορά μας . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Οργάνωση της Εργασίας . . . . . . . . . . . . . . . . . . . . 3

1.2 Ορισμός του Προβλήματος . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Τεχνικές Τοπικής Αναζήτησης . . . . . . . . . . . . . . . . . . . . . 3

1.4 Γραμμικός Προγραμματισμός . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Τεχνικές Σχεδίασης Δικτύων . . . . . . . . . . . . . . . . . . . . . 6

1.6 Θεωρία Παιγνίων . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Τεχνικές Αραίωσης . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.1 Το Λήμμα του Αλτχόφερ . . . . . . . . . . . . . . . . . . . . 9

1.7.2 ΄Ενα Δύσκολο Παράδειγμα . . . . . . . . . . . . . . . . . . . 9

2 Introduction 11
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Facility Location Problems 14
3.1 Metric Uncapacitated Facility Location . . . . . . . . . . . . . . . 15
3.2 Hierarchical Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Simple Placement . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Multi-Level Facility Location . . . . . . . . . . . . . . . . . 19
3.2.4 General Placement . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Load Balanced Facility Location . . . . . . . . . . . . . . . . . . . 20
3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



3.3.3 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Connected Facility Location . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Universal Facility Location . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Locality Gap 8 . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3 Locality Gap 7 . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.4 Locality Gap 5 . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.5 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Network Design Problems 33
4.1 Virtual Private Network Design Problem . . . . . . . . . . . . . . . 33

4.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 The Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Access Network Design Problem . . . . . . . . . . . . . . . . . . . 36
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 The Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Single Sink Buy-at-Bulk Problem . . . . . . . . . . . . . . . . . . . 37
4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 A 72.8-approximation ? . . . . . . . . . . . . . . . . . . . . 38
4.3.3 A 153.6-approximation . . . . . . . . . . . . . . . . . . . . . 41

4.4 Two Metric Network Design . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 The Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Congestion Games 48
5.1 Introduction to Congestion Games . . . . . . . . . . . . . . . . . . 48

5.1.1 Atomic vs Non-Atomic . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 The Price of Anarchy . . . . . . . . . . . . . . . . . . . . . 49
5.1.3 The Price of Stability . . . . . . . . . . . . . . . . . . . . . 50

5.2 Braess Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Inapproximability Results . . . . . . . . . . . . . . . . . . . 51

5.3 Computing Approximate Equilibrium . . . . . . . . . . . . . . . . 52
5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Potential Function . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Unweighted Players . . . . . . . . . . . . . . . . . . . . . . 54
5.3.4 Using Ψ-Games . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.5 Using Approximate Potential Function . . . . . . . . . . . . 57
5.3.6 Unifying Approximate Potential Function . . . . . . . . . . 58



5.4 Cost Sharing Games . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.1 Price of Stability . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Computing Minimum Potential Nash Equilibria . . . . . . . 62

5.5 Edge Sparsification Techniques . . . . . . . . . . . . . . . . . . . . 63
5.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.2 Althöfer’s Lemma . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.3 Approximate Caratheodory’s Theorem . . . . . . . . . . . . 65

6 Facility Location for Selfish Commuters 67
6.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Why Local Search does not Work in our Setting . . . . . . . . . . 68
6.3 Why Linear Programming does not Work in our Setting . . . . . . 70

6.3.1 Proving a Lower Bound on the Demand of each Facility . . 70
6.3.2 The Integrality Gap . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Network Design Techniques . . . . . . . . . . . . . . . . . . . . . . 72
6.4.1 The Optimal Solution is a Forest . . . . . . . . . . . . . . . 72
6.4.2 It Generalizes the Cost-Distance Problem . . . . . . . . . . 73
6.4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.4 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Game Theoretic Analysis . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.1 Computing Approximate Nash Equilibria . . . . . . . . . . 78
6.5.2 Bounding the Price of Anarchy . . . . . . . . . . . . . . . . 79
6.5.3 The use of Sparsification Techniques . . . . . . . . . . . . . 80

7 Conclusion 85



Κεφάλαιο 1

Εκτεταμένη Ελληνική

Περίληψη

1.1 Εισαγωγή

΄Ενας από τους πιο ενδελεχώς ερευνημένους τομείς της θεωρητικής επιστήμης

των υπολογιστών είναι τα προβλήματα χωροθέτησης εγκαταστάσεων. Στα προβλήμα-

τα αυτά, συνήθως, ο βασικός στόχος είναι το άνοιγμα ενός συνόλου εγκαταστάσεων

με τέτοιο τρόπο ώστε να ελαχιστοποιείται το κόστος τον εγκαταστάσεων αυτών και το

κόστος της μεταφοράς πελατών στις εγκαταστάσεις αυτές. Ανάλογα με τον τρόπο που

υπολογίζονται αυτά τα κόστη και τους πιθανούς περιορισμούς που μπορεί να επιβάλ-

λονται στις αποδεκτές λύσεις του προβλήματος, προκύπτουν οι διαφορετικές εκδοχές

των προβλημάτων αυτών. Για παράδειγμα υπάρχουν εκδοχές που το κόστος των εγκα-

ταστάσεων είναι μια σταθερή ποσότητα και εξαρτάται αποκλειστικά από την τοποθεσία

της εγκατάστασης και υπάρχουν εκδοχές που το κόστος της κάθε εγκατάστασης ε-

ίναι μια συνάρτηση που εξαρτάται από το πλήθος των πελατών που χρησιμοποιούν

την εγκατάσταση αυτή. Επίσης υπάρχουν εκδοχές το προβλήματος που επιβάλουν

ένα κατώτατο ή ένα ανώτατο όριο πελατών που πρέπει να εξυπηρετεί κάθε ανοιγμένη

εγκατάσταση και υπάρχουν εκδοχές που δεν επιβάλλονται τέτοιας φύσης περιορισμοί.

Μπορούμε να δούμε όλα τα προβλήματα αυτά ως υποκατηγορία του ευρυτέρου κλάδου

της σχεδίασης δικτύων. Για την επίλυση των προβλημάτων αυτών έχουν επιστρατευ-

τεί πολλές διαφορετικές τεχνικές στην διεθνή βιβλιογραφία, με την πλειονότητα αυτών

να βασίζονται σε γραμμικό προγραμματισμό ή στη τοπική αναζήτησης .

΄Ενας ακόμα ενδιαφέρον τομέας της θεωρητικής πληροφορικής είναι η αλγοριθμική

θεωρία παιγνίων. Η θεωρία παιγνίων αποτελεί έναν καλά μελετημένο τομέα έρευνας με

επιστήμονες να ασχολούνται με αυτόν από τον 17ο αιώνα. Την σύγχρονη του μορφή

την απέκτησε γύρω στο 1950, την απαρχή για ένα εκτεταμένο ερευνητικό έργο. Από

την άλλη, ο συνδυασμός πληροφορικής και θεωρίας παιγνίων αποτελεί έναν σχετικά

νέο τομέα έρευνας. Αρκεί να αναλογιστεί κανείς ότι βασικές έννοιες όπως το Τίμημα

της Αναρχίας ([74]) προτάθηκαν μετά το 1999. Τα τελευταία χρόνια η αλγοριθμική

1



θεωρία παιγνίων έχει ερευνηθεί εκτεταμένα και πολλά διαφορετικά παρακλάδια του

τομέα αυτού έχουν δημιουργηθεί. Το κοινό στοιχείο όλων των προβλημάτων αυτών

είναι ότι έχουμε πολλούς παίκτες που ο καθένας πράττει ανάλογα με το προσωπικό

του συμφέρον αδιαφορώντας για τις επιπτώσεις που μπορεί να έχει στο σύνολο. Για

παράδειγμα, ένας παίκτης που συμμετέχει σε μία δημοπρασία μπορεί να ποντάρει μια

τιμή που να διαφέρει από την αξία που θεωρεί ότι έχει το προσφερόμενο αγαθό προ-

σπαθώντας με αυτό τον τρόπο να πετύχει μια πιο ευνοϊκή τιμή. Επίσης θα μπορούσαμε

σε ένα παιχνίδι συμφόρησης να έχουμε έναν παίκτη που χρησιμοποιεί την ταχύτερη

διαδρομή που έχει στην διάθεση του για να φτάσει στο προορισμό του αλλά με αυτό

τον τρόπο μπορεί να προκαλέσει μποτιλιάρισμα με αποτέλεσμα να καθυστερήσει ση-

μαντικά τους υπόλοιπους παίκτες. Εμάς μας ενδιαφέρουν κατά κύριο λόγο τα παίγνια

συμφόρησης. Σε αυτού του είδους τα παίγνια συνήθως έχουμε ένα σύνολο παικτών,

ένα σύνολο πόρων και για κάθε παίκτη έχουμε ένα σύνολο στρατηγικών όπου κάθε

στρατηγική αποτελείται από ένα υποσύνολο των διαθέσιμων πόρων. Στην πιο ενδια-

φέρουσα περίπτωση, μπορούμε να θεωρήσουμε ότι έχουμε ένα δίκτυο και κάθε παίκτης

θέλει να φτάσει από την αρχική του θέση σε έναν τελικό προορισμό. Οι ακμές του δι-

κτύου αποτελούν τους πόρους και οι στρατηγικές είναι τα διαφορετικά μονοπάτια που

μπορούν να χρησιμοποιήσουν οι παίκτες για να φτάσουν στον τελικό τους προορισμό.

Το βασικό πρόβλημα που προσπαθούμε να λύσουμε (εξ όσων γνωρίζουμε) α-

ποτελεί την πρώτη προσπάθεια να συγχωνευτούν οι δύο παραπάνω τομής έρευνας.

Ονομάζουμε το πρόβλημα αυτό Χωροθέτηση Εγκαταστάσεων για Ιδιοτελής Χρήστες

(ή ΧΕΙΧ για συντομία). Στο πρόβλημα αυτό μας δίνεται ένα δίκτυο, ένα κόστος για

το άνοιγμα εγκατάστασης σε κάθε κόμβο του δικτύου και μία συνάρτηση καθυστέρη-

σης για κάθε ακμή που εξαρτάται από το πλήθος των ατόμων που χρησιμοποιούν την

ακμή αυτή. Το πρόβλημα αυτό και οι διάφορες παραλλαγές του έχουν μεγάλο ενδια-

φέρον τόσο από την σκοπιά της βελτιστοποίησης όσο και από την σκοπιά της θεωρίας

παιγνίων.

1.1.1 Η συνεισφορά μας

Εξετάσαμε την εφαρμογή διάφορων αλγοριθμικών τεχνικών για την επίλυση του

προβλήματος μας. Αρχικά εξετάσαμε τεχνικές τοπικής αναζήτησης και παραθέτουμε

παραδείγματα και επιχειρήματα γιατί αυτές οι τεχνικές δεν δουλεύουν στο πρόβλημα

μας. Για ειδικές περιπτώσεις του προβλήματος αποδεικνύουμε κάποια θεωρήματα σχε-

τικά με την δομή της βέλτιστης λύσης. Στην συνέχεια όμως δείχνουμε ότι παρ΄ όλη

την επιπρόσθετη πληροφορία οι τεχνικές γραμμικού προγραμματισμού δεν μπορούν να

προσφέρουν επιπρόσθετη βοήθεια για την επίλυση του προβλήματος. Για την εκδοχή

του προβλήματος όπου οι συναρτήσεις καθυστέρησης είναι φθίνουσες μπορέσαμε χρη-

σιμοποιώντας τεχνικές από την υπάρχουσα βιβλιογραφία σε συνδυασμό με τις δικές

μας ιδέες να καταλήξουμε σε έναν log|S| προσεγγιστικό αλγόριθμο για το πρόβλημα.

Σχετικά με το κομμάτι της θεωρίας παιγνίων αποδείξαμε την ύπαρξη κάποιον προσεγ-

γιστικών ισορροπιών Νας. Τέλος χρησιμοποιώντας τεχνικές αραίωσης καταλήξαμε σε

μία προσεγγιστική λύση σε μία παραλλαγή του προβλήματος μας όπου έχουμε μόνο

2



έναν κόμβο με παίκτες. Επίσης παρέχουμε ένα γενικό παράδειγμα που συνοψίζει την

δυσκολία του προβλήματος και παρουσιάζει γιατί οι τεχνικές αραίωσης δεν μπορούν

να εφαρμοστούν στην γενικότερη εκδοχή του προβλήματος.

1.1.2 Οργάνωση της Εργασίας

Το βασικό κομμάτι της εργασίας μπορεί να χωριστεί σε τέσσερις διαφορετικές

ενότητες. Στην πρώτη ενότητα εξετάζουμε τις διαφορετικές τεχνικές και τις διαφορε-

τικές εκδοχές των προβλημάτων χωροθέτησης εγκαταστάσεων που έχουν εξεταστεί

από την διεθνή βιβλιογραφία. Στην δεύτερη ενότητα εξετάζουμε τεχνικές που έχουν

χρησιμοποιηθεί σε προβλήματα σχεδίασης δικτύων. Στη τρίτη ενότητα αναλύουμε

αναλύουμε διαφορετικά κομμάτια της υπάρχουσας βιβλιογραφίας πάνω στα παίγνια

συμφόρησης. Τέλος, στην τέταρτη ενότητα παρουσιάζουμε τα δικά μας αποτελέσματα

σχετικά με το πρόβλημα της Χωροθέτησης Εγκαταστάσεων για Ιδιοτελής Χρήστες.

1.2 Ορισμός του Προβλήματος

Στο πρόβλημα Χωροθέτησης Εγκαταστάσεων για Ιδιοτελής Χρήστες μας δίνετε

ως είσοδος ένας γράφος G = (V,E), ένα σετ από πελάτες S ⊆ V και για κάθε πελάτη

s ∈ S ένα βάρος ws. Για κάθε ακμή e ∈ E μας δίνετε μία συνάρτηση καθυστέρησης

le : < 7→ <. Τέλος για κάθε κόμβο του γράφου i ∈ V έχουμε ένα κόστος ανοίγματος

εγκατάστασης fi.

Στόχος μας είναι να ανοίξουμε ένα σετ F ⊆ V από εγκαταστάσεις και να δρομο-

λογήσουμε τους πελάτες στις εγκαταστάσεις αυτές με τέτοιο τρόπο ώστε να ελαχι-

στοποιούμε την έκφραση: ∑
e∈E

xe · le(xe) +
∑
j∈F

fj

΄Οπου xe είναι το συνολικό βάρος χρηστών που χρησιμοποιούν την ακμή e.

1.3 Τεχνικές Τοπικής Αναζήτησης

΄Οπως θα δούμε και στο κεφάλαιο 3.5, τεχνικές τοπικής αναζήτησης έχουν εφαρ-

μοστεί για την επίλυση προβλημάτων Χωροθέτησης Εγκαταστάσεων. ΄Εχουν χρη-

σιμοποιηθεί και για την επίλυση προβλημάτων όπου το κόστος της εγκατάστασης

εξαρτάται από το πλήθος των πελατών που εξυπηρετεί. Βλέπουμε λοιπόν ότι υπάρχει

άμεση συνάφεια με το δικό μας πρόβλημα όπου η καθυστέρηση στις ακμές εξαρτάται

από το πλήθος των πελατών που χρησιμοποιούν την ακμή.

Θα παρουσιάσουμε στο κεφάλαιο αυτό ένα αντιπαράδειγμα που δείχνει ότι για

πολυωνυμικές συναρτήσει καθυστέρησης, ο λόγος το κόστους της τοπικά βέλτιστης

λύσης με την βέλτιστη λύση είναι απαγορευτικά μεγάλος. Θα πάρουμε ως τοπικά

3



βήματα το άνοιγμα εγκατάστασης, το κλείσιμο εγκατάστασης και την εναλλαγή

εγκατάστασης. Από την στιγμή που το κόστος μίας εγκατάστασης είναι σταθερό, άπαξ

και έχουμε το πλήθος των ανοιχτών εγκαταστάσεων η δρομολόγηση πελατών σε αυτές

μπορεί να βρεθεί αποδοτικά. ΄Αρα δεν χρειάζονται τοπικά βήματα που να λαμβάνουν

υπόψιν το πλήθος πελατών που λαμβάνει η κάθε εγκατάσταση.

Στο παράδειγμα του σχήματος 1.1 έχουμε στους κόμβους c1, c2, ..., ck πελάτες μο-

ναδιαίου βάρους. Το κόστος ανοίγματος εγκατάστασης στους κόμβους o1, o2, ..., ok
είναι ε, η η καθυστέρηση των ακμών (ci, oi) είναι σταθερή και ίση με 1 και η κα-

θυστέρηση των ακμών e = (ci, S) είναι le(x) = xd. Τέλος το κόστος ανοίγματος

εγκατάστασης στο S είναι (k − 1)d+1
. Η βέλτιστη λύση είναι να ανοίξουν όλες οι

εγκατάστασης των κόμβων oi και ο κάθε πελάτης να δρομολογηθεί στην αντίστοιχη

εγκατάσταση με συνολικό κόστος k · (ε+ 1). Ας αναλογιστούμε την περίπτωση όπου

έχουμε μόνο την εγκατάσταση S ανοιχτή. Το άνοιγμα οποιασδήποτε άλλης εγκα-

τάστασης απλά θα επέφερε ένα έξτρα ε κόστος. Η εναλλαγή της εγκατάστασης

με οποιοδήποτε άλλη θα επέφερε ένα έξτρα 2 · k − 2 + ε κόστος. Το κόστος της

κατάστασης αυτής είναι 3 · (k−1)+1+(k−1) · (k−1)d. ΄Αρα η κατάσταση αυτή είναι

τοπικά βέλτιστη και ο λόγος του κόστους της προς το κόστος της βέλτιστης λύσης

είναι O(kd).

Σχήμα 1.1: ΄Ενα αντιπαράδειγμα για την χρήση Τοπικής Αναζήτησης.

1.4 Γραμμικός Προγραμματισμός

Για τους σκοπούς το κεφαλαίου αυτού θα απλουστεύσουμε το πρόβλημα εξετάζο-

ντας αποκλειστικά μία ειδική του περίπτωση. Θα θεωρήσουμε ότι το κόστος όλων των

4



εγκαταστάσεων είναι B (fj = B, ∀j ∈ V ) και ότι όλες οι συναρτήσεις καθυστέρησης

είναι γραμμικές με θετικούς συντελεστές (le(x) = a · x+ b όπου a, b ≥ 0, ∀e ∈ E).

Στο λήμμα 6.3.1 αποδεικνύουμε ότι στις περιπτώσεις που πληρούνται τα παραπάνω

κριτήρια υπάρχει μία λύση με κόστος το πολύ τέσσερις φορές της βέλτιστης λύσης

(4 ∗OPT ) όπου κάθε ανοιχτή εγκατάσταση δέχεται τουλάχιστον mins∈S
ws
2 ζήτηση.

Είναι προφανές ότι εξετάζουμε την περίπτωση όπου οι πελάτες μπορούν να ‘σπάσουν’

το βάρος τους σε μικρότερα κομμάτια και να το δρομολογήσουν ξεχωριστά. Οι περιο-

ρισμοί που παίρνουμε είναι αναγκαίοι καθώς δεν είναι δύσκολο να δει κανείς ότι στην

γενικότερη περίπτωση κάτι τέτοιο δεν ισχύει.

Επί της ουσίας ο τρόπος που το αποδεικνύουμε είναι ότι χωρίζουμε τις εγκατα-

στάσεις της βέλτιστης λύσης σε αυτές που δέχονται πάνω από mins∈S
ws
2 ζήτηση

και σε αυτές που δέχονται λιγότερη ζήτηση. Αρχικά ασχολούμαστε με τους πελάτες

που στέλνουν το μεγαλύτερο κομμάτι του βάρους τους στην πρώτη κατηγορία εγκατα-

στάσεων. Τους βάζουμε να στείλουν όλο τους το βάρος σε εγκαταστάσεις της πρώτης

κατηγορίας αυξάνοντας έτσι το πολύ κατά 2 τις ροές σε κάθε ακμή και άρα το πολύ κα-

τά 4 φορές το κόστος. Στην συνέχεια κλείνουμε ότι εγκαταστάσεις έχουν μείνει χωρίς

ζήτηση. Τέλος ασχολούμαστε με τους πελάτες που στέλνουν το μεγαλύτερο κομμάτι

του βάρους τους στην δεύτερη κατηγορία εγκαταστάσεων. Με απαγωγή σε άτοπο

δείχνουμε ότι το πλήθος των εγκαταστάσεων της δεύτερης κατηγορίας που έχουν

μείνει ανοιχτά είναι περισσότερα σε πλήθος από τους πελάτες αυτούς. ΄Αρα κλείνουμε

όλες τις εγκαταστάσεις της δεύτερης κατηγορίας και ανοίγουμε από μία εγκατάσταση

πάνω σε κάθε πελάτη της κατηγορίας αυτής. Κρατώντας την ροή των πελατών αυτών

προς τις εγκαταστάσεις της πρώτης κατηγορίας σταθερή και στέλνοντας την υπόλοιπη

ροή τους στην εγκατάσταση που άνοιξε πάνω τους έχουμε καταλήξει σε μία λύση που

ικανοποιεί τους περιορισμούς του λήμματος.

Στην συνέχεια αναλογιζόμαστε την ακόλουθη διατύπωση του προβλήματος:

min
∑
e∈E

(ae · x2
e + be · xe) +

∑
e∈F

ze ·B

s.t.
∑

e∈δ−(v) xe =
∑

e∈δ+(v) xe, ∀v ∈ V (διατήρηση ροής)

xe ≤ ze ·
∑

s∈S ws, ∀e ∈ F (χρήση μόνο αγορασμένων εγκαταστάσεων)

xe = ws ∀e ∈ S
ze ∈ {0.1} ∀e ∈ F

Για να μπορούμε να λύσουμε το πρόβλημα αυτό με χρήση Γραμμικού Προγραμμα-

τισμού πρέπει να αφαιρέσουμε τον ακέραιο περιορισμό και να τον αντικαταστήσουμε

με έναν συνεχή. ΄Ομως παρατηρούμε ότι με το που το κάνουμε αυτό τότε το κόστος

τον εγκαταστάσεων θα είναι ανεξάρτητα από την τοποθεσία τους και το πλήθος τους

ίσο με B. ΄Αρα οι παίκτες πάντα θα ανοίγουν μια εγκατάσταση στον κόμβο τους θα

δρομολογούν όλη την ροή τους εκεί και συνολικά θα έχουμε κόστος B. ΄Αρα η βέλ-

τιστη λύση του προβλήματος με συνεχείς περιορισμούς δεν παρέχει καμία πληροφορία

για την επίλυση του προβλήματος.

5



1.5 Τεχνικές Σχεδίασης Δικτύων

Σε αυτή την ενότητα θα εξετάσουμε την εκδοχή του προβλήματος όπου αντί η κάθε

εγκατάσταση να έχει ένα κόστος, έχουμε τον περιορισμό ότι μπορούμε να ανοίξουμε

το πολύ k εγκαταστάσεις. Επίσης θεωρούμε ότι για τις συναρτήσεις καθυστερήσεις

ισχύουν οι εξής περιορισμοί. Οι συναρτήσεις le : < 7→ < είναι φθίνουσες, μη αρνη-

τικές και η συνάρτηση x · le(x) είναι αύξουσα και κυρτή. Ονομάζουμε την έκδοση

του προβλήματος αυτή Κυρτή Χωροθέτηση Εγκαταστάσεων για Ιδιοτελής Χρήστες

(ΚΧΕΙΧ).

Καταρχάς αποδεικνύουμε το θεώρημα 6.4.3 που δηλώνει ότι υπάρχει μια βέλτιστη

λύση που δεν περιέχει κύκλους. ΄Αρα μπορούμε να σκεφτούμε την βέλτιστη λύση ως

ένα δάσος από δέντρα με ρίζες τους κόμβους των εγκαταστάσεων.

Στην συνέχεια δείχνουμε ότι το πρόβλημα μας γενικεύει το πρόβλημα που ανα-

λύεται στο άρθρο [79] και ως εκ τούτου γενικεύει ένα μεγάλο αριθμό διαφορετικών

προβλημάτων Χωροθέτησης Εγκαταστάσεων και Σχεδίασης Δικτύων. Εν συντομία

για να αποδείξουμε τον ισχυρισμό αυτό παρατηρούμε ότι αν θέσουμε τις συναρτήσεις

καθυστέρησης μας ως:

le(x) =

{
c(e)
x + l(e) αν xe > mins∈S(ws)
c(e)

mins∈S(ws)
+ l(e) αν xe < mins∈S(ws)

Θα έχουμε συναρτήσεις που ικανοποιούν τους περιορισμούς μας και θα έχουν ίδιο

κόστος με το κόστος των ακμών του [79] (όπου c(e), l(e) τα αντίστοιχα κόστη του

[79]). Επίσης η εύρεση k εγκαταστάσεων είναι πιο ισχυρή από την εκδοχή που έχουμε

έναν σταθερό τελικό προορισμό για όλους τους πελάτες. Η παρατήρηση αυτή μας δίνει

κατευθείαν ότι είναι δύσκολο να βρεθεί Ω(loglog|S|) προσεγγιστικός αλγόριθμος για

το πρόβλημα μας ([30]).

Για τους σκοπούς του αλγορίθμου μας ορίζουμε ως Pwu,v το γρηγορότερο (u, v)
μονοπάτι για πελάτη βάρους w που κινείται μόνος στο δίκτυο. Επίσης g(u, v, w) =∑

e∈Pwu,v w · le(w). Ο αλγόριθμος είναι ο εξής.

1. Αρχικοποιούνται S0 = S, w0,s = ws και i = 0.

2. ΄Οσο |Si| > k:

(αʹ) Για κάθε ζευγάρι u, v ∈ Si βρες Ki(u, v) = minz∈V {g(u, z, wi,u) +
g(v, z, wi,v)
+

wi,u
wi,u+wi,v

· g(z, u, wi,u + wi,v) +
wi,v

wi,u+wi,v
· g(z, v, wi,u + wi,v)}.

(βʹ) Κάνε ένα ελάχιστο ταίριασμα στο Si με κόστη Ki αφήνοντάς k αταίρια-

στους κόμβους.

(γʹ) Θέσε Si+1 = {}.

(δʹ) Για κάθε ταίριασμα u, v:

6



i. Στείλε και τους δύο πελάτες στον κόμβο z που ελαχιστοποιεί την

έκφραση του 2(α).

ii. Διάλεξε u με πιθανότητα
wi,u

wi,u+wi,v
, αλλιώς διάλεξε v. Χωρίς βλάβη

της γενικότητας θεωρούμε ότι διαλέξαμε τον u.

iii. Στείλε τα wi,u + wi,v πίσω στο u, πρόσθεσε u στο Si+1 και θέσε

wi+1,u = wi,u + wi,v.

(εʹ) Πρόσθεσε και τους αταίριαστους κόμβους στο Si+1

(ϛʹ) Θέσε i← i+ 1

3. Ο αλγόριθμος επιστρέφει ως εγκαταστάσεις τους k κόμβους που ανήκουν στο

Si και ως ροές αυτές που υπαγορεύει η παραπάνω διαδικασία.

Αποδεικνύεται εύκολα ότι ο αλγόριθμος αυτός τερματίζει μετά από O(log|S|)
βήματα. Στην συνέχεια στο λήμμα 6.4.6 αποδεικνύουμε ότι το ταίριασμα του 2(α)

μπορεί να γίνει πάνω στο δάσος της βέλτιστης λύσης και οι πελάτες χρησιμοποιούν

ακμές που χρησιμοποιούσαν στην βέλτιστη λύση. Για την απόδειξη αυτή περιγράφου-

με μια διαδικασία έχοντας ως δεδομένη την βέλτιστη λύση που καταλήγει σε ένα

ταίριασμα που ικανοποιεί τους περιορισμούς του και άρα έτσι αποδεικνύεται η ύπαρξη

του. Πιο συγκεκριμένα παίρνουμε το μονοπάτι κάθε πελάτη προς την εγκατάσταση

στο δέντρο του στην βέλτιστη λύση. ΄Οσο πλησιάζουμε προς την ρίζα (εγκατάσταση)

θα υπάρχουν κόμβοι στους οποίους συναντιούνται τα μονοπάτια διαφορετικών πελα-

τών. Σε αυτούς τος κόμβους ταιριάζουμε όλους τους πελάτες που μπορούμε και στην

χειρότερη μένει ένας αταίριαστος. Τους αταίριαστους πελάτες τους προχωράμε πιο

‘πάνω’ στα μονοπάτια τους μέχρι να συναντήσουν μονοπάτια άλλων αταίριαστων πε-

λατών και ούτω καθεξής. Τέλος θα καταλήξουμε να συναντιούνται όλα τα μονοπάτια

στην ρίζα στην οποία ταιριάζονται οι εναπομείναντες πελάτες και μένει το πολύ ένας

αταίριαστος από κάθε δέντρο. Γι’ αυτό αφήνουμε k αταίριαστους πελάτες (εκτός από

όταν έχουμε k + 1 πελάτες που θα κάνουμε μόνο ένα ταίριασμα για να τελειώσει ο

αλγόριθμος).

Στο λήμμα 6.4.7 δείχνουμε ότι στο πρώτο ταίριασμα το κόστος δρομολόγησης των

πελατών στα σημεία συνάντησης είναι λιγότερο από το κόστος της βέλτιστης λύσης.

Το λήμμα αυτό το γενικεύουμε στο λήμμα 6.4.9 που δηλώνουμε ότι το αναμενόμενο

κόστος της δρομολόγησης των πελατών στα σημεία συνάντησης είναι λιγότερο από

το κόστος της βέλτιστης λύσης. Για να το αποδείξουμε αυτό κάνουμε χρήση της

κυρτότητας του κόστους, της ανισότητα Γένσεν και των περιορισμών που έχουμε

λόγο του ταιριάσματος που αποδείξαμε ότι υπάρχει.

Τέλος στο λήμμα 6.4.8 δείχνουμε ότι το αναμενόμενο κόστος της δρομολόγησης

των ταιριασμένων πελατών πίσω είναι μικρότερο από το κόστος της δρομολόγησης

τους στο σημείο συνάντησης και άρα λιγότερο συνολικά από το κόστος της βέλτιστης

λύσης. Για να το αποδείξουμε αυτό χρησιμοποιούμε ότι οι συναρτήσεις καθυστέρησης

είναι φθίνουσες.

Συνδυάζοντάς όλα τα παραπάνω λήμματα καταλήγουμε στο θεώρημα 6.4.11 που

δηλώνει ότι ο παραπάνω αλγόριθμος είναι ένας O(log|S|) προσεγγιστικός αλγόριθμος

7



για το ΚΧΕΙΧ πρόβλημα.

1.6 Θεωρία Παιγνίων

Για τους σκοπούς του κεφαλαίου αυτού δεν αλλάζουμε το πρόβλημα αλλά αλλάζου-

με τον τρόπο που το αντιμετωπίζουμε. Θεωρούμε ότι έχουμε έναν έξτρα κόμβο t που
είναι ο τελικός προορισμός όλων των πελατών και συνδέουμε όλους τους κόμβους του

G με ακμές καθυστέρησης le(x) = B
x με τον t. Επίσης θεωρούμε τις καθυστερήσεις

στις υπόλοιπες ακμές γραμμικές με θετικούς συντελεστές. Είναι εύκολο να συνειδη-

τοποιήσουμε ότι το πρόβλημα είναι ισοδύναμο με αυτό που συζητήσαμε στην ενότητα

1.4 με την διαφορά ότι οι παίκτες μοιράζονται το κόστος της εγκατάστασης.

Είναι εύκολο να δείξουμε ότι αν όλοι οι παίκτες ‘ανοίξουν’ μια εγκατάσταση στον

κόμβο τους έχουμε μια (wmax
wmin

+ 1)-προσεγγιστική ισορροπία Νας για την περίπτωση

όπου οι πελάτες δεν μπορούν να σπάσουν το βάρος τους και (wmax
wmin

) -προσεγγιστική

ισορροπία Νας για την περίπτωση όπου οι πελάτες μπορούν να σπάσουν το βάρος

τους. ΄Αρα αν όλοι οι πελάτες έχουν το ίδιο βάρος έχουμε μια 2-προσεγγιστική και

μία ακριβής ισορροπία Νας.

Επίσης στο λήμμα 6.5.1 αποδεικνύουμε ότι το Τίμημα της Αναρχίας για το παίγνιο

αυτό είναι κάτω φραγμένο από το O(n). Για να το δούμε αυτό αρκεί να αναλογιστούμε

το παράδειγμα του γραφήματος 1.2. ΄Ολες οι ακμές έχουμε μηδενική καθυστέρηση

εκτός από την (u, r) που έχει le(x) = a · x με a = k−1
k2
· B − ε όπου ε > 0. Τέλος

οι κόμβοι vi έχουν μοναδιαίο βάρος. Η βέλτιστη λύση είναι να ανοίξει η εγκατάσταση

στο u με συνολικό κόστος B. ΄Ομως αν είναι ανοιχτή μόνο η εγκατάσταση του r
έχουμε ισορροπία Νας με κόστος a ·k2 +B = (k−1) ·B+B = k ∗B που αποδεικνύει

τον ισχυρισμό.

Σχήμα 1.2: ΄Ενα δίκτυο με O(n) Τίμημα της Αναρχίας

Από την άλλη δεν είναι δύσκολο να αποδείξουμε ότι το Τίμημα της Αναρχίας είναι

άνω φραγμένο από το O(n). Αυτό το αποδεικνύουμε στο λήμμα 6.5.2. Εν συντομία

αυτό που λέμε είναι ότι στην βέλτιστη λύση ανοίγει τουλάχιστον μια εγκατάσταση

άρα το κόστος της είναι τουλάχιστον B. Από την άλλη σε μία ισορροπία Νας κάθε

κόμβος θα έχει το πολύ μια εγκατάσταση ανοιγμένη πάνω του και αν έχει πελάτη

8



το κόστος δρομολόγησης του θα είναι λιγότερο από το B καθώς ο πελάτης μπορεί

πάντα να χρησιμοποιήσει την εγκατάσταση του κόμβου του με μέγιστο κόστος B.

΄Αρα το κόστος οποιασδήποτε ισορροπίας είναι το πολύ O(n) ·B που αποδεικνύει τον

ισχυρισμό.

1.7 Τεχνικές Αραίωσης

Στην ενότητα αυτή ασχολούμαστε με μία απλούστερη εκδοχή του προβλήματος

μας. Θεωρούμε ότι υπάρχει μόνο ένα κόμβος s στον οποίο είναι μαζεμένοι άπειροι

παίκτες συνολικού βάρους ws. Επίσης το κόστος της κάθε εγκατάστασης διαφέρει

από κόμβο σε κόμβο. Ο σκοπός μας είναι να ανοίξουμε τις εγκαταστάσεις αυτές που

το κόστος τους και το κόστος της ροής Νας που δημιουργείται να είναι το μικρότερο

δυνατό.

1.7.1 Το Λήμμα του Αλτχόφερ

Με χρήση του λήμματος του Αλτχόφερ μπορούμε να δείξουμε ότι για οποιαδήποτε

ροή f υπάρχει μία ροή f̂ η οποία χρησιμοποιεί το πολύ πολύ b log(2·m)
2·ε2 c+ 1 μονοπάτια

και ισχύει ότι |f̂e − fe| ≤ ε για κάθε e ∈ E. Σημαντική είναι η παρατήρηση ότι η

ροή f̂ δεν χρησιμοποιεί ακμές που έχουν μηδενική ροή στο f . ΄Αρα η f̂ ανοίγει μόνο

εγκαταστάσεις που έχει ανοίξει και η f . ΄Αρα το κόστος των εγκαταστάσεων της f̂
είναι άνω φραγμένο από το κόστος των εγκαταστάσεων της f .

Επίσης παίρνουμε σαν έξτρα περιορισμούς ότι ws = 1, le(x) = ae · x + be με

a = maxe∈E{ae} και ότι |P | ≤ md1 και |p| ≤ logd2 m, όπου P το σύνολο των

διαφορετικών απλών s, t μονοπατιών και p οποιοδήποτε από τα μονοπάτια αυτά.

Στην συνέχεια δείχνουμε ότι μπορούμε με εξαντλητική αναζήτηση σε όλους τους

διαφορετικούς mO(d1·a2·log2·d2+1(2·m)/ε2)
συνδυασμούς μονοπατιών να βρούμε ροή f̂

για την οποία να ισχύει ότι lp(f̂p) ≤ L(f∗) + ε όπου L(f∗) το κοινό κόστος όλων των

μονοπατιών της βέλτιστης ισορροπίας Νας. Συνδυάζοντάς τα παραπάνω καταλήγουμε

ότι για το κόστος της ροής μας (Ĉ) σε σχέση με το κόστος της βέλτιστης λύσης (C∗)
ισχύει ότι Ĉ ≤ C∗ + ε και ότι ροή f̂ είναι μια προσεγγιστική ισορροπία Νας στον

γράφο G.

Σε ένα παρόμοιο συμπέρασμα μπορούμε να καταλήξουμε και με τη χρήση του

προσεγγιστικού θεωρήματος του Καραθεοδωρή.

1.7.2 ΄Ενα Δύσκολο Παράδειγμα

Είναι φυσικό να αναρωτηθούμε τι μπορούμε να κάνουμε με τις τεχνικές αυτές

στην περίπτωση όπου έχουμε πολλαπλούς κόμβους με πελάτες. Δεν μπορούμε να

εφαρμόσουμε τις τεχνικές αυτές για κάθε παίκτη ξεχωριστά γιατί τότε θα είχαμε

επαναλήψεις εκθετικές στο πλήθος των παικτών κάτι που μπορεί αν είναι υπολογιστικά

δυσβάσταχτο. ΄Αρα πρέπει να εξετάσουμε την ροή συνολικά. ΄Ομως πελάτες με βάρος

9



μικρότερο του ε μπορεί να αγνοηθούν πλήρως από τη λύση και άρα η ροή να μην είναι

εφικτή λύση του προβλήματος.

Στο παράδειγμα το σχήματος 1.3, για οποιοδήποτε n, κατασκευάζουμε
√
n δια-

φορετικά δύσκολα παραδείγματα (P1, P2, ..., P√n) που το κάθε ένα έχει βάρος πελα-

τών
1√
n
. Οι προσεγγιστικοί αλγόριθμοι που έχουμε στην διάθεση μας έχουν λόγο

προσέγγισης O(n). Η ροή που θα ψάξουμε με εξαντλητική αναζήτηση θα έχει το

πολύ k μονοπάτια. Για να καταλήξουμε σε ένα αλγόριθμο μη εκθετικό θα πρέπει

k = poly(log(n)), δηλαδή το k να είναι της μορφής
∑

i αi · logβin. ΄Ομως αυτό σημα-

ίνει ότι ένα πολύ μεγάλο κομμάτι του βάρους των ροών (1−
√
n

poly(log(n)) → 1, n→∞)

θα αγνοηθεί.

Αν δεν ανοίξουμε καινούργιες εγκαταστάσεις τότε το συνολικό κόστος θα είναι

μεγαλύτερο από το άνοιγμα αποκλειστικά μία εγκατάσταση στο S. Από την άλλη αν

λύσουμε με τον O(n) προσεγγιστικό αλγόριθμο όλα τα
√
n−k προβλήματα που έχουν

αγνοηθεί ο λόγος προσέγγισης της λύσης μας θα είναι κάτω φραγμένος από την τιμή

n
1
2
−λ

για οποιοδήποτε λ > 0. Επίσης αυτή την προσέγγιση δεν είναι προφανές πως

θα την καταφέρναμε καθώς δεν είναι προφανές πως θα ξεχωρίζαμε τα διαφορετικά Pi
προβλήματα μεταξύ τους σε μία λίγο πιο περίπλοκη περίπτωση. Αν όμως μπορούσαμε

να τα ξεχωρίσουμε, τότε η απευθείας χρήση των O(n) προσεγγιστικών αλγορίθμων

σε κάθε ένα από αυτά ξεχωριστά θα μας έδινε μια O(n
1
2 ) προσέγγιση. ΄Αρα η χρήση

των τεχνικών αραίωσης δεν προσέφερε απολύτως κανένα πλεονέκτημα.

Σχήμα 1.3: ΄Ενα παράδειγμα στο οποίο η χρήση τεχνικών αραίωσης είναι

ανούσια.

10



Chapter 2

Introduction

2.1 Motivation

One of the most heavily researched areas in theoretical computer science liter-
ature have been facility location problems. In such problems the goal usually is to
open a set of facilities in a way that minimizes the opening cost of those facilities
and the routing cost of clients to those facilities. Depending on the cost metrics
and any extra restrictions that we might impose on the optimal solution we can
come up with many different variants of the problem. For instance, if the cost
of each facility depends on the amount of demand it serves we are left with the
Universal Facility Location problem, or if we impose to each facility a minimum
amount of demand it must serve when opened, then we are left with the Load
Balanced Facility Location problem. We may view facility location problems as
a sub-field of Network Design problems that we will also examine in this thesis.
To solve these problems a variety of techniques have been employed, from Linear
Programming to Local Search algorithms.

Another really interesting field of research in computer science is Algorithmic
Game Theory. Game Theory is a well known field of research with early works
dating back to the 17th century. It started taking its modern form around the 1950s
when it received heavy attention from the scientific community. On the other hand
the combination of Game Theory with computer science has gained quite recently
a lot of attention. Some very important concepts of the field such as the Price of
Anarchy [74] had not been formulated up until 1999. Since then extensive work
has been conducted on Algorithmic Game Theory with many different branches of
the field emerging. The underlying characteristic of these problems is that we have
many players that act based on their personal interests rather than the collective
welfare. So, for instance, in the sub-field of mechanism design we might have
bidders in an auction that do not report truthfully their valuation for the auctioned
product. We might also have agents in congestion games that use strategies that
minimize their total cost but impose a heavy cost on their fellow “commuters”.

11



We are specifically interested in the sub-field of Algorithmic Game Theory called
Congestion Games. In this kind of games we have a set of resources, a set of players
and a set of strategies each player has available. Each strategy consists of a set of
resources. Each resource has a cost which depends on the amount of players using
that resource (i.e. it is susceptible to congestion). In the more interesting case
there is a network where each players is at a node and wants to reach a destination.
The edges of the network can be used from players in order to construct different
paths to reach their destination.

The main problem studied in this thesis is to the best of our knowledge the
first to combine the fields of Facility Location and Congestion Games. We call
our problem Facility Location for Selfish Commuters (or FLSC for short). In this
problem we are given a network and a specific cost for opening facilities in each
node of the network. We are also given a set of weighted players that want to
be routed from their original node to a facility. The latency on the edges of the
network depends on the total weight of players using it (i.e. is susceptible to
congestion). This problem and its variants have a lot of motivation both from an
optimization and a game theoretic point of view.

2.2 Our Contribution

We examine how some of the main existing algorithmic techniques available
can be used to approximate our problem and its variants. We examine local
search algorithms and we provide counter examples and compelling arguments on
why most likely those techniques can not provide valuable insight to our main
problem. We then examine some special cases of the problem. We prove some
theorems regarding the structure of the optimal solution of the problem however
we also show that some linear program formulations have restrictive integrality
gap. We also focus on instances where the edge cost is a decreasing function
for which instances we were able to provide a log|S| approximation algorithm for
the k-median variant of the problem. We were also preoccupied with the game
theoretic point of view of the problem. We were mainly interested in instances
where players pay for the facility cost through cost sharing mechanisms. We were
able to provide some matching upper and lower bounds on the Price of Anarchy
and compute approximate Nash Equilibria. Finally using sparsification techniques
we were able to solve a special case of the FLSC problem where there is only
one demand point. For the multi commodity version of the problem we provide a
counter example that captures the difficult essence of the problem and show why
sparsification techniques fail.

12



2.3 Organization of Thesis

There are four different main chapters. In the first chapter we examine different
techniques used to solve different variants of the facility location problem. In the
second chapter we examine techniques used to solve network design problems. In
the third chapter we examine congestion games and the notion of selfish routing.
Finally, in the penultimate chapter we formalize our problem and try to see how
the techniques we have analyzed in the previous chapters can be used to solve our
problem. In this chapter we combine the already existing techniques with some
novel ideas in order to come up with algorithms and valuable insight concerning
the Facility Location for Selfish Commuters problem.

13



Chapter 3

Facility Location Problems

Facility location is a well studied research area. It mainly addresses problems
in which a network is given as input and a set of facilities needs to be opened
that minimize the opening cost and the routing cost of demands to those facilities.
The different variants of this problem arise from the different restrictions those
facilities have to comply with and the different ways the total cost of a solution
is calculated. Although intuitively it would make more sense to begin this thesis
with Network Design Problems, because Facility Location problems can be seen
as a special case of Network Design, we are going to analyze some very interesting
problems that provide valuable tools that will help to tackle more intricate Network
Design Problems.

In this section we will examine some very interesting techniques and approaches.
Since our main problem is, in its essence, a Facility Location problem with latencies
susceptible to congestion, it seems appropriate to examine the existing bibliogra-
phy regarding Facility location problems and try to adapt the existing techniques
to our problem. That is why, in this section, we will analyze Facility Location
problems that have been solved with various different techniques.

We will examine Linear Programming and the primal-dual method which is a
powerful tool for approximating NP-Hard problems. We will also briefly refer to
Lagrangian relaxation, a technique that helps us use pre-existing tools in problems
with additional constraints. We will see how problems can be transformed to sim-
pler ones while incurring a small blow-up in cost. Also we will see how complicated
problems can be solved using as black-boxes the algorithms of simple variants of
the problem. Additionally, it will be really important to examine problems with
multiple costs and how probabilistic algorithms can help us handle those cases.
Finally, we will examine the use of local search in facility location problems and
more specifically for solving the Universal Facility Location problem.

14



3.1 Metric Uncapacitated Facility Location

It would be impossible to talk about Facility Location problem without men-
tioning the Metric Uncapacitated Facility Location problem. It is the most basic
and well studied facility location problem that one can think of. For this prob-
lem we will examine a Linear Programming algorithm that uses the primal-dual
method. Readers unfamiliar with those methods should refer to [93] for further
analysis. The primal-dual technique was first introduced by Dantzig et al. [32]
and it has been used to solve many combinatorial optimization problems and more
specifically network design problems ([4], [3], [50], [46], [52], [53], [70], [81]).

In this problem we are trying to find the optimal way to open a set of facilities
and route all of the given demand to a facility location. More formally, in an
instance of the Metric Uncapacitated Facility Location we are given a bipartite
graph G for which F ⊂ G is the set of possible facility nodes and C ⊂ G is the
set of clients. We denote as fj the cost of opening facility j ∈ F . We also have a
cost of connecting each client i ∈ C to a facility j ∈ F which we will denote as cij .
A feasible solution to this problem consists of a subset I ⊆ F of facilities to open
and an assignment of clients to those facilities I.

The first constant factor algorithm for this problem was provided by Shmoys et
al. [88]. They provided a guarantee of 3.16 times the optimal cost. Chudak et al.
[29] found a (1 + 2/e)-approximate algorithm and finally Li [75] provided a 1.488-
approximation algorithm for the problem. As far as inapproximability results are
concerned, the work of Guha et al. [55] prove that it is NP-Hard to approximate
this problem with a factor better than 1.463.

The following is the natural LP formulation of the problem. The variable yi
becomes 1 when we open facility i otherwise is 0. Also variable xij becomes one
when client i is assigned to facility j and 0 otherwise.

min
∑

i∈F,j∈C
cij · xij +

∑
i∈F

fi · yi (3.1)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ C (3.2)

yi ≥ xij ∀i ∈ F, j ∈ C (3.3)

xij ∈ {0, 1} ∀i ∈ F, j ∈ C (3.4)

yi ∈ {0, 1} ∀i ∈ F (3.5)

Vazirani et al. [63] use a Primal-Dual technique to achieve a 3-approximate
algorithm of the problem at hand.

After relaxing the integral constraint we can formulate the dual program which
is the following.

15



max
∑
j∈C

aj (3.1)

s.t.
∑
j∈C

bij ≤ fi ∀i ∈ F (3.2)

aj − bij ≤ cij ∀i ∈ F, j ∈ C (3.3)

bij ≥ 0 ∀i ∈ F, j ∈ C (3.4)

aj ≥ 0 ∀j ∈ C (3.5)

The algorithm of Vazirani et al. finds a dual feasible solution through which
it determines a set of tight edges and a set of facilities. Then they choose a subset
of those facilities and map clients to those open facilities.

They also use their algorithm to solve the k-median problem using Lagrangian
Relaxation. First of all, the k-median problem is similar to the Uncapacitated
facility location. In this variant we do not have a facility cost however we are
obliged to open exactly k facilities. The natural LP formulation of the problem is
as follows:

min
∑

i∈F,j∈C
cij · xij (3.1)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ C (3.2)∑
i∈F

yi ≤ k (3.3)

yi ≥ xij ∀i ∈ F, j ∈ C (3.4)

xij ∈ {0, 1} ∀i ∈ F, j ∈ C (3.5)

yi ∈ {0, 1} ∀i ∈ F (3.6)

Charikar et al. [22] were able to provide a O(log(n) · loglog(n))-approximate
algorithm which was obtained by derandomizing and refining of an algorithm pro-
posed by Bartal ([14], [15]). Tardos et al. [23] were able to provide the first
constant approximation algorithm for the k-median problem with a guarantee of
62

3 . Finally, Arya et al. [9] provided a 3 + ε approximation algorithm. We can also
derive a (1 + 2

e − ε) inapproximability result by adapting the proof of hardness for
the facility location problem provided by Guha et al [55] (this was observed by
Jain et al [62]).

What they basically do is solve the Uncapacitated Facility location problem
by putting a cost F to those facilities. Then they perform binary search on the

16



different values of F until they find a solution that opens exactly k facilities.
This technique yields a 6-approximate algorithm for the k-median variant of the
problem.

3.2 Hierarchical Caching

Hierarchical Caching is a very interesting problem because it generalized some
interesting facility location problems such as the Multi-Level facility location prob-
lem. In this section we will analyze the algorithm proposed by Guha et all [54]
and use the same definitions and notations as them. In order to solve the General
problem which we will call General-Placement problem we will first solve two eas-
ier special cases of the problem, the Simple-Placement and the Multi-Level facility
location.

While solving the Simple-Placement problem we will examine how a problem
can be transformed to a instance of the same problem with additional constraints
which in turn render the problem easy to solve with pre-existing tools and algo-
rithms. We will also see, in the section regarding the Multi-Level facility location
problem, how a complex facility location problem can be solved using a more ex-
tensively studied simpler facility location problem. The key to this technique is
finding the correct costs for the simpler facility location problem which will yield
a solution to the original problem that is within a constant factor from the opti-
mal solution. Finally, regarding the General-Placement problem, we will see how
solving special cases of a problem can help us come up with techniques that solve
the more general problem.

3.2.1 Preliminaries

In this problem we are given a network G = (V,E) with a distance metric on
its edges, a set of demands and a set of possible location of caches. There are
k different cache types with σi miss rate for each cash type i. A cache is fully
specified by a tuple 〈u, y, i〉 where u is the location, y the capacity and i the type
of the cache. The cost of each cache is given by fyu,i. In a feasible solution of the
problem each demand is served by a cache of level 1. Each cache of level 1 ≤ i < k
will receive an amount of demand W and will have to route σi ·W demand to a
cache of level i+ 1. We assume that σk = 0. The cost of a solution is the sum of
the routing/service cost and the total cost of the open caches.

3.2.2 Simple Placement

In this version of the problem we assume that the cost of a cache is independent
of its location. Also caches have no capacity in terms of the amount of the demand
they can accommodate.

17



3.2.2.1 The Algorithm

We first create a new set of caches with the following procedure. We find the
first j1 such that

∏j1
i=1 σi < a for a given constant 0 < a < 1. We create a new

cache by combining all caches of type from 1 to j1. This means that we open
caches of type 1 through j1 which virtually creates a new cache with miss rate
σ′1 =

∏j1
i=1 σi. In the same manner we find j2 such that

∏j2
i=j1+1 σi < a and create

a cache with miss rate σ′2 and so on.
We will only use the set of new caches we have created. We will repeatedly

solve an uncapacitated facility location problem for each of the levels. In each
level i facility location problem we use as facility costs the costs of caches of type
i, we scale the distance by a factor of ai−1 and leave the demands in their original
location. Lets call Pi the set of facilities opened at level i. Each demand is assigned
to the facility it uses in Pi. In our solution we buy caches of type i in each one
of the Pi locations and route each demand first to its corresponding cache in P1,
then P2, until it reaches Pk.

3.2.2.2 The Analysis

Theorem 3.2.1. Given an instance of the Simple-Placement problem there exists
a solution that only uses caches of capacity σ′i with at most a 1/a blow up in routing
costs.

Consider the optimal solution of the Simple-Placements problem. We can open
caches of miss rate σ′k on the nodes where caches of type jk were opened in the
optimal solution and discard all caches opened in the optimal solution. We let
the demands follow the same route they used in the optimal solution. Because∏ji+1−1
i=ji+1 σi > a we have that each flow is at most 1/a times the corresponding one

of the optimal solution. Thus the theorem is proved.
Lets call Xi the routing cost of the facility location problem solved by our

algorithm in level i. Also let Fi be the total cost of caches of type i in our solution
and let Si be the the routing cost from caches of type i−1 to type i in our solution.
Also let F ∗i , S

∗
i be the relative metrics of the optimal solution. Also suppose we

have in our possession an r-approximate algorithm for the Uncapacitated Facility
Location problem.

Lemma 3.2.2. Si ≤ Xi + a ·Xi−1

This lemma holds because we can always send a demand from a cache back to
its original point and then from there to the next level cache.

Lemma 3.2.3. Xi + Fi ≤ r ·
(∑i−1

j=0 a
j · S∗i−j + F ∗i

)
This lemma holds because one feasible solution of the facility location problem

solved at level i is Pi = F ∗i . A feasible routing is the path that the optimal solution
uses which will have cost at most

∑i−1
j=0 a

j · S∗i−j .

18



Theorem 3.2.4. S + F ≤ r ·
(

1+a
1−a · S

∗ + F ∗
)

This theorem is an immediate outcome of lemma 3.2.3 and concludes the anal-
ysis of this algorithm.

3.2.3 Multi-Level Facility Location

In this version of the problem we assume that σi = 1 for all 1 ≤ i < k. Again
σk = 0. However in this version the cost of a cache depends on its location. Let
fji be the cost of placing a facility of level i at j.

A 3-approximate algorithm for this problem was obtained by Aardal et al. [1]
however the algorithm is not combinatorial. Although Guha’s et al. [54] has a
worst approximation guarantee, it provides an interesting insight to the problem
that helps in solving the General-Placement problem.

3.2.3.1 The Algorithm

We will create an instance of capacitated facility location with soft capacities
(i.e. we are able to open multiple facilities at one location). In this new problem
we perform the following procedure to determine the cost of a facility 〈u, y〉 where
u is the node of the facility and y is the capacity.

• We construct a directed graph Q which is comprised of k + 1 copies of our
original graph G. Lets call G0, G1, ...Gk those copies. From a node u in Gi−1

we add an arc to w of Gi with cost y · cuw + fwi for 1 ≤ i ≤ k.

• For each node u ∈ G0 we find its shortest path to its copy in Gk and we
denote the distance of this path as Ryu.

• We set the cost of 〈u, y〉 equal to Ryu.

We solve the capacitated facility location problem we constructed, using the
best r-approximate algorithm we know. Suppose this new problem returns a set F ′

of facilities. Then for each facility f ∈ F ′ we open facilities in our original problem
in the positions dictated by the round-trip of node f in Q. We also send each
demand served by facility f to that node and then through the specific round-trip
which passes through facilities of all levels.

3.2.3.2 The Analysis

Recall that we still do not have capacities in the problem we want to solve.
Suppose we have an optimal solution of the Multi-Level facility location problem.
We will show that we can transform this solution to a solution of the capacitated
instance we created without increasing to much the cost. Suppose we have a node
u that has a facility of level k and the demand p that sends its demand through the

19



fastest route to u in the optimal solution. Also lets call S the set of all demands
that end up in u in the optimal solution. In our new capacitated facility problem we
can send all demands of S to u and open at u a facility with capacity y =

∑
s∈S ds

where ds is the amount of demand of s. Sending all demands S to u has a routing
cost that is at most the routing cost of the optimal solution. We need to bound
Ryu. A feasible round-trip of Ryu could be to go to p directly and then from p go to
u through the rout and the facilities that p passes in the optimal solution. Thus
the facility cost of Ryu is a cost that we get from a subset of facilities that S use
and the routing cost is at most two times the routing cost of demands in S in the
optimal solution because as we stated earlier p is the demand that reaches u the
quickest in the optimal solution. Thus our total cost is at most three time the cost
of the optimal solution. However since we are not able to compute all possible
Rxu round-trips in polynomial time we demand capacities to be a power of 1 + ε
thus loosing an 1 + ε factor in the approximation. Adding the fact that we use an
r-approximate algorithm for the capacitated facility location problem we end up
with the following theorem.

Theorem 3.2.5. The algorithm described is an 3 ·(1+ε) ·r approximate algorithm
for the Multi-Level facility location problem.

3.2.4 General Placement

To solve the general placement problem we just combine the ideas analyzed
for the Simple-Placement and the Multi-Level facility location problem. That
combination of ideas yields the following theorem.

Theorem 3.2.6. Given an instance of the General-Placement problem with miss
rates σ1, σ2, ..., σk we can reduce the problem to a new one with k′ ≤ k types of
caches with miss rates σ′1, ..., σ

′
k such that σ′i < a where 0 < a < 1, in time

polynomial in input size and 1
ε and at most a 3·(1+ε)

a blowup in cost.

For a detailed proof consult [54]. We then use the same algorithm as in 3.2.2
for small miss rates which leads to an O(1) approximation algorithm.

3.3 Load Balanced Facility Location

In this section we will use the definitions and notations of Guha et al. [54]. Also
the procedures and ideas we will analyze were also proposed in that paper. We
will see how this problem can be solved by using an algorithm of the well studied
uncapacitated facility location problem as a black-box. Instead of restraining the
amount of demand each facility must get, we add to the cost of each facility an
amount that is related to its distance from its closest demands. This will, in
essence, ensure that each facility that is opened has a lot of demand “near by”

20



and thus will receive a satisfactory amount of demand in the outcome. In that
sense we can draw an analogy between this technique and Lagrangian Relaxation,
discussed earlier, since both techniques remove a constraint and introduce an extra
cost that enforces that constraint. Then both techniques solve the already known
problem without the constraints and end up with an approximation for the original
problem.

3.3.1 Preliminaries

Suppose we have a network G = (V,E). For each pair i, j ∈ V we have a
distance metric cij . Also at each node of the graph i ∈ V we can open a facility
with cost fi. Additionally there exists a set of nodes that have demands on them
of weight dj . Finally each facility, when opened, must serve at least Li amount of
demand. The natural LP formulation of the problem is the following.

min
∑
i

∑
j

dj · cij · xij +
∑
i

fi · yi (3.1)

s.t.
∑
i

xij ≥ 1 ∀j (3.2)

xij ≤ yi ∀i, j (3.3)∑
j

dj · xij ≥ Li · yi ∀i (3.4)

xij , yi ∈ {0, 1} ∀i, j (3.5)

We will call an (a, b) approximation of this problem a solution that has at most
a times the cost of the optimal solution and every opened facility serves at least
Li
b demand.

3.3.2 The Algorithm

The algorithm is extremely simple. We create an instance of the traditional
facility location problem with the same distances as in the original problem. Each
facility in the new problem has a cost f ′i which is the cost fi plus the minimum cost
of routing Li demand to this facility. We solve the corresponding uncapacitated
facility location which opens a set of facilities F ′. We close all facilities i ∈ F ′

that receive less than Li
3 demand and reroute the demands that are left without a

facility to their closest facility.

21



3.3.3 The Analysis

Suppose we have an r-approximate algorithm for the uncapacitated facility
location problem.

Theorem 3.3.1. The above procedure describes an algorithm that returns a (2 ·
r, 3) approximate solution for the load balance facility location problem where each
demand is served by its closest open facility.

First of all we will show that any feasible fractional solution of the load balanced
facility location with cost C has a corresponding feasible solution in new problem
we constructed with cost at most 2 ∗ C. This proof is fairly simple since at any
feasible solution of the load balanced facility location the open facilities serve at
least Li demand thus the total extra cost we have added on the facilities is less
than the routing cost of the solution to the original problem which in turn is less
than C. Thus the total cost of the exact same routing in the new problem is at
most 2 · C.

We will also show that in the flow dictated by the solution of the new problem
if we remove any facility i that serves less than Li

3 demand the total cost will not
be augmented. Suppose we have such a facility i and we have the closest demand
point j which does not send demand to i. We will call the distance between
those two nodes cij = D. If j is served by i′ that means that ci′j ≤ D since
uncapacitated facility location solved had the same distances with our original
problem. Obviously it holds that f ′i ≥

2·Li
3 D. This follows from the fact that f ′i

entails the cost of serving Li demand and the distance of at least 2·Li
3 amount of

that demand is greater than D. So we can close facility i move its demand to j
and then to i′ covering an extra distance of at most 2 · D. So the extra routing
cost is at most 2·Li

3 which is at most the amount we saved by closing facility i.
This procedure can be generalized to an (1+a

1−a · r,
1
a)-approximate algorithm for

this problem with a < 1.

3.4 Connected Facility Location

In this section we will analyze our first Probabilistic algorithm. Randomness
is a powerful tool in our algorithmic toolbox simplifying the analysis of many
problems. Also, this problem entails two different costs (the Steiner cost and the
connection cost) and thus it is of great importance for our main problem. Those
two costs can be related through a parameter M . The bigger M is, the more
costly the Steiner cost becomes. This relationship is captured in the algorithm.
M serves as a hyper-parameter in the random procedures and the bigger its value,
less facilities are open on expectation, diminishing this way the Steiner Cost and
giving more emphases to the Connection cost.

The first to provide a constant factor approximation were Karger et al. [68].
Their guarantees were improved by Gupta et al. [57] who used an LP-rounding

22



technique. Swamy et al. [90] using a primal-dual technique decreased the ap-
proximation ratio down to 3 + pst where pst is the best approximation ratio for
the Steiner tree problem. Using the algorithm of Byrka et al. [17] this yields a
4.39-approximation algorithm.

3.4.1 Preliminaries

We follow the definitions and notations of Gupta et al. [58] who were the first
to propose the ideas analyzed in this section. In the Connected Facility Location
Problem we are given as an input an undirected graph G with a set of vertices
V and a set of edges E. We are also given for each e ∈ E costs ce ≥ 0, a set of
demands D ⊆ V where each demand j ∈ D is associated with a weight dj ≥ 0
and a parameter M > 1. A feasible solution to this problem consists of a set of
facilities F ⊆ V , a matching of each demand j to an open facility and a tree T
spanning over F . If we denote with i(j) ∈ F the facility that demand j is assigned
then an optimal solution minimizes the following expression:∑

j∈D
dj · l(j, i(j)) +M · c(T )

where l(.,.) denotes the shortest path distance with respect to the costs ce and
c(T ) =

∑
e∈T ce. We will call the first part of the cost, the connection cost and

the second, the Steiner cost. We will make also the assumption that we know a
vertex r ∈ V that is used as a facility from the optimal solution and that dj = 1 for
each j ∈ D. The derived algorithm can easily be generalized for instances of the
problem where those assumption do not hold. Finally, let C∗, S∗ be the connection
cost and the Steiner cost of the optimal solution OPT, Z∗ = C∗ + S∗ and F ∗ be
the facilities of OPT and T ∗ be the Steiner Tree of OPT.

We will now analyze the algorithm provided by Gupta et al. [58] that provides
a simple 2 + pST -approximation for the Connected Facility Location Problem.

3.4.2 The Algorithm

The following algorithm selects randomly a subset of demands to be the fa-
cilities and then proceeds to create a Steiner tree on them and connect the rest
demands. More formally:

1. We initialize a set D′ = ∅.

2. For each demand j ∈ D we add j to D′ with probability 1
M and we mark it

as a facility.

3. We construct a pST -approximate Steiner tree on F = D′ ∪ {r}.

4. We finally assign each demand to its closest facility in F .

23



The algorithm returns F as the facilities, the Steiner tree computed in step 3
as T and the assignment of step 4.

3.4.3 The Analysis

For the purposes of this thesis we are only going to provide the outline of the
proofs. For the complete proofs the reader can consult [58].

Lemma 3.4.1. The expected cost of step 3 is at most pST · Z∗.

We can construct a Steiner tree by using the optimal Steiner Tree T ∗ and
the shortest paths from the facilities in F to T ∗. Since each facility is chosen with
probability 1

M the expected cost of this Steiner Tree must be at most S∗+C∗ = Z∗,
so since there is a Steiner tree with expected cost at most Z∗ then the expected
cost of the optimal Steiner tree must be at most Z∗ which proves the Lemma.

Lemma 3.4.2. The expected cost of step 4 is at most 2 · Z∗.

To prove this Lemma we view the random facility selection problem from an
equivalent but slightly different angle. It is important to observe the fact that the
cost of the Steiner Tree is independent from the connection cost when the set of
facilities F is selected. The above gives us the freedom to analyze the connection
cost with a different algorithm for computing the Steiner tree. We examine the
following theoretical course of actions:

1. We initialize sets A1 = B1 = {r} and t = 1.

2. For each j ∈ D:

(a) We set t ← t + 1, At = At−1 ∪ j and with probability 1
M we mark j

and set Bt = Bt−1 ∪ j and with probability M−1
M we set Bt = Bt−1.

(b) If j is marked then we connect it to the nearest vertex of Bt−1 through
the shortest path with cost l(j, Bt−1).

The set Bt represents the set of facilities selected until step t. The Steiner
tree that is created in an equivalent manner that the MST heuristic would create
that has a known 2-approximation guarantee. So the Steiner tree created has an
expected cost of at most 2 · Z∗. We then consider the random variable Xt which
is the connection cost minus the Steiner cost incurred at step t. We have that
E[Xt] = (1− 1

M ) · l(j, Bt)− 1
M ·M · l(j, Bt) = − 1

M · l(j, Bt) ≤ 0. And by linearity
of expectations we have that E [

∑
iXi] ≤ 0. Thus the connection cost is less than

the Steiner cost in expectation which concludes the proof.

Theorem 3.4.3. The process analyzed is a (2+pST )-approximation algorithm for
the Connected Facility Location problem

Where pST is the approximation guarantee of the best know Steiner Tree al-
gorithm ([17] provides a 1.39 approximation).

24



3.5 Universal Facility Location

The Universal Facility Location was one of the first problems that we tried
to analyze its techniques because of its similarities with our own problem. In
this problem we have constant routing costs and facility costs that depend on
the amount of demand they accommodate. In our problem we have the inverse
relation, constant facility costs and routing costs that are susceptible to congestion.

In this section we will analyze local search algorithms. In those kind of algo-
rithms we provide a set of local steps. The algorithm begins from a feasible state
of the problem and applies local steps in order to arrive at a feasible solution of a
smaller cost. When no local steps can be applied to reduce the cost we say that we
have arrived to a local minimum. The main analysis of these kind of algorithms is
concentrated on showing that a local minimum is not much greater than the global
minimum. In order to do so we use the fact that no local step can improve the
cost of a local minimum state. Applying this observation in a series of instances
that implicate both the optimal solution and the local minimum state we end up
with a series of inequalities that in turn provide our approximation guarantees.

In this section we will provide an 8-, a 7- and a 5- approximation algorithm
for this problem. Vygen [92] was able to provide a 6.702-approximation algorithm
for the problem and Angel et al. [7] a 5.83. Local search algorithms have been
extensively examined in the field of Facility Location problems. This line of work
can be traced back to Korupolu et al. [73].

3.5.1 Preliminaries

We follow the definitions and notations of Mahdian et al. [77]. In an instance
of the University Facility Location Problem we are given as an input a graph G
with two sets of nodes. The demands D and the facilities F . Each demand has
a weight dj for j ∈ D. The edges on G have a distance metric c associated with
them. A feasible solution of this problems consists of a set of capacities ui for each
facility i ∈ F and an assignment of demands to facilities in a way that does not
violate those capacities. A solution S of this problem has two different costs. The
facility cost cf (S) and the service cost cs(S). The facility cost is the cost paid for
allocating ui capacity at a certain facility and the service cost is the cost of routing
each demand to a facility. More formally suppose a solution S consist of the tuple
(u, x) where u is a vector that indicates the capacities allocated at each facility
and x is a vector that indicates the amount of weight that each demand sends to
each facility. The equivalent non-linear optimization problem is the following:

25



min
∑
i∈F

fi(ui) +
∑

i∈F,j∈D
cij · xij (3.1)

s.t.
∑
i∈F

xij = dj ∀j ∈ D (3.2)∑
j∈D

xij ≤ ui ∀i ∈ F (3.3)

ui, xij ≥ 0 ∀i ∈ F,∀j ∈ D (3.4)

We will also assume that functions fi are non-decreasing and left continuous
mapping from non-negatives to non negatives. This assumption is necessary in
order to assume that an optimal solution exists.

3.5.2 Locality Gap 8

The Algorithm analyzed in this section is a local search algorithm that was
introduced by Mahdian et al. [77]. This means that we provide a set of improve-
ment moves. The algorithm begins form an arbitrary feasible solution and then
applies a series of improvement moves. When we reach a state that its cost can
not be significantly dropped by an improvement move then he have reached the
end of the process and we output the final state as the solution provided by the
algorithm. There are two major steps in proving the efficiency of such algorithms.
The first is to prove that the algorithm will end in a polynomial amount of steps.
The second is to prove that when no significant improvement move exists (i.e. we
have reached an approximate local optimal state) then we have reached a feasible
solution that is within a multiplicative factor from the optimal solution. This is
exactly what we are going to do in the following subsections.

3.5.2.1 The Algorithm

Suppose S is the state of a given step of the local search algorithm. We will
require that the next step must improve cost c(S) = cf (S) + cs(S) by at least
ε

5·n · c(S) where ε > 0 is a predetermined constant. Since for any S, c(S) ≥ c(S∗)
(where S∗ is the optimal solution), our algorithm will terminate at most after
5·n
ε · ln

(
c(S)
c(S∗)

)
steps.

Although finding the best local operation is NP-hard we will find at each step
a local operation that is at most an additive factor of ε

10·n · c(S) from the optimal
step.

We have two types of local transformations (i.e. improvement steps):

• add(s, δ). During this operation we set us ← us + δ and find the new
minimum assignment of demands to facilities. The total cost will change by

26



fs(us + δ) − fs(us) + cs(S
′) − cs(S), where S′ is the new state reached due

to this operation and S was the previous state.

• pivot(s,∆). During this operation we adjust the capacities of each facility
i by ∆i and redistribute those flows through a pivot node s. More formally,
each facility i with ∆i < 0 sends its excess demand to s. Then we distribute
the gathered demand to facilities with ∆i > 0. It is obvious that

∑
i ∆i = 0

during this operation. The total cost will change by
∑

i∈F [fi(ui + ∆i) −
fi(ui) + csi · |∆i|] where csi is the shortest path from s to i with respect to
the distance metric c.

To prove that we can compute an admissible local step (i.e. a step with cost
at most − ε

5·n · c(S)) we will discretize the problem by assuming that dj are small
integers and that the cost functions fi are step functions with steps occurring at
integer points. These assumptions do not come without loss of generality. Those
assumptions are made for convenience and to simplify the underlying processes.
At the end of this section we are going to analyze how this restrictions can be
waived.

Finding the best add operation is straightforward. There are |d| =
∑

j dj pos-
sibilities for δ and |F | possibilities for s. Thus we can try all different possibilities.

Lemma 3.5.1. Given a solution (u, x) and a point s we can find the minimum
cost pivot operation in time polynomial in the number of facilities n = |F | and
the total demand |d|.

The proof of this Lemma is a dynamic programming algorithm that computes
the optimal pivot operation. We first assume that in our solution (u, x) the
capacities are exactly equal to the amount of flow they serve. Let gi(δ) = csi · δ +
fi(ui + δ)− fi(ui). gi denotes the contribution of facility i to the cost of the pivot
operation given that we adjust ui by δ (note δ can be either positive or negative).
We build the table a(i, w), which can be interpreted as the minimum cost of having
w excess units of demands on s after considering facilities 1 through i:

a(i, w) =

{
g1(−w) i = 1

minδ{gi(δ) + a(i− 1, w + δ)} i = 2, ..., n

The best pivot operation can be found at a(n, 0). We repeat this operation
for every possible pivot s.

Finally, instead of discretizing over demands, we can create a new metric Bi =
fi(ui) which we will call the budget of facility i. We can now discretize over the
budgets by assuming they are multiples of ε

n · c(S). This adds an extra factor of ε
in the approximation guarantee.

27



3.5.2.2 The Analysis

For the rest of the analysis we shall assume that using the aforementioned
process we have reached an approximate local optimal solution S = (u, x) and we
will try to bound its cost with respect to the cost of the optimal solution S∗.

First of all it is fairly easy to bound the service cost.

Lemma 3.5.2. The service cost of a locally optimal solution S is at most the total
cost of the optimal solution S∗

We can prove this lemma by contradiction. Suppose cs(S) > c(S∗). If we
increase the capacity of each facility i to max(ui, u

∗
i ) (paying at most an extra

amount of cf (S∗) on facility costs), the assignment vector of the optimal solution
becomes feasible. Thus the new cost shall be c(S) − cs(S) + cs(S

∗) + cf (S∗) =
c(S)− cs(S) + c(S∗) < c(S). Using the submodularity of the add operation there
exists an add operation that decreases the total cost of S, thus S is not a local
optimal solution which concludes the contradiction.

The most difficult task in this analysis is bounding the facility cost. The way
we are going to bound this cost is the following. We are going to state a series
of pivot operations. Since we are at a locally optimal solution S the cost of each
pivot operation must be non negative because otherwise we would have a step that
would decrease the total cost of S contradicting this way the local optimality of
that state.

We are now going to state ”The Transshipment Problem”, the solution
of which will serve as a bases for our proof. Suppose we have a locally optimal
solution S = (x, u) and an optimal solution S∗ = (x, u). Without loss of generality
we will assume that ui =

∑
j xji and u∗i =

∑
j x
∗
ji. Also let δi = ui−u∗i . We define

the set of sources U = {i ∈ F |δi > 0} and sinks U∗ = {j ∈ F |δj < 0}. The
transshipment problem is simply finding the optimal flows (with respect to delays
c) from sources to sinks where each source i ∈ U is emanating δi flow and each
sink j is absorbing δj flow.

We can now state the following (obvious) Lemma.

Lemma 3.5.3. The Transshipment problem has a cost of at most cs(S) + cs(S
∗).

Obviously a feasible solution to the transshipment problem is routing all de-
mands back to their original sources with cost at most cs(S) and then to the sinks
with cost at most cs(S

∗).
Let y be the optimal flow for the transshipment problem. We will call the

subgraph produced by y ”The Exchange Forest”. Note that if adding flow at
one direction of any circle in y increases the cost then adding flow on the other
direction would decrease it, contradicting the optimality of y. Thus we are able
for any circle to add flow in any direction until the flow on one edge disappears
breaking this way the circle. So without loss of generality y has no circles. Also
there are no direct flows from source to source or from sink to sink. From triangle

28



inequality we can always connect sources and sinks directly. The above lead us to
the following conclusion: y is a forest of bipartite trees which consist of alternating
U and U∗ vertices.

We are now ready to state a list of pivot operations on the exchange graph. For
simplicity we will say that we close a source i ∈ U when we decrease its capacity
to u∗i and that we open a sink j ∈ U∗ when we increase its capacity to u∗j . It is
important to remember that we are still analyzing the case where we are at a local
optimal solution S.

Let r be the root of a tree T of the exchange forest. For every sink t ∈ U∗,
let Tt be the sub-tree of the exchange graph that is rooted at t and consists of t
children and grandchildren. Obviously Tt has a maximum height of 2. Also let for
any vertex x ∈ Tt, C(x) be the children of x in Tt.

Figure 3.1: The sub-tree Tt where circles denote sources and squares sources
(from [77], p. 9)

We are going to divide vertexes of C(t) into two distinct groups, the Dominant
and the Non-Dominant. Dominant is a sources s that sends at least half of its flow
at t in y (i.e. yst ≥ 1

2 ·
∑

t′∈U yst′). The rest of the sources are Non-Dominant.
For the case of the Dominant sources we have the following pivot operation.

We set as our pivot node t, we open t and all the children of Dominant nodes and
we close all Dominant nodes. Note that during this pivot operation each edge is
used at most 3 times (i.e. by at most 3 times the amount of flow sent at y through
that edge).

For the Non-Dominant nodes the pivots are a little bit more complicated.
Suppose we order non dominant nodes as s1, s2, ..., sk where ys1t ≤ ys2t ≤ ... ≤ yskt.
For every i ∈ {1, 2, ..., k − 1} we will close si and open C(si) ∪ C(si+1). For sk
we close that node and open t and C(sk). Note that due to the ordering of Non-
Dominant nodes each edge is used at most once (i.e. receives no more flow than
the flow received at y).

Since we are at a local optimal state S it should hold that for every pivot
operation mentioned earlier it should hold that:∑

i∈A
(fi(u

∗
i )− fi(ui)) +

∑
e

ce · δe ≥ 0

Where A is the set of opened and closed facilities.

29



We now sum over all these inequalities. Remember that through the pivot
operations described:

• Each source U is closed exactly once.

• Each sink U∗ is opened at most by 4 operations. Once through its Domi-
nant children, once by its Non-Dominant children, and at the subtree of its
grandparent either one time as part of C(Dom) either at most two times as
part of C(Non−Dom).

• For each edge e the total amount of demand shipped is at most 3 time the
amount of demand at y.

Thus redistributing the summed inequalities and using the fact that the cost
of y is at most cs(S) + cs(S

∗) we get that 4 · cf (S∗)− cf (S) + 3 · (cs(S) + cs(S
∗)) ≥

0⇒ cf (S) ≤ 4 · cf (S∗) + 3 · (cs(S) + cs(S
∗)).

Theorem 3.5.4. Let S∗ be an optimal solution and S be a locally optimal solu-
tion produced by the operations described by the algorithm. It holds that cs(S) ≤
cs(S

∗) + cf (S∗) and cf (S) ≤ 6 · cs(S∗) + 7 · cf (S∗)

3.5.3 Locality Gap 7

Pandit [80] noticed that a simple improvement of the proposed by Mahdian et
al. can decrease the approximation guarantee to 7.

On top of the possible operations add and pivot he adds a new operation
called DoublePivot(s1, s2,∆

1,∆2) which is basically two pivots pivot(s1,∆
1)

and pivot(s2,∆
2) done simultaneously.

Then he uses the exact same analysis as described in 3.5.2.2. The main dif-
ference is that instead of closing sk of Non-Dominant nodes separately, he uses
the DoublePivot operation to close together with the Dominant nodes and thus
opening t one time less. Thus when summing over all pivot inequalities he ends
up with the following bound, cf (S) ≤ 3 · cf (S∗) + 3 · (cs(S) + cs(S

∗)) which in turn
yields the following Theorem:

Theorem 3.5.5. Let S∗ be an optimal solution and S be a locally optimal solution
produced by the operations described in this section. It holds that cs(S) ≤ cs(S∗) +
cf (S∗) and cf (S) ≤ 6 · cs(S∗) + 6 · cf (S∗)

3.5.4 Locality Gap 5

Using a different set of local search operations Bansal et al. [12] were able
the approximation down to a factor of 5. The outline of the analysis is analogous
to the one stated in 3.5.2. A set of local procedures is listed and then using the

30



Exchange Graph and due to the local optimality of the last state we can introduce
a set of inequalities that lead as to the approximation guarantee of the algorithm.

Bansal et al [12] introduce three local search operations:

• add(s, δ): In this operation we increase the capacity of facility s by an
amount δ > 0 and then a mincost flow problem is solved to find the new
optimal demand allocations.

• open(t, δ1, δ2): This operation can be described as two concurrent opera-
tions. In the one operation we increase the capacity allocated at t by δ2 and
at the same time the total capacity of a set T of facilities is decreased by
the same amount. The optimal set T is computed by the operation itself.
The other operations is add(t, δ1 − δ2).

• close(t, δ1, t
∗): This operation can be also described as two concurrent op-

erations. The one operation is add(t∗, δ2 − δ1) where δ2 > δ1 is a constant
to be computed by the operation. In the other operation we decrease the
capacity allocated at t by δ1 and at the same time the total capacity of a
set T (where t∗ ∈ T ) of facilities is increased by the same amount.

The above three operations are computable in polynomial time. Again using
the Exchange Graph we can prove that c(S) < 5 · c(S∗). Since the techniques used
by Bansal et al [12] do not differ that much from the underlying logic of the proofs
stated in 3.5.2 we will not present them here.

3.5.5 Reductions

The Universal Facility Location problem is really important because it gener-
alizes many different facility location problems.

3.5.5.1 Uncapacitated Facility Location

In this problem each facility has a facility cost irrelevant from the amount of
demand it receives. Using fi(u) = f ′i · [u > 0] where f ′i is the facility cost and
[u > 0] is the step function, we can model this problem.

3.5.5.2 Capacitated Facility Location with soft capacities

In this facility location problem each facility has a maximum capacity u′i how-
ever we can open multiple copies of a facility in one location. It is obvious that
using fi(u) = f ′i · d uu′i e models this problem.

31



3.5.5.3 Capacitated Facility Location with hard capacities

In this problem again each facility has a maximum capacity u′i however now we
can open only one facility in each location. If we use fi(u) = f ′i [u > 0]+∞·[u > u′i]
it becomes evident that we can also model this problem.

32



Chapter 4

Network Design Problems

In the past few decades many different networks such as the Internet and
Communication Networks have increased in size and complexity, creating many
new challenging problems that, if solved optimally, can make a significant impact
in the efficiency of these systems. In this section we will analyze such interesting
and challenging problems. The class of Network Design Problems usually takes
as input a network (commonly modeled with graphs) and given a set of costs and
constraints, an algorithm will try to find a sub-network or a flow that satisfies
the constraints of the problem and minimizes the relative cost. Given that the
problems we are going to analyze are NP-hard it would be incredibly difficult
(probably impossible) to compute an optimal solution. Thus we are concerned
with finding approximation algorithms with good approximation guaranties.

In this section we will examine algorithms that use a variety of techniques.
Most of these algorithms use randomness for their analysis. We will see how build-
ing some big infrastructure on the problem with a cost relative to the one of the
optimal solution can help simplify the rest of the algorithm. We will also examine
techniques that step by step gather demands together in order to make use of the
economies of scale provided by the problem. Finally, we will see how matching and
randomized routing can help us tackle problems with multiple unrelated costs.

4.1 Virtual Private Network Design Problem

In this section we will examine an algorithm that builds some infrastructure
that can accommodate all demand as the backbone of its solution. Then connecting
all demands to that powerful structure helps move all demands around and send
them to their final destination. This algorithm also uses probabilistic techniques
that render the analysis of the problem more tractable.

The problem was introduced by Fingerhut et al. [39] and later independently by
Duffield et al. [33]. Gupta et al. [57] analyzed the problem from an approximation
point of view. However all constant solutions before Gupta et al. [58] were for

33



special cases of the problem.

4.1.1 Preliminaries

We follow the definitions and notations of Gupta et al. [58]. In the Virtual
Private Network Design Problem we are given as an input an undirected network
with a set of vertices V and a set of edges E. We are also given costs ce ≥ 0 for
each e ∈ E, a set of demands D ⊆ V and two thresholds bin(j), bout(j) for each
j ∈ D. A flow can be represented by a D×D matrix where dij denotes the amount
of demand flowing from i to j. A flow is feasible if it obeys the given constraints
(i.e.

∑
i dij ≤ bin(j) and

∑
j dij ≤ bout(i) for each j, i respectively). A feasible

solution consists of paths Pij for each demand pair i, j and capacities ue for each
e ∈ E such that the capacities can handle any feasible flow that uses paths Pij
(i.e. for any feasible flow D×D,

∑
ij:e∈Pij dij ≤ ue). The objective is to minimize

the cost of the solution that is given from the following expression:∑
e

ce · ue

Also we will assume that there are only two types of demands, the senders and
the receivers. We denote the set of senders as S and we have that bin(j) = 0 and
bout(j) = 1 for each j ∈ S. We also denote the set of receivers as R and we have
that bin(j) = 1 and bout(j) = 0 for each j ∈ R. Finally we will assume that the
amount of receivers is less or equal the amount of senders (i.e. |R| ≤ |S|, note
that one set can have a smaller cardinality than the other since bin and bout are
thresholds and not actual demands). We will denote the amount of senders |S| as
M . The above assumptions simplify the algorithm and can easily be generalized.

We are now going to analyze the algorithm provided by Gupta et al. [58] that
provides a simple 5.55-approximation for the Virtual Private Network Design. This
is the first algorithm to provide a constant approximation for the problem.

4.1.2 The Algorithms

The algorithm creates a central high-bandwidth path and connects senders and
receivers with this path. More formally the algorithm has the following steps:

1. We initialize ue = 0 for each e ∈ E.

2. We pick a sender s ∈ S uniformly at random from the set of senders.

3. We create a new set R′ = ∅.

4. We add each j ∈ R independently with probability 1
M to R′.

5. We then construct a pST -approximate Steiner tree Ts on F = R′ ∪ {s}.

34



6. We set ue = M for each e ∈ Ts.

7. Finally for each senders and receivers j where j /∈ Ts we increase the capacity
of the shortest path from j to Ts by one.

4.1.3 The Analysis

We denote as T the set of edges that was assigned a non zero capacity from the
algorithm. Note that T is a tree because every circle in T can be divided into two
segments with the same cost. Thus circles can be avoided with a consistent tie-
breaking mechanism. Also it is not difficult to see that T with the corresponding
capacities is a feasible solution.

In order to prove the desired approximation guarantee three Lemmas are used
to bound the costs incurred by different steps of the aforementioned algorithms.
For the purpose of this thesis we will only analyze the high level rationale of the
proofs. Complete proofs are provided in [58].

Lemma 4.1.1. The expected cost of Step 5 is at most pST · Z∗, where Z∗ is the
cost of the optimal solution OPT.

First of all we can see the random process of steps 2 through 4 can be seen
as an equivalent different random process. We initialize Ds = ∅ for each s ∈ S.
Each receiver r ∈ R chooses a sender s uniformly at random and we update
Ds = Ds ∪ {r}. We have M senders in total and so each sender is chosen with
probability 1

M .

Since the optimal solution specifies paths between every pair of sender receiver
r, s we can isolate the appropriate paths and come up with (possibly not optimal)
Steiner Trees for any set Ds. The above observation, when combined with the fact
that when an edge e is part of k distinct r, s paths it must have capacity ue ≥ k
in order to accommodate all feasible flows, leads us to the following expression:

Z∗ ≥
∑
s

c(T ∗s )

where Z∗ is the cost of OPT, T ∗s is the optimal Steiner Tree of Ds and c(T ) =∑
e∈T ce. From the above expression we can see that there must be a set Ds with a

Steiner Tree of cost Z∗

M and thus when we install M capacity on this tree we incur
a cost of Z∗. Using a pST -approximate algorithm for computing a Steiner Tree we
end up with the guarantee that is provided from the Lemma.

Lemma 4.1.2. The expected cost from connecting receivers to the central core is
at most 2 · Z∗.

This Lemma can be proved using the same arguments that proved Lemma
3.4.2

35



Lemma 4.1.3. The expected cost from connecting senders to the central core is
at most 2 · Z∗.

For this proof we fix an arbitrary set R′ ⊆ R where |R′| = M . Any perfect
matching M over R′ and S produces a valid D ×D flow. Thus we can show that∑

(r,s)∈M l(r, s) ≤ Z∗. Averaging over all matchings we get that Es∈S
[∑

r∈R′ l(r, s)
]
≤

Z∗. This inequality combined with the fact that
∑

s′∈S l(s, s
′) ≤

∑
r∈R′ l(r, s) +

sum(r,s′)∈Ml(r, s
′) ≤

∑
r∈R′ l(r, s) + Z∗ concludes the proof.

Theorem 4.1.4. The process analyzed is an (4 + pST )-approximate algorithm for
the Virtual Private Network Design Problem.

Where pST is the approximation guarantee of the best know Steiner Tree al-
gorithm.

4.2 Access Network Design Problem

For this problem we are going to analyze the algorithm proposed by Guha et
al. [54] and we will use the same notations and definitions as in that paper.

In this section we will see an algorithm that uses techniques developed for
facility location problems in order to gather demands together and take advantage
of the economies of scale of the problem at hand. It will also serve as a point of
reference for understanding the underlying structure of the more general Single-
Sink Buy at Bulk problem.

4.2.1 Preliminaries

This problem is a simpler version of the Single Sink Buy at Bulk problem
that we will analyze later in this thesis. More specifically in this problem we are
given a network G = (V,E) with a length function on the edges and a sink node
s ∈ S. There are k types of pipes that have a fixed φk cost per edge length and an
incremental cost δk per unit of demand per unit of length. Thus the cost per unit
length of a pipe type k that is being used by d demand is φk + d · δk. Also without
loss of generality we assume that φ1 < φ2 < ... < φk and δ1 > δ2 > ... > φk. If this
constraint does not hold, then it must be the case that some pipe types are always
better than other pipe types giving us the possibility to discard those inefficient
pipe types and end up with an instance where this condition holds.

The problem that we have described until now is an equivalent problem to the
Single Sink Buy at Bulk within a factor of two. However for the Access Network
Design Problem we actually have three more restrictions that make the problem a
special case of the Single Sink Buy at Bulk. Those restrictions are the following:

1. For 2 ≤ k ≤ K we have that if d < φk
δk

then d · δk−1 + φk−1 < d · δk + φk

36



2. d · δ1 > φ1

3.
∑

i<k φi = O(φk)

4.2.2 The Main Idea

Andrews et al. [6] proved that there exists a near optimal solution which has
the following properties:

• It is a tree.

• Each demand is routed through demands of consecutive type.

• Any pipe of type k has at least uk = φk
δk

of flow.

Through this observation it becomes more apparent that there is a strong con-
nection between this problem and the Simple Placement problem that we analyzed
in section 3.2.2. The main difference is that in this problem a pipe of type k be-
comes profitable when uk of demand is using it. This is where the ideas, analyzed
in section 3.3 about the Load Balanced Facility Location problem, come into play.

First of all we can prove an analogous to 3.2.1 theorem which states that there
exists a solution to our problem that uses only pipes where σi = δi

δi−1
≤ a where a

pipe of type i has always at least ui amount of flow and has a maximum 1/a blow
up in cost.

The algorithm is straight forward and is a combination of ideas presented in
3.2.2 and 3.3. For each type of pipe i we solve a Load Balanced Facility Location
problem. In this new problem we have the demands in their original position, the
cost along an edge is δi−1 times the length of that edge. The cost for each facility
is zero (i.e. fi = 0) and we have that for the sink s, Ls = 0 and for all other
nodes Li = ui. We will call Ci the cost of the approximate solution to this new
problem which is obtained by using an (r, γ)-approximate algorithm. Also let C∗

be the cost of the optimal solution to our original problem. Then we can prove
that

∑
iCi ≤ r · 1

1−a · C
∗ and that the total fixed cost of our solution is bounded

by γ · (
∑

iCi) · (1 + a) and the total incremental cost is bounded by 1−a
1−2·a ·

∑
iCi.

Putting all this together we end up with a 94.5 approximate algorithm for the
Access Network Design problem.

4.3 Single Sink Buy-at-Bulk Problem

In this section we will see another Probabilistic algorithm. The main technique
used here is due to a redistribution lemma that in each step of the algorithm gathers
demands in order to make use of the economies of scale that govern the costs of
the different pipe types.

37



This problems has received significant attention from the scientific commu-
nity. Awerbuch et al [10] were the first to come up with a O(log2(n))-approximate
algorithm for the general case of the problem. Using the tree embeddings of
Fakcharoenphol et al. [36] one can come up with a O(log(n))-approximate algo-
rithm for the problem. Garg et al. [47] used LP-rounding techniques in order to
come up with a O(K)-approximation algorithm for the problem. The first con-
stant approximation algorithm was due to Guha et al. [56]. The approximation
ratio was decreased down to 216 by Talwar [91].

4.3.1 Preliminaries

We follow the definitions and notations of Gupta et al. [58]. As an input for
this problem we are given an undirected network with a set of vertices V and a
set of edges E. We are also given a root vertex r, a set of demands D where
each demand j ∈ D wants to send dj amount of flow to the root vertex r. Each
edge e ∈ E is associated with a length ce. Finally, there are K types of cables
({1, 2, 3, ..,K}) that can be installed in each edge with cable i having capacity ui
and cost σi per unit length. We will also use the auxiliary variable δi = σi

ui
.

We assume that δi is a power of 2. This can be generalized by loosing a factor
of 4 in the approximation since we just need to round each capacity ui down to its
closest power of 2, and round each cost σi up to its closest power of 2. Without
loss of generality we can assume that ui < uj and σi < σj for each i < j. Note
that if there is a cable i′ for which there is a cable i with ui′ ≤ ui and σi′ ≥ σi we
can eliminate cable i′ from consideration. We can also assume that u1 = σ1 = 1.
The cables must obey economies of scale (i.e. δk < δj for each j < k) since
otherwise we could eliminate cable type k. Since we have assumed that δi is a
power of 2 that means that δi+1 ≤ δi

2 . We define gk =
σk+1

σk
· uk. We can easily

see that uk < gk < uk+1. Finally, we denote the cost of the optimal solution as
C∗ =

∑
j C
∗(j) where C∗(j) is the cost of cables of type j in the optimal solution.

4.3.2 A 72.8-approximation ?

This section analyzes the algorithm provided by Gupta et al. [58]. In order to
proceed with the algorithm we will first need to prove the following Redistribution
Lemma:

Lemma 4.3.1 (Redistribution Lemma). Let T be a tree with edges of capacity U .
Also, for each j ∈ V (T ) we have that w(j) < U represents the weight located at
node j with

∑
j w(j) a multiple of U. Then there exists an efficiently computable

(random) flow, which respects the capacities in T and redistributes the weights

such that node j ends up with either U weight with probability w(j)
U or 0 weight

with probability 1− w(j)
U .

38



The proof is straight forward and in short it chooses a random variable and
wile it traverses the Euler tour of the augmented tree T it accumulates demand
on certain nodes in order to satisfy the restraints of the Lemma.

More formally, the following process produces a redistribution with the in-
tended outcome:

• We augment tree T by replacing each edge with two oppositely directed arcs
which produces an Euler tour C on T .

• We uniformly at random select Y from (0, U ].

• We initialize Q = 0

• For each vertex j on the Euler tour beginning from the root r:

– We set Q← Q+ w(j).

– Suppose right before reaching j Q was Qold and right after it becomes
Qnew.

– If for some integer x, x · U + Y ∈ (Qold, Qnew]:

∗ We mark j.

∗ We ask jtosend Qnew − (x · U + Y ) demand to the next marked
vertex in the Euler tour.

– Else we ask j to send all of its demand to the next marked vertex in
the Euler tour.

• Using flow cancellation we remove the directed arcs with one single edge.

Using the Redistribution Lemma we can build a pST -approximate Steiner on
D using cables of capacity u1 = 1 and end up with integral demands paying a cost
of at most pST ·

∑
j
C∗(j)
σj

since the optimal solution is a candidate Steiner tree.

We can now assume that dj = 1 and make the number of Demands |D| a power
of 2 by placing dummy demands on r with 0 cost.

Unfortunately, as observed by Jothi et al. [65], when using this redistribution
Lemma we have no guarantee that the demands wont split into multiple parts
that are eventually going to be routed through different paths to the sink. So this
algorithm actually solves a variation of the Single Sink Buy at Bulk problem called
Divisible Single Sink Buy at Bulk.

4.3.2.1 The Algorithm

1. We initialize D1 = D and t = 0.

2. While there is demand that has not been routed to r:

(a) We set t← t+ 1.

39



(b) We mark each demand in Dt with probability pt = ut
gt

and we create a

new set D′t that contains those marked demands.

(c) We construct a pST -approximate Steiner tree on the set Ft = D′t ∪ {r}
with cables of type t+ 1.

(d) Each vertex j ∈ Dt send its demand to the nearest vertex of Ft, lets
assume i, which accumulates at this point a total of wt(i) demand.

(e) Since at step t all demands are either 0 or ut, i ∈ Ft has received

demand from wt(i)
ut

vertices of Dt. We divide those vertices into groups

of ut+1

ut
vertices leaving bi = wt(i)

ut
mod ut+1

ut
residual vertices without

a group.

i. We send ut+1 demand to a random member of the group using a
cable of type t+ 1.

ii. We use the Redistribution Lemma with T = Tt, wt(i) = bi ·ut and
U = ut+1

iii. For every vertex i ∈ Ft that ends up with ut+1 due to the redistri-
bution we randomly send back that demand to one of i’s residual
vertices with cables of type t+ 1

Note that this algorithm will end since at step K, pK = 0 and thus TK = r
and all demands will be rooted to r through their shortest path.

4.3.2.2 The Analysis

Although at first site the algorithm seem complicated its guarantees can be
explained through a series of easy Lemmas.

Lemma 4.3.2. For every non-root vertex j ∈ D it holds that:

Pr[j ∈ Dt] =
1

ut

This Lemma can easily be proved using Inductive reasoning.

Corollary 4.3.2.1. For a non-root vertex j ∈ D it holds that:

Pr[j ∈ Ft] = pt ·
1

ut
=

1

gt

Lemma 4.3.3. Let T ∗t be the optimal Steiner tree on Ft, then:

E

∑
e∈T ∗t

ce

 ≤∑
s>t

1

σs
· C∗(s) +

∑
s≤t

1

δs · gt
· C∗(s)

40



This expression can easily be shown by proving that there exists a Steiner tree
spanning Ft with that cost. That Steiner tree is created by combining two sets of
edges. The first one is the set of edges that have a cable type of t+1 or higher. This
set of edges has an expected total cost of

∑
s>t

1
σs
· C∗(s). The next set of edges

can be derived by examining each vertex i ∈ Ft − {r}. We add one of the paths
that i uses in the optimal solution with probability proportional to the fraction of
i’s weight that this path carries. This yields an expected cost of

∑
s≤t

1
δs·gt ·C

∗(s).
The above sets of edges produce a Steiner tree with the desired restrictions.

Lemma 4.3.4. The expected cost of step t is at most (3 + pST ) · σt+1 · E[c(T ∗t )],
where T ∗t is the optimal Steiner tree on Ft.

The proof of this Lemma is straight forward if we consider the fact that we
can easily establish upper bounds for the costs of each step of the algorithms:

• The cost of the Steiner tree of step 2.c. is at most pST · σt+1 · c(T ∗t )

• The cost of step 2.d. is at most 2 · σt+1 · c(T ∗t ). This can be shown using an
argument analogous to Lemma 3.4.2.

• We can easily show that the cost of steps 2.e. are at most σt+1 · c(T ∗t ).

Theorem 4.3.5. The process described is a 72.8-approximation algorithm for the
Divisible Single Sink Buy at Bulk Problem.

By adding the initial rounding costs and the cost incurred by the algorithm we
come up with a guarantee of 16 · (3 + pST )

4.3.3 A 153.6-approximation

We now analyze the algorithm provided by Jothi et al. [65]. The core idea of
the algorithm is the same as the one presented by Gupta et al. [58]. The most
important contribution is a revisal of the Redistribution Lemma 4.3.1 in order to
ensure that demands can not be split and routed through multiple paths to the
sink. Then using the revised redistribution Lemma with some appropriate hyper
parameter tuning they conclude to improved results for both the Divisible and the
non-divisible Single Sink Buy at Bulk Problem.

In the algorithm analyzed by Jothi et al. [65] instead of demanding δi to be
a power of 2 (as in [58]), we demand that it is a power of 1 + ε. This simple
observation lets us significantly decrease the cost of the algorithm.

4.3.3.1 The Revised Redistribution Lemma

First of all, we are going to need two auxiliary Lemmas in order to prove the
Revised Redistribution Lemma.

41



Lemma 4.3.6. Either there exists at least one edge with zero flow in the directed
tour constructed by Lemma 4.3.1, or there exists a redistribution with zero flow on
one edge of the tour that end up with the exact same assignment of weights.

Suppose there is no edge with zero flow in the tour. We can simply subtract
form each edge the smallest amount of flow that is being redistributed. Then we
end up with the desired result.

Lemma 4.3.7. For any Y chosen uniformly at random from (0, U) during the
procedures of Lemma 4.3.1, there exists a redistribution using the same Lemma
but with Y = U that ends up with the same weights.

The key observation in order to prove this Lemma is that Lemma 4.3.1 always
starts from a fixed vertex, however this dose not need to be the case. Suppose a
redistribution with a random Y . From Lemma 4.3.6 we know that there exists (or
we can create) a vertex q in the tour that receives zero flow. It is easy to show
that if we begin the procedure of Lemma 4.3.1 from q with Y = U we end up with
the same weights.

We are now ready to prove the Revised Redistribution Lemma.

Lemma 4.3.8 (Revised Redistribution Lemma). Let T be a tree with edges of
capacity U , which is a power of two . Also, for each j ∈ V (T ) we have that
w(j) < U represents the weight located at node j which is also a power of two.
Then there exists an efficiently computable flow, which respects the capacities in
T and without splitting the flow of a vertex that redistributes the weights such
that node j ends up with either U weight with probability w(j)

U or 0 weight with

probability 1− w(j)
U .

There are two key parts into proving this Lemma. First, we begin the procedure
of the Redistribution Lemma by the vertex we found with Lemma 4.3.7 and with
Y = U . Then whenever we mark an edge and need to send Qnew−x ·U demand to
the next marked vertex we can show that since all demands are a power of two then
there exist a subset W of vertexes that have not been assigned to a marked vertex
yet and that Qnew −

∑
i∈W w(i) = x · U . This observation shows that whenever

we mark a vertex we do not need to split any demands. The second key part is
to prove that we do not need to split any demands when we replace the directed
arcs of the Euler tour with the original edges of T . We can do this by applying the
following procedure recursively on all leafs of T until we are left with no vertices.
If a leaf is not marked then we send its demand to its parent in T and discard
it. If the leaf is marked then we just send the amount of demand needed to the
leaf from its parent and then discard the leaf. Notice that in both situations we
use only one of the two arcs corresponding to each edge of T . Recursively this
procedure gives us the desired flow.

Once we have this revised redistribution lemma we can use the same proce-
dure introduced by Roughgarden et al [58] to derive an algorithm that solves the
unsplittable version of the Single Sink Buy at Bulk problem.

42



4.4 Two Metric Network Design

In this section we will analyze the O(log k)-approximation algorithm for the
Cost-Distance problem presented by Meyerson et al [79]. This was one of the first
problems that occupied our attention because of its similarities with our own main
problem. In both instances we have to cope with two different type of costs. One
that is related to the distance that the demands need to travel and a second that
is a constant cost, payed when we “buy” an edge in order to be able to use it. The
main differences of the two problems are that in our main problem that we need to
buy facilities, not edges, and that distances in our instance are not constant but are
related to the amount of congestion on each edge. In the algorithm of the following
section, we will analyze how we can use matchings and randomized redistribution
of demands in order to decrease by half the amount of demand points. This leads
to a logarithmic amount of steps that in turn yields the logarithmic approximation
guarantee.

This problem is of significant importance because, as it will be discussed later,
it generalizes many important network design problems. In the case where the two
metrics (cost and distance) are related, there are constant factor approximations
due to the works of Awerbuch et al. [11] and Khuller et al. [69]. The algorithm
presented borrows ideas from a similar version of the problem examined by Marthe
et al. [78] and Kortsarz et al. [72], in which the goal is to find a minimun cost tree
(based on a metric c), whose diameter is less than L (based on a different metric
l). It was shown from Chuzhoy et al. [30] that this problem is Ω(loglog|S|) hard
to approximate.

4.4.1 Preliminaries

We follow the definitions and notations of Meyerson et al. [79]. In the Cost-
Distance Problem we are given a graph G with a set of vertices V and a set of
edges E. We are also given a set S ⊂ V of demands that need to be routed to a
single sink vertex t ∈ V . For each demand s ∈ S we have a weight w(s). For each
edge e we have a cost c(e) and a distance l(e) metric. A feasible solution consists
of a subgraph G′ = (E′, V ′) ⊂ G for which V ′ ⊆ S ∪ {r}. An optimal solution
minimizes the sum of costs of edges of E′ and the distances of the demands to the
sink. More formally an optimal solution minimizes the following expression:

∑
e∈E′

c(e) +
∑
s∈S

w(s) · L′(s, t)

where L’(.,.) is the total distance of the two vertices with respect to the distance
metric l on graph G′. We will address the total cost as the total value in order to
avoid ambiguity in the analysis since we already have a cost metric.

43



4.4.2 The Algorithms

This algorithm describes a randomized procedure that pairs demands until
one demand is left which is then routed to the sink. More formally we have the
following algorithms:

1. We initialize S0 = S ∪ {t}, w0 = w,E′ = ∅ and i = −1

2. While Si 6= {t}.

(a) i← i+ 1.

(b) For every pair of vertices (u, v) ∈ Si/{r}:

i. We find the shortest u − v path Puv with respect to the distance
metric Muv(e) = c(e) + 2·wi(u)·wi(v)

wi(u)+wi(v) · l(e).
ii. Let Ki(u, v) =

∑
e∈Puv Muv(e).

(c) For every node u ∈ Si/{r}:

i. We find the shortest u − r path Pur with respect to the distance
metric Mut(e) = c(e) + wi(u) · l(e).

ii. Let Ki(u, t) =
∑

e∈PutMut(e).

(d) We compute a matching between nodes in Si such that:

i. The number of unmatched nodes plus half the amount of
matched nodes (i.e. the number of matches) is at most Si

α .

ii. The value of
∑

(u,v)matched
Ki(u, v) is at most β times the minimum

Ki-value of a perfect matching.

(e) We set Si+1 = ∅.

(f) For every matched pair (u, v):

i. We add all edges of Puv into E′.

ii. Choose u to be the center with probability wi(u)
wi(u)+wi(v) and other-

wise v (i.e. with probability wi(v)
wi(u)+wi(v)).

iii. We add the chosen vertex to Si+1

iv. We set wi+1(center) = wi(u) + wi(v)

(g) For all unmatched nodes u ∈ Si:

i. Si+1 ← Si+1 ∪ {u}
ii. We set wi+1(u) = wi(u)

(h) Si+1 ← Si+1 ∪ {r}

3. We return G′ = (E′, V ′) where E′ are the edges selected by the algorithm
and V ′ are the adjacent nodes to edges in E′.

44



4.4.3 The Analysis

In step 2.d. a minimum value perfect matching is polynomialy computable and
would yield α = 2 and β = 1, however the algorithms available for this task are
highly impractical. Other approximate matchings can be more easily computed
and they result in the same approximation guaranties.

The total running time, if Dijkstra’s algorithm is used for computing shortest
paths, can easily be show that is O

(
|S|2 · (m+ n · log(n))

)
.

The first important observation concerning the analysis of the algorithm is that
the optimal solution is a tree T ∗. If the optimal solution G∗ is not a tree then we
can take shortest paths from r to all nodes in S and the resulting tree subgraph
would have at most the same value as G∗.

Let C∗ =
∑

e∈T ∗ c(e), L
∗(u) be the shortest (u, r) path in T ∗ and D∗ =∑

u∈S w(u) · L∗(u). Finally, let D∗i =
∑

u∈Si wi(u) · L∗(u).
The hole analysis focuses on bounding the expected value of each step i of the

algorithm. We will show that the value incurred in each step is within a constant
factor from the optimal total value (i.e. C∗+D∗) and because the algorithm ends
in at most after O (log(S)) steps the desired result will be proven.

This result is proven through three main Lemmas.

Lemma 4.4.1. For every step i, E[D∗i ] ≤ D∗

This Lemma can be easily proven through induction. For the first step it
is obvious that D∗0 = D∗. Suppose that E[D∗i−1] ≤ D∗. For every pair u, v ∈
Si−1 that was matched at step i − 1, their contributions in D∗i−1 where wi−1(u) ·
L∗(u) and wi−1(v) · L∗(v) respectively. Since those demands were matched their
expected distance from the source is the sum of the distance from center u times
the probability we chose that center plus the distance from center v time the
respective probability. From the definition of the algorithm we have that the
expected distance is going to be wi−1(u)·L∗(u)+wi−1(v)·L∗(v)

wi−1(u)+wi−1(v) . The cumulative weight

of the new center is going to be wi−1(u) + wi−1(v). Thus it is easy to see that
the expected contribution of u and v will not change in step i. It is also obvious
that the contribution of unmatched nodes does not change and the contribution
of the vertex that is matched with r will drop to zero. Summing over all nodes
the lemma is proven.

Lemma 4.4.2. Given a tree T = (E, V ) and a set S ⊆ V , there exist a perfect
matching of nodes in S such that uses each edge in E at most once.

This Lemma is fairly easy to prove through induction on the number of nodes
in T . If there is a leaf that is not in S then we can remove that leaf. If all leaves are
in S then we have two possibilities. We chose a leaf arbitrary. If the leafs parent
is in S we match those nodes, remove the leaf from T and remove its parent from
S. If the leafs parent is not in S we remove the leaf, add its parent in S, solve this
instance and then match the leaf with the same node its parent was matched.

45



Lemma 4.4.3. The expected value of step i is at most β · (2 ·D∗ + C∗).

On every step i there exists a perfect matching on Si using only edges of the
optimal tree solution T ∗. Thus there exist a perfect matching that has cost of at
most 2 · D∗ + C∗ (the factor of 2 in front of D∗ comes from the fact that in the

cost of the matching we use 2·wi(u)·wi(v)
wi(u)+wi(v) which is at most two times the smallest

demand). Since we are using a β approximate matching and the expected value
of the step is equal to the value of the matching the Lemma follows.

Theorem 4.4.4. The process described is an O(log |S|)-approximate algorithm for
the Cost-Distance problem.

Using Lemma 4.4.3 we have the expected cost of each step bounded by β · (2 ·
D∗+C∗). Also we can have at most logα |S| steps. Thus the total expected value
of the algorithm is at most β · (logα |S|) · (2 ·D∗ + C∗)→ O(log |S|).

4.4.4 Reductions

In this sections we will analyze reductions of this problem to some really im-
portant network design problems showing the importance of the Cost-Distance
problem.

4.4.4.1 Facility Location

We are given as input a network G = (V,E) a distance metric on each edge
ce, a set of demands D ⊆ V with each demand having a weight di associated with
it and a set of possible facilities F ⊆ V where each facility has an opening cost
fi. We create a graph G′ = (V ′, E′) where V ′ = V ∪ {r} where r will act as the
sink. For E′ we take all edges in E with zero cost and ce distance and also add
edges that connect each facility with the sink with zero distance and cost fi. It is
obvious that the solving the Cost-Distance problem on G′ produces a solution of
Facility Location on G with the same approximation guarantee.

4.4.4.2 Capacitated Facility Location

In this version of the Facility Location each facility has a maximum capacity
of ui that can be served. If we want to route more than ui demand at facility i we
need to open more copies of that facility paying fi for each copy of the facility. We
follow the same reduction as 4.4.4.1 with a key difference. The cost of the edges
that connect facility nodes to the sink have cost metric of fi and a distance metric
fi
ui

. With this reduction we lose a factor of two in the worst case scenario.

46



4.4.4.3 Single Sink Buy-at-Bulk

Suppose we have the Single Sink Buy-at-bulk problem analyzed in 4.3. Let G
be the network from the Single Sink Buy-at-Bulk instance. We replace each edge
of e ∈ G with K parallel edges where each edge i ∈ K has costs ce ·σi and distance
ce · σiui . Using this reduction the analysis is analogous to 4.4.4.2. We lose for the
same reasons at most a factor of two in the reduction.

4.4.4.4 Multi-level Facility Location

Suppose we have an instance of the Multi-level Facility Location Problem an-
alyzed in section 3.2.3. Let G be the network of that instance. Also suppose that
we have k-level problem. We first create k copies of G, (G1, G2, ..., Gk). Each edge
of copy Gi has cost zero and distance ce (i.e. the distance of edge e in G). We
connect node u in Gi with its copy on graph Gi+1 with zero distance and fui cost
(recall fui is the cost of opening a level i facility on vertex u). Last but not least
we create a sink r and we connect each node u ∈ Gk with r through an edge of
zero distance and fuk cost. Using the above described graph the approximation
preserving reduction between the two problems is obvious.

4.4.4.5 Concave Functions

Suppose we have the problem where a set of demands S needs to be routed
to a sink r where the cost of each edge is described by the concave function
fe(d) = minrei=1(aie + bie · d) where d is the amount of demand that uses edge e.
It is obvious that if we replace each edge by re copies where each copy i has cost
aie and distance bie we have a approximation preserving reduction to the Cost
Distance problem. As we will show in section 6 a more generalized version of the
Cost-Distance algorithm can solve this problem for a much wider class of concave
functions.

47



Chapter 5

Congestion Games

In this section we will analyze the game theoretic aspect of network problems.
In Game Theory in general we are preoccupied with problems in which a set of
selfish players want to minimize their own cost, disregarding the total cost of all
players in the game. This creates instances where equilibria have far greater cost
than the optimal solution. This concept of inefficiency due to selfish behavior is
also tightly linked with paradoxes that can be observed. In this section we will
analyze the impact of those selfish behaviors in problems where players want to
reach a destination in a network as fast as possible also known as Congestion
Games.

This section is really important for our main problem since it entails many
game theoretic aspects that we analyze in our work. From this section it is impor-
tant to understand why selfish routing diverges from the optimal solution. This
characteristic is perfectly illustrated by Braess paradox. We will see techniques
on how to compute the Price of Anarchy and the Price of Stability of a problem,
and how to compute exact (when its possible) and approximate Nash Equilibria
through best response dynamics. We will examine some very useful tools such
as the potential function method. We will examine how the existing bibliogra-
phy handles games where cost sharing costs exist which might help us handle the
facility cost of our problem. Finally, we will examine why it is difficult to de-
tect instances where Braess like paradoxes exist and how we can circumvent those
inapproximability results with the use of sparsification techniques.

5.1 Introduction to Congestion Games

In the field of Algorithmic Game Theory a well established and studied field
of research are Congestion Games. In an instance of a Congestion Game we usu-
ally have a network in which selfish (noncooperative) demands want to reach a
destination inside the network. However the latency of each edge of the network
depends on the amount of demand using it. A form of congestion is created and

48



the selfish users deviate from the overall best routing in order to minimize their
own latency. We assume that users reach a Nash Equilibrium, however, it is well
known that Nash Equilibrium can be highly inefficient.

To formalize this kind of games we will use the definitions and notations used
by Roughgarden [83]. Suppose we have a network G = (V,E) where V is the set of
nodes and E the set of edges that connect those nodes. For now we will consider
the single commodity instance where we only have one source vertex s ∈ V and
a sink vertex t ∈ V . All players are gathered in s and want to reach t via the
shortest possible path. We will denote with P 6= ∅ the set of simple s− t paths. A
flow f is feasible if

∑
p∈P fp = r where r is the traffic rate that wants to be routed

from s to t. We also define fe =
∑

p:e∈P fp. Finally suppose that for each edge e
we have a latency function le and that lp(f) =

∑
e∈p le(fe) is the total latency of a

path p ∈ P . The network G, the traffic rate r, and the latency functions l create
an instance of a congestion game.

We will say that a flow f is at Nash Equilibrium if and only if for every
p1, p2 ∈ P with fp1 > 0, lp1(f) ≤ lp2(f). This definition states that a flow is
at Nash Equilibrium if and only if no amount of demand can deviate from the
flow and end up with a lower amount of latency. If we consider two paths p1, p2

that both receive non zero demands at a Nash flow f , using the aforementioned
definition we have that lp1(f) ≤ lp2(f) and lp1(f) ≥ lp2(f) thus lp1(f) = lp2(f).
Thus all different paths used by a Nash flow receive a common total latency which
we will define as L(G, r, l).

5.1.1 Atomic vs Non-Atomic

We call Atomic congestion games the ones where there is a bounded amount
of players each one having a nonnegligible weight. Non-atomic games on the other
hand are the ones where there is an infinite amount of players each one having
infinitesimal weight. Obviously the formalization done earlier is for Non-Atomic
congestion game. Similar analysis can be done for Atomic congestion games.

5.1.2 The Price of Anarchy

A really important metric through which we will evaluate the efficiency of a
flow is its total cost. We define the total cost of a flow f as:

C(f) =
∑
p∈P

lp(f) · fp

From the observations we have already made about Nash flows f , we can see
that C(f) = r · L(G, r, l) at a Nash Equilibrium.

Now we are ready to state the Price of Anarchy which was proposed first by
Koutsoupias et al [74]. The Price of Anarchy is nothing more than the ratio of the
maximum possible cost at a Nash Equilibrium to the cost of the optimal flow f∗.

49



PoA =
maxf∈Equil C(f)

C(f∗)

5.1.3 The Price of Stability

The Price of Stability is a metric very similar to the price of anarchy. It is
essentially, the ratio between the lowest cost Nash Equilibrium to the Optimal
Cost. In essence it shows us how much of cost we have to sacrifice in order to have
stability (i.e. Nash Equilibrium).

PoS =
minf∈Equil C(f)

C(f∗)

5.2 Braess Paradox

A well known phenomenon that occurs is selfish routing networks is the Braess
Paradox that was first stated by Braess in 1968. This paradox states that if we
remove an edge from a network its total performance at a Nash Equilibrium (with
respect to the total cost) might improve.

(a) The Network (b) The optimal Subnetwork

Figure 5.1: Braess Paradox.

Consider the network depicted in 5.1a. We have a source node s that wants
to send r = 1 traffic rate to the sink t. It can do so through the following three
paths, s → v → t, s → w → t and s → v → w → t. The latency of the edges are
the ones depicted on the figure where x is the amount of traffic that uses a specific
edge. Since the traffic rate is 1 the costs of edges s− v and w − t are always less
or equal to 1. Thus the only Nash Equilibrium at this state is if all demand is
routed through the path s→ v → w → t which will have a total cost of C(f) = 2.
However if we consider the optimal Subgraph of this network depicted in 5.1b we
can see that the only Nash Equilibrium in this network is achieved when half of
the total demand is routed through path s→ v → t and half through s→ w → t

50



with a total cost of C(f ′) = 3
2 . Thus the Price of Anarchy in this instance is

PoA = 2
3
2

= 4
3 . Tardos et al. [86] proved that for linear latencies 4

3 is an upper

bound on the price of anarchy. Generalizing their techniques Roughgarden [85]
proved that for polynomial latencies with bounded maximum degree of p the price

of anarchy is
[
1− p · (k + 1)−

k+1
k

]−1
which is asymptoticaly Θ

(
p
lnp

)
as p → ∞.

In this paper he also proved that the Price of Anarchy is independent of the graphs
topology.

5.2.1 Inapproximability Results

A natural network design problem that arises from the above observation is
that given an instance (G, r, l) of a Congestion Game we would like to find a
subgraph H ⊆ G such that L(H, r, l) becomes minimized. It turns out that we can
not. More formally Roughgarden [83] proved that for linear latencies there is no
(4

3 − ε)-approximation algorithm for this network design problem and for general
increasing non negative latencies there is no (n2−ε)-approximation algorithm where
n is the number of vertices in G.

5.2.1.1 Linear Latency

For the inapproximability results we are going to use the 2 Directed Disjoint
Paths problem which was proved NP-complete by Fortune et al. [41]. In this
problem we are given a network G = (V,E) and s1, s2, t1, t2 ∈ V . The goal is to
find if there are paths P1 from s1 to t1 and P2 from s2 to t2 such that P1 and P2

are vertex disjoint.
Suppose we have an instance of the 2 Directed Disjoint Path problem where we

have a network G = (V,E). We create a instance of our network design problem
as follows. We create a new graph G′ = (V ′, E′) where V ′ = V ∪ {s, t} and
E′ = E ∪ {(s, s1), (s, s2), (t1, t), (t2, t)}. We set for each edge e ∈ E the latency
as le(x) = 0. We also set for edges e ∈ {(s, s1), (t2, t)}, le(x) = 1 and for edges
e ∈ {(s, s2), (t1, t)}, le(x) = x. Suppose we have an algorithm that solves our
network design problem. If there were disjoint paths then our algorithm would
choose them yielding a total cost of 3

2 (recall figure 5.1a). If there were not any
disjoint paths then our algorithm would yield a total cost of 2 (recall figure 5.1b).
Since the 2 Directed Disjoint Paths problem is NP-complete then there is no (4

3−ε)-
approximation algorithm for our network design problem (unless P = NP ).

5.2.1.2 General Latency

For General Latency the proof is much more intricate. First we create a family
of graphs that generalize the network of the Braess Paradox. Also it is of great
importance that although we want our latencies to be smooth functions we can
emulate step functions using a small enough parameter δ. We can have for instance

51



le(x) = 1 for x ≤ 1 and le(x) = M for x ≥ 1 + δ where M is a big enough constant

to be considered as ∞. For a small enough δ
(

i.e. 1
A·(p+k)

)
and a big enough M(

i.e. n
2

)
we can consider edge e to have a capacity of 1. Then using the generalized

Braess Graphs and the fact that we can set capacities on edges we can show that we
can solve the Partition problem using our network design problem. For a complete
proof address [83].

Lin et al. [76] generalized this founding for multi-commodity networks. In
those networks instead of a single source sink pair we have k source-destination
pairs (s1, t1), ..., (sk, tk). Lin et al. created a general family of two-commodity
instances where removing a single edge can decrease the price of anarchy by 2Ω(n).
Again using capacities on edges they showed that finding the best subnetwork of
a two-commodity game is equivalent to solving the Partition problem. Thus the
Multi-commodity Network Design problem is exponentially inapproximable.

The aforementioned results show that if we want to diminish the Price of
Anarchy of a given congestion game we can not do so efficiently by removing edges.
The best thing we can do in this direction is find a subnetwork with an approximate
Nash Equilibrium that is close to the Nash flow of the optimal subnetwork using
sparsification techniques that we will analyze later on. Other techniques have also
been adopted such as using Stackelberg routing where we can use a small fraction
of coordinated traffic in order to decrease the Price of Anarchy of the rest of the
traffic ([16], [42], [67], [71], [84]). Also, the idea of adding tolls on resources has
been extensively studied ([66], [21], [31], [40], [45]).

5.3 Computing Approximate Equilibrium

In this section we will analyze a series of works that use best response dynamics
in order to compute approximate Nash Equilibria in congestion games. It will be
of great interest to see if the techniques proposed by those papers can be extended
to find approximate Nash Equilibria in a variant of our main problem.

In general finding an exact Nash Equilibrium in congestion games is computa-
tionally hard ([2], [35]). In fact in weighted congestion games exact Nash Equilibria
may not even exist [51]. Dunkle et al. [34] by extending the work of Fotakis et
al. [44] showed that it is even NP-complete to determine if a weighted congestion
game has an exact Nash Equilibrium. That is why a well studied problem is that
of finding an approximate Nash equilibrium. We call q-approximate Nash equilib-
rium a state of a congestion game in which no player can change their strategy
and decrease their latency by a factor greater than q. Due to the work of Skopalik
et al. [89] we know that computing a q-approximate equilibrium in congestion
games is PLS-complete for any q that is polynomialy computable. That is why
we focus on special cases of congestion games. In this section for instance we will
analyze congestion games with polynomial latencies of bounded degree. Besides
the papers we will analyze in this section, positive results in computing approxi-

52



mate Nash Equilibria have been also given by Chien et al. [26] and Feldotto et al.
[37].In the following sections we will analyze different algorithms that use similar
techniques to find approximate Nash equilibria in Atomic congestion games.

5.3.1 Preliminaries

We are going to use the notations and definitions of Caragiannis et al. [20]
as a bases and change or introduce new notations were necessary. Suppose we
have a congestion game with a set N = 1, 2, ..., n of players that all have unit
demand. There is a set of resources E and each player u using the resources
of E has a set of possible strategies Σu. When each player chooses a strategy
su ∈ Σu we have a state S = s1, s2, ..., sn of the game. Also we have a polynomial
latency function fe on each resource e ∈ E, which depends on the amount of
players that are using that resource, has a bounded maximum degree d and has
non negative coefficients. We will denote ne(S) = |{u ∈ N : e ∈ su}|. Thus the
total cost of a player u using strategy su is cu(S) =

∑
e∈su fe(ne(S)). Given a

state S = s1, s2, ..., sn of the game we will depict as (S−u, s
′
u) the state in which

all players have the same strategy as in S except player u who has deviated to
strategy s′u (i.e. (S−u, s

′
u) = s1, s2, ..., s

′
u, ..., sn). Finally, we will denote as BRu(S)

the best response of player u in state S (i.e. the strategy s′u for which cu(S−u, s
′
u)

is minimized). With an abuse in notation we can say that BRu(0) is the best
response of player u when no other player has chosen a strategy yet.

In order to formalize the notion of the q-approximate equilibrium stated earlier
we introduce the notion of a q-move. We call q-move when a player deviates from
strategy su of a state S to a strategy s′u and cu(S−u, s

′
u) < cu(S)

q (i.e. player u

ameliorates his cost by a factor q when he deviates to strategy s′u). We say that
we have a q-approximate Nash equilibrium when there are no available q-moves
for any player in the game.

It will be useful to consider sequences of moves where only a set of players
F ⊆ N are playing while the rest N/F players are frozen to their original strategy.
For this reason we introduce the notation fFe (x) = fe(x + te) where te stands for
the number of players in N/F that use resource e. Also nFe (S) denotes the number
of players in F that use resource e under the state S.

5.3.2 Potential Function

It is now a good time to introduce the notion of Potential Functions. Conges-
tion Games with unit demands are potential games. In other words they admit a
potential function Φ. This function has the following very useful property:

Φ(S−u, s
′
u)− Φ(S) = cu(Su, s

′
u)− cu(S)

It is obvious that local minima of the potential function consist Nash Equilibria
of the game at hand. The first potential function for unweighted congestion games

53



was introduced by Rosenthal [82] and can be written as Φ(S) =
∑

e∈E
∑ne(S)

j=1 fe(j).
From this definition of the potential function we can see that

∑
e inE fe(ne(S)) ≤

Φ(S) ≤
∑

u∈N cu(S) holds. Weighted congestion games do not admit potential
function except for linear and exponential latencies [60].

5.3.3 Unweighted Players

In this section we will analyze a simple algorithm that finds approximate Nash
equilibria when all players have unit demands introduced by Caragiannis et al
[20]. In the next sections we will present works that generalize this algorithm for
weighted congestion games using two different techniques.

5.3.3.1 The Algorithm

For the sake of this algorithm we will denote as θd(q) the upper bound of the
worst case ratio between the potential of of any q-approximate equilibrium and the
minimum potential. For an instance G = (N,E, (Σi)i∈N , (fe)e∈E) of a congestion
game and a constant ψ we have the following algorithm.

1. We initialize q = 1 + n−ψ, p =
(

1
θd(q)−n−ψ

)−1
.

2. For each u ∈ N we set lu = cu(BRu(0)).

3. We initialize lmin = minu∈N lu, lmax = maxu∈N lu and

m = 1 + dlog2d+1·n2ψ+d+1

(
lmax
lmin

)
e.

4. We then partition the players into blocks B1, B2, ..., Bm such that u ∈ Bi if
and only if lu ∈

(
lmax · (2d+1 · n2ψ+d+1)−i, lmax · (2d+1 · n2ψ+d+1)−i+1

]
.

5. We set the initial state of the game S = (BR1(0), BR2(0), ..., BRn(0))

6. For phase i = 1 to m− 1 such that Bi 6= ∅:

(a) While there exists a player u in Bi with a p-move or in Bi+1 with a
q-move, make u deviate to his best response strategy (i.e. set su ←
BRu(S))

5.3.3.2 The Analysis

For the purpose of this thesis we will only going to provide the high level ideas
of the analysis presented in [20].

We will call Si the instance of the game after the end of phase i (S0 will be

the initialized state), bi =
(
2d+1 · n2·ψ+d+1

)−i
and Ri the set of players that move

at least once during phase i. Finally, ΦRi is the potential of the game where only
players in Ri play and all other players are frozen.

The key lemma concerning this algorithm is the following:

54



Lemma 5.3.1. For every phase i ≥ 2, ΦRi(S
i−1) ≤ bi

2d·nψ

This lemma is proven by contradiction. We assume that ΦRi(S
i−1) > bi

2d·nψ
then we can show that state Si−1 is not a q-approximate equilibrium for players
in Ri ∩Bi. However this means that there was a player u in Bi at phase i− 1 who
had a q-move which contradicts with the contradicts step 6(a) of the algorithm.

Now we are ready to prove that this algorithm finishes after a polynomialy
bounded number of steps. More formally:

Lemma 5.3.2. The algorithm terminates after at most O(n5·ψ+3·d+3) best re-
sponse moves.

Using the facts that:

• The maximum number of Blocks and thus phases of the algorithm are n.

• Lemma 5.3.1 (i.e. ΦRi(S
i−1) ≤ bi

2d·nψ ).

• Each best response must decrease the potential by at least (q − 1) · bi+2.

• And that the maximum degree d of the latency is bounded.

We can bound the amount of best response steps by O(n5·ψ+3·d+3).
In order to prove the approximation guarantee we need one last important

lemma.

Lemma 5.3.3. Let u be a player of block Bt with t ≤ m− 2. Let s′u be a different
strategy from the one assigned to u at the end of phase t. The for i ≥ t, it holds
that:

cu(Si) ≤ p · cu(Si−u, s
′
u) +

p+ 1

nψ
·

i∑
k=t+1

bk

In order to prove this lemma we again use key lemma 5.3.1 to prove two crucial
inequalities:

cu(Si+1) ≤ cu(Si) +
bi+1

nψ

and

cu(Si−u, s
′
u) ≤ cu(Si+1

−u , s
′
u) +

bi+1

nψ

then using induction we prove the claim.
Finally using lemma 5.3.3 we can fairly easily show that:

Theorem 5.3.4. The state computed by the algorithm is a p ·
(
1 + 4

nψ

)
- approxi-

mate equilibrium.

For linear latencies this translates to a 2+O(n−ψ)-approximate equilibrium and
for bounded degree d for the latencies we have a dO(d)-approximate equilibrium.

55



5.3.4 Using Ψ-Games

A natural question that occurs from the previous section is what can be done
for computation of approximate Nash Equilibria in weighted congestion games.
Caragiannis et al [19] answered this question in their work. The basic problem is
that weighted congestion games with polynomial latencies with degree d ≥ 2 there
are no polynomialy computable potential functions. Thus it is not obvious how
to generalize the work analyzed in section 5.3.3. For this reason Caragiannis et
al [19] used the so called Ψ-games. They admit a potential function and thus the
techniques of [20] can be generalized and their outcomes can be used to produce
an Approximate Nash Equilibrium in the original congestion game.

5.3.4.1 Preliminaries

We will continue with the notation introduced in section 5.3.1. There are only
few additions that we have to make because of the introduction of weights. Each
player u ∈ N has a weight wu associated with him. Also we will call Ne(S) to
be the multiset of weights of players that are using resource e in state S (i.e.
Ne(S) = {wu : e ∈ su} where u ∈ N). Finally let L(A) denote the sum of
elements in multiset A. Thus the total cost incurred by player u in state S is
cu(S) = wu ·

∑
e∈su fe(L(Ne(S))).

5.3.4.2 Ψ-games

First of all, we define a function Ψk mapping from finite multisets of reals to
reals as follows. Ψ0(A) = 1 for any set A. Ψk(∅) = 0 for k ≥ 1. For any non
empty multiset A = a1, a2, ..., al and k ≥ 1:

Ψk(A) = k! ·
∑

1≤d1≤...≤dk≤l

k∏
t=1

adt

We can see that for instance Ψ1(A) = L(A). Since latency functions are
polynomials with bounded degree we can depict them as fe(x) =

∑d
k=0 ae,k · xk

with ae,k ≥ 0.

Using the above we can define the Ψ-game. A Ψ-game G can be represented
with the tuple (N,E, (wu)u∈N , (Σu)u∈N , (ae,k)e∈E,k=0,1,...,d). In other words every-
thing is identical with a normal potential game. The only change is in the cost
payed by a player u in state S which is given by the following formula:

ĉu(S) = wu ·
∑
e∈su

d∑
k=0

ae,k ·Ψk(Ne(S))

The reason why we are interested in Ψ-games is twofold. On the one hand Ψ-
games are potential games since Φ(S) =

∑
e

∑d
k=0

ae,k
k+1 ·Ψk+1(Ne(S)) is a potential

56



function for a Ψ-game. Thus the algorithm and the analysis presented in [20] can
be generalized in order to yield approximate Nash equilibria for Ψ-games.

On the other hand it is not difficult to see that given a weighted congestion
game with polynomial latency functions of degree d and its corresponding Ψ-game
it holds that cu(S) ≤ ĉu(S) ≤ d! · cu(S). Using this observation it is not difficult
to see that a p-approximate Nash equilibrium in a Ψ-game is a d! · p-approximate
Nash equilibrium in its corresponding congestion game.

The rest of paper [19] goes on to provide an algorithm to compute 3+
√

5
2 +

O(γ)-approximate Nash equilibrium for linear latencies and dd+o(d)-approximate
equilibrium for general latencies. This algorithm has a polynomial running time
in γ−1 and the size of the input. Given the aforementioned observations this

algorithm yields a 3+
√

5
2 + O(γ) and a d2·d+o(d)-approximate Nash equilibria for

linear and general congestion games respectively.

5.3.5 Using Approximate Potential Function

In their work Giannakopoulos et al [48] they were able to compute dd+o(d)-
approximate Nash equilibrium for congestion games. Their motivation was that
in [19] the algorithm performs the sequence of best responses in the Ψ-game,
thus when we translate those moves to the original congestion games there are
cases where players would deteriorate their position. Thus the algorithm proposed
in [19] is not a natural one. To achieve this instead of using Ψ-games [19] for
their potential function they used approximate potential functions. Those ap-
proximate potential functions and their properties were developed in parallel by
Giannakopoulos et al [49] and we will talk extensively about them in the next
section.

First they were able to formulate a matching upper and lower bound for the
Price of Anarchy for approximate Nash equilibria. They showed that in a conges-
tion game with polynomial latencies of maximum degree d a p-approximate Nash
equilibrium has Φd+1

d,p Price of Anarchy where Φd,p is the unique positive root of

the equation p · (x+ 1)d = xd+1.
Then they formulated the following function for every resource e ∈ E:

φe(x) = ae,0 · x+

d∑
k=1

ae,k ·
(
xk+1 +

k + 1

2
∗ xk

)
Where ae,k are the coefficients of the polynomial cost functions introduced in
section 5.3.4. Using the above function we can construct the following approximate
potential function Φ(S) =

∑
e∈E φe(L(Ne(S))). The following lemma illustrates

why this is an approximate potential function:

Lemma 5.3.5. For any e ∈ E, x ≥ 0 and w ≥ 1:

w · fe(x+ w) ≤ φe(x+ w)− φe(x) ≤ (d+ 1) · w · fe(x+ w)

57



Where fe is the cost function of resource e. Using this lemma we can show that
Φ(S) − Φ(S−u, s

′
u) ≥ Cu(S) − (d + 1) · Cu(S−u, s

′
u) which constitutes one of the

most important properties of this approximate potential function.

In the rest of paper [48] they use this potential function in order to generalize
the algorithm of [20].

5.3.6 Unifying Approximate Potential Function

In this section we will see how to compute potential functions for a variety of
latency functions including cost sharing games. If we are to generalize the work of
the previous section for our problem this will be a very important tool.

Some really interesting work has been done in finding approximate potential
functions ([25], [28], [59], [27], [18]). In the work of Giannakopoulos et al [49] they
introduced a way to compute approximate potential functions for most conceivable
latency functions. In this section we will present the work presented in [49].

First of all, to understand how to compute approximate potential functions we
need the following lemma:

Lemma 5.3.6. For a given congestion game we assume that for each resource e
there exist positive reals a1,e, a2,e, b1,e, b2,e and a function φe that maps the set of
demands that use resource e to reals such that φe(∅) = 0 and

a1,e ≤
φe(I ∪ i)− φe(I)

wi · ce(wI + wi)
≤ a2,e for all i ∈ N, I ⊆ N − {i}.

b1,e ≤
φe(I)

wI · ce(wI)
≤ b2,e for all ∅ 6= I ⊆ N.

Then the game has an (a, b)-equilibrium where a = maxe∈E
a2,e
a1,e

and b =
maxe∈E b2,e/a1,e
maxe∈E b1,e/a2,e

Where a state S of a congestion game is an (a, b)-equilibrium if it is a a-
approximate Nash equilibrium and the social cost paid in S is at most b times the
optimal social cost. Also wI = L(I).

Firstly we let Φ(S) =
∑

e∈E
1
a1,e
· φe(Ne(s)) which serves as approximate po-

tential function for our congestion game.Then the proof uses the inequalities con-
sidered as true from the lemma to conclude in the following two inequalities:

Φ(S−i, s
′
i)− Φ(S) ≤ wi · [a · Ci(S−i, s′i)− Ci(s)]

and,

Φ(S′)− Φ(S) ≤ min
e∈E

(
b1,e
a1,e

)
· [b · C(S′)− C(s)]

which in turn show that:

58



Φ(S) ≤ Φ(S−i, s
′
i) ⇒ Ci(S) ≤ a · Ci(S−i, s′i)

Φ(S) ≤ Φ(S′) ⇒ C(S) ≤ b · C(S′)

which proves the claim.

Now let as define good functions and good games. A function f of a congestion
game G is (a1, a2, b1, b2)-good if there exists ξ ≥ 0 such that for all x ∈ {0} ∪
[wmin,W ] and w ∈ [wmin, wmax] it holds that:

a1 · f(x+ w)− ξ · f(w) ≤ 1

w
·
∫ x+w

x
f(t)dt ≤ a2 · f(x+ w)− ξ · f(w)

and for all x ∈ [wmin,W ]:

b1 · f(x)− ξ · fmin(x) ≤ 1

w
·
∫ x

0
f(t)dt ≤ b2 · f(x)− ξ · fmax(x)

where wmin is the smallest weight of a player in the congestion game, wmax the
maximum weight, W the sum of all weights,fmin(x) = miny∈[wmin,x] f(y) and
fmax(x) = maxy∈[wmin,x] f(y).

A congestion game is {(a1,j , a2,j , b1,j , b2,j)}j∈J -good if for any resource e ∈ E
there exists a non empty set Je ∈ J and for each j ∈ Je there exists λe,j ≥ 0 such
that:

fe(t) =
∑
j∈Je

λe,j · fj(t)

where fj(t) is a (a1,j , a2,j , b1,j , b2,j)-good function.

We can now see that function:

φe(I) =

∫ wI

0
fe(t) · dt+ ξe ·

∑
i∈I

wi · fe(wi)

where ξe is a constant that complies with the definition of a good function, is an
equation that satisfies lemma 5.3.6. Thus a {(a1,j , a2,j , b1,j , b2,j)}j∈J -good game

has an (a, b)-equilibrium where a = maxj∈J
a2,j
a1,j

and b =
maxj∈J b2,j/a1,j
minj∈J b1,j/a1,j

.

Also the approximate potential function of this game is the following:

Φ(S) =
∑
e∈E

1

a1,e
· φe(Ne(s))

59



5.3.6.1 Fair Cost Sharing

A really interesting application for us when we have cost sharing latencies.
Suppose a congestion game where wmin = 1 (can be achieved with scaling if neces-
sary) and latency functions fe(x) = Fe

x where Fe ≥ 0. We can easily see that those
functions can be described as linear combinations of the function f(x) = 1

x so we
will focus on that and the outcomes will be transferable to the more general case.

However in order to compute an approximate potential function for this prob-
lem we need to integrate the cost function which can not be done in this case.
However since the minimum amount of demand that can pass through a resource
is wmin = 1 it is equivalent to consider the following latency:

f(x) =

{
1
x x ≥ 1

λ 0 ≤ x ≤ 1

This latency function is (a1, a2, b1, b2)- good for:

a1 = 1, a2 = max

((
1 +

1

wmax

)
· ln(1 + wmax), ln(wmax) + λ

)
,

b1 = λ, b2 = ln(W ) + λ.

In short to prove this we can chose ξ = 0 which leads us to φe(x) = ln(x) which
in turn proves the necessary bounds.

Using the above it is easy to see using lemma 5.3.6 that this congestion game
has an (a, b)-equilibrium where:

a = max

((
1 +

1

wmax

)
· ln(1 + wmax), ln(wmax) + λ

)
b = 1 +

ln(W )

λ

The constant λ is one we can chose depending on the problem at hand and
serves as a trade-of between the approximation guarantee of the equilibrium and
the impact of the equilibrium on the social welfare.

5.4 Cost Sharing Games

Cost Sharing games is a subcategory of congestion games. In those games the
cost of using an edge is evenly distributed among all players. So in the instances
we will encounter each edge has a cost ce and if x amount of demand is using that
edge then its cost for each unit of demand is ce

x . This cost sharing mechanism is
intuitive and abides to Shapleys value [87].

60



5.4.1 Price of Stability

First we will try to find an upper and lower bound for the Price of Stability
for the unweighted case. This bound was first introduced by Anshelevich et al. [8]
and we will analyze their examples and proofs. Although their proofs are based
on directed graphs, work has also been done for undirected graphs [38].

5.4.1.1 Lower Bound

Consider the instance depicted in figure 5.2. We have k unweighted demands
on s that want to be routed to the destinations t1, t2, ..., tk. The optimal solution
would be for every one to use the edge of cost 1 + ε. In this instance every player
would experience a cost of 1+ε

k . However one player will find it more profitable
to deviate and use the edge of cost 1

k . It becomes evident that the players will
deviate one by one until they all use an edge of the form s, ti. This is the only
Nash Equilibrium in this example. The cost that is paid in the equilibrium is
H(k) =

∑k
i=1

1
i = Θ(log(k)). While the best possible solution paid a cost of 1 + ε.

For ε→ 0 we get an H(k) Price of Stability.

Figure 5.2: A Cost Sharing Instance with PoS O(log(n))

5.4.1.2 Upper Bound

This game since it is unweighted has a potential function which is Φ(S) =∑
e∈E

∑xe
x=1 fe(x) where fe(x) = ce

x . It is obvious that for any flow S with cost
CS we have CS =

∑
e:e∈S ce ≤

∑
e∈S ce +

∑
e∈E

∑xe
x=2

ce
x =

∑
e∈E

∑xe
x=1

ce
x . Thus

CS ≤ Φ(S). Also we have that Φ(S) =
∑

e∈E
∑xe

x=1
ce
x =

∑
e∈E ce

∑xe
x=1

1
x =∑

e∈E ce ·H(xe) ≤ H(k) ·
∑

e∈S ce = H(k) · CS where k is the number of players

in the game and H(k) =
∑k

i=1
1
i . So we end up with the following inequality:

CS ≤ Φ(S) ≤ CS ·H(k)

Suppose we have an optimal flow to the problem S∗. We know that the flow for
which Φ takes its minimum value is a Nash Equilibrium. Lets call S that flow that

61



minimizes the potential function. We have the following CS ≤ Φ(S) ≤ Φ(S∗) ≤
H(k) ·CS∗ . Thus we have proven a matching upper bound on the price of anarchy
for any possible Cost Sharing game.

5.4.2 Computing Minimum Potential Nash Equilibria

In their work Chekuri et al. [24] provide a Linear Programming alogorithm
that computes a Nash Equilibrium in cost sharing games. However, there is a
key difference to the cost sharing game we have seen so far. The cost that each
player pays for using an edge differs in this setting than the ones we have examined
earlier. Also here demands are able to split their flow in order to achieve smaller
latency.

We will first consider the unweighted case. In their setting they suppose that
player i sends a fraction fe,i of his demand through edge e. Without loss of
generality we can assume that fe,1 ≤ fe,2 ≤ ... ≤ fe,ne ≤ 1 where ne is the total
amount of players routing non-zero flows through e. Also we assume that fe,0 = 0.

Then player i pays cie = ce ·
∑i

k=1
fe,k−fe,k−1

ne−k+1 cost for using edge e. Notice that the
total cost paid for e is fe,ne · ce. This means that the whole cost of edge e is not
paid. This subtle difference allows them to come up with a potential function for
this game which is the following:

Φ(S) =
∑
e∈S

ne(S)∑
j=1

ne(S)+1−j∑
i=1

ce ·
fe,j − fe,j−1

i


Now from their original graph G = (V,E) they create a new graph G′ = (V,E′)

in which they take each edge e ∈ E and create n copies e1, e2, ..., en where n is the
total amount of demands. The cost of edge ei is ce

i . We also denote f ip the amount
of flow that demand i send through path p. Then we can construct the following
LP formulation:

min
∑
e∈E

n∑
j=1

(
j∑
i=1

ce · xej
i

)
(5.1)

s.t.
∑
p

f ip ≥ 1 ∀ commodities i (5.2)∑
ej∈p

f ip ≤ xej ∀ edges e, copies j, commodities i (5.3)

n∑
i=1

∑
ej∈p

f ip = j · xej ∀ edges e, copies j (5.4)

0 ≤ xej ≤ 1, f ip ≥ 0 (5.5)

62



Note that there is an exponential lumber of variables, however it can be solved
in polynomial time via the dual program using the Ellipsoid algorithm as stated
in [24]. Afterwards they show that flow in G′ produced by the linear program can
be transformed to a solution of minimum potential in G. Later they also present
a generalization of the algorithm for weighted games.

5.5 Edge Sparsification Techniques

As we have already seen in 5.2.1 detecting and efficiently eliminating instances
of the Braess’s Paradox in networks is NP -hard. Is there a way to escape Braess’s
Paradox under mild assumptions? The answer is yes and this can be achieved
through sparsification techniques. Essentially what we are going to show in this
section is that in any network under specific assumptions there is at least one
subnetwork that emulates the best subnetwork with great accuracy and the total
amount of paths used is small enough that we can perform exhaustive search in
order to find it. This will become more evident once we analyze the two techniques
one of which is based on Althöfer’s Lemma and the other one is based on an
approximate version of Caratheodory’s theorem.

5.5.1 Preliminaries

We are going to use in this section the definition and notations of Fotakis et
al [43]. We have a selfish routing instance that consists of a network G = (V,E),
a source and a sink vertex s and t respectively, a continuous, differentiable and
convex latency function le for each edge e ∈ E and a traffic rate r that wants to
be routed from source s to the sink t. Let n = |V |, m = |E| and P denote the set
of simple s − t paths in G. We will call any subgraph H(V,E′) obtained from G
by deleting edges, a subnetwork.

A flow f specifies an amount of demand fp that is routed through each different
simple path in P . A flow is feasible if

∑
p∈P fp = r. Also we will call fe =

∑
p:e∈p fp

the amount of flow that passes through each edge e ∈ E. The latency of a path p
under flow f is lp(f) =

∑
e∈p le · (fe). For a flow f let Ef = e ∈ E : fe > 0 be the

set of edges that are being used by flow f and Gf = (v,Ef ) the subnetwork of G
corresponding to f .

We will assume that there is an infinite amount of players in source s that
selfishly want to route their infinitesimal demand to the sink t. A flow f will
be at Nash equilibrium if no infinitesimal player can deviate from the flow and
end up with a smaller latency (i.e. for every path p where fp > 0 it holds that
lp(f) ≤ lp′(f) where p′ is an arbitrary path). Therefore all players incur a common
latency in a Nash flow f which we will call L(f).

63



Finally, we will call an ε-Nash flow, a flow f such that for every path p with
fp > 0 it holds that lp(f) ≤ lp′(f) + ε where p′ is an arbitrary path.

In the best subnetwork problem we will be given an instance of selfish routing
and we will have to find a subnetwork HB such that L(HB) ≤ L(H) for any other
subnetwork H. Where L(G) is the common latency at a Nash equilibrium in G.

5.5.2 Althöfer’s Lemma

For this technique Fotakis et al [43] used a Probabilistic Method that was based
on the proof of Althöfer’s lemma [5]. The following lemma will help us find an
approximate solution for the best subnetwork problem.

Lemma 5.5.1. Suppose we have an instance of a graph G = (V,E) and a feasible
flow f . Then for any ε > 0, there exists a feasible flow f̂ that assigns positive
traffic to at most b log(2·m)

2·ε2 c+ 1 paths, such that for any e ∈ E, |f̂e − fe| ≤ ε.

The proof employs the following idea. We view flow f as a probability distri-
bution over the paths. We perform k > log(2·m)

2·ε2 rounds where we pick a path at
random using this probability distribution. We assign flow at each path propor-
tional to the amount of times that we have selected that path during the k rounds.
We will show that there is a non negative probability that we end up with a flow
that satisfies the guarantees of the lemma. Then such flow exists.

More formally let k = b log(2·m)
2·ε2 c+ 1. We can assume that traffic rate is 1 (this

can be achieved with scaling if necessary).Let µ = |P | where P is the set of paths.
We have Q1, Q2, ..., Qk which are independent random variables where for each
j ∈ [µ] P[Qi = j] = fj . We have Fe,i = (1 if e ∈ Qi else 0). Let Fe = 1

k ·
∑k

i=1 Fe,i.
We can see that E[Fe] = fe.

We can now apply Chernoff-Hoeffding bound ([61]) which leads us to the fol-
lowing inequality:

P[|Fe − fe| > ε] ≤ 2 · e−2·ε2·k <
1

m

Where the second inequality holds because of the value of k we have already chosen.
Finally by applying union bound over all edges we conclude that P[∃e : |Fe−fe| >
ε] < m · 1

m ⇒ P[∀e : |Fe−fe| ≥ ε] > 0. Thus a feasible flow with the characteristics
of the lemma exists.

Now using this lemma it is easy to prove the following theorem.

Theorem 5.5.2. Suppose we have an instance of selfish routing on a network
G = (V,E) where le(x) = ae · x + be and r = 1. Let a = maxe∈E{ae} and HB

be the best subnetwork in G. Also let d1, d2 > 0 be constants such that |P | ≤
md1 and |p| ≤ logd2 m for all p ∈ P . Then for any ε > 0 we can compute in

time mO(d1·a2·log2·d2+1(2·m)/ε2) a flow f̂ that is an ε-Nash flow on Gf̂ and lp(f̂) ≤
L(HB) + ε

2 for all paths p in Gf̂ .

64



To prove this theorem we set ε1 = ε
2·a·logd2 (2·m)

. We then use lemma 5.5.1 to

state that there exists a flow f̂ on HB such that |fe − f̂e| ≤ ε1 that uses at most

k = b log(2·m)
2·ε21

c+1 paths, where f is the flow of HB. Also f̂e = 0 for any edge not in

HB. Since |fe− f̂e| ≤ ε1 ⇒ |le(f̂)− le(f)| ≤ a ·ε1. Summing this inequality over all
edges of a path p we have that |lp(f̂)− lp(f)| ≤ a · logd2(2 ·m) · ε1 = ε

2 . Finding this

path can be done through exhaustive search over the mO(d1·k) different possible
combinations.

5.5.3 Approximate Caratheodory’s Theorem

We can achieve similar results with the one analyzed in 5.5.2 by using an
approximate version of Caratheodory’s Theorem first stated by Barman [13].

The Caratheodory’s theorem in short states that if a point x lies in the convex
hull of a set P then x can be written as the convex combination of d+ 1 elements
of P where d is the number of dimensions in which set P exists.

The approximate Caratheodory’s Theorem introduced by Barman [13] is the
following:

Theorem 5.5.3. Let X be a set of vectors X = x1, ..., xn ⊂ Rd and ε > 0.

For every µ ∈ conv(X) and 2 ≤ p ≤ ∞ there exists an O(p·γ
2

ε2
)-uniform vector

µ′ ∈ conv(X) such that ‖µ− µ′‖p ≤ ε, where γ = maxx∈X ‖x‖p and a vector is k-
uniform when it can be expressed as an average of k vectors of X with replacements
allowed.

We will use this theorem in the equivalent way we used lemma 5.5.1 to produce
an sparse ε-Nash flow.

Theorem 5.5.4. Suppose we have an instance of selfish routing on a network
G = (V,E) where le(x) are a-Lipschitz. Let HB be the best subnetwork in G. Also
let |p| ≤ M for all p ∈ P . Then for any ε > 0 there exists a flow f̂ that uses

O(a
2·M3·r2
ε2

), is an ε-Nash flow on Gf̂ and lp(f̂) ≤ L(HB) + ε
2 for all paths p in

Gf̂ .

To prove this we are going to use theorem 5.5.3. First of all for each path
p ∈ P we create a vector xp of |E| dimension (i.e. xp = (xp,1, xp,2, ..., xp,|E|)). We
set xp,e = r if e ∈ p otherwise we set it to 0. Let X = {x1, x2, ..., x|P |} be the the
set of vector in theorem 5.5.3. It is obvious that any feasible flow lies in the convex
hull of X. We can also see that γ = maxx∈X ‖x‖2 =

√
r2 ·maxp∈P |p| ≤

√
r2 ·M .

Let o ∈ conv(X) be the equilibrium flow of HB. Without loss of generality
we can assume that oe > 0 for all e ∈ E(HB). Using theorem 5.5.3 we can

see that there exist k = O(M ·r
2

ε21
) paths of HB (i1, i2, ..., ik) such that for flow

f =
∑k

j=1

xij
k it holds that ‖o−f‖2 ≤ ε1 ⇒ |oe−fe| ≤ ε1 ⇒ |le(o)−le(f)| ≤ a·ε1 ⇒

|lp(o)− lp(f)| ≤ a ·M · ε1. Choosing ε1 = ε
2·a·M we end up with lp(f) ≤ L(HB)+ ε

2 .

65



Using the above we can see that with exhaustive search we can find subnetwork
H and an ε-Nash flow g on H such that L(g) ≤ L(HB) + ε. The number of steps

during this exhaustive search is |P |O
(
a2·M3·r2

ε2

)
.

66



Chapter 6

Facility Location for Selfish
Commuters

In this section we will analyze the work that we have done regarding Facility
Location problems with latencies that depend on the amount of demand using
each edge. This twist to the existing facility location problems creates a plethora
of interesting side problems that we are going to address one way or another in
this section. Some of these questions are: can we find the optimal solution for
this problem? Is there some kind of structure that the optimal solution follows?
If players pay for the facilities with a cost sharing mechanism, can we compute a
Nash equilibrium and can we bound the Price of Anarchy?

We begin our analysis by examining Local Search algorithms and provide an
example that shows that the local ratio is really big for our problem. We continue
by examining Linear Programming techniques. We first prove a theorem concern-
ing the structure of the optimal solution of our problem that could be used as
a restriction in the LP formulation, however we show that even with this added
restriction the integrality gap is really big for our problem. We continue by using
probabilistic techniques analyzed in section 4 and we provide a O(log|S|) approxi-
mation algorithm for instances with decreasing latency functions. We continue by
analyzing the problem from a game theoretic point of view. We compute approxi-
mate Nash Equilibria, we provide matching upper and lower bounds for the Price
of Anarchy and we show how we can use sparsification techniques to solve a simpler
version of our problem. Finally, we provide a counter example that captures the
difficult essence of the more general problem and we show through this example
why sparsification techniques fail in the more general instance.

6.1 Formulation of the Problem

We are now going to formally state the Facility Location for Selfish Commuters
problem. We are given a graph G = (V,E) along with a set of source vertices

67



S ⊆ V . We are given for every edge e ∈ E a latency function le : < 7→ <. We are
also given a weight function w : S 7→ < on every source. Finally, for each node
i ∈ V we are given a facility cost fi.

Our objective is to open a set of facilities F and route the demands to those
facilities while minimizing the following expression:∑

e∈E
xe · le(xe) +

∑
j∈F

fj

Where xe is the amount of demand that is being transferred through e.

6.2 Why Local Search does not Work in our

Setting

One natural idea would be to try and solve this problem using local search
algorithms. Recall in section 3.5 we analyzed local search algorithms where we
had constants as the edge latencies and a general family of functions that repre-
sented the facility cost. Now we want constant costs regarding the facilities and
polynomial latencies on the edges. However it is not obvious how those ideas can
be used in our setting.

Consider the following example for instances where the latency of an edge is a
polynomial of bounded degree d. Since in our problem we have constant facility
costs we are going to examine local steps that do not take into consideration the
amount of demand each facility accommodates. We are going to use the open local
step where one facility is opened and the demand is rerouted optimally, the close
local step where an open facility is closed and the demand is rerouted optimally
and the swap where an opened facility is closed while a closed facility is opened
simultaneously and the demand is the rerouted optimally.

In the example illustrated in figure 6.1 we have nodes c1, c2, ..., ck all having
unit demand. The cost of opening a facility on oi is ε and the latency of edges
(ci, oi) are constant and equal to 1. We also have another possible facility node
S with cost of opening a facility (k − 1)d+1. The latency of edges e = (ci, S) is
le(x) = xd. The optimal solution is opening all oi facilities with cost k · ε and route
each demand cj to its corresponding facility oj . Now consider the following locally
optimal solution where only S is open. Obviously we can not close S. We can not
open oi because it would not change the routing cost and just add an extra ε to
the facility cost. Also, we can not swap S with oi. If we did this then the facility
cost would be just ε but the routing cost would be 3 · (k− 1) + 1 + (k− 1) · (k− 1)d

since all demand need to be routed at oi. Thus having S as our only facility is a
locally optimal solution with a local ratio of O(kd).

Consider also the following argument for any set of local steps in this setting.
Recall that in local search algorithms, to prove the approximation guarantees

68



Figure 6.1: A counter example for the use of Local Search

we usually employ the following analysis. We first assume that we have found
a locally optimal state. This means that any local step will increase the total
cost. Thus we state one by one local steps that involve the optimal solution.
We end up with inequalities that have both costs concerning the locally optimal
solution, and costs of the universally optimal solution. Summing all of those
inequalities and rearranging the terms yield a bound of the local optimal state
as some multiplicative factor of the universally optimal solution. However it is
really difficult to use this reasoning with our problem. Suppose we state a list
of local steps and we want to find out information concerning a locally optimal
solution. We will have to use the fact that no local step can improve the cost
of the locally optimal state in order to bound its cost. However we need good
estimations concerning the new routing costs once a local step is made. Since the
edge latencies depend on the amount of traffic they receive, then we can not come
up with an estimate concerning the routing cost while taking into consideration
only demands that are being affected due to the local step. In other words, in
order to estimate the increase or decrease in the total latency cost we need to take
into account all of the demand that have passed through each edge up until we
reached our final state. This fact increases the complexity and new techniques
must be created in order to tackle this problem.

69



6.3 Why Linear Programming does not Work

in our Setting

A second natural idea would be to find some underlying structure of the optimal
solution in order to come up with an LP-rounding or primal-dual algorithm. To
do so in this section we will try and simplify our problem. We will assume that
the facility cost is the same for all nodes and equal to B (i.e. fj = B, ∀j ∈ V ). We
will also assume that our latency functions are linear functions with no negative
coefficients (i.e. le(x) = a · x+ b where a, b ≥ 0, ∀e ∈ E).

6.3.1 Proving a Lower Bound on the Demand of each
Facility

We conjecture the following. For linear latencies and constant facility costs, in
an optimal solution each open facility serves at least mins∈S ws demand (it is easy
to show that for the more general case this conjecture does not hold). Although
we were not able to prove or disprove this conjecture we were able to come up with
the following lemma that approximates this conjecture.

Lemma 6.3.1. There exists a flow for the FLSC problem with cost at most 4∗OPT
where an open facility serves at least mins∈S

ws
2 demand. Where OPT is the cost

of the optimal flow.

Proof. Suppose we have the optimal solution with cost OPT . Lets call F ∗ the
set of open facilities and D ⊆ F ∗ the set of open facilities that receive less than
mins∈S

ws
2 flow. Lets also call P si the amount of undivided flow that demand s

sends through path i in the optimal solution. We will also call End(i) the facility
at which path i terminates. Obviously if End(i) ∈ D then P si <

ws
2 . For every d

where
∑

i:End(i)∈D P
s
i <

ws
2 we can re-route those flows towards facilities that are

not in D and at most double each flow P si where End(i) /∈ D.

Now lets call S′ ⊆ S the demands where
∑

i:End(i)∈D P
s
i ≥ ws

2 and lets call

D′ ⊆ D the facilities in D that receive flow from demands in S′. Note that
|S′| < |D′|. That is because if |S′| ≥ |D′| the total amount of flow that D′ receives
from S′ is

∑
s∈S′

∑
i:End(i)∈D P

s
i >

∑
s∈S′

ws
2 ≥ |S

′| ∗mins∈S
ws
2 ≥ |D

′| ∗mins∈S
ws
2

which means that at least one facility in D′ receives flow more than mins∈S
ws
2

which is a contradiction to our original hypothesis. Thus it holds that |S′| < |D′|.
So we perform the following process. For every demands s ∈ S where

∑
i:End(i)∈S

P si < ws
2 we route all of its flow to facilities /∈ D augmenting those P si where

End(i) /∈ D at most two times. This in turn augments the flow on each edge at
most two times. After this move any facility that receives no demand is closed.
Thus the only facilities inD that remain are the one that are also inD′. Those facil-
ities receive demand only from demands in S′. However we know that |D′| > |S′|.

70



So we can close all facilities in D′ and open one facility on each demand in S′

without augmenting the facility cost.

The only thing left to answer is how will we route the demands of s ∈ S′

after a facility opens on it. A naive answer would be that we could send all of s
demand to its facility. However there might has been a P si > 0 with End(i) /∈ D
which when removed can make the amount of demand received by that facility
drop to an amount less than mins∈S

ws
2 compromising the goal of this process.

What we actually do for s ∈ S′, is route
∑

i:End(i)∈D′ P
s
i (which is greater than

ws
2 ≥ mins∈S

ws
2 ) to the facility opened on s and leave the rest of its flow untouched.

To recapitulate, after this process the facilities /∈ D receive more or equal to
the amount of demand they received before our process begun and thus obey the
restrictions of the lemma. All of facilities ∈ D have closed. Facilities on S′ have
opened that receive more than half of the demand of each s ∈ S′. The total
amount of facilities have not been augmented and the flow on each edge has at
most doubled. Thus the resulted state obeys the restrictions of the lemma and has
a routing cost at most 4 times the routing cost of the optimal solution.

6.3.2 The Integrality Gap

Consider the following natural formulation of the problem:

min
∑
e∈E

(ae · x2
e + be · xe) +

∑
e∈F

ze ·B

s.t.
∑

e∈δ−(v) xe =
∑

e∈δ+(v) xe, ∀v ∈ V (flow conservation)

xe ≤ ze ·
∑

s∈S ws, ∀e ∈ F (use only built infrastructure)
xe = ws ∀e ∈ S
ze ∈ {0.1} ∀e ∈ F

In the above formulation we treat demands as edges that lead into the graph
and carry already ws demand, and facilities as edges that leave from the graph. The
variable ze becomes 1 when the corresponding facility is opened and 0 otherwise.
Thus the second inequality of our restrictions ensures that only open facilities are
being used. This linear program has an integer restriction and thus can not be
solved in polynomial time. However this restriction is essential to the formulation.
Consider the relaxation where we just demand that 0 ≤ ze ≤ 1. This problem
can be solved in polynomial time however its optimal solution offer no valuable
information because of the following observation.

When relaxing the integrality constraint on ze, since we have a minimization
problem ze will receive the smallest possible value and thus we will have xe = ze ∗∑

s∈S ws ⇒ ze = xe∑
s∈S ws

⇒
∑

e∈F ze∗B =
∑

e∈F
xe∑
s∈S ws

∗B = B∑
s∈S ws

·
∑

e∈F xe.

However all demands must be served by a facility so
∑

e∈F xe =
∑

s∈S ws ⇒
B∑
s∈S ws

·
∑

e∈F xe = B. This tells us that no mater how many facilities are opened

71



and no matter how the demand will be arranged to them, the facility cost will
always be equal to B. So in order to minimize the routing cost a fractional facility
will be opened at every demand bringing the routing cost down to zero. Since the
fractional problem returns always the same solution with the same cost, it is of
no use for a better approximation than the naive. In other words the intergrality
gap of this non-linear program is O(n). Our problem in general becomes really
easy when intergrality constraints are remove and thus LP based solutions have
big integrality gaps and thus the inherently cannot provide valuable information.

6.4 Network Design Techniques

In this section we will examine how probabilistic techniques analyzed in previ-
ous sections can be used to solve our problem. For this reason we will examine the
k-median variant of our problem (i.e. there is no facility cost and we can open at
most k facilities) and we will demand our latency functions le to be good. We call
a function l : < 7→ < good if it is non-negative, decreasing and also x · l(x) is an
increasing concave function. We will call this variant of our problem the Concave
FLSC problem or CFLSC for short.

Meyerson et al [79] as stated in section 4.4.4 have shown that their problem can
generalize instances of concave cost functions that can be seen as many parallel
linear cost functions. Our algorithm is based on the work of [79] however their
algorithm is heavily based on the notion that their cost functions are linear. We
introduce a novel matching technique that works for much more general latency
functions.

6.4.1 The Optimal Solution is a Forest

Let o be the flow in the optimal solution. A key property of the optimal solution
on which we base our algorithm is that its flows form a forest on the graph. In
other words the optimal solution that opens k facilities consists of flows that do
not form circles thus they can be seen as k trees rooted in each one of the opened
facilities. This property is ensured by the fact that our latency functions are good.

Lemma 6.4.1. There exists an optimal flow to the CFLSC problem where there
are no circles in which all demand flows in one directions.

Proof. Since x · le(x) is increasing, we could simply decrease the flow on this
circle leading in a feasible solution and the cost payed for each edge can not be
increased.

Lemma 6.4.2. There exists an optimal flow to the CFLSC problem where there
are no circles in which there are edges with clockwise flow and edges with counter-
clockwise flow.

72



Proof. This proof is a little bit more involved. We start with the observation that
all we need to prove is that once flows meet they will not split until they reach a
facility. If we prove this then circles where demands flow in both directions are not
possible. However to show this we need a way to talk about the cost of demand
separately from the total cost. This is where game theory comes into play.

It is a well known fact that congestion games for the case where demand is
infinitesimally small are potential games. The potential function of any such game
is the following:

Φ(f) =
∑
e∈E

∫ fe

0
le(t)dt

Where f is as feasible flow and fe is the corresponding flow on edge e. This function
has the well known property that its local minima are Nash Equilibria. Thus if we
create a game on the same graph with new latency functions ˆle(x) = (x · le(x))′ the
optimal solution of our original game is going to be a Nash Equilibrium in the new
one. Where f ′(x) is the first derivative of f(x). This holds because the potential

function of the new game will be Φ′(f) =
∑

e∈E
∫ fe

0 (t · le(t))′dt =
∑

e∈E fe · le(fe)
and the global minimum of this function is a Nash equilibrium for the new game
but also minimizes the cost function of our original game.

Now using this knowledge we can examine a Nash equilibrium in a game with
ˆle(x) = (x · le(x))′ as its latencies. Since x · le(x) is concave ˆle(x) is decreasing.

Lets suppose that we have some flow that splits to paths P1 and P2 in a Nash
Equilibrium. Obviously the two paths must have equal cost under that flow oth-
erwise it would not be a Nash Equilibrium. However since latencies are decreasing
the total cost of demand choosing P1 would not increase if we moved them to
path P2 and thus the potential function would not increase. Lets call f∗ the flow
that minimizes Φ′(x). From the above we can conclude that there exists a flow
f where Φ′(f∗) = Φ(f) and in f demands do not split once they have met. It
is important to note that although our problem treats demands as unsplittable
we have proven the lemma for splittable flows. However any unsplittable flow is
a feasible splittable flow, and since we have proven that splittable flows actually
remain unsplittable then the proof works for our instance also.

From lemmas 6.4.1 and 6.4.2 it follows that:

Theorem 6.4.3. There exists an optimal flow to the CFLSC problem that has no
circles (i.e. is a forest).

6.4.2 It Generalizes the Cost-Distance Problem

Theorem 6.4.4. The CFLSC problem is a generalization of the Cost-Distance
problem [79].

73



Proof. We need to prove two things. One, that our latencies generalize the laten-
cies of the Cost-Distance problem. Two, that the k-median problem we solve is
more general that having one sink.

First of all it is easy to show that our latencies generalize those of the Cost-
Distance problem. Recall that in the cost distance problem we have a cost metric
c(e) and a distance metric l(e) for each edge e. The total cost incurred by one
edge on a flow f is c(e) + l(e) ·

∑
s:e∈Ps ws where Ps is the route chosen for demand

s ∈ S in f . We can achieve the same cost by using the following latency function:

le(x) =

{
c(e)
x + l(e) if xe > mins∈S(ws)
c(e)

mins∈S(ws)
+ l(e) if xe < mins∈S(ws)

Note that for x > mins∈S(ws) this function has all the properties we want. For
x < mins∈S(ws) we do not really care because no flow less than mins∈S(ws) can
exist and we just want le(0) to be bounded so as to pay zero cost when no flow
passes through e.

Now assume we have a graph G on which we want to solve the cost distance
problem. Lets call t the sink of G. We can solve the k-median problem with k = 1
and add an extra demand on t of weight equal to the sum of weights of all other
demands (i.e. wt =

∑
s∈S ws). Obviously one possible solution is to open the

facility on t thus there is a feasible solution that achieves the same cost as the cost
distance problem. Now assume that the optimal solution of the 1-median problem
opens the facility at an arbitrary vertex v. We can obviously move the facility on
t and route all of the demand to v and then using the path that t used send all
of the demand together at t without augmenting the cost. Notice that demands
that meet the flow of t earlier than v for example on vertex u, they can be sent to
u and then follow the rest of the demand to t without augmenting the total cost
since x · le(x) is increasing.

Recall that it was shown from Chuzhoy et al. [30] that the Cost-Distance
problem is Ω(loglog|S|) hard to approximate. Thus, this hardness also holds for
our more general version.

6.4.3 The Algorithm

The algorithm is influenced by the algorithm proposed in [79]. However their
matching mechanism and analysis are tailored made to the fact that the total cost
incurred by each edge is linear. We introduce a novel matching mechanism which
in turn complicates the resulting analysis. For the algorithm we will need the
following distance metric: g(u, v, w) =

∑
e∈Pwu,v w · le(w) where Pwu,v is the closest

path from u to v with respect to the distance metric le(w) (i.e. the shortest u, v
path if demand w was traveling alone on the network).

1. We initialize S0 = S, w0,s = ws and i = 0.

74



2. While |Si| > k:

(a) For every pair u, v ∈ Si findKi(u, v) = minz∈V {g(u, z, wi,u)+g(v, z, wi,v)
+

wi,u
wi,u+wi,v

· g(z, u, wi,u + wi,v) +
wi,v

wi,u+wi,v
· g(z, v, wi,u + wi,v)}.

(b) Perform a matching on Si with respect to the costs Ki while at the
same time leaving k nodes unmatched (if not possible then k − 1).

(c) Set Si+1 = {}.

(d) For each matching u, v:

i. Send both demands to the node z that minimized the expression
of step 2(a).

ii. Choose u with probability
wi,u

wi,u+wi,v
, otherwise chose v. Without

loss of generality we will assume that we chose u.

iii. Send the combined wi,u + wi,v demand back to u, add u to Si+1

and set wi+1,u = wi,u + wi,v.

(e) Add unmatched nodes to Si+1

(f) Set i← i+ 1

3. We return as facilities the k nodes that are in Si and as flows the ones
dictated by the above procedure.

6.4.4 The Analysis

For our analysis we introduce the metric Ciu to be the total cost payed due to the
movement of player u in phase i. The total cost payed in phase i is Ci =

∑
s∈Si C

i
u.

It is not difficult to see the following lemma.

Lemma 6.4.5. The algorithm presented terminates after O(log|S|) phases.

If we prove that in each phase of the algorithm the expected cost payed (i.e.
E[Ci] is at most the cost of the optimal solution, the combining this fact with
lemma 6.4.5 show that our algorithm is an O(log|S|)-approximate algorithm for
the CFLSC problem. We will first show that this is true for the first phase and
then we will show that the expected cost of each phase is less or equal to the cost
of the first phase.

6.4.4.1 Phase 0

Phase 0 is the first phase of our algorithm where no demands have been aggre-
gated yet. We begin with the following lemma which is a generalization of lemma
4.2 [79].

75



Lemma 6.4.6. Suppose a set of sources S′ ⊆ S that are routed at a facility in
node r in the optimal solution. Lets call T = (E, V ) the tree that corresponds to
the flows of nodes in S′ to r. Then there exist a matching like the one done in
phase 2(a) of our algorithm where demands only use edges that they use in the
optimal flow and at most one source is left unmatched.

Proof. For every s ∈ S′ we take its path towards r at T until it meets with the
path of another source. We will call the vertex in which the two paths merge
a level one meeting point. We move all sources at their corresponding level one
meeting points. In each meeting point with an even number of demands we match
them arbitrarily until no demand is left unmatched. In each meeting point with
an odd number of demands we do the same thing however now there will be one
demand left out. We continue along the path of those level one meeting points
with an unmatched demand until their path merges with the path of another level
one meeting point. The vertices in which those level one paths meet we call level
two meeting points. We continue along the same line of thought until we reach
our final meeting point r where at most one demand will be left unmatched.

It is obvious that in our algorithm the above matching is possible and we can
choose as z in step 2(a) the respective meeting point described by the proof of
lemma 6.4.6. Thus to bound the cost of our matching we just need to bound
the cost of sending demands to those meeting points and the expected demand of
sending them back again. The first half is accomplished with the following lemma.

Lemma 6.4.7. The cost of sending all demands to their respective meeting points
is less than the cost of the optimal solution.

Proof. From lemma 6.4.6 there is a subtle implication that becomes very useful
right now. Each edge is traversed by demands that traverse that edge in the
optimal solution. More specifically suppose that an edge e ∈ E is traversed by as
set S′′ of demands. In our matching only one of this demands traverses that edge.
Thus the amount of flow f ′e traversing edge e in our matching is less or equal than
the amount of flow fe that traverses e in the optimal solution. And since x · le(x)
is increasing we have that f ′e · le(f ′e) ≤ fe · le(fe). Summing over all edges we get
that the total cost is less than the optimal cost.

We will now state a lemma that holds for any phase i of the algorithm.

Lemma 6.4.8. The expected cost of routing demands back from their meeting
point to the selected source is less than or equal to the cost paid for sending them
to the meeting point.

Proof. Suppose we are at phase i. Also lets assume that a1, a2, ..am are the edges
along the path of u to the meeting point and b1, b2, ..bn the ones of v. Then the
expected cost E[Cback] of sending them back to a source is the cost of sending them
to u times the probability of choosing u plus the probability of sending them to v

76



times the cost of sending them there. In other words we have that the E[Cback] =
(wi,u +wi,v) · wi,u

wi,u+wi,v
· (la1(wi,u +wi,v) + la2(wi,u +wi,v) + ...+ lam(wi,u +wi,v)) +

(wi,u+wi,v)· wi,v
wi,u+wi,v

·(lb1(wi,u+wi,v)+lb2(wi,u+wi,v)+...+lbm(wi,u+wi,v)) ≤ wi,u ·
(la1(wi,u)+la2(wi,u)+...+lam(wi,u))+wi,v ·(lb1(wi,v)+lb2(wi,v)+...+lbn(wi,v)) which
is exactly the cost of sending those demands to the meeting point. The inequality
holds since the demands are positive and latency functions le are decreasing.

From lemmas 6.4.7 and 6.4.8 we can see that C0 ≤ 2 ·C∗ where C∗ is the total
cost of the optimal solution.

6.4.4.2 Phase i

The only thing left to do is to bound the cost of sending demands to their
meeting points in phase i of the algorithm. This can be done using the following
lemma.

Lemma 6.4.9. The expected cost of routing demands to their meeting points in
phase i is less than the cost of the optimal solution.

Proof. Suppose at phase i that in a node u a set S′′u of demands has been gathered
with a total demand Wu =

∑
s∈S′′u ws. The probability of u having this demand

is wu
Wu

. This claim is easy to see because for u to have that demand it must

have been selected in all phases with a total probability of wu
wu+wv1

· wu+wv1
wu+wv1+wv2

·
wu+wv1+wv2

wu+wv1+wv2+wv3
.... We once again perform the matching described by lemma 6.4.6

with respect to weights wi,u.

We are now going to show that the expected cost of the matching described
by lemma 6.4.6 is bounded by the cost of the optimal solution. For the sake
of the argument lets call ge(x) = x · le(x) the cost payed for the usage edge e
(recall ge(x) is a increasing concave function). Suppose that a specific edge e in
the optimal solution is used by demands w1, w2, ...wk. Thus the total cost payed

for edge e in the optimal solution is ge

(∑k
j=1wj

)
. In phase i the expected cost

payed by edge e because of demand wj is the cost payed because a total demand
of weight Wwj passes through e times the probability that all of the demand with
which wj has been matched, actually passes through e. That probability can be
expressed as the probability of Wwj ending up in wj (which we have shown earlier
that is equal to

wj
Wwj

), times the probability that demand is not matched earlier in

the Tree. We will call the later probability pe,wj . Thus the expected cost payed
by edge e due to demand wj is

wj
Wwj

· pe,wj · ge(Wwj ). Also we will call pe,0 the

probability that no demand passes through e in our matching either because with

probability
∏k
j=1

(
1− wj

Wwj

)
there are no demands in the subtree underneath e

or there was an even number of demands in the subtree underneath e and thus
all demands have been matched lower in the Tree. So the total expected cost

77



of edge e is pe,0 · ge(0) +
∑k

j=1
wj
Wwj

· pe,wj · ge(Wwj ). However it is obvious that

pe,0 +
∑k

j=1
wj
Wwj
· pe,wj = 1 and ge(x) is concave, so we can use Jensen’s inequality

[64] for concave functions which leads to the following expression (Suppose Ci,e is
the cost payed in the matching of phase i by e):

E[Ci,e] ≤ pe,0 · ge(0) +
k∑
j=1

wj
Wwj

· pe,wj · ge(Wwj ) ≤

ge

pe,0 · 0 +
k∑
j=1

wj
Wwj

· pe,wj ·Wwj

 = ge

 k∑
j=1

wj · pe,wj

 ≤ ge
 k∑
j=1

wj


Where the last inequality holds because pe,wj ≤ 1 and ge(x) is increasing. This

argument concludes our proof.

Combining the aforementioned lemmas we end up with the following lemma.

Lemma 6.4.10. The routing cost of each phase is by expectation at most the cost
of the optimal solution.

Combine this lemma with the fact that our algorithm has O(log|S|) phases we
get the following theorem.

Theorem 6.4.11. The algorithm analyzed in this section produces a O(log|S|)-
approximate solution to the CFLSC problem.

6.5 Game Theoretic Analysis

In this section we look at the problem from a game theoretic point of view. In
the original network G we add an extra sink vertex t and we connect each vertex
of G with t with a cost sharing edge (i.e., an edge with latency le(x) = B

x ). We
also assume that for all other edges latencies are linear.

6.5.1 Computing Approximate Nash Equilibria

Consider the case where demands are unsplittable. We can easily find an
wmax
wmin

+ 1-approximate Nash Equilibrium. If every player uses the facility located
at their node then every player pays B where B is the facility cost. Any player
can deviate from his strategy and pay a routing cost Cr and a new facility cost
Cf . Lets call i the player that deviates and i′ the player whose facility player i
uses when he deviates. Players i new cost will be Cr + Cf where 0 ≤ Cr and

78



Cf = wi
wi+wi′

∗ B ≥ wmin
wmin+wmax

∗ B thus the maximum amount that a player can

benefit from his deviation is wmax+wmin
wmin

= wmax
wmin

+ 1. Which means that in the
unweighted version of the problem this is a 2-approximate Nash equilibrium. Also
in the case where the demand is splittable and each player has an infinitesimal
amount of demand this state is a wmax

wmin
-approximate Nash equilibrium where wmax

is the maximum amount of demand gathered at one node and wmin the minimum.
So if all nodes have the same amount of demand/traffic this is an exact Nash
equilibrium.

6.5.2 Bounding the Price of Anarchy

An interesting question is what is the price of anarchy in such games. We will
provide an upper and a lower bound for this metric.

6.5.2.1 Lower Bound

Lemma 6.5.1. The game described in section 6.5 has Price of Anarchy greater
or equal than O(n).

Proof. Consider the network shown at figure 6.2. There we have k vertices v1, v2, ..., vk,
a vertex u and a vertex r. All vertices have zero latency except edge (u, r) which
has le(x) = a · x latency where a = k−1

k2
·B − ε, B is the cost of opening a facility

and ε > 0. Also each vertex vi has demand wvi = 1.
The optimal solution would be to open a facility on u. The routing cost would

be 0 and the facility cost B. We will denote this optimal cost as C∗.
Now consider the case where only one facility is opened at r. Then all players

have a latency of a · k + B
k = k−1

k · B − ε · k + B
k = B − ε · k. Thus this state is a

Nash equilibrium because the only way each player could defect would be to open
a facility on his vertex but then he would pay a cost B > B − ε · k. The cost of
this routing is C = a · k2 +B = (k− 1) ·B+B = k ∗B. Thus the price of anarchy
of this equilibrium is PoA = C

C∗ = k = n − 2 = O(n) where n is the amount of
vertecies in the network.

Figure 6.2: A network with O(n) PoA

79



6.5.2.2 Upper Bound

We will also provide a matching upper bound of O(n) for our game.

Lemma 6.5.2. The game described in section 6.5 has Price of Anarchy that is at
most O(n).

Proof. Consider a random Nash equilibrium in the game we are considering. The
costs that we pay are either routing costs or facility costs. We will consider each
node of the network separately and show that it contributes at most 2 · B to the
total cost of the equilibrium. For each vertex that has no demand on it can either
have a facility opened on it or not and thus contributing at most B to the total
cost. For vertices that have demand on them they contribute an amount of B
cost to the total routing cost. That is, because if one demand pays more than
B for its routing cost then it can always open a facility on its node and pay less
cost contradicting the assumption that the flow is an equilibrium. Also a demand
might or might not have a facility open on it and thus contributing at most B
to the facility cost. Note that a demand might have a facility opened on it but
still prefer to use another facility because of the cost sharing mechanism. Thus
for each node we have bounded its total cost contribution by 2 · B. Thus the
total cost of an equilibrium is at most 2 · B · n. However any feasible solution
opens at least one facility thus the optimal cost is at least B. Thus its holds that
PoA ≤ 2·B·n

B = 2 · n = O(n).

From lemmas 6.5.1 and 6.5.2 we have the following theorem.

Theorem 6.5.3. The game described in section 6.5 has a O(n) Price of Anarchy.

6.5.3 The use of Sparsification Techniques

In this section we will simplify our problem even more and at the next section
we will try to provide some compelling arguments on why this is necessary. We
will consider the case where we only have one splittable demand point s and the
cost of opening a facility on each vertex of the graph differs. For this version of the
problem we will make some extra assumptions for each one of the two sparsification
techniques we will analyze. Our task will be to find as set of facilities that when
opened the facility cost plus the routing cost of the resulting Nash Equilibrium is
minimized. We will call this flow the optimal Nash flow.

6.5.3.1 Althöfers Lemma

Recall lemma 5.5.1. That lemma can be directly applied in our case. An
important detail of that lemma will play a crucial role. Recall that in the proof
we choose k paths at random and we use the flow that we want to emulate to
determine the probabilities. This means that any path that is chosen must have

80



had a non zero amount of flow. This means that in our case for any ε > 0, there
exists a feasible flow f̂ that assigns positive traffic to at most b log(2·m)

2·ε2 c+ 1 paths,

such that for any e ∈ E, |f̂e − f∗e | ≤ ε where f∗e is the amount of flow passing
through edge e in the optimal Nash flow.

Now suppose in our case that the amount of demand on the source is ws = 1
(this can be achieved through scaling if necessary). Let le(x) = ae · x + be be the
latency on our network and a = maxe∈E{ae}. Lets call f∗ the optimal Nash flow.
Also let d1, d2 > 0 be constants such that |P | ≤ md1 and |p| ≤ logd2 m for all
p ∈ P .

Using the exact same reasoning as theorem 5.5.2 we can state that we can
find in mO(d1·a2·log2·d2+1(2·m)/ε2) time a flow f̂ such that lp(f̂p) ≤ L(f∗) + ε. Where
recall L(f∗) is the common cost incurred by all paths in the Nash equilibrium.
Obviously f̂ is a ε-Nash flow. However now we are also concerned with the cost of
that flow compared with the cost of f∗.

Taking inequality lp(f̂p) ≤ L(f∗) + ε and multiplying both parts by f̂p (i.e. the

amount of flow passing through path p in f̂) we get f̂p · lp(f̂p) ≤ f̂p · (L(f∗) + ε).

Summing over all p that are being used by f̂ we get
∑

p f̂p ·lp(f̂p) ≤
∑

p f̂p ·(L(f∗)+

ε)⇒ Ĉr ≤ (L(f∗) + ε) ·
∑

p f̂p = L(f∗) + ε = C∗r + ε, where Ĉr is the total routing

cost of f̂ and C∗r is the routing cost of f∗. As we have already mentioned f̂ only
uses facilities that f∗ uses an thus Ĉf ≤ C∗f where Ĉf is the facility cost of f̂ and

C∗f is the facility cost of f∗. Thus for the total costs it holds that Ĉ ≤ C∗+ ε. So,
the following theorem holds.

Theorem 6.5.4. For a given instance of this sections problem we can find in
mO(d1·a2·log2·d2+1(2·m)/ε2) time a 2ε-Nash flow (and the set of facilities it uses) with
a total cost at most C∗ + ε where C∗ is the optimal Nash cost.

6.5.3.2 Approximate Caratheodory’s Theorem

We can achieve similar results using the Approximate Caratheodory’s Theo-
rem. Recall theorem 5.5.3 and the set of vectors X used in the proof of theorem
5.5.4. In our instance we have xp = (xp,1, xp,2, ..., xp,|E|, xp,|E|+1, xp,|E|+2, ..., xp,|E|+|N |)
where xp,e = 1 if e ∈ p otherwise we set it to 0 and xp,|E|+v = 1 if p ends in facility
v otherwise xp,|E|+v = 0. Suppose we have an optimal Nash flow f∗ that uses a
set of paths P ′. Obviously that flow lies in the convex hull of X ′ = {xp : p ∈ P ′}.
Thus we can use X ′ and this will guarantee that and edge and a facility will be
used by our result only if it gets a non negative amount of flow in f∗.

We will now assume that all latency functions are a-Lipschitz, maxp∈P |p| ≤M
and the amount of demand on s is ws = 1. Now using the same arguments as in the
proof of theorem 5.5.4 we can state that there exists a flow f̂ that uses O(a

2·M3

ε2
),

is an ε-Nash flow and lp(f̂) ≤ L(f∗)+ε. Then using the exact same argumentation
used in the previous section (6.5.3.1) we can show that Ĉ ≤ C∗+ ε where Ĉ is the

81



total cost of flow f̂ and C∗ is the total cost of flow f∗. Thus the following theorem
holds.

Theorem 6.5.5. For a given instance of this sections problem we can find in

|P |O
(
a2·M3

ε2

)
time a 2ε-Nash flow (and the set of facilities it uses) with a total cost

at most C∗ + ε where C∗ is the optimal Nash cost and P is the set of all possible
simple paths that begin in s.

6.5.3.3 A Difficult Example

Suppose we wanted to solve our problem where we have multiple demand points
and the cost of all facilities is B. First of all we can not try to use sparsification
techniques for each demand point separately because this would lead us to an
exhaustive search that is exponential to the amount of demand points. However
its is obvious that the number of facilities is bounded by the number of demands.
So if we could perform exhaustive search exponential to the amount of demands we
could simple check all possible facility combination in the first place thus rendering
the use of sparsification techniques useless.

Thus it becomes evident that we have to treat the flow as a whole in order
for sparsification techniques to add value to our analysis. However in doing so
the results return by the exhaustive search might not be a feasible solution of
the problem. It might also not take into consideration many small demands and
close facilities that are crucial to the optimal solution. So once we have used those
techniques we then have to find set of facilities that will accommodate large amount
of demands which was the exact problem we began with. To better illustrate this
argument consider the following example that captures the essence of the difficulty
of the problem.

If we do not use sparsification techniques the best algorithm we are aware of
is the naive O(n)-approximate algorithm. Consider the example depicted in figure
6.3. For any n we can create

√
n different problems where each one of them has√

n nodes and r√
n

demand (where r is the total demand of the problem). We will

call these problems P1, P2, ..., P√n. Suppose that each problem Pj has C∗j cost in
its optimal solution. We also create a node S and we connect it with each problem
with a long chain of nodes. Due to the restrictions of sparsification techniques those
chains can be of length at most b1 ·logb2(n) where b1, b2 are constants. This ensures
that the optimal solution of the final graph is to solve optimally each problem
separately. So the total number of nodes is

√
n ·
√
n+
√
n · b1 · logb2(n) + 1 = O(n).

If we tried to solve each problem separately the best we could do without the use
of sparsification techniques would be to use our naive approximate algorithm and
end up with a total cost of

√
n ∗OPT .

Now we will examine how well do sparsification techniques perform in this gen-
eral problem. Sparsification techniques will examine at most k paths and thus will
open at most k facilities. For the exhaustive search of the sparsification techniques

82



to end in quasi-polynomial time we want k = poly(log(n)). Thus the sparsification
technique will yield a result that addresses at most k from the

√
n problems.

If we do not open any more facilities then we will have to route demand from√
n−k facilities to S and then to the k addressed problems. This obviously creates

a cost that is greater than that of the naive algorithm of opening just one facility
in S and routing all demands there. So it becomes apparent that we have to open
new facilities.

The only possible alternative is to solve each of the
√
n− k unaddressed prob-

lems separately using our naive O(n)-approximation algorithm. Without loss of
generality suppose that P1, P2, ..., P√n−k are the unaddressed problems. Solving

them naively we get
√
n ·C∗1 +

√
n ·C∗2 + ...+

√
n ·C∗√

n−k =
√
n ·
∑√n−k

j=1 C∗j cost. We

will try to find the approximation ratio of our solution. Obviously we can bound
from underneath the approximation ratio if we make the following assumptions:

• The k addressed problems are solved optimally.

• The cost of the k addressed problems is the maximum possible.

• The cost of the
√
n− k unaddressed problems is the minimum possible.

We can observe that each problem must open at least one facility and opening
one facility in each node is a possible solution (recall that B is the cost of opening
a facility). Thus B ≤ C∗j ≤

√
n ·B for all j. Thus we get that the approximation

ratio of or algorithm is:

A =

√
n ·
∑√n−k

j=1 C∗j +
∑√n

j=
√
n−k+1

C∗j∑√n−k
j=1 C∗j +

∑√n
j=
√
n−k+1

C∗j

≥
√
n ·
∑√n−k

j=1 B +
∑√n

j=
√
n−k+1

√
n ·B∑√n−k

j=1 B +
∑√n

j=
√
n−k+1

√
n ·B

⇒

A ≥
√
n · (
√
n− k) +

√
n · k√

n− k +
√
n · k

=

√
n

1− k/
√
n+ k

≥
√
n

1 + k

Thus A ≥
√
n

1+k ≥ O(n
1
2
−λ) for any λ > 0. The second inequality holds since

k = poly(log(n)). So, especially for large n we have not made any significant
progress regarding the O(

√
n) naive algorithm we could have implemented in the

first place. Also it is not obvious how we will distinguish those different problems
in more difficult settings. Additionally with some hyper parameter tuning such as
adjusting the total number of different problems and pose some restraints on the
cost of the optimal solution of each problem Pj we can achieve a tighter bound
on A. Nevertheless this analysis is simple enough to be easily understood but also
perfectly illustrates our main point.

83



Figure 6.3: An example where sparsification techniques are rendered useless

84



Chapter 7

Conclusion

To conclude, some very interesting problems and ideas were analyzed in this
thesis. However, there is a lot of work to be done in the field of facility location for
selfish commuters. The problems we analyzed seem much more difficult than first
anticipated and there seems to be no technique available in today’s bibliography
that can be readily used for this problem. Either new techniques must be developed
or strong inapproximability results must exist. Through our experience with this
problem we believe that the later case is more likely. A good place to start looking
would be the counter example we provided in section 6.5.3.3. If our problem has
few facilities in its optimal solution (poly(log)) we can find those with exhaustive
search. If our problem opens an amount of facilities close to the amount of the
demands then the naive algorithm of opening a facility on each demand has good
approximation guarantee. It becomes obvious that the difficult cases are those
that have demands comparable to the amount of nodes and facilities that are an
order of magnitude less than the amount of demands. This is exactly what our
counter example captures.

85



Bibliography

[1] Karen Aardal, Fabián A. Chudak, and David B. Shmoys. A 3-approximation
algorithm for the -level uncapacitated facility location problem. Information
Processing Letters, 72(5-6):161–167, 1999.

[2] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the impact of
combinatorial structure on congestion games. J. ACM, 55(6), December 2008.

[3] Manica Aggarwal and Naveen Garg. A scaling technique for better network
design. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’94, page 233–240, USA, 1994. Society for Industrial
and Applied Mathematics.

[4] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide. Proceedings of
the twenty-third annual ACM symposium on Theory of computing - STOC
91, 1991.

[5] Ingo Althöfer. On sparse approximations to randomized strategies and convex
combinations. Linear Algebra and Applications, 99:339–355, 1992.

[6] M. Andrews and L. Zhang. The access network design problem. In Pro-
ceedings 39th Annual Symposium on Foundations of Computer Science (Cat.
No.98CB36280), pages 40–49, 1998.

[7] Eric Angel, Nguyen Thang, and Damien Regnault. Improved local search for
universal facility location. volume 29, 01 2014.

[8] E. Anshelevich, Anirban Dasgupta, Kleinberg JM, Éva Tardos, T. Wexler,
and Tim Roughgarden. The price of stability for network design with fair
cost allocation. volume 38, pages 295– 304, 11 2004.

[9] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Mu-
nagala, and Vinayaka Pandit. Local search heuristics for k-median and facility
location problems. SIAM Journal on Computing, 33(3):544–562, 2004.

[10] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings
38th Annual Symposium on Foundations of Computer Science, pages 542–
547, 1997.

86



[11] Baruch Awerbuch, Alan Baratz, and David Peleg. Cost-sensitive analysis of
communication protocols. In Proceedings of the Ninth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC ’90, page 177–187, New
York, NY, USA, 1990. Association for Computing Machinery.

[12] Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for
universal facility location. 12 2018.

[13] Siddharth Barman. Approximating carathéodory’s theorem and nash equi-
libria. CoRR, abs/1406.2296, 2014.

[14] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. Proceedings of 37th Conference on Foundations of Computer
Science, 1996.

[15] Yair Bartal. On approximating arbitrary metrices by tree metrics. Proceedings
of the thirtieth annual ACM symposium on Theory of computing - STOC 98,
1998.

[16] Vincenzo Bonifaci, Tobias Harks, and Guido Schäfer. Stackelberg routing in
arbitrary networks. Lecture Notes in Computer Science Internet and Network
Economics, page 239–250, 2008.

[17] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An
improved lp-based approximation for steiner tree. STOC ’10, page 583–592,
New York, NY, USA, 2010. Association for Computing Machinery.

[18] Ioannis Caragiannis and Angelo Fanelli. On Approximate Pure Nash Equi-
libria in Weighted Congestion Games with Polynomial Latencies. In Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), volume 132 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 133:1–133:12, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[19] Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopalik.
Computing approximate pure nash equilibria in weighted congestion games
with polynomial latency functions. CoRR, abs/1107.2248, 2011.

[20] Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopa-
lik. Efficient computation of approximate pure nash equilibria. CoRR,
abs/1104.2690, 2011.

[21] Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos.
Taxes for linear atomic congestion games. Lecture Notes in Computer Science
Algorithms – ESA 2006, page 184–195, 2006.

87



[22] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Round-
ing via trees: Deterministic approximation algorithms for group steiner trees
and k-median. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, page 114–123, New York, NY, USA, 1998.
Association for Computing Machinery.

[23] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A
constant-factor approximation algorithm for the k-median problem. Journal
of Computer and System Sciences, 65(1):129–149, 2002.

[24] Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan, Joseph Naor, and Ariel
Orda. Non-cooperative multicast and facility location games. Selected Areas
in Communications, IEEE Journal on, 25:1193 – 1206, 09 2007.

[25] Ho-Lin Chen and Tim Roughgarden. Network design with weighted play-
ers. Proceedings of the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures - SPAA 06, 2006.

[26] Steve Chien and Alistair Sinclair. Convergence to approximate nash equilibria
in congestion games. Games and Economic Behavior, 71(2):315–327, 2011.

[27] George Christodoulou, Martin Gairing, Yiannis Giannakopoulos, and Paul G.
Spirakis. The price of stability of weighted congestion games. SIAM Journal
on Computing, 48(5):1544–1582, 2019.

[28] George Christodoulou, Elias Koutsoupias, and Paul G. Spirakis. On the
performance of approximate equilibria in congestion games. Algorithmica,
61(1):116–140, 2010.

[29] Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms
for the uncapacitated facility location problem. SIAM Journal on Computing,
33(1):1–25, 2003.

[30] Julia Chuzhoy, Anupam Gupta, Joseph (Seffi) Naor, and Amitabh Sinha. On
the approximability of some network design problems. ACM Trans. Algo-
rithms, 4(2), May 2008.

[31] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. How much can taxes
help selfish routing? Proceedings of the 4th ACM conference on Electronic
commerce - EC 03, 2003.

[32] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primal-dual algorithm
for linear programs. Linear Inequalities and Related Systems. (AM-38), page
171–182, 1957.

[33] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ra-
makrishnan, and Jacobus E. van der Merive. A flexible model for resource

88



management in virtual private networks. SIGCOMM Comput. Commun.
Rev., 29(4):95–108, August 1999.

[34] Juliane Dunkel and Andreas S. Schulz. On the complexity of pure-strategy
nash equilibria in congestion and local-effect games. Mathematics of Opera-
tions Research, 33(4):851–868, 2008.

[35] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity
of pure nash equilibria. STOC ’04, page 604–612, New York, NY, USA, 2004.
Association for Computing Machinery.

[36] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. Journal of Computer and
System Sciences, 69(3):485–497, 2004. Special Issue on STOC 2003.

[37] Matthias Feldotto, Martin Gairing, Grammateia Kotsialou, and Alexander
Skopalik. Computing approximate pure nash equilibria in shapley value
weighted congestion games. Web and Internet Economics Lecture Notes in
Computer Science, page 191–204, 2017.

[38] Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo.
On the price of stability for designing undirected networks with fair cost
allocations. pages 608–618, 07 2006.

[39] J.Andrew Fingerhut, Subhash Suri, and Jonathan S. Turner. Designing least-
cost nonblocking broadband networks. Journal of Algorithms, 24(2):287–309,
1997.

[40] L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users
in multicommodity networks and generalized congestion games. 45th Annual
IEEE Symposium on Foundations of Computer Science, 2004.

[41] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph
homeomorphism problem. Theoretical Computer Science, 10(2):111–121,
1980.

[42] Dimitris Fotakis. Stackelberg strategies for atomic congestion games. Algo-
rithms – ESA 2007 Lecture Notes in Computer Science, page 299–310, 2007.

[43] Dimitris Fotakis, Alexis C. Kaporis, and Paul G. Spirakis. Efficient methods
for selfish network design. Theoretical Computer Science, 448:9–20, 2012.

[44] Dimitris Fotakis, Spyros Kontogiannis, and Paul Spirakis. Selfish unsplit-
table flows. Theoretical Computer Science, 348(2):226–239, 2005. Automata,
Languages and Programming: Algorithms and Complexity (ICALP-A 2004).

[45] Dimitris Fotakis and Paul G. Spirakis. Cost-balancing tolls for atomic network
congestion games. Lecture Notes in Computer Science Internet and Network
Economics, page 179–190, 2007.

89



[46] Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An ef-
ficient approximation algorithm for the survivable network design problem.
Mathematical Programming, 82(1-2):13–40, 1998.

[47] Naveen Garg, Rohit Khandekar, Goran Konjevod, R. Ravi, F. S. Salman, and
Amitabh Sinha. On the integrality gap of a natural formulation of the single-
sink buy-at-bulk network design problem. page 170–184, Berlin, Heidelberg,
2001. Springer-Verlag.

[48] Yiannis Giannakopoulos, Georgy Noarov, and Andreas S. Schulz. An im-
proved algorithm for computing approximate equilibria in weighted conges-
tion games. CoRR, abs/1810.12806, 2018.

[49] Yiannis Giannakopoulos and Diogo Poças. A unifying approximate potential
for weighted congestion games. CoRR, abs/2005.10101, 2020.

[50] M. Goemans, A.V. Goldberg, Serge Plotkin, David Shmoys, Éva Tardos, and
D. Williamson. Improved approximation algorithms for network design prob-
lems. Proceedings of the Annual ACM SIAM Symposium on Discrete Algo-
rithms, 01 2001.

[51] M. Goemans, Vahab Mirrokni, and A. Vetta. Sink equilibria and conver-
gence. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 142–151, 2005.

[52] Michel X. Goemans and David P. Williamson. .879-approximation algorithms
for max cut and max 2sat. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’94, page 422–431, New York,
NY, USA, 1994. Association for Computing Machinery.

[53] Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[54] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network
design problems. In Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science, FOCS ’00, page 603, USA, 2000. IEEE Computer
Society.

[55] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility
location algorithms. Journal of Algorithms, 31(1):228–248, 1999.

[56] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor
approximation for the single sink edge installation problems. In Proceedings of
the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
’01, page 383–388, New York, NY, USA, 2001. Association for Computing
Machinery.

90



[57] Anupam Gupta, Jon Kleinberg, Amit Kumar, Rajeev Rastogi, and Bulent
Yener. Provisioning a virtual private network: A network design problem for
multicommodity flow. pages 389–398, 01 2001.

[58] Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better
approximation algorithms for network design. In Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, page
365–372, New York, NY, USA, 2003. Association for Computing Machinery.

[59] Christoph Hansknecht, Max Klimm, and Alexander Skopalik. Approximate
Pure Nash Equilibria in Weighted Congestion Games. In Klaus Jansen, José
D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2014), volume 28 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 242–257, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[60] Tobias Harks and Max Klimm. On the existence of pure nash equilibria in
weighted congestion games. Automata, Languages and Programming Lecture
Notes in Computer Science, page 79–89, 2010.

[61] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[62] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and
Vijay V. Vazirani. Greedy facility location algorithms analyzed using dual
fitting with factor-revealing lp. Journal of the ACM, 50(6):795–824, 2003.

[63] Kamal Jain and Vijay Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian
relaxation. Journal of The ACM - JACM, 48, 03 2001.

[64] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica, 30:175–193, 1906.

[65] Raja Jothi and Balaji Raghavachari. Improved approximation algorithms
for the single-sink buy-at-bulk network design problems. Journal of Discrete
Algorithms, 7, 05 2004.

[66] G. Karakostas and S.g. Kolliopoulos. Edge pricing of multicommodity net-
works for heterogeneous selfish users. 45th Annual IEEE Symposium on Foun-
dations of Computer Science, 2004.

[67] George Karakostas and Stavros G. Kolliopoulos. Stackelberg strategies
for selfish routing in general multicommodity networks. Algorithmica,
53(1):132–153, 2009.

91



[68] David Karger and Michael Minkoff. Building steiner trees with incomplete
global knowledge. pages 613–623, 02 2000.

[69] Samir Khuller, Balaji Raghavachari, and Neal E. Young. Balancing minimum
spanning and shortest path trees. CoRR, cs.DS/0205045, 2002.

[70] Philip N. Klein and R. Ravi. When cycles collapse: A general approximation
technique for constrained two-connectivity problems. In IPCO, 1993.

[71] Y.a. Korilis, A.a. Lazar, and A. Orda. Achieving network optima using
stackelberg routing strategies. IEEE/ACM Transactions on Networking,
5(1):161–173, 1997.

[72] Guy Kortsarz and David Peleg. Approximating the weight of shallow steiner
trees. Discrete Applied Mathematics, 93(2):265–285, 1999.

[73] Madhukar R. Korupolu, C.Greg Plaxton, and Rajmohan Rajaraman. Analy-
sis of a local search heuristic for facility location problems. Journal of Algo-
rithms, 37(1):146–188, 2000.

[74] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. pages
404– 413, 1999.

[75] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility lo-
cation problem. Information and Computation, 222:45–58, 2013. 38th In-
ternational Colloquium on Automata, Languages and Programming (ICALP
2011).

[76] Henry Lin, Tim Roughgarden, Éva Tardos, and Asher Walkover. Stronger
bounds on braess’s paradox and the maximum latency of selfish routing. SIAM
J. Discrete Math., 25:1667–1686, 01 2011.

[77] Mohammad Mahdian and Martin Pal. Universal facility location. Springer,
Berlin, Heidelberg, 2003.

[78] Madhav V Marathe, R Ravi, Ravi Sundaram, S.S Ravi, Daniel J Rosenkrantz,
and Harry B Hunt. Bicriteria network design problems. Journal of Algorithms,
28(1):142–171, 1998.

[79] Kamesh Munagala, Serge Plotkin, and Adam Meyerson. Cost-distance: Two
metric network design. Annual Symposium on Foundations of Computer Sci-
ence - Proceedings, 38, 01 2001.

[80] Vinayaka Pandit. Local Search Heuristics For Facility Location Problems.
PhD thesis, Department of Computer Science and Engineering Indian Insti-
tute of Technology Delhi, 2004.

92



[81] Ravi and Williamson. Erratum: An approximation algorithm for minimum-
cost vertex-connectivity problems. Algorithmica, 34(1):98–107, 2002.

[82] Robert W. Rosenthal. A class of games possessing pure-strategy nash equi-
libria. International Journal of Game Theory, pages 65–67, 1973.

[83] Tim Roughgarden. Designing networks for selfish users is hard. pages 472–
481, 11 2001.

[84] Tim Roughgarden. Stackelberg scheduling strategies. Proceedings of the
thirty-third annual ACM symposium on Theory of computing - STOC 01,
2001.

[85] Tim Roughgarden. The price of anarchy is independent of the network topol-
ogy. Journal of Computer and System Sciences, 67(2):341–364, 2003. Special
Issue on STOC 2002.

[86] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM,
49(2):236–259, 2002.

[87] L. S. Shapley. 17. A Value for n-Person Games, pages 307–318. Princeton
University Press, 2016.

[88] D. B. Shmoys, E. Tardos, and K.I. Aardal. Approximation algorithms for
facility location problems. In Proceedings of 29th Annual ACM Symposium
on Theory of Computing, pages 265–274, 1997.

[89] Alexander Skopalik and Berthold Vöcking. Inapproximability of pure nash
equilibria. STOC ’08, page 355–364, New York, NY, USA, 2008. Association
for Computing Machinery.

[90] Chaitanya Swamy and Amit Kumar. Primal–dual algorithms for connected
facility location problems. Algorithmica, 40:245–269, 01 2004.

[91] Kunal Talwar. The single-sink buy-at-bulk lp has constant integrality gap.
volume 2337, pages 475–486, 05 2002.

[92] Jens Vygen. From stars to comets: Improved local search for universal facility
location. Oper. Res. Lett., 35:427–433, 07 2007.

[93] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

93


	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Η συνεισφορά μας
	Οργάνωση της Εργασίας

	Ορισμός του Προβλήματος
	Τεχνικές Τοπικής Αναζήτησης
	Γραμμικός Προγραμματισμός
	Τεχνικές Σχεδίασης Δικτύων
	Θεωρία Παιγνίων
	Τεχνικές Αραίωσης
	Το Λήμμα του Αλτχόφερ
	Ένα Δύσκολο Παράδειγμα


	Introduction
	Motivation
	Our Contribution
	Organization of Thesis

	Facility Location Problems
	Metric Uncapacitated Facility Location
	Hierarchical Caching
	Preliminaries
	Simple Placement
	Multi-Level Facility Location
	General Placement

	Load Balanced Facility Location
	Preliminaries
	The Algorithm
	The Analysis

	Connected Facility Location
	Preliminaries
	The Algorithm
	The Analysis

	Universal Facility Location
	Preliminaries
	Locality Gap 8
	Locality Gap 7
	Locality Gap 5
	Reductions


	Network Design Problems
	Virtual Private Network Design Problem
	Preliminaries
	The Algorithms
	The Analysis

	Access Network Design Problem
	Preliminaries
	The Main Idea

	Single Sink Buy-at-Bulk Problem
	Preliminaries
	A 72.8-approximation ?
	A 153.6-approximation

	Two Metric Network Design
	Preliminaries
	The Algorithms
	The Analysis
	Reductions


	Congestion Games
	Introduction to Congestion Games
	Atomic vs Non-Atomic
	The Price of Anarchy
	The Price of Stability

	Braess Paradox
	Inapproximability Results

	Computing Approximate Equilibrium
	Preliminaries
	Potential Function
	Unweighted Players
	Using -Games
	Using Approximate Potential Function
	Unifying Approximate Potential Function

	Cost Sharing Games
	Price of Stability
	Computing Minimum Potential Nash Equilibria

	Edge Sparsification Techniques
	Preliminaries
	Althöfer's Lemma
	Approximate Caratheodory's Theorem


	Facility Location for Selfish Commuters
	Formulation of the Problem
	Why Local Search does not Work in our Setting
	Why Linear Programming does not Work in our Setting
	Proving a Lower Bound on the Demand of each Facility
	The Integrality Gap

	Network Design Techniques
	The Optimal Solution is a Forest
	It Generalizes the Cost-Distance Problem
	The Algorithm
	The Analysis

	Game Theoretic Analysis
	Computing Approximate Nash Equilibria
	Bounding the Price of Anarchy
	The use of Sparsification Techniques


	Conclusion

