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Abstract

The purpose of this Master thesis is to study the matter-antimatter asym-
metry in the universe. In string inspired cosmologies, Baryogenesis through
Leptogenesis can occur through the CP asymmetric decay of Right Handed
Neutrinos (RHN). The first chapter is a general introduction to the topic,
while the second chapter examines the physics of Leptogenesis occuring
from the majorana RHN asymmetric decay, including the contribution of
the one loop diagrams. Chapter 3 is a brief introduction to String the-
ory, while also discusses the coupling between the Kalb-Ramond field and
the RHN. Chapter 4 focuses on the asymmetric decay of the RHN, at
tree level, and studies the Boltzmann equations that lead to Leptogenesis.
Chapter 5 is aimed to study the Baryogenesis through Leptogenesis, due
to sphalerons. Finally, conclusions are drawn in Chapter 6.
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Per–lhyh

O stÏqoc aut†c thc metaptuqiak†c ergas–ac e–nai na exetàsei thn asummetr–a ‘lhc-
anti‘lhc se epektàseic tou KajierwmËnou Prot‘pou. To pr∏to kafàlaio apotele–
m–a eisagwg† sthn BaruogËnesh kai exetàzei tic sunj†kec gia na dhmiourghje– h a-
summetr–a. To de‘tero kefàlaio epekte–nei to KajierwmËno PrÏtupo katà thn ‘parxh
d‘o eid∏n DexiÏstrofwn Netr–nwn kai epikentr∏netai ston mhqanismÏ LeptogËneshc
lÏgw thc asummetrik†c diàspashc tou netr–nwn se leptÏnia kai anti-leptÏnia. To
tr–to kefàlaio eisàgei ton anagn∏sth sthn Jewr–a Qord∏n, kai meletàei thn s‘zeu-
xh twn fermion–wn me Ëna stajerÏ ped–o upobàjrou. To tËtarto kefàlaio exetàzei
thn LeptogËnesh mËsw thc asumetrik†c diàspashc twn DexiÏstrofwn Netr–nwn, exai-
t–ac thc ‘parxhc tou ped–ou upobàjrou. To pËmpto kefàlaio suzhtàei ton mhqanismÏ
BaruogËneshc mËsw Leptogeneshc, lÏgw diadikasi∏n parab–ashc thc Leptonk†c kai
Bauonik†c summetr–ac sto Pr∏imo S‘mpan. TËloc, to teleuta–o kefàlaio perilam-
bànei ton ep–logo.
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Chapter 1

Introduction

It seems that most of our visible universe consists of matter, rather than
anti-matter. The origin of such an asymmetry is yet unknown, although
there are a few theories that o↵er a promising explanation.

Tracing back the matter-antimatter asymmetry, at the time of the last
scattering, the imprints of the acoustic oscillations of the baryon-photon
fluid can be seen in the measurements of the Cosmic Microwave Background
anisotropies. Consequently, we can determine the baryon asymmetry, when
the universe was 300.000 yrs old.

Another indication of the asymmetry is the Big Bang Nucleosynthesis
(BBN), where the first nuclei were created. The Nucleosynthesis is a↵ected
by the baryon asymmetry density and the radiation density, e.g. the more
the radiation density, the later would the Nucleosynthesis occur.

According to experimental results the baryon-to-photon ratio is, to a
very good approximation, equal to

�n(T � 1GeV ) =
nB � nB̄

nB + nB̄
=

nB � nB̄

s
= (8.4� 8.9)⇥ 10�11 (1.1)

where s, nB are the entropy density and baryon density respectively, [4].
Although, in the beginning of time we assume that the universe con-

sisted equally of matter and anti-matter, but this is not the case in the late
universe ,or at least for (T  TBBN ).

Now that we have established that there really is a matter-antimatter
asymmetry, we only have to find out the reason for such an asymmetry to
exist.

• Sakharov’s Conditions for Baryogenesis
In 1967 Sakharov was the first that talked about the idea of Baryo-
genesis, which is the dynamical generation of the baryon asymmetry.
Although, it took almost a decade for the idea to be taken seriously by
the rest of the scientific community. In order for Baryogenesis to oc-
cur there are three conditions, the so-called Sakharov conditions,[26]
[24]
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– Baryon number B violation
In order to initially have B = nb � nb̄ = 0 and later on B 6= 0,
there have to take place some processes that violate the Baryonic
number conservation.

In the Standard Model physics, there are interactions that the
Baryonic number is not conserved, [10].

@µJ
µ
B+L =

3g2

32⇡2
✏↵���W

↵�
↵ W ��

↵ (1.2)

where W ��
↵ is the SU(2) field strength, [33, 28, 6].

– C and CP violation
Consider the following hypothetical interaction, X+ ! A++B0.
In order for the non-preservation of the baryon number, the
production rate of the particles must be unequal to those of
anti-particles,

�(X+ ! A+ +B0) 6= �(X� ! A� +B0) (1.3)

More precisely,

�(X+
L ! A+

R +B0
L) + �(X+

R ! A+
L +B0

R)

6=
�(X�

L ! A�
R +B0

L) + �(X�
R ! A�

L +B0
R)

Considering C violation, we have that

�(X+
L ! A+

R +B0
L) 6= �(X�

L ! A�
R +B0

L) (1.4)

and
�(X+

R ! A+
L +B0

R) 6= �(X�
R ! A�

L +B0
R). (1.5)

While in the case of the CP violation,

�(X+
L ! A+

R +B0
L) 6= �(X�

R ! A�
L +B0

R) (1.6)

and
�(X+

R ! A+
L +B0

R) 6= �(X�
L ! A�

R +B0
L). (1.7)

Combining the above equations, we conclude that in order to
have

�(i ! f) 6= �(̄i ! f̄), (1.8)

both the C and CP symmetry should be violated.

– Out-of-equilibrium
The third condition for Baryogenesis, arises from the need for
the interaction to be out of equilibrium.
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In case of equilibrium, the reaction rate that creates the asym-
metry between baryon-antibaryon, will be the same as the re-
action rate that takes it back to the non asymmetrical phase,

�(i ! f) = �(f ! i). (1.9)

Another way of explaining this, [24], is by considering that a cer-
tain species X is thermal equilibrium, and so is X̄, with number
densities

nX ⇡ gX(mXT )3/2e�
m

X

T

+
µ

X

T , nX ⇡ gX(mXT )3/2e�
m

X

T

�µ

X

T

(1.10)
where mX = mX̄ >> T . Then the baryon asymmetry is equal
to

B = nX � nX̄ = gX(mXT )3/2e�
m

X

T sinh
⇣µX

T

⌘
. (1.11)

In addition, from condition 1, there can be interactions that
violate the Baryon number, e.g. XX ! X̄X̄, which leads to
µX = 0.

Consequently, eq.1.11 for µX = 0 gives B = 0, and no asymme-
try would be generated.

• Baryogenesis via Leptogenesis

Another way for Baryogenesis to occur, is through Leptogenesis due
to the sphaleron processes in the very early Universe.

This Thesis discuss two Leptogenesis processes in Standard Model
extensions.

Chapter 2 discusses the case of the existence of majorana Right
Handed Neutrinos (RHN). We consider the decay of the RHN into
lepton and the Higgs field, and into anti-leptons and anti-charged
Higgs field. One can show that at tree level interaction the decay
rate of the production of leptons and anti-leptons, is exactly the
same. While, if one considers the contributions of the one loop di-
agrams of the decay, when interfering a second species of RHN, one
can prove that the RHN decays CP asymmetric. Afterwards, one
may construct the Boltzmann equations for the two interactions, and
hence combine them in order to study the evolution of the Lepton
asymmetry in our Universe.

Chapter 3, is a brief introduction to String Theory. We consider the
physics of a quantum string, and consider the first excited state of
a closed string. The first excited state can be represented by three
components, the graviton, the dilaton and the Kalb-Ramond (KR)
field. One may write the e↵ective action of String theory, including
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the first excited state, as also other excited states, e.g. the fermions.
In this case, we see the non-trivial term of the coupling of the fermions
with the Kalb-Ramond field.

Chapter 4, suggests the process of Leptogenesis in String inspired
Cosmologies. Due to the coupling of the KR field and the fermions,
the fermion spinors changes. That way, when calculating the decay
rate of the RHN into leptons and anti-leptons, one will find out that
they are not equal, even at tree level. Consequently, due to the
CP asymmetric decay of the RHN, there is a Lepton asymmetry
generation, that can be studied through the Boltzamann equations
of the interactions.

Chapter 5, consists of two parts. The first part, studies the Baryon
(B) and Lepton (L) number violating processes in the very early
Universe. While also discusses briefly the sphaleron processes, that
suggest the rate of the B and L violations in high temperature, and
the suppression in low temperatures. The second part, discusses
the procedure of the Baryon asymmetry generation, due to the non-
conservation of the B+L number in the early Universe.

Finally, conclusions are drawn in Chapter 6.



Chapter 2

Leptogenesis

As mentioned in the previous Chapter there are certain conditions in order
for Baryogenesis to occur. Although, there can be some alternatives, for
example we can have Baryogenesis through Leptogenesis. This is exactly
the case examined in this thesis.

Lepton number L may be violated by some non-SM physics, leading
to a lepton asymmetry, that then gets converted into the observed baryon
asymmetry, due to sphalerons. If one extend the Standard Model, by
including Right Handed Neutrinos (RHN), one can see that that the lepton
number L may be violated. Leptogenesis may occur that way, by the CP-
asymetric decay of the RHN.

Although, as we will further discuss, one can not obtain CP-violating
decay of the RHN at tree level. In order to have CP-asymmetric decay, one
should include one-loop diagrams to the computation, with more than one
RHN flavors included in the process. In that order of magnitude, O(�2),
we also take into account 2-2 scatterings.

2.1 Right Handed Neutrinos and the See-Saw Model

Neutrinos are electrically neutral, that means that their masses could be
introduced in a di↵erent way than the rest of the fermions (quarks, electrons
etc.).

• Dirac mass term
⌫ = ⌫L +NR (2.1)

L = yL̄HNR + h.c. (2.2)

that after the symmetry breaking would suggest a mass term like

L = mD⌫̄LNR + h.c. (2.3)

where y is the Yukawa coupling, NR is the right handed neutrino, H
is the higgs field and L is the left handed lepton doublet. This the
so-called Higgs portal .

5
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• Majorana mass term

Considering the neutrino is a majorana fermion means that, the neu-
trino is identical to its antiparticle. [3], [18]

⌫ = NR +N c
R (2.4)

L = mR(N̄ c
RNR + h.c.) (2.5)

Here the subscript ”c” indicates the charge conjugation, meaning
N c

R = CN̄T
R , while C = i�2�0.

Note also, that the mass term violates the lepton number, [21]. Con-
sider a global transformation, withN 0

R = ei⇤NR and (N 0
R)

c = e�i⇤N c
R,

the above Lagrangian is not invariant under this transformation.

• Combined Dirac Majorana mass term

One may combine the Dirac and Majorana mass term into one.

L = mD⌫̄LNR +
1

2
mRN̄ c

RNR + h.c. (2.6)

That way through the see-saw mechanism, we can write the total
mass term in the following way [15]

L =
�
⌫̄L N̄ c

R

�✓ 0 mD

mD mR

◆✓
⌫cL
NR

◆

Meaning that, if we include in the theory both left handed and right
handed neutrinos, and since neutrinos are neutral (and so they are
their own antiparticles), we can have a Dirac mass term, while also
a Majorana mass term. Both of the terms can combined and repre-
sented through the see-saw mechanism.

2.2 Standard Model Extension

In this section we review a mechanism that eventually produce a lepton
asymmetry. Firstly, we extend the standard model, considering the ex-
istence of right handed neutrinos N1, N2, suggested by the seesaw model
discussed in the previous section. The Lagrangian can be written as,

L = LSM +N1i/@N1 + �1L̄HN1 +
M1

2
N2

1

+N2i/@N2 + �2,3L̄HN2 +
M2

2
N2

2 + h.c.
(2.7)

where the notation is the same as in the previous subsection, [29].
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Figure 2.1: N1 ! LH and N1 ! L̄H̄

2.2.1 Right Handed Neutrino Decay

In this subsection we study the decay of the Majorana RHN into leptons
and anti-leptons, shown in fig.2.1. More precisely, we calculate in some
detail the decay rate of N1, at tree-level, following the steps shows in the
nest pages .

• First of all we study the Lagrangian term of the interaction of the
RHN with the Higgs field and the leptons, see eq. 4.1,

L 3 �1e
�
LH

+N1R + h.c = �1e�
1� �5

2
H+N1

1 + �5

2
+ h.c.

= �1e�
1 + �5

2
H+N1

1 + �5

2
+ h.c.

= �1e�H
+N1

✓
1 + �5

2

◆2

+ h.c.

= �1e�H
+N1

1 + �5

2
+ �⇤1N1

1� �5

2
H+†e�

= �1e�H
+N1

1 + �5

2
+ �⇤1e

+H� 1� �5

2
N1

(2.8)

where we made use of the charge conjugation and the majorana con-
ditions. In eq.2.8, we can see that the vertex rule corresponds to a
factor of �i�1(1 + �5)/2.

• Moving on to the computation of the decay amplitude M1 at the
tree-level N1 ! LH, shown in the left diagram of fig. 2.1

�iM1 = ūs(p2)(�i)�1
1 + �5

2
ur(p) (2.9)
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|M1|2 = 1

2s+ 1

X

s

X

r

✓
ūs(p2)(�i)�1

1 + �5

2
ur(p)

◆†
⇥
✓
ūs(p2)(�i)�1

1 + �5

2
ur(p)

◆

=
�†1�1
2

Tr

"
1 + �5

2
( /p2 +me)

1 + �5

2
(/p+M1)

#

=
�21
2
Tr


1� �5

2
( /p2 +me)

1 + �5

2
(/p+M1)

�

=
�21
2
Tr

"

/p2

✓
1 + �5

2

◆2

(/p+M1)

#
=
�21
2
Tr


/p2
1 + �5

2
(/p+M1)

�

=
�21
2
Tr


1

2
�µ(�⌫p⌫ +M1)

�
p2µ +

�21
2
Tr


1

2
�µ�5(�⌫p⌫ +M1)

�
p2µ

=
�21
2

1

2
p2µp⌫4⌘

µ⌫ +
�21
2

1

2
Tr [�µp2µp⌫M1]

+
�21
2

1

2
p2µp⌫Tr

⇥
�µ�5�⌫

⇤
+
�21
2

1

2
p2µp⌫Tr

⇥
�µ�5M1

⇤

= �21(p · p2)
(2.10)

one can derive the result of eq. 2.10, using the trace identities of the
gamma matrices [18].

• Consequently, one may now compute the decay width, in natural
units

�1 =
1

2EN1

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
|M1|2(2⇡)4�4(p� p1 � p2) (2.11)

replacing eq. 2.10 in eq. 2.11, we get

�1 =
1

2EN1

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
(p · p2)(2⇡)4�4(p� p1 � p2) (2.12)

Taking into account the four momentum conservation, pµ = pµ1 +
pµ2 , and the fact that M1 >> me,mH , one can derive the following
equation

(p� p2)
2 = p21

p2 + p22 � 2p · p2 = p21

M2
1 +m2

e �m2
H = 2p · p2

M2
1 ⇡ 2p · p2

(2.13)

And then combine eq. 2.10 and2.13, in order to further simplify the
decay width of eq. 2.12.
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�1 =
1

2EN1

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
(
1

2
�21M

2
1 )(2⇡)

4�4(p� p1 � p2)

=
�21mM2

1

4M1

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
(2⇡)4�4(p� p1 � p2)

=
�1M1

4

Z
d3p1d3p2
2E1(2⇡)2

�(M1 � E1 � E2)�
3(p� p1 � p2)

=
�21M1

4

Z
4⇡ · d|p2||p2|2
4|p2|2(2⇡)2 �(M1 � 2E2)

=
�21M1

32⇡
(2.14)

At this point one should have in mind that the N1-decay could also
produce a ⌫e and a �0,

L 3 �1⌫eLH
0N1R (2.15)

that, after some calculations, would lead to decay width equal to �1.
Therefore, we get a total decay width

�N1!LH =
�21M1

16⇡
(2.16)

• Respectively, one can compute the decay width of the right diagram
of fig. 2.1,�2. Starting with the amplitude of the decay M2

�iM2 = v̄s(p)(�i)�⇤1
1� �5

2
vr(p2) (2.17)

|M2|2 = 1

2s+ 1

X

s

X

r

✓
v̄s(p)(�i)�1

1� �5

2
vr(p2)

◆†
⇥
✓
v̄s(p)(�i)�1

1� �5

2
vr(p2)

◆

=
�†1�1
2

Tr

"
1� �5

2
(/p�M1)

1� �5

2
( /p2 �me)

#

=
�21
2
Tr


/p
1� �5

2
( /p2 +me)

�

=
�21
2
Tr


1

2
�µ(�⌫p2⌫ +me)

�
pµ � �21

2
Tr


1

2
�µ�5(�⌫p2⌫ +me)

�
pµ

=
�21
2

1

2
pµp2⌫4⌘

µ⌫ +
�21
2

1

2
Tr [�µpµme]

� �21
2

1

2
pµp2⌫Tr

⇥
�µ�5�⌫

⇤� �21
2

1

2
pµp2⌫Tr

⇥
�µ�5me

⇤

= �21(p · p2)
(2.18)
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Figure 2.2: N1 decay, vertex graph and self energy .

Comparing eq.2.10 and eq.2.18, one can see that they are identical.
Consequently, the decay width �2 of N1 ! L̄H̄ at tree-level, is equal
to �1.

�N1!LH = �N1!L̄H̄ =
�21M1

16⇡
(2.19)

2.2.2 CP-asymmetry

We define the CP-asymmetry parameter ✏1, as

✏1 ⌘ �(N1 ! L+H)� �(N1 ! L̄+ H̄)

�(N1 ! L+H) + �(N1 ! L̄+ H̄)
(2.20)

and calculate the parameter, in order to discuss the lepton asymmetry.
In the previous subsection, we proved that the decay width at tree-level

of N1 is �(N1 ! L+H) = �(N1 ! L̄+ H̄) = �21M1/8⇡, hence there is no
CP-asymmetry. Although, considering the interference of loop diagrams,
shown in fig 2.2, one can show that N1 decays CP-asymmetric [14], [11].

• Vertex graph

Starting with the vertex graph, one can see from the figures 2.3 and
2.4, that the decay amplitude for the N1 decay into fermions, is equal
to

M1 = c0A0 + c1A
0
1 + Z�c1ū

s(p2)u
r(p)

= c0A0 + c1A1
(2.21)

while for the N1 decay into anti-fermions is,

M2 = c⇤0A0 + c⇤1A
0
1 + Z�c

⇤
1v̄

s(p)vr(p2)

= c⇤0A0 + c⇤1A1

(2.22)

where c0 and c1 are the coupling constants for the tree level decay
and the loop interference respectively, while the A0 and A1 are the
rest of the amplitude. Furthermore, one should include the counter
term Z�, in order to absorb the logarithmic divergence 1/✏ and the
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Figure 2.3: N1 decay into fermions

Figure 2.4: N1 decay into anti-fermions

dependence on the unphysical transmutation mass µ, arising from
the loop integral .More specifically,

�iA0 = ūs(p2)(�i)
1 + �5

2
ur(p) (2.23)

while,

�iA0
1 = ūs(p2)

Z
d4q

(2⇡)4
i

q2
(�i)

1 + �5

2

i

/q � /p2 �mN2

(�i)
1 + �5

2

i

/q � /p
(�i)

1� �5

2
ur(p)

= ūs(p2)

Z
d4q

(2⇡)4
1

q2
· 1 + �5

2
· /q � /p2 +mN2

(q � p2)2 �m2
N2

1 + �5

2
· /q � /p

(q � p)2
· 1� �5

2
ur(p).

(2.24)

Subsequently, one may calculate the CP asymmetry parameter2.20
in the following way, [12],

✏vertex1 =
1

2
R
d⇧ · �̃ · |c0A0|2

Z
d⇧ · �̃ · (|M1|2 � |M2|2) (2.25)



12

where �̃ = (2⇡)4�(pi � pf ) and d⇧ = d3p1
2E1(2⇡)3

d3p2
2E2(2⇡)3

. Computing

separately the factor that contains the decay amplitudes, we obtain
that,

|M1|2 � |M2|2 =
X

spin

(c⇤0A
†
0c0A0 + c⇤0A

†
0c1A1 + c⇤1A

†
1c0A0

+ c⇤1A
†
1c1A1 � c0Ā

†
0c

⇤
0Ā0 � c0Ā

†
0c

⇤
1Ā1

� c1Ā
†
1c

⇤
0Ā0 � c1Ā

†
1c

⇤
1Ā1)

=
X

spin

(c⇤0A
†
0c1A1 + c⇤1A

†
1c0A0

� c0Ā
†
0c

⇤
1Ā1 � c1Ā

†
1c

⇤
0Ā0)

=
X

spin

(c⇤0c1 � c0c
⇤
1)(A

†
0A1 �A†

1A0)

= 4
X

spin

Im[c⇤0c1] · Im[A†
0A1]

= 4
X

spin

Im[(�⇤1�2)
2] · Im[A†

0A1]

(2.26)

where we made use of the fact that |Ai|2 = |Āi|2 and that Āi
†
Āj =

A†
iAj . Substituting eq. 2.26 into eq. 2.25, we can re-write the CP

asymmetry parameter as,

✏vertex1 =

R
d⇧ · �̃ · 2Pspin Im[(�⇤1�2)

2] · Im[A†
0A1]

R
d⇧ · �̃ · |c0A0|2

, (2.27)

where in the denominator the only non-vanishing term is the one
analogous to tree level amplitude.
Therefore, inserting the values of the A0, A1 from eq. 2.23 and eq.
2.24,

✏vertex1 = Ik1 ·2·
16

p
x⇡(M2

N1
+(M2

N1
+M2

N2
)ln[x]�(M2

N1
+M2

N2
)ln[1+x])

16M
N1⇡·16⇡2·16
M

N1
16⇡

(2.28)

✏vertex1 = Ik1
p
x(1 + (1 + x)ln[(1 + x)/x])

8⇡
(2.29)

where Ik1 ⌘ Im[(�⇤1�k)
2]/�21 , k = 1, 2, and x = M2

2 /M
2
1 .

• Self energy graph
Turning now to the self energy graph, of the fig. 2.2, one can prove
that the corresponding CP-asymmetry parameter is equal to

✏self1 = � 1

8⇡

X

k= 6=1

M1Mk

M2
k �M2

1

Ik1 . (2.30)
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The reason we need more than one right handed neutrinos to be included
into our theory, is pointed out in eq. 2.29 and eq.2.30. Considering k = 1
in eq.2.29, then Im[�†1�1] = 0, hence no asymmetry will be generated.
Furthermore, eq. 2.30, is not defined for k = 1.

2.3 Boltzmann Equations

To examine the lepton asymmetry that can occur through these decay-
ing processes, one should proceed to the computations of the Boltzmann
equations. Firstly, we study the Boltzmann equation considering no CP-
violation, ✏1 = 0. In more detail,

�(N1 ! L+H) = �(L̄+ H̄ ! N1) (2.31)

�(N1 ! L̄+ H̄) = �(L+H ! N1) (2.32)

In case ✏1 = 0, we have that

�(N1 ! L+H) = �(L+H ! N1) (2.33)

Generally, the Boltzmann equations the evolution of the particle’s phase
space distribution function,f(pµ, xµ) , considering interactions [17].

L̂[f ] = C[F ] (2.34)

where L̂ is the Liouville operator, and C is the collision operator. The
Liouville operator for the FRW metric is

L̂ = p↵
@

@x↵
� �↵��p

�p�
@

@p↵
(2.35)

L̂[f ] = E
@f

@t
� ȧ

a
|p|2 @f

@E
(2.36)

and having in mind the definition of the number density

n(t) =
g

2⇡3

Z
d3pf(E, t) (2.37)

eq. 2.34 can be re-written in the follwoing form

dn

dt
+ 3

ȧ

a
n =

g

2⇡3

Z
C[f ]

d3p

E
(2.38)

Regarding processes of the form 1 $ 2 + 3, eq. 2.38 becomes

dn1

dt
+ 3Hn1 =

Z
d~p1

Z
d~p2

Z
d~p3(2⇡)

4�(p1 � p2 � p3)⇥
⇥ [�|A1!23|2f1(1± f2)(1± f3) + |A23!1|2(1± f1)f2f3]

(2.39)
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where H is the Hubble parameter, and d~pi = gd3pi/(2Ei(2⇡)3).
Since the reaction rate of the decay and the inverse reaction rate are

equivalent, eq. 2.33, so are the squared amplitudes |A1!23|2, |A23!1|2.In
addition, we consider that the interaction is fast enough that maintains
kinetic equilibrium and so f(p) = feq/neq ⇤ n.

Here feq = (eE/T ± 1)�1, the Bose-Einstein and Fermi-Dirac distribu-
tions. In case of no Bose condensation and Fermi degeneracy, 1 ± f ⇡ 1.
Furthermore, the number density of relativistic and non-relativistic parti-
cles in equilibrium, evolves as

neq
rel = gT 3/⇡2, T >> m (2.40)

neq
non�rel = g

✓
mT

2⇡

◆3/2

e�m/T , T << m (2.41)

Taking all the above suggestions into account, one can derive the fol-
lowing result

dn1

dt
+ 3Hn1 =< �1 > neq

1

✓
n1

neq
1

� n2

neq
2

n3

neq
3

◆
(2.42)

where for convenience we replaced

< �1 >=
1

2E1

Z
d~p2d~p3(2⇡)

4�4(p1 � p2 � p3)|A|2 (2.43)

Additionally, n2, n3 are in thermal equilibrium through the gauge in-
teractions, and so we know thatn2 = neq

2 and n3 = neq
3 , that way eq.2.42

takes a simpler form

dn1

dt
+ 3Hn1 =< �1 > (n1 � neq

1 ) (2.44)

The 3H term, comes from the dilution due to the expansion of the
universe, and it can be shown that 3H = ṡ/s. For convenience, we write
eq. 2.3 in terms of the abundance of the species, Y ⌘ n/s. Mainly because
both number density and entropy density evolve as ⇠ a�3 and so the
fraction of those two is ”constant”.

Consequently, eq. is equivallent to

sHz
dY1
dz

=
X

�1�
eq(12... $ 34...)

✓
Y1
Y eq
1

Y2
Y eq
2

...� Y3
Y eq
3

Y4
Y eq
4 ...

◆
(2.45)

where we defined z = m/T , �eq the rate density. Also, �1 = �1 in case of
1 $ 23, or �1 = �2 in case of 11 $ 23, and so on.
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2.3.1 Leptogenesis

In this subsection we are interested in the Boltzmann equations that would
eventually lead to the Leptogenesis, consequently we have to take into
account the CP-asymmetry [29],[12].

Considering the interactions N1 $ HL, H̄L̄ where �L = 1, eq. 2.45
becomes

sHz
dY N1

dz
= ��D

 
YN1

Y eq
N1

� 1

!
, z = mN1/T (2.46)

where �D is the decay rate density. Now, having in mind the CP-violating
processes, and the eq. ??, we write

�eq(N1 ! HL) = �eq(H̄L̄ ! N1) = (1 + ✏1)�D/2 (2.47)

�eq(N1 ! H̄L̄) = �eq(HL ! N1) = (1� ✏1)�D/2 (2.48)

Followingly, one can derive the Boltzmann equation, this time with re-
spect to the L, since we eventually want to compute the lepton abundance.
Therefore, considering the HL $ N1 interaction , the eq. 2.39 becomes

sHz
dYL
dz

=
�D
2

 
�(1� ✏1)

YL
Y eq
L

+ (1 + ✏1)
YN1

Y eq
N1

!
(2.49)

where we used the eq. 2.45 and the two above equations 2.47,2.48. In the
same way one can derive the Boltzmann equation for the evolution of the
anti-lepton abundance, through the H̄L̄ $ N1

sHz
dYL̄
dz

=
�D
2

 
�(1 + ✏1)

YL̄
Y eq
L̄

+ (1� ✏1)
YN1

Y eq
N1

!
(2.50)

Combing eq. 2.49 and 2.50, one can compute the abundance of the lepton
excess in our universe, L� YL � YL̄.

sHz
dL
dz

= ✏1�D

 
YN1

Y eq
N1

+ 1

!
� L

2Y eq
L

�D (2.51)

Avoiding Overcounting In order for the Boltzmann equation to be
accurate, we should include all the related processes in the order of mag-
nitude of � that we examine [29], [12]. The CP-asymmetry is generated at
� = O(�4), which means that we have to take into account the interactions
shown in fig. 2.5 and 2.6, with reaction rate densities

�t ⌘ �eq(LH $ L̄H̄) (2.52)

�s ⌘ �eq(LL $ HH) (2.53)
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Figure 2.5: s-channel, LH $ L̄H̄

Figure 2.6: t-channel, LL $ H̄H̄

and ��L=2 = 2(�t + �s).
Since the scattering LH $ L̄H̄ is mediated by the right handed neu-

trino LH $ N1 $ L̄H̄ , we have to consider that the CP asymmetric
processes of LH $ N1 and N1 $ L̄H̄, are already included in the Boltz-
mann equation 2.58.

We compute the �on�shell
s for the case explained above, and we remove

it from our calculation.

�on�shell
s (LH ! L̄H̄) = �eq(LH ! N1)BR(N1 ! L̄H̄) (2.54)

�on�shell
s (L̄H̄ ! LH) = �eq(L̄H̄ ! N1)BR(N1 ! LH) (2.55)

and so,

�subeq (LH ! L̄H̄) = �s � (1� ✏1)
2�D/4 (2.56)

�subeq (L̄H̄ ! LH) = �s � (1 + ✏1)
2�D/4 (2.57)

Therefore, the final Boltzmann equation for the L is

sHz
dL
dz

= �D

"
✏1

 
YN1

Y eq
N1

� 1

!
� L

2Y eq
L

#
� 2�sub�L=2

L
Y eq
L

(2.58)

where we have included bothN1 decay �L = 1, and �L = 2 scatterings.



Chapter 3

Kalb-Ramond Torsion

The previous chapter discussed the process of Leptogenesis, when the Stan-
dard Model is extended with the addition of majorana Right Handed Neu-
trinos in the theory. The CP asymmetric decay of such species would
eventually lead to the domination of matter, rather than anti-matter.

In the following chapters we shall examine the process of Baryogenesis
through Leptogenesis, in String inspired Cosmologies, including also Right
Handed Neutrinos.

This chapter is a brief overview of the bosonic String Theory and in-
troduces the gravitational multiplet. The gravitational multiplet of string
theory consists of the graviton, the dilaton, and the Kalb-Ramond field.
The coupling of the Kalb-Ramond field with the Right Handed Neutrinos,
will be proved to be a potential origin of the matter-antimatter asymmetry
in the Universe.

3.1 String Theory

At first, one should define what string theory is. Luckily, the name de-
scribes exactly the approach of this theory on physics. Basically, the point
particles are replaced by strings, interactions by surfaces, and worldlines by
worldsheets. This section is written based it the three following citations,
[30][34][5].

3.1.1 Bosonic String Action

The action of relativistic point particles (0-brane), may be written the
following way[34],

S0 =
1

2

Z
d⌧
⇣
gµ⌫(X)ẊµẊ⌫

⌘
. (3.1)

While from the variation of the action 3.1, one can obtain the geodesic
equation

Ẍµ + �µ
klẊ

kẊ l = 0, (3.2)

17
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Figure 3.1: The worldsheet is the two-dimensional extension of the world-
line, [34].

where �µ
kl are the Christo↵el symbols [8].

In a similar way, one can define the string action (1-brane). Consider
the dimensional volume element , dµ, equal to

dµ =
q
�det(G↵�(X))d2� (3.3)

where

G↵� =
@Xµ

@�↵
@X⌫

@��
gµ⌫ , ↵,� = 0, 1 (3.4)

the induced metric on the worldsheet, and µ, ⌫ = 0, ..., D � 1 [34]. We
assume a string propagating in D-dimensional spacetime, and parametrize
the worldsheet with �0 ⌘ ⌧ and �1 ⌘ �, (this is the two dimensional
extension of the worldline, see fig. 3.1). The gµ⌫ is the background space
time metric, while G↵� represent the metric on the string. Assuming the
Minkowski background metric, the determinant of the string metric reads

det(G↵�(X)) = (Ẋ2)(X 02)� (Ẋ ·X 0)2, (3.5)

where Ẋ = @X/@⌧ and X 0 = @X/@�. Consequently, the string action is
written as

SNG = �T

Z
d⌧d�

q
(Ẋ ·X 0)2 � (Ẋ2)(X 02) (3.6)

and it is known as Nambu-Goto action. For convenience, one may re-write
the action in a simpler form, by introducing an auxiliary field h↵� .

S� =
�T

2

Z
d⌧d�

p�hh↵�@↵X
µ@�X

⌫gµ⌫ (3.7)

3.1.2 Local Symmetries of the Bosonic String Theory World-
sheet

The action of eq. 3.7 is invariant under the re-parameterization and the
Weyl transformation.
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• Di↵eomorphisms
Is the invariance of the action under the change of a parameter, for
example, � �! �0 = f(�).

• Weyl Symmetry
Under this transformation the metric change as

h↵�(⌧,�) �! h0↵�(⌧,�) = e2�(�)h↵�(⌧,�), (3.8)

while �Xµ(⌧,�) = 0.

Using the symmetries of the action, one can reduce the h↵�(⌧,�) to
a flat background metric [34]. That way, the action of eq. 3.7, in now
equivalent to

S� =
�T

2

Z
d⌧d�(Ẋ2 �X 02), (3.9)

also known as Polyakov action.

3.1.3 Field equations and solutions

The next step would be to variate the action of eq. 3.9 with respect to the
string field, and demand �S� = 0. Consequently,

�S� =
�T

2

Z
d⌧d�(2Ẋ�Ẋ � 2X 0�X 0) = 0 (3.10)

and integrating the above equation by parts, we get

(�@2⌧ + @2�)X
µ � T

Z
d⌧ [X 0�Xµ|�=⇡ +X 0�Xµ|�=0] = 0. (3.11)

The field equation 3.11, can be simplified further to

(�@2⌧ + @2�)X
µ = 0, (3.12)

when studying the following cases

• Closed String
Boundary condition: Xµ(⌧,�) = Xµ(⌧,� + n)

• Open String
Boundary condition: @�Xµ(⌧,�) = @�Xµ(⌧,� + n) = 0

• Open String
Boundary condition: Xµ(⌧,�) = Xµ

0 , Xµ(⌧,� + n) = Xµ
n

From here and on, we will continue the calculations working on the
light-cone coordinates,

�± = ⌧ ± �. (3.13)



20

Therefore, the field equation in the light-cone coordinate system reads as

@+@�X
µ(�+,��) = 0, (3.14)

where @± = @/@�±. Regarding the solution of eq. 3.14, one may consider
a linear combination of this form

Xµ(�+,��) = Xµ
R(�

+) +Xµ
L(�

�), (3.15)

where Xµ
R(�

+), Xµ
L(�

�) are some arbitrary functions with the indices R
and L referring to the right and left propagation respectively.
In case of a Closed String, taking into account the aforementioned bound-
ary condition, a general solution to eq. 3.14 is

Xµ
R(⌧,�) =

1

2
xµ +

1

2
(⌧ � �)l2sp

µ +
i

2
ls
X

n 6=0

1

n
aµne

�2in(⌧��)

Xµ
L(⌧,� =

1

2
xµ +

1

2
(⌧ + �)l2sp

µ +
i

2
ls
X

n 6=0

1

n
ãµne

�2in(⌧+�)
(3.16)

suggesting a total field solution of the form

Xµ(⌧,�) = xµ +
1

2
⌧ l2sp

µ +
i

2
ls
X

n 6=0

1

n
(aµne

2in� + ãµne
�2in�)e2in⌧ , (3.17)

where ls is the string length, T = 1/(2na0) and a0 = l2s/2.

The variation of the action of eq. 3.9, with respect to the metric h↵�
gives the following field equations, in the light-cone coordinates,

@+X
µ@+Xµ = 0, @�X

µ@�Xµ = 0. (3.18)

Considering the second of the two above equations,

(@�X
µ
R)

2 ⌘ a0
X

n

Lne
�in��

= 0, (3.19)

where we defined

Ln =
1

2

X

m

an�m · am. (3.20)

Respectively, it can be shown that

L̃n =
1

2

X

m

ãn�m · ãm. (3.21)

and taking into consideration the eq. 3.19, we obtain that Ln = L̃m = 0.
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3.1.4 Quantum String

Since we are interested in the quantum string theory, like in Quantum Field
Theory, we should quantize the fields Xµ. Firstly, we write the canonical
momentum of the field Pµ(⌧,�) = �L/�Ẋµ = Ẋµ/(2⇡a0). Then, one should
define the canonical equal-time commutation relations,

[Xµ(⌧,�), P⌫(⌧,�
0)] = i�(� � �0)�µ⌫

[Xµ(⌧,�), X⌫(⌧,�0)] = [Pµ(⌧,�), P⌫(⌧,�
0)] = 0

(3.22)

that will lead to commutation relations of the xµ, pµ, aµn, ã
µ
n,

[xµ, pn] = i�µn, [aµn, a
µ
m] = [ãµn, ã

µ
m] = n⌘µ⌫�m+n,0, (3.23)

and the rest commutations are equal to zero.
While, also we define

Ln =
1

2

X

m

: an�m · am :, (3.24)

where the ”:” symbol shows the normal order of the operators, (the same
applies for L̃). Therefore, we also get that,

(L0 � a)|� >= (L̃0 � a)|� >= 0 (3.25)

the parameter a, is a constant and it comes from the normal order of Ln

• At this point one can define the vacuum state of the string,

aµn|0 >= ãµn|0 >= 0 (3.26)

and now build up the Fock space, acting with the creation operators
aµn, ã

µ
n on the ground state,

|� >= aµ1†
n1

· · · ãµ1†
n1

· · · |0, p > . (3.27)

Note that, the ground state is  (x) · |0 >, hence in the momentum
space these states are also eigenstates of the momentum operator.

• Ghosts
Consider a physical state | >= a0†m |0, p >, this would mean that

|| ||2 =< 0, p|a0ma0†m |0, p >=< 0, p|[a0ma0†m ]|0, p >= � < 0||0 >
(3.28)

This result is unphysical and therefore we have to modify our model,
in order to exclude the negative norm states. It can be proven that
in the case of 26 dimensions, the unphysical states can be avoided,
for further discussion see [34].
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• Light-cone Gauge
In the same way that we considered the light-cone coordinates for
representing the worldsheet, one can introduce the light-cone coordi-
nates for gauge fixing the background spacetime. Hence we define,

X± =

r
1

2
(X0 ±XD�1) (3.29)

and so the Mikowski metric now reads,

ds2 = �2dX+dX� +
D�2X

i�1

dXidXi (3.30)

where

X+ = X+
L (�+) +X+

R (��) ⌘ x+ +
1

2
a0p+(�+ + ��) (3.31)

From the field equations that we derived, one may write the X� as,

X�
R (��) =

1

2
x� +

1

2
(��)l2sp

� +
i

2
ls
X

n 6=0

1

n
a�n e

�2in(��)

X�
L (�+) =

1

2
x� +

1

2
(�+)l2sp

� +
i

2
ls
X

n 6=0

1

n
ã�n e

�2in(�+)
(3.32)

where

a�n ⌘
r

1

2a0p+

+1X

m=�1

D�2X

i=1

ain�maim. (3.33)

The important result obtained from all the above considerations, is
the e↵ective mass of a string, which is now proved to be equal to

M2 =
4

a0

D�2X

i=1

X

m>0

ai�maim =
4

a0

 
D�2X

i=1

X

m>0

ãi�mãim � a

!
(3.34)

and after the renormalization, the final result is

M2 =
4

a0

 
D�2X

i=1

X

m>0

ãi�mãim � D � 2

24

!
(3.35)

• Ground State
Starting with the calculation of the ground state mass, we find that,

M2 = �D � 2

6a0
(3.36)

which is a negative result. These particles, are referred as tachyons.
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• First Excited States
Regarding the first excited states, one can act with the creation op-
erators on the vacuum state as,

|⌦ij >= ãi�1a
j
�1|0, p >, (3.37)

and this would produce (D � 2) · (D � 2) particle states.This means
that forD = 26, we have 576 particle states.

Massless particles have fewer degrees of freedom than the massive.
Consider a massive particle in D dimensions, if we make a Lorentz
transformation ton the rest frame, we obtain that (E,0....,0), and so
it forms a representation of SO(D-1). Now, think about a massless
particle, there is no rest frame and so a Lorentz transformation would
give (E,E,0,...,0), and a final representation of SO(D-2). Hence, the
first excited states of a close string can form a massless representation
of the D-dimensional Poincare group.

Decomposing the |⌦ij >, one can obtain a symmetric and traceless
spin-2 particle (called graviton), a scalar (called dilaton), and an
antisymmetric second-rank tensor (called Kalb-Ramond field).

3.2 Vielbein Field and Spin Connection

In GR, conventionally, the ”natural” di↵erential basis is used as the coor-
dinates basis, and they are given by

ê(µ) = @(µ) , ê(µ) = dx(µ) (3.38)

for the tangent Tp and contangent T ⇤
p space at a point p, respectively [35].

Also, the Greek indices are used to label the coordinates of the curved
space-time. One may choose the local set of basis vectors ê(a), tetrad
basis, to satisfy the

(ê(a), ê(b)) = ⌘a,b (3.39)

where ⌘a,b is the Minkowski metric, and the small Latin indices will be used
for reference in the non-coordinate frame.

The main goal is to find a coordinate chart that would cover the entire
curved manifold. In order to achieve that, one can write any vector as a
linear combination of the tetrad basis vectors. [35]

ê(µ)(x) = eaµ(x)ê(a) , ê(a) = eµa(x)ê(µ)(x) (3.40)

where eaµ(x) is the so called vierbein field, which is like a transformation
between curved space and flat space. While the metric can be written the
following way,

gµ⌫(x) = eaµ(x)e
b
⌫(x)⌘ab. (3.41)
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The curvature of a manifold can be taken into account through the
a�ne connection �↵�� . While, in the tetrad basis, the a�ne connection is
replaced by the spin connection, !a

µb. It can be shown that it is connected
to the a�ne connection through the following relation,[35]

!a
µb = ea⌫e

�
b�

⌫
µ� � e�b @µe

a
�. (3.42)

Consequently, one can show that the curvature and the torsion may be
written the following way,

Ra
b = d!a

b + !a
c ^ !c

b , T a = dea + !a
b e

b (3.43)

as a function of the spin connection and the frame field.

3.3 String theory induced geometry with torsion

In the section 3.1, we examined the bosonic string theory, and we estab-
lished that the first excited state of a closed string consists of

• traceless, symmetric, dimensionless, spin-2 tensor field gµ⌫ , the gravi-
ton.

• dimensionless spin-0 scalar field, the dilaton �, with string coupling
gs = e�

• dimensionless spin-1 antisymmetric tensor, Kalb-Ramond field Bµ⌫

The field strength of the Bµ⌫ is a three-form, Hµ⌫⇢ = @[µB⌫⇢], where
the [..] symbolize the antisymmetrization of the respective indices. The
field strength, also, satisfies the Bianchi identity, @[µH⌫⇢�] = 0. Hence, the
e↵ective action of the first excited state may be written as follows

S =
1

22

Z
d4x

p�g

✓
R� 2@µ�@µ�� e�4�H�µ⌫H

�µ⌫ � 2

3
�c · e2�

◆

(3.44)
where the �c is the central charge deficit (in the previous sections we con-

sidered that c=D=26), and we define 1
2 ⌘ M2

s

V c

8⇡ . Here the Ms is the
string mass scale, while the V c is the the compactification volume in terms
of the Regge slope ↵0 of the string. Note also, that in the action of eq.
3.44, there are only kinetic terms, since as we mentioned earlier the state
of the string is massless.

In equation 3.44, the term containing the strength of the KR field can
be absorbed in to the generalized curvature term R̄(�̄), defining a new
”torsional connection” �̄.

�̄�µ⌫ = ��µ⌫ + e�2�H�
µ⌫ 6= �̄�⌫µ (3.45)
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Introducing the covariant derivative r̄a in the tetrad basis,

r̄a = eµa

✓
@µ +

i

2
!̄bµc⌃

bc

◆
 (3.46)

where ⌃bc = i
4 [�

b, �c], the generator of the Lorentz group. The spin con-
nection is defined as in the previous section, with the small di↵erence that
the a�ne connection is ”torsional” in the case examined

!a
µb = ea⌫e

�
b �̄

⌫
µ� � e�b @µe

a
�. (3.47)

String anomaly cancellation requires to redefine the KR field strength,
by including some extra terms.

H = dB +
↵0

4
(!3L � !3Y )

!3L = Tr[! ^ (d! +
2

3
! ^ !)], !3Y = Tr[A ^ (dA+

2

3
A ^A)]

(3.48)

where !3L is the Lorentz Chern-Simons term which is a function of the
spin connection !, and A is the Yang-Mills gauge field. Consequently, the
modified Bianchi identity reads as,

dH =
↵0

4
(Tr[R ^R]� Tr[F ^ F]) . (3.49)

where F = dA+A ^A, the Yang-Mills field strength.
In this case, one can set the constraint of eq. ?? in the path integral with
respect to the action 3.44 and integrate over the field strength of the KR
field. That way, one gets the following result,

Z =

Z
�He�iS�(✏µ⌫⇢�rµH⌫⇢� � c1Rµ⌫⇢�R̃

µ⌫⇢� + c2F↵�F̃
↵�)

=

Z
�He�iS

Z
dbe�i

R
d4x

p
�g(✏µ⌫⇢�r

µ

H
⌫⇢�

�c1Rµ⌫⇢�

R̃µ⌫⇢�+c2F
↵�

F̃↵�)

(3.50)

where b is a pseudoscalar lagrange multiplier field, massless KR axion field.
Consequently the e↵ective action can be written as,

S =

Z
d4x

p�g

✓
R

22
� 1

2
@µb@

µb� c1bRµ⌫⇢�R̃
µ⌫⇢� + ...

◆
. (3.51)

In the early Universe, and under some circumstances [4], one may have
a condensate of < RR̃ >, that suggests an inflationary universe of the type
encountered as ”running vacuum”. The vacuum energy density, which
is written as a function of the Hubble parameter, is characterized by an
equation of motion of the form,

p(H(t)) = �⇢(H(t)) (3.52)
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for further analysis of the model, see the Master Thesis of Vyron Chiotelis,
[9].

Taking into account that

Rµ⌫⇢�R̃
µ⌫⇢� = rµK

µ (3.53)

which is a mathematical property, we have that the equation of motion of
the b-axion field is written as,

1p�g
@
�p�g(@µb� c1K

µ))
�
= 0 (3.54)

One solution of the above equation is

ḃ = c1K
0, @ib, Ri << ḃ,K0 (3.55)

where in this case the b = b(t) violates the Lorentz symmetry. Considering
< Rµ⌫⇢�R̃µ⌫⇢� >= const., and combine it with eq. 3.53, we get that for an
isotropic and homogeneous universe,

d

dt
K0 + 3HK0 = const. (3.56)

which accepts as a solution the K0 ' const. for an inflationary space-time
where H ' const.. For further details regarding the running vacuum, see
[9, 4]. Generally, the form of the running vacuum energy has the following
structure,

⇢vac ' �1H
2 + �2H

4 (3.57)

where �1 corresponds to the gravitational Chern-Simons term, and �2 >
0. In the very early universe the second term is dominant, and leads to a
running vacuum inflation. Due to the eq. 3.55, in the inflationary period,

ḃ = const. (3.58)

and therefore the axion field remains undiluted at the end of inflation.
While also,

Hijk ⇠ ✏ijk0@
0b (3.59)

which is spatially flat.
After this period, the decay of the inflation can generate the fermion

fields. The generation of fermions will introduce the anomalies that can
then cancel the primordial gravitational anomalies.

We now study the e↵ective action of a higher excited state of the string,
in order to include the fermions. Therefore, the action now reads,
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SDirac =
1

2

Z
d4x

p�gi( ̄�ar̄a � r̄a ̄�
a + 2im ̄ )

=
1

2

Z
d4x

p�gi[ ̄�a@a � @a ̄�
a +

+
i

2
 ̄(

i

4
�a�b�c � i

4
�a�c�b +

i

4
�b�c�a � i

4
�c�b�a)eµa !̄bµc 

+m ̄ ].

(3.60)

Using the gamma matrices identities, and in particular

�µ�⌫�⇢ = ⌘µ⌫�⇢ + ⌘⌫⇢�µ � ⌘µ⇢�⌫ � i✏�µ⌫⇢���
5, (3.61)

and considering that r̄a ̄ = eµa
�
@µ � i

2 !̄bµc⌃bc
�
 ̄, one can prove that the

action is equal to,

SDirac =

Z
d4x

p�g ̄(i�a@a + ˆBd�5�d �m) 

⌘ Sfree
Dirac +

Z
d4x

p�gB̂µ ̄�
µ�5 

(3.62)

where we have define the field B̂d as

B̂d ⌘ 1

4
✏dabceµa !̄bµc. (3.63)

Due to eq. 3.59,in four space time, one can see that

B̂µ ⇡ @µb �! B̂0 ⇡ ḃ ⇠ const. (3.64)

The second term of equation 3.62, expresses the coupling of the Kalb-
Ramond axion field with the fermions. This term will play an important
role in the next chapters, as it is the origin of the antisymmetric decay
of the Right Handed Neutrinos, and eventually lead to Leptogenesis and
Baryogenesis.





Chapter 4

Leptogenesis from
Kalb-Ramond Torsion
Background

In Chapter 2 we considered the existence of Right Handed Majorana Neu-
trinos, and stated the need of more than one RHN in order to obtain
CP-asymmetric decay, and therefore Leptogenesis to occur.

In this Chapter we further extend the Standard Model, considering the
interaction of the axion background field with the fermions.. As we will
examine later on, one can obtain CP-violating decay of N1 at tree-level, in
contrast to Chapter 2, where we had to consider at least two Right Handed
Neutrino flavors and study the loop diagrams.

Since there is an extra term in the Lagrangian density, one has to re-
define the Dirac spinors. After that, we follow the same procedure as in
Chapter 2, one should calculate the decay amplitude at tree-level, the decay
rate and then continue with the Boltzmann equations, in order to derive
the Lepton asymmetry abundance.

4.1 Spinors coupled to an Axial Background Field

As we showed in the previous chapter, one can write the Lagrangian in-
cluding a non vanishing axion background field, as following

Le�1 =
i

2
eµa( ̄j�

a@µ j � @µ ̄j�
a j) +  ̄j(�

5 /̃B �m(j)) j

+
3k2

16
( ̄j�µ�

5 j)( ̄l�µ�
5 l) + ...

(4.1)

Now one can write the Euler-Lagange equation for the Lagrangian density
of eq.4.1, and obtain the two following equations for the Dirac spinor and

29
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the charge conjugate spinor [13].

ieµa(�
a@µ j) + (�5 /̃B �m(j)) j +

3k2

16
(�µ�

5 j)( ̄l�µ�
5 l) = 0 (4.2)

ieµa(�
a@µ 

C
j ) + (�5 /̃B �m(j)) C

j � 3k2

16
(�µ�

5 C
j )( ̄

C
l�µ�

5 C
l ) = 0 (4.3)

where  C = C ̄T and C = i�2�0. Since we know that C�µC�1 = ��Tµ ,
and C�5C�1 = �T5 ,

 ̄l�µ�
5 l = � ̄C

l�µ�
5 C

l (4.4)

We also define F0 ⌘<  ̄l�µ�5 l >, and since the only non-vanishing
component is the temporal component, we re-write the equations 4.2, 4.3

ieµa(�
a@µ j)�m(j) j � (B̃0 +

3k2

16
F0)�

0�5 j = 0 (4.5)

ieµa(�
a@µ 

C
j )�m(j) C

j � (B̃0 +
3k2

16
F0)�

0�5 C
j = 0. (4.6)

At this point, one may compute the Dirac spinors, by rewriting equation
4.6 in the following way,

(i�µ@µ �m�B0�
0�5) = 0 , B0 ⌘ B̃0 +

3k2

16
F0 (4.7)

and inserting the plane wave solution,  (x) = ur(p)e�ipx. Resulting to

 �mI Er �B0 � ~p · ~�
Er �B0 + ~p · ~� �m

�
ur = 0, (4.8)

here we used the chiral representation of the Dirac matrices ,

�µ =


0 �µ

�µ 0

�
, �5 =

�I 0
0 I

�
(4.9)

where

�µ ⌘

I
�i

�
, �µ ⌘


I

��i
�
. (4.10)

Inserting ur =


⇠1
⇠2

�
in eq. 4.8, we get that

�m⇠1 + (Er �B0 � ~p · ~�)⇠2 = 0

(Er �B0 + ~p · ~�)⇠1 �m⇠2 = 0
(4.11)

and so,

⇠2 =
�m

E �B0 � ~p · ~� ⇠1 (4.12)
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Figure 4.1: N1 ! LH and N1 ! L̄H̄, in the presence of an axial back-
ground field

Normalising the spinors according to orthogonality, ⇠†r⇠s = �rs, and

u†rus = 2Er�rs , v†rvs = 2Er�rs (4.13)

while also consider the energy equation,

E2
r = m2 + (B0 + �r|~p|)2 (4.14)

,and we obtain that

ur(p) =

p
Er �B0 � �r|~p|⇠rp
Er +B0 + �r|~p|⇠r

�
(4.15)

where �r⇠r = ~p~�
|~p|⇠

r, and �r ⌘ (�1)r�1, [7]. While the negative frequency
spinors are

vs(p) =

 p
Es +B0 � �s|~p|⇠s

�pEs �B0 + �s|~p|⇠s
�

(4.16)

Consequently, the Dirac field operator is defined in the same way that was
derived in the absence of the axion field,

 (x) =

Z
d3p

(2⇡)3

X

r=1,2

1p
2Er

(arur(p)e�ip·x + b†rvr(p)eip·x) (4.17)

4.2 Right Handed Neutrino decay

In this section, we examine the RHN decay at tree-level in the presence
of an axial background field, see fig. 4.1. Firstly we compute the decay
amplitude, and then we proceed to the decay width in order to establish
the CP-asymmetry.

4.2.1 Decay Amplitude

Starting with the Lagrangian density, the corresponding term to the inter-
action of fig. 4.1 is

L 3 ��1LHN1 + h.c. , (4.18)
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where N1 is the majorana RHN, L is the lepton doublet L =


e�L
⌫e,L

�
, and

H is the Higgs field H =


H+

H0

�
. Considering the N1 decay into electron

and electron neutrino,

L 3 ��1e�LH
+N1R + h.c. = �1e�H

+ 1 + �5

2
N1 + h.c. (4.19)

therefore the decay amplitude is equal to

iM1 = �iur(p2)�1
1 + �5

2
us(p)

= �i�1
⇥p

Er �B0 � ~p2 · ~�⇠r†
p
Er +B0 + ~p2 · ~�⇠r†

⇤
�0

⇥ 1 + �5

2

p
Es �B0 � ~p · ~�⇠sp
Es +B0 + ~p · ~�⇠s

�

= �i�1
p
Er �B0 � ~p2 · ~�⇠r†

p
Es +B0 + ~p · ~�⇠s

(4.20)

and so,

|M1|2 = �†1�1
2 ⇤ 1

2 + 1

X

r

X

s

(Er �B0 � ~p2 · ~�)(Es +B0 + ~p · ~�)(⇠r† · ⇠s)†(⇠r† · ⇠s)

=
|�1|2
2

X

r

X

s

(Es �B0 � �s|~p2|)(Es +B0 + �r|~p|)(⇠r† · ⇠s)†(⇠r† · ⇠s)

=
|�1|2
2

(Es �B0 � �|~p2|)(Es +B0 + �|~p|)
(4.21)

where �r = �s = � due to the helicity conservation, that enters the equation
through the �rs. We also make the following considerations, in order to
further simplify eq. 4.21. The electron and the higgs mass are negligible,
compared to the RHN mass, and we set |p| = 0. Therefore, eq. 4.14
becomes respectively

Elepton = |B0 + �|p2|| (4.22)

EN1 =
q

m2
N1

+B2
0 (4.23)

At this point, one should consider di↵erent cases for each possible value
of the helicity �.

• � = 1
In this case, eq. 4.21 becomes

|M1|2 = |�1|2
2

(|B0 + |p2||�B0 � |~p2|)
⇣q

m2
N1

+B2
0 +B0

⌘

=
|�1|2
2

(B0 + |p2|�B0 � |~p2|)
⇣q

m2
N1

+B2
0 +B0

⌘

= 0

(4.24)

which means that no RHN can decay into leptons.
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• � = �1 On the other hand, the eq. 4.21 now becomes

|M1|2 = |�1|2
2

(|B0 � |p2||�B0 + |~p2|)
⇣q

m2
N1

+B2
0 +B0

⌘
(4.25)

– If B0 � |p2| > 0 , then eq. 4.25 becomes

|M1|2 = |�1|2
2

(B0 � |p2|�B0 + |~p2|)
⇣q

m2
N1

+B2
0 +B0

⌘

= 0

(4.26)

– If B0 � |p2| < 0 , then eq. 4.25 becomes

|M1|2 = |�1|2
2

(�B0 + |~p2|�B0 + |~p2|)
⇣q

m2
N1

+B2
0 +B0

⌘

=
|�1|2
2

(2)(|~p2|�B0)
⇣q

m2
N1

+B2
0 +B0

⌘

(4.27)

Consequently the only non-vanishing decay amplitude, arises from the
case of � = �1, and B0 � |~p2| < 0.

|M1|2 = |�1|2
2

2(|~p2|�B0)
⇣q

m2
N1

+B2
0 +B0

⌘
(4.28)

Moving on, one should also consider the RHN decay into anti-particles,
see fig. 4.1. The decay amplitude of this process is equal to

iM2 = �ivr(p)�
⇤
1
1� �5

2
vs(p2)

= �i�⇤1
⇥p

Er +B0 � ~p · ~�⇠r† �p
Er �B0 + ~p · ~�⇠r†⇤ �0

⇥ 1 + �5

2

 p
Es +B0 � ~p2 · ~�⇠s

�p
Es �B0 + ~p2 · ~�⇠s

�

= i�⇤1(�1
p
Er �B0 + ~p · ~�⇠r†)

p
Es +B0 � ~p2 · ~�⇠s

(4.29)

and so,

|M2|2 = |�1|2
2

(Es �B0 + �|~p|)(Es +B0 � �|~p2|). (4.30)

The energy equation for the anti-fermions takes the following form

E2
r = m2 + (B0 � �r|~p|)2 (4.31)

One can obtain non-vanishing decay amplitude, in the case of � =
�1. The non-zero case of � = +1, was rejected due to the fact that we
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considered that B0 < |p2| in eq. 4.28. Therefore, the decay amplitude of
the RHN into anti-fermions is,

|M2|2 = |�1|2(
q
m2

N1
+B2

0 �B0)(B0 + |~p2|). (4.32)

The helicity of the antiparticle is p·�
|p| ⇠

r = ��rparticle⇠r = �rantiparticle⇠
r,

and so the helicity of the anti-neutrino and anti-lepton is � = +1
In equations 4.25 and4.32, we consider that the p = 0. Nevertheless,

this is an approximation, it will be more precise if we consider that the
momentum is indeed very small, and write the Taylor expansion.

|M1|2 = |�1|2
2

(|~p2|�B0)
m2

N1

p

 
1 +

B0

p
� m2
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4p2
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2

)(B0 + |~p2|)
m2

N1
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1� B0

p
� m2

N1

4p2

! (4.33)

4.2.2 CP-asymmetry

In this subsection we compute the decay rate of the RHN into particles
and antiparticles, in order to demonstrate the CP-assymetric decay.

It is convenient to define the variable ⌦,

⌦ ⌘
q
m2

N1
+B2

0 . (4.34)

• N1 �! LH

�1 =
1

2EN1

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
|M1|2(2⇡)4�4(p� p1 � p2) (4.35)

Considering that the total energy of the system is preserved, while
|p1| = |p2|, and having in mind that B0 < p2 , and � = �1, we obtain
the following equation,

|~p1|�B0 + |~p2| = ⌦ , |p2| = ⌦+B0

2
(4.36)

One can re-write eq. 4.35, and inserting eq. 4.36,

�1 =
|�1|2
2⌦

Z
d!

16⇡2
p2

⌦�B0
(p2 �B0)

⇣q
m2

N1
+B2

0 +B0

⌘
(4.37)

where we defined the following quantities, p2 ⌘ |~p2| and d! is the
solid angle element. Eventually after doing some calculations, one
can obtain the following result,
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�1 =
|�1|2
16⇡

⌦+B0

⌦�B0

m2
N1

2⌦
(4.38)

• N1 �! L̄H̄

The decay rate of the RHN into antiparticles is equal to,

�2 =
|�1|2
16⇡

⌦�B0

⌦+B0

m2
N1

2⌦
(4.39)

Comparing the two decay rets of eq. 4.38 and eq. 4.39, one can see
that �1 6= �2. In particular, it seems that �1 > �2, and this is an indica-
tion of the asymmetry between particles and antiparticles, that favors the
particles.

Furthermore, one may calculate the total RHN decay rate,

� = �1 + �2 = 2 ·
✓ |�1|2
16⇡2

⌦2 +B)2

⌦

◆
(4.40)

where we have doubled the result, because one has to consider also the RHN
decay into the neutral Higgs and the electron neutrino, N1 ! ⌫e + �0.

4.3 CPT Violating term

The contribution of the of the Kalb-Ramond Torsion Background, in en-
tering the Lagrangian through the term

L 2 �N̄ /B�5N (4.41)

if we apply a CPT transformation on this term,[20], we obtain the obtain
the following result,

L 2 �N̄CPT /B�5NCPT = �iei��5N(�t,�x)�0�5B0ie
i��5N(�t,�x) =

= �ie2i��5i�1�3N⇤(t, x)�0�0�5B0ie
2i��5i�1�3N ⇤ (t, x)�0 =

= B0N⇤(t, x)�5�1�3�0�0�5�5�1�3�0N⇤(t, x) =

= N⇤(t, x)�0B0�
5N⇤(t, x)

= N̄ /B�5N

(4.42)

where N⇤(t, x) = N(t, x), due to the fact that the neutrino is majorana.
The above equation shows that this term violates the CPT symmetry.

As we established in the previous subsections, this term is the origin of
the asymmetric decay of the RHN, that eventually leads to Leptogenesis.
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4.4 Leptogenesis from a CPTV Background field

The aim of this section is to examine the lepton asymmetry that would be
produced, due to the CP-asymmetric decay of the right handed neutrino.

Basically, one has to solve the Boltzmann equations that describe the
evolution of the RHN abundance, and the leptons and anti-leptons abun-
dance. That way, we can examine the evolution of the lepton asymmetry
through time, and eventually name it ”Leptogenesis”.

In order to form the Boltzmann equations for the interactions examined,
there are a few variables that need to be computed first, e.g. the thermal
equilibrium abundances and the thermal averaged decay rate.

4.4.1 Equilibrium Abundances

As we have defined in Chapter 2, the abundance of a particle species is
defined as Yx = nx/s. Where nx is the number density, while s is the
entropy density.

Consequently, in order to compute the neutrino or lepton equilibrium
abundance, one has to calculate the number density first

neq
x = gx

Z
d3p

(2⇡)3
f eq
x (4.43)

where, f eq is the distribution function,

f eq
x =

1

eEx

/T + 1
. (4.44)

Considering the number density of the RHN, one gets that

f eq
N1

=
1

eEN1/T + 1
=

1

eEN1/T (1 + e�E
N1/T )

= e�E
N1/T

1X

n=0

(�1)ne�n·E
N1/T

⇡ e�E
N1/T � e�2E

N1/T + e�3E
N1/T

(4.45)

where we used the Taylor expansion of 1/(1 + x) =
P1

n=0(�1)nxn. Now,
concerning the RHN total energy, one can expand the equation and re-write
it as follows,

EN1 =
q
m2

N1
+ (B0 + �pN1)

2

⇡ pN1 +
m2

N1

2pN1

� m4
N1

8p2N1

� m2
N1
�B0

2p2N1

+ �B0

(4.46)

where we made use of the fact that pN1 >> mN1 , B0.
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Considering eq. 4.45, we obtain the following result for the equilibrium
density of the RHN,

neq
N1

= gN1

Z
d3pN1

(2⇡)3
(e�E

N1/T � e�2E
N1/T + e�3E

N1/T ) (4.47)

In the above equation, one can see that the sub-integrals have the same
form,

In =

Z
d3pN1

(2⇡)3
e�nE

N1/T

=

Z
d! · dpN1p

2
N1

(2⇡)3
e�nE

N1/T

(4.48)

which, according to [7], is equal to

In = T 3e�ne�n
B0
T Pn ,

Pn =
n2 + 2n+ 2

n3
� n+ 1

2n

m2
N1

T 2
+

n

8

m4
N1

T 4
[1 + en�(0, n)] +

m2
N1
�B0

2T 3
.

(4.49)

where �(0, n) is the Gamma function, [1].
Consequently, the RHN number density is

neq
N1

=
5gN1T

3

2⇡2e
(0.9251� 0.1628

m2
N1

T 2
+ 0.0278

m4
N1

T 4

� 0.8672
B0

T
+ 0.2203�

m2
N1

B0

T 3
)

(4.50)

Continuing with the lepton and ant-lepton number density, one obtains the
following result

neq
l =

gl
2⇡2

(J1 � J2 + J3)

Jn =

Z 1

T
dplp

2
l e

E
l

/T
(4.51)

where we made expanded the exponential term in the distribution function,
and having in mind that pl >> B0 we get that the energy is equal to

El = |B0 + �pl| = B0 + �pl (4.52)

for either positive or negative �. Therefore, replacing the energy El in eq.
4.51 and calculating the integral,

neq
l =

5glT 3

2⇡2e

✓
0.9251� 0.8672�

B0

T

◆
(4.53)
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The last part of this subsection, is to calculate the abundance of the RHN,
leptons, and anti-leptons. Since the entropy density is approximatelys ⇠
14T 3, the abundances have the following form

Y eq
N1

' 0.1652
gN1

⇡2e

✓
1� 0.176z2 + 0.0301z40.9374�

B0z

mN1

+ 0.2381�
B0z3

mN1

◆
,

Y eq
l ' 0.1652

gl
⇡2e

✓
1� 0.9374�

B0z

mN1

◆
,

Leq ' 0.3097
gl
⇡2e

�
B0z

mN1

◆

(4.54)
where z = mN1/T .

4.4.2 Thermally Averaged Decay Rates

In order to derive the Boltzmann equations, one should also calculate the
thermally averaged decay rates, �eq(N1 �! LH) and �eq(N1 �! L̄H̄).

To begin with, we write the RHN decay into leptons and by similar
calculations, one can also obtain the decay rate of the RHN into anti-
leptons.

�eq(N1 �! LH) =

Z
d3p

2E(2⇡)3

Z
d3p1

2E1(2⇡)3

Z
d3p2

2E2(2⇡)3
f eq
N1

⇥ |MN1�!LH |2(2⇡)4�4(p� p1 � p2)

(4.55)

where E, p is the RHN total energy and momentum, and the index 1 and
2 corresponds to the lepton and higgs field respectively, fig. 4.1. While,
the decay amplitude has already been calculated in equation 4.33. One
may integrated over the momentum delta function, which leads to the
momentum conservation, p1 = p�p2. That way, we re-write the above
equation as

�eq(N1 �! LH) =
1

8(2⇡5)

Z
d3p

Z
dp2

Z
d!2f

eq
N1

p22
E2E1E

⇥ |M1|2�(E � E2 � E1).

(4.56)

Concerning the delta function, we know that

E � E2 � E1 =E � |B0 � p2|�
q
p21 =

=E +B0 � p2 �
q
p2 + p22 � p2p · cos(✓) ⌘ f(p2)

(4.57)

where ✓ is the angle between the lepton and the neutrino momentum. Using
the delta function property,

Z
dp2�(f(p2)) =

Z
dp2

�(p2 � p2,0)

|f 0(p2,0)| (4.58)
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where p2,0 is the solution of f(p2) = 0, and so the eq. 4.56, becomes

�eq(N1 �! LH) =
�21m

2
N1

16(2⇡5)

Z
d3p

Z
dp2

Z
d!2

f eq
N1

E · p
✓
1 +

B0

p
� mN1

4p

◆

⇥ p22,0q
p2 + p22,0 � p2,0p · cos(✓)

1

f 0(p2,0)

(4.59)

After doing some further calculations, one can proof that, see [7],

�eq(N1 �! LH) '3�21m
4
N1

16(2⇡3)
z�2/3[0.2553� 0.1447z2+

+ 0.0957z4 + z
B0

mN1

(0.6062� 0.3063z2)]

(4.60)

�eq(N1 �! L̄H̄) '3�21m
4
N1
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z�2/3[0.2553� 0.1447z2+

+ 0.0957z4 � z
B0

mN1

(0.6062� 0.3063z2)]

(4.61)

4.4.3 Boltzmann Equations

In this subsection we will insert the results of the two previous subsection
into the Boltzmann equations, in order to study the evolution of the RHN
and the lepton-antilepton abundance.

First of all, we will write the Boltzmann equation, that shows how does
the distribution function in time, due to collisions. The equations will be
similar to those of Chapter 2, see eq. 2.39, with one extra term, [13]. The
additional term appears due to the presence of the CPTV background field,
as we will show.

The Liouvile operator, obtained in eq. 2.35, can be written as,

gx

Z
d3p

(2⇡)3E
L[fx] = dnx

dt
� ȧ

a

gx
(2⇡)3

Z
d! · dpx p

2
xp

2
x

Ex

@fx
@px

@px
@Ex

(4.62)

where we have already defined, for convenience, that |px| ⌘ px, and d! is
the solid angle. One can also show that,

E2
x = m2

x + (px + � ·B0)
2 , @px

@Ex
=

Ex

�B0 + px
, (4.63)
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and so eq. 4.62, is equivalent to
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(4.64)

One can now obtain the Boltzmann equation for the RHN abundance,[7].
Starting with the RHN decay into leptons,which we will symbolize as Y �

N1
,

due to the fact that � = �1

zHs
dY �

N1

dz
+ I ' �

 
�eq(N1 ! LH)

Y �
N1

Y �,eq
N1

� �eq(LH ! N1)

!
(4.65)

and for the RHN decay into antilepton, Y +
N1

, with � = +1

zHs
dY +

N1
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� I ' �

 
�eq(N1 ! L̄H̄)

Y +
N1
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� �eq(L̄H̄ ! N1)

!
(4.66)

here, the I is an integral that we will calculate later, and arose from the
term analogue to � on the right-hand-side of eq. 4.64.

Following the same procedure, one may obtain the Boltzmann equations
for the lepton and anti-lepton abundance,

zHs
dY �

L
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+ I ' �
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Y �
L

Y �,eq
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(4.67)
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Y +,eq
L̄

� �eq(N1 ! L̄H̄)
Y +
N1

Y +,eq
N1

!

(4.68)
where we kept the same notation.

There are two useful quantities that is interesting to define, and then
reconstruct the Boltzmann equations with dependence on them.
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• The first one, is the average abundance for both the leptons and the
RHN

¯YN1 ⌘ Y �
N1

+ Y +
N1

2
=

Y �
L + Y +

L̄

2
⌘ ȲL (4.69)

which are equal,since we consider that the leptons and anti-leptons
are produced through the RHN decay.

• The second variable, and of most interest, is the lepton asymmetry

L ⌘ Y �
L � Y +

L̄
. (4.70)

It can be shown that the Boltzmann equations for the RHN average abun-
dance is
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dȲN1

dz
=

 
�eq(N1 ! LH)

Y �
N1

Y �,eq
N1

� �eq(LH ! N1)

!

+

 
�eq(N1 ! L̄H̄)

Y +
N1

Y +,eq
N1

� �eq(L̄H̄ ! N1)

! (4.71)

while for the lepton asymmetry is
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(4.72)
where Il = 10.7052glm4

N1
B0/(⇡2eMplz4), [7]. One can also show that, since

we make the calculations in the very early universe, where the temperature
was very high, the entropy is approximately s ⇡ 14T 3 and the Hubble
parameter is H ⇡ 6T 2/Mpl. !!!!edw na dw giati isxuei ayto!!!!!!

We can now, insert the values of the variables calculated in the previous
subsections, e.g. Y �,eq

N1
, �eq(N1 ! LH, Y +,eq

N1
), �eq(N1 ! L̄H̄), Y +

L̄
, Y �,eq

L .
Consequently, the two equations 4.71 and 4.72, can be written in the fol-
lowing form, [7],

dȲN1
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while for the lepton asymmetry abundance the Boltzmann equations, can
be further simplified to

dL

dz
+ J(z)L = K(z), z < 1
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(4.74)
One may solve eq.4.74, [7], and obtain the the following result for the

lepton asymmetry,

�LTOT
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L � Y +
L̄

Y �
L + Y +

L̄

=
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2ȲL
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(4.75)
while the phenomenological constraints suggest that,

B0

mN1

⇠ 10�9 � 10�8 , mN1/TD = (1.44� 1.62). (4.76)



Chapter 5

Baryogenesis through
Leptogenesis

In the previous chapters we studied the process of Leptogenesis, in the
Standard Model extensions. More precisely, we considered the case of
the existence of Majorana Right Handed Neutrinos in a String Inspired
Universe. While, as we have already examined, the decay of such particles
can lead to Leptogenesis, it may also be the origin of Baryogenesis.

In this chapter we will discuss the baryon (B) and lepton (L) number
violations, in the SM. One may examine the so called triangle anomaly,
and find out that the B and L number are not conserved, in contrary to
the B-L number which is exactly conserved.

In the following pages we will study the origin of this anomaly, as also
di↵erent configurations of this anomaly, like the sphalerons. The sphalerons
are saddle solutions of the field equation, making possible the passing over
of the barrier connecting to vacuum states, when the energy is high enough,
(like in the early Universe.)

Finally, we will introduce the Baryon asymmetry, generated by the B-L
conservation in the early Universe.

5.1 B and L Number Violations

In this section we will study the processes that violate the Baryon and
Lepton number.

5.1.1 Quantum Anomalies

During this subsection we will calculate the value expectation of the axial
vector current, as also the divergence of the current.

Consider a simplified model, where there are only massless fermions
that couple with an external U(1) gauge field [33], the action in this model
reads as,

S =

Z
d4x(i ̄/@ � eJµ

V Aµ) (5.1)
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Figure 5.1: Diagrammatic representation of equation 5.4 .

where Jµ
V =  ̄�µ . Now, the expectation value of the axial vector current,

may be written as follows [20],

< Jµ
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i
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)

R
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R
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V

A
µ

)
. (5.2)

One may approach the expectation value with the perturbation theory,
hence

< Jµ
A(x) >=� ie

Z
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(5.3)

and therefore,
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+ ...

(5.4)

• The first term corresponds to the Feynman diagram shown in the
right diagram of fig.5.1. It can be shown that the first term of eq.5.4,
vanishes, and therefore do not contribute to the value of the current
divergence, [33].

• The second term of eq.5.4, is of more interest. This term corresponds
to the triangle diagram, shown in the left diagram of fig.5.1. Starting
with the calculation of the loop, and considering the partial derivative
in the momentum space [23][33],

e2@µ < T [Jµ
A(0)J

⌫
V (x1)J

⇢
V (x2)] >=

Z
d4p

(2⇡)4

Z
d4k
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i(p+ k)µ�

µ⌫⇢(p, k)

· ei(px1+kx2)

(5.5)
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Figure 5.2: The triangle anomaly. [23]

where �µ⌫⇢(p, k) is the loop contribution. There are two loop dia-
grams contributing to this calculation, shown in fig. 5.2, hence the
loop contribution is equal to,

C⌫⇢ = (p+ k)µ�
µ⌫⇢(p, k)

= 2 · e2
Z

d4l

(2⇡)4
Tr

"
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i(/l + /p)

(l + p)2

#
.

(5.6)

Under calculations in Mathematica, one obtain the following result,

C⌫⇢(p, k) = i
e2

2⇡2
✏⌫⇢↵�k↵p� . (5.7)

After the above considerations, one may insert eq.5.7 to eq.5.4, and so, now
the eq.5.4 reads

@µ < Jµ
A(0) >=

e2

4⇡2

Z
d4x1

Z
d4x2A⌫A⇢✏

⌫⇢↵�k↵p�

· ei(px1+kx2)

(5.8)

The above equation can be further simplify, considering the field strength
Fµ⌫ = @µA⌫ � @⌫Aµ, hence we can write

@µ < Jµ
A(0) >=

e2

16⇡2
✏⌫⇢↵�F↵⇢F⌫� (5.9)

The above result, shows that vacuum expectation value of the axial current
is not conserved!

Under similar computations [33, 28, 6], one can prove the following
equations for the Jµ =

P
species  ̄L�µ L=JV + JA

@µJ
Bµ =

N2
f

16⇡2
F↵
µ⌫

˜F aµ⌫ + UY (1)contributions (5.10)

@µJ
L
f

µ =
g2

16⇡2
F↵
µ⌫

˜F aµ⌫ + UY (1)contributions (5.11)
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where F↵
µ⌫ is the field strength of the SU(2) gauge bosons, while ˜F aµ⌫ =

✏µ⌫⇢�F↵
⇢�/2, and Nf is the number of fermion families, [22].

Integrating equation 5.10 and 5.11, one may define the corresponding
charge as

�B(�L)(t) =

Z
d3xjB(L)0(t) (5.12)

where �B = B � B̄ and �L = L� L̄.
We define the winding number N , that

N =
1

16⇡2

Z
d4xF↵

µ⌫
˜F aµ⌫ . (5.13)

In perturbative gauge field configurations. the winding number N = 0.
While, in non-perturbative configurations the winding number is non-zero,
such configurations are called sphalerons.

5.1.2 Sphalerons

In the previous subsection we studied the nature of the non-conservative
currents in Electroweak theory, such currents lead to the violation of the
Baryon number or the Lepton number. Another way of studying these
violations, is through sphalerons [19, 16].

As we already discussed, the winding of the weak gauge fields is re-
lated to the Baryon (Lepton) number violations. Although, creating these
gauge fields cost energy, and the barrier for such winding is of order
E0 ⇡ MW /aW ,[2, 27]. In the case of low temperature, these processes
occur by quantum tunnelling e↵ects, described by instantons, [25, 32].

For the purpose of this Thesis, we are interested in the case of high
temperature processes, due to the fact that Baryogenesis should take place
in the very early Universe. In this case, it seems that one can pass over
the barrier, and such a solution of the Electroweak theory is identified as
the sphaleron processes,[2]. The jumping o↵ the barrier between di↵erent
vacua, corresponds to a di↵erent Baryon or Lepton number.

Since the energy barrier is the same from one transition to the next, one
may consider a periodic potential, see fig.5.3, [25, 31]. The calculation of
the transitions rate between di↵erent vacuums, and hence baryon (lepton)
number violation, will play an important role for studying the Baryogenesis.

In Electroweak theory, there is an epoch that the Higgs vacuum expectation
value is zero, and after a phase transition( at T=Tc) the Higgs develops a
non-vanishing value, [25]. It can be shown that for T < Tc the sphaleron
decay rate has an exponential suppression by the Boltzmann factor,

� ⇠ e�E
sph

/T (5.14)

while for T > Tc,
� ⇠ (awT )

4. (5.15)
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Figure 5.3: Schematic representation of the spaleron processes, [25]

where aw is Consequently in the unbroken phase, the decay rate was much
larger than the Hubble parameter, and expansion of the Universe, hence
the B non-conserving reactions were fast. While after the phase transition,
the B non-conserving reactions are not suppressed until the temperature
gets lower than the sphaleron energy.

5.2 Baryogenesis from Kalb-Ramond Torsion Back-
ground

During this section, we consider in the Standard Model model both the
Right Handed neutrinos, as also the presence of the Kalb-Ramond torsion
background. As already discussed in the previous chapter, the presence
of the KR field suggests the generation of the Lepton asymmetry in our
Universe, due to the RHN CP asymmetric decay.

While, due to the sphaleron processes, one can study also the generation
of the Baryon asymmetry. In the very early universe, when the temperature
was very high, the Baryon and Lepton number was not conserved. That
way, one may obtain the following equations,

d

dt
�B(t) = 3

d

dt
�Lf (t) , f = 3, µ, ⌧ (5.16)

while also the conservation equation,

d

dt
(�B(t)��L(t)) = 0. (5.17)

Since we are interested in the evolution of the Baryon asymmetry, we re-
write eq.5.16 as,

d

dt
�B(t) =

1

2

d

dt
�(B(t) + L(t)) (5.18)
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because the baryon and lepton number violation is equally violated. One
may also consider the spaleron decay to be equal to the B+L violation,
hence we can write,

d

dt
�(B(t) + L(t)) = ⌧�1�(B(t) + L(t)) (5.19)

where ⌧�1 is the sphaleron decay rate, [22]. Combining and integrating
eq.5.21 and eq. 5.19, one may obtain the Baryon asymmetry at some time
t to be

�B(t) = �B(tini)� 1

2
�(B + L)(tini) +�(B + L)(tini)e

�⌧�1t. (5.20)

Due to the fact that �B(tini) = 0, and the contribution of the exponential
term is negligible, the Baryon asymmetry reads as,

�B(t) ⇡ �1

2
�L(tini), (5.21)

Finally, using the result of eq.6.1,

�B(t) ⇡ �q

2

B0(tini)

mN1

(5.22)

where the factor q is some numerical factor, and the minus sign does not
have a physical significance, since it can can be absorbed in the definition
of the currents.



Chapter 6

Conclusion

From observations of the Universe around us, as also from the Cosmic Mi-
crowave Background, and from studies regarding Nucleosynthesis, there
are strong constraints on the matter-antimatter asymmetry. Although the
origin of this asymmetry, is yet unrevealed.

During this Thesis, we discussed the process of Leptogenesis, when in-
cluding Right Handed Neutrinos (RHN) in the Standard Model. The CP
asymmetic decay of the RHN into lepton and antileptons, at one loop level,
and through the interference of a second species of RHN, can produce a
Lepton asymmetry in our Universe.

Furthermore, we discussed the decay of the RHN in String Inspired Cos-
mological Models. Where, due to the presence of the Kalb-Ramond Field,
there is no need to add in the model a second species of RHN, in order
to obtain Leptogenesis. In this model, The RHN decay CP asymmetric at
tree level, hence one may construct the Boltzmann equations and study
the evolution of the Lepton asymmetry. One may solve the equations with
numerical methods, [7], and obtain the the following result for the lepton
asymmetry,

�LTOT

s
' (0.008� 0.014)

B0

mN1

, mN1/TD = (1.44� 1.62) (6.1)

while the phenomenogical constraints suggest that,

B0

mN1

⇠ 10�9 � 10�8 , mN1/TD = (1.44� 1.62). (6.2)

Finally through the sphaleron processes in the early Universe, one can
study the Baryon and Lepton number non-conservation rate. Therefore,
we suggested that the Baryon asymmetry is approximately equal to,

�B(t) ⇡ �q

2

B0(tini)

mN1

. (6.3)
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In addition to all the aforementioned, one may also study the direct, due
to the presence of the Kalb-Ramond field. In accordance to the previous
calculations, it is possible to show that the quark spinors, will also be af-
fected from the coupling with the KR field. Hence they can also contribute
to Baryogenesis, although they will only cover just a small fraction of the
Baryon asymmetry.

Concluding, this thesis suggests the Bayrogenesis through Leptogenesis in
String inspired Cosmologies, due to the RHN decays. While also discuses
the physics of Leptogenesis, when extended the Standard Model per two
extra species of Right Handed Neutrinos.



Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables. U.S. Dept. Of
Commerce, National Bureau Of Standards, 1972. 37

[2] P. Arnold and L. McLerran. The sphaleron strikes back: A response
to objections to the sphaleron approximation. Physical Review D,
37:1020–1029, 02 1988. 46

[3] A. B. Balantekin and B. Kayser. On the properties of neutrinos.
Annual Review of Nuclear and Particle Science, 68:313–338, 10 2018.
6

[4] S. Basilakos, N. E. Mavromatos, and J. Sola. Gravitational and chi-
ral anomalies in the running vacuum universe and matter-antimatter
asymmetry. Physical Review D, 101:045001, 02 2020. 1, 25, 26

[5] J. Bedford. An introduction to string theory. arXiv:1107.3967 [gr-qc,
physics:hep-th, physics:physics], 06 2012. 17

[6] A. Bilal. Lectures on anomalies. arXiv:0802.0634 [hep-th], 02 2008.
2, 45

[7] T. Bossingham, N. E. Mavromatos, and S. Sarkar. Leptogenesis from
heavy right-handed neutrinos in cpt violating backgrounds. The Eu-
ropean Physical Journal C, 78, 02 2018. 31, 37, 39, 40, 41, 42, 49

[8] S. M. Carroll. Spacetime and geometry : an introduction to general
relativity. Cambridge Cambridge University Press, 2019. 18

[9] V. Chiotelis. Inflation without inflaton fields in a cosmological model
with gravitational anomalies, master thesis, ntua. 26

[10] J. M. Cline. Baryogenesis. arXiv:hep-ph/0609145, 11 2006. 2

[11] L. Covi, E. Roulet, and F. Vissani. Cp violating decays in leptogenesis
scenarios. Physics Letters B, 384:169–174, 09 1996. 10

[12] S. Davidson, E. Nardi, and Y. Nir. Leptogenesis. Physics Reports,
466:105–177, 09 2008. 11, 15

[13] M. de Cesare, N. E. Mavromatos, and S. Sarkar. On the possibility
of tree-level leptogenesis from kalb–ramond torsion background. The
European Physical Journal C, 75, 10 2015. 30, 39

[14] C. S. Fong, E. Nardi, and A. Riotto. Leptogenesis in the universe.
Advances in High Energy Physics, 2012:1–59, 2012. 10

51



52

[15] S. F. King. Neutrino mass and mixing in the seesaw playground.
Nuclear Physics B, 908:456–466, 07 2016. 6

[16] F. Klinkhamert and N. Manton. A saddle-point solution in the
weinberg-salam tlleory, 11 1984. 46

[17] E. W. Kolb and M. S. Turner. The early universe. Addison-Wesley,
1993. 13

[18] G. Koutsoumpas. Lecture Notes on Quantum Field Theory1. N.T.U.A.
6, 8

[19] N. S. Manton. The inevitability of sphalerons in field theory. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 377:20180327, 12 2019. 46

[20] N. Mavromatos. Quantum Field Theory II. Lecture notes edition. 35,
44

[21] N. Mavromatos. Lecture notes on neutrinos and the universe, irap
phd school, nice, 2012. 6

[22] N. E. Mavromatos and S. Sarkar. Curvature and thermal corrections
in tree-level cpt-violating leptogenesis. The European Physical Journal
C, 80, 06 2020. 46, 48

[23] M. E. Peskin and D. V. Schroeder. An introduction to quantum field
theory. Crc Press, 2019. 44, 45

[24] A. Riotto. Theories of baryogenesis. arXiv:hep-ph/9807454, 07 1998.
1, 3

[25] V. A. Rubakov and M. E. Shaposhnikov. Electroweak baryon number
non-conservation in the early universe and in high-energy collisions.
Physics-Uspekhi, 39:461–502, 05 1996. 46, 47

[26] A. D. Sakharov. Violation ofcpin variance,casymmetry, and baryon
asymmetry of the universe. Soviet Physics Uspekhi, 34:392–393, 05
1991. 1

[27] C. Scient and Thesis. Sphalerons and electroweak baryogenesis, 1996.
46

[28] M. Serone. Anomalies in quantum field theory. SISSA, via Bonomea
265, I-34136 Trieste, Italy, 05 2017. 2, 45

[29] A. Strumia. Baryogenesis via leptogenesis. arXiv:hep-ph/0608347, 08
2006. 6, 15

[30] D. Tong. Lectures on string theory. arXiv:0908.0333 [hep-th], 02 2012.
17

[31] S.-H. H. Tye and S. S. C. Wong. Bloch wave function for the peri-
odic sphaleron potential and unsuppressed baryon and lepton number
violating processes. Physical Review D, 92:045005, 08 2015. 46

[32] S. Vandoren and P. van Nieuwenhuizen. Lectures on instantons.
arXiv:0802.1862 [hep-th], 02 2008. 46



Bibliography 53

[33] M. Vázquez-Mozo. Advanced quantum field theory, 2013. 2, 43, 44,
45

[34] K. Wray. An introduction to string theory, 2011. 17, 18, 19, 21

[35] J. Yepez. Einstein’s vierbein field theory of curved space.
arXiv:1106.2037 [gr-qc, physics:physics], 1, 06 2011. 23, 24


	Acknowledgements
	Abstract
	Contents
	Introduction
	Leptogenesis
	Right Handed Neutrinos and the See-Saw Model
	Standard Model Extension
	Right Handed Neutrino Decay
	CP-asymmetry

	Boltzmann Equations 
	Leptogenesis


	Kalb-Ramond Torsion
	String Theory
	Bosonic String Action
	Local Symmetries of the Bosonic String Theory Worldsheet
	Field equations and solutions
	Quantum String

	Vielbein Field and Spin Connection
	String theory induced geometry with torsion

	Leptogenesis from Kalb-Ramond Torsion Background
	Spinors coupled to an Axial Background Field
	Right Handed Neutrino decay
	Decay Amplitude
	CP-asymmetry

	CPT Violating term
	Leptogenesis from a CPTV Background field
	Equilibrium Abundances
	Thermally Averaged Decay Rates
	Boltzmann Equations 


	Baryogenesis through Leptogenesis
	B and L Number Violations
	Quantum Anomalies
	Sphalerons

	Baryogenesis from Kalb-Ramond Torsion Background

	Conclusion
	Bibliography

