
National Technical University of Athens
School of Mechanical Engineering
Fluids Department
Parallel CFD & Optimization Unit

Modelling using Molecular Dynamics and Optimization of
Proton Conductivity in (Polymerized) Ionic Liquids for

Proton Exchange Membrane Fuel Cells.

Diploma Thesis

Matthaios N. Chatzopoulos

Academic Supervisor :
Kyriakos C. Giannakoglou, Professor NTUA

Industrial Supervisor :
Dr. Konstantinos Gkagkas, Technology Manager Toyota Motor Europe

Athens, February 2022



ii



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my professor
Kyriakos C. Giannakoglou for giving me the chance to conduct my diploma thesis
on this industrial subject in collaboration with Toyota Motor Europe. His advice,
guidance and corrections were really valuable lessons for me. Throughout my studies
in NTUA, he was an inspiring figure as an engineer and teacher. I am really grateful
for the opportunity that I was given to develop my engineering insight under his
academic supervision on this very interesting and novel topic.

Secondly, I would like to wholeheartedly thank my industrial supervisor Dr. K.
Gkagkas for placing his trust in me by assigning me this challenging topic. His
insightful guidance and his unique problem solving style have been indisputably of
great importance. He and Dr. Marco Di Genaro created a very warm working
environment full of enthusiasm about science. I am really thankful for that and for
assisting me by any means possible. I want to thank all the TME engineers for all
the meaningful dialogues they provided during my internship.

Thirdly, I would like to deeply thank all of the members of the PCOpt/NTUA
research team and especially Dr. Varvara Asouti for her support before and during
my internship at TME. Also, I am thankful to Petros Lamprinidis for assisting me
and teaching me a lot of useful skills before starting my internship.

I would also like to express how grateful I am for having the chance to study and
learn inside the NTUA community. The interaction with the teaching staff and
fellow students combined with hard work really shaped me as an engineer. I want
to deeply thank all of my friends for supporting me throughout the academic years,
but more specifically my fellow students Michalis Tsagkaris and Dimitris Tolis for
accompanying me along this difficult journey full of unforgettable experiences.

Last but not least, I would like to thank my family for always believing in me and
supporting me with their love.

In loving memory of my godmother and my grandfather, my inspiring figures for
studying and working hard.

iii



iv



National Technical University of Athens
School of Mechanical Engineering
Fluids Department
Parallel CFD & Optimization Unit

Modelling using Molecular Dynamics and Optimization of
Proton Conductivity in (Polymerized) Ionic Liquids for

Proton Exchange Membrane Fuel Cells.

Diploma Thesis

Matthaios N. Chatzopoulos

Academic Supervisor :
Kyriakos C. Giannakoglou, Professor NTUA

Industrial Supervisor :
Dr. Konstantinos Gkagkas, Technology Manager Toyota Motor Europe

Athens, February 2022

Abstract

Working towards carbon neutrality, the automotive industry have been focused on
the development of highly efficient proton exchange membrane fuel cells (PEM-
FCs). One of the most important components of a PEMFC is the proton exchange
membrane (PEM) itself, which is typically made from nafionTM . Regardless of the
membrane material used, it is desirable for the fuel cell to operate at temperatures
even above 120 ◦C, because the system becomes more efficient at higher tempera-
tures. However, this cannot be achieved when nafionTM is used as the PEM material,
because it requires high relative humidity and, thus, temperatures below 100 ◦C to
operate properly.

The replacement of nafionTM membranes by a new class of PEMs produced through
polymerization of the anion or the cation of an ionic liquid (IL) could be the rem-
edy to the previous problem. ILs are organic salts of which the melting point is
lower than 100 ◦C. However, though current membranes of this type are able to
operate efficiently at very high temperatures, they unfortunately have about two
orders of magnitude lower proton conductivity than nafionTM membranes. For this
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reason, membranes that have been produced by polymerizing ILs are yet unable to
replace nafionTM PEMs. Therefore, they firstly need to be optimized by using the
conductivity as objective function.

In this Diploma Thesis, alternative pairs of cations and anions (ILs) with higher
proton conductivity are searched by using an evolutionary algorithm, for solving
the previous problem. Throughout this process, it is assumed that the conductivity
of an IL is proportional to the conductivity of the respective polymerized IL mem-
brane. This realistic assumption is made to avoid the prohibitive computational
cost of simulating membranes. The calculation of conductivity is done through a
Molecular Dynamics (MD) software. All the simulations were performed by the
open source software GROMACS. The previous software is further supported by
codes and linking scripts which are responsible for evaluating each IL and for the
creation of the topology and geometry for each ion based on the optimization pa-
rameters. The optimization parameters for an ion consist of the type of different
chemical elements which are used (e.g. C, N, S, O), the type and position of single,
double, triple bonds, branches and the position from which a proton is removed or
added for the final chemical substance to be an ion and not a neutral molecule.

The previous process is applied by using both computationally expensive all atom
models (AA) and approximate, but inexpensive, coarse-grained (CG) models. These
models are developed and their results are validated by comparing with available
experimental data, before they are used in the optimization process. The optimiza-
tion was performed by using the evolutionary algorithm based software EASY of
the PCOpt/NTUA.

Major part of this diploma thesis was carried out at the research premises of Toyota
Motor Europe in Brussels, Belgium, during a six month long internship there.
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Περίληψη

Στην προσπάθειά της να μειώσει τις εκπομπές διοξειδίου του άνθρακα, η αυτοκινητο-
βιομηχανία αναπτύσσει κυψέλες καυσίμου με την τεχνολογία μεμβράνης ανταλλαγής

πρωτονίων. Η μεμβράνη είναι ένα από τα βασικότερα εξαρτήματα σε μία κυψέλη καυσί-
μου και το υλικό το οποίο έχει επικρατήσει να χρησιμοποιείται στις μεμβράνες είναι

το nafionTM . Ανεξαρτήτως του υλικού της μεμβράνης, μία κυψέλη καυσίμου είναι
επιθυμητό να λειτουργεί σε υψηλές θερμοκρασίες, άνω των 120 ◦C, εξαιτίας του αυξη-
μένου βαθμού απόδοσης της μηχανής σε αυτές. Ωστόσο, αυτό είναι αδύνατον να
πραγματοποιηθεί με χρήση του nafionTM , καθώς απαιτεί συνθήκες υψηλής υγρασίας
για να λειτουργήσει και, επομένως, θερμοκρασίες μικρότερες από 100 ◦C.

Για να λυθεί το προηγούμενο πρόβλημα, εξετάζεται η αντικατάσταση της μεμβράνης
από nafionTM με μία άλλη μεμβράνη που θα προκύψει πολυμερίζοντας το ανιόν ή το
κατιόν σε ένα ιονικό υγρό. Τα ιονικά υγρά είναι οργανικά άλατα με σημείο τήξης
μικρότερο των 100 ◦C. Αν και οι τρέχουσες μεμβράνες αυτού του τύπου μπορούν
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να λειτουργούν αποτελεσματικά σε πολύ υψηλές θερμοκρασίες, έχουν περίπου δύο
τάξεις μεγέθους μικρότερη πρωτονιακή αγωγιμότητα σε σχέση με τις μεμβράνες από

nafionTM . Για τον λόγο αυτό, οι μεμβράνες που προκύπτουν από πολυμερισμό ιονικών
υγρών δεν είναι ακόμη σε θέση να αντικαταστήσουν τις μεμβράνες από nafionTM και
απαιτείται βελτίωση/βελτιστοποίησή τους με την αγωγιμότητα ως συνάρτηση-στόχο.

Στη διπλωματική αυτή εργασία αναζητούνται εναλλακτικά ζεύγη κατιόντων και ανιόν-

των (ιονικά υγρά) με υψηλότερη πρωτονιακή αγωγιμότητα, εφαρμόζοντας στοχαστικές
μεθόδους βελτιστοποίησης, ώστε να λυθεί το προηγούμενο πρόβλημα. Κατά τη δι-
αδικασία αυτή θεωρείται πως η αγωγιμότητα ενός ιονικού υγρού και της αντίστοιχης

μεμβράνης που παράγεται από αυτό είναι μεγέθη ανάλογα. Η ρεαλιστική αυτή παραδοχή
γίνεται λόγω του απαγορευτικά υψηλού υπολογιστικού κόστους που έχει η προσο-

μοίωση μεμβρανών. Ο υπολογισμός της αγωγιμότητας πραγματοποιείται μέσω προ-
σομοίωσης μοριακής δυναμικής (Molecular Dynamics ή MD) και με χρήση του λο-
γισμικού ανοικτού κώδικα GROMACS. Το λογισμικό αυτό συνοδεύει ένα πλήθος
λογισμικών, καθώς και συνδετικών κωδίκων, για να είναι εφικτή η αξιολόγηση του
κάθε ιονικού υγρού, αλλά και η παραγωγή γεωμετρίας και τοπολογίας ιόντων από τις
παραμέτρους της βελτιστοποίησης. Οι παράμετροι της βελτιστοποίησης για ένα ιόν
είναι το είδος των διαφορετικών χημικών στοιχείων που θα χρησιμοποιηθούν (π.χ. C,
N, S, O), το είδος και η θέση των μονών, διπλών, τριπλών δεσμών, των διακλαδώσεων
καθώς και η θέση αφαίρεσης ή προσθήκης ενός πρωτονίου, ώστε αυτό που θα προκύψει
να είναι ιόν και όχι ουδέτερο μόριο.

Η προηγούμενη διαδικασία εφαρμόζεται τόσο με χρήση ακριβέστερων μοντέλων που

συμπεριλαμβάνουν όλα τα άτομα (All atom ή AA models), όσο και με χρήση πιο προσ-
εγγιστικών, αλλά υπολογιστικά φθηνότερων, αδρομερών μοντέλων (Coarse-grained
ή CG models). Τα μοντέλα αυτά αναπτύσσονται και τα αποτελέσματα τους επαλη-
θεύονται με χρήση διαθέσιμων πειραματικών δεδομένων προτού χρησιμοποιηθούν στη

διαδικασία βελτιστοποίησης. Η βελτιστοποίηση πραγματοποιήθηκε με χρήση του λο-
γισμικού εξελικτικών αλγορίθμων EASY της ΜΠΥΡΒ του ΕΜΠ.

Το μεγαλύτερο μέρος της διπλωματικής εργασίας πραγματοποιήθηκε στις ερευνητικές

εγκαταστάσεις της Toyota Motor Europe στις Βρυξέλλες του Βελγίου κατά τη διάρκεια
εξάμηνης πρακτικής άσκησης.
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Chapter 1

Introduction

1.1 Introduction to Molecular Dynamics

Molecular Dynamics (MD) is the study of how molecules move, deform and interact
over time. Predictions derived by the movements of molecules are very important
in chemistry, physics, biology and engineering. MD predictions can either be mi-
croscopic or macroscopic. For example, predicting the magnitude of a force that
acts upon an important group of atoms in a macromolecule could give to a scien-
tist useful information, regarding the mechanism of a microscopic phenomenon, like
the folding of a protein. On the contrary, a macroscopic prediction could be, for
example, the calculation of the density of a liquid material.

MD, as a simulation technique, involves the direct simulation of systems of interact-
ing spheres and the extraction of thermodynamic or physical properties [9]. These
spheres interact only with forces from distance as real atoms do. When they ap-
proach close to each other, strong repulsive forces act upon them prohibiting any
contact, as it happens in reality. Therefore, only the centers of these spheres are
important for the simulation. Usually, the radius of each sphere should be equal
to the corresponding real atom radius, only for visualization purposes. A typical
simulation starts with an initial configuration of molecules in a simulation space,
which can often be a cube (see figure 1.1), usually called simulation box in MD. To
calculate the dynamic state of the configuration in the next timestep the Newton’s
2nd law

M
d2q

dt2
= F (q) = −∇U(q) (1.1)

is used. M is a diagonal mass matrix, q and q̇ represent position and velocity
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vectors of the atoms in the system and U is a potential energy function. A very
important aspect in MD simulations is to properly model the energy function U .
Many different techniques and models exist for the previous reason and they affect
significantly the accuracy level of the simulation. In MD, the models regarding the
formulation of the potential U are called force fields (FF).

Figure 1.1: Example of a MD simulation configuration for an ionic liquid pair con-
sisting of hundreds of ions. Two different ions can be distinguished, a small anion
and a more complex cation. Each colourful sphere represents the atom of a chemical
element. For example, light blue spheres represent carbon atoms, while the white ones
represent hydrogen atoms. The radius of each visualized atom is equal to the respective
atomic radius of the chemical element (≈ 0.1 nm).

MD relies on integration in time to compute successive kinetic states of the molecular
system. However, the large size and complex nature of such systems leads always to
a chaotic behaviour [9]. That means that the slightest change in the initial position
of only one atom in a molecule could make the system evolve in a totally different
way in respect with time. Thus, MD is based on the statistical mechanics theory [41].
The simulation needs to run long enough to allow to every possible configuration
to appear. As happens in nature, the system tends to prefer the state of lowest
possible energy. This state isn’t known from the beginning of the simulation. In

2



fact, it isn’t just one state but a collection of the most probable/low energy states.
Consequently, a MD system is often considered to be equilibrated if the simulation
time was long enough to allow to it to reach the lowest possible average total energy
value.

The term average is very important in MD because of the statistical nature of
the phenomenon. All the macroscopic or microscopic properties measured in a MD
systems are statistical variables. The properties of a microscopic system have real
meaning only if the system has firstly reached an equilibrium and if the calculation
was conducted for long enough [41]. The previous conditions are necessary for the
calculated values to be considered statistically relevant. In practice, the user of a MD
simulation software must check if important thermodynamic properties like pressure,
density, volume, temperature and total energy have all converged on average to a
final value. Sometimes, it is even necessary to run many simulations starting with
different initial configurations. In that case, all the different simulations must reach
similar equilibrium points, for the results to be considered safe.

In statistical mechanics, ensemble is an idealization that represents all the possible
states of a mechanical system. In MD, three categories of ensembles exist. In a NVE
ensemble the system is isolated from changes in moles (N), volume (V) and energy
(E). For example this would be the case of a gas inside a tank with perfectly insulated
walls. The same example without insulated walls should be modelled as an NVT
ensemble. In that case, the system is isolated from changes in moles (N), volume
(V) and temperature (T). Last but not least, in an NPT ensemble the quantities
that are conserved are the number of molecules, pressure and temperature [42]. An
example of this is the molecular system inside a glass of water.

To enforce a temperature or a pressure value to a system, a coupling algorithm is
used. These algorithms are usually called thermostats if they impose the a temper-
ature value or barostats if they impose a pressure value. A simple thermostat can
operate by scaling the velocities and thus the kinetic energies of the particles in the
system. Other methods define additional friction or source terms in the equation
1.1 to decrease or increase the kinetic energy of the particles. The algorithms for
controlling pressure are more complex and they usually involve extra artificial de-
grees of freedom to be able to control the pressure [41]. It is worth noting, that
the selection of the coupling method can affect significantly the convergence speed
and the stability of the simulation. In the context of this thesis, Nose-Hoover [45],
Berendsen [46] and V-rescale [48] thermostats were used. For the pressure coupling,
Parrinelo-Rahman [47] and Berendsen [46] barostats were used. The analysis of each
thermostat and barostat used is outside of the purposes of this thesis. However,
some important characteristics of the previous coupling methods will be explained
in chapters 2 and 3.

Another important aspect of MD simulations is the scale of the system. The im-
portant parameter in MD which increases the computational cost is the number of
particles N in the box. Thus, the size of a system is governed only by the total

3



number of atoms and not by the box size. The size of the box can even be chang-
ing during the simulation, according to the momentary pressure of the system (e.g.
when an NPT ensemble is converging to an equilibrium). MD simulation can be
conducted for different system sizes. The total number of molecules can range from
102 for simple mono-atomic gas systems to 105 for complex macromolecular systems.
The timestep size can range from 1 fs (10−15 s) in accurate simulations to 50 fs
in more approximate CG simulations. This isn’t the only difference between CG
and AA simulations. The accurate definition and unique characteristics for AA and
CG simulations will be explained in next paragraphs. The total number of steps
required before equilibrium is reached is heavily depended on the size of the system.
For small systems a duration of a few ns is often sufficient [1], while bigger systems
can even require a few µs to reach equilibrium [22]. The simulation box edge size
can range from 5 nm in small systems to 1 µm in large systems.

1.2 Introduction to PEM fuel cells

A PEM fuel cell is a system that converts chemical energy stored in the fuel (hy-
drogen) directly to electric energy. This energy then powers the electric motor of
the vehicle. The anode side is supplied with hydrogen, while the cathode side is
supplied with filtered air. Fuel and air flow through the gas flow channels (GFCs).
These gases are then been diffused through the gas diffusion layers (GDL) on each
side. The hydrogen reaches the catalyst layer (CL) and it releases 2 electrons and
2 protons per hydrogen molecule. The electrons released flow back to the anode bi-
polar plate (BPP) and, then, to the external circuit to reach the cathode CL. There,
oxygen is reduced, which means that it acquires the free electrons that have just
reached the cathode CL. In chemistry, reduction is the process in which a chemical
substance acquires one or more electrons. The membrane of the fuel cell allows only
protons to pass through it. After reaching the cathode side, the protons react with
the reduced oxygen to form water and heat. The previously described processes are
better shown in figure 1.2. Reactions are given by:

H2 → 2H+ + 2e− (1.2a)

1

2
O2 + 2H+ + 2e− → H2O (1.2b)

1.3 The PEM of a fuel cell

PEMs are typically made from nafionTM . This material has proton conductivity
that can range up to 20 S/m, depending on the level of hydration (relative humidity
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Figure 1.2: Schematic of the transport properties and components in a PEM fuel cell
[34].

conditions). The derived unit of conductance S = kg−1m−2s3A2 (Siemens) is often
used in materials science. NafionTM is a material made by the company DuPont
[43], [56], [57] and comes in a number of different grades, varying according to
thickness, hydration and permeability properties. Being chemical inert and having
high permeability (conductivity) to cations are some of the main advantages of
nafionTM .

In order to operate properly, nafionTM requires temperatures close to 80 ◦C and
high relative humidity. These conditions can be maintained only by using expensive
and heavy cooling systems. In addition, temperatures close to 80 ◦C have a neg-
ative impact on the efficiency of the catalytic processes that take place in the CL
component of the fuel cell. This is why another material, resistant at higher tem-
peratures, ideally close to 120 ◦C, is required for achieving higher efficiency in the
PEMFC. Many researchers have proposed polymerized or poly-ionic liquids (PILs)
as substances that could replace nafionTM [36, 37, 38, 39, 44] .

1.4 Polymerized ionic liquid membranes

Ionic liquids (ILs) are organic salts in which the ions are poorly coordinated and melt
below 100 ◦C [35]. When the ions in a salt are well coordinated, they form a crystal
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structure even in very high temperatures, like NaCl which is solid even at 800 ◦C.
Thus, most of the ILs are liquid in room temperature. They are electrolytes, which
means that they conduct electricity when they are dissolved in polar substances like
water. Of course, pure ionic liquids have the ability to conduct electricity too. The
vapour pressure of these substances isn’t sufficient to allow IL vapours to form in
atmospheric pressure. This means that ILs cannot be evaporated or be burned at
atmospheric conditions. Because of the previous property, they are considered as
environmental friendly substances, since they cannot pollute the atmosphere.

PILs is a subclass of poly-electrolytes (polymers that conduct electricity), that fea-
ture an IL species in each monomer of the polymeric chain. Some of the properties
of ILs are incorporated into the polymer chains giving rise to a very promising for
the PEM technology material. PILs can then be combined with a crosslinker and a
catalyst to create a PIL membrane (PILM). The crosslinker is a substance used in
small weight ratios (wt.%) to connect the PIL chains into a PILM. The catalyst is
also used in small wt.% ratios to accelerate the chemical reaction. The mixture is
then placed in a mold to be polymerized. The polymerization is accomplished either
by UV radiation or by thermal processes.

(a) Illustration of the relationship between ILs,
PILs and ILMs (Ionic Liquid Monomers) [35].

(b) Simplified schematic explaining how PILMs are created.

Figure 1.3: Schematics about ILs, PILs, ILMs, and PILMs.

Before proceeding any further, it is necessary to explain that proton and ionic con-
ductivity are two different, but directly proportional properties. By using Nernst-
Einstein Equations of the transport theory [40], under some hypotheses, it is possible
to convert ionic to proton conductivity and vice versa. In this work all the conduc-
tivity calculations are referring to ionic conductivity.

Even though, PILMs can maintain their advantageous properties at higher temper-
atures, in contrary to nafionTM , they have one important issue to overcome. The
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main problem prohibiting PILMs to be used in a commercial PEM is their insuf-
ficient ionic conductivity value. Researchers efforts have been focused to find IL
pairs with sufficiently high conductivity value based on empirical data, chemical
intuition and knowledge from similar substances. In the context of this thesis, the
evolutionary algorithm based optimization software EASY of NTUA will be used to
an attempt to find a high conductivity ionic liquid pair. Before any optimization is
performed, a fast and sufficiently accurate MD model needs to be created, both for
ILs and PILs.

The development of the models will be supported by available experimental data for
about 5 IL pairs and their respective PILMs (see section 2.2.1 for more information
about these 5 IL pairs). These experimental data will be used to a certain degree
to validate the models before they are used for the optimization. It is worth noting,
that PIL experimental data are not available. Thus PILM experimental data will
be used for the validation of the PIL models. This is approximately correct by the
assumption that the ionic conductivity of PILs and PILMs is similar due to their
similar structure.

Of course, the first step before developing any MD model, couldn’t be other than
conducting a literature survey about all the available methods that exist for IL and
PIL MD simulations.

1.5 Literature survey on the force fields in MD

Maybe the most important parameter in a MD simulation is the force field which
is used. Force field is called a technique used to model the interactions between the
simulation spheres. The force fields can be categorized in four main categories, ac-
cording to Salanne [1]. The simplest force field is the Non-polarizable all atom force
field, some examples are OPLS, AMBER, CL&P (see section 1.7.1). The term AA
means that the interacting spheres of the simulation are referring to atoms. Thus,
each atom in a molecule is an interacting sphere in a AA model. Non-polarizable
means that the force field doesn’t take into account the polarization effects. All forces
and phenomena caused by the non-uniform distribution of charge in a molecule are
considered as polarization effects. The non-uniform distribution of charge creates
electric dipoles which then produce additional interaction forces between the atoms.

Polarizable all atom force fields (PAAFF) exist too and they are much more accurate
than NPAAFFs, when substances such ILs or PILs are simulated. The polarization
phenomena are not negligible in ionic substances such as ILs and PILs. Some of the
most popular are, PIM [2], Borodin’s method [3] and SAPT [4] (see section 1.8).
Another category of fields are charge-scale force fields. These are non-polarizable AA
force fields which try to mimic the polarization mechanism through a simple scale of
charge in the ions (see section 1.9). Last but not least, when complex molecules are
simulated, it is essential from the computational prospective to use coarse-grained
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(CG) force fields. In these force fields the interacting spheres of the simulation are
referring to a group of atoms in each molecule which is called bead. In other words,
coarse graining is a process in which a molecule is divided in groups of atoms (see
section 1.10.2).

Unfortunately, CG force fields are mostly case specific, when used in ILs, which
means that the force field needs to be reparameterized (changing the definitions and
interaction properties for some or all the beads) in order to be used to a different
IL. However, some models like the one proposed by Voth [5], [6] partially tackles
the lack of transferability problem. In general, it is believed that the prediction of
physico-chemical properties of ILs is an ambitious but feasible objective [1].

It should be pointed out that in the context of this thesis only two out of all the pre-
vious categories will be implemented for performing ionic conductivity calculations.
Only NPAAFFs and CG force fields will be used. To justify the previous selection,
a detailed review for each force field is necessary. The advantages and disadvan-
tages of the previous 4 categories in ILs simulations are summarized in table 1.1.
The information contained in this table is explained in more detail in the following
sections. The purposes of those are to describe:

� What a classical MD force field is and why it is advantageous over other
computational tools (see paragraph 1.6).

� The basic structure of AA and CG force fields (see paragraphs 1.7.1 and 1.10.1
respectively)

� The different categories and distinct characteristics of force fields.

FF Category Transferability Accuracy Complexity Computational Cost
NPAAFF Very high Adequate High High
PAAFF Low High Very high Very high

Charge-Scale Low High Low High
CG Adequate Low Very low Very low

Table 1.1: Advantages and disadvantages for each force field category used in IL
simulations.
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1.6 Force fields in classical MD simulations

According to Leimkuhler [9] the most accurate method for calculating the behavior
of a N atom system is by using the probabilistic Schrodinger equation, which gives
the probability for a specific configuration of particles to exist at time t0. In spite of
its accuracy, the previous equation is currently impractical to be applied for atomic
calculations in large systems. This equation is very different from the classical
laws of motion, where the input is time and the output is the coordinates of the
particles. In Schrodinger equation both time and coordinates are required to obtain
how probable is for this specific input pair to exist in reality.

A simple example will be used to better explain the challenges of applying Schroedinger
equation. In order to describe the 3D motion of a simple molecule, for example the
motion of a water molecule, 13 variables are required in each spatial dimension. The
reason for this is that a water molecule consist of 10 electrons and 3 nuclei. So, the
corresponding coordinates will be q1,x, q1,y, q1,z, q2,x, q2,y, q2,z, ...q13,x, q13,y, q13,z. The
probabilistic equation is a partial differential equation of the following form:

i~
∂Φ

∂t
= −~2

13∑
j=1

1

2µj

(
∂2Φ

∂q2j,x
+
∂2Φ

∂q2j,y
+
∂2Φ

∂q2j,z

)
+ UP (q1,x, q1,y, ..., q13,z)Φ (1.3)

Here, ~ is Plank’s constant, Up is the primitive atomic potential energy function, i is
the square root of −1, µj is the mass of the jth particle (electron or nuclei) and Φ is
the unknown wave function. The primitive potential energy function Up is calculated
by applying models about the repulsion of electrons due to their similar charge and
the attraction of electrons to the positively charged nucleus of each atom.

The solution of Schroedinger equation is the wave function Φ = Φ(q1,x, q1,y, ..., q13,z, t).
The squared wave function Φ(q1,x, q1,y, ..., q13,z, t)

2 tells how probable is for the
S0 = (q01,x, q

0
1,y, ..., q

0
13,z, t

0) particle configuration to exist at time t0. In other words,
the wave function Φ has 40 arguments for this simple system and the output is a
single number that gives the probability that the system at time t0 is at the state S0.
Therefore, it is obvious that the problem with the quantum mechanical approach
isn’t only very computationally complex and intensive, but is also very difficult to
visualize the results for systems of thousand atoms, like the ones MD attempts to
solve. The large number of independent spatial dimensions rules out any straight-
forward attack on the problem.

In order to reduce the complexity of the problem, classical Newtonian mechanics
theory is used. By using Newton’s second law, we can describe the coordinates of
the ith nucleus of an N-atom system denoted by qi,x, qi,y, qi,z.

9



mi
d2qi,x
dt2

= −∂U
qi,x

, mi
d2qi,y
dt2

= −∂U
qi,y

, mi
d2qi,z
dt2

= −∂U
qi,z

(1.4)

Here mi is the atomic mass and U is the potential energy function. Of course
equation 1.4 must be supplemented by the proper initial conditions. In classical
MD simulations, function U is almost always approximated by empirical force fields
methods. The usage of these methods simplifies significantly the simulated system
permitting the conduction of MD simulations in ordinary computers. A great deal
of chemical insight, experimental data and simulation work is necessary for the
production of a new force field.

Equation 1.3 is a linear partial differential equation. In contrast, 1.4 is a nonlinear
system of ordinary differential equations. From one point of view it seems like the
two above equations have similar complexity. However Newton’s equations involve
differentiating solutions only in time. Therefore, when we discretize the equations
to solve them, we only have to introduce a grid in this single direction. This way
the total number of equations increases linearly with N. The same is true for the
computational cost which is much smaller compared to the exponentially dependent
cost observed in the treatment of quantum mechanics. The cost is exponentially
dependent on quantum mechanics methods because they use not only the total
number of nuclei like classical methods do, but also the total number of electrons.

1.7 Non-polarizable all atom force fields (NPAAFF)

1.7.1 The typical structure of a NPAAFF

NPAAFFs are the simplest methods to approximate the energy function U appeared
in equations 1.1 and 1.4. In chapter 2, NPAAFFs (OPLS–AA and Gromos) will be
used in IL simulations. Therefore, it is important to firstly describe the charac-
teristics and structure of these force fields. The principles and the basic terms of
NPAAFFS are the basis for understanding all the other force fields and MD models
in general.

The energy terms of the force field are divided in two main categories. The first
category of terms of the force field are called bonded terms. They model the energy
stored in the chemical bonds during the oscillation of the atoms in a molecule. This
energy should not be confused with the energy stored in the chemical bonds that can
be released by a chemical reaction, like combustion. The bonded energy is the sum
of all the potential energies stored in the chemical bonds as a result of the atomic
oscillations. Therefore, the bonded potential is the energy stored in different kind
of equivalent springs.
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Ebond is the energy stored during the elongation of a bond between two atoms and it
is usually modelled as a linear spring. Eangle is the energy stored during the change
of the angle between a triplet of atoms and it is usually approximated as a torsional
spring. Etorsion is the energy stored in a formation of 4 atoms without branches,
because of the change in the proper dihedral or more simply torsion angle. Torsion
angle is called the angle between two intersecting planes. In this case the first plane
is formed by the first 3 atoms of the previous formation and the second one by the
last 3 atoms. Etorsion is usually modelled by using Fourier series. Finally, Eimproper
is the energy stored in a configurations like the lower-right one of figure 1.4, because
of the change in the improper dihedral angle. This is the angle between the plane
formed by atoms j, i, k and the line formed by atoms i, l.

Figure 1.4: Schematic about the potential of the bonded terms of a NPAAFF.

The bonded terms can be further explained by the equations

Ebonded = Ebonds + Eangles + Etorsions + Eimpropers (1.5a)

Ebonds =
bonds∑
ij

Kb
ij

2
(rij − reqij )2 (1.5b)
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Eangles =

angles∑
ijk

Ka
ijk

2
(θijk − θeqijk)

2 (1.5c)

Etorsions =
dihedrals∑
ijkl

4∑
m=1

V m
ijkl

2
[1 + (−1)m cosmφijkl] (1.5d)

Eimpropers =
1

2
kξ (ξijkl − ξeq)2 (1.5e)

From the previous equations one can observe that the energy of the bonds is modeled
like a linear spring connecting 2 atoms. Kb

ij is the spring constant, rij is the inter-
atomic distance between the atom i and the atom j that they are bonded and the
reqij is the same distance as before but in the equilibrium state of the molecule. The
same logic applies to the potential energy of the angles which are formed between
3 atoms i, j, k. In this case, a torsion spring model is used. The potential energy
of the torsion angles φijkl which are formed between 4 atoms are modelled by using
Fourier series with constants V m

ijkl. Finally, the improper dihedrals are approximated

as a harmonic function of the angle ξijkl. Therefore the quantities Kb
ij, r

eq
ij , Ka

ijk, θ
eq
ijk,

V m
ijkl and kξ are parameters of the force field. The values for these parameters for

a specific molecule are usually acquired by experiments or by quantum mechanics
simulations.

The second category of energy terms are called non-bonded terms. As the name
implies, they model all the other potentials except from those caused because of the
bonds. The non-bonded terms consist of the Van der Waals and Coulomb forces. Van
der Waals forces are the interatomic forces caused by local electrostatic phenomena
in the atoms and they consist of two main potentials. The first potential is the one
regarding Pauli repulsion forces and the second one is the dispersion forces potential.
The potential field which is caused by the Pauli repulsion forces [11] and London
dispersion attraction forces [12] is usually modeled as a Lennard-Jones Potential.
As shown in figure 1.5, for small interatomic distances, Pauli repulsive forces are
dominant. The opposite is true for bigger distances between the atoms where the
dispersion mechanism is dominant. The final term of the non-bonded potential is
the electrostatic one. In this case the Coulomb law is followed as shown in equation
1.6d. Thus, the non-bonded terms can be explained by the equations

Enon−bonded = Erepulsion + Edispersion + Eelectrostatics (1.6a)

ELennard−Jones = Erepulsion + Edispersion (1.6b)
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ELennard−Jones =
∑
i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1.6c)

Eelectrostatic =
1

4πε0

∑
i

∑
j>i

qiqj
rij

(1.6d)

Therefore, the total potential energy U ≡ Etot of a NPAAFF is given by

Etot = Ebonded + Enon−bonded (1.7)

where Ebonded are the bonded terms and Enon−bonded are the non-bonded terms of the
potential equation. The model previously described has been the basis for almost
every NPAAFF that has been developed in the previous 30 years. In the next
paragraphs, the most popular NPAAFFs will be presented.

Figure 1.5: Lennard-Jones potential visualization [13]
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1.7.2 AMBER force field

AMBER is one of the first general purpose NPAAFFs. Even though it will not be
used in for any simulation in this thesis, its simple form will be briefly explained
for the sake of completeness. The potential function of AMBER force field can be
described by the following equation [8].

Etot =
∑
bonds

Kb(b− beq)2 +
∑
angle

Kθ(θ − θeq)2 +

∑
dihedrals

Vn
2

(1 + cos(nφ− γ)2 +
∑
i<j

[
Aij
R12
ij

− Bij

R6
ij

+
qiqj
εRij

]
(1.8)

where Kb and Kθ are the force constants for the bond and bond angles, respectively;
b and θ are bond length and bond angle; beq and θeq are the equilibrium bond length
and bond angle; φ is the dihedral angle and Vn is the corresponding force constant;
The phase angle γ takes values of either 0° or 180°. The nonbonded part of the
potential is represented by the van der Waals (Aij), the London dispersion terms
(Bij) and iterations between partial atomic charges (qi and qj). The rest of the
terms are explained in [7] pp 18. For example, in this paper, terms Aij and Bij are
given by the equations: Aij = εij(Rij)

12, Bij = 2εij(Rij)
6, where the values of εij,

Rij can be found in tables of [7]. These values and many other necessary constants
have been calculated using Monte Carlo simulations or experimental methods in
well known and often used bonds.

1.7.3 OPLS All Atom (OPLS-AA) force field

In contrary to AMBER, OPLS–AA will be used in the next chapter for IL simu-
lations. OPLS–AA is very popular and an obvious choice for everyone who try to
simulate liquid substances. Compared to other generalist force fields, special at-
tention was devoted in OPLS-AA to the simulation of liquid-state thermodynamic
properties [14] is applied. Therefore, an overview of its most important aspects is
considered necessary.

The functional form of the OPLS force field is very similar to that of AMBER. The
OPLS-AA potential is given by the following equations [19].

Etot =
∑
bonds

Kb(b− beq)2 +
∑
angle

Kθ(θ − θeq)2 + Etorsion + Enon−bonded (1.9a)
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Etorsion =
V1
2

[1 + cos (φ+ f1)] +
V2
2

[1− cos (2φ+ f2)] +
V3
2

[1 + cos (3φ+ f3)]

(1.9b)

Enon−bonded =
on a∑
i

on b∑
j

[
qiqje

2

rij
+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]]

fij (1.9c)

fij =

{
fij = 0.5, i, j ∈ {1, 4}
fij = 1.0, i, j /∈ {1, 4} (1.9d)

Here, e is the elementary charge. All the other input parameters of the field, like
V1, V2, V3, f1, f2, f3 can be obtained for each specific case in the original OPLS-AA
force field paper [19], in other supplementary papers or in OPLS-AA parameter
databases.

1.7.4 CL&P force field

CL&P force field is currently the most famous force field for the simulation of ILs. It
was build in the functional form of the OPLS-AA force field. The equations are very
similar and they can be found in the original paper [14]. This field was parameterized
for a large set of IL compounds by using different methods than the ones used in
the OPLS-AA. The bonded and Lennard-Jones parameters were in general the same
as in the OPLS-AA. However some of them were reparameterized by reproducing
the molecular geometries and energy torsion profiles for isolated molecules using
quantum chemistry methods. For the proper reproduction of the electrostatic field
generated by the molecule the CHelpG method [23] was applied. Consequently, the
high complexity and lack of transferability of CL$P are the main reasons for not
using it in the next chapter, despite of being specialized in ILs.

1.8 Polarizable all atom force field (PAAFF)

1.8.1 Advantages of PAAFF over NPAAFF

Although NPAAFF methods are simple, well understood and popular, they often
fail to predict the transport properties of many ionic liquid pairs, like the diffu-
sion constant, the ionic conductivity and the viscosity. NPAAFF methods often
underestimate by an order of magnitude the first two properties and overestimate
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by an order of magnitude the latter [1]. Therefore NPAAFF can be used mainly for
qualitative conclusions about these very important properties in ILs. This problem
was solved by Yan et al. [61]. In this work, the polarization effects that play an
important role in the cations and ions interactions were included in the force field
equations. The PAAFF aren’t just some NPAAFF in which some polarization terms
are added. Although they use the basic structure that was described in paragraph
1.7.1, they often need a partial or a total reparameterization. This is usually done
by Ab initio methods which are quantum mechanics simulations performed in a very
small number of molecules. In conclusion these relatively new methods are much
more accurate than NPAAFF methods. However, they haven’t been implemented
in a big scale yet, because of the complexity in producing input parameters for each
molecule. In the following 2 sections, a description of the most popular PAAFFs
for IL simulations will be given. This process is necessary for drawing conclusions
about PAAFFs and for justifying their absence in all the following IL simulations.

1.8.2 The Polarized Ion Model (PIM)

PIM is a popular PAAFF for IL simulation according to [1]. In the PIM force
field, the repulsion and dispersion terms are modified. An extra electrostatic term
is added compared to a NPAAFF. Supposing that all the bonded terms have the
form of equations 1.5 the non-bonded terms are given by [2].

EPIM
non−bonded = EPIM

vdW +EPIM
electrostatic = (Erepulsion + Edispersion)+(ECoulomb + Epolarization)

(1.10a)

Erepulsion =
∑
i

∑
j>i

Bije
−aijrij (1.10b)

Edispersion =
∑
i

∑
j>i

(
−f ij6 (rij)

Cij
6

r6ij
− f ij8 (rij)

Cij
8

r8ij

)
(1.10c)

f ijn (rij) = 1− e−b
ij
n rij

n∑
k=0

(bijn rij)
k

k!
(1.10d)

ECoulomb =
1

4πε0

∑
i

∑
i>j

qiqj
rij

(1.10e)

16



Epolarization =
∑
i

∑
i>j

(
−gDij (rij) qiT

ij
1 µj + gDij (rij) qjT

ij
1 µi − µiT

ij
2 µj

)
+
∑
i

µ2
i

2ai

(1.10f)

T ij1 = ∇i
1

rij
= −rij

r3ij
(1.10g)

T ij2 = ∇iT
ij
1 =

3rij × rij
r5ij

− 1

r3ij
I (1.10h)

gDij (rij) = 1− cije−bDijrij
4∑

k=0

(bDijrij)
k

k!
(1.10i)

Here, Cij
6 , C

ij
8 is the dipole-dipole or dipole-quadrupole dispersion coefficients, f ijn

are the Tang-Toennies dispersion damping functions [15], bijn is a parameter that sets
the range of the damping effect, ai is the polarizability of ion i, which is assumed to
be isotropic. µi is the induced dipole of ion i, while T1, T2 are the charge-dipole and
dipole-dipole interaction tensors. Also gDij (rij) is a Tang-Toennies function too and
cij, bDij, Bij, aij are parameters. In general, all these parameters are calculated for
a specific molecule using an electronic structure density functional theory (DFT),
which is a quantum mechanics, ab initio method.

PIM is very complex and it needs many more procedures than the ones described
previously. For example, the induced dipole values µi are obtained by performing
a single minimization procedure in the polarization potential as shown in equation(
∂V polarizationPIM

∂µiα

)
µNα

= 0 [2]. Generally, this potential is much more accurate than every

other NPAAFF potential. However, the development of such force fields has begin
relatively recently and they often include very complex procedures for obtaining the
force field parameters.

1.8.3 Other Polarizable all atom force fields

Another specialized force field has been developed by Borodin [3] for a variety of
different ionic liquids as well for other popular chemical substances like alkanes,
fluoroalkanes, propylene carbonate, etc. This force field is capable of predicting with
accuracy important properties such as density, heat of vaporization, self-diffusion
coefficients, ionic conductivity and viscosity. The bonded terms have a similar
analytical form as in the CL&P force field, while the non-bonded terms resemble
the PIM ones. A difference between Borodin’s force field and PIM force field is
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that the Tang-Toennies functions are replaced by a different repulsive term for the
dispersion. The parameterization of the force field was achieved by a combination
of quantum chemistry data and experimental results.

Finally, it is worth to briefly describe the SAPT method [4], [16]. The method is
quite accurate in predicting the transport properties of ionic liquids. The parameters
are usually obtained by ab initio calculations. This model has many different terms
compared to the previously described force fields. The method and the fundamental
equations of the force field can be found in detail in the study by McDaniel and
Schmidt [17].

1.8.4 Conclusions on Polarizable all atom force fields

PAAFFs are without any doubt much more complex and accurate than the NPAAFFs.
This new generation of force fields implements modern physics and sophisticated
mathematics to best describe the physical mechanisms of molecular interactions.
However, it is important to mention that this kind of complexity in the model has
a direct impact to the computational cost. Molecular dynamics simulation using
NPAAFFs is already a very computationally intense process. The implementation
of PAAFFs for the same simulations increases the computational cost by about 10
times. In addition, these methods are very difficult to implement in many simulation
packages if not possible at all. Therefore, one usually has to sacrifice computational
and development time for gaining more accurate simulation results. For the previous
reasons, it was decided to use NPAAFFs instead of PAAFFs in this thesis.

1.9 Charge scaling methods

In recent years, many papers have proposed a relatively inexpensive way to approx-
imately account for polarazibility and charge-transfer effects. In these methods, the
charges of ions are scaled down from |e| to γe through multiplying the charge of
each electron in the ions by a scaling factor γ. As a result, the cation will have a
bigger absolute charge by (1− γ)e than the anion. In addition, with this approach
the charge transfer is uniform and there is no change in the relative distribution of
charge in each chemical species. Therefore, charge scaling mimics the average effect
of polarization and charge transfer in ILs, without the need of significant changes in
the NPAAFF which is used [18].

Justification of the charge-scaling approach has been provided by quantum me-
chanics calculations. The study of Young and Hardacre [20] showed that for 1,3-
dimethylimidazolium chloride IL a γ factor of 0.6−0.7 provided excellent agreement
with the ab initio MD results. Another way for determining the optimal scale factor
is through comparisons with experimental data [18]. It is important to note, that
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there is no single optimal value for the factor γ. For example, for obtaining optimal
results in ionic conductivity, a different γ value is necessary compared to the value
needed for optimal results in viscosity.

In conclusion, charge scaling does not differ substantially than the less accurate
NPAAFFs. They usually predict with decent accuracy the transport properties of
ILs, while remaining simple to apply. A great disadvantage of these methods is
that they are purely empirical, because they always require ab initio calculations
or experimental data for determining the optimal value of γ. For this reason, this
method will not be applied for any simulations in the next chapters.

1.10 Coarse-grained models

1.10.1 Basic principles of coarse grained models

CG models are used extensively in the context of this thesis for creating IL models
for optimization purposes and for creating PIL models. Thus, it is important to
describe their unique characteristics. In a coarse-grained model, the molecule for
simulation is divided into groups of atoms which called beads. It is easier to imagine
beads like bigger atoms which interact with each other with similar mechanisms as
simple atoms do in a NPAAFF. Most of the coarse grained force fields include about
4 heavy atoms (C, N, S, O, ... but not H). The process of assigning a group of atoms
in a molecule to a specific bead is called mapping and the inverse process is usually
referred as backward mapping.

The main reason for splitting the molecule to simpler units, the beads, is to reduce
the total number of atoms. In general, the computational cost increases at least
linearly by the number of atoms N. For the electrostatic interactions, the total
number of atoms N affects the computational cost by O(n2) when classic Ewald
Summation is used, by O(nlog(n)) when PME method is used or by O(n) when
more sophisticated methods like P3M are used [21]. Thus, the computational cost
of large systems, like lipid membranes, polymer chains, RNA chains or DNA chains,
is prohibitively expensive, if an AA method is applied. In these cases, the only
viable option is to use coarse-grained models. When coarse-grained models are used
the integration step of the simulation can be increased by almost 10 times or more.
The increased time step allows performing simulations for longer time scales, which
is useful in the replication of phenomena that need more time to complete, like
the lipid bilayer formation. The basic idea of coarse grained models can be better
understood by figure 1.6, which originates from the original paper of the coarsed
grained model MARTINI 2.0 [22].

Nevertheless, coarse grained models have some important drawbacks. After the
mapping is finished a significant amount of information about the molecule is lost.
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Figure 1.6: Mapping between the chemical structure and the coarse grained model
for DPPC, cholesterol and benzene [22]

This can affect significantly the accuracy of post processing calculations, like those
regarding ionic conductivity. Another often problem of coarse grained models is
the lack of transferability. Mapping is a special process for each molecule which
usually requires a great amount of chemical intuition as well as some experience in
coarse graining. Therefore, an automated mapping algorithm for mapping all atom
models to the corresponding coarse grained ones is considered, in general, difficult
to develop.

1.10.2 Brief introduction to the MARTINI 2.0 force field

MARTINI is a general purpose open source CG force field [22]. It will be used for
creating every CG model in the following chapters. The main reasons for selecting
the specific force field were its rich documentation, backward mapping capabilities
(necessary for the IL optimization) and high standardization. Although, version
3.0 is implemented in the next chapters, because of some necessary unique features,
version 2.0 is very similar to version 3.0 and easier to explain. Therefore, in the next
paragraphs the main features of MARTINI 2.0 will be explained.

MARTINI 2.0 force field includes four different types of interacting sites (beads):
polar (P), nonpolar (N), apolar (C) and charged (Q). Each bead type is followed by
a subscript which gives more information either for the degree of polarity (from 1,
low polarity, to 5, high polarity) or for the hydrogen-bonding capabilities (d=donor,
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a=acceptor, da=donor&acceptor, 0=none).

The non bonded interactions are described by a typical Lennard-Jones potential
and the electrostatic interactions by a slightly different Coulomb potential. The
Lennard-Jones function are exactly the same as in equations 1.6. However, the
Coulombic function of equations 1.6 has been divided by an extra relative dielectric
constant εr = 15. In almost every type of bead the parameter σij is equal to 0.47 nm,
except for some special classes of rings and antifreeze particles. In table 1.2 Marrink
et al [22] show all the possible types of interactions between the different types of
particles.

The bonded parameters are very similar to those of a typical NPAAFF ( Equations
1.5 ). For the sake of completeness, the bonded terms of the MARTINI 2.0 force
field are shown below. All the terms have the same physical meaning as explained
in equations 1.5. However, the equation for the improper dihedral angle is simpler
than the one in equations 1.5.

Vbond (R) =
1

2
Kbond (R−Rbond)

2 (1.11a)

vangle (θ) =
1

2
Kangle [cos θ − cos θ0]

2 (1.11b)

Vid (θ) = Kid (θ − θid)2 (1.11c)
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Q P N C
sub da d a 0 5 4 3 2 1 da d a 0 5 4 3 2 1

Q da O O O II O O O I I I I I IV V VI VII IX IX
d O I O II O O O I I I III I IV V VI VII IX IX
a O O I II O O O I I I I III IV V VI VII IX IX
0 II II II IV I O I II III III III III IV V VI VII IX IX

P 5 O O O I O O O O O I I I IV V VI VII IX IX
4 O O O O O I I II II III III III IV V VI VI VII VII
3 O O O I O I I II II II II II IV IV V V VI VII
2 I I I II O II II II II II II II III IV IV V VI VII
1 I I I III O II II II II II II II III IV IV IV V VI

N da I I I III I III II II II II II II IV IV V VI VI VI
d I III I III I III II II II II III II IV IV V VI VI VI
a I I III III I III II II II II II III IV IV V VI VI VI
0 IV IV IV IV IV IV IV III III IV IV IV IV IV IV IV V VI

C 5 V V V V V V IV IV IV IV IV IV IV IV IV IV V V
4 VI VI VI VI VI VI V IV IV V V V IV IV IV IV V V
3 VII VII VII VII VI VI V V IV VI VI VI IV IV IV IV IV IV
2 IX IX IX IX VII VII VI VI V VI VI VI V V V IV IV IV
1 IX IX IX IX VIII VIII VII VII VI VI VI VI VI V V IV IV IV

Table 1.2: Table of interactions from the original MARTINI 2.0 paper [22]. The
level of interaction indicates the well depth of the Lennard-Jones potential: O: ε =
5.6kJ/mol; I: ε = 5.0kJ/mol; II: ε = 4.5kJ/mol; III: ε = 4.0kJ/mol; IV: ε =
3.5kJ/mol; V: ε = 3.1kJ/mol; VI: ε = 2.7kJ/mol; VII: ε = 2.3kJ/mol; VIII: ε =
2.0kJ/mol; IX: ε = 2.0kJ/mol; The Lennard-Jones parameter σ = 0.47;nm for all
the interactions except level IX for which σ = 0.62 nm

1.11 Scope and structure of the thesis

The main purpose of this thesis is to search for new ILs that have ionic conductivity
as high as possible. In order to calculate the ionic conductivity, AA and CG models
will be used with the open source software GROMACS. For the creation of the AA
models, OPLS-AA and the similar GROMOS force field are applied. For the CG
models MARTINI 3.0 force field is applied. The optimization is performed by using
CG MARTINI 3.0 models and then by using OPLS-AA models. The evolutionary
algorithm based software EASY of NTUA is used for all the optimization processes.

The contents of this diploma thesis are outlined as follows:

� Chapter 2: The structure and necessary software for performing AA MD sim-
ulations is explained. The AA model is created and validated, firstly by con-
ducting some convergence studies and then by comparing with available ex-
perimental data for specific ILs. The results that were obtained by applying
OPLS–AA force field are compared with the results of GROMOS force field.

� Chapter 3: The same process as in AA model is repeated initially by us-
ing CG MARTINI 2.0 and afterwards CG MARTINI 3.0. Additionally, CG
MARTINI 3.0 models are created and validated by experimental data for the
Rmim+TFSI+ IL family.
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� Chapter 4: An optimization is performed by using EASY to find an optimal
IL, regarding the conductivity, that consist of a 3 bead cation and a 3 bead
anion. The optimal CG pairs are then translated to the AA ones in order to
be validated with more accurate AA models. The results and the process is
discussed.

� Chapter 5: The process of producing input data for AA simulations from the
optimization parameters is described. The results of the AA optimization are
presented and then validated by more accurate AA models. New, previously
unknown, ionic liquids with high conductivity that emerged from the process
are presented and discussed.

� Chapter 6: The work is summarized and conclusions are drawn.
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Chapter 2

AA simulations of ionic liquids

In this chapter, the structure of ionic conductivity calculations by using MD com-
bined with an AA model will be explained in detail. For the rest of the thesis, the
term AA model will mean that a NPAAFF is used, as explained in the paragraph
1.7.1. The simulation parameters are properly calibrated by performing convergence
studies to an OPLS–AA model (see paragraph 1.7.3). The results from the previous
study are then used as simulation parameters both in an OPLS–AA model and in a
GROMOS model, which is a very similar force field to OPLS–AA. The models are
used for 5 different ILs for which experimental data are available. The results from
the two different force fields are compared and discussed.

2.1 The structure of a typical AA MD simulation

2.1.1 Input files and prerequisites of the simulation

In order to run a MD simulation in Gromacs, geometry, topology and option files
are required. The geometry file, usually a .pdb file (protein data bank), contains all
the necessary information about the positions and the connections of the atoms in
a molecule. Each different molecule of the simulation must have its own geometry
file. The most important file for each molecule is the .itp topology file. This file
contains all the information about the molecular properties that are required for the
simulation. Such properties are the partial charge and mass of each atom, the atom
type, the force field atom type, the bonded and non-bonded constants described in
section 1.7.1. The force field atom type is a translation of the real atom type in the
vocabulary that it is used in the force field. For example, in the GROMOS force
field, a CH3 chemical group is often replaced by a single force field atom type to
reduce the total number of atoms and thus the computational cost.
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The topology files are difficult to be obtained, because they often require excellent
knowledge of the using force field, experiments or ab initio simulations. Therefore,
a trustworthy source for these files is necessary. For the OPLS—AA geometry and
topology files the LigParGen web server [24], [25], [26] of Yale university was used.
Regarding the topology and geometry files for the Gromos force field, they were
obtained from the Automated Topology Builder (ATB) [27] by Australian Research
Council, University of Queensland and Q.C.I.F. Firstly, a proper simulation box
must be created (Initialization). For this purpose, PACKMOL software is used [28].
PACKMOL simply replicates the required number and types of molecules from the
.pdb files in a box with dimensions specified by the user. The .pdb file of the box
that was generated is then translated by a Gromacs command to a .gro file, which
includes the same information as the previous file, but in the language that Gromacs
understands.

Before any kind of simulation is started, a simulation parameter .mdp file must be
created for each simulation part. For example, in the .mdp file regarding the mini-
mization process, information exists about the method (steepest descent, conjugate
gradient, etc), the integration step, the output frequency and other important sim-
ulation parameters. The different necessary files and processes before the launch of
the simulation are shown in the figure 2.1.

Figure 2.1: Flow diagram of the preprocessing procedure
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2.1.2 The main section of the simulation

As mentioned in the section 1.1, in order to extract thermodynamic or transport
properties, like density or conductivity, the energy values of the system and the
trajectories of every particle at all the time moments are required. In this section,
the process of acquiring the necessary information for such calculations is explained.
This process is referred here as the main simulation process and it is necessary
to be conducted, before any thermodynamic or transport properties are extracted
from the MD simulation. The simulation process applied in this work includes four
sections; the minimization, the 1st equilibration, the second equilibration and the
main simulation section.

After using the Packmol software [28] to create the initial simulation box the molecules
have initial positions and velocities which very rarely can be observed in nature, be-
cause of the high total energy of the system. In order to decrease the total energy of
the molecules, a minimization process is required. The most popular minimization
algorithms implemented in Gromacs are the steepest descent and the conjugate gra-
dient methods. The first one is slower and more stable than the second one. In this
work, the steepest descent algorithm is used as safer and more robust method. The
options for the minimization (.mdp file) are shown in the following table. Some of
these options should be changed according to the needs of each case. For example,
bigger systems of molecules often require a bigger number of total steps to converge.

After the minimization has finished, the first equilibration run is launched. The
purpose of this simulation stage is to couple properly the system temperature to
the desired value. The temperature coupling is often achieved by using an artificial
thermostat for the system. From the wide variety of thermostats, that Gromacs
provides, only the Berendsen and Nose-Hoover thermostats are tested. After per-
forming tests in different all atom cases, the Nose-Hoover thermostat had on average
about 5 times faster convergence than the Berendsen thermostat. However, the last
one had smaller fluctuations and thus it is considered to be more stable. In all the
following AA simulations the faster Nose-Hoover thermostat is used.

After the temperature coupling process has converged successfully a pressure cou-
pling is performed in the 2nd equilibration run. For this reason, an barostat is
needed, as explained in the 7th paragraph of section 1.1. After performing tests,
comparing the Parrinello-Rahman barostat with the Berendsen barostat, the second
one is much slower (≈ 5 times slower) and it requires Berendsen thermostat in order
to function properly. Therefore Parrinello-Rahman was considered a better option
for running the simulations, although it results in bigger pressure fluctuations.

The final step is the main simulation run. This step has the same options as the
2nd equilibration step, but it can be smaller in duration, because the simulation
box is already fully equilibrated. The duration of this run depends on the time
required by the postprocessing methods to give accurate results. In theory, it could
be avoided by applying the postprocessing methods at the end of the previous run.
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However, a great amount of caution is needed to be sure that the 2nd equilibration
run has converged before the postprocessing is started. In the figure 2.2 the simu-
lation process flow chart is drawn. It is important to note that the postprocessing
files shown inside the red ellipsis are printed out for every execution of the “gmx
mdrun” command, which is the terminal command of GROMACS for running a
stage of the simulation. That means that the minimization, 1st equilibration and
2nd equilibration have postprocessing files too. In the table A.2 of the appendix, a
typical list for the .mdp file options in AA systems is presented, regarding the 1st,
2nd and main simulation run.

Figure 2.2: Flow diagram of the simulation procedure

2.1.3 Post-processing and Convergence

MD simulations are arithmetic processes and thus they need some kind of conver-
gence verification, before extracting any results. For the minimization, the most
important index for convergence is the potential of the system. The curve of the po-
tential is usually close to a hyperbola. As the timesteps are increasing, the potential
value should converge to a big negative value, for the minimization to be considered
successful.
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In the same way, the 1st equilibration process is considered successful, if the aver-
age value of temperature has converged to the desired value with relatively small
fluctuations. Also, the mean value of the total energy must reach a minimized equi-
librium value. The moving averaged value of this curve is similar to the one of the
minimization.

For the 2nd equilibration process the most important indices for convergence are the
average pressure and the total energy. The fluctuations in this simulation procedure
are increased dramatically, because the Parrinello-Rahman barostat is used (see 7th
paragraph of section 1.1). This is considered normal as long as the average value of
the curve is remaining constant.

Finally, as mentioned before the main simulation run has the same parameters as
the 2nd equilibration run. Thus, the convergence indices are the same, though
they are not actually required, because the system has been already equilibrated
from the 2nd equilibration run. Furthermore, it is important to check if the average
density of the main simulation run is close to the experimental value of the simulated
substance. In all the next chapters, a case will be considered converged, only if the
average values of temperatures, pressure and density are close to the desired or the
experimental values. This is a practical assumption needed in order to perform
further simulations and extract results. In figures A.1, typical curves are shown, like
the previously described.

All the thermodynamic properties of the ensemble are easily extracted by using
the ”gmx energy” command of GROMACS. The transport properties, such as ionic
conductivity are more difficult to extract. In the bibliography, there are two methods
for calculating the ionic conductivity. The first one is the MSD (Mean Square
Displacement) method. In this case, the self diffusion coefficients are calculated
from the mean-square displacement of the center of mass of each ion using the
Einstein relation

D =
1

6
lim
t→+∞

d

dt

〈
[~ri(t)− ~ri(0)]2

〉
(2.1)

where the quantity in 〈...〉 is the ensemble-averaged MSD of the center of mass of
ion i over time interval t and ~ri(t) is the location of the corresponding ion. The
locations of the molecules are stored every 1 ps as suggested from the bibliography
[18]. The slope of the MSD curve (time derivative) is approximated in every main
simulation run by a linear regression.

The same coefficient was calculated also by using the Green-Kubo relation, in which
the time integral of the velocity autocorrelation function (VACF)

D =
1

3N

∫ ∞
0

N∑
i=1

〈~vi(t) · ~vi(0)〉 dt (2.2)
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is used. Here N is the number of molecules for which the self diffusion constant is
calculated. A great effort was made to implement both of methods in the calculation
process. However, only the MSD method gave results with similar trend and values
to the available experimental data. Therefore, all the ionic conductivity results are
calculated by using the MSD method. It is important to note that Gromacs can
calculate separately the diffusion constants for the cation and for the anion of the
system, using different .ndx index files. After calculating the self diffusion constants
of the ions, the ionic conductivity value can be calculated by applying the Nerst-
Einstein equation

σMSD =
Niq

2

V kBT

(
D+
MSD +D−MSD

)
(2.3)

Here Ni is the total number of ion pairs, V is the volume, T is the temperature,
q is the effective net charge on the ions, kB is the Boltzmann constant, and D+

MSD

and D−MSD are the self-diffusion coefficients of cations and anions, respectively. The
procedures followed for the MSD and Green-Kubo calculations of is shown in figures
2.3 and A.2 respectively.

Figure 2.3: Flow diagram of the self diffusion constant calculation procedure, using
the MSD method.

2.2 Convergence studies for the simulation

parameters

2.2.1 Information about the simulated ionic liquid pairs

In the context of this thesis, 5 ionic liquid pairs will be examined for the ionic
conductivity. The available experimental data will be used for the validation of the
models created. For confidentiality reasons, the cations, anions and the respective
IL will be referred as CAT+

i , AN−i , ILi. In each IL pair the CAT+
1 is always the
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cation. The different anions used in each pair are AN−1 , AN−2 , AN−3 , AN−4 and
AN−5 . For confidentiality reasons, all the simulation results presented in this thesis
will be normalized by dividing with the experimental values.
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2.2.2 Determining the proper size for the simulation box

The size of the simulation box is an important parameter for the stability of the
simulation. A very small box size can lead to very high interactions forces between
the molecules, especially before the minimization is performed. Such high forces can
lead to rapid changes in the kinetic state of some molecules and thus in molecules
shooting across the system in an uncontrolled way in the next timestep. This kind
of simulation failure is often called ”Blowing Up”.

One the other hand if the box is very big, the system will eventually reach a small
equilibration volume, after oscillating for some time. However, using a very big box
is computationally more expensive. The system will take more time to reach an
equilibrium and the parallelization process will be probably less efficient. Various
geometries exist for the simulation box, such as dodecahedron, octahedron, etc. In
all the next simulations a cubic simulation box is used.

For determining the size of the simulation box, a test run is performed. The test
system contains 150 molecules of CAT+

1 and 150 molecules of AN−3 , at 300 K and
1 bar. After the end of the simulation, the average volume is Vavg ≈ 47 nm3. From
the literature, the final average volume of a system is proportional to the number
of molecules in it. Starting from the previous fact, the following empirical relation
can be derived for the approximation of the final simulation edge size of the box.

af ≈ 3

√
47

300
N (2.4)

Where af is the final edge length of the cubic box in nm and N is the total number of
molecules. The af parameter is very important for determining the cut-off distances
for the Coulomb and Van der Waals interactions (see section 2.2.4). However, the
previous formula gives the final edge size of the system and not the initial one. A
safe, empirical option for avoiding ”Blowing Up” systems is to use a simulation box
at least 3 times bigger in volume than the final average volume.

2.2.3 Determining the total number of molecules in the sys-

tem

For the determination of the total number of molecules in the system, a convergence
study is performed. In each case all the parameters are the same except from the
total number of molecules N . The CAT+

1 AN
−
3 ionic liquid pair is simulated at the

temperature range of 300K to 380K and at pressure equal to 1bar using the OPLS–
AA force field. The duration of the 1st equilibration run is 2 ns, while the duration
of the second one is 8 ns. For the ionic conductivity calculations, the MSD method
has been applied. In figures 2.4 the results of the convergence study are shown.
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(a) Ionic conductivity-temperature curves for different N values. All the simulation values have
been normalized by the experimental data in the corresponding temperature.

(b) Mean density normalized by the experimental
density value at 300 K for different N values.

(c) Average computational time in hours for dif-
ferent N values.

Figure 2.4: Results of the convergence study for different total number of molecules.
The symbol N means the number of cations in the system for the first two figures and
the total number of molecules in the last one. The computational resources used include
48 Intel Xeon logical processors and a Nvidia 2080 Ti at 100% and 30% utilization
respectively (used in parallel)
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The density values are close to the experimental ones and almost constant for dif-
ferent temperatures. Increasing the number of molecules seems to have no effect
in density. The conductivity results are improving as long as the total number of
molecules in the system is less or equal to 200 for each residue. After that point there
is no significant improvement in the conductivity results. Although the N = 200
value seems the obvious choice for the simulations, the N = 150 case is selected to
be used in all the next runs. By using N = 150 the computational cost is decreased
by approximately 50%, as shown in the figure 2.7c. This is why the last decision
was made.

2.2.4 Determining the cut-off distances for the non-bonded

interactions

Ideally the non-bonded interactions are calculated between each atom pair in the
system. However, the total number of atom pairs in a system is usually a very big
number, hence the previous ideal method is computationally expensive. Further-
more, the intensity of Van der Waals and Coulomb forces is decreasing rapidly with
the distance (∝ r2 for the Coulomb, ∝ r13 for the Pauli repulsion and ∝ r7 for the
dispersion attraction forces). Therefore, the non-bonded forces aren’t usually calcu-
lated after a specific cut-off distance. For this reason, another study is performed to
find the proper cut-off parameters for the simulations. The ionic liquid pair used is
the CAT+

1 AN
−
3 and it is assumed that the other IL pairs will follow a similar trend.

All the simulation parameters are very similar to those presented in paragraph 2.1.2.

The Rvdw and Rclb values are changing in the range of 0.8 nm to 1.6 nm with step
of 0.1 nm. The conductivity mean and standard deviation 2D maps are presented
in the figure 2.5. To make easier the extraction of conclusions from these maps, a
bicubic interpolation has been applied to the data. For the specific configuration
of options used, it’s impossible to have Rvdw > Rclb. That is the reason for not
presenting the values of the upper-left section in each map.

From the previous colormaps, the mean density is about 20% closer on average
to the experimental value around the pair (Rclb, Rvdw) = (1.6, 1.3). Also, in this
region of the plot, the standard deviation is almost 4 times lower than the average
value of the colormap. As a result, if (Rclb, Rvdw) is close to this area, the total
amount of simulations required to have good statistics about the case is reduced by
approximately 4 times. Consequently, the (Rclb, Rvdw) = (1.6, 1.4) combination is
selected for the all the next simulations.

The simulation box is usually divided in smaller unit cells. Each cell is a mirror
of one master cell. The purpose is to simulate bigger systems without increasing
dramatically the computational cost. This is a set of boundary conditions and their
basic idea is explained in figure 2.6. As mentioned in the section 2.2.2, using cut-
off distances bigger than the half of the final box edge size isn’t possible. This is
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(a) Mean conductivity. (b) b) Standard deviation of conductivity.

Figure 2.5: Maps of conductivity for the CAT+
1 AN

−
3 pair (N = 300). All the

results have been normalized by the experimental value at 300K. For each (Rclb, Rvdw)
combination, 5 cases were ran to obtain meaningful statistics.

happening, because of the periodic boundary conditions applied in the simulation
box. If that was possible, the molecule could interact with itself resulting to a
totally wrong simulation. Consequently, using cut-off distances bigger than 1.6
would require increasing the number of the molecules which will be further increase
the computational cost. This is why, the previous option will be avoided in the
simulations following.

Figure 2.6: Schematic representation of the idea of periodic boundary conditions [9].
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2.2.5 Determining the proper frequency and time duration

for the MSD method

Two more important parameters for the calculation of the ionic conductivity using
the MSD method are the total sampling time as well as the total amount of data
points used for the MSD fitting. To find proper values for these parameters, another
study is performed for the CAT+

1 AN
−
3 pair as previously done. The cut-off distances

are equal to those previously selected, while the rest of the options are still the same
as in section 2.2.4. In figure 2.7, the 2D maps for mean conductivity, conductivity
standard deviation and total simulation time are shown.

Using the previous maps an optimal set of parameters can be selected. From the first
two maps it is clear that the simulation time (main simulation time) required for
obtaining good results is at least 500 ps. At the same time, a decent percentage of
computational cost can be saved if a proper combination is selected. Consequently,
the combination (Nd, t) = (1000, 500) is considered a good compromise between
accuracy and cost and will be used in all the next simulations.

2.3 Results and discussion about the AA MD

simulations

After applying the options discussed in the previous sections, AA simulations are
performed in order to find the temperature curves and compare with the available
experimental results. For all the ionic liquids described in the section 2.2.1, the
Gromos57A7 force field topology is applied. For comparison reasons the OPLS–AA
force field is applied for the CAT+

1 AN
−
3 and CAT+

1 AN
−
4 pairs. It is worth to note

that, the OPLS—AA force field topology files where available only for these two
ionic liquids.

Each pair has been simulated in 5 different temperatures in the range of 300 K
to 380 K. Each data point shown in the following plots have been acquired by
running 5 times each case with different RNG number each time to obtain meaningful
statistics. All the topology files are including all the atoms, even the hydrogen
atoms, except from the Gromos topology file for CAT+

1 . In this file all the apolar
hydrogen atoms in the molecule have been merged with the corresponding carbon
atom. The Gromos force field is able to cope with this new merged atomtype and
produce meaningful results. One the other hand the OPLS—AA models include all
the atoms. Therefore, a comparison between the OPLS—AA model and the Gromos
model is important. The density-temperature curves have been drawn in the figure
2.8a, while the conductivity-temperature curves have been drawn in the figure 2.8b.

All the density curves are in a ±15% area around the experimental value. This
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(a) Mean value of ionic conductivity. (b) Standard deviation of ionic conductivity.

(c) Total time (hours) required for running and
postprocessing one case.

Figure 2.7: Maps of conductivity for the CAT+
1 AN

−
3 pair (Ntotal = 300) and total

simulation time. All the conductivity results have been normalized by the experimental
value at 300K. For each parameter combination, 5 cases were ran to obtain meaningful
statistics. The total simulation time includes the minimization, the 1st and the 2nd
equilibration, the main simulation (noted as “Simulation time” in the plots) and the
postprocessing time. The computational resources used for the simulation part include
48 Intel Xeon logical processors and a Nvidia 2080 Ti at 100% and 30% utilization
respectively (used in parallel). For the postprocessing part 1 Intel Xeon logical processor
at 2.6 GHz was used (Parallelization wasn’t possible).

is a good indication that the model is capable of predicting some basic physical
properties of the real model. For almost every ionic system, the density is slightly
decreasing with temperature, as it is observed in real ionic liquid systems. However,
the CAT+

1 AN
−
5 pair has a different behaviour until 340 K. In the majority of the

density data points, the standard deviation is very small, indicating that these cases
have totally converged. That means that both the temperature and the pressure
coupling were successful.
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The shape of the conductivity-temperature curve depends strongly on the ionic liq-
uid pair. Although, most of the pairs have overestimated simulation values, the
CAT+

1 AN
−
1 (Gromos) and CAT+

1 AN
−
4 (Gromos) have underestimated conductiv-

ity results. Generally in literature, getting results of the same order of magnitude
for the ionic conductivity using NPAAFF is considered a rare and difficult task [1].
For that reason, all the models except from those regarding CAT+

1 AN
−
4 (OPLS)

and CAT+
1 AN

−
5 (Gromos) are considered successful. Furthermore, as the temper-

ature increases, the conductivity simulation values converge more and more to the
experimental ones. The previous fact is true for all the models.

The CAT+
1 AN

−
3 (OPLS) curve is very close to the one of CAT+

1 AN
−
3 (Gromos).

The previous fact probably verifies that the assumption about the apolar hydrogen
atoms in the Gromos force field is correct. Therefore, the CAT+

1 topology file used
for all the Gromos models is considered safe to be applied and not very different
from the one of the OPLS–AA. One the other hand the Gromos force field gives
much more accurate results than the OPLS–AA in the case of the CAT+

1 AN
−
4 ionic

liquid.
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(a) Density-temperature curves for the 5 ionic liquids.

(b) Ionic conductivity-temperature curves for the 5 ionic liquids.

Figure 2.8: Results of all atoms simulations. The conductivity results have been
normalized by the corresponding, available, experimental value at each temperature.
The density results have been normalized by the experimental density value at 300 K.
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Chapter 3

Coarse grained simulations of ionic

liquids

The purpose of this chapter is to create and validate a robust CG model for perform-
ing conductivity calculations by using the CG MARTINI force field. Of course, the
results of CG calculations should have lower accuracy than the AA calculations of
chapter 2. However, they could be used in an optimization process if the conductiv-
ity values for different ILs have the correct trend. As mentioned before, CG models
are significantly cheaper than AA models. Therefore, it is important to examine the
possibility of using CG models for an optimization process.

First of all, a simplified CG model is created by using MARTINI 2.0 for an IL
for which experimental data are available. Then, a parametric study regarding the
bonded terms is performed to see the behavior and flexibility of the model. After-
wards the simulation parameters are modified to better fit the CG model conditions
and the force field is changed from MARTINI 2.0 to MARTINI 3.0, because of the
limitations presented in the previous model. The new model is applied for the five
available ILs presented in the section 2.2.1 and then for the Rmim+AN−1 IL family.
The results are discussed and conclusions are drawn about using the previous CG
model for an optimization.

41



3.1 Coarse grained models based on Martini 2.0

3.1.1 A simplified coarse grained model

Mapping separately the cation and the anion is a necessary process to create the
IL coarse grained model. The different groups of atoms in each molecule should
be approximated by the proper bead type of the force field. In this process the
shape, charge and molecular weight distribution should be as close as possible to
the corresponding property of the real molecule. In Martini 2.0, only 4 to 1 mapping
is possible, except when ring configurations need to be approximated. For this simple
test case, only 4 to 1 mapping will be used, even if the model could be more accurate
by using ring specialized bead types. The target of this paragraph is to extract
qualitative results from this simplified reference model. The mapping process and
the respective topological configuration of the beads are shown for each ion in figure
3.1.

Figure 3.1: Simplified coarse grained model for CAT+
1 AN

−
3 IL pair.

CAT+
1 is modelled by using 3 beads and the charge is located in the central Qd

bead, while AN−3 is modelled by using only 1 Qa charged bead. The capital letter is
denoting the type of the bead, the number is denoting the interaction intensity and
the letters “a” or “d” that follow are denoting the hydrogen bonding capabilities
(see paragraph 1.10.2 for more information about the beads). Every bead used, has
a molecular weight of 72 amu. This is the equivalent weight of 4 water molecules.
Therefore, the molecular weight of each group differs significantly from the real one.
The same is also true for the distribution of molecular weight in CAT+

1 ion. In
table 3.1 the exact molecular weight for each group of atoms is compared with the
corresponding molecular weight of the bead used in the model.

Group/Bead Exact Molecular Weight Bead Molecular Weight Relative Difference
C1 27 amu 72 amu +166 %
Qd 55 amu 72 amu +30 %
Qa 95 amu 72 amu −24 %

Table 3.1: Molecular weight differences between the real and the modelled sites
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3.1.2 Parametric studies regarding the bonded terms

Based on the previous model, a parametric study was performed to determine if any
correlation exists between the bonded parameters and the physical properties of the
ionic liquid pair. The bonded parameters examined were the angle and the bond
length value of the CAT+

1 model. Because of the symmetry, the length for each
bond is the same. In addition, different values for bond and angle spring constants
were tested, as shown in table 3.2. Then, the average of the different values of table
3.2 was calculated for each (L, θ) combination. The simulation parameters were the
same with those of the AA model described in paragraph 2.1.2 and in table A.2.

Bond spring constant values
[

kJ
mol nm2

]
103 5 · 103 2 · 104 4 · 104

Angle spring constant values
[

kJ
mol rad2

]
5 25 102 4 · 102

Table 3.2: Spring constant values tested in the parametric study.

(a) Density (b) Ionic conductivity

Figure 3.2: Physical properties of a simple CAT+
1 AN

−
3 CG model for different bond

length L and angle θ values. All the results have been normalized by the corresponding
experimental value.

Density is affected mainly by the bond length and less by the angle value. Increasing
the bond length leads to a lower density value. This was expected, since bigger
distances between the beads mean that there is more empty space between them.
Also, configurations with angle value closer to 180◦ have slightly lower density. An
ion with an equilibrium angle equal to 180◦ is considered linear. It seems that linear
molecules can be packed slightly more easily than molecules with equilibrium angles
closer to 90◦.

The correlation between ionic conductivity and angle or length isn’t so clear, because
of the high standard deviation in the results. Increasing the bond length seems to
lead to higher conductivity, but only for lengths below 0.4 nm. A similar trend is
observed when the angle value is closer to 180◦.
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3.1.3 Problems and restrictions of the model

Every bead of the force field is a combination of 3 parameters. The first one is
the molecular weight of the bead. The rest are used to determine the shape of the
Lennard-Jones potential curve (σ and ε). These affects the non-bonded behaviour
of the molecule. The previous parameters are usually obtained by applying a fitting
method to data about physical properties for specific substances. For example, P4

bead type has been created specifically to imitate the properties of 4 water molecules.
Consequently, higher variety in the force field bead types can lead to higher flexibility
in modelling different molecules.

A model like the one described in paragraph 3.1.1 is barely adequate to describe
the qualitative effect of the bonded parameters to the conductivity. The molecular
weight of a bead can either be 72 amu or 45 amu, if ring bead types are used. In
the original paper of the force field [22], isn’t clear if ring bead types can be used
for modelling non ring groups of atoms. The previous facts make difficult to create
a model with molecular weight distribution close to the one of the real substance.
Therefore, the resolution of Martini 2.0 force field doesn’t seem to be adequate for
describing properly an ion like CAT+

1 .

One last problem of the previous configuration is that the parameters of the sim-
ulation like the integration step, the cut-off schemes and the thermostat haven’t
been changed to fit the coarse grained model philosophy. At the same time, the
ionic conductivity in these models doesn’t scale up enough when the temperature
is increased. This isn’t in agreement with the real phenomenon, since the ionic
conductivity can often be increased by 10 times in the temperature range which is
examined.

3.2 An improved coarse grained model

3.2.1 Modifying the simulation parameter files

As mentioned before, the simulation parameters used previously were adapted to
the AA model philosophy. In order to improve the accuracy of the coarse grained
model, these parameters were changed to be better adapted to the CG philosophy.
The modifications applied were suggested by relative papers about the Martini 2.0
and 3.0 force fields [22], [29], [30], [31].

The first and most important change was in the integration timestep which changed
from 2fs to 10fs. This modification alone leads to 500% reduction in the simulation
cost. The cost is lower, because the total number of steps required is inversely
proportional to the timestep value. Furthermore, the inertia of the moving particles
is greater in a CG model, thus the time step required for achieving the same level
of accuracy as before is usually bigger. The postprocessing phase will be faster as
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well, since less data about trajectories need to be processed for calculating the ionic
conductivity.

The method for calculating the Coulomb interactions was changed from “PME”
to “Reaction Field”. An extra parameter called “Verlet-Buffer-Tolerance” was in-
troduced, regarding the convergence of the simulation. The constraints about the
hydrogen atom bonds were removed, since no hydrogen atoms are present in a coarse
grained model. Moreover, εr = 15 value described in [22] was added in the param-
eter files. The thermostat was changed from “Nose-Hoover” to the more stable
“V-rescale” one. Lastly, the relaxation value for pressure was increased significantly
to 10 ps from 3 ps to ensure stable convergence. The simulation parameters are
shown in greater detail in tables B.1, B.2 of the appendix.

3.2.2 The Martini 3.0 force field

Martini 3.0 is an evolution of Martini 2.0. Its purpose is to offer higher flexi-
bility in modelling materials while improving the model accuracy. Ionic liquids,
(poly)aromatic rings and organic solvents have been added to the list of feasible
models. The respective table of interactions (see table 1.2) has been broaden signif-
icantly as shown in table B.3. Moreover, a higher variety of bead sizes is provided
as shown in table 3.3.

Size name Mapping capabilities Molecular weight Description
N 4-1 mapping 72 amu The writing of this is omitted
S 3-1 mapping 54 amu -
T 2-1 mapping 36 amu -

Table 3.3: Bead size types in the Martini 3.0 force field.

Martini 3.0 provides a solid algorithm for parameterizing new molecules. The flow
diagram of this algorithm is shown in figure B.1. Further more table B.4 can be
used both for mapping and for inverse-mapping purposes. This is very important
especially if a coarse grained model is used for optimization. In the end, it will be
necessary for the optimal solution to be translated in a real world molecule. Finally,
some relative papers have been published, regarding the modelling process of small
molecules and ionic liquids [30], [29]. Thus, the available amount of documentation
about ionic liquid like models is more plentiful for this force field. For this reason,
all the next CG models will be developed based on Martini 3.0.

3.2.3 Mapping process for the CAT+
1 AN

−
i pairs

In order to mimic as best as possible, the physical properties of the CAT+
1 AN

−
i

pairs, the cation and the anion will be modelled separately by using the density of the
respective neutral molecule as reference guide for the design. The bonded parameters
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were obtained from the AA topology files by assuming that each group of atoms is
represented by the center of mass of the corresponding bead. After performing some
initial tests, an important problem considering the molecular weight was emerged.

During the modelling of the AN−3 respective acid (AN−3 with an extra hydrogen
atom), it was impossible to achieve density higher than ≈ 1200 kg/m3. The model
was including only one normal size bead. The actual molecular weight of the residue
is 96 amu, thus the closest bead size in terms of molecular weight to use is the N
size type that weights 72 amu. Alternative configurations were rejected, because
they lacked in physical meaning. However, the actual density of the residue is close
to 1480 kg/m3. Therefore, a more accurate model is possible only if the molecular
weight of the bead is changed to the real one. Indeed, changing just this simple
parameter in a P5 bead was enough to achieve ρ = 1460± 21 kg/m3. This could be
considered a good model, since the substance is very polar as well.

Proceeding to the modelling of AN−4 and AN−5 acids (AN−4 and AN−5 with an extra
hydrogen atom), a similar approach was applied. However, the melting point for
these substances is very close to 300 K. These model types often fail to converge in
conditions like the previous ones. There is also an upper limit to the density that
can be achieved by using N size beads (ρmax ≈ 1540 kg/m3 by using a single P5
bead). These problems can be bypassed by using S bead size, while maintaining the
correct value for the molecular weight. The reason for using a smaller bead is that
decreasing the size of the bead also decreases σ value in the Lennard-Jones potential
(see figure 1.5). Consequently, the repulsive forces between the beads will become
more significant in shorter distances than before, permitting to them to be more
densely packed in the simulation box. Finally, SP3 and SP5 beads were selected
for modelling AN−4 and AN−5 acid respectively.

The parent residue of CAT+
i was approximated by using 3 beads. In the center,

TC6 bead was used. The size T was selected because of its proximity in terms
of molecular weight and the type was selected based on table B.4. The side beads
should be SC3 by following table B.4. The density of the last configuration is around
1200 kg/m3 which is very different from the experimental density ρexp = 790 kg/m3.
Such difference couldn’t be ignored, hence the same approach used in sulphuric and
phosphoric acid was followed. By converting the side bead to C3 from SC3 the
acceptable density of ρ = 860 kg/m3 was achieved.

Regarding the parent residue of AN−2 , table B.4 doesn’t have any useful information.
Therefore, P3 and C2 beads were used as shown in figure ??, based on empirical
data and on a brief manual optimization. The molecular weight of each bead was
again modified based on the AA model. A similar process, was applied for the parent
residue of AN−1 . A comparison between the experimental and the CG model density
is shown in table 3.4 for each molecule. It is important to note, that in every ionic
liquid binary system, each ion has different bead types compared to its pair. This
was done to secure that no conflict will be occurred between the molecular weight
value used in a cation bead with the respective value in another anion bead of the
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same type.

Residue CAT+
i AN−1 AN+

2 AN+
3 AN+

4 AN−5

ρexp [kg/m3] 790 1940 1700 1480 1830 1880

ρCG [kg/m3] 860 1790 1760 1460 2010 2170

εrel +8.9% −7.7% +3.5% −1.4% +9.8% +15.4%

Table 3.4: Comparison between the experimental and CG simulation density for each
neutral residue. The experimental data were obtained from the online database [54].

3.2.4 Results for the CAT+
1 AN

−
i ionic liquid pairs

The IL pair models were created based on the models previously described by as-
signing the proper partial charge in each bead. This was done by summing all the
partial charges for each group of atoms and for each ion. The partial charge value
for each atom was obtained by the respective AA model. After running the simula-
tions, the 1st CG model curve was obtained, as it is shown in figures 3.3. The pairs
CAT+

1 AN
−
4 and CAT+

1 AN
−
5 didn’t converge. The density of the mixture follows

the correct trend for different ILs. However, the conductivity results follow exactly
the opposite trend compared to the experimental data. Furthermore, assigning the
charges only to the protonated/deprotonated bead had almost no effect on the ionic
conductivity curve.

For this reason, a second version of the previous model was created, in which the
protonated/deprotonated beads were replaced by charged bead types. The approach
for these replacements was similar to the one used for the 1st model. A list with all
the ions of the second model is shown in table 3.5. The relative interaction intensity
between the replacing beads is similar as previously. However, the interactions are
stronger and thus an increase in density and a decrease in conductivity is expected.
Indeed CG model curve 2 is behaving as expected, but the model is once more unable
to predict correctly the trend in conductivity. One the other hand the density trend
is in perfect agreement with the one of the experimental data.
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(a) Density.

(b) Ionic conductivity normalized by the experimental value of CAT+
1 AN

−
5 .

Figure 3.3: Trend of physical properties for the CAT+
1 AN

−
i pairs. The pairs are

listed in descending order regarding conductivity. The results have been obtained from
simulations and experiments at 380 K, except from the experimental density which
was measured in 300 K.
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An alternative model could have everything being the same as before, but with the
C3 side beads of CAT+

1 replaced by SC3 beads. In terms of molecular weight this
is the most accurate bead for describing this molecule. The reason for not using
this bead type in the CG model 1 have been explained in paragraph 3.2.3. The 3rd
model is in good agreement with the trend of the density curve, while is slightly
worse, regarding the conductivity, than CG model curve 2.

During the previous modelling process a lot of different combinations were tested
manually for maximizing the proximity of the density and conductivity curve to
the experimental ones. From these tests, many qualitative conclusions about the
bonded parameters of martini 3.0 were drawn as shown in table 3.6.

It is important to observe that not even the AA model curve of figures 3.3 is able
to predict correctly the trend of conductivity between CAT+

1 AN
−
2 and CAT+

1 AN
−
3 .

These two substances have similar conductivities, thus the resolution of the model
isn’t adequate for distinguishing which of them has the biggest value. From table
B.4, one can see that Martini has been built mainly by using carbon based sub-
stances. These chemical groups contain other elements like O, S, P, F and N but
they aren’t rich in them like the previous ionic liquids. Therefore, it is probable that
more accurate models could be created for ions based mainly on carbon atoms.

CG model CAT+
1 AN−1 AN−2 AN−3 AN−4 AN−5

1st C3-TC6-C3 C2-SN1-TC5-SN1-C2 P3-C2 P5 SP5 SP3
2nd C3-TQp-C3 C2-SN1-TQn-SN1-C2 Qn-C2 Qn SQn SQ1
3rd SC3-TQp-SC3 C2-SN1-TQn-SN1-C2 Qn-C2 Qn SQn SQ1

Table 3.5: List of all the CG models that are presented in figure 3.3.

Most affected parameter Type of change Example Effect on density
σ [nm] Bead size increases C1 to T1 +3

ε [kJ/mol] Interactions intensity increase N1 to N3 +1
Molecular weight [amu] increasing the Mw 72 amu to 95 amu +2

Table 3.6: Qualitative effect on the IL density for changing different model parame-
ters.
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3.3 Simulation of the Rmim+AN−1 ionic liquid pairs

3.3.1 Mapping process for the Rmim+AN−1 pairs

As mentioned in the previous paragraph, the CAT+
1 AN

−
i pairs were particularly

difficult to model. Replacing the cation by a substance more close to the Martini
3.0 philosophy and by maintaining the same anion for the different pairs, better
trend results should be expected. To validate the previous claim, two different CG
models of Rmim+AN−1 pairs will be simulated. The results will then be compared
with experimental data obtained by Tokuda et al. [33].

Contrary to the CAT+
1 cation, Rmim+ cations can be very easily coarse grained by

following figure B.1 and table B.4. In addition, Marrink et al. [29] have already
proposed CG models for C2mim+, C4mim+ and C6mim+ by using Martini 3.0.
The CG models of figure 3.4 were created by applying the principles described in
the previous sources. The angles and bond lengths were estimated as previously,
from the respective all atom topology files. The spring constants were set equal to
2·104 kJmol−1nm−2 for the bonds and 25 kJmol−1rad−2 for the angles as proposed
in [22]. Lastly, the charge has been been distributed equally between the two beads
that contain nitrogen atoms as suggested in [29].

Figure 3.4: Visualization of the Rmim+ CG models by using the Avogadro software
[32].

Regarding the molecular weight of the cations, Marrink et al. didn’t modify the
molecular weight of any bead while modelling any of the imidazolium-based cations.
To examine the importance of molecular weight, a second model will be created, in
which each bead will have exactly the same weight as the respective group of atoms
have in the real ion.
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3.3.2 Results for the Rmim+AN−1 ionic liquid pairs

In figures 3.5, the density and the conductivity values for each model are compared
with the experimental data [33]. By looking in figure 3.5a, it is clear that molecular
weight has a great impact on the accuracy of the calculated density. The trend of
the first model curve is partially correct, while the second one is in good agreement
with the experimental results. The 2nd model is able to correctly predict the trend
and the value of density, since the maximum density difference compared to the
experimental value is smaller than 10 %.

Regarding the conductivity, the 2nd model is again more accurate. The CG models
have on average an offset of about 150% from the experimental values. The offset is
greater for cations with higher molecular weight values. However, the trend in these
models is more accurate than the trend that the lighter cation models have. This is
considered to be a result of the simpler chemical configurations that these ions have.
Alkylic tails are very simple chemical groups that Martini is able to model with
great accuracy, in contrary to rings that have been added recently as a modelling
capability in the force field.

As explained in paragraph 3.2.4, the model for AN−1 isn’t very accurate. This
probably has an impact to the accuracy of the Rmim+AN−1 CG models as well.
Replacing AN−1 with another Martini friendly anion could further improve the pre-
dictive ability of the CG model. Nevertheless, the second coarse grained model was
able to capture the effect that alkylic chain length has to the ionic conductivity.
Thus, Martini 3.0 seems to have some basic prediction capabilities about the ionic
conductivity, provided that the modelled substances have similar chemical structure
with the bead types of the force field used for the mapping process. This important
assumption will be the basis for the conductivity optimization that will be performed
in the next chapter.
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(a) Density at 300 K.

(b) Ionic conductivity at 380 K

Figure 3.5: Trend of physical properties for the Rmim+AN−1 pairs. The pairs are
listed in descending order regarding conductivity.
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Chapter 4

Optimization by using CG models

After the creation and validation of the CG models, in the previous chapter, a CG
optimization is performed by using the evolutionary algorithm based software EASY.
The basic principles of evolutionary algorithms and the process of translating CG
ions to design variables will be explained. The optimization results are discussed
and compared with the respective AA models.

4.1 Evolutionary Algorithms

Optimization methods can be split into two main categories, stochastic methods and
deterministic or gradient based methods [49]. In the first one, statistics are used
in combination with random processes to search for the optimal solution. Usually,
they don’t require any extra information about the problem besides the value of
the objective function. In the contrary, gradient based methods always require the
derivatives of the objective function with respect to the design variables.

The computation of the previous derivatives is often a tedious process and requires
modification of the evaluation tool. In this case the evaluation tool is the MD
simulation procedure for calculating the ionic conductivity (objective function), that
was described in section 2.1. The development time for these methods is usually
long. Moreover, sophisticated methods, like the Adjoint method [50], should be
applied in order to keep the additional computational cost low. If programmed
properly, deterministic methods converge fast to a local or global minimum with the
proper initialization.

Evolutionary algorithms (EAs) are one of the main representatives of the stochas-
tic optimization methods. As their name implies, these algorithms are inspired by
the basic principles of natural selection in biology, like mutation, recombination and
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survival of the fittest (elitism). The previous principles can be translated into math-
ematical operators to be used in a optimization process. EAs are population based
methods, which means that in each generation a population of different individual
exists. The collection of all the unique characteristics (design variables) of an in-
dividual is called genotype. The design variables are the inputs of the evaluation
tool which will calculate the respective objective function value. In a single objec-
tive optimization (SOO) problem, the reproduction probability of an individual is
proportional to the respective objective function value. With this process, a parent
population is created. Then, the parents combine their design variables (genes) be-
tween them in a process called crossover to create the new generation of individuals.
Afterwards, a mutation can happen with low probability in an individual, changing
slightly its genotype. The previous process is repeated for many generations until
an individual with high enough objective function value emerges (convergence crite-
rion). Finally, inserting elitism to some degree can accelerate or stabilize the process
by boosting more the survival of the elites (best individuals).

Unfortunately, EAs have some disadvantages, in their standard form. The compu-
tational cost of these algorithms is often very high, because of the large number of
evaluations required in order to obtain many generations of individuals during the
evolution process. The evaluation here refers to the computationally expensive MD
simulation that is necessary for the calculation of the conductivity of an individual.
This is also the most expensive part of the optimization procedure. In addition,
the computational cost increases significantly, if the number of design variables is
increased, because more evaluations are required for convergence of the algorithm.
However, some additional methods like metamodels and distributed search schemes
can accelerate the convergence. Metamodels are interpolation-like methods which
implement machine learning and statistical methods to reduce the total number of
evaluations. Distributed schemes divide the population to a few isolated islands.
The exchange of gene information between the islands is governed by other rules
which respect the laws of probability theory and statistics.

On the flip side, EAs can operate like a black box. They don’t require any extra
information, except from the objective function value for each individual. It isn’t
necessary to modify the simulation tool as it is in the gradient based methods.
Furthermore, they are able to always find the global optimum, provided that an
”infinite” number of evaluations is performed.

In this case, the simulation software is very difficult to be modified. Moreover, the
optimization will be performed in two different types models (CG and AA models).
Therefore, a more versatile optimization tool like EAs fits better in this specific
optimization problem.
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4.2 EASY

EASY is a general purpose optimization platform developed by the PCOpt/NTUA
[55]. It can be used both for SOO and multi-objective (MOO), constrained or
unconstrained optimization problems. EASY is evolutionary algorithm based soft-
ware, but it also supports hybrid optimization methods, including gradient-based
techniques. A variety of options for decreasing the computational cost is provided,
such as machine learning assisted metamodels, distributed schemes and hierarchical
optimization techniques.

The software can easily be coupled with any evaluation tool. The sole necessities
for this purpose are a pre-processor and a post-processor. The pre-processor should
translate the design variables of an individual to proper input data for the evaluation
tool (MD simulation). On the contrary, the post-processor should translate properly
the results of the evaluation tool to value(s) of the objective function(s). In this
case the value of the objective function is always the ionic conductivity. The design
variables are different in the CG and AA optimization. In the next paragraph, the
details about the CG optimization design variables will be explained.

4.3 Parameterization of CG Ions

4.3.1 Computational Cost and Configuration Selection

In reality, the total number of possible IL pairs is enormous. Coarse-graining reduces
significantly the previous number, because it greatly reduces the total number of
particles in the system. In figure 4.1, different topology configurations regarding
a CG neutral molecules are presented. To examine which configuration is both
simple and versatile enough, an approximate calculation is performed about the
total number of possible configurations.

In this simple calculation, the total number of beads is always less than four. So,
only the first row of figure 4.1 is examined. The different types of beads that can
be used is limited to 12. Each molecule can have only one charged beads, meaning
that the charge value should either be 1 or -1. The angle value of the scenario
3a is discretized to only three values. All the bond, angle and dihedral constants
(see paragraph 1.10.2) have fixed values. The length of each bond is automatically
derived from the types of the connected beads.

For this simple example, 9408 different possible configurations exist. This result was
obtained by an algorithm which applies all the previous rules. Therefore, the total
number of possible IL pairs should be

Ntot =

(
9408

2

)
≈ 4.4 · 107 (4.1)
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The evaluation cost of a CG simulation is about 2 minutes when 16 processors
are used. To obtain meaningful results, each simulation should run 5 times with
different random number generator seeds. In a realistic situation, the evaluation
tool can run for 5 days in 80 logical processors. In this case, only 3600 evaluations
will be performed. As one can see, the ratio between the possible states in the
design space and the total number of evaluations is very small (≈ 10−4). By making
the same assumptions for a 4 bead configuration, the previous number is increased
exponentially. Also, CG MARTINI 3.0 offers more than 36 different bead types. In
conclusion, using more than 3 beads for the CG optimization is prohibitive, because
of the computational cost.

For the sake of simplicity, the CG optimization will be performed, only for the case
3a of figure 4.1. In the same time, this choice is considered to give the necessary
flexibility for a wide range of results to emerge from the optimization. Therefore,
each ion of the IL pair will consist of three beads and one free angle.

Figure 4.1: Different topology configurations for a CG neutral molecule. The orange
lines denote the bonds between the beads and the red arcs the angular degree of freedom.

4.3.2 Design Variables

As mentioned in the previous paragraph, 8 design variables are used to describe
each IL pair, as shown in figure 4.2. The variables p1 and p5 can range from 90◦

to 180◦ and they describe the angle formed between the 3 beads. The rest of the
design variables can take any value in the set of beads allowed. The set of the beads
used is shown below.

56



Beads = {C1, C3, C4, C5, C6, N0, N2, N3, P1, P2, P3, P4, P5, Q1, Qp,

SC1, SC2, SC3, SC4, SC5, SC6, SN0, SN2, SN3, SP1, SP2, SP3, SP4, SQ1, SQp,

TC1, TC2, TC3, TC4, TC5, TC6, TN0, TP1, TQ1, TQp} (4.2)

Figure 4.2: Simple explanatory schematic about the design variables of the CG op-
timization.

The previous bead types were selected according to table B.4. The idea is to only
use beads for which a translation to AA chemistry exists. By doing so, every CG ion
can be translated to a real ion (reverse mapping). Translating the CG elites of the
optimization to AA elites is necessary for the validation of the final/optimal result.
Table B.4 is very important, because it is a standardized and objective tool to give
physical meaning to any CG model. Of course, the table itself is created by chemical
intuition and empirical data and, thus, reverse mapping is always possible without
it. However, in a complex optimization process, the need for standardization cannot
be ignored. Finally, the spring constants for the bonds and the angles were set equal
to the typical values, 20000 kJ

mol nm2 and 25 kJ
mol

respectively, suggested in [22].

Before proceeding to the results, it is important to explain how the bond lengths
change based on the size of the connected beads. As mentioned in paragraph 3.2.2, in
the MARTINI 3.0 force field, different sizes of beads exist (Normal, Small, Tiny). To
derive the bond length, each one of them is translated to an approximate AA model
(see table 3.3), consisting of carbon and hydrogen atoms. The AA beads can be
connected in different ways, as shown in the example of figure 4.3. After connecting
the AA beads, the MMFF94 AA force field is applied to optimize the molecular
geometry. This optimization is necessary to create a realistic AA geometry. The
next step is to calculate the center of mass for each AA bead. All the previous
procedures were performed by using the Avogadro software [32].

Finally, the length of each configuration is considered to be equal to the distance
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between the two center of masses. The final length is approximated as the average
of all the previous lengths. For example, if a normal size bead is connected with a
small size bead, the length is derived as described in the following figure. The above
procedure is repeated for all the possible combinations of bead sizes (6 in total) and
the results are presented in table 4.1.

Figure 4.3: Schematic about how the bond lengths are derived from the bead size of
the connected beads.

Connection of bead size i with bead size j Approximation of the bond length (nm)
Ni −Nj 0.445
Ni − Sj 0.370
Ni − Tj 0.330
Si − Sj 0.325
Si − Tj 0.280
Ti − Tj 0.250

Table 4.1: Bond length derivation from the size of the connected beads.

4.4 Results of the CG Optimization

After the end of the optimization, all the individuals are arranged in descending
order, in terms of the objective function value (ionic conductivity). The convergence
history is shown in figure 4.4. The x axis displays the total number of evaluations.
Only 1073 individuals were evaluated, the rest of them were rejected before being
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evaluated, because they didn’t correspond to feasible solutions. The computational
cost of those were negligible, since they weren’t evaluated.

As far as the search engine of EASY is concerned, the most important configuration
settings are the following. Three demes were used with the population for each one
consisting of 10 parents (μ) and 40 offspring (λ). Three parents were required to
produce an offspring. The gradually decreasing mutation probability was initially 0.2
for achieving better exploration of the design space. One elite was kept and forced
as an offspring in each generation. Radial distribution function metamodels were
used. The minimum and maximum training patterns were 300 and 500 respectively,
from which at least 300 were required to be successfully evaluated. The evolution
was allowed to expand for about 1000 evaluations, without any other convergence
criterion. Lastly, table 4.2 contains in more detail the settings of EASY that were
used for the CG optimization.

Figure 4.4: CG optimization convergence curve by using Distributed Metamodel
Assisted Evolutionary Algorithm (DMAEA).

At this point, it is important to point out that all the simulations were performed
at 380 K, because closer to these temperatures all the models are more accurate.
The previous fact has been explained in more details in chapters 2 and 3 (see figure
2.8b).

Table 4.3 contains the design variables and the conductivity value of the top 5 elites.
As shown in it, the angle values don’t seem to affect significantly the conductivity
result. However, table 4.3 doesn’t contain any angle value in the range of 150◦

to 180◦. One the other hand, the bead type is the main force of conductivity
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Population options Metamodel settings (ON) Distributed scheme (ON: 3 demes)

Parent population size 10 Metamodel type RBF Inter-deme communication

Offspring population size 40 Exact evaluations Min 5 Migration frequency 5

Max life span 0 Exact evaluations Max 15 Maximum migrations Infinite

Parents of one offspring 3 IPE pause gen. 10 Emigrants (best) 2

Elite archive size 20 Min. DB entries 300 Emigrants (random) 3

Elite indiv. to force as new offsp. 1 DB ent. not failed 120 Immigrants 3

Probability to select an elite 0.05 Training patterns Min 300 Migration mode Rnd-replace if better

Tournament size 3 Training patterns Max 500 Migration graph Each to all

Tournament probability 0.9 Proximity factor 1.2 Sharing frequency 75

Operators options IF relaxation 0.3 Mutation multiplier 3.3

Coding Binary-Gray RBF-Radius Auto Max mutation prob. 0.2

Probability (Crossover) 0.95 Use failed patterns Yes Infection radius factor 0.3

Mode (Crossover) Two point/var. Use PCA for ifs No Sharing duration 7

Probability (Mutation) 0.2 Not failed patterns 10 Maximum penalty 90.0

Multiplier (Mutation) 0.8 Allow extrapolation Auto

Idle generations 10 Non dimensionalize Yes

Failed obj. multiplier 10

Max DB percentage 1.0

Prediction mode Auto

CRBFN

Min number of Centers 2

Max number of Centers 120

Radius multiplier 0.5

Test-to-total ratio 0.3

Idle iterations 15

Learn rate ratio 0.1

Table 4.2: Configuration settings of the EASY search engine that were used for the
CG optimization.

diversification in this model. Both the cations and anions prefer to have charged
beads (Q beads) of normal size at the one side and apolar beads (C beads) of tiny
size at the center and at the other side.

Similar conclusions can be derived from figures 4.5, in which the bead type distribu-
tion for each design variable is shown, regarding the 100 top elites. For comparing
with the rest of the population, figures 4.6 show the same distribution but for all
the ranking classes of the population. The previous comparison is essential, because
some bead types have been promoted more than similar bead types purely out of
chance. A great example of this is shown in figure 4.5b, where there is a clear
preference for TC5 beads over TC4 beads. The bead definitions are very similar
in the force field and this means that they shouldn’t differ significantly. Indeed,
by observing the respective figure 4.6b, it is clear that the whole population has a
lack of TC4 beads compared with TC5 beads. The ratios of TC4 and TC5 beads

60



between the elite and the total population is almost the same.

Another conclusion that can be drawn from these figures is that the initial, chance
driven, high conductivity results can influence the course of the evolution as well
as the final solution. This means that some solutions appeared more frequently
than others in the optimization process, because they were the first high conductiv-
ity results. For this reason, they survived throughout the optimization with small
changes (mutations). The preference of the algorithm for TC5 over TC4 central
beads (figure 4.5b) could be an example of how initially good solutions can affect
the population evolution. This is usually the outcome of applying high elitism and
low mutation probability in the evolutionary algorithm settings.

The most interesting result is the large magnitude of the conductivity values pre-
sented in the elite table 4.3. These values are about 3 times higher than the conduc-
tivity value of nafionTM . Unfortunately, this is the conductivity of the CG model
and not the conductivity of the more accurate AA model. For this reason, it is
necessary to validate the previous CG results by using AA models.

Elite ID p1 p2 p3 p4 p5 p6 p7 p8 σ [S/m]
1 101◦ TC3 TC6 Qp 93◦ TC5 TC1 Qn 73± 5
2 140◦ TC3 TC5 Qp 131◦ TC5 TC3 Qn 66± 1
3 131◦ TC3 TC5 Qp 123◦ TC6 TC5 Qn 65± 1
4 141◦ TC3 TC5 Qp 116◦ TC5 TC3 Qn 65± 1
5 96◦ TC3 TC6 Qp 126◦ TC5 TC6 Qn 64± 1

Table 4.3: The design variables (p1...p8) and the objective function value (ionic
conductivity) for the top 5 elites. All the MD simulations were performed at 380 K
for increased accuracy.
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(a) Distribution for the p2 parameter (b) Distribution for the p3 parameter

(c) Distribution for the p4 parameter (d) Distribution for the p6 parameter

(e) Distribution for the p7 parameter (f) Distribution for the p8 parameter

Figure 4.5: Bead distribution for the design variables p2, p3, p4, p6, p7 and p8,
regarding the top 100 elites of the optimization.
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(a) Distribution for the p2 parameter (b) Distribution for the p3 parameter

(c) Distribution for the p4 parameter (d) Distribution for the p6 parameter

(e) Distribution for the p7 parameter (f) Distribution for the p8 parameter

Figure 4.6: Bead distribution for the design variables p2, p3, p4, p6, p7 and p8,
regarding all the individuals of the optimization. Each color denotes a ranking class
of individuals. For example, the dark blue color refers to the top 100 individuals.
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4.5 Validation by using AA models

Each CG configuration produced by the optimization process can be translated to
the AA equivalent by using table B.4 which the MARTINI 3.0 guide provides. For
example, the translation of the optimal CG IL (1st elite of table 4.3) is shown in
figure 4.7. These molecules can then be inserted as input data to the Ligpargen
web server [24], [25], [26] for acquiring the respective AA topology in order to run
OPLS–AA MD simulations.

The previous process was followed for the individuals shown in table 4.4. Each
one of them has a representative conductivity value in the CG conductivity space.
The AA conductivity results that were obtained by the OPLS–AA simulations for
the translated molecules are shown in figure 4.8 in blue color. The ideal, one-to-
one, correlation between CG and AA conductivity is shown by the purple dashed
line. The light blue dashed curve is a linear fit regarding the optimization data
points (blue points). The correlation magnitude is shown by the factor R2 = 0.295.
Therefore, the correlation between the conductivity of the CG optimization model
and the respective AA model is weak. It worth noting that, figure 4.8 validates the
conclusions drawn in chapter 3. It is clear that the CAT1 CG model (red points)
isn’t accurate, while the one for Rmim gives a curve (green curve) which is close to
the ideal line.

In conclusion, using a CG force field like MARTINI 3.0 for performing an optimiza-
tion regarding ionic conductivity presents significant challenges. Even though there
is a weak correlation between the CG and AA conductivity, the best IL that emerged
from the previous process has almost 4 times lower conductivity than the reference
IL (CAT+

1 AN
−
3 ). Accuracy and reverse mapping limitations of CG MARTINI 3.0

are the main reason for that.

In the next chapter, an alternative approach will be followed. An AA optimization
will be performed, in spite of the high complexity and computational cost. This
chapter proved that in ionic conductivity calculations, accuracy is really important.
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Figure 4.7: Translation of the CG model to an AA model for the best elite of the
optimization. For translating the model, table B.4 was used. Gray, white, red and blue
spheres represent carbon, hydrogen, oxygen and nitrogen atoms respectively.

Elite ID p1 p2 p3 p4 p5 p6 p7 p8 σ [S/m]
1 101◦ TC3 TC6 Qp 93◦ TC5 TC1 Qn 73± 5
5 96◦ TC3 TC6 Qp 126◦ TC5 TC6 Qn 64± 1
11 157◦ TC3 TC6 SQp 100◦ SC3 TC4 Qn 50± 3
18 101◦ SN2 TC6 Qp 93◦ Qn TC1 TC3 42± 2
37 133◦ TC3 TN0 Qp 130◦ TC6 SP3 Qn 35± 1
59 100◦ N3 Qp SC4 103◦ Qn TC1 TC5 29± 2
100 90◦ TC4 SP4 Qp 126◦ SC6 TP1 Qn 21± 1
183 94◦ N3 TC6 Qp 92◦ TC6 SN2 Qn 14± 1
395 106◦ TQp C4 TN0 96◦ SP3 N2 Qn 7± 1

Table 4.4: The design variables (p1...p8) and the objective function value (ionic con-
ductivity) for 9 individuals that represent the objective function space (ionic conduc-
tivity range). All the MD simulations were performed at 380K for increased accuracy.
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Figure 4.8: Correlation between CG and AA conductivity for various models. For
the AA results regarding the CAT1 ILs, GROMOS force field was used (see paragraph
3.2.4). Considering the Rmim ILs, the data of the y axis are the respective experimen-
tal values (see paragraph 3.3.2). Finally, the AA validation of the CG optimization
model was performed by applying the OPLS–AA force field. For the last model, there
is a weak correlation between the CG and AA conductivity results. All the MD simu-
lations were performed at 380K for increased accuracy.
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Chapter 5

Optimization using AA Models

In this chapter, an AA optimization is performed using EASY. The most difficult
part of the process is to create a robust and automated method for translating the
optimization parameters (design variables) to anions and cations (ILs). For this
purpose, the standardized SMILES strings are used. Each SMILES string is a se-
quence of character, which can be converted to geometry and topology input data
for an AA MD simulation. To accomplish that, many opensource topology conver-
sion tools and scripts are used. An AA optimization is then performed based on this
”rough” geometry input data model. Finally, the best results of the optimization
are validated by using more accurate input data.

5.1 The challenges of AA optimization

Producing ion geometry directly from parameters is prohibitive, because a relatively
small number of different atoms can give a huge number of possible chemical config-
uration. The complexity of combining different particles is increasing exponentially
by their number. Furthermore, organic ions in ILs usually contain many hydrogen
atoms, which further increase the number of design variables required to describe
them.

Moreover, chemistry sets limitations about what ions can exist in reality. A pa-
rameterization process could produce a configuration that doesn’t exist in the real
world. Supposing that an ion is described by using N design variables and that the
process for producing it is stochastic (as happens in EAs), only a small percentage
of the produced ions S % will be a feasible configuration. For the rest of the thesis,
S% will be the success rate of the parameterization process, which is the procedure
of producing AA ion MD input data from design variables. The success rate should
ideally be equal to 100 %. A very small S % will lead the evolutionary algorithm

67



to prefer not necessarily the highest conductivity individuals, but the individuals
that correspond to a real chemical configuration. By doing so, the EA will help in
keeping the number of valid produced ions high. Unfortunately, in the same time,
the exploration rate will be decreased and the necessary time for convergence will
significantly be increased.

For example, if the preprocessing procedure has 1% success rate instead of 10%, the
optimization will be much slower, because less information about the conductivity
value will be transferred to the EA. Also, in the first case, each generation will need
to include significantly more individuals, slowing down the total process even more.
If producing an ion has 1 % chance to succeed, then producing an IL pair will have
10−2 % chance to do so. Therefore, the production of both random and valid IL
pairs is very difficult, if the success rate is low.

In order to reduce the impact of the previous issues, the parameterization is con-
ducted by using SMILES strings. SMILES strings require only heavy atoms (e.g.
C, O, N and S) to describe a molecule. Thus, the hydrogen atoms will automat-
ically be generated, reducing the complexity of the search. SMILES strings have
many other advantages too, as it will be explained in the next section. Last but not
least, the cation CAT+

1 is kept the same throughout the whole optimization process.
Parameterizing only the anion of each IL will keep the success rate in acceptable
levels.

5.2 Design Variables

As mentioned before, SMILES strings are sequences of characters used to describe
a chemical substance. In the context of this thesis, complex chemical configurations
like rings are omitted. A simple molecule, like ethanol, can be described easily
as shown in figure 5.1. In this case, CCO is the SMILES string, including only
the heavy atoms of the molecule (Carbon and Oxygen). The hydrogen atoms are
assumed to exist in every case, because each chemical element has a limited number
of free electrons to share in a covalent bond. A simple rule which can help to create
the initial topology of a molecule is the following. Each carbon atom must have 4
connections (bonds), oxygen must have 2, nitrogen 3 and sulfur 2 or 6. Of course,
in many cases these guidelines don’t apply. Nevertheless, the majority of organic
molecules usually follow the previous rules. Figure 5.1 contains two more examples
of molecules that can be described by using SMILES strings.

By following the previous principles, a simple and robust method is developed for
producing anions from design variables. Each anion produced consist of 5 heavy
atoms. Parameters p1 to p5 control the element of each heavy atom. The design
variables p6 and p7 control which bonds or branches will be used in the new anion
by using the respective symbols of the SMILES code. To determine the position of
these in the anion, parameters p8 and p9 are used. At last, parameter p10 is used to

68



denote the position from which a hydrogen atom will be removed. This is necessary
for converting the neutral molecule to an anion. The parameterization process is
shown in the figure 5.2.

A dedicated python script was developed for the implementation of the previous
procedure. For the sake of simplicity, each event is equally probable to happen.
This means that, the probability of choosing a specific atom type (e.g. oxygen) is
equal to 0.25 in any case (PC = PO = PN = PS = Pa and Pa = 1

4
). The same is true

for the parameters p6 and p7 (P− = P= = P# = P( ) = P(=) = Pb and Pb = 1
5
). The

SMILES string generation script applies other rules too in order to ensure that the
emerged anion will have high chances to exist in reality. It is worth considering that,
all these rules affect indirectly the outcome of parameterization process. A SMILES
sequence for an anion and information about the validity of the produced string are
the final outputs of the script. For example, the string: CC#O is invalid, because
an oxygen atom would never have a triple bond, hence the respective set of design
variables is considered infeasible. This information is automatically recognized by
the script.

Figure 5.1: Example of describing molecules by using SMILES strings.

Figure 5.2: Simple explanatory schematic about the design variables of the AA op-
timization.
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5.3 AA Topology Generation from SMILES Strings

After the creation of the SMILES string, a proper geometry .pdb file needs to be
created. This file contains all the necessary information about the positions and the
connections of the atoms in a molecule.

Open Babel is an opensource software which operates as a chemical toolbox designed
to search, convert and analyze molecular modeling data [51]. All the following pro-
cedures were performed by using the Open Babel toolbox. The corresponding .pdb
file was generated directly from the SMILES string. Initially, an energy minimiza-
tion was performed by using the MMFF94 force field. This is necessary in order to
obtain a more stable configuration than the initialized one. This process will change
the initial bond lengths, angles and dihedrals to better fit the real conditions. To
further increase the accuracy of the anion model, a partial charge calculation is per-
formed by using the MMFF94 force field for once more. This step is very important,
because the partial charges govern the electrostatic interactions of the simulation,
which influence significantly the IL transport properties. During the previous step,
the .pdb file is converted to .mol2 format, because the first one doesn’t support any
information about the charges.

Apart from the .pdb file, a topology (.itp) file is also necessary for conducting an
MD simulation. This is the reason for which the partial charges calculation was
performed. Therefore, a tool for converting the .mol2 that was previously acquired
to a .itp file was required. Thankfully, another open source software, topolbuild,
exist to serve exactly the previous purpose [53]. Topolbuild supports the AMBER,
GAFF, GLYCAM and OPLS-AA force fields. OPLS-AA was used extensively in
chapter 2 in AA models. For this reason, topolbuild was used for converting the
.mol2 produced files to OPLS–AA .itp files.

Even though topolbuild was able to produce good quality OPLS–AA topology files
for many cases, some serious issues emerged in the process in the first place. Some
atomic combinations in randomly generated anions couldn’t be recognized by the
software, because the available OPLS-AA tables didn’t contain them. Furthermore,
most of the times, many bond lengths, bond constants, angles, angle constants and
dihedrals were missing from the final topology file. Thankfully, topolbuild measures
the bond lengths and angles for each atomic connection (probably from the .mol2
file). Therefore, completing the final topology file was possible, on condition that
the values for the bond and angle constants are somehow assumed/approximated.

Unfortunately, a great piece of information about proper and improper dihedrals
is usually missing. For that reason, it was decided that, these rough geometry AA
models will not include any dihedral information in their topology files. Of course
omitting the dihedrals has an impact on the accuracy of the simulation. Neverthe-
less, the relative energy percentage of proper and improper dihedrals compared to
the total system’s energy Etot (see equation 1.7) is usually lower than 10 % in a
typical simulation. As a result, omitting dihedrals can be considered a reasonable
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trade-off, between accuracy and practicality.

To complete the OPLS–AA .itp file produced by topolbuild, some python scripts
were developed. The basic philosophy of these scripts is to produce the final .itp
and .pdb that are required for the simulation in a very robust way. In case that
the previous task is impossible, the scripts provide information about the location
and the cause of the error. It is worth reminding that, AA simulations are very
computationally expensive. Avoiding running simulations with wrong initial data is
a high priority. In addition, robustness is very important in order to keep the success
rate of the process as high as possible (see paragraph 5.1). The whole pre-processing
procedure described is shown in the following figure.

Figure 5.3: Schematic about the pre-processing procedure followed in the rough ge-
ometry AA optimization.

5.4 The Optimization Setup

Having developed the previous pre-processing structure, the rough geometry AA
optimization is almost ready to run. Because of the high computational cost, EASY
options must be modified to better fit the AA optimization conditions. The total
cost was about 3 days on 144 Processors with gpu acceleration from one NVIDIA
2080 Ti operating at 100 %. The evolution was allowed to expand for about 10000
evaluations, without any other convergence criterion. From those, only 64 anions
were valid solutions. Thus, the success rate of the process was equal to 0.64 %.
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The most important configuration settings of EASY search engine were the following.
The number of demes were reduced from three to one. The population was consisting
of 500 parents (μ) and 2000 offspring (λ). Three parents were required to produce
an offspring. The mutation probability was always equal to 0.15 for achieving better
exploration of the design space. One elite was kept and forced as an offspring in each
generation. Radial distribution function metamodels were used. The minimum and
maximum training patterns were 300 and 500 respectively. Lastly, table 5.1 contains
in more detail the settings of EASY that were used in the AA optimization.

Choosing properly the optimization settings in a search engine like EASY isn’t by
any mean a simple task. Furthermore, EASY setup depends heavily on the unique
characteristics of each problem. In this case, a huge population is required, because
the low success rate of the pre-processing stage creates high evolutionary pressure to
the population. This means that the vast majority of individuals will score very low,
while a tiny percentage will have a desirable fitness score. This isn’t a usual case,
thus different tests could be conducted for finding the optimal setup. Nevertheless,
it was decided to mainly scale up the number of parents, offspring and training
patterns compared to the more usual setup of section 4.4.

Indeed, running the previous setup for only 10000 individuals is far from optimal
in this case. It’s even possible that EASY operated more as a random number
generator than as an evolutionary algorithm, because of the low success rate of the
pre-processing procedure. The total number of evaluations would need to be at
least 10 times higher in order to allow EASY to operate optimally. However, this
would require the allocation of the same computing resources for about a month.
Unfortunately, such high computational resources weren’t available at the time. A
higher success rate would improve the process too. Some possible solutions on the
previous issues were examined and they will be discussed in section 6.3.
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Population options Metamodel settings (ON) Distributed scheme (OFF)

Parent population size 500 Metamodel type RBF Inter-deme communication

Offspring population size 2000 Exact evaluations Min 5 Migration frequency -

Max life span 0 Exact evaluations Max 15 Maximum migrations -

Parents of one offspring 3 IPE pause gen. 5 Emigrants (best) -

Elite archive size 20 Min. DB entries 5000 Emigrants (random) -

Elite indiv. to force as new offsp. 1 DB ent. not failed 1000 Immigrants -

Probability to select an elite 0.05 Training patterns Min 300 Migration mode -

Tournament size 3 Training patterns Max 500 Migration graph -

Tournament probability 0.9 Proximity factor 1.2 Sharing frequency -

Operators options IF relaxation 0.3 Mutation multiplier -

Coding Binary-Gray RBF-Radius Auto Max mutation prob. -

Probability (Crossover) 0.95 Use failed patterns Yes Infection radius factor -

Mode (Crossover) Two point/var. Use PCA for ifs No Sharing duration -

Probability (Mutation) 0.15 Not failed patterns 1000 Maximum penalty -

Multiplier (Mutation) 1.0 Allow extrapolation Auto

Idle generations 10 Non dimensionalize Yes

Failed obj. multiplier 10

Max DB percentage 0.5

Prediction mode Auto

CRBFN

Min number of Centers 2

Max number of Centers 120

Radius multiplier 0.5

Test-to-total ratio 0.3

Idle iterations 10

Learn rate ratio 0.1

Table 5.1: Configuration settings of the EASY search engine that were used for the
AA optimization.

5.5 Results of the AA Optimization

Despite the above challenges, EASY was able to find an IL pair with significantly
improved ionic conductivity as shown in figure 5.4. It worth noting that, CAT+

1 AN
−
3

gives the PILM with the highest ionic conductivity at 380K compared to the other
available ILs. For this reason, it will be used as reference for any comparative
purposes.

The highest conductivity results of the AA optimization are shown in table 5.2. In
this table, only the anion, which changes each time, is presented by its SMILES
string. The cation is CAT+

1 in every case. For reference, one of the best available
ionic liquids, regarding conductivity is CAT+

1 AN
−
3 (see figure 2.8b). The exper-
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Figure 5.4: AA optimization convergence curve using Metamodel Assisted Evolution-
ary Algorithm (MAEA). σ rg is the mean conductivity of the rough geometry model.
σAN3
exp is the experimental conductivity of CAT+

1 AN
−
3 IL pair.

imental and AA simulation conductivity is respectively equal to σrefexp = 1.0 and

σrefsimAA = 1.1 (these results are dimensionless). All the MD simulations were per-
formed at 380K for obtaining more accurate results (see section 2.3). The four top
elites from table 5.2 have higher conductivity than the reference IL. The best IL pair
that was obtained from the optimization has a conductivity improvement of about
157 % compared to the reference AA simulated IL.

Elite ID SMILES ρ [kg/m3] ρstd [kg/m3] σ/σAN3
exp σstd/σ

AN3
exp

1 [O-]COC#C 9.33 · 102 4.65 2.83 0.24

2 CC(=S)[N-]C 9.26 · 102 0.36 2.32 0.07

3 SO[N-]OS 1.15 · 103 0.53 1.47 0.09

4 SO[N-]S#S 1.18 · 103 1.47 1.19 0.33

5 CCSC[O-] 9.54 · 102 1.65 0.94 0.20

6 NC(C)([O-])S 1.01 · 103 2.30 0.68 1.44

7 SC(C)N[O-] 9.94 · 102 2.23 0.59 0.13

8 NC(C)([O-])C 9.03 · 103 1.04 0.57 0.08

9 SNO[N-]N 1.08 · 102 1.07 0.56 0.13

10 [O-]CC(N)N 9.58 · 102 2.33 0.37 0.05

Table 5.2: Rough geometry AA optimization results for the top 10 elites. All the MD
simulations were performed at 380K for increased accuracy.
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5.6 Validation using more accurate AA input data

The input data for the previous simulations were missing information about the
dihedral angles and various assumptions were made. Although the previous values
seem promising, it is necessary to validate the rough geometry results by using more
accurate AA models.

In order to do so, the geometry .pdb and the topology .itp files considering the top
5 ILs from table 5.2 are acquired, for once more, from the Ligpargen web server [24],
[25], [26]. Therefore, all the simulations options are identical to those of chapter 2.
This is considered to be the most accurate AA model in the context of this thesis.
Consequently, a direct comparison with the reference IL CAT+

1 AN
−
3 is now possible.

In table 5.3, the 5 highest conductivity ILs that emerged from the AA optimization
are shown and compared with the reference IL. In the fourth column, the average
density of the validation models is shown. In fifth and sixth columns, the mean
value and the standard deviation of conductivity is presented, regarding the val-
idation model. In the seventh column, the average conductivity is presented for
the rough geometry model. Finally, the relative conductivity improvement is shown
with respect to the AA model for the reference IL. It is worth noting that, all the
conductivity results have been divided by the experimental value of the reference
IL.

The conductivity standard deviation values are between reasonable levels, indicating
the proper convergence of all the validation simulations. For the first, third and forth
ILs the rough geometry model doesn’t deviates significantly from the validation
model (less than ±50 % relative difference). However, the other two ILs have a
noticeable difference.

Maybe, the most important conclusion that can be drawn from table 5.3 is that
3 out of the 5 new IL pairs present improved ionic conductivity, when compared
with the reference IL. The improvement presented in the first (+140 %) and in the
third (+101 %) is not negligible at all. These alternative ILs were directly derived
from a stochastic process. The respective neutral molecule for all of the following
anions, except from SO[N−]S#S, are commercially available or they have been
synthesized, according to the open chemistry database of the National Institutes
of Health (USA) [52]. Synthesizing these anions could be possible if the respective
neutral molecules are deprotonated (removing the proper hydrogen atom from the
molecule). The accomplishment and explanation of the deprotonation process is out
of the scope of this thesis.

It worth noting that, having alternative IL options with higher or similar ionic con-
ductivity could be important even from an economic or environmental standpoint.
For example, if an IL has a very high conductivity, but it is very expensive to be pro-
duced, an alternative IL that has slightly lower conductivity, but significantly lower
cost could be a favorable option. The previous rough AA optimization process could
run for more time, producing even more previously unknown ILs, potentially with
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higher ionic conductivity. Furthermore, the process is far from optimized itself and
it could be improved by a lot, regarding both the computational cost and the ac-
curacy. Despite the challenges and limitations presented in the preceding sections,
it seems that the rough geometry AA optimization procedure worked according to
the expectations.

ID Cation Anion ρv [kg/m3] σv/σAN3
exp σvstd/σ

AN3
exp σrg/σAN3

exp
σv−σrefsimAA

σrefsimAA

1 CAT+
1 [O-]COC#C 9.42 · 102 2.64 0.17 2.83 +140 %

2 CAT+
1 CC(=S)[N-]C 9.67 · 102 0.38 0.05 2.32 −65 %

3 CAT+
1 SO[N-]OS 1.11 · 103 2.21 0.44 1.47 +101 %

4 CAT+
1 SO[N-]S#S 1.15 · 103 1.12 0.23 1.19 +8 %

5 CAT+
1 CCSC[O-] 9.28 · 102 1.75 0.43 0.94 +59 %

Ref CAT+
1 AN−3 − 1.10 0.19 0.83 +0 %

Table 5.3: Top 5 IL pairs that have been obtained from the AA optimization process.
σv is the mean conductivity for the validated models (topology from Ligpargen), while
σrg is the conductivity of the rough geometry model. The final column of the table
shows the relative improvement in conductivity compared to the respective AA model
for the reference IL. All the MD simulations were performed at 380K.
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Figure 5.5: 3D representation of the top 5 anions that emerged from the AA opti-
mization.
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Chapter 6

Overview and Conclusions

6.1 Overview

In this diploma thesis, AA and CG MD models were created and validated for
calculating the ionic conductivity of ILs. Both models were used for searching new
ILs with high ionic conductivity, in order to be proposed as alternative/improved
raw materials for a new class of PEMs in fuel cells. The search was conducted both
in CG and AA level by using the evolutionary algorithm software EASY. The AA
optimization indicated previously unknown pairs of ILs, which could be synthesized,
while having high ionic conductivity.

The basics of MD simulation and PEMs were presented. Various MD simulation
methods (force fields) from literature, like NPAAFFs, PAAFFs, charge scaling and
coarse graining, were discussed and compared. NPAAFFs and CG models were
selected to be applied for optimization purposes.

A general simulation structure for performing ionic conductivity calculations was
developed and explained. The OPLS–AA and GROMOS force fields were used to
create an appropriate AA model. During the development phase, various conver-
gence studies were conducted and available experimental data were used for the
model validation. The ionic conductivity results were more accurate at higher tem-
peratures (close to 380K).

A CG model for ILs was created in order to be used for optimization, because of its
low computational cost. The general purpose and well standardized CG MARTINI
3.0 force field was used as basis for the model. Various ILs, including the CAT+

1 AN
−
i

and Rmim+AN−1 pairs were mapped into CG models. The ionic conductivity trend
of the first group were inaccurate for different ILs, while the opposite was true for
the second group.
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Following the rich MARTINI 3.0 documentation that was available, a CG opti-
mization was performed by using the evolutionary algorithm software EASY. The
obtained results were discussed and validated by using more accurate AA models.
The correlation between the CG and AA models was weak, indicating that a more
accurate optimization procedure should be followed.

Lastly, a random anion generation procedure was created by using molecular mod-
eling data processing software (Open Babel and topolbuild) as well as other linking
python scripts. The anion generation software was coupled with the MD AA model
of chapter 2 and with EASY to perform a rough geometry AA optimization. The
rough geometry results were validated by the same model presented in chapter 2,
which was even more accurate. The final validated new ILs acquired from the pro-
cess presented relative improvement as high as +140 %. At the same time, the
majority of them can be synthesized.

6.2 Conclusions

Upon completion of all the previous studies, the following conclusions are drawn:

1. An NPAAFF is capable of predicting with good accuracy the density of the

examined ILs (|ρAA−ρexp
ρexp

| < 15 %). The respective conductivity predictions

present higher uncertainty (|σAA−σexp
σexp

| < 300 %). In higher temperatures the

same models are much more accurate (|σAA−σexp
σexp

| < 90 %). From the compar-

isons that took place in chapter 2, the GROMOS force field proven to be more
accurate than OPLS-AA for the specific ILs. Nevertheless, both of them could
be considered accurate enough for optimization purposes.

2. All the CG MARTINI 3.0 models were able to give correct trend regarding
density. However, only the models considering the Rmim+AN−1 IL family
presented correct conductivity trend, which is necessary for the optimization.
MARTINI 3.0 is very good at capturing the effect of simple molecular changes,
like changes in the molecular weight of the substance. Unfortunately, when to-
tally different organic ions are involved, transferrability limitations are clearly
visible. A CG model could never match the accuracy of an AA model, because
important information is always lost during the mapping process. This doesn’t
seem that its comparative accuracy couldn’t be used in a CG optimization.

3. The computational cost of a CG optimization is low enough to allow a mean-
ingful optimization to be performed. The ionic conductivity correlation be-
tween the CG MARTINI and OPLS–AA models is weak. The accuracy and
reverse mapping limitations of CG MARTINI is the main reason for the weak
correlation.

4. A rough geometry AA optimization is able to produce new IL pairs with high
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ionic conductivity. The low success rate S % of the process is prohibiting
changing simultaneously the cation and the anion. The computational cost of
this process is very high, forcing the evolutionary algorithm EASY to operate
more as a random number generator. These problems would be less important,
if neutral molecules, instead of ions, were involved. The correlation between
the rough geometry AA model and the model presented in chapter 2 seems to
be adequate for the purposes of this thesis.

6.3 Future Work Proposals

Based on the previous findings, the following future works are proposed:

1. The existing AA optimization structure could run for more time to examine
if even higher conductivity IL pairs can emerged. The new IL pairs that have
been obtained could be further validated by performing lab experiments, since
the respective neutral molecules have already been synthesized.

2. The existing AA optimization structure could be used with some small modi-
fications for optimizing other molecular systems too. In fact, using molecules
instead of ions in the previous process will, surely, increase significantly the
success rate S%, because of the lower complexity involved. The most frequent
cause of rejection in the anion generation procedure was related to the fact
that ions weren’t available in the databases of topolbuild.

3. More sophisticated techniques could be used for increasing the success rate
S % of the AA optimization process. Using databases of frequently appeared
ionic groups (e.g. O[N−], N [O−] or S[O−]) by applying conventional or ma-
chine learning algorithms could increase significantly the success rate. A huge
database is relatively easy to be created for the machine learning algorithm,
since it just requires to randomly run the pre-processing procedure described
in chapter 5. Even the design variables could be changed to better and more
efficiently describe the ions. If the success rate is high enough, this process
could be used for conductivity optimization in ILs without having to keep the
cation or the anion constant.

4. The AA models of chapter 2 could be further improved by using alternative
force fields or simulation settings. The same is true for the CG models pre-
sented in chapter 3.

5. CG models could be created for PILs. This would be useful for validating that
the high ionic conductivity in some ILs translates directly in high conductivity
in the respective PILs.
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Appendix A

Appendix-All atom simulations of
ionic liquids

Parameter name Parameter value Description

integrator steep Minimization algorithm

emtol 10 Minimization stops when Fmax < emtol

emstep 0.001 Minimization step size

nsteps 80000 Total number of steps

nstlog 2000 Frequency of printing values in the log file

nstenergy 1000 Frequency of printing energy values in the .edr file

constraint-algorithm lincs Method used for constrains

constraints h-bonds Convert the bonds with H-atoms to constrains

nstlist 20 Frequency to update the neighbour list and long range forces

cutoff-scheme Verlet The method of cutoff scheme used

ns type grid Method to determine the neighbour list

coulombtype PME Method for long range electrostatic interactions

vdwtype cut-off Method used for the Van der Waals forces

pbc xyz Periodic boundary conditions in all 3 dimensions

DispCorr EnerPres Applies long range dispersion corrections for Energy and Pressure

Table A.1: Typical parameters for the minimization .mdp file in AA simulations
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Figure A.1: Indicative plots for convergence verification
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Parameter name Parameter value Description

integrator md Leap-grog algorithm for integrating Newton’s equation of motion

dt 0.002 Timestep of integration [ps]

nsteps 5.0E + 5 Total number of steps for the 1st equilibration

nstlog 2000 Frequency of printing values in the log file

nstenergy 1000 Frequency of printing energy values in the .edr file

gen-vel yes Generate velocities for molecules according to Maxwell distribution

gen-temp 300 Temperature for the gen-vel option

constraint-algorithm lincs Method used for constrains

constraints h-bonds Convert the bonds with H-atoms to constrains

cutoff-scheme Verlet The method of cutoff scheme used

coulombtype PME Method for long range electrostatic interactions

vdwtype cut-off Method used for the Van der Waals forces

rcoulomb 1.6 The distance for the Coulomb cut-off [nm]

rvdw 1.4 The distance for the Lennard-Jones cut-off

DispCorr EnerPres Applies long range dispersion corrections for Energy and Pressure

tcoupl Nose-Hoover Type of thermostat used

tc-grps System Groups to couple to separate temperature baths

tau-t 1.5 Time constant for temperature coupling [ps]

ref-t 300 Reference-desired temperature value for coupling [K]

nsteps 2.0E + 6 Total number of steps for the 2nd equilibration

pcoupl Parrinello-Rahman Type of barostat used

tau p 3.01 Time constant for temperature coupling [ps]

compressibility 4.46E − 5 Compressibility value for pressure coupling [bar−1]

ref p 1.0 Reference-desired pressure value for coupling [bar]

nsteps 2.0E + 5 Total number of steps for the main simulation run

nstvout 4 Step frequency for printing velocities for each molecule in the system

nstxout-compressed 5 Step frequency for printing coordinates for each molecule in the system

pcoupl Parrinello-Rahman Type of barostat used

tau p 3.01 Time constant for temperature coupling [ps]

compressibility 4.46E − 5 Compressibility value for pressure coupling [bar−1]

ref p 1.0 Reference-desired pressure value for coupling [bar]

Table A.2: Typical .mdp file parameters for the 1st equilibration, the 2nd equilibration
and the main simulation run in AA simulations. The highlighted parameters are
unique for each type of simulation run. Red for the 1st equilibration, blue for the 2nd
equilibration and green for the main simulation run.
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Figure A.2: Flow diagram of the self diffusion constant calculation procedure, using
the Green-Kubo method.
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Appendix B

Appendix-Coarse grained
simulations of ionic liquids

Parameter name Parameter value Description

integrator steep Minimization algorithm

emtol 10 Minimization stops when Fmax < emtol

emstep 0.001 Minimization step size

nsteps 50000 Total number of steps

nstlog 100 Frequency of printing values in the log file

nstenergy 100 Frequency of printing energy values in the .edr file

constraint-algorithm lincs Method used for constrains

constraints none Convert the bonds with H-atoms to constrains

nstlist 20 Frequency to update the neighbour list and long range forces

cutoff-scheme Verlet The method of cutoff scheme used

ns type grid Method to determine the neighbour list

coulombtype reaction-field Method for long range electrostatic interactions

vdwtype cut-off Method used for the Van der Waals forces

pbc xyz Periodic boundary conditions in all 3 dimensions

DispCorr EnerPres Applies long range dispersion corrections for Energy and Pressure

Table B.1: The parameters for the minimization .mdp file in CG simulations
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Parameter name Parameter value Description

integrator md Leap-grog algorithm for integrating Newton’s equation of motion

dt 0.01 Timestep of integration [ps]

nsteps 5.0E + 4 Total number of steps for the 1st equilibration

nstlog 1000 Frequency of printing values in the log file

nstenergy 100 Frequency of printing energy values in the .edr file

gen-vel yes Generate velocities for molecules according to Maxwell distribution

gen-temp 300 Temperature for the gen-vel option

constraint-algorithm lincs Method used for constrains

constraints none Convert the bonds with H-atoms to constrains

cutoff-scheme Verlet The method of cutoff scheme used

coulombtype reaction-field Method for long range electrostatic interactions

vdwtype cut-off Method used for the Van der Waals forces

rcoulomb 1.6 The distance for the Coulomb cut-off [nm]

rvdw 1.4 The distance for the Lennard-Jones cut-off

tcoupl v-rescale Type of thermostat used

tc-grps System Groups to couple to separate temperature baths

tau-t 1.0 Time constant for temperature coupling [ps]

ref-t 300 Reference-desired temperature value for coupling [K]

nsteps 4.5E + 5 Total number of steps for the 2nd equilibration

pcoupl Parrinello-Rahman Type of barostat used

tau p 10.0 Time constant for temperature coupling [ps]

compressibility 1.0E − 4 Compressibility value for pressure coupling [bar−1]

ref p 1.0 Reference-desired pressure value for coupling [bar]

nsteps 5.0E + 4 Total number of steps for the main simulation run

nstvout 10 Step frequency for printing velocities for each molecule in the system

nstxout-compressed 10 Step frequency for printing coordinates for each molecule in the system

pcoupl Parrinello-Rahman Type of barostat used

tau p 10.0 Time constant for temperature coupling [ps]

compressibility 1.0E − 4 Compressibility value for pressure coupling [bar−1]

ref p 1.0 Reference-desired pressure value for coupling [bar]

Table B.2: The .mdp file parameters for the 1st equilibration, the 2nd equilibration
and the main simulation run in the coarse grained models. The highlighted parameters
are unique for each type of simulation run. Red for the 1st equilibration, blue for the
2nd equilibration and green for the main simulation run.
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Table B.3: Levels of interactions between all the different bead types in the Martini
3.0 force field [31].
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Figure B.1: Flow diagram of the parametrization algorithm for new molecules in
Martini 3.0 [31].
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Table B.4: Table with suggestions about coarse grained mapping in the Martini 3.0
force field [31].
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Εκτενής Περίληψη στα Ελληνικά

Εισαγωγή

Στην προσπάθειά της να μειώσει τις εκπομπές διοξειδίου του άνθρακα, η αυτοκινητο-
βιομηχανία αναπτύσσει κυψέλες καυσίμου με την τεχνολογία μεμβράνης ανταλλαγής

πρωτονίων. Η μεμβράνη είναι ένα από τα βασικότερα εξαρτήματα σε μία κυψέλη καυσί-
μου και το υλικό το οποίο έχει επικρατήσει να χρησιμοποιείται στις μεμβράνες είναι

το nafionTM . Ανεξαρτήτως του υλικού της μεμβράνης, μία κυψέλη καυσίμου είναι
επιθυμητό να λειτουργεί σε υψηλές θερμοκρασίες, άνω των 120 ◦C, εξαιτίας του αυξη-
μένου βαθμού απόδοσης της μηχανής σε αυτές. Ωστόσο, αυτό είναι αδύνατον να
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πραγματοποιηθεί με χρήση του nafionTM , καθώς απαιτεί συνθήκες υψηλής υγρασίας
για να λειτουργήσει και, επομένως, θερμοκρασίες μικρότερες από 100 ◦C.

Για να λυθεί το προηγούμενο πρόβλημα, εξετάζεται η αντικατάσταση της μεμβράνης
από nafionTM με μία άλλη μεμβράνη που θα προκύψει πολυμερίζοντας το ανιόν ή το
κατιόν σε ένα ιονικό υγρό. Τα ιονικά υγρά είναι οργανικά άλατα με σημείο τήξης
μικρότερο των 100 ◦C. Αν και οι τρέχουσες μεμβράνες αυτού του τύπου μπορούν
να λειτουργούν αποτελεσματικά σε πολύ υψηλές θερμοκρασίες, έχουν περίπου δύο
τάξεις μεγέθους μικρότερη πρωτονιακή αγωγιμότητα σε σχέση με τις μεμβράνες από

nafionTM . Για τον λόγο αυτό, οι μεμβράνες που προκύπτουν από πολυμερισμό ιονικών
υγρών δεν είναι ακόμη σε θέση να αντικαταστήσουν τις μεμβράνες από nafionTM και
απαιτείται βελτίωση/βελτιστοποίησή τους με την αγωγιμότητα ως συνάρτηση-στόχο.

Στη διπλωματική αυτή εργασία αναζητούνται εναλλακτικά ζεύγη κατιόντων και ανιόν-

των (ιονικά υγρά) με υψηλότερη πρωτονιακή αγωγιμότητα, εφαρμόζοντας στοχαστικές
μεθόδους βελτιστοποίησης, ώστε να λυθεί το προηγούμενο πρόβλημα. Κατά τη δι-
αδικασία αυτή θεωρείται πως η αγωγιμότητα ενός ιονικού υγρού και της αντίστοιχης

μεμβράνης που παράγεται από αυτό είναι μεγέθη ανάλογα. Η ρεαλιστική αυτή παραδοχή
γίνεται λόγω του απαγορευτικά υψηλού υπολογιστικού κόστους που έχει η προσο-

μοίωση μεμβρανών. Ο υπολογισμός της αγωγιμότητας πραγματοποιείται μέσω προ-
σομοίωσης μοριακής δυναμικής (Molecular Dynamics ή MD) και με χρήση του λο-
γισμικού ανοικτού κώδικα GROMACS. Το λογισμικό αυτό συνοδεύει ένα πλήθος
λογισμικών, καθώς και συνδετικών κωδίκων, για να είναι εφικτή η αξιολόγηση του
κάθε ιονικού υγρού, αλλά και η παραγωγή γεωμετρίας και τοπολογίας ιόντων από τις
παραμέτρους της βελτιστοποίησης.

Μοριακή δυναμική είναι η επιστήμη που μελετά κινήσεις μορίων ώστε να εξαχθούν

μικροσκοπικές ή μακροσκοπικές ιδιότητες του εκάστοτε υλικού που μελετάται. Η έν-
νοια της μοριακής δυναμικής συχνά ταυτίζεται με την τεχνική προσομοίωσης κατά την

οποία εισάγονται πολλά μόρια του υπό εξέταση υλικού εντός ενός κύβου προσομοίω-

σης.

Σε ένα μοντέλο που συμπεριλαμβάνει όλα τα άτομα (All atom ή AA model), το κάθε
μόριο αποτελείται από άτομα υπό τη μορφή σφαιριδίων τα οποία κινούνται σύμφωνα με

τις κινηματικές εξισώσεις του Νεύτωνα. Τα σφαιρίδια αλληλεπιδρούν μόνο εξ αποσ-
τάσεως μέσω ηλεκτροστατικών και διαμοριακών δυνάμεων Van der Waals. Οι κάθε
λογής ταλαντώσεις οι οποίες οφείλονται στη σύνδεση των ατόμων με χημικούς δεσμούς

μοντελοποιούνται με τη βοήθεια ελατηρίων σε μία θεώρηση κλασικής μηχανικής. Οι
προηγούμενες αλληλεπιδράσεις συνοψίζονται στην παράγραφο 1.7.1 του πλήρους κειμέ-
νου. Οι μαθηματικές εξισώσεις μοντελοποίησης των προηγούμενων δυνάμεων, καθώς
και των τεχνασμάτων επιβολής των εξωτερικών συνθηκών πίεσης και θερμοκρασίας

εισάγονται στον 2ο νόμο του Νεύτωνα ως επιπλέον όροι.

Σε ένα αδρομερές μοντέλο (Coarse-grained ή CG model), η λογική της μοριακής
δυναμικής δεν αλλάζει καθόλου. Ωστόσο, τα διάφορα ατομικά συμπλέγματα, εντός
των μορίων που προμοιώνονται, ομαδοποιούνται στις λεγόμενες ”χάντρες” (beads).
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Τα σφαιρίδια της προσομοίωσης δεν είναι πλέον μεμονωμένα άτομα αλλά οι χάντρες.
Η θεώρηση αυτή μειώνει το υπολογιστικό κόστος κατά 1 με 2 τάξεις μεγέθους.

Στο 1ο κεφάλαιο της διπλωματικής, εξετάζονται αρκετά διαφορετικά μοντέλα, για να
διαπιστωθεί πιο ταιριάζει περισσότερο στις απαιτήσεις του τρέχοντος προβλήματος.
Εν τέλει, επιλέγονται τα μοντέλα OPLS-AA και GROMOS ως AA μοντέλα, και το
MARTINI ως CG μοντέλο.

AA Προσομοιώσεις

Δημιουργείται μία ολόκληρη δομή προσομοίωσης, με επίκεντρο το ανοικτού κώδικα λο-
γισμικό μοριακής δυναμικής GROMACS και με στόχο τον υπολογισμό της ιονικής αγ-
ωγιμότητας με τη μεγαλύτερη δυνατή ακρίβεια, που ένα μοντέλο AA μπορεί να παρέχει.
Η διαδικασία και οι διάφορες ρυθμίσεις της περιγράφονται λεπτομερώς. Περιγράφονται
και δοκιμάζονται δύο μέθοδοι υπολογισμού ιονικής αγωγιμότητας (MSD και Green-
Kubo) από τη βιβλιογραφία. Τελικώς επιλέγεται η μέθοδος MSD (σχέση 2.3), επειδή
έδωσε πιο ακριβή αποτελέσματα με τις συγκεκριμένες ρυθμίσεις προσομοίωσης.

Στη συνέχεια, περιγράφονται τα 5 ιονικά υγρά για τα οποία υπήρχαν διαθέσιμα πειρα-
ματικά δεδομένα. Αυτά χρησιμοποιούνται ως αναφορά για σύγκριση με τα αποτελέσ-
ματα του κάθε κεφαλαίου. Πειραματικά δεδομένα για την ιονική αγωγιμότητα υπάρχουν
τόσο για τα εν λόγω υγρά όσο και για τις αντίστοιχες μεμβράνες που προκύπτουν

από αυτά. Συνεπώς, όλα τα μοντέλα αναπτύσσονται γύρω από αυτά τα πειραματικά
δεδομένα. Στην ενότητα 2.2 πραγματοποιούνται παραμετρικές μελέτες για να διερευν-
ηθούν οι διάφορες τιμές των ρυθμίσεων για τις οποίες τα μοντέλα δίνουν ακριβέστερα

αποτελέσματα. Αυτές αφορούν την απόσταση αποκοπής των διαμοριακών και ηλεκ-
τροστατικών δυνάμεων, το συνολικό χρόνο και τη συχνότητα δειγματοληψίας για τη
μέθοδο MSD, καθώς και το συνολικό αριθμό μορίων που απαιτούνται να προσομοι-
ωθούν για να υπάρχει αφενός ακρίβεια και αφετέρου χαμηλό υπολογιστικό κόστος.

Με χρήση των παραμέτρων που προέκυψαν, διεξάγονται προσομοιώσεις για τα 5 δε-
δομένα ιονικά υγρά στο εύρος θερμοκρασιών 300K με 380K. Για δύο εξ αυτών πραγ-
ματοποιείται σύγκριση μεταξύ των μοντέλων OPLS–AA και GROMOS. Το τελευταίο
δίνει ελαφρώς καλύτερα αποτελέσματα. Δεδομένα εισόδου και για τα 5 ιονικά υγρά
ήταν διαθέσιμα σε διαδικτυακές βάσεις δεδομένων μόνο στην περίπτωση του μοντέλου

GROMOS. Η απόλυτη απόκλιση της πυκνότητας από τις πειραματικές τιμές είναι πάντα
μικρότερη από 15 % (σχήμα 1i). Η μέση απόλυτη απόκλιση της αγωγιμότητας είναι
μικρότερη από 300%, το οποίο θεωρείται ιδιαίτερα ακριβές αποτέλεσμα με βάση τη βιβ-
λιογραφία [1]. Στη θερμοκρασία των 380K τα αποτελέσματα είναι αρκετά πιο ακριβή,
δίνοντας μέση απόλυτη απόκλιση μικρότερη από 90 %. Για το λόγο αυτό όλες οι
επόμενες AA προσομοιώσεις διεξάγονται σε αυτήν τη θερμοκρασία.
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(i) Καμπύλες πυκνότητας-θερμοκρασίας για τα 5
ιονικά υγρά αναφοράς.

(ii) Καμπύλες αγωγιμότητας-θερμοκρασίας για τα
5 ιονικά υγρά αναφοράς.

Σχήμα 1: Αποτελέσματα των AA προσομοιώσεων. Η αγωγιμότητα είναι αδιαστατοποιη-
μένη με τα αντίστοιχα πειραματικά δεδομένα για κάθε επιμέρους θερμοκρασία. Η

πυκνότητα έχει αδιαστατοποιηθεί με την πειραματική τιμή για τη θερμοκρασία 300K.

CG Προσομοιώσεις

Στο 3o κεφάλαιο του πλήρους κειμένου διερευνάται εαν είναι εφικτό να χρησιμοποι-
ηθούν CG μοντέλα για τη βελτιστοποίηση ιονικών υγρών. Για τον σκοπόν αυτόν,
πραγματοποιείται παραμετρική μελέτη με χρήση του μοντέλου CG MARTINI 2.0. Οι
περιορισμοί αυτού είναι εμφανείς από τα πρώτα κιόλας αποτελέσματα και έτσι κρίνεται

απαραίτητο αφενός να μεταβληθούν οι συνθήκες προσομοίωσης, ώστε να ταιριάζουν
περισσότερο σε ένα CG μοντέλο και αφετέρου να χρησιμοποιηθεί η έκδοση 3.0 του
μοντέλου CG MARTINI, η οποία προσφέρει αυξημένες δυνατότητες μοντελοποίησης.

Αρχικά, αναπτύσσονται CG μοντέλα για τα πέντε ιονικά υγρά που αναφέρθηκαν στο
προηγούμενο κεφάλαιο. Παρά τις πολλές και διαφορετικές προσεγγίσεις που πραγ-
ματοποιήθηκαν στη διαδικασία μοντελοποίησης η τάση της ιονικής αγωγιμότητας για

τα διαφορετικά ιονικά υγρά δεν ήταν ορθή. Ο στόχος ήταν το υγρό με τη μεγαλύτερη
πειραματική τιμή αγωγιμότητας να έχει και τη μεγαλύτερη τιμή ως CG μοντέλο. Δηλαδή
να υπάρχει μια έστω ποιοτική τάση με αλλαγή της χημείας. Ωστόσο, αυτό δεν μπόρεσε
να επιτευχθεί, παρά το γεγονός ότι η πυκνότητα που προέκυπτε από το μοντέλο ήταν
εντός ικανοποιητικών ορίων απόκλισης από τα πειραματικά δεδομένα. Στα σχήματα 2i
και 2ii φαίνονται καθαρά όλα τα προαναφερθέντα.

Προκειμένου να μην απορριφθεί κατευθείαν η ιδέα της χρήσης CG μοντέλων για τη
βελτιστοποίηση, προσομοιώνεται μία εναλλακτική οικογένεια ιονικών ρευστών υπό τις
ίδιες συνθήκες. Τα αποτελέσματα φαίνονται στα σχήματα 2iii, 2iv και δείχνουν πως
η αλλαγή της χημείας μεταβάλλει σταδιακά και μονοσήμαντα την τιμή της ιονικής αγ-

ωγιμότητας, παρά τη σημαντική ποσοτική απόκλιση από τις πειραματικές τιμές. Αν
τυχαία κάθε φορά CG ιονικά υγρά συμπεριφέρονται με έναν παρόμοιο τρόπο, τότε μια
διαδικασία βελτιστοποίησης θα είχε νόημα, επειδή το υπολογιστικό κόστος των μον-
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τέλων αυτών είναι ιδιαίτερα χαμηλό. Επιπλέον, ο πίνακας του παραρτήματος B.4 είναι
ένα χρήσιμο εργαλείο που περιέχεται στους οδηγούς του MARTINI 3.0 και παρέχει
έναν αντικειμενικό και εμπειρικό τρόπο για τη μετατροπή των τυχαίων CG ιονικών
υγρών σε πραγματικά AA ιονικά υγρά. Για τους δύο τελευταίους λόγους, ελήφθη η
απόφαση να πραγματοποιηθεί η CG βελτιστοποίηση.

(i) Πυκνότητα για την ομάδα ιονικών υγρών
CAT+

1 X
−. Οι προσομοιώσεις έγιναν στους

380K, η πειραματική πυκνότητα μετρήθηκε στους
300 K.

(ii) Ιονική αγωγιμότητα για την ομάδα ιονικών
υγρών CAT+

1 X
−. Τα ζεύγη είναι διατεταγμένα

κατά σειρά φθίνουσας ιονικής αγωγιμότητας.

(iii) Πυκνότητα για την ομάδα ιονικών υγρών
Rmim+AN−

1 . Οι προσομοιώσεις και οι πειρα-

ματικές μετρήσεις έγιναν στους 380K.

(iv) Ιονική αγωγιμότητα για την ομάδα ιονικών
υγρών Rmim+AN−

1 . Τα ζεύγη είναι διατεταγ-
μένα κατά σειρά φθίνουσας ιονικής αγωγιμότητας.
΄Ολα τα αποτελέσματα αναφέρονται σε θερμοκρασία

380K.

Σχήμα 2: Σχήματα και διαγράμματα που αφορούν τις CG προσομοιώσεις.

CG Βελτιστοποίηση

Η CG βελτιστοποίηση πραγματοποιείται με χρήση του λογισμικού εξελικτικών αλγο-
ρίθμων EASY της ΜΠΥΡΒ του ΕΜΠ. ΄Ενας από τους κυριότερους λόγους για τους
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οποίους επιλέχθηκε, ήταν η ευελιξία που προσφέρει στη διαδικασία της παραμετροποίησης.
Η εφαρμογή αιτιοκρατικών μεθόδων βελτιστοποίησης θα ήταν εξαιρετικά περίπλοκη

στην εφαρμογή και στην ανάπτυξη για το δεδομένο πρόβλημα.

Αρχικά, διερευνάται το πως διαφορετικές τοπολογίες ιόντων, όπως αυτές που φαίνον-
ται στο σχήμα 3i επηρεάζουν το συνολικό αριθμό πιθανών συνδυασμών για ένα ιονικό
ζεύγος. Διαπιστώνεται πως ήδη με χρήση μόλις τριών σωματιδίων (χαντρών), ο χώρος
σχεδιασμού έχει τεράστιες διαστάσεις για λίγες σχετικά παραμέτρους σχεδιασμού.
Συνεπώς, λαμβάνεται η απόφαση να βελτιστοποιηθεί ένα ιονικό ζεύγος στο οποίο
τόσο το ανιόν όσο και το κατιόν θα είναι τοπολογικά όμοια με το σχηματισμό 3a του
σχήματος 3i. Θεωρείται πως ο συνδυασμός αυτός αποτελεί έναν δίκαιο συμβιβασμό
μεταξύ ευελιξίας και απλότητας.

Ο τρόπος παραμετροποίησης παρουσιάζεται στο σχήμα 3ii. Σε κάθε ιόν μεταβάλλεται
μόνο η γωνία και ο τύπος της χρησιμοποιούμενης χάντρας (bead) για κάθε διαθέσιμη
θέση του σχηματισμού 3a. Τα μήκη των χημικών δεσμών προσδιορίζονται με μία αυ-
τοματοποιημένη προσεγγιστική διαδικασία που βασίζεται στον τύπο των συνδεόμενων

κάθε φορά χαντρών και η οποία περιγράφεται με μεγαλύτερη λεπτομέρεια στην υπό-
ενότητα 4.3.2 (βλ. σχήμα 4.3 και πίνακα 4.1 της Δ.Ε.). Οι σταθερές ελατηρίου που
αφορούν τα μήκη και τις γωνίες στροφής των δεσμών λαμβάνουν μία τυπική τιμή που

προτείνεται από τη βιβλιογραφία.

Η καμπύλη σύγκλισης της βελτιστοποίησης φαίνεται στο σχήμα 3iii από την οποία
φαίνεται πως προέκυψαν ιονικά υγρά με εξαιρετικά υψηλές τιμές αγωγιμότητας, έως
και 3 φορές μεγαλύτερες από την αντίστοιχη του nafionTM . Εντούτοις, τα αποτελέσ-
ματα αυτά είναι απαραίτητο να επαληθευτούν με χρήση AA μοντέλων τα οποία έχουν
μεγαλύτερη ακρίβεια. Τα προκύπτοντα ιονικά υγρά μετατρέπονται από το CG πεδίο στο
AA με τη βοήθεια του πίνακα του παραρτήματος B.4, όπως φαίνεται για παράδειγμα στο
σχήμα 3iv. Πραγματοποιείται μία γραμμική παρεμβολή μεταξύ των δεδομένων της CG
και της AA αγωγιμότητας (βλ. σχήμα 3v). Ο συντελεστής συσχέτισης είναι χαμηλός,
υποδεικνύοντας τους περιορισμούς του CG MARTINI 3.0, όσον αφορά τη δυνατότητα
μετάφρασης από χημικούς σχηματισμούς CG σε AA. Τα αποτελέσματα αυτά οδηγούν
στην αναζήτηση ενός εναλλακτικού, ακριβέστερου τρόπου βελτιστοποίησης. Για τον
σκοπό αυτό, επιλέγεται η AA βελτιστοποίηση παρά τη μεγάλη περιπλοκότητα της και
το τεράστιο υπολογιστικό κόστος της.

AA Βελτιστοποίηση

Τα γεωμετρικά και τοπολογικά δεδομένα εισόδου για μία AA προσομοίωση μοριακής
δυναμικής είναι εξαιρετικά δύσκολο να βρεθούν και συνήθως προκύπτουν από ειδικές δι-

αδικτυακές βάσεις δεδομένων. Για να είναι εφικτή μία διαδικασία AA βελτιστοποίησης,
πρέπει να παραχθεί ένα λογισμικό το οποίο από κάποιες παράμετρους (τυχαίοι αριθμοί)
να παράγονται τα γεωμετρικά και τοπολογικά δεδομένα εισόδου για το εκάστοτε ιόν

με τη μέγιστη εφικτή ακρίβεια. Επειδή η διαδικασία είναι ήδη ιδιαίτερα περίπλοκη, το
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κατιόν διατηρείται πάντα το ίδιο (CAT+
1 ). Προκειμένου να αρθρούν τα προηγούμενα

προβλήματα αποφασίζεται να χρησιμοποιηθούν οι ακολουθίες χαρακτήρων SMILES ως
μέσο επικοινωνίας των παραμέτρων με τη χημεία. Οι μεταβλητές σχεδιασμού φαίνονται
στο σχήμα 4i. Με χρήση ενός κώδικα python οι παράμετροι p1 έως p10 μεταταφρά-
ζονται σε ένα ανιόν. Το ανιόν αυτό μπορεί να μην υφίσταται στην πραγματικότητα,
αν για παράδειγμα σε αυτό ένα άτομο οξυγόνου συνδέεται με τρία άλλα άτομα. Τέ-
τοιες περιπτώσεις ανιχνεύονται αυτόματα από τον εν λόγω κώδικα και εμφανίζονται τα

απαραίτητα ενημερωτικά μηνύματα, έτσι ώστε το ανιόν αυτό να απορριφθεί πριν φτάσει
στο ακριβό στάδιο της προσομοίωσης.

΄Επειτα, με χρήση του λογισμικού ανοικτού κώδικα επεξεργασίας δεδομένων μορι-
ακής μοντελοποίησης Open Babel [2], η ακολουθία SMILES που αφορά το ανιόν
μεταφράζεται στο γεωμετρικό αρχείο της μορφής .mol2. Προτού αυτό παραχθεί, έχει
πραγματοποιηθεί ελαχιστοποίηση της ενέργειας στο σχηματισμό, ώστε αυτός να λάβει
μια μορφή κοντά στην πραγματική. Επιπλέον έχει πραγματοποιηθεί υπολογισμός που
αφορά τα μερικά φορτία που έχει κάθε άτομο του ανιόντος. Οι υπολογισμοί αυτοί
πραγματοποιούνται με το Open Babel, εφαρμόζοντας το πεδίο δυνάμεων (μοντέλο)
MMFF94. Ο υπολογισμός των μερικών φορτίων είναι απαραίτητος για να προκύψει το
αρχείο τοπολογίας το οποίο έχει την πληροφορία που απαιτείται για την αναπαράσταση

των ηλεκτροστατικών και διαμοριακών δυνάμεων, καθώς και των ελαστικών δυνάμεων
που οφείλονται στην ύπαρξη χημικών δεσμών.

Στη συνέχεια, το αρχείο .mol2, που παράχθηκε, μετατρέπεται με χρήση του λογισμικού
ανοικτού κώδικα topolbuild στο αντίστοιχο αρχείο OPLS-AA τοπολογίας .itp. Το
αρχείο αυτό έχει πολλές ελλείψεις στην πλειοψηφία των περιπτώσεων και δεν είναι

έτοιμο να εισαχθεί ως δεδομένο σε μία προσομοίωση μοριακής δυναμικής. Αρκετή
πληροφορία απουσιάζει σχετικά με τα μήκη, τις γωνίες και τις ελαστικές σταθερές των
χημικών δεσμών. Επιπλέον, οι πληροφορίες σχετικά με μία ειδική κατηγορία ελαστικών
συνιστωσών (dihedrals, βλ. ενότητα 1.7.1 της Δ.Ε.) λείπει σχεδόν εξ ολοκλήρου. Οι
ελλείψεις αυτές αντιμετωπίζονται με χρήση αρκετών επιπλέον κωδίκων python οι οποίοι
συμπληρώνουν τα δεδομένα που λείπουν με χρήση μετρήσεων από το αρχείο .mol2 που
περιέχει γεωμετρικά δεδομένα, δεδομένων από το ελλιπές αρχείο .itp και ποικίλων
προσεγγίσεων. Τα τελικά αρχεία τοπολογίας είναι πλέον έτοιμα να χρησιμοποιηθούν
για προσομοίωση.

Εξαιτίας της περιπλοκότητας της παραπάνω διαδικασίας και επειδή δεν είναι επιθυμητό

να τρέξουν προσομοιώσεις με λάθος δεδομένα εισόδου, λόγω του τεράστιου υπολογισ-
τικού κόστους των AA προσομοιώσεων, μόνο ένα πολύ μικρό ποσοστό S% των ιόντων
προσομοιώνονται με επιτυχία. Το γεγονός αυτό καθιστά την επιλογή ρυθμίσεων για
τον EASY μία περίπλοκη διαδικασία. Οι ρυθμίσεις του EASY που επιλέχθηκαν θα ήταν
πολύ πιο εύστοχες αν ο συνολικός χρόνος της βελτιστοποίησης ήταν δεκαπλάσιος του

διαθέσιμου. Παρά τον περιορισμένο χρόνο βελτιστοποίησης, ο EASY βρήκε ιονικά
υγρά με έως και 157 % μεγαλύτερη αγωγιμότητα σε σχέση με τα αποτελέσματα του
AA μοντέλου του 2ου κεφαλαίου για το ιονικό υγρό αναφοράς CAT+

1 AN
−
3 . Ακριβώς

επειδή πραγματοποιήθηκαν αρκετές παραδοχές έτσι ώστε να είναι εφικτή η προηγούμενη

7



διαδικασία, γίνεται επαναξιολόγιση των καλύτερων αποτελεσμάτων με χρήση ακριβώς
του ίδιου OPLS-AA μοντέλου που εφαρμόστηκε στο κεφάλαιο 2. Τα αποτελέσματα
της διαδικασίας αυτής φαίνονται στον πίνακα 1. Τρία από τα πέντε καλύτερα ιονικά
υγρά έχουν υψηλότερη ιονική αγωγιμότητα σε σχέση με το CAT+

1 AN
−
3 . Για καθένα

από αυτά, εκτός του 4ου, το αντίστοιχο ουδέτερο μόριο του εκάστοτε ανιόντος έχει
παραχθεί σε εργαστήριο σύμφωνα με το NIH των ΗΠΑ [4]. Με ορισμένες μεθόδους
μπορεί θεωρητικά να αφαιρεθεί το κατάλληλο πρωτόνιο, να παραχθεί το ανιόν και
επομένως το αντίστοιχο ιονικό υγρό.

Σύνοψη-Συμπεράσματα

Συνοψίζοντας, η διπλωματική εργασία ασχολήθηκε με την αναζήτηση εναλλακτικών
ιονικών υγρών, ώστε να αποτελέσουν την πρώτη ύλη για έναν νέο βελτιωμένο τύπο με-
βράνης ανταλλαγής πρωτονίων σε κυψέλες καυσίμου. Για τον σκοπόν αυτόν, δημιουργήθηκαν
και επαληθεύτηκαν AA και CG μοντέλα ιονικών υγρών, ώστε χρησιμοποιηθούν σε AA
και CG βελτιστοποιήσεις της ιονικής αγωγιμότητας. Και στις δύο περιπτώσεις χρησι-
μοποιήθηκε το λογισμικό εξελικτικών αλγορίθμων EASY της ΜΠΥΡΒ του ΕΜΠ για
τη βελτιστοποίηση. ΄Επειτα από επαλήθευση, η CG βελτιστοποίηση δεν έδωσε κάποιο
βελτιωμένο αποτέλεσμα. Αντίθετα, η ΑΑ βελτιστοποίηση κατέληξε σε ιονικά υγρά
με αρκετά βελτιωμένη ιονική αγωγιμότητα τα οποία μάλιστα φαίνεται πως μπορούν

να παραχθούν εργαστηριακά. Με βάση τα αποτελέσματα που παρουσιάστηκαν προ-
ηγουμένως, προκύπτουν τα ακόλουθα συμπεράσματα.

1. Τα AA μοντέλα έχουν πολύ καλές επιδόσεις όσον αφορά την πυκνότητα και
μέτριες ως προς την ιονική αγωγιμότητα. Σε υψηλότερες θερμοκρασίες είναι
πιο ακριβή και φαίνεται πως μπορούν να χρησιμοποιηθούν σε μία διαδικασία

βελτιστοποίησης αλλά και για επαλήθευση άλλων μοντέλων.

2. H βελτιστοποίηση με χρήση του CG MARTINI 3.0, με συνάρτηση στόχο την
ιονική αγωγιμότητα, παρουσιάζει περιορισμούς, παρά το χαμηλό υπολογιστικό
κόστος της. Δεν υπάρχει ισχυρή και μονοσήμαντη συσχέτιση μεταξύ της CG
και της AA ιονικής αγωγιμότητας, εξαιτίας των περιορισμών στην αντίστροφη
μοντελοποίηση (από CG σε AA μοντέλο).

3. Η προσεγγιστική AA βελτιστοποίηση ήταν σε θέση να υποδείξει ιονικά ζεύγη
με σημαντικά αυξημένη ιονική αγωγιμότητα σε σχέση με το ζεύγος αναφοράς.
Η αντίστοιχη συσχέτιση μεταξύ της αγωγιμότητας του προσεγγιστικού και του

ακριβέστερου AA μοντέλου φαίνεται ικανοποιητική.

4. Η προηγούμενη διαδικασία θα μπορούσε να βελτιωθεί αισθητά μειώνοντας το
τεράστιο υπολογιστικό της κόστος, με χρήση μεθόδων τεχνητής νοημοσύνης. Ο
στόχος είναι να υπάρχουν μεγαλύτερα ποσοστά επιτυχίας S % κατά την παραγ-
ωγή των ιόντων στη διαδικασία προ-επεξεργασίας. Με λίγες μετατροπές, η ίδια
διαδικασία θα μπορούσε να εφαρμοστεί και για βελτιστοποίηση άλλων συστη-

μάτων μορίων.
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(i) Διαφορετικοί τοπολογικοί σχηματισμοί σε
ένα ουδέτερο μόριο. Οι πορτοκαλί γραμμές

αναφέρονται στους δεσμούς μεταξύ των χαντρών

και τα κόκκινα τόξα στους γωνιακούς βαθμούς

ελευθερίας.

(ii) Επεξηγηματικό σχήμα σχετικά με τις

παραμέτρους σχεδιασμού της βελτιστοποίησης.

(iii) Καμπύλη σύγκλισης για τη CG
βελτιστοποίηση με χρήση DMAEA.

(iv) Μετάφραση του καλύτερου ιονικού υγρού
που προέκυψε, από CG μοντέλο σε AA μοντέλο.
Οι γκρι, άσπρες, κόκκινες και μπλέ σφαίρες ανα-
παριστούν αντίστοιχα τα άτομα του άνθρακα, του
υδρογόνου, του οξυγόνου και του αζώτου.

(v) Συσχέτιση της CG και της AA αγωγιμότητας για διάφορα μοντέλα. Τα AA αποτελέσματα για
τα ιονικά υγρά που είναι βασισμένα στο κατιόν CAT+

1 έχουν προκύψει έπειτα από εφαρμογή του

μοντέλου GROMOS. Για την οικογένεια ιονικών υγρών Rmim+AN−
1 χρησιμοποίηθηκαν πειρα-

ματικά δεδομένα. Η επαλήθευση των CG μοντέλων που χρησιμοποιήθηκαν στη βελτιστοποίηση
πραγματοποιήθηκε με χρήση του μοντέλου OPLS-AA. Παρατηρείται ασθενής συσχέτιση μεταξύ
της CG και της AA αγωγιμότητας. ΄Ολα τα αποτελέσματα αφορούν τους 380K.

Σχήμα 3: Σχήματα και διαγράμματα που αφορούν την CG βελτιστοποίηση.
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(i) Επεξηγηματικό σχήμα σχετικά με τις μεταβλ-
ητές σχεδιασμού της ΑΑ βελτιστοποίησης.

(ii) Η διαδικασία προ-επεξεργασίας που εφαρ-
μόστηκε κατά την AA βελτιστοποίηση με χρήση
προσεγγιστικών μοντέλων.

(iii) Καμπύλη σύγκλισης για την AA
βελτιστοποίηση με χρήση MAEA. σ rg

είναι

η μέση αγωγιμότητα του προσεγγιστικού AA
μοντέλου. σAN3

exp είναι η πειραματική αγωγιμότητα

του ιονικού υγρού CAT+
1 AN

−
3 .

(iv) Τριδιάστατη αναπαράσταση των πέντε

καλύτερων ανιόντων που προέκυψαν από την AA
βελτιστοποίηση.

Σχήμα 4: Σχήματα και διαγράμματα που αφορούν την AA βελτιστοποίηση.

ID Cation Anion ρv [kg/m3] σv/σAN3
exp σvstd/σ

AN3
exp σrg/σAN3

exp
σv−σref

simAA

σref
simAA

1 CAT+
1 [O-]COC#C 9.42 · 102 2.64 0.17 2.83 +140 %

2 CAT+
1 CC(=S)[N-]C 9.67 · 102 0.38 0.05 2.32 −65 %

3 CAT+
1 SO[N-]OS 1.11 · 103 2.21 0.44 1.47 +101 %

4 CAT+
1 SO[N-]S#S 1.15 · 103 1.12 0.23 1.19 +8 %

5 CAT+
1 CCSC[O-] 9.28 · 102 1.75 0.43 0.94 +59 %

Ref CAT+
1 AN−

3 − 1.10 0.19 0.83 +0 %

Table 1: Συγκεντρωτικά αποτελέσματα για τα 5 καλύτερα ιονικά υγρά. Περιέχονται αγ-
ωγιμότητες από προσεγγιστικά μοντέλα (rg), μοντέλα επαλήθευσης (v) και πειραματικά
δεδομένα (exp).
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