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Περίληψη

Η παρούσα διπλωματική εργασία ασχολείται με το θεμελιώδες πρόβλημα της εκμάθησης

κατανομών από ελλιπή δείγματα. Στο πλαίσιο αυτό στόχος είναι η εκτίμηση μιας κατανο-

μής πιθανότητας με βάση ένα σύνολο δειγμάτων που μπορεί να είναι ελλιπές. Αυτό σημαίνει

ότι όποια δείγματα της κατανομής δεν ανήκουν σε ένα συγκεκριμένο, άγνωστο σύνολο, που

ονομάζουμε σύνολο αποκοπής, αφαιρούνται από το σύνολο των δειγμάτων. Η δυσκολία κλιμα-

κώνεται όταν απαιτούμε η εκτίμηση αυτή να δίνεται από έναν αλγόριθμο αποδοτικά, δηλαδή με

τη χρήση πολυωνυμικού πλήθους δειγμάτων και μετά από πολυωνυμικό αριθμό επαναλήψεων.

Μελετούμε την περίπτωση δύο συγκεκριμένων κατανομών: της Διωνυμικής κατανομής του

Poisson και του μοντέλου Mallows για κατανομές κατάταξης. Σκοπός μας είναι η εύρεση

εκείνων των συνθηκών για το σύνολο αποκοπής που είναι τόσο αναγκαίες όσο και ικανές για

την επιτυχή εκμάθηση των κατανομών. Στην περίπτωση της Διωνυμικής κατανομής Pois-

son, αποδεικνύουμε ότι το πρόβλημα είναι, γενικά, αδύνατο, αλλά γίνεται ευκολότερο καθώς

η κατανομή πλησιάζει την Κανονική κατανομή. Το γεγονός αυτό δηλώνει μία ενδιαφέρουσα

μετάβαση στη δυσκολία του προβλήματος. Στην περίπτωση του μοντέλου Mallows, διατυ-

πώνουμε μία ικανή συνθήκη για την επιλυσιμότητα του προβλήματος.

Λέξεις Κλειδιά

Θεωρία Μάθησης, Μάθηση Κατανομών, Μάθηση από Ελλιπή Δείγματα, Αποκομμένες

Κατανομές, Θεωρία Πιθανοτήτων, Διωνυμική Κατανομή Poisson, Μοντέλο Mallows

1





Abstract

This thesis is concerned with the fundamental problem of learning distributions from

truncated samples. In this setting the purpose is to estimate a probability distribution

based only on truncated samples. That means that samples falling outside a specific,

unknown set are not available. The challenge becomes greater when we demand that

these estimations are given by an efficient -in terms of sample and traditional complexity-

algorithm. We study the learnability of two specific distributions in this setting: the

Poisson Binomial Distribution and the Mallows Distribution. We are interested in those

conditions on the truncation set that care both sufficient and necessary to learn these

distributions. In the first case, we are faced with an impossible problem that becomes

easier as the distribution gains structure, thus indicating an interesting transition on

the difficulty of the problem. For the Mallows Model we give a sufficient condition and

recognise the sub-optimality of a well-established method in the field of rank aggregation.

Keywords

Learning Theory, Distribution Learning, Learning from Truncated Samples, Truncated

Distribution, Probability Theory, Poisson Binomial Distribution, Mallows Model
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Κεφάλαιο 1

Εκτεταμένη Ελληνική Περίληψη

1.1 Εισαγωγή

΄Ενας από τους πιο πολυσυζητημένους τομείς της σύγχρονης επιστήμης είναι, αδιαμφι-

σβήτητα, η Μηχανική Μάθηση. Η τεχνική του συμπερασμού με βάση δεδομένα επιτυγχάνει

να αντιμετωπίσει πολύπλοκα προβλήματα που δυσκολεύουν ακόμα και τους ανθρώπους όπως

η αναγνώριση συναισθημάτων [VdMH08]. Η Θεωρία Μάθησης παρέχει τη μαθηματική θεμε-

λίωση και επιστημονική τεκμηρίωση των εν λόγω τεχνικών [Vap99], [Val84].

Στο αυτά τα πλαίσια, η Μάθηση Κατανομών, η οποία πρώτη φορά μελετάτε στο [KMR+94],

κατέχει πρωταγωνιστικό ρόλο. Ο Στατιστικός συμπερασμός μελετούσε τα φαινόμενα μέσω

πιθανοτικών μοντέλων τους εδώ και δεκαετίες. Συγκεκριμένα, βασίζεται στα δεδομένα για τη

συμπεριφορά των συστημάτων ώστε να προσδιορίσει το σωστό μοντέλο που περιγράφη το φαι-

νόμενο. Η αυτοματοποίηση αυτής της μεθόδου ώστε να επιτελείται από μηχανές-υπολογιστές

εγκαθιδρύει ένα νέο πεδίο έρευνας, εισάγει πρωτοφανείς προκλήσεις και παρέχει πληροφορίες

σχετικά με τα όρια των ικανοτήτων μας.

Η Μάθηση Κατανομών από Ελλιπή Δείγματα συγκαταλέγεται μεταξύ των πιο επιτακτι-

κών από αυτές τις προκλήσεις. Σε αυτό το πρόβλημα υποθέτουμε ότι κάποιες συμπεριφορές-

δεδομένα του συστήματος δεν είναι ανιχνεύσιμες από τον παρατηρητή (ή απλώς χάνονται στην

πορεία). ΄Ετσι, έχουμε πρόσβαση αποκλειστικά σε δεδομένα που ανήκουν σε ένα συγκε-

κριμένο σύνολο. Είναι φανερό ότι το εν λόγω πρόβλημα παρέχει μία μετάβαση μεταξύ του

εφικτού και του ανέφικτου. Στην τετρτμμένη περίπτωση που μόλις ένα δείγμα παρέχεται, η

ανάκτηση οποιασδήποτε πληροφορίας σχετικά με τη συμπεριφορά του φαινομένου είναι αδύνα-

τη. Αντίθετα, αν τα δεδομένα δεν είναι ελλιπή το πρόβλημα ανάγεται στην παραδοσιακή μορφή

του, που θα είναι επιλύσιμη (εδώ δεχόμαστε την υπόθεση ότι κανείς ακολουθεί πορεία από

το απλούστερο στο συνθετότερο κατλα τη διαδικασία επίλυσης ενός προβλήματος). Συνε-

πώς, η Μάθηση Κατανομών από Ελλιπή Δείγματα ασχολείται με ένα σύγχρονο πρόβλημα που

βρίσκεται στο σύνορο του πραγματοποιήσιμου. Η ακριβής θέση του συνόρου εξαρτάται από

το σύνολο αποκοπής S. Σε αυτή τη διπλωματική εργασία μας απασχολεί ο χαρακτηρισμός του

συνόλου S ώστε να εγγυάται τη μάθηση της κατανομής. Ακόμα περισσότερο, επιθυμούμε να

βρούμε εκείνα τις συνθήκες για το S που είναι απαραίτητες για την εκμάθησης μιας κατανομής.

Η Μάθησης από Ελλιπή Δεδομένα μπορεί να θεωρηθεί ένα υπο-πρόβλημα της Σθενα-

ρής Στατιστικής, βλ. [Hub65], [Hub92]. Σε αυτό το πλαίσιο, επιθυμούμε να αναπτύξουμε

μεθόδους που δεν επηρεάζονται από μικρές ανακρίβειες στα δεδομένα τους. Η ανθεκτικότη-

τα σε σφάλματα είναι ζωτικής σημασίας για τα πραγματικά συστήματα που είναι ευάλωττα
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14 Κεφάλαιο 1. Εκτεταμένη Ελληνική Περίληψη

απέναντι στην κακοβουλία ή, απλώς, την άγνοια των χρηστών. Η Σθεναρή Μάθηση Κα-

τανομών ([DKK+19]) αναπτύσσει αλγορίθμους που είναι ανθεκτικοί σε μία τάξης ε φθορά

των δειγμάτων. Οποιοδήποτε είδος φθοράς είναι επιτρεπτό σε αυτα τό το πρόβλημα, συμπε-

ριλαμβανομένης της διαγραφής, πρόσθήκης ή αντικατάστασης των δεδομένων, εφόσον αυτή

περιορίζεται σε ένα ε ποσοστό αυτών. Προκύπτει ότι το αποτέλεσμα αυτών των αλγορίθμων

δεν μπορεί να είναι περισσότερο από ε-ακριβές. Δηλαδή, η κατανομή που θα βρει ο αλγόριθμος

θα έχει ε-σφάλμα στη χειρότερη περίπτωση [JO19]. Πίσω στο πρόβλημα των Ελλιπών Δεδο-

μένων, σημειώνουμε ότι επιτρέπουμε αποκλειστικά τη διαγραφή δειγμάτων. ΄Ετσι είμαστε σε

θέση να αποσυνδέσουμε το ποσοστό της φθοράς των δεδομένων (έστω α) από την ανακρίβεια

του αποτελέσματος (έστω ε).

Παρά την προφανή χρησιμότητα λύσεων για το παραπάνω πρόβλημα μόλις πρόσφατα δόθη-

κε μία πλήρης λύση για την περίπτωση της Κανονικής κατανομής σε d διαστάσεις στο [DGTZ18].

Ακολούθησε μία σειρά αποτελεσμάτων που μελετά το πρόβλημα μάθησης κατανομών από ελ-

λιπή δείγματα στα πλαίσια των συνεχών κατανομών [KTZ19], [DKTZ21], των διακριτών κα-

τανομών [FKT20], της μίξης κατανομών [NP20] και της παλινδρόμησης [DGTZ19], [IZD20],

[DSYZ21]. Στο [FKT20] πραγματοποιείται μια προσαρμογή των τεχνικών για την μάθηση

της Κανονικής κατανομής (που δόθηκε στο [DGTZ18]) για την περίπτωση μιας διακριτής

κατανομής, της κατανομής της μίξης n κατανομών Βερνουλλι. Η διαδικασία αυτή φανερώνει

μία εγγενή ευαισθησία των διακριτών κατανομών στην αποκοπή τως δεδομένων τους. Απο-

δεικνύεται ότι ορισμένες επιπρόσθτες (σε σχέση με την περίπτωση της Κανονικής κατανομής)

υποθέσει για το σύνολο αποκοπής S είναι αναγκαίες για την αποδοτική εκμάθησης της εν

λόγω διακριτής κατανομής.

Στην εργασία αυτή μελετάμε σε βάθος το φαινόμενο αυτό. Εξετάζουμε δύο συγκεκριμένες

διακριτές κατανομές και αναλύουμε τις συνθήκες που πρέπει να ισχύουν για το S και που

ελέγχουν την ικανότητα εκμάθησης.

1.2 Θεωρία Πιθανοτήτων

Στην παρούσα ενότητα παρουσιάζουμε κάποιες βασικές έννοιες της θεώριας πιθανοτήτων.

Αυτές θα αποτελέσουν τα εργαλεία που θα οδηγήσουν στα συμπεράσματα αυτής της εργασιας.

Αρχικά, υπενθυμίζουμε κάποιες βασικές κατανομές που εμφανίζονται κατ΄ εξακολούθηση

στα παρακάτω.

• Κατανομή Bernoulli

Μια τυχαία μεταβλητή ακολουθεί την κατανομή Bernoulli, X ∼ Be(p) όταν παίρνει την

τιμή 1 με πιθανότητα p και την τιμή 0 διαφορετικά. Στην ουσία μια τυχαία κατανομή

Bernoulli προσδιορίζει αν ένα γεγονός που έχει πιθανότητα p θα συμβεί. Γι΄ αυτό η X

ονομάζεται και δείκτρια τυχαία μεταβλητή.

• Διωνυμική Κατανομή
Μια τυχαία μεταβλητή ακολουθεί τη Διωνυμική κατανομή, X ∼ Bin(n, p) αν

p(k) =

(
n

k

)
pk(1− p)n−k , k ∈ [n] .

• Κανονική Κατανομή
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Μια τυχαία μεταβλητή ακολουθεί τη Κανονική κατανομή, X ∼ N(µ, σ2) αν

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R .

Στη συνέχεια υπενθυμίζουμε το Κεντρικό Οριακό Θεώρημα. Το ΚΟΘ αποτελεί το πιο

θεμελώδες αποτέλεσμα της θεωρίας πιθανοτήτων. Σύμφωνα με αυτό, η κατανομή του α-

θροίσματος μιας ακολουθίας ανεξάρτητων, ισόνομων τυχαίων μεταβλητών προσεγγίζει την

κανονική κατανομή καθώς το πλήθος των όρων του αθροίσματος τείνει στο άπειρο.

Θεώρημα 1.2.1 (Κεντρικό Οριακό Θεώρημα). ΄Εστω X1, . . . , Xn μια ακολουθία ανεξάρ-

τητων, ισόνομων τυχαίων μεταβλητών, με μέση τιμή E[Xi] = µ και διασπορά Var[Xi] = σ2
.

Συμβολίζουμε:

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

.

Τότε η αθροιστική συνάρτηση κατανομής της Zn συγκλίνει στην αθροιστική συνάρτηση κα-

τανομής της Κανονικής κατανομής, δηλαδή

lim
n→∞

Pr [Zn ≤ z] = Φ (z) ,

για κάθε z ∈ R.

Σημειώνουμε ότι η απαίτηση οι τυχαίες μεταβλητές να είναι ισόνομες μπορεί να αρθεί υπό

κάποιους άλλους, πολύ ελαστικούς περιορισμούς.

Σημαντικό ρόλο στα αποτελέσματα αυτής της διπλωματικής διαδραματίζει η σύγκριση με-

ταξύ κατανομών. Για το σκοπό αυτό, ορίζουμε την TV απόσταση μεταξύ κατανομών.

Ορισμός 1.2.1 (TV απόσταση). ΄Εστω οι κατανομές πιθανότητας P , Q σε ένα χώρο πιθα-

νότητας (R,B). Ορίζουμε την TV απόσταση μεταξύ των P , Q ως:

TV (P,Q) = sup
B∈B
|P (B)−Q (B)| .

Σημειώνουμε ότι στην περίπτωση που οι κατανομές είναι διακριτές με πεδίο ορισμού F

ισχύει η ισοδύναμη σχέση:

TV (P,Q) =
1

2

∑
k∈F
|p (k)− q (k)| .

1.3 Θεωρία Μάθησης

Το γενικό πρόβλημα με το οποίο ασχολείται η παρούσα διπλωματική εργασία αφόρα τη

μάθηση κατανομών. Θεωρούμε ότι έχουμε πρόσβαση σε ένα σύνολο δεδομένων που προέρ-

χονται από μια συγκεκριμένη, άγνωστη κατανομή. Σκοπός μας είναι η ανάπτυξη αλγορίθμων

που να βρίσκουν μια καλή προσέγγιση της άγνωστης κατανομής αποδοτικά.

Ορίζουμε την έννοια της αποδοτικότητας με δύο κριτήρια: πρώτον, ο αλγόριθμος χρει-

άζεται πολυωνυμικό πλήθος δειγμάτων από την άγνωστη κατανομή και, δεύτερον, τερματίζει

μετά από πολυωνυμικό αριθμό δειγμάτων. Φυσικά, ο όρος ΄πολυωνυμικό΄ υπονοεί ότι υπάρ-

χουν κάποιες παράμετροι ως προς τις οποίες θα έχουμε πολυωνυμική εξάρτηση. Οι παράμετροι

αυτοί καθορίζονται από το εκάστοτε πρόβλημα μάθησης.
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Επιπλέον, πρέπει να προσδιορίσουμε τον όρο ΄καλή προσέγγιση΄. Σε αυτήν την εργασία

στόχος μας είναι να προσεγγίσουμε την άγνωστη κατανομή σε TV απόσταση το πολύ ε,

δηλαδή όσο μικρή θέλουμε.

Ταυτόχρονα, δεχόμαστε μία ακόμη πρόκληση. Τα δείγματα της άγνωστης κατανομής

στα οποία έχουμε πρόσβαση πρέπει να ανήκουν σε ένα προκαθορισμένο σύνολο S το οποίο

είναι άγνωστο στον αλγόριθμο (τουλάχιστον στη γενική περίπτωση). Αυτό είναι το πρόβλημα

της μάθησης κατανομών από ελλιπή δείγματα. Ονομάζουμε το σύνολο S σύνολο αποκοπής,

αφού όσα δείγματα δεν ανήκουν σε αυτό ΄κόβονται΄. Τελικά, τα δείγματα στα οποία έχουμε

πρόσβαση φαίνεται να ανήκουν σε μια καινούργια κατανομή, την οποία ονομάζουμε αποκομμένη

κατανομή.

Ορισμός 1.3.1 (Αποκομμένη Κατανομή). ΄Εστω μία κατανομή πιθανότητας D με πεδίο ορι-
σμού Z. Θεωρούμε το σύνολο αποκοπής S ⊆ Z. Η αποκομμένη στο S κατανομή πιθανότητας
D, που θα συμβολίζεται με DS , ορίζεται ως:

DS (x) =
1{x∈S}

D(S)
D (x) , x ∈ Z .

Ο ρόλος της Κανονικής κατανομής στη Θεωρία Πιθανοτήτων και τη Στατιστική είναι

αδιαμφισβήτητα θεμελιώδης. Ως αποτέλεσμα βρίσκεται στο επίκεντρο της έρευνας και η συ-

μπεριφορά της έχει αναλυθεί για πληθώρα προβλημάτων. Στο πρόβλημα που μας απασχολεί η

απάντηση δόθηκε στο [DGTZ18] για την Κανονική κατανομή σε d διαστάσεις. Στο Θεώρημα

1.3.1 επαναλαμβάνουμε το αποτέλεσμα για την περίπτωση που d = 1.

Θεώρημα 1.3.1. ΄Εστω ένα μετρήσιμο σύνολο S και δίνεται πρόσβαση σε μαντείο που ε-

πιβεβαιώνει αν ένα στοιχείο ανήκει στο S. Θεωρούμε ότι μια άγνωστη Κανονική κατανομή

N(µ, σ2) έχει μέτο στο S που ισούται με a = PrX∼N(µ,σ2)[X ∈ S] > 0. Δίνονται, επίσης,

δείγματα x1, x2, . . . από μία αποκομμένη Κανονική κατανομή NS(µ, σ2). Τότε, υπάρχει α-

ποδοτικός αλγόριθμος που επιστρέφει εκτιμήσεις µ̂ και σ̂2
. Για κάθε ε > 0, ο αλγόριθμος

χρησιμοποιεί O(1/ε2) δείγματα και κάνει ισάριθμες ερωτήσεις στο μαντείο για δώσει τις πα-

ραπάνω εκτιμήσεις που ικανοποιούν τα παρακάτω:

|µ− µ̂| < σε και

∣∣∣∣1− σ̂2

σ2

∣∣∣∣ < ε2

με πιθανότητα τουλάχιστον 99%. Επιπλέον, ισχύει ότι:

TV
(
N(µ, σ2), N(µ̂, σ̂2)

)
< O(ε) .

Ο αλγόριθμος που επιτυγχάνει την παραπάνω απόδοση είναι ένας από τους πιο θεμελι-

ώδεις αλγορίθμους της Θεωρίας Μάθησης: ο αλγόριθμος Στοχαστικής Κατάβασης Κλίσης.

Παρουσιάζουμε τον αλγόριθμο στο 1.

Ο αλγόριθμος Κατάβασης Κλίσης (η μη-Στοχαστική εκδοχή του) εφαρμόζεται για την

εύρεση του ελάχιστου σημείου μιας συνάρτησης-στόχου που επιθυμούμε να ελαχιστοποιήσου-

με. Η αποδοτική εύρεση του σημείου επιτυγχάνεται όταν η συνάρτηση-στόχος ικανοποιεί

ορισμένες προϋποθέσεις. Η βασικότερη από αυτές είναι η κυρτότητα. ΄Οταν η συνάρτηση είναι

κυρτή (βλ. 4.2) η πληροφορία γα την κλίση της σε κάθε σημείο υποδεικνύει την κατεύθυν-

ση προς την οποία βρίσκεται το ελάχιστο. Συνεπώς, περιγράψαμε τη βασική λειτουργία του
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αλγορίθμου: Ξεκινώντας από ένα τυχαίο σημείο υπολογίζει την κλίση της συνάρτηση-στόχου

σε αυτό και κινείται προς την κατεύθυνσή του ελάχιστου σημείου.

Στην περίπτωση του αλγορίθμου Στοχαστικής Κατάβασης Κλίσης δεν έχουμε πρόσβα-

ση στην πραγματική τιμή της Κλίσης σε κάθε σημείο. Αποδεικνύεται ότι αν γνωρίζουμε μία

αμερόληπτη εκτίμηση αυτής ο αλγόριθμος θα συγκλίνει και πάλι. Αυτή την ιδιότητα εκμε-

ταλλεύεται το [DGTZ18], όπου προσδιορίζεται ένας αμερόληπτος εκτιμητής της Κλίσης της

συνάρτησης-στόχου. Ο εκτιμητής αυτός βασίζεται στην υπόθεση ότι έχουμε πρόσβαση στο

σύνολο αποκοπής S. Συγκεκριμένα υποθέτουμε ότι υπάρχει ένα μαντείο όπου μπορούμε να ε-

λέγχουμε αν ένα στοιχείο του πεδίου ορισμού ανήκει στο S. Η πληροφορία αυτή αποδεικνύεται

ότι είναι αναγκαία για την σύγκλιση του αλγορίθμου σε πεπερασμένο αριθμό βημάτων.

1.4 Διωνυμική Κατανομή Poisson

Η Διωνυμική Κατανομή Poisson είναι μια από τις πιο βασικές διακριτές κατανομές. Προ-

κύπτει φυσικά στη μοντελοποιήση πληθώρας προβλημάτων και έχει μεγάλη εκφραστική ικα-

νότητα. Η Διωνυμική Κατανομή Poisson ταξης n ορίζεται ως το άθροισμα n ανεξάρτητων

τυχαίων μεταβλητών που ακολουθούν την κατανομή Bernoulli. Θα αναφερόμαστε σε αυτή με

τη συντομογραφία PBD ή PBDn όταν η τάξη δεν είναι σαφής από τα συμφραζόμενα. Παρατη-

ρούμε ότι η PBD αποτελεί γενίκευση της Διωνυμικής κατανομής την οποία πρώτος μελέτησε

ο Poisson, εξού και η ονομασία της.

Στην Παράγραφο 1.2 παρουσιάσαμε το Κεντρικό Οριακό Θεώρημα. Σημειώσαμε, επίσης,

ότι υπάρχουν εκδοχές του ΚΟΘ οι οποίες παρακάμπτουν την υπόθεση για ισόνομες τυχαίες

μεταβλητές. Ακολουθεί μια σημαντική παρατήρηση. Η PBD ικανοποιεί τις προϋποθέσεις του

θεωρήματος και, συνεπώς, πλησιάζει ασυμπτωτικά την κανονική κατανομή.

Σε ένα περισσότερο σύγχρονο αποτέλεσμα, στο [DP15] δίνεται ένας πλήρης χαρακτηρισμός

του συνόλου των PBDs. Συγκεκριμένα αποδεικνύεται ότι μπορούμε να προσεγγίσουμε, με

όση ακρίβεια θέλουμε, οποιαδήποτε PBD με μία άλλη PBD έτσι ώστε η τελευταία να έχει

μια ορισμένη μορφή. Συγκεκριμένα μπορεί να είναι είτε μια Διωνυμική κατανομή με σχετικά

υψηλή διασπορά είτε μια άλλη PBD με αρκετά λιγότερες παραμέτρους l << n. Είναι γνωστό

ότι μία Διωνυμική κατανομή με υψηλή διασπορά προσεγγίζει την κανονική κατανομή, οπότε

επιστρέφουμε στο ΚΟΘ.

Θεώρημα 1.4.1. ΄Εστω X1, . . . , Xn μια ακολουθία αμοιβαία ανεξάρτητων δεικτριών τυχα-

ίων μεταβλητών, και k ∈ N. Τότε, υπάρχει μια δεύτερη ακολουθία αμοιβαία ανεξάρτητων
δεικτριών τυχαίων μεταβλητών Y1, . . . , Yn τέτοια ώστε να ισχύουν τα ακόλουθα:

• TV (
∑

iXi,
∑

i Yi) ≤ 41/k;

• τουλάχιστον ένα από τα παρακάτω ικανοποιείται:

– (Διωνυμική μορφή) υπάρχουν l ∈ {1, . . . , n} και q ∈ { 1
n ,

2
n , . . . ,

n
n} τέτοια ώστε,

για κάθε i ≤ l, E[Yi] = qi και, για κάθε i > l, E[Yi] = 0· επιπλέον, τα l και q

ικανοποιούν τις σχέσεις lq ≥ k2
και lq(1− q) ≥ k2 − k − 1· ή

– (k-αραιή μορφή) υπάρχουν κάποια l ≤ k3
τετοια ώστε, για κάθε i ≤ l, E[Yi] ∈

{ 1
k2
, 2
k2
, . . . , k

2−1
k2
} και, για κάθε i > l, E[Yi] ∈ {0, 1}.
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Τότε μπορούμε να ανάγουμε το πρόβλημα της εκμάθησης μιας PBD σε δύο υποπροβλήμα-

τα: την εκμάθηση μια Διωνυμικής κατανομής και την εκμάθηση μιας αραιης PBD. Πράγμα-

τι, αυτή είναι η τακτική που ακολουθείται στο παραδοσικό πρόβλημα μάθησης, που έχουμε

πρόσβαση στο σύνολο του πεδίου ορισμού. Στην επόμενη ενότητα θα προσπαθήσουμε να την

εφαρμόσουμε στο πρόβλημα που μας ενδιαφέρει στην παρούσα εργασία: την εκμάθηση από

ελλιπή δείγματα.

1.5 Μάθηση Διωνυμικής Κατανομής Poisson από Ελλι-

πή Δείγματα

Το πρώτο βήμα για τη μελέτη της δυνατότητας εκμάθησης μιας κατανομής από ελλιπή

δείγματα είναι η μελέτη της αναγνωρισιμότητας της αποκομμένης κατανομής. Παρατηρείστε

ότι όταν αναφερόμαστε σε μία οικογένεια κατανομών που προσδιορίζονται από έναν αριθμό

παραμέτρων, για κάθε διαφορετική τιμή των παραμέτρων η κατανομές διαφέρουν, έστω και

λίγο. Αυτό είναι απαραίτητο για να είναι καλά ορίσμενο το σύνολο.

Ωστόσο, εάν όταν περιορίζουμε την κατανομή σε ένα συγκεκριμένο υποσύνολο του πεδίου

ορισμού της, δημιουργούμε μια νέα οικογένεια κατανομών για την οποία δεν έχουμε τέτοια

εγγύηση. Εάν δύο διαφορετικές κατανομές καταλήγουν στην ίδια αποκεμμένη κατανομή είναι

αδύνατο να προσδιορίσουμε την αρχική. Αυτό ισχύει ακόμα κι αν γνωρίζουμε επακριβώς την

αποκομμένη κατανομή, πόσο μάλλον όταν έχουμε απλώς πρόσβαση σε δείγματά της.

Με βάση την παραπάνω παρατήρηση, εξετάζουμε υπό ποιες προϋποθέσεις για το S το

σύνολο των PBDs είναι αναγνωρίσιμο από την αποκομμένη εκδοχή του. Παίρνουμε ένα αρ-

νητικό αποτέλεσμα. Δίνουμε δύο διαφορετικές PBDs, με TV απόσταση τουλάχιστον 1/2

που αν κρύψουμε μόλις ένα στοιχείο του πεδίου ορισμού τους, ταυτίζονται. ΄Ετσι, στη γενική

περίπτωση, είναι αδύνατο να προσδιοριστεί αλγόριθμος που, για κάθε S και για κάθε PBD, να

εγγυάται ότι το αποτέλεσμά του προσεγγίζει την πραγματική κατανομή με καλή πιθανότητα.

Στο σχήμα 2.1 μπορούμε να δούμε αυτο το ζεύγος κατανομών.

Ωστόσο το Θεωρήμα 1.4.1 αποκαλύπτει ότι ένα μεγάλο υποσύνολο των PBDs μπορεί να

προσεγγιστεί από ΄Κανονικές΄ κατανομές. ΄Ομως γνωρίζουμε, από το θεώρημα 1.3.1 ότι η

Κανονική κατανομή μπορεί να βρεθεί αποδοτικά από ελλιπή δείγματα. Μάλιστα, γνωρίζουμε

τον ακριβή χαρακτηρισμό του συνόλου αποκοπής S σε αυτή την περίπτωση. Παρατηρούμε

ότι όσο πιο κοντά είμαστε σε μια συνεχή κατανομή, η μάθηση από ελλιπή δείγματα γίνεται

εφικτή. Η πρόθεσή μας είναι να χρησιμοποιήσουμε τον αλγόριθμο του [DGTZ18] για να

βρούμε τη μέση τιμή και την διασπορά της PBD. ΄Ετσι θα μπορέσουμε να προσδιορίσουμε τις

παραμέτρους της Διωνυμικής κατανομής που σύμφωνα με το Θεώρημα 1.4.1 την προσεγγίζει.

Παρόλα αυτά, η προσαρμογή του αποτελέσματος 1.3.1 για την περίπτωση των PBDs είναι

απαιτητική. Κατ΄ αρχάς, παρατηρούμε ότι η PBD είναι μια διακριτή κατανομή. Αυτό σημαίνει

ότι η μάζα της Κανονικής κατανομής σε οποιοδήποτε σύνολο αποκοπής S για την PBD θα είναι

μηδενική. Συνεπώς, το θεώρημα δεν προσφέρει κάποια εγγύηση για την αποδοτική υλοποιήση

του αλγορίθμου.

΄Ενα δεύτερο πρόβλημα είναι ότι τα δείγματα δεν προέρχονται πράγματι από μια Κανονική

κατανομή. Ωστόσο, η συνάρτηση-στόχος που θέλουμε να ελαχιστοποιήσουμε υποθέτει δε-

ίγματα από μια Κανονική κατανομή. ΄Ετσι, η εκτίμηση της κλίσης της συνάρτησης-στόχου

δεν είναι αμερόληπτη. Τότε ο αγόριθμος δεν έχει καμία εγγύηση σύγκλισης. Το δεύτερο

αυτό πρόβλημα μπορεί να ξεπεραστεί εύκολα δεδομένου ότι το σφάλμα στην εκτίμηση θα είναι
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μικρό.

Τελικά, περιοριζόμαστε στην πειραματική επιβεβαίωση της εν λόγω τεχνικής. Τα αποτε-

λέσματα παρουσιάζονται στα σχήματα 6.1, 6.2.

1.6 Μάθηση Κατανομής Mallows από Ελλιπή Δείγματα

Η κατανομή Mallows αναφέρεται σε ένα πιθανοτικό μοντέλο που ορίζεται για το σύνολο

των διατάξεων-μεταθέσεων Sm. Σύμφωνα με αυτό, έχουμε ένα σύνολο αντικειμένων A και
δεχόμαστε ότι υπάρχει μία πραγματική διάταξη, π0 ∈ Sm. Τότε κάθε π που προκύπτει από το
μοντέλο είναι θορυβώδης εκδοχή αυτής της πραγματικής διάταξης. Ο θόρυβος κάθε διάταξης-

δείγματος παράγεται σύμφωνα με την εξής διαδικασία: για κάθε ζεύγος αντικειμένων a, b ∈ A
για το οποίο a �π0 b η πιθανότητα η σειρά να διατηρηθεί στο δείγμα, δηλαδή a �π b, είναι
ανάλογη του φ και μεγαλύτερη από 1/2.

΄Ετσι η πιθανότητα μιας διάταξης στο μοντέλοMallows μειώνεται με την απόστασή της από

την πραγματική διάταξη. Ως απόσταση μεταξύ διατάξεων θεωρούμε την απόσταση Kendall-

Tau. Σύμφωνα με αυτήν, για π, σ ∈ Sm,

KT (π, σ) = |{{a, b} ⊆ A : a �π b and b �σ a}| .

Τελικά προκύπτει ο ακόλουθος ορισμός.

Ορισμός 1.6.1 (Κατανομή Mallows). ΄Εστω φ ∈ (0, 1) και π0 ∈ Sm. Συμβολίζουμε με
M(π0, φ) την κατανομή Mallows σύμφωνα με την οποία κάθε διάταξη π ∈ Sm έμφανίζεται
με πιθανότητα

p(π) =
1

Z(φ)
φKT(π,π0) ,

όπου Z(φ) η σταθερά κανονικοποίησης.

Θα μελετήσουμε τις συνθήκες που πρέπει να ισχύουν για το σύνολο αποκοπής S ώστε η

πραγματική διάταξη π0 να μπορεί να βρεθεί με πολυωνυμικό πλήθος δειγμάτων, σε πολυωνυμι-

κό χρόνο. Στην περίπτωση που τα δείγματα είναι πλήρη, δηλαδή S = Sm, η απάντηση δίνεται
στο [CPS13]. Το ακόλουθο θεώρημα επαναλαμβάνει αυτό το απότέλεσμα.

Θεώρημα 1.6.1. Για κάθε δ > 0, υπάρχει πολυωνυμικός αλγόριθμος που βρίσκει την πραγ-

ματική διάταξη π0 του μοντέλου Mallows με πιθανότητα τουλάχιστον 1− δ, χρησιμοποιώντας
O(log (m/δ)) δείγματα από τηνM(π0, φ).

Η απόδειξη του παραπάνω θεωρήματος υποδεικνύει μία συνθήκη για τηMS(π0, φ) ώστε

δείγματα από την αποκομμένη κατανομή να αρκούν για να μάθουμε το π0. Δηλαδή, έχουμε

μια ικανή συνθήκη για μάθηση από ελλιπή δείγματα.

Ορισμός 1.6.2. Θα λέμε ότι ηMS(π0, φ) είναι συνεπής αν για κάθε ζεύγος αντικειμένων

a, b ∈ A τέτοιο ώστε a �π0 b ισχύει ότι:

pSa�b > pSb�a ,

όπου pSa�b =
∑

a�πbMS(π) είναι η πιθανότητα η αποκομμένη κατανομή να διατάξει το a πάνω

από το b.
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Τότε, εντελώς ανάλογα με το Θεώρημα 1.6.1, αποδεικνύεται το ακόλουθο θεώρημα.

Θεώρημα 1.6.2. ΄Εστω η αποκομμένη κατανομή Mallows MS(π0, φ). Υποθέτουμε ότι η

MS(π0, φ) είναι συνεπής. Επίσης, έστω ότι δmin = mina�π0b(p
S
a�b − pSb�a). Τότε, για κάθε

δ > 0, υπάρχει πολυωνυμικός αλγόριθμος που βρίσκει την πραγματική διάταξη π0 με πιθα-

νότητα τουλάχιστον 1−δ, χρησιμοποιώντας O(log (m/δ)/δ2
min) δείγματα από τηνMS(π0, φ).

Στη συνέχεια ορίζουμε μία συνθήκη που εγγυάται την αναγνωρισιμότητα της αποκομμένης

κατανομήςMS(π0, φ).

Θεώρημα 1.6.3. ΗMS(π0, φ) όπου το φ είναι γνωστό δεν είναι αναγνωρίσιμη αν και μόνο

αν υπάρχει π1 ∈ Sm τέτοιο ώστε, για κάθε πi ∈ S, να ισχύει ότι:

KT (πi, π0)−KT (πi, π1) = c ,

όπου c σταθερά.

Συνεπώς, το Θεώρημα 1.6.3 υποδεικνύει μία αναγκαία συνθήκη για μάθηση της πραγμα-

τικής διάταξης από ελλιπή δείγματα. Ωστόσο, ο στόχος αυτής της εργασίας είναι να βρει

μία συνθήκη που να χαρακτηρίζει την ικανότητα μάθησης. Δηλαδή, μία ικανή και αναγκαία

συνθήκη.

Αρχικά, τονίζουμε ότι οι δύο παραπάνω συνθήκες δεν είναι ισοδύναμες. Δίνουμε ένα

παράδειγμα μιαςMallows κατανομής και ένος συνόλου αποκοπής S ώστε ηMS(π0, φ) να είναι

πάντα αναγνωρίσιμη αλλά να απαιτούνται εκθετικά πολλά δείγματα για να τη αναγνωρίσουμε.

΄Εστω π0 = (1, 2, 3) και οποιοδήποτε φ = 0.3. ΄Εστω S = {(2, 1, 3), (3, 1, 2), (3, 2, 1)}.
Μπορούμε να επαληθεύσουμε με κώδικα (ή με εξαντλητική αναζήτηση με το χέρι) ότι για τις

παραπάνω τιμές ηMS(π0, φ) είναι πάντα αναγνωρίσιμη. Θεωρούμε τώρα S′ = {(2, 1, 3), (3, 1, 2)}.
Με ανάλογες τεχνικές προκύπτει ότι η MS′(π0, φ) δεν είναι αναγνωρίσιμη, άρα το π0 είναι

αδύνατο να βρεθεί από δείγματα της. Ωστόσο, τα δύο σύνολα διαφέρουν μόνο στο στοιχείο

(3, 2, 1), το οποίο χρειάζεται εκθετικά πολλά δείγματα (ως προς το m) για να προκύψει ως

δείγμα. Αυτό είναι άμεσο αν παρατηρήσουμε ότι KT(π0, (3, 2, 1)) =
(
m
2

)
και από τον ορίσμό

της κατανομής Mallows.

Τελικά δεν έχουμε προσδιορίσει με ασφάλεια την ικανή και αναγκαία συνθήκη για το

σύνολο αποκοπής S. Κάνουμε όμως μία σημαντική παρατήρηση. Ο αλγόριθμος που δόθηκε

στο [CPS13] βρίσκει το π0 χρησιμοποιώντας αποκλειστηκά πληροφορία για την ανά ζεύγη

διάταξη των αντικειμένων, αγνοώντας την ολική διάταξη που προσφέρουν τα δείγματα του

Mallows. Φαίνεται ότι, αν και αυτή η πληροφορία αρκεί στην απλή περίπτωση, όταν τα δείγματα

είναι ελλιπή, δεν δίνει η βέλτιστη προσέγγιση για την επίλυση του προβλήματος.

Τέλος, σε μια προσπάθεια να κατανοήσουμε καλύτερα την απαίτηση για συνέπεια της

MS(π0, φ), μελετάμε κάποια συνήθη σύνολα αποκοπής. Αυτά είναι ένα ομοιόμορφα τυχαίο S

και ένα S όπου αφαιρούμε μόνο ένα στοιχείο. Βλέπουμε ότι όσο το φ είναι πιο κοντά στο 1 η

κατανομή Mallows είναι πολύ ευαίσθητη στο να γίνει ασυνεπής.

Θεώρημα 1.6.4. ΄Εστω S ∼u P(Sm). Τότε, η αποκομμένη κατανομήMallowsMS(π0, φ),

όπου φ ∈ (0, 1−
√

16 log (mδ )/m!), είναι συνεπής με πιθανότητα τουλάχιστον 1− δ.

Θεώρημα 1.6.5. ΄Εστω η κατανομήM(π0, φ) και έστω |S| = |Sm|−1. Τότε ηMS(π0, φ)

είναι συνεπής αν
1−φ
1+φZφ > 1, όπου Zφ η σταθερά κανονικοποιήσης της κατανομής Mallows.



Chapter 2

Introduction

Automated Learning undoubtedly lies among the ’hottest’ topics of modern science.

For the first time, instead of making rules and enforcing them to reality, people allow reality

to become the rule. The power of inference offers solutions to intricate problems up to

recognising emotions [VdMH08]. Learning Theory provides the mathematical foundation

that validates these techniques and keeps them in line with the scientific method [Vap99],

[Val84].

In this context, Distribution Learning, introduced in [KMR+94], consists a fundamen-

tal field. In Statistical Inference it has been a long practice to model phenomena through

probability distributions and rely on data to determine them. Automating these methods

for machines to perform them efficiently has opened a new world of study, given rise to

further challenges and broaden our understanding about the limits of our abilities.

One of the most imposing of these challenges is Learning from Incomplete Data. This

is what we will call Truncated Samples. Needless to say, this problem enjoys an innate

transition from possible to impossible. In the trivial case that none or only one sample is

provided, for example, the impossibility of a solution is immediate. On the opposite side

where no truncation is performed we fall back to the traditional setting. Thus, Distribution

Learning from Truncated Samples tackles with an important real-world problem, trading

the extend of realizable. The trade-off is controlled by the characteristics of the truncation

set S. This thesis aspires to specify those conditions on S that determine (iff-conditions)

learnability from truncated samples.

The above framework can be considered a specific case of Robust Statistics [Hub65],

[Hub92]. This area of study is concerned with developing algorithms that are not just

efficient but also robust to minor violations of their assumptions. Such properties are

vital when constructing practical applications, prominent to adversarial or simply ignorant

users. Robust Distribution Learning ([DKK+19]) studies algorithms that are resilient to

a small, ε-corruption of their sample data. It allows any kind of corruption, including

replacing, adding or removing samples. Since an algorithm has traditionally no way to

retrieve the original samples, but may just recognise the adversarial ones, a resulting ε-

error on its output is unavoidable [JO19]. In the case of Truncation, however, where only

removing data is allowed, one is able to distinguish the level of data corruption (say α)

from the quality of result (say ε).

Despite its apparent significance it was only recently that even the elementary prob-

lem of learning a multivariate Gaussian distribution from truncated samples was settled

21
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[DGTZ18]. Following this, a series of works considers the problem of truncated sam-

ples in the fields of continuous distributions [KTZ19], [DKTZ21], discrete distributions

[FKT20], mixtures of distributions [NP20] and regression [DGTZ19], [IZD20], [DSYZ21].

In [FKT20] an adaptation of the techniques for learning a multivariate Gaussian (given

in [DGTZ18]) is made for a discrete distribution, the Boolean Product Distribution. This

method reveals an inherent sensitivity of discrete distributions to truncation. It is proven

that additional assumptions on the truncation set S are necessary to guarantee efficient

learnability of the Boolean Product Distribution. We study the learnability of two discrete

distributions from truncated samples.

This work further investigates the above result. We examine two discrete, parametric

distributions and analyze the conditions on S that secure their learnability.

Setting and Contribution

• Poisson Binomial Distribution Consider the distribution of the sum of n independent

indicators with potentially different success probabilities pi i.e.

X =

n∑
i=1

Xi , Xi ∼ Be(pi) .

Then X follows the Poisson Binomial Distribution of order n and parameters pi i.e.

X ∼ PBD([pi]
n
i=1).

First, we provide an example where the truncation set S hides just one element of the

distribution’s support. We show there are two different PBDs, with TV distance 1/2,

with the exact same truncation on that set, making the problem non-identifiable.

This example can be seen in fig. 2.11. That is, in the general case, learning a PBD

from truncated samples is impossible.

We proceed with an interesting observation about the nature of Poisson Binomial

Distributions. The study of sums of independent random variables has interest the

scientific world for decades and goes back to the well-known Central Limit Theorem.

In [DP15] provide a full characterization for the structure of such a sum, the PBD.

In consequence to the CLT-like results, the class of PBDs consists of two kinds of

distributions: those close to a Gaussian -which are characterized as heavy Binomials-

and those away from it. In other words, those resembling a continuous distribution

and those not. We aim to exploit this structure to highlight our claim: learning from

truncated samples becomes challenging as we depart from continuity.

In the sparse case, the previous impossibility result still holds. This follows imme-

diately, since the distributions in our example have constant TV distance from any

heavy Binomial distribution.

In the close-to-Gaussian case, we apply the Stochastic Gradient Descend, as in

[DGTZ18], to retrieve the mean value and variance of the PBD. Then, the prox-

imity of a heavy PBD to a heavy Binomial distribution implies that the Binomial

with the same mean and variance as the algorithm suggests must be a good solution

to our problem. Recalling their main result we have theorem 2.0.1.

1The code for all the figures (except cited otherwise) can be found here.

https://github.com/MamaliKaterina/LearnTruncatedBinomial
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Theorem 2.0.1 (Theorem 1 [DGTZ18]). Given oracle access to a measurable set S,

whose measure under an unknown normal distribution N(µ, σ2) is a = PrX∼N(µ,σ2)[X ∈
S] > 0, and samples x1, x2, . . . from the truncated normal distribution NS(µ, σ2),

there exists a polynomial time algorithm that returns estimates µ̂ and σ̂2. For all

ε > 0, the algorithm uses O(1/ε2) samples and queries to the oracle and produces

estimates that satisfy

|µ− µ̂| < σε and |1− σ̂2

σ2
| < ε2

with probability at least 99%. Moreover, it holds that:

TV(N(µ, σ2), N(µ̂, σ̂2)) < O(ε) .

Notice there are two basic challenges for adapting the above theorem to the case

of heavy PBDs. First, the PBD is a discrete distribution. So the mass of the

truncation set α is always zero, implying an infinite number of samples and iterations

for the PSGD to converge. Second, the estimators for the sub-gradient of the PSGD

are biased. This is because the objective to be minimized assumes an underlying

Gaussian distribution. However the samples come from a PBD, close to it. Since

the error in the estimation is small, we can prove that PSGD is robust to it. Still

the challenge of discretization is hard to overcome and we leave a formal proof of

the theorem in the case samples come from a heavy PBD open for future work.

For now, we suffice to validate our intuition through experiments. Using samples

from sufficiently heavy PBD we run the SGD for the Gaussian and retrieve an ε-close

to the PBD result.

• Mallows Distribution The Mallows Model is a statistical model defined over the

group of permutations Sm. It has two parameters: the central ranking π0 ∈ Sm and

the dispersion φ ∈ (0, 1). Every ranking is given probability inversely proportional

to its distance from π0, where the Kendall-Tau distance is used. In this work we

consider the parameter φ known. Note that we have now substantially moved away

from continuous distributions.

In the non-truncated case [CPS13] provide an algorithm for retrieving π0 efficiently

(in terms of Mallows samples and runtime). This algorithm is based on the pair-wise

comparisons between the alternatives in a ranking. It decisively relies on a property

of the Mallows distribution: in a Mallows sample any pair of alternatives is ranked

consistently (i.e. the same way) to the central ranking with probability at least 1/2.

We refer to this property as consistency. Based on it, we gain a sufficient condition

on S for learning π0 from truncated Mallows samples.

Informal Theorem 2.0.1. Let MS(π0, φ) be the truncated on S Mallows distribu-

tion. If S does not violate the consistency of the distribution, there is an efficient

algorithm that retrieves π0 given samples from MS(π0, φ).

In search for a more solid characterization of this property on S we prove a connection

to the parameter φ. Whenever φ is away from 1 (that is, the Mallows distribution



24 Chapter 2. Introduction

is not close to uniform), consistency is preserved even if S hides a large number of

rankings.

What is more, the specific algorithm of [CPS13] does not work without this property.

This is an implication that the above condition on S must be necessary as well. Ex-

ploring the necessity of consistency we point out a condition that fully characterizes

identifiability. That means, this is a necessary condition for retrieving π0.

Informal Theorem 2.0.2. MS(π0, φ) is non-identifiable iff there exists π1 such

that KT(π0, πi) − KT(π1, πi) = c, where KT(.) is the Kendall-Tau distance and c

constant.

However, these two results are not equivalent which is illustrated through two ex-

amples. First, we give an identifiable truncated Mallows MS(π0, φ) that demands

exponentially many samples to be distinguished from an non-identifiable one. In

other words, this is an identifiable distribution whose parameter π0 cannot be learnt

efficiently. Moreover, we find an in-consistent Mallows that is not identifiable.

Putting it all together, we must conclude that the algorithm in [CPS13] is not

optimal in the case of truncation. It seems that there exists another algorithm

that is more robust against truncation. It could achieve this if it is not solely based

on the information about the pair-wise comparisons a Mallows ranking provides.

This conclusion is supported by recent results for the Mallows distribution such as

[LM21].
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Figure 2.1: Non-identifiable from their truncation PBDs
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Organization

This work intends to provide a thorough investigation of the causes behind the success

or failure of a distribution learning algorithm. With this in mind Chapter 1 presents the

basic probabilistic notions that, assuming they describe phenomena, are responsible for

their ’good’ properties and enable prediction. In the next Chapter we describe the learning

paradigm that provides the goal for our analysis. Moving forward we deal with our actual

problem. Chapters 3 and 4 introduce the Poisson Binomial Distribution and study its

learnability from truncated samples respectively. Finally, Chapter 5 examines the case

Mallows distribution.





Chapter 3

Probability Theory

This chapter covers the probabilistic background necessary to understand the problem

this thesis is concerned with. At the same time, it is hoped the results presented here

will extend the knowledge and perspective of the reader about statistics and their power

to model real world phenomena. We recall some basic concepts from probability theory.

Using these we build on some powerful tools, distribution concentration and distribution

distance. These are essential for the formalization of our objective and the proof of our

results.

Probability theory can be considered an application of measure theory. That is, a

probability space is a measure space whose measure function satisfies some extra proper-

ties. Though very elegant, this work does not adopt this approach. In what follows, we

wish to simply recall the basic notions in the field so as to introduce two new techniques

for handling probabilistic models: concentration and distance. The first one allows us to

control the probability of bad events happening. Thus is important in establishing the

truth of our theorems. The second defines the properties these theorems guarantee. This

thesis’ main concern is to construct tools/algorithms that calculate ’close’ distributions.

3.1 Basic Concepts

The very first understanding of probability must come from a non-deterministic real

life experiment. Indeed, in every day life, one encounters processes with unpredictable

outcomes, such as the flipping of a coin, tossing a die, etc. However, some outcomes occur

more often than others. This tempts many people to guess on them and, surprisingly, be

correct most of the time! Studying such phenomena and trying to give an explanation for

this luck is the main concern of probability theory.

Probability Measure

The concept we wish to formalize is as follows: Consider an experiment with a set of

possible outcomes. The aim is to quantify the probability that the next execution’s result

belongs to a subset of them. For example, when tossing a die, the possible results are

{1, 2, 3, 4, 5, 6}. The bet, though, might be to get a number ≥ 5. Thus one is interested

in the probability of a subset of the outcomes {5, 6}.
Let Ω denote this set of outcomes which are called elementary events. Then Ω is the

27
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space of elementary events. Consider A ⊆ P(Ω) the subsets of Ω whose probability we

will quantify. These are called events. The set A need not include all the possible subsets

of Ω but it must have the following properties:

• Ω ∈ A.

• If A ∈ A then Ac ∈ A.

• If An ∈ A, n = 1, 2, . . ., then ∪∞n=1An ∈ A.

Such a collection of subsets A is called a σ-algebra. The space (Ω,A) is a measurable

space. The structure of such a space allows to define a measure on it. That is, a function

to quantify the sets in the space. This abstract description of a measure space should

suffice for us here. Then the probability of an event A ∈ A is given by a probability

measure Pr on (Ω,A). Denote Pr[A] the probability of the event. If A is an elementary

event, i.e. A = {ω}, ω ∈ Ω we write Pr[{ω}] = Pr[ω]. Proceeding to a formal definition

we have:

Definition 3.1.1 (Probability Measure). Consider a set Ω and A a σ-algebra on this set.

The function Pr : A− > [0, 1] is a probability measure if:

• Pr[A] ≥ 0, ∀A ∈ A.

• Pr[Ω] = 1.

• Pr[∪∞n=1An] =
∑∞

n=1 Pr[An],∀Ai, Aj such that Ai ∩Aj = ∅, i 6= j, i, j = 1, 2, . . ., i.e.

for all disjoint events.

The triplet (Ω,A,Pr) is called a probability space.

We should define two elementary concepts for a probability measure Pr, independence

and conditioning.

Definition 3.1.2 (Independence). Two events A,B ∈ A are independent if

Pr [A ∩B] = Pr [A] · Pr [B] .

This means that the probability of A happening does not affect B and vice versa.

Independence is a common assumption throughout this study. Note that it extends to

more than two events in a natural way, i.e.

Pr

[⋂
i

Ai

]
=
∏
i

Pr [Ai] ,

for any sequence of independent events (Ai)i.

In contrast, the next notion formalizes the non-independence of two events A, B.

Definition 3.1.3 (Conditional Probability). Let A,B ∈ A be two events. The probability

of A conditioned on B, denoted as Pr[A|B], is defined as:

Pr [A|B] =
Pr [A ∩B]

Pr [B]
,Pr [B] > 0 .

Conditioning gives the probability of an event A given that another event B occurs.

This is different than than probability of A, as B might imply A, thus increasing its

probability. If A, B are independent Pr[A|B] = Pr[A].
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Random Variable

We are now ready to define the concept of a random variable. This is simply a function

X : Ω → R. Apart from the fact that it is possible, let us elaborate on why to work

with X. Introducing a random variable changes our definition of events. We no longer

care about the actual result of an experiment but rather for the value it induces for X.

Such a mapping often allows for flexibility since Ω can be a very experiment-specific set.

Moreover, studying different experiments through ’equivalent’ mappings offers a more

general understanding about phenomena.

Thus we want to formalize the probability that the random variable X takes value in

a set B ⊆ R regardless of which actual event in Ω causes that value. Since

X−1 (B) = {ω ∈ Ω : X (ω) ∈ B} = A ∈ A ,

the probability in question is actually the probability of A. Real analysis guarantees this

property for all open subsets of R, B, and continuous functions X. In effect, we have a

new probability measure with respect to X.

Definition 3.1.4 (Probability Distribution). Consider the probability space (Ω,A,Pr).

Let X : Ω → RX ⊆ R be a random variable and B a σ-algebra on RX . The probability

distribution of X, Pr ◦X−1, is defined as:

Pr ◦X−1 (B) = Pr [X ∈ B] = Pr
[
X−1 (B)

]
,∀B ∈ B .

The triplet (RX ,B,Pr ◦X−1) is called the probability space of the random variable X.

As becomes clear, there is no need for Ω nor even X anymore. A probability distri-

bution can be considered directly as a probability measure on (I,BI), where I ⊆ R and

BI a σ-algebra on I. Then there must be a mapping X that induces such a distribution

for (Ω,A). The latter will be the space of the specific experiment we wish to formalize

through a distribution.

What is more, the notion of a random variable can be extended. Consider any measur-

able space (S,S) and a function X : Ω→ S. Then X is called a random element. Now the

probability distribution D is a probability measure on (S,S). For instance, the Mallows

distribution, presented later on, is a distribution over the set of permutations Sm. In the

rest of this work, we refer to probability distributions defined over some domain without

mentioning the underlying space Ω or mapping X. We use D to denote a probability

distribution and write X ∼ D for a random variable distributed according to D.

We will now define the common tools for manipulating probability distributions over

a subset of the reals I ⊆ R.

Definition 3.1.5 (c.d.f.). Consider (I,BI ,D) a probability space and X ∼ D. The func-

tion

F (x) = Pr [X ≤ x] , x ∈ I ,

is called the cumulative distribution function (c.d.f.).

Usually and almost always in this thesis, we will be interested in probability distribu-

tions that are specified through a parameterized closed form c.d.f. Then the probability

distribution will be given in the form F (x; ~θ), where ~θ is the vector of the parameters.
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Depending on their domain I, probability distributions are distinguished in discrete

and continuous. If I is finite or countable D is a discrete distribution. For a discrete D
we define the probability mass function (p.m.f.) p as follows:

p (x) = Pr
X∼D

[X = x] = F (x)− F (x− 1) , x ∈ I .

If the c.d.f. is a continuous function the distribution is continuous. The notion of p.m.f.

is meaningless for a continuous distribution since PrX∼D[X = x] = 0. However we can

define the probability density function (p.d.f.) p as:

p (x) =
dF (x)

dx
.

Again, in case D is parameterized by ~θ we write p(x) = p(x; ~θ).

Probability Distributions

In the following we define a number of fundamental probability distributions that will

be used extensively in this thesis.

• Bernoulli Consider a random variable X that takes values in {0, 1} such that p(0) =

1 − p and p(1) = p. Then we write X ∼ Be(p) and X is follows the Bernoulli

distribution. Consider an event A that happens with probability p. E.g. when

flipping a coin, the event of seeing tails happens with some probability p depending

on the bias of the coin. A random variable X that equals 1 whenever A happens and

0 otherwise follows a Bernoulli distribution. As a result X is also called indicator

random variable. We note that a random variable that indicates an event A is

denoted 1A.

• Binomial Consider a set of n independent random variables Xi ∼ Be(p), 1 ≤ i ≤ n.

Their sum X
∑n

i=1Xi takes values in {0, . . . , n} and denotes how many times an

event happened in n independent trials. Then X is said to follow the Binomial

distribution with parameters n, p, i.e. X ∼ Bin(n, p). The p.m.f. of the distribution

is equals:

p (k) =

(
n

k

)
pk(1− p)n−k ,

where 0 ≤ k ≤ n.

• Poisson A random variable X taking values in {0, 1, . . . , } follows the Poisson dis-

tribution with parameter λ > 0, X ∼ Poisson(λ), if

p (k) = e−λ
λk

k!
,

where k ∈ {0, 1, . . . , }. This distribution is used to express how many times an event

happens in a certain interval of time (or space). Note that the Binomial distribution

also counts the number of occurrences in a discrete interval while the Poisson refers

to a continuous amount of ’trials’.
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This observation can be formalised. Let Xn ∼ Bin(n, p). If p→ 0 and np→ λ while

n→∞ it holds that:

lim
n→∞

Pr [Xn = k] = e−λ
λk

k!
.

This result immediately follows from Stirling’s type.

• Normal A random variableX over R follows the Normal distribution with parameters

µ, σ, i.e. X ∼ N(µ, σ2), if

p (x) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 ,

where x ∈ R. The distribution is also referred to as Gaussian distribution. We will

use the two names interchangeably throughout the text. When µ = 0 and σ = 1

the distribution N(0, 1) is called standard Normal. Then the c.d.f. and p.d.f. of the

distribution are denoted Φ and φ respectively. Thus

Φ (x) =

∫ x

−∞

1√
2π
e−

t2

2 dt and φ (x) =
1√
2π
e−

x2

2 .

Although the c.d.f. of the Normal distribution does not have a closed form the values

of Φ have been calculated and exist on Tables. So the c.d.f. X of any X ∼ N(µ, σ2)

on x can be found through the transformation

F (x) = Φ

(
x− µ
σ

)
.

• Exponential Families We will now introduce a category of probability distributions

called exponential family. The distributions in this category have a common expres-

sion and share some useful properties.

Definition 3.1.6 (Exponential Family [Xia19]). A set of distributions p~θ over R
that are parameterized by ~θ is called an exponential family, if their p.d.f. can be

written as:

p(x; ~θ) = exp
(
η(~θ)TT (x)−A(~θ) +B(x)

)
, ∀x ∈ R ,

where A(~θ) and B(x) are scalars, η(~θ) is a row vector and T (x) is a column vector

that represents the sufficient statistics of x.

The above definition allows us to define a probability distribution by specifying three

functions: η, T , B. One can derive A(~θ) by the normalization condition. Then we

get that:

A
(
~θ
)

= log

∫
x

exp (η(~θ)TT (x) +B(x))dx .

As a result, A is called the log-normalizer and the distribution is well defined when

A(~θ) <∞.

The apparent elegance of the above expression can be attributed to the separation

between the parameters and the domain of the distribution. Notice there is a linear

relation between the parameters of the distribution η and the function T (x). Thus,
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Distribution
Parameters

θ

Natural

Parameters

η

Expression Exponential Expression

Binomial(n)/

Bernoulli(n = 1)
p log p

1−p
(
n
x

)
px(1− p)n−x

(
n
x

)
e(ηx−n log (1+eη))

Poisson
λ log λ e−λ λ

x

x!
1
x!e

(ηx−eη)

Normal
[µ, σ2] [ µ

σ2 ,− 1
2σ2 ] 1

σ
√

2π
e(− 1

2
(x−µ)2

σ2
) 1√

2π
e

(η·[x,x2]+
η21
4η2

+ 1
2

log (−2η2))

Table 3.1

given the mass of the distribution on d = |~θ| points, we can derive the parameters

solving a linear system. That means we retrieve the distribution that induces this

mass on the points. This is a very important property for inference, parameter

estimation and learning as will become clear in the chapters that follow.

Note that the aforementioned distributions, except for the Binomial, belong to the

exponential family. The Binomial distribution, given the parameter n, also does.

Expressing them in the above form often requires a transformation of their parame-

ters. This is given by η function. We call the new parameters natural parameters of

the distribution. Table 3.1 presents the transformation of the distributions defined

here in their exponential form.

3.2 Probability Concentration

Since a probability space is a measurable space the Lebesgue integral is defined. Some

of the quantities that arise by such integrals fully characterize a probability distribution.

In many cases, just a couple of these quantities suffices to reveal the important properties

of a distribution. For example, it is a common practice to retrieve the parameters of

a distribution by their moments. We refer to the integral of any function of a random

variable by defining expectation as follows.

Definition 3.2.1 (Expected Value). Consider (RX ,B,Pr ◦X−1) the probability space of a

random variable X . Let f : RX → R be a function of the random variable. The expected

value of f(X) is defined as:

E [f(X)] =

∫
RX

f(x)pD (x) dx ,

whenever the integral exists.

Note that the expected value, as an integral, has all their good properties such as

linearity. Moreover, for a discrete random variable X the above integral turns into a sum,

i.e. E [f(X)] =
∑

RX f(x)pD (x).

There are certain functions f whose expected value gives important information about

the distribution of a random variable X. The most common among them are the mean

value and the variance of X. They arise for f(x) = x and f(x) = (x−E[x])2 respectively.
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Definition 3.2.2 (Mean Value - Variance). Consider the probability space of a random

variable X (RX ,B,Pr ◦X−1). We call mean value of X the expectation of E[X] and denote

the variance of X as Var[X] = E[(X − E[X])2].

Concentration

As its name implies, the expected value is the average value a distribution induces.

There is a large class of distributions that are concentrated around their expected values.

That is the difference between any sample of the distribution and the mean of the distri-

bution is small with high probability. This is a very useful property as it allows us to gain

a lot of information about the distribution, knowing just its first moment.

Formally, consider a random variable Z ∼ D following some distribution D. In the

following we study the probability that |Z − E[Z]| is large. What is more we establish

some sufficient conditions for a distribution to have good concentration.

Consider a nonnegative random variable Y . By a mere observation, for all t > 0,

t1Y≥t ≤ Y .

Taking the expectations of both sides we can derive Markov’s Inequality :

Pr [Y ≥ t] ≤ E [Y ]

t
.

Taking Y = |Z − E[Z]| gives us a first bound on the distance of a random variable from

its expected value. Notice that the initial inequality holds for every function nonnegative,

nondecreasing function φ of Y . Then Y ≥ t implies φ(Y ) ≥ φ(t) and thus we get:

Pr [Y ≥ t] ≤ Pr [φ(Y ) ≥ φ(t)] ≤ E [φ(Y )]

φ(t)
.

For Y = |Z − E[Z]| and φ(t) = t2, the above result becomes Chebyshev’s Inequality :

Pr [|Z − E[Z]| ≥ t] ≤ Var[Z]

t2
.

Cramér-Chernoff Method

We will now present the Cramér-Chernoff method for bounding the probability that a

random variable is away from its expected value. This method is a simple application of

the above inequality using a specific function φ. It is extensively used and results in some

sharp bounds.

Let φ(t) = eλt. The parameter λ > 0 will set so as we acquire the best possible bound.

This will become clear shortly. Markov’s inequality implies:

Pr [Y ≥ t] ≤ e−λtE
[
eλY

]
.

Denote ψY (λ) = logE[eλY ]. The above inequality becomes:

Pr [Y ≥ t] ≤ exp (−(λt− ψY (λ))) .

Thus to get the tighter bound possible for this φ we must minimize λt−ψY (λ). This is the

Cramér-Chernoff method. We denote the ψ∗Y (t) = supλ≥0(λt− ψY (λ)) the desired value.
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Example 3.2.1 (Normal Distribution). Let Z ∼ N(0, σ2). Then it holds that:

ψZ(λ) = log

(∫
R
eλz

1

σ
√

2π
e−

z2

2σ2 dz

)
= log

(
eλ

2σ2/2

∫
R

1

σ
√

2π
e−

(z−λσ2)2

2σ2 dz

)
=
λ2σ2

2
,

where the second equality follows by completing the square. Then the function f(λ) =

λt − λ2σ2

2 is differentiable. It takes its maximum value for λ = t/σ2. Thus ψ∗Z(t) = t2

2σ2

and

Pr [Z ≥ t] ≤ exp

(
− t2

2σ2

)
.

Example 3.2.1 implies that for Y ∼ N(µ, σ2) it holds that

Pr [Y − E[Y ] ≥ t] ≤ exp

(
− t2

2σ2

)
.

That is, the probability for a normal random variable to differ from its expected value

falls exponentially with its variance. This behaviour is desirable as it implies a strong

concentration around the mean value. What is more, many random variables, not normally

distributed, share this property as can be indicated by their graph.

Sub-Gaussian Random Variable

We introduce the notion of a sub-Gaussian random variable to formalize the above.

Consider a random variable X such that E[X] = 0. Then X is called sub-Gaussian with

variance factor u if

ψX (λ) ≤ λ2u

2
, ∀λ ∈ R .

We denote the collection of such random variable G(u). So we write X ∈ G(u). Following

the same procedure as in Example 3.2.1 we derive that for a sub-Gaussian random variable

X it holds that Pr[X ≥ t] ≤ e−t2/(2u), t > 0.

The Cramér-Chernoff method is generally popular due to its elegant application on

sums of random variables.

Lemma 3.2.1. Consider a sequence (Xi)
n
i=1 of independent sub-Gaussian random vari-

ables, i.e. Xi ∈ G(ui). Then their sum X =
∑n

i=1Xi is also a sub-Gaussian random

variable X ∈ G(
∑n

i=1 ui).

Proof. The lemma follows by simply applying independence

ψX (λ) = log
(
E
[
eλ
∑n
i=1Xi

])
=

n∑
i=1

log
(
E
[
eλXi

])
≤
λ2
∑n

i=1 ui
2

.

Thus we can get a characterization over a sum of independent r.v. by information on

each one of them.

As motivation for defining ’sub-Gaussianity’ we claimed that many random variables

exhibit concentration similar to the Normal distribution. As a matter of fact, every random

variable taking values in a bounded interval is sub-Gaussian. This is Hoeffding’s lemma

presented right after.
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Lemma 3.2.2 (Hoeffding’s Lemma [BLM13]). Let Y be a random variable with E[Y ] = 0,

taking values in a bounded interval [α, β] and let ψY (λ) = logE[eλY ]. Then

ψ′′Y (λ) ≤ (β − α)2/4 and Y ∈ G
(
(β − α)2/4

)
.

The following theorem combines the two previous lemmas 3.2.1 and 3.2.2 to get a

powerful result.

Theorem 3.2.1 (Hoeffding’s Inequality [BLM13]). Let X1, . . . , Xn be independent random

variables such that Xi takes its value in [αi, βi] for all i ≤ n. Let

S =
n∑
i=1

(Xi − E [Xi])) .

Then, for every t > 0,

Pr [S ≥ t] ≤ exp

(
− 2t2∑n

i=1(βi − αi)2

)
.

Applying the above theorem for the Binomial distribution is straight forward. We give

this result as a corollary because it will be used very often it the following chapters.

Corollary 3.2.1.1 (Hoeffding’s Inequality - Binomial Distribution). Consider the random

variable X ∼ Bin(n, p) following the Binomial distribution. Then

Pr [|X − np| ≥ t] ≤ 2 exp (−2t2/n) , t > 0 .

Proof. Consider the sequence of random variables (Xi)
n
i=1 such that Xi ∼ Be(p). By

definition it holds that X =
∑n

i=1Xi and Xi ∈ [0, 1]. Theorem 3.2.1 implies:

Pr [X − np ≥ t] ≤ exp

(
−2

t2

n

)
.

Then consider the distribution of

−X =
n∑
i=1

−Xi =
n∑
i=1

X ′i ,

where X ′i ∈ [−1, 0]. The same theorem gives:

Pr [−(X − np) ≥ t] ≤ exp

(
−2

t2

n

)
.

So by union bound we get:

Pr [|X − np| ≥ t] = Pr [{X − np ≥ t} ∪ {−(X − np) ≥ t}] ≤ 2 exp

(
−2

t2

n

)
.

Sub-Gamma Random Variable

Surely, sub-Gaussianity is a highly convenient tool. However, strong concentration

results hold for random variables that have slightly ’heavier’ tails. The notion of sub-

Gaussianity inspires us to define similar notions comparing to the tails of other distribu-

tions. One of them is Gamma distribution. This was not introduced in the introductory

tools since it is not important for our purposes. The only demand from the reader is to

consider it as a probability distribution with p.d.f. presented in figure 3.1. Thus its tail

converges slower than the Gaussian’s but still fast enough.
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Figure 3.1: Gaussian VS Gamma Tails

Formally, consider a centered

random variable X such that

ψX (λ) ≤ λ2u

2(1− cλ)
, 0 < λ < 1/c .

Then X is said to be sub-gamma

on the right tail with variance fac-

tor u and scale parameter c. If the

above property is true for −X the

random variable is said to be sub-

gamma on the left tail with vari-

ance factor u and scale parameter

c. Notice that since one of the

tails is ’heavier’ than the Gaus-

sian tail the other must be sub-

Gaussian. This is immediate by the demand for full probability over the domain equal to

1.

Recall the initial motivation for defining sub-gamma characterization. We proceed to

a characterization of the sub-gamma tail.

Lemma 3.2.3 (Sub-Gamma Random Variable). Consider a centered random variable X

that is right or left sub-gamma with parameters u and c. Then

Pr
[
X >

√
2ut+ ct

]
∨ Pr

[
−X >

√
2ut+ ct

]
≤ e−t

Proof. Assume X is right sub-gamma random variable so it holds

ψX (λ) =
λ2u

2(1− cλ)
, 0 < λ < 1/c .

Apply Cramér-Chernoff method. Let

f (λ) = λt− λ2u

2(1− cλ)

be the function to be maximized. Recall we ask for

ψ∗X (t) = sup
λ∈(0,1/c)

(λt− ψX (λ)) = sup
λ∈(0,1/c)

f (λ) .

For λ ∈ (0, 1/c) the function f(λ) is differentiable. So we can calculate its maximum by

just setting the derivative to zero. This happens for λ = 1
c −

1
c

√
u

2ct+u and we get

ψ∗X (t) =
u

c2

(
1 +

ct

u
−
√

1 + 2
ct

u

)
.

So the tail bound is

Pr [X > t] ≤ exp

(
− u
c2

(
1 +

ct

u
−
√

1 + 2
ct

u

))
.
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Notice that the same bound holds for the left tail as well, since it must be sub-Gaussian.

Thus

Pr [X > t] ∨ Pr [−X > t] ≤ exp

(
− u
c2

(
1 +

ct

u
−
√

1 + 2
ct

u

))
.

Getting the inverse of ψ∗X we get the result

Pr
[
X >

√
2ut+ ct

]
∨ Pr

[
−X >

√
2ut+ ct

]
≤ e−t .

Equivalent manipulations show the same result for a left sub-gamma random variable and

the lemma is proven.

Finally we want to highlight the gap between the sub-Gaussian and sub-gamma no-

tions. We present a random variable that is sub-gamma but not sub-Gaussian, customizing

the need for the newly defined notion.

Example 3.2.2 (sub-gamma but not sub-Gaussian). Let X ∼ N(0, 1) and Y = X2. Then

E[Y ] = 1 and

E
[
eλ(Y−1)

]
=

1√
2π

∫ ∞
−∞

eλ(x2−1)e−x
2/2dx =

e−λ√
1− 2λ

.

Thus for λ ≥ 1/2 the integral does not exists and Y is not sub-Gaussian. However notice

that

ψY (λ) = −λ− 1

2
log (1− 2λ) ≤ 1

2

(2λ)2

2(1− 2λ)
=

λ2

(1− 2λ)
,

where the inequality follows from some calculus since 2λ ∈ (0, 1). So Y is sub-gamma with

parameters u = c = 2.

Thus by lemma 3.2.3 we have

Pr
[
|X| > 2

√
t+ 2t

]
≤ Pr [|X| > 2t] ≤ 2e−t ,

and Pr[|X| > t] ≤ 2e−t/2.

Anti-concentration

Undoubtedly, the concentration of distributions is a very useful property. It permits

safe predictions for the behaviour of phenomena. However, anti-concentration is also

an important trait. When the domain of a distribution is [n] an anti-concentration result

guarantees that many of the values in the domain have some mass. That is, the distribution

is actually a random phenomenon not just a noisy signal around a constant and, thus,

a trivial situation. In the next lemma we give an anti-concentration result about the

Binomial distribution which will be useful in what follows.

Lemma 3.2.4 (Binomial Anti-concentration [FKS21]). Consider a random variable X

following the binomial distribution, i.e. X ∼ Bin(n, p). Then,

Pr [X = x] = O

(
1

σ

)
, ∀x ∈ [n] ,

where σ is the deviation of the binomial distribution. Moreover, the above implies that:

Pr [x ≤ X ≤ x+ t] = O

(
t+ 1

σ

)
,∀x, t ∈ [n]
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3.3 Probability Approximation

As is common in analysis, studying sequences and their convergence is of fundamental

importance. In the case of random variables this practice is imperative. If we wish

to understand a non-deterministic experiment we are forced to analyze it through the

frequency of its outcomes. Thus arguing about the asymptotic behaviour of a sequence of

random variables lies at the very heart of probability theory.

Convergence of Random Variables

There is a number of choices to approach the convergence of a random sequence Xn.

First, recall that a random variable is a function over a probability space. The usual

convergence of Xn(ω) gives almost sure convergence Xn →a.s. X, i.e.

Pr
[

lim
n→∞

Xn = X
]

= 1 .

Moreover, we can consider that Xn converges to X if the probability that they differ

goes to zero as n goes to infinity. This is called convergence in probability. We write

Xn →Pr X and it holds

lim
n→∞

Pr [|Xn −X| > ε] = 0 .

The concept that will mostly interest us here is convergence in distribution. It is also

called weak convergence.

Definition 3.3.1 (Convergence in Distribution). Consider (I,BI ,D) a probability space.

Let Xn a sequence of random variables and X be random variable over the space. Let

Fn, F be their respective c.d.f. We say that Xn converges in distribution to X and write

Xn →D X if

lim
n→∞

Fn (x) = F (x) ,

for all continuity points of F .

The three notions of convergence presented above are given in order of strength. That

means that Xn →a.s. X implies Xn →Pr X which in turn implies Xn →D X. Convergence

in distribution, though the weaker one, depends solely on the distribution of random

variables. This could actually be an advantage since it allows us to depart from the

properties of a specific mapping between spaces. Then the results of our analysis are

applicable to any phenomenon whose behaviour is well modeled by this distribution. For

more information about the notion of weak convergence we refer to [Bil13].

Central Limit Theorem

A mere application of distribution convergence is enough to remove any doubt about

its ’strength’. This is no other than the celebrated Central Limit Theorem. Recalling the

statement we have:

Theorem 3.3.1 (CLT). Let X1, . . . , Xn be independent, identically distributed random

variables, with mean value E[Xi] = µ and variance Var[Xi] = σ2. Denote

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

.
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Then the c.d.f. of Zn converges to the c.d.f. of the normal distribution i.e.

lim
n→∞

Pr [Zn ≤ z] = Φ (z) ,

for all z ∈ R.

Needless to say, CLT refers to the convergence in distribution of the sum of random

variables to the Normal distribution. It is considered the most fundamental result of

probability theory with myriads of implications and uses in a variety of fields. Thus the

importance of convergence in distribution is without question.

Probability Distances

To establish weak convergence, one would think of classical analytic proofs through

Fn(x) or equivalent conditions. For instance,

lim
n→∞

(
1− t2

2n
+ o

(
t2

n

))n
= e−

t2

2 .

As very neatly stated in [Zol76], an alternative and more attractive way to acquire such

results is by studying the distance between distributions. More attractive, since it also

provides with some quantitative information about their proximity. On a more involved

motivation, an asymptotic argument cannot be of much use when creating algorithms.

Thus we proceed to define two notions of distance for probability distributions. Apart

from their leading role in general theory, they will be our main tools in all the following

chapters. For an extensive presentation of probability metrics and their relation we refer

to [GS02].

Definition 3.3.2 (Total Variation Distance). Consider P , Q probability distributions over

(R,B). The total variation distance between P , Q is defined as:

TV (P,Q) = sup
B∈B
|P (B)−Q (B)| .

An equivalent definition holds for probability distributions over discrete spaces. In

fact, for a discrete space F we get:

TV (P,Q) =
1

2

∑
k∈F
|p (k)− q (k)| .

The total variation distance is an important distribution metric. This is partly because

it implies weak convergence, i.e. if TV(Pn, P ) → 0 then Pn → P . Upper bounding it for

some classes of distributions is the central aim of this thesis. However, it is often hard to

compute as it compares the mass on every subset of the domain. An easier to manipulate

notion of distance is the KL-Divergence which is defined right away.

Definition 3.3.3 (KL-Divergence). Consider P , Q probability distributions over (R,B).

Let p, q denote the p.m.f./p.d.f. of P , Q respectively. The Kullback-Leibler divergence

between P , Q is defined as:

KL (P‖Q) =

∫
R
p(x) log

p(x)

q(x)
dx .
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One can easily check that KL-Divergence is not an actual metric. It does not satisfy

the symmetry property nor the triangle inequality. Still it formalizes an important com-

parison between the information encoded by different distributions. Moreover, as the next

Theorem demonstrates, it offers an upper bound for their TV distance.

Theorem 3.3.2 (Pinsker’s Inequality). Consider P , Q probability distributions over (R,B).

Then

TV (P,Q) ≤
√

1

2
KL (P‖Q) .

Note that, thanks to its multiplicative form, KL-divergence is easier to compute. Thus

it consists a powerful tool for several approximation tasks involving the TV distance.

As an application, the following lemma calculates the upper bounds of the two metrics

for the Binomial Distribution.

Lemma 3.3.1. Let Bin(n, p), Bin(n, q) be two binomial distributions with natural param-

eters θp, θq respectively. Then, the following hold:

1. KL (Bin(n, p)‖Bin(n, q)) ≤ n · |θp − θq|2 .

2. TV (Bin(n, p),Bin(n, q)) ≤
√

2n
2 |θp − θq| .

Proof. We will prove bound 1 for the KL-Divergence and bound 2 follows from Pinsker’s

Inequality 3.3.2. By definition of the KL-Divergence we get:

KL (Bin(n, p)‖Bin(n, q)) =

n∑
x=0

(
n

x

)
px(1−p)x log

(
n
x

)
px(1− p)x(

n
x

)
qx(1− q)x

= n

(
p log

p

q
+ (1− p) log

1− p
1− q

)
,

after some elementary calculations. We will now prove the following inequality(
p log

p

q
+ (1− p) log

1− p
1− q

)
≤
(

log
p

1− p
− log

q

1− q

)2

.

Note that θp = log p/1− p as given in table 3.1. Thus showing this inequality gives

the result and the proof is concluded. We refer to Proposition 17 of [FKT20] for the

inequality.

Moreover, we will prove the bound for KL-Divergence of the Gaussian distribution as

it will be useful in subsequent chapters.

Lemma 3.3.2. Let N(µ1, σ
2
1), N(µ2, σ

2
2) be two Normal distributions. Then

KL
(
N
(
µ1, σ

2
1

)
‖N
(
µ2, σ

2
2

))
≤ 1

2

(
σ2

1

σ2
2

+
(µ1 − µ2)2

σ2
2

− 1 + 2 log
σ2

σ1

)
.

Proof. We get this result by the definition of KL-Divergence.

KL
(
N
(
µ1, σ

2
1

)
‖N
(
µ2, σ

2
2

))
=

∫
R

exp
(
−(x− µ1)2/2σ2

1

)
σ1

√
2π

log

(
σ2 exp

(
−(x− µ1)2/2σ2

1

)
σ1 exp

(
−(x− µ2)2/2σ2

2

))dx .
Then the logarithms gives three quantities. First

log σ2/σ1 ,
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which is independent of x so the integral equals one. Then

−(x− µ1)2

2σ2
1

,

where (x − µ1)2 in the integral is the definition of N(µ1, σ
2
1) variance. Thus the result is

−1/2. The third is

−(x− µ2)2

2σ2
2

.

Here we have to develop (x−µ2)2 and work with powers of x. Putting everything together

we get the result

KL
(
N
(
µ1, σ

2
1

)
‖N
(
µ2, σ

2
2

))
≤ 1

2

(
σ2

1

σ2
2

+
(µ1 − µ2)2

σ2
2

− 1 + 2 log
σ2

σ1

)
,

and the proof is complete.
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Learning Theory

In this chapter the second fundament of this thesis, learning theory, is set. If probability

theory presents us with the problem, learning theory will be the perspective through which

we address this problem. In the first section, a formalized model of the learning objective

is given. At the same time we introduce the famous Stochastic Gradient Descent algorithm

and explore at which extend it achieves this objective. In sequence, the merging between

probabilities and learning occurs. Finally, we define and give some of the background of

the specific problem studied here.

4.1 PAC Learning Model and Stochastic Gradient Descent

Today, Machine Learning consists the state of the art tool for automated problem

solving. Creating a system that can learn is a very attractive and exciting goal. Still

the exact meaning of it can be tricky and hard to formalize. In what follows, we give a

mathematical foundation for learning and present the most widespread algorithm of the

field, Stochastic Gradient Descend.

Probably Approximately Correct

In practice, what does it mean to learn? Suppose you are trying to learn a new game.

Learning demands a subject, since you always learn something. Second it usually consists

of the ability to process this subject and reach a conclusion. In our example, given a state

of the game you must decide on your next move. Finally, to consider you learnt something

your conclusions must be ’correct’, for some notion of correctness. Notice that, given the

game’s state, there are good, bad and even unreasonable moves.

One can recognise three structures in the previous description. We proceed to formalize

them. Let Z denote the domain of the learning task. That is, objects in Z represent

instances of the task which we must process. Usually Z consists of two other sets Z =

X ×Y. Then X represents the instances of the task (state of the game) and Y is a labeling

set (possible moves). This is actually a vast category of learning problem called supervised

learning. In general, Z can be any set.

Let H denote the hypothesis class. This is the set of functions that process the input

from Z and reach a conclusion useful for the problem. In the supervised case, it contains

functions h : X → Y that characterize the task instances by some label (suggest the next

43
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move). Again, H can be an arbitrary set, even one that just represents some function.

Consider h(x) = 〈w,x〉, w,x ∈ Rd. These functions are called hyperplanes in Rd since

they divide the space. Notice that we can represent such a function just by the vector w.

Thus, in this case, we set H = Rd.
Learning a task means reaching correct conclusions. We define a loss function ` :

H×Z → R+ to quantify the correctness of a hypothesis. The larger the values of `(h, z),

the greater the loss h induces by its result on z. The aim of learning is to find an h ∈ H
that minimizes the loss. We will denote a learning problem by the triplet (H,Z, `).

As for the learning process, our framework is as follows. The aim is to construct a

system that learns automatically, i.e. a learning algorithm. Consider algorithm A for

(H,Z, `). Then A outputs a hypothesis h ∈ H. The algorithm’s input is a training set

S ∈ Zm, m ∈ N. That means S is a list of m instances of the problem that the algorithm

processes to decide on a ’good’, with respect to `, hypothesis h. These instances are

sampled independently according to a distribution D. Thus the assessment of the output

is based on the risk function LD(h) = Ez∼D[`(h, z)]. This is to model the fact that, a good

hypothesis does not have to be correct over all possible tasks, but over the probable ones.

Definition 4.1.1 (Agnostic PAC Learnability [SSBD14]). A hypothesis class H is agnostic

PAC learnable with respect to a set Z and a loss function ` : H× Z → R+, if there exist

a function mH : (0, 1)2 → N and a learning algorithm A such that: For every ε, δ ∈ (0, 1),

for every distribution D over Z, given a training set S ∼ Dm with m ≥ mH(ε, δ) i.i.d.

samples from D, the algorithm returns a hypothesis h = A(S) so as

LD (h) ≤ min
h′∈H

LD
(
h′
)

+ ε ,

where LD(h) = Ez∼D[`(h, z)], with probability at least 1− δ.

Notice that the notion of learnability is defined with respect to a hypothesis class.

That is, we wish to know whether a task can be modeled by a function in this set. This

immediately implies that, even if a learning task is not learnable in H, it could be in

another hypothesis class H′. Thinking about it though, it would be a lost cause to search

over all possible functions for the one to model our specific problem. In many cases, this

might also lead to wrong results (e.g. overfitting). This definition allows us to exploit the

prior knowledge we have for the problem.

To consider a learning algorithm successful it must satisfy two requirements, based on

the above definition. It must be efficient in terms of sample complexity as well as regular

bit-operation complexity. In a vast number of problems, there is a complete characteri-

zation for the classes H that satisfy the first condition: their VC-dimension. We do not

introduce this notion here as these problems belong mostly to the supervised learning

framework and will not interest us. Refer to [SSBD14] for an extensive presentation of the

topic.

Convex Learning Problem

The regular complexity of the learning algorithm is another story. Indeed, to guarantee

efficient learning we must restrict ourselves to a specific class of learning problems: convex

learning problems. The definition is given in the following. But first, let us recall the

basics about convexity.
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Figure 4.1: Convex Sets [SSBD14]

Definition 4.1.2 (Convex Set). A set C in a vector space is convex if for any two vectors

u, v ∈ C, the line segment between u and v is contained in C. That is, for any α ∈ [0, 1]

we have that:

αu + (1− α)v ∈ C .

The notion of convexity is better understood through an image, see 4.1. We proceed

to define a convex function.

Definition 4.1.3 (Convex Function). Let C be a convex set. A function f : C → R is

convex if for every u, v ∈ C and α ∈ [0, 1],

f (αu + (1− α)v) ≤ αf (u) + (1− α)f (v) .

A very important property of a convex function is that every local minimum is also a

global one. Thus, if it differentiable and its derivative has a zero point, it follows that it

is a minimum. Recall that our aim is to locate such a minimum for the risk function.

Again we illustrate a convex function in figure 4.2. Notice that the tangent in any point

of the domain lies below the function graph. This is no coincidence. In fact, convexity is

equivalent to an even more general property that bypasses the strict tangent notion (i.e.

the demand for differentiability).
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Figure 4.2: Convex Function [SSBD14]

Lemma 4.1.1. Let C be an open convex set. A function f : C → R is convex iff for every

w ∈ C there exists v such that

f (u) ≥ f (w) + 〈u−w,v〉 ,∀u ∈ C .

The above vector v specifies a line, passing from (w, f(w)), while leaving the rest of

the function points ’above’ it. When f is differentiable on w this line becomes the tangent.

We define a set that contains all these lines, since they have a very useful for our purpose

property: they point in the direction of the function’s minimum.

Definition 4.1.4 (Subgradient). A vector v that satisfies lemma 4.1.1 is called a subgra-

dient of f at w. The set of subgradients of f at w is called the differential set and denoted

∂f(w).

We are now ready to define the learning problem that interests us here.

Definition 4.1.5 (Convex Learning Problem). A learning problem, (H, Z, `), is called

convex if the hypothesis class H is a convex set and for all z ∈ Z, the loss function, `(·, z),
is a convex function.

Since H is a convex set it is a set in a vector space. Thus, in what follows, we can

consider hypotheses as vectors in Rd.

Stochastic Gradient Descend

For a convex learning problem to be learnable, we need an algorithm that minimizes

the risk function Ez∼D[`(w, z)]. The vector w ∈ Rd denotes the hypothesis. Since the loss

function for this problem is convex the risk function will also be convex1. Thus if it has a

1This is a result of Jensen’s Inequality defined as follows: Consider a convex function φ on the real line

and a function g over a probability space with measure P . Then

φ

(∫
gdP

)
≤
∫

(φ ◦ g)dP .



4.1 PAC Learning Model and Stochastic Gradient Descent 47

minimum, we can accurately calculate it.

Of course, this claim is not really straightforward. How will we find this minimum?

A first approach would derive from high school analysis. Calculating the minimum of a

function is just a matter of setting its derivative to zero. Still, there is no guarantee that

the risk function is differentiable. As a result, we turn to an iterative method, Gradient

Descend, to reach the minimum. That is, based on the subgradient on subsequent points

of the function, we move our guess for the minimum towards the real one. In more detail:

• Denote wt our guess for the minimum of a convex function and initialize it at zero,

i.e. w1 = 0.

• Update its value according to the rule

wt+1 = wt − ηvt ,vt ∈ ∂f(wt) .

where η is a constant to control the step size.

• Return w̄ = 1
T

∑T
t=1 wt after T iterations.

Intuitively, this process should lead us to the minimum. However, the purpose is to get

there ’fast’. The analysis of the algorithm indicates whether it efficiently solves a convex

learning problem.

Formally, the function to be minimized is f(w) = Ez∼D[`(w, z)]. Let w∗ denote the

minimum value of the function. We want to bound f(w̄)−f(w∗) by a decreasing, in terms

of the required samples, function. We proceed in two steps.

Step 1: (Convexity) The following relation is just a combination of Jensen’s Inequality

(for a sum instead of an integral) and the definition of convexity.

f

(
1

T

T∑
t=1

wt

)
− f (w∗) ≤ 1

T

T∑
t=1

〈wt −w∗,vt〉

Step 2: (A Lemma) Combining the previous relation with the following lemma gives

a bound on the error of Gradient Descend after T iterations.

Lemma 4.1.2 (Lemma 14.1 [SSBD14]). Let v1, . . . ,vT be an arbitrary sequence of vectors.

Any algorithm with initialization w1 = 0 and an update rule of the form

wt+1 = wt − ηvt

satisfies
T∑
t=1

〈wt −w∗,vt〉 ≤
‖w∗‖2

2η
+
η

2

T∑
t=1

‖vt‖2 .

Notice that there is a tradeoff on the value of η. If the norm of w∗ is large we should

set η to be large as well. But this would increase the value of the other term in the bound.

It becomes obvious that some further restrictions on the norms of w∗ and vt must be

placed to acquire convergence. Still we will first address a more immediate problem that

arises by using Gradient Descend.

This is a very useful tool in probability theory since the expectation of a quantity is, in fact, an integral.
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Gradient Descend reduces the problem of convex learning to finding the subgradient of

the risk function Ez∼D[`(w, z)], which is simple enough, had we known the function. The

case is, distribution D along with the risk function is unknown to the learning algorithm.

The idea of Stochastic Gradient Descend (SGD) is to specify an estimate of the subgra-

dient. Specifying the expected direction of the subgradient suffices for the algorithm to

behave as the original Gradient Descend in expectation.

Formally, we will now bound E[f(w̄)− f(w∗)]. Again Jensen’s Inequality implies that

E [f (w̄)− f (w∗)] ≤ E

[
1

T

T∑
t=1

(f (wt)− f (w∗))

]
.

Then it is a matter of manipulating the expectation over vt to gain

E

[
1

T

T∑
t=1

(f (wt)− f (w∗))

]
≤ E

[
1

T

T∑
t=1

〈wt −w∗,vt〉

]
.

Working as in Step 2, it is immediate to bound the last quantity. The formal steps for

SGD are given in algorithm 1.

Algorithm 1 SGD

1: procedure StochasticGradientDescent(η, T) . η > 0: scalar, T > 0: integer

2: w1 ← 0

3: for t ∈ [1 : T ] do

4: choose vt such that E[vt|wt] ∈ ∂f(wt) . problem depended

5: wt+1 ← wt − ηvt
6: return w̄← 1

T

∑T
t=1 wt

Notice that the bound on the error of Gradient Descend remains unchanged in the

stochastic case, since it is based on lemma 4.1.2. We highlight that the inability to effi-

ciently learn some convex problems is not a trait of SGD. Indeed there are convex problems

that cannot be learnt by any deterministic algorithm as illustrated by the following exam-

ple.

Example 4.1.1. Consider a supervised learning problem with X = R, Y = R and H = R.

Let the loss function be `(w, x) = (wx−y)2 where x ∈ X , y ∈ Y and w ∈ H. This is called

a regression problem, since the aim (controlled by the loss function) is to specify a linear

relation between x, y. Thus we can consider the samples as points on the plane (x, y).

Now let ε = 1/100, δ = 1/2 and µ = log (100/99)
2m where m > m(ε, δ) is the samples

demanded by the algorithm. Since the learning algorithm R is deterministic m is fixed

given ε and δ. Consider two points on the plane A = (1, 0) and B = (µ,−1). Assume we

want to distinguish between two distributions over A,B: D1 : p(A) = µ, p(B) = 1− µ and

D2 : p(A) = 0, p(B) = 1.

Notice that µ is a very small quantity. So the probability of seeing point A is very

small for both distributions. Indeed, the probability that D1 creates independent samples

just of B is
∏m
i=1 p(B) = (1 − µ)m ≥ e−2mµ = 0.99. Then the risk function for each of

them is LD1(w) = µw2 + (1− µ)(wµ+ 1)2 and LD2(w) = (wµ+ 1)2
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Figure 4.3: Example

As a result, whatever value R decides on w it will be suboptimal with respect to at least

one of D1, D2. This is illustrated in figure 4.3. If w < −1/(2µ) the line will be too far

from A. Thus LD1(w) ≥ 1/(4µ) while a better value is LD1(0) = (1 − µ). It follows that

LD1(w) −minw′ LD1(w′) > 1/100 = ε. On the other hand, if w ≥ −1/(2µ) the error on

D2 will become larger than ε. Notice that minw′LD2(w′) = 0 while LD2(w) ≥ 1/4.

Thus we have a convex learning problem that is not learnable by any deterministic

algorithm R.

Thus we need to further restrict ourselves. The good news is we already know the

assumption needed for a convex problem to be learnable: bounding the norms of w∗ and

vt. There is a number of ways to define such problems, such as convex-Lipschitz-bounded

learning problem and convex-smooth-bounded learning problems (see [SSBD14]). We will

focus on a specific one which will also concern us in what follows.

Projected SGD and Strong Convexity

It is important to understand the actual difficulty in learning a convex problem. Firstly,

convexity does not guarantee the existence of a minimum. Secondly, even if the minimum

exists it might not be unique. As a result, it is not possible to distinguish between two

minimizers which is the actual solution to the problem. There is a stronger condition,

strong convexity that does guarantee both the above properties.

Definition 4.1.6 (Strong Convexity). Let C be a convex set. A function f : C → R is

λ-strongly convex if for all w, v and α ∈ (0, 1) we have

f (αw + (1− α)u) ≤ αf (w) + (1− α)f (u)− λ

2
α(1− α)‖w − u‖2 .

Again, we can acquire some useful bounds involving the subgradient of the λ-strongly

convex function. That is

〈w − u,v〉 ≥ f (w)− f (u) +
λ

2
‖w − u‖ .

Thus strong convexity implies a a gap between the ’tangent’ on a specific point w and

the line through the f(w) and any other point on the function. Notice that figure 4.2
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actually represents a strongly convex function. The distance between f(αu) + (1 − α)v)

and αf(u) + (1 − α)f(v) is at least λ
2α(1 − α)‖w − v‖2. After some thought, we gain

the intuition that this property distinguishes convex functions from the line. Thus the

function always has a minimum, which is unique, and it reaches it in a λ-controllable rate.

Before stating the theorem for learnability of strongly convex problems, we introduce a

variation of SGD. This mild modification does not affect the convergence of the algorithm

and is quite useful in a variety of applications (including the one that interests this thesis).

That is, a projection step. Recall the set of our hypotheses H. Notice that the iteration

process can get w outside H. This, in general, does not affect learnability of a problem

(definition 4.1.1 does not demand h = A(S) ∈ H). However, it is usually convenient if

w ∈ H. What is more, in the case of SGD, projection does not affect the analysis of the

algorithm. This is implied by the following lemma.

Lemma 4.1.3 (Projection Lemma [SSBD14]). Let H be a closed convex set and let v be

the projection of w onto H, namely,

v = min
x∈H
‖x−w‖2 .

Then, for every u 3 H,

‖w − u‖2 − ‖v − u‖2 ≥ 0 .

Then projected SGD algorithm for the strongly convex case is as follows.

Algorithm 2 PSGD λ-strongly Convex

1: procedure ProjectedSGDStronglyConvex(T, λ) . T > 0: integer

2: w1 ← 0

3: for t ∈ [1 : T ] do

4: choose vt such that E[vt|wt] ∈ ∂f(wt) . problem depended

5: ηt ← 1/(λt)

6: wt+1/2 ← wt − ηtvt
7: wt+1 ← argminw∈H‖w −wt+1/2‖2

8: return w̄← 1
T

∑T
t=1 wt

Notice that the value of η is now specifically defined. This proves helpful for the

convergence of the algorithm. Moreover, it is consistent to intuition. While t increases we

approach closer to the minimum. Thus the step size becomes smaller to avoid bypassing

the minimum.

Finally, theorem 4.1.1 gives the desired convergence rate which implies efficient learn-

ability both in terms of samples and computation steps.

Theorem 4.1.1 (SGD with Strongly Convex Objective). Assume f is λ-strongly convex

and E[‖vt‖2] ≤ ρ2. Let w∗ = argminw∈Hf(w) be an optimal solution and w the output

of SGD algorithm. Then,

E [f(w)]− f(w∗) ≤ ρ2

2λT
(1 + log T ) .



4.1 PAC Learning Model and Stochastic Gradient Descent 51

Subsequent work has removed the log T term from the bound by slight modifications

of the algorithm (see [SZ13](averaging), [HK14](batch method)). Then, setting ε = ρ2

2λT ,

we deduce that after T > ρ2

2λε iterations (and, in consequence, samples) arbitrary precision

is achieved.

Given the previous theorem one could still argue that learnability is not proven. Surely,

definition 4.1.1 requires f(w)− f(w∗) to be bounded. The last lemma of this section sug-

gests a routine that achieves this result. To elaborate, given an algorithm that guarantees

convergence in expectation, running it a number of times and carefully choosing an out-

come we can guarantee true convergence. This is procedure is called boosting and is a

thoroughly studied area (see [SF12]).

Lemma 4.1.4. Assume f is λ-strongly convex and there exists an algorithm A such that,

with m ≥ m(ε/3):

E [f(w)] ≤ f(w∗) + ε/3 ,

where w is the output of algorithm A and w∗ the minimum of f . Then, there exists an

algorithm that uses m ≥ log (1/δ)m(ε) and finds a w′ such that

f(w′) ≤ f(w∗) + ε ,

with probability at least 1− δ.

Proof. Consider the random variable W = f(w) − f(w∗) with probability over w. Note

that W is non negative since w∗ is the minimizer of f by assumption. Then, Markov’s

inequality implies:

Pr [f(w)− f(w∗) ≥ t] ≤ ε

3t
.

Setting t = ε we get that:

f(w) ≥ f(w∗) + ε

with probability at most 1
3 . Running algorithm A for n = 72 log (1/δ) times, it follows

that, with probability at least 1− δ, over half of the output values will get f ε-close to its

optimal value. Formally, consider the random variable Y = 1
n

∑
i∈[n] Yi where Yi equals 1

if f(wi) > f(w∗) + ε, 0 otherwise. It follows that E[Y ] ≤ 1
3 . By Hoeffding’s inequality

3.2.1.1:

Pr [Y − E[Y ] ≥ 1/12] ≤ exp (−n/72) ≤ δ .

Thus, with probability at least 1− δ it holds that Y ≤ E[Y ] + 1
12 ≤

1
3 + 1

12 . So, 1− Y > 1
2

and more than half of the estimations give f(wi) < f(w∗)+ε. Since f is λ-strongly convex

it is true that:
λ

2
‖w −w∗‖2 ≤ f(w)− f(w∗) ≤ ε ,

for at least half of wi. Thus, the following procedure gives a good w: find the distances

between all the 72 log (1/δ) estimators and choose w′ that is 2ε
λ -close to at least half of

the others. Then, with probability 1− δ it holds:

f(w′)− f(w∗) ≤ ε

and the proof is complete.
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4.2 Distribution Learning from Truncated Samples

In this section, we define the actual problem addressed in this thesis. A specific goal

is set: learning parametric probability distributions. That is, given i.i.d. samples that are

known/assumed to follow a probability distribution, we ask for a function that gives the

’same’ probabilities. This problem lies in the heart of statistical learning. Recall the actual

problem in PAC framework: the distribution over the samples is unknown. Assuming that

the distribution belongs to a known, parametric family and retrieving it, we can optimize

any objective for the problem. What is more, we further challenge ourselves, assuming

partial access to samples from the distribution, i.e. we sample from a truncated version

of it.

4.2.1 Parametric Distribution Learning

We want to study parametric distribution learning in the way introduced in [KMR+94].

This model was inspired from the PAC framework. First, we consider a parametric dis-

tribution family such as the Gaussian N(µ, σ2) or the Binomial Bin(n, p). The assumed

distribution over the samples is the hypotheses class H. The domain of the distribution

also specifies the domain of the learning problem Z. Finally, we have to set our goal.

In this thesis we consider we learnt a distribution if we can arbitrarily approximate it

in TV-distance. Here we depart from the standard PAC framework since there is no loss

function leading to TV-distance objective. Also, notice that, in this model, there is always

an h ∈ H with zero cost.

A quite attractive methodology in parametric distribution learning is specifying the

parameters of a distribution and consider our goal achieved. Still, there is often a great

distance from learning a distribution to learning its parameters. Consider that a non-

parametric function h might be very close to the actual parametric function of the distri-

bution. However, for several reasons, our algorithm is able to specify that h but not the

actual distribution. Thus our algorithm has no idea as for the parameters. On the other

hand, getting arbitrarily close to the parameters does not always guarantee we are close

enough to the distribution. Note that a probability distribution is usually a non-linear

function of its parameters. As a result, a small difference on the parameters’ values may

induce a prohibitively large loss value.

Maximum Likelihood Estimator

Having said that, the common practice when learning a parametric distribution is

to estimate its parameters. The most widespread tool to achieve this is the Maximum

Likelihood Estimator (M.L.E.). Given a sample set S we want to specify those parameters

θ that give us a probability distribution maximizing the probability that we saw S. In

fact, given S = {si|1 ≤ i ≤ m} ∼ Dm,

θ̂ = argmaxθ

(
p

(
m⋂
i=1

si;θ

))
= argmaxθ

(
m∏
i=1

p (si;θ)

)
.

Notice that getting the logarithm of the objective returns the same maximizer, since

it is an increasing function. Moreover, the logarithm turns the product into sum over
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the probabilities. This is understood to be convenient as maximizing a function will, at

some point, demand a differentiation. Moreover, in accordance to the general learning

framework, we consider the negative logarithm to get a minimization problem. So we

equivalently demand

θ̂ = argminθ

(
−

m∑
i=1

log (p (si;θ))

)
.

Thus we give a formal definition for M.L.E.

Definition 4.2.1 (Maximum Likelihood Estimator). Consider a parametric probability

distribution D over some domain Z with p.m.f./p.d.f. p(x;θ), x ∈ Z and θ ∈ H. Let

S ∼ Dm be an i.i.d. sample set of size m. Then the Maximum Likelihood Estimator is

θ̂ = argminθ∈H

(
−
∑
s∈S

log (p (s;θ))

)
.

We can formalize the parametric distribution learning problem as follows. Let H =

{θ|θis a valid parameter for the distribution} be the family of distributions and Z be the

domain of this distribution. Also, let

` (θ, x) = − log (p (x;θ)) , x ∈ Z ,θ ∈ H .

This is called the negative log-likelihood objective. Then M.L.E. defines a learning algo-

rithm. It consists of minimizing the loss function over the sample set, i.e.

θ̂ = argminθ

(
m∑
i=1

` (θ, si)

)
= argminθ

(
−

m∑
i=1

log (p (si;θ))

)
.

This a very common algorithmic technique in learning called Empirical Risk Minimization

(E.R.M.). Note that if H is a convex set and ` is a convex function the learning problem

is convex (since − log (·) is convex).

Example 4.2.1 (Normal Distribution M.L.E.). Assume we are given samples from a

normal distribution N(µ, σ2) defined over R. Let S = {xi|1 ≤ i ≤ m} ∼ N(µ, σ2)m be the

sample set. Denote µ̂ and σ̂2 the M.L.E. for µ and σ2. Then, in accordance to the M.L.E.

definition we have θ = [µ, σ2] and we want

θ̂ = [µ̂, σ̂2] = argminθ∈R×R+

(
−

m∑
i=1

log (p (xi;θ))

)
.

Denote L(S;θ) the function to be minimized for convenience. Since the p.d.f. is that of

the normal distribution it becomes

L
(
S; [µ, σ2]

)
= −

m∑
i=1

(
log (1/(

√
2πσ2))− (xi − µ)2

2σ2

)
.

Notice that L is a two-parameter, differentiable, convex function. So its minimizing points

can be found setting the partial derivatives to zero.

∂L(S; [µ̂, σ̂2])

∂µ
=

m∑
i=1

(xi − µ)

σ2
= 0 ,
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∂L(S; [µ̂, σ̂2])

∂σ2
=

m∑
i=1

(
− 1

σ
+

(xi − µ)

σ3

)
= 0 .

Thus

µ̂ =
1

m

m∑
i=1

xi and σ̂2 =
1

m

m∑
i=1

(xi − µ̂)2 .

Notice that the M.L.E. is not always a consistent estimator. In statistics, an estimator

is consistent if its limit, given an infinite number of samples, it reaches its expected value,

i.e.

lim
n→∞

µ̂ = µ .

The common correction that makes the variance estimator of a Gaussian consistent is to

divide by one less sample. That is

σ̂2 =
1

m− 1

m∑
i=1

(xi − µ̂)2 .

Learning Gaussian Distribution in TV-distance

We are now ready to present an example in which learnability of parameters implies

learnability of distribution. The next lemma along with its proof indicates that, if the KL-

divergence is determined by a ’good’ function of these parameters this approach works.

Moreover, it consists an example for M.L.E.’s usefulness.

Lemma 4.2.1 (Learning Gaussian Distribution in TV-distance). Consider the Gaussian

distribution N(µ, σ2). Let ε ≤ 2/3. Then there exists an efficient algorithm that given

m = Θ( log (1/δ)
ε2

) samples from N(µ, σ2) calculates estimators µ̂, σ̂2 such that

TV
(
N
(
µ, σ2

)
, N
(
µ̂, σ̂2

))
≤ ε

with probability at least 1− δ.

Proof. Consider N(µ, σ2) the unknown distribution. Let S = {xi|1 ≤ i ≤ m} ∼ N(µ, σ2)m

denote the sample set. The promised learning algorithm is M.L.E. So the estimators are

given by example 4.2.1. We will use the consistent estimator for the variance, so

µ̂ =
1

m

m∑
i=1

xi and σ̂2 =
1

m− 1

m∑
i=1

(xi − µ̂)2 .

We will shortly prove how these estimators give good approximations for µ and σ2 i.e. we

will prove that, given m = Θ(2 log (2/δ)
ε2

) samples,

|µ̂− µ| ≤ σε and | σ̂
2

σ2
− 1| ≤ ε2 .

Let Xi, 1 ≤ i ≤ m be random variables representing the samples drawn from the distribu-

tion. Then Xi ∼ N(µ, σ2) and is a sub-Gaussian random variable, Xi ∈ G(σ2). By lemma

3.2.1 we get that

Pr [|mµ̂−mµ| > t] ≤ e−t2/(2mσ2) .
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So setting ε = t/(mσ) it follows that

Pr [|µ̂− µ| > σε] ≤ 2e−mε
2/2 .

Given m = 2 log(2/δ)
ε2

we get

|µ̂− µ| ≤ σε ,

with probability at least 1− δ, as promised.

As for the variance, consider Yi = Xi−µ̂
σ . So Yi ∼ N(0, 1) and Y 2

i is a sub-gamma

random variable by example 3.2.2. Thus

Pr

[∣∣∣∣(Xi − µ̂)2

σ2
− 1

∣∣∣∣ > t

]
≤ 2e−t/2 .

By manipulations similar to lemma 3.2.1 it is straight-forward to show for the normalized

sum of Y 2
i

E

[
e
λ

(∑m
i=1

Y 2
i

m−1
−1

)]
=

 e−λ/m−1√
1− 2 λ

m−1

m

,

and thus get

ψ( 1
m−1

∑m
i=1 Y

2
i ) (λ) ≤ 2λ2

(m− 1)(1− 2 λ
m−1)

.

So the normalized sum is also a sub-gamma random variable with u = 4/m, c = 2/m.

The sub-gamma tail bound gives:

Pr

[∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ > ε2

]
≤ 2e−(m−1)ε2/2 .

Again, given m = 1 + 2 log (2/δ)
ε2

samples the desired relation follows and∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≤ ε2 ,

with probability at least 1− δ.
Given the above approximations for the Gaussian parameters, lemma 3.3.2 implies

that

KL
(
N
(
µ̂, σ̂2

)
, N
(
µ, σ2

))
≤ 1

2

(
σ2ε2

σ2
+

(
σ̂

σ

)2

− 1− log

(
σ̂

σ

)2
)
≤ 2ε2 ,

since x2 − 1 − log x2 < 3(x − 1)2 and (σ̂/σ − 1)2 ≤ ε2 is implied by the previous result2.

Thus, by Pinsker’s Inequality 3.3.2 we get the desired result

TV
(
N
(
µ̂, σ̂2

)
, N
(
µ, σ2

))
≤ ε .

Note that by tighter bounds on TV-distance we can remove the demand for ε ≤ 2/3

(see Theorem 1.3 [DMR18]).

2see Lemma 2.11 in [ABDH+20].
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4.2.2 Truncated Samples

In this subsection a greater challenge for parametric distribution learning is raised. To

sum up our current framework, we assume sample access to the unknown distribution.

Solely based on this information, we want to retrieve the actual distribution. This is

possible under a wide range of conditions, enabling the formalization of strong prediction

techniques. This sample oracle is, in practice, data, gathered from real world ’experiments’,

imposed to all the imperfections this might dictate.

Specifically, assume a part of the distribution’s domain is ’hidden’ from our oracle. This

is not due to the low probability of the values there, but because of some dysfunctionality

of the experiment. For instance, if samples are given by a measurement device and the

device has some sensitivity limit, we might lose samples below it.

Thus the new framework assumes oracle access to a subset of the distribution’s domain.

So we truncated the domain to include only this set. We can think of this procedure as

follows: There is a visible set, subset of the distribution’s domain, S ⊆ Z. This is called

the truncation set. Now we sample from our complete oracle and reject any sample that

does not belong to S. Returning all the samples that do to the algorithm, we have

constructed our sample set. So we get every sample in the truncation set with probability

proportional to its original probability. All other values are given probability zero. This

defines a new probability distribution called truncated distribution. Note that for the newly

defined function to be a distribution, it must assign probability 1 to its domain, i.e. the

truncation set. Thus, the probability of a value in S in the truncated case is not exactly

equal to the original one, but they have a fixed fraction.

Definition 4.2.2 (Truncated Distribution). Let D be a probability distribution over Z.

Consider the truncation set S ⊆ Z. The truncated on S probability distribution D, denoted

DS, is defined as

DS (x) =
1{x∈S}

D(S)
D (x) , x ∈ Z .

A general problem

We will insist a little longer on the motivation for defining this framework. This is an

effort to connect it with a more general requirement in problem solving.

Let us recall the fundamental problem of solving an equation system. This is probably

the first problem one encounters in his undergraduate studies and lies at the heart of

linear algebra (see [Str]). An equation system models the behaviour of a real life system.

In principle, we decide on a set of variables x and wish to understand how they affect

system’s behaviour. This behaviour is defined through some characteristic quantities of

the system. These can be measured and their values consist another vector b. The

connection between the two is given by system’s dynamics, represented by an array A.

So, we finally get the well known

Ax = b .

In general, our aim is to specify the values of chosen parameters x so as to achieve a

certain behaviour b, i.e.

x = A−1b .
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One could consider the inverse matrix A−1 as a procedure that takes us from observations

in b to a decision for the appropriate values for x. Notice we are faced with the same

challenge: how does a small error in measurement of b affect our decision? The answer

depends on the procedure A to go from one to the other.

It is now clear that the problem of sensitivity or stability or robustness of an algorithm

is of grave importance. Back to learning theory, robustness of learning algorithms is highly

desired trait. There is a vast, still developing, literature concerned with this topic. Note

that robust algorithms should work even in the case that no errors exists. Thus studying

them must offer a better understanding of the problem. Needless to say, the kind of ’error’

learning theory regards refers to the quality of the training set, since this is the only input

in our algorithms. One such, relatively easy to be honest, ’error’ is our newly defined

truncation over distribution’s domain.

Results so far

As highlighted above, truncated samples is a phenomenon arising in many real world

problems we might need to model. Thus, regardless of its great connections, its study was

early necessitated by application demand.

The generally accepted as first to deal with truncated samples is Galton ([Gal98]) in

1898. Apparently, Galton wished to model race-horses’ speed. In fact, we wanted to

examine whether the Gaussian distribution is a good model for the average race-horse

speed. However, the organisers of the races only registered those horses that achieved a

time record over 2′ and 30′′. Thus, the data available for Galton’s model was truncated.

Still he went on and, taking into account that one tail of the distribution must be missing,

fit a truncated Gaussian into the data he had.

In the following years the study of truncated distributions continued, though in a

framework quite different of what we presented above. That is, specific cases of truncation

sets were considered, usually removing the left or the right tail or a combination of them.

We refer the reader to [Hug62], [Coh91] for an extensive presentation of the early approach

on parameter estimation from the truncated samples.

The modern formulation we introduced was actually given in [DGTZ18]. This is also

where the problem of learning a Gaussian distribution, in d dimensions, from an arbitrary

truncation set is settled. In theorem 2.0.1 we state this result in the case of d = 1 for

simplicity (and consistency to our definitions).
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Algorithm 3 PSGD for Truncated distributions

function gradientEstimation(p, S) . Assume oracle access to samples

x← Oracle.

while y ← D(p) /∈ S do.
. D denotes the truncated distribution

return −x+ y.

procedure TruncatedPSGD(M,λ, S)

p̂← EmpiricalEstimator. . The parameters are initialized as their empirical

estimators

p̄← ProjectedSGDStronglyConvex(M,λ). . Using p̂, projection on S and

gradientEstimation

return p̄.

The learning algorithm is actually familiar to the reader: it is Projected SGD for a

λ-strongly convex learning problem! The objective function is the negative log-likelihood,

thus providing us with the m.l. estimators. This can be shown to be strongly convex. In

fact, in the next lemma, we prove that every distribution in exponential family has a convex

’truncated’ negative log-likelihood objective. Recall that the key for working with SGD

is to specify a good gradient estimation. There lies the beauty of the previous theorem.

Taking a sample x from the sample’s oracle (that is, the true truncated distribution) and

a sample y from the truncated current guess of the distribution. Their difference indicates

the expected direction of the gradient.

We will give the, in essence, exact proof of the above theorem when proving our main

result. In preparation, we prove the claimed convexity of negative log-likelihood of any

distribution belonging to an exponential family. Observe the strength of this result. Had

we shown strong convexity, it would imply that every distribution in exponential family is

learnable by its truncation.

Lemma 4.2.2 (Application: Exponential Families and M.L.E.). Let D be a distribution

in the exponential family set and DS the truncation of D on the set S. Then, the negative

log-likelihood objective for DS is convex with respect to its natural parameters.

Proof. Let θ be the natural parameters vector of D and, consequently, DS . Assume D is

a discrete distribution and denote N the support set of D. Then, for x ∈ N :

DS (θ;x) =
exp

(
θ
TT(x)−A(θ) +B(x)

)
D (θ;S)

.

Thus, the negative log-likelihood objective is

` (θ;x) = −θTT(x) +A(θ)−B(x) + lnD (θ;S) .

For `(θ;x) to be convex with respect to θ it suffices to show that its Hessian with respect

to θ is non-negative.

First, we compute the gradient of the negative log-likelihood as

∇θ`(θ;x) =
∇θD (θ;S)

D (θ;S)
−T(x) +∇θA(θ) .
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Note that for A(θ) we have that

A(θ) = − logD (θ;S) + log
∑
x∈S

e(θ
TT(x)+B(x))

for normalization to hold. Then

∇θA(θ) = −∇θD (θ;S)

D (θ;S)
+

∑
x∈S T(x) · e(θ

TT(x)+B(x))∑
x∈S e

(θTT(x)+B(x))

which multiplying the nominator and denominator by exp (−A(θ)) gives

∇θA(θ) = −∇θD (θ;S)

D (θ;S)
+ Ex∼DS(θ) [T(x)] .

Then the gradient of the negative log-likelihood becomes

∇θ`(θ;x) = −T(x) + Ex∼DS(θ) [T(x)] .

Finally, we calculate the Hessian of the negative log-likelihood

H`(θ) =

∑
x∈S T(x) · [T(x)−∇θA(θ)] · e(θ

TT(x)−A(θ))

D (θ;S)
−∇θD (θ;S)

D2 (θ;S)
·
∑
x∈S

T(x)·e(θ
TT(x)−A(θ)) .

Recalling the results about the gradient of A(θ) we get

H`(θ) = Ex∼DS(θ)

[
T(x)TT(x)

]
− Ex∼DS(θ) [T(x)] · Ex∼DS(θ) [T(x)] ,

which follows from the definition of the covariance matrix of T(x)

H`(θ) = Covx∼DS(θ) [T(x),T(x)] .

Thus, the Hessian is positive semi-definite and the negative log-likelihood is convex.
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Poisson Binomial Distribution

In this chapter we present the family of Poisson Binomial Distributions. This is the first

of the two distributions studied in this thesis. We refer to it as a family since a particular

Poisson Binomial distribution is defined with respect to the number of its parameters

n. Moreover, n controls the distribution’s domain which is [n] = {0, 1, . . . , n}. This work

studies whether we can learn a PBD with n parameters in TV distance based on truncated

samples.

We postpone dealing with our learnability issue until the next chapter. For now, we

first define the distribution formally and analyze some basic properties. Next a series of

approximations for PBDs is given to gain an insight on the actual structure of a PBD.

Right after we present a theorem that fully characterizes this structure and will act as

the cornerstone of our solution. Finally, to acquire a complete perspective of the learning

problem, the learning algorithm for the non-truncated case is outlined.

5.1 Poisson Binomial Distribution

The definition of Poisson Binomial Distribution is, in fact, a very basic and natural

one. Recall the Binomial distribution defined in section 3.1. It refers to the sum of n

independent Bernoulli random variables with the same parameter p. The Poisson Binomial

distribution is defined the same way, but the Bernoulli’s are allowed to have different

parameters pi. Poisson was the first to consider this kind of distribution, thus its name.

One can see [TT19] for a full survey on its properties and the literature around it.

Definition 5.1.1 (PBD). Let X1, . . . , Xn be mutually independent random variables that

follow the Bernoulli distribution, i.e. Xi ∼ Be (pi), 1 ≤ i ≤ n. Then, the sum X =∑n
i=1Xi is said to follow the Poisson Binomial Distribution of order n. We will denote

X ∼ PBD (p1, . . . , pn) and write PBDn for the set of PBDs with n parameters.

The common practice for working with this distribution is to manipulate it as a sum.

Still, we can explicitly express its p.m.f. as follows. First, refer to the Binomial for the

idea. The probability of a Binomial random variable X ∼ Bin (n, p) to equal k is

p (k) =

(
n

k

)
pk (1− p)n−k .

61
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The term
(
n
k

)
counts all the ways for exactly k Bernoullis to equal 1. The rest of the

expression follows from the independence of Xi-s. In consequence, the p.m.f. of a PBD is

given

p (k) =
∑

A⊆[n]:|A|=k

(∏
i∈A

pi ·
∏
i/∈A

(1− pi)

)
,

where we again sum over all the ways for exactly k of the Bernoullis to give 1 (subsets A

of Bernoullis).

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

Poisson Binomial Distribution
Distr 1
Distr 2

Figure 5.1: Poisson Binomial Distribution Graph.

A very important property of

the PBD, not straight-forward by

the looks of it, is unimodality.

That means that a PBD of order

n has a unique maximum point.

The graph increases at the right

of it and decreases at its left. In

other words, it is a concave func-

tion. See [Wan93] for an elegant

combinatorial proof. We demon-

strate an example of a PBD graph

in fig. 5.1.

What is more, PBDs ex-

hibit strong concentration prop-

erties. An immediate applica-

tion of theorem 3.2.1 for X ∼
PBD (p1, . . . , pn) gives

Pr [|X − p̄| ≥ t] ≤ 2e−2t2 ,

where p̄ =
∑n

i=1 pi.

As a final remark, note that we have already encounter this kind of distribution in this

thesis. Recall that the Central Limit Theorem 3.3.1 states that the sum of n indepen-

dent, identically distributed random variables converges to the Normal distribution. Of

course, the PBD consists of independent but not identically distributed random variables.

Still, there are variants of CLT that remove the ’identically distributed’ assumption (e.g.

Lindeberg and Lyapunov CLT [Bil08]).

Thus there is a close, asymptotic connection between PBDs and the Normal distri-

bution. This observation promises a simplified way to manipulate PBDs through their

Normal counterparts, thus bypassing the complicated, combinatorial expression of their

p.m.f. However the asymptotic nature of CLT makes it hard for an algorithm to use it.

In the following section we quantify this similarity giving a number of approximations for

PBDs.

5.2 Approximation of PBDs

Approximations of PBDs by other distributions have been long studied in the literature.

Here, we present three such approximations that will be useful in the following. But first,



5.2 Approximation of PBDs 63

we should elaborate on the kind of approximation we want. We aim to bound the TV-

distance between PBDs and each one of the distributions: Poisson, Binomial and Normal.

Recall that this a quite strict requirement because of the proximity TV distance demands

on every subset of the domain. Moreover, it is a very useful one, since it implies weak

convergence of the distributions (see section 3.3).

Before proceeding to the approximation statements, we should work on the intuition

behind them. This is actually a quite simple one. To get good approximations we try

to match the moments of the distributions. That is E [|X|p]. This is called method of

moments and is a widespread approach in statistics. Note that a probability distribution

is fully specified by its moments, thus the method’s success. In what follows, our main

guideline will be to match the PBD’s mean value and variance (the first two moments)

with those of the approximating distribution’s.

One of the first approximations given for the PBD is the Poisson distribution.

Theorem 5.2.1 (Poisson Approximation [CX02]). Let J1, . . . , Jn be mutually independent

indicators with E[Ji] = pi. Then

TV

(
n∑
i=1

Ji, Poisson

(
n∑
i=1

pi

))
≤
∑n

i=1 p
2
i∑n

i=1 pi
.

Notice that the Poisson distribution has the same mean and variance. Thus, matching

the mean values as in the above allows for large difference in variances. To get better

approximation, we need to match the second moment as well. We define a distribution,

based on the Poisson, so as we can control its variance as follows.

Definition 5.2.1 (Translated Poisson [TT19]). An integer-valued random variable X is

said to be translated Poisson distributed with parameters (µ, σ2), denoted as TP (µ, σ2),

if X − µ + σ2 + {µ − σ2} ∼ Poisson(σ2 + {µ − σ2}), where {·} is the fraction part of a

positive number.

The resulting bound is given by the following theorem.

Theorem 5.2.2 (Translated Poisson Approximation [DP15]). Let J1, . . . , Jn be mutually

independent indicators with E[Ji] = ti. Then

TV

(
n∑
i=1

Ji, TP
(
µ, σ2

))
≤

√∑n
i=1 t

3
i (1− ti) + 2∑n

i=1 ti(1− ti)
,

where µ =
∑n

i=1 ti and σ2 =
∑n

i=1 ti(1− ti)

Next, we will approximate the PBD with a Binomial. This is another improvement

on the approximation using the the Poisson distribution. We can note two reasons for

this. First, the Binomial distribution allows us to control both its mean value and its

variance. Second, recall that the Poisson can be considered the limiting distribution of

the Binomial (while n → ∞). In [CX02], [TT19] we learn that there is a monotonicity

in the TV-distance between a PBD and a Binomial with the same mean value. In fact,

the TV-distance increases with n, until it is maximized for n → ∞ i.e. the Poisson

distribution. The actual bound is given below.
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Theorem 5.2.3 (Binomial Approximation [CX02]). Let J1, . . . , Jn be mutually indepen-

dent indicators with E[Ji] = ti, and t̄ =
∑n
i=1 ti
n . Then

TV

(
n∑
i=1

Ji,Bin (n, t̄)

)
≤
∑n

i=1(ti − t̄)2

(n+ 1)t̄(1− t̄)
.

Finally, we want to acquire a bound for the TV-distance between a PBD and the

Normal distribution. In this case, we can also get an exact value! The TV-distance

between a discrete and a continuous distribution always equals 1. Thus, to compare

between the two, we will need a discretization of the Normal distribution and find the

TV-distance between this and a PBD. Let us define a commonly used discretization of the

Normal distribution.

Definition 5.2.2 (Discretized Normal Distribution). Let Y be a gaussian random variable

with mean value µ and variance σ2, i.e. Y ∼ N(µ, σ2). The discretized normal random

variable X ∼ Nd(µ, σ2) is defined as X = bY e. Then, the probability mass function of X

is:

Pr [X = k] = Pr

[
k − 1

2
≤ Y < k +

1

2

]
,∀k ∈ Z .

Now, we can bound the TV-distance between a PBD and a ’Normal’ distribution as

follows.

Theorem 5.2.4 ([CGS10] Theorem 7.1). Consider the random variables X1, . . . , Xn such

that Xi ∼ Be(pi). Let X =
∑n

i=1Xi, µ =
∑n

i=1 pi and σ2 =
∑n

i=1 pi(1− pi). Then,

TV
(
L(X), Nd(µ, σ2)

)
≤ 7.6

σ
.

Thus, for the binomial distribution Bin(n, p) it holds:

TV
(

Bin(n, p), Nd(np, np(1− p))
)
≤ 7.6√

np(1− p)
.

Before we close this subsection, it is important to define another discretization of the

Normal distribution. Moreover, we show that it is very close to the previous one and,

thus, a good approximation for the PBD as well.

Definition 5.2.3. Consider the normal distribution N(µ, σ2) and denote p(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2

the probability mass on x ∈ R. The Z-discretized normal distribution Nd
Z(µ, σ2) is defined

as:

Pr [X = k] =
1∑

i∈Z p(i)
· p(k) =

p(k)

p(Z)
,

for all k ∈ Z. Notice that this is the truncated normal distribution on Z.

Notice that the pmf of the above has the same expression as the actual Normal dis-

tribution. This will be proven very convenient for the aim of this thesis. Its proximity to

the PBDs is also important and follows from the Mean Value Theorem.

Lemma 5.2.1. Consider the random variables X ∼ Nd(µ, σ2) and Y ∼ Nd
Z(µ, σ2). Then,

it holds that:

TV (X,Y ) < O

(
1

σ3

)
.
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Proof. LetX ∼ Nd(µ, σ2), Y ∼ Nd
Z(µ, σ2) and Z ∼ N(µ, σ2). Denote p(x) = 1

σ
√

2π
exp− (x−µ)2

2σ2

the mass on x ∈ R by the normal distribution. Notice that, by the mean value theorem,

there exists c ∈ (k − 1
2 , k + 1

2) for all k ∈ Z such that:

p(c) = Φ′(c) =
Φ(k + 1

2)− Φ(k − 1
2)

1
= Pr [X = k] .

Thus, it suffices to show that the mass on c is close to the mass on the integer closest to

c, i.e. bce. Then,

TV (X,Y ) =
1

2

∑
y∈Z
|p(c)− p(y)

p(Z)
| .

Noticing that
∑

y∈Z p(c) =
∑

y∈Z
p(y)
p(Z) = 1 and by the triangle inequality it follows that:

TV (X,Y ) ≤
∑
y∈Z
|p(y)− p(c)| .

Using the mean value theorem again, we can derive that for some ci between y, c it holds

that:

|p(y)− p(c)| ≤ |p′(ci)| · |y − c| ≤ |p′(ci)| .

Since the derivative of the normal p.d.f. equals p′(x) = − (x−µ)
σ2 p(x), it follows that:

TV (X,Y ) ≤ 1

σ3
√

2π

∑
y∈Z
|(ci − µ) exp (−(ci − µ)2

2σ2
)| .

The above series converges by the root criterion and the result follows.

5.3 Sparse Covers for PBDs

So far the precision of a PBD approximation depended on the variance of the distri-

bution. In this section we construct an ε-cover for PBDn. That is a set of distributions

ε-close to any PBD of order n. As one can now guess, a Normal distribution can cover any

PBD with ε-large variance. See, for example, Theorem 5.2.4. For the rest, a significantly

small number of parameters, say l � n, suffices to describe them up to ε accuracy. Note

that ε does not depend on the variance and can be arbitrary.

The original aim of this cover, introduced in [DP15], was to make the set of PBDs

easier to explore and understand. Here, we focus on one of the many implications of this

construction: there is a clear separation between the close-to-continuous and the strictly

discrete PBDs of order n, with respect to a degree ε of closeness. This gives us a transition

from continuous to discrete that makes this family of distributions especially interesting

for the problem studied in this thesis.

In what follows, we will state the main covering theorem and give a brief description

of its proof.

Theorem 5.3.1 (Theorem 2 [DP15]). Let X1, . . . , Xn be arbitrary mutually independent

indicators, and k ∈ N. Then there exist mutually independent indicators Y1, . . . , Yn satis-

fying the following:
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• TV (
∑

iXi,
∑

i Yi) ≤ 41/k;

• at least one of the following is true:

– ((n, k)-heavy Binomial form) there is some l ∈ {1, . . . , n} and q ∈ { 1
n ,

2
n , . . . ,

n
n}

such that, for all i ≤ l, E[Yi] = qi and, for all i > l, E[Yi] = 0; moreover, l and

q satisfy lq ≥ k2 and lq(1− q) ≥ k2 − k − 1; or

– (k-sparse form) there exists some l ≤ k3 such that, for all i ≤ l, E[Yi] ∈
{ 1
k2
, 2
k2
, . . . , k

2−1
k2
} and, for all i > l, E[Yi] ∈ {0, 1}.

The approximating distribution (Yi) takes two forms. The heavy Binomial form serves

as the Normal approximation while the k-sparse form accounts for the rest of the distri-

butions.

The proof proceeds in two stages. In stage 1, the parameters ε-close to 0 or 1 are

eliminated. We need this step to specify the actual support of the distribution, as will

be explained shortly. On the next stage, we decide on the approximation form. This will

depend on the variance of the distribution, as made clear in section 5.2.

The following proof sketch aims to present a primitive and simplified intuition on why

the steps taken are the ones that should. With this in mind, it is important to insist on

the actual meaning of a pi being close to 0 or 1. An event happening with probability

almost 0 practically does not happen. Thus the corresponding random variables Xi never

adds on the sum. This means that the maximum value of this sum is smaller than n. In

the same spirit, a random variable that occurs with probability 1 always adds on the sum,

initiating the support of the distribution at a value larger than 0. Thus the number of

pi-s away from 0 and 1 specify the size of the support of the distribution as well as its

variance.

Proof. (sketch) Let X =
∑n

i=1Xi be the PBD to be approximated. Let ε = 1/k specify

the intended accuracy of the approximation.

A key lemma that is constantly used in the following is:

Lemma 5.3.1 ([DP15]). Let X1, . . . , Xn be mutually independent random variables, and

let Y1, . . . , Yn be mutually independent random variables. Then

TV

(
n∑
i=1

Xi,

n∑
i=1

Yi

)
≤

n∑
i=1

TV (Xi, Yi) .

Stage 1

Consider Zi, 1 ≤ i ≤ n, a set of indicators with success probability zi and denote

Z =
∑n

i=1 Zi their sum. We want to properly define the zi-s such that

TV (X,Z) ≤ c/k ,

where c a constant.

Let Lk = {i|pi ∈ (0, 1
k )} denote the set of pi-s ε-close to 0. Then map each pi, i ∈ Lk

to a value zi ∈ {0, 1/k} such as the mean value within the set does not change much i.e.∣∣∣∣∣∣
∑
i∈Lk

pi −
∑
i∈Lk

zi

∣∣∣∣∣∣ < 1/k .
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By theorem 5.2.1 the sum of Xi-s on Lk is ε-close to a Poisson with the same mean.

Formally:

TV

∑
i∈Lk

Xi, Poisson

∑
i∈Lk

pi

 ≤ ∑i∈Lk p
2
i∑

i∈Lk pi
≤

1
k

∑
i∈Lk pi∑
i∈Lk pi

≤ 1/k .

The same is true for the Zi-s on Lk that were just defined. Since, the mean values of

the Poisson distributions are ε-close, by the definition of zi, a known bound on the TV

distance of Poisson distributions gives us a final (3.5ε)-closeness of the distributions.

Lemma 5.3.2 ([DP15]). It holds that

TV (Poisson (λ1) , Poisson (λ2)) ≤ 1

2

(
e|λ1−λ2| − e−|λ1−λ2|

)
.

We apply the same procedure for the pi-s that are ε-close to 1 i.e. Hk =
{
i|pi ∈

(
1
k , 1
)}

.

Finally, set the rest of zi-s equal to the pi-s. By lemma 5.3.1 we get that

TV (X,Z) ≤ 7

k
.

Notice that the mapping pi → zi increases the variance while not departing much from the

original distribution. This observation follows from [TT19], Theorem 2.4., which states

that the more similar the parameters of the PBD, the more variance it has. Increasing the

variance brings closer to the Normal approximation which decreases the parameters from

n to 2, thus, is a desired goal.

Stage 2

In this stage we must decide which approximation is suitable for the PBD in question.

This is based on the variance of the distribution. We use a rough estimation that gives a

criterion with respect to the size of m = |{i|zi /∈ {0, 1}}|. As noted above, this is the size

of the actual support of the distribution. Then the variance of the distribution is given as∑
zi /∈{0,1}

zi(1− zi) ≤
∑

zi /∈{0,1}

(1− 1

k
)2 = m(1− 1

k
)2 .

For the variance to be greater than 1/ε2 = k2 it suffices m > k3. Thus we take the

following two cases.

• m > k3 : As already mentioned, it is not possible to approximate well a discrete

distribution with the actual Normal distribution. Thus we turn to discretizations

of it. Here we use the Binomial distribution Bin(m′, q) which for large variances is

close to Normal. Since the Binomial is a special case of a PBD, we end up with

a covering set within the space PBDn. Studying theorems 5.2.2 and 5.2.3 more

closely it is obvious that the Translated Poisson gives a better approximation than

the Binomial because of the square root. So we match Z and Y ∼ Bin(q,m′) with

their respective Translated Poisson distribution first. Then we get an overall bound

from the closeness of the Translated Poissons.
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Lemma 5.3.3 ([DP15]). Let bµ1 − σ2
1c ≤ bµ2 − σ2

2c. Then it holds that

TV
(
TP

(
µ1, σ

2
1

)
, TP

(
µ2, σ

2
2

))
≤ |µ1 − µ2|

σ1
+

∣∣σ2
1 − σ2

2

∣∣+ 1

σ2
1

.

Notice the similarity of this bound to lemma 3.3.2.

Now the problem reduces to appropriately defining the parameters q and m′. For the

resulting Binomial to be close to Z we should match their mean value and variance.

This is expected to work since the bounds in TV-distance depend only on these two

moments. Thus we set

m′ =

⌈
(
∑n

i=1 zi)
2∑n

i=1 z
2
i

⌉
and

q =
`

n
,

where ` is such that
∑n
i=1 zi
m′ ∈ [ `−1

n , `n ]. It can be shown that these parameters are

well defined and result in good approximations for the mean value and variance of

Z. In fact we get the following lemma.

Lemma 5.3.4 (Lemma 4 [DP15]). Let µ =
∑

zi /∈{0,1} zi, µ
′ = m′q, σ2 =

∑
zi /∈{0,1} zi(1−

zi) and σ′2 = m′q(1− q). Then it holds that:

µ ≤ µ′ ≤ µ+ 1 , µ ≥ k2 ,

σ2 − 1 ≤ σ′2 ≤ σ2 + 2 , σ2 ≥ k2(1− 1

k
) .

Now applying theorem 5.2.2 and lemma 5.3.3, we can derive:

TV (Z, Y ) ≤ 9/k .

Thus the distance between X and its final approximation Y in this case is 16ε at

most.

• m ≤ k3 : In this case the variance of the distribution is small and a Normal approx-

imation would be sub-optimal. Thus, none of the above approximations works for

the low variance case. We have already reduced the number of parameters from n

to m = O (() k3) since we have m non-trivial pi values. The aim is to end up with a

set of O(k) different parameters.

This will be achieved by a ’local’ approximation of zi-s by Binomial distributions,

using theorem 5.2.3. That is, we group zi-s that have similar values. Recall a previous

observation based on [TT19]. We noted that the variance of a PBD increases as the

parameters become similar. Thus these groups give PBDs with enough variance to

be approximated by a Binomial distribution.

Since the purpose is to reduce the parameters to O(k) we will create O(k) such

groups. In fact, we partition the interval (0, 1) (actually [1/l, 1 − 1/k]) into O(k)

subintervals since our parameters take their values in it. Then the z − i-s in each

interval are bound to be close. What is more, we can afford a O(1/k2) error in our
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’sub-approximation’ by lemma 5.3.1. If we have k groups with 1/k2 error each, the

final error is bound to be at most 1/k by the triangle inequality.

So far so good, but how do we divide [1/k, 1−1/k]? Is a trivial, equidistant partition

enough? In truth, it is not! To see this, we must return to fig. 5.1 and the property

next to it. A PBD has strong concentration resulting in a slow change of values

around the mean and a large one in the tails. As must be clear by now, the mass

of the tails of the distribution is controlled by the zi-s close to 0 or 1 (recall our

discussion in Stage 1 on how the number of 0 and 1 pi-s determines the support).

Putting all together, the zi-s close to the border of the interval [1/k, 1 − 1/k] will

have large variance PBDs and the partition can be denser close to them (include

less values as they will give the desired variance to approximate a Binomial easily).

Thus, the subinterval’s length increases around 1/2.

We will not be bothered by the technical details of the partition here. Our goal was

to give an overall understanding of how the k-sparse form takes this description as

well as why this ’rounding’ works. The interested reader can refer to [DP15] for the

full analysis.

5.4 Learning PBDs

In this last section, the learnability of PBDs in TV-distance is established. As already

revealed, our aim is to study the learnability of PBDs from truncated samples. Thus the

traditional case should be the first step. For what follows, consider X ∼ PBD(p1, . . . , pn).

Recall that that a PBD is a discrete distribution, supported on [n]. There is an

obvious way for learning such distributions: estimate every pi, 0 ≤ i ≤ n. This demands

m = Θ(n/ε2) samples for ε-closeness in TV-distance. The formal proof should be an

exercise by now. We refer the lazy reader to [Can20].

However this n dependent sample complexity need not be optimal. The specific struc-

ture of a PBD entices us to hope for more. Thinking about this structure, recall that a

PBD is unimodal. It is another well-established fact, that discrete, unimodal distributions

are learnable given

O

(
log n

ε3
log (1/δ) +

1

ε2
log (1/δ) log log (1/δ)

)
samples. This is proven in Birgé’s [Bir97] and expressed in this modern form in [DDS15].

Birgé’s approach for distribution learning differs from what we encountered so far in this

thesis. Indeed Birgé and the related literature offer us a glimpse of non-parametric distri-

bution estimation, where other properties of distribution functions, such as unimodality,

as exploited. Back to our problem, notice the improvement in dependence over n from lin-

ear to logarithmic. This was gained employing our knowledge for the unimodal structure

of the distribution.

Still unimodality does not exhaust the information about PBDs. Thus we can do even

better. In this next step, the dependence over n for the sample complexity is completely

removed. The result was given by Daskalakis, Diakonikolas and Servedio in [DDS15]
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and will be presented in the following. As for a little spoiler, let us note that the best

characterization for a PBD’s structure is no other from its ε-cover.

Theorem 5.4.1 (Learning PBDs [DDS15]). Let X =
∑n

i=1Xi be an unknown PBD.

There is an efficient algorithm that given

m = Õ
(
1/ε2

)
log 1/δ

independent samples from X returns a vector p̂ = (p̂1, . . . , p̂n) such that X̂ ∼ PBD(p̂)

satisfies:

TV
(
X, X̂

)
< ε ,

with probability at least 1− δ.

In the following we present that algorithm and sketch the proof of theorem 5.4.1. Fully

exploiting our knowledge for the PBD structure we reduce the problem to learning a sparse

PBD, a heavy PBD (Binomial) and choosing between the two. This is demonstrated in

the following algorithm.

Algorithm 4 LearnPBD

1: procedure LearnPBD(n, ε, δ)

2: HS ← LearnSparse(n, ε, δ/3).

3: HP ← LearnHeavy(n, ε, δ/3).

4: return ChooseHypothesis(HS , HP , ε, δ/3).

That is, if the unknown PBD is close to a sparse, the subroutine for learning a sparse

PBD -LearnSparse- will succeed. If it is not, it must be close to a heavy PBD. Thus the

correct answer is given by LearnHeavy. Finally, we decide on which is actually the case,

choosing between the two suggested hypotheses.

The rest of this section aims to give a high-level understanding of how these subroutines

work. We study each in a subsection below.

5.4.1 Learn Sparse PBD - Birgé’s algorithm

The sparse case will be settled by unimodality. Note that this, and the sparsity prop-

erty, is the only structural information concerning this case. Sparsity is also deployed to

remove the n dependence. So we consider this an ’optimal’ approach.

Birgé’s algorithm, as given in Theorem 5 of [DDS15], guarantees that with

O

(
log n

ε3
log (1/δ) +

1

ε2
log (1/δ) log log (1/δ)

)
samples it returns a distribution H over [n] such that TV(X,H) ≤ ε. However, for the

sparse case, the effective mass of a PBD lies in an interval [a, b] such that |b−a| ≤ 1
ε3

. This

it immediate by Stage 2 of the cover proof. Thus, Birgé’s algorithm’s sample complexity

is now independent of n, i.e.

m = O

(
1

ε3
log (1/ε) log (1/δ) +

1

ε2
log (1/δ) log log (1/δ)

)
.
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Still a subtle detail is missing. In theorem’s 5.3.1 proof, there is also a Stage 1, the

massage step. That is, to work with the ’effective’ mass of the distribution that is sup-

ported on 1/ε3 elements, we must remove ε-mass of the tails. Consider that given sample

access to a sparse PBD X we run Birgé’s algorithm. Then there is an ε probability that

we get samples outside [a, b]. Then the guaranteed, independent of n, sample complexity

is spoiled.

To overcome this issue, we truncate the distribution tails. In other words, we give

Birgé’s algorithm access to a conditioned version of X on the interval [a, b], denote X[a,b].

In contrast to Stage 1, we cannot explicitly specify a, b by mere sample access of the

distribution. Thus, we estimate them by the following procedure:

• Draw M = 32 log (8/δ)/ε2 samples.

• Set a to be close to the minimum and b close to the maximum of these samples.

We will specifically define close to right away. The procedure will be formulated for a

since b can be handled similarly. Note that we cannot estimate an a that leaves exactly

ε-mass out, so we bound the mass it excludes.

Claim 5.4.1. Consider X ∼ PBD(p1, . . . , pn) and sample access of X. Let S = {s1, . . . , sM}
be the sorted set of M = 32 log (8/δ)

ε2
i.i.d. samples of X. Also, let â = sd2εMe. Then

Pr [X ≤ â] ∈ [3ε/2, 5ε/2] ,

with probability at least 1− δ/4

Proof. The above claim follows by a simple concentration observation. Let al = max{i|Pr[X ≤
i] ≤ 3ε/2}, thus Pr[X ≤ al] ≤ 3ε

2 . Note that we cannot calculate this al. Assuming we

know it, however, consider the number of samples in S below al, i.e.

M∑
i=1

1si≤al .

Notice that

E

[
M∑
i=1

1si≤al

]
≤ 3εM/2 .

By Hoeffding’s Inequality 3.2.1 and for

t =
7εM

4
− E

[
M∑
i=1

1si≤al

]
> εM/4

we get

Pr

[
M∑
i=1

1si≤al >
7εM

4

]
≤ δ/8 .

Thus, with high probability, the 2εM > 7εM
4 element is larger than al. So Pr[X ≤

sd2εMe] ≥ 3ε/2.
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An equivalent procedure is followed for the upper bound. Consider au = min{i|Pr[X ≤
i] > 5ε/2} so Pr[X ≤ au] > 5ε/2. We will now work with −

∑M
i=1 1si≤au for which it holds

−E

[
−

M∑
i=1

1si≤au

]
> 5εM/2 .

Thus, for

t = −9εM

4
+ E

[
M∑
i=1

1si≤al

]
> εM/4 ,

Hoeffding’s inequality implies

Pr

[
M∑
i=1

1si≤au <
9εM

4

]
≤ δ/8 .

So 2εM < 9εM
4 element is smaller than au and Pr[X ≤ sd2εMe] ≤ 5ε/2 as required.

Algorithm 5 Learn Sparse PBD

1: procedure LearnSparse(n, ε, δ) . Assume oracle access in X’s distribution

2: M ← 32 log (8/δ)/ε2

3: S ← {s1, . . . , sM} ∼sort XM . . M i.i.d. sorted samples from X’s distribution

4: a← sd2εMe and b← sb(1−2ε)Mc.

5: if b− a > (C/ε)3 then . C consant

6: return p̂ = 0.

7: else

8: return Birgé(X[a,b]). . Birgé’s algorithm for X conditional on [a, b]

9: return ChooseHypothesis(HS , HP , ε, δ/3).

Conditioning on estimator â we can guarantee we excluded approximately ε-mass of the

PBD distribution. Moreover, recall that we do not really know X is a sparse PBD. That

means, if it is not, Birgé’s algorithm will demand samples that depend on n. The estimators

â, b̂ can, therefore, be used to reject PBDs that are not close to sparse. Algorithm 5 puts

everything together.

5.4.2 Learn Heavy PBD

We will now assume that X is ε-close to a heavy Binomial distribution. As emphasized

in section 4.2 this result derives from the proximity of PBD to a Gaussian distribution.

The exact argument in Stage 2 states that a PBD is ε-close to a Translated Poisson of

the same mean µ and variance σ2 (and through this it is ε-close to the Binomial). Thus

it suffices to estimate the mean µ̂ and the variance σ̂2 of the PBD. Then the Translated

Poisson with the estimated parameters must be close to the original Translated Poisson.

The problem reduces to finding the correct estimators. It is no surprise that they

should be

µ̂ =
1

m

∑
Zi and σ̂2 =

1

m− 1
(Zi − µ̂)2 ,

where Zi denotes the samples and m the number of samples drawn.
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Algorithm 6 LearnHeavy

1: function EmpiricalEstimators(n, ε, δ) . Assume oracle access in X’s distribution

2: r ← O(log (1/δ)).

3: for i ∈ [1 : r] do

4: m← d3/ε2e.
5: S = {Z1, . . . , Zm} ∼ Xm. . m i.i.d. samples from X’s distribution

6: µ̂i ←
∑
Zj
m and σ̂2

i ←
∑

(Zj−µ̂i)2
m−1 .

7: µ̂← median(µ̂1, . . . , µ̂r) and σ̂2 ← median(σ̂2
1, . . . , σ̂

2
r ).

8: return (µ̂, σ̂2).

9: procedure LearnHeavy(n, ε, δ)

10: ε′ ← ε/
√

4 + 1
θ2

.

11: (µ̂, σ̂2)← EmpiricalEstimators(n, ε’, δ).

12: return TP (µ̂, σ̂2).

However, these estimators are not exactly correct. The problem here is that Zi-s do

not really follow a Gaussian distribution. Thus the sub-Gaussianity property and concen-

tration results are not quite right. Note that Translated Poisson is a Poisson distribution.

Thus, it has a heavier tail than the Gaussian.

The aforementioned estimators are ’weak’. That is, their probability of being away

from their mean is not negligible, but is small. It can be shown that

Pr [|µ̂− µ| > σε] ≤ 1/3

and

Pr

[∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ > ε2

]
≤ 1/3 .

To put it right, there is a bias towards getting estimators that are close to the true value.

This is enough. Applying a boosting technique, such as in lemma 4.1.4, we end up with a

precise estimator. This technique consists of repeating the estimation a number of times

and choosing a common outcome. This must work, since most of the time the estimator

is good.

Algorithm 6 employs the described procedure. We will not proceed into the formal

analysis. It is given at section 2.2 of [DDS15] in enough detail. Note, however, that despite

our understanding for the Gaussian distribution and its proximity to a heavy PBD, proving

the same results for the later can be tricky.

5.4.3 PBD Hypothesis Testing

We must now decide which distribution is indeed close to X. We need a criterion to

compare the two. Notice that, if the two distributions are close in TV-distance and since

one of them must be close to X, any output is correct. Thus, the actual need to choose

occurs when the two distributions are away from each other. That means hypotheses H1,

H2 differ in TV-distance and so, they assign different masses to some subsets ofthe domain.

As can be seen in algorithm 7, this subset is specified (we actually know the distributions
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so we can calculate their p.m.f.). Then the true mass on this subset is estimated. The

distribution closest to this estimation wins and is returned.

Algorithm 7 ChooseHypothesis

1: procedure ChooseHypothesis(H1, H2, ε, δ) . Assume oracle access in X’s

distribution

2: W ← support(X), W1 = {w ∈W |H1(w) > H2(w)}.
3: p1 = H1(W1) and p2 = H2(W1). . p1 > p2 and TV (H1, H2) = p1 − p2

4: if p1 − p2 ≤ 5ε then . Draw, return either

5: return H1.

6: else

7: m← 2 log (1/δ)
ε2

8: S = {s1, . . . , sm} ∼ Xm. . m i.i.d. samples from X’s distrbution

9: τ ← 1
m |{i|si ∈W1}|.

10: if τ > p1 − 3
2ε then

11: return H1.

12: if τ < p2 + 3
2ε then

13: return H2.

14: return H2. . If not any of the above we have a draw and return either
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Learning PBD from Truncated

Samples

In this chapter we study the learnability of PBDs from samples truncated on a set S.

This is one of the two distributions that are studied in this thesis. In agreement with the

non-truncated case, we exploit the information given by a PBD’s cover. So the problem is

reduced in two subproblems: learning a heavy binomial distribution and learning a sparse

PBD from truncated samples. In what follows, we study these subproblems in depth and

try to specify those traits that will make efficient learnability possible.

6.1 Identifiability

In this section we study the identifiability of truncated PBDs. Recall that a PBD is

fully characterized by its parameters p (for a specific number of parameters n). That is,

every vector p creates a unique PBD. When truncating the distribution, however, this is

no longer guaranteed. The first step for studying learnability from truncated samples is

identifiability. That means, no two different distributions truncated on a set result in the

same truncated distribution. Thus, we need to give a condition for the truncation set S so

as any PBD truncated on it is unique. For example, the Binomial distribution truncated

on a set with more than three elements is unique, as will be proven in the next section.

In the case of a general PBD this cause is quite challenging. The following lemma

shows that the set of PBDs of any order will include at least two distributions that are not

identifiable by their truncation on a set S. What is more, this S only hides one point of

the distributions’ support and it has at least 1/2 mass. Thus it is impossible to construct

an algorithm that guarantees to learn any PBD truncated on any set S.

Lemma 6.1.1. There exist a truncation set S and at least two distributions in the set of

PBDn with non trivial mass on S such that their truncations on S are identical.

Proof. It suffices to show that there exist a set S and two PBDs Y , Z such that TV(Y, Z) >

ε and TV(YS , ZS) < ε.

We assume n > 5. Then let

Y ∼ PBD(0.9, 0.9, 0.9, 0.9, 0.7, 0, . . .) ,

75
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Z ∼ PBD(0.95, 0.95, 0.8, 0.3, 0.95, 0, . . .) ,

and S = [5]. In fig. 2.1 we can see that although S removes just one point from the

distribution and it has at least 1/2 mass the truncation of the distributions on it are

identical.

Note that the previous lemma 6.1.1 does not prohibit the learnability of some subset

of the set of PBDs. For example, the set of ’heavy’ PBDs is learnable from truncated

samples as argued in section 6.2. Moreover, in [DKS16] a robust algorithm for learning

PBDs is given. Thus a truncation set S that removes only an ε-mass of the PBD does not

affect its learnability.

In the sparse case, however, lemma 6.1.1 guarantees that there always be at least two

distributions and a set S on which the supposing learning algorithm will always fail. In

the next section, we restrict ourselves to PBDs that are close to heavy Binomials. That

is, PBDs that are close to a Gaussian-continuous structure.

6.2 Learning a Heavy Binomial Distribution from Trun-

cated Samples

As has been highlighted in the previous chapter, a heavy PBD is, in principle, close

to a Gaussian distribution. In theorem 2.0.1 we give an algorithm that efficiently learns

a Gaussian from truncated samples. So, it would appear that the first problem is already

solved.

However, the two distributions, a heavy PBD and its ε-close Gaussian, have a TV

distance. Thus, sampling from a PBD is not equivalent to sampling from a Gaussian,

however close they might be. Recalling that algorithm 3 is, in principle, the SGD, it

is not straight-forward that it should work given samples with ε-error. Indeed, the key

characteristic of SGD is that it minimizes the objective given a suitable estimation of its

derivative. Here our objective is the Gaussian negative log-likelihood. So there will be an

error in this derivative estimation, since our samples come from a PBD distribution. In

Approach One we study this technique and give experimental results on its performance.

On the other hand, theorem 2.0.1 is a powerful technique designed to address the

problem in many dimensions. One should reasonably think, that a single dimensional

Gaussian, close to a heavy Binomial distribution, should be easier to learn, even from

truncated samples. With this in mind, we study the learnability of a Binomial distribution

from truncated samples in Approaches Two and Three.

6.2.1 Approach One: Discretized Gaussians

First, we want to demonstrate the equivalence of learning a heavy PBD to learning a

discretized Gaussian distribution. This follows directly from the closeness of a heavy PBD

to a heavy Binomial and the closeness of a heavy Binomial to a discretized Gaussian. This

is an observation emphasized throughout the thesis. In lemma 6.2.1 it is formally stated.

Lemma 6.2.1. Let X1, X2, . . . , Xn be arbitrary mutually independent indicators and ε ∈
(0, 1/2). Assume there exists a binomial distribution Bin(k, p) with k ∈ [1 : n] and p ∈
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{ 1
n , . . . ,

n
n} such that kp ≥ 1

ε2
and lp(1− p) ≥ ε2

1−ε−ε2 and for X ∼ Bin(k, p) it holds that:

TV

(
n∑
i=1

Xi, X

)
≤ 41ε .

Then, for Y ∼ Nd
Z(kp, kp(1− p)) it holds that:

TV

(
n∑
i=1

Xi, Y

)
≤ O (ε) .

Proof. Consider the random variable Z ∼ Nd(kp, kp(1− p)). Notice that ε < 1/2 results

in
√

1− ε− ε2 > 1/2. From theorem 5.2.4, it follows that:

TV

(
n∑
i=1

Xi, Z

)
≤ 15.2ε .

An application of lemma 5.2.1 and the triangle inequality gives:

TV

(
n∑
i=1

Xi, Y

)
≤ O (ε) .

By definition, the Z-discretized normal distribution is the truncation of the normal

distribution on the set of all integers Z. So, the truncated Z-discretized normal distribution

on a set S ⊆ Z is the truncation of the normal distribution on S.

Thus, the learnability of the Z-discretized normal distribution, and, consequently, of

the heavy PBD, from its truncation on a set S ⊆ Z directly follows from theorem 2.0.1.

As noted before, this closeness does not guarantee the learnability of the heavy PBD.

This would imply robustness of the behaviour of SGD. We leave a formal such statement

open for future work. For now, we suffice with studying this conjecture in practice. That

is, we produce samples from a heavy Binomial distribution and treat them as Gaussian

samples. Note that this technique applies to another problem as well: learning Binomial

distributions from truncated samples.

Experiments

For the experiments we have chosen three kinds of truncation sets. The first consists

of samples around the mean of the distribution. The second consists of one of the tails.

And the third rejects all the mass around the mean. We study these sets leaving only α

mass on them for three different mass values. So, we test our distribution on nine different

settings.

Our aim is a quite demanding one: we want to retrieve the original distribution in

ε = 0.08 TV distance. In the case of the Gaussians, we use m = 50/(αε2) samples. This

matches theorem 2.0.1 up to a constant factor, revealed through the experiments. The

results are presented in fig. 6.1.
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Figure 6.1: PSGD for Gaussians run with Binomial samples using 50/αε2. The right-hand

side inscription α denotes the mass of the truncation set.

The conclusion from fig. 6.1 is encouraging. We can see that in most cases the goal

is attained. Even when ε = 0.08 distance is not achieved, the error is not much larger.

We ran the same experiments for a different Binomial distribution, as well. The results

remain positive as can be seen in fig. 6.2
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Figure 6.2: PSGD for Gaussians run with Binomial samples using 50/αε2. The right-hand

side inscription α denotes the mass of the truncation set.

6.2.2 Approach Two: Binomial System Solution

The motivation for the following discussion comes from this simple example. Assume

we want to learn a Binomial distribution truncated on a set S with only one element.



6.2 Learning a Heavy Binomial Distribution from Truncated Samples 79

However, the truncated distribution on S will put all the mass in just one element, mak-

ing it impossible to distinguish between distributions. This introduces the problem of

identifiability. For a distribution to be learnable, given its truncation on S, it is necessary

to be identifiable from this truncation. That is, its truncation on the set must be unique.

It is now clear that the first step when studying the learnability of a distribution if

to specify whether it is identifiable truncated on the specific set. In the non-truncated

case this is usually not necessary since distributions are uniquely defined. In lemma 6.2.2

we prove that, for the Binomial distribution to be identifiable, S must contain at least 3

elements.

Lemma 6.2.2. A binomial distribution Bin(n, p) is identifiable by its truncation on a set

S ⊆ [n] iff |S| ≥ 3.

Proof. Consider two binomials Bin(n, p), Bin(m, q) and let S be the truncation set. Let

α = PrX∼Bin(n,p)[X ∈ S] be the mass of S in Bin(n, p). Denote px = PrX∼Bin(n,p)[X = x]

the probability mass on a point x ∈ S by Bin(n, p) and qx the mass assigned by Bin(m, q).

First, we will prove that for |S| = 2 the binomial distribution is not identifiable. Set

p = 1
2 , q = 1

3 and m = 2n− x. Assume S = {x, x+ 1} such that S ⊂ [min(n,m)].

Notice that:
px
px+1

=

(
n
x

)
(1

2)x(1− 1
2)n−x(

n
x+1

)
(1

2)x+1(1− 1
2)n−x−1

=
x+ 1

n− x
= b ,

and
qx
qx+1

=

(
m
x

)
(1

3)x(1− 1
3)m−x(

m
x+1

)
(1

3)x+1(1− 1
3)m−x−1

= 2
x+ 1

2n− 2x
=
x+ 1

n− x
= b .

Thus,

Pr
X∼BinS(n,p)

[X = x] =
pX(x)

pX(x) + pX(x+ 1)
=

α

1 + α
=

pY (x)

pY (x) + pY (x+ 1)
= Pr

Y∼BinS(m,q)
[Y = x] ,

and, similarly, for x + 1. Thus, for Bin(n, p) to be identifiable, the cardinality of S must

be at least 2.

Now, we will prove that the probability mass of the truncated distribution on three

elements can uniquely determine the original distribution. Let S = {x, y, z}. Assume,

by way of contradiction, that the mass assigned on each point of S by the truncated

distributions BinS(n, p) and BinS(m, q) are equal, i.e.

px
px + py + pz

=
qx

qx + qy + qz
and

py
px + py + pz

=
qy

qx + qy + qz
and

pz
px + py + pz

=
qz

qx + qy + qz
.

This implies:
px
py

=
qx
qy

and
px
pz

=
qx
qz
.

By definition, we get:(
n
x

)(
n
y

) ( p

1− p

)x−y
=

(
m
x

)(
m
y

) ( q

1− q

)x−y
and

(
n
x

)(
n
z

) ( p

1− p

)x−z
=

(
m
x

)(
m
z

) ( q

1− q

)x−z
,

and, thus, (
q(1− p)
p(1− q)

)x−y
=

(
n
x

)(
m
y

)(
n
y

)(
m
x

) and

[(
n
x

)(
m
z

)(
n
z

)(
m
x

)]x−y =

[(
n
x

)(
m
y

)(
n
y

)(
m
x

)]x−z .
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Setting c1 = x− y > 0 and c2 = x− z > 0 and after some calculations the second relation

becomes:

[(n− z) . . . (n− z − c2 + 1)]c1

[(n− z − c1 + c2) . . . (n− z − c2 + 1)]c2
=

[(m− z) . . . (m− z − c2 + 1)]c1

[(m− z − c1 + c2) . . . (m− z − c2 + 1)]c2
.

Notice that the nominator has c2 terms while the denominator has 2c2−c1. If c2 > 2c2−c1

it follows that c1 > c2 and fraction increases with n. On the other hand, when c2 < 2c2−c1

the opposite holds. Note that, since x, y, z are different points it is always c1 6= c2. In

either case, the equality holds iff n = m and we reached a contradiction.

Based on the above analysis, we develop an algorithm to learn the parameter p given

the probability mass on just two points of the domain. Let x, y ∈ S and px, py the masses

on x, y respectively. Then we have:

px
py

=

(
n
x

)
px(1− p)n−x/p(S)(

n
y

)
py(1− p)n−y/p(S)

=

(
n
x

)(
n
y

) ( p

1− p

)x−y
.

So we get for p:

p =

(
1 +

(
px
(
n
y

)
py
(
n
x

))x−y) .

Thus algorithm 8 should give a good estimation for p.

Algorithm 8 System Solution

1: procedure estimatePSystemSolving(M) . Assume oracle access to S

2: x, y ← ChoosePoints(S). . Decide on estimation points

3: p̂x, p̂y ← EmpiricalEstimation(M).

4: p̂← [1 + [
p̂x(ny)
p̂y(nx)

]x−y]−1.

5: return p̂

We make two observations about algorithm 8. The implementation of function ’Choose-

Points’ is not specified. The following analysis gives information about the importance

of this function. Thus based on it we decide how it would be best implemented. The

’EmpiricalEstimation’ function simply counts the x-samples in sample set of size M .

Moreover, we insist on the following remark. The above algorithm is a quite simple

algorithm. It depends on the mass of only two points to calculate p. Therefore, it ignores

a lot of information in a sample set, referring to the rest of the domain.

Study function ESTIMATEPSYSTEMSOLVING

In lemma 6.2.3 we formally analyze the sample complexity of algorithm 8.

Lemma 6.2.3 (Learnability of Truncated Binomial Distribution - System Solving). Con-

sider a binomial distribution Bin(n, p), where n is fixed, and a set S ⊆ [n], such that

|S| ≥ 2. Denote b be the minimum probability mass assigned on a point in S by the

truncated binomial distribution BinS(n, p), i.e.

b = minx∈S Pr
X∼BinS(n,p)

[X = x] .
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Then, there exists an algorithm that given m = Θ(n log (1/δ)
b2ε2

) i.i.d. samples from BinS(n, p),

computes an estimate p̂ such that:

TV (Bin(n, p),Bin(n, p̂)) ≤ ε ,

with probability at least 1− δ and for ε < b.

Proof. Consider the set S ⊂ [n] and the truncated binomial distribution BinS(n, p).

Denote px = PrX∼BinS(n,p)[X = x] the probability mass on a point x ∈ S and p̂x its

estimate. The algorithm computes the estimates for two points, x, y ∈ S.

Define p̂x = 1
m

∑m
i=1Xi where Xi ∼ Be(px), i.e. Xi is 1 when sample i equals x, 0

otherwise. Similarly, p̂y = 1
m

∑m
i=1 Yi. Then, E[X] = px and E[Y ] = py.

By Hoeffding’s inequality we can derive:

Pr [|p̂x − E[X]| ≥ ε] ≤ 2 exp
(
−2mε2

)
.

It follows that given

m =
log (4/δ)

2ε2

samples it holds that:

|p̂x − px| < ε and |p̂y − py| < ε

with probability at least 1− δ.
Considering Bin(n, p) as an exponential family, denote θ its natural parameter. Then,

θ is given in terms of the probabilities px, py:

θ =
1

x− y
· log

(
px
(
n
y

)
py
(
n
x

)) .
Then, it holds:

|θ− θ̂| = 1

|x− y|
·| log

(
px
py

)
−log

(
p̂x
p̂y

)
| = 1

|x− y|
·| log (px)−log (p̂x)+log (p̂y)−log (py)| .

Notice that f(x) = log x is 1
C−Lipschitz if x ≥ C. Since b denotes the minimum probability

assigned by distribution BinS(n, p) we get that:

px ≥ b and p̂x ≥ b− ε .

Also, it holds that |x− y| ≥ 1, so it follows:

|θ − θ̂| ≤ 1

b− ε
· (|px − p̂x|+ |py − p̂y|) ≤

2ε

b− ε
.

Thus, by 3.3.1, we get that:

TV (Bin(n, p),Bin(n, p̂)) ≤
√

2n

2
· |θ − θ̂| ≤ ε

√
2n

b− ε
.

So, for

m = Θ(
n log (1/δ)

b2ε2
)

it follows that:

TV (Bin(n, p),Bin(n, p̂)) ≤ ε

with probability at least 1− δ and the proof is concluded.
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Notice that the sample complexity for algorithm 8 depends on n. This is not an

expected result. In Approach One we imply that a Binomial distribution is learnable given

just Θ(1/ε2) samples. Here, simply retrieving p costs samples that increase linearly with

n. We want to study whether this is a byproduct of our analysis or a real characteristic

of the algorithm. Thus we proceed on the following experiments.

Experiments

First, we specify the exact implementation of the algorithm. In algorithm 8 ’Choose-

Points’ function remains ’open’. In lemma 6.2.3 the sample complexity depends on the

least mass of these points. Thus we should choose points that will likely have important

mass. We use a small portion of the samples (1/7) to get estimations on the mass of

every point in S. Then we choose the points with highest estimations. Although these

estimations might be very bad, we just want a guidance for our choice.

The experiments are identical to the Gaussian case. We use m = n/(αε2) samples for

our estimation. We get fig. 6.3.
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Figure 6.3: Learn parameter p of Binomial using n/(αε2) samples. The right-hand side

inscription α denotes the mass of the truncation set.

Notice that even using n times more samples than in the Gaussian case, algorithm 8

fails to retrieve p close enough.

We repeat the experiment allowing for only m = 1/(αε2) samples. This is to emphasize

on the sub-optimality of this algorithm compared to Approach One. At the same time,

we are reassured for the analysis of lemma 6.2.3. The results are given in fig. 6.4.
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Figure 6.4: Learn parameter p of Binomial using 1/(αε2) samples. The right-hand side

inscription α denotes the mass of the truncation set.

It is a safe conclusion that, ignoring information, the algorithm demands more samples

to guarantee small error. Thus, lemma 6.2.3 applies in practice and a ’simpler’ approach

to learning the Binomial distribution seems inadequate.

6.2.3 Approach Three: PSGD for Binomial

In this final Approach we take advantage of all the information available to estimate

p. Note that the Binomial distribution with known parameter n is an exponential family

(see table 3.1). Thus it has a convex negative log-likelihood objective. We can prove that

algorithm 3, that is basedon learning a Gaussian from truncated samples, retrieves p. This

is shown in lemma 6.2.4 that follows.

Lemma 6.2.4 (Learnability of Truncated Binomial Distribution - PSGD). Consider a

binomial distribution Bin(n, p), where n is fixed, and a set S ⊂ [n], such that |S| ≥ 2.

Assume we have membership oracle access to S and that α = PrX∼Bin(n,p)[X ∈ S] > 0.

Then, there exists an algorithm that, given m ≥ n log (1/δ)
poly(α)ε2

i.i.d. samples from the truncated

binomial distribution BinS(n, p), with p ∈ (c, 1 − c), c constant, computes an estimate p̄

such that:

TV (Bin(n, p),Bin(n, p̄)) < O (ε) ,

with probability at least 1− δ.

Proof. Consider the set S ⊂ [n] and the truncated binomial distribution BinS(n, p). The

estimator θ̄ returned by Projected SGD defines a binomial distribution that is O(ε)-close

to the original one. We prove this in six steps.

Denote Bin(θ) a binomial distribution such that its natural parameter is θ. We write

Bin(θ;x) to refer to the mass assigned to point x by the distribution. We will also denote

with θ∗ the natural parameter of true distribution Bin(n, p).
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Step 1: Convexity of the objective

We will run Projected SGD with the maximum likelihood objective. For SGD to converge,

we need the objective to be convex. The binomial distribution, for n fixed, defines an

exponential family such that:

Pr
X∼Bin(θ)

[X = x] =

(
n

x

)
exp (θx− n log (1 + eθ)) ,

where θ = log p
1−p is the natural parameter. Thus, by 4.2.2, the negative log-likelihood

objective is convex.

Step 2: Initial Feasible Point

Consider the M.L. estimator of the binomial distribution

p̂S =
1

m

m∑
i=1

Xi

n

where Xi ∼ BinS(n, p) denotes a sample. We will show that:

|p̂S − p| ≤ O

(√
1

n
log (1/α)

)
,

that is, the M.L. estimator is a good initialization for the algorithm.

Let µS denote the mean value of BinS(n, p). We will first show that np̂S is close to µS
and that, in turn, µS is close to the true mean, np.

Hoeffding’s inequality on p̂S implies that, using Θ( log (1/δ)
ε2

) samples, we get:

|p̂S −
µS
n
| < ε

with probability 1− δ.
Now, applying Hoeffding’s inequality for the original distribution Bin(n, p), we get that

it has an exponential tail, i.e.

Pr
X∼Bin(n,p)

[X − np ≥ ε] ≤ exp (−2ε2/n) .

Notice that the distance between the true mean, np, and µS , will be maximized when all

the mass of S is assigned as far away from np. So, to get an upper bound on |np − µS |,
we assign all the mass of S, α, on the tail, i.e.

Pr
X∼Bin(n,p)

[
X ≥ np+ ε′

]
=
α

2

so as µS = np+ ε′.

Using the tail bound, we get that:

|np− µS | = ε′ ≤
√
n

2
· log (2/α) .

Thus,

|np̂S − np| < nε+

√
n

2
· log (2/α) ,
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and, with probability at least 1− δ:

|p̂S − p| = O

(√
1

n
log (1/α)

)

as claimed.

Step 3: Feasible Region

Note that the algorithm iterates over θ. Thus, the actual initial point of the algorithm is

θ̂S = log
p̂S

1− p̂S
.

We need to show that this is also a good initial point i.e.

|θ̂S − θ∗| ≤ O

(√
1

n
log (1/α)

)

What is more, we will prove the existence of a convex set

B = {θ : |θ̂S − θ| < O

(√
1

n
log (1/α)

)
} ,

such that every distribution with parameter θ ∈ B assigns poly(α)-mass on S. Thus,

PSGD iterates over the convex set B which guarantees the functionality of the algorithm.

Note that p, pS ∈ (c, 1 − c) by assumption. Then, f(x) = log ( x
1−x) is C-Lipschitz for

some constant C depending on c and, consequently,

|θ̂S − θ∗| ≤ C|p̂S − p| ≤ O

(√
1

n
log (1/α)

)
.

It follows that θ∗ ∈ B and θ̂S is indeed a good initial point.

It remains to show that a distribution with parameter θ ∈ B assigns non-negligible

mass on S.

Recall that Bin(θ;S) denotes the mass assigned to S by the binomial with natural

parameter θ. Also, notice that:

Bin(θ;S) = Ex∼Bin(θ∗)

[
Bin (θ;x)

Bin (θ∗;x)
· 1x∈S

]
,

which can be written:

Bin(θ;S) = Ex∼Bin(θ∗)

[
exp

(
− log

Bin (θ∗;x)

Bin (θ;x)

)
· 1x∈S

]
.

Then, by definition:

Bin(θ;x) =

(
n

x

)
exp (θx−A(θ)) ,

from which we get that:

log
Bin(θ∗;x)

Bin(θ;x)
= (θ∗ − θ) · x+ C ,
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C = A(θ)−A(θ∗) independent from x.

Thus, setting g(X) = log Bin(θ∗;X)
Bin(θ;X) , X ∼ Bin(θ∗) we can derive:

Pr [g(X)− E [g(X)] ≥ t] = Pr

∑
i∈[n]

(θ∗ − θ) ·Xi − E [(θ∗ − θ)X] ≥ t

 ≤ exp (− 2t2

4n|θ∗ − θ|2
) ,

since (θ∗ − θ)Xi ∈ [−|θ∗ − θ|, |θ∗ − θ|] and by Hoeffding’s inequality.

Setting t = |θ∗ − θ|
√

2n log (2/α) it follows that:

Pr
[
g(X)− E [g(X)] ≥

√
2n log (2/α)|θ∗ − θ|2

]
≤ α

2
.

Note that:

E [g(X)] = KL (Bin(θ∗)‖Bin(θ)) ≤ n|θ∗ − θ|2 ,

where the last inequality follows from 3.3.1.

Since |θ∗ − θ| ≤ C
√

1
n log (1/α) for some C constant, it follows that, with probability

at least 1− α
2 >

α
2 :

− log
Bin(θ∗;x)

Bin(θ;x)
≥ −E [g(X)]−

√
2n log (2/α) · |θ∗ − θ|2 ≥ −C2 log (1/α) .

Then,

Bin (θ;S) ≥ exp (C2 logα) · α
2

= poly(α) ,

which is the expected result.

Step 4: Unbiased Estimation of the Gradient

We now have all the information to guarantee that PSGD will work. Recall that, on every

iteration t, the algorithm computes a vector vt such that the expected value of the vector

is the gradient of the objective function i.e. E[vt|θ] = ∇θ`(θ;x).

In our case, this equals:

Ex∼BinS(θ∗) [∇θ`(θ;x)] = −Ex∼BinS(θ∗) [x] + Ey∼BinS(θ) [y] .

Notice that for the first expected value we can use a sample from the given distribution. For

the second estimate, there is the following procedure. By assumption, we have membership

oracle access to S. Since the support of the distribution is n, we can recover set S with

just n queries. Thus, to get a sample from BinS(θ), we draw a sample from Bin(θ) and

check whether it falls into S. We draw until we access a sample in S. Since the mass of S

is poly(α) for every distribution defined by θ ∈ B, we will get a sample in poly(1/α) steps.

Step 5: Strong Convexity of the objective

To guarantee efficiency of PSGD, convexity of the objective is not enough. We will show

that the negative log-likelihood objective for the truncated binomial distribution is strongly

convex in B. It suffices to show that the Hessian of the objective is strictly positive.

Notice that the Hessian in the single parameter case becomes:

H`(θ) = VarX∼BinS(θ) [X] = EX∼BinS(θ)

[
(X − µS)2

]
,

where µS = EX∼BinS(θ)[X] is the mean value of the conditional binomial distribution. By

the anticoncentration of the binomial distribution, see lemma 3.2.4, it holds that:

Pr
X∼Bin(θ)

[µS ≤ X ≤ µS + t] ≤ C t

σ
,
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where σ =
√
np(1− p) and C a constant. Choosing t = poly(α)σ/2C we get that the

mass of the set S̄ = {x : |x − µS | < t} is at most poly(α)/2. Since the truncation set S

has mass poly(α) it follows that |x−µS | > t with probability at least 1/2 for every x ∈ S.

Thus,

H`(θ) = VarX∼BinS(θ) [X] ≥ poly(α)2 · σ2

4C
· 1

2
> 0 ,

and the negative log-likelihood objective is (poly(α)n)-strongly convex.

Step 6: PSGD

We want to apply theorem 4.1.1 to bound the expected error of our algorithm’s estimation.

Thus, we need to show that the variance of the gradient estimator is bounded. Recall that:

vt = ∇θ` (θ) = −x+ y ,

where x is the sample drawn from the true distribution and y the sample drawn from the

currently estimated distribution. Thus,

E
[
|vt|2

]
= E

[
|y − x|2

]
,

and since x, y come from different distributions we get:

E
[
|vt|2

]
≤ 2EY∼BinS(θ)

[
Y 2
]

+ 2EX∼BinS(θ∗)

[
X2
]
.

Notice that:

EY∼BinS(θ)

[
Y 2
]

=
∑
y∈S

y2pS(y) ≤ n2 .

From theorem 4.1.1 we get the bound:

E [`(θ)]− `(θ∗) ≤ n2

2 · poly(α)n ·M
· (1 + logM) ,

where M is the number of iterations.

Next, we apply the procedure used in lemma 4.1.4 and acquire an estimator θ̄ such

that:

`(θ̄)− `(θ∗) ≤ n

2poly(α)M
· (1 + logM)

with probability at least 1− δ. Since ` is (poly(α)n)-strongly convex, we get that:

|θ̄ − θ|2 ≤ n

poly(α) · poly(α)n ·M
· (1 + logM) .

Thus, for

M = O

(
n log (1/δ)

poly(α)ε2

)
there exists an algorithm that gives an estimator θ̄ such that:

|θ̄ − θ∗| ≤ ε/
√
n

with probability at least 1− δ.
By lemma 3.3.1 it also holds that:

TV (Bin(n, p̄),Bin(n, p)) ≤ ε

where p̄ is defined by the natural parameter θ̄.
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It seems that this new approach offers no improvement. The sample complexity in-

creases linearly with n in this case too. However, we should still explore the quality of our

analysis through experiments. In this way we can verify whether this amount of samples

is indeed necessary to retrieve p. We do so right after.

Experiments

We run the same experiments as in the previous cases. We demonstrate our results in

fig. 6.5. In contrast to lemma 6.2.4 we used only m = 10/(αε2) samples. Recall that in

Approach One where we used the PSGD with the Gaussian objective we used 50/(αε2).
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Figure 6.5: Learn parameter p of Binomial using 10/(αε2) samples. The right-hand side

inscription α denotes the mass of the truncation set.

Despite ignoring the formal result in lemma 6.2.4, the estimations are the best so far.

Of course, we only retrieve p here. Thus we cannot compare this behaviour to Approach

One. However this is an encouraging result since it estimates p with high precision.

We run the same experiments for a different Binomial distribution as well. This is

the same used in Approach One and the results are given in fig. 6.6. We can see that

m = 10/(αε2) suffice for retrieving p in every. Thus the analysis in lemma 6.2.4 should be

improved to give the experimental sample complexity.

Notice that the last two Approaches only care for learning the parameter p of the

Binomial. Approach Two is sub-optimal so it should not concern us further. Approach

Three could be used along with a method for retrieving n. A candidate algorithm could

be: iterate over n and, on every iteration, calculate p assuming that is the correct n.

The problem with this algorithm is that we need a stopping criterion. That is, a way to

understand if a couple (n, p) is guarantees small TV distance. Specifying such a criterion

is another open problem that arises by this study.
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Figure 6.6: Learn parameter p of Binomial using 10/(αε2) samples. The right-hand side

inscription α denotes the mass of the truncation set.





Chapter 7

Learning Mallows Distribution

from Truncated Samples

This chapter is concerned with another probability distribution: the Mallows distri-

bution or Mallows Model. This model plays a fundamental role in ranking aggregation

and social choice theory, which are related to finding an optimal ranking of m objects.

The Mallows distribution is defined over the set of permutations Sm (rankings) and has

two parameters. Once again, our aim is to recover these parameters accessing samples

from a subset of Sm. In fact, this work focuses on retrieving only one of these parameters:

the central ranking π0 ∈ Sm. Note the connection to ranking aggregation theory, since

we search for the ’winning’ ranking π0 from a set of rankings sampled according to the

Truncated Mallows distribution.

First, a formal definition of the Mallows distribution is given. Then we present how

we learn π0 in the non-truncated case to get an insight on the difficulties that might arise.

We proceed to find that condition on the truncation set S which characterizes learnability.

As in the preceding chapter, we will first point out a condition for identifiability. What

is of interest here is that this condition is not sufficient to learn the central ranking. We

will define a sufficient condition, though, and examine whether it holds for some natural

truncation sets.

7.1 The Mallows Model

The Mallows distribution, often referred as the Mallows Model, was originally intro-

duced by Mallows in [Mal57]. It is a statistical model created to solve the following

scenario: Let A be a set of distinct elements which we want to rank. These elements are

also called the alternatives of the model. Every person can give an opinion on their rank-

ing that can be based on their preference, sense of justice etc. Aggregating the individual

opinions into a correct one -for some definition of correctness- is the subject of ranking

aggregation theory. One can think of this procedure as the familiar voting.

There are plenty aggregations rules proposed in the literature ([BF02]). One can think

of the well-known plurality rule as a common example. Assessing them, however, depends

on which ranking of the alternatives we consider correct. There are some natural properties

of aggregation rules consistent with the conventional notion of fairness. However, it has

91
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been shown that demanding some very few of them to hold simultaneously results in

impossibility results (see Arrow’s theorem [FH19]). What is more, specifying the ranking

that has the minimum disagreement with the set of individual opinions is also shown to

be NP-hard ([HSV05]). One solution is to resort in statistical models of rank data and

consider the MLE or other model parameters as the correct ranking. It is in this context

that the Mallows Model was created. See [Xia19] for a presentation of such models.

Mallows Model

The Mallows Model assumes that there exists an objective, true order of these alter-

natives, specified by nature. Then, every individual’s ranking is a noisy version of the

underlying, true ranking which is denoted π0 ∈ Sm. According to Mallows, this noise

is produced in the following way: for every pair of alternatives a, b ∈ A such that a is

preferred over b in π0, write a �π0 b, an individual will flip their order in her ranking with

probability 1− p < 1/2. Thus the probability of a ranking π ∈ Sm equals

p(
m
2 )−d · (1− p)d , (1)

where d denotes the number of pairs a, b ∈ A on whose order π0 and π disagree. Formally,

this quantity represents a distance between two rankings, the Kendall-Tau distance.

Definition 7.1.1 (Kendall-Tau Distance). For any pair of rankings π, σ ∈ L(A) let

KT(π, σ) denote the Kendall-Tau distance between π and σ, such that:

KT (π, σ) = |{{a, b} ⊆ A : a �π b and b �σ a}| .

For φ = (1− p)/p and appropriate normalization eq. (1) becomes a probability distri-

bution with p.m.f.

p (π) =
φKT(π,π0)

Z(φ)
.

It can be shown (see [LB11]) that:

Z(φ) =
∑

π∈L(A)

p(π) =

|A|−1∏
i=1

i∑
j=0

φj .

The formal definition of the Mallows distribution is as follows:

Definition 7.1.2 (Mallows Distribution). Let φ ∈ (0, 1) and π0 ∈ Sm. Denote M(π0, φ)

the Mallows distribution with true ranking π0 and dispersion φ, where, for every π ∈ Sm,

the probability mass on π equals:

p(π) =
1

Z(φ)
φKT(π,π0) ,

where Z(φ) is the normalization constant.

We will write M(π;π0, φ) (or M(π;π0) when φ is known) to denote the probability

mass of a ranking π ∼ M(π0, φ). Needless to say, M(S;π0, φ) is the probability mass on

a set S ⊆ Sm.
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Truncated Mallows Model

The central problem of this chapter is to reconstruct the true ranking π0 of the Mallows

Model, given access only to samples that belong to a truncation set S ⊆ Sm. Consider

that samples come from the truncated Mallows distribution, write MS(π0, φ). This is

defined as in definition 4.2.2. We give the formal definition in the Mallows case right after

for completeness.

Definition 7.1.3. Consider the Mallows distribution M(π0, φ) with central ranking π0 ∈
Sm and dispersion φ ∈ (0, 1). The truncated Mallows distribution MS(π0, φ) on a set

S ⊆ Sm is defined as:

MS (π) =
1

M (S;π0, φ)

φKT(π,π0)

Z(φ)
, π ∈ S

Next, we define a notion of a ’good’ truncated Mallows distribution, in the sense that

the probability of a �π b, π ∼MS(π0, φ) is over a half for every a, b ∈ A such that a �π0 b.
That is, the truncated distribution has a bias to rank pairs of alternatives according to

the true ranking. Note that this is always true in the non-truncated case.

Definition 7.1.4 (Consistency). Consider the truncated Mallows distribution MS(π0, φ),

where π0 ∈ Sm is the true ranking, φ ∈ (0, 1) is the dispersion and S ⊆ Sm the truncation

set. We will call MS(π0, φ) consistent if for every pair of alternatives a, b ∈ A such that

a �π0 b it holds:

pSa�b > pSb�a ,

where pSa�b =
∑

a�πbMS(π) is the probability of the truncated distribution to rank two

alternatives according to the true ranking.

Note that we will often denote δab = pSa�b − pSb�a. We will prove that consistency

is a sufficient condition to retrieve the true ranking given samples from the truncated

distribution. The following section gives an intuition on why this happens.

7.2 Learn the central ranking of Mallows Model

In [CPS13] an optimal, with respect to sample complexity, algorithm is given to acquire

the central ranking π0 of the Mallows Model. This is algorithm 9. We prove that with

high probability and given a logarithmic number of samples, this algorithm retrieves the

central ranking in theorem 7.2.1.

One can think of this procedure the following way. Create a directed graph with

nodes the alternatives in A. An edge goes from a ∈ A to b ∈ A if a is ranked above b

in the majority of samples. Since the samples are drawn from the Mallows distribution,

theorem 7.2.1 guarantees that the resulting graph will be a DAG representing π0 with

high probability.

Theorem 7.2.1 ([CPS13]). For any given δ > 0, there exists a polynomial time algorithm

that determines the true ranking with probability at least 1− δ given O(log (m/δ)) samples

from the Mallows Model.
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Algorithm 9 Estimate central ranking of Mallows Model

1: procedure MallowsCentralRanking(Π) . Π the samples’ set

2: π0 ← Id . Id is the id ranking

3: for {a, b} ∈ A do . For all pairs of alternatives

4: nab ← |{π ∈ Π|a �π b}|
5: if nab > |Π|/2 then

6: π0 ← π0(a � b) . Move a above b in ranking

7: else

8: π0 ← π0(b � a)

9: return π0

Proof. We will prove that algorithm 9 determines the true ranking π0 with high probability

given O(log (m/δ)) samples.

Let Π ∈ (Sm)n be the set of n samples drawn from the Mallows distribution. Denote

nab =
∑

πi∈ΠX
ab
i the number of samples that rank a above b, where Xab

i equals 1 when

a �πi b and 0 otherwise. We also write pa�b = Prπ∼M(π0,φ)[a �π b] for the probability

that a pair of alternatives is ranked in a specific order by Mallows. It follows that Xab
i ∼

Be(pa�b).

It holds that algorithm 9 returns π0 iff ∀a, b ∈ A such that a �π0 b it holds that

nab − nba ≥ 1. Let δab = pa�b − pb�a for every a, b ∈ A such that a �π0 b. Since

E[nab − nba] = nδab, it follows that:

Pr [nab − nba ≤ 0] = Pr

[
nab − nba

n
− E[

nab − nba
n

] ≤ −δab
]
≤ Pr

[
|nab − nba

n
− E[

nab − nba
n

]| ≥ δab
]
,

and by Hoeffding’s inequality:

Pr [nab − nba ≤ 0] ≤ 2 exp (−2nδ2
ab) .

If δmin = mina,b∈A:a�π0b δab, we get that Pr [nab − nba ≤ 0] ≤ 2 exp (−2nδ2
min) for every

pair of alternatives a, b ∈ A. Thus, by union bound,

Pr [∀a, b ∈ A, a �π0 b : nab − nba > 0] ≥ 1−
(
m

2

)
2 exp (−2nδ2

min) .

Setting δ =
(
m
2

)
2 exp (−2nδ2

min) it follows that given O(log (m/δ)/δ2
min) samples suffice

to get π0 with probability 1−δ. Thus, we still need to show that δmin is a constant. Notice

that, for a, b ∈ A consecutive in π0 it holds that:

pa�b =
∑

π∈Sm,a�πb

1

Z
φdKT (π,π0) =

∑
π∈Sm,b�πa

1

Z
φdKT (π,π0)−1 = φ−1pb�a .

For a, b ∈ A not consecutive, quantifying the increase in KT-distance between rankings

where only a, b is flipped is not that simple. However, we notice that the distance from π0

must increase by at least 1 and, thus, it holds that:

pa�b ≥ φ−1pb�a .
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Also, note that pa�b + pb�a = 1 so pb�a = 1−δab
2 . It follows from calculations that:

δab ≥ (φ−1 − 1) · 1− δab
2

≥ 1− φ
1 + φ

,

and so it is for δmin. Thus, δmin is greater than a constant that depends on φ and so the

sample complexity in O(log (m/δ)) as claimed.

The above proof attributes the success of algorithm 9 to two facts. First, the concen-

tration of nab around its mean value npa�b and, second, the fact that pa�b > 1/2 > pb�a
for every a �π0 b. Notice that the later is a property of the Mallows Model on Sm that

can be violated when truncation is applied.

Moreover, we note, though not prove, that this algorithm is optimal.

Theorem 7.2.2 ([CPS13]). For any δ ∈ (0, 1/2], any algorithm requires Ω(log (m/δ))

samples from the Mallows Model to determine the true ranking with probability at least

1− δ.

This optimality implies an if-and-only-if connection between pairwise comparisons

and the Mallows Model. We note this observation. We will shortly present a sufficient

condition for learnability from truncated samples. We will claim it is also necessary partly

because of this exact behaviour.

7.3 Necessary Condition

The first step to explore the learnability of a truncated distribution is to make sure that

distinguishing it from others is even possible. Recall that this is the notion of identifiability.

In the following lemma, we give a condition involving the distances between rankings that

fully characterizes the identifiability of a truncated Mallows distribution.

Lemma 7.3.1 (Identifiability). Let Dπ(πi, πj) = dKT (πi, π)− dKT (πj , π). The truncated

Mallows distribution MS(π0, φ) is non-identifiable iff there exists a ranking π1 such that,

for every πi, πj ∈ S, it holds that:

D0(πi, πj) = D1(πi, πj) = 0 , if D0(πi, πj) = 0 ∪D1(πi, πj) = 0 ,

or
D0(πi, πj)

D1(πi, πj)
= c , if D0(πi, πj) 6= 0 ∩D1(πi, πj) 6= 0 ,

where c is a constant.

Proof. Consider the Mallows distributions M(π0, φ0) and M(π1, φ1). Let S ⊆ Sm be the

truncation set. Denote pS,πi(π) the probability mass on π by distribution MS(πi, φi), i.e.

pS,πi (π) =
1

M(πi;S)

1

Z
φ
dKT (π,πi)
i .

AssumeMS(π0, φ0) ≡MS(π1, φ1), i.e. MS(π0, φ0) is non-identifiable. Then, for every

π ∈ S it must hold that:

pS,π0 (π) = pS,π1 (π) .
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This is equivalent, by definition, to:

Zφ1φ
dKT (π,π0)
0

Zφ0φ
dKT (π,π1)
1

=
M(π0;S)

M(π1;S)
.

Thus, for every πi, πj ∈ S it holds that:

φ
dKT (πi,π0)−dKT (πj ,π0)
0 = φ

dKT (π,π1)−dKT (πj ,π1)
1 ,

which, taking the logarithm on both sides, implies the result.

In lemma 7.3.1 we characterize the identifiability of a general Mallows distribution.

This thesis examines the case that φ is known. Thus the condition is given by the following

Corollary 7.3.0.1. The truncated Mallows distribution MS(π0, φ) for fixed φ is non-

identifiable iff there exists a ranking π1 such that, for every πi ∈ S, it holds that:

KT (πi, π0)−KT (πi, π1) = c ,

where c is a constant.

Proof. The result is given immediately if we set φ0 = φ1 in the proof of lemma 7.3.1.

None of the above conditions is very informative about the structure of a good or

bad truncation set. In fact, it is not straight-forward how to even check the conditions

efficiently, given a central ranking and a truncation set. We claim that this is NP-hard.

Consider MS(π0) is not identifiable because there exists a π1 such that

KT (πi, π0) = KT (πi, π1) ,∀πi ∈ S .

Thus c = 0 in corollary 7.3.0.1. In the case that π0 is the median of S, determining

whether such a π1 exists is reduced to determining whether the median of S is unique.

Thus the problem resembles known hardness results such as [HL19].

For small m, though, these conditions are easily checked by code and give us some

useful observations. First, notice that there is not such a π1 for every MS(π0, φ). E.g.

take π0 = (1, 2, 3) and S = {(1, 3, 2), (2, 1, 3), (2, 3, 1)}. So there are truncation sets that

allow identifiability.

An important observation for the Mallows distribution is that identifiability does not

imply learnability. We illustrate this in example 7.3.1.

Example 7.3.1. Consider the case that m = 3, the central ranking π0 = (1, 2, 3) and

the truncation set is S = {(2, 1, 3), (3, 1, 2), (3, 2, 1)}. It can be checked that MS(π0, φ) is

identifiable for every φ ∈ (0, 1).

Notice that the probability of seeing π−1
0 = (3, 2, 1) ∈ S while sampling fromMS(π0, φ)

is exponentially small. That means that we need exponentially many samples to learn even

the truncation set. Indeed, drawing n samples, the probability that we get π−1
0 is:

Pr

[
n⋃
i=1

Xi

]
≤

n∑
i=1

Cφm

Zφ
=
nCφm

Zφ
.
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For this event to happen, even with probability 1/2, it holds that: 1
2 = Pr [

⋃n
i=1Xi] ≤ nCφm

Zφ
so

n ≥ CZφφ−m .

Thus, demanding polynomial number of samples means that, with high probability, the

truncation set we have access to we will be S′ = {(2, 1, 3), (3, 1, 2)}. However, MS′(π0, φ)

is not identifiable. Taking π1 = (2, 3, 1) it holds that MS′(π0, φ) ≡MS′(π1, φ).

7.4 Sufficient Condition

In the previous section, we established a gap between identifying the Mallows distribu-

tion and learning its parameters. We have already defined the notion of consistency and

elaborated on the recoverability of π0 under this assumption. Thus, the two conditions

cannot be equivalent i.e. non-consistent distributions can be identifiable. It is still open

whether they can be learnable, though.

We will now prove the learnability of π0 when the truncated distribution is consistent.

The proof follows almost precisely that of theorem 7.2.1 and is given below.

Lemma 7.4.1. ConsiderMS(π0, φ) the truncated Mallows distribution, with central rank-

ing π0 ∈ Sm and dispersion φ ∈ (0, 1). Assume MS(π0, φ) is consistent. Let δmin =

mina�π0b(p
S
a�b−pSb�a), where pSa�b as defined in definition 7.1.4. Then, there exists an algo-

rithm that recovers the true ranking π0 with probability at least 1−δ given O(log (m/δ)/δ2
min)

samples.

Proof. Consider the truncated Mallows distribution MS(π0, φ) with central ranking π0 and

dispersion φ. We will prove that algorithm 9 determines the true ranking π0 with high

probability given O(log (m/δ)) samples.

Let Π ∈ Sn be the set of n samples drawn from the truncated Mallows distribution.

Denote nab =
∑

πi∈ΠX
ab
i the number of samples that rank a above b, where Xab

i equals

1 when a �πi b and 0 otherwise. We also write pSa�b = Prπ∼MS(π0,φ)[a �π b] for the

probability that a pair of alternatives is ranked in a specific order by Mallows. It follows

that Xab
i ∼ Be(pSa�b).

It holds that algorithm 9 returns π0 iff ∀a, b ∈ A such that a �π0 b it holds that

nab − nba ≥ 1. Let δab = pSa�b − pSb�a for every a, b ∈ A such that a �π0 b. Since

E[nab − nba] = nδab, it follows that:

Pr [nab − nba ≤ 0] = Pr

[
nab − nba

n
− E[

nab − nba
n

] ≤ −δab
]
≤ Pr

[
|nab − nba

n
− E[

nab − nba
n

]| ≥ δab
]
,

and by Hoeffding’s inequality:

Pr [nab − nba ≤ 0] ≤ 2 exp (−2nδ2
ab) .

If δmin = mina,b∈A:a�π0b δab, we get that Pr [nab − nba ≤ 0] ≤ 2 exp (−2nδ2
min) for every

pair of alternatives a, b ∈ A. Thus, by union bound,

Pr [∀a, b ∈ A, a �π0 b : nab − nba > 0] ≥ 1−
(
m

2

)
2 exp (−2nδ2

min) .

Setting δ =
(
m
2

)
2 exp (−2nδ2

min) it follows that given O(log (m/δ)/δ2
min) samples suffice

to get π0 with probability 1− δ.
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In the case of complete Mallows, we insisted on the fact that this algorithm is actually

optimal, that is no algorithm can retrieve the true ranking using less samples. Note that

a learning algorithm with access to truncated samples should work in the case S ≡ Sm,

i.e. when there is not truncation. Constructing an algorithm that retrieves π0 from a

non-consistent Mallows would give a different algorithm for learning π0 in the general

case.

7.5 Examples of Truncation Sets

In the previous sections, we have given some formal characterizations for the truncation

set S. Here we will be concerned with a more practical aspect of the problem. We want to

know how easy it is to actually construct an S that makes learnability hard. We present

two lemmas that will hopefully help us form an intuition.

First, we study the case that a truncation set is chosen uniformly at random. Unless

φ is very close to 1, i.e. the Mallows distribution is close to the uniform distribution, a

random S cannot affect our ability to learn the true ranking.

Lemma 7.5.1. Let S ∼u P(Sm) be drawn uniformly at random from the powerset of

permutations. Then, the truncated Mallows distribution MS(π0, φ), where φ ∈ (0, 1 −√
16 log (mδ )/m!), is consistent with probability at least 1− δ.

Proof. Let S be the truncation set. We choose S uniformly at random, meaning that we

choose every set of permutations with equal probability 1/|P(Sm)|.
We will prove that every Mallows distributionM(π0, φ), where φ is quite smaller than

1, truncated on S, is consistent with high probability. That is, ∀a, b ∈ A such that a �π0 b
it must hold that pSa�b > pSb�a. Notice that, since S is chosen uniformly at random,

and every permutation π ∈ Sm belongs to exactly half of the sets in the powerset, the

probability for a permutation to belong to S equals 1/2.

Denote p̂a�b =
∑

π∈S:a�b p(π), where p(π) is the probability mass Mallows assigns on

π. Notice that:

pSa�b > pSb�a ⇐⇒ p̂a�b > p̂b�a .

Let Xi ∼ Be(1/2) indicate whether πi belongs to S. Then, p̂a�b =
∑

a�πib
p(πi)Xi and

we get that:

E [p̂a�b] = E

 ∑
a�πib

p(πi)Xi

 =
pa�b

2
.

Thus, by Hoeffding’s inequality:

Pr
[
|p̂a�b −

pa�b
2
| ≥ ε

]
≤ 2 exp (−m!ε2) .

By similar argument, we can bound the probability of |p̂b�a − pb�a
2 | ≥ ε. Combining the

two, we can derive:

p̂a�b − p̂b�a ≥
pa�b − pb�a

2
− 2ε .

Recall from the proof of theorem 7.2.1 that δab = pa�b− pb�a ≥ 1−φ
1+φ . Thus, for ε = 1

4
1−φ
1+φ ,

it follows that p̂a�b > p̂b�a for every a, b ∈ A such that a �π0 b. So we get that:

Pr
S∼uP(Sm)

[S consistent] ≥ 1−
(
m

2

)
2 exp (−m!

1

16
(
1− φ
1 + φ

)2) ,
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and setting δ =
(
m
2

)
2 exp (−m! 1

16(1−φ
1+φ)2) the result follows.

To make a more quantitative approach, we investigate how robust our algorithm is,

when we are allowed to remove only one permutation from the truncation set.

Lemma 7.5.2. Consider the Mallows distribution M(π0, φ). Let |S| = |Sm| − 1. Then,

the truncated Mallows distribution MS(π0, φ) is consistent if 1−φ
1+φZφ > 1, where Zφ is the

normalization constant of the Mallows distribution.

Proof. Consider the truncated Mallows distribution MS(π0, φ), where |S| = |Sm| − 1.

That means we are allowed to remove only one permutation from the domain of Mallows

distribution.

Recall that consistency of the distribution strongly depends on the difference δab =

pa�b−pb�a for a, b ∈ A such that a �π0 b. Thus, to makeMS(π0, φ) inconsistent the best

choice is to remove the permutation π with the larger mass, such that a �π b. This is, by

definition, π0 having probability mass 1/Zφ. As a result, we care about the sign of:

pa�b −
1

Zφ
− pb�a .

Moreover, recall from the proof of theorem 7.2.1 that δab ≥ 1−φ
1+φ , where equality holds for

a, b consecutive in π0. Thus, subtracting 1/Zφ, δab for a, b consecutive is more liable to

change sign. We focus on a, b consecutive. Then∑
a�πb

p(π) = φ−1
∑
b�πa

p(π) ,

and

Zφ =
∑
a�πb

p(π) +
∑
b�πa

p(π) = (1 + φ−1)
∑
b�πa

p(π) ,

imply that, for pa�b − 1
Zφ

> pb�a, it must be

1− φ
1 + φ

Zφ > 1 .

We point out that the above condition depends not only on φ, but on m as well.

Calculating the φ values through code, we make the following remarks. When m = 3,

removing one permutation instantly makes the distribution inconsistent for any φ not

very close to 0. For m > 3, however, φ must be very close to 1 for the truncation to affect

learnability.

In truth, these two examples only add on a simple observation. Since consistency

depends on δab and this is lower bounded from 1−φ
1+φ , while φ increases δab becomes smaller.

Thus, the truncation of only few permutations can flip its sign.





Chapter 8

Future Work

Each of our future directions evolves either from the PBD or the Mallows problem

studied in this thesis. Thus we divide them into two categories.

• The most immediate open issue left by this work is a formal statement for the

learnability of a PBD close to a heavy Binomial distribution. This is actually an

important result. It implies that, in the one-dimensional case, the Gaussian distri-

bution is learnable from truncated samples even if the mass of the truncation set is

zero. This is, of course, provided that the variance of the distribution is not very

small.

On the next step it is an interesting question whether a similar result holds in higher

dimensions. That is, we define an appropriate discretization for the multivariate

Gaussian distribution. Is there an assumption (e.g. large variance) for it to be

learnable and/or learnable from truncated samples?

• In the Mallows case a sufficient and necessary condition for learnability from trun-

cated samples is yet to be specified. Our conjecture is that the algorithm 9 is not

optimal in the truncated case. It is compelling to examine whether another algo-

rithm can give a condition for S that fully characterizes the problem. A first direction

would be to calculate the average permutation, i.e. rank in the first position the can-

didate that is mostly in the first position, etc. The work in [LM21] could also give

some intuition on the correct approach for the problem.

Moreover, the Mallows Model has another parameter which did not interest us in

this thesis. Studying how φ is affected by truncation is imperative for a complete

understanding of Mallows’ behaviour.
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