
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Memory Management in Hybrid DRAM/NVM Systems
using LSTMs

Κωνσταντίνος Γ. Σταυρακάκης

Α.Μ. : 03116155

Επιβλέπων : Δημήτριος Ι. Σούντρης
Καθηγητής ΕΜΠ

Αθήνα

Φεβρουάριος 2022

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Memory Management in Hybrid DRAM/NVM Systems
using LSTMs

Κωνσταντίνος Γ. Σταυρακάκης

Α.Μ. : 03116155

Επιβλέπων : Δημήτριος Ι. Σούντρης
Καθηγητής ΕΜΠ

Τριμελής Επιτροπή Εξέτασης

(Υπογραφή) (Υπογραφή) (Υπογραφή)

......................................

Δημήτριος Σούντρης Παναγιώτης Τσανάκας Γεώργιος Γκούμας

Καθηγητής Καθηγητής Αναπληρωτής Καθηγητής

ΕΜΠ ΕΜΠ ΕΜΠ

Ημερομηνία Εξέτασης:

18 Φεβρουαρίου 2022

Copyright © - All rights reserved Σταυρακάκης Κωνσταντίνος, 2022.
Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ΄ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετ-

σόβιου Πολυτεχνείου.

(Υπογραφή)

...
Σταυρακάκης Κωνσταντίνος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

©2022 - All rights reserved.

Περίληψη

Είναι πλέον ευρεία η ενσωμάτωση των τεχνολογιών ετερογενών μνημών στα σύγχρονα

υπολογιστικά συστήματα προκειμένου να αντιμετωπιστεί η συνεχώς αυξανόμενη

ανάγκη των αναδυόμενων εφαρμογών για όλο και μεγαλύτερο μέγεθος κύριας

μνήμης. Αυτές οι νέες τεχνολογίες παρουσιάζουν αρκετές διαφορές μεταξύ τους

όσον αφορά το μέγεθος, την καθυστέρηση πρόσβασης αλλά και το εύρος ζώνης.

Αυτή η γενικότερη ετερογένεια των νέων συστημάτων καθώς και οι ίδιες οι ιδι-

αιτερότητες των νέων εφαρμογών καθιστούν ανεπαρκείς τις σύγχρονες πρακτικές

διαχείρισης μνήμης.

Σε αυτή τη διπλωματική σχεδιάσαμε και αξιολογήσαμε έναν δρομολογητή, ο

οποιος έξυπνα τοποθετεί τα δεδομένα των εφαρμογών, σε επίπεδο Σελίδων Μνήμης,

στα διάφορα στοιχεία μνήμης του συστήματος χρησιμοποιώντας Τεχνητά Νευρ-

ωνικά Δίκτυα. Ο δρομολογητής που προτείνουμε συνδυάζει τη χρήση LSTM Δικ-
τύων με τις υπάρχουσες μεθόδους διαβάθμισης των δεδομένων που στηρίζονται

στο Ιστορικό των δεδομένων αυτών. Ο δρομολογητής μας έξυπνα χρησιμοποιεί

μηχανική μάθηση μόνο για ένα υποσύνολο σελίδων, οι οποίες αν μετακινηθούν

στο σωστό χρόνο θα επιτευχθεί σημαντική αύξηση της απόδοσης. Ακόμα χρησι-

μοποιώντας την τεχνική K-Means για τον χωρισμό του Πεδίου Διευθύνσεων σε
Συστάδες, ο χρονοδρομολογητής ενισχύει το πλήθος των πληροφοριών με βάση

το οποίο θα παίρνονται οι αποφάσεις για την απομάκρυνση δεδομένων απο τη

DRAM. ΄Ετσι βλέπουμε ότι επιτυγχάνεται κατά μέσο όρο μια αύξηση της απόδοσης
περίπου 10% σύμφωνα με τη διαδικασία αξιολόγησης που ακολουθήσαμε. Επίσης,

επιβεβαιώσαμε ότι ο προτεινόμενος δρομολογητής μπορεί να γεφυρώσει ικανοποι-

ητικά το χάσμα απόδοσης μεταξύ των σύγχρονων λύσεων και ενός δρομολογητή-

μάντη με a priori γνώση της συμπεριφοράς των δεδομένων. Και τέλος, αξιολογών-
τας ενεργειακά τον δρομολογητή που σχεδιάσαμε προκύπτει ότι θα μπορούσε να

είναι μια αξιόλογη πρόταση για συστήματα τα οποία ειναι σχεδιαστικά προσανα-

τολισμένα στη χαμηλή κατανάλωση ενέργειας.

Λέξεις Κλειδιά — Συστήματα Ετερογενών Μνημών, Μηχανική Μάθηση,

Νευρωνικά Δίκτυα, LSTM, K-Means, NVM, Επαναληπτικά Νευρωνικά Δίκτυα,
Δρομολόγηση Σελίδων, DRAM

5

Abstract

Heterogeneous memory technologies have been widely used in effort to address
the ever-increasing demands of modern applications for larger main memory ca-
pacity. The new technologies showcase vastly greater differences in terms of ca-
pacity, latencies and bandwidth. This heterogeneity along with the the greater
irregularity of emerging workloads, render state-of-the-art memory management
solutions insufficient; thus calling for more intelligent methods.

In this diploma Thesis, we design and evaluate a scheduler which intelli-
gently places application data, on a Page granularity, across hybrid memory
components using Artificial Neural Networks. The proposed Scheduler com-
bines intelligent page placement decisions leveraging LSTM networks with ex-
isting history-based data tiering methods. The scheduler focuses the machine
learning on a page subset whose timely movement will reveal most application
performance improvement, while being mindful of computation resources. K-
Means address space clustering is also utilized to augment the eviction policy
used by the proposed scheduler in order to provide application performance
boost. That boost is on average 10% according to our evaluation process. Our
performance evaluation also indicates that the proposed Scheduler significantly
reduces the performance gap between existing solutions and an oracle sched-
uler with a priori knowledge of the page access patterns, while being a potential
candidate for designing low-power oriented Hybrid Memory Systems as well.

Keywords — Heterogeneous Memory Systems, Machine Learning, Long Short
Term Memory Networks, K-Means, Non Volatile Memory, Recurrent Neural
Networks, Page Scheduling, DRAM

7

Ευχαριστίες

Αρχικά, ευχαριστώ θερμά τον καθηγητή μου, κ. Δημήτριο Σούντρη, για την

εμπιστοσύνη που μου έδειξε από την πρώτη μας επικοινωνία μέχρι και σήμερα.

Επίσης, ένα μεγάλο ευχαριστώ στους υποψήφιους διδάκτορες κ.κ. Μασούρο και

Κατσαραγάκη για την εξαιρετική συνεργασία μας και την ακούραστη καθοδήγηση

που μου προσέφεραν. Τέλος, ευχαριστώ απο καρδιάς τους γονείς μου, τον αδερφό

μου, και τους φίλους μου για την απεριόριστη στήριξη και ώθηση που μου έδωσαν

καθ΄ όλη την ακαδημαϊκή μου πορεία.

9

Contents

Περίληψη 5

Abstract 7

Ευχαριστίες 9

Contents 11

Εκτεταμένη Περίληψη 15
Εισαγωγή . 15
Persistent Memory και Διαχείριση Μνήμης 17
Χρονοδρομολόγηση και Μηχανική Μάθηση 19
Σχεδίαση . 22
Υλοποίηση . 24
Αξιολόγηση . 27
Σύνοψη και Μελλοντική Δουλειά . 29

1 Introduction 31
Thesis Topic . 31
Motivation . 32
Approach and Contributions . 33
Thesis Overview . 34

2 Related Work 35
Hardware Solutions . 35
Software Solutions . 35
Machine Learning Solutions . 36

3 Persistent Memory & Memory Management 39
Persistent Memory . 39
Page Migration . 42

Page Migration across NUMA-nodes 43
Page Migration in Hybrid Memory Systems 44
Machine Intelligence based solution 46

11

Page Migration Challenges . 47
Implementation Overhead . 47
Data Retrieval . 48
Page Movement . 49

4 Machine Learning & Deep Neural Networks 51
Machine Learning Background . 51

Types of Machine Learning . 51
Artificial Neural Networks . 53
Recurrent Neural Networks . 60
LSTMs . 61

Page Scheduling as a Machine-Learning problem 63
Reinforcement Learning Approach 63
Recurrent Neural Network Approach 63

Neural Network Input . 65
Deltas Prediction . 65
Per Page Prediction Approach 68

5 Proposed Page Scheduler Architecture 71
Critical Metrics . 71
Page Scheduler Overview . 74
Page Scheduler Components . 76

Page Selector . 76
Access Count Predictors . 79
DRAM Eviction Policy . 80

6 Technical Implementation 83
Benchmark workloads . 83
Collecting Memory Access Traces . 85
Hybrid Memory System Simulator 86
Recurrent Neural Networks Details 86

Neural Network Input . 86
Neural Network Configuration 89

7 Experimental Evaluation 91
RNN Prediction Accuracy . 91
Application Performance . 93
Eviction Policy . 95
Energy Consumption . 96

12

8 Conclusions 105
Thesis Summary . 105
Future Work . 106

13

Εκτεταμένη Περίληψη

Εισαγωγή

Τα τελευταία χρόνια παρατηρείται εκτεταμένη διείσδυση της Μηχανικής Μάθησης

σε κάθε κλάδο. Η Μηχανική μάθηση αποτελεί παράγοντα καινοτομίας σε ένα

μεγάλο φάσμα εφαρμογών που περιλαμβάνει απο εμπορικά προϊόντα έως και ια-

τρικές εφαρμογές. Η ευρύτητα αυτού του φάσματος, σε συνδυασμό με το γεγονός

ότι η απόδοση των μοντέλων που αναπτύσσονται με τεχνικές μηχανικής μάθησης

είναι αρκετά καλή μοντελοποιώντας εφαρμογές που παραδοσιακά θα ήταν αρκετά

περίπλοκο να μοντελοποιηθούν, ωθούν στην ραγδαία ανάπτυξη της. Ταυτόχρονα,

στον κλάδο της αρχιτεκτονικής υπολογιστών η προόδος που προβλέπεται απο το

νόμο του Μοορε φαίνεται ότι σταδιακά παύει να ακολουθεί το εκθετικό μοτίβο

αύξησης που ακολουθούσε έως τώρα, ενώ το χάσμα επιδόσεων μεταξύ μνήμης και

επεξεργαστή δεν εχει γεφυρωθεί ακόμα. Οι δύο αυτές τάσεις ,δηλαδή η εξέλιξη της

Μηχανικής Μάθησης και τα ίδια τα προβλήματα που υπάρχουν στην Αρχιτεκτονικη

Υπολογιστων, ωθούν προς μια συνδυαστική αξιοποιήση μεθόδων και τεχνικών,

έτσι ώστε η μηχανική μάθηση να υποστηρίζεται αλλα κυρίως να υποστηρίζει την

αρχιτεκτονική.

Είναι γνωστό ότι τα σύγχρονα υπολογιστικά συστήματα σχεδιάζονται χρησι-

μοποιώντας ετερογενή συστατικά μνήμης. Αυτές οι μνήμες συχνά είτε εξυπηρε-

τούν στην αύξηση της χωρητικότητας της κύριας μνήμης, δηλαδή σαν επέκταση

της DRAM, είτε αξιοποιούνται ως κρυφές-μνήμες (caches) της κύριας μνήμης.
Αυτά τα υβριδικά συστήματα μνήμης συνοδεύονται εκ φύσεως με κάποιους σχε-

διαστικούς συμβιβασμούς. Συνήθως η μακρύτερη στην ιεραρχία μνήμη, δηλαδή

μνήμη που βρίσκεται πιο μακρία απο την Επεξεργαστική Μονάδα, έχει μεγαλύτερη

χωρητικότητα αποθήκευσης αλλά ταυτόχρονα έχει και μεγαλύτερη καθυστέρηση

πρόσβασης (latency) και μειωμένο εύρος ζώνης (bandwidth).
Στη συγκεκριμένη διπλωματική εργασία θα περιοριστούμε σε υπολογιστικά

συστήματα τα οποία αξιοποιούν την Persistent Memory ως επέκταση της κύριας
μνήμης. Για το σχεδιασμό αυτών των συστημάτων είναι ιδιαίτερα σημαντικό να λη-

φθούν υπόψιν το μεγαλύτερο latency και το μειωμένο bandwidth που παρουσίαζει
αυτή η μνήμη σε σχέση με τη DRAM. Στη συγκεκριμένη περίπτωση αυτό που μας
ενδιαφέρει είναι η αποδοτική υλοποιήση ενός Χρονοδρομολογητή Σελίδων Μνήμης

(Page Scheduler), δηλαδή η αποδοτική υλοποίηση της μονάδας που αναλαμβάνει

15

τη διαχείριση της μνήμης του λειτουργικού συστήματος αλλά και των εν εκ-

τελέση προγραμμάτων. Ο χρονοδρομολογητής σελίδων θα είναι υπεύθυνος για τη

μεταφορά σελίδων μνήμης απο και προς τα διάφορα ετερογενή συστατικά μνήμης

που απαρτίζουν το σύστημα μας. Κύριο σκοπό θα έχει οι σελίδες μνήμης που θεω-

ρούνται hot, δηλαδή προσπελαύνονται συχνά, να βρίσκονται στα υψηλής απόδοσης
στοιχεία μνήμης που διαθέτει το σύστημα μας, δηλαδή στη DRAM, ενώ λιγότερο
σημαντικές σελίδες μνήμης cold να βρίσκονται στην Persistent Memory. Μια δι-
αγραμματική επεξέγηση του πρόβληματος που προσπαθούμε να αντιμετωπίσουμε

σε αυτή τη διπλωματική φαίνεται στο διάγραμμα 1.

Page

Page
Page

Page
Page
Page

Page
Page

Page Scheduler

DRAM

NVM

Hot Pages

Cold Pages

Application Hybrid Memory System

Εικόνα 1: Χρονοδρομολογητής Σελίδων σε ένα Hybrid Memory System

Κίνητρο και συναφείς προσεγγίσεις

Πολλοί ερευνητές έως τώρα έχουν αποπειραθεί να δώσουν μια λύση στο πρόβλημα

της κατηγοριοποίησης των σελίδων μνήμης και στην κατάλληλη τοποθέτηση τους

στα διάφορα ετερογενή στοιχεία μνήμης. Πρόκειται σίγουρα για μία δύσκολη δι-

αδικασία καθώς πρέπει να ληφθούν υπόψιν και το μοτίβο προσπέλασης μνήμης που

ακολουθεί μία εφαρμογή όσο και οι παράμετροι εκτέλεσης της εφαρμογής (μέγεθος

του input, strong/weak scaling κλπ). Οι περισσότεροι ερευνητές έχουν προτείνει
λύσεις στο παραπάνω πρόβλημα που μπορούν να ενσωματωθούν στο επίπεδο του

hardware, των Compilers, του Λειτουργικού Συστήματος και του περιβάλλοντος
εκτέλεσης [1, 2, 3, 4, 5, 6, 7]. Συχνά οι ερευνητές σε αυτές τις προσεγγίσεις χρησι-
μοποιούν πληροφορίες που σχετίζονται μονάχα με το ιστορικό προσπέλασης των

σελίδων μνήμης. Συγκεκριμένα οι σύγχρονες τεχνικές που χρησιμοποιούνται στη

δυναμική διαχείριση σελίδων σε επίπεδο συστήματος χρησιμοποιούν την πρόσφατη

παρατηρούμενη συμπεριφορά των σελίδων προκειμένου να παρθούν αποφάσεις την

μελλοντική τοποθέτηση τους.

Σε αυτή τη διπλωματική εργασία θα ακολουθηθεί η συλλογιστική πορεία των

άρθρων Learning Memory Access Patterns [8] και Kleio: A hybrid Memory Page

16

Scheduler [9]. Σκοπός μας είναι η μελέτη και κατασκευή ενός Χρονοδομολογητή
Σελίδων Μνήμης χρησιμοποιώντας Μηχανική Μάθηση, ο οποίος θα επιτυγχάνει

καλύτερη απόδοση απο τις σύγχρονες μεθόδους οι οποίες στηρίζονται αποκλεισ-

τικά στην ιστορική παρατήρηση προσβάσεων στη μνήμη των εφαρμογών. Θα

προσπαθήσουμε να απαντήσουμε σε ερωτήσεις που αφορούν το πως θα πετύχουμε

μια αποδοτική λύση, δηλαδή πως θα καταφέρουμε να τοποθετήσουμε όσο πιο

ιδανικά γίνεται τα σωστά δεδομένα σε επίπεδο σελίδων (4 KiB [10]) στα σωστά
στοιχεία μνήμης. Ενώ ταυτόχρονα αναζητούμε και μια εφικτή λύση, χρησιμοποιών-

τας περιορισμένους επεξεργαστικούς πόρους για την κατασκευή των μοντέλων

μηχανικής μάθησης που θα χρειαστούμε.

Persistent Memory και Διαχείριση Μνήμης

Η Persistent memory (NVMM) είναι μια σχετικά νεο-αφιχθήσα στον χώρο των
υπολογιστικών συστημάτων μη πτητική μνήμη, η οποία προσφέρει διευθυνσιοδότηση

σε επίπεδο byte και είναι άμεσα προσπελάσιμη από τον επεξεργαστή όπως η
DRAM. Διάφορες τεχνολογίες μπορούν να ενταχθούν στην κατηγορία της Per-
sistent Memory όπως η Phase Change Memory (PCM) [11], η Spin-Transfer
Torque RAM [12], και η 3D-XPoint. Η Persistent Memory έχει υψηλή πυκνότητα
και χαμηλό κόστος ανά bit, ενώ παράλληλα η καθυστέρηση πρόσβασης (access
latency) είναι στην ίδια τάξη μεγέθους με τη DRAM, αισθήτα όμως μεγαλύτερη.
Ιδιαίτερο χαρακτηριστικό της Persistent Memory είναι η ασυμμετρία στην κα-
θυστέρηση πρόσβασης μεταξύ των αιτημάτων διαβάσματος και γραψίματος. Τα

αιτήματα γραψίματος είναι αισθητά πιο αργά και παράλληλα φαίνεται να είναι πεπερασ-

μένα και περιοριστικά για το χρόνο ζωής της μνήμης (finite write endurance).
Ακόμα αξιοσημείωτο χαρακτηριστικό της είναι και η μικρή κατανάλωση ενέργειας

όταν βρίσκεται σε αδράνεια συγκριτικά με την DRAM, πράγμα που την καθιστά
καλή επιλογή για τον σχεδιασμό low-power συστημάτων.
Η μνήμη αυτή βρίσκεται στο ίδιο επίπεδο ιεραρχίας με την DRAM και χρησι-

μοποιείται είτε ως επέκταση της κύριας μνήμης είτε ως κρυφή μνήμη της DRAM
όπως φαίνεται στην εικόνα 2. Εμείς θα ασχοληθούμε μόνο με το πρώτο σενάριο.

DRAM NVM

CPU

Single Address Space

CPU

DRAM

NVM

Εικόνα 2: NVM σαν επέκταση κύριας μνήμης και σαν κρυφή μνήμη της DRAM

Πρακτικά στο πρώτο σενάριο το σύστημα βλέπει ένα διευρυμένο Address Space
το οποίο αποτελείται, σε hardware και από DRAM αλλά και απο NVM. Ωστόσο

17

αυτά τα δύο είδη μνήμης δεν έχουν τα ίδια τεχνικά χαρακτηριστικά. Για αυτό το

λόγο η διαχείριση μνήμης σε αυτά τα συστήματα είναι ιδιαιτέρη, και παρουσίαζει

ιδιαίτερη ομοιότητα με τη διαχείριση μνήμης που απαιτείται στα συγχρονα υπ-

ολογιστικά συστήματα που διαθέτουν NUMA nodes. Αυτό που επιθυμούμε σε
αυτά τα συστήματα είναι κατα τη διάρκεια της εκτέλεσης των προγραμμάτων να

μπορούν να παρθούν αποφάσεις για τη μεταφορά Σελίδων Μνήμης απο και προς

τα διαφορετικά συστατικά μνήμης, με σκόπο να εκμεταλλευτούμε το γεγονός ότι

η DRAM είναι αρκετά ταχύτερη από την NVM ώστε να αυξηθεί η συνολική από-
δοση του συστήματος. Αυτό που προτείνεται στη βιβλιογραφία ως λύση μέχρι αυτή

τη στιγμή είναι η χρήση ενός Χρονοδρομολογητή ο οποίος θα στηρίζεται αποκ-

λειστικά στο Ιστορικό των σελίδων [13] (History Page Scheduler). Σύμφώνα
με αυτήν την προσέγγιση παρατηρείται η συμπεριφορά της σελίδας στο πρόσφατο

παρελθόν (π.χ. στα τελευταία 5 δευτερόλεπτα ή στην τελευταία Περίοδο Χρονοδρο-

μολογησης), και με βάση αυτήν την συμπεριφορά αποφασίζεται σε ποιο συστατικό

μνήμης πρέπει να τοποθετηθεί η σελίδα. Η υλοποίηση αυτής της προσέγγισης σε

επίπεδο συστήματος είναι σχετικά εύκολη και συνήθως χρησιμοποιείται το system
call move_pages(), έτσι ώστε οι σελίδες που ο History Page Scheduler κρίνει
ότι θα είναί hot στο μέλλον τοποθετούνται στη DRAM μέχρι αυτή να γεμίσει.
Προφανώς για να είναι αποτελεσματικός ο History Page Scheduler θα πρέπει να
ελπίζουμε ότι κάθε σελίδα που χαρακτηρίστηκε ως hot με βάση την προηγούμενη
Εποχή Χρονοδρομολόγησης θα παραμείνει hot και στο μέλλον.
Συγκρίνουμε τον History Page Scheduler με έναν Χρονοδρομολογητή-Μάντη

(Oracle Page Scheduler) ο οποίος έχει a priori γνώση για τη συμπεριφορά κάθε
σελίδας για διάφορες εφαρμογές για πολλαπλές αναλογίες DRAM:NVM. Πρακ-
τικά ο Χρονοδρομολογητής-Μάντης είναι η μέγιστη επίδοση που μπορεί ρεαλιστικά

να επιτευχθεί, πρόκειται για τον ιδανικό Χρονοδρομολογητή Σελίδων. Η σύγκριση

έγινε με βάση το DRAM hit-rate, δηλαδή πόσα αιτήματα κατά την εκτέλεση του
προγράμματος εξυπηρετήθηκαν απο την DRAM. Προφανώς όσο μεγαλύτερο είναι
αυτό το ποσοστό τόσο το καλύτερο. Η σύγκριση φαίνεται στην εικόνα 3 όπου

γίνεται ξεκάθαρο το χάσμα στην απόδοση μεταξύ του τι θα μπορούσε ιδανικά να

επιτευχθεί από άποψη απόδοσης (κάτω γραφική παράσταση) και τι επιτυγχάνει ο

History Page Scheduler (επάνω γραφική παράσταση).
Αυτές οι δυο γραφικές παραστάσεις μας οδηγούν στην ανάγκη να βρούμε

τρόπους να γεφυρώσουμε αυτό το χάσμα απόδοσης μεταξύ της απλοϊκής προσέγ-

γισης του History Page Scheduler και του ιδανικού Oracle Page Scheduler.
Κύριος λόγος της ανεπαρκούς απόδοσης του πρώτου υποπτευόμαστε ότι ειναι

οι λανθασμένες προβλέψεις που κάνει όσον αφορά την εκτίμηση του hotness κάθε
σελίδας. Το γεγονός ότι στηρίζεται αποκλειστικά και μόνο σε πρόσφατες πληρο-

φορίες για την συμπεριφορά των σελίδων είναι αυτό που οδηγεί στην ανικανότητα

του να εντοπίσει πιο σύνθετα μοτίβα προσβάσεων μνήμης. Στηριζόμενοι σε αυτήν

18

Εικόνα 3: History and Oracle Page Schedulers DRAM hitrate. Για κάθε εφαρμογή έχει υπολ-
ογιστεί το DRAM hitrate για διάφορες αναλογίες DRAM προς NVM. Δηλαδή η συμπεριφόρα
αν η DRAM μπορούσε να φιλοξενήσει το x% των συνολικών Σελίδων μνήμης και η NVM τις
υπόλοιπες.

την παρατήρηση αλλά και στην αντίστοιχη δουλεία των [8, 9] θα ενσωματώσουμε

τεχνικές μηχανικής μάθησης στη διαδικασία της Χρονοδρομολόγησης ώστε να

μπορούν να εντοπιστούν οι πιο σύνθετες συμπεριφορές ορισμένων σελίδων που

αδυνατεί να εντοπίσει ο History Page Scheduler. Η μηχανική μάθηση μας προσ-
φέρει μηχανισμούς χειρισμού χρονικών δεδομένων, όπου εντοπίζονται εξαρτήσεις

τόσο μακροπρόθεσμες όσο και βραχυπρόθεσμες.

Χρονοδρομολόγηση και Μηχανική Μάθηση

Για το πρόβλημα μας υπάρχουν διάφορες τεχνικές Μηχανικής Μάθησης που θα

μπορούσαμε να εξετάσουμε. Στη συγκεκριμένη διπλωματική περιοριστήκαμε στην

19

εξέταση δύο εναλλακτικών, στην χρήση Ενισχυτικής Μάθησης, και στη χρήση

Βαθειών Τεχνητών Νευρωνικών Δίκτύων.

Ενισχυτικη Μάθηση

Σε μια πρώτη ματιά η ενισχυτική μάθηση, δηλαδή η χρήση ενός agent ο οποίος
μαθαίνει μέσα απο τις αποφάσεις που παίρνει σε ένα καλά ορισμένο περιβάλλον

ώστε να μεγιστοποιήσει μια συνάρτηση κέρδους μοιάζει να ταιριάζει στο πρόβλημα

μας. Θα μπορούσε ως agent να θεωρηθεί ο Χρονοδρομολογητης ο οποίος θα
μαθαίνει το μοτίβο προσβάσεων στη μνήμη, θα παίρνει αποφάσεις για την τοπο-

θέτηση των σελίδων με σκοπό να ελαχιστοποιήσει το runtime μέσω της επίτευξης
υψηλού DRAM hit-rate. Γρήγορα όμως απορρίψαμε αυτήν την προσέγγιση διότι
αποδείχθηκε μη εφαρμόσιμη. ΄Εστω ότι μια εφαρμογή έχει Ν σελίδες και δύο συσ-

τατικά μνήμης, ο Agent-Scheduler πρέπει να διαλέξει ανάμεσα σε 2N τρόπους να
τοποθετήσει αυτές τις σελίδες. Βλέπουμε υπάρχει εκθετική αύξηση του πεδίου το

προβλήματος με την αύξηση των σελίδων.

Επαναληπτικά Νευρωνικά Δίκτυα

Μετά την εγκατάλειψη της ίδεας της Ενισχυτικής Μάθησης προτού καν εφαρ-

μοστεί πρακτικά, προχωρήσαμε στην εξέταση του κατα πόσο θα μπορούσαμε να

χρησιμοποιήσουμε Επαναλητπικά Νευρωνικά Δίκτυα για το πρόβλημα μας. Δι-

απιστώσαμε πως τα Επαναληπτικά Νευρωνικά Δίκτυα (Recurrent Neural Net-
works - RNNs) λόγω της ικανότητας τους να βρίσκουν μακροχρόνιες και βραχυχρόνιες
εξαρτήσεις μεταξύ των δεδομένων αλλά και κυρίως λόγω της γραμμικής αύξησης

του πεδίου του προβλήματος (αντί για εκθετική) με την αύξηση των σελίδων

μνήμης, είναι κατάλληλα για την επίλυση του προβλήματος μας. Ο χρονοδρο-

μολογητης θα μπορούσε να χρησιμοποιεί ένα Επαναληπτικό Νευρωνικό Δίκτυο

ώστε να προβλέπει μελλοντικές προσβάσεις μιας σελίδας μνήμης, χρησιμοποιών-

τας για την εκπαίδευση του τις προηγούμενες προσβάσεις στη μνήμη. Με βάση

τώρα αυτές τις προβλέψεις που αφορούν την μελλοντική συμπεριφορά των σελίδων

θα μπορούσαν αυτές να διαταχθούν και να τοποθετηθούν ανάλογα είτε στη DRAM
είτε στην NVM.

Είσοδος Νευρωνικού Δίκτυο

Πέρα απο την επιλογή της τεχνικής που αποφασίσαμε να ακολουθήσουμε, ένα από

τα πιο σημαντικά σχεδιαστικά βήματα είναι η επιλογή της εισόδου που θα δοθεί

στο Νευρωνικό Δίκτυο. Προφανώς ως είσοδος θα χρησιμοποιηθούν δεδομένα

που αφορούν τις προσβάσεις μνήμης μιας Σελίδας, αλλά πως ακριβώς αυτή θα

διαμορφωθεί θα επηρεάσει σημαντικά τόσο την ακρίβεια των προβλέψεων όσο και

τον χρόνο εκπαίδευσης του Νευρωνικού Δικτύου. Σε αυτό το σημείο εξετάσαμε

20

δύο επιλογές ως προς την τροποποιήση των δεδομένων εισόδου του Νευρωνικού

αλλά και την επιλογή για το ποια θα είναι η ίδια η πρόβλεψη που αυτό καλείται να

κάνει.

Πρόβλεψη Deltas

Η πρώτη προσέγγιση η οποία είναι και η πρώτη που μας περνά απο το μυαλό είναι να

τροφοδοτηθεί ως είσοδος το ίχνος προσβάσεων στη μνήμη (memory access trace)
ως έχεί όπως στο Hashemi et al.[8]. Σε αυτήν την προσέγγιση το Νευρωνικό
προσπαθεί να κάνει προβλέψεις για το ποιες σελίδες μνήμης θα προσπελαστούν

μελλοντικα. ΄Ετσι το πρόβλημα το χειριζόμαστε σαν πρόβλημα κατηγοριοποίησης

παρόμοια με αυτά στον τομέα της Επεξεργασίας Φυσικής Γλώσσας (π.χ. κάνε μία

πρόβλεψη για την επόμενη λέξη μέσα από ένα λεξικό). Ωστόσο το γεγονός ότι

ένα σύγχρονο σύστημα έχει 264
θέσεις μνήμης και επειδή σε αυτά τα προβλήματα

το διάνυσμα εξόδου είναι συνήθως ίσο με το μέγεθος του λεξικού μας οδηγεί στη

χρήση των deltas αντί για τις πραγματικές τιμές των θέσεων μνήμης. Ως delta τη
χρονική στιγμη Ν ορίζουμε τη διαφορά μεταξύ της διευθύνσεως μνήμης τη χρονική

στιγμή N με τη διεύθυνση μνήμης τη στιγμή N − 1.
DeltaN = AddrN − AddrN−1

΄Ομως προέκυψαν αρκετά ουσιαστικά προβλήματα με αυτήν την προσέγγιση τα

οποία την καθιστούν μάλλον ανέφικτη. Αρχικά ακόμα και με τη χρήση των deltas
το μέγεθος του ίχνους εισόδου με βάση το οποίο θα εκπαιδευτεί το Νευρωνικό

Δίκτυο είναι τεράστιο, φτάνει μέχρι και την τάξη των μερικών δισεκατομμυρίων.

Αυτό κάνει την διαδικασία της εκπαίδευσης απαγορευτικά μεγάλη. Ακόμα, το

πιο σημαντικό πρόβλημα αυτής της προσέγγισης μάλλον θα πρέπει να θεωρηθεί η

χαμηλή ακρίβεια στις προβλέψεις. Το ότι το μέγεθος εξόδου είναι τόσο μεγαλό

καθιστά το μοντέλο ανίκανο να πραγματοποιήσει σωστές προβλέψεις. Το άλλο

βασικό τεχνικό πρόβλημα αυτής της υλοποιήσης είναι η χαμηλή ακρίβεια προβ-

λέψεων εξαιτίας της κανονικοποιήσης των δεδομένων εισόδου. Είναι σύνηθες

προτού τα δεδομένα δωθούν στο μοντέλο για εκπαίδευση αυτά να κανονικοποιούν-

ται. Ωστόσο επειδή μιλάμε για διευθύνσεις μνήμης που μπορούν να πάρουν τιμές

απο 0 έως 264
και επειδή συνήθως οι εφαρμογές δεν απλώνονται σε ολόκληρο το

address space, η μονή ακρίβεια κινητής υποδιαστολης 32-bit οδηγούν σε σημαν-
τικά δεδομένα να θεωρούνται ως θόρυβος. Με αποτέλεσμα το τελικό μοντελο που

έχει εκπαιδευτεί σε αυτά τα δεδομένα να μην μπορεί να πραγματοποιήσει σωστές

προβλέψεις. Ενώ αν προσπαθήσουμε να αντιμετωπίσουμε αυτό το πρόβλημα μέσω

clustering του address space όπως προτείνεται και στο [8] πρέπει να αντιμετω-
πίσουμε το πρόβλημα από τη χρήση ASLR (Address Space Layout Randomiza-
tion). ΄Οταν μαζεουούμε ίχνη προσβάσεων στη μνήμη ακόμα και για τις ίδιες
εφαρμογές αυτά έχουν διαφορετικό layout στην virtual memory με αποτέλεσμα
το εκπαιδευμένο μοντέλο να μην μπορεί να κάνει ακριβείς προβλέψεις.

21

Πρόβλεψη ανά Σελίδα

Η άλλη προσέγγιση που τελικά επιλέχθηκε είναι η πραγματοποιήση προβλέψεων

ανά σελίδα. Αποφεύγουμε το πρόβλημα του ποια σελίδα θα προσπελαστεί (λόγω

όλων των δυσκολιών που αναφέρθηκαν). Αντιθέτως διαλέγουμε το Νευρωνικό να

απαντάει στην ερώτηση πότε θα προσπελαστεί η σελίδα μνήμης. Θα προβλέπει

πόσες φορές θα προσπελαστεί μια σελίδα σε μια περίοδο χρονοδρομολόγησης.

Για κάθε σελίδα που μας ενδιαφέρει θα εκπαιδεύουμε ένα Νευρωνικό Δίκτυο στο

οποίο θα τροφοδοτούμε την αλληλουχία παρελθοντικών προσβάσεων που αφορούν

αυτήν την σελίδα και το Νευρωνικο θα προβλέπει πόσες φορές αυτή η σελίδα

θα προσπελαστεί στην επόμενη Εποχή/Περίοδο χρονοδρομολόγησης. Βλέπουμε

λοιπόν ότι αυτή η προσέγγιση ταιριάζει με την περιγραφή του προβλήματος μας και

πράγματι θα μας δώσει λύση σε αυτά που ζητάμε. Επίσης, με τη χρήση ενός νευρ-

ωνικού ανά σελίδα μειώνεται σημαντικά το μέγεθος του πεδίου του προβλήματος με

αποτέλεσμα να οδηγηθούμε σε ακριβείς προβλέψεις. Και τέλος, επειδή μπορούμε

να διαλέξουμε για ποιες σελίδες θέλουμε να εκπαιδεύσουμε Νευρωνικά Δίκτυα,

μπορούμε να μειώσουμε αισθητά το overhead της διαδικασίας της εκπαίδευσης.

Σχεδίαση

Ο χρονοδρομολογητής σελίδων (σχήμα 4) που σχεδιάσαμε σε κάθε Εποχή Χρον-

οδρομολόγησης (Scheduling Epoch) θα καλείται να κάνει ορισμένες ενέργειες.

• Με τη χρήση του Επιλογέα Σελίδων (σχήμα 5) θα εντοπίζονται οι σελίδες
που επηρεάζουν περισσότερο την απόδοση.

• ΄Επειτα απο αυτήν την επιλογή οι Σελίδες θα έχουν χωριστεί σε δύο υπ-
οσύνολα. Στο πρώτο ανήκουν αυτές που απαιτούν ιδιαίτερη/έξυπνη διαχείρ-

ιση και επηρεάζουν σημαντικά τη συνολική απόδοση και στο δεύτερο οι υπ-

όλοιπες. Για κάθε σελίδα που ανήκει στο πρώτο υποσύνολο θα εκπαιδευέται

ένα Επαναληπτικό Νευρωνικό Δίκτυο (stacked LSTM) το οποίο θα κάνει
προβλέψεις για το πόσες φορές θα προσπελαστεί η εκάστοτε Σελίδα στην

επόμενη Εποχή. Για τις σελίδες του δεύτερου υποσυνόλου θα χρησιμοποιηθεί

ο History Page Scheduler.

• Εφόσον τώρα έχουμε για κάθε σελίδα έχουμε τις εκτιμώμενες φορές που θα
προσπελαστεί στην επόμενη περίοδο δρομολόγησης μπορούμε να τις διατάξ-

ουμε κατα φθίνουσα σειρά και να τις τοποθετήσουμε στην DRAM μεχρι να
γεμίσει και τις υπόλοιπες στην πιο αργή NVM.

Ο χρονοδρομολογητής που σχεδιάσαμε πρακτικά αποτελείται απο τρία βασικά

συστατικά. Το πρώτο είναι ο Επιλογέας Σελίδων (εικόνα 5), τα μέσα πρόβλεψης

22

Εικόνα 4: Page Scheduler Overview

Pa
ge

 1

Address Space

A
cc

es
s

co
un

ts
 a

cr
os

s
al

l
sc

he
du

lin
g

ep
oc

hs

Pa
ge

 2

Pa
ge

 3

Pa
ge

 4
Pa

ge
 5

Pa
ge

 6

Pa
ge

 7

Pa
ge

 8
Pa

ge
 9

Pa
ge

 1
0

DRAM to NVM
Number of Components
Memory Component's access latencies

Configuration for Performance Estimation

Page Selector

Performance Estimate History Predictions

Misplaced Pages

Performance Estimate w/ Hybrid Scheduler

History Scheduler
for 100-x % of
Pages

Oracle Scheduler
for x % of Pages

R
ep

ea
t f

or
 m

ul
tip

le
 x

%
 u

nt
il

Pe
rfo

rm
an

ce
 G

oa
l i

s
m

et

x = 30 % (i.e. 3 Pages need smart
Placement)

Page 2, 7, 8
Page 1,3,4,5,6,9,10

Performance Goal

Εικόνα 5: Page Selector Overview

του αριθμού των μελλοντικών προσπελάσεων των Σελίδων (History Page Sched-
uler και Επαναληπτικά Νευρωνικά Νευρωνικά Δίκτυα), και η DRAM eviction
policy δηλαδή ποιες σελίδες που βρίσκονται στη DRAM θα φύγουν για να μπουν
άλλες στη θέση τους.

Επιλογέας Σελίδων

Ο Επιλογέας Σελίδων (σχ. 5) χρησιμοποιείται για να βρεθεί ποιες σελίδες απαιτούν

χρήση Μηχανικής Μάθησης και ποιες όχι. Για να βρεθεί αυτό για κάθε Σελίδα

λαμβάνονται υπόψιν τα εξής δύο. Πρώτον πόσες φορές προσπελάστηκε μία Σελίδα

γιατί προφανώς οι Σελίδες που προσπελάστηκαν πολλές φορές θα είναι και αυτές

που θα επηρεάσουν τη συνολική απόδοση. Δεύτερον για κάθε σελίδα βλέπουμε

πόσο καλά μπορεί να τη διαχειριστεί ο History Page Scheduler. Προφανώς αν μία
σελίδα μπορεί να τη διαχειριστεί σωστά βρίσκοντας το μοτίβο προσβάσεων της δεν

χρειάζεται να εκπαιδευτεί ένα Νευρωνικό Δίκτυο για αυτή τη σελίδα. Αντίθετα αν

ο History Page Scheduler τοποθετεί μια σελίδα στην NVM ενώ αυτή ιδανικά θα
έπρεπε να βρίσκεται στη DRAM λέμε ότι αυτή η Σελίδα έγινε misplace και μάλ-
λον θα πρέπει να αναλάβει τη διαχείριση της ένα RNN. Τα παραπάνω συνοψίζονται
στις εξής σχέσεις που προσδιορίζουν ακριβώς το πως λαμβάνει τις αποφάσεις ο

Επιλογέας Σελίδων. Για κάθε Σελίδα Χ υπολογίζεται το εξής για τις Περιόδους

0...Ν

Profit(x) =
N∑
i=0

Accessesi(x) ∗Misplacementi(x) (1)

Misplacementi(x) παίρνει την τιμή 1 αν Σελίδα Χ τοποθετήθηκε λάθος απο τον
History Page Scheduler την περίοδο ι, ενώ αν τοποθετήθηκε σωστά παίρνει την
τιμή 0. Και Accessesi(x) είναι οι φορές που προσπελάστηκε η Σελίδα Χ την
περίοδο ι και υπολογίζεται ως εξής:

Accessesi(x) = 3 ∗Writesi(x) +Readsi(x) (2)

23

Μέσα Πρόβλεψης

΄Οπως ειπώθηκε ήδη ως μέσα πρόβλεψης για τον αριθμό προσπελάσεων μια Σελί-

δας στο άμεσο μέλλον θα χρησιμοποιηθούν για κάποιες Σελίδες Επαναληπτικά

Νευρωνικά Δίκτυα και για κάποιες ένας History Page Scheduler. Τη λειτουργία
του History Page Scheduler είναι εύκολο να την αντιληφθεί κανείς, καθώς έχει
ήδη αναφερθεί. Σε αυτό το σημείο θα δούμε μια αφηρημένη εικόνα για τη δομή των

RNNs. Για κάθε σελίδα που επιλέγει ο Επιλογέας Σελίδων θα εκπαιδεύτεται ένα
Επαναληπτικό Νευρωνικό Δίτκυο που θα έχει 2 LSTM layers τα οποία ενώνονται
με ένα Dense Layer απο το οποίο θα προέρχεται και η μία έξοδος-πρόβλεψη.

Πολιτική Αδειάσματος DRAM

΄Οσον αφορά τώρα το Eviction Policy επιλέχθηκε να μην χρησιμοποιηθεί μια
απλή ουρά LRU. Εκμεταλλευόμενοι την ιδεά για Address Space Clustering από
το Hashemi et al. [8], υλοποιούμε μια ενισχυμένη LRU πολιτική αδειάσματος
τηςDRAM, όπου θα λαμβάνεται υπόψιν και το cluster στο οποίο ανήκει κάθε
σελίδα. Οπότε σε περιόδους όπου ένα cluster είναι ιδιαίτερα ενεργό, θα αποφεύγε-
ται να αδειάζει η DRAM απο Σελίδες που φέρουν το clusterID του συγκεκρμένου
cluster. Αντίθετα θα προτιμούνται να απομακρύνονται απο τη DRAM σελίδες που
δεν προσπελάστηκαν πρόσφατα και ανήκουν σε άλλα clusters του Address Space.

Υλοποίηση

Για την αξιολόγηση της υλοποίησης του Χρονοδρομολογητή που σχεδιάσαμε χρειάστηκε

να μαζέψουμε ίχνη προσβάσεων στη μνήμη απο διάφορες εφαρμογές. Οι εφαρ-

μογές που εξετάστηκαν φαίνονται στον πίνακα 1. Για να συλλεχθούν τα ίχνη

προσβάσεων στην κύρια μνήμη αυτών των εφαρμογών χρησιμοποιήθηκε το binary
instrumentation εργαλείο Intel Pin 3.13-98189 [14]. Αφότου κατασκευάσαμε
ένα pintool το οποίο χρησιμοποιεί ένα Cache Simulator που προσομοιώνει ένα
πραγματικό σύστημα μπορέσαμε για κάθε εφαρμογή να πάρουμε ένα ίχνος απο

Last Level Cache Misses το οποίο είχε την εξής μορφή.

Thread ID , Timestamp , Operation , Virtual Address

Για κάθε Virtual Address που υπάρχει στο trace καθε εφαρμογής που συλ-
λέχθηκε μπορούμε να βρούμε σε ποια Σελίδα Μνήμης (4ΚΒ) αυτή αντιστοιχεί.

Χρησιμοποιώντας τώρα αυτά τα traces θέλουμε να ελέγξουμε πως θα συμπερ-
ιφερόταν έναν Σύστημα με διαφορετικά είδη μνήμης σε μια ορισμένη αναλογία

αν χρησιμοποιούσε τον Χρονοδρομολογητη που σχεδιάσαμε. Πρακτικά αυτό που

θέλουμε να κάνουμε είναι profiling του trace που συλλεχθηκε. Για αυτό το λόγο
κατασκευάστηκε ένας Profiler ο οποίος θα παίρνει ως είσοδο το trace και διάφορες

24

Workload Benchmark Suite Domain
streamcluster PARSEC Data Mining
lud Rodinia 3.1 Linear Algebra
backprop Rodinia 3.1 Machine Learning
kmeans Rodinia 3.1 Data Mining
bplutstree Rodinia 3.1 Graph Theory
bodytrack PARSEC Computer Vision
blackscholes PARSEC Finance
hotspot Rodinia 3.1 Physics Simulation

Πίνακας 1: Workloads

άλλες παραμέτρους, όπως π.χ. αναλογία DRAM προς NVM, και θα μπορεί να μας
δώσει πληροφορίες για το πως θα ανταποκρινόταν το Προσομοιωμένο συστήμα

με τη συγκεκριμένη είσοδο. Θα μπορεί να μας δώσει πληροφορίες για το πόσο

πολυ΄χρησιμοποιήθηκε η DRAM και πόσο η NVM. Μέσα σε αυτόν τον Profiler
κατασκευάσαμε και τον δικο μας Χρονοδρομολογητή για να τον αξιολογήσουμε.

Ο profiler/simulator αυτός φαίνεται στην εικόνα 7.
΄Οπως φαίνεται και από την εικόνα ο Χρονοδρομολογητής μας έχει ενσωματωθεί

μέσα στο γενικότερο κατασκεύασμα του Profiler. Βασικό χαρακτηριστικό της
υλοποιήσης του Χρονοδρομολογητή μας είναι τα Νευρωνικά Δίκτυα. ΄Οπως έχει

ήδη ειπωθεί στο Σχεδιασμό κατασκευάσουμε ένα Νευρωνικό ανα-Σελίδα. Η εί-

σοδος αυτού του νευρωνικού συνδυάζει σε αντίθεση με το [9] πληροφορίες που

αφορούν τόσο την ίδια τη Σελίδα όσο και κοντινές σε αυτήν σελίδες. Αυτό γίνε-

ται επειδή υπάρχει σημαντική πληροφορία στην τοπικότητα των δεδομένων που θα

βοηθήσει στο να πετύχουμε υψηλότερη ακρίβεια στα μοντέλα. Συγκεκριμένα η

είσοδος για το Νευρωνικό Δίκτυο μιας Σελίδας Χ προκύπτει απο τον εξής τύπο

Inputi(x) =
4∑

j=−4

1
|j + 1| ∗ Accessesi(x+ j) (3)

Δηλαδή για την είσοδο του Νευρωνικού αξιοποιούμε πληροφορίες για τους 8

κοντινότερους γείτονες μια σελίδας, ώστε να εκμεταλλευτούμε ότι για ακριβείς

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Loss
Predicted ValueReal Value

Input Sequence

RNN
Layer 1

RNN
Layer 2

Dense
Layer

Back Propagation

Εικόνα 6: 2-Layer LSTM Neural Network Overview

25

προβλέψεις καλο είναι να χρησιμοποιήσουμε πληροφορίες σχετικές και με το Pro-
gram Counter αλλά και με το Address Delta όπως έδειξαν και στο [8]. ΄Οσον
αφορά τώρα την έξοδο του Νευρωνικού, αυτό θα προβλέπει πόσες φορές θα

προσπελαστεί η Σελίδα για την οποία έχει εκπαιδευτεί, στην επόμενη περίοδο δρο-

μολόγησης. Στο τεχνικό κομμάτι τώρα το κάθε Νευρωνικό Δίκτυο έχει μορφή σαν

αυτή της εικόνας 6. Χρησιμοποιήθηκαν 2 LSTM layers με 256 νευρώνες το κάθε
ένα. Το history length ορίστηκε στα 20, ένω τα 3/4 του συνόλου των δεδομένων
χρησιμοποιήθηκε για την εκπαίδευση. Χρησιμοποιήθηκε ο Adam Optimizer
ενώ το learning rate ορίστηκε στο 0.01. Η διαδικασία της εκπαίδευσης σταμα-
τούσε αν το loss για τα δεδομένα επαλήθευσης δεν άλλαζει για 30 συνεχόμενες
εποχές.

DRAM NVM
Config:

R/W Bandwidth
R/W latency
DRAM capacity

Config:

R/W Bandwidth
R/W latency
NVM capacity

Page Scheduler

Page Selector

Config:
DRAM:NVM
Resources for RNN
Memory Trace
Scheduling Period

History Page Scheduler

R
N

N

R
N

N...

R
N

N

Config:
Migration Cost
Eviction Policy

DMA

Pages toMigrate

HMS Simulator

\

HMS-Simulator Input
Config

DRAM:NVM
DRAM R/W Specifications
NVM R/W Specifications
DMA Migration Cost
DMA Eviction Policy
Memory Trace
Resources for RNN*
Scheduling Period*

\

HMS Simulator API
(Performance Estimate)

DRAM hitrate
Application Runtime

Εικόνα 7: Access Trace Profiler

26

Αξιολόγηση

Χρησιμοποιώντας τώρα όσα κατασκευάσαμε προχωρήσαμε στην αξιολόγηση του

Χρονοδρομολογητή. Αυτό που θέλουμε να δούμε είναι πόσο καλά κάνει την τοπο-

θέτηση των Σελίδων Μνήμης ο Χρονοδρομολογητής μας για τα ίχνη που συλλέξ-

αμε. Αυτό θα το δούμε με τη χρήση του Profiler που κατασκευάσαμε.
Πρώτο στάδιο της αξιολόγησης είναι να δούμε πόσο καλές είναι οι προβλέψεις

που κάνουν τα Νευρωνικά Δίκτυα. Υποθέτουμε ότι οσο καλύτερες είναι οι προβ-

λέψεις σε τοσο καλύτερες τοποθετήσεις Σελίδων θα οδηγηθούμε. Παρατηρώντας

την γραφική παράσταση 8 καταλαβαίνουμε ότι η υλοποίηση μας κάνει λιγότερα

λάθη στις προβλέψεις (οδηγούμαστε σε χαμηλότερο μέσο Root Mean Square Er-
ror) της σε σύγκριση με έναν History-Predictor αλλά και με την υλοποιήση που
προτείνεται στο kleio [9].

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans

0

10

20

30

40

50

60

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

History
kleio
9-N RNN

Εικόνα 8: Prediction Accuracy of the number of access counts across the scheduling intervals
for the selected trained pages. History, kleio’s RNNs and our RNNs are used as Access Count
Predictors

Είδαμε στο πρώτο στάδιο ότι οδηγούμαστε σε χαμηλότερο σφάλμα προβλέψεων.

Θέλουμε τώρα να δούμε αν αυτό μεταφράζεται και σε μεγαλύτερη απόδοση του

Συστήματος. Για αυτό στο δεύτερο στάδιο της αξιολόγησης προχωρήσαμε στη

μελέτη του κατά πόσο γεφυρώνεται το χάσμα μεταξύ του History Page Sched-
uler και του Oracle Page Scheduler. Μέσω του Profiler συγκρίναμε το DRAM
hit-rate του Χρονοδρομολογητή μας με αυτό του kleio (Εικόνα 9 ο Χρονοδρο-
μολογητής είναι ο μπλε και το kleio το πράσινο). Αυτό που παρατηρούμε είναι ότι
η υλοποιήση μας φαίνεται να υπερτερεί προσφέροντας μεγαλύτερο DRAM hit-rate
δηλαδή περισσότερα αιτήματα εξυπηρετήθηκαν από την DRAM σε σχέση με το
kleio. Ακόμα, μπορεί με ασφάλεια να εξαχθεί ως συμπερεσμά ότι το χάσμα μεταξύ

27

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0

20

40

60

80

100
DR

AM
 H

itr
at

e
Hitrate Improvement via Machine-Learning

kleio
9-N RNN

Εικόνα 9: DRAM hit-rate for kleio and our
Scheduler, normalized between 0% for History
and 100% for Oracle Page Scheduler, RNNs for
100 pages and 1:8 DRAM to NVM ratio

blackscholes kmeans backprop streamcluster hotspot lud bodytrack bplustree
0

20

40

60

80

100

DR
AM

 H
it

Ra
te

DRAM Hit Rate % - Eviction Policy
LRU
clustered LRU

Εικόνα 10: DRAM hit-rate for LRU and
enhanced-LRU, normalized between 0% for His-
tory and 100% for Oracle Page Scheduler, RNNs
for 100 pages and 1:8 DRAM to NVM ratio

του History και του Oracle γεφυρώνεται ικανοποιητικά για τις περισσότερες εφαρ-
μογές.

Το τρίτο στάδιο της αξίολογησης μας ήταν η επιλογή της διαφορετικής πολι-

τικής αδειάσματος (Eviction Policy) της DRAM. Θέλαμε να δούμε αν με το να
δίνουμε προτεραιότητα να παραμένουν στη DRAM Σελίδες που ανήκουν σε εν-
εργά ανά την περίοδο clusters θα οδηγηθούμε σε μεγαλύτερο DRAM hitrate και
κατέπέκταση καλύτερο performance. Τα αποτελέσματα της αξιολόγησης όπως
φαίνονται απο την εικόνα 10 μας δείχνουν ότι υπάρχει μια αύξηση στην επίδοση

για τις περισσότερες εφαρμογές, ωστόσο η πολυπλοκότητα της διαδικασίας του

Address Clustering ίσως αντισταθμίζει το όποιο πλεονέκτημα (σε DRAM hit-
rate) μπορούμε να πάρουμε από αυτήν την σχεδιαστική επιλογή.
Το τελευταίο κομμάτι της αξιολόγησης αφορά την ενεργειακή απόδοση της

υλοποίησης μας. Χρησιμοποιώντας τα μοντέλα που προτάθηκαν στο [15], συγ-

κρίναμε μερικά διαφορετικά Συστήματα. Στο πρώτο δεν χρησιμοποιείται καμία

τεχνική Χρονοδρομολόγησης σελίδων. Οι σελίδες τοποθετούνται στην αρχή της

εκτελέσης της εφαρμογής στα διάφορα συστατικά μνήμης και δεν αλλάζουν θέση

μέχρι το πέρας της. Στο δεύτερο χρησιμοποιείται ένας History Page Scheduler,
στο τρίτο χρησιμοποείται ένας Δρομολογητής όπως αυτός που περιγράφεται στο

kleio [9], ενώ στο τέταρτο χρησιμοποιείται ο δρομολογητής που κατασκευάσαμε
εμείς. Να σημειωθεί ότι οι εφαρμογές διαφέρουν η κάθεμια ως προς την αναλογία

Read και Write. Κάποιες είναι write-intensive, άλλες είναι read-intensive, ενώ
άλλες είναι ισορροπημένες. Επίσης πρέπει να σημειωθεί ότι επειδή η μελέτη μας

έγινε για ίχνη μικρού memory footprint η κατανάλωση ενέργειας από τη μνήμη
θα επηρεαστεί κυρίως από τα NVM Read/Write operations και όχι τόσο από
την ενέργεια αδρανειας της DRAM. Αυτό προκύπτει επειδή ο όρος IdlePower =
451 ∗ mWGB ∗ T για μικρές τιμές memory footprint είναι συγκρίσιμος ή μικρότερος

28

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n
9-RNN Kleio History NoManage

Εικόνα 11: Energy Comparison between No-
Manage, History, Kleio and Our Scheduler

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n

NVM Consumption DRAM Consumption Idle Power Page Migration

Εικόνα 12: Energy Consumption details for No-
Manage, History, Kleio and Our Scheduler

με τον όρο που αφορά τα NVM operations (ENVM = 418.6 ∗W + 80.41 ∗ R),
όπου W,R ο συνολικός αριθμός των Writes και Reads αντίστοιχα.
Παρατηρώντας την εικ. 11 όπου συγκρίνονται αυτά τα 4 Συστήματα καταλ-

αβαίνουμε ότι η υλοποιήση μας οδηγεί σχεδόν σε όλες τις περιπτώσεις σε χαμη-

λότερη κατανάλωση ενέργειας. Αρκετά κοντά στην υλοποιήση μας είναι και ο

Χρονοδρομολογητής του kleio, ενώ βλέπουμε οτι ο History Page Scheduler στις
περισσότερες εφαρμογές έχει κατανάλωση ενέργειας κοντά σε αυτή του NoMan-
age, δηλαδή του συστήματος που δεν φέρει δρομολογητή. Εξηγήσεις για το πως
επιτεύχθηκαν οι μειώσεις στην ενέργεια μπορούν να αντληθούν απο την εικ. 12

όπου όπως περιμέναμε με την αύξηση του DRAM hitrate (και την ταυτόχρονη
μειωση των operations που διεκπεραιώνει η NVM), οδηγηθηκαμε σε μικρότερη
κατανάλωση ενέργειας από την NVM, ενώ σημαντικό είναι και το γεγονός ότι
η ενέργεια που καταναλώνεται για να μεταφερθούν οι Σελίδες μεταξύ NVM και
DRAM (Migration Cost) φαίνεται να μην εκτοξεύουν τη συνολική καταναλισκό-
μενη ενέργεια. Δηλαδή τα ωφέλη που αποκομοίζουμε από τη διαδικασία του Mi-
gration δεν αντισταθμίζονται απο το ενεργειακό κόστος που υπεισέρχεται με αυτό.

Σύνοψη και Μελλοντική Δουλειά

Τα δεδομένα των εφαρμογών συνεχώς αυξάνονται, ενώ το μοτίβο προσβάσεων

στη μνήμη γίνεται όλο και πιο σύνθετο. Οι παραδοσιακές τεχνολογίες μνήμης

δεν μπορούν να ανταπεξέλθουν σε αυτήν την αύξηση για αυτό νέες τεχνολογίες

ενσωματώνονται στα υπολογιστικά συστήματα για να επιτευχθούν οι απαραίτητες

αυξήσεις στην επίδοση. ΄Ετσι έχει δημιουργηθεί μια ετερογένεια στα συστήματα

μνήμης. Φαίνεται πως υπάρχει ένα χάσμα μεταξύ του σύγχρονου τρόπου χειρισ-

29

μού της διαχείρισης των πόρων στα συστήματα που φέρουν ετερογενείς μνήμες,

και του τι θα μπορούσε να επιτευχθεί ιδανικά. Αυτό το χάσμα προσπαθήσαμε

να γεφυρώσουμε σε αυτή τη διπλωματική χρησιμοποιώντας τεχνικές Μηχανικής

Μάθησης.

Προτείναμε την κατασκευή ενός Χρονοδρομολογητή Σελίδων Μνήμης ο οποίος

θα μπορεί να εντοπίσει ένα μικρό υποσύνολο σελίδων το οποίο αν το διαχειρισ-

τούμε με τη χρήση μηχανικής μάθησης αντι για μία συμβατική reactive προσέγ-
γιση, θα οδηγηθούμε σε αυξημένες επιδόσεις των εφαρμογών. Για κάθε μια από

αυτες τις σελίδες θα εκπαιδευτεί ένα Νευρωνικο Δίκτυο το οποίο θα μαθαίνει

το μοτίβο πρόσβασης μνήμης της σελίδας. Για τις σελίδες που δεν ανήκουν σε

αυτό το υποσύνολο θα χρησιμοποιείται η reactive προσέγγιση ενός History Page
Scheduler. ΄Ετσι είδαμε ότι το χάσμα που θέλαμε να γεφυρώσουμε πράγματι σε αρ-
κετές περιπτώσεις γεφυρώθηκε σε ποσοστό 70% και ότι η κατανάλωση ενέργειας

μειώνεται σημαντικά. Ενώ ακόμα παρατηρήσαμε ότι η πρόταση να χρησιμοποιη-

θεί μια ενισχυμένη πολιτική αδειάσματος της DRAM με τη χρήση της τεχνικής
του clustering οδήγησε σε 10% κατα μέσο όρο αύξηση του DRAM hitrate σε
σύγκριση με μια συμβατική LRU πολιτική. Σαν μελλοντική δουλειά προτείνουμε
την επέκταση της μελέτης του Χρονοδρομολογητη για Huge Pages (2 MB) αντί
για τις συνηθισμένες σελίδες μεγέθους 4 (ΚΒ). Ακόμα θα μπορούσε κανείς να

προσπαθήσει να επεκτείνει αυτή τη δουλειά μελετώντας data objects μίας εφαρ-
μογής, και κατα πόσο θα μπορούσαμε να εκμεταλλευτούμε τις σελίδες που ανήκ-

ουν στο ίδιο data object. Ακόμα ένα μονοπάτι σκέψης για μελλοντική μελέτη θα
μπορούσε να είναι η χρήση τεχνικών μηχανικής μάθησης για διαχείριση μονάδων

αποθήκευσης.

30

Chapter 1

Introduction

There seems to be a constantly increasing trend of introducing machine-learning
based solutions in almost every single domain of human activities. Machine
learning has been a key contributor to achieving innovations in a wide spec-
trum of applications ranging from simple commercial products to more complex
medical applications. This wide spectrum of applications and the incredible
ability of Machine Intelligence to model many traditionally complex problems
seem to be the primary drivers of the growth spurt observed in the Artificial
intelligence field. At the same time, the progress observed in the Computer
Architecture field tends to stop following the exponential growth pattern de-
scribed by Moore’s law, and the performance gap between CPU and Memory
Units does not seem to stop growing any time soon. These two trends, the
Machine Intelligence advancements and these persistent problems in Computer
Architecture, push towards a synergistic utilization of methods and techniques,
in such a manner that Machine Intelligence and Computer Architecture design
will mutually assist each other.

Thesis Topic

This thesis is solely dedicated to the use of Machine Intelligence, specifically
the utilization of Neural Networks, in an attempt to provide improvements
upon Page Scheduling techniques. We will focus primarily on hybrid mem-
ory systems, meaning modern computer systems that are comprised of both
conventional DRAM and Persistent Memory components.

It is well established that modern systems are frequently designed using
heterogeneous memory components. These memories are mainly used for one
of two reasons. They are leveraged for either extending the capacity of main
memory or for caching purposes. A system comprising of heterogeneous memory
components comes with some natural trade-offs. Typically memory components
which are deeper in the memory hierarchy (further from the Computing Unit)
have higher storing capacity albeit at larger latency and reduced bandwidth.

31

In this thesis we will restrict ourselves to only working with systems that
leverage the Persistent Memory for extending the main memory capacity. An
important artifact of not only those systems but heterogeneous memory sys-
tems in general is addressing the limitations of increased latency and decreased
bandwidth. In our case, we are mainly interested in designing an efficient page-
scheduler in one HMS scenario. A page scheduler is the memory management
layer of operating and runtime systems. It is responsible for the page migration
across heterogeneous memory components. A well designed page scheduler in-
sures that pages that are frequently accessed (hot pages) are readily available
on the high performing memory modules of our system (DRAM), whereas the
least important pages, those that are rarely accessed (cold pages) remain on the
slower Persistent Memory. The use of the page scheduler module we are trying
to construct is depicted in figure 1.1.

Page

Page
Page

Page
Page
Page

Page
Page

Page Scheduler

DRAM

NVM

Hot Pages

Cold Pages

Application Hybrid Memory System

Figure 1.1: Page Scheduler tiering hot and cold pages to improve performance of and applica-
tion.

Motivation

Many researchers have tried to address the challenge of tiering application pages
and placing them into the memory components of a system accordingly. This
is an undeniably intricate task, since the complex combination of access pat-
tern of application pages and the runtime parameters of the application (input
size, strong/weak scaling etc.) should be taken into consideration. Many re-
searchers have considered solutions whose implementation can be integrated in

32

the hardware-,compiler-,Operating system-, and runtime-level [1, 2, 3, 4, 5, 6, 7].
There are a lot of similarities among these approaches. One of them is that
they rely exclusively on historic information about page accesses. Specifically,
the state-of-the-art in system level dynamic page management solution for Het-
erogeneous Memory Systems utilize the immediate observed behavior to make
decisions on the best future page placement. However, as we can imagine and
will prove later on this thesis, this naive policy is far from ideal when it comes
to capturing the complex access pattern of modern applications.

Approach and Contributions

As far as this thesis is concerned, we will follow a similar thought process to the
ones presented in the articles Learning Memory Access Patterns [8] and Kleio:
A Hybrid Memory Page Scheduler [9]

The main goal of thesis is to study and construct a Page Scheduler specifi-
cally designed for a Hybrid Memory System utilizing Machine Intelligence. Our
primary goal is to bridge the performance gap between the current state-of-the-
artHistory and the ideal but infeasibleOracle Page Scheduler1. Briefly, our
objective is to deliver a near-optimal data placement across the heterogeneous
memory components on a page granularity (4KB in Linux based systems). We
will try to address important questions concerning how to achieve a both prac-
tical and efficient solution. To be specific, we aim to find a solution which
reasonably uses computational resources for the typically compute-intensive
machine intelligence processing tasks without compromising on the efficacy to
properly classify the application pages.

The specific topics we will try to address throughout this thesis are the
following

• Performance gap in current solutions. Due to the recent arrival of the
Persistent Memory technology, there has not been enough time to develop
many algorithms applicable to this specific problem. As a result, the state-
of-the-art history-based approach is relatively naive from an algorithmic
perspective and does not seem capable of capturing complex access pat-
terns.

• Scheduling interval/epoch selection. Using memory trace collection of sev-
eral applications, we will try to find out how different scheduling intervals,
meaning the amount of time between two data migration events, affect
performance. A small scheduling interval means that the page scheduler is
frequently called to make decisions about migrating the application pages.

1Oracle Page Scheduler uses a priori knowledge of the access pattern of the pages,meaning that it can migrate
the indeed hot pages into the DRAM until capacity is full

33

• Machine Intelligence based scheduling. We will soon identify Recurrent
Neural Networks as an effective and practical technique for the page schedul-
ing problem, as it is also documented in the articles [8, 9]. We will try to
make necessary adaptations to our problem so that we can achieve high ac-
curacy leveraging RNN models, howbeit without neglecting the spatial and
computational complexity of our approach. We will find out that training
a Recurrent Neural Network on a per-page granularity can lead to high
accuracy and significant performance improvements even when applied to
a relatively small subset of application pages.

• Page Scheduler design. We design a Page scheduler after taking into con-
sideration several performance metrics. The page-scheduler’s approach will
combine both the state-of-the-art history-based policy and Machine Intelli-
gence, implemented using RNNs and more specifically LSTMs. We will try
to quantify the performance improvements achieved, using a range of work-
loads from popular suites such as Rodinia 3.1 [16] and PARSEC [17].
We will evaluate our Page-Scheduler compared to the current state-of-the-
art implementations found in modern Hybrid Memory systems. Evaluation
will revolve around both actual performance and energy consumption.

Thesis Overview

This thesis is organized in 8 chapters. In the second chapter we briefly summa-
rize existing work related to our research. In the third chapter an informational
background concerning Non-volatile Memory and Page Migration in modern
Computer Systems is provided. The fourth chapter is dedicated to explaining
briefly several types, techniques and use cases of Neural Networks and then we
focus mainly on how Recurrent Neural Networks can be leveraged to provide
solutions for our problem. In the fifth chapter, a detailed description of the
implemented Page Scheduler is laid out, after outlining the important perfor-
mance metrics that should be considered. In the sixth chapter there are the
details when it comes to basic ideas, tools and design choices made concern-
ing the actual implementation of the Page Scheduler. The seventh chapter is
solely dedicated to presenting the results of the simulation and its performance
evaluation. Finally, before conclusion is drawn, in the eighth chapter we clearly
portray the contribution of this thesis and propose future research ideas.

34

Chapter 2

Related Work

Over the last years, a considerable amount of research has been carried out in
order to address the resource management challenges present in Hybrid Mem-
ory Systems, and an array of interdisciplinary approaches have been employed
for that purpose; many with noteworthy success. In this chapter, we summa-
rize the recent advances in various aspects of hybrid memory management and
we reference systems that use Machine Learning for the purpose of resource
management.

Hardware Solutions

In this section, we reference memory management solutions in hybrid memory
systems that are implemented by custom specialized hardware.

The authors of [18] introduce custom counters to monitor data accesses and
enable threshold based data migration triggers. In addition, custom memory
controller hardware is also proposed to enable support for page migration in
non-volatile memories [19]. In [20], authors design a clustered architecture,
which transparently manages hybrid memories configured in a combination of
cache and flat organization, that outperforms prior work.

Apart from the purely hardware-level solutions a lot of researchers propose
specialized hardware that assist existing software-level solutions by reducing
critical resource overheads. A lot of operating system-level solutions [21, 22, 19]
are suggesting hardware-assisted page hotness tracking.

Software Solutions

In this section, we summarize recent work revolving around the resource man-
agement of hybrid memory systems whose implementation is software based
and spans either on Application Middleware or Operating System -level. Obvi-
ously, the amount of Software oriented work conducted is much more extensive

35

due to the fact that actual Hybrid Memory Systems have reached the market
just recently.

Starting on the top of the stack, inside applications themselves, recent work
optimizes the algorithmic design to perform more efficiently over the underly-
ing hardware. The authors of [23] direct data placement for conjugate gradient,
Fast Fourier Transform (FFT) and LU decomposition of a matrix by utilizing
algorithm features and structures and common numerical operations. In ad-
dition, a lot of solutions proposed in recent work [24, 2, 7] highly suggest the
development of custom data allocations APIs, that require application source
code modifications, to improve not only the initial but the dynamic data place-
ment of user-identified critical regions as well.

As far as the recent contributions at the user library-level are concerned,
the most significant is probably Memkind [25]. It is a user extensible heap
manager that can be leveraged by middleware solutions to improve performance
over System with heterogeneous memory components. Various middleware-level
solutions [2, 24] rely on application profiling of data access behaviors. Data
tiering is optimized based on data movement cost models. Finally, Piccoli et.
al [26] propose compiler analyses and code generation methods to migrate pages
and improve data locality.

To conclude, operating system-level solutions rely on page access informa-
tion available on kernel’s page tables. This way, frequently accessed pages are
identified and then are periodically migrated. These solutions create significant
resource overheads, and often seem impractical.However, these overheads could
be potentially reduced through hardware-assisted solutions. Most System-level
solutions leverage existing NUMA-based page migration support or extend the
NUMA-based data balancing policy [21, 19, 9, 27]. Another approach is the
one proposed by the authors of [28], where a user interface, a user space library
and a kernel space service is introduced to accelerate page migrations across
heterogeneous memories.

Machine Learning Solutions

In this section we describe some of the machine intelligence approaches used
in the system’s community, focusing either on other relevant problems or just
other aspects of data management.

There has been a lot of research regarding the usage of RNNs in the system
software stack or in hardware. First, it was popularized by Hashemi et. al
[8], which had a huge impact on the introduction of Machine Learning into the
Computer Architecture field. Hashemi et. al [8] proposed leveraging Recurrent
Neural Networks for the purpose of memory prefetching. The authors of [29]

36

utilize Recurrent Neural Network to learn I/O block level access patterns in
order to optimize the performance of flash storage usage. The usage of RNNs
have also been explored in Supercomputing environments. They are deployed in
order to predict node failures and make decisions about timely migrating tasks
on live nodes [30]. Finally, this thesis is heavily influenced by kleio [9] which
pioneered the idea of utilizing Machine Learning to improve resource manage-
ment in Hybrid Memory Systems. Kleio utilized Recurrent Neural Networks
to timely migrate pages in Hybrid Memory Systems. Unlike Kleio, we deploy
and train RNNs differently utilizing information that is essential for achieving
high prediction accuracy and extend some of the Page Scheduling components
to provide performance enhancements.

37

Chapter 3

Persistent Memory & Memory
Management

Before engaging on the topic of efficient page migration across heterogeneous
memory components in modern computer systems, there are several essential
terms and concepts that should be carefully defined. This chapter provides an
introductory overview of hardware and software technologies. We start by pre-
senting the characteristics of non-volatile hardware, with primary focus on the
Persistent memory module developed by Intel (Intel Optane Persistent Memory
Module). Then we present a few concepts concerning general memory paging
and page movement across different memory components on system level. This
chapter concludes with the demonstration of several implementation challenges
and difficulties that should be definitely be taken into consideration.

Persistent Memory

Typically, modern computer systems are design for a strict bifurcation of devices
into memory and storage devices

Storage devices offer the highest capacity and lowest cost-per-bit for persis-
tent storage. They are frequently implemented as block devices and thus cannot
be accessed by CPU using Load/Store instructions. As a consequence storage
devices are too slow for direct access and data has to be buffered into the main
memory to accelerate application execution. A common technique in this con-
text is page caching. The goal of page caching is to minimize data access to
slower secondary storage devices by storing recently used pages in unused main
memory. Whenever data from secondary storage is requested, the operating
system first checks whether the requisite data is in the page cache. If that is
not the case, the page containing the requested data has to be read from the
slower storage device and is added to the page cache afterwards. When modify-
ing data residing in the page cache, the whole memory page is marked as dirty.
Periodically, all dirty marked pages are written back to the disk. Therefore,

39

small changes create a large I/O overhead as the whole page has to be written
back to the secondary storage. For reference, the typical linux page is 4 KiB
[10].

Memory on the other hand, is directly accessible by the CPU, but has smaller
capacity and is more expensive that storage. Moreover, it only provides volatile
storage, which means that data stored in memory is lost in the event of a power
outage or a system crash.

Non-volatile main memory (NVMM) aims to bridge the gap between mem-
ory and storage by offering fast, persistent, byte-addressable memory. Various
technologies can be considered as persistent memory hardware, such as Phase
Change Memory (PCM) [11], Spin-Transfer Torque RAM (STT-RAM) [12],
and 3D XPoint. All of them have in common that they offer a high density
and low cost-per-bit while also being byte-addressable and achieving latency
close to DRAM. The updated storage hierarchy, which now includes persistent
memory is depicted in the following figure

Figure 3.1: Pyramid of storage hierarchy with focus on latency capacity and cost. Persistent
Memory closes the gap between Non-Volatile Memory and Volatile Memory.

The first scalable commercially available non-volatile memory hardware is
Intel Optane DC Persistent Memory Module, which is based on the aforemen-
tioned 3D XPoint technology. We refer to it as DCPMM on the throughout
the remainder of this chapter. The modules are available in three different
capacities : 128GB, 256GB and 512GB per module.

Like conventional memory, DCPMMs are directly connected to the CPU’s
integrated Memory Controller (iMC) via the memory bus. A single iMC can
support up to three DCPMMs. Hence, one processor can employ up to six
DCPMMs across its two iMCs. The iMC is located inside the asynchronous
DRAM Refresh Domain (ADR), which guarantees that data reaching this do-
main will survive a power failure. Internally, the iMC maintains read and write

40

pending queues for each DCPMM, ensuring that data is flushed to media on
power failure. It should be emphasized that the ADR does not include the
processor’s caches. Sotres are consequently only persistent once they reach the
iMC [31]. However, there is ongoing research in the area of enhanced ADR
(eADR), which also includes the CPU caches [32].

To communicate with the DCPMM, the iMC uses a proprietary DDR-T
protocol [33], which has a lot in common with the DDR4 standard but has
been adapted to the peculiarities of non-volatile applications. Just like DDR4
(with ECC), the interface for DDR-T uses a 72-bit data bus and transfers
data in cache line (64B) granularity between iMC and DCPMM [34]. Starting
with Cascade Lake processor family, Intel added CPU support for the DDR-T
protocol and consequently for DCPMM. Therefore, DCPMM support is not
available on prior Intel CPU generations.

The DCPMM itself contains an onboard controller that coordinates the
accesses to the 3D Xpoint media by performing wear-leveling and bad-block
management. As the physical media access granularity of 3D Xpoint is 256B
(XPLine) [31], the controller includes a small write-combining buffer in the size
of 256B, coalescing adjacent 64B DDR-T writes into larger 256B media writes.
As a result, the optimal access size for DCPMM is 256B [?, 34]. The com-
munication between the iMC and DCPMM is depicted in the following figure.

Core

Core

CPU

L3 Cache

iMC

WPQ

Intel Optane DCPMM

Controller

64 B 64 B

64 B 64 B

3D-XPoint Media

ADR Domain

DDR-T
Cache

Line: 64 B
XPLine:
256 B

Figure 3.2: Communication Structure between CPU and DCPMM.

Latency and bandwidth are key memory technology parameters. Yang et. al
[31] demonstrate in their evaluation of the DCPMM that the average read la-
tency is two to three times higher than DRAM. Since both DRAM and DCPMM
use the iMC to commit data to media, they perform similarly in terms of
write latency [31]. Regarding the performance characteristics of a single Intel
DCPMM DIMM, Intel specifies the sequential bandwidth for reads with 7.6
GB/s and for writes with 2.3 GB/s. As for the random bandwidth, Intel quan-

41

tifies the bandwidth with 2.4 GB/s for reads and 0.5 GB/s for writes. Several
publications verify these numbers as well [31, 34].

When looking at the performance numbers, two things stand out: First the
random bandwidth which is significantly lower compared to sequential band-
width. Second, the performance of read and write operations is asymmetrical,
with writes being the slower of the two. From this, it can be deduced that data
structures with primarily random writes and a high write amplification should
be avoided when working with DCPMMs. Before DCPMM became available
commercially researchers used emulation to validate and test their non-volatile
memory applications. These emulations often inject latency to data accesses
and limit the overall bandwidth. However, the previously mentioned empiri-
cal analysis by Yang et al [31] indicates that these emulations have failed to
reflect the distinctive properties of DCPMM. Characteristics like the internal
256B granularity and the asymmetrical performance of read/write operations
were not incorparated into the prior emulations, resulting in less meaningful
insights.

The DCPMM has two memory modes: Memory Mode and App Direct Mode
[35]. In Memory Mode, the hardware acts as a larger volatile main memory. In
this mode, DCPMM is transparent to the operating system and applications.
To hide the longer latency and lower bandwidth, DRAM is frequently used as
L4 Cache.

In App direct mode the DCPMM is directly exposed as non-volatile memory
device separated from DRAM. For the operating system, the DCPMM and
the DRAM appear as individual entities. Applications can now use the non-
volatile memory either as an accelerated block device (Storage over App Direct
Mode) or access it directly using CPU instructions on memory-mapped files
(App Direct Mode).

In this thesis, we will solely use DCPMM in the first mode,the memory mode
without focusing on its persistent capabilities.

Page Migration

Before diving into our scenario of interest, it would be really beneficial to obtain
information about the techniques used in problems similar to ours. Therefore,
we will first describe the Page Migration process in general Non-Uniform Mem-
ory Access (NUMA) systems and then move on to the more specific Heteroge-
neous Memory Systems comprised of both DRAM and NVM modules. When
we refer to Page Migration, we mean the movement of the physical location
of pages between nodes in a system while the process is running. This means
that the virtual addresses of the executing process do not change. However, the

42

system rearranges the physical location of those pages.

Page Migration across NUMA-nodes

Non-uniform memory access (NUMA) is a computer memory design used in
multiprocessing, where the memory access time depends on the memory loca-
tion relative to the processor. Under NUMA, a processor can access its own
local memory faster than non-local memory (memory local to another proces-
sor or memory shared between processors). The benefits of NUMA are limited
to particular workloads, notably on servers where the data is often associated
strongly with certain tasks or users. An example of NUMA-System is depicted
in the following figure.

Figure 3.3: Architecture of NUMA system with 4 CPU nodes

NUMA Systems have been prevalent in the High Performance Computing
field for many years. Most servers’ architecture is NUMA based due to the
overall speed increase and general performance improvements NUMA provides.
However, the fact that every CPU node has different memory access latency
depending on if the requisite data resides in local or remote memory module,
entails several design challenges. As it is fairly obvious, an application will
generally perform best when the threads of its processes are accessing memory
on the same NUMA node as the threads are scheduled. Therefore, there is
a need for load balancing across NUMA nodes. There are two ways that we
can achieve the desired load balancing. We can either move tasks (which can
be threads or processes) closer to the memory they are accessing, or we can
move application data to memory closer to the tasks that reference it. Hence,
we understand that in modern NUMA systems page migration across NUMA
nodes is a fundamental aspect of achieving high performance.

Load balancing in NUMA systems occurs on the system level and is handled
by the kernel. The most common implementation of load balancing consists of
the following three steps :

43

• A task scanner periodically scans a portion of a task’s address space and
marks the memory to force a page fault 1 when the data is next accessed.

• The next access to the data will result in a NUMA Hinting Fault. Based
on this fault, the data can be migrated to a memory node associated with
the task accessing the memory.

• To keep a task, the CPU it is using and the memory it is accessing together,
the scheduler groups tasks that share data.

The unmapping of data and page fault handling incurs overhead. However,
commonly the overhead will be offset by threads accessing data associated with
the CPU.

Page Migration in Hybrid Memory Systems

There is a clear similarity between NUMA systems and our field of interest,
the Hybrid Memory Systems. Page migration in NUMA systems takes place
in order to minimize the amount of Page Accesses of CPU-node to remote
higher latency Memory modules. On the same note, in hybrid memory systems
pages are migrated from the slower NVM to DRAM and vice versa in order
to achieve a reduced average runtime latency. However there is a distinctive
difference between the two, that forces us to think of different more intelligent
solutions when it comes to the Hybrid Memory System (HMS) scenario.

A considerable amount of research concerning load balancing in NUMA sys-
tems revolves around moving threads or processes closer to the memory they
are trying to access [36, 37]. However, in the HMS scenario, this approach
is fundamentally inapplicable. Both Persistent Memory and DRAM have the
same relative location to the CPU. The only load balancing technique left to
exploit is the migration of pages across NVM and DRAM.

Following what is currently predominantly used in NUMA systems, most
state-of-the-art Page Migration policies proposed by researchers rely on the
use of historic information alone [13]. The page behavior is observed, and
according to this immediate behavior a decision is being made on the best
future page placement. The implementation of this policy on System-level is
pretty straightforward, and this is probably the key reason that contributed
to its popularity. A History-Page scheduler would periodically migrate pages,
probably using the move_pages()2 system call, such that those that are hot in
the current scheduling epoch/interval, are allocated to DRAM until capacity is

1A page fault occurs when a program attempts to access a block of memory that is not stored in the physical
memory, or RAM.

2move_pages - move individual pages of a process to another node

44

full. Of course, for this solution to be considered efficient we hope that these
hot pages will remain hot in the next scheduling interval as well.

We compare the History Page scheduler implementation with an Oracle page
scheduler, which uses a priori knowledge to periodically migrate application
pages such that those that are indeed highly accessed, in the next scheduling
epoch are placed in DRAM until capacity is full (Fig. 3.4). We observe that
the there is a significant gap in the obtained versus the attainable application
performance.

The main metric used to assess the performance of those two is the DRAM
hitrate percentage. In other words, using several workloads (that will be thor-
oughly described later on) we measured how many main memory requests are
going to be served by DRAM if a System utilizes a History Page Scheduler or
an Oracle Page Scheduler. We used several DRAM to NVM ratios to assess the
performance each time. We tested each workload in 8 different HMS scenarios
(Table 3.1) in order to gain insight about how close or far is the performance
(DRAM hit-rate) obtained by a History Page Scheduler and an Oracle Page
scheduler. This examination was necessary. If we found out that the perfor-
mance gap between the History Scheduler and the Oracular was insignificant,
there would not be a need to come up with new Page Scheduling proposals.

For instance, we used the backprop workload and examined this applica-
tion’s behavior in case it is executed in the following simulated Hybrid Memory
Systems:

Page Scheduler DRAM:NVM
History 1:4 i.e. only 1/4 of memory footprint fits in DRAM
Oracle 1:4 i.e. only 1/4 of memory footprint fits in DRAM
History 1:8 i.e. only 1/8 of memory footprint fits in DRAM
Oracle 1:8 i.e. only 1/8 of memory footprint fits in DRAM
History 1:16 i.e. only 1/16 of memory footprint fits in DRAM
Oracle 1:16 i.e. only 1/16 of memory footprint fits in DRAM
History 1:32 i.e. only 1/32 of memory footprint fits in DRAM
Oracle 1:32 i.e. only 1/32 of memory footprint fits in DRAM
History 1:64 i.e. only 1/64 of memory footprint fits in DRAM
Oracle 1:64 i.e. only 1/64 of memory footprint fits in DRAM

Table 3.1

Obviously we expected performance drops (lower DRAM hitrate) as DRAM
to NVM ratio decreases even for an Oracle Page Scheduler, due to the fact
that not many applications pages fit in DRAM at a given time. An important
point is also clearly illustrated. There are workloads that historic information
is enough to achieve an acceptable data placement across the different memory
modules. However, in most cases a Page scheduler based solely on historic in-

45

Figure 3.4: History and Oracle Page Schedulers DRAM hitrate for different workloads across
variable DRAM to NVM ratios

formation is limited in the performance opportunities they can provide running
on Hybrid Memory Systems. It is obvious that the gap between what a historic
page scheduler achieves versus what is actually attainable is quite significant
(Even 80-90% in some workloads). Constructing a scheduler that performs
exactly as the oracle is of course unrealistic. A more realistic solution would
likely require augmenting the state-of-the-art scheduler with more intelligent,
predictive mechanisms.

Machine Intelligence based solution

As we mentioned above, it is clear that the immediately observed memory
access behavior is not sufficient to capture the necessary information that allows
correct future behavior predictions for making clever placement decisions. Yet,

46

we suspect that a larger window of accesses would probably allow the ability
to capture historic information (long term access) while also leveraging recent
accesses (short term access) for effective data placement.

There are a few design possibilities when it comes to augmenting the current
state-of-the-art history page scheduler. For instance, we can use simple meth-
ods as Markov chains for handling the temporal aspect. Markov chains are
among the most important stochastic processes. They are stochastic processes
for which the description of the present state fully captures all the informa-
tion that could influence the future evolution of the process. This approach
is followed in this paper [38]. Another approach would be to utilize advanced
techniques of machine intelligence. Machine intelligence provides mechanisms
to handle temporal data, capturing both short and long term data dependencies.
It seems to be a good fit to our problem, since there is a lot of ongoing research
around techniques in Reinforcement Learning and Deep Neural network field,
that would allows us to capture page access patterns.

Page Migration Challenges

Before designing and implementing a Page Scheduler, it is of utmost importance
to highlight briefly the challenges that make the construction of an oracular one
intricate. After taking into consideration the challenges and the difficulties, it
would be much easier to conceive and evaluate a realistic technique of migrating
pages.

Implementation Overhead

The most common techniques that are currently used in the context of migrat-
ing pages across memory components, are relatively easy to implement but are
somewhat restricted when it comes to making accurate predictions. On the
other hand, more enhanced techniques would require a considerable amount
of metadata. These enhanced techniques are often based on Machine Learning
models which can either reside in memory, or they can be implemented on-chip.
Either way, using machine intelligence for achieving higher prediction accuracy
comes with the cost of occupying a substantial chunk of our system’s resources.
Apart from that, a machine intelligence and generally a more complex schedul-
ing approach would require some extra processing cycles, since inferring pre-
diction models, in most cases, require some data processing, and thus the time
and processing resources needed are probably non trivial.

47

Data Retrieval

An efficient and fully functioning Page Scheduler in Hybrid Memory Systems
requires the acquisition and storage of essential data. In most cases, the Last
Level Cache (LLC) Misses are processed and utilized to make design decisions.
However, collecting data concerning LLC Misses is not trivial. Heretofore there
is not hardware support to retrieve that data. There are a few approaches that
researchers seem to take when the acquisition of such data is needed.

A relatively simple approach is to utilize the Page Table Entry Protection
and Status bits.

Bit Function
_PAGE_PRESENT Page is resident in memory and not swapped out

_PAGE_PROTNONE Page is resident but not accessible
_PAGE_RW Set if the page may be written to

_PAGE_USER Set if the page is accessible from user space
_PAGE_DIRTY Set if the page is written to

_PAGE_ACCESSED Set if the page is accessed

Table 3.2: Page Table Entry Protection and Status Bits.

Using a polling technique on the _PAGE_ACCESSED bit allows us to re-
trieve information about pages that are accessed by an application. Acquiring
the data needed using this technique would require to periodically check the
PTE status bit for the whole address space of a process, which is obviously
unrealistic and incurs substantial overhead. This technique could be more
lightweight, if used only for just a fraction of the address space, with the obvi-
ous consistency compromises that this entails. Apart from that, the other key
problem with this technique is that the system’s cache structure is not taken
into consideration. Data collected this way might prove to be unreliable and
unsafe to base our whole design analysis on.

Another approach is to use binary instrumentation. Binary instrumenta-
tion is the technique of modifying a binary program. Instructions are added,
modified or deleted. By using dynamic code injection techniques, no special
preparation or recompilation of the executable is necessary, since the instru-
mentation code is generated during the execution of the application. Many
researchers prefer this approach due to the support of the development commu-
nity and the high versatility that instrumentation offers. The resource overhead
of binary instrumentation is certainly non negligible. However, the consistency
of the results that this technique provides and the absence of actual hardware
support are certainly the main contributors to binary instrumentation’s popu-
larity. The main instrumentation tool used to obtain memory accesses is Intel

48

Pin [39]. We will elaborate on Intel Pin and its use later on this Thesis.

Page Movement

Core functionality of the Page Scheduler we aim to construct is the Page Move-
ment/Migration across different memory components. In other words, our Page
Scheduler would have to periodically move pages from DRAM to Persistent
Memory and vice versa. This is a complicated task due to the fact that Per-
sistent Memory is relatively new and there is no special hardware support that
allows seamless page migration from and to DRAM. Most research in this field
has been conducted on emulators thus far. Therefore, there was no urge to take
into consideration the difficulties that come with migrating pages in actual hy-
brid memory systems. In many cases, researchers either avoid mentioning the
actual way of Migrating Pages considering it is a trivial task, or most commonly
they use a system call supported by modern NUMA systems. Move_pages()
is widely used, which is a system call that moves the specified pages of the
process pid to the memory nodes specified by the nodes argument. However,
move_pages() is designed to operate for basic NUMA nodes without taking into
account the peculiarities of Persistent Memory.

49

Chapter 4

Machine Learning & Deep Neural
Networks

Machine Learning is a subfield of artificial intelligence. It is predominantly
defined as the capability of a machine to imitate intelligent human behavior.
Artificial intelligence systems are used to perform complex tasks in a way that
is similar to how humans solve problems. Sample data, known as training data,
are used to build Machine Learning models, in order to make decisions without
being deterministically programmed to do so. A subset of machine learning is
closely related to computational statistics, which focuses on making predictions
using computers; but not all machine learning is statistical learning. The study
of mathematical optimization delivers methods, theory and application domains
to the field of machine learning.

Machine Learning Background

Before trying to apply Machine Learning algorithms and techniques, it is crucial
to define and elaborate on some key Machine Intelligence concepts.

Types of Machine Learning

As with any method, there are different ways to train machine learning algo-
rithms, each with their own advantages and disadvantages. It is necessary to
look at what kind of data each type of machine learning ingests, if we want
to understand the pros and cons of each one. In ML, there are two kinds of
data. On the one hand we have labeled data that has both machine-readable
input and output parameters and require a lot of human labor for data labeling.
On the other hand, we have unlabeled data that has only one or none of the
parameters in a machine readable form. Therefore there is no need for human
labor, but requires more complex solutions.

Three main machine learning methods are used today, even though there are
also some types of machine learning algorithms that are used in very specific

51

use-cases.

Supervised Learning

Supervised learning is one of the most basic types of machine learning. Labeled
data is used for the machine learning model training process. Accurate data
labeling is required for this method to work properly and this is certainly not
easy accomplish. However, Supervised Learning is extremely powerful in the
right circumstances

In supervised learning, a small training dataset is given to the Machine
Learning algorithm. This relatively small dataset serves to give an elementary
idea of the problem, and data points to be dealt with and it is in most cases a
part of a more extensive dataset. The training dataset shares similar charac-
teristics with the final dataset. It also provides the algorithm with necessary
parameters, which are accurately labeled and are required for the problem.
Then, the algorithm tries to establish a cause and effect relationship between
the dataset variables by fiding relationships between the parameters given. At
the end of training, the model has an idea about the relationship between input
and output and of how the data actually works. Supervised learning is mainly
utilized in the following problems:

• Regression Problems : Input data are accompanied with the expected
output variable which is often continuous. The trained model is used to
predict this expected variable. A typical problem which falls into the
category of regression is stock price prediction.

• Classification Problems : In this scenario the desired output variables are
discrete. Classification refers to a predictive modeling problem where a
class label is predicted for a given example of input data. Some examples of
classification include spam detection, churn prediction, sentiment analysis,
dog breed detection etc.

Unsupervised Learning

Unsupervised machine learning main advantage is the ability to work with un-
labeled data. What that essentially means is that no human labor is required
to make the data machine-readable. That allows much larger dataset to be
worked on by the program. In supervised learning, the algorithm is able to
find the exact nature of the relationship between two given data points. How-
ever, the absence of labels to work off of in unsupervised learning results in
the creation of hidden structures. The algorithm perceives the relationship
between data points in an abstract manner, without any human-given input

52

requirement. This hidden structure creation is exactly why unsupervised learn-
ing algorithms is so versatile. Unsupervised learning algorithms can adapt to
the data by altering hidden structures instead of requiring a defined set and
problem statement

Reinforcement Learning

Reinforcement learning draws inspiration from how human beings use the data
they are exposed to to learn in their lives. Reinforcement learning features an
algorithm which uses a trial-and-error method, in order to improve upon itself
and learn from new data-situations. Outputs that are considered favorable are
encouraged or reinforced, while non-favorable outputs are punished.

Based on the psychological concept of conditioning, the reinforcement learn-
ing algorithm is put in a work environment with an interpreter and a reward
system. In every iteration of the algorithm, the interpreter is given the output
result and then determines whether the outcome is favorable or not. If the
programs finds the correct solution, the solution is reinforced by the interpreter
by providing a reward to the algorithm. In case of not favorable outcome, the
algorithms is forced to reiterate until a better result is found. In most cases,
the effectiveness of the result is directly tied to the reward system.

Artificial Neural Networks

Artificial Neural Networks (ANNs), or as they are usually called (NNs), are
computing systems. These systems are heavily inspired by the biological neural
networks that constitute animal brains

What constitutes an Artificial Neural Network is a collection of connected
units called artificial neurons, which broadly model the neurons in an actual
biological brain. Each connection is similar to a synapse in a biological brain.
A signal can be transmitted to other neurons. An artificial neuron receives a
signal then processes it and can signal other neurons that are connected to it.
What we refer as signal at a connection is a real number, and the output of each
neuron is the result of applying some non-linear to the sum of its inputs. The
connections are called edges. Neurons and edges are typically accompanied with
a weight value that adjusts as learning proceeds. The weight either increases or
reduces the potency of the signal at a connection. Neurons can have a threshold
such that a signal is sent if and only if the aggregate signal is bigger than that
threshold. Most commonly, neurons are aggregated into layers and each layer
performs different transformations on its input. Signals travel from the input
layer (first layer) to the output layer (last layer), after traversing the layers
several times.

53

Artificial Neural Network Training

The training process of a Neural Network should be completed in a finite amount
of time, while trying to minimize optimally the required computational re-
sources. To achieve this, it is crucial to carefully tune a few training parameters
such as several methods, tools and the training data. A critical attribute that
the trained Neural Network should have, is the ability to generalize. The abil-
ity of the trained network to make accurate predictions shouldn’t be confined
exclusively to the train and control (test) data. The trained Network should be
accurate and efficient for new data as well.

On a more practical level, training a neural network is nothing more than
a repetitive series of fine-tuning network’s parameters in order to achieve the
desired output (prediction). The amount of repetitions which are often referred
to as epochs influence the model’s ability to accurately classify input data and
generalize. Depending on the refresh of the parameters, training can be sepa-
rated into two categories Batch and On-line learning. During batch learning,
input data are divided in packets (batches) which are jointly used to compute
the new updated weights of the Network. On the contrary, during On-line
learning, every single snapshot of training data is used to refresh the network’s
weights. Training process mainly involves multiple computations of differences
and derivatives, and it is heavily dependent on several parameters such as the
number of training epochs, and activation, cost and optimization functions.

Activation Function

Activation Function is one of the most crucial elements of Deep Learning, due
to the fact that it determines the output of every node and, by extension, the
output of the whole network given a single input or a series of input data.
Therefore, it affects every aspect of the model ranging from the computational
efficiency of training to the network’s ability to converge and accurately make
predictions. For the purposes of completeness several activation functions are
described below.

• Sigmoid Function: It is one the first activation functions that were used in
Neural Network training. The sigmoid function is also known as a squash-
ing function. Its domain is the set of all real numbers, while its range is (0,
1). If the input to the function is either a very large positive or a very large
negative number, the output always remains between 0 and 1. The fact
that, the sigmoid function’s output scales in such a manner leads to small
derivatives, which entails a significantly slower learning process. This is
often referred to as Vanishing Gradient and is the root of many problems
in the learning process

54

Figure 4.1: Sigmoid Function

Mathematically the output of the sigmoid function is computed as follows:

f(x) = σ(x) = 1
1+e−x

• Hyperbolic tangent: It is a continuous function which produces outputs in
a scale of [-1,+1]. In other words, the hyperbolic tangent function produces
output for every x value. Compared to the sigmoid function, values close to
0 are not changed. Hence, those values also contribute to the propagation
process.This is advantage is the primary reason why this function is widely
used in Recurrent Neural Networks. The Vanishing Gradient effect can be
observed when using this function but to a smaller extent compared to the
sigmoid function.
Mathematically the output of the hyperbolic tangent function is computed
as follows:

f(x) = tanh(x) = ex−e−x

ex+e−x

• Rectified Linear Unit - ReLU : It’s the most popular and widely used
activation function. Using ReLU, input data that are less than 0 are not

55

Figure 4.2: Hyperbolic Tangent Function

considered during the training process. This is clearly visible both from
the math formula of ReLU, and the following figure.
Mathematically the output of ReLU function is computed as follows:

f(x) = max(0, x)

Figure 4.3: ReLU and Leaky ReLU

This particular behavior of ReLU, practically deactivates the neurons whose
output value is less than zero. This way, the learning time is decreased,
thus the efficiency of the network is significantly improved. That same
property of ReLU also comes with a cost. For the negative values we have
a horizontal segment which entails a derivative that is constant and zero.
That means that there are no changes during the learning process. This
restriction is well known as dying ReLU, which indicates the inability of
using a neuron that has a negative value. To combat this problem, what
is often used is a slightly modified version of ReLU, called Leaky ReLU.
Leaky ReLU does not produce zero as output for the negative values. In-
stead, a linear function with a slight slope is used in order to enable neurons
that have received a negative value to recover.

56

• Softmax: Softmax is a generalization of the sigmoid function. It is mainly
used for classification problems which involve more than two classes. Es-
sentially, it normalizes the output values. After applying softmax each
component will be in the interval of [0,1] and the components will add up
to 1, so that they can be interpreted as probabilities.
Mathematically the output of softmax function is computed as follows:

Softmax(xi) = exp(xi)∑
j exp(xj)

Cost Function

A cost function is utilized as a control metric for the repetitive process of
training. It essentially helps to evaluate how badly the prediction models are
performing. In simple terms, a cost (or loss function) is a measure of how wrong
the model is in terms of its ability to estimate the relationship between y and X.
Typically, this is expressed as a distance between the actual and predicted value.
The cost function is estimated by iteratively running the model to compare
estimated predictions against the known values of y.

The most well-known cost function is Cross-Entropy Loss which mathemat-
ically is formulated as follows:

J(θ) = −H(y, p) = −
N∑
i=0

ŷi log(pi, j) (4.1)

N is the number of the different classes, yi is the estimated value for the
observation i and pi, j = p(ŷi = j|x) is the posterior probability of i to belong
to class j. The equation provided above computes the cost of every input
sample. For the total cost we simply need to compute the arithmetic mean of
all the individual cost.

Another popular and widely used cost function is the Mean Squared Error
(MSE) function. The mean squared error (MSE) tells you how close a regres-
sion line is to a set of points. It does this by taking the distances from the
points to the regression line (these distances are the “errors”) and squaring
them. The squaring is necessary to remove any negative signs. It also gives
more weight to larger differences. It’s called the mean squared error as you’re
finding the average of a set of errors. The lower the MSE, the better the forecast.

J(θ) = 1
n

M∑
i=0

(Yi − ŷi)2 (4.2)

This function takes into account purely arithmetic differences. This may
cause a lot of problems when used for classification purposes, since classes most
often than not are not ordered numbers.

57

Optimization Techniques and Algorithms

The process of minimizing (or maximizing) any mathematical expression is
called optimization. The algorithms and methods used to change the attributes
of a neural network (i.e. weights and learning rate) with the aim of reducing
the losses are called Optimizers. They are used to solve optimization problems
by minimizing the function. Various optimizers are researched within the last
few couples of years each having its advantages and disadvantages.

The most common technique used for Artificial Neural Network training is
Back Propagation. In fact, it is not a single technique but a group of methods
that are used for optimization based on gradient. A common characteristic that
these methods share, is the repetitive and recursive approach for computing the
updated weights of the network. More specifically, back-propagation is used
when training neural network models to calculate the gradient for each weight
in the network model. The gradient is then used by an optimization algorithm to
update the model weights. The whole process of back-propagation is subsequent
to Feed-Forward, during which the network is given an input x and it produces
an output y. The adjustment of every weight requires the computation of the
gradient of the loss function with respect to the weight of every neuron k of the
network ∂J(θ)

∂wk
. For this particular computation the chain rule (from calculus)

is leveraged, computing the gradient one layer at a time, iterating backward
from the last layer to avoid redundant calculations of intermediate terms in the
chain rule. This group of optimization methods’ popularity is fundamentally
attributed to the fact that they provide an efficient weight computation, while
offering quick readjustments to potential arbitrary bias value of a neuron.

Gradient descent is another well established optimization method. Gradient
descent is an iterative optimization algorithm for finding the local minimum of
the cost function using the gradients of the problem’s parameters. The compu-
tation is repeated until convergence is reached or a pre-determined amount of
iterations (Termination criteria) is completed. The network’s parameters are
updated based on the following mathematical formula:

θt+1 = θt − λ∇θJ(θ) (4.3)

θ represents the amount of parameters of the network, λ represents the learning
rate and J(θ)) represents the cost function. In most cases, modified versions
of the gradient descent algorithm are put to use which differ in the amount of
data they use.

• Batch gradient descent, also called vanilla gradient descent. The error
for each example within the dataset is calculated. However, the model is
updated only after all training examples have been evaluated. This whole
process is like a cycle and it’s called a training epoch.

58

• Stochastic gradient descent (SGD) differs from Batch Gradient Descent in
terms of doing this for each training example within the dataset. That
means that the parameters are updated for each training example one by
one. This can make Stochastic Gradient Descent much faster than Batch
Gradient Descent depending of course on the problem. What is really
advantageous in SGD is that the frequent updates allow us to have a
pretty detailed rate of improvement.

• Mini-batch gradient descent combines the concepts of SGD and batch gra-
dient descent. That’s what makes Mini-batch the go-to method. The
training dataset is split into smaller batches and updates are performed
for each one of those batches. That is how it establishes a balance between
the robustness of SGD and the efficiency of Batch Gradient Descent.

Figure 4.4: Convergence as reached in the three different Gradient Descent Scenarios

Undeniably, Gradient Descent algorithm has a few drawbacks as well. That
leads to exploring further modifications of the vanilla algorithm. Its constant
learning rate and the slow convergence in problems with a big amount of data
(due to the large gradient variance) lead to new algorithms specifically adapted
to those particular problems. Adam optimizer (Adaptive Moment Estimation)
is based on SGD, but uses a changing learning rate for every parameter-weight
of the network. It utilizes both first and second Moment of gradient, and
simultaneously two Forget Variables are leveraged to avoid oscillation leading
to faster convergence. A similar approach when it comes to learning rate is used
by Adagrad as well. Adagrad decreases the learning rate faster for frequent
parameters, and slower for infrequent parameters. Unfortunately, there are
some cases where the effective learning rate drops significantly fast because
we accumulate the gradients from the beginning of training. This might make
the model reach a point where the learning process practically ends because

59

the learning rate is almost zero. This issue was mitigated by some algorithms
that extend AdaGrad. Adadelta is such an algorithm, which requires no initial
learning rate setting and is insensitive to hyper-parameters.

Recurrent Neural Networks

Many of the simplest neural networks are feed-forward networks. In Feed-
Forward networks data flows in only one direction. Normally, the data flow
begins from a set of input nodes which is connected to a set of the so-called
hidden layer nodes. These hidden nodes then connect to a set of output nodes.
A basic network architecture demonstrating this setup is shown in figure 4.5.

Input

Hidden Layer

Output

Figure 4.5: : A simple feed-forward neural network. Data only flows in one direction. Data
goes from the input layer, to the hidden layer, to the output layer.

Often, we use feed-forward networks for tasks where the ordering of the data
that will be used as input is not important. Image Classification is a good
example of such a task. Typically, for these types of problems, there is not
any relevant temporal relationship between different items in the database of
images. That is mainly why Networks for Image Classification often randomize
the order of the input training data each epoch. Obviously, this is done in
order to refrain from inferring a relationship between the ordering of images
which is actually non-existent. By contrast, Recurrent Neural Networks are
fundamentally used when the temporal relationship between different items in a
dataset is important. With RNNs, nodes in the hidden layer receive information
both from the input nodes and from themselves as well. Information about what
was seen in the past is saved and is used in order to make contextual judgements
about what they are seeing in the present. Information can be actually shared
across several time steps, and visualizing how information is passed from one
time-step to the other is called RNN-unfolding. An example of this is shown in

60

figure 4.6.

Figure 4.6: A simple RNN unfolded through time. x represents input data being sent to a
hidden layer s. On a new timestep st, information W about the past is received from the st−1
layer on the previous timestep. [40]

While the ability to share information across time-steps is very useful for
being able to contextualize data being seen in the present, it has practical limi-
tations. Neural networks are typically trained through backpropagation, where
the errors in the weights of each node in the output layer are propagated back-
wards through the network towards the input layer. This process allows the
weight values in each node to be tweaked so that the network can make better
predictions in the future [41]. For RNNs, backpropagation also happens back-
wards through time. After the node weights are adjusted for st, the calculated
errors in those weights will then be used to adjust st−1. The errors found in
st−1 will then be used to adjust st−2, and so on.

There is a serious problem that needs to be considered. This whole process
can lead to an increasingly long chain of floating point multiplication, which
range between (0,1). What that means is that eventually calculated error values
will be dragged close enough to 0 that typical floating point resolution will no
longer be sufficient to accurately track. Therefore, there is a limitation on how
many time-steps can be kept track of when we use Recurrent Neural Networks.
This is issue of shrinking errors is broadly known as Vanishing Gradient problem
[42] The vanishing gradient issue might arise for problems that use as few as
100 time-steps. Many problems require a much larger number of time-steps,
often they in the order of thousands. For this to be feasible, there is a necessity
to address Vanishing Gradient.

LSTMs

In 1997, Long Short-Term Memory was proposed by Hochreiter and Schmidhu-
ber as a direct way to address the vanishing gradient problem faced by Recur-
rent Neural Networks [43]. LSTMs are considered to be a direct evolution of
Recurrent Neural Networks, and in fact they are used in many networks today.

61

LSTMs cells have what is referred to as gated memory. The memory con-
tained previously in Recurrent Neural Networks flowed time-step to time-step
unregulated. Now, LSTMs have a series of functions, called gates, that the
data flows through. These gates are used to regulate the importance of data.
Modern LSTMs have three such gates, the forget gate F , the input gate I, and
the output gate O. Each one of these gate is in fact itself a simple Neural Net-
work and it is automatically tuned during the overall training. LSTM memory
is also widely known as cell state C.

The input gate decides what new information to add to C. The forget gate
decides what information to throw away from C at the current time-step. The
output gate simply decides what information to provide as output from the
LSTM cell at each time-step. A detailed overview of the LSTM cell is shown
in figure 4.7.

Figure 4.7: Overview of an LSTM cell. Data from both the input layer xt and previous timestep
ht−1 pass through the forget gate Ft, the input gate It , and the output gate Ot. The cell states,
Ct−1 and Ct, flow along the top of the LSTM cell, and act as its memory.

The most important part of LSTMs is the cell state C. Cell state is what
allows information to flow between LSTM cells of thousands or even millions
of time-steps. Vanishing Gradient problem is now removed, since over time
information is changed only by addition via the input gate I or by removal via
the forget gate F and this allows calculated errors to be carried back much
further through time.

The advantages that LSTMs have over traditional Recurrent Neural Network
is what made them really popular in many fields. For instance, they have proved
to be a great choice for dealing with NLP problems such as Speech Recognition
and text to text language translation where long sequences of data are used
[44, 45].

62

Page Scheduling as a Machine-Learning problem

In this section, we explore the machine intelligence techniques that seem to
be a good fit when designing a scheduler for application pages management
over hybrid memory systems. As we observed in chapter 2, there is a need
for more intelligent page placement decisions across scheduling epochs, since
the vanilla History Page Scheduler seems incompetent to perform adequately
enough prediction-wise.

Reinforcement Learning Approach

At first glance, deep reinforcement learning, the technique that enables an agent
to learn through taking actions in a defined environment in order to maximize
reward via the received feedback, seems like a good fit. The page scheduler
could be interpreted as an agent with the purpose of learning the dynamic data
layout that optimizes the application performance across its runtime. This can
be achieved by the following course of actions. The agent periodically interrupts
the execution of the application to take an action, that is to migrate pages
across the memory components. Then the application continues its execution
and during the next scheduling epoch the page scheduler receives its reward,
that is the DRAM hit rate with the most recent page placement.

Although this approach of reinforcement learning seems highly compatible
to the problem description of designing a hybrid memory page scheduler, it is
fundamentally difficult to implement. The possible paths of action that the
agent can take are prohibitively large. The page scheduler needs to act upon
every single page. For instance, if we assume that we have two memory com-
ponents and N pages, the agent needs to consider and choose from 2N possible
placements. As it is fairly obvious the problem space grows exponentially and
depends on the number of the application pages. On account of this, we stopped
considering the reinforcement learning approach for the context of our problem,
despite the fact that there are several researchers that have used this technique
in similar cases [46, 47].

Recurrent Neural Network Approach

Another Machine Intelligence approach, which seems suitable for the design of
the hybrid memory page scheduler, is to use Recurrent Neural Networks. RNNs
are able to find long-term dependencies in a sequence of data points and make
predictions about data behavior, whereas in reinforcement learning interactions
with the environment are the facilitators of learning.

This machine intelligence technique has already been leveraged to solve sim-
ilar problems. It has been used for hardware memory prefetching [8] and in

63

Memory Management in hybrid Memory systems as well. This technique has a
huge advantage over the reinforcement learning one. Different from reinforce-
ment learning, where the problem space complexity grows exponentially with
the number of pages, in the Recurrent Neural Network scenario it only grows
linearly, thus it is more lightweight and not as resource-intensive.

In the context of the page scheduler, these data points can be the sequence
of page accessed throughout an application execution time interval. The page
scheduler can deploy an RNN in order to learn the page access pattern and
make predictions about future page accesses. Using these predictions the page
scheduler can now segregate the pages according to their hotness (access fre-
quency). Pages that are predicted to be frequently accessed in the future are
allocated to the lowest access latency memory technology (DRAM), and the
remaining pages are allocated to the slower NVM.

A Recurrent Neural Network can be constructed via the combination of mul-
tiple LSTM neurons, which where thoroughly described in subsection 4, on a
single layer, stacked LSTM layers together with regular Dense layers. The input
sequence is split into subsequencies of history length h, in a rolling window fash-
ion. During a training epoch all subsequencies are fed into the network, which
then makes a single value prediction for each subsequence. Using the loss func-
tion which takes as a parameter the predicted and the actual value, difference is
calculated and backpropagated into the network, resulting in weights and biases
updates. Training is terminated when there is no reduction in loss, thus the
network cannot make any predictions closer to the actual values. An abstract
design of the LSTM we want to construct is depicted in figure 4.8.

We will elaborate on the layout and the selected hyper-parameters of the
network we constructed and evaluated in the chapters that follow.

Figure 4.8: Example layout of an RNN using LSTM neurons

64

Neural Network Input

We concluded that Recurrent Neural Networks seem to be the best fit for the
problem we want to deal with. One of the most important steps when trying
to design a Neural Network is choosing the features that describe the problem
and are to be used as inputs. There are several paths that can be taken when
it comes to the format of the input sequence of the Recurrent Neural Network
we want to construct. We will now discuss the representation of the data
sequence related to memory access behaviors to be fed into the RNN and the
interpretation of the predicted value. This step is crucial not only for the
accuracy but for the training time of the generated model as well.

Before moving on the different approaches we can take, there is a need to
explicitly define the following.

• Input Data. It is truly important to understand what type of data we
have available for each application. The data we can obtain during an
application’s runtime is a memory trace, a sequence of the page accesses
that were serviced from main memory and not the processor’s hardware
caches.

• RNN’s purpose (Learning Objective). The aim of the RNN training
is to be able to make predictions with respect to future memory accesses on
page level granularity, so as to aggregate the accesses and then determine
the ordering of heavily accessed pages. These predictions will happen
periodically, when the page scheduler is invoked. The appropriate page
migrations are determined and then executed.

• Training Time. Our main goal is to facilitate fast learning via reduced
training times. Our machine intelligence based solution should definitely
be practical and must operate within certain time and computational re-
source budgets. Learning can be certainly accelerated using technologies
like GPUs, TPUs or custom RNNs accelerators, but we undoubtedly need
to explore ways to enable rapid learning via the training methodology (e.g.
input type, RNNs hyperparemeters).

Deltas Prediction

We will now describe the most intuitive approach and that was also explored
by Hashemi et al. [8] for the purpose of prefetching future memory address
accesses. In this approach the memory access trace is fed into the RNN as it
is. The RNN looks at the input sequence and tries to predict the page that is
going to be accessed next.

65

In this use case the problem is treated similar to Natural Language Pro-
cessing classification problems (guess the next word from a whole vocabulary).
However, there is notable problem with this. A modern system has 264 possible
memory locations, and classification networks typically output vectors of length
equal to that of the class vocabulary size. Building a neural network with a
vocabulary size as large as 264 is currently completely infeasible because of lim-
ited memory resources. A vector of this length would take approximately 18
exabytes to store. Due to this, most researchers choose to predict address deltas,
as opposed to the raw addresses themselves. An address delta at a timestep N
is defined as the address at timestep N minus the address at timestep N -1 .

DeltaN = AddrN − AddrN−1

Using address deltas we manage to cut down on the number of possible
classes that our network must predict. The previous equation can be used to
convert virtual addresses into address deltas. An example of this is showed in
the table 4.1.

PC Virtual Address Delta
0x400619 0x7EFEE09AC4A8 0x18
0x400619 0x7EFEE09AC4C0 0x40
0x400619 0x7EFEE09AC500 0x40
0x400619 0x7EFEE09AC540 0x40
0x400619 0x7EFEE09AC580 0x40

Table 4.1: Virtual addresses and their converted address deltas. Repeated address deltas shows
that the program is accessing data at a strided interval.

This approach to feed the whole input sequence, even after transforming the
virtual addresses to address deltas, has some serious limitations that should be
definitely taken into account.

Training Time: More often than not the input trace contains millions of
memory accesses. If we consider High Performance Computing applications
they might even reach the order of billions. Training an RNN using the input
data "as-is" is unrealistic, since the training time in such scenario is prohibitively
large (in the order of several days).

Prediction Accuracy: The main limitation of this approach is probably
the difficulty of achieving acceptable prediction accuracy. The output value
space is significantly large, even when using address deltas instead of actual
virtual addresses and that comes with the cost of low RNN prediction accuracy.

Model inaccurate due to Normalization: It is often beneficial when
working with neural networks to normalize the different input features to be on
the same scale. The primary reason for doing this is that each of the different

66

input is given equal preference during network training. If input features are on
vastly different scales, then the network may end up ignoring some of them and
that will probably lead to poor prediction accuracy. However, in our scenario
normalizing virtual addresses is a complex task. A typical computer will have a
64-bit address space. Therefore, there are 264 different possible address values.
Normalizing values in such a large scale might be hindered by problems in
floating point resolution. Normalized values for Neural Networks are often
stored as 32-bit single precision floats. This particular level of precision is
clearly inadequate when trying to accurately normalize specific address across
such a large numeric region. After analyzing sample memory traces of several
workloads, it was often observed that different areas of activity within the
address space would be separated by large regions of empty space. (as seen
in fig 4.9). Considering the sample trace in fig. 4.9, if normalization happens
across the whole address space with a 32-bit float, then there will effectively be
only three values. Even if sufficiently high resolution float was used, it would
not lead to a better trained network. This is because Neural Network are fairly
invariant to noisy data. Consequently, tiny changes in floating point numbers
would look just like noise. Hence, normalizing address in the standard way will
most certainly lead to a poor performing model.

2.4 2.6 2.8 3.0 3.2 3.4
Virtual Address 1e10

0

100

200

300

400

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

5500 6000 6500 7000 7500 8000 8500 9000
Virtual Address +2.29594e10

0

100

200

300

400

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

Figure 4.9: The first chart depicts the distribution of addresses on the whole address space,
while the second chart depicts a zoomed in area. When viewing the whole address space, misses
are very sparse. However, when zooming in on one of the bars it can be seen that it is very rich
in information. Due to floating point resolution this information will be lost if normalization
happens across the whole address space

Model inaccurate when using K-means Clustering: To combat the
inaccuracy induced by the normalization of addresses in the standard way, a
common practice, as presented in [8], is to reduce the output value space, by
discretizing it into frequently appearing values (classes), and training different
RNNs across clusters of the address space covered by the application. The
popular K-Means algorithm was often used for clustering, and the number of
clusters was chosen manually based on inspecting the distribution of addresses

67

histograms, on the whole address space.
Once clustering was complete, addresses were then normalized locally on a

cluster by cluster basis. However, manually choosing the clusters will be affected
by Address Space Layout Randomization (ASLR). ASLR is a security technique
employed by most operating systems today that randomly offsets the starting
locations in memory of many key data areas [48]. These areas will typically
include the executable base, stack, heap, and libraries. This is done so that an
attacker cannot reliably jump to a known location in memory where sensitive
data might be stored. This results in different layouts in virtual memory when
gathering memory traces, which in turn has an impact on the accuracy of the
RNN model. The different layouts in virtual memory can easily be observed in
figure 4.10.

2.4 2.6 2.8 3.0 3.2 3.4
Virtual Address 1e10

0

100

200

300

400

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

2.4 2.6 2.8 3.0 3.2 3.4
Virtual Address 1e10

0

100

200

300

400

500

600

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

5500 6000 6500 7000 7500 8000 8500 9000
Virtual Address +2.29594e10

0

100

200

300

400

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

1000 1500 2000 2500 3000 3500 4000 4500
Virtual Address +2.306048e10

0

100

200

300

400

500

600

Oc
cu

re
nc

ie
s

Distribution of Address, rodinia3.1/backprop

Figure 4.10: ASLR as it affects the address distribution of the backprop of rodinia suite. The
top two charts show the distribution of addresses across the global address space. The bottom
two charts show how things can change on the local level

Per Page Prediction Approach

The other approach that can be followed in order to tackle our problem, is to
make Per Page predictions. We avoid predicting which page is going to be
accessed next (Across Page Prediction) due to the aforementioned difficulties
this approach entails. Instead, we explore the case of predicting when a page
is going to be accessed next. More specifically, we try to predict how many
times a page is going to be accessed in every scheduling epoch interval. We

68

train individual RNNs (per page RNN) for every application page we want. We
feed the per-page RNN our page of interest’s sequence of access counts across
the scheduling epochs and predict the amount of accesses of this page is going
to receive in the next scheduling epoch. There are several benefits that comes
with transforming the input sequence in this manner.

Great fit to our problem’s description: Our problem is to classify pages
according to their hotness, using each page’s access count on every scheduling
interval, so as to order frequently accessed pages and appropriately migrate
them across the memory components. Transforming our input trace follow-
ing the Per Page Prediction Approach achieves exactly just that. The trained
RNNs will provide an intelligent way to obtain information about a page’s ac-
cess count on a scheduling interval. Then utilizing that information application
pages will be ordered and placed appropriately.

Low training overhead: Per Page Prediction comes with training a dif-
ferent RNN model per page. This is similar to having a single RNN model
the makes predictions across all application pages, when the total number of
pages is in the order of hundred thousands, since the input problem size typi-
cally remains the same. However, as it was observed earlier not all application
pages are critical to application performance (huge empty spaces in the ad-
dress space in figure 4.9). Besides, that is the reason clustering techniques of
the address space into memory regions were implemented by Hashemi et al.
[8] In a similar manner the number of RNN models and overall training time
can be significantly reduced if we only train individual RNN models only for
application-critical memory pages.

High Prediction Accuracy: The maximum number of accesses per epoch
of a single page is probably not going to exceed the order of hundreds. Of
course, that is heavily dependent upon the epoch duration and the hotness of
the page. It is safe to say that the maximum number of page accesses per epoch
is orders of magnitude less than problem space the intuitive approach (across
pages predictions) needed to capture, normalize and predict. Thus, this output
value range is probably more suitable for RNN training, and will most certainly
lead to high prediction accuracy.

69

Chapter 5

Proposed Page Scheduler Architecture

This chapter provides a detailed description of a Page Scheduler for hybrid
memory systems, which leverages the existing state-of-the-art data management
solutions. On top of that, Page Scheduler optimizes application performance by
delivering machine intelligence based placement decisions for a chosen subset
of pages.

Critical Metrics

Before moving onto designing the components of the Page Scheduler there are
several critical metrics that should be explored and considered. Analyzing
application traces can provide us with deep insight into the parameters that
influence application’s performance.

Benefit Per Page

We want to design a Page Scheduler which uses both the existing state-of-the-art
data management approach and Machine Intelligence for a selected number of
pages. One subset of pages will be handled by the state-of-the-art solution which
is pretty lightweight and straightforward to implement. The second subset of
pages will be handled by deploying a Recurrent Neural Network model for each
page in an effort to achieve high prediction accuracy, which would have been
impossible to obtain using the state-of-the-art approach. However, choosing the
amount of pages that need smart placement is an intricate task. We can not
deploy a Recurrent Neural Network for every single page, as it is fairly obvious
that the resource overhead would skyrocket.

After analyzing a few application traces we observed that there is no need
to deploy a huge amount of Recurrent Neural Networks. We can achieve sig-
nificant performance improvement when only deploying Neural Networks for a
small subset of pages.

71

0 20 40 60 80 100
Percentage of Pages requiring Intelligent Placement (%)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f H
is

to
ry

-O
ra

cl
e

br
id

ge
d

pe
rfo

rm
an

ce
 g

ap
 (%

)
backprop kmeans streamcluster hotspot lud blackscholes bodytrack bplustree

Figure 5.1

In Figure 5.1 we can observe the relationship between the percentage of pages
placed across memory components using Machine Intelligence and the obtained
performance speedup compared to solely using the state-of-the-art (history-
based) approach. It is fairly obvious that in most cases this relationship doesn’t
follow a strict linear pattern. For instance, as far as the backprop application
(rodinia 3.1 suite) is concerned, we can bridge the performance gap of the
history-based and the oracular scheduler by 60% , by only handling 20% of the
pages in an intelligent way. This seems to be the case for most of the workloads
we studied. For the majority of them, we can achieve a significant performance
speedup (30% , 40%) without having to deploy RNN models for a huge amount
amount of pages. With an intelligent placement of a relatively small subset

72

of pages 10% or 15% of the total amount of pages used by the application, a
significant boost in DRAM hitrate can be achieved.

Migration Frequency

There is certainly a need to explore how the frequency of the Page Scheduler
would affect performance. The Scheduler we wish to construct would peri-
odically migrate pages across the different memory components. We need to
determine the duration of this period, so that we can achieve a high DRAM
hitrate without migrating pages too often causing unnecessary bus congestion.
However, choosing a proper migration frequency is a complex task.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Scheduling Intervals 1e6

0

20

40

60

80

D
ra

m
 H

itr
at

e
(%

)

backprop kmeans streamcluster hotspot lud blackscholes bodytrack bplustree

Figure 5.2

In figure 5.2 we can observe how different migration frequencies affect DRAM

73

hitrate. The scheduler used in this example is the naive history-based sched-
uler, which draws information exclusively from the current period and makes
predictions about the page accesses for the next one.

It is pretty clear that choosing a short period (i.e. scheduler making place-
ment decisions more frequently) results in a significantly higher DRAM hit-rate,
despite the fact that the placement policy remained unchanged. Most of the
workloads appear to behave in a similar manner. Ramping up the scheduler’s
frequency seems to have an immense impact to DRAM hit-rate for most of them.
That is obvious considering the exponential trend line most of the workloads
follow. Only lud workload’s hit-rate seems to follow a linear trend, but that is
totally expected since the hit-rate was relatively high even for low scheduling
frequencies. However, choosing a really high migration frequency to achieve a
high DRAM hit-rate is practically impossible, due to the fact that the frequent
inference of the page scheduler as well as the huge amount of Page Movement
across memory components would probably cancel out the performance boost
acquired from the high DRAM hit-rate. Page migration and the scheduler’s
inference latency are certainly not trivial in real world scenarios. Therefore,
these parameters should be also taken into account for our design.

Page Scheduler Overview

The proposed Page Scheduler is inferred on every scheduling epoch and is
obliged to take some specific actions.

• Identify performance-critical application pages through the Page Selector
component

• We now have two subsets of pages. The first one that has the critical Pages
that demand special handling, and the second one with the remaining
pages. An individual Long Short Term Memory network is trained for
each critical page, in order to make predictions about the page access
counts for the following scheduling epoch. For the rest of the pages, a
History-Based approach is used. Thus, it is assumed that they preserve
their access counts in the following epoch.

• We have now accumulated the per page access counts for the next schedul-
ing epoch. Then pages are ordered in descending predicted access fre-
quency order. The most frequently accessed are then allocated to DRAM
until the capacity is full, while the rest of the pages are placed to the slower
NVM.

Now, an overview of the proposed Page Scheduler is presented. The following

74

figure briefly describes the structure of the Page Scheduler.

Figure 5.3

To extensively comprehend how the page scheduler operates, it is sufficient
to observe the Figure 5.3. On the left part of the figure we can see the pages
accessed by an application. Each column represents a period and each box
represents a Page. A box with a deep red color means that a page in that period
was accessed frequently. And boxes with blue-ish colors means that they were
not accessed frequently. For example Page 4 was rarely accessed on the first
period. Then for the 2nd and 3rd it was frequently accessed and then for the
4th period it went back to being rarely accessed. Now having that information
we want to make decisions about the next period. What is going to be the
behavior of page 4 in the following period? Is it going to be hot or cold? A
plain history-based page scheduler would predict that it will have the exact same
behavior as it did on the previous period. Therefore it would predict that it
would be rarely accessed in the next period. The Page Scheduler proposed has a
page selector component. Page selector component tries to identify which pages
require special attention. For example in our scenario the page selector might
decide that making a decision about page 4 using the history based approach is
not sufficient and eventually will cause performance implications. Therefore the
page selector will choose Page 4 as one of the Pages that need special attention.
We make predictions about these particular pages using LSTMs (Recurrent
Neural Networks) in order to achieve a higher prediction accuracy. In this
particular scenario depicted in Figure 5.3 we can see that the Page selector
decided that four of the pages require special attention and the other six don’t.

75

That’s why the predictions for those four pages are handled by four individual
LSTM networks and the predictions for the remaining 6 pages are handled by
the history page scheduler. Then, the pages are placed into the two different
components according to those predictions.

Page Scheduler Components

The components of the proposed scheduler are clearly depicted in Figure 3.5,
but they are not thoroughly described. At this point, we will dive into the
details of the Page Selector and the Access Count Predictor components used
in the proposed implementation.

Page Selector

The Page Selector is probably the most important component of the Page Sched-
uler. As it was mentioned in ??, not all Pages have a strong effect on applica-
tion’s performance. Many pages are properly placed when using the lightweight
history based approach. Thus, those pages do not need Machine Intelligence.
On the other hand, there is a subset of pages that definitely require a more in-
telligent management. Therefore, an explicit segregation of the Pages should be
performed. Its Page Selector’s responsibility to distinguish which Pages require
Machine Intelligence and which don’t.

Ideally, if unlimited computing resources were available, every single Page
would be managed using Machine Intelligence as shown in the following Figure.

Page 6

Page 9

Page 5

Page 7

Page 8

Page 10

Page 2

Page 3

Page 4

Page 1

Address Space

Access counts across previous
scheduling epochs

Page Scheduler

RNN

RNN

RNN

Page Access count prediction for
current interval

DRAM

NVM

Hot P
ages

Cold Pages

RNN
RNN

RNN

RNN

RNN
RNN
RNN

Figure 5.4

76

That way, by deploying a single RNN for each application Page, maximum
prediction accuracy would be achieved. Obviously, this is totally unrealistic
and certainly not scalable if we consider that HPC and Big Data applications
can have millions of Pages.

As it was mentioned in 5.1, not all Pages have a strong effect on applica-
tion’s performance. Many pages are properly placed when using the lightweight
history based approach. Thus, those pages do not need Machine Intelligence.
On the other hand, there is a subset of pages that definitely require a more
intelligent management. This leads to the conclusion that, a realistic imple-
mentation would be to apply Machine Intelligence techniques (RNNs) only on
the subset of Pages whose timely DRAM allocation brings significant perfor-
mance improvement. For the remaining Pages, the lightweight history-based
solution would be incorporated.

This approach involves the explicit segregation of the Pages into two subsets
according to their effect on performance. Page Selector is responsible for
distinguishing which pages require Machine Intelligence and which don’t. To
divide the Pages into those two subsets, Page Selector takes into account two
metrics for every page.

1. The amount of times a Page has been accessed while taking into consid-
eration the read and write latency asymmetry in NVM module. Clearly,
frequently accessed Pages have the most significant impact on performance
and therefore, their proper management should be prioritized.

2. The ability of the history-based scheduler to place that Page correctly.
If the lightweight History scheduler is able to properly place that page
across the different memory components, there is no need to apply resource
intensive Machine Intelligence techniques for that particular page, since
there would be no additional benefit from a more accurate prediction.
However, if the number of misplacements of that page from the history-
based scheduler is not trivial; namely that page should have been placed in
DRAM but it was falsely placed in NVM instead from the history scheduler,
a Recurrent Neural Network should probably take over and manage the
placement of that Page.

These two metrics are combined in the following formula for every Page X
across scheduling periods i=0...N :

Profit(x) =
N∑
i=0

Accessesi(x) ∗Misplacementi(x) (5.1)

Accessesi(x) is the amount of times Page x was accessed during the i-th

77

scheduling interval and is described as follows :

Accessesi(x) = 3 ∗Writesi(x) +Readsi(x) (5.2)
and Misplacementi(x) is a function which is defined:

Misplacementi(x) =
 1 if Page x was misplaced during Period i

0 if Page x was properly placed during Period i

A sample workflow of Page Selector component can be seen in the figure 5.5.
Page Selector component utilizes models to estimate application performance by
simulating the page scheduling process given of course a specific Hybrid Mem-
ory System Configuration as shown in the figure below. First, it generates an
application runtime estimate when using history-based scheduling. This way,
we capture information about the number of times each page was misplaced
due to inaccurate Page Hotness estimation when using solely historical infor-
mation. This information is then coupled together with the Page Hotness into
the Profit factor as described above and the Page priority for machine-learning
based management is determined. Now that the pages have been ordered, a
performance curve similar to figure 5.1 generated and the smallest subset of
pages that delivers acceptable performance is selected for RNN training.

Pa
ge

 1

Address Space

A
cc

es
s

co
un

ts
 a

cr
os

s
al

l
sc

he
du

lin
g

ep
oc

hs

Pa
ge

 2

Pa
ge

 3

Pa
ge

 4
Pa

ge
 5

Pa
ge

 6

Pa
ge

 7

Pa
ge

 8
Pa

ge
 9

Pa
ge

 1
0

DRAM to NVM
Number of Components
Memory Component's access latencies

Configuration for Performance Estimation

Page Selector

Performance Estimate History Predictions

Misplaced Pages

Performance Estimate w/ Hybrid Scheduler

History Scheduler
for 100-x % of
Pages

Oracle Scheduler
for x % of Pages

R
ep

ea
t f

or
 m

ul
tip

le
 x

%
 u

nt
il

Pe
rfo

rm
an

ce
 G

oa
l i

s
m

et

x = 30 % (i.e. 3 Pages need smart
Placement)

Page 2, 7, 8
Page 1,3,4,5,6,9,10

Performance Goal

Figure 5.5: Page Selector component used to identify the subset of Pages that require Machine
Learning based management

78

Access Count Predictors

Important components of the Page Scheduler we wish to construct are the
Access Count Predictors. The functionality of the Access Count Predictors
is pretty straightforward. After every scheduling interval, the Page Scheduler
should estimate how many times every page is going to be accessed within
the following interval. As it’s been aforementioned, a subset of Pages require
intelligent management and thus RNN-based Predictors are going to be
used, while a History-based Predictor will make access count predictions
for the remaining pages.

History-based Predictor

The history based Predictor has been already referenced a lot throughout this
Thesis. It uses solely information of the previous scheduling interval to make
predictions about the one that follows. Its implementation is pretty straight-
forward and it is widely explored in Computer Architecture concepts such as
TLB or Cache-line prefetchers. A simple overview of a History-based Access
Count Predictor can be seen in Figure 5.6.

Address Space

Access counts across previous
scheduling epochs

History-based
Predictor

Page Access count prediction for
current interval

Page 6
Page 5

Page 7

Page 8

Page 2

Page 3

Page 4

Page 1

Page 10
Page 9

Figure 5.6: History-based Predictor: Predicts that a Page will be maintain the same amount
of access within the next scheduling interval

RNN-based Predictor

For a selected subset of Pages, a different RNN model will be used for every
page. Having a different model per page, when the total number of pages can

79

be in the order of hundred thousands, is similar to having a single RNN model
that makes predictions across those pages, since the input problem size remains
the same. For our models, we create networks based on LSTM cells. We stack
two LSTM layers followed by one Dense layer. The simplified layout overview
can be seen in Figure 5.7.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Loss
Predicted ValueReal Value

Input Sequence

RNN
Layer 1

RNN
Layer 2

Dense
Layer

Back Propagation

Figure 5.7: RNN-based Predictor: has two layers of LSTM cells followed by a dense layer

The specifics of the input sequence manipulation, and the hyper-parameters
chosen for the models thoroughly described in Chapter 6 with other implemen-
tation details.

DRAM Eviction Policy

An essential part of a Page Scheduler we have not touched upon yet is the
DRAM-page eviction policy. We need to come up with a way of deciding which
element to evict.

Probably the most common and broadly used eviction policy is LRU (or
Least Recently Used) which is really popular as a Cache Eviction Policy as
well. Practically having an LRU policy means that if DRAM size has reached
the maximum allocated capacity, the least recently accessed objects (pages) in
DRAM will be evicted.

80

Our Page Scheduler will utilize an enhanced-LRU eviction policy. We will
use a clustering technique of the address space into memory regions similar to
Hashemi et al [8]. We observed that the distribution of addresses across the
whole address space is very sparse, as it is depicted in figure 4.10. We opt to
cluster the different addresses into discrete regions. The popular K-Means clus-
tering alogirthm is used. The number of clusters is chosen manually based on
inspecting the distribution of addresses histograms on the whole address space.
For example based on the figure 4.10, after observing the global distribution of
addresses of the backprop benchmark from rodinia 3.1 the address space will
have three address clusters. After clustering the address space every page will
have a distinct clusterID that will be used during the DRAM page eviction
process.

During every scheduling epoch, we will maintain information about the most
active address clusters. Pages that belong to the most active clusters will be
prioritized to retain their position in DRAM during the eviction process. That
way, we try to take advantage of the spatial and temporal locality of the data,
based on the observation that a cluster that is highly active during a scheduling
epoch will probably remain active within the scheduling epoch as well. Of
course, the LRU policy is still the biggest contributor to the eviction process but
now is combined with extra information that lead to better eviction decisions.

81

Chapter 6

Technical Implementation

Having formally defined the Page Scheduler in the previous chapter, here we
describe the details of the technical implementation of our algorithm in length.
Firstly, we briefly describe the set of the applications that were used for eval-
uation, and how the collection of memory access traces of those applications
was realized. Then, we provide details about the lightweight Hybrid Mem-
ory System Simulation that was constructed in order to evaluate the Page
Scheduler. Finally, we present all the details of the Neural Networks’ layout,
hyper-parameters and input data.

Benchmark workloads

We used a particular collection of programs for the evaluation of our Page
Scheduler. Those programs span across domains with representative computa-
tion kernel and stress different components of the system. Some of the work-
loads used are from the PARSEC [17] and others are from Rodinia 3.1 [16] using
the simlarge input sizes and the default input data sizes respectively.

Lud (rodinia 3.1) belongs to the domain of Linear Algebra : LUD (LU
Decomposition) is an algorithm to calculate the solutions of a set of linear equa-
tions. The LUD kernel decomposes a matrix as the product of a lower triangular
matrix and an upper triangular matrix. This application has many row-wise and
column-wise interdependencies and requires significant optimization to achieve
good parallel performance. LU Decomposition exhibits significant inter-thread
sharing and row and column dependencies. [49]

Backprop (rodinia 3.1) belongs to the domain of Machine Learning :
Backprop is a machine-learning algorithm that trains the weights of connecting
nodes on a layered neural network. The application is comprised of two phases:
the Forward Phase, in which the activations are propagated from the input
to the output layer, and the Backward Phase, in which the error between the

83

observed and requested values in the output layer is propagated backwards to
adjust the weights and bias values. [16]

K-means (rodinia 3.1) belongs to the domain of Data Mining: K-means
(KM) is a clustering algorithm used extensively in data mining. This identifies
related points by associating each data point with its nearest cluster, comput-
ing new cluster centroids, and iterating until convergence. [16]

Hotspot (rodinia 3.1) belongs to the domain of Physics Simulation:
HotSpot (HS) is a thermal simulation tool used for estimating processor temper-
ature based on an architectural floor plan and simulated power measurements.
[16]

Bplustree (rodinia 3.1) belongs to the domain of Graph Theory: BPlus-
tree is an application that traverses B+trees. B+Tree represents sorted data
that allows efficient insertion and removal of graph elements. [49]

Blackscholes (PARSEC) belongs to the domain of Finance: The blacksc-
holes application is an Intel RMS benchmark. It calculates the prices for a
portfolio of European options analytically with the Black-Scholes partial differ-
ential equation (PDE) [17]

Bodytrack (PARSEC) belongs to the domain of Computer Vision: The
bodytrack computer vision application is an Intel RMS workload which tracks a
3D pose of a marker-less human body with multiple cameras through an image
sequence [17]

Streamcluster (PARSEC) belongs to the domain of Data Mining: This
RMS kernel was developed by Princeton University and solves the online clus-
tering problem: For a stream of input points, it finds a predetermined number
of medians so that each point is assigned to its nearest center. The quality
of the clustering is measured by the sum of squared distances (SSQ) metric.
Stream clustering is a common operation where large amounts or continuously
produced data has to be organized under real-time conditions, for example net-
work intrusion detection, pattern recognition and data mining. [17]

As far as the memory footprint of those applications is concerned, it is in
the order of couple of hundreds of MBs. Having such a significant memory
footprint is of utmost importance, since we need to capture the use case where
the data will span across multiple memory components due to DRAM capacity

84

limitations.

Collecting Memory Access Traces

One the most important parts of our technical implementation is the collection
of the memory access traces for every single workload mentioned above. For
each application, we need detailed traces of the data accesses that missed the
Last Level of Processor’s hardware caches (LLC miss) and thus resulted in
main memory accesses.

For the workloads, we collected traces for memory accesses that miss the
last level cache on a system with Intel(R) Xeon(R) Gold 5218R CPU clocked
at 2.10GHz. As it was previously stated in section 3, unfortunately there is not
a straightforward way to obtain those traces. As of now, there is not hardware
support to obtain information about the data accesses that caused an LLC
miss. For that very reason, we considered Intel Pin 3.13-98189 [14] to acquire
reliable traces, due to the fact that Pin is a dynamic binary instrumentation
framework that enables the creation of dynamic program analysis tools. This
allowed us to build a custom tool that would perform program analysis at the
application’s runtime.

For our custom pintool, we performed binary instrumentation on instruction-
level granularity. Using a pin cache simulator consisting of L1-data , L1-
Instruction, L2 and L3 caches of sizes that are representative of a real Hybrid
Memory System, we filtered every instruction during the execution of every
application and only retained information about those who resulted in a Main
Memory access. For our custom pin cache simulator’s cache sizes we used as
reference the a hybrid memory system with the following specifications:

• L1 Data cache : 1.3 MiB

• L2 Instruction cache : 1.3 MiB

• L2 Cache : 40 MiB

• L3 Unified Cache : 55 MiB

The information included for each individual access has the following format:

Thread ID1 , Timestamp , Operation , Virtual Address

For the purpose of our analysis we extract the 4 KB virtual page ID, that
corresponds to the virtual memory address accessed and we group memory
accesses into scheduling epoch interval similar to kleio [9].

1only single threaded applications were considered due to the lack of support provided by Pin

85

Hybrid Memory System Simulator

Our objective is to assess the performance of the Page Scheduler we designed.
Ideally, the whole evaluation process would haven been conducted in a real
Hybrid Memory System, but as of now this is nearly impossible. The lack
of a system level API to migrate memory pages across the different memory
components, combined with the fact that there is not an unanimously agreed
and established process of capturing main memory accesses lead us to use a
custom lightweight Hybrid Memory System Simulation.

We simulate a hybrid memory system that contains two different memory
components. It contains a fast one (i.e. DRAM) and one with a higher ac-
cess latency (i.e. NVM). The persistence attribute of NVM is not taken into
consideration in our simulating environment, since we suppose that NVM is
configured in Memory-Mode and serves as an extension of DRAM.

The capacity of our memory system is assumed to be the application’s mem-
ory footprint similar to [9]. The ratio between NVM and DRAM is configurable
in our simulator. For example when we instantiate our Simulator with DRAM
to NVM ratio that is equal to 1:4, it means that DRAM will have a restricted
capacity and will be able to host no more than 1/4 of the application’s pages,
while the other 3/4 will be serviced by the slower NVM.

Our simulator is constructed appropriately, so that it can accommodate our
Page Scheduler. It is mainly used to obtain information about DRAM hit-rate.
Specifically after initializing the HMS-Simulator and our Page Scheduler for
a given Memory Access Trace we are given information about how many and
which Page Accesses were serviced by DRAM and which were serviced by the
slower NVM. Apart from DRAM hit-rate we are able to collect data that will
assist on extrapolating the application runtime. Also, the DRAM page eviction
policy is configurable and of course, we assume dedicated DMA engines that
allow seamless page migration similar to [50, 9, 51]. In figure 6.1 we can see an
abstract overview of the simulator we constructed.

Recurrent Neural Networks Details

Before diving into the detailed architecture (network’s layers, loss function etc.)
of the Neural Networks, we need to elaborate on the required manipulation of
the data that will be used as input for training and validation.

Neural Network Input

As described earlier we will train and validate a Recurrent Neural Network
for every selected page based on its effect on performance. We followed the

86

DRAM NVM
Config:

R/W Bandwidth
R/W latency
DRAM capacity

Config:

R/W Bandwidth
R/W latency
NVM capacity

Page Scheduler

Page Selector

Config:
DRAM:NVM
Resources for RNN
Memory Trace
Scheduling Period

History Page Scheduler

R
N

N

R
N

N...

R
N

N

Config:
Migration Cost
Eviction Policy

DMA

Pages toMigrate

HMS Simulator

\

HMS-Simulator Input
Config

DRAM:NVM
DRAM R/W Specifications
NVM R/W Specifications
DMA Migration Cost
DMA Eviction Policy
Memory Trace
Resources for RNN*
Scheduling Period*

\

HMS Simulator API
(Performance Estimate)

DRAM hitrate
Application Runtime

Figure 6.1: Python Profiler used to analyze the obtained Memory Access Traces

87

Per-Page approach and avoided making predictions across all pages for various
reasons which are mentioned in section 4.

As far as the input of the RNN is concerned, we need to utilize as much
information as possible in order to achieve high prediction accuracy. Unlike
similar solutions that are proposed in literature [9], we cannot only use a se-
quence of per-page access counts during consecutive scheduling epochs because
a lot of crucial information will be thrown away. Achieving high prediction
accuracy based solely on the access counts of a single page is really difficult.
To construct per-page models that have decent prediction accuracy, we need
to use data that are representative of the page’s behavior in relation to the
application as a whole. This was also clearly pointed out by Hashemi et al. [8],
where both Program Counter and Delta information was required to obtain
accurate models. On account of this, for every single Recurrent Neural Net-
work we use the sequence of access counts of our page of interest combined with
the sequence of access count of its 8 closest page-neighbor during consecutive
scheduling epochs. This way we can utilize information that encapsulate the
spatio-temporal locality of our application without inducing too much compu-
tation overhead.

The input of a Recurrent Neural Network for page x is given by the following
formula

Inputi(x) =
4∑

j=−4

1
|j + 1| ∗ Accessesi(x+ j) (6.1)

The output of the per-page Recurrent Neural Network is the predicted num-
ber of accesses the page will receive during the next epoch. Our models do not
need to be absolutely accurate when it comes to determining the exact amount
of times a page is going to be accessed. They only need to be accurate enough
so that our Page Scheduler can determine the hotness order across all pages.
Thus, there is certainly room for the prediction to slightly differ from the ac-
tual number of accesses, provided that it will not influence the hotness order of
the page and, by extension its placement decision on the particular scheduling
interval.

We normalize the input sequence 6.1 between 0 and 1, since Recurrent Neural
Network (and especially LSTMs) are performing much better in this case. Then,
we denormalize the data for the final prediction. Different from [8] we do not
need to make predictions over distinct integers which would increase the chance
of mispredictions. This is not necessary for the purpose of our predictions, since
we only need to derive information from the model about the relative hotness
of a Page.

88

Neural Network Configuration

A simplified overview of the Neural Network’s Configuration can be seen in
Figure 5.7.

Hyperparameters

The network consist of two stacked LSTM layers with 256 neurons each, fol-
lowed by a Dense Layer. The history length is 20. Thus, the input data series
is split in sequences of length 20, on a rolling window fashion. 3

4 of the dataset
is used as a training dataset, while the other 1

4 is used for validation.
Now, a really important parameter of the Neural Network was the selection of

the loss function. Using most of the popular loss function like mean squared loss
resulted either in poor convergence or poor accuracy due to dataset imbalances.
Therefore, a custom weighted loss function was implemented that resulted in
weighing each label’s contribution to the cost function inversely proportional to
the frequency of the label. This is the sample code for the custom loss function

1 from keras import backend as K
2

3 def loss(y_true , y_pred , weights):
4 weights = K. variable (weights)
5 y_pred /= K.sum(y_pred , axis =-1, keepdims =True)
6 y_pred = K.clip(y_pred , K. epsilon (), 1 - K. epsilon ())
7 loss = y_true * K.log(y_pred) * weights
8 loss = -K.sum(loss , -1)
9 return loss

The neural network tried to minimize this custom loss value between the
predicted and actual values, using the Adam optimizer and a learning rate of
0.01. The training stops if the loss for the validation dataset is not reduced for
30 consecutive training epochs.

Implementation

As far as the implementation is concerned, our RNN models should be com-
patible with our python-based Hybrid Memory System Simulation. For that
reason, we use the Keras high level API [52]. We use the existing implemen-
tation for the LSTM neurons, the Adam optimizer, and model training. For
the additional hyperparameters that are not explicitly determined above, the
default values from Keras were used. The backend execution engine used is
Tensorflow.

89

Chapter 7

Experimental Evaluation

In this chapter, we perform an experimental assessment of the Page Scheduler
in order to evaluate its performance. We previously showed (in Figure 5.1)
that assuming that we had oracular knowledge of the access counts of even a
small fraction of the pages, the performance improvements of an application
are pretty significant. Our goal is to approach oracular knowledge of the access
counts, using Machine Intelligence. Therefore, in this chapter we will not only
evaluate the actual performance improvements our Page Scheduler provides,
but the prediction accuracy of the per-page RNNs as well. We showcase how
close to the Oracle Page Scheduler (i.e. upper limit of performance) our Page
Scheduler can perform. Finally, we touch on the performance boost induced by
our enhanced-LRU policy described in Section 5 and the Estimated Energy
Cost of our Page Scheduling proposal.

RNN Prediction Accuracy

As it’s been clearly stated already, a fundamental component of the Page Sched-
uler are the Per-Page RNNs models. We use them to make better predictions
for the access counts of a performance-critical pages in the next scheduling
epoch compared to the naive approach of history-based predictions.

We now evaluate the prediction accuracy of the per page RNN training for
the application workloads mentioned in section 6. For every workload we deploy
RNNs for the 100 most performance-critical application pages as selected by
the Page Selector (5). We will use the Root Mean Square Error (RMSE) to
evaluate the prediction accuracy of our models. RMSE is widely used when it
is a priority to emphasize on huge errors by penalizing our model. The RMSE
formula is the following:

RMSE =
√√√√(1
n

)
n∑
i=1

(yi − xi)2 (7.1)

Figure 7.1 depicts the distribution of RMSE (Root Mean Squared Error),

91

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans

0

10

20

30

40

50

60
Ro

ot
 M

ea
n

Sq
ua

re
 E

rr
or

History
kleio
9-N RNN

Figure 7.1: Prediction Accuracy of the number of access counts across the scheduling intervals
for the selected trained pages. History, kleio’s RNNs and our RNNs are used as Access Count
Predictors

in boxplot representation, between the per epoch page access counts and the
actual values. In our scenario the equation values in eq. 7.1 are as follows:

• n is the number of epochs

• yi is the actual value

• xi is the value predicted by our models

For example, mean RMSE of 50 means that the average Root Mean Square
Error per epoch per page was 50. Obviously, the value of RMSE is not suffi-
cient enough to evaluate the prediction accuracy of our model. RMSE that is
seemingly low might actually result in wrong Page Hotness ordering and vice
versa. A model with Root Mean Square Error that seems high may not nega-
tively interfere with the global page hotness order and actual page placement.
For that reason, we utilize a History Page Scheduler as a baseline evaluation
model. We treat the decisions of the History Page Scheduler as predictions and
plot the corresponding root mean square error. Obviously, the History Page
Scheduler predicts that on the next epoch, a page will receive the same access

92

counts as to those of the current epoch. Apart from the history page sched-
uler we compare our implementation to the one proposed by [9] as described in
the article. After following as closely as possible the implementation described
in the paper, we deploy Neural Networks for the same 100 pages we deployed
RNNs and evaluate the prediction accuracy achieved by those models.

After observing Figure 7.1, we understand that our proposed implementation
of RNN model which is thoroughly described in section 6 leads to better page
access count predictions compared to the naive history-based page scheduler
and the scheduler proposed by [9]. Outperforming the prediction accuracy of
history-based scheduler was certainly expected. What is quite noteworthy is
that the different approach we followed concerning the neural network input
may lead to better on-average predictions compared to kleio [9].

Application Performance

As it was aforementioned, the value of Root Mean Square Error of our mod-
els cannot be used as the only indicator of the application performance boost
achieved by our Page Scheduler. For that very reason, we use a more represen-
tative metric which is the DRAM hit-rate (i.e. the amount of requests served
by DRAM). DRAM hit-rate of our implementation can be extracted from the
Hybrid Memory System Simulation described in 6.1. Obviously, the higher the
Dram hit-rate, the more significant the application performance boost, due to
the fact that more application requests are served by the significantly faster
memory component.

We use the same setup as the one used in 7. We will evaluate the DRAM hit-
rate for the application workloads mentioned in section 6. For every workload
we deploy RNNs for the 100 most performance-critical application pages as
selected by the Page Selector (5). The performance is normalized between 0%
when all pages are managed by the History Page Scheduler and 100% when all
the selected pages are managed by an Oracle Page Scheduler. In other words,
our plot will depict if our Page Scheduler is able to bridge the performance gap
between the lightweight approach of a History Page Scheduler and the optimal
Page Scheduler with a priori knowledge. We also follow the Page Scheduler
implementation description from [9] in attempt to compare it with our imple-
mentation. Thus, we also implement kleio and deploy RNNs for the first 100
important pages as selected by kleio’s Page Selector component.

Figure 7.2 depicts the DRAM hit-rate improvement achieved by leverag-
ing Machine Intelligence based predictions for a selected subset of pages. We
can clearly observe for the majority of the workloads we can obtain at least
70% of the possible performance improvement. There are cases, such as back-

93

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0

20

40

60

80

100
DR

AM
 H

itr
at

e
Hitrate Improvement via Machine-Learning

kleio
9-N RNN

Figure 7.2

prop and kmeans, where only 50% of the possible performance speedup is
achieved. That probably means that we need to deploy more RNNs in or-
der to achieve a more significant performance boost. What is actually re-
markable is that our implementation seems to outperform the kleio-based im-
plementation for every workload. In some cases the performance speedup
achieved by kleio is quite close to the one achieved by our page scheduler
(hotspot,kmeans,streamcluster,bodytrack). However, there are cases where the
performance gap between our implementation and kleio is more than 15-20%
(lud,bplustree,backprop). This performance difference is certainly induced by
the fundamentally different approach we followed for performance-critical page
selection and the actual Neural Network implementation.

Overall, we can clearly observe that the prediction accuracy of the trained
RNNs is such that it can deliver application performance similar to what would
be possible with oracular knowledge of the page access counts.

94

Eviction Policy

We now proceed to evaluate another important component of our implementa-
tion. We will evaluate the performance boost we can obtain using the proposed
enhanced-Least Recently Used policy and compare it with the plain LRU.

Our enhanced LRU policy (section 5) uses a clustering technique of the
address space into memory regions. After clustering the address space each
page is assigned a distinct clusterID which is used during the eviction process
at the end of every scheduling epoch. Pages that belong to a memory region
(cluster) that was highly active in the recent scheduling epochs are favored to
carry on residing in DRAM. Pages that belong to the other not so active clusters
are chosen to be evicted unless they have been accessed in the last scheduling
epoch.

For the evaluation process we will use DRAM hitrate as a performance metric
which can be easily extracted from the Hybrid Memory System Simulation
described in 6.1. The setup is similar to the one described in 7. For every
workload we deploy RNNs for the 100 most performance-critical application
pages as selected by the Page Selector (5). The performance is normalized
between 0% when all pages are managed by the History Page Scheduler and
100% when all the selected pages are managed by an Oracle Page Scheduler.
Both History and Oracle Page Schedulers are using a Least Recently Used
DRAM eviction policy.

In Figure 7.3 we can observe the performance achieved by our Page Scheduler
in two implementation scenarios:

1. Least Recently Used DRAM eviction policy (Gray)

2. Clustering-based Least Recently Used DRAM eviction policy (Red)

It is fairly obvious that for the majority of the workloads using an address space
clustering based LRU DRAM eviction policy allows us to obtain a higher DRAM
hit-rate. The perfomance boost achieved by the proposed eviction policy is cer-
tainly not immense. However, in some cases it surpasses 10% (kmeans,hotspot).
There are workloads that show only a slight performance enhancement (body-
track,bplustree,streamcluster) and in one scenario (lud) the performance deteri-
orated when using the clustered-LRU policy.

Overall, we can assume that using a more sophisticated eviction policy in
DRAM will deliver better application performance. However, there are several
complications that should be addressed. For instance, as it is briefly mentioned
in subsection 5, we are aware that address space clustering is not trivial.

95

blackscholes kmeans backprop streamcluster hotspot lud bodytrack bplustree
0

20

40

60

80

100
DR

AM
 H

it
Ra

te
DRAM Hit Rate % - Eviction Policy

LRU
clustered LRU

Figure 7.3

Energy Consumption

It is widely known that DRAM not only suffers from low capacity making
it unable to meet the requirements for big data applications, but it also has
high refresh power consumption which leads to the power usage of DRAM to
be incredibly high even when system is idle. On the contrary, Non-Volatile
Memory (NVM) besides having a large capacity it also has trivial idle energy
consumption. These differences in energy consumption characteristics between
DRAM and NVM leave a lot of room for low-power design exploration in Hybrid
Memory Systems.

In this section we will evaluate how our implementation performs energy-
wise. We also design NoManage, similar to [15], as a baseline candidate, in
which no Page Scheduling is conducted. We assume page allocation is random
in NoManage and the probability of assigning to NVM for each page is propor-
tional to the ratio of NVM capacity to total memory size. We will calculate
the energy cost of four Hybrid Memory Systems (excluding the cost for RNN
training).

96

• NoManage HMS: A System which does not use Page Scheduler. Pages
are allocated once and their placement remain the same during the appli-
cation execution.

• History HMS: A System which uses a Page Scheduler making page place-
ment decision based solely on historic information.

• kleio HMS: A System which uses a Page Scheduler. Historic information
and Machine Intelligence are combined as described in [9]. RNNs are de-
ployed for the 100 most performance-critical application pages as selected
by the kleio’s Page Selector.

• 9-RNN HMS: A System which uses our proposed Page Scheduler. We
deploy RNNs (as described in 6) for the 100 most performance-critical
application pages as selected by the Page Selector.

Following a similar approach as presented in article [15] we will calculate the
total Energy Cost for the four Hybrid Memory Systems. Energy consumption
is mainly caused by reading and writing operations of the hybrid memory and
the idle duration. We will use the workloads described in 6 which have quite
different W/R ratios (Table 7.1);and thus help us obtain a good overview of
the energy demands of each implementation.

Workload Ratio
streamcluster 0.19
lud 0.88
backprop 1.05
kmeans 0.75
bplutstree 3.24
bodytrack 3.86
blackscholes 15.3
hotspot 45.7

Table 7.1: Workload Write/Read ratio

Energy Model

Before moving to the evaluation of the four memory systems we have to define
the Energy Model we will be using to calculate the Energy cost for every single
HMS. We will follow the same Energy model used in [15]. All of the notations
used in the following definitions are presented in Table 7.2.

97

Table 7.2: Notation table for energy related symbols

Pi A Page in a Hybrid Memory System
CNV M Energy Cost of page Pi in NVM
CDRAM Energy Cost of page Pi in DRAM
Eread

NV M Reading energy consumption per page in NVM
Ewrite

NV M Writing energy consumption per page in NVM
POW idle

NV M Idle power consumption per page in NVM
ri The number of readings for Pi in hybrid memory system
wi The number of writing for Pi in hybrid memory system
T Time Period for page replacement in hybrid memory system
Eread

DRAM Reading energy consumption per page in DRAM
Ewrite

DRAM Writing energy consumption per page in DRAM
POW idle

DRAM Idle power consumption per page in DRAM
CNV M−−DRAM Energy cost when Pi is replaced from NVM to DRAM
Eextra Extra energy consumption during the migration of Pi

Definition 1. Given page Pi in NVM, CNVM is defined to denote the energy
cost during the time period of T

CNVM = Eread
NVM ∗ ri + Ewrite

NVM ∗ wi + POW idle
NVM ∗ T (7.2)

where Eread
NVM is the reading energy consumption of each page in NVM, Ewrite

NVM

is the writing energy consumption of each page in NVM, ri and wi are the
numbers of reading and writing Pi in NVM respectively. POW idle

NVM is the idle
power for each NVM page. In particular, POW idle

NVM can be ignored because
the idle energy consumption of NVM is much lower than that of DRAM.

Definition 2. Given page Pi in NVM, CDRAM is defined to denote the en-
ergy cost during the time period of T

CDRAM = Eread
DRAM ∗ ri + Ewrite

DRAM ∗ wi + POW idle
DRAM ∗ T (7.3)

where Eread
DRAM is the reading energy consumption of each page in DRAM,

Ewrite
DRAM is the writing energy consumption of each page in DRAM and POW idle

DRAM

is the idle power of each DRAM page.

Definition 3. Given page Pi , CNVM−−DRAM is defined to denote the energy
cost Pi replaced from NVM to DRAM.

CNVM−−DRAM = Eextra + (Eread
NVM + Ewrite

DRAM) (7.4)

98

Definition 4. Given page Pi , CDRAM−−NVM is defined to denote the energy
cost Pi replaced from NVM to DRAM.

CDRAM−−NVM = Eextra + (Eread
DRAM + Ewrite

NVM) (7.5)

Eextra is the extra energy consumption during migration process in addition
to reading and writing consumptions. (Eread

NVM + Ewrite
DRAM) means the energy

consumption of a page once migrating from NVM to DRAM. In particular,
there are some extra energy consumptions in the page migration procedure,
such as page wear energy consumption, cache energy consumption and so on.
But these extra power consumptions are low enough to be ignored compared
with the energy consumptions of page reading, writing and idle.

Evaluation Results

We now use the Hybrid Memory System Simulator described in section 6.1 to
extract all the information required in order to use the aforementioned Energy
Model with the Energy Parameters mentioned in Table 7.3 for the four Hybrid
Memory Systems we wish to evaluate. All the Hybrid Memory Systems we
evaluated have two different memory components NVM and DRAM with a 1:8
ratio. In other words, at a given moment only one eighth of the application’s
memory footprint reside in DRAM and the other seven eighths are located in
NVM.

Before presenting the results of the evaluation, we need to mention that
the memory footprint of our workloads is quite small (A few tens of MBs).
Obviously, with such low memory footprint and short runtime, Leakage Power
(Idle) of DRAM is not going to be the main contributor of the total energy
consumed of the System. That is because the term: IdlePower = 451∗ mWGB ∗T
is relatively small compared to the energy consumed by the NVM and DRAM
operations during runtime. If workloads with bigger memory footprints and
longer execution time are examined, we might end up different results than the
ones we present. That is also evident in [15] where for small memory footprints
all the Page Placement policies performed similarly due to the fact that the main

Table 7.3: Evaluation Parameters of NVM and DRAM [15]

PCM DRAM
Writing Energy 418.6 nJ 12.7 nJ
Reading Energy 80.41 nJ 5.9 nJ
Leakage Power (Idle) 4.23 mW/GB 451 mW/GB

99

contributor to the system’s total energy consumption were the write (418.6nJ)
and read (80.41nJ) operations of NVM instead of the Leakage Power of DRAM.
However, we can still draw some conclusions from the workloads with relatively
small memory footprints. Those conclusions may not translate perfectly to
bigger workloads in absolute numbers but they can certainly help us estimate
if we are headed towards the right direction.

In figure 7.4 we can observe how the four different policies perform as far as
the Energy Consumption is concerned. As expected NoManage performs poorly
compared to the Systems which utilize a Page Scheduling policy. What we need
to point out is that our Page Scheduler seems to outperform both Kleio and
the History Page Scheduler for every workload. This was more or less expected
due to the higher DRAM hitrate our implementation achieves; thus both the
total amount of operations carried out by NVM and the application’s execution
time are decreased. Overall, figure 7.4 clearly indicates that utilizing a Page
Scheduling policy results in a reduced system power consumption and that our
Page Scheduler could be a considerable option for a low power oriented Hybrid
Memory System design.

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n

9-RNN Kleio History NoManage

Figure 7.4

100

Although Figure 7.4 is certainly helpful and indicative of the performance
differences between the different design approaches we evaluated, it is also es-
sential to examine why each workload behaves the way it does and determine
the primary contributors to the total Energy consumption. On that account,
figure 7.5 is provided, which is practically an enriched version of 7.4. This
figure provides information about how each memory component contributes to
the summation of the system’s energy consumption. It should be mentioned
that for every workload, the first, second, third and fourth bar is the normal-
ized energy consumption of our page scheduler, kleio, History and NoManage
respectively (similar to Figure 7.4). It is clear that for every workload the most
amount of energy is consumed by the NVM operations instead of the DRAM
Idle Power due to the small memory footprint of the tested applications. It
is also important to note that the Page Migration Energy cost does not seem
to be rather significant, and that is probably the reason why Page Scheduling
results in systems with lower power consumption.

Every application we used for evaluation is quite different from the others.
Therefore, it is of utmost importance to examine each one individually, since we
can probably draw distinct crucial information from every single one of them.

backprop streamcluster hotspot lud blackscholes bodytrack bplustree kmeans
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n

NVM Consumption DRAM Consumption Idle Power Page Migration

Figure 7.5

101

Backprop: Backprop’s trace acquired has a balanced Read/Write ratio.
Meaning that the total amount of Reads and Writes were almost equal. A big
gap between History and NoManage can be observed which probably means
that NoManage’s initial page placement was such that it resulted in low DRAM
utilization. Kleio’s Energy Consumption is not significantly lower than History,
which was expected due to the low DRAM hit-rate increase kleio achieved (seen
in Figure 7.2). Our Page Scheduler seems to perform really well energy-wise
for this particular workload.

Streamcluster: Streamcluster’s trace acquired was read-heavy. That means
that write operations were significantly less than read operations. Therefore,
we did not expect huge energy consumption benefits, because write operations
are the ones that are the primary cause of high energy consumption. We can
see that History is not significantly better than NoManage, and kleio’s En-
ergy Consumption is relatively close to History but obviously lower. Our Page
Scheduler achieves 25% decrease in normalized energy consumption, which is
only 5% difference with kleio which is probably due to their performance simi-
larities as showed in figure 7.2.

Hotspot: Hotspot’s trace acquired was write-heavy. That means that write
operations were significantly more than read operations. There is big gap be-
tween NoManage and History, and that is probably because History reduced the
number of write requests served by NVM. There is also significant gap between
kleio and History, while the Energy Consumption of our Page Scheduler and
kleio’s are almost equal. What is important to note here is the drop of DRAM
Idle Power. NoManage seems to have almost double the DRAM Idle kleio and
our Page Scheduler have, and that clearly has to do with the longer execution
duration of NoManage.

lud: Lud’s trace acquired has a balanced Read/Write ratio similar to back-
prop. History’s Energy Consumption is really close to NoManage. That means
that the initial Page Placement of NoManage did not result in poor DRAM
utilization (clearly seen as DRAM consumption is not inexistent in NoMan-
age’s bar). After observing Figure 7.2 we were not surprised when kleio did not
project huge energy consumption reduction. Our Page Scheduler is only 5%
better energy-wise than kleio.

blackscholes: Blackscholes’s trace acquired was write-heavy similar to hotspot.
History’s Energy Consumption is really close to NoManage due to migration
cost. That means that the cost of Page movement between the different mem-

102

ory components in order to achieve high DRAM utilization is not trivial for this
particular workload. Kleio and our Page Scheduler seem to behave similarly
energy-wise achieving a significant reduction in Energy Consumption.

bodytrack: Bodytrack’s trace acquired was also write-heavy. The write
operations were certainly more than the read. However the write to read ratio
was not as large as those in hotspot and blackscholes. Bodytrack shows quite
similar behavior to blackscholes. The only noteworthy difference is that the
energy reduction kleio and our Page Scheduler show is not as large compared
to the ones in the hotspot and blackscholes applications.

B+Tree: B+Tree’s trace acquired had also more write than read opera-
tions (3:1 ratio). Similar to bodytrack NoManage is not significantly worse
than History, and kleio delivers a rather considerable (20%) decrease in energy
consumption. What is really noteworthy in this workload is that our Page
Scheduler performs much better energy-wise compared to both History and
Kleio. That is probably due to high DRAM hit-rate (observed in fig. 7.2) and
the prioritization we made for write operations in Profit equation (5.1, 5.2) in
the Page Selector component (Section 5)

Kmeans: Kmeans Read-Write operation ratio is relatively balanced (reads
are slightly more than writes). NoManage performs poorly energy-wise for this
particular workload. DRAM utilization is really low; thus resulting in a longer
runtime duration (High Idle Power). History manages to bring a 40% reduction
in energy consumption, while our Page Scheduler and kleio do not seem to im-
prove upon History’s energy performance. That was expected to some degree
considering that both did not provide huge DRAM hit-rate increase as seen in
fig.7.2.

All things considered, we can make the assumption that our Page Scheduler
can bring down the energy consumption significantly both decreasing by the
total operations carried out by NVM and the runtime of the application. That
is especially the case for workloads which are write-intensive. We can also esti-
mate that our Page Scheduler, or an accurate Page Scheduler in general, can be
utilized in a low-power oriented system even when workloads have big memory
footprint. Only if huge workloads are accompanied with comparatively signifi-
cant migration energy cost, the system is going to behave poorly. That is not
highly probable, as it also evident in [15] where the different page placement ap-
proaches followed a similar energy consuming pattern for increasing application
memory footprint.

103

Chapter 8

Conclusions

Thesis Summary

Application data sizes are constantly increasing, while the data access patterns
of a wide range of application domains become more and more complex. Tradi-
tional memory hardware technologies fail to scale in the necessary capacities and
speeds to accelerate modern analytics. Therefore, new hardware technologies
are integrated in the memory subsystem to boost application performance and
system cost efficiency. This new heterogeneity in the memory hardware and ap-
plication data access behaviors cannot be handled using existing system-level
resource management policies. There is gap between current state-of-the-art
solutions in Hybrid Memory System memory management and what could be
achieved optimally. In this thesis, we explore the effectiveness and practicality
of using Machine Intelligence in Memory Management of a Hybrid Memory
System.

We first point out that replacing the hybrid memory manager with one ma-
chine intelligent component, such as a reinforcement learning agent, is not scal-
able and robust to hardware changes. After taking into consideration that ap-
plications that execute over hybrid memory systems likely have massive memory
footprints, our Page Scheduler identifies a small page subset, whose machine in-
telligence management boosts application performance. Then, for every single
selected page a Recurrent Neural Network is deployed to learn page-level access
patterns. For the remaining pages the lightweight history-based scheduling ap-
proach is used. In this way, the relative performance gap between existing and
an oracular solution is bridged by on average 70% . Besides the use of machine
intelligence for page access count predictions, we also explored how using a dif-
ferent eviction policy for DRAM can affect performance. We found out that
using an LRU policy after dividing the address space into clusters performs on
average 10% better than an LRU policy which does not consider the memory
cluster a page belongs to.

105

Future Work

Both the conclusions drawn from the evaluation, and the assumptions and sim-
plifications made during the implementation of this Thesis leave a lot of room
for future work. There are various directions and ideas that someone can use
to build upon, and enrich this thesis.

Page size: The Memory Manager (i.e. Page Scheduler) proposed in this
Thesis utilizes machine learn methods to learn memory access patterns at the
granularity of a page, assuming a 4 KB page size that is primarily used across
systems. However, there are many emerging platforms using huge pages (2
MB page size) that show promising performance characteristics. We expect the
memory footprints of emerging workloads to be massive. Therefore, we should
definitely explore the idea of memory management at a huge page granularity,
since the associated learning overhead would be reduced due to the reduction
of the aggregate number of ML-models.

Data Objects: There are many solutions that mark memory regions and
keep track of the corresponding application level data objects. Such information
can be beneficial to better guide the page selection for machine learning-based
management. Throughout this thesis, our proposal is on the system-level and
is agnostic when it comes to the application data. It certainly worth exploring
the two following ideas.

1. Will Machine learning based memory management benefit from clustering
the pages that belong to the same data object

2. Can we use application level insights to decide which data object to manage
with machine intelligence?

Online Learning: Applications often have multiple phases during their
execution, periods of time where one type of activity is occurring followed by a
period of time where a completely different activity is occurring. Often these
different phases will have very different load patterns from each other. Training
the LSTM in an online scenario would allow it to dynamically adjust its weights
to be good as possible for the activity that’s happening purely in the present.
It would no longer have to be trained in a way where it had to generalize to
the whole program at once.

ML-based Management in Data Storage: Throughout this Thesis we
only focused on bringing a memory management solution in systems with het-
erogeneous memory hardware by adding machine intelligence. However, there

106

is certainly potential for the proposed approach of integrating machine learn-
ing methods to be extended to the management of storage technologies. The
key design points of this Thesis could be followed and applied for managing
data stored across storage-only hardware, memory and storage, as well as when
considering data offloads to GPUs and accelerators.

107

Bibliography

[1] C. Chou, A. Jaleel, and M. K. Qureshi, “Batman: techniques for maximiz-
ing system bandwidth of memory systems with stacked-dram,” Proceedings
of the International Symposium on Memory Systems, 2017.

[2] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data tiering in heterogeneous memory
systems,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: Association
for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.
1145/2901318.2901344

[3] D. Shen, X. Liu, and F. X. Lin, “Characterizing emerging heterogeneous
memory,” ser. ISMM 2016. New York, NY, USA: Association for
Computing Machinery, 2016, p. 13–23. [Online]. Available: https:
//doi.org/10.1145/2926697.2926702

[4] T. D. Doudali and A. Gavrilovska, “Comerge: Toward efficient data
placement in shared heterogeneous memory systems,” in Proceedings of
the International Symposium on Memory Systems, ser. MEMSYS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
251–261. [Online]. Available: https://doi.org/10.1145/3132402.3132418

[5] D. Shen, X. Liu, and F. X. Lin, “Characterizing emerging heterogeneous
memory,” SIGPLAN Not., vol. 51, no. 11, p. 13–23, Jun. 2016. [Online].
Available: https://doi.org/10.1145/3241624.2926702

[6] K. Wu, J. Ren, and D. Li, “Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs,” in Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, ser. SC ’18. IEEE Press, 2018.

[7] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data management
on non-volatile memory-based heterogeneous main memory,” CoRR, vol.
abs/1705.00249, 2017. [Online]. Available: http://arxiv.org/abs/1705.
00249

109

https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/2926697.2926702
https://doi.org/10.1145/2926697.2926702
https://doi.org/10.1145/3132402.3132418
https://doi.org/10.1145/3241624.2926702
http://arxiv.org/abs/1705.00249
http://arxiv.org/abs/1705.00249

[8] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
2018.

[9] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska, “Kleio: A hybrid memory page scheduler with machine
intelligence,” in Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
37–48. [Online]. Available: https://doi.org/10.1145/3307681.3325398

[10] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Professional,
2010.

[11] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings of
the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[12] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and
H. Kano, “A novel nonvolatile memory with spin torque transfer mag-
netization switching: spin-ram,” in IEEE InternationalElectron Devices
Meeting, 2005. IEDM Technical Digest., 2005, pp. 459–462.

[13] M. R. Meswani, S. Blagodurov, D. A. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach for
mixing die-stacked and off-package memories,” 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pp. 126–136, 2015.

[14] PLDI ’05: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. New York, NY, USA:
Association for Computing Machinery, 2005.

[15] Y. Zhang, J. Zhan, J. Yang, W. Jiang, L. Li, and Y. Li, “Energy-aware
page replacement for nvm based hybrid main memory system,” in 2017
IEEE 23rd International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), 2017, pp. 1–6.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

110

https://doi.org/10.1145/3307681.3325398

[17] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[18] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based
hybrid memory management,” in 2017 IEEE International Conference on
Cluster Computing (CLUSTER), 2017, pp. 152–165.

[19] V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and
A. Awad, “Page migration support for disaggregated non-volatile
memories,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 417–427. [Online]. Available:
https://doi.org/10.1145/3357526.3357543

[20] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen,
“Mempod: A clustered architecture for efficient and scalable migration
in flat address space multi-level memories,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 433–444.

[21] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” SIGPLAN Not.,
vol. 52, no. 4, p. 631–644, apr 2017. [Online]. Available: https:
//doi.org/10.1145/3093336.3037706

[22] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach for
mixing die-stacked and off-package memories,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2015, pp. 126–136.

[23] P. Wu, D. Li, Z. Chen, J. S. Vetter, and S. Mittal, “Algorithm-directed
data placement in explicitly managed non-volatile memory,” in Proceedings
of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 141–152. [Online].
Available: https://doi.org/10.1145/2907294.2907321

[24] Y. Chen, I. B. Peng, Z. Peng, X. Liu, and B. Ren, “Atmem: Adaptive
data placement in graph applications on heterogeneous memories,”
in Proceedings of the 18th ACM/IEEE International Symposium on
Code Generation and Optimization, ser. CGO 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 293–304. [Online].
Available: https://doi.org/10.1145/3368826.3377922

111

https://doi.org/10.1145/3357526.3357543
https://doi.org/10.1145/3093336.3037706
https://doi.org/10.1145/3093336.3037706
https://doi.org/10.1145/2907294.2907321
https://doi.org/10.1145/3368826.3377922

[25] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and S. D.
Hammond, “memkind: An extensible heap memory manager for
heterogeneous memory platforms and mixed memory policies.” [Online].
Available: https://www.osti.gov/biblio/1245908

[26] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin, and F. M.
Quintão Pereira, “Compiler support for selective page migration in numa
architectures,” in Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, ser. PACT ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 369–380. [Online].
Available: https://doi.org/10.1145/2628071.2628077

[27] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang, “Hinuma:
Numa-aware data placement and migration in hybrid memory systems,” in
2019 IEEE 37th International Conference on Computer Design (ICCD),
2019, pp. 367–375.

[28] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous
memory asynchronously,” SIGARCH Comput. Archit. News, vol. 44,
no. 2, p. 369–383, mar 2016. [Online]. Available: https://doi.org/10.1145/
2980024.2872401

[29] C. Chakraborttii, V. Sinha, and H. Litz, “Ssd qos improvements
through machine learning,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. SoCC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 511. [Online]. Available:
https://doi.org/10.1145/3267809.3275453

[30] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep learning
for system health prediction of lead times to failure in hpc,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 40–51. [Online].
Available: https://doi.org/10.1145/3208040.3208051

[31] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST 20).
Santa Clara, CA: USENIX Association, Feb. 2020, pp. 169–182. [Online].
Available: https://www.usenix.org/conference/fast20/presentation/yang

[32] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyncrasies of
real persistent memory,” Proc. VLDB Endow., vol. 14, no. 4, p. 626–639,
dec 2020. [Online]. Available: https://doi.org/10.14778/3436905.3436921

112

https://www.osti.gov/biblio/1245908
https://doi.org/10.1145/2628071.2628077
https://doi.org/10.1145/2980024.2872401
https://doi.org/10.1145/2980024.2872401
https://doi.org/10.1145/3267809.3275453
https://doi.org/10.1145/3208040.3208051
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.14778/3436905.3436921

[33] V. Mironov, I. Chernykh, I. Kulikov, A. Moskovsky, E. Epifanovsky, and
A. Kudryavtsev, “Performance evaluation of the intel optane dc memory
with scientific benchmarks,” in 2019 IEEE/ACM Workshop on Memory
Centric High Performance Computing (MCHPC), 2019, pp. 1–6.

[34] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. Soh,
Z. Wang, Y. Xu, S. Dulloor, J. Zhao, and S. Swanson, “Basic performance
measurements of the intel optane dc persistent memory module,” 03 2019.

[35] Intel, in Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual., 2016.

[36] M.-L. Chiang and W.-L. Su, “Thread-aware mechanism to enhance
inter-node load balancing for multithreaded applications on numa
systems,” Applied Sciences, vol. 11, no. 14, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/14/6486

[37] “A new hardware counters based thread migration strategy for NUMA
systems,” in 13th INTERNATIONAL CONFERENCE ON PARALLEL
PROCESSING AND APPLIED MATHEMATICS, 2019.

[38] P. D. Sanzo, M. Sannicandro, B. Ciciani, and F. Quaglia, “Markov
chain-based adaptive scheduling in software transactional memory,” in
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016, pp. 373–382.

[39] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” SIGPLAN
Not., vol. 40, no. 6, p. 190–200, jun 2005. [Online]. Available:
https://doi.org/10.1145/1064978.1065034

[40] S. Rajaram, P. Gupta, B. Andrassy, and T. Runkler, “Neural architectures
for relation extraction within and across sentence boundaries in natural
language text,” 04 2018.

[41] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a
1996 NIPS Workshop. Berlin, Heidelberg: Springer-Verlag, 1998, p. 9–50.

[42] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 06, no. 02, pp. 107–116,
1998. [Online]. Available: https://doi.org/10.1142/S0218488598000094

113

https://www.mdpi.com/2076-3417/11/14/6486
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1142/S0218488598000094

[43] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[44] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with
deep bidirectional lstm,” in 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, 2013, pp. 273–278.

[45] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, ser. NIPS’14.
Cambridge, MA, USA: MIT Press, 2014, p. 3104–3112.

[46] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Ku-
mar, M. Norouzi, S. Bengio, and J. Dean, “Device placement optimiza-
tion with reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2430–2439.

[47] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 3, pp. 39–50, 2008.

[48] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM Conference on Computer and
Communications Security, ser. CCS ’04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 298–307. [Online].
Available: https://doi.org/10.1145/1030083.1030124

[49] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron,
“A characterization of the rodinia benchmark suite with comparison to con-
temporary cmp workloads,” in IEEE International Symposium on Work-
load Characterization (IISWC’10), 2010, pp. 1–11.

[50] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris, “Shoal: Smart
allocation and replication of memory for parallel programs,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, Jul. 2015, pp. 263–276. [Online].
Available: https://www.usenix.org/conference/atc15/technical-session/
presentation/kaestle

[51] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous
memory asynchronously,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and

114

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1030083.1030124
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle

Operating Systems, ser. ASPLOS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 369–383. [Online]. Available:
https://doi.org/10.1145/2872362.2872401

[52] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

115

https://doi.org/10.1145/2872362.2872401
https://github.com/fchollet/keras
https://github.com/fchollet/keras

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Persistent Memory και Διαχείριση Μνήμης
	Χρονοδρομολόγηση και Μηχανική Μάθηση
	Σχεδίαση
	Υλοποίηση
	Αξιολόγηση
	Σύνοψη και Μελλοντική Δουλειά

	Introduction
	Thesis Topic
	Motivation
	Approach and Contributions
	Thesis Overview

	Related Work
	Hardware Solutions
	Software Solutions
	Machine Learning Solutions

	Persistent Memory & Memory Management
	Persistent Memory
	Page Migration
	Page Migration across NUMA-nodes
	Page Migration in Hybrid Memory Systems
	Machine Intelligence based solution

	Page Migration Challenges
	Implementation Overhead
	Data Retrieval
	Page Movement

	Machine Learning & Deep Neural Networks
	Machine Learning Background
	Types of Machine Learning
	Artificial Neural Networks
	Recurrent Neural Networks
	LSTMs

	Page Scheduling as a Machine-Learning problem
	Reinforcement Learning Approach
	Recurrent Neural Network Approach

	Neural Network Input
	Deltas Prediction
	Per Page Prediction Approach

	Proposed Page Scheduler Architecture
	Critical Metrics
	Page Scheduler Overview
	Page Scheduler Components
	Page Selector
	Access Count Predictors
	DRAM Eviction Policy

	Technical Implementation
	Benchmark workloads
	Collecting Memory Access Traces
	Hybrid Memory System Simulator
	Recurrent Neural Networks Details
	Neural Network Input
	Neural Network Configuration

	Experimental Evaluation
	RNN Prediction Accuracy
	Application Performance
	Eviction Policy
	Energy Consumption

	Conclusions
	Thesis Summary
	Future Work

