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Abstract

Structural reliability analysis provides a useful tool for safety assessment of engineer-

ing structures and enables performance of more rational risk evaluations. It is an

alternative approach to traditional deterministic structural design, which takes into ac-

count the uncertain parameters characterizing the physical state of structure and its

environment. Generally, structural reliability analysis is convenient and straightforward

when the limit state function is formulated with an explicit function.

However, in practical engineering, the limit state function is generally expressed as

implicit function. The implicit limit state function presents great difficulties in structural

reliability analysis when the most common methods are used, such as the first-order

reliability method (FORM). Typically, when the implicit limit state function is evaluated

implicitly using a numerical code, such as the finite element method. Although reliabil-

ity analysis can be performed using the Monte Carlo simulation or Subset Simulation,

a large number of FEM executions for structural analysis is time consuming, especially

for large and complex structures with high reliability.

Various regression models in combination with reliability methods have been used

to solve reliability analysis problems involving the implicit limit state function. Gaussian

process regression, and Support Vector machine are Machine Learning algorithms,

which have been applied to approximate the limit state function, shortening the com-

putational time, and the failure probability was predicted using reliability methods,

such as Monte Carlo.

The structural reliability methods have been applied to three structural analysis

problems for calculating the probability of failure. The limit state equation is explicit in

the first example, while the equation of the other examples includes the finite element

method. Moreover, these equations have been approximated using the two machine

learning regressions models.
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1. Introduction

1.1 Overview

Many sources of uncertainty are inherent in structural design. Despite what we of-

ten think, the parameters of the loading and the load-carrying capacities of structural

members are not deterministic quantities. They are random variables, and thus abso-

lute safety (or zero probability of failure) cannot be achieved. Consequently, structures

must be designed to serve their function with a finite probability of failure.

To illustrate the distinction between deterministic and random quantities, consider

the loads imposed on a bridge by car and the truck traffic. The load on the bridge and

the weights of the vehicles. As we all know from daily experience, cars and trucks

come in many shapes and sizes. Furthermore, the number of vehicles that pass over

a bridge fluctuates, depending on the time of day. Since we do not know the specific

details about each vehicle that passes over the bridge or the number of vehicles on

the bridge at any time, there is some uncertainty about the total load on the bridge.

Hence the load is a random variable.

Society expects building and bridges to be designed with a reasonable safety level.

In practice, these expectations are achieved by following code requirements specify-

ing design values for minimum strength, maximum allowable deflection, and so on.

Code requirements have evolved to include design criteria that take into account some

of the sources of uncertainty in design. Such criteria are often referred to as reliability-

based design criteria. The objective of this thesis is to provide computational tools to

quantify the reliability of structures.

The reliability of a structure is its ability to fulfill its design purpose for some spec-

ified lifetime. Reliability is often understood to equal the probability that a structure

will not fail to perform its intended function. The term ’failure’ does not necessarily

mean catastrophic failure but is used to indicate that the structure does not perform

as desired.
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1.2 Chapter layout

Chapter 2 describes the definition of basic terminologies, such as failure, limit state

function, probability of failure, variables and reliability index, of structural relia-

bility analysis. Then, in later section some techniques for structural reliability

analysis are represented. These are methods for calculating the probability of

failure, which are second-moment and transformations methods, such as First-

order second moment reliability method, and Rackwitz-Fiessler procedure and

simulation techniques, such as crude Monte Carlo simulation and Subset simu-

lation.

Chapter 3 investigates the efficiency and the accuracy of the reliability methods,

which are presented in chapter 2. For this reason, three structural reliability

examples are presented. The first example is a three-span continuous beam

with 3 random variable, in which the limit state function is explicit. The second

example is a 23-bar 2d truss with 13 random variables, while the performance

function includes a finite element model. The last example describes a frame

with 11 random variables, while the limit state function involves the finite element

method with beam elements.

Chapter 4 introduces two machine learning algorithms and examines how they will

be connected with Structural Reliability Analysis. Two regression models are

performed with aim to replace the finite element model in limit state equation.

The models are the Gaussian process regression, and Support vector machine.

The general purpose is to minimize computational cost and produce compatible

results with classical reliability methods.

Chapter 5 exhibits the connection between Structural Reliability analysis and Ma-

chine Learning algorithms for the calculation of the probability of failure. For this

purpose, the examples in chapter 3, in which the limit state function involves

FEM model, are performed using the regression models. It is crucial to examine

the efficiency and the accuracy of this combination and to quantify the shorten-

ing of the computational time.

Chapter 6 summarizes the conclusions that concern the different methodologies used

for the reliability analysis as well as the combination between machine learning

and structural reliability methods for calculating the probability of failure.

2



2. Structural Reliability Analysis

2.1 Introduction

The term structural reliability should be considered as having two meanings, a general

one and a mathematical one. In the most general sense, the reliability of a structure

is its ability to fulfill its design purpose for some specified time. In a narrow sense,

it is the probability that a system will not attain each specified limit state (ultimate or

serviceability) during specified reference period. The study of structural reliability is

concerned with the calculation and prediction of the probability of limit state violation

for an engineered structural system at any stage during its life. In particular, the study

of structural safety is concerned with the violation of the ultimate or safety limit states

for the structure. More generally, the study of structural reliability is concerned with

the violation of performance measures, (of which ultimate or safety limit states are a

subset). These include safety of the structure against collapse, limitations on damage,

or on deflections or other criteria.

The fundamental variables that define and characterize the behaviour and safety

of a structure may be termed the ‘basic’ variables. In probabilistic assessments any

uncertainty about a variable (expressed, in terms of its probability density function)

is taken into account explicitly. Typical examples are dimensions, densities or unit

weights, materials, loads, material strengths. This is not the case in traditional ways

of measuring safety, such as the ‘factor of safety’ or ‘load factor’. These are ‘deter-

ministic’ measures, since the variables describing the structure, its strength and the

applied loads are assumed to take on known (if conservative) values about which

there is assumed to be no uncertainty. In dealing with real world problems, uncertain-

ties are unavoidable. The effects of uncertainties on the design and planning of an

engineering system are important.

3



Over the past few decades, many different methods for solving the engineering re-

liability problem have been developed [4]. In general, the proposed reliability methods

can be classified into three categories, namely :

(i) Analytical methods based on Taylor-series expansion of the performance func-

tion, such as the First-Order Reliability Method (FORM) and the Second- Order

Reliability Method (SORM)

(ii) Monte Carlo simulation methods, such as crude Monte Carlo, Importance Sam-

pling and Subset simulation.

(iii) Surrogate methods are based on a functional surrogate of the performance

function, which are presented in chapter 4.

4



2.1.1 Limit State Functions (Performance Functions)

Before we begin with structural reliability analysis, we must first determine how we

define the limit state function. The concept of a limit state is used to help define

failure in the context of structural reliability analyses [1]. A limit state is a boundary

between desired and undesired performance of a structure. The boundary is often

represented mathematically by a limit state function or performance function. For ex-

ample, in bridge structures, failure could be defined as the inability to carry traffic.

This undesired performance can occur by many modes of failure: cracking, corrosion,

excessive deformations, exceeding load-carrying capacity for shear or bending mo-

ment, or local overall buckling. Some members may fail in brittle manner, whereas

others may fail in a ductile fashion. In the traditional approach, each mode of failure

is considered separately, and each mode can be defined using the concept of a limit

state.

A traditional notion of the ’safety margin’ is associated with the ultimate limit states.

For example, a mode of beam failure could be when the moment due to loads exceeds

the moment-carrying capacity. Let R represent the resistance (moment-carrying ca-

pacity) and S represent the load effect (total moment applied to the considered beam).

It sometimes helpful to think of R as the ’capacity’ and S as the ’demand’. A perfor-

mance functrion, or limit state function, can be defined for this mode of failure as

g(R,Q) = R− S (2.1)

The limit state, corresponding to the boundary between desired and undesired perfor-

mance, would be when g = 0. If g ≥ 0, the structure is safe (desired performance); if

g < 0, the structure is not safe (undesired performance). The probability of failure pf

is equal to the probability that the undesired performance will occur. Mathematically,

this can be expressed in terms of the performance function as

pf = P (R− S < 0) = P (g < 0) (2.2)

If both R and S are continuous random variables, then each has a probability density

function (PDF) in Fig.1. Furthermore, the quantity R − S is also a random variable

with its own PDF. This also shown in Fig.1. The probability of failure corresponds to

the shared area in Fig.1.

All realizations of a structure can be put into one of two categories:

• Safe (load effect ≤ resistance)

• Failure (load effect > resistance)

The state of structure can be described using various parameters X1, X2, ..., Xn,

5



(a) Probability of failure, safety margin S-R (b) R, resistance and S, load effect

Figure 1: PDF’s of load, resistance and safety margin

which are load and resistance parameters such as dead load, live load, length, depth,

compressive strength, yield strength, and moment of inertia. A limit state function, or

performance function, is a function g(X1, X2, ..., Xn) of these parameters such that

• g(X1, X2, , Xn) > 0 for a safe structure

• g(X1, X2, , Xn) = 0 border or boundary between safe and unsafe

• g(X1, X2, , Xn) < 0 for failure

In general, the performance function (limit state function) can be a function of many

variables: load components, influence factors, resistance parameters, material prop-

erties, dimensions, analysis factor, and so on. A direct calculation of pf using Eq.2.2 is

often very difficult, if not impossible. Therefore, it is convenient to measure structural

safety in terms of reliability index.

6



2.1.2 Probability of Failure

Initially, we should understand that the term failure does not necessarily mean catas-

trophic failure but is used to indicate that the structure does not performed as desired.

Next, we examine how to determine the probability of failure for the relatively simple

performance function given earlier by

g(R,Q) = R− S. (2.3)

The probability of failure, pf , can be derived by considering the PDFs of the random

variables R and Q. Traditional structural analysis process generally starts with the es-

tablishment of reasonable mechanical models, and then obtains the responses based

on the deterministic structural parameters and certain external loads [1],[2]. How-

ever, a number of uncertainties of involved parameters are unneglectable in practical

engineering, which may lead the results of reliability analysis to considerable devia-

tions. To assess these uncertainties, the probability-based reliability analysis methods

spring up and then are maturely applied to a number of sectors and societies. The

main work in structural reliability analysis is to obtain the failure probability by solving

the following multi-dimensional integration:

pf = P (g(x) < 0) =

∫
g(x)<0

fXdX, (2.4)

where P (·) is the probability, X = (X1, X2, ..., Xn) are the basic random variables,

g(x) is the limit state function (LMS) and fX(X) the is the joint probability density

function (PDF) of X.

7



2.1.3 Space of State Variables

To begin our analysis, we need to define the state variables of the problem. The

state variables are the basic load and resistance parameters used to formulate the

performance function. For n state variables, the limit state function is a function of n

parameters.

If all loads (or load effects) are represented by the variable S ant the total resis-

tance (or capacity) by R, then the space of state variable is a two-dimensional space

as shown in Fig.2a. Within this space, we can seperate the ’safe domain’ from the

failure domain; the boundary between the two domains is described by the limit state

function g(R, S) = 0.

Since both R and Q are random variables, we can define a joint density function

fR,S(r, s). A general joint density is plotted in Fig.2b. Again, the limit state function

separates the safe and the failure domains. The probability of failure is calculated by

integration of the joint density function over the failure domain. As noted earlier, this

probability is often very difficult to evaluate, so the concept of a reliability index is used

to quantify structural reliability.

(a) Safe domain and failure domain in a
two-dimensional state space.

(b) Three-dimensional representation of
a possible joint density function fRS .

Figure 2: Two- and three- dimensional representation of the state space
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2.1.4 Definition of Reliability Index

The reliability is defined as the shortest distance from the origin of reduced variables

to the line g(ZR, ZS) = 0. This definition, which was introduced by Hasofer and Lind

(1974) [5], is illustrated in Fig.3.

Figure 3: Reliability index defined as the shortest distance in the space of reduced
variables

.

Using geometry, we can calculate the reliability index (shortest distance) from the

following formula:

β =
µR − µS√
σ2
R + σ2

S

(2.5)

where β is the inverse of the coefficient of variation of the function g(R, S) = R − S

when R and S are uncorrelated. For normally distributed random variables R and S,

it can be shown that the reliability index is related to the probability of failure by

β = −Φ(pf ) pf = Φ(−β) (2.6)

The definition for a two-variable case can be generalized for n variables as follows.

Consider a limit state function g(X1, X2, ..., Xn) where the Xi variables are all uncor-

related.

The Hasofer-Lind reliability index is defined as follows:

1. Define the set of reduced variables {Z1, Z2, ..., Zn}

Zi =
Xi − µXi

σXi

(2.7)

2. Redefine the limit state function by expressing it in terms of the reduced vari-

ables {Z1, Z2, ..., Zn}.

3. The reliability index is the shortest distance from the origin in the n-dimensional

space of reduced variables to the curve described g(Z1, Z2, ..., Zn) = 0.
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2.2 Second-Moment and Transformations Methods

2.2.1 First-Order Second-Moment Reliability Index

The above ideas are readily extended in the case where the limit state function is a

random function consisting of more than two basic random variables. Consider a lin-

ear limit state function of the form

g(X1, X2, ..., Xn) = α0 + α1X1 + ...+ αnXn = α0 +
n∑

i=1

αiXi (2.8)

where the αi terms (i = 0, 1, 2, ..., n) are constants and the Xi terms are uncorrelated

random variables. If we apply the three-step procedure outlined above for determining

the Hasofer-Lind reliability index, we would obtain the following expression for β:

β =
α0 +

∑n
i=1 αiµXi√∑n

i=1 αiσXi
2

(2.9)

Observe that the reliability index, β in Eq.2.9 depends only on the means and standard

deviations of the random variables. Therefore, this β is called a second-moment

measure of structural safety because only the first two moments (mean and variance)

are calculated β.

Now consider the case of a nonlinear state function. When the function is nonlin-

ear, we can obtain an approximate answer by linearizing the nonlinear function using

a Taylor series expansion. The result is

g(X1, X2, ..., Xn) = g(x∗
1, x

∗
2, ..., x

∗
n) +

n∑
i=1

(Xi − x∗
i )

∂g

∂Xi

∣∣∣∣
(x∗

1,x
∗
2,...,x

∗
n)

(2.10)

where (x∗
1, x

∗
2, ..., x

∗
n) is the point about which the expansion is performed. One choice

for this linearization point is the point corresponding to the mean values of the random

variables. Thus equation 2.10 becomes

g(X1, X2, ..., Xn) ≈ g(µx1 , µx2 , ..., µxn)+
n∑

i=1

(Xi−µXi
)
∂g

∂Xi

∣∣∣∣
evaluated at mean values

(2.11)

Since equation 2.11 is a linear function of the Xi variables, it can be rewritten to look

exactly like Eq.2.8. Thus equation Eq.2.9. can be used as an approximate solution for

the reliability index β. After some algebraic manipulations, the following expressions

10



for β results:

β =
g(µx1 , µx2 , ..., µxn)√∑n

i=1 αiσXi
2

where αi =
∂g

∂Xi

∣∣∣∣
evaluated at mean values

(2.12)

The reliability index defined in equation Eq.2.12 is called a first-order-moment mean

value reliability index.

First order: first-order terms in the Taylor series expansion.

Second moment: only means and variances are needed.

Mean value: the Taylor series expansion is about the mean values.

2.2.2 Sensitivity Measures

The symbol ai is called direction cosines, and it is given by Eqn. 2.12, while it rep-

resents the sensitivity of the standardized limit state function g at X∗ to changes in

X. This sensitivity has an important practical implication. Thus if the sensitivity ai

to Xi, say, is low there is little need to be very accurate about the determination of

Xi. Also it would signal that, if necessary, Xi might well be treated as a determin-

istic rather than a random variable. More precisely, knowing how an input variable

of the reliability problem may influence the probability of failure can give the analyst

valuable information. This variable can either be a distribution parameter of a random

variable or a parameter of the limit state function. This reduces the dimensionality of

the space of random variables. Within the field of structural reliability, the sensitivity of

the reliability or the probability of failure of a structure or a system is of great interest.

A measure in the context of reliability structural analysis is denoted as local when

the sensitivity of the probability of failure is measured around a point of interest, such

as Importance Factors. The Importance Factors are a byproduct of the FORM al-

gorithm. Consider the design point U∗ and the reliability index β. The design point

is defined as the point on the limit state surface closest to the origin, measured in

the standard normal space. Further, the reliability index is the distance between the

design point U∗ and the origin. Using these two definitions, the important direction α

can be defined as:

U∗ = βα (2.13)

As already outlined in previous section, a direct formulation of α is given as the nor-

malized gradient of the limit state function evaluated at the design point.

α = −
∇G|u∗

∥∇G|u∗∥
(2.14)

Eventually, the Importance Factors IFi are readily available from the unit important
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vector:

IFi = α2
i (2.15)

The Importance Factors have long been the standard in reliability-sensitivity analysis.

They offer an indication of the important parameters (once the problem is cast in the

standard normal space) at no cost.

2.2.3 First-Order Reliability Method (FORM)-

Hasofer-Lind Reliability Index

In 1974, Hasofer and Lind [5] proposed a modified reliability index, which is a useful

(but not essential) first step is to transform all variables to their standardized form.

The ’correction’ is to evaluate the limit state function at a point known as thew ’design

point’ instead of mean values. The design point is a point on the failure surface ’g=0’.

Since the design point is generally not known a priori, an iteration technique must be

used to solve the reliability index.

Consider a limit state function g(X1, X2, ..., Xn), where the random variable Xi are

all uncorrelated. The limit state function is rewritten in terms of the standard form of

the variables (reduced variables), N(0, 1), using

Zi =
Xi − µxi

σi

(2.16)

As before, the Hasofer-Lind reliability index is defined as the shortest distance from

the origin of the reduced variable space to the limit state function g = 0. First-order

Figure 4: Design point and reliability index for a highly nonlinear limit state function.

reliability method (FORM) is considered to be a reliable computational method for
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structural reliability. Its accuracy is generally dependent on three parameters, i.e. the

curvature radius at the design point, the number of random variables and the first-

order reliability index.

FORM is an analytical approximation in which the reliability index is interpreted

as the mini-mum distance from the origin to the limit state surface in standardized

normal space (u-space). Because the performance function is approximated by a

linear function in u-space at the design point, accuracy problems occur when the

performance function is strongly nonlinear.

The matrix procedure [1] consists of the following steps:

1. Formulate the limit state function and appropriate parameters for all random

variables Xi(i = 1, 2, ..., n) involved.

2. Obtain an initial design point x∗
i by assuming values for n − 1 of the random

variables Xi (Mean values are often a reasonable initial choice). Solve the limit

state equation g = 0 for the remaining random variable. This ensure that the

design point is on the failure boundary.

3. Determine the reduced variables z∗i corresponding to design point {x∗
i } using

z∗i =
x∗
i−i

σxi

(2.17)

4. Determine the partial derivatives of the limit state function with respect to the

reduced variables. Define a column vector {G} as the vector whose elements

are these partial derivatives multiplied by -1:

{G} =


G1

G2

...

Gn

 where Gi =
∂g

∂Zi

(2.18)

5. Calculate an estimate of β using the folowing formula:

β =
{G}T{z∗}√
{G}T{G}

where {z∗} =


z∗1

z∗2
...

z∗n

 (2.19)
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6. Calculate a column vector containing the sensitivity factors using

α =
{G}√

{G}T{G}
(2.20)

7. Determine a new design point in reduced variables for n − 1 of the variables

using

z∗i = aiβ (2.21)

8. Determine the corresponding design point values in original coordinates for the

n− 1 values in Step 7 using

x∗
i = µxi

+ z∗i σxi
(2.22)

9. Determine the value of the remaining random variable (i.e., the one not found in

Steps 7 and 8) by solving the limit state function g = 0.

10. Repeat Steps 3 to 9 until β and the design point {x∗
i } converge.
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2.2.3.1 Example: RC section - Hasofer Lind

Assume an RC section with tension reinforcement As subjected to moment MED. The

moment capacity of the section is:

MRD = Asfy(d− 0.59
Asfy
fcb

) (2.23)

where As is the area of steel, fy is the yield strength of the steel, fc is the compres-

sive strength of the concrete, b=25cm is the width of the section, and d is the depth

(d=28cm) of the section.

We want to examine the limit state of ecxeeding the beam capacity in bending.

The limit state function would be

g(As, fy, fc, Q) = Asfy(d− 0.59
Asfy
fcb

)−MED (2.24)

where MED is the moment (load effect) due to the applied load. The random vari-

ables in the problem are MED, fy, fc, and As. The distribution parameters and design

parameters are given in the table 2.

Table 1: Distribution parameters of basic variables

Random variable Mean c.o.v. Standard deviation

fy 300 MPa 10.5% 31.5 MPa
As 0.0026 m2 2% 0.000052 m2

fc 20 MPa 14% 2.8 MPa
Ms 230 kNm 12% 27.6 kNm

The failure probability (pf = 8.8 × 10−3) have been calculated using FORM-HL.

The convergence plot is shown in Fig.5a. Moreover, the importance factor for every

random variable is defined in Fig.5b.

(a) Convergence plot (b) Importance Factors

Figure 5: Iteration process and Sensitivity measures.
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2.2.3.2 MATLAB Script - FORM-HL

A MATLAB function (FORM HLRF), which solves example 2.2.3.1 using FORM-HLRF

method, exists in the appendix.

clear; clc; close all;

1. m fy=300*10−3; m As=0.0026;

2. m fc=20*10−3; m Med=230;

3. s fy=31.5*10−3; s As=0.000052;

4. s fc=2.8*10−3; s Med=27.6;

5. Properties=[m fy s fy 1

6. m As s As 2

7. m fc s fc 3

8. m Med s Med 4];

9.% Create distribution objects

10.fy=makedist(’Normal’,’mu’,m fy,’sigma’,s fy);

11.As=makedist(’Normal’,’mu’,m As,’sigma’,s As);

12.fc=makedist(’Normal’,’mu’,m fc,’sigma’,s fc);

13.Med=makedist(’Normal’,’mu’,m Med,’sigma’,s Med);

14.

15.dist=[fy As fc Med];

16.% Zero value in the RV list declares

17.% that the variable is considered as deterministic.

18.RV list=[1;2;3;4];

19.% InitialRV is the r.v., which is calculated from the limit state eqn.

20.initialRV=4;

21.FORM HLRF(RV list,Properties,initialRV,dist)
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2.2.4 Rackwitz-Fiessler Procedure

We have now covered methods for calculating reliability indexes using information

on the means and standard deviations of the random variables. Detailed information

on the type of distribution for each random variable was not needed. In this sec-

tion, we introduce the Rackwitz-Fiessler procedure for calculating reliability indexes.

The method requires the knowledge of the probability distributions for all the vari-

ables involved. Rackwitz–Fiessler method is an efficient way to solve the non-normal

reliability problems by transforming original non-normal variables into equivalent nor-

mal variables based on the equivalent normal conditions. The basic idea behind the

procedure begins with the calculation of ’equivalent normal’ values of the mean and

standard deviation for each non-normal random variable.

We use these equivalent normal parameters in our analysis. Suppose that a par-

ticular random variable X with mean µx and σx is described by a cumulative distribu-

tion function FX(x) and a probability density function fX(x). To obtain the equivalent

normal mean µe
X and standard deviation σe

X , we require that the CDF and PDF of

the actual function be equal to the normal CDF and normal PDF at the value of the

variable x∗ on the failure boundary described by g = 0. Mathematically, these require-

ments are expressed as

FX(x
∗) = Φ(

x∗ − µe
X

σe
X

) (2.25)

fX(x
∗) =

1

σe
X

ϕ(
x∗ − µe

X

σe
X

) (2.26)

where Φ is the CDF for the standard normal distribution ϕ is the PDF for the standard

normal distribution.

By manipulating equations 2.25, 2.26, we can obtain expressions for µe
X and σe

X

as follows:

µe
X = x∗ − σe

X [Φ
−1(FX(x

∗))] (2.27)

σe
X =

1

fX(x∗)
ϕ[Φ−1(FX(x

∗)] (2.28)

17



2.2.4.1 Example: RC section - Rackwitz Fiessler

Assume the same problem as in 2.2.3.1, but now fy, As, and fc is a lognormal variable

and MED follows extreme value distribution.

The probability of failure is calculated using FORM and Rackwitz and Fiessler

transformation to define the equivalent normal’s distribution parameters. The conver-

gence plot is similar to FORM-HL, while the reliability index is 2.80.

(a) Convergence plot (b) Importance Factors

Figure 6: Iteration process and Sensitivity measures.
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2.2.4.2 MATLAB Script - FORM-HLRF

A MATLAB function (FORM HLRF), which solves example 2.2.4.1 using FORM-HLRF

method, exists in the appendix.

clear; clc; close all;

1. m fy=300*10−3; m As=0.0026;

2. m fc=20*10−3; m Med=230;

3. s fy=31.5*10−3; s As=0.000052;

4. s fc=2.8*10−3; s Med=27.6;

5. Properties=[m fy s fy 1

6. m As s As 2

7. m fc s fc 3

8. m Med s Med 4];

9.% Create distribution objects

10.fy log std = sqrt(log(1 + s fy2));

11.fy log mean = log(m fy) - 0.5*(fy log std2);

12.fy=makedist(’Lognormal’,’mu’,fy log mean,’sigma’,fy log std);

13.As log std = sqrt(log(1 + s As2));

14.As log mean = log(m As) - 0.5*(As log std2);

15.As=makedist(’Lognormal’,’mu’,As log mean,’sigma’,As log std);

16.fc log std = sqrt(log(1 + s fc2));

17.fc log mean = log(m fc) - 0.5*(fc log std2);

18.fc=makedist(’Lognormal’,’mu’,fc log mean,’sigma’,fc log std);

19.Med=makedist(’Normal’,’mu’,m Med,’sigma’,s Med);

20.

21.dist=[fy As fc Med];

22.% Zero value in the RV list declares

23.% that the variable is considered as deterministic.

24.RV list=[1;2;3;4];

25.% InitialRV is the r.v., which is calculated from the limit state eqn.

26.initialRV=4;

27.FORM HLRF(RV list,Properties,initialRV,dist)
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2.3 Integration and Simulation Techniques

The previous sections have given an overview of the basic principles of structural

reliability theory and it has been presented analytical methods (FORM) for solving the

reliability integral. In this section numerical integration methods, such as Monte Carlo

and Subset Simulation, will be explored.

2.3.1 Crude Monte Carlo Simulation

As the name implies, Monte Carlo simulation techniques involve ‘sampling’ at ‘ran-

dom’ to simulate artificially a large number of experiments and to observe the result.

The Monte Carlo method is a special technique that we can use to generate some re-

sults numerically without actually doing any physical testing [2]. This method perfectly

fits to complex problems for which closed-form solutions are either not possible or ex-

tremely difficult. Probabilistic problems involving complicated nonlinear finite element

models can be solved by Monte Carlo simulation with the requirement of the neces-

sary computing power is available. Moreover, this simulation technique can solve the

original problem without simplifying assumptions, thus the obtained results are more

realistic, as the dimensions of the problems do not affect the method. It could also be

used to verify the results of other solution methods.

The Monte Carlo Simulation (MCS), is a method to calculate numerically the relia-

bility integral that defines the failure probability pf . In the case of analysis for structural

reliability, this means, in the simplest approach, sampling each random variable Xi

randomly to give a sample value x̂i. The limit state function g(x) = 0 is then checked

using the sample set of values x̂i. If the limit state function is violated (g(x̂i) ≤ 0), the

structure or structural element has ‘failed’. The experiment is repeated many times,

each time with a randomly chosen vector x̂ of x̂i values.

From a mathematical point of view, crude MC allows to estimate the expected

value of a quantity of interest. More specically, suppose the goal is to evaluate

Eπ[h(x)], that is an expectation of a function h : X→ R with respect to PDF π(x),

Eπ[h(x)] =

∫
X

h(x)π(x) dx. (2.29)

The idea behind crude MC is a straightforward application of the law of large num-

bers that states that if x(1), x(2),... are i.i.d. (independent and identically distributed)

from the PDF π(x), then the empirical average
1

N

∑N
i=1 h(x

(i)) converges to the true

value Eπ[h(x)] as N goes to +∞. Therefore, if the number of samples N is large

enough, then Eπ[h(x)] can be accurately estimated by the corresponding empirical
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average:

Eπ[h(x)] =
1

N

N∑
i=1

h(x(i)) (2.30)

The relevance of crude MC to the reliability problem follows from a simple obser-

vation that the failure probability pF can be written as an expectation of the indicator

function, namely:

pF =

∫
F

π(x) dx =

∫
X

IFπ(x) dx = Eπ[IF (x)], (2.31)

where X denotes the entire input x-space. Therefore, the failure probability can be

estimated using the crude MC method as follows:

pF ≈ p̂F
MC =

1

N

N∑
i=1

IF (x
(i)), (2.32)

where x1, ..., xN are samples from π(x) and IF (x) stands the indicator function,

IF (x) =

1, if x ∈ F .

0, if x /∈ F .
(2.33)

The crude MC estimate of pF is thus just the ratio of the total number of failure

samples
∑N

i=1 IF (x
(i)), i.e., samples that produce system failure according to the sys-

tem model, to the total number of samples, N. Note that pFMC is an unbiased random

estimate of the failure probability, that is, on average, pFMC equals to pF . Mathe-

matically, this means that E[pF
MC ] = pF . Indeed, using the fact that xi ∼ π(x) and

Eq.2.32,

E[pF
MC ] = E[

N∑
i=1

IF (x
(i))]

=
N∑
i=1

IF (x
(i))

=
N∑
i=1

IF (x) = pF (2.34)

The main advantage of MC is that the accuracy does not depend on the dimension

d of the input space. In reliability analysis, the standard measure accuracy of an

unbiased estimate p̂F of the failure probability is its coefficient of variation δ(p̂F ), which

is defined as the ratio of the standard deviation to the expected value of p̂F . The

smaller of the c.o.v. δ(p̂F ), the more accurate the estimate p̂F is. The c.o.v. of the
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crude MC is estimated by:

V [pF
MC ] = V [

N∑
i=1

IF (x
(i))]

=
N∑
i=1

V [IF (x
(i))]

=
N∑
i=1

(E[IF (x
(i))

2
]− E[IF (x

(i))]
2
)

=
N∑
i=1

(pF − pF
2) =

pF (1− pF )

N
(2.35)

Here, the identity IF (x)
2 = IF (x). Using equations 2.35 and 2.34, the c.o.v. of

crude MC estimate can be calculated :

δ(p̂F ) =

√
V [pFMC ]

E[pFMC ]
=

√
1− pF
NpF

(2.36)

As it obvious from the above equation, the δ(p̂F ) depends only on the failure proba-

bility pF and the number of samples and does not depend of the dimensions, d, of the

input space.

Nevertheless, crude MC has a significant disadvantage, which is the inefficiency

of calculating small failure probabilities. For typical engineering reliability problem, the

failure probability pF is very small, pF ≪ 1. In the reliability literature, pF ∼ 10−2–10−9

have been considered. If pF is very small, then it follows that

δ(p̂F ) ≈
1√
NpF

. (2.37)
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2.3.1.1 Example-MC

Assume the same problem as in 2.2.3.1, but now we calculate the probability of failure

using Monte Carlo simulation. The coefficient of variance is considered as 10%, thus

the number of simulations is 100.000. The probability of failure is pF = 9×10−3, while

in Fig.7 is represented the histogram of the failure function.

Figure 7: Histogram of gfailure data
fit 1: Normal

fit 2: Non-parametric
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2.3.1.2 MATLAB Script - MC

A MATLAB function (MC), which solve example 2.3.1.1 using MC simulation, exists in

the appendix.

clear; clc; close all;

1. m fy=300*10−3; m As=0.0026;

2. m fc=20*10−3; m Med=230;

3. s fy=31.5*10−3; s As=0.000052;

4. s fc=2.8*10−3; s Med=27.6;

5. Properties=[m fy s fy 1

6. m As s As 2

7. m fc s fc 3

8. m Med s Med 4];

9.% If s =0 the variable is considered as deterministic.

10.% Create distribution objects

11.fy=makedist(’Normal’,’mu’,m fy,’sigma’,s fy);

12.As=makedist(’Normal’,’mu’,m As,’sigma’,s As);

13.fc=makedist(’Normal’,’mu’,m fc,’sigma’,s fc);

14.Med=makedist(’Normal’,’mu’,m Med,’sigma’,s Med);

15.

16.dist=[fy As fc Med];

17.N MC Simulations=100.000;

18.MC(Properties,dist,N MC Simulations)
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2.3.2 Subset Simulation method

Subset simulation is a method used in reliability engineering to compute small fail-

ure probabilities encountered in engineering systems, while it overcomes difficulties,

which are invoke in Monte Carlo simulation. This is a relatively new method, which is

proposed by Au and Beck (2001) [3]. It is an efficient and elegant method to compute

small failure probabilities encountered in reliability analysis of engineering systems.

The basic idea is to express the failure probability as a product of larger conditional

failure probabilities by introducing intermediate failure events. With a proper choice

of the conditional events, the conditional failure probabilities can be made sufficiently

large so that they can be estimated by means of simulation with a small number

of samples. The original problem of calculating a small failure probability, which is

computationally demanding, is reduced to calculating a sequence of conditional prob-

abilities, which can be readily and efficiently estimated by means of simulation. The

conditional probabilities cannot be estimated efficiently by a standard Monte Carlo

procedure, however, and so a Markov chain Monte Carlo simulation (MCS) technique

based on the Metropolis algorithm is presented for their estimation. This powerful

method is robust to the number of uncertain parameters and efficient in computing

small probabilities.

Subset Simulation is essentially based on two different ideas: conceptual and

technical. The conceptual idea is to decompose the rare event F into a sequence of

progressively ′less− rare′ nested events,

F = Fm ⊂ Fm−1 ⊂ . . . ⊂ F1 (2.38)

where F1 is a relatively frequent event. For example suppose that F represents the

event of getting exactly m heads when flipping a fair coin m times. If m is large, then

F is a rare event. To decompose F into a sequence (2.38), let us define Fk to be the

event of getting exactly k heads in the first k, the less rare the corresponding event

Fk; and F1 getting heads in the first flip-is relatively frequent.

Given a sequence of subsets (2.38), the small probability P(F ) of the rare event

F can then be presented as a product of larger probabilities as follows:

P(F ) = P(Fm)

= P(F1)
P(F2)P(F3)

P(F1)P(F2)
. . .

P(Fm−1)P(Fm)

P(Fm−2)P(Fm−1)

= P(F1)P(F2|F1) . . .P(Fm|Fm−1)

(2.39)

where P(Fk|Fk−1) = P(Fk)P(Fk−1) denotes the conditional probability of event Fk

given the occurrence of event Fk−1, for k = 2, . . . ,m.
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In real applications, it is often not obvious how to decompose the rare event into a

sequence (2.38) and how to compute all conditional probabilities in (2.40). In Subset

Simulation, the ’sequencing’ of the rare events is done adaptively as the algorithm

proceeds. This is achieved by employing Markov Chain Monte Carlo, an advanced

simulation technique, which constitutes the second-technical-idea behind SS. Finally,

all conditional probabilities are automatically obtained as by-product of the adaptive

sequencing.

Unlike crude Monte Carlo, where all computational resources are directly spent

on sampling the input space, x(1), . . . , x(N) ∼ π(·), and computing the values of the

performance function g(x(1)), · · · , g(x(N)), Subset Simulation first ’probes’ the input

space X by generating a relatively small number of i.i.d samples x0
(1), . . . , x0

(n) ∼
π(x), n < N , and computing the corresponding system responses y0(1) = g(x0

(1)), . . . ,

≥ g(x0
(n)). Here, the subscript 0 indicates the 0th stage of the algorithm. Since

F is a rare event and n is relatively small, it is very likely that none of the samples

x0
(1), . . . , x0

(n) belongs to F, that y0(i) < y∗ for all i = 1, . . . , n. Nevertheless, these

Monte Carlo samples contain some useful information about the failure domain that

can be utilized. To keep the notation simple, assume that y0(1), · · · , y0(n) are arranged

in the decreasing order, i.e. y0
(1) ≥ · · · ≥ y0

(n) (it is always possible to achieve this

by renumbering x0
(1), · · · , x0

(n) if needed). Then, x0
(1) and x0

(n) are, respectively, the

closest to failure and the safest samples among x0
(1), . . . , x0

(n), since y0
(1) and y0

(n)

are the largest and the smallest responses. In general, the smaller i, the closer to

failure the sample x0
(i) is. This is shown schematically in Fig.8.

Figure 8: Monte Carlo samples x0
(1), · · · , x0

(n) and the failure domain F. x0
(1)

and x0
(n) are, respectively, the closest to failure and the safest samples among

x0
(1), · · · , x0

(n)

Let p ∈ (0, 1) be any number such that np is integer. Next, the fist intermediate failure
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domain is defined F1 as follows:

F1 = {x : g(x) > y1
1} (2.40)

where

y1
1 =

y0
np + y0

np+1

2
(2.41)

In other words, F1 is the set of inputs that lead to the exceedance of the relaxed

threshold y1
1 < y∗. Note that by construction, samples x0

(1), · · · , x0
(np) belong to F1,

while x0
(np+1), · · · , x0

(n) do not. As a consequence, the crude Monte Carlo estimate

for the probability of F1 which is based on samples x0
(1), · · · , x0

(n) is automatically

equal to p,

PF1 ≈
1

n

n∑
i=1

IF1(x0
(i)) = p. (2.42)

The value p = 0.1 is often used in the literature, which makes F1 a relatively frequent

event. Fig.9 illustrates the definition of F1.

Figure 9: The intermediate failure domain F1. In this schematic illustration ,n =
10, p = 2, so that there are exactly np = 2 Monte Carlo samples in F1, x0

(1), x0
(2) ∈

F1.

The first intermediate failure domain F1 can be viewed as a (very rough) conservative

approximation to the target failure domain F . Since F ∈ F1, the failure probability pF

can be written as a product:

pF = P(F1)P(F |F1) (2.43)

where P(F |F1) is conditional probability of F given F1. Therefore, in view of 2.42, the

problem of estimating pF is reduced to estimating the conditional probability P(F |F1).
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In the next stage, instead of generating samples in the whole input space (like

in cMC), the SS algorithm aims to populate F1. Specifically, the goal is to generate

samples x1
(n), x1

(n) from the conditional distribution

π(x|F1) =
π(x)IF1

P(F⊮)
=

IF1

P(F⊮)

d∏
k=i

ϕ(xk) (2.44)

First of all, note that samples x0
(1), ..., x0

(np) not only belong to F1, but are also dis-

tributed according to π(·|F1). To generate the remaining (n − np) samples from

π(·|F1), which, in general, is not a trivial task, Subset Simulation uses the so-called

Modifieed Metropolis algorithm (MMA). MMA belongs to the class of Markov chain

Monte Carlo (MCMC ) algorithms which are techniques for sampling from complex

probability distributions that cannot be sampled directly, at least not efficiently. MMA

is based on the original Metropolis algorithm and specifically tailored for sampling

from the conditional distributions of the form.

2.3.2.1 Modified Metropolis algorithm

Let x ∼ π(·|F1) be a sample from the conditional distribution π(·|F1). The Modified

Metropolis algorithm generates another sample x̄ from π(·|F1) as follows:

1. Generate a ’candidate’ sample ξ : For each coordinate k = 1, ..., d,

(a) Sample ηk ∼ qk(·|xk), called the proposal distribution, is univariate PDF

for ηk centered at xk with the symmetry property qk(xk|ηk)=qk(ηk|k). For

example, the proposal distribution can be a Gaussian PDF with mean xk

and variance σk
2,

qk(ηk|xk) =
1√
2πσk

exp(−(ηk − xk)
2

2σk
2

), (2.45)

or it can be a uniform distribution over [xk − a, xk − a], for some a ≥ 0

(b) Compute the acceptance ratio

rk =
ϕ(ηk)

ϕ(xk)
(2.46)

(c) Define the kth coordinate of the candidate sample by accepting or rejecting

ηk,

ξk =

ηk, with probability min{1,rk}

xk, with probability 1-min{1,rk}.
(2.47)
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2. Accept or reject the candidate sample ξ by setting

x̄k =

ξ, if ξ ∈ F1

ξ, if ξ /∈ F1.
(2.48)

The Modified Metropolis algorithm is schematically illustrated in Fig.10.

Figure 10: Modified Metropolis algorithm

It can be shown that the sample x̄ generated by MMA is indeed distributed according

to π(·|F1). If the candidate sample ξ is rejected in 4.16, then x̄ = x ∼ π(·|F1) and

there is nothing to prove. Suppose now that ξ is accepted, x̄ = ξ, so that the move

from ξ to x̄ is a proper transition between two distinct points in F1. Let f(·) denote the

PDF of x̄ (the goal is to show that f(x̄) = π(·|F1). Then

f(x̄) =

∫
F1

π(·|F1)t(x̄|x)dx , (2.49)

where t(—x) is the transition PDF from x to x̄ ̸= x. According to first step of MMA,

coordinates of x̄ = ξ are generated independently, and therefore t(x̄|x) can be ex-

pressed as a product,

t(x̄|x) =
d∏

k=i

tk(x̄k|xk) (2.50)

where t(x̄|x) is the transition PDF for the kth coordinates x̄k. Combining equations

(2.44, 2.49, and 2.50) gives
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f(x̄) =

∫
F1

IF1(x)

P(F1)

d∏
k=i

ϕ(xk)
d∏

k=i

tk(x̄k|xk)dx

=
1

P(F1)

∫
F1

d∏
k=i

ϕ(xk)tk(x̄k|xk)dx

(2.51)

The key to the proof of f(x̄) = π(x̄|F1) is to demonstrate that ϕ(xk) and tk(x̄|xk) sat-

isfy the so-called detailed balance equation,

ϕ(xk)tk(x̄|xk) = ϕ(x̄)tk(xk|x̄k). (2.52)

If x̄k = xk, then (2.52) is trivial. Suppose that x̄k ̸= xk, that is x̄k = ξk = ηk in (2.47).

The actual transition PDF tk(x̄k|xk) from xk to x̄k ̸= xk differs from the projection PDF

qk(x̄k|xk) because the acceptance-rejection step (2.47) is involved. To actually make

the move from xk to x̄k, ones needs not only to generate x̄k ∼ qk(·|xk), but also to

accept it with probability min{1, ϕ(x̄k)

ϕ(x̄)
}. Therefore,

tk(x̄|xk) = qk(x̄k|xk)min{1, ϕ(x̄k)

ϕ(x̄)
}, x̄k ̸= xk. (2.53)

Using (2.53), the symmetry property of the proposal PDF, qk(x̄k|xk) = qk(xk|x̄k), and

the identity a min{1, a
b
} = b min{1, a

b
} for any a, b > 0,

ϕ(xk)tk(x̄|xk) = qk(x̄k|xk)ϕ(xk)min{1, ϕ(x̄k)

ϕ(x̄)
}

= qk(xk|x̄k)ϕ(x̄k)min{1, ϕ(x̄k)

ϕ(x̄)
}

= ϕ(x̄k)tk(xk|x̄k),

(2.54)

and the detailed balance (2.52) is thus established. The rest is a straightfoward cal-

culation:

f(x̄) =
1

P(F1)

∫
F1

d∏
k=i

ϕ(x̄k)tk(xk|x̄k)dx

=
1

P(F1)

d∏
k=i

ϕ(x̄k)

∫
F1

t(x|x̄kdx = π(x̄|F1),

(2.55)

since the transition PDF t(x|x̄) integrates to 1, and IF1(x̄) = 1.
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2.3.2.2 Subset Simulation at higher conditional levels

Given x
(1)
0 , · · · , x(np)

0 ∼ π(·|F1), it is clear now how to generate the remaining (n−np)

samples from π(·|F1). Namely, starting from each x
(i)
0 , i = 1, ..., np, the SS algorithm

generates a sequence of (1 − 1

p
) new MCMC samples x

(i)
0 = x

(i)
0,0 7→ x

(i)
0,1 7→ . . . 7→

x
0,1−

1

p

(i) using he Modified Metropolis transition rule described above. Note that when

x
(i)
0,j is generated, the previous sample x

(i)
0,j−1 is used as an input for the transition rule.

The sequence x
(i)
0,0, x

(i)
0,1, ..., x

0,1−
1

p

(i) is called a Markov chain with the stationary dis-

tribution π(·|F1), and x
(i)
0,0 = x

(i)
0 is often referred to as the ’seed’ of the Markov chain.

Figure 11: MCMC samples generated by the Modified Metropolis algorithm at the first
condition level of Subset Simulation.

To simplify the notation, denote samples {x(i)
0,j}

i=1,··· ,np

j=0,··· ,1−1/p
by {x(1)

1 , · · · , x(n)
1 }. The

subscript 1 indicates that the MCMC samples {x(1)
1 , · · · , x(n)

1 } ∼ π(·|F1) are gen-

erated at the first conditional level of the SS algorithm. These conditional samples

are schematically shown in Fig.11. Also assume that the corresponding system re-

sponses {y(1)1 = g(x
(1)
1 ), ..., y

(n)
1 = g(x

(n)
1 )} in the decreasing order, i.e. y(x(1)

1 ) ≥ ... ≥
y(x

(n)
1 ). If the failure event F is rare enough, that is if pF is sufficient small, then it is

very likely that none of the samples x
(1)
1 , ..., x

(n)
1 belongs to F , i.e. y

(i)
1 < y∗ for all

i = 1, ..., n. Nevertheless, these MCMC samples can be used in the similar way the

Monte Carlo samples x
(1)
1 , ..., x

(n)
1 were used.

By analogy with (2.38), define the second intermediate failure domain F2 as fol-

lows:

F2 = {x : g(x) > y2
∗} (2.56)
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where

y2
∗ =

y1
np + y1

np+1

2
(2.57)

Note y2
∗ > y1

∗ since y1
(i) > y1

∗ for all i = 1, ..., n. This means that F ⊂ F2 ⊂ F1,

and therefore F2 can be viewed as a conservative approximation to F which is still

rough, yet more accurate than F1. Fig.12. illustrates the definition of F2. By con-

struction, samples x
(1)
1 , ..., x

(n)
1 belong to F2, while x

(np+1)
1 , ..., x

(n)
1 do not. As a result,

the estimate for the conditional probability of F2 given F1 which is based on samples

x
(np+1)
1 , ..., x

(n)
1 ∼ π(·|F1) is automatically equal to p,

P(F1|F2) ≈
1

n

n∑
i=1

IF2(x0
(i)) = p. (2.58)

Figure 12: The second intermediate failure domain F2. In this schematic illustration,
n = 10, p = 0.2, so that there are exactly np = 2 MCMC samples in F2, x

(1)
1 , x

(2)
1 ∈ F2.

Since F ⊂ F2 ⊂ F1, the conditional probability P(F |F1) that appears in (2.44) can be

expressed as a product:

P(F |F1) = P(F2|F1)P(F |F2) (2.59)

Combining (2.44) and (2.59) gives the following expression for the failure probability:

pF = P(F1) = P(F2|F1)P(F |F2). (2.60)
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Thus, in view (2.42) and (2.58), the problem of estimating pF is now reduced to esti-

mating the conditional probability P(F |F2).

In the next step, as one may have already guessed, the Subset Simulation al-

gorithm: populates F2 by generating MCMC samples x
(1)
2 , ..., x

(n)
2 from π(·|F2) us-

ing the Modified Metropolis algorithm; defines the third intermediate failure domain

F3 ⊂ F2 such that P(F3|F2) = P(F1|F2) ≈ 1

n

∑n
i=1 IF3(x2

(i)) = p; and reduces the

original problem of estimating the failure probability pF to estimating the conditional

probability P(F |F3) by representing pF = P(F1)P(F2|F1)P(F3|F2)P(F |F3). The al-

gorithm proceeds in this way until the target failure domain F has been sufficiently

sampled so that the conditional probability P(F |FL) can be accurately estimated by
1

n

∑n
i=1 IF (xL

(i)), where FL is the Lth intermediate failure domain, and x
(1)
L , ..., x

(n)
L ∼

π(·|FL) are the MCMC samples generated at the Lth conditional level. Subset Simu-

lation can thus be viewed as a method that decomposes the rare failure event F into

a sequence of progressively ’less-rare’ nested events, F ⊂ FL ⊂ ... ⊂ F1, where

all intermediate failure events F1, ..., FL are constructed adaptively by appropriately

relaxing the value of the critical threshold y∗1 <, ..., y∗L < y∗.

2.3.2.3 Stopping criterion

In what follows, the stopping criterion for Subset Simulation is described in detail. Let

nF (l) denote the number of failure samples at the lth level, that is

nF (l) =
n∑

i=1

IF (xl
(i)), (2.61)

where x
(1)
l , ..., x

(n)
l from π(·|Fl). Since F is a rare event, it is very likely that nF (l) = 0

for the first few conditional levels. As l gets larger, however, nF (l) starts increas-

ing since Fl, which approximates F ’from above’, shrinks closer to F . In general,

nF (l) ≥ nF (l − 1), since F ⊂ Fl ⊂ Fl−1 and the np closest to F samples among

x
(1)
l−1, ..., x

(n)
l−1 are present among x

(1)
1 , ..., x

(n)
l . At conditional level l, the failure proba-

bility pF is expressed as a product,

pF = P(F1)P(F2|F1)...P(Fl|Fl−1)P(F |Fl) (2.62)

Furthermore, the adaptive choice of intermediate critical thresholds y∗1, ..., y
∗
l guaran-

tees that the first l factors in (2.62) approximately equal to p, and, thus,

pF ≈ pl · P(F |Fl) (2.63)
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Since there are exactly nF (l) failure samples at the lth level, the estimate of the last

conditional probability in (2.62) which is based on samples x
(1)
l , ..., x

(n)
l from π(·|Fl) is

given by

P(F |FL) =
1

n

n∑
i=1

IF (xL
(i)) =

nF (l)

n
. (2.64)

If nF (l) is sufficiently large, i.e. the conditional event (F |Fl) is not rare, then estimate

(2.64) is fairly accurate. This leads to the following stopping criterion:

• If nF (l)/n ≥ p, i.e. there are at least np failure samples among x
(1)
l , ..., x

(n)
l ,

then Subset Simulation stops: the current conditional level l becomes the last

level, L = 1, and the failure probability estimate derived form (2.63) and (2.64)

is

pF ≈ p̂SSF = pL
nF (L)

n
. (2.65)

• If nF (l)/n < p, i.e. there are less than np failure samples among x
(1)
l , ..., x

(n)
l ,

then algorithm proceeds by defining the next intermediate failure domain Fl+1 =

{x : g(x) > yl+1
∗}, where yl+1

∗ =
yl

(np) + yl
np+1

2
, and expressing P(F |Fl) as a

product P(F |Fl) = P(Fl+1|Fl)P(F |Fl+1) ≈ pP(F |Fl+1).

The described stopping criterion guarantees that the estimated values of all factors

in the factorization pF = P(F1)P(F2|F1)...P(FL|FL−1)P(F |Fl) are not smaller than p.

If p is relatively large (p = 0.1 is often used in applications), then it is likely that the

estimates P(F1) ≈ p, P(F2|F1) ≈ p,...,P(FL|FL−1) ≈ p and P(FL) ≈
nF (L)

n
(≥ p) are

accurate even when the sample size n is relatively small. As a result, the SS estimate

(2.65) is also accurate in this case. This provides an intuitive explanation as to why

Subset Simulation is efficient in estimating small probabilities of rare events.

2.3.2.4 Implementation Details

1.Level probability

The parameter p, called the level probability and the conditional failure probability gov-

erns how many intermediate failure domains Fl are needed to reach the target failure

domain F . As it follows form (2.65), a small value of p leads to a fewer total number

of conditional levels L. But at the same time, it results in a large number of samples n

needed at each conditional level l for accurate determination of Fl (i.e. determination

of y∗l ) that satisfies
1

n

∑n
i=1 IF (xl−1

(i)) = p. In the extreme case when p ≤ pF , no

levels are needed, L = 0, and Subset Simulation reduces to the crude Monte Carlo

method. On the other, increasing the value of p will mean that fewer samples are
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needed at each conditional level, but it will increase the total number of levels L. The

choice of the level probability p is thus a trade off between the total number of level

L and the number of samples n at each level. In [3], it has been found that the value

p = 0.1 yields good efficiency.

2.Proposal distributions

The efficiency and accuracy of Subset Simulation also depends on the set of uni-

variate proposal PDFs {gk}, k = 1, ..., d that are used within the Modified Metropolis

algorithm for sampling from the conditional distributions π(·|Fl). To see this, note that

in contrast to the Monte Carlo samples x
(1)
0 , ..., x

(n)
0 ∼ π(·) which are i.i.d, the MCMC

samples x
(1)
0 , ..., x

(n)
0 ∼ π(·|Fl) are not independent for l ≥ 1, since the MMA transi-

tion rule uses x
(i)
l ∼ π(·|Fl) to generate x

(i+1)
l ∼ π(·|Fl). This means that although

these MCMC samples can be used for statistical averaging is reduced if compared

with the i.i.d case. Namely, the morre correlated x
(1)
0 , ..., x

(n)
0 are, the slower is the

convergence of the estimate P (Fl+1|Fl) ≈
1

n

∑n
i=1 IFl+1

(xl
(i)), and, therefore the less

efficient it is. The correlation between samples x
(1)
0 , ..., x

(n)
0 is due to proposal PDFs

{qk}, which govern the generation of the next sample x
(i+1)
l from the current one

x
(i+1)
l . Hence, the choice of the {qk} is very important.

It was observed in [4] that the efficiency of MMA is not sensitive to the type of the

proposal PDFs (Gaussian, uniform, etc), however, it strongly depends on their spread

(variance). Both small and large spreads tend to increase the correlation between

successive samples. Large spreads may reduce the acceptance rate in (4.16), in-

creasing the number of repeated MCMC samples. Small spreads, on the contrary,

may lead to a reasonably high acceptance rate, but still produce very correlated sam-

ples due to their close proximity. As a rule of thumb, the spread of qk, k = 1, ..., d, can

be taken of the same order as the spread of the corresponding marginal PDF {πk}.

Proposal PDFs can also be Gaussian with unit variance, as this choice is found to

give a balance between efficiency and robustness [4].

The spread of proposal PDFs can also be chosen adaptively. The nearly optimal

scaling strategy for the Modified Metropolis algorithm was adopted: at each condi-

tional level, select the spread such that the the corresponding acceptance rate in

(4.16) is between 30% and 50%. In general, finding the optimal spread of proposal

distributions is problem specific and a highly non-trivial task not only for MMA, but also

for almost all MCMC algorithms.

35



2.3.2.5 Example-SS

Assume the same problem as in 2.2.3.1, but now we calculate the probability of failure

using Subset Simulation. The number of simulations is 1000 per conditional level. The

probability of failure is pF = 9.3× 10−3.

2.3.2.6 MATLAB Script -SS

A MATLAB script (SubsetSim), which solve example 2.3.2.5 using SS simulation, ex-

ists in the appendix, while it is based on [4].

clear; clc; close all;

1. m fy=300*10−3; m As=0.0026;

2. m fc=20*10−3; m Med=230;

3. s fy=31.5*10−3; s As=0.000052;

4. s fc=2.8*10−3; s Med=27.6;

5. Properties=[m fy s fy 1

6. m As s As 2

7. m fc s fc 3

8. m Med s Med 4];

9.% Create distribution objects

10.fy dist1 = makedist(’Normal’, ’mu’, m fy,’sigma’, s fy);

11.As dist1 = makedist(’Normal’, ’mu’,m As,’sigma’, s As);

12.fc dist1 = makedist(’Normal’, ’mu’, m fc,’sigma’, s fc);

13.Q dist1 = makedist(’Nomral’, ’mu’, m Q,’sigma’, s Q);

14.

15.dist = [fy dist1 , As dist1 , fc dist1 , Q dist1];

16.N Simulations Level=1000;

17.SubsetSim(Problem Properties,dist,N Simulations Level);
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3. Structural Reliability Applications

3.1 Introduction

In order to assess the performances of the reliability methods, three test examples

are considered, which are based on structural analysis problems.

3.2 Example 1: Continuous beam-3 random variables

Reliability analysis of three-span continuous beam.

Consider the reliability analysis of three-span beam with L = 5 m as shown in

Fig.13, the performance function is defined as the maximal deflection of three-span

beam not exceeding L/360.

Figure 13: Schematic of three-span continuous beam

The limit state is shown as

g(w,E, I) = L/360− 0.0069wL4/EI, (3.1)

where w denotes distributed loads, E is the modulus of elasticity and I is the mo-

ment of inertia. The basic variables are distributed normally, and their distribution

parameters are given in Table.2.
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Table 2: Distribution parameters of basic variables

Random variable Mean Standard deviation

w 10kN/m 0.4kN/m
E 2×107kN/m2 0.5×107kN/m2

I 8×10−4kN/m4 1.5×10−4kN/m−4

As it is shown in Fig.14, the reliability index, β, which is obtained by Hasofer Lind

method, is calculated 3.18 after three iterations and the probability of failure is shown

in the Table.3, while the precision of the method is 10−3. The limit state equation is

simple, thus the method converges quickly. The start point of the method is chosen to

be the design point (mean values), which is close to the final point.

Figure 14: Iterative processes of reliability index for Example 1.

Next, using the MC method with 1.000.000. simulations the probability is equal

to 8.57 × 10−4, similar to FORM. In Table.3 are presented the probability of failures,

using the two methods.

Table 3: Failure probabilities (×10−4)

FORM MCS

7.35 8.57
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3.3 Example 2: Truss-13 random variables

The second test example considered in this thesis is the evaluation of the failure prob-

ability of a 23-bar truss, which is shown in the Fig.15. The total length is 24m, while

there are 6 vertical loads at the top chord. The material properties of top and bot-

tom chord are E1, A2 and E2, A2, respectively. The diagonals have E3 and A3. Each

bar has modeled with truss element, and the displacements have been calculated

through linear static analysis. The vertical deformation of the center node is restricted

to L/320, where L is the length of the bridge.

Figure 15: 2D Truss example: geometry and loads

The performance function is:

g(x) = L/320− ucenter(x), (3.2)

where x is the vector with the random variables. The truss has modeled with 13

random variables with properties as they are shown in the Table 4. Firstly, all random

variables were assumed to follow the Gaussian distribution. Moreover, it is considered

that material and geometry properties follow lognormal distribution, while loads follow

extreme value. The failure probability, pf has been calculated with FORM, MC, and

Subset simulation.

Table 4: Parameters of variables in Example 2.

Random variable Mean C.O.V. σ

E1, E2, E3 210 GPa 10% 21 GPa
A1, A2 20×10−4m2 5% 1×10−4m2

A3 10×10−4m2 5% 0.5×10−4m2

P1 ∼ P6 50 kN 15% 7.5 kN
H 2 m 5% 0.1 m

39



1.FORM. Calculation the probability of failure for the truss with 13 normal and

non-normal random variables, using FORM-HL and FORM-HLRF.

For this problem, in which the limit state function is not explicit, the partial deriva-

tives are calculated numerically, using the Central Difference Method (Fig.16).

Figure 16: A graphical representation of a central-difference approximation to the
gradient at a point x1. The approximation gives way to the true value of f

′
(x1) as the

distance h shrinks to become infinitesimally small.

In Fig.17 is shown the convergence plot, between the reliability index β and the

number of iteration. The results obtained by FORM-HL and FORM–HLRF methods

show a periodic oscillation, while the results is similar for the two methods.

Figure 17: Iterative processes of reliability index for Example 2.

The Importance Factors for every random variable have also defined, while it is

obvious from the Fig.18 and Fig.19 that H and E1 mainly affect the probability.

40



Figure 18: Importance Factors for normal random variables

Figure 19: Importance Factors for non-normal random variables

2.MC.Calculation the probability of failure for the Truss application with 13 normal

and non-normal random variables, using MC.

In Fig.20 and Fig.21 are presented the histograms of the failure function for 100.000.

samples, using Monte Carlo. The first histogram is for normal variables, while the

second for non-normal. Moreover, at each histogram there are two distribution fits, a

normal fit and a non-parametric fit. When these two fits are the same the central limit

theorem is valid. This is not observed in the histogram, which means that the number

of data should be increased, for the validation of central limit theorem. However, this

number (100.000) of data is sufficient for the calculation of the probability of failure,

using Monte Carlo. The coefficient of variation for pF = 10−3 is 10%.
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Figure 20: Histogram of failure function for 13 normal random variables

Figure 21: Histogram of failure function for 13 non-normal random variables
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3.Subset Simulation. The condition failure probability, which define the number

of the intermediate levels, is chosen to be 0.1. Three levels are arised. The proposal

PDF is Gaussian with unit variance. This choice balances between efficiency and

robustness for Modified Metropolis Algorithm [4].

In Fig.22 are depicted the estimated probability of failures from three independent

Subset simulations for different limits of vertical displacement of the truss. The total

number of samples are 3000 for each simulation. Moreover, the results of a basic

Monte Carlo simulation with 100.000 (the coefficient of variation for pF = 10−3 is

10%) samples are illustrated. It is obvious that results from the Subset simulation and

Monte Carlo do not diverge significantly.

Figure 22: Failure probability and intermediate conditional levels from 3 independent
simulations.
Blue line: Empirical distribution function for the Monte Carlo ( N = 100.000) sampling
distributions.

The bias of the estimated probability of failures are useful to be examined. For this

purpose, 50 independent Subset simulations are executed and the sample’s average

has been defined. The results are illustrate in Fig.23. It is noticed that the sample’s

average of the estimated probability of failure is almost the same with the results of

Monte Carlo, thus the bias due to the correlation of the conditional probabilities at the

intermediate simulation levels is inconsiderable.
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Figure 23: Sample average of failure probability estimates from 50 simulation runs for
Example 2.

Typical histograms of conditional samples of uncertainty parameters from a typi-

cal simulation, are plotted in Fig. 24,25. The distribution of the conditional samples

is used to determine the sensitivity of the model to each individual uncertain parame-

ter. As shown in Fig. 24a, 25a, the distribution of the conditional sample for a typical

parameter with high sensitivity, experiences a significant deviation from the uncondi-

tional distribution (i.e., the predefined PDF, plotted as the black line). This indicates

that, at higher exceedance probabilities, the parameter was skewed in one direction

from its unconditional distribution and hence contributed to the exceedance. On the

other hand, the histogram of an insensitive parameter (Fig. 24b, 25b) at high ex-

ceedance probability levels exhibits insignificant deviation from the unconditional one;

that is, there is no significant relation between the distribution of the parameter and

the exceedance rate.

The obtained probabilities from the three methods are represented in the Table.10.

It is obvious that the results do not diverge significantly. However, the computational

time for each method differs. Monte carlo simulation demands the largest time, while

Subset simulation minimizes the computational cost. Generally, Subset simulation is

a powerful tool and more efficient than FORM and MC that becomes more obvious in

the next example, in which the probability arises lower and the computational time is

increased.
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(a) Histogram of E1,
Nomral fit: normal distribution
for histogram’s datas,
E1 dist: unconditional distribution of E1

(b) Histogram of E2,
Nomral fit: normal distribution
for histogram’s datas,
E2 dist: unconditional distribution of E2

Figure 24: Histograms of conditional samples.

(a) Histogram of H,
Nomral fit: normal distribution
for histogram’s datas,
H dist: unconditional distribution of H

(b) Histogram of P,
Nomral fit: normal distribution
for histogram’s datas,
P dist: unconditional distribution of P

Figure 25: Histograms of conditional samples.

Table 5: Probability of failure calculating with three methods

Method pf time(s)

FORM 2.3*10−3 -
MC 2.2*10−3 69.52
SS 2.02*10−3 2.23
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3.4 Example 3: Frame-11 random variables

The third test example considered in this thesis is the evaluation of the failure prob-

ability of a two-dimensional frame, which is shown in the Fig.48. The frame has 3

members, the length of the vertical and horizontal members is 6m. In joint 2 there is a

lateral force and counterclockwise moment. The frame has modeled with three beam

elements, while the displacements have been calculated with linear static analysis.

The horizontal deformation of node 2 is restricted to 1mm.

Figure 26: 2D frame example:geometry and loads.

The performance function is defined as

g(x) = 0.001− uhor
2 (x). (3.3)

where x is the vector with the random variables. The frame has modeled with 11

random variables with properties as they are shown in the Table.6. Firstly, all random

variables were assumed to follow the Gaussian distribution. Moreover, for FORM and

MC, it is considered that material and geometry properties follow lognormal distribu-

tion, while loads follow extreme value. The failure probability, pf has been calculated

with FORM, MC, and Subset simulation.

Table 6: Parameters of variables in Example 2.

Random variable Mean C.O.V. σ

E1, E2, E3 210 GPa 10% 21 GPa
A1, A2, A3 200×10−6m2 5% 10×10−6m2

I1, I2, I3 2×10−4m4 5% 1×10−4m4

P 15 kN 15% 2.25 kN
M 10 kNm 15% 1.5 KNm
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1.FORM. Calculation the probability of failure for the truss with 11 normal and

non-normal random variables, using FORM-HL and FORM-HLRF. For this problem,

in which the limit state function is not explicit, the partial derivatives are calculated

numerically, using the Central Difference Method (Fig.27).

Figure 27: A graphical representation of a central-difference approximation to the
gradient at a point x1. The approximation gives way to the true value of f

′
(x1) as the

distance h shrinks to become infinitesimally small.

In Fig.28 is shown the convergence plot, between the reliability index β and the

number of iteration. The results obtained by FORM-HL and FORM–HLRF method

show a periodic oscillation, while the results is similar for the two methods.

Figure 28: Iterative processes of reliability index for Example 3
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The Importance Factors for every random variable have also defined, while it is

obvious from the Fig.29 and Fig.30 that I1 and P mainly affect the probability.

Figure 29: Sensitivity measures, 11 normal variables

Figure 30: Sensitivity measures, 11 non-normal variables

2MC.Calculation the probability of failure for the frame with 13 normal and non-

normal random variables, using MC.

In Fig.31 and Fig.32 are presented the histograms of the failure function for 1.000.000.

samples, using Monte Carlo. The first histogram is for normal variables, while the

second for non-normal. Moreover, at each histogram there are two distribution fits, a

normal fit and a non-parametric fit. When these two fits are the same the central limit

theorem is valid. The two fits are identify, thus the central limit theorem is valid.
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Figure 31: Histogram of failure function for 11 normal random variables

Figure 32: Histogram of failure function for 11 non-normal random variables
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3.Subset Simulation. The condition failure probability, which define the number

of the intermediate levels, is chosen to be 0.1. Three levels are arised. The proposal

PDF is Gaussian with unit variance. This choice balances between efficiency and

robustness for Modified Metropolis Algorithm [4].

In Fig.33 are depicted the estimated probability of failures from three independent

Subset simulations for different limits of vertical displacement of the truss. The total

number of samples are 15000 for each simulation. Moreover, the results of a basic

Monte Carlo simulation with 1.000.000 (the coefficient of variation for pF = 10−4 is

10%) samples are illustrated. It is obvious that results from the Subset simulation and

Monte Carlo do not diverge significantly.

Figure 33: Failure probability and intermediate conditional levels from 3 independent
simulations.
Blue line: Empirical distribution function for the Monte Carlo ( N = 1.000.000) sampling
distributions.

The bias of the estimated probability of failures are useful to be examined. For this

purpose, 50 independent Subset simulations are executed and the sample’s average

has been defined. The results are illustrate in Fig.34. It is noticed that the sample’s

average of the estimated probability of failure is almost the same with the results of

Monte Carlo, thus the bias due to the correlation of the conditional probabilities at the

intermediate simulation levels is inconsiderable.
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Figure 34: Sample average of failure probability estimates from 50 simulation runs for
Example 3.

Typical histograms of conditional samples of uncertainty parameters from a typi-

cal simulation, are plotted in Fig. 35,36. The distribution of the conditional samples

is used to determine the sensitivity of the model to each individual uncertain parame-

ter. As shown in Fig. 36a, 36b, the distribution of the conditional sample for a typical

parameter with high sensitivity, experiences a significant deviation from the uncondi-

tional distribution (i.e., the predefined PDF, plotted as the black line). This indicates

that, at higher exceedance probabilities, the parameter was skewed in one direction

from its unconditional distribution and hence contributed to the exceedance. On the

other hand, the histogram of an insensitive parameter (Fig. 35a, 35b) at high ex-

ceedance probability levels exhibits insignificant deviation from the unconditional one;

that is, there is no significant relation between the distribution of the parameter and

the exceedance rate.

The obtained probabilities from the three methods are represented in the table.10.

It is obvious that the results do not diverge significantly. However, the computational

time for each method differs. Monte carlo simulation is a time-consuming method,

as the computational cost is increased, as the probability arises lower and the FEM

model more complex. Subset simulation is a efficient method, which minimize com-

putational time and provide accurate results.
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(a) Histogram of E1,
Nomral fit: normal distribution
for histogram’s datas,
E1 dist: unconditional distribution of E1

(b) Histogram of E2,
Nomral fit: normal distribution
for histogram’s datas,
E2 dist: unconditional distribution of E2

Figure 35: Histograms of conditional samples.

(a) Histogram of I1,
Nomral fit: normal distribution
for histogram’s datas,
I1 dist: unconditional distribution of I1

(b) Histogram of P,
Nomral fit: normal distribution
for histogram’s datas,
P dist: unconditional distribution of P

Figure 36: Histograms of conditional samples.

Table 7: Probability of failure calculating with three methods

Method pf time(s)

FORM 1.9*10−4 -
MC 2*10−4 845.38
SS 2.20*10−4 34.89
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4. Machine Learning Algorithms

4.1 Introduction

Structural Reliability analysis is one of the prominent fields in civil and mechanical en-

gineering. However, an accurate analysis in most cases deals with complex and costly

numerical problems. Machine learning-based techniques have been introduced to the

structural reliability analysis problems to deal with this huge computational cost and

increase accuracy. Aiming towards a fast and accurate analysis, the machine learning

techniques adopted for the approximation of the limit state function with Monte Carlo

simulation. In this regard, the focus of the current chapter is to examine two Machine

Learning models in combination with structural reliability analysis.

Machine learning is the scientific study of algorithms and statistical models that

computer systems use to effectively perform a specific task without using explicit in-

structions, relying on models and inference instead. It is seen as a subset of artificial

intelligence. These algorithms are used to automatically find the valuable underlying

patterns within complex data that we would otherwise struggle to discover. The hidden

patterns and knowledge about a problem can be used to predict future events. Ma-

chine learning algorithms build a mathematical model of sample data (Fig.37), known

as training data, in order to make predictions or decisions without being explicitly pro-

grammed to perform the task.

Figure 37: Schematic representation of the general idea, with which a machine learn-
ing algorithm is used the training data to define a surrogate model.
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The reliability analysis of implicit performance function is one of challenges in

structural reliability discipline. In theory, any algorithm used for explicit performance

function reliability evaluation may be adapted to deal with implicit performance func-

tion. However, many difficulties occurring in realistic problem can not be conquered.

As it has already represented in the previous chapter, there are surrogate methods,

are based on a functional surrogate of the performance function. In this thesis, some

machine learning algorithms are used as surrogates methods.

There are two categories of machine learning algorithms, supervised or unsu-

pervised. In supervised learning, each training example is a pair consisting of an in-

put feature and a desired output value and the algorithm analyzes the training data

and produces an inferred function, which can be used for mapping new examples. In

unsupervised learning, the training data has only the input values. In this thesis will

be used only supervised learning. Supervised learning problems are divided into to

types, regression and classification. The regression methods have been applied in the

structural reliability to alleviate the difficulties since 1990s. In the presented regression

methods, an explicit function intended to substitute the implicit performance function

is fitted through random samples under the empirical risk minimization (ERM), and the

failure probability of explicit function replaces that of the actual implicit performance

function.

In this dissertation, only regression methods are examined, which are named for

their continuous outputs, meaning they may have any value within a range. There are

plenty of algorithms, however Gaussian Process Regression and Support Vector Ma-

chine are chosen to become an efficient surrogate to the numerical solver of the finite

element model which is repeatedly invoked in the Monte Carlo Simulation method.
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4.2 Algorithms

4.2.1 Gaussian Process Regression

A wide variety of machine-learning models are used for structural reliability analysis

in the literature as limit state function models. GPs appear as a promising model

to use for approximating limit state function because they are the only approach that

has the following properties: does not require a predefined structure, can approximate

highly non-linear function landscapes, has meaningful hyperparameters, and includes

a theoretical framework for optimizing their hyperparameters. We will exploit these

advantages in GPR approximation method for structural reliability analysis.

In probability theory, a stochastic process is a mathematical object which is defined

as the collection of an infinite number of random variables. A stochastic process

X is said to be Gaussian if the joint pdf of the random variables {X (t1), ...,X (tn)}
is Gaussian for any n and ti = 1, ..., n and every finite collection of those random

variables has a multivariate normal distribution, i.e. every finite linear combination of

them is normally distributed. Gaussian Processes (GPs) are a powerful technique for

modelling and predicting numerical data.

Gaussian process regression is nonparametric (i.e. not limited by a functional

form), so rather than calculating the probability distribution of parameters of a specific

function, GPR calculates the probability distribution over all admissible functions that

fit the data [9]. However, similar to the above, we specify a prior (on the function

space), calculate the posterior using the training data, and compute the predictive

posterior distribution on our points of interest. There are several ways to interpret

Gaussian process (GP) regression models. One can think of a Gaussian process as

defining a distribution over functions, and inference taking place directly in the space

of functions, the function-space two equivalent views. In machine learnig, Gaussian

Processes are a generic supervised learning method designed to solve regression

and probabilistic classification problems. It is concerned with the prediction of con-

tinuous continuities based on a discrete set of labeled data. A Gaussian Process

assumes that the covariance between any set of points is a multivariate Gaussian.

Let us denote our training set of observations as D{(xi, yi)|i = 1, ..., n}, where x

denotes an input vector (covariates) of dimension D and y denotes a scalar output

or target (dependent variable). We write the inputs xi of D as a column vectors and

form the D × n matrox X, called design matrix. Also, the targets are collected in

the vector y, so we can write D = (X, y). We are interested in making inferences

about the relationship between inputs and targets, which in this setting is viewed as a

conditional distribution of the targets given the inputs.
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The standard linear regression model with Gaussian noise

f(x) = x⊤w, y = f(x) + ϵ, (4.1)

where x is the input vector, w is a vector of weights (parameters) of the linear model,

f is the function value and y is the observed target value. Often a bias weight or

offset is included, but as this can be implemented by augmenting the input vector x

with an additional element whose value is always one, we do not explicitly include it

in our notation. We have assumed that the observed values y differ from the function

values f(x) by additive noise, and we will further assume that this noise follows an

independent, identically distributed Gaussian distribution with zero mean and variance

σ2
n.

ϵ ∼ N (0, σ2
n) (4.2)

The error variance σ2
n and the coefficients w are estimated from the data. A GPR

model explains the response by introducing latent variables, f(xi), i = 1, 2, ..., n, from

a Gaussian process (GP), and explicit basis functions, h. The covariance function

of the latent variables captures the smoothness of the response and basis functions

project the inputs x into a p-dimensional feature space. A GP is a set of random

variables, such that any finite number of them have a joint Gaussian distribution. If

{f(x), x ∈ Rd} is a Gaussian process, then E(f(x)) = m(x) and Cov[f(x), f(x
′
)] =

E[{f(x)−m(x)}{f(x′
)−m(x

′
)}] = k(x, x

′
).

Now consider the following model.

h(x)Tw + f(x) (4.3)

where f(X) ∼ GP (0, k(x, x
′
)), that is f(x) are from a zero mean GP with covariance

function, k(x, x
′
). h(x) are a set of basis functions that transform the original feature

vector x in Rd into a new feature vector h(x) in Rp. w is p-by-1 vector of basis function

coefficients. This model represents a GPR model. An instance of response y can be

modeled as

P (yi|f(xi), xi) ∼ N(yi|h(xi)
Tw + f(xi), σ

2
n) (4.4)

Hence, a GPR model is a probabilistic model. There is a latent variable f(xi) intro-

duced for each observation xi, which makes the GPR model nonparametric. In vector

form, this model is equivalent to

P (yi|f,X) ∼ N(y|Hw + f, σ2
nI) (4.5)
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where X =


x1

T

x2
T

...

xn
T

 , y =


y1

y2
...

yn

 , H =


h(x1

T )

h(x2
T )

...

h(xn
T )

 , f =


f(x1)

f(x2)
...

f(xn)

 .

The joint distribution of latent variables f(x1), f(x2), · · · , f(xn in the GPR model is

as follows:

P (f |X) ∼ N(f |0, K(X,X)), (4.6)

close to a linear regression model, where K(X,X) looks as follows:

K(X,X)


k(x1, x1)) k(x1, x2)) · · · k(x1, xn))

k(x2, x1)) k(x2, x2)) · · · k(x2, xn))
...

...
...

...

k(xn, x1)) k(xn, x2)) · · · k(xn, xn))

 (4.7)

The covariance function k(x, x
′
) is usually parameterized by a set of kernel param-

eters or hyperparameters, θ. Often k(x, x
′
) is written as k(x, x

′ |θ) to explicitly indicate

the dependence on θ.

Some of the commonly used GPR kernel functions are:

• Linear

k(x, x′) = xTx′

• Exponential

k(x, x′) = σ2
f exp(−

r

σl

)

• Matern 5/2

k(x, x′) = σ2
f (1 +

√
5r

σl

+

√
5r2

σl

exp−
√
5r

σl

)

• Rational Quadratic

k(x, x′) = σ2
f (1 +

r2

2ασ2
l

)−a

where, r is the Euclidean distance between x and x′.

While the basis function can be one of the below functions:

• Constant H = 1

• Linear H = [1, X]

• Pure Quadratic H = [1, X,X2]
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4.2.2 Support Vector Machine

Support vector machine (SVM) analysis is a popular machine learning tool for clas-

sification and regression. SVM regression is considered a nonparametric technique

because it relies on kernel functions. It is popularly and widely used for classification

problems in machine learning. SVM tries to find a line/hyperplane (in multidimensional

space) that separates these two classes. Then it classifies the new point depending

on whether it lies on the positive or negative side of the hyperplane depending on the

classes to predict.

In two-dimensions you can visualize this as a line and let’s assume that all of our

input points can be completely separated by this line.

Figure 38: Maximum margin between the classes, Separating Hyperplane and Sup-
port Vectors.

• The distance between the line and the closest data points is referred to as the

margin.

• The best or optimal line that can separate the two classes is the line that as the

largest margin. This is called the Maximal-Margin hyperplane.

• The hyperplane is learned from training data using an optimization procedure

that maximizes the margin
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Support Vector Machine can also be used as a regression method, maintaining

all the main features that characterize the algorithm (maximal margin). The Support

Vector Regression (SVR) uses the same principles as the SVM for classification, with

only a few minor differences. First of all, because output is a real number it becomes

very difficult to predict the information at hand, which has infinite possibilities. In the

case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM

which would have already requested from the problem. But besides this fact, there

is also a more complicated reason, the algorithm is more complicated therefore to be

taken in consideration. However, the main idea is always the same: to minimize error,

individualizing the hyperplane which maximizes the margin, keeping in mind that part

of the error is tolerated.

Figure 39: The insensitive band for a non-linear regression function

Consider these two dashed lines (Fig.39) as the decision boundary and the black

line as the hyperplane. Our objective, when we are moving on with SVR, is to basi-

cally consider the points that are within the decision boundary line. Our best fit line

is the hyperplane that has a maximum number of points. Support Vector Machines

it will ensure sparseness of the dual variables. The idea of representing the solution

by means of a small subset of training points has enormous computational advan-

tages. Using the ε-insensitive loss function has that advantage, while still ensuring

the existence of a global minimum and the optimization of a reliable generalization

bound.
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The mathematical formulation of the support vector machines according to [6] is

presented below.

Linear SVM Regression: Primal Formula

Suppose we have a set of training data where xn is a multivariate set of N obser-

vations with observed response values yn.

To find the linear function

f(x) = x
′
β + b (4.8)

and ensure that it is as flat as possible, find f(x) with the minimal norm value (ββ).

This is formulated as a convex optimization problem to minimize

J(β) =
1

2
β

′
β (4.9)

subject to all residuals having a value less than ϵ or, in equation form:

∀n : |yn − (x
′β
n + b)| ≤ ϵ (4.10)

It is possible that no such function f(x) exists to satisfy these constraints for all points.

To deal with otherwise infeasible constraints, introduce slack variables ξn and ξ∗n for

each point. This approach is similar to the “soft margin” concept in SVM classification,

because the slack variables allow regression errors to exist up to the value of ξn and

ξ∗n, yet still satisfy the required conditions.

Including slack variables leads to the objective function, also known as the primal

formula:

J(β) =
1

2
β

′
β + C

N∑
n=1

(ξn + ξ∗n), (4.11)

subjected to:

∀ : yn − (xn)
′
β + b) ≤ ϵ+ ξn (4.12)

∀ : (xn)
′
β + b)− yn ≤ ϵ+ ξ∗n (4.13)

∀n : ξn ≥ 0 (4.14)

∀n : ξn ≥ 0 (4.15)

The constant C is the box constraint, a positive numeric value that controls the penalty

imposed on observations that lie outside the epsilon margin (ϵ) and helps to prevent

overfitting (regularization). This value determines the trade-off between the flatness

of f(x) and the amount up to which deviations larger than ϵ are tolerated.

The linear ϵ-insensitive loss function ignores errors that are within distance of the

observed value by treating them as equal to zero. The loss is measured based on the
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distance between observed value y and the boundary. This is formally described by

Lϵ =

0, if |y − f(x)| ≤ ϵ

|y − f(x)| − ϵ, otherwise.
(4.16)

Linear SVM Regression: Dual Formula

The optimization problem previously described is computationally simpler to solve

in its Lagrange dual formulation. The solution to the dual problem provides a lower

bound to the solution of the primal (minimization) problem. The optimal values of the

primal and dual problems need not be equal, and the difference is called the “duality

gap.” But when the problem is convex and satisfies a constraint qualification condition,

the value of the optimal solution to the primal problem is given by the solution of the

dual problem.

To obtain the dual formula, construct a Lagrangian function from the primal func-

tion by introducing nonnegative multipliers αn and α∗
n for each observation xn. This

leads to the dual formula, where we minimize

L(α) =
1

2

N∑
i=1

N∑
j=1

(αi + α∗
i )(αj + α∗

j )ξ
′

iξj + ϵ
N∑
i=1

(αi + α∗
i ) +

N∑
i=1

yi(αi + α∗
i ) (4.17)

subjected to constraints
N∑
j=1

(αn + α∗
n) = 0 (4.18)

∀n : 0 ≤ αn ≤ C (4.19)

∀n : 0 ≤ α∗
n ≤ C (4.20)

The parameter can be completely described as a linear combination of the training

observations using the equation

β =
N∑
j=1

(αn + α∗
n)xn. (4.21)

The function used to predict new values depends only on the support vectors:

f(x) =
N∑
j=1

(αn + α∗
n)(x

′

nx) + b. (4.22)
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Nonlinear SVM Regression: Primal Formula

Some regression problems cannot adequately be described using a linear model.

In such a case, the Lagrange dual formulation allows the previously-described tech-

nique to be extended to nonlinear functions.

Obtain a nonlinear SVM regression model by replacing the dot product x1, x2 with

a nonlinear kernel function G(x1, x2) =< ϕ(x1), ϕ(x2) >, where ϕ(x) is a transforma-

tion that maps x to a high-dimensional space.

Figure 40: A non-linear separating region transformed in to a linear one.

The Gram matrix is an n-by-n matrix that contains elements gbj = G(xi, xj). Each

element gbj is equal to the inner product of the predictors as transformed by ϕ. How-

ever, we do not need to know ϕ, because we can use the kernel function to generate

Gram matrix directly. Using this method, nonlinear SVM finds the optimal function f(x)

in the transformed predictor space.

Nonlinear SVM Regression: Dual Formula The dual formula for nonlinear SVM

regression replaces the inner product of the predictors (xi, xj) with the corresponding

element of the Gram matrix (gi, j).

Nonlinear SVM regression finds the coefficients that minimize

L(α) =
1

2

N∑
i=1

N∑
j=1

(αi+α∗
i )(αj+α∗

j )G(xi, xj)+ϵ
N∑
i=1

(αi+α∗
i )−

N∑
i=1

yi(αi+α∗
i ) (4.23)

subject to
N∑
j=1

(αn + α∗
n) = 0 (4.24)

∀n : 0 ≤ αn ≤ C (4.25)

∀n : 0 ≤ α∗
n ≤ C (4.26)

The function used to predict new values is equal to

f(x) =
N∑
j=1

(αn + α∗
n)G(xi, xj + b. (4.27)
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Kernel Functions

• Linear

G(x
′

j, xk) = x
′

jxk (4.28)

• Gaussian

G(xj, xk) = exp(−∥xj − xk∥2) (4.29)

• Polynomial

G(xj, xk) = (1 + x
′

jxk)
q
,where q is in the set{2, 3, · · · } (4.30)
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4.3 Bias and Variance

Solving the issue of bias and variance is really about dealing with over-fitting and

under-fitting. Bias is reduced and variance is increased in relation to model complex-

ity. As more and more parameters are added to a model, the complexity of the model

rises and variance becomes our primary concern while bias steadily falls.

Bias: It gives us how closeness is our predictive model’s to training data after

averaging predict value. Generally algorithm has high bias which help them to learn

fast and easy to understand but are less flexible. That looses it ability to predict

complex problem, so it fails to explain the algorithm bias. This results in underfitting

of our model.

Variance: It defines as deviation of predictions, in simple it is the amount which tell

us when its point data value change or a different data is use how much the predicted

value will be affected for same model or for different model respectively. Ideally, the

predicted value which we predict from model should remain same even changing

from one training data-sets to another, but if the model has high variance then model

predict value are affect by value of data-sets.

Poor performance of a model is caused either by underfitting or overfitting of the

data. Both are visualized in Fig.41, as well as a well fitted/robust model. In the case

of underfitting, the model cannot capture the complex behaviour of the data, in other

words the model is too simple, resulting in poor performance. An example is a linear

model that cannot capture non-linear behaviour. Overfitting occurs when the model

is ’too well’ fitted to the training data and has the tendency to capture the noise of

the dataset instead of its general trends. In the case of overfitting, the model is not

generalizing enough for new data, meaning that it doesn’t perform adequately on data

it has never seen and therfore results in poor performance.

Figure 41: Underfitting, Optimal, Overfitting
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Cross-validation is a model assessment technique used to evaluate a machine

learning algorithm’s performance in making predictions on new datasets that it has

not been trained on. This is done by partitioning the known dataset, using a subset to

train the algorithm and the remaining data for testing. Each round of cross-validation

involves randomly partitioning the original dataset into a training set and a testing set.

The training set is then used to train a supervised learning algorithm and the testing

set is used to evaluate its performance. This process is repeated several times and

the average cross-validation error is used as a performance indicator.

When training a model, it is important not to overfit or underfit it with algorithms

that are too complex or too simple. Your choice of training set and test set are critical

in reducing this risk. However, dividing the dataset to maximize both learning and

validity of test results is difficult. This is where cross-validation comes into practice.

Cross-validation offers several techniques that split the data differently, to find the best

algorithm for the model.

Figure 42: Optimum model complexity
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4.4 Cross-Validation

In 4.3, it is has mentioned that the goal is to create a model with optimal behavior.

Using Cross-validation, the goal is to test the model’s ability to predict new data that

was not used in estimating it, in order to flag problems like overfitting or selection bias

and to give an insight on how the model will generalize to an independent dataset

(i.e., an unknown dataset, for instance from a real problem). Cross-validation is a

resampling method that uses different portions of the data to test and train a model

on different iterations. It is mainly used in settings where the goal is prediction, and

one wants to estimate how accurately a predictive model will perform in practice. In a

prediction problem, a model is usually given a dataset of known data on which training

is run (training dataset), and a dataset of unknown data (or first seen data) against

which the model is tested (called the validation dataset or testing set).

In machine learning (ML), generalization usually refers to the ability of an algo-

rithm to be effective across various inputs. It means that the ML model does not

encounter performance degradation on the new inputs from the same distribution of

the training data. For human beings generalization is the most natural thing possible.

We can classify on the fly. For example, we would definitely recognize a dog even if

we didn’t see this breed before. Nevertheless, it might be quite a challenge for an ML

model. That’s why checking the algorithm’s ability to generalize is an important task

that requires a lot of attention when building the model.

Cross-validation is a technique for evaluating a machine learning model and test-

ing its performance. It helps to compare and select an appropriate model for the

specific predictive modeling problem. CV is easy to understand, easy to implement,

and it tends to have a lower bias than other methods used to count the model’s effi-

ciency scores. Moreover, it can also give estimates of the variability of the true error

estimation which is a useful feature. All this makes cross-validation a powerful tool for

selecting the best model for the specific task. One round of cross-validation involves

partitioning a sample of data into complementary subsets, performing the analysis

on one subset (called the training set), and validating the analysis on the other sub-

set (called the validation set or testing set). To reduce variability, in most methods

multiple rounds of cross-validation are performed using different partitions, and the

validation results are combined (e.g. averaged) over the rounds to give an estimate

of the model’s predictive performance.
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Many techniques are available for cross-validation. Among the most common are:

Holdout: Partitions data randomly into exactly two subsets of specified ratio for

training and validation. This method performs training and testing only once, which

cuts execution time on large sets, but interpret the reported error with caution on small

data sets.

Figure 43: Hold-out data split

k-fold: Partitions data into k randomly chosen subsets (or folds) of roughly equal

size. One subset is used to validate the model trained using the remaining subsets.

This process is repeated k times such that each subset is used exactly once for valida-

tion. The average error across all k partitions is reported as ϵ. This is one of the most

popular techniques for cross-validation but can take a long time to execute because

the model needs to be trained repeatedly. The image below illustrates the process.

For example, a 5-fold technique is shown in the the below picture.

Figure 44: Diagram of the 5-fold cross-validation method (blocks in blue represent the
testing folds at each step).

As can be seen, cross-validation is very similar to the holdout method. Where it

diers, is that each data point is used both to train models and to test a model, but

never at the same time.

In this dissertation, the 5-fold cross-validation method is used to assess the per-

formance of the SVM and GPR models. It is worth noting that, the cross-validation

loss is also used as the objective function within the Bayesian optimization, which is

discussed in the next section.

67



4.5 Hyper-parameter Optimization

In machine learning, hyperparameter optimization or tuning is the problem of choosing

a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a pa-

rameter whose value is used to control the learning process. By contrast, the values

of other parameters (typically node weights) are learned. The aim of hyper-parameter

optimization in machine learning is to find the hyperparameters of a given machine

learning algorithm that return the best performance as measured on a validation set.

In other words, hyper-parameter optimization finds a group of hyper-parameters that

yields an optimal model which minimizes a predefined loss function on given indepen-

dent data.

The same kind of machine learning model can require different constraints, weights

or learning rates to generalize different data patterns. These measures are called

hyperparameters, and have to be tuned so that the model can optimally solve the

machine learning problem. Hyperparameter optimization finds a tuple of hyperpa-

rameters that yields an optimal model which minimizes a predefined loss function on

given independent data. The objective function takes a tuple of hyperparameters and

returns the associated loss. Cross-validation is often used to estimate this general-

ization performance.

Manual hyper-optimization is labor-intrensive issue, as the problem is that the

evaluating the objective function to find the score extremely expensive. Consider-

ing that each time different hyper-parameters are tried, a model on the training data

is trained to make predictions on the validation data and then the validation metric

is calculated. Grid search and random search overcome the problem of the manual

hyper-optimization, because a grid of model hyper-parameters is set up and the train-

predict-evaluate cycle runs automatically in a loop. The accuracy and the efficiency

of these methods are relatively low due to the fact that the next hyper-parameters for

evaluation are not based on previous results. Grid and random search are completely

uninformed by past evaluations and as a result, often spend a significant amount of

time evaluating “bad” hyperparameter.

Bayesian approach considers as the most efficient solution, it keeps track of past

evaluation results which they use to form a probabilistic model mapping hyper- param-

eters to a probability of a score on the objective function P (score|hyperparameters).

This model is called a surrogate for the objective function. Optimization with surrogate

is much more accurate and easier, rather than with the objective function, as Bayesian

methods work by finding the next set of hyper-parameters to evaluate on the actual

objective function by selecting hyper-parameters that perform best on the surrogate

function f(x). Gaussian Process is used by Bayesian Optimization to fit the surrogate

model f(x). One innovation in Bayesian optimization is the use of an acquisition func-
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tion, which the algorithm uses to determine the next point to evaluate. The acquisition

function can balance sampling at points that have low modeled objective functions

and exploring areas that have not yet been modeled well.

The algorithm evaluates yi = f(xi) for n points xi, taken at random within the

variable bounds. If there are evaluation errors, it takes more random points until there

are n successful evaluations. The probability distribution of each component is either

uniform or log-scaled.

Then it repeats the following steps:

1. Updates the Gaussian process model of f(x) to obtain a posterior distribution

over functions Q(f |xi, yifori = 1, ..., t).

2. Finds the new point x that maximizes the acquisition function a(x).

The algorithm stops after reaching a fixed number of iterations or a fixed time or a

stopping criterion.

The acquisition function evaluates a point x based on the posterior distribution

function Q. Then it selects the point with the lowest expected loss. Some of the

acquisition functions that can be used in Bayesian optimization is expected improve-

ment, probability of improvement and lower confidence bound.

In this dissertation, Bayesian hyper-parameter optimization is used with expected

improvement acquisition function. The expected improvement acquisition functions

evaluates the expected amount of improvement in the objective function, ignoring val-

ues that cause an increase in the objective. In other words, it defines xbest as the lo-

cation of the lowest posterior mean and µQ(xbest) as the lowest value of the posterior

mean. Then the expected improvement is EI(x,Q) = EQ[max(0, µQ(xbest)f(x))].

Bayesian hyper-parameter optimization finds the optimum hyper-parameters which

minimize the cross-validation loss, following the above procedure. Then, these objec-

tive function evaluations, namely the optimum model hyper-parameters are used to

train a new cross-validated model.
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4.6 Performance Evaluation Metrics

In order to compare different models among each other, performance metrics are

needed. Dependent on the type of problem different metrics can be used. The most

common used metric of machine learning regressions models are discussed below:

The error rate of the regression models is measured with the root mean square

error, which is given:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4.31)

Besides the root mean square error, the predicted vs. actual plot and the resid-

uals plot are also used in order to visualize the results of a regression model. The

predicted vs. actual shows how well the regression model makes predictions for dif-

ferent response values. The predicted response of the model is plotted against the

actual, true response. A perfect regression model has a predicted response equal to

the true response, so all the points lie on a diagonal line. The vertical distance from

the line to any point is the error of the prediction for that point. A good model has small

errors, and so the predictions are scattered near the line. The residuals plot displays

the difference between the predicted and true responses. Usually a good model has

residuals scattered roughly symmetrically around zero. If any clear patterns in the

residuals exists, it is likely that the model needs improvement.
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5. Machine Learning Applications

5.1 Introduction

The theory behind the machine learning algorithms, the hyper-parameter tuning as

well as their performance evaluation are discussed in chapter 4. Reliability methods

are presented in chapter 2 , which are an analytical method, First-order Reliability

method and simulation methods, such as Monte Carlo Simulation and the Subset

simulation. In this chapter machine learning algorithms and the Monte Carlo method

are combined to replace the explicit limit state function and to calculate probability

of failure, with shortened computational cost.

Since a machine learning model with low generalization error is trained, the re-

sponse of the failure function is calculated faster than before, as it is not calculated by

the finite element model. A well trained model can be very useful, for replacement the

FEM model at every iteration or simulation of the reliabiliy methods. The considered

models, the preparation of the training data, the implementation of the models using

MATLAB and their performance comparison are presented in the next sections.

Specifically, a training set which consists the random variables of the problem and

the response of the failure function is created and used for two regression models,

Gaussian Process Regression [10], [11] and Support Vector Machine [7], [8]. The

performance and accuracy are compared in combination with the compatibility with

reliability methods.

In the proposed method, regressions models are applied to approximate the limit

state function. The approximation function is used to replace the finite element anal-

ysis to save the computation time. The main procedure of the proposed method in-

cludes the following: (1) generating training datasets to establish a regression model;

(2) training the regression model with the training datasets; (3) extracting the explicit

approximation formulation using the well trained regression model; (4) predicting the

failure probability using the Monte Carlo simulation.
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5.2 Machine Learning Models-MATLAB

5.2.1 Gaussian process regression

MATLAB’s fitrgp function trains and cross-validates a Gaussian process regression

model. Bayesian optimization is used to estimate the optimum kernel and basis func-

tions and the noise variance σ2 for the examined data-set. The objective function of

the optimization is log(1 + cross− validationloss), as it is in any regression model.

1. gprMdl = fitrgp(...

2. predictors,...

3. response,...

4. ’BasisFunction’,’none’,...

5. ’KernelFunction’,’ardrationalquadratic’,...

6. ’Standarize’,false,...

7. ’Sigma’,σopt...

8. )

5.2.2 Support vector regression

MATLAB’s fitrsvm trains or cross-validates a support vector machine (SVM) regres-

sion model on a low- through moderate-dimensional predictor data set. It supports

mapping the predictor data using kernel functions, and supports SMO, ISDA, or L1

soft-margin minimization via quadratic programming for objective-function minimiza-

tion.

1. regressionSVM = fitrsvm(...

2. predictors,...

3. response,...

4. ’Standarize’,true,...

5. ’KFold’,5,...

6. ’KernelFunction’,’polynomial’,...

7. ’Polynomialorder’,3,...

8. ’KernerScale’,’auto’)
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5.3 Example 1: Truss-13 random variables

The 2d-truss in Fig.45 has the same material, geometry properties and random vari-

ables as in section 3.3.

Figure 45: 2D-Truss: geometry and loads

5.3.1 Sample Data

The aim of the machine learning regression models, as it has already mentioned,

is to replace the explicit limit state function for the calculation of the probability of

failure, reducing the computational cost. Thus, a sample data set is needed for the

training and the cross-validation of the models, in order to predict response of the limit

state function with low error. More specifically a set of input and output is produced

with Monte Carlo Simulation. The input contains all the random variable of the truss

application (E1, E2, E3, A1, A2, A3, H, P1 − P6) and the output the result of the limit

state equation for each of the Monte Carlo simulation.

For the Gaussian Process Regression, 500 data are produced with acceptable

error, while for Support Vector machine regression 1000 have produced.
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5.3.2 Performance Evaluation of the models

The evaluation of each machine learning model arises from the RSME error and two

plots, actual-predicted response and residual plot.

1.Gaussian Process Regression

(a) Response calculated from the FEM model
(Actual)-Response calculated from the machine
learning algorithm (Predicted)

(b) Residual: Actual-Predicted

Figure 46: Performance of Gaussian process regression

2.Support Vector Machine

(a) Response calculated from the FEM model
(Actual)-Response calculated from the machine
learning algorithm (Predicted)

(b) Residual: Actual-Predicted

Figure 47: Performance of Support Vector regression

Figures.46 and 47 compare the predictions of the trained regression model with

the finite element analyses for the training set. An excellent correlation can be ob-

served between the predictions of the regressions model and the finite element anal-

ysis results. This result suggests that the model can be used to replace the FEM

model with great efficiency and accuracy.
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Table 8: Regression error

Model RMSE

GPR 2.01×10−5

SVR 4.56×10−5

As can be seen at the performance plots, the Gaussian process regression model

has the best performance. Besides the RMSE which is very low, the performance

plots of the model indicate that it perfectly fits the training data and accurately predicts

the failure function.

5.3.3 Monte carlo plus machine learning

The results from different methods are shown in Table 9. The result of the proposed

methods show good agreement with those of MCS with 100.000 samples. Different

numbers of simulations are generated and the computational time is presented in Ta-

ble.9. GPR performance’s arise the most robust and most accurate, as the probability

of failure is almost the same with MCS, however the computational time is the largest

of all the models. For SVM, the accuracy is lower, while the number of training data

should be 1.000, however the computational time is minimized.

Table 9: Computational time with Monte Carlo Simulation and Machine learning
models for the Truss problem.
MCS (N=100.000), pf=2.2×10−3, time=69.52s

MC simulations GPR-Time (s) pf SVM-Time (s) pf

1000 7.54 2.00
10000 7.63 2.07
100000 10.15 1.90×10−3 2.13 1.82×10−3

1000000 35.34 2.34
10000000 6.02
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5.4 Example 2: Frame-11 random variables

The 2d-frame in Fig.48 has the same material, geometry properties and random vari-

ables as in section 3.4.

Figure 48: 2D frame example:geometry and loads.

5.4.1 Sample Data

The aim of the machine learning regression models, as it has already mentioned,

is to replace the explicit limit state function for the calculation of the probability of

failure, reducing the computational cost. Thus, a sample data set is needed for the

training and the cross-validation of the models, in order to predict response of the limit

state function with low error. More specifically a set of input and output is produced

with Monte Carlo Simulation. The input contains all the random variable of the frame

application (E1, E2, E3, A1, A2, A3, I1, I2, I3, P,M ) and the output the result of the limit

state equation for each of the Monte Carlo simulation.

For the Gaussian Process Regression, 500 data are produced with acceptable

error, while for Support Vector machine regression 1000 have produced.
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5.4.2 Performance Evaluation of the models

1.Gaussian Process Regression

(a) Response calculated from the FEM model
(Actual)-Response calculated from the machine
learning algorithm (Predicted)

(b) Residual: Actual-Predicted

Figure 49: Performance of Gaussian process regression

2.Support Vector Machine

(a) Response calculated from the FEM model
(Actual)-Response calculated from the machine
learning algorithm (Predicted)

(b) Residual: Actual-Predicted

Figure 50: Performance of Support Vector regression

Figures.49 and 50 compare the predictions of the trained regression model with

the finite element analyses for the training set. An excellent correlation can be ob-

served between the predictions of the regressions model and the finite element anal-

ysis results. This result suggests that the model can be used to replace the FEM

model with great efficiency and accuracy.

As can be seen at the performance plots, the Gaussian process regression model

has the best performance. Besides the RMSE which is very low, the performance
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Table 10: Regression error

Model RMSE

GPR 1.41×10−5

SVR 7.52×10−4

plots of the model indicate that it perfectly fits the training data and accurately predicts

the failure function.

5.4.3 Monte carlo plus machine learning

The results from different methods are shown in Table 11. The result of the proposed

methods show good agreement with those of MCS with 1.000.000 samples. Different

numbers of simulations are generated and the computational time is presented in

Table.11. Gaussian process regression performance’s arises the most accurate, as

the probability of failure is almost the same with MCS, however the computational cost

is the largest of all the models, while the number of training data should be 500. For

Support vector machine 1000 sampling data are generated, but the computational

time is the least of all the models, while the accuracy of the model is efficient.

Table 11: Computational time with Monte Carlo Simulation and Machine learning
models for the Frame problem.
MCS (N=1.000.000), pf=1.9×10−4, time=845.38s

MC simulations GPR-Time (s) pf SVM-Time (s) pf

1000 7.37 1.93
10000 7.51 1.96
100000 9.68 2.01
1000000 33.04 1.81×10−4 2.21 1.21×10−4

10000000 4.89
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6. Conclusions

The purpose of this master’s dissertation is to investigate the application of several

Structural Reliability algorithms, as their eficiency and accuracy in combination with

machine learning regression algorithms. First-Order Reliability, Monte Carlo simu-

lation and Subset Simulation have been applied to structural analysis problems to

define the probability of failure. Next, Gaussian process regression and Support Vec-

tor machine regression have been used to approximate the limit state equation, which

includes a finite element model, while using Monte Carlo simulation the probability of

failure has been calculated.

Initially, the three reliability methods have been implemented in structural analysis

problem, a three-span continuous beam, in which the limit state equation is explicit,

a 23-bar two dimensional truss and frame with three beam elements, in which the

performance function involves the finite element method. The results from all the

methods are compatible. FORM method is applied efficiently to these three prob-

lems. Using FORM, it has been calculated some sensitivity measures corresponding

to each random variable, which defines if this random variable is crucial for the prob-

ability of failure. This measures provide useful information for the most significant

parameters, which should be considered as random variables.

Monte Carlo simulation has verified the accuracy of FORM method results, how-

ever the computational time especially for the applications, which includes FEM model

is significant. Considering that a probability 10−3 demands 100.000 (c.o.v.=10%), and

10−4 needs 1.000.000. simulations.

Subset Simulation reduces drastically the computational cost of Monte Carlo and

it produces reliable results. This method estimates small probability of failure replac-

ing it from a sequence of conditional probabilities, which are more frequent. For the

efficiency calculation of these probabilities the modified Metropolis algorithm is used.

The conditional probability is chosen to be p = 0.1, which affect the number of sam-

ples at each conditional level. Moreover, the samples of Markov chains, which are

produced with Subset simulation could be used to define if a random variable affects

(histogram) significant the probability of failure. Thus, considering the random vari-

ables with right skewed histograms (truss:24, 25,frame:35, 36), they affect more the

probability of failure, while the results are compatible with the sensitivity measures
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with FORM method (truss:18, frame:29 ) .

To deal extensively with issues on implicit performance function and huge com-

putational cost in reliability analysis, a method for structural reliability analysis was

proposed by combining regression models with Monte Carlo simualtion. Firstly, a

small amount of training dataset is generated by the structural analysis to train the

machine learning models. Then, the implicit performance is approximated by the

trained models using explicit formulations. Two numerical examples, structural prob-

lems, illustrated the application and effectiveness of this combination. Comparisons

were made with the classical reliability methods to evaluate the accuracy and com-

putational efficiency of MC with ML. The examples showed that this mixture provides

accurate results and is a computationally efficient approach for estimating the prob-

ability of failure of structures. Compared with classical methods, the combination is

much more economical in achieving reasonable accuracy when dealing with problems

with implicit limit state function and evaluating implicit limit state function frequently

performed using the time-consuming finite element analysis.

Gaussian process regression and support vector regression algorithms were used

for predicting the failure function. Gaussian process is the most accurate and efficient,

as it needs the least number of sample data (500) to estimate the probability of fail-

ure, however the computational time is significant. Support vector machines are con-

sidered as the best performing regarding the computational time, as the demanding

computational cost is minimized, however it needs 1000 (planar truss) and 1000 (pla-

nar frame) samples, while the estimated probability of failure is calculated with lower

accuracy, as it slightly differs from the original, which is calculated using the classical

reliability methods. In the case of large sample, SVR-MCS method is obviously su-

perior to MCS method in contrast to computation cost, considering that 10.000.000

simulations are executed in 6.02s and 4.89s for the two examples respectively, while

100.000 MC simulations require 69.52s and 845.38s.
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A. Appendix

% FORM - Hasofer-Lind and Rackwitz-Fiessler tranform

1. function[pf,b,a] = FORM HLRF(RV list,Properties,initialRV,dist)

2. N possible rv = size(Properties,1);

3.index RV = 0;

4.index NRV =0;

5.N RV = ones(1,3);

% Identification of the random variables

6.for indexprv=1:N possible rv

7. if isequal(Properties(indexprv,3),RV list(indexprv,1))==1

8. index RV = index RV +1;

9. RV(index RV,1) = Properties(indexprv,1);

10. RV(index RV,2) = Properties(indexprv,2);

11. RV(index RV,3) = Properties(indexprv,3);

12. else

13. index NRV= index NRV + 1;

14. N RV(index NRV,1) = Properties(indexprv,1);

15. N RV(index NRV,2) = Properties(indexprv,2);

16. N RV(index NRV,3) = Properties(indexprv,3);

17. end

18. if initialRV == Properties(indexprv,3)

19. eq initialRV = index RV;

20. end

21.end

22.N RV = flipud(sortrows(N RV,3));

23.not rv = size(N RV,1);

24.rv = size(RV,1);
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25.b = 0;

26.iteration =0;

27.a = zeros(1,rv);

28.g = zeros(1,rv);

29.gold = ones(1,rv);

30.X = Properties(:,1);

31.X(initialRV) = double(find initial RV(X,initialRV));

32.RV(eq initialRV,1) = X(initialRV);

33.k =0;

34. tol=0.001;

35. X = Problem Properties(:,1);

36. X(initialRV) = double(find initial RV(X,initialRV));

37. while true

38. for index var1=1:rv

39. distr=dist(index var1);

40. if strcmp(class(distr),class(makedist(’Normal’)))==0

41. nnormalrv=nnormalrv+1;

42. eq normal(nnormalrv)=RF transf(distr,double(RV(index var1,1)));

43. end

44. end

45. nonnormal = 0;

46. for index var2=1:rv

47. if strcmp(class(dist(index var2)),class(makedist(’Normal’)))==1

48. N means(index var2) = mean(dist(index var2));

49. N std(index var2) = std(dist(index var2));

50. elseif strcmp(class(dist(index var2)),class(makedist(’Normal’)))==0

51. nonnormal = nonnormal +1;

52. N means(index var2) = mean(eq normal(nonnormal));

53. N std(index var2) = std(eq normal(nonnormal));

54. end

55. RV(index var2,1) = double(N means(index var2));

56. RV(index var2,2) = double(N std(index var2));

57. end

58. aold=a;

59. bold=b;

60. iteration=iteration+1;
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61. if iteration==1

62. X(initialRV)=double(find initial RV(X,initialRV));

63. z=zeros(1,rv);

64. z(eq initialRV)=(X(initialRV) - RV(eq initialRV,1))/RV(eq initialRV,2);

65. else

66. gold=g;

67. z=double(a.*b);

68. z(eq initialRV) = (X(initialRV) - RV(eq initialRV,1))/RV(eq initialRV,2);

69. m = RV(:,1).’;

70. s = RV(:,2).’;

71. X = double(m+z.*s);

72. if rv<N possible rv

73. temp=[X.’;N RV(:,1)];

74. temp1 = [RV(:,3);N RV(:,3)];

75. temp2 = [temp temp1];

76. temp3 = sortrows(temp2,2);

77. X = temp3;

78. X = double(X(:,1));

79. end

80. X(initialRV) = double(find initial RV(X,initialRV));

81. for k=1:N possible rv

82. d(k) = -double(central dif method(X,k));

83. end

84. if rv<N possible rv

85. for j=1:size(N RV,1)

86. d(N RV(j,3)) = [];

87. X(N RV(j,3)) = [];

88. end

89. end

90. g = RV(:,2).*d.’;

91. sq = sqrt(g.’*g);

92. gt = g.’*z.’;

93. b = gt/sq;

94. a = g.’/sq;
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89. t = max(abs(a-aold));

90. t = max(t,abs(b-bold));

91. if t > tol

92.

93. else

94. break

95. end

101. B(ii)=b;

102. P Failure(ii)=normcdf(-b)

103.end

104.grid on

105.plot(No iterations,B,’r-*’)

106.ylabel(’Reliability Index’)

107.xlabel(’Iterations’)

108.title(’Convergence Plot’)

109.b = double(b);

110.pf = double(normcdf(-b));

111.fprintf(’Using the FORM-HLRF :’);

112.fprintf(’Iterations: %g\nFailure probability = %g\nbeta=%g\n\n’, ii,pf,b);

113.end

% Rackwitz-Fiessler - Function

1.function[obj normal] = RF transf(obj dist,x)

2.w = norminv(cdf(obj dist,x));

3.s N = normpdf(w)/(pdf(obj dist,x);

4.m N = x - norminv(cdf(obj dist,x))*s N;

5.obj normal = makedist(’Normal’, ’mu’, m N, ’sigma’, s N);

6.end

86



% Central Difference Method - Function

1.function [gd] = central dif method(X,k)

2.h1 = 0.25;

3.h = h1*X(k);

4.X(k) = X(k) + h;

5.u1 = gfail(X);

6.X(k) = X(k) - 2*h;

7.u2 = gfail(X);

8.gd = (u1-u2)/(2*h);

9.end

%Monte Carlo - Function

1. function [pf,gf,X]=MC(Properties,dist,N MC Simulation)

2. N possible rv = size(Problem Properties,1);

3. X = ones(N MC Simulations,N possible rv);

4. for i=1:N possible rv

5. X(:,i)=random(dist(i),[N MC Simulations,1]);

6. end

7. for j=1:N MC Simulations

8. gf(j) = gfail(X(j,:));

9. end

10. N Failure = length(find(gf<0));

11. pf = N Failure/N MC Simulations;

12. fprintf(’Using the crude MC :’);

13. fprintf(’Total number of samples: \%g\nFailure probability = %g\n\n’,

N MC Simulations,pf);

14. end

% Failure function

% This file depends on the problem.

% Random variables are placed in vector X according to matrix Properties in

% the data file.

1.function[g] = gfail(X)

2.g = (X(:,2)*X(:,1)*(d-0.59*X(:,2)*X(:,1))./(X(:,3)*b))-X(:,4);

3.end
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% Subset Simulation - Function

function[pF SS] = SubsetSim(Properties,dist,N Simulations Level)

1.p=0.1;

2.nc=N Simulations Level*p;

3.ns=(1-p)/p;

4.Level=0;

5.[∼,N,gf,x] = MC(Properties,dist,N Simulations Level);

6.nF = N;

7.y = gf;

8.YF = 0;

9.index nrv=0;

10.index rv=0;

11.for index var=1:size(Properties,1)

12. if std(dist(index var))==0

13. index nrv = index nrv +1;

14. n rv(index nrv,1) = index var;

15. else

16. index rv = index rv+1;

17. rv(index rv,1)=index var;

18. end

19.end

20.if size(rv,1)< size(Properties,1)

21. n rv = flipud(sortrows(n rv,1));

22. for index nrv2=1:size(n rv,1)

23. x(n rv(index nrv2),:) = [];

24. end

25.end

26.dimensions = index rv;

27.j=1;

28.while nF(Level+1)/N Simulations Level¡p

29. Level = Level + 1;

30. [y(Level,:),ind]=sort(y(Level,:),’descend’);

31. x(:,:,Level)=x(:,ind(:),Level);

32. Y(Level)=(y(Level,nc)+y(Level,nc+1))/2

33. z(:,:,1)=x(:,1:nc,Level);
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34. for j=1:nc

35. for m=1:ns

36. for k=1:dimensions

37. a=z(k,j,m)+randn;

38. r=min(1,normpdf(a)/normpdf(z(k,j,m)));

39. if rand<r

40. q(k)=a;

41. else

42. q(k)=z(k,j,m);

43. end

44. end

45. if sum(q)>Y(Level)

46. z(:,j,m+1)=q;

47. else

48. z(:,j,m+1)=z(:,j,m);

49. end

50. end

51. end

52. for j=1:nc

53. for m=1:ns+1

54. x(:,(j-1)*(ns+1)+m,Level+1)=z(:,j,m);

55. end

56. end

57. if size(rv,1)<size(Properties,1)

58. temp1 =[rv,x(:,:,Level+1)];

59. for h=1:size(n rv,1)

60. temp2(h,:) = mean(dist(n rv(h))).*(ones(1,N Simulations Level));

61. end

62. temp3 =[n rv,temp2];

63. temp4 = [temp1;temp3];

64. temp5 =sortrows(temp4,1);

65. temp5(:,1) = [];

66. end
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67. clear z;

68. nF(Level+1)=0;

69. for i=1:N Simulations Level

70. if size(rv,1)¡size(Properties,1)

71. y(Level+1,i) = gfail(temp5(:,i));

72. else

73. y(Level+1,i) = gfail(x(:,i,Level+1));

74. end

75. if y(Level+1,i)>YF

76. nF(Level+1)=nF(Level+1)+1;

77. end

78. end

79.end

80.pF SS = pLevel*nF(Level+1)/N Simulations Level;

81.k = nF(Level+1)/N Simulations Level;

82.N=N Simulations Level+N Simulations Level*(1-p)*(Level);

83.fprintf(’Using the Subset Simulation Method :\n’);

84.fprintf(’Total number of samples: %g\nNumber of Levels = %g\nFailure

probability = %g\n\n’, N, Level, pF SS)

85.end
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