
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Λογικής και Επιστήμης Υπολογιστών CoReLab

Algorithmic aspects of the Lovasz Local Lemma

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Θεμιστοκλή Γουλεάκη

Επιβλέπων: Ευστάθιος Ζάχος Συνεπιβλέπων: Δημήτρης Αχλιόπτας
Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Κ.Π.Α.

Αθήνα, Νοέμβριος 2011

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Algorithmic aspects of the Lovasz Local Lemma

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Θεμιστοκλή Γουλεάκη

Επιβλέπων: Ευστάθιος Ζάχος Συνεπιβλέπων: Δημήτρης Αχλιόπτας
Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Κ.Π.Α.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 14η Νοεμβρίου 2011.

......................

Ευστάθιος Ζάχος Δημήτρης Αχλιόπτας Δημήτρης Φωτάκης

Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Κ.Π.Α Λέκτορας Ε.Μ.Π.

.......................
Θεμιστοκλής Γ. Γουλεάκης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright c© Θεμιστοκλής Γ. Γουλεάκης, 2011.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν

τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες

θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Ο σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη και ανάλυση πιθανοτικών

αλγορίθμων που οδηγούν σε κατασκευαστική απόδειξη του ”Lovasz Local Lemma”.
Το αποτέλεσμα αυτό είναι γνωστό στη θεωρία πιθανοτήτων από το 1975 και έχει

χρησιμοποιηθεί σε πολλές εφαρμογές σε συνδυασμό με την πιθανοτική μέθοδο

(probabilistic method). Η πιθανοτική μέθοδος είναι ένας τρόπος να αποδυκνύει
κανείς την ύπαρξη ενός συνδυαστικού αντικειμένου με χρήση πιθανοτήτων.

Συγκεκριμμένα, αν θεωρήσουμε το ενδεχόμενο ένα τυχαίο αντικείμενο (σε κάποιο

δειγματικό χώρο) να έχει κάποια επιθημητή ιδιότητα και αποδείξουμε ότι η

πιθανότητα του ενδεχομένου αυτού είναι μη μηδενική, τότε η ύπαρξή του

αντικειμένου είναι εξασφαλισμένη. Το ”Lovasz Local Lemma” αντιμετωπίζει
προβλήματα στα οποία υπάρχει ένα σύνολο μη επιθυμητών ιδιοτήτων. Σαν

παράδειγμα μπορούμε να αναφέρουμε το πρόβλημα της ικανοποιησιμότητας λογικών

προτάσεων (SAT) σε κανονική συζευκτική μορφή (CNF form). Στο πρόβλημα αυτό,
το τυχαίο πείραμα είναι η απονομή τιμών αληθείας στις λογικές μεταβλητές και το

ζητούμενο είναι να βρεθεί αν υπάρχει κάποια απονομή αλήθειας έτσι ώστε όλες οι

”clauses” να είναι αληθείς. Μη επιθυμητή ιδιότητα είναι ότι κάποια ”clause” είναι
ψευδής. Το ”Lovasz Local Lemma” αντιμετωπίζει περιπτώσεις όπου δεν έχουμε
πλήρη αλλά μερική ανεξαρτησία αυτών των ενδεχομένων και η απόδειξη με

διαφορετικό τρόπο θα ήταν δύσκολη. Η αρχική απόδειξη του ”Lovasz Local
Lemma” ήταν υπαρξιακή. Δηλαδή απλώς εξασφάλιζε την ύπαρξη του αντικειμένου
χωρίς να δείχνει κάποιο τρόπο για να κατασκευαστεί. ΄Ομως σε πολλές εφαρμογές,

συμπεριλαμβανομένης της ικανοποιησιμότητας (SAT), είναι επιθυμητό να
κατασκευάσουμε - υπολογίσουμε το αντικείμενο. Στη διπλωματική, θα μελετήσουμε

την πρόσφατη (2010) απόδειξη των R.Moser , G.Tardos ότι κάτι τέτοιο είναι εφικτό,
που έγινε με χρήση πιθανοτικού αλγορίθμου. Επίσης, θα δούμε μια βελτίωση -

γενίκευση του ”Lovasz Local Lemma” που αποδείχτηκε αρχικά υπαρξιακά με
μεθόδους της Στατιστικής Φυσικής, και θα δούμε στη συνέχεια και μια

κατασκευαστική απόδειξη με τη χρήση του αλγορίθμου των R.Moser , G. Tardos.
Να σημειώσουμε εδώ ότι μια από τις αποδείξεις που θα παρουσιαστούν και οφείλεται

κυρίως στον R.Moser περιέχει μια ενδιαφέρουσα καινούργια γενική μέθοδο
απόδειξης τερματισμού για πιθανοτικούς αλγορίθμους, η οποία μας δίνει δυναμική

για περεταίρω έρευνα.

2

Abstract

The purpose of this thesis is the study and analysis of randomized algorithms
which lead to a constructive proof of the ”Lovasz Local Lemma”. This is a
well-known result in probability theory since 1975, which is also quite useful in
applications of the probabilistic method. The probabilistic method is a way to
prove the existence of a combinatorial object using probability. Specifically,
consider the event that a random object (in some sample space) has a desired
property. If we prove that the probability of this event to occur is non-zero, then
it’s existence is guaranteed. The Lovasz Local Lemma deals with problems in
which there is a set of undesired properties. We can give as an example, the
boolean CNF-SAT problem. In this setting, the random experiment is to assign
random values to the boolean variables. The problem is to determine whether or
not, there is a truth assignment that makes all clauses TRUE. So, for each
clause, we define the possibility for it to be FALSE as the undesirable property.
The Lovasz Local Lemma deals with instaces where there the events are not
mutually independent, so an alternative proof would possibly be more
complicated and harder. The initial proof of the Lovasz Local Lemma was
existential. That is, we could prove the existence of the object but we had no
clue how to construct it. However, in many applications, including SAT, it is
desirable to construct or compute the combinatorial object. In this thesis, we will
study the recent (2010) proof of R.Moser and G.Tardos who proved that this is
actually possible using a randomized algorithm. Moreover, we will see an
improvement-generalization of the Lovasz Local Lemma initially proved
existentially using methods of statistical physics, and it’s constructive
counterpart using the algorithm of R.Moser , G. Tardos. We should note here
that one of the proof presented (attributed to R.Moser) contains an interesting
new general method to prove the termination of a randomized algorithm under
certain conditions. This gives us potential for further research.

Keywords

probabilistic method , Lovasz Local Lemma, constructive proof, randomized
algorithms, mutual independence, entropy, sourse coding, compression

2

Ευχαριστίες

Με την ολοκλήρωση της διπλωματικής αυτής εργασίας και των προπτυχιακών μου

σπουδών στο Εθνικό Μετσόβιο Πολυτεχνείο, θα ήθελα να ευχαριστήσω όλους τους

καθηγητές μου και τους ανθρώπους του ιδρύματος που με βοήθησαν όλα αυτά τα

χρόνια. Ιδιαίτερα θα ήθελα να ευχαριστήσω τους δύο επιβλέποντες καθηγητές της

διπλωματικής μου. Τον καθηγητή μου κ. Στάθη Ζάχο, που με ενέπνευσε από το

πρώτο εξάμηνο των σπουδών μου και τον κ. Αχλιόπτα για την πολύτιμη βοήθεια και

το χρόνο που μου αφιέρωσε. Επίσης, θα ήθελα να ευχαριστήσω θερμά τα μέλη του

Εργαστηρίου Λογικής και Επιστήμης Υπολογισμών (Corelab) και ιδιαίτερα τους
καθηγητές κ. Φωτάκη και κ. Παγουρτζή, για το πολύ καλό κλίμα συνεργασίας που

έχουμε.

Ευχαριστώ επίσης, τους Μανώλη Παπαδάκη, Χάρη Αγγελιδάκη και Ελένη Μπακάλη

για την πολύτιμη βοήθειά τους με το LATEX.
Πάνω απ΄ όλα θα ήθελα να ευχαριστήσω την οικογένεια μου. Τους γονείς μου και

τον αδερφό μου, για την αμέριστη συμπαράστασή τους όλα αυτά τα χρόνια.

Θέμης Γουλεάκης

2

Contents

1 Introduction 7

1.1 Motivation and statement of the lemma . 7

1.2 Definitions . 8

1.2.1 Some definitions and notation . 8

1.2.2 A note on the definitions . 9

1.3 A recent improvement of the lemma . 11

1.4 Previous constructive results . 11

2 Constructive proof for SAT: incompressibility method 13

2.1 Algorithm . 13

2.1.1 Statement of the recursive algorithm . 13

2.1.2 Intuition . 13

2.1.3 Random bits used by the algorithm . 14

2.2 Proof . 14

2.2.1 LOG of execution . 14

2.2.2 Encoding and reconstruction . 15

2.2.3 Incompressibility method and length of the encoding 17

3 The Moser-Tardos Algorithm and witness trees 23

3.1 Sequential algorithm . 23

3.1.1 Preliminaries . 23

3.1.2 Random generation of witness trees . 26

3.1.3 Counting the number of resamplings . 27

3.2 Parallel version of the algorithm . 28

3.3 Dealing with superpolynomially many bad events 32

3.4 The lopsided version of LLL . 37

3.4.1 Existential version . 37

3.4.2 Constructive version . 38

3.4.3 Comparing definition 3.4.1 and definition 3.4.5 39

4 Improvements on the analysis of MT algorithm 43

4.1 Improved analysis of the sequential algorithm . 43

4.2 Improved analysis of the parallel algorithm . 45

4.3 Superpolynomial number of events . 47

5 Tightness results for the Lovász Local Lemma 51

5.1 Introduction . 51

5.1.1 Definitions . 51

5.1.2 Lower bounds for number of occurences and intersections 51

5.1.3 Unsatisfiable CNF formulas from binary trees 54

3

4 CONTENTS

5.2 The bound on f(k) is asymptotically tight for powers of 2. 55
5.3 Complexity phase transition . 57

List of Figures

2.1 The first algorithm takes an input formula and a random bit string and produces
a LOG of execution and a (hopefully satisfying) truth assignment. The second
algorithm takes the LOG of the first and the same formula as input, and recon-
structs the random bits. Simple counting arguments imply that for almost all
possible output strings, the length of the LOG cannot be significantly smaller
than the output of algorithm 2. 14

2.2 Tree of the encoding . 15
2.3 Up: array of pointers , Down: Random bit string 17
2.4 Horizontal axis: number of resamplings , Vertical axis: number of bits 19
2.5 Up: Set of all possible strings of length n+k ·t0 , Down: Set of all possible LOGS

produced by at most n + k · t0 random bits. The set of strings is partitioned
into equivalence classes of strings producing the same LOG (only if they have a
common terminating prefix). Each LOG corresponds to exactly one equivalence
class. The LOGS with t0 clauses (which either terminate at step t0 or not) are
mapped to a single string . 21

3.1 Up: Dependency graph , Down: Events and variables 23
3.2 The sequential solver . 24
3.3 Left: Example of witness tree , Right: Dependency graph 25
3.4 The parallel solver . 28
3.5 Different colors correspond to different resampling steps. There should always

be a path containing every color. 30
3.6 The three possible dependency graphs . 39

5.1 The depth of the red nodes is k . 56

5

6 LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation and statement of the lemma

The Lovász local lemma is a very powerful tool that we can use in several interesting applications
of the probabilistic method. In particular, we often encounter the following setting: There is
a set of ”bad” events {A1, A2, ..., An} in a probability space Ω which correspond to specific
properties of some combinatorial object. We would like to prove the existence of such an
object which does not have any of the aforementioned ”bad” properties. Using the probabilistic
method, it is sufficient to prove that Pr[∧ni=1¬Ai] > 0. Clearly, our ability to prove that will
depend on their probabilities as well as the dependencies between the events {Ai}. Of course,
the only interesting case is when ∀i Pr[Ai] < 1 (otherwise that probability trivially equals 0).

Now, consider the following two special cases:

1. The events {A1, A2, ..., An} are mutually independent.

OR

2.

Pr[A1] + Pr[A2] + ...+ Pr[An] < 1 (1.1)

It is easy to see that in both the above cases we get a positive answer, and the proof is as
follows:

1.

Pr[∧ni=1¬Ai] =
n∏

i=1

(1− Pr[Ai]) > 0 (1.2)

2. By a union bound we get:

Pr[∨ni=1Ai] ≤
n∑

i=1

Pr[Ai] < 1⇒ Pr[∧ni=1¬Ai] = 1− Pr[∨ni=1Ai] > 0 (1.3)

The Lovász local lemma allows us to go even further and make the proof even under less
restrictive conditions. The general form of the LLL is most commonly stated as follows:

7

8 CHAPTER 1. INTRODUCTION

Lemma 1.1.1 The Local Lemma (General case) [7]

Let {A1, A2, ..., An} be events in an arbitrary probability space. A directed graph D=(V,E)
on the set of vertices V = {1, 2, ..., n} is called a dependency digraph for the events {Ai} for
each i, 1 ≤ i ≤ n, the event Ai is mutually independent of all the events {Ai : (i, j) /∈ E} .
Suppose that D=(V,E) is a dependency digraph for the above events and suppose there are real
numbers x1, x2, ..., xn such that 0 ≤ xi < 1 and

Pr[Ai] ≤ xi
∏

(i,j)∈E

(1− xj) (1.4)

for all 1 ≤ i ≤ n. Then Pr[∧ni=1¬Ai] ≥
∏n

i=1(1−xi)) > 0. In particular, with positive probability
no event Ai holds.

As a corollary of the above general case we get the following more convenient form of the
LLL:

Corollary 1.1.2 [The Local lemma (Symmetric case)]
Let {A1, A2, ..., An} be events in an arbitrary probability space. Suppose that each event Ai is
mutually independent of the set of all the other events Aj but at most d, and that Pr[Ai] ≤ p
for all 1 ≤ i ≤ n. If

ep(d+ 1) ≤ 1 (1.5)

then Pr[∧ni=1¬Ai] > 0.

1.2 Definitions

1.2.1 Some definitions and notation

• P: a finite collection of mutually independent random variables:P1, P2, ..., Pn in a fixed
probability space Ω

• A = {Ai}: a family of events in Ω determined by P.

• H(Ai|Pj1Pj2 ...Pjk) = 0 for some subset Si = {Pj1 , Pj2 , ..., Pjk} ⊂ P. Where H(|) denotes
the conditional entropy. So, Si determines Ai.

• An evaluation of the variables in some S ⊆ P violates Ai if it makes Ai happen.

• vbl(Ai) , the minimal Si.

• Dependency graph: GA is defined as the graph on vertex set A with an edge between
events A,B ∈ A if A 6= B but vbl(A) ∩ vbl(B) 6= ∅.

• Γ(Ai) = ΓG(Ai): The neighbourhood of Ai in G.

• Inclusive neighbourhood of a vertex Ai: Γ
+(Ai) , Γ(Ai) ∪ {Ai}.

• [u]: The event Ai ∈ A represented be node u in G.

1.2. DEFINITIONS 9

1.2.2 A note on the definitions

Definition 1.2.1 We call an event A ∈ A elementary, if there is a single evaluation of the
variables in vbl(A) violating A.

Note that, for any elementary event, we can write the probability of it being violated as
follows:

Pr[A] =
∏

P∈vbl(A)

Pr[P = pi]

Also, the elementary events A andB are independent if and only if their variable sets are disjoint.
Consider the case where the variable sets are not disjoint. If they have a common variable for
which they ”require” a different value in order to be violated, then they are mutually exclusive
and not independent.

Pr[A|B] = 0, P r[B|A] = 0

On the other hand, if they ”require” the same value for each of their common variables, they
are positively dependent:

Pr[A|B] =
∏

P∈vbl(A)\vbl(B)

Pr[P = pi] > Pr[A]

Note that, the definition of the dependency graph in the previous paragraph uniquely de-
termines a dependency graph, whereas the definition given in lemma 1.1.1 does not. Moreover,
it is obvious that if G ⊆ G′ (where ⊆ denotes the spanning subgraph relation) are two graphs
on n vertices and lemma 1.1.1 holds for G, then it holds for G′ as well. So, since the spanning
subgraph relation is a partial ordering over the set of all graphs with n vertices, we should only
be interested in applying the lemma to a minimal dependency graph w.r.t this relation.

In this sence, the following lemmas show the equivalence of the two definitions mentioned:

Lemma 1.2.2 For any set A of elementary events, there is a unique minimal dependency graph
(w.r.t spanning subgraph relation).

• Clearly, each event Ai is mutually independent from any set of events B ⊂ P (A) such that

(
∪
B∈B

vbl(B)) ∩ vbl(Ai) = ∅ (1.6)

• Conversely, if Ai is mutually independent from a set S ⊂ P (A), then 1.6 should hold for
B = S. Otherwise, there must be an event Aj ∈ S such that: vbl(Ai) ∩ vbl(Aj) 6= ∅, so
(as mentioned before)

Pr[Ai|Aj] 6= Pr[Ai]

and Ai cannot be mutually independent from S.

• Let B,B′ ⊂ P (A) be two maximal (w.r.t set inclusion) sets of events, mutually independent
from A. Then 1.6 holds also for the set B ∪ B′. Indeed,

B ind from A ⇒ (
∪

B∈B vbl(B)) ∩ vbl(Ai) = ∅

B′ ind from A ⇒ (
∪

B∈B′ vbl(B)) ∩ vbl(Ai) = ∅

⇒ (
∪

B∈B′∪B
vbl(B))∩vbl(Ai) = ∅ ⇒

(1.7)

10 CHAPTER 1. INTRODUCTION

⇒ B ∪ B′ ind from A
However, B,B′ ⊆ B ∪ B′ and using their maximality we get:

B = B ∪ B′ = B′

So, the maximal set is unique.

Also, let for each i, Bi be this maximal set which corresponds to Ai.

Aj ∈ Bi ⇒ vbl(Ai) ∩ vbl(Aj) 6= ∅ ⇒ Ai ∈ Bj

The second implication comes from equation 1.7 and the fact Bj is maximal. Due to
symmetry, the opposite direction also holds.
So,

Aj ∈ Bi ⇔ Ai ∈ Bj
This enables us to define an undirected graph G = (V,E) as follows:

V = {Ai} and ∀i : Γ+(Ai) = V \ Bi

This graph is a spanning subgraph of every other dependency graph by the maximality of
Bi’s.
So, every set of elementary events can be mapped to a poset of dependency graphs (w.r.t
spanning subgraph relation) having graph G as the unique minimal element.

Lemma 1.2.3 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of elementary events determined by these variables. The (unique)
variable dependency graph is isomorphic to the (unique) minimal dependency graph on A (as
defined in lemma 1.1.1).

Proof:
Since the two graphs are on the same set of vertices, it suffices to prove that:

1. If the events Ai, Aj ∈ A do not have disjoint variable sets (i.e they are connected by an
edge in the variable dependency graph), then they are also connected by an edge in every
possible dependency graph on A.

2. If the events Ai, Aj are connected by an edge in the minimal dependency graph, then their
variable sets are not disjoint.

We argued before that two elementary events are independent if and only if the their vari-
able sets are disjoint.

So, the conditional probability that Ai is violated given that Aj is violated, can be written
as follows:

Pr[Ai|Aj] =
Pr[Ai ∩Aj]

Pr[Aj]
6= Pr[Ai] (1.8)

So, 1 follows easily, as no set S 3 Aj can be mutually independent from Ai.

In order to prove 2, let the two events Ai, Aj be connected by an edge in the minimal
dependency graphG = (V,E), while vbl(Ai)∩vbl(Aj) = ∅. So, the events Ai, Aj are independent
and (using the proof of lemma 1.2.2) G′ = (V,E − {Ai, Aj}) ⊆ G is also a dependency graph
(V \ΓG′(Ai) = V \ (ΓG(Ai)∪{Aj}) is a set of events, mutually independent from Ai) implying
that G is not minimal. So, 2 is proved by contradiction.

1.3. A RECENT IMPROVEMENT OF THE LEMMA 11

1.3 A recent improvement of the lemma

In a recent paper of Bissacot, et al [5] it was proved that the local lemma holds with even weaker
conditions. Before discussing their result, we have to rephrase the conditions of the local lemma
(general case) as follows:

Let µ(Ai) =
x(Ai)

1− x(Ai)
. We can easily see that:

x(Ai) ∈ [0, 1)⇒ µ(Ai) ∈ (0,+∞)

Moreover, x(Ai) =
µ(Ai)

1 + µ(Ai)
Using this, from (1.4) we get:

Pr[Ai] ≤
µ(Ai)

1 + µ(Ai)

∏
(i,j)∈E

(1− µ(Aj)

1 + µ(Aj)
) =

µ(Ai)

ϕi(µ)
(1.9)

where

ϕi(µ) =
∏

v∈Γ+
G(ui)

(1 + µ([v])) =
∑

R⊆Γ+
G(ui)

∏
u∈R

µ([u]) (1.10)

The improvement is shown in the next theorem:

Theorem 1.3.1 [Improved Lovász Local Lemma]

Suppose that G is a dependence graph for the family of events {Ai} each one with probability
P (Ai) = pi and there exist µ(Ai) real numbers in [0,+∞) such that, for each event Ai,

pi ≤ R∗
i =

µ(Ai)

ϕ∗
i (µ)

(1.11)

where

ϕ∗
i (µ) =

∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ([u]) (1.12)

Then Pr[∧ni=1¬Ai] > 0

Remark:
Compare equations (1.10) and (1.12). The improvement brought by the above theorem is heavily
depending on the density of the dependency graph. More specifically, for a fixed event Ai, the
upper bound on Pr[Ai] is maximally (minimally) increased if the vertices in ΓG(Ai) induce a
clique (independent set).

1.4 Previous constructive results

The first attempt to prove the LLL constructively, was made by Beck [4]. Considering the
specific problem of hypergraph 2-coloring, he constructed a polynomial-time algorithm which,
given a hypergraph in which every edge contains at least k vertices and shares a common vertex
with roughly at most 2k/48 other edges, outputs a 2-coloring of the vertices without producing a

12 CHAPTER 1. INTRODUCTION

monochromatic edge. Note that, the existential symmetric version of the LLL allows for every
edge to share vertices with 2k/e other edges.

After that, there are many results that improve the bound in the number of dependencies.
Namely, it was improved by the works of: Alon [1] (2k/8), Srinivasan [20] (2k/4), Moser [15]
(2k/2 and later [16] roughly 2k−5). Finally, Moser and Tardos [17] made a constructive proof of
the asymetric (more general) version of the LLL making only minor restrictions to the original
lemma (see below), thus achieving (in the symmetric case) essentially the same bound in the
number of dependencies as in the existential version. The only difference from the existential
version is the assumption that there is a finite set of mutually independent random variables:
P = {Pi} and each event Ai is determined by a subset of P. Very recently, Wesley Pegden[18]
improved the conditions on which the MT algorithm works, based on the recent work of Bissacot,
et al.[5] who gave an extension of the existential LLL through statistical mechanics.

Chapter 2

Constructive proof for SAT:
incompressibility method

2.1 Algorithm

2.1.1 Statement of the recursive algorithm

Given a k-SAT formula φ ≡ C1 ∧ C2 ∧ ... ∧ Cm, we will will try to investigate under which
conditions the following algorithm terminates after having found a satisfying assignment. We
need to consider that there is a total ordering ”�” over the set of clauses.

ALgorithm 1:

Local fix
Procedure: Fix(C)

1: resample vbl(C)
2: repeat
3: D ← the smallest unsatisfied clause in the inclusive neighbourhood of C
4: Fix(D)
5: until the inclusive neighbourhood of C is satisfied.

end procedure

Global fix

1: Take a uniformly random truth assignment
2: repeat
3: C ← smallest unsatisfied clause.
4: Fix(C)
5: until the current assignment satisfies φ.
6: return the current assignment

2.1.2 Intuition

The idea is to define a procedure that generates a string, we will call: the ”LOG of execution”.
This can be subsequently used to recover all the random bits used by the algorithm. Such
reconstruction is possible if and only if the set of ”possible” random bit strings used by the
algorithm can be mapped injectively into the set of ”LOGs of execution” or equivalently we
can reconstruct all the random bits used by the algorithm by just reading the LOG. By the
term ”possible”, we mean that they do not contain a prefix that leads to termination by itself.
Given that the random bits are mutually independent and uniform (i.e the algorithm uses a

13

14 CHAPTER 2. CONSTRUCTIVE PROOF FOR SAT: INCOMPRESSIBILITY METHOD

Kolmogorov random string), the mapping cannot be injective if the length of he ”LOG” is
smaller than the input random string. So, a sufficient condition for the algorithm to terminate
is the ”compressibility of the LOG” (i.e if the average increase in the length of the LOG per
resampling is strictly less than the number of extra bits we are able to recover).

Alg 1
random bits

formula

LOG

truth assignment

Alg 2
LOG

formula

random bits

Figure 2.1: The first algorithm takes an input formula and a random bit string and produces
a LOG of execution and a (hopefully satisfying) truth assignment. The second algorithm takes
the LOG of the first and the same formula as input, and reconstructs the random bits. Simple
counting arguments imply that for almost all possible output strings, the length of the LOG
cannot be significantly smaller than the output of algorithm 2.

2.1.3 Random bits used by the algorithm

We can partition the random bits used by the algorithm 1, in two categories:

1. The n random bits used for the initial truth assignment.

2. The random bits assigned to the resampled variables: k bits for each resampling.

2.2 Proof

2.2.1 LOG of execution

During the run of the algorithm, we form a LOG in which we encode all the information about
which clauses (and with what order) were resampled. We also include the n bits of the final
(satisfying) assignment at the end of it. If the LOG does not lead to a satisfying assignment,
it will be called a ”partial LOG” and will encode all the execution up to some point. The
final (not satisfying) assignment is also explicitly written at the end of the ”partial LOG” in
this case. In order to achieve better compression, we will use two possible encodings for each
clause (entry in the LOG). So, the first part of the LOG is a string of symbols from the set
{C1, C2, ..., Cm, C ′

1, C
′
2, ..., C

′
d, T}. The first m symbols represent the clauses in an explicit man-

ner. The next d symbols represent the rank of the i−th clause of the LOG in the lexicographical
ordering of some previous clause. Finally, the symbol ”T” is a terminating symbol that signs
the end of a recursive call. Each recursive call corresponds to one symbol from the second
category and one symbol ”T” in the LOG (in case of partial LOG, we put at he end of LOG1,
as many symbols ”T” as the number of recursive calls still running) , whereas each of the other

2.2. PROOF 15

calls corresponds to only one symbol from the first category. The second part of the LOG is a
string of n bits which represents a truth assignment. This is a satisfying assignment if and only
if the LOG is ”complete” (not partial).

More formally:

• LOG = [LOG1LOG2]

• LOG1 ∈ {C1, C2, ..., Cm, C ′
1, C

′
2, ..., C

′
d, T}∗

• LOG2 ∈ {0, 1}n

2.2.2 Encoding and reconstruction

As mentioned earlier, it is desirable to show that we can always use the encoding of the LOG
we have produced, to reconstruct all the random bits, the algorithm has used. The proof will
be made in two steps:

1. encoding of the LOG =⇒ LOG (decoding algorithm)

2. LOG =⇒ random bit string (reconstruction)

For the first step, we design a uniquely decodable code which is sufficient for our purpose.
Encoding:

• C ′
j : 1 ≤ j ≤ d←→ ”0”+binary representation of j (dlog(d+ 1)e+ 1 bits)

• Ci : 1 ≤ i ≤ m ←→ dlog(d + 1)e + 1 zeros + binary representation of i − 1. (dlogme +
dlog(d+ 1)e+ 1 bits)

• T ←→ ”1” (1 bit)

Figure 2.2: Tree of the encoding

Decoding Algorithm:

1: repeat
2: repeat
3: s0← next bit
4: if s0 == ”1” then

16 CHAPTER 2. CONSTRUCTIVE PROOF FOR SAT: INCOMPRESSIBILITY METHOD

5: print ”T”
6: end if
7: until s0 == ”0” OR the remaining string is empty.
8: if the remaining string is not empty then
9: s0← next dlog(d+ 1)e bits

10: if s0=”all zeros” then
11: s1 ← next dlogme bits
12: Find the index i : 1 ≤ i ≤ m such that i− 1 has binary representation s1
13: print ”Ci”
14: else
15: Find the index j : 1 ≤ j ≤ d whose binary representation is s0
16: print ”C ′

j”
17: end if
18: end if
19: until the remaining string is empty

For the second step, we will show that using information about the exact order in which
the resamplings were performed (provided by the LOG∈ {C1, C2, ..., Cm, C ′

1, C
′
2, ..., C

′
d, T}∗ ×

{0, 1}n), we can reconstruct all the random bits.

Bit reconstruction algorithm:
function reconstruct(φ,LOG)
{The argument φ includes a 2d matrix with entries vbl(i, j): the j-th variable of the i-th clause
and another 2d matrix with enries sign(i, j): the sign of the j-th variable in the i-th clause (e.g
0 if the variable appears negated and 1 otherwise)}
1: for i = 1 to n do
2: pointer(i)← i {the index of the next value of variable i in the random string }
3: end for
4: s← ∅
5: c← 0
6: repeat
7: c← c+ 1
8: s← the next symbol from the LOG
9: if s == Ci then

10: {not a recursive call}
11: Push i {in the recursion stack}
12: for l = 1 to k do
13: rbits(pointer(vbl(i, l)))← 1− sign(i, l) {reconstruct}
14: pointer(vbl(i, l))← n+ (c− 1) ∗ k + l {update pointer}
15: end for
16: else if s == C ′

j : 1 ≤ j ≤ d then
17: {recursive call}
18: s parent← first element of the stack
19: Find the index i (in φ) of the j − th neighbour of s parent.
20: Push i
21: for l = 1 to k do
22: rbits(pointer(vbl(i, l)))← 1− sign(i, l)
23: pointer(vbl(i, l))← n+ (c− 1) ∗ k + l
24: end for
25: else if s == ”T” then
26: Pop

2.2. PROOF 17

27: end if
28: until there are no remaining clauses in the LOG
29: for i = 1 to n do
30: rbits(pointer(i)) ← next bit of the LOG
31: end for
32: return rbits

0 1 2 3 4 5 6 7 8 9 10 11
0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

b b b

1 2 n

1 2 n n+k

b bb

Figure 2.3: Up: array of pointers , Down: Random bit string

2.2.3 Incompressibility method and length of the encoding

Our proof relies on a simple fact: a typical uniformly random bit string is incompressible. In
other words, a simple counting argument shows that almost all strings of length l cannot be
”represented” by strings of length significantly (e.g asymptotically) less than l. This can be
considered as an application of the general incompresibility method. In a typical proof using
the incompressibility method, one first chooses a random object from the class under discus-
sion. This object is incompressible. Then one proves that the desired property holds for this
object. The argument invariably says that if the property does not hold, then the object can
be compressed. This yields the required contradiction.

In our setting, the object is the random bits used by algorithm 1. We would like to prove
that algorithm 1 terminates deterministically if uses a specific ”typical” (incompressible) string
instead of a random bit string. We are going to prove it’s contrapositive version: ”If algorithm
1 has not terminated after T steps, then it has used a non-typical random string ”. The proba-
bility of this happening will be exponentially small in T −T0 for some value T0. So the expected
”running time” is shown to be T0 + c, for some constant c.

In order to prove this exponential dependence on T , let D(T) = (n+ k ∗ T)− |enc(LOG)|.
We need to find the conditions under which the restriction of D(T) in an interval of the form
[t,+∞] is a strictly increasing function of T .

Not suprisingly, the symmetric form of the Lovász local lemma gives us good evidence
supporting this property. More specifically, we have argued that the encoding of a recursive call
of procedure FIX (by another instance of FIX) needs only dlog(d+1)e+1 bits and 1 more bit to
sign it’s termination. Implying that if we restrict the maximum degree to be at most 2k−3 − 1,
the desired condition for D(T) could be met. To see this, note that if we add one more recursive

18 CHAPTER 2. CONSTRUCTIVE PROOF FOR SAT: INCOMPRESSIBILITY METHOD

call of Fix in the LOG, we use k−1 bits to write it, but the algorithm has used k extra random
bits. However, it remains to prove that: ”As the number of resamplings increases, almost all
calls of FIX are recursive calls”. This is established by the following lemma:

Lemma 2.2.1 Given that a call of Fix terminates, then the number of unsatisfied clauses after
termination is strictly less that is was before that call.

Proof: By looking at the algorithm again, we notice that ∀i : Fix(Ci) terminates if and
only if all the clauses adjacent to Ci, and Ci itself are satisfied. Let G = (V,E) be the de-
pendency graph for the formula φ, and let V ′ ⊆ V be the set of vertices-clauses which were
”explored” by that call of Fix. Obviously, all the decendants of this particular call in the re-
cursion tree must also terminate. So, by induction all clauses whose distance from V ′ is at
most 1 (e.g

∪
u∈V ′ Γ+(u)) will be satisfied after the termination of Fix. All the clauses in the

set V \
∪

u∈V ′ Γ+(u) are not altered by this part of the execution. Also, at least one clause in∪
u∈V ′ Γ+(u) (namely Ci) was unsatisfied before. This implies the lemma.

�

Using the above lemma, we can easily prove the following corollary:

Corollary 2.2.2 At any time during execution, the number of non-recursive calls that have
already been made is at most m.

Proof: Let U ≤ m be the number of clauses unsatisfied by the initial random assignment.
By lemma 2.2.1, if at least U ≤ m non-recursive calls have terminated, the algorithm has found
a satisfying assignment, and terminates.

�

We will now try to give some intuition about why the probability that the algorithm does
not terminate is zero. We will show that if it does run forever, the the following proposition
holds:

∃n, k, T0 : ∀T > T0 a random string of length n+k∗T has a description of length at most n+(k−1)∗T

At this point, we have to view the LOG as a string of two symbols: N,R where N stands
for ”non-recursive call” and R stands for ”recursive call”. Each symbol N,R corresponds to a
”block” of dlogme + dlog(d + 1)e + 1 or dlog(d + 1)e + 1 bits respectively in the original LOG
(suppose that a termination symbol ”T” is included in R as well). As we have seen in corollary
2.2.2, there cannot be more than m symbols ”N”. Also, the condition:

d ≤ 2k−3 − 1

implies that: |R| = dlog(d + 1)e + 1 ≤ k − 2. Obviously, |N | = dlogme + dlog(d + 1)e + 1 >
dlogme > k in general.

Now, fix a (probably partial) LOG: L = Ci1Ci2 ...Cil and consider it’s length (in bits) as a
function of the resampling step t.
Namely,

f(t) = |Ci1Ci2 ...Cit |

A qualitative graph of this function is demonstrated below:

2.2. PROOF 19

Figure 2.4: Horizontal axis: number of resamplings , Vertical axis: number of bits

• The ”blue line” is the number of random bits the algorithm has used up to step (i.e
resampling) t. It’s value is clearly: n+ k · t

• The ”red line” is the graph of the function f(t) for the fixed LOG L. Notice that this is
a piecewise linear function whose slope changes between two values: dlogme+ k − 1 and
k − 1.

• The ”green line” is an upper bound for f(t) for all steps t and for any fixed LOG. The
existence of an upper bound of this form is quaranteed by corollary 2.2.2. It follows from
that, that the number of ”jumps” in the red line are at most U ≤ m.

• The red line coinsided with the green line if it happens that it makes U non-recusrive
calls in the beginning (slope = dlogme+ k − 3 + 1 = dlogme+ k − 2) and continues with
recursive calls only (slope = k − 2 + 1 = k − 1).

• The starting point for all the three lines is (0, n) and corresponds to

Let (T0, n+ k · T0) be the coordinates of the intersection of the blue and green lines.

Claim 2.2.3 If algorithm 1 is given as input a formula with maximum clause degree: d ≤
2k−3 − 1 and hasn’t terminated after T > T0 for some T0 ≤ m · dlogme steps, then the random
bit string it has used can be ”represented” by another bit string which is at least T − T0 bits
shorter.

Proof: By definition, the green curve is the graph of the function

g(t) = (k − 1) · t+ C

for the last part (which is where the intersection takes place). Also, we have f(t) = n + k · t.
At the intersection, it holds that

f(T0) = g(T0)

n+ k · T0 = (k − 1) · T0 + C

T0 = C − n

For the value of the constant C consider the following: The first green line segment has
equation:

g0(t) = n+ (dlogme+ dlog(d+ 1)e+ 1) · t

Also,

g0(U) = g(U)

n+ (dlogme+ dlog(d+ 1)e+ 1) · U = (k − 1) · U + C

n+ (dlogme+ k − 2) · U = (k − 1) · U + C

C = n+ U · (dlogme − 1)

So,

T0 = U · (dlogme − 1) ≤ m · dlogme

20 CHAPTER 2. CONSTRUCTIVE PROOF FOR SAT: INCOMPRESSIBILITY METHOD

For T > T0 the difference betwwen the blue and red curve yields:

f(t)− g(t) = n+ k · t− (k − 1) · t− C (2.1)

= n+ t− n− U · (dlogme − 1) (2.2)

= t− U · (dlogme − 1) = t− T0 (2.3)

This proves the claim as for every t, g(t) is an upper bound for the value of the red line
at step t. Recall that, the red line represents the binary length of the LOG, and as we have
seen before there is an algorithm which uses this LOG of length at most g(t) and some extra
constant size (with respect to t) information (i.e the formula) and recostructs the random string
of length f(t).

�

Theorem 2.2.4 Let φ be a k-CNF formula, in which every clause has a common variable with
at most 2k−3−2 other clauses (i.e d ≤ 2k−3−1). Then φ is satisfiable. Moreover, algorithm 1 on
input φ terminates after an expected number of steps at most m · dlogme+1. More specifically,
the probability that it has not terminated after m · dlogme+ c steps is at most 2−c.

Proof: Suppose that there is an unsatisfiable k-CNF formula φ in which every clause has
a common variable with at most d = 2k−3 − 1 clauses (including itself). Now, we are able
to ”compress” a random string. More specifically, if we give φ as an input to algorithm 1, it
will never terminate as φ is unsatisfiable. However, we can produce the LOG of ececution and
encode it as we described above. Let |enc(LOG(t))| be the length of this encoding for the first
t steps, and RB(t) be the number of random bits used. The following holds:

lim
t→∞

|enc(LOG(t))|
RB(t)

≤ lim
t→∞

C + (k − 1) · t
n+ k · t

=
k − 1

k

The random bit string is an incompressibe object. We just showed that in can be recovered by
a bit string which is shorter by a constant factor. So this is a contradiction as the incompress-
ibility method indicates. So, φ is satisfiable.

Now, fix a number t0 and consider the set St0 of all bit strings of length n+ k · t0:

St0 = {0, 1}n+k·t0

Also let L be set of all possible LOGs that can be produced by at most n+ k · t0 bits. Notice
that, the cardinality of L is, in general, less that the cardinality of St0 . The reason for this is
that if a string w ∈ St0 has a prefix that makes the algorithm on input φ terminate, then all
strings having this prefix, will correspond to the same LOG. We say that these strings form an
equivalence class of St0 . So, the number of equivalence classes will be equal to the cardinality
of the set L. We are interested in the set of strings that do not contain a prefix that leads
to termination. Namely, the random bit strings that either terminate at step t0 or haven’t
terminated yet. We call that set S′

t0 . The fact that we can use the LOG to reconstruct the
random string, implies that there is no pair of distinct strings: w1, w2 ∈ S′

t0 that produce the
same LOG. Otherwise, the reconstruction would not be possible.

∀w1, w2 ∈ S′
t0 : w1 6= w2 ⇒ LOG(w1) 6= LOG(w2) (2.4)

Also, let T1 be the step at which the algorithm terminates. The probability of termination can
now be expressed as follows:

Pr[T1 ≥ t0] =
|S′

t0 |
|St0 |

2.2. PROOF 21

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b b
b

b b
b

b
b

b

b

b
b b b

bbb

b

bb b

bb

b

bb

b b

b
bb

bb
b b

b
b

b

b

b

b b
b

b

bb

b

b

b

b

bb

b
b
b b

b

b
bb

b

b

b

b
b

b

b
b
b

b
b

b b b

bbbbb
b

b

b

b

b
b

b

b

bb

b

b

b

b

b

b

b
b

b

b

b

Figure 2.5: Up: Set of all possible strings of length n+ k · t0 , Down: Set of all possible LOGS
produced by at most n + k · t0 random bits. The set of strings is partitioned into equivalence
classes of strings producing the same LOG (only if they have a common terminating prefix).
Each LOG corresponds to exactly one equivalence class. The LOGS with t0 clauses (which
either terminate at step t0 or not) are mapped to a single string

However, equation 2.4 implies that |S′
t0 | ≤ |L|. Also, if t0 = T0 + c then for every LOG l ∈ L,

|l| ≤ n+ k · t0 − c (see claim 2.2.3).

So, an upper bound on the number of possible LOGs is:

|L| ≤ 2n+k·t0−c

So,

Pr[T1 ≥ T0 + c] =
|S′

t0 |
|St0 |

≤ |L|
|St0 |

≤ 2n+k·t0−c

2n+k·t0 = 2−c ⇔

E[T1 − T0] =

∞∑
i=1

Pr[T1 − T0 ≥ i] ≤
∞∑
i=1

2−i = 1⇔

So,
E[T1] ≤ T0 + 1 = U · dlogme+ 1 ≤ m · dlogme+ 1

�

22 CHAPTER 2. CONSTRUCTIVE PROOF FOR SAT: INCOMPRESSIBILITY METHOD

Chapter 3

The Moser-Tardos Algorithm and
witness trees

3.1 Sequential algorithm

3.1.1 Preliminaries

As it was mentioned before, we will work under the assumption that there is a finite set of mu-
tually independent random variables: P = {Pi} and each event Ai is determined by a subset of
P as we can see in the figure below along with the corresponding dependency graph. Note that:
for a given vertex u of the dependency graph, the set of vertices non-adjacent to u represent a
set of events which are mutually independent of [u]. However this set is not guaranteed to be
maximal (e.g two events Ai, Aj could be independent even though vbl(Ai) ∩ vbl(Ai) 6= ∅).

Figure 3.1: Up: Dependency graph , Down: Events and variables

The following non-recursive algorithm outputs an evaluation of the random variables {Pi}
which does not violate any of the events {Ai} if the sufficient conditions of the local lemma are
satisfied.

Theorem 3.1.1 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events with a dependency graph G determined by these variables.

23

24 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

funcion sequential lll(P,A)

1: for all P ∈ P do
2: up ← a random evaluation of P
3: end for
4: while ∃A ∈ A : A is violated do
5: pick an arbitrary violated event A ∈ A.
6: for all P ∈ vbl(A) do
7: up ← a new random evaluation of P
8: end for
9: end while

10: return (uP)P∈P

Figure 3.2: The sequential solver

If there exists an assignment of reals x : A → (0, 1) such that

∀Ai ∈ A : Pr[Ai] ≤ x(Ai)
∏

B∈ΓG(Ai)

(1− x(B)) (3.1)

then there exists an assignment of values to the variables Pi not violating any of the events in
A. Moreover the randomized algorithm described above resamples an event Ai ∈ A at most an
expected x(Ai)/(1 − x(Ai)) times before it finds such an evaluation. Thus, the expected total

number of resampling steps is at most
∑

Ai∈A
x(Ai)

1− x(Ai)

We will need some definitions and a couple of lemmas before we can prove the theorem.

Definitions:

• Log of execution: Let C : N → A list the events as they have been selected for resampling
in each step. We call C the log of the execution.

• Witness tree τ = (T, σT): a finite rooted tree T together with a labelling σT) : V (T)→ A
of its vertices (with events) such that the children of a vertex u ∈ V (T) receive labels
from Γ+(σT (u)).

• A witness tree is called proper if distinct children of the same vertex always receive distinct
labels.

• Notation: V (τ) , V (T), [u] , σT (u).

• We say that the witness tree τ occurs in the log C if there exists t ∈ N such that τC(t) = τ .

Before doing that, we will introduce the witness trees which by definition are constructed
by the following iterative procedure:

1. τ
(t)
C (t) , an isolated root vertex labelled C(t) (the event that was resampled at step t).

3.1. SEQUENTIAL ALGORITHM 25

2. For each i=t-1,t-2,...,1 we find the ”deepest” vertex v such that

C(i) ∈ Γ+
G([v]) and attach to it a new vertex u labelled C(i) to construct τ

(i−1)
C (t) from

τ
(i)
C (t). If no such vertex exists we define: τ

(i−1)
C (t) = τ

(i)
C (t).

3. Finally, τC(t) = τ
(1)
C (t)

Note that, given the dependency graph, the family of the witness trees has 2 parameters
(the 3rd in only used in the construction process). Namely, there is a injection from the tuples
(C,t) to the set of witness trees, where C denotes the execution log and t is the resampling step.

Here is an example of a witness tree construction:

Execution log: C = [A3, A2, A4, A3, A2, A1, A2, A3]

Figure 3.3: Left: Example of witness tree , Right: Dependency graph

Clearly, given the execution log and the dependency graph (green nodes) we can construct
a unique witness tree.

Lemma 3.1.2 Let τ be a fixed witness tree and C the (random) log produced by the algorithm.
(i) If τ occurs in C, then τ is proper.
(ii) The probability that τ occurs in C is at most

∏
v∈V (τ) Pr[[v]].

Proof: (i): The procedure cannot output a tree in which 2 vertices v,u with the same label
have a common parent w. If w.l.o.g vertex u was created after vertex v, then u could be placed
as a child of v (which has greater depth than w). So, (i) is proved by contradiction.
(ii): Consider the following procedure that we call τ -check: In an order of decreasing depth
(e.g., reversed breadth first search order) visit the vertices of τ and for a vertex v take a random
evaluation of the variables in vbl([v]) (according to their distribution, independent of possible
earlier evaluations) and check if the resulting evaluation violates [v]. We say that the τ -check
passes if all events were violated when checked.

Clearly, Pr[τ -check passes]=
∏

v∈V (τ) Pr[[v]]. We are going to prove that:

τ occurs in C ⇒ the τ − check (on the same random source) passes

26 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

We assume that for each variable Pi ∈ P the random source produces an infinite list of indepen-

dent random samples P
(0)
i , P

(1)
i , ..., and whenever the algorithm calls for a new random sample

of Pi we pick the next unused value from this sequence.

Let Sv(Pi) = {w ∈ V (τ) : d(w) > d(v) ∧ Pi ∈ vbl(w) ∩ vbl(v)} where d() denotes the depth
of a node. From the construction of the witness tree, we have that all vertices of the same depth
correspond to mutually independent events. So, in our decreasing depth order every event Pi

is resampled at most once per depth value taking the value P
(|Sv(P)|)
i no matter in which order

we choose to resample events of the same depth. From that we can also deduce that when Pi

is resampled for the k-th time in the algorithm, it is resampled for the k-th time in the τ -check
as well because we take decreasing depth order. Finally, the fact that a vertex v is evaluated
by the τ -check means that:

The event [v] is in the execution log C ⇒ it was violated the time it was written in C

⇒ the τ − check will find that [v] is violated

�

We are now ready to calculate the expected running time of the algorithm.

Note that the number (NAi) of times an event Ai is resampled equals the number of oc-
currences of Ai in C (the execution log) as well as the number of distinct proper witness trees,
with Ai as the root, occurring in C.

To prove this, recall that if tj is the number of the j-th time step in which the event Ai is
resampled then τC(tj) contains exactly j nodes with label Ai. So, τC(tj) = τC(tk)⇒ j = k.

3.1.2 Random generation of witness trees

Let us fix an event Ai ∈ A and consider the following Galton-Watson branching process for
generating a proper witness tree having it’s root labelled Ai:

1. Produce a singleton vertex labelled Ai.

2. For each new vertex v, and for each event B ∈ Γ+([v]) add to v a child node with the
label B independently with probability x(B).

3. Repeat step 2 until no new nodes are added.

Note: This process may continue forever with positive probability.

The following lemma will finally help us count the number of resamplings:

Lemma 3.1.3 Branching Lemma [17]: Let τ be a fixed proper witness tree with it’s root
vertex labelled Ai. The probability pτ that the Galton-Watson process described above yields
exactly the tree τ is

pτ =
1− x(Ai)

x(Ai)

∏
v∈V (t)

x′([v]) (3.2)

where

x′(B) , x(B)
∏

C∈Γ(B)

(1− x(C)) (3.3)

3.1. SEQUENTIAL ALGORITHM 27

Proof: Let Wv ⊂ Γ+([v]) be the set of inclusive neighbours of [v] that do not occur as a
label of some child node of v. Since the root node Ai is always produced we have that:

pτ =
1

x(Ai)

∏
v∈V (τ)

(x([v])
∏

u∈Wv

(1− x([u]))) (3.4)

Note that, in the 2nd product we don’t consider the children of v in order to avoid duplicates.
Equivalently, we have:

pτ =
1− x(Ai)

x(Ai)

∏
v∈V (τ)

(
x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))) (3.5)

We divided by (1−x([v])) in the first product in order to change the subscript in the second to
be the (more convenient) inclusive neighbourhood of v.
if we now replace inclusive with exclusive neighbourhood, we get:

⇔ pτ =
1− x(Ai)

x(Ai)

∏
v∈V (τ)

(x([v])
∏

u∈Γ([v])

(1− x([u]))) (3.6)

=
1− x(Ai)

x(Ai)

∏
v∈V (τ)

x′([v]) (3.7)

�

3.1.3 Counting the number of resamplings

Let TAi be the set of all proper witness trees having their root labelled Ai.
By linearity of expectation:

E[NAi] =
∑

τ∈TAi

Pr[τ occurs in C] (3.8)

≤
∑

τ∈TAi

∏
v∈V (τ)

Pr[[v]] (3.9)

≤
∑

τ∈TAi

∏
v∈V (τ)

x′([v]) (3.10)

By lemma 5.3 we have:

E[NAi] ≤
∑

τ∈TAi

∏
v∈V (τ)

x′([v]) (3.11)

=
x(Ai)

1− x(Ai)

∑
τ∈TAi

pτ (3.12)

≤ x(Ai)

1− x(Ai)
(3.13)

This bounds the expected number of resamplings for each event and proves theorem 3.1.1.

Remark:
The reason we have chosen that particular Galton - Watson process is the following.
We want to construct non-zero probabilities for every witness tree possible to occur in the

log, which are also big enough, so that if write each term of equation (3.11) in the form: cpτ

28 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

(where τ is the witness tree that corresponds to that term), c will have a small value. The value
of c is critical, since the expected number of resamplings finally depends on that.

As we will see later, we can get better results using a modified Galton-Watson process which
satisfies both the above properties and guarrantees even greater probabilities for each witness
tree occuring in the log.

3.2 Parallel version of the algorithm

It turns out that there is a very similar parallel version of the MT algorithm discussed above,
which has a significantly greater performance (as it was also proved in [17]).

The algorithm should now be written as follows:

funcion parallel lll(P,A)

1: for all P ∈ P do
2: up ← a random evaluation of P
3: end for
4: while ∃A ∈ A : A is violated do
5: S ← a maximal independent set in the subgraph of GA induced by all events which are

violated, constructed in parallel.

6: for all P ∈
∪
A∈S

vbl(A) do

7: up ← a new random evaluation of P {in parallel}
8: end for
9: end while

10: return (uP)P∈P

Figure 3.4: The parallel solver

It’s performance is quarranted by the following theorem:

Theorem 3.2.1 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these variables. If ε > 0 and there exists an
assignment of reals x : A → (0, 1) such that

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈ΓA(Ai)

(1− x(B)) (3.14)

then the parallel version of our algorithm takes an expected O(
1

ε
log

∑
Ai∈A

x(Ai)

1− x(Ai)
) steps before

it finds an evaluation violating no event in A.

Note that, if xAi is bounded away from 1 for every i, the the
∑
Ai∈A

x(Ai)

1− x(Ai)
is proportional

to the number of events. So, the paralell algorithm allows an exponentially greater number of
events for the same number of resamplings needed.

3.2. PARALLEL VERSION OF THE ALGORITHM 29

Proof:

In the parallel case we form the execution log C sorting the events in increasing step num-
ber. We also call sj the segment of C that corresponds to the events resampled at step j (whose

order is chosen arbitrarily).

The main idea of the proof is to show that in every step of the parallel algorithm, an extra
node is added to any witness tree having a root from that step(segment). Namely,the size of
every witness tree whose root belongs to sj is strictly greater that the size of any other having
a root in sj−1. Then, we can use this to get a better bound on the running time. Keep in mind
that larger witness trees are less likely to occur in the log, so the probability that the many
resamplings will be needed is low as well.

The following lemma implies something even stronger: ”Every new step strictly increases
the depth of the witness trees”.

Lemma 3.2.2 If t ∈ sj , then the depth of τC(t) is j - 1.

Proof:
Let:

• tk ,
∑k−1

i=1 |si|+ 1.

• τk = τ
(tk)
C (t) for k ≤ j and for some fixed t ∈ sj .

So, tk is the first number in the segment sk and τk is the ”partial” witness tree which describes
the resamplings done at all steps between k and j. Also, the events resampled in each parallel
step are independent.

So by definition we have: τj = τ
(tj)
C (t) which is a tree with only one vertex labelled : C(t).

For k < j, τk+1 is a subgraph of τk , which has some extra vertices corresponding to the k-th
parallel step of the algorithm. As these vertices have independent labels, they add at most one
to the depth (none can be a child of another).

We will prove that they also add at least one to the depth: Consider a vertex v of τk+1 of
maximal depth=d. If τk has no vertex with depth d+1, then from the parallel step k to the
resampling corresponding to v no event from Γ+([v]) was resampled.

So, [v] was violated since step k and the algorithm did not chose it for resampling so it did
not chose a maximal independent set at step k, which is a contradiction.

To finish the proof, notice that τC(t) = τ1.

�

Lemma 3.2.3 Let X be an integer-valued random variable. If there is a constant ε ∈ (0, 1] and
another constant C > 1, such that:

∀k ∈ N∗ : Pr[X ≥ k] ≤ (1− ε)k · C (3.15)

then

E[X] ≤ 1

ε
log(C) +

1 + ε

ε
(3.16)

30 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

Figure 3.5: Different colors correspond to different resampling steps. There should always be a
path containing every color.

Proof:
Let k0 be the smallest integer such that: C · (1 − ε)k0 < 1. By taking logarithms, we get:

k0 >
log(C)

log(
1

1− ε
)
.

Since k0 is the smallest integer we can write:

log(C)

log(
1

1− ε
)
+ 1 > k0 >

log(C)

log(
1

1− ε
)

(3.17)

Using the inequality: logx ≤ x− 1 we have:

1.

log(
1

1− ε
) ≤ 1

1− ε
− 1 =

ε

1− ε
⇔ 1

log[(1− ε)−1]
≥ 1− ε

ε
=

1

ε
− 1

2.

log(1− ε) ≤ 1− ε− 1 = −ε⇔ −log(1− ε) ≥ ε

⇔ 1

log[(1− ε)−1]
≤ 1

ε

Thus, from (3.17) we get:
1

ε
log(C) + 1 > k0 > (

1

ε
− 1)log(C) (3.18)

Let X ′ = X − k0. Then we have:

Pr[X ′ ≥ k] = Pr[X ≥ k + k0] ≤ C · (1− ε)k+k0 < (1− ε)k (3.19)

3.2. PARALLEL VERSION OF THE ALGORITHM 31

The random variable X ′, takes only integer values greater or equal to −k0.
So,

E[X ′] =
∞∑

i=−k0

i · Pr[X ′ = i]

≤
∞∑
i=1

i · Pr[X ′ = i] =

∞∑
i=1

Pr[X ′ ≥ i]

<

∞∑
i=1

(1− ε)i =
1

1− (1− ε)
=

1

ε
(3.20)

Thus,

E[X] ≤ k0 +
1

ε
≤ 1

ε
log(C) +

1 + ε

ε
(3.21)

�

Let: Q(k) , Pr[]steps ≥ k].

By Lemma 3.2.2, some witness tree of depth k - 1 (which has at least k vertices) must occur
in the log. Let TAi(k) be the set of witness trees in TAi having at least k vertices.

Q(k) ≤
∑
Ai∈A

∑
τ∈TAi

(k)

Pr[τ occurs in the log C] (3.22)

≤
∑
Ai∈A

∑
τ∈TAi

(k)

∏
v∈V (τ)

Pr[[v]] (3.23)

≤ (1− ε)k
∑
Ai∈A

∑
τ∈TAi

(k)

∏
v∈V (τ)

x′([v]) (3.24)

where the last inequality follows from the assumption in Theorem 3.2.1.

Q(k) ≤ (1− ε)k
∑
Ai∈A

∑
τ∈TAi

(k)

∏
v∈V (τ)

x′([v]) (3.25)

= (1− ε)k
∑
Ai∈A

x(Ai)

1− x(Ai)

∑
τ∈TAi

(k)

pτ (3.26)

≤ (1− ε)k
∑
Ai∈A

x(Ai)

1− x(Ai)
. (3.27)

if we set: M =
∑

Ai∈A
x(Ai)

1− x(Ai)
, and T be the number of steps, we have:

Pr[T ≥ k] ≤M · (1− ε)k (3.28)

So, by lemma 3.2.3 ,

E[T] = O(
1

ε
log(M)) (3.29)

�

32 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

3.3 Dealing with superpolynomially many bad events

The following theorem gives sufficient conditions so that the number of resamplings of the MT
algorithm remains polynomial in the number of variables n = |P|, even if the number of events
is exponential in n.

Theorem 3.3.1 Suppose there is an ε ∈ [0, 1) and an assignment of reals x : A → (0, 1) such
that:

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.30)

With δ denoting min
Ai∈A

xAi

∏
B∈Γ(Ai)

(1− x(B)), we have

T :=
∑
Ai∈A

xAi ≤ nlog(1/δ) (3.31)

Furthermore:

1. If ε = 0, then the expected number of resamplings done by the MT algorithm is at most

v1 = T max
Ai∈A

1

1− x(A)
, and for any parameter

λ ≥ 1, the MT algorithm terminates within λv1 resamplings with probability at least
1− 1/λ.

2. If ε > 0, then the expected number of resamplings done by the MT algorithm is at most
v2 = O(nε log

T
ε), and for any parameter λ ≥ 1, the MT algorithm terminates within λv2

resamplings with probability 1− e−λ.

Proof:

The first part of the theorem follows immediately from theorem 3.1.1, because we have

proved that if ε = 0, then the expected number of resamplings cannot be more than
∑
Ai∈A

xAi

1− xAi

≤

T · max
Ai∈A

1

1− xAi

. Also, the rest of the first part is proven by a simple application of Markov’s

inequality.
Now, we will prove the bound on T.

Let,
APi = {Ai ∈ A|Pi ∈ vbl(Ai)} (3.32)

Now, it is sufficient to prove that

∀Pi :
∑

B∈APi

xB ≤ log(1/δ) since A = ∪Pi∈PAPi and |P| = n

Let Ai ∈ AP , P ∈ P be the event with the smallest x-value.
By definition, we have:

δ ≤ xAi

∏
B∈AP−{Ai}

(1− xB) =
xAi

1− xAi

∏
B∈AP

(1− xB) (3.33)

3.3. DEALING WITH SUPERPOLYNOMIALLY MANY BAD EVENTS 33

• If xAi ≤ 1
2 , then

xAi
1−xAi

≤ 1 ⇒ δ ≤
∏

B∈AP
(1 − xB) ≤ e

−
∑

B∈APi
xB

. Then by taking the

logarithm of both sides, we get:∑
B∈APi

xB ≤ ln(1/δ) < log(1/δ)

• If xAi >
1
2 , let B1 ∈ AP − {Ai}.

Then,

δ ≤ xAi

∏
B∈AP−{Ai}

(1− xB) = xAi(1− xB1)
∏

B∈AP−{Ai,B1}

(1− xB) (3.34)

≤ xAi(1− xB1)e
−

∑
B∈AP−{Ai,B1}

xB (3.35)

Since xAi is the smallest x-value, 1
2 ≤ xAi ≤ xB1 ≤ 1.

Then, by using some calculus (see [10]) we can show that

xAi(1− xB1) ≤ e−(xAi
+xB1

) (3.36)

So, we get the same upper bound for δ as before:

δ ≤ e
−

∑
B∈APi

xB
(3.37)

So,
∑

B∈APi
xB ≤ ln(1/δ) < log(1/δ) as required.

We are now ready to prove the 2nd part of the theorem. In the proof of theorem 3.2.1, we
have proved the following:∑

Ai∈A

∑
τ∈TAi

(k)

Pr[τ occurs in the log C] ≤ (1− ε)k
∑
Ai∈A

xAi

1− xAi

= w (3.38)

So, the expected number of witness trees with at least k vertices is at most w. So, if we let kl
be the smallest integer such that w < 1

l , then kl ≤ 1
ε log(l ·

∑
Ai∈A

xAi
1−xAi

) + 1 (see the proof of

lemma 3.2.3).
By applying Markov’s inequality, the probability that there is at least one witness tree of

size at least k, is not greater than the expected number of w.t of size at least k. More formally,

Pr[∃τ : |τ | ≥ k ∧ τ occurs in the log] ≤ E[]w.t : |τ | ≥ k] (3.39)

Also,
Pr[max

τ occuring in C
|τ | ≥ k] ≤ Pr[∃τ : |τ | ≥ k ∧ (τ occurs in the log)] (3.40)

So, if the expected number of witness trees larger than k decreases exponentially in k, then the
probability that the size of the biggest witness tree exceeds k also decreases exponentially in k.

In particular,

Pr[max
τ occuring in C

|τ | ≥ k] ≤ (1− ε)k
∑
Ai∈A

xAi

1− xAi

(3.41)

Thus, by lemma 3.2.3 the expected maximum size of |τ | is O(1ε log(
∑

Ai∈A
xAi

1−xAi
)). It is also

argued in [17] that for every assignment of x-values satisfying (3.30) there is an equivalent as-
signment, still satisfying all the requirements, which has all x-values bounded away from 1.

34 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

In particular, if

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.42)

then if we set x′(Ai) = (1− ε
2)x(Ai), we will get:

∀j : x′(Aj) ≤ 1− ε/2 ∧ ∀Ai ∈ A : Pr[Ai] ≤ (1− ε/2)x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.43)

this is easily proven by the identity: (1− ε
2)

2 > 1− ε.
So, xAj ≤ 1 − ε/2 ⇒ 1

1−xAj
≤ 2

ε . Also, the expected maximum size of |τ |, which

is O(1ε log(
∑

Ai∈A
xAi

1−xAi
)), can be rewritten as O(

1

ε
log(T · max

i

1

1− xAi

)) and simplified to

M = O(1ε log(
2T
ε)).

Now, the construction of the witness trees implies that none of the n variables Pi can be
resampled more than M times (otherwise not only the size, but the depth would also be grater
than M). So, the expected running time of the MT algorithm is at most O(nε log(

T
ε)).

�

The above theorem shows that the number of resamplings needed by the MT algorithm is
polynomial in n (the number of variables in P) even if the number of events m is exponential
in n. However, the running time is not yet guarranteed to be polynomial in n, because before
we resample we have to find a violated event. Of course, we cannot do this ,in general , in
polynomial time if the number of events is exponential. The definitions and theorems following,
will help us overcome this obstacle.

Definition 3.3.2 (Efficient verifiability): A set A of events that are determined by vari-
ables in P is efficiently verifiable if, given an arbitrary assignment to P, we can efficiently (in
polynomial time) find an event Ai ∈ A that holds or detect that there is no such event.

In cases where the set A of events is not efficiently verifiable itself, we will need the following
definition:

Definition 3.3.3 A set A′ ⊆ A will be called a core subset of A if it has the additional property
of being efficiently verifiable.

At this point, we will need the following theorem from [10]:

Theorem 3.3.4 Suppose there is an assignment of reals x : A → (0, 1) such that (3.1) holds.
Let B be any event that is determined by P. Then, the probability that B was true at least once

during the execution of the MT algorithm on the events in A, is at most Pr[B]
∏

C∈Γ(B)

(1−xC)−1.

In particular, the probability of B being true in the output distribution of MT obeys this upper-
bound.

Proof:
As shown in [17], if B be was true at least once during the execution, then there must be a
witness tree with root node B and non-root nodes V ′(τ) ⊆ A − {B}. So, we can bound the
expected number of such trees and then apply Markov’s inequality.

3.3. DEALING WITH SUPERPOLYNOMIALLY MANY BAD EVENTS 35

Let τ be a fixed proper witness tree with its root vertex labeled B. Also for A ∈ Γ(B), let
τA be the subtree starting from A if it is chosen as a child of B during the branching process.
Following the proof of lemma 3.1.3 and keeping in mind that the products are only over non-root
nodes, we get that the probability that this particular tree is produced by the Galton-Watson
branching process defined in section 3.1.2, is exactly :

Pr[τ |B is the root] =
∏

A∈ΓT (B)

x(A) · Pr[τA]
∏

A∈ΓG(B)\ΓT (B)

(1− xA) (3.44)

=
∏

A∈ΓG(B)

(1− x(A))
∏

u∈V ′(τ)

x′[u] (3.45)

In a similar way as in equations (3.8) - (3.13), we can deduce that

E[]witness trees with root B] ≤ Pr[B]
∑
τ∈TB

∏
v∈V (τ)\{B}

Pr[[v]] (3.46)

≤ Pr[B]
∑
τ∈TB

∏
v∈V (τ)\{B}

x′([u]) (3.47)

= Pr[B]
∏

Ai∈Γ(B)

(1− x(Ai))
−1

∑
τ∈TB

pτ (3.48)

≤ Pr[B]
∏

Ai∈Γ(B)

(1− x(Ai))
−1 (3.49)

So, by Markov’s inequality:

Pr[]witness trees with root B > 1] ≤ E[]witness trees with root B]

we get the desired upper bound.

�

The following theorem examines the performance of a modified Monte Carlo version of the
MT algoritm (which is to run the MT algorithm only on the core subset) and gives bounds on
the failure probability.

Theorem 3.3.5 Let A′ ⊆ A be an efficiently verifiable core subset of A. If there is an ε ∈ [0, 1)
and an assignment of reals x : A → (0, 1) such that:

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.50)

Then the modified MT-algorithm can be efficiently implemented with an expected number of
resamplings according to theorem 3.3.1. The algorithm furthermore outputs a good assignment

with probability at least 1−
∑

Ai∈A−A′

xAi.

Proof:
The expected number of resamplings is given by theorem 3.3.1 , if we apply it on A′. So, the
only thing we have to care about, is the failure probability of the modified MT algorithm. The
inequality (3.50) gives:

x(Ai) ≥ Pr[Ai]
∏

B∈Γ(Ai)

(1− x(B))−1 (3.51)

36 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

Using the above inequality together with theorem 3.3.4 the probability that a non-core event
Ai is violated by the output assignment of MT algorithm, is at most x(Ai) (the core events are
surely not violated). So,by a simple union bound, the algorithm fails with probability at most∑

Ai∈A−A′ x(Ai) as desired.

�

In order for the above theorem to be applicable, there are a couple of more things to consider.
Firstly, we must be able to find the ”core subset”, and secondly, the sum of the x-values in the
non-core events should be strictly less than 1. Otherwise, the theorem is obviously useless. The
following theorem deals with the aforementioned issues, given some slightly stricter conditions.

Theorem 3.3.6 Suppose log(1/δ) ≤ poly(n). Suppose further that there is a fixed constant
ε ∈ (0, 1) and an assignment of reals x : A → (0, 1− ε) such that:

∀Ai ∈ A : Pr[Ai]
1−ε ≤ x(Ai)

∏
B∈Γ(Ai)

(1− x(B)) (3.52)

Then for every p ≥ 1
poly(n) the set A′ = {Ai ∈ A : Pr[Ai] ≥ p} has size at most poly(n),

and is thus essentially always an efficiently verifiable core subset of A. If this is the case, then
there is a Monte Carlo algorithm that terminates after O(n · logn) resamplings and returns a
good assignment with probability at least 1− n−c, where c > 0 is any desired constant.

Proof:
Since by definition : Ai ∈ A′ ⇒ x(Ai) ≥ p and∑

B∈A′

x(B) ≤
∑
B∈A

x(B) ≤ O(nlog(1/δ))

we deduce that : |A′| ≤ O(nlog(1/δ)p) = poly(n) , so A′ is efficiently verifiable.
For ε > 0 sufficiently small, as we have agued before, we have :

∀Ai ∈ A : Pr[Ai] ≤ x(Ai) ≤ 1− ε

So, equation (3.52) now becomes:

Pr[Ai] ≤ Pr[Ai]
εx(Ai)

∏
B∈Γ(Ai)

(1− x(B)) (3.53)

< (1− ε)εx(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.54)

One can easily verify (by applying de L’Hospital rule twice) that :

lim
ε→0

1− (1− ε)ε

ε2
= 1

So, we can rewrite (3.54) as follows:

Pr[Ai] < (1−Θ(ε2))x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.55)

and the apply theorem 3.3.1. So, the algorithm terminates with high probability after O(nlogn)
resamplings (assuming ε is a small positive constant).

3.4. THE LOPSIDED VERSION OF LLL 37

It remains to prove the bound on the failure probability:

∑
Ai∈A−A′

x(Ai) ≤
∑
Ai∈A

x(Ai) = poly(n)

Particularly for the non-core events the following inequality holds:

∀Ai ∈ A−A′ : Pr[Ai] ≤ (1− ε)x∗(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (3.56)

where x∗(Ai) = pε · x(Ai). So, theorem 3.3.1 can be applied using the x∗-values so∑
Ai∈A−A′

x∗(Ai) = O(pε · poly(n)) = O(pε · nk)

and if we choose p = n− 1
ε
(k+c) = 1

poly(n) , then by theorem 3.3.5 the failure probability is at most

n−c on non-core events, while the core is always avoided.

�

3.4 The lopsided version of LLL

3.4.1 Existential version

An improved version of the existential LLL was introduced by Erdös and Spencer in [6]. The
improvement comes from the fact that for every possible dependency graph G, we can contruct
a ”sparser” dependency graph G′ on the same set of events such that: (i, j) ∈ G′ ⇒ (i, j) ∈ G
but the converse is not nessesarily true. So, this makes the conditions in equation (1.4) weaker.
We will call G′ the lopsidependency graph of the set of events {Ai}

Definition 3.4.1 Lopsidependency graph
Let A1, A2, ..., An, be events in a probability space, G a graph on the indices We say G is a
lopsidependency graph (for the events) if

Pr[Ai|
∧
S

Aj] ≤ Pr[Ai] (3.57)

for all i, S with i 6∈ S and no j ∈ S adjacent to i.

Remark: In the original version, the inequality (3.57) becomes an equality due to mutual
independence. So, the lopsidependency graph is clearly ”sparser” than the dependency graph.

Using the above definition of the dependency graph, we can prove the following:

Theorem 3.4.2 Lopsided General Local Lemma:
Let {AC}C∈I be a finite set of events in some probability space. Let Γ(C) be a subset of I for
each C ∈ I such that for every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr[AC |
∧
D∈J
¬AD] ≤ Pr[AC]

38 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

Suppose there are real numbers 0 < xC < 1 for C ∈ I such that for every C ∈ I we have

Pr[AC] ≤ xC
∏

D∈Γ(C)

(1− xD)

Then
Pr[

∧
C∈I

AC] > 0

The corresponding symmetric version can be stated as follows:

Theorem 3.4.3 Lopsided Symmetric Lovász Local Lemma
Let A1, A2, ..., An, be events with lopsidependency graph G and suppose all the events have
probability at most p and that each i ∈ G has degree at most d. Assume 4dp ≤ 1. Then

Pr[
n∧

i=1

Ai] > 0 (3.58)

3.4.2 Constructive version

Moser and Tardos [17] tried to adapt this notion to their setting (the case where each event is
determined by a subset of a set P of mutually independent events).

Definition 3.4.4 We say that two events A,B ∈ A are lopsidependent if there exist two
evaluations f and g of the variables in P that differ only on variables in vbl(A) ∩ vbl(B) such
that f violates A and g violates B but either f does not violate B or g does not violate A.

Definition 3.4.5 The variable lopsidependency graph is the graph on the vertex set A,
where lopsidependent events are connected by an edge. We write Γ(A) = Γ′

A(A) for the neigh-
borhood of an event A in this graph.

Clearly, if vbl(A) is disjoint from vbl(B), then A and B cannot be lopsidependent, so we
have Γ′(A) ⊆ Γ(A), which makes the conditions (3.1) weaker.

Definition 3.4.6 We call an event A ∈ A elementary, if there is a single evaluation of the
variables in vbl(A) violating A.

Note that, the elementary events A and B are lopsidependent if and only if they are mutu-
ally exclusive. Indeed, if the unique assignment in the set vbl(A) that violates A, also ensures
B is not violated, then the unique assignment in vbl(B) that violates B has to assign different
values to the variables in vbl(A) ∩ vbl(B). The converse is true by the definition of elementary
events and lopsided dependence.

Example: Given a CNF formula with m clauses, we can define the set of eventsA1, A2, ..., Am

as follows:
Ai : clause i is not satisfied

The above events are clearly elementary, since they are determined by the set of literals they
contain, and they are true if and only if each of them is false.

Additionaly, two (elementary) events Ai, Aj are mutually exclusive (or equivalently lopside-
pendent) if and only if the corresponding clauses have at least one common variable appearing
in complementary literals. Let xl be one of those variables. Indeed, if for example xl appears
in the clause Ai complemented, then Ai is violated only if xl is True, which satisfies Aj . Con-
versely, if the events are mutually exclusive, the unique assignment in vbl(Ai) and the unique
assignment in vbl(Aj) differ in vbl(A) ∩ vbl(B). So, since the events are elementary, the two
clauses have at least one common variable appearing in complementary literals.

3.4. THE LOPSIDED VERSION OF LLL 39

3.4.3 Comparing definition 3.4.1 and definition 3.4.5

By looking more carefully into the definitions of lopsidependency graph (definition 3.4.1) and
variable lopsidependency graph (definition 3.4.5), we notice that latter uniquely determines a
graph G, whereas definition 3.4.1 doesn’t.

Example:
Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and
0 for tails. Let the third random variable Z be equal to 1 if both coin tosses resulted in ”heads”
or both resulted in ”tails”. Then jointly the triple (X,Y, Z) has the following probability dis-
tribution:

(X,Y, Z) =



(0, 0, 1) with probability 1/4

(0, 1, 0) with probability 1/4

(1, 0, 0) with probability 1/4

(1, 1, 1) with probability 1/4

(3.59)

It is easy to verify that:

1. Pr[Z|X] = Pr[Z] ≤ Pr[Z]⇔ X and Z are independent

2. Pr[Z|Y] = Pr[Z] ≤ Pr[Z]⇔ Y and Z are independent

3. Pr[Z|X,Y] = 1 > Pr[Z]

Similarly,

4. Pr[X|Z] = Pr[X] ≤ Pr[X]

5. Pr[X|Y] = Pr[X] ≤ Pr[X]⇔ X and Y are independent

6. Pr[X|Z, Y] = 1 > Pr[X]

And similarly,

7. Pr[Y |X] = Pr[Y] ≤ Pr[Y]

8. Pr[Y |Z] = Pr[Y] ≤ Pr[Y]

9. Pr[Y |X,Z] = 1 > Pr[Y]

So, we can easily verify that there are three minimal dependency graphs shown below (whereas
according to definition 3.4.5 we get the middle graph):

Figure 3.6: The three possible dependency graphs

However, the following theorem holds:

40 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

Theorem 3.4.7 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of elementary events determined by these variables. The (unique)
variable lopsidependency graph (definition 3.4.5) is a subgraph of every possible lopsidependency
graph (definition 3.4.1) on A.

Proof:
Since the two graphs are on the same set of vertices, it suffices to prove that: If the events
Ai, Aj ∈ A are lopsidependent, they are also connected by an edge in every possible lopside-
pendency graph on A.

We argued before that two elementary events are lopsidependent if and only if the are
mutually exclusive.
So, we get:

Ai ⇒ ¬Aj

Aj ⇒ ¬Ai

The conditional probability that Ai is violated given that Aj isn’t, can be written as follows:

Pr[Ai|¬Aj] =
Pr[Ai ∩ ¬Aj]

Pr[¬Aj]
=

Pr[Ai]

Pr[¬Aj]
> Pr[Ai] (3.60)

So, if they were not adjacent in some lopsidependency graph, then by (3.57) we get a
contradiction.

Example:
Let φ be a k-SAT formula, in which every variable is TRUE of FALSE with probability 1/2.
We define the events:

Ai : the i− th clause of φ is not satisfied , 1 ≤ i ≤ m

As mentioned before, all events are elementary and also every pair of them which has at
least one common variable appearing in complementary literals, is lopsidependent.

So, by (3.60) we get:

Pr[Ai|¬Aj] =
Pr[Ai]

Pr[¬Aj]
=

2−k

1− 2−k
> 2−k (3.61)

In case, Ai, Aj have no variables that appear in complementary literals, which makes them
independent in the lopsided sence (not adjacent in the variable lopsidependency graph), let
0 ≤ s ≤ k be the number of their common literals.

Let’s see how these two events depend on each other with regard to s. If Ai holds, then s
out of k literals of the i− th clause are already FALSE.

So,
Pr[Ai|Aj] = 2−(k−s) (3.62)

which denotes the probability that the remaining k − s literals are also FALSE.

Using the law of total probability, we have:

Pr[Ai|Aj]Pr[Aj] + Pr[Ai|¬Aj]Pr[¬Aj] = Pr[Ai] (3.63)

or equivalently,

Pr[Ai|¬Aj] =
Pr[Ai]− Pr[Ai|Aj]Pr[Aj]

Pr[¬Aj]
=

2−k − 2−(k−s)2−k

1− 2−k
=

2−k(1− 2−(k−s))

1− 2−k
(3.64)

3.4. THE LOPSIDED VERSION OF LLL 41

We can verify that if s=0 (the clauses consist of completely different variables, so the events
are independent) Pr[Ai|¬Aj] = 2−k = Pr[Ai] as expected. Also, if s=k (the clauses are identi-
cal) Pr[Ai|¬Aj] = 0 as expected. Note also that, the conditional probability in equation (3.64)
is a strictly decreasing function of s.

Theorem 3.4.8 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these variables. If there exists an assignment
of reals x : A → (0, 1) such that:

∀Ai ∈ A : Pr[Ai] ≤ x(A)
∏

B∈Γ′
A(Ai)

(1− x(B)) (3.65)

then there exists an assignment of values to the variables P not violating any of the events in
A. Moreover,the randomized algorithm resamples an event Ai ∈ A at most an expected x(Ai)

1−x(Ai)
times before it finds such an evaluation. Thus the expected total number of resampling steps is
at most

∑
Ai∈A

x(Ai)
1−x(Ai)

.

42 CHAPTER 3. THE MOSER-TARDOS ALGORITHM AND WITNESS TREES

Chapter 4

Improvements on the analysis of MT
algorithm

4.1 Improved analysis of the sequential algorithm

In a very recent work, Wesley Pegden [18] managed to fit the improvement of Bissacot,et al.[5]
into the algorithmic framework of Moser and Tardos[17] and thus give a constructive proof of
the ”Improved Lovász local lemma” (section 3).

The main idea is the observation that the set of witness trees that can actually occur in the
random log of the MT algorithm is much smaller than the set of possible outputs of the Galton
- Watson process. In particular, we can modify the Galton - Watson process to (randomly)
choose witness trees from a proper subset of ”proper” witness trees, which we will call ”strongly
proper” witness trees.

Definition 4.1.1 If a witness tree has the property that any two children of a common vertex
have labels which are nonadjacent in the dependency graph, we will call it a strongly proper
witness tree.

Notice that, every witness tree that occurs in the log is necessarily strongly proper. So, our
random branching process does not need to produce witness trees outside of this set.

We are going to prove the following theorem:

Theorem 4.1.2 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events with a dependency graph G determined by these variables.
If there exists an assignment of reals µ : A → (0,+∞) such that

pi ≤ R∗
i =

µ(Ai)

ϕ∗
i (µ)

(4.1)

where

ϕ∗
i (µ) =

∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u) (4.2)

43

44 CHAPTER 4. IMPROVEMENTS ON THE ANALYSIS OF MT ALGORITHM

then there exists an assignment of values to the variables Pi not violating any of the events in
A. Moreover the MT algorithm resamples an event Ai ∈ A at most an expected µ(Ai) times
before it finds such an evaluation. Thus, the expected total number of resampling steps is at
most

∑
Ai∈A µ(Ai).

Modifying the branching process:
To prove the theorem, we will need an improved branching lemma, and to get to that we need
to redefine the branching process, so that it only produces strongly proper witness trees. So,

the modified process will be exactly the same as the original (we will use x(Ai) =
µ(Ai)

1 + µ(Ai)
instead of x(Ai)), but when we finish the choice of one node’s children we check if they form an
independent set,otherwise we choose another random set of children until they form an indepen-
dent set. By doing this, we ensure that no non-strongly proper witness tree will be produced,
and also any set of children of the same node will correspond to an independent set in the
dependency graph.

Notice that the modification does not act in favour of any independent set, which means
that the likelihood of the choice of each independent set Iu is weighted according to:

w(Iu) =
∏
v∈Iu

xAv

∏
v∈Γ+

G(u)−Iu

(1− xAu) (1) (4.3)

which is exactly the probability Iu is chosen from the set of vertices:Γ+
G(u) by the unmodified

process.

So,

Pr[Iu is chosen] =
w(Iu)∑

I⊂Γ+
G(u),I indep

w(I)
(4.4)

Lemma 4.1.3 [Improved Branching lemma] For any strongly proper witness tree T with
root labelled Ar, the probability p′T that the modified branching process described above produces
exactly the tree T is

µ−1
Ar

∏
u∈T

µ([u])∑
I⊂Γ+

G(u),I indep

∏
A∈I

µA

(4.5)

Proof:
For each node u ∈ T , let Iu be the set of it’s children in T (which is an independent set in G).
According to the process, we choose the children of every node independently.
So,

p′T =
∏
u∈T

Pr[Iu is chosen from Γ+
G(u)] (4.6)

p′T =
∏
u∈T

Pr[Iu is chosen]

Pr[Iu is indep]
(4.7)

=
∏
u∈T

∏
v∈Iu

xAv

∏
B∈Γ+

G(u)−Iu

(1− xB)

∑
I⊂Γ+

G(u),I indep

∏
A∈Iu

xA
∏

B∈Γ+
G(u)−Iu

(1− xB)
(4.8)

4.2. IMPROVED ANALYSIS OF THE PARALLEL ALGORITHM 45

by dividing the numerator and denominator by
∏

B∈Γ+
G(u)(1− xB), we get:

p′T =
∏
u∈T

∏
v∈Iu

xAv

1− xAv∑
I⊂Γ+

G(u),I indep

∏
A∈Iu

xA
1− xA

(4.9)

=

∏
u∈T−{r}

µ(u)

∏
u∈T

∑
I⊂Γ+

G(u),I indep

∏
A∈Iu

µ(A)
(4.10)

where r is the root of T and µ(v) =
xAv

1− xAv

, or equivalently:

p′T =
1

µ(r)

∏
u∈T

µ(u)∑
I⊂Γ+

G(u),I indep

∏
A∈Iu

µ(A)
(4.11)

�

Now, we would like to calculate the expected number of resamplings for each event.

Let TS
Ai

be the set of strongly proper witness trees with root Ai.

By lemma 3.1.2 we have:

E[NAi] =
∑

τ∈TS
Ai

Pr[τ occurs in C] (4.12)

≤
∑

τ∈TS
Ai

∏
v∈V (τ)

Pr[[v]] (4.13)

≤
∑

τ∈TS
Ai

∏
v∈V (τ)

µ(Ai)∑
R⊆Γ+

G(Ai)R indep

∏
u∈R

µ(u)
(4.14)

= µAi

∑
τ∈TS

Ai

p′T ≤ µAi (4.15)

since at most one strongly proper witness tree from TS
Ai

is generated by the branching process
each time (or none if it doesn’t terminate).

So, the expected number of resamplings made by the MT algorithm is again
∑

A∈A µA.

�

4.2 Improved analysis of the parallel algorithm

We are now going to examine the parallel case:

46 CHAPTER 4. IMPROVEMENTS ON THE ANALYSIS OF MT ALGORITHM

Theorem 4.2.1 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events with a dependency graph G determined by these variables.
If there exists an assignment of reals µ : A → (0,+∞) such that

pi ≤ (1− ε)
µ(Ai)

ϕ∗
i (µ)

(4.16)

where

ϕ∗
i (µ) =

∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u) (4.17)

then the parallel version of our algorithm takes an expected O(
1

ε
log

∑
Ai∈A

µ(Ai)) steps before

it finds an evaluation violating no event in A.

Proof:

It is easy to see that lemma 3.2.2 still holds. So, the equations (3.22)-(3.24) become:

Q(k) ≤
∑
Ai∈A

∑
τ∈TS

Ai
(k)

Pr[τ occurs in the log C] (4.18)

≤
∑
Ai∈A

∑
τ∈TS

Ai
(k)

∏
v∈V (τ)

Pr[[v]] (4.19)

≤ (1− ε)k
∑
Ai∈A

∑
τ∈TS

Ai
(k)

∏
v∈V (τ)

µ(Ai)∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)
(4.20)

where the last inequality follows from the assumption in Theorem 4.2.1.
So,

Q(k) ≤ (1− ε)k
∑
Ai∈A

∑
τ∈TS

Ai
(k)

∏
v∈V (τ)

µ(Ai)∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)
(4.21)

= (1− ε)k
∑
Ai∈A

µ(Ai)
∑

τ∈TS
Ai

(k)

pτ (4.22)

≤ (1− ε)k
∑
Ai∈A

µ(Ai) (4.23)

If we set: M =
∑

Ai∈A µ(Ai), and T be the number of steps, we have:

Pr[T ≥ k] ≤M · (1− ε)k (4.24)

So, by lemma 3.2.3 ,

E[T] = O(
1

ε
log(M)) (4.25)

�

4.3. SUPERPOLYNOMIAL NUMBER OF EVENTS 47

4.3 Superpolynomial number of events

The next theorem is an analogue of theorem 3.3.1 which also exploits the improvement first
introduced in [5].

Theorem 4.3.1 Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events with a dependency graph G determined by these variables.
If there exists an assignment of reals µ : A → (0,+∞) such that

pi ≤ (1− ε)
µ(Ai)

ϕ∗
i (µ)

(4.26)

where

ϕ∗
i (µ) =

∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u) (4.27)

then with δ denoting min
Ai∈A

µ(Ai)

1 + µ(Ai)

∏
B∈Γ(Ai)

1

1 + µ(Ai)
, we have

T :=
∑
Ai∈A

µ(Ai)

1 + µ(Ai)
≤ nlog(1/δ) (4.28)

Furthermore:

1. If ε = 0, then the expected number of resamplings done by the MT algorithm is at most
v1 = T (1 + max

Ai∈A
µ(Ai)) , and for any parameter

λ ≥ 1, the MT algorithm terminates within λv1 resamplings with probability at least
1− 1/λ.

2. If ε > 0, then the expected number of resamplings done by the MT algorithm is at most
v2 = O(nε log

T
ε), and for any parameter λ ≥ 1, the MT algorithm terminates within λv2

resamplings with probability 1− e−λ.

Proof:

The first part of the theorem follows immediately from theorem 4.1.2, because we have
proved that if ε = 0, then the expected number of resamplings cannot be more than

∑
Ai∈A µ(Ai) ≤

T · (1 + maxAi∈A µ(Ai)). Also, the rest of the first part is proven by a simple application of
Markov’s inequality.

The bound on T is easily proven by making the substitution: µ(Ai) = x(Ai)
1−x(Ai)

and then
following the proof of theorem 3.3.1.

Finally, the proof of the 2nd part can be done in exactly the same way as in theorem 3.3.1
, because from equations (4.18)-(4.20) we have

∑
Ai∈A

∑
τ∈TS

Ai
(k)

Pr[τ occurs in C] ≤ (1− ε)k
∑
Ai∈A

∑
τ∈TS

Ai
(k)

∏
v∈V (τ)

µ(Ai)∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)

(4.29)

48 CHAPTER 4. IMPROVEMENTS ON THE ANALYSIS OF MT ALGORITHM

istead of (3.38) , so we finally get

Pr[max
τ occuring in C

|τ | ≥ k] ≤ (1− ε)k
∑
Ai∈A

∑
τ∈TS

Ai
(k)

∏
v∈V (τ)

µ(Ai)∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)
(4.30)

instead of (3.41). By applying lemma 3.2.3 and using the argument that the x-values can be
bounded away from 1, we can show that the expected number of steps that the algorithm
performs is O(nε log(

T
ε)).

�

In order to exploit ”effcient verifiability” the way we did in section 3.3, we will need the
following theorem, an analogue of theorem 3.3.4.

Theorem 4.3.2 Suppose there is an assignment of reals µ : A → (0,+∞) such that (4.1)
and (4.2) hold. Let B be any event that is determined by P. Then, the probability that B
was true at least once during the execution of the MT algorithm on the events in A, is at

most Pr[B]
∑

R⊆Γ(B),R indep

∏
u∈R

µ([u]). In particular, the probability of B being true in the output

distribution of MT obeys this upper-bound.

Proof:
Similarly to the proof of theorem 3.3.4, we calculate the probability that the witness tree τ is
produced by the modified brancing process conditional that B is the root.

Consider the neighbours of node B in G. Then the desired probability is (using lemma 4.1.3):

Pr[τ |B is the root] =

= Pr[ΓT (B) is chosen] ·
∏

Ai∈ΓT (B)

µ−1
Ai

∏
u∈T

µ(u)∑
I⊂Γ+

G(u),I indep

∏
A∈I

µA

(4.31)

Note that, each child of B is a root of a subtree generated by an independent random process.
By comparing equations (4.6) and (4.9) we can see that :

Pr[ΓT (B) is chosen] =

∏
v∈ΓT (B)

xAv

1− xAv∑
I⊂Γ+

G(B),I indep

∏
A∈ΓT (B)

xA
1− xA

(4.32)

=

∏
v∈ΓT (B)

µ([v])

∑
I⊂Γ+

G(B),I indep

∏
A∈ΓT (B)

µ(A)
(4.33)

So,

Pr[τ |B is the root] =

4.3. SUPERPOLYNOMIAL NUMBER OF EVENTS 49

=

∏
v∈ΓT (B)

µ([v])

∑
I⊂Γ+

G(B),I indep

∏
A∈ΓT (B)

µ(A)
·

∏
Ai∈ΓT (B)

µ−1
Ai

∏
u∈T

µ(u)∑
I⊂Γ+

G(u),I indep

∏
A∈I

µA

(4.34)

=
1∑

I⊂Γ+
G(B),I indep

∏
A∈ΓT (B)

µ(A)
·
∏
u∈T

µ(u)∑
I⊂Γ+

G(u),I indep

∏
A∈I

µA

(4.35)

If we work in a similar way as in equations (4.12)-(4.15), we get that the expected number
of such witness trees is upper bounded by:

Pr[B]
∑

R⊆Γ(B),R indep

∏
u∈R

µ([u]) (4.36)

So, by simply applying Markov’s inequality, we get the desired upper bound.

�

In the following two theorems, we show that theorems 3.3.5 and 3.3.6 can be extended to
apply to our new setting as well.

Theorem 4.3.3 Let A′ ⊆ A be an efficiently verifiable core subset of A. If there is an ε ∈ [0, 1)
and an assignment of reals x : A → (0, 1) such that:

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)
µ(Ai)

1 + µ(Ai)

1∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)
(4.37)

Then the modified MT-algorithm can be efficiently implemented with an expected number of
resamplings according to theorem 4.3.1. The algorithm furthermore outputs a good assignment

with probability at least 1−
∑

Ai∈A−A′

µ(Ai)

1− µ(Ai)
.

Proof:
The expected number of resamplings is given by theorem 4.3.1 , if we apply it on A′. So, the
only thing we have to care about, is the failure probability of the modified MT algorithm. The
inequality (4.37) gives:

∀Ai ∈ A : Pr[Ai] ≤
µ(Ai)

1 + µ(Ai)

1∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u)
(4.38)

∀Ai ∈ A :
µ(Ai)

1 + µ(Ai)
≥ Pr[Ai]

∑
R⊆Γ+

G(Ai),R indep

∏
u∈R

µ(u) (4.39)

Using the above inequality together with theorem 4.3.2 the probability that a non-core event
Ai is violated by the output assignment of MT algorithm, is at most µ(Ai)

1+µ(Ai)
(the core events

are surely not violated). So,by a simple union bound, the algorithm fails with probability at

most
∑

Ai∈A−A′
µ(Ai)

1+µ(Ai)
as desired.

�

50 CHAPTER 4. IMPROVEMENTS ON THE ANALYSIS OF MT ALGORITHM

Theorem 4.3.4 Suppose log(1/δ) ≤ poly(n). Suppose further that there is a fixed constant
ε ∈ (0, 1) and an assignment of reals µ : A → (0,+∞) such that:

∀Ai ∈ A : Pr[Ai]
1−ε ≤ µ(Ai)

1 + µ(Ai)

1∑
R⊆Γ(Ai),R indep

∏
B∈R

µ(Ai)
(4.40)

Then for every p ≥ 1
poly(n) the set A′ = {Ai ∈ A : PrAi ≥ p} has size at most poly(n),

and is thus essentially always an efficiently verifiable core subset of A. If this is the case, then
there is a Monte Carlo algorithm that terminates after O(nlogn) resamplings and returns a good
assignment with probability at least 1− n−c, where c > 0 is any desired constant.

Proof:
By carefully following the proof of theorem 3.3.6, we can prove that |A′| = poly(n) and instead
of equation (3.55) we now have:

Pr[Ai] < (1−Θ(ε2))
µ(Ai)

1 + µ(Ai)

1∑
R⊆Γ(Ai),R indep

∏
B∈R

µ(Ai)
(4.41)

Then, theorem 4.3.1 is applicable. From that we get the desired O(nlogn) bound in the
number of resamplings.

Also, theorem 4.3.3 is applicable. So, the error probability is upper bounded by:∑
Ai∈A−A′

µ(Ai)

1 + µ(Ai)
≤

∑
Ai∈A

µ(Ai)

1 + µ(Ai)
= poly(n)

Particularly for the non-core events the following inequality holds:

∀Ai ∈ A−A′ : Pr[Ai] ≤ (1− ε)x∗(Ai)
1∑

R⊆Γ(Ai),R indep

∏
B∈R

µ(Ai)
(4.42)

where x∗(Ai) = pε · µ(Ai)
1+µ(Ai)

. So, theorem 4.3.1 can be applied using the x∗-values so∑
Ai∈A−A′

x∗(Ai) = O(pε · poly(n)) = O(pε · nk)

and if we choose p = n− 1
ε
(k+c) = 1

poly(n) , then by theorem 4.3.3 the failure probability is at most

n−c on non-core events, while the core is always avoided.

�

Chapter 5

Tightness results for the Lovász
Local Lemma

5.1 Introduction

5.1.1 Definitions

As we have already seen, the Lovász local lemma, provides sufficient conditions for a combina-
torial object to exist. It is an interesting question whether these conditions are also necessary.

In a recent work, H. Gebauer et’al [10] have partially answered this question, by showing that
the local lemma is asymptotically tight for SAT. They construct unsatisfiable k-CNF formulas
with distinct literals in each clause, where every variable appears in at most (2e+o(1))2

k

k clauses.
They also use the lopsided local lemma (theorem 3.4.3) to prove that every k-CNF formula where

every variable appears in at most 2
e ·

2k

k+1 − 1 clauses is satisfiable.
More interestingly, it has been proven that the k-SAT problem with bounded number of

occurences undergoes a very sharp ”complexity phase transition”. In order to explain that more
formally, we will use the following definitions:

Definition 5.1.1 A k-CNF formula is called a (k, s)-CNF formula if every variable appears in
at most s clauses.

Definition 5.1.2 Let f(k) be the largest integer s such that every (k, s)-CNF formula is satis-
fiable.

Theorem 5.1.3 For every k ≥ 3 the (k, f(k) + 1)− SAT is already NP-complete.

This means that if s=f(k) k-SAT is trivial, but if we allow just one more occurence in each
variable, it becomes NP-complete. This explains the term: ”complexity phase transition”.

In order to use the Lovász Local Lemma to give a lower bound for f(k), it is more convenient
to introduce a different number as follows:

Definition 5.1.4 Let l(k) be the largest integer number satisfying that whenever all clauses of
a k-CNF formula intersect at most l(k) other clauses the formula is satisfiable.

5.1.2 Lower bounds for number of occurences and intersections

So, we are going to prove the following corollary of the LLL for k-SAT.

Corollary 5.1.5 Let φ be a k-CNF formula, for k ≥ 2.
If l(k) ≤ 2k

e − 1, then φ is satisfiable.

51

52 CHAPTER 5. TIGHTNESS RESULTS FOR THE LOVÁSZ LOCAL LEMMA

Proof:

Using the symmetric version of the LLL (equation 1.5), we get:

e · p · (l(k) + 1) ≤ 1⇒ φ is satisfiable

Since p = 2−k and using the hypothesis, we get:

e · p · (l(k) + 1) ≤ e · 2−k · 2
k

e
= 1

So, the corollary holds.
We can easily observe that this bound lower bound is asymptotically optimal. The formula

all possible k-clauses on k variables is clearly unsatisfiable and contains only 2k clauses, which
are pairwise intersecting. This means that l(k) < 2k − 1.

However, H.Gebauer et’al [10] proved that the factor of 1
e cannot be improved, as we will

see next.
We can use corollary 5.1.5 to give a lower bound for f(k) as well. Indeed, let φ be an

unsatisfiable instance where the maximum degree of some clause is l(k) + 1. We fix a clause Ci

in φ which intersects with l(k)+1 other clauses. Each of it’s k variables may cause Ci intersect
with some other clause, and using the pidgeonhole principle, it is clear that there must be a
variable appearing in at least b l(k)+1

k c+ 1 clauses, which implies that:

f(k) ≥ b l(k) + 1

k
c ≥ b 2k

e · k
c (5.1)

Now, we are going to use the (stronger) lopsided version of the LLL to obtain a factor 2
improvement and then show that the bound is tight up to an asymptotically smaller additive
term.

Theorem 5.1.6 Let φ be a k-CNF formula and f(k) be the largest integer s such that every
(k, s)-CNF formula is satisfiable. The following lower bound on f(k) holds:

f(k) ≥ b 2k+1

e(k + 1)
c (5.2)

Proof:
Let φ be a (k, s)-CNF formula with s = b 2k+1

e(k+1)c. Also, let nl be the number of occurences of
the literal l in φ.

Consider the following random experiment:
Each variable xi is set to:

• TRUE with probability: Pxi =
1
2 +

2n¬xi−s

2sk

• FALSE with probability P¬xi =
1
2 −

2n¬xi−s

2sk

Note that,

P¬xi =
1

2
− 2n¬xi − s

2sk
≥ 1

2
+

2n¬xi − s

2sk
⇔ (5.3)

nxi + n¬xi − s ≤ 0 (5.4)

(5.5)

which holds by definition.

5.1. INTRODUCTION 53

So, every literal l is satisfied by this assigment with probability at least 1
2 + 2n¬l−s

2sk
For every clause Ci of φ, we define it’s neighbourhood Γ(C) in the lopsidependency graph

to be:
Γ(C) : {D|∃l ∈ D s.t : ¬l ∈ C}

From this definition, it is clear that every clause D 6∈ Γ(C) has either no common variables
with C or their common variables appear in identical literals. As this is the case, we can
use an argument similar to what we have used in section 3.4, and claim that for every J ⊆
V (G) \ (Γ(C) ∪ {Ci}), knowing that the event:

∧
D∈J
¬AD occurs cannot increase the probability

of ACi, so the conditions for the lopsidependency graph

∀C : Pr[AC |
∧
D∈J
¬AD] ≤ Pr[AC]

are met.

It remains to prove the validity of equation ?? to be able to use the lemma.
A clause C of φ is violated if and only if all the literals it contains (l1, l2, ..., lk) are FALSE.

So, we get:

Pr[AC] =

k∏
i=1

(1− Pli) (5.6)

≤
k∏

i=1

(
1

2
− 2n¬li − s

2sk
) (5.7)

≤ 1

2k

k∏
i=1

(1− 2n¬li − s

sk
) =

1

2k

k∏
i=1

(1 +
1

k
− 2n¬li

sk
) (5.8)

≤ 1

2k

k∏
i=1

(1 +
1

k
− 2n¬li · e(k + 1)

2k+1 · k
) (5.9)

=
1

2k

k∏
i=1

(1 +
1

k
− n¬li · e

2k
− n¬li · e

2k · k
) =

1

2k

k∏
i=1

(1 +
1

k
)(1− n¬li · e

2k
) (5.10)

By setting:

∀i : xi = x =
e

2k

and using the identity:

(1− x)α ≥ 1 + α · x, for all x ∈ [0, 1) and α ≥ 1

we get:

Pr[AC] ≤
(1 + 1

k)
k

2k

k∏
i=1

(1− xi)
n¬li (5.11)

<
e

2k
(1− x)|Γ(C)| (5.12)

= xC
∏

D∈Γ(C)

(1− xD) (5.13)

54 CHAPTER 5. TIGHTNESS RESULTS FOR THE LOVÁSZ LOCAL LEMMA

We have just shown that all the conditions of the lopsided local lemma hold. So, if we sample
the variables of φ independently and according to the proposed distribution, φ is satisfied with
strictly positive probability. This means that φ is satisfiable for s = b 2k+1

e(k+1)c, meaning that

f(k) ≥ b 2k+1

e(k+1)c.

Remark:
Notice that, in order to gain the most benefit from the stronger lopsided LLL, we needed
to assign values to the variables xi in a biased way, which is reasonable as nxi , n¬xi can be
arbitrary. However, the way we it is done may seem counter-intuitive at first glance. It turns
out that when sampling the most frequent variables (which appear to be the bottleneck), we
favor their less frequent literal satisfying on average less clauses directly from this literal. The
reason behind this, is that the clauses that contain the less frequent literal intersect with more
clauses in general, which makes it harder to satisfy them. Even though this bias is sometimes
reversed for less frequent variables (e.g less than s/2 occurences), no literal with more than s/2
occurences has a probability to be satisfied which is greater than 1/2.

5.1.3 Unsatisfiable CNF formulas from binary trees

In this section, we will show a way to construct unsatisfiable k-CNF formulas using binary trees.
The same procedure was used in [10]. All non-leaf nodes of the trees we consider, will have
exactly two children.

Given such a tree T and a positive integer k, we define the k-CNF formula Fk(T) as follows:

1. For every non-leaf node, we generate a new variable xi and label it’s left and right children
with literals xi and ¬xi respectively.

2. For every leaf node w, we build a k-clause Cw by picking as literals the first k labels of
nodes we encounter if we follow the unique path towards the root (which is not labelled).

Lemma 5.1.7 The formula Fk(T) is unsatisfiable.

Proof: Consider an arbitrary truth assignment α for the constructed variables. Now, form
a path starting from the root r in which every label represents a literal where α has assigned
the value FALSE. This path will eventuallly stop at a leaf node u. It is now obvious that the
clause Cu is not satisfied. These is at least one such clause for each truth assignment. So, F is
unsatisfiable.

If there is an unsatisfiable formula in which every variable appears in at most s clauses, then
f(k) < s. So, using the above construction, it suffices to prove the existence of a binary tree
with every node having a bounded number of close leaf decendants in order to derive an upper
bound for f(k).

Definition 5.1.8 A leaf w is said to be l-close to a node v, if v is an ansestor of w and their
distance is at most l.

Definition 5.1.9 A binary tree T will be called a (k, d)-tree if

1. Every leaf has depth at least k + 1.

2. For every node v of T , there are at most d leaves which are k-close to v.

5.2. THE BOUND ON F (K) IS ASYMPTOTICALLY TIGHT FOR POWERS OF 2. 55

The following lemma explicitely states the connection between the existence of (k, d)-trees
the values of f(k) and l(k). It particular, we can prove the upper bounds for these values by
proving the existence of specific witness trees.

Lemma 5.1.10 Let T be a (k, d)-tree. With regard to the unsatisfiable formulas: Fk(T) and
Fk+1(T), the following hold:

1. The formula Fk+1(T) is a (k+1, 2d)-CNF formula where every clause intersects (k+1)d
other clauses. So, l(k + 1) ≤ (k + 1)(d− 1)− 1.

2. The formula Fk(T) is a (k, d)-CNF formula. So, f(k) ≤ d− 1.

Proof:

1. By the definition of the (k, d)-tree, for every node v there are at most d leaves k-close to it.
So, the corresponding literal can appear in at most d of the clauses constructed. Consider
that in order v to be included in a clause Cw of size k + 1, the leaf w must be k-close
to v. Since there are exactly two nodes in T representing the two complementary literals
of te same variable, there are at most 2d clauses where a particular variable may appear.
So, Fk+1(T) is a (k + 1, 2d)-CNF formula. Also, if we fix a clause C = (l1 ∧ ... ∧ lk+1) of
Fk+1(T), each of the k + 1 literals it contains, appear in at most d − 1 other clauses (as
many as the rest of the leaves k-close to some li). So, every clause intersects (k+1)(d−1)
other clauses. This implies that:

l(k + 1) ≤ (k + 1)(d− 1)− 1⇔ l(k) ≤ k(d− 1)− 1

2. Consider two nodes u, v which have a common parent node p. Clearly, their labels will be
xi,¬xi respectively for some i. By definition, there are at most d-leaves k-close to p, which
(by induction) implies that there are at most d-leaves (k− 1)-close to u or (k− 1)-close to
v. So, there are at most d leaves w such that Cw contains either xi or ¬xi. This implies
that Fk(T) is a (k, d)-CNF formula and f(k) ≤ d− 1.

5.2 The bound on f(k) is asymptotically tight for powers of 2.

The asymptotical tightness of the bound in equation ?? can be reduced to the existence of
(k,Θ(2

k

k))-trees via lemma 5.1.10.
In particular, we are going to prove the following:

Lemma 5.2.1 For k = 2m,m ∈ N, (k, 2k+2

k)-trees exist.

Proof:

Let T0 be a full binary tree of height k (i.e T0 it has 2k leaves at depth k). We enumerate
those leaves starting from the leftmost to the rightmost. So we label them as follows:

l0, l1, ..., l2k

Now, at each leaf li, we attach a full binary tree of height h = i mod (k2). The resulting tree
will be denoted T . Also, let r(v) denote the number of leaves k-close to node v. We need to
upper bound the value of r(v). We make the proof by induction. By the construction, the root
node (v0) is k-close to the leaf li if and only if i ≡ 0 mod k

2 .

56 CHAPTER 5. TIGHTNESS RESULTS FOR THE LOVÁSZ LOCAL LEMMA

Figure 5.1: The depth of the red nodes is k

The construction for k = 8 can be seen in the following figure:

So,

r(v0) =
2k

k/2
=

1

2
· 2

k+2

k

Now, suppose that the result doesn’t hold and that u is a node of least depth, for which
r(u) > 2k+2

k . Let, u′ be the parent of u. We consider the following two cases:

1.

Depth(u) = i ≤ k

2

Let u′ be the sibling of u and u′′ be their common parent. Also, let rd(u) be the number
of leaves at distance exactly d from u. Due to the symmetry of the construction and since
u and u′ cannot be leaves, it holds that exactly half of the leaves k-close to u′′ are also
(k − 1)-close to u (the other half are (k − 1)-close to u′).
Formally,

k−1∑
d=0

rd(u) =
r(u′′)

2
⇒ r(u) =

r(u′′)

2
+ rk(u)

The minimality of the depth of u implies that r(u′′) ≤ 2k+2

k . Also, the value of rk(u) can
be computed as follows:
Firstly, there are exactly 2k−i leaf decendants {lj} of node u in or first tree (T0). Out

of these nodes, there are exactly 2k−i

k/2 of rank r ≡ i mod k
2 . Each of these nodes has 2i

decendants at the level k + i of T (which we are interested in) and no other lj does.
So,

rk(u) =
2k−i

k/2
· 2i = 2k+1

k

Finally,

r(u) =
r(u′′)

2
+ rk(u) ≤

2k+2

k

So, this holds for every node u.

5.3. COMPLEXITY PHASE TRANSITION 57

2.

Depth(u) >
k

2
In this case, it is clear that :

r(u) = r(u′′) ≤ 2k+2

k

since there is no node of T with depth at least k + k
2 − 1.

5.3 Complexity phase transition

We consider CNF formulas with bounded number of variable occurences.

Definition 5.3.1 A k-CNF formula is called a (k, s)-CNF formula if every variable appears in
at most s clauses.

Now, we can define the following decision problem:

Definition 5.3.2 (k, s)-SAT:
Let φ be a (k, s)-CNF formula. Is φ satisfiable?

By the definition of the value f(k), it is clear that the problem: (k, s)-SAT is trivial for
every s ≤ f(k). Of course, (k,∞)-SAT ≡ k-SAT, which is NP-Complete. So, it is reasonable to
ask if there is a finite s such that (k, s)-SAT is NP-complete. If there is such s, where does this
compexity hardness jump occur and how sharp it is? As it turns out, this ”complexity phase
transition” is the sharpest it could be. The following theorem [8, 12] shows that it takes place
between two consecutive values of s.

Theorem 5.3.3 Let k ≥ 3. The (k, f(k) + 1)-SAT problem is already NP-complete.

Proof: We first introduce a useful gadget:
Given a set of j ≥ 2 variables U = {x0, x1, ..., xj1}, the 2-CNF formula

(x0 ∨ ¬x1) ∧ (x1 ∨ ¬x2) ∧ ... ∧ (xj−1 ∨ x0)

is called an equaliser of U . The equaliser of a singleton set U is the empty formula.
Now let F be a k-CNF formula, k ≥ 3. For each variable x ∈ vbl(F), we replace every

occurrence (as x or ¬x) by a new variable inheriting the sign of x in this occurrence. For each
variable x ∈ vbl(F), we add an equaliser for the set of variables that have replaced occurrences
of x. It can be easily proved that:

F ′ is satisfiable ⇔ F is satisfiable

and every variable occurs at most 3 times in F ′.

To see this, consider that the formula we constructed is the same as the originalif we disre-
gard that we now put new variables in the different occurences of the same variable. However,
we compensate for that by adding the ”equalizers”.

Example:
F = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ x4)

F ′ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4 ∨ ¬x5 ∨ x6) ∧ (x2 ∨ ¬x4) ∧ (x4 ∨ ¬x2) ∧ (x3 ∨ ¬x5) ∧ (x5 ∨ ¬x3)

We are now going to introduce another gadget defined as follows:

58 CHAPTER 5. TIGHTNESS RESULTS FOR THE LOVÁSZ LOCAL LEMMA

1. Fix some minimal unsatisfiable (k, f(k) + 1)-CNF formula G.

2. Choose some clause C in G and replace one of its literals by ¬x for a new variable x.

This new formula, which we denote by G(x), has the following properties:

1. It is satisfiable (otherwise G would not be minimal).

2. Every satisfying assignment has to set x to 0 (since otherwise G would be satisfiable).

3. All variables have degree at most f(k) + 1.

The reduction:
We are given a formula F (instance of k-SAT).

1. We generate F ′ from F as described above.

2. We augment each 2-clause in F by k−2 positive literals of new variables so that it becomes
a k-clause.

3. For each of the new variables x we add a copy of G(x) to our formula using new variables
each time.

The new formula F ′′ is k-CNF with at most k · |F |+k2 · |F |+k(k−2)|G| literals and is satisfiable
iff F is satisfiable.
Moreover, the maximum variable degree is max{3, f(k)+1} which is f(k)+1, since we assumed
k ≥ 3.

The equivalence can be proved as follows:
It suffices to prove that

F ′′ is satisfiable ⇔ F ′ is satisfiable

If F ′′ is satisfiable, all the literals added in step 2 of the reduction should be FALSE in every
satisfying assignment. Then clearly F ′ should also be satisfiable. Conversely, if F ′ is satisfi-
able, then merging one of it’s satisfying assignments with the satisfying assignments for each
G(x) (their variable sets are disjoint) will give us a satisfying assignment for F ′′. Since F ′ is
satisfiable, we can satisfy all clauses from step 2 by the first or the second literal in each clause
(which come from F ′). These are the only clauses that can contain literals from F ′ and some
G(x) at the same time. So the ”merging” is feasible.

Bibliography

[1] Noga Alon. A parallel algorithmic version of the Local Lemma. FOCS 1991, pages 586-593

[2] Alon, N. and Spencer, The probabilistic method, Wiley-Interscience series in discrete math-
ematics and optimization, 2008

[3] Alon, N. and Spencer, The probabilistic method, Wiley-Interscience series in discrete math-
ematics and optimization, 2008

[4] Beck Jozsef, An algorithmic approach to the Lovsz local lemma. Volume 2, number 4,
Wiley Subscription Services, Inc., A Wiley Company, pages 343-365, 1991

[5] J.H.Rodrigo Bissacot and Roberto Fernández and Aldo Procacci and Benedetto Scoppola.
An Improvement of the Lovász Local Lemma via Cluster Expansion, Combinatorics, Prob-
ability & Computing, volume 20, number 5, 2011, pages 709-719.

[6] Paul Erdös and Joel Spencer. Lopsided Lovász Local Lemma and Latin transversals, Dis-
crete Applied Mathematics, volume 30, number 2-3, 1991, pages 151-154.

[7] Paul Erdos and Laslo Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai, volume 11,num-
ber 5, 1975, pages 609-627

[8] Heidi Gebauer and Robin A. Moser and Dominik Scheder and Emo Welzl. The Lovász
Local Lemma and Satisfiability, Efficient Algorithms 2009, pages 30-54

[9] Heidi Gebauer and Tibor Szabó and Gábor Tardos. The Local Lemma is Tight for SAT,
SODA 2011, pages 664-674

[10] Bernhard Haeupler and Barna Saha and Aravind Srinivasan. New Constructive Aspects of
the Lovasz Local Lemma, FOCS 2010, pages 397-406

[11] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and tardos meet Lovász, STOC
2011, pages 235-244

[12] Jan Kratochv́ıl and Petr Savický and Zsolt Tuza. One More Occurrence of Variables Makes
Satisfiability Jump From Trivial to NP-Complete, SIAM J. Comput., volume 22 , number
1, 1993, pages 203-210

[13] Jochen Messner and Thomas Thierauf. A Kolmogorov Complexity Proof of the Lovász
Local Lemma for Satisfiability, COCOON, 2011, pages 168-179

[14] Michael Molloy and Bruce A. Reed. Further Algorithmic Aspects of the Local Lemma,
STOC 1998, pages 524-529

[15] Robin A. Moser. A constructive proof of the Lovász local lemma, STOC 2009, pages 343-350

59

60 BIBLIOGRAPHY

[16] Robin A. Moser. Derandomizing the Lovasz Local Lemma more effectively, CoRR, volume
abs/0807.2120, 2008, http://arxiv.org/abs/0807.2120

[17] Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
J. ACM , Volume 57, number 2, 2010

[18] Wesley Pegden. An improvement of the Moser-Tardos algorithmic local lemma, CoRR,
volume abs/1102.2853, 2011, http://a rxiv.org/abs/1102.2853

[19] Pascal Schweitzer. Using the incompressibility method to obtain local lemma results for
Ramsey-type problems, Inf. Process. Lett., volume 109, number 4, 2009 , pages 229-232

[20] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma. SODA
2008, pages 611-620.

