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Περίληψη 

Η μη γραμμική ανάλυση απόκρισης (NRHA) είναι το πιο ρεαλιστικό εργαλείο αξιολόγησης 

σεισμικής απόκρισης κατασκευών που απαιτεί τη χρήση χρονοϊστοριών επιτάχυνσης ως 

είσοδο σε αριθμητικές προσομοιώσεις. Οι τεχνικές μηχανικής μάθησης κερδίζουν συνεχώς 

αυξανόμενο ενδιαφέρον στους τομείς της μηχανικής και μπορούν να αποτελέσουν ένα πολλά 

υποσχόμενο εργαλείο για αξιόπιστες προβλέψεις με την ικανότητά τους να εντοπίζουν 

γρήγορα και με ακρίβεια τάσεις ή μοτίβα μέσω πειραματικών ή τεχνητά δημιουργημένων 

δεδομένων. Σε αυτή τη μελέτη, προτείνεται μια διαδικασία μηχανικής μάθησης για την εκτίμηση 

της μη-γραμμικής απόκρισης μονοβάθμιων συστημάτων ως προς τη μέγιστη μετατόπισή τους. 

Η εφαρμοσιμότητα και η αποτελεσματικότητα της προτεινόμενης προσέγγισης αποδεικνύεται 

σε ένα μονοβάθμιο δομικό σύστημα με την αξιολόγηση της απόδοσης διαφορετικών μοντέλων 

μηχανικής μάθησης. Αποδεικνύεται ότι ελήφθησαν επαρκείς προβλέψεις μέσω της διαδικασίας 

επικύρωσης που μπορεί να λειτουργήσει ως εργαλείο αναφοράς και μπορεί να επεκταθεί για 

την εκτίμηση της απόκρισης πολυβάθμιων συστημάτων. 
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Abstract 

Nonlinear response history analysis (NRHA) is the most realistic seismic performance 

assessment tool of structures which requires the use of recorded acceleration time-histories 

as input into numerical simulations. Machine learning (ML) techniques are constantly gaining 

increasing interest in engineering fields and can consist a promising tool for reliable predictions 

with their ability to quickly and accurately identify trends or patterns through experimental or 

artificially generated data. In this study, a machine-learning pipeline is proposed to estimate 

the nonlinear response analysis of single degree-of-freedom systems in terms of their 

maximum displacement. The applicability and efficiency of the proposed approach is 

demonstrated in a single degree-of-freedom (DOF) structural system by evaluating the 

performance of different ML models. It is shown that adequate predictions were obtained 

through the validation process which can act as a reference tool that can be extended to 

estimate the structural response of multi-DOF, as well. 
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1. Introduction 

Nonlinear response history analysis (NRHA) is the most realistic seismic performance 

assessment tool of structures which requires the use of recorded acceleration time-histories 

as input into numerical simulations. Evidently, it can be computationally intensive when it is 

applied to multi degree-of-freedom (DOF) structural systems, particularly when dealing with 

parametric studies or/and incremental dynamic analyses. Various computational techniques 

have been proposed in the literature to reduce the computational cost of such analyses e.g. 

record simplification (Faroughi and Hosseini, 2011), record down-sampling, modified inverse 

Fourier transform, to name a few. Nowadays, machine learning (ML) techniques are constantly 

gaining increasing interest in engineering fields (Salehia and Burgueñoa, 2018) and can 

consist a promising tool for reliable predictions with their ability to quickly and accurately 

identify trends or patterns through experimental or artificially generated data.  

In this study, we propose a robust machine learning pipeline to estimate the nonlinear 

response analysis of multi-DOF systems in terms of their maximum displacement/ductility 

aiming to eliminate the computational cost of the NRHA analysis. A pulse extraction process 

is used (Mavroeidis and Papageorgiou, 2003) to quantify the wavelet parameters of a ground 

motion records which, along with the material parameters of the structural system consist an 

adequate training data set. The applicability and efficiency of the proposed approach is 

demonstrated first in a single-DOF oscillator that is used as a benchmark example. A 

comparison study between various ML regression models, is followed by, in order to choose 

the efficient ML technique that will be used for the training process. It is shown that adequate 

predictions were obtained through the validation of various single-DOF benchmark structures 

which can act as a reference tool for an engineer in practice. 

The remaining thesis is organized as follows. Chapter 2 provides a literature review of the 

nonlinear response analysis method that is will be used in this study. Furthermore, details 

about the central difference method are also provided and the bilinear hysteretic model is 

defined. Chapter 3 summarizes the method that a ground motion record can be represented 

as a sum of pulse-like wavelets which is called pulse extraction. Chapter 4 proposes a machine 

learning model that predicts the max displacement, evaluates different regression algorithms 

and investigates the impact of the input parameters in the models predictions. Finally, in 

Chapter 5 the extension to multi-DOF structural systems is applied using the models trained 

in Chapter 4. 
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2. Dynamic response analysis of structures 

In this opening chapter, the structural dynamics problem is formulated for simple structures 

that can be idealized as a system with a lumped mass and a massless supporting structure. 

Linear systems as well as inelastic structures subjected to applied dynamic force or 

earthquake-induced ground motion are considered. Then a method for solving the differential 

equation governing the motion of the structure is presented. The chapter ends with a brief 

definition of the bilinear hysteretic model. 

 Single-DOF systems 

For a linear system, the principal problem of structural dynamics that concerns structural 

engineers is the behavior of structures subjected to earthquake-induced motion of the base of 

the structure. The displacement of the ground is denoted by ug, the total (or absolute) 

displacement of the mass by ut, and the relative displacement between the mass and ground 

by u (Figure 1). At each instant of time these displacements are related by 

 

 

Figure 1: Single degree-of-Freedom System (Chopra A.K., 2011). 

Both ut
 and ug refer to the same inertial frame of reference and their positive directions 

coincide. 

From the free-body diagram including the inertia force fI, shown in Figure 1b, the equation 

of dynamic equilibrium is 

𝑓𝐼  +  𝑓𝐷  + 𝑓𝑆  =  0 (2.1) 

𝑚𝑢̈𝑡(𝑡) +  𝑐𝑢̇(𝑡) +  𝑘𝑢(𝑡) =  0 (2.2) 

where  

𝑢𝑡  (𝑡)  =  𝑢𝑔(𝑡)  +  𝑢(𝑡) 
(2.3) 

 

Only the relative motion u between the mass and the base due to structural deformation 

produces elastic and damping forces (i.e., the rigid-body component of the displacement of the 

structure produces no internal forces).  

The relation that describes the equation of motion for each time moment t of the above 

system is:  
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mü(𝑡) +  cu̇(𝑡) +  ku(𝑡) =  −müg(t) (2.4) 

where m, c and k are mass, damping and stiffness.  

In the above relation what changes depending on the model to be used is the definition of the 

term ku(t). 

 Multi-DOF systems 

The equation of motion of a dynamic problem is formulated by summing the elastic forces 

FE of the equilibrium equation for the static problem with the inertia forces FI and damping FD, 

so that at any given time this sum is equal to the externally imposed forces P: 

𝐅𝐼(𝑡) +  𝐅𝐷(𝑡) +  𝐅𝐸(𝑡) =  𝐏(𝑡) (2.5) 

By denoting 𝐮, 𝐮̇ and 𝐮̈ the displacement, velocity and acceleration vectors respectively, the 

motion equation becomes: 

𝐌𝐮̈(𝑡)  +  𝐂𝐮̇ (𝑡)  +  𝐊𝐮(𝑡)  =  𝐏(𝑡) (2.6) 

where M, C and K are the matrices of mass, damping and stiffness. In case the construction 

is seismically stimulated with a time history of accelerations 𝐮̈g(t) at its base, then the externally 

imposed loads are proportional to the mass and calculated as:  

𝐏 (t) =  −𝐌r𝐮̈g(t) (2.7) 

where r is the direction vector of seismic excitation, with its elements to are equal to 1 if the 

degree of freedom is in the same direction as that of the earthquake and with 0 in a different 

case. 

 

Figure 2: (a) Two-story shear frame; (b) forces acting on the two masses. 
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 Solution of the dynamic system 

 

There are two main types of methods for calculating the dynamics of a response of a 

construction, the numerical and the classical. The numerical solutions are divided into two 

categories, the Direct Integration methods of the motion equation and the Modal Methods. 

Direct Integration methods are divided into explicit methods (e.g Central Difference Method) 

and implicit methods (e.g Newmark Method). Out of these two, the central difference method 

will be adopted in this study. 

 

 

Figure 3: Dynamic solution methods tree chart. 

 Linear systems 

The central differences method is an explicit method and is based on a finite differences 

approximation of the derivatives with respect to the time of displacement, i.e. of velocity and 

acceleration.  

The values of the vector u(t) at the times u(t + Δt) and u(t - Δt) can be approximated using 

the Taylor formula: 

𝐮(t + Δt) =  𝐮(t) + Δ𝑡𝒖̇(𝑡) +
1

2
Δ𝑡2𝐮̈(𝑡) +

1

6
Δ𝑡3𝐮⃛(𝑡) + ⋯ (2.8) 

 

𝐮(t − Δt) =  𝐮(t) − Δ𝑡𝒖̇(𝑡) +
1

2
Δ𝑡2𝐮̈(𝑡) −

1

6
Δ𝑡3𝐮⃛(𝑡) + ⋯ 

 

(2.9) 

By subtracting the equations (2.5) and (2.6) we have:  
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If Δt is small, terms with factors Δt3, Δt5, ... can be omitted from relation (2.7) and its solution 

with respect to 𝒖̇(𝑡) gives us the approximation of the first derivative at the time t: 

 

Then, adding up the relations (2.5) and (2.6) and omitting the with factors Δt4, Δt6,... its 

solution with respect to 𝐮̈(𝑡) gives us the approximation of the second derivative at the time t: 

Using the symbols u(t) = ui, u(t + Δt) = ui+1 and u(t − Δt) = ui−1, we can write the relations 

(2.8) and (2.9) as:  

which are the approximations of the derivatives of the vector ui with the central differences and 

after replacing them in the equation of motion at time ti (Ex. 2.2) we receive: 

(
1

Δ𝑡2
 𝐌 +

1

2Δ𝑡
𝐂) 𝐮𝑖+1 =  𝐏𝑖 −  (𝐊 −

2

Δ𝑡2
𝐌) 𝐮𝑖 − (

1

Δ𝑡2
 𝐌 −  

1

2Δ𝑡
𝐂) 𝐮𝑖−1 (2.15) 

or 

𝐊̂𝐮𝑖+1  =  𝐏̂𝑖 (2.16) 

where: 

𝐊̂ =
1

Δ𝑡2
 𝐌 +

1

2Δ𝑡
𝐂 (2.17) 

and: 

𝐏̂𝑖 = 𝐏𝑖 − (𝐊 −
2

Δ𝑡2
𝐌) 𝐮𝑖 − (

1

Δ𝑡2
 𝐌 −  

1

2Δ𝑡
𝐂) 𝐮𝑖−1 (2.18) 

𝐮(t + Δt) − 𝐮(t − Δt) = 2Δ𝑡𝒖̇(𝑡) +
2

6
Δ𝑡3𝐮̈(𝑡) + ⋯ (2.10) 

𝒖̇(𝑡) ≈
𝐮(t + Δt) − 𝐮(t − Δt)

𝟐Δt
 (2.11) 

𝐮̈(𝑡) ≈
𝐮(t + Δt) − 2𝐮(𝑡) − 𝐮(t − Δt)

Δt2
 (2.12) 

𝒖̇(𝑡) ≈
𝐮𝑖 + 1 − 𝐮𝑖 − 1

𝟐Δt
 (2.13) 

  

𝐮̈(𝑡) ≈
𝐮𝑖 + 1 − 2 𝐮𝑖 + 𝐮𝑖 − 1

Δ𝑡2
 (2.14) 
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The unknown vector ui+1 at time ti+1 is calculated from equation 2.10, that is, from the state 

of equilibrium at time ti (Eq. 2.2), without its use equilibrium state at time ti+1. Hence the method 

of central differences is explicit.  

In the first step of the iterative process, i.e to determine the vector u1, setting i = 0 in 

Ex. (2.15), we observe that the vector u−1 is required. To determine the vector u−1, we set i = 

0  to equations (2.10) and (2.11) and we get: 

Solving Eq. (2.16) with respect to u1 and replacing it in Eq. (2.17) we have: 

The initial displacement vectors 𝐮0 and initial velocities 𝐮̇0  are given, while from equation of 

motion at time t0 = 0 

𝐌𝐮̈0 +  𝐂𝐮̇0 +  𝐊𝐮0 =  𝐏0 (2.22) 

the resulting initial accelerations vector 

𝐮̈0 = 𝐌−𝟏(𝐏0 − 𝐂𝐮̇0 +  𝐊𝐮0) (2.23) 

 

  

𝒖̇(𝑡) ≈
𝐮𝑖 + 1 − 𝐮 − 1

𝟐Δt
 (2.19) 

𝐮̈(𝑡) ≈
𝐮𝑖 + 1 − 2 𝐮𝑖 + 𝐮 − 1

Δ𝑡2
 (2.20) 

𝐮 − 1 ≈ 𝐮0 −  Δ𝑡𝐮̇0 +
Δ𝑡2

2
𝐮̈0 (2.21) 
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 For nonlinear systems 

The central difference method can be easily modified and applied to non-linear systems. 

Having the approaches of its derivatives vector ui with the central differences, we replace them 

in the motion equation for at time ti as formulated for nonlinear systems (Eq. 2.2) and we get: 

(
1

Δ𝑡2
 𝐌 +

1

2Δ𝑡
𝐂) 𝐮𝑖+1 =  𝐏𝑖 +

2

Δ𝑡2
 𝐌𝐮𝑖 − (

1

Δ𝑡2
 𝐌 − 

1

2Δ𝑡
𝐂) 𝐮𝑖−1  −  𝐅𝑠, 𝑖 (2.24) 

or: 

𝐊̂𝐮𝑖+1  =  𝐏̂𝑖 (2.25) 

where: 

𝐊̂ =
1

Δ𝑡2
 𝐌 +

1

2Δ𝑡
𝐂 (2.26) 

and: 

𝐏̂𝑖 = 𝐏𝑖 − (
1

Δ𝑡2
 𝐌 −  

1

2Δ𝑡
𝐂) 𝐮𝑖−1 +

2

Δ𝑡2
 𝐌𝐮𝑖 −  𝐅𝑠, 𝑖 (2.27) 

The above equations, if compared to those for linear systems, differ only in the definition of 

equivalent load 𝐏̂. The resistance forces 𝐅𝑠, 𝑖, appear explicitly, since they depend only on the 

response at time ti and not from the unknown response at time ti+1. 

 

A python code snippet of the algorithm follows below: 

  

 for i in range(1, npts): 
    if hardening != 1: 
        fsp = fs[i-1] 
        up = u[i-1] 
        uincr = u[i] 
        fs[i] = bilinear(k, hardening, uy, up, fsp, uincr) 
    else: 
        fs[i] = k*u[i] 
    pp[i] = p[i] - a * uminus1[i] + b*u[i] - fs[i] 
    uplus1[i] = pp[i] / kk 
    if i < npts-1: 
        uminus1[i + 1] = u[i] 
        u[i + 1] = uplus1[i] 
        udot[i + 1] = (uplus1[i] - uminus1[i])/(2*dt) 
        udotdot[i + 1] = (uplus1[i] - 2 * u[i] + uminus1[i])/(dt**2) 
 
    v = udot[:] 
    a = udotdot 
    umax = max(abs(u)) 
    vmax = max(abs(v)) 
    amaxRel = max(abs(a)) 
    fsmax = max(abs(fs)) 
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 Pushover analysis 

The pushover analysis may be used to verify the structural performance of newly designed 

buildings and of existing buildings. It consists of applying monotonically increasing constant 

shape lateral load distributions to the structure under consideration. The structure model can 

be either 2D or 3D. In particular, EC8 states that for buildings with plan regularity, 2D analysis 

of single plane frames can be performed, while for buildings with plan irregularity a complete 

3D model is necessary.  

The N2 method was developed using a shear building model, i.e. a frame model with floors 

rigid in their planes. Furthermore, vertical displacements are typically neglected in the method 

and only the two horizontal ground motion components, x and y, are considered. Extension to 

the general case of a fully deformable frame is straightforward. The N2 method consists of 

applying two load distributions to the frame: 

 A modal pattern, that is a load shape proportional to the mass matrix multiplied by 

the first elastic mode shape, 

 
1

1P M  

 A uniform pattern, that is a mass proportional load shape, 

2P MR  

where M is the mass matrix, φ1 is the first mode shape and R a vector of 1s corresponding to 

the degrees of freedom parallel to the application of the ground motion and 0s for all other 

dofs. In the N2 method φ1 is normalized so that the top floor displacement is 1, i.e. φ1,n=1. The 

two load distributions are schematically shown in Figure 4. The applied lateral load distributions 

are increased and the response is plotted in terms of base shear Vb vs. top floor displacement 

D (for example center of mass of the top floor). This is the so-called pushover curve or capacity 

curve. 

 

 
Figure 4: Load distribution for pushover analysis according to EC8 and pushover response curve 

(ZSoilr.PC 070202 report). 

 

The N2 procedure transforms the response of the MDOF system into the response of an 

equivalent SDOF system. 
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Figure 5: Capacity curve, transformation from response of MDOF to equivalent SDOF. 

 

In order to compare the capacity curve to the demand curve given by the design spectrum, 

the nonlinear pushover curves of the SDOF are approximated by elastic-perfectly plastic (or 

bilinear) curves. A target displacement is assumed, and equal energy is assumed between 

bilinear and nonlinear pushover curves. This simple procedure is illustrated in Figure 6. 

 

Figure 6: Bilinearization of the capacity curve of SDOF 

 

The bilinearization of Figure 6 gives the yield force and the yield displacement 

*
* *

*
2 m

y m

y

E
D D

F

 
   

 

     (2.28) 

 

which allow the initial elastic period to be computed as: 

* *

*

*
2

y

y

m D
T

F
      (2.29) 
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 Bilinear hysteretic model 

This chapter will refer to the Bilinear Hysteretic Model and specifically in its wording 

concerning the stress-strain relationship and which is similarly used for a single degree-of-

freedom system. In the past it was one of the most common models for non-linear dynamic 

analysis. Most useful used mainly to describe the behavior of steel. 

The Bilinear Model is generally described by:  

• the elastic branch before yielding  

• the post-elastic branch after yielding 

 

Figure 7: Bilinear Hysteretic Model 

where: 

 Κelastic : elastic stiffness 

 uy : yield displacement 

 Ks  : post-elastic stiffness 

 Fy : yield strength 

 

 

A code sample follows below: 

 

 
 

elasticF K u  , για -uyuuy (2.30) 

elastic( )K ( ) (| | )y s yF sign u u sign u K u u   , για  u -uy  και u   uy (2.31) 
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 def bilinear(kel, b1, uy, up, fsp, u): 
    """Bilinear Hysteric Law model""" 
    a1 = fsp - kel * uy 
    a2 = (b1/(b1 - 1)) * (fsp - kel * up) 
    a = max(a1, a2) 
    sel = fsp + (u - up) * kel 
    h = sel - a 
    q = abs(h) - kel * uy 
 
    if q <= 0: 
        fs = sel 
    else: 
        depl = (q*(1 - b1))/kel 
        fs = sel - np.sign(h) * kel * depl 
    return fs 
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3. Ground motion simulation 

The study of the ability to replace recordings with their pulse simulations requires the 

creation of the pulse extraction code which detects and extracts the required number of pulses 

from a near field ground motion. A basic method of pulse extraction is that introduced by 

Mavroeidis and Papageorgiou (2003), that consists a mathematical representation of near-

field motions relying on designing a composite wavelet (based on Gabor wavelet). Although 

various wavelets have been proposed in the literature, only a limited number of them are 

popular and frequently used in practice. The most common wavelets are summarized in Table 

1 along with their analytical expressions, input parameters, and associated references.  

 

Table 1: Common Analytic Wavelets Used in Seismology 

where: 

A: amplitude 

fp: is the prevailing frequency 

γ: oscillatory character 

u: phase delta 

c: damping coefficient 

n: asymmetry of envelope function 

T: duration 

m: controls the number of half-cycles 

H(t): Heaviside unit step function 

 Simulation of a simple model for near field pulses 

The analytical model of choice should satisfy the conditions and possess the following 

properties: 

1. The synthetic wavelet should be expressed by a properly parameterized simple 

mathematical expression that, with a minimum number of input parameters that have an 

Wavelet Analytical expression 

Gabor 
𝑓(𝑡) = 𝐴𝑒−(

2𝜋𝑓𝑝

𝑐
)2𝑡2

cos [2𝜋𝑓𝑝𝑡 + 𝑚] 

Berlage 
𝑓(𝑡) = 𝐴𝐻(𝑡)𝑡𝑛𝑒

−(
2𝜋𝑓𝑝/𝛾

𝑐
)

𝑡

cos [2𝜋𝑓𝑝𝑡 + 𝑚] 

Generalized Rayleigh 
𝑓(𝑡) = 𝐴(−1)𝑘

𝑒𝑖(𝑢+
𝜋

2
)

(𝑖 +
2𝜋𝑓𝑝𝑡

𝑘
)𝑘+1

 

Kupper 𝑓(𝑡) = 𝐴 [sin(𝑚𝜋𝑡) −
𝑚

𝑚 + 2
sin(𝑚 + 2𝜋𝑡)] 𝑓𝑜𝑟 0 < 𝑡 < 𝑇 

Ricker Three loop (symmetric): 

𝑓(𝑡) = 𝐴(1 − 2𝜋2𝑓𝑝
2𝑡2)𝑒−(𝜋𝑓𝑝)2𝑡2

 

Two loop (antisymmetric) 

𝑓(𝑡) = 𝐴𝑡𝑒−(2𝜋𝑓𝑝)2𝑡2
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unambiguous physical interpretation, allows as much flexibility as is necessary to represent, 

reasonably accurately, near-source pulses. 

2. The synthetic wavelet should be capable of simulating as many as possible of the near-

source records (preferably all of the records in Table 1). 

3. The mathematical expression of the wavelet should be such that it facilitates derivation 

of closed-form expressions of its spectral characteristics in the form of Fourier transform and 

response spectra. Such closed-form expressions make considerably easier the parametric 

study of the response of structures to near-source pulses.  

From the wavelets listed in Table 2, the analytical model that fulfills most of the 

aforementioned conditions and has the potential, if slightly modified, to entirely meet our 

requirements is the Gabor wavelet. This signal is the product of a harmonic oscillation and a 

bell-shaped function (i.e. Gaussian envelope). The Gabor wavelet is defined by the four 

parameters identified at the beginning of this section as the key features that determine the 

waveform characteristics of the near-source velocity pulses; namely, A, fP, ν, and γ (see Table 

1) define the amplitude, prevailing frequency, phase, and oscillatory character of the signal, 

respectively. The Berlage wavelet is similar to the Gabor signal because both of them consist 

of an amplitude-modulated harmonic. Furthermore, the common input parameters of the two 

signals have the same physical meaning. However, the Berlage wavelet is characterized by 

an additional free parameter (parameter n; see Table 1) that controls the skewness of its 

envelope function. This extra degree of freedom, although theoretically useful, is not of great 

practical importance. The need for a skewed (i.e., nonsymmetric) envelope may be 

accommodated (to a certain extent) by varying the phase angle of the amplitude-modulated 

harmonic. Furthermore, the existence of the factor tn in the mathematical expression of the 

Berlage wavelet introduces additional complexity in the analytical derivations to follow, without 

significant benefits. 

The three-loop symmetric and two-loop antisymmetric Ricker wavelets are not adequate to 

describe a broad range of near-fault velocity pulses; only a small number of recorded ground 

motions exhibit purely symmetrical or anti-symmetrical characteristics. There is no unique 

mathematical expression for “arbitrary” (meaning not perfectly symmetrical or antisymmetrical) 

Ricker wavelets; depending on the waveform to be obtained, different polynomial functions 

should be selected (Ricker, 1944, 1945). Hosken (1988) discussed the applicability and 

usefulness of the Ricker wavelet, focusing on the drawbacks of the signal. The author also 

proposed a technique to generalize the Ricker wavelet by generating signals in between the 

antisymmetric two-loop and the symmetric three-loop Ricker wavelets. Besides the complexity 

in the mathematical expressions of the generalized Ricker wavelets, it is apparent that a two-

parameter model is far too constrained to allow accurate fitting of the fairly complicated 

recorded near-fault velocity pulses.  

Like the Ricker wavelet, the original Rayleigh signal (e.g., Hudson, 1980) is a two-parameter 

model inflexible for most synthetic seismogram applications. Hubral and Tygel (1989) 

overcame this deficiency by deriving a generalized analytic wavelet based on the Rayleigh 

signal. The real or imaginary part of the mathematical expression of this generalized wavelet 

may be used to generate synthetic velocity pulses. Even though this is not a difficult task, the 

resulting formulas are quite complicated for further derivations (e.g., differentiation and 

integration to obtain acceleration and displacement time histories, respectively; response of 

an SDOF system; etc.).  
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On the other hand, the analytical expression of the Küpper wavelet is straightforward and 

its input parameters have a clear physical meaning. However, the waveforms generated by 

the Küpper signal are either symmetric or antisymmetric for odd or even m values, respectively. 

The lack of a phase parameter does not facilitate generation of “arbitrary” signals. This is an 

important limitation previously addressed with respect to the Ricker wavelet.  

 Mavroeidis and Papageorgiou wavelet 

Based on the above, the Gabor wavelet is the analytical model (among those listed in Table 

2) that better serves our needs. However, no closed-form solution can be derived for the 

response of an SDOF system when excited by synthetic ground motions generated by the 

Gabor signal. Such a closed-form expression would greatly facilitate parametric analyses, a 

matter of great importance to earthquake engineers. The difficulties in the derivations are 

caused by the exponential function (i.e., Gaussian envelope) included in the mathematical 

expression of the Gabor wavelet. Therefore, to overcome this difficulty, we propose an 

analytical model that retains the advantages of the Gabor wavelet (e.g. number of parameters, 

physical interpretation of them, simple mathematical expression, large flexibility in synthetic 

waveforms), while at the same time yields a closed-form expression for the response of the 

SDOF system subjected to synthetic ground motions generated by the model. To that effect, 

we have replaced the Gaussian envelope of the Gabor wavelet by another symmetric bell-

shaped function that possesses a simpler analytical expression. Namely, a shifted haversed 

sine function (i.e., an elevated cosine function) is used to replace the Gaussian envelope, while 

the harmonic oscillation part remains the same. Thus, the proposed analytical signal is 

expressed by 

The following remarks can be made pertaining to the M&P wavelet: 

•The shifted haversed sine function is a periodic function; consequently, it does not produce 

an envelope with a single hump like the Gaussian function of the Gabor wavelet. This problem 

is easily resolved by limiting the time interval of the signal as follows: 

The period of the harmonic oscillation should be smaller than the period of the envelope 

represented by the elevated cosine function in order to produce physically acceptable signals; 

that is, 

It is convenient for the calibration of the model to introduce a time shift, t0, in equation (3.1) 

to precisely define the epoch of the envelope’s peak. This parameter is frequently introduced 

𝑓(𝑡) = 𝐴
1

2
[1 + 𝑐𝑜𝑠 (2𝜋

𝑓p𝑡

𝛾
)] 𝑐𝑜𝑠 (2𝜋 𝑓p𝑡 + 𝑣) (3.1) 

−
𝛾

2𝑓p

≤ t ≤
𝛾

2𝑓p

 (3.2) 

1

𝑓p

≤
𝛾

𝑓p

⇒ 𝛾 > 1 (3.3) 
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in all models listed in Table 2 as a feature that provides extra flexibility to the signal, allowing 

its translation along the time axis. Thus, 

The combination of equations (1) and (2) yields the formulation of the proposed analytical 

model for the near-fault ground velocity pulses: 

Parameter A controls the amplitude of the signal, fP is the frequency of the amplitude-

modulated harmonic (or the prevailing frequency of the signal), ν is the phase of the amplitude-

modulated harmonic (i.e., ν=0 and ν=±π/2 define symmetric and antisymmetric signals, 

respectively), c is a parameter that defines the oscillatory character (i.e.,zero crossings) of the 

signal (i.e., for small c the signal approaches a deltalike pulse; as c increases the number of 

zero crossings increases), and t0 specifies the epoch of the envelope’s peak. 

 

 

Figure 8: M&P model fitted to recorded motions (top) two, synthetic pulses have been combined 
(Izmit, Turkey, 1999) and (bottom), three synthetic pulses have been combined to generate the 

illustrated synthetic time series (1995 Kobe, Japan). 

 

 

𝑡 ⇒ 𝑡 – 𝑡0  (3.4) 

𝜈(𝑡) =
𝐴

2
[1 + 𝐶𝑂𝑆 (2 𝜋

𝑓p

𝛾
) (𝑡 − 𝑡0)] 𝑐𝑜𝑠[2𝜋𝑓p(𝑡 − 𝑡0) +  𝑣], 

 𝑡0 −  𝛾𝑓p ≤ 𝑡 ≤  𝑡0 + 𝛾𝑓p , 𝜇𝜀 𝛾 > 1  

𝜈(𝑡) =  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

(3.5) 
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To demonstrate that the M&P wavelet produces almost identical pulses with the Gabor 

wavelet and therefore justify the substitution of the Gaussian envelope with the elevated cosine 

function, both analytical models have been used to generate synthetic signals that simulate 

the fault-normal velocity pulse recorded at station E06 during the 1979 Imperial Valley, 

California, earthquake. The comparison is illustrated in Figure 8; the harmonic oscillation (i.e., 

the carrier signal) is the same for both pulses, while their envelope functions are very similar. 

The synthetic signals produced by both models reproduce the longer-period portions of the 

observed ground motion. 

A significant feature of the M&P wavelet is the objective definition of the pulse duration 

based on model input parameters. In the literature, no unique method exists to define the 

duration or period of the velocity pulse, even though this parameter is extensively used. Many 

researchers determine the pulse duration using the zero crossings of the pulse waveform. 

Others prefer the utilization of the peak value of the velocity response spectrum to indirectly 

define the pulse period. In many other cases, no explanation is provided regarding the 

estimation of this parameter. The M&P wavelet features an objective definition of the pulse 

duration (TP) compatible with the physical aspects of the problem as the inverse of the 

prevailing frequency (fP) of the signal; that is, 

The analytical expressions for the ground acceleration and displacement time histories 

compatible with the ground velocity given by equation (3.5) are 

The constant displacement values for 0  /  2 pt t f  and 0  /  2 pt t f    were specified 

so that the displacement time histories satisfy continuity condition at 0  /  2 pt t f  and 

0  /  2 pt t f  . 

When the velocity pulse is integrated to obtain the closed-form displacement, an as yet 

unspecified constant, C, appears in the derived displacement expression, that is, which for 

simplification reasons can be taken as zero. 

 1/  P PT f
 

(3.6) 
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 A characteristic application of the pulse extraction 

The pulse extraction algorithm has been applied to the ground motions of the database 

created in Section 4.1. It is clearly shown that each separate pulse is shifted in time (Figure 9) 

and the cumulative velocity signal is fitted adequately to the original ground motion (Figure 10).  

 

Figure 9: Velocity plots for 10 pulses extraction. 

Separate pulse (blue) vs Original velocity time-history (grey). 

 

Figure 10: Original vs Cumulative velocity plots for 10 pulses extraction. 
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4. Case study: a machine-learning approach 

In this chapter, a machine learning pipeline is proposed in order to estimate the non-linear 

response analysis of structural systems. This is carried out in terms of maximum displacements 

aiming to eliminate the computational cost of the NRHA analysis. A pulse extraction process 

is used to quantify the wavelet parameters of a ground motion records which, along with the 

material parameters of the structural system consist an adequate training data set. In the 

following sections the applicability and performance of the proposed approach is demonstrated 

in single-DOF structural systems. 

 

 

Figure 11: Machine learning pipeline flowchart 

 Ground motion records selection 

A large number of ground motion records is necessary for the generation of the dataset that 

will be used for the training and the evaluation of the ML models. For this reason, a database 

was generated consisting of 1716 near-field ground motions records (distance from the 

rapture<60 km), obtained from the Next Generation Attenuation for Western US (NGA-West2) 

(PEER 2017). The NGA-West2 ground motion database includes a very large set of ground 

motions recorded in worldwide shallow crustal earthquakes in active tectonic regimes. The 

database has one of the most comprehensive sets of meta-data, including different distance 

measure, various site characterizations, earthquake source data, etc. Among of the directions 

of motion available, only the two horizontal signals were kept. For each record, the acceleration 

time-history signal and the time-step were stored in the database, along with a unique 

identification number of the record. The geographical locations of the ground motions are 

shown in Figure 12 below. In addition, histograms of characteristic ground motion parameters 

such as the peak ground acceleration (PGA), the magnitude, the fault rapture area and the 

shear-wave velocity (Vs
30) are provided in Figure 13. 
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Figure 12: Geographical location of the ground motion records of the database 

 

Figure 13: Histograms of characteristic ground motion parameters of the database 

 

Having a strong correlation of the cumulative velocity with the original ground motion record 

signal is also important. Based on Table 2, descriptive statistics for the cumulative correlations 

are produced. It shown that the cumulative correlation of the acceleration signal with the 

original ground motion acceleration is generally slightly lower than velocity’s. This is justified 
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because the pulse extraction algorithm’s targeted series is the velocity time history due to being 

less noisy than the acceleration one. In order to achieve better fitting of the simulated pulse-

like signals with the original ground motion records we will filter the generated dataset by 

selecting only those with cumulative velocity correlation greater than 0.8. This reduces the total 

number of records in our dataset from 1716 to 1405. 

  

(a)              (b) 

Figure 14: Boxplots of (a) Cumulative Acceleration Correlation and (b) Cumulative Velocity 
Correlation 

 
 

Cumulative 
Acceleration 
Correlation 

Cumulative 
Velocity 

Correlation 

count 1716 1716 

mean 0.62 0.86 

std 0.19 0.11 

min 0.00 0.00 

25% 0.51 0.82 

50% 0.65 0.88 

75% 0.76 0.92 

90% 0.85 0.95 
 

Table 2: Descriptive statistics for the Cumulative Acceleration Correlation and Cumulative Velocity 
Correlation. 

 

 Dataset creation 

Using the ground motion record database that was generated in Section 4.1, the dataset 

which will be used for the training of the ML models can be created. This dataset is artificially 

created by combining bilinear oscillator response analysis results i.e. maximum displacement 

umax of the SDOF system as well as the pulse representation parameters of each near-field 

ground motion record. 
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Figure 15: Dataset creation flowchart 

 Bilinear oscillator response analysis 

In order to calculate the maximum displacement umax for each ground motion record of the 

database nonlinear history response analysis is conducted. This was achieved by using the 

Central Difference Method that was described in Section 2.3.1. The ranges of the input 

parameters (T, Fy) are shown in Table 3. For the hardening parameter k of the bilinear model 

(Section 0) zero value is considered. Also, the damping ratio ζ was taken as 5% for all 

analyses. Thus, 9 x 5 x 1405 = 63.225 data points were generated. 

 

Table 3: Lower, upper bound and step values for SDOF bilinear oscillator 

Variable 
Lower 

Bound 

Upper 

Bound 
Step 

T [s] 0.1 0.9 0.1 

Fy [% of SDOF mass] 0.1 0.5 0.1 

 Pulse representation of near-field ground motions 

Ground motion records cannot be directly used as data points for the training of machine 

learning models. For this reason, it is necessary for each record to be converted into a single-

row format, that contains all the important information and characteristics of the ground motion. 

This can be succeeded by replacing the original records with their pulse representations using 

the pulse extraction method that was described in Chapter 3. 

Each ground motion record of the database will be represented by a cumulative signal of 

pulses. In order to indicate the accuracy of the fitting to the original signal the correlation of the 

cumulative signal of velocities is used. In this study, we will examine the cases of 

representation of the ground motion signal with 10 and 2 pulses. Highest number of pulses 

always leads to higher computational cost in compensation of higher correlation between the 

original and the simulated signal.  
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Applying the pulse extraction algorithm each ground motion record using 10 pulses, we get 

the parameters Ap, Tp, γ, ν, and tb for each pulse (50 parameters in total), as shown in Table 3 

below. 

 

Table 3: Pulse extraction algorithm results for a ground motion record using 10 pulses 

 Exploratory data analysis 

In order to understand better the training dataset, we will make use of histograms, boxplots 

and descriptive statistics. This procedure is also used as a visual method of detecting and 

removing outliers in the dataset which often lead to improve the models performance. 

It is very important to understand the data of the predicted variable, check its distribution 

and search for possible outliers. As shown in the histogram in Figure 16a max displacement 

does not follow a normal distribution and according to the boxplot in Figure 16b values greater 

than 0.07m could be considered as “outliers”. 

 

 

z 

(a)                                                                (b) 

Figure 16: (a) Histogram, (b) boxplot of the max displacement umax 

 

Regarding the input features of the dataset, inFigure 17, it is shown that all of the pulse 

parameters follow similar distributions for different number of pulses. 

 

Ap Tp γ ν tb 

Cumulative 

Velocity 

Correlation 

1 0.05 4.15 5 170 10.38 0.51 

2 0.08 1.75 4 150 3.15 0.72 

3 0.05 1.48 4 35 2.73 0.76 

4 0.03 1.68 10 25 8.40 0.81 

5 0.03 2.88 6 355 8.49 0.85 

6 0.02 1.49 10 20 7.15 0.86 

7 0.08 0.68 2 260 0.68 0.88 

8 0.03 0.88 7 55 3.25 0.89 

9 0.01 5.00 4 210 11.00 0.90 

10 0.03 2.07 3 15 2.79 0.91 
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Figure 17: Histograms of the distribution of the pulse representation parameters 

 

The interactions between the input features, T, Fy, Ap, Tp, γp, νp, tp, and the max 

displacement umax are investigated using the scatter plots show in Figure 18 and the correlation 

heatmap shown in Figure 19. For the sake of simplicity only the first pulse parameters are 

shown. Based on the scatter plots in Figure 18, there is an indication that the variable Ap has 

an effect on the max displacement umax which is also shown in the correlation heatmap. The 
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amplitude Ap gives the highest correlation between the rest of the input variables and it is 

expected to have the highest importance among the rest of the input variables. 
  

 

Figure 18: Scatter plots if the max displacement and the input variables of the model 

 

Figure 19: Correlation heatmap between the input and output variables of the model 
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 ML model 

 

 

Figure 20: ML model definition 

 

In order to train a model that has the ability to predict the max displacement umax the dataset 

from Section 4.2 needs to be modified. The material parameters (T, Fy) of the single-DOF 

oscillator along with the pulse extraction parameters (Ap, Tp, γp, νp, tb) will be used as input 

variables and the max displacement as the predictor variable. For the pulse extraction 

parameters, a parametric study will be conducted using through a range of 10 pulses. Also, a 

machine learning algorithm pool has been created in order to train, test and evaluate different 

ML models including: 

 Ridge 

 PLS Regression 

 Decision Tree 

 Random Forest 

 XGBoost 

 Artificial Neural Network 

The results of the parametric study are shown in Figure 21. It can be observed that the 

algorithms with the best performance are the XGBoost and Random Forest. It can also be 

noticed that the performance of the models is generally stable when the number of pulses 

increases. This could be justified as the models are able to capture the important patterns in 

the data even when using only the first pulse for the representation of the ground motion signal. 

Algorithms such as Ridge and PLS Regression seem to have the highest errors as their linear 

nature is inadequate to capture the nonlinearities of the problem. 
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Figure 21: Performance of the ML models in the test set monitoring the RMSE and MAE metrics 

 

In the following sections, the trained ML models using 1 and 10 pulses will be evaluated in 

more depth and the most important features of each model will be investigated. 

 1 pulse 

The parameters from 1 pulse will be used as inputs for the model training. Thus, the model 

uses 5 (parameters of each pulse) x 1 (pulses) + 2 (𝑇 and 𝐹𝑦) = 7 features as inputs. 

The train set consists of 1124 records (80% of the dataset) and the test set of 281 records 

(20% of the dataset). The performance of each ML model can be shown through the root mean 

square error and mean absolute error metrics (Table 4) and the predictions vs real value 

scatter plots (Figure 22): 

  

Table 4: Root Mean Square Error and Mean Absolute Error metrics for 
 each ML model using 10 pulses. 

Algorithm RMSE MAE 
Ridge 0.0198 0.0134 

PLS Regression 0.0213 0.0153 
Decision Tree 0.0203 0.0106 

Random Forest 0.0139 0.0079 
XGBoost 0.0144 0.0084 

ANN 0.0137 0.0084 
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Figure 22: Scatter plots of the Predictions vs Real values of the max displacement using 1 pulse. 

 

Based on the scatter plots in Figure 22 it is shown that all of the ML models have performed 

generally well and were able to give adequate prediction. Among them, the Random Forest 

and the Artificial Neural Network had the lowest RMSE and MAE metrics. 

 

Feature Importance 

Evaluating a models performance only by the error metrics is not enough in most situations. 

A model can give predictions with low error metrics but these predictions can be based on 

features with low importance according to the domain knowledge and laws. 

Permutation feature importance is a model inspection technique that can be used for any 

fitted estimator when the data is tabular. This is especially useful for non-linear or opaque 

estimators. The permutation feature importance is defined to be the decrease in a model score 

when a single feature value is randomly shuffled. This procedure breaks the relationship 

between the feature and the target, thus the drop in the model score is indicative of how much 

the model depends on the feature. This technique benefits from being model agnostic and can 

be calculated many times with different permutations of the feature. Features that are deemed 

of low importance for a bad model (low cross-validation score) could be very important for a 

good model. Therefore, it is always important to evaluate the predictive power of a model using 

a held-out set (or better with cross-validation) prior to computing importances. Permutation 

importance does not reflect to the intrinsic predictive value of a feature by itself but how 

important this feature is for a particular model. Below we can see the permutation importance 

of the trained ML models. 
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Figure 23: Permutation importance of the for each algorithm using 1 pulse. 

 

Based on the earthquake engineering domain knowledge the most important features 

should be Ap,1, T and Fy. From Figure 23, it is shown that the models with the most acceptable 

feature importance are the Random Forest and the XGBoost model. 
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 10 pulses 

The exact same training process is repeated but now keeping the parameters from all 10 

pulses. So, the model uses 5 (parameters of each pulse) x 10 (pulses) + 2 (𝑇 and 𝐹𝑦) = 52 

input features. 

 

Table 5: Root Mean Square and Mean Absolute Error metrics for  
each ML algorithm using 10 pulses. 

Algorithm RMSE MAE 

Ridge 0.0200 0.0138 

PLS Regression 0.0177 0.0124 

Decision Tree 0.0225 0.0121 

Random Forest 0.0151 0.0081 

XGBoost 0.0160 0.0084 

ANN 0.0132 0.0086 

 

 

Figure 24: Scatter plots of the Predictions vs Real values of the max displacement using  
10 pulses. 

 

Again, based on the scatter plots in Figure 22 it is shown that all of the ML models have 

performed generally well and were able to give adequate prediction when using . Among them, 

the Random Forest and the Artificial Neural Network had the lowest RMSE and MAE metrics. 
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Figure 25: Permutation importance for each algorithm using 10 pulses 

 

From the permutation importance above, it is shown that all models seem to prioritize the 

input features generally well, with the exception of the Fy which seems to have lesser 

importance for the models.  
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5. Application to Multi-DOF Structural Systems 

In this section, the proposed methodology is extended to MDOF structural systems. A 

benchmark structure of four DOFs is used, a described in Figure 26.  

 

 

Figure 26: MDOF benchmark model 

 

The max displacement for each ground motion record has been obtained through dynamic 

response analysis that was described in Section 2.3.2, using the OpenSees software. Then, 

the structural features, T and Fy, have been calculated using the Pushover analysis and the 

methodology described in Section 2.3.3. Finally, the predictions for the max displacement umax 

were obtained by the models that were trained using 10 pulses for the representation of the 

ground motions. The error metrics are shown in Table 6 and the Real vs Predictions scatter 

plots are showin in Figure 26. 

 
Table 6: Root Mean Square Error and Mean Absolute Error metrics for 

 each ML model using 10 pulses. 

Algorithm RMSE MAE 
Ridge 0.0299 0.0182 

PLS Regression 0.0368 0.0196 

Decision Tree 0.0106 0.0027 

Random Forest 0.0072 0.0028 

XGBoost 0.0145 0.0086 

ANN 0.0098 0.0067 
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Figure 27: Scatter plots of the MDOF Predictions vs Real values of the max displacement using  

10 pulses. 

 

It is clearly shown, that all models performed really well, with the exception of Ridge and 

PLS Regression models. This is justified because their linear nature is not adequate to capture 

the nonlinearities of the problem. The model with the highest performance was the Random 

Forest model, achieving MAE lower than 3mm.  
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6. Conclusions and future work 

As shown in this study ML models can be trained and give adequate predictions in terms of 

max displacement, both in SDOF structural systems. It is also shown based on the feature 

importance analysis that different machine-learning algorithms prioritize the input features 

differently, which plays a critical role in the final model selection. 

The proposed methodology presented in this thesis can be extended and further developed 

for future work involving the following aspects: 

 Artificial dataset can be generated also from results of MDOF structural systems. 

This incorporate to include additional features (i.e. number of DOFs, eigenperiods, 

etc.) to capture the structural behavior. 

 Explore different ML algorithms for the model training. 

 Neural Network tuning: different architectures and hyper-parameter optimization 

 Dataset enhancement, by including additional ground motion records for training 

purposes.  

 Incorporate additional input features (e.g. ground motion parameters) 

 Explore other ground motion record representation techniques (e.g. using 

Convolutional Neural Networks) 

 Use additional Machine Learning Interpretability methods (e.g. SHAP values 

explainers) 
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