EoNIKO METTZOBIO TIOATYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKON YTIOAOTISTON

TOMEAY TEXNOAOIIAY [IAHPO®OPIKHY KAI Y HIOAOTIETON
EPrasTHPIO MIKPOYIIOAOTISTON KAI WHSIAKON Y YSTHMATON

Embedded Development of Al-based Computer
Vision: Acceleration on Intel Myriad X VPU

AIIIAOMATIKH EPrAvIA

IHavayidtne Mnvailong

EnBAénwv: Anufrpioc Sobvienc
Kodnyntic E.M.IL

EPrAsTHPIO MIKPOYIIOAOTIETON KAI WHSIAKON Y YSTHMATON
Adva, NoéuPBplog 2021

Edvixé Metodpio Ilohuteyvelo
Syoh Hiextpohdywv Minyovixddv xou Mnyavixev Troloyiotov
Topéag Teyvohoyloc IIAnpogopxric xou Yrnoloyiotody

Epyaotipio Muxpobnoioyiotev xow ¥neloxdy Yuotnudteny

Embedded Development of Al-based Computer
Vision: Acceleration on Intel Myriad X VPU

AIIAOMATIKH EPrAsIA

IMavoyidtng Mrnvaidng

EnBAénwv: Anuftpioc Sobviene
Kodnyntic E.M.IL

Evxpidnxe and v teiuelr) e€etactiny emtponry v 8n Noeyfplouv 2021.

(Yroypagn) (Yroypagn) (Troypagn)
Anurtploc Xolvipng Tewpyiogc I'vodyuog IMovaryuwdtne Toovdxog
Kodnyntic E.M.IL Kodnyntic E.M.IL Kodnyntic E.M.II

Adva, NoéuPBplog 2021

(Troypayrj)

ITANATIOTHY MHNATAHY
Awmhopotovyog Hiextoohdyog Mryovinde xow Mryovixde Troroyotov E.M.IL.
© 2021 — All rights reserved

Edvixé Metodpio Ilohuteyvelo
Syoh Hiextpohdywv Minyovixddv xou Mnyavixev Troloyiotov
Topéag Teyvohoyloc IIAnpogopxric xou Yrnoloyiotody

Epyaotipio Muxpobnoioyiotev xow ¥neloxdy Yuotnudteny

Copyright (©) —All rights reserved ITovoryidtne Mnvoidne, 2021.

Me empOhadn ToavTog SLXALOUATOC.

Anayopebeton 1 aviypay|, anodixeuon xou diavour| Tne nopoloog epyactiog, €€ ohoxhnieou 1 Tuiua-
T0¢ aUTHG, Yo eumopxd oxomnd. Emtpéneton 1 avatdnwon, anofixeuon xou dlavouy| yio oxond un
%EEDOOUOTINS, EXTAUDEVTIXAC 1) EpELVNTIXAC QUONE, UTS TNV TpolUnddeon va avagpépetan 1 TNYY| TEO-
ghevong xou vo datneeiton To moedy uhvupa. Epwthuota mou agopolv T Yerion tng spyacioug yio

%EEDOOXOTUING GXOTO TEETEL VoL ameLHOVOVTAL TIEOC TOV GUYYEUPE.

Euyapiotieg

Me v napotoa Simhwpatixd XAetvel Evag TeEVTaeThC xUXA0Og OToVBWY, YEUATOS YVHoN xal uoydo.
Oa Hieha vo euyaploTiow, apyixd, Tov emBAémovta xadnynt, x. Anuiteto Xoldvien, yio Ty dinon
TOU Vo Ao OO HE GUYYPOVE EVOOUATWUEVO GUOTALNTA, GLVTEAAGVTAS XadoploTixd oty eEEMEN
gou amd QoLTATN o Pnyavixd. XTn ouvéyela, Yo Hicha va euyaploTHoW Tov LTodhPLo BddxTopd,
Baolieio Aéwv, yia) cuveyn tou Bordela, 1 omola Ty XUTOAUTIX YO TNV EXTOVNOT AUTAC NS
gpyooiog, xou Tov peTadduxtopxd epeuvnTy, 'edpyio Aevtden, Yo T XATUTOTUO TIXES TOU TOPOTY-
pNoEIC Xl TPOTAoELS, Ol omoleg Bladppwaay To Yo xou To VYo NS TaPoLCUS BiTAwATXAS. O
fideho oxdun va euyaplothon toug @lhoug wou, Havoywdtn, NtéBwr, Inche, Xenoto, I'deyo xu
Agpoditn yio tnv avidlotedr) otheln toug. Téhoc, Yo Aleha vo aplepwow v gpyasia auth 6ToUC
YOVE(S HOU X0l VAL TOUG ELYAPLO TAOW Yiol TNV AVEESVTANTY aydmn Toug, TN o THELEN Xl Tig dLdoyEc mou

pou mpocEpepay, xal eEaxoAouBolY Vo Hou Tpocépouy, o évag entl tng I'ng, xou o dhhog and PmAd.

ITepirndm

Troloy{leton 6t péyper to 2022, 10 82% Twv ToxéTey Tou Stoxvolvto 6To dladixtuo Yo apopd
dedopéva Bivteo. H exyetddhevon twv Bedopévwy autdv ot meaypatixd ypdvo anotehel yio eAxvoTi-
x| TPOOTTIXY, oL UTopel var 0dnyNoeL oTn drutovpylot TOAD EVBLAPEPOVTWY CUCTNUATWY, EUTOPIXMOY
N un. Xnuovtixd epyclelo oe auth) Ty xateduvor, xadotavion To CUVEMXTIXA VELURWVIXE BixTua
(XNA / CNNs), xodde 1 avéntugn nou €yxouv del tor teheutaior ypdvia €xel odnyRoel oe eviune-
olaxd anoteréoyata o€ xhaowd npofifuata Tou nediov g dpaong unoroyloTey. Ilapdia autd, To
TAPABOCLOXS EVOWUATOUEVE GUGTAUTA BEV UTopoly va utoctnellouv T aUENUEVES AMAUTACELS OE
UTOAOYLO TIXOUE TOpoug xal PviAun twv XNA. Y10 mepfddhov autd avantdooeton plo avepyOUevn

¥NAoT UxpoenEEERYAO TMOV, Tol UToAOYLo TS cus thpata bpacne (VPUS).

H Myriad X anotekel v mo mpdogatn éxdoon tng owoyévelag VPUs mou npoogépel 1 Intel
X0l TIPOXELTOL Ylol €VaL Loy UEO, TONUTIUENVO, ETECOYEVES UTOAOYIOTIXO GUCTNUA, UE ELBLXO ETUTOYUVTH
yio egopuoyeg Bothde pddnong xou vPniéc emdooelc avd povddo oybos. 01600, Ta TEPLOGOHTERN
GUYYEOVO VEVPWVIXE B{XTUN AVATTUGCOVTOL HE YVOUOVO TIC ETUDOCELC TOAD LoYUEOTEPWY UTOAOYL-
oTGY cLoTNUATWY xat eoTdlouy TeplocdTEpo oTNV axpifeta, mopd oty anodotixétnta. Tétolou
eldoug vevpwvnd dixtua cuvavtdue oty Tpoomdield pog va emhbcouue To TEdBANUa xodoplopol Tou

TPOCAVATOAGHOV EVOS BOPLUPOEOU %ol TOEUXOAOLUNOHS ToV, YVWo 16 xou w¢ ”Lost in Space”.

Yy napodoo Simhwuotixy, pehetrioope dlapopeTixéc texvixés deryuatoindioc oto dedopéva el
6680V, xHOE xou TNV ETUBPACT IOV ElYoV OTNY PEIWST TV UTOAOYLIOUMY XOL TWV TUPAUUETOWY, UANS
xou Ty axpifeln evoe XNA. Xenowonomnxay norhaniéc puedodol Beltiotonoinong tou tehixol
(WO OE YoUNho eninedo, cuunepthaufovouévne tne yenone Scratchpad pvAung xow SIMD evtooy,
HE GTOYO TNV amoPuYT) UTTaEENE 6 TEVKOTOY oE aUT6 To 6Tddlo Tpoeneiepyaoiog Tne ewwddou. To otddio
a6 tpopodotel éva XNA, ue to 6vopa ”UrsoNet”, to onolo evionilel tnv Véom evdg Sopupogou
TNV EOVA ELGOB0U o UTohoYIlEL TOV TPOGUVUTOMGHS Tou. Lol THY XATOYpapT TV AMUTACEY TNC
eQapUoYNC AVTAG, WS TPOS TNV XATAVAAWoT) Loy Dog, Tpoteliveton éva custom cUG TN, TO onolo uto-
otnpilel xou oty dayelplon woybos. Téhog, npoteiveton éva LBEWIXG cUoTNU, TO onolo Baoctleton
o010 LNA vy Tov unohoyioud e apyxic “Ttolac’ evdc Sopupdpou, xa axoholwe ypnoylonotel Evay
xhaowd ahydprdpo dpaong, Yo va egehi€et Ty mola’ auth oe TEAYHATIXG YPOVO.

To arotehéopota mou houBdvoupe eivon e€arpeTind eviuppuvTind, xadde e owo T npoetedepyaoia
TV EOVWY ELGOBOV, 0 YPOVOS EXTEAECTIC TOU GUVEAIXTIXOU VELPMVLXOU BIXTUOU UELWVETOL € Xl
5 popéc, ywplc xdmota ovolao T andAel oty axpifeta Tou. Autd Hog ETLTEETEL TNV IXUVOTOLNTIXY
extéleon tou oty Myriad X VPU oe npaypatind ypdvo, xan WMot Ue TOAD YaunAr xotavdhwor
loyvoc. Xuyxexpluéva, emtuyydvetoa extéheon oe 2.12 - 2.22 FPS, avaldya pe tov Bodud mpoeme-
Eepyoaotag TNg 10680V, UE UECT) XATAVAAWOT) loyLog Wixpdteen and 2 Watt. To npotevduevo upidind
oclotnua Aertovpyel pe éva overhead g tédne twv 373.7 - 391.3 ms yia Ty andxtnom e apytxic
XATAC TOONE TOU BopUPOEOL xa, €V cuveyela, 1 Tapaxorolinct Tou anoutel 263 - 388 ms, ¥ 2.58 -
3.80 FPS.

4 Hepidndnm

Agleic KAewdd

Etepoyevele Apyitextovinée, Evoopoatwuéva Yuotipata, Myriad X, Ene€epyacio eixdvac,
Yuvehxtxd Nevpwvixd Aixtua, Pose Estimation.

Abstract

It is estimated that, by 2022, 82% of the packets transferred through the Internet will contain
video data. The real-time processing of these data is a rather attractive prospect, that can lead to
the creation of very interesting systems, commercial or otherwise. Convolutional Neural Networks
(CNNs) are an important tool in this direction, as their recent rapid growth has resulted in some
impressive solutions to classic computer vision problems. On the other hand, traditional embed-
ded systems cannot support the increased requirements of CNNs in computational or memory
resources. In this environment, an upcoming class of microprocessors, the Vision Processing Units,

are developed.

Myriad X is the latest installment in the family of VPUs offered by Intel/Movidius. It is
a multicore, heterogeneous computing system, with a dedicated hardware accelerator for deep
learning applications, and high performance per unit of power. However, most modern neural
networks are developed, based on the performance of much more potent processing systems, and
emphasize on accuracy rather than efficiency. This is the basis of many networks that attempt to
solve the problem of estimating and tracking the pose of a satellite, more commonly known as the
”Lost in Space” problem.

In this thesis, we studied several different resampling methods on the input data, in order to
determine how they affect the total number of computations and parameters of a CNN, as well
as its accuracy. Multiple optimization techniques were utilized, including the exploitation of the
on-chip Scratchpad Memory and the SIMD utilities of the Myriad X VPU, so as to avoid creating
a bottleneck during this preprocessing stage. The preprocessed data are fed into a CNN, named
”UrsoNet”, which locates the position of a satellite on the input image and estimates its pose.
To measure the power requirements of this application, a custom Power Measurement system is
introduced, which can also perform static power management. Finally, a hybrid system is proposed.
This system utilizes the CNN for the estimation of the initial pose of the satellite and, consequently,

runs a classic, pipelined CV algorithm, that evolves and refines this initial pose in real-time.

The results are highly encouraging, since the execution time required for a single inference is
reduced up to 5 times, provided that proper preprocessing of the input frames is applied, with no
noticeable degradation in accuracy. This allows for real-time execution on Myriad X, on a tight
power envelope. Specifically, we achieve 2.12 - 2.22 FPS, depending on the scale on which the
preprocessing takes place, with a mean power consumption of less than 2 Watts. The proposed
hybrid system operates with an overhead of about 373.3 - 391.3 ms for the initial estimation and
then requires approximately 263 - 388 ms to continue tracking the pose of the satellite, resulting
in a throughput of 2.58 - 3.80 FPS.

6 Abstract

Keywords

Heterogeneous Architectures, Embedded Systems, Myriad X, Computer Vision, Convolutional

Neural Networks, Pose Estimation.

Contents

Evyapioticg

Mepirndmn

Abstract

Contents

List of Figures

List of Tables

Extetapevn IlepiAndn

1 Introduction

1.1
1.2

1.3

1.4

1.5

Artificial Neural Networks
Convolutional Neural Networks (CNNs)
1.2.1 Structure and Properties
1.2.2 ResNet Architecture
1.2.3 Applications on Computer Vision
Vision Processing Units (VPUs)
1.3.1 Myriad X Multicore SoC
Related Work oo o
1.4.1 CNN Inferencing on Embedded Devices
1.4.2 Implementations on VPUs
Thesis Scope and Contribution

2 Tools, Frameworks and Libraries

2.1
2.2
2.3

24

TensorFlow and Keras
OpenCV Library
OpenVINO Toolkit
2.3.1 Workflow
2.3.2 The Model Optimizer

2.3.3 Benchmarking on VPU Neural Compute Stick 2

Myriad X Development Kit

11

13

35
35
39
39
40
42
43
43
50
50
50
52

8 Contents
3 Theoretical Background 61
3.1 TImage Scaling L 61
3.1.1 Bilinear Interpolation 63

3.1.2 Bicubic Interpolation Lo 64

3.1.3 Lanczos Resampling o 66

3.2 UrsoNet: Pose Estimation for Satellites 68
3.2.1 Design and Architecture 68

3.2.2 Unreal Rendered Spacecraft on Orbit (URSO) 70

4 Design and Acceleration on Myriad X 71
4.1 Preprocessing Stage 71
4.1.1 Implementation of Image Scaling Functions 72

4.1.2 Control Code and Scripts L o 77

4.1.3 Core Parallelization 89

4.1.4 Scratchpad Memory Data Transfers 90

4.1.5 Offload Padding 93

4.1.6 Sliding Window Buffers L o oL 95

4.1.7 Single Instruction, Multiple Data 102

4.2 CNN Inference Stage 104
421 ThemvNCI API 105

4.2.2 The OpenVINO Inference Engine APT 107

4.3 Power Management and Measurement 110
4.3.1 The PwrManager Component 111

4.3.2 The MV0257 Board 111

4.3.3 Proposed API for Power Management & Measurement 112

4.3.4 Modifications to the RTEMS Configuration 114

4.4 Application Scenario: Pose Estimation & Tracking on VPU 115

5 Experimental Evaluation 117
5.1 Evaluation of Preprocessing Stage 117
5.1.1 Experimental Setup 117

5.1.2 Latency Results 118

5.1.3 Power Consumption Results 121

5.2 Evaluation of CNN Inference Stage 123
5.2.1 Experimental Setup 123

5.2.2 Network Accuracy Results 123

5.2.3 Latency Results 125

5.3 System Evaluation 126
5.3.1 Preprocessing and Inferencing 126

5.3.2 Application Scenario: Pose Estimation & Tracking 126

6 Epilogue 129
6.1 Conclusion 129
6.2 Future Work L 130

Bibliography 133

List of Figures

1 "Evog Brohoyinde, avdpdnivog veupmvag (aploTepd) 6e oyéon Pe €vay TEXYNTO VEuphva
(BeQud) [1]. + « v o o 13
2 Suvddec PeTald Blohoyxtdv veupthvev (aptotepd) xon Slaocuvdedeuévol teyvntol veu-
pavee (BeZid) [1]. . . . o o o 14
3 Aciypara tou cuvohou dedopévoy MNIST [2] o oo oo i 15
4 TlpoBhedm evog TNA, exnandeupévou ndvew oto oivoho dedopévev Boston House Price 15
5 Hopdderypo tonoloylog evég ENA yior avory vodplon yetpdypopwy dnelwy 16
6 YTrolewbpevn Mdadnon: H Poower Sopuxd povdda [3]o 17
7 ResNet-34 [3] 18
8 Amhonowmuévn enoxdnnon e opyttextovixic tov UrsoNet [4] 19
9 Alypoupa e Apyrtextovinic tne Myriad X [5] Lo 24
10 OpenVINO Toolkit: Pofjepyaotdvo o o 25
11 OpenVINO Toolkit: Evohhaxtix Porfjepyaowdvo L. 26
12 Ipotewdyevo Xootnua yio Extiunon o Hapoxorolidnon I16lag Aogupdewy 26
13 Extéheon Avypopuixnic HapeuBorric yia Troderypatoindio Eudvae 27
14 Khwdxwon Xpedvou Extéleone otoug SHAVE Iupveeo oo 0L 28
15 Emtdyvvon xatd v Hoapoahinionoinon ye yerion tne Scratchpad pviune 28
16 Khdxwon tou Xpdvou Extéreone otoug SHAVE Iupnvee, pe tig SIMD Suvatotyteg
EVEQYOTOUNUEVES/OMEVEPYOTIOMUEVES « + . o o v v o e o e e e et e et e 29
17 Pox Epyaoudv yw xenon tov Neural Compute Interface 29
18 H mhaxéto yétpnone oyVoc MVO0257 [6] 31
19 Aetovpyieg Tou XuotAuatoc Métpnone xou Awayelpione Ioybog 32
20 Koartavdrwon Ioybog twv Tehxdv Thonojoewv twv Alyoplluwy 33
1.1 A biological, human neuron (left) in comparison to an artificial neuron (right) [1].. 35
1.2 Synapses formed between biological neurons (left) and interconnected artificial neu-
rons (right) [1]. L 36
1.3 Samples taken from the MNIST dataset [2] 37
1.4 Prediction of an ANN trained on the Boston House Pricing dataset 37
1.5 Example topology of a CNN suitable for handwritten digit recognition 39
1.6 Residual Learning: a building block [3] 40
1.7 ResNet Architectures [3] L 41
1.8 ResNet-34 [3] o o 41
1.9 Examples of VPU Architectures o 43
1.10 Myriad X Block Diagram [5] L 44
1.11 LEON4 Inner Architecture 46
1.12 SHAVE Core Inner Architecture [6], 46

10

List of Figures

1.13
1.14

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

Interconnection of Subsystems [6] L oL 47
Direct Memory Access Controller Overview [5] 49
A schematic TensorFlow dataflow graph for a training pipeline [7] 53
Inference Workflow in TensorFlow 53
OpenVINO Toolkit Workflow [8] 55
OpenVINO Toolkit Workflow Stage 1 [8] 56
OpenVINO Toolkit Workflow Stage 2 [8], 56
OpenVINO Toolkit Workflow Stage 3 [8] 57
OpenVINO Toolkit Workflow Stage 4 [8], 57
Usage Example of Linear Operations Fusing [9] 58
Usage Example of ResNet Stride Optimization [9] 59
Example of Aliasing when Resizing an Image [10] 62
Example of Aliasing when Resizing an Image [11] 62

Bicubic Convolution Algorithm. The red points form the 4x4 neighbourhood that is
to be used to compute the value of the desired pixel. The green dots are the points
that will be evaluated when convoluting in the x-dimension. The blue dot is the

desired pixel and can be computed by applying convolution in the y-dimension, on

the green-dot points. L 65
Simplified Overview of the UrsoNet Architecture [4] 68
Example of Synthetic Images for the Soyuz Spacecraft [4] 70
Example of Synthetic Images for the SpaceX Dragon Spacecraft [4] 70
Process Followed to Execute the Downsampling on Myriad X 71
Execution of Bilinear Interpolation Downsampling 89
Contents of Input Image CMX Buffer for Lanczos Resampling 95
Basic Operation of Sliding Window Buffer 95
Sliding Window Buffer Backend Architecture 96
Inference Stage Workflow 104
Typical Workflow for MvNCI Component 105
Modified Execution for Preprocessing Stage 110
Power Measurement Board MVO0257 [6] 111
Power Management and Measurement API Internal Operations 113
Proposed System for Pose Tracking of Satellite 115
Execution Time Scaling on SHAVE Cores 118
Execution Time Scaling on SHAVE Cores with CMX enabled 119
Speedup Observed during Parallelization 119

Execution Time Scaling on SHAVE Cores depending on whether SIMD is enabled /dis-
abled. CMX Memory transfers are enabled and the padding operation is offloaded

tothe SHAVESs. 119
Power Consumption of Initial Porting of the Algorithms on the SHAVE Cores . . . 121
Power Consumption of Final Implementation of the Algorithms on the SHAVE Cores121
Mean Est. Location and Orientation Error. 124
Box Plots of Location and Orientation Error for 0.5x Scaling 124

ESA Scores achieved for different Models 124

List of Tables

1.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Apyway Thomoinomn twv Akyoplduwyo 32
Béhtiomn Thomoinon twv Ahyoplduwy o oo 33
Koduotépnon abyypovng e€ummpétnone awtnudtey oL 33
Myriad X System Caches L 48
Initial Porting on Intel/Movidius Myriad X 118
Final Results on Intel/Movidius Myriad X 120
Power Consumption Analysis for Initial Porting 122
Power Consumption Analysis for Final Implementation. 122
Latency Results for Synchronous Inference on Intel NCS2 125
Latency of Image Scaling Algorithms 126
Latency of CV Functions of Pose Tracking System 127

11

Extetaupevn lleplindn

Teyvntd Nevpwvixd Alxtua

To texvntd vevpwvixd dixtua (TNA) unopodv va yivouv ovthnrtd we encdepydotind cuoTAuaT
HUTOVEUNUEVNC JEYLTEXTOVIXNG, Tot omolo €youv T duvatdTnTa Vo anodnxedouy EUTELPXY YVOOT,
%ol VoL T Yenotponotoly, Tote ypeloTel, Yo va tapdyouy xdnowa andxpeion [12]. Mowdlouv pe tov
avipOTIVO EYXEPAND, WS TEOG TO YEYOVOS OTL AmOXTOVY YVWOoTN and To TepBAAOY TOUC UECH ULAC
drodixacioc exnaidevone xou 6t auth N Yvoon anodnxedetar otic cuvBEoelc (ouVAels) PETAED TwV
Bopxmy oToyElwY Toug (Veuphvmv) ot poppl ‘cuvamtxmy Bapdv'. To oyfua 1.1 avanopiotd pio

oUyxpion TN doung evéc Blohoynod xou EVOS TEYVNTOU VEURGVAL.

dendrites axon

> Vi

cell body /sz’{\\S\

terminal axon

EyxApo 1: ‘Evoc Prokoyixde, avipdmvoc veupdvag (aplotepd) ot oyéon e évav texvntd vevpmva (dedLd)

1.

Ot veuphveg evtdg Tou oavlpnivou eyxepdhou déyovtal epedlopata and toug devdpite xat amo-
pactlouvy xatd t6co Yo mapaydel xdnoto epédopa péow tou tepuatinol dEovd toug 1 oyxt. O d€ovac
TS cLuVBEETOL PECW CLVAPEWY UE ToUG devdpitec BAAWY VEUPWVKY, dnuovpydvtac éva tepinhoxo
dixtuo Saouvdedeuévev veuphvewy [12]. O teyvntol veupdve, eivar epmvevouévol and toug Prolo-
Yxo0g, xou ETTEAOVY Tapouoleg Aettovpyieg. To ohpota ewobédou {zo, ..., Tn} TPOPOBOTOUVTUL GTOV
veLpVaL. X TN cUVEyeld, uoloyileton to ototuiopévo dipotopa auTOY TV dedouévey elcddou. H
Boowxn Wéa eivon 6TL 1 " Bovaun’ v cuvddewy (to Bden w) eivon exnandedoyla XUeEAEYYOLY TNV ETLEEON
evoc vevphva oe éva Ao veupdva. Mio cuvdptnon evepyonoinone egetdlet to tehixd ddpoloua xau
anogacilel av o veupwvoag Yo mupodothioel 1 oxt. To orjua e£680u Tou veupiva diveton wg elcodog oe

dhhoug VEUPKOVES, TapduoLa Ue To Blohoynd Hovtélo, Omwe palvetal xon oto oyfua 1.2

13

Input 1¢! hidden 2™ hidden Output
layer layer layer layer

s

synapse

ExApo 2: Buvddeg petald Blohoyxdy veuphvwy (aptotepd) xou dlacuvdedeuévol texvnrol veuphvee (de-

&) [1].

Ta TexVNTE veLpWVIXE BlxTUO EXTULDEVOVTAL 1) YENOWOTOLOUVTOL UE TEELS DLAPOPETIXOUE TPOTOUG.

Kdée évag amd autols cuviotd o Stoupopetixt) uévodo unyovixnic pdinong.

- Yty EmpPAenduevn MdOnon, to dixtuo €xel npdofoor oc dedouéva Ye ETIXETES, OOV TO ETL-
Yuuntéd onpa e€660u yia Eva GUYXEXPWEVO ofua elg6dou elvor Yvwoté. To TNA emyeipel va
dnuovpyHoeL éva wovtého, padoalvovtag and To BEBOPEV AUTd, WOTE Vo Uropel LEANOVTIXG Vo
xavel tpoPrédelc yio dyvwoteg eloédouc. O 6pog “emPBAendevy’ €66, avapEpeTal 6TO YEYOVHQ
6t oL emdupntéc €€odot yia tar deBouéva exnaidevong eivan diadéowpec [13].

- Y Mn-EmBAenduevn MdOnon, and tnv dhhn tAeupd, To dixTuo €xel vo avTiueTonioet Sedouéva
ywele etuxéteg B dyvwotn dour. Me teyvixée un emtnpoduevrn pdidnong, etvar e@uxtéd va ele-
PEVVACOUUE TNV doul| Twv dedopévwy elo6dov, Ue o1dy0 TNV e€aywYn XpHoW®WY TANEOPORLDY,
Ywele TNV Tapoy Y| Yvéhone ou arouteiton and Ty nponyoluevn xotnyopla wddnonc[14].

- Yty Evioxvuxn Mdinon, o TNA enuyeipel vo fehtidoet Tig emBOCELS TOU YEGK TWV OAANAE-
TdpdoeY Tou Ue To TepBdihov oTo onolo Aertoupyel. E@bdoov ol mAnpogoplec yio Ty Tpéyouca
%ATdo TooT) TOL TEPUBAAAOVTOC TiEpLEYOLY Xan Eva orjua emBedBeuong, N evioyuTr uddnon uno-
pel var Yewpndel we nedlo, oyetinh pe v emPrenotyevn uddnon[12]. Qotdoo, oty evioyuTny
pddnom, avtod Tou eldoug 1 emPBpdBeuct Sev €yel TNV popey| plog avauevouevne e£680ug, dAAd
elvon W extipnon touv néco xohd avtamoxplinxe uio emhoyy| tou dixtiouv. Méow tng ahAnie-
nidpaong pe to TEPYBAANOY, Eva BIXTUO UTOREL VoL YENOWOTOACEL TNV EVIOY LT uddnon yia va
udder pla oglpd amd dpdoeic Tou PeYLoTOTOWLY TNy emiPBpdfeuo.

Y10 mhaiolo auThC TNg Simhwpatixrg epyaoioc, ueetioope anoxielotxd ta TNA nou yenoiwonooiv
Teyvée emPBrenotevne wdinone. O emixevipwiolue howmdv oe 800 Aettovpyies avtddv Twv TNA,
Y TaEVOUNoY Xou TNV TUALVOEOUNo.

H ta€wvounon evon pla umoxatnyopla tng emitnpoduevng wdinong, otnv onola 6toy0¢ elvon n)
TpdPAedm TNe xAdone/xatnyoplac evée véou avtxeévou, Bdoel nahoudtepwv Topatneicewy [12]. H
TalvounoT VO avTXEWEVoU oe (o xatnyopior yivetar Ue TNy avadeon (g ETUXETAS OE aUTO, UE
TG ETIXETES VL Efvor Bloxpltée xan un dlatetayuéves Tiwés. To obvoho dedouévwv MNIST eivou éva
TUEAEBELY oL BELYUATOVY, TTOU UnopolV va yenoonondoly and éva dxTuo Yo TNy omodotixn expdinen
ta€vounone yelpdyeapwy Ynelov. Metd and enapxi| extaldeuo), av évag yernoten elodyel 6to TNA
éva véo, Yewpdypago Pmelo péow xdmolag cuoxeurc elo6dou, To exnaudeupévo povtého tou TNA Yo
unopéaetl v TeoPAédel Tov owoTo apdud ue xdmowa axplBeta. 2ot600, 0 alydpLipog de Yo elvan oe
Véomn vo avaryvewploel omolodhmote and Toug YapaxThpes Tou ahpdBnTou, epdoov autol dev meptEyovTa
670 00UVOAO EXTIAUBEVGTG TOL.

14

oloolo]olo]s[o|o|of
NEESEESENN
S NS NS SN SR
Col o [[w]vfen o jenob s B
Ylaafafn|alem]elng
EN SIS S ES LS ES DN ANES -
NEISSNSIN SIS

BN SENENAA
E) Y EI EY CY RN EA LY
o]a s]ololvlslelolof

ExApe 3: Aslypota tov cuvérou dedopévery MNIST [2]

H avdhuon mokvdpounong etvar éva dAho eidog emPBhenobyevng uddnone. Ltnv avdAuvon mohiv-
Bpdunong, utodétovue 6tL divovtow éva TAtog and petaBAntéc medBhedne xon piol cLVEYAS HETOUBANTA
andxplong (amotéheopa). Btdyoc eivan 1 edpeoT) wla oyéone HeTalld Twv PeTaBANTdy TedBhedne Tou
emTpénel TNV TpdPAedn evdc anotehéopotoc[15]. T napdderyua, To cUvolo dedouévwy Boston House
Price nepiéyet 13 drapopetinée (aprdunuinéc) WBoTnTee Twv onitidy ota tpodotia tne Bootdvne xa
oMoV IWE GNUELDVEL TNV TN TOV OTULTIWY QUTOY ot YIALEdee dolhapiwy. Metd tny Sodixacta exmo-
{Bevome, av évag yeHoTng TapéyEl 0TO VELPpWVIXS BIXTUO BEBOUEVO OYETIXG UE TIC TWWES TwV 13 auTtdv

WBLOTATOY, aUT6 Vol UTOEESEL VoL XAVEL tiot eXTIUNOY Yiot TNV TWWY Tou OTiTIo) TOU TEELYEAPETL.

Crime
e \
Artificial
Age of Meural ——» 756,42
Building Netwark
Mumber

of rooms

ExApo 4: TlpdBredn evéc TNA, exnoudevpévou mdve oto ohvoho dedouévwy Boston House Price

YuveAuxtixd Nevpwvixd Alxtuo

‘Eva Suvehxtind Nevpwvind Aixtuo (ENA) arnotedel yrog eldinf) Totohoyio texvntod vevpwvi-
%00 BixtOou, N omola elvon eunveuopévn and Tov omTiXd eYXeQoAxd Phold twv {hwv. O tapduetpol
ATV TWV TOTOAOYLOY puiploTnxay xotdAAnha, yio eQopuoYES 6paone UTOAOYLE TGOV, and Tov Wovy
Aedv otic apyéc tou 1990. Enl tne ovolocg, éva XNA eivan éva povtéhou TNA mou éyel oyediaotel
ATMOXAELGTIXG. YIOL THY OVAYVOPLOT DOOEC TATOY avTIXEWEVWY, Tapouctdlovtae UPmAS Bodud avok-
rolwtng ocupneplpopds xatd v petddeoy), xAMUdxwon, oTEéBAwoT xat JAAEC TUPAUUOPPOOES NG
elo6dov. ‘Eva ENA Jo firav Bovixd yior tnv ulomnoinom evog dixtiou yio Tagvouncy Yeiedypopuy

Pnoplwy, dedouévou 6T 1) eloodog Blveton o HoPPT ELXOVOG.

15

C, S, C, S, n n;
input feamre maps feature maps feature maps feature maps output

T T T T T T TN T N

AN) . \\ L o\ 0,
A = -
3 B b = =W\ >N
- I
——)
sx5 N %2 S5 = AN N\
convolution AN subsampling convolution x2 \\ > fully \
N\ subsampling \\ connected AN
feature extraction classification

SxAuo 5: Iopdderypa tomohoylog evoc ENA yia avory vidplon yewpdypapnv Ynelonv

Aopn xou oLoTNTEG XNA

Egboov ta Xuvehixtind Nevpwvixd Aixtua etvon pla utoxatnyopla twv TNA, anoteholvtal, dnwg
elvan avapevéuevo, and vevpwveg pe exnadevoa Bden[16]. Kdde vevpdvae déyeton pla eicodo,
exteel v E0WTEPS YIVOUEVO oL €V GuVEYElol UTOpEl VoL EQUPUOCEL XATOLA UMY EoULXY) CUVAETNOT
oto anoteréopata. ‘Olo to BixTuo €xel wg oTdyo Vo ToEVOUNTEL Lol EXOVOL OE XAmOoLoL XaTryopia
Bdoel twv exovootolyeiwy e, ‘On 1 yvdor mou eqappdotnxe ot TNA e€oxohovdel va toybel xau
vo. eoppoletar oo XNA. Ewdonoide dagpopd twv apyttextovixdy ENA eivor 10 yeYovog 6Tt xdvouy
™ enth vnddeon 6Tl 1) eloodoc elvon Lol ElxOVa, YEYOVOS TOU ETUTEETEL TNV XWOLXOTOINGT OPLOUEVWY
WBOTATWY GTNY ap)LTeEXTOVIXY) Toug. AUTEC 0L LBLOTNTES Yog EMITRENOLY Vo UTOAOY(COUUE TNV andxplom
ToU 3XTVOU TOAD THO UTOBOTIXE, APOU UELVOUY CTUAVTIXG TV aptdud Twv napauétony Tou XNA.

Q¢ mopdderyua, ag e€etdooupe t0 oUvolo dedouévwy CIFAR-10. To cuyxexpiuévo oivoho Bebo-
pévev TeplEyel emdvee peyédous 32x32x3 (WAxoc X TAETOC X XavEMaL YEMUATOC) XaL TNV XaTryopia
avxelévou 1 {dou v onola anexovilouv. 'Eva anhé TNA, 6nwe neptypdgnxe mopandvwy Yo
anoutoVoe 32%32*3 = 3072 exnondedoles TopauéTeous Yio xdde VELPOVY TOU TPWTOL XPUPOL GTa-
dlou. ‘Omnwg yivetoaw avtiknmto, auth 1 TAREWS SLacUVOIEDEUEVY DoY) BEV XAULUXVEL ATODOTIXG YLot
peyohUtepeg exoves. Lo mapddelypa, wa ewxxdvo ye dlaotdoeic 200x200x3, Yo anawtodoe omd xdie
veupmva 200%200*3 = 120,000 Béen!

Ta XNA, and v dAAN TAeupd, eEXPETAAEDOVTAL TO YEYOVOS OTL 1) l00d6¢ Toug amoTeAe(ton omnd
embdveES xou TEPLOPILOUY TNV APYITEXTOVIXH TOUGC UE oUVETO TpbTo [17]. Buyxexpwéva, oc avtideon
ue éva xavovixd TNA, ol otpdoeic evog ENA opyavdyvovton oe 3 dlaotdoelg: mhdtog, Udog, Bddoc.
T mopdderypa, 32x32 RGB ewxdveg eioddou avanoplotoly €va 6yxo €106bou mou €xel dlaoTdoels
32x32x3 (nhdroc, Odoc, Béddoc avtiotoya). Ot veupdvee ot pio otpddon elvar cuvdedeuévol wévo pe
Lol UXQT| TEPLOY T TNG TTROMYOUPEVNE OTRMOGTNG, 08 avTideoT) Ue GAOUC TOUG VEURMVES TNE TIEONYOUUEVNS
OTPWONC OV CUVAVTYTAL OTIC TATPWS CUVOESEUEVES OTPWOELC. AUTH 1) TOTXA TEPLOPLOPEVT BlacUVBEST,
TV VELPGVKLY TwV UNA elvon eunveuopévn and Broloyinég Aertovpyleg, 6Tou €vag VEupKvaS avTided
ota gpediopata mou déyeTon LoVO and Eval TEPLOPIOHEVO XOUpATL Tou Tedlou bdpaone.

Trdeyouv tela €ldn 6TEOOEMY TOL YENCHLOTOLWOVTAL Yiol TN dOUNCT) opyLTeEXTOVIXGY NA: Yuve-
Mxtixée otpwoelg, Pooling otpmaoeig, avd ITAApwe cuvdedeuéves otpwaoelc. H teleutalo elvon (Blor pe
oUTH TToU cLvVaVTd xavel ota xovovixd TNA. Autéc ol tpelc otpdoelc otoBdlovton oe wior aAAnAou-
xlo, wote va mapdEouv evdlagpépouaeg apyttextovixés. Tmdpyet eniong xou 1 Ltpdon Ewwddou, mou
dev elvau tinote neplocdtepo amd TOV TAVTOTNS UeTAoYNUATIONS, BNhadr 1 €€086¢ g elvan 1 (Blot e

v eloodd g, AuTéc ol oTpMoELS AvahDOVTOL TOROXATE:

- Ytpwon Ewoddou: Eunepiéyel to dedopéva 106300, TOU UTopel eivan Ol TWES TWV ELXOVO-
oToyelwy NG exodvag elo6dou 1 To anotéiecua tng mpoenegepyasiog autdv. To Bddoc tne

oTPWONG €lo6d0L TpéneL Vo (Blo Ye To TARYOC TV XAVOALOY TNG EXOVAC ELGOBOL.

16

- JuveAxTixn Dtpwon: Oo unoloyicel TNy €000 TWV VELPMVKVY ToU elval cUVBEBEUEVOL e
Tomixég TEpLOYES TNG etoddou. Kdlde unoloyiopde yivetar oe éva uxpd napddupo otnyv tpdoodn
(mou opiler o TAGTOC Xou TO Udog) Tou byxou elwwbéBou, AN e 6ho To Bddoc Tou byxou
elo6dov. To Bddog tou dyxou elobédou elaptdtar and to TARloC TV Piktpwy Tou TapéyovToL

OTNV OTRMOT WG ULd EMITAEOV THPAUETEOG.

- Pooling 3tpwon: Oo npaypotonooel pa unoderyatorndlo f/xo e€oudhuvon xatd uhixog
Tou Bddoug Tou dyxou elobdou. Aev elvar exnandedoun.

- IIMjpwe Xuvdedepevn Xtpwon: Onwg elvor 101 yvwotd and 1o TNA, xdde vevpwvoc

o€ AUTY TN OTEWOT CUVBEETOL PE OAaL ToL aTolyElol TOU GYXOU ELGABOL TNS CTEWATS.

- Yrpworn ReLU: Egopudlel o cuvdptnon evepyonoinone otolyeio npoc otoyelo, v f(x) =
maz (0,) Tou eugovilel xatdPAL oTo UNdéV. Auth 1 otphon yenowwonoeital ue oxond TNV
unoPordnomn e exmaldevone tou dixtiou xou Topdyel oTNY €€000 €va GYXO oL €XEL BLUOTACELS

{Blec pe autéc tou 6yxou eloddou. Aev elvor exmoudevolun.

Apyrtextovixy, ResNet

To YTrolewndueva Nevpwvixd Aixtua (ResNets) [3] yenowonowodvia extevde oe auth 0 Si-
ThwuaTXr epyoota, cUVENKOS elvan amaEAlTNTo 0 avayveHoTNne vo dlardétel e€oelwon oyeTIxd Ye T
Aertoupyio toug. Toa TNA Snuovpyinxay e oxomd Ty ano@uyT Tou npofiiuatoc Tev eCapaviloue-
VOV XAGEWY XaL TNV AVTETOTION TNS Peltong mou napatneolvtay otnyv axplBela evog VELPWYLXOU,
6ty autd anoteloltay and ueydho optdud otptdoewy. To mpdPfinua twv efoapavilopevovy xhioe-
WV eppovileTon xatd TNV EXTABEUCT VELPWVIXGY o Yenoonoloby uedddoug tou Poasiloviar otny
xhion. Egbdoov n xhion tne ouvdptnong ammAEog Tou VEUpwvixol utoloy(leton Ue Tov xovéva tne
ahuoidag, elvon obvnieg, ol xhioelg mou avtiotolyoly oe Bdpn TWV VELPGVWY TWV TEMTWY o TudiwV
EVOC VELPWVIXOU Vo efvan eEoupeTixd WixpEg, OmOTEENOVTUC TNV AVAVENMGT] TWV THAY TV Bopty ou-
tov. T va avtipetoniost outéd o TedBAnua, éva TNA yenowomnolel unepnndoloec cuVBESELS, YLol Vol
ayvofoel xdnoleg otpwoel;. Ou unepmndoloes cuVBETELC amoTteAolVTAL GLUVATWS amd €va TOUTOTIXG
UETACYNUATIONOS, ARG UToEODY VoL TERLEYOUV X0l Uiot GUVENXTIXY OTE®ON PE Tuphva ueyédoug 1x1.

YUVETADC, M dpYITEXTOVIXT TNS BAoXiC TOUG Hovadag elvon 1) Topondite:

weight layer

X
identity

EyxApo 6: Troheinduevn Madnon: H Baocwuh Sowuxt| povida [3]

Abyw tov Witepny cuvdéoewy Twv TNA, elvon e@uxtd va dnpoupyndoly nohd Badd cuvehixtixnd
VELPWVIXY BIXTUA, UE EMAVOANTTIXY TEOCU XY OTEWOEWY. LTOV TUpUXATwY Tivaxa TapouctdlovTal ol
apyLtextovixéc 4 dlapopetixwv tonoroyldy TNA. To Bddoc tou dixtiou xodopileton and tov aprdud
Twv plhtpwy mou Yo yenowonoindody 6To TETUETO CUVEAXTIXG GTABLO, XL YENOULOTOLE(TOL Yo TNV

ovopatodoacia Tou dixthou.

17

layer name

output size 18-layer ‘ 34-layer | 50-layer 101-layer 152-layer
convl 112112 Tx7, 64, stride 2
33 max pool, stride 2
. 1x1,64 1:1,64 | 1x1,64]
conv2 56356 3 4 : : -
comvex “ [%ii’gi]xl [gig 3]x3 3x3,64 |3 3x3.64 |3 3x3.64 [x3
o 1x1,256 1x1,256 | 1x1,256 |
1x1,128 1x1,128 | 1x1, 128 |
3 3%3 : ’ ,
comv3x | 28x28 Bi"“:gg]xz { s ig]x4 3%3,128 | x4 33,128 | x4 3x3,128 |8
> R 1x1,512 1x1,512 | 1x1,512 |
- 1x1,256 151,256 | 1x1,256 |
3,25 3x3,2 ’ - ’
comvdx | 14x14 BX;’;:]x'l Lx{éz]xb 3x3.256 |x6 || 3x3.256 [x23 || 3x3.256 |x36
e S 1x1, 1024 1x1, 1024 | 11,1024 |
1x1,512 1x1,512 1x1,512
3,512 3x3 ’ ’ ’
convi_x Tx7 { gxa’?:;]XZ { %X%’g:g]x3 3x3,512 | %3 3x3,512 [%3 33,512 [%3
#2201 2 1x1, 2048 1x1, 2048 1x1, 2048
1x1 average pool, 1000-d fe, softmax
FLOPs 18x10° | 36x10° [38x10° | 7.6x10° [13xa0°

Mio evbiagpépouvoa wI6TNTA TV BadiTEpwY UTOAEITOUEVODY VELPWVIXKOY BIXTUWY, BNAadY 6CKY
€youv 50 1) mapamdve oTpdhoEle, elvor, 6T ToEd ToV TOAD UEYAAO apLiud GTENOCEWY, TEPLEYOUV LoVAya
0o otpwoelc pooling. Autd cuyfoalvel, eneldn ol oTpdoelc pooling dev elvon exmoudeVOLUES, oL 1|
umoderypatohndio Tou epapuélouvy GTOUS EVOIBUECOUS YEPTES YAUPUXTNPIO TIXWY OdNYEL OTNV ammAEL
EVTOTUOUEVLV YOPAXTNELO TIXMY XA, CLVETKDGS, ot uelwon tne axpifetac. Ta TNA, lowndv, avtixa-
Y0100V T oTpHCEl pooling e cuvehxTixég oTpwoelg Ue Tuprveg 1x1 mpv xan Yetd Ty extéheon
TWV CUVENXTIXWY OTPOCEWY e Tuprveg 3x3. H 1x1 cuvéh&n yenotponoteiton yia T anewdvion e
EL0ODOU OE €VOL YWEO UXPOTEPWY BLUC TACEWY, UE OTOYO TN UElWON TwV TEdEewy TNg 3x3 cUVEMENS
7ou oxohoudel [18]. O ydptNne XopaxTNELO TGOV TOU TPOXVUTTEL, GTNY CUVEYELY, aneovileto og éval
Y0p0 LVYNASTEPLY DACTACEWY, OTE VA TOVIGTOVY Tal YApaX TNELoTiXd Tou e&dydnxay, epdoov o ydp-

NG YOEAXTNELO TXWY avoEveTal Vo odny el xou TdAL oe WXEOTERES DICTACELS OTO OHESKS EMOUEVO
otddLo, elte ouvehxTixd eite pooling.

y

3x3 conv, 256, /2

x3 conv, 512, /2

Image

343 conv, 64 .

Tacow, 128,02 |
33 conv, 128 B
333 conv, 128

7x7 cany, 64, /2
pool, 2
3x3 conv, 64
3x3 conv, 64
313 conv, 128
3:3 conv, 128
343 conv, 128
343 conw, 128
3x3 conv, 256
33 conv, 256
3 cony, 256
313 conv, 256
33 conv, 256
33 conv, 256
313 conv, 256
313 conv, 256
3x3 conv, 512
343 conw, 512
343 conw, 512
313 conv, 512
3x3 conv, 512
avg paal
fe 1000

EyAuo 7: ResNet-34 [3]

To neofBAnua ’Lost in Space’

Yta mhaioia TNE Topoloug BIMAwUATIXAC epyaciag, ueethoope to medPBAnua ‘Lost in Space”. Xe
awté 0 MEOPRANUa, dewpolue 6Tl evtoc Tou medlou Tng xduepoc Pploxetor €vag Un cuLveRYAOLWOC
otoyoc. H xduepa elvon evowpatwuévr oe €va Sopupdpo oe tpoyid yipw amd 1 I'n, xou cuvenog o
6pOC “UY) CUVEPYAOLLOC’ AVOPEPETAL OTO YEYOVOC OTL To avTixeluevo-otdyog, dev emiyelpel va Bonidrioel
oty ddcacio evtomiopod Tou Yéow emxovwviog. To clotnua mou @épel TNV xduepa EYEL YVOOT
ToU TPIOodEoTATOU HoVTEAOU Tou otdyou. ‘Eva tétolo cevipio elvan peohiotind, xou Yo unopoloe va
ouvavtniel, yio TaEddelypa, o SLadixacia GUAROYNE SLUCTNUXDY OXOUTIBLOV.

Iopadooioxd, 1 enthuon autod tou mpoBiiuatog Yo amoutoloe Tov oyedlaoud evog cLVYETOU
ovoThpatog enelepyaciog MLy exovey, émov to avtixeliuevo Yo eviomlotay PEow TV xpwY
TOU X0l O TPOGAUVATONGUOS Tou Po xadoptlotay pe clyxplo TOoU PE YVWOTd TELoOdoTAT LOVTERY

Tou. X1 cuvéyela, oe Bddoc ypdvou, ol exTiufoelc tTng YEaNg XAl TOU TEOGUVATOAGUOD TOU GTOYOU

18

Yo Behtidvovtay péoa amd Ty e&étaot tng e&EMEng Toug. loTtbéo0, pag Siveton Théov 1 BuvaToTNTA
VoL eXTTUBEVOOUUE EVaL A€LOTIOTO Xol amodoTixd Luvehxtxd Nevpwvind Alxtuo, khote vo uhomolel TNy
Unrovpevn Aertovpyio. 'Eva tétolo Tuvehxuxd Aixtuo, Bacilopevo oe tomohoyiec YTnoreinduevmy

Nevpwvixtv Atinv eivar 1o UrsoNet.

UrsoNet: Extiunon I[16lag vy Aopugpdpoug

To UrsoNet eivon éva Luvehxtuxd Nevpwvixd Aixtuo, 1o onolo mpotddnxe and toug Pedro
Proenca xou Yang Gao, xatd tn dapxeia tou diaywviopod te ESA, "Pose Estimation Challenge”
To 2019, xau xatéxtnoe v Teitn Véon Tou ev Aéyw daywviouol. Ye avtideon ye to povtéra twv
unérotnwy dlayoviléuevwy, to UrsoNet amoutel eXTETHUEVOUC UTOAOYLOTIXOUEC TOHPOUG X0l GUVETAC,
UTIAPYEL N TROOTITIXY| VoL TEEEEL OE €VOL EVOWUATWUEVO CUCTNUA. LTO TApaxdTw oy Nud, aneixovileta

plor amhomomuévn exBoyr Tng apylTEXTOVIXHEC owTo) Tou dtxThou.

CNN Backbone Bottleneck i i Location
b [X,V,Z]

\ 4 Orientation
T)
Y
|:> Conv ‘
- FC Probabilistic Quaternion Fitting |

EyxApo 8: Amhonownuévn emoxdnnon e apyrtextovixrc tou UrsoNet [4]

To cuyxexpiévo vevpwvixd Booiletar oe éva Tuvelntind Nevpwvind Alxtuo. Luyxexpuuéva,
emhéyetan éva Troheimouevo Nevpwvixd Aixtuo, avdueoo and to ResNet34, ResNet50, ResNet101.
O Baowde Aoyog mou mpotiwovvton T ResNet elvon 1o yeyovédg 6t dlardétouy eldytota otddia pooling.
Avtol tou eldouc oL otproelg, dev elvon emduuntée, apol omwe eEnyinxe xan vwpltepa TpoxoAoly
TUEUUORPWOT) XOL ATWAELN YARUXTNELOTIXWY AOYw TNS Asttoupylag Toug. Xe autyh tnv xatedduvon,
Ta TeAeuToda 500 GTdBL TOL BiTOoU, BNAAdT Eva pooling xou €va TAHPwS CUVOEDEUEVO GTABLO, €Y0UV
avtataotadel amd uin cuvelwTnr) otedon. Auth e TN oepd Tng, Teopodotel 800 xePUAég ToU
anoteAolVTAL and 500 TANPWS CUVOESEUEVES OTROOELS EXAOCTY], Xal AVOAUBAVOUY TOV UTOAOYLOUS NS
tomo¥eoiog XaL TOU TEOCAVATOMCUOU TOU BOPUPHEOU AVTLIOTOLY LS.

Ta cuvdetind cOvola dedouevny, Tve ota onofa Paciletar 1 eXTalBEVCT) TOU VEUPWVIXOY AUTOV,
TEPLEYOLY EYYPWUES EOVEC Ue avdhuon 1280x960 pixels. T'tveton yeryopo avtiknnto, 6Tl yia €va
T€t0l0 Péyetog EOVAS, 1) EXTENECY) OE TRUYUOTIXG XEOVO YLOL XATOL0 EVOWUATWUEVO cloTnuA o
ebvan adOvaty. T v emtoyuvdel n extéleon tou veupwwixol Va mpémel va yewwdel to péyedoc
Tou. Xuveng, Ya ypelaotel unodetypatolndio, dote vo peldolv oL SLaoTIoEC TwV JEBOUEVKV
exnafdevone. Me autd to TpéTo, 1o Bixtuo Yo déyeton we elcodo edves UxEOTEHY SLUCGTACEWY XAl

dpor Go amouteiton UixpdTEROS dplUOC UTONOYLOUMY Ylal TNV e€ay YY) anoTeEAEOUOTOC.

MedoboL YT roderypatorndiog

E€etdloupe tpeic dlapopetinée teyvixéc unodetypotorndloc: Siypopuiny) napeufoln, Suxufun no-
peufoly) xou emavaderyyatohndlo Lanczos.

19

Avypappixy| ITagepBol

H Suypopuin| napepfol npaypatonoteiton eqoppodloviag yeauuxr topeuBols) otov optllbvtio dEo-
Vo xou €V ouveyela TopEUBAANOVTOG TA OTOTEAEGUOTA YROUUXE OTOV Xataxdpupo d&ova, N xou o-
viiotpoga. Evoc mo tumixdg oplopde tne wedodou elvon:

Eotw én1 Oéhovpe va vrodoyioovue tny tiun s dyvwotng owdptnons f oto onueio (z,y),
dedopévov dnt n tiury tng owdptnong yia ta onueie Q11 = (x1,y1), Q12 = (z1,Y2), Q21 = (x2,y1)
kat Qoo = (x2,y2) Vewpefrar yrworr).

plodQ R0

v oF

¥ ‘i’au ;R: .9-‘1
X1 }f X

Egapudélovue apxixd ypappikn napepuporr) atov opildvtio déova:

F(R) = flw,pn) = 2 fQu) + - f(Qa)
F(Ro) = flw, o) = 2 f(Qu) + - [(Qn)

Yn owéyea, napepfdrovue ypappukd otov kdleto déova ya va AdBovue tny embuuntii extiun-
on:

_ Y-y Y~y
flay) = 2 f(E) 4 - f(Re)

H pédodoc auth, otn ouyxexpiévn nepintwon, Yo yenouwomomdel yio tnv unoderypatondio piog
exovag. M yertovid tecodpwy pixel Yo yenowonolelton xdde @opd yiow Tov uTOAOYIoHS EVEC pixel
e TEMXAC EXoVoS. LUVETHS, Yewpolue 6Tt ta téooepa pixel Beloxovton otic Yéoec (0,0), (0,1),
(1,0) avd (1,1) tov 0&évwy, xo to emduuntéd pixel ot 9éon (0.5, 0.5). O mponyoluevoc tinog pe

AVTLXATACTOOT] YiveTo:

£(05,0) = 510,00+ 5 7(1,0)
FO5,1) = 5 F0.1) + 5 - £(1,1)
Ko tehind:
£(0.5,0.5) = % - £(0.5,0) + % - f(0.5,1) = i <(f(0,0) + f(0,1) + £(1,0) + f(1,1))

Yuunepalvouue OTL Yol TNV CUYXEXPUIEVN Acttoupyla, 1 Siypopuixy) tapeuBoly| looduvayel ye tny e&o-

YY1 ToL HECOU GPOL ULIG YELTOVIAS TECGApmY pixel.

ALy nopeBoly

H pédodoc tne duxuPixfc mapeufolrrc, opota e v dtypouuxr, LAoToLETol UE TNV EQPUPUOY
xuBurg Topepfolnc otoug 800 doveg Sladoyixd. Xe avtideon ouwe ye v mponyoluevn uédodo,

20

anawtel v e€€taom 16 otoyeiwy, oe plo yertowd 4x4. (g amotéheoyo, oL EIXGVEC TIOU UTOBELYU-
TOANTTOUVTOL UE AUTH TNV TEXVIXT| EPPAVICOUY AYOTEPES TOPOUORPWOELC GE OYEON UE TN DLy PaUULXY
TopeUBory, pe avtitiwo Tov auEnuévo ypdvo extéreonc tou alyopiduou yio pio edva. To emduuntd
pixel unohoyilovtar we e&hc:
3 3
pla,y)=> Y aj-a’ -y
=0 j=0

To npdPAnua tne TapeuBoAAc, Aoltdy, avdyeton 6Tov xodoplond twy 16 cuvtekeotdy aij. O ancudelag
UTIOAOYLOUOS TWV CUVTEAESTMV AUTGY OeV elval amodotxde, enedy| ol Twés Toug e€optdvton amd Tic
Tiég twv pixel mou elvon und e&étaom. Autd onpalvel, 6T yio xdle emavdAndm tou odyoplduou, ol
Téc autéc Ya mpénet va urtohoyllovton and tnv apy. o autd to Adyo, anogaciotnxe 1 yerorn tou
Aol Buvelxtxod Akyopiduou, 6nwe autde npotddnxe and tov Keys [19].

Me Bdon autd Tov ahybprduo, 1 duufun topeuBolt|, 6Twe TeplypdpnxE Tapandve, eivol LoodHVIT
HE TNV EQapUoYT| uiog GUVENENG UE TOV TapOXdTL TUPNVA, Xol WS TEog Toug 800 dEoveq:

(a+2)- 2P —(a+3)-|z]?+1 |z| <1
Wi(z) =< a-|z]®—5a- |z +8a-|z| —4a 1< |z|<2
0 otherwise

6mou o etvon plo mapduetpog, mou tumixd tideton lon pe -0.5 1 -0.75 xan x elvon 1 andotaon peTalld
Tou e€etalbuevou xou Tou emduuntol pixel. Kata prixoc tou oplévtiou d€ova, ta pixel aprduodva
pe axépateg TWéS oL xuualvovton ano to -1 wg xou to 2. H (Bia apldunomn woydel xou yior tov xddeto
d&ova. Kdbe ypoupr tne e€etalopevng yettovide Yo cuvehiyVel ye tov mopondve muprve. Axolotdwe,
oL Téc mou mpoxinTouy and autéc Tic ouvellfelc, cuuuetéyouy oe plo Véo TedEn cuvENENS Ue ToV
{Blo muphva, yia Ty e€orywyn e TEAAC, entduuntic Tuhc. ‘Onwe axpBoc xou oty meonyoluevn
ué¥odo, to emduuntéd pixel Yewpeiton 6T Bploxeton otn Véon (0.5, 0.5). Epdoov t6o0 o Véoeig dbhwv
Twv pixel TOU CUUPETEYOLY GTOUC UTOMOYLOUOUE Elval YVWOTES, oL GUVTEAECTEC xdde pixel unopolyv
VO UTIOAOYLOTOUY X0l Vo EVEWUATOI0OY we otaldepés eviog g e@oppoyic. Axoun, dedouévou ot
x =1y = 0.5, oL cuvteheoTéC Yo ToUG dV0 dEoveg Vot elvau (Blot. Luvendde, Ldvo oL topaxdtey TE0oEPELS

Tég elvon anapaltnTo vor UTOAOYIGTOUV.
W(0.5 - (—1)) = W(1.5) = —=0.75 - |[1.5]> + 5-0.75 - |1.5]* = 8- 0.75 - |1.5| 4+ 4 - 0.75 = —0.09375
W(0.5) = 1.25-0.5]> — 2.25 - |0.5]% + 1 = 0.59375
W(1-0.5) =W (0.5) = 0.59375
W(2—0.5) = W(1.5) = —0.09375
omou 1o « éyel tedel (oo ye -0.75. H xuPur) cuvélin oe plo didotaon propel vo ypoaptel o wopen
VX WV:

P_,

P,

f(P_1, Py, P, Py) = [—0.09375 0.59375 0.59375 —0.09375] 0
1

P,

Ko yio Tov utohoylopo tou emduuntod pixel:

J(P—1,-1), P~1,0, P=1,1), P~1,2))
JF(Po,~1), Po,0y: Po,1), Po,2))
F(Pa,-1), Paoys Py Pa))s
Jf(P2,~1), P20y, P21y P22)

DesiredPizel = f

21

Enavadeitypatoindio Lanczos

H enavaerypotorndio Lanczos eivon pio uédodog nou Bactleton oty cuVEMEN eVOC GHUATOC ELGOBOU
pe tov nuphiva Lanczos. O nuphvoc autdc anoteleiton and pio xavovixonomnpévny cuvdptnor sinc(x)
EVTOC TOU €VPOUC TV [~ o], 6Tou To a elvon pio YeTind axépona Topduetpoc xou xadopilet To TAdog
TV Seryudtov mou xadopilouv v Ty wiag e€68ou. Extog tou mapadipou autol, o muphvag €xeEl
uNdevX T,
sinc(x) - sinc (2) —a<z<a
L(l‘) —) (a)

0 otherwise
Yy napoloa Bmhwpatixy, emAéydnxe vo tedel n mapduetpog o lon pe 4. Luvenne, o muprvag

Lanczos Qo etvou:

1 z=0
4.2 I
0 otherwise

Ko ouvend, v e€aywyr) evoc anotehéopatos ot pla didotaoy, apxel 1 extéleon tne mpdéne e
oLVEAENC Tou onpaTog Elcddou pe Tov tuprvar Lanczos:

Y Sel+i) L~ + |a))
1=—a+1

Yt 8Vo dwoTdoel, o nuprvag Lanczos etvan amhd to yvéuevo tewv dUo nuphvewy xdde ddotaone. O

TUEHVOC TOU TEoxUTTEL BeV elvan oy wpelolog.
L(z,y) = L(z) - L(y)

T e€aryoyn, Aowmdy, evog anoteréouatog ot SLoBLAoTaTo YWeo, opxel xou TdAL 1 extéleoT) Tne TedEne

e oLVEMENG:

[z Z Z f(l= lyl+4)- L -2+ |z])- LG -y + [v])

i=—a+1j=—a+1

Z Z (i—z+|e)) LG —y+ ly)

i=—a+1j=—a+1
OOV TO AMOTEAEGUA XOVOVLXOTIOLELTOL 0¢ TtpOg TO auvolxd Bdpog Tou piltpou. Onwg xon oTig TEOT-
YOoUUEVES TEYVIXES, TO emtduuntd pixel Bpioxeton otn Yéom (0.5, 0.5). Evadldoovtoc toug tehectée

dlpolong xan Jewpdvtag o = 4, 1 Topamdve e&lowor yedpeTou:
1
flay) =Y — L <qu <z—x>>
j=-3 i=—3

To npdéBinua, 6mng xou oTny tepintwomn Tou duPxold cuveAXTIXOU dhyoplduou, avdyetoal GTOV UTO-
AOYLOUO TV CLUVTEAECT®Y Tou Xde pixel, Eeywplotd yio xdde didoTaoy. Ol TWES TWV CUVTEAEG TV,

woT600, Yo Tig 800 Blaotdoets elvan (Blot xou dpa utohoyilovtar uévo pla popd:
L(—3—0.5) = L(—3.5) = —0.01266087782123867

L(—2.5) = 0.05990948337726289
L(—1.5) = —0.16641523160350802

22

L(-0.5) = 0.6203830132406946

sum(L;) = 1.0024327743864216

Ye yopyr| mivaxa, 1 enavaderypoatornglio Lanczos mou epapudlovye, neplypdpeton ¢ e&hg:

[—0.012630151512143303 |
0.05976409082786907
—0.1660113634107474
0.6188774240950217
0.6188774240950217
—0.1660113634107474
0.05976409082786907

| —0.012630151512143303 |

DesiredPixel = P,3 P,Q P,1 P() P1 P2 P3 P4

Intel/Movidius Myriad X VPU

H Myriad X efvou) o npbogatn mpocdfixn otny owoyévela twv Vision Processing Units (VPUs),
nou Tpoo@épet 1 Intel/Movidius. ITpdxeiton yia plo avepy duevn xatnyopla puixpoenelepyaotdy, 1 ono-
{o oTOYEVEL OTNV AMOBOTIXY ETUTAYUVOT] EQUPUOYOY OpaoT; UToAoYLoT®Y. H ouyxexpiuévn mhotpdpuo
emhéyOnxe Yo vo @Lho&eviioel To GG TN TOU TEAYHATEVETAL 1) Topoloa BThwuatixy, To onolo Yu

AOvel og mporyuatixd yedvo to medfBinua " Lost in Space”. H Myriad X npoogépet:

o EZoupetind yaunin xoatavdiwon toyvoc. H younii xatavilwon woybog eivon amopo-
(TN YLt EVOOUOTWUEVES AEYLTEXTOVIXES, XUDC CUVDEETOL dUECH UE TO XPOVO TIOU UTOpEl va
unootnetydel 1 Tpo@oddtnon e mhatpdppag and xdmota aveEdpTNTY TNYT EVERYELUC, YLOL To-
péderypo prataplo. H Myriad X 6y uévo hettoupyel ye Aiyotepa and 2.5 Watt, ahhd xou mopéyel
NV BuvatdTnTa var anevepyonondolv xouudTior ToL GUC TAUATOS To OTola DEV YENCLLOTOLOUVTAL

%ol VoL Jetwlel 1 cuYVOTNTA TOU POAOYLOV, Yiol TEPAUTER UElWCT TNG XATAVOMOXOPEVNS LoYVOG.

o Muxpég puowxég Alactdoeig. Ot duotdoelg Tou enelepyoo) autol elvan ol 8.8x8.0x1.0,
EMTPENOVTAC TNV EVOWUITWON TOU O GAAa, HEYUAUTERA EVOLUOTOUEVH cuoThpata. H evow-
pdteon outh, dleuxohbveTon xan amd To yeyovoe ot 1 Myriad X 8ev amoutel xdmowo e€wtepind

oVotnua YPUENG, Yden TNV YoUNnAY TNG XATAVEAWON.
o Mia moAunmbenVvY, ETEPOYEVH AEYLTEXTOVIXY], Tou Baciletan oe:

- 2x 32-bit SPARC V8 RISC encZepyactéc (LEONS), Wuiitepo avdextinolc otny oxtivo-
Boiia
- 16x VLIW 128-bit Vector enelepyootéc (SHAVES) Behtotomomuévous yia eQupuoyéc

6pUOMS UTOAOYLOTEV

- 1x Neural Compute Engine, évov edixd emtoyuvty) yia Bodid cUVEAXTIXG VELPWVIXS

Sixtua

23

Emtayuvtéc vAixol v enelepyooia exdvag xau Bivieo

2.5MB SRAM pviun (CMX), nou Bploxetat méve 6T0 0hOXANPOUEVO XUXALUA
- 512MB LPDDR4 pvrun

Kpupéc uviueg mohhamAov emmédwy e eMAOYES Blopdppwone Xatd To run-time

o YTroothApldn yia éva weydho naidog dienapdv via I/O nepipepeiaxdy cu-
oxevnv, onwg MIPI, SPI, 12C, 125, SDIO, UART, USB3, GbE, CIF.

/O Multiplexing (i@
(SW Controlled)
ﬁ 8 Movidius”
MIPL Interfaces DDR Memory
(x24 Lanes) (SPI, 12C, USB3, UART, CIF, LCD, ETH, etc.) (5 12MB)
SIPP HW Neural Compute i:t
Accelerators Engine L1 Cache | L2 Cache
ﬁ ﬁ LEoNEs (64KB) (256KB)
CMX Memory LEONRT L1 Cache | L2 Cache
(2 5MB) <]-| (64KB) (256KB)
VLIW SHAVE Processors L1 Cache L2 Shared Cache
(x16) (3KB per core) (256KB)
II 128

IxAra 9: Aldypaupa tne Apyitextovixfic tne Myriad X [5]

Epvyoieio

O mpoypopuatioude piog etepoyevolc mhatpopuas anotehel wla amontnted epyooio. o tny ou-
yxexpwévn VPU, npoogépetan 1600 1) BuvatdTnTo ToYeaupaTiopol oe younhé eninedo, uéow tou
Myriad X Development Kit, 6co xou oe unié eninedo, yéow tou OpenVINO Toolkit. Xtdyog
QTAC TNS BimAwPATXNG, NTaY 0 cUVBLUOUOS TwY BUo Uedodwy mapaywyhc xOoixa, ue otdyo TV

HEYLOTOTOMNON TNE ORIy WYIXOTNTOG OAAG Yol TNE AmOBOTIXOTNTASG TNE EQUPUOYTC.

Myriad X Development Kit

To Myriad X Development Kit (MDK) nopéyeton and tov xotaoxevasti tne VPU, xou tpdxeiton
yia éva cOvolo and Bihovxeg, drivers, eyyepldia yerione xon epyaiela, o omolo elvon amopaitnToL
Yot TNV oVATUEN EQUPUOYAOY Yiot TNV TAoT@opua auth. ‘Eva and autd ta epyaiela, elvon xar o
oOV¥eTo GUOTNUA UETAYAOTTIONOU EQUOUOYMY Yl TNV TAAT@Oppa, to omolo Baciletan oto GNU
Makefile. Eniong, o&ilet vo onpetwdel 6t oo @dxeho mdk/common/components neptéyeton mhndodpo
enavayenodonololueveny component tng VPU. Yta mhalowa tng napoloog BimAwuatixis, £YWVE xenon
TV TapaxdTey component:

o o anocpoludtenon xow EAEYYO TOU WO

- PipePrint
- UnitTest

o T uétenom xou Bloyelplor TNG XATAVOMODUEVNS Lo} VOG:

24

- MV0235
- PwrManager

- MVBoardsCommon
o [l Buvoguxr Suoyeipion g uvnung:
- MyriadMemlInit
- MemoryManager
o TN v expetdhhevor tou Neural Compute Engine:
- MvNCI
- MvTensor
o T duayelpion apyelwy:

- VesHooks

OpenVINO Toolkit

To OpenVINO Toolkit elvou éva epyahelo mou €yel oyedaotel and v Intel, ye otdyo v ou-
OO TIXY EAGTTOOY TOU AMOEAiTNTOU YEOVOU AaVATTUENG EQUOUOY®Y, oL 0Toleg LAOTOUY BLapOopES
tumxég hertovpyies Twv TNA, 6nwe 1 mpocopoinon tne avdpdmvng dpaone xau 1 eneéepyosio Quot-
g YAwooag. Trootnellel TNy €TEQOYEVY EXTEAECT] TWV EQUPUOYMY AUTGY, XaddS elvan cuPotd ue
éva peydro ebpog mhatpdpuny e Intel, and enelepydotéc Xl EVOOUATOUEVES UOVABES YEUPLXADY,
¢wg FPGAs xou VPUs. Me autéd tov 1po10, 1) e€ay®Yn ANOTEAECUATOY HECW VEVPWVIXWY BIXTUWY
emiTary OVETOL o 1) Blodixacior EVOWUATOONS TNE ETEROYEVOUE EXTEAECTC TOUG AMAOTIOLE(TOU ONUAVTIXGL.

H poxy epyaciodv mou axorouvdeiton yio Ty yperion tou OpenVINO Toolkit yia v evowudtwon
VEUROVIXOY BIXTOWY GTNY AVATTUGGOUEYY EQOPUOYT ameovVileTol 6TO TopaxdTe) oYU

Host Machine

Network
Blob

Intermediate
Model Optimizer ntermediate

sentation

Myriad Compiler

Movidius Neural Compute Output Tensor
Interface

.

SxAua 10: OpenVINO Toolkit: Poyj epyaoicdv

Apywd, e€dyeton éva Frozen Graph and to exnowdeuyévo Hoviehd tou veupmvixod dxTUou Tou
Yéhoupe var emiToyUVOLPE. 2Tov Ypdpo autd epapudlovion Texvixée BertioTotoinon and to avtioToL-
¥o epyoareio Tou OpenVINO. Ilupdderypa plag tétolag Bedtiotonolnong anotekel n cuyydvevon un
eXTUBEVCIUWY OoTAdwY GE TEONYOUUEVO 1) ENOUEVA GTABLY EVTOS TOU YPAPOU Tou VEUpwvixoL. H ev-
BLAUEDT] AVATUPAO TAOT] TOU TPOXUTTEL, TEOPOBOTE(TON OTOV EWBIXS PeTayAwTTo T Yoo Ty VPU xau
napdyetan €va duadnd apyelo. ‘OAeg autéc ol Aettovpyieg extehobdvton extdc g VPU.

And v mhevpd e Myriad X, yiveton yerion tne undpyoucog SlETaphc, YLot avay VmaT Tou duodi-
%00 apyelov, Uéow NG omoloc POPTOVETAL TO TEO¢ EXTEAEST] VELPWVIXG GTY KVAKN Xou deouedovTal oL

25

anapa{tnTol UToAOYLoTIXOL TOpoL. X TNV GUVEYELR, UTOPOVUE Vo aTIOUUE EXTERECT) TOU VEUPGVLXOU
yior xdmota emdvar e16680u xon vor Adouyue xdmotor anotéheopa/tpdPredm. H Sienagh auth ytileton
navew otnv Tensor BBhotxn tne Movidius, 1 onola avahauBdvel v avdideon tng extéheons twv
otpwudTwy Tou dlafdlovto elte GTOV EWBIXG EmLTOLUVTY, Elte GTOUC vector eneepyao Tég.

H mopomdve pon epyaoltdv teptypdpel Tov ToOT0 Ye TOV OTolo evowUateUnXe 1) extéleon evic
VELPWVIXOU GE plal HEYANDOTERY EQopUoYT| Tou extele(ton oty mAaxéto MV0235. Qotdoo, edv emidu-
HOUUE Vo ETULTAUYOVOUUE HOVEYX TNV EXTEAECT] TOU VEUPMVIXOL BXTUOU, XL O}l TNV EQPUPUOYT TTOU TO

pLholevel GUVOAXE, TOTE UTOPOVUE VO YENOULOTIOLACOUPE TNV TUEOXATE, EVOAROXTIXT POT| EPYIOLOV.

Host Machine

SxAuna 11: OpenVINO Toolkit: Evarhhoxtixr Por epyooiiv

H x0pta Slapopd oe oyéon pe Ty meonyoluevr pot| epYaoLiy, ivan 4Tl 1) eqopuoyY) avantdooe-
o €€ ohoxAfipou oe uiot YAWooa LYnhol emEdou XL, Ye eEalpEOT) TNV EXTENEST] TOU VEUPWVIXOU,
dev exteleiton mavew oty VPU. H Sour} tou vevpwvixol Sixtiou diafdleton and tny evdidueoy) o-
VOTUPAOG TOGT] TOU X0 (POPTOVETAL GTNY ETMAEYUEVY] TAATPOPUA. LTNV CUVEYELY, 1) EXTEAECT] TOU Yo
XAmoLoL EXOVA ELGOBOV EXPOPTOVETAL OTNV ETAEYUEVY TAaTPOoUa Teog emitdyuvor. H miatgpdoua
oty ETMOTEEPEL 0TO VPl cUGTNUA TNV €000 TOU VELPWVLXOL BixtUou. Me auTh TN pon epyaoLdY,
npoypoppatileton to Neural Compute Stick 2, évo USB stick, to omolo nepiéyet ndve pla Myriad X
VPU.

ITeotewodpevn Egopupoy? xow YAormoinon

Preprocessing » UrsoNet

Current Pose

(6 boF)

Pcse Tracking I

SxAna 12: Ilpotewdyevo Lootnua yia Extiunon xou Mopaxoholinon II6ac Aopupdewy

Yy mopandve ewxdva omexoviletal To TEOTEWVOUEVO GUCTNUN, UEGW TOU OToloU GYEBLIC TNXE 1|
enthuom tou npoPifuatoc " Lost in Space”, oe npayyotind ypévo, oto dio SoC. H xduepa tpopodotel
10 oTtddlo mpoemedepyaoiac e Eyypwues exoveg avdivong 1024x1024. Tao dedopéva auta upioTo-
vt unoderypatoindio, Gote ol SoTtdoelc e exdvac va pewwdolv oto woé. H tpomonounuévn
exova, dlactdoewy 512x512 ypnowwonoleitar, ev cuveyela, yior TRV extiunon g apyxic nélag tou

dopupopou. H apynr auth nola e€ehiooetar oe Bddog yedvou e xphor XAACOIXMOY TEXVIXMDY 6pUOTG

26

unoroylotey. O adydprdpog tou vhomolel TNy ev Adyw Aettovpyla, Baciletal oe Tpomnyduuevr SouAeld
Tou epyoaotneiou ([20]). O alybpripoc autde Aettoupyel Téve ot aoTpduaUpES YwToYpopies dloo Tdoe-
wv 1024x1024, cuvenne 1o otddlo g Tpoenelepyaoiac extehel TNV Aettoupyio Tou cLVBLAGHOY TWV
TOLOV YPWUATIXOV XAVAALDY OE €Val.

Yt napolod BITAWUATLXY), UVAOTOO0UE TO 0UCTNUO TOU TpayUaTtonolel TNy apyxn extiunoy g
n6lac Tou dopupdpou, OTwe €xel meptypagel Topandvw. To otddio tne mpoemelepyaociouc Exel mpo-
YEOUUOTIO TEL UE YUUNAOU EMTEDOL XOBIXA, XoL €XOLY Qoo Tel Bildpopeg TeYVIXES BedTioToNolnong,
Gote va anogevydel n dnwovpyio otevwnol. To otddo g extéleong Tou veELpwWXOD BixThou EYEL
evowpatwiel ye ypron tou epyodeiou OpenVINO, pe ot6y0 0 Uelwon Tou TeoypauaTio Twod @op-

TOU TOU EUTEPLEYEL 1) EVOWOUATWOT AUTH.

Ytédwo Ilgoeneiepyaciog: Beltioctonowoelg

Or tpeic pedodou unodelypatorndlauc twv dedouévwy Bactlovtar oty medén e cuvéhing. Xu-
VETOC, YLt TNY vhomoinot| toug apxel vo vhomomdel n medén auth ue évav unoloylopévo muphva. O
OO0 Souelton Yéow Wlag ETAVUANTTIXAS EPYAOLAS, OToU YiveETol SLaBoyixd avdy Voo TV anoeditn-
TWV YPOPUOY EIGABOV, EXTEAECT| TNE TEGENS TNG CUVENENC, EYYEUPT TNE ToRAYOUEVNS Yeopuic e€6B0U.
‘Onwe yivetow avtdnntd, yetald exteléoewy avtic Tng enavoAnmuxfc epyaoiog, dev evtonilovtat -
Eoptrioelg onoloudhrote eidouc. Autd pag emitpénel TNV ev-tapahhihew exTéleon Tou alyoplduou, pe

v avdideorn nopaywyhc oLYXEXPWEVOL aptduol Yeauudy e£6dou ot xdde Tuprvo.

Second Iter.

A 4
. Last Iter.
First Iter. of 1st Line
First Iter.
of 2nd line
Last Iter.

Ixhwa 13: Extéheon Avypouuurc HopeuBoric yio Troderypotoindila Ewxdvag

Ioapdha awtd, xatd Ty yerétn e enidpaone e maparinhonolnong oto ypdvo extéleans Twv
TELOY ahyopliduwy, TapaTtneelton 6Tl eMEPYETUL XOPECUOS Yol YeNor 6 muprvwy, Xat, Yio ToROAAY-
homoinom oe mapamdve tupriveg, mapatneeiton oTadlox adEnom tou yedvou extéleons oe oyéamn pe
Tov eNdyoto. Mdhota, otny nepintwon tng diypauixhc mopepBolnc, 1 oelptaxt| extéheoy) omoutel
AY6TERO YPOVO amd TNV TaESAANAN HE ¥eYom Tou PEYLOTOU apliuol mupvey!

H cuunepipopd auth ogelletar oo yeyovdg 6t dhol ol tuprvee diafdlouv ta amopadtrToa dedouévol
xa Ypdpouv o amoteAéopatd toug oe uior xown puvAun. ‘Otav o aptiudg twy Swdéoipny tuprvey
unepfel tov apliud twv dladéoiuwy ports e uvhiung, avandeeuxta xdmolol and autols dev Yo e&a-
opolloov TedoPact) o8 TOEOUS TNG UVAUNG. MUVETAOC, Yo €l0dyouy xotucTepnoelc oTny exTéAEOT
TOUG, OOTE Vo TEPLEVOLUY TNV ameAevépwon xdnotou port. ‘Oco audvetar o aprdudc Twv TUEHVLY,
TOGO UEYOAGDVEL X0 O AVTAYWVIOUOS UETAED TOUC Yot TOPOUS TNG KVAUNG, X0 CUVETWE, Topatnpeeltol

1 oTadlo] abENoT TOU amAUTOUPEVOU YedVOU EXTEAEOTC.

27

150 800 3500
00 e 3000

o 600

£

E s00

3 a00 H

3 30 + .

Total Execution Time

5
2
2 200

0 2 4 6 8 10 12 1 1 18 0 2 a 6 8 0 12 14 1 18 0 2 4 6 8 0 12 1w 16 18
Number of SHAVE Cores Number Of SHAVE Cores Number of SHAVE Cores

(o) Avypoppxh HopepBorn (B") Awupueh HapepBorh (v") Eravaderypatorndio Lanczos

SxAuno 14: Khpdnwon Xedvou Extéheone otouc SHAVE ITuprveg

H amoguy? tou avtaywviopol petadd tupivey Yo TOpous NG XOWAG UVARNG ETULTUYYEVETOL oV O
xdde muprvag puduiotel vo daBdlel xan vor ypdepet dedopéva and to xouudtl tne Scratchpad uvriung,
oto onolo dladétel To eNdyLoTo x00TOC TPooTE oS, Lot v petopépoupe tar amapaltnTo SedopEva
an6 v DDR oty Scratchpad pvrun, xa to avtiotpogo, yenowwonowoivion DMA Socoindiec petald
TV 800 UVNnuoY. Xuyxexpwéva, xdde enavdindyn tou odyoplduou tpomomnolelton, OOTE apyixd Vo
nepLéyet wo Socohndla ylor T HETOPORE TWY YEUUUMY TNG apytxS EXOVOC TOU Efval amapolTNTES Yid
TOV UTOAOYIOUO Uiag YRaUUNE TNG TEMXAS emdvag, axolollwe va exteheiton 1 emheyuévr pédodog
umoderypatorndlog xou Tehxd, N TapayOUEVY YouuY TNS EXOVIC EEOB0U Vol UETAPERETAL THOW GTNY
DDR pviun péow docohndioc. Me autd to Tpdm0, GAEC OL OVOYVWGELS XAl EYYPUPES DEBOUEVWY XATE
v extéheon e pedodou unoderyuatoindios, Tou amouTel Xou TO UTOAOYLOTIXG ATOUTNTIXG XOUMATL
auto tou atabdiov, yivovton oty yeryoen Scratchpad, n onola Siordétel Tov amapaitnTo aprdpo ports,
yioe v e€umnpetel 6houg toug SHAVE nupriveg mopdhinia.

18
16
14

T
12
%
= 10
[=]
g s .
=
g 6
&
4
2
o]
0 2 4 [8 10 12 14 16 18
Number of SHAVE Cores
—&— Bilinear Interpolation —®— Bicubic Interpolation Lanczos Resampling

SxAre 15: Emtdyuvon xatd v Hopohinhonoinon pe xeron te Scratchpad uvhung

IMopatneeiton yeouuxy| emtdyuvorn yio Ty uédodo tng diypauuxrc mapeufolrrc. Qotéc0, napa-
tnpolpe enlong 6Tl UTdpyEL YOpoc Yio emmAéov BehTloTonolcels Yia Tic dAkeg S0o uedddouc. H
ewonolog Sopopd petadd tne duxuBinc mopepBoric xou tne enavaderypotohndioc Lanczos oe oyéon
pe v Suypopuxy] mapeuBolr etvon 1 yerion padding. To apyixd dedouéva dodétouv padding ue
otodept| T, ouyxexpwéva To undév. o tny extéheon, wot600, Twv ahyopluwy avtdy arateiton
padding pe enavdndm twv TGV Twv cLVeprY TNE exxdvag (replication padding). H npoodrixn auwtdu
tou padding ota dedoyéva elo6dou yiveton ano évay LEON muprjva, ye avory vidoels xat ey ypapéc otny
apyr) DDR uvAun xou amoutel 2.1 xon 6.2 ms avtiotowya yia 1ig 800 pedoédouc. Elvou mpogavég, ot
ouTH 1) emavoknmTer] dtadxaoia dev eumeptéyel e€apthioeic HeTal enavalPeny %ot CUVETDS Uropel
va topoAinhonomndel pe tov (Blo tedmo mou avahbinxe vwpltepa. Me yeron tng Scratchpad uvAung
xan avardétovtog oe xdde SHAVE nuprva va dnutovpyet o (Sloc to padding nou Yo ypeetaotel, ota de-

28

Boyéva elo6d0u oL, emTUYYdveTon 1) TAeng e€dhewdn e xarduotépnon autig, agol dev Tapotneeital
xdmola abEnom oto yedvo extéreone twv SHAVE.

H tehevtola Behtiotonoinom mou egapudleton, €yxettan otny yenowonoinon twv SIMD Suvo-
Tottwy Ty SHAVE nuphvwy, pe otdyo tnv mhien exyetdhhevon tou napolniiopod oe eninedo
dedouévewyv. Ot SHAVE muprveg dlardétouv aptiuntixéc uovddes, ol omoleg UnopolV Vo eXTEAEGOUY
npoo¥éoeic xau moAlamhaoloopols floating-point oprducdv ye SIMD tpémo. T'a tic peddédoue tneg
BuuBuiic mopeuBolic xou tne enavaderypatolndiog Lanczos, mopatneeiton Behtiwon 5-15% oe oyéon
ue v mponyoluevy Behtic tomomnuev exdoyn e vhomoinong. Do tnv nepintwon g Suypoupxhc
napeuPolrrc, wotdoo, mopatneolue cuvohixd abénon tou Ypovou extéleonc. Autd ocupPaiver Suot
oL SIMD evtoléc extelolvtan oe vector xatoywentés twv 128 bit.Io v extéleon tng diypaupl-
¢ moapeuolc, anawteitan 1 ddpolor wdvo tecadpwy 8-bit apriumy. Luvendg, ol utdhoineg Yéoelg
TOU XATOYWENTY CUUTANEWMVOVTAL UE UNDEVIXA, To OTOl0l WO TOCO CUUUETEYOUV OTIC TEOCVECELS XAl

elodryouv plo emmiéov xaductépnon, 1 onolo uEEXOAUTITEL T OTtota 0EAT TN SIMD extéleonc.

w [l s [o [l
s H L
S Lo bomm
s s s
- I : . - .
;e H P ||
: e :
o s M s " o ® o @ o w 2 w1 o s m 30 m s w0 s
xacution Time ecttion Time xacuton Time
W SIMD Enabled W SIMD Disabled WSIMD Enabled ™ SIMD Disabled W SIMD Enabled ™ SIMD Disabled
(") Avypopxd IoapeuBoly (B) AwuBueh HopepBorn (v") Enavoderypatoindio Lanczos

Ixhua 16: Khpdxwon tou Xpévou Extéheone otouc SHAVE Iluprivee, pe tic SIMD duvatotriteg evep-

YOTOMUEVES / ATEVERY OTIOINUEVES

3téddto CNN Inferencing

Tt TV eVOOUATWOT TNC EXTEAECNS TOU VEURGVIXOU BIXTOOU GTNV EQUOUOYY| KOG, oxohoutolue
v i pony gpyooidv tou OpenVINO, 6nwe auty meptypdgnxe mponyouuévewe. H ypron tne
TPOGPEPOUEVY BLETUPHS YLt POPTWOT| Xl EXTERETT] TOU VELPWWLXOL BixTbou oty VPU eivon eatpetind
amhn) xou anoteheiton amd o axdhovda Bridorta:

Load Network

Verify Input and
Ouput Shape

Prepare Network
for Execution

!

Run Inference Release Executor Deinit Resources

§

Ixhua 17: PoxX Epyacidv vy yenon tou Neural Compute Interface

TMopatideton pioa obvtoun e€fynon e Aettoupyiac xdde otadiou:

o Apywomnoinom mopwv: Apyxd, 1 eQopUoy TEENEL Vo oEYIXOTIOLCEL TOUG AmopEaiTNTOUS
TOEOUC TOUL ELBIXOU ETULTUYUVTH GUVEALXTIXDY BIXTOWV.

o PopTwon AwxtOou: Poptwon g dourc Tou Bixtiou atny pviAun. H doun Swdleton amd
70 duadixd apyelo mou divetar we elcodoc.

29

e 'EAeyyoc Alactdoeswy Eicodou xaw EE600u: Afyn twv dlaotdoeny g elob6d0L xol

e €680V TOU BIXTVOU oL ENEYYOC OYETIXY UE TO AV ELVOL Ol AVOUEVOUEVES.

o ITposTolpacia via exTEAEST: ALCUEUCT] TWV ATUPUUTNTOY TOPWY TOU ETLTAUYUVTH Yid TNV
TEEYOUCU EXTEREDT).

o Extéleon: Ta dedoyéva eicddou tpopodotobvtar oto dixtuo xou hauBdveton 1 omdxplot
tou. H ouyxexpwévn cuvdptnon avopévetar vo xohelton ToAD cuyvd xan vor xotahauBdver To

HEYAUAUTEPO UEPOG TOU GUVOAMXO) YPOVOL EXTEAECT.

o Anelevdépwon extéleons: Ancieuvdepdivovioan dhol ol Tépol nou elyav deopeutel Yo

NV TEEYOUCH EXTEAEDT) TOU VEURPWVIXOV.

e Anoapyixonoinor népwv: H avtictpopn diadixacia tne apytxonoinone.

H ouyxexpiévn dietoagt] €xel ecwTepind Tpoofaon oe 800 BlapopeTixd cloThuata Soyelplong:
éva cvoTnpa Blayelplone mépwy xat €va cboTnua dayelplong Loybog.

To cbotnua Sryelpiong tdpwv elvor UTEGHUVO VLo THY XATOYPUPTH TV TOPKY TOL YENCULOTIOLO-
OVToL Yior xamota EXTEREDT) OhR X0 TwV Topwy Ttou elvar Sladéotpot. Autd cuufaivel, SLoTt 1 Bieopy
dlvel T SuvatdTnTa TS Aoty yeovng extéleons. Autd onuaivel 6Tl TOAAATAG outhpotar propel vo Spo-
pohoyndolv meog eXTEAEDT] €V TUPUANAAG, XL CUVETMSE TOAAATAS avTliypopol TOU VEUR®VLXOU UTOEEL
vo ypetaotel va tpé€ouy Towtoypeova. Amo tnv GAAN mhevpd, éva cUoTnua Sloyeliplone mépwy elvon
eniong anapaltnTo yioe v e€oxpiBwon Tne BuvaTdTNTAC EXTENEGNE EVOS LOVAdXOU VEURWVIXOU. Aebo-
HEVOU OTL TO CUYXEXELUEVO GUCTNUA EVOL EVOOUUTWUEVO GTNY TEOCQPEPOUEVT] Slemtapy), dev amonteiton
xdmota eVERYELX amd TNV TAEUPE TOU TEOYPUUUATIOTH YLOL TNV YENOHLoToinoY| Tou.

Ouolwe, To cbotnua dayelpiong woybog yenowdonoleiton eowtepnd Tng dienoghc. e avtideon
wotdoo pe to cbotnua Sayelpiong TopwY, 0 TpoYpaUUATIoT S elval o Véon va emAéel Tov TpdTO

hertovpylac tou. O Stadéotpec emhoyég elvau:

- Kavovue Aettoupyla, 6mou dhol ol mépol elvon evepyol

- Evepyomnoinon avéd Altnua, 6mou ol mépol evepyomololvtal 6tay ypeetaotel vo eEunnpetricouy

XATOLO o{TNUA YioL EXTEAECT] TOU VELEWVIXOU Ol ATEVEQYOTOLOUVTOL axoAoUHwe

- Evepyornoinon avd Xtpdua, 6mou oL mépoL yia TNV eXTEAECT] EVOS OTPOUATOS TOU VELPWVIXOV

BXTUOL EVERYOTOLOUVTAL ALYO TIEWV TNV EXTEAEOY) XOUL ONEVERYOTOLOUVTAL OHECKS YETS
- Evepyomnoinon avd Xtpdua, yia otpduate tou extehobvton otouc SHAVE nuprivec
- Evepyomnolnon avd Xtpcdua, Yo GTROUATO TOU EXTEAODVTOL GTIC LOVADES TOU ELBLXOU ETUTUYUVTH

- Metofotixd otddlo, 6mou 1) Aettovpyia TOU GUGTAUNTOS ATEVERYOTOLELTAL.

O tpomoc Aettoupylag mou Vo emPBdhel to cloTnua dlayelpione loyboc neénel va emheyel npoaoe-
xTd, X0 Unmopel var ennpedoet Tig emddoelg TS ocuvolixig epapuoyric. H evepyornoinon vnoidwy
woyvog e mhatgdppag, ol omoleg elyav mponyouuévne anevepyonoiniel, ewodyel pla afloonuelwn
xaduotépnon. Luvends, 1 Peltioteg emddoelc and dmodn yedvou exTéleons emTuyyYdvovToL, 6TaY
emAéyeton 1 xovovixy) Aettoupyla xan To cloTnUa TpodepuaiveTtol Ue xdmolo apyixd altnuo exTtéAe-
oMNg, UE XOCGTOC QPUOIXA TNV AVENUEVT XUTAVEAWGT] LoyUog. AuTtdg elvan xaL 0 TpoTog Aettovpyiog Tou

eTAEYUNHE OTNY CUYXEXPWIEVT] EQOUQUOYT).

30

ITpotewopevo chotnpa yie Métenor xaw Awayeipiorn Ioydocg

e avtideon ye 10 oTABO exTEAEONC TOU EMAEYUEVOLU VELUPWVIXOL BLxTOoU, To omolo SladéTel,
Omwg emoNUdvInxE, éva WBLwTxd cbotnua Sliyelpiong toybog, To otddlo mpoenegepyasiog, dev Bio-
Bétel xdnoto cVotnua tétolou eldoug. Avelapthtwe Tou aplduol twv SHAVE nuphivewv mou yern-
OWOTOL6UVTOL, 6hoL oL Blardéaipol TUpTiveS TOEOUEVOLY EVERYOL XATE TNV EXTEAEOT) TwV ahyopliuwy,
xaTovolovovtog doxona evépyela. Tlapdhnia, dev undpyel xdmolo cbo TN TO oTolo VoL XaToYPApEL
TNV XOTOVOAMOXOUEVT oYL TNG EQUPUOYNS.

H pétpnon g woyog pnopel va emitevydel pe ypron e Pondntinic mioxétac MV0257. H
mhoéta auTh, Srondétel 7 petatponels avahoyixéu ohuatog ot Pnelaxd (ADCs), ol omolol Sevypotoln-
nTo0V TECOERELC YRUUUES EXAOTOC, X0 XATOYPAPOLY TNV EVTaoT 1} TNV TAoT ToU pelUATOC OTIC YEUUUES
autéc. H tpogodoaia v didgpopwy cuviotwody tne mhaxétag mou @uiolevel Ty VPU, yiveton yéow
QUTOY TWV YRUUUOY, CUVETKS Pe Tig Angleloeg yetprioelc umopel vo umohoyloTel 1 cuvolur| Loy ic.
Troomneileta évag aptiudg and SwpopeTtinés axpifelec yio Tnv wétenon mou o Angdel. Avardyne

; ';'noeem 8 .
Eﬂ"“g B el INORST © ROMOED. " e"\':]

e MR el iy Eééﬁ%a@,_ .

EyApo 18: H mhaxéta pétpnong oydoc MV0257 [6]

v axp(Bela tou Yo emheytel, xodopileton xou 0 Ypdvog mou meEREL Vo Blopxéael 1) detyotoAndlo yia

v e€aywyn evog delypatog. Lny mapoxdte Aloto tapouctdlovTon ol Ypdvol auTof:
o AxpiBela 12 bits: Xpdvoc detypatoindlag Sms.
o Axp{Bewa 14 bits: Xpdvog derypoatorndlog 17ms.
o Axp{Bewa 16 bits: Xpdvog derypatorndlog 67ms.
o Axp{Bewa 18 bits: Xpdvog derypatorndloc 267ms.

H owoty apyixonoinomn 6 Awv tev anapaitntwy components yio tn Sladxacio tng Adne yetprioewy
elvon Lo xouvpaoTixy Blodixacia, 1 omolo amoutel A TOV TEOYEOUUATIOTY YVOON TNG UTOXEUEVNC
APYLITEXTOVIXAC. 2NV Topoloo SITAwPaTixT, oyedidoaye wia dienoapy|, 1) onola ecwtepixd LhoTolel GheC
Tic amopaftnTeg Aettovpyies yia apyixonoinom xat yehon tne mhoxétac MV0257, xou 1 onolo epapudlet
o amhy), ooty Tey v Biayeipiong woybog. Ltodyog Tne dlemapnc, Elvor 0 TEOYEAUUUATICTAS Yid TNV
M ploc pétenong, va ypeootel vo xaAéoel LOMG TRELC GuVoETHoelS: o yio dpyixomoinom, uiot yio
M pétenong xou plo Yo tepuationd. Eowtepixnd, wot6c0, ol xaholueves cuvaptioelc Yo bAonololy
Lo TAddea EpYAOLOY, oL oTtoleg o BlaopeTixy| tepintwon Yo Enpene Vo EVOOUATWI00Y GTOV XWBXA
and TOV TEOYLOUUITIOTY:

H ouvdptnon brdlnit opywd anevepyomotel 6houg touc SHAVE nuprvec mou Sev mpdxeiton var
xenowornoundoly and TNV QopUoYH. LTN CUVEYEL ANEVERYOTOLEL TO UTOCUGTNUA TOAUUESWY. Ev
ouveyela, apyxonowelton o driver tng mhoxétac MV0257 xou tideton o xatdhAnhog tpoémOC Aettovp-
yiog Twv Sladinv 12C xa GPIO, yéow twv onolwv do yivel 1 yetapopd eVIOAOY Tpog TNy TAUXETo
Mne peTpioewy xou 1 UETAPORE TV PETPHoEwY and Ty mhaxéta mlow oty VPU. Autd odnyel
otnv dnulovpyia 7 diapopetixyv file descriptors, évav yia xdle yetatponéa avahoyixol oe Ynpio-
%6. Téhog, tideton o tpdTOg Betypoatolndiog TwY YPoUMY Xou 0 TedToE Acttovpylag TwV aeUNnTiewyY
Yepuoxpooiog.

31

/ \ / brdMV0235Read Temp(BoardMVO0235TempRes ’res)\
brdInit(BoardMV0257OpMode mode, u32 shavesUsed)

brdMV0257 SampleAllRails(BoardMV0257 SamplingRes *res)

Power Off Media
Subsystem

Calculate Total mW
and mA of DRAM

Calculate Total mW
and mA of Cores

Return €SS, MSS and

UPA Temperatures
(B) Avdn petprioeny Ioylog K /

4

(o) Apyxomoinon
(v") AR petpricewv Oepuoxpacioc

IxAua 19: Aetovpyieg Tou Yuotiuatoc Métpnong xou Awayelptong Ioybog

H ouvdptnon brdMV0257SampleAllRails Swdler enavohnmuxd €va delyua woybog and xdde
yvooupn. e vo ouuPel auto, ol yetatponel avaroyxol oe Yneloxd houBdvouv Ty eviohy) vo Eext-
vhoouv v derypatoindio tne emduuntic yeopuunic. Metd and Sms, napdyeton pio uétenon, n omola
droPdletan apéows. Ebvow Suvary 1 mapdhinin derypotondio yeouupdv mou €youv avotedel oe Sloupo-
PETIXOUC UETATPOTE(S. LUVETAC, 0 YPOVOC oL amante(ton yiot T A wiog pétenong mou mepthauBdvel
TNV GUVONXT XaTavdhwon toyvog elvon 4 * 5 = 20ms.

H ouvdptnon brdMV0235Read Temp apyixd evepyomolel 800 vnoildeg 1oy bog Tou UTOGUGTAUATOS
TOAVUESWY, Yiar var elvon Buvath 1 Aettovpyio twv aiodntipwy. Auth 1 Aertovpyla anatel teplnou
100ms, Yo va ohoxAnpwdel. Xtn ouvéyewa, dofdlovtan to 4 apyela Ta omola avTIGTOLYOUY GTOUC
aotnThpec YeppotnTag xau emoTEéPeTon 1) T Toug. Ot ynoldeg oy bog Tou GUOTALNTOC TOAVPETWLY
OMEVERYOTOLOUVTOL Yot AL Ylo e€olxovounon evépyelog.

H ocuvdptnon brdUnlnit anide teppotiler v Aettovpyla tou driver tne mhaxétag MV0257.

A&woloynon twv Ilpotewdueveyv Yvotnudtwy

Oat 0a€lohoYHooLPE opYLxd TIC LAOTIOAOELS Toug oTadiov Tpoeneepyaoiog Sedouévmy xat Tou oTo-
0lou EXTEAEONC TOU VELPWVIXOU, YPNOLLOTOWVTOG TIC EXOVEC TOU GUVIETIX0) GUVONOU BEBOUEVLV
”Soyuz Hard”, to onolo mepiéyel éyypwues exovee dlaotdoeny 1280x960, ye otoyo v pelworn twv
BLIO TACEWY TOUS XATA TO Wicd. 2TOV Topaxdte Tivoxa @aivovtol oL EMBOCELS TWV 0PYLXWY UAOTOL-
Aoewv Twv ahyoplduwy, ol onoleg tpéyouv ot évav LEON 7 éva SHAVE nuphva xat yproyonotody
u6vo v DDR uvrun.

ITivaxag 1: Apywn Thomoinon twv Alyoplduwy

MeéOodog Xebvog Xebvog Enwtdyuvon
Extéleone Extéleone
(LEON/SPARC) (SHAVE)
Avypopuxyy TapepBorn 468.2 ms 141.9 ms 3.3x
A HopeyBoln 2112 ms 702.4 ms 3x
Enovaderypotorndio Lanczos 7925.3 ms 2859 ms 2.8x

Evo ol tehixée, BélTioTe LAoTOMoELS PalvovTon TopoxdTe:

32

ITivaxoag 2: Béhtiotn Thonoinon twv Alyopiduwy

Mé39o0dog Xeobvog Xebvog Enwtdyvvon
Extéleong Extéleong
(LEON/SPARC) (SHAVES)
Avypopuixy) IopgeuBoin 468.2 ms 1.1 ms 425.6x
Awxupucr HopepBoin 2112 ms 7.4 ms 285.4x
Enavaderypatolndio Lanczos 7925.3 ms 21.8 ms 363.5x

Ou Twéc autée dev ouwoTovy povdyo extéheon ot mpoypatxd ypeévo (909, 135 xou 46 FPS
avtioToya), ahhd xar avorToly Ty anaitnor va eivon oyeddv auentéec Purpoctd oTo Yeévo &-
xTéAeong Tou veupwvixod dixtdou. Ilpdypatt, yia To cuyxexpévo yéyedog exxdvag, To VELEWVIXO
pog dixtuo omontel 449.26 ms yio Ty mapaywy plag e€68ou. Buvenmg, o ypdvog extéleong xdie
ahyoplduou elvon TouldyloTtov plo T8N peyédouc pixpdTEROC amd T0 YPOVO EXTENECTC TOU VEUPWVL-
%x00. O Ypbvog exTEAEOTC TOU VELPWVIXOU Hog BXTUOU amoTiudTon yia didpopa UEYEDT ElGHBOL GTOV

TopodTey mhvancor

ITivaxag 3: Kaduotépnon abyypeovng eEunneétnong autnudtwy

Méyedoc Acdopéveyv Ewwddov | Kaduotéprnon (ms) | Frames Per Second
1x192x256x3 67.40 14.84
1x512x640x3 449.26 2.23
1x960x1280x3 2297.62 0.44

‘Ocov agopd TNy anddooT Tou TEOTEWOUEVOU CUCTARATOS OTATXNE Slayelplong toybog, Tapatnpe-
fron 6L M e€owovdunom oy o xupaiveton petagl 9% xou 38%, 6tay To GUGTNUN EvEpyoTOLElToL. XTIC
TOEOXATE YPAPUES TUPAC TACELS, amelxovileTon 1) ETBEAOY) TOU CUGTAUATOS GTHY XUTAVIAWGT Loy VOg

TWV TEAXGY VAOTIOLOEWY TwV dAYopituwy:

2500 2500 3000

2000 _ 2500

£ 2000
s s
2 3 2000
1500 E 1500

i :
g £ 1500
S 1000 §
5 5
g % 1000
H H
B o I I
o 0 0
1 2 . s " 1 2 . s 1 1 2 . s 1

Number of SHAVE Cores

Power Consumption

8

Number of SHAVE Cores Number of SHAVE Cores

= Total Power (Optimized) B Total Power (Unoptimized) m Total Power (Optimized) M Total Power (Unoptimized) B Total Power (Optimized) M Total Power (Unoptimized)

(") Avypoppxd oapeuBoly (B) AwuPBu HopeuBorh (v") Enavoderypatoindio Lanczos

SxAua 20: Katavddwon Ioybog twv Tehddv Yhonooewy twv Alyoplduwmy

Téhoc, a€loNOYOUUE TELROPOTIXS TO TEOTEWVOUEVO OO TN Yio EnihuoT Tou tpofBinuatoc ”Lost in
Space” w¢ Tpog To YPOVo EXTEREOTC TV EMUEEOVE oTadlwy Tou. Ou ypdvol extéleons Twv LAOTOL-
foewy pag etvar otoUNTd ULV, OTwS EiVol AVOUUEVOUEVO, AOYW TOV UXPOTERWY LG TUCEWY TWV
dedouévev elobdou. H peiwon tou ypovou extéleonc tou otadlou npoenelepyaotauc elvar oyetind yao-
UNAY, epdoov oL alybprluol 1o TeE)ouy TOAD anodoTXd. 3T0 GTAB0 TNG EXTEAECNC TOU VELPWVIXOU,
wot6o0, Tapatneolue wa afloonuelntn pelworn e 1éEne twv 80 ms. Me autd tov TpdTo, N cuVOlX
xadUOTEENOT TV ETUTAEOY BIEQYAOLDY TIOU TEOGVETOUNE GTO DT UTEEY 0V 000 TN ToeaxohoVUNoTg

BopudpwY, €xouv ouyxpliown xaduotéenon ue auto. Iupadétouvye Tic YeTEroElC pog:

33

zragio | Ka@ugripnon

MNpoeme€epyaaia Alypauuikn 1,0ms

Al n 6,3ms 16 SHAVEs
Lanczos4 18,6ms
ExTé\eon INA NCE +
372,7ms 7 SHAVESs
MNapakoAovenon 263-388ms 12 SHAVEs

34

Chapter 1

Introduction

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) can be perceived as processing systems of distributed ar-
chitecture, which have the ability to store empirical knowledge, and use it when needed to provide
a response to some form of stimulus [12]. They are similar to the human brain, in that they ac-
quire knowledge from their surroundings through a training procedure, and that this knowledge is
stored in the connections (synapses) between their unit blocks (neurons) in the form of ”synaptic

weights”. Figure 1.1 provides a comparison of the structures of a biological and an artificial unit.

dendrites axon

> Vi

cell body /‘?’%55\

terminal axon

Figure 1.1: A biological, human neuron (left) in comparison to an artificial neuron (right) [1].

The neurons inside the human brain receive stimuli from the dendrites and determine whether
to produce stimulus themselves through their terminal axon or not. The axon branches out and
connects via synapses to dendrites of other neurons, thus creating a complex network of intercon-
nected neuron cells [12]. Artificial neurons, inspired by the biological ones, operate on the same
basis. The input signals {zo, ..., ,,} are fed into the neuron. Their weighted sum of these input
data is then computed. The idea is that the synaptic strengths (the weights w) are learnable
and control the strength of influence (and its direction: excitory (positive weight) or inhibitory
(negative weight)) of one neuron on another. The final sum is considered by an activation func-
tion, which determines whether the neuron will fire or not. The output signal of the neuron is
then redirected as input to other neurons, in a similar manner to the synapses formed between

biological neurons, as depicted in figure 1.2.

35

Input 1¢! hidden 2™ hidden Output
layer layer layer layer

A W)
e

synapse

Figure 1.2: Synapses formed between biological neurons (left) and interconnected artificial neurons (right)

(1].

Artificial neural networks can be trained or utilized in three different ways, with each one of

them representing a different method of learning.

- In Supervised Learning, the network is given access to a set of labeled data, where the desired
output signal for a specific input is provided. The ANN attempts to learn a model from these
data in order to make predictions about unseen or future data. Here, the term supervised

refers to the fact that the desired output signals of the training samples are already known
[13].

- In Unsupervised Learning, on the other hand, the network has to deal with unlabeled data or
data of unknown structure. With unsupervised learning techniques, it is possible to explore
the structure of the data in order to extract meaningful information without the guidance of

a known outcome variable or reward function [14].

- In Reinforcement Learning, the ANN attempts to improve its performance based on interac-
tions with the environment it operates in. Since the information about the current state of
the environment typically also includes a so-called reward signal, reinforcement learning can
be thought of as a field related to supervised learning [12]. However, in reinforcement learning
this feedback is not the correct ground truth label or value, but a measure of how well the
action was measured by a reward function. Through the interaction with the environment,
an agent can then use reinforcement learning to learn a series of actions that maximizes this

reward via an exploratory trial-and-error approach or deliberative planning.

In the scope of this thesis, we solely worked with ANNs operating in a supervised manner and,
thus, we will, hereinafter, focus on the tasks an ANN can perform through Supervised Learning,
i.e. classification and regression.

Classification is a subcategory of supervised learning where the goal is to predict the categorical
class labels of new instances based on past observations [12]. Those class labels are discrete,
unordered values that can be understood as the group memberships of the instances. The MNIST
dataset is an example of sample data that can be used by a network, in order to efficiently learn
to classify handwritten digits. After sufficient training, if a user provides a new handwritten digit
via an input device, the predictive model will be able to predict the correct number with certain
accuracy. However, the ANN would be unable to correctly recognize any of the characters of the

alphabet were not part of the training dataset.

36

NS S S
===~ =~ R
3 S NS S SR EN BN
[[]l foofca]ob s B
NESENENNA
A ||| [gm]rlng
N (5 8 Y S Y BN N RN ES -
N EISISSINSI SN
R CYZIEYCYENCY Y-
ohafsfololwlofalolog

EIEEHEIIEI

Figure 1.3: Samples taken from the MNIST dataset [2]

Regression analysis is another form of supervised learning. In regression analysis, a number of
predictor (explanatory) variables and a continuous response variable (outcome) is given, and the
goal is to find a relationship between those variables that allows the prediction of an outcome [15].
For example, the Boston House Price dataset contains 13 numerical properties of houses in Boston
suburbs and subsequently marks the price of these houses in thousands of dollars. After training,
if a user provided input data containing the 13 properties required by the network, an estimation
of the price of the house described could be made by the ANN.

Crime
rate \
Artificial
Age of Neural > 756,42
Building Metwork
Number

of rooms

Figure 1.4: Prediction of an ANN trained on the Boston House Pricing dataset

Artificial Neural Networks have two modes of operation: Inference and Training. During infer-
ence, a forward-step computation is performed, to produce an output signal (prediction). Training
is performed in two stages. Initially, given some training data, forward-step computation is per-
formed to produce an output signal, similarly to inferencing. Then, a loss function is utilized to
determine the error of the estimation compared to the expected result. Using this loss, backprop-
agation is performed, to modify all trainable parameters [12].

In forward-step computation, each neuron receives input signals either from neurons of earlier
layers or from the input of the network itself. The weighted sum of these signals is then considered
by an activation function. The output of this function is then either transferred to the neurons of
the next layer, or directly presented as output of the network. This mode of operation is similar
to the way biological neurons behave, as discussed earlier.

Backpropagation is an algorithm for training feedforward neural networks [12]. It functions by
computing the gradient of the loss function with respect to the weights of the network for a single
input-output sample, and does so efficiently, unlike a naive direct computation of the gradient with
respect to each weight individually. This efficiency makes it feasible to use gradient methods for

training multilayer networks, updating weights to minimize loss To this end, gradient descent, or

37

variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm
works by computing the gradient of the loss function with respect to each weight by the chain
rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid
redundant calculations of intermediate terms in the chain rule.

38

1.2 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a special type of artificial neural network topology,
that is inspired by the animal visual cortex and tuned for computer vision tasks by Yann LeCun
in early 1990s. It is a multi-layer perceptron, which is an artificial neural network model, specifi-
cally designed to recognize two-dimensional shapes. This type of network shows a high degree of
invariance to translation, scaling, skewing, and other forms of distortion. Considering the exam-
ple of handwritten digit recognition, a CNN would be an ideal candidate to perform the task of
classification of the input, since the data provided are images.

C S, C S, n; n,
input feature maps feature maps feature maps feature maps output
32x32 0 28x28 _ l4x14 10x10_ 5xs
< \YX © \
N\ J SN\ 0. N\=0,
AN L i \\ \
3 =NGE = N\ N
NN e N
convolution N %2 NNy \
\ subsampling \\ connected AN
feature extraction classification

Figure 1.5: Example topology of a CNN suitable for handwritten digit recognition

1.2.1 Structure and Properties

Convolutional Neural Networks are a subcategory of Artificial Neural Networks. Therefore,
they, too, are made up of neurons that have learnable weights and biases [16]. Each neuron
receives some inputs, performs a dot product and optionally follows it with a non-linearity. The
whole network still expresses a single differentiable score function: from the raw image pixels on
one end to class scores or a continuous result at the other. And they still have a loss function on
the last layer and all the methods, ie backpropagation, which were developed for learning ANNs
still apply. ConvNet architectures make the explicit assumption that the inputs are images, which
allows us to encode certain properties into the architecture. These then make the forward function
more efficient to implement and vastly reduce the amount of parameters in the network.

To demonstrate this, we will consider the example of the CIFAR-10 dataset. This dataset
contains images of size 32x32x3 (width x depth x colour channels), labelled according to the object
or animal they depict. A regular ANN, as described in 1, would demand 32x32x3 = 3072 trainable
parameters for a single neuron of the first hidden layer. Clearly, this fully-connected structure does
not scale to larger images. For example, an image of more respectable size, e.g. 200x200x3, would
lead to neurons that have 200x200x3 = 120,000 weights. Moreover, it is useful to have several such
neurons, so the parameters would add up quickly! This full connectivity proves to be wasteful and
the huge number of parameters would quickly lead to overfitting.

CNNs, on the other hand, take advantage of the fact that the input consists of images and
they constrain the architecture in a more sensible way [17]. In particular, unlike a regular Neural
Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth.
Note that the word depth here refers to the third dimension of an activation volume, not to the
depth of a full Neural Network, which can refer to the total number of layers in a network. For
example, 32x32 RGB input images represent an input volume of activations, that has dimensions
32x32x3. The neurons in a layer will only be connected to a small region of the layer before it,

instead of all of the neurons in a fully-connected manner. This constrained, local connectivity

39

of CNNs was inspired by biological processes in that the connectivity pattern between neurons
resembles the organization of the animal visual cortex, where individual neurons respond to stimuli
only in a restricted region of the visual field.

There are three main types of layers to build CNN architectures: Convolutional Layers, Pooling
Layers, and Fully-Connected Layers. The latter is exactly as seen in regular ANNs. These three
layers are stack interchangeably to produce interesting architectures. There is also the Input Layer,
which is nothing more than the identity transform, i.e. its output is the same as its input. These

layer are analyzed briefly below:

- Input Layer: Holds the raw pixel values of the input image. The depth of the Input Layer
volume matches the number of channels of the input image. Also, the spatial dimensions of

the input volume match the dimensions of the input image.

- Convolutional Layer: Will compute the output of neurons that are connected to local
regions in the input. Each computation is a spatial (width, height) convolution between
their weights (kernel) and a small region they are connected to in the input volume. The
depth of the output volume depends on the numbers of filters that is given to the layer as

an extra parameter.

- Pooling Layer: Will perform a downsampling operation along the spatial dimensions
(width, height). This type of layer is not trainable.

- Fully Connected/Dense Layer: As with ordinary ANNs and as the name implies, each

neuron in this layer will be connected to all the elements in the input volume of the layer.

- ReLU Layer: Will apply an elementwise activation function, namely f(x) = max(0, x)
thresholding at zero. This ltype of layer is not trainable and leaves the size of the input

volume unchanged.

1.2.2 ResNet Architecture

Residual Neural Networks (ResNets) [3] will be used throughout this thesis and therefore, it
is essential that the reader understands how these types of networks function. Residual networks
were developed to avoid the problem of vanishing gradients and to deal with the degradation in
accuracy, that was observed when building very deep networks. The vanishing gradient problem
is encountered when training artificial neural networks with gradient-based learning methods and
backpropagation. Since the gradient of the loss function is computed by the chain rule, it is com-
mon that gradients corresponding to weights in earlier layers will be vanishingly small, essentially
preventing them from updating their values. To tackle this problem, ResNets utilize skip con-
nections, on shortcuts, to jump over some layers. These shortcuts are most commonly identity
layers, but can also contain a single 1x1 convolutional layer. Therefore, the architecture of the
basic building block is the following:

weight layer

X
identity

Figure 1.6: Residual Learning: a building block [3]

40

Due to these shortcuts, it is possible to create very deep networks by continuously stacking
layers. Figure 1.8 describes the architectures of 4 different ResNets. The depth of the network
is determined by the total number of filters used in the fourth convolutional stage, and is used

to name the network, ie ResNet-50 contains 49 convolutional layers and one full connected layer

(pooling and ReLU layers are excluded from the count).

layer name | output size 18-layer | 34-layer | 50-layer ‘ 101-layer 152-layer
conv] 112112 Tx7, 64, stride 2
33 max pool, stride 2
. 1x1, 64 1x1,64] 1x1,64
2 56356 3 ’ ’ -
comvex 2 [%ii’gi }xz ;;‘iz]x3 3x3.64 | x3 3x3.64 | %3 3x3,64 |3
o ' 11,256 1x1,256 | 131,256 |
1x1, 128 1x1,128] 11,128]
3 33 . : ’
conv3x | 28x28 giw 32 }xz [;z;’ gg]x4 3%3,128 | x4 3%3,128 | x4 3%3,128 |8
> o 11,512 1x1,512 | 1x1,512 |
- 11,256 1x1,256] 1x1,256]
3 33,2 ’ ’ ’
comvdx | 14x14 xa,;gz]xz [%X;;gz]xé 3x3.256 | x6 | | 3x3.256 |x23 || 3x3.256 |x36
e 2K S 11, 1024 1x1,1024 | 1x1,1024 |
11,512 11,512 1x1,512
3,512 3%3 ’ : ’
covvix | Tx7 {;X;;}; }xz { %X;gg]x3 3x3,512 [x3 | | 3x3.512 [x3 | | 3x3,512 |3
w e an 11,2048 11,2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [3ex107 | 38x10° | 7.6x107 | 1L3x10°

Figure 1.7: ResNet Architectures [3]

An interesting property of the deeper ResNet networks, ie those with 50 or more layers, is that,
despite the high amount of layers included in the network, only two pooling layers are utilized.
This is because pooling layers are not trainable, and downsampling the intermediate feature maps
in such a manner leads to the loss of learned features and, thus, a decrease in accuracy. Instead of
pooling layers, ResNets use convolutional layers with a 1x1 kernel before and after the convolutional
layers with 3x3 kernels. The 1x1 convolution is used as a projection of the input feature map onto
a lower dimensional space, in order to reduce the amount of computations of the following 3x3
convolutional layer [18]. The produced feature map of that convolution is then projected to a
higher dimensional space to enhance any features extracted, since the feature map is expected to
be downsampled by the following layer, either convolutional or pooling.

Image
pool, /2
333 conv, 64
353 conv, 64
343 conv, 64

fe 1000

2
b
b
=
]
]
8
a2
-

3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 512
3x1 conv, 512
3x3 conv, 512
3x3 conv, 512
avg paal

3
H
§
3

333 conv, 256

%
H
§

3

7x7 canv, 64, /2
343 conv, us,/zm
303 cony, 128
313 conv, 1za-
3x3 conv, 128
3x3 conv, 128
313 conv, 128
343 conv, 128
343 conv, 128
3x3 conv, 255.1;"

Do, SIZ7Z |

Figure 1.8: ResNet-34 [3]

41

1.2.3 Applications on Computer Vision

Convolutional Neural Networks have been widely adopted in the field of computer vision over
the past few years, providing an interesting alternative to the classical computer vision algorithms.
In fact, a single CNN architecture can be used in a plethora of different settings, to provide
solutions to a wide variety of problems. All that is needed is sufficient data to train the model for
the desired task... and if there is one resource that is abundant in the modern world, that has to
be data. Instead of carefully crafting image processing pipelines, based on CV algorithms, such
as edge detection or denoise filtering, developers can now work with a CNN, trained on a dataset
that meets their needs.

Convolutional Neural Networks excel in a variety of different CV tasks, for example:
e Object Recognition/Detection

e Pose Estimation

Facial Recognition

Tracking

Navigation
e Image Reconstruction

In the scope of this thesis, we studied the ”Lost in Space” problem. The basic concept of
this problem is that a spacecraft is approaching an object, but has no knowledge of its location or
orientation. Such a scenario could exist, if, for example, there is memory corruption due to radiation
and the data containing this information is lost, or simply, if the target object is uncooperative.
Traditionally, one would create a complex pipeline of digital image processing, where the object
would be detected through its edges, its pose would be estimated in comparison to known 3D
models of it, and then, over time, pose refinement would be performed. On the other hand, pose
estimation can be reliably and efficiently be performed by a CNN. An in-depth analysis of the

architecture and the training procedure of such a CNN can be found in Section 3.2.

42

1.3 Vision Processing Units (VPUs)

On August 28, 2017, Intel introduced the world to their newest computing system, Myriad
X, the company’s first Vision Processing Unit. Granted, this may have been the first time Intel
developed such a product, but such systems did already exist, i.e. Myriad 2 by Movidius, EyeQ
by Mobileye, or even the “Holographic Processing Unit” found inside Microsoft’s HoloLens. Thus,
the need for dedicated accelerators for computer vision has existed for a long time, as were the
platforms that promised to fulfill that need.

VPUs employ heterogeneity to efficiently provide acceleration [21]. General Purpose Cores
are paired with SIMD and/or VLIW cores, and even dedicated Hardware Accelerators. Their
memory system consists of caches and Low Power DDR memories, while some of them also include
Scratchpad Memories. VPUs support multiple peripherals and emphasize on low latency transport
of the data obtained through them to the corresponding memories. Figures 1.9a and 1.9b illustrate
the architectures of Myriad 2 and EyeQb respectively.

LPDDR4-4267
4x32b
LPDCDR4 PHY
LPDDR4
Ctrl & Sched
{ C 1/0] {K 4}
INTERFACES
Izll::l SPI, USB3, 12C, 125, LCD, CIF, UART, ETHERNET, ETC.
x 12 lanes I @
W
CPU x8 8 - 2 | computer Vision
%2 Threads g V] /4 § Prgcessors
[Imaging/Vision Hards Accel } [ﬂ}— \’_ - .
Peripherals Interconnect
Quad/Octal SPI Cache f\l/
S5D4.1/eMMC5.1
GBE (AVBTSN) x2 _J\ Coherent Hardu;‘a‘;?j L.':-‘.In:curity
PCle Gendx2 [/ QoS <:
Main Bus CAN-FD, SPI, UART,
12C, Timers, GPIO,
PLL L
(2) My 2 o€ Do R
. 40Gbps
i

(b) EyeQ5 Block Diagram

Figure 1.9: Examples of VPU Architectures

VPUs outperform both CPUs and GPUs in terms of performance per Watt [22], which renders
them ideal candidates for executing computer vision tasks on the edge. For example, MyriadX
can provide real-time inferencing of deep neural networks in under 1.5 or 2.5W, depending on the
platform that hosts the chip. Therefore, it comes as no surprise that VPUs are considered a very

promising, emerging class of microprocessors.

1.3.1 Myriad X Multicore SoC

Myriad X is the latest member of the Myriad family of VPUs developed by Movidius-Intel. This
particular VPU was chosen as the target platform of the implementation of this thesis. Myriad X

43

provides:

e An Ultra Low Power Design. For devices meant to be operated on the edge, power
consumption is critical, as it is directly correlated to battery life. Myriad X, not only operates
on less than 2.5W, even on intensive applications, but is also capable of switching off power
islands that are not being used and operating on lower frequencies than the default to further
reduce power consumption. Thus, Myriad X provides a way to combine advanced vision
applications in a low power profile. This enables new vision applications in small form

factors that could not exist before.

o A small-area footprint. The chip has a mere 8.8mm width and 8.0mm height with 1mm
depth, enabling its integration inside embedded, mobile or even wearable devices. Combined
with the ultra low power consumption of the chip, Myriad X has no need for an external

cooling system.
e A high throughput, heterogeneous, multicore architecture based on:

- 2x radiation-tolerant 32-bit SPARC V8 RISC Processors (LEONS)

- 16x VLIW 128-bit Vector Processors (SHAVESs) optimised for computer vision applica-
tions

- 1x Neural Compute Engine, a dedicated accelerator for neural networks
- Hardware Accelerators for Image and Vision Processing

- 2.5MB of on-chip SRAM (CMX)

- 512MB of LPDDR4 memory

- Multi level run-time configurable Cache Infrastructure

e Wide range of IO peripherals interfaces, such as MIPI, SPI, 12C, 12S, SDIO, UART,
USB3, GbE, CIF.

/O Multiplexing (i@
(SW Controlled)
:l:I ﬁ Movidius’
MIPL Interfaces DDR Memory
(x24 Lanes) (SPI, 12C, USB3, UART, CIF, LCD, ETH, etc.) (512MB)
SIPP HW Neural Compute ﬁ
Accelerators Engine L1 Cache | L2 Cache
ﬁ ﬁ D| LEONOS (64KB) (256KB)
CMX Memory LEONRT L1 Cache | L2 Cache
(2 5MB) q.rD (64KB) (256KB)
VLIW SHAVE Processors L1 Cache L2 Shared Cache
(x16) (3KB per core) (256KB)
1T 128

Figure 1.10: Myriad X Block Diagram [5]

Myriad X consists of three major architectural units: the CPU Sub system, the Media Sub
System and the Microprocessor Array [6]. The following sections provide a detailed analysis of

each one of them.

44

The CPU Sub System (CSS)

The CSS has been designed to be the main communication and control unit with the outside
world via the external communication peripherals: 12C blocks, 12S blocks, SPI blocks, UART,
GPIO, ETH and USB3.0. The LEON OS (LOS) RISC is the control unit of this block. The
LEON OS possesses a 32KB L1 and a 256KB L2 cache enabling it to run lightweight real-time
operating systems (RTOS). An AHB DMA engine is also located inside the CSS for more optimal
data transfer via the external peripherals. Besides handling the external interfaces, the LEON
OS typically also controls software running on the SHAVE processors. This core is considered to
be the main processor of the platform, as the entry point to most applications is designed to be
executed by LOS. LEON OS is a LEON4 processor based on the SPARC V8 ISA. A block diagram

of its inner architecture is provided below.

The Media Sub System (MSS)

The MSS is the architectural unit designed to allow connections with imaging devices (camera
sensors, Display devices, HDMI controllers etc.) as well as allowing use of the Hardware Filters.
The MSS processing flows are comprised of the MIPI, LCD, CIF IO interfaces, the SIPP and
CV HW filters and the AMC block which enables connections between these and CMX (SRAM)
memory.

The LEON RT (LRT) RISC coordinates frame input and the MSS processing pipelines. The
LEON RT has access to a direct interface with the Hardware Filters, which allows for modification
of any required parameters of the MSS HW filter blocks with the minimum amount of delay due
to bus arbitration. As is the case with LEON OS, LEON RT has the capability to run RTOS due
to the fact that it likewise has 32KB L1 and 256KB L2 caches.

The Microprocessor Array (UPA)

The Microprocessor Array (UPA) contains 16 VLIW SHAVE (”Streaming Hybrid Architecture
Vector Engine”) vector processors with shared 2.5MB CMX SRAM memory. In addition, it con-
tains a specialized DMA engine, and 256KB of shared L2 cache memory available to the SHAVE
processors. This UPA’s main purpose is to execute the compute-intensive parts of an image or
computer vision application, by providing support for VLIW optimized code.

Each SHAVE processor contains wide and deep register files coupled with a Very Long In-
struction Word (VLIW) for code-size efficiency. The processor consists of multiple functional units
which have SIMD capability for high parallelism and throughput. Each of these units can be
launched in parallel in a single instruction packet. SHAVE processors support 8/16/32-bit integer
operations and 16/32-bit floating point operations. They include:

1 Integer Arithmetic Unit

1 Scalar Arithmetic Unit

1 Vector Arithmetic Unit
- 1 Compare and Move Unit

- 2 Load Store Units

1 Branching Unit

45

- 1 Predicate Execution Unit
- 1 Integer Register File

- 1 Vector Register File

A block diagram of their inner architecture is provided below.

4-Port Register File

7-Stage
Integer Pipeline

W | m ‘-
Memory Management
Unit

AMBA AHB Interface

IEEE 754
Floating-Point
Unit

Co-Processor

Minimum Configuration
| g
[| Blocks
. Co-Processors

} 64/128

Figure 1.11: LEON4 Inner Architecture

SHAVE
Instruction
BRU Ioc |4—. Momory Reaad
Paort
{128 bits)
=]
1AU
(132,u32)
IRF i
DebugiConfig
(32, 18, 132, u32, 116, ooy s o)
u16, i8, u8)
=1
VAU . H II
(132, 16, i32, u32, i16, i
u16, I8, ug)
3 cMu
Lsuo - Dt P
(B4 bits)
LSU1 = o

Figure 1.12: SHAVE Core Inner Architecture [6]

The following figure depicts the interconnection between the previously mentioned subsystems:

46

Figure 1.13: Interconnection of Subsystems [6]

The following sections are dedicated to an in-depth description of several other components of
the platform, as depicted in figure 2.9.

On-Chip Memories and Cache Infrastructure

¢ CMX Memory. CMX is an abbreviation for Connection Matrix and refers to a 2.5MB
Scratchpad Memory. Scratchpad is a fast, on-chip SRAM, that, unlike caches, neither flushes
nor requests data to or from the main memory [23]. The CMX is comprised of 20 SRAM
Blocks of 128KB each, known as "slices”. It is a NUMA memory and each CMX has pref-
erential ports to a specific slice, which offer higher bandwidth and lower access cost. Slices
16-19 are not tied to any SHAVE Core and can be freely used for other purposes i.e. storing
critical parts of the operating system for better performance. However, one should keep in
mind that slice locality is a weak concept, therefore each SHAVE can access any other slice
in CMX at the same cost, but inter-slice routing resources are finite. Accessing data in the
"local” slice is more energy-efficient though and should be exploited for optimal performance.
Finally, it is worth noting that both LEON and SHAVE cores have a low access cost to the
CMX Memory.

¢ DDR Memory. The main memory of the chip comprises of 512MB of volatile LPDDR4
memory. Both LEON and SHAVE cores can access data or execute code stored in the DDR.
LEON Cores have access to uncached views of the DDR (as well as the CMX memory) which
allows for easy sharing of control data between LEONSs or between LEON and SHAVEs. On
the contrary, SHAVE cores may only access the DDR memory through the cache infrastrac-
ture. For the LEON Cores, the access cost to the DDR is low when a data cache is hit, but
high otherwise. Likewise, there is a high cost for random access to the DDR by the SHAVE

cores, but moderate in case of an L2 cache hit, and low in case of an L1 cache hit.

e Cache Infrastructure. Myriad X has multiple different caches and cache hierarchies. A

list of the available system caches is provided below:

47

Table 1.1: Myriad X System Caches

PU Type Size Associativity Cache line size | Policy
SHAVE[N] | L1 Instruction | 2KB 2-way 16 bytes read-only cache
SHAVE|[N] L1 Data 1KB Directly Mapped 16 bytes write-back or

write-through cache
SHAVES L2 256KB | 2-way, 1-8 partitions 64 bytes write-back cache
LeonOS L1 Instruction | 32KB 2-way 32 bytes read-only cache
LeonOS L1 Data 32KB 2-way 32 bytes write-through cache
LeonOS L2 256KB 4-way 64 bytes write-through or

copy-back cache
LeonRT L1 Instruction | 32KB 2-way 32 bytes read-only cache
LeonRT L1 Data 32KB 2-way 32 bytes write-through cache
LeonRT L2 256KB 4-way 64 bytes write-through or

copy-back cache

Image and Vision Hardware Accelerators

Myriad X employs 20 different Hardware Accelerators, targeted at speeding up Image Signal
Processing or Vision Processing.The ISP accelerators include Sigma Denoise, Sharpen and Chroma
Generation Filters, while the CV accelerators include Warp, Edge Operator and Harris Corner
Detection Filters. Previous work, however, suggests that these filters are designed for reducing

power, instead of increasing performance.

Neural Compute Engine

Myriad X is the first VPU to host Intel’s Neural Compute Engine (NCE). The NCE is ded-
icated to accelerating Deep Neural Networks (DNNs). It is comprised of Hardware Accelerators
specifically designed to execute common layers of DNNSs, i.e. convolutional, pooling or dense layers,
at high speed and low power without compromising accuracy. With the integration of the Neural
Compute Engine, the Myriad X architecture achieves up to 1 TOPS of compute performance on
DNN inferences. The engine is controlled by the MvNCI API which will be described in a later
section.

Direct Memory Access Controller

Myriad X’s DMA Controller resides between the 128-bit MXI bus and CMX memory. It
provides high bandwidth data transfers between CMX and DRAM in either direction. It also
supports data transfers from DRAM back to DRAM or from CMX to CMX, allowing data to be
relocated within the same physical location.Figure XYZ shows a high level description of the DMA
engine. The unit of work in the DMA engine is expressed though transaction tasks. Up to 128
linked lists of transactions are maintained in system memory, thus the DMA capability is high

enough, that flooding the controller with requests would be highly unusual.

48

Slice Parts

Shave

Spare Slice Ports

CMX Slice

Figure 1.14: Direct Memory Access Controller Overview [5]

CMX
Control

CMX DMA
Registers
[
MXI Bus
Media Subsystem DDR Subsystem

49

1.4 Related Work

1.4.1 CNN Inferencing on Embedded Devices

In recent years, multiple attempts have been made to perform operations on the edge, ie in
near proximity to the sources that produce data, for example cameras, in real-time. Naturally, a
lot of research has been made on how embedded devices can be utilized to efficiently perform CNN
inferencing. To this end, methodologies for porting the compute and storage intensive CNNs to the
limited resources embedded devices, as in [24], where the authors employ approximate computing
techniques to reduce the computational load and memory occupation of the deep learning archi-
tecture by compromising accuracy with memory and computation. These methodologies prove to
be invaluable, since they allow for off-the-shelf embedded platforms to be used in even intensive
applications, for example non-mission-critical space applications from launch to orbit and poten-
tially beyond [22]. On the other hand, a different school of thought does exist, where engineers
attempt to design specialised processors or accelerators solely for CNN inferencing on embedded
platforms, or on FPGAs [25, 26, 27] or ASICs [27, 28, 29]. An example of the former can be found
in [30], where the authors propose a very compact embedded CNN processor design based on a
modified logarithmic computing method, while the latter approach is encountered in [31], where
the authors propose a framework for designing CNN accelerators on embedded FPGAs for image

classification.

1.4.2 Implementations on VPUs

Vision Processing Units have been widely used to accelerate a variety of applications. In
[20], a Myriad 2 VPU is employed to achieve low-power and high-performance on a Vision Based
Navigation system, which consists of an ISP pipeline. In a similar manner, in [32], an algorithm
for stereo correspondence was accelerated on the same VPU, with considerable less development
effort than an FPGA-based implementation of it. Hybrid approaches have also been proposed, for
example [33], where both FPGA and VPU are utilized to coopeatively accelerate space applications.

In addition to classical CV algorithms, common neural networks have been ported to VPUs. In
[34], an efficient implementation of the Support Vector Machines is proposed, which achieves up to
40% energy savings against state-of-the-art relevant approaches. Convolutional Neural Networks
have also benefited from the utilization of such processing systems. In [35], an efficient, Winograd-
based implementation of kernel convolution is proposed, while [36] explores the possibility of a
DSE framework, to be used to determine the optimal configuration for CNNs on edge devices,
using the Myriad 2 VPU as a paradigm.

The Neural Compute Stick has gathered great interest, due to its high performance per Watt
ratio, ability to accelerate complex Neural Networks, and user-friendly interface, and has been used
to test models in academia. For example, in [37], the NCS was used to accelerate a network that
performed object recognition on voxelized point-clouds, in order to evaluate a synthetic dataset
generator. Object recognition on the NCS was also performed in [38], where the VPU was paired
with a Raspberry Pi, and was used to analyze objects in the real time images and videos for
vehicular edge computing.

The main reason that the NCS is used over a traditional board system containing a VPU, is
that the inherent heterogeneity of the latter demands increased programming effort. To tackle this
issue, the ParalOS framework [5] was developed to provide a much-needed layer of abstraction for

developers, and integrates a dynamic task scheduler, a scratchpad memory management scheme,

50

I/O & inter-process communication techniques, as well as a visual profiler.

o1

1.5 Thesis Scope and Contribution

As commercial-off-the-shelf embedded systems become readily available to the mass market,
tools are developed to provide user-friendly interfaces for their quick and efficient programming.
In the case of the Myriad X VPU, specifically, the process of CNN inferencing can be entirely au-
tomated by the OpenVINO Toolkit, which provides a higher-level of abstraction for programmers,
and encourages them to utilize their VPUs in a plug-and-play manner. This approach streamlines
the workflow of programming these complex multicore systems, and allows for increased produc-
tivity.

These tools do provide some room for customizability, but they are commonly platform-
agnostic, and therefore they do not permit the exploitation of the heterogeneous architectures
to their full potential. As a result, latency-critical applications suffer. In addition to this, the
process of extending the operation sets of these tools may be confusing to developers, since mul-
tiple configuration files may need to be created and precise programming directives be followed.
Therefore, the main motivation of this thesis was to exploit the best features of both worlds,
by having our application partly consist of low-level code, highly-optimized for the heterogeneous
VPU at hand, but also utilizing the available tools to effortlessly integrate the CNN inferencing
into it. To this end, the aforementioned ”Lost in Space” problem proved to be an ideal candidate
for a proposed application.

More precisely, reliable pose estimation of satellites, especially those that are uncooperative, is
a challenging task. This is evident, when observing the submissions of the contenders of ESA’s 2019
Pose Estimation Challenge. In fact, no proposed solution to the problem can be satisfactorily run on
a Myriad X VPU. For example, the winner of the competition employed a High-Resolution Network
(HRNet), which consists of such a colossal number of layers and parameters, that it is impossible
to even load the network on the device due to limited computational and memory resources. The
lightest, but still fairly accurate, CNN developed by a team in this competition, ”UrsoNet”, was
able to be executed on the VPU, albeit at such a high latency for a single inference, that the
system could not provide estimations in real-time as desired. This means that the inferencing
would need to be coupled with some form of preprocessing, in order for the network to operate on
lower dimensions, and thus be accelerated. Since, we do not desire for a bottleneck to be created
because of this preprocessing, the methods and functions employed need to be highly optimized
on a low level.

The main contribution of this thesis is the implementation of an efficient application for
CNN-based pose estimation of non-cooperative spacecrafts, that supports real-time execution.
This is achieved by sufficiently preprocessing the input images, utilizing one of the three available
resampling methods, namely bilinear interpolation, bicubic interpolation and Lanczos resampling.
These algorithms were developed on a low level, in order to account for a small fraction of the
total execution time of the system. Furthermore, a simple but efficient power measurement and
management system, that monitors the power consumption of the board hosting the VPU and
performs static power management, is proposed, and can be extracted and used in future projects.
Moreover, we propose a system that performs both the pose estimation of a satellite and its
subsequent tracking in a low-power high-performance manner, on a single SoC. Finally, since a
plethora of the available components of the Myriad X VPU were utilized, the codes produced
could be used as programming paradigms.

52

Chapter 2

Tools, Frameworks and Libraries

2.1 TensorFlow and Keras

TensorFlow

TensorFlow is a free, open-source platform, that is primarily used to develop, train and deploy
Machine Learning models [7]. TensorFlow is capable of operating at high scale and in heterogeneous
environments. Models are executed as stateful dataflow graphs. A single dataflow graph is used
to represent all computations and states in a machine learning model. This graph expresses the
communication between subcomputations explicitly, thus making it easy to execute independent
computations in parallel and to partition computations across multiple devices. Figure 2.1 provides

an example of a training pipeline.

Periodic
checkpoint

Parameters
o

Read params Apply grads

Figure 2.1: A schematic TensorFlow dataflow graph for a training pipeline [7]

Input
data

Reader

Preprocessing

TensorFlow is capable of keeping checkpoints of models during the training procedure, allowing
users to stop the training and resume it later on, on the same or on a different platform. Trained
models may also be saved in a SavedModel format, which contains both data describing the struc-
ture of the network as well as the weights of the different layers. Therefore, trained models can be

loaded on any platform that supports TensorFlow and be used for inference.

Train TensorFlow Freeze Inference

Graph —> Graph —> Load Model —> Predict

Figure 2.2: Inference Workflow in TensorFlow

93

Keras

Keras [39] is an open source library, built on top of TensorFlow. Its main purpose is to act
as an interface for TensorFlow by providing a consistent and user-friendly API. This API offers
access to numerous implementations of commonly used neural-network building blocks such as
layers, objectives, activation functions, optimizers, as well as a host of tools to make working with
image and text data easier and to simplify the coding necessary for writing deep neural network
code. The following program demonstrates how a simple Convolutional Neural Network can be
modeled with Keras. Multiple different layers have been used, such as 2-dimensional convolution,
max pooling or even a dropout layer, that is only present during training. Thus, it is clear how
Keras can be used to greatly reduce the complexity of developing ANNs.

from tensorflow import keras

from tensorflow.keras import layers

Code adapted from https://keras.io/examples/vision/mnist_convnet/
input_shape = (28,28,1)
num_classes = 10
model = keras.Sequential (
[
keras.Input (shape=input_shape),
layers.Conv2D (32, kernel_size=(3, 3), activation="relu”),
layers.MaxPooling2D (pool_size=(2, 2)),
layers.Conv2D (64, kernel_size=(3, 3), activation="relu”),
layers.MaxPooling2D (pool_size=(2, 2)
layers . Flatten (),
layers.Dropout (0.5),

layers.Dense(num_classes , activation="softmax”),

Listing 2.1: Keras Example

Docker

Docker [40] is a set of platform as a service (PaaS) products that use OS-level virtualization to
deliver software in packages called containers. In this thesis, a Docker image containing TensorFlow
version 1.9.0 and Keras version 2.1.6 was used, to enable the training and evaluation of a CNN
on a remote machine. This machine had access to an Nvidia Tesla V100 GPU, making it an ideal
candidate for such a task.

2.2 OpenCV Library

As the name implies, OpenCV [41] is an open-source library for Computer Vision. It provides
a variety of optimized functions that either support or perform real-time computer vision tasks.
In this thesis, OpenCV was used, because it provides a variety of different options for resampling

images. OpenCV uses NumPy Arrays to store and represent images, allowing us to easily integrate

54

it into our application. Furthermore, since the library is open-source, we managed to replicate its

behaviour when porting the resampling algorithms used to Myriad X.

2.3 OpenVINO Toolkit

The OpenVINO toolkit [8] is a comprehensive toolkit developed by Intel, dedicated to providing
reduced time-to-market of applications that solve a variety of typical ANN tasks including emu-
lation of human vision, natural language processing and many others. Heterogeneous execution
on different Intel Hardware (CPUs, Integrated Graphics Cards, FPGAs, VPUs) is supported by
OpenVINO, maximizing performance, while providing tools and APIs to facilitate the deployment
of such applications on the desired platform. Thus, the OpenVINO toolkit accelerates applications
with high-performance, Al and deep learning inference deployed from edge to cloud.

2.3.1 Workflow

The following diagram illustrates the typical OpenVINO workflow:

®penVIN®' Fast Path

Step 1. Select a Model Step 2. Modify Step 3. Tune Step 4. Deploy

Step 2a. Modify the Step 3a. Advance
Madel Post-Training Madel Tuning
ry e
It

Figure 2.3: OpenVINO Toolkit Workflow [8]

The typical OpenVINO Toolkit workflow is divided into four stages.

95

Step 1. Select a Model

Is the

R Find or Train a Model model accurate
enough?

Step 1a. Train

Train or

Re-train model

Figure 2.4: OpenVINO Toolkit Workflow Stage 1 [§]

On the first stage, a decision must be made on what model will be used. Developers can pick
one of the pre-trained models provided by Intel’s Open Model Zoo (OMZ) [42]. The OMZ includes
deep learning solutions to a variety of vision problems, including object recognition, face recogni-
tion, pose estimation, text detection, and action recognition, at a range of measured complexities.
Otherwise, if none of the existing OMZ models comply to the constraints that have been set, Open-
VINQO'’s Training Extensions provide a convenient environment to train deep learning models, by
offering numerous pre-trained models, ideal for transfer learning. If none of the above solutions
satisfy their needs, developers are free to train models using one of the following frameworks: Caffe,

MXNet, TensorFlow, TensorFlow 2 Keras, Kaldi, ONNX.

Step 2. Modify

Run Model Did the

* = Optimizer model convert? 2 * Go to next step

Step 2a. Modify the
Model Post-Training

Did that work? Lo et GO 1O NEXL StEP

Escalate to Intel

or try
alternative models

Figure 2.5: OpenVINO Toolkit Workflow Stage 2 [8]

The second stage is invoked by passing a frozen model to the Model Optimizer. An in-depth
study of the Model Optimizer will be presented in a later section. In short, the Model Optimizer

o6

performs a few optimizations, where possible, to create simpler, faster graphs. Any custom opera-
tions or unsupported layers that are present in the model, must be supported by extensions in the
Model Optimizer, to enable recognition and parsing of them.

Step 3. Tune

Was it fast
enough with
acceptable
accuracy?

Run Inference

—_—
Engine on model

Step 3a. Advance
Model Tuning

Try advanced
tuning of the

IR model

Did that work? Je=——{"S——s Go to next step

Figure 2.6: OpenVINO Toolkit Workflow Stage 3 [8]

The third stage manages the loading and compiling of the optimized neural network model,
runs inference operations on input data, and outputs the results. This stage, based on the Inference
Engine tool, can execute synchronously or asynchronously, on multiple Intel devices. Further opti-
mizations can be performed during this stage. The Post-training Optimization Tool can accelerate
the inference of a deep learning model by quantizing it to INTS, but is currently only available
to OMZ models.Besides the Post-training Optimization Tool, the Neural Network Compression
Framework (NNCF) can be used for model fine-tuning INT8 quantization or even for applying
more aggressive compression methods to further speed up model inference and reduce the foot-
print. In that case the compression algorithms are integrated into the model training pipeline, and,
thus, only TensorFlow models are supported for this utility. In addition, it should be noted that
custom operations must be supported with the appropriate extensions to the Inference Engine.

Step 4. Deploy

Integrate model

Package for Deploy app

to pipeline deployment and model

or application

f

Figure 2.7: OpenVINO Toolkit Workflow Stage 4 [8]

The final stage includes the Deployment Manager. The Deployment Manager is a Python
command-line tool that assembles the transformed model and the application files, as well as any
required dependencies into a runtime package for the target device. It outputs packages for CPU,
GPU, and VPU on Linux and Windows, and Neural Compute Stick-optimized packages with Linux.

57

2.3.2 The Model Optimizer

The Model Optimizer is a cross-platform command-line tool that facilitates the transition be-
tween the training and deployment environment by performing static model analysis, and adjusting
deep learning models for optimal execution on end-point target devices [8].In order to use the Model
Optimizer, the network model must be trained using one of the supported deep learning frame-
works, as defined previously. The Model Optimizer produces an Intermediate Representation (IR)
of the network, which consists of an XML file, that describes the network topology, and a binary
file, that contains the weights and biases. This Intermediate Representation can be inferred with
the Inference Engine.

Several optimization techniques are employed [9], to transform the input network models to

simpler, faster graphs, and thus accelerating them:

Linear Operations Fusing is a process of fusing BatchNormalization or ScaleShift layers
into previous or following Convolution or Fully Connected layers. These layers are present in many
popular networks, such as ResNet, and can be easily represented as a sequence of linear operations,
namely additions and multiplications. Therefore, they are first decomposed into sequences of
Mul — Add operations. The Model Optimizer then searches backward and forward for available
Convolution or Fully Connected layers, to fuse these operations into. The following figure illustrates
the transformation of part of a ResNet269 network, using this optimization technique.

l64ch - 112x112 l64ch . 112x112

pool1 poolt

B4ch - 56x56 ~

/

B4ch - 56x56
res1_conv1 res1_convi

res1_convi_bn res1_convi_relu

res1_convi_scale

64ch - 56x56 | 64ch - 56x56

res1_convi_relu

res1_conv2

B4ch - 56x56 | 64ch - 56x56

res1_conv2_relu
res1_conv2
G4ch - 56x56

res1_convZ_bn
res1_convz_scale res1_match_conv res1_conv3

res1_conv2_relu - 256¢h - 56x56

64ch - 56x56 res1_eletwise

A J
res1_match _conv res1_conv3
= = after
56ch - 56x56. 256ch - 56x56

res1_eletwise

before

Figure 2.8: Usage Example of Linear Operations Fusing [9]

ResNet Stride Optimization is an optimization technique specifically designed to accelerate
ResNet-based topologies. The main idea of this optimization is to move the stride that is greater
than 1 from Convolution layers with kernel size equal to 1 to upper Convolution layers. In addition,
the Model Optimizer adds a Pooling layer to align the input shape for a Eltwise layer, if it was
changed during the optimization. This optimization results in downscaling the size of the produced

feature maps earlier inside the network, which in turn reduces the number of operations performed

o8

res2c_branch2b stride: 1

256ch - 56x56

on late layers. For example, the third branch operates on 28x28 instead of 56x56 feature maps

after the transformation, as illustrated in figure XYZ.

res?c_branch2b

bn2c_branchZb

256¢ch - 56x56

scale2c_branch2b

kernel size:1

e res2c_branch2b_relu

pooll

resZc_branch2c

bn2c_bran

scale2c_branch2e

.

res2c res2c
res2c_relu res2c_relu
kernel size: 1 kernel size: 1
256¢ch - 56%56 stride:2 256¢h - 56x56 256ch . 28<28 stride: 1 . 98x28

res3a_branch2a
bn3a_branch2a

scale3a_branchi scale3a_branch2a

res3a_branchi res3a_branchZa

bn3a_branch1

scale3a_branch1

res3a_branch2a_relu

before

Figure 2.9: Usage Example of ResNet Stride Optimization [9]

Grouped Convolution Fusing is an optimization designed only for TensorFlow models. The
Split Layer preceding the parallel convolutions is modified to feed multiple tensors into the groups of
convolutions. The resulting feature maps are then concatenated appropriately. Due to incomplete
documentation, it is yet unclear how this modification of the network affects performance.

Network Pruning is a technique that aims to increase performance of networks by removing
redundant nodes of the model. Under the appropriate conditions, the model optimizer can prune
several types of layers, such as Crop and Reshape Layers. Therefore, it reduces the overall amount

of operations performed.

2.3.3 Benchmarking on VPU Neural Compute Stick 2

OpenVINO provides a Benchmark Tool, in the form of a C++ file, to estimate deep learning
inference performance on supported devices, including the Neural Compute Stick 2. This stick
contains an ma2480 chip (Myriad X). Performance can be measured for two inference modes:
synchronous (latency-oriented) and asynchronous (throughput-oriented). Upon start-up, the tool
loads a network and images/binary files to the Inference Engine plugin for the Myriad X VPU. The
number of infer requests and execution approach depend on the mode defined with a command-line
parameter provided by the user. In synchronous mode, one infer request is created and executed per
iteration, while in asynchronous mode, multiple infer requests are created and executed in parallel.
During the execution, the application collects latency for each executed infer request. Reported
latency value is calculated as a median value of all collected latencies. On the other hand, reported
throughput value is reported in frames per second (FPS) and calculated as a derivative from the

reported latency, in case of synchronous execution, or from the total execution time elsewise.

99

2.4 Myriad X Development Kit

The Myriad X Development Kit (MDK) comprises of common code, which includes drivers and
components, documentation support and toolchains that are required to develop applications for
the Myriad Family products. Part of the toolchain is a quite extensive and complex build system
based on GNU Makefile. The build system is responsible for cross-compiling the object code for
the various heterogeneous processors. Afterwards, the linker generates the memory map, as per
the configuration file provided by the developer.

Located in the mdk/common/components directory, the MDK includes a variety of reusable

components. In the scope of this thesis, the following components were utilized:
e For Debugging and Testing purposes:

- PipePrint
- UnitTest

For Power Management and Measurement:

- MV0235
- PwrManager

- MVBoardsCommon

For Memory Management:

- MyriadMemlInit

- MemoryManager

For the utilization of the Neural Compute Engine:

- MvNCI

- MvTensor

For file management:

- VesHooks

60

Chapter 3

Theoretical Background

3.1 Image Scaling

Image Scaling is the process of resizing images, either by downsampling the original image or
upsampling it. It is an integral part of image processing pipelines. For example, input images
may be rescaled to a lower resolution during earlier stages of the pipeline, to reduce the number
of computations performed during the compute-intensive stages. On the other hand, upsampling
the images is a very common practice as well, since the input image may be of lower resolution
and/or quality than needed by the application.

In this thesis, image scaling was utilized to reduce dimension sizes, as a means of accelerating
the convolutional neural network that is to operate on these specific images. More specifically,
we examined 3 different resampling methods to determine the effect on the final accuracy, that
aliasing and ringing artifacts have. Artifacts are anomalies introduced to digital signals as a result
of the Digital Signal Processing applied to them. Figures 3.1 and 3.2 provide an example of how

artifacts may affect the quality of a resized image.

The dataset on which our CNN is to be trained on, consists of images of satellites on orbit
around the earth. Therefore, aliasing may appear when the Earth is on the background. Ringing
artifacts are also highly likely to appear, as the sharp edges of the satellite are often contrasted
by the black background. To resize the image and suppress these artifacts, Bilinear Interpolation,
Bicubic Interpolation and Lanczos Resampling were employed. An in-depth analysis of these

methods is included in the following sections.

61

(b) Aliasing appears in the resized image

(a) Original Image

Figure 3.1: Example of Aliasing when Resizing an Image [10]

(b) Resized image has visible ringing artifacts
around sharp edges

(a) Original Image

Figure 3.2: Example of Aliasing when Resizing an Image [11]

62

3.1.1 Bilinear Interpolation

Bilinear Interpolation is performed by applying linear interpolation on the x-axis and then
interpolating the results linearly on the y-axis, or vice versa. A more precise definition is the
following:

Suppose that we want to compute the value of the unknown function f at the point (z,y). The

value of f at the points Q11 = (x1,y1), Q12 = (21,y2), Q21 = (2, 1) and Q22 = (2, ¥2) is assumed
to be known.

ploi0n R0

P

¥ éOu ;RJ .OJ
% 3 3

We first apply linear interpolation in the x-axis. This yields:

To — X

F(R) = flarn) = 2 fQu) + = (@)
F(Ro) = flayn) = 2 f(Qu) + == - (@)

We proceed by interpolating in the y-azis to obtain the desired estimate:

Fay) = 2= f(R) + 20 f(R)
Y2~ Y2 —

In the scope of this thesis, we desire to use this method to downscale an image. Bilinear
Interpolation operates on a 2x2 neighbourhood of pixels. Thus, to downscale the image, a stride
is computed, as the inverse of the scaling factor. Successive pixels of the same output line are
computed by using 2x2 neighbourhoods that have a distance equal to the calculated stride. Pixels
of successive output lines are also computed in a similar manner. The four pixels that form the
neighbourhood are assumed to be in positions (0,0), (0,1), (1,0) and (1,1). The desired pixel is
assumed to be in position (0.5, 0.5). Therefore, the above equations become:

£(0.5,0) =

- f(0,0) + 5 - f(1,0)

£(0.5,1) = = f(0,1) + = - f(1,1)

N~ N
N = N

and thus:

1 1 1
We conclude that in this particular application, Bilinear Interpolation is equivalent to average

pooling with a 2x2 pool size.

63

3.1.2 Bicubic Interpolation

Bucubic Interpolation can be seen as a generalization of cubic interpolation, where data points
on a two-dimensional regular grid are interpolated. This method considers 16 pixels, in a 4x4
neighbourhood, compared to the 4 pixels that bilinear interpolation takes into account. As a
result, the resized images appear smoother and with fewer artifacts, with the tradeoff of increased

latency. The desired pixel can then be computed as:

3 3
p(z,y) ZZZ%‘ sty

i=0 j=0

The interpolation problem consists of determining the 16 coefficients asj. Directly calculating these
coeflicients is inefficient, since their values depend on the values of the examined pixels. This
means that for each output pixel, these coefficients would need to be calculated time after time.
Therefore, it was decided that we use the Bicubic Convolution Algorithm, proposed by Keys
[19].

Bicubic Interpolation, as described above, is equivalent to applying a convolution with the

following kernel in both dimensions:

(@+2)- |2 = (a+3) [z +1 || <1
W(z)=qa-|z]>=5a-|z>+8a-|z| —4a 1<|z| <2

0 otherwise

where « is a parameter, typically set to -0.5 or -0.75, and x is the distance between the examined
pixel and the desired pixel. Along the x-dimension, pixels are numbered with integer values
ranging from -1 to 2. The same numbering applies for the y-dimension as well. Each line in the
4x4 neighbourhood will be convoluted with the above kernel. Subsequently, the resulting values
will also be convoluted with that kernel, to obtain the desired pixel. As was the case with bilinear
interpolation, the desired pixel is assumed to be in position (0.5, 0.5). Since both the position of the
desired pixel and the positions of the 4x4 neighbourhood pixels are known, the coefficient of each
pixel can be computed and be hardcoded inside our application. Furthermore, since x = y = 0.5,
the coefficients for the 2 dimensions will be the same. Thus, only the following 4 values need to be
calculated:

W(0.5 - (=1)) = W(1.5) = —0.75 - |1.5]* +5-0.75 - [1.5]> = 8- 0.75 - [1.5| +4 - 0.75 = —0.09375
W(0.5) = 1.25 - 0.5]* — 2.25 - |0.5|% + 1 = 0.59375
W(1—-0.5) = W(0.5) = 0.59375

W (2 — 0.5) = W(1.5) = —0.09375

where a was set to be equal to -0.75, in order to mimic the behaviour of the OpenCV library.

Thus, the bicubic convolution in one dimension can be written in matrix form as:

Py
Py

f(P—1,Py, P, P) = [—0.09375 0.59375 0.59375 —0.09375 } .
1

P

64

And to compute the desired pixel:

J(P—1,-1), P~1,0, P=1,1), P=1,2))
JF(Po,~1), Po,0y: Po,1), Po,2))
F(Pa,-1), Paoys Py Pag))s
Jf(P2,~1), P20y, P21y P22)

DesiredPizel = f

(-1 3). (anz). : .(2) (2 ‘).
(-1.1) (0.1) (0.5.1) (1.1) (2.1)
e (0.5,0.5)
(-1,0) (0.5,0)
(0,0) (1.0) (2.0)
(0.5,-1) (1.-1)

(-1,-1) (0,-1) (2,-1)

Figure 3.3: Bicubic Convolution Algorithm. The red points form the 4x4 neighbourhood that is to be
used to compute the value of the desired pixel. The green dots are the points that will be evaluated
when convoluting in the x-dimension. The blue dot is the desired pixel and can be computed by applying
convolution in the y-dimension, on the green-dot points.

65

3.1.3 Lanczos Resampling

Lanczos Resampling is the process of mapping samples of a digital signal to a translated and
scaled copy of the Lanczos kernel, and then evaluating the desired points by summing these copies
[43]. This method is frequently used for multivariate interpolation in image processing, to resize
or rotate images, for example.

The Lanczos kernel consists of the normalized sinc function sinc(x), windowed by the Lanczos
window, or sinc window, which is the central lobe of a horizontally stretched sinc function sinc(x/a)
for -a j x j a. The parameter a is a positive integer, which determines the size of the kernel, ie the
number of input samples to be interpolated to produce an eavluation.
sinc(x) - sinc (%) —a<zr<a

L(z) =
0 otherwise

The OpenCV library [41] provides the option to resize images using the Lanczos resampling method

with a set to be equal to 4. Therefore, in the scope of this thesis, the Lanczos kernel will be equal

to:
1 z=0
Liz) = { Snossin(5) 0 g 20
472)
0 otherwise

Interpolation of a one-dimensional digital signal f with a Lanczos filter of order a at an arbitrary
real argument x is obtained through the discrete convolution of signal samples with the Lanczos
kernel:
a
S° Alle)+i) L -+ L))
1=—a+1
In two dimensions, the Lanczos kernel is simply the product of the one-dimensional Lanczos kernels

of each dimension. This kernel is not separable.

L(z,y) = L(z) - L(y)

Therefore, the interpolation of a two-dimensional image, let f, with a Lanczos filter of order a can

be performed as follows:

= S Y ety 49 LG—t L)) LG -y)

1=—a+1j=—a+1

The OpenCV library also aplies the filter weight w by division to preserve flux:

f(a, Z Zf I+ ly) +4) - Ll —a+ [2)) - LG -y + |y))

i=—a+lj=—a+1

Z Z Li—x+|z)) - LG —y + y))

1=—a+1j=—a+1
In the scope of this thesis, both x and y are equal to 0.5, since the desired pixel is set to be at
the center of the considered 8x8 neighbourhood, thus their floor function is equal to 0. The sum

operators can be interchanged and the interpolation can be performed equivalently as:

4
flay) = > <qu <z—x>>
j=-3

— i=—3

S\)—'

66

Unsurprisingly, the operation described by the above equation is similar to that of the Bicubic Con-
volution Algorithm. The coefficients of the weighted sums remain to be calculated. We only need
to compute these coefficients once, since they are common for both dimensions in this particular
case (a =4, x =y = 0.5).

L(—3—-0.5) = L(—3.5) = —0.01266087782123867
L(—2.5) = 0.05990948337726289

L(-1.5) = —0.16641523160350802
L(—0.5) = 0.6203830132406946

L(0.5) = L(—0.5)
L(1.5) = L(—1.5)
L(2.5) = L(—2.5)
L(3.5) = L(—3.5)

sum(L;) = 1.0024327743864216

Therefore, the interpolation of the pixels in one direction can be expressed in matrix form as:

[—0.012630151512143303 |
0.05976409082786907
—0.1660113634107474
0.6188774240950217
0.6188774240950217
—0.1660113634107474
0.05976409082786907

| —0.012630151512143303

DesiredPixel = P,g P,Q P,1 PO P1 P2 Pg P4

67

3.2 UrsoNet: Pose Estimation for Satellites

UrsoNet [4] is a Convolutional Neural Network, proposed by Pedro Proenca and Yang Gao, that
achieved third place on the synthetic test set and second place on the real test set of ESA’s Pose
Estimation Challenge in 2019. Contrary to the other contenders, UrsoNet demands a moderate
amount of resources, and could potentially operate on embedded devices at the edge. Figure 3.4

illustrates a simplified overview of UrsoNet’s network architecture.

CNN Backbone Bottleneck { i Location
s [X,V,Z]
Orientation
g ¢
g I
14

|:> Conv ‘
= FC Probabilistic Quaternion Fitting |

Figure 3.4: Simplified Overview of the UrsoNet Architecture [4]

3.2.1 Design and Architecture

The CNN backbone of the network is based on the ResNet architectures (ResNet34, ResNet50
or ResNet101) with pre-trained weights, since they contain a limited number of pooling layers.
Pooling and Fully-Connected layers are generally not desirable, as they do not preserve spatial
features. As a result, the ResNet architecture is modified, and the last fully-connected layer, as
well as the global average pooling layer are substituted with one 3x3 convolution layer, with stride
2 to compress the CNN features (Bottleneck Layer).

The estimation of the location of the satellite is performed via a simple regression branch,
consisting of two fully-connected layers. However, the network is not trained by minimizing the
absolute Euclidean distance of the estimated and the ground truth location. Instead, the loss
function employed is:

[— D,

= 1@

loc —

where t() and tgt) are the estimated and ground truth translation vector respectively. This function

is first term of the total loss function:

Ltotal = 51Lloc + 62Lori

This loss function minimizes the relative error of the estimated location and is chosen, because the
fine-tuned loss weights 31 and (2 generalize better to other datasets.

A similar regression branch, consisting of two fully-connected layers, is responsible for the
estimation of the orientation of the satellite. UrsoNet can be configured to either directly regress
orientation or perform continuous orientation estimation via classification with soft assignment
coding. In the first case, L2 or L1 losses are not sufficient to correctly train the network, as they
do not represent the actual angular distance accurately, for any orientation system. Therefore, the

orientation loss function chosen is one of the following:

T i
Loy = arccos(|qV" - ¢))

68

T :
Lori =1- |q(1) ' Qéic)|
(i)
gt
Alternatively, in the second case, in order to perform soft classification, each ground truth

where ¢ and ¢, are the estimated and ground truth quaternions respectively.

label is encoded as a Gaussian random variable in an orientation discrete output space, so that
the network learns to output probability mass functions. The network output is set to be a
3D histogram, where each bin maps to a combination of discrete Euler angles. Assuming that
Q = {b1,...,bn} are the quaternions corresponding to the histogram bins, then, during training,
each bin is encoded with the soft assignment function:

K(bi, qgt)
S K (b2 00

where the kernel function K(x; y) uses the normalized angular difference between two quaternions:

(2cos*1<|wTy\>>2
K(z,y) =e” 20

f(bi7 Qgt) -

and the variance o2 is given by the formula:

12

where A/M represents the quantization step, A is the smoothing factor that controls the Gaussian
width and M is the number of bins per dimension. To train the network, UrsoNet uses a Softmax
Cross-Entropy loss function. At test time, given the bin activations {aq,...,an} and the respec-
tive quaternions, in one hemisphere, a quaternion can be fitted by minimizing the weighted least

squares:
N

4 = argming Z w;(1 — b g)?

K3

where «; is assigned to w; and the optimal solution is given by the right null space of the matrix
N
> wilbid]).

69

3.2.2 Unreal Rendered Spacecraft on Orbit (URSO)

Unreal Rendered Spacecraft on Orbit (URSO) [4] is a simulator, that utilizes Unreal Engine 4
(UEA4) features to render realistic images of non-cooperative spacecrafts, on orbit around the Earth.
Lighting in this environment is made of a directional light and spotlight to simulate sunlight and
Earth albedo respectively. The simulation of the sun, a body of emissive material with UE4
bloom scatter convolution is used. Earth is modelled as a high polygonal sphere textured with
21600x10800 Earth and cloud images from the Blue Marble Next Generation collection, and is
further masked to obtain specular reflections from the ocean surface. Soyuz and Dragon spacecraft
models, with their geometry imported from 3D model repositories, are also included.

Datasets are generated by randomly sampling 5000 viewpoints around the day side of the Earth
from low Earth orbit altitude. The Earth rotation, camera orientation and target object pose are
all randomized. Specifically, the target object is placed randomly within the camera’s field of view

at a distance ranging between 10 and 40 meters. A few examples of generated images are included

below.

Figure 3.6: Example of Synthetic Images for the SpaceX Dragon Spacecraft [4]

70

Chapter 4

Design and Acceleration on
Myriad X

Chapter 4 is dedicated to the implementation of the downsampling algorithms, discussed in
Section 3.1, and the execution of UrsoNet, the Convolutional Neural Network discussed in Section
3.2, on Intel Movidius Myriad X. An in-depth analysis of the former is included in Section 4.1, since
these algorithms constitute the Preprocessing Stage of our Pose Estimation system.The actual pose
estimation, performed via the CNN, is accelerated on the Neural Compute Engine of the VPU.
A thorough analysis of how this Hardware Accelerator can be utilized is provided in Section 4.2.
Section 4.3 features the design of a custom Power Management and Measurement System, which
proved to be valuable for the evaluation and power efficiency of the proposed application. Finally,
Section 4.4 proposes a Pose Estimation & Tracking system for satellites, which is to be accelerated
on the Intel Movidius Myriad X VPU, and essentially solves the ”Lost in Space” problem.

4.1 Preprocessing Stage

The Preprocessing Stage consists of the image scaling functions, which aim to downsample the
input. This downsampling is crucial to the application’s overall performance. The original dataset
contains RGB images with a 1280x960 resolution. This size would demand such an enormous
amount of operations inside the Neural Network, that the overall system would not be able to run
in a real-time scenario.

Unlike the Neural Network though, the algorithms employed during this stage operate on the
full size of the input images, and thus need to be carefully designed, in order to avoid creating a
bottleneck in this stage. Figure 4.1 illustrates the method that was followed, during this stage in
development, to run the preprocessing stage.

The following sections provide an in-depth look at the design and acceleration of the Bilinear

and Bicubic Interpolation, as well as the Lanczos Resampling Algorithms.

SHAVE Cores:
Execute Image
' Scaling Algorithm '

Moritor Performance

Leon0S:
Compare Qutput to
Expected Result and
Output Measurements

Host Machine:
Execute Scripts to Create
Necessary Header Files

Leon0S:
Tnitialize Board and
Open up SHAVE cores

Figure 4.1: Process Followed to Execute the Downsampling on Myriad X

71

1

4.1.

1 Implementation of Image Scaling Functions

The main task of downsampling the input image will be executed on the Microprocessor Array.

This

section focuses on the implementation of the correspondent code.

Several struct and Macro definitions need to be common between the SHAVE cores and LeonOS.
Thus, they are placed in the ”shared” folder and can be included both in the SHAVE and in the

LOS

application, by directly providing the header file that contains them. The code snippet below

illustrates the main body of the FilterArgs.h header file, which consists of these definitions.

#def
#def

type

ine WIDTH 1280
ine HEIGHT 960

def struct {
u8 red;

u8 green;

u8 blue;

} pixel_t;

type
pi
pi
f1

def struct {
xel_t * inplImage;
xel_t * outlmage;
oat ffactor;

int workload;

u3

2 shaveld;

i } downsampleFilterArgs_t;

Listing 4.1: FilterArgs.h Main Body

Pixels are represented as a struct containing 3 bytes of RGB data. The arguments provided to

the entry function of a SHAVE Core executing an image scaling task consist of:

A pointer to an array of input pixels and

A pointer to an array of output pixels. The input and output images are stored in
these 1-dimensional arrays, residing in the DDR memory, in row-major order. The definition
of row-major order is: Let N be the width of a 2-dimensional array and M be its height. This
array can be stored in a 1-dimensional array of size NxM in row-major order, if the element
stored in the i-th row and j-th column in the original array, is stored in [i * N + j] in the 1D
array.

The scaling factor, which is common for both dimensions. In this thesis, the scale factor
was set to be 0.5, to maximize the ratio performance gain/accuracy loss. However, the code
developed, was structured in such a way, that different scaling factors are supported, with

the sole restriction that their inverse is an integer.

The workload, that is the number of input lines to be processed by the particular core.
This is particularly useful, since an arbitrary number of cores may be chosen to run the task

in parallel. A more in-depth look at this feature is found in section 4.1.3.

The ID assigned to the SHAVE core. Since the PipePrint utility is not thread safe,
contention between processes may appear, when multiple SHAVE Cores attempt to print
some data. Therefore, during debugging, a specific SHAVE may be chosen via the ID assigned
to it, to provide debugging information. Alternatively, a more sophisticated implementation

using hardware mutexes may be used, but the current approach meets the ends.

72

© w N o T A W N =

NN N NN NN R R R R e e e e
N 6 o A W N = O © O N & oA @ N = O

)
©

© ®w N o o A W N e

= e
= o

-
N

The code snippet below demonstrates the entrypoint of the SHAVE Cores executing, which is

common, regardless of the algorithm being used.

Listing 4.2: SHAVE Entry Point

The reason why the ArgsPointer is a void pointer instead of a downsampleFilterArgs_t pointer will
be thoroughly explained in Section 4.1.2.

In line 12, the offset is computed as the inverse of the scaling factor. This offset is equivalent
to the stride of the operation. Therefore, this stride determines which input line will be used
as an argument to the functionCall (line 22). Furthermore, in the case of bicubic and Lanczos
interpolation, a second stride is also used, to omit the top and left padding.

The following sections demonstrate the application-specific functions called, depending on what
algorithm is chosen.

Bilinear Interpolation

Listing 4.3: Bilinear Interpolation Kernel

The desired pixel is in position (0.5, 0.5). Thus, bilinear interpolation in this particular case,
is equivalent to average pooling in a 2x2 region. The division by 4 operation is substituted with
right shifting by 2 digits, since division is costly and redundant in this particular instance. It is
important to note that, since we add 4 8-bit unsigned integers, the possibility of overflow is present.
Thus, the results of the additions are stored in temporary 16-bit variables.

Bicubic Interpolation

© ® N o wu

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Listing 4.4: Bicubic Interpolation Kernel

74

© W N o o A W N e

[
o

-
.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Each invocation of bicubicInterpolation produces 1 output pixel. As described in Section 3.1.2,
bicubic interpolation is developed using the bicubic convolution algorithm, with an alpha value
equal to -0.75 to mimic the behaviour of the OpenCYV library. Thus, bicubicInterpolation consists
of 4 horizontal 1-dimensional convolutions, followed by one vertical 1-dimensional convolution with
the kernel. The output of horizontal convolutions is of intermediate_t type, since the results for
each colour channel are floats. The output of the vertical convolution, on the other hand, is of
pixel_t type, with the results for each colour channel being rounded.

Lanczos Resampling

5

Listing 4.5: Lanczos Resampling Kernel

The Lanczos 2-dimensional convolution operates in a similar manner to bicubic interpolation.
Since the convolution is performed in an 8x8 region, top, bottom, left and right padding of 3
lines/columns needs to be taken into account when moving between lines in memory. The kernel,
along with the intermediate results, is chosen to be of float type. During development, it was
observed that using long floats provided no increase in accuracy, compared to the OpenCV library,
but did dramatically increase overall latency of the operations. Thus, the coefficients and the
intermediate results are of float type. Furthermore, it is vital that lines 35-38 be taken into
consideration. The range of the output values in Lanczos resampling is not bound between 0 and
255. Saturate-cast must be performed on the output to ensure negative values are rounded to 0
and values greater than 255 are rounded to 255.

Makefile

The toolchain provided by Myriad X requires a subdir.mk makefile to be present in the ”shave”
directory. The compilation of the code is fairly straightforward, since this makefile is only required
to include any source files present in the directory, that need to be compiled. Therefore, the sole
content of this makefile is the following line:

| sres-shave-y += shave.c

Listing 4.6: SHAVE Makefile

76

© ® N o o oa W N e

[
S}

© o N o o oA o N =

[R R N S T S T T N S
= © © ® N o G A W N = O © L N o o A W N = O

w
]

4.1.2 Control Code and Scripts

This section focuses on the code run by the LeonOS processor, as well as the scripts executed
on the host machine. We will initially examine the latter, since they are written in Python and
are fairly easy to comprehend.

Header File Creation Script

createInputHeader.py is a CLI-tool that enables the creation of header files that contain
the input image and the expected result. Running the CLI-tool with an -h flag set produces the

following result:

Listing 4.7: Script Interface

The source code of this tool is provided below.

Listing 4.8: Script Source Code

© o N o o oA @ N =

W oW W W W N NN N NN NN NN R R R e e e e e
A R = O © ® N 6 U A W N = O © o N O o A W N = O

w
<

The main function uses the argparse library to create the command line tools and invokes the
createFiles function with the appropriate arguments. The createFiles function uses the OpenCV
library to initially read the image (Line 6). The colour channels are then divided into 3 lists (Lines
8-16). An inputImage.h header file is created, which contains the definition of an inputFrame array
residing inside the DDR memory. The array is filled with RGB pixels (Lines 19-34). The code
for Bicubic and Lanczos Interpolation is omitted for brevity. It is similar to the one for Bilinear
Interpolation, with the exception of some padding lines, initialized with {0, 0 , 0} pixels. The
image is then downscaled by half in each dimension using the chosen interpolation method (Line
46). The output is written in an expectedFrame.h header file. These files are crucial, since they

provide the data on which the algorithms are to operate and be evaluated on.

We will now dive into the header, C and script files needed by the LeonOS Processor.

RTEMS Configuration

RTEMS is provided in precompiled form by Movidius. The version of RTEMS shipped with the
MDK comes with a board support package (BSP) for SPARC/LEON processors that is capable
of configuring the system with simple RTEMS directives. These directives are included in an
rtems_config.h file, that is inserted in the compilation toolchain. The source code of this file is

presented below.

79

Listing 4.9: RTEMS Configuration File

Since we do not develop a bare-metal application, it is integral that these configuration directives
are well understood, as they may be modified during development. We provide a brief analysis of
each RTEMS directive in lines 25-63:

¢ CONFIGURE_MICROSECONDS_PER_TICK sets the time interval between two succesive
system clock ticks. The interval is measured in microseconds, therefore, in this case, a system
clock tick occurs every millisecond.

¢ CONFIGURE_TICKS_PER_TIMESLICE sets the maximum time a thread can run on the
processor before a context switch is invoked. The timeslice is set at 10 milliseconds.

e CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER specifies that the application
will include a console device driver. This driver provides a single device named /dev/console.
This device is used for Standard Input, Output and Error I/O Streams. This configuration
directive is included, so that our application can run on the debug server provided by Movidius

during development. In production, the bootable file does not need this directive.

¢ CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER specifies that the application will
include a clock tick device driver. Without a clock tick device driver, RTEMS has no way to
know that time is passing and will be unable to support delays and wall time.

o CONFIGURE_POSIX_INIT_-THREAD_TABLE is defined if the user wishes to use a POSIX

80

API Initialization Threads Table. The application may choose to use the initialization tasks
or threads table from another API, which is the default option.

e CONFIGURE_MINIMUM _TASK _STACK_SIZE sets the minimum Task Stack Size. The
Stack must be able to store the context of the idle tasks as well as any normal stack items
used by the tasks (local variables, function call overhead, etc.) so the actual size required
depends on what the idle tasks were doing - and will be at its very minimum if the idle tasks

are doing nothing.

o CONFIGURE_MAXIMUM_TASKS is the maximum number of Classic API Tasks that can be
concurrently active. Similarly, CONFIGURE_MAXIMUM_POSIX_THREADS is the max-

imux number of POSIX Threads that can be concurrently active.
e The configuration directives of line 42-54 are well-understood.

¢ CONFIGURE_MAXIMUM _DRIVERS defines the number of device drivers per node. If the
application will dynamically install device drivers, then the configuration option value shall
be larger than the number of statically configured device drivers.

o CONFIGURE_MAXIMUM_DEVICES is defined to the number of individual devices that
may be registered in the device file system.

¢ CONFIGUREMAXIMUM_USER_EXTENSIONS defines the maximum number of Classic
API User Extensions that can be concurrently active. CONFIGURE_INITIAL_EXTENSIONS
is used to initialize the table of initial user extensions. In this script, 1 user extension will be

active, namely Fatal_extension, which is a logging tool for errors while initializing RTEMS.

Line 70 declares a POSIX_Init function. By default, this is the entry function of the system,
directly after booting up. Therefore, the main function of LeonOS must be named as such.

We will now provide a brief analysis of the BSP directives located in lines 79-86:

e BSP_SET_CLOCK configures the various clocks of the platform. The arguments passed to
it are:

—

. The clock frequency of the Reference Oscillator used.
The target frequency of Phase-Locked Loop 0.
Master Divider Nominator and

Denominator used by PLLO.

LEON OS Clocks.

LEON RT Clocks.

UPA Clocks.

SIPP Clocks.

© X N o> o w N

Auxiliary Clocks.

A Phase-Locked Loop is utilized to generate the operating frequency of T00MHz of the system,
using the Reference Oscillator. The Reference Oscillator is clocked at 24MHz.

e BSP SET_L2C_CONFIG configures the L2 cache of the LeonOS processor. The arguments

passed to it are:

81

© w N e o A W N =

[N N e e e e e e e =
a R @ N R O ©® B N O ‘oA W N R O

V)
=

. Enable or Disable Cache
. Replacement Policy. Default is LRU.

. Cache ways locked in cache. Default is unlocked cache.

1
2
3
4. Mode of operation. Default is Copy-Back.
5. Number of MTRR Registers

6

. Pointer to an array of MTRR Configuration

Memory type range registers (MTRRs) are a set, of processor supplementary capability control
registers that provide system software with control of how accesses to memory ranges by the
CPU are cached. It uses a set of programmable model-specific registers (MSRs) which are

special registers provided by most modern CPUs. No MTRRs are used in our application.

e BSP_SET_L1C_CONFIG configures the L1 cache of the LeonOS processor. The arguments
passed to it are:

1. Enable Data Cache

2. Enable Instruction Cache
Finally, Line 89 initializes the L2 Cache of the SHAVEs in bypass mode. Thus, SHAVE cores
do not use their L2 Cache.
Application Configuration Files

We will now examine the app_config.h header file, which is based on the default app_config.h file
provided by the MDK. The main body of this header file, as illustrated below, consists of various

defines, many of which are used in rtems_config.h.

82

© W N o o A W N =

e T e - T
o v A ®W N = O

-
<

18

19

20

21

22

23

24

25

26

27

28

Listing 4.10: App Configuration Header File

The main clock of the VPU is set to a frequency of T00MHz, while the reference oscillator frequency
is set to 24MHz. Furthermore, in lines 6-25, the clocks of the Microprocessor Array are set to
include all SHAVE cores and components. These Macros are all utilized in rtems_config.h, and
thus, that file includes the app_config header.

In addition to these, a few more definitions are included in this header file. The Macro
SHAVES_USED, which is initially set to one, provides a simple interface to run this stage on
an arbitrary number of SHAVE cores. The Macros in lines 27-36 provide a user-friendly interface
for declaration of variables in specific regions of the DDR or CMX memories, and with specific
alignment. Finally, a function that initializes all the system clocks and memories is declared. The
body of this function is the sole content of the app_config.c files, along with the necessary includes.
It is listed in the following code snippet.

Listing 4.11: App Configuration Source Code

Even though the L2 Cache is set to be bypassed by the SHAVE cores, a basic initialization is
provided in this file, in case we need to turn it on. Two partitions of 128KB are created, with each
one of them consisting of eight 16KB blocks. The first partition is assigned to the SHAVEs as
instruction cache, while the second is assigned as data cache. The OsDrvSvulnit function is then
called to initialize the SHAVE Driver.

LeonOS POSIX _Init Source Code

After the successful configuration of RTEMS and basic initialization of the board, permission to
the POSIX Init function of LeonOS to execute is granted. This function is responsible for booting
up the SHAVE Cores and monitoring their performance during their operation. The source code
of the main.c file that is included in the /leon directory is provided below.

© W N e U A W N e

W oW NN NN NN NN NN R R R R R e e R s e
= O © ® N o o A ®W N =B O © O N O O A& ®W b = O

w
¥

33

34

35

[T S

Listing 4.12: Main Function Source Code

Initially, we extern the entry functions of the SHAVE Cores. Memory is statically allocated
in the DDR for the filter arguments of the entry function and for the output frame. The input
and expected frame are included in the header files. POSIX Init calls initClocksAndMemory, as
defined in app-config.h. This function only initializes the SHAVE Cores and creates partitions of
the L2 SHAVE Cache. The rest of the clocks and memories are initialized by RTEMS. In lines
41-48, all the necessary arguments for the execution of a SHAVE Core are created. Lines 53-67
open up the SHAVE Cores that will be utilized, resets them and sets their stack. Lines 70-77 start
the execution of the used cores. The third argument passed to OsDrvSvuStartShaveCC is a string,

71" stands

whose length is equal to the number of arguments that will be provided. The value
for one argument provided, that is to be stored in the Integer Register File. Since the argument
provided is not an integer but a pointer to a struct, we typecast it to a void pointer. Thus, a
memory address is written in the IRF. Myriad X does not make use of virtual addresses, therefore
each SHAVE core can typecast this pointer back to its original type, and access its contents. Lines
79-86 then wait for the SHAVESs to return and subsequently shut them down. This part of the code
(lines 70-86) is "guarded” by reads of the CSS Free Run Counter, to measure the exact latency of
the compute-intensive part of the application. The output frame is then compared to the expected
output.

The source code above is used to execute the Bilinear Interpolation algorithm. Bicubic Inter-
polation and Lanczos Resampling can be invoked in a similar manner. However, a few more lines
of code need to be included to create the appropriate padding of the image. The type of padding
was chosen based on the padding performed by the OpenCYV library, which is a form of replication
padding. The following snippet contains the correspondent code for Bicubic Interpolation. In the
case of Lanczos Resampling, padding is created similarly. Free Run Counters are also utilized, to
measure the performance of padding being executed on the LeonOS.

© W N o o A W N =

NONON NN NNNN R R R s e e R e e e
© W N o ;A W N = O © W N O o ok W N = O

w
o

Listing 4.13: Padding Code

Custom Linker Script

A custom script for the GNU Linker is provided by Movidius. This script contains a detailed
memory map to be used by the application. FEven though the default script proved sufficient
for bilinear and bicubic interpolation, a few modifications were necessary for Lanczos resampling.
That is due to the fact that the memory required by the code segment of the SHAVE cores was, in
some cases, greater than the one assigned in the script. Therefore, the length of the SHVX_CODE
regions was increased to 35KB, and the length of the corresponding SHVX_DATA regions was
reduced to 93KB.

Listing 4.14: Custom Linker Script

This script initially defines the CMX Slices, that are to be associated with each SHAVE Core.
Notice that both the code and data segments occupy addresses that correspond to the CMX
memory. On the other hand, LeonOS and LeonRT are assigned slices of the DDR memory to store
their code segments. Subsequently, a small region is declared for the CMX DMA descriptors and
the remainders of the CMX and DDR memories are also defined. Finally, a few more linker scripts
are included.

88

4.1.3 Core Parallelization

A SHAVE Processor accelerates these preprocessing algorithms, compared to executing them
on the LeonOS Core. However, the single core performance is nowhere near the one required by our
application. It should be noted, that achieving real-time execution is not enough. The execution
time of these downsampling algorithms must be negligible compared to that of the Neural Network.

Thus, the need to parallelize the operations performed during this stage arises.

As we discussed previously, in section 4.1.2, the control code was developed in a way that
enables in-parallel execution, without modifying the code. In fact, only the macro SHAVES_USED
found in leon/app_config.h needs to be changed to the desirable value. Therefore, each SHAVE
Core will run the correspondent kernel, producing only a fraction of the total output lines. This
is possible, because the algorithms are embarrassingly parallel. Figure 4.2 illustrates which pixels
of the input image are to be utilized per iteration for the bilinear interpolation algorithm. Each
iteration, produces an output pixel, by reading the values of the correspondent pixels of the input
image, and applying linear operations. Thus, no intermediate values are produced or needed to
calculate the result. This means, that there are no true dependencies within the consecutive
iterations of the algorithm. The same principle holds true for bicubic interpolation and Lanczos
resampling as well. Both of these algorithms utilize a 2-dimensional convolution to produce an

output pixel.

Consequently, parallelizing the execution of the downsampling on multiple cores is straightfor-
ward. Each core is assigned a number of output lines to be produced and is given access to the

necessary input lines via a pointer.

Second Iter.

A 4
. Last Iter.
First Iter. of 1st Line
First Iter. .
of 2nd line
Last Iter.

Figure 4.2: Execution of Bilinear Interpolation Downsampling

When increasing the number of active cores, the algorithms are quickly driven to saturation
in terms of performance. Further increase of cores used, leads to performance degradation. The
origins of this behaviour will be thoroughly explained in Section 5.1.2. Briefly, contention arises
between the cores when reading data from the main DDR memory. This contention can be so
severe, that in certain cases, operating on one core produces the same latency as operating on the

maximum amount of cores, namely 16.

89

© ®w N e o A W N e

R R R W W W W W W W W W W N NN N NN NN NN R R e e e e e
@ K = o © ® AU O O A ® N = O © W N O O A& W N = O © ® N O o A W N = O

IS
IS

4.1.4 Scratchpad Memory Data Transfers

To eliminate the contention point described in the previous section, the Scratchpad Memory
was utilized. As was already described in section 1.3.1, Scratchpads are SRAM memories that,
unlike caches, neither flush nor request data to or from the main memory. Both the .text and
.data sections of the code executed on the SHAVEs is stored in the CMX. Thus, any global or local
variable declared in the shave/shave.c file resides in the CMX (Scratchpad) memory. Therefore,
allocating buffers to store any input data is equivalent to defining them as global variables. To fill
these buffers, the CMX DMA engine must be used.

Movidius provides a convenient API inside the MDK, to configure and utilize this component.

The declarations of these functions are located in the ShDrvCmxDma.h header file. We provide

several of them, along with their definitions, below:

90

Listing 4.15: CMX DMA Engine API

A few modifications need to be made to our shave.c code, to make use of the above API:

Listing 4.16: Extensions to SHAVE code for Bilinear Interpolation

The modifications made to the bicubic and Lanczos Interpolation algorithms are similar, but also

account for the necessary padding lines.

In this code segment, 2 buffers are allocated, for input and output lines respectively. Per
iteration, a DMA transaction is created, to fetch the necessary lines of the input image to produce
one output line. The output line is initially stored in the CMX via the allocated buffer. Then,
a new transaction is created that transfers the produced output line back to the DDR memory.
Thus, all read and write operations are performed on the CMX. This accelerates the preprocessing
performed significantly, not only due to the faster SRAM memory, but also due to the fact that
each SHAVE has exclusive ports to their preferential CMX slice.

At this point, the preprocessing stage satisfies the timing constraints set, as it operates at at
least one order of magnitude lower latency, than then Convolutional Neural Network. The following

sections aim to further accelerate this stage, by fine-tuning several segments of code.

92

© W N o o kA W N e

MONON N NN R R R R R e e e
a R @ N =R O © W N O W oA W N R O

¥
=3

~ o o =W N =

4.1.5 OfHoad Padding

Bicubic, as well as Lanczos Interpolation, require padding lines and columns in order to operate
properly. The Python scripts provided in Section 4.1.2 provide zero-padding to the input frames.
However, this is not the desirable form of padding and therefore, LeonOS is assigned the task to
create the appropriate replication padding. This choice was not coincidental. In production, the
camera used, will provide raw RGB data to our system. Thus, our system must be capable of
padding these raw data.

The padding performed by LeonOS operates by issuing memory reads and writes to the DDR.
This task is obviously embarrassingly parallel. However, as observed in Section 4.1.3, not much
can be gained performance-wise solely by parallelizing the operation on the SHAVE Cores, due
to contention for memory resources. Therefore, each SHAVE Core is set to be responsible for
correcting the padding on the input lines, as they arrive to its preferential CMX slice through the
DMA engine. All SHAVE Cores perform left and right padding, while the SHAVE 1D is used to
identify the two cores (first and last of the active group) that need to perform top and bottom
padding.

The following 2 snippets contain the code that needs to be added to the entrypoint function of

bicubic and Lanczos interpolation.

Listing 4.17: Padding Offloaded to SHAVE for Bicubic Resampling

Listing 4.18: Padding Offloaded to SHAVE for Lanczos Resampling

It should be noted, that top and bottom padding occur only once, in the first iteration of
the first SHAVE Core and in the last iteration of the last SHAVE Core respectively, for bicubic
interpolation. On the other hand, during Lanczos resampling, padding occurs twice more. Once
for the second iteration of the first SHAVE (in the form of top padding) and once for the second
to last iteration of the last SHAVE (in the form of bottom padding).

This repetition of the top and bottom padding reveals an interesting property that is to be

exploited in the following section.

94

4.1.6 Sliding Window Buffers

The algorithms have been developed in such a manner, that each iteration of the main loop
produces exactly one output line. By setting the downsampling factor to 0.5, the stride used is
lower than the number of lines needed per iteration of the loop for bicubic or Lanczos interpolation.
This means, that each iteration of the loop, excluding the initial one, only needs to fetch two new
input lines. This is evident in Figure 4.3, which depicts the contents of the input image CMX

buffer for Lanczos resampling, during the first two iterations of the main loop.

First Iter.

"J24] puU022g

Figure 4.3: Contents of Input Image CMX Buffer for Lanczos Resampling

To take advantage of this property, we would need a data structure, similar to regular arrays,
that additionally enables the user to shift its contents downwards and fill the last lines with data.
Conceptually, this operation is illustrated in Figure 4.4. However, such a data structure is not
provided by Movidius and needs to be created. The proposed architecture is illustrated in Figure
4.5. Tt consists of a double-linked list. Each node of the list contains a buffer that holds one line of
input data. This architecture enables sliding the proposed buffer with a very low latency overhead,

as only a simple rearrangement of the pointers connecting the nodes is required.

1 3 3
2 4 4
3 5 5
a Slide 6 Fill 6
5 _ 7 _ 7
6 8 8
7 1 9
8 2 10

Figure 4.4: Basic Operation of Sliding Window Buffer

95

© w N o w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Head Tail

Node 0 Node 1
Buffer Line

Buffer Line Buffer Line m
S W/

Figure 4.5: Sliding Window Buffer Backend Architecture

Based on the backend architecture proposed above, a user-friendly API, that provides such a
data structure, was developed. The code is structured in such a way, so that it can be reused in
other applications, where necessary. The Memory Manager is utilized by this data structure and
needs to be included in the components section of the Makefile. In addition to this, the Myriad

Mem Init component needs to be included, and the MemMgrInitialize() function, declared in the
MyriadMemlnit.h file, needs to be called inside LeonOS’s initClocksAndMemory function. The
proposed API is listed below.

96

Listing 4.19: SWBuffer API (SlidingBuffer/SlidingBuffer.h)

The source code of the proposed API is included below.

Listing 4.20: SWBuffer Source Code (SlidingBuffer/SlidingBuffer.c)

The comments in the source code are adequate for understanding how the functions operate.

However, a few more details need to be provided for the buffers residing inside the nodes. These

99

buffers will store objects of arbitrary data type. Thus, they are declared to hold unsigned 8-bit
data. Since the user provides the size of the datatype being stored, we can identify the stride
between consecutive elements of the array. It should also be noted, that no direct assignment is
ever performed to any position of the buffer lines. They are exclusively filled with data through

DMA transactions, preserving endianness.

Integration into SHAVE code

A few modifications need to be made, so that the Sliding Window Buffers can be used by our
application. Initially, the kernel functions need to be adjusted to operate on 2-dimensional arrays.
The code below demonstrates how this can be done for bicubic interpolation. The modifications

performed on the Lanczos resampling kernel function are similar.

© w N e A W N =

[I N R N R T e e e i e e
o A W N R O © ® N O oA W N = O

¥
3

S
©

Listing 4.21: Modified Kernel Functions

The entrypoint function also needs to be adjusted:

E- R SR

© w N o o«

10

100

Listing 4.22: Modified Entrypoint Function

Finally, the contents of the subdir.mk Makefile need to be modified, so that SlidingBuffer.c is
included in the compilation. Thus, the Makefile becomes:

| sres-shave-y += shave.c SlidimgBuffer.c

Listing 4.23: Modified Makefile

101

© W N e o A W N e

=os e
No= O

[
w

© ®w N e o A W N e

e e =
o o A W N o~ O

[
Q3

4.1.7 Single Instruction, Multiple Data

The Intel/Movidius Myriad X provides SIMD utilities, that can be used to further accelerate
our application. In this version of the code, it was determined that not utilizing Sliding Window
Buffers as well, was in our best interests, since they result in more complex code and do not provide
any significant performance gains. The latter reason will be thoroughly discussed in Section 5.1.2.

To enable SIMD processing, vector types need to be used, to pack the data that is to be used in
the computation. These vectors have a length of 128 bytes. Thus, they can fit 16 unsigned chars
or 4 integers, or 4 floats, or 4 FP16-types (half precision).Therefore, for the 3 different methods:

e In Bilinear Interpolation, each colour channel of the considered 2x2 neighbourhood is
fitted into a uint4 data type variable.

e In Bicubic Interpolation, the kernel is fitted into a float4 variable. Each of the colour
channels of the 4 pixels that will be convoluted with the kernel are also stored in a float4
variable.

e In Lanczos Resampling, both the coefficients and the colour channels are reduced to half
precision, in order to be stored in two half8 variables.

The kernel functions are then modified to include SIMD instructions:

Listing 4.24: SIMD Bilinear Interpolation

Listing 4.25: SIMD Bicubic Interpolation

102

The modifications made to the Lanczos Resampling method are identical to the ones made to
Bicubic Interpolation, with the sole difference that half8 data types are used.

It should be noted that both SIMD instructions used, namely __builtin_shave sau_sumx_u32_r
and mvuDot operate on the Scalar Arithmetic Unit (SAU). The Vector Arithmetic Unit (VAU)
also supports SIMD operations but is not utilized. Therefore, the kernels can be further accelerated
by utilizing both SAU and VAU in parallel. In order to achieve this, these functions would need
to be coded in SHAVE Assembly.

103

4.2 CNN Inference Stage

The Inference Stage is responsible for estimating the pose of the satellite, located somewhere
inside the input image. The input provided to this part of the application is the downsampled
frame created by the Preprocessing Stage. Thus, the network was trained on RGB images with
640x512 resolution. The output of the network consists of two tensors. Each tensor contains a
float value, that is either the encoded location of the satellite in the source image, or the encoded
orientation.

Traditionally, in embedded development, one would need to design an Inference Engine for Neu-
ral Networks, to successfully implement this stage of our application. This is a rather complicated
task, since the Engine must support a plethora of layers and operations, which, additionally, need
to be fine-tuned to ensure optimum performance. Thankfully, this is not the case with Myriad X,
since the software development kit includes such an engine, in the form of the Movidius Neural
Compute Interface (mvNCI).

The mvNCI is a user-friendly API, enabling developers to utilize the Neural Compute Engine,
Myriad X’s dedicated neural network accelerator. It is build on top of the mvTensor, Myriad X’s
library that acts as the engine used to make a prediction about an input, using a pre-trained Neural
Network model. Individual network operations are performed on either SHAVE or NCE units. A
particular unit is chosen depending on the specific operation.

The following figure illustrates the process of running an inference on Myriad X. Initially,
the Intermediate Representation of the frozen graph of our trained model is produced via the
OpenVINO Model Optimizer. The Myriad Compiler, a tool included in OpenVINO, then uses
this IR to generate a blob file that contains the network structure and its weights, alongside with
directives for the mvNCI. The mvINCI API offers an abstraction layer for the developers and is
used to load the input image and the network on which the image is to be evaluated on. Finally,

the output of the inferencing is given in the form of the tensors containing blob data, which consist
of the encoded location and orientation of the satelite in the image.

Model Optimizer RIE';;":‘:;::" (] it Network Blob

Encoded Location
Encoded Orientation,

Figure 4.6: Inference Stage Workflow

| [

Movidius Neural Compute Interface

104

4.2.1 The mvINCI API

In this section, we will examine the API provided by the built-in MvINCI component. This API
is located inside the mvnci.h header file. Therefore, this file needs to be included in any source
code that intends to utilize the Inference Engine. The contents of the file itself cannot be displayed

here, since it is protected under an NDA agreement. However, an abstract representation of the

typical workflow when working with the API is provided in Figure 4.7.

Verify Input and Prepare Network

I

Run Inference Release Executor Deinit Resources

§

Figure 4.7: Typical Workflow for MvNCI Component

A brief explanation of each stage is provided below:

e Init Resources: Initially, the developer is required to acquire the necessary hardware
resources of the accelerator.

e Load Network: Load the neural network structure from binary blob into the memory.

e Verify Input and Output Shape: Get the dimensions of each input and output tensor

of the network. Then, verify that these dimensions are the ones expected.

e Prepare Network for Execution: Acquire resources for the particular executor and pre-

pare the network to be run with certain processing resources.

¢ Run Inference: Run the tensor data through the neural network and get the output. This
function is typically invoked very often and most of the processing time on the accelerator is

spent inside it.
o Release Executor: Release resources for the particular executor.
e Deinit Resources: Release all acquired hardware resources of the accelerator.

The MvNCI Component has access to 2 different kinds of managers: a Resource Manager and
a Power Manager.

The Resource Manager is responsible for keeping track of which hardware resources are occupied
and which are available. The MvNCI, after all, does offer the option for asynchronous execution
of requests. This means that multiple inference requests may be run in parallel. Therefore, a
Resource Manager is essential for the correct operation of the Inference Engine, in this scenario.
On the other hand, a Resource Manager is needed to determine whether there are enough resources
to run even a single instance of a neural network. The Resource Manager is embedded inside the
functions provided by the API, and thus, the developer is not needed to perform any additional

initialization, or management of this feature.

105

The Power Management is also internally handled by the API. Unlike the Resource Manager
though, the developer may choose the mode of operation of this manager. The available modes of

operation are:
- Full Power, where all the initialized resources are powered on.

- Power on/off per Inference, where the resources are powered on when starting to execute a

new inference request, and are then powered off after the completion of the inference.

- Power on/off per Layer, where the resources responsible for a particular layer are powered

on before its execution and powered off immediately after.
- Power on/off per Layer, only for the Layers executing on SHAVE Cores

- Power on/off per Layer, only for the Layers executing on CNN Units of the Neural Compute
Engine.

- A transition state, where the power manager is disabled.

The configuration of the Power Manager needs to be carefully selected, in order for the applica-
tion developed to meet the constraints set. Powering on the different power isles of the Myriad X
chip does come with a significant overhead in terms of latency. Keeping the board at full power and
pre-warming the Inference Engine with an initial inference request leads to the optimum execution
speed, at the cost of increased power consumption. On the other hand, powering off all resources
associated with a layer after its execution, and powering them back on only when needed, provides
the lowest power consumption, at the cost of increased latency per inference. Powering off all the
resources after the successful completion of an inference request, may prove beneficial, in terms of
power consumption, depending on how sparse the requests are, but still comes with an overhead,

which does not permit us to reach the optimum performance.

106

© ® N o T A W N e

AR R A A W oW W oW oW oW W W oW oW NN N NN NN NN N R R R R e e e e e
A& @ N 2 O ©®© ® 9 O o A @ N R~ O © 0 N O O A& W N B O ©® 0 N O O Ak W N = O

IS
o

4.2.2 The OpenVINO Inference Engine API

The OpenVINO Toolkit offers an attractive alternative to the MvINCI API, if the developers
only aim to accelerate the inference stage of the application on Myriad X. OpenVINO is designed
to be compatible with the Intel Neural Compute Stick 2, which features a Myriad X VPU. By
using OpenVINO, programmers are able to develop their entire application in Python, C, or C++,
and offload the inferencing on the VPU, while the rest of the application runs on the host system,
whether it is embedded (for instance, a Raspberry Pi) or not.

In the scope of this thesis, the built-in benchmarkming application, included in the OpenVINO
Toolkit, proved to be extremely useful. To demonstrate the C++ API for offloading to Myriad X,
several critical parts of the main.c file of this application are included below:

107

Listing 4.26: Main Source Code of Benchmarking App

108

The process of utilizing the OpenVINO is straightforward, as is evident in the above code
segment. An InferenceEngine::Core object needs to be created in order to read, load or import
a neural network. If the network to be used is already compiled with the Myriad Compiler,
then the method ImportNetwork is to be called. Otherwise, if the network is in IR format, an
InferenceEngine:: CNNNetwork object needs to be defined. This object is used to store the output of
the ReadNetwork method of the Core object. Then, an InferenceEngine::ExecutableNetwork object
is used to store the output of the LoadNetwork method of the Core object. The InferRequestQueue
object is a queue that contains InferenceEngine::InferRequest objects, that are bound to the given
ExecutableNetwork. The fillBlobs function fills the InferenceEngine::Blob objects that are bound
to a specific InferRequest with data provided by the user. Finally, the InferRequests start their
execution either synchronously or asynchronously.

109

4.3 Power Management and Measurement

Embedded Systems meant to be operating on the edge are not designed with the sole purpose
of optimizing performance. The ability to operate in a small power envelope is integral to such
systems, as their main power supply consists, most commonly, of batteries.

As we have already discussed in Section 4.2.1, the mvNCI Component internally utilizes its own
Power Manager, providing several different modes of operation to the developers. On the other
hand, the custom preprocessing stage, that was designed, possesses no such utility. Regardless of
the number of SHAVE Cores used, all power islands associated with the individual SHAVE units
are powered on, leading to a completely unnecessary increase in power consumption. In addition to
this, the LeonOS is configured to only monitor the performance of the system in terms of latency.
Therefore, it was determined, that a system for power management and measurement should be
designed, and that the execution flow of the preprocessing stage, as depicted in Figure 4.1, should
be slightly modified. The modified execution flow is illustrated in Figure 4.9.

LeonQ5:
Initialize Board

— LeonQ0S:
g Compare Output to
OpenélgrgsHAVE Expected Result and
Output Measurements

Leon05:
Monitor Performance
or Power Consumption

Figure 4.8: Modified Execution for Preprocessing Stage

110

4.3.1 The PwrManager Component

The Myriad X Development Kit does contain a Power Manager Component. However, this
component proved to be unsuitable for our needs. This Power Manager is dedicated to controlling
the power state of the entire board. Specifically, Myriad X offers a low-power mode of operation.

This low-power mode of operation is similar to the ”sleep” state of a process. When entering
this mode of operation, the execution state of all active cores is saved. Additionally, all the clocks,
resets, PLL and GPIO configurations are stored, as they will be modified during the transition to
the low-power state. The systems ticks of RTEMS are also disabled, in order to stop the interrupts
they produce. Subsequently, all power islands associated with the CSS, MSS and UPA Subsystems
are powered off. The DDR memory is configured to operate on a self-refresh mode and the DRAM
controller enters a sleep state. The system clock is reduced to 32KHz. The system can exit the
low-power mode of operation when a hardware interrupt is invoked, either by a switch triggered
or by a timer.

It is evident, that depending on the setting where the system is to operate at, entering a
low-power state for extended periods of time can prove to be extremely beneficial. However, this
component provides none of the utilities that our application demands. The desired power manager
should power off only the unused power islands, and not disrupt execution altogether. Furthermore,
it is desirable for the manager to have power measurement capabilities, in order for us to deduce the
power consumption of the designed system. Therefore, the provided Power Manager is insufficient
and we are required to utilize the low level components provided, to design our own, custom Power

Management and Measurement system.

4.3.2 The MV0257 Board

The MV0257 Board is a separate daughtercard, provided on the development kit to monitor
the current usage of each of the Intel Movidius Myriad X supplies. A number of the Myriad X
voltage supplies are also monitored. This enables the user to accurately monitor and measure the

power usage and performance of Myriad X when used within their own application.

"Eﬂmﬁ Bl YveesT « ROMOEO, "

R‘J'E En—:ﬁ :;;mﬂ ‘;,:-nﬂ !f’ﬁ! F&éﬁéﬁ%_@ ® r

‘gu—

-.

Figure 4.9: Power Measurement Board MV0257 [6]

The measurement board consists of 7 analog-to-digital converters (ADCs). Each one of them
is dedicated to monitoring 4 different rails, thus 28 rails are to be monitored totally. To acquire a
measurement, a specific ADC must be configured to start sampling one of its 4 rails. Depending on
the accuracy that is desired, as set in the configuration of the ADC, the execution time required for
one measurement may vary. The time required for the ADCs to generate a new sample is specified

in the following list:

e 12 bits resolution: sample time 5ms.
e 14 bits resolution: sample time 17ms.
e 16 bits resolution: sample time 67ms.

e 18 bits resolution: sample time 267ms.

111

© w N e A W N =

L~ T =~ 2~ ~ B ¥ B - B B v B o I S o N S o o
A W N O~ O © ® 9 6 A ® N~ O © 0 N O o A W N B O © 0 N O O Ak W N = O

IS
o

4.3.3 Proposed API for Power Management & Measurement

In this section, the proposed system for Power Management and Measurement will be analyzed.
The main focus of this system was to enable accurate power measurement during the execution of
the Preprocessing Stage. During its development, it was determined, that a form of static power
management could also be provided. Specifically, the user would declare which resources would
be used during the execution of the application, and the system would decide which power islands
should be powered off to reduce power consumption. In the scope of this thesis, the static power
management applied proved to be sufficient for our needs.

The APT of the proposed Power Management and Measurement system is located in the Pow-

erMeasurement.h header file. The contents of this file are listed below.

112

Listing 4.27: PowerMeasurement Header File

The functions provided, internally perform multiple operations, that would otherwise need to
be manually integrated to the application by the user. These functions require knowledge of the
underlying hardware, and thus may require significant time to be fully-understood by a developer.

Power On Media
Subsystem fo Access

Sensors.

Read Temperature.
Sensors

Power OFf Media
Subsystem

Power OFf Unused
SHAVE Cores

Power OFf Media
Subsysten

Configure I2C and
P10 Buses

Treratively Read Power
Samples of all Rails

Calculate Total mW Calculate Total mW.
and mA of Cores and mA of DRAM

(b) Read Power Samples

Configure all Ralls for. Tnitialize
Power Measurement Temperature Sensors

Return €SS, MSS and
UPA Temperatures

(a) Board Initialization
(c¢) Read Temperature Values

Figure 4.10: Power Management and Measurement API Internal Operations

The brdInit function initially disables all unused SHAVE Processors. The SHAVE Cores that
are still powered on after this operation are the ones with an ID less than the shavesUsed parameter
provided. Then, the Media Subsystem is powered off. This includes the LeonRT processor, the ISP
and CV hardware filters and the Neural Compute Engine. The Board Power Measurement Driver
is initialized immediately after, and all the necessary GPIO and I12C buses are configured with the

113

N

default configuration. An additional custom configuration is provided for the I2C0 bus, that is set
to transfer the power measurement data from the MV0257 board. This causes the creation of 7 file
descriptors, one for each ADC. Finally, depending on the mode of operation, the rails and/or the
temperature sensors are configured. The rails are configured to continuous operation with 12-bit
resolution and gain equal to 1. The temperature sensors are configured to continuous operation as
well.

The brdMV0257SampleAllRails function iteratively reads a power sample of each rail. To
achieve this, the ADCs are first instructed to start sampling the desired rail. After 5ms, the power
sample produced is ready to be read. Rails associated with different ADCs can be set to start
sampling in-parallel. Thus, at least 4 * 5 = 20ms are demanded to successfully calculate the total
power consumption of the Intel Movidius Myriad X. The operation is identical for reading current
samples. Therefore, the total execution time of this function is approximately 40ms.

The brdMV0235ReadTemp initially powers back on the CPU and ISP power islands of the
Media Subsystem. This particular operation creates an overhead of 100ms. Then, the files associ-
ated with the 4 temperature sensors are read to acquire the desired values. The power islands are
powered back off and the results are returned.

The brdUnlnit function simply uninitializes the Board Power Measurement Driver.

4.3.4 Modifications to the RTEMS Configuration

When using this power management and measurement system, several devices are utilized and
file descriptors are created. Naturally, this means that additional resources need to be specified to
the RTEMS configuration, for our system to be compatible with the underlying Operating System.
Therefore, a few of the RTEMS directives declared in section 4.1.2 need to be modified. These
directives are listed below.

#define CONFIGURE_MAXIMUM_DEVICES 18
#define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 20

Listing 4.28: Modifications to RTEMS Configuration

At least 11 new devices are to be used by the RTEMS (7 ADCs and 4 Temperature Sensors).
Therefore, the maximum amount of devices is reconfigured from 6 to 18.

Each ADC and each temperature sensor requires a unique file descriptor. This means that up
to 11 file descriptors will be needed for the power management and measurement system alone.

Therefore, the maximum number of file descriptors is set to be 20 to satisfy this need.

114

4.4 Application Scenario: Pose Estimation & Tracking on
VPU

The preprocessing algorithms, as well as the CNN inferencing for pose estimation, can be
combined with a Pose Tracking System, to create a low-power, reliable solution to the ”Lost in
Space” problem in real-time. The Pose Tracking algorithm is adopted from previous work, namely
[insert ref here]. The main limitation of this algorithm is that it attempts to evolve an initial pose,
which is considered to be known in advance. UrsoNet can provide this initial pose of the satellite,
extracted from the initial frame. Therefore, the Preprocessing and CNN Inference Stage are to be
run only once, to acquire the initial 6-DoF pose. Then, the Pose Tracking algorithm is executed.
Figure 4.11 illustrates the underlying architecture of the proposed system.

Since the two systems (pose estimation & pose tracking) were developed separately, certain
modifications need to be made in order for them to be compatible to one another. UrsoNet operates
on RGB images, while the Pose Tracking System accepts grayscale images. Thus, the camera must
provide RGB images, that will be preprocessed to 8-bit grayscale pixels. This preprocessing is not
compute-intensive and can be integrated in the Intensity Edge Detection Stage of the Pose Tracking
algorithm. Furthermore, the Pose Tracking algorithm is set to operate on 1024x1024 resolution
images. This means that UrsoNet needs to be retrained on 512x512 resolution images. This option
is supported by setting a resizing factor of 0.4 and enabling the squaring of the training images.
However, it is uncertain whether the accuracy achieved by training the network in such a manner
will be sufficient. Therefore, a better option would be to create a new dataset that meets our
needs, possibly by using URSO to generate images. Finally, the location and orientation encoding
option of UrsoNet must be disabled, in order for the results of the network to be in 6-DoF format.

Preprocessing UrsoNet I"(:*:n PF°)==
Pose Tracking » Cuzzegzg;se

Figure 4.11: Proposed System for Pose Tracking of Satellite

A 2

115

Chapter 5

Experimental Evaluation

This section is dedicated to the evaluation of the Preprocessing and Inference Stage of the

proposed system.

5.1 Evaluation of Preprocessing Stage

5.1.1 Experimental Setup

The implementation of the different downsampling algorithms was evaluated using the MV0235
board, which contains an ma2485 Myriad X chip. The platform was connected to the host com-
puter with an ARM-USB-TINY-H JTAG Dongle. This interface was used to invoke the Movidius
Debugger and offload our application on the board. Therefore, the results of each execution were
presented on the standard output of the host computer’s terminal.

To acquire measurements, the Free Running Counters and the custom Power Management
and Measurement system were utilized. The former were read before and immediately after the
critical sections of the code executed, that is SHAVE Core initialization and execution, as well
as the padding of the images, if that was performed separately on LeonOS. The latter was used
after the startup of the SHAVE Cores, to measure the power consumption of the board during
their operation. In order to avoid measuring the power consumption of idle cores, when the
downsampling algorithm finishes its execution before all the necessary rails are sampled, we re-
executed the algorithms on the cores, to keep them operating throughout the measurement.

The Preprocessing Stage was evaluated on a 1280x960 resolution image from the ” Soyuz Hard”

dataset. The image chosen, namely 134_rgb, was resized to a 640x480 resolution.

117

5.1.2 Latency Results

Each implementation of the downsampling methods was initially ported to a single LEON/S-
PARC Core (LeonOS) and subsequently ran on a single SHAVE Core. As discussed in Section
4.1.3, porting the algorithms to the SHAVE Cores does significantly speed up our application, as
is evident in Table 5.1 and Figure 5.1, but does not fulfil our need for real-time processing.

Table 5.1: Initial Porting on Intel/Movidius Myriad X

Downsampling Method Execution Time Execution Time Speedup
(LEON/SPARC) (SHAVE)
Bilinear Interpolation 468.2 ms 141.9 ms 3.3x
Bicubic Interpolation 2112 ms 702.4 ms 3x
Lanczos Resampling 7925.3 ms 2859 ms 2.8x
(a) Bilinear Interpolation (b) Bicubic Interpolation (¢) Lanczos Resampling

Figure 5.1: Execution Time Scaling on SHAVE Cores

When executing the algorithms on multiple cores, an interesting property is revealed. All the
methods show a performance gain when executing on up to 6 cores. When eight or more cores are
utilized, a degradation in performance appears. For instance, executing the bilinear interpolation
resampling method on 16 cores, proves to be more time-costly than executing on a single core.
This is due to the fact that the main LPDDR Memory is common. This memory possesses a
specific number of read and write ports. When multiple cores attempt to access the memory, only
a subset of them is granted permission to do so. The rest of them stall their execution for several
clock cycles and then retry to acquire access to the ports. As long as they fail to secure access
priviliges, they stall for a set amount of clock cycles. Therefore, when the number of cores utilized
is greater than the number of the available cores, this race condition occurs, which is only worsened
by increasing the number of cores executing code.

On the other hand, all SHAVE Cores have access to their preferential CMX slice through their
private, unique ports. Therefore, having the SHAVE Cores read and write to their preferential
CMX slice eliminates all stalls in execution, caused by inability to access memory resources. Since
the algorithms are embarrassingly parallel, and no race conditions exist between the processors,
one would expect to observe linear scaling in the speedup of the parallelized methods. This is
not the case for bicubic interpolation and Lanczos resampling, as illustrated in Figure 5.3. These
methods differ from bilinear interpolation, in that they require the input frame to be padded.
Since the padding was performed in the LEON/SPARC Core, an additional overhead of 2.1 and
6.2 ms respectively is added to the total execution time. By assigning the padding operation to
the individual SHAVE Cores, we managed to eliminate this overhead, as no increase in SHAVE

execution time was observed.

118

.
Total Execution Time (ms)
.

' e 20 L 50 L —
o 2 4 6 8 10 1 14 16 18 0 2 a 6 & 10 1 1 15 18 0 2 a 6 & 10 12 1 1 18

Number of SHAVE Cores Number of SHAVE Cores Number of SHAVE Cores

(a) Bilinear Interpolation (b) Bicubic Interpolation (c) Lanczos Resampling

Figure 5.2: Execution Time Scaling on SHAVE Cores with CMX enabled

o

14
- -
V] =
a
210
<]
S 38
=
i 6
7 g

2

0

0 2 4 6 8 10 12 14 16 18

Number of SHAVE Cores

—&— Bilinear Interpolation —®— Bicubic Interpolation —®— Lanczos Resampling

Figure 5.3: Speedup Observed during Parallelization

Further acceleration of the Preprocessing Stage was achieved by using the SIMD Utilities of
Myriad X. Figure 5.4 compares the latency of the two different versions of code. Unsurprisingly, for
Bicubic Interpolation and Lanczos Resampling, exploiting the SIMD capabilities of the SHAVE
Cores, results in at least 5% speedup of the execution time required to perform the operation.
In fact, even up to 15% acceleration was observed. On the other hand, Bilinear Interpolation
performs worse when SIMD is enabled. This is due to the fact, that in each iteration of the
algorithm, 32 total bytes of data participate in the computations. SIMD Instructions, however,
operate on vector registers of 128-bytes length, which means that 96 unnecessary bytes will also
be a part of the computation. Thus, enabling SIMD execution in this case is redundant, since the

additional overhead outscales any performance gains.

w |l s [l o [l
¢ ; : ¢-
F E F
5 5 %
: - I : - ¢ + .
¢ - 2 .., ¢ - .,
E : s

+ - - .

o s w0 s » o w w e s w0 om0 w0 @ S R
ExceonTime recution Time ExcctonTime
= SIMD Enabled ® SIMD Disabled ®SIMD Enabled W SIMD Disabled ®SIMD Enabled ® SIMD Disabled
(a) Bilinear Interpolation (b) Bicubic Interpolation (¢) Lanczos Resampling

Figure 5.4: Execution Time Scaling on SHAVE Cores depending on whether SIMD is enabled/disabled.
CMX Memory transfers are enabled and the padding operation is offloaded to the SHAVEs.

By offloading the padding operation, utilizing the CMX Scratchpad Memory and (conditionally)
using the SIMD utilities of the SHAVE Cores, we achieved the best results in terms of latency.

119

These results are illustrated in Table 5.2 along with the correspondent speedup, compared to the
initial porting of the algorithms on the LEON/SPARC processor. The execution times achieved
satisfy our needs, since they not only support real-time operation (909, 135 and 46 frames per
second respectively), but they are also at least an order of magnitude lower than the execution
time of the chosen CNN.

Table 5.2: Final Results on Intel/Movidius Myriad X

Downsampling Method Execution Time Execution Time Speedup
(LEON/SPARC) (SHAVES)
Bilinear Interpolation 468.2 ms 1.1 ms 425.6x
Bicubic Interpolation 2112 ms 7.4 ms 285.4x
Lanczos Resampling 7925.3 ms 21.8 ms 363.5x

Contrary to the optimizations discussed above, the utilization of Sliding Window Buffers was
not beneficial. By integrating this data structures to our implementations of the algorithms, the
resulting execution times were increased to 9.8 ms for 16-core execution of the bicubic interpolation
algorithm, and 28.3 ms for 16-core execution of the Lanczos resampling algorithm. The root of
this degradation in performance is the use of the dynamic Memory Manager itself. This data
structure was created by allocating memory during runtime, which invokes the dynamic memory
management system of Myriad X. However, the data structures utilized are essentially static,
since their size is known during compilation time. Therefore, by using the Memory Manager, an
additional overhead is created, that is, in fact, completely unnecessary. For instance, cleaning
up the the data structure after execution take an astounding 1.0 ms for 16-core execution of the
bicubic interpolation algorithm, since the Memory Manager tries to defragmentize the memory.
Thus, instead of using the Memory Manager, a simple 2-dimensional array should be statically
allocated, and a function that correctly shifts the pointers stored in its first dimension should
replace the overly complicated, proposed structure.

This modification of the underlying architecture of the Sliding Windows Buffers was never
implemented though. The reason for this was that we observed that the CMX DMA Engine was
highly optimized and performed data transfers between the memories with such low latency, that
hardly 0.1 ms in execution time was to be gained by integrating this data structure.

120

5.1.3 Power Consumption Results

The power consumption of the preprocessing stage was measured using the system proposed
in Section 4.3. Two sets of measurements were taken. The first set was acquired by measuring
the power consumption during normal initialization and execution. The other set was acquired
in a similar manner, with the difference that the custom Power Manager was utilized. Figures
5.5 and 5.6 show the scaling of the power consumption of the Preprocessing Stage, for the initial
porting of the algorithms, which has the SHAVESs reading directly from the DDR, and for the final
implementation, where each SHAVE utilizes its preferential CMX slice and pads the input lines
read. It is observed, that by using the custom Power Manager, up to 30% of the power consumed
can be saved.

2000 2000 2000
1800 1800 1800
< 1600

< 1600
£ 1m0 £ 1o £ 1400
E 1200 1200 1200
£ 1000 1000 1000
S a0 800 800
£ o0 600 600
< 400 400 400
200 0 20

0 0

1 > 4 s s w1 1 2 4 s s n o, 1 > 4 o s oo,

n
g

Power Consumpti
Power Consumpti

0
Number of SHAVE Cores Number of SHAVE Cores Number of SHAVE Cores

mTotal Power (Optimized) W Total Power (Unoptimized) mTotal Power (Optimized) B Total Power (Unoptimized) mTotal Power (Optimized) @ Total Power (Unoptimized)

(a) Bilinear Interpolation (b) Bicubic Interpolation (c) Lanczos Resampling

Figure 5.5: Power Consumption of Initial Porting of the Algorithms on the SHAVE Cores

2500 2500 3000

8
g

1500 1500

1000
1000
I I - I I
0 0
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Number of SHAVE Cores Number of SHAVE Cores Number of SHAVE Cores

8

Power Consumption

Power Consumption

Power Consumption
8

8

= Total Power (Optimized) ® Total Power (Unoptimized) Total Power (Optimized) M Total Power (Unoptimized) B Total Power (Optimized) Total Power (Unoptimized)

(a) Bilinear Interpolation (b) Bicubic Interpolation (¢) Lanczos Resampling

Figure 5.6: Power Consumption of Final Implementation of the Algorithms on the SHAVE Cores

Table 5.3 contains a more detailed analysis of the power consumption, during the execution of
the initial porting of the algorithms and with the Power Manager operating. Since unused cores
are powered off by the manager, when increasing the amount of cores utilized, the core power rises.
On the other hand, the power consumed by the DDR memory is increased only when executing
in up to 6 cores, and is decreased afterwards. As we discussed in the previous section, these
algorithms only scale up to 6 cores, since the read/write ports of the DDR memory are limited.
When more than 6 cores are used, SHAVEs that are not granted access to memory resources stall
their execution. This leads to time periods, where several of the ports of the DDR Memory remain
idle. Therefore, we observe this decrease in power consumption.

In a similar manner, Table 5.4 contains an analysis of the power consumption of the final
implementation of the algorithms. Compared to the initial porting, a significantly lower DDR
power consumption is observed during execution, as all read and write operations are taken over
by the CMX Scratchpad Memory, and only the refreshing and memory transfer operations are
executed. An equally significant increase in the power consumed by the computational units,
however, is also observed. These measurements include the power consumed by the -now active-
CMX memory, and may even reach 2 Watts.

121

Table 5.3: Power Consumption Analysis for Initial Porting

Downsampling Method | Number of Cores | Core Power (mW) | DDR Power (mW)
1 822.34 276.2
2 863.34 370.55
- 4 908.88 396.75
Bilinear
. 6 936.14 427.35
Interpolation
8 942.36 407.7
12 1026.48 330.5
16 1061.01 314.4
1 805.81 218.3
2 865.81 307.9
L 4 936.08 383.3
Bicubic
. 6 973.81 401.15
Interpolation
8 994.14 378.15
12 1047.54 367.4
16 1101.74 336.1
1 804.81 190
2 864.21 268.7
4 965.76 388.9
Lanczos
. 6 1029.09 417.1
Resampling
8 1031.68 405.2
12 1054.14 368.3
16 1109.14 369.55

Table 5.4: Power Consumption Analysis for Final Implementation

Downsampling Method | Number of Cores | Core Power (mW) | DDR Power (mW)
1 776.41 51,1
. 2 850.87 54,4
Bilinear
. 4 990.14 61,55
Interpolation
8 1294.74 75,3
16 1923.01 103,25
1 778.47 51.1
o 2 848.41 54.95
Bicubic
. 4 992.16 61.55
Interpolation
8 1281.81 75.75
16 1907.41 102.25
1 789.14 51.65
2 874.62 55.5
Lanczos
. 4 1038.14 63.2
Resampling
8 1372.47 79.05
16 2072.69 111.05

122

5.2 Evaluation of CNN Inference Stage

5.2.1 Experimental Setup

During development, it was determined that a bug in the mvINCI Component prevented us
from utilizing the Neural Compute Engine, and the built-in Inference Engine of Myriad X on the
MV0235 Board. To overcome this obstacle, the Intel Neural Compute Stick 2 (NSC2) was used.
This stick hosts an ma2480 Myriad X chip and is programmed through the OpenVINO API for
Neural Network Inferencing. Thus, the NCS2 was connected to a USB port of the host machine.
The benchmark app provided by the OpenVINO Toolkit was utilized to gather measurements.

Unfortunately, this tool does not provide power consumption analytics.

The Inference Stage was evaluated, in terms of latency, on an image from the ”Soyuz Hard”
dataset, namely 0_rgb, which was resized to a 640x512 resolution. On the other hand, the Neural
Network itself was evaluated on a subset of the ”Soyuz Hard” dataset, consisting of 10% of its

total images, to determine the accuracy achieved.

During training, the training set (80% of total images) and the validation set (10% of total
images) were resized to a resolution of 640x512, using one of the downsampling algorithms exam-
ined, and zero constant padding. For each one of the downsampling methods, a separate instance
of a trained UrsoNet model was created. The initial weights of the ResNet backbone of all these
instances were ImageNet pre-trained weights. The training of the models itself, as well as their
evaluation in terms of accuracy, was performed on an NVIDIA Tesla V100 Volta GPU. Each model
was trained for 100 epochs.

5.2.2 Network Accuracy Results

The accuracy of the trained models was evaluated with respect to two hyperparameters, namely
resampling method and image scaling factor. The latter was chosen to be 1x (initial network), 0.5x
(4x reduced input size) and 0.2x (25x reduced input size). The resampling methods chosen were
Bilinear Interpolation, Bicubic Interpolation and Lanczos4 Resampling. The mean location and
orientation errors of the estimated 6-DoF pose compared to the ground truth pose is illustrated in
Figure 5.7. Surprisingly, the minimum mean orientation error and second lowest mean location er-
ror is observed for an image scale different than 0.5, and by utilizing the Lanczos4 algorithm. This
particular model scores the highest for the Soyuz dataset. The model trained under Bicubic Inter-
polation resizing for 0.5x image scaling is an attractive alternative since it achieves a comparable

score to the Lanczos4/0.5x model.

The box plots for these models, illustrated in Figure 5.8, provide some precious insight into
the distribution of the errors observed. The two models have almost identical median, upper and
lower quartile values, and interquartile range. On the other hand, even though the Bicubic/0.5x
model has a slightly worse score, it also appears to have slightly less outlier values compared to
Lanczos4/0.5x. Given that the Bilinear Interpolation algorithm exceeds both Bicubic and Lanczos
methods significantly in terms of latency overhead added to the final system, the Bilinear/0.5x
model is also an excellent candidate for our final system. All things considered, any of these three
models provides a CNN, whose accuracy is equivalent to that of the original UrsoNet model, but

unlike that model, it supports real-time operation on the Intel/Movidius Myriad X chip.

123

Location Error

Mean est. location error for different Image Scale

- m Bilinear Interpolation
2,00 © Bicubic Interpolation

* A Lanczos4 Resampling
195

.
190 -
185
180

.
175
170 N
.
02 03 04 os %] o8 09 10

06
Image Scale

()

Orientation Error

Figure 5.7: Mean Est. Location and Orientation Error

Boxplots for 0.5x Image Scale

Brtic merpolaton [T m——
image scole

()

Mean est. error for different Image Scale
. w Biinear nterpolation
o @ Bicubic Interpolation
A Lanczos4 Resampling
]
o
50
©
M
. .
L]
P 5 % o s @ s o o
Image Scale
oot for 0.5 mage s
8 § o
i o ¢
q : .
: §
H 8 o
3 g o
w“ \ . .
g 8 H
w [} s 8
i

Breoic merpolaton

(b)

Figure 5.8: Box Plots of Location and Orientation Error for 0.5x Scaling

ESA Score for different Image Scale

- m Bilinear Interpolation
® Bicubic Interpolation
4 lanczos4 Resampling
12
10
=
g
]
<
&
&
08
0.6
L L]
L]
02 03 0.4 05 06 07 08 09 10

Image Scale

Figure 5.9: ESA Scores achieved for different Models

124

5.2.3 Latency Results

The average delay between feeding the input tensor, which contains the image, to the network
and it producing a result is presented in Table 5.3. The original network, operating on 1280x960
resolution, RGB images, demands an astounding 2297.62 ms for a single inference, or just 0.44
FPS! Thus, it is evident, that the Preprocessing Stage is absolutely fundamental, to enable us to
work with smaller, faster networks.

In Section 5.2.1, we discussed how working with images resized to half the original dimensions,
produces models with the same or even slightly better accuracy than the original CNN for this
particular dataset. In terms of latency, working with such resized images, results in speeding up
the inference process by 5 times. This speedup is crucial, as it delivers a network that can operate
on 2.23 frames per second. For this particular application, this performance can be considered
real-time, since the pose of the satellite changes in a slow pace.

We experimented with an increased scaling factor, namely resizing the input image to one fifth
of the original dimensions. This led to a mere 67.40 ms for a single inference, which amounts to
14.84 frames per second. Thus, by reducing the size of the input image by 25 times, we achieve
33.7 times better latency during inferencing. However, it should be noted that this comes at a

price of reduced accuracy as well.

Table 5.5: Latency Results for Synchronous Inference on Intel NCS2

Input Tensor Shape | Latency (ms) | Frames Per Second
1x192x256x3 67.40 14.84
1x512x640x3 449.26 2.23
1x960x1280x3 2297.62 0.44

125

5.3 System Evaluation

5.3.1 Preprocessing and Inferencing

The proposed system for satellite pose estimation is designed to accept 1280x960 resolution,
RGB images, resize them to 640x512 and then infer an estimated pose on the resized image, using
UrsoNet. Each inference demands 449.26 ms. Thus, depending on the resampling method chosen
for the preprocessing, the proposed system operates with a 450.36 - 472.26 ms latency for a
single output, or 2.12 - 2.22 FPS.

The power consumption of the proposed system cannot be calculated, since there are no data
for the power consumption of the CNN Inference Stage. However, it should be noted that 7
SHAVE Cores and the CNN Hardware Accelerator (Neural Compute Engine) are utilized, in order
to run the network. Furthermore, this accelerator uses the CMX Scratchpad Memory. Therefore,
the expected power consumption should be slightly higher than the one observed for the final

implementation, when executed on 8 SHAVE Cores, with the Power Manager not being utilized.

5.3.2 Application Scenario: Pose Estimation & Tracking

As discussed in Section 4.4, the Preprocessing and CNN Inference Stages need to be modified
to be compatible with the Pose Tracking algorithm. The input to the Preprocessing Stage is going
to be a 1024x1024 RGB image. Table 5.6 illustrates how our final implementations of the three
downsampling methods scale for such an input size. Obviously, the execution time required is
reduced in any case, since fewer output pixels are produced.

This is also the case for the Inference Stage. The latency for a single inference of a 512x512
input frame was measured to be 372.70 ms. The Inference Stage is approximately 17% faster,
than the one proposed in the previous section. This is fairly significant, since the total latency
of the system that estimates the initial pose of the satellite is, depending on the downsampling
method, 373.70 - 391.3 ms, or 2.56 - 2.66 FPS, which is comparable to the latency of the Pose
Tracking System.

Table 5.6: Latency of Image Scaling Algorithms

Downsampling Method | Number of Cores | Execution Time (ms)
1 15.0
- 2 7.5
Bilinear
. 4 3.8
Interpolation
8 1.9
16 1.0
1 100.3
N 2 50.1
Bicubic
25.1
Interpolation
8 12.5
16 6.3
1 295.5
2 147.8
Lanczos
R . 73.9
esamplin
e 8 37.0
16 18.6

126

The following table illustrates the execution time required for each stage of the CV algorithm,
which is employed to perform pose tracking. Intensity edge detection is not added in the total
time, because it is masked by pose refinement. The same applies for the image reception via
the Camera Interface (CIF). This porting of the CV Algorithm on Myriad2 achieves 263 - 388
ms latency between successive frames. It should be noted that MyriadX contains four additional
SHAVE cores, as well as a larger Scratchpad Memory. Therefore, further speedup of this execution

time can be reached, when porting the CV Algorithm to MyriadX.

Table 5.7: Latency of CV Functions of Pose Tracking System

CV Functions Execution Time (ms)
1. Edge Detection 36-37

D. Edge Detection 39-40

Depth Rendering 119-212

Edge Matching 5-6

Pose Refinement 100-130

CV Algorithm 263-388

127

Chapter 6
Epilogue

6.1 Conclusion

In this thesis, we proposed a system that can solve the ”Lost in Space” problem and efficiently
accelerated it on the Intel/Movidius Myriad X VPU. The solution was based on a convolutional,
residual neural network, ”UrsoNet”, which was trained to perform pose estimation of the Soyuz
spacecraft. The initial pose estimated by the network would then be evolved and refined by a
traditional CV algorithm, which had already been ported to the Myriad 2 VPU.

It was quickly observed, however, that, as is the case with most of these types of networks, that
”UrsoNet” could not be executed in real-time due to the size of the input images. To this end, we
downscaled the input images to half of their original resolution, experimenting with three different
algorithms of increasing computational intensity: bilinear interpolation, bicubic interpolation and
Lanczos resampling. This allowed for real-time operation as the execution time of a single inference
was accelerated from 2297.62 to 449.26 ms, excluding the latency of the downsampling. The
execution time of the downsampling algorithms is at least an order of magnitude lower than that
of the network, with the most intensive algorithm needing a mere 21.8 ms for execution. To
achieve this, we utilized all sixteen available SHAVE cores, offloaded the padding operation to
them, utilized their preferential slices on the Scratchpad Memory, and exploited the SIMD utilities
of these cores. The power consumption of the system was monitored through a custom power
measurement system, which also performed static power management, reducing the total power
consumption by up to 30%.

To successfully load and run the CNN on the VPU we utilized the Inference Engine provided by
the OpenVINO toolkit. We experimented both with the offered API provided by OpenVINO and
with the mvINCI component included in the Myriad X development kit, to evaluate the network
and integrate it into our application. Finally, we provided clear directions, on how the two discrete
systems, the pose estimating CNN and the CV tracking algorithm, need to be modified in order

to be compatible with one another.

129

6.2 Future Work

Even though this thesis has, naturally, come to an end, the author holds the belief that there
is still room left for optimizing and fine-tuning the proposed system:

- In the Preprocessing Stage, the algorithms could employ double buffering techniques, to
mask the latency of the DMA transactions behind the execution of downsampling operations.
Furthermore, it was observed that the API for SIMD instructions was built onto the Scalar
Arithmetic Unit of the VPU. This means that only additions were truly performed in SIMD.
Thus, assembly code can be written to fully utilize the capabilities of the SHAVE cores. A
suggestion by the author would be to experiment with loop unrolling and utilizing both the
SAU and VAU in-parallel.

- UrsoNet was configured to have a ResNet-50 as its backbone. It was determined that, for a
small deterioration in accuracy, we could reach an astounding 67.4 ms latency for a single
inference. The accuracy to performance ratio should be studied for lighter backbones, such
a shallower ResNet of 34 layers or a MobileNet. Moreover, the network should be trained
for more than 100 epochs, to reach its full potential. It should be noted, that in the original
paper, UrsoNet was trained for 500 epochs.

- Since URSO is not open-source, we could experiment with creating our own simulator on the
Unreal Engine 4, to generate more synthetic datasets of uncooperative spacecrafts on orbit
around the Earth. This is crucial, as our network needs to be trained with square images, in

order to be compatible with the tracking algorithm.

- The tracking algorithm needs to be ported to Myriad X. Myriad X is largely backwards
compatible, but several differences in the development kits of the 2 platforms exist. Myriad X
can further accelerate this application, since it offers an additional 4 SHAVE Cores, increased

CMX memory space, and a higher clock frequency.

130

Bibliography

[1]

[12]

Z. Meng, Y. Hu, and C. Ancey, “Using a data driven approach to predict waves generated
by gravity driven mass flows,” vol. 12, no. 2, p. 600, Feb. 2020. [Online]. Available:
https://doi.org/10.3390/w12020600

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

P. F. Proenca and Y. Gao, “Deep learning for spacecraft pose estimation from photorealistic
rendering,” arXiv preprint arXiv:1907.04298, 2019.

E. Petrongonas, V. Leon, G. Lentaris, and D. Soudris, “ParalOS: A Scheduling & Memory
Management Framework for Heterogeneous VPUs,” in 2021 24th Euromicro Conference on
Digital System Design (DSD), 2021, pp. 221-228.

Intel/Movidius Ltd, “Myriad X Development Kit: A Programmer’s Guide.”

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available: http://tensorflow.org/

Intel Ltd. (2021) OpenVINO Toolkit Overview. [Online]. Available: https://docs.openvino.
ai/2021.2/index.html

——. (2021) OpenVINO Toolkit Documentation. [Online]. Available: https://docs.openvino.

ai/latest/documentation.html

Wikipedia, “Aliasing — Wikipedia, the free encyclopedia,” http://en.wikipedia.org/w/index.
php?title=Aliasing&oldid=1052296249, 2021.

M. B. Khambete and M. A. Joshi, “Blur and ringing artifact measurement in image com-
pression using wavelet transform,” World Academy of Science, Engineering and Technology,
International Journal of Computer, Electrical, Automation, Control and Information Engi-
neering, vol. 1, pp. 341-344, 2007.

S. Haykin, Neural Networks and Learning Systems. Pearson, 2009.

133

https://doi.org/10.3390/w12020600
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1512.03385
http://tensorflow.org/
https://docs.openvino.ai/2021.2/index.html
https://docs.openvino.ai/2021.2/index.html
https://docs.openvino.ai/latest/documentation.html
https://docs.openvino.ai/latest/documentation.html
http://en.wikipedia.org/w/index.php?title=Aliasing&oldid=1052296249
http://en.wikipedia.org/w/index.php?title=Aliasing&oldid=1052296249

[13]

[14]

[15]

18]

[19]

[20]

[25]

S. Kotsiantis, “Supervised machine learning: A review of classification techniques,” vol. 31,
pp- 249-268, Jan. 2007.

M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A systematic review
on supervised and unsupervised machine learning algorithms for data science,” in Unsupervised

and Semi-Supervised Learning. Cham: Springer International Publishing, 2020, pp. 3-21.

A. Anwar, “A beginner’s guide to regression analysis in ma-
chine learning.” [Online]. Available: https://towardsdatascience.com/

a-beginners-guide-to-regression-analysis-in-machine-learning-8a828b491bbf
Stanford, “CS231n: Convolutional Neural Networks for Visual Recognition.”

A. Xygkis, “Implementation of Convolutional Neural Networks on Embedded Architectures,”
Sep. 2017. [Online]. Available: http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/
123456789/13550/1/DT2017-0208.pdf

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” 2014.

R. Keys, “Cubic convolution interpolation for digital image processing,” vol. 29, no. 6, pp.
1153-1160, Dec. 1981. [Online]. Available: https://doi.org/10.1109/tassp.1981.1163711

V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and D. Moloney,
“Improving Performance-Power-Programmability in Space Avionics with Edge Devices: VBN
on Myriad2 SoC,” ACM Transactions on Embedded Computing Systems (TECS), vol. 20,
no. 3, pp. 1-23, Mar. 2021.

D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick, and D. Donohoe, “Myriad 2: Eye
of the Computational Vision Storm,” in IEEE Hot Chips Symposium (HCS), Aug. 2014.

G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois, A. Tavoularis, J. Byrne,
L. Buckley, M. Psarakis, K.-O. Voss, and L. Fanucci, “Towards the use of artificial
intelligence on the edge in space systems: Challenges and opportunities,” vol. 35, no. 12, pp.

44-56, Dec. 2020. [Online]. Available: https://doi.org/10.1109/maes.2020.3008468

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad memory.”
ACM Press, 2002. [Online]. Available: https://doi.org/10.1145/774789.774805

C. Alippi, S. Disabato, and M. Roveri, “Moving convolutional neural networks to
embedded systems: The AlexNet and VGG-16 case.” IEEE, Apr. 2018. [Online]. Available:
https://doi.org/10.1109/ipsn.2018.00049

G. Lentaris, G. Chatzitsompanis, V. Leon, K. Pekmestzi, and D. Soudris, “Combining
arithmetic approximation techniques for improved CNN circuit design.” IEEE, Nov. 2020.
[Online]. Available: https://doi.org/10.1109/icecs49266.2020.9294869

S. 1. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for mapping convolutional
neural networks on FPGAs,” in 2016 IEEE 2/th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2016, pp. 40-47.

134

https://towardsdatascience.com/a-beginners-guide-to-regression-analysis-in-machine-learning-8a828b491bbf
https://towardsdatascience.com/a-beginners-guide-to-regression-analysis-in-machine-learning-8a828b491bbf
http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/13550/1/DT2017-0208.pdf
http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/13550/1/DT2017-0208.pdf
https://doi.org/10.1109/tassp.1981.1163711
https://doi.org/10.1109/maes.2020.3008468
https://doi.org/10.1145/774789.774805
https://doi.org/10.1109/ipsn.2018.00049
https://doi.org/10.1109/icecs49266.2020.9294869

[27]

[34]

V. Leon, S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and K. Pekmestzi,
“A TensorFlow Extension Framework for Optimized Generation of Hardware CNN
Inference Engines,” Technologies, vol. 8, mno. 1, 2020. [Online]. Available: https:

//www.mdpi.com/2227-7080/8/1/6

V. Leon, T. Paparouni, E. Petrongonas, D. Soudris, and K. Pekmestzi, “Improving power
of DSP and CNN hardware accelerators using approximate floating-point multipliers,” ACM
Transactions on Embedded Computing Systems, vol. 20, no. 5, pp. 1-21, Jul. 2021.

V. Leon, K. Pekmestzi, and D. Soudris, “Exploiting the potential of approximate arith-
metic in DSP & AI hardware accelerators,” in 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL), 2021, pp. 263-264.

T.-Y. Lu, H.-H. Chin, H.-I. Wu, and R.-S. Tsay, “A Very Compact Embedded CNN Processor
Design based on Logarithmic Computing,” 2020.

A. Jahanshahi, “TinyCNN: A tiny modular CNN accelerator for embedded FPGA,” 2019.

L. Puglia, M. Ionica, G. Raiconi, and D. Moloney, “Passive Dense Stereo Vision on the Myriad2
VPU,” in IEEE Hot Chips Symposium (HCS), 2016, pp. 1-5.

V. Leon, C. Bezaitis, G. Lentaris, D. Soudris, D. Reisis, E.-A. Papatheofanous, A. Kyriakos,
A. Dunne, A. Samuelsson, and D. Steenari, “FPGA & VPU Co-Processing in Space Applica-
tions: Development and Testing with DSP/AI Benchmarks,” in 2021 28th IEEE International
Conference on FElectronics, Circuits and Systems (ICECS), 2021, pp. 1-5.

C. Marantos, N. Karavalakis, V. Leon, V. Tsoutsouras, K. Pekmestzi, and D. Soudris, “Ef-
ficient Support Vector Machines Implementation on Intel/Movidius Myriad 2,” in 2018 7th
International Conference on Modern Circuits and Systems Technologies (MOCAST), 2018,

pp. 1-4.

A. Xygkis, L. Papadopoulos, D. Moloney, D. Soudris, and S. Yous, “Efficient Winograd-
based Convolution Kernel Implementation on Edge Devices,” in ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018, pp. 1-6.

F. Tsimpourlas, L. Papadopoulos, A. Bartsokas, and D. Soudris, “A Design Space Explo-
ration Framework for Convolutional Neural Networks Implemented on Edge Devices,” IEFE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
pp- 2212-2221, Nov. 2018.

X. Xu, J. Amaro, S. Caulfield, A. Forembski, G. Falcao, and D. Moloney, “Convolutional
Neural Network on Neural Compute Stick for Voxelized Point-Clouds Classification,” in Inter-

national Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Oct. 2017, pp. 1-7.

J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, “Embedded Deep Learning for
Vehicular Edge Computing,” in IFEE/ACM Symposium on Edge Computing (SEC), Oct.
2018, pp. 341-343.

F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/fchollet/keras

D. Merkel, “Docker: lightweight linux containers for consistent development and deployment,”
Linuz journal, vol. 2014, no. 239, p. 2, 2014.

135

https://www.mdpi.com/2227-7080/8/1/6
https://www.mdpi.com/2227-7080/8/1/6
https://github.com/fchollet/keras

[41] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[42] Intel Ltd. (2021) OpenVINO Toolkit: Open Model Zoo. [Online]. Available: https:
//github.com/openvinotoolkit /open_model_zoo

[43] K. Turkowski, “Filters for common resampling tasks,” Graphics gems, pp. 147-165, 1990.

136

https://github.com/openvinotoolkit/open_model_zoo
https://github.com/openvinotoolkit/open_model_zoo

137

	Ευχαριστίες
	Περιληψη
	Abstract
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	Εκτεταμένη Περίληψη
	Introduction
	Artificial Neural Networks
	Convolutional Neural Networks (CNNs)
	Structure and Properties
	ResNet Architecture
	Applications on Computer Vision

	Vision Processing Units (VPUs)
	Myriad X Multicore SoC

	Related Work
	CNN Inferencing on Embedded Devices
	Implementations on VPUs

	Thesis Scope and Contribution

	Tools, Frameworks and Libraries
	TensorFlow and Keras
	OpenCV Library
	OpenVINO Toolkit
	Workflow
	The Model Optimizer
	Benchmarking on VPU Neural Compute Stick 2

	Myriad X Development Kit

	Theoretical Background
	Image Scaling
	Bilinear Interpolation
	Bicubic Interpolation
	Lanczos Resampling

	UrsoNet: Pose Estimation for Satellites
	Design and Architecture
	Unreal Rendered Spacecraft on Orbit (URSO)

	Design and Acceleration on Myriad X
	Preprocessing Stage
	Implementation of Image Scaling Functions
	Control Code and Scripts
	Core Parallelization
	Scratchpad Memory Data Transfers
	Offload Padding
	Sliding Window Buffers
	Single Instruction, Multiple Data

	CNN Inference Stage
	The mvNCI API
	The OpenVINO Inference Engine API

	Power Management and Measurement
	The PwrManager Component
	The MV0257 Board
	Proposed API for Power Management & Measurement
	Modifications to the RTEMS Configuration

	Application Scenario: Pose Estimation & Tracking on VPU

	Experimental Evaluation
	Evaluation of Preprocessing Stage
	Experimental Setup
	Latency Results
	Power Consumption Results

	Evaluation of CNN Inference Stage
	Experimental Setup
	Network Accuracy Results
	Latency Results

	System Evaluation
	Preprocessing and Inferencing
	Application Scenario: Pose Estimation & Tracking

	Epilogue
	Conclusion
	Future Work

	Bibliography

