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Abstract

The compressive resistance of steel plates used in ship structures is studied from
a reliability perspective in an attempt to generate probabilistic curves that may be
used within the framework of risk-based design. Uncertainty in the material proper-
ties (elasticity and plasticity) and production-related geometric distortions have been
probabilistically modeled by considering realistic statistical structures. For time effi-
ciency, a pre-defined number of detailed non-linear finite element models have been
constructed and simulated based on design of experiments (DOE) sampling schemes
in accordance with the response surface methodology. The generated surrogates were
first validated and then used within a Monte Carlo Simulation (MCS) framework for
uncertainty propagation. The probabilistic resistance of the plate populations of in-
terest was obtained by identifying a parametric statistical model based on the sample
statistics. The obtained statistical structures allowed for the generalized reliability
assessment of steel plates, which further enables the comparison with empirical for-
mulations found in rules and in the scientific literature.
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Περίληψη

Η προτεινόμενη Μ.Ε. εντάσσεται στο πεδίο της μελέτης της δομικής αξιοπιστίας

των επιμέρους κατασκευαστικών υποσυνόλων που απαρτίζουν την μεταλλική κα-

τασκευή σκαφών και πιο συγκεκριμένα ναυπηγικών ελασμάτων που υπόκεινται σε

θλιπτικά φορτία. Βασικός σκοπός της είναι η δημιουργία διαγραμμάτων λυγισμι-

κής αντοχής συναρτήσει του βαθμού λυγηρότητας οι οποίες θα συνδέονται με μία

καθορισμένη πιθανότητα αστοχίας. Η αβεβαιότητα στις ιδιότητες του υλικού (ε-

λαστικότητα και πλαστικότητα), καθώς και οι αρχικές ατέλειες στην γεωμετρία

που σχετίζονται με την παραγωγή, έχουν μοντελοποιηθεί πιθανοτικά λαμβάνοντας

υπόψη ρεαλιστικές στατιστικές κατανομές. ΄Ωστε να επιτευχθεί η βέλτιστη χρονι-

κή απόδοση, ένας προκαθορισμένος αριθμός λεπτομερών μη γραμμικών μοντέλων

πεπερασμένων στοιχείων έχει κατασκευαστεί και προσομοιωθεί με την εκπαίδευ-

ση στατιστικών μοντέλων παλινδρόμησης σύμφωνα με τη μεθοδολογία απόκρισης

επιφάνειας. Οι εναλλακτικές εξισώσεις που δημιουργήθηκαν, αρχικά επικυρώθη-

καν και στη συνέχεια, για την παραγωγή των τυχαίων μεταβλητών και τη διάδοση

των αβεβαιοτήτων, πραγματοποιηθούν στατιστικές προσομοιώσεις Μόντε Κάρλο.

Τα ληφθέντα στατιστικά μοντέλα επέτρεψαν τη γενικευμένη αξιολόγηση αξιοπι-

στίας των ναυπηγικών ελασμάτων, τα οποία επιτρέπουν περαιτέρω τη σύγκριση με

εμπειρικές συνθέσεις που βρίσκονται στους κανονισμούς και στην επιστημονική

βιβλιογραφία.
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Chapter 1

Introduction

The majority of marine structures are constructed from slender platings that are stiff-
ened in both longitudinal and transverse directions. They are seen as thin-walled
structures, and their analysis and design are therefore based on assumptions and con-
siderations related to such structures. Hull girder bending loads introduce primary
bending stresses to the vessel, which tend to extend or compress the stiffened pan-
els that constitute the construction. During the hull scantling design process, each
plate element (unsupported area between stiffeners) needs to be assessed against its
local buckling collapse mode. Class rules involve empirical formulations for buck-
ling strength assessment and there is on-going research towards deriving new, more
accurate formulas by employing Finite Element simulations, sometimes combined
with experiments.

For many years, a significant amount of research has been directed towards ex-
perimental modelling of different ship structural elements, as well as towards the
development of analytical and numerical methods to improve their design against
buckling. For example, Chryssanthopoulos, 1998 reviewed probabilistic concepts
and their application to thin-walled plates and shells susceptible to buckling failure,
while Ivanov, 2013 focused on the hull girder reliability and Rahman et al., 2017;
Rahman et al., 2020 on the ultimate buckling strength of stiffened steel plates.

The proposed work focuses on a probabilistic strength approach to plate com-
pression. The main objective is to obtain buckling curves as a function of the plate’s
slenderness ratio that are correlated with a defined probability of failure. This action
will allow for comparing the reliability of the empirical formulae found in rules and
for the probabilistic buckling analysis of plates. Quantified uncertainty was consid-
ered for geometric initial imperfections and for the material’s elastoplastic param-
eters. Surrogate models based on non-linear finite element simulations have been
generated and fed into a MCS for uncertainty propagation. The parametric statistical
structures of the plate’s resistance allowed for the derivation of probabilities of fail-
ure that were interpolated over the slenderness ratio range of interest. This allowed
for the derivation of probabilistic buckling resistance curves.
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Chapter 2

Fundamental Theory of Plate
Buckling

2.1 Plate Buckling
The rigidity of the surrounding stiffeners has a big impact on the support at the plating
edges. The plate is considered to be simply supported at all edges in this proposed
work because this results in the least critical stress and is thus a safe assumption. The
load is applied on the plate’s short edge (breadth). Ideal plates are subject to elastic
buckling. An ideal plate is one with a constant thickness (t), is formed of linear elastic
material with no residual stresses, and is loaded exactly in the mid-plane (Hughes and
Paik, 2010).

Figure 2.1 depicts the buckling mechanism of a rectangular plate. At first, the ap-
plied load is lower than the critical one, and the out of plane deflection is small, when
the applied load reaches the critical value. Following this, the plate buckles, forming
one half wave across its length and breadth. At this point, the fibers in the direction
of compression have shortened while the fibers perpendicular to the stress direc-
tion lengthen. The transverse strips not only support the longitudinal strips against
buckling but also contribute to a further increase in strength capacity (postbuckling
strength). It should be noted that the breadth of the plate is strongly related to the
critical buckling stress; the increase in breadth leads to decreased critical stress. This
can be explained by the fact that the increase in breadth leads to decreased slopes

FIGURE 2.1: Buckling mechanism of a rectangular plate.
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FIGURE 2.2: Rectangular plate under uni-axial compression.

of the transverse strips, and under these circumstances, the maximum out-of-plane
deflection decreases.

Next, the buckling stress of a rectangular plate such as the one shown in Fig-
ure 2.2 is calculated. Assuming that the coordinate system (x,y) uses x in the long
direction and y in the short direction, the plate dimensions of the plate are a in length,
b in width, and t in thickness.

Considering the situation where bending has occurred and the plate has acquired
a bending arrow with respect to the two axes of the plane, the partial differential
equation describing the problem is given as:

D

{
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

}
+Nx

∂2w

∂x2
= 0, (2.1)

where w is the deflection and D is the flexural rigidity, computed from the following
equation:

D =
Et3

12(1− ν2)
, (2.2)

The calculation of buckling stress for plates is an eigenvalue problem like the
buckling of perfect columns. The solution of the above differential equation is the
product of two harmonic functions:

w = sin
(mπx

a

)
sin

(nπy
b

)
, (2.3)

The parameters m and n indicate the number of half waves in each direction of
the buckled shape. m is the number of half waves along the long edge (x-axis) of
the plate, while n is the number of half waves along the plate’s short edge (y-axis).
Figure 2.3 depicts a rectangular plate with three half-waves along the long edge and
one half wave along the short edge.

The eigenvalues of the partial differential equation are calculated as:

Nm,n = D
(πa
m

)2
[( m

a

)2
+

(n
b

)2
]2

, (2.4)

For every eigenvalue, the deflected shape of the plate (mode shape) can be calcu-
lated from Eq. (2.2)

Note that the smallest value of N for all values of a, b and m is obtained if n = 1.
This means that only one half wave will be formed in the direction perpendicular to
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FIGURE 2.3: Buckling mode shape of rectangular plate.

the load application. Then, it can written as a simple form:

Nm =

(
mb

a
+

a

mb

)2
Dπ2

b2
, (2.5)

Substituting Eq. (2.2) into Eq. (2.5), setting α = a/b and σEp = Nm/t the elastic
buckling stress formula which is also known as the Bryan formula, is obtained:

σEp = Kc
π2E

12(1− ν2)

(
t

b

)2

, (2.6)

where Kc is the critical buckling coefficient. The expression for the buckling coef-
ficient K depends on the type of boundary support as well as the loading type. For
simply supported plates under uniaxial compression in the x-direction, K is given
by:

K =
(m
a
+

a

m

)2
, (2.7)

The buckling half wave number m can be determined as the minimum integer satis-
fying the following inequality:

a

b
≤

√
m(m+ 1), (2.8)

Figure 2.4 shows the buckling coefficient K plotted against aspect ratio a/b for
various values of m. In Figure 2.4 it is also shown that the critical value of σEp will
occur for different values of m depending on the aspect ratio. It can also be seen that
K equals to 4 if the aspect ratio is an integer and that it approaches 4 as the aspect
ratio increases. In realistic design, K=4 is usually applied for panels because it leads
to the minimum buckling stress.
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FIGURE 2.4: Buckling coefficient for different aspect ratios α= a/b.

2.2 General Framework
The mid-ship region of a ship, e.g., of an oil tanker, can be regarded as a rectangu-
lar box encompassed by closely spaced longitudinal stiffeners and relatively widely
spaced transverse frames. An illustration of the above can be visualised in Figure 2.6.

The scantlings of a plate hugely contribute to its mechanical behavior. According
to Zhang, 2016, the typical value of the plating’s aspect ratio, a/b, between stiffeners
and transverse frames is 3.5–6.7 at the deck and bottom of the mid-ship regions. The
length of a is in the range of 2.5–6.0 m and the width of b is in the range of 0.7–1.0 m.
The width and thickness ratio of plating, b/t, is between 25 and 75. The thickness of
the plating t is in the range of 12–36 mm. Buckling and ultimate strength are strongly
related to a physical parameter called the plate slenderness ratio, and it is defined as
follows:

β =
b

t

√
σy
E
, (2.9)

where σy is the yield stress and E the Young’s modulus. Values of β are typically in
the range of 1.0 and 2.5.

For the purpose of the proposed work, 10 plate cases have been selected per slen-
derness ratio (β=1, β=1.75 and β=2.5) resulting in 30 total plate cases that follow the
scantlings’ criteria mentioned above. Table 2.1 shows all 30 plate cases dimensions.

The considered model is a simply supported long plate subjected to axial loads
acting at its short edges. This can represent the deck plating of a ship under vertical
bending moments.
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FIGURE 2.5: Buckling modes for aspect ratios of α = 2, 3, 4, 5.
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FIGURE 2.6: Illustration of a plate found on a ship’s deck.
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TABLE 2.1: List of plate dimensions.

Plate Slenderness (β) Plate Series b[mm] t[mm] b/t

1

1 718 24 29.92
2 748 25 29.92
3 778 26 29.92
4 807 27 29.89
5 837 28 29.89
6 867 29 29.90
7 896 30 29.87
8 926 31 29.87
9 956 32 29.88

10 986 33 29.88

1.75

1 732 14 52.29
2 786 15 52.40
3 835 16 52.19
4 839 16 52.44
5 887 17 52.18
6 891 17 52.41
7 939 18 52.17
8 944 18 52.44
9 992 19 52.21

10 996 19 52.42

2.5

1 894 12 74.50
2 896 12 74.67
3 898 12 74.83
4 899 12 74.92
5 900 12 75.00
6 968 13 74.46
7 969 13 74.54
8 971 13 74.69
9 973 13 74.85

10 975 13 75.00
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2.3 Empirical Formulations
Due to the complicated nature and non-linearity of the subject, it is difficult to seek
analytical solutions for assessing the ultimate strength of plates. Therefore, semi-
analytical and empirical approaches have been established over the years for devel-
oping design equations. Useful formulations have been developed, and some of these
are listed below:

• Box, 1883:
σu
σy

=
1

β0.5
, (2.10)

• Karman, 1924:
σu
σy

=
1.9

β
, (2.11)

• Schnadel, 1930:
σu
σy

= 0.5+
1.81

β2
, (2.12)

• Frankland, 1940:
σu
σy

=
2.25

β
− 1.25

β2
, (2.13)

• Faulkner, 1975:
σu
σy

=
2

β
− 1

β2
, (2.14)

It is worth noting that Faulkner’s equation shows good agreement with exten-
sive experimental data and has been widely accepted and used in the industry. It
could also be noted that Frankland’s equation, with only a marginal difference from
Faulkner’s method, was used by the US Navy and the International Association of
Classification Societies (IACS) in the definition of the effective width of the attached
plate in a stiffened structural element (IACS, 2021a).
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Chapter 3

Uncertainty Definition

3.1 Uncertainty Associated with the Design Variables
As for all materials, there is a certain degree of randomness or uncertainty in our
ability to predict both the loads imposed on the ship’s structure (the demand) and the
ability of the structure to withstand those loads (the capability). The sources of these
uncertainties include phenomena that can be measured and quantified but cannot be
perfectly controlled or predicted by the designer and phenomena for which adequate
knowledge is lacking. The term "objective uncertainties" is sometimes applied to de-
scribe the former, and the term "subjective" is used to describe the latter. In principle,
the objective uncertainties can be expressed in statistical terms using available data
and theoretical procedures. The subjective uncertainties, which are known to exist
but which cannot be quantified as a result of a lack of knowledge, must be dealt with
through judgment and the application of factors of safety.

An example of an objective uncertainty is the variability in the strength properties
of the steel used in constructing a ship. The magnitude of this variability is controlled
to some extent through the practices of specifying minimum properties for the steel
and testing the material as produced by the steel mill to ensure compliance with
the specifications. Departures from the specified properties may exist for several
reasons. For practical reasons, the sampling and testing cannot be applied to all of
the material going into the ship, but only to a limited sampling of the material. As
a result of slight variations in its manufacturing experience, some of the material
may exhibit different properties from those of material manufactured by supposedly
identical procedures. After arrival in the shipyard, the material properties may be
altered by the operations such as cutting, forming, and welding, which are involved
in building it into the ship. These variations in properties may be reduced by a more
rigorous system of testing and quality control, all of which adds to the final cost of
the ship. A compromise must therefore be reached between cost and the level of
variation or uncertainty that is considered acceptable and that may be accommodated
by the degree of conservatism in the design.

On the other hand, the subjective uncertainty cannot be quantified on the basis
of direct observation or analytical reasoning but must be deduced by indirect means.
The most common source of this uncertainty is a deficiency in the understanding of a
fundamental physical phenomenon or an incomplete development of the mathemati-
cal procedures needed for the purpose of predicting a certain aspect of the structural
response. Even though there have been important advances in theoretical and compu-
tational methods of nonlinear structural analysis, there is still a significant element of
uncertainty in predictions of structural behavior in the vicinity of structural collapse.
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In this region, nonlinear material behavior as well as nonlinear geometric effects are
present, and the overall response may involve the sequential interaction of several
elementary response phenomena. Of course, it is the goal of ongoing research to
change these subjective uncertainties into objective uncertainties.

Therefore, it is clear that the design of ship structures must take into account the
uncertainties in the predictions of both demand and strength. To arrive at the most
efficient structure that will achieve an acceptable degree of reliability, it is necessary
to attempt to quantify the uncertainties and allow for their possible magnitudes and
consequences. Reliability assessment offers an excellent means for doing this.

The direct integration method of reliability analysis can be difficult to apply in
practice. The two main reasons for this are the lack of information to determine the
joint probability density function (JPDF) of the design variables and the difficulty
associated with the evaluation of the resulting multiple integral. For these reasons,
approximate methods of reliability analysis were developed. These methods are:

• Mean value first order second moment method (MVFOSM)

• First order reliability methods (FORM)

• Second order reliability methods (SORM)

• Advanced mean value method (AMV)

• Adaptive importance sampling (AIS)

• Monte Carlo simulation (MCS)

3.2 Uncertainty Definition of Design Variables
The compressive strength or resistance of a plate depends on geometrical and mate-
rial parameters, which in reality are not deterministic quantities but differ from part
to part as a result of production and assembly related processes. Within a structural
reliability framework, these may be considered as uncertainties that obey a given sta-
tistical structure. In this direction, the Young’s modulus (E), the yield stress (σy)
and the initial bow imperfection (wo) were considered as Random Variables (RVs).
Therefore, the plate’s resistance may be expressed in probabilistic terms through the
uncertainty propagation of the input parameters.

3.2.1 Uncertainty in Initial Imperfection
According to the International Association of Classification Societies (IACS, 2021b),
typical values of accepted fairness of plating between frames in a strength deck are
allowed to be a maximum of 4 mm at standard operating conditions, with 8 mm being
the upper allowable limit. Also, according to experimental studies, the initial deflec-
tion follows the lognormal distribution (Dou and Pi, 2016), having the following
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functional form:

f(wo) =


1

wo

√
2πσ

exp

[
−1

2

(
lnwo − µ

σ

)2
]
, wo ≥ 0

0, wo < 0

(3.1)

where the mean value m and variance ν are a function of the parameters µ and σ as
follows:

m = exp(µ+
σ2

2
),

ν = exp(2µ+ σ2)[exp(σ2)− 1],
(3.2)

For the estimation of a plate’s resistance, without loss of generality and according to
the above, the shape of the distribution derives from the following assumptions: In
85% of the observations, the initial plate deflection is less than 4 mm, and in 99% of
the cases, the initial deflection is less than 8 mm.The values of the parameters can be
retrieved from the following system of equations:

F (wo = 4) = Φ
(
ln4− µ

σ

)
= 0.85

F (wo = 8) = Φ
(
ln8− µ

σ

)
= 0.99

(3.3)

where Φ is the cumulative distribution function of the standard normal distribution
(i.e., N(0,1)). Therefore, the initial plate deflection shall follow the lognormal distri-
bution as given in Figure 3.1.

FIGURE 3.1: Statistical structure of a plate’s initial deflection.
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3.2.2 Uncertainty in Material Properties
According to experimental results for grade A steel (with a nominal yield stress equal
to 235 MPa), the yield strength may follow a normal or lognormal distribution, with
a mean value of 284.5 MPa and a standard deviation of 21.5 MPa (Melcher et al.,
2004). To account for the fact that yield stress takes only positive values, the log-
normal distribution was used instead, which follows Eq. (3.4). Given the mean value
m and standard deviation ν, the lognormal distribution parameters µ and σ can be
calculated through statistics. As a result, the parameters of the probability density
function representing the yield strength distribution are µ = 5.648 and σ = 0.076.
An illustration of the above can be seen in Figure 3.2.

f(σy) =


1

σy
√
2πσ

exp

[
−1

2

(
lnσy − µ

σ

)2
]
, σy ≥ 0

0, σy < 0

(3.4)

Furthermore, the Young’s elastic modulus of steel grade S235 may follow the
normal distribution, with a mean value of µ = 210 GPa and a standard deviation of
σ = 12.6 GPa (Kala, 2007). The probability density function of the elastic modulus
is given by:

f(E) =
1√
2πσ

e−
1
2(

E−µ
σ )

2

, −∞ < E < +∞ (3.5)

and its statistical structure is shown in Figure 3.3.
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FIGURE 3.2: Probability distribution of steel S235 yield strength.

FIGURE 3.3: Probability distribution of Young’s elastic modulus of
steel S235.
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Chapter 4

Finite Element Method

Finite element analyses have proven to be adequate for modeling initial distortions
in stiffened panels. In this chapter, the fundamentals of the Finite Element Method
(FEM) are discussed, and the stiffness matrix is derived. It is assumed that the ex-
ternal forces acting on the element are known and that the nodal displacements are
unknown.

The discretization of a continuum and its representation as an assemblage of in-
dividual structural components, interconnected at a definite number of nodes, is the
fundamental concept of finite element analysis. The structure’s artificial elements
are commonly triangles or quadrilaterals, with nodes at the corners. Regardless of
the number of finite components used, a discrete model will not be able to produce
an exact description of a continuous structure. Although the correctness of the solu-
tion improves as the number of elements employed grows, utilizing a large number
of elements increases the calculation time. By carefully identifying and specifying
the element attributes, the goal is to minimise the error rate. As a result, careful
subdivision and selection of functions defining displacements and stresses inside and
between parts is required.

The structure must be expressed in terms of a finite number of discrete variables
in order to employ matrix methods. The nodal displacements and their derivatives are
the variables in question. The nodal displacements must be connected to the internal
displacements of the elements as well as their interactions. The nodal displacements
are then the sole unknowns, and the problem is discrete rather than continuous. De-
spite the huge number of nodal displacements, there are only a finite number of
discrete variables that are interconnected by linear equations and can be handled us-
ing matrix methods. The equations of equilibrium and geometric compatibility must
be satisfied everywhere, both inside and between the elements, in order to produce
accurate solutions.

The device most directly associated with stiffness is a simple elastic spring that
undergoes axial displacements and transmits axial forces. The following formula is
used to calculate the force caused by the imposed displacement and vice-versa.

F = KU , (4.1)

where F is the internal force, K is the stiffness of the spring and U is the internal
deformation. The same spring can be regarded as a whole structure, the load causes
a structure displacement U which is proportional to F and the constant of proportion-
ality K is termed as the structure’s stiffness.
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Knowing the stiffness and the applied load Eq. 4.1 may be inverted to give the
displacement.

U =
1

K
F , (4.2)

FIGURE 4.1: Load-displacement relationship for an elastic spring
structure.

A time independent problem in finite element analysis usually consists of a sys-
tem of simultaneous equations. This system can by expressed in matrix notation by
the following stiffness equation.

{R} = [K]{U}, (4.3)

where {R} is the load vector, {U} is the displacement vector and [K] is the stiffness
matrix. If the geometric and material properties of the structure remain constant, the
problem is linear.If these properties are dependent either on R or U, the problem is
nonlinear.

The stiffness matrix of the structure must be established before the load-displacement
relationship of the structure can be determined, because once K is determined, the
solution U follows instantly. Each member or element’s load-displacement relation-
ship can alternatively be described in terms of an element stiffness matrix ke. With
this in mind, the structural stiffness matrix K is constructed by a systematic superpo-
sition of the element stiffness matrices, taking into account the specific arrangement
and connection of the elements in the structure.

K =
∑
e

ke, (4.4)

A continuous structure is represented in Finite Element Analysis by a finite num-
ber of discrete elements that connect at their nodes, as stated at the beginning of
this chapter. Interpolation functions such as polynomials are used to interpolate the
variables inside the element in order to establish geometric compatibility inside and
between them. The displacement for element m is represented by the equation below,
which expresses the displacements within an element as a function of the displace-
ments at the N finite element nodal points:

u(m)(x,y, z) = H(m)(x,y, z)Û , (4.5)
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where H(m) is the displacement interpolation matrix, m is the element number, and
U is a vector containing the three global displacement components Ui, Vi, and Wi at
all nodal points, including those at the element assemblage’s supports.

The corresponding element strains can be evaluated as follows:

ε(m)(x,y, z) = B(m)(x,y, z)Û , (4.6)

The rows of B(m), where B(m) is the strain-displacement matrix, are obtained by
appropriately differentiating and combining the rows of the matrix H(m).

The stresses /sigma(m) in a finite element are related to the element strains
using:

σ(m) = E(m)(x,y, z)ϵ(m), (4.7)

where E(m) is the elasticity matrix of element m. The material law specified in E(m)

for each element can be that for an isotropic or an anisotropic material, and can vary
from element to element.

In order to relate the nodal forces to the nodal displacements, the element is given
a virtual nodal displacement δ∗ and the external work involving the actual nodal
forces f is equal to the internal work which is formulated by the multiplication of the
virtual strain ε∗ and the actual stress, which is a function of δ∗ and δ respectively.
Eq. 4.8 describes the equality between internal and external work.

δ∗f =

∫
vol

[ε(x,y)T ]σ(x,y)dvol, (4.8)

Substituting ε∗(x,y) from Eq. 4.6 and σ(x,y) from Eq. 4.7 respectively leads to
Eq. 4.9

f =

[∫
vol

BTEB dvol

]
Û , (4.9)

The quantity in the square brackets is the element stiffness matrix K.

4.1 Nonlinear Finite Element Analysis
The contrast between the linear and nonlinear reactions of a structure subjected to
an external force F is depicted in Figure 4.2. The stiffness matrix is a function of
the structure’s geometry and material parameters. If these qualities remain constant,
the problem is linear; however, if they change when F or U changes, the problem is
nonlinear. Both geometric and material nonlinearities are included in the research
of the ultimate strength of stiffened panels. As a result, the fundamental aspects of
nonlinear structural mechanics solution methodologies are described.

4.1.1 Material Nonlinearity
Structural steel is a ductile metallic alloy of Fe and C used extensively in the ship
and offshore industries due to its low cost and high modulus of elasticity, which
helps maintain small deflections. The mechanical properties of structural materials
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FIGURE 4.2: Linear and nonlinear structural response.

are characterized by testing predesigned specimens under tensile loading. Figure 4.3
shows a schematic of the stress-strain curve for structural steel.

FIGURE 4.3: Typical stress-strain curve for structural steel.

The stress-strain curve is linear in the first part, the stress and strain are propor-
tionate, and the material follows Hooke’s Law. The modulus of elasticity (E), which
is 207 GPa for structural steel, is equal to the slope of this section. The proportion-
ate limit refers to the highest stress at which the stress-strain relationship remains
linear. Between the proportional limit and the yield stress is the elastic limit, which
is defined as the point at which the most stress can be applied without causing any
permanent strain upon unloading. Greater loading causes yield stress, which is the
stress that causes 2% strain in structural steel.The strain hardening area begins once
the strain has passed the yield point. Additional force is necessary in this region to
bend the material to its maximum strength point, which is the highest stress the ma-
terial can withstand and is known as the ultimate tensile stress. In the early stages
of strain hardening, ductile steels usually have a flat region where the strain grows
without increasing the stress. The necking region is the third stage, in which a neck
forms at the cross sectional area, which becomes much smaller than the original, and
finishes with a fracture.

In order to tackle difficult problems, it is usual to make assumptions about the
mechanical properties of materials. The most frequent material models are explored
after that.
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4.1.2 Linear Elastic Material Model
This material’s response can be divided into two stages. In the first stage, stress is a
linear function of strain, with the modulus of elasticity as the proportionality constant
(E). The second stage begins beyond yield stress and is characterized by a horizontal
line with continual produced stress.

If the applied stress is low, the response is linear in the elastic regime and it obeys
Hooke’s Law, as seen in the first portion of Figure 4.3 and Figure 4.4.

FIGURE 4.4: Elastic-perfectly plastic material.

4.1.3 Bilinear Material Model
Because of strain hardening, structural steel may withstand loads beyond the yield
stress, as demonstrated in Figure 4.3. This material model is made up of two linear
stages. The elastic regime is represented by the first stage, which is a line with slope
E. The second step is an approximation of the real response of the structural steel.
Beyond yield stress, the plastic regime is defined by a line of slope Ep, which is
defined as strain hardening tangent modulus with a magnitude of 0.005 to 0.5 times
the modulus of elasticity (E) (see Figure 4.5). This material model was chosen for
the current study because it appeared to be the most suited.

FIGURE 4.5: Bilinear material.
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FIGURE 4.6: Schematic of the Newton-Raphson method.

4.1.4 Nonlinear Solution
The most prevalent method for finding the roots of nonlinear equations in finite ele-
ment studies is Newton-Raphson, which is depicted in Figure 4.6. This method uses a
number of iterative techniques to reduce imbalanced forces between external and in-
ternal forces while updating the tangent stiffness matrix after each incremental load
step. The external load is applied sequentially in nonlinear finite element analysis
such that the structure’s response is linear. The purpose is to determine the solution
at time t+ ∆t, where ∆t is the time increment that corresponds to the required load
increase, and the solution ū at time t is presumed to be known. Eq. 4.10 must be
satisfied for the structure to be in equilibrium.

f(u) =t+∆t R(u)−t+∆t F (u), (4.10)

where u is the unknown displacement vector, R is a known vector composed of the
external nodal forces, and F (u) is the internal forces vector which is a nonlinear
function of u.

In general this solution will not satisfy the system of linear equations exactly and
some unbalanced forces are going to exist. If the unbalanced force is lower than a
predefined threshold then the iterative procedure has converged else, the procedure
repeats.

4.2 Finite Element Modeling

4.2.1 Material Model
In most modern ships, structural steel is used in the strength deck plating, such as
ASTM A131 steel, grade A. In that way, a linear isotropic elastic-plastic material
with strain hardening was employed for the finite element simulations with mechan-
ical properties of σy = 235 MPa, E = 210000 MPa, ν = 0.3 and ET = 1000 MPa.
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(A)

(B)

FIGURE 4.7: Geometry demonstrations of a 4-node (A) and a 8-node
(B) element.

4.2.2 Element Type & Size
A variety of element types are available in FEA commercial software. For the non-
linear FEA of thin-walled or plated structures, such as ships, shell elements are pre-
ferred. Most software offers two types of shell elements, 4-node and 8-node. The
4-node element has four nodes with three translational and three rotational degrees
of freedom at each node, while linear interpolation is used within the element. The
4-node element is well-suited for large rotation and large strain applications. On
the other hand, the 8-node element is a quadratic element with eight nodes and six
degrees of freedom at each node, three translational and three rotational. 8-node
elements are also well-suited for nonlinear applications, and the extra four nodes lo-
cated at the middle of the sides are capable of capturing the change in geometry’s
curvature. A visualization of the above considered element types can be shown in
Figure 4.7.

A convergence study has been carried out to determine the best element type and
size, for a compromise between computational time and accuracy. Multiple simula-
tions have been performed with a variety of element mesh sizes in order to search for
the optimal element size that provides a sufficient level of accuracy. In the conver-
gence study of the present mesh, the normalized ultimate stress is monitored for the
varying element sizes and element types.
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FIGURE 4.8: Mesh convergence study.

Taking into account all the above, 8-node elements were picked since the so-
lution seemed to converge more easily compared to 4-node elements. Finally, an
element size of (50× 50) mm was chosen since it provided the most accurate results
while taking into account the computational effort needed in order to achieve similar
results. Figure 4.8 illustrates the obtained results from the mesh convergence study.

4.2.3 Geometrical Initial Imperfections
As with all steel structures, plate panels contain geometric deviations and residual
stresses from manufacture and subsequent welding into plate assemblies and, there-
fore, are not perfectly fair. Due to the complexity and uncertainty of the shape and
magnitude of initial imperfections, the latter are usually introduced in the simula-
tions in the form of analytical functions and, more specifically, as Fourier compo-
nents (DNV, 2021). In this direction, the employed initial local plate imperfection is
expressed in the local coordinate system as follows:

w(x,y) = wo sin
(mπx

a

)
sin

(
π|y|
b

)
, (4.11)

where m is the number of half waves as defined in Eq. 2.8.

4.2.4 Boundary & Loading Conditions
One key aspect of the FE modeling procedure is the correct application of boundary
and loading conditions in order to achieve satisfactory results that not only describe
the plate’s behavior but also eliminate convergence difficulties associated with the
structure’s instabilities.

A local coordinate system must first be defined for the right artificial boundary
conditions to be applied. Let u[x,y, z] represent the translational degrees of freedom
and θ[x,y, z] represent the rotational degrees of freedom, centered on the x,y, z-
coordinates. Also, let “0” on u[x,y, z] or θ[x,y, z] indicate restraint and “1” indicate
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FIGURE 4.9: Plate’s boundary and loading conditions.

no restraint. Due to the fact that the target plate is encompassed by longitudinal
stiffeners and transverse frames, the edges of the target structure were constrained in
the vertical direction u[1, 1, 0]. Furthermore, at one of the plate’s corners, constraints
of transverse displacement u[1, 0, 0] along with rotation around the vertical z-axis
θ[1, 1, 0] were applied in order to ensure structural integrity. Lastly, along the target
plate’s breadth, at one end, an additional constraint was applied in the longitudinal
direction u[0, 1, 0], while at the loaded end, an appropriate displacement was applied
across the longitudinal direction. The imposed boundary and loading conditions of
the target structure are shown in Figure 4.9.

It is worth noting that loading conditions were modeled as applied displacement
on the plate’s cross section instead of force due to the fact that with force control
procedure it is difficult to go past the ultimate strength region since the structure has
already reached equilibrium and the load starts reducing due to plasticity. By ap-
plying an incremental displacement control procedure, such issues can be overcome
by gradually increasing the applied displacement and measuring the corresponding
reaction force. Also, the aforementioned method is chosen since it is more suitable
for overcoming convergence difficulties associated with buckling instabilities.

4.2.5 FE Model Validation
According to the evaluated results (see Figure 4.10a) and the load-displacement be-
havior of a plate subjected to compressive stresses, a load level less than the bifur-
cation point D corresponds to a state with a fully elastic response and a small out of
plane deflection (points A, B, and C). Point D marks the initiation of plasticity where
the plate buckles, forming m number of half-waves across its length. At this point,
the fibers in the direction of compression have shortened while the fibers perpendic-
ular to the stress direction lengthen. Plastic strain is propagated further at point E
until a critical load level is reached at point F , resulting in a state of ultimate plastic
yield at ultimate strength. The above observed results validate the elastic buckling
theory of simply supported plates subjected to uniform compression.
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(A)

(B)

FIGURE 4.10: Phases of plastic strain (A) and von Misses stress (B).

Notes: In the contour plots, the plate’s plastic strain and von Misses
stress state is visualized at each respective point. The colors are
mapped over the geometry to indicate the result values at each loca-
tion in the model. High color contrast indicates areas of greater plastic

strain intensity.
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Chapter 5

Probabilistic Modeling

5.1 Monte Carlo Simulation
In the scope of the proposed work, a Monte Carlo Simulation was used. In general,
simulation is a technique for conducting experiments in a laboratory or on a computer
to model the behavior of a system. Usually, simulation models result in "simulated"
data that must be treated statistically to predict the future behavior of the system. In
this broad sense, simulation has been used as a predictive tool for economic systems,
business environments, war games, and management games.

The name "Monte Carlo method" was introduced in 1944 by von Newmann and
Ulam as a code name for their secret work on neutron diffusion problems at the Los
Alamos Laboratory. The name was chosen apparently because of the association of
the town of Monte Carlo with roulette, which is one of the simplest tools that can be
used for generating random numbers.

A Monte Carlo simulation is usually used for problems involving random vari-
ables with known or assumed probability distributions. Using statistical sampling
techniques, a set of values for the random variables are generated in accordance with
the corresponding probability distributions. These values are treated similarly to
a sample of experimental observations and are used to obtain a "sample" solution.
By repeating the process and generating several sets of sample data, many sample
solutions can be determined. Statistical analysis of the sample solutions is then per-
formed.

The Monte Carlo method thus consists of three basic steps:

a) Simulation of the random variables and generation of several sample data sets
using statistical sampling techniques.

b) Solutions using the sampled data.

c) Statistical analysis of the results.

Because the results from the Monte Carlo technique depend on the number of
samples used, they are not exact and subject to sampling errors. Generally, the accu-
racy increases as the sample size increases.

Sampling from a particular probability distribution involves the use of random
numbers. Random numbers are essentially random variables uniformly distributed
over the unit interval [0,1]. Many codes are available for computers to generate
a sequence of "pseudo" random digits where each digit occurs with approximately
equal probability. The generation of such random numbers plays a central role in
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the generation of a set of values (or realizations) of a random variable that has a
probability distribution other than the uniform probability law. The Monte Carlo
method is considered one of the most powerful techniques for analyzing complex
problems due to the enormous computing power of computers.

5.2 Surrogate Modeling
MCSs require a high order of magnitude number of statistical experiments, which in
our case are to be based on numerical FE simulations. This poses the problem that
these are time-consuming for the scope of this approach. In order to significantly
narrow down the number of required FE simulations for the sake of time efficiency
without sacrificing accuracy, meta-modeling based on surrogates was employed. The
main concept is to perform FE simulations on key sample points within the design
space and then fit an analytical formula, which later may be used as a surrogate model
for MCS.

5.2.1 Design of Experiments
Design of experiments (DOE) is a branch of applied statistics that deals with plan-
ning, conducting, analyzing, and interpreting controlled tests to evaluate the factors
that control the value of a parameter or group of parameters. Usually, DOE is used
to map a response surface over a particular region of interest in order to optimize the
output of the process or to select the operation points to achieve a specific outcome.
In reviewing the literature that uses DOE in numerical experimentation, various types
of DOE, such as RSM (Anyfantis, 2020), central composite design (CCD) (Anyfan-
tis, 2020), one factor at a time (Anyfantis, 2019), full factorial (Anyfantis, 2019),
Taguchi methodology (Kim, 2010) and low cost response surface methodology (Koç
et al., 2000), have been deployed.

5.2.2 Response Surface Methodology
The response surface methodology (RSM) consists of mathematical and statistical
techniques and is used extensively for the optimization of processes influenced by
many interrelated factors. The goal of the RSM is to create an approximating model
for a system’s response (y), when the actual relationship between its controllable
input variables (X1,X2,X3, ...,XN ) and its response variable (y) is unknown, e.g.,
y = f(X1,X2,X3, ...,XN ), where f is an unknown function regarded as a meta-
model. The approximating empirical model is based on observed data from the sys-
tem and is usually a low-order polynomial y = g(X1,X2,X3, ...,XN ), where, g is
the approximating function.

Among the wide family of surrogates, the faced central composite design (see
Figure 5.1) was employed for generating the key sample points due to the simplicity
of the response within the design space (Anyfantis, 2019). Since we have three RVs
and according to this particular sampling setting, a total of 15 samples (23 full facto-
rial + 2·3 face centered + 1 center of mass) per slenderness ratio are to be simulated
in FEA. The three-dimensional cube structure models yield the sampling points of
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three different factors, i.e., X1, X2 and X3, which in turn correspond to representa-
tions of the RV related to the yield stress, Young’s modulus, and bow imperfection,
respectively.

FIGURE 5.1: Illustration of faced central composite design sampling
for surrogate modeling. (Figure borrowed from Matlab documenta-

tion.

The lower limit of each factor (-1) is equivalent to the representation of the 5%
lower bound, the central point (0) is equivalent to the median, and the higher limit
(1) to the 95% upper bound of each RV. By considering the statistical structures of
each RV, the parameters used for the FE simulations performed per slenderness ratio
are listed in Table 5.1.

TABLE 5.1: Experiment matrix for surrogate modeling generation
through FE simulations.

Sample X1 wo[mm] X2 σy[MPa] X3 E[GPa]

1 -1 1.46 -1 250.38 -1 189
2 -1 1.46 -1 250.38 1 231
3 -1 1.46 1 321.50 -1 189
4 -1 1.46 1 321.50 1 231
5 1 5.03 -1 250.38 -1 189
6 1 5.03 -1 250.38 1 231
7 1 5.03 1 321.50 -1 189
8 1 5.03 1 321.50 1 231
9 -1 1.46 0 283.72 0 210

10 1 5.03 0 283.72 0 210
11 0 2.71 -1 250.38 0 210
12 0 2.71 1 321.50 0 210
13 0 2.71 0 283.72 -1 189
14 0 2.71 0 283.72 1 231
15 0 2.71 0 283.72 0 210
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Chapter 6

Results - Discussion

6.1 RSM Results
As discussed in section 5.2.2, the second-order model with quadratic parameters is
widely used. The general form of the multi-factor response is given by:

Y = βo +
k∑

i=1

cixi +
k∑

i=1

ciix
2
i +

k∑
i=1≤i≤j

cijxixj + ε, (6.1)

where, cii represents the coefficients of the quadratic factors.
In our particular case, where three RVs are involved, the preceding equation may

be written as follows:

σult = co + c1σy + c2E + c3wo + c12σyE+

+ c13σywo + c23woE + c11σ
2
y + c22E

2 + c33w
2
o,

(6.2)

The ten coefficients of the polynomial are obtained through a least-square fit
over the fifteen numerically obtained resistances as per the CCD sampling scheme.
The accuracy of the regression function can be estimated from the correlation co-
efficient of determination R2, which represents the relevant difference between the
design point and the result according to the proposed formula. In all cases, very
high accuracy has been reached. Table 6.1 lists the corresponding coefficients of the
polynomial that represent the surrogate model along with their respective correlation
coefficients for all three slenderness ratio cases.

6.2 MCS Results
A Monte Carlo Simulation (MCS) for each slenderness ratio level has been per-
formed through the random independent generation of 10,000 samples based on the
parametric statistical models of each defined RV. The sampling was supported by
the Latin Hypercube stratified method. For illustration purposes, Figure 6.2 presents
joint pair distributions of the input RVs. Furthermore, a histogram of a plate’s nor-
malized resistance has been generated and presented in Figure 6.1a along with a
Q-Q plot in Figure 6.1b in order to assess its statistical structure. As it is illustrated,
the data follows a linear trend, which indicates that a Gaussian parametric model is
considered as the statistical structure representing the entire population for the prob-
abilistic representation of the resistance.
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(A)

(B)

FIGURE 6.1: Statistical analysis of normalized resistance with the aid
of a histogram (A) and a Q-Q plot (B).
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FIGURE 6.2: Latin Hypercube sampling for MCS visualized through
pairs of RVs.
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TABLE 6.1: Coefficients of the RS obtained from the finite elements
simulation.

RS coeff. β=1 β=1.75 β=2.5
co 23.0015 7.7567 0.9098
c1 0.7343 0.4475 0.3376
c2 1.71e-4 5.37e-4 3.54e-4
c3 -0.2958 -6.0936 -0.5056
c12 5.40e-7 1.60e-6 4.54e-7
c13 -0.0226 0.0089 0.0075
c23 2.22e-5 -4.78e-5 -2.18e-5
c11 0.0003 -0.0006 -0.0002
c22 -8.46e-10 -1.11e-9 -3.09e-10
c33 -0.3045 0.9275 0.0760
R2 0.998 0.999 0.999

6.3 Probabilistic Buckling Curves
An aggregation of the reliability analysis results is presented in Figure 6.3, where
the unified probability density function (PDF) of the resistance was calculated by
averaging the sample statistics obtained from all three considered slenderness ratios.
The statistical structure per slenderness ratio follows an intuitive and expected trend,
with the resistance’s center of mass (population mean) lowering as the slenderness
ratio increases due to the increasing effect of the structural instability collapse mode
in more slender plates. Also, it must be noted that the variance reduces as well. For
illustration purposes, the 0.1% and 0.01% (pf = 10−3 and pf = 10−4 respectively)
lower confidence bound resistance levels per slenderness ratio and their respective re-
gressions are presented. Such regressions for the probabilistic resistance may serve
as an alternative to the empirically based resistance curves derived from the formu-
lations presented in section 2.3

Finally, in Figure 6.4, the probability of failure for each empirical formula is
presented, in percentile, with respect to the probabilistic resistance calculated per
slenderness ratio. It is observed that for a low slenderness ratio, all empirical for-
mulations are characterized by a conservative design threshold, whereas for medium
to high values of plate slenderness ratio, a high probability of failure is associated
with von Karman’s, Schnadel’s and Frankland’s formulations compared to Box’s
and Faulkner’s, which follow the trend of a low probability of failure across all plate
slenderness ratios.
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FIGURE 6.3: Probabilistic resistance curves (buckling curves).

FIGURE 6.4: Probability of failure for each empirical model per slen-
derness ratio.
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6.4 Proposed Safety Factors (PSFs)
According to Rahman et al., 2017, PSFs for the ultimate load-carrying capacity of
plates can be determined using the reliability indexing method. The following equa-
tion shows the relationship between the PSF and the reliability index:

µ− βTσ =
1

γ
fN , (6.3)

where µ and σ are the mean and the standard deviation of the normalized ultimate
buckling strength, respectively, βT is the target reliability index, γ is the partial safety
factor, and fN is the corresponding nominal strength. Figure 6.5 illustrates Eq. 6.3
graphically for RR = 0.8.

FIGURE 6.5: Explanation of Eq. 6.3 (Rahman et al., 2017).

Assuming that the probability density function for the ultimate buckling strength
is normally distributed, the designer can opt for a desired safety factor based on his
risk tolerance, considering the obtained statistical structure of the selected slender-
ness ratio.
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Chapter 7

Conclusions

This work focuses on the development of probabilistic buckling models that can be
used within the design of steel plates used in ship structures and their comparison to
the empirical formulae found in rules and in the scientific literature. Findings have
shown that the design zone threshold suggested by the empirical buckling resistance
curves is associated with a high probability of failure for a medium-to-high value
of plate slenderness compared to the probabilistic resistance curves generated by the
MCS. Finally, the notion of proposed safety factors is briefly discussed in order to
demonstrate the motive of modeling plate buckling in a probabilistic approach. This
work is believed to support the transition to a risk-based design where probabilistic
treatment of all involved uncertainties is required.
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Appendix A

Matlab Source Code

1 clc
2 clear
3 close all
4

5 %***************************************************************
6 %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ CALCULATIONS SECTION ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
7 %***************************************************************
8

9 sNom=235;
10 ENom=210000;
11 v=0.3;
12 Plate_Slenderness=1;
13

14

15 %========================================================
16 % Random variable distributions
17 %========================================================
18 % m=Mean, S=Standard deviation
19 msy=5.647885875;
20 Ssy=0.075463613;
21 mE=210;
22 SE=12.6;
23 mw0=0.997;
24 Sw0=0.376;
25

26

27 %========================================================
28 % Latin hypercube sampling
29 %========================================================
30 X = lhsdesign(10000,3);
31

32

33 %========================================================
34 % Generation of samples
35 %========================================================
36 sy=zeros(10000,1);
37 E=zeros(10000,1);
38 w0=zeros(10000,1);
39

40 for i=1:10000
41 sy(i)=logninv(X(i,2),msy,Ssy);
42 E(i)=norminv(X(i,3),mE,SE);
43 w0(i)=logninv(X(i,1),mw0,Sw0);
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44 end
45 Samples=[sy,E,w0];
46

47

48 %========================================================
49 % sUlt calculation
50 %========================================================
51 sUlt=zeros(10000,1);
52 sUlt_Normalized=zeros(10000,1);
53 for i=1:10000
54 sUlt(i)=(1653513388313759*sy(i))/2251799813685248 + ...

(6148550398687*E(i))/36028797018963968 − ...
(5328169876444943*w0(i))/18014398509481984 + ...
(638068171733401*sy(i)*E(i))/1180591620717411303424 − ...
(6508901971710557*sy(i)*w0(i))/288230376151711744 + ...
(3281781738237517*E(i)*w0(i))/147573952589676412928 + ...
(701820137058097*sy(i)^2)/2305843009213693952 − ...
(4089481968072747*E(i)^2)/4835703278458516698824704 − ...
(685747744451703*w0(i)^2)/2251799813685248 + ...
3237167866593989/140737488355328;

55 sUlt_Normalized(i)=sUlt(i)/sNom;
56 end
57

58 sUlt_mean=mean(sUlt);
59 sUlt_stdev=std(sUlt);
60 sUlt_max=max(sUlt);
61 sUlt_min=min(sUlt);
62

63 %Normal pdf for sUlt
64 pd_sUlt=fitdist(sUlt,'Normal');
65 confidence_95=paramci(pd_sUlt);
66

67 %Normal pdf for Normalized sUlt
68 pd_sUlt_Normalized=fitdist(sUlt_Normalized,'Normal');
69

70 %Maximum resistance of 0.1% of the weakest columns
71 sUlt_01=icdf(pd_sUlt_Normalized,0.001);
72

73 %Maximum resistance of 0.01% of the weakest columns
74 sUlt_001=icdf(pd_sUlt_Normalized,0.0001);
75

76

77 %========================================================
78 % Empirical Models Calculation
79 %========================================================
80

81 %Box critical stress calculation:
82 s_Box=sNom/(Plate_Slenderness^0.5);
83 if s_Box>sNom
84 s_Box=sNom;
85 end
86 p_failure_Box=cdf(pd_sUlt_Normalized,s_Box/sNom);
87

88

89 %von Karman critical stress calculation:
90 s_von_Karman=(1.9*sNom)/Plate_Slenderness;
91 if s_von_Karman>sNom
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92 s_von_Karman=sNom;
93 end
94 p_failure_von_Karman=cdf(pd_sUlt_Normalized,s_von_Karman/sNom);
95

96

97 %Schnadel critical stress calculation:
98 s_Schnadel=0.5*sNom+(1.81*sNom)/Plate_Slenderness^2;
99 if s_Schnadel>sNom

100 s_Schnadel=sNom;
101 end
102 p_failure_Schnadel=cdf(pd_sUlt_Normalized,s_Schnadel/sNom);
103

104

105 %Frankland critical stress calculation:
106 s_Frankland=(2.25*sNom)/Plate_Slenderness−(1.25*sNom)/
107 Plate_Slenderness^2;
108 if s_Frankland>sNom
109 s_Frankland=sNom;
110 end
111 p_failure_Frankland=cdf(pd_sUlt_Normalized,s_Frankland/sNom);
112

113

114 %Faulkner critical stress calculation:
115 s_Faulkner=(2*sNom)/Plate_Slenderness−sNom/Plate_Slenderness^2;
116 if s_Faulkner>sNom
117 s_Faulkner=sNom;
118 end
119 p_failure_Faulkner=cdf(pd_sUlt_Normalized,s_Faulkner/sNom);
120

121

122 %========================================================
123 % Saving statistical parameters into a .txt file
124 %========================================================
125 %save ('Parameters.txt', 'Samples', '−ascii')
126

127

128

129

130 %***************************************************************
131 %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ CHARTS SECTION ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
132 %***************************************************************
133

134 %========================================================
135 % Normalized sUlt probability distribution + Bins
136 %========================================================
137 figure
138 hold on
139

140 %Define limits of plotting
141 XNom = (min(sUlt)−1*std(sUlt):0.1:max(sUlt)+1*std(sUlt))/sNom;
142

143 %Define critical stress distribution
144 Normalized_sUlt_pdf = ...

normpdf(XNom,mean(sUlt/sNom),std(sUlt/sNom));
145

146 %Plot histrogram with distribution
147 [n_x, xout] = hist(sUlt/sNom,30); %creates 30 bins
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148 n_x = n_x ./ ( sum(n_x) *(xout(2)−xout(1))); %normalize to ...
be a pdf

149 [¬,¬,¬,x_Pos,x_Height] = makebars(xout,n_x);
150 plot(XNom, ...

Normalized_sUlt_pdf,'−k','DisplayName','Probability ...
Density','LineWidth',2); %pdf

151 plot(x_Pos, x_Height,'−k') %histogram
152

153

154 xlabel('Normalized Resistance');
155 ylabel('Probability Density');
156 box on;
157 set(gca,'TickDir','both');
158 set(gca,'fontname','Times New Roman')
159 set(gca,'TickDir','both');
160 legend
161

162

163 %========================================================
164 % Q−Q Plot
165 %========================================================
166 figure
167

168 qqplot(sUlt_Normalized,pd_sUlt_Normalized)
169 box on;
170 set(gca,'TickDir','both');
171 set(gca,'fontname','Times New Roman')
172 % set(gca,'XMinorTick','on','YMinorTick','on')
173

174

175 %========================================================
176 % Sampling Scatters with distributions
177 %========================================================
178

179 %−−−−−−−−−−−−−−−−−−−w0, sy scatter with ...
distributions−−−−−−−−−−−−−−−−−−−−−−

180 %Define limits of plotting
181 X = min(w0):0.1:max(w0)−5;
182 Y = mean(sy)−4*std(sy):1:mean(sy)+4*std(sy);
183

184 %2−d Mean and St.dev. matrix
185 MeanVec = [mean(w0) mean(sy)];
186 StdVec= [std(w0),std(sy)];
187

188 %Get the 1−d PDFs for the "walls"
189 Z_x = ...

lognpdf(X,log(MeanVec(1)^2/sqrt(MeanVec(1)^2+StdVec(1)^2)),
190 sqrt(log(1+(StdVec(1)/MeanVec(1))^2)));
191 Z_y = ...

lognpdf(Y,log(MeanVec(2)^2/sqrt(MeanVec(2)^2+StdVec(2)^2)),
192 sqrt(log(1+(StdVec(2)/MeanVec(2))^2)));
193

194 %Scale the y−axis pdf to be equal (modify zlabel below ...
accordingly)

195 Scale_y=20;
196

197 %Get the 2−d samples for the "floor"
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198 Samples = [w0, sy];
199

200 figure; hold on;
201 %Plot the samples on the "floor"
202 plot3(Samples(:,1),Samples(:,2),zeros(size(Samples,1),1),'k.',
203 'MarkerSize',2)
204

205 %Plot the histograms on the walls from the data in the middle
206 [n_x, xout] = hist(Samples(:,1),30); %creates 30 bars, ...

n_x=number of elements is each beam, xout=bin limits
207 n_x = n_x ./ ( sum(n_x) *(xout(2)−xout(1)));%Normalizes to ...

be a pdf
208 [¬,¬,¬,x_Pos,x_Height] = makebars(xout,n_x);%Creates the bar ...

points
209 plot3(x_Pos, Y(end)*ones(size(x_Pos)),x_Height,'−k')
210

211 %Now plot the other histograms on the wall
212 [n_y, yout] = hist(Samples(:,2),20);
213 n_y = n_y ./ ( sum(n_y) *(yout(2)−yout(1)));
214 [¬,¬,¬,y_Pos,y_Height] = makebars(yout,n_y);
215 plot3(X(1)*ones(size(y_Pos)),y_Pos, Scale_y*y_Height,'−k')
216

217 %Now plot the 1−d pdfs over the histograms
218 plot3(X, ones(size(X))*Y(end), Z_x,'−r','LineWidth',2);
219 plot3(ones(size(Y))*X(1), Y, Scale_y*Z_y,'−b','LineWidth',2);
220

221 %Make the figure look nice
222 grid on; view(45,55);
223 xlabel('w_0(mm)'), ylabel('s_y(MPa)'),zlabel('p w_0(.), 20*p ...

s_y(.)')
224 axis([X(1) X(end) Y(1) Y(end)])
225 title('Latin hypercube sampling')
226

227 %−−−−−−−−−−−−−−−−−−−w0, E scatter with ...
distributions−−−−−−−−−−−−−−−−−−−−−−

228 %Define limits of plotting
229 X = min(w0):0.1:max(w0)−5;
230 Y = mean(E)−4*std(E):1:mean(E)+4*std(E);
231

232 %2−d Mean and St.dev. matrix
233 MeanVec = [mean(w0) mean(E)];
234 StdVec= [std(w0),std(E)];
235

236 %Get the 1−d PDFs for the "walls"
237 Z_x = ...

lognpdf(X,log(MeanVec(1)^2/sqrt(MeanVec(1)^2+StdVec(1)^2)),
238 sqrt(log(1+(StdVec(1)/MeanVec(1))^2)));
239 Z_y = normpdf(Y,MeanVec(2),StdVec(2));
240

241 %Scale the y−axis pdf to be equal (modify zlabel below ...
accordingly)

242 Scale_y=10;
243

244 %Get the 2−d samples for the "floor"
245 Samples = [w0, E];
246

247 figure; hold on;
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248 %Plot the samples on the "floor"
249 plot3(Samples(:,1),Samples(:,2),zeros(size(Samples,1),1),'k.',
250 'MarkerSize',2)
251

252 %Plot the histograms on the walls from the data in the middle
253 [n_x, xout] = hist(Samples(:,1),30); %creates 30 bars, ...

n_x=number of elements is each beam, xout=bin limits
254 n_x = n_x ./ ( sum(n_x) *(xout(2)−xout(1)));%Normalizes to ...

be a pdf
255 [¬,¬,¬,x_Pos,x_Height] = makebars(xout,n_x);%Creates the bar ...

points
256 plot3(x_Pos, Y(end)*ones(size(x_Pos)),x_Height,'−k')
257

258 %Now plot the other histograms on the wall
259 [n_y, yout] = hist(Samples(:,2),20);
260 n_y = n_y ./ ( sum(n_y) *(yout(2)−yout(1)));
261 [¬,¬,¬,y_Pos,y_Height] = makebars(yout,n_y);
262 plot3(X(1)*ones(size(y_Pos)),y_Pos, Scale_y*y_Height,'−k')
263

264 %Now plot the 1−d pdfs over the histograms
265 plot3(X, ones(size(X))*Y(end), Z_x,'−r','LineWidth',2);
266 plot3(ones(size(Y))*X(1), Y, Scale_y*Z_y,'−b','LineWidth',2);
267

268 %Make the figure look nice
269 grid on; view(45,55);
270 xlabel('w_0(mm)'), ylabel('E(GPa)'),zlabel('p w_0(.), 10*p ...

E(.)')
271 axis([X(1) X(end) Y(1) Y(end)])
272 title('Latin hypercube sampling')
273

274 %−−−−−−−−−−−−−−−−−−−sy, E scatter with ...
distributions−−−−−−−−−−−−−−−−−−−−−−

275 %Define limits of plotting
276 X = min(sy)−1*std(sy):0.1:max(sy)+1*std(sy);
277 Y = mean(E)−4*std(E):1:mean(E)+4*std(E);
278

279 %2−d Mean and St.dev. matrix
280 MeanVec = [mean(sy) mean(E)];
281 StdVec= [std(sy),std(E)];
282

283 %Get the 1−d PDFs for the "walls"
284 Z_x = ...

lognpdf(X,log(MeanVec(1)^2/sqrt(MeanVec(1)^2+StdVec(1)^2)),
285 sqrt(log(1+(StdVec(1)/MeanVec(1))^2)));
286 Z_y = normpdf(Y,MeanVec(2),StdVec(2));
287

288 %Scale the y−axis pdf(then modify zlabel below accordingly)
289 Scale_y=0.5;
290

291 %Get the 2−d samples for the "floor"
292 Samples = [sy, E];
293

294 figure; hold on;
295 %Plot the samples on the "floor"
296 plot3(Samples(:,1),Samples(:,2),zeros(size(Samples,1),1),'k.',
297 'MarkerSize',2)
298



Appendix A. Matlab Source Code 47

299 %Plot the histograms on the walls from the data in the middle
300 [n_x, xout] = hist(Samples(:,1),20); %creates 20 bars, ...

n_x=number of elements is each beam, xout=bin limits
301 n_x = n_x ./ ( sum(n_x) *(xout(2)−xout(1)));%Normalizes to ...

be a pdf
302 [¬,¬,¬,x_Pos,x_Height] = makebars(xout,n_x);%Creates the bar ...

points
303 plot3(x_Pos, Y(end)*ones(size(x_Pos)),x_Height,'−k')
304

305 %Now plot the other histograms on the wall
306 [n_y, yout] = hist(Samples(:,2),20);
307 n_y = n_y ./ ( sum(n_y) *(yout(2)−yout(1)));
308 [¬,¬,¬,y_Pos,y_Height] = makebars(yout,n_y);
309 plot3(X(1)*ones(size(y_Pos)),y_Pos, Scale_y*y_Height,'−k')
310

311 %Now plot the 1−d pdfs over the histograms
312 plot3(X, ones(size(X))*Y(end), Z_x,'−r','LineWidth',2);
313 plot3(ones(size(Y))*X(1), Y, Scale_y*Z_y,'−b','LineWidth',2);
314

315 %Make the figure look nice
316 grid on; view(45,55);
317 xlabel('s_y(mm)'), ylabel('E(GPa)'),zlabel('2*p s_y(.), p E(.)')
318 axis([X(1) X(end) Y(1) Y(end)])
319 title('Latin hypercube sampling')
320

321

322 %−−−−−−−−−−−−−−−−−−−−−−−−−Bivariate 3D ...
histograms−−−−−−−−−−−−−−−−−−−−−−−−−

323 figure
324 hist3([w0 sy],'Nbins',[40 ...

40],'CDataMode','auto','FaceColor','interp')
325 xlabel('w_o(mm)'), ylabel('s_y(MPa)'),zlabel('No of Samples')
326 colorbar
327

328 figure
329 hist3([w0 E],'Nbins',[40 ...

40],'CDataMode','auto','FaceColor','interp')
330 xlabel('w_o(mm)'), ylabel('E(GPa)'),zlabel('No of Samples')
331 colorbar
332

333 figure
334 hist3([E sy],'Nbins',[40 ...

40],'CDataMode','auto','FaceColor','interp')
335 xlabel('E(GPa)'), ylabel('s_y(MPa)'),zlabel('No of Samples')
336 colorbar
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Ansys Source Code

!************************************************************************
!* The following script is used in APDL v17.0 and receives as input two *
!* matrices. The first N1x4 matrix contains the statistical variables *
!* w0,sy,E and the applied displacement dl. The second is a N2x2 matrix *
!* containing the plate scantlings b and t. Then, two sequential loops *
!* are operated in order to calculate the reaction force over time. *
!* The resulting .txt file contains the maximum reaction force fx. * *
!************************************************************************

/CLEAR

!========================================================
! IMPORTING DATA FROM .TXT FILE
!========================================================

!First matrix containing w0,sy,E
/INQUIRE,numlines,LINES,’Cube_Points’,’txt’

*DEL,mytable,,NOPR
*DIM,mytable,TABLE,numlines-1,3
*TREAD,mytable,’Cube_Points’,’txt’,,to_skip

*DEL,myarray,,NOPR
*DIM,myarray,ARRAY,numlines,4

*vfun,myarray(1,1),copy,mytable(0,0) ! Shift down and right
*vfun,myarray(1,2),copy,mytable(0,1) ! Shift down and right
*vfun,myarray(1,3),copy,mytable(0,2) ! Shift down and right
*vfun,myarray(1,4),copy,mytable(0,3) ! Shift down and right

!Second matrix containing b,t
/INQUIRE,numlines2,LINES,’Dimensions’,’txt’

*DEL,mytable2,,NOPR
*DIM,mytable2,TABLE,numlines2
*TREAD,mytable2,’Dimensions’,’txt’,,to_skip

*DEL,myarray2,,NOPR
*DIM,myarray2,ARRAY,numlines2,2
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*vfun,myarray2(1,1),copy,mytable2(1,0) ! Shift column to right
*vfun,myarray2(1,2),copy,mytable2(1,1) ! Shift column to right

!========================================================
!~~~~~~~~~~~~~~~~~~~~~~ LOOP START ~~~~~~~~~~~~~~~~~~~~~~
!========================================================

*DO,QQ,1,numlines2

!Saves file to this point so it can reload while keeping parameters
SAVE,’FINAL’,’db’,’C:\Users\stefa\’

*DO,ZZ,1,numlines

w0=myarray(ZZ,1,1) !mm
sy=myarray(ZZ,2,1) !MPa
E=myarray(ZZ,3,1) !MPa

!========================================================
! INSERT PLATE SCANTLINGS
!========================================================

a=3850 !mm
b=myarray2(QQ,1,1) !mm
t=myarray2(QQ,2,1) !mm
v=0.3 !Poisson’s Ratio

!Parameters to change
Et=1000 !Tangent Modulus
ES=50 !Element Size
dl=myarray(ZZ,4,1) !Applied Displacement

!========================================================
! BUCKLING HALF WAVE CALCULATION
!========================================================

n_plate=1
*DO,JJ,1,1000
*IF,(n_plate**2+n_plate)**(0.5),LE,a/b,THEN
n_plate=n_plate+1
*ELSEIF,(n_plate**2+n_plate)**(0.5),GE,a/b,THEN
*EXIT
*ENDIF
*ENDDO
n_plate=ABS(n_plate)
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!========================================================
! ELEMENT TYPE
!========================================================

/PREP7

!Very important. The solution doesn’t converge well with SHELL181
ET,1,SHELL281
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,E
MPDATA,PRXY,1,,v

!========================================================
! SECTION DEFINITION
!========================================================

SECTYPE,1,SHELL,,plate
SECDATA,t,1,0.0,5! thickness, material, angle, integration points
SECOFFSET,MID

!========================================================
! PLATE DESIGN
!========================================================

!Keypoints
K,1,0,0,,
K,2,a,0,,
K,3,a,b,,
K,4,0,b,,

!Create plate area with skinning
LSTR,1,2
LSTR,3,4
ASKIN,1,2

!Assign mesh attributes to the plate
ASEL,S,,,1
AATT,1,,,,1
ESIZE,ES
AMESH,1

!!!!!
ALLSEL,ALL
APLOT,ALL
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NUMMRG,ALL, , , ,LOW

!Detach mesh in order to modify nodes
MODMSH,DETACH

!========================================================
! LOCAL PLATE BUCKLING
!========================================================

CSYS,0
NSEL,S,LOC,Y,0,b

*GET,NNUMBER,NODE,0,NUM,MAX!FIND MAXIMUM NODE IN FOR *DOLOOP
PI=4*ATAN(1)

*DO,II,1,NNUMBER
*IF,NSEL(II),EQ,1,THEN
*GET,TMPX,NODE,II,LOC,X
*GET,TMPY,NODE,II,LOC,Y
*GET,TMPZ,NODE,II,LOC,Z
Z_PLATE=w0*SIN(n_plate*PI*TMPX/a)*SIN(PI*TMPY/b)
NMODIF,II,TMPX,TMPY,TMPZ+Z_PLATE
*ENDIF
*ENDDO

!========================================================
! MATERIAL PROPERTIES
!========================================================

/PREP7
TB,BISO,1,1,2,
TBTEMP,0
TBDATA,,sy,Et,,,,
ERESX,NO
FINISH

!========================================================
! COUPLING
!========================================================

/PREP7
NSEL,S,LOC,x,0
CP,1,UX,ALL
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!========================================================
! SOLUTION
!========================================================

/SOLU
CSYS,0
ANTYPE,STATIC
AUTOTS,1
NLGEOM,1
NSUBST,300,500,200
OUTRES,ERASE
OUTRES,ALL,ALL

!Select nodes at periphery
NSEL,S,LOC,y,0
NSEL,A,LOC,y,b
NSEL,A,LOC,x,0
NSEL,A,LOC,x,a
D,ALL,UZ,0

!Select nodes at X=a
NSEL,S,LOC,x,a
D,ALL,UX,0

!Select nodes at X=0, Y=0
NSEL,S,NODE, ,1
D,ALL,UY,0
D,ALL,ROTZ,0

!Apply deformation at X=0
NSEL,S,LOC,x,0
D,ALL,UX,dl

!========================================================
! SOLUTION CALCULATION
!========================================================

ALLSEL, ALL
/STATUS,SOLU
SOLVE

FINISH

!========================================================
! EXPORTING RESULTS
!========================================================

/POST1
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CSYS,0
SET,LAST
ALLSEL
*GET,SB,ACTIVE,0,SET,SBST
*CFOPEN,Reaction_Forces_FX,txt,,APPEND

fxmax=1
*DO,I,1,SB
SET,1,I
*GET,fx,NODE,1,RF,FX
*IF,fx,GT,fxmax,THEN
fxmax=fx
*ENDIF
*ENDDO

!Checking if the S-S curve has reached sult
SET,1,SB
*GET,fx,NODE,1,RF,FX
fxlast=fx

*IF,fxlast,LT,fxmax,THEN
*VWRITE,fxmax
(E16.8)
*CFCLOS
*ELSE
*VWRITE,fxmax,0
(E16.8,E16.8)
*CFCLOS
*ENDIF

FINISH

RESUME,’FINAL’,’db’,’C:\Users\stefa\’,0,0

*ENDDO !End of ZZ loop

!----------------------------------------------
!Adds a new empty line for every scantlings set
*CFOPEN,Reaction_Forces_FX,txt,,APPEND
*VWRITE,
()
*CFCLOS
!----------------------------------------------

*ENDDO !End of QQ loop
!========================================================
!~~~~~~~~~~~~~~~~~~~~~~~ LOOP END ~~~~~~~~~~~~~~~~~~~~~~~
!========================================================
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