ge

EeNIKo METz0BIO ITOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQN KAI MHXANIKQN YTIOAOTISTON

v

ToMEAz TEXNOAOTIAZ [TAHPO®OPIKHE KAI YIIOAOTIZTQN

,
3

v R
] N
7 NPOMHOEVS |
W=
nvpPopos

|

Enitayuvorn tou npooopoiwtyy BLonD pe tnv

Xpnon GPU

AITIAQMATIKH EPTrAsIA

Tou

TZAITATZAPH B. ITANAT'IQTH

ErmBAénov: Anuntplog Zouvipng
Kabnynuig

AB1nva, Auyouotog 2021

EeNIKo MET=0BIO [IOAYTEXNEIO

2X0AH HAEKTPOAOTOQN MHXANIKON KAl MHXANIKQN YIIOAOTISTQN

TOMEAZ TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTISTQN

Emitayuvorn tou npooopolwtyy BLonD ps tnv xpnon
GPU

AITIAQMATIKH EPTrAzIA
TOou

TZAITATZAPH B. ITANAT'IQTH

ErmBAénov: Anuntplog Zouvipng
Kabnynuig

EykpiBnke anod v tpipedn) eetactiky) erutport) tnyv 31 Auyouotou 2021.

(Yroypagr) (Yroypagmn) (Yroypagn)

Anuniplog Zouvipng Navayiding Toavakag Tecdpyrog I'koupag
Kabnynug Kabnynug Kabnynug

Abrva, Auyouotog 2021

EeNIKo MET=0BIO [IOAYTEXNEIO

2X0AH HAEKTPOAOTOQN MHXANIKON KAl MHXANIKQN YIIOAOTISTQN

TOMEAZ TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTISTQN

Copyright (C) - All rights reserved. Me v em¢uAadn naviog Sikaimpatog.
Toanatodpng Iavaywoing, 2021.

Arnayopevetal n avitypadr], arobrnkeuon Kat diavour) tng rapouoag epyaociag, £§ 0AOKApoU
1] TUNHATOG AUTHG, Vid EPUIop1ko okoro. Emtpénetal n avatunoor, anobrkeuor Kat diavo-
1) Vi OKOIO 1] KEPHOOKOITIKO, EKMAISEUTIKNAG 1} EPEUVITIKIG UONG, UO TV IpoUnobeon

va avadEpetal 1) iy npoéAsuong Kat va dlatnpeitat to tapov pryjvupa.

To mepiexopevo autng g epyaociag dev amnxetl anapaitnta tg anoyeig tou Turjpartog, tou

EruBAénovta, 1 g EMITPOIIG TTOU TV EVEKPLVE.

AHAQTH MH AOT'OKAOITHYX KAI ANAAHWHY ITPOZQIIIKHE EYOYNHZ

Me mAnpr) eniyvoorn TV OUVETIEL®V TOU VOPOU TEPi MVEUPATIKOV S1IKAIONATOV, dNAdve evu-
TIOYPAP®S OTL €lj1a1 ATTOKAEI0TIKOG ouyypadeag g rapouoag ITtuxiaxkng Epyaoiag, yia v
oAoxkArpwor g orotag kabe PorBeia eival MANPOSG AVAYVOPIOPEVE KAl avapEPETAl AETTo-
pepag oty gpyacia autt). 'Exe avapépel mAnpeg Kat pe oagpeig avapopeég, 0Aeg 11§ TNYES
xpnong debopévav, anoyewv, 9€0emv KAl MPOTACE®V, 10V KAl AEKTIKGOV avapoprv, eite
Katd kuptodedia eite BAoEl eMOINPOVIKAG apdadpacng. AvadapBave v IPOCKIIKI Kt
ATOPIKY €UBUVH OTL Og TEPIMI®OT ATIOTUYXiag 0TV UAOTION 0N TOV AVROTEP® SNA®OEVIOV oTot-
Xelwv, eipat untdAoyog évavit AoyokAoIng, yeyovog rou onuaivetl anotuyia oty ITtuyiakn
pou Epyaoia kat katd ouvénela arnotuyia anoktnong tou TitAou Zrnoudav, mépav tov Aomav
OUVETIEIWV TOU VOHOU TPl MVEUPATIKOV Sika®pdtov. Andove, ouvenwg, ott auty) n Iltu-
Xwakr) Epyaocia nipoetotpdaotnke kat 0AOKANPpoOnNKe amnod £péva MPOoOITIKA KAl ATTOKAEI0TIKA
Kat 011, avadapBdve mANp®S OAEG TIS CUVETIEIEG TOU VOHIOU OTNV MEPIMI®OT KAtd TV oroia
artoderxOel, draxpovikd, ot 1 gpyacia autrn 1 TPNpa g 6ev pou avnketl H10t eival poidv

AoyokAori)g AAANG mveUPATIKLG 610K oiag.

(Yroypagn)

Toanatodpng Iavayioing

31 Auyouotou 2021

IlepiAnypn

To BLonD eivat éva gpyaleio mou avamtuxOnke pia opdada guoikev oto CERN, pe oko-
o TtV UAoroinorn mpocopoldoe®v. AUTEG Xprotpornotouvial Bondnukd yia KAmola arnd
1a nelpdapata mou oupBaivouv oto CERN, KaB®g EMMITPETIEL OTOUG ETTIOTIIOVEG VA HPEAETOUV
Ta arnotedéopata 1V nepapdtav. Emiong xpnoupornolouvial apketda oty dtadikacia tou
0Xe81a00oU PeAAOVTIKGOV PNXAvnUIATeVv Kat oty avaBadpion tov undpyoviev. Ot rpoco-
HOl®0E1S AUTEG elval apKeTd XpovoBOPEeS, KATIOEG A0 AUTEG TTAipvouv akopa Kat eBdopddeg
yla va 0AokAnp®Bouv Kat €101 eival Onpaviik) 1 rpoorndbeia peiwong tou Xpovou toug.

O1 RAPTEG YPAPIKGOV £ival €va epyaldeio TIOU Xprolponoleital TTAL0V EUPERG Yld TNV EITL-
TAXUVOoN TIPOYPAPHATOV YEVIKOU OKOToU. IT10 ouyKekpipéva, o1 EPapHoyEG TIOU EIMTAXUVO-
VIdl Ao Vv XP1on toug £ivatl autég Imou nmapouotddouv éviovr napaiAniia.

Ztoxot g dumdepatkng auving eivat (a) n vAonoinon moAA@v Aeltoupyldv o KAPTEG
YPAPIKOV, 1€ OKOIO TV EIMITAXUVOI TOV IIPOCOHUOINCEDV HE TETO10 TPOII0 MOTE VA UTTAPXEL
€UKOATQ OtV Xpron g, Kat (B) n oUyKp1on 1oV aroteAeoPATOV NG HE TV TTAAld UAomoinon

ot enefepyaotég. Ot PETPoelg paypatonor)fnkav otov eAAnNviko uniepuriodoyiotr) ARIS.

Aégerg KAedua

Kdpta ypapikev, beam longitudinal dynamics, GPU, GPGPU, CUDA, HPC

AitAeopatxny Epyaocia n

Abstract

BLonD is a tool, developed by a team of physicists at CERN, that is helpful for creating
simulations. Worldwide research centers e.g. CERN, Fermilab etc. use it to develop
simulations that help scientists to understand better the results of their experiments.
Apart from that, it is a decisive factor in the procedure of designing the new machines.
The goal of these simulations, is to produce highly accurate predictions, while keeping
the run-time low.

Graphics Processing Unit or GPU, is hardware designed for displaying images, that
today is also used to accelerate general purpose workloads. They are well known because
of the success in accelerating neural network training, because the special feature of
them, is that it can perform a massive amount of operations in parallel. So, if a program
is parallel it can be benefited by the use of it.

Since BLonD most time-consuming methods are embarrassingly parallel, we decided
that it is a perfect candidate for GPU acceleration, which is the aim of this diploma thesis.
Firstly, we design some of the BLonD methods for the GPU, and optimize them. Secondly,
we implement a mechanism that will let physicists use the GPU implementation without
having knowledge of how a GPU works. Finally, using the Greek supercomputer ARIS, we
use some benchmarks to compare our version to the CPU version. Our implementation

demonstrates a 5.46 x speedup over the CPU version when run on 32 computing nodes.

Keywords

GPU, GPGPU, CUDA, beam longitudinal dynamics, HPC

AitAeopauxny Epyaocia E

OTOUG YOUVELG LUOU

Euyxapilotieg

First of all I would like to thank my professor, Dimitrios Sountris for giving me the
opportunity to do my thesis in his lab and under his supervision. Also, I would like to
thank Dr. Helga Timko and CERN in general for letting me do a task for their team that
helped me develop my skills and learn a lot of new and interesting things. Additionally,
I would like to thank Kostis Iliakis. His guidance played a significant role not only for
the completion of this thesis, but also for their writing part of it. Also our collaboration
was excellent. Finally, I would like to thank my parents for their support during the past

years.

AB1nva, Auyouctog 2021

Toarnatoapng [avayiwing

AitAeopatxny Epyaocia

Ileplexopeva

HepiAnyn

Abstract

Evuxaploticg

1 Extetapévn Hepidnyn
1.1 E0ayOVL] . .« v v vt ot e e e e e e e e e e e e e e e e
1.1.1 CERN e e e e e e
1.1.2 BLonDmodule
1.1.3 Kapteg Enegepyaociag Fpapkov o o v v v v o
1.2 @epnuko YIOBAOPO e e e e e e
1.2.1 BLonD Module
1.2.2 GPU o e
1.8 YAonoinon ouvaptfjoswv Cuda kat BeAtotorowjoetg L
1.3.1 CudaKernels
1.3.2 GPU_cache e e e
1.4 Xpnon tng GPU 01a MEPAPATA + . v v v v v v v v e e e e e e e e e e e
1.5 AT0A0YNon IIelpaPdt®@v . . . v v v e e e e e e e e e e e e e e e
1.5.1 MPI e
1.5.2 Zuykpon CPUpe GPU o o
1.5.83 IlIpooeyylouikég MéBodoto
1.5.4 ZuykplonmgvlOOpemvk40o oo
1.6 Zupnepdopata Kat MeEAAOVIIKEG ETEKTACELS « « « « « « v v v v v v v o o o o e
1.6.1 ZUPIEPAOHATA .« v v v v v v e e e e e e e e e e e e e e e e
1.6.2 MeAAoVUKEG ETEKTACEIS .+« v v v v v v v e e e e e e e e e e e

2 Introduction

2.2 Longitudinal Beam Dynamics
2.3 Thesis Structure L e e e

3 Background Knowledge
3.1 BLonD Simulations e e
3.2 GPU (Graphic Processing Unit)
3.2.1 GPGPU e e

AitAeopatxny Epyaocia

17
17
17
17
17
18
18
19
24
25
34
35
36
37
37
39
42
43
43
44

45
45
45
46

I[NEPIEXOMENA

3.2.2 GPU Architecture L 48

3.2.3 Execution Model oo 49

3.24 Memory System e 50

3.2.5 Development in GPU with CUDAC 51

3.2.6 Development in GPU with PyCUDA 54

4 GPU implementation of BLonD 57
4.1 Implemented Kernels oo 57
4.1.1 Histogram Kernel 57

4.1.2 Drift Kernel e 62

4.1.3 KickKernel e 69

4.1.4 Linear Interpolation Kick Kernel 72

4.1.5 FFTs o o e e e e e e e 76

4.2 Selecting Grid Parameters o000 0oL 80
4.3 Gpu_Cache e e e e e e 86

5 Enabling GPU 89
5.1 Description of BLonD simulation 89
5.2 GPU Corresponding Classes, 90
5.2.1 CGAclass« o i i e 91

5.2.2 Enabling GPU from the mainfile 93

6 Benchmarks 95
6.1 Experimentso e e e e 96
6.2 MPI e e e 96
6.2.1 Classification Of Operations 97

6.2.2 CPUvsGPU e 97
6.2.3 Approximation Methods 0L 100

6.2.4 Weak Scaling Approximation Plots 101
6.3 K40 vs VIOO o it e e e 105

7 Conclusions and Future Work 107
7.1 Conclusions 107
7.2 Future Work e 107

i 110

m Awtflopatkn Epyaoia

KataAoyog Zxnpatwv

1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33

3.1

Apxrtertoviky) GPU L L e e e e e e
[MAéypa pe 4 PmAoKG KAt 8 VAHATA VA PITAOK & . v v v v v v v v o e e o o
ZUYKP101 EKOOOEWV TOU OTOYPAPHATOS « « « v v v v v v v v e e e e e e e e e
ZUYKP10T] PETady eMePyaotr] Kal KAPTAg yPdPlK®V OTo 10toypappid
ZUYKP10T PETadU S1aPOPETIKGOV KAPTOV YPAPIKAOV yid T0 10T0ypappd
ZUyYKp101 petady ernepyaotn) Kat kaptag ypapkev oo drift L oL L.
ZUYKP101 PeTady S1adopetKOV KAPTOV ypapkev yia to drift
TUYKP10T PETady eMepyaot) Kat Kaptag ypadkev oto linear_interp_kick . .
ZUYKP101 Petady ermepyaots) Kat Kaptag ypapkev oo kKick L L.
ZUYKP101] PETady S1aPopetKOV KAPTOV YpaPkaVv yia o linear_interp_kick
ZUYKP101 PeTady H1aPopeTKOV KAPTOV Ypapkeov yia to Kick
ZUYKP10T PeTady erepyaotr) Kat kaptag ypapwwov oo rftt L L.
ZUyKp1on petadu Sadopetikov ekdooewv tou rfft oe kdpta ypapkov
ZUYKP101] PeTady S1aPopetkOV KAPTOV ypapkov yatorfftt
TUYKP10T PETady eMepyaotr) Kat Kaptag ypadpkev oto irftt
ZUYKP101 Petady Srapopetikov ekdooewv Tou irfft oe kdpta ypapikov
ZUYKP101 PETady H1aPOopetKOV KAPTOV ypaPkev ya to irftt
Enidpaon ing GPU_cache octo LHC
Enidpaon ing GPU_cacheoto PS,
Enidpaon ing GPU_cache cto SPS
[Mapddetya evog yuvpoupeto MPLo oo oo
Zuykpton petal CPUkatGPUoto LHC
Yuykpton petalu CPUkatGPUGtoPS
Zuykpton petalu CPUkatGPUGOtoSPS
[Ipooeyylotikég pebodototo LHC Lo oo o oo
[Ipooeyylotikég peébodototo PS L L
[Ipooeyylotikég pebodot oto SPS o . L oL L oL
Weak Scaling oto LHC
Weak Scalingoto PS oo
Weak Scaling oto SPS. L
Zuykpton k40 pe viOO oto LHC 0oL
Zuykpon k40 pe vli0OOoto PS . . . o oL Lo oo
Zuykpon k40 pe viOOoto SPS L L Lo oL

GPU Architecture e e e e

AitAeopatxny Epyaocia

KATAAOTOX EXHMATQN

3.2

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

4.10
4.11
4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

We can see a grid with 4 blocks with each block having 8 threads 51

Comparison of simple version with our shared memory version of histogram 60
Comparison of CPU and GPU for the histogram function 61
Comparison between different GPUs for the histogram function 61
Comparison of CPU and GPU for the drift function with the simple solver . 66
Comparison between different GPUs for the drift function with the simple

SOIVEr e 66
Comparison of CPU and GPU for the drift function with the legacy solver

with alphaorderO oo 67

Comparison between different GPUs for the drift function with the legacy

solver with alphaorderO 67
Comparison of CPU and GPU for the drift function with the exact solver . 68
Comparison between different GPUs for the drift function with the exact

SOIVET oo e e 68
Comparison of CPU and GPU for the kick function 71
Comparison between different GPUs for the kick function 71
Comparison of CPU and GPU for the linear_interpolation_kick function . . 75

Comparison between different GPUs for the linear_interpolation_kick func-

15 16) o 76
Comparison of GPU versions for the rfft function 77
Comparison of GPU versions for the rfft function 78
Comparison of GPU devices for the rfft function 78
Comparison of GPU versions for the irfft function 79
Comparison of GPU versions for the irfft function 79
Comparison of GPU devices for the irfft function 80
Histogram Grid Parameters 81
Drift Grid Parameters Lo Lo 82
Kick Grid Parameters 83
Linear Interpolation Kick Grid Parameters 84
GPUcacheon LHCo 87
GPUcacheonPS L 87
GPUcacheon SPS e 88
MPI workers 1 turnexampleo 0oL 97
LHC: CPUvs GPU o i et b e e 98
PS:CPUvsGPU e 99
SPS: CPUVS GPU 0 et e e e 99
LHC: On the left we have GPU-1PN and on the right we have GPU-2PN . . 100
PS: On the left we have GPU-1PN and on the right we have GPU-2PN . . . 100
SPS: On the left we have GPU-1PN and on the right we have GPU-2PN . . . 100
LHC Approximation Speedup oo 102
PS Approximation Speedup Lo Lo oL 103

Awtflopatkn Epyaoia

KATAAOTOX EXHMATQN

6.10 SPS Approximation Speedup 103
6.11 LHC Weak Scalingo 104
6.12 PSWeak Scaling e e e 104
6.13 SPSWeak Scaling 104
6.14 LHC Weak Scaling i vt 105
6.15 PSWeak Scaling 105
6.16 SPSWeak Scaling 106

Awtflopatkn Epyaoia m

KatalAoyog IIivarwv

6.1
6.2
6.3
6.4
6.5

Intel Xeon Specificationso oo 95
Comparison between k40 and v100 95
The specification of ourdevices 96
Particles per node for experiments 98

Configurations Description

Awtflopatkn Epyaoia m

Kepalatro E

Extetapévn IepiAnywn

1.1 Ewayoyn

1.1.1 CERN

To CERN c¢ivat o Eupernaikog opyaviopog yla v €peuva otny ITUPNVIKY evépyela. I-
6pubnke 10 1954 amnd 12 xwpeg kovida otnv eveun. 'Ewval yveotd yla toug emtayuvieg
opatdiev Tou €Xel KAl MAapEXEl O€ EMOTNPOovES O1APOopOV TOPE®V, OIS I (PUOLKI), yld
va kavouv relpapata. ‘Evag topéag g Quotkrg rou €xel yvopiost avantudn ta tedeutaia
Xpovia, Kupilng Adyw tng oupBolng tou CERN, sivat autog tov beam longitudinal dynamics
[1], tou aoxoAeitatl pe tnv peAetn g CUPTEPIPOPAS TV oepatdiov oe niedia ermrtaxuvong.
[Telpdpata oxetkA Pe auto MPAYHATOIolouvIdl O0ToUg ETTAXUVIEG onpatidiov, oneg eivatl o
LHC [2] 0dnyovtag o véa amotedéopata.

Ta nelpapata mou Xpelddetal va yivouv eival apKeTd KAl arattouv oAU PeydAn mpoe-
topaoia. Emiong xpetddetal apketd PeydAn MPOETOAcia ITPOKEEVOU VA ArtopaciotouV td
XAPAKTINPIOTIKA TOV PNXavhpdaiov rmou 9a oxediactouv. AuUto arattel 1000 XpOvo 000 Kat
TOPOUG, YEYOVOG ITOU KaO10Td IT1o SUCKOAO 1O £pY0 T®V EIMOTNPOVAV. Le 0Aa autd épxetat va
nipooteBel kat 1o ot 1o CERN avaotédetl v Asttoupyia 1ou avd KAmola Xpovika dtaotrpa-
1d, yla ouvinpnon kat avaBadpion. Ze autég Tig meplodoug 1 eKTEAECT) MEPAPATOV givatl

aduvarn.

1.1.2 BLonD module

I'a toug nmapandave Aoyoug avartuxOnke 1o BLonD module [3], pia ouAdoyr epyaAeiov
vldornoupéva oty yAwooa rpoypappatiopou Python rou BonBouv toug emiotrpoveg va u-
Aoror)joouv 1€1010U £iboug mpooopolwoels. Me auto 1o gpyaleio o1 peAetntég, pPopouv va
KATAvVoOoUV Td MEPAPNATIKA ATIOTEAE0ATA KAl Tautoxpova va arogpaci{ouv Tt eidoug pnxa-
vijpata da oxedlaotouv Kat pe noteg rpodlaypadeg. AUTEG Ol IIPOCOHOINOELS TPEXOUV Yid
apretoug yupoug =~ 1 billion kat 61apKOUV yla apKeTd Peyddo Xpoviko diaotnpa. ZUVEN®G

£ivatl moAU ocUPAVTIKY] 1) TpooTtabela yia PEi®wor Tou Xpovou.

1.1.3 Kapteg Enefepyaoiag 'papirav

Ot kapteg ypapikev, 11 aAdiog GPU (Graphics Processing Unit) [4], sivat éva epyaleio

Iou avaruytnke yia v rpoBodr) e1kOvag o€ CUOKEUEG £§060U. Lrjpepa Xpnotpornolouvat

AitAeopatxny Epyaocia

KepdAawo 1. Extetapévn [epiAnyn

0€ TIOAAEG CUOKEUEG OTIOG £ival 01 IIPOO®ITIKOL UTTOAOY10TEG, Ta Kivntd Kat ta drones. To xa-
PAKTNPIOTIKO TOUG £ival MG PUITOPOUV va KAVOUV APKETEG TIPASELS Tautoxpova. Ta tedeutaia
XPOVia £X0UV SEKIVIIOEL VA XPIOT0IIOI0UVIAL KAl 08 EPAPHOYEG YEVIKOU OKOITOU, EIMTAXUVO-
VIag auTtéG TIOU Tapouctdalouv peydAn nmapadAniia, kat €101 xprnowonoieitat o opog GPGPU
dnAadn General Purpose GPU [5]. To BLonD eivat pia edpappioyr) Imou mapouotalel apke-
1d peydldn napaldnldia ota KOPPATa ToU IMOU KATAVAA®VOUV 10 PEYAAUTEPO ITOCOOTO TOU
XPOvou, Kat auto 1o Kafiotd pia amno 1§ epappoyEg IToU PItopouVv va ermtayuvBouv ano Tig
KAPTEG YPAPIKOV.

Zta mAaiola autyhg g SimAe@patikeg vAornotrjoape oAAEG ano 11§ Aettoupyieg tou BLonD
yia GPU, pi€ 1€1010 TpOII0 OOTE 0 XPHOTNG VA PITOPEL VA XPNOTHOTIOW|0EL TNV KAPTA YPAPIKOV
av 10 erBUpel Xwpig va €XEl KAIOlA YVOON TAV® O AUtég. AQouU OAOKAnpooape 6oa ava-
@EPONKaV, KAVAPE MEPAPATA TIPOKEIPIEVOU VA CUYKPIVOURE TV UAOMoinon pag pe autnyv
g CPU. IN'a va 1o kavoupe autod Xpnotponotioape tov eAAnviko uniepuniodoyiotr] ARIS. H

dopr) ou 9a akoAoubnBel oe autod to kepdAato eivar n e&r|g.

e Yy evotnta 1.2 9a avagépoupe KATOEG TTANPOoPopieg oxetka pe 1o BLonD kat t1g
GPU.

e 'Ereta oty evotrnua 1.3 9a dei§oupe g vAonorjoape KArmoieg ouvaptroesig oty LY

KAl KArowa arnod ta aroteAéopara.

e Yy emdpevn evotnta 1.4 9a Sei§oupie tov pnxaviopo e Tov oroio Xpnotponoleital i

GPU ota niepapata pag.

e TV evouta 1.5 9a Hei§oupe ta anotedéopata mou rrpape ano ta benchmarks kat

T1G TIPOOEYY10TIKEG 11€0060UG TTIOU XPNOOTIOW|CAIE.

1.2 Oswpntiro YnoBabpo

Y& auto 1o RePpaAato tapouotadoupe neplAnmuika 1o BLonD module kat 1o newg poladouv
01 MPOCOHOWWOELS TTOU yivovial pe autd. TEAog mapabétoupie KAMOlEg MANPOPOPIES Yia Tig
GPU.

1.2.1 BLonD Module

O1 IIPOCOPOIMOELS TIOU avarttiooovial pe v Xprion tou BLonD amnotedovvratr ano 2
HEPN. ZT0 TIPOTO PEPOG TEPIAapBAavovial KATIOEG APXIKOTIOINOEIS KAl OT0 SeUTEPO PEPOG
UTIapxel €vag Ppoxog mou eravalapBavetal yia apKeTEG EMAVAANYPELIS OTOV OT0i0 autd ta
avukeipeva aAAnAerudpouv petady toug. L1a avilkeipeva mou urdpxouV otV IpOCoHoinoT)

10 ONPAVIIKOTEPA AVAPEPOVIAL TIAPAKATR.

e H axtiva (Beam) rou meptdapBavel SU0 mivakeg [TI§ OUVIETAYHEVES TRV 0OPATIOI®V,
toug dE ka1 dt, mou eivat n) evépyela Katl o XpOvog 0g OXEOT HE KATOld onpeia avago-
pPAg. ZKOIOg g MPocopoinong eivat) eneepyacia autov twv §Uo mvakev. Autoi ot

miivakeg £xouv pEyebog 100 e Tov ap1dpo tev ocopatidiov Tou nelpdpatog.

m AinAeopatxny Epyaocia

1.2 Oswpnukod YrioBabpo

e To otoypappa (profile) sivat éva aviikeipievo ou Xpnoomnoteitat yia va UroAoyiost
1OV Iivaka 1ou 1otoypdppatog tou mivaka dt tng aktivag. O ap1Bpog tev draotnpdatev
TOU 10TOYPAPHIATOS €1val CUYKEKPIPEVOS Yia TO Teipapia Kat 1o peyebog tou eival oe

1a&n 1000 @opég pikpdTEPO ard tov aplopo copatdiov.

e O tracker sivat 10 avuikeipevo ou avalapBavel va TPOITOTIOW)0EL TIG TIHEG TV TIIVAK®V

G aktivag, PEow 1wv ouvaptnoenv kick kat drift.

[To meprypadikda oto reipapa pag yivoviat ta e€fg. Aivoupe ta XapaKInpnotika g aKtivag
®g €10060, KAl KATIOWW AAAQ XAPAKTNPIOTIKA TOU EIMTAXUVIL. TNV OUVEXELld, ertavalapBave-

tat n £€ng dadikdaoa.
e Yriodoyiletat 1o otdéypappa tou mivaka dt tng aktivag.
e LUNQ®VA L€ TO 10TOYPA}A TPOITOIO0UVIAl KATAAANAa KATIO101 IIVAKEG SUVAIIKGOV.
e Me Baon 1oug napandve mivakeg, TPOIOIIOI0UVIAL Ol ITIVAKEG TNG aKTivag.

H napanave diadikaocia yiveratl yia apketa peydlo apiBpo yupev KAl eival apKetd Xpo-
voBopa, €1d1ka yla peyddo apOpo copatdiov. Zinv npoordabela va ermrtaxuvoel, KATO10
xoppdat tou BLonD nou katavadovel Xpovo ypadtnke otnv C++ kat rapaiindornow)0Onke
pe to OpenMP [6] [7]. Ztnv ouvéxela dnpoupynOnke pia véa €kdoor mou Xpnotonolouos
OoAAOUG KOPBOUG IOV EMIKOIVOVOUV Hetagy toug pe to MPI [8] [9]. H 61kr) pag vdorioinon

9a prnopet va xpnotponoteital eite amo Evav KOpBo Povo tou, eite anod noAloug pe 1o MPL

1.2.2 GPU

O1 KApTeg YpadKeV avarmuxfnkav onwg inajpe Kal oy 10aymyry yua v dnpioupyia
KA1 enedepyaoia e1KOVAG 0 OUOKEUEG e€060u. Zrjpepa Ppiokovial oe rdpa rmoAAEG CUOKEUEG
OTIOG KWVNTA TNALP®Va, KOVOOAeg, autovopa autokivita. Ot §Uo etaipieg mou sivat ot KUplot
npopnBeutég toug eivatr n NVidia kat n AMD. AgouU Xprnotpornou)oape KAPtd yPAPLKOV
g NVidia toco yia v avaruén g vdomoinong pag 6co kat yia ta benchmarks Sa
a0X0ANOoUHE KUPIRG PE KAPTES YPAPIKWV AUTHG.

GPGPU ITap'oAn tnv apX1Kn TOUG £GAPIOYL], Ol KAPTES YPAPIKGOV XPNoHonIow0nKav amno
EMNOTNPOVEG TTIOU Y¢Anoav va KAvVOUv €0 aUT®V MPAgels ypapikng diyeBpag. Aro tote
pe tov 0po GPGPU avagepopacte otnv Xprjon 1oV KApTOV YPAPIKOV yid vad eMTAXUVoune
mpoypdppata yevikou okorou. [8iaitepn avagpopd agidel va yivel otov topéa g PnxXavikng
pdabnong. daivetal g o1 KAPTEG ypadlkav eival diaitepa onpaviikég d®, adou eivat
QPKETA IO YPHYOPES AItd TOUG EMECEPYAOTEG 0TIV EKIAIHEUOT TRV MOAUETUITES OV VEUPOVIKGOV
diktuwv [10]. Autr) Toug 1] IKAVOTHTA, 0 OUVOUAOHO HE TNV Avolorn g PnxXavikng pabnong
oTIS NEPES Pag, £XEl @OioEl TOUG TPOPNBEVTEG KAPTOV YPAPIKGOV va TPOooTiabouv mapdyouv

KAPTEG YPAPIK®OV OAO KAl IO 10XUPES.

ApPXITERTOVIKY

Y& autv v Unoevotnta 9a PIANCOUNE Yld TNV APXITEKTOVIKI] Hiag KAPTAS YPAPIKGOV

[11]. Mia xdpta ypadikev arotedeital and rmoAdoug nnpuveg rou ovopddoviat Streaming

AitAeopatxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

Multiprocessors 1) aAAiog SMs. Xtoug SMs extedeital évag kernel mou eival pia ouvapinon
yeappévn yia GPU. K&dBe SM €xet moAAd vhpata, rou tp€xouv v idia evioAn tou kernel,

oav éva SIMD mpdypappa. Ta vijpata autd Popouv akopd Kdl va EMKOVOVOUV HETagy

T0UG, HE TNV XPNOor KOWrg Pvhpng 1) barriers.

e eminedo pvhung, Kabe autdvoprn KApta ypapikev £Xel TV 61K1d TG KUPLd VL)L) IToU
propel va @ravetl peyedn onwg ta 32GB. H kupla pvhun eivatl xoplopévn os tunpata Kat
KABe SM esrukowvavel pe autd pe éva diktuo diaocuvdeong. 'Etol metuyaivoupe peyaiutepo
memory bandwidth. Emniong unidpyxouv on-chip pvrpeg otoug SMs 1mou Aettoupyouv oav

caches, onwg eivat ot L1-cache, n shared memory kat n texture cache. Ta nmapandave

propouv va @avouv oty 1.1.

GPU

w

MO

CubDA
core

CuDA
core

CUDA
core

cuba
core

CubA
core

CUDA
core

cuba
core

CubDA
core

CUDA
core

Texture Cache

Shared Memory

L1 cache

[0

M1

CUDA
core

CUDA
core
CUDA
core

CUDA
core
CuDA
core
CUDA
core

CUDA
core

CuDA
core

CUDA
core

Texture Cache

Shared Memory

L1 cache

]

M 2

CUDA
core
CUDA
core

CUDA
core

CuDA
core
CUDA
core
CUDA
core

CuDA
core
CUDA
core

CUDA
core

Texture Cache

Shared Memory

L1 cache

w0

M 3

CUDA
core
CUDA
core
CUDA
core

CUDA
core
CUDA
core
CuDA
core

CUDA
core
CUDA
core
CUDA
core

Texture Cache

Shared Memary

L1 cache

Z0——0mZ2=20030mMAd2Z2—

ATVOoO=-1mz

Partition Unit

off-chip DRAM

Partition Unit

off-chip DRAM

Partition Unit

off-chip DRAM

Partition Unit

off-chip DRAM

xnua 1.1: Apyttektovikry GPU

AinAeopatxny Epyaocia

1.2 Oswpnukod YrioBabpo

Movtédo Extédsong

Ta vijpata ou undapxouv otoug SMs xwpidovtal oe pikpotepeg opadeg ava 32 mou ovo-
pdadoviat warps. Ta vijpata mou avkouv oto 1610 warp ektedouv v id1a evioAr) kabe @opa,
pe Gagpopetika 6edopéva guokd, and SIMD hardware. O 81ap101pacpiog 1@V vifpat®v o€
warps €ival otatikog Kal PE TET010 TPOIo OOTE Td NMPOTA 32 vApAtd va avijKouv OT0 MP®OTO
warp, ta ernopeva 32 oto eropevo kAT, Kabe vrpa €xer povadiko id kat pe Bdon auvtd
nipocdlopiloupe T mPETEl va Kavel. Xe kabe SM urtdpXouv akopd €vag ot TIEPI00OTEPOL Warp
schedulers ou avaAapBdavouv va TomoBe)ooUV €va warp mpog €KTIEAEOT OTAV aAUTo gival
£10110 aPou €xel cUAAEEeL Ta Sebopéva 1ou Xpeladetatl amo v PvHp.

Yridpxel @oto00 KAl 1) mepinmmeon oto nmpoypappa pag va uvnapyet control flow pe aro-
téAeopa 6Uo vrjpata tou 610U warp va TPEMEL va eKTEAE00UV S1aPOPETIKEG EVIOAEG. Ztnv
MEPIITI®OT] QUTH TA VIJIATA TIOU EKTEAOUV 1A POPETIKEG EVIOAEG TO KAVOUV OF SeEX®P10TdA Pripa-

1a, KAl €101 XAVeTal éva PEPog g rmapaiiniiag.

IIpoypappatiopog oe CUDA C

H CUDA C eivatl n yAwooa 1mou Xpnolornolovpe yia va rneptypdyoupe oy GPU v
ouvdptnorn rou 9gAoupe va ektedéoel. @a rpoortabricoupe va MEPIYPAYPOUNE TO TTKG Yivetat
auto pe éva napdadetypa. @a Xpnolpornoiooupe to rapddetypa abpotong 6Uo mvakeov A
Kat B pe 10 anotédeopa va pnaivet otov C.

ITpwv mpoxwpricoupie oty ektéAeon g ouvdptnong da mpénet va €xoupe e§aopalioest
X®PO OtnVv KUpla Pvipn g KAptag ypadlkav yia toug rivakeg pag A, B xat C. 'Enetta Sa
rpérnet va petadpépouiie oty GPU 1a repiexopeva tov A kat B. Agou ektedéocoupie v ripdgn
9a npénel va petapépoupe tov mivaka C otnv kupla pvhpn g CPU. Ag Soupe topa nwg
ektedoupe v poobeor.

[Tpoxkepévou va ektedécoupe pia ouvaptnorn g GPU kadloupe évav aptBpo amno vipata.
Autd ta vijpata akodouBouv pia iepapyia. ApXiKa Unidpxouv ta Prdok vipdtev. ‘Eva prok
artoteAeitatl ano évav apldpo vudiev mou ofpepa @tavel pexpt ta 1024. Ta vrjuata rou
avnkouv oto 1610 prmlok exktedouviat oto 1610 SM kat opadorolovvial MEPATEP® O Warps.
'‘Otav kadoupe évav kernel npoodiopidoupe nmooa prdokg Sa dnpoupyrjocoupe Kat nooa
vijpata da €xet 1o kabe pridok. To kABe vrjpa otav Tpexel propel PEow £161K®OV PeTaBAntoOv
va yvepiel roto eivat 1o id péoa oto prAok adAd kat 1o id Tou PIMAOK OTO OTTOi0 AVIKEL OTO
oUvoAo TV PmAokg. To oUvoAo OA®V TV PIMAOKG ITOU KaAoupe ovopddetat kat grid. Autd
propet va @avet otnv ewkova 1.2, Zuvenog yla va kadéooupe pia ouvdaptnon GPU npénet va
npocdlopicoupe autég tig mapapetpous. H dadikaoia rmou neprypadetal mapandave @aivetat
010 TMMAPAKATR KOPUATL KOd1KaA.

int main () {
//declare CPU arrays
int A[10000];
int B[10000];
int C[10000];

// Initialize CPU arrays

AitAeopatxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

for (int i = 0; i < 10000; i++){
Ali]
Blil]

rand () ;

rand () ;

// Declare GPU pointers and allocate
// memory for them with cudaMalloc

int xd_A;
cudaMalloc(&d_A, 10000 x sizeof(int));
int xd_B;
cudaMalloc(&d_B, 10000 x sizeof(int));
int xd _C;

cudaMalloc(&d_C, 10000 x sizeof(int));

// Copy arrays from CPU to GPU
cudaMemcpy (d_A, A, 10000 * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, 10000 x sizeof(int), cudaMemcpyHostToDevice);

// Invoke the kernel
addVecs<<< (10000 + 512 — 1)/512 , 512>>>(A, B, C, 10000);

// Copy the result back in the CPU
cudaMemcpy (C, d_C, 10000 * sizeof(int), cudaMemcpyDeviceToHost);

// Free GPU memory
cudaFree(d_A);
cudaFree (d_B);

cudaFree (d_C);

return O;

m AinAeopatxny Epyaocia

1.2 Oswpnukod YrioBabpo

GRID

Block 3

Block 0 Block 1 Block 2

S9SSSSSS | SSSSSSSS | (55985558) 9855588

Thread

“xnpa 1.2: [Agyua pe 4 umAorg kai 8 viuata ava umiox

Twopa anopével va doupe 1 yivetatl péoa otov kernel. Kabe vijpa Sa avaddBet va mipo-
00¢oe1 kanola ototxela tou mivaka pe karola dAda. 'Eote 6t oto grid pag éxoupe 1024
vrjpata Kat ot mivakeg rnou rnpocBetoupe €xouv 2048 ctorxeia. To mpoto vijpa oe 6Ao 10
grid 9a mpénel avaAdBet va nipooBeoel ta ortoixeia otig Ycoeig O kat 1024, 1o Sevtepo vipa
otug 9éoeig 1 xkat 1025 kat ovtw kabefng. Autd @aivetatr oy ouvaptnon addVecs rou

napatiBetat.

void addVecs(int *A, int *B, int xC, int size){
//find the global index
//of thread inside the grid
int tid = threadldx.x + blockldx.xxblockDim.Xx;
// Each thread will compute all the indexes
// that are like total threads x n + tid
for (int i = tid; i < size; i+= blockDim.x*gridDim.x)
Cli] = A[i] + B[il];
}

Sy ypappn 4 urnodoyidetatl 1o oAko id tou vjpatog kat oty ypappn 8 gaivetat) mpddn

TTOU KAVEL Yld va UToAoyioet Tig 9€0€1g TTIOU TOU avaioyouv.

Xprion CUDA otnv Python

[Tpoxke1€VOU va KAAECOUIE CUVAPTIOELS Y1 KAPTES Ypadkev otrv Python xpnoiponoio-
Upe éva module rou ovopdaletat PyCUDA [12]. Autd pag PonBdest apketd kabwg mapexet
1poro va €xoupe mivakeg otv GPU aAAd kat yia va kadoupe ouvaptrjoelg. Mmopei va

XpnotwporonBet pe 6o tpomnoug. O np®tog arnod toug SUo Kat Imo arAog eival 0 NapaKATe.

import pycuda.autoinit # initialize pycuda
from pycuda import gpuarray

import numpy as np

v}
Il

np.random.randint(1000, size=1000)

o
Il

np.random.randint(1000, size=1000)

AitAeopauxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

d_a = gpuarray.to_gpul(a)
d_b = gpuarray.to_gpu(b)
dc=da+ db

c = d_c.get()

Zwv ypappr 11 BAénovag ta opiopata n PyCUDA dnpioupyeti exeivr v ottyprn tov kernel
mou ¥petddetal Kat tov kavet compile. Emtiong anogaociet autr) yia tov apiBpo kat 1o peyebog
1OV PIMAOKG. YTIAPXEL ®OTO0O KAl O TTAPAKAT® TPOIT0G, TOV OIOI0 £HEIS XP1O1110IIOI0UHE Yid

va PIopoulle va YPAdOULE T MEPITAOKOUG aAyopifpoug kat va £xoupie KaAutepo £AeyXO.

from pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy as np

mod = SourceModule("""

__global__ void addVecs(int *xa, int xb, int xc, int sz)

{
int tid = threadldx.x + blockldx.xxblockDim. x;
for (int i = tid; i < sz; i += blockDim.xxgridDim. x)
cli] =ali] + blil];
}

"nn)

addVecs = mod. get_function ("addVecs")

a = np.random.randint(1000, size=1000)
b = np.random.randint(1000, size=1000)

d_a = gpuarray.to_gpu(a)
d_b = gpuarray.to_gpu(b)
d_c = gpuarray.empty_like (a)

addVecs(d_a, d_b , d_c, np.int32(d_a.size),
grid=(20,1), block=(512,1,1))
c = d_c.get()

Ebdw opidoupe epeig tov kernel oug ypappég 5 pe 12 kat opidoupe epeig 1o péyebog kat tov
ap1Opd TV PUMAOKG OtV ypappr) 22.

1.3 YAomnoinon ouvaptioewv Cuda kat BeAtiotonoujosig

Y& auto 10 KedpAAalo da MePypAWPOUHE MG UAOITO|OAE KAIO10UG Ao T0UG Bacikoug
kernels rou yxpeslaotkape Kat Karoieg t PeAtioronorjoelg kavape. Axopa da deifoupe
aroteAéopata OXEUKA HE TV OUYKPIOH E£MMESEPYAOTI] KAl KAPTAS YPAPIKOV, KaBag kat §uo
dlapopetikov kaptev ypapikev. Tédog, 9a piAfjooupie yia pia BEATIOTONOINonN ImMou KAVOUE

010 TTAQio10 P1ag 0OAOKANPNG IPOCOP0IMONG Katl MG autt pag Kepdilet xpovo.

m AinAeopatxny Epyaocia

1.3 Yloroinon ouvaptoewv Cuda kat BeAtiotomnouoeig

1.3.1 Cuda Kernels

Ye autiv Vv umoevotnta da IMEPyPAYOUHE TNV AOYIKI] M€ TV oroia ulorourjoape
karowoug kernels xat da 6ei€oupe arnotedéopata péon sikoveov. Ot kernels autoi eivat

ot eEn6.
e histogram
e kick

o drift

linear_interp_kick
e FFTs

Toug patoug 1€00ep1g TOUg UAorooape epelg, eve toug FFTs toug xpnowponolovpe amno
Vv B1BA100nkn CuFFT péowm tou Python module pe évopa scikit-cuda. Extog and autoug,
vlorooape KAl apketeg aideg ouvaptnoelg yia GPU aAAd enedn katavadovouv oxedov
aonpavio rmocootd tou Xpovou dev adilel va avadpepboupe 18iaitepa os auteg.

IMa éu vdororjoape MAapaKAT®, XP1OTHOMOI0UNE TV £E1G TEXVIKY] Y1d va UTTOAoyiooupe
Tov aplBpo Tewv Prmlokg kat 1o péyebog toug. Tvepiloupe ot kaBs SM propel va mapet
apBud vnuatev pKpotepo 1 ioo amo 2048, kat 1o péyloto péyebog prdok eivar 1024.
'Eto1 9¢toupe 10 péyebog tou prAok oto 1024, kat tov ap1fpo tov PmAokg oto SutAacio tou
ap1Bpou v SMs, £101 OOTE va UIMOPECOULIE va Ta KAaAUWwoupue 0Aa Kat va netuyxoupe 100%
Xpnowornoinon. Ity npddn, n exviky auty] £€6e1§e oAy kaldd arotedéopata, Kat ylia autod
Vv ulobstrjoape.

[Mpoxkeyiévou va e&nyrjooupe v AOyiKY] rmou akolouBoupe, eival onpaviko va e&n-
yrooupe, nag oxedov O0Aeg o1 mapandve ocuvaptioelg eivat karowo for-loop, dAAeg amdd rat
aAAeg epgodeupévo. Ta for-loops kavouv karmoleg mpdelg nave os oopatidia, TEOMorot-
wviag mivakeg ornwg o dE. Ta va tg vdonowrjooupe otv GPU avabétoupe oe kabe vrpa
KArola opatidia, pe tetoov 1poro oote Siadoyika vhpata va avadapBavouv diadoxika
oopatida. Topa yia kabe kernel Sa doupe ta amotedéopata, KAl Og MEPIMIOON ITOU OF
KATT010V Xprotponolnfnke kanoto optimization Sa to avadépoupe.

TEéAOG, PV MEPACOUE OTA ATOTEAEOPNATA, XPINOLIOMOW|0aPe Kal oUyKpivape petady
toug 3 Srapopetikég OUOKeUEG. ApXIKA évav emefepyaotr) Ivied Beov 26603, pia kdapta
ypadikaev N1idia k40 kat pia apKetd mo ouyxpovn Kapta ypapikev Nidwa 100. Ta xapaktn-

P1OTIKA TOUG UTIAPXOUV OtV evotnta 6.

Histogram

H cuvdptnon tou otoypdppatog oneg ripodidet kat 1o ovopa avaAapBavel va UrtoAoyioest
10 1otoypappa tou mivaxka dt. I'a va 1o kavel avto kabe vrjpa urodoyidetl to draotnpa oto
oroio avAkel 1o oopatiblo tou, Kat audavel v TP TOU Katd évd. Ztnv arArn vloroinorn
yivetat akpiBog auto, pe v S1apopd Ot 1) augnorn MMPETEL vad YiVEL € ATOUIKT] EVIOATL], apou

urapyet 1 nepireorn dvo vipata va 9éAouv va augrjoouv v tipr) ou i6ou daotpatog.

AinAeopauxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

Eivat eukoldo va kataddaBoupie g 10 va UMAPXOUV TTOAAA vijpata mou 9€Aouv va au-
EooUV TIEG ATONIKA, 0L €vav OX1 KAl TO00 PeYyAlAo rivaka Orneg autdg To0U 10T0YPAPatog,
HEIOVEL KATA TIOAU v riapadAndia Aoye tov atopikev eviodov. ‘Etol avarttudape pia Sevte-
pn £€kdoor) Tou histogram, otnv oroia KA PMAOK VNIAT®V UTTOAOYiEL TOTTIKA TO 10TOYpappia
1OV oOPaTdinv ITou Tou avaloyouv Kat £metta 1o ITpoobEtet oto 0Ako. To tormko wotdypappa
undpyetl oe pia e81kov tunou on-chip pvhpn mou ovopddetat shared-memory. Me autdv
TOV TPOIIO TIETUXAIVOUPE TO VA PEIWCOUHE TOV AVIAY®VIOHO TV VPAtev, adou 1mAéov Sa
gxoupe povo 1024 vhpata kat oxt 30.720 (tooa Sa eiyxape oe pia GPU pe 15 SMs). Emiong
auTtoU TOU TUITOU 1] PV €ivatl TIOAU THo ypryopn and v Kupla PV, 1000 ®OTE va OU-
yKplvetat oe tayxutnta pe auvtv evog kataxopntr). Enedr) ootdoo eival replopilopiévn, Kat oe
OPLOHEVEG TIEPUTIMOOELS OV PITOPEl va XWPECEL €va aviiypado ToU 10TOYPAPHPATOS O auTnV,
porojoape v €k6oorn pag wote otav cupbaivel autod, va Slatnpel TOTUKA T KEVIPIKESG
9€0e1g TOU 10TOYPAPIATOG TTIOU OUVHO®G £lval T ITUKVEG, KAl yid Ta S1a0Ttpata eKTog autoV
va kavet rpdadelg areubeiag oto tediko wotdypappa. Zug ewkoveg 1.3, 1.4 kat 1.5 pmnopo-
Upe va 60Upe v oUYKP1on PEtady twv 600 ekbooewv, aAdd Kal v oUYKPlon Petady tov

O1aPOPETIKOV CUOKEURDV.

histo_sm
1.UU

—

.UU

__F
=

B sm_off
B sm on

N

o E

C g
__ B
O

Time normalized on sm off

==
I

16M 64M 100M
input size

Zxnpa 1.3: Zuykpion ek600e®V TOU 10TOYP AUUATOS

Ty ewkova 1.3 BAénoupe nog 1 PeAtiotonounpévn €k6001| PAg QTAVEL va gival akopa
rat §ud PopEg 1o ypriyopn amnod v arir). Qotoco yia peyadutepa 1eyedrn, mou 10 ocootod

10U 1oToypdppatog otnyv shared-memory yivetat apketd pikpo, n Siapopd pikpaivel aobnta.

m Awtflopatkn Epyaoia

1.3 YAormoinon ouvaptrjoeov Cuda kat BeAtiotornowoetg

histo

=
o
1

Time normalized on CPU double
©
(o)}
o
.
I .

o
©
o

©
o
1

HE double_gpu
Il single_cpu

[| i

o
I N .
! 1 [|

o
o
o I I
=2 I N B
o
o
I I R
I N .
o
o
I I
I N .

| single_gpu
0.4 -
17
0.2
1 12 1 .10 1 .09 .0 .09
0.0 -
1M 4aM 64M 100M

numer of particles

Zxnpa 1.4: Zuykpion puetalv emepyaotn Kat KAptag yeapikav 010 10T0Y0auua

v ewkova 1.4 mapatnpovpe nwg nn GPU pag sivat 10 @opég o ypnyopn ano v CPU.
To aAdo mou mapatnpouvpe eival g To va xpnotporoovpe 32 bits yia va neptypayoupe
tov dt mivaka Sev pag ermeEpet KEPHOG GTOV XPOVo. AUTO 10XUEL T000 yia v GPU aAAd onwg

paivetat kat yia v CPU.

1.UU J..UUo.98 ‘L'UUO.QS l.UUO_98 J..UUO'98

=
o
1

o
o]
1

o
[o)]
1

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

o©
>
1

Time normalized on GPU k40 double
o
N

o©
o
I

1M 4M 16M 64M 100M
numer of particles

Zxnpa 1.5: Zuykpion puetalv S1apopetikmv Kaptov yoaPikov yia 10 10TOY0auua

Zv ekdva 1mou Qaivetatl rmaparndave Propoupe va dovpe v ouykpion petadu mg K40
Kat g v100 Kat va nmapatnperooupe nog Katd péco opo 1 v100 eival 5 gopég o ypnyopn.
Axopa Kat og AUty TV KApPTa 1 PETaTport) amno ta 64 ota 32 bits dev ermdépet oAU peydln

Hel®on ToU XpOVoU, ®OTO00 PeEYAAUTepr) anod Ot IIpiv.

Awflopatkn Epyaoia

KepdAawo 1. Extetapévn [epiAnyn

Drift

H ouvdptnon drift éxet 5 napaddayég, mou OAeg eivat apketd napopoleg PeETasy toug.
Tivovtat ot 161eg mpooBaoeig otnv pvrun aAld addddouv ot mpdgeig mou yivovial otnyv Kabe
é¢kdoorn. Emneidbr) n ouprepipopd eival oe yevikeég ypapur] idia, 9a deioupe ypapikég ma-
paotdacelg Povo amod v npwin €k600n AUt Pe Tov solver va maipvel v Tpr simple.

[Mapakdi® @aivovial ta anoteAéopara.

drift_simple

1.0 1

0.8 -

o
iy

II II II single_gpu

0.4 A

0-99
0.6 1 l_ HEE double gpu
II 0.50 0.50 0.50 m single_cpu

0.1 0.1 0.1

Time normalized on CPU double

16M 64M 100M
numer of particles

Zxnua 1.6: Zuykpion petalv emepyaotn kat kapiag ypagikov oto drift

Ty ewkova 1.6 mapatnpoupe niwg n GPU pag eivat 6 gopég o ypryopn amno tmyv CPU.
To &AAo rou mapatnpoulie eival g o va xprotpornotovpe 32 bits pag ermgpépet k€PHog otov
XPOVO apou autog PEIDVETAL OTO 1100, Ipaypa rmou BAénoupe tooo ounv GPU 6oco kat otnv
CPU. BA¢novtag v oUykpion petadu g K40 kat g v100 oy eikova 1.7, apatnpoupe
niwg Kat oto drift n v100 eival mepinou 5 @opég o ypryopr, 10oo ota 64 bits 6oo kat ota
32.

Kick

H ouvdaptnon Kick eivat oxeukd amdr), €xet éva for-loop oto omnoio yivoviat aAdayég otov
niivaka dE. Zug ewoveg 1.8 kat 1.9 gaivoviatl ta anoteAéopata.

v ewkova 1.8 nmapatnpoupe iog 11 GPU pag eivatl €émg kat 20 @opég 1o ypryopn aro
v CPU. 'Onwg kat oto drift mapatnpoujie peiwon T1ou XpOvou OTo Y100 OTavV XP1|0110TI0I0UHE
32 bits. Zwv ewkova 1.9, napatnpouvpe nwg oto Kick n v100 eival nepirou 3 @opég 1o

ypriyopn, ota 64 bits aAld ota 32 ocuykAivel otig 5 @opég, 600 aveBaivoupe péyebog.

Linear Interpolation Kick

H ocuvdptnon linear_interp_kick eivai mapopoia pe tv kick, @otoco nieptdapBavet kamnoieg
MPASEIG otV apxr] IOV Yivovidl yld TOV UTTOAOY1oHO 6U0 AAAGV TIvak®V rmou xpeiddoviat va

urouv oe aido kernel.

m Awtflopatkn Epyaoia

1.3 YAormoinon ouvaptrjoeov Cuda kat BeAtiotornowoetg

drift_simple

1.UU 1.UU 1.UU 1.UU 1.UU

I double_gpu_k40
B double_gpu_v100
B single_gpu_k40

Il single_gpu_v100

Time normalized on GPU k40 double

1M 4M 16M 64M 100M
numer of particles

Zxnpa 1.7: Zuykpion uetalv Siapopetikmv Kaptov yoa@ikov yia 1o drift

linear_interp_kick

1.2 110

1.0 A Ii

0.8 - I

0.6 105 - N single_cpu
|.49 I [single_gpu

- ll I

0.21 : : :

0.0 -

1M aM 16M 64M 100M
numer of particles

II 0.69 0.64 63 EEE double_gpu

Time normalized on CPU double

Zxnpa 1.10: Zuykpion uetalv enepyaoctn kKat KAptag yoa@ukov oto linear_interp_kick

Zmyv ewova 1.10 nmapampouvpe niwg 1 GPU pag eivatl €éog kat 20 @opég 1o ypryopn
arné v CPU. Akdpa KAl 0g AUty TV OUVAPTNOL MAPAtnPoUle HEI®on oty HEon otav

niyaivoupe ota 32 bits.

Awtflopatkn Epyaoia m

KepdAatwo 1. Extetapévn [epidnyn

EE double_gpu
Il single_cpu
single_gpu

Time normalized on CPU double

numer of particles

Zxnpa 1.8: Zuykpion uetalv emepyaotn kat kapiag ypapikov oto kick

linear_interp_kick
1.0U 1.UOU 1.0U 1L.UU L

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

Time normalized on GPU k40 double

1M 4M 16M 64M 100M
numer of particles

Zxnpa 1.11: Zuykpton petalv 61a@opetik®v Kaptov yoapikov yia to linear_interp_kick

v ewkova 1.11, mapatnpouipe nog oto linear_interp_kick n v100 yivetat mmo ypriyopn
oe oxéon pe v K40 doo au§avoupe 1o péyebog tou melpdpatog kat cuykAivel oto 6. Iapa-
POUHE aKOa MG 1 BeAtinon pe v peinon ng akpiBelag sival onpavukotepn oty K40
arod 6u oty v100, kabog 1 rpodtn KePdidel MEPIOCOTEPO ATIO TOV P00 XPOVO £V 1 deutepn

TePirnou 10 €va tpito 10U Xpodvou, 600 peyadavel 1o péyebog.

FFTs

Ytoug petacxnpatiopoug Fourier meptdapBavoviat 2 cuvaptroelg, o rrft kat o irfft, tig
OI101eg 0TS avadEpapie KAl mpv, naipvoupe £toipeg amno v BiBAodnkn CuFFT. T xpn-

Ol0TIOI0UPE KATAAANAA OOTE 1] CUPIEPLPOPA TRV SIKOV PAg CUVAPTOERVY va givatl idia pe

m Awtflopatkn Epyaoia

1.3 YAormoinon ouvaptrjoeov Cuda kat BeAtiotornowoetg

1.UU 1

=
o
!

0.72

I double_gpu_k40
B double_gpu_v100
B single_gpu_k40

Il single_gpu_v100

o o
[e)] 0]
1 1
I .

©
>
1

Time normalized on GPU k40 double
o
N

o
o
I

1M 4M 16M 64M 100M
numer of particles

Zxnpa 1.9: Zuykpion uetalv S1a@popetikmv Kaptov yoa@ikov yia 1o kick

AUTV TV AVIIOTOX®V OUVAPTIOER®V TOU IMAKEIOU NUMPY. X€ AUTEG TS OUVAPTHOES XP1-
oworoteitatl éva optimization mou 9a 6oupe avadutkd nmapaxkdat® n GPU_cache. Zta a-
rotedéopata ou 9a 6oUpe MAPAKAT®, @ATVEIAl TO TO0O0 PBEATIOVEL AUTO TthVv emidoon twv

OUVAPTIOE®V AUTROV.

E:

-
H
(o

|

1

|

=
o
1

=
o
w
=
o
w

o
[oe]
1

Cache_double_gpu
Cache_single_gpu

I NoCache_double_gpu
I NoCache_single_gpu

'l

0.64.64-60.6
|

HEl single_cpu

Time normalized on CPU double
o
(o)}

0.4 - I

0.2 -

00 l ©.06.0D.01888.00.0D.0 M08 ©.00.00.0

' 1k 5k 10k 30k
input size

Zxnupa 1.12: Zuywpton uetalv emepyaocty Kal KAOTag yoapukov oto rfft

Awtflopatkn Epyaoia m

KepdAatwo 1. Extetapévn [epidnyn

rfft_only_gpu

T 10 0.9&),b71-00 1700 1.00 10T
<
[}
©
Q
2
T 0.8 1
)
>
3
2 0.6 - I Cache_double_gpu
(G] [Cache_single_gpu
5 NoCache_single_gpu
§ 0.4 4
'T;u 0.25.25 0.290.26 0.260.25
S 0.2 1
c
o
£
|_

0.0 -

1k 5k 10k 30k
input size

Zxnpa 1.13: Zuykpion puetalv dia@opettk®v ekb0oewmv Tou rfft oe kapta yoapukwv

v eikova 1.12 napatnpoupe niwg n GPU pag 6ev propet va ouykpBet pe v CPU
agou @aivetat va givatl tave ard 100 @opeg taxutepn. I'a autd €xoupe eXwP1otr] YPaAPIK)
napdaotacn oty eikova 1.13 mou gaivetat n Siadpopd petady tov ekdooewv. ITapatnpoue
ot n Stapopd ota bits Hev mailel kavévav anodutwg poro, eve n Xpron tmg GPU_cache

PIXVEL TOV XpOVO OTO £€va TETAPTO TOU APYXIKOU.

rfft

g
o
1

o
o
1

Cache_double_gpu_k40
Cache_double_gpu_v100
Cache_single_gpu_k40
Cache_single_gpu_v100

°
N
!

Time normalized on GPU k40 double
o o
N o

o
o
I

1k 5k 10k 30k
input size

Zxnpa 1.14: Zvykpion puetalv S1agopetik®dv KapTtov yoapukov yia 1o rfft

v ewkéva 1.14 n oUuyKpon 1oV 6U0 KAPTOV YpadPlkev pag deiyvel nwg n v100 dev

BeATidvel Katd oAU Vv eridoor), KaBwg 0 XPOVog PEIDVETAL KATA 110A1G 20%.

Ta 161a akp1Bwg aroteAéopata rapatnEouvial Kat otny cuvdaptnon irfft onwg PAénoupe
ewoveg 1.15, 1.16 kat 1.17.

m Awtflopatkn Epyaoia

1.3 Y>oroinon ouvaptoenv Cuda kat BeAtiotornow)oeig

1.2 A

1.0

=
=

N

=

o

©

=

o

[o2]
g
I -
~

0.8 1 Il Cache_double_gpu

Cache_single_gpu

NoCache_double_gpu

NoCache_single_gpu
HN single_cpu

0.6 059.58.58.5

0.4 - i

0.2 1 I

0.0 - T
1k

Zxnpa 1.15: Zuyrpion petalv emepyaocty Kat KAPTag yoapukov oto irfft

Time normalized on CPU double

@.OD-OD-OI@.O@.OD.OI@.O@.O@.Ol

5k 10k 30k
input size

irfft_only_gpu
- 1.0% 1.03 1.03
2,1 0970000
S 1.
©
Q
[©]
E .
2 0.8 A
Ke]
§ I
-] i I Cache_double_gpu
z 0.6)
O Cache_single_gpu
S NoCache_single_gpu
° 4 0.38 0.37 0.37
0.4
I 0.31 0.32 0.33
©
: [] [] []
2 0.2 1
(]
£
|_
00 - T T T T
1k 5k 10k 30k
input size

Zxnua 1.16: Zuykpton puetalv diapopetikodv ek600ewv Tou irfft oc kKdpta ypoagpikov

Awtflopatkn Epyaoia m

KepdAatwo 1. Extetapévn [epidnyn

Cache_double_gpu_k40
Cache_double_gpu_v100
Cache_single_gpu_k40
Cache_single_gpu_v100

Time normalized on GPU k40 double

input size

xnpa 1.17: Zvykpion petalt Siagopetikav Kaptov ypagikov yia to irfft

1.3.2 GPU _cache

H GPU_cache eivatl pia BeAtiotonoinon rmov oKedtKape MIPOKEIEVOU va YAUTHOOUE
Xpovo ard wmv dnpoupyia kat v daypadr) mvAKeV oty PV NS KAPTAG YPAPIKGOV.
Auté nou apatnpeitat oto BLonD eivatl nwg og kamnowa onpeia kat kupiog otoug FFTs 6n-
H1loupyouvial KATI0101 IPOo®PLVOL IIVAKEG TTOU eV Xpe1adovial OtV OUVEXELA THG EKTEAEONS
Kat €tol agou dev undpyel avadopd oe autoug dwaypadoviat. [Ipoxkepévou va pnyv yivetat
auTto og KABe YUpo Xwpig va xpeiddetatl, arnobnkeUoulle autoug ToUG MivVAaKeg KAl ToUG ermava-
xpnotportoovpe. Xug 1.18, 1.19 kat 1.20 @aivetal 10 anotéAeopia mou €XEl 1) Xpron autou

oe 3 ano ta benchmarks nou €xoupe.

LHC GPUCache Impact

1.04 B cache_off
BN cache_on

N o o
IS o ©
L | |

Time normalized on cache off

o
N

0.0 -

24M
Number of macroparticles

Zxnupa 1.18: Enidpaon ¢ GPU_cache oto LHC

Zug napandve sikoveg BAéroupe o6t) GPU_cache, 181aitepa ota pikpd relpapata pro-
pel va pewoel Tov XpOvo TOU MEPAPATog aropa Kat kata 40%. Qotoco, 600 peyalovel
10 pEyebog kat o1 ocuvaptroetg drift kat Kick xkuplapyouUv oto Xpovo eKTEAEONG, PEIOVETAL T

OUVEIOPOPA TOU XAPAKINPIOTIKOU AUToU.

m Awtflopatkn Epyaoia

1.4 Xpnon g GPU ota niepdpata

PS GPUCache Impact

1.04 B cache_off
B cache_on

1N o o
IS o ©
L L)\

Time normalized on cache off

o
N

0.0 -
12Mm 24M 36M

Number of macroparticles

Zxnpa 1.19: Enibpaon g GPU_cache oto PS

- .
N .

0.6

SPS GPUCache Impact

B cache_off
B cache_on

0.4

Time normalized on cache off

0.2 -

0.0 _-—-—l
21M 31.5M 42M

Number of macroparticles

Zxnpa 1.20: Ernidpaon g GPU_cache oto SPS

1.4 Xprnon tng GPU ota nepapata

H GPU ota nelpdpata 9a Xpnotpornoin0el mpopaves yid va EIMMTaXUVEL TI§ OUVAPTLOELS
TTOU KATAVAADVOUV TO PEYAAUTEPO ITOCOOTO TOU XPOVOoU. Q0TO00, IIPOKEIIEVOU va ArtopUyoU-
pe g pertagopég ano v CPU npog v GPU petagépape kat apketd alda Koppdtia 1ou
k®OS1ka otnv GPU. Auto £Xe1 @G ATIOTEAEC}IA OE KATTO1EG ITPOCOHOLMOELS VA PNV UTIAPXEL Kapia
petagopd debopévav petady v §vo. Ipokepévou va kdvoupe xprjon g GPU oe karowa
IIPOCOo0i®oT Xpetadetatl va TpEEoUTie KATTOIEG EVIOAEG TPV TNV ap)1) ToU Kuping Bpoxou. H

TMIPWTI] EVIOAI] TTOU TIPETIEL VA EKTEAEOTEL €ival N MAPAKAT®.

import blond. utils .bmath as bm
bm.use_gpu(gpu_id)

H ouvdptnon use_gpu oto apyeio blond.utils.bmath.py apyxikonoiei inv PyCUDA yua
mv GPU pe 1o ouykekppévo id oto pnxdavnpa pag. Extég autou avuikabiotd kdroieg
ouvaptioelg nou tpéxouv oe CPU, pe ug avtiotoikeg toug oe GPU, péow evog dictionary.
Autég ot ouvaptroeig eivatl Python ouvaptrosig mou kadouv kernels tng PyCUDA, kat kamnowa
napadeiypata avtov eivat ta kick, drift, linear_interp_kick xat ta FFTs.

Aot yivel autd, xpetdletal va addadoupe katl karoleg pebddoug ota avukeipeva g
nipooopoiwong. TIa tov okomd auto, yla kabe KAAON IMOU €PmMAEKeTAl OT0 KUPLO Ppoxo,
€xoupe dnuoupynoet pia aviiotolyn pe Stapopetikeg pebodoug omou anatteitatl. ‘Etot peta
TG MAPATTIAV® EVIOAEG, Xpetadetal va Tpefoupe v 1éfodo use_gpu Kat yia ta avilkeipeva

TIOU £UITAEKOVIAL OTOV KUPLO BPOX0. ZUVEMING HE TG EVIOAEG QUTEG HOVO, UITOPEl KATIO10G

AitAeopatxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

va xpnotpornorjoet v GPU yua ta nelpdpata tou. 'Eva tumiko napadetypa napouoiddetat

MAPAKAT®.

import blond. utils.bmath as bm
bm. use_gpu ()

beam. use_gpu ()

tracker.use_gpu ()
rf_station.use_gpu()

profile .use_gpu()

TeAkag, eival MOAU onpaviko va avapepboupe oto Tt oupBaivel Pe ToUg THVAKES TG
npooopoieong. 'Oneg €idape karola avukeipeva €xouv Sikoug toug mivakeg. IMapadeiy-
pata avtev sivat i aktiva pe ta dE kat dt, to profile pe ta n_macroparticles 6nAadn to
otoypappa kat to bin_centers. Autot ot rivakeg ripénet va uniapyouv otnv GPU yia va pro-
pel va tpéetto neipapa. Qotdoo, 0 KATOIEG TIEPUTIOCEIS Ol YUOKOoi 9éAouv va draBalouv
debopéva amo autoug, kat oe aAdeg paldiota 9€douv va toug ardalouv. Ia va prnopet va yivet
auto, exoupe dnuioupynoet pia kAdaon pe ovopa CGA mmou Kavel akpiBmg auto 1o pdyud.
[Mapéxetl éva aviuikeipevo pe duo mivakeg, évav otnv CPU kat évav otnv GPU 1ou givat ouv-
debepévol petadu toug. ‘Otav o évag aro toug duo mivakeg, adddadet, tdte o dAdog dewpeitat
AdBog, kat €10t 6tav {nnbet, Sa xperdletal evnuépmon aro tov rpoto. 'Eva napddetypa yua

va yivel o oaég eivatl 0 KOd1Kag rmou @aivetal MapaKATw.

for i in range(iterations):
profile . track ()
tracker.track ()

profile .bin_centers += 0.25

Tuv ypappn 4 o mivaxkag bin_centers mou urntdpxet kat otnv GPU 9a aAAd&Setl. Ta va yivet
auto, apxika o mivakag g CPU Sa evnuepmbeil, kabBohg autog o mivakag aAdddel péoa otig
GPU peboédoug. Tédog, apou ardadet autdg tng CPU Sa Sewpnbei AdBog autdg tng GPU kat
Vv eNOpevn @opd 1ou da xpelaotel Sa JéAel evnuépwor.

To oupnépaopa mou propei va mPorUYet ival MG autr) 1 KAAon €ival oAU Xprjotjn
yld TV IIPOCOH0imo1 Y1dTl apX1KA KPUBEL arto TOUG (PUOIKOUG TTOU avAITTUCo0UV Hid IPOCOo-
poiwon 1o mPoBANia 10U CUYXPOVIOHOU Hetadly twv 6U0 oUOKeU®V, Katl £retta egaopadilet

g PEBodot ou tpexouv oty CPU kat 6ev 9a £xouv uvdornonBet Sa doudsvouv owotd.

1.5 ASwoAdoynon Iepapatwv

Ze autfv v evotnta da rnapabécoupe amotedéopata ano IV €KTEAECT TPIOV TEPA-
pdwev. Ta ovopata avtev eivart LHC, PS kat SPS kat ta aprjvouple va mpayRAToroijoouy
déxra x1A1adeg yupoug. To kaBe Eva £xel KATOlEG 1I51a1TEPOTNTEG AAAA OAA EKTEAOUV T1G BAOIKEG
nipagelg 6nAadr) to histogram, linear_interpolation_kick kat drift ka8dg kat toug FFTs.

Ma ta mepapata xpnotpornorjoape tov eAAnviko unepuriodoytotr] ARIS, ot k6pBot tou
ortoiou StaBetouv 6Uo GPUs NVidia K40 kat 2 CPUs Intel Xeon E5-2660v3, kabng kat 64
GB RAM.

m AinAeopatxny Epyaocia

1.5 A%ioAoynon Iepapdtov

Worker Kick and Drift in Histogram in Beam reduce-all
Induced Voltage Sum
1 Beam part 1 part 1 operation
Worker Kick and Drift in Histogram in Beam reduce-all
! Induced Voltage Sum
2 Beam part 2 operation
Worker Kick and Drift in Histogram in Beam reduce-all Induced Voltage Sum
3 Beam part 3 part 3 operation 9
Worker Kick and Drift in Histogram in Beam reduce-all Induced Voltage Sum
4 Beam part 4 part 4 operation 9
' , . '
Zxnua 1.21: Iapabetya gvog yupou ue 1o MPI
1.5.1 MPI

[Tpw 6ei§oupe ta anotedéopata ival Xprjoo va e§nNyrjooupe KATIOEG EVVOIEG, WOTE va
elval mePo00TEPO KATAVONTA Td MAPAKAT®. Xinv vldonoinon pe 1o MPI popddoupe toug
iVakeg NG axktivag oe KOpBoug kat workers. Autoi eKTeAoUV TIG MPASEIS TOUG KAVOVIKA,
oav va 1Iav povo autr) 1 aKtiva, Kat €101 0 IivaKag ToU 10ToYPAPatog rnou €xel o Kkafevag
etvat eddeutr)g. 'Etot Aoutdv, peTd 10V UMOAOYIOHO TOU 10TOYPAPHATOG, EIMIKOVEOVOUV Kal
abpoidouv 1a 1oToypAppATa TOUG, WOTE va va £X0UV TO TEAKO 10toypappa. Auto propel va
pavel oty ewkova 1.21.

Me Bdon 1o napandve KAatrnyoploroloulie TV XPOVo OTig £61g TPE1G Odadeg.

e comp 0 XpOVog IMoU e§aptatal aro tov apdpo copanudiov (Kick, drift, 1otoypappa xAr.
e comm O XpOVvOg ITOU KATAVAA®VETAL AOY® TG EMKOWVAVIAGg

e serial 0 xpovog mou eivat ave§aptnrog ard tov apbpo copatidiwv FFTs kA

'Etol, pe v avdnorn twv workers pel@voupe tov aplOpo twv oopatdiov mou avaiapBavet
0 KaBévag Kat €101 PEI®VOULE POVO TOV comp XPOvo. Q0Tto00 AOY® TRV MEPIOCOTEP®V PNVU-

PAT®V AUuSAVOUE TV EMKOVOVIA.

1.5.2 Zuyrplon CPU pe GPU

Apxikd 9a 8eifoupe nwg ta ast n GPU oe oxéon pe tv CPU. Ta tv ouykplon €Xoupe
xpnotporowjoet 1, 2, 4, kat 16 kopBoug. I'a v CPU kabe kopBog £xel 2 workers eve ya

AinAeopauxny Epyaocia

KepdAawo 1. Extetapévn [epiAnyn

v GPU £youpe e€etdoet 1000 v mepirnwon pe évav worker avda kopB8o oo kat pe 2. Tédog
Xpetddetat va avadepoupe g otnv repintoorn tov CPUs éxoupe epappooetl KAt v TEXVIKY
tou task-parallelism, 6nAadr| ot serial rpdageig rmou yivovrat petd to histogram, polpdadoviat
otoug 2 CPU workers €101 oote va pewwbei o xpovog toug. Ta amotedéopata gaivovial otig
ewoveg 1.22, 1.23 xat 1.24.

] CPU-BASE I CPU-TP [N GPU-1PN B GPU-2
4.5/

Norm. Throughput

Nodes (x20 Cores/ x1 or x2 GPUs)

Zxnua 1.22: Zuykpton uetalv CPU kat GPU oo LHC

[J CPU-BASE M CPU-TP. Sl GPU-1PN B GPU-2PN
' PS 6.05 6.17

Norm. Throughput

Nodes (x20 Cores/ x1 or x2 GPUs)

Zxnpa 1.23: Zvyrpion puetalv CPU kat GPU oto PS

[Tapatnpouvpe g 1 KAPTA ypadik®v pe évav worker ava kopbo, eivatl mdve anod 3 gopeg
o yprnyopn ano v CPU oto LHC kat oto PS. O1 2 workers ava kopBo otig GPU, peigvouv
10 comp XPOVO OTO 1100, aAAd augdvouv 1o KOOoTog tng erkowveviag. a auto tov Adyo n

dlapopd petagu GPU-1PN kat GPU-2PN peivetat 600 au§avoupe toug KopBoug.

m Awtflopatkn Epyaoia

1.5 A%ioAoynon Iepapdtov

[CPU-BASE Wl CPU-TP, S GPU-1PN EE GPU-2PN
8.58 g SpPS8.96

N
(6]
1

Norm. Throughput
N (6]
a o

Nodes (x20 Cores/ x1 or x2 GPUs)

Zxnpa 1.24: Zuykpon uetalv CPU kat GPU oto SPS

Yto SPS n anddoorn tng GPU oe oxéon pe v CPU xelpotepevsl apretd 6co auidvoupe

1oV apOpo v KOPBmv, A0Y® TG aUSNIEVNG EMKOVOVIAG TTOU TIPOKUITIEL.

1.5.3 IIpooeyylotikég MéBodot

[Tpoxke€évou va PEWOOUNE TOV XPOVO TOV MEPAPATOV, KAO®OG KAl T0 KOOTOG NG EITl-
Kowaviag, epappooape KAmoleg pnebddoug rmpooyylong. AUTEG Peldvouv v akpiBela tov
anotedeopdt®v, aAdd onwg BAEMOUNE MAPAKAT® OX1 APKETA MOTE vd UMAPXEl IPoBAnpa.

Autég eivat ot €816,

e f32 : peiwon tev bits amnod ta 64 ota 32 yia toug paypatikoug apldpoug.

® Srp-n : 0 UIOAOYIOPOG TOU 10Toypappatog Kabe n yupoug pe v napadoyxr ot dev

aAladel anotopa, O0tav 10 N naipvel PIKPEG TIpEG 1. 2 1) 3.

e rds : 0 UTTOAOY1OP0G TOU OAKOU 10TOYPAPATOS HEOR® KATHAK®OONG, HE TV Iapadox1)
®G 1 KATavour) rnou £xel o kaBe worker eivat 161a pe tv KAtavopr oAev IOV oopd-
Tdiov Kat £101 1a TOIMKA 10ToypAPpata roAdanidactacpéva e 1ov KatdAAndo apiopo,

HITOPOUV VA aVIIKACTACTI|COUV TO OAKO 10TOYpapa.

e 01 apaddayeg Tewv mapandave dUo pe v xpnorn 32 bits yia toug nmpaypatikoug. apib-
poug.

AitAeopauxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

EE {32 SRR 2 I f32-SRP-2 @ SRP-3 [EAf32-SRP-3 CJRDS [Z3f32-RDS

:E 0.8+
S 0.6 .
; (
: 0.4 X
: »
o 02' .
z ; B
4 8 16
Workers (x10 Cores)
xnua 1.25: Ipooeyyoticeg uedodor ato LHC
Ef32 -SRg_-Z B f32-SRE;2 M SRP-3 [Af32-SRP-3 [JRDS [Z3f32-RDS
() B = o~ I~ @
£ o NN O NN o
= 0.81 : X
- =!
3 0.6 %
% 0.4 b
£ b
< x|
1 2 4 8 16
Workers (x10 Cores)
Zxnpa 1.26: Ipooeyyoticeg uedodor oto PS
-SI@-Z Bl f32-SRP-2 B SRP-3 Ef32-SRP-3 BNIRDS [1f32-RDS
o L0 ,9 f o X a N o o
£ 0.8 8 ' S : : 8
€
5 0.6
- 4
= 0.4
E
o 02'
2

1 2 4 8 16
Workers (x10 Cores)

Zxnpa 1.27: Ipooeyyiotuceg uedodor oto SPS

rug ewkoveg 1.25, 1.26 kat 1.27 priopoupe va mapatnperooOUHE Td AnoTeAEopaAta aro

1a nelpapata. Ilapatnpovupe niog 1o 32 piyxvel 10 Xpovo oe 6Aa kovta oto 75%. To RDS

m Awtflopatkn Epyaoia

1.5 A&oAoynon [epapdtov

600 aveBaivoupe oe ap1Bd kopBev audavel v oupBoAr] TOU Kat auddvetdtl T IT0CO0TO TOU
Xpovou rou efokovopei. To 1610 1oxvetl kat pe 1o SRP. Ztoug cuvbuaopoug tou 32 pe ta
SRP kat RDS, ereibr) eivat oxedov ave§aptnta, adpou 1o kabéva arnd autd PelmveL ToV XpOvo
and daPpetika onpeia, propovpe va §oupe MG UMAPXEL KATL TIOU Ya Propoucdpe va
10 Xapaxktproouvpe eraAAndia. AnAadrn ta mocootd mou Aeirnouv oto kabéva exwplotd,
aBpoidovratl otov ocuvbuaopod toug. I'a napdadetypa oto £32 tou LHC Asimet 1o 22% kat oto
SRP-2 Aeirtel 10 21%, eva oto £32-SRP-2 Aeinet 1o 44%, 1ou eival Kovtd oto abpoiopa aut@wv

v 6vo.

Agou eidajie oG ermdpoUV o1 mapandve 1EBodot, ag Sovlie TOPaA MG KAAKOVOUV OTIg
ewwoveg 1.28, 1.29 xkat 1.30.

= 1.0 LHC
>3
£0.91
§ 0.8+
< 0.7
£ 0.64 @ base -+ {32
5 2>¢ f{64-RDS =& f32-RDS
2 057 5¢ 164-SRP-3 = 132-SRP-3

0.4 T T T T r

1 2 4 8 16
Nodes (x20 Cores/ x1 GPU)
Zxnpa 1.28: Weak Scaling oto LHC

1.01 R
£0.91
3 0.8-
= 0.71
£ 0.6 @ base - 132
5 2>¢ f64-RDS =& f32-RDS
2 0.57 5¢ 164-SRP-3 = 32-SRP-3

0.4 T T T T T

1 2 4 8 16

Nodes (x20 Cores/ x1 GPU)

xnua 1.29: Weak Scaling oto PS

AitAeopatxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

+« 1.0
>
£0.94

2
3 0.8

£ 0.7

SPS

£ 0.64 “® base -+ 32

= > f64-RDS -4 f32-RDS

2 0.571 5¢ 64-SRP-3 - f32-SRP-3
04— 7

4
Nodes (x20 Cores/ x1 GPU)

8

16

Zxnpa 1.30: Weak Scaling oto SPS

[Mapatnpouvpe o0t pe v oUPBOAN T®V MPOCEYYIOTIKOV PeBOSmV TIou epappootnkay, U-
APXEL KAAUTeEPT KAPAK®OON o oxéon pe mpv. Xto PS pdAiota to throughput eivat kovra
oto 95% 10U apX1KOoU ot oxeon pe v Baocikr) €ékdoorn mou eivat oto 75%. 'Onwg pAavnke Kat
otnVv eikova 1.27 1o SPS KAHakovel Xepotepa arod ta uriddotira, e 1o f32-RDS va gtdvet
noA1g oto 60% TOoU apX1KoU aro 1o 40$ mou @ravel 1o Paciko.

1.5.4 Zuykplon tng v100 pe tnv k40

H k40 TéAog deixvoupe ta amnotedéopata mou MPOKUIToUV Ao TV OUYKPLon TV dUo

S1aPOPETIKAOV KAPTOV YpadPikev rtou dtabetoupe, g k40 pe v v100. H ouykpion yiverat

noévo ot eminedo evog kopBou pe Evav worker.

LHC: XEON vs K40 vs V100

50
[xeon 43.20
407 3 k40 -
530_ :l v100 31.5 28.11 /
5 21.95 N
2707 11.78 D8 x/
10- 711 NS 3:83 7 k
L T RN | RN/
ob O 32 -2 qp-o o 22 - qP-d
ﬁ(‘)&%?h g%‘l’%“ r&@/)t%% r{},‘L’SY\
Zxnpa 1.31: Zvywpton k40 pe v100 oto LHC
PS: XEON vs K40 vs V100
50
43.56
07 E o 36.83 /
= 4 1 v100
= 30 53.35 26.62\/
.20 \
e 10.19 }3'83
10 6.58 ¢ 7.94 / \
JLaw T RN | RN
ob o 32 P qp-o o 22 -0 aP-d
oS S oS S

Zxnua 1.32: Zuyrpton k40 pue v100 oto PS

Awtflopatkn Epyaoia

1.6 Zupnepdopata kat MeAAoviikég eneKTAoetg

SPS: XEON vs K40 vs V100

[xeon
404 B k40 36.74

7

1 v100 -

N » . 31.27 Y/
\7

12.05 11.28
T '\

Speedup

v

oh N 03 93 b @l 03 o
oS g S oS

Zxnna 1.33: Zvykpion k40 pe v100 oto SPS

Amno ug ewkoveg 1.31, 1.32 xatr 1.33, napamnpoupe niwg n v100 eivatr 3 @opég 1o
ypriyopn o kaBe pé6odo ano v k40, kat otnv Baocikn €ékdoor) eivat mave ano 20 @opEg 1o
ypnyopn ano v CPU. Ilpokurtetl Aowtdv €UKOAA T0 CUPIEPACHLA, TIROG 1) XPN O KAAUTEPO

hardware obnyei oe EekdBapn avinon g eniboong TV MPOYPAPHATOV 1AG.

1.6 Zupnepaocpata Kat MeAAOVTIKEG EMERTACELG

1.6.1 Zupnepaopata

Iy epyaoia avtr, napovoldoape neg vdono)Onke n ermtayxuvorn tou BLonD module
HE TV XpH o1 g KAPTag YPadKeV. YAOIo|oajle 11§ OUVAPTIOElS ITOU @aivovidl va Katava-
AGVOUV TOV TIEPLOGOTEPO XPOVO TV Telpapdtav, otnv GPU. 'Enetta yia kabe cuvaptnon arno
autég pe Sikd pag Sedopéva kavape ouykplorn petady mg CPU rnou sixape oty Katoxn pag
kat tov 6o GPUs. BAémoviag autd ta anotedéopata, Katapepape Kat Kavape BeAtiotomnot-
noeig otov k®dka g GPU €101 wote va tapoupe 600 1o Huvatdv Kadutepa amnotedéopatd.

Ztnv ouvéxela deifape nmG METUXAE VA EVOMIATOOOULE AUTEG TI§ OUVAPTHOEIS OTd TTEl-
papata pag, pe myv xpnon v avtictotxwv GPU rAdoewv kat tov avuikelpévov CGA. Me
autdv ToV TPOIIo KatadpEépape va eSaAeipoupe evieAdg and KAMowd melpdpata v Hetapopd
Sebopévav petadu enepdaotr) Kat KAPTAg YpaPKov. AQou 0AOKANP®OAE TV UAOTIOIN o yia
1oV €éva KOPBo, CUPNTMANP®OAE TIS CUVAPTIOELS TTOU XPE1AdovTal TIPOKEIEVOU va UTopEel va
xpnowporiownBet n GPU wg MPI worker, eite pe dAAeg GPU aAAd akopa kat pe CPU.

Agou npaypatoro)Onkav 6Aa ta napandve, PoXPoape otV oUYKPo1 g UAoro-
inong pag pe v nadotepng CPU vlonoinong. Me v xprjon tou ARIS eidape nog n GPU
etvat 5 Qopég ypnyopotepn OTIG TEPIOOOTEPES TIEPITTNOOELS, KAl TIPOKEIPIEVOU va AUCOUHE TO
poBANHa g KApak@onpotntag, epappocaple TG POoeYYoTIKEG TeXVIKES. 'Etol BeAtidoa-
He Vv anodoon g uloroinong pag meplocotepo, XOPIS va XAooUHE onpaviikn akpibeq,
AOY® G PUONG TOV MEPAPATOV PAG.

TéAog, pokelpévou va PeBaiwBoupe nwg n vdoroinon pag Sa propet va 6ouléywet pie
rmo kawvouplo hardware e§icou Kadd Xwpig aAlAayeg, XPNOUUOIOW|OAPE TNV VEOTEPN KAl
duvatotepn NVidia Tesla v100 kat tv ouykpivape pe myv k40 nmapammpoviag neg givat

TOUAAX10TOV 3 (POPEG IO YP1YOPT).

AitAeopatxny Epyaocia m

KepdAawo 1. Extetapévn [epiAnyn

1.6.2 MeAAovtuikég Enertaosig

[Mépa aro ta nmapardve rmou UAorofnkav, Urdpxouv KAola eunodia mou av Avvape
9a pag dwvotav n Suvatotta va KAVOoUE apKETA PEYAAUTepa Kal ypnyopotepa meipapatd.

[Mapakdie tapadétoupe kamnoieg 16€eg mou Sa Ponbovoav oe autnv v Kateubuvor.

e YV mapouoa £€kH00n, I apXIKOIONon g aktivag tov copatdiov yivetal oe évav
worker kat €101 0An n axktiva opeidel va X@pd otnv pPvhpn evog worker rap'oAo rou
autog 9a kpatnoel povaxa éva tunipa mg. 'Etol, neplopidopacte oto péyebog ng
aktivag amod v Kupla pvhpn evog worker kat Oxt aro v OUVOALKY] pvipun 6Aev
10V workers. Av pmopoucdple va UAOMOU|COUlE Vv apyikoroinon pe to MPI, Sa
pag duvotav n Suvatomta va §okipAcoupe MElpApata Pe oAU peyaAutepo aplbpo

oopatdiov anod ot tpd.

e X1a mmelpdpatd Imou KAvape SOKIIACAPE va XP1O1HOIo00UE KATIO10UG KOpBoug pe
CPU kat kanowoug dAAdoug pe GPU. T'a va KatapEpoulie va Tig CUYXPOVI|OOULE XP1Ol-
pororjoaie €va ouotnia e§100pPOIong TOU QPOPTIOU, £101 WOTE VA GTAVOUV 01 KOPBOot
Vv 16ta otypr oto otddio tou reduce Kat £I01 va PNV XAVOUHPE APKETO XPOVO Yia
OUYXPOVIOHO. Q01000 auTr) 1] IIPOoCTIAadela aneTuye, apou oXeSOV IAvia 0 XPOvVog IToU
kepbidape ano v xprion CPU fjtav piKpotePOg arnd autov IoU XAvape A0Y® TOU OUY-
Xpoviopou, enetdn n CPU eivatl apketd mo apyn and v GPU. Zuvenog Sa eixe vonpa
va dokipacoupe v epappoyn pag oe eva cluster pe CPUs avtiotolxa 10XUpeg He Tig

GPUs oote va eival €1epoyevrg 1] IIPocopoinon.

m AinAeopatxny Epyaocia

Chapter E

Introduction

2.1 CERN

CERN, the European Organization for Nuclear Research, was founded in 1954 by 12
countries in Western Europe. It is a research organization that operates the largest par-
ticle physics laboratory in the world. It is based in a northwest suburb of Geneva and
the current number of its members is twenty three. CERN’s main focus is to provide
physicists the particle accelerators they need, in order to perform experiments. Another
important contribution of CERN is the world wide web, since it started as a project there.
Currently, CERN operates a network of six accelerators and a decelerator, that are in-
volved in increasing the energy of particles needed for the experiments. Acceleration is
achieved in multiple steps through a sequence of accelerators. Each one modifies the

characteristics of the beam and passes it to the next one. [13] [14] [15]

2.2 Longitudinal Beamn Dynamics

Longitudinal Beam Dynamics [1] is a field of Physics that study the motion of the
particles in an accelerator and the issue of synchronization between the particles and the
accelerating field. Experiments related to that, are happening in CERN’s accelerators, like
the LHC. Their need for time and resources, is the reason why its difficult to perform them
very often. Additionally, CERN’s accelerators are under maintenance for some periods of
times, so the execution of them is infeasible.

In order to overcome these obstacles, a team of physicists in CERN, developed a tool
called BLonD [16] [17], to develop simulations of these experiments. These simulations
are helpful not only because they produce results, but because they also contribute in the
real accelerators upgrading procedure. They involve a lot of particles, from 500 thousands
particles, up to one 1 billion, and they run for a lot of turns. Also, some simulations need
to be repeated a lot of times with different parameters. As a result they take a lot of time
to produce results, and it is really important to reduce their runtime.

The GPU [4] is a device used to rapidly generate the output desired for a display device.
Its special feature is, that it can perform a lot of calculations at the same time. Because of
that exact feature, it has became extremely common to use it to speedup general purpose

applications. Today, some of the world’s most powerful supercomputers are using GPU

AitAeopauxny Epyaocia m

farttep 2. Introduction

acceleration. Applications that can be benefited by them are those with a lot of heavy
operations done in parallel.

Since the computational parts of BLonD are embarrassingly parallel, we chose to
apply GPU acceleration to make the simulations produce results faster. and For this
thesis, our goal was to apply GPU acceleration in the BLonD module. Since most parts
of a BLonD simulation are embarrassingly parallel, BLonD is a perfect candidate for GPU
acceleration. We had two main objectives. The first one was to implement and optimize the
GPU functions, to produce better results. The second one was to make this GPU version
of BLonD user friendly, so that physicists can you use it without having knowledge of
how that a GPU works.

2.3 Thesis Structure

The rest chapters of thesis are organized as follows:

e In Chapter 2 we present the basics of GPU architecture and the CUDA programming

model. We also make an introduction to BLonD simulations.

e In Chapter 3 we examine the core BLonD functions, their GPU implementation
and some optimizations we applied to them. We also showcase and evaluate an

optimization called gpu_cache.

e We demonstrate how with a few commands a user can enable the GPU in Chapter
4.

e In Chapter 5 we evaluate the performance of our GPU implementation and we com-
pare it with the CPU. We also examine the approximation techniques and the per-

formance we get by them.

e We conclude this thesis and refer to some things that could be future work in
Chapter 6.

m AinAeopatxny Epyaocia

Chapter B

Background Knowledge

3.1 BLonD Simulations

BLonD simulations consist of two main parts. The first part is the initialization of the
simulation’s objects. The most important objects that take part in a simulation are the

following:

e Beam is the main object of the simulation. It contains the energy and time coor-
dinates of our particles. Its size is considered the input size of the simulation and

varies from 500 thousand particles for small simulation, to 1 billion for bigger ones.

e Profile is an object that is used to observe particles time coordinates. It is used to
get the histogram of them and operate on it. The number of slices of the histogram

is less than the number of particles, usually about 1000 times smaller.

e Tracker is an object used to modify the dE and dt coordinates of beam with functions
kick and drift.

e Impedance is an object used to apply FFTs to the histogram, and create some arrays

that affect the functions of the tracker.

After the initialization we have the main loop that is run for some number of turns.
In this loop some objects use their track method. These objects usually are a tracker,
a profile, and a TotallnducedVoltage object that instead of track it invokes a method
that computes the FFTs of the histogram. A more abstract way of this main loop is the

following.
e Modify dE, dt with kick or linear_interpolation_kick and drift methods
e Get the histogram of dt
e From histogram make some adjustments for the kick and drift of the next turn

In the process of accelerating these simulations, the functions that dominated the
runtime were written in C++. This way, they were optimized and run in parallel with
OpenMP [6]. In this new version, instead of calling python functions, that were serial,
new C++ functions were used that were optimized and fine tuned. This new version is

called blond++ [7] and it delivered up to 23X single-node speedup.

AitAeopauxny Epyaocia

fjarttep 3. Background Knowledge

In order to be able to scale-out BLonD experiments, a new version was developed, that
is called Hybrid-BLonD [9] . In this version, the workload is distributed among workers, in
order to scale both horizontally and vertically. MPI [8] is used to distribute the workload,
and each worker uses OpenMP to perform its computations, so the schema is MPI-over-
OpenMP. This new implementation demonstrates an average 25.7X speedup when using

32 computing nodes, compared to the single-node version.

3.2 GPU (Graphic Processing Unit)

GPUs or Graphic Processing Units were introduced as devices that could efficiently
manipulate and alter memory to accelerate the creation of images in a frame buffer in-
tended for output to a display device. Originally they were created to support advanced
graphics and video-gaming. Although their initial purpose was graphics, today they exist
almost everywhere, game consoles, personal computers, even on mobile phones. There
are two major GPU manufacturers, Nvidia and AMD. Since we use Nvidia GPUs both for
the development and for our benchmarks, and the GPU code of this thesis is CUDA C, on
the next paragraphs, where we describe what a GPU is, we are focusing mostly in Nvidia
GPUs.

3.2.1 GPGPU

Even though GPUs were designed to support computer graphics, Nvidia introduced
programmability to its GPUs and researchers started to use GPUs to compute linear al-
gebra operations. Since then, the term General Purpose GPU [5] is used to describe the
use of GPUs to support general purpose workloads. GPUs are mostly known today for
accelerating the training process of neural networks [10]. The need for more demand-
ing machine algorithms and workloads, has driven GPU manufactures to advance the

architecture and the programming model of their GPUs.

3.2.2 GPU Architecture

In this subsection we will describe the architecture [11] of a modern GPU. A GPU is
composed of many cores, which are called Streaming Multiprocessors or SMs (Compute
Units for AMD). Each SM can execute a Single-Instruction-Multiple-Thread (SIMT) pro-
gram. In modern GPUs the maximum number of threads that can run on the SM is 1024.
The threads that run on the same SM can interact with each other using a scratchpad
memory and barrier operations. Also they share a first-level cache, to reduce the traffic
sent to the lower levels of the memory system. When data is not found in this cache,
the latency that is produced is hidden due to the large number of threads, since waiting
for data overlaps with the execution of other warps. The GPU has its own main memory,
that the SMs have access to. To sustain high computational throughput the GPU must
have high memory bandwidth, and for that purpose there are multiple memory channels,
each to a different memory partition. These are connected with the SMs via an on-chip

interconnection network. This can be seen in figure 3.1

m AinAeopatxny Epyaocia

3.2 GPU (Graphic Processing Unit)

SM0
Partition Unit
CUDA| |CUDA| [CUDA
core __L2 h
-cache
CUDA| |CUDA| [CUDA
Shared Memow
cupA| |cupa| [cupa off-chip DRAM
core
SM1 E
R Partition Unit
cupa| |cupa| [cupa
c __L2 h
-cache
cuDA| |cuba| |cuba (@]
Shared Memow N
cupa| |cupa| [cupa off-chip DRAM
N
SM2 O
N Partition Unit
cupa| |cupa| [cupa
cupa| |cupa| [cupa
Shared Memory N
cupa| [cupal [cupa L1 cache E off-chip DRAM
core core care T
sM3 K
CUDA| |cuDA| [cupa Partition Unit
core
L2-cache
Shared Memory
cupA| |cupa| [cupa 3
core off-chip DRAM

Figure 3.1: GPU Architecture

3.2.3 Execution Model

Threads that run on the same SM are executed in lockstep in groups of 32, or 64 for
AMD GPUs, that are called warps (wavefronts by AMD), by Single-Instruction-Multiple-
Data (SIMD) hardware. Threads are assigned in warps by the hardware when they spawn
and their assignment is static. For example if we spawn 2048 threads, warp 1 contains
threads 0-31, warp 2 contains 32-63 etc. Each of these threads has its own unique id
that can is used to distribute the workload.

Since up to 2048 threads can run in a single SM, each SM can host more than one
warp. A warp can be classified, based on its availability to be executed, as eligible or non
eligible. A warp is eligible when it already has all the data it needs and it is ready for
execution, else it is non eligible. Each SM has at least one warp scheduler that picks
an eligible warp and executes its threads. If a warp stalls, due to an uncached memory
read for example, it becomes inactive and changes places with an eligible warp that is
available.

Its also possible for two threads of the same warp to follow different paths due to

AinAeopatxny Epyaocia m

fjarttep 3. Background Knowledge

control flow. The control flow code can be represented as a graph of Basic Blocks, straight-
line code sequences with no branches in except to the entry and no branches out, where
each thread can take a specific path. Threads that take different paths are being serialized.
For example, in an if-else statement supposing that the first 16 threads of the warp
execute the if statement and the other 16 execute the else statement, these 2 executions
will happen as if they were in different warps. One approach to implement this strategy
is to use a stack with three fields. A re-convergence program counter, the next Basic
Block where two paths join that can be computed at compile time, the next program
counter, and the active mask, a mask that describes which threads are in this statement.
From what described in this paragraph it is clear that having complex control flow in
the GPU source code is something that should be avoided, because it serializes the code.
There is also a lot of research on how branch divergence can be handled to improve GPU

performance [18] [19].

3.2.4 Memory System

In subsection 3.2.2 it was mentioned that a GPU has its own main memory. This is
a DRAM memory with a size up to 32GB for modern GPUs. This memory is off-chip and
is connected with SMs via an interconnection network. Just like CPUs, GPUs have part

of their memory reside with their SMs.

Shared Memory is an on-chip memory. Each SM has its own and only its threads
can access it. It is implemented as a static random access memory and is described as
being implemented with one bank per lane with each bank having one read port and
one write port. Each thread can access every bank. The access to shared memory is
almost as fast as accessing the register file. Although it needs to be handled carefully
since bank conflicts are happening when two or more threads try to access different
elements that exist in the same bank. If this happens, hardware splits these requests and
serializes them, decreasing the potential bandwidth. Successive 32-bit words are assigned
to successive banks so a good practice is for successive threads to access successive

elements.

L1-data cache is a different on-chip memory that is unique for each SM. This type of
memory is used to help the threads of the SM access global memory. It maintains a
small subset of the global memory address space and in some architectures this subset is
strictly not modified, since this way cache coherence protocols are not needed, decreasing
complexity. If all threads in a warp try to access elements that would fall in the same
L1 data cache block and miss, then a single request will be sent. Accesses like these
are said to be "coalesced". If threads within a warp try to access elements from different
L1 cache blocks then multiple requests are generated. Accesses like these are said to be
"uncoalesced". A good practice when we access the global memory is to access successive
elements in order. This way we get as many coalesced accesses as possible.

Aside from these two memories each SM contains one last cache, named Texture

m AinAeopatxny Epyaocia

3.2 GPU (Graphic Processing Unit)

Cache that is used for computer graphics but it is not really useful in GPGPU.

Memory Partition Units The SMs of the GPU are connected with the main memory,
through an interconnection network. The main memory is separated in memory parti-
tions, where each partition has a portion of the L2 cache. Each memory partition contains
along with the L2 cache one or more access schedulers that are responsible for reordering

read and write operations to reduce overheads of accessing DRAM.

3.2.5 Development in GPU with CUDA C

In the previous paragraphs we mentioned how the GPU hardware is structured and
now we are going to see how someone can use the GPU to speedup his workload. We will
accomplish that by using an example.

Lets suppose that someone wants to add two arrays of integers, A and B, and store
the result in a third array C. Arrays A and B are stored in the CPU, so first of all we have
to allocate space for them in the GPU main memory, and then transfer these two arrays
there. After we have to allocate the space needed to save the result. To compute the sum
of these arrays we need to call a GPU function.

GPU functions, also called kernels, are lines of code that are executed by all threads.
In order to call a kernel we need to pass the arguments of the kernel, like the arrays
A,B,C and their size for the previous example. Then we also need to define some special
parameters called block size and grid size. Threads in the GPU follow a hierarchy. The
smallest unit is the thread that belongs in a block. Thread has its own id inside the
block that can be accessed from CUDA. Then all blocks belong to the grid, where again
each block has its own id. So the block size parameter is the number of threads inside
each block, and grid size is the number of blocks inside the grid. These parameters
are written inside <<< .. >>> after the kernel name, like for example addVecs <<<
grid_size, block_size >>> (A, B, C, size). In the previous example if we set grid_size to 16
and block_size to 1024, we are going to call 16 blocks, where each block contains 1024
threads, 16384 threads in total. Determining the value of these threads is crucial if we
want to get the best performance. It is also important to mention that threads of the
same block run in the same SM and have ways of communicating, like shared memory

and barriers. You can see that in figure 3.2.

GRID

Block 0 Block 1 Block 2

555 | lssoss | s | Lo

/

Thread

Block 3

Figure 3.2: We can see a grid with 4 blocks with each block having 8 threads

AinAeouatxny Epyaocia m

fjarttep 3. Background Knowledge

Below we can see an example of the kernel addVecs(int = 4, int * B, int * C, intsize) and

the main that calls it.

void addVecs(int *A, int xB, int xC, int size){
//find the global index
//of thread inside the grid
int tid = threadldx.x + blockldx.x*blockDim.x;
// Each thread will compute all the indexes
// that are like total threads * n + tid
for (int i = tid; i < size; i+= blockDim.x*gridDim.x)
Cli] = A[i] + B[il;
}

In the above kernel first of all each thread computes its global index. To do that it adds
its threadldx.x (id inside the block) to the blockldx.x*blockDim.x (block id inside the grid,
times the number of threads inside each block). Then it operates to indexes assigned to
it until it gets out of range of the arrays. The for-loop is this way constructed so even if
threads are lesser than the size of the array, the whole sum is performed. In case that
the threads are more than the size, each thread completes one or no iteration of the for-
loop. The above kernel also satisfies the criterion "successive threads access successive
memory locations", making our accesses coalesced. Next, we see the main function. It
is important to keep in mind that sometimes CPU is also called Host and GPU is called

Device.

int main(){
//declare CPU arrays
int A[10000];
int B[10000];
int C[10000];

// Initialize CPU arrays
for (int i = 0; i < 10000; i++){

Alil]
Bli]

rand () ;

rand () ;

// Declare GPU pointers and allocate
// memory for them with cudaMalloc

int xd_A;
cudaMalloc(&d_A, 10000 x sizeof(int));
int xd B;
cudaMalloc(&d_B, 10000 * sizeof(int));
int xd_C;

cudaMalloc(&d_C, 10000 x sizeof(int));

m AinAeopatxny Epyaocia

3.2 GPU (Graphic Processing Unit)

// Copy arrays from CPU to GPU
cudaMemcpy (d_A, A, 10000 x sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, 10000 * sizeof(int), cudaMemcpyHostToDevice);

// Invoke the kernel
addVecs<<< (10000 + 512 — 1)/512 , 512>>>(A, B, C, 10000);

// Copy the result back in the CPU
cudaMemcpy (C, d_C, 10000 * sizeof(int), cudaMemcpyDeviceToHost);

// Free GPU memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

return O;

}

In this main function five operations that have to do with the GPU are performed.
First we have memory allocation with cudaMalloc and then we copy the contents of A and
B to d_A and d_B with cudaMemcpy. We invoke the kernel to compute the sum of these
array and we call cudaMemcpy to retrieve the contents of d_C to C. Finally we free the
allocated space in the GPU with cudaFree.

For the block size we chose the value 512, and for the grid size we selected (10000 +
512 - 1)/512 which is equal to 20. So the total number of threads is 20*512=10240. After
we decided the block size we picked the least number that multiplied with 512 is greater
or equal with the size of our arrays. These numbers affect the occupancy of our kernel.
Occupancy is defined as the ratio of active warps on an SM to the maximum number
of active warps supported by the SM. There is an upper limit for active warps that are
executed, based on the compile options, the configuration and the device capabilities.

Below we can see the limiters of the occupancy.

e Active Warps Per SM For each GPU there is maximum number of warps that can
be active at the same time. Lets suppose that this number is 64. If we set the block
size to 256(8 warps per block) and we have 8 blocks for each SM, each SM has 64
active warps so the occupancy is 100%. If the block size is 256(8 warps per block)
and we assign each SM 6 blocks, we have 48 active out of 64 so the occupancy is
75

e Blocks per SM Again there is a limit for active blocks that can run in a GPU. Lets
assume that warps are limited to 64 per SM and that an SM has a limit of 16 active
blocks. If we try blocks with 32 threads each, we have only 16 active blocks since

we are limited by that number, while each block contains one warp, so 16 warps in

AitAeopatxny Epyaocia m

fjarttep 3. Background Knowledge

total. That means 16/64 warps so 25% occupancy. If we try a greater number for
block size like 256 we can have up to 4096 threads(16 blocks) but we are limited
from active warps since 4096 threads mean 128 active warps. We end up with
2048 threads and 64 active warps, which means (8 active blocks) maximizing the

occupancy.

Registers per SM Each SM has a set of registers which is shared by all active
threads, that is limited. We can see for a kernel the number of registers that needs
to execute. For example lets assume that this number is 33 and the SM limit is
65536. Lets assume now that the block size is 512. Registers needed for a block
are 33*512 = 16896. So we can have up to 65536/16896 = 3 active blocks. That
means having 512*3/32 = 48 active warps. So the occupancy in this example is
75%.

Shared Memory per SM There is also a limit for the amount of shared memory
that can be used for an SM. A typical number for shared memory is 48 kB. If each
block for example with 512 threads needs 22 kB of shared memory, only two of
these blocks can run in the SM, since a third one can not satisfy its need for shared
memory. Then we have 512%2/32 = 32 active warps and the occupancy is 32/64 =
50%.

Trying to optimize our kernel, we need to find grid and block size parameters that

maximize the occupancy of our GPU. This is the general rule, which applies also to our

kernels.

3.2.6 Development in GPU with PyCUDA

Since the BLonD code is written in python, PyCUDA [12] is a module that is used in
this thesis. PyCUDA offers a way of invoking GPU kernels from python code while adding

no overhead. Below there is the previous example of how to add two arrays A and B with
PyCUDA.

import pycuda.autoinit # initialize pycuda

from pycuda import gpuarray

import numpy as np

a
b =
d a

d_b

dc

np.random.randint(1000, size=1000)
np.random.randint(1000, size=1000)

gpuarray . to_gpu(a)
gpuarray . to_gpu (b)

da+ db
_c.get()

o

AinAeopatxny Epyaocia

3.2 GPU (Graphic Processing Unit)

This code is pretty simple. We create two numpy arrays with size 1000. Then we use
the gpuarray.to_gpu method which allocates space and transfers a to GPU. The d_a is a
gpuarray object, an array that exists in the GPU memory. The same procedure is done
for the b array. Then we simple perform the operation just like we would do with numpy.
PyCUDA recognizes the operation, it creates a kernel to do that operation and compiles
it. Because of that compilation, we have an additional overhead. Also PyCUDA defines
by itself the block and grid size.

There is also a different way to call a kernel provided by PyCUDA. You can see it in
the following example.

AitAeopatxny Epyaocia m

fjarttep 3. Background Knowledge

from pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy as np

mod = SourceModule("""
__global__ void addVecs(int *xa, int xb, int xc, int sz)
{
int tid = threadldx.x + blockldx.xxblockDim.x;
for (int i = tid; i < sz; i += blockDim.xxgridDim. x)
cl[i] = ali] + b[i];
}

"wnn)

addVecs = mod. get_function ("addVecs")

a = np.random.randint(1000, size=1000)
b = np.random.randint(1000, size=1000)

d_a

d_b

d_c = gpuarray.empty_like (a)

addVecs(d_a, d_b , d_c, np.int32(d_a.size),
grid=(20,1), block=(512,1,1))

c = d_c.get()

gpuarray . to_gpu(a)
gpuarray . to_gpu (b)

Using the SourceModule we need to compile the code only the first time it is used, and
we are also able to determine the grid and block size parameters. Finally to completely
avoid compiling at runtime, we can compile our CUDA code and use the cubin file from
PyCUDA. This last approach is used in this thesis, since jit (just in time) compiling was

not available for our benchmarks in ARIS.

m AinAeopatxny Epyaocia

Chapter ﬂ

GPU implementation of BLonD

In this section we will explain, how we ported some of the BLonD most crucial func-
tions in the GPU, and what practices we used to optimize them. Also, we will demonstrate
and discuss the results of these functions, run in three different devices, 2 GPUs and 1
CPU. Finally, we also illustrate an optimization that can be applied to experiments, the

GPU_cache, and its results.

4.1 Implemented Kernels

The greatest percentage of time for simulations is being consumed by specific func-
tions like histogram, Kick, drift and linear_interpolation_kick. So first of all we tried to
implement these kernels in the GPU. In this section we will also show some optimiza-
tions that are applied in these kernels. We will compare these kernels with their CPU
equivalent functions using an Nvidia Tesla k40 GPU and an Intel Xeon E5-2660v3 CPU.
The GPU has 15 Streaming Multiprocessors and 12 GBs of RAM. The CPU has 10 cores
and its frequency is 2.60 GHz. We also compare a double precision version with a single
precision one. Finally after their comparison we will also compare the Nvidia Tesla k40
with the Nvidia Volta V100, which is a newer and very strong GPU with 80 SM’s and 32
GB of RAM. Their specifications can be seen in chapter 6.

4.1.1 Histogram Kernel

The first implemented kernel was the histogram kernel. The histogram kernel takes
as input the dt coordinates of a beam, a lower and an upper limit for dt, and the number
of slices. Also we need the array with the slices, that will be the result of our function. So
in order to calculate the histogram with multithreading we need to find for each particle
to locate its corresponding bin, and increase the value of that bin by one. It is important
to notice that since a lot of threads may try to increase the value of the same bin, they
must do it atomically. So a first approach is this simple kernel in CUDA C that can be

seen below.

__global__ void simple_histogram (double * input,
int *x output, const double cut_left,

const double cut_right, const int n_slices,

AitAeopauxny Epyaocia

fjarttep 4. GPU implementation of BLonD

const int n_macroparticles)

int tid = threadldx.x + blockDim.x * blockldx.x;
int target_bin;
double const inv_bin_width = n_slices /(cut_right—cut_left);
for (int i=tid; i<n_macroparticles; i=i+blockDim.x*gridDim.x){
target_bin = floor ((input[i] — cut_left) x inv_bin_width);
if (target_bin<0 || target_bin>=n_slices)
continue;
atomicAdd (& (output|target_bin]),1);

}

A thread first computes its global id and then for each dt coordinate that it is responsible
for, calculates the target bin, and increases the value of that bin by one with the atomicAdd
instruction. This is the most simplified version.

An optimization we can do for that version is to use the shared_memory. To do that,
we give each block a local histogram, that exists in the shared_memory, and after finishing
adding its particles, the block is responsible for adding this local histogram to the global

one. This shared memory implementation is presented below.

__global__ void sm_histogram (double * input,
int * output, const double cut_left,
const double cut_right, const unsigned int n_slices,

const int n_macroparticles)

extern __shared__ int block_hist|[];
for (int i=threadldx.x; i<n_slices; i+=blockDim.x)
block_hist[i]=0;
__syncthreads ();
int const tid = threadldx.x + blockDim.x*blockldx.x;
int target_bin;
double const inv_bin_width = n_slices /(cut_right—cut_left);
for (int i=tid; i<n_macroparticles; i+=blockDim.xx*gridDim.x){
target_bin = floor ((input[i] — cut_left) * inv_bin_width);
if (target_bin<O || target_bin>=n_slices)
continue;
atomicAdd (& (block_hist[target_bin]),1);
}
__syncthreads ();
for (int i=threadldx.x; i<n_slices; i+=blockDim.x)
atomicAdd(&output[i], block_hist[i]);

The shared memory array is declared in line 6. The size of the shared memory is

m AinAeopatxny Epyaocia

4.1 Implemented Kernels

passed as a third parameter after block and grid size while calling the kernel. We need
two more actions. Before using the shared memory we need to initialize it to O, at block
level. Then we use barrier at line 9 to make sure that the whole shared memory is being
reset. Then the threads just like before increase their particle’s bin locally. Once again
we need to make sure that every thread is finished with its particles and we do that with
__syncthreads() of line 19. Finally each thread add the bins that it is responsible for to
the global histogram.

Obviously there is a limitation to that approach. A problem will appear if a local
histogram cannot fit into the shared memory. To avoid that we have developed a third,
hybrid version of the histogram kernel that includes one more parameter, capacity of the

shared memory.

__global__ void hybrid_histogram (double * input,
int * output, const double cut_left,
const double cut_right, const unsigned int n_slices,

const int n_macroparticles, const int capacity)

extern __shared__ int block_hist|[];

//reset shared memory

for (int i=threadldx.x; i<capacity; i+=blockDim.x)
block_hist[i]=0;

__syncthreads ();

int const tid = threadldx.x + blockDim.xxblockldx.x;

int target_bin;

double const inv_bin_width = n_slices /(cut_right—cut_left);

const int low_tbin = (n_slices / 2) — (capacity/2);

const int high_tbin = low_tbin + capacity;

for (int i=tid; i<n_macroparticles; i+=blockDim.x*gridDim.x){

target_bin = floor ((input[i] — cut_left) x inv_bin_width);
if (target_bin<O || target_bin>=n_slices)
continue;

if (target_bin >= low_tbin && target_bin<high_tbin)
atomicAdd (& (block_hist[target_bin—low_tbin]),1);
else
atomicAdd (& (output[target_bin]),1);

}

__syncthreads ();

for (int i=threadldx.x; i<capacity; i+=blockDim.x)
atomicAdd(&output[low_tbin+i], block_hist[i]);

AitAeopauxny Epyaocia m

fjarttep 4. GPU implementation of BLonD

In this final version, we choose to keep the middle part of the histogram in the shared
memory and the rest to the global memory. So, if a particle belongs to a bin that is inside
the shared memory, we increase it locally in line 24, otherwise we increase it globally in

line 26. Next we compare these versions in figure 4.1.

histo_sm
100 100 100 100
10 T I
5 0.8-
= .73 I_71
(7]
C
s .| B
© .0 7
= sm_on
€
B
C
(]
F 0.2
0.0 - Il
1M 4M 16M 64M 100M
input size

Figure 4.1: Comparison of simple version with our shared memory version of histogram

Our optimized version is better than the first simple kernel. The effect of it drops as
we increase the number of bin and a great number of them is now located in the global
memory. Its important to highlight that from this optimization we have two benefits.
First of all, accessing an element that resides in shared memory is as fast as accessing
a register. Also by having multiple local histograms we reduce by a lot the traffic that
would exist if we were having every thread trying to atomically increase elements in one
global histogram.

Now we see the comparison between the CPU and the GPU in figure 4.2

First of all we can see that the GPU is 10 times faster than the CPU. The only exception
is the case with the 1 million particles, where the GPU is being underutilized. We can
also see that there is almost no difference between the single and the double precision for
both the CPU and the GPU. This happens first, because only the dt changes from double
to float while the histogram arrays remain int32 and second, the bottleneck in this kernel
are the atomic add operations, that do not gain any benefit from it.

Finally we compare the k40 with the V100, and we see the 5x speedup the more
powerful GPU offers in figure 4.2.

m Awtflopatkn Epyaoia

4.1 Implemented Kernels

=

o

1

— B
N

0.8 -
Oil II II II II douple-gpu
0.6 HEl single_cpu

0.2- -
l 0-1II-12 0.1|I.10 0.1II.09 o.oll.og
0.0 -

numer of particles

Time normalized on CPU double

Figure 4.2: Comparison of CPU and GPU for the histogram function

histo
1.0U l'UUO.98 L.UUO_98 l.UUO_98 l'UUO.98

1.0 A

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

Time normalized on GPU k40 double

1M 4M 16M 64M 100M
numer of particles

Figure 4.3: Comparison between different GPUs for the histogram function

Awtflopatkn Epyaoia m

fjarttep 4. GPU implementation of BLonD

4.1.2 Drift Kernel

Drift is a function that is applied to a beam object by a tracker object. It is used to
update the particle arrival time to the RF station. Below you can see the equations they

implement, one for each solver followed by the CPU source code.

[9
: AENT AE
- ny Lo L, penyi) L+ (AE/E)" = +872 | == A= =
At = At —ET[] d (1—[2;(1‘ (o 1] 1) — = l} (exact) 4 ¢ 1 3.\ (E., . +2 E, 1 {exact)
Apntl no £ nt+l 1 o .
A" = At C'T” (71 Ty l) (legacy) AE)
. 0=— (simple, legacy)
A" = A"+ ?Tn” Lngd™ (simple) j’: £l

void drift (double * _ restrict__ beam_dt,
const double *x _ _restrict__ beam dE,
const char *x _ _restrict__ solver,
const double TO, const double length_ratio,
const double alpha_order, const double eta_zero,
const double eta_one, const double eta_two,
const double alpha_zero, const double alpha_one,
const double alpha_two,
const double beta, const double energy,

const int n_macroparticles) {

int i;
double T = TO * length_ratio;

if (strcmp (solver, "simple") == 0)
{
double coeff = eta_zero / (beta * beta * energy);
#pragma omp parallel for
for (int i = O; i < n_macroparticles; i++)
beam_dt[i] += T % coeff x beam_dE[i];

else if (strcmp (solver, "legacy") == 0)
{

const double coeff = 1. / (beta * beta * energy);

const double etaO eta_zero x coeff;

const double etal = eta_one *x coeff % coeff;

const double eta2 eta_two *x coeff x coeff *x coeff;

if (alpha_order == 0)
for (i = 0; i < n_macroparticles; i++)
beam_dt[i] += T x (1. / (1. — etaO *x beam dE[i]) — 1.);

m AimAeopatxny Epyaocia

4.1 Implemented Kernels

else if (alpha_order == 1)
for (i = 0; i < n_macroparticles; i++)
beam_dt[i] += T x (1. / (1. — etaO * beam_dE[1i]
— etal *x beam dE[i] * beam_dE[i])
— 1.);
else
for (i = 0; i < n_macroparticles; i++)
beam_dt[i] += T * (1. / (1. — etaO * beam dE[i]
— etal * beam _dE[i] * beam_dE[1i]
— eta2 *x beam dE[i] * beam dE[i] * beam_ dE[i])
— 1.);

else

const double invbetasq = 1 / (beta * beta);
const double invenesq = 1 / (energy * energy);
// double beam_delta;

#pragma omp parallel for

for (i = 0; i < n_macroparticles; i++)

double beam_delta = sqrt(1l. + invbetasq
(beam_dE[i] * beam_dE[i] * invenesq +
2. * beam_dE[i] / energy)) — 1.;

beam_dt[i] +=
T x*
((1. + alpha_zero * beam_delta +
alpha_one * (beam_delta * beam_delta) +
alpha_two * (beam_deltaxbeam_deltaxbeam_delta)) =*
(1. + beam_dE[i] / energy) / (1. + beam_delta) —
1.);

AitAeopauxny Epyaoia m

fjarttep 4. GPU implementation of BLonD

This GPU kernel is a simple one, and can’t be optimized further.

extern "C"

__global__ void drift (double * __restrict__ beam_dt,
double =+ _ _restrict__ beam dE,
const int solver,
const double TO, const double length_ratio,
const double alpha_order, const double eta_zero,
const double eta_one, const double eta_two,
const double alpha_zero, const double alpha_one,
const double alpha_two,
const double beta, const double energy,

const int n_macroparticles)

double T = TO * length_ratio;
int tid = threadldx.x + blockDim.x * blockldx.x;
if (solver == 0)
{
double coeff = eta_zero / (beta * beta * energy);
for (int i=tid; i<n_macroparticles; i=i+blockDim.xx*gridDim.x)

beam_dt[i] += T * coeff % beam dE[i];

else if (solver == 1)

{

const double coeff = 1. / (beta * beta * energy);

const double eta0 = eta_zero * coeff;

const double etal = eta_one x coeff *x coeff;

const double eta2 eta_two *x coeff *x coeff x coeff;
if (alpha_order == 0)
for (int i=tid; i<n_macroparticles; i=i+blockDim.x*gridDim.x)
beam_dt[i] += T % (1. / (1. — etaO * beam dE[i]) — 1.);
else if (alpha_order == 1)
for (int i=tid; i<n_macroparticles; i=i+blockDim.x*gridDim.x)
beam dt[i] += Txx (1. / (1. — etaO * beam dE[1i]
— etal * beam dE[i] * beam dE[i])
— 1.);
else
for (int i=tid; i<n_macroparticles; i=i+blockDim.x*gridDim.x)
beam_dt[i] += T x (1. /
(1. — eta0 % beam dE[1i]
— etal *x beam dE[i] * beam dE[i]

m AitAeouatxn Epyaoia

4.1 Implemented Kernels

— eta2 x beam dE[i] * beam dE[i] x*
beam _dE|[1i])
— 1.);

else

const double invbetasq = 1 / (beta * beta);
const double invenesq = 1 / (energy * energy);

double beam_delta;

for (int i=tid; i<n_macroparticles; i=i+blockDim.x*gridDim.x)
{
beam_delta = sqrt(l. + invbetasq *
(beam_dE[i] * beam_dE[i] * invenesq +

2.xbeam _dE[i] / energy)) — 1.;

beam_dt[i] += T * ((1. + alpha_zero * beam_delta +
alpha_one * (beam_delta * beam_delta) +
alpha_two * (beam_delta * beam_delta *
beam_delta)) =
(1. + beam dE[i] / energy) /
(1. + beam_delta) — 1.);

Below we can compare the performance of our devices in these kernels. Once again we
test the sizes 1, 4, 16, 64 and 100 millions.

AitAeopatxny Epyaoia m

flarttep 4. GPU implementation of BLonD

drift_simple

1.04 937
()]
5 I 0.82
3 0.8 1
©
o)
S .61
S 0.6 A = EE double_gpu
° 0.50 0.50 0.50 Il single_cpu
3 _
N II I II single_gpu
© u
£ 0.4
2 0.26
()
E 0.2 D 1 16—0.1 0.1 0.1

JI 08 08 08
0.0 -

1M 4M 16M 64M 100M
numer of particles

Figure 4.4: Comparison of CPU and GPU for the drift function with the simple solver

drift_simple

1.UU 1.UU 1.UU 1.UU 1

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

Time normalized on GPU k40 double

1M 4M 16M 64M 100M
numer of particles

Figure 4.5: Comparison between different GPUs for the drift function with the simple solver

In figure 4.4 and 4.5, we can see that the simple version, because of the small
number of computations per memory accesses, the speedup is limited. For small number
of particles, the GPUs are underutilized, and so the speedup is also limited. As we
increase the number of particles, the speedup is getting better. The same applies for the
comparison between k40 and v100. As we increase the number of particles, v100 gets
a lot better than k40. This happens for almost every benchmark, because v100, needs

more particles to utilize the 80 SMs that it possesses.

m Awtflopatkn Epyaoia

4.1 Implemented Kernels

drift_legacy 0
il 0.98 0.99 0.99 0.99

II II II II HE double_gpu
Il single_cpu
[single_gpu

© =
o o
1

Time normalized on CPU double
o
(o)}

© o
N B
1 1
1]
'/ | |
I
|
I
|
I
|
I
|

0.0 -
M 4aM 16M 64M 100M

numer of particles

Figure 4.6: Comparison of CPU and GPU for the drift function with the legacy solver with
alpha order O

drift_legacy_0

1.UU 1L.UU 1.UU 1.UU 1.UU

=
o
1

o
(o]
1

o
[o)]
1

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

©
H
1

Time normalized on GPU k40 double
o
N

©
o
I

M 4M 16M 64M 100M
numer of particles

Figure 4.7: Comparison between different GPUs for the drift function with the legacy solver
with alpha order O

For the legacy solver, for every alpha_order values, the plots in figures 4.6 and 4.7
are almost identical. The GPU is a more than 20 times faster than the CPU, even for small
sizes. Again, the V100 is 5 times faster than the k40.

Awlopatkn Epyaoia

flarttep 4. GPU implementation of BLonD

drift_exact

1.4 1

1.2 A II
1.0 A II
0.8 A II
0.6 A II
0.4 A

0.2 l.21
0.2 A

0.0 -

EE double_gpu
Il single_cpu
single_gpu

Time normalized on CPU double

1M
numer of particles

Figure 4.8: Comparison of CPU and GPU for the drift function with the exact solver

drift_exact

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

Time normalized on GPU k40 double

1M 4M 16M 64M 100M
numer of particles

Figure 4.9: Comparison between different GPUs for the drift function with the exact solver
In this version, in figures 4.8 and 4.9 we can see that the comparison between V100

and k40, is almost the same as the previous versions. The k40 converges to being more

than 5 times faster, than our CPU, at a small number of particles.

m Awtflopatkn Epyaoia

4.1 Implemented Kernels

4.1.3 Kick Kernel

Kick function is used to update the particle energy due to the RF kick in a given RF
station. The kicks are summed over the different harmonic RF systems in the station.
The cavity phase can be shifted by the user via phi_offset. We can see the formula applied
by the kick kernel below.

ng—1

AE™ = AE" + Y eV sin (wh A" + ¢,) — (B2 — EY)
k=0

This is the CPU source code that implements this.
void Kkick (const double x __restrict__ beam_dt,
double * _ _restrict__ beam dE, const int n_ri
const double * __restrict__ voltage,
const double * __restrict__ omega RF,
const double x* __restrict__ phi_RF,
const int n_macroparticles,
const double acc_Kkick){

int j;

// KICK
for (j = 0; j < n_rf; j++)
#pragma omp parallel for
for (int i = 0; i < n_macroparticles; i++)
beam dE[i] = beam dE[i] + voltagel[j]

+ fast_sin(omega RF[j] * beam_dt[i

// SYNCHRONOUS ENERGY CHANGE
#pragma omp parallel for
for (int i = 0; i < n_macroparticles; i++)
beam _dE[i] = beam_dE[i] + acc_Kkick;

}

We can see that it has a nested-loop, and a simple for-loop. The variable n_rf usually has

small values, less than ten. The CUDA implementation is the following.

AitAeopatxny Epyaocia m

fjarttep 4. GPU implementation of BLonD

__global__ wvoid kick(
const double +beam_ dt,
double sxbeam_ dE,
const int n_rf,
const double =xvoltage,
const double xomega RF,
const double +phi RF,
const int n_macroparticles,

const double acc_Kkick

)

int tid = threadldx.x + blockDim.x * blockldx.x;
double my_beam_dt;
double sin_res;
double dummy;
for (int i=tid; i<n_macroparticles; i += blockDim.x#*gridDim.x){
my_beam_dt = beam_dt[i];
for (int j=0; j<n_rf; j++){
sincos (omega_RF[j]+*my_beam_dt + phi_RF[j], &sin_res, &umny);
beam_dE[i] += voltage[j] * sin_res;
}

beam dE[i] += acc_kick;

We have used an optimization called Loop Interchange. You can see that we changed
the order of the nested-loop, we have the n_macroparticles loop outside and the n_rf loop
inside. This way we do not need the second for-loop.

Below we can compare the performance of our devices in these kernels. Once again

we test the sizes 1, 4, 16, 64 and 100 millions.

AinAeopatxny Epyaocia

4.1 Implemented Kernels

kick
0 42 u 44 0.43 044

0.4 - 039 il il

HE double_gpu

Il single_cpu
0.2 A single_gpu
0.1 A

Time normalized on CPU double

0.0
.02
0.0 -
1M 16M 100M
numer of particles
Figure 4.10: Comparison of CPU and GPU for the kick function
kick
1.UU 1.UU 1.UU 1. UU 1.UU

1.0 A
[}
B I
>
o
T 0.8 1
o
<
~
é 0.6 I 9.60
c 0.53 0.51 0 51 I double_gpu_k40
-8 I double_gpu_v100
Q I EEE single_gpu_k40
E - I . .I LI LI o
S
C
g 027 12
= : .08

0.0 -

1M 4aM 16M 64M 100M

numer of particles

Figure 4.11: Comparison between different GPUs for the kick function

In figures 4.10 and 4.11, we can see that the GPU is again more than 10 times faster
than the CPU. Also V100 is 3 times faster than k40 for bigger sizes, 30 times faster than
our CPU in total. We can finally see that the single precision version is two times faster
and more than the double precision. This happens because of sincos function which is

operation heavy.

Awtlopatkn Epyaoia

fjarttep 4. GPU implementation of BLonD

4.1.4 Linear Interpolation Kick Kernel

This kernel is used instead of the kick kernel when the linear_interpolation variable

of the tracker object is set to True. Below you can see the implementation for the CPU.

extern "C" void linear_interp_kick (

double *x _ _restrict__ beam_dt,

double *x _ _restrict__ beam dE,

const double * __restrict__ voltage_array,
const double * _ restrict__ bin_centers,
const double charge,

const int n_slices,

const int n_macroparticles,

const double acc_Kkick)

const int STEP = 64;
const double inv_bin_width = (n_slices — 1)
/ (bin_centers[n_slices — 1]

— bin_centers[0]);

double xvoltageKick = (double x) malloc ((n_slices — 1) x*
sizeof (double));

double xfactor = (double %) malloc ((n_slices — 1) * sizeof(double));

#pragma omp parallel

{
unsigned fbin [STEP];

#pragma omp for
for (int i = 0; i < n_slices — 1; i++) {
voltageKick[i] = charge * (voltage_array[i + 1] —
voltage_array[i]) * inv_bin_width;
factor[i] = (charge * voltage_array[i] —

bin_centers[i] * voltageKick[i]) + acc_kick;

#pragma omp for

for (int i = O; i < n_macroparticles; i += STEP) {

AinAeopatxny Epyaocia

4.1 Implemented Kernels

const int loop_count = n_macroparticles — i > STEP ?

STEP : n_macroparticles — i;

for (int j = O0; j < loop_count; j++) {
fbin[j] = (unsigned) std:: floor (
(beam_dt[i + j] — bin_centers[0])

* inv_bin_width);

for (int j = 0; j < loop_count; j++) {
if (fbin[j] < n_slices — 1) {
beam dE[i + j] += beam_dt[i + j] *
voltageKick [fbin[j]] +
factor[fbin[j]];

}
free (voltageKick);

free (factor);

In this function first of all we compute two new arrays, voltageKick and factor, that we
are going to use in the big for-loop. Then each core computes the corresponding bins of
its particles with the floor function. Finally it performs some operations on the beam_dE
based on these bins. We are doing exactly the same operations in the GPU kernel which

can be seen below.

extern "C"
__global__ wvoid lik_copy (
double * _ restrict__ beam_ dt,
double * _ _restrict__ beam dE,
const double * __restrict__ voltage_array,
const double x _ _restrict__ bin_centers,
const double charge,
const int n_slices,
const int n_macroparticles,
const double acc_Kkick,
double * __restrict__ glob_voltageKick,

double * __restrict__ glob_factor

AitAeouatxny Epyaocia

fjarttep 4. GPU implementation of BLonD

int tid = threadldx.x + blockDim.x * blockldx.x;
double const inv_bin_width = (n_slices — 1)
/ (bin_centers[n_slices — 1]

— bin_centers[0]);

for (int i = tid; i < n_slices — 1; i += gridDim.x * blockDim.x) {
glob_voltageKick[i] = charge *
(voltage_array[i + 1] — voltage_array[i]) *
inv_bin_width;
glob_factor[i] = (charge * voltage_array[i] —
bin_centers[i] * glob_voltageKick[i])

+ acc_Kkick;

In the above kernel we create the two arrays voltageKick and factor just like in the CPU
function. We have to do it in a different kernel because the threads of different blocks do
not have a way to synchronize. As a result these arrays that are used by all threads must
be calculated before the main kernel. One approach that we tried is to put these arrays in
the shared memory. This way we would need only one kernel. Also accessing elements in
the shared memory would be much faster than accessing them from the global memory.
But there are some problems with that idea. First of all, shared memory is of limited
capacity, the most recent GPUs have 49152 bytes per block, 12.288 integers or 6.144
doubles. In experiments with more bins than the number that can fit, we will again need
two kernels and we will also have branch divergence, because we have two cases, either
using the shared memory array or the global memory array. Since we do not have a lot of
experiments with this small number of bins, we do not use this version.

Below we can see the main kernel.

extern "C"

__global__ wvoid lik_comp (
double * _ restrict__ beam_dt,
double * _ _restrict__ beam dE,
double * __restrict__ voltage_array,
double *x _ _restrict__ bin_centers,
const double charge,
const int n_slices,
const int n_macroparticles,
const double acc_Kkick,
const double * __restrict__ glob_voltageKick,

const double * __restrict__ glob_factor)

int tid = threadldx.x + blockDim.x * blockldx.x;

AinAeopatxny Epyaocia

4.1 Implemented Kernels

double const inv_bin_width = (n_slices — 1)
/ (bin_centers[n_slices — 1] —
bin_centers[0]);
int fbin;
const double bin0 = bin_centers[0];
for (int i = tid; i < n_macroparticles; i += blockDim.x * gridDim.x)
fbin = floor ((beam_dt[i] — bin0O) % inv_bin_width);
if ((fbin < n_slices — 1) & (fbin >= 0))
beam dE[i] += beam_dt[i] * glob_voltageKick[fbin] +
glob_factor[fbin];

Keywords like _ restrict__ and const

In some kernels like this one, some values are being reused. In order to take advantage
of that, a good strategy would be to keep them cached. In the Cuda Programming Guide,
it is mentioned that: "Data that is read-only for the entire lifetime of the kernel can also
be cached in the unified L1/texture cache. When the compiler detects that the read-only
condition is satisfied for some data, it will cache it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and __restrict__ qualifiers increases the lilkcelihood that
the compiler will detect the read-only condition.” To achieve that, while declaring arrays
that we want to cache we are using these keywords.

In figures 4.12 and 4.13, we can compare our devices.

linear_interp_kick

BB B

I II 0.64 0.63 BN double_gpu
6105 II [[|] EE single_cpu
0.4 -

2

.22 0.2
0.2 0.1
0.0 -
1M 16M 64M 100M

numer of particles

=

N
1

o)

1.01

=
o
L

o
(o]
L

0.69

Time normalized on CPU double
o
()]
O

Figure 4.12: Comparison of CPU and GPU for the linear_interpolation_kick function

AitAeopatxny Epyaocia

{

fjarttep 4. GPU implementation of BLonD

linear_interp_kick

=
o
1

o
(o]
1

o
(o)}
1

double_gpu_k40
double_gpu_v100
single_gpu_k40
single_gpu_v100

_O
>
1

Time normalized on GPU k40 double
o
N

o
o
1

1M 4M 16M 64M 100M
numer of particles

Figure 4.13: Comparison between different GPUs for the linear_interpolation_kick function

In this kernel the speedup of the GPU is lower because the ratio of computations to
memory operations is lower. The double precision of k40 is 5 times faster than the CPU for
big sizes. Also for both CPU and GPU the single precision version speedup is converging
to two as we increase the size. Increasing the size means less conflicts in the bins so less
time for memory operations. Finally once again the V100 is five times faster than the k40

for greater sizes, where the runtime of the kernel is dominated by computations.

4.1.5 FFTs

There are also two other functions that take a lot of time to produce results. These
functions are rfft and irfft. The rfft function produces the real Fast-Fourier-Transform
of an array, and the irrft produces the inverse-real Fast-Fourier-Transform of an array.
These two functions have two inputs. The first input is an array, and the second is the
size of the input that we want to use, with default value, the size of the first argument.
These two arguments will create the input that will be passed to the rfft, and irfft functions
that are provided by the module scikit-cuda and use the cufft, which is library of CUDA.
So, we have some functions we have written ourselves that are called gpu_rfft and gpu_-
irfft that are using scikit-cuda’s rfft and irfft. Our functions are developed in a way that
gpu_rfft’s and gpu_irfft’s results are identical to numpy’s rfft and irfft.

Supposing that the first argument is input_array and second argument is n, we have

the following three cases.
e n is None, we give input_array as input to the corresponding scikit-cuda function.

e n < len(input_array), we pass the input_array[:n] as input to the corresponding

scikit-cuda function

e n > len(input_array), we pass the input_array padded with zeros as input to the

corresponding scikit-cuda function

Awtflopatkn Epyaoia

4.1 Implemented Kernels

For these functions we have two optimizations. First of all, in order to call the functions
provided by scikit-cuda, you need to create a plan. Since these plans are frequently
reused, we create a dictionary and save them there. With this dictionary, we save time
by not creating new plans, if they already exist. Also, there is a minor problem with the
second and the third case. For these two cases, where the input of gpu_(i)rfft is different
than the input of (i)rfft, we will need to allocate and delete a temporary array, the input
of (i)rfit. Also the result array needs to be stored in a new array. In order to save time,
we have developed a new feature, called gpu_cache, that stores temporary arrays, and
reuses them. It will be described in the next subsection, but since it helps a lot these two

functions you can see some results here too.

Now we will show some results of these two functions for our devices. In the following
plots we compare the FFTs of the fftw library than can be used in blond, instead of numpy
methods. It is also important to know that these functions usually take the histogram of
dt as the first argument and a greater number than the length of histogram as the second

argument.

E:

H
H
¢!

=

=
=

. 1.03 1.03 .
@ 1.0 —_—]
Q
>
o
o -
?3 0.8 EEE Cache_double_gpu
< 0.69.64-60.6 Cache_single_gpu
k5 064 = NoCache_double_gpu
N NoCache_single_gpu
g 04 EEN single_cpu
o
C
i 0.2 1

0.0 J lm.o@-OD-OI@.O@.OD.Olw.0@.0@.0l

' 1k 5k 10k 30k

input size

Figure 4.14: Comparison of GPU versions for the rfft function

AitAeopatxny Epyaocia

flarttep 4. GPU implementation of BLonD

rfft_only_gpu
971_00 1.0U 1.00 LU

.9

=
o
1
o
&

Time normalized on GPU double(NoCache)
o °
D [e)]

o
[ee]
1

I Cache_double_gpu
Cache_single_gpu
NoCache_single_gpu

0.2%0.25 0.25.26 0.260.25
0. - - m
0.0 - T I T I T I T
1k 5k 10k 30k

input size

Figure 4.15: Comparison of GPU versions for the rfft function

In figure 4.14 plot we compare k40 with our CPU. We can see that for greater sizes,
which are typically used, the speedup is more than 100. The GPU is clearly faster for these
operations. This is something that can be also seen in experiments. Also, we observe
that when we use our gpu_cache optimization we are four times faster than without it.
Additionally, single precision is not helping in this case for both the CPU and the GPU as

we see in figure 4.15.

=
o
1

o
o
1

Cache_double_gpu_k40
Cache_double_gpu_v100
Cache_single_gpu_k40
Cache_single_gpu_v100

o
i
1

0.2 1

Time normalized on GPU k40 double
o
[e)]

o
o
I

input size

Figure 4.16: Comparison of GPU devices for the rfft function

Finally in figure 4.16 we can see that V100 is not boosting the performance like in
the previous cases since we only have 1.25 speedup for both single and double precision.
This is happening because these algorithms, have low occupancy in order to achieve good
performance. As a result, V100 cant take advantage of its 80SM’s and the performance

boost is smaller.

Awtflopatkn Epyaoia

4.1 Implemented Kernels

All of the above apply also for the irfft function. We can see that in figures 4.17, 4.18
and 4.19.

[u

1.2 4 17

=
o
0]
=

.0

[e°]

1.0 A

0.8 1 I
0.6 1 o,sﬁ).SO.S&.Si

I Cache_double_gpu
Cache_single_gpu
NoCache_double_gpu
NoCache_single_gpu

HEE single_cpu
0.4

Time normalized on CPU double

@0@0D0 @0@0@0

F---

0.2 - I I
] N I
0.0 - T T

1k 5k

input size

Figure 4.17: Comparison of GPU versions for the irfft function

irfft_only_gpu
- 1.0% 1.03 1.03
2,1 0970000
S 1.
©
Q
[©]
E .
2 0.8 A
Ke]
§ I
-] i I Cache_double_gpu
z 0.6)
O Cache_single_gpu
S NoCache_single_gpu
° 4 0.38 0.37 0.37
0.4
I 0.31 0.32 0.33
©
: [] [] []
2 0.2 1
(]
£
|_
00 - T T T T
1k 5k 10k 30k
input size

Figure 4.18: Comparison of GPU versions for the irfft function

Awtflopatkn Epyaoia

flarttep 4. GPU implementation of BLonD

irfft

Cache_double_gpu_k40
Cache_double_gpu_v100
Cache_single_gpu_k40
Cache_single_gpu_v100

Time normalized on GPU k40 double

input size

Figure 4.19: Comparison of GPU devices for the irfft function

4.2 Selecting Grid Parameters

In order to use our kernels, we need to select grid and block size. These two sizes
will determine the occupancy of our GPU and how much work a single thread will do. In
order to keep the occupancy at 100% we need to have 2048 threads in each Streaming
Multiprocessor. Also each block can take at most 1024 threads for most GPUs. So a
combination that is easy to use, and will work for almost every GPU is to use block size
equal to 1024, and grid size equal to two times the number of SM’s . This way we will
have two blocks per SM, so 2048 threads per SM, maximizing its occupancy. There are
a few exceptions that will not work with these parameters. One example is the optimized
histogram kernel. In this kernel, it would seem good to use more blocks and smaller ones,
to utilize share memory more. Although this approach does not seem to work. Something
we have seen from experience, is that setting the grid size higher than the value our
strategy would give, is beneficial when we have a very high number of bins. For the other

kernels, just maximizing the occupancy is enough.

Our strategy is not always optimal. Actually, no combination of grid and block size
can be optimal for all sizes. We can see that in figures 4.20, 4.21, 4.22 and 4.23. We
have tried different sizes for each kernel and we can see that for each size the optimal

combination is different.
Histogram

m Awtflopatkn Epyaoia

4.2 Selecting Grid Parameters

histo_dict 1M

O
]
o
o
(%2}
®
<
-+~

16 32 64 96

128 160 192 256

total blocks
histo_dict 16M

O
(@)
9]
o
(%]
©
c
)
16 32 64 96 128 160 192 256
total blocks

Figure 4.20: Histogram Grid Parameters

AitAeopauxny Epyaocia m

fjarttep 4. GPU implementation of BLonD

Drift

drift_simple_dict 1M

¥4
O
]
o
o
(%2}
©
g 512
=
16 32 64 96 128 160 192 256
_ total blocks
drift_simple_dict 16M
Y4
O
o
o
[oX
n
©
@ 512
=

96 128 160 192 256
total blocks

=
(o)
W
N
N
SN

Figure 4.21: Drift Grid Parameters

m Awtflopatkn Epyaoia

4.2 Selecting Grid Parameters

Kick
kick_dict 1M
AV
O
o
o
o
[%2]
©
g 512
S
16 32 64 96 128 160 192 256
_total blocks
kick_dict 16M

AV
O
o
@
o
[%2]
©
§ 512
S

16 32 64

96 128 160 192 256
total blocks

Figure 4.22: Kick Grid Parameters

AitAeopauxny Epyaocia m

fjarttep 4. GPU implementation of BLonD

Linear Interpolation Kick

linear_interp_kick dict 1M

V4
O
o
o
o
2]
©
§ 512
=
16 32 64 96 128 160 192 256
' . total blocks
linear_interp_kick dict 16M
Y2
O
@]
o
o
[%2]
©
g 512
5

16 32 64

96 128 160 192 256
total blocks

Figure 4.23: Linear Interpolation Kick Grid Parameters

m Awtflopatkn Epyaoia

4.2 Selecting Grid Parameters

In the above plots, we can see that even for the same kernel, there is no optimal
configuration. From what we have seen in practice, using 30 blocks and 1024 threads is
really good in experiments. There is only one exception, the histogram kernel in one of our

benchmarks. For this case only, if we use more blocks, we can see better performance.

AitAeopauxny Epyaocia m

fjarttep 4. GPU implementation of BLonD

4.3 Gpu_Cache

Like described before, in the ffts, we have developed a feature to remove allocation and
deletion time for temporary arrays. So in order to allocate a new array, we do not use
the method of pycuda gpuarray.empty(), but a function like gpu_cache.get_gpuarray(key).
The key has information about the type of the array, the size, and the object that is going
to use it. Also there is one string that helps to distinguish arrays of the same object that
have the same size and type. To implement this we use a dictionary that maps keys to
gpuarrays, and this way, we keep them in scope. This is an example of how we use our

gpu_cache:

def assign_values(obj, value_for_a, value_for_b, new_size):

obj.gpuarray_a = gpu_cache.get_gpuarray (('np.float64 ’,
new_size, id(obj), ’a’))

obj.gpuarray_b = gpu_cache.get_gpuarray (('np. float64 ’,

new_size, id(obj), ’b’))

In the example above we have a method that changes the values of gpuarray_a and
gpuarray_b fields of an object. First of all let’s suppose that this function is called with
new_size equal to 20. Since neither (np.float64’, new_size, id(obj), ’a’) nor ('np.float64’,
new_size, id(obj), 'b) exist in our cache, they are being created with gpuarray.emptyl(),
that is provided by pycuda. After a second call , these gpuarrays would be out of scope
and deleted, but with the dictionary of our cache we keep them in our memory. So if a
third call is made with the new_size equal to 20, just like the first time, the arrays from
the cache are going to be reused. We are using the id of an obj to distinguish arrays with
the same characteristics that belong to different objects, but if an array is temporary and
different objects can use it we put a default value like O. In this example you can also see

the strings 'a’ and ’b’ that make our cache understand that these arrays are different.

A feature of our gpu_cache is its capacity. We can specify the capacity of our cache,
and if the addition of a new array makes the cache surpass its limit, the dictionary will be
cleared, and then our new array will be allocated and saved to it. Someone can choose to
not specify the capacity, and the cache will be cleared when the GPU can'’t allocate a new

array.

The gpu_cache is used mostly for the FFTs, where we need new temporary arrays that
will not continue to exist after their usage. In small experiments, the FFTs have a big per-
centage of time, so improving their performance with the gpu_cache is important. Below
we can see how the gpu_cache optimization reduces the duration of some experiments.
To show the improvement, we have tested some examples and we present the results
below in figures 4.24, 4.25 and 4.26.

m AinAeopatxny Epyaocia

4.3 Gpu_Cache

Time normalized on cache off

Time normalized on cache off

LHC GPUCache Impact

Bl cache_off
Bl cache_on

1

N
=<

24M
Number of macroparticles

Figure 4.24: GPU cache on LHC

PS GPUCache Impact

I cache_off
I cache_on

12M 24M 36M
Number of macroparticles

Figure 4.25: GPU cache on PS

Awtlopatkn Epyaoia

fjarttep 4. GPU implementation of BLonD

SPS GPUCache Impact

Bl cache_off

Time normalized on cache off

Number of macroparticles

Figure 4.26: GPU cache on SPS

From the results we can see that gpu_cache is a really nice feature to have, especially
for small experiments. For every experiment we reduce the time to less than 80% of the
initial. Like we mentioned before, for simulations with more particles, where the runtime
is dominated by linear_interpolation_kick and drift kernel, the performance boost we get
with this optimization drops. If with the number of particles, we also increase the number
of bins, then we still expect to see a good speedup, since the time of the ffts is dependent

on the number of bins.

Awtflopatkn Epyaoia

Chapter E

Enabling GPU

In this chapter, after we describe the basic components of a BLonD simulation with
more details, we will explain how we use the GPU to accelerate simulations. Also we
will describe the CGArray object that really helps physicists to develop their simulations,
without having to know how to use the GPU.

5.1 Description of BLonD simulation

We will try to mention and explain some of the basic BLonD classes, and their at-

tributes.

Beam

This class is one of the most basic classes of the simulation. The most important
attributes are the dE and the dt arrays. There is also an id array, which has information
on which particles are lost. A particle is considered lost, if its coordinates do not meet
some requirements. It also has some methods to check these requirements and adjust
the id array. Finally, we have methods there, that compute the mean value and the std

of our dt and dE coordinates.

Profile

In this class, we have information and methods about the histogram of dt. It gets a
Beam object as a parameter, so it can access the dt array. The basic method of this class
is slice, that computes the histogram of dt, that is saved in the attribute n_macropar-
ticles. It has some parameters for this method like cut_right and cut_left, that set the
boundaries of the histogram. One other attribute is the bin_centers array, that has the
centers of each bin. Some other methods that we have here are the beam_profile_deriva-
tive that computes the derivative of the histogram and the beam_spectrum_generation
that computes the rfft of the histogram.

Tracker
A lot of operations during the main loop are happening with methods of this class.
The most important method of this class is the track method, that has two parts. The

first part, that we call it pre_track has some functionalities that are used to update some

AitAeopauxny Epyaocia m

farttep 5. Enabling GPU

values, used for the next part, which we call it track_only. In this next part, we apply

kick or linear_interpolation_kick and drift function, to our beam.

TotalInducedVoltage

A lot of classes inherit from this class. Each one, has its own functionality, but all
of them are updated from the histogram, and have methods and attributes that are used
in the tracking process. These objects use a lot the FFTs function from their methods,
and in small experiments, the time consumed by the CPU for these methods, is a big

percentage of the runtime (up to 60%).

RFStation
This class contains some arrays as attributes, that are also used in the tracking pro-
cess. We have no important methods in this class. Only its arrays, that are used by

almost every other class.

bmath.py file

This python file is mostly used to apply optimizations. It has a lot of useful features.
First of all it has a global dictionary, that is used to map strings to methods. This way,
we can change a method implementation, while calling the method with the same name.
Also, in this file we have a class that let us to switch to single or double precision and
methods that let the user enable the GPU and the GPU_cache.

5.2 GPU Corresponding Classes

The objects that were described in the previous section have some attributes, arrays
or constant values, and some methods. In order to use GPU acceleration, the methods
that consume time, must be ported in the GPU. In order to do that, we have created a
new directory under blond, which is called gpu, that implements that and its structure
will be explained below.

Each file, that describes a class of the CPU implementation, that is used in the GPU
has a corresponding copy in this folder. For example for the beam.py file there is a
gpu_beam.py under the gpu directory. Such files are: beam, beamfeedback, impedance,
profile, rf_parameters and tracker. We also have two more files, butils_wrap and physics_-
wrap with some core functions of blond. Additionally there is an __init_ .py file, that we
use to specify the grid parameters that will be used for our kernels. We have a file for
the gpu_cache implementation and one file for the CGA class which we will see later, and
finally one file called gpu_activation that will also be explained later.

We will explain what is happening in these files with an example. We will use the beam
file and the Beam object. We described before the the Beam object has some attributes
like dE and dt, and some methods like the mean value of these two arrays. In order for
this class to be ported in the GPU we need to have some copies of these arrays in the GPU

and also equivalent methods, that will use these GPU arrays. In order to do that in the

m AinAeopatxny Epyaocia

5.2 GPU Corresponding Classes

gpu_beam.py file, there is a class called GpuBeam that inherits from the Beam class, and
has some methods overridden. The question is what happens with the attributes arrays,
that have to be in the GPU but can also be requested or even changed by CPU functions.
To support these needs, we have developed a class, called CGArray, derived from Cpu
Gpu Array, that supports exactly that, having a copy of an array both in the GPU and the
CPU.

This happens in the gpu_activation file. For every object we have a use_gpu method
that we add to our classes. For example, for the Beam class we have use_gpu_Beam
method. This method updates the array to the CGA object, and also updates the __ -

class__ attribute to GpuBeam.

5.2.1 CGA class

The need for this CGA class arose, when we saw that physicists are doing operations
on arrays that we only kept in the GPU, in their main loops. A typical example is the

following.

for i in range(iterations):
profile . track ()
tracker.track ()

profile.bin_centers += 0.25

In this example, the bin_centers array is supposed to exist in the GPU, so operations like
that would not be supposed to work. In order to avoid that from happening we let two
arrays to exist, a CPU array with the name of bin_centers, and one array that exist in the
GPU with the name dev_bin_centers. These two arrays are linked in a CGA object. This
means that when requested, either for CPU or for GPU, a valid copy will be given.

In order to use CGA array we have to do two things. First of all in the use_gpu

activation function of an object we need to add a line to create the CGA object.

def use_gpu_beam(self):
from ..gpu import gpu beam as gb

from ..gpu.gpu_cpu_array import CGA

if self.__class__ == gb.GpuBeam:
return
self .dE_obj = CGA(self.dE)
self.dt_obj = CGA(self.dt)
self.id_obj = CGA(self.id, dtype2=bm. precision.real_t)
self.__class__ = gb.GpuBeam

You can see in lines 8,19 and 12, that we are creating 3 CGA objects. To use them you

add some properties in the class that you want, just like in the following example.

AitAeopatxny Epyaoia m

farttep 5. Enabling GPU

class GpuBeam(Beam) :

@property
def dE(self):

return self.dE_obj.my_array

@dE. setter
def dE(self, value):

self .dE_obj.my_array = value

@property
def dev_dE(self):

return self.dE_obj.dev_my_array

@dev_dE. setter
def dev_dE(self, value):

self .dE_obj.dev_my_array = value

In this piece of code you can see what you need to do, to use the dE_obj that was created
earlier. We have some properties, getters and setter for both the CPU and the GPU. You
can see that the dE_obj has two arrays as attributes, my_array which is the CPU array,
and dev_my_array, which is the GPU array.

The CGA class has some really important functionalities. First of all both the CPU and
the GPU copy can be valid or invalid. That means that if we modify for example the GPU
copy, the CPU one will be invalid until we request it. If we request it, it will be validated,

and then it will be returned to us. We can invalidate it with three ways.

supposing the profile object has a CGA n_macroparticles array

First way, we set the n_macroparticles array to a new one

profile.n_macroparticles = np.array([1,2,3,4, 5, 6, 7, 8])

Second way, we set a slice of the array

profile.n_macroparticles[:5] += 3

Third way, we invalidate it manually

profile .n_macroparticles_obj.invalidate_gpu ()

So when we alter a copy, in GPU or in the CPU, the other copy is invalid, until we either
request it or alter it. Now the CGA class has some more features that we want for our

case.

m AinAeopatxny Epyaocia

5.2 GPU Corresponding Classes

We can use different types for the copies. For example, in the profile class, the n_-
macroparticles array in real for the CPU and integer for the GPU. Also the 2d arrays
that we have in the CPU are 1d in the GPU. We need to take that in mind when we are
developing methods for our GPU objects, since we are using the GPU copies for them.

Finally, to sum things up, CGA class is a way to have synchronized arrays in the
CPU and in the GPU without adding overhead. This will help physicists to develop their
simulation file without having to think what is in the GPU and what is not. Also this can
help in case some methods are not developed for the GPU, but they use arrays that also
reside in the GPU.

5.2.2 Enabling GPU from the mainfile

The first thing that we have to do, to use the GPU using the PyCuda module is the
initialization of the GPU. In order to do that in a pretty way, we have developed a class
called GPUDev. When we initialize the GPU a new GPUDev object is created. We initialize
the GPU with the following piece of code:

import blond.utils .bmath as bm
bm. use_gpu (gpu_id)

This command initializes the context of the GPU. Also it updates the dictionary of the
bmath file with our GPU functions. For example the drift function is updated from the
CPU one to the GPU one. Also the file activation is being imported, and so the use_-
gpu_xxx methods are added to their corresponding classes. Finally we direct PyCuda to
a cubin file, that we have from compiling our Cuda kernels. This cubin file has all the
functions that are requested from PyCuda. After we have initialized our GPU, we need to
call the use_gpu method for the objects that we plan to use in our main loop. An example

follows.

import blond. utils .bmath as bm
bm. use_gpu ()

beam. use_gpu ()
tracker.use_gpu()
rf_station.use_gpu()

profile .use_gpu ()

These lines are everything that you need to do in order to use the GPU. And in fact, you
can skip a few lines. Some objects have other object as their attributes. For example, the
Beam object is an attribute of the tracker object. Since tracker will also call the use_gpu

for the beam we can skip line 3. The same applies for rf_station and the profile object.

AitAeopatxny Epyaoia m

Chapter E

Benchmarks

In this chapter, we will see the final results of our GPU implementation. To perform
the benchmarks we used the Greek Supercomputer ARIS. The cluster that we have been
given access to, had in total 44 nodes, each node with two CPUs Intel Xeon E5-2660v3,
two GPUs NVidia K40 and 64GB of RAM. You can see the specs of our devices in tables
6.1, 6.2 and 6.3. In this cluster we performed three experiments. LHC, PS and SPS, with
5 different configurations for sizes and nodes. First of all we will describe briefly these

experiments, and afterwards we will see and discuss the results.

Intel Xeon E5-2660v3 Specs
Cores 10
Threads 20
Cache 25 MB
Frequency 2.60 GHz

Table 6.1: Intel Xeon Specifications

Nvidia K40 vs Nvidia V100

k40 v100
Architecture Kepler Volta
Process Size 28 nm 12 nm
Memory Size 12 GB 32 GB
Memory Bus 384 bit 4096 bit
Bandwidth 288.4 GB/s 897 GB/s
SM count 15 80
Cores 2880 5120
L1 cache (per SM) | 16KB 128KB
L2 cache 1636KB 6MB
Cuda Version 3.5 7.0

Table 6.2: Comparison between k40 and v100

AitAeopatxny Epyaocia

farttep 6. Benchmarks

Peak Performance of Device (TFLOPS)
Operation Intel Xeon E5- | Nvidia k40 Nvidia V100
2660v3
FP32 2.1 5.04 14
FP64 1.05 1.68 7

Table 6.3: The specification of our devices

6.1 Experiments

First of all, these experiments have a few things in common. In all of them, we let
the main loop run for ten thousand turns. All of them have some common objects too.
They have a beam, a profile, a tracker and a TotallnducedVotage object. All of them have
the linear_interpolation_feature activated, and because of that they are not using the kick
function but the linear_interpolation_kick. Apart from that, we test different particle sizes
for them as well as number of bunches and number of slices for the histogram. The
LHC and SPS experiments also have one more feature, the beam-feedback object, that
performs each round a reduction on the histogram and some operations on it. These
operations, when done in the GPU, change the results of some simulations, so they are
performed in the CPU.

6.2 MPI

In the plots that will follow, we have used two versions. The first one is MPI-over-
OpenMP for our CPU benchmarks. The second is MPI-over-Cuda. These two versions
both perform the same MPI operations. In the beginning of the main loop, the beam
particles is being distributed among workers. Then for every turn, the workers compute
their particles histogram, and perform an all-reduce operation, to get the global histogram.
After that, all of them do the induced_voltage_sum operation. You can see that process

in figure 6.1.

m AinAeopatxny Epyaocia

6.2 MPI

Worker
1

Kick and Drift in
Beam part 1

Worker Kick and Drift in
2 Beam part 2

Worker Kick and Drift in
3 Beam part 3

Worker Kick and Drift in
4 Beam part 4

Histogram in Beam
part 1

Histogram in Beam

Histogram in Beam
part 3

Histogram in Beam
part 4

reduce-all
operation

reduce-all
operation

reduce-all

Induced Voltage Sum

Induced Voltage Sum

Y

operation

reduce-all

Induced Voltage Sum

-/

operation

Induced Voltage Sum

Figure 6.1: MPI workers 1 turn example

6.2.1 Classification Of Operations

In order to be able to explain what happens, we classify the operations in 3 different

categories.

e comp: operations that their time is dependent from the number of particles.

e serial: operations that their time is independent from the number of particles.

e comm: operations that are happening due to the need for communication.

So with the above classification, in the MPI version, if we increase the number of nodes

and keep the size of our simulation the same, we reduce the comp time for each worker.

The serial time will remain the same. The communication time will probably increase,

since with more workers, we need more synchronization time for the all-reduce operation.

6.2.2 CPU vs GPU

In this subsection we will see the results of our GPU implementation compared with

the CPU implementation. We have tried four different configurations, that are described

in figures 6.4, 6.5. The results of our benchmarks can be viewed in figures 6.2, 6.3,

6.4.

AitAeopatxny Epyaocia

farttep 6. Benchmarks

LHC

PS

SPS

particles per node

18 million

21 million

18 million

Table 6.4: Particles per node for experiments

CPU-BASE | CPU-TP GPU-1PN GPU-2PN
workers per node | 2 2 1 2
task parallelism off on off off

Table 6.5: Configurations Description

Task parallelism is used in the serial operations like the FFTs. For example, in a node,
we let one worker perform the first serial operation and the second performs the other
one. In this way we save some computation time, but we add some communication time.
For GPU this feature is not good, since the time saved is less than the communication

time added plus the time that it takes to do the GPU to CPU memory operation.

Norm. Throughput

Nodes (x20 Cores/ x1 or x2 GPUs)

Figure 6.2: LHC: CPU vs GPU

In figure 6.2 we see that the GPU-1PN is at least three times faster than the CPU-
BASE. If we move from GPU-1PN to GPU-2PN we see a difference because the comp
operations of one node are now distributed to two workers. Since comp operations are
not the only things that we perform, we do not expect two see a two times speedup, which
we do not. The difference between GPU-1PN and GPU-2PN is getting worse as we increase
the number of nodes. For example, using 16 nodes means that instead of having 16
workers, we have 32.

For task-parallelism, we can see that the CPU-TP gets better as we increase the num-
ber of nodes. The reason for that is that FFTs, which are being performed really slow
in the CPU, are more demanding when having more bunches, since more bunches mean

more slices for the histogram that is the input to the FFTs.

AinAeopatxny Epyaocia

6.2 MPI

[CPU-BASE [CPU-TP_] GPU-1PN [l GPU-2PN
] PS 6.05 617

(o]
1

I
1

Norm. Throughput

Nodes (x20 Cores/ x1 or x2 GPUs)

Figure 6.3: PS: CPU vs GPU

For the PS experiments, the results in figure 6.3 are very close to the results of LHC.
The GPU performs better in this experiment, our GPU-1PN is more than 4 times faster
than the CPU-BASE and our GPU-2PN is more than 6 times faster. Once again, the
difference between GPU-1PN and GPU-2PN is getting smaller as we increase the nodes.

[CPU-BASE Bl CPU-TP, PN GPU-1PN EN GPU-2PN
8.58 ' SPS8.96

n
(6]
1

Norm. Throughput
N (6]
a2

Nodes (x20 Cores/ x1 or x2 GPUs)

Figure 6.4: SPS: CPU vs GPU

Finally, in figure 6.4 we see the results of the SPS experiment. This experiment is
the best in terms of CPU and GPU comparison. The configuration with 1, 2 and 4 nodes
are faster more than 6 times than the CPU-BASE and the GPU-2PN is more than 8 times,
close to 9. The problem we have here is that the scaling is pretty bad. As we increase
the number of nodes, the runtime is dominated by comm operations, because the nodes
need to communicate with each other.

We can confirm all of the above if we look at the figures 6.5, 6.6 and 6.7 The intra
is about serial operations, like the FFTs and the beam_phase. The comm is about the
synchronization time we have to pay for communication. The part of the bars that can

not be seen is about the computation time.

AitAeopatxny Epyaocia m

farttep 6. Benchmarks

100 100
LHC LHC
1 comm 807 =1 comnm

Bl intra
601 2 exact 1E3 exact

intra
6o =
401 £ 401
2 - - ' ! 2 -
1 2 4 8 16 1 2 8 16

4

80+

o o

Runtime (%)
Runtime (%)

(=}
(<]

o

<=}

Figure 6.5: LHC: On the left we have GPU-1PN and on the right we have GPU-2PN

In figure 6.5 we can see the time breakdown for the LHC experiment. The comm time
is getting bigger as we increase the number of nodes. We actually expected that kind of
behavior. The intra time is also increased from GPU-1PN to GPU-2PN. The reason for this
is that the operations that we are doing in the CPU are now performed by 10 cores and
not by 20.

100 100

PS PS

1 comm 807 =1 comnm
Bl intra Bl intra
601 7 exact

601 3 exact
401 £ 401
“] - - ! ! ! l | ! ! !|]
1 2 4 8 16 1 2 4 8 16

Figure 6.6: PS: On the left we have GPU-1PN and on the right we have GPU-2PN

80+

Runtime (%)
Runtime (%)
(<)

(=]

(<=}

(<=}

In figure 6.6 we can see the time breakdown for the PS experiment. The behavior of
comm time is almost identical to LHC. The same applies to the intra time. Its relation
with the comp time, which is the part of the runtime that remains, is stable. What we
mean by this, is that their ratio is almost the same for every number of nodes. In the
GPU-1PN their ration is close to 25% and in GPU-2PN it is close to 50%.

100 100
SPS SPS
1= comm

Bl intra
| E.exaCt ! ! a
1 2 8 16

4

©
(<]

807 =3 comm
Bl intra
601 2 exact

404 !
“] . !
1 2 4 8 16

Figure 6.7: SPS: On the left we have GPU-1PN and on the right we have GPU-2PN

&5 O
o o

Runtime (%)
Runtime (%)

N
(<]

(<)

(<)

The time breakdown of the SPS experiment can be seen in figure 6.7. Just like in the
PS and the LHC the runtime is being dominated by intra and comm time as we increase

the number of nodes.

6.2.3 Approximation Methods

In order to boost the performance of our MPI version when increasing the number of
nodes, we have used some approximation methods. These approximation methods are
used mainly to skip the reduce-all operation of the workers, and reduce the communi-

cation time. These methods are the following. It may seem that these methods lead to

m Awtflopatkn Epyaoia

6.2 MPI

the loss of some accuracy, but as we will see, because of some characteristics of our

distribution the loss is very small, and the experiments can be considered valid.

e rds: with this approximation method, we choose to perform the histogram operation
every n-turns. The number of n is small (for our benchmarks we have tried 2 and 3).
The hypothesis behind this approximation method is that the histogram does not
change drastically after a small number of turns, and so we can use the previous
one. This way we reduce the numbers we perform the reduce-all operation, but also
the serial operations. This happens because if the histogram stays the same, the
values produced by it also remain the same. So we can skip them. So the time for

serial operations is reduced to 100 * %%

e srp: we consider that the parts of the beam that are distributed to workers, follow the
same distribution, since this process is done randomly. So, with this approximation
technique, we suppose that the global histogram can be computed, if we scale the
local one. For example, if we have two workers, each one in order to compute
his histogram need to divide the local histogram with the percentage of particles it
possesses. In this example he needs to divide every value of the local histogram
with 0.5. With this approximation we save the communication time, because the

workers do not need to perform the reduce-all operation at all.

e {32: the third approximation method is to try float32 numbers instead of float64.
There is a mechanism developed that let the user decide if he wants to use float32 or
float64 precision. With this approximation we expect to see reduction in the comp
time. We expect the drift and the kick function to reduce their runtime, close to

50% but for the other operations we expect to remain almost the same.

6.2.4 Weak Scaling Approximation Plots

These benchmarks run for the approximation methods. We wanted to see how much
they improve the runtime when used. So for each configuration above, we tested the

following methods.
e exact: f64 precision, no approximation method used.

e srp-3: f64 precision, we used the srp method, and updating the histogram evey 3

turns.
e rds: {64 precision, we used the rds method.
e {32-exact: 32 precision, no approximation method used.

e {32-srp-3: 32 precision, we used the srp method, and updating the histogram evey

3 turns.

e f32-rds: 32 precision, we used the rds method.

AitAeopauxny Epyaocia m

farttep 6. Benchmarks

Now we will see how each experiment was benefited from these approximation meth-
ods, starting with the LHC in 6.8.

(32 -SRg-Z B f32-SRP-2 @ SRP-3 [E4f32-SRP-3 CJRDS Z3f32-RDS

: ~

£ 0.8 :
3 0.6 C
« b
: 0.4 <
:)
(o) 02' !
< N

1 2 4 8 16
Workers (x10 Cores)

Figure 6.8: LHC Approximation Speedup

_1
0.76

is that not all the operations are faster because of the f32 precision. The FFTs and the

The 32 version, seems to achieve a speedup more than 1.3 (55z). The reason for that,

histogram function, just like we saw earlier, are not faster than their corresponding 64

versions. So we only get speedup from linear_interpolation_kick and drift.

The SRP-3 reduces the runtime of the FFTs and also the synchronization time. The
speedup it offers, is getting better as we increase the number of nodes. Having more

nodes results in more communication time, and because of that, SRP-3 is more effective.

Next we have f32-SRP-3, that is a combination of the two previous techniques. Its
results, match the addition of the previous results. This is because the the performance
we gain by the f32 on some serial operations, that are also benefited by the SRP-3. This

is can be confirmed by the numbers. What we expect is:
time_saved_by_f32 + time_saved_by_srp =~ time_saved_by_both
What really happens is what we expected,
(1-0.70)+(1-0.73) = (1 -0.44)

(1 -0.76) + (1 — 0.70) =~ (1 — 0.44)
(1-0.70) + (1 — 0.70) ~ (1 — 0.44)
(1-0.76) + (1 — 0.68) ~ (1 — 0.42)

(1-0.70) + (1 — 0.65) ~ (1 — 0.40)

m Awtflopatkn Epyaoia

6.2 MPI

0-f32 EESRE 2 BN f32-SRE-2 EHASRP-3 [Af32-SRP-3 [JRDS [Z3f32-RDS

© o o o
N A O ®
1 1 1 1

X XD.

P

Norm. Runtime

D

A

Workers (x10 Cores)

Figure 6.9: PS Approximation Speedup

In figure 6.9, everything we discussed about the f32, the SRP and the f32-SRP can
also be applied. The RDS optimization completely removes the communication part of the
MPI processes. Now they only need to communicate in the beginning, to distribute the
workload, and in the end to gather the beam. We can see, that its impact gets bigger,
as we increase the number of nodes. This is something that we expected, since this
approximation is more effective when we have more communication. The same applies to
LHC.

-SF@-Z Bl f32-SRP-2 B SRP-3 EAf32-SRP-3 BNIRDS [1f32-RDS

©0 ©o : ©
© N

68
7
2

.70
0

68

Norm. Runtime
© © o o+
YR o 0

1 2 4 8 16
Workers (x10 Cores)

Figure 6.10: SPS Approximation Speedup

All of our previous observations, also apply to our SPS benchmarks and the plot in
figure 6.10. The f32-RDS approximation is better from both the f32 and RDS approxi-
mations. These two are independent, so we expect the time saved by f32-RDS to be the
sum of the time saved by each of them when applied alone, or at least a bit lesser than it.

This also applies to the previous benchmarks.

In figures 6.11, 6.12 and 6.13 we can see the weak scaling plots for these methods.

AitAeopauxny Epyaocia m

farttep 6. Benchmarks

5 1.0 LHC
2 no-
§0.9
3 0.8
= 0.7
£ 0.64 @ base -+ {32
5 ¢ f64-RDS =& f32-RDS
= 0.57 5¢ 164-SRP-3 - f32-SRP-3

04 1 T T T T

1 2 4 8 16
Nodes (x20 Cores/ x1 GPU)
Figure 6.11: LHC Weal Scaling

= 1.0 R
£0.9
=4
3 0.8
= 0.71
£ 0.6 @ base - {32
5 >¢ f64-RDS -4 f32-RDS
2 0.51 5¢ 164-SRP-3 - f32-SRP-3

0.4 T r T T T

1 2 4 8 16
Nodes (x20 Cores/ x1 GPU)
Figure 6.12: PS Weak Scaling

+— 1.0 SPS
>
£20.9
=4
3 0.8
= 0.71
£ 0.6 @ base -+ {32
5 > f64-RDS =& 132-RDS
= 0.51 5¢ 164-SRP-3 & f32-SRP-3

0.41— : : .
] 5 4 8 16

Nodes (x20 Cores/ x1 GPU)

Figure 6.13: SPS Weak Scaling

From these three plots, LHC and PS scale pretty good. Having 16 nodes reduce the
throughput to 80% of the initial value for the PS. Additionally, with the RDS approxima-
tion method, it scales even better, with the throughput being not less than 90%. The

LHC benchmark has a similar throughput. The base version reaches 70% of the initial

m Awtflopatkn Epyaoia

6.3 K40 vs V100

throughput, and the f32-RDS version reaches 85%. SPS behavior is different. It scales
really bad, compared to the other two. The base version’s throughput drops to 40% of the
initial, and the f32-RDS drops to 60%.

6.3 K40 vs V100

In this section, we want to check if our implementation is future proof. In order to do
that we use the Nvidia v100, a much more powerful GPU than k40, to confirm that we get
better results than k40. In tables 6.1, 6.2 and 6.3, we can see the specs of V100. We
used a cluster of CERN for our V100 benchmarks. We used 1 node with 1 worker. You

can see the results in figures 6.14, 6.15 and 6.16.

LHC: XEON vs K40 vs V100

50
] xeon 43.20
401 3 k40 1.5 /
530_ [v100 ' 28.11\/
o 21.95
£.204 15.69 % /
P 11.78 L/
" e PRI NZ
0 1‘(I)O T] T T /] T \ T /
(od LS oy -0 qP-0 el L -0 qP-0
r&,ﬁfg’% ﬁ%‘l’g’% QQ)A;%?M {5‘2’6‘&

Figure 6.14: LHC Wealk Scaling

PS: XEON vs K40 vs V100
50

o E seon o 43.56
%*30_ 1 v100 0335 26.62
;55 i(())- 10.19 £ gy }3'83
L RN | RN
sob 32 o %Y‘?ész PRSI ﬁe)&’%%%‘b%%@ >

Figure 6.15: PS Weak Scaling

AitAeopatxny Epyaocia m

farttep 6. Benchmarks

SPS: XEON vs K40 vs V100

01.80
[xeon d

27 = v100 31.27 \
E 24.97 \
220+ 17.45 \

35 205 11.28 V /

O 1‘?0 1] 1 A] 1 \\I /

§ob b @ N\ (N 2 P pp-?
b g SR A S g 5B

Figure 6.16: SPS Weak Scaling

We can see that v100 is for every configuration faster than the k40, more than three
times. Also for the base version v100 is more than 20 times faster than our CPU. With
these last plots, its pretty clear that if we use a better and more powerful GPU for our

simulations, the simulations will produce results faster.

m Awtflopatkn Epyaoia

Chapter

Conclusions and Future Work

7.1 Conclusions

In this thesis, we described how we implemented the acceleration of BLonD, with the
use of a GPU. First of all, we created the GPU kernels for the functions that dominate
most of the time. By doing benchmarks with some data created by us, we tried to optimize
these kernels, in order to get better results. After that, in order to eliminate most of the
memory operations between GPU and CPU, we also implemented some small methods for
the GPU.

Additionally, we demonstrated how a user can enable the GPU from his main file,
and what happens when he does. That is, each class has a corresponding GPU class
with its suitable methods, and the arrays transformed to CGA objects. After finishing
the implementation for one worker simulation, we also created some other methods, to
enable MPI to use the GPU as a worker, either with other GPUs as workers, or with CPUs
as well.

After implementing all of the above, we compared our new version with the CPU
version with the use of the supercomputer ARIS, with the use of three benchmarks, LHC,
PS and SPS. From these benchmarks, we saw that the GPU is on average more than
five times faster than the CPU, and in order to solve the problem of losing throughput
when increasing the number of nodes, we used some approximation methods. With these
methods, we manage to gain some performance especially, when using a lot of nodes.

Finally, in order to make sure that our implementation is future proof, we used a new
and more powerful GPU, the NVidia v100 to run some benchmarks. We did that without
changing anything, and the v100 proved to be at least three times faster than the k40.
That leads to the assumption that when using new and better hardware, you get better

results.

7.2 Future Work

Apart from these, there is still some room for improvement. Below, we propose some

ideas for future work that could lead to even greater and faster simulations.

e In our current version, the initialization of the Beam, happens in only one node,

and is then distributed to the other nodes. So the Beam must be able to fit in this

Aitfopaukn Epyaoia 107

farttep 7. Conclusions and Future Work

node’s main memory. So we are limited by the main memory of one node. So if we
manage to implement the initialization with MPI, we could use the main memory of

all workers, and the Beam could be even bigger.

e In our benchmarks, we tried to use one CPU worker with one GPU worker. The
problem was that the GPU was faster, and the GPU worker had to wait for the CPU
worker. Because of that, the synchronization time was dominating the runtime. We
tried to overcome this issue with the use of a dynamic load balance schema , that
assigned suitable workload to each worker, in order to minimize the synchronization
time. Still, the performance was worse, and using only one GPU worker was better.
It would be good to try our benchmarks in a cluster with a CPU as powerful as the

GPU, and repeat this process.

m AinAeopatxny Epyaocia

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

F Tecker. Longitudinal beam dynamics. arXiv preprint arXiv:1601.04901, 2016.

Lyndon Evans kat Philip Bryant. LHC machine. Journal of instrumentation,
3(08):S08001, 2008.

Joél Repond, Konstantinos Iliakis, Markus Schwarz, Elena Shaposhnikova, G Pa-
potti, D Quartulo, H Timko kat others. Simulations of Longitudinal Beam Stabilisation
in the CERN SPS with BLonD. Proc. ICAP’18, ogAideg 197-203, 2018.

John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone kat James
C Phillips. GPU computing. Proceedings of the IEEE, 96(5):879-899, 2008.

Tianyi David Han kat Tarek S Abdelrahman. hiCUDA: High-level GPGPU programming.
IEEE Transactions on Parallel and Distributed systems, 22(1):78-90, 2010.

Leonardo Dagum kat Ramesh Menon. OpenMP: an industry standard API for shared-

memory programming. IEEE computational science and engineering, 5(1):46-55, 1998.

Konstantinos Iliakis, Helga Timko, Sotirios Xydis kat Dimitrios Soudris. BLonD++
performance analysis and optimizations for enabling complex, accurate and fast beam
dynamics studies. Proceedings of the 18th International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation, oeAibeg 123-130, 2018.

William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum xat Argonne Dis-
tinguished Fellow Emeritus Ewing Lusk. Using MPI: portable parallel programming
with the message-passing interface, topog 1. MIT press, 1999.

Konstantinos Iliakis, Helga Timko, Sotirios Xydis kat Dimitrios Soudris. Scale-out
beam longitudinal dynamics simulations. Proceedings of the 17th ACM International

Conference on Computing Frontiers, ogAideg 29-38, 2020.

Thomas Paine, Hailin Jin, Jianchao Yang, Zhe Lin kat Thomas Huang. Gpu asyn-
chronous stochastic gradient descent to speed up neural network training. arXiv
preprint arXiv:1312.6186, 2013.

Tor M Aamodt, Wilson Wai Lun Fung xat Timothy G Rogers. General-purpose graph-
ics processor architectures. Synthesis Lectures on Computer Architecture, 13(2):1-140,
2018.

AitAeopatxny Epyaocia m

BIBLIOGRAPHY

(12]

[13]

(14]

[15]

(16]
(17]

(18]

[19]

Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov xkat
Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time
code generation. Parallel Computing, 38(3):157-174, 2012.

Georges Aad, B Abbott, J Abdallah, AA Abdelalim, Abdelmalek Abdesselam, B Abi,
M Abolins, H Abramowicz, H Abreu, E Acerbi kat others. Search for stable hadro-
nising squariks and gluinos with the ATLAS experiment at the LHC. Physics Letters B,
701(1):1-19, 2011.

CMS Collaboration, S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan,
W Adam, T Bauer, T Bergauer, H Bergauer, M Dragicevic kat others. The CMS
experiment at the CERN LHC. JInst, 3:S08004, 2008.

Giorgio Apollinari, I Béjar Alonso, Oliver Briining, M Lamont kat Lucio Rossi. High-
luminosity large hadron collider (HL-LHC): Preliminary design report. Texvikr] Avagpopd
pe ap1Opo, Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2015.

BLonD Web Page. https://blond.web.cern.ch.
BLonD Github Page. https://github.com/blond-admin/BLonD.

Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu kat Yale N Patt. Improving GPU performance via large warps and two-level
warp scheduling. Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, oeAibeg 308-317, 2011.

Nicolas Brunie, Sylvain Collange kat Gregory Diamos. Simultaneous branch and
warp interweaving for sustained GPU performance. 2012 39th Annual International
Symposium on Computer Architecture (ISCA), oeAideg 49-60. IEEE, 2012.

m Awtflopatkn Epyaoia

https://blond.web.cern.ch
https://github.com/blond-admin/BLonD

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη
	Εισαγωγή
	CERN
	BLonD module
	Κάρτες Επεξεργασίας Γραφικών

	Θεωρητικό Υπόβαθρο
	BLonD Module
	GPU

	Υλοποίηση συναρτήσεων Cuda και Βελτιστοποιήσεις
	Cuda Kernels
	GPU_cache

	Χρήση της GPU στα πειράματα
	Αξιολόγηση Πειραμάτων
	MPI
	Σύγκριση CPU με GPU
	Προσεγγιστικές Μέθοδοι
	Σύγκριση της v100 με την k40

	Συμπεράσματα και Μελλοντικές επεκτάσεις
	Συμπεράσματα
	Μελλοντικές Επεκτάσεις

	Introduction
	CERN
	Longitudinal Beam Dynamics
	Thesis Structure

	Background Knowledge
	BLonD Simulations
	GPU (Graphic Processing Unit)
	GPGPU
	GPU Architecture
	Execution Model
	Memory System
	Development in GPU with CUDA C
	Development in GPU with PyCUDA

	GPU implementation of BLonD
	Implemented Kernels
	Histogram Kernel
	Drift Kernel
	Kick Kernel
	Linear Interpolation Kick Kernel
	FFTs

	Selecting Grid Parameters
	Gpu_Cache

	Enabling GPU
	Description of BLonD simulation
	GPU Corresponding Classes
	CGA class
	Enabling GPU from the mainfile

	Benchmarks
	Experiments
	MPI
	Classification Of Operations
	CPU vs GPU
	Approximation Methods
	Weak Scaling Approximation Plots

	K40 vs V100

	Conclusions and Future Work
	Conclusions
	Future Work

	Βιβλιογραφία

