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Abstract

Multirotor aerial vehicles have drawn a lot of attention in the recent years and their
development has met great growth. The tasks that they are desired to complete
are getting more and more complicated alongside, and the development of precise
controllers is demanded. The design of such controllers requires accurate dynamic
models with determined parameter values. This diploma thesis is concerned with
the modeling of a multirotor UAV and the estimation of the model parameters using
System Identification methods.

A detailed model is derived, that can describe the kinematic and dynamic behaviour
of a multirotor vehicle, regardless of the number of rotors or their arrangement. Two
specific types of platforms, an octorotor in X-configuration and a quadrotor in X-
configuration, are then examined in more detail, and their simulation environments
are presented. The linear least squares method is used for the identification of
the parameters appearing in their models. Initially, the octorotor system is iden-
tified, using data collected from a simple MATLAB® model, where no controller
is implemented. The results are satisfactory, since all parameters are precisely es-
timated. Following, an attempt to identify the parameters of the ROS model of a
quadrotor is made. The process here is more challenging, since an autopilot system
interferes with the openloop model, limiting the commands’ capabilities, and the
collection of data is affected by the simulated sensors’ qualities. Sinusoidal signals
of varying frequencies and amplitudes are designed and sent to the autopilot, in
order to obtain frequency rich data from the simulated flights and estimate the
parameters. A validation method is also specified as a way to test the accuracy of
the estimated parameters. An acceptable estimation of most of the parameters is
achieved, although some of the values may be suitable only for specific operating
areas. Overall, the results are promising and provide a good first description of the
model. However, there is certainly room for improvement, regarding the procedure
and the techniques, aiming for an ever more accurate estimation of the parameters.



Movteloroinon xa. Avoyvoelor CUCTHUATOS
L1 ETAVOLWUEVOU EVUELLOU OYNUATOG
TOAANATTAWY EAIXWY UE YENOY) GECOUEVLYV
TEOCOUOLLONS

Awmiopatixd) Epyaoto
HAonobAouv Aviovaveétta

Adrva, Mdptioc 2022

Tao pn enavdpwpéva evaépta oyfuata (UAVs) éyouv npooehxloel YeYGAo evilapépoy
Tor TEheLTakol yeovLaL xou UEYAAT) eEEMET €yl onueiwdel YUpw amd T UEAETN oL XATO-
oxevr] Toug. Tautdypova, oL amocToAéS Tou xaholVTaL Vo QEPOLY €I¢ TEpUS Yivovtal
ONO xalL O TEQIMAOXES XL 1) EVOWUATOON EAEYXTWV UeYoAUTEONS oxp{Beloc xplvetan
amopadtnTn. O OYEBLIOUOC TETOUWY EAEYXTWOVY ATAUTEL TNV YVWOT TWV SUVOHUXOY UO-
VTEAWY X0l TGOV 0XEU30V TWOVY TWV TOEAUeTewy Toug. H mapodoa dimhwuatiny epyaoia
aoyoleltar Ye TN poviehonoinom evog UAV moAAmAGOY EAXWY xon TNV EXTIUNCT TwV
TOPUUETEMY TOU LOVTEAOU UE T YP10N UEVOOWY ovary vPIoNG GUC TAUATOG.
Hapouoidletar, apyxd, €vo AenToUEREC LOVTERD, TO oTolo umopel Vo Teplypdel TNV
YUVNUOTIXH XOL BUVOUIXT] CUUTEQLPOEE EVOC OYAUATOS TOAAATAGY EAIXWY, aveldpTnTa
oo Tov aprdud 1 TN OldTal Toug. XN cuvéyel, e¢eTdlovial AETTOUEREC TERY HVO
CUYXEXPWIEVOL TUTIOL EVOERLWY O NUATWY, EVa OXTAxXOTTERO ot Oidtaln X xou éva Te-
TPaxOTTEPO GE OLdTadn X, xou mapouatdlovTon Ta tep3dhhovTta Tpocouolwotc Toug. H
UEVOBOC TV YRUUUXOY EAAY (O TWY TETRUYMVOY YENOWOTOLELTAL Y10 TOV TEOCOLOPIGUO
TWV TUPUUETEWY TIOU EUPavVICoVToL GToL HOVTEAN TOV BLapopdY eELOMOENY. Apyxd,
yiveTan ovoryvidplon Tou GUCTHUATOS TOU OXTUXOTITEQOU, YENOLLOTOLWVTAS OEOOUEV
ToU GUAAEYONXay amd Evol amthd UOVTEAO UAOTIONUEVO GTNY MATLAB®, Ywelg TNV
xenon eheyxth. Ta anoteréopota eltvon xavomotntixd, xadme OAES Ol TUPAUETEOL EXTL-
uovTon pe oxplBela. XN cuvéyeta, yiveton mpoomdielo avary VOPLOTS TWY TUQUUETOWY
TOU HOVTEAOU EVOC TETRUXOTTEQOU, OTWS awTd Eyel homonlel ye yeron Tou ROS. H
dladwcactor oe auTH TNV TEpImTwoN efval To amarTNTXY, XodDdS Evol GUCTNUO UTOU-
ToL TAOTOL TapEUPalvel 0TO LovTELO avowTol Bedyou, TeplopilovTag TIg BUVATOTNTES
TWY EVIOA®Y, Xl ETTAEOY, 1 GUANOYY| BeBoPEVeY emnpedletal and TIC LOIOTNTES TMV
TEOGOUOIWUEVLY ouoUnTpwy. Huttovoeldy| ohjpota diapopeTinod TAdTouC xow Uy Vo-
THTOV OYEBIALOVTAL Yol GTEAVOVTOL GTOV AUTOUATO TUAOTO, TEOXEWEVOL Vo Angdolv
OEBOEVA TOWIAWY CUYVOTATWY ol TIC TEOCOHUOLWUEVES TTACELS Xt VoL EXTLNolV
ot mapdpeteot. Optletar emlong wa pédodog enarrdeuong xou eréyyou tng axplBetag
TWV EXTWOUEVWY TURUUETEWY. Mot ok} exTlunomn TV TEPLOCOTERHY TUQUUETEMY
TEAYUATL ETUTUYYAVETOL, oV XL OPLOHEVES Omd TIG TWES QUEVETOL VoL AvTIGTOL 00V OF
OUYXEXPUEVES TEPLOYEC AetTovpyiag. Muvohxd, To amoteréouato elvar ouctddo&a xa
TOEEYOUV (Lol XOAY) TIEWT TERPLYPAPT| TOU HovTELOL. (261660, UTdpEyouV clyoupa TepL-
VopLa fehtiwong, 600y apopd Tn Sladixaolar xou TIg TEYVIXES oL oxohoLINInxay, xou
L oxOun o axeUBhc extiunom twv mapauéteemy uropel va tedel wg véog otdyog.
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Acronyms

ARX Autoregressive with Extra Input
CCW Counterclockwise

CW Clockwise

EKF Extended Kalman Filter

ESC Electronic Speed Command
FCU Flight Controller Unit

FIR Finite Impulse Response

GPS Global Positioning System

IIR Infinite Impulse Response

IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
NED North East Down frame
NTUA National Technical University of Athens
PWM Pulse Width Modulator

ROS Robot Operating System

SITL Software In The Loop

System ID System Identification
UAV Unmanned Aerial Vehicle
VTOL Vertical Take-Off and Landing
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Chapter 1

Introduction

1.1 Background

Aerial robotics is a fast-growing field of robotics and UAVs have become widely
developed and used in scientific, civilian and military applications|1][2]. An Un-
manned Aerial Vehicle (UAV) is a remotely piloted or self-piloted aircraft which
is operated through electronic input initiated by the flight controller or by an on-
board autonomous flight management control system [3][4]. It can carry payloads
and be equipped with multiple sensors, including cameras, Inertial Measurement
Unit (IMU), LIDAR, GPS or other communication equipment in order to collect
and transmit data in real time[2].

More specifically, a multicopter or multirotor, is a type of rotary-wings UAV [4],
that has three or more propellers. It also has the ability of Vertical Take-Off and
Landing (VTOL), hence no runway or launcher is required. Multirorots stand out
for heir hovering capability and high maneuverability, and their originally small size
which make them suitable and efficient for a variety of applications. As stated in
[5], in the latest years, research has focused even to modify the classical multirotor
designs to overcome their existence limitations.

Although multicopters have gain popularity only in the last decades, their history
goes back in early 1900s when the first -although failed- attempts of rotating wing
designs were made. The first successful quadcopter, designed by Marc Adman
Kaplan, was flown in 1956, but little interest was initially shown due to its low
performance abilities even for its time. In the following years the research and
development of multicopters was limited for military applications, until the 1990s
when the development of microcomputers and IMUs emerged and opened the way
to build small multicopters, even for toy market purposes. Since 2005 the atten-
tion paid in multicopters has risen and more and more researchers have focused
their work around their development. The progress made in the fields of sensors’
data acquisition and estimation algorithms , navigation methods, remote control
capabilities, fabrication and power systems has boomed the design and usage of
UAVs.

UAVS’ control is one of the main challenges, since they have an unstable nature,
and the control technologies need to follow an accurate approach. A lot of autopilot
systems have been developed [6], that can be used with a variety of UAVS’ configura-
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tions. However, as the applications of UAVs are expanding and the tasks, that they
are desired to execute, become more and more complicated, the simplistic approach
of the common autopilots becomes inadequate [7|[8]. When UAVs need to make
aggressive maneuvers or the need of accurate trajectory tracking at higher speed
and in uncertain environments appears, more reliable and robust control systems
need to be designed. These control systems require dynamic system models, the
parameters of which need to be determined. Traditionally, these parameters can be
estimated from first principle assumptions or by testing in wind tunnels, but these
methods are usually time-consuming and costly. An alternative, to overcome these
problems, is the System Identification (ID) procedure, through which a UAV’s dy-
namic model can be determined from flight data. Although in the recent years there
has been a little development of System ID techniques for multirotors as Hoffer et
al.|9] present in their survey, this process still remains a challenge.

1.2 Purpose

The purpose of this thesis is to obtain a mathematical model of a multirotor UAV
and estimate its parameters using system identification methods. The basic idea
of this research is to define a procedure of system identification, that can later be
applied in a real life octorotor that NTUA Control Systems Lab is equipped with.
The initial thought was to study only an octorotor and estimate its parameters,
but only a quadrotor simulator could be used under the circumstances. For this
reason, a general model that can describe both quadrotors and octorotors is con-
structed and the identification method is applied in two different platforms; an
open-loop MATLAB® octorotor model and an autopilot-equipped ROS/GAZEBO
quadrotor model. Since the parameters appearing on the model are independent of
the number of rotors, the method followed for the quadrotor simulation and Sys-
tem Identification, can also be employed for any octorotor platform equipped with
autopilot.

1.3 Outline

This thesis is organized in 6 chapters, including the introduction.

In Chapter 2 the process of obtaining a model of a multirotor vehicle is described.
In Chapter 3 the basic movements of a multirotor are explained.

In Chapter 4 the configurations of the vehicles that are used in this thesis are
presented, along with their simulation environments.

Chapter 5 deals with the problem of System identification. Methods and techniques
are stated and then the two different platforms are used for parameter identification.
In Chapter 6 a summary-conclusion of the results is presented, along with suggestion
for future work.



Chapter 2

Multirotor modeling

2.1 Coordinate systems

In order to describe the motion of a multirotor system in space, coordinates systems
need to be defined. In this case the use of an inertial/earth-fixed frame as well as
a body frame are needed.

The earth-fixed frame, represented here with the letter E, is attached in the surface
of the earth and is supposed to have the features of an inertial frame. In this
thesis the earth-frame is chosen so that the Zg-axis points up whereas Xpg-axis and
Yg-axis are tangential to the earth surface, as shown in Fig. (2.1.1).

Figure 2.1.1: The earth-fixed coordinate system.

The body-fixed frame, represented here with the letter B, is attached in the center
of gravity of the multirotor and it moves as the multirotor changes its location in
space. The body-fixed frame is chosen so that the Xpg-axis always points in the
front of the multirotor, the Yz-axis always to the left side and the Zz-axis upwards.
This configuration is not affected by the multirotor frame type or number of pro-
pellers. For better understanding, an illustration of the body frame is given in Fig.
(2.1.2) for the two multirotor frames that will be examined further in this thesis; a
quadrotor in X-configuration (2.1.2a) and an octorotor in X-configuration (2.1.2b).
Their illustrations are adopted from [10]
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(a) Quad-x frame (b) Octo-x frame

Figure 2.1.2: The body-fixed coordinate system in two different multirotor frames.

2.2 Kinematics

2.2.1 Definition of kinematic relations

The location of the UAV in space, as any other rigid body, is fully described by
its linear position and orientation. The linear position I'g is defined as the
position of the center of gravity of the UAV with respect to an inertial frame -here
the earth-fixed frame-, as described in Eq. (2.2.1).

Tp=[zp yp 26)" (2.2.1)
The orientation @ is defined as the orientation of the body-fixed frame with respect
to the earth-fixed frame, as described in Eq. (2.2.2).

Op = [¢p Op V" (2.2.2)

The angles ¢, 60 and 1 are consistent with the ZYX FEuler angles representation,
which is preferred for the depiction of orientation in the aeronautical field, and are
called roll, pitch and yaw respectively [11]. They represent a rotation of the earth-
fixed frame about x-axis by angle ¢ (R,(¢)), about y-axis by angle 6 (R,(¢)) and
about z-axis by angle ¢ (R.(1)) (see Appendix A.1).

With respect to position and orientation, also linear and angular velocities
should be defined. In this thesis the body-fixed frame is preferred for the depiction
of the velocities as shown in the following equations.

Vp = [UB UB wB]T

wp = [pB 4B TB]T (224)

2.2.2 Transformation between frames

Since not all terms are expressed in the same frame, a rotation matrix must be de-
fined in order to convert vector coordinates between frames. The complete rotation
matrix ! can be computed as a composition of rotations as explained in Section 2.2.1.

L As abbreviations of sino or cosc, the notations sa and co are used.
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cpcl)  —speg + chslsp  sso + cpsbcd
Rpp = R.(V)Ry(0)Ry(¢) = | s¢cl  cpep + ssfsp  —cpsp + sipsbep
—s6 s cOeo
(2.2.5)
The inverse conversion of coordinates (from the body-fixed frame to the earth fixed-
frame) is stated as:

Rep= (Rp_p) ' = (Rp_g)" (2.2.6)

2.2.3 Differential kinematics

Suffice to say, the orientation angles are not constant in time, so a relation between
their derivatives and the angular velocity expessed in the body-fixed frame, wpg
should be defined. The latter can be expressed as the sum of rotated angular
velocities, as shown in Eq. (2.2.7).

¢ 0 0
wp= |0 +Rx(¢)T 0 +[Ry(9)Rx(¢)]T O
0 0 (G
3] [t o o][0 0 —s0] [0
=10+ [0 cop sp| |0] + |sps cp  spcd| |0 (2.2.7)
0 0 —s¢ cgb_ 0 cpsd —sop cpcld| |
1 0 —s¢| [¢]
=10 cop soch| |0
[0 —s¢ clco ¢_
Using Eq. (2.2.7), the transfer matrix Tg_, 5 can be defined:
1 0 —s¢
Tep = |0 cp spch (2.2.8)
0 —s¢ clco

The inverse transformation, relating the time derivatives of the Euler angles to the
multirotor’s angular velocity is defined as:

1 sotd  coth
TBHE = (TE%B)il =10 Cgb —Sgb (229)
0 s¢/cl cp/ch

2.2.4 Final kinematics differential equations

Summing all the kinematic relations, two differential equations are derived, that
are part of the multirotor model as will be described in Section 2.4.

'y = Repvs (2.2.10)
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2.3 Rigid body Dynamics

In this chapter the motion dynamics of a multirotor are examined, starting from the
general rigid body motion equations. Subsequently, all external loads are computed
and explained until the full dynamic model is derived.

2.3.1 Rigid body dynamic equations

The dynamic model of the multirotor is based on rigid body mechanics, as expressed
in the Newton-Euler’s equations.

Before we continue to describe the dynamic equations of a multirotor it is sufficient
to explain how the time derivative of a vector a can be described with respect to a
non-inertial frame.

da da

—| = —| +wxa, 2.3.1
dt|, dt|g ( )

where w is the rotational velocity vector of the rotating coordinate system. In this

case w = wg, the angular velocity of the body-fixed frame.

According to Newton’s second law, expressed in an inertial frame, the dynamic

equations of a rigid body are:

dv
F=m— 2.3.2
m| (2:3.2)
dIw
- - 2.3.
T i |, (2.3.3)

In Eq. (2.3.2), F is the sum of external forces applied in the center of gravity of the
rigid body, m is the mass diagonal matrix and v is the center of gravity velocity
vector. In Eq. (2.3.3), 7 is the sum of external torques, I is the inertia tensor and
w is the angular velocity, all with respect to the center of gravity.

According to Eq. (2.3.1) the same equations of motion can be described in the
body-fixed frame as shown below.

FB = mI)B+wB X MVpg

TB:IwB—i—waIwB

2.3.2 External loads

In order to complete the dynamic model, it is now important to define the external
forces and torques applied in the multirotor system, described in the body-fixed
frame. The different categories of the external loads are stated below and will be
examined separately in order to abduct the desired expressions.

e Thrust and Drag
o Gravity
e Gyroscopic torque

e Aerodynamic effects
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Thrust and Drag

The main forces and moments applied on the multirotor during flight are related to
the thrust and drag generated by the rotors. When the blades of the rotors rotate
they generate an upward thrust aligned with the rotor axis, as well as a torque with
respect to the rotor axis, that can be described using a combination of momentum
and blade element theory [12]. According to Fay [13|, the thrust vector generated
by rotor ¢ in a multirotor system can be expressed:

;= Krwlel (2.3.6)

In Eq. (2.3.6), ¢r is the thrust constant, p is the air density, A,, is the rotor disk
area, r is its radius and w; is the angular velocity. e” is the normalized rotor axis
vector for rotor i expressed in the body-fixed frame, which for not tilted rotors only
has a z-axis component, thus e® = [0 0 1]7. For simplicity all the steady parameters
can be replaced with K¢ > 0 which will now be referred as the trust constant.
The torque of rotor ¢ due to the rotor drag is described|13]:

T = copA,risgn(w;)wiel = Kosgn(w;)wle? (2.3.7)
In Eq. (2.3.7), ¢g is the torque constant and similarly to thrust, all the steady
parameters are replaced with Ko > 0, the new torque constant. The sign of each
rotor’s torque depends on the direction of the motor rotation as described in the
sign function:

sgn(w;) = + if rotor i CW (23.8)
g = if rotor i CCW o

Since the thrust forces are not applied in the center of gravity, they also generate a
torque, which is given by the cross product of the relative with the center of gravity
position vector of each rotor and the force vector of Eq. (2.3.6).

T, =1; X T, (2.3.9)
Let the position vector be denoted as:
i = 1y, Ty 72l (2.3.10)

where 7,,, 7, and 7., are the rotor ¢ distances of the body-fixed frame origin B in
axes x,y and z respectively.

Summing the above equations, the total force and torques pertained to the rotor
movement are:

FrotarsB = ZTz (2311)
=1

Trotorsg — i T; + i TT, (2312)
=1 =1

where n is the number of rotors, depending on the multirotor type.
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Gravity

The force of gravity is always aligned with the Z axis of the earth-fixed frame and
is applied in the multirotor center of gravity.

Fgo=m| 0 (2.3.13)

-y

gF

Here, g is the gravitational acceleration constant to which the value 9.81 m/s? is
assigned and will not be mentioned again in this thesis. Since all forces need to be
described in the body-fixed frame, the inverse rotation matrix should be used in
order to change the reference frame of the gravitational force.

0 s6
Fepo=mRp,p| 0 | =mg |—s¢ct (2.3.14)
—g —coch

Gyroscopic torques

Since each rotor is rotating, a torque defined according to Newton’s law will be
applied in the origin of a frame R; in the center of gravity of each motor. The R;
frame is aligned with the rotor axis and is fixed on the multirotor, so it has the
same orientation with the body-fixed frame, implying that wp = wp and Rp_p, =

Expressed in an inertial frame this torque is:
dJTotwi
Tgy’r‘il = dt ) (2315)
where J,.; is the inertia tensor of each motor with respect to the R; frame.
Using Eq. (2.3.1) this torque can be now expressed in the R; frame:
dJrotwi dJmtwi
Toyr, = 4+ wp X Jrow; = + wp X Jrorwi, 2.3.16
9YTip dt R t dt B t ( )

d
The term J

assumed as zero, so the gyroscopic torque can be simplified as:

is insignificant compared with the other quantities and can be

Tgyr,, = WB X Jrotwi (2.3.17)

Considering that all loads must be expressed in the body frame the gyroscopic
torque of rotor 7 should also be converted in body-fixed coordinates using R, 5.

TgyrBl, = RRi%BTgyTRZ_ = ]TgyrRi = wp X Jrotw; (2318)

The total gyroscopic torque is the sum of the torques applied on each rotor:

Tp = ZTWBI_ (2.3.19)
=1
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Aerodynamic effects

There are a lot aerodynamic effects that influence the motion of a multirotor, most
of which are minor compared to the dominant dynamics. However, blade flapping
and induced drag are of more significance, as noted in [14]. The former are caused
due to the flexing, whereas the latter are associated with the rigidity of the ro-
tor. These effects induce forces in the x and y-axis of the multirotor, the directions
that are genuinely underactuated by the dynamics. Although terms associated with
blade flapping are affected by the rotational velocity of the rotors and thus are not
constant during flight, in this thesis such variations are considered insignificant.
For simplicity, both blade flapping and induced drag effects are expressed as com-
bined constants multiplying the linear x- and y-velocities of the multirotor. That
concludes to the following expression for the aerodynamic effects:

Kd, 0 0

Foron =— | 0 Kdy 0| wp (2.3.20)
0 0 O

T aerog — 0 (2321)

2.3.3 Dynamic model

As soon as all external forces are defined Equations (2.3.4) and (2.3.5) can be
rewritten, and given that all vectors are now described in the body-fixed frame
from this point no index B will be used.

mr = —w X mv + Fg + Frotors + Faero (2322)

Iw = —w xIw + Trotors T T gyr (2323)
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2.4 Complete state-space model

The complete model describing the motion of the multirotor in space requires both
the dynamic (2.3.22 , 2.3.23) and the kinematic (2.2.10 , 2.2.11) differential equa-
tions.

Here, it is necessary to mention that the inertia tensor I is considered diagonal
meaning that the mass distribution is symmetric with respect to the body-fixed
coordinate system. The expanded matrix form of these equations is stated below.
Note that the number of rotors does not yet need to be defined.

U TV — q gsb Kdy/m u
z}] = |:pw7“u] + |:gsqz§c€ 0 Kd /m 0] !v]
w
(2

qu — pv —gcoch 0

0

0
Kr/m Z?:l %2
A4.1)

p qr(Iyy - Izz)/Ia:J:
q| = Tp(lzz - Ixm)/Iyy KT/Iyy Z:L 1 TxZWZQ erot/Iyy Z?:l Sgn(wi)wi

Kr /Iy Z?:l Tyiwiz —qJrot/Lnx Z?:l sgn(wi)w;
+
w}

r Pq(Izz — Lyy)/ 12 Kq/lL.. 377 sgn(wi) 0

(2.4.2)
1] [cpcl)  —siped + cpslsdp  sisg + cpshed u
y| = |spcld  cped + sslsp  —csp + sshed (2.4.3)
Z ] | —s0 s cep w
o] (1 sotd  cotd | [p
0l =10 e —so| |q (2.4.4)
0l 10 s¢/cl co/cb| |r

These four subsystems compose a 12 x 12 non-linear system of equations, where
the state vector is X = [u v w p ¢gr z y z ¢ 6 ¢]T and the input vector is
U=[w wy ... wp]T.

When an input vector is provided, the states of the the multirotor can be then
computed using a differential equation solver.

2.4.1 Linearization in hovering mode

For completeness, a linear approach of the model described in Equations (2.4.1-
2.4.4) will now be presented. The linear equations are especially important when
an attitude controller needs to be build, controlling the orientation of the multirotor
[15].

For a non-linear system in the form X = f(X,U), the linearized system using the
Taylor series expansion will be:

= AX* + BU", (2.4.5)
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where:

af

of
A= :
Yo oU

T 00X

Ue

X'=X-X, ,U'=U-U,

The equilibrium point will be that of hovering in a random position I' = (z,y, 2)
with any orientation ¢ with respect to the earth-fixed frame. For an equilibrium-
stationary point the time derivative of the states is always zero, so Xe = f(X,, U) =
0. The equilibrium input velocity, can be computed by substituting X, in the latter
mathematical equation, and under the notion that all rotor angular velocities are
equal while hovering, it is resulted that:

mg
i =4 ——, 2.4.6
Yie =\ nkr (2:4.6)
where n is the number of rotors.

According to the above, the equilibrium points are:

X, =[000000zyz00v]"
Ue = [w167 w2e7 "'7wne]T

Note here, that aerodynamic effects are of minor importance in the linearized sys-

tem and although they have a linear relation with the states are not taken into

consideration. The resulting linear system is:

uw=gb (2.4.9)
b= —g¢ (2.4.10)
w:—g+§ (2.4.11)
. Tx
p=1 (2.4.12)
=2 (2.4.13)
%y
7= EZZ (2.4.14)
T = cospu — sinyv (2.4.15)
Y = sinu + cosv (2.4.16)
f=w (2.4.17)
b=p (2.4.18)
0=q (2.4.19)
Y=r (2.4.20)

were I, 7,,7,, T, are the force and torques due to rotor movement as explained in
Eq. (2.3.11) and (2.3.12).



Chapter 3

Basic movements

In this section the basic control commands of a multirotor will be explained as seen
in [16]. Let us begin by noting that the movement of the multirotor is controlled
by modifying the angular velocities of the rotors. The variation of the rotation
rates can exert forces and torques on the UAV that will affect its states. For better
understanding of these commands an octorotor in x-configuration will be used for
illustrations. In each case a deviation from a hovering state (w = wpgy) will be
presented.

3.1 Throttle

The throttle command is related to the vertical movement of the multirotor, with
respect to the xgyp plane. It is achieved by increasing or decreasing the rotational
rate of the rotors by the same amount, in order to exert only vertical thrust-forces,
and all correlated torques to be zero. When the multirotor is flying horizontally,
throttle command makes the vehicle moving upward or downward with respect to
the inertial frame. The speed of the rotors in this case, for a positive throttle
command should be w; = wy + dw, as shown in Fig. (3.1.1).

~ 9
wy+ 6w

Figure 3.1.1: Illustration of positive throttle command.

12
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3.2 Roll

The roll command is related to the multirotor rotation around the xp axis, which
is accomplished by generating torques with respect to that. More specifically, for
a positive command, the angular velocity of the rotors on the left side of x-axis
(y > 0), should be increased by dw, whereas the angular velocity of the rotors on
the right side of x-axis (y < 0) should be decreased by the same rate. That way
the total vertical thrust is kept constant.

Figure 3.2.1: Tlustration of positive roll command.

3.3 Pitch

The pitch command is associated with the rotation around the yp axis, and is
accomplished similarly with the roll command. In this case, for a positive pitch
command, the rate of rotors in z > 0 is decreased and of those in x < 0 is in-
creased, as shown in Fig. (3.3.1).

"—'4H+ Sw

~ 9
wy+ 6w

Figure 3.3.1: Illustration of positive pitch command.

For both roll and pitch commands, we may also note, that for any other multirotor
configuration, if there are rotors aligned with the xp (for roll) or yg (for pitch),



3.4. YAW 14

their rates remains unaltered.

3.4 Yaw

This command is related with rotation around the zp axis. The torques with re-
spect to z-axis are associated with the rotor’s drag, as it is already explained in
the model, thus yaw command is different from the pitch and roll commands. For
a positive yaw rate the rate of Clockwise (CW) rotating rotors must be increased,
while the rate of Counterclockwise (CCW) rotating rotors must be decreased. In
that way, the overall torque is unbalanced and the vehicle turns on itself around z.
As in the above cases, the total vertical thrust is kept constant so that the vehicle
maintain its altitude.

=
~ 9

— wy - dw
wy + 6w "

Figure 3.4.1: Illustration of positive yaw command.



Chapter 4

Platforms examined

In this thesis two different configurations of multirotors are examined. They are
implemented and simulated in different environments as well. The first application
refers to an octorotor using MATLAB® environment while the second deals with a
ROS model of a quadrotor simulated within GAZEBO.

4.1 Octorotor using MATLAB environment

An octorotor in X-configuration is used in this case. The arrangement of this
vehicle is shown in Fig. (4.1.1). The number for each rotor is assigned following the
ArduPilot motor order, found in the official documentation|[10]. For the simulations
a MATLAB® representation of the model ((2.4.1)-(2.4.4)) is used, where the exact

number of rotors (n = 8) is now set.

Figure 4.1.1: An octorotor in X-configuration.

15
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Assuming a rotational symmetry for the propellers, meaning that the angle between
two consecutive arms is /4, the distance vectors r; can be expressed as:

ri=d| cos¢p —sing 0]T
ro=d|[ —cos¢p sing 0]F
rs=d| sing —cosp 0]F
ry=d[ —cos¢p —singd 0"
rs=d[ cos¢p sing 0] (4.1.1)
re=d| —sing —cos¢p 0]"
re=d| —sing cosp 07
rs=d| —sing —cosp 0]F

where ¢ = pi/8 and d is the length of each arm.

Suffice to say, the parameters of the model need to be defined for the simulations
to run. The unknown parameters for this experiment are assumed as:

d = 0.4m

m = 3.0 kg
Ky, = 0.3
Ky, = 0.3
Ky = 22e5Ns?
Ko = 4.5e-7 Nms?
I, = 0.109 kgm?
I, = 0.108 kgm?
I.. = 0.208 kgm?

Joot = 2.0e-5 kgm?

The above values are similar with ones found in bibliography for octorotor vehicles,
ensuring that the order of magnitude is that of real values.

With all the parameters defined the model can be now simulated in MATLAB®.
Note that the model is open loop, without any controller, so the user must assign
values directly to the input vector, without any means to predict or predefine the
states. For that reason it is useful to find the value of the hovering angular velocity
and use it as a reference value in the simulations. The relation stated in Eq. (2.4.6)
is used, substituting the values for this octorotor and thus:

mg 3.0-9.81
=1/ =/ — 408.9204 rad 41.2
Wie nky 82265 rad/s (4.1.2)
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4.1.1 Basic commands simulation

For simulation requirements, the model is represented in MATLAB® as a function
and an ode45 solver is used to solve the system of differential equations. The vector
U = [w1 we w3 wy ws w wr wg|” is an input for the solver, and the state vector X
will be derived numerically. As a first test of the model the basic movements are
performed. The thrust command is the only one that can be accurately achieved
without the use of a controller. When the rest of the commands are implemented,
in spite the fact that they concern only the behaviour of the angular terms, they
simultaneously exert forces in other axes, that cannot be regulated without a con-
troller. However, the appropriate alterations of the rotor rates will be applied as
described, in order to observe the torques produced in the contested axes.

Having the hovering velocity of this vehicle computed, simulations are executed,
initializing the UAV stationary at z = Hm.

e Throttle: The UAV remains in its original position for 2 seconds and then all
rotor rates are increased to 420 rad/s for 3 seconds.

ufmys]
)
v[m/s]
x[m1
ylm]

wmjs]
~
plradis]
z[m]

2 4
t[s] t[s] t[s] t[s]

qlrad/s]
=)
rlrad/s]
Brad]
wlrad]

Figure 4.1.2: The state response with a throttle command.

e Roll: The UAV remains in its original position for 2 seconds and then the
rates are altered by dw = 2rad/s according to (3.2.1) for 1 second. In this

u[mys]
=
vimys]
¥[m]
yim]

t[s] t[s] t[s] t[s]

w[m/s]

t[s] t[s] t[s] t[s]

q[rad/s]
o
rlrad/s]
Blrad]
w(rad]

t[s] t[s] t[s] t[s]

Figure 4.1.3: The state response with a roll command.



4.1. OCTOROTOR USING MATLAB ENVIRONMENT

18

case, while a movement in y and z axes is caused as well, it is clear that a

torque around x-axis is exerted, as desired.

e Pitch: The UAV remains in its original position for 2 seconds and then the
rates are altered by dw = 2rad/s according to (3.3.1) for 1 second. The

generation of a torque around y axis is present here.

u[mys]
=)
n

w[m/s]
=)
~

=
=

o

plradis]

o

=]
NoE @

qlradss]
s o

o

rlrad/s]
o

o

ylm]

plrad]

wlrad]

Figure 4.1.4: The state response with a pitch command.

e Yaw: After 2 seconds in its initial position, the CW rotors’ rates are increased
and the CCW rotors’ rates are decreased by 10 rad/s, for the next 1 second.

-

y[m]

@olrad]

Figure 4.1.5: The state response with a yaw command.
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Again,

the yaw movement is clear in this simulation, although the vehicle
cannot precisely maintain its hovering position.
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4.2 Quadrotor in ROS-GAZEBO

In order to overcome the lack of a controller in the MATLAB® model and avoiding
building one, a ready ROS model of a quadrotor in X-configuration simulated in
GAZEBO environment will be used, as built by NTUA Control Systems Lab [17].
It also integrates ArduCopter and MAVROS communication.

4.2.1 Model and Known Parameters

The ROS model included is an Iris quadrotor. An illustration of the model is
presented in Fig. (4.2.1a), along with the rotors’ number and direction of rotation
(Fig 4.2.1b). Some of its features and parameters can be found in the configuration

(a) Visual model (b) Details about the rotors.

Figure 4.2.1: The iris model used in simulations.

files, but they do not necessarily coincide with the parameters used in the state space
model. The position of each rotor with respect to the center of mass is explicitly
issued and stated below.

0.13 —=0.22 0.023]7

rr= | "' m
ro= [ =013 02 0.023]Tm
r3= [ 013 022 0.023]"m
= [ =013 —0.2 0.230]" m

Since the model is assembled from different components, in order to construct the
full entity, the mass of the vehicle is computed as a sum of the components’ masses
and the inertia tensor is computed by using parallel axes theorem to combine the
inertias of the different components. The inertia of each rotor is also given in the
model. All these values are stated below.
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m=19 Kg
Jrot = 1.67604e-4 K gm?
0.0127 0 0
I= 0 00178 0 Kgm?
0 0  0.0242

The calculation of thrust and torques associated with the rotors is accomplished
using Lift and Drag Plugins, so the trust and torque constants are not directly
inserted in the model. They are actually related to aerodynamic polar diagrams
and their values may show fluctuations.

4.2.2 Autopilot

The autopilot integrated in the model is an open-source software [18] provided by
Ardupilot. The version used here is Copter 4.1.0, combined with Software In The
Loop (SITL) mimicking the Pixhawk hardware [19]. SITL is a build of the autopilot
code that allows us to run Copter without any hardware. When running in SITL
the sensor data comes from a flight dynamics model in a flight simulator.

A basic overview of Ardupilot’s autopilot can be seen in Fig.(4.2.2), which presents
the basic functional operation.

- ATTITUDE
b SENSORS
1 : (Accs, Gyros,etc.)
‘ Roll ‘)'

Power ATTITUDE I
SERVOX VEHICLE
CONTROLLER —
G 7 FUNCTION CONTROL
»RCMAP_| \ —f_> (Servos & Motors)

SPEED &
ALTITUDE
CONTROLLER

: A
v, i —

MAVLINK

RC _
Receiverr-=**-._

RC %
Channel !
Stream |

NAVIGATION
CONTROLLER

Internal
Special
Functions

RCx_
OPTION

POSITION GROUND CONTROL
SENSORS STATION OR COMPANION
GPS, Rangefinder,etc.) COMPUTER

Figure 4.2.2: Simple diagram of the basic functional operation of Ardupilot

As most autopilots used in aeronautical applications, the control scheme is com-
posed of two controller loops. The outer loop includes the position controller, witch
calculates position, velocity and acceleration errors, computes the desired throttle
and feeds target angles to the inner loop, which then calculates attitude errors and
gives the appropriate commands to the motors.
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The position controller has separate interfaces for horizontal and vertical control.
In Fig. (4.2.3) the block diagram of the xy plane control is presented. A similar
scheme is used for the z axis control giving a throttle commands to the motors.

Target Target
Position Roll, Pitch Attitude
) ( ) T ) P I Controller
limit to
T leash length T D

Figure 4.2.3: A block diagram of the xy plane scheme of the position controller.

The attitude controller scheme is described in Fig (4.2.4), where a simplified block
diagram with regard to each axis is presented.

Angle -> Rate Rate -> Motor Output

Target

Qutput
Angle 1,;'-‘ P

Target

Motors 3

accel
limit

Figure 4.2.4: A block diagram of attitude control scheme for each axis.

The figures of this subsection are adopted from the official Ardupilot documentation
[10].
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4.2.3 Sensors and data acquisition

There is a variety of sensors simulated during flight that can provide measurements
of different physical properties. The basic instrument is the IMU, that uses an
accelerometer and a gyroscope.

e Accelerometer
The accelerometer is a device that measures accelerations in the body-fixed
frame relative to free fall. This means that when the accelerometer is sta-
tionary will perceive the counterforce of gravity, thus measuring an upward
acceleration equal to g.
The equation describing what an accelerometer mounted in the UAV’s center
of mass measures is:

Qgccg = Qextpy — RE—)BagE (421)

e Gyroscope
A gyroscope is a device that can measure angles or angular rates. ArduPi-
lot software integrates a rate gyroscope that measures the angular velocities
expressed in the body-fixed frame.

The vehicle position, velocity and orientation are estimated based on rate gyro-
scopes, accelerometer, compass, GPS, airspeed and barometric pressure measure-
ments with the use of an Extended Kalman Filter (EKF) algorithm |20, chapter §].
The advantage of the EKF is that by fusing all available measurements it is better
able to reject measurements with significant errors. This makes the vehicle less
susceptible to faults that affect a single sensor.

The angular rates of the rotors are not directly estimated by the autopilot. Actually,
Electronic Speed Commands (ESCs) are given to the motors. The protocol used for
controlling these ECSs is Pulse Width Modulator (PWM), a periodic input pulse
of width between 1000us and 2000us for zero to full power, respectively. Therefore,
the angular velocities of the rotor cannot be known during the flight or simulation.
That raises a problem, since the model needs these velocities as inputs, and not the
PWM values. A way to overcome this, is to add an RPM sensor to the vehicle, but
the current model does not include one. For this simulated model, there is a way to
obtain these values, that are saved as GAZEBO states, but if the need to use RPM
values in a real life vehicle without an RPM sensor emerge, then an experiment to
derive a relation between PWM and angular velocity, should be conducted prior to
identification.

A suitable sampling rate for all sensors and measurements of the specific model is
found to be w, = 30H z.



Chapter 5

System Identification

5.1 Introduction to System Identification

System Identification is a method that allows building mathematical models of a
dynamic system based on measured data, by adjusting parameters within a given
model [21]. Tt is a field that became to grow after the rise of modern control theory
around 1960, although it has its origins in standard statistical techniques. Great
development has been made ever since and many techniques are established|22].
There are different identification methods and techniques that depend on the model
type, the linearity of the problem or the kind of identification parameters. The most
common techniques are applied to models of differential equations descriptions and
all types of linear state-space models, but there are also methods that can handle
more complex problems. In the latest years techniques for non-linear structures
such as Artificial Neural Networks and Fuzzy models have been introduced and
widely used as well. Detailed information about non-linear identification methods
can be found in [23].

A wide classification of identification techniques is based on the format of the data
used. In this context, there is time-domain, where measured time-series data are
used for parameter estimations based upon least squares, maximum likelihood or
recursive techniques, and frequency-domain identification, where spectral estimates,
identifying frequency response characteristics are used to identify the structural
parameters.

In this thesis only linear identification problems in the time-domain that can be ap-
plied to parametric model structures will be discussed. Parametric are the models
that their class is known up to some set of parameters, which can include coeffi-
cients of the variables or other indications about the model structure [24].

23
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5.2 Identification Procedure

The System Identification procedure consist of some basic steps, which according
to Ljung [21] are:

e The collection of data set ZV
In order for the identification to provide efficient results, the collected data
should be as informative as possible with respect to the models. An apparent
interpretation of that is that the inputs should not be simple, so that they can
evoke all the system properties. In a more precise mathematical approach,
an open-loop experiment is informative if the input is persistently exciting.
The number of parameters to be estimated in any case, indicates the order
of persistent excitation that needs to be accomplished. As Ljung defines, a
quasi-stationary signal u(t) is persistently exciting of order n, if its spectrum
®,(w) is different from zero on at least n points in the interval —7 < w < 7.

e The selection of a model structure or a class of candidate model descriptions
This is a process that depends on the application and the amount of infor-
mation available about the system in question. In this multirotor vehicle
case, the physical properties pertained to its operation do not allow a variety
of model structures to be considered. Actually, only one model structure is
contemplated, the gray box model that will be presented in Section 5.7.

e The selection of a fit criterion between the data and the model
That is actually the identification method used to estimate the parameters.
The Least Squares approach is the most common fitting method and that is
the one that will be used in this thesis.

e Validation of the resulting model
When a set of parameters is estimated and a model is selected, its quality
needs to be assessed. Whether the model agree with the observed data and
describes the true system sufficiently is a question that needs to be answered.

5.3 The archetypical problem

In this section the most common identification problem is presented, that of an Au-
toregressive with Extra Input (ARX) model. As stated by Ljung [21], its estimation
procedure works as an archetypical problem that comprehends the basic identifica-
tion concepts and the linear Least Square method, helping with the understanding
of the techniques used throughout the chapter.

5.3.1 The model

A discrete time relationship between the input u(¢) and the output y(¢) at time ¢
is the finite-difference model described in the following equation.

y(t) +ary(t — 1) + ...+ apy(t —n) = byu(t — 1) + ... + buu(t —m) (5.3.1)
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Eq. (5.3.1) can be rearranged, as a way of determining the next output value given
all previous observations:

y(t) = —ay(t — 1) — ... —ayy(t —n) + byu(t — 1) + ... + bu(t —m)  (5.3.2)
Here, are introduced the vectors:
0 = [a1,...an, by, ..., o] "
$(t) = [—y(t = 1) - =yt —n) u(t — 1) - u(t —m)]",
and with these, Eq. (5.3.2) can be written as:
y(t) = 6(1)70 (5.3.5)

Note that the output y(¢) depends on the parameters in 6, thus this calculated value
will be called §(t|¢) and Eq. (5.3.5) shall be written:

§(t19) = 6(6)70 (5.3.6)

5.3.2 The Least squares method

Suppose now that for a given system we do not know the parameters in 6, but that
we have a data set of inputs and outputs over a time interval 1 <¢ < N:

ZN = [u(1),y(1),...,u(N),y(N)] (5.3.7)

The goal is to estimate the parameter vector 6 that fits the calculated values §(t|0)
to the outputs y(t). The least squares method is described as:

minVy (0, ZV), (5.3.8)

where

1 & 1 &
Vi (0, ZN) —NZ — §(t0)) :NZ T9) (5.3.9)

The minimum can be found by setting the derivative to zero:

d " .
0=—5Vn(0.Z Z¢ ()10 (5.3.10)
(5.3.11)
which gives:
> oty(t) =D et)e(t)"6 (5.3.12)

So, the value of 6 that minimizes (5.3.9) is

=[S omew™] S ) (531

t=1
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5.3.3 Covariance matrix
The estimated covariance matrix of  is described as:

N

P<é>:&[2¢<t>¢<t>T] A= ) - o)) (5.3.14)

t=1

5.4 Matrix Formulation

All the above expressions can also be written in matrix forms as well as be aug-
mented for multiple inputs and outputs.

Instead of y(t) and ¢(t), we may have Y, «1(t) and ®,.4(t) respectively, where n is
number of outputs and d is number of parameters.

[ V(1) |
Yy = Y”Xf@) (5.4.1)
Vo (V)
[ ®ya(1) |
Dy = (D"X:d(g) (5.4.2)
@V
Then, the model can be written as:
Yy =®\0 (5.4.3)
and the criterion (5.3.9) becomes:
Vi (60) = %|YN - %(YN _ B 0)T (Y — ®rh) (5.4.4)

This concludes to formulation of the parameter estimation:
0= [dLdy] ' ®LYy (5.4.5)

In the latter equation the (Moore-Penrose) pseudoinverse of ®y can be recognized
and (5.4.5) can be rewritten as:

0=a Yy (5.4.6)

Following these remarks the covariance matrix takes the form:

~ 1 R
P(6) = 5 IIYn — @n0]*(@x@n) ™ (5.4.7)
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5.5 Merging Experiments

When more than one experiments are conducted or the data set is split into separate
segments, a method to merge the parameter estimate needs to be defined. Let 6,
be the estimated parameter vector of experiment ¢ and P; its estimated covariance
matrix. In order to combine these estimates, according to statistics, the best way
is to weigh them according to their inverse covariance matrices.

6=rP> (P)'0; (5.5.1)

(5.5.2)

5.6 Types of inputs

As already explained an informative experiment rely upon the form of the input
signal u. There are some guidelines as for what kinds of signal designs result to
informative experiments (see [21, chapter 13]), all of which have the distinguishable
feature that must contain a variety of distinct frequencies. As Tiscler and Remple
[25] introduce, a suitable signal format for aircraft or rotorcraft System ID, is that of
a frequency-sweep (or chirp signal). It is actually a sinusoidal signal with amplitude

A, as described in Eq.(5.6.1).
Usweep = Asin(w(t)) (5.6.1)
Here, an exponential frequency progression is implemented, according to Eq. (5.6.2).

W(t) = Wmin + k(wmaz - Wmin)7

kj = (eCQt/Tsweep _ 1)

where wy,;, is the minimum frequency, wy,q, is the maximum frequency and Tsyeep
is the duration of the signal, which can be selected so:

Tsweep > (4 01 5) T s (5.6.4)

where T),40 = 27 /Wpmin, the period corresponding to the minimum frequency. The
values ¢; = 4.0 and ¢, = 0.0187 are assigned to the constants, which are found to
be suitable for a wide range of applications [25].

Linear or Quadratic sweep signals are also examined, where the frequencies progress
according to equations (5.6.5) and (5.6.6) respectively.

W(t) = Wy + e~ Hmin (5.6.5)
Tsweep
Wmaz — Wmin
w(t) = Wmin + TQ—tQ (5.6.6)

sweep
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5.7 Model rearrangement

Although the state-space model does not comply with the ARX model structure as
described above, there is a way to be rearranged in order to have a similar form
with Eq. (5.4.3). This is only feasible if the initial model is linear with respect to
the parameters.

Among the parameters issued in the model the following are assumed as known:

e The vectors r; that correspond to distances and can easily be measured in any
multirotor.

e the mass m of the multirotor

Since only the dynamic differential equations contain parameters in their formation,
these are the equations that will be used for identification, and the new model
structure is

Y = &0, (5.7.1)
where the individual matrices are:
m(u+ qu — rv — gs6) |

m(v + ru — pw + gsocd)
m(w + pv — qu + gcoch

v — ; (5.7.2)
0
L 0 -
[—u 0 0 0 0o 0 0 0 1
0 —v 0 0 0 0 0 0
o_ |0 0 Xw 0 0 0 0 0
o 0 =%, w 2 0 poo—ar qr gy sgn(w)w;
0 0 Z Trzwz 0 rp q -rp —p Z SgTL(wi)wi
00 0 — > sgn(wi)w® —pg —pq T 0 |
(5.7.3)
0=[Ky Ki Kr Ko L Iy L. Ju]" (5.7.4)

It is clear that matrix Y does not have the physical meaning of an output and some
of the outputs are also appearing in matrix ®. But that does not raise a problem
in the procedure.
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5.8 Octorotor Identification

The MATLAB® model can predict the response of the states X, with any given
input U. Since there is no controller to guarantee the stability of the octorotor, all
obtained results are only useful in a mathematical approach, keeping any physical
meaning aside. Although they do not correspond to realistic movements, simula-
tions of the octorotor can be used as a first test of the identification procedure and
the selected model (5.7.1) rightness.

Various sets of simulations were conducted in which random values were given as
inputs to the model. A fixed time step dt=1e-3 for the solver is selected. The
different categories of inputs are explained below.

e Step functions
In the first group of simulations constant values were given to the input vector
U. Of course these values were not identical for every rotor, ensuring that
forces and torques are exerted with regard to all axes. Five simulations with
duration 5 seconds each, were run, with rotor rates randomly chosen between
400 and 800 rad/s.

e Cosinusoidal functions
In this category of simulations the rates of the rotors take the form
w; = 400+W;cos( fit), where both the amplitude W; and the angular frequency
fi are randomly assigned in range 0-400 rad/s for the former and 0-10 rad/s
for the latter. Five simulations with 5 seconds duration were run in this case
as well.

For every experiment, the set of data Z = [X(1),U(1), ..., X(N),U(N)], is used to
construct the matrices Y and ® of the model (5.7.1). The derivatives of u,v,w
and p,q,r are also needed for the procedure. In this case, MATLAB® gradient
function is used, to obtain the desired terms numerically. When all terms are known
Eq.(5.4.5) is used to receive the estimated parameters.

The experiments are merged as explained in Section 5.5 and the results are:

Table 5.8.1: Identification results of the octorotor experiments.

Step inputs | Cosinusoidal inputs Both Exact values

Kq, 0.29975 0.29993 0.29992 0.3

Ky, 0.29838 0.3 0.29997 0.3

Kr | 2.2001e-05 2.2001e-05 2.2001e-05 2.2e-05
Kq | 4.5002e-07 4.5002e-07 4.5002e-07 4.5e-07
. 0.10901 0.10901 0.10901 0.109

I, 0.10801 0.10801 0.10801 0.108

I, 0.20801 0.20801 0.20801 0.208

Jrot | 2.0003e-05 2.0001e-05 2.0001e-05 2e-05
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Comparing these results with the exact values of the parameters (see Section 4.1)
it is clear that the identification procedure gives almost perfect results and no val-
idation method is needed here. Additionally, the design of more complex inputs,
as described in Section 5.6, is deemed unnecessary, since little or no room for im-
provement remains.

Of course the same procedure cannot be applied in a real life octorotor and thus
the work is not concluded here. It is however a perfect proof that the model works,
and a fundament for the following work.
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5.9 Quadrotor identification

In this section the identification of the model parameters using the quadrotor model
described in (4.2) is conducted. The simulated model runs in a closed loop but since
the parameters of the control scheme are considered known and/or there is no inter-
est of their estimation a Direct Identification approach can be employed [21, p. 457].
Hence, the identification will be done in a same way as for an open loop operation,
ignoring any possible feedback.

5.9.1 Input signals

The version of ardupilot used does not allow any user to give directly PWM com-
mands to the vehicle. Hence, the form of the input cannot be predefined. The
different ways to give commands to the multirotor are stated below:

1. A joystick that can give manual commands to the (simulated) vehicle. With
this method, we may have the highest freedom of movements, but it is really
difficult to guarantee repeatability of the experiments.

2. Position or linear velocity targets through SITL command line. Tt is important
to note here, that the SITL works with a NED frame, thus the axes used in the
commands do not coincide with that of the earth frame specified in Section
2.1.

3. Using a ROS publisher to send raw setpoint messages to Flight Controller Unit
(FCU). Here, linear velocity and yaw rate setpoints are sent with respect to
a local earth-fixed frame.

For the simulations conducted here, the third option is used, since it is the only way
to give signals as functions of time. A rate of 15Hz is used for the sampling of these
messages, in order for Shannon’s sampling theorem to be verified [26]. Since it is
impossible to define the format of the input signal (PWM) in order to preassume
the persistent excitation of the model, the format of the setpoint signals needs to
be wisely chosen.

A first consideration is that the signals must be so, that they exert forces and torques
in multiple axes and thus the quadrotor moves in multiple directions. However, the
capabilities are limited, since no signals can be sent in the roll and pitch angles
or angle rates. The logic that the inputs should consist of multiple frequencies is
also taken into account when the design of the setpoint signals is made, hence the
directions of Section 5.6 are followed for the setpoint signals as well.
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5.9.2 Data Collection and Preprocessing

For any simulated flight the data set needs to be saved in order to use it for the model
fitting. The acquisition of the simulation data is done through a ROS subscriber
which saves rostopics data in a file that will later be imported in MATLAB®. The
different categories of collected data are:

e A record of the simulation time

e Position and Orientation in quaternion formulation with their time stamps
Since the model uses Fuler angles to represent the orientation, the quaternions
need to be transformed to ¢, 6,1 angles (see Appendix (A.2)).

e Linear and Angular velocities expressed in the body-fixed frame with their
time stamps

e Filtered accelerometer measurements from the IMU with time stamps
According to Eq. (4.2.1) these measurements are expressed, with respect to
terms appearing in the model, and for the different axes, as:

Uy = U+ qu — rv — gsinf
Vv = U+ 1u — pw + gsingcost

Wryy = W+ pu — qu + geospcosh

e The rotor velocities in rad/s as GAZEBO states
e The PWM commands as given to the motors

The rate of this procedure is set at w, = 30Hz but some of the topics have their
own time stamps. Hence, a way to adjust all the data to correspond to the same
time values need to be found. Firstly, all duplicate records due to sensors lags
or delays are deleted. The time stamp of the position data is used, and all other
measurements are interpolated in order to gain data at this time record.

The values of the angular accelerations are also needed for the identification proce-
dure but they are not measured by any sensor. The only way to receive these values
is to numerically integrate the time series of the angular velocities. MATLAB®
function gradient is used here, as well. As any numeric computation, this may
induce errors that can affect the identification results. The use of a smoothing
filter is investigated in order to reduce these errors. MATLAB® Signal Analyzer
App was used to test the effects of different smoothing filters on the data, and a
Savitzky-Golay [27| filter with a smoothing factor of 0.5 was finally selected. It is
under doubt whether the smoothing will improve the procedure, since it may affect
the correlation between the data, thus the application of the filter will be examined
by comparing the results of both cases.

As part of the preprocessing, the use of a lowpass filter for the data collected from
the EKF is also considered. A suitable lowpass filter is designed, using MATLAB®
lowpass function, which automatically chooses the best filter option between FIR
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and IIR filters [28]. The passband frequency is selected as w; = 6Hz in order to
satisfy the relation:

ws > Bwy (5.9.1)

Since lowpass filters induce a phase lag in the data, the MATLAB® function
1iftlift was used, which performs zero-phase digital filtering in both forward
and reverse directions.

5.9.3 Simulated Experiments

The format of the signals and the desired frequencies demanded a trial and error
approach in order to find the best input types (amplitudes, frequencies or mean
value of signals). A lot of trial experiments were conducted throughout the proce-
dure, in order to find suitable inputs for the simulation and get "good" predictions
of the parameters. The evaluation of the signals, prior to validation of the results,
was done by using two main criteria; firstly, by checking how sufficiently the autopi-
lot could follow the setpoint signals and subsequently by examining the estimated
parameters. An obvious alert is whether the estimated parameters have negative,
non-physical values, or even if they dissent by far from the known values.

Some kinds of signal types stood out, as the most prominent. In all of these cases
the setpoint signals take the form u = Asin(wt) + B, but they differ in the way
their frequencies or their amplitudes change during the simulated flight. When the
yaw rate is not oscillating around zero, it is verified that produces better estimation
values. All these experiments can be divided into three categories.

As for the first group, frequencies that increase stepwise over specified time periods
and amplitudes that are fixed during the experiment were applied. The frequencies
of the velocity commands and the yaw rate frequency were different in most of these
simulations. Here the results of an experiment conducted with setpoint inputs as
described in Table (5.9.1) are presented, Experiment N° 1.

Table 5.9.1: Given input signals for Experiment N 1.

Setpoint Velocities Values
& des 0.5sin(wt) + 0.5
Ydes 0.5sin(wt) + 0.5
Zdes 0.0
Vdes 0.1sin(wy,t) +b

The values of w, wy, and b are initially 0.5, 0.5 and 0.0, and are increasing every
10s, by 0.5, 0.02 and 0.2 rad/s respectively.
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Actual response of the inertial velocity Actual response of the yaw rate
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(a) The actual linear earth-frame velocity (b) The actual yaw rate.
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(c) Trajectory of body velocities in xy plane.

Figure 5.9.1: Simulated response of the quadrotor with the input signals of Exper-
iment N° 1.

In Fig. (5.9.1) some plots of the collected data are presented. Although it is pro-
found that the velocity signal given to the autopilot could not be exactly followed, a
generally good estimation of the parameters is provided (Table (5.9.2)). From now
on, as émw will be referred the vector of parameters estimation, where the numer-
ically computed accelerations are not filtered, while as ésmooth are the estimations
using smoothed data. It is profound, that this filter only affects the estimation of
the parameters that are involved in the equations describing the angular velocities.

Table 5.9.2: Estimated parameters of Experiment N° 1.

esmooth eraw
Kq, | 0.0076089 | 0.0076089
Kq, | 0.0091162 | 0.0091162
Kr | 2.169e-05 2.169e-05
Kq | 3.4223e-09 | 4.4447e-09
y - 0.014837 0.013958
I, 0.018459 0.017608
I, 0.0109 0.0087216
Jror | 0.00033652 | 0.00038228
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Noticing that as the frequencies are increasing the quadrotor cannot follow the
desired velocity trajectory, signals with decreasing amplitude were designed, com-
posing the second group of experiments. One of the trial inputs is presented in
(5.9.3), and will be referred as Experiment N° 2.

Table 5.9.3: Given input signals for Experiment N 2.

Setpoint Velocities Values
T des asin(wt)
ydes 05(1817}(&)75) + 0.5
Zdes 0.0
Waes 0.1sin(wy,t) +b

The values of w, w,, and b are initially 0.5, 0.1 and 0.0, and are increasing every
10s, by 0.8, 0.02 and 0.1 rad/s respectively. The amplitude a is designed to begin
from ap = 0 and decrease linearly to afine = 0.05. Plots of the followed trajectories

are presented in (5.9.2).

Actual response of the inertial velocity
T T T T T T

Actual response of the yaw rate
T T T T T

X [m/s]
¥ [r‘imd /s

(a) The actual linear earth-frame velocity (b) The actual yaw rate.

of x axis.
Velocities in xy plane

v é[m /8]

(c) Trajectory of body velocities in xy plane.

Figure 5.9.2: Simulated response of the quadrotor with the input signals of Exper-
iment N° 2.
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A comparison between the PWM signals and the angular velocities of the rotors is
also presented here, in order to clarify their relationship. Even from Fig. (5.9.3) it is
clear that the signals have similar forms, and both demonstrate oscillating behavior

as desired.
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Figure 5.9.3: Plots of input data of rotor n.1 as PWM commands (up) and as

angular rate in rad/s (down).

An analytical relation was found between the two, by using MATLAB® Curve
Fitting Tool, for all four rotors. The mean values of the coefficients give us a final

function description as seen below.

Table 5.9.4: Estimated relation between PWM and angular velocity values with

data of Experiment N 1.

Relation

R2

rotor n.1 | wy = 0.7298PW M; — 677.4

0.8471

rotor n.2 | wy = 0.7328 PW M, — 682.3

0.8685

rotor n.3 | w3y = 0.7318 PW M5 — 680.9

0.7318

rotor n.4 | wy = 0.7393PW M, — 692.6

0.8711

w = 0.7334PW M — 683.3




37 CHAPTER 5. SYSTEM IDENTIFICATION

The estimated parameters from this experiment are presented in Table (5.9.5).
Although, the inertia J,.,; of the rotors takes a negative value, we have a better

estimation of I, since it is a better approach of the value presented in Section
4.2.1.

Table 5.9.5: Estimated parameters of Experiment N¢ 2.

esmooth eraw

Ky 0.0056729 0.0056729
Kq, | 0.0057718 0.0057718
Kr | 2.1684e-05 | 2.1684e-05
Ko | 3.0664e-07 | 2.7701e-07
y . 0.013306 0.012733
Iy, 0.017525 0.016558
I, 0.024884 0.022452
Jrot | -0.00017544 | -0.00012423
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The third group consists of the most prominent category of inputs, the sweep sig-
nals. Using as guideline some reference values introduced in [25], and consulting
the work of Cho et al. [29] and Gong et al. [30], who performed sweep signals
with frequency range 0.6-60rad /s (~0.1-10Hz) over 60s, a variety of tests were con-
ducted. More suitable for the quadrotor simulations here, were found the frequency
sweeps between 0.6-60rad /s over 100s, and an example of these simulations will be
presented here as Experiment N° 3. Eq. (5.6.2), is used to compute the desired

frequency at every time step.

Table 5.9.6: Given input signals for Experiment N¢ 3.

Setpoint Velocities Values
T des sin(wt) + 0.5
Yaes 0.5sin(wt) + 0.5
Zdes 0.0
Vs 0.1sin(wt) 4+ 2.0

Actual response of the yaw rate
T T T

Actual response of the inertial velocity
T T T T

: . /\/WWMANW
ta‘ts] ta‘is]
(a) The actual linear earth-frame velocity (b) The actual yaw rate.
of x axis.

Velocities in xy plane

v [m/s]

T
u [m/s]

(¢) Trajectory of body velocities in xy plane.

Figure 5.9.4: Simulated response of the quadrotor with the input signals of Exper-
iment N° 3.
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As for the estimated parameters of this experiment, presented in Table (5.9.7), it
could be claimed, that a middle solution for the values of I.. and J,; is found. Al-
though .. takes a lower value than expected, still is bigger than that of Experiment
N° 1, providing a good estimation of J,,; simultaneously.

Table 5.9.7: Estimated parameters of Experiment N° 3

esmooth eraw

K, | 0.0084335 | 0.0084335
Kg, | 0.0089067 | 0.0089067
Kp | 2.169e-05 | 2.169e-05
Kg | 1.3663e-09 | 1.2867e-09
I, | 0.014105 0.011815
I, | 0.017953 0.016541

I.. 0.015345 0.014451
Jrot | 0.00015537 | 0.00016109

At this point, the effects of the two already discussed filters will be illustrated, using
collected data from Experiment N° 3. In Fig. (5.9.5) the response of the angular
velocity p data, is chosen as an example to demonstrate the results after the filter
implementation.

Angular velocity p before and after lowpass filter

T
—raw
—filtered

e T

Gp [rad/ s]n

t Ts]

(a) The angular velocity p before and after the implementation
of the lowpass filter.

(b) Detail of the box area of plot in (a).

Figure 5.9.5: The response of angular velocity p throughout the Experiment N¢ 3 .

The effect of the smoothing filter over the numerically integrated data is illustrated
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in Fig. (5.9.6), using the z-axis angular acceleration 7-.

The numerically computed angular acceleration
T T T T

0s
—raw
o4 —filtered

) f'b[rad/ms] )

t [s]

(a) The angular acceleration 7 before and after the implementa-
tion of the smoothing filter.

(b) Detail of the box area of plot in (a).

Figure 5.9.6: Tllustration of the numerically computed 7.
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5.9.4 Results and Validation

From the set of conducted experiments, the ones that individually presented the
best results, are now combined according to Eq. (5.5). Obviously, their covariance
matrices were computed prior to merging. Different combinations of simulations
were examined, until the most suitable merger was achieved. Experiments that
belong to the first and second group, as described above, could deliver better results
as the inertia I,, is concerned.

Table 5.9.8: Estimated parameters from a total of experiments.

esmooth eraw

Kg, | 0.0067367 | 0.0067372
Kq, | 0.0059741 0.0059741
Kr | 2.1685e-05 | 2.1685e-05
Ko | 1.0666e-08 | 9.9358e-09
y . 0.013728 0.01305
I, 0.017532 0.016772
I, 0.023258 0.021431
Jror | -0.00010752 | -7.4915e-05

Of course this solution, presented in Table (5.9.8), cannot be fully acceptable, due
to the unfeasibility of the inertia J,.,;. However, since this parameter only affects
the terms associated with gyroscopic effects, which are of minor significance, this
set of parameters will not be completely discarded.

In order to resolve the above issue, more experiments are now included in the
procedure of finding a final parameter vector, as seen in Table (5.9.9). Indeed, the
value of J,.; is now positive, and it well approaches the real one. The "price" is
although that the value of I, is now decreased.

Table 5.9.9: Final parameter estimation.

esmooth eraw

Kgq, | 0.0088314 | 0.0088328
Ky, | 0.0090478 | 0.0090492
Kp | 2.1689e-05 | 2.1689e-05
Kg | 1.5363e-09 | 1.421e-09
Iy 0.013845 0.01296
I, | 0017624 | 0.016738
I, 0.014848 0.013394
Jror | 0.00017439 | 0.00019407

As for the smoothing filter, one can notice, that when applied, the values of the
affected parameters are slightly increased, but not an outstanding difference is made.
We can, thus, conclude that either raw or smoothed integrated data, can be used
for the system identification procedure.

The validation of the parameters’ estimation here, is a tricking problem. States or
their derivatives need to be computed using a model that integrates the estimated
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parameters and then be compared with the responses of the initial simulated model.
Of course the first thought would be to include the estimated parameters in a
MATLAB® model and solve the differential equations, providing input U data
collected from a simulated experiment, but the numerical solver propagates any
errors that occur and hence the responses show grate deviations. As a middle
solution, values of the states and the inputs, along with the estimated parameters,
are substituted in the differential equations (2.4.1) and (2.4.2). The derivatives of
the states u, v, w, p, ¢ and r, are then compared with the respective values obtained
from the simulated sensors. The problem with this procedure is, once again, that the
differentiated values have to be used for the angular accelerations, since the actual
values cannot be measured. For all the following results and plots, the smoothing
filter is applied in the numerically integrated data and hence the parameter vector
Oumoon Of Table (5.9.9) is assumed as the final estimation.

A first attempt of validation is executed using data collected from an experiment of
similar specifications as the ones used for the estimation. The resulting time series
of the accelerations, along with data obtained from the simulations are presented
in Fig. (5.9.7). The coefficient of determination R? [31], is also calculated for every
axis as a means to evaluate the selected parameters.
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Figure 5.9.7: Plots comparing the actual accelerations and the ones based on the
estimated parameters. The coefficients of determination R? are also shown in the
plots for each axis.

It is clear, that the linear terms, are almost perfectly predicted when the parameters
Kg4,, K4, and Kp are implemented, and that can be verified by their R? values.
The angular terms however seem to have more difficulty to be reproduced from the
model. Actually, according to R? values, only the response of ¢ seems to be well
predicted. However, with a closer look in the p response (see Fig. (5.9.8)), one
can see that despite the negative R?, the predicted model can follow the response
of the original one to a certain extent. The biggest problem arises with the z-axis
acceleration. A plausible explanation is the I.., value, which as already stated,
diverges from the known one, or even the K¢, the value of which cannot be verified
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The angular acceleration p at a time interval ~ 23 — 70s

Figure 5.9.8: Detail of the p response.

in any other way.

A second experiment, concerning simpler commands, is used for another validation
attempt. Desired velocities were given to the vehicle using the SITL command line
(2" method of Subsection (5.9.1)) and the results are presented in Fig. (5.9.9).

—— Estimated model
——ROS model
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Figure 5.9.9: Plots comparing the actual accelerations and the ones based on the
estimated parameters, for the 27¢ validation attempt.

In this case, the linear acceleration w cannot be predicted as effectively as before,
probably because the model was not trained for this kind of movements. It is clearer,
though, that the accelerations p and ¢ are well predicted. What is concerning, is
the total failure of the 7 prediction.
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5.9.5 Overall discussion of the results

Taking into account the overall System Identification procedure and even more
specifically the two validation attempts presented above, some general comments
concerning the estimated parameters can now be noted.

The aerodynamic coefficients Ky, and K, , although their estimation does not con-
verge in specific values, are always assigned small values of the same order of mag-
nitude. That concludes to the notion that these terms have little contribution in
the model, and the responses of . and v are barely affected by them.

Concerning the rotor coefficients Kr and K¢, the results are controversial. The
Thrust and Drag calculation terms are based on some assumptions, which may not
be fully met throughout the simulations. On top of that, as already mentioned, the
forces and moments of the propellers are calculated using polar diagrams, without
the implementation of constant terms. This indicates that in different operating
areas the values may differ. The constant K1 showed a common behaviour in all of
the conducted experiments, in which, though, no large accelerations were observed
on the z-axis. However, in commands such as that of the second validation attempt,
the estimated value does not correspond with the same accuracy in the thrust force
calculation. Regarding K, which only appears in the 7 equation, we see that the
value found is not able to predict the motion along this axis. In an attempt to
verify, at least, the order of magnitude of the predicted K¢, slight alterations on its
value were made, before the comparison of the estimated and the simulated model.
The plots produced by applying Kq = 3.5e-07, prior to the validation procedure,
for the two cases examined above are presented in Fig. (5.9.10). In (5.9.10a), it is
clearly depicted, that if the value of K was larger than initially predicted, then
there would be a large deviation from the simulated model. On the contrary, as
observed in (5.9.10b), only with a bigger K value the quadrotor can actually drift
from the zero acceleration value. That may work as evidence, that a constant value
of K is not sufficient to describe all kinds of motions and maneuvers. Depending on
the application, that the parameters are going to be embedded in any future work,
more specific experiments could be conducted in order to find a suitable estimation.

i

(a) Effect of a different K¢ value in the first (b) Effect of a different K¢g value in the
validation experiment second validation experiment

Figure 5.9.10: Effect of a bigger K¢ value (K¢ = 3.5e—07) in the predicted response
of the experiments used for validation.
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Regarding the identification of the inertia terms (I, Iy,, L., Jyot), although R?
are not satisfactory for all the rotational equations, in this case their known values
can be used to verify the results. Indeed, the values approximate quite well the
values of the known parameters for I,,, I, and J,,; and the estimation can be con-
sidered as successful. In particular for 7., that from the overall experiments there
is difficulty to find an approximate value, in a parameter identification process of a
real-life UAV a different approach might be needed. To begin with, it has been con-
firmed from the experiments that when large values of angular velocity in z axis are
given as inputs, the values of I, approximate better the known value, so perhaps
a separate procedure with only such experiments should be followed, aiming only
at finding I... In a worst case scenario, an analytical or an experimental procedure
could be followed, as Mendes et al. describe [32].



Chapter 6

Conclusions and Future work

The main purposes of this thesis are met, although not in an extent as satisfactory
as desired. The results obtained are promising and, while not perfect, they can be
a helpful first step for any future work regarding that matter.

An extensive general description of a multirotor model is constructed, that can
be used for different types of multirotor configurations, concerning the number of
rotors, their tilt angles and their positioning. A specific model is derived for two
different platforms, which are explicitly presented along with their characteristics
and their simulation environments.

As a following module of this thesis, a system identification procedure for the esti-
mation of a multirotor’s model parameters has been described. The Least Squares
method has been explained and a way to rearrange the model in order to be suitable
for that approach is found. Afterwards, the process has been implemented for the
two different model configurations. The identification of the octorotor’s parameters
provided the desired results but since no control scheme was included, that proce-
dure cannot be applied in any real-life multirotor because the stability of the vehicle
cannot be guaranteed. Hence, more weight is given to the case of the quadrotor,
which is autopilot equipped. The main focus was directed to the design of the
signals that the simulated model could receive, in order to be persistently excited.
The sinusoidal signals that were sent as linear velocity and yaw rate commands
are found suitable to predict most of the parameters, or at least to provide useful
information about their behaviour. With the estimated parameters, the actions of
the simulated quadrotor, can be to some extent predicted by the derived model,
except from the rotary motion around z axis.

Aiming for better results, this research could be futurely advanced or readjusted.
To begin with, the integration of a different autopilot version such as PX4, might be
of interest, since it allows the users to send PWM signals directly to the controller.
In that way the inputs of the model could be designed based on the guidelines dis-
cussed in this thesis, ensuring that they will consist of the desired frequency range.
Another future approach could be to use optimization algorithms or other system
identification techniques that may be more suitable for this kind of models.

However, even with these parameters, a model-based controller could be designed
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and implemented in order to test the behaviour of the system, as another means
of validation. It is possible that the predicted values are sufficient and that the
controller can follow its tasks, otherwise it may give a good direction in ways to
readjust the parameters.



Appendix A

Rotation representation

A.1 Elementary Rotations

Let us define a reference frame O — xyz. The rotations of this frame about one of
the coordinate axes are called elementary rotations.

Consider that the original frame is rotated by angle o around z axis and a frame
O — 2'y'2’ is obtained. The Rotation matrix of frame O — x'y’z’ with respect to
O — zyz is:

cosae —sina 0
R.(a) = |sinae  cosa 0 (A.1.1)
0 0 1

The Rotation matrices of an angle § around y axis and angle v around x axis are
respectively:

[ cosB 0 sinf]

RB)=| 0 1 0 (A.1.2)
| —sinf 0 cosB|
10 0 ]

R.(y) = |0 cosy —siny (A.1.3)
|0 siny  cosy |

A.2 Quaternions

A different representation of the orientation can be achieved by using unit quater-
nions. It is a system with 3 complex dimensions that needs four parameters to be
described. It can be represented in the two following forms.

q=qo+qi+qj+ gk (A.2.1)
T
a=[0 o @ g (A.2.2)

A rotation of angle o around axis u, can be described by a unit quaternion as Eq.
(A.2.3) states.
q = [cos$ singu] (A.2.3)
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The length of a unit quaternion is always:

lal = /@ + @ +a+at=1 (A.2.4)

A rotation matrix corresponding to a given quaternion takes the form:

2@ +4q1) =1 2(qig2 — q93)  2(q1g3 + qog2)
R(Q) = |2(q1¢2 + q0a3)  2(q5 +a3) — 1 2(q2q3 — qoq1) (A.2.5)
2(q1q3 — q092)  2(q2q3 + q0q1) 2(qg +3) — 1

Relations between quaternions and Euler angles

According to Eq. (A.2), a quaternion can also be calculated by using the Euler
angles as shown below:

cos(¢/2
_ |sin(or2
dB—E COS(¢/2

cos(¢/2

An expression of the Euler angles with respect to quaternion parameters can also
be derived:

cos(0/2)cos(v/2) + sin(¢p/2)sin(8/2)sin(y/2)
cos(0/2)cos(10/2) — cos(¢/2)sin(0/2)sin(y/2) (A.2.6)
( )) w/2§ + sing¢/2;cos((0/2;5ingw/2; -

V/2) — sin(¢/2)sin(0/2)cos(1) /2

sin(0/2)cos
cos(6/2)sin

— — —— —

tan-! 2(qoq1 + 4243

¢ 1=2(¢i a4y
0 = |sin” [2(qog2 — ¢13)] (A.2.7)
Y tan-1 208 + 0192

1—2(¢3 + 43
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Movtehonoinon un enNavopwUEVOLU EVAEQLOU
OYNUATOEC TOAAATIAWY EAIXWYV

Hpwtol Eexvioel 1 dodixacto ebpeong Tou uadnuoTixol PHoVTEAOU TOU TEpLYEdpEL
™V %xynon evOg EVAEQLOU OYAUATOC TOAUTAGOY EAIXWY, lvan amapaltnTog 0 0pLoUdS
OoLOTNUATWY cuvteTayuévey. OpiCovtal, otnv mapoloa TepinTtwor, dVo Bacixd cu-
oTAuaTer éva adpavelaxd yewdeto cbotnuo (E) xou éva owpatddeto (B), pe apyn oto
x€vTpo Bpouc Tou oY AUATOC X0t ToUC dZ0VES OTwe potvovTton 6To Ly (1) v toug
000 OLUPOPETIXOUE TOTOUC TOAUXOTITEQWY TIOU UEAETMVTAL OTNY TopoUc ERYAGLAL.

(o) Tetpaxdntepo (B") Oxtoxdémtepo

Ly 1t Toapouolaon Tou GWUATOBETOU CUGTHUITOS CUVIETAYUEVGY Yiol 500 TUTOUG
oYY oTOG.

H d¢on xar 0 mpocavatoMopog Tou Oy AUATOS GTOV YMEO UTOEOVY VoL TERLYPUPOUY UE
Bdom 1o yewdETO CLGTNUL
Ty = [zp yp 26" (1)
Op = [¢p 05 VE]" (2)

Ou yoouuixég xon YwVioxég TayOTNTES, amd TNV dAAY), TEOTYATOL Vo ex@edlovial 0To
CWUATODETO:

Vp = [UB B ’LUB]T (3)
wp = [ps 48 T8]" (4)
OL SLapopiréc OYETELS TOU GUVBEOLY ToL TUPATAVE UEYEVT TEOXUTTOUV:

'y = Rp.pvs (5)
Op =Ts pws, (6)
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OTOU

cpcl  —seo + cpshsp  sso 4 cypsbeg

Rpp = |sYch cpch + spslsp  —cpsp + spsbco (7)
—s6 clsp clco
1 sotd  cotd
Tpoep= |0 co —s¢ (8)

0 so/cd cp/ch

To 6Uvoho TV eEwTeptx®y dBuvdpewy xat pondv ( F g , T5) tou aoxodvtat 6o alotn-
o, exealovial GTO CWHUATOOETO CUCTNUIL KG:

FB:ml)B+wamVB (9)

TB:I(.;JB—F(.UBXILUB, (10)

omou m o Sy wviog Tivoncag Udlag xou I o TavuoThg aBpdveLag, TOU Yl TIC EQUPUOYES
¢ mapovoac epyaotac Yewpeiton eniong dwrywviog. Ilopatidovron otrn cuvéyela o
OLUPOPETIXES OUVAUELS X0 POTIEC TIOU AOXOUVTAL GTO CUCTNUA, ATt TIC OTOIEG OL BLO
TPMOTES EIVaL OL XUPLOTEPES %ot OPEAOVTOL GTNV TEQIOTEOPT TV EAXWY.

Qo dOvopun:

T =) Kruje] (11)
i=1
Porn avtilotaong:
T = ZKngn(wi)aJ?ef (12)

=1

Pomf) AMoyw wotixig d0voung:

n

TT:ZriXTi (13)

i=1

YTig mapamdve oyéoels, kg K avagépetan 1 otadepd wong xa we K¢ 1 otadepd
pomhc, ef = [0 0 1] elvar 0 povadiaio diévuouo Tou dZova TEPLOTPOPHS TWVY
eMxwV ¢ TPOC TO CWUATHBETO GLOTNUA, W; EvaL 1) ToYUTNTA TEPLOTEOPYIG e
TEOTEAIC X0 1) GUVEETNOT) TOU TEOGEIOU TNG:

sgn(wi) = + YLt wpoloyLomY| Qopd TEQLGTEOPNS
JRE = - YL AVTUEOAOYLOXY| (PORE TEQLGTEOPNS

To Sudvuopa r;, expedler Ty ¥éon Tou xEvTpou xdie EAXUG (G TEOC TO CWUO-
TOOETO GUOTNUO CUVTETAYUEVOV.
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Bapttnta (exppoaocuévn oto cbotnuo B):

s
Fy =mg | —s¢ch (14)
—coch
['upooxomxd gouvoueva:
Tgyr = ZwB X Jrotwi7 (15)
i=1
Omou Jyor 1) pOTH adpdvelag Uiog ERxag.
Aepoduvauixéc ovTIoTAoELS
Kg, 0 0
Faero = - 0 Kdu 0 Vp, (16>
0 0 O

onou Ky, xou Ky, otadepec.

AopBdvovtag, hotmov, Oho auTtd UTOPT, X0 GE GUVOUACHO UE TIC OLUPOPLXES XIVIUATIXES
e€lowoeic (5) xou (6), T0 GUVOAXG LOVTEND, EXPRUCUEVO OE UNTRMOA, TROXUTTEL

U TV — QW gst Kd,/m 0 0] [u
0 = |pw—rul + |—gsopcl 0 Kd,/m 0| |v
w

w qu — pv —gcoct 0 0 0

0

Kr/m Z:‘L:l ‘%2

(17)

p qr(Iyy - Izz)/sz
q - rp(Izz - Izz)/Iyy

Kr /Iy Z:‘L:I Tyiw? —qJrot/ Lz Z?:l sgn(wi)w;
+
¥

+ K1 /Ly Y70y ra,w? prot/Iyy D iy sgn(wi)w

r Pq(Lez — Lyy) /12 Kq/I. Z?:l sgn(w;) 0

(18)
7| [cpcl)  —sipep + cpslsdp  sisgp + cpshed | [u
y| = |svcd cped + sslsgp —chsd + ssbep| | v (19)
Z | | —s0 s cOco w
o1 1 spth  cotd] [p
0| =10 o —s¢ | |q (20)
U] 10 s¢/cO co/ch| |r

Ipbxerton, dMAadY|, yior €vor un yeauuxd clotnue 12x12, ue dldvuoud XaTaoTdoENDY
X=uvwpgrzyzaeol|" xou ddvuopa eioddwv U = [wy wy ... wy] T .

‘Oha tor odpolopota Z?:l mou epgoviovta, avanticoviar avéhoya Pe Tov apLiuod
n TV ehixwyv. Eivoaw mpogavég, 6L To YEWXO auTd UOVTENO UTOPEl Vo EQUEUOCTEL
ave€dpTnTo ToU ooy auToL.
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Avayvoelon 2uoTHUATOS

H Avayvoplon Luotiuatoc (System Identification) etvon po uédodog edpeone pordn-
HOTIXWY UOVTEAWY TIOU TEQLYEAPOLY EVA DUVOUIXO GUCTNUY, TOU YENOWOTOLEL TELp0-
HOTLXG HETEOUUEVY BEBOUEVAL YIOL TNV EXTIUNCT TWV AYVWOTWY TOpaUéTenY. Apyixd,
amouteiton 1 cUAOYT TAloug Bedopévev, Tor omolo TEETEL VoL PEEOLY OELONOYT| TIAT-
cogopla vy T0 cOoTNUA. O *UTEAANAOC OYEBLICUOE TWV ELOOOWY EVOS GUC THUNTOC,
umopel TEdyUTL Vo 0dNYHOEL OE ETOEXT DIEYERST) OAWY TWV WOTATWY TOU. MAUATA
TOL XOAUTTOUY UEYEAO EVPOC GUYVOTATWY €Youy amodelyVel Twe eivan Ta LWBoVIXOTERAL.
Emhéyovtan xupleg NUITOVOELDEIC LOPYES UE DLUPORETIXEC CUYVOTNTEC XL SWeep sig-
nals, ofuoTa ONAXDY| TOU KGUPMYOUVY EVAL UEYAAO €0pOG CUYVOTATWY GE XUVOPLOUEVO
YeoVvo.

Ye emdpevo Briua meémel va yivel 1 emhoyr plag urtodriglag douric HovTélou, 6To omolo
Yo mpénel Vo TpocaprocToLy To dedopéva. Ot TUPIUETEOL TTOU XUAOUVTOL VL oVOLy V-
eloToLY Yot To utto e&étaon wovtého eivon ov Ky, Kq,, K, Kg, Ipa, Ly, L. %o Jpor.
‘Etot, ol elodoelc Tou LoVTEAOU TEETEL VO TPOCUPUOCTOUY UE TETOLO TPOTO WOTE VA
Beelel Wi poppn mou vor efvan ypouuix w¢ TEOS TIC TUEAUETEOUS auTtéc. Egbdoov
oL TPV ToEAUETEOL Ed@aviCovTon HOVO OTIC BUVOULXES %ot OYL GTIC XIVNUOTIXES
OLoPOPUES EELOMOELS, HOVO AUTEC YENOLLOTOLOUYTOL YLOL THV VE LOPPY| TOU HOVTEAOU.
HpoxOmtel, Aowmdy 1 popgr) Y = @0, 6mou oL empépoug mivaxeg elvan:

m(t+ quw —rv — gsf) |
m(v + ru — pw + gsocd)
m(w + pv — qu + gcocd

Y = 0 (21)
0
L 0 -
(—u 0 0 0 0 0 0 0 1
0 —v 0 0 0 0 0 0
o_ |0 0 Tw 0 0 0 0 0
1o 0 -Xn, w 2 0 poo—qr qr gy sgn(wi)w;
0 0 Z Taczwz 0 rp q -rp —p Z Sgn(wi>wi
0 0 0 — Yo sgn(wiwi® —pg —pqg 7 0 1
(22)
0= [Ky Ki Kr Ko ILw I, L. Jo]" (23)

{d¢ %pUTrPLO YLl TNV TEOCUPUOYT] TOU TUQUTAVE HOVIENOU T OEDOUEVA, ETUAEYETOL 1)
uedodog twv Elaylotwy Tetpaywvwy, ye Bdon v omola to didvuoua ¢ twv topa-
uEtewv umopel vo extiuniel ue yerion e oyéonc:

A

0=[®"® '®Y = oY, (24)

otnv omola, o mivaxog &' rou epgaviCeton ebvor o PeudoavtioTeopoc Moore-Penrose.
‘Otav mopamdve and évo Telpduata SleEdyovTon i TNV cUALoYT Bedouévewy, oL emt-
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uépoug exTiunoelc cuVOUALovTaL UE YprioT NS oYEong:

0=P) (P)'0; (25)

NE

1
-1

P= |y (P)t

M= 5

(26)

i=1

P; etvon o mivaog GUUPETOBANTOTNTAS TV TURPUUETEMWY TOU XAUE EMUEPOUS TELOGUUTOS
xo urohoyileton :

N 1 A
P(0) = NIIY — ®0|*(@T®) " (27)
211 cUVEYEL TUPOUCLALETAL 1) EQUPUOYT| TNG BladLxaclag avayvoplong ot dUo dlapo-
PETIXG. LOVTEADL EVOEQLWY OYNUATOV, UE OLAPOPETING ptiud eAXOV.
Oxtaxoéntepo dynua oe neplBéiiov MATLAB®

Yy et aut mepintwon peketdtar évor oxtaxdéntepo (octorotor) oe Hdtaln X,
OTWS palveTon 6TO My U (2). Oewpeiton TS 0L EMXES EIVOL GUUUETEIXA AATOVEUUT
uévec pe ueto€d toug ywvio /4, xa €tot dedouévou uixouc d = 0.4m yio xdde pdf3do,
ebvon €uxoho Vo UToAOYIGTOUY Tal Blaviouata 1; TN V€ong xde EAxag o oyéon Ue
T0 %évtpo udlag.

f )

A

X
5
Vs
7,
. (}\
\/
2

S\

=
4

Yyfua 2: Oxtoxodntepo oe ddtaln X.

To povtého mpocouewdveTal Ye Ypron Tng MATLAB®, Ywelc TV EVouUdTwoT &-
Aeyxt), i €tol anevdelag Tiée Ty eloodwy U umopolyv vo divovion 6Tto ol TN
Auté puowd dev eCac@alllel TNV OUaAY| xou ELC T «TTHOTY» TOU OYAUATOS, NG
TOUAGYLOTOV UTOREL VoL TUPEYEL BEDOUEVAL YOl TIC ATOXPIOELC TWV XATUC TACEWY X .
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Ao xatnyopleg €l0OBMY BOXYACTNXAY aEYIXE YLt THY CUALOYT) BEBOUEVLV TuyaieS
Bruatinég eloodol xon cuvruiTovoetdeic elcodot pe tuyaio TAdTH xou cuyvotnteg. Ta
AmOTEAEGUATO TNG BLUOWAGTAS OVarY VEORLONG HE AUTE Tor OEBOUEVYL TopoLGLdlovVTaL GTOV
Mivoxa (1), poll UE TIC TREAYHOTIXES TWEC TV TUPUUETEWY ToL ElTyInoay yio TNy

EXTEAEDT) TWV TPOCOUOUDOEWY.

ivoxag 1: Anotehéopara Sadixaciag Avoryvieiong YuoThdaToc.

Bruatixée eloodol | Xuvnuitoveldelc eloodol | Yuvouvaouos | Axpielc Tuyrég

Kq, 0.29975 0.29993 0.29992 0.3

K, 0.29838 0.3 0.29997 0.3

Kr 2.2001e-05 2.2001e-05 2.2001e-05 2.2e-05

Kq 4.5002¢-07 4.5002¢-07 4.5002¢-07 4.5e-07

Iy 0.10901 0.10901 0.10901 0.109

L, 0.10801 0.10801 0.10801 0.108

I, 0.20801 0.20801 0.20801 0.208

Jrot 2.0003e-05 2.0001e-05 2.0001e-05 2e-05

H extiunon twv nopauétpwy €yive, 0Tne Qolveton, Ue UEYIAT oxplBeta, xaL OevV ypeL-
dleton 1 Soxiun mo TEplmAoXWY elcodwv 1 1 e€axplBuwon (Validation) tov arnotehe-
oudtov. Puoixd, 1 Bl Sadixacto dev umopel vo e@oapuoctel oty TEALT, anoTehEL,
(®OTOCO, Ulal ATOBELEY Yol TNV ATOTEAECHATIXOTNTA TNS UEVOBOL o Wiar 3dom yior TNy
CUVEYELXL TNG MEAETTC.

Tetpaxodntepo oynua o nepiBdiiov ROS

ITpoomaddvTog va mpocouowwiel ) mparypotixny| Aettovpyla evoc UAV, yenotuonoteiton
oe deltepn @don, évo povtého tetpoxonépou (quadrotor) oe Sidtaln X, oto neplBdh-
hov tou ROS. To povtého autd elvon udhoTa eCOTAIOUEVO UE ELXOVIXO OUTOUITO
mAadéto ArduPilot, o omolog anoteheiton amd 600 emuépouc Pedyouc, Evay Tou apopd
TOL YROUULXS YO EVOLY TTOU apoEdL Tl Yvioxd UEYED T ot ToV EAEYYO TOUG.

And v dlaubdpgwon Tou poviéhou oto ROS, umopolv va yivouv yYvwoTd xdmota
AmO T YUEOXTNELOTIXG TOV, awTd Tou Topouctdloval ot cuvéyelr. Ot UTOAOLTES
TapdueTEOL ebval dYVWOTEC.

m=19 Kg
Jrot = 1.67604e-4 K gm?
0.0127 0 0
I = 0 00178 0 Kgm?
0 0  0.0242

ri= [ 013 —0.22 0.023]" m
re= [ —0.13 0.2 0.023]" m
r3= [ 013 0.22 0.023]" m
= [ =013 —0.2 0.230]" m
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(o) Anemédvnon tou tetpaxontépou.  (B') Apidunon ehixwy xou @opéc me-
eLloTEOPNC.

Yyfuo 3: To yoviého tou TeTpoXOTTEROL.

ITA9o¢ ancintApwy TpocouolmvovTal eniong, UEcw TwV onolwy umopel va yivel 1 e-
ATUNOY HATACTAGEWY TOU OYAUATOC XAUTd TNV OLdpxelor Tng «mthoney. O yetprioeic
amod BLPORETIXOUG o VNTHRES GLYYWVEDOVTAL, XaL Ue ypron @ilteou Kalman, uro-
hoyiCovtan Tehixd extyufoelg Tng V€ong, TOU TEOCUVAUTOAMGUOU oL TWY TAUYUTHTOV
Tou TeETPaxomTEéRoL. H uétpnorn twv ypauuixmy emitayUvoeny yivetar arnculelag, e
Yenon emtayuvolouétpou. H andxtnomn tov dedouévmy yiveton ue xatdhinio «xouoy
Tou ROS, 6mou opiCetan ouyvétnta derypatorndioc ws, = 30Hz, xa mpwIol cloo-
Y000V oT0 povtého yio TNV Avaryvoplor, veloTavton wa tpoemelepyaoio.  Apyixd,
TPETEL VO TROCUPUOC TOVY, MOOTE VoL AVTLOTOLYOUY GTIG (BIEC aXEUBOS YPOVIXES OTIYUEC,
DLy EAPOVTOG THUTOYEOVA DITAOTUTEG UETPNOELG Tou UTtopel var ogethovtar oe xondu-
oteprioelc Twv awodnthewy. Ta dedouéva and 1o giktpo Kalman, nepvolv emniéov
oo yoUNAoTERUTO QIATEO PE cuyVOTNTa amoxonhic 6H z, yio Ty e€dhnn onotoudrino-
e YopUfou amd Tig yetproeic. o Tic ywwviaxée emtaylvoelg, ol onolec ypeldlovion
yioe TV Btadixacion g Avaryvoplong, ahhd 0ev TapEyovTal and Toug aoUnTARES, e
BdheTan aprdunTXs TOROYMYLOT) TWV TV TOV YOVIAXOY TayLUTATWY xou eEetdleTan 1)
xenion evég smoothing giktpou.

Or evtolég 670 HovTého, Bev d0vatal Vo 00000V WG EVIOAES ToYUTHTOY GTOUG ENXES, YU
ouT6 xon TEETEL Vo Bpelel dAhog TpdToC ElcGBWY oL Vo BLlEYEPOLY TIC CUYVOTNTES TOU
ovothuatoc. Allonolelta, Aotméy, 1 SuUVUTOTNTA Vo GTEAVOVTAL OUATo P ETJUUNTES
TEOYLEC YL TG YROUMIXES ToyUTNTES ot TNV ToryUTNTal EXTEOTHC Uéow tou ROS, ue
oLYVOTNTA avavéwong Toug 15H z, wote va oy el To Véwpnua derypatorndiag.

H popgr| autov v onudtonv, emAydnxe Y€ow wag dtaduactag «doxtung xat Addougy,
®ote vo Beetoldy ol Tiég Tou empépouy xavomomnTxd aroteécuota. H aioldynon
TWV ONUATLY, TEWY omd TNV €mXOPWOY TWV ATOTEASOUAT®WY, YVOTOY PE TN Yerion
0Vo Pooxey xertnpionv. Ipdtov, fAénoviac TOCO EMUEXMOS O AUTOUATOS TWAOTOC Xl
XUTE CUVETELX TO OY U UTOPOVOE VOl TEUYUUTOTOLACEL TIC TROYIEC TTOU BlvovTay Xo
0eVUTEPOY, £CETALOVTUG TIG EXTHIWUEVES TUPAUUETEOUS, EAEYYOVTOS oV AUTES Aouf3dvouy
QOVNTIXES [T PUOIXES TUEC, 1) oxOUT XOL AV OLUPEPOLY XUTd TOAY amd TIC YVWOTES
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Twée. T Tic mepumtioeg mou Eeydploay, Tor oAt AAUBAvouy TNV pop®Y| u
Asin(wt) + B, 0AAd B1opopoTol00VTaL GTOV TEOTO TOU 0L GUYVOTNTES Yol TO TAYTH
ToUg UeTafdANovToL XaTd TN Sudpxel TN Tpocouolwong. Tupatnerinxe enlong, meg
Oty 0 PUUUOC EXTEOTAC OEV TUAAVTOVETOL YUEW amd TO UNdEv, Topdyel xohlTepn

exTiunon TV TWOV, xou W TNS poThg adpdvelag I .

To cOvoho TwV TEWUUATOY, UTopel Vo YWELOTEL OE TEEIC XaTNnyopieg, avdAoya UE TOV
TEOTIO TOU BLUUOPQPGVOVTOL Ol GUYVOTNTES XAl To TAGTN xoTd TNV OLdpxeto Tou xdie
TELPYUUTOC. e xGUE TERIMTOOT, Ol TYWES TWwV oLYVOTHTLY xudaivovtal amd 0.6 —10H 2

xan Toe TAdTn 0 — 3m.

1. YuyvotnTeg Tou audvovTon BNUoTiNd OE CUYXEXPIIEVES YPOVIXEC TIEQLOBOUC XAl
otoepd TAdT xatd TNV Oidpxelo Tou TEtpduatoc. H toydtnTta extpomic Toka-
VIOVETOL YOPW amd o eniong Bruotind audovouevr T,

2. Buyvotnteg mou auldvovTon BUotixd O CUYXEXPUIEVES YPOVIXES TIEPLOBOUC ol
YL TIC EVIOAES TOV YRUUUIXOY TUYVTATOV TAATY) TOU UELWVOVTOL YOOUULXAL.

3. Xuyvotntec Tou auEdvovTon YRouuxd 1) eXVETXG, ONUIOLEYOVTAS T Sweep sig-

nals, émwe avagépdnxay, To omolo capkvouy elpog cuyvothtwy 0.6 — 10H 2.

Emhéyovta, téhog, oL xatdAinhol cuvdlacuol Telpopudtwy wote Ye yenon e Ellow-
ong (25), va mpoxddel N ek extiunon twv tapopétewy. Me Ogpoon cUUBOA ETOL
TO DLAVUOUA TV TUEUUETEMY TOU BEEUNXE YENOWOTOWMVTAS TIC QPLATOUQIOUEVES TUIEC

TWV YWVIOXOY ETUTOYOVOEWY, VO UE Orqp aUTEC YwRlg @idTtpo. Ilepduata mou o-
VAXOLY OTNY TEWTN Xou TN 0EVTERT) xATNYopla, OTKS TEPLYPAPETIUL TUPATAVE, UTOEOVY
VoL BOGOLY XUAUTEQU ATOTEAEGUATO OGOV 0POEE GTNY EOTH| adEAVELXS I, OhAS UE «o-
vidharypoy Ty oevntie Ty tou Jyo (Hivaxac 2). Hopdia autd n hon dev unopel vo
Vewpniel amodex Ty, x £Tol hauPdvovTog uToPn TEpLoooTERY TEWAUATA TEOXVITTOUY Ot
TEAMXES EXTIINOELS TwV Topauétewy (Hivaxag 3).

Iivaag 2: Extipouevee Tipég v mo-

eopuétowy (x| extipnon 1,.).

ésmooth éraw

Ky, | 0.0067367 | 0.0067372
Ky, | 0.0059741 0.0059741
Kp | 2.1685e-05 | 2.1685e-05
Kqg | 1.0666e-08 | 9.9358e-09
Iy 0.013728 0.01305
I, | 0017532 | 0.016772
I, 0.023258 0.021431
Jrot | -0.00010752 | -7.4915e-05

IMivaxag 3: Tehxée Tec TV exTi-

UOUEVWY TOQUUETEWY.

ésmooth éraw

Ky, | 0.0088314 | 0.0088328
Ky, | 0.0090478 | 0.0090492
Kp | 2.1689¢-05 | 2.1689¢-05
Kg | 1.5363¢-09 | 1.421¢-09
I, | 0.013845 0.01296
I, | 0017624 | 0.016738
I.. | 0.014848 0.013394
Jrot | 0.00017439 | 0.00019407

Ov Twég mou Beédnray, mepvdve oty cuvéyela xan and uio dladcactior Emxdpnong
(Validation), ®ote va eheyyVel 1 ouuTEPLPOEE TOU LOVTEAOU, BEBOUEVMV TWV ToEo-
uétpwv. Ia tov oxond autd, yenotponooiviar ot E€iowoeic (17) o (18), dote va
LY XEWOLY OL TWES TWV TURUYWYWY TOU TEOXUTTOUY UE AVTIXATACTUCT| TV OYECE-
OV, UE TG PETPOUMEVES amtd Toug auoUNTrhees TeS. Puond, Yo To ywwviaxd peyein
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OEV UTEEY 0LV UETEYOELC amd oUNTYPES, XAl ETOL YENOUIOTOLOUVTOL Ol PLATRUPLOMEVES
TORAYWYOL TV YWVIXGY ToyUTHTOVY. ‘Ola Tor utdAotTa peyEdn mou eugavilovton oTiC
e€lowoelg aUTES, eivon Tor Yeyédn mou mpoéxuday amd Toug auoUnTreEC.

Estimated model

Acceleration plots for all axes T pemated

R® = 0.99999

R* = 0.99999

0 50 100 150 200 250 0 50 100 150 200 250

T R = 0.96897 ]| R = 048203
osf \” g w0l 1

200 250

R* = -0.04336

Lo 4: XOy%ELon TV TGOV TV ETULTOYOVOEWY OO TO dpyixd UOVIEAO UE AUTEC TTOU
TeoExLYaY amd TIC EXTIOUEVES ToRUUETEOUS. O TWEC TOU GUVTEAECTH| TPOCBLOPIGUOY
R? ¢youv uroloyiotel xon topoucidlovton yia xédde dZovoL

And Tic Twéc Tou R? QUVETOL TG Ol TOPGUETEOL TTOU EUTAEXOVTOL OTIC YQOUULXES E-
Eotoelg (Kq,, Kq, @ Kr), éyouv extiuniel ye opxetd ueydn axpifela, eved yio to
YWV HEYEDT) QUUVETOL VoL TV UTIAPYEL TO (Bl Xaht) cuoyéTion. BéBoua, avelupthteg
e Thc Tou R%, 1 Yoo enttdyuvon p mou UTOAOYIOTIXE UE TIC TUPAUETEOUS (o
tveton var TAnotdlel apxeTd TV avTioToly T amdXELoT TOU UOVTENOU, OIS QPaivEToL OF
AETTOUERELN TOU THROTAVG YRUPTUATOS OTO Ly Hud (5). To xuplwe TEOBANUA EVIK-
TleTon TNV YWVIAXT ETLTAYUVON 7.

The angular acceleration p at a time interval ~ 23 — 70s

Yo 5: AemTOoUERELd TOU YRAUPTUATOS TOU P.

Ye pla oxdpo mpoomdieio emxlpmong, ATAOUGTERES EVIOAES EIGOBMY dOUNXAY GTO
CUCTNUA XU Ol AVTICTOLYES ATOXPIOELS TWV ETUTAYUVOEWY QuivOovVToL GTO My Ul (6).
YNy epinTtewon auTh, N Yeouux emtdyuvor W dev uropel va tpoiegiel t6c0 amo-
TEAEOUATIXG. OGO TEONYOLUEVLS, THoVOTATO ETEWDY TO UOVTEAD OEV lye exmoudeuTel
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Yo auToO 10 Eldog WvhoEY. PalveTar XL €0W, WS TUEd TIC TYES TOU R? o1 aroxploelc
TWV P XU ¢, PT0EOLY Vol axohoLUNYoly amd To UOVTEAD UE TIG VEEG TUPUUETEOUC.

M Estimated model
Acceleration plots for all axes T e mated

R =0.99998 | 05 R® = 0.99956 I

& 0

Eosh

R? = -1.9916

4 5 6 7 8 )

n R* = 0.03516

Lyfuo 6: TpaprAuato TV TGOV TOV ETTUYOVOEWY, CUYXEITXE YL TO 0EYIXO HO-
VTEAO o TIC TIES Tou Tpoxéday amd TG EXTYLWUEVES TOROUETEOUS GE [lal OEUTERT
TpooTdieio EmUVEWOTG.

AopBdvovtag unddn T cuvolr| Sadixacto Avoryvielong LUoTHUATOC XAl EWBXOTE-
ea TIC BLO TEOOTIGVELEG ETUXVPMCTS TOU THUPOUCLAG TNXAY TORAUTEVE, OPIOUEVOL YEVIXY
OY OO OYETXY UE TIC EXTHIWHUEVES TOROUETEOUS UTOROVY TMEA Vol ouetwoly. Ot ae-
poduvapixol cuvtekeotéc Kg, xou Ky, , mapdho mou 1) extiunoct| Toug 6ev cuyxhivel og
CUYXEXPUIEVES TWEC 0TO GUVORO TWV TELUUATLY, AAUBEVOUY TAVTOTE UXEES THIES TNG
(Blag téEne peyédoug. Yuumepalvetal AoOLTo, TKS oL 6EoL auTol €youv Uixer) cUUBOAY
070 UoVTEAO, xaL oTIC amoxploelg Twv U xou ¥. ‘Ocov agopd otic Tapouetpoug Kr
xou K, oL exTiunoelc Twv oY gaivetar vo etvon Aydtepo oxpifeic. Autd ogetheton,
APEVOS, GTO YEYOVOS TS OL TUTOL UTOAOYIOUOU TNG WO TIXAG BUVIUNG Xl TIC POTS
avtiotaong Baotlovial o€ OpIoUEVES TaPABOYES, OL OTOLEG UTOREL Vo UV var ThneolvTal
TAPOC OE OAEC TIC TPOCOUOLMOELS, Xl APETEPOU, 6ToV TedTo Tou To ROS, unohoy(let
Ta avtioTorya YeYEDT) HECW TOAXMY DLy PUUATTWY AXOAOUTOVTUS OLUPORETIXG TEOTO
uovteronoinone. Erol, oe dlagpopetinég cuvinxeg Aettoupylog ot Tég unopel va etvan
OLOUPOPETIXES. LUYXEXQUIEVA Y10l TOV OUVTEAES TH) K, oL EMNEdlEL UOVO TNV amdXQLoN
Tou 7, TopoTnee(tan OTL 1) TYH Tou Peélnxe Sev elvar o Véom va meofAédel TNy xivn-
on ot urixog autod tou dova. o vor eheyydel av TovAdyloTtov 1 TéEn peyédouc
NG EXTWOUEYNG THWNG EVOL OWOTY), €YIVE DOXWT YENOWOTOWWVTUS UEYahUTERD K¢
XL ETAVEAEY Y OVTOG TIC amoxploel. Yuumepaivetor, ETOL Twe 1) aduvopla eDPESTS ULog
«OWOTAGY TWAS Yo TOV CUVTEAECTY| aUTO, OeV ogeiheTon ot Adog tng dladixactag xon
NG oLAAOYTC BedoPEVWY, ahhd miavoTtato Oev UTdpyel oTadepr) T Tou vo emopxel
YLoL TNV TEQLYRAUPT) OAWY TV EWOWY XIVACEWY XAk EALYUOV.
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e

(o) Enidpoon peyarltepne twhic Kg oto (') Enidpaon peyahitepne tuic K¢g oo de-
TpwTOo TElpoua emxlPWOTG. Utepo melpopo EMXVPWONG.

Lo 71 Amoxploeic ye olhoryh) Tng TS Tou ouvteleoTr| pomhc o Ko =3.5e-07,
YL T 000 TELRYUOTA ETUXDPMOTG.

LUVOAMXE YLl TIC EXTUIOUEVES TYES TWV POTIWYV UBPAVELNS, CUUTERUIVETOL LS OL TWIES
Betoxovtar ixavormountixd. [apdtt ot Tée Tou R? dev ebvon IXOVOTIONTIXES YLl OAEC TIC
eZIOOOEIC TOV YWVIOX®Y PEYEVWY, Ol YVWOTEC TWES TWV TURUUETEMWY UTOBEXVIOUY
xahY| extiunon Toug and 1o POVTEAO, EXTOC amtd TNV Ty Tou I... XTNV TEOXEWEWN
nepintwon, n T tou Hivoxo (2), unopet vor yenowwonowmiel wg extiunon tng ouyxe-
HEWEVNC TOROUETOOU.
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